Index: head/sys/dev/hwpmc/hwpmc_mod.c =================================================================== --- head/sys/dev/hwpmc/hwpmc_mod.c (revision 334192) +++ head/sys/dev/hwpmc/hwpmc_mod.c (revision 334193) @@ -1,5698 +1,5698 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2003-2008 Joseph Koshy * Copyright (c) 2007 The FreeBSD Foundation * Copyright (c) 2018 Matthew Macy * All rights reserved. * * Portions of this software were developed by A. Joseph Koshy under * sponsorship from the FreeBSD Foundation and Google, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* needs to be after */ #include #include #include #include #include #include #include #include "hwpmc_soft.h" #ifdef NUMA #define NDOMAINS vm_ndomains #else #define NDOMAINS 1 #define malloc_domain(size, type, domain, flags) malloc((size), (type), (flags)) #define free_domain(addr, type) free(addr, type) #endif /* * Types */ enum pmc_flags { PMC_FLAG_NONE = 0x00, /* do nothing */ PMC_FLAG_REMOVE = 0x01, /* atomically remove entry from hash */ PMC_FLAG_ALLOCATE = 0x02, /* add entry to hash if not found */ PMC_FLAG_NOWAIT = 0x04, /* do not wait for mallocs */ }; /* * The offset in sysent where the syscall is allocated. */ static int pmc_syscall_num = NO_SYSCALL; struct pmc_cpu **pmc_pcpu; /* per-cpu state */ pmc_value_t *pmc_pcpu_saved; /* saved PMC values: CSW handling */ #define PMC_PCPU_SAVED(C,R) pmc_pcpu_saved[(R) + md->pmd_npmc*(C)] struct mtx_pool *pmc_mtxpool; static int *pmc_pmcdisp; /* PMC row dispositions */ #define PMC_ROW_DISP_IS_FREE(R) (pmc_pmcdisp[(R)] == 0) #define PMC_ROW_DISP_IS_THREAD(R) (pmc_pmcdisp[(R)] > 0) #define PMC_ROW_DISP_IS_STANDALONE(R) (pmc_pmcdisp[(R)] < 0) #define PMC_MARK_ROW_FREE(R) do { \ pmc_pmcdisp[(R)] = 0; \ } while (0) #define PMC_MARK_ROW_STANDALONE(R) do { \ KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \ __LINE__)); \ atomic_add_int(&pmc_pmcdisp[(R)], -1); \ KASSERT(pmc_pmcdisp[(R)] >= (-pmc_cpu_max_active()), \ ("[pmc,%d] row disposition error", __LINE__)); \ } while (0) #define PMC_UNMARK_ROW_STANDALONE(R) do { \ atomic_add_int(&pmc_pmcdisp[(R)], 1); \ KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \ __LINE__)); \ } while (0) #define PMC_MARK_ROW_THREAD(R) do { \ KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \ __LINE__)); \ atomic_add_int(&pmc_pmcdisp[(R)], 1); \ } while (0) #define PMC_UNMARK_ROW_THREAD(R) do { \ atomic_add_int(&pmc_pmcdisp[(R)], -1); \ KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \ __LINE__)); \ } while (0) /* various event handlers */ static eventhandler_tag pmc_exit_tag, pmc_fork_tag, pmc_kld_load_tag, pmc_kld_unload_tag; /* Module statistics */ struct pmc_driverstats pmc_stats; /* Machine/processor dependent operations */ static struct pmc_mdep *md; /* * Hash tables mapping owner processes and target threads to PMCs. */ struct mtx pmc_processhash_mtx; /* spin mutex */ static u_long pmc_processhashmask; static LIST_HEAD(pmc_processhash, pmc_process) *pmc_processhash; /* * Hash table of PMC owner descriptors. This table is protected by * the shared PMC "sx" lock. */ static u_long pmc_ownerhashmask; static LIST_HEAD(pmc_ownerhash, pmc_owner) *pmc_ownerhash; /* * List of PMC owners with system-wide sampling PMCs. */ -static LIST_HEAD(, pmc_owner) pmc_ss_owners; +static CK_LIST_HEAD(, pmc_owner) pmc_ss_owners; /* * List of free thread entries. This is protected by the spin * mutex. */ static struct mtx pmc_threadfreelist_mtx; /* spin mutex */ static LIST_HEAD(, pmc_thread) pmc_threadfreelist; static int pmc_threadfreelist_entries=0; #define THREADENTRY_SIZE \ (sizeof(struct pmc_thread) + (md->pmd_npmc * sizeof(struct pmc_threadpmcstate))) /* * Task to free thread descriptors */ static struct grouptask free_gtask; /* * A map of row indices to classdep structures. */ static struct pmc_classdep **pmc_rowindex_to_classdep; /* * Prototypes */ #ifdef HWPMC_DEBUG static int pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS); static int pmc_debugflags_parse(char *newstr, char *fence); #endif static int load(struct module *module, int cmd, void *arg); static void pmc_add_thread_descriptors_from_proc(struct proc *p, struct pmc_process *pp); static int pmc_attach_process(struct proc *p, struct pmc *pm); static struct pmc *pmc_allocate_pmc_descriptor(void); static struct pmc_owner *pmc_allocate_owner_descriptor(struct proc *p); static int pmc_attach_one_process(struct proc *p, struct pmc *pm); static int pmc_can_allocate_rowindex(struct proc *p, unsigned int ri, int cpu); static int pmc_can_attach(struct pmc *pm, struct proc *p); static void pmc_capture_user_callchain(int cpu, int soft, struct trapframe *tf); static void pmc_cleanup(void); static int pmc_detach_process(struct proc *p, struct pmc *pm); static int pmc_detach_one_process(struct proc *p, struct pmc *pm, int flags); static void pmc_destroy_owner_descriptor(struct pmc_owner *po); static void pmc_destroy_pmc_descriptor(struct pmc *pm); static void pmc_destroy_process_descriptor(struct pmc_process *pp); static struct pmc_owner *pmc_find_owner_descriptor(struct proc *p); static int pmc_find_pmc(pmc_id_t pmcid, struct pmc **pm); static struct pmc *pmc_find_pmc_descriptor_in_process(struct pmc_owner *po, pmc_id_t pmc); static struct pmc_process *pmc_find_process_descriptor(struct proc *p, uint32_t mode); static struct pmc_thread *pmc_find_thread_descriptor(struct pmc_process *pp, struct thread *td, uint32_t mode); static void pmc_force_context_switch(void); static void pmc_link_target_process(struct pmc *pm, struct pmc_process *pp); static void pmc_log_all_process_mappings(struct pmc_owner *po); static void pmc_log_kernel_mappings(struct pmc *pm); static void pmc_log_process_mappings(struct pmc_owner *po, struct proc *p); static void pmc_maybe_remove_owner(struct pmc_owner *po); static void pmc_process_csw_in(struct thread *td); static void pmc_process_csw_out(struct thread *td); static void pmc_process_exit(void *arg, struct proc *p); static void pmc_process_fork(void *arg, struct proc *p1, struct proc *p2, int n); static void pmc_process_samples(int cpu, int soft); static void pmc_release_pmc_descriptor(struct pmc *pmc); static void pmc_process_thread_add(struct thread *td); static void pmc_process_thread_delete(struct thread *td); static void pmc_remove_owner(struct pmc_owner *po); static void pmc_remove_process_descriptor(struct pmc_process *pp); static void pmc_restore_cpu_binding(struct pmc_binding *pb); static void pmc_save_cpu_binding(struct pmc_binding *pb); static void pmc_select_cpu(int cpu); static int pmc_start(struct pmc *pm); static int pmc_stop(struct pmc *pm); static int pmc_syscall_handler(struct thread *td, void *syscall_args); static struct pmc_thread *pmc_thread_descriptor_pool_alloc(void); static void pmc_thread_descriptor_pool_drain(void); static void pmc_thread_descriptor_pool_free(struct pmc_thread *pt); static void pmc_unlink_target_process(struct pmc *pmc, struct pmc_process *pp); static int generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp); static int generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp); static struct pmc_mdep *pmc_generic_cpu_initialize(void); static void pmc_generic_cpu_finalize(struct pmc_mdep *md); /* * Kernel tunables and sysctl(8) interface. */ SYSCTL_DECL(_kern_hwpmc); SYSCTL_NODE(_kern_hwpmc, OID_AUTO, stats, CTLFLAG_RW, 0, "HWPMC stats"); /* Stats. */ SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_ignored, CTLFLAG_RW, &pmc_stats.pm_intr_ignored, "# of interrupts ignored"); SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_processed, CTLFLAG_RW, &pmc_stats.pm_intr_processed, "# of interrupts processed"); SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_bufferfull, CTLFLAG_RW, &pmc_stats.pm_intr_bufferfull, "# of interrupts where buffer was full"); SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, syscalls, CTLFLAG_RW, &pmc_stats.pm_syscalls, "# of syscalls"); SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, syscall_errors, CTLFLAG_RW, &pmc_stats.pm_syscall_errors, "# of syscall_errors"); SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, buffer_requests, CTLFLAG_RW, &pmc_stats.pm_buffer_requests, "# of buffer requests"); SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, buffer_requests_failed, CTLFLAG_RW, &pmc_stats.pm_buffer_requests_failed, "# of buffer requests which failed"); SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, log_sweeps, CTLFLAG_RW, &pmc_stats.pm_log_sweeps, "# of ?"); static int pmc_callchaindepth = PMC_CALLCHAIN_DEPTH; SYSCTL_INT(_kern_hwpmc, OID_AUTO, callchaindepth, CTLFLAG_RDTUN, &pmc_callchaindepth, 0, "depth of call chain records"); char pmc_cpuid[64]; SYSCTL_STRING(_kern_hwpmc, OID_AUTO, cpuid, CTLFLAG_RD, pmc_cpuid, 0, "cpu version string"); #ifdef HWPMC_DEBUG struct pmc_debugflags pmc_debugflags = PMC_DEBUG_DEFAULT_FLAGS; char pmc_debugstr[PMC_DEBUG_STRSIZE]; TUNABLE_STR(PMC_SYSCTL_NAME_PREFIX "debugflags", pmc_debugstr, sizeof(pmc_debugstr)); SYSCTL_PROC(_kern_hwpmc, OID_AUTO, debugflags, CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH, 0, 0, pmc_debugflags_sysctl_handler, "A", "debug flags"); #endif /* * kern.hwpmc.hashrows -- determines the number of rows in the * of the hash table used to look up threads */ static int pmc_hashsize = PMC_HASH_SIZE; SYSCTL_INT(_kern_hwpmc, OID_AUTO, hashsize, CTLFLAG_RDTUN, &pmc_hashsize, 0, "rows in hash tables"); /* * kern.hwpmc.nsamples --- number of PC samples/callchain stacks per CPU */ static int pmc_nsamples = PMC_NSAMPLES; SYSCTL_INT(_kern_hwpmc, OID_AUTO, nsamples, CTLFLAG_RDTUN, &pmc_nsamples, 0, "number of PC samples per CPU"); /* * kern.hwpmc.mtxpoolsize -- number of mutexes in the mutex pool. */ static int pmc_mtxpool_size = PMC_MTXPOOL_SIZE; SYSCTL_INT(_kern_hwpmc, OID_AUTO, mtxpoolsize, CTLFLAG_RDTUN, &pmc_mtxpool_size, 0, "size of spin mutex pool"); /* * kern.hwpmc.threadfreelist_entries -- number of free entries */ SYSCTL_INT(_kern_hwpmc, OID_AUTO, threadfreelist_entries, CTLFLAG_RD, &pmc_threadfreelist_entries, 0, "number of avalable thread entries"); /* * kern.hwpmc.threadfreelist_max -- maximum number of free entries */ static int pmc_threadfreelist_max = PMC_THREADLIST_MAX; SYSCTL_INT(_kern_hwpmc, OID_AUTO, threadfreelist_max, CTLFLAG_RW, &pmc_threadfreelist_max, 0, "maximum number of available thread entries before freeing some"); /* * security.bsd.unprivileged_syspmcs -- allow non-root processes to * allocate system-wide PMCs. * * Allowing unprivileged processes to allocate system PMCs is convenient * if system-wide measurements need to be taken concurrently with other * per-process measurements. This feature is turned off by default. */ static int pmc_unprivileged_syspmcs = 0; SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_syspmcs, CTLFLAG_RWTUN, &pmc_unprivileged_syspmcs, 0, "allow unprivileged process to allocate system PMCs"); /* * Hash function. Discard the lower 2 bits of the pointer since * these are always zero for our uses. The hash multiplier is * round((2^LONG_BIT) * ((sqrt(5)-1)/2)). */ #if LONG_BIT == 64 #define _PMC_HM 11400714819323198486u #elif LONG_BIT == 32 #define _PMC_HM 2654435769u #else #error Must know the size of 'long' to compile #endif #define PMC_HASH_PTR(P,M) ((((unsigned long) (P) >> 2) * _PMC_HM) & (M)) /* * Syscall structures */ /* The `sysent' for the new syscall */ static struct sysent pmc_sysent = { .sy_narg = 2, .sy_call = pmc_syscall_handler, }; static struct syscall_module_data pmc_syscall_mod = { .chainevh = load, .chainarg = NULL, .offset = &pmc_syscall_num, .new_sysent = &pmc_sysent, .old_sysent = { .sy_narg = 0, .sy_call = NULL }, .flags = SY_THR_STATIC_KLD, }; static moduledata_t pmc_mod = { .name = PMC_MODULE_NAME, .evhand = syscall_module_handler, .priv = &pmc_syscall_mod, }; #ifdef EARLY_AP_STARTUP DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SYSCALLS, SI_ORDER_ANY); #else DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SMP, SI_ORDER_ANY); #endif MODULE_VERSION(pmc, PMC_VERSION); #ifdef HWPMC_DEBUG enum pmc_dbgparse_state { PMCDS_WS, /* in whitespace */ PMCDS_MAJOR, /* seen a major keyword */ PMCDS_MINOR }; static int pmc_debugflags_parse(char *newstr, char *fence) { char c, *p, *q; struct pmc_debugflags *tmpflags; int error, found, *newbits, tmp; size_t kwlen; tmpflags = malloc(sizeof(*tmpflags), M_PMC, M_WAITOK|M_ZERO); p = newstr; error = 0; for (; p < fence && (c = *p); p++) { /* skip white space */ if (c == ' ' || c == '\t') continue; /* look for a keyword followed by "=" */ for (q = p; p < fence && (c = *p) && c != '='; p++) ; if (c != '=') { error = EINVAL; goto done; } kwlen = p - q; newbits = NULL; /* lookup flag group name */ #define DBG_SET_FLAG_MAJ(S,F) \ if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0) \ newbits = &tmpflags->pdb_ ## F; DBG_SET_FLAG_MAJ("cpu", CPU); DBG_SET_FLAG_MAJ("csw", CSW); DBG_SET_FLAG_MAJ("logging", LOG); DBG_SET_FLAG_MAJ("module", MOD); DBG_SET_FLAG_MAJ("md", MDP); DBG_SET_FLAG_MAJ("owner", OWN); DBG_SET_FLAG_MAJ("pmc", PMC); DBG_SET_FLAG_MAJ("process", PRC); DBG_SET_FLAG_MAJ("sampling", SAM); if (newbits == NULL) { error = EINVAL; goto done; } p++; /* skip the '=' */ /* Now parse the individual flags */ tmp = 0; newflag: for (q = p; p < fence && (c = *p); p++) if (c == ' ' || c == '\t' || c == ',') break; /* p == fence or c == ws or c == "," or c == 0 */ if ((kwlen = p - q) == 0) { *newbits = tmp; continue; } found = 0; #define DBG_SET_FLAG_MIN(S,F) \ if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0) \ tmp |= found = (1 << PMC_DEBUG_MIN_ ## F) /* a '*' denotes all possible flags in the group */ if (kwlen == 1 && *q == '*') tmp = found = ~0; /* look for individual flag names */ DBG_SET_FLAG_MIN("allocaterow", ALR); DBG_SET_FLAG_MIN("allocate", ALL); DBG_SET_FLAG_MIN("attach", ATT); DBG_SET_FLAG_MIN("bind", BND); DBG_SET_FLAG_MIN("config", CFG); DBG_SET_FLAG_MIN("exec", EXC); DBG_SET_FLAG_MIN("exit", EXT); DBG_SET_FLAG_MIN("find", FND); DBG_SET_FLAG_MIN("flush", FLS); DBG_SET_FLAG_MIN("fork", FRK); DBG_SET_FLAG_MIN("getbuf", GTB); DBG_SET_FLAG_MIN("hook", PMH); DBG_SET_FLAG_MIN("init", INI); DBG_SET_FLAG_MIN("intr", INT); DBG_SET_FLAG_MIN("linktarget", TLK); DBG_SET_FLAG_MIN("mayberemove", OMR); DBG_SET_FLAG_MIN("ops", OPS); DBG_SET_FLAG_MIN("read", REA); DBG_SET_FLAG_MIN("register", REG); DBG_SET_FLAG_MIN("release", REL); DBG_SET_FLAG_MIN("remove", ORM); DBG_SET_FLAG_MIN("sample", SAM); DBG_SET_FLAG_MIN("scheduleio", SIO); DBG_SET_FLAG_MIN("select", SEL); DBG_SET_FLAG_MIN("signal", SIG); DBG_SET_FLAG_MIN("swi", SWI); DBG_SET_FLAG_MIN("swo", SWO); DBG_SET_FLAG_MIN("start", STA); DBG_SET_FLAG_MIN("stop", STO); DBG_SET_FLAG_MIN("syscall", PMS); DBG_SET_FLAG_MIN("unlinktarget", TUL); DBG_SET_FLAG_MIN("write", WRI); if (found == 0) { /* unrecognized flag name */ error = EINVAL; goto done; } if (c == 0 || c == ' ' || c == '\t') { /* end of flag group */ *newbits = tmp; continue; } p++; goto newflag; } /* save the new flag set */ bcopy(tmpflags, &pmc_debugflags, sizeof(pmc_debugflags)); done: free(tmpflags, M_PMC); return error; } static int pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS) { char *fence, *newstr; int error; unsigned int n; (void) arg1; (void) arg2; /* unused parameters */ n = sizeof(pmc_debugstr); newstr = malloc(n, M_PMC, M_WAITOK|M_ZERO); (void) strlcpy(newstr, pmc_debugstr, n); error = sysctl_handle_string(oidp, newstr, n, req); /* if there is a new string, parse and copy it */ if (error == 0 && req->newptr != NULL) { fence = newstr + (n < req->newlen ? n : req->newlen + 1); if ((error = pmc_debugflags_parse(newstr, fence)) == 0) (void) strlcpy(pmc_debugstr, newstr, sizeof(pmc_debugstr)); } free(newstr, M_PMC); return error; } #endif /* * Map a row index to a classdep structure and return the adjusted row * index for the PMC class index. */ static struct pmc_classdep * pmc_ri_to_classdep(struct pmc_mdep *md, int ri, int *adjri) { struct pmc_classdep *pcd; (void) md; KASSERT(ri >= 0 && ri < md->pmd_npmc, ("[pmc,%d] illegal row-index %d", __LINE__, ri)); pcd = pmc_rowindex_to_classdep[ri]; KASSERT(pcd != NULL, ("[pmc,%d] ri %d null pcd", __LINE__, ri)); *adjri = ri - pcd->pcd_ri; KASSERT(*adjri >= 0 && *adjri < pcd->pcd_num, ("[pmc,%d] adjusted row-index %d", __LINE__, *adjri)); return (pcd); } /* * Concurrency Control * * The driver manages the following data structures: * * - target process descriptors, one per target process * - owner process descriptors (and attached lists), one per owner process * - lookup hash tables for owner and target processes * - PMC descriptors (and attached lists) * - per-cpu hardware state * - the 'hook' variable through which the kernel calls into * this module * - the machine hardware state (managed by the MD layer) * * These data structures are accessed from: * * - thread context-switch code * - interrupt handlers (possibly on multiple cpus) * - kernel threads on multiple cpus running on behalf of user * processes doing system calls * - this driver's private kernel threads * * = Locks and Locking strategy = * * The driver uses four locking strategies for its operation: * * - The global SX lock "pmc_sx" is used to protect internal * data structures. * * Calls into the module by syscall() start with this lock being * held in exclusive mode. Depending on the requested operation, * the lock may be downgraded to 'shared' mode to allow more * concurrent readers into the module. Calls into the module from * other parts of the kernel acquire the lock in shared mode. * * This SX lock is held in exclusive mode for any operations that * modify the linkages between the driver's internal data structures. * * The 'pmc_hook' function pointer is also protected by this lock. * It is only examined with the sx lock held in exclusive mode. The * kernel module is allowed to be unloaded only with the sx lock held * in exclusive mode. In normal syscall handling, after acquiring the * pmc_sx lock we first check that 'pmc_hook' is non-null before * proceeding. This prevents races between the thread unloading the module * and other threads seeking to use the module. * * - Lookups of target process structures and owner process structures * cannot use the global "pmc_sx" SX lock because these lookups need * to happen during context switches and in other critical sections * where sleeping is not allowed. We protect these lookup tables * with their own private spin-mutexes, "pmc_processhash_mtx" and * "pmc_ownerhash_mtx". * * - Interrupt handlers work in a lock free manner. At interrupt * time, handlers look at the PMC pointer (phw->phw_pmc) configured * when the PMC was started. If this pointer is NULL, the interrupt * is ignored after updating driver statistics. We ensure that this * pointer is set (using an atomic operation if necessary) before the * PMC hardware is started. Conversely, this pointer is unset atomically * only after the PMC hardware is stopped. * * We ensure that everything needed for the operation of an * interrupt handler is available without it needing to acquire any * locks. We also ensure that a PMC's software state is destroyed only * after the PMC is taken off hardware (on all CPUs). * * - Context-switch handling with process-private PMCs needs more * care. * * A given process may be the target of multiple PMCs. For example, * PMCATTACH and PMCDETACH may be requested by a process on one CPU * while the target process is running on another. A PMC could also * be getting released because its owner is exiting. We tackle * these situations in the following manner: * * - each target process structure 'pmc_process' has an array * of 'struct pmc *' pointers, one for each hardware PMC. * * - At context switch IN time, each "target" PMC in RUNNING state * gets started on hardware and a pointer to each PMC is copied into * the per-cpu phw array. The 'runcount' for the PMC is * incremented. * * - At context switch OUT time, all process-virtual PMCs are stopped * on hardware. The saved value is added to the PMCs value field * only if the PMC is in a non-deleted state (the PMCs state could * have changed during the current time slice). * * Note that since in-between a switch IN on a processor and a switch * OUT, the PMC could have been released on another CPU. Therefore * context switch OUT always looks at the hardware state to turn * OFF PMCs and will update a PMC's saved value only if reachable * from the target process record. * * - OP PMCRELEASE could be called on a PMC at any time (the PMC could * be attached to many processes at the time of the call and could * be active on multiple CPUs). * * We prevent further scheduling of the PMC by marking it as in * state 'DELETED'. If the runcount of the PMC is non-zero then * this PMC is currently running on a CPU somewhere. The thread * doing the PMCRELEASE operation waits by repeatedly doing a * pause() till the runcount comes to zero. * * The contents of a PMC descriptor (struct pmc) are protected using * a spin-mutex. In order to save space, we use a mutex pool. * * In terms of lock types used by witness(4), we use: * - Type "pmc-sx", used by the global SX lock. * - Type "pmc-sleep", for sleep mutexes used by logger threads. * - Type "pmc-per-proc", for protecting PMC owner descriptors. * - Type "pmc-leaf", used for all other spin mutexes. */ /* * save the cpu binding of the current kthread */ static void pmc_save_cpu_binding(struct pmc_binding *pb) { PMCDBG0(CPU,BND,2, "save-cpu"); thread_lock(curthread); pb->pb_bound = sched_is_bound(curthread); pb->pb_cpu = curthread->td_oncpu; thread_unlock(curthread); PMCDBG1(CPU,BND,2, "save-cpu cpu=%d", pb->pb_cpu); } /* * restore the cpu binding of the current thread */ static void pmc_restore_cpu_binding(struct pmc_binding *pb) { PMCDBG2(CPU,BND,2, "restore-cpu curcpu=%d restore=%d", curthread->td_oncpu, pb->pb_cpu); thread_lock(curthread); if (pb->pb_bound) sched_bind(curthread, pb->pb_cpu); else sched_unbind(curthread); thread_unlock(curthread); PMCDBG0(CPU,BND,2, "restore-cpu done"); } /* * move execution over the specified cpu and bind it there. */ static void pmc_select_cpu(int cpu) { KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[pmc,%d] bad cpu number %d", __LINE__, cpu)); /* Never move to an inactive CPU. */ KASSERT(pmc_cpu_is_active(cpu), ("[pmc,%d] selecting inactive " "CPU %d", __LINE__, cpu)); PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d", cpu); thread_lock(curthread); sched_bind(curthread, cpu); thread_unlock(curthread); KASSERT(curthread->td_oncpu == cpu, ("[pmc,%d] CPU not bound [cpu=%d, curr=%d]", __LINE__, cpu, curthread->td_oncpu)); PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d ok", cpu); } /* * Force a context switch. * * We do this by pause'ing for 1 tick -- invoking mi_switch() is not * guaranteed to force a context switch. */ static void pmc_force_context_switch(void) { pause("pmcctx", 1); } /* * Get the file name for an executable. This is a simple wrapper * around vn_fullpath(9). */ static void pmc_getfilename(struct vnode *v, char **fullpath, char **freepath) { *fullpath = "unknown"; *freepath = NULL; vn_fullpath(curthread, v, fullpath, freepath); } /* * remove an process owning PMCs */ void pmc_remove_owner(struct pmc_owner *po) { struct pmc *pm, *tmp; sx_assert(&pmc_sx, SX_XLOCKED); PMCDBG1(OWN,ORM,1, "remove-owner po=%p", po); /* Remove descriptor from the owner hash table */ LIST_REMOVE(po, po_next); /* release all owned PMC descriptors */ LIST_FOREACH_SAFE(pm, &po->po_pmcs, pm_next, tmp) { PMCDBG1(OWN,ORM,2, "pmc=%p", pm); KASSERT(pm->pm_owner == po, ("[pmc,%d] owner %p != po %p", __LINE__, pm->pm_owner, po)); pmc_release_pmc_descriptor(pm); /* will unlink from the list */ pmc_destroy_pmc_descriptor(pm); } KASSERT(po->po_sscount == 0, ("[pmc,%d] SS count not zero", __LINE__)); KASSERT(LIST_EMPTY(&po->po_pmcs), ("[pmc,%d] PMC list not empty", __LINE__)); /* de-configure the log file if present */ if (po->po_flags & PMC_PO_OWNS_LOGFILE) pmclog_deconfigure_log(po); } /* * remove an owner process record if all conditions are met. */ static void pmc_maybe_remove_owner(struct pmc_owner *po) { PMCDBG1(OWN,OMR,1, "maybe-remove-owner po=%p", po); /* * Remove owner record if * - this process does not own any PMCs * - this process has not allocated a system-wide sampling buffer */ if (LIST_EMPTY(&po->po_pmcs) && ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)) { pmc_remove_owner(po); pmc_destroy_owner_descriptor(po); } } /* * Add an association between a target process and a PMC. */ static void pmc_link_target_process(struct pmc *pm, struct pmc_process *pp) { int ri; struct pmc_target *pt; #ifdef INVARIANTS struct pmc_thread *pt_td; #endif sx_assert(&pmc_sx, SX_XLOCKED); KASSERT(pm != NULL && pp != NULL, ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp)); KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)), ("[pmc,%d] Attaching a non-process-virtual pmc=%p to pid=%d", __LINE__, pm, pp->pp_proc->p_pid)); KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= ((int) md->pmd_npmc - 1), ("[pmc,%d] Illegal reference count %d for process record %p", __LINE__, pp->pp_refcnt, (void *) pp)); ri = PMC_TO_ROWINDEX(pm); PMCDBG3(PRC,TLK,1, "link-target pmc=%p ri=%d pmc-process=%p", pm, ri, pp); #ifdef HWPMC_DEBUG LIST_FOREACH(pt, &pm->pm_targets, pt_next) if (pt->pt_process == pp) KASSERT(0, ("[pmc,%d] pp %p already in pmc %p targets", __LINE__, pp, pm)); #endif pt = malloc(sizeof(struct pmc_target), M_PMC, M_WAITOK|M_ZERO); pt->pt_process = pp; LIST_INSERT_HEAD(&pm->pm_targets, pt, pt_next); atomic_store_rel_ptr((uintptr_t *)&pp->pp_pmcs[ri].pp_pmc, (uintptr_t)pm); if (pm->pm_owner->po_owner == pp->pp_proc) pm->pm_flags |= PMC_F_ATTACHED_TO_OWNER; /* * Initialize the per-process values at this row index. */ pp->pp_pmcs[ri].pp_pmcval = PMC_TO_MODE(pm) == PMC_MODE_TS ? pm->pm_sc.pm_reloadcount : 0; pp->pp_refcnt++; #ifdef INVARIANTS /* Confirm that the per-thread values at this row index are cleared. */ if (PMC_TO_MODE(pm) == PMC_MODE_TS) { mtx_lock_spin(pp->pp_tdslock); LIST_FOREACH(pt_td, &pp->pp_tds, pt_next) { KASSERT(pt_td->pt_pmcs[ri].pt_pmcval == (pmc_value_t) 0, ("[pmc,%d] pt_pmcval not cleared for pid=%d at " "ri=%d", __LINE__, pp->pp_proc->p_pid, ri)); } mtx_unlock_spin(pp->pp_tdslock); } #endif } /* * Removes the association between a target process and a PMC. */ static void pmc_unlink_target_process(struct pmc *pm, struct pmc_process *pp) { int ri; struct proc *p; struct pmc_target *ptgt; struct pmc_thread *pt; sx_assert(&pmc_sx, SX_XLOCKED); KASSERT(pm != NULL && pp != NULL, ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp)); KASSERT(pp->pp_refcnt >= 1 && pp->pp_refcnt <= (int) md->pmd_npmc, ("[pmc,%d] Illegal ref count %d on process record %p", __LINE__, pp->pp_refcnt, (void *) pp)); ri = PMC_TO_ROWINDEX(pm); PMCDBG3(PRC,TUL,1, "unlink-target pmc=%p ri=%d pmc-process=%p", pm, ri, pp); KASSERT(pp->pp_pmcs[ri].pp_pmc == pm, ("[pmc,%d] PMC ri %d mismatch pmc %p pp->[ri] %p", __LINE__, ri, pm, pp->pp_pmcs[ri].pp_pmc)); pp->pp_pmcs[ri].pp_pmc = NULL; pp->pp_pmcs[ri].pp_pmcval = (pmc_value_t) 0; /* Clear the per-thread values at this row index. */ if (PMC_TO_MODE(pm) == PMC_MODE_TS) { mtx_lock_spin(pp->pp_tdslock); LIST_FOREACH(pt, &pp->pp_tds, pt_next) pt->pt_pmcs[ri].pt_pmcval = (pmc_value_t) 0; mtx_unlock_spin(pp->pp_tdslock); } /* Remove owner-specific flags */ if (pm->pm_owner->po_owner == pp->pp_proc) { pp->pp_flags &= ~PMC_PP_ENABLE_MSR_ACCESS; pm->pm_flags &= ~PMC_F_ATTACHED_TO_OWNER; } pp->pp_refcnt--; /* Remove the target process from the PMC structure */ LIST_FOREACH(ptgt, &pm->pm_targets, pt_next) if (ptgt->pt_process == pp) break; KASSERT(ptgt != NULL, ("[pmc,%d] process %p (pp: %p) not found " "in pmc %p", __LINE__, pp->pp_proc, pp, pm)); LIST_REMOVE(ptgt, pt_next); free(ptgt, M_PMC); /* if the PMC now lacks targets, send the owner a SIGIO */ if (LIST_EMPTY(&pm->pm_targets)) { p = pm->pm_owner->po_owner; PROC_LOCK(p); kern_psignal(p, SIGIO); PROC_UNLOCK(p); PMCDBG2(PRC,SIG,2, "signalling proc=%p signal=%d", p, SIGIO); } } /* * Check if PMC 'pm' may be attached to target process 't'. */ static int pmc_can_attach(struct pmc *pm, struct proc *t) { struct proc *o; /* pmc owner */ struct ucred *oc, *tc; /* owner, target credentials */ int decline_attach, i; /* * A PMC's owner can always attach that PMC to itself. */ if ((o = pm->pm_owner->po_owner) == t) return 0; PROC_LOCK(o); oc = o->p_ucred; crhold(oc); PROC_UNLOCK(o); PROC_LOCK(t); tc = t->p_ucred; crhold(tc); PROC_UNLOCK(t); /* * The effective uid of the PMC owner should match at least one * of the {effective,real,saved} uids of the target process. */ decline_attach = oc->cr_uid != tc->cr_uid && oc->cr_uid != tc->cr_svuid && oc->cr_uid != tc->cr_ruid; /* * Every one of the target's group ids, must be in the owner's * group list. */ for (i = 0; !decline_attach && i < tc->cr_ngroups; i++) decline_attach = !groupmember(tc->cr_groups[i], oc); /* check the read and saved gids too */ if (decline_attach == 0) decline_attach = !groupmember(tc->cr_rgid, oc) || !groupmember(tc->cr_svgid, oc); crfree(tc); crfree(oc); return !decline_attach; } /* * Attach a process to a PMC. */ static int pmc_attach_one_process(struct proc *p, struct pmc *pm) { int ri, error; char *fullpath, *freepath; struct pmc_process *pp; sx_assert(&pmc_sx, SX_XLOCKED); PMCDBG5(PRC,ATT,2, "attach-one pm=%p ri=%d proc=%p (%d, %s)", pm, PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm); /* * Locate the process descriptor corresponding to process 'p', * allocating space as needed. * * Verify that rowindex 'pm_rowindex' is free in the process * descriptor. * * If not, allocate space for a descriptor and link the * process descriptor and PMC. */ ri = PMC_TO_ROWINDEX(pm); /* mark process as using HWPMCs */ PROC_LOCK(p); p->p_flag |= P_HWPMC; PROC_UNLOCK(p); if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_ALLOCATE)) == NULL) { error = ENOMEM; goto fail; } if (pp->pp_pmcs[ri].pp_pmc == pm) {/* already present at slot [ri] */ error = EEXIST; goto fail; } if (pp->pp_pmcs[ri].pp_pmc != NULL) { error = EBUSY; goto fail; } pmc_link_target_process(pm, pp); if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) && (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) == 0) pm->pm_flags |= PMC_F_NEEDS_LOGFILE; pm->pm_flags |= PMC_F_ATTACH_DONE; /* mark as attached */ /* issue an attach event to a configured log file */ if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE) { if (p->p_flag & P_KPROC) { fullpath = kernelname; freepath = NULL; } else { pmc_getfilename(p->p_textvp, &fullpath, &freepath); pmclog_process_pmcattach(pm, p->p_pid, fullpath); } free(freepath, M_TEMP); if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) pmc_log_process_mappings(pm->pm_owner, p); } return (0); fail: PROC_LOCK(p); p->p_flag &= ~P_HWPMC; PROC_UNLOCK(p); return (error); } /* * Attach a process and optionally its children */ static int pmc_attach_process(struct proc *p, struct pmc *pm) { int error; struct proc *top; sx_assert(&pmc_sx, SX_XLOCKED); PMCDBG5(PRC,ATT,1, "attach pm=%p ri=%d proc=%p (%d, %s)", pm, PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm); /* * If this PMC successfully allowed a GETMSR operation * in the past, disallow further ATTACHes. */ if ((pm->pm_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0) return EPERM; if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0) return pmc_attach_one_process(p, pm); /* * Traverse all child processes, attaching them to * this PMC. */ sx_slock(&proctree_lock); top = p; for (;;) { if ((error = pmc_attach_one_process(p, pm)) != 0) break; if (!LIST_EMPTY(&p->p_children)) p = LIST_FIRST(&p->p_children); else for (;;) { if (p == top) goto done; if (LIST_NEXT(p, p_sibling)) { p = LIST_NEXT(p, p_sibling); break; } p = p->p_pptr; } } if (error) (void) pmc_detach_process(top, pm); done: sx_sunlock(&proctree_lock); return error; } /* * Detach a process from a PMC. If there are no other PMCs tracking * this process, remove the process structure from its hash table. If * 'flags' contains PMC_FLAG_REMOVE, then free the process structure. */ static int pmc_detach_one_process(struct proc *p, struct pmc *pm, int flags) { int ri; struct pmc_process *pp; sx_assert(&pmc_sx, SX_XLOCKED); KASSERT(pm != NULL, ("[pmc,%d] null pm pointer", __LINE__)); ri = PMC_TO_ROWINDEX(pm); PMCDBG6(PRC,ATT,2, "detach-one pm=%p ri=%d proc=%p (%d, %s) flags=0x%x", pm, ri, p, p->p_pid, p->p_comm, flags); if ((pp = pmc_find_process_descriptor(p, 0)) == NULL) return ESRCH; if (pp->pp_pmcs[ri].pp_pmc != pm) return EINVAL; pmc_unlink_target_process(pm, pp); /* Issue a detach entry if a log file is configured */ if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE) pmclog_process_pmcdetach(pm, p->p_pid); /* * If there are no PMCs targeting this process, we remove its * descriptor from the target hash table and unset the P_HWPMC * flag in the struct proc. */ KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc, ("[pmc,%d] Illegal refcnt %d for process struct %p", __LINE__, pp->pp_refcnt, pp)); if (pp->pp_refcnt != 0) /* still a target of some PMC */ return 0; pmc_remove_process_descriptor(pp); if (flags & PMC_FLAG_REMOVE) pmc_destroy_process_descriptor(pp); PROC_LOCK(p); p->p_flag &= ~P_HWPMC; PROC_UNLOCK(p); return 0; } /* * Detach a process and optionally its descendants from a PMC. */ static int pmc_detach_process(struct proc *p, struct pmc *pm) { struct proc *top; sx_assert(&pmc_sx, SX_XLOCKED); PMCDBG5(PRC,ATT,1, "detach pm=%p ri=%d proc=%p (%d, %s)", pm, PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm); if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0) return pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE); /* * Traverse all children, detaching them from this PMC. We * ignore errors since we could be detaching a PMC from a * partially attached proc tree. */ sx_slock(&proctree_lock); top = p; for (;;) { (void) pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE); if (!LIST_EMPTY(&p->p_children)) p = LIST_FIRST(&p->p_children); else for (;;) { if (p == top) goto done; if (LIST_NEXT(p, p_sibling)) { p = LIST_NEXT(p, p_sibling); break; } p = p->p_pptr; } } done: sx_sunlock(&proctree_lock); if (LIST_EMPTY(&pm->pm_targets)) pm->pm_flags &= ~PMC_F_ATTACH_DONE; return 0; } /* * Thread context switch IN */ static void pmc_process_csw_in(struct thread *td) { int cpu; unsigned int adjri, ri; struct pmc *pm; struct proc *p; struct pmc_cpu *pc; struct pmc_hw *phw; pmc_value_t newvalue; struct pmc_process *pp; struct pmc_thread *pt; struct pmc_classdep *pcd; p = td->td_proc; pt = NULL; if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE)) == NULL) return; KASSERT(pp->pp_proc == td->td_proc, ("[pmc,%d] not my thread state", __LINE__)); critical_enter(); /* no preemption from this point */ cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */ PMCDBG5(CSW,SWI,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p, p->p_pid, p->p_comm, pp); KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[pmc,%d] weird CPU id %d", __LINE__, cpu)); pc = pmc_pcpu[cpu]; for (ri = 0; ri < md->pmd_npmc; ri++) { if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL) continue; KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)), ("[pmc,%d] Target PMC in non-virtual mode (%d)", __LINE__, PMC_TO_MODE(pm))); KASSERT(PMC_TO_ROWINDEX(pm) == ri, ("[pmc,%d] Row index mismatch pmc %d != ri %d", __LINE__, PMC_TO_ROWINDEX(pm), ri)); /* * Only PMCs that are marked as 'RUNNING' need * be placed on hardware. */ if (pm->pm_state != PMC_STATE_RUNNING) continue; /* increment PMC runcount */ counter_u64_add(pm->pm_runcount, 1); /* configure the HWPMC we are going to use. */ pcd = pmc_ri_to_classdep(md, ri, &adjri); pcd->pcd_config_pmc(cpu, adjri, pm); phw = pc->pc_hwpmcs[ri]; KASSERT(phw != NULL, ("[pmc,%d] null hw pointer", __LINE__)); KASSERT(phw->phw_pmc == pm, ("[pmc,%d] hw->pmc %p != pmc %p", __LINE__, phw->phw_pmc, pm)); /* * Write out saved value and start the PMC. * * Sampling PMCs use a per-thread value, while * counting mode PMCs use a per-pmc value that is * inherited across descendants. */ if (PMC_TO_MODE(pm) == PMC_MODE_TS) { if (pt == NULL) pt = pmc_find_thread_descriptor(pp, td, PMC_FLAG_NONE); KASSERT(pt != NULL, ("[pmc,%d] No thread found for td=%p", __LINE__, td)); mtx_pool_lock_spin(pmc_mtxpool, pm); /* * If we have a thread descriptor, use the per-thread * counter in the descriptor. If not, we will use * a per-process counter. * * TODO: Remove the per-process "safety net" once * we have thoroughly tested that we don't hit the * above assert. */ if (pt != NULL) { if (pt->pt_pmcs[ri].pt_pmcval > 0) newvalue = pt->pt_pmcs[ri].pt_pmcval; else newvalue = pm->pm_sc.pm_reloadcount; } else { /* * Use the saved value calculated after the most * recent time a thread using the shared counter * switched out. Reset the saved count in case * another thread from this process switches in * before any threads switch out. */ newvalue = pp->pp_pmcs[ri].pp_pmcval; pp->pp_pmcs[ri].pp_pmcval = pm->pm_sc.pm_reloadcount; } mtx_pool_unlock_spin(pmc_mtxpool, pm); KASSERT(newvalue > 0 && newvalue <= pm->pm_sc.pm_reloadcount, ("[pmc,%d] pmcval outside of expected range cpu=%d " "ri=%d pmcval=%jx pm_reloadcount=%jx", __LINE__, cpu, ri, newvalue, pm->pm_sc.pm_reloadcount)); } else { KASSERT(PMC_TO_MODE(pm) == PMC_MODE_TC, ("[pmc,%d] illegal mode=%d", __LINE__, PMC_TO_MODE(pm))); mtx_pool_lock_spin(pmc_mtxpool, pm); newvalue = PMC_PCPU_SAVED(cpu, ri) = pm->pm_gv.pm_savedvalue; mtx_pool_unlock_spin(pmc_mtxpool, pm); } PMCDBG3(CSW,SWI,1,"cpu=%d ri=%d new=%jd", cpu, ri, newvalue); pcd->pcd_write_pmc(cpu, adjri, newvalue); /* If a sampling mode PMC, reset stalled state. */ if (PMC_TO_MODE(pm) == PMC_MODE_TS) pm->pm_pcpu_state[cpu].pps_stalled = 0; /* Indicate that we desire this to run. */ pm->pm_pcpu_state[cpu].pps_cpustate = 1; /* Start the PMC. */ pcd->pcd_start_pmc(cpu, adjri); } /* * perform any other architecture/cpu dependent thread * switch-in actions. */ (void) (*md->pmd_switch_in)(pc, pp); critical_exit(); } /* * Thread context switch OUT. */ static void pmc_process_csw_out(struct thread *td) { int cpu; int64_t tmp; struct pmc *pm; struct proc *p; enum pmc_mode mode; struct pmc_cpu *pc; pmc_value_t newvalue; unsigned int adjri, ri; struct pmc_process *pp; struct pmc_thread *pt = NULL; struct pmc_classdep *pcd; /* * Locate our process descriptor; this may be NULL if * this process is exiting and we have already removed * the process from the target process table. * * Note that due to kernel preemption, multiple * context switches may happen while the process is * exiting. * * Note also that if the target process cannot be * found we still need to deconfigure any PMCs that * are currently running on hardware. */ p = td->td_proc; pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE); /* * save PMCs */ critical_enter(); cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */ PMCDBG5(CSW,SWO,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p, p->p_pid, p->p_comm, pp); KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[pmc,%d weird CPU id %d", __LINE__, cpu)); pc = pmc_pcpu[cpu]; /* * When a PMC gets unlinked from a target PMC, it will * be removed from the target's pp_pmc[] array. * * However, on a MP system, the target could have been * executing on another CPU at the time of the unlink. * So, at context switch OUT time, we need to look at * the hardware to determine if a PMC is scheduled on * it. */ for (ri = 0; ri < md->pmd_npmc; ri++) { pcd = pmc_ri_to_classdep(md, ri, &adjri); pm = NULL; (void) (*pcd->pcd_get_config)(cpu, adjri, &pm); if (pm == NULL) /* nothing at this row index */ continue; mode = PMC_TO_MODE(pm); if (!PMC_IS_VIRTUAL_MODE(mode)) continue; /* not a process virtual PMC */ KASSERT(PMC_TO_ROWINDEX(pm) == ri, ("[pmc,%d] ri mismatch pmc(%d) ri(%d)", __LINE__, PMC_TO_ROWINDEX(pm), ri)); /* * Change desired state, and then stop if not stalled. * This two-step dance should avoid race conditions where * an interrupt re-enables the PMC after this code has * already checked the pm_stalled flag. */ pm->pm_pcpu_state[cpu].pps_cpustate = 0; if (pm->pm_pcpu_state[cpu].pps_stalled == 0) pcd->pcd_stop_pmc(cpu, adjri); /* reduce this PMC's runcount */ counter_u64_add(pm->pm_runcount, -1); /* * If this PMC is associated with this process, * save the reading. */ if (pm->pm_state != PMC_STATE_DELETED && pp != NULL && pp->pp_pmcs[ri].pp_pmc != NULL) { KASSERT(pm == pp->pp_pmcs[ri].pp_pmc, ("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__, pm, ri, pp->pp_pmcs[ri].pp_pmc)); KASSERT(pp->pp_refcnt > 0, ("[pmc,%d] pp refcnt = %d", __LINE__, pp->pp_refcnt)); pcd->pcd_read_pmc(cpu, adjri, &newvalue); if (mode == PMC_MODE_TS) { PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d val=%jd (samp)", cpu, ri, newvalue); if (pt == NULL) pt = pmc_find_thread_descriptor(pp, td, PMC_FLAG_NONE); KASSERT(pt != NULL, ("[pmc,%d] No thread found for td=%p", __LINE__, td)); mtx_pool_lock_spin(pmc_mtxpool, pm); /* * If we have a thread descriptor, save the * per-thread counter in the descriptor. If not, * we will update the per-process counter. * * TODO: Remove the per-process "safety net" * once we have thoroughly tested that we * don't hit the above assert. */ if (pt != NULL) pt->pt_pmcs[ri].pt_pmcval = newvalue; else { /* * For sampling process-virtual PMCs, * newvalue is the number of events to * be seen until the next sampling * interrupt. We can just add the events * left from this invocation to the * counter, then adjust in case we * overflow our range. * * (Recall that we reload the counter * every time we use it.) */ pp->pp_pmcs[ri].pp_pmcval += newvalue; if (pp->pp_pmcs[ri].pp_pmcval > pm->pm_sc.pm_reloadcount) pp->pp_pmcs[ri].pp_pmcval -= pm->pm_sc.pm_reloadcount; } mtx_pool_unlock_spin(pmc_mtxpool, pm); } else { tmp = newvalue - PMC_PCPU_SAVED(cpu,ri); PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd (count)", cpu, ri, tmp); /* * For counting process-virtual PMCs, * we expect the count to be * increasing monotonically, modulo a 64 * bit wraparound. */ KASSERT(tmp >= 0, ("[pmc,%d] negative increment cpu=%d " "ri=%d newvalue=%jx saved=%jx " "incr=%jx", __LINE__, cpu, ri, newvalue, PMC_PCPU_SAVED(cpu,ri), tmp)); mtx_pool_lock_spin(pmc_mtxpool, pm); pm->pm_gv.pm_savedvalue += tmp; pp->pp_pmcs[ri].pp_pmcval += tmp; mtx_pool_unlock_spin(pmc_mtxpool, pm); if (pm->pm_flags & PMC_F_LOG_PROCCSW) pmclog_process_proccsw(pm, pp, tmp, td); } } /* mark hardware as free */ pcd->pcd_config_pmc(cpu, adjri, NULL); } /* * perform any other architecture/cpu dependent thread * switch out functions. */ (void) (*md->pmd_switch_out)(pc, pp); critical_exit(); } /* * A new thread for a process. */ static void pmc_process_thread_add(struct thread *td) { struct pmc_process *pmc; pmc = pmc_find_process_descriptor(td->td_proc, PMC_FLAG_NONE); if (pmc != NULL) pmc_find_thread_descriptor(pmc, td, PMC_FLAG_ALLOCATE); } /* * A thread delete for a process. */ static void pmc_process_thread_delete(struct thread *td) { struct pmc_process *pmc; pmc = pmc_find_process_descriptor(td->td_proc, PMC_FLAG_NONE); if (pmc != NULL) pmc_thread_descriptor_pool_free(pmc_find_thread_descriptor(pmc, td, PMC_FLAG_REMOVE)); } /* * A mapping change for a process. */ static void pmc_process_mmap(struct thread *td, struct pmckern_map_in *pkm) { int ri; pid_t pid; char *fullpath, *freepath; const struct pmc *pm; struct pmc_owner *po; const struct pmc_process *pp; freepath = fullpath = NULL; epoch_exit_preempt(global_epoch_preempt); pmc_getfilename((struct vnode *) pkm->pm_file, &fullpath, &freepath); pid = td->td_proc->p_pid; epoch_enter_preempt(global_epoch_preempt); /* Inform owners of all system-wide sampling PMCs. */ CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) if (po->po_flags & PMC_PO_OWNS_LOGFILE) pmclog_process_map_in(po, pid, pkm->pm_address, fullpath); if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL) goto done; /* * Inform sampling PMC owners tracking this process. */ for (ri = 0; ri < md->pmd_npmc; ri++) if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL && PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) pmclog_process_map_in(pm->pm_owner, pid, pkm->pm_address, fullpath); done: if (freepath) free(freepath, M_TEMP); } /* * Log an munmap request. */ static void pmc_process_munmap(struct thread *td, struct pmckern_map_out *pkm) { int ri; pid_t pid; struct pmc_owner *po; const struct pmc *pm; const struct pmc_process *pp; pid = td->td_proc->p_pid; epoch_enter_preempt(global_epoch_preempt); CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) if (po->po_flags & PMC_PO_OWNS_LOGFILE) pmclog_process_map_out(po, pid, pkm->pm_address, pkm->pm_address + pkm->pm_size); epoch_exit_preempt(global_epoch_preempt); if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL) return; for (ri = 0; ri < md->pmd_npmc; ri++) if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL && PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) pmclog_process_map_out(pm->pm_owner, pid, pkm->pm_address, pkm->pm_address + pkm->pm_size); } /* * Log mapping information about the kernel. */ static void pmc_log_kernel_mappings(struct pmc *pm) { struct pmc_owner *po; struct pmckern_map_in *km, *kmbase; MPASS(in_epoch() || sx_xlocked(&pmc_sx)); KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)), ("[pmc,%d] non-sampling PMC (%p) desires mapping information", __LINE__, (void *) pm)); po = pm->pm_owner; if (po->po_flags & PMC_PO_INITIAL_MAPPINGS_DONE) return; /* * Log the current set of kernel modules. */ kmbase = linker_hwpmc_list_objects(); for (km = kmbase; km->pm_file != NULL; km++) { PMCDBG2(LOG,REG,1,"%s %p", (char *) km->pm_file, (void *) km->pm_address); pmclog_process_map_in(po, (pid_t) -1, km->pm_address, km->pm_file); } free(kmbase, M_LINKER); po->po_flags |= PMC_PO_INITIAL_MAPPINGS_DONE; } /* * Log the mappings for a single process. */ static void pmc_log_process_mappings(struct pmc_owner *po, struct proc *p) { vm_map_t map; struct vnode *vp; struct vmspace *vm; vm_map_entry_t entry; vm_offset_t last_end; u_int last_timestamp; struct vnode *last_vp; vm_offset_t start_addr; vm_object_t obj, lobj, tobj; char *fullpath, *freepath; last_vp = NULL; last_end = (vm_offset_t) 0; fullpath = freepath = NULL; if ((vm = vmspace_acquire_ref(p)) == NULL) return; map = &vm->vm_map; vm_map_lock_read(map); for (entry = map->header.next; entry != &map->header; entry = entry->next) { if (entry == NULL) { PMCDBG2(LOG,OPS,2, "hwpmc: vm_map entry unexpectedly " "NULL! pid=%d vm_map=%p\n", p->p_pid, map); break; } /* * We only care about executable map entries. */ if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) || !