Index: stable/10/sys/amd64/amd64/trap.c =================================================================== --- stable/10/sys/amd64/amd64/trap.c (revision 333204) +++ stable/10/sys/amd64/amd64/trap.c (revision 333205) @@ -1,992 +1,999 @@ /*- * Copyright (C) 1994, David Greenman * Copyright (c) 1990, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * the University of Utah, and William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)trap.c 7.4 (Berkeley) 5/13/91 */ #include __FBSDID("$FreeBSD$"); /* * AMD64 Trap and System call handling */ #include "opt_clock.h" #include "opt_cpu.h" #include "opt_hwpmc_hooks.h" #include "opt_isa.h" #include "opt_kdb.h" #include "opt_kdtrace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HWPMC_HOOKS #include PMC_SOFT_DEFINE( , , page_fault, all); PMC_SOFT_DEFINE( , , page_fault, read); PMC_SOFT_DEFINE( , , page_fault, write); #endif #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SMP #include #endif #include #ifdef KDTRACE_HOOKS #include #endif extern void trap(struct trapframe *frame); extern void syscall(struct trapframe *frame); void dblfault_handler(struct trapframe *frame); static int trap_pfault(struct trapframe *, int); static void trap_fatal(struct trapframe *, vm_offset_t); #define MAX_TRAP_MSG 32 static char *trap_msg[] = { "", /* 0 unused */ "privileged instruction fault", /* 1 T_PRIVINFLT */ "", /* 2 unused */ "breakpoint instruction fault", /* 3 T_BPTFLT */ "", /* 4 unused */ "", /* 5 unused */ "arithmetic trap", /* 6 T_ARITHTRAP */ "", /* 7 unused */ "", /* 8 unused */ "general protection fault", /* 9 T_PROTFLT */ "trace trap", /* 10 T_TRCTRAP */ "", /* 11 unused */ "page fault", /* 12 T_PAGEFLT */ "", /* 13 unused */ "alignment fault", /* 14 T_ALIGNFLT */ "", /* 15 unused */ "", /* 16 unused */ "", /* 17 unused */ "integer divide fault", /* 18 T_DIVIDE */ "non-maskable interrupt trap", /* 19 T_NMI */ "overflow trap", /* 20 T_OFLOW */ "FPU bounds check fault", /* 21 T_BOUND */ "FPU device not available", /* 22 T_DNA */ "double fault", /* 23 T_DOUBLEFLT */ "FPU operand fetch fault", /* 24 T_FPOPFLT */ "invalid TSS fault", /* 25 T_TSSFLT */ "segment not present fault", /* 26 T_SEGNPFLT */ "stack fault", /* 27 T_STKFLT */ "machine check trap", /* 28 T_MCHK */ "SIMD floating-point exception", /* 29 T_XMMFLT */ "reserved (unknown) fault", /* 30 T_RESERVED */ "", /* 31 unused (reserved) */ "DTrace pid return trap", /* 32 T_DTRACE_RET */ }; #ifdef KDB static int kdb_on_nmi = 1; SYSCTL_INT(_machdep, OID_AUTO, kdb_on_nmi, CTLFLAG_RW, &kdb_on_nmi, 0, "Go to KDB on NMI"); TUNABLE_INT("machdep.kdb_on_nmi", &kdb_on_nmi); #endif static int panic_on_nmi = 1; SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW, &panic_on_nmi, 0, "Panic on NMI"); TUNABLE_INT("machdep.panic_on_nmi", &panic_on_nmi); static int prot_fault_translation; SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RW, &prot_fault_translation, 0, "Select signal to deliver on protection fault"); static int uprintf_signal; SYSCTL_INT(_machdep, OID_AUTO, uprintf_signal, CTLFLAG_RW, &uprintf_signal, 0, "Print debugging information on trap signal to ctty"); /* * Exception, fault, and trap interface to the FreeBSD kernel. * This common code is called from assembly language IDT gate entry * routines that prepare a suitable stack frame, and restore this * frame after the exception has been processed. */ void trap(struct trapframe *frame) { #ifdef KDTRACE_HOOKS struct reg regs; #endif struct thread *td = curthread; struct proc *p = td->td_proc; int i = 0, ucode = 0, code; u_int type; register_t addr = 0; ksiginfo_t ksi; PCPU_INC(cnt.v_trap); type = frame->tf_trapno; #ifdef SMP /* Handler for NMI IPIs used for stopping CPUs. */ if (type == T_NMI) { if (ipi_nmi_handler() == 0) goto out; } #endif /* SMP */ #ifdef KDB if (kdb_active) { kdb_reenter(); goto out; } #endif if (type == T_RESERVED) { trap_fatal(frame, 0); goto out; } #ifdef HWPMC_HOOKS /* * CPU PMCs interrupt using an NMI. If the PMC module is * active, pass the 'rip' value to the PMC module's interrupt * handler. A return value of '1' from the handler means that * the NMI was handled by it and we can return immediately. */ if (type == T_NMI && pmc_intr && (*pmc_intr)(PCPU_GET(cpuid), frame)) goto out; #endif if (type == T_MCHK) { mca_intr(); goto out; } #ifdef KDTRACE_HOOKS /* * A trap can occur while DTrace executes a probe. Before * executing the probe, DTrace blocks re-scheduling and sets * a flag in its per-cpu flags to indicate that it doesn't * want to fault. On returning from the probe, the no-fault * flag is cleared and finally re-scheduling is enabled. */ if (dtrace_trap_func != NULL && (*dtrace_trap_func)(frame, type)) goto out; #endif if ((frame->tf_rflags & PSL_I) == 0) { /* * Buggy application or kernel code has disabled * interrupts and then trapped. Enabling interrupts * now is wrong, but it is better than running with * interrupts disabled until they are accidentally * enabled later. */ if (ISPL(frame->tf_cs) == SEL_UPL) uprintf( "pid %ld (%s): trap %d with interrupts disabled\n", (long)curproc->p_pid, curthread->td_name, type); else if (type != T_NMI && type != T_BPTFLT && type != T_TRCTRAP) { /* * XXX not quite right, since this may be for a * multiple fault in user mode. */ printf("kernel trap %d with interrupts disabled\n", type); /* * We shouldn't enable interrupts while holding a * spin lock. */ if (td->td_md.md_spinlock_count == 0) enable_intr(); } } code = frame->tf_err; if (ISPL(frame->tf_cs) == SEL_UPL) { /* user trap */ td->td_pticks = 0; td->td_frame = frame; addr = frame->tf_rip; if (td->td_ucred != p->p_ucred) cred_update_thread(td); switch (type) { case T_PRIVINFLT: /* privileged instruction fault */ i = SIGILL; ucode = ILL_PRVOPC; break; case T_BPTFLT: /* bpt instruction fault */ case T_TRCTRAP: /* trace trap */ enable_intr(); #ifdef KDTRACE_HOOKS if (type == T_BPTFLT) { fill_frame_regs(frame, ®s); if (dtrace_pid_probe_ptr != NULL && dtrace_pid_probe_ptr(®s) == 0) goto out; } #endif frame->tf_rflags &= ~PSL_T; i = SIGTRAP; ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT); break; case T_ARITHTRAP: /* arithmetic trap */ ucode = fputrap_x87(); if (ucode == -1) goto userout; i = SIGFPE; break; case T_PROTFLT: /* general protection fault */ i = SIGBUS; ucode = BUS_OBJERR; break; case T_STKFLT: /* stack fault */ case T_SEGNPFLT: /* segment not present fault */ i = SIGBUS; ucode = BUS_ADRERR; break; case T_TSSFLT: /* invalid TSS fault */ i = SIGBUS; ucode = BUS_OBJERR; break; case T_ALIGNFLT: i = SIGBUS; ucode = BUS_ADRALN; break; case T_DOUBLEFLT: /* double fault */ default: i = SIGBUS; ucode = BUS_OBJERR; break; case T_PAGEFLT: /* page fault */ /* * Emulator can take care about this trap? */ if (*p->p_sysent->sv_trap != NULL && (*p->p_sysent->sv_trap)(td) == 0) goto userout; addr = frame->tf_addr; i = trap_pfault(frame, TRUE); if (i == -1) goto userout; if (i == 0) goto user; if (i == SIGSEGV) ucode = SEGV_MAPERR; else { if (prot_fault_translation == 0) { /* * Autodetect. * This check also covers the images * without the ABI-tag ELF note. */ if (SV_CURPROC_ABI() == SV_ABI_FREEBSD && p->p_osrel >= P_OSREL_SIGSEGV) { i = SIGSEGV; ucode = SEGV_ACCERR; } else { i = SIGBUS; ucode = BUS_PAGE_FAULT; } } else if (prot_fault_translation == 1) { /* * Always compat mode. */ i = SIGBUS; ucode = BUS_PAGE_FAULT; } else { /* * Always SIGSEGV mode. */ i = SIGSEGV; ucode = SEGV_ACCERR; } } break; case T_DIVIDE: /* integer divide fault */ ucode = FPE_INTDIV; i = SIGFPE; break; #ifdef DEV_ISA case T_NMI: /* machine/parity/power fail/"kitchen sink" faults */ if (isa_nmi(code) == 0) { #ifdef KDB /* * NMI can be hooked up to a pushbutton * for debugging. */ if (kdb_on_nmi) { printf ("NMI ... going to debugger\n"); kdb_trap(type, 0, frame); } #endif /* KDB */ goto userout; } else if (panic_on_nmi) panic("NMI indicates hardware failure"); goto out; #endif /* DEV_ISA */ case T_OFLOW: /* integer overflow fault */ ucode = FPE_INTOVF; i = SIGFPE; break; case T_BOUND: /* bounds check fault */ ucode = FPE_FLTSUB; i = SIGFPE; break; case T_DNA: /* transparent fault (due to context switch "late") */ KASSERT(PCB_USER_FPU(td->td_pcb), ("kernel FPU ctx has leaked")); fpudna(); goto userout; case T_FPOPFLT: /* FPU operand fetch fault */ ucode = ILL_COPROC; i = SIGILL; break; case T_XMMFLT: /* SIMD floating-point exception */ ucode = fputrap_sse(); if (ucode == -1) goto userout; i = SIGFPE; break; #ifdef KDTRACE_HOOKS case T_DTRACE_RET: enable_intr(); fill_frame_regs(frame, ®s); if (dtrace_return_probe_ptr != NULL && dtrace_return_probe_ptr(®s) == 0) goto out; goto userout; #endif } } else { /* kernel trap */ KASSERT(cold || td->td_ucred != NULL, ("kernel trap doesn't have ucred")); switch (type) { case T_PAGEFLT: /* page fault */ (void) trap_pfault(frame, FALSE); goto out; case T_DNA: if (PCB_USER_FPU(td->td_pcb)) panic("Unregistered use of FPU in kernel"); fpudna(); goto out; case T_ARITHTRAP: /* arithmetic trap */ case T_XMMFLT: /* SIMD floating-point exception */ case T_FPOPFLT: /* FPU operand fetch fault */ /* * For now, supporting kernel handler * registration for FPU traps is overkill. */ trap_fatal(frame, 0); goto out; case T_STKFLT: /* stack fault */ case T_PROTFLT: /* general protection fault */ case T_SEGNPFLT: /* segment not present fault */ if (td->td_intr_nesting_level != 0) break; /* * Invalid segment selectors and out of bounds * %rip's and %rsp's can be set up in user mode. * This causes a fault in kernel mode when the * kernel tries to return to user mode. We want * to get this fault so that we can fix the * problem here and not have to check all the * selectors and pointers when the