Index: head/sys/dev/acpica/acpi.c =================================================================== --- head/sys/dev/acpica/acpi.c (revision 333993) +++ head/sys/dev/acpica/acpi.c (revision 333994) @@ -1,4182 +1,4185 @@ /*- * Copyright (c) 2000 Takanori Watanabe * Copyright (c) 2000 Mitsuru IWASAKI * Copyright (c) 2000, 2001 Michael Smith * Copyright (c) 2000 BSDi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_acpi.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__i386__) || defined(__amd64__) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); /* Hooks for the ACPI CA debugging infrastructure */ #define _COMPONENT ACPI_BUS ACPI_MODULE_NAME("ACPI") static d_open_t acpiopen; static d_close_t acpiclose; static d_ioctl_t acpiioctl; static struct cdevsw acpi_cdevsw = { .d_version = D_VERSION, .d_open = acpiopen, .d_close = acpiclose, .d_ioctl = acpiioctl, .d_name = "acpi", }; struct acpi_interface { ACPI_STRING *data; int num; }; static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; static char *pcilink_ids[] = { "PNP0C0F", NULL }; /* Global mutex for locking access to the ACPI subsystem. */ struct mtx acpi_mutex; struct callout acpi_sleep_timer; /* Bitmap of device quirks. */ int acpi_quirks; /* Supported sleep states. */ static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT]; static void acpi_lookup(void *arg, const char *name, device_t *dev); static int acpi_modevent(struct module *mod, int event, void *junk); static int acpi_probe(device_t dev); static int acpi_attach(device_t dev); static int acpi_suspend(device_t dev); static int acpi_resume(device_t dev); static int acpi_shutdown(device_t dev); static device_t acpi_add_child(device_t bus, u_int order, const char *name, int unit); static int acpi_print_child(device_t bus, device_t child); static void acpi_probe_nomatch(device_t bus, device_t child); static void acpi_driver_added(device_t dev, driver_t *driver); static int acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result); static int acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value); static struct resource_list *acpi_get_rlist(device_t dev, device_t child); static void acpi_reserve_resources(device_t dev); static int acpi_sysres_alloc(device_t dev); static int acpi_set_resource(device_t dev, device_t child, int type, int rid, rman_res_t start, rman_res_t count); static struct resource *acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags); static int acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r, rman_res_t start, rman_res_t end); static int acpi_release_resource(device_t bus, device_t child, int type, int rid, struct resource *r); static void acpi_delete_resource(device_t bus, device_t child, int type, int rid); static uint32_t acpi_isa_get_logicalid(device_t dev); static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); static char *acpi_device_id_probe(device_t bus, device_t dev, char **ids); static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret); static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *context, void **retval); static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, int max_depth, acpi_scan_cb_t user_fn, void *arg); static int acpi_set_powerstate(device_t child, int state); static int acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids); static void acpi_probe_children(device_t bus); static void acpi_probe_order(ACPI_HANDLE handle, int *order); static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status); static void acpi_sleep_enable(void *arg); static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc); static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state); static void acpi_shutdown_final(void *arg, int howto); static void acpi_enable_fixed_events(struct acpi_softc *sc); static BOOLEAN acpi_has_hid(ACPI_HANDLE handle); static void acpi_resync_clock(struct acpi_softc *sc); static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); static int acpi_wake_prep_walk(int sstate); static int acpi_wake_sysctl_walk(device_t dev); static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); static void acpi_system_eventhandler_sleep(void *arg, int state); static void acpi_system_eventhandler_wakeup(void *arg, int state); static int acpi_sname2sstate(const char *sname); static const char *acpi_sstate2sname(int sstate); static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS); static int acpi_pm_func(u_long cmd, void *arg, ...); static int acpi_child_location_str_method(device_t acdev, device_t child, char *buf, size_t buflen); static int acpi_child_pnpinfo_str_method(device_t acdev, device_t child, char *buf, size_t buflen); #if defined(__i386__) || defined(__amd64__) static void acpi_enable_pcie(void); #endif static void acpi_hint_device_unit(device_t acdev, device_t child, const char *name, int *unitp); static void acpi_reset_interfaces(device_t dev); static device_method_t acpi_methods[] = { /* Device interface */ DEVMETHOD(device_probe, acpi_probe), DEVMETHOD(device_attach, acpi_attach), DEVMETHOD(device_shutdown, acpi_shutdown), DEVMETHOD(device_detach, bus_generic_detach), DEVMETHOD(device_suspend, acpi_suspend), DEVMETHOD(device_resume, acpi_resume), /* Bus interface */ DEVMETHOD(bus_add_child, acpi_add_child), DEVMETHOD(bus_print_child, acpi_print_child), DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), DEVMETHOD(bus_driver_added, acpi_driver_added), DEVMETHOD(bus_read_ivar, acpi_read_ivar), DEVMETHOD(bus_write_ivar, acpi_write_ivar), DEVMETHOD(bus_get_resource_list, acpi_get_rlist), DEVMETHOD(bus_set_resource, acpi_set_resource), DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), DEVMETHOD(bus_adjust_resource, acpi_adjust_resource), DEVMETHOD(bus_release_resource, acpi_release_resource), DEVMETHOD(bus_delete_resource, acpi_delete_resource), DEVMETHOD(bus_child_pnpinfo_str, acpi_child_pnpinfo_str_method), DEVMETHOD(bus_child_location_str, acpi_child_location_str_method), DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit), DEVMETHOD(bus_get_cpus, acpi_get_cpus), DEVMETHOD(bus_get_domain, acpi_get_domain), /* ACPI bus */ DEVMETHOD(acpi_id_probe, acpi_device_id_probe), DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), DEVMETHOD(acpi_scan_children, acpi_device_scan_children), /* ISA emulation */ DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), DEVMETHOD_END }; static driver_t acpi_driver = { "acpi", acpi_methods, sizeof(struct acpi_softc), }; static devclass_t acpi_devclass; DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0); MODULE_VERSION(acpi, 1); ACPI_SERIAL_DECL(acpi, "ACPI root bus"); /* Local pools for managing system resources for ACPI child devices. */ static struct rman acpi_rman_io, acpi_rman_mem; #define ACPI_MINIMUM_AWAKETIME 5 /* Holds the description of the acpi0 device. */ static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2]; SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD, NULL, "ACPI debugging"); static char acpi_ca_version[12]; SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, acpi_ca_version, 0, "Version of Intel ACPI-CA"); /* * Allow overriding _OSI methods. */ static char acpi_install_interface[256]; TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface, sizeof(acpi_install_interface)); static char acpi_remove_interface[256]; TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface, sizeof(acpi_remove_interface)); /* Allow users to dump Debug objects without ACPI debugger. */ static int acpi_debug_objects; TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects); SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects, CTLFLAG_RW | CTLTYPE_INT, NULL, 0, acpi_debug_objects_sysctl, "I", "Enable Debug objects"); /* Allow the interpreter to ignore common mistakes in BIOS. */ static int acpi_interpreter_slack = 1; TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack); SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN, &acpi_interpreter_slack, 1, "Turn on interpreter slack mode."); /* Ignore register widths set by FADT and use default widths instead. */ static int acpi_ignore_reg_width = 1; TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width); SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN, &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT"); /* Allow users to override quirks. */ TUNABLE_INT("debug.acpi.quirks", &acpi_quirks); int acpi_susp_bounce; SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW, &acpi_susp_bounce, 0, "Don't actually suspend, just test devices."); /* * ACPI can only be loaded as a module by the loader; activating it after * system bootstrap time is not useful, and can be fatal to the system. * It also cannot be unloaded, since the entire system bus hierarchy hangs * off it. */ static int acpi_modevent(struct module *mod, int event, void *junk) { switch (event) { case MOD_LOAD: if (!cold) { printf("The ACPI driver cannot be loaded after boot.\n"); return (EPERM); } break; case MOD_UNLOAD: if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) return (EBUSY); break; default: break; } return (0); } /* * Perform early initialization. */ ACPI_STATUS acpi_Startup(void) { static int started = 0; ACPI_STATUS status; int val; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* Only run the startup code once. The MADT driver also calls this. */ if (started) return_VALUE (AE_OK); started = 1; /* * Initialize the ACPICA subsystem. */ if (ACPI_FAILURE(status = AcpiInitializeSubsystem())) { printf("ACPI: Could not initialize Subsystem: %s\n", AcpiFormatException(status)); return_VALUE (status); } /* * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing * if more tables exist. */ if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) { printf("ACPI: Table initialisation failed: %s\n", AcpiFormatException(status)); return_VALUE (status); } /* Set up any quirks we have for this system. */ if (acpi_quirks == ACPI_Q_OK) acpi_table_quirks(&acpi_quirks); /* If the user manually set the disabled hint to 0, force-enable ACPI. */ if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) acpi_quirks &= ~ACPI_Q_BROKEN; if (acpi_quirks & ACPI_Q_BROKEN) { printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); status = AE_SUPPORT; } return_VALUE (status); } /* * Detect ACPI and perform early initialisation. */ int acpi_identify(void) { ACPI_TABLE_RSDP *rsdp; ACPI_TABLE_HEADER *rsdt; ACPI_PHYSICAL_ADDRESS paddr; struct sbuf sb; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); if (!cold) return (ENXIO); /* Check that we haven't been disabled with a hint. */ if (resource_disabled("acpi", 0)) return (ENXIO); /* Check for other PM systems. */ if (power_pm_get_type() != POWER_PM_TYPE_NONE && power_pm_get_type() != POWER_PM_TYPE_ACPI) { printf("ACPI identify failed, other PM system enabled.\n"); return (ENXIO); } /* Initialize root tables. */ if (ACPI_FAILURE(acpi_Startup())) { printf("ACPI: Try disabling either ACPI or apic support.\n"); return (ENXIO); } if ((paddr = AcpiOsGetRootPointer()) == 0 || (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL) return (ENXIO); if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0) paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress; else paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress; AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP)); if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL) return (ENXIO); sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN); sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE); sbuf_trim(&sb); sbuf_putc(&sb, ' '); sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE); sbuf_trim(&sb); sbuf_finish(&sb); sbuf_delete(&sb); AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER)); snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION); return (0); } /* * Fetch some descriptive data from ACPI to put in our attach message. */ static int acpi_probe(device_t dev) { ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); device_set_desc(dev, acpi_desc); return_VALUE (BUS_PROBE_NOWILDCARD); } static int acpi_attach(device_t dev) { struct acpi_softc *sc; ACPI_STATUS status; int error, state; UINT32 flags; UINT8 TypeA, TypeB; char *env; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); sc = device_get_softc(dev); sc->acpi_dev = dev; callout_init(&sc->susp_force_to, 1); error = ENXIO; /* Initialize resource manager. */ acpi_rman_io.rm_type = RMAN_ARRAY; acpi_rman_io.rm_start = 0; acpi_rman_io.rm_end = 0xffff; acpi_rman_io.rm_descr = "ACPI I/O ports"; if (rman_init(&acpi_rman_io) != 0) panic("acpi rman_init IO ports failed"); acpi_rman_mem.rm_type = RMAN_ARRAY; acpi_rman_mem.rm_descr = "ACPI I/O memory addresses"; if (rman_init(&acpi_rman_mem) != 0) panic("acpi rman_init memory failed"); /* Initialise the ACPI mutex */ mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); /* * Set the globals from our tunables. This is needed because ACPI-CA * uses UINT8 for some values and we have no tunable_byte. */ AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE; AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE; #ifndef ACPI_DEBUG /* * Disable all debugging layers and levels. */ AcpiDbgLayer = 0; AcpiDbgLevel = 0; #endif /* Override OS interfaces if the user requested. */ acpi_reset_interfaces(dev); /* Load ACPI name space. */ status = AcpiLoadTables(); if (ACPI_FAILURE(status)) { device_printf(dev, "Could not load Namespace: %s\n", AcpiFormatException(status)); goto out; } #if defined(__i386__) || defined(__amd64__) /* Handle MCFG table if present. */ acpi_enable_pcie(); #endif /* * Note that some systems (specifically, those with namespace evaluation * issues that require the avoidance of parts of the namespace) must * avoid running _INI and _STA on everything, as well as dodging the final * object init pass. * * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). * * XXX We should arrange for the object init pass after we have attached * all our child devices, but on many systems it works here. */ flags = 0; if (testenv("debug.acpi.avoid")) flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; /* Bring the hardware and basic handlers online. */ if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { device_printf(dev, "Could not enable ACPI: %s\n", AcpiFormatException(status)); goto out; } /* * Call the ECDT probe function to provide EC functionality before * the namespace has been evaluated. * * XXX This happens before the sysresource devices have been probed and * attached so its resources come from nexus0. In practice, this isn't * a problem but should be addressed eventually. */ acpi_ec_ecdt_probe(dev); /* Bring device objects and regions online. */ if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { device_printf(dev, "Could not initialize ACPI objects: %s\n", AcpiFormatException(status)); goto out; } /* * Setup our sysctl tree. * * XXX: This doesn't check to make sure that none of these fail. */ sysctl_ctx_init(&sc->acpi_sysctl_ctx); sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, device_get_name(dev), CTLFLAG_RD, 0, ""); SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD, 0, 0, acpi_supported_sleep_state_sysctl, "A", "List supported ACPI sleep states."); SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW, &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", "Power button ACPI sleep state."); SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW, &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", "Sleep button ACPI sleep state."); SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW, &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", "Lid ACPI sleep state. Set to S3 if you want to suspend your laptop when close the Lid."); SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW, &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW, &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0, "sleep delay in seconds"); SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode"); SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode"); SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "disable_on_reboot", CTLFLAG_RW, &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system"); SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "handle_reboot", CTLFLAG_RW, &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot"); /* * Default to 1 second before sleeping to give some machines time to * stabilize. */ sc->acpi_sleep_delay = 1; if (bootverbose) sc->acpi_verbose = 1; if ((env = kern_getenv("hw.acpi.verbose")) != NULL) { if (strcmp(env, "0") != 0) sc->acpi_verbose = 1; freeenv(env); } /* Only enable reboot by default if the FADT says it is available. */ if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) sc->acpi_handle_reboot = 1; #if !ACPI_REDUCED_HARDWARE /* Only enable S4BIOS by default if the FACS says it is available. */ if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT) sc->acpi_s4bios = 1; #endif /* Probe all supported sleep states. */ acpi_sleep_states[ACPI_STATE_S0] = TRUE; for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT, __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) && ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) acpi_sleep_states[state] = TRUE; /* * Dispatch the default sleep state to devices. The lid switch is set * to UNKNOWN by default to avoid surprising users. */ sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ? ACPI_STATE_S5 : ACPI_STATE_UNKNOWN; sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN; sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ? ACPI_STATE_S1 : ACPI_STATE_UNKNOWN; sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ? ACPI_STATE_S3 : ACPI_STATE_UNKNOWN; /* Pick the first valid sleep state for the sleep button default. */ sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN; for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++) if (acpi_sleep_states[state]) { sc->acpi_sleep_button_sx = state; break; } acpi_enable_fixed_events(sc); /* * Scan the namespace and attach/initialise children. */ /* Register our shutdown handler. */ EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, SHUTDOWN_PRI_LAST); /* * Register our acpi event handlers. * XXX should be configurable eg. via userland policy manager. */ EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, sc, ACPI_EVENT_PRI_LAST); EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, sc, ACPI_EVENT_PRI_LAST); /* Flag our initial states. */ sc->acpi_enabled = TRUE; sc->acpi_sstate = ACPI_STATE_S0; sc->acpi_sleep_disabled = TRUE; /* Create the control device */ sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_WHEEL, 0644, "acpi"); sc->acpi_dev_t->si_drv1 = sc; if ((error = acpi_machdep_init(dev))) goto out; /* Register ACPI again to pass the correct argument of pm_func. */ power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); if (!acpi_disabled("bus")) { EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000); acpi_probe_children(dev); } /* Update all GPEs and enable runtime GPEs. */ status = AcpiUpdateAllGpes(); if (ACPI_FAILURE(status)) device_printf(dev, "Could not update all GPEs: %s\n", AcpiFormatException(status)); /* Allow sleep request after a while. */ callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0); callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME, acpi_sleep_enable, sc); error = 0; out: return_VALUE (error); } static void acpi_set_power_children(device_t dev, int state) { device_t child; device_t *devlist; int dstate, i, numdevs; if (device_get_children(dev, &devlist, &numdevs) != 0) return; /* * Retrieve and set D-state for the sleep state if _SxD is present. * Skip children who aren't attached since they are handled separately. */ for (i = 0; i < numdevs; i++) { child = devlist[i]; dstate = state; if (device_is_attached(child) && acpi_device_pwr_for_sleep(dev, child, &dstate) == 0) acpi_set_powerstate(child, dstate); } free(devlist, M_TEMP); } static int acpi_suspend(device_t dev) { int error; GIANT_REQUIRED; error = bus_generic_suspend(dev); if (error == 0) acpi_set_power_children(dev, ACPI_STATE_D3); return (error); } static int acpi_resume(device_t dev) { GIANT_REQUIRED; acpi_set_power_children(dev, ACPI_STATE_D0); return (bus_generic_resume(dev)); } static int acpi_shutdown(device_t dev) { GIANT_REQUIRED; /* Allow children to shutdown first. */ bus_generic_shutdown(dev); /* * Enable any GPEs that are able to power-on the system (i.e., RTC). * Also, disable any that are not valid for this state (most). */ acpi_wake_prep_walk(ACPI_STATE_S5); return (0); } /* * Handle a new device being added */ static device_t acpi_add_child(device_t bus, u_int order, const char *name, int unit) { struct acpi_device *ad; device_t child; if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) return (NULL); resource_list_init(&ad->ad_rl); child = device_add_child_ordered(bus, order, name, unit); if (child != NULL) device_set_ivars(child, ad); else free(ad, M_ACPIDEV); return (child); } static int acpi_print_child(device_t bus, device_t child) { struct acpi_device *adev = device_get_ivars(child); struct resource_list *rl = &adev->ad_rl; int retval = 0; retval += bus_print_child_header(bus, child); retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx"); retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx"); retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%jd"); if (device_get_flags(child)) retval += printf(" flags %#x", device_get_flags(child)); retval += bus_print_child_domain(bus, child); retval += bus_print_child_footer(bus, child); return (retval); } /* * If this device is an ACPI child but no one claimed it, attempt * to power it off. We'll power it back up when a driver is added. * * XXX Disabled for now since many necessary devices (like fdc and * ATA) don't claim the devices we created for them but still expect * them to be powered up. */ static void acpi_probe_nomatch(device_t bus, device_t child) { #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER acpi_set_powerstate(child, ACPI_STATE_D3); #endif } /* * If a new driver has a chance to probe a child, first power it up. * * XXX Disabled for now (see acpi_probe_nomatch for details). */ static void acpi_driver_added(device_t dev, driver_t *driver) { device_t child, *devlist; int i, numdevs; DEVICE_IDENTIFY(driver, dev); if (device_get_children(dev, &devlist, &numdevs)) return; for (i = 0; i < numdevs; i++) { child = devlist[i]; if (device_get_state(child) == DS_NOTPRESENT) { #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER acpi_set_powerstate(child, ACPI_STATE_D0); if (device_probe_and_attach(child) != 0) acpi_set_powerstate(child, ACPI_STATE_D3); #else device_probe_and_attach(child); #endif } } free(devlist, M_TEMP); } /* Location hint for devctl(8) */ static int acpi_child_location_str_method(device_t cbdev, device_t child, char *buf, size_t buflen) { struct acpi_device *dinfo = device_get_ivars(child); char buf2[32]; int pxm; if (dinfo->ad_handle) { snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle)); if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) { snprintf(buf2, 32, " _PXM=%d", pxm); strlcat(buf, buf2, buflen); } } else { snprintf(buf, buflen, "unknown"); } return (0); } /* PnP information for devctl(8) */ static int acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf, size_t buflen) { struct acpi_device *dinfo = device_get_ivars(child); ACPI_DEVICE_INFO *adinfo; if (ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo))) { snprintf(buf, buflen, "unknown"); return (0); } snprintf(buf, buflen, "_HID=%s _UID=%lu", (adinfo->Valid & ACPI_VALID_HID) ? adinfo->HardwareId.String : "none", (adinfo->Valid & ACPI_VALID_UID) ? strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL); AcpiOsFree(adinfo); return (0); } /* * Handle per-device ivars */ static int acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) { struct acpi_device *ad; if ((ad = device_get_ivars(child)) == NULL) { device_printf(child, "device has no ivars\n"); return (ENOENT); } /* ACPI and ISA compatibility ivars */ switch(index) { case ACPI_IVAR_HANDLE: *(ACPI_HANDLE *)result = ad->ad_handle; break; case ACPI_IVAR_PRIVATE: *(void **)result = ad->ad_private; break; case ACPI_IVAR_FLAGS: *(int *)result = ad->ad_flags; break; case ISA_IVAR_VENDORID: case ISA_IVAR_SERIAL: case ISA_IVAR_COMPATID: *(int *)result = -1; break; case ISA_IVAR_LOGICALID: *(int *)result = acpi_isa_get_logicalid(child); break; case PCI_IVAR_CLASS: *(uint8_t*)result = (ad->ad_cls_class >> 16) & 0xff; break; case PCI_IVAR_SUBCLASS: *(uint8_t*)result = (ad->ad_cls_class >> 8) & 0xff; break; case PCI_IVAR_PROGIF: *(uint8_t*)result = (ad->ad_cls_class >> 0) & 0xff; break; default: return (ENOENT); } return (0); } static int acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) { struct acpi_device *ad; if ((ad = device_get_ivars(child)) == NULL) { device_printf(child, "device has no ivars\n"); return (ENOENT); } switch(index) { case ACPI_IVAR_HANDLE: ad->ad_handle = (ACPI_HANDLE)value; break; case ACPI_IVAR_PRIVATE: ad->ad_private = (void *)value; break; case ACPI_IVAR_FLAGS: ad->ad_flags = (int)value; break; default: panic("bad ivar write request (%d)", index); return (ENOENT); } return (0); } /* * Handle child resource allocation/removal */ static struct resource_list * acpi_get_rlist(device_t dev, device_t child) { struct acpi_device *ad; ad = device_get_ivars(child); return (&ad->ad_rl); } static int acpi_match_resource_hint(device_t dev, int type, long value) { struct acpi_device *ad = device_get_ivars(dev); struct resource_list *rl = &ad->ad_rl; struct resource_list_entry *rle; STAILQ_FOREACH(rle, rl, link) { if (rle->type != type) continue; if (rle->start <= value && rle->end >= value) return (1); } return (0); } /* * Wire device unit numbers based on resource matches in hints. */ static void acpi_hint_device_unit(device_t acdev, device_t child, const char *name, int *unitp) { const char *s; long value; int line, matches, unit; /* * Iterate over all the hints for the devices with the specified * name to see if one's resources are a subset of this device. */ line = 0; while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) { /* Must have an "at" for acpi or isa. */ resource_string_value(name, unit, "at", &s); if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 || strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)) continue; /* * Check for matching resources. We must have at least one match. * Since I/O and memory resources cannot be shared, if we get a * match on either of those, ignore any mismatches in IRQs or DRQs. * * XXX: We may want to revisit this to be more lenient and wire * as long as it gets one match. */ matches = 0; if (resource_long_value(name, unit, "port", &value) == 0) { /* * Floppy drive controllers are notorious for having a * wide variety of resources not all of which include the * first port that is specified by the hint (typically * 0x3f0) (see the comment above fdc_isa_alloc_resources() * in fdc_isa.c). However, they do all seem to include * port + 2 (e.g. 0x3f2) so for a floppy device, look for * 'value + 2' in the port resources instead of the hint * value. */ if (strcmp(name, "fdc") == 0) value += 2; if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value)) matches++; else continue; } if (resource_long_value(name, unit, "maddr", &value) == 0) { if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value)) matches++; else continue; } if (matches > 0) goto matched; if (resource_long_value(name, unit, "irq", &value) == 0) { if (acpi_match_resource_hint(child, SYS_RES_IRQ, value)) matches++; else continue; } if (resource_long_value(name, unit, "drq", &value) == 0) { if (acpi_match_resource_hint(child, SYS_RES_DRQ, value)) matches++; else continue; } matched: if (matches > 0) { /* We have a winner! */ *unitp = unit; break; } } } /* * Fetch the NUMA domain for a device by mapping the value returned by * _PXM to a NUMA domain. If the device does not have a _PXM method, * -2 is returned. If any other error occurs, -1 is returned. */ static int acpi_parse_pxm(device_t dev) { #ifdef NUMA ACPI_HANDLE handle; ACPI_STATUS status; int pxm; handle = acpi_get_handle(dev); if (handle == NULL) return (-2); status = acpi_GetInteger(handle, "_PXM", &pxm); if (ACPI_SUCCESS(status)) return (acpi_map_pxm_to_vm_domainid(pxm)); if (status == AE_NOT_FOUND) return (-2); #endif return (-1); } int acpi_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) { int d, error; d = acpi_parse_pxm(child); if (d < 0) return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); switch (op) { case LOCAL_CPUS: if (setsize != sizeof(cpuset_t)) return (EINVAL); *cpuset = cpuset_domain[d]; return (0); case INTR_CPUS: error = bus_generic_get_cpus(dev, child, op, setsize, cpuset); if (error != 0) return (error); if (setsize != sizeof(cpuset_t)) return (EINVAL); CPU_AND(cpuset, &cpuset_domain[d]); return (0); default: return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); } } /* * Fetch the NUMA domain for the given device 'dev'. * * If a device has a _PXM method, map that to a NUMA domain. * Otherwise, pass the request up to the parent. * If there's no matching domain or the domain cannot be * determined, return ENOENT. */ int acpi_get_domain(device_t dev, device_t child, int *domain) { int d; d = acpi_parse_pxm(child); if (d >= 0) { *domain = d; return (0); } if (d == -1) return (ENOENT); /* No _PXM node; go up a level */ return (bus_generic_get_domain(dev, child, domain)); } /* * Pre-allocate/manage all memory and IO resources. Since rman can't handle * duplicates, we merge any in the sysresource attach routine. */ static int acpi_sysres_alloc(device_t dev) { struct resource *res; struct resource_list *rl; struct resource_list_entry *rle; struct rman *rm; device_t *children; int child_count, i; /* * Probe/attach any sysresource devices. This would be unnecessary if we * had multi-pass probe/attach. */ if (device_get_children(dev, &children, &child_count) != 0) return (ENXIO); for (i = 0; i < child_count; i++) { if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) device_probe_and_attach(children[i]); } free(children, M_TEMP); rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); STAILQ_FOREACH(rle, rl, link) { if (rle->res != NULL) { device_printf(dev, "duplicate resource for %jx\n", rle->start); continue; } /* Only memory and IO resources are valid here. */ switch (rle->type) { case SYS_RES_IOPORT: rm = &acpi_rman_io; break; case SYS_RES_MEMORY: rm = &acpi_rman_mem; break; default: continue; } /* Pre-allocate resource and add to our rman pool. */ res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type, &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0); if (res != NULL) { rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); rle->res = res; } else if (bootverbose) device_printf(dev, "reservation of %jx, %jx (%d) failed\n", rle->start, rle->count, rle->type); } return (0); } /* * Reserve declared resources for devices found during attach once system * resources have been allocated. */ static void acpi_reserve_resources(device_t dev) { struct resource_list_entry *rle; struct resource_list *rl; struct acpi_device *ad; struct acpi_softc *sc; device_t *children; int child_count, i; sc = device_get_softc(dev); if (device_get_children(dev, &children, &child_count) != 0) return; for (i = 0; i < child_count; i++) { ad = device_get_ivars(children[i]); rl = &ad->ad_rl; /* Don't reserve system resources. */ if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) continue; STAILQ_FOREACH(rle, rl, link) { /* * Don't reserve IRQ resources. There are many sticky things * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET * when using legacy routing). */ if (rle->type == SYS_RES_IRQ) continue; /* * Don't reserve the resource if it is already allocated. * The acpi_ec(4) driver can allocate its resources early * if ECDT is present. */ if (rle->res != NULL) continue; /* * Try to reserve the resource from our parent. If this * fails because the resource is a system resource, just * let it be. The resource range is already reserved so * that other devices will not use it. If the driver * needs to allocate the resource, then * acpi_alloc_resource() will sub-alloc from the system * resource. */ resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid, rle->start, rle->end, rle->count, 0); } } free(children, M_TEMP); sc->acpi_resources_reserved = 1; } static int acpi_set_resource(device_t dev, device_t child, int type, int rid, rman_res_t start, rman_res_t count) { struct acpi_softc *sc = device_get_softc(dev); struct acpi_device *ad = device_get_ivars(child); struct resource_list *rl = &ad->ad_rl; #if defined(__i386__) || defined(__amd64__) ACPI_DEVICE_INFO *devinfo; #endif rman_res_t end; /* Ignore IRQ resources for PCI link devices. */ if (type == SYS_RES_IRQ && ACPI_ID_PROBE(dev, child, pcilink_ids) != NULL) return (0); /* * Ignore most resources for PCI root bridges. Some BIOSes * incorrectly enumerate the memory ranges they decode as plain * memory resources instead of as ResourceProducer ranges. Other * BIOSes incorrectly list system resource entries for I/O ranges * under the PCI bridge. Do allow the one known-correct case on * x86 of a PCI bridge claiming the I/O ports used for PCI config * access. */ #if defined(__i386__) || defined(__amd64__) if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) { if (ACPI_SUCCESS(AcpiGetObjectInfo(ad->ad_handle, &devinfo))) { if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) { if (!