(entry->protection & VM_PROT_EXECUTE) || (entry->object.vm_object == NULL)) { continue; } obj = entry->object.vm_object; VM_OBJECT_RLOCK(obj); /* * Walk the backing_object list to find the base * (non-shadowed) vm_object. */ for (lobj = tobj = obj; tobj != NULL; tobj = tobj->backing_object) { if (tobj != obj) VM_OBJECT_RLOCK(tobj); if (lobj != obj) VM_OBJECT_RUNLOCK(lobj); lobj = tobj; } /* * At this point lobj is the base vm_object and it is locked. */ if (lobj == NULL) { PMCDBG3(LOG,OPS,2, "hwpmc: lobj unexpectedly NULL! pid=%d " "vm_map=%p vm_obj=%p\n", p->p_pid, map, obj); VM_OBJECT_RUNLOCK(obj); continue; } vp = vm_object_vnode(lobj); if (vp == NULL) { if (lobj != obj) VM_OBJECT_RUNLOCK(lobj); VM_OBJECT_RUNLOCK(obj); continue; } /* * Skip contiguous regions that point to the same * vnode, so we don't emit redundant MAP-IN * directives. */ if (entry->start == last_end && vp == last_vp) { last_end = entry->end; if (lobj != obj) VM_OBJECT_RUNLOCK(lobj); VM_OBJECT_RUNLOCK(obj); continue; } /* * We don't want to keep the proc's vm_map or this * vm_object locked while we walk the pathname, since * vn_fullpath() can sleep. However, if we drop the * lock, it's possible for concurrent activity to * modify the vm_map list. To protect against this, * we save the vm_map timestamp before we release the * lock, and check it after we reacquire the lock * below. */ start_addr = entry->start; last_end = entry->end; last_timestamp = map->timestamp; vm_map_unlock_read(map); vref(vp); if (lobj != obj) VM_OBJECT_RUNLOCK(lobj); VM_OBJECT_RUNLOCK(obj); freepath = NULL; pmc_getfilename(vp, &fullpath, &freepath); last_vp = vp; vrele(vp); vp = NULL; pmclog_process_map_in(po, p->p_pid, start_addr, fullpath); if (freepath) free(freepath, M_TEMP); vm_map_lock_read(map); /* * If our saved timestamp doesn't match, this means * that the vm_map was modified out from under us and * we can't trust our current "entry" pointer. Do a * new lookup for this entry. If there is no entry * for this address range, vm_map_lookup_entry() will * return the previous one, so we always want to go to * entry->next on the next loop iteration. * * There is an edge condition here that can occur if * there is no entry at or before this address. In * this situation, vm_map_lookup_entry returns * &map->header, which would cause our loop to abort * without processing the rest of the map. However, * in practice this will never happen for process * vm_map. This is because the executable's text * segment is the first mapping in the proc's address * space, and this mapping is never removed until the * process exits, so there will always be a non-header * entry at or before the requested address for * vm_map_lookup_entry to return. */ if (map->timestamp != last_timestamp) vm_map_lookup_entry(map, last_end - 1, &entry); } vm_map_unlock_read(map); vmspace_free(vm); return; } /* * Log mappings for all processes in the system. */ static void pmc_log_all_process_mappings(struct pmc_owner *po) { struct proc *p, *top; sx_assert(&pmc_sx, SX_XLOCKED); if ((p = pfind(1)) == NULL) panic("[pmc,%d] Cannot find init", __LINE__); PROC_UNLOCK(p); sx_slock(&proctree_lock); top = p; for (;;) { pmc_log_process_mappings(po, p); if (!LIST_EMPTY(&p->p_children)) p = LIST_FIRST(&p->p_children); else for (;;) { if (p == top) goto done; if (LIST_NEXT(p, p_sibling)) { p = LIST_NEXT(p, p_sibling); break; } p = p->p_pptr; } } done: sx_sunlock(&proctree_lock); } /* * The 'hook' invoked from the kernel proper */ #ifdef HWPMC_DEBUG const char *pmc_hooknames[] = { /* these strings correspond to PMC_FN_* in */ "", "EXEC", "CSW-IN", "CSW-OUT", "SAMPLE", "UNUSED1", "UNUSED2", "MMAP", "MUNMAP", "CALLCHAIN-NMI", "CALLCHAIN-SOFT", "SOFTSAMPLING", "THR-CREATE", "THR-EXIT", }; #endif static int pmc_hook_handler(struct thread *td, int function, void *arg) { int cpu; PMCDBG4(MOD,PMH,1, "hook td=%p func=%d \"%s\" arg=%p", td, function, pmc_hooknames[function], arg); switch (function) { /* * Process exec() */ case PMC_FN_PROCESS_EXEC: { char *fullpath, *freepath; unsigned int ri; int is_using_hwpmcs; struct pmc *pm; struct proc *p; struct pmc_owner *po; struct pmc_process *pp; struct pmckern_procexec *pk; sx_assert(&pmc_sx, SX_XLOCKED); p = td->td_proc; pmc_getfilename(p->p_textvp, &fullpath, &freepath); pk = (struct pmckern_procexec *) arg; epoch_enter_preempt(global_epoch_preempt); /* Inform owners of SS mode PMCs of the exec event. */ CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) if (po->po_flags & PMC_PO_OWNS_LOGFILE) pmclog_process_procexec(po, PMC_ID_INVALID, p->p_pid, pk->pm_entryaddr, fullpath); epoch_exit_preempt(global_epoch_preempt); PROC_LOCK(p); is_using_hwpmcs = p->p_flag & P_HWPMC; PROC_UNLOCK(p); if (!is_using_hwpmcs) { if (freepath) free(freepath, M_TEMP); break; } /* * PMCs are not inherited across an exec(): remove any * PMCs that this process is the owner of. */ if ((po = pmc_find_owner_descriptor(p)) != NULL) { pmc_remove_owner(po); pmc_destroy_owner_descriptor(po); } /* * If the process being exec'ed is not the target of any * PMC, we are done. */ if ((pp = pmc_find_process_descriptor(p, 0)) == NULL) { if (freepath) free(freepath, M_TEMP); break; } /* * Log the exec event to all monitoring owners. Skip * owners who have already received the event because * they had system sampling PMCs active. */ for (ri = 0; ri < md->pmd_npmc; ri++) if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) { po = pm->pm_owner; if (po->po_sscount == 0 && po->po_flags & PMC_PO_OWNS_LOGFILE) pmclog_process_procexec(po, pm->pm_id, p->p_pid, pk->pm_entryaddr, fullpath); } if (freepath) free(freepath, M_TEMP); PMCDBG4(PRC,EXC,1, "exec proc=%p (%d, %s) cred-changed=%d", p, p->p_pid, p->p_comm, pk->pm_credentialschanged); if (pk->pm_credentialschanged == 0) /* no change */ break; /* * If the newly exec()'ed process has a different credential * than before, allow it to be the target of a PMC only if * the PMC's owner has sufficient privilege. */ for (ri = 0; ri < md->pmd_npmc; ri++) if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) if (pmc_can_attach(pm, td->td_proc) != 0) pmc_detach_one_process(td->td_proc, pm, PMC_FLAG_NONE); KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc, ("[pmc,%d] Illegal ref count %d on pp %p", __LINE__, pp->pp_refcnt, pp)); /* * If this process is no longer the target of any * PMCs, we can remove the process entry and free * up space. */ if (pp->pp_refcnt == 0) { pmc_remove_process_descriptor(pp); pmc_destroy_process_descriptor(pp); break; } } break; case PMC_FN_CSW_IN: pmc_process_csw_in(td); break; case PMC_FN_CSW_OUT: pmc_process_csw_out(td); break; /* * Process accumulated PC samples. * * This function is expected to be called by hardclock() for * each CPU that has accumulated PC samples. * * This function is to be executed on the CPU whose samples * are being processed. */ case PMC_FN_DO_SAMPLES: /* * Clear the cpu specific bit in the CPU mask before * do the rest of the processing. If the NMI handler * gets invoked after the "atomic_clear_int()" call * below but before "pmc_process_samples()" gets * around to processing the interrupt, then we will * come back here at the next hardclock() tick (and * may find nothing to do if "pmc_process_samples()" * had already processed the interrupt). We don't * lose the interrupt sample. */ DPCPU_SET(pmc_sampled, 0); cpu = PCPU_GET(cpuid); pmc_process_samples(cpu, PMC_HR); pmc_process_samples(cpu, PMC_SR); break; case PMC_FN_MMAP: MPASS(in_epoch() || sx_xlocked(&pmc_sx)); pmc_process_mmap(td, (struct pmckern_map_in *) arg); break; case PMC_FN_MUNMAP: MPASS(in_epoch() || sx_xlocked(&pmc_sx)); pmc_process_munmap(td, (struct pmckern_map_out *) arg); break; case PMC_FN_USER_CALLCHAIN: /* * Record a call chain. */ KASSERT(td == curthread, ("[pmc,%d] td != curthread", __LINE__)); pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_HR, (struct trapframe *) arg); td->td_pflags &= ~TDP_CALLCHAIN; break; case PMC_FN_USER_CALLCHAIN_SOFT: /* * Record a call chain. */ KASSERT(td == curthread, ("[pmc,%d] td != curthread", __LINE__)); pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_SR, (struct trapframe *) arg); td->td_pflags &= ~TDP_CALLCHAIN; break; case PMC_FN_SOFT_SAMPLING: /* * Call soft PMC sampling intr. */ pmc_soft_intr((struct pmckern_soft *) arg); break; case PMC_FN_THR_CREATE: pmc_process_thread_add(td); break; case PMC_FN_THR_EXIT: KASSERT(td == curthread, ("[pmc,%d] td != curthread", __LINE__)); pmc_process_thread_delete(td); break; default: #ifdef HWPMC_DEBUG KASSERT(0, ("[pmc,%d] unknown hook %d\n", __LINE__, function)); #endif break; } return 0; } /* * allocate a 'struct pmc_owner' descriptor in the owner hash table. */ static struct pmc_owner * pmc_allocate_owner_descriptor(struct proc *p) { uint32_t hindex; struct pmc_owner *po; struct pmc_ownerhash *poh; hindex = PMC_HASH_PTR(p, pmc_ownerhashmask); poh = &pmc_ownerhash[hindex]; /* allocate space for N pointers and one descriptor struct */ po = malloc(sizeof(struct pmc_owner), M_PMC, M_WAITOK|M_ZERO); po->po_owner = p; LIST_INSERT_HEAD(poh, po, po_next); /* insert into hash table */ TAILQ_INIT(&po->po_logbuffers); mtx_init(&po->po_mtx, "pmc-owner-mtx", "pmc-per-proc", MTX_SPIN); PMCDBG4(OWN,ALL,1, "allocate-owner proc=%p (%d, %s) pmc-owner=%p", p, p->p_pid, p->p_comm, po); return po; } static void pmc_destroy_owner_descriptor(struct pmc_owner *po) { PMCDBG4(OWN,REL,1, "destroy-owner po=%p proc=%p (%d, %s)", po, po->po_owner, po->po_owner->p_pid, po->po_owner->p_comm); mtx_destroy(&po->po_mtx); free(po, M_PMC); } /* * Allocate a thread descriptor from the free pool. * * NOTE: This *can* return NULL. */ static struct pmc_thread * pmc_thread_descriptor_pool_alloc(void) { struct pmc_thread *pt; mtx_lock_spin(&pmc_threadfreelist_mtx); if ((pt = LIST_FIRST(&pmc_threadfreelist)) != NULL) { LIST_REMOVE(pt, pt_next); pmc_threadfreelist_entries--; } mtx_unlock_spin(&pmc_threadfreelist_mtx); return (pt); } /* * Add a thread descriptor to the free pool. We use this instead of free() * to maintain a cache of free entries. Additionally, we can safely call * this function when we cannot call free(), such as in a critical section. * */ static void pmc_thread_descriptor_pool_free(struct pmc_thread *pt) { if (pt == NULL) return; memset(pt, 0, THREADENTRY_SIZE); mtx_lock_spin(&pmc_threadfreelist_mtx); LIST_INSERT_HEAD(&pmc_threadfreelist, pt, pt_next); pmc_threadfreelist_entries++; if (pmc_threadfreelist_entries > pmc_threadfreelist_max) GROUPTASK_ENQUEUE(&free_gtask); mtx_unlock_spin(&pmc_threadfreelist_mtx); } /* * A callout to manage the free list. */ static void pmc_thread_descriptor_pool_free_task(void *arg __unused) { struct pmc_thread *pt; LIST_HEAD(, pmc_thread) tmplist; int delta; LIST_INIT(&tmplist); /* Determine what changes, if any, we need to make. */ mtx_lock_spin(&pmc_threadfreelist_mtx); delta = pmc_threadfreelist_entries - pmc_threadfreelist_max; while (delta > 0) { pt = LIST_FIRST(&pmc_threadfreelist); MPASS(pt); LIST_REMOVE(pt, pt_next); LIST_INSERT_HEAD(&tmplist, pt, pt_next); } mtx_unlock_spin(&pmc_threadfreelist_mtx); /* If there are entries to free, free them. */ while (!LIST_EMPTY(&tmplist)) { pt = LIST_FIRST(&pmc_threadfreelist); LIST_REMOVE(pt, pt_next); free(pt, M_PMC); } } /* * Drain the thread free pool, freeing all allocations. */ static void pmc_thread_descriptor_pool_drain() { struct pmc_thread *pt, *next; LIST_FOREACH_SAFE(pt, &pmc_threadfreelist, pt_next, next) { LIST_REMOVE(pt, pt_next); free(pt, M_PMC); } } /* * find the descriptor corresponding to thread 'td', adding or removing it * as specified by 'mode'. * * Note that this supports additional mode flags in addition to those * supported by pmc_find_process_descriptor(): * PMC_FLAG_NOWAIT: Causes the function to not wait for mallocs. * This makes it safe to call while holding certain other locks. */ static struct pmc_thread * pmc_find_thread_descriptor(struct pmc_process *pp, struct thread *td, uint32_t mode) { struct pmc_thread *pt = NULL, *ptnew = NULL; int wait_flag; KASSERT(td != NULL, ("[pmc,%d] called to add NULL td", __LINE__)); /* * Pre-allocate memory in the PMC_FLAG_ALLOCATE case prior to * acquiring the lock. */ if (mode & PMC_FLAG_ALLOCATE) { if ((ptnew = pmc_thread_descriptor_pool_alloc()) == NULL) { wait_flag = (mode & PMC_FLAG_NOWAIT) ? M_NOWAIT : M_WAITOK; ptnew = malloc(THREADENTRY_SIZE, M_PMC, wait_flag|M_ZERO); } } mtx_lock_spin(pp->pp_tdslock); LIST_FOREACH(pt, &pp->pp_tds, pt_next) if (pt->pt_td == td) break; if ((mode & PMC_FLAG_REMOVE) && pt != NULL) LIST_REMOVE(pt, pt_next); if ((mode & PMC_FLAG_ALLOCATE) && pt == NULL && ptnew != NULL) { pt = ptnew; ptnew = NULL; pt->pt_td = td; LIST_INSERT_HEAD(&pp->pp_tds, pt, pt_next); } mtx_unlock_spin(pp->pp_tdslock); if (ptnew != NULL) { free(ptnew, M_PMC); } return pt; } /* * Try to add thread descriptors for each thread in a process. */ static void pmc_add_thread_descriptors_from_proc(struct proc *p, struct pmc_process *pp) { struct thread *curtd; struct pmc_thread **tdlist; int i, tdcnt, tdlistsz; KASSERT(!PROC_LOCKED(p), ("[pmc,%d] proc unexpectedly locked", __LINE__)); tdcnt = 32; restart: tdlistsz = roundup2(tdcnt, 32); tdcnt = 0; tdlist = malloc(sizeof(struct pmc_thread*) * tdlistsz, M_TEMP, M_WAITOK); PROC_LOCK(p); FOREACH_THREAD_IN_PROC(p, curtd) tdcnt++; if (tdcnt >= tdlistsz) { PROC_UNLOCK(p); free(tdlist, M_TEMP); goto restart; } /* * Try to add each thread to the list without sleeping. If unable, * add to a queue to retry after dropping the process lock. */ tdcnt = 0; FOREACH_THREAD_IN_PROC(p, curtd) { tdlist[tdcnt] = pmc_find_thread_descriptor(pp, curtd, PMC_FLAG_ALLOCATE|PMC_FLAG_NOWAIT); if (tdlist[tdcnt] == NULL) { PROC_UNLOCK(p); for (i = 0; i <= tdcnt; i++) pmc_thread_descriptor_pool_free(tdlist[i]); free(tdlist, M_TEMP); goto restart; } tdcnt++; } PROC_UNLOCK(p); free(tdlist, M_TEMP); } /* * find the descriptor corresponding to process 'p', adding or removing it * as specified by 'mode'. */ static struct pmc_process * pmc_find_process_descriptor(struct proc *p, uint32_t mode) { uint32_t hindex; struct pmc_process *pp, *ppnew; struct pmc_processhash *pph; hindex = PMC_HASH_PTR(p, pmc_processhashmask); pph = &pmc_processhash[hindex]; ppnew = NULL; /* * Pre-allocate memory in the PMC_FLAG_ALLOCATE case since we * cannot call malloc(9) once we hold a spin lock. */ if (mode & PMC_FLAG_ALLOCATE) ppnew = malloc(sizeof(struct pmc_process) + md->pmd_npmc * sizeof(struct pmc_targetstate), M_PMC, M_WAITOK|M_ZERO); mtx_lock_spin(&pmc_processhash_mtx); LIST_FOREACH(pp, pph, pp_next) if (pp->pp_proc == p) break; if ((mode & PMC_FLAG_REMOVE) && pp != NULL) LIST_REMOVE(pp, pp_next); if ((mode & PMC_FLAG_ALLOCATE) && pp == NULL && ppnew != NULL) { ppnew->pp_proc = p; LIST_INIT(&ppnew->pp_tds); ppnew->pp_tdslock = mtx_pool_find(pmc_mtxpool, ppnew); LIST_INSERT_HEAD(pph, ppnew, pp_next); mtx_unlock_spin(&pmc_processhash_mtx); pp = ppnew; ppnew = NULL; /* Add thread descriptors for this process' current threads. */ pmc_add_thread_descriptors_from_proc(p, pp); } else mtx_unlock_spin(&pmc_processhash_mtx); if (ppnew != NULL) free(ppnew, M_PMC); return pp; } /* * remove a process descriptor from the process hash table. */ static void pmc_remove_process_descriptor(struct pmc_process *pp) { KASSERT(pp->pp_refcnt == 0, ("[pmc,%d] Removing process descriptor %p with count %d", __LINE__, pp, pp->pp_refcnt)); mtx_lock_spin(&pmc_processhash_mtx); LIST_REMOVE(pp, pp_next); mtx_unlock_spin(&pmc_processhash_mtx); } /* * destroy a process descriptor. */ static void pmc_destroy_process_descriptor(struct pmc_process *pp) { struct pmc_thread *pmc_td; while ((pmc_td = LIST_FIRST(&pp->pp_tds)) != NULL) { LIST_REMOVE(pmc_td, pt_next); pmc_thread_descriptor_pool_free(pmc_td); } free(pp, M_PMC); } /* * find an owner descriptor corresponding to proc 'p' */ static struct pmc_owner * pmc_find_owner_descriptor(struct proc *p) { uint32_t hindex; struct pmc_owner *po; struct pmc_ownerhash *poh; hindex = PMC_HASH_PTR(p, pmc_ownerhashmask); poh = &pmc_ownerhash[hindex]; po = NULL; LIST_FOREACH(po, poh, po_next) if (po->po_owner == p) break; PMCDBG5(OWN,FND,1, "find-owner proc=%p (%d, %s) hindex=0x%x -> " "pmc-owner=%p", p, p->p_pid, p->p_comm, hindex, po); return po; } /* * pmc_allocate_pmc_descriptor * * Allocate a pmc descriptor and initialize its * fields. */ static struct pmc * pmc_allocate_pmc_descriptor(void) { struct pmc *pmc; pmc = malloc(sizeof(struct pmc), M_PMC, M_WAITOK|M_ZERO); pmc->pm_runcount = counter_u64_alloc(M_WAITOK); pmc->pm_pcpu_state = malloc(sizeof(struct pmc_pcpu_state)*mp_ncpus, M_PMC, M_WAITOK|M_ZERO); PMCDBG1(PMC,ALL,1, "allocate-pmc -> pmc=%p", pmc); return pmc; } /* * Destroy a pmc descriptor. */ static void pmc_destroy_pmc_descriptor(struct pmc *pm) { KASSERT(pm->pm_state == PMC_STATE_DELETED || pm->pm_state == PMC_STATE_FREE, ("[pmc,%d] destroying non-deleted PMC", __LINE__)); KASSERT(LIST_EMPTY(&pm->pm_targets), ("[pmc,%d] destroying pmc with targets", __LINE__)); KASSERT(pm->pm_owner == NULL, ("[pmc,%d] destroying pmc attached to an owner", __LINE__)); KASSERT(counter_u64_fetch(pm->pm_runcount) == 0, ("[pmc,%d] pmc has non-zero run count %ld", __LINE__, (unsigned long)counter_u64_fetch(pm->pm_runcount))); counter_u64_free(pm->pm_runcount); free(pm->pm_pcpu_state, M_PMC); free(pm, M_PMC); } static void pmc_wait_for_pmc_idle(struct pmc *pm) { #ifdef HWPMC_DEBUG volatile int maxloop; maxloop = 100 * pmc_cpu_max(); #endif /* * Loop (with a forced context switch) till the PMC's runcount * comes down to zero. */ while (counter_u64_fetch(pm->pm_runcount) > 0) { #ifdef HWPMC_DEBUG maxloop--; KASSERT(maxloop > 0, ("[pmc,%d] (ri%d, rc%ld) waiting too long for " "pmc to be free", __LINE__, PMC_TO_ROWINDEX(pm), (unsigned long)counter_u64_fetch(pm->pm_runcount))); #endif pmc_force_context_switch(); } } /* * This function does the following things: * * - detaches the PMC from hardware * - unlinks all target threads that were attached to it * - removes the PMC from its owner's list * - destroys the PMC private mutex * * Once this function completes, the given pmc pointer can be freed by * calling pmc_destroy_pmc_descriptor(). */ static void pmc_release_pmc_descriptor(struct pmc *pm) { enum pmc_mode mode; struct pmc_hw *phw; u_int adjri, ri, cpu; struct pmc_owner *po; struct pmc_binding pb; struct pmc_process *pp; struct pmc_classdep *pcd; struct pmc_target *ptgt, *tmp; sx_assert(&pmc_sx, SX_XLOCKED); KASSERT(pm, ("[pmc,%d] null pmc", __LINE__)); ri = PMC_TO_ROWINDEX(pm); pcd = pmc_ri_to_classdep(md, ri, &adjri); mode = PMC_TO_MODE(pm); PMCDBG3(PMC,REL,1, "release-pmc pmc=%p ri=%d mode=%d", pm, ri, mode); /* * First, we take the PMC off hardware. */ cpu = 0; if (PMC_IS_SYSTEM_MODE(mode)) { /* * A system mode PMC runs on a specific CPU. Switch * to this CPU and turn hardware off. */ pmc_save_cpu_binding(&pb); cpu = PMC_TO_CPU(pm); pmc_select_cpu(cpu); /* switch off non-stalled CPUs */ pm->pm_pcpu_state[cpu].pps_cpustate = 0; if (pm->pm_state == PMC_STATE_RUNNING && pm->pm_pcpu_state[cpu].pps_stalled == 0) { phw = pmc_pcpu[cpu]->pc_hwpmcs[ri]; KASSERT(phw->phw_pmc == pm, ("[pmc, %d] pmc ptr ri(%d) hw(%p) pm(%p)", __LINE__, ri, phw->phw_pmc, pm)); PMCDBG2(PMC,REL,2, "stopping cpu=%d ri=%d", cpu, ri); critical_enter(); pcd->pcd_stop_pmc(cpu, adjri); critical_exit(); } PMCDBG2(PMC,REL,2, "decfg cpu=%d ri=%d", cpu, ri); critical_enter(); pcd->pcd_config_pmc(cpu, adjri, NULL); critical_exit(); /* adjust the global and process count of SS mode PMCs */ if (mode == PMC_MODE_SS && pm->pm_state == PMC_STATE_RUNNING) { po = pm->pm_owner; po->po_sscount--; if (po->po_sscount == 0) { atomic_subtract_rel_int(&pmc_ss_count, 1); CK_LIST_REMOVE(po, po_ssnext); epoch_wait_preempt(global_epoch_preempt); } } pm->pm_state = PMC_STATE_DELETED; pmc_restore_cpu_binding(&pb); /* * We could have references to this PMC structure in * the per-cpu sample queues. Wait for the queue to * drain. */ pmc_wait_for_pmc_idle(pm); } else if (PMC_IS_VIRTUAL_MODE(mode)) { /* * A virtual PMC could be running on multiple CPUs at * a given instant. * * By marking its state as DELETED, we ensure that * this PMC is never further scheduled on hardware. * * Then we wait till all CPUs are done with this PMC. */ pm->pm_state = PMC_STATE_DELETED; /* Wait for the PMCs runcount to come to zero. */ pmc_wait_for_pmc_idle(pm); /* * At this point the PMC is off all CPUs and cannot be * freshly scheduled onto a CPU. It is now safe to * unlink all targets from this PMC. If a * process-record's refcount falls to zero, we remove * it from the hash table. The module-wide SX lock * protects us from races. */ LIST_FOREACH_SAFE(ptgt, &pm->pm_targets, pt_next, tmp) { pp = ptgt->pt_process; pmc_unlink_target_process(pm, pp); /* frees 'ptgt' */ PMCDBG1(PMC,REL,3, "pp->refcnt=%d", pp->pp_refcnt); /* * If the target process record shows that no * PMCs are attached to it, reclaim its space. */ if (pp->pp_refcnt == 0) { pmc_remove_process_descriptor(pp); pmc_destroy_process_descriptor(pp); } } cpu = curthread->td_oncpu; /* setup cpu for pmd_release() */ } /* * Release any MD resources */ (void) pcd->pcd_release_pmc(cpu, adjri, pm); /* * Update row disposition */ if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) PMC_UNMARK_ROW_STANDALONE(ri); else PMC_UNMARK_ROW_THREAD(ri); /* unlink from the owner's list */ if (pm->pm_owner) { LIST_REMOVE(pm, pm_next); pm->pm_owner = NULL; } } /* * Register an owner and a pmc. */ static int pmc_register_owner(struct proc *p, struct pmc *pmc) { struct pmc_owner *po; sx_assert(&pmc_sx, SX_XLOCKED); if ((po = pmc_find_owner_descriptor(p)) == NULL) if ((po = pmc_allocate_owner_descriptor(p)) == NULL) return ENOMEM; KASSERT(pmc->pm_owner == NULL, ("[pmc,%d] attempting to own an initialized PMC", __LINE__)); pmc->pm_owner = po; LIST_INSERT_HEAD(&po->po_pmcs, pmc, pm_next); PROC_LOCK(p); p->p_flag |= P_HWPMC; PROC_UNLOCK(p); if (po->po_flags & PMC_PO_OWNS_LOGFILE) pmclog_process_pmcallocate(pmc); PMCDBG2(PMC,REG,1, "register-owner pmc-owner=%p pmc=%p", po, pmc); return 0; } /* * Return the current row disposition: * == 0 => FREE * > 0 => PROCESS MODE * < 0 => SYSTEM MODE */ int pmc_getrowdisp(int ri) { return pmc_pmcdisp[ri]; } /* * Check if a PMC at row index 'ri' can be allocated to the current * process. * * Allocation can fail if: * - the current process is already being profiled by a PMC at index 'ri', * attached to it via OP_PMCATTACH. * - the current process has already allocated a PMC at index 'ri' * via OP_ALLOCATE. */ static int pmc_can_allocate_rowindex(struct proc *p, unsigned int ri, int cpu) { enum pmc_mode mode; struct pmc *pm; struct pmc_owner *po; struct pmc_process *pp; PMCDBG5(PMC,ALR,1, "can-allocate-rowindex proc=%p (%d, %s) ri=%d " "cpu=%d", p, p->p_pid, p->p_comm, ri, cpu); /* * We shouldn't have already allocated a process-mode PMC at * row index 'ri'. * * We shouldn't have allocated a system-wide PMC on the same * CPU and same RI. */ if ((po = pmc_find_owner_descriptor(p)) != NULL) LIST_FOREACH(pm, &po->po_pmcs, pm_next) { if (PMC_TO_ROWINDEX(pm) == ri) { mode = PMC_TO_MODE(pm); if (PMC_IS_VIRTUAL_MODE(mode)) return EEXIST; if (PMC_IS_SYSTEM_MODE(mode) && (int) PMC_TO_CPU(pm) == cpu) return EEXIST; } } /* * We also shouldn't be the target of any PMC at this index * since otherwise a PMC_ATTACH to ourselves will fail. */ if ((pp = pmc_find_process_descriptor(p, 0)) != NULL) if (pp->pp_pmcs[ri].pp_pmc) return EEXIST; PMCDBG4(PMC,ALR,2, "can-allocate-rowindex proc=%p (%d, %s) ri=%d ok", p, p->p_pid, p->p_comm, ri); return 0; } /* * Check if a given PMC at row index 'ri' can be currently used in * mode 'mode'. */ static int pmc_can_allocate_row(int ri, enum pmc_mode mode) { enum pmc_disp disp; sx_assert(&pmc_sx, SX_XLOCKED); PMCDBG2(PMC,ALR,1, "can-allocate-row ri=%d mode=%d", ri, mode); if (PMC_IS_SYSTEM_MODE(mode)) disp = PMC_DISP_STANDALONE; else disp = PMC_DISP_THREAD; /* * check disposition for PMC row 'ri': * * Expected disposition Row-disposition Result * * STANDALONE STANDALONE or FREE proceed * STANDALONE THREAD fail * THREAD THREAD or FREE proceed * THREAD STANDALONE fail */ if (!PMC_ROW_DISP_IS_FREE(ri) && !(disp == PMC_DISP_THREAD && PMC_ROW_DISP_IS_THREAD(ri)) && !(disp == PMC_DISP_STANDALONE && PMC_ROW_DISP_IS_STANDALONE(ri))) return EBUSY; /* * All OK */ PMCDBG2(PMC,ALR,2, "can-allocate-row ri=%d mode=%d ok", ri, mode); return 0; } /* * Find a PMC descriptor with user handle 'pmcid' for thread 'td'. */ static struct pmc * pmc_find_pmc_descriptor_in_process(struct pmc_owner *po, pmc_id_t pmcid) { struct pmc *pm; KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc, ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__, PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc)); LIST_FOREACH(pm, &po->po_pmcs, pm_next) if (pm->pm_id == pmcid) return pm; return NULL; } static int pmc_find_pmc(pmc_id_t pmcid, struct pmc **pmc) { struct pmc *pm, *opm; struct pmc_owner *po; struct pmc_process *pp; PMCDBG1(PMC,FND,1, "find-pmc id=%d", pmcid); if (PMC_ID_TO_ROWINDEX(pmcid) >= md->pmd_npmc) return (EINVAL); if ((po = pmc_find_owner_descriptor(curthread->td_proc)) == NULL) { /* * In case of PMC_F_DESCENDANTS child processes we will not find * the current process in the owners hash list. Find the owner * process first and from there lookup the po. */ if ((pp = pmc_find_process_descriptor(curthread->td_proc, PMC_FLAG_NONE)) == NULL) { return ESRCH; } else { opm = pp->pp_pmcs[PMC_ID_TO_ROWINDEX(pmcid)].pp_pmc; if (opm == NULL) return ESRCH; if ((opm->pm_flags & (PMC_F_ATTACHED_TO_OWNER| PMC_F_DESCENDANTS)) != (PMC_F_ATTACHED_TO_OWNER| PMC_F_DESCENDANTS)) return ESRCH; po = opm->pm_owner; } } if ((pm = pmc_find_pmc_descriptor_in_process(po, pmcid)) == NULL) return EINVAL; PMCDBG2(PMC,FND,2, "find-pmc id=%d -> pmc=%p", pmcid, pm); *pmc = pm; return 0; } /* * Start a PMC. */ static int pmc_start(struct pmc *pm) { enum pmc_mode mode; struct pmc_owner *po; struct pmc_binding pb; struct pmc_classdep *pcd; int adjri, error, cpu, ri; KASSERT(pm != NULL, ("[pmc,%d] null pm", __LINE__)); mode = PMC_TO_MODE(pm); ri = PMC_TO_ROWINDEX(pm); pcd = pmc_ri_to_classdep(md, ri, &adjri); error = 0; PMCDBG3(PMC,OPS,1, "start pmc=%p mode=%d ri=%d", pm, mode, ri); po = pm->pm_owner; /* * Disallow PMCSTART if a logfile is required but has not been * configured yet. */ if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) && (po->po_flags & PMC_PO_OWNS_LOGFILE) == 0) return (EDOOFUS); /* programming error */ /* * If this is a sampling mode PMC, log mapping information for * the kernel modules that are currently loaded. */ if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) pmc_log_kernel_mappings(pm); if (PMC_IS_VIRTUAL_MODE(mode)) { /* * If a PMCATTACH has never been done on this PMC, * attach it to its owner process. */ if (LIST_EMPTY(&pm->pm_targets)) error = (pm->pm_flags & PMC_F_ATTACH_DONE) ? ESRCH : pmc_attach_process(po->po_owner, pm); /* * If the PMC is attached to its owner, then force a context * switch to ensure that the MD state gets set correctly. */ if (error == 0) { pm->pm_state = PMC_STATE_RUNNING; if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) pmc_force_context_switch(); } return (error); } /* * A system-wide PMC. * * Add the owner to the global list if this is a system-wide * sampling PMC. */ if (mode == PMC_MODE_SS) { /* * Log mapping information for all existing processes in the * system. Subsequent mappings are logged as they happen; * see pmc_process_mmap(). */ if (po->po_logprocmaps == 0) { pmc_log_all_process_mappings(po); po->po_logprocmaps = 1; } po->po_sscount++; if (po->po_sscount == 1) { atomic_add_rel_int(&pmc_ss_count, 1); CK_LIST_INSERT_HEAD(&pmc_ss_owners, po, po_ssnext); PMCDBG1(PMC,OPS,1, "po=%p in global list", po); } } /* * Move to the CPU associated with this * PMC, and start the hardware. */ pmc_save_cpu_binding(&pb); cpu = PMC_TO_CPU(pm); if (!pmc_cpu_is_active(cpu)) return (ENXIO); pmc_select_cpu(cpu); /* * global PMCs are configured at allocation time * so write out the initial value and start the PMC. */ pm->pm_state = PMC_STATE_RUNNING; critical_enter(); if ((error = pcd->pcd_write_pmc(cpu, adjri, PMC_IS_SAMPLING_MODE(mode) ? pm->pm_sc.pm_reloadcount : pm->pm_sc.pm_initial)) == 0) { /* If a sampling mode PMC, reset stalled state. */ if (PMC_IS_SAMPLING_MODE(mode)) pm->pm_pcpu_state[cpu].pps_stalled = 0; /* Indicate that we desire this to run. Start it. */ pm->pm_pcpu_state[cpu].pps_cpustate = 1; error = pcd->pcd_start_pmc(cpu, adjri); } critical_exit(); pmc_restore_cpu_binding(&pb); return (error); } /* * Stop a PMC. */ static int pmc_stop(struct pmc *pm) { struct pmc_owner *po; struct pmc_binding pb; struct pmc_classdep *pcd; int adjri, cpu, error, ri; KASSERT(pm != NULL, ("[pmc,%d] null pmc", __LINE__)); PMCDBG3(PMC,OPS,1, "stop pmc=%p mode=%d ri=%d", pm, PMC_TO_MODE(pm), PMC_TO_ROWINDEX(pm)); pm->pm_state = PMC_STATE_STOPPED; /* * If the PMC is a virtual mode one, changing the state to * non-RUNNING is enough to ensure that the PMC never gets * scheduled. * * If this PMC is current running on a CPU, then it will * handled correctly at the time its target process is context * switched out. */ if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) return 0; /* * A system-mode PMC. Move to the CPU associated with * this PMC, and stop the hardware. We update the * 'initial count' so that a subsequent PMCSTART will * resume counting from the current hardware count. */ pmc_save_cpu_binding(&pb); cpu = PMC_TO_CPU(pm); KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[pmc,%d] illegal cpu=%d", __LINE__, cpu)); if (!pmc_cpu_is_active(cpu)) return ENXIO; pmc_select_cpu(cpu); ri = PMC_TO_ROWINDEX(pm); pcd = pmc_ri_to_classdep(md, ri, &adjri); pm->pm_pcpu_state[cpu].pps_cpustate = 0; critical_enter(); if ((error = pcd->pcd_stop_pmc(cpu, adjri)) == 0) error = pcd->pcd_read_pmc(cpu, adjri, &pm->pm_sc.pm_initial); critical_exit(); pmc_restore_cpu_binding(&pb); po = pm->pm_owner; /* remove this owner from the global list of SS PMC owners */ if (PMC_TO_MODE(pm) == PMC_MODE_SS) { po->po_sscount--; if (po->po_sscount == 0) { atomic_subtract_rel_int(&pmc_ss_count, 1); CK_LIST_REMOVE(po, po_ssnext); epoch_wait_preempt(global_epoch_preempt); PMCDBG1(PMC,OPS,2,"po=%p removed from global list", po); } } return (error); } #ifdef HWPMC_DEBUG static const char *pmc_op_to_name[] = { #undef __PMC_OP #define __PMC_OP(N, D) #N , __PMC_OPS() NULL }; #endif /* * The syscall interface */ #define PMC_GET_SX_XLOCK(...) do { \ sx_xlock(&pmc_sx); \ if (pmc_hook == NULL) { \ sx_xunlock(&pmc_sx); \ return __VA_ARGS__; \ } \ } while (0) #define PMC_DOWNGRADE_SX() do { \ sx_downgrade(&pmc_sx); \ is_sx_downgraded = 1; \ } while (0) static int pmc_syscall_handler(struct thread *td, void *syscall_args) { int error, is_sx_downgraded, op; struct pmc_syscall_args *c; void *pmclog_proc_handle; void *arg; c = (struct pmc_syscall_args *)syscall_args; op = c->pmop_code; arg = c->pmop_data; /* PMC isn't set up yet */ if (pmc_hook == NULL) return (EINVAL); if (op == PMC_OP_CONFIGURELOG) { /* * We cannot create the logging process inside * pmclog_configure_log() because there is a LOR * between pmc_sx and process structure locks. * Instead, pre-create the process and ignite the loop * if everything is fine, otherwise direct the process * to exit. */ error = pmclog_proc_create(td, &pmclog_proc_handle); if (error != 0) goto done_syscall; } PMC_GET_SX_XLOCK(ENOSYS); is_sx_downgraded = 0; PMCDBG3(MOD,PMS,1, "syscall op=%d \"%s\" arg=%p", op, pmc_op_to_name[op], arg); error = 0; counter_u64_add(pmc_stats.pm_syscalls, 1); switch (op) { /* * Configure a log file. * * XXX This OP will be reworked. */ case PMC_OP_CONFIGURELOG: { struct proc *p; struct pmc *pm; struct pmc_owner *po; struct pmc_op_configurelog cl; if ((error = copyin(arg, &cl, sizeof(cl))) != 0) { pmclog_proc_ignite(pmclog_proc_handle, NULL); break; } /* mark this process as owning a log file */ p = td->td_proc; if ((po = pmc_find_owner_descriptor(p)) == NULL) if ((po = pmc_allocate_owner_descriptor(p)) == NULL) { pmclog_proc_ignite(pmclog_proc_handle, NULL); error = ENOMEM; break; } /* * If a valid fd was passed in, try to configure that, * otherwise if 'fd' was less than zero and there was * a log file configured, flush its buffers and * de-configure it. */ if (cl.pm_logfd >= 0) { error = pmclog_configure_log(md, po, cl.pm_logfd); pmclog_proc_ignite(pmclog_proc_handle, error == 0 ? po : NULL); } else if (po->po_flags & PMC_PO_OWNS_LOGFILE) { pmclog_proc_ignite(pmclog_proc_handle, NULL); error = pmclog_close(po); if (error == 0) { LIST_FOREACH(pm, &po->po_pmcs, pm_next) if (pm->pm_flags & PMC_F_NEEDS_LOGFILE && pm->pm_state == PMC_STATE_RUNNING) pmc_stop(pm); error = pmclog_deconfigure_log(po); } } else { pmclog_proc_ignite(pmclog_proc_handle, NULL); error = EINVAL; } } break; /* * Flush a log file. */ case PMC_OP_FLUSHLOG: { struct pmc_owner *po; sx_assert(&pmc_sx, SX_XLOCKED); if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) { error = EINVAL; break; } error = pmclog_flush(po); } break; /* * Close a log file. */ case PMC_OP_CLOSELOG: { struct pmc_owner *po; sx_assert(&pmc_sx, SX_XLOCKED); if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) { error = EINVAL; break; } error = pmclog_close(po); } break; /* * Retrieve hardware configuration. */ case PMC_OP_GETCPUINFO: /* CPU information */ { struct pmc_op_getcpuinfo gci; struct pmc_classinfo *pci; struct pmc_classdep *pcd; int cl; gci.pm_cputype = md->pmd_cputype; gci.pm_ncpu = pmc_cpu_max(); gci.pm_npmc = md->pmd_npmc; gci.pm_nclass = md->pmd_nclass; pci = gci.pm_classes; pcd = md->pmd_classdep; for (cl = 0; cl < md->pmd_nclass; cl++, pci++, pcd++) { pci->pm_caps = pcd->pcd_caps; pci->pm_class = pcd->pcd_class; pci->pm_width = pcd->pcd_width; pci->pm_num = pcd->pcd_num; } error = copyout(&gci, arg, sizeof(gci)); } break; /* * Retrieve soft events list. */ case PMC_OP_GETDYNEVENTINFO: { enum pmc_class cl; enum pmc_event ev; struct pmc_op_getdyneventinfo *gei; struct pmc_dyn_event_descr dev; struct pmc_soft *ps; uint32_t nevent; sx_assert(&pmc_sx, SX_LOCKED); gei = (struct pmc_op_getdyneventinfo *) arg; if ((error = copyin(&gei->pm_class, &cl, sizeof(cl))) != 0) break; /* Only SOFT class is dynamic. */ if (cl != PMC_CLASS_SOFT) { error = EINVAL; break; } nevent = 0; for (ev = PMC_EV_SOFT_FIRST; (int)ev <= PMC_EV_SOFT_LAST; ev++) { ps = pmc_soft_ev_acquire(ev); if (ps == NULL) continue; bcopy(&ps->ps_ev, &dev, sizeof(dev)); pmc_soft_ev_release(ps); error = copyout(&dev, &gei->pm_events[nevent], sizeof(struct pmc_dyn_event_descr)); if (error != 0) break; nevent++; } if (error != 0) break; error = copyout(&nevent, &gei->pm_nevent, sizeof(nevent)); } break; /* * Get module statistics */ case PMC_OP_GETDRIVERSTATS: { struct pmc_op_getdriverstats gms; #define CFETCH(a, b, field) a.field = counter_u64_fetch(b.field) CFETCH(gms, pmc_stats, pm_intr_ignored); CFETCH(gms, pmc_stats, pm_intr_processed); CFETCH(gms, pmc_stats, pm_intr_bufferfull); CFETCH(gms, pmc_stats, pm_syscalls); CFETCH(gms, pmc_stats, pm_syscall_errors); CFETCH(gms, pmc_stats, pm_buffer_requests); CFETCH(gms, pmc_stats, pm_buffer_requests_failed); CFETCH(gms, pmc_stats, pm_log_sweeps); #undef CFETCH error = copyout(&gms, arg, sizeof(gms)); } break; /* * Retrieve module version number */ case PMC_OP_GETMODULEVERSION: { uint32_t cv, modv; /* retrieve the client's idea of the ABI version */ if ((error = copyin(arg, &cv, sizeof(uint32_t))) != 0) break; /* don't service clients newer than our driver */ modv = PMC_VERSION; if ((cv & 0xFFFF0000) > (modv & 0xFFFF0000)) { error = EPROGMISMATCH; break; } error = copyout(&modv, arg, sizeof(int)); } break; /* * Retrieve the state of all the PMCs on a given * CPU. */ case PMC_OP_GETPMCINFO: { int ari; struct pmc *pm; size_t pmcinfo_size; uint32_t cpu, n, npmc; struct pmc_owner *po; struct pmc_binding pb; struct