user changes * them. */ if (frame->tf_rip == (long)doreti_iret) { frame->tf_rip = (long)doreti_iret_fault; goto out; } if (frame->tf_rip == (long)ld_ds) { frame->tf_rip = (long)ds_load_fault; goto out; } if (frame->tf_rip == (long)ld_es) { frame->tf_rip = (long)es_load_fault; goto out; } if (frame->tf_rip == (long)ld_fs) { frame->tf_rip = (long)fs_load_fault; goto out; } if (frame->tf_rip == (long)ld_gs) { frame->tf_rip = (long)gs_load_fault; goto out; } if (frame->tf_rip == (long)ld_gsbase) { frame->tf_rip = (long)gsbase_load_fault; goto out; } if (frame->tf_rip == (long)ld_fsbase) { frame->tf_rip = (long)fsbase_load_fault; goto out; } if (curpcb->pcb_onfault != NULL) { frame->tf_rip = (long)curpcb->pcb_onfault; goto out; } break; case T_TSSFLT: /* * PSL_NT can be set in user mode and isn't cleared * automatically when the kernel is entered. This * causes a TSS fault when the kernel attempts to * `iret' because the TSS link is uninitialized. We * want to get this fault so that we can fix the * problem here and not every time the kernel is * entered. */ if (frame->tf_rflags & PSL_NT) { frame->tf_rflags &= ~PSL_NT; goto out; } break; case T_TRCTRAP: /* trace trap */ /* * Ignore debug register trace traps due to * accesses in the user's address space, which * can happen under several conditions such as * if a user sets a watchpoint on a buffer and * then passes that buffer to a system call. * We still want to get TRCTRAPS for addresses * in kernel space because that is useful when * debugging the kernel. */ if (user_dbreg_trap()) { /* * Reset breakpoint bits because the * processor doesn't */ /* XXX check upper bits here */ load_dr6(rdr6() & 0xfffffff0); goto out; } /* * FALLTHROUGH (TRCTRAP kernel mode, kernel address) */ case T_BPTFLT: /* * If KDB is enabled, let it handle the debugger trap. * Otherwise, debugger traps "can't happen". */ #ifdef KDB if (kdb_trap(type, 0, frame)) goto out; #endif break; #ifdef DEV_ISA case T_NMI: /* machine/parity/power fail/"kitchen sink" faults */ if (isa_nmi(code) == 0) { #ifdef KDB /* * NMI can be hooked up to a pushbutton * for debugging. */ if (kdb_on_nmi) { printf ("NMI ... going to debugger\n"); kdb_trap(type, 0, frame); } #endif /* KDB */ goto out; } else if (panic_on_nmi == 0) goto out; /* FALLTHROUGH */ #endif /* DEV_ISA */ } trap_fatal(frame, 0); goto out; } /* Translate fault for emulators (e.g. Linux) */ if (*p->p_sysent->sv_transtrap) i = (*p->p_sysent->sv_transtrap)(i, type); ksiginfo_init_trap(&ksi); ksi.ksi_signo = i; ksi.ksi_code = ucode; ksi.ksi_trapno = type; ksi.ksi_addr = (void *)addr; if (uprintf_signal) { uprintf("pid %d comm %s: signal %d err %lx code %d type %d " "addr 0x%lx rsp 0x%lx rip 0x%lx " "<%02x %02x %02x %02x %02x %02x %02x %02x>\n", p->p_pid, p->p_comm, i, frame->tf_err, ucode, type, addr, frame->tf_rsp, frame->tf_rip, fubyte((void *)(frame->tf_rip + 0)), fubyte((void *)(frame->tf_rip + 1)), fubyte((void *)(frame->tf_rip + 2)), fubyte((void *)(frame->tf_rip + 3)), fubyte((void *)(frame->tf_rip + 4)), fubyte((void *)(frame->tf_rip + 5)), fubyte((void *)(frame->tf_rip + 6)), fubyte((void *)(frame->tf_rip + 7))); } KASSERT((read_rflags() & PSL_I) != 0, ("interrupts disabled")); trapsignal(td, &ksi); user: userret(td, frame); KASSERT(PCB_USER_FPU(td->td_pcb), ("Return from trap with kernel FPU ctx leaked")); userout: out: return; } static int trap_pfault(frame, usermode) struct trapframe *frame; int usermode; { vm_offset_t va; struct vmspace *vm; vm_map_t map; int rv = 0; vm_prot_t ftype; struct thread *td = curthread; struct proc *p = td->td_proc; vm_offset_t eva = frame->tf_addr; if (__predict_false((td->td_pflags & TDP_NOFAULTING) != 0)) { /* * Due to both processor errata and lazy TLB invalidation when * access restrictions are removed from virtual pages, memory * accesses that are allowed by the physical mapping layer may * nonetheless cause one spurious page fault per virtual page. * When the thread is executing a "no faulting" section that * is bracketed by vm_fault_{disable,enable}_pagefaults(), * every page fault is treated as a spurious page fault, * unless it accesses the same virtual address as the most * recent page fault within the same "no faulting" section. */ if (td->td_md.md_spurflt_addr != eva || (td->td_pflags & TDP_RESETSPUR) != 0) { /* * Do nothing to the TLB. A stale TLB entry is * flushed automatically by a page fault. */ td->td_md.md_spurflt_addr = eva; td->td_pflags &= ~TDP_RESETSPUR; return (0); } } else { /* * If we get a page fault while in a critical section, then * it is most likely a fatal kernel page fault. The kernel * is already going to panic trying to get a sleep lock to * do the VM lookup, so just consider it a fatal trap so the * kernel can print out a useful trap message and even get * to the debugger. * * If we get a page fault while holding a non-sleepable * lock, then it is most likely a fatal kernel page fault. * If WITNESS is enabled, then it's going to whine about * bogus LORs with various VM locks, so just skip to the * fatal trap handling directly. */ if (td->td_critnest != 0 || WITNESS_CHECK(WARN_SLEEPOK | WARN_GIANTOK, NULL, "Kernel page fault") != 0) { trap_fatal(frame, eva); return (-1); } } va = trunc_page(eva); if (va >= VM_MIN_KERNEL_ADDRESS) { /* * Don't allow user-mode faults in kernel address space. */ if (usermode) goto nogo; map = kernel_map; } else { /* * This is a fault on non-kernel virtual memory. If either * p or p->p_vmspace is NULL, then the fault is fatal. */ if (p == NULL || (vm = p->p_vmspace) == NULL) goto nogo; map = &vm->vm_map; /* * When accessing a usermode address, kernel must be * ready to accept the page fault, and provide a * handling routine. Since accessing the address * without the handler is a bug, do not try to handle * it normally, and panic immediately. */ if (!usermode && (td->td_intr_nesting_level != 0 || curpcb->pcb_onfault == NULL)) { trap_fatal(frame, eva); return (-1); } } /* * If the trap was caused by errant bits in the PTE then panic. */ if (frame->tf_err & PGEX_RSV) { trap_fatal(frame, eva); return (-1); } /* * PGEX_I is defined only if the execute disable bit capability is * supported and enabled. */ if (frame->tf_err & PGEX_W) ftype = VM_PROT_WRITE; else if ((frame->tf_err & PGEX_I) && pg_nx != 0) ftype = VM_PROT_EXECUTE; else ftype = VM_PROT_READ; if (map != kernel_map) { /* * Keep swapout from messing with us during this * critical time. */ PROC_LOCK(p); ++p->p_lock; PROC_UNLOCK(p); /* Fault in the user page: */ rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL); PROC_LOCK(p); --p->p_lock; PROC_UNLOCK(p); } else { /* * Don't have to worry about process locking or stacks in the * kernel. */ rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL); } if (rv == KERN_SUCCESS) { #ifdef HWPMC_HOOKS if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { PMC_SOFT_CALL_TF( , , page_fault, all, frame); if (ftype == VM_PROT_READ) PMC_SOFT_CALL_TF( , , page_fault, read, frame); else PMC_SOFT_CALL_TF( , , page_fault, write, frame); } #endif return (0); } nogo: if (!usermode) { if (td->td_intr_nesting_level == 0 && curpcb->pcb_onfault != NULL) { frame->tf_rip = (long)curpcb->pcb_onfault; return (0); } trap_fatal(frame, eva); return (-1); } return ((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV); } static void trap_fatal(frame, eva) struct trapframe *frame; vm_offset_t eva; { int code, ss; u_int type; long esp; struct soft_segment_descriptor softseg; char *msg; +#ifdef KDB + bool handled; +#endif code = frame->tf_err; type = frame->tf_trapno; sdtossd(&gdt[NGDT * PCPU_GET(cpuid) + IDXSEL(frame->tf_cs & 0xffff)], &softseg); if (type <= MAX_TRAP_MSG) msg = trap_msg[type]; else msg = "UNKNOWN"; printf("\n\nFatal trap %d: %s while in %s mode\n", type, msg, ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel"); #ifdef SMP /* two separate prints in case of a trap on an unmapped page */ printf("cpuid = %d; ", PCPU_GET(cpuid)); printf("apic id = %02x\n", PCPU_GET(apic_id)); #endif if (type == T_PAGEFLT) { printf("fault virtual address = 0x%lx\n", eva); printf("fault code = %s %s %s, %s\n", code & PGEX_U ? "user" : "supervisor", code & PGEX_W ? "write" : "read", code & PGEX_I ? "instruction" : "data", code & PGEX_RSV ? "reserved bits in PTE" : code & PGEX_P ? "protection violation" : "page not present"); } printf("instruction pointer = 0x%lx:0x%lx\n", frame->tf_cs & 0xffff, frame->tf_rip); if (ISPL(frame->tf_cs) == SEL_UPL) { ss = frame->tf_ss & 0xffff; esp = frame->tf_rsp; } else { ss = GSEL(GDATA_SEL, SEL_KPL); esp = (long)&frame->tf_rsp; } printf("stack pointer = 0x%x:0x%lx\n", ss, esp); printf("frame pointer = 0x%x:0x%lx\n", ss, frame->tf_rbp); printf("code segment = base 0x%lx, limit 0x%lx, type 0x%x\n", softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type); printf(" = DPL %d, pres %d, long %d, def32 %d, gran %d\n", softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_long, softseg.ssd_def32, softseg.ssd_gran); printf("processor eflags = "); if (frame->tf_rflags & PSL_T) printf("trace trap, "); if (frame->tf_rflags & PSL_I) printf("interrupt enabled, "); if (frame->tf_rflags & PSL_NT) printf("nested task, "); if (frame->tf_rflags & PSL_RF) printf("resume, "); printf("IOPL = %ld\n", (frame->tf_rflags & PSL_IOPL) >> 12); printf("current process = %d (%s)\n", curproc->p_pid, curthread->td_name); #ifdef KDB - if (debugger_on_panic) - if (kdb_trap(type, 0, frame)) + if (debugger_on_panic) { + kdb_why = KDB_WHY_TRAP; + handled = kdb_trap(type, 0, frame); + kdb_why = KDB_WHY_UNSET; + if (handled) return; + } #endif printf("trap number = %d\n", type); if (type <= MAX_TRAP_MSG) panic("%s", trap_msg[type]); else