(type == SYS_RES_IOPORT && start == CONF1_ADDR_PORT)) { AcpiOsFree(devinfo); return (0); } } AcpiOsFree(devinfo); } } #endif /* If the resource is already allocated, fail. */ if (resource_list_busy(rl, type, rid)) return (EBUSY); /* If the resource is already reserved, release it. */ if (resource_list_reserved(rl, type, rid)) resource_list_unreserve(rl, dev, child, type, rid); /* Add the resource. */ end = (start + count - 1); resource_list_add(rl, type, rid, start, end, count); /* Don't reserve resources until the system resources are allocated. */ if (!sc->acpi_resources_reserved) return (0); /* Don't reserve system resources. */ if (ACPI_ID_PROBE(dev, child, sysres_ids) != NULL) return (0); /* * Don't reserve IRQ resources. There are many sticky things to * get right otherwise (e.g. IRQs for psm, atkbd, and HPET when * using legacy routing). */ if (type == SYS_RES_IRQ) return (0); /* * Reserve the resource. * * XXX: Ignores failure for now. Failure here is probably a * BIOS/firmware bug? */ resource_list_reserve(rl, dev, child, type, &rid, start, end, count, 0); return (0); } static struct resource * acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { #ifndef INTRNG ACPI_RESOURCE ares; #endif struct acpi_device *ad; struct resource_list_entry *rle; struct resource_list *rl; struct resource *res; int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); /* * First attempt at allocating the resource. For direct children, * use resource_list_alloc() to handle reserved resources. For * other devices, pass the request up to our parent. */ if (bus == device_get_parent(child)) { ad = device_get_ivars(child); rl = &ad->ad_rl; /* * Simulate the behavior of the ISA bus for direct children * devices. That is, if a non-default range is specified for * a resource that doesn't exist, use bus_set_resource() to * add the resource before allocating it. Note that these * resources will not be reserved. */ if (!isdefault && resource_list_find(rl, type, *rid) == NULL) resource_list_add(rl, type, *rid, start, end, count); res = resource_list_alloc(rl, bus, child, type, rid, start, end, count, flags); #ifndef INTRNG if (res != NULL && type == SYS_RES_IRQ) { /* * Since bus_config_intr() takes immediate effect, we cannot * configure the interrupt associated with a device when we * parse the resources but have to defer it until a driver * actually allocates the interrupt via bus_alloc_resource(). * * XXX: Should we handle the lookup failing? */ if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) acpi_config_intr(child, &ares); } #endif /* * If this is an allocation of the "default" range for a given * RID, fetch the exact bounds for this resource from the * resource list entry to try to allocate the range from the * system resource regions. */ if (res == NULL && isdefault) { rle = resource_list_find(rl, type, *rid); if (rle != NULL) { start = rle->start; end = rle->end; count = rle->count; } } } else res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, start, end, count, flags); /* * If the first attempt failed and this is an allocation of a * specific range, try to satisfy the request via a suballocation * from our system resource regions. */ if (res == NULL && start + count - 1 == end) res = acpi_alloc_sysres(child, type, rid, start, end, count, flags); return (res); } /* * Attempt to allocate a specific resource range from the system * resource ranges. Note that we only handle memory and I/O port * system resources. */ struct resource * acpi_alloc_sysres(device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { struct rman *rm; struct resource *res; switch (type) { case SYS_RES_IOPORT: rm = &acpi_rman_io; break; case SYS_RES_MEMORY: rm = &acpi_rman_mem; break; default: return (NULL); } KASSERT(start + count - 1 == end, ("wildcard resource range")); res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, child); if (res == NULL) return (NULL); rman_set_rid(res, *rid); /* If requested, activate the resource using the parent's method. */ if (flags & RF_ACTIVE) if (bus_activate_resource(child, type, *rid, res) != 0) { rman_release_resource(res); return (NULL); } return (res); } static int acpi_is_resource_managed(int type, struct resource *r) { /* We only handle memory and IO resources through rman. */ switch (type) { case SYS_RES_IOPORT: return (rman_is_region_manager(r, &acpi_rman_io)); case SYS_RES_MEMORY: return (rman_is_region_manager(r, &acpi_rman_mem)); } return (0); } static int acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r, rman_res_t start, rman_res_t end) { if (acpi_is_resource_managed(type, r)) return (rman_adjust_resource(r, start, end)); return (bus_generic_adjust_resource(bus, child, type, r, start, end)); } static int acpi_release_resource(device_t bus, device_t child, int type, int rid, struct resource *r) { int ret; /* * If this resource belongs to one of our internal managers, * deactivate it and release it to the local pool. */ if (acpi_is_resource_managed(type, r)) { if (rman_get_flags(r) & RF_ACTIVE) { ret = bus_deactivate_resource(child, type, rid, r); if (ret != 0) return (ret); } return (rman_release_resource(r)); } return (bus_generic_rl_release_resource(bus, child, type, rid, r)); } static void acpi_delete_resource(device_t bus, device_t child, int type, int rid) { struct resource_list *rl; rl = acpi_get_rlist(bus, child); if (resource_list_busy(rl, type, rid)) { device_printf(bus, "delete_resource: Resource still owned by child" " (type=%d, rid=%d)\n", type, rid); return; } resource_list_unreserve(rl, bus, child, type, rid); resource_list_delete(rl, type, rid); } /* Allocate an IO port or memory resource, given its GAS. */ int acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas, struct resource **res, u_int flags) { int error, res_type; error = ENOMEM; if (type == NULL || rid == NULL || gas == NULL || res == NULL) return (EINVAL); /* We only support memory and IO spaces. */ switch (gas->SpaceId) { case ACPI_ADR_SPACE_SYSTEM_MEMORY: res_type = SYS_RES_MEMORY; break; case ACPI_ADR_SPACE_SYSTEM_IO: res_type = SYS_RES_IOPORT; break; default: return (EOPNOTSUPP); } /* * If the register width is less than 8, assume the BIOS author means * it is a bit field and just allocate a byte. */ if (gas->BitWidth && gas->BitWidth < 8) gas->BitWidth = 8; /* Validate the address after we're sure we support the space. */ if (gas->Address == 0 || gas->BitWidth == 0) return (EINVAL); bus_set_resource(dev, res_type, *rid, gas->Address, gas->BitWidth / 8); *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags); if (*res != NULL) { *type = res_type; error = 0; } else bus_delete_resource(dev, res_type, *rid); return (error); } /* Probe _HID and _CID for compatible ISA PNP ids. */ static uint32_t acpi_isa_get_logicalid(device_t dev) { ACPI_DEVICE_INFO *devinfo; ACPI_HANDLE h; uint32_t pnpid; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* Fetch and validate the HID. */ if ((h = acpi_get_handle(dev)) == NULL || ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) return_VALUE (0); pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 && devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ? PNP_EISAID(devinfo->HardwareId.String) : 0; AcpiOsFree(devinfo); return_VALUE (pnpid); } static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) { ACPI_DEVICE_INFO *devinfo; ACPI_PNP_DEVICE_ID *ids; ACPI_HANDLE h; uint32_t *pnpid; int i, valid; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); pnpid = cids; /* Fetch and validate the CID */ if ((h = acpi_get_handle(dev)) == NULL || ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) return_VALUE (0); if ((devinfo->Valid & ACPI_VALID_CID) == 0) { AcpiOsFree(devinfo); return_VALUE (0); } if (devinfo->CompatibleIdList.Count < count) count = devinfo->CompatibleIdList.Count; ids = devinfo->CompatibleIdList.Ids; for (i = 0, valid = 0; i < count; i++) if (ids[i].Length >= ACPI_EISAID_STRING_SIZE && strncmp(ids[i].String, "PNP", 3) == 0) { *pnpid++ = PNP_EISAID(ids[i].String); valid++; } AcpiOsFree(devinfo); return_VALUE (valid); } static char * acpi_device_id_probe(device_t bus, device_t dev, char **ids) { ACPI_HANDLE h; ACPI_OBJECT_TYPE t; int i; h = acpi_get_handle(dev); if (ids == NULL || h == NULL) return (NULL); t = acpi_get_type(dev); if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR) return (NULL); /* Try to match one of the array of IDs with a HID or CID. */ for (i = 0; ids[i] != NULL; i++) { if (acpi_MatchHid(h, ids[i])) return (ids[i]); } return (NULL); } static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) { ACPI_HANDLE h; if (dev == NULL) h = ACPI_ROOT_OBJECT; else if ((h = acpi_get_handle(dev)) == NULL) return (AE_BAD_PARAMETER); return (AcpiEvaluateObject(h, pathname, parameters, ret)); } int acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) { struct acpi_softc *sc; ACPI_HANDLE handle; ACPI_STATUS status; char sxd[8]; handle = acpi_get_handle(dev); /* * XXX If we find these devices, don't try to power them down. * The serial and IRDA ports on my T23 hang the system when * set to D3 and it appears that such legacy devices may * need special handling in their drivers. */ if (dstate == NULL || handle == NULL || acpi_MatchHid(handle, "PNP0500") || acpi_MatchHid(handle, "PNP0501") || acpi_MatchHid(handle, "PNP0502") || acpi_MatchHid(handle, "PNP0510") || acpi_MatchHid(handle, "PNP0511")) return (ENXIO); /* * Override next state with the value from _SxD, if present. * Note illegal _S0D is evaluated because some systems expect this. */ sc = device_get_softc(bus); snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); status = acpi_GetInteger(handle, sxd, dstate); if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { device_printf(dev, "failed to get %s on %s: %s\n", sxd, acpi_name(handle), AcpiFormatException(status)); return (ENXIO); } return (0); } /* Callback arg for our implementation of walking the namespace. */ struct acpi_device_scan_ctx { acpi_scan_cb_t user_fn; void *arg; ACPI_HANDLE parent; }; static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) { struct acpi_device_scan_ctx *ctx; device_t dev, old_dev; ACPI_STATUS status; ACPI_OBJECT_TYPE type; /* * Skip this device if we think we'll have trouble with it or it is * the parent where the scan began. */ ctx = (struct acpi_device_scan_ctx *)arg; if (acpi_avoid(h) || h == ctx->parent) return (AE_OK); /* If this is not a valid device type (e.g., a method), skip it. */ if (ACPI_FAILURE(AcpiGetType(h, &type))) return (AE_OK); if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) return (AE_OK); /* * Call the user function with the current device. If it is unchanged * afterwards, return. Otherwise, we update the handle to the new dev. */ old_dev = acpi_get_device(h); dev = old_dev; status = ctx->user_fn(h, &dev, level, ctx->arg); if (ACPI_FAILURE(status) || old_dev == dev) return (status); /* Remove the old child and its connection to the handle. */ if (old_dev != NULL) { device_delete_child(device_get_parent(old_dev), old_dev); AcpiDetachData(h, acpi_fake_objhandler); } /* Recreate the handle association if the user created a device. */ if (dev != NULL) AcpiAttachData(h, acpi_fake_objhandler, dev); return (AE_OK); } static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, int max_depth, acpi_scan_cb_t user_fn, void *arg) { ACPI_HANDLE h; struct acpi_device_scan_ctx ctx; if (acpi_disabled("children")) return (AE_OK); if (dev == NULL) h = ACPI_ROOT_OBJECT; else if ((h = acpi_get_handle(dev)) == NULL) return (AE_BAD_PARAMETER); ctx.user_fn = user_fn; ctx.arg = arg; ctx.parent = h; return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, acpi_device_scan_cb, NULL, &ctx, NULL)); } /* * Even though ACPI devices are not PCI, we use the PCI approach for setting * device power states since it's close enough to ACPI. */ static int acpi_set_powerstate(device_t child, int state) { ACPI_HANDLE h; ACPI_STATUS status; h = acpi_get_handle(child); if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX) return (EINVAL); if (h == NULL) return (0); /* Ignore errors if the power methods aren't present. */ status = acpi_pwr_switch_consumer(h, state); if (ACPI_SUCCESS(status)) { if (bootverbose) device_printf(child, "set ACPI power state D%d on %s\n", state, acpi_name(h)); } else if (status != AE_NOT_FOUND) device_printf(child, "failed to set ACPI power state D%d on %s: %s\n", state, acpi_name(h), AcpiFormatException(status)); return (0); } static int acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) { int result, cid_count, i; uint32_t lid, cids[8]; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* * ISA-style drivers attached to ACPI may persist and * probe manually if we return ENOENT. We never want * that to happen, so don't ever return it. */ result = ENXIO; /* Scan the supplied IDs for a match */ lid = acpi_isa_get_logicalid(child); cid_count = acpi_isa_get_compatid(child, cids, 8); while (ids && ids->ip_id) { if (lid == ids->ip_id) { result = 0; goto out; } for (i = 0; i < cid_count; i++) { if (cids[i] == ids->ip_id) { result = 0; goto out; } } ids++; } out: if (result == 0 && ids->ip_desc) device_set_desc(child, ids->ip_desc); return_VALUE (result); } #if defined(__i386__) || defined(__amd64__) /* * Look for a MCFG table. If it is present, use the settings for * domain (segment) 0 to setup PCI config space access via the memory * map. */ static void acpi_enable_pcie(void) { ACPI_TABLE_HEADER *hdr; ACPI_MCFG_ALLOCATION *alloc, *end; ACPI_STATUS status; status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); if (ACPI_FAILURE(status)) return; end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); while (alloc < end) { if (alloc->PciSegment == 0) { pcie_cfgregopen(alloc->Address, alloc->StartBusNumber, alloc->EndBusNumber); return; } alloc++; } } #elif defined(__aarch64__) static void acpi_enable_pcie(device_t child, int segment) { ACPI_TABLE_HEADER *hdr; ACPI_MCFG_ALLOCATION *alloc, *end; ACPI_STATUS status; status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); if (ACPI_FAILURE(status)) return; end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); while (alloc < end) { if (alloc->PciSegment == segment) { bus_set_resource(child, SYS_RES_MEMORY, 0, alloc->Address, 0x10000000); return; } alloc++; } } #endif /* * Scan all of the ACPI namespace and attach child devices. * * We should only expect to find devices in the \_PR, \_TZ, \_SI, and * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. * However, in violation of the spec, some systems place their PCI link * devices in \, so we have to walk the whole namespace. We check the * type of namespace nodes, so this should be ok. */ static void acpi_probe_children(device_t bus) { ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* * Scan the namespace and insert placeholders for all the devices that * we find. We also probe/attach any early devices. * * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because * we want to create nodes for all devices, not just those that are * currently present. (This assumes that we don't want to create/remove * devices as they appear, which might be smarter.) */ ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, NULL, bus, NULL); /* Pre-allocate resources for our rman from any sysresource devices. */ acpi_sysres_alloc(bus); /* Reserve resources already allocated to children. */ acpi_reserve_resources(bus); /* Create any static children by calling device identify methods. */ ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); bus_generic_probe(bus); /* Probe/attach all children, created statically and from the namespace. */ ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n")); bus_generic_attach(bus); /* Attach wake sysctls. */ acpi_wake_sysctl_walk(bus); ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); return_VOID; } /* * Determine the probe order for a given device. */ static void acpi_probe_order(ACPI_HANDLE handle, int *order) { ACPI_OBJECT_TYPE type; /* * 0. CPUs * 1. I/O port and memory system resource holders * 2. Clocks and timers (to handle early accesses) * 3. Embedded controllers (to handle early accesses) * 4. PCI Link Devices */ AcpiGetType(handle, &type); if (type == ACPI_TYPE_PROCESSOR) *order = 0; else if (acpi_MatchHid(handle, "PNP0C01") || acpi_MatchHid(handle, "PNP0C02")) *order = 1; else if (acpi_MatchHid(handle, "PNP0100") || acpi_MatchHid(handle, "PNP0103") || acpi_MatchHid(handle, "PNP0B00")) *order = 2; else if (acpi_MatchHid(handle, "PNP0C09")) *order = 3; else if (acpi_MatchHid(handle, "PNP0C0F")) *order = 4; } /* * Evaluate a child device and determine whether we might attach a device to * it. */ static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) { ACPI_DEVICE_INFO *devinfo; struct acpi_device *ad; #ifdef __aarch64__ int segment; #endif struct acpi_prw_data prw; ACPI_OBJECT_TYPE type; ACPI_HANDLE h; device_t bus, child; char *handle_str; int order; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); if (acpi_disabled("children")) return_ACPI_STATUS (AE_OK); /* Skip this device if we think we'll have trouble with it. */ if (acpi_avoid(handle)) return_ACPI_STATUS (AE_OK); bus = (device_t)context; if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { handle_str = acpi_name(handle); switch (type) { case ACPI_TYPE_DEVICE: /* * Since we scan from \, be sure to skip system scope objects. * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around * BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run * during the initialization and \_TZ_ is to support Notify() on it. */ if (strcmp(handle_str, "\\_SB_") == 0 || strcmp(handle_str, "\\_TZ_") == 0) break; if (acpi_parse_prw(handle, &prw) == 0) AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit); /* * Ignore devices that do not have a _HID or _CID. They should * be discovered by other buses (e.g. the PCI bus driver). */ if (!acpi_has_hid(handle)) break; /* FALLTHROUGH */ case ACPI_TYPE_PROCESSOR: case ACPI_TYPE_THERMAL: case ACPI_TYPE_POWER: /* * Create a placeholder device for this node. Sort the * placeholder so that the probe/attach passes will run * breadth-first. Orders less than ACPI_DEV_BASE_ORDER * are reserved for special objects (i.e., system * resources). */ ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); order = level * 10 + ACPI_DEV_BASE_ORDER; acpi_probe_order(handle, &order); child = BUS_ADD_CHILD(bus, order, NULL, -1); if (child == NULL) break; /* Associate the handle with the device_t and vice versa. */ acpi_set_handle(child, handle); AcpiAttachData(handle, acpi_fake_objhandler, child); /* * Check that the device is present. If it's not present, * leave it disabled (so that we have a device_t attached to * the handle, but we don't probe it). * * XXX PCI link devices sometimes report "present" but not * "functional" (i.e. if disabled). Go ahead and probe them * anyway since we may enable them later. */ if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { /* Never disable PCI link devices. */ if (acpi_MatchHid(handle, "PNP0C0F")) break; /* * Docking stations should remain enabled since the system * may be undocked at boot. */ if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h))) break; device_disable(child); break; } /* * Get the device's resource settings and attach them. * Note that if the device has _PRS but no _CRS, we need * to decide when it's appropriate to try to configure the * device. Ignore the return value here; it's OK for the * device not to have any resources. */ acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); ad = device_get_ivars(child); ad->ad_cls_class = 0xffffff; if (ACPI_SUCCESS(AcpiGetObjectInfo(handle, &devinfo))) { if ((devinfo->Valid & ACPI_VALID_CLS) != 0 && devinfo->ClassCode.Length >= ACPI_PCICLS_STRING_SIZE) { ad->ad_cls_class = strtoul(devinfo->ClassCode.String, NULL, 16); } #ifdef __aarch64__ if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) { if (ACPI_SUCCESS(acpi_GetInteger(handle, "_SEG", &segment))) { acpi_enable_pcie(child, segment); } } #endif AcpiOsFree(devinfo); } break; } } return_ACPI_STATUS (AE_OK); } /* * AcpiAttachData() requires an object handler but never uses it. This is a * placeholder object handler so we can store a device_t in an ACPI_HANDLE. */ void acpi_fake_objhandler(ACPI_HANDLE h, void *data) { } static void acpi_shutdown_final(void *arg, int howto) { struct acpi_softc *sc = (struct acpi_softc *)arg; register_t intr; ACPI_STATUS status; /* * XXX Shutdown code should only run on the BSP (cpuid 0). * Some chipsets do not power off the system correctly if called from * an AP. */ if ((howto & RB_POWEROFF) != 0) { status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); if (ACPI_FAILURE(status)) { device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", AcpiFormatException(status)); return; } device_printf(sc->acpi_dev, "Powering system off\n"); intr = intr_disable(); status = AcpiEnterSleepState(ACPI_STATE_S5); if (ACPI_FAILURE(status)) { intr_restore(intr); device_printf(sc->acpi_dev, "power-off failed - %s\n", AcpiFormatException(status)); } else { DELAY(1000000); intr_restore(intr); device_printf(sc->acpi_dev, "power-off failed - timeout\n"); } } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) { /* Reboot using the reset register. */ status = AcpiReset(); if (ACPI_SUCCESS(status)) { DELAY(1000000); device_printf(sc->acpi_dev, "reset failed - timeout\n"); } else if (status != AE_NOT_EXIST) device_printf(sc->acpi_dev, "reset failed - %s\n", AcpiFormatException(status)); } else if (sc->acpi_do_disable && panicstr == NULL) { /* * Only disable ACPI if the user requested. On some systems, writing * the disable value to SMI_CMD hangs the system. */ device_printf(sc->acpi_dev, "Shutting down\n"); AcpiTerminate(); } } static void acpi_enable_fixed_events(struct acpi_softc *sc) { static int first_time = 1; /* Enable and clear fixed events and install handlers. */ if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) { AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, acpi_event_power_button_sleep, sc); if (first_time) device_printf(sc->acpi_dev, "Power Button (fixed)\n"); } if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) { AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, acpi_event_sleep_button_sleep, sc); if (first_time) device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); } first_time = 0; } /* * Returns true if the device is actually present and should * be attached to. This requires the present, enabled, UI-visible * and diagnostics-passed bits to be set. */ BOOLEAN acpi_DeviceIsPresent(device_t dev) { ACPI_HANDLE h; UINT32 s; ACPI_STATUS status; h = acpi_get_handle(dev); if (h == NULL) return (FALSE); status = acpi_GetInteger(h, "_STA", &s); /* If no _STA method, must be present */ if (ACPI_FAILURE(status)) return (status == AE_NOT_FOUND ? TRUE : FALSE); return (ACPI_DEVICE_PRESENT(s) ? TRUE : FALSE); } /* * Returns true if the battery is actually present and inserted. */ BOOLEAN acpi_BatteryIsPresent(device_t dev) { ACPI_HANDLE h; UINT32 s; ACPI_STATUS status; h = acpi_get_handle(dev); if (h == NULL) return (FALSE); status = acpi_GetInteger(h, "_STA", &s); /* If no _STA method, must be present */ if (ACPI_FAILURE(status)) return (status == AE_NOT_FOUND ? TRUE : FALSE); return (ACPI_BATTERY_PRESENT(s) ? TRUE : FALSE); } /* * Returns true if a device has at least one valid device ID. */ static BOOLEAN acpi_has_hid(ACPI_HANDLE h) { ACPI_DEVICE_INFO *devinfo; BOOLEAN ret; if (h == NULL || ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) return (FALSE); ret = FALSE; if ((devinfo->Valid & ACPI_VALID_HID) != 0) ret = TRUE; else if ((devinfo->Valid & ACPI_VALID_CID) != 0) if (devinfo->CompatibleIdList.Count > 0) ret = TRUE; AcpiOsFree(devinfo); return (ret); } /* * Match a HID string against a handle */ BOOLEAN acpi_MatchHid(ACPI_HANDLE h, const char *hid) { ACPI_DEVICE_INFO *devinfo; BOOLEAN ret; int i; if (hid == NULL || h == NULL || ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) return (FALSE); ret = FALSE; if ((devinfo->Valid & ACPI_VALID_HID) != 0 && strcmp(hid, devinfo->HardwareId.String) == 0) ret = TRUE; else if ((devinfo->Valid & ACPI_VALID_CID) != 0) for (i = 0; i < devinfo->CompatibleIdList.Count; i++) { if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) { ret = TRUE; break; } } AcpiOsFree(devinfo); return (ret); } /* * Return the handle of a named object within our scope, ie. that of (parent) * or one if its parents. */ ACPI_STATUS acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) { ACPI_HANDLE r; ACPI_STATUS status; /* Walk back up the tree to the root */ for (;;) { status = AcpiGetHandle(parent, path, &r); if (ACPI_SUCCESS(status)) { *result = r; return (AE_OK); } /* XXX Return error here? */ if (status != AE_NOT_FOUND) return (AE_OK); if (ACPI_FAILURE(AcpiGetParent(parent, &r))) return (AE_NOT_FOUND); parent = r; } } /* * Allocate a buffer with a preset data size. */ ACPI_BUFFER * acpi_AllocBuffer(int size) { ACPI_BUFFER *buf; if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) return (NULL); buf->Length = size; buf->Pointer = (void *)(buf + 1); return (buf); } ACPI_STATUS acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) { ACPI_OBJECT arg1; ACPI_OBJECT_LIST args; arg1.Type = ACPI_TYPE_INTEGER; arg1.Integer.Value = number; args.Count = 1; args.Pointer = &arg1; return (AcpiEvaluateObject(handle, path, &args, NULL)); } /* * Evaluate a path that should return an integer. */ ACPI_STATUS acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) { ACPI_STATUS status; ACPI_BUFFER buf; ACPI_OBJECT param; if (handle == NULL) handle = ACPI_ROOT_OBJECT; /* * Assume that what we've been pointed at is an Integer object, or * a method that will return an Integer. */ buf.Pointer = ¶m; buf.Length = sizeof(param); status = AcpiEvaluateObject(handle, path, NULL, &buf); if (ACPI_SUCCESS(status)) { if (param.Type == ACPI_TYPE_INTEGER) *number = param.Integer.Value; else status = AE_TYPE; } /* * In some applications, a method that's expected to return an Integer * may instead return a Buffer (probably to simplify some internal * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, * convert it into an Integer as best we can. * * This is a hack. */ if (status == AE_BUFFER_OVERFLOW) { if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { status = AE_NO_MEMORY; } else { status = AcpiEvaluateObject(handle, path, NULL, &buf); if (ACPI_SUCCESS(status)) status = acpi_ConvertBufferToInteger(&buf, number); AcpiOsFree(buf.Pointer); } } return (status); } ACPI_STATUS acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) { ACPI_OBJECT *p; UINT8 *val; int i; p = (ACPI_OBJECT *)bufp->Pointer; if (p->Type == ACPI_TYPE_INTEGER) { *number = p->Integer.Value; return (AE_OK); } if (p->Type != ACPI_TYPE_BUFFER) return (AE_TYPE); if (p->Buffer.Length > sizeof(int)) return (AE_BAD_DATA); *number = 0; val = p->Buffer.Pointer; for (i = 0; i < p->Buffer.Length; i++) *number += val[i] << (i * 8); return (AE_OK); } /* * Iterate over the elements of an a package object, calling the supplied * function for each element. * * XXX possible enhancement might be to abort traversal on error. */ ACPI_STATUS acpi_ForeachPackageObject(ACPI_OBJECT *pkg, void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) { ACPI_OBJECT *comp; int i; if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) return (AE_BAD_PARAMETER); /* Iterate over components */ i = 0; comp = pkg->Package.Elements; for (; i < pkg->Package.Count; i++, comp++) func(comp, arg); return (AE_OK); } /* * Find the (index)th resource object in a set. */ ACPI_STATUS acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) { ACPI_RESOURCE *rp; int i; rp = (ACPI_RESOURCE *)buf->Pointer; i = index; while (i-- > 0) { /* Range check */ if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) return (AE_BAD_PARAMETER); /* Check for terminator */ if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) return (AE_NOT_FOUND); rp = ACPI_NEXT_RESOURCE(rp); } if (resp != NULL) *resp = rp; return (AE_OK); } /* * Append an ACPI_RESOURCE to an ACPI_BUFFER. * * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible * backing block. If the ACPI_RESOURCE is NULL, return an empty set of * resources. */ #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 ACPI_STATUS acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) { ACPI_RESOURCE *rp; void *newp; /* Initialise the buffer if necessary. */ if (buf->Pointer == NULL) { buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) return (AE_NO_MEMORY); rp = (ACPI_RESOURCE *)buf->Pointer; rp->Type = ACPI_RESOURCE_TYPE_END_TAG; rp->Length = ACPI_RS_SIZE_MIN; } if (res == NULL) return (AE_OK); /* * Scan the current buffer looking for the terminator. * This will either find the terminator or hit the end * of the buffer and return an error. */ rp = (ACPI_RESOURCE *)buf->Pointer; for (;;) { /* Range check, don't go outside the buffer */ if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) return (AE_BAD_PARAMETER); if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) break; rp = ACPI_NEXT_RESOURCE(rp); } /* * Check the size of the buffer and expand if required. * * Required size is: * size of existing resources before terminator + * size of new resource and header + * size of terminator. * * Note that this loop should really only run once, unless * for some reason we are stuffing a *really* huge resource. */ while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + res->Length + ACPI_RS_SIZE_NO_DATA + ACPI_RS_SIZE_MIN) >= buf->Length) { if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) return (AE_NO_MEMORY); bcopy(buf->Pointer, newp, buf->Length); rp = (ACPI_RESOURCE *)((u_int8_t *)newp + ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); AcpiOsFree(buf->Pointer); buf->Pointer = newp; buf->Length += buf->Length; } /* Insert the new resource. */ bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA); /* And add the terminator. */ rp = ACPI_NEXT_RESOURCE(rp); rp->Type = ACPI_RESOURCE_TYPE_END_TAG; rp->Length = ACPI_RS_SIZE_MIN; return (AE_OK); } ACPI_STATUS acpi_EvaluateOSC(ACPI_HANDLE handle, uint8_t *uuid, int revision, int count, uint32_t *caps_in, uint32_t *caps_out, bool query) { ACPI_OBJECT arg[4], *ret; ACPI_OBJECT_LIST arglist; ACPI_BUFFER buf; ACPI_STATUS status; arglist.Pointer = arg; arglist.Count = 4; arg[0].Type = ACPI_TYPE_BUFFER; arg[0].Buffer.Length = ACPI_UUID_LENGTH; arg[0].Buffer.Pointer = uuid; arg[1].Type = ACPI_TYPE_INTEGER; arg[1].Integer.Value = revision; arg[2].Type = ACPI_TYPE_INTEGER; arg[2].Integer.Value = count; arg[3].Type = ACPI_TYPE_BUFFER; arg[3].Buffer.Length = count * sizeof(*caps_in); arg[3].Buffer.Pointer = (uint8_t *)caps_in; caps_in[0] = query ? 1 : 0; buf.Pointer = NULL; buf.Length = ACPI_ALLOCATE_BUFFER; status = AcpiEvaluateObjectTyped(handle, "_OSC", &arglist, &buf, ACPI_TYPE_BUFFER); if (ACPI_FAILURE(status)) return (status); if (caps_out != NULL) { ret = buf.Pointer; if (ret->Buffer.Length != count * sizeof(*caps_out)) { AcpiOsFree(buf.Pointer); return (AE_BUFFER_OVERFLOW); } bcopy(ret->Buffer.Pointer, caps_out, ret->Buffer.Length); } AcpiOsFree(buf.Pointer); return (status); } /* * Set interrupt model. */ ACPI_STATUS acpi_SetIntrModel(int model) { return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); } /* * Walk subtables of a table and call a callback routine for each * subtable. The caller should provide the first subtable and a * pointer to the end of the table. This can be used to walk tables * such as MADT and SRAT that use subtable entries. */ void acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler, void *arg) { ACPI_SUBTABLE_HEADER *entry; for (entry = first; (void *)entry < end; ) { /* Avoid an infinite loop if we hit a bogus entry. */ if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER)) return; handler(entry, arg); entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length); } } /* * DEPRECATED. This interface has serious deficiencies and will be * removed. * * Immediately enter the sleep state. In the old model, acpiconf(8) ran * rc.suspend and rc.resume so we don't have to notify devd(8) to do this. */ ACPI_STATUS acpi_SetSleepState(struct acpi_softc *sc, int state) { static int once; if (!once) { device_printf(sc->acpi_dev, "warning: acpi_SetSleepState() deprecated, need to update your software\n"); once = 1; } return (acpi_EnterSleepState(sc, state)); } #if defined(__amd64__) || defined(__i386__) static void acpi_sleep_force_task(void *context) { struct acpi_softc *sc = (struct acpi_softc *)context; if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) device_printf(sc->acpi_dev, "force sleep state S%d failed\n", sc->acpi_next_sstate); } static void acpi_sleep_force(void *arg) { struct acpi_softc *sc = (struct acpi_softc *)arg; device_printf(sc->acpi_dev, "suspend request timed out, forcing sleep now\n"); /* * XXX Suspending from callout causes freezes in DEVICE_SUSPEND(). * Suspend from acpi_task thread instead. */ if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_sleep_force_task, sc))) device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n"); } #endif /* * Request that the system enter the given suspend state. All /dev/apm * devices and devd(8) will be notified. Userland then has a chance to * save state and acknowledge the request. The system sleeps once all * acks are in. */ int acpi_ReqSleepState(struct acpi_softc *sc, int state) { #if defined(__amd64__) || defined(__i386__) struct apm_clone_data *clone; ACPI_STATUS status; if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) return (EINVAL); if (!acpi_sleep_states[state]) return (EOPNOTSUPP); /* * If a reboot/shutdown/suspend request is already in progress or * suspend is blocked due to an upcoming shutdown, just return. */ if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) { return (0); } /* Wait until sleep is enabled. */ while (sc->acpi_sleep_disabled) { AcpiOsSleep(1000); } ACPI_LOCK(acpi); sc->acpi_next_sstate = state; /* S5 (soft-off) should be entered directly with no waiting. */ if (state == ACPI_STATE_S5) { ACPI_UNLOCK(acpi); status = acpi_EnterSleepState(sc, state); return (ACPI_SUCCESS(status) ? 0 : ENXIO); } /* Record the pending state and notify all apm devices. */ STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { clone->notify_status = APM_EV_NONE; if ((clone->flags & ACPI_EVF_DEVD) == 0) { selwakeuppri(&clone->sel_read, PZERO); KNOTE_LOCKED(&clone->sel_read.si_note, 0); } } /* If devd(8) is not running, immediately enter the sleep state. */ if (!devctl_process_running()) { ACPI_UNLOCK(acpi); status = acpi_EnterSleepState(sc, state); return (ACPI_SUCCESS(status) ? 