pmc_classdep *pcd; struct pmc_info *p, *pmcinfo; struct pmc_op_getpmcinfo *gpi; PMC_DOWNGRADE_SX(); gpi = (struct pmc_op_getpmcinfo *) arg; if ((error = copyin(&gpi->pm_cpu, &cpu, sizeof(cpu))) != 0) break; if (cpu >= pmc_cpu_max()) { error = EINVAL; break; } if (!pmc_cpu_is_active(cpu)) { error = ENXIO; break; } /* switch to CPU 'cpu' */ pmc_save_cpu_binding(&pb); pmc_select_cpu(cpu); npmc = md->pmd_npmc; pmcinfo_size = npmc * sizeof(struct pmc_info); pmcinfo = malloc(pmcinfo_size, M_PMC, M_WAITOK); p = pmcinfo; for (n = 0; n < md->pmd_npmc; n++, p++) { pcd = pmc_ri_to_classdep(md, n, &ari); KASSERT(pcd != NULL, ("[pmc,%d] null pcd ri=%d", __LINE__, n)); if ((error = pcd->pcd_describe(cpu, ari, p, &pm)) != 0) break; if (PMC_ROW_DISP_IS_STANDALONE(n)) p->pm_rowdisp = PMC_DISP_STANDALONE; else if (PMC_ROW_DISP_IS_THREAD(n)) p->pm_rowdisp = PMC_DISP_THREAD; else p->pm_rowdisp = PMC_DISP_FREE; p->pm_ownerpid = -1; if (pm == NULL) /* no PMC associated */ continue; po = pm->pm_owner; KASSERT(po->po_owner != NULL, ("[pmc,%d] pmc_owner had a null proc pointer", __LINE__)); p->pm_ownerpid = po->po_owner->p_pid; p->pm_mode = PMC_TO_MODE(pm); p->pm_event = pm->pm_event; p->pm_flags = pm->pm_flags; if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) p->pm_reloadcount = pm->pm_sc.pm_reloadcount; } pmc_restore_cpu_binding(&pb); /* now copy out the PMC info collected */ if (error == 0) error = copyout(pmcinfo, &gpi->pm_pmcs, pmcinfo_size); free(pmcinfo, M_PMC); } break; /* * Set the administrative state of a PMC. I.e. whether * the PMC is to be used or not. */ case PMC_OP_PMCADMIN: { int cpu, ri; enum pmc_state request; struct pmc_cpu *pc; struct pmc_hw *phw; struct pmc_op_pmcadmin pma; struct pmc_binding pb; sx_assert(&pmc_sx, SX_XLOCKED); KASSERT(td == curthread, ("[pmc,%d] td != curthread", __LINE__)); error = priv_check(td, PRIV_PMC_MANAGE); if (error) break; if ((error = copyin(arg, &pma, sizeof(pma))) != 0) break; cpu = pma.pm_cpu; if (cpu < 0 || cpu >= (int) pmc_cpu_max()) { error = EINVAL; break; } if (!pmc_cpu_is_active(cpu)) { error = ENXIO; break; } request = pma.pm_state; if (request != PMC_STATE_DISABLED && request != PMC_STATE_FREE) { error = EINVAL; break; } ri = pma.pm_pmc; /* pmc id == row index */ if (ri < 0 || ri >= (int) md->pmd_npmc) { error = EINVAL; break; } /* * We can't disable a PMC with a row-index allocated * for process virtual PMCs. */ if (PMC_ROW_DISP_IS_THREAD(ri) && request == PMC_STATE_DISABLED) { error = EBUSY; break; } /* * otherwise, this PMC on this CPU is either free or * in system-wide mode. */ pmc_save_cpu_binding(&pb); pmc_select_cpu(cpu); pc = pmc_pcpu[cpu]; phw = pc->pc_hwpmcs[ri]; /* * XXX do we need some kind of 'forced' disable? */ if (phw->phw_pmc == NULL) { if (request == PMC_STATE_DISABLED && (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED)) { phw->phw_state &= ~PMC_PHW_FLAG_IS_ENABLED; PMC_MARK_ROW_STANDALONE(ri); } else if (request == PMC_STATE_FREE && (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0) { phw->phw_state |= PMC_PHW_FLAG_IS_ENABLED; PMC_UNMARK_ROW_STANDALONE(ri); } /* other cases are a no-op */ } else error = EBUSY; pmc_restore_cpu_binding(&pb); } break; /* * Allocate a PMC. */ case PMC_OP_PMCALLOCATE: { int adjri, n; u_int cpu; uint32_t caps; struct pmc *pmc; enum pmc_mode mode; struct pmc_hw *phw; struct pmc_binding pb; struct pmc_classdep *pcd; struct pmc_op_pmcallocate pa; if ((error = copyin(arg, &pa, sizeof(pa))) != 0) break; caps = pa.pm_caps; mode = pa.pm_mode; cpu = pa.pm_cpu; if ((mode != PMC_MODE_SS && mode != PMC_MODE_SC && mode != PMC_MODE_TS && mode != PMC_MODE_TC) || (cpu != (u_int) PMC_CPU_ANY && cpu >= pmc_cpu_max())) { error = EINVAL; break; } /* * Virtual PMCs should only ask for a default CPU. * System mode PMCs need to specify a non-default CPU. */ if ((PMC_IS_VIRTUAL_MODE(mode) && cpu != (u_int) PMC_CPU_ANY) || (PMC_IS_SYSTEM_MODE(mode) && cpu == (u_int) PMC_CPU_ANY)) { error = EINVAL; break; } /* * Check that an inactive CPU is not being asked for. */ if (PMC_IS_SYSTEM_MODE(mode) && !pmc_cpu_is_active(cpu)) { error = ENXIO; break; } /* * Refuse an allocation for a system-wide PMC if this * process has been jailed, or if this process lacks * super-user credentials and the sysctl tunable * 'security.bsd.unprivileged_syspmcs' is zero. */ if (PMC_IS_SYSTEM_MODE(mode)) { if (jailed(curthread->td_ucred)) { error = EPERM; break; } if (!pmc_unprivileged_syspmcs) { error = priv_check(curthread, PRIV_PMC_SYSTEM); if (error) break; } } /* * Look for valid values for 'pm_flags' */ if ((pa.pm_flags & ~(PMC_F_DESCENDANTS | PMC_F_LOG_PROCCSW | PMC_F_LOG_PROCEXIT | PMC_F_CALLCHAIN)) != 0) { error = EINVAL; break; } /* process logging options are not allowed for system PMCs */ if (PMC_IS_SYSTEM_MODE(mode) && (pa.pm_flags & (PMC_F_LOG_PROCCSW | PMC_F_LOG_PROCEXIT))) { error = EINVAL; break; } /* * All sampling mode PMCs need to be able to interrupt the * CPU. */ if (PMC_IS_SAMPLING_MODE(mode)) caps |= PMC_CAP_INTERRUPT; /* A valid class specifier should have been passed in. */ for (n = 0; n < md->pmd_nclass; n++) if (md->pmd_classdep[n].pcd_class == pa.pm_class) break; if (n == md->pmd_nclass) { error = EINVAL; break; } /* The requested PMC capabilities should be feasible. */ if ((md->pmd_classdep[n].pcd_caps & caps) != caps) { error = EOPNOTSUPP; break; } PMCDBG4(PMC,ALL,2, "event=%d caps=0x%x mode=%d cpu=%d", pa.pm_ev, caps, mode, cpu); pmc = pmc_allocate_pmc_descriptor(); pmc->pm_id = PMC_ID_MAKE_ID(cpu,pa.pm_mode,pa.pm_class, PMC_ID_INVALID); pmc->pm_event = pa.pm_ev; pmc->pm_state = PMC_STATE_FREE; pmc->pm_caps = caps; pmc->pm_flags = pa.pm_flags; /* switch thread to CPU 'cpu' */ pmc_save_cpu_binding(&pb); #define PMC_IS_SHAREABLE_PMC(cpu, n) \ (pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_state & \ PMC_PHW_FLAG_IS_SHAREABLE) #define PMC_IS_UNALLOCATED(cpu, n) \ (pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_pmc == NULL) if (PMC_IS_SYSTEM_MODE(mode)) { pmc_select_cpu(cpu); for (n = 0; n < (int) md->pmd_npmc; n++) { pcd = pmc_ri_to_classdep(md, n, &adjri); if (pmc_can_allocate_row(n, mode) == 0 && pmc_can_allocate_rowindex( curthread->td_proc, n, cpu) == 0 && (PMC_IS_UNALLOCATED(cpu, n) || PMC_IS_SHAREABLE_PMC(cpu, n)) && pcd->pcd_allocate_pmc(cpu, adjri, pmc, &pa) == 0) break; } } else { /* Process virtual mode */ for (n = 0; n < (int) md->pmd_npmc; n++) { pcd = pmc_ri_to_classdep(md, n, &adjri); if (pmc_can_allocate_row(n, mode) == 0 && pmc_can_allocate_rowindex( curthread->td_proc, n, PMC_CPU_ANY) == 0 && pcd->pcd_allocate_pmc(curthread->td_oncpu, adjri, pmc, &pa) == 0) break; } } #undef PMC_IS_UNALLOCATED #undef PMC_IS_SHAREABLE_PMC pmc_restore_cpu_binding(&pb); if (n == (int) md->pmd_npmc) { pmc_destroy_pmc_descriptor(pmc); pmc = NULL; error = EINVAL; break; } /* Fill in the correct value in the ID field */ pmc->pm_id = PMC_ID_MAKE_ID(cpu,mode,pa.pm_class,n); PMCDBG5(PMC,ALL,2, "ev=%d class=%d mode=%d n=%d -> pmcid=%x", pmc->pm_event, pa.pm_class, mode, n, pmc->pm_id); /* Process mode PMCs with logging enabled need log files */ if (pmc->pm_flags & (PMC_F_LOG_PROCEXIT | PMC_F_LOG_PROCCSW)) pmc->pm_flags |= PMC_F_NEEDS_LOGFILE; /* All system mode sampling PMCs require a log file */ if (PMC_IS_SAMPLING_MODE(mode) && PMC_IS_SYSTEM_MODE(mode)) pmc->pm_flags |= PMC_F_NEEDS_LOGFILE; /* * Configure global pmc's immediately */ if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pmc))) { pmc_save_cpu_binding(&pb); pmc_select_cpu(cpu); phw = pmc_pcpu[cpu]->pc_hwpmcs[n]; pcd = pmc_ri_to_classdep(md, n, &adjri); if ((phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0 || (error = pcd->pcd_config_pmc(cpu, adjri, pmc)) != 0) { (void) pcd->pcd_release_pmc(cpu, adjri, pmc); pmc_destroy_pmc_descriptor(pmc); pmc = NULL; pmc_restore_cpu_binding(&pb); error = EPERM; break; } pmc_restore_cpu_binding(&pb); } pmc->pm_state = PMC_STATE_ALLOCATED; /* * mark row disposition */ if (PMC_IS_SYSTEM_MODE(mode)) PMC_MARK_ROW_STANDALONE(n); else PMC_MARK_ROW_THREAD(n); /* * Register this PMC with the current thread as its owner. */ if ((error = pmc_register_owner(curthread->td_proc, pmc)) != 0) { pmc_release_pmc_descriptor(pmc); pmc_destroy_pmc_descriptor(pmc); pmc = NULL; break; } /* * Return the allocated index. */ pa.pm_pmcid = pmc->pm_id; error = copyout(&pa, arg, sizeof(pa)); } break; /* * Attach a PMC to a process. */ case PMC_OP_PMCATTACH: { struct pmc *pm; struct proc *p; struct pmc_op_pmcattach a; sx_assert(&pmc_sx, SX_XLOCKED); if ((error = copyin(arg, &a, sizeof(a))) != 0) break; if (a.pm_pid < 0) { error = EINVAL; break; } else if (a.pm_pid == 0) a.pm_pid = td->td_proc->p_pid; if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0) break; if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) { error = EINVAL; break; } /* PMCs may be (re)attached only when allocated or stopped */ if (pm->pm_state == PMC_STATE_RUNNING) { error = EBUSY; break; } else if (pm->pm_state != PMC_STATE_ALLOCATED && pm->pm_state != PMC_STATE_STOPPED) { error = EINVAL; break; } /* lookup pid */ if ((p = pfind(a.pm_pid)) == NULL) { error = ESRCH; break; } /* * Ignore processes that are working on exiting. */ if (p->p_flag & P_WEXIT) { error = ESRCH; PROC_UNLOCK(p); /* pfind() returns a locked process */ break; } /* * we are allowed to attach a PMC to a process if * we can debug it. */ error = p_candebug(curthread, p); PROC_UNLOCK(p); if (error == 0) error = pmc_attach_process(p, pm); } break; /* * Detach an attached PMC from a process. */ case PMC_OP_PMCDETACH: { struct pmc *pm; struct proc *p; struct pmc_op_pmcattach a; if ((error = copyin(arg, &a, sizeof(a))) != 0) break; if (a.pm_pid < 0) { error = EINVAL; break; } else if (a.pm_pid == 0) a.pm_pid = td->td_proc->p_pid; if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0) break; if ((p = pfind(a.pm_pid)) == NULL) { error = ESRCH; break; } /* * Treat processes that are in the process of exiting * as if they were not present. */ if (p->p_flag & P_WEXIT) error = ESRCH; PROC_UNLOCK(p); /* pfind() returns a locked process */ if (error == 0) error = pmc_detach_process(p, pm); } break; /* * Retrieve the MSR number associated with the counter * 'pmc_id'. This allows processes to directly use RDPMC * instructions to read their PMCs, without the overhead of a * system call. */ case PMC_OP_PMCGETMSR: { int adjri, ri; struct pmc *pm; struct pmc_target *pt; struct pmc_op_getmsr gm; struct pmc_classdep *pcd; PMC_DOWNGRADE_SX(); if ((error = copyin(arg, &gm, sizeof(gm))) != 0) break; if ((error = pmc_find_pmc(gm.pm_pmcid, &pm)) != 0) break; /* * The allocated PMC has to be a process virtual PMC, * i.e., of type MODE_T[CS]. Global PMCs can only be * read using the PMCREAD operation since they may be * allocated on a different CPU than the one we could * be running on at the time of the RDPMC instruction. * * The GETMSR operation is not allowed for PMCs that * are inherited across processes. */ if (!PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) || (pm->pm_flags & PMC_F_DESCENDANTS)) { error = EINVAL; break; } /* * It only makes sense to use a RDPMC (or its * equivalent instruction on non-x86 architectures) on * a process that has allocated and attached a PMC to * itself. Conversely the PMC is only allowed to have * one process attached to it -- its owner. */ if ((pt = LIST_FIRST(&pm->pm_targets)) == NULL || LIST_NEXT(pt, pt_next) != NULL || pt->pt_process->pp_proc != pm->pm_owner->po_owner) { error = EINVAL; break; } ri = PMC_TO_ROWINDEX(pm); pcd = pmc_ri_to_classdep(md, ri, &adjri); /* PMC class has no 'GETMSR' support */ if (pcd->pcd_get_msr == NULL) { error = ENOSYS; break; } if ((error = (*pcd->pcd_get_msr)(adjri, &gm.pm_msr)) < 0) break; if ((error = copyout(&gm, arg, sizeof(gm))) < 0) break; /* * Mark our process as using MSRs. Update machine * state using a forced context switch. */ pt->pt_process->pp_flags |= PMC_PP_ENABLE_MSR_ACCESS; pmc_force_context_switch(); } break; /* * Release an allocated PMC */ case PMC_OP_PMCRELEASE: { pmc_id_t pmcid; struct pmc *pm; struct pmc_owner *po; struct pmc_op_simple sp; /* * Find PMC pointer for the named PMC. * * Use pmc_release_pmc_descriptor() to switch off the * PMC, remove all its target threads, and remove the * PMC from its owner's list. * * Remove the owner record if this is the last PMC * owned. * * Free up space. */ if ((error = copyin(arg, &sp, sizeof(sp))) != 0) break; pmcid = sp.pm_pmcid; if ((error = pmc_find_pmc(pmcid, &pm)) != 0) break; po = pm->pm_owner; pmc_release_pmc_descriptor(pm); pmc_maybe_remove_owner(po); pmc_destroy_pmc_descriptor(pm); } break; /* * Read and/or write a PMC. */ case PMC_OP_PMCRW: { int adjri; struct pmc *pm; uint32_t cpu, ri; pmc_value_t oldvalue; struct pmc_binding pb; struct pmc_op_pmcrw prw; struct pmc_classdep *pcd; struct pmc_op_pmcrw *pprw; PMC_DOWNGRADE_SX(); if ((error = copyin(arg, &prw, sizeof(prw))) != 0) break; ri = 0; PMCDBG2(PMC,OPS,1, "rw id=%d flags=0x%x", prw.pm_pmcid, prw.pm_flags); /* must have at least one flag set */ if ((prw.pm_flags & (PMC_F_OLDVALUE|PMC_F_NEWVALUE)) == 0) { error = EINVAL; break; } /* locate pmc descriptor */ if ((error = pmc_find_pmc(prw.pm_pmcid, &pm)) != 0) break; /* Can't read a PMC that hasn't been started. */ if (pm->pm_state != PMC_STATE_ALLOCATED && pm->pm_state != PMC_STATE_STOPPED && pm->pm_state != PMC_STATE_RUNNING) { error = EINVAL; break; } /* writing a new value is allowed only for 'STOPPED' pmcs */ if (pm->pm_state == PMC_STATE_RUNNING && (prw.pm_flags & PMC_F_NEWVALUE)) { error = EBUSY; break; } if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) { /* * If this PMC is attached to its owner (i.e., * the process requesting this operation) and * is running, then attempt to get an * upto-date reading from hardware for a READ. * Writes are only allowed when the PMC is * stopped, so only update the saved value * field. * * If the PMC is not running, or is not * attached to its owner, read/write to the * savedvalue field. */ ri = PMC_TO_ROWINDEX(pm); pcd = pmc_ri_to_classdep(md, ri, &adjri); mtx_pool_lock_spin(pmc_mtxpool, pm); cpu = curthread->td_oncpu; if (prw.pm_flags & PMC_F_OLDVALUE) { if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) && (pm->pm_state == PMC_STATE_RUNNING)) error = (*pcd->pcd_read_pmc)(cpu, adjri, &oldvalue); else oldvalue = pm->pm_gv.pm_savedvalue; } if (prw.pm_flags & PMC_F_NEWVALUE) pm->pm_gv.pm_savedvalue = prw.pm_value; mtx_pool_unlock_spin(pmc_mtxpool, pm); } else { /* System mode PMCs */ cpu = PMC_TO_CPU(pm); ri = PMC_TO_ROWINDEX(pm); pcd = pmc_ri_to_classdep(md, ri, &adjri); if (!pmc_cpu_is_active(cpu)) { error = ENXIO; break; } /* move this thread to CPU 'cpu' */ pmc_save_cpu_binding(&pb); pmc_select_cpu(cpu); critical_enter(); /* save old value */ if (prw.pm_flags & PMC_F_OLDVALUE) if ((error = (*pcd->pcd_read_pmc)(cpu, adjri, &oldvalue))) goto error; /* write out new value */ if (prw.pm_flags & PMC_F_NEWVALUE) error = (*pcd->pcd_write_pmc)(cpu, adjri, prw.pm_value); error: critical_exit(); pmc_restore_cpu_binding(&pb); if (error) break; } pprw = (struct pmc_op_pmcrw *) arg; #ifdef HWPMC_DEBUG if (prw.pm_flags & PMC_F_NEWVALUE) PMCDBG3(PMC,OPS,2, "rw id=%d new %jx -> old %jx", ri, prw.pm_value, oldvalue); else if (prw.pm_flags & PMC_F_OLDVALUE) PMCDBG2(PMC,OPS,2, "rw id=%d -> old %jx", ri, oldvalue); #endif /* return old value if requested */ if (prw.pm_flags & PMC_F_OLDVALUE) if ((error = copyout(&oldvalue, &pprw->pm_value, sizeof(prw.pm_value)))) break; } break; /* * Set the sampling rate for a sampling mode PMC and the * initial count for a counting mode PMC. */ case PMC_OP_PMCSETCOUNT: { struct pmc *pm; struct pmc_op_pmcsetcount sc; PMC_DOWNGRADE_SX(); if ((error = copyin(arg, &sc, sizeof(sc))) != 0) break; if ((error = pmc_find_pmc(sc.pm_pmcid, &pm)) != 0) break; if (pm->pm_state == PMC_STATE_RUNNING) { error = EBUSY; break; } if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) pm->pm_sc.pm_reloadcount = sc.pm_count; else pm->pm_sc.pm_initial = sc.pm_count; } break; /* * Start a PMC. */ case PMC_OP_PMCSTART: { pmc_id_t pmcid; struct pmc *pm; struct pmc_op_simple sp; sx_assert(&pmc_sx, SX_XLOCKED); if ((error = copyin(arg, &sp, sizeof(sp))) != 0) break; pmcid = sp.pm_pmcid; if ((error = pmc_find_pmc(pmcid, &pm)) != 0) break; KASSERT(pmcid == pm->pm_id, ("[pmc,%d] pmcid %x != id %x", __LINE__, pm->pm_id, pmcid)); if (pm->pm_state == PMC_STATE_RUNNING) /* already running */ break; else if (pm->pm_state != PMC_STATE_STOPPED && pm->pm_state != PMC_STATE_ALLOCATED) { error = EINVAL; break; } error = pmc_start(pm); } break; /* * Stop a PMC. */ case PMC_OP_PMCSTOP: { pmc_id_t pmcid; struct pmc *pm; struct pmc_op_simple sp; PMC_DOWNGRADE_SX(); if ((error = copyin(arg, &sp, sizeof(sp))) != 0) break; pmcid = sp.pm_pmcid; /* * Mark the PMC as inactive and invoke the MD stop * routines if needed. */ if ((error = pmc_find_pmc(pmcid, &pm)) != 0) break; KASSERT(pmcid == pm->pm_id, ("[pmc,%d] pmc id %x != pmcid %x", __LINE__, pm->pm_id, pmcid)); if (pm->pm_state == PMC_STATE_STOPPED) /* already stopped */ break; else if (pm->pm_state != PMC_STATE_RUNNING) { error = EINVAL; break; } error = pmc_stop(pm); } break; /* * Write a user supplied value to the log file. */ case PMC_OP_WRITELOG: { struct pmc_op_writelog wl; struct pmc_owner *po; PMC_DOWNGRADE_SX(); if ((error = copyin(arg, &wl, sizeof(wl))) != 0) break; if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) { error = EINVAL; break; } if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0) { error = EINVAL; break; } error = pmclog_process_userlog(po, &wl); } break; default: error = EINVAL; break; } if (is_sx_downgraded) sx_sunlock(&pmc_sx); else sx_xunlock(&pmc_sx); done_syscall: if (error) counter_u64_add(pmc_stats.pm_syscall_errors, 1); return (error); } /* * Helper functions */ /* * Mark the thread as needing callchain capture and post an AST. The * actual callchain capture will be done in a context where it is safe * to take page faults. */ static void pmc_post_callchain_callback(void) { struct thread *td; td = curthread; /* * If there is multiple PMCs for the same interrupt ignore new post */ if (td->td_pflags & TDP_CALLCHAIN) return; /* * Mark this thread as needing callchain capture. * `td->td_pflags' will be safe to touch because this thread * was in user space when it was interrupted. */ td->td_pflags |= TDP_CALLCHAIN; /* * Don't let this thread migrate between CPUs until callchain * capture completes. */ sched_pin(); return; } /* * Interrupt processing. * * Find a free slot in the per-cpu array of samples and capture the * current callchain there. If a sample was successfully added, a bit * is set in mask 'pmc_cpumask' denoting that the DO_SAMPLES hook * needs to be invoked from the clock handler. * * This function is meant to be called from an NMI handler. It cannot * use any of the locking primitives supplied by the OS. */ int pmc_process_interrupt(int cpu, int ring, struct pmc *pm, struct trapframe *tf, int inuserspace) { int error, callchaindepth; struct thread *td; struct pmc_sample *ps; struct pmc_samplebuffer *psb; error = 0; /* * Allocate space for a sample buffer. */ psb = pmc_pcpu[cpu]->pc_sb[ring]; ps = psb->ps_write; if (ps->ps_nsamples) { /* in use, reader hasn't caught up */ pm->pm_pcpu_state[cpu].pps_stalled = 1; counter_u64_add(pmc_stats.pm_intr_bufferfull, 1); PMCDBG6(SAM,INT,1,"(spc) cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d", cpu, pm, (void *) tf, inuserspace, (int) (psb->ps_write - psb->ps_samples), (int) (psb->ps_read - psb->ps_samples)); callchaindepth = 1; error = ENOMEM; goto done; } /* Fill in entry. */ PMCDBG6(SAM,INT,1,"cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d", cpu, pm, (void *) tf, inuserspace, (int) (psb->ps_write - psb->ps_samples), (int) (psb->ps_read - psb->ps_samples)); KASSERT(counter_u64_fetch(pm->pm_runcount) >= 0, ("[pmc,%d] pm=%p runcount %ld", __LINE__, (void *) pm, (unsigned long)counter_u64_fetch(pm->pm_runcount))); counter_u64_add(pm->pm_runcount, 1); /* hold onto PMC */ ps->ps_pmc = pm; ps->ps_pid = -1; ps->ps_tid = -1; if ((td = curthread) != NULL) { ps->ps_tid = td->td_tid; if (td->td_proc) ps->ps_pid = td->td_proc->p_pid; } ps->ps_cpu = cpu; ps->ps_td = td; ps->ps_flags = inuserspace ? PMC_CC_F_USERSPACE : 0; callchaindepth = (pm->pm_flags & PMC_F_CALLCHAIN) ? pmc_callchaindepth : 1; if (callchaindepth == 1) ps->ps_pc[0] = PMC_TRAPFRAME_TO_PC(tf); else { /* * Kernel stack traversals can be done immediately, * while we defer to an AST for user space traversals. */ if (!inuserspace) { callchaindepth = pmc_save_kernel_callchain(ps->ps_pc, callchaindepth, tf); } else { pmc_post_callchain_callback(); callchaindepth = PMC_SAMPLE_INUSE; } } ps->ps_nsamples = callchaindepth; /* mark entry as in use */ /* increment write pointer, modulo ring buffer size */ ps++; if (ps == psb->ps_fence) psb->ps_write = psb->ps_samples; else psb->ps_write = ps; done: /* mark CPU as needing processing */ if (callchaindepth != PMC_SAMPLE_INUSE) DPCPU_SET(pmc_sampled, 1); return (error); } /* * Capture a user call chain. This function will be called from ast() * before control returns to userland and before the process gets * rescheduled. */ static void pmc_capture_user_callchain(int cpu, int ring, struct trapframe *tf) { struct pmc *pm; struct thread *td; struct pmc_sample *ps, *ps_end; struct pmc_samplebuffer *psb; #ifdef INVARIANTS int ncallchains; int nfree; #endif psb = pmc_pcpu[cpu]->pc_sb[ring]; td = curthread; KASSERT(td->td_pflags & TDP_CALLCHAIN, ("[pmc,%d] Retrieving callchain for thread that doesn't want it", __LINE__)); #ifdef INVARIANTS ncallchains = 0; nfree = 0; #endif /* * Iterate through all deferred callchain requests. * Walk from the current read pointer to the current * write pointer. */ ps = psb->ps_read; ps_end = psb->ps_write; do { #ifdef INVARIANTS if ((ps->ps_pmc == NULL) || (ps->ps_pmc->pm_state != PMC_STATE_RUNNING)) nfree++; #endif if (ps->ps_nsamples != PMC_SAMPLE_INUSE) goto next; if (ps->ps_td != td) goto next; KASSERT(ps->ps_cpu == cpu, ("[pmc,%d] cpu mismatch ps_cpu=%d pcpu=%d", __LINE__, ps->ps_cpu, PCPU_GET(cpuid))); pm = ps->ps_pmc; KASSERT(pm->pm_flags & PMC_F_CALLCHAIN, ("[pmc,%d] Retrieving callchain for PMC that doesn't " "want it", __LINE__)); KASSERT(counter_u64_fetch(pm->pm_runcount) > 0, ("[pmc,%d] runcount %ld", __LINE__, (unsigned long)counter_u64_fetch(pm->pm_runcount))); /* * Retrieve the callchain and mark the sample buffer * as 'processable' by the timer tick sweep code. */ ps->ps_nsamples = pmc_save_user_callchain(ps->ps_pc, pmc_callchaindepth, tf); #ifdef INVARIANTS ncallchains++; #endif next: /* increment the pointer, modulo sample ring size */ if (++ps == psb->ps_fence) ps = psb->ps_samples; } while (ps != ps_end); #ifdef INVARIANTS KASSERT(ncallchains > 0 || nfree > 0, ("[pmc,%d] cpu %d didn't find a sample to collect", __LINE__, cpu)); #endif KASSERT(td->td_pinned == 1, ("[pmc,%d] invalid td_pinned value", __LINE__)); sched_unpin(); /* Can migrate safely now. */ /* mark CPU as needing processing */ DPCPU_SET(pmc_sampled, 1); } /* * Process saved PC samples. */ static void pmc_process_samples(int cpu, int ring) { struct pmc *pm; int adjri, n; struct thread *td; struct pmc_owner *po; struct pmc_sample *ps; struct pmc_classdep *pcd; struct pmc_samplebuffer *psb; KASSERT(PCPU_GET(cpuid) == cpu, ("[pmc,%d] not on the correct CPU pcpu=%d cpu=%d", __LINE__, PCPU_GET(cpuid), cpu)); psb = pmc_pcpu[cpu]->pc_sb[ring]; for (n = 0; n < pmc_nsamples; n++) { /* bound on #iterations */ ps = psb->ps_read; if (ps->ps_nsamples == PMC_SAMPLE_FREE) break; pm = ps->ps_pmc; KASSERT(counter_u64_fetch(pm->pm_runcount) > 0, ("[pmc,%d] pm=%p runcount %ld", __LINE__, (void *) pm, (unsigned long)counter_u64_fetch(pm->pm_runcount))); po = pm->pm_owner; KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)), ("[pmc,%d] pmc=%p non-sampling mode=%d", __LINE__, pm, PMC_TO_MODE(pm))); /* Ignore PMCs that have been switched off */ if (pm->pm_state != PMC_STATE_RUNNING) goto entrydone; /* If there is a pending AST wait for completion */ if (ps->ps_nsamples == PMC_SAMPLE_INUSE) { /* Need a rescan at a later time. */ DPCPU_SET(pmc_sampled, 1); break; } PMCDBG6(SAM,OPS,1,"cpu=%d pm=%p n=%d fl=%x wr=%d rd=%d", cpu, pm, ps->ps_nsamples, ps->ps_flags, (int) (psb->ps_write - psb->ps_samples), (int) (psb->ps_read - psb->ps_samples)); /* * If this is a process-mode PMC that is attached to * its owner, and if the PC is in user mode, update * profiling statistics like timer-based profiling * would have done. */ if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) { if (ps->ps_flags & PMC_CC_F_USERSPACE) { td = FIRST_THREAD_IN_PROC(po->po_owner); addupc_intr(td, ps->ps_pc[0], 1); } goto entrydone; } /* * Otherwise, this is either a sampling mode PMC that * is attached to a different process than its owner, * or a system-wide sampling PMC. Dispatch a log * entry to the PMC's owner process. */ pmclog_process_callchain(pm, ps); entrydone: ps->ps_nsamples = 0; /* mark entry as free */ counter_u64_add(pm->pm_runcount, -1); /* increment read pointer, modulo sample size */ if (++ps == psb->ps_fence) psb->ps_read = psb->ps_samples; else psb->ps_read = ps; } counter_u64_add(pmc_stats.pm_log_sweeps, 1); /* Do not re-enable stalled PMCs if we failed to process any samples */ if (n == 0) return; /* * Restart any stalled sampling PMCs on this CPU. * * If the NMI handler sets the pm_stalled field of a PMC after * the check below, we'll end up processing the stalled PMC at * the next hardclock tick. */ for (n = 0; n < md->pmd_npmc; n++) { pcd = pmc_ri_to_classdep(md, n, &adjri); KASSERT(pcd != NULL, ("[pmc,%d] null pcd ri=%d", __LINE__, n)); (void) (*pcd->pcd_get_config)(cpu,adjri,&pm); if (pm == NULL || /* !cfg'ed */ pm->pm_state != PMC_STATE_RUNNING || /* !active */ !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) || /* !sampling */ !pm->pm_pcpu_state[cpu].pps_cpustate || /* !desired */ !pm->pm_pcpu_state[cpu].pps_stalled) /* !stalled */ continue; pm->pm_pcpu_state[cpu].pps_stalled = 0; (*pcd->pcd_start_pmc)(cpu, adjri); } } /* * Event handlers. */ /* * Handle a process exit. * * Remove this process from all hash tables. If this process * owned any PMCs, turn off those PMCs and deallocate them, * removing any associations with target processes. * * This function will be called by the last 'thread' of a * process. * * XXX This eventhandler gets called early in the exit process. * Consider using a 'hook' invocation from thread_exit() or equivalent * spot. Another negative is that kse_exit doesn't seem to call * exit1() [??]. * */ static void pmc_process_exit(void *arg __unused, struct proc *p) { struct pmc *pm; int adjri, cpu; unsigned int ri; int is_using_hwpmcs; struct pmc_owner *po; struct pmc_process *pp; struct pmc_classdep *pcd; pmc_value_t newvalue, tmp; PROC_LOCK(p); is_using_hwpmcs = p->p_flag & P_HWPMC; PROC_UNLOCK(p); /* * Log a sysexit event to all SS PMC owners. */ epoch_enter_preempt(global_epoch_preempt); CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) if (po->po_flags & PMC_PO_OWNS_LOGFILE) pmclog_process_sysexit(po, p->p_pid); epoch_exit_preempt(global_epoch_preempt); if (!is_using_hwpmcs) return; PMC_GET_SX_XLOCK(); PMCDBG3(PRC,EXT,1,"process-exit proc=%p (%d, %s)", p, p->p_pid, p->p_comm); /* * Since this code is invoked by the last thread in an exiting * process, we would have context switched IN at some prior * point. However, with PREEMPTION, kernel mode context * switches may happen any time, so we want to disable a * context switch OUT till we get any PMCs targeting this * process off the hardware. * * We also need to atomically remove this process' * entry from our target process hash table, using * PMC_FLAG_REMOVE. */ PMCDBG3(PRC,EXT,1, "process-exit proc=%p (%d, %s)", p, p->p_pid, p->p_comm); critical_enter(); /* no preemption */ cpu = curthread->td_oncpu; if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_REMOVE)) != NULL) { PMCDBG2(PRC,EXT,2, "process-exit proc=%p pmc-process=%p", p, pp); /* * The exiting process could the target of * some PMCs which will be running on * currently executing CPU. * * We need to turn these PMCs off like we * would do at context switch OUT time. */ for (ri = 0; ri < md->pmd_npmc; ri++) { /* * Pick up the pmc pointer from hardware * state similar to the CSW_OUT code. */ pm = NULL; pcd = pmc_ri_to_classdep(md, ri, &adjri); (void) (*pcd->pcd_get_config)(cpu, adjri, &pm); PMCDBG2(PRC,EXT,2, "ri=%d pm=%p", ri, pm); if (pm == NULL || !PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) continue; PMCDBG4(PRC,EXT,2, "ppmcs[%d]=%p pm=%p " "state=%d", ri, pp->pp_pmcs[ri].pp_pmc, pm, pm->pm_state); KASSERT(PMC_TO_ROWINDEX(pm) == ri, ("[pmc,%d] ri mismatch pmc(%d) ri(%d)", __LINE__, PMC_TO_ROWINDEX(pm), ri)); KASSERT(pm == pp->pp_pmcs[ri].pp_pmc, ("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__, pm, ri, pp->pp_pmcs[ri].pp_pmc)); KASSERT(counter_u64_fetch(pm->pm_runcount) > 0, ("[pmc,%d] bad runcount ri %d rc %ld", __LINE__, ri, (unsigned long)counter_u64_fetch(pm->pm_runcount))); /* * Change desired state, and then stop if not * stalled. This two-step dance should avoid * race conditions where an interrupt re-enables * the PMC after this code has already checked * the pm_stalled flag. */ if (pm->pm_pcpu_state[cpu].pps_cpustate) { pm->pm_pcpu_state[cpu].pps_cpustate = 0; if (!pm->pm_pcpu_state[cpu].pps_stalled) { (void) pcd->pcd_stop_pmc(cpu, adjri); if (PMC_TO_MODE(pm) == PMC_MODE_TC) { pcd->pcd_read_pmc(cpu, adjri, &newvalue); tmp = newvalue - PMC_PCPU_SAVED(cpu,ri); mtx_pool_lock_spin(pmc_mtxpool, pm); pm->pm_gv.pm_savedvalue += tmp; pp->pp_pmcs[ri].pp_pmcval += tmp; mtx_pool_unlock_spin( pmc_mtxpool, pm); } } } counter_u64_add(pm->pm_runcount, -1); KASSERT((int) counter_u64_fetch(pm->pm_runcount) >= 0, ("[pmc,%d] runcount is %d", __LINE__, ri)); (void) pcd->pcd_config_pmc(cpu, adjri, NULL); } /* * Inform the MD layer of this pseudo "context switch * out" */ (void) md->pmd_switch_out(pmc_pcpu[cpu], pp); critical_exit(); /* ok to be pre-empted now */ /* * Unlink this process from the PMCs that are * targeting it. This will send a signal to * all PMC owner's whose PMCs are orphaned. * * Log PMC value at exit time if requested. */ for (ri = 0; ri < md->pmd_npmc; ri++) if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) { if (pm->pm_flags & PMC_F_NEEDS_LOGFILE && PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm))) pmclog_process_procexit(pm, pp); pmc_unlink_target_process(pm, pp); } free(pp, M_PMC); } else critical_exit(); /* pp == NULL */ /* * If the process owned PMCs, free them up and free up * memory. */ if ((po = pmc_find_owner_descriptor(p)) != NULL) { pmc_remove_owner(po); pmc_destroy_owner_descriptor(po); } sx_xunlock(&pmc_sx); } /* * Handle a process fork. * * If the parent process 'p1' is under HWPMC monitoring, then copy * over any attached PMCs that have 'do_descendants' semantics. */ static void pmc_process_fork(void *arg __unused, struct proc *p1, struct proc *newproc, int flags) { int is_using_hwpmcs; unsigned int ri; uint32_t do_descendants; struct pmc *pm; struct pmc_owner *po; struct pmc_process *ppnew, *ppold; (void) flags; /* unused parameter */ PROC_LOCK(p1); is_using_hwpmcs = p1->p_flag & P_HWPMC; PROC_UNLOCK(p1); /* * If there are system-wide sampling PMCs active, we need to * log all fork events to their owner's logs. */ epoch_enter_preempt(global_epoch_preempt); CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) if (po->po_flags & PMC_PO_OWNS_LOGFILE) pmclog_process_procfork(po, p1->p_pid, newproc->p_pid); epoch_exit_preempt(global_epoch_preempt); if (!is_using_hwpmcs) return; PMC_GET_SX_XLOCK(); PMCDBG4(PMC,FRK,1, "process-fork proc=%p (%d, %s) -> %p", p1, p1->p_pid, p1->p_comm, newproc); /* * If the parent process (curthread->td_proc) is a * target of any PMCs, look for PMCs that are to be * inherited, and link these into the new process * descriptor. */ if ((ppold = pmc_find_process_descriptor(curthread->td_proc, PMC_FLAG_NONE)) == NULL) goto done; /* nothing to do */ do_descendants = 0; for (ri = 0; ri < md->pmd_npmc; ri++) if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL) do_descendants |= pm->pm_flags & PMC_F_DESCENDANTS; if (do_descendants == 0) /* nothing to do */ goto done; /* * Now mark the new process as being tracked by this driver. */ PROC_LOCK(newproc); newproc->p_flag |= P_HWPMC; PROC_UNLOCK(newproc); /* allocate a descriptor for the new process */ if ((ppnew = pmc_find_process_descriptor(newproc, PMC_FLAG_ALLOCATE)) == NULL) goto done; /* * Run through all PMCs that were targeting the old process * and which specified F_DESCENDANTS and attach them to the * new process. * * Log the fork event to all owners of PMCs attached to this * process, if not already logged. */ for (ri = 0; ri < md->pmd_npmc; ri++) if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL && (pm->pm_flags & PMC_F_DESCENDANTS)) { pmc_link_target_process(pm, ppnew); po = pm->pm_owner; if (po->po_sscount == 0 && po->po_flags & PMC_PO_OWNS_LOGFILE) pmclog_process_procfork(po, p1->p_pid, newproc->p_pid); } done: sx_xunlock(&pmc_sx); } static void pmc_kld_load(void *arg __unused, linker_file_t lf) { struct pmc_owner *po; /* * Notify owners of system sampling PMCs about KLD operations. */ epoch_enter_preempt(global_epoch_preempt); CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) if (po->po_flags & PMC_PO_OWNS_LOGFILE) pmclog_process_map_in(po, (pid_t) -1, (uintfptr_t) lf->address, lf->filename); epoch_exit_preempt(global_epoch_preempt); /* * TODO: Notify owners of (all) process-sampling PMCs too. */ } static void pmc_kld_unload(void *arg __unused, const char *filename __unused, caddr_t address, size_t size) { struct pmc_owner *po; epoch_enter_preempt(global_epoch_preempt); CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) if (po->po_flags & PMC_PO_OWNS_LOGFILE) pmclog_process_map_out(po, (pid_t) -1, (uintfptr_t) address, (uintfptr_t) address + size); epoch_exit_preempt(global_epoch_preempt); /* * TODO: Notify owners of process-sampling PMCs. */ } /* * initialization */ static const char * pmc_name_of_pmcclass(enum pmc_class class) { switch (class) { #undef __PMC_CLASS #define __PMC_CLASS(S,V,D) \ case PMC_CLASS_##S: \ return #S; __PMC_CLASSES(); default: return (""); } } /* * Base class initializer: allocate structure and set default classes. */ struct pmc_mdep * pmc_mdep_alloc(int nclasses) { struct pmc_mdep *md; int n; /* SOFT + md classes */ n = 1 + nclasses; md = malloc(sizeof(struct pmc_mdep) + n * sizeof(struct pmc_classdep), M_PMC, M_WAITOK|M_ZERO); md->pmd_nclass = n; /* Add base class. */ pmc_soft_initialize(md); return md; } void pmc_mdep_free(struct pmc_mdep *md) { pmc_soft_finalize(md); free(md, M_PMC); } static int generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp) { (void) pc; (void) pp; return (0); } static int generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp) { (void) pc; (void) pp; return (0); } static struct pmc_mdep * pmc_generic_cpu_initialize(void) { struct pmc_mdep *md; md = pmc_mdep_alloc(0); md->pmd_cputype = PMC_CPU_GENERIC; md->pmd_pcpu_init = NULL; md->pmd_pcpu_fini = NULL; md->pmd_switch_in = generic_switch_in; md->pmd_switch_out = generic_switch_out; return (md); } static void pmc_generic_cpu_finalize(struct pmc_mdep *md) { (void) md; } static int pmc_initialize(void) { int c, cpu, error, n, ri; unsigned int maxcpu, domain; struct pcpu *pc; struct pmc_binding pb; struct pmc_sample *ps; struct pmc_classdep *pcd; struct pmc_samplebuffer *sb; md = NULL; error = 0; pmc_stats.pm_intr_ignored = counter_u64_alloc(M_WAITOK); pmc_stats.pm_intr_processed = counter_u64_alloc(M_WAITOK); pmc_stats.pm_intr_bufferfull = counter_u64_alloc(M_WAITOK); pmc_stats.pm_syscalls = counter_u64_alloc(M_WAITOK); pmc_stats.pm_syscall_errors = counter_u64_alloc(M_WAITOK); pmc_stats.pm_buffer_requests = counter_u64_alloc(M_WAITOK); pmc_stats.pm_buffer_requests_failed = counter_u64_alloc(M_WAITOK); pmc_stats.pm_log_sweeps = counter_u64_alloc(M_WAITOK); #ifdef HWPMC_DEBUG /* parse debug flags first */ if (TUNABLE_STR_FETCH(PMC_SYSCTL_NAME_PREFIX "debugflags", pmc_debugstr, sizeof(pmc_debugstr))) pmc_debugflags_parse(pmc_debugstr, pmc_debugstr+strlen(pmc_debugstr)); #endif PMCDBG1(MOD,INI,0, "PMC Initialize (version %x)", PMC_VERSION); /* check kernel version */ if (pmc_kernel_version != PMC_VERSION) { if (pmc_kernel_version == 0) printf("hwpmc: this kernel has not been compiled with " "'options HWPMC_HOOKS'.\n"); else printf("hwpmc: kernel version (0x%x) does not match " "module version (0x%x).\n", pmc_kernel_version, PMC_VERSION); return EPROGMISMATCH; } /* * check sysctl parameters */ if (pmc_hashsize <= 0) { (void) printf("hwpmc: tunable \"hashsize\"=%d must be " "greater than zero.\n", pmc_hashsize); pmc_hashsize = PMC_HASH_SIZE; } if (pmc_nsamples <= 0 || pmc_nsamples > 65535) { (void) printf("hwpmc: tunable \"nsamples\"=%d out of " "range.\n", pmc_nsamples); pmc_nsamples = PMC_NSAMPLES; } if (pmc_callchaindepth <= 0 || pmc_callchaindepth > PMC_CALLCHAIN_DEPTH_MAX) { (void) printf("hwpmc: tunable \"callchaindepth\"=%d out of " "range - using %d.