Index: head/cddl/lib/libdtrace/tcp.d =================================================================== --- head/cddl/lib/libdtrace/tcp.d (revision 332893) +++ head/cddl/lib/libdtrace/tcp.d (revision 332894) @@ -1,392 +1,392 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END * * $FreeBSD$ */ /* * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013 Mark Johnston */ #pragma D depends_on library ip.d #pragma D depends_on module kernel #pragma D depends_on provider tcp /* * Convert a TCP state value to a string. */ #pragma D binding "1.6.3" TCPS_CLOSED inline int TCPS_CLOSED = 0; #pragma D binding "1.6.3" TCPS_LISTEN inline int TCPS_LISTEN = 1; #pragma D binding "1.6.3" TCPS_SYN_SENT inline int TCPS_SYN_SENT = 2; #pragma D binding "1.6.3" TCPS_SYN_RECEIVED inline int TCPS_SYN_RECEIVED = 3; #pragma D binding "1.6.3" TCPS_ESTABLISHED inline int TCPS_ESTABLISHED = 4; #pragma D binding "1.6.3" TCPS_CLOSE_WAIT inline int TCPS_CLOSE_WAIT = 5; #pragma D binding "1.6.3" TCPS_FIN_WAIT_1 inline int TCPS_FIN_WAIT_1 = 6; #pragma D binding "1.6.3" TCPS_CLOSING inline int TCPS_CLOSING = 7; #pragma D binding "1.6.3" TCPS_LAST_ACK inline int TCPS_LAST_ACK = 8; #pragma D binding "1.6.3" TCPS_FIN_WAIT_2 inline int TCPS_FIN_WAIT_2 = 9; #pragma D binding "1.6.3" TCPS_TIME_WAIT inline int TCPS_TIME_WAIT = 10; /* TCP segment flags. */ #pragma D binding "1.6.3" TH_FIN inline uint8_t TH_FIN = 0x01; #pragma D binding "1.6.3" TH_SYN inline uint8_t TH_SYN = 0x02; #pragma D binding "1.6.3" TH_RST inline uint8_t TH_RST = 0x04; #pragma D binding "1.6.3" TH_PUSH inline uint8_t TH_PUSH = 0x08; #pragma D binding "1.6.3" TH_ACK inline uint8_t TH_ACK = 0x10; #pragma D binding "1.6.3" TH_URG inline uint8_t TH_URG = 0x20; #pragma D binding "1.6.3" TH_ECE inline uint8_t TH_ECE = 0x40; #pragma D binding "1.6.3" TH_CWR inline uint8_t TH_CWR = 0x80; /* TCP connection state strings. */ #pragma D binding "1.6.3" tcp_state_string inline string tcp_state_string[int32_t state] = state == TCPS_CLOSED ? "state-closed" : state == TCPS_LISTEN ? "state-listen" : state == TCPS_SYN_SENT ? "state-syn-sent" : state == TCPS_SYN_RECEIVED ? "state-syn-received" : state == TCPS_ESTABLISHED ? "state-established" : state == TCPS_CLOSE_WAIT ? "state-close-wait" : state == TCPS_FIN_WAIT_1 ? "state-fin-wait-1" : state == TCPS_CLOSING ? "state-closing" : state == TCPS_LAST_ACK ? "state-last-ack" : state == TCPS_FIN_WAIT_2 ? "state-fin-wait-2" : state == TCPS_TIME_WAIT ? "state-time-wait" : ""; /* * tcpsinfo contains stable TCP details from tcp_t. */ typedef struct tcpsinfo { uintptr_t tcps_addr; int tcps_local; /* is delivered locally, boolean */ int tcps_active; /* active open (from here), boolean */ uint16_t tcps_lport; /* local port */ uint16_t tcps_rport; /* remote port */ string tcps_laddr; /* local address, as a string */ string tcps_raddr; /* remote address, as a string */ int32_t tcps_state; /* TCP state */ uint32_t tcps_iss; /* Initial sequence # sent */ uint32_t tcps_irs; /* Initial sequence # received */ uint32_t tcps_suna; /* sequence # sent but unacked */ uint32_t tcps_smax; /* highest sequence number sent */ uint32_t tcps_snxt; /* next sequence # to send */ uint32_t tcps_rack; /* sequence # we have acked */ uint32_t tcps_rnxt; /* next sequence # expected */ u_long tcps_swnd; /* send window size */ int32_t tcps_snd_ws; /* send window scaling */ uint32_t tcps_swl1; /* window update seg seq number */ uint32_t tcps_swl2; /* window update seg ack number */ uint32_t tcps_rup; /* receive urgent pointer */ uint32_t tcps_radv; /* advertised window */ u_long tcps_rwnd; /* receive