0 : ENXIO); } /* * Set a timeout to fire if userland doesn't ack the suspend request * in time. This way we still eventually go to sleep if we were * overheating or running low on battery, even if userland is hung. * We cancel this timeout once all userland acks are in or the * suspend request is aborted. */ callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc); ACPI_UNLOCK(acpi); /* Now notify devd(8) also. */ acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state); return (0); #else /* This platform does not support acpi suspend/resume. */ return (EOPNOTSUPP); #endif } /* * Acknowledge (or reject) a pending sleep state. The caller has * prepared for suspend and is now ready for it to proceed. If the * error argument is non-zero, it indicates suspend should be cancelled * and gives an errno value describing why. Once all votes are in, * we suspend the system. */ int acpi_AckSleepState(struct apm_clone_data *clone, int error) { #if defined(__amd64__) || defined(__i386__) struct acpi_softc *sc; int ret, sleeping; /* If no pending sleep state, return an error. */ ACPI_LOCK(acpi); sc = clone->acpi_sc; if (sc->acpi_next_sstate == 0) { ACPI_UNLOCK(acpi); return (ENXIO); } /* Caller wants to abort suspend process. */ if (error) { sc->acpi_next_sstate = 0; callout_stop(&sc->susp_force_to); device_printf(sc->acpi_dev, "listener on %s cancelled the pending suspend\n", devtoname(clone->cdev)); ACPI_UNLOCK(acpi); return (0); } /* * Mark this device as acking the suspend request. Then, walk through * all devices, seeing if they agree yet. We only count devices that * are writable since read-only devices couldn't ack the request. */ sleeping = TRUE; clone->notify_status = APM_EV_ACKED; STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { if ((clone->flags & ACPI_EVF_WRITE) != 0 && clone->notify_status != APM_EV_ACKED) { sleeping = FALSE; break; } } /* If all devices have voted "yes", we will suspend now. */ if (sleeping) callout_stop(&sc->susp_force_to); ACPI_UNLOCK(acpi); ret = 0; if (sleeping) { if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) ret = ENODEV; } return (ret); #else /* This platform does not support acpi suspend/resume. */ return (EOPNOTSUPP); #endif } static void acpi_sleep_enable(void *arg) { struct acpi_softc *sc = (struct acpi_softc *)arg; ACPI_LOCK_ASSERT(acpi); /* Reschedule if the system is not fully up and running. */ if (!AcpiGbl_SystemAwakeAndRunning) { callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); return; } sc->acpi_sleep_disabled = FALSE; } static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc) { ACPI_STATUS status; /* Fail if the system is not fully up and running. */ if (!AcpiGbl_SystemAwakeAndRunning) return (AE_ERROR); ACPI_LOCK(acpi); status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK; sc->acpi_sleep_disabled = TRUE; ACPI_UNLOCK(acpi); return (status); } enum acpi_sleep_state { ACPI_SS_NONE, ACPI_SS_GPE_SET, ACPI_SS_DEV_SUSPEND, ACPI_SS_SLP_PREP, ACPI_SS_SLEPT, }; /* * Enter the desired system sleep state. * * Currently we support S1-S5 but S4 is only S4BIOS */ static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state) { register_t intr; ACPI_STATUS status; ACPI_EVENT_STATUS power_button_status; enum acpi_sleep_state slp_state; int sleep_result; ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) return_ACPI_STATUS (AE_BAD_PARAMETER); if (!acpi_sleep_states[state]) { device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n", state); return (AE_SUPPORT); } /* Re-entry once we're suspending is not allowed. */ status = acpi_sleep_disable(sc); if (ACPI_FAILURE(status)) { device_printf(sc->acpi_dev, "suspend request ignored (not ready yet)\n"); return (status); } if (state == ACPI_STATE_S5) { /* * Shut down cleanly and power off. This will call us back through the * shutdown handlers. */ shutdown_nice(RB_POWEROFF); return_ACPI_STATUS (AE_OK); } EVENTHANDLER_INVOKE(power_suspend_early); stop_all_proc(); EVENTHANDLER_INVOKE(power_suspend); #ifdef EARLY_AP_STARTUP MPASS(mp_ncpus == 1 || smp_started); thread_lock(curthread); sched_bind(curthread, 0); thread_unlock(curthread); #else if (smp_started) { thread_lock(curthread); sched_bind(curthread, 0); thread_unlock(curthread); } #endif /* * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE * drivers need this. */ mtx_lock(&Giant); slp_state = ACPI_SS_NONE; sc->acpi_sstate = state; /* Enable any GPEs as appropriate and requested by the user. */ acpi_wake_prep_walk(state); slp_state = ACPI_SS_GPE_SET; /* * Inform all devices that we are going to sleep. If at least one * device fails, DEVICE_SUSPEND() automatically resumes the tree. * * XXX Note that a better two-pass approach with a 'veto' pass * followed by a "real thing" pass would be better, but the current * bus interface does not provide for this. */ if (DEVICE_SUSPEND(root_bus) != 0) { device_printf(sc->acpi_dev, "device_suspend failed\n"); goto backout; } slp_state = ACPI_SS_DEV_SUSPEND; status = AcpiEnterSleepStatePrep(state); if (ACPI_FAILURE(status)) { device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", AcpiFormatException(status)); goto backout; } slp_state = ACPI_SS_SLP_PREP; if (sc->acpi_sleep_delay > 0) DELAY(sc->acpi_sleep_delay * 1000000); + suspendclock(); intr = intr_disable(); if (state != ACPI_STATE_S1) { sleep_result = acpi_sleep_machdep(sc, state); acpi_wakeup_machdep(sc, state, sleep_result, 0); /* * XXX According to ACPI specification SCI_EN bit should be restored * by ACPI platform (BIOS, firmware) to its pre-sleep state. * Unfortunately some BIOSes fail to do that and that leads to * unexpected and serious consequences during wake up like a system * getting stuck in SMI handlers. * This hack is picked up from Linux, which claims that it follows * Windows behavior. */ if (sleep_result == 1 && state != ACPI_STATE_S4) AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT); AcpiLeaveSleepStatePrep(state); if (sleep_result == 1 && state == ACPI_STATE_S3) { /* * Prevent mis-interpretation of the wakeup by power button * as a request for power off. * Ideally we should post an appropriate wakeup event, * perhaps using acpi_event_power_button_wake or alike. * * Clearing of power button status after wakeup is mandated * by ACPI specification in section "Fixed Power Button". * * XXX As of ACPICA 20121114 AcpiGetEventStatus provides * status as 0/1 corressponding to inactive/active despite * its type being ACPI_EVENT_STATUS. In other words, * we should not test for ACPI_EVENT_FLAG_SET for time being. */ if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON, &power_button_status)) && power_button_status != 0) { AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); device_printf(sc->acpi_dev, "cleared fixed power button status\n"); } } intr_restore(intr); /* call acpi_wakeup_machdep() again with interrupt enabled */ acpi_wakeup_machdep(sc, state, sleep_result, 1); if (sleep_result == -1) goto backout; /* Re-enable ACPI hardware on wakeup from sleep state 4. */ if (state == ACPI_STATE_S4) AcpiEnable(); } else { status = AcpiEnterSleepState(state); AcpiLeaveSleepStatePrep(state); intr_restore(intr); if (ACPI_FAILURE(status)) { device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", AcpiFormatException(status)); goto backout; } } slp_state = ACPI_SS_SLEPT; /* * Back out state according to how far along we got in the suspend * process. This handles both the error and success cases. */ backout: + if (slp_state >= ACPI_SS_SLP_PREP) + resumeclock(); if (slp_state >= ACPI_SS_GPE_SET) { acpi_wake_prep_walk(state); sc->acpi_sstate = ACPI_STATE_S0; } if (slp_state >= ACPI_SS_DEV_SUSPEND) DEVICE_RESUME(root_bus); if (slp_state >= ACPI_SS_SLP_PREP) AcpiLeaveSleepState(state); if (slp_state >= ACPI_SS_SLEPT) { acpi_resync_clock(sc); acpi_enable_fixed_events(sc); } sc->acpi_next_sstate = 0; mtx_unlock(&Giant); #ifdef EARLY_AP_STARTUP thread_lock(curthread); sched_unbind(curthread); thread_unlock(curthread); #else if (smp_started) { thread_lock(curthread); sched_unbind(curthread); thread_unlock(curthread); } #endif resume_all_proc(); EVENTHANDLER_INVOKE(power_resume); /* Allow another sleep request after a while. */ callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); /* Run /etc/rc.resume after we are back. */ if (devctl_process_running()) acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state); return_ACPI_STATUS (status); } static void acpi_resync_clock(struct acpi_softc *sc) { /* * Warm up timecounter again and reset system clock. */ (void)timecounter->tc_get_timecount(timecounter); (void)timecounter->tc_get_timecount(timecounter); inittodr(time_second + sc->acpi_sleep_delay); } /* Enable or disable the device's wake GPE. */ int acpi_wake_set_enable(device_t dev, int enable) { struct acpi_prw_data prw; ACPI_STATUS status; int flags; /* Make sure the device supports waking the system and get the GPE. */ if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) return (ENXIO); flags = acpi_get_flags(dev); if (enable) { status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); if (ACPI_FAILURE(status)) { device_printf(dev, "enable wake failed\n"); return (ENXIO); } acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); } else { status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); if (ACPI_FAILURE(status)) { device_printf(dev, "disable wake failed\n"); return (ENXIO); } acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); } return (0); } static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) { struct acpi_prw_data prw; device_t dev; /* Check that this is a wake-capable device and get its GPE. */ if (acpi_parse_prw(handle, &prw) != 0) return (ENXIO); dev = acpi_get_device(handle); /* * The destination sleep state must be less than (i.e., higher power) * or equal to the value specified by _PRW. If this GPE cannot be * enabled for the next sleep state, then disable it. If it can and * the user requested it be enabled, turn on any required power resources * and set _PSW. */ if (sstate > prw.lowest_wake) { AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); if (bootverbose) device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", acpi_name(handle), sstate); } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { acpi_pwr_wake_enable(handle, 1); acpi_SetInteger(handle, "_PSW", 1); if (bootverbose) device_printf(dev, "wake_prep enabled for %s (S%d)\n", acpi_name(handle), sstate); } return (0); } static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) { struct acpi_prw_data prw; device_t dev; /* * Check that this is a wake-capable device and get its GPE. Return * now if the user didn't enable this device for wake. */ if (acpi_parse_prw(handle, &prw) != 0) return (ENXIO); dev = acpi_get_device(handle); if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) return (0); /* * If this GPE couldn't be enabled for the previous sleep state, it was * disabled before going to sleep so re-enable it. If it was enabled, * clear _PSW and turn off any power resources it used. */ if (sstate > prw.lowest_wake) { AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); if (bootverbose) device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); } else { acpi_SetInteger(handle, "_PSW", 0); acpi_pwr_wake_enable(handle, 0); if (bootverbose) device_printf(dev, "run_prep cleaned up for %s\n", acpi_name(handle)); } return (0); } static ACPI_STATUS acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) { int sstate; /* If suspending, run the sleep prep function, otherwise wake. */ sstate = *(int *)context; if (AcpiGbl_SystemAwakeAndRunning) acpi_wake_sleep_prep(handle, sstate); else acpi_wake_run_prep(handle, sstate); return (AE_OK); } /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ static int acpi_wake_prep_walk(int sstate) { ACPI_HANDLE sb_handle; if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, acpi_wake_prep, NULL, &sstate, NULL); return (0); } /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ static int acpi_wake_sysctl_walk(device_t dev) { int error, i, numdevs; device_t *devlist; device_t child; ACPI_STATUS status; error = device_get_children(dev, &devlist, &numdevs); if (error != 0 || numdevs == 0) { if (numdevs == 0) free(devlist, M_TEMP); return (error); } for (i = 0; i < numdevs; i++) { child = devlist[i]; acpi_wake_sysctl_walk(child); if (!device_is_attached(child)) continue; status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); if (ACPI_SUCCESS(status)) { SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, "wake", CTLTYPE_INT | CTLFLAG_RW, child, 0, acpi_wake_set_sysctl, "I", "Device set to wake the system"); } } free(devlist, M_TEMP); return (0); } /* Enable or disable wake from userland. */ static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) { int enable, error; device_t dev; dev = (device_t)arg1; enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; error = sysctl_handle_int(oidp, &enable, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (enable != 0 && enable != 1) return (EINVAL); return (acpi_wake_set_enable(dev, enable)); } /* Parse a device's _PRW into a structure. */ int acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) { ACPI_STATUS status; ACPI_BUFFER prw_buffer; ACPI_OBJECT *res, *res2; int error, i, power_count; if (h == NULL || prw == NULL) return (EINVAL); /* * The _PRW object (7.2.9) is only required for devices that have the * ability to wake the system from a sleeping state. */ error = EINVAL; prw_buffer.Pointer = NULL; prw_buffer.Length = ACPI_ALLOCATE_BUFFER; status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); if (ACPI_FAILURE(status)) return (ENOENT); res = (ACPI_OBJECT *)prw_buffer.Pointer; if (res == NULL) return (ENOENT); if (!ACPI_PKG_VALID(res, 2)) goto out; /* * Element 1 of the _PRW object: * The lowest power system sleeping state that can be entered while still * providing wake functionality. The sleeping state being entered must * be less than (i.e., higher power) or equal to this value. */ if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) goto out; /* * Element 0 of the _PRW object: */ switch (res->Package.Elements[0].Type) { case ACPI_TYPE_INTEGER: /* * If the data type of this package element is numeric, then this * _PRW package element is the bit index in the GPEx_EN, in the * GPE blocks described in the FADT, of the enable bit that is * enabled for the wake event. */ prw->gpe_handle = NULL; prw->gpe_bit = res->Package.Elements[0].Integer.Value; error = 0; break; case ACPI_TYPE_PACKAGE: /* * If the data type of this package element is a package, then this * _PRW package element is itself a package containing two * elements. The first is an object reference to the GPE Block * device that contains the GPE that will be triggered by the wake * event. The second element is numeric and it contains the bit * index in the GPEx_EN, in the GPE Block referenced by the * first element in the package, of the enable bit that is enabled for * the wake event. * * For example, if this field is a package then it is of the form: * Package() {\_SB.PCI0.ISA.GPE, 2} */ res2 = &res->Package.Elements[0]; if (!ACPI_PKG_VALID(res2, 2)) goto out; prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); if (prw->gpe_handle == NULL) goto out; if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) goto out; error = 0; break; default: goto out; } /* Elements 2 to N of the _PRW object are power resources. */ power_count = res->Package.Count - 2; if (power_count > ACPI_PRW_MAX_POWERRES) { printf("ACPI device %s has too many power resources\n", acpi_name(h)); power_count = 0; } prw->power_res_count = power_count; for (i = 0; i < power_count; i++) prw->power_res[i] = res->Package.Elements[i]; out: if (prw_buffer.Pointer != NULL) AcpiOsFree(prw_buffer.Pointer); return (error); } /* * ACPI Event Handlers */ /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ static void acpi_system_eventhandler_sleep(void *arg, int state) { struct acpi_softc *sc = (struct acpi_softc *)arg; int ret; ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); /* Check if button action is disabled or unknown. */ if (state == ACPI_STATE_UNKNOWN) return; /* Request that the system prepare to enter the given suspend state. */ ret = acpi_ReqSleepState(sc, state); if (ret != 0) device_printf(sc->acpi_dev, "request to enter state S%d failed (err %d)\n", state, ret); return_VOID; } static void acpi_system_eventhandler_wakeup(void *arg, int state) { ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); /* Currently, nothing to do for wakeup. */ return_VOID; } /* * ACPICA Event Handlers (FixedEvent, also called from button notify handler) */ static void acpi_invoke_sleep_eventhandler(void *context) { EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context); } static void acpi_invoke_wake_eventhandler(void *context) { EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context); } UINT32 acpi_event_power_button_sleep(void *context) { struct acpi_softc *sc = (struct acpi_softc *)context; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx))) return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); return_VALUE (ACPI_INTERRUPT_HANDLED); } UINT32 acpi_event_power_button_wake(void *context) { struct acpi_softc *sc = (struct acpi_softc *)context; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx))) return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); return_VALUE (ACPI_INTERRUPT_HANDLED); } UINT32 