\n", pmc_callchaindepth, PMC_CALLCHAIN_DEPTH_MAX); pmc_callchaindepth = PMC_CALLCHAIN_DEPTH_MAX; } md = pmc_md_initialize(); if (md == NULL) { /* Default to generic CPU. */ md = pmc_generic_cpu_initialize(); if (md == NULL) return (ENOSYS); } KASSERT(md->pmd_nclass >= 1 && md->pmd_npmc >= 1, ("[pmc,%d] no classes or pmcs", __LINE__)); /* Compute the map from row-indices to classdep pointers. */ pmc_rowindex_to_classdep = malloc(sizeof(struct pmc_classdep *) * md->pmd_npmc, M_PMC, M_WAITOK|M_ZERO); for (n = 0; n < md->pmd_npmc; n++) pmc_rowindex_to_classdep[n] = NULL; for (ri = c = 0; c < md->pmd_nclass; c++) { pcd = &md->pmd_classdep[c]; for (n = 0; n < pcd->pcd_num; n++, ri++) pmc_rowindex_to_classdep[ri] = pcd; } KASSERT(ri == md->pmd_npmc, ("[pmc,%d] npmc miscomputed: ri=%d, md->npmc=%d", __LINE__, ri, md->pmd_npmc)); maxcpu = pmc_cpu_max(); /* allocate space for the per-cpu array */ pmc_pcpu = malloc(maxcpu * sizeof(struct pmc_cpu *), M_PMC, M_WAITOK|M_ZERO); /* per-cpu 'saved values' for managing process-mode PMCs */ pmc_pcpu_saved = malloc(sizeof(pmc_value_t) * maxcpu * md->pmd_npmc, M_PMC, M_WAITOK); /* Perform CPU-dependent initialization. */ pmc_save_cpu_binding(&pb); error = 0; for (cpu = 0; error == 0 && cpu < maxcpu; cpu++) { if (!pmc_cpu_is_active(cpu)) continue; pmc_select_cpu(cpu); pmc_pcpu[cpu] = malloc(sizeof(struct pmc_cpu) + md->pmd_npmc * sizeof(struct pmc_hw *), M_PMC, M_WAITOK|M_ZERO); if (md->pmd_pcpu_init) error = md->pmd_pcpu_init(md, cpu); for (n = 0; error == 0 && n < md->pmd_nclass; n++) error = md->pmd_classdep[n].pcd_pcpu_init(md, cpu); } pmc_restore_cpu_binding(&pb); if (error) return (error); /* allocate space for the sample array */ for (cpu = 0; cpu < maxcpu; cpu++) { if (!pmc_cpu_is_active(cpu)) continue; pc = pcpu_find(cpu); domain = pc->pc_domain; sb = malloc_domain(sizeof(struct pmc_samplebuffer) + pmc_nsamples * sizeof(struct pmc_sample), M_PMC, domain, M_WAITOK|M_ZERO); sb->ps_read = sb->ps_write = sb->ps_samples; sb->ps_fence = sb->ps_samples + pmc_nsamples; KASSERT(pmc_pcpu[cpu] != NULL, ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu)); sb->ps_callchains = malloc_domain(pmc_callchaindepth * pmc_nsamples * sizeof(uintptr_t), M_PMC, domain, M_WAITOK|M_ZERO); for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++) ps->ps_pc = sb->ps_callchains + (n * pmc_callchaindepth); pmc_pcpu[cpu]->pc_sb[PMC_HR] = sb; sb = malloc_domain(sizeof(struct pmc_samplebuffer) + pmc_nsamples * sizeof(struct pmc_sample), M_PMC, domain, M_WAITOK|M_ZERO); sb->ps_read = sb->ps_write = sb->ps_samples; sb->ps_fence = sb->ps_samples + pmc_nsamples; KASSERT(pmc_pcpu[cpu] != NULL, ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu)); sb->ps_callchains = malloc_domain(pmc_callchaindepth * pmc_nsamples * sizeof(uintptr_t), M_PMC, domain, M_WAITOK|M_ZERO); for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++) ps->ps_pc = sb->ps_callchains + (n * pmc_callchaindepth); pmc_pcpu[cpu]->pc_sb[PMC_SR] = sb; } /* allocate space for the row disposition array */ pmc_pmcdisp = malloc(sizeof(enum pmc_mode) * md->pmd_npmc, M_PMC, M_WAITOK|M_ZERO); /* mark all PMCs as available */ for (n = 0; n < (int) md->pmd_npmc; n++) PMC_MARK_ROW_FREE(n); /* allocate thread hash tables */ pmc_ownerhash = hashinit(pmc_hashsize, M_PMC, &pmc_ownerhashmask); pmc_processhash = hashinit(pmc_hashsize, M_PMC, &pmc_processhashmask); mtx_init(&pmc_processhash_mtx, "pmc-process-hash", "pmc-leaf", MTX_SPIN); - LIST_INIT(&pmc_ss_owners); + CK_LIST_INIT(&pmc_ss_owners); pmc_ss_count = 0; /* allocate a pool of spin mutexes */ pmc_mtxpool = mtx_pool_create("pmc-leaf", pmc_mtxpool_size, MTX_SPIN); PMCDBG4(MOD,INI,1, "pmc_ownerhash=%p, mask=0x%lx " "targethash=%p mask=0x%lx", pmc_ownerhash, pmc_ownerhashmask, pmc_processhash, pmc_processhashmask); /* Initialize a spin mutex for the thread free list. */ mtx_init(&pmc_threadfreelist_mtx, "pmc-threadfreelist", "pmc-leaf", MTX_SPIN); /* * Initialize the callout to monitor the thread free list. * This callout will also handle the initial population of the list. */ taskqgroup_config_gtask_init(NULL, &free_gtask, pmc_thread_descriptor_pool_free_task, "thread descriptor pool free task"); /* register process {exit,fork,exec} handlers */ pmc_exit_tag = EVENTHANDLER_REGISTER(process_exit, pmc_process_exit, NULL, EVENTHANDLER_PRI_ANY); pmc_fork_tag = EVENTHANDLER_REGISTER(process_fork, pmc_process_fork, NULL, EVENTHANDLER_PRI_ANY); /* register kld event handlers */ pmc_kld_load_tag = EVENTHANDLER_REGISTER(kld_load, pmc_kld_load, NULL, EVENTHANDLER_PRI_ANY); pmc_kld_unload_tag = EVENTHANDLER_REGISTER(kld_unload, pmc_kld_unload, NULL, EVENTHANDLER_PRI_ANY); /* initialize logging */ pmclog_initialize(); /* set hook functions */ pmc_intr = md->pmd_intr; wmb(); pmc_hook = pmc_hook_handler; if (error == 0) { printf(PMC_MODULE_NAME ":"); for (n = 0; n < (int) md->pmd_nclass; n++) { pcd = &md->pmd_classdep[n]; printf(" %s/%d/%d/0x%b", pmc_name_of_pmcclass(pcd->pcd_class), pcd->pcd_num, pcd->pcd_width, pcd->pcd_caps, "\20" "\1INT\2USR\3SYS\4EDG\5THR" "\6REA\7WRI\10INV\11QUA\12PRC" "\13TAG\14CSC"); } printf("\n"); } return (error); } /* prepare to be unloaded */ static void pmc_cleanup(void) { int c, cpu; unsigned int maxcpu; struct pmc_ownerhash *ph; struct pmc_owner *po, *tmp; struct pmc_binding pb; #ifdef HWPMC_DEBUG struct pmc_processhash *prh; #endif PMCDBG0(MOD,INI,0, "cleanup"); /* switch off sampling */ CPU_FOREACH(cpu) DPCPU_ID_SET(cpu, pmc_sampled, 0); pmc_intr = NULL; sx_xlock(&pmc_sx); if (pmc_hook == NULL) { /* being unloaded already */ sx_xunlock(&pmc_sx); return; } pmc_hook = NULL; /* prevent new threads from entering module */ /* deregister event handlers */ EVENTHANDLER_DEREGISTER(process_fork, pmc_fork_tag); EVENTHANDLER_DEREGISTER(process_exit, pmc_exit_tag); EVENTHANDLER_DEREGISTER(kld_load, pmc_kld_load_tag); EVENTHANDLER_DEREGISTER(kld_unload, pmc_kld_unload_tag); /* send SIGBUS to all owner threads, free up allocations */ if (pmc_ownerhash) for (ph = pmc_ownerhash; ph <= &pmc_ownerhash[pmc_ownerhashmask]; ph++) { LIST_FOREACH_SAFE(po, ph, po_next, tmp) { pmc_remove_owner(po); /* send SIGBUS to owner processes */ PMCDBG3(MOD,INI,2, "cleanup signal proc=%p " "(%d, %s)", po->po_owner, po->po_owner->p_pid, po->po_owner->p_comm); PROC_LOCK(po->po_owner); kern_psignal(po->po_owner, SIGBUS); PROC_UNLOCK(po->po_owner); pmc_destroy_owner_descriptor(po); } } /* reclaim allocated data structures */ mtx_destroy(&pmc_threadfreelist_mtx); pmc_thread_descriptor_pool_drain(); if (pmc_mtxpool) mtx_pool_destroy(&pmc_mtxpool); mtx_destroy(&pmc_processhash_mtx); taskqgroup_config_gtask_deinit(&free_gtask); if (pmc_processhash) { #ifdef HWPMC_DEBUG struct pmc_process *pp; PMCDBG0(MOD,INI,3, "destroy process hash"); for (prh = pmc_processhash; prh <= &pmc_processhash[pmc_processhashmask]; prh++) LIST_FOREACH(pp, prh, pp_next) PMCDBG1(MOD,INI,3, "pid=%d", pp->pp_proc->p_pid); #endif hashdestroy(pmc_processhash, M_PMC, pmc_processhashmask); pmc_processhash = NULL; } if (pmc_ownerhash) { PMCDBG0(MOD,INI,3, "destroy owner hash"); hashdestroy(pmc_ownerhash, M_PMC, pmc_ownerhashmask); pmc_ownerhash = NULL; } - KASSERT(LIST_EMPTY(&pmc_ss_owners), + KASSERT(CK_LIST_EMPTY(&pmc_ss_owners), ("[pmc,%d] Global SS owner list not empty", __LINE__)); KASSERT(pmc_ss_count == 0, ("[pmc,%d] Global SS count not empty", __LINE__)); /* do processor and pmc-class dependent cleanup */ maxcpu = pmc_cpu_max(); PMCDBG0(MOD,INI,3, "md cleanup"); if (md) { pmc_save_cpu_binding(&pb); for (cpu = 0; cpu < maxcpu; cpu++) { PMCDBG2(MOD,INI,1,"pmc-cleanup cpu=%d pcs=%p", cpu, pmc_pcpu[cpu]); if (!pmc_cpu_is_active(cpu) || pmc_pcpu[cpu] == NULL) continue; pmc_select_cpu(cpu); for (c = 0; c < md->pmd_nclass; c++) md->pmd_classdep[c].pcd_pcpu_fini(md, cpu); if (md->pmd_pcpu_fini) md->pmd_pcpu_fini(md, cpu); } if (md->pmd_cputype == PMC_CPU_GENERIC) pmc_generic_cpu_finalize(md); else pmc_md_finalize(md); pmc_mdep_free(md); md = NULL; pmc_restore_cpu_binding(&pb); } /* Free per-cpu descriptors. */ for (cpu = 0; cpu < maxcpu; cpu++) { if (!pmc_cpu_is_active(cpu)) continue; KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_HR] != NULL, ("[pmc,%d] Null hw cpu sample buffer cpu=%d", __LINE__, cpu)); KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_SR] != NULL, ("[pmc,%d] Null sw cpu sample buffer cpu=%d", __LINE__, cpu)); free_domain(pmc_pcpu[cpu]->pc_sb[PMC_HR]->ps_callchains, M_PMC); free_domain(pmc_pcpu[cpu]->pc_sb[PMC_HR], M_PMC); free_domain(pmc_pcpu[cpu]->pc_sb[PMC_SR]->ps_callchains, M_PMC); free_domain(pmc_pcpu[cpu]->pc_sb[PMC_SR], M_PMC); free_domain(pmc_pcpu[cpu], M_PMC); } free(pmc_pcpu, M_PMC); pmc_pcpu = NULL; free(pmc_pcpu_saved, M_PMC); pmc_pcpu_saved = NULL; if (pmc_pmcdisp) { free(pmc_pmcdisp, M_PMC); pmc_pmcdisp = NULL; } if (pmc_rowindex_to_classdep) { free(pmc_rowindex_to_classdep, M_PMC); pmc_rowindex_to_classdep = NULL; } pmclog_shutdown(); counter_u64_free(pmc_stats.pm_intr_ignored); counter_u64_free(pmc_stats.pm_intr_processed); counter_u64_free(pmc_stats.pm_intr_bufferfull); counter_u64_free(pmc_stats.pm_syscalls); counter_u64_free(pmc_stats.pm_syscall_errors); counter_u64_free(pmc_stats.pm_buffer_requests); counter_u64_free(pmc_stats.pm_buffer_requests_failed); counter_u64_free(pmc_stats.pm_log_sweeps); sx_xunlock(&pmc_sx); /* we are done */ } /* * The function called at load/unload. */ static int load (struct module *module __unused, int cmd, void *arg __unused) { int error; error = 0; switch (cmd) { case MOD_LOAD : /* initialize the subsystem */ error = pmc_initialize(); if (error != 0) break; PMCDBG2(MOD,INI,1, "syscall=%d maxcpu=%d", pmc_syscall_num, pmc_cpu_max()); break; case MOD_UNLOAD : case MOD_SHUTDOWN: pmc_cleanup(); PMCDBG0(MOD,INI,1, "unloaded"); break; default : error = EINVAL; /* XXX should panic(9) */ break; } return error; } Index: head/sys/net/if_lagg.c =================================================================== --- head/sys/net/if_lagg.c (revision 334192) +++ head/sys/net/if_lagg.c (revision 334193) @@ -1,2193 +1,2193 @@ /* $OpenBSD: if_trunk.c,v 1.30 2007/01/31 06:20:19 reyk Exp $ */ /* * Copyright (c) 2005, 2006 Reyk Floeter * Copyright (c) 2007 Andrew Thompson * Copyright (c) 2014, 2016 Marcelo Araujo * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ratelimit.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #endif #ifdef INET #include #include #endif #ifdef INET6 #include #include #include #endif #include #include #include #define LAGG_RLOCK() epoch_enter_preempt(net_epoch_preempt) #define LAGG_RUNLOCK() epoch_exit_preempt(net_epoch_preempt) #define LAGG_RLOCK_ASSERT() MPASS(in_epoch()) #define LAGG_UNLOCK_ASSERT() MPASS(!in_epoch()) #define LAGG_SX_INIT(_sc) sx_init(&(_sc)->sc_sx, "if_lagg sx") #define LAGG_SX_DESTROY(_sc) sx_destroy(&(_sc)->sc_sx) #define LAGG_XLOCK(_sc) sx_xlock(&(_sc)->sc_sx) #define LAGG_XUNLOCK(_sc) sx_xunlock(&(_sc)->sc_sx) #define LAGG_SXLOCK_ASSERT(_sc) sx_assert(&(_sc)->sc_sx, SA_LOCKED) #define LAGG_XLOCK_ASSERT(_sc) sx_assert(&(_sc)->sc_sx, SA_XLOCKED) /* Special flags we should propagate to the lagg ports. */ static struct { int flag; int (*func)(struct ifnet *, int); } lagg_pflags[] = { {IFF_PROMISC, ifpromisc}, {IFF_ALLMULTI, if_allmulti}, {0, NULL} }; VNET_DEFINE(SLIST_HEAD(__trhead, lagg_softc), lagg_list); /* list of laggs */ #define V_lagg_list VNET(lagg_list) static VNET_DEFINE(struct mtx, lagg_list_mtx); #define V_lagg_list_mtx VNET(lagg_list_mtx) #define LAGG_LIST_LOCK_INIT(x) mtx_init(&V_lagg_list_mtx, \ "if_lagg list", NULL, MTX_DEF) #define LAGG_LIST_LOCK_DESTROY(x) mtx_destroy(&V_lagg_list_mtx) #define LAGG_LIST_LOCK(x) mtx_lock(&V_lagg_list_mtx) #define LAGG_LIST_UNLOCK(x) mtx_unlock(&V_lagg_list_mtx) eventhandler_tag lagg_detach_cookie = NULL; static int lagg_clone_create(struct if_clone *, int, caddr_t); static void lagg_clone_destroy(struct ifnet *); static VNET_DEFINE(struct if_clone *, lagg_cloner); #define V_lagg_cloner VNET(lagg_cloner) static const char laggname[] = "lagg"; static void lagg_capabilities(struct lagg_softc *); static int lagg_port_create(struct lagg_softc *, struct ifnet *); static int lagg_port_destroy(struct lagg_port *, int); static struct mbuf *lagg_input(struct ifnet *, struct mbuf *); static void lagg_linkstate(struct lagg_softc *); static void lagg_port_state(struct ifnet *, int); static int lagg_port_ioctl(struct ifnet *, u_long, caddr_t); static int lagg_port_output(struct ifnet *, struct mbuf *, const struct sockaddr *, struct route *); static void lagg_port_ifdetach(void *arg __unused, struct ifnet *); #ifdef LAGG_PORT_STACKING static int lagg_port_checkstacking(struct lagg_softc *); #endif static void lagg_port2req(struct lagg_port *, struct lagg_reqport *); static void lagg_init(void *); static void lagg_stop(struct lagg_softc *); static int lagg_ioctl(struct ifnet *, u_long, caddr_t); #ifdef RATELIMIT static int lagg_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *, struct m_snd_tag **); #endif static int lagg_setmulti(struct lagg_port *); static int lagg_clrmulti(struct lagg_port *); static int lagg_setcaps(struct lagg_port *, int cap); static int lagg_setflag(struct lagg_port *, int, int, int (*func)(struct ifnet *, int)); static int lagg_setflags(struct lagg_port *, int status); static uint64_t lagg_get_counter(struct ifnet *ifp, ift_counter cnt); static int lagg_transmit(struct ifnet *, struct mbuf *); static void lagg_qflush(struct ifnet *); static int lagg_media_change(struct ifnet *); static void lagg_media_status(struct ifnet *, struct ifmediareq *); static struct lagg_port *lagg_link_active(struct lagg_softc *, struct lagg_port *); /* Simple round robin */ static void lagg_rr_attach(struct lagg_softc *); static int lagg_rr_start(struct lagg_softc *, struct mbuf *); static struct mbuf *lagg_rr_input(struct lagg_softc *, struct lagg_port *, struct mbuf *); /* Active failover */ static int lagg_fail_start(struct lagg_softc *, struct mbuf *); static struct mbuf *lagg_fail_input(struct lagg_softc *, struct lagg_port *, struct mbuf *); /* Loadbalancing */ static void lagg_lb_attach(struct lagg_softc *); static void lagg_lb_detach(struct lagg_softc *); static int lagg_lb_port_create(struct lagg_port *); static void lagg_lb_port_destroy(struct lagg_port *); static int lagg_lb_start(struct lagg_softc *, struct mbuf *); static struct mbuf *lagg_lb_input(struct lagg_softc *, struct lagg_port *, struct mbuf *); static int lagg_lb_porttable(struct lagg_softc *, struct lagg_port *); /* Broadcast */ static int lagg_bcast_start(struct lagg_softc *, struct mbuf *); static struct mbuf *lagg_bcast_input(struct lagg_softc *, struct lagg_port *, struct mbuf *); /* 802.3ad LACP */ static void lagg_lacp_attach(struct lagg_softc *); static void lagg_lacp_detach(struct lagg_softc *); static int lagg_lacp_start(struct lagg_softc *, struct mbuf *); static struct mbuf *lagg_lacp_input(struct lagg_softc *, struct lagg_port *, struct mbuf *); static void lagg_lacp_lladdr(struct lagg_softc *); /* lagg protocol table */ static const struct lagg_proto { lagg_proto pr_num; void (*pr_attach)(struct lagg_softc *); void (*pr_detach)(struct lagg_softc *); int (*pr_start)(struct lagg_softc *, struct mbuf *); struct mbuf * (*pr_input)(struct lagg_softc *, struct lagg_port *, struct mbuf *); int (*pr_addport)(struct lagg_port *); void (*pr_delport)(struct lagg_port *); void (*pr_linkstate)(struct lagg_port *); void (*pr_init)(struct lagg_softc *); void (*pr_stop)(struct lagg_softc *); void (*pr_lladdr)(struct lagg_softc *); void (*pr_request)(struct lagg_softc *, void *); void (*pr_portreq)(struct lagg_port *, void *); } lagg_protos[] = { { .pr_num = LAGG_PROTO_NONE }, { .pr_num = LAGG_PROTO_ROUNDROBIN, .pr_attach = lagg_rr_attach, .pr_start = lagg_rr_start, .pr_input = lagg_rr_input, }, { .pr_num = LAGG_PROTO_FAILOVER, .pr_start = lagg_fail_start, .pr_input = lagg_fail_input, }, { .pr_num = LAGG_PROTO_LOADBALANCE, .pr_attach = lagg_lb_attach, .pr_detach = lagg_lb_detach, .pr_start = lagg_lb_start, .pr_input = lagg_lb_input, .pr_addport = lagg_lb_port_create, .pr_delport = lagg_lb_port_destroy, }, { .pr_num = LAGG_PROTO_LACP, .pr_attach = lagg_lacp_attach, .pr_detach = lagg_lacp_detach, .pr_start = lagg_lacp_start, .pr_input = lagg_lacp_input, .pr_addport = lacp_port_create, .pr_delport = lacp_port_destroy, .pr_linkstate = lacp_linkstate, .pr_init = lacp_init, .pr_stop = lacp_stop, .pr_lladdr = lagg_lacp_lladdr, .pr_request = lacp_req, .pr_portreq = lacp_portreq, }, { .pr_num = LAGG_PROTO_BROADCAST, .pr_start = lagg_bcast_start, .pr_input = lagg_bcast_input, }, }; SYSCTL_DECL(_net_link); SYSCTL_NODE(_net_link, OID_AUTO, lagg, CTLFLAG_RW, 0, "Link Aggregation"); /* Allow input on any failover links */ static VNET_DEFINE(int, lagg_failover_rx_all); #define V_lagg_failover_rx_all VNET(lagg_failover_rx_all) SYSCTL_INT(_net_link_lagg, OID_AUTO, failover_rx_all, CTLFLAG_RW | CTLFLAG_VNET, &VNET_NAME(lagg_failover_rx_all), 0, "Accept input from any interface in a failover lagg"); /* Default value for using flowid */ static VNET_DEFINE(int, def_use_flowid) = 0; #define V_def_use_flowid VNET(def_use_flowid) SYSCTL_INT(_net_link_lagg, OID_AUTO, default_use_flowid, CTLFLAG_RWTUN, &VNET_NAME(def_use_flowid), 0, "Default setting for using flow id for load sharing"); /* Default value for flowid shift */ static VNET_DEFINE(int, def_flowid_shift) = 16; #define V_def_flowid_shift VNET(def_flowid_shift) SYSCTL_INT(_net_link_lagg, OID_AUTO, default_flowid_shift, CTLFLAG_RWTUN, &VNET_NAME(def_flowid_shift), 0, "Default setting for flowid shift for load sharing"); static void vnet_lagg_init(const void *unused __unused) { LAGG_LIST_LOCK_INIT(); SLIST_INIT(&V_lagg_list); V_lagg_cloner = if_clone_simple(laggname, lagg_clone_create, lagg_clone_destroy, 0); } VNET_SYSINIT(vnet_lagg_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, vnet_lagg_init, NULL); static void vnet_lagg_uninit(const void *unused __unused) { if_clone_detach(V_lagg_cloner); LAGG_LIST_LOCK_DESTROY(); } VNET_SYSUNINIT(vnet_lagg_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY, vnet_lagg_uninit, NULL); static int lagg_modevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: lagg_input_p = lagg_input; lagg_linkstate_p = lagg_port_state; lagg_detach_cookie = EVENTHANDLER_REGISTER( ifnet_departure_event, lagg_port_ifdetach, NULL, EVENTHANDLER_PRI_ANY); break; case MOD_UNLOAD: EVENTHANDLER_DEREGISTER(ifnet_departure_event, lagg_detach_cookie); lagg_input_p = NULL; lagg_linkstate_p = NULL; break; default: return (EOPNOTSUPP); } return (0); } static moduledata_t lagg_mod = { "if_lagg", lagg_modevent, 0 }; DECLARE_MODULE(if_lagg, lagg_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); MODULE_VERSION(if_lagg, 1); static void lagg_proto_attach(struct lagg_softc *sc, lagg_proto pr) { LAGG_XLOCK_ASSERT(sc); KASSERT(sc->sc_proto == LAGG_PROTO_NONE, ("%s: sc %p has proto", __func__, sc)); if (sc->sc_ifflags & IFF_DEBUG) if_printf(sc->sc_ifp, "using proto %u\n", pr); if (lagg_protos[pr].pr_attach != NULL) lagg_protos[pr].pr_attach(sc); sc->sc_proto = pr; } static void lagg_proto_detach(struct lagg_softc *sc) { lagg_proto pr; LAGG_XLOCK_ASSERT(sc); pr = sc->sc_proto; sc->sc_proto = LAGG_PROTO_NONE; if (lagg_protos[pr].pr_detach != NULL) lagg_protos[pr].pr_detach(sc); } static int lagg_proto_start(struct lagg_softc *sc, struct mbuf *m) { return (lagg_protos[sc->sc_proto].pr_start(sc, m)); } static struct mbuf * lagg_proto_input(struct lagg_softc *sc, struct lagg_port *lp, struct mbuf *m) { return (lagg_protos[sc->sc_proto].pr_input(sc, lp, m)); } static int lagg_proto_addport(struct lagg_softc *sc, struct lagg_port *lp) { if (lagg_protos[sc->sc_proto].pr_addport == NULL) return (0); else return (lagg_protos[sc->sc_proto].pr_addport(lp)); } static void lagg_proto_delport(struct lagg_softc *sc, struct lagg_port *lp) { if (lagg_protos[sc->sc_proto].pr_delport != NULL) lagg_protos[sc->sc_proto].pr_delport(lp); } static void lagg_proto_linkstate(struct lagg_softc *sc, struct lagg_port *lp) { if (lagg_protos[sc->sc_proto].pr_linkstate != NULL) lagg_protos[sc->sc_proto].pr_linkstate(lp); } static void lagg_proto_init(struct lagg_softc *sc) { if (lagg_protos[sc->sc_proto].pr_init != NULL) lagg_protos[sc->sc_proto].pr_init(sc); } static void lagg_proto_stop(struct lagg_softc *sc) { if (lagg_protos[sc->sc_proto].pr_stop != NULL) lagg_protos[sc->sc_proto].pr_stop(sc); } static void lagg_proto_lladdr(struct lagg_softc *sc) { if (lagg_protos[sc->sc_proto].pr_lladdr != NULL) lagg_protos[sc->sc_proto].pr_lladdr(sc); } static void lagg_proto_request(struct lagg_softc *sc, void *v) { if (lagg_protos[sc->sc_proto].pr_request != NULL) lagg_protos[sc->sc_proto].pr_request(sc, v); } static void lagg_proto_portreq(struct lagg_softc *sc, struct lagg_port *lp, void *v) { if (lagg_protos[sc->sc_proto].pr_portreq != NULL) lagg_protos[sc->sc_proto].pr_portreq(lp, v); } /* * This routine is run via an vlan * config EVENT */ static void lagg_register_vlan(void *arg, struct ifnet *ifp, u_int16_t vtag) { struct lagg_softc *sc = ifp->if_softc; struct lagg_port *lp; if (ifp->if_softc != arg) /* Not our event */ return; LAGG_RLOCK(); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) EVENTHANDLER_INVOKE(vlan_config, lp->lp_ifp, vtag); LAGG_RUNLOCK(); } /* * This routine is run via an vlan * unconfig EVENT */ static void lagg_unregister_vlan(void *arg, struct ifnet *ifp, u_int16_t vtag) { struct lagg_softc *sc = ifp->if_softc; struct lagg_port *lp; if (ifp->if_softc != arg) /* Not our event */ return; LAGG_RLOCK(); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) EVENTHANDLER_INVOKE(vlan_unconfig, lp->lp_ifp, vtag); LAGG_RUNLOCK(); } static int lagg_clone_create(struct if_clone *ifc, int unit, caddr_t params) { struct lagg_softc *sc; struct ifnet *ifp; static const u_char eaddr[6]; /* 00:00:00:00:00:00 */ sc = malloc(sizeof(*sc), M_DEVBUF, M_WAITOK|M_ZERO); ifp = sc->sc_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { free(sc, M_DEVBUF); return (ENOSPC); } LAGG_SX_INIT(sc); LAGG_XLOCK(sc); if (V_def_use_flowid) sc->sc_opts |= LAGG_OPT_USE_FLOWID; sc->flowid_shift = V_def_flowid_shift; /* Hash all layers by default */ sc->sc_flags = MBUF_HASHFLAG_L2|MBUF_HASHFLAG_L3|MBUF_HASHFLAG_L4; lagg_proto_attach(sc, LAGG_PROTO_DEFAULT); - SLIST_INIT(&sc->sc_ports); + CK_SLIST_INIT(&sc->sc_ports); /* Initialise pseudo media types */ ifmedia_init(&sc->sc_media, 0, lagg_media_change, lagg_media_status); ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO); if_initname(ifp, laggname, unit); ifp->if_softc = sc; ifp->if_transmit = lagg_transmit; ifp->if_qflush = lagg_qflush; ifp->if_init = lagg_init; ifp->if_ioctl = lagg_ioctl; ifp->if_get_counter = lagg_get_counter; ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; #ifdef RATELIMIT ifp->if_snd_tag_alloc = lagg_snd_tag_alloc; ifp->if_capenable = ifp->if_capabilities = IFCAP_HWSTATS | IFCAP_TXRTLMT; #else ifp->if_capenable = ifp->if_capabilities = IFCAP_HWSTATS; #endif /* * Attach as an ordinary ethernet device, children will be attached * as special device IFT_IEEE8023ADLAG. */ ether_ifattach(ifp, eaddr); sc->vlan_attach = EVENTHANDLER_REGISTER(vlan_config, lagg_register_vlan, sc, EVENTHANDLER_PRI_FIRST); sc->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig, lagg_unregister_vlan, sc, EVENTHANDLER_PRI_FIRST); /* Insert into the global list of laggs */ LAGG_LIST_LOCK(); SLIST_INSERT_HEAD(&V_lagg_list, sc, sc_entries); LAGG_LIST_UNLOCK(); LAGG_XUNLOCK(sc); return (0); } static void lagg_clone_destroy(struct ifnet *ifp) { struct lagg_softc *sc = (struct lagg_softc *)ifp->if_softc; struct lagg_port *lp; LAGG_XLOCK(sc); sc->sc_destroying = 1; lagg_stop(sc); ifp->if_flags &= ~IFF_UP; EVENTHANDLER_DEREGISTER(vlan_config, sc->vlan_attach); EVENTHANDLER_DEREGISTER(vlan_unconfig, sc->vlan_detach); /* Shutdown and remove lagg ports */ - while ((lp = SLIST_FIRST(&sc->sc_ports)) != NULL) + while ((lp = CK_SLIST_FIRST(&sc->sc_ports)) != NULL) lagg_port_destroy(lp, 1); /* Unhook the aggregation protocol */ lagg_proto_detach(sc); LAGG_XUNLOCK(sc); ifmedia_removeall(&sc->sc_media); ether_ifdetach(ifp); if_free(ifp); LAGG_LIST_LOCK(); SLIST_REMOVE(&V_lagg_list, sc, lagg_softc, sc_entries); LAGG_LIST_UNLOCK(); LAGG_SX_DESTROY(sc); free(sc, M_DEVBUF); } static void lagg_capabilities(struct lagg_softc *sc) { struct lagg_port *lp; int cap, ena, pena; uint64_t hwa; struct ifnet_hw_tsomax hw_tsomax; LAGG_XLOCK_ASSERT(sc); /* Get common enabled capabilities for the lagg ports */ ena = ~0; CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) ena &= lp->lp_ifp->if_capenable; ena = (ena == ~0 ? 0 : ena); /* * Apply common enabled capabilities back to the lagg ports. * May require several iterations if they are dependent. */ do { pena = ena; CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { lagg_setcaps(lp, ena); ena &= lp->lp_ifp->if_capenable; } } while (pena != ena); /* Get other capabilities from the lagg ports */ cap = ~0; hwa = ~(uint64_t)0; memset(&hw_tsomax, 0, sizeof(hw_tsomax)); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { cap &= lp->lp_ifp->if_capabilities; hwa &= lp->lp_ifp->if_hwassist; if_hw_tsomax_common(lp->lp_ifp, &hw_tsomax); } cap = (cap == ~0 ? 0 : cap); hwa = (hwa == ~(uint64_t)0 ? 0 : hwa); if (sc->sc_ifp->if_capabilities != cap || sc->sc_ifp->if_capenable != ena || sc->sc_ifp->if_hwassist != hwa || if_hw_tsomax_update(sc->sc_ifp, &hw_tsomax) != 0) { sc->sc_ifp->if_capabilities = cap; sc->sc_ifp->if_capenable = ena; sc->sc_ifp->if_hwassist = hwa; getmicrotime(&sc->sc_ifp->if_lastchange); if (sc->sc_ifflags & IFF_DEBUG) if_printf(sc->sc_ifp, "capabilities 0x%08x enabled 0x%08x\n", cap, ena); } } static int lagg_port_create(struct lagg_softc *sc, struct ifnet *ifp) { struct lagg_softc *sc_ptr; struct lagg_port *lp, *tlp; int error, i; uint64_t *pval; LAGG_XLOCK_ASSERT(sc); /* Limit the maximal number of lagg ports */ if (sc->sc_count >= LAGG_MAX_PORTS) return (ENOSPC); /* Check if port has already been associated to a lagg */ if (ifp->if_lagg != NULL) { /* Port is already in the current lagg? */ lp = (struct lagg_port *)ifp->if_lagg; if (lp->lp_softc == sc) return (EEXIST); return (EBUSY); } /* XXX Disallow non-ethernet interfaces (this should be any of 802) */ if (ifp->if_type != IFT_ETHER && ifp->if_type != IFT_L2VLAN) return (EPROTONOSUPPORT); /* Allow the first Ethernet member to define the MTU */ - if (SLIST_EMPTY(&sc->sc_ports)) + if (CK_SLIST_EMPTY(&sc->sc_ports)) sc->sc_ifp->if_mtu = ifp->if_mtu; else if (sc->sc_ifp->if_mtu != ifp->if_mtu) { if_printf(sc->sc_ifp, "invalid MTU for %s\n", ifp->if_xname); return (EINVAL); } lp = malloc(sizeof(struct lagg_port), M_DEVBUF, M_WAITOK|M_ZERO); lp->lp_softc = sc; /* Check if port is a stacked lagg */ LAGG_LIST_LOCK(); SLIST_FOREACH(sc_ptr, &V_lagg_list, sc_entries) { if (ifp == sc_ptr->sc_ifp) { LAGG_LIST_UNLOCK(); free(lp, M_DEVBUF); return (EINVAL); /* XXX disable stacking for the moment, its untested */ #ifdef LAGG_PORT_STACKING lp->lp_flags |= LAGG_PORT_STACK; if (lagg_port_checkstacking(sc_ptr) >= LAGG_MAX_STACKING) { LAGG_LIST_UNLOCK(); free(lp, M_DEVBUF); return (E2BIG); } #endif } } LAGG_LIST_UNLOCK(); if_ref(ifp); lp->lp_ifp = ifp; bcopy(IF_LLADDR(ifp), lp->lp_lladdr, ETHER_ADDR_LEN); lp->lp_ifcapenable = ifp->if_capenable; - if (SLIST_EMPTY(&sc->sc_ports)) { + if (CK_SLIST_EMPTY(&sc->sc_ports)) { bcopy(IF_LLADDR(ifp), IF_LLADDR(sc->sc_ifp), ETHER_ADDR_LEN); lagg_proto_lladdr(sc); EVENTHANDLER_INVOKE(iflladdr_event, sc->sc_ifp); } else { if_setlladdr(ifp, IF_LLADDR(sc->sc_ifp), ETHER_ADDR_LEN); } lagg_setflags(lp, 1); - if (SLIST_EMPTY(&sc->sc_ports)) + if (CK_SLIST_EMPTY(&sc->sc_ports)) sc->sc_primary = lp; /* Change the interface type */ lp->lp_iftype = ifp->if_type; ifp->if_type = IFT_IEEE8023ADLAG; ifp->if_lagg = lp; lp->lp_ioctl = ifp->if_ioctl; ifp->if_ioctl = lagg_port_ioctl; lp->lp_output = ifp->if_output; ifp->if_output = lagg_port_output; /* Read port counters */ pval = lp->port_counters.val; for (i = 0; i < IFCOUNTERS; i++, pval++) *pval = ifp->if_get_counter(ifp, i); /* * Insert into the list of ports. * Keep ports sorted by if_index. It is handy, when configuration * is predictable and `ifconfig laggN create ...` command * will lead to the same result each time. */ LAGG_RLOCK(); CK_SLIST_FOREACH(tlp, &sc->sc_ports, lp_entries) { if (tlp->lp_ifp->if_index < ifp->if_index && ( - SLIST_NEXT(tlp, lp_entries) == NULL || - SLIST_NEXT(tlp, lp_entries)->lp_ifp->if_index > + CK_SLIST_NEXT(tlp, lp_entries) == NULL || + ((struct lagg_port*)CK_SLIST_NEXT(tlp, lp_entries))->lp_ifp->if_index > ifp->if_index)) break; } LAGG_RUNLOCK(); if (tlp != NULL) - SLIST_INSERT_AFTER(tlp, lp, lp_entries); + CK_SLIST_INSERT_AFTER(tlp, lp, lp_entries); else - SLIST_INSERT_HEAD(&sc->sc_ports, lp, lp_entries); + CK_SLIST_INSERT_HEAD(&sc->sc_ports, lp, lp_entries); sc->sc_count++; lagg_setmulti(lp); if ((error = lagg_proto_addport(sc, lp)) != 0) { /* Remove the port, without calling pr_delport. */ lagg_port_destroy(lp, 0); return (error); } /* Update lagg capabilities */ lagg_capabilities(sc); lagg_linkstate(sc); return (0); } #ifdef LAGG_PORT_STACKING static int lagg_port_checkstacking(struct lagg_softc *sc) { struct lagg_softc *sc_ptr; struct lagg_port *lp; int m = 0; LAGG_SXLOCK_ASSERT(sc); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (lp->lp_flags & LAGG_PORT_STACK) { sc_ptr = (struct lagg_softc *)lp->lp_ifp->if_softc; m = MAX(m, lagg_port_checkstacking(sc_ptr)); } } return (m + 1); } #endif static void lagg_port_destroy_cb(epoch_context_t ec) { struct lagg_port *lp; struct ifnet *ifp; lp = __containerof(ec, struct lagg_port, lp_epoch_ctx); ifp = lp->lp_ifp; if_rele(ifp); free(lp, M_DEVBUF); } static int lagg_port_destroy(struct lagg_port *lp, int rundelport) { struct lagg_softc *sc = lp->lp_softc; struct lagg_port *lp_ptr, *lp0; struct ifnet *ifp = lp->lp_ifp; uint64_t *pval, vdiff; int i; LAGG_XLOCK_ASSERT(sc); if (rundelport) lagg_proto_delport(sc, lp); if (lp->lp_detaching == 0) lagg_clrmulti(lp); /* Restore interface */ ifp->if_type = lp->lp_iftype; ifp->if_ioctl = lp->lp_ioctl; ifp->if_output = lp->lp_output; ifp->if_lagg = NULL; /* Update detached port counters */ pval = lp->port_counters.val; for (i = 0; i < IFCOUNTERS; i++, pval++) { vdiff = ifp->if_get_counter(ifp, i) - *pval; sc->detached_counters.val[i] += vdiff; } /* Finally, remove the port from the lagg */ CK_SLIST_REMOVE(&sc->sc_ports, lp, lagg_port, lp_entries); sc->sc_count--; /* Update the primary interface */ if (lp == sc->sc_primary) { uint8_t lladdr[ETHER_ADDR_LEN]; - if ((lp0 = SLIST_FIRST(&sc->sc_ports)) == NULL) + if ((lp0 = CK_SLIST_FIRST(&sc->sc_ports)) == NULL) bzero(&lladdr, ETHER_ADDR_LEN); else bcopy(lp0->lp_lladdr, lladdr, ETHER_ADDR_LEN); sc->sc_primary = lp0; if (sc->sc_destroying == 0) { bcopy(lladdr, IF_LLADDR(sc->sc_ifp), ETHER_ADDR_LEN); lagg_proto_lladdr(sc); EVENTHANDLER_INVOKE(iflladdr_event, sc->sc_ifp); } /* * Update lladdr for each port (new primary needs update * as well, to switch from old lladdr to its 'real' one) */ CK_SLIST_FOREACH(lp_ptr, &sc->sc_ports, lp_entries) if_setlladdr(lp_ptr->lp_ifp, lladdr, ETHER_ADDR_LEN); } if (lp->lp_ifflags) if_printf(ifp, "%s: lp_ifflags unclean\n", __func__); if (lp->lp_detaching == 0) { lagg_setflags(lp, 0); lagg_setcaps(lp, lp->lp_ifcapenable); if_setlladdr(ifp, lp->lp_lladdr, ETHER_ADDR_LEN); } /* * free port and release it's ifnet reference after a grace period has * elapsed. */ epoch_call(net_epoch_preempt, &lp->lp_epoch_ctx, lagg_port_destroy_cb); /* Update lagg capabilities */ lagg_capabilities(sc); lagg_linkstate(sc); return (0); } static int lagg_port_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct lagg_reqport *rp = (struct lagg_reqport *)data; struct lagg_softc *sc; struct lagg_port *lp = NULL; int error = 0; /* Should be checked by the caller */ if (ifp->if_type != IFT_IEEE8023ADLAG || (lp = ifp->if_lagg) == NULL || (sc = lp->lp_softc) == NULL) goto fallback; switch (cmd) { case SIOCGLAGGPORT: if (rp->rp_portname[0] == '\0' || ifunit(rp->rp_portname) != ifp) { error = EINVAL; break; } LAGG_RLOCK(); if ((lp = ifp->if_lagg) == NULL || lp->lp_softc != sc) { error = ENOENT; LAGG_RUNLOCK(); break; } lagg_port2req(lp, rp); LAGG_RUNLOCK(); break; case SIOCSIFCAP: if (lp->lp_ioctl == NULL) { error = EINVAL; break; } error = (*lp->lp_ioctl)(ifp, cmd, data); if (error) break; /* Update lagg interface capabilities */ LAGG_XLOCK(sc); lagg_capabilities(sc); LAGG_XUNLOCK(sc); VLAN_CAPABILITIES(sc->sc_ifp); break; case SIOCSIFMTU: /* Do not allow the MTU to be changed once joined */ error = EINVAL; break; default: goto fallback; } return (error); fallback: if (lp != NULL && lp->lp_ioctl != NULL) return ((*lp->lp_ioctl)(ifp, cmd, data)); return (EINVAL); } /* * Requests counter @cnt data. * * Counter value is calculated the following way: * 1) for each port, sum difference between current and "initial" measurements. * 2) add lagg logical interface counters. * 3) add data from detached_counters array. * * We also do the following things on ports attach/detach: * 1) On port attach we store all counters it has into port_counter array. * 2) On port detach we add the different between "initial" and * current counters data to detached_counters array. */ static uint64_t lagg_get_counter(struct ifnet *ifp, ift_counter cnt) { struct lagg_softc *sc; struct lagg_port *lp; struct ifnet *lpifp; uint64_t newval, oldval, vsum; /* Revise this when we've got non-generic counters. */ KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); sc = (struct lagg_softc *)ifp->if_softc; vsum = 0; LAGG_RLOCK(); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { /* Saved attached value */ oldval = lp->port_counters.val[cnt]; /* current value */ lpifp = lp->lp_ifp; newval = lpifp->if_get_counter(lpifp, cnt); /* Calculate diff and save new */ vsum += newval - oldval; } LAGG_RUNLOCK(); /* * Add counter data which might be added by upper * layer protocols operating on logical interface. */ vsum += if_get_counter_default(ifp, cnt); /* * Add counter data from detached ports counters */ vsum += sc->detached_counters.val[cnt]; return (vsum); } /* * For direct output to child ports. */ static int lagg_port_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { struct lagg_port *lp = ifp->if_lagg; switch (dst->sa_family) { case pseudo_AF_HDRCMPLT: case AF_UNSPEC: return ((*lp->lp_output)(ifp, m, dst, ro)); } /* drop any other frames */ m_freem(m); return (ENETDOWN); } static void lagg_port_ifdetach(void *arg __unused, struct ifnet *ifp) { struct lagg_port *lp; struct lagg_softc *sc; if ((lp = ifp->if_lagg) == NULL) return; /* If the ifnet is just being renamed, don't do anything. */ if (ifp->if_flags & IFF_RENAMING) return; sc = lp->lp_softc; LAGG_XLOCK(sc); lp->lp_detaching = 1; lagg_port_destroy(lp, 1); LAGG_XUNLOCK(sc); VLAN_CAPABILITIES(sc->sc_ifp); } static void lagg_port2req(struct lagg_port *lp, struct lagg_reqport *rp) { struct lagg_softc *sc = lp->lp_softc; strlcpy(rp->rp_ifname, sc->sc_ifname, sizeof(rp->rp_ifname)); strlcpy(rp->rp_portname, lp->lp_ifp->if_xname, sizeof(rp->rp_portname)); rp->rp_prio = lp->lp_prio; rp->rp_flags = lp->lp_flags; lagg_proto_portreq(sc, lp, &rp->rp_psc); /* Add protocol specific flags */ switch (sc->sc_proto) { case LAGG_PROTO_FAILOVER: if (lp == sc->sc_primary) rp->rp_flags |= LAGG_PORT_MASTER; if (lp == lagg_link_active(sc, sc->sc_primary)) rp->rp_flags |= LAGG_PORT_ACTIVE; break; case LAGG_PROTO_ROUNDROBIN: case LAGG_PROTO_LOADBALANCE: case LAGG_PROTO_BROADCAST: if (LAGG_PORTACTIVE(lp)) rp->rp_flags |= LAGG_PORT_ACTIVE; break; case LAGG_PROTO_LACP: /* LACP has a different definition of active */ if (lacp_isactive(lp)) rp->rp_flags |= LAGG_PORT_ACTIVE; if (lacp_iscollecting(lp)) rp->rp_flags |= LAGG_PORT_COLLECTING; if (lacp_isdistributing(lp)) rp->rp_flags |= LAGG_PORT_DISTRIBUTING; break; } } static void lagg_init(void *xsc) { struct lagg_softc *sc = (struct lagg_softc *)xsc; struct ifnet *ifp = sc->sc_ifp; struct lagg_port *lp; LAGG_XLOCK(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) { LAGG_XUNLOCK(sc); return; } ifp->if_drv_flags |= IFF_DRV_RUNNING; /* * Update the port lladdrs if needed. * This might be if_setlladdr() notification * that lladdr has been changed. */ CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (memcmp(IF_LLADDR(ifp), IF_LLADDR(lp->lp_ifp), ETHER_ADDR_LEN) != 0) if_setlladdr(lp->lp_ifp, IF_LLADDR(ifp), ETHER_ADDR_LEN); } lagg_proto_init(sc); LAGG_XUNLOCK(sc); } static void lagg_stop(struct lagg_softc *sc) { struct ifnet *ifp = sc->sc_ifp; LAGG_XLOCK_ASSERT(sc); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; ifp->if_drv_flags &= ~IFF_DRV_RUNNING; lagg_proto_stop(sc); } static int lagg_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct lagg_softc *sc = (struct lagg_softc *)ifp->if_softc; struct lagg_reqall *ra = (struct lagg_reqall *)data; struct lagg_reqopts *ro = (struct lagg_reqopts *)data; struct lagg_reqport *rp = (struct lagg_reqport *)data, rpbuf; struct lagg_reqflags *rf = (struct lagg_reqflags *)data; struct ifreq *ifr = (struct ifreq *)data; struct lagg_port *lp; struct ifnet *tpif; struct thread *td = curthread; char *buf, *outbuf; int count, buflen, len, error = 0; bzero(&rpbuf, sizeof(rpbuf)); switch (cmd) { case SIOCGLAGG: LAGG_XLOCK(sc); buflen = sc->sc_count * sizeof(struct lagg_reqport); outbuf = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); ra->ra_proto = sc->sc_proto; lagg_proto_request(sc, &ra->ra_psc); count = 0; buf = outbuf; len = min(ra->ra_size, buflen); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (len < sizeof(rpbuf)) break; lagg_port2req(lp, &rpbuf); memcpy(buf, &rpbuf, sizeof(rpbuf)); count++; buf += sizeof(rpbuf); len -= sizeof(rpbuf); } LAGG_XUNLOCK(sc); ra->ra_ports = count; ra->ra_size = count * sizeof(rpbuf); error = copyout(outbuf, ra->ra_port, ra->ra_size); free(outbuf, M_TEMP); break; case SIOCSLAGG: error = priv_check(td, PRIV_NET_LAGG); if (error) break; if (ra->ra_proto >= LAGG_PROTO_MAX) { error = EPROTONOSUPPORT; break; } LAGG_XLOCK(sc); lagg_proto_detach(sc); LAGG_UNLOCK_ASSERT(); lagg_proto_attach(sc, ra->ra_proto); LAGG_XUNLOCK(sc); break; case SIOCGLAGGOPTS: LAGG_XLOCK(sc); ro->ro_opts = sc->sc_opts; if (sc->sc_proto == LAGG_PROTO_LACP) { struct lacp_softc *lsc; lsc = (struct lacp_softc *)sc->sc_psc; if (lsc->lsc_debug.lsc_tx_test != 0) ro->ro_opts |= LAGG_OPT_LACP_TXTEST; if (lsc->lsc_debug.lsc_rx_test != 0) ro->ro_opts |= LAGG_OPT_LACP_RXTEST; if (lsc->lsc_strict_mode != 0) ro->ro_opts |= LAGG_OPT_LACP_STRICT; if (lsc->lsc_fast_timeout != 0) ro->ro_opts |= LAGG_OPT_LACP_TIMEOUT; ro->ro_active = sc->sc_active; } else { ro->ro_active = 0; CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) ro->ro_active += LAGG_PORTACTIVE(lp); } ro->ro_bkt = sc->sc_bkt; ro->ro_flapping = sc->sc_flapping; ro->ro_flowid_shift = sc->flowid_shift; LAGG_XUNLOCK(sc); break; case SIOCSLAGGOPTS: if (sc->sc_proto == LAGG_PROTO_ROUNDROBIN) { if (ro->ro_bkt == 0) sc->sc_bkt = 1; // Minimum 1 packet per iface. else sc->sc_bkt = ro->ro_bkt; } error = priv_check(td, PRIV_NET_LAGG); if (error) break; if (ro->ro_opts == 0) break; /* * Set options. LACP options are stored in sc->sc_psc, * not in sc_opts. */ int valid, lacp; switch (ro->ro_opts) { case LAGG_OPT_USE_FLOWID: case -LAGG_OPT_USE_FLOWID: case LAGG_OPT_FLOWIDSHIFT: valid = 1; lacp = 0; break; case LAGG_OPT_LACP_TXTEST: case -LAGG_OPT_LACP_TXTEST: case LAGG_OPT_LACP_RXTEST: case -LAGG_OPT_LACP_RXTEST: case LAGG_OPT_LACP_STRICT: case -LAGG_OPT_LACP_STRICT: case LAGG_OPT_LACP_TIMEOUT: case -LAGG_OPT_LACP_TIMEOUT: valid = lacp = 1; break; default: valid = lacp = 0; break; } LAGG_XLOCK(sc); if (valid == 0 || (lacp == 1 && sc->sc_proto != LAGG_PROTO_LACP)) { /* Invalid combination of options specified. */ error = EINVAL; LAGG_XUNLOCK(sc); break; /* Return from SIOCSLAGGOPTS. */ } /* * Store new options into sc->sc_opts except for * FLOWIDSHIFT and LACP options. */ if (lacp == 0) { if (ro->ro_opts == LAGG_OPT_FLOWIDSHIFT) sc->flowid_shift = ro->ro_flowid_shift; else if (ro->ro_opts > 0) sc->sc_opts |= ro->ro_opts; else sc->sc_opts &= ~ro->ro_opts; } else { struct lacp_softc *lsc; struct lacp_port *lp; lsc = (struct lacp_softc *)sc->sc_psc; switch (ro->ro_opts) { case LAGG_OPT_LACP_TXTEST: lsc->lsc_debug.lsc_tx_test = 1; break; case -LAGG_OPT_LACP_TXTEST: lsc->lsc_debug.lsc_tx_test = 0; break; case LAGG_OPT_LACP_RXTEST: lsc->lsc_debug.lsc_rx_test = 1; break; case -LAGG_OPT_LACP_RXTEST: lsc->lsc_debug.lsc_rx_test = 0; break; case LAGG_OPT_LACP_STRICT: lsc->lsc_strict_mode = 1; break; case -LAGG_OPT_LACP_STRICT: lsc->lsc_strict_mode = 0; break; case LAGG_OPT_LACP_TIMEOUT: LACP_LOCK(lsc); LIST_FOREACH(lp, &lsc->lsc_ports, lp_next) lp->lp_state |= LACP_STATE_TIMEOUT; LACP_UNLOCK(lsc); lsc->lsc_fast_timeout = 1; break; case -LAGG_OPT_LACP_TIMEOUT: LACP_LOCK(lsc); LIST_FOREACH(lp, &lsc->lsc_ports, lp_next) lp->lp_state &= ~LACP_STATE_TIMEOUT; LACP_UNLOCK(lsc); lsc->lsc_fast_timeout = 0; break; } } LAGG_XUNLOCK(sc); break; case SIOCGLAGGFLAGS: rf->rf_flags = 0; LAGG_XLOCK(sc); if (sc->sc_flags & MBUF_HASHFLAG_L2) rf->rf_flags |= LAGG_F_HASHL2; if (sc->sc_flags & MBUF_HASHFLAG_L3) rf->rf_flags |= LAGG_F_HASHL3; if (sc->sc_flags & MBUF_HASHFLAG_L4) rf->rf_flags |= LAGG_F_HASHL4; LAGG_XUNLOCK(sc); break; case SIOCSLAGGHASH: error = priv_check(td, PRIV_NET_LAGG); if (error) break; if ((rf->rf_flags & LAGG_F_HASHMASK) == 0) { error = EINVAL; break; } LAGG_XLOCK(sc); sc->sc_flags = 0; if (rf->rf_flags & LAGG_F_HASHL2) sc->sc_flags |= MBUF_HASHFLAG_L2; if (rf->rf_flags & LAGG_F_HASHL3) sc->sc_flags |= MBUF_HASHFLAG_L3; if (rf->rf_flags & LAGG_F_HASHL4) sc->sc_flags |= MBUF_HASHFLAG_L4; LAGG_XUNLOCK(sc); break; case SIOCGLAGGPORT: if (rp->rp_portname[0] == '\0' || (tpif = ifunit_ref(rp->rp_portname)) == NULL) { error = EINVAL; break; } LAGG_RLOCK(); if ((lp = (struct lagg_port *)tpif->if_lagg) == NULL || lp->lp_softc != sc) { error = ENOENT; LAGG_RUNLOCK(); if_rele(tpif); break; } lagg_port2req(lp, rp); LAGG_RUNLOCK(); if_rele(tpif); break; case SIOCSLAGGPORT: error = priv_check(td, PRIV_NET_LAGG); if (error) break; if (rp->rp_portname[0] == '\0' || (tpif = ifunit_ref(rp->rp_portname)) == NULL) { error = EINVAL; break; } #ifdef INET6 /* * A laggport interface should not have inet6 address * because two interfaces with a valid link-local * scope zone must not be merged in any form. This * restriction is needed to prevent violation of * link-local scope zone. Attempts to add a laggport * interface which has inet6 addresses triggers * removal of all inet6 addresses on the member * interface. */ if (in6ifa_llaonifp(tpif)) { in6_ifdetach(tpif); if_printf(sc->sc_ifp, "IPv6 addresses on %s have been removed " "before adding it as a member to prevent " "IPv6 address scope violation.\n", tpif->if_xname); } #endif LAGG_XLOCK(sc); error = lagg_port_create(sc, tpif); LAGG_XUNLOCK(sc); if_rele(tpif); VLAN_CAPABILITIES(ifp); break; case SIOCSLAGGDELPORT: error = priv_check(td, PRIV_NET_LAGG); if (error) break; if (rp->rp_portname[0] == '\0' || (tpif = ifunit_ref(rp->rp_portname)) == NULL) { error = EINVAL; break; } LAGG_XLOCK(sc); if ((lp = (struct lagg_port *)tpif->if_lagg) == NULL || lp->lp_softc != sc) { error = ENOENT; LAGG_XUNLOCK(sc); if_rele(tpif); break; } error = lagg_port_destroy(lp, 1); LAGG_XUNLOCK(sc); if_rele(tpif); VLAN_CAPABILITIES(ifp); break; case SIOCSIFFLAGS: /* Set flags on ports too */ LAGG_XLOCK(sc); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { lagg_setflags(lp, 1); } if (!(ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) { /* * If interface is marked down and it is running, * then stop and disable it. */ lagg_stop(sc); LAGG_XUNLOCK(sc); } else if ((ifp->if_flags & IFF_UP) && !