panic("unknown/reserved trap"); } /* * Double fault handler. Called when a fault occurs while writing * a frame for a trap/exception onto the stack. This usually occurs * when the stack overflows (such is the case with infinite recursion, * for example). */ void dblfault_handler(struct trapframe *frame) { #ifdef KDTRACE_HOOKS if (dtrace_doubletrap_func != NULL) (*dtrace_doubletrap_func)(); #endif printf("\nFatal double fault\n"); printf("rip = 0x%lx\n", frame->tf_rip); printf("rsp = 0x%lx\n", frame->tf_rsp); printf("rbp = 0x%lx\n", frame->tf_rbp); #ifdef SMP /* two separate prints in case of a trap on an unmapped page */ printf("cpuid = %d; ", PCPU_GET(cpuid)); printf("apic id = %02x\n", PCPU_GET(apic_id)); #endif panic("double fault"); } int cpu_fetch_syscall_args(struct thread *td, struct syscall_args *sa) { struct proc *p; struct trapframe *frame; register_t *argp; caddr_t params; int reg, regcnt, error; p = td->td_proc; frame = td->td_frame; reg = 0; regcnt = 6; params = (caddr_t)frame->tf_rsp + sizeof(register_t); sa->code = frame->tf_rax; if (sa->code == SYS_syscall || sa->code == SYS___syscall) { sa->code = frame->tf_rdi; reg++; regcnt--; } if (p->p_sysent->sv_mask) sa->code &= p->p_sysent->sv_mask; if (sa->code >= p->p_sysent->sv_size) sa->callp = &p->p_sysent->sv_table[0]; else sa->callp = &p->p_sysent->sv_table[sa->code]; sa->narg = sa->callp->sy_narg; KASSERT(sa->narg <= sizeof(sa->args) / sizeof(sa->args[0]), ("Too many syscall arguments!")); error = 0; argp = &frame->tf_rdi; argp += reg; bcopy(argp, sa->args, sizeof(sa->args[0]) * regcnt); if (sa->narg > regcnt) { KASSERT(params != NULL, ("copyin args with no params!")); error = copyin(params, &sa->args[regcnt], (sa->narg - regcnt) * sizeof(sa->args[0])); } if (error == 0) { td->td_retval[0] = 0; td->td_retval[1] = frame->tf_rdx; } return (error); } #include "../../kern/subr_syscall.c" /* * System call handler for native binaries. The trap frame is already * set up by the assembler trampoline and a pointer to it is saved in * td_frame. */ void amd64_syscall(struct thread *td, int traced) { struct syscall_args sa; int error; ksiginfo_t ksi; #ifdef DIAGNOSTIC if (ISPL(td->td_frame->tf_cs) != SEL_UPL) { panic("syscall"); /* NOT REACHED */ } #endif error = syscallenter(td, &sa); /* * Traced syscall. */ if (__predict_false(traced)) { td->td_frame->tf_rflags &= ~PSL_T; ksiginfo_init_trap(&ksi); ksi.ksi_signo = SIGTRAP; ksi.ksi_code = TRAP_TRACE; ksi.ksi_addr = (void *)td->td_frame->tf_rip; trapsignal(td, &ksi); } KASSERT(PCB_USER_FPU(td->td_pcb), ("System call %s returning with kernel FPU ctx leaked", syscallname(td->td_proc, sa.code))); KASSERT(td->td_pcb->pcb_save == get_pcb_user_save_td(td), ("System call %s returning with mangled pcb_save", syscallname(td->td_proc, sa.code))); syscallret(td, error, &sa); /* * If the user-supplied value of %rip is not a canonical * address, then some CPUs will trigger a ring 0 #GP during * the sysret instruction. However, the fault handler would * execute in ring 0 with the user's %gs and %rsp which would * not be safe. Instead, use the full return path which * catches the problem safely. */ if (td->td_frame->tf_rip >= VM_MAXUSER_ADDRESS) set_pcb_flags(td->td_pcb, PCB_FULL_IRET); } Index: stable/10/sys/i386/i386/trap.c =================================================================== --- stable/10/sys/i386/i386/trap.c (revision 333204) +++ stable/10/sys/i386/i386/trap.c (revision 333205) @@ -1,1177 +1,1181 @@ /*- * Copyright (C) 1994, David Greenman * Copyright (c) 1990, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * the University of Utah, and William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)trap.c 7.4 (Berkeley) 5/13/91 */ #include __FBSDID("$FreeBSD$"); /* * 386 Trap and System call handling */ #include "opt_clock.h" #include "opt_cpu.h" #include "opt_hwpmc_hooks.h" #include "opt_isa.h" #include "opt_kdb.h" #include "opt_kdtrace.h" #include "opt_npx.h" #include "opt_trap.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HWPMC_HOOKS #include PMC_SOFT_DEFINE( , , page_fault, all); PMC_SOFT_DEFINE( , , page_fault, read); PMC_SOFT_DEFINE( , , page_fault, write); #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SMP #include #endif #include #include #ifdef POWERFAIL_NMI #include #include #endif #ifdef KDTRACE_HOOKS #include #endif extern void trap(struct trapframe *frame); extern void syscall(struct trapframe *frame); static int trap_pfault(struct trapframe *, int, vm_offset_t); static void trap_fatal(struct trapframe *, vm_offset_t); void dblfault_handler(void); extern inthand_t IDTVEC(lcall_syscall); #define MAX_TRAP_MSG 32 static char *trap_msg[] = { "", /* 0 unused */ "privileged instruction fault", /* 1 T_PRIVINFLT */ "", /* 2 unused */ "breakpoint instruction fault", /* 3 T_BPTFLT */ "", /* 4 unused */ "", /* 5 unused */ "arithmetic trap", /* 6 T_ARITHTRAP */ "", /* 7 unused */ "", /* 8 unused */ "general protection fault", /* 9 T_PROTFLT */ "trace trap", /* 10 T_TRCTRAP */ "", /* 11 unused */ "page fault", /* 12 T_PAGEFLT */ "", /* 13 unused */ "alignment fault", /* 14 T_ALIGNFLT */ "", /* 15 unused */ "", /* 16 unused */ "", /* 17 unused */ "integer divide fault", /* 18 T_DIVIDE */ "non-maskable interrupt trap", /* 19 T_NMI */ "overflow trap", /* 20 T_OFLOW */ "FPU bounds check fault", /* 21 T_BOUND */ "FPU device not available", /* 22 T_DNA */ "double fault", /* 23 T_DOUBLEFLT */ "FPU operand fetch fault", /* 24 T_FPOPFLT */ "invalid TSS fault", /* 25 T_TSSFLT */ "segment not present fault", /* 26 T_SEGNPFLT */ "stack fault", /* 27 T_STKFLT */ "machine check trap", /* 28 T_MCHK */ "SIMD floating-point exception", /* 29 T_XMMFLT */ "reserved (unknown) fault", /* 30 T_RESERVED */ "", /* 31 unused (reserved) */ "DTrace pid return trap", /* 32 T_DTRACE_RET */ }; #if defined(I586_CPU) && !defined(NO_F00F_HACK) int has_f00f_bug = 0; /* Initialized so that it can be patched. */ #endif #ifdef KDB static int kdb_on_nmi = 1; SYSCTL_INT(_machdep, OID_AUTO, kdb_on_nmi, CTLFLAG_RW, &kdb_on_nmi, 0, "Go to KDB on NMI"); TUNABLE_INT("machdep.kdb_on_nmi", &kdb_on_nmi); #endif static int panic_on_nmi = 1; SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW, &panic_on_nmi, 0, "Panic on NMI"); TUNABLE_INT("machdep.panic_on_nmi", &panic_on_nmi); static int prot_fault_translation = 0; SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RW, &prot_fault_translation, 0, "Select signal to deliver on protection fault"); static int uprintf_signal; SYSCTL_INT(_machdep, OID_AUTO, uprintf_signal, CTLFLAG_RW, &uprintf_signal, 0, "Print debugging information on trap signal to ctty"); /* * Exception, fault, and trap interface to the FreeBSD kernel. * This common code is called from assembly language IDT gate entry * routines that prepare a suitable stack frame, and restore this * frame after the exception has been processed. */ void trap(struct trapframe *frame) { #ifdef KDTRACE_HOOKS struct reg regs; #endif struct thread *td = curthread; struct proc *p = td->td_proc; int i = 0, ucode = 0, code; u_int type; register_t addr = 0; vm_offset_t eva; ksiginfo_t ksi; #ifdef POWERFAIL_NMI static int lastalert = 0; #endif PCPU_INC(cnt.v_trap); type = frame->tf_trapno; #ifdef SMP /* Handler for NMI IPIs used for stopping CPUs. */ if (type == T_NMI) { if (ipi_nmi_handler() == 0) goto out; } #endif /* SMP */ #ifdef KDB if (kdb_active) { kdb_reenter(); goto out; } #endif if (type == T_RESERVED) { trap_fatal(frame, 0); goto out; } #ifdef HWPMC_HOOKS /* * CPU PMCs interrupt using an NMI so we check for that first. * If the HWPMC module is active, 'pmc_hook' will point to * the function to be called. A return value of '1' from the * hook means that the NMI was handled by it and that we can * return immediately. */ if (type == T_NMI && pmc_intr && (*pmc_intr)(PCPU_GET(cpuid), frame)) goto out; #endif if (type == T_MCHK) { mca_intr(); goto out; } #ifdef KDTRACE_HOOKS /* * A trap can occur while DTrace executes a probe. Before * executing the probe, DTrace blocks re-scheduling and sets * a flag in its per-cpu flags to indicate that it doesn't * want to fault. On returning from the probe, the no-fault * flag is cleared and finally re-scheduling is enabled. */ if ((type == T_PROTFLT || type == T_PAGEFLT) && dtrace_trap_func != NULL && (*dtrace_trap_func)(frame, type)) goto out; #endif if ((frame->tf_eflags & PSL_I) == 0) { /* * Buggy application or kernel code has disabled * interrupts and then trapped. Enabling interrupts * now is wrong, but it is better than running with * interrupts disabled until they are accidentally * enabled later. */ if (ISPL(frame->tf_cs) == SEL_UPL || (frame->tf_eflags & PSL_VM)) uprintf( "pid %ld (%s): trap %d with interrupts disabled\n", (long)curproc->p_pid, curthread->td_name, type); else if (type != T_NMI && type != T_BPTFLT && type != T_TRCTRAP && frame->tf_eip != (int)cpu_switch_load_gs) { /* * XXX not quite right, since this may be for a * multiple fault in user mode. */ printf("kernel trap %d with interrupts disabled\n", type); /* * Page faults need interrupts disabled until later, * and we shouldn't enable interrupts while holding * a spin lock. */ if (type != T_PAGEFLT && td->td_md.md_spinlock_count == 0) enable_intr(); } } eva = 0; code = frame->tf_err; if (type == T_PAGEFLT) { /* * For some Cyrix CPUs, %cr2 is clobbered by * interrupts. This problem is worked around by using * an interrupt gate for the pagefault handler. We * are finally ready to read %cr2 and conditionally * reenable interrupts. If we hold a spin lock, then * we must not reenable interrupts. This might be a * spurious page fault. */ eva = rcr2(); if (td->td_md.md_spinlock_count == 0) enable_intr(); } if ((ISPL(frame->tf_cs) == SEL_UPL) || ((frame->tf_eflags & PSL_VM) && !