Index: head/sys/arm64/arm64/pmap.c =================================================================== --- head/sys/arm64/arm64/pmap.c (revision 333771) +++ head/sys/arm64/arm64/pmap.c (revision 333772) @@ -1,4908 +1,4911 @@ /*- * Copyright (c) 1991 Regents of the University of California. * All rights reserved. * Copyright (c) 1994 John S. Dyson * All rights reserved. * Copyright (c) 1994 David Greenman * All rights reserved. * Copyright (c) 2003 Peter Wemm * All rights reserved. * Copyright (c) 2005-2010 Alan L. Cox * All rights reserved. * Copyright (c) 2014 Andrew Turner * All rights reserved. * Copyright (c) 2014-2016 The FreeBSD Foundation * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department and William Jolitz of UUNET Technologies Inc. * * This software was developed by Andrew Turner under sponsorship from * the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)pmap.c 7.7 (Berkeley) 5/12/91 */ /*- * Copyright (c) 2003 Networks Associates Technology, Inc. * All rights reserved. * * This software was developed for the FreeBSD Project by Jake Burkholder, * Safeport Network Services, and Network Associates Laboratories, the * Security Research Division of Network Associates, Inc. under * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA * CHATS research program. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Manages physical address maps. * * Since the information managed by this module is * also stored by the logical address mapping module, * this module may throw away valid virtual-to-physical * mappings at almost any time. However, invalidations * of virtual-to-physical mappings must be done as * requested. * * In order to cope with hardware architectures which * make virtual-to-physical map invalidates expensive, * this module may delay invalidate or reduced protection * operations until such time as they are actually * necessary. This module is given full information as * to which processors are currently using which maps, * and to when physical maps must be made correct. */ #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define NL0PG (PAGE_SIZE/(sizeof (pd_entry_t))) #define NL1PG (PAGE_SIZE/(sizeof (pd_entry_t))) #define NL2PG (PAGE_SIZE/(sizeof (pd_entry_t))) #define NL3PG (PAGE_SIZE/(sizeof (pt_entry_t))) #define NUL0E L0_ENTRIES #define NUL1E (NUL0E * NL1PG) #define NUL2E (NUL1E * NL2PG) #if !defined(DIAGNOSTIC) #ifdef __GNUC_GNU_INLINE__ #define PMAP_INLINE __attribute__((__gnu_inline__)) inline #else #define PMAP_INLINE extern inline #endif #else #define PMAP_INLINE #endif /* * These are configured by the mair_el1 register. This is set up in locore.S */ #define DEVICE_MEMORY 0 #define UNCACHED_MEMORY 1 #define CACHED_MEMORY 2 #ifdef PV_STATS #define PV_STAT(x) do { x ; } while (0) #else #define PV_STAT(x) do { } while (0) #endif #define pmap_l2_pindex(v) ((v) >> L2_SHIFT) #define pa_to_pvh(pa) (&pv_table[pmap_l2_pindex(pa)]) #define NPV_LIST_LOCKS MAXCPU #define PHYS_TO_PV_LIST_LOCK(pa) \ (&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS]) #define CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa) do { \ struct rwlock **_lockp = (lockp); \ struct rwlock *_new_lock; \ \ _new_lock = PHYS_TO_PV_LIST_LOCK(pa); \ if (_new_lock != *_lockp) { \ if (*_lockp != NULL) \ rw_wunlock(*_lockp); \ *_lockp = _new_lock; \ rw_wlock(*_lockp); \ } \ } while (0) #define CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m) \ CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m)) #define RELEASE_PV_LIST_LOCK(lockp) do { \ struct rwlock **_lockp = (lockp); \ \ if (*_lockp != NULL) { \ rw_wunlock(*_lockp); \ *_lockp = NULL; \ } \ } while (0) #define VM_PAGE_TO_PV_LIST_LOCK(m) \ PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m)) struct pmap kernel_pmap_store; vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */ vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */ vm_offset_t kernel_vm_end = 0; /* * Data for the pv entry allocation mechanism. * Updates to pv_invl_gen are protected by the pv_list_locks[] * elements, but reads are not. */ static struct md_page *pv_table; static struct md_page pv_dummy; vm_paddr_t dmap_phys_base; /* The start of the dmap region */ vm_paddr_t dmap_phys_max; /* The limit of the dmap region */ vm_offset_t dmap_max_addr; /* The virtual address limit of the dmap */ /* This code assumes all L1 DMAP entries will be used */ CTASSERT((DMAP_MIN_ADDRESS & ~L0_OFFSET) == DMAP_MIN_ADDRESS); CTASSERT((DMAP_MAX_ADDRESS & ~L0_OFFSET) == DMAP_MAX_ADDRESS); #define DMAP_TABLES ((DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS) >> L0_SHIFT) extern pt_entry_t pagetable_dmap[]; static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters"); static int superpages_enabled = 1; SYSCTL_INT(_vm_pmap, OID_AUTO, superpages_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &superpages_enabled, 0, "Are large page mappings enabled?"); /* * Data for the pv entry allocation mechanism */ static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks); static struct mtx pv_chunks_mutex; static struct rwlock pv_list_locks[NPV_LIST_LOCKS]; static void free_pv_chunk(struct pv_chunk *pc); static void free_pv_entry(pmap_t pmap, pv_entry_t pv); static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp); static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp); static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va); static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va); static int pmap_change_attr(vm_offset_t va, vm_size_t size, int mode); static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode); static pt_entry_t *pmap_demote_l1(pmap_t pmap, pt_entry_t *l1, vm_offset_t va); static pt_entry_t *pmap_demote_l2_locked(pmap_t pmap, pt_entry_t *l2, vm_offset_t va, struct rwlock **lockp); static pt_entry_t *pmap_demote_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va); static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp); static int pmap_remove_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva, pd_entry_t l1e, struct spglist *free, struct rwlock **lockp); static int pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t sva, pd_entry_t l2e, struct spglist *free, struct rwlock **lockp); static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m, struct rwlock **lockp); static vm_page_t _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp); static void _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free); static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *); static __inline vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va); /* * These load the old table data and store the new value. * They need to be atomic as the System MMU may write to the table at * the same time as the CPU. */ #define pmap_load_store(table, entry) atomic_swap_64(table, entry) #define pmap_set(table, mask) atomic_set_64(table, mask) #define pmap_load_clear(table) atomic_swap_64(table, 0) #define pmap_load(table) (*table) /********************/ /* Inline functions */ /********************/ static __inline void pagecopy(void *s, void *d) { memcpy(d, s, PAGE_SIZE); } static __inline pd_entry_t * pmap_l0(pmap_t pmap, vm_offset_t va) { return (&pmap->pm_l0[pmap_l0_index(va)]); } static __inline pd_entry_t * pmap_l0_to_l1(pd_entry_t *l0, vm_offset_t va) { pd_entry_t *l1; l1 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l0) & ~ATTR_MASK); return (&l1[pmap_l1_index(va)]); } static __inline pd_entry_t * pmap_l1(pmap_t pmap, vm_offset_t va) { pd_entry_t *l0; l0 = pmap_l0(pmap, va); if ((pmap_load(l0) & ATTR_DESCR_MASK) != L0_TABLE) return (NULL); return (pmap_l0_to_l1(l0, va)); } static __inline pd_entry_t * pmap_l1_to_l2(pd_entry_t *l1, vm_offset_t va) { pd_entry_t *l2; l2 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l1) & ~ATTR_MASK); return (&l2[pmap_l2_index(va)]); } static __inline pd_entry_t * pmap_l2(pmap_t pmap, vm_offset_t va) { pd_entry_t *l1; l1 = pmap_l1(pmap, va); if ((pmap_load(l1) & ATTR_DESCR_MASK) != L1_TABLE) return (NULL); return (pmap_l1_to_l2(l1, va)); } static __inline pt_entry_t * pmap_l2_to_l3(pd_entry_t *l2, vm_offset_t va) { pt_entry_t *l3; l3 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l2) & ~ATTR_MASK); return (&l3[pmap_l3_index(va)]); } /* * Returns the lowest valid pde for a given virtual address. * The next level may or may not point to a valid page or block. */ static __inline pd_entry_t * pmap_pde(pmap_t pmap, vm_offset_t va, int *level) { pd_entry_t *l0, *l1, *l2, desc; l0 = pmap_l0(pmap, va); desc = pmap_load(l0) & ATTR_DESCR_MASK; if (desc != L0_TABLE) { *level = -1; return (NULL); } l1 = pmap_l0_to_l1(l0, va); desc = pmap_load(l1) & ATTR_DESCR_MASK; if (desc != L1_TABLE) { *level = 0; return (l0); } l2 = pmap_l1_to_l2(l1, va); desc = pmap_load(l2) & ATTR_DESCR_MASK; if (desc != L2_TABLE) { *level = 1; return (l1); } *level = 2; return (l2); } /* * Returns the lowest valid pte block or table entry for a given virtual * address. If there are no valid entries return NULL and set the level to * the first invalid level. */ static __inline pt_entry_t * pmap_pte(pmap_t pmap, vm_offset_t va, int *level) { pd_entry_t *l1, *l2, desc; pt_entry_t *l3; l1 = pmap_l1(pmap, va); if (l1 == NULL) { *level = 0; return (NULL); } desc = pmap_load(l1) & ATTR_DESCR_MASK; if (desc == L1_BLOCK) { *level = 1; return (l1); } if (desc != L1_TABLE) { *level = 1; return (NULL); } l2 = pmap_l1_to_l2(l1, va); desc = pmap_load(l2) & ATTR_DESCR_MASK; if (desc == L2_BLOCK) { *level = 2; return (l2); } if (desc != L2_TABLE) { *level = 2; return (NULL); } *level = 3; l3 = pmap_l2_to_l3(l2, va); if ((pmap_load(l3) & ATTR_DESCR_MASK) != L3_PAGE) return (NULL); return (l3); } static inline bool pmap_superpages_enabled(void) { return (superpages_enabled != 0); } bool pmap_get_tables(pmap_t pmap, vm_offset_t va, pd_entry_t **l0, pd_entry_t **l1, pd_entry_t **l2, pt_entry_t **l3) { pd_entry_t *l0p, *l1p, *l2p; if (pmap->pm_l0 == NULL) return (false); l0p = pmap_l0(pmap, va); *l0 = l0p; if ((pmap_load(l0p) & ATTR_DESCR_MASK) != L0_TABLE) return (false); l1p = pmap_l0_to_l1(l0p, va); *l1 = l1p; if ((pmap_load(l1p) & ATTR_DESCR_MASK) == L1_BLOCK) { *l2 = NULL; *l3 = NULL; return (true); } if ((pmap_load(l1p) & ATTR_DESCR_MASK) != L1_TABLE) return (false); l2p = pmap_l1_to_l2(l1p, va); *l2 = l2p; if ((pmap_load(l2p) & ATTR_DESCR_MASK) == L2_BLOCK) { *l3 = NULL; return (true); } + if ((pmap_load(l2p) & ATTR_DESCR_MASK) != L2_TABLE) + return (false); + *l3 = pmap_l2_to_l3(l2p, va); return (true); } static __inline int pmap_l3_valid(pt_entry_t l3) { return ((l3 & ATTR_DESCR_MASK) == L3_PAGE); } CTASSERT(L1_BLOCK == L2_BLOCK); /* * Checks if the page is dirty. We currently lack proper tracking of this on * arm64 so for now assume is a page mapped as rw was accessed it is. */ static inline int pmap_page_dirty(pt_entry_t pte) { return ((pte & (ATTR_AF | ATTR_AP_RW_BIT)) == (ATTR_AF | ATTR_AP(ATTR_AP_RW))); } static __inline void pmap_resident_count_inc(pmap_t pmap, int count) { PMAP_LOCK_ASSERT(pmap, MA_OWNED); pmap->pm_stats.resident_count += count; } static __inline void pmap_resident_count_dec(pmap_t pmap, int count) { PMAP_LOCK_ASSERT(pmap, MA_OWNED); KASSERT(pmap->pm_stats.resident_count >= count, ("pmap %p resident count underflow %ld %d", pmap, pmap->pm_stats.resident_count, count)); pmap->pm_stats.resident_count -= count; } static pt_entry_t * pmap_early_page_idx(vm_offset_t l1pt, vm_offset_t va, u_int *l1_slot, u_int *l2_slot) { pt_entry_t *l2; pd_entry_t *l1; l1 = (pd_entry_t *)l1pt; *l1_slot = (va >> L1_SHIFT) & Ln_ADDR_MASK; /* Check locore has used a table L1 map */ KASSERT((l1[*l1_slot] & ATTR_DESCR_MASK) == L1_TABLE, ("Invalid bootstrap L1 table")); /* Find the address of the L2 table */ l2 = (pt_entry_t *)init_pt_va; *l2_slot = pmap_l2_index(va); return (l2); } static vm_paddr_t pmap_early_vtophys(vm_offset_t l1pt, vm_offset_t va) { u_int l1_slot, l2_slot; pt_entry_t *l2; l2 = pmap_early_page_idx(l1pt, va, &l1_slot, &l2_slot); return ((l2[l2_slot] & ~ATTR_MASK) + (va & L2_OFFSET)); } static void pmap_bootstrap_dmap(vm_offset_t kern_l1, vm_paddr_t min_pa, vm_paddr_t max_pa) { vm_offset_t va; vm_paddr_t pa; u_int l1_slot; int i; dmap_phys_base = min_pa & ~L1_OFFSET; dmap_phys_max = 0; dmap_max_addr = 0; for (i = 0; i < (physmap_idx * 2); i += 2) { pa = physmap[i] & ~L1_OFFSET; va = pa - dmap_phys_base + DMAP_MIN_ADDRESS; for (; va < DMAP_MAX_ADDRESS && pa < physmap[i + 1]; pa += L1_SIZE, va += L1_SIZE) { l1_slot = ((va - DMAP_MIN_ADDRESS) >> L1_SHIFT); /* We already have an entry */ if (pagetable_dmap[l1_slot] != 0) continue; pmap_load_store(&pagetable_dmap[l1_slot], (pa & ~L1_OFFSET) | ATTR_DEFAULT | ATTR_XN | ATTR_IDX(CACHED_MEMORY) | L1_BLOCK); } if (pa > dmap_phys_max) { dmap_phys_max = pa; dmap_max_addr = va; } } cpu_tlb_flushID(); } static vm_offset_t pmap_bootstrap_l2(vm_offset_t l1pt, vm_offset_t va, vm_offset_t l2_start) { vm_offset_t l2pt; vm_paddr_t pa; pd_entry_t *l1; u_int l1_slot; KASSERT((va & L1_OFFSET) == 0, ("Invalid virtual address")); l1 = (pd_entry_t *)l1pt; l1_slot = pmap_l1_index(va); l2pt = l2_start; for (; va < VM_MAX_KERNEL_ADDRESS; l1_slot++, va += L1_SIZE) { KASSERT(l1_slot < Ln_ENTRIES, ("Invalid L1 index")); pa = pmap_early_vtophys(l1pt, l2pt); pmap_load_store(&l1[l1_slot], (pa & ~Ln_TABLE_MASK) | L1_TABLE); l2pt += PAGE_SIZE; } /* Clean the L2 page table */ memset((void *)l2_start, 0, l2pt - l2_start); return l2pt; } static vm_offset_t pmap_bootstrap_l3(vm_offset_t l1pt, vm_offset_t va, vm_offset_t l3_start) { vm_offset_t l3pt; vm_paddr_t pa; pd_entry_t *l2; u_int l2_slot; KASSERT((va & L2_OFFSET) == 0, ("Invalid virtual address")); l2 = pmap_l2(kernel_pmap, va); l2 = (pd_entry_t *)rounddown2((uintptr_t)l2, PAGE_SIZE); l2_slot = pmap_l2_index(va); l3pt = l3_start; for (; va < VM_MAX_KERNEL_ADDRESS; l2_slot++, va += L2_SIZE) { KASSERT(l2_slot < Ln_ENTRIES, ("Invalid L2 index")); pa = pmap_early_vtophys(l1pt, l3pt); pmap_load_store(&l2[l2_slot], (pa & ~Ln_TABLE_MASK) | L2_TABLE); l3pt += PAGE_SIZE; } /* Clean the L2 page table */ memset((void *)l3_start, 0, l3pt - l3_start); return l3pt; } /* * Bootstrap the system enough to run with virtual memory. */ void pmap_bootstrap(vm_offset_t l0pt, vm_offset_t l1pt, vm_paddr_t kernstart, vm_size_t kernlen) { u_int l1_slot, l2_slot, avail_slot, map_slot, used_map_slot; uint64_t kern_delta; pt_entry_t *l2; vm_offset_t va, freemempos; vm_offset_t dpcpu, msgbufpv; vm_paddr_t pa, max_pa, min_pa; int i; kern_delta = KERNBASE - kernstart; physmem = 0; printf("pmap_bootstrap %lx %lx %lx\n", l1pt, kernstart, kernlen); printf("%lx\n", l1pt); printf("%lx\n", (KERNBASE >> L1_SHIFT) & Ln_ADDR_MASK); /* Set this early so we can use the pagetable walking functions */ kernel_pmap_store.pm_l0 = (pd_entry_t *)l0pt; PMAP_LOCK_INIT(kernel_pmap); /* Assume the address we were loaded to is a valid physical address */ min_pa = max_pa = KERNBASE - kern_delta; /* * Find the minimum physical address. physmap is sorted, * but may contain empty ranges. */ for (i = 0; i < (physmap_idx * 2); i += 2) { if (physmap[i] == physmap[i + 1]) continue; if (physmap[i] <= min_pa) min_pa = physmap[i]; if (physmap[i + 1] > max_pa) max_pa = physmap[i + 1]; } /* Create a direct map region early so we can use it for pa -> va */ pmap_bootstrap_dmap(l1pt, min_pa, max_pa); va = KERNBASE; pa = KERNBASE - kern_delta; /* * Start to initialise phys_avail by copying from physmap * up to the physical address KERNBASE points at. */ map_slot = avail_slot = 0; for (; map_slot < (physmap_idx * 2) && avail_slot < (PHYS_AVAIL_SIZE - 2); map_slot += 2) { if (physmap[map_slot] == physmap[map_slot + 1]) continue; if (physmap[map_slot] <= pa && physmap[map_slot + 1] > pa) break; phys_avail[avail_slot] = physmap[map_slot]; phys_avail[avail_slot + 1] = physmap[map_slot + 1]; physmem += (phys_avail[avail_slot + 1] - phys_avail[avail_slot]) >> PAGE_SHIFT; avail_slot += 2; } /* Add the memory before the kernel */ if (physmap[avail_slot] < pa && avail_slot < (PHYS_AVAIL_SIZE - 2)) { phys_avail[avail_slot] = physmap[map_slot]; phys_avail[avail_slot + 1] = pa; physmem += (phys_avail[avail_slot + 1] - phys_avail[avail_slot]) >> PAGE_SHIFT; avail_slot += 2; } used_map_slot = map_slot; /* * Read the page table to find out what is already mapped. * This assumes we have mapped a block of memory from KERNBASE * using a single L1 entry. */ l2 = pmap_early_page_idx(l1pt, KERNBASE, &l1_slot, &l2_slot); /* Sanity check the index, KERNBASE should be the first VA */ KASSERT(l2_slot == 0, ("The L2 index is non-zero")); /* Find how many pages we have mapped */ for (; l2_slot < Ln_ENTRIES; l2_slot++) { if ((l2[l2_slot] & ATTR_DESCR_MASK) == 0) break; /* Check locore used L2 blocks */ KASSERT((l2[l2_slot] & ATTR_DESCR_MASK) == L2_BLOCK, ("Invalid bootstrap L2 table")); KASSERT((l2[l2_slot] & ~ATTR_MASK) == pa, ("Incorrect PA in L2 table")); va += L2_SIZE; pa += L2_SIZE; } va = roundup2(va, L1_SIZE); freemempos = KERNBASE + kernlen; freemempos = roundup2(freemempos, PAGE_SIZE); /* Create the l2 tables up to VM_MAX_KERNEL_ADDRESS */ freemempos = pmap_bootstrap_l2(l1pt, va, freemempos); /* And the l3 tables for the early devmap */ freemempos = pmap_bootstrap_l3(l1pt, VM_MAX_KERNEL_ADDRESS - L2_SIZE, freemempos); cpu_tlb_flushID(); #define alloc_pages(var, np) \ (var) = freemempos; \ freemempos += (np * PAGE_SIZE); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); /* Allocate dynamic per-cpu area. */ alloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE); dpcpu_init((void *)dpcpu, 0); /* Allocate memory for the msgbuf, e.g. for /sbin/dmesg */ alloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE); msgbufp = (void *)msgbufpv; virtual_avail = roundup2(freemempos, L1_SIZE); virtual_end = VM_MAX_KERNEL_ADDRESS - L2_SIZE; kernel_vm_end = virtual_avail; pa = pmap_early_vtophys(l1pt, freemempos); /* Finish initialising physmap */ map_slot = used_map_slot; for (; avail_slot < (PHYS_AVAIL_SIZE - 2) && map_slot < (physmap_idx * 2); map_slot += 2) { if (physmap[map_slot] == physmap[map_slot + 1]) continue; /* Have we used the current range? */ if (physmap[map_slot + 1] <= pa) continue; /* Do we need to split the entry? */ if (physmap[map_slot] < pa) { phys_avail[avail_slot] = pa; phys_avail[avail_slot + 1] = physmap[map_slot + 1]; } else { phys_avail[avail_slot] = physmap[map_slot]; phys_avail[avail_slot + 1] = physmap[map_slot + 1]; } physmem += (phys_avail[avail_slot + 1] - phys_avail[avail_slot]) >> PAGE_SHIFT; avail_slot += 2; } phys_avail[avail_slot] = 0; phys_avail[avail_slot + 1] = 0; /* * Maxmem isn't the "maximum memory", it's one larger than the * highest page of the physical address space. It should be * called something like "Maxphyspage". */ Maxmem = atop(phys_avail[avail_slot - 1]); cpu_tlb_flushID(); } /* * Initialize a vm_page's machine-dependent fields. */ void pmap_page_init(vm_page_t m) { TAILQ_INIT(&m->md.pv_list); m->md.pv_memattr = VM_MEMATTR_WRITE_BACK; } /* * Initialize the pmap module. * Called by vm_init, to initialize any structures that the pmap * system needs to map virtual memory. */ void pmap_init(void) { vm_size_t s; int i, pv_npg; /* * Are large page mappings enabled? */ TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled); /* * Initialize the pv chunk list mutex. */ mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF); /* * Initialize the pool of pv list locks. */ for (i = 0; i < NPV_LIST_LOCKS; i++) rw_init(&pv_list_locks[i], "pmap pv list"); /* * Calculate the size of the pv head table for superpages. */ pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, L2_SIZE); /* * Allocate memory for the pv head table for superpages. */ s = (vm_size_t)(pv_npg * sizeof(struct md_page)); s = round_page(s); pv_table = (struct md_page *)kmem_malloc(kernel_arena, s, M_WAITOK | M_ZERO); for (i = 0; i < pv_npg; i++) TAILQ_INIT(&pv_table[i].pv_list); TAILQ_INIT(&pv_dummy.pv_list); } static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2, CTLFLAG_RD, 0, "2MB page mapping counters"); static u_long pmap_l2_demotions; SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, demotions, CTLFLAG_RD, &pmap_l2_demotions, 0, "2MB page demotions"); static u_long pmap_l2_p_failures; SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, p_failures, CTLFLAG_RD, &pmap_l2_p_failures, 0, "2MB page promotion failures"); static u_long pmap_l2_promotions; SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, promotions, CTLFLAG_RD, &pmap_l2_promotions, 0, "2MB page promotions"); /* * Invalidate a single TLB entry. */ static __inline void pmap_invalidate_page(pmap_t pmap, vm_offset_t va) { sched_pin(); __asm __volatile( "dsb ishst \n" "tlbi vaae1is, %0 \n" "dsb ish \n" "isb \n" : : "r"(va >> PAGE_SHIFT)); sched_unpin(); } static __inline void pmap_invalidate_range_nopin(pmap_t pmap, vm_offset_t sva, vm_offset_t eva) { vm_offset_t addr; dsb(ishst); for (addr = sva; addr < eva; addr += PAGE_SIZE) { __asm __volatile( "tlbi vaae1is, %0" : : "r"(addr >> PAGE_SHIFT)); } __asm __volatile( "dsb ish \n" "isb \n"); } static __inline void pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva) { sched_pin(); pmap_invalidate_range_nopin(pmap, sva, eva); sched_unpin(); } static __inline void pmap_invalidate_all(pmap_t pmap) { sched_pin(); __asm __volatile( "dsb ishst \n" "tlbi vmalle1is \n" "dsb ish \n" "isb \n"); sched_unpin(); } /* * Routine: pmap_extract * Function: * Extract the physical page address associated * with the given map/virtual_address pair. */ vm_paddr_t pmap_extract(pmap_t pmap, vm_offset_t va) { pt_entry_t *pte, tpte; vm_paddr_t pa; int lvl; pa = 0; PMAP_LOCK(pmap); /* * Find the block or page map for this virtual address. pmap_pte * will return either a valid block/page entry, or NULL. */ pte = pmap_pte(pmap, va, &lvl); if (pte != NULL) { tpte = pmap_load(pte); pa = tpte & ~ATTR_MASK; switch(lvl) { case 1: KASSERT((tpte & ATTR_DESCR_MASK) == L1_BLOCK, ("pmap_extract: Invalid L1 pte found: %lx", tpte & ATTR_DESCR_MASK)); pa |= (va & L1_OFFSET); break; case 2: KASSERT((tpte & ATTR_DESCR_MASK) == L2_BLOCK, ("pmap_extract: Invalid L2 pte found: %lx", tpte & ATTR_DESCR_MASK)); pa |= (va & L2_OFFSET); break; case 3: KASSERT((tpte & ATTR_DESCR_MASK) == L3_PAGE, ("pmap_extract: Invalid L3 pte found: %lx", tpte & ATTR_DESCR_MASK)); pa |= (va & L3_OFFSET); break; } } PMAP_UNLOCK(pmap); return (pa); } /* * Routine: pmap_extract_and_hold * Function: * Atomically extract and hold the physical page * with the given pmap and virtual address pair * if that mapping permits the given protection. */ vm_page_t pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot) { pt_entry_t *pte, tpte; vm_offset_t off; vm_paddr_t pa; vm_page_t m; int lvl; pa = 0; m = NULL; PMAP_LOCK(pmap); retry: pte = pmap_pte(pmap, va, &lvl); if (pte != NULL) { tpte = pmap_load(pte); KASSERT(lvl > 0 && lvl <= 3, ("pmap_extract_and_hold: Invalid level %d", lvl)); CTASSERT(L1_BLOCK == L2_BLOCK); KASSERT((lvl == 3 && (tpte & ATTR_DESCR_MASK) == L3_PAGE) || (lvl < 3 && (tpte & ATTR_DESCR_MASK) == L1_BLOCK), ("pmap_extract_and_hold: Invalid pte at L%d: %lx", lvl, tpte & ATTR_DESCR_MASK)); if (((tpte & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW)) || ((prot & VM_PROT_WRITE) == 0)) { switch(lvl) { case 1: off = va & L1_OFFSET; break; case 2: off = va & L2_OFFSET; break; case 3: default: off = 0; } if (vm_page_pa_tryrelock(pmap, (tpte & ~ATTR_MASK) | off, &pa)) goto retry; m = PHYS_TO_VM_PAGE((tpte & ~ATTR_MASK) | off); vm_page_hold(m); } } PA_UNLOCK_COND(pa); PMAP_UNLOCK(pmap); return (m); } vm_paddr_t pmap_kextract(vm_offset_t va) { pt_entry_t *pte, tpte; vm_paddr_t pa; int lvl; if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) { pa = DMAP_TO_PHYS(va); } else { pa = 0; pte = pmap_pte(kernel_pmap, va, &lvl); if (pte != NULL) { tpte = pmap_load(pte); pa = tpte & ~ATTR_MASK; switch(lvl) { case 1: KASSERT((tpte & ATTR_DESCR_MASK) == L1_BLOCK, ("pmap_kextract: Invalid L1 pte found: %lx", tpte & ATTR_DESCR_MASK)); pa |= (va & L1_OFFSET); break; case 2: KASSERT((tpte & ATTR_DESCR_MASK) == L2_BLOCK, ("pmap_kextract: Invalid L2 pte found: %lx", tpte & ATTR_DESCR_MASK)); pa |= (va & L2_OFFSET); break; case 3: KASSERT((tpte & ATTR_DESCR_MASK) == L3_PAGE, ("pmap_kextract: Invalid L3 pte found: %lx", tpte & ATTR_DESCR_MASK)); pa |= (va & L3_OFFSET); break; } } } return (pa); } /*************************************************** * Low level mapping routines..... ***************************************************/ static void pmap_kenter(vm_offset_t sva, vm_size_t size, vm_paddr_t pa, int mode) { pd_entry_t *pde; pt_entry_t *pte, attr; vm_offset_t va; int lvl; KASSERT((pa & L3_OFFSET) == 0, ("pmap_kenter: Invalid physical address")); KASSERT((sva & L3_OFFSET) == 0, ("pmap_kenter: Invalid virtual address")); KASSERT((size & PAGE_MASK) == 0, ("pmap_kenter: Mapping is not page-sized")); attr = ATTR_DEFAULT | ATTR_IDX(mode) | L3_PAGE; if (mode == DEVICE_MEMORY) attr |= ATTR_XN; va = sva; while (size != 0) { pde = pmap_pde(kernel_pmap, va, &lvl); KASSERT(pde != NULL, ("pmap_kenter: Invalid page entry, va: 0x%lx", va)); KASSERT(lvl == 2, ("pmap_kenter: Invalid level %d", lvl)); pte = pmap_l2_to_l3(pde, va); pmap_load_store(pte, (pa & ~L3_OFFSET) | attr); va += PAGE_SIZE; pa += PAGE_SIZE; size -= PAGE_SIZE; } pmap_invalidate_range(kernel_pmap, sva, va); } void pmap_kenter_device(vm_offset_t sva, vm_size_t size, vm_paddr_t pa) { pmap_kenter(sva, size, pa, DEVICE_MEMORY); } /* * Remove a page from the kernel pagetables. */ PMAP_INLINE void pmap_kremove(vm_offset_t va) { pt_entry_t *pte; int lvl; pte = pmap_pte(kernel_pmap, va, &lvl); KASSERT(pte != NULL, ("pmap_kremove: Invalid address")); KASSERT(lvl == 3, ("pmap_kremove: Invalid pte level %d", lvl)); pmap_load_clear(pte); pmap_invalidate_page(kernel_pmap, va); } void pmap_kremove_device(vm_offset_t sva, vm_size_t size) { pt_entry_t *pte; vm_offset_t va; int lvl; KASSERT((sva & L3_OFFSET) == 0, ("pmap_kremove_device: Invalid virtual address")); KASSERT((size & PAGE_MASK) == 0, ("pmap_kremove_device: Mapping is not page-sized")); va = sva; while (size != 0) { pte = pmap_pte(kernel_pmap, va, &lvl); KASSERT(pte != NULL, ("Invalid page table, va: 0x%lx", va)); KASSERT(lvl == 3, ("Invalid device pagetable level: %d != 3", lvl)); pmap_load_clear(pte); va += PAGE_SIZE; size -= PAGE_SIZE; } pmap_invalidate_range(kernel_pmap, sva, va); } /* * Used to map a range of physical addresses into kernel * virtual address space. * * The value passed in '*virt' is a suggested virtual address for * the mapping. Architectures which can support a direct-mapped * physical to virtual region can return the appropriate address * within that region, leaving '*virt' unchanged. Other * architectures should map the pages starting at '*virt' and * update '*virt' with the first usable address after the mapped * region. */ vm_offset_t pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot) { return PHYS_TO_DMAP(start); } /* * Add a list of wired pages to the kva * this routine is only used for temporary * kernel mappings that do not need to have * page modification or references recorded. * Note that old mappings are simply written * over. The page *must* be wired. * Note: SMP coherent. Uses a ranged shootdown IPI. */ void pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count) { pd_entry_t *pde; pt_entry_t *pte, pa; vm_offset_t va; vm_page_t m; int i, lvl; va = sva; for (i = 0; i < count; i++) { pde = pmap_pde(kernel_pmap, va, &lvl); KASSERT(pde != NULL, ("pmap_qenter: Invalid page entry, va: 0x%lx", va)); KASSERT(lvl == 2, ("pmap_qenter: Invalid level %d", lvl)); m = ma[i]; pa = VM_PAGE_TO_PHYS(m) | ATTR_DEFAULT | ATTR_AP(ATTR_AP_RW) | ATTR_IDX(m->md.pv_memattr) | L3_PAGE; if (m->md.pv_memattr == DEVICE_MEMORY) pa |= ATTR_XN; pte = pmap_l2_to_l3(pde, va); pmap_load_store(pte, pa); va += L3_SIZE; } pmap_invalidate_range(kernel_pmap, sva, va); } /* * This routine tears out page mappings from the * kernel -- it is meant only for temporary mappings. */ void pmap_qremove(vm_offset_t sva, int count) { pt_entry_t *pte; vm_offset_t va; int lvl; KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", sva)); va = sva; while (count-- > 0) { pte = pmap_pte(kernel_pmap, va, &lvl); KASSERT(lvl == 3, ("Invalid device pagetable level: %d != 3", lvl)); if (pte != NULL) { pmap_load_clear(pte); } va += PAGE_SIZE; } pmap_invalidate_range(kernel_pmap, sva, va); } /*************************************************** * Page table page management routines..... ***************************************************/ /* * Schedule the specified unused page table page to be freed. Specifically, * add the page to the specified list of pages that will be released to the * physical memory manager after the TLB has been updated. */ static __inline void pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, boolean_t set_PG_ZERO) { if (set_PG_ZERO) m->flags |= PG_ZERO; else m->flags &= ~PG_ZERO; SLIST_INSERT_HEAD(free, m, plinks.s.ss); } /* * Decrements a page table page's wire count, which is used to record the * number of valid page table entries within the page. If the wire count * drops to zero, then the page table page is unmapped. Returns TRUE if the * page table page