(ifp->if_drv_flags & IFF_DRV_RUNNING)) { /* * If interface is marked up and it is stopped, then * start it. */ LAGG_XUNLOCK(sc); (*ifp->if_init)(sc); } else LAGG_XUNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: LAGG_XLOCK(sc); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { lagg_clrmulti(lp); lagg_setmulti(lp); } LAGG_XUNLOCK(sc); error = 0; break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); break; case SIOCSIFCAP: LAGG_XLOCK(sc); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (lp->lp_ioctl != NULL) (*lp->lp_ioctl)(lp->lp_ifp, cmd, data); } lagg_capabilities(sc); LAGG_XUNLOCK(sc); VLAN_CAPABILITIES(ifp); error = 0; break; case SIOCSIFMTU: /* Do not allow the MTU to be directly changed */ error = EINVAL; break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } #ifdef RATELIMIT static int lagg_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params, struct m_snd_tag **ppmt) { struct lagg_softc *sc = (struct lagg_softc *)ifp->if_softc; struct lagg_port *lp; struct lagg_lb *lb; uint32_t p; switch (sc->sc_proto) { case LAGG_PROTO_FAILOVER: lp = lagg_link_active(sc, sc->sc_primary); break; case LAGG_PROTO_LOADBALANCE: if ((sc->sc_opts & LAGG_OPT_USE_FLOWID) == 0 || params->hdr.flowtype == M_HASHTYPE_NONE) return (EOPNOTSUPP); p = params->hdr.flowid >> sc->flowid_shift; p %= sc->sc_count; lb = (struct lagg_lb *)sc->sc_psc; lp = lb->lb_ports[p]; lp = lagg_link_active(sc, lp); break; case LAGG_PROTO_LACP: if ((sc->sc_opts & LAGG_OPT_USE_FLOWID) == 0 || params->hdr.flowtype == M_HASHTYPE_NONE) return (EOPNOTSUPP); lp = lacp_select_tx_port_by_hash(sc, params->hdr.flowid); break; default: return (EOPNOTSUPP); } if (lp == NULL) return (EOPNOTSUPP); ifp = lp->lp_ifp; if (ifp == NULL || ifp->if_snd_tag_alloc == NULL || (ifp->if_capenable & IFCAP_TXRTLMT) == 0) return (EOPNOTSUPP); /* forward allocation request */ return (ifp->if_snd_tag_alloc(ifp, params, ppmt)); } #endif static int lagg_setmulti(struct lagg_port *lp) { struct lagg_softc *sc = lp->lp_softc; struct ifnet *ifp = lp->lp_ifp; struct ifnet *scifp = sc->sc_ifp; struct lagg_mc *mc; struct ifmultiaddr *ifma; int error; IF_ADDR_WLOCK(scifp); CK_STAILQ_FOREACH(ifma, &scifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; mc = malloc(sizeof(struct lagg_mc), M_DEVBUF, M_NOWAIT); if (mc == NULL) { IF_ADDR_WUNLOCK(scifp); return (ENOMEM); } bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len); mc->mc_addr.sdl_index = ifp->if_index; mc->mc_ifma = NULL; SLIST_INSERT_HEAD(&lp->lp_mc_head, mc, mc_entries); } IF_ADDR_WUNLOCK(scifp); SLIST_FOREACH (mc, &lp->lp_mc_head, mc_entries) { error = if_addmulti(ifp, (struct sockaddr *)&mc->mc_addr, &mc->mc_ifma); if (error) return (error); } return (0); } static int lagg_clrmulti(struct lagg_port *lp) { struct lagg_mc *mc; LAGG_XLOCK_ASSERT(lp->lp_softc); while ((mc = SLIST_FIRST(&lp->lp_mc_head)) != NULL) { SLIST_REMOVE(&lp->lp_mc_head, mc, lagg_mc, mc_entries); if (mc->mc_ifma && lp->lp_detaching == 0) if_delmulti_ifma(mc->mc_ifma); free(mc, M_DEVBUF); } return (0); } static int lagg_setcaps(struct lagg_port *lp, int cap) { struct ifreq ifr; if (lp->lp_ifp->if_capenable == cap) return (0); if (lp->lp_ioctl == NULL) return (ENXIO); ifr.ifr_reqcap = cap; return ((*lp->lp_ioctl)(lp->lp_ifp, SIOCSIFCAP, (caddr_t)&ifr)); } /* Handle a ref counted flag that should be set on the lagg port as well */ static int lagg_setflag(struct lagg_port *lp, int flag, int status, int (*func)(struct ifnet *, int)) { struct lagg_softc *sc = lp->lp_softc; struct ifnet *scifp = sc->sc_ifp; struct ifnet *ifp = lp->lp_ifp; int error; LAGG_XLOCK_ASSERT(sc); status = status ? (scifp->if_flags & flag) : 0; /* Now "status" contains the flag value or 0 */ /* * See if recorded ports status is different from what * we want it to be. If it is, flip it. We record ports * status in lp_ifflags so that we won't clear ports flag * we haven't set. In fact, we don't clear or set ports * flags directly, but get or release references to them. * That's why we can be sure that recorded flags still are * in accord with actual ports flags. */ if (status != (lp->lp_ifflags & flag)) { error = (*func)(ifp, status); if (error) return (error); lp->lp_ifflags &= ~flag; lp->lp_ifflags |= status; } return (0); } /* * Handle IFF_* flags that require certain changes on the lagg port * if "status" is true, update ports flags respective to the lagg * if "status" is false, forcedly clear the flags set on port. */ static int lagg_setflags(struct lagg_port *lp, int status) { int error, i; for (i = 0; lagg_pflags[i].flag; i++) { error = lagg_setflag(lp, lagg_pflags[i].flag, status, lagg_pflags[i].func); if (error) return (error); } return (0); } static int lagg_transmit(struct ifnet *ifp, struct mbuf *m) { struct lagg_softc *sc = (struct lagg_softc *)ifp->if_softc; int error; LAGG_RLOCK(); /* We need a Tx algorithm and at least one port */ if (sc->sc_proto == LAGG_PROTO_NONE || sc->sc_count == 0) { LAGG_RUNLOCK(); m_freem(m); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (ENXIO); } ETHER_BPF_MTAP(ifp, m); error = lagg_proto_start(sc, m); LAGG_RUNLOCK(); if (error != 0) if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (error); } /* * The ifp->if_qflush entry point for lagg(4) is no-op. */ static void lagg_qflush(struct ifnet *ifp __unused) { } static struct mbuf * lagg_input(struct ifnet *ifp, struct mbuf *m) { struct lagg_port *lp = ifp->if_lagg; struct lagg_softc *sc = lp->lp_softc; struct ifnet *scifp = sc->sc_ifp; LAGG_RLOCK(); if ((scifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || lp->lp_detaching != 0 || sc->sc_proto == LAGG_PROTO_NONE) { LAGG_RUNLOCK(); m_freem(m); return (NULL); } ETHER_BPF_MTAP(scifp, m); m = lagg_proto_input(sc, lp, m); if (m != NULL && (scifp->if_flags & IFF_MONITOR) != 0) { m_freem(m); m = NULL; } LAGG_RUNLOCK(); return (m); } static int lagg_media_change(struct ifnet *ifp) { struct lagg_softc *sc = (struct lagg_softc *)ifp->if_softc; if (sc->sc_ifflags & IFF_DEBUG) printf("%s\n", __func__); /* Ignore */ return (0); } static void lagg_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct lagg_softc *sc = (struct lagg_softc *)ifp->if_softc; struct lagg_port *lp; imr->ifm_status = IFM_AVALID; imr->ifm_active = IFM_ETHER | IFM_AUTO; LAGG_RLOCK(); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (LAGG_PORTACTIVE(lp)) imr->ifm_status |= IFM_ACTIVE; } LAGG_RUNLOCK(); } static void lagg_linkstate(struct lagg_softc *sc) { struct lagg_port *lp; int new_link = LINK_STATE_DOWN; uint64_t speed; LAGG_XLOCK_ASSERT(sc); /* Our link is considered up if at least one of our ports is active */ LAGG_RLOCK(); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (lp->lp_ifp->if_link_state == LINK_STATE_UP) { new_link = LINK_STATE_UP; break; } } LAGG_RUNLOCK(); if_link_state_change(sc->sc_ifp, new_link); /* Update if_baudrate to reflect the max possible speed */ switch (sc->sc_proto) { case LAGG_PROTO_FAILOVER: sc->sc_ifp->if_baudrate = sc->sc_primary != NULL ? sc->sc_primary->lp_ifp->if_baudrate : 0; break; case LAGG_PROTO_ROUNDROBIN: case LAGG_PROTO_LOADBALANCE: case LAGG_PROTO_BROADCAST: speed = 0; LAGG_RLOCK(); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) speed += lp->lp_ifp->if_baudrate; LAGG_RUNLOCK(); sc->sc_ifp->if_baudrate = speed; break; case LAGG_PROTO_LACP: /* LACP updates if_baudrate itself */ break; } } static void lagg_port_state(struct ifnet *ifp, int state) { struct lagg_port *lp = (struct lagg_port *)ifp->if_lagg; struct lagg_softc *sc = NULL; if (lp != NULL) sc = lp->lp_softc; if (sc == NULL) return; LAGG_XLOCK(sc); lagg_linkstate(sc); lagg_proto_linkstate(sc, lp); LAGG_XUNLOCK(sc); } struct lagg_port * lagg_link_active(struct lagg_softc *sc, struct lagg_port *lp) { struct lagg_port *lp_next, *rval = NULL; /* * Search a port which reports an active link state. */ if (lp == NULL) goto search; if (LAGG_PORTACTIVE(lp)) { rval = lp; goto found; } - if ((lp_next = SLIST_NEXT(lp, lp_entries)) != NULL && + if ((lp_next = CK_SLIST_NEXT(lp, lp_entries)) != NULL && LAGG_PORTACTIVE(lp_next)) { rval = lp_next; goto found; } search: LAGG_RLOCK(); CK_SLIST_FOREACH(lp_next, &sc->sc_ports, lp_entries) { if (LAGG_PORTACTIVE(lp_next)) { LAGG_RUNLOCK(); rval = lp_next; goto found; } } LAGG_RUNLOCK(); found: return (rval); } int lagg_enqueue(struct ifnet *ifp, struct mbuf *m) { return (ifp->if_transmit)(ifp, m); } /* * Simple round robin aggregation */ static void lagg_rr_attach(struct lagg_softc *sc) { sc->sc_seq = 0; sc->sc_bkt_count = sc->sc_bkt; } static int lagg_rr_start(struct lagg_softc *sc, struct mbuf *m) { struct lagg_port *lp; uint32_t p; if (sc->sc_bkt_count == 0 && sc->sc_bkt > 0) sc->sc_bkt_count = sc->sc_bkt; if (sc->sc_bkt > 0) { atomic_subtract_int(&sc->sc_bkt_count, 1); if (atomic_cmpset_int(&sc->sc_bkt_count, 0, sc->sc_bkt)) p = atomic_fetchadd_32(&sc->sc_seq, 1); else p = sc->sc_seq; } else p = atomic_fetchadd_32(&sc->sc_seq, 1); p %= sc->sc_count; - lp = SLIST_FIRST(&sc->sc_ports); + lp = CK_SLIST_FIRST(&sc->sc_ports); while (p--) - lp = SLIST_NEXT(lp, lp_entries); + lp = CK_SLIST_NEXT(lp, lp_entries); /* * Check the port's link state. This will return the next active * port if the link is down or the port is NULL. */ if ((lp = lagg_link_active(sc, lp)) == NULL) { m_freem(m); return (ENETDOWN); } /* Send mbuf */ return (lagg_enqueue(lp->lp_ifp, m)); } static struct mbuf * lagg_rr_input(struct lagg_softc *sc, struct lagg_port *lp, struct mbuf *m) { struct ifnet *ifp = sc->sc_ifp; /* Just pass in the packet to our lagg device */ m->m_pkthdr.rcvif = ifp; return (m); } /* * Broadcast mode */ static int lagg_bcast_start(struct lagg_softc *sc, struct mbuf *m) { int active_ports = 0; int errors = 0; int ret; struct lagg_port *lp, *last = NULL; struct mbuf *m0; LAGG_RLOCK(); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (!LAGG_PORTACTIVE(lp)) continue; active_ports++; if (last != NULL) { m0 = m_copym(m, 0, M_COPYALL, M_NOWAIT); if (m0 == NULL) { ret = ENOBUFS; errors++; break; } ret = lagg_enqueue(last->lp_ifp, m0); if (ret != 0) errors++; } last = lp; } LAGG_RUNLOCK(); if (last == NULL) { m_freem(m); return (ENOENT); } if ((last = lagg_link_active(sc, last)) == NULL) { m_freem(m); return (ENETDOWN); } ret = lagg_enqueue(last->lp_ifp, m); if (ret != 0) errors++; if (errors == 0) return (ret); return (0); } static struct mbuf* lagg_bcast_input(struct lagg_softc *sc, struct lagg_port *lp, struct mbuf *m) { struct ifnet *ifp = sc->sc_ifp; /* Just pass in the packet to our lagg device */ m->m_pkthdr.rcvif = ifp; return (m); } /* * Active failover */ static int lagg_fail_start(struct lagg_softc *sc, struct mbuf *m) { struct lagg_port *lp; /* Use the master port if active or the next available port */ if ((lp = lagg_link_active(sc, sc->sc_primary)) == NULL) { m_freem(m); return (ENETDOWN); } /* Send mbuf */ return (lagg_enqueue(lp->lp_ifp, m)); } static struct mbuf * lagg_fail_input(struct lagg_softc *sc, struct lagg_port *lp, struct mbuf *m) { struct ifnet *ifp = sc->sc_ifp; struct lagg_port *tmp_tp; if (lp == sc->sc_primary || V_lagg_failover_rx_all) { m->m_pkthdr.rcvif = ifp; return (m); } if (!LAGG_PORTACTIVE(sc->sc_primary)) { tmp_tp = lagg_link_active(sc, sc->sc_primary); /* * If tmp_tp is null, we've received a packet when all * our links are down. Weird, but process it anyways. */ if ((tmp_tp == NULL || tmp_tp == lp)) { m->m_pkthdr.rcvif = ifp; return (m); } } m_freem(m); return (NULL); } /* * Loadbalancing */ static void lagg_lb_attach(struct lagg_softc *sc) { struct lagg_port *lp; struct lagg_lb *lb; LAGG_XLOCK_ASSERT(sc); lb = malloc(sizeof(struct lagg_lb), M_DEVBUF, M_WAITOK | M_ZERO); lb->lb_key = m_ether_tcpip_hash_init(); sc->sc_psc = lb; CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) lagg_lb_port_create(lp); } static void lagg_lb_detach(struct lagg_softc *sc) { struct lagg_lb *lb; lb = (struct lagg_lb *)sc->sc_psc; if (lb != NULL) free(lb, M_DEVBUF); } static int lagg_lb_porttable(struct lagg_softc *sc, struct lagg_port *lp) { struct lagg_lb *lb = (struct lagg_lb *)sc->sc_psc; struct lagg_port *lp_next; int i = 0; bzero(&lb->lb_ports, sizeof(lb->lb_ports)); LAGG_RLOCK(); CK_SLIST_FOREACH(lp_next, &sc->sc_ports, lp_entries) { if (lp_next == lp) continue; if (i >= LAGG_MAX_PORTS) return (EINVAL); if (sc->sc_ifflags & IFF_DEBUG) printf("%s: port %s at index %d\n", sc->sc_ifname, lp_next->lp_ifp->if_xname, i); lb->lb_ports[i++] = lp_next; } LAGG_RUNLOCK(); return (0); } static int lagg_lb_port_create(struct lagg_port *lp) { struct lagg_softc *sc = lp->lp_softc; return (lagg_lb_porttable(sc, NULL)); } static void lagg_lb_port_destroy(struct lagg_port *lp) { struct lagg_softc *sc = lp->lp_softc; lagg_lb_porttable(sc, lp); } static int lagg_lb_start(struct lagg_softc *sc, struct mbuf *m) { struct lagg_lb *lb = (struct lagg_lb *)sc->sc_psc; struct lagg_port *lp = NULL; uint32_t p = 0; if ((sc->sc_opts & LAGG_OPT_USE_FLOWID) && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) p = m->m_pkthdr.flowid >> sc->flowid_shift; else p = m_ether_tcpip_hash(sc->sc_flags, m, lb->lb_key); p %= sc->sc_count; lp = lb->lb_ports[p]; /* * Check the port's link state. This will return the next active * port if the link is down or the port is NULL. */ if ((lp = lagg_link_active(sc, lp)) == NULL) { m_freem(m); return (ENETDOWN); } /* Send mbuf */ return (lagg_enqueue(lp->lp_ifp, m)); } static struct mbuf * lagg_lb_input(struct lagg_softc *sc, struct lagg_port *lp, struct mbuf *m) { struct ifnet *ifp = sc->sc_ifp; /* Just pass in the packet to our lagg device */ m->m_pkthdr.rcvif = ifp; return (m); } /* * 802.3ad LACP */ static void lagg_lacp_attach(struct lagg_softc *sc) { struct lagg_port *lp; lacp_attach(sc); LAGG_XLOCK_ASSERT(sc); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) lacp_port_create(lp); } static void lagg_lacp_detach(struct lagg_softc *sc) { struct lagg_port *lp; void *psc; LAGG_XLOCK_ASSERT(sc); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) lacp_port_destroy(lp); psc = sc->sc_psc; sc->sc_psc = NULL; lacp_detach(psc); } static void lagg_lacp_lladdr(struct lagg_softc *sc) { struct lagg_port *lp; LAGG_SXLOCK_ASSERT(sc); /* purge all the lacp ports */ CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) lacp_port_destroy(lp); /* add them back in */ CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) lacp_port_create(lp); } static int lagg_lacp_start(struct lagg_softc *sc, struct mbuf *m) { struct lagg_port *lp; lp = lacp_select_tx_port(sc, m); if (lp == NULL) { m_freem(m); return (ENETDOWN); } /* Send mbuf */ return (lagg_enqueue(lp->lp_ifp, m)); } static struct mbuf * lagg_lacp_input(struct lagg_softc *sc, struct lagg_port *lp, struct mbuf *m) { struct ifnet *ifp = sc->sc_ifp; struct ether_header *eh; u_short etype; eh = mtod(m, struct ether_header *); etype = ntohs(eh->ether_type); /* Tap off LACP control messages */ if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_SLOW) { m = lacp_input(lp, m); if (m == NULL) return (NULL); } /* * If the port is not collecting or not in the active aggregator then * free and return. */ if (lacp_iscollecting(lp) == 0 || lacp_isactive(lp) == 0) { m_freem(m); return (NULL); } m->m_pkthdr.rcvif = ifp; return (m); } Index: head/sys/net/if_lagg.h =================================================================== --- head/sys/net/if_lagg.h (revision 334192) +++ head/sys/net/if_lagg.h (revision 334193) @@ -1,267 +1,267 @@ /* $OpenBSD: if_trunk.h,v 1.11 2007/01/31 06:20:19 reyk Exp $ */ /* * Copyright (c) 2005, 2006 Reyk Floeter * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD$ */ #ifndef _NET_LAGG_H #define _NET_LAGG_H /* * Global definitions */ #define LAGG_MAX_PORTS 32 /* logically */ #define LAGG_MAX_NAMESIZE 32 /* name of a protocol */ #define LAGG_MAX_STACKING 4 /* maximum number of stacked laggs */ /* Lagg flags */ #define LAGG_F_HASHL2 0x00000001 /* hash layer 2 */ #define LAGG_F_HASHL3 0x00000002 /* hash layer 3 */ #define LAGG_F_HASHL4 0x00000004 /* hash layer 4 */ #define LAGG_F_HASHMASK 0x00000007 /* Port flags */ #define LAGG_PORT_SLAVE 0x00000000 /* normal enslaved port */ #define LAGG_PORT_MASTER 0x00000001 /* primary port */ #define LAGG_PORT_STACK 0x00000002 /* stacked lagg port */ #define LAGG_PORT_ACTIVE 0x00000004 /* port is active */ #define LAGG_PORT_COLLECTING 0x00000008 /* port is receiving frames */ #define LAGG_PORT_DISTRIBUTING 0x00000010 /* port is sending frames */ #define LAGG_PORT_BITS "\20\01MASTER\02STACK\03ACTIVE\04COLLECTING" \ "\05DISTRIBUTING" /* Supported lagg PROTOs */ typedef enum { LAGG_PROTO_NONE = 0, /* no lagg protocol defined */ LAGG_PROTO_ROUNDROBIN, /* simple round robin */ LAGG_PROTO_FAILOVER, /* active failover */ LAGG_PROTO_LOADBALANCE, /* loadbalance */ LAGG_PROTO_LACP, /* 802.3ad lacp */ LAGG_PROTO_BROADCAST, /* broadcast */ LAGG_PROTO_MAX, } lagg_proto; struct lagg_protos { const char *lpr_name; lagg_proto lpr_proto; }; #define LAGG_PROTO_DEFAULT LAGG_PROTO_FAILOVER #define LAGG_PROTOS { \ { "failover", LAGG_PROTO_FAILOVER }, \ { "lacp", LAGG_PROTO_LACP }, \ { "loadbalance", LAGG_PROTO_LOADBALANCE }, \ { "roundrobin", LAGG_PROTO_ROUNDROBIN }, \ { "broadcast", LAGG_PROTO_BROADCAST }, \ { "none", LAGG_PROTO_NONE }, \ { "default", LAGG_PROTO_DEFAULT } \ } /* * lagg ioctls. */ /* * LACP current operational parameters structure. */ struct lacp_opreq { uint16_t actor_prio; uint8_t actor_mac[ETHER_ADDR_LEN]; uint16_t actor_key; uint16_t actor_portprio; uint16_t actor_portno; uint8_t actor_state; uint16_t partner_prio; uint8_t partner_mac[ETHER_ADDR_LEN]; uint16_t partner_key; uint16_t partner_portprio; uint16_t partner_portno; uint8_t partner_state; }; /* lagg port settings */ struct lagg_reqport { char rp_ifname[IFNAMSIZ]; /* name of the lagg */ char rp_portname[IFNAMSIZ]; /* name of the port */ u_int32_t rp_prio; /* port priority */ u_int32_t rp_flags; /* port flags */ union { struct lacp_opreq rpsc_lacp; } rp_psc; #define rp_lacpreq rp_psc.rpsc_lacp }; #define SIOCGLAGGPORT _IOWR('i', 140, struct lagg_reqport) #define SIOCSLAGGPORT _IOW('i', 141, struct lagg_reqport) #define SIOCSLAGGDELPORT _IOW('i', 142, struct lagg_reqport) /* lagg, ports and options */ struct lagg_reqall { char ra_ifname[IFNAMSIZ]; /* name of the lagg */ u_int ra_proto; /* lagg protocol */ size_t ra_size; /* size of buffer */ struct lagg_reqport *ra_port; /* allocated buffer */ int ra_ports; /* total port count */ union { struct lacp_opreq rpsc_lacp; } ra_psc; #define ra_lacpreq ra_psc.rpsc_lacp }; #define SIOCGLAGG _IOWR('i', 143, struct lagg_reqall) #define SIOCSLAGG _IOW('i', 144, struct lagg_reqall) struct lagg_reqflags { char rf_ifname[IFNAMSIZ]; /* name of the lagg */ uint32_t rf_flags; /* lagg protocol */ }; #define SIOCGLAGGFLAGS _IOWR('i', 145, struct lagg_reqflags) #define SIOCSLAGGHASH _IOW('i', 146, struct lagg_reqflags) struct lagg_reqopts { char ro_ifname[IFNAMSIZ]; /* name of the lagg */ int ro_opts; /* Option bitmap */ #define LAGG_OPT_NONE 0x00 #define LAGG_OPT_USE_FLOWID 0x01 /* enable use of flowid */ /* Pseudo flags which are used in ro_opts but not stored into sc_opts. */ #define LAGG_OPT_FLOWIDSHIFT 0x02 /* set flowid shift */ #define LAGG_OPT_FLOWIDSHIFT_MASK 0x1f /* flowid is uint32_t */ #define LAGG_OPT_LACP_STRICT 0x10 /* LACP strict mode */ #define LAGG_OPT_LACP_TXTEST 0x20 /* LACP debug: txtest */ #define LAGG_OPT_LACP_RXTEST 0x40 /* LACP debug: rxtest */ #define LAGG_OPT_LACP_TIMEOUT 0x80 /* LACP timeout */ u_int ro_count; /* number of ports */ u_int ro_active; /* active port count */ u_int ro_flapping; /* number of flapping */ int ro_flowid_shift; /* shift the flowid */ uint32_t ro_bkt; /* packet bucket for roundrobin */ }; #define SIOCGLAGGOPTS _IOWR('i', 152, struct lagg_reqopts) #define SIOCSLAGGOPTS _IOW('i', 153, struct lagg_reqopts) #define LAGG_OPT_BITS "\020\001USE_FLOWID\005LACP_STRICT" \ "\006LACP_TXTEST\007LACP_RXTEST" #ifdef _KERNEL /* * Internal kernel part */ #define LAGG_PORTACTIVE(_tp) ( \ ((_tp)->lp_ifp->if_link_state == LINK_STATE_UP) && \ ((_tp)->lp_ifp->if_flags & IFF_UP) \ ) struct lagg_ifreq { union { struct ifreq ifreq; struct { char ifr_name[IFNAMSIZ]; struct sockaddr_storage ifr_ss; } ifreq_storage; } ifreq; }; #define sc_ifflags sc_ifp->if_flags /* flags */ #define sc_ifname sc_ifp->if_xname /* name */ /* Private data used by the loadbalancing protocol */ struct lagg_lb { u_int32_t lb_key; struct lagg_port *lb_ports[LAGG_MAX_PORTS]; }; struct lagg_mc { struct sockaddr_dl mc_addr; struct ifmultiaddr *mc_ifma; SLIST_ENTRY(lagg_mc) mc_entries; }; struct lagg_counters { uint64_t val[IFCOUNTERS]; }; struct lagg_softc { struct ifnet *sc_ifp; /* virtual interface */ struct rmlock sc_mtx; struct sx sc_sx; int sc_proto; /* lagg protocol */ u_int sc_count; /* number of ports */ u_int sc_active; /* active port count */ u_int sc_flapping; /* number of flapping * events */ struct lagg_port *sc_primary; /* primary port */ struct ifmedia sc_media; /* media config */ void *sc_psc; /* protocol data */ uint32_t sc_seq; /* sequence counter */ uint32_t sc_flags; int sc_destroying; /* destroying lagg */ - SLIST_HEAD(__tplhd, lagg_port) sc_ports; /* list of interfaces */ + CK_SLIST_HEAD(__tplhd, lagg_port) sc_ports; /* list of interfaces */ SLIST_ENTRY(lagg_softc) sc_entries; eventhandler_tag vlan_attach; eventhandler_tag vlan_detach; struct callout sc_callout; u_int sc_opts; int flowid_shift; /* shift the flowid */ uint32_t sc_bkt; /* packates bucket for roundrobin */ uint32_t sc_bkt_count; /* packates bucket count for roundrobin */ struct lagg_counters detached_counters; /* detached ports sum */ }; struct lagg_port { struct ifnet *lp_ifp; /* physical interface */ struct lagg_softc *lp_softc; /* parent lagg */ uint8_t lp_lladdr[ETHER_ADDR_LEN]; u_char lp_iftype; /* interface type */ uint32_t lp_prio; /* port priority */ uint32_t lp_flags; /* port flags */ int lp_ifflags; /* saved ifp flags */ int lp_ifcapenable; /* saved ifp capenable */ void *lh_cookie; /* if state hook */ void *lp_psc; /* protocol data */ int lp_detaching; /* ifnet is detaching */ SLIST_HEAD(__mclhd, lagg_mc) lp_mc_head; /* multicast addresses */ /* Redirected callbacks */ int (*lp_ioctl)(struct ifnet *, u_long, caddr_t); int (*lp_output)(struct ifnet *, struct mbuf *, const struct sockaddr *, struct route *); struct lagg_counters port_counters; /* ifp counters copy */ - SLIST_ENTRY(lagg_port) lp_entries; + CK_SLIST_ENTRY(lagg_port) lp_entries; struct epoch_context lp_epoch_ctx; }; extern struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *); extern void (*lagg_linkstate_p)(struct ifnet *, int ); int lagg_enqueue(struct ifnet *, struct mbuf *); SYSCTL_DECL(_net_link_lagg); #endif /* _KERNEL */ #endif /* _NET_LAGG_H */ Index: head/sys/net/if_llatbl.c =================================================================== --- head/sys/net/if_llatbl.c (revision 334192) +++ head/sys/net/if_llatbl.c (revision 334193) @@ -1,965 +1,965 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2004 Luigi Rizzo, Alessandro Cerri. All rights reserved. * Copyright (c) 2004-2008 Qing Li. All rights reserved. * Copyright (c) 2008 Kip Macy. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif #include #include #include #include #include #include #include #include #include #include #include MALLOC_DEFINE(M_LLTABLE, "lltable", "link level address tables"); static VNET_DEFINE(SLIST_HEAD(, lltable), lltables) = SLIST_HEAD_INITIALIZER(lltables); #define V_lltables VNET(lltables) static struct rwlock lltable_list_lock; RW_SYSINIT(lltable_list_lock, &lltable_list_lock, "lltable_list_lock"); #define LLTABLE_LIST_RLOCK() rw_rlock(&lltable_list_lock) #define LLTABLE_LIST_RUNLOCK() rw_runlock(&lltable_list_lock) #define LLTABLE_LIST_WLOCK() rw_wlock(&lltable_list_lock) #define LLTABLE_LIST_WUNLOCK() rw_wunlock(&lltable_list_lock) #define LLTABLE_LIST_LOCK_ASSERT() rw_assert(&lltable_list_lock, RA_LOCKED) static void lltable_unlink(struct lltable *llt); static void llentries_unlink(struct lltable *llt, struct llentries *head); static void htable_unlink_entry(struct llentry *lle); static void htable_link_entry(struct lltable *llt, struct llentry *lle); static int htable_foreach_lle(struct lltable *llt, llt_foreach_cb_t *f, void *farg); /* * Dump lle state for a specific address family. */ static int lltable_dump_af(struct lltable *llt, struct sysctl_req *wr) { int error; LLTABLE_LIST_LOCK_ASSERT(); if (llt->llt_ifp->if_flags & IFF_LOOPBACK) return (0); error = 0; IF_AFDATA_RLOCK(llt->llt_ifp); error = lltable_foreach_lle(llt, (llt_foreach_cb_t *)llt->llt_dump_entry, wr); IF_AFDATA_RUNLOCK(llt->llt_ifp); return (error); } /* * Dump arp state for a specific address family. */ int lltable_sysctl_dumparp(int af, struct sysctl_req *wr) { struct lltable *llt; int error = 0; LLTABLE_LIST_RLOCK(); SLIST_FOREACH(llt, &V_lltables, llt_link) { if (llt->llt_af == af) { error = lltable_dump_af(llt, wr); if (error != 0) goto done; } } done: LLTABLE_LIST_RUNLOCK(); return (error); } /* * Common function helpers for chained hash table. */ /* * Runs specified callback for each entry in @llt. * Caller does the locking. * */ static int htable_foreach_lle(struct lltable *llt, llt_foreach_cb_t *f, void *farg) { struct llentry *lle, *next; int i, error; error = 0; for (i = 0; i < llt->llt_hsize; i++) { CK_LIST_FOREACH_SAFE(lle, &llt->lle_head[i], lle_next, next) { error = f(llt, lle, farg); if (error != 0) break; } } return (error); } static void htable_link_entry(struct lltable *llt, struct llentry *lle) { struct llentries *lleh; uint32_t hashidx; if ((lle->la_flags & LLE_LINKED) != 0) return; IF_AFDATA_WLOCK_ASSERT(llt->llt_ifp); hashidx = llt->llt_hash(lle, llt->llt_hsize); lleh = &llt->lle_head[hashidx]; lle->lle_tbl = llt; lle->lle_head = lleh; lle->la_flags |= LLE_LINKED; CK_LIST_INSERT_HEAD(lleh, lle, lle_next); } static void htable_unlink_entry(struct llentry *lle) { if ((lle->la_flags & LLE_LINKED) != 0) { IF_AFDATA_WLOCK_ASSERT(lle->lle_tbl->llt_ifp); CK_LIST_REMOVE(lle, lle_next); lle->la_flags &= ~(LLE_VALID | LLE_LINKED); #if 0 lle->lle_tbl = NULL; lle->lle_head = NULL; #endif } } struct prefix_match_data { const struct sockaddr *addr; const struct sockaddr *mask; struct llentries dchain; u_int flags; }; static int htable_prefix_free_cb(struct lltable *llt, struct llentry *lle, void *farg) { struct prefix_match_data *pmd; pmd = (struct prefix_match_data *)farg; if (llt->llt_match_prefix(pmd->addr, pmd->mask, pmd->flags, lle)) { LLE_WLOCK(lle); - LIST_INSERT_HEAD(&pmd->dchain, lle, lle_chain); + CK_LIST_INSERT_HEAD(&pmd->dchain, lle, lle_chain); } return (0); } static void htable_prefix_free(struct lltable *llt, const struct sockaddr *addr, const struct sockaddr *mask, u_int flags) { struct llentry *lle, *next; struct prefix_match_data pmd; bzero(&pmd, sizeof(pmd)); pmd.addr = addr; pmd.mask = mask; pmd.flags = flags; CK_LIST_INIT(&pmd.dchain); IF_AFDATA_WLOCK(llt->llt_ifp); /* Push matching lles to chain */ lltable_foreach_lle(llt, htable_prefix_free_cb, &pmd); llentries_unlink(llt, &pmd.dchain); IF_AFDATA_WUNLOCK(llt->llt_ifp); - LIST_FOREACH_SAFE(lle, &pmd.dchain, lle_chain, next) + CK_LIST_FOREACH_SAFE(lle, &pmd.dchain, lle_chain, next) lltable_free_entry(llt, lle); } static void htable_free_tbl(struct lltable *llt) { free(llt->lle_head, M_LLTABLE); free(llt, M_LLTABLE); } static void llentries_unlink(struct lltable *llt, struct llentries *head) { struct llentry *lle, *next; - LIST_FOREACH_SAFE(lle, head, lle_chain, next) + CK_LIST_FOREACH_SAFE(lle, head, lle_chain, next) llt->llt_unlink_entry(lle); } /* * Helper function used to drop all mbufs in hold queue. * * Returns the number of held packets, if any, that were dropped. */ size_t lltable_drop_entry_queue(struct llentry *lle) { size_t pkts_dropped; struct mbuf *next; LLE_WLOCK_ASSERT(lle); pkts_dropped = 0; while ((lle->la_numheld > 0) && (lle->la_hold != NULL)) { next = lle->la_hold->m_nextpkt; m_freem(lle->la_hold); lle->la_hold = next; lle->la_numheld--; pkts_dropped++; } KASSERT(lle->la_numheld == 0, ("%s: la_numheld %d > 0, pkts_droped %zd", __func__, lle->la_numheld, pkts_dropped)); return (pkts_dropped); } void lltable_set_entry_addr(struct ifnet *ifp, struct llentry *lle, const char *linkhdr, size_t linkhdrsize, int lladdr_off) { memcpy(lle->r_linkdata, linkhdr, linkhdrsize); lle->r_hdrlen = linkhdrsize; lle->ll_addr = &lle->r_linkdata[lladdr_off]; lle->la_flags |= LLE_VALID; lle->r_flags |= RLLE_VALID; } /* * Tries to update @lle link-level address. * Since update requires AFDATA WLOCK, function * drops @lle lock, acquires AFDATA lock and then acquires * @lle lock to maintain lock order. * * Returns 1 on success. */ int lltable_try_set_entry_addr(struct ifnet *ifp, struct llentry *lle, const char *linkhdr, size_t linkhdrsize, int lladdr_off) { /* Perform real LLE update */ /* use afdata WLOCK to update fields */ LLE_WLOCK_ASSERT(lle); LLE_ADDREF(lle); LLE_WUNLOCK(lle); IF_AFDATA_WLOCK(ifp); LLE_WLOCK(lle); /* * Since we droppped LLE lock, other thread might have deleted * this lle. Check and return */ if ((lle->la_flags & LLE_DELETED) != 0) { IF_AFDATA_WUNLOCK(ifp); LLE_FREE_LOCKED(lle); return (0); } /* Update data */ lltable_set_entry_addr(ifp, lle, linkhdr, linkhdrsize, lladdr_off); IF_AFDATA_WUNLOCK(ifp); LLE_REMREF(lle); return (1); } /* * Helper function used to pre-compute full/partial link-layer * header data suitable for feeding into if_output(). */ int lltable_calc_llheader(struct ifnet *ifp, int family, char *lladdr, char *buf, size_t *bufsize, int *lladdr_off) { struct if_encap_req ereq; int error; bzero(buf, *bufsize); bzero(&ereq, sizeof(ereq)); ereq.buf = buf; ereq.bufsize = *bufsize; ereq.rtype = IFENCAP_LL; ereq.family = family; ereq.lladdr = lladdr; ereq.lladdr_len = ifp->if_addrlen; error = ifp->if_requestencap(ifp, &ereq); if (error == 0) { *bufsize = ereq.bufsize; *lladdr_off = ereq.lladdr_off; } return (error); } /* * Update link-layer header for given @lle after * interface lladdr was changed. */ static int llentry_update_ifaddr(struct lltable *llt, struct llentry *lle, void *farg) { struct ifnet *ifp; u_char linkhdr[LLE_MAX_LINKHDR]; size_t linkhdrsize; u_char *lladdr; int lladdr_off; ifp = (struct ifnet *)farg; lladdr = lle->ll_addr; LLE_WLOCK(lle); if ((lle->la_flags & LLE_VALID) == 0) { LLE_WUNLOCK(lle); return (0); } if ((lle->la_flags & LLE_IFADDR) != 0) lladdr = IF_LLADDR(ifp); linkhdrsize = sizeof(linkhdr); lltable_calc_llheader(ifp, llt->llt_af, lladdr, linkhdr, &linkhdrsize, &lladdr_off); memcpy(lle->r_linkdata, linkhdr, linkhdrsize); LLE_WUNLOCK(lle); return (0); } /* * Update all calculated headers for given @llt */ void lltable_update_ifaddr(struct lltable *llt) { if (llt->llt_ifp->if_flags & IFF_LOOPBACK) return; IF_AFDATA_WLOCK(llt->llt_ifp); lltable_foreach_lle(llt, llentry_update_ifaddr, llt->llt_ifp); IF_AFDATA_WUNLOCK(llt->llt_ifp); } /* * * Performs generic cleanup routines and frees lle. * * Called for non-linked entries, with callouts and * other AF-specific cleanups performed. * * @lle must be passed WLOCK'ed * * Returns the number of held packets, if any, that were dropped. */ size_t llentry_free(struct llentry *lle) { size_t pkts_dropped; LLE_WLOCK_ASSERT(lle); KASSERT((lle->la_flags & LLE_LINKED) == 0, ("freeing linked lle")); pkts_dropped = lltable_drop_entry_queue(lle); LLE_FREE_LOCKED(lle); return (pkts_dropped); } /* * (al)locate an llentry for address dst (equivalent to rtalloc for new-arp). * * If found the llentry * is returned referenced and unlocked. */ struct llentry * llentry_alloc(struct ifnet *ifp, struct lltable *lt, struct sockaddr_storage *dst) { struct llentry *la, *la_tmp; IF_AFDATA_RLOCK(ifp); la = lla_lookup(lt, LLE_EXCLUSIVE, (struct sockaddr *)dst); IF_AFDATA_RUNLOCK(ifp); if (la != NULL) { LLE_ADDREF(la); LLE_WUNLOCK(la); return (la); } if ((ifp->if_flags & (IFF_NOARP | IFF_STATICARP)) == 0) { la = lltable_alloc_entry(lt, 0, (struct sockaddr *)dst); if (la == NULL) return (NULL); IF_AFDATA_WLOCK(ifp); LLE_WLOCK(la); /* Prefer any existing LLE over newly-created one */ la_tmp = lla_lookup(lt, LLE_EXCLUSIVE, (struct sockaddr *)dst); if (la_tmp == NULL) lltable_link_entry(lt, la); IF_AFDATA_WUNLOCK(ifp); if (la_tmp != NULL) { lltable_free_entry(lt, la); la = la_tmp; } LLE_ADDREF(la); LLE_WUNLOCK(la); } return (la); } /* * Free all entries from given table and free itself. */ static int lltable_free_cb(struct lltable *llt, struct llentry *lle, void *farg) { struct llentries *dchain; dchain = (struct llentries *)farg; LLE_WLOCK(lle); - LIST_INSERT_HEAD(dchain, lle, lle_chain); + CK_LIST_INSERT_HEAD(dchain, lle, lle_chain); return (0); } /* * Free all entries from given table and free itself. */ void lltable_free(struct lltable *llt) { struct llentry *lle, *next; struct llentries dchain; KASSERT(llt != NULL, ("%s: llt is NULL", __func__)); lltable_unlink(llt); CK_LIST_INIT(&dchain); IF_AFDATA_WLOCK(llt->llt_ifp); /* Push all lles to @dchain */ lltable_foreach_lle(llt, lltable_free_cb, &dchain); llentries_unlink(llt, &dchain); IF_AFDATA_WUNLOCK(llt->llt_ifp); - LIST_FOREACH_SAFE(lle, &dchain, lle_chain, next) { + CK_LIST_FOREACH_SAFE(lle, &dchain, lle_chain, next) { if (callout_stop(&lle->lle_timer) > 0) LLE_REMREF(lle); llentry_free(lle); } llt->llt_free_tbl(llt); } #if 0 void lltable_drain(int af) { struct lltable *llt; struct llentry *lle; int i; LLTABLE_LIST_RLOCK(); SLIST_FOREACH(llt, &V_lltables, llt_link) { if (llt->llt_af != af) continue; for (i=0; i < llt->llt_hsize; i++) { CK_LIST_FOREACH(lle, &llt->lle_head[i], lle_next) { LLE_WLOCK(lle); if (lle->la_hold) { m_freem(lle->la_hold); lle->la_hold = NULL; } LLE_WUNLOCK(lle); } } } LLTABLE_LIST_RUNLOCK(); } #endif /* * Deletes an address from given lltable. * Used for userland interaction to remove * individual entries. Skips entries added by OS. */ int lltable_delete_addr(struct lltable *llt, u_int flags, const struct sockaddr *l3addr) { struct llentry *lle; struct ifnet *ifp; ifp = llt->llt_ifp; IF_AFDATA_WLOCK(ifp); lle = lla_lookup(llt, LLE_EXCLUSIVE, l3addr); if (lle == NULL) { IF_AFDATA_WUNLOCK(ifp); return (ENOENT); } if ((lle->la_flags & LLE_IFADDR) != 0 && (flags & LLE_IFADDR) == 0) { IF_AFDATA_WUNLOCK(ifp); LLE_WUNLOCK(lle); return (EPERM); } lltable_unlink_entry(llt, lle); IF_AFDATA_WUNLOCK(ifp); llt->llt_delete_entry(llt, lle); return (0); } void lltable_prefix_free(int af, struct sockaddr *addr, struct sockaddr *mask, u_int flags) { struct lltable *llt; LLTABLE_LIST_RLOCK(); SLIST_FOREACH(llt, &V_lltables, llt_link) { if (llt->llt_af != af) continue; llt->llt_prefix_free(llt, addr, mask, flags); } LLTABLE_LIST_RUNLOCK(); } struct lltable * lltable_allocate_htbl(uint32_t hsize) { struct lltable *llt; int i; llt = malloc(sizeof(struct lltable), M_LLTABLE, M_WAITOK | M_ZERO); llt->llt_hsize = hsize; llt->lle_head = malloc(sizeof(struct llentries) * hsize, M_LLTABLE, M_WAITOK | M_ZERO); for (i = 0; i < llt->llt_hsize; i++) CK_LIST_INIT(&llt->lle_head[i]); /* Set some default callbacks */ llt->llt_link_entry = htable_link_entry; llt->llt_unlink_entry = htable_unlink_entry; llt->llt_prefix_free = htable_prefix_free; llt->llt_foreach_entry = htable_foreach_lle; llt->llt_free_tbl = htable_free_tbl; return (llt); } /* * Links lltable to global llt list. */ void lltable_link(struct lltable *llt) { LLTABLE_LIST_WLOCK(); SLIST_INSERT_HEAD(&V_lltables, llt, llt_link); LLTABLE_LIST_WUNLOCK(); } static void lltable_unlink(struct lltable *llt) { LLTABLE_LIST_WLOCK(); SLIST_REMOVE(&V_lltables, llt, lltable, llt_link); LLTABLE_LIST_WUNLOCK(); } /* * External methods used by lltable consumers */ int lltable_foreach_lle(struct lltable *llt, llt_foreach_cb_t *f, void *farg) { return (llt->llt_foreach_entry(llt, f, farg)); } struct llentry * lltable_alloc_entry(struct lltable *llt, u_int flags, const struct sockaddr *l3addr) { return (llt->llt_alloc_entry(llt, flags, l3addr)); } void lltable_free_entry(struct lltable *llt, struct llentry *lle) { llt->llt_free_entry(llt, lle); } void lltable_link_entry(struct lltable *llt, struct llentry *lle) { llt->llt_link_entry(llt, lle); } void lltable_unlink_entry(struct lltable *llt, struct llentry *lle) { llt->llt_unlink_entry(lle); } void lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa) { struct lltable *llt; llt = lle->lle_tbl; llt->llt_fill_sa_entry(lle, sa); } struct ifnet * lltable_get_ifp(const struct lltable *llt) { return (llt->llt_ifp); } int lltable_get_af(const struct lltable *llt) { return (llt->llt_af); } /* * Called in route_output when rtm_flags contains RTF_LLDATA. */ int lla_rt_output(struct rt_msghdr *rtm, struct rt_addrinfo *info) { struct sockaddr_dl *dl = (struct sockaddr_dl *)info->rti_info[RTAX_GATEWAY]; struct sockaddr *dst = (struct sockaddr *)info->rti_info[RTAX_DST]; struct ifnet *ifp; struct lltable *llt; struct llentry *lle, *lle_tmp; uint8_t linkhdr[LLE_MAX_LINKHDR]; size_t linkhdrsize; int lladdr_off; u_int laflags = 0; int error; KASSERT(dl != NULL && dl->sdl_family == AF_LINK, ("%s: invalid dl\n", __func__)); ifp = ifnet_byindex(dl->sdl_index); if (ifp == NULL) { log(LOG_INFO, "%s: invalid ifp (sdl_index %d)\n", __func__, dl->sdl_index); return EINVAL; } /* XXX linked list may be too expensive */ LLTABLE_LIST_RLOCK(); SLIST_FOREACH(llt, &V_lltables, llt_link) { if (llt->llt_af == dst->sa_family && llt->llt_ifp == ifp) break; } LLTABLE_LIST_RUNLOCK(); KASSERT(llt != NULL, ("Yep, ugly hacks are bad\n")); error = 0; switch (rtm->rtm_type) { case RTM_ADD: /* Add static LLE */ laflags = 0; if (rtm->rtm_rmx.rmx_expire == 0) laflags = LLE_STATIC; lle = lltable_alloc_entry(llt, laflags, dst); if (lle == NULL) return (ENOMEM); linkhdrsize = sizeof(linkhdr); if (lltable_calc_llheader(ifp, dst->sa_family, LLADDR(dl), linkhdr, &linkhdrsize, &lladdr_off) != 0) return (EINVAL); lltable_set_entry_addr(ifp, lle, linkhdr, linkhdrsize, lladdr_off); if ((rtm->rtm_flags & RTF_ANNOUNCE)) lle->la_flags |= LLE_PUB; lle->la_expire = rtm->rtm_rmx.rmx_expire; laflags = lle->la_flags; /* Try to link new entry */ lle_tmp = NULL; IF_AFDATA_WLOCK(ifp); LLE_WLOCK(lle); lle_tmp = lla_lookup(llt, LLE_EXCLUSIVE, dst); if (lle_tmp != NULL) { /* Check if we are trying to replace immutable entry */ if ((lle_tmp->la_flags & LLE_IFADDR) != 0) { IF_AFDATA_WUNLOCK(ifp); LLE_WUNLOCK(lle_tmp); lltable_free_entry(llt, lle); return (EPERM); } /* Unlink existing entry from table */ lltable_unlink_entry(llt, lle_tmp); } lltable_link_entry(llt, lle); IF_AFDATA_WUNLOCK(ifp); if (lle_tmp != NULL) { EVENTHANDLER_INVOKE(lle_event, lle_tmp,LLENTRY_EXPIRED); lltable_free_entry(llt, lle_tmp); } /* * By invoking LLE handler here we might get * two events on static LLE entry insertion * in routing socket. However, since we might have * other subscribers we need to generate this event. */ EVENTHANDLER_INVOKE(lle_event, lle, LLENTRY_RESOLVED); LLE_WUNLOCK(lle); #ifdef INET /* gratuitous ARP */ if ((laflags & LLE_PUB) && dst->sa_family == AF_INET) arprequest(ifp, &((struct sockaddr_in *)dst)->sin_addr, &((struct sockaddr_in *)dst)->sin_addr, (u_char *)LLADDR(dl)); #endif break; case RTM_DELETE: return (lltable_delete_addr(llt, 0, dst)); default: error = EINVAL; } return (error); } #ifdef DDB struct llentry_sa { struct llentry base; struct sockaddr l3_addr; }; static void llatbl_lle_show(struct llentry_sa *la) { struct llentry *lle; uint8_t octet[6]; lle = &la->base; db_printf("lle=%p\n", lle); - db_printf(" lle_next=%p\n", lle->lle_next.le_next); + db_printf(" lle_next=%p\n", lle->lle_next.cle_next); db_printf(" lle_lock=%p\n", &lle->lle_lock); db_printf(" lle_tbl=%p\n", lle->lle_tbl); db_printf(" lle_head=%p\n", lle->lle_head); db_printf(" la_hold=%p\n", lle->la_hold); db_printf(" la_numheld=%d\n", lle->la_numheld); db_printf(" la_expire=%ju\n", (uintmax_t)lle->la_expire); db_printf(" la_flags=0x%04x\n", lle->la_flags); db_printf(" la_asked=%u\n", lle->la_asked); db_printf(" la_preempt=%u\n", lle->la_preempt); db_printf(" ln_state=%d\n", lle->ln_state); db_printf(" ln_router=%u\n", lle->ln_router); db_printf(" ln_ntick=%ju\n", (uintmax_t)lle->ln_ntick); db_printf(" lle_refcnt=%d\n", lle->lle_refcnt); bcopy(lle->ll_addr, octet, sizeof(octet)); db_printf(" ll_addr=%02x:%02x:%02x:%02x:%02x:%02x\n", octet[0], octet[1], octet[2], octet[3], octet[4], octet[5]); db_printf(" lle_timer=%p\n", &lle->lle_timer); switch (la->l3_addr.sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin; char l3s[INET_ADDRSTRLEN]; sin = (struct sockaddr_in *)&la->l3_addr; inet_ntoa_r(sin->sin_addr, l3s); db_printf(" l3_addr=%s\n", l3s); break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; char l3s[INET6_ADDRSTRLEN]; sin6 = (struct sockaddr_in6 *)&la->l3_addr; ip6_sprintf(l3s, &sin6->sin6_addr); db_printf(" l3_addr=%s\n", l3s); break; } #endif default: db_printf(" l3_addr=N/A (af=%d)\n", la->l3_addr.sa_family); break; } } DB_SHOW_COMMAND(llentry, db_show_llentry) { if (!have_addr) { db_printf("usage: show llentry \n"); return; } llatbl_lle_show((struct llentry_sa *)addr); } static void llatbl_llt_show(struct lltable *llt) { int i; struct llentry *lle; db_printf("llt=%p llt_af=%d llt_ifp=%p\n", llt, llt->llt_af, llt->llt_ifp); for (i = 0; i < llt->llt_hsize; i++) { CK_LIST_FOREACH(lle, &llt->lle_head[i], lle_next) { llatbl_lle_show((struct llentry_sa *)lle); if (db_pager_quit) return; } } } DB_SHOW_COMMAND(lltable, db_show_lltable) { if (!have_addr) { db_printf("usage: show lltable \n"); return; } llatbl_llt_show((struct lltable *)addr); } DB_SHOW_ALL_COMMAND(lltables, db_show_all_lltables) { VNET_ITERATOR_DECL(vnet_iter); struct lltable *llt; VNET_FOREACH(vnet_iter) { CURVNET_SET_QUIET(vnet_iter); #ifdef VIMAGE db_printf("vnet=%p\n", curvnet); #endif SLIST_FOREACH(llt, &V_lltables, llt_link) { db_printf("llt=%p llt_af=%d llt_ifp=%p(%s)\n", llt, llt->llt_af, llt->llt_ifp, (llt->llt_ifp != NULL) ? llt->llt_ifp->if_xname : "?"); if (have_addr && addr != 0) /* verbose */ llatbl_llt_show(llt); if (db_pager_quit) { CURVNET_RESTORE(); return; } } CURVNET_RESTORE(); } } #endif Index: head/sys/net/if_llatbl.h =================================================================== --- head/sys/net/if_llatbl.h (revision 334192) +++ head/sys/net/if_llatbl.h (revision 334193) @@ -1,278 +1,279 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2004 Luigi Rizzo, Alessandro Cerri. All rights reserved. * Copyright (c) 2004-2008 Qing Li. All rights reserved. * Copyright (c) 2008 Kip Macy. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #ifndef _NET_IF_LLATBL_H_ #define _NET_IF_LLATBL_H_ #include #include #include +#include struct ifnet; struct sysctl_req; struct rt_msghdr; struct rt_addrinfo; struct llentry; -LIST_HEAD(llentries, llentry); +CK_LIST_HEAD(llentries, llentry); #define LLE_MAX_LINKHDR 24 /* Full IB header */ /* * Code referencing llentry must at least hold * a shared lock */ struct llentry { - LIST_ENTRY(llentry) lle_next; + CK_LIST_ENTRY(llentry) lle_next; union { struct in_addr addr4; struct in6_addr addr6; } r_l3addr; char r_linkdata[LLE_MAX_LINKHDR]; /* L2 data */ uint8_t r_hdrlen; /* length for LL header */ uint8_t spare0[3]; uint16_t r_flags; /* LLE runtime flags */ uint16_t r_skip_req; /* feedback from fast path */ struct lltable *lle_tbl; struct llentries *lle_head; void (*lle_free)(struct llentry *); struct mbuf *la_hold; int la_numheld; /* # of packets currently held */ time_t la_expire; uint16_t la_flags; uint16_t la_asked; uint16_t la_preempt; int16_t ln_state; /* IPv6 has ND6_LLINFO_NOSTATE == -2 */ uint16_t ln_router; time_t ln_ntick; time_t lle_remtime; /* Real time remaining */ time_t lle_hittime; /* Time when r_skip_req was unset */ int lle_refcnt; char *ll_addr; /* link-layer address */ - LIST_ENTRY(llentry) lle_chain; /* chain of deleted items */ + CK_LIST_ENTRY(llentry) lle_chain; /* chain of deleted items */ struct callout lle_timer; struct rwlock lle_lock; struct mtx req_mtx; struct epoch_context lle_epoch_ctx; }; #define LLE_WLOCK(lle) rw_wlock(&(lle)->lle_lock) #define LLE_RLOCK(lle) rw_rlock(&(lle)->lle_lock) #define LLE_WUNLOCK(lle) rw_wunlock(&(lle)->lle_lock) #define LLE_RUNLOCK(lle) rw_runlock(&(lle)->lle_lock) #define LLE_DOWNGRADE(lle) rw_downgrade(&(lle)->lle_lock) #define LLE_TRY_UPGRADE(lle) rw_try_upgrade(&(lle)->lle_lock) #define LLE_LOCK_INIT(lle) rw_init_flags(&(lle)->lle_lock, "lle", RW_DUPOK) #define LLE_LOCK_DESTROY(lle) rw_destroy(&(lle)->lle_lock) #define LLE_WLOCK_ASSERT(lle) rw_assert(&(lle)->lle_lock, RA_WLOCKED) #define LLE_REQ_INIT(lle) mtx_init(&(lle)->req_mtx, "lle req", \ NULL, MTX_DEF) #define LLE_REQ_DESTROY(lle) mtx_destroy(&(lle)->req_mtx) #define LLE_REQ_LOCK(lle) mtx_lock(&(lle)->req_mtx) #define LLE_REQ_UNLOCK(lle) mtx_unlock(&(lle)->req_mtx) #define LLE_IS_VALID(lle) (((lle) != NULL) && ((lle) != (void *)-1)) #define LLE_ADDREF(lle) do { \ LLE_WLOCK_ASSERT(lle); \ KASSERT((lle)->lle_refcnt >= 0, \ ("negative refcnt %d on lle %p", \ (lle)->lle_refcnt, (lle))); \ (lle)->lle_refcnt++; \ } while (0) #define LLE_REMREF(lle) do { \ LLE_WLOCK_ASSERT(lle); \ KASSERT((lle)->lle_refcnt > 0, \ ("bogus refcnt %d on lle %p", \ (lle)->lle_refcnt, (lle))); \ (lle)->lle_refcnt--; \ } while (0) #define LLE_FREE_LOCKED(lle) do { \ if ((lle)->lle_refcnt == 1) \ (lle)->lle_free(lle); \ else { \ LLE_REMREF(lle); \ LLE_WUNLOCK(lle); \ } \ /* guard against invalid refs */ \ (lle) = NULL; \ } while (0) #define LLE_FREE(lle) do { \ LLE_WLOCK(lle); \ LLE_FREE_LOCKED(lle); \ } while (0) typedef struct llentry *(llt_lookup_t)(struct lltable *, u_int flags, const struct sockaddr *l3addr); typedef struct llentry *(llt_alloc_t)(struct lltable *, u_int flags, const struct sockaddr *l3addr); typedef void (llt_delete_t)(struct lltable *, struct llentry *); typedef void (llt_prefix_free_t)(struct lltable *, const struct sockaddr *addr, const struct sockaddr *mask, u_int flags); typedef int (llt_dump_entry_t)(struct lltable *, struct llentry *, struct sysctl_req *); typedef uint32_t (llt_hash_t)(const struct llentry *, uint32_t); typedef int (llt_match_prefix_t)(const struct sockaddr *, const struct sockaddr *, u_int, struct llentry *); typedef void (llt_free_entry_t)(struct lltable *, struct llentry *); typedef void (llt_fill_sa_entry_t)(const struct llentry *, struct sockaddr *); typedef void (llt_free_tbl_t)(struct lltable *); typedef void (llt_link_entry_t)(struct lltable *, struct llentry *); typedef void (llt_unlink_entry_t)(struct llentry *); typedef void (llt_mark_used_t)(struct llentry *); typedef int (llt_foreach_cb_t)(struct lltable *, struct llentry *, void *); typedef int (llt_foreach_entry_t)(struct lltable *, llt_foreach_cb_t *, void *); struct lltable { SLIST_ENTRY(lltable) llt_link; int llt_af; int llt_hsize; struct llentries *lle_head; struct ifnet *llt_ifp; llt_lookup_t *llt_lookup; llt_alloc_t *llt_alloc_entry; llt_delete_t *llt_delete_entry; llt_prefix_free_t *llt_prefix_free; llt_dump_entry_t *llt_dump_entry; llt_hash_t *llt_hash; llt_match_prefix_t *llt_match_prefix; llt_free_entry_t *llt_free_entry; llt_foreach_entry_t *llt_foreach_entry; llt_link_entry_t *llt_link_entry; llt_unlink_entry_t *llt_unlink_entry; llt_fill_sa_entry_t *llt_fill_sa_entry; llt_free_tbl_t *llt_free_tbl; llt_mark_used_t *llt_mark_used; }; MALLOC_DECLARE(M_LLTABLE); /* * LLentry flags */ #define LLE_DELETED 0x0001 /* entry must be deleted */ #define LLE_STATIC 0x0002 /* entry is static */ #define LLE_IFADDR 0x0004 /* entry is interface addr */ #define LLE_VALID 0x0008 /* ll_addr is valid */ #define LLE_REDIRECT 0x0010 /* installed by redirect; has host rtentry */ #define LLE_PUB 0x0020 /* publish entry ??? */ #define LLE_LINKED 0x0040 /* linked to lookup structure */ /* LLE request flags */ #define LLE_EXCLUSIVE 0x2000 /* return lle xlocked */ #define LLE_UNLOCKED 0x4000 /* return lle unlocked */ #define LLE_ADDRONLY 0x4000 /* return lladdr instead of full header */ #define LLE_CREATE 0x8000 /* hint to avoid lle lookup */ /* LLE flags used by fastpath code */ #define RLLE_VALID 0x0001 /* entry is valid */ #define RLLE_IFADDR LLE_IFADDR /* entry is ifaddr */ #define LLATBL_HASH(key, mask) \ (((((((key >> 8) ^ key) >> 8) ^ key) >> 8) ^ key) & mask) struct lltable *lltable_allocate_htbl(uint32_t hsize); void lltable_free(struct lltable *); void lltable_link(struct lltable *llt); void lltable_prefix_free(int, struct sockaddr *, struct sockaddr *, u_int); #if 0 void lltable_drain(int); #endif int lltable_sysctl_dumparp(int, struct sysctl_req *); size_t llentry_free(struct llentry *); struct llentry *llentry_alloc(struct ifnet *, struct lltable *, struct sockaddr_storage *); /* helper functions */ size_t lltable_drop_entry_queue(struct llentry *); void lltable_set_entry_addr(struct ifnet *ifp, struct llentry *lle, const char *linkhdr, size_t linkhdrsize, int lladdr_off); int lltable_try_set_entry_addr(struct ifnet *ifp, struct llentry *lle, const char *linkhdr, size_t linkhdrsize, int lladdr_off); int lltable_calc_llheader(struct ifnet *ifp, int family, char *lladdr, char *buf, size_t *bufsize, int *lladdr_off); void lltable_update_ifaddr(struct lltable *llt); struct llentry *lltable_alloc_entry(struct lltable *llt, u_int flags, const struct sockaddr *l4addr); void lltable_free_entry(struct lltable *llt, struct llentry *lle); int lltable_delete_addr(struct lltable *llt, u_int flags, const struct sockaddr *l3addr); void lltable_link_entry(struct lltable *llt, struct llentry *lle); void lltable_unlink_entry(struct lltable *llt, struct llentry *lle); void lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa); struct ifnet *lltable_get_ifp(const struct lltable *llt); int lltable_get_af(const struct lltable *llt); int lltable_foreach_lle(struct lltable *llt, llt_foreach_cb_t *f, void *farg); /* * Generic link layer address lookup function. */ static __inline struct llentry * lla_lookup(struct lltable *llt, u_int flags, const struct sockaddr *l3addr) { return (llt->llt_lookup(llt, flags, l3addr)); } /* * Notify the LLE code that the entry was used by datapath. */ static __inline void llentry_mark_used(struct llentry *lle) { if (lle->r_skip_req == 0) return; if ((lle->r_flags & RLLE_VALID) != 0) lle->lle_tbl->llt_mark_used(lle); } int lla_rt_output(struct rt_msghdr *, struct rt_addrinfo *); #include enum { LLENTRY_RESOLVED, LLENTRY_TIMEDOUT, LLENTRY_DELETED, LLENTRY_EXPIRED, }; typedef void (*lle_event_fn)(void *, struct llentry *, int); EVENTHANDLER_DECLARE(lle_event, lle_event_fn); #endif /* _NET_IF_LLATBL_H_ */ Index: head/sys/net/if_var.h =================================================================== --- head/sys/net/if_var.h (revision 334192) +++ head/sys/net/if_var.h (revision 334193) @@ -1,767 +1,767 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * From: @(#)if.h 8.1 (Berkeley) 6/10/93 * $FreeBSD$ */ #ifndef _NET_IF_VAR_H_ #define _NET_IF_VAR_H_ /* * Structures defining a network interface, providing a packet * transport mechanism (ala level 0 of the PUP protocols). * * Each interface accepts output datagrams of a specified maximum * length, and provides higher level routines with input datagrams * received from its medium. * * Output occurs when the routine if_output is called, with three parameters: * (*ifp->if_output)(ifp, m, dst, rt) * Here m is the mbuf chain to be sent and dst is the destination address. * The output routine encapsulates the supplied datagram if necessary, * and then transmits it on its medium. * * On input, each interface unwraps the data received by it, and either * places it on the input queue of an internetwork datagram routine * and posts the associated software interrupt, or passes the datagram to a raw * packet input routine. * * Routines exist for locating interfaces by their addresses * or for locating an interface on a certain network, as well as more general * routing and gateway routines maintaining information used to locate * interfaces. These routines live in the files if.c and route.c */ struct rtentry; /* ifa_rtrequest */ struct rt_addrinfo; /* ifa_rtrequest */ struct socket; struct carp_if; struct carp_softc; struct ifvlantrunk; struct route; /* if_output */ struct vnet; struct ifmedia; struct netmap_adapter; struct netdump_methods; #ifdef _KERNEL #include /* ifqueue only? */ #include #include #endif /* _KERNEL */ #include #include #include #include /* XXX */ #include /* struct ifqueue */ #include /* XXX */ #include /* XXX */ #include /* if_link_task */ #define IF_DUNIT_NONE -1 #include CK_STAILQ_HEAD(ifnethead, ifnet); /* we use TAILQs so that the order of */ CK_STAILQ_HEAD(ifaddrhead, ifaddr); /* instantiation is preserved in the list */ CK_STAILQ_HEAD(ifmultihead, ifmultiaddr); CK_STAILQ_HEAD(ifgrouphead, ifg_group); #ifdef _KERNEL VNET_DECLARE(struct pfil_head, link_pfil_hook); /* packet filter hooks */ #define V_link_pfil_hook VNET(link_pfil_hook) #define HHOOK_IPSEC_INET 0 #define HHOOK_IPSEC_INET6 1 #define HHOOK_IPSEC_COUNT 2 VNET_DECLARE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]); VNET_DECLARE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]); #define V_ipsec_hhh_in VNET(ipsec_hhh_in) #define V_ipsec_hhh_out VNET(ipsec_hhh_out) extern epoch_t net_epoch_preempt; extern epoch_t net_epoch; #endif /* _KERNEL */ typedef enum { IFCOUNTER_IPACKETS = 0, IFCOUNTER_IERRORS, IFCOUNTER_OPACKETS, IFCOUNTER_OERRORS, IFCOUNTER_COLLISIONS, IFCOUNTER_IBYTES, IFCOUNTER_OBYTES, IFCOUNTER_IMCASTS, IFCOUNTER_OMCASTS, IFCOUNTER_IQDROPS, IFCOUNTER_OQDROPS, IFCOUNTER_NOPROTO, IFCOUNTERS /* Array size. */ } ift_counter; typedef struct ifnet * if_t; typedef void (*if_start_fn_t)(if_t); typedef int (*if_ioctl_fn_t)(if_t, u_long, caddr_t); typedef void (*if_init_fn_t)(void *); typedef void (*if_qflush_fn_t)(if_t); typedef int (*if_transmit_fn_t)(if_t, struct mbuf *); typedef uint64_t (*if_get_counter_t)(if_t, ift_counter); struct ifnet_hw_tsomax { u_int tsomaxbytes; /* TSO total burst length limit in bytes */ u_int tsomaxsegcount; /* TSO maximum segment count */ u_int tsomaxsegsize; /* TSO maximum segment size in bytes */ }; /* Interface encap request types */ typedef enum { IFENCAP_LL = 1 /* pre-calculate link-layer header */ } ife_type; /* * The structure below allows to request various pre-calculated L2/L3 headers * for different media. Requests varies by type (rtype field). * * IFENCAP_LL type: pre-calculates link header based on address family * and destination lladdr. * * Input data fields: * buf: pointer to destination buffer * bufsize: buffer size * flags: IFENCAP_FLAG_BROADCAST if destination is broadcast * family: address family defined by AF_ constant. * lladdr: pointer to link-layer address * lladdr_len: length of link-layer address * hdata: pointer to L3 header (optional, used for ARP requests). * Output data fields: * buf: encap data is stored here * bufsize: resulting encap length is stored here * lladdr_off: offset of link-layer address from encap hdr start * hdata: L3 header may be altered if necessary */ struct if_encap_req { u_char *buf; /* Destination buffer (w) */ size_t bufsize; /* size of provided buffer (r) */ ife_type rtype; /* request type (r) */ uint32_t flags; /* Request flags (r) */ int family; /* Address family AF_* (r) */ int lladdr_off; /* offset from header start (w) */ int lladdr_len; /* lladdr length (r) */ char *lladdr; /* link-level address pointer (r) */ char *hdata; /* Upper layer header data (rw) */ }; #define IFENCAP_FLAG_BROADCAST 0x02 /* Destination is broadcast */ /* * Network interface send tag support. The storage of "struct * m_snd_tag" comes from the network driver and it is free to allocate * as much additional space as it wants for its own use. */ struct m_snd_tag; #define IF_SND_TAG_TYPE_RATE_LIMIT 0 #define IF_SND_TAG_TYPE_UNLIMITED 1 #define IF_SND_TAG_TYPE_MAX 2 struct if_snd_tag_alloc_header { uint32_t type; /* send tag type, see IF_SND_TAG_XXX */ uint32_t flowid; /* mbuf hash value */ uint32_t flowtype; /* mbuf hash type */ }; struct if_snd_tag_alloc_rate_limit { struct if_snd_tag_alloc_header hdr; uint64_t max_rate; /* in bytes/s */ }; struct if_snd_tag_rate_limit_params { uint64_t max_rate; /* in bytes/s */ uint32_t queue_level; /* 0 (empty) .. 65535 (full) */ #define IF_SND_QUEUE_LEVEL_MIN 0 #define IF_SND_QUEUE_LEVEL_MAX 65535 uint32_t reserved; /* padding */ }; union if_snd_tag_alloc_params { struct if_snd_tag_alloc_header hdr; struct if_snd_tag_alloc_rate_limit rate_limit; struct if_snd_tag_alloc_rate_limit unlimited; }; union if_snd_tag_modify_params { struct if_snd_tag_rate_limit_params rate_limit; struct if_snd_tag_rate_limit_params unlimited; }; union if_snd_tag_query_params { struct if_snd_tag_rate_limit_params rate_limit; struct if_snd_tag_rate_limit_params unlimited; }; typedef int (if_snd_tag_alloc_t)(struct ifnet *, union if_snd_tag_alloc_params *, struct m_snd_tag **); typedef int (if_snd_tag_modify_t)(struct m_snd_tag *, union if_snd_tag_modify_params *); typedef int (if_snd_tag_query_t)(struct m_snd_tag *, union if_snd_tag_query_params *); typedef void (if_snd_tag_free_t)(struct m_snd_tag *); /* * Structure defining a network interface. */ struct ifnet { /* General book keeping of interface lists. */ - STAILQ_ENTRY(ifnet) if_link; /* all struct ifnets are chained (CK_) */ + CK_STAILQ_ENTRY(ifnet) if_link; /* all struct ifnets are chained (CK_) */ LIST_ENTRY(ifnet) if_clones; /* interfaces of a cloner */ - STAILQ_HEAD(, ifg_list) if_groups; /* linked list of groups per if (CK_) */ + CK_STAILQ_HEAD(, ifg_list) if_groups; /* linked list of groups per if (CK_) */ /* protected by if_addr_lock */ u_char if_alloctype; /* if_type at time of allocation */ /* Driver and protocol specific information that remains stable. */ void *if_softc; /* pointer to driver state */ void *if_llsoftc; /* link layer softc */ void *if_l2com; /* pointer to protocol bits */ const char *if_dname; /* driver name */ int if_dunit; /* unit or IF_DUNIT_NONE */ u_short if_index; /* numeric abbreviation for this if */ short if_index_reserved; /* spare space to grow if_index */ char if_xname[IFNAMSIZ]; /* external name (name + unit) */ char *if_description; /* interface description */ /* Variable fields that are touched by the stack and drivers. */ int if_flags; /* up/down, broadcast, etc. */ int if_drv_flags; /* driver-managed status flags */ int if_capabilities; /* interface features & capabilities */ int if_capenable; /* enabled features & capabilities */ void *if_linkmib; /* link-type-specific MIB data */ size_t if_linkmiblen; /* length of above data */ u_int if_refcount; /* reference count */ /* These fields are shared with struct if_data. */ uint8_t if_type; /* ethernet, tokenring, etc */ uint8_t if_addrlen; /* media address length */ uint8_t if_hdrlen; /* media header length */ uint8_t if_link_state; /* current link state */ uint32_t if_mtu; /* maximum transmission unit */ uint32_t if_metric; /* routing metric (external only) */ uint64_t if_baudrate; /* linespeed */ uint64_t if_hwassist; /* HW offload capabilities, see IFCAP */ time_t if_epoch; /* uptime at attach or stat reset */ struct timeval if_lastchange; /* time of last administrative change */ struct ifaltq if_snd; /* output queue (includes altq) */ struct task if_linktask; /* task for link change events */ /* Addresses of different protocol families assigned to this if. */ struct mtx if_addr_lock; /* lock to protect address lists */ /* * if_addrhead is the list of all addresses associated to * an interface. * Some code in the kernel assumes that first element * of the list has type AF_LINK, and contains sockaddr_dl * addresses which store the link-level address and the name * of the interface. * However, access to the AF_LINK address through this * field is deprecated. Use if_addr or ifaddr_byindex() instead. */ struct ifaddrhead if_addrhead; /* linked list of addresses per if */ struct ifmultihead if_multiaddrs; /* multicast addresses configured */ int if_amcount; /* number of all-multicast requests */ struct ifaddr *if_addr; /* pointer to link-level address */ void *if_hw_addr; /* hardware link-level address */ const u_int8_t *if_broadcastaddr; /* linklevel broadcast bytestring */ struct mtx if_afdata_lock; void *if_afdata[AF_MAX]; int if_afdata_initialized; /* Additional features hung off the interface. */ u_int if_fib; /* interface FIB */ struct vnet *if_vnet; /* pointer to network stack instance */ struct vnet *if_home_vnet; /* where this ifnet originates from */ struct ifvlantrunk *if_vlantrunk; /* pointer to 802.1q data */ struct bpf_if *if_bpf; /* packet filter structure */ int if_pcount; /* number of promiscuous listeners */ void *if_bridge; /* bridge glue */ void *if_lagg; /* lagg glue */ void *if_pf_kif; /* pf glue */ struct carp_if *if_carp; /* carp interface structure */ struct label *if_label; /* interface MAC label */ struct netmap_adapter *if_netmap; /* netmap(4) softc */ /* Various procedures of the layer2 encapsulation and drivers. */ int (*if_output) /* output routine (enqueue) */ (struct ifnet *, struct mbuf *, const struct sockaddr *, struct route *); void (*if_input) /* input routine (from h/w driver) */ (struct ifnet *, struct mbuf *); struct mbuf *(*if_bridge_input)(struct ifnet *, struct mbuf *); int (*if_bridge_output)(struct ifnet *, struct mbuf *, struct sockaddr *, struct rtentry *); void (*if_bridge_linkstate)(struct ifnet *ifp); if_start_fn_t if_start; /* initiate output routine */ if_ioctl_fn_t if_ioctl; /* ioctl routine */ if_init_fn_t if_init; /* Init routine */ int (*if_resolvemulti) /* validate/resolve multicast */ (struct ifnet *, struct sockaddr **, struct sockaddr *); if_qflush_fn_t if_qflush; /* flush any queue */ if_transmit_fn_t if_transmit; /* initiate output routine */ void (*if_reassign) /* reassign to vnet routine */ (struct ifnet *, struct vnet *, char *); if_get_counter_t if_get_counter; /* get counter values */ int (*if_requestencap) /* make link header from request */ (struct ifnet *, struct if_encap_req *); /* Statistics. */ counter_u64_t if_counters[IFCOUNTERS]; /* Stuff that's only temporary and doesn't belong here. */ /* * Network adapter TSO limits: * =========================== * * If the "if_hw_tsomax" field is zero the maximum segment * length limit does not apply. If the "if_hw_tsomaxsegcount" * or the "if_hw_tsomaxsegsize" field is zero the TSO segment * count limit does not apply. If all three fields are zero, * there is no TSO limit. * * NOTE: The TSO limits should reflect the values used in the * BUSDMA tag a network adapter is using to load a mbuf chain * for transmission. The TCP/IP network stack will subtract * space for all linklevel and protocol level headers and * ensure that the full mbuf chain passed to the network * adapter fits within the given limits. */ u_int if_hw_tsomax; /* TSO maximum size in bytes */ u_int if_hw_tsomaxsegcount; /* TSO maximum segment count */ u_int if_hw_tsomaxsegsize; /* TSO maximum segment size in bytes */ /* * Network adapter send tag support: */ if_snd_tag_alloc_t *if_snd_tag_alloc; if_snd_tag_modify_t *if_snd_tag_modify; if_snd_tag_query_t *if_snd_tag_query; if_snd_tag_free_t *if_snd_tag_free; /* Ethernet PCP */ uint8_t if_pcp; /* * Netdump hooks to be called while dumping. */ struct netdump_methods *if_netdump_methods; struct epoch_context if_epoch_ctx; /* * Spare fields to be added before branching a stable branch, so * that structure can be enhanced without changing the kernel * binary interface. */ int if_ispare[4]; /* general use */ }; /* for compatibility with other BSDs */ #define if_name(ifp) ((ifp)->if_xname) /* * Locks for address lists on the network interface. */ #define IF_ADDR_LOCK_INIT(if) mtx_init(&(if)->if_addr_lock, "if_addr_lock", NULL, MTX_DEF) #define IF_ADDR_LOCK_DESTROY(if) mtx_destroy(&(if)->if_addr_lock) #define IF_ADDR_RLOCK(if) epoch_enter_preempt(net_epoch_preempt); #define IF_ADDR_RUNLOCK(if) epoch_exit_preempt(net_epoch_preempt); #define IF_ADDR_WLOCK(if) mtx_lock(&(if)->if_addr_lock) #define IF_ADDR_WUNLOCK(if) mtx_unlock(&(if)->if_addr_lock) #define IF_ADDR_LOCK_ASSERT(if) MPASS(in_epoch() || mtx_owned(&(if)->if_addr_lock)) #define IF_ADDR_WLOCK_ASSERT(if) mtx_assert(&(if)->if_addr_lock, MA_OWNED) #define NET_EPOCH_ENTER() epoch_enter_preempt(net_epoch_preempt) #define NET_EPOCH_EXIT() epoch_exit_preempt(net_epoch_preempt) /* * Function variations on locking macros intended to be used by loadable * kernel modules in order to divorce them from the internals of address list * locking. */ void if_addr_rlock(struct ifnet *ifp); /* if_addrhead */ void if_addr_runlock(struct ifnet *ifp); /* if_addrhead */ void if_maddr_rlock(if_t ifp); /* if_multiaddrs */ void if_maddr_runlock(if_t ifp); /* if_multiaddrs */ #ifdef _KERNEL #ifdef _SYS_EVENTHANDLER_H_ /* interface link layer address change event */ typedef void (*iflladdr_event_handler_t)(void *, struct ifnet *); EVENTHANDLER_DECLARE(iflladdr_event, iflladdr_event_handler_t); /* interface address change event */ typedef void (*ifaddr_event_handler_t)(void *, struct ifnet *); EVENTHANDLER_DECLARE(ifaddr_event, ifaddr_event_handler_t); /* new interface arrival event */ typedef void (*ifnet_arrival_event_handler_t)(void *, struct ifnet *); EVENTHANDLER_DECLARE(ifnet_arrival_event, ifnet_arrival_event_handler_t); /* interface departure event */ typedef void (*ifnet_departure_event_handler_t)(void *, struct ifnet *); EVENTHANDLER_DECLARE(ifnet_departure_event, ifnet_departure_event_handler_t); /* Interface link state change event */ typedef void (*ifnet_link_event_handler_t)(void *, struct ifnet *, int); EVENTHANDLER_DECLARE(ifnet_link_event, ifnet_link_event_handler_t); /* Interface up/down event */ #define IFNET_EVENT_UP 0 #define IFNET_EVENT_DOWN 1 #define IFNET_EVENT_PCP 2 /* priority code point, PCP */ typedef void (*ifnet_event_fn)(void *, struct ifnet *ifp, int event); EVENTHANDLER_DECLARE(ifnet_event, ifnet_event_fn); #endif /* _SYS_EVENTHANDLER_H_ */ /* * interface groups */ struct ifg_group { char ifg_group[IFNAMSIZ]; u_int ifg_refcnt; void *ifg_pf_kif; - STAILQ_HEAD(, ifg_member) ifg_members; /* (CK_) */ - STAILQ_ENTRY(ifg_group) ifg_next; /* (CK_) */ + CK_STAILQ_HEAD(, ifg_member) ifg_members; /* (CK_) */ + CK_STAILQ_ENTRY(ifg_group) ifg_next; /* (CK_) */ }; struct ifg_member { - STAILQ_ENTRY(ifg_member) ifgm_next; /* (CK_) */ + CK_STAILQ_ENTRY(ifg_member) ifgm_next; /* (CK_) */ struct ifnet *ifgm_ifp; }; struct ifg_list { struct ifg_group *ifgl_group; - STAILQ_ENTRY(ifg_list) ifgl_next; /* (CK_) */ + CK_STAILQ_ENTRY(ifg_list) ifgl_next; /* (CK_) */ }; #ifdef _SYS_EVENTHANDLER_H_ /* group attach event */ typedef void (*group_attach_event_handler_t)(void *, struct ifg_group *); EVENTHANDLER_DECLARE(group_attach_event, group_attach_event_handler_t); /* group detach event */ typedef void (*group_detach_event_handler_t)(void *, struct ifg_group *); EVENTHANDLER_DECLARE(group_detach_event, group_detach_event_handler_t); /* group change event */ typedef void (*group_change_event_handler_t)(void *, const char *); EVENTHANDLER_DECLARE(group_change_event, group_change_event_handler_t); #endif /* _SYS_EVENTHANDLER_H_ */ #define IF_AFDATA_LOCK_INIT(ifp) \ mtx_init(&(ifp)->if_afdata_lock, "if_afdata", NULL, MTX_DEF) #define IF_AFDATA_WLOCK(ifp) mtx_lock(&(ifp)->if_afdata_lock) #define IF_AFDATA_RLOCK(ifp) epoch_enter_preempt(net_epoch_preempt) #define IF_AFDATA_WUNLOCK(ifp) mtx_unlock(&(ifp)->if_afdata_lock) #define IF_AFDATA_RUNLOCK(ifp) epoch_exit_preempt(net_epoch_preempt) #define IF_AFDATA_LOCK(ifp) IF_AFDATA_WLOCK(ifp) #define IF_AFDATA_UNLOCK(ifp) IF_AFDATA_WUNLOCK(ifp) #define IF_AFDATA_TRYLOCK(ifp) mtx_trylock(&(ifp)->if_afdata_lock) #define IF_AFDATA_DESTROY(ifp) mtx_destroy(&(ifp)->if_afdata_lock) #define IF_AFDATA_LOCK_ASSERT(ifp) MPASS(in_epoch() || mtx_owned(&(ifp)->if_afdata_lock)) #define IF_AFDATA_RLOCK_ASSERT(ifp) MPASS(in_epoch()); #define IF_AFDATA_WLOCK_ASSERT(ifp) mtx_assert(&(ifp)->if_afdata_lock, MA_OWNED) #define IF_AFDATA_UNLOCK_ASSERT(ifp) mtx_assert(&(ifp)->if_afdata_lock, MA_NOTOWNED) /* * 72 was chosen below because it is the size of a TCP/IP * header (40) + the minimum mss (32). */ #define IF_MINMTU 72 #define IF_MAXMTU 65535 #define TOEDEV(ifp) ((ifp)->if_llsoftc) /* * The ifaddr structure contains information about one address * of an interface. They are maintained by the different address families, * are allocated and attached when an address is set, and are linked * together so all addresses for an interface can be located. * * NOTE: a 'struct ifaddr' is always at the beginning of a larger * chunk of malloc'ed memory, where we store the three addresses * (ifa_addr, ifa_dstaddr and ifa_netmask) referenced here. */ struct ifaddr { struct sockaddr *ifa_addr; /* address of interface */ struct sockaddr *ifa_dstaddr; /* other end of p-to-p link */ #define ifa_broadaddr ifa_dstaddr /* broadcast address interface */ struct sockaddr *ifa_netmask; /* used to determine subnet */ struct ifnet *ifa_ifp; /* back-pointer to interface */ struct carp_softc *ifa_carp; /* pointer to CARP data */ CK_STAILQ_ENTRY(ifaddr) ifa_link; /* queue macro glue */ void (*ifa_rtrequest) /* check or clean routes (+ or -)'d */ (int, struct rtentry *, struct rt_addrinfo *); u_short ifa_flags; /* mostly rt_flags for cloning */ #define IFA_ROUTE RTF_UP /* route installed */ #define IFA_RTSELF RTF_HOST /* loopback route to self installed */ u_int ifa_refcnt; /* references to this structure */ counter_u64_t ifa_ipackets; counter_u64_t ifa_opackets; counter_u64_t ifa_ibytes; counter_u64_t ifa_obytes; struct epoch_context ifa_epoch_ctx; }; struct ifaddr * ifa_alloc(size_t size, int flags); void ifa_free(struct ifaddr *ifa); void ifa_ref(struct ifaddr *ifa); /* * Multicast address structure. This is analogous to the ifaddr * structure except that it keeps track of multicast addresses. */ struct ifmultiaddr { CK_STAILQ_ENTRY(ifmultiaddr) ifma_link; /* queue macro glue */ struct sockaddr *ifma_addr; /* address this membership is for */ struct sockaddr *ifma_lladdr; /* link-layer translation, if any */ struct ifnet *ifma_ifp; /* back-pointer to interface */ u_int ifma_refcount; /* reference count */ void *ifma_protospec; /* protocol-specific state, if any */ struct ifmultiaddr *ifma_llifma; /* pointer to ifma for ifma_lladdr */ struct epoch_context ifma_epoch_ctx; }; extern struct rwlock ifnet_rwlock; extern struct sx ifnet_sxlock; #define IFNET_WLOCK() do { \ sx_xlock(&ifnet_sxlock); \ rw_wlock(&ifnet_rwlock); \ } while (0) #define IFNET_WUNLOCK() do { \ rw_wunlock(&ifnet_rwlock); \ sx_xunlock(&ifnet_sxlock); \ } while (0) /* * To assert the ifnet lock, you must know not only whether it's for read or * write, but also whether it was acquired with sleep support or not. */ #define IFNET_RLOCK_ASSERT() sx_assert(&ifnet_sxlock, SA_SLOCKED) #define IFNET_RLOCK_NOSLEEP_ASSERT() MPASS(in_epoch()) #define IFNET_WLOCK_ASSERT() do { \ sx_assert(&ifnet_sxlock, SA_XLOCKED); \ rw_assert(&ifnet_rwlock, RA_WLOCKED); \ } while (0) #define IFNET_RLOCK() sx_slock(&ifnet_sxlock) #define IFNET_RLOCK_NOSLEEP() epoch_enter_preempt(net_epoch_preempt) #define IFNET_RUNLOCK() sx_sunlock(&ifnet_sxlock) #define IFNET_RUNLOCK_NOSLEEP() epoch_exit_preempt(net_epoch_preempt) /* * Look up an ifnet given its index; the _ref variant also acquires a * reference that must be freed using if_rele(). It is almost always a bug * to call ifnet_byindex() instead of ifnet_byindex_ref(). */ struct ifnet *ifnet_byindex(u_short idx); struct ifnet *ifnet_byindex_locked(u_short idx); struct ifnet *ifnet_byindex_ref(u_short idx); /* * Given the index, ifaddr_byindex() returns the one and only * link-level ifaddr for the interface. You are not supposed to use * it to traverse the list of addresses associated to the interface. */ struct ifaddr *ifaddr_byindex(u_short idx); VNET_DECLARE(struct ifnethead, ifnet); VNET_DECLARE(struct ifgrouphead, ifg_head); VNET_DECLARE(int, if_index); VNET_DECLARE(struct ifnet *, loif); /* first loopback interface */ #define V_ifnet VNET(ifnet) #define V_ifg_head VNET(ifg_head) #define V_if_index VNET(if_index) #define V_loif VNET(loif) #ifdef MCAST_VERBOSE #define MCDPRINTF printf #else #define MCDPRINTF(...) #endif int if_addgroup(struct ifnet *, const char *); int if_delgroup(struct ifnet *, const char *); int if_addmulti(struct ifnet *, struct sockaddr *, struct ifmultiaddr **); int if_allmulti(struct ifnet *, int); struct ifnet* if_alloc(u_char); void if_attach(struct ifnet *); void if_dead(struct ifnet *); int if_delmulti(struct ifnet *, struct sockaddr *); void if_delmulti_ifma(struct ifmultiaddr *); void if_delmulti_ifma_flags(struct ifmultiaddr *, int flags); void if_detach(struct ifnet *); void if_purgeaddrs(struct ifnet *); void if_delallmulti(struct ifnet *); void if_down(struct ifnet *); struct ifmultiaddr * if_findmulti(struct ifnet *, const struct sockaddr *); void if_freemulti(struct ifmultiaddr *ifma); void if_free(struct ifnet *); void if_initname(struct ifnet *, const char *, int); void if_link_state_change(struct ifnet *, int); int if_printf(struct ifnet *, const char *, ...) __printflike(2, 3); void if_ref(struct ifnet *); void if_rele(struct ifnet *); int if_setlladdr(struct ifnet *, const u_char *, int); void if_up(struct ifnet *); int ifioctl(struct socket *, u_long, caddr_t, struct thread *); int ifpromisc(struct ifnet *, int); struct ifnet *ifunit(const char *); struct ifnet *ifunit_ref(const char *); int ifa_add_loopback_route(struct ifaddr *, struct sockaddr *); int ifa_del_loopback_route(struct ifaddr *, struct sockaddr *); int ifa_switch_loopback_route(struct ifaddr *, struct sockaddr *); struct ifaddr *ifa_ifwithaddr(const struct sockaddr *); int ifa_ifwithaddr_check(const struct sockaddr *); struct ifaddr *ifa_ifwithbroadaddr(const struct sockaddr *, int); struct ifaddr *ifa_ifwithdstaddr(const struct sockaddr *, int); struct ifaddr *ifa_ifwithnet(const struct sockaddr *, int, int); struct ifaddr *ifa_ifwithroute(int, const struct sockaddr *, struct sockaddr *, u_int); struct ifaddr *ifaof_ifpforaddr(const struct sockaddr *, struct ifnet *); int ifa_preferred(struct ifaddr *, struct ifaddr *); int if_simloop(struct ifnet *ifp, struct mbuf *m, int af, int hlen); typedef void *if_com_alloc_t(u_char type, struct ifnet *ifp); typedef void if_com_free_t(void *com, u_char type); void if_register_com_alloc(u_char type, if_com_alloc_t *a, if_com_free_t *f); void if_deregister_com_alloc(u_char type); void if_data_copy(struct ifnet *, struct if_data *); uint64_t if_get_counter_default(struct ifnet *, ift_counter); void if_inc_counter(struct ifnet *, ift_counter, int64_t); #define IF_LLADDR(ifp) \ LLADDR((struct sockaddr_dl *)((ifp)->if_addr->ifa_addr)) uint64_t if_setbaudrate(if_t ifp, uint64_t baudrate); uint64_t if_getbaudrate(if_t ifp); int if_setcapabilities(if_t ifp, int capabilities); int if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit); int if_getcapabilities(if_t ifp); int if_togglecapenable(if_t ifp, int togglecap); int if_setcapenable(if_t ifp, int capenable); int if_setcapenablebit(if_t ifp, int setcap, int clearcap); int if_getcapenable(if_t ifp); const char *if_getdname(if_t ifp); int if_setdev(if_t ifp, void *dev); int if_setdrvflagbits(if_t ifp, int if_setflags, int clear_flags); int if_getdrvflags(if_t ifp); int if_setdrvflags(if_t ifp, int flags); int if_clearhwassist(if_t ifp); int if_sethwassistbits(if_t ifp, int toset, int toclear); int if_sethwassist(if_t ifp, int hwassist_bit); int if_gethwassist(if_t ifp); int if_setsoftc(if_t ifp, void *softc); void *if_getsoftc(if_t ifp); int if_setflags(if_t ifp, int flags); int if_gethwaddr(if_t ifp, struct ifreq *); int if_setmtu(if_t ifp, int mtu); int if_getmtu(if_t ifp); int if_getmtu_family(if_t ifp, int family); int if_setflagbits(if_t ifp, int set, int clear); int if_getflags(if_t ifp); int if_sendq_empty(if_t ifp); int if_setsendqready(if_t ifp); int if_setsendqlen(if_t ifp, int tx_desc_count); int if_sethwtsomax(if_t ifp, u_int if_hw_tsomax); int if_sethwtsomaxsegcount(if_t ifp, u_int if_hw_tsomaxsegcount); int if_sethwtsomaxsegsize(if_t ifp, u_int if_hw_tsomaxsegsize); u_int if_gethwtsomax(if_t ifp); u_int if_gethwtsomaxsegcount(if_t ifp); u_int if_gethwtsomaxsegsize(if_t ifp); int if_input(if_t ifp, struct mbuf* sendmp); int if_sendq_prepend(if_t ifp, struct mbuf *m); struct mbuf *if_dequeue(if_t ifp); int if_setifheaderlen(if_t ifp, int len); void if_setrcvif(struct mbuf *m, if_t ifp); void if_setvtag(struct mbuf *m, u_int16_t tag); u_int16_t if_getvtag(struct mbuf *m); int if_vlantrunkinuse(if_t ifp); caddr_t if_getlladdr(if_t ifp); void *if_gethandle(u_char); void if_bpfmtap(if_t ifp, struct mbuf *m); void if_etherbpfmtap(if_t ifp, struct mbuf *m); void if_vlancap(if_t ifp); int if_setupmultiaddr(if_t ifp, void *mta, int *cnt, int max); int if_multiaddr_array(if_t ifp, void *mta, int *cnt, int max); int if_multiaddr_count(if_t ifp, int max); int if_multi_apply(struct ifnet *ifp, int (*filter)(void *, struct ifmultiaddr *, int), void *arg); int if_getamcount(if_t ifp); struct ifaddr * if_getifaddr(if_t ifp); /* Functions */ void if_setinitfn(if_t ifp, void (*)(void *)); void if_setioctlfn(if_t ifp, int (*)(if_t, u_long, caddr_t)); void if_setstartfn(if_t ifp, void (*)(if_t)); void if_settransmitfn(if_t ifp, if_transmit_fn_t); void if_setqflushfn(if_t ifp, if_qflush_fn_t); void if_setgetcounterfn(if_t ifp, if_get_counter_t); /* Revisit the below. These are inline functions originally */ int drbr_inuse_drv(if_t ifp, struct buf_ring *br); struct mbuf* drbr_dequeue_drv(if_t ifp, struct buf_ring *br); int drbr_needs_enqueue_drv(if_t ifp, struct buf_ring *br); int drbr_enqueue_drv(if_t ifp, struct buf_ring *br, struct mbuf *m); /* TSO */ void if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *); int if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *); /* accessors for struct ifreq */ void *ifr_data_get_ptr(void *ifrp); #ifdef DEVICE_POLLING enum poll_cmd { POLL_ONLY, POLL_AND_CHECK_STATUS }; typedef int poll_handler_t(if_t ifp, enum poll_cmd cmd, int count); int ether_poll_register(poll_handler_t *h, if_t ifp); int ether_poll_deregister(if_t ifp); #endif /* DEVICE_POLLING */ #endif /* _KERNEL */ #include /* XXXAO: temporary unconditional include */ #endif /* !_NET_IF_VAR_H_ */ Index: head/sys/netinet/in_debug.c =================================================================== --- head/sys/netinet/in_debug.c (revision 334192) +++ head/sys/netinet/in_debug.c (revision 334193) @@ -1,117 +1,117 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2010 Bjoern A. Zeeb * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include #include #include #ifdef DDB #include #endif #include #include #include #include #ifdef DDB static void in_show_sockaddr_in(struct sockaddr_in *sin) { #define SIN_DB_RPINTF(f, e) db_printf("\t %s = " f "\n", #e, sin->e); db_printf("\tsockaddr_in = %p\n", sin); SIN_DB_RPINTF("%u", sin_len); SIN_DB_RPINTF("%u", sin_family); SIN_DB_RPINTF("%u", sin_port); SIN_DB_RPINTF("0x%08x", sin_addr.s_addr); db_printf("\t %s = %02x%02x%02x%02x%02x%02x%02x%02x\n", "sin_zero[8]", sin->sin_zero[0], sin->sin_zero[1], sin->sin_zero[2], sin->sin_zero[3], sin->sin_zero[4], sin->sin_zero[5], sin->sin_zero[6], sin->sin_zero[7]); #undef SIN_DB_RPINTF } DB_SHOW_COMMAND(sin, db_show_sin) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)addr; if (sin == NULL) { /* usage: No need to confess if you didn't sin. */ db_printf("usage: show sin \n"); return; } in_show_sockaddr_in(sin); } static void in_show_in_ifaddr(struct in_ifaddr *ia) { #define IA_DB_RPINTF(f, e) db_printf("\t %s = " f "\n", #e, ia->e); #define IA_DB_RPINTF_PTR(f, e) db_printf("\t %s = " f "\n", #e, &ia->e); #define IA_DB_RPINTF_DPTR(f, e) db_printf("\t *%s = " f "\n", #e, *ia->e); db_printf("\tin_ifaddr = %p\n", ia); IA_DB_RPINTF_PTR("%p", ia_ifa); IA_DB_RPINTF("0x%08lx", ia_subnet); IA_DB_RPINTF("0x%08lx", ia_subnetmask); IA_DB_RPINTF("%p", ia_hash.le_next); IA_DB_RPINTF("%p", ia_hash.le_prev); IA_DB_RPINTF_DPTR("%p", ia_hash.le_prev); - IA_DB_RPINTF("%p", ia_link.stqe_next); + IA_DB_RPINTF("%p", ia_link.cstqe_next); IA_DB_RPINTF_PTR("%p", ia_addr); IA_DB_RPINTF_PTR("%p", ia_dstaddr); IA_DB_RPINTF_PTR("%p", ia_sockmask); #undef IA_DB_RPINTF_DPTR #undef IA_DB_RPINTF_PTR #undef IA_DB_RPINTF } DB_SHOW_COMMAND(in_ifaddr, db_show_in_ifaddr) { struct in_ifaddr *ia; ia = (struct in_ifaddr *)addr; if (ia == NULL) { db_printf("usage: show in_ifaddr \n"); return; } in_show_in_ifaddr(ia); } #endif Index: head/sys/netinet6/in6.c =================================================================== --- head/sys/netinet6/in6.c (revision 334192) +++ head/sys/netinet6/in6.c (revision 334193) @@ -1,2556 +1,2556 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ */ /*- * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in.c 8.2 (Berkeley) 11/15/93 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * struct in6_ifreq and struct ifreq must be type punnable for common members * of ifr_ifru to allow accessors to be shared. */ _Static_assert(offsetof(struct in6_ifreq, ifr_ifru) == offsetof(struct ifreq, ifr_ifru), "struct in6_ifreq and struct ifreq are not type punnable"); VNET_DECLARE(int, icmp6_nodeinfo_oldmcprefix); #define V_icmp6_nodeinfo_oldmcprefix VNET(icmp6_nodeinfo_oldmcprefix) /* * Definitions of some costant IP6 addresses. */ const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; const struct in6_addr in6addr_nodelocal_allnodes = IN6ADDR_NODELOCAL_ALLNODES_INIT; const struct in6_addr in6addr_linklocal_allnodes = IN6ADDR_LINKLOCAL_ALLNODES_INIT; const struct in6_addr in6addr_linklocal_allrouters = IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; const struct in6_addr in6addr_linklocal_allv2routers = IN6ADDR_LINKLOCAL_ALLV2ROUTERS_INIT; const struct in6_addr in6mask0 = IN6MASK0; const struct in6_addr in6mask32 = IN6MASK32; const struct in6_addr in6mask64 = IN6MASK64; const struct in6_addr in6mask96 = IN6MASK96; const struct in6_addr in6mask128 = IN6MASK128; const struct sockaddr_in6 sa6_any = { sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 }; static int in6_notify_ifa(struct ifnet *, struct in6_ifaddr *, struct in6_aliasreq *, int); static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *); static int in6_validate_ifra(struct ifnet *, struct in6_aliasreq *, struct in6_ifaddr *, int); static struct in6_ifaddr *in6_alloc_ifa(struct ifnet *, struct in6_aliasreq *, int flags); static int in6_update_ifa_internal(struct ifnet *, struct in6_aliasreq *, struct in6_ifaddr *, int, int); static int in6_broadcast_ifa(struct ifnet *, struct in6_aliasreq *, struct in6_ifaddr *, int); #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) #define ia62ifa(ia6) (&((ia6)->ia_ifa)) void in6_newaddrmsg(struct in6_ifaddr *ia, int cmd) { struct sockaddr_dl gateway; struct sockaddr_in6 mask, addr; struct rtentry rt; int fibnum; /* * initialize for rtmsg generation */ bzero(&gateway, sizeof(gateway)); gateway.sdl_len = sizeof(gateway); gateway.sdl_family = AF_LINK; bzero(&rt, sizeof(rt)); rt.rt_gateway = (struct sockaddr *)&gateway; memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); rt_mask(&rt) = (struct sockaddr *)&mask; rt_key(&rt) = (struct sockaddr *)&addr; rt.rt_flags = RTF_HOST | RTF_STATIC; if (cmd == RTM_ADD) rt.rt_flags |= RTF_UP; fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ia62ifa(ia)->ifa_ifp->if_fib; /* Announce arrival of local address to this FIB. */ rt_newaddrmsg_fib(cmd, &ia->ia_ifa, 0, &rt, fibnum); } int in6_mask2len(struct in6_addr *mask, u_char *lim0) { int x = 0, y; u_char *lim = lim0, *p; /* ignore the scope_id part */ if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) lim = (u_char *)mask + sizeof(*mask); for (p = (u_char *)mask; p < lim; x++, p++) { if (*p != 0xff) break; } y = 0; if (p < lim) { for (y = 0; y < 8; y++) { if ((*p & (0x80 >> y)) == 0) break; } } /* * when the limit pointer is given, do a stricter check on the * remaining bits. */ if (p < lim) { if (y != 0 && (*p & (0x00ff >> y)) != 0) return (-1); for (p = p + 1; p < lim; p++) if (*p != 0) return (-1); } return x * 8 + y; } #ifdef COMPAT_FREEBSD32 struct in6_ndifreq32 { char ifname[IFNAMSIZ]; uint32_t ifindex; }; #define SIOCGDEFIFACE32_IN6 _IOWR('i', 86, struct in6_ndifreq32) #endif int in6_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { struct in6_ifreq *ifr = (struct in6_ifreq *)data; struct in6_ifaddr *ia = NULL; struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; struct sockaddr_in6 *sa6; int carp_attached = 0; int error; u_long ocmd = cmd; /* * Compat to make pre-10.x ifconfig(8) operable. */ if (cmd == OSIOCAIFADDR_IN6) cmd = SIOCAIFADDR_IN6; switch (cmd) { case SIOCGETSGCNT_IN6: case SIOCGETMIFCNT_IN6: /* * XXX mrt_ioctl has a 3rd, unused, FIB argument in route.c. * We cannot see how that would be needed, so do not adjust the * KPI blindly; more likely should clean up the IPv4 variant. */ return (mrt6_ioctl ? mrt6_ioctl(cmd, data) : EOPNOTSUPP); } switch (cmd) { case SIOCAADDRCTL_POLICY: case SIOCDADDRCTL_POLICY: if (td != NULL) { error = priv_check(td, PRIV_NETINET_ADDRCTRL6); if (error) return (error); } return (in6_src_ioctl(cmd, data)); } if (ifp == NULL) return (EOPNOTSUPP); switch (cmd) { case SIOCSNDFLUSH_IN6: case SIOCSPFXFLUSH_IN6: case SIOCSRTRFLUSH_IN6: case SIOCSDEFIFACE_IN6: case SIOCSIFINFO_FLAGS: case SIOCSIFINFO_IN6: if (td != NULL) { error = priv_check(td, PRIV_NETINET_ND6); if (error) return (error); } /* FALLTHROUGH */ case OSIOCGIFINFO_IN6: case SIOCGIFINFO_IN6: case SIOCGNBRINFO_IN6: case SIOCGDEFIFACE_IN6: return (nd6_ioctl(cmd, data, ifp)); #ifdef COMPAT_FREEBSD32 case SIOCGDEFIFACE32_IN6: { struct in6_ndifreq ndif; struct in6_ndifreq32 *ndif32; error = nd6_ioctl(SIOCGDEFIFACE_IN6, (caddr_t)&ndif, ifp); if (error) return (error); ndif32 = (struct in6_ndifreq32 *)data; ndif32->ifindex = ndif.ifindex; return (0); } #endif } switch (cmd) { case SIOCSIFPREFIX_IN6: case SIOCDIFPREFIX_IN6: case SIOCAIFPREFIX_IN6: case SIOCCIFPREFIX_IN6: case SIOCSGIFPREFIX_IN6: case SIOCGIFPREFIX_IN6: log(LOG_NOTICE, "prefix ioctls are now invalidated. " "please use ifconfig.