(curpcb->pcb_flags & PCB_VM86CALL))) { /* user trap */ td->td_pticks = 0; td->td_frame = frame; addr = frame->tf_eip; if (td->td_ucred != p->p_ucred) cred_update_thread(td); switch (type) { case T_PRIVINFLT: /* privileged instruction fault */ i = SIGILL; ucode = ILL_PRVOPC; break; case T_BPTFLT: /* bpt instruction fault */ case T_TRCTRAP: /* trace trap */ enable_intr(); #ifdef KDTRACE_HOOKS if (type == T_BPTFLT) { fill_frame_regs(frame, ®s); if (dtrace_pid_probe_ptr != NULL && dtrace_pid_probe_ptr(®s) == 0) goto out; } #endif frame->tf_eflags &= ~PSL_T; i = SIGTRAP; ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT); break; case T_ARITHTRAP: /* arithmetic trap */ #ifdef DEV_NPX ucode = npxtrap_x87(); if (ucode == -1) goto userout; #else ucode = 0; #endif i = SIGFPE; break; /* * The following two traps can happen in * vm86 mode, and, if so, we want to handle * them specially. */ case T_PROTFLT: /* general protection fault */ case T_STKFLT: /* stack fault */ if (frame->tf_eflags & PSL_VM) { i = vm86_emulate((struct vm86frame *)frame); if (i == 0) goto user; break; } i = SIGBUS; ucode = (type == T_PROTFLT) ? BUS_OBJERR : BUS_ADRERR; break; case T_SEGNPFLT: /* segment not present fault */ i = SIGBUS; ucode = BUS_ADRERR; break; case T_TSSFLT: /* invalid TSS fault */ i = SIGBUS; ucode = BUS_OBJERR; break; case T_ALIGNFLT: i = SIGBUS; ucode = BUS_ADRALN; break; case T_DOUBLEFLT: /* double fault */ default: i = SIGBUS; ucode = BUS_OBJERR; break; case T_PAGEFLT: /* page fault */ i = trap_pfault(frame, TRUE, eva); #if defined(I586_CPU) && !defined(NO_F00F_HACK) if (i == -2) { /* * The f00f hack workaround has triggered, so * treat the fault as an illegal instruction * (T_PRIVINFLT) instead of a page fault. */ type = frame->tf_trapno = T_PRIVINFLT; /* Proceed as in that case. */ ucode = ILL_PRVOPC; i = SIGILL; break; } #endif if (i == -1) goto userout; if (i == 0) goto user; if (i == SIGSEGV) ucode = SEGV_MAPERR; else { if (prot_fault_translation == 0) { /* * Autodetect. * This check also covers the images * without the ABI-tag ELF note. */ if (SV_CURPROC_ABI() == SV_ABI_FREEBSD && p->p_osrel >= P_OSREL_SIGSEGV) { i = SIGSEGV; ucode = SEGV_ACCERR; } else { i = SIGBUS; ucode = BUS_PAGE_FAULT; } } else if (prot_fault_translation == 1) { /* * Always compat mode. */ i = SIGBUS; ucode = BUS_PAGE_FAULT; } else { /* * Always SIGSEGV mode. */ i = SIGSEGV; ucode = SEGV_ACCERR; } } addr = eva; break; case T_DIVIDE: /* integer divide fault */ ucode = FPE_INTDIV; i = SIGFPE; break; #ifdef DEV_ISA case T_NMI: #ifdef POWERFAIL_NMI #ifndef TIMER_FREQ # define TIMER_FREQ 1193182 #endif if (time_second - lastalert > 10) { log(LOG_WARNING, "NMI: power fail\n"); sysbeep(880, hz); lastalert = time_second; } goto userout; #else /* !POWERFAIL_NMI */ /* machine/parity/power fail/"kitchen sink" faults */ if (isa_nmi(code) == 0) { #ifdef KDB /* * NMI can be hooked up to a pushbutton * for debugging. */ if (kdb_on_nmi) { printf ("NMI ... going to debugger\n"); kdb_trap(type, 0, frame); } #endif /* KDB */ goto userout; } else if (panic_on_nmi) panic("NMI indicates hardware failure"); goto out; #endif /* POWERFAIL_NMI */ #endif /* DEV_ISA */ case T_OFLOW: /* integer overflow fault */ ucode = FPE_INTOVF; i = SIGFPE; break; case T_BOUND: /* bounds check fault */ ucode = FPE_FLTSUB; i = SIGFPE; break; case T_DNA: #ifdef DEV_NPX KASSERT(PCB_USER_FPU(td->td_pcb), ("kernel FPU ctx has leaked")); /* transparent fault (due to context switch "late") */ if (npxdna()) goto userout; #endif uprintf("pid %d killed due to lack of floating point\n", p->p_pid); i = SIGKILL; ucode = 0; break; case T_FPOPFLT: /* FPU operand fetch fault */ ucode = ILL_COPROC; i = SIGILL; break; case T_XMMFLT: /* SIMD floating-point exception */ #if defined(DEV_NPX) && !defined(CPU_DISABLE_SSE) && defined(I686_CPU) ucode = npxtrap_sse(); if (ucode == -1) goto userout; #else ucode = 0; #endif i = SIGFPE; break; #ifdef KDTRACE_HOOKS case T_DTRACE_RET: enable_intr(); fill_frame_regs(frame, ®s); if (dtrace_return_probe_ptr != NULL && dtrace_return_probe_ptr(®s) == 0) goto out; goto userout; #endif } } else { /* kernel trap */ KASSERT(cold || td->td_ucred != NULL, ("kernel trap doesn't have ucred")); switch (type) { case T_PAGEFLT: /* page fault */ (void) trap_pfault(frame, FALSE, eva); goto out; case T_DNA: #ifdef DEV_NPX if (PCB_USER_FPU(td->td_pcb)) panic("Unregistered use of FPU in kernel"); if (npxdna()) goto out; #endif break; case T_ARITHTRAP: /* arithmetic trap */ case T_XMMFLT: /* SIMD floating-point exception */ case T_FPOPFLT: /* FPU operand fetch fault */ /* * XXXKIB for now disable any FPU traps in kernel * handler registration seems to be overkill */ trap_fatal(frame, 0); goto out; /* * The following two traps can happen in * vm86 mode, and, if so, we want to handle * them specially. */ case T_PROTFLT: /* general protection fault */ case T_STKFLT: /* stack fault */ if (frame->tf_eflags & PSL_VM) { i = vm86_emulate((struct vm86frame *)frame); if (i != 0) /* * returns to original process */ vm86_trap((struct vm86frame *)frame); goto out; } /* FALL THROUGH */ case T_SEGNPFLT: /* segment not present fault */ if (curpcb->pcb_flags & PCB_VM86CALL) break; /* * Invalid %fs's and %gs's can be created using * procfs or PT_SETREGS or by invalidating the * underlying LDT entry. This causes a fault * in kernel mode when the kernel attempts to * switch contexts. Lose the bad context * (XXX) so that we can continue, and generate * a signal. */ if (frame->tf_eip == (int)cpu_switch_load_gs) { curpcb->pcb_gs = 0; #if 0 PROC_LOCK(p); kern_psignal(p, SIGBUS); PROC_UNLOCK(p); #endif goto out; } if (td->td_intr_nesting_level != 0) break; /* * Invalid segment selectors and out of bounds * %eip's and %esp's can be set up in user mode. * This causes a fault in kernel mode when the * kernel tries to return to user mode. We want * to get this fault so that we can fix the * problem here and not have to check all the * selectors and pointers when the user changes * them. */ if (frame->tf_eip == (int)doreti_iret) { frame->tf_eip = (int)doreti_iret_fault; goto out; } if (type == T_STKFLT) break; if (frame->tf_eip == (int)doreti_popl_ds) { frame->tf_eip = (int)doreti_popl_ds_fault; goto out; } if (frame->tf_eip == (int)doreti_popl_es) { frame->tf_eip = (int)doreti_popl_es_fault; goto out; } if (frame->tf_eip == (int)doreti_popl_fs) { frame->tf_eip = (int)doreti_popl_fs_fault; goto out; } if (curpcb->pcb_onfault != NULL) { frame->tf_eip = (int)curpcb->pcb_onfault; goto out; } break; case T_TSSFLT: /* * PSL_NT can be set in user mode and isn't cleared * automatically when the kernel is entered. This * causes a TSS fault when the kernel attempts to * `iret' because the TSS link is uninitialized. We * want to get this fault so that we can fix the * problem here and not every time the kernel is * entered. */ if (frame->tf_eflags & PSL_NT) { frame->tf_eflags &= ~PSL_NT; goto out; } break; case T_TRCTRAP: /* trace trap */ if (frame->tf_eip == (int)IDTVEC(lcall_syscall)) { /* * We've just entered system mode via the * syscall lcall. Continue single stepping * silently until the syscall handler has * saved the flags. */ goto out; } if (frame->tf_eip == (int)IDTVEC(lcall_syscall) + 1) { /* * The syscall handler has now saved the * flags. Stop single stepping it. */ frame->tf_eflags &= ~PSL_T; goto out; } /* * Ignore debug register trace traps due to * accesses in the user's address space, which * can happen under several conditions such as * if a user sets a watchpoint on a buffer and * then passes that buffer to a system call. * We still want to get TRCTRAPS for addresses * in kernel space because that is useful when * debugging the kernel. */ if (user_dbreg_trap() && !(curpcb->pcb_flags & PCB_VM86CALL)) { /* * Reset breakpoint bits because the * processor doesn't */ load_dr6(rdr6() & 0xfffffff0); goto out; } /* * FALLTHROUGH (TRCTRAP kernel mode, kernel address) */ case T_BPTFLT: /* * If KDB is enabled, let it handle the debugger trap. * Otherwise, debugger traps "can't happen". */ #ifdef KDB if (kdb_trap(type, 0, frame)) goto out; #endif break; #ifdef DEV_ISA case T_NMI: #ifdef POWERFAIL_NMI if (time_second - lastalert > 10) { log(LOG_WARNING, "NMI: power fail\n"); sysbeep(880, hz); lastalert = time_second; } goto out; #else /* !POWERFAIL_NMI */ /* machine/parity/power fail/"kitchen sink" faults */ if (isa_nmi(code) == 0) { #ifdef KDB /* * NMI can be hooked up to a pushbutton * for debugging. */ if (kdb_on_nmi) { printf ("NMI ... going to debugger\n"); kdb_trap(type, 0, frame); } #endif /* KDB */ goto out; } else if (panic_on_nmi == 0) goto out; /* FALLTHROUGH */ #endif /* POWERFAIL_NMI */ #endif /* DEV_ISA */ } trap_fatal(frame, eva); goto out; } /* Translate fault for emulators (e.g. Linux) */ if (*p->p_sysent->sv_transtrap) i = (*p->p_sysent->sv_transtrap)(i, type); ksiginfo_init_trap(&ksi); ksi.ksi_signo = i; ksi.ksi_code = ucode; ksi.ksi_addr = (void *)addr; ksi.ksi_trapno = type; if (uprintf_signal) { uprintf("pid %d comm %s: signal %d err %x code %d type %d " "addr 0x%x esp 0x%08x eip 0x%08x " "<%02x %02x %02x %02x %02x %02x %02x %02x>\n", p->p_pid, p->p_comm, i, frame->tf_err, ucode, type, addr, frame->tf_esp, frame->tf_eip, fubyte((void *)(frame->tf_eip + 0)), fubyte((void *)(frame->tf_eip + 1)), fubyte((void *)(frame->tf_eip + 2)), fubyte((void *)(frame->tf_eip + 3)), fubyte((void *)(frame->tf_eip + 4)), fubyte((void *)(frame->tf_eip + 5)), fubyte((void *)(frame->tf_eip + 6)), fubyte((void *)(frame->tf_eip + 7))); } KASSERT((read_eflags() & PSL_I) != 