acpi_event_sleep_button_sleep(void *context) { struct acpi_softc *sc = (struct acpi_softc *)context; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx))) return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); return_VALUE (ACPI_INTERRUPT_HANDLED); } UINT32 acpi_event_sleep_button_wake(void *context) { struct acpi_softc *sc = (struct acpi_softc *)context; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx))) return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); return_VALUE (ACPI_INTERRUPT_HANDLED); } /* * XXX This static buffer is suboptimal. There is no locking so only * use this for single-threaded callers. */ char * acpi_name(ACPI_HANDLE handle) { ACPI_BUFFER buf; static char data[256]; buf.Length = sizeof(data); buf.Pointer = data; if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) return (data); return ("(unknown)"); } /* * Debugging/bug-avoidance. Avoid trying to fetch info on various * parts of the namespace. */ int acpi_avoid(ACPI_HANDLE handle) { char *cp, *env, *np; int len; np = acpi_name(handle); if (*np == '\\') np++; if ((env = kern_getenv("debug.acpi.avoid")) == NULL) return (0); /* Scan the avoid list checking for a match */ cp = env; for (;;) { while (*cp != 0 && isspace(*cp)) cp++; if (*cp == 0) break; len = 0; while (cp[len] != 0 && !isspace(cp[len])) len++; if (!strncmp(cp, np, len)) { freeenv(env); return(1); } cp += len; } freeenv(env); return (0); } /* * Debugging/bug-avoidance. Disable ACPI subsystem components. */ int acpi_disabled(char *subsys) { char *cp, *env; int len; if ((env = kern_getenv("debug.acpi.disabled")) == NULL) return (0); if (strcmp(env, "all") == 0) { freeenv(env); return (1); } /* Scan the disable list, checking for a match. */ cp = env; for (;;) { while (*cp != '\0' && isspace(*cp)) cp++; if (*cp == '\0') break; len = 0; while (cp[len] != '\0' && !isspace(cp[len])) len++; if (strncmp(cp, subsys, len) == 0) { freeenv(env); return (1); } cp += len; } freeenv(env); return (0); } static void acpi_lookup(void *arg, const char *name, device_t *dev) { ACPI_HANDLE handle; if (*dev != NULL) return; /* * Allow any handle name that is specified as an absolute path and * starts with '\'. We could restrict this to \_SB and friends, * but see acpi_probe_children() for notes on why we scan the entire * namespace for devices. * * XXX: The pathname argument to AcpiGetHandle() should be fixed to * be const. */ if (name[0] != '\\') return; if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name), &handle))) return; *dev = acpi_get_device(handle); } /* * Control interface. * * We multiplex ioctls for all participating ACPI devices here. Individual * drivers wanting to be accessible via /dev/acpi should use the * register/deregister interface to make their handlers visible. */ struct acpi_ioctl_hook { TAILQ_ENTRY(acpi_ioctl_hook) link; u_long cmd; acpi_ioctl_fn fn; void *arg; }; static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; static int acpi_ioctl_hooks_initted; int acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) { struct acpi_ioctl_hook *hp; if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) return (ENOMEM); hp->cmd = cmd; hp->fn = fn; hp->arg = arg; ACPI_LOCK(acpi); if (acpi_ioctl_hooks_initted == 0) { TAILQ_INIT(&acpi_ioctl_hooks); acpi_ioctl_hooks_initted = 1; } TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); ACPI_UNLOCK(acpi); return (0); } void acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) { struct acpi_ioctl_hook *hp; ACPI_LOCK(acpi); TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) if (hp->cmd == cmd && hp->fn == fn) break; if (hp != NULL) { TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); free(hp, M_ACPIDEV); } ACPI_UNLOCK(acpi); } static int acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td) { return (0); } static int acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td) { return (0); } static int acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) { struct acpi_softc *sc; struct acpi_ioctl_hook *hp; int error, state; error = 0; hp = NULL; sc = dev->si_drv1; /* * Scan the list of registered ioctls, looking for handlers. */ ACPI_LOCK(acpi); if (acpi_ioctl_hooks_initted) TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { if (hp->cmd == cmd) break; } ACPI_UNLOCK(acpi); if (hp) return (hp->fn(cmd, addr, hp->arg)); /* * Core ioctls are not permitted for non-writable user. * Currently, other ioctls just fetch information. * Not changing system behavior. */ if ((flag & FWRITE) == 0) return (EPERM); /* Core system ioctls. */ switch (cmd) { case ACPIIO_REQSLPSTATE: state = *(int *)addr; if (state != ACPI_STATE_S5) return (acpi_ReqSleepState(sc, state)); device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n"); error = EOPNOTSUPP; break; case ACPIIO_ACKSLPSTATE: error = *(int *)addr; error = acpi_AckSleepState(sc->acpi_clone, error); break; case ACPIIO_SETSLPSTATE: /* DEPRECATED */ state = *(int *)addr; if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX) return (EINVAL); if (!acpi_sleep_states[state]) return (EOPNOTSUPP); if (ACPI_FAILURE(acpi_SetSleepState(sc, state))) error = ENXIO; break; default: error = ENXIO; break; } return (error); } static int acpi_sname2sstate(const char *sname) { int sstate; if (toupper(sname[0]) == 'S') { sstate = sname[1] - '0'; if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 && sname[2] == '\0') return (sstate); } else if (strcasecmp(sname, "NONE") == 0) return (ACPI_STATE_UNKNOWN); return (-1); } static const char * acpi_sstate2sname(int sstate) { static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" }; if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5) return (snames[sstate]); else if (sstate == ACPI_STATE_UNKNOWN) return ("NONE"); return (NULL); } static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) { int error; struct sbuf sb; UINT8 state; sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) if (acpi_sleep_states[state]) sbuf_printf(&sb, "%s ", acpi_sstate2sname(state)); sbuf_trim(&sb); sbuf_finish(&sb); error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); sbuf_delete(&sb); return (error); } static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) { char sleep_state[10]; int error, new_state, old_state; old_state = *(int *)oidp->oid_arg1; strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state)); error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); if (error == 0 && req->newptr != NULL) { new_state = acpi_sname2sstate(sleep_state); if (new_state < ACPI_STATE_S1) return (EINVAL); if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state]) return (EOPNOTSUPP); if (new_state != old_state) *(int *)oidp->oid_arg1 = new_state; } return (error); } /* Inform devctl(4) when we receive a Notify. */ void acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) { char notify_buf[16]; ACPI_BUFFER handle_buf; ACPI_STATUS status; if (subsystem == NULL) return; handle_buf.Pointer = NULL; handle_buf.Length = ACPI_ALLOCATE_BUFFER; status = AcpiNsHandleToPathname(h, &handle_buf, FALSE); if (ACPI_FAILURE(status)) return; snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); AcpiOsFree(handle_buf.Pointer); } #ifdef ACPI_DEBUG /* * Support for parsing debug options from the kernel environment. * * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers * by specifying the names of the bits in the debug.acpi.layer and * debug.acpi.level environment variables. Bits may be unset by * prefixing the bit name with !. */ struct debugtag { char *name; UINT32 value; }; static struct debugtag dbg_layer[] = { {"ACPI_UTILITIES", ACPI_UTILITIES}, {"ACPI_HARDWARE", ACPI_HARDWARE}, {"ACPI_EVENTS", ACPI_EVENTS}, {"ACPI_TABLES", ACPI_TABLES}, {"ACPI_NAMESPACE", ACPI_NAMESPACE}, {"ACPI_PARSER", ACPI_PARSER}, {"ACPI_DISPATCHER", ACPI_DISPATCHER}, {"ACPI_EXECUTER", ACPI_EXECUTER}, {"ACPI_RESOURCES", ACPI_RESOURCES}, {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, {"ACPI_BATTERY", ACPI_BATTERY}, {"ACPI_BUS", ACPI_BUS}, {"ACPI_BUTTON", ACPI_BUTTON}, {"ACPI_EC", ACPI_EC}, {"ACPI_FAN", ACPI_FAN}, {"ACPI_POWERRES", ACPI_POWERRES}, {"ACPI_PROCESSOR", ACPI_PROCESSOR}, {"ACPI_THERMAL", ACPI_THERMAL}, {"ACPI_TIMER", ACPI_TIMER}, {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, {NULL, 0} }; static struct debugtag dbg_level[] = { {"ACPI_LV_INIT", ACPI_LV_INIT}, {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, {"ACPI_LV_INFO", ACPI_LV_INFO}, {"ACPI_LV_REPAIR", ACPI_LV_REPAIR}, {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, /* Trace verbosity level 1 [Standard Trace Level] */ {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, {"ACPI_LV_PARSE", ACPI_LV_PARSE}, {"ACPI_LV_LOAD", ACPI_LV_LOAD}, {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, {"ACPI_LV_EXEC", ACPI_LV_EXEC}, {"ACPI_LV_NAMES", ACPI_LV_NAMES}, {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, {"ACPI_LV_TABLES", ACPI_LV_TABLES}, {"ACPI_LV_VALUES", ACPI_LV_VALUES}, {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, /* Trace verbosity level 2 [Function tracing and memory allocation] */ {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, {"ACPI_LV_ALL", ACPI_LV_ALL}, /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, {"ACPI_LV_THREADS", ACPI_LV_THREADS}, {"ACPI_LV_IO", ACPI_LV_IO}, {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, /* Exceptionally verbose output -- also used in the global "DebugLevel" */ {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, {NULL, 0} }; static void acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) { char *ep; int i, l; int set; while (*cp) { if (isspace(*cp)) { cp++; continue; } ep = cp; while (*ep && !isspace(*ep)) ep++; if (*cp == '!') { set = 0; cp++; if (cp == ep) continue; } else { set = 1; } l = ep - cp; for (i = 0; tag[i].name != NULL; i++) { if (!strncmp(cp, tag[i].name, l)) { if (set) *flag |= tag[i].value; else *flag &= ~tag[i].value; } } cp = ep; } } static void acpi_set_debugging(void *junk) { char *layer, *level; if (cold) { AcpiDbgLayer = 0; AcpiDbgLevel = 0; } layer = kern_getenv("debug.acpi.layer"); level = kern_getenv("debug.acpi.level"); if (layer == NULL && level == NULL) return; printf("ACPI set debug"); if (layer != NULL) { if (strcmp("NONE", layer) != 0) printf(" layer '%s'", layer); acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); freeenv(layer); } if (level != NULL) { if (strcmp("NONE", level) != 0) printf(" level '%s'", level); acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); freeenv(level); } printf("\n"); } SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, NULL); static int acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) { int error, *dbg; struct debugtag *tag; struct sbuf sb; char temp[128]; if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) return (ENOMEM); if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { tag = &dbg_layer[0]; dbg = &AcpiDbgLayer; } else { tag = &dbg_level[0]; dbg = &AcpiDbgLevel; } /* Get old values if this is a get request. */ ACPI_SERIAL_BEGIN(acpi); if (*dbg == 0) { sbuf_cpy(&sb, "NONE"); } else if (req->newptr == NULL) { for (; tag->name != NULL; tag++) { if ((*dbg & tag->value) == tag->value) sbuf_printf(&sb, "%s ", tag->name); } } sbuf_trim(&sb); sbuf_finish(&sb); strlcpy(temp, sbuf_data(&sb), sizeof(temp)); sbuf_delete(&sb); error = sysctl_handle_string(oidp, temp, sizeof(temp), req); /* Check for error or no change */ if (error == 0 && req->newptr != NULL) { *dbg = 0; kern_setenv((char *)oidp->oid_arg1, temp); acpi_set_debugging(NULL); } ACPI_SERIAL_END(acpi); return (error); } SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING, "debug.acpi.layer", 0, acpi_debug_sysctl, "A", ""); SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING, "debug.acpi.level", 0, acpi_debug_sysctl, "A", ""); #endif /* ACPI_DEBUG */ static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS) { int error; int old; old = acpi_debug_objects; error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (old == acpi_debug_objects || (old && acpi_debug_objects)) return (0); ACPI_SERIAL_BEGIN(acpi); AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; ACPI_SERIAL_END(acpi); return (0); } static int acpi_parse_interfaces(char *str, struct acpi_interface *iface) { char *p; size_t len; int i, j; p = str; while (isspace(*p) || *p == ',') p++; len = strlen(p); if (len == 0) return (0); p = strdup(p, M_TEMP); for (i = 0; i < len; i++) if (p[i] == ',') p[i] = '\0'; i = j = 0; while (i < len) if (isspace(p[i]) || p[i] == '\0') i++; else { i += strlen(p + i) + 1; j++; } if (j == 0) { free(p, M_TEMP); return (0); } iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK); iface->num = j; i = j = 0; while (i < len) if (isspace(p[i]) || p[i] == '\0') i++; else { iface->data[j] = p + i; i += strlen(p + i) + 1; j++; } return (j); } static void acpi_free_interfaces(struct acpi_interface *iface) { free(iface->data[0], M_TEMP); free(iface->data, M_TEMP); } static void acpi_reset_interfaces(device_t dev) { struct acpi_interface list; ACPI_STATUS status; int i; if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) { for (i = 0; i < list.num; i++) { status = AcpiInstallInterface(list.data[i]); if (ACPI_FAILURE(status)) device_printf(dev, "failed to install _OSI(\"%s\"): %s\n", list.data[i], AcpiFormatException(status)); else if (bootverbose) device_printf(dev, "installed _OSI(\"%s\")\n", list.data[i]); } acpi_free_interfaces(&list); } if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) { for (i = 0; i < list.num; i++) { status = AcpiRemoveInterface(list.data[i]); if (ACPI_FAILURE(status)) device_printf(dev, "failed to remove _OSI(\"%s\"): %s\n", list.data[i], AcpiFormatException(status)); else if (bootverbose) device_printf(dev, "removed _OSI(\"%s\")\n", list.data[i]); } acpi_free_interfaces(&list); } } static int acpi_pm_func(u_long cmd, void *arg, ...) { int state, acpi_state; int error; struct acpi_softc *sc; va_list ap; error = 0; switch (cmd) { case POWER_CMD_SUSPEND: sc = (struct acpi_softc *)arg; if (sc == NULL) { error = EINVAL; goto out; } va_start(ap, arg); state = va_arg(ap, int); va_end(ap); switch (state) { case POWER_SLEEP_STATE_STANDBY: acpi_state = sc->acpi_standby_sx; break; case POWER_SLEEP_STATE_SUSPEND: acpi_state = sc->acpi_suspend_sx; break; case POWER_SLEEP_STATE_HIBERNATE: acpi_state = ACPI_STATE_S4; break; default: error = EINVAL; goto out; } if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state))) error = ENXIO; break; default: error = EINVAL; goto out; } out: return (error); } static void acpi_pm_register(void *arg) { if (!cold || resource_disabled("acpi", 0)) return; power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); } SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, NULL); Index: head/sys/kern/kern_clocksource.c =================================================================== --- head/sys/kern/kern_clocksource.c (revision 333993) +++ head/sys/kern/kern_clocksource.c (revision 333994) @@ -1,973 +1,989 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2010-2013 Alexander Motin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Common routines to manage event timers hardware. */ #include "opt_device_polling.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int cpu_disable_c2_sleep = 0; /* Timer dies in C2. */ int cpu_disable_c3_sleep = 0; /* Timer dies in C3. */ static void setuptimer(void); static void loadtimer(sbintime_t now, int first); static int doconfigtimer(void); static void configtimer(int start); static int round_freq(struct eventtimer *et, int freq); static sbintime_t getnextcpuevent(int idle); static sbintime_t getnextevent(void); static int handleevents(sbintime_t now, int fake); static struct mtx et_hw_mtx; #define ET_HW_LOCK(state) \ { \ if (timer->et_flags & ET_FLAGS_PERCPU) \ mtx_lock_spin(&(state)->et_hw_mtx); \ else \ mtx_lock_spin(&et_hw_mtx); \ } #define ET_HW_UNLOCK(state) \ { \ if (timer->et_flags & ET_FLAGS_PERCPU) \ mtx_unlock_spin(&(state)->et_hw_mtx); \ else \ mtx_unlock_spin(&et_hw_mtx); \ } static struct eventtimer *timer = NULL; static sbintime_t timerperiod; /* Timer period for periodic mode. */ static sbintime_t statperiod; /* statclock() events period. */ static sbintime_t profperiod; /* profclock() events period. */ static sbintime_t nexttick; /* Next global timer tick time. */ static u_int busy = 1; /* Reconfiguration is in progress. */ static int profiling; /* Profiling events enabled. */ static char timername[32]; /* Wanted timer. */ TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername)); static int singlemul; /* Multiplier for periodic mode. */ SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RWTUN, &singlemul, 0, "Multiplier for periodic mode"); static u_int idletick; /* Run periodic events when idle. */ SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RWTUN, &idletick, 0, "Run periodic events when idle"); static int periodic; /* Periodic or one-shot mode. */ static int want_periodic; /* What mode to prefer. */ TUNABLE_INT("kern.eventtimer.periodic", &want_periodic); struct pcpu_state { struct mtx et_hw_mtx; /* Per-CPU timer mutex. */ u_int action; /* Reconfiguration requests. */ u_int handle; /* Immediate handle resuests. */ sbintime_t now; /* Last tick time. */ sbintime_t nextevent; /* Next scheduled event on this CPU. */ sbintime_t nexttick; /* Next timer tick time. */ sbintime_t nexthard; /* Next hardclock() event. */ sbintime_t nextstat; /* Next statclock() event. */ sbintime_t nextprof; /* Next profclock() event. */ sbintime_t nextcall; /* Next callout event. */ sbintime_t nextcallopt; /* Next optional callout event. */ int ipi; /* This CPU needs IPI. */ int idle; /* This CPU is in idle mode. */ }; static DPCPU_DEFINE(struct pcpu_state, timerstate); DPCPU_DEFINE(sbintime_t, hardclocktime); /* * Timer broadcast IPI handler. */ int hardclockintr(void) { sbintime_t now; struct pcpu_state *state; int done; if (doconfigtimer() || busy) return (FILTER_HANDLED); state = DPCPU_PTR(timerstate); now = state->now; CTR3(KTR_SPARE2, "ipi at %d: now %d.