\n"); return (EOPNOTSUPP); } switch (cmd) { case SIOCSSCOPE6: if (td != NULL) { error = priv_check(td, PRIV_NETINET_SCOPE6); if (error) return (error); } /* FALLTHROUGH */ case SIOCGSCOPE6: case SIOCGSCOPE6DEF: return (scope6_ioctl(cmd, data, ifp)); } /* * Find address for this interface, if it exists. * * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation * only, and used the first interface address as the target of other * operations (without checking ifra_addr). This was because netinet * code/API assumed at most 1 interface address per interface. * Since IPv6 allows a node to assign multiple addresses * on a single interface, we almost always look and check the * presence of ifra_addr, and reject invalid ones here. * It also decreases duplicated code among SIOC*_IN6 operations. */ switch (cmd) { case SIOCAIFADDR_IN6: case SIOCSIFPHYADDR_IN6: sa6 = &ifra->ifra_addr; break; case SIOCSIFADDR_IN6: case SIOCGIFADDR_IN6: case SIOCSIFDSTADDR_IN6: case SIOCSIFNETMASK_IN6: case SIOCGIFDSTADDR_IN6: case SIOCGIFNETMASK_IN6: case SIOCDIFADDR_IN6: case SIOCGIFPSRCADDR_IN6: case SIOCGIFPDSTADDR_IN6: case SIOCGIFAFLAG_IN6: case SIOCSNDFLUSH_IN6: case SIOCSPFXFLUSH_IN6: case SIOCSRTRFLUSH_IN6: case SIOCGIFALIFETIME_IN6: case SIOCGIFSTAT_IN6: case SIOCGIFSTAT_ICMP6: sa6 = &ifr->ifr_addr; break; case SIOCSIFADDR: case SIOCSIFBRDADDR: case SIOCSIFDSTADDR: case SIOCSIFNETMASK: /* * Although we should pass any non-INET6 ioctl requests * down to driver, we filter some legacy INET requests. * Drivers trust SIOCSIFADDR et al to come from an already * privileged layer, and do not perform any credentials * checks or input validation. */ return (EINVAL); default: sa6 = NULL; break; } if (sa6 && sa6->sin6_family == AF_INET6) { if (sa6->sin6_scope_id != 0) error = sa6_embedscope(sa6, 0); else error = in6_setscope(&sa6->sin6_addr, ifp, NULL); if (error != 0) return (error); if (td != NULL && (error = prison_check_ip6(td->td_ucred, &sa6->sin6_addr)) != 0) return (error); ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr); } else ia = NULL; switch (cmd) { case SIOCSIFADDR_IN6: case SIOCSIFDSTADDR_IN6: case SIOCSIFNETMASK_IN6: /* * Since IPv6 allows a node to assign multiple addresses * on a single interface, SIOCSIFxxx ioctls are deprecated. */ /* we decided to obsolete this command (20000704) */ error = EINVAL; goto out; case SIOCDIFADDR_IN6: /* * for IPv4, we look for existing in_ifaddr here to allow * "ifconfig if0 delete" to remove the first IPv4 address on * the interface. For IPv6, as the spec allows multiple * interface address from the day one, we consider "remove the * first one" semantics to be not preferable. */ if (ia == NULL) { error = EADDRNOTAVAIL; goto out; } /* FALLTHROUGH */ case SIOCAIFADDR_IN6: /* * We always require users to specify a valid IPv6 address for * the corresponding operation. */ if (ifra->ifra_addr.sin6_family != AF_INET6 || ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) { error = EAFNOSUPPORT; goto out; } if (td != NULL) { error = priv_check(td, (cmd == SIOCDIFADDR_IN6) ? PRIV_NET_DELIFADDR : PRIV_NET_ADDIFADDR); if (error) goto out; } /* FALLTHROUGH */ case SIOCGIFSTAT_IN6: case SIOCGIFSTAT_ICMP6: if (ifp->if_afdata[AF_INET6] == NULL) { error = EPFNOSUPPORT; goto out; } break; case SIOCGIFADDR_IN6: /* This interface is basically deprecated. use SIOCGIFCONF. */ /* FALLTHROUGH */ case SIOCGIFAFLAG_IN6: case SIOCGIFNETMASK_IN6: case SIOCGIFDSTADDR_IN6: case SIOCGIFALIFETIME_IN6: /* must think again about its semantics */ if (ia == NULL) { error = EADDRNOTAVAIL; goto out; } break; } switch (cmd) { case SIOCGIFADDR_IN6: ifr->ifr_addr = ia->ia_addr; if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0) goto out; break; case SIOCGIFDSTADDR_IN6: if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { error = EINVAL; goto out; } ifr->ifr_dstaddr = ia->ia_dstaddr; if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0) goto out; break; case SIOCGIFNETMASK_IN6: ifr->ifr_addr = ia->ia_prefixmask; break; case SIOCGIFAFLAG_IN6: ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; break; case SIOCGIFSTAT_IN6: COUNTER_ARRAY_COPY(((struct in6_ifextra *) ifp->if_afdata[AF_INET6])->in6_ifstat, &ifr->ifr_ifru.ifru_stat, sizeof(struct in6_ifstat) / sizeof(uint64_t)); break; case SIOCGIFSTAT_ICMP6: COUNTER_ARRAY_COPY(((struct in6_ifextra *) ifp->if_afdata[AF_INET6])->icmp6_ifstat, &ifr->ifr_ifru.ifru_icmp6stat, sizeof(struct icmp6_ifstat) / sizeof(uint64_t)); break; case SIOCGIFALIFETIME_IN6: ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { time_t maxexpire; struct in6_addrlifetime *retlt = &ifr->ifr_ifru.ifru_lifetime; /* * XXX: adjust expiration time assuming time_t is * signed. */ maxexpire = (-1) & ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); if (ia->ia6_lifetime.ia6t_vltime < maxexpire - ia->ia6_updatetime) { retlt->ia6t_expire = ia->ia6_updatetime + ia->ia6_lifetime.ia6t_vltime; } else retlt->ia6t_expire = maxexpire; } if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { time_t maxexpire; struct in6_addrlifetime *retlt = &ifr->ifr_ifru.ifru_lifetime; /* * XXX: adjust expiration time assuming time_t is * signed. */ maxexpire = (-1) & ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); if (ia->ia6_lifetime.ia6t_pltime < maxexpire - ia->ia6_updatetime) { retlt->ia6t_preferred = ia->ia6_updatetime + ia->ia6_lifetime.ia6t_pltime; } else retlt->ia6t_preferred = maxexpire; } break; case SIOCAIFADDR_IN6: { struct nd_prefixctl pr0; struct nd_prefix *pr; /* * first, make or update the interface address structure, * and link it to the list. */ if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0) goto out; if (ia != NULL) { if (ia->ia_ifa.ifa_carp) (*carp_detach_p)(&ia->ia_ifa, true); ifa_free(&ia->ia_ifa); } if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) == NULL) { /* * this can happen when the user specify the 0 valid * lifetime. */ break; } if (cmd == ocmd && ifra->ifra_vhid > 0) { if (carp_attach_p != NULL) error = (*carp_attach_p)(&ia->ia_ifa, ifra->ifra_vhid); else error = EPROTONOSUPPORT; if (error) goto out; else carp_attached = 1; } /* * then, make the prefix on-link on the interface. * XXX: we'd rather create the prefix before the address, but * we need at least one address to install the corresponding * interface route, so we configure the address first. */ /* * convert mask to prefix length (prefixmask has already * been validated in in6_update_ifa(). */ bzero(&pr0, sizeof(pr0)); pr0.ndpr_ifp = ifp; pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, NULL); if (pr0.ndpr_plen == 128) { /* we don't need to install a host route. */ goto aifaddr_out; } pr0.ndpr_prefix = ifra->ifra_addr; /* apply the mask for safety. */ IN6_MASK_ADDR(&pr0.ndpr_prefix.sin6_addr, &ifra->ifra_prefixmask.sin6_addr); /* * XXX: since we don't have an API to set prefix (not address) * lifetimes, we just use the same lifetimes as addresses. * The (temporarily) installed lifetimes can be overridden by * later advertised RAs (when accept_rtadv is non 0), which is * an intended behavior. */ pr0.ndpr_raf_onlink = 1; /* should be configurable? */ pr0.ndpr_raf_auto = ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; /* add the prefix if not yet. */ if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { /* * nd6_prelist_add will install the corresponding * interface route. */ if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) { if (carp_attached) (*carp_detach_p)(&ia->ia_ifa, false); goto out; } } /* relate the address to the prefix */ if (ia->ia6_ndpr == NULL) { ia->ia6_ndpr = pr; pr->ndpr_addrcnt++; /* * If this is the first autoconf address from the * prefix, create a temporary address as well * (when required). */ if ((ia->ia6_flags & IN6_IFF_AUTOCONF) && V_ip6_use_tempaddr && pr->ndpr_addrcnt == 1) { int e; if ((e = in6_tmpifadd(ia, 1, 0)) != 0) { log(LOG_NOTICE, "in6_control: failed " "to create a temporary address, " "errno=%d\n", e); } } } nd6_prefix_rele(pr); /* * this might affect the status of autoconfigured addresses, * that is, this address might make other addresses detached. */ pfxlist_onlink_check(); aifaddr_out: /* * Try to clear the flag when a new IPv6 address is added * onto an IFDISABLED interface and it succeeds. */ if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) { struct in6_ndireq nd; memset(&nd, 0, sizeof(nd)); nd.ndi.flags = ND_IFINFO(ifp)->flags; nd.ndi.flags &= ~ND6_IFF_IFDISABLED; if (nd6_ioctl(SIOCSIFINFO_FLAGS, (caddr_t)&nd, ifp) < 0) log(LOG_NOTICE, "SIOCAIFADDR_IN6: " "SIOCSIFINFO_FLAGS for -ifdisabled " "failed."); /* * Ignore failure of clearing the flag intentionally. * The failure means address duplication was detected. */ } break; } case SIOCDIFADDR_IN6: { struct nd_prefix *pr; /* * If the address being deleted is the only one that owns * the corresponding prefix, expire the prefix as well. * XXX: theoretically, we don't have to worry about such * relationship, since we separate the address management * and the prefix management. We do this, however, to provide * as much backward compatibility as possible in terms of * the ioctl operation. * Note that in6_purgeaddr() will decrement ndpr_addrcnt. */ pr = ia->ia6_ndpr; in6_purgeaddr(&ia->ia_ifa); if (pr != NULL && pr->ndpr_addrcnt == 0) { ND6_WLOCK(); nd6_prefix_unlink(pr, NULL); ND6_WUNLOCK(); nd6_prefix_del(pr); } EVENTHANDLER_INVOKE(ifaddr_event, ifp); break; } default: if (ifp->if_ioctl == NULL) { error = EOPNOTSUPP; goto out; } error = (*ifp->if_ioctl)(ifp, cmd, data); goto out; } error = 0; out: if (ia != NULL) ifa_free(&ia->ia_ifa); return (error); } static struct in6_multi_mship * in6_joingroup_legacy(struct ifnet *ifp, const struct in6_addr *mcaddr, int *errorp, int delay) { struct in6_multi_mship *imm; int error; imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT); if (imm == NULL) { *errorp = ENOBUFS; return (NULL); } delay = (delay * PR_FASTHZ) / hz; error = in6_joingroup(ifp, mcaddr, NULL, &imm->i6mm_maddr, delay); if (error) { *errorp = error; free(imm, M_IP6MADDR); return (NULL); } return (imm); } /* * Join necessary multicast groups. Factored out from in6_update_ifa(). * This entire work should only be done once, for the default FIB. */ static int in6_update_ifa_join_mc(struct ifnet *ifp, struct in6_aliasreq *ifra, struct in6_ifaddr *ia, int flags, struct in6_multi **in6m_sol) { char ip6buf[INET6_ADDRSTRLEN]; struct in6_addr mltaddr; struct in6_multi_mship *imm; int delay, error; KASSERT(in6m_sol != NULL, ("%s: in6m_sol is NULL", __func__)); /* Join solicited multicast addr for new host id. */ bzero(&mltaddr, sizeof(struct in6_addr)); mltaddr.s6_addr32[0] = IPV6_ADDR_INT32_MLL; mltaddr.s6_addr32[2] = htonl(1); mltaddr.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3]; mltaddr.s6_addr8[12] = 0xff; if ((error = in6_setscope(&mltaddr, ifp, NULL)) != 0) { /* XXX: should not happen */ log(LOG_ERR, "%s: in6_setscope failed\n", __func__); goto cleanup; } delay = error = 0; if ((flags & IN6_IFAUPDATE_DADDELAY)) { /* * We need a random delay for DAD on the address being * configured. It also means delaying transmission of the * corresponding MLD report to avoid report collision. * [RFC 4861, Section 6.3.7] */ delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz); } imm = in6_joingroup_legacy(ifp, &mltaddr, &error, delay); if (imm == NULL) { nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &mltaddr), if_name(ifp), error)); goto cleanup; } LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); *in6m_sol = imm->i6mm_maddr; /* * Join link-local all-nodes address. */ mltaddr = in6addr_linklocal_allnodes; if ((error = in6_setscope(&mltaddr, ifp, NULL)) != 0) goto cleanup; /* XXX: should not fail */ imm = in6_joingroup_legacy(ifp, &mltaddr, &error, 0); if (imm == NULL) { nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &mltaddr), if_name(ifp), error)); goto cleanup; } LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); /* * Join node information group address. */ delay = 0; if ((flags & IN6_IFAUPDATE_DADDELAY)) { /* * The spec does not say anything about delay for this group, * but the same logic should apply. */ delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz); } if (in6_nigroup(ifp, NULL, -1, &mltaddr) == 0) { /* XXX jinmei */ imm = in6_joingroup_legacy(ifp, &mltaddr, &error, delay); if (imm == NULL) nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &mltaddr), if_name(ifp), error)); /* XXX not very fatal, go on... */ else LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); } if (V_icmp6_nodeinfo_oldmcprefix && in6_nigroup_oldmcprefix(ifp, NULL, -1, &mltaddr) == 0) { imm = in6_joingroup_legacy(ifp, &mltaddr, &error, delay); if (imm == NULL) nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &mltaddr), if_name(ifp), error)); /* XXX not very fatal, go on... */ else LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); } /* * Join interface-local all-nodes address. * (ff01::1%ifN, and ff01::%ifN/32) */ mltaddr = in6addr_nodelocal_allnodes; if ((error = in6_setscope(&mltaddr, ifp, NULL)) != 0) goto cleanup; /* XXX: should not fail */ imm = in6_joingroup_legacy(ifp, &mltaddr, &error, 0); if (imm == NULL) { nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &mltaddr), if_name(ifp), error)); goto cleanup; } LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); cleanup: return (error); } /* * Update parameters of an IPv6 interface address. * If necessary, a new entry is created and linked into address chains. * This function is separated from in6_control(). */ int in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, struct in6_ifaddr *ia, int flags) { int error, hostIsNew = 0; if ((error = in6_validate_ifra(ifp, ifra, ia, flags)) != 0) return (error); if (ia == NULL) { hostIsNew = 1; if ((ia = in6_alloc_ifa(ifp, ifra, flags)) == NULL) return (ENOBUFS); } error = in6_update_ifa_internal(ifp, ifra, ia, hostIsNew, flags); if (error != 0) { if (hostIsNew != 0) { in6_unlink_ifa(ia, ifp); ifa_free(&ia->ia_ifa); } return (error); } if (hostIsNew) error = in6_broadcast_ifa(ifp, ifra, ia, flags); return (error); } /* * Fill in basic IPv6 address request info. */ void in6_prepare_ifra(struct in6_aliasreq *ifra, const struct in6_addr *addr, const struct in6_addr *mask) { memset(ifra, 0, sizeof(struct in6_aliasreq)); ifra->ifra_addr.sin6_family = AF_INET6; ifra->ifra_addr.sin6_len = sizeof(struct sockaddr_in6); if (addr != NULL) ifra->ifra_addr.sin6_addr = *addr; ifra->ifra_prefixmask.sin6_family = AF_INET6; ifra->ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); if (mask != NULL) ifra->ifra_prefixmask.sin6_addr = *mask; } static int in6_validate_ifra(struct ifnet *ifp, struct in6_aliasreq *ifra, struct in6_ifaddr *ia, int flags) { int plen = -1; struct sockaddr_in6 dst6; struct in6_addrlifetime *lt; char ip6buf[INET6_ADDRSTRLEN]; /* Validate parameters */ if (ifp == NULL || ifra == NULL) /* this maybe redundant */ return (EINVAL); /* * The destination address for a p2p link must have a family * of AF_UNSPEC or AF_INET6. */ if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && ifra->ifra_dstaddr.sin6_family != AF_INET6 && ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) return (EAFNOSUPPORT); /* * Validate address */ if (ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6) || ifra->ifra_addr.sin6_family != AF_INET6) return (EINVAL); /* * validate ifra_prefixmask. don't check sin6_family, netmask * does not carry fields other than sin6_len. */ if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) return (EINVAL); /* * Because the IPv6 address architecture is classless, we require * users to specify a (non 0) prefix length (mask) for a new address. * We also require the prefix (when specified) mask is valid, and thus * reject a non-consecutive mask. */ if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) return (EINVAL); if (ifra->ifra_prefixmask.sin6_len != 0) { plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, (u_char *)&ifra->ifra_prefixmask + ifra->ifra_prefixmask.sin6_len); if (plen <= 0) return (EINVAL); } else { /* * In this case, ia must not be NULL. We just use its prefix * length. */ plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); } /* * If the destination address on a p2p interface is specified, * and the address is a scoped one, validate/set the scope * zone identifier. */ dst6 = ifra->ifra_dstaddr; if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 && (dst6.sin6_family == AF_INET6)) { struct in6_addr in6_tmp; u_int32_t zoneid; in6_tmp = dst6.sin6_addr; if (in6_setscope(&in6_tmp, ifp, &zoneid)) return (EINVAL); /* XXX: should be impossible */ if (dst6.sin6_scope_id != 0) { if (dst6.sin6_scope_id != zoneid) return (EINVAL); } else /* user omit to specify the ID. */ dst6.sin6_scope_id = zoneid; /* convert into the internal form */ if (sa6_embedscope(&dst6, 0)) return (EINVAL); /* XXX: should be impossible */ } /* Modify original ifra_dstaddr to reflect changes */ ifra->ifra_dstaddr = dst6; /* * The destination address can be specified only for a p2p or a * loopback interface. If specified, the corresponding prefix length * must be 128. */ if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { /* XXX: noisy message */ nd6log((LOG_INFO, "in6_update_ifa: a destination can " "be specified for a p2p or a loopback IF only\n")); return (EINVAL); } if (plen != 128) { nd6log((LOG_INFO, "in6_update_ifa: prefixlen should " "be 128 when dstaddr is specified\n")); return (EINVAL); } } /* lifetime consistency check */ lt = &ifra->ifra_lifetime; if (lt->ia6t_pltime > lt->ia6t_vltime) return (EINVAL); if (lt->ia6t_vltime == 0) { /* * the following log might be noisy, but this is a typical * configuration mistake or a tool's bug. */ nd6log((LOG_INFO, "in6_update_ifa: valid lifetime is 0 for %s\n", ip6_sprintf(ip6buf, &ifra->ifra_addr.sin6_addr))); if (ia == NULL) return (0); /* there's nothing to do */ } /* Check prefix mask */ if (ia != NULL && ifra->ifra_prefixmask.sin6_len != 0) { /* * We prohibit changing the prefix length of an existing * address, because * + such an operation should be rare in IPv6, and * + the operation would confuse prefix management. */ if (ia->ia_prefixmask.sin6_len != 0 && in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { nd6log((LOG_INFO, "in6_validate_ifa: the prefix length " "of an existing %s address should not be changed\n", ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); return (EINVAL); } } return (0); } /* * Allocate a new ifaddr and link it into chains. */ static struct in6_ifaddr * in6_alloc_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, int flags) { struct in6_ifaddr *ia; /* * When in6_alloc_ifa() is called in a process of a received * RA, it is called under an interrupt context. So, we should * call malloc with M_NOWAIT. */ ia = (struct in6_ifaddr *)ifa_alloc(sizeof(*ia), M_NOWAIT); if (ia == NULL) return (NULL); LIST_INIT(&ia->ia6_memberships); /* Initialize the address and masks, and put time stamp */ ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; ia->ia_addr.sin6_family = AF_INET6; ia->ia_addr.sin6_len = sizeof(ia->ia_addr); /* XXX: Can we assign ,sin6_addr and skip the rest? */ ia->ia_addr = ifra->ifra_addr; ia->ia6_createtime = time_uptime; if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { /* * Some functions expect that ifa_dstaddr is not * NULL for p2p interfaces. */ ia->ia_ifa.ifa_dstaddr = (struct sockaddr *)&ia->ia_dstaddr; } else { ia->ia_ifa.ifa_dstaddr = NULL; } /* set prefix mask if any */ ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask; if (ifra->ifra_prefixmask.sin6_len != 0) { ia->ia_prefixmask.sin6_family = AF_INET6; ia->ia_prefixmask.sin6_len = ifra->ifra_prefixmask.sin6_len; ia->ia_prefixmask.sin6_addr = ifra->ifra_prefixmask.sin6_addr; } ia->ia_ifp = ifp; ifa_ref(&ia->ia_ifa); /* if_addrhead */ IF_ADDR_WLOCK(ifp); CK_STAILQ_INSERT_TAIL(&ifp->if_addrhead, &ia->ia_ifa, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_ref(&ia->ia_ifa); /* in6_ifaddrhead */ IN6_IFADDR_WLOCK(); CK_STAILQ_INSERT_TAIL(&V_in6_ifaddrhead, ia, ia_link); - LIST_INSERT_HEAD(IN6ADDR_HASH(&ia->ia_addr.sin6_addr), ia, ia6_hash); + CK_LIST_INSERT_HEAD(IN6ADDR_HASH(&ia->ia_addr.sin6_addr), ia, ia6_hash); IN6_IFADDR_WUNLOCK(); return (ia); } /* * Update/configure interface address parameters: * * 1) Update lifetime * 2) Update interface metric ad flags * 3) Notify other subsystems */ static int in6_update_ifa_internal(struct ifnet *ifp, struct in6_aliasreq *ifra, struct in6_ifaddr *ia, int hostIsNew, int flags) { int error; /* update timestamp */ ia->ia6_updatetime = time_uptime; /* * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred * to see if the address is deprecated or invalidated, but initialize * these members for applications. */ ia->ia6_lifetime = ifra->ifra_lifetime; if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { ia->ia6_lifetime.ia6t_expire = time_uptime + ia->ia6_lifetime.ia6t_vltime; } else ia->ia6_lifetime.ia6t_expire = 0; if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { ia->ia6_lifetime.ia6t_preferred = time_uptime + ia->ia6_lifetime.ia6t_pltime; } else ia->ia6_lifetime.ia6t_preferred = 0; /* * backward compatibility - if IN6_IFF_DEPRECATED is set from the * userland, make it deprecated. */ if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) { ia->ia6_lifetime.ia6t_pltime = 0; ia->ia6_lifetime.ia6t_preferred = time_uptime; } /* * configure address flags. */ ia->ia6_flags = ifra->ifra_flags; /* * Make the address tentative before joining multicast addresses, * so that corresponding MLD responses would not have a tentative * source address. */ ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */ /* * DAD should be performed for an new address or addresses on * an interface with ND6_IFF_IFDISABLED. */ if (in6if_do_dad(ifp) && (hostIsNew || (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED))) ia->ia6_flags |= IN6_IFF_TENTATIVE; /* notify other subsystems */ error = in6_notify_ifa(ifp, ia, ifra, hostIsNew); return (error); } /* * Do link-level ifa job: * 1) Add lle entry for added address * 2) Notifies routing socket users about new address * 3) join appropriate multicast group * 4) start DAD if enabled */ static int in6_broadcast_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, struct in6_ifaddr *ia, int flags) { struct in6_multi *in6m_sol; int error = 0; /* Add local address to lltable, if necessary (ex. on p2p link). */ if ((error = nd6_add_ifa_lle(ia)) != 0) { in6_purgeaddr(&ia->ia_ifa); ifa_free(&ia->ia_ifa); return (error); } /* Join necessary multicast groups. */ in6m_sol = NULL; if ((ifp->if_flags & IFF_MULTICAST) != 0) { error = in6_update_ifa_join_mc(ifp, ifra, ia, flags, &in6m_sol); if (error != 0) { in6_purgeaddr(&ia->ia_ifa); ifa_free(&ia->ia_ifa); return (error); } } /* Perform DAD, if the address is TENTATIVE. */ if ((ia->ia6_flags & IN6_IFF_TENTATIVE)) { int delay, mindelay, maxdelay; delay = 0; if ((flags & IN6_IFAUPDATE_DADDELAY)) { /* * We need to impose a delay before sending an NS * for DAD. Check if we also needed a delay for the * corresponding MLD message. If we did, the delay * should be larger than the MLD delay (this could be * relaxed a bit, but this simple logic is at least * safe). * XXX: Break data hiding guidelines and look at * state for the solicited multicast group. */ mindelay = 0; if (in6m_sol != NULL && in6m_sol->in6m_state == MLD_REPORTING_MEMBER) { mindelay = in6m_sol->in6m_timer; } maxdelay = MAX_RTR_SOLICITATION_DELAY * hz; if (maxdelay - mindelay == 0) delay = 0; else { delay = (arc4random() % (maxdelay - mindelay)) + mindelay; } } nd6_dad_start((struct ifaddr *)ia, delay); } in6_newaddrmsg(ia, RTM_ADD); ifa_free(&ia->ia_ifa); return (error); } void in6_purgeaddr(struct ifaddr *ifa) { struct ifnet *ifp = ifa->ifa_ifp; struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; struct in6_multi_mship *imm; int plen, error; if (ifa->ifa_carp) (*carp_detach_p)(ifa, false); /* * Remove the loopback route to the interface address. * The check for the current setting of "nd6_useloopback" * is not needed. */ if (ia->ia_flags & IFA_RTSELF) { error = ifa_del_loopback_route((struct ifaddr *)ia, (struct sockaddr *)&ia->ia_addr); if (error == 0) ia->ia_flags &= ~IFA_RTSELF; } /* stop DAD processing */ nd6_dad_stop(ifa); /* Leave multicast groups. */ while ((imm = LIST_FIRST(&ia->ia6_memberships)) != NULL) { LIST_REMOVE(imm, i6mm_chain); if (imm->i6mm_maddr != NULL) in6_leavegroup(imm->i6mm_maddr, NULL); free(imm, M_IP6MADDR); } plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ if ((ia->ia_flags & IFA_ROUTE) && plen == 128) { error = rtinit(&(ia->ia_ifa), RTM_DELETE, ia->ia_flags | (ia->ia_dstaddr.sin6_family == AF_INET6 ? RTF_HOST : 0)); if (error != 0) log(LOG_INFO, "%s: err=%d, destination address delete " "failed\n", __func__, error); ia->ia_flags &= ~IFA_ROUTE; } in6_newaddrmsg(ia, RTM_DELETE); in6_unlink_ifa(ia, ifp); } static void in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) { char ip6buf[INET6_ADDRSTRLEN]; int remove_lle; IF_ADDR_WLOCK(ifp); CK_STAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifaddr, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_free(&ia->ia_ifa); /* if_addrhead */ /* * Defer the release of what might be the last reference to the * in6_ifaddr so that it can't be freed before the remainder of the * cleanup. */ IN6_IFADDR_WLOCK(); CK_STAILQ_REMOVE(&V_in6_ifaddrhead, ia, in6_ifaddr, ia_link); - LIST_REMOVE(ia, ia6_hash); + CK_LIST_REMOVE(ia, ia6_hash); IN6_IFADDR_WUNLOCK(); /* * Release the reference to the base prefix. There should be a * positive reference. */ remove_lle = 0; if (ia->ia6_ndpr == NULL) { nd6log((LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address " "%s has no prefix\n", ip6_sprintf(ip6buf, IA6_IN6(ia)))); } else { ia->ia6_ndpr->ndpr_addrcnt--; /* Do not delete lles within prefix if refcont != 0 */ if (ia->ia6_ndpr->ndpr_addrcnt == 0) remove_lle = 1; ia->ia6_ndpr = NULL; } nd6_rem_ifa_lle(ia, remove_lle); /* * Also, if the address being removed is autoconf'ed, call * pfxlist_onlink_check() since the release might affect the status of * other (detached) addresses. */ if ((ia->ia6_flags & IN6_IFF_AUTOCONF)) { pfxlist_onlink_check(); } ifa_free(&ia->ia_ifa); /* in6_ifaddrhead */ } /* * Notifies other subsystems about address change/arrival: * 1) Notifies device handler on the first IPv6 address assignment * 2) Handle routing table changes for P2P links and route * 3) Handle routing table changes for address host route */ static int in6_notify_ifa(struct ifnet *ifp, struct in6_ifaddr *ia, struct in6_aliasreq *ifra, int hostIsNew) { int error = 0, plen, ifacount = 0; struct ifaddr *ifa; struct sockaddr_in6 *pdst; char ip6buf[INET6_ADDRSTRLEN]; /* * Give the interface a chance to initialize * if this is its first address, */ if (hostIsNew != 0) { IF_ADDR_RLOCK(ifp); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; ifacount++; } IF_ADDR_RUNLOCK(ifp); } if (ifacount <= 1 && ifp->if_ioctl) { error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); if (error) goto done; } /* * If a new destination address is specified, scrub the old one and * install the new destination. Note that the interface must be * p2p or loopback. */ pdst = &ifra->ifra_dstaddr; if (pdst->sin6_family == AF_INET6 && !IN6_ARE_ADDR_EQUAL(&pdst->sin6_addr, &ia->ia_dstaddr.sin6_addr)) { if ((ia->ia_flags & IFA_ROUTE) != 0 && (rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST) != 0)) { nd6log((LOG_ERR, "in6_update_ifa_internal: failed to " "remove a route to the old destination: %s\n", ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); /* proceed anyway... */ } else ia->ia_flags &= ~IFA_ROUTE; ia->ia_dstaddr = *pdst; } /* * If a new destination address is specified for a point-to-point * interface, install a route to the destination as an interface * direct route. * XXX: the logic below rejects assigning multiple addresses on a p2p * interface that share the same destination. */ plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) { int rtflags = RTF_UP | RTF_HOST; /* * Handle the case for ::1 . */ if (ifp->if_flags & IFF_LOOPBACK) ia->ia_flags |= IFA_RTSELF; error = rtinit(&ia->ia_ifa, RTM_ADD, ia->ia_flags | rtflags); if (error) goto done; ia->ia_flags |= IFA_ROUTE; } /* * add a loopback route to self if not exists */ if (!(ia->ia_flags & IFA_RTSELF) && V_nd6_useloopback) { error = ifa_add_loopback_route((struct ifaddr *)ia, (struct sockaddr *)&ia->ia_addr); if (error == 0) ia->ia_flags |= IFA_RTSELF; } done: WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Invoking IPv6 network device address event may sleep"); EVENTHANDLER_INVOKE(ifaddr_event, ifp); return (error); } /* * Find an IPv6 interface link-local address specific to an interface. * ifaddr is returned referenced. */ struct in6_ifaddr * in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags) { struct ifaddr *ifa; IF_ADDR_RLOCK(ifp); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { if ((((struct in6_ifaddr *)ifa)->ia6_flags & ignoreflags) != 0) continue; ifa_ref(ifa); break; } } IF_ADDR_RUNLOCK(ifp); return ((struct in6_ifaddr *)ifa); } /* * find the interface address corresponding to a given IPv6 address. * ifaddr is returned referenced. */ struct in6_ifaddr * in6ifa_ifwithaddr(const struct in6_addr *addr, uint32_t zoneid) { struct rm_priotracker in6_ifa_tracker; struct in6_ifaddr *ia; IN6_IFADDR_RLOCK(&in6_ifa_tracker); - LIST_FOREACH(ia, IN6ADDR_HASH(addr), ia6_hash) { + CK_LIST_FOREACH(ia, IN6ADDR_HASH(addr), ia6_hash) { if (IN6_ARE_ADDR_EQUAL(IA6_IN6(ia), addr)) { if (zoneid != 0 && zoneid != ia->ia_addr.sin6_scope_id) continue; ifa_ref(&ia->ia_ifa); break; } } IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); return (ia); } /* * find the internet address corresponding to a given interface and address. * ifaddr is returned referenced. */ struct in6_ifaddr * in6ifa_ifpwithaddr(struct ifnet *ifp, const struct in6_addr *addr) { struct ifaddr *ifa; IF_ADDR_RLOCK(ifp); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) { ifa_ref(ifa); break; } } IF_ADDR_RUNLOCK(ifp); return ((struct in6_ifaddr *)ifa); } /* * Find a link-local scoped address on ifp and return it if any. */ struct in6_ifaddr * in6ifa_llaonifp(struct ifnet *ifp) { struct sockaddr_in6 *sin6; struct ifaddr *ifa; if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) return (NULL); IF_ADDR_RLOCK(ifp); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr) || IN6_IS_ADDR_MC_INTFACELOCAL(&sin6->sin6_addr) || IN6_IS_ADDR_MC_NODELOCAL(&sin6->sin6_addr)) break; } IF_ADDR_RUNLOCK(ifp); return ((struct in6_ifaddr *)ifa); } /* * Convert IP6 address to printable (loggable) representation. Caller * has to make sure that ip6buf is at least INET6_ADDRSTRLEN long. */ static char digits[] = "0123456789abcdef"; char * ip6_sprintf(char *ip6buf, const struct in6_addr *addr) { int i, cnt = 0, maxcnt = 0, idx = 0, index = 0; char *cp; const u_int16_t *a = (const u_int16_t *)addr; const u_int8_t *d; int dcolon = 0, zero = 0; cp = ip6buf; for (i = 0; i < 8; i++) { if (*(a + i) == 0) { cnt++; if (cnt == 1) idx = i; } else if (maxcnt < cnt) { maxcnt = cnt; index = idx; cnt = 0; } } if (maxcnt < cnt) { maxcnt = cnt; index = idx; } for (i = 0; i < 8; i++) { if (dcolon == 1) { if (*a == 0) { if (i == 7) *cp++ = ':'; a++; continue; } else dcolon = 2; } if (*a == 0) { if (dcolon == 0 && *(a + 1) == 0 && i == index) { if (i == 0) *cp++ = ':'; *cp++ = ':'; dcolon = 1; } else { *cp++ = '0'; *cp++ = ':'; } a++; continue; } d = (const u_char *)a; /* Try to eliminate leading zeros in printout like in :0001. */ zero = 1; *cp = digits[*d >> 4]; if (*cp != '0') { zero = 0; cp++; } *cp = digits[*d++ & 0xf]; if (zero == 0 || (*cp != '0')) { zero = 0; cp++; } *cp = digits[*d >> 4]; if (zero == 0 || (*cp != '0')) { zero = 0; cp++; } *cp++ = digits[*d & 0xf]; *cp++ = ':'; a++; } *--cp = '\0'; return (ip6buf); } int in6_localaddr(struct in6_addr *in6) { struct rm_priotracker in6_ifa_tracker; struct in6_ifaddr *ia; if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) return 1; IN6_IFADDR_RLOCK(&in6_ifa_tracker); CK_STAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, &ia->ia_prefixmask.sin6_addr)) { IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); return 1; } } IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); return (0); } /* * Return 1 if an internet address is for the local host and configured * on one of its interfaces. */ int in6_localip(struct in6_addr *in6) { struct rm_priotracker in6_ifa_tracker; struct in6_ifaddr *ia; IN6_IFADDR_RLOCK(&in6_ifa_tracker); - LIST_FOREACH(ia, IN6ADDR_HASH(in6), ia6_hash) { + CK_LIST_FOREACH(ia, IN6ADDR_HASH(in6), ia6_hash) { if (IN6_ARE_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr)) { IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); return (1); } } IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); return (0); } /* * Return 1 if an internet address is configured on an interface. */ int in6_ifhasaddr(struct ifnet *ifp, struct in6_addr *addr) { struct in6_addr in6; struct ifaddr *ifa; struct in6_ifaddr *ia6; in6 = *addr; if (in6_clearscope(&in6)) return (0); in6_setscope(&in6, ifp, NULL); IF_ADDR_RLOCK(ifp); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; ia6 = (struct in6_ifaddr *)ifa; if (IN6_ARE_ADDR_EQUAL(&ia6->ia_addr.sin6_addr, &in6)) { IF_ADDR_RUNLOCK(ifp); return (1); } } IF_ADDR_RUNLOCK(ifp); return (0); } int in6_is_addr_deprecated(struct sockaddr_in6 *sa6) { struct rm_priotracker in6_ifa_tracker; struct in6_ifaddr *ia; IN6_IFADDR_RLOCK(&in6_ifa_tracker); - LIST_FOREACH(ia, IN6ADDR_HASH(&sa6->sin6_addr), ia6_hash) { + CK_LIST_FOREACH(ia, IN6ADDR_HASH(&sa6->sin6_addr), ia6_hash) { if (IN6_ARE_ADDR_EQUAL(IA6_IN6(ia), &sa6->sin6_addr)) { if (ia->ia6_flags & IN6_IFF_DEPRECATED) { IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); return (1); /* true */ } break; } } IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); return (0); /* false */ } /* * return length of part which dst and src are equal * hard coding... */ int in6_matchlen(struct in6_addr *src, struct in6_addr *dst) { int match = 0; u_char *s = (u_char *)src, *d = (u_char *)dst; u_char *lim = s + 16, r; while (s < lim) if ((r = (*d++ ^ *s++)) != 0) { while (r < 128) { match++; r <<= 1; } break; } else match += 8; return match; } /* XXX: to be scope conscious */ int in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len) { int bytelen, bitlen; /* sanity check */ if (0 > len || len > 128) { log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", len); return (0); } bytelen = len / 8; bitlen = len % 8; if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) return (0); if (bitlen != 0 && p1->s6_addr[bytelen] >> (8 - bitlen) != p2->s6_addr[bytelen] >> (8 - bitlen)) return (0); return (1); } void in6_prefixlen2mask(struct in6_addr *maskp, int len) { u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; int bytelen, bitlen, i; /* sanity check */ if (0 > len || len > 128) { log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", len); return; } bzero(maskp, sizeof(*maskp)); bytelen = len / 8; bitlen = len % 8; for (i = 0; i < bytelen; i++) maskp->s6_addr[i] = 0xff; if (bitlen) maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; } /* * return the best address out of the same scope. if no address was * found, return the first valid address from designated IF. */ struct in6_ifaddr * in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst) { int dst_scope = in6_addrscope(dst), blen = -1, tlen; struct ifaddr *ifa; struct in6_ifaddr *besta = NULL; struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ dep[0] = dep[1] = NULL; /* * We first look for addresses in the same scope. * If there is one, return it. * If two or more, return one which matches the dst longest. * If none, return one of global addresses assigned other ifs. */ IF_ADDR_RLOCK(ifp); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) continue; /* XXX: is there any case to allow anycast? */ if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) continue; /* don't use this interface */ if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) continue; if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { if (V_ip6_use_deprecated) dep[0] = (struct in6_ifaddr *)ifa; continue; } if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { /* * call in6_matchlen() as few as possible */ if (besta) { if (blen == -1) blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); tlen = in6_matchlen(IFA_IN6(ifa), dst); if (tlen > blen) { blen = tlen; besta = (struct in6_ifaddr *)ifa; } } else besta = (struct in6_ifaddr *)ifa; } } if (besta) { ifa_ref(&besta->ia_ifa); IF_ADDR_RUNLOCK(ifp); return (besta); } CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) continue; /* XXX: is there any case to allow anycast? */ if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) continue; /* don't use this interface */ if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) continue; if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { if (V_ip6_use_deprecated) dep[1] = (struct in6_ifaddr *)ifa; continue; } if (ifa != NULL) ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); return (struct in6_ifaddr *)ifa; } /* use the last-resort values, that are, deprecated addresses */ if (dep[0]) { ifa_ref((struct ifaddr *)dep[0]); IF_ADDR_RUNLOCK(ifp); return dep[0]; } if (dep[1]) { ifa_ref((struct ifaddr *)dep[1]); IF_ADDR_RUNLOCK(ifp); return dep[1]; } IF_ADDR_RUNLOCK(ifp); return NULL; } /* * perform DAD when interface becomes IFF_UP. */ void in6_if_up(struct ifnet *ifp) { struct ifaddr *ifa; struct in6_ifaddr *ia; IF_ADDR_RLOCK(ifp); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; ia = (struct in6_ifaddr *)ifa; if (ia->ia6_flags & IN6_IFF_TENTATIVE) { /* * The TENTATIVE flag was likely set by hand * beforehand, implicitly indicating the need for DAD. * We may be able to skip the random delay in this * case, but we impose delays just in case. */ nd6_dad_start(ifa, arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz)); } } IF_ADDR_RUNLOCK(ifp); /* * special cases, like 6to4, are handled in in6_ifattach */ in6_ifattach(ifp, NULL); } int in6if_do_dad(struct ifnet *ifp) { if ((ifp->if_flags & IFF_LOOPBACK) != 0) return (0); if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) || (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD)) return (0); /* * Our DAD routine requires the interface up and running. * However, some interfaces can be up before the RUNNING * status. Additionally, users may try to assign addresses * before the interface becomes up (or running). * This function returns EAGAIN in that case. * The caller should mark "tentative" on the address instead of * performing DAD immediately. */ if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))) return (EAGAIN); return (1); } /* * Calculate max IPv6 MTU through all the interfaces and store it * to in6_maxmtu. */ void in6_setmaxmtu(void) { unsigned long maxmtu = 0; struct ifnet *ifp; IFNET_RLOCK_NOSLEEP(); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { /* this function can be called during ifnet initialization */ if (!ifp->if_afdata[AF_INET6]) continue; if ((ifp->if_flags & IFF_LOOPBACK) == 0 && IN6_LINKMTU(ifp) > maxmtu) maxmtu = IN6_LINKMTU(ifp); } IFNET_RUNLOCK_NOSLEEP(); if (maxmtu) /* update only when maxmtu is positive */ V_in6_maxmtu = maxmtu; } /* * Provide the length of interface identifiers to be used for the link attached * to the given interface. The length should be defined in "IPv6 over * xxx-link" document. Note that address architecture might also define * the length for a particular