0, ("interrupts disabled")); trapsignal(td, &ksi); #ifdef DEBUG if (type <= MAX_TRAP_MSG) { uprintf("fatal process exception: %s", trap_msg[type]); if ((type == T_PAGEFLT) || (type == T_PROTFLT)) uprintf(", fault VA = 0x%lx", (u_long)eva); uprintf("\n"); } #endif user: userret(td, frame); KASSERT(PCB_USER_FPU(td->td_pcb), ("Return from trap with kernel FPU ctx leaked")); userout: out: return; } static int trap_pfault(frame, usermode, eva) struct trapframe *frame; int usermode; vm_offset_t eva; { vm_offset_t va; struct vmspace *vm; vm_map_t map; int rv = 0; vm_prot_t ftype; struct thread *td = curthread; struct proc *p = td->td_proc; if (__predict_false((td->td_pflags & TDP_NOFAULTING) != 0)) { /* * Due to both processor errata and lazy TLB invalidation when * access restrictions are removed from virtual pages, memory * accesses that are allowed by the physical mapping layer may * nonetheless cause one spurious page fault per virtual page. * When the thread is executing a "no faulting" section that * is bracketed by vm_fault_{disable,enable}_pagefaults(), * every page fault is treated as a spurious page fault, * unless it accesses the same virtual address as the most * recent page fault within the same "no faulting" section. */ if (td->td_md.md_spurflt_addr != eva || (td->td_pflags & TDP_RESETSPUR) != 0) { /* * Do nothing to the TLB. A stale TLB entry is * flushed automatically by a page fault. */ td->td_md.md_spurflt_addr = eva; td->td_pflags &= ~TDP_RESETSPUR; return (0); } } else { /* * If we get a page fault while in a critical section, then * it is most likely a fatal kernel page fault. The kernel * is already going to panic trying to get a sleep lock to * do the VM lookup, so just consider it a fatal trap so the * kernel can print out a useful trap message and even get * to the debugger. * * If we get a page fault while holding a non-sleepable * lock, then it is most likely a fatal kernel page fault. * If WITNESS is enabled, then it's going to whine about * bogus LORs with various VM locks, so just skip to the * fatal trap handling directly. */ if (td->td_critnest != 0 || WITNESS_CHECK(WARN_SLEEPOK | WARN_GIANTOK, NULL, "Kernel page fault") != 0) { trap_fatal(frame, eva); return (-1); } } va = trunc_page(eva); if (va >= KERNBASE) { /* * Don't allow user-mode faults in kernel address space. * An exception: if the faulting address is the invalid * instruction entry in the IDT, then the Intel Pentium * F00F bug workaround was triggered, and we need to * treat it is as an illegal instruction, and not a page * fault. */ #if defined(I586_CPU) && !defined(NO_F00F_HACK) if ((eva == (unsigned int)&idt[6]) && has_f00f_bug) return (-2); #endif if (usermode) goto nogo; map = kernel_map; } else { /* * This is a fault on non-kernel virtual memory. If either * p or p->p_vmspace is NULL, then the fault is fatal. */ if (p == NULL || (vm = p->p_vmspace) == NULL) goto nogo; map = &vm->vm_map; /* * When accessing a user-space address, kernel must be * ready to accept the page fault, and provide a * handling routine. Since accessing the address * without the handler is a bug, do not try to handle * it normally, and panic immediately. */ if (!usermode && (td->td_intr_nesting_level != 0 || curpcb->pcb_onfault == NULL)) { trap_fatal(frame, eva); return (-1); } } /* * If the trap was caused by errant bits in the PTE then panic. */ if (frame->tf_err & PGEX_RSV) { trap_fatal(frame, eva); return (-1); } /* * PGEX_I is defined only if the execute disable bit capability is * supported and enabled. */ if (frame->tf_err & PGEX_W) ftype = VM_PROT_WRITE; #if defined(PAE) || defined(PAE_TABLES) else if ((frame->tf_err & PGEX_I) && pg_nx != 0) ftype = VM_PROT_EXECUTE; #endif else ftype = VM_PROT_READ; if (map != kernel_map) { /* * Keep swapout from messing with us during this * critical time. */ PROC_LOCK(p); ++p->p_lock; PROC_UNLOCK(p); /* Fault in the user page: */ rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL); PROC_LOCK(p); --p->p_lock; PROC_UNLOCK(p); } else { /* * Don't have to worry about process locking or stacks in the * kernel. */ rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL); } if (rv == KERN_SUCCESS) { #ifdef HWPMC_HOOKS if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { PMC_SOFT_CALL_TF( , , page_fault, all, frame); if (ftype == VM_PROT_READ) PMC_SOFT_CALL_TF( , , page_fault, read, frame); else PMC_SOFT_CALL_TF( , , page_fault, write, frame); } #endif return (0); } nogo: if (!usermode) { if (td->td_intr_nesting_level == 0 && curpcb->pcb_onfault != NULL) { frame->tf_eip = (int)curpcb->pcb_onfault; return (0); } trap_fatal(frame, eva); return (-1); } return ((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV); } static void trap_fatal(frame, eva) struct trapframe *frame; vm_offset_t eva; { int code, ss, esp; u_int type; struct soft_segment_descriptor softseg; char *msg; +#ifdef KDB + bool handled; +#endif code = frame->tf_err; type = frame->tf_trapno; sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)].sd, &softseg); if (type <= MAX_TRAP_MSG) msg = trap_msg[type]; else msg = "UNKNOWN"; printf("\n\nFatal trap %d: %s while in %s mode\n", type, msg, frame->tf_eflags & PSL_VM ? "vm86" : ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel"); #ifdef SMP /* two separate prints in case of a trap on an unmapped page */ printf("cpuid = %d; ", PCPU_GET(cpuid)); printf("apic id = %02x\n", PCPU_GET(apic_id)); #endif if (type == T_PAGEFLT) { printf("fault virtual address = 0x%x\n", eva); printf("fault code = %s %s%s, %s\n", code & PGEX_U ? "user" : "supervisor", code & PGEX_W ? "write" : "read", #if defined(PAE) || defined(PAE_TABLES) pg_nx != 0 ? (code & PGEX_I ? " instruction" : " data") : #endif "", code & PGEX_RSV ? "reserved bits in PTE" : code & PGEX_P ? "protection violation" : "page not present"); } printf("instruction pointer = 0x%x:0x%x\n", frame->tf_cs & 0xffff, frame->tf_eip); if ((ISPL(frame->tf_cs) == SEL_UPL) || (frame->tf_eflags & PSL_VM)) { ss = frame->tf_ss & 0xffff; esp = frame->tf_esp; } else { ss = GSEL(GDATA_SEL, SEL_KPL); esp = (int)&frame->tf_esp; } printf("stack pointer = 0x%x:0x%x\n", ss, esp); printf("frame pointer = 0x%x:0x%x\n", ss, frame->tf_ebp); printf("code segment = base 0x%x, limit 0x%x, type 0x%x\n", softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type); printf(" = DPL %d, pres %d, def32 %d, gran %d\n", softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_def32, softseg.ssd_gran); printf("processor eflags = "); if (frame->tf_eflags & PSL_T) printf("trace trap, "); if (frame->tf_eflags & PSL_I) printf("interrupt enabled, "); if (frame->tf_eflags & PSL_NT) printf("nested task, "); if (frame->tf_eflags & PSL_RF) printf("resume, "); if (frame->tf_eflags & PSL_VM) printf("vm86, "); printf("IOPL = %d\n", (frame->tf_eflags & PSL_IOPL) >> 12); printf("current process = %d (%s)\n", curproc->p_pid, curthread->td_name); #ifdef KDB if (debugger_on_panic) { + kdb_why = KDB_WHY_TRAP; frame->tf_err = eva; /* smuggle fault address to ddb */ - if (kdb_trap(type, 0, frame)) { - frame->tf_err = code; /* restore error code */ + handled = kdb_trap(type, 0, frame); + frame->tf_err = code; /* restore error code */ + kdb_why = KDB_WHY_UNSET; + if (handled) return; - } - frame->tf_err = code; /* restore error code */ } #endif printf("trap number = %d\n", type); if (type <= MAX_TRAP_MSG) panic("%s", trap_msg[type]); else panic("unknown/reserved trap"); } /* * Double fault handler. Called when a fault occurs while writing * a frame for a trap/exception onto the stack. This usually occurs * when the stack overflows (such is the case with infinite recursion, * for example). * * XXX Note that the current PTD gets replaced by IdlePTD when the * task switch occurs. This means that the stack that was active at * the time of the double fault is not available at unless * the machine was idle when the double fault occurred. The downside * of this is that "trace " in ddb won't work. */ void dblfault_handler() { #ifdef KDTRACE_HOOKS if (dtrace_doubletrap_func != NULL) (*dtrace_doubletrap_func)(); #endif printf("\nFatal double fault:\n"); printf("eip = 0x%x\n", PCPU_GET(common_tss.tss_eip)); printf("esp = 0x%x\n", PCPU_GET(common_tss.tss_esp)); printf("ebp = 0x%x\n", PCPU_GET(common_tss.tss_ebp)); #ifdef SMP /* two separate prints in case of a trap on an unmapped page */ printf("cpuid = %d; ", PCPU_GET(cpuid)); printf("apic id = %02x\n", PCPU_GET(apic_id)); #endif panic("double fault"); } int cpu_fetch_syscall_args(struct thread *td, struct syscall_args *sa) { struct proc *p; struct trapframe *frame; caddr_t params; long tmp; int error; p = td->td_proc; frame = td->td_frame; params = (caddr_t)frame->tf_esp + sizeof(int); sa->code = frame->tf_eax; /* * Need to check if this is a 32 bit or 64 bit syscall. */ if (sa->code == SYS_syscall) { /* * Code is first argument, followed by actual args. */ error = fueword(params, &tmp); if (error == -1) return (EFAULT); sa->code = tmp; params += sizeof(int); } else if (sa->code == SYS___syscall) { /* * Like syscall, but code is a quad, so as to maintain * quad alignment for the rest of the arguments. */ error = fueword(params, &tmp); if (error == -1) return (EFAULT); sa->code = tmp; params += sizeof(quad_t); } if (p->p_sysent->sv_mask) sa->code &= p->p_sysent->sv_mask; if (sa->code >= p->p_sysent->sv_size) sa->callp = &p->p_sysent->sv_table[0]; else sa->callp = &p->p_sysent->sv_table[sa->code]; sa->narg = sa->callp->sy_narg; if (params != NULL && sa->narg != 0) error = copyin(params, (caddr_t)sa->args, (u_int)(sa->narg * sizeof(int))); else error = 0; if (error == 0) { td->td_retval[0] = 0; td->td_retval[1] = frame->tf_edx; } return (error); } #include "../../kern/subr_syscall.c" /* * syscall - system call request C handler. A system call is * essentially treated as a trap by reusing the frame layout. */ void syscall(struct trapframe *frame) { struct thread *td; struct syscall_args sa; register_t orig_tf_eflags; int error; ksiginfo_t ksi; #ifdef DIAGNOSTIC if (ISPL(frame->tf_cs) != SEL_UPL) { panic("syscall"); /* NOT REACHED */ } #endif orig_tf_eflags = frame->tf_eflags; td = curthread; td->td_frame = frame; error = syscallenter(td, &sa); /* * Traced syscall. */ if ((orig_tf_eflags & PSL_T) && !