window size */ int32_t tcps_rcv_ws; /* receive window scaling */ u_long tcps_cwnd; /* congestion window */ u_long tcps_cwnd_ssthresh; /* threshold for congestion avoidance */ uint32_t tcps_srecover; /* for use in NewReno Fast Recovery */ uint32_t tcps_sack_fack; /* SACK sequence # we have acked */ uint32_t tcps_sack_snxt; /* next SACK seq # for retransmission */ uint32_t tcps_rto; /* round-trip timeout, msec */ uint32_t tcps_mss; /* max segment size */ int tcps_retransmit; /* retransmit send event, boolean */ int tcps_srtt; /* smoothed RTT in units of (TCP_RTT_SCALE*hz) */ int tcps_debug; /* socket has SO_DEBUG set */ int tcps_cookie; /* expose the socket's SO_USER_COOKIE */ int32_t tcps_dupacks; /* consecutive dup acks received */ uint32_t tcps_rtttime; /* RTT measurement start time */ uint32_t tcps_rtseq; /* sequence # being timed */ uint32_t tcps_ts_recent; /* timestamp echo data */ } tcpsinfo_t; /* * tcplsinfo provides the old tcp state for state changes. */ typedef struct tcplsinfo { int32_t tcps_state; /* previous TCP state */ } tcplsinfo_t; /* * tcpinfo is the TCP header fields. */ typedef struct tcpinfo { uint16_t tcp_sport; /* source port */ uint16_t tcp_dport; /* destination port */ uint32_t tcp_seq; /* sequence number */ uint32_t tcp_ack; /* acknowledgment number */ uint8_t tcp_offset; /* data offset, in bytes */ uint8_t tcp_flags; /* flags */ uint16_t tcp_window; /* window size */ uint16_t tcp_checksum; /* checksum */ uint16_t tcp_urgent; /* urgent data pointer */ struct tcphdr *tcp_hdr; /* raw TCP header */ } tcpinfo_t; /* * A clone of tcpinfo_t used to handle the fact that the TCP input path * overwrites some fields of the TCP header with their host-order equivalents. * Unfortunately, DTrace doesn't let us simply typedef a new name for struct * tcpinfo and define a separate translator for it. */ typedef struct tcpinfoh { uint16_t tcp_sport; /* source port */ uint16_t tcp_dport; /* destination port */ uint32_t tcp_seq; /* sequence number */ uint32_t tcp_ack; /* acknowledgment number */ uint8_t tcp_offset; /* data offset, in bytes */ uint8_t tcp_flags; /* flags */ uint16_t tcp_window; /* window size */ uint16_t tcp_checksum; /* checksum */ uint16_t tcp_urgent; /* urgent data pointer */ struct tcphdr *tcp_hdr; /* raw TCP header */ } tcpinfoh_t; #pragma D binding "1.6.3" translator translator csinfo_t < struct tcpcb *p > { cs_addr = NULL; cs_cid = (uint64_t)(p == NULL ? 0 : p->t_inpcb); cs_pid = 0; cs_zoneid = 0; }; #pragma D binding "1.6.3" translator translator tcpsinfo_t < struct tcpcb *p > { tcps_addr = (uintptr_t)p; tcps_local = -1; /* XXX */ tcps_active = -1; /* XXX */ tcps_lport = p == NULL ? 0 : ntohs(p->t_inpcb->inp_inc.inc_ie.ie_lport); tcps_rport = p == NULL ? 0 : ntohs(p->t_inpcb->inp_inc.inc_ie.ie_fport); tcps_laddr = p == NULL ? 0 : p->t_inpcb->inp_vflag == INP_IPV4 ? - inet_ntoa(&p->t_inpcb->inp_inc.inc_ie.ie_dependladdr.ie46_local.ia46_addr4.s_addr) : - inet_ntoa6(&p->t_inpcb->inp_inc.inc_ie.ie_dependladdr.ie6_local); + inet_ntoa(&p->t_inpcb->inp_inc.inc_ie.ie_dependladdr.id46_addr.ia46_addr4.s_addr) : + inet_ntoa6(&p->t_inpcb->inp_inc.inc_ie.ie_dependladdr.id6_addr); tcps_raddr = p == NULL ? 0 : p->t_inpcb->inp_vflag == INP_IPV4 ? - inet_ntoa(&p->t_inpcb->inp_inc.inc_ie.ie_dependfaddr.ie46_foreign.ia46_addr4.s_addr) : - inet_ntoa6(&p->t_inpcb->inp_inc.inc_ie.ie_dependfaddr.ie6_foreign); + inet_ntoa(&p->t_inpcb->inp_inc.inc_ie.ie_dependfaddr.id46_addr.ia46_addr4.s_addr) : + inet_ntoa6(&p->t_inpcb->inp_inc.inc_ie.ie_dependfaddr.id6_addr); tcps_state = p == NULL ? -1 : p->t_state; tcps_iss = p == NULL ? 