set of address prefixes, regardless of the * link type. As clarified in rfc2462bis, those two definitions should be * consistent, and those really are as of August 2004. */ int in6_if2idlen(struct ifnet *ifp) { switch (ifp->if_type) { case IFT_ETHER: /* RFC2464 */ case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */ case IFT_L2VLAN: /* ditto */ case IFT_BRIDGE: /* bridge(4) only does Ethernet-like links */ case IFT_INFINIBAND: return (64); case IFT_PPP: /* RFC2472 */ return (64); case IFT_FRELAY: /* RFC2590 */ return (64); case IFT_IEEE1394: /* RFC3146 */ return (64); case IFT_GIF: return (64); /* draft-ietf-v6ops-mech-v2-07 */ case IFT_LOOP: return (64); /* XXX: is this really correct? */ default: /* * Unknown link type: * It might be controversial to use the today's common constant * of 64 for these cases unconditionally. For full compliance, * we should return an error in this case. On the other hand, * if we simply miss the standard for the link type or a new * standard is defined for a new link type, the IFID length * is very likely to be the common constant. As a compromise, * we always use the constant, but make an explicit notice * indicating the "unknown" case. */ printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type); return (64); } } #include struct in6_llentry { struct llentry base; }; #define IN6_LLTBL_DEFAULT_HSIZE 32 #define IN6_LLTBL_HASH(k, h) \ (((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1)) /* * Do actual deallocation of @lle. */ static void in6_lltable_destroy_lle_unlocked(epoch_context_t ctx) { struct llentry *lle; lle = __containerof(ctx, struct llentry, lle_epoch_ctx); LLE_LOCK_DESTROY(lle); LLE_REQ_DESTROY(lle); free(lle, M_LLTABLE); } /* * Called by LLE_FREE_LOCKED when number of references * drops to zero. */ static void in6_lltable_destroy_lle(struct llentry *lle) { LLE_WUNLOCK(lle); epoch_call(net_epoch_preempt, &lle->lle_epoch_ctx, in6_lltable_destroy_lle_unlocked); } static struct llentry * in6_lltable_new(const struct in6_addr *addr6, u_int flags) { struct in6_llentry *lle; lle = malloc(sizeof(struct in6_llentry), M_LLTABLE, M_NOWAIT | M_ZERO); if (lle == NULL) /* NB: caller generates msg */ return NULL; lle->base.r_l3addr.addr6 = *addr6; lle->base.lle_refcnt = 1; lle->base.lle_free = in6_lltable_destroy_lle; LLE_LOCK_INIT(&lle->base); LLE_REQ_INIT(&lle->base); callout_init(&lle->base.lle_timer, 1); return (&lle->base); } static int in6_lltable_match_prefix(const struct sockaddr *saddr, const struct sockaddr *smask, u_int flags, struct llentry *lle) { const struct in6_addr *addr, *mask, *lle_addr; addr = &((const struct sockaddr_in6 *)saddr)->sin6_addr; mask = &((const struct sockaddr_in6 *)smask)->sin6_addr; lle_addr = &lle->r_l3addr.addr6; if (IN6_ARE_MASKED_ADDR_EQUAL(lle_addr, addr, mask) == 0) return (0); if (lle->la_flags & LLE_IFADDR) { /* * Delete LLE_IFADDR records IFF address & flag matches. * Note that addr is the interface address within prefix * being matched. */ if (IN6_ARE_ADDR_EQUAL(addr, lle_addr) && (flags & LLE_STATIC) != 0) return (1); return (0); } /* flags & LLE_STATIC means deleting both dynamic and static entries */ if ((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC)) return (1); return (0); } static void in6_lltable_free_entry(struct lltable *llt, struct llentry *lle) { struct ifnet *ifp; LLE_WLOCK_ASSERT(lle); KASSERT(llt != NULL, ("lltable is NULL")); /* Unlink entry from table */ if ((lle->la_flags & LLE_LINKED) != 0) { ifp = llt->llt_ifp; IF_AFDATA_WLOCK_ASSERT(ifp); lltable_unlink_entry(llt, lle); } if (callout_stop(&lle->lle_timer) > 0) LLE_REMREF(lle); llentry_free(lle); } static int in6_lltable_rtcheck(struct ifnet *ifp, u_int flags, const struct sockaddr *l3addr) { const struct sockaddr_in6 *sin6; struct nhop6_basic nh6; struct in6_addr dst; uint32_t scopeid; int error; char ip6buf[INET6_ADDRSTRLEN]; int fibnum; KASSERT(l3addr->sa_family == AF_INET6, ("sin_family %d", l3addr->sa_family)); sin6 = (const struct sockaddr_in6 *)l3addr; in6_splitscope(&sin6->sin6_addr, &dst, &scopeid); fibnum = V_rt_add_addr_allfibs ? RT_DEFAULT_FIB : ifp->if_fib; error = fib6_lookup_nh_basic(fibnum, &dst, scopeid, 0, 0, &nh6); if (error != 0 || (nh6.nh_flags & NHF_GATEWAY) || nh6.nh_ifp != ifp) { struct ifaddr *ifa; /* * Create an ND6 cache for an IPv6 neighbor * that is not covered by our own prefix. */ NET_EPOCH_ENTER(); ifa = ifaof_ifpforaddr(l3addr, ifp); if (ifa != NULL) { NET_EPOCH_EXIT(); return 0; } NET_EPOCH_EXIT(); log(LOG_INFO, "IPv6 address: \"%s\" is not on the network\n", ip6_sprintf(ip6buf, &sin6->sin6_addr)); return EINVAL; } return 0; } /* * Called by the datapath to indicate that the entry was used. */ static void in6_lltable_mark_used(struct llentry *lle) { LLE_REQ_LOCK(lle); lle->r_skip_req = 0; /* * Set the hit time so the callback function * can determine the remaining time before * transiting to the DELAY state. */ lle->lle_hittime = time_uptime; LLE_REQ_UNLOCK(lle); } static inline uint32_t in6_lltable_hash_dst(const struct in6_addr *dst, uint32_t hsize) { return (IN6_LLTBL_HASH(dst->s6_addr32[3], hsize)); } static uint32_t in6_lltable_hash(const struct llentry *lle, uint32_t hsize) { return (in6_lltable_hash_dst(&lle->r_l3addr.addr6, hsize)); } static void in6_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)sa; bzero(sin6, sizeof(*sin6)); sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(*sin6); sin6->sin6_addr = lle->r_l3addr.addr6; } static inline struct llentry * in6_lltable_find_dst(struct lltable *llt, const struct in6_addr *dst) { struct llentry *lle; struct llentries *lleh; u_int hashidx; hashidx = in6_lltable_hash_dst(dst, llt->llt_hsize); lleh = &llt->lle_head[hashidx]; CK_LIST_FOREACH(lle, lleh, lle_next) { if (lle->la_flags & LLE_DELETED) continue; if (IN6_ARE_ADDR_EQUAL(&lle->r_l3addr.addr6, dst)) break; } return (lle); } static void in6_lltable_delete_entry(struct lltable *llt, struct llentry *lle) { lle->la_flags |= LLE_DELETED; EVENTHANDLER_INVOKE(lle_event, lle, LLENTRY_DELETED); #ifdef DIAGNOSTIC log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle); #endif llentry_free(lle); } static struct llentry * in6_lltable_alloc(struct lltable *llt, u_int flags, const struct sockaddr *l3addr) { const struct sockaddr_in6 *sin6 = (const struct sockaddr_in6 *)l3addr; struct ifnet *ifp = llt->llt_ifp; struct llentry *lle; char linkhdr[LLE_MAX_LINKHDR]; size_t linkhdrsize; int lladdr_off; KASSERT(l3addr->sa_family == AF_INET6, ("sin_family %d", l3addr->sa_family)); /* * A route that covers the given address must have * been installed 1st because we are doing a resolution, * verify this. */ if (!(flags & LLE_IFADDR) && in6_lltable_rtcheck(ifp, flags, l3addr) != 0) return (NULL); lle = in6_lltable_new(&sin6->sin6_addr, flags); if (lle == NULL) { log(LOG_INFO, "lla_lookup: new lle malloc failed\n"); return (NULL); } lle->la_flags = flags; if ((flags & LLE_IFADDR) == LLE_IFADDR) { linkhdrsize = LLE_MAX_LINKHDR; if (lltable_calc_llheader(ifp, AF_INET6, IF_LLADDR(ifp), linkhdr, &linkhdrsize, &lladdr_off) != 0) { epoch_call(net_epoch_preempt, &lle->lle_epoch_ctx, in6_lltable_destroy_lle_unlocked); return (NULL); } lltable_set_entry_addr(ifp, lle, linkhdr, linkhdrsize, lladdr_off); lle->la_flags |= LLE_STATIC; } if ((lle->la_flags & LLE_STATIC) != 0) lle->ln_state = ND6_LLINFO_REACHABLE; return (lle); } static struct llentry * in6_lltable_lookup(struct lltable *llt, u_int flags, const struct sockaddr *l3addr) { const struct sockaddr_in6 *sin6 = (const struct sockaddr_in6 *)l3addr; struct llentry *lle; IF_AFDATA_LOCK_ASSERT(llt->llt_ifp); KASSERT(l3addr->sa_family == AF_INET6, ("sin_family %d", l3addr->sa_family)); lle = in6_lltable_find_dst(llt, &sin6->sin6_addr); if (lle == NULL) return (NULL); KASSERT((flags & (LLE_UNLOCKED|LLE_EXCLUSIVE)) != (LLE_UNLOCKED|LLE_EXCLUSIVE),("wrong lle request flags: 0x%X", flags)); if (flags & LLE_UNLOCKED) return (lle); if (flags & LLE_EXCLUSIVE) LLE_WLOCK(lle); else LLE_RLOCK(lle); return (lle); } static int in6_lltable_dump_entry(struct lltable *llt, struct llentry *lle, struct sysctl_req *wr) { struct ifnet *ifp = llt->llt_ifp; /* XXX stack use */ struct { struct rt_msghdr rtm; struct sockaddr_in6 sin6; /* * ndp.c assumes that sdl is word aligned */ #ifdef __LP64__ uint32_t pad; #endif struct sockaddr_dl sdl; } ndpc; struct sockaddr_dl *sdl; int error; bzero(&ndpc, sizeof(ndpc)); /* skip deleted entries */ if ((lle->la_flags & LLE_DELETED) == LLE_DELETED) return (0); /* Skip if jailed and not a valid IP of the prison. */ lltable_fill_sa_entry(lle, (struct sockaddr *)&ndpc.sin6); if (prison_if(wr->td->td_ucred, (struct sockaddr *)&ndpc.sin6) != 0) return (0); /* * produce a msg made of: * struct rt_msghdr; * struct sockaddr_in6 (IPv6) * struct sockaddr_dl; */ ndpc.rtm.rtm_msglen = sizeof(ndpc); ndpc.rtm.rtm_version = RTM_VERSION; ndpc.rtm.rtm_type = RTM_GET; ndpc.rtm.rtm_flags = RTF_UP; ndpc.rtm.rtm_addrs = RTA_DST | RTA_GATEWAY; if (V_deembed_scopeid) sa6_recoverscope(&ndpc.sin6); /* publish */ if (lle->la_flags & LLE_PUB) ndpc.rtm.rtm_flags |= RTF_ANNOUNCE; sdl = &ndpc.sdl; sdl->sdl_family = AF_LINK; sdl->sdl_len = sizeof(*sdl); sdl->sdl_index = ifp->if_index; sdl->sdl_type = ifp->if_type; if ((lle->la_flags & LLE_VALID) == LLE_VALID) { sdl->sdl_alen = ifp->if_addrlen; bcopy(lle->ll_addr, LLADDR(sdl), ifp->if_addrlen); } else { sdl->sdl_alen = 0; bzero(LLADDR(sdl), ifp->if_addrlen); } if (lle->la_expire != 0) ndpc.rtm.rtm_rmx.rmx_expire = lle->la_expire + lle->lle_remtime / hz + time_second - time_uptime; ndpc.rtm.rtm_flags |= (RTF_HOST | RTF_LLDATA); if (lle->la_flags & LLE_STATIC) ndpc.rtm.rtm_flags |= RTF_STATIC; if (lle->la_flags & LLE_IFADDR) ndpc.rtm.rtm_flags |= RTF_PINNED; if (lle->ln_router != 0) ndpc.rtm.rtm_flags |= RTF_GATEWAY; ndpc.rtm.rtm_rmx.rmx_pksent = lle->la_asked; /* Store state in rmx_weight value */ ndpc.rtm.rtm_rmx.rmx_state = lle->ln_state; ndpc.rtm.rtm_index = ifp->if_index; error = SYSCTL_OUT(wr, &ndpc, sizeof(ndpc)); return (error); } static struct lltable * in6_lltattach(struct ifnet *ifp) { struct lltable *llt; llt = lltable_allocate_htbl(IN6_LLTBL_DEFAULT_HSIZE); llt->llt_af = AF_INET6; llt->llt_ifp = ifp; llt->llt_lookup = in6_lltable_lookup; llt->llt_alloc_entry = in6_lltable_alloc; llt->llt_delete_entry = in6_lltable_delete_entry; llt->llt_dump_entry = in6_lltable_dump_entry; llt->llt_hash = in6_lltable_hash; llt->llt_fill_sa_entry = in6_lltable_fill_sa_entry; llt->llt_free_entry = in6_lltable_free_entry; llt->llt_match_prefix = in6_lltable_match_prefix; llt->llt_mark_used = in6_lltable_mark_used; lltable_link(llt); return (llt); } void * in6_domifattach(struct ifnet *ifp) { struct in6_ifextra *ext; /* There are not IPv6-capable interfaces. */ switch (ifp->if_type) { case IFT_PFLOG: case IFT_PFSYNC: case IFT_USB: return (NULL); } ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK); bzero(ext, sizeof(*ext)); ext->in6_ifstat = malloc(sizeof(counter_u64_t) * sizeof(struct in6_ifstat) / sizeof(uint64_t), M_IFADDR, M_WAITOK); COUNTER_ARRAY_ALLOC(ext->in6_ifstat, sizeof(struct in6_ifstat) / sizeof(uint64_t), M_WAITOK); ext->icmp6_ifstat = malloc(sizeof(counter_u64_t) * sizeof(struct icmp6_ifstat) / sizeof(uint64_t), M_IFADDR, M_WAITOK); COUNTER_ARRAY_ALLOC(ext->icmp6_ifstat, sizeof(struct icmp6_ifstat) / sizeof(uint64_t), M_WAITOK); ext->nd_ifinfo = nd6_ifattach(ifp); ext->scope6_id = scope6_ifattach(ifp); ext->lltable = in6_lltattach(ifp); ext->mld_ifinfo = mld_domifattach(ifp); return ext; } int in6_domifmtu(struct ifnet *ifp) { if (ifp->if_afdata[AF_INET6] == NULL) return ifp->if_mtu; return (IN6_LINKMTU(ifp)); } void in6_domifdetach(struct ifnet *ifp, void *aux) { struct in6_ifextra *ext = (struct in6_ifextra *)aux; mld_domifdetach(ifp); scope6_ifdetach(ext->scope6_id); nd6_ifdetach(ifp, ext->nd_ifinfo); lltable_free(ext->lltable); COUNTER_ARRAY_FREE(ext->in6_ifstat, sizeof(struct in6_ifstat) / sizeof(uint64_t)); free(ext->in6_ifstat, M_IFADDR); COUNTER_ARRAY_FREE(ext->icmp6_ifstat, sizeof(struct icmp6_ifstat) / sizeof(uint64_t)); free(ext->icmp6_ifstat, M_IFADDR); free(ext, M_IFADDR); } /* * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be * v4 mapped addr or v4 compat addr */ void in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) { bzero(sin, sizeof(*sin)); sin->sin_len = sizeof(struct sockaddr_in); sin->sin_family = AF_INET; sin->sin_port = sin6->sin6_port; sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; } /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ void in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) { bzero(sin6, sizeof(*sin6)); sin6->sin6_len = sizeof(struct sockaddr_in6); sin6->sin6_family = AF_INET6; sin6->sin6_port = sin->sin_port; sin6->sin6_addr.s6_addr32[0] = 0; sin6->sin6_addr.s6_addr32[1] = 0; sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; } /* Convert sockaddr_in6 into sockaddr_in. */ void in6_sin6_2_sin_in_sock(struct sockaddr *nam) { struct sockaddr_in *sin_p; struct sockaddr_in6 sin6; /* * Save original sockaddr_in6 addr and convert it * to sockaddr_in. */ sin6 = *(struct sockaddr_in6 *)nam; sin_p = (struct sockaddr_in *)nam; in6_sin6_2_sin(sin_p, &sin6); } /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ void in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) { struct sockaddr_in *sin_p; struct sockaddr_in6 *sin6_p; sin6_p = malloc(sizeof *sin6_p, M_SONAME, M_WAITOK); sin_p = (struct sockaddr_in *)*nam; in6_sin_2_v4mapsin6(sin_p, sin6_p); free(*nam, M_SONAME); *nam = (struct sockaddr *)sin6_p; } Index: head/sys/netinet6/in6_var.h =================================================================== --- head/sys/netinet6/in6_var.h (revision 334192) +++ head/sys/netinet6/in6_var.h (revision 334193) @@ -1,866 +1,866 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: in6_var.h,v 1.56 2001/03/29 05:34:31 itojun Exp $ */ /*- * Copyright (c) 1985, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_var.h 8.1 (Berkeley) 6/10/93 * $FreeBSD$ */ #ifndef _NETINET6_IN6_VAR_H_ #define _NETINET6_IN6_VAR_H_ #include #include #ifdef _KERNEL #include #include #endif /* * Interface address, Internet version. One of these structures * is allocated for each interface with an Internet address. * The ifaddr structure contains the protocol-independent part * of the structure and is assumed to be first. */ /* * pltime/vltime are just for future reference (required to implements 2 * hour rule for hosts). they should never be modified by nd6_timeout or * anywhere else. * userland -> kernel: accept pltime/vltime * kernel -> userland: throw up everything * in kernel: modify preferred/expire only */ struct in6_addrlifetime { time_t ia6t_expire; /* valid lifetime expiration time */ time_t ia6t_preferred; /* preferred lifetime expiration time */ u_int32_t ia6t_vltime; /* valid lifetime */ u_int32_t ia6t_pltime; /* prefix lifetime */ }; struct nd_ifinfo; struct scope6_id; struct lltable; struct mld_ifsoftc; struct in6_multi; struct in6_ifextra { counter_u64_t *in6_ifstat; counter_u64_t *icmp6_ifstat; struct nd_ifinfo *nd_ifinfo; struct scope6_id *scope6_id; struct lltable *lltable; struct mld_ifsoftc *mld_ifinfo; }; #define LLTABLE6(ifp) (((struct in6_ifextra *)(ifp)->if_afdata[AF_INET6])->lltable) #ifdef _KERNEL SLIST_HEAD(in6_multi_head, in6_multi); MALLOC_DECLARE(M_IP6MADDR); struct in6_ifaddr { struct ifaddr ia_ifa; /* protocol-independent info */ #define ia_ifp ia_ifa.ifa_ifp #define ia_flags ia_ifa.ifa_flags struct sockaddr_in6 ia_addr; /* interface address */ struct sockaddr_in6 ia_net; /* network number of interface */ struct sockaddr_in6 ia_dstaddr; /* space for destination addr */ struct sockaddr_in6 ia_prefixmask; /* prefix mask */ u_int32_t ia_plen; /* prefix length */ - STAILQ_ENTRY(in6_ifaddr) ia_link; /* list of IPv6 addresses */ + CK_STAILQ_ENTRY(in6_ifaddr) ia_link; /* list of IPv6 addresses */ int ia6_flags; struct in6_addrlifetime ia6_lifetime; time_t ia6_createtime; /* the creation time of this address, which is * currently used for temporary addresses only. */ time_t ia6_updatetime; /* back pointer to the ND prefix (for autoconfigured addresses only) */ struct nd_prefix *ia6_ndpr; /* multicast addresses joined from the kernel */ LIST_HEAD(, in6_multi_mship) ia6_memberships; /* entry in bucket of inet6 addresses */ - LIST_ENTRY(in6_ifaddr) ia6_hash; + CK_LIST_ENTRY(in6_ifaddr) ia6_hash; }; /* List of in6_ifaddr's. */ -STAILQ_HEAD(in6_ifaddrhead, in6_ifaddr); -LIST_HEAD(in6_ifaddrlisthead, in6_ifaddr); +CK_STAILQ_HEAD(in6_ifaddrhead, in6_ifaddr); +CK_LIST_HEAD(in6_ifaddrlisthead, in6_ifaddr); #endif /* _KERNEL */ /* control structure to manage address selection policy */ struct in6_addrpolicy { struct sockaddr_in6 addr; /* prefix address */ struct sockaddr_in6 addrmask; /* prefix mask */ int preced; /* precedence */ int label; /* matching label */ u_quad_t use; /* statistics */ }; /* * IPv6 interface statistics, as defined in RFC2465 Ipv6IfStatsEntry (p12). */ struct in6_ifstat { uint64_t ifs6_in_receive; /* # of total input datagram */ uint64_t ifs6_in_hdrerr; /* # of datagrams with invalid hdr */ uint64_t ifs6_in_toobig; /* # of datagrams exceeded MTU */ uint64_t ifs6_in_noroute; /* # of datagrams with no route */ uint64_t ifs6_in_addrerr; /* # of datagrams with invalid dst */ uint64_t ifs6_in_protounknown; /* # of datagrams with unknown proto */ /* NOTE: increment on final dst if */ uint64_t ifs6_in_truncated; /* # of truncated datagrams */ uint64_t ifs6_in_discard; /* # of discarded datagrams */ /* NOTE: fragment timeout is not here */ uint64_t ifs6_in_deliver; /* # of datagrams delivered to ULP */ /* NOTE: increment on final dst if */ uint64_t ifs6_out_forward; /* # of datagrams forwarded */ /* NOTE: increment on outgoing if */ uint64_t ifs6_out_request; /* # of outgoing datagrams from ULP */ /* NOTE: does not include forwrads */ uint64_t ifs6_out_discard; /* # of discarded datagrams */ uint64_t ifs6_out_fragok; /* # of datagrams fragmented */ uint64_t ifs6_out_fragfail; /* # of datagrams failed on fragment */ uint64_t ifs6_out_fragcreat; /* # of fragment datagrams */ /* NOTE: this is # after fragment */ uint64_t ifs6_reass_reqd; /* # of incoming fragmented packets */ /* NOTE: increment on final dst if */ uint64_t ifs6_reass_ok; /* # of reassembled packets */ /* NOTE: this is # after reass */ /* NOTE: increment on final dst if */ uint64_t ifs6_reass_fail; /* # of reass failures */ /* NOTE: may not be packet count */ /* NOTE: increment on final dst if */ uint64_t ifs6_in_mcast; /* # of inbound multicast datagrams */ uint64_t ifs6_out_mcast; /* # of outbound multicast datagrams */ }; /* * ICMPv6 interface statistics, as defined in RFC2466 Ipv6IfIcmpEntry. * XXX: I'm not sure if this file is the right place for this structure... */ struct icmp6_ifstat { /* * Input statistics */ /* ipv6IfIcmpInMsgs, total # of input messages */ uint64_t ifs6_in_msg; /* ipv6IfIcmpInErrors, # of input error messages */ uint64_t ifs6_in_error; /* ipv6IfIcmpInDestUnreachs, # of input dest unreach errors */ uint64_t ifs6_in_dstunreach; /* ipv6IfIcmpInAdminProhibs, # of input administratively prohibited errs */ uint64_t ifs6_in_adminprohib; /* ipv6IfIcmpInTimeExcds, # of input time exceeded errors */ uint64_t ifs6_in_timeexceed; /* ipv6IfIcmpInParmProblems, # of input parameter problem errors */ uint64_t ifs6_in_paramprob; /* ipv6IfIcmpInPktTooBigs, # of input packet too big errors */ uint64_t ifs6_in_pkttoobig; /* ipv6IfIcmpInEchos, # of input echo requests */ uint64_t ifs6_in_echo; /* ipv6IfIcmpInEchoReplies, # of input echo replies */ uint64_t ifs6_in_echoreply; /* ipv6IfIcmpInRouterSolicits, # of input router solicitations */ uint64_t ifs6_in_routersolicit; /* ipv6IfIcmpInRouterAdvertisements, # of input router advertisements */ uint64_t ifs6_in_routeradvert; /* ipv6IfIcmpInNeighborSolicits, # of input neighbor solicitations */ uint64_t ifs6_in_neighborsolicit; /* ipv6IfIcmpInNeighborAdvertisements, # of input neighbor advertisements */ uint64_t ifs6_in_neighboradvert; /* ipv6IfIcmpInRedirects, # of input redirects */ uint64_t ifs6_in_redirect; /* ipv6IfIcmpInGroupMembQueries, # of input MLD queries */ uint64_t ifs6_in_mldquery; /* ipv6IfIcmpInGroupMembResponses, # of input MLD reports */ uint64_t ifs6_in_mldreport; /* ipv6IfIcmpInGroupMembReductions, # of input MLD done */ uint64_t ifs6_in_mlddone; /* * Output statistics. We should solve unresolved routing problem... */ /* ipv6IfIcmpOutMsgs, total # of output messages */ uint64_t ifs6_out_msg; /* ipv6IfIcmpOutErrors, # of output error messages */ uint64_t ifs6_out_error; /* ipv6IfIcmpOutDestUnreachs, # of output dest unreach errors */ uint64_t ifs6_out_dstunreach; /* ipv6IfIcmpOutAdminProhibs, # of output administratively prohibited errs */ uint64_t ifs6_out_adminprohib; /* ipv6IfIcmpOutTimeExcds, # of output time exceeded errors */ uint64_t ifs6_out_timeexceed; /* ipv6IfIcmpOutParmProblems, # of output parameter problem errors */ uint64_t ifs6_out_paramprob; /* ipv6IfIcmpOutPktTooBigs, # of output packet too big errors */ uint64_t ifs6_out_pkttoobig; /* ipv6IfIcmpOutEchos, # of output echo requests */ uint64_t ifs6_out_echo; /* ipv6IfIcmpOutEchoReplies, # of output echo replies */ uint64_t ifs6_out_echoreply; /* ipv6IfIcmpOutRouterSolicits, # of output router solicitations */ uint64_t ifs6_out_routersolicit; /* ipv6IfIcmpOutRouterAdvertisements, # of output router advertisements */ uint64_t ifs6_out_routeradvert; /* ipv6IfIcmpOutNeighborSolicits, # of output neighbor solicitations */ uint64_t ifs6_out_neighborsolicit; /* ipv6IfIcmpOutNeighborAdvertisements, # of output neighbor advertisements */ uint64_t ifs6_out_neighboradvert; /* ipv6IfIcmpOutRedirects, # of output redirects */ uint64_t ifs6_out_redirect; /* ipv6IfIcmpOutGroupMembQueries, # of output MLD queries */ uint64_t ifs6_out_mldquery; /* ipv6IfIcmpOutGroupMembResponses, # of output MLD reports */ uint64_t ifs6_out_mldreport; /* ipv6IfIcmpOutGroupMembReductions, # of output MLD done */ uint64_t ifs6_out_mlddone; }; struct in6_ifreq { char ifr_name[IFNAMSIZ]; union { struct sockaddr_in6 ifru_addr; struct sockaddr_in6 ifru_dstaddr; int ifru_flags; int ifru_flags6; int ifru_metric; caddr_t ifru_data; struct in6_addrlifetime ifru_lifetime; struct in6_ifstat ifru_stat; struct icmp6_ifstat ifru_icmp6stat; u_int32_t ifru_scope_id[16]; } ifr_ifru; }; struct in6_aliasreq { char ifra_name[IFNAMSIZ]; struct sockaddr_in6 ifra_addr; struct sockaddr_in6 ifra_dstaddr; struct sockaddr_in6 ifra_prefixmask; int ifra_flags; struct in6_addrlifetime ifra_lifetime; int ifra_vhid; }; /* pre-10.x compat */ struct oin6_aliasreq { char ifra_name[IFNAMSIZ]; struct sockaddr_in6 ifra_addr; struct sockaddr_in6 ifra_dstaddr; struct sockaddr_in6 ifra_prefixmask; int ifra_flags; struct in6_addrlifetime ifra_lifetime; }; /* prefix type macro */ #define IN6_PREFIX_ND 1 #define IN6_PREFIX_RR 2 /* * prefix related flags passed between kernel(NDP related part) and * user land command(ifconfig) and daemon(rtadvd). */ struct in6_prflags { struct prf_ra { u_char onlink : 1; u_char autonomous : 1; u_char reserved : 6; } prf_ra; u_char prf_reserved1; u_short prf_reserved2; /* want to put this on 4byte offset */ struct prf_rr { u_char decrvalid : 1; u_char decrprefd : 1; u_char reserved : 6; } prf_rr; u_char prf_reserved3; u_short prf_reserved4; }; struct in6_prefixreq { char ipr_name[IFNAMSIZ]; u_char ipr_origin; u_char ipr_plen; u_int32_t ipr_vltime; u_int32_t ipr_pltime; struct in6_prflags ipr_flags; struct sockaddr_in6 ipr_prefix; }; #define PR_ORIG_RA 0 #define PR_ORIG_RR 1 #define PR_ORIG_STATIC 2 #define PR_ORIG_KERNEL 3 #define ipr_raf_onlink ipr_flags.prf_ra.onlink #define ipr_raf_auto ipr_flags.prf_ra.autonomous #define ipr_statef_onlink ipr_flags.prf_state.onlink #define ipr_rrf_decrvalid ipr_flags.prf_rr.decrvalid #define ipr_rrf_decrprefd ipr_flags.prf_rr.decrprefd struct in6_rrenumreq { char irr_name[IFNAMSIZ]; u_char irr_origin; u_char irr_m_len; /* match len for matchprefix */ u_char irr_m_minlen; /* minlen for matching prefix */ u_char irr_m_maxlen; /* maxlen for matching prefix */ u_char irr_u_uselen; /* uselen for adding prefix */ u_char irr_u_keeplen; /* keeplen from matching prefix */ struct irr_raflagmask { u_char onlink : 1; u_char autonomous : 1; u_char reserved : 6; } irr_raflagmask; u_int32_t irr_vltime; u_int32_t irr_pltime; struct in6_prflags irr_flags; struct sockaddr_in6 irr_matchprefix; struct sockaddr_in6 irr_useprefix; }; #define irr_raf_mask_onlink irr_raflagmask.onlink #define irr_raf_mask_auto irr_raflagmask.autonomous #define irr_raf_mask_reserved irr_raflagmask.reserved #define irr_raf_onlink irr_flags.prf_ra.onlink #define irr_raf_auto irr_flags.prf_ra.autonomous #define irr_statef_onlink irr_flags.prf_state.onlink #define irr_rrf irr_flags.prf_rr #define irr_rrf_decrvalid irr_flags.prf_rr.decrvalid #define irr_rrf_decrprefd irr_flags.prf_rr.decrprefd /* * Given a pointer to an in6_ifaddr (ifaddr), * return a pointer to the addr as a sockaddr_in6 */ #define IA6_IN6(ia) (&((ia)->ia_addr.sin6_addr)) #define IA6_DSTIN6(ia) (&((ia)->ia_dstaddr.sin6_addr)) #define IA6_MASKIN6(ia) (&((ia)->ia_prefixmask.sin6_addr)) #define IA6_SIN6(ia) (&((ia)->ia_addr)) #define IA6_DSTSIN6(ia) (&((ia)->ia_dstaddr)) #define IFA_IN6(x) (&((struct sockaddr_in6 *)((x)->ifa_addr))->sin6_addr) #define IFA_DSTIN6(x) (&((struct sockaddr_in6 *)((x)->ifa_dstaddr))->sin6_addr) #define IFPR_IN6(x) (&((struct sockaddr_in6 *)((x)->ifpr_prefix))->sin6_addr) #ifdef _KERNEL #define IN6_ARE_MASKED_ADDR_EQUAL(d, a, m) ( \ (((d)->s6_addr32[0] ^ (a)->s6_addr32[0]) & (m)->s6_addr32[0]) == 0 && \ (((d)->s6_addr32[1] ^ (a)->s6_addr32[1]) & (m)->s6_addr32[1]) == 0 && \ (((d)->s6_addr32[2] ^ (a)->s6_addr32[2]) & (m)->s6_addr32[2]) == 0 && \ (((d)->s6_addr32[3] ^ (a)->s6_addr32[3]) & (m)->s6_addr32[3]) == 0 ) #define IN6_MASK_ADDR(a, m) do { \ (a)->s6_addr32[0] &= (m)->s6_addr32[0]; \ (a)->s6_addr32[1] &= (m)->s6_addr32[1]; \ (a)->s6_addr32[2] &= (m)->s6_addr32[2]; \ (a)->s6_addr32[3] &= (m)->s6_addr32[3]; \ } while (0) #endif #define SIOCSIFADDR_IN6 _IOW('i', 12, struct in6_ifreq) #define SIOCGIFADDR_IN6 _IOWR('i', 33, struct in6_ifreq) #ifdef _KERNEL /* * SIOCSxxx ioctls should be unused (see comments in in6.c), but * we do not shift numbers for binary compatibility. */ #define SIOCSIFDSTADDR_IN6 _IOW('i', 14, struct in6_ifreq) #define SIOCSIFNETMASK_IN6 _IOW('i', 22, struct in6_ifreq) #endif #define SIOCGIFDSTADDR_IN6 _IOWR('i', 34, struct in6_ifreq) #define SIOCGIFNETMASK_IN6 _IOWR('i', 37, struct in6_ifreq) #define SIOCDIFADDR_IN6 _IOW('i', 25, struct in6_ifreq) #define OSIOCAIFADDR_IN6 _IOW('i', 26, struct oin6_aliasreq) #define SIOCAIFADDR_IN6 _IOW('i', 27, struct in6_aliasreq) #define SIOCSIFPHYADDR_IN6 _IOW('i', 70, struct in6_aliasreq) #define SIOCGIFPSRCADDR_IN6 _IOWR('i', 71, struct in6_ifreq) #define SIOCGIFPDSTADDR_IN6 _IOWR('i', 72, struct in6_ifreq) #define SIOCGIFAFLAG_IN6 _IOWR('i', 73, struct in6_ifreq) #ifdef _KERNEL #define OSIOCGIFINFO_IN6 _IOWR('i', 76, struct in6_ondireq) #endif #define SIOCGIFINFO_IN6 _IOWR('i', 108, struct in6_ndireq) #define SIOCSIFINFO_IN6 _IOWR('i', 109, struct in6_ndireq) #define SIOCSNDFLUSH_IN6 _IOWR('i', 77, struct in6_ifreq) #define SIOCGNBRINFO_IN6 _IOWR('i', 78, struct in6_nbrinfo) #define SIOCSPFXFLUSH_IN6 _IOWR('i', 79, struct in6_ifreq) #define SIOCSRTRFLUSH_IN6 _IOWR('i', 80, struct in6_ifreq) #define SIOCGIFALIFETIME_IN6 _IOWR('i', 81, struct in6_ifreq) #define SIOCGIFSTAT_IN6 _IOWR('i', 83, struct in6_ifreq) #define SIOCGIFSTAT_ICMP6 _IOWR('i', 84, struct in6_ifreq) #define SIOCSDEFIFACE_IN6 _IOWR('i', 85, struct in6_ndifreq) #define SIOCGDEFIFACE_IN6 _IOWR('i', 86, struct in6_ndifreq) #define SIOCSIFINFO_FLAGS _IOWR('i', 87, struct in6_ndireq) /* XXX */ #define SIOCSSCOPE6 _IOW('i', 88, struct in6_ifreq) #define SIOCGSCOPE6 _IOWR('i', 89, struct in6_ifreq) #define SIOCGSCOPE6DEF _IOWR('i', 90, struct in6_ifreq) #define SIOCSIFPREFIX_IN6 _IOW('i', 100, struct in6_prefixreq) /* set */ #define SIOCGIFPREFIX_IN6 _IOWR('i', 101, struct in6_prefixreq) /* get */ #define SIOCDIFPREFIX_IN6 _IOW('i', 102, struct in6_prefixreq) /* del */ #define SIOCAIFPREFIX_IN6 _IOW('i', 103, struct in6_rrenumreq) /* add */ #define SIOCCIFPREFIX_IN6 _IOW('i', 104, \ struct in6_rrenumreq) /* change */ #define SIOCSGIFPREFIX_IN6 _IOW('i', 105, \ struct in6_rrenumreq) /* set global */ #define SIOCGETSGCNT_IN6 _IOWR('u', 106, \ struct sioc_sg_req6) /* get s,g pkt cnt */ #define SIOCGETMIFCNT_IN6 _IOWR('u', 107, \ struct sioc_mif_req6) /* get pkt cnt per if */ #define SIOCAADDRCTL_POLICY _IOW('u', 108, struct in6_addrpolicy) #define SIOCDADDRCTL_POLICY _IOW('u', 109, struct in6_addrpolicy) #define IN6_IFF_ANYCAST 0x01 /* anycast address */ #define IN6_IFF_TENTATIVE 0x02 /* tentative address */ #define IN6_IFF_DUPLICATED 0x04 /* DAD detected duplicate */ #define IN6_IFF_DETACHED 0x08 /* may be detached from the link */ #define IN6_IFF_DEPRECATED 0x10 /* deprecated address */ #define IN6_IFF_NODAD 0x20 /* don't perform DAD on this address * (obsolete) */ #define IN6_IFF_AUTOCONF 0x40 /* autoconfigurable address. */ #define IN6_IFF_TEMPORARY 0x80 /* temporary (anonymous) address. */ #define IN6_IFF_PREFER_SOURCE 0x0100 /* preferred address for SAS */ /* do not input/output */ #define IN6_IFF_NOTREADY (IN6_IFF_TENTATIVE|IN6_IFF_DUPLICATED) #ifdef _KERNEL #define IN6_ARE_SCOPE_CMP(a,b) ((a)-(b)) #define IN6_ARE_SCOPE_EQUAL(a,b) ((a)==(b)) #endif #ifdef _KERNEL VNET_DECLARE(struct in6_ifaddrhead, in6_ifaddrhead); VNET_DECLARE(struct in6_ifaddrlisthead *, in6_ifaddrhashtbl); VNET_DECLARE(u_long, in6_ifaddrhmask); #define V_in6_ifaddrhead VNET(in6_ifaddrhead) #define V_in6_ifaddrhashtbl VNET(in6_ifaddrhashtbl) #define V_in6_ifaddrhmask VNET(in6_ifaddrhmask) #define IN6ADDR_NHASH_LOG2 8 #define IN6ADDR_NHASH (1 << IN6ADDR_NHASH_LOG2) #define IN6ADDR_HASHVAL(x) (in6_addrhash(x)) #define IN6ADDR_HASH(x) \ (&V_in6_ifaddrhashtbl[IN6ADDR_HASHVAL(x) & V_in6_ifaddrhmask]) static __inline uint32_t in6_addrhash(const struct in6_addr *in6) { uint32_t x; x = in6->s6_addr32[0] ^ in6->s6_addr32[1] ^ in6->s6_addr32[2] ^ in6->s6_addr32[3]; return (fnv_32_buf(&x, sizeof(x), FNV1_32_INIT)); } extern struct rmlock in6_ifaddr_lock; #define IN6_IFADDR_LOCK_ASSERT() rm_assert(&in6_ifaddr_lock, RA_LOCKED) #define IN6_IFADDR_RLOCK(t) rm_rlock(&in6_ifaddr_lock, (t)) #define IN6_IFADDR_RLOCK_ASSERT() rm_assert(&in6_ifaddr_lock, RA_RLOCKED) #define IN6_IFADDR_RUNLOCK(t) rm_runlock(&in6_ifaddr_lock, (t)) #define IN6_IFADDR_WLOCK() rm_wlock(&in6_ifaddr_lock) #define IN6_IFADDR_WLOCK_ASSERT() rm_assert(&in6_ifaddr_lock, RA_WLOCKED) #define IN6_IFADDR_WUNLOCK() rm_wunlock(&in6_ifaddr_lock) #define in6_ifstat_inc(ifp, tag) \ do { \ if (ifp) \ counter_u64_add(((struct in6_ifextra *) \ ((ifp)->if_afdata[AF_INET6]))->in6_ifstat[ \ offsetof(struct in6_ifstat, tag) / sizeof(uint64_t)], 1);\ } while (/*CONSTCOND*/ 0) extern u_char inet6ctlerrmap[]; VNET_DECLARE(unsigned long, in6_maxmtu); #define V_in6_maxmtu VNET(in6_maxmtu) #endif /* _KERNEL */ /* * IPv6 multicast MLD-layer source entry. */ struct ip6_msource { RB_ENTRY(ip6_msource) im6s_link; /* RB tree links */ struct in6_addr im6s_addr; struct im6s_st { uint16_t ex; /* # of exclusive members */ uint16_t in; /* # of inclusive members */ } im6s_st[2]; /* state at t0, t1 */ uint8_t im6s_stp; /* pending query */ }; RB_HEAD(ip6_msource_tree, ip6_msource); /* * IPv6 multicast PCB-layer source entry. * * NOTE: overlapping use of struct ip6_msource fields at start. */ struct in6_msource { RB_ENTRY(ip6_msource) im6s_link; /* Common field */ struct in6_addr im6s_addr; /* Common field */ uint8_t im6sl_st[2]; /* state before/at commit */ }; #ifdef _KERNEL /* * IPv6 source tree comparison function. * * An ordered predicate is necessary; bcmp() is not documented to return * an indication of order, memcmp() is, and is an ISO C99 requirement. */ static __inline int ip6_msource_cmp(const struct ip6_msource *a, const struct ip6_msource *b) { return (memcmp(&a->im6s_addr, &b->im6s_addr, sizeof(struct in6_addr))); } RB_PROTOTYPE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp); /* * IPv6 multicast PCB-layer group filter descriptor. */ struct in6_mfilter { struct ip6_msource_tree im6f_sources; /* source list for (S,G) */ u_long im6f_nsrc; /* # of source entries */ uint8_t im6f_st[2]; /* state before/at commit */ }; /* * Legacy KAME IPv6 multicast membership descriptor. */ struct in6_multi_mship { struct in6_multi *i6mm_maddr; LIST_ENTRY(in6_multi_mship) i6mm_chain; }; /* * IPv6 group descriptor. * * For every entry on an ifnet's if_multiaddrs list which represents * an IP multicast group, there is one of these structures. * * If any source filters are present, then a node will exist in the RB-tree * to permit fast lookup by source whenever an operation takes place. * This permits pre-order traversal when we issue reports. * Source filter trees are kept separately from the socket layer to * greatly simplify locking. * * When MLDv2 is active, in6m_timer is the response to group query timer. * The state-change timer in6m_sctimer is separate; whenever state changes * for the group the state change record is generated and transmitted, * and kept if retransmissions are necessary. * * FUTURE: in6m_link is now only used when groups are being purged * on a detaching ifnet. It could be demoted to a SLIST_ENTRY, but * because it is at the very start of the struct, we can't do this * w/o breaking the ABI for ifmcstat. */ struct in6_multi { struct in6_addr in6m_addr; /* IPv6 multicast address */ struct ifnet *in6m_ifp; /* back pointer to ifnet */ struct ifmultiaddr *in6m_ifma; /* back pointer to ifmultiaddr */ u_int in6m_refcount; /* reference count */ u_int in6m_state; /* state of the membership */ u_int in6m_timer; /* MLD6 listener report timer */ /* New fields for MLDv2 follow. */ struct mld_ifsoftc *in6m_mli; /* MLD info */ SLIST_ENTRY(in6_multi) in6m_nrele; /* to-be-released by MLD */ struct ip6_msource_tree in6m_srcs; /* tree of sources */ u_long in6m_nsrc; /* # of tree entries */ struct mbufq in6m_scq; /* queue of pending * state-change packets */ struct timeval in6m_lastgsrtv; /* last G-S-R query */ uint16_t in6m_sctimer; /* state-change timer */ uint16_t in6m_scrv; /* state-change rexmit count */ /* * SSM state counters which track state at T0 (the time the last * state-change report's RV timer went to zero) and T1 * (time of pending report, i.e. now). * Used for computing MLDv2 state-change reports. Several refcounts * are maintained here to optimize for common use-cases. */ struct in6m_st { uint16_t iss_fmode; /* MLD filter mode */ uint16_t iss_asm; /* # of ASM listeners */ uint16_t iss_ex; /* # of exclusive members */ uint16_t iss_in; /* # of inclusive members */ uint16_t iss_rec; /* # of recorded sources */ } in6m_st[2]; /* state at t0, t1 */ }; void in6m_disconnect(struct in6_multi *inm); extern int ifma6_restart; /* * Helper function to derive the filter mode on a source entry * from its internal counters. Predicates are: * A source is only excluded if all listeners exclude it. * A source is only included if no listeners exclude it, * and at least one listener includes it. * May be used by ifmcstat(8). */ static __inline uint8_t im6s_get_mode(const struct in6_multi *inm, const struct ip6_msource *ims, uint8_t t) { t = !!t; if (inm->in6m_st[t].iss_ex > 0 && inm->in6m_st[t].iss_ex == ims->im6s_st[t].ex) return (MCAST_EXCLUDE); else if (ims->im6s_st[t].in > 0 && ims->im6s_st[t].ex == 0) return (MCAST_INCLUDE); return (MCAST_UNDEFINED); } /* * Lock macros for IPv6 layer multicast address lists. IPv6 lock goes * before link layer multicast locks in the lock order. In most cases, * consumers of IN_*_MULTI() macros should acquire the locks before * calling them; users of the in_{add,del}multi() functions should not. */ extern struct mtx in6_multi_list_mtx; extern struct sx in6_multi_sx; #define IN6_MULTI_LIST_LOCK() mtx_lock(&in6_multi_list_mtx) #define IN6_MULTI_LIST_UNLOCK() mtx_unlock(&in6_multi_list_mtx) #define IN6_MULTI_LIST_LOCK_ASSERT() mtx_assert(&in6_multi_list_mtx, MA_OWNED) #define IN6_MULTI_LIST_UNLOCK_ASSERT() mtx_assert(&in6_multi_list_mtx, MA_NOTOWNED) #define IN6_MULTI_LOCK() sx_xlock(&in6_multi_sx) #define IN6_MULTI_UNLOCK() sx_xunlock(&in6_multi_sx) #define IN6_MULTI_LOCK_ASSERT() sx_assert(&in6_multi_sx, SA_XLOCKED) #define IN6_MULTI_UNLOCK_ASSERT() sx_assert(&in6_multi_sx, SA_XUNLOCKED) /* * Look up an in6_multi record for an IPv6 multicast address * on the interface ifp. * If no record found, return NULL. * * SMPng: The IN6_MULTI_LOCK and IF_ADDR_LOCK on ifp must be held. */ static __inline struct in6_multi * in6m_lookup_locked(struct ifnet *ifp, const struct in6_addr *mcaddr) { struct ifmultiaddr *ifma; struct in6_multi *inm; inm = NULL; CK_STAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) { if (ifma->ifma_addr->sa_family == AF_INET6) { inm = (struct in6_multi *)ifma->ifma_protospec; if (inm == NULL) continue; if (IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, mcaddr)) break; inm = NULL; } } return (inm); } /* * Wrapper for in6m_lookup_locked(). * * SMPng: Assumes that neithr the IN6_MULTI_LOCK() or IF_ADDR_LOCK() are held. */ static __inline struct in6_multi * in6m_lookup(struct ifnet *ifp, const struct in6_addr *mcaddr) { struct in6_multi *inm; IN6_MULTI_LIST_LOCK(); IF_ADDR_RLOCK(ifp); inm = in6m_lookup_locked(ifp, mcaddr); IF_ADDR_RUNLOCK(ifp); IN6_MULTI_LIST_UNLOCK(); return (inm); } /* Acquire an in6_multi record. */ static __inline void in6m_acquire_locked(struct in6_multi *inm) { IN6_MULTI_LIST_LOCK_ASSERT(); ++inm->in6m_refcount; } static __inline void in6m_acquire(struct in6_multi *inm) { IN6_MULTI_LIST_LOCK(); in6m_acquire_locked(inm); IN6_MULTI_LIST_UNLOCK(); } static __inline void in6m_rele_locked(struct in6_multi_head *inmh, struct in6_multi *inm) { KASSERT(inm->in6m_refcount > 0, ("refcount == %d inm: %p", inm->in6m_refcount, inm)); IN6_MULTI_LIST_LOCK_ASSERT(); if (--inm->in6m_refcount == 0) { in6m_disconnect(inm); inm->in6m_ifma->ifma_protospec = NULL; MPASS(inm->in6m_ifma->ifma_llifma == NULL); SLIST_INSERT_HEAD(inmh, inm, in6m_nrele); } } struct ip6_moptions; struct sockopt; struct inpcbinfo; /* Multicast KPIs. */ int im6o_mc_filter(const struct ip6_moptions *, const struct ifnet *, const struct sockaddr *, const struct sockaddr *); int in6_joingroup(struct ifnet *, const struct in6_addr *, struct in6_mfilter *, struct in6_multi **, int); int in6_joingroup_locked(struct ifnet *, const struct in6_addr *, struct in6_mfilter *, struct in6_multi **, int); int in6_leavegroup(struct in6_multi *, struct in6_mfilter *); int in6_leavegroup_locked(struct in6_multi *, struct in6_mfilter *); void in6m_clear_recorded(struct in6_multi *); void in6m_commit(struct in6_multi *); void in6m_print(const struct in6_multi *); int in6m_record_source(struct in6_multi *, const struct in6_addr *); void in6m_release_deferred(struct in6_multi *); void in6m_release_list_deferred(struct in6_multi_head *); void ip6_freemoptions(struct ip6_moptions *); int ip6_getmoptions(struct inpcb *, struct sockopt *); int ip6_setmoptions(struct inpcb *, struct sockopt *); /* flags to in6_update_ifa */ #define IN6_IFAUPDATE_DADDELAY 0x1 /* first time to configure an address */ int in6_mask2len(struct in6_addr *, u_char *); int in6_control(struct socket *, u_long, caddr_t, struct ifnet *, struct thread *); int in6_update_ifa(struct ifnet *, struct in6_aliasreq *, struct in6_ifaddr *, int); void in6_prepare_ifra(struct in6_aliasreq *, const struct in6_addr *, const struct in6_addr *); void in6_purgeaddr(struct ifaddr *); int in6if_do_dad(struct ifnet *); void in6_savemkludge(struct in6_ifaddr *); void *in6_domifattach(struct ifnet *); void in6_domifdetach(struct ifnet *, void *); int in6_domifmtu(struct ifnet *); void in6_setmaxmtu(void); int in6_if2idlen(struct ifnet *); struct in6_ifaddr *in6ifa_ifpforlinklocal(struct ifnet *, int); struct in6_ifaddr *in6ifa_ifpwithaddr(struct ifnet *, const struct in6_addr *); struct in6_ifaddr *in6ifa_ifwithaddr(const struct in6_addr *, uint32_t); struct in6_ifaddr *in6ifa_llaonifp(struct ifnet *); int in6_addr2zoneid(struct ifnet *, struct in6_addr *, u_int32_t *); int in6_matchlen(struct in6_addr *, struct in6_addr *); int in6_are_prefix_equal(struct in6_addr *, struct in6_addr *, int); void in6_prefixlen2mask(struct in6_addr *, int); int in6_prefix_ioctl(struct socket *, u_long, caddr_t, struct ifnet *); int in6_prefix_add_ifid(int, struct in6_ifaddr *); void in6_prefix_remove_ifid(int, struct in6_ifaddr *); void in6_purgeprefix(struct ifnet *); int in6_is_addr_deprecated(struct sockaddr_in6 *); int in6_src_ioctl(u_long, caddr_t); void in6_newaddrmsg(struct in6_ifaddr *, int); /* * Extended API for IPv6 FIB support. */ struct mbuf *ip6_tryforward(struct mbuf *); void in6_rtredirect(struct sockaddr *, struct sockaddr *, struct sockaddr *, int, struct sockaddr *, u_int); int in6_rtrequest(int, struct sockaddr *, struct sockaddr *, struct sockaddr *, int, struct rtentry **, u_int); void in6_rtalloc(struct route_in6 *, u_int); void in6_rtalloc_ign(struct route_in6 *, u_long, u_int); struct rtentry *in6_rtalloc1(struct sockaddr *, int, u_long, u_int); #endif /* _KERNEL */ #endif /* _NETINET6_IN6_VAR_H_ */