(orig_tf_eflags & PSL_VM)) { frame->tf_eflags &= ~PSL_T; ksiginfo_init_trap(&ksi); ksi.ksi_signo = SIGTRAP; ksi.ksi_code = TRAP_TRACE; ksi.ksi_addr = (void *)frame->tf_eip; trapsignal(td, &ksi); } KASSERT(PCB_USER_FPU(td->td_pcb), ("System call %s returning with kernel FPU ctx leaked", syscallname(td->td_proc, sa.code))); KASSERT(td->td_pcb->pcb_save == get_pcb_user_save_td(td), ("System call %s returning with mangled pcb_save", syscallname(td->td_proc, sa.code))); syscallret(td, error, &sa); } Index: stable/10/sys/powerpc/aim/trap.c =================================================================== --- stable/10/sys/powerpc/aim/trap.c (revision 333204) +++ stable/10/sys/powerpc/aim/trap.c (revision 333205) @@ -1,745 +1,753 @@ /*- * Copyright (C) 1995, 1996 Wolfgang Solfrank. * Copyright (C) 1995, 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $NetBSD: trap.c,v 1.58 2002/03/04 04:07:35 dbj Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_kdtrace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void trap_fatal(struct trapframe *frame); static void printtrap(u_int vector, struct trapframe *frame, int isfatal, int user); static int trap_pfault(struct trapframe *frame, int user); static int fix_unaligned(struct thread *td, struct trapframe *frame); static int handle_onfault(struct trapframe *frame); static void syscall(struct trapframe *frame); #ifdef __powerpc64__ void handle_kernel_slb_spill(int, register_t, register_t); static int handle_user_slb_spill(pmap_t pm, vm_offset_t addr); extern int n_slbs; #endif struct powerpc_exception { u_int vector; char *name; }; #ifdef KDTRACE_HOOKS #include int (*dtrace_invop_jump_addr)(struct trapframe *); #endif static struct powerpc_exception powerpc_exceptions[] = { { 0x0100, "system reset" }, { 0x0200, "machine check" }, { 0x0300, "data storage interrupt" }, { 0x0380, "data segment exception" }, { 0x0400, "instruction storage interrupt" }, { 0x0480, "instruction segment exception" }, { 0x0500, "external interrupt" }, { 0x0600, "alignment" }, { 0x0700, "program" }, { 0x0800, "floating-point unavailable" }, { 0x0900, "decrementer" }, { 0x0c00, "system call" }, { 0x0d00, "trace" }, { 0x0e00, "floating-point assist" }, { 0x0f00, "performance monitoring" }, { 0x0f20, "altivec unavailable" }, { 0x1000, "instruction tlb miss" }, { 0x1100, "data load tlb miss" }, { 0x1200, "data store tlb miss" }, { 0x1300, "instruction breakpoint" }, { 0x1400, "system management" }, { 0x1600, "altivec assist" }, { 0x1700, "thermal management" }, { 0x2000, "run mode/trace" }, { 0x3000, NULL } }; static const char * trapname(u_int vector) { struct powerpc_exception *pe; for (pe = powerpc_exceptions; pe->vector != 0x3000; pe++) { if (pe->vector == vector) return (pe->name); } return ("unknown"); } void trap(struct trapframe *frame) { struct thread *td; struct proc *p; #ifdef KDTRACE_HOOKS uint32_t inst; #endif int sig, type, user; u_int ucode; ksiginfo_t ksi; PCPU_INC(cnt.v_trap); td = curthread; p = td->td_proc; type = ucode = frame->exc; sig = 0; user = frame->srr1 & PSL_PR; CTR3(KTR_TRAP, "trap: %s type=%s (%s)", td->td_name, trapname(type), user ? "user" : "kernel"); #ifdef KDTRACE_HOOKS /* * A trap can occur while DTrace executes a probe. Before * executing the probe, DTrace blocks re-scheduling and sets * a flag in it's per-cpu flags to indicate that it doesn't * want to fault. On returning from the probe, the no-fault * flag is cleared and finally re-scheduling is enabled. * * If the DTrace kernel module has registered a trap handler, * call it and if it returns non-zero, assume that it has * handled the trap and modified the trap frame so that this * function can return normally. */ /* * XXXDTRACE: add pid probe handler here (if ever) */ if (dtrace_trap_func != NULL && (*dtrace_trap_func)(frame, type)) return; #endif if (user) { td->td_pticks = 0; td->td_frame = frame; if (td->td_ucred != p->p_ucred) cred_update_thread(td); /* User Mode Traps */ switch (type) { case EXC_RUNMODETRC: case EXC_TRC: frame->srr1 &= ~PSL_SE; sig = SIGTRAP; ucode = TRAP_TRACE; break; #ifdef __powerpc64__ case EXC_ISE: case EXC_DSE: if (handle_user_slb_spill(&p->p_vmspace->vm_pmap, (type == EXC_ISE) ? frame->srr0 : frame->cpu.aim.dar) != 0) { sig = SIGSEGV; ucode = SEGV_MAPERR; } break; #endif case EXC_DSI: case EXC_ISI: sig = trap_pfault(frame, 1); if (sig == SIGSEGV) ucode = SEGV_MAPERR; break; case EXC_SC: syscall(frame); break; case EXC_FPU: KASSERT((td->td_pcb->pcb_flags & PCB_FPU) != PCB_FPU, ("FPU already enabled for thread")); enable_fpu(td); break; case EXC_VEC: KASSERT((td->td_pcb->pcb_flags & PCB_VEC) != PCB_VEC, ("Altivec already enabled for thread")); enable_vec(td); break; case EXC_VECAST_G4: case EXC_VECAST_G5: /* * We get a VPU assist exception for IEEE mode * vector operations on denormalized floats. * Emulating this is a giant pain, so for now, * just switch off IEEE mode and treat them as * zero. */ save_vec(td); td->td_pcb->pcb_vec.vscr |= ALTIVEC_VSCR_NJ; enable_vec(td); break; case EXC_ALI: if (fix_unaligned(td, frame) != 0) { sig = SIGBUS; ucode = BUS_ADRALN; } else frame->srr0 += 4; break; case EXC_PGM: /* Identify the trap reason */ if (frame->srr1 & EXC_PGM_TRAP) { #ifdef KDTRACE_HOOKS inst = fuword32((const void *)frame->srr0); if (inst == 0x0FFFDDDD && dtrace_pid_probe_ptr != NULL) { struct reg regs; fill_regs(td, ®s); (*dtrace_pid_probe_ptr)(®s); break; } #endif sig = SIGTRAP; ucode = TRAP_BRKPT; } else { sig = ppc_instr_emulate(frame, td->td_pcb); if (sig == SIGILL) { if (frame->srr1 & EXC_PGM_PRIV) ucode = ILL_PRVOPC; else if (frame->srr1 & EXC_PGM_ILLEGAL) ucode = ILL_ILLOPC; } else if (sig == SIGFPE) ucode = FPE_FLTINV; /* Punt for now, invalid operation. */ } break; case EXC_MCHK: /* * Note that this may not be recoverable for the user * process, depending on the type of machine check, * but it at least prevents the kernel from dying. */ sig = SIGBUS; ucode = BUS_OBJERR; break; default: trap_fatal(frame); } } else { /* Kernel Mode Traps */ KASSERT(cold || td->td_ucred != NULL, ("kernel trap doesn't have ucred")); switch (type) { #ifdef KDTRACE_HOOKS case EXC_PGM: if (frame->srr1 & EXC_PGM_TRAP) { if (*(uint32_t *)frame->srr0 == 0x7c810808) { if (dtrace_invop_jump_addr != NULL) { dtrace_invop_jump_addr(frame); return; } } } break; #endif #ifdef __powerpc64__ case EXC_DSE: if ((frame->cpu.aim.dar & SEGMENT_MASK) == USER_ADDR) { __asm __volatile ("slbmte %0, %1" :: "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE)); return; } break; #endif case EXC_DSI: if (trap_pfault(frame, 0) == 0) return; break; case EXC_MCHK: if (handle_onfault(frame)) return; break; default: break; } trap_fatal(frame); } if (sig != 0) { if (p->p_sysent->sv_transtrap != NULL) sig = (p->p_sysent->sv_transtrap)(sig, type); ksiginfo_init_trap(&ksi); ksi.ksi_signo = sig; ksi.ksi_code = (int) ucode; /* XXX, not POSIX */ /* ksi.ksi_addr = ? */ ksi.ksi_trapno = type; trapsignal(td, &ksi); } userret(td, frame); } static void trap_fatal(struct trapframe *frame) { +#ifdef KDB + bool handled; +#endif printtrap(frame->exc, frame, 1, (frame->srr1 & PSL_PR)); #ifdef KDB - if (debugger_on_panic && kdb_trap(frame->exc, 0, frame)) - return; + if (debugger_on_panic) { + kdb_why = KDB_WHY_TRAP; + handled = kdb_trap(frame->exc, 0, frame); + kdb_why = KDB_WHY_UNSET; + if (handled) + return; + } #endif panic("%s trap", trapname(frame->exc)); } static void printtrap(u_int vector, struct trapframe *frame, int isfatal, int user) { printf("\n"); printf("%s %s trap:\n", isfatal ? "fatal" : "handled", user ? "user" : "kernel"); printf("\n"); printf(" exception = 0x%x (%s)\n", vector, trapname(vector)); switch (vector) { case EXC_DSE: case EXC_DSI: printf(" virtual address = 0x%" PRIxPTR "\n", frame->cpu.aim.dar); printf(" dsisr = 0x%" PRIxPTR "\n", frame->cpu.aim.dsisr); break; case EXC_ISE: case EXC_ISI: printf(" virtual address = 0x%" PRIxPTR "\n", frame->srr0); break; } printf(" srr0 = 0x%" PRIxPTR "\n", frame->srr0); printf(" srr1 = 0x%" PRIxPTR "\n", frame->srr1); printf(" lr = 0x%" PRIxPTR "\n", frame->lr); printf(" curthread = %p\n", curthread); if (curthread != NULL) printf(" pid = %d, comm = %s\n", curthread->td_proc->p_pid, curthread->td_name); printf("\n"); } /* * Handles a fatal fault when we have onfault state to recover. Returns * non-zero if there was onfault recovery state available. */ static int handle_onfault(struct trapframe *frame) { struct thread *td; faultbuf *fb; td = curthread; fb = td->td_pcb->pcb_onfault; if (fb != NULL) { frame->srr0 = (*fb)[0]; frame->fixreg[1] = (*fb)[1]; frame->fixreg[2] = (*fb)[2]; frame->fixreg[3] = 1; frame->cr = (*fb)[3]; bcopy(&(*fb)[4], &frame->fixreg[13], 19 * sizeof(register_t)); return (1); } return (0); } int cpu_fetch_syscall_args(struct thread *td, struct syscall_args *sa) { struct proc *p; struct trapframe *frame; caddr_t params; size_t argsz; int error, n, i; p = td->td_proc; frame = td->td_frame; sa->code = frame->fixreg[0]; params = (caddr_t)(frame->fixreg + FIRSTARG); n = NARGREG; if (sa->code == SYS_syscall) { /* * code is first