%08x", curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff)); done = handleevents(now, 0); return (done ? FILTER_HANDLED : FILTER_STRAY); } /* * Handle all events for specified time on this CPU */ static int handleevents(sbintime_t now, int fake) { sbintime_t t, *hct; struct trapframe *frame; struct pcpu_state *state; int usermode; int done, runs; CTR3(KTR_SPARE2, "handle at %d: now %d.%08x", curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff)); done = 0; if (fake) { frame = NULL; usermode = 0; } else { frame = curthread->td_intr_frame; usermode = TRAPF_USERMODE(frame); } state = DPCPU_PTR(timerstate); runs = 0; while (now >= state->nexthard) { state->nexthard += tick_sbt; runs++; } if (runs) { hct = DPCPU_PTR(hardclocktime); *hct = state->nexthard - tick_sbt; if (fake < 2) { hardclock_cnt(runs, usermode); done = 1; } } runs = 0; while (now >= state->nextstat) { state->nextstat += statperiod; runs++; } if (runs && fake < 2) { statclock_cnt(runs, usermode); done = 1; } if (profiling) { runs = 0; while (now >= state->nextprof) { state->nextprof += profperiod; runs++; } if (runs && !fake) { profclock_cnt(runs, usermode, TRAPF_PC(frame)); done = 1; } } else state->nextprof = state->nextstat; if (now >= state->nextcallopt || now >= state->nextcall) { state->nextcall = state->nextcallopt = SBT_MAX; callout_process(now); } t = getnextcpuevent(0); ET_HW_LOCK(state); if (!busy) { state->idle = 0; state->nextevent = t; loadtimer(now, (fake == 2) && (timer->et_flags & ET_FLAGS_PERCPU)); } ET_HW_UNLOCK(state); return (done); } /* * Schedule binuptime of the next event on current CPU. */ static sbintime_t getnextcpuevent(int idle) { sbintime_t event; struct pcpu_state *state; u_int hardfreq; state = DPCPU_PTR(timerstate); /* Handle hardclock() events, skipping some if CPU is idle. */ event = state->nexthard; if (idle) { hardfreq = (u_int)hz / 2; if (tc_min_ticktock_freq > 2 #ifdef SMP && curcpu == CPU_FIRST() #endif ) hardfreq = hz / tc_min_ticktock_freq; if (hardfreq > 1) event += tick_sbt * (hardfreq - 1); } /* Handle callout events. */ if (event > state->nextcall) event = state->nextcall; if (!idle) { /* If CPU is active - handle other types of events. */ if (event > state->nextstat) event = state->nextstat; if (profiling && event > state->nextprof) event = state->nextprof; } return (event); } /* * Schedule binuptime of the next event on all CPUs. */ static sbintime_t getnextevent(void) { struct pcpu_state *state; sbintime_t event; #ifdef SMP int cpu; #endif #ifdef KTR int c; c = -1; #endif state = DPCPU_PTR(timerstate); event = state->nextevent; #ifdef SMP if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) { CPU_FOREACH(cpu) { state = DPCPU_ID_PTR(cpu, timerstate); if (event > state->nextevent) { event = state->nextevent; #ifdef KTR c = cpu; #endif } } } #endif CTR4(KTR_SPARE2, "next at %d: next %d.%08x by %d", curcpu, (int)(event >> 32), (u_int)(event & 0xffffffff), c); return (event); } /* Hardware timer callback function. */ static void timercb(struct eventtimer *et, void *arg) { sbintime_t now; sbintime_t *next; struct pcpu_state *state; #ifdef SMP int cpu, bcast; #endif /* Do not touch anything if somebody reconfiguring timers. */ if (busy) return; /* Update present and next tick times. */ state = DPCPU_PTR(timerstate); if (et->et_flags & ET_FLAGS_PERCPU) { next = &state->nexttick; } else next = &nexttick; now = sbinuptime(); if (periodic) *next = now + timerperiod; else *next = -1; /* Next tick is not scheduled yet. */ state->now = now; CTR3(KTR_SPARE2, "intr at %d: now %d.%08x", curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff)); #ifdef SMP #ifdef EARLY_AP_STARTUP MPASS(mp_ncpus == 1 || smp_started); #endif /* Prepare broadcasting to other CPUs for non-per-CPU timers. */ bcast = 0; #ifdef EARLY_AP_STARTUP if ((et->et_flags & ET_FLAGS_PERCPU) == 0) { #else if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) { #endif CPU_FOREACH(cpu) { state = DPCPU_ID_PTR(cpu, timerstate); ET_HW_LOCK(state); state->now = now; if (now >= state->nextevent) { state->nextevent += SBT_1S; if (curcpu != cpu) { state->ipi = 1; bcast = 1; } } ET_HW_UNLOCK(state); } } #endif /* Handle events for this time on this CPU. */ handleevents(now, 0); #ifdef SMP /* Broadcast interrupt to other CPUs for non-per-CPU timers. */ if (bcast) { CPU_FOREACH(cpu) { if (curcpu == cpu) continue; state = DPCPU_ID_PTR(cpu, timerstate); if (state->ipi) { state->ipi = 0; ipi_cpu(cpu, IPI_HARDCLOCK); } } } #endif } /* * Load new value into hardware timer. */ static void loadtimer(sbintime_t now, int start) { struct pcpu_state *state; sbintime_t new; sbintime_t *next; uint64_t tmp; int eq; if (timer->et_flags & ET_FLAGS_PERCPU) { state = DPCPU_PTR(timerstate); next = &state->nexttick; } else next = &nexttick; if (periodic) { if (start) { /* * Try to start all periodic timers aligned * to period to make events synchronous. */ tmp = now % timerperiod; new = timerperiod - tmp; if (new < tmp) /* Left less then passed. */ new += timerperiod; CTR5(KTR_SPARE2, "load p at %d: now %d.%08x first in %d.%08x", curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff), (int)(new >> 32), (u_int)(new & 0xffffffff)); *next = new + now; et_start(timer, new, timerperiod); } } else { new = getnextevent(); eq = (new == *next); CTR4(KTR_SPARE2, "load at %d: next %d.%08x eq %d", curcpu, (int)(new >> 32), (u_int)(new & 0xffffffff), eq); if (!eq) { *next = new; et_start(timer, new - now, 0); } } } /* * Prepare event timer parameters after configuration changes. */ static void setuptimer(void) { int freq; if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0) periodic = 0; else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0) periodic = 1; singlemul = MIN(MAX(singlemul, 1), 20); freq = hz * singlemul; while (freq < (profiling ? profhz : stathz)) freq += hz; freq = round_freq(timer, freq); timerperiod = SBT_1S / freq; } /* * Reconfigure specified per-CPU timer on other CPU. Called from IPI handler. */ static int doconfigtimer(void) { sbintime_t now; struct pcpu_state *state; state = DPCPU_PTR(timerstate); switch (atomic_load_acq_int(&state->action)) { case 1: now = sbinuptime(); ET_HW_LOCK(state); loadtimer(now, 1); ET_HW_UNLOCK(state); state->handle = 0; atomic_store_rel_int(&state->action, 0); return (1); case 2: ET_HW_LOCK(state); et_stop(timer); ET_HW_UNLOCK(state); state->handle = 0; atomic_store_rel_int(&state->action, 0); return (1); } if (atomic_readandclear_int(&state->handle) && !busy) { now = sbinuptime(); handleevents(now, 0); return (1); } return (0); } /* * Reconfigure specified timer. * For per-CPU timers use IPI to make other CPUs to reconfigure. */ static void configtimer(int start) { sbintime_t now, next; struct pcpu_state *state; int cpu; if (start) { setuptimer(); now = sbinuptime(); } else now = 0; critical_enter(); ET_HW_LOCK(DPCPU_PTR(timerstate)); if (start) { /* Initialize time machine parameters. */ next = now + timerperiod; if (periodic) nexttick = next; else nexttick = -1; #ifdef EARLY_AP_STARTUP MPASS(mp_ncpus == 1 || smp_started); #endif CPU_FOREACH(cpu) { state = DPCPU_ID_PTR(cpu, timerstate); state->now = now; #ifndef EARLY_AP_STARTUP if (!smp_started && cpu != CPU_FIRST()) state->nextevent = SBT_MAX; else #endif state->nextevent = next; if (periodic) state->nexttick = next; else state->nexttick = -1; state->nexthard = next; state->nextstat = next; state->nextprof = next; state->nextcall = next; state->nextcallopt = next; hardclock_sync(cpu); } busy = 0; /* Start global timer or per-CPU timer of this CPU. */ loadtimer(now, 1); } else { busy = 1; /* Stop global timer or per-CPU timer of this CPU. */ et_stop(timer); } ET_HW_UNLOCK(DPCPU_PTR(timerstate)); #ifdef SMP #ifdef EARLY_AP_STARTUP /* If timer is global we are done. */ if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) { #else /* If timer is global or there is no other CPUs yet - we are done. */ if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) { #endif critical_exit(); return; } /* Set reconfigure flags for other CPUs. */ CPU_FOREACH(cpu) { state = DPCPU_ID_PTR(cpu, timerstate); atomic_store_rel_int(&state->action, (cpu == curcpu) ? 0 : ( start ? 1 : 2)); } /* Broadcast reconfigure IPI. */ ipi_all_but_self(IPI_HARDCLOCK); /* Wait for reconfiguration completed. */ restart: cpu_spinwait(); CPU_FOREACH(cpu) { if (cpu == curcpu) continue; state = DPCPU_ID_PTR(cpu, timerstate); if (atomic_load_acq_int(&state->action)) goto restart; } #endif critical_exit(); } /* * Calculate nearest frequency supported by hardware timer. */ static int round_freq(struct eventtimer *et, int freq) { uint64_t div; if (et->et_frequency != 0) { div = lmax((et->et_frequency + freq / 2) / freq, 1); if (et->et_flags & ET_FLAGS_POW2DIV) div = 1 << (flsl(div + div / 2) - 1); freq = (et->et_frequency + div / 2) / div; } if (et->et_min_period > SBT_1S) panic("Event timer \"%s\" doesn't support sub-second periods!", et->et_name); else if (et->et_min_period != 0) freq = min(freq, SBT2FREQ(et->et_min_period)); if (et->et_max_period < SBT_1S && et->et_max_period != 0) freq = max(freq, SBT2FREQ(et->et_max_period)); return (freq); } /* * Configure and start event timers (BSP part). */ void cpu_initclocks_bsp(void) { struct pcpu_state *state; int base, div, cpu; mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN); CPU_FOREACH(cpu) { state = DPCPU_ID_PTR(cpu, timerstate); mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN); state->nextcall = SBT_MAX; state->nextcallopt = SBT_MAX; } periodic = want_periodic; /* Grab requested timer or the best of present. */ if (timername[0]) timer = et_find(timername, 0, 0); if (timer == NULL && periodic) { timer = et_find(NULL, ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC); } if (timer == NULL) { timer = et_find(NULL, ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT); } if (timer == NULL && !periodic) { timer = et_find(NULL, ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC); } if (timer == NULL) panic("No usable event timer found!"); et_init(timer, timercb, NULL, NULL); /* Adapt to timer capabilities. */ if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0) periodic = 0; else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0) periodic = 1; if (timer->et_flags & ET_FLAGS_C3STOP) cpu_disable_c3_sleep++; /* * We honor the requested 'hz' value. * We want to run stathz in the neighborhood of 128hz. * We would like profhz to run as often as possible. */ if (singlemul <= 0 || singlemul > 20) { if (hz >= 1500 || (hz % 128) == 0) singlemul = 1; else if (hz >= 750) singlemul = 2; else singlemul = 4; } if (periodic) { base = round_freq(timer, hz * singlemul); singlemul = max((base + hz / 2) / hz, 1); hz = (base + singlemul / 2) / singlemul; if (base <= 128) stathz = base; else { div = base / 128; if (div >= singlemul && (div % singlemul) == 0) div++; stathz = base / div; } profhz = stathz; while ((profhz + stathz) <= 128 * 64) profhz += stathz; profhz = round_freq(timer, profhz); } else { hz = round_freq(timer, hz); stathz = round_freq(timer, 127); profhz = round_freq(timer, stathz * 64); } tick = 1000000 / hz; tick_sbt = SBT_1S / hz; tick_bt = sbttobt(tick_sbt); statperiod = SBT_1S / stathz; profperiod = SBT_1S / profhz; ET_LOCK(); configtimer(1); ET_UNLOCK(); } /* * Start per-CPU event timers on APs. */ void cpu_initclocks_ap(void) { sbintime_t now; struct pcpu_state *state; struct thread *td; state = DPCPU_PTR(timerstate); now = sbinuptime(); ET_HW_LOCK(state); state->now = now; hardclock_sync(curcpu); spinlock_enter(); ET_HW_UNLOCK(state); td = curthread; td->td_intr_nesting_level++; handleevents(state->now, 2); td->td_intr_nesting_level--; spinlock_exit(); } +void +suspendclock(void) +{ + ET_LOCK(); + configtimer(0); + ET_UNLOCK(); +} + +void +resumeclock(void) +{ + ET_LOCK(); + configtimer(1); + ET_UNLOCK(); +} + /* * Switch to profiling clock rates. */ void cpu_startprofclock(void) { ET_LOCK(); if (profiling == 0) { if (periodic) { configtimer(0); profiling = 1; configtimer(1); } else profiling = 1; } else profiling++; ET_UNLOCK(); } /* * Switch to regular clock rates. */ void cpu_stopprofclock(void) { ET_LOCK(); if (profiling == 1) { if (periodic) { configtimer(0); profiling = 0; configtimer(1); } else profiling = 0; } else profiling--; ET_UNLOCK(); } /* * Switch to idle mode (all ticks handled). */ sbintime_t cpu_idleclock(void) { sbintime_t now, t; struct pcpu_state *state; if (idletick || busy || (periodic && (timer->et_flags & ET_FLAGS_PERCPU)) #ifdef DEVICE_POLLING || curcpu == CPU_FIRST() #endif ) return (-1); state = DPCPU_PTR(timerstate); if (periodic) now = state->now; else now = sbinuptime(); CTR3(KTR_SPARE2, "idle at %d: now %d.%08x", curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff)); t = getnextcpuevent(1); ET_HW_LOCK(state); state->idle = 1; state->nextevent = t; if (!periodic) loadtimer(now, 0); ET_HW_UNLOCK(state); return (MAX(t - now, 0)); } /* * Switch to active mode (skip empty ticks). */ void cpu_activeclock(void) { sbintime_t now; struct pcpu_state *state; struct thread *td; state = DPCPU_PTR(timerstate); if (state->idle == 0 || busy) return; if (periodic) now = state->now; else now = sbinuptime(); CTR3(KTR_SPARE2, "active at %d: now %d.%08x", curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff)); spinlock_enter(); td = curthread; td->td_intr_nesting_level++; handleevents(now, 1); td->td_intr_nesting_level--; spinlock_exit(); } /* * Change the frequency of the given timer. This changes et->et_frequency and * if et is the active timer it reconfigures the timer on all CPUs. This is * intended to be a private interface for the use of et_change_frequency() only. */ void cpu_et_frequency(struct eventtimer *et, uint64_t newfreq) { ET_LOCK(); if (et == timer) { configtimer(0); et->et_frequency = newfreq; configtimer(1); } else et->et_frequency = newfreq; ET_UNLOCK(); } void cpu_new_callout(int cpu, sbintime_t bt, sbintime_t bt_opt) { struct pcpu_state *state; /* Do not touch anything if somebody reconfiguring timers. */ if (busy) return; CTR6(KTR_SPARE2, "new co at %d: on %d at %d.%08x - %d.