was unmapped and FALSE otherwise. */ static inline boolean_t pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free) { --m->wire_count; if (m->wire_count == 0) { _pmap_unwire_l3(pmap, va, m, free); return (TRUE); } else return (FALSE); } static void _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free) { PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* * unmap the page table page */ if (m->pindex >= (NUL2E + NUL1E)) { /* l1 page */ pd_entry_t *l0; l0 = pmap_l0(pmap, va); pmap_load_clear(l0); } else if (m->pindex >= NUL2E) { /* l2 page */ pd_entry_t *l1; l1 = pmap_l1(pmap, va); pmap_load_clear(l1); } else { /* l3 page */ pd_entry_t *l2; l2 = pmap_l2(pmap, va); pmap_load_clear(l2); } pmap_resident_count_dec(pmap, 1); if (m->pindex < NUL2E) { /* We just released an l3, unhold the matching l2 */ pd_entry_t *l1, tl1; vm_page_t l2pg; l1 = pmap_l1(pmap, va); tl1 = pmap_load(l1); l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK); pmap_unwire_l3(pmap, va, l2pg, free); } else if (m->pindex < (NUL2E + NUL1E)) { /* We just released an l2, unhold the matching l1 */ pd_entry_t *l0, tl0; vm_page_t l1pg; l0 = pmap_l0(pmap, va); tl0 = pmap_load(l0); l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK); pmap_unwire_l3(pmap, va, l1pg, free); } pmap_invalidate_page(pmap, va); vm_wire_sub(1); /* * Put page on a list so that it is released after * *ALL* TLB shootdown is done */ pmap_add_delayed_free_list(m, free, TRUE); } /* * After removing a page table entry, this routine is used to * conditionally free the page, and manage the hold/wire counts. */ static int pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde, struct spglist *free) { vm_page_t mpte; if (va >= VM_MAXUSER_ADDRESS) return (0); KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0")); mpte = PHYS_TO_VM_PAGE(ptepde & ~ATTR_MASK); return (pmap_unwire_l3(pmap, va, mpte, free)); } void pmap_pinit0(pmap_t pmap) { PMAP_LOCK_INIT(pmap); bzero(&pmap->pm_stats, sizeof(pmap->pm_stats)); pmap->pm_l0 = kernel_pmap->pm_l0; pmap->pm_root.rt_root = 0; } int pmap_pinit(pmap_t pmap) { vm_paddr_t l0phys; vm_page_t l0pt; /* * allocate the l0 page */ while ((l0pt = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) vm_wait(NULL); l0phys = VM_PAGE_TO_PHYS(l0pt); pmap->pm_l0 = (pd_entry_t *)PHYS_TO_DMAP(l0phys); if ((l0pt->flags & PG_ZERO) == 0) pagezero(pmap->pm_l0); pmap->pm_root.rt_root = 0; bzero(&pmap->pm_stats, sizeof(pmap->pm_stats)); return (1); } /* * This routine is called if the desired page table page does not exist. * * If page table page allocation fails, this routine may sleep before * returning NULL. It sleeps only if a lock pointer was given. * * Note: If a page allocation fails at page table level two or three, * one or two pages may be held during the wait, only to be released * afterwards. This conservative approach is easily argued to avoid * race conditions. */ static vm_page_t _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp) { vm_page_t m, l1pg, l2pg; PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* * Allocate a page table page. */ if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) { if (lockp != NULL) { RELEASE_PV_LIST_LOCK(lockp); PMAP_UNLOCK(pmap); vm_wait(NULL); PMAP_LOCK(pmap); } /* * Indicate the need to retry. While waiting, the page table * page may have been allocated. */ return (NULL); } if ((m->flags & PG_ZERO) == 0) pmap_zero_page(m); /* * Map the pagetable page into the process address space, if * it isn't already there. */ if (ptepindex >= (NUL2E + NUL1E)) { pd_entry_t *l0; vm_pindex_t l0index; l0index = ptepindex - (NUL2E + NUL1E); l0 = &pmap->pm_l0[l0index]; pmap_load_store(l0, VM_PAGE_TO_PHYS(m) | L0_TABLE); } else if (ptepindex >= NUL2E) { vm_pindex_t l0index, l1index; pd_entry_t *l0, *l1; pd_entry_t tl0; l1index = ptepindex - NUL2E; l0index = l1index >> L0_ENTRIES_SHIFT; l0 = &pmap->pm_l0[l0index]; tl0 = pmap_load(l0); if (tl0 == 0) { /* recurse for allocating page dir */ if (_pmap_alloc_l3(pmap, NUL2E + NUL1E + l0index, lockp) == NULL) { vm_page_unwire_noq(m); vm_page_free_zero(m); return (NULL); } } else { l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK); l1pg->wire_count++; } l1 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l0) & ~ATTR_MASK); l1 = &l1[ptepindex & Ln_ADDR_MASK]; pmap_load_store(l1, VM_PAGE_TO_PHYS(m) | L1_TABLE); } else { vm_pindex_t l0index, l1index; pd_entry_t *l0, *l1, *l2; pd_entry_t tl0, tl1; l1index = ptepindex >> Ln_ENTRIES_SHIFT; l0index = l1index >> L0_ENTRIES_SHIFT; l0 = &pmap->pm_l0[l0index]; tl0 = pmap_load(l0); if (tl0 == 0) { /* recurse for allocating page dir */ if (_pmap_alloc_l3(pmap, NUL2E + l1index, lockp) == NULL) { vm_page_unwire_noq(m); vm_page_free_zero(m); return (NULL); } tl0 = pmap_load(l0); l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK); l1 = &l1[l1index & Ln_ADDR_MASK]; } else { l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK); l1 = &l1[l1index & Ln_ADDR_MASK]; tl1 = pmap_load(l1); if (tl1 == 0) { /* recurse for allocating page dir */ if (_pmap_alloc_l3(pmap, NUL2E + l1index, lockp) == NULL) { vm_page_unwire_noq(m); vm_page_free_zero(m); return (NULL); } } else { l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK); l2pg->wire_count++; } } l2 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l1) & ~ATTR_MASK); l2 = &l2[ptepindex & Ln_ADDR_MASK]; pmap_load_store(l2, VM_PAGE_TO_PHYS(m) | L2_TABLE); } pmap_resident_count_inc(pmap, 1); return (m); } static vm_page_t pmap_alloc_l3(pmap_t pmap, vm_offset_t va, struct rwlock **lockp) { vm_pindex_t ptepindex; pd_entry_t *pde, tpde; #ifdef INVARIANTS pt_entry_t *pte; #endif vm_page_t m; int lvl; /* * Calculate pagetable page index */ ptepindex = pmap_l2_pindex(va); retry: /* * Get the page directory entry */ pde = pmap_pde(pmap, va, &lvl); /* * If the page table page is mapped, we just increment the hold count, * and activate it. If we get a level 2 pde it will point to a level 3 * table. */ switch (lvl) { case -1: break; case 0: #ifdef INVARIANTS pte = pmap_l0_to_l1(pde, va); KASSERT(pmap_load(pte) == 0, ("pmap_alloc_l3: TODO: l0 superpages")); #endif break; case 1: #ifdef INVARIANTS pte = pmap_l1_to_l2(pde, va); KASSERT(pmap_load(pte) == 0, ("pmap_alloc_l3: TODO: l1 superpages")); #endif break; case 2: tpde = pmap_load(pde); if (tpde != 0) { m = PHYS_TO_VM_PAGE(tpde & ~ATTR_MASK); m->wire_count++; return (m); } break; default: panic("pmap_alloc_l3: Invalid level %d", lvl); } /* * Here if the pte page isn't mapped, or if it has been deallocated. */ m = _pmap_alloc_l3(pmap, ptepindex, lockp); if (m == NULL && lockp != NULL) goto retry; return (m); } /*************************************************** * Pmap allocation/deallocation routines. ***************************************************/ /* * Release any resources held by the given physical map. * Called when a pmap initialized by pmap_pinit is being released. * Should only be called if the map contains no valid mappings. */ void pmap_release(pmap_t pmap) { vm_page_t m; KASSERT(pmap->pm_stats.resident_count == 0, ("pmap_release: pmap resident count %ld != 0", pmap->pm_stats.resident_count)); KASSERT(vm_radix_is_empty(&pmap->pm_root), ("pmap_release: pmap has reserved page table page(s)")); m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_l0)); vm_page_unwire_noq(m); vm_page_free_zero(m); } static int kvm_size(SYSCTL_HANDLER_ARGS) { unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS; return sysctl_handle_long(oidp, &ksize, 0, req); } SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD, 0, 0, kvm_size, "LU", "Size of KVM"); static int kvm_free(SYSCTL_HANDLER_ARGS) { unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end; return sysctl_handle_long(oidp, &kfree, 0, req); } SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD, 0, 0, kvm_free, "LU", "Amount of KVM free"); /* * grow the number of kernel page table entries, if needed */ void pmap_growkernel(vm_offset_t addr) { vm_paddr_t paddr; vm_page_t nkpg; pd_entry_t *l0, *l1, *l2; mtx_assert(&kernel_map->system_mtx, MA_OWNED); addr = roundup2(addr, L2_SIZE); if (addr - 1 >= kernel_map->max_offset) addr = kernel_map->max_offset; while (kernel_vm_end < addr) { l0 = pmap_l0(kernel_pmap, kernel_vm_end); KASSERT(pmap_load(l0) != 0, ("pmap_growkernel: No level 0 kernel entry")); l1 = pmap_l0_to_l1(l0, kernel_vm_end); if (pmap_load(l1) == 0) { /* We need a new PDP entry */ nkpg = vm_page_alloc(NULL, kernel_vm_end >> L1_SHIFT, VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO); if (nkpg == NULL) panic("pmap_growkernel: no memory to grow kernel"); if ((nkpg->flags & PG_ZERO) == 0) pmap_zero_page(nkpg); paddr = VM_PAGE_TO_PHYS(nkpg); pmap_load_store(l1, paddr | L1_TABLE); continue; /* try again */ } l2 = pmap_l1_to_l2(l1, kernel_vm_end); if ((pmap_load(l2) & ATTR_AF) != 0) { kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET; if (kernel_vm_end - 1 >= kernel_map->max_offset) { kernel_vm_end = kernel_map->max_offset; break; } continue; } nkpg = vm_page_alloc(NULL, kernel_vm_end >> L2_SHIFT, VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO); if (nkpg == NULL) panic("pmap_growkernel: no memory to grow kernel"); if ((nkpg->flags & PG_ZERO) == 0) pmap_zero_page(nkpg); paddr = VM_PAGE_TO_PHYS(nkpg); pmap_load_store(l2, paddr | L2_TABLE); pmap_invalidate_page(kernel_pmap, kernel_vm_end); kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET; if (kernel_vm_end - 1 >= kernel_map->max_offset) { kernel_vm_end = kernel_map->max_offset; break; } } } /*************************************************** * page management routines. ***************************************************/ CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE); CTASSERT(_NPCM == 3); CTASSERT(_NPCPV == 168); static __inline struct pv_chunk * pv_to_chunk(pv_entry_t pv) { return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK)); } #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap) #define PC_FREE0 0xfffffffffffffffful #define PC_FREE1 0xfffffffffffffffful #define PC_FREE2 0x000000fffffffffful static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1, PC_FREE2 }; #if 0 #ifdef PV_STATS static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail; SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0, "Current number of pv entry chunks"); SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0, "Current number of pv entry chunks allocated"); SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0, "Current number of pv entry chunks frees"); SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0, "Number of times tried to get a chunk page but failed."); static long pv_entry_frees, pv_entry_allocs, pv_entry_count; static int pv_entry_spare; SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0, "Current number of pv entry frees"); SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0, "Current number of pv entry allocs"); SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0, "Current number of pv entries"); SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0, "Current number of spare pv entries"); #endif #endif /* 0 */ /* * We are in a serious low memory condition. Resort to * drastic measures to free some pages so we can allocate * another pv entry chunk. * * Returns NULL if PV entries were reclaimed from the specified pmap. * * We do not, however, unmap 2mpages because subsequent accesses will * allocate per-page pv entries until repromotion occurs, thereby * exacerbating the shortage of free pv entries. */ static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp) { struct pch new_tail; struct pv_chunk *pc; struct md_page *pvh; pd_entry_t *pde; pmap_t pmap; pt_entry_t *pte, tpte; pv_entry_t pv; vm_offset_t va; vm_page_t m, m_pc; struct spglist free; uint64_t inuse; int bit, field, freed, lvl; PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED); KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL")); pmap = NULL; m_pc = NULL; SLIST_INIT(&free); TAILQ_INIT(&new_tail); mtx_lock(&pv_chunks_mutex); while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && SLIST_EMPTY(&free)) { TAILQ_REMOVE(&pv_chunks, pc, pc_lru); mtx_unlock(&pv_chunks_mutex); if (pmap != pc->pc_pmap) { if (pmap != NULL && pmap != locked_pmap) PMAP_UNLOCK(pmap); pmap = pc->pc_pmap; /* Avoid deadlock and lock recursion. */ if (pmap > locked_pmap) { RELEASE_PV_LIST_LOCK(lockp); PMAP_LOCK(pmap); } else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) { pmap = NULL; TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru); mtx_lock(&pv_chunks_mutex); continue; } } /* * Destroy every non-wired, 4 KB page mapping in the chunk. */ freed = 0; for (field = 0; field < _NPCM; field++) { for (inuse = ~pc->pc_map[field] & pc_freemask[field]; inuse != 0; inuse &= ~(1UL << bit)) { bit = ffsl(inuse) - 1; pv = &pc->pc_pventry[field * 64 + bit]; va = pv->pv_va; pde = pmap_pde(pmap, va, &lvl); if (lvl != 2) continue; pte = pmap_l2_to_l3(pde, va); tpte = pmap_load(pte); if ((tpte & ATTR_SW_WIRED) != 0) continue; tpte = pmap_load_clear(pte); pmap_invalidate_page(pmap, va); m = PHYS_TO_VM_PAGE(tpte & ~ATTR_MASK); if (pmap_page_dirty(tpte)) vm_page_dirty(m); if ((tpte & ATTR_AF) != 0) vm_page_aflag_set(m, PGA_REFERENCED); CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m); TAILQ_REMOVE(&m->md.pv_list, pv, pv_next); m->md.pv_gen++; if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); if (TAILQ_EMPTY(&pvh->pv_list)) { vm_page_aflag_clear(m, PGA_WRITEABLE); } } pc->pc_map[field] |= 1UL << bit; pmap_unuse_pt(pmap, va, pmap_load(pde), &free); freed++; } } if (freed == 0) { TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru); mtx_lock(&pv_chunks_mutex); continue; } /* Every freed mapping is for a 4 KB page. */ pmap_resident_count_dec(pmap, freed); PV_STAT(atomic_add_long(&pv_entry_frees, freed)); PV_STAT(atomic_add_int(&pv_entry_spare, freed)); PV_STAT(atomic_subtract_long(&pv_entry_count, freed)); TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1 && pc->pc_map[2] == PC_FREE2) { PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV)); PV_STAT(atomic_subtract_int(&pc_chunk_count, 1)); PV_STAT(atomic_add_int(&pc_chunk_frees, 1)); /* Entire chunk is free; return it. */ m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc)); dump_drop_page(m_pc->phys_addr); mtx_lock(&pv_chunks_mutex); break; } TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru); mtx_lock(&pv_chunks_mutex); /* One freed pv entry in locked_pmap is sufficient. */ if (pmap == locked_pmap) break; } TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru); mtx_unlock(&pv_chunks_mutex); if (pmap != NULL && pmap != locked_pmap) PMAP_UNLOCK(pmap); if (m_pc == NULL && !SLIST_EMPTY(&free)) { m_pc = SLIST_FIRST(&free); SLIST_REMOVE_HEAD(&free, plinks.s.ss); /* Recycle a freed page table page. */ m_pc->wire_count = 1; vm_wire_add(1); } vm_page_free_pages_toq(&free, false); return (m_pc); } /* * free the pv_entry back to the free list */ static void free_pv_entry(pmap_t pmap, pv_entry_t pv) { struct pv_chunk *pc; int idx, field, bit; PMAP_LOCK_ASSERT(pmap, MA_OWNED); PV_STAT(atomic_add_long(&pv_entry_frees, 1)); PV_STAT(atomic_add_int(&pv_entry_spare, 1)); PV_STAT(atomic_subtract_long(&pv_entry_count, 1)); pc = pv_to_chunk(pv); idx = pv - &pc->pc_pventry[0]; field = idx / 64; bit = idx % 64; pc->pc_map[field] |= 1ul << bit; if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1 || pc->pc_map[2] != PC_FREE2) { /* 98% of the time, pc is already at the head of the list. */ if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) { TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list); } return; } TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); free_pv_chunk(pc); } static void free_pv_chunk(struct pv_chunk *pc) { vm_page_t m; mtx_lock(&pv_chunks_mutex); TAILQ_REMOVE(&pv_chunks, pc, pc_lru); mtx_unlock(&pv_chunks_mutex); PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV)); PV_STAT(atomic_subtract_int(&pc_chunk_count, 1)); PV_STAT(atomic_add_int(&pc_chunk_frees, 1)); /* entire chunk is free, return it */ m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc)); dump_drop_page(m->phys_addr); vm_page_unwire_noq(m); vm_page_free(m); } /* * Returns a new PV entry, allocating a new PV chunk from the system when * needed. If this PV chunk allocation fails and a PV list lock pointer was * given, a PV chunk is reclaimed from an arbitrary pmap. Otherwise, NULL is * returned. * * The given PV list lock may be released. */ static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp) { int bit, field; pv_entry_t pv; struct pv_chunk *pc; vm_page_t m; PMAP_LOCK_ASSERT(pmap, MA_OWNED); PV_STAT(atomic_add_long(&pv_entry_allocs, 1)); retry: pc = TAILQ_FIRST(&pmap->pm_pvchunk); if (pc != NULL) { for (field = 0; field < _NPCM; field++) { if (pc->pc_map[field]) { bit = ffsl(pc->pc_map[field]) - 1; break; } } if (field < _NPCM) { pv = &pc->pc_pventry[field * 64 + bit]; pc->pc_map[field] &= ~(1ul << bit); /* If this was the last item, move it to tail */ if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) { TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list); } PV_STAT(atomic_add_long(&pv_entry_count, 1)); PV_STAT(atomic_subtract_int(&pv_entry_spare, 1)); return (pv); } } /* No free items, allocate another chunk */ m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED); if (m == NULL) { if (lockp == NULL) { PV_STAT(pc_chunk_tryfail++); return (NULL); } m = reclaim_pv_chunk(pmap, lockp); if (m == NULL) goto retry; } PV_STAT(atomic_add_int(&pc_chunk_count, 1)); PV_STAT(atomic_add_int(&pc_chunk_allocs, 1)); dump_add_page(m->phys_addr); pc = (void *)PHYS_TO_DMAP(m->phys_addr); pc->pc_pmap = pmap; pc->pc_map[0] = PC_FREE0 & ~1ul; /* preallocated bit 0 */ pc->pc_map[1] = PC_FREE1; pc->pc_map[2] = PC_FREE2; mtx_lock(&pv_chunks_mutex); TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru); mtx_unlock(&pv_chunks_mutex); pv = &pc->pc_pventry[0]; TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list); PV_STAT(atomic_add_long(&pv_entry_count, 1)); PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1)); return (pv); } /* * Ensure that the number of spare PV entries in the specified pmap meets or * exceeds the given count, "needed". * * The given PV list lock may be released. */ static void reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp) { struct pch new_tail; struct pv_chunk *pc; int avail, free; vm_page_t m; PMAP_LOCK_ASSERT(pmap, MA_OWNED); KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL")); /* * Newly allocated PV chunks must be stored in a private list until * the required number of PV chunks have been allocated. Otherwise, * reclaim_pv_chunk() could recycle one of these chunks. In * contrast, these chunks must be added to the pmap upon allocation. */ TAILQ_INIT(&new_tail); retry: avail = 0; TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) { bit_count((bitstr_t *)pc->pc_map, 0, sizeof(pc->pc_map) * NBBY, &free); if (free == 0) break; avail += free; if (avail >= needed) break; } for (; avail < needed; avail += _NPCPV) { m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED); if (m == NULL) { m = reclaim_pv_chunk(pmap, lockp); if (m == NULL) goto retry; } PV_STAT(atomic_add_int(&pc_chunk_count, 1)); PV_STAT(atomic_add_int(&pc_chunk_allocs, 1)); dump_add_page(m->phys_addr); pc = (void *)PHYS_TO_DMAP(m->phys_addr); pc->pc_pmap = pmap; pc->pc_map[0] = PC_FREE0; pc->pc_map[1] = PC_FREE1; pc->pc_map[2] = PC_FREE2; TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru); PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV)); } if (!TAILQ_EMPTY(&new_tail)) { mtx_lock(&pv_chunks_mutex); TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru); mtx_unlock(&pv_chunks_mutex); } } /* * First find and then remove the pv entry for the specified pmap and virtual * address from the specified pv list. Returns the pv entry if found and NULL * otherwise. This operation can be performed on pv lists for either 4KB or * 2MB page mappings. */ static __inline pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va) { pv_entry_t pv; TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) { if (pmap == PV_PMAP(pv) && va == pv->pv_va) { TAILQ_REMOVE(&pvh->pv_list, pv, pv_next); pvh->pv_gen++; break; } } return (pv); } /* * After demotion from a 2MB page mapping to 512 4KB page mappings, * destroy the pv entry for the 2MB page mapping and reinstantiate the pv * entries for each of the 4KB page mappings. */ static void pmap_pv_demote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa, struct rwlock **lockp) { struct md_page *pvh; struct pv_chunk *pc; pv_entry_t pv; vm_offset_t va_last; vm_page_t m; int bit, field; PMAP_LOCK_ASSERT(pmap, MA_OWNED); KASSERT((pa & L2_OFFSET) == 0, ("pmap_pv_demote_l2: pa is not 2mpage aligned")); CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa); /* * Transfer the 2mpage's pv entry for this mapping to the first * page's pv list. Once this transfer begins, the pv list lock * must not be released until the last pv entry is reinstantiated. */ pvh = pa_to_pvh(pa); va = va & ~L2_OFFSET; pv = pmap_pvh_remove(pvh, pmap, va); KASSERT(pv != NULL, ("pmap_pv_demote_l2: pv not found")); m = PHYS_TO_VM_PAGE(pa); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next); m->md.pv_gen++; /* Instantiate the remaining Ln_ENTRIES - 1 pv entries. */ PV_STAT(atomic_add_long(&pv_entry_allocs, Ln_ENTRIES - 1)); va_last = va + L2_SIZE - PAGE_SIZE; for (;;) { pc = TAILQ_FIRST(&pmap->pm_pvchunk); KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 || pc->pc_map[2] != 0, ("pmap_pv_demote_l2: missing spare")); for (field = 0; field < _NPCM; field++) { while (pc->pc_map[field]) { bit = ffsl(pc->pc_map[field]) - 1; pc->pc_map[field] &= ~(1ul << bit); pv = &pc->pc_pventry[field * 64 + bit]; va += PAGE_SIZE; pv->pv_va = va; m++; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_pv_demote_l2: page %p is not managed", m)); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next); m->md.pv_gen++; if (va == va_last) goto out; } } TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list); } out: if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) { TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list); } PV_STAT(atomic_add_long(&pv_entry_count, Ln_ENTRIES - 1)); PV_STAT(atomic_subtract_int(&pv_entry_spare, Ln_ENTRIES - 1)); } /* * First find and then destroy the pv entry for the specified pmap and virtual * address. This operation can be performed on pv lists for either 4KB or 2MB * page mappings. */ static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va) { pv_entry_t pv; pv = pmap_pvh_remove(pvh, pmap, va); KASSERT(pv != NULL, ("pmap_pvh_free: pv not found")); free_pv_entry(pmap, pv); } /* * Conditionally create the PV entry for a 4KB page mapping if the required * memory can be allocated without resorting to reclamation. */ static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m, struct rwlock **lockp) { pv_entry_t pv; PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* Pass NULL instead of the lock pointer to disable reclamation. */ if ((pv = get_pv_entry(pmap, NULL)) != NULL) { pv->pv_va = va; CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next); m->md.pv_gen++; return (TRUE); } else return (FALSE); } /* * pmap_remove_l2: do the things to unmap a level 2 superpage in a process */ static int pmap_remove_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva, pd_entry_t l1e, struct spglist *free, struct rwlock **lockp) { struct md_page *pvh; pt_entry_t old_l2; vm_offset_t eva, va; vm_page_t m, ml3; PMAP_LOCK_ASSERT(pmap, MA_OWNED); KASSERT((sva & L2_OFFSET) == 0, ("pmap_remove_l2: sva is not aligned")); old_l2 = pmap_load_clear(l2); pmap_invalidate_range(pmap, sva, sva + L2_SIZE); if (old_l2 & ATTR_SW_WIRED) pmap->pm_stats.wired_count -= L2_SIZE / PAGE_SIZE; pmap_resident_count_dec(pmap, L2_SIZE / PAGE_SIZE); if (old_l2 & ATTR_SW_MANAGED) { CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, old_l2 & ~ATTR_MASK); pvh = pa_to_pvh(old_l2 & ~ATTR_MASK); pmap_pvh_free(pvh, pmap, sva); eva = sva + L2_SIZE; for (va = sva, m = PHYS_TO_VM_PAGE(old_l2 & ~ATTR_MASK); va < eva; va += PAGE_SIZE, m++) { if (pmap_page_dirty(old_l2)) vm_page_dirty(m); if (old_l2 & ATTR_AF) vm_page_aflag_set(m, PGA_REFERENCED); if (TAILQ_EMPTY(&m->md.pv_list) && TAILQ_EMPTY(&pvh->pv_list)) vm_page_aflag_clear(m, PGA_WRITEABLE); } } KASSERT(pmap != kernel_pmap, ("Attempting to remove an l2 kernel page")); ml3 = pmap_remove_pt_page(pmap, sva); if (ml3 != NULL) { pmap_resident_count_dec(pmap, 1); KASSERT(ml3->wire_count == NL3PG, ("pmap_remove_pages: l3 page wire count error")); ml3->wire_count = 1; vm_page_unwire_noq(ml3); pmap_add_delayed_free_list(ml3, free, FALSE); } return (pmap_unuse_pt(pmap, sva, l1e, free)); } /* * pmap_remove_l3: do the things to unmap a page in a process */ static int pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t va, pd_entry_t l2e, struct spglist *free, struct rwlock **lockp) { struct md_page *pvh; pt_entry_t old_l3; vm_page_t m; PMAP_LOCK_ASSERT(pmap, MA_OWNED); old_l3 = pmap_load_clear(l3); pmap_invalidate_page(pmap, va); if (old_l3 & ATTR_SW_WIRED) pmap->pm_stats.wired_count -= 1; pmap_resident_count_dec(pmap, 1); if (old_l3 & ATTR_SW_MANAGED) { m = PHYS_TO_VM_PAGE(old_l3 & ~ATTR_MASK); if (pmap_page_dirty(old_l3)) vm_page_dirty(m); if (old_l3 & ATTR_AF) vm_page_aflag_set(m, PGA_REFERENCED); CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m); pmap_pvh_free(&m->md, pmap, va); if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); if (TAILQ_EMPTY(&pvh->pv_list)) vm_page_aflag_clear(m, PGA_WRITEABLE); } } return (pmap_unuse_pt(pmap, va, l2e, free)); } /* * Remove the given range of addresses from the specified map. * * It is assumed that the start and end are properly * rounded to the page size. */ void pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva) { struct rwlock *lock; vm_offset_t va, va_next; pd_entry_t *l0, *l1, *l2; pt_entry_t l3_paddr, *l3; struct spglist free; /* * Perform an unsynchronized read. This is, however, safe. */ if (pmap->pm_stats.resident_count == 0) return; SLIST_INIT(&free); PMAP_LOCK(pmap); lock = NULL; for (; sva < eva; sva = va_next) { if (pmap->pm_stats.resident_count == 0) break; l0 = pmap_l0(pmap, sva); if (pmap_load(l0) == 0) { va_next = (sva + L0_SIZE) & ~L0_OFFSET; if (va_next < sva) va_next = eva; continue; } l1 = pmap_l0_to_l1(l0, sva); if (pmap_load(l1) == 0) { va_next = (sva + L1_SIZE) & ~L1_OFFSET; if (va_next < sva) va_next = eva; continue; } /* * Calculate index for next page table. */ va_next = (sva + L2_SIZE) & ~L2_OFFSET; if (va_next < sva) va_next = eva; l2 = pmap_l1_to_l2(l1, sva); if (l2 == NULL) continue; l3_paddr = pmap_load(l2); if ((l3_paddr & ATTR_DESCR_MASK) == L2_BLOCK) { if (sva + L2_SIZE == va_next && eva >= va_next) { pmap_remove_l2(pmap, l2, sva, pmap_load(l1), &free, &lock); continue; } else if (pmap_demote_l2_locked(pmap, l2, sva &~L2_OFFSET, &lock) == NULL) continue; l3_paddr = pmap_load(l2); } /* * Weed out invalid mappings. */ if ((l3_paddr & ATTR_DESCR_MASK) != L2_TABLE) continue; /* * Limit our scan to either the end of the va represented * by the current page table page, or to the end of the * range being removed. */ if (va_next > eva) va_next = eva; va = va_next; for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++, sva += L3_SIZE) { if (l3 == NULL) panic("l3 == NULL"); if (pmap_load(l3) == 0) { if (va != va_next) { pmap_invalidate_range(pmap, va, sva); va = va_next; } continue; } if (va == va_next) va = sva; if (pmap_remove_l3(pmap, l3, sva, l3_paddr, &free, &lock)) { sva += L3_SIZE; break; } } if (va != va_next) pmap_invalidate_range(pmap, va, sva); } if (lock != NULL) rw_wunlock(lock); PMAP_UNLOCK(pmap); vm_page_free_pages_toq(&free, false); } /* * Routine: pmap_remove_all * Function: * Removes this physical page from * all physical maps in which it resides. * Reflects back modify bits to the pager. * * Notes: * Original versions of this routine were very * inefficient because they iteratively called * pmap_remove (slow...) */ void pmap_remove_all(vm_page_t m) { struct md_page *pvh; pv_entry_t pv; pmap_t pmap; struct rwlock *lock; pd_entry_t *pde, tpde; pt_entry_t *pte, tpte; vm_offset_t va; struct spglist free; int lvl, pvh_gen, md_gen; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_remove_all: page %p is not managed", m)); SLIST_INIT(&free); lock = VM_PAGE_TO_PV_LIST_LOCK(m); pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(VM_PAGE_TO_PHYS(m)); retry: rw_wlock(lock); while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) { pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { pvh_gen = pvh->pv_gen; rw_wunlock(lock); PMAP_LOCK(pmap); rw_wlock(lock); if (pvh_gen != pvh->pv_gen) { rw_wunlock(lock); PMAP_UNLOCK(pmap); goto retry; } } va = pv->pv_va; pte = pmap_pte(pmap, va, &lvl); KASSERT(pte != NULL, ("pmap_remove_all: no page table entry found")); KASSERT(lvl == 2, ("pmap_remove_all: invalid pte level %d", lvl)); pmap_demote_l2_locked(pmap, pte, va, &lock); PMAP_UNLOCK(pmap); } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) { pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { pvh_gen = pvh->pv_gen; md_gen = m->md.pv_gen; rw_wunlock(lock); PMAP_LOCK(pmap); rw_wlock(lock); if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) { rw_wunlock(lock); PMAP_UNLOCK(pmap); goto retry; } } pmap_resident_count_dec(pmap, 1); pde = pmap_pde(pmap, pv->pv_va, &lvl); KASSERT(pde != NULL, ("pmap_remove_all: no page directory entry found")); KASSERT(lvl == 2, ("pmap_remove_all: invalid pde level %d", lvl)); tpde = pmap_load(pde); pte = pmap_l2_to_l3(pde, pv->pv_va); tpte = pmap_load(pte); pmap_load_clear(pte); pmap_invalidate_page(pmap, pv->pv_va); if (tpte & ATTR_SW_WIRED) pmap->pm_stats.wired_count--; if ((tpte & ATTR_AF) != 0) vm_page_aflag_set(m, PGA_REFERENCED); /* * Update the vm_page_t clean and reference bits. */ if (pmap_page_dirty(tpte)) vm_page_dirty(m); pmap_unuse_pt(pmap, pv->pv_va, tpde, &free); TAILQ_REMOVE(&m->md.pv_list, pv, pv_next); m->md.pv_gen++; free_pv_entry(pmap, pv); PMAP_UNLOCK(pmap); } vm_page_aflag_clear(m, PGA_WRITEABLE); rw_wunlock(lock); vm_page_free_pages_toq(&free, false); } /* * Set the physical protection on the * specified range of this map as requested. */ void pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot) { vm_offset_t va, va_next; pd_entry_t *l0, *l1, *l2; pt_entry_t *l3p, l3, nbits; KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot)); if (prot == VM_PROT_NONE) { pmap_remove(pmap, sva, eva); return; } if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE)) return; PMAP_LOCK(pmap); for (; sva < eva; sva = va_next) { l0 = pmap_l0(pmap, sva); if (pmap_load(l0) == 0) { va_next = (sva + L0_SIZE) & ~L0_OFFSET; if (va_next < sva) va_next = eva; continue; } l1 = pmap_l0_to_l1(l0, sva); if (pmap_load(l1) == 0) { va_next = (sva + L1_SIZE) & ~L1_OFFSET; if (va_next < sva) va_next = eva; continue; } va_next = (sva + L2_SIZE) & ~L2_OFFSET; if (va_next < sva) va_next = eva; l2 = pmap_l1_to_l2(l1, sva); if (pmap_load(l2) == 0) continue; if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) { l3p = pmap_demote_l2(pmap, l2, sva); if (l3p == NULL) continue; } KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE, ("pmap_protect: Invalid L2 entry after demotion")); if (va_next > eva) va_next = eva; va = va_next; for (l3p = pmap_l2_to_l3(l2, sva); sva != va_next; l3p++, sva += L3_SIZE) { l3 = pmap_load(l3p); if (!pmap_l3_valid(l3)) continue; nbits = 0; if ((prot & VM_PROT_WRITE) == 0) { if ((l3 & ATTR_SW_MANAGED) && pmap_page_dirty(l3)) { vm_page_dirty(PHYS_TO_VM_PAGE(l3 & ~ATTR_MASK)); } nbits |= ATTR_AP(ATTR_AP_RO); } if ((prot & VM_PROT_EXECUTE) == 0) nbits |= ATTR_XN; pmap_set(l3p, nbits); /* XXX: Use pmap_invalidate_range */ pmap_invalidate_page(pmap, sva); } } PMAP_UNLOCK(pmap); } /* * Inserts the specified page table page into the specified pmap's collection * of idle page table pages. Each of a pmap's page table pages is responsible * for mapping a distinct range of virtual addresses. The pmap's collection is * ordered by this virtual address range. */ static __inline int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte) { PMAP_LOCK_ASSERT(pmap, MA_OWNED); return (vm_radix_insert(&pmap->pm_root, mpte)); } /* * Removes the page table page mapping the specified virtual address from the * specified pmap's collection of idle page table pages, and returns it. * Otherwise, returns NULL if there is no page table page corresponding to the * specified virtual address. */ static __inline vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va) { PMAP_LOCK_ASSERT(pmap, MA_OWNED); return (vm_radix_remove(&pmap->pm_root, pmap_l2_pindex(va))); } /* * Performs a break-before-make update of a pmap entry. This is needed when * either promoting or demoting pages to ensure the TLB doesn't get into an * inconsistent state. */ static void pmap_update_entry(pmap_t pmap, pd_entry_t *pte, pd_entry_t newpte, vm_offset_t va, vm_size_t size) { register_t intr; PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* * Ensure we don't get switched out with the page table in an * inconsistent state. We also need to ensure no interrupts fire * as they may make use of an address we are about to invalidate. */ intr = intr_disable(); critical_enter(); /* Clear the old mapping */ pmap_load_clear(pte); pmap_invalidate_range_nopin(pmap, va, va + size); /* Create the new mapping */ pmap_load_store(pte, newpte); critical_exit(); intr_restore(intr); } #if VM_NRESERVLEVEL > 0 /* * After promotion from 512 4KB page mappings to a single 2MB page mapping, * replace the many pv entries for the 4KB page mappings by a single pv entry * for the 2MB page mapping. */ static void pmap_pv_promote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa, struct rwlock **lockp) { struct md_page *pvh; pv_entry_t pv; vm_offset_t va_last; vm_page_t m; KASSERT((pa & L2_OFFSET) == 0, ("pmap_pv_promote_l2: pa is not 2mpage aligned")); CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa); /* * Transfer the first page's pv entry for this mapping to the 2mpage's * pv list. Aside from avoiding the cost of a call to get_pv_entry(), * a transfer avoids the possibility that get_pv_entry() calls * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the * mappings that is being promoted. */ m = PHYS_TO_VM_PAGE(pa); va = va & ~L2_OFFSET; pv = pmap_pvh_remove(&m->md, pmap, va); KASSERT(pv != NULL, ("pmap_pv_promote_l2: pv not found")); pvh = pa_to_pvh(pa); TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next); pvh->pv_gen++; /* Free the remaining NPTEPG - 1 pv entries. */ va_last = va + L2_SIZE - PAGE_SIZE; do { m++; va += PAGE_SIZE; pmap_pvh_free(&m->md, pmap, va); } while (va < va_last); } /* * Tries to promote the 512, contiguous 4KB page mappings that are within a * single level 2 table entry to a single 2MB page mapping. For promotion * to occur, two conditions must be met: (1) the 4KB page mappings must map * aligned, contiguous physical memory and (2) the 4KB page mappings must have * identical characteristics. */ static void pmap_promote_l2(pmap_t pmap, pd_entry_t *l2, vm_offset_t va, struct rwlock **lockp) { pt_entry_t *firstl3, *l3, newl2, oldl3, pa; vm_page_t mpte; vm_offset_t sva; PMAP_LOCK_ASSERT(pmap, MA_OWNED); sva = va & ~L2_OFFSET; firstl3 = pmap_l2_to_l3(l2, sva); newl2 = pmap_load(firstl3); /* Check the alingment is valid */ if (((newl2 & ~ATTR_MASK) & L2_OFFSET) != 0) { atomic_add_long(&pmap_l2_p_failures, 1); CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx" " in pmap %p", va, pmap); return; } pa = newl2 + L2_SIZE - PAGE_SIZE; for (l3 = firstl3 + NL3PG - 1; l3 > firstl3; l3--) { oldl3 = pmap_load(l3); if (oldl3 != pa) { atomic_add_long(&pmap_l2_p_failures, 1); CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx" " in pmap %p", va, pmap); return; } pa -= PAGE_SIZE; } /* * Save the page table page in its current state until the L2 * mapping the superpage is demoted by pmap_demote_l2() or * destroyed by pmap_remove_l3(). */ mpte = PHYS_TO_VM_PAGE(pmap_load(l2) & ~ATTR_MASK); KASSERT(mpte >= vm_page_array && mpte < &vm_page_array[vm_page_array_size], ("pmap_promote_l2: page table page is out of range")); KASSERT(mpte->pindex == pmap_l2_pindex(va), ("pmap_promote_l2: page table page's pindex is wrong")); if (pmap_insert_pt_page(pmap, mpte)) { atomic_add_long(&pmap_l2_p_failures, 1); CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx in pmap %p", va, pmap); return; } if ((newl2 & ATTR_SW_MANAGED) != 0) pmap_pv_promote_l2(pmap, va, newl2 & ~ATTR_MASK, lockp); newl2 &= ~ATTR_DESCR_MASK; newl2 |= L2_BLOCK; pmap_update_entry(pmap, l2, newl2, sva, L2_SIZE); atomic_add_long(&pmap_l2_promotions, 1); CTR2(KTR_PMAP, "pmap_promote_l2: success for va %#lx in pmap %p", va, pmap); } #endif /* VM_NRESERVLEVEL > 0 */ /* * Insert the given physical page (p) at * the specified virtual address (v) in the * target physical map with the protection requested. * * If specified, the page will be wired down, meaning * that the related pte can not be reclaimed. * * NB: This is the only routine which MAY NOT lazy-evaluate * or lose information. That is, this routine must actually * insert this page into the given map NOW. */ int pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind __unused) { struct rwlock *lock; pd_entry_t *pde; pt_entry_t new_l3, orig_l3; pt_entry_t *l2, *l3; pv_entry_t pv; vm_paddr_t opa, pa, l1_pa, l2_pa, l3_pa; vm_page_t mpte, om, l1_m, l2_m, l3_m; boolean_t nosleep; int lvl; va = trunc_page(va); if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m)) VM_OBJECT_ASSERT_LOCKED(m->object); pa = VM_PAGE_TO_PHYS(m); new_l3 = (pt_entry_t)(pa | ATTR_DEFAULT | ATTR_IDX(m->md.pv_memattr) | L3_PAGE); if ((prot & VM_PROT_WRITE) == 0) new_l3 |= ATTR_AP(ATTR_AP_RO); if ((prot & VM_PROT_EXECUTE) == 0 || m->md.pv_memattr == DEVICE_MEMORY) new_l3 |= ATTR_XN; if ((flags & PMAP_ENTER_WIRED) != 0) new_l3 |= ATTR_SW_WIRED; if (va < VM_MAXUSER_ADDRESS) new_l3 |= ATTR_AP(ATTR_AP_USER) | ATTR_PXN; CTR2(KTR_PMAP, "pmap_enter: %.16lx -> %.16lx", va, pa); mpte = NULL; lock = NULL; PMAP_LOCK(pmap); pde = pmap_pde(pmap, va, &lvl); if (pde != NULL && lvl == 1) { l2 = pmap_l1_to_l2(pde, va); if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK && (l3 = pmap_demote_l2_locked(pmap, l2, va & ~L2_OFFSET, &lock)) != NULL) { l3 = &l3[pmap_l3_index(va)]; if (va < VM_MAXUSER_ADDRESS) { mpte = PHYS_TO_VM_PAGE( pmap_load(l2) & ~ATTR_MASK); mpte->wire_count++; } goto havel3; } } if (va < VM_MAXUSER_ADDRESS) { nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0; mpte = pmap_alloc_l3(pmap, va, nosleep ? NULL : &lock); if (mpte == NULL && nosleep) { CTR0(KTR_PMAP, "pmap_enter: mpte == NULL"); if (lock != NULL) rw_wunlock(lock); PMAP_UNLOCK(pmap); return (KERN_RESOURCE_SHORTAGE); } pde = pmap_pde(pmap, va, &lvl); KASSERT(pde != NULL, ("pmap_enter: Invalid page entry, va: 0x%lx", va)); KASSERT(lvl == 2, ("pmap_enter: Invalid level %d", lvl)); } else { /* * If we get a level 2 pde it must point to a level 3 entry * otherwise we will need to create the intermediate tables */ if (lvl < 2) { switch(lvl) { default: case -1: /* Get the l0 pde to update */ pde = pmap_l0(pmap, va); KASSERT(pde != NULL, ("...")); l1_m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO); if (l1_m == NULL) panic("pmap_enter: l1 pte_m == NULL"); if ((l1_m->flags & PG_ZERO) == 0) pmap_zero_page(l1_m); l1_pa = VM_PAGE_TO_PHYS(l1_m); pmap_load_store(pde, l1_pa | L0_TABLE); /* FALLTHROUGH */ case 0: /* Get the l1 pde to update */ pde = pmap_l1_to_l2(pde, va); KASSERT(pde != NULL, ("...")); l2_m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO); if (l2_m == NULL) panic("pmap_enter: l2 pte_m == NULL"); if ((l2_m->flags & PG_ZERO) == 0) pmap_zero_page(l2_m); l2_pa = VM_PAGE_TO_PHYS(l2_m); pmap_load_store(pde, l2_pa | L1_TABLE); /* FALLTHROUGH */ case 1: /* Get the l2 pde to update */ pde = pmap_l1_to_l2(pde, va); KASSERT(pde != NULL, ("...")); l3_m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO); if (l3_m == NULL) panic("pmap_enter: l3 pte_m == NULL"); if ((l3_m->flags & PG_ZERO) == 0) pmap_zero_page(l3_m); l3_pa = VM_PAGE_TO_PHYS(l3_m); pmap_load_store(pde, l3_pa | L2_TABLE); break; } } } l3 = pmap_l2_to_l3(pde, va); havel3: om = NULL; orig_l3 = pmap_load(l3); opa = orig_l3 & ~ATTR_MASK; /* * Is the specified virtual address already mapped? */ if (pmap_l3_valid(orig_l3)) { /* * Wiring change, just update stats. We don't worry about * wiring PT pages as they remain resident as long as there * are valid mappings in them. Hence, if a user page is wired, * the PT page will be also. */ if ((flags & PMAP_ENTER_WIRED) != 0 && (orig_l3 & ATTR_SW_WIRED) == 0) pmap->pm_stats.wired_count++; else if ((flags & PMAP_ENTER_WIRED) == 0 && (orig_l3 & ATTR_SW_WIRED) != 0) pmap->pm_stats.wired_count--; /* * Remove the extra PT page reference. */ if (mpte != NULL) { mpte->wire_count--; KASSERT(mpte->wire_count > 0, ("pmap_enter: missing reference to page table page," " va: 0x%lx", va)); } /* * Has the physical page changed? */ if (opa == pa) { /* * No, might be a protection or wiring change. */ if ((orig_l3 & ATTR_SW_MANAGED) != 0) { new_l3 |= ATTR_SW_MANAGED; if ((new_l3 & ATTR_AP(ATTR_AP_RW)) == ATTR_AP(ATTR_AP_RW)) { vm_page_aflag_set(m, PGA_WRITEABLE); } } goto validate; } } else { /* * Increment the counters. */ if ((new_l3 & ATTR_SW_WIRED) != 0) pmap->pm_stats.wired_count++; pmap_resident_count_inc(pmap, 1); } /* * Enter on the PV list if part of our managed memory. */ if ((m->oflags & VPO_UNMANAGED) == 0) { new_l3 |= ATTR_SW_MANAGED; pv = get_pv_entry(pmap, &lock); pv->pv_va = va; CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next); m->md.pv_gen++; if ((new_l3 & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW)) vm_page_aflag_set(m, PGA_WRITEABLE); } validate: /* * Sync icache if exec permission and attribute VM_MEMATTR_WRITE_BACK * is set. Do it now, before the mapping is stored and made * valid for hardware table walk. If done later, then other can * access this page before caches are properly synced. * Don't do it for kernel memory which is mapped with exec * permission even if the memory isn't going to hold executable * code. The only time when icache sync is needed is after * kernel module is loaded and the relocation info is processed. * And it's done in elf_cpu_load_file(). */ if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap && m->md.pv_memattr == VM_MEMATTR_WRITE_BACK && (opa != pa || (orig_l3 & ATTR_XN))) cpu_icache_sync_range(PHYS_TO_DMAP(pa), PAGE_SIZE); /* * Update the L3 entry */ if (pmap_l3_valid(orig_l3)) { if (opa != pa) { /* different PA */ pmap_update_entry(pmap, l3, new_l3, va, PAGE_SIZE); if ((orig_l3 & ATTR_SW_MANAGED) != 0) { om = PHYS_TO_VM_PAGE(opa); if (pmap_page_dirty(orig_l3)) vm_page_dirty(om); if ((orig_l3 & ATTR_AF) != 0) vm_page_aflag_set(om, PGA_REFERENCED); CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa); pmap_pvh_free(&om->md, pmap, va); if ((om->aflags & PGA_WRITEABLE) != 0 && TAILQ_EMPTY(&om->md.pv_list) && ((om->flags & PG_FICTITIOUS) != 0 || TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list))) vm_page_aflag_clear(om, PGA_WRITEABLE); } } else if ((orig_l3 & ~ATTR_AF) != (new_l3 & ~ATTR_AF)) { /* same PA, different attributes */ pmap_load_store(l3, new_l3); pmap_invalidate_page(pmap, va); if (pmap_page_dirty(orig_l3) && (orig_l3 & ATTR_SW_MANAGED) != 0) vm_page_dirty(m); } else { /* * orig_l3 == new_l3 * This can happens if multiple threads simultaneously * access not yet mapped page. This bad for performance * since this can cause full demotion-NOP-promotion * cycle. * Another possible reasons are: * - VM and pmap memory layout are diverged * - tlb flush is missing somewhere and CPU doesn't see * actual mapping. */ CTR4(KTR_PMAP, "%s: already mapped page - " "pmap %p va 0x%#lx pte 0x%lx", __func__, pmap, va, new_l3); } } else { /* New mappig */ pmap_load_store(l3, new_l3); } #if VM_NRESERVLEVEL > 0 if (pmap != pmap_kernel() && (mpte == NULL || mpte->wire_count == NL3PG) && pmap_superpages_enabled() && (m->flags & PG_FICTITIOUS) == 0 && vm_reserv_level_iffullpop(m) == 0) { pmap_promote_l2(pmap, pde, va, &lock); } #endif if (lock != NULL) rw_wunlock(lock); PMAP_UNLOCK(pmap); return (KERN_SUCCESS); } /* * Maps a sequence of resident pages belonging to the same object. * The sequence begins with the given page m_start. This page is * mapped at the given virtual address start. Each subsequent page is * mapped at a virtual address that is offset from start by the same * amount as the page is offset from m_start within the object. The * last page in the sequence is the page with the largest offset from * m_start that can be mapped at a virtual address less than the given * virtual address end. Not every virtual page between start and end * is mapped; only those for which a resident page exists with the * corresponding offset from m_start are mapped. */ void pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end, vm_page_t m_start, vm_prot_t prot) { struct rwlock *lock; vm_offset_t va; vm_page_t m, mpte; vm_pindex_t diff, psize; VM_OBJECT_ASSERT_LOCKED(m_start->object); psize = atop(end - start); mpte = NULL; m = m_start; lock = NULL; PMAP_LOCK(pmap); while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { va = start + ptoa(diff); mpte = pmap_enter_quick_locked(pmap, va, m, prot, mpte, &lock); m = TAILQ_NEXT(m, listq); } if (lock != NULL) rw_wunlock(lock); PMAP_UNLOCK(pmap); } /* * this code makes some *MAJOR* assumptions: * 1. Current pmap & pmap exists. * 2. Not wired. * 3. Read access. * 4. No page table pages. * but is *MUCH* faster than pmap_enter... */ void pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot) { struct rwlock *lock; lock = NULL; PMAP_LOCK(pmap); (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock); if (lock != NULL) rw_wunlock(lock); PMAP_UNLOCK(pmap); } static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp) { struct spglist free; pd_entry_t *pde; pt_entry_t *l2, *l3, l3_val; vm_paddr_t pa; int lvl; KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva || (m->oflags & VPO_UNMANAGED) != 0, ("pmap_enter_quick_locked: managed mapping within the clean submap")); PMAP_LOCK_ASSERT(pmap, MA_OWNED); CTR2(KTR_PMAP, "pmap_enter_quick_locked: %p %lx", pmap, va); /* * In the case that a page table page is not * resident, we are creating it here. */ if (va < VM_MAXUSER_ADDRESS) { vm_pindex_t l2pindex; /* * Calculate pagetable page index */ l2pindex = pmap_l2_pindex(va); if (mpte && (mpte->pindex == l2pindex)) { mpte->wire_count++; } else { /* * Get the l2 entry */ pde = pmap_pde(pmap, va, &lvl); /* * If the page table page is mapped, we just increment * the hold count, and activate it. Otherwise, we * attempt to allocate a page table page. If this * attempt fails, we don't retry. Instead, we give up. */ if (lvl == 1) { l2 = pmap_l1_to_l2(pde, va); if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) return (NULL); } if (lvl == 2 && pmap_load(pde) != 0) { mpte = PHYS_TO_VM_PAGE(pmap_load(pde) & ~ATTR_MASK); mpte->wire_count++; } else { /* * Pass NULL instead of the PV list lock * pointer, because we don't intend to sleep. */ mpte = _pmap_alloc_l3(pmap, l2pindex, NULL); if (mpte == NULL) return (mpte); } } l3 = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte)); l3 = &l3[pmap_l3_index(va)]; } else { mpte = NULL; pde = pmap_pde(kernel_pmap, va, &lvl); KASSERT(pde != NULL, ("pmap_enter_quick_locked: Invalid page entry, va: 0x%lx", va)); KASSERT(lvl == 2, ("pmap_enter_quick_locked: Invalid level %d", lvl)); l3 = pmap_l2_to_l3(pde, va); } if (pmap_load(l3) != 0) { if (mpte != NULL) { mpte->wire_count--; mpte = NULL; } return (mpte); } /* * Enter on the PV list if part of our managed memory. */ if ((m->oflags & VPO_UNMANAGED) == 0 && !pmap_try_insert_pv_entry(pmap, va, m, lockp)) { if (mpte != NULL) { SLIST_INIT(&free); if (pmap_unwire_l3(pmap, va, mpte, &free)) { pmap_invalidate_page(pmap, va); vm_page_free_pages_toq(&free, false); } mpte = NULL; } return (mpte); } /* * Increment counters */ pmap_resident_count_inc(pmap, 1); pa = VM_PAGE_TO_PHYS(m); l3_val = pa | ATTR_DEFAULT | ATTR_IDX(m->md.pv_memattr) | ATTR_AP(ATTR_AP_RO) | L3_PAGE; if ((prot & VM_PROT_EXECUTE) == 0 || m->md.pv_memattr == DEVICE_MEMORY) l3_val |= ATTR_XN; else if (va < VM_MAXUSER_ADDRESS) l3_val |= ATTR_PXN; /* * Now validate mapping with RO protection */ if ((m->oflags & VPO_UNMANAGED) == 0) l3_val |= ATTR_SW_MANAGED; /* Sync icache before the mapping is stored to PTE */ if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap && m->md.pv_memattr == VM_MEMATTR_WRITE_BACK) cpu_icache_sync_range(PHYS_TO_DMAP(pa), PAGE_SIZE); pmap_load_store(l3, l3_val); pmap_invalidate_page(pmap, va); return (mpte); } /* * This code maps large physical mmap regions into the * processor address space. Note that some shortcuts * are taken, but the code works. */ void pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object, vm_pindex_t pindex, vm_size_t size) { VM_OBJECT_ASSERT_WLOCKED(object); KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG, ("pmap_object_init_pt: non-device object")); } /* * Clear the wired attribute from the mappings for the specified range of * addresses in the given pmap. Every valid mapping within that range * must have the wired attribute set. In contrast, invalid mappings * cannot have the wired attribute set, so they are ignored. * * The wired attribute of the page table entry is not a hardware feature, * so there is no need to invalidate any TLB entries. */ void pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva) { vm_offset_t va_next; pd_entry_t *l0, *l1, *l2; pt_entry_t *l3; PMAP_LOCK(pmap); for (; sva < eva; sva = va_next) { l0 = pmap_l0(pmap, sva); if (pmap_load(l0) == 0) { va_next = (sva + L0_SIZE) & ~L0_OFFSET; if (va_next < sva) va_next = eva; continue; } l1 = pmap_l0_to_l1(l0, sva); if (pmap_load(l1) == 0) { va_next = (sva + L1_SIZE) & ~L1_OFFSET; if (va_next < sva) va_next = eva; continue; } va_next = (sva + L2_SIZE) & ~L2_OFFSET; if (va_next < sva) va_next = eva; l2 = pmap_l1_to_l2(l1, sva); if (pmap_load(l2) == 0) continue; if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) { l3 = pmap_demote_l2(pmap, l2, sva); if (l3 == NULL) continue; } KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE, ("pmap_unwire: Invalid l2 entry after demotion")); if (va_next > eva) va_next = eva; for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++, sva += L3_SIZE) { if (pmap_load(l3) == 0) continue; if ((pmap_load(l3) & ATTR_SW_WIRED) == 0) panic("pmap_unwire: l3 %#jx is missing " "ATTR_SW_WIRED", (uintmax_t)pmap_load(l3)); /* * PG_W must be cleared atomically. Although the pmap * lock synchronizes access to PG_W, another processor * could be setting PG_M and/or PG_A concurrently. */ atomic_clear_long(l3, ATTR_SW_WIRED); pmap->pm_stats.wired_count--; } } PMAP_UNLOCK(pmap); } /* * Copy the range specified by src_addr/len * from the source map to the range dst_addr/len * in the destination map. * * This routine is only advisory and need not do anything. */ void pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr) { } /* * pmap_zero_page zeros the specified hardware page by mapping * the page into KVM and using bzero to clear its contents. */ void pmap_zero_page(vm_page_t m) { vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); pagezero((void *)va); } /* * pmap_zero_page_area zeros the specified hardware page by mapping * the page into KVM and using bzero to clear its contents. * * off and size may not cover an area beyond a single hardware page. */ void pmap_zero_page_area(vm_page_t m, int off, int size) { vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); if (off == 0 && size == PAGE_SIZE) pagezero((void *)va); else bzero((char *)va + off, size); } /* * pmap_copy_page copies the specified (machine independent) * page by mapping the page into virtual memory and using * bcopy to copy the page, one machine dependent page at a * time. */ void pmap_copy_page(vm_page_t msrc, vm_page_t mdst) { vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc)); vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst)); pagecopy((void *)src, (void *)dst); } int unmapped_buf_allowed = 1; void pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[], vm_offset_t b_offset, int xfersize) { void *a_cp, *b_cp; vm_page_t m_a, m_b; vm_paddr_t p_a, p_b; vm_offset_t a_pg_offset, b_pg_offset; int cnt; while (xfersize > 0) { a_pg_offset = a_offset & PAGE_MASK; m_a = ma[a_offset >> PAGE_SHIFT]; p_a = m_a->phys_addr; b_pg_offset = b_offset & PAGE_MASK; m_b = mb[b_offset >> PAGE_SHIFT]; p_b = m_b->phys_addr; cnt = min(xfersize, PAGE_SIZE - a_pg_offset); cnt = min(cnt, PAGE_SIZE - b_pg_offset); if (__predict_false(!PHYS_IN_DMAP(p_a))) { panic("!DMAP a %lx", p_a); } else { a_cp = (char *)PHYS_TO_DMAP(p_a) + a_pg_offset; } if (__predict_false(!PHYS_IN_DMAP(p_b))) { panic("!DMAP b %lx", p_b); } else { b_cp = (char *)PHYS_TO_DMAP(p_b) + b_pg_offset; } bcopy(a_cp, b_cp, cnt); a_offset += cnt; b_offset += cnt; xfersize -= cnt; } } vm_offset_t pmap_quick_enter_page(vm_page_t m) { return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m))); } void pmap_quick_remove_page(vm_offset_t addr) { } /* * Returns true if the pmap's pv is one of the first * 16 pvs linked to from this page. This count may * be changed upwards or downwards in the future; it * is only necessary that true be returned for a small * subset of pmaps for proper page aging. */ boolean_t pmap_page_exists_quick(pmap_t pmap, vm_page_t m) { struct md_page *pvh; struct rwlock *lock; pv_entry_t pv; int loops = 0; boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_page_exists_quick: page %p is not managed", m)); rv = FALSE; lock = VM_PAGE_TO_PV_LIST_LOCK(m); rw_rlock(lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) { if (PV_PMAP(pv) == pmap) { rv = TRUE; break; } loops++; if (loops >= 16) break; } if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) { if (PV_PMAP(pv) == pmap) { rv = TRUE; break; } loops++; if (loops >= 16) break; } } rw_runlock(lock); return (rv); } /* * pmap_page_wired_mappings: * * Return the number of managed mappings to the given physical page * that are wired. */ int pmap_page_wired_mappings(vm_page_t m) { struct rwlock *lock; struct md_page *pvh; pmap_t pmap; pt_entry_t *pte; pv_entry_t pv; int count, lvl, md_gen, pvh_gen; if ((m->oflags & VPO_UNMANAGED) != 0) return (0); lock = VM_PAGE_TO_PV_LIST_LOCK(m); rw_rlock(lock); restart: count = 0; TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) { pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { md_gen = m->md.pv_gen; rw_runlock(lock); PMAP_LOCK(pmap); rw_rlock(lock); if (md_gen != m->md.pv_gen) { PMAP_UNLOCK(pmap); goto restart; } } pte = pmap_pte(pmap, pv->pv_va, &lvl); if (pte != NULL && (pmap_load(pte) & ATTR_SW_WIRED) != 0) count++; PMAP_UNLOCK(pmap); } if ((m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) { pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { md_gen = m->md.pv_gen; pvh_gen = pvh->pv_gen; rw_runlock(lock); PMAP_LOCK(pmap); rw_rlock(lock); if (md_gen != m->md.pv_gen || pvh_gen != pvh->pv_gen) { PMAP_UNLOCK(pmap); goto restart; } } pte = pmap_pte(pmap, pv->pv_va, &lvl); if (pte != NULL && (pmap_load(pte) & ATTR_SW_WIRED) != 0) count++; PMAP_UNLOCK(pmap); } } rw_runlock(lock); return (count); } /* * Destroy all managed, non-wired mappings in the given user-space * pmap. This pmap cannot be active on any processor besides the * caller. * * This function cannot be applied to the kernel pmap. Moreover, it * is not intended for general use. It is only to be used during * process termination. Consequently, it can be implemented in ways * that make it faster than pmap_remove(). First, it can more quickly * destroy mappings by iterating over the pmap's collection of PV * entries, rather than searching the page table. Second, it doesn't * have to test and clear the page table entries atomically, because * no processor is currently accessing the user address space. In * particular, a page table entry's dirty bit won't change state once * this function starts. */ void pmap_remove_pages(pmap_t pmap) { pd_entry_t *pde; pt_entry_t *pte, tpte; struct spglist free; vm_page_t m, ml3, mt; pv_entry_t pv; struct md_page *pvh; struct pv_chunk *pc, *npc; struct rwlock *lock; int64_t bit; uint64_t inuse, bitmask; int allfree, field, freed, idx, lvl; vm_paddr_t pa; lock = NULL; SLIST_INIT(&free); PMAP_LOCK(pmap); TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) { allfree = 1; freed = 0; for (field = 0; field < _NPCM; field++) { inuse = ~pc->pc_map[field] & pc_freemask[field]; while (inuse != 0) { bit = ffsl(inuse) - 1; bitmask = 1UL << bit; idx = field * 64 + bit; pv = &pc->pc_pventry[idx]; inuse &= ~bitmask; pde = pmap_pde(pmap, pv->pv_va, &lvl); KASSERT(pde != NULL, ("Attempting to remove an unmapped page")); switch(lvl) { case 1: pte = pmap_l1_to_l2(pde, pv->pv_va); tpte = pmap_load(pte); KASSERT((tpte & ATTR_DESCR_MASK) == L2_BLOCK, ("Attempting to remove an invalid " "block: %lx", tpte)); tpte = pmap_load(pte); break; case 2: pte = pmap_l2_to_l3(pde, pv->pv_va); tpte = pmap_load(pte); KASSERT((tpte & ATTR_DESCR_MASK) == L3_PAGE, ("Attempting to remove an invalid " "page: %lx", tpte)); break; default: panic( "Invalid page directory level: %d", lvl); } /* * We cannot remove wired pages from a process' mapping at this time */ if (tpte & ATTR_SW_WIRED) { allfree = 0; continue; } pa = tpte & ~ATTR_MASK; m = PHYS_TO_VM_PAGE(pa); KASSERT(m->phys_addr == pa, ("vm_page_t %p phys_addr mismatch %016jx %016jx", m, (uintmax_t)m->phys_addr, (uintmax_t)tpte)); KASSERT((m->flags & PG_FICTITIOUS) != 0 || m < &vm_page_array[vm_page_array_size], ("pmap_remove_pages: bad pte %#jx", (uintmax_t)tpte)); pmap_load_clear(pte); /* * Update the vm_page_t clean/reference bits. */ if ((tpte & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW)) { switch (lvl) { case 1: for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++) vm_page_dirty(m); break; case 2: vm_page_dirty(m); break; } } CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m); /* Mark free */ pc->pc_map[field] |= bitmask; switch (lvl) { case 1: pmap_resident_count_dec(pmap, L2_SIZE / PAGE_SIZE); pvh = pa_to_pvh(tpte & ~ATTR_MASK); TAILQ_REMOVE(&pvh->pv_list, pv,pv_next); pvh->pv_gen++; if (TAILQ_EMPTY(&pvh->pv_list)) { for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++) if ((mt->aflags & PGA_WRITEABLE) != 0 && TAILQ_EMPTY(&mt->md.pv_list)) vm_page_aflag_clear(mt, PGA_WRITEABLE); } ml3 = pmap_remove_pt_page(pmap, pv->pv_va); if (ml3 != NULL) { pmap_resident_count_dec(pmap,1); KASSERT(ml3->wire_count == NL3PG, ("pmap_remove_pages: l3 page wire count error")); ml3->wire_count = 1; vm_page_unwire_noq(ml3); pmap_add_delayed_free_list(ml3, &free, FALSE); } break; case 2: pmap_resident_count_dec(pmap, 1); TAILQ_REMOVE(&m->md.pv_list, pv, pv_next); m->md.pv_gen++; if ((m->aflags & PGA_WRITEABLE) != 0 && TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh( VM_PAGE_TO_PHYS(m)); if (TAILQ_EMPTY(&pvh->pv_list)) vm_page_aflag_clear(m, PGA_WRITEABLE); } break; } pmap_unuse_pt(pmap, pv->pv_va, pmap_load(pde), &free); freed++; } } PV_STAT(atomic_add_long(&pv_entry_frees, freed)); PV_STAT(atomic_add_int(&pv_entry_spare, freed)); PV_STAT(atomic_subtract_long(&pv_entry_count, freed)); if (allfree) { TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); free_pv_chunk(pc); } } pmap_invalidate_all(pmap); if (lock != NULL) rw_wunlock(lock); PMAP_UNLOCK(pmap); vm_page_free_pages_toq(&free, false); } /* * This is used to check if a page has been accessed or modified. As we * don't have a bit to see if it has been modified we have to assume it * has been if the page is read/write. */ static boolean_t pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified) { struct rwlock *lock; pv_entry_t pv; struct md_page *pvh; pt_entry_t *pte, mask, value; pmap_t pmap; int lvl, md_gen, pvh_gen; boolean_t rv; rv = FALSE; lock = VM_PAGE_TO_PV_LIST_LOCK(m); rw_rlock(lock); restart: TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) { pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { md_gen = m->md.pv_gen; rw_runlock(lock); PMAP_LOCK(pmap); rw_rlock(lock); if (md_gen != m->md.pv_gen) { PMAP_UNLOCK(pmap); goto restart; } } pte = pmap_pte(pmap, pv->pv_va, &lvl); KASSERT(lvl == 3, ("pmap_page_test_mappings: Invalid level %d", lvl)); mask = 0; value = 0; if (modified) { mask |= ATTR_AP_RW_BIT; value |= ATTR_AP(ATTR_AP_RW); } if (accessed) { mask |= ATTR_AF | ATTR_DESCR_MASK; value |= ATTR_AF | L3_PAGE; } rv = (pmap_load(pte) & mask) == value; PMAP_UNLOCK(pmap); if (rv) goto out; } if ((m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) { pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { md_gen = m->md.pv_gen; pvh_gen = pvh->pv_gen; rw_runlock(lock); PMAP_LOCK(pmap); rw_rlock(lock); if (md_gen != m->md.pv_gen || pvh_gen != pvh->pv_gen) { PMAP_UNLOCK(pmap); goto restart; } } pte = pmap_pte(pmap, pv->pv_va, &lvl); KASSERT(lvl == 2, ("pmap_page_test_mappings: Invalid level %d", lvl)); mask = 0; value = 0; if (modified) { mask |= ATTR_AP_RW_BIT; value |= ATTR_AP(ATTR_AP_RW); } if (accessed) { mask |= ATTR_AF | ATTR_DESCR_MASK; value |= ATTR_AF | L2_BLOCK; } rv = (pmap_load(pte) & mask) == value; PMAP_UNLOCK(pmap); if (rv) goto out; } } out: rw_runlock(lock); return (rv); } /* * pmap_is_modified: * * Return whether or not the specified physical page was modified * in any physical maps. */ boolean_t pmap_is_modified(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_is_modified: page %p is not managed", m)); /* * If the page is not exclusive busied, then PGA_WRITEABLE cannot be * concurrently set while the object is locked. Thus, if PGA_WRITEABLE * is clear, no PTEs can have PG_M set. */ VM_OBJECT_ASSERT_WLOCKED(m->object); if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) return (FALSE); return (pmap_page_test_mappings(m, FALSE, TRUE)); } /* * pmap_is_prefaultable: * * Return whether or not the specified virtual address is eligible * for prefault. */ boolean_t pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr) { pt_entry_t *pte; boolean_t rv; int lvl; rv = FALSE; PMAP_LOCK(pmap); pte = pmap_pte(pmap, addr, &lvl); if (pte != NULL && pmap_load(pte) != 0) { rv = TRUE; } PMAP_UNLOCK(pmap); return (rv); } /* * pmap_is_referenced: * * Return whether or not the specified physical page was referenced * in any physical maps. */ boolean_t pmap_is_referenced(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_is_referenced: page %p is not managed", m)); return (pmap_page_test_mappings(m, TRUE, FALSE)); } /* * Clear the write and modified bits in each of the given page's mappings. */ void pmap_remove_write(vm_page_t m) { struct md_page *pvh; pmap_t pmap; struct rwlock *lock; pv_entry_t next_pv, pv; pt_entry_t oldpte, *pte; vm_offset_t va; int lvl, md_gen, pvh_gen; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_remove_write: page %p is not managed", m)); /* * If the page is not exclusive busied, then PGA_WRITEABLE cannot be * set by another thread while the object is locked. Thus, * if PGA_WRITEABLE is clear, no page table entries need updating. */ VM_OBJECT_ASSERT_WLOCKED(m->object); if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) return; lock = VM_PAGE_TO_PV_LIST_LOCK(m); pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(VM_PAGE_TO_PHYS(m)); retry_pv_loop: rw_wlock(lock); TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) { pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { pvh_gen = pvh->pv_gen; rw_wunlock(lock); PMAP_LOCK(pmap); rw_wlock(lock); if (pvh_gen != pvh->pv_gen) { PMAP_UNLOCK(pmap); rw_wunlock(lock); goto retry_pv_loop; } } va = pv->pv_va; pte = pmap_pte(pmap, pv->pv_va, &lvl); if ((pmap_load(pte) & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW)) pmap_demote_l2_locked(pmap, pte, va & ~L2_OFFSET, &lock); KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m), ("inconsistent pv lock %p %p for page %p", lock, VM_PAGE_TO_PV_LIST_LOCK(m), m)); PMAP_UNLOCK(pmap); } TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) { pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { pvh_gen = pvh->pv_gen; md_gen = m->md.pv_gen; rw_wunlock(lock); PMAP_LOCK(pmap); rw_wlock(lock); if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) { PMAP_UNLOCK(pmap); rw_wunlock(lock); goto retry_pv_loop; } } pte = pmap_pte(pmap, pv->pv_va, &lvl); retry: oldpte = pmap_load(pte); if ((oldpte & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW)) { if (!atomic_cmpset_long(pte, oldpte, oldpte | ATTR_AP(ATTR_AP_RO))) goto retry; if ((oldpte & ATTR_AF) != 0) vm_page_dirty(m); pmap_invalidate_page(pmap, pv->pv_va); } PMAP_UNLOCK(pmap); } rw_wunlock(lock); vm_page_aflag_clear(m, PGA_WRITEABLE); } static __inline boolean_t safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte) { return (FALSE); } /* * pmap_ts_referenced: * * Return a count of reference bits for a page, clearing those bits. * It is not necessary for every reference bit to be cleared, but it * is necessary that 0 only be returned when there are truly no * reference bits set. * * As an optimization, update the page's dirty field if a modified bit is * found while counting reference bits. This opportunistic update can be * performed at low cost and can eliminate the need for some future calls * to pmap_is_modified(). However, since this function stops after * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some * dirty pages. Those dirty pages will only be detected by a future call * to pmap_is_modified(). */ int pmap_ts_referenced(vm_page_t m) { struct md_page *pvh; pv_entry_t pv, pvf; pmap_t pmap; struct rwlock *lock; pd_entry_t *pde, tpde; pt_entry_t *pte, tpte; pt_entry_t *l3; vm_offset_t va; vm_paddr_t pa; int cleared, md_gen, not_cleared, lvl, pvh_gen; struct spglist free; bool demoted; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_ts_referenced: page %p is not managed", m)); SLIST_INIT(&free); cleared = 0; pa = VM_PAGE_TO_PHYS(m); lock = PHYS_TO_PV_LIST_LOCK(pa); pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa); rw_wlock(lock); retry: not_cleared = 0; if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL) goto small_mappings; pv = pvf; do { if (pvf == NULL) pvf = pv; pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { pvh_gen = pvh->pv_gen; rw_wunlock(lock); PMAP_LOCK(pmap); rw_wlock(lock); if (pvh_gen != pvh->pv_gen) { PMAP_UNLOCK(pmap); goto retry; } } va = pv->pv_va; pde = pmap_pde(pmap, pv->pv_va, &lvl); KASSERT(pde != NULL, ("pmap_ts_referenced: no l1 table found")); KASSERT(lvl == 1, ("pmap_ts_referenced: invalid pde level %d", lvl)); tpde = pmap_load(pde); KASSERT((tpde & ATTR_DESCR_MASK) == L1_TABLE, ("pmap_ts_referenced: found an invalid l1 table")); pte = pmap_l1_to_l2(pde, pv->pv_va); tpte = pmap_load(pte); if (pmap_page_dirty(tpte)) { /* * Although "tpte" is mapping a 2MB page, because * this function is called at a 4KB page granularity, * we only update the 4KB page under test. */ vm_page_dirty(m); } if ((tpte & ATTR_AF) != 0) { /* * Since this reference bit is shared by 512 4KB * pages, it should not be cleared every time it is * tested. Apply a simple "hash" function on the * physical page number, the virtual superpage number, * and the pmap address to select one 4KB page out of * the 512 on which testing the reference bit will * result in clearing that reference bit. This * function is designed to avoid the selection of the * same 4KB page for every 2MB page mapping. * * On demotion, a mapping that hasn't been referenced * is simply destroyed. To avoid the possibility of a * subsequent page fault on a demoted wired mapping, * always leave its reference bit set. Moreover, * since the superpage is wired, the current state of * its reference bit won't affect page replacement. */ if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L2_SHIFT) ^ (uintptr_t)pmap) & (Ln_ENTRIES - 1)) == 0 && (tpte & ATTR_SW_WIRED) == 0) { if (safe_to_clear_referenced(pmap, tpte)) { /* * TODO: We don't handle the access * flag at all. We need to be able * to set it in the exception handler. */ panic("ARM64TODO: " "safe_to_clear_referenced\n"); } else if (pmap_demote_l2_locked(pmap, pte, pv->pv_va, &lock) != NULL) { demoted = true; va += VM_PAGE_TO_PHYS(m) - (tpte & ~ATTR_MASK); l3 = pmap_l2_to_l3(pte, va); pmap_remove_l3(pmap, l3, va, pmap_load(pte), NULL, &lock); } else demoted = true; if (demoted) { /* * The superpage mapping was removed * entirely and therefore 'pv' is no * longer valid. */ if (pvf == pv) pvf = NULL; pv = NULL; } cleared++; KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m), ("inconsistent pv lock %p %p for page %p", lock, VM_PAGE_TO_PV_LIST_LOCK(m), m)); } else not_cleared++; } PMAP_UNLOCK(pmap); /* Rotate the PV list if it has more than one entry. */ if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) { TAILQ_REMOVE(&pvh->pv_list, pv, pv_next); TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next); pvh->pv_gen++; } if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX) goto out; } while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf); small_mappings: if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL) goto out; pv = pvf; do { if (pvf == NULL) pvf = pv; pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { pvh_gen = pvh->pv_gen; md_gen = m->md.pv_gen; rw_wunlock(lock); PMAP_LOCK(pmap); rw_wlock(lock); if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) { PMAP_UNLOCK(pmap); goto retry; } } pde = pmap_pde(pmap, pv->pv_va, &lvl); KASSERT(pde != NULL, ("pmap_ts_referenced: no l2 table found")); KASSERT(lvl == 2, ("pmap_ts_referenced: invalid pde level %d", lvl)); tpde = pmap_load(pde); KASSERT((tpde & ATTR_DESCR_MASK) == L2_TABLE, ("pmap_ts_referenced: found an invalid l2 table")); pte = pmap_l2_to_l3(pde, pv->pv_va); tpte = pmap_load(pte); if (pmap_page_dirty(tpte)) vm_page_dirty(m); if ((tpte & ATTR_AF) != 0) { if (safe_to_clear_referenced(pmap, tpte)) { /* * TODO: We don't handle the access flag * at all. We need to be able to set it in * the exception handler. */ panic("ARM64TODO: safe_to_clear_referenced\n"); } else if ((tpte & ATTR_SW_WIRED) == 0) { /* * Wired pages cannot be paged out so * doing accessed bit emulation for * them is wasted effort. We do the * hard work for unwired pages only. */ pmap_remove_l3(pmap, pte, pv->pv_va, tpde, &free, &lock); pmap_invalidate_page(pmap, pv->pv_va); cleared++; if (pvf == pv) pvf = NULL; pv = NULL; KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m), ("inconsistent pv lock %p %p for page %p", lock, VM_PAGE_TO_PV_LIST_LOCK(m), m)); } else not_cleared++; } PMAP_UNLOCK(pmap); /* Rotate the PV list if it has more than one entry. */ if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) { TAILQ_REMOVE(&m->md.pv_list, pv, pv_next); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next); m->md.pv_gen++; } } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared + not_cleared < PMAP_TS_REFERENCED_MAX); out: rw_wunlock(lock); vm_page_free_pages_toq(&free, false); return (cleared + not_cleared); } /* * Apply the given advice to the specified range of addresses within the * given pmap. Depending on the advice, clear the referenced and/or * modified flags in each mapping and set the mapped page's dirty field. */ void pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice) { } /* * Clear the modify bits on the specified physical page. */ void pmap_clear_modify(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_clear_modify: page %p is not managed", m)); VM_OBJECT_ASSERT_WLOCKED(m->object); KASSERT(!vm_page_xbusied(m), ("pmap_clear_modify: page %p is exclusive busied", m)); /* * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set. * If the object containing the page is locked and the page is not * exclusive busied, then PGA_WRITEABLE cannot be concurrently set. */ if ((m->aflags & PGA_WRITEABLE) == 0) return; /* ARM64TODO: We lack support for tracking if a page is modified */ } void * pmap_mapbios(vm_paddr_t pa, vm_size_t size) { return ((void *)PHYS_TO_DMAP(pa)); } void pmap_unmapbios(vm_paddr_t pa, vm_size_t size) { } /* * Sets the memory attribute for the specified page. */ void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma) { m->md.pv_memattr = ma; /* * If "m" is a normal page, update its direct mapping. This update * can be relied upon to perform any cache operations that are * required for data coherence. */ if ((m->flags & PG_FICTITIOUS) == 0 && pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE, m->md.pv_memattr) != 0) panic("memory attribute change on the direct map failed"); } /* * Changes the specified virtual address range's memory type to that given by * the parameter "mode". The specified virtual address range must be * completely contained within either the direct map or the kernel map. If * the virtual address range is contained within the kernel map, then the * memory