argument, * followed by actual args. */ sa->code = *(register_t *) params; params += sizeof(register_t); n -= 1; } else if (sa->code == SYS___syscall) { /* * Like syscall, but code is a quad, * so as to maintain quad alignment * for the rest of the args. */ if (SV_PROC_FLAG(p, SV_ILP32)) { params += sizeof(register_t); sa->code = *(register_t *) params; params += sizeof(register_t); n -= 2; } else { sa->code = *(register_t *) params; params += sizeof(register_t); n -= 1; } } if (p->p_sysent->sv_mask) sa->code &= p->p_sysent->sv_mask; if (sa->code >= p->p_sysent->sv_size) sa->callp = &p->p_sysent->sv_table[0]; else sa->callp = &p->p_sysent->sv_table[sa->code]; sa->narg = sa->callp->sy_narg; if (SV_PROC_FLAG(p, SV_ILP32)) { argsz = sizeof(uint32_t); for (i = 0; i < n; i++) sa->args[i] = ((u_register_t *)(params))[i] & 0xffffffff; } else { argsz = sizeof(uint64_t); for (i = 0; i < n; i++) sa->args[i] = ((u_register_t *)(params))[i]; } if (sa->narg > n) error = copyin(MOREARGS(frame->fixreg[1]), sa->args + n, (sa->narg - n) * argsz); else error = 0; #ifdef __powerpc64__ if (SV_PROC_FLAG(p, SV_ILP32) && sa->narg > n) { /* Expand the size of arguments copied from the stack */ for (i = sa->narg; i >= n; i--) sa->args[i] = ((uint32_t *)(&sa->args[n]))[i-n]; } #endif if (error == 0) { td->td_retval[0] = 0; td->td_retval[1] = frame->fixreg[FIRSTARG + 1]; } return (error); } #include "../../kern/subr_syscall.c" void syscall(struct trapframe *frame) { struct thread *td; struct syscall_args sa; int error; td = curthread; td->td_frame = frame; #ifdef __powerpc64__ /* * Speculatively restore last user SLB segment, which we know is * invalid already, since we are likely to do copyin()/copyout(). */ __asm __volatile ("slbmte %0, %1; isync" :: "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE)); #endif error = syscallenter(td, &sa); syscallret(td, error, &sa); } #ifdef __powerpc64__ /* Handle kernel SLB faults -- runs in real mode, all seat belts off */ void handle_kernel_slb_spill(int type, register_t dar, register_t srr0) { struct slb *slbcache; uint64_t slbe, slbv; uint64_t esid, addr; int i; addr = (type == EXC_ISE) ? srr0 : dar; slbcache = PCPU_GET(slb); esid = (uintptr_t)addr >> ADDR_SR_SHFT; slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID; /* See if the hardware flushed this somehow (can happen in LPARs) */ for (i = 0; i < n_slbs; i++) if (slbcache[i].slbe == (slbe | (uint64_t)i)) return; /* Not in the map, needs to actually be added */ slbv = kernel_va_to_slbv(addr); if (slbcache[USER_SLB_SLOT].slbe == 0) { for (i = 0; i < n_slbs; i++) { if (i == USER_SLB_SLOT) continue; if (!(slbcache[i].slbe & SLBE_VALID)) goto fillkernslb; } if (i == n_slbs) slbcache[USER_SLB_SLOT].slbe = 1; } /* Sacrifice a random SLB entry that is not the user entry */ i = mftb() % n_slbs; if (i == USER_SLB_SLOT) i = (i+1) % n_slbs; fillkernslb: /* Write new entry */ slbcache[i].slbv = slbv; slbcache[i].slbe = slbe | (uint64_t)i; /* Trap handler will restore from cache on exit */ } static int handle_user_slb_spill(pmap_t pm, vm_offset_t addr) { struct slb *user_entry; uint64_t esid; int i; esid = (uintptr_t)addr >> ADDR_SR_SHFT; PMAP_LOCK(pm); user_entry = user_va_to_slb_entry(pm, addr); if (user_entry == NULL) { /* allocate_vsid auto-spills it */ (void)allocate_user_vsid(pm, esid, 0); } else { /* * Check that another CPU has not already mapped this. * XXX: Per-thread SLB caches would be better. */ for (i = 0; i < pm->pm_slb_len; i++) if (pm->pm_slb[i] == user_entry) break; if (i == pm->pm_slb_len) slb_insert_user(pm, user_entry); } PMAP_UNLOCK(pm); return (0); } #endif static int trap_pfault(struct trapframe *frame, int user) { vm_offset_t eva, va; struct thread *td; struct proc *p; vm_map_t map; vm_prot_t ftype; int rv; register_t user_sr; td = curthread; p = td->td_proc; if (frame->exc == EXC_ISI) { eva = frame->srr0; ftype = VM_PROT_EXECUTE; if (frame->srr1 & SRR1_ISI_PFAULT) ftype |= VM_PROT_READ; } else { eva = frame->cpu.aim.dar; if (frame->cpu.aim.dsisr & DSISR_STORE) ftype = VM_PROT_WRITE; else ftype = VM_PROT_READ; } if (user) { map = &p->p_vmspace->vm_map; } else { if ((eva >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) { if (p->p_vmspace == NULL) return (SIGSEGV); map = &p->p_vmspace->vm_map; user_sr = td->td_pcb->pcb_cpu.aim.usr_segm; eva &= ADDR_PIDX | ADDR_POFF; eva |= user_sr << ADDR_SR_SHFT; } else { map = kernel_map; } } va = trunc_page(eva); if (map != kernel_map) { /* * Keep swapout from messing with us during this * critical time. */ PROC_LOCK(p); ++p->p_lock; PROC_UNLOCK(p); /* Fault in the user page: */ rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL); PROC_LOCK(p); --p->p_lock; PROC_UNLOCK(p); /* * XXXDTRACE: add dtrace_doubletrap_func here? */ } else { /* * Don't have to worry about process locking or stacks in the * kernel. */ rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL); } if (rv == KERN_SUCCESS) return (0); if (!user && handle_onfault(frame)) return (0); return (SIGSEGV); } /* * For now, this only deals with the particular unaligned access case * that gcc tends to generate. Eventually it should handle all of the * possibilities that can happen on a 32-bit PowerPC in big-endian mode. */ static int fix_unaligned(struct thread *td, struct trapframe *frame) { struct thread *fputhread; int indicator, reg; double *fpr; indicator = EXC_ALI_OPCODE_INDICATOR(frame->cpu.aim.dsisr); switch (indicator) { case EXC_ALI_LFD: case EXC_ALI_STFD: reg = EXC_ALI_RST(frame->cpu.aim.dsisr); fpr = &td->td_pcb->pcb_fpu.fpr[reg]; fputhread = PCPU_GET(fputhread); /* Juggle the FPU to ensure that we've initialized * the FPRs, and that their current state is in * the PCB. */ if (fputhread != td) { if (fputhread) save_fpu(fputhread); enable_fpu(td); } save_fpu(td); if (indicator == EXC_ALI_LFD) { if (copyin((void *)frame->cpu.aim.dar, fpr, sizeof(double)) != 0) return -1; enable_fpu(td); } else { if (copyout(fpr, (void *)frame->cpu.aim.dar, sizeof(double)) != 0) return -1; } return 0; break; } return -1; } Index: stable/10/sys/powerpc/booke/trap.c =================================================================== --- stable/10/sys/powerpc/booke/trap.c (revision 333204) +++ stable/10/sys/powerpc/booke/trap.c (revision 333205) @@ -1,518 +1,526 @@ /*- * Copyright (C) 1995, 1996 Wolfgang Solfrank. * Copyright (C) 1995, 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $NetBSD: trap.c,v 1.58 2002/03/04 04:07:35 dbj Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_fpu_emu.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define FAULTBUF_LR 0 #define FAULTBUF_R1 1 #define FAULTBUF_R2 2 #define FAULTBUF_CR 3 #define FAULTBUF_CTR 4 #define FAULTBUF_XER 5 #define FAULTBUF_R13 6 static void trap_fatal(struct trapframe *frame); static void printtrap(u_int vector, struct trapframe *frame, int isfatal, int user); static int trap_pfault(struct trapframe *frame, int user); static int fix_unaligned(struct thread *td, struct trapframe *frame); static int handle_onfault(struct trapframe *frame); static void syscall(struct trapframe *frame); struct powerpc_exception { u_int vector; char *name; }; static struct powerpc_exception powerpc_exceptions[] = { { EXC_CRIT, "critical input" }, { EXC_MCHK, "machine check" }, { EXC_DSI, "data storage interrupt" }, { EXC_ISI, "instruction storage interrupt" }, { EXC_EXI, "external interrupt" }, { EXC_ALI, "alignment" }, { EXC_PGM, "program" }, { EXC_SC, "system call" }, { EXC_APU, "auxiliary proc unavailable" }, { EXC_DECR, "decrementer" }, { EXC_FIT, "fixed-interval timer" }, { EXC_WDOG, "watchdog timer" }, { EXC_DTMISS, "data tlb miss" }, { EXC_ITMISS, "instruction tlb miss" }, { EXC_DEBUG, "debug" }, { EXC_PERF, "performance monitoring" }, { EXC_LAST, NULL } }; static const char * trapname(u_int vector) { struct powerpc_exception *pe; for (pe = powerpc_exceptions; pe->vector != EXC_LAST; pe++) { if (pe->vector == vector) return (pe->name); } return ("unknown"); } void trap(struct trapframe *frame) { struct thread *td; struct proc *p; int sig, type, user; ksiginfo_t ksi; #ifdef KDB if (kdb_active) { kdb_reenter(); return; } #endif PCPU_INC(cnt.v_trap); td = curthread; p = td->td_proc; type = frame->exc; sig = 0; user = (frame->srr1 & PSL_PR) ? 