%08x", curcpu, cpu, (int)(bt_opt >> 32), (u_int)(bt_opt & 0xffffffff), (int)(bt >> 32), (u_int)(bt & 0xffffffff)); KASSERT(!CPU_ABSENT(cpu), ("Absent CPU %d", cpu)); state = DPCPU_ID_PTR(cpu, timerstate); ET_HW_LOCK(state); /* * If there is callout time already set earlier -- do nothing. * This check may appear redundant because we check already in * callout_process() but this double check guarantees we're safe * with respect to race conditions between interrupts execution * and scheduling. */ state->nextcallopt = bt_opt; if (bt >= state->nextcall) goto done; state->nextcall = bt; /* If there is some other event set earlier -- do nothing. */ if (bt >= state->nextevent) goto done; state->nextevent = bt; /* If timer is periodic -- there is nothing to reprogram. */ if (periodic) goto done; /* If timer is global or of the current CPU -- reprogram it. */ if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || cpu == curcpu) { loadtimer(sbinuptime(), 0); done: ET_HW_UNLOCK(state); return; } /* Otherwise make other CPU to reprogram it. */ state->handle = 1; ET_HW_UNLOCK(state); #ifdef SMP ipi_cpu(cpu, IPI_HARDCLOCK); #endif } /* * Report or change the active event timers hardware. */ static int sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS) { char buf[32]; struct eventtimer *et; int error; ET_LOCK(); et = timer; snprintf(buf, sizeof(buf), "%s", et->et_name); ET_UNLOCK(); error = sysctl_handle_string(oidp, buf, sizeof(buf), req); ET_LOCK(); et = timer; if (error != 0 || req->newptr == NULL || strcasecmp(buf, et->et_name) == 0) { ET_UNLOCK(); return (error); } et = et_find(buf, 0, 0); if (et == NULL) { ET_UNLOCK(); return (ENOENT); } configtimer(0); et_free(timer); if (et->et_flags & ET_FLAGS_C3STOP) cpu_disable_c3_sleep++; if (timer->et_flags & ET_FLAGS_C3STOP) cpu_disable_c3_sleep--; periodic = want_periodic; timer = et; et_init(timer, timercb, NULL, NULL); configtimer(1); ET_UNLOCK(); return (error); } SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer, CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer"); /* * Report or change the active event timer periodicity. */ static int sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS) { int error, val; val = periodic; error = sysctl_handle_int(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); ET_LOCK(); configtimer(0); periodic = want_periodic = val; configtimer(1); ET_UNLOCK(); return (error); } SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode"); #include "opt_ddb.h" #ifdef DDB #include DB_SHOW_COMMAND(clocksource, db_show_clocksource) { struct pcpu_state *st; int c; CPU_FOREACH(c) { st = DPCPU_ID_PTR(c, timerstate); db_printf( "CPU %2d: action %d handle %d ipi %d idle %d\n" " now %#jx nevent %#jx (%jd)\n" " ntick %#jx (%jd) nhard %#jx (%jd)\n" " nstat %#jx (%jd) nprof %#jx (%jd)\n" " ncall %#jx (%jd) ncallopt %#jx (%jd)\n", c, st->action, st->handle, st->ipi, st->idle, (uintmax_t)st->now, (uintmax_t)st->nextevent, (uintmax_t)(st->nextevent - st->now) / tick_sbt, (uintmax_t)st->nexttick, (uintmax_t)(st->nexttick - st->now) / tick_sbt, (uintmax_t)st->nexthard, (uintmax_t)(st->nexthard - st->now) / tick_sbt, (uintmax_t)st->nextstat, (uintmax_t)(st->nextstat - st->now) / tick_sbt, (uintmax_t)st->nextprof, (uintmax_t)(st->nextprof - st->now) / tick_sbt, (uintmax_t)st->nextcall, (uintmax_t)(st->nextcall - st->now) / tick_sbt, (uintmax_t)st->nextcallopt, (uintmax_t)(st->nextcallopt - st->now) / tick_sbt); } } #endif Index: head/sys/sys/systm.h =================================================================== --- head/sys/sys/systm.h (revision 333993) +++ head/sys/sys/systm.h (revision 333994) @@ -1,494 +1,496 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1988, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)systm.h 8.7 (Berkeley) 3/29/95 * $FreeBSD$ */ #ifndef _SYS_SYSTM_H_ #define _SYS_SYSTM_H_ #include #include #include #include #include #include /* for people using printf mainly */ __NULLABILITY_PRAGMA_PUSH extern int cold; /* nonzero if we are doing a cold boot */ extern int suspend_blocked; /* block suspend due to pending shutdown */ extern int rebooting; /* kern_reboot() has been called. */ extern const char *panicstr; /* panic message */ extern char version[]; /* system version */ extern char compiler_version[]; /* compiler version */ extern char copyright[]; /* system copyright */ extern int kstack_pages; /* number of kernel stack pages */ extern u_long pagesizes[]; /* supported page sizes */ extern long physmem; /* physical memory */ extern long realmem; /* 'real' memory */ extern char *rootdevnames[2]; /* names of possible root devices */ extern int boothowto; /* reboot flags, from console subsystem */ extern int bootverbose; /* nonzero to print verbose messages */ extern int maxusers; /* system tune hint */ extern int ngroups_max; /* max # of supplemental groups */ extern int vm_guest; /* Running as virtual machine guest? */ /* * Detected virtual machine guest types. The intention is to expand * and/or add to the VM_GUEST_VM type if specific VM functionality is * ever implemented (e.g. vendor-specific paravirtualization features). * Keep in sync with vm_guest_sysctl_names[]. */ enum VM_GUEST { VM_GUEST_NO = 0, VM_GUEST_VM, VM_GUEST_XEN, VM_GUEST_HV, VM_GUEST_VMWARE, VM_GUEST_KVM, VM_GUEST_BHYVE, VM_LAST }; #if defined(WITNESS) || defined(INVARIANT_SUPPORT) void kassert_panic(const char *fmt, ...) __printflike(1, 2); #endif #ifdef INVARIANTS /* The option is always available */ #define KASSERT(exp,msg) do { \ if (__predict_false(!(exp))) \ kassert_panic msg; \ } while (0) #define VNASSERT(exp, vp, msg) do { \ if (__predict_false(!(exp))) { \ vn_printf(vp, "VNASSERT failed\n"); \ kassert_panic msg; \ } \ } while (0) #else #define KASSERT(exp,msg) do { \ } while (0) #define VNASSERT(exp, vp, msg) do { \ } while (0) #endif #ifndef CTASSERT /* Allow lint to override */ #define CTASSERT(x) _Static_assert(x, "compile-time assertion failed") #endif /* * Assert that a pointer can be loaded from memory atomically. * * This assertion enforces stronger alignment than necessary. For example, * on some architectures, atomicity for unaligned loads will depend on * whether or not the load spans multiple cache lines. */ #define ASSERT_ATOMIC_LOAD_PTR(var, msg) \ KASSERT(sizeof(var) == sizeof(void *) && \ ((uintptr_t)&(var) & (sizeof(void *) - 1)) == 0, msg) /* * Assert that a thread is in critical(9) section. */ #define CRITICAL_ASSERT(td) \ KASSERT((td)->td_critnest >= 1, ("Not in critical section")); /* * If we have already panic'd and this is the thread that called * panic(), then don't block on any mutexes but silently succeed. * Otherwise, the kernel will deadlock since the scheduler isn't * going to run the thread that holds any lock we need. */ #define SCHEDULER_STOPPED_TD(td) ({ \ MPASS((td) == curthread); \ __predict_false((td)->td_stopsched); \ }) #define SCHEDULER_STOPPED() SCHEDULER_STOPPED_TD(curthread) /* * Align variables. */ #define __read_mostly __section(".data.read_mostly") #define __read_frequently __section(".data.read_frequently") #define __exclusive_cache_line __aligned(CACHE_LINE_SIZE) \ __section(".data.exclusive_cache_line") /* * XXX the hints declarations are even more misplaced than most declarations * in this file, since they are needed in one file (per arch) and only used * in two files. * XXX most of these variables should be const. */ extern int osreldate; extern int envmode; extern int hintmode; /* 0 = off. 1 = config, 2 = fallback */ extern int dynamic_kenv; extern struct mtx kenv_lock; extern char *kern_envp; extern char static_env[]; extern char static_hints[]; /* by config for now */ extern char **kenvp; extern const void *zero_region; /* address space maps to a zeroed page */ extern int unmapped_buf_allowed; #ifdef __LP64__ #define IOSIZE_MAX iosize_max() #define DEVFS_IOSIZE_MAX devfs_iosize_max() #else #define IOSIZE_MAX SSIZE_MAX #define DEVFS_IOSIZE_MAX SSIZE_MAX #endif /* * General function declarations. */ struct inpcb; struct lock_object; struct malloc_type; struct mtx; struct proc; struct socket; struct thread; struct tty; struct ucred; struct uio; struct _jmp_buf; struct trapframe; struct eventtimer; int setjmp(struct _jmp_buf *) __returns_twice; void longjmp(struct _jmp_buf *, int) __dead2; int dumpstatus(vm_offset_t addr, off_t count); int nullop(void); int eopnotsupp(void); int ureadc(int, struct uio *); void hashdestroy(void *, struct malloc_type *, u_long); void *hashinit(int count, struct malloc_type *type, u_long *hashmask); void *hashinit_flags(int count, struct malloc_type *type, u_long *hashmask, int flags); #define HASH_NOWAIT 0x00000001 #define HASH_WAITOK 0x00000002 void *phashinit(int count, struct malloc_type *type, u_long *nentries); void *phashinit_flags(int count, struct malloc_type *type, u_long *nentries, int flags); void g_waitidle(void); void panic(const char *, ...) __dead2 __printflike(1, 2); void vpanic(const char *, __va_list) __dead2 __printflike(1, 0); void cpu_boot(int); void cpu_flush_dcache(void *, size_t); void cpu_rootconf(void); void critical_enter(void); void critical_exit(void); void init_param1(void); void init_param2(long physpages); void init_static_kenv(char *, size_t); void tablefull(const char *); #ifdef EARLY_PRINTF typedef void early_putc_t(int ch); extern early_putc_t *early_putc; #endif int kvprintf(char const *, void (*)(int, void*), void *, int, __va_list) __printflike(1, 0); void log(int, const char *, ...) __printflike(2, 3); void log_console(struct uio *); void vlog(int, const char *, __va_list) __printflike(2, 0); int asprintf(char **ret, struct malloc_type *mtp, const char *format, ...) __printflike(3, 4); int printf(const char *, ...) __printflike(1, 2); int snprintf(char *, size_t, const char *, ...) __printflike(3, 4); int sprintf(char *buf, const char *, ...) __printflike(2, 3); int uprintf(const char *, ...) __printflike(1, 2); int vprintf(const char *, __va_list) __printflike(1, 0); int vasprintf(char **ret, struct malloc_type *mtp, const char *format, __va_list ap) __printflike(3, 0); int vsnprintf(char *, size_t, const char *, __va_list) __printflike(3, 0); int vsnrprintf(char *, size_t, int, const char *, __va_list) __printflike(4, 0); int vsprintf(char *buf, const char *, __va_list) __printflike(2, 0); int ttyprintf(struct tty *, const char *, ...) __printflike(2, 3); int sscanf(const char *, char const * _Nonnull, ...) __scanflike(2, 3); int vsscanf(const char * _Nonnull, char const * _Nonnull, __va_list) __scanflike(2, 0); long strtol(const char *, char **, int); u_long strtoul(const char *, char **, int); quad_t strtoq(const char *, char **, int); u_quad_t strtouq(const char *, char **, int); void tprintf(struct proc *p, int pri, const char *, ...) __printflike(3, 4); void vtprintf(struct proc *, int, const char *, __va_list) __printflike(3, 0); void hexdump(const void *ptr, int length, const char *hdr, int flags); #define HD_COLUMN_MASK 0xff #define HD_DELIM_MASK 0xff00 #define HD_OMIT_COUNT (1 << 16) #define HD_OMIT_HEX (1 << 17) #define HD_OMIT_CHARS (1 << 18) #define ovbcopy(f, t, l) bcopy((f), (t), (l)) void bcopy(const void * _Nonnull from, void * _Nonnull to, size_t len); #define bcopy(from, to, len) ({ \ if (__builtin_constant_p(len) && (len) <= 64) \ __builtin_memmove((to), (from), (len)); \ else \ bcopy((from), (to), (len)); \ }) void bzero(void * _Nonnull buf, size_t len); #define bzero(buf, len) ({ \ if (__builtin_constant_p(len) && (len) <= 64) \ __builtin_memset((buf), 0, (len)); \ else \ bzero((buf), (len)); \ }) void explicit_bzero(void * _Nonnull, size_t); void *memcpy(void * _Nonnull to, const void * _Nonnull from, size_t len); #define memcpy(to, from, len) __builtin_memcpy(to, from, len) void *memmove(void * _Nonnull dest, const void * _Nonnull src, size_t n); int copystr(const void * _Nonnull __restrict kfaddr, void * _Nonnull __restrict kdaddr, size_t len, size_t * __restrict lencopied); int copyinstr(const void * __restrict udaddr, void * _Nonnull __restrict kaddr, size_t len, size_t * __restrict lencopied); int copyin(const void * __restrict udaddr, void * _Nonnull __restrict kaddr, size_t len); int copyin_nofault(const void * __restrict udaddr, void * _Nonnull __restrict kaddr, size_t len); int copyout(const void * _Nonnull __restrict kaddr, void * __restrict udaddr, size_t len); int copyout_nofault(const void * _Nonnull __restrict kaddr, void * __restrict udaddr, size_t len); int fubyte(volatile const void *base); long fuword(volatile const void *base); int fuword16(volatile const void *base); int32_t fuword32(volatile const void *base); int64_t fuword64(volatile const void *base); int fueword(volatile const void *base, long *val); int fueword32(volatile const void *base, int32_t *val); int fueword64(volatile const void *base, int64_t *val); int subyte(volatile void *base, int byte); int suword(volatile void *base, long word); int suword16(volatile void *base, int word); int suword32(volatile void *base, int32_t word); int suword64(volatile void *base, int64_t word); uint32_t casuword32(volatile uint32_t *base, uint32_t oldval, uint32_t newval); u_long casuword(volatile u_long *p, u_long oldval, u_long newval); int casueword32(volatile uint32_t *base, uint32_t oldval, uint32_t *oldvalp, uint32_t newval); int casueword(volatile u_long *p, u_long oldval, u_long *oldvalp, u_long newval); void realitexpire(void *); int sysbeep(int hertz, int period); void hardclock(int usermode, uintfptr_t pc); void hardclock_cnt(int cnt, int usermode); void hardclock_cpu(int usermode); void hardclock_sync(int cpu); void softclock(void *); void statclock(int usermode); void statclock_cnt(int cnt, int usermode); void profclock(int usermode, uintfptr_t pc); void profclock_cnt(int cnt, int usermode, uintfptr_t pc); int hardclockintr(void); void startprofclock(struct proc *); void stopprofclock(struct proc *); void cpu_startprofclock(void); void cpu_stopprofclock(void); +void suspendclock(void); +void resumeclock(void); sbintime_t cpu_idleclock(void); void cpu_activeclock(void); void cpu_new_callout(int cpu, sbintime_t bt, sbintime_t bt_opt); void cpu_et_frequency(struct eventtimer *et, uint64_t newfreq); extern int cpu_disable_c2_sleep; extern int cpu_disable_c3_sleep; char *kern_getenv(const char *name); void freeenv(char *env); int getenv_int(const char *name, int *data); int getenv_uint(const char *name, unsigned int *data); int getenv_long(const char *name, long *data); int getenv_ulong(const char *name, unsigned long *data); int getenv_string(const char *name, char *data, int size); int getenv_int64(const char *name, int64_t *data); int getenv_uint64(const char *name, uint64_t *data); int getenv_quad(const char *name, quad_t *data); int kern_setenv(const char *name, const char *value); int kern_unsetenv(const char *name); int testenv(const char *name); typedef uint64_t (cpu_tick_f)(void); void set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var); extern cpu_tick_f *cpu_ticks; uint64_t cpu_tickrate(void); uint64_t cputick2usec(uint64_t tick); #ifdef APM_FIXUP_CALLTODO struct timeval; void adjust_timeout_calltodo(struct timeval *time_change); #endif /* APM_FIXUP_CALLTODO */ #include /* Initialize the world */ void consinit(void); void cpu_initclocks(void); void cpu_initclocks_bsp(void); void cpu_initclocks_ap(void); void usrinfoinit(void); /* Finalize the world */ void kern_reboot(int) __dead2; void shutdown_nice(int); /* Timeouts */ typedef void timeout_t(void *); /* timeout function type */ #define CALLOUT_HANDLE_INITIALIZER(handle) \ { NULL } void callout_handle_init(struct callout_handle *); struct callout_handle timeout(timeout_t *, void *, int); void untimeout(timeout_t *, void *, struct callout_handle); /* Stubs for obsolete functions that used to be for interrupt management */ static __inline intrmask_t splbio(void) { return 0; } static __inline intrmask_t splcam(void) { return 0; } static __inline intrmask_t splclock(void) { return 0; } static __inline intrmask_t splhigh(void) { return 0; } static __inline intrmask_t splimp(void) { return 0; } static __inline intrmask_t splnet(void) { return 0; } static __inline intrmask_t spltty(void) { return 0; } static __inline void splx(intrmask_t ipl __unused) { return; } /* * Common `proc' functions are declared here so that proc.h can be included * less often. */ int _sleep(void * _Nonnull chan, struct lock_object *lock, int pri, const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags); #define msleep(chan, mtx, pri, wmesg, timo) \ _sleep((chan), &(mtx)->lock_object, (pri), (wmesg), \ tick_sbt * (timo), 0, C_HARDCLOCK) #define msleep_sbt(chan, mtx, pri, wmesg, bt, pr, flags) \ _sleep((chan), &(mtx)->lock_object, (pri), (wmesg), (bt), (pr), \ (flags)) int msleep_spin_sbt(void * _Nonnull chan, struct mtx *mtx, const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags); #define msleep_spin(chan, mtx, wmesg, timo) \ msleep_spin_sbt((chan), (mtx), (wmesg), tick_sbt * (timo), \ 0, C_HARDCLOCK) int pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags); #define pause(wmesg, timo) \ pause_sbt((wmesg), tick_sbt * (timo), 0, C_HARDCLOCK) #define pause_sig(wmesg, timo) \ pause_sbt((wmesg), tick_sbt * (timo), 0, C_HARDCLOCK | C_CATCH) #define tsleep(chan, pri, wmesg, timo) \ _sleep((chan), NULL, (pri), (wmesg), tick_sbt * (timo), \ 0, C_HARDCLOCK) #define tsleep_sbt(chan, pri, wmesg, bt, pr, flags) \ _sleep((chan), NULL, (pri), (wmesg), (bt), (pr), (flags)) void wakeup(void * chan); void wakeup_one(void * chan); /* * Common `struct cdev *' stuff are declared here to avoid #include poisoning */ struct cdev; dev_t dev2udev(struct cdev *x); const char *devtoname(struct cdev *cdev); #ifdef __LP64__ size_t devfs_iosize_max(void); size_t iosize_max(void); #endif int poll_no_poll(int events); /* XXX: Should be void nanodelay(u_int nsec); */ void DELAY(int usec); /* Root mount holdback API */ struct root_hold_token; struct root_hold_token *root_mount_hold(const char *identifier); void root_mount_rel(struct root_hold_token *h); int root_mounted(void); /* * Unit number allocation API. (kern/subr_unit.c) */ struct unrhdr; struct unrhdr *new_unrhdr(int low, int high, struct mtx *mutex); void init_unrhdr(struct unrhdr *uh, int low, int high, struct mtx *mutex); void delete_unrhdr(struct unrhdr *uh); void clear_unrhdr(struct unrhdr *uh); void clean_unrhdr(struct unrhdr *uh); void clean_unrhdrl(struct unrhdr *uh); int alloc_unr(struct unrhdr *uh); int alloc_unr_specific(struct unrhdr *uh, u_int item); int alloc_unrl(struct unrhdr *uh); void free_unr(struct unrhdr *uh, u_int item); void intr_prof_stack_use(struct thread *td, struct trapframe *frame); void counted_warning(unsigned *counter, const char *msg); /* * APIs to manage deprecation and obsolescence. */ struct device; void _gone_in(int major, const char *msg); void _gone_in_dev(struct device *dev, int major, const char *msg); #ifdef NO_OBSOLETE_CODE #define __gone_ok(m, msg) \ _Static_assert(m < P_OSREL_MAJOR(__FreeBSD_version)), \ "Obsolete code" msg); #else #define __gone_ok(m, msg) #endif #define gone_in(major, msg) __gone_ok(major, msg) _gone_in(major, msg) #define gone_in_dev(dev, major, msg) __gone_ok(major, msg) _gone_in_dev(dev, major, msg) __NULLABILITY_PRAGMA_POP #endif /* !_SYS_SYSTM_H_ */