type for each of the corresponding ranges of the direct map is also * changed. (The corresponding ranges of the direct map are those ranges that * map the same physical pages as the specified virtual address range.) These * changes to the direct map are necessary because Intel describes the * behavior of their processors as "undefined" if two or more mappings to the * same physical page have different memory types. * * Returns zero if the change completed successfully, and either EINVAL or * ENOMEM if the change failed. Specifically, EINVAL is returned if some part * of the virtual address range was not mapped, and ENOMEM is returned if * there was insufficient memory available to complete the change. In the * latter case, the memory type may have been changed on some part of the * virtual address range or the direct map. */ static int pmap_change_attr(vm_offset_t va, vm_size_t size, int mode) { int error; PMAP_LOCK(kernel_pmap); error = pmap_change_attr_locked(va, size, mode); PMAP_UNLOCK(kernel_pmap); return (error); } static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode) { vm_offset_t base, offset, tmpva; pt_entry_t l3, *pte, *newpte; int lvl; PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED); base = trunc_page(va); offset = va & PAGE_MASK; size = round_page(offset + size); if (!VIRT_IN_DMAP(base)) return (EINVAL); for (tmpva = base; tmpva < base + size; ) { pte = pmap_pte(kernel_pmap, va, &lvl); if (pte == NULL) return (EINVAL); if ((pmap_load(pte) & ATTR_IDX_MASK) == ATTR_IDX(mode)) { /* * We already have the correct attribute, * ignore this entry. */ switch (lvl) { default: panic("Invalid DMAP table level: %d\n", lvl); case 1: tmpva = (tmpva & ~L1_OFFSET) + L1_SIZE; break; case 2: tmpva = (tmpva & ~L2_OFFSET) + L2_SIZE; break; case 3: tmpva += PAGE_SIZE; break; } } else { /* * Split the entry to an level 3 table, then * set the new attribute. */ switch (lvl) { default: panic("Invalid DMAP table level: %d\n", lvl); case 1: newpte = pmap_demote_l1(kernel_pmap, pte, tmpva & ~L1_OFFSET); if (newpte == NULL) return (EINVAL); pte = pmap_l1_to_l2(pte, tmpva); case 2: newpte = pmap_demote_l2(kernel_pmap, pte, tmpva & ~L2_OFFSET); if (newpte == NULL) return (EINVAL); pte = pmap_l2_to_l3(pte, tmpva); case 3: /* Update the entry */ l3 = pmap_load(pte); l3 &= ~ATTR_IDX_MASK; l3 |= ATTR_IDX(mode); if (mode == DEVICE_MEMORY) l3 |= ATTR_XN; pmap_update_entry(kernel_pmap, pte, l3, tmpva, PAGE_SIZE); /* * If moving to a non-cacheable entry flush * the cache. */ if (mode == VM_MEMATTR_UNCACHEABLE) cpu_dcache_wbinv_range(tmpva, L3_SIZE); break; } tmpva += PAGE_SIZE; } } return (0); } /* * Create an L2 table to map all addresses within an L1 mapping. */ static pt_entry_t * pmap_demote_l1(pmap_t pmap, pt_entry_t *l1, vm_offset_t va) { pt_entry_t *l2, newl2, oldl1; vm_offset_t tmpl1; vm_paddr_t l2phys, phys; vm_page_t ml2; int i; PMAP_LOCK_ASSERT(pmap, MA_OWNED); oldl1 = pmap_load(l1); KASSERT((oldl1 & ATTR_DESCR_MASK) == L1_BLOCK, ("pmap_demote_l1: Demoting a non-block entry")); KASSERT((va & L1_OFFSET) == 0, ("pmap_demote_l1: Invalid virtual address %#lx", va)); KASSERT((oldl1 & ATTR_SW_MANAGED) == 0, ("pmap_demote_l1: Level 1 table shouldn't be managed")); tmpl1 = 0; if (va <= (vm_offset_t)l1 && va + L1_SIZE > (vm_offset_t)l1) { tmpl1 = kva_alloc(PAGE_SIZE); if (tmpl1 == 0) return (NULL); } if ((ml2 = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) { CTR2(KTR_PMAP, "pmap_demote_l1: failure for va %#lx" " in pmap %p", va, pmap); return (NULL); } l2phys = VM_PAGE_TO_PHYS(ml2); l2 = (pt_entry_t *)PHYS_TO_DMAP(l2phys); /* Address the range points at */ phys = oldl1 & ~ATTR_MASK; /* The attributed from the old l1 table to be copied */ newl2 = oldl1 & ATTR_MASK; /* Create the new entries */ for (i = 0; i < Ln_ENTRIES; i++) { l2[i] = newl2 | phys; phys += L2_SIZE; } KASSERT(l2[0] == ((oldl1 & ~ATTR_DESCR_MASK) | L2_BLOCK), ("Invalid l2 page (%lx != %lx)", l2[0], (oldl1 & ~ATTR_DESCR_MASK) | L2_BLOCK)); if (tmpl1 != 0) { pmap_kenter(tmpl1, PAGE_SIZE, DMAP_TO_PHYS((vm_offset_t)l1) & ~L3_OFFSET, CACHED_MEMORY); l1 = (pt_entry_t *)(tmpl1 + ((vm_offset_t)l1 & PAGE_MASK)); } pmap_update_entry(pmap, l1, l2phys | L1_TABLE, va, PAGE_SIZE); if (tmpl1 != 0) { pmap_kremove(tmpl1); kva_free(tmpl1, PAGE_SIZE); } return (l2); } /* * Create an L3 table to map all addresses within an L2 mapping. */ static pt_entry_t * pmap_demote_l2_locked(pmap_t pmap, pt_entry_t *l2, vm_offset_t va, struct rwlock **lockp) { pt_entry_t *l3, newl3, oldl2; vm_offset_t tmpl2; vm_paddr_t l3phys, phys; vm_page_t ml3; int i; PMAP_LOCK_ASSERT(pmap, MA_OWNED); l3 = NULL; oldl2 = pmap_load(l2); KASSERT((oldl2 & ATTR_DESCR_MASK) == L2_BLOCK, ("pmap_demote_l2: Demoting a non-block entry")); KASSERT((va & L2_OFFSET) == 0, ("pmap_demote_l2: Invalid virtual address %#lx", va)); tmpl2 = 0; if (va <= (vm_offset_t)l2 && va + L2_SIZE > (vm_offset_t)l2) { tmpl2 = kva_alloc(PAGE_SIZE); if (tmpl2 == 0) return (NULL); } if ((ml3 = pmap_remove_pt_page(pmap, va)) == NULL) { ml3 = vm_page_alloc(NULL, pmap_l2_pindex(va), (VIRT_IN_DMAP(va) ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED); if (ml3 == NULL) { CTR2(KTR_PMAP, "pmap_demote_l2: failure for va %#lx" " in pmap %p", va, pmap); goto fail; } if (va < VM_MAXUSER_ADDRESS) pmap_resident_count_inc(pmap, 1); } l3phys = VM_PAGE_TO_PHYS(ml3); l3 = (pt_entry_t *)PHYS_TO_DMAP(l3phys); /* Address the range points at */ phys = oldl2 & ~ATTR_MASK; /* The attributed from the old l2 table to be copied */ newl3 = (oldl2 & (ATTR_MASK & ~ATTR_DESCR_MASK)) | L3_PAGE; /* * If the page table page is new, initialize it. */ if (ml3->wire_count == 1) { for (i = 0; i < Ln_ENTRIES; i++) { l3[i] = newl3 | phys; phys += L3_SIZE; } } KASSERT(l3[0] == ((oldl2 & ~ATTR_DESCR_MASK) | L3_PAGE), ("Invalid l3 page (%lx != %lx)", l3[0], (oldl2 & ~ATTR_DESCR_MASK) | L3_PAGE)); /* * Map the temporary page so we don't lose access to the l2 table. */ if (tmpl2 != 0) { pmap_kenter(tmpl2, PAGE_SIZE, DMAP_TO_PHYS((vm_offset_t)l2) & ~L3_OFFSET, CACHED_MEMORY); l2 = (pt_entry_t *)(tmpl2 + ((vm_offset_t)l2 & PAGE_MASK)); } /* * The spare PV entries must be reserved prior to demoting the * mapping, that is, prior to changing the PDE. Otherwise, the state * of the L2 and the PV lists will be inconsistent, which can result * in reclaim_pv_chunk() attempting to remove a PV entry from the * wrong PV list and pmap_pv_demote_l2() failing to find the expected * PV entry for the 2MB page mapping that is being demoted. */ if ((oldl2 & ATTR_SW_MANAGED) != 0) reserve_pv_entries(pmap, Ln_ENTRIES - 1, lockp); pmap_update_entry(pmap, l2, l3phys | L2_TABLE, va, PAGE_SIZE); /* * Demote the PV entry. */ if ((oldl2 & ATTR_SW_MANAGED) != 0) pmap_pv_demote_l2(pmap, va, oldl2 & ~ATTR_MASK, lockp); atomic_add_long(&pmap_l2_demotions, 1); CTR3(KTR_PMAP, "pmap_demote_l2: success for va %#lx" " in pmap %p %lx", va, pmap, l3[0]); fail: if (tmpl2 != 0) { pmap_kremove(tmpl2); kva_free(tmpl2, PAGE_SIZE); } return (l3); } static pt_entry_t * pmap_demote_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va) { struct rwlock *lock; pt_entry_t *l3; lock = NULL; l3 = pmap_demote_l2_locked(pmap, l2, va, &lock); if (lock != NULL) rw_wunlock(lock); return (l3); } /* * perform the pmap work for mincore */ int pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa) { pd_entry_t *l1p, l1; pd_entry_t *l2p, l2; pt_entry_t *l3p, l3; vm_paddr_t pa; bool managed; int val; PMAP_LOCK(pmap); retry: pa = 0; val = 0; managed = false; l1p = pmap_l1(pmap, addr); if (l1p == NULL) /* No l1 */ goto done; l1 = pmap_load(l1p); if ((l1 & ATTR_DESCR_MASK) == L1_INVAL) goto done; if ((l1 & ATTR_DESCR_MASK) == L1_BLOCK) { pa = (l1 & ~ATTR_MASK) | (addr & L1_OFFSET); managed = (l1 & ATTR_SW_MANAGED) == ATTR_SW_MANAGED; val = MINCORE_SUPER | MINCORE_INCORE; if (pmap_page_dirty(l1)) val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER; if ((l1 & ATTR_AF) == ATTR_AF) val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER; goto done; } l2p = pmap_l1_to_l2(l1p, addr); if (l2p == NULL) /* No l2 */ goto done; l2 = pmap_load(l2p); if ((l2 & ATTR_DESCR_MASK) == L2_INVAL) goto done; if ((l2 & ATTR_DESCR_MASK) == L2_BLOCK) { pa = (l2 & ~ATTR_MASK) | (addr & L2_OFFSET); managed = (l2 & ATTR_SW_MANAGED) == ATTR_SW_MANAGED; val = MINCORE_SUPER | MINCORE_INCORE; if (pmap_page_dirty(l2)) val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER; if ((l2 & ATTR_AF) == ATTR_AF) val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER; goto done; } l3p = pmap_l2_to_l3(l2p, addr); if (l3p == NULL) /* No l3 */ goto done; l3 = pmap_load(l2p); if ((l3 & ATTR_DESCR_MASK) == L3_INVAL) goto done; if ((l3 & ATTR_DESCR_MASK) == L3_PAGE) { pa = (l3 & ~ATTR_MASK) | (addr & L3_OFFSET); managed = (l3 & ATTR_SW_MANAGED) == ATTR_SW_MANAGED; val = MINCORE_INCORE; if (pmap_page_dirty(l3)) val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER; if ((l3 & ATTR_AF) == ATTR_AF) val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER; } done: if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) != (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) { /* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */ if (vm_page_pa_tryrelock(pmap, pa, locked_pa)) goto retry; } else PA_UNLOCK_COND(*locked_pa); PMAP_UNLOCK(pmap); return (val); } void pmap_activate(struct thread *td) { pmap_t pmap; critical_enter(); pmap = vmspace_pmap(td->td_proc->p_vmspace); td->td_proc->p_md.md_l0addr = vtophys(pmap->pm_l0); __asm __volatile("msr ttbr0_el1, %0" : : "r"(td->td_proc->p_md.md_l0addr)); pmap_invalidate_all(pmap); critical_exit(); } struct pcb * pmap_switch(struct thread *old, struct thread *new) { pcpu_bp_harden bp_harden; struct pcb *pcb; /* Store the new curthread */ PCPU_SET(curthread, new); /* And the new pcb */ pcb = new->td_pcb; PCPU_SET(curpcb, pcb); /* * TODO: We may need to flush the cache here if switching * to a user process. */ if (old == NULL || old->td_proc->p_md.md_l0addr != new->td_proc->p_md.md_l0addr) { __asm __volatile( /* Switch to the new pmap */ "msr ttbr0_el1, %0 \n" "isb \n" /* Invalidate the TLB */ "dsb ishst \n" "tlbi vmalle1is \n" "dsb ish \n" "isb \n" : : "r"(new->td_proc->p_md.md_l0addr)); /* * Stop userspace from training the branch predictor against * other processes. This will call into a CPU specific * function that clears the branch predictor state. */ bp_harden = PCPU_GET(bp_harden); if (bp_harden != NULL) bp_harden(); } return (pcb); } void pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t sz) { if (va >= VM_MIN_KERNEL_ADDRESS) { cpu_icache_sync_range(va, sz); } else { u_int len, offset; vm_paddr_t pa; /* Find the length of data in this page to flush */ offset = va & PAGE_MASK; len = imin(PAGE_SIZE - offset, sz); while (sz != 0) { /* Extract the physical address & find it in the DMAP */ pa = pmap_extract(pmap, va); if (pa != 0) cpu_icache_sync_range(PHYS_TO_DMAP(pa), len); /* Move to the next page */ sz -= len; va += len; /* Set the length for the next iteration */ len = imin(PAGE_SIZE, sz); } } } int pmap_fault(pmap_t pmap, uint64_t esr, uint64_t far) { #ifdef SMP register_t intr; uint64_t par; switch (ESR_ELx_EXCEPTION(esr)) { case EXCP_INSN_ABORT_L: case EXCP_INSN_ABORT: case EXCP_DATA_ABORT_L: case EXCP_DATA_ABORT: break; default: return (KERN_FAILURE); } /* Data and insn aborts use same encoding for FCS field. */ PMAP_LOCK(pmap); switch (esr & ISS_DATA_DFSC_MASK) { case ISS_DATA_DFSC_TF_L0: case ISS_DATA_DFSC_TF_L1: case ISS_DATA_DFSC_TF_L2: case ISS_DATA_DFSC_TF_L3: /* Ask the MMU to check the address */ intr = intr_disable(); if (pmap == kernel_pmap) par = arm64_address_translate_s1e1r(far); else par = arm64_address_translate_s1e0r(far); intr_restore(intr); /* * If the translation was successful the address was invalid * due to a break-before-make sequence. We can unlock and * return success to the trap handler. */ if (PAR_SUCCESS(par)) { PMAP_UNLOCK(pmap); return (KERN_SUCCESS); } break; default: break; } PMAP_UNLOCK(pmap); #endif return (KERN_FAILURE); } /* * Increase the starting virtual address of the given mapping if a * different alignment might result in more superpage mappings. */ void pmap_align_superpage(vm_object_t object, vm_ooffset_t offset, vm_offset_t *addr, vm_size_t size) { vm_offset_t superpage_offset; if (size < L2_SIZE) return; if (object != NULL && (object->flags & OBJ_COLORED) != 0) offset += ptoa(object->pg_color); superpage_offset = offset & L2_OFFSET; if (size - ((L2_SIZE - superpage_offset) & L2_OFFSET) < L2_SIZE || (*addr & L2_OFFSET) == superpage_offset) return; if ((*addr & L2_OFFSET) < superpage_offset) *addr = (*addr & ~L2_OFFSET) + superpage_offset; else *addr = ((*addr + L2_OFFSET) & ~L2_OFFSET) + superpage_offset; } /** * Get the kernel virtual address of a set of physical pages. If there are * physical addresses not covered by the DMAP perform a transient mapping * that will be removed when calling pmap_unmap_io_transient. * * \param page The pages the caller wishes to obtain the virtual * address on the kernel memory map. * \param vaddr On return contains the kernel virtual memory address * of the pages passed in the page parameter. * \param count Number of pages passed in. * \param can_fault TRUE if the thread using the mapped pages can take * page faults, FALSE otherwise. * * \returns TRUE if the caller must call pmap_unmap_io_transient when * finished or FALSE otherwise. * */ boolean_t pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count, boolean_t can_fault) { vm_paddr_t paddr; boolean_t needs_mapping; int error, i; /* * Allocate any KVA space that we need, this is done in a separate * loop to prevent calling vmem_alloc while pinned. */ needs_mapping = FALSE; for (i = 0; i < count; i++) { paddr = VM_PAGE_TO_PHYS(page[i]); if (__predict_false(!PHYS_IN_DMAP(paddr))) { error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK, &vaddr[i]); KASSERT(error == 0, ("vmem_alloc failed: %d", error)); needs_mapping = TRUE; } else { vaddr[i] = PHYS_TO_DMAP(paddr); } } /* Exit early if everything is covered by the DMAP */ if (!needs_mapping) return (FALSE); if (!can_fault) sched_pin(); for (i = 0; i < count; i++) { paddr = VM_PAGE_TO_PHYS(page[i]); if (!PHYS_IN_DMAP(paddr)) { panic( "pmap_map_io_transient: TODO: Map out of DMAP data"); } } return (needs_mapping); } void pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count, boolean_t can_fault) { vm_paddr_t paddr; int i; if (!can_fault) sched_unpin(); for (i = 0; i < count; i++) { paddr = VM_PAGE_TO_PHYS(page[i]); if (!PHYS_IN_DMAP(paddr)) { panic("ARM64TODO: pmap_unmap_io_transient: Unmap data"); } } }