1 : 0; CTR3(KTR_TRAP, "trap: %s type=%s (%s)", p->p_comm, trapname(type), user ? "user" : "kernel"); if (user) { td->td_frame = frame; if (td->td_ucred != p->p_ucred) cred_update_thread(td); /* User Mode Traps */ switch (type) { case EXC_DSI: case EXC_ISI: sig = trap_pfault(frame, 1); break; case EXC_SC: syscall(frame); break; case EXC_ALI: if (fix_unaligned(td, frame) != 0) sig = SIGBUS; else frame->srr0 += 4; break; case EXC_DEBUG: /* Single stepping */ mtspr(SPR_DBSR, mfspr(SPR_DBSR)); frame->srr1 &= ~PSL_DE; frame->cpu.booke.dbcr0 &= ~(DBCR0_IDM || DBCR0_IC); sig = SIGTRAP; break; case EXC_PGM: /* Program exception */ sig = ppc_instr_emulate(frame, td->td_pcb); break; default: trap_fatal(frame); } } else { /* Kernel Mode Traps */ KASSERT(cold || td->td_ucred != NULL, ("kernel trap doesn't have ucred")); switch (type) { case EXC_DEBUG: mtspr(SPR_DBSR, mfspr(SPR_DBSR)); kdb_trap(frame->exc, 0, frame); return; case EXC_DSI: if (trap_pfault(frame, 0) == 0) return; break; case EXC_MCHK: if (handle_onfault(frame)) return; break; #ifdef KDB case EXC_PGM: if (frame->cpu.booke.esr & ESR_PTR) kdb_trap(EXC_PGM, 0, frame); return; #endif default: break; } trap_fatal(frame); } if (sig != 0) { if (p->p_sysent->sv_transtrap != NULL) sig = (p->p_sysent->sv_transtrap)(sig, type); ksiginfo_init_trap(&ksi); ksi.ksi_signo = sig; ksi.ksi_code = type; /* XXX, not POSIX */ /* ksi.ksi_addr = ? */ ksi.ksi_trapno = type; trapsignal(td, &ksi); } userret(td, frame); } static void trap_fatal(struct trapframe *frame) { +#ifdef KDB + bool handled; +#endif printtrap(frame->exc, frame, 1, (frame->srr1 & PSL_PR)); #ifdef KDB - if (debugger_on_panic && kdb_trap(frame->exc, 0, frame)) - return; + if (debugger_on_panic) { + kdb_why = KDB_WHY_TRAP; + handled = kdb_trap(frame->exc, 0, frame); + kdb_why = KDB_WHY_UNSET; + if (handled) + return; + } #endif panic("%s trap", trapname(frame->exc)); } static void printtrap(u_int vector, struct trapframe *frame, int isfatal, int user) { register_t va = 0; printf("\n"); printf("%s %s trap:\n", isfatal ? "fatal" : "handled", user ? "user" : "kernel"); printf("\n"); printf(" exception = 0x%x (%s)\n", vector, trapname(vector)); switch (vector) { case EXC_DTMISS: case EXC_DSI: va = frame->cpu.booke.dear; break; case EXC_ITMISS: case EXC_ISI: va = frame->srr0; break; } printf(" virtual address = 0x%08x\n", va); printf(" srr0 = 0x%08x\n", frame->srr0); printf(" srr1 = 0x%08x\n", frame->srr1); printf(" curthread = %p\n", curthread); if (curthread != NULL) printf(" pid = %d, comm = %s\n", curthread->td_proc->p_pid, curthread->td_proc->p_comm); printf("\n"); } /* * Handles a fatal fault when we have onfault state to recover. Returns * non-zero if there was onfault recovery state available. */ static int handle_onfault(struct trapframe *frame) { struct thread *td; faultbuf *fb; td = curthread; fb = td->td_pcb->pcb_onfault; if (fb != NULL) { frame->srr0 = (*fb)[FAULTBUF_LR]; frame->fixreg[1] = (*fb)[FAULTBUF_R1]; frame->fixreg[2] = (*fb)[FAULTBUF_R2]; frame->fixreg[3] = 1; frame->cr = (*fb)[FAULTBUF_CR]; frame->ctr = (*fb)[FAULTBUF_CTR]; frame->xer = (*fb)[FAULTBUF_XER]; bcopy(&(*fb)[FAULTBUF_R13], &frame->fixreg[13], 19 * sizeof(register_t)); return (1); } return (0); } int cpu_fetch_syscall_args(struct thread *td, struct syscall_args *sa) { struct proc *p; struct trapframe *frame; caddr_t params; int error, n; p = td->td_proc; frame = td->td_frame; sa->code = frame->fixreg[0]; params = (caddr_t)(frame->fixreg + FIRSTARG); n = NARGREG; if (sa->code == SYS_syscall) { /* * code is first argument, * followed by actual args. */ sa->code = *(u_int *) params; params += sizeof(register_t); n -= 1; } else if (sa->code == SYS___syscall) { /* * Like syscall, but code is a quad, * so as to maintain quad alignment * for the rest of the args. */ params += sizeof(register_t); sa->code = *(u_int *) params; params += sizeof(register_t); n -= 2; } if (p->p_sysent->sv_mask) sa->code &= p->p_sysent->sv_mask; if (sa->code >= p->p_sysent->sv_size) sa->callp = &p->p_sysent->sv_table[0]; else sa->callp = &p->p_sysent->sv_table[sa->code]; sa->narg = sa->callp->sy_narg; bcopy(params, sa->args, n * sizeof(register_t)); if (sa->narg > n) { error = copyin(MOREARGS(frame->fixreg[1]), sa->args + n, (sa->narg - n) * sizeof(register_t)); } else error = 0; if (error == 0) { td->td_retval[0] = 0; td->td_retval[1] = frame->fixreg[FIRSTARG + 1]; } return (error); } #include "../../kern/subr_syscall.c" void syscall(struct trapframe *frame) { struct thread *td; struct syscall_args sa; int error; td = curthread; td->td_frame = frame; error = syscallenter(td, &sa); syscallret(td, error, &sa); } static int trap_pfault(struct trapframe *frame, int user) { vm_offset_t eva, va; struct thread *td; struct proc *p; vm_map_t map; vm_prot_t ftype; int rv; td = curthread; p = td->td_proc; if (frame->exc == EXC_ISI) { eva = frame->srr0; ftype = VM_PROT_READ | VM_PROT_EXECUTE; } else { eva = frame->cpu.booke.dear; if (frame->cpu.booke.esr & ESR_ST) ftype = VM_PROT_WRITE; else ftype = VM_PROT_READ; } if (user) { KASSERT(p->p_vmspace != NULL, ("trap_pfault: vmspace NULL")); map = &p->p_vmspace->vm_map; } else { if (eva < VM_MAXUSER_ADDRESS) { if (p->p_vmspace == NULL) return (SIGSEGV); map = &p->p_vmspace->vm_map; } else { map = kernel_map; } } va = trunc_page(eva); if (map != kernel_map) { /* * Keep swapout from messing with us during this * critical time. */ PROC_LOCK(p); ++p->p_lock; PROC_UNLOCK(p); /* Fault in the user page: */ rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL); PROC_LOCK(p); --p->p_lock; PROC_UNLOCK(p); } else { /* * Don't have to worry about process locking or stacks in the * kernel. */ rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL); } if (rv == KERN_SUCCESS) return (0); if (!user && handle_onfault(frame)) return (0); return ((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV); } /* * For now, this only deals with the particular unaligned access case * that gcc tends to generate. Eventually it should handle all of the * possibilities that can happen on a 32-bit PowerPC in big-endian mode. */ static int fix_unaligned(struct thread *td, struct trapframe *frame) { #if 0 struct thread *fputhread; int indicator, reg; double *fpr; indicator = EXC_ALI_OPCODE_INDICATOR(frame->dsisr); switch (indicator) { case EXC_ALI_LFD: case EXC_ALI_STFD: reg = EXC_ALI_RST(frame->dsisr); fpr = &td->td_pcb->pcb_fpu.fpr[reg]; fputhread = PCPU_GET(fputhread); /* Juggle the FPU to ensure that we've initialized * the FPRs, and that their current state is in * the PCB. */ if (fputhread != td) { if (fputhread) save_fpu(fputhread); enable_fpu(td); } save_fpu(td); if (indicator == EXC_ALI_LFD) { if (copyin((void *)frame->dar, fpr, sizeof(double)) != 0) return -1; enable_fpu(td); } else { if (copyout(fpr, (void *)frame->dar, sizeof(double)) != 0) return -1; } return 0; break; } #endif return (-1); } #ifdef KDB int db_trap_glue(struct trapframe *); int db_trap_glue(struct trapframe *tf) { if (!(tf->srr1 & PSL_PR)) return (kdb_trap(tf->exc, 0, tf)); return (0); } #endif Index: stable/10/sys/sys/kdb.h =================================================================== --- stable/10/sys/sys/kdb.h (revision 333204) +++ stable/10/sys/sys/kdb.h (revision 333205) @@ -1,123 +1,124 @@ /*- * Copyright (c) 2004 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _SYS_KDB_H_ #define _SYS_KDB_H_ #include struct pcb; struct thread; struct trapframe; typedef int dbbe_init_f(void); typedef void dbbe_trace_f(void); typedef void dbbe_trace_thread_f(struct thread *); typedef int dbbe_trap_f(int, int); struct kdb_dbbe { const char *dbbe_name; dbbe_init_f *dbbe_init; dbbe_trace_f *dbbe_trace; dbbe_trace_thread_f *dbbe_trace_thread; dbbe_trap_f *dbbe_trap; int dbbe_active; }; #define KDB_BACKEND(name, init, trace, trace_thread, trap) \ static struct kdb_dbbe name##_dbbe = { \ .dbbe_name = #name, \ .dbbe_init = init, \ .dbbe_trace = trace, \ .dbbe_trace_thread = trace_thread, \ .dbbe_trap = trap \ }; \ DATA_SET(kdb_dbbe_set, name##_dbbe) extern int kdb_active; /* Non-zero while in debugger. */ extern int debugger_on_panic; /* enter the debugger on panic. */ extern struct kdb_dbbe *kdb_dbbe; /* Default debugger backend or NULL. */ extern struct trapframe *kdb_frame; /* Frame to kdb_trap(). */ extern struct pcb *kdb_thrctx; /* Current context. */ extern struct thread *kdb_thread; /* Current thread. */ int kdb_alt_break(int, int *); int kdb_alt_break_gdb(int, int *); int kdb_break(void); void kdb_backtrace(void); void kdb_backtrace_thread(struct thread *); int kdb_dbbe_select(const char *); void kdb_enter(const char *, const char *); void kdb_init(void); void * kdb_jmpbuf(jmp_buf); void kdb_panic(const char *); void kdb_reboot(void); void kdb_reenter(void); struct pcb *kdb_thr_ctx(struct thread *); struct thread *kdb_thr_first(void); struct thread *kdb_thr_from_pid(pid_t); struct thread *kdb_thr_lookup(lwpid_t); struct thread *kdb_thr_next(struct thread *); int kdb_thr_select(struct thread *); int kdb_trap(int, int, struct trapframe *); /* * KDB enters the debugger via breakpoint(), which leaves the debugger without * a lot of information about why it was entered. This simple enumerated set * captures some basic information. * * It is recommended that values here be short (<16 character) alpha-numeric * strings, as they will be used to construct DDB(4) script names. */ extern const char * volatile kdb_why; #define KDB_WHY_UNSET NULL /* No reason set. */ #define KDB_WHY_PANIC "panic" /* panic() was called. */ #define KDB_WHY_KASSERT "kassert" /* kassert failed. */ +#define KDB_WHY_TRAP "trap" /* Fatal trap. */ #define KDB_WHY_SYSCTL "sysctl" /* Sysctl entered debugger. */ #define KDB_WHY_BOOTFLAGS "bootflags" /* Boot flags were set. */ #define KDB_WHY_WITNESS "witness" /* Witness entered debugger. */ #define KDB_WHY_VFSLOCK "vfslock" /* VFS detected lock problem. */ #define KDB_WHY_NETGRAPH "netgraph" /* Netgraph entered debugger. */ #define KDB_WHY_BREAK "break" /* Console or serial break. */ #define KDB_WHY_WATCHDOG "watchdog" /* Watchdog entered debugger. */ #define KDB_WHY_CAM "cam" /* CAM has entered debugger. */ #define KDB_WHY_NDIS "ndis" /* NDIS entered debugger. */ #define KDB_WHY_ACPI "acpi" /* ACPI entered debugger. */ #define KDB_WHY_TRAPSIG "trapsig" /* Sparc fault. */ #define KDB_WHY_POWERFAIL "powerfail" /* Powerfail NMI. */ #define KDB_WHY_MAC "mac" /* MAC Framework. */ #define KDB_WHY_POWERPC "powerpc" /* Unhandled powerpc intr. */ #define KDB_WHY_UNIONFS "unionfs" /* Unionfs bug. */ #define KDB_WHY_DTRACE "dtrace" /* DTrace action entered debugger. */ /* Return values for kdb_alt_break */ #define KDB_REQ_DEBUGGER 1 /* User requested Debugger */ #define KDB_REQ_PANIC 2 /* User requested a panic */ #define KDB_REQ_REBOOT 3 /* User requested a clean reboot */ #endif /* !_SYS_KDB_H_ */ Index: stable/10 =================================================================== --- stable/10 (revision 333204) +++ stable/10 (revision 333205) Property changes on: stable/10 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r332752