0 : p->iss; tcps_irs = p == NULL ? 0 : p->irs; tcps_suna = p == NULL ? 0 : p->snd_una; tcps_smax = p == NULL ? 0 : p->snd_max; tcps_snxt = p == NULL ? 0 : p->snd_nxt; tcps_rack = p == NULL ? 0 : p->last_ack_sent; tcps_rnxt = p == NULL ? 0 : p->rcv_nxt; tcps_swnd = p == NULL ? -1 : p->snd_wnd; tcps_snd_ws = p == NULL ? -1 : p->snd_scale; tcps_swl1 = p == NULL ? -1 : p->snd_wl1; tcps_swl2 = p == NULL ? -1 : p->snd_wl2; tcps_radv = p == NULL ? -1 : p->rcv_adv; tcps_rwnd = p == NULL ? -1 : p->rcv_wnd; tcps_rup = p == NULL ? -1 : p->rcv_up; tcps_rcv_ws = p == NULL ? -1 : p->rcv_scale; tcps_cwnd = p == NULL ? -1 : p->snd_cwnd; tcps_cwnd_ssthresh = p == NULL ? -1 : p->snd_ssthresh; tcps_srecover = p == NULL ? -1 : p->snd_recover; tcps_sack_fack = p == NULL ? 0 : p->snd_fack; tcps_sack_snxt = p == NULL ? 0 : p->sack_newdata; tcps_rto = p == NULL ? -1 : (p->t_rxtcur * 1000) / `hz; tcps_mss = p == NULL ? -1 : p->t_maxseg; tcps_retransmit = p == NULL ? -1 : p->t_rxtshift > 0 ? 1 : 0; tcps_srtt = p == NULL ? -1 : p->t_srtt; /* smoothed RTT in units of (TCP_RTT_SCALE*hz) */ tcps_debug = p == NULL ? 0 : p->t_inpcb->inp_socket->so_options & 1; tcps_cookie = p == NULL ? -1 : p->t_inpcb->inp_socket->so_user_cookie; tcps_dupacks = p == NULL ? -1 : p->t_dupacks; tcps_rtttime = p == NULL ? -1 : p->t_rtttime; tcps_rtseq = p == NULL ? -1 : p->t_rtseq; tcps_ts_recent = p == NULL ? -1 : p->ts_recent; }; #pragma D binding "1.6.3" translator translator tcpinfo_t < struct tcphdr *p > { tcp_sport = p == NULL ? 0 : ntohs(p->th_sport); tcp_dport = p == NULL ? 0 : ntohs(p->th_dport); tcp_seq = p == NULL ? -1 : ntohl(p->th_seq); tcp_ack = p == NULL ? -1 : ntohl(p->th_ack); tcp_offset = p == NULL ? -1 : (p->th_off >> 2); tcp_flags = p == NULL ? 0 : p->th_flags; tcp_window = p == NULL ? 0 : ntohs(p->th_win); tcp_checksum = p == NULL ? 0 : ntohs(p->th_sum); tcp_urgent = p == NULL ? 0 : ntohs(p->th_urp); tcp_hdr = (struct tcphdr *)p; }; /* * This translator differs from the one for tcpinfo_t in that the sequence * number, acknowledgement number, window size and urgent pointer are already * in host order and thus don't need to be converted. */ #pragma D binding "1.6.3" translator translator tcpinfoh_t < struct tcphdr *p > { tcp_sport = p == NULL ? 0 : ntohs(p->th_sport); tcp_dport = p == NULL ? 0 : ntohs(p->th_dport); tcp_seq = p == NULL ? -1 : p->th_seq; tcp_ack = p == NULL ? -1 : p->th_ack; tcp_offset = p == NULL ? -1 : (p->th_off >> 2); tcp_flags = p == NULL ? 0 : p->th_flags; tcp_window = p == NULL ? 0 : p->th_win; tcp_checksum = p == NULL ? 0 : ntohs(p->th_sum); tcp_urgent = p == NULL ? 0 : p->th_urp; tcp_hdr = (struct tcphdr *)p; }; #pragma D binding "1.6.3" translator translator tcplsinfo_t < int s > { tcps_state = s; }; /* Support for TCP debug */ #pragma D binding "1.12.1" TA_INPUT inline int TA_INPUT = 0; #pragma D binding "1.12.1" TA_OUTPUT inline int TA_OUTPUT = 1; #pragma D binding "1.12.1" TA_USER inline int TA_USER = 2; #pragma D binding "1.12.1" TA_RESPOND inline int TA_RESPOND = 3; #pragma D binding "1.12.1" TA_DROP inline int TA_DROP = 4; /* direction strings. */ #pragma D binding "1.12.1" tcpdebug_dir_string inline string tcpdebug_dir_string[uint8_t direction] = direction == TA_INPUT ? "input" : direction == TA_OUTPUT ? "output" : direction == TA_USER ? "user" : direction == TA_RESPOND ? "respond" : direction == TA_OUTPUT ? "drop" : "unknown" ; #pragma D binding "1.12.1" tcpflag_string inline string tcpflag_string[uint8_t flags] = flags & TH_FIN ? "FIN" : flags & TH_SYN ? "SYN" : flags & TH_RST ? "RST" : flags & TH_PUSH ? "PUSH" : flags & TH_ACK ? "ACK" : flags & TH_URG ? "URG" : flags & TH_ECE ? "ECE" : flags & TH_CWR ? "CWR" : "unknown" ; #pragma D binding "1.12.1" PRU_ATTACH inline int PRU_ATTACH = 0; #pragma D binding "1.12.1" PRU_DETACH inline int PRU_DETACH = 1; #pragma D binding "1.12.1" PRU_BIND inline int PRU_BIND = 2; #pragma D binding "1.12.1" PRU_LISTEN inline int PRU_LISTEN = 3; #pragma D binding "1.12.1" PRU_CONNECT inline int PRU_CONNECT = 4; #pragma D binding "1.12.1" PRU_ACCEPT inline int PRU_ACCEPT = 5 ; #pragma D binding "1.12.1" PRU_DISCONNECT inline int PRU_DISCONNECT = 6; #pragma D binding "1.12.1" PRU_SHUTDOWN inline int PRU_SHUTDOWN = 7; #pragma D binding "1.12.1" PRU_RCVD inline int PRU_RCVD = 8; #pragma D binding "1.12.1" PRU_SEND inline int PRU_SEND = 9; #pragma D binding "1.12.1" PRU_ABORT inline int PRU_ABORT = 10; #pragma D binding "1.12.1" PRU_CONTROL inline int PRU_CONTROL = 11; #pragma D binding "1.12.1" PRU_SENSE inline int PRU_SENSE = 12; #pragma D binding "1.12.1" PRU_RCVOOB inline int PRU_RCVOOB = 13; #pragma D binding "1.12.1" PRU_SENDOOB inline int PRU_SENDOOB = 14; #pragma D binding "1.12.1" PRU_SOCKADDR inline int PRU_SOCKADDR = 15; #pragma D binding "1.12.1" PRU_PEERADDR inline int PRU_PEERADDR = 16; #pragma D binding "1.12.1" PRU_CONNECT2 inline int PRU_CONNECT2 = 17; #pragma D binding "1.12.1" PRU_FASTTIMO inline int PRU_FASTTIMO = 18; #pragma D binding "1.12.1" PRU_SLOWTIMO inline int PRU_SLOWTIMO = 19; #pragma D binding "1.12.1" PRU_PROTORCV inline int PRU_PROTORCV = 20; #pragma D binding "1.12.1" PRU_PROTOSEND inline int PRU_PROTOSEND = 21; #pragma D binding "1.12.1" PRU_SEND_EOF inline int PRU_SEND_EOF = 22; #pragma D binding "1.12.1" PRU_SOSETLABEL inline int PRU_SOSETLABEL = 23; #pragma D binding "1.12.1" PRU_CLOSE inline int PRU_CLOSE = 24; #pragma D binding "1.12.1" PRU_FLUSH inline int PRU_FLUSH = 25; #pragma D binding "1.12.1" prureq_string inline string prureq_string[uint8_t req] = req == PRU_ATTACH ? "ATTACH" : req == PRU_DETACH ? "DETACH" : req == PRU_BIND ? "BIND" : req == PRU_LISTEN ? "LISTEN" : req == PRU_CONNECT ? "CONNECT" : req == PRU_ACCEPT ? "ACCEPT" : req == PRU_DISCONNECT ? "DISCONNECT" : req == PRU_SHUTDOWN ? "SHUTDOWN" : req == PRU_RCVD ? "RCVD" : req == PRU_SEND ? "SEND" : req == PRU_ABORT ? "ABORT" : req == PRU_CONTROL ? "CONTROL" : req == PRU_SENSE ? "SENSE" : req == PRU_RCVOOB ? "RCVOOB" : req == PRU_SENDOOB ? "SENDOOB" : req == PRU_SOCKADDR ? "SOCKADDR" : req == PRU_PEERADDR ? "PEERADDR" : req == PRU_CONNECT2 ? "CONNECT2" : req == PRU_FASTTIMO ? "FASTTIMO" : req == PRU_SLOWTIMO ? "SLOWTIMO" : req == PRU_PROTORCV ? "PROTORCV" : req == PRU_PROTOSEND ? "PROTOSEND" : req == PRU_SEND ? "SEND_EOF" : req == PRU_SOSETLABEL ? "SOSETLABEL" : req == PRU_CLOSE ? "CLOSE" : req == PRU_FLUSH ? "FLUSE" : "unknown" ; Index: head/sys/kern/uipc_debug.c =================================================================== --- head/sys/kern/uipc_debug.c (revision 332893) +++ head/sys/kern/uipc_debug.c (revision 332894) @@ -1,536 +1,540 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2007 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Debugger routines relating to sockets, protocols, etc, for use in DDB. */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include #include #include #include #include #include #ifdef DDB #include static void db_print_sotype(short so_type) { switch (so_type) { case SOCK_STREAM: db_printf("SOCK_STREAM"); break; case SOCK_DGRAM: db_printf("SOCK_DGRAM"); break; case SOCK_RAW: db_printf("SOCK_RAW"); break; case SOCK_RDM: db_printf("SOCK_RDM"); break; case SOCK_SEQPACKET: db_printf("SOCK_SEQPACKET"); break; default: db_printf("unknown"); break; } } static void -db_print_sooptions(short so_options) +db_print_sooptions(int so_options) { int comma; comma = 0; if (so_options & SO_DEBUG) { db_printf("%sSO_DEBUG", comma ? ", " : ""); comma = 1; } if (so_options & SO_ACCEPTCONN) { db_printf("%sSO_ACCEPTCONN", comma ? ", " : ""); comma = 1; } if (so_options & SO_REUSEADDR) { db_printf("%sSO_REUSEADDR", comma ? ", " : ""); comma = 1; } if (so_options & SO_KEEPALIVE) { db_printf("%sSO_KEEPALIVE", comma ? ", " : ""); comma = 1; } if (so_options & SO_DONTROUTE) { db_printf("%sSO_DONTROUTE", comma ? ", " : ""); comma = 1; } if (so_options & SO_BROADCAST) { db_printf("%sSO_BROADCAST", comma ? ", " : ""); comma = 1; } if (so_options & SO_USELOOPBACK) { db_printf("%sSO_USELOOPBACK", comma ? ", " : ""); comma = 1; } if (so_options & SO_LINGER) { db_printf("%sSO_LINGER", comma ? ", " : ""); comma = 1; } if (so_options & SO_OOBINLINE) { db_printf("%sSO_OOBINLINE", comma ? ", " : ""); comma = 1; } if (so_options & SO_REUSEPORT) { db_printf("%sSO_REUSEPORT", comma ? ", " : ""); + comma = 1; + } + if (so_options & SO_REUSEPORT_LB) { + db_printf("%sSO_REUSEPORT_LB", comma ? ", " : ""); comma = 1; } if (so_options & SO_TIMESTAMP) { db_printf("%sSO_TIMESTAMP", comma ? ", " : ""); comma = 1; } if (so_options & SO_NOSIGPIPE) { db_printf("%sSO_NOSIGPIPE", comma ? ", " : ""); comma = 1; } if (so_options & SO_ACCEPTFILTER) { db_printf("%sSO_ACCEPTFILTER", comma ? ", " : ""); comma = 1; } if (so_options & SO_BINTIME) { db_printf("%sSO_BINTIME", comma ? ", " : ""); comma = 1; } if (so_options & SO_NO_OFFLOAD) { db_printf("%sSO_NO_OFFLOAD", comma ? ", " : ""); comma = 1; } if (so_options & SO_NO_DDP) { db_printf("%sSO_NO_DDP", comma ? ", " : ""); comma = 1; } } static void db_print_sostate(short so_state) { int comma; comma = 0; if (so_state & SS_NOFDREF) { db_printf("%sSS_NOFDREF", comma ? ", " : ""); comma = 1; } if (so_state & SS_ISCONNECTED) { db_printf("%sSS_ISCONNECTED", comma ? ", " : ""); comma = 1; } if (so_state & SS_ISCONNECTING) { db_printf("%sSS_ISCONNECTING", comma ? ", " : ""); comma = 1; } if (so_state & SS_ISDISCONNECTING) { db_printf("%sSS_ISDISCONNECTING", comma ? ", " : ""); comma = 1; } if (so_state & SS_NBIO) { db_printf("%sSS_NBIO", comma ? ", " : ""); comma = 1; } if (so_state & SS_ASYNC) { db_printf("%sSS_ASYNC", comma ? ", " : ""); comma = 1; } if (so_state & SS_ISCONFIRMING) { db_printf("%sSS_ISCONFIRMING", comma ? ", " : ""); comma = 1; } if (so_state & SS_PROTOREF) { db_printf("%sSS_PROTOREF", comma ? ", " : ""); comma = 1; } } static void db_print_soqstate(int so_qstate) { int comma; comma = 0; if (so_qstate & SQ_INCOMP) { db_printf("%sSQ_INCOMP", comma ? ", " : ""); comma = 1; } if (so_qstate & SQ_COMP) { db_printf("%sSQ_COMP", comma ? ", " : ""); comma = 1; } } static void db_print_sbstate(short sb_state) { int comma; comma = 0; if (sb_state & SBS_CANTSENDMORE) { db_printf("%sSBS_CANTSENDMORE", comma ? ", " : ""); comma = 1; } if (sb_state & SBS_CANTRCVMORE) { db_printf("%sSBS_CANTRCVMORE", comma ? ", " : ""); comma = 1; } if (sb_state & SBS_RCVATMARK) { db_printf("%sSBS_RCVATMARK", comma ? ", " : ""); comma = 1; } } static void db_print_indent(int indent) { int i; for (i = 0; i < indent; i++) db_printf(" "); } static void db_print_domain(struct domain *d, const char *domain_name, int indent) { db_print_indent(indent); db_printf("%s at %p\n", domain_name, d); indent += 2; db_print_indent(indent); db_printf("dom_family: %d ", d->dom_family); db_printf("dom_name: %s\n", d->dom_name); db_print_indent(indent); db_printf("dom_init: %p ", d->dom_init); db_printf("dom_externalize: %p ", d->dom_externalize); db_printf("dom_dispose: %p\n", d->dom_dispose); db_print_indent(indent); db_printf("dom_protosw: %p ", d->dom_protosw); db_printf("dom_next: %p\n", d->dom_next); db_print_indent(indent); db_printf("dom_rtattach: %p ", d->dom_rtattach); db_print_indent(indent); db_printf("dom_ifattach: %p ", d->dom_ifattach); db_printf("dom_ifdetach: %p\n", d->dom_ifdetach); } static void db_print_prflags(short pr_flags) { int comma; comma = 0; if (pr_flags & PR_ATOMIC) { db_printf("%sPR_ATOMIC", comma ? ", " : ""); comma = 1; } if (pr_flags & PR_ADDR) { db_printf("%sPR_ADDR", comma ? ", " : ""); comma = 1; } if (pr_flags & PR_CONNREQUIRED) { db_printf("%sPR_CONNREQUIRED", comma ? ", " : ""); comma = 1; } if (pr_flags & PR_WANTRCVD) { db_printf("%sPR_WANTRCVD", comma ? ", " : ""); comma = 1; } if (pr_flags & PR_RIGHTS) { db_printf("%sPR_RIGHTS", comma ? ", " : ""); comma = 1; } if (pr_flags & PR_IMPLOPCL) { db_printf("%sPR_IMPLOPCL", comma ? ", " : ""); comma = 1; } if (pr_flags & PR_LASTHDR) { db_printf("%sPR_LASTHDR", comma ? ", " : ""); comma = 1; } } static void db_print_protosw(struct protosw *pr, const char *prname, int indent) { db_print_indent(indent); db_printf("%s at %p\n", prname, pr); indent += 2; db_print_indent(indent); db_printf("pr_type: %d ", pr->pr_type); db_printf("pr_domain: %p\n", pr->pr_domain); if (pr->pr_domain != NULL) db_print_domain(pr->pr_domain, "pr_domain", indent); db_print_indent(indent); db_printf("pr_protocol: %d\n", pr->pr_protocol); db_print_indent(indent); db_printf("pr_flags: %d (", pr->pr_flags); db_print_prflags(pr->pr_flags); db_printf(")\n"); db_print_indent(indent); db_printf("pr_input: %p ", pr->pr_input); db_printf("pr_output: %p ", pr->pr_output); db_printf("pr_ctlinput: %p\n", pr->pr_ctlinput); db_print_indent(indent); db_printf("pr_ctloutput: %p ", pr->pr_ctloutput); db_printf("pr_init: %p\n", pr->pr_init); db_print_indent(indent); db_printf("pr_fasttimo: %p ", pr->pr_fasttimo); db_printf("pr_slowtimo: %p ", pr->pr_slowtimo); db_printf("pr_drain: %p\n", pr->pr_drain); } static void db_print_sbflags(short sb_flags) { int comma; comma = 0; if (sb_flags & SB_WAIT) { db_printf("%sSB_WAIT", comma ? ", " : ""); comma = 1; } if (sb_flags & SB_SEL) { db_printf("%sSB_SEL", comma ? ", " : ""); comma = 1; } if (sb_flags & SB_ASYNC) { db_printf("%sSB_ASYNC", comma ? ", " : ""); comma = 1; } if (sb_flags & SB_UPCALL) { db_printf("%sSB_UPCALL", comma ? ", " : ""); comma = 1; } if (sb_flags & SB_NOINTR) { db_printf("%sSB_NOINTR", comma ? ", " : ""); comma = 1; } if (sb_flags & SB_AIO) { db_printf("%sSB_AIO", comma ? ", " : ""); comma = 1; } if (sb_flags & SB_KNOTE) { db_printf("%sSB_KNOTE", comma ? ", " : ""); comma = 1; } if (sb_flags & SB_AUTOSIZE) { db_printf("%sSB_AUTOSIZE", comma ? ", " : ""); comma = 1; } } static void db_print_sockbuf(struct sockbuf *sb, const char *sockbufname, int indent) { db_print_indent(indent); db_printf("%s at %p\n", sockbufname, sb); indent += 2; db_print_indent(indent); db_printf("sb_state: 0x%x (", sb->sb_state); db_print_sbstate(sb->sb_state); db_printf(")\n"); db_print_indent(indent); db_printf("sb_mb: %p ", sb->sb_mb); db_printf("sb_mbtail: %p ", sb->sb_mbtail); db_printf("sb_lastrecord: %p\n", sb->sb_lastrecord); db_print_indent(indent); db_printf("sb_sndptr: %p ", sb->sb_sndptr); db_printf("sb_sndptroff: %u\n", sb->sb_sndptroff); db_print_indent(indent); db_printf("sb_acc: %u ", sb->sb_acc); db_printf("sb_ccc: %u ", sb->sb_ccc); db_printf("sb_hiwat: %u ", sb->sb_hiwat); db_printf("sb_mbcnt: %u ", sb->sb_mbcnt); db_printf("sb_mbmax: %u\n", sb->sb_mbmax); db_print_indent(indent); db_printf("sb_mcnt: %u ", sb->sb_mcnt); db_printf("sb_ccnt: %u ", sb->sb_ccnt); db_printf("sb_ctl: %u ", sb->sb_ctl); db_printf("sb_lowat: %d ", sb->sb_lowat); db_printf("sb_timeo: %jd\n", sb->sb_timeo); db_print_indent(indent); db_printf("sb_flags: 0x%x (", sb->sb_flags); db_print_sbflags(sb->sb_flags); db_printf(")\n"); db_print_indent(indent); db_printf("sb_aiojobq first: %p\n", TAILQ_FIRST(&sb->sb_aiojobq)); } static void db_print_socket(struct socket *so, const char *socketname, int indent) { db_print_indent(indent); db_printf("%s at %p\n", socketname, so); indent += 2; db_print_indent(indent); db_printf("so_count: %d ", so->so_count); db_printf("so_type: %d (", so->so_type); db_print_sotype(so->so_type); db_printf(")\n"); db_print_indent(indent); db_printf("so_options: 0x%x (", so->so_options); db_print_sooptions(so->so_options); db_printf(")\n"); db_print_indent(indent); db_printf("so_linger: %d ", so->so_linger); db_printf("so_state: 0x%x (", so->so_state); db_print_sostate(so->so_state); db_printf(")\n"); db_print_indent(indent); db_printf("so_pcb: %p ", so->so_pcb); db_printf("so_proto: %p\n", so->so_proto); if (so->so_proto != NULL) db_print_protosw(so->so_proto, "so_proto", indent); db_print_indent(indent); if (so->so_options & SO_ACCEPTCONN) { db_printf("sol_incomp first: %p ", TAILQ_FIRST(&so->sol_incomp)); db_printf("sol_comp first: %p\n", TAILQ_FIRST(&so->sol_comp)); db_printf("sol_qlen: %d ", so->sol_qlen); db_printf("sol_incqlen: %d ", so->sol_incqlen); db_printf("sol_qlimit: %d ", so->sol_qlimit); } else { db_printf("so_qstate: 0x%x (", so->so_qstate); db_print_soqstate(so->so_qstate); db_printf(") "); db_printf("so_listen: %p ", so->so_listen); /* so_list skipped */ db_printf("so_timeo: %d ", so->so_timeo); db_printf("so_error: %d\n", so->so_error); db_print_indent(indent); db_printf("so_sigio: %p ", so->so_sigio); db_printf("so_oobmark: %lu\n", so->so_oobmark); db_print_sockbuf(&so->so_rcv, "so_rcv", indent); db_print_sockbuf(&so->so_snd, "so_snd", indent); } } DB_SHOW_COMMAND(socket, db_show_socket) { struct socket *so; if (!have_addr) { db_printf("usage: show socket \n"); return; } so = (struct socket *)addr; db_print_socket(so, "socket", 0); } DB_SHOW_COMMAND(sockbuf, db_show_sockbuf) { struct sockbuf *sb; if (!have_addr) { db_printf("usage: show sockbuf \n"); return; } sb = (struct sockbuf *)addr; db_print_sockbuf(sb, "sockbuf", 0); } DB_SHOW_COMMAND(protosw, db_show_protosw) { struct protosw *pr; if (!have_addr) { db_printf("usage: show protosw \n"); return; } pr = (struct protosw *)addr; db_print_protosw(pr, "protosw", 0); } DB_SHOW_COMMAND(domain, db_show_domain) { struct domain *d; if (!have_addr) { db_printf("usage: show protosw \n"); return; } d = (struct domain *)addr; db_print_domain(d, "domain", 0); } #endif Index: head/sys/kern/uipc_socket.c =================================================================== --- head/sys/kern/uipc_socket.c (revision 332893) +++ head/sys/kern/uipc_socket.c (revision 332894) @@ -1,4126 +1,4222 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1988, 1990, 1993 * The Regents of the University of California. * Copyright (c) 2004 The FreeBSD Foundation * Copyright (c) 2004-2008 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 */ /* * Comments on the socket life cycle: * * soalloc() sets of socket layer state for a socket, called only by * socreate() and sonewconn(). Socket layer private. * * sodealloc() tears down socket layer state for a socket, called only by * sofree() and sonewconn(). Socket layer private. * * pru_attach() associates protocol layer state with an allocated socket; * called only once, may fail, aborting socket allocation. This is called * from socreate() and sonewconn(). Socket layer private. * * pru_detach() disassociates protocol layer state from an attached socket, * and will be called exactly once for sockets in which pru_attach() has * been successfully called. If pru_attach() returned an error, * pru_detach() will not be called. Socket layer private. * * pru_abort() and pru_close() notify the protocol layer that the last * consumer of a socket is starting to tear down the socket, and that the * protocol should terminate the connection. Historically, pru_abort() also * detached protocol state from the socket state, but this is no longer the * case. * * socreate() creates a socket and attaches protocol state. This is a public * interface that may be used by socket layer consumers to create new * sockets. * * sonewconn() creates a socket and attaches protocol state. This is a * public interface that may be used by protocols to create new sockets when * a new connection is received and will be available for accept() on a * listen socket. * * soclose() destroys a socket after possibly waiting for it to disconnect. * This is a public interface that socket consumers should use to close and * release a socket when done with it. * * soabort() destroys a socket without waiting for it to disconnect (used * only for incoming connections that are already partially or fully * connected). This is used internally by the socket layer when clearing * listen socket queues (due to overflow or close on the listen socket), but * is also a public interface protocols may use to abort connections in * their incomplete listen queues should they no longer be required. Sockets * placed in completed connection listen queues should not be aborted for * reasons described in the comment above the soclose() implementation. This * is not a general purpose close routine, and except in the specific * circumstances described here, should not be used. * * sofree() will free a socket and its protocol state if all references on * the socket have been released, and is the public interface to attempt to * free a socket when a reference is removed. This is a socket layer private * interface. * * NOTE: In addition to socreate() and soclose(), which provide a single * socket reference to the consumer to be managed as required, there are two * calls to explicitly manage socket references, soref(), and sorele(). * Currently, these are generally required only when transitioning a socket * from a listen queue to a file descriptor, in order to prevent garbage * collection of the socket at an untimely moment. For a number of reasons, * these interfaces are not preferred, and should be avoided. * * NOTE: With regard to VNETs the general rule is that callers do not set * curvnet. Exceptions to this rule include soabort(), sodisconnect(), * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() * and sorflush(), which are usually called from a pre-set VNET context. * sopoll() currently does not need a VNET context to be set. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_sctp.h" #include #include #include #include #include #include #include #include #include #include #include /* for struct knote */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef COMPAT_FREEBSD32 #include #include #include #endif static int soreceive_rcvoob(struct socket *so, struct uio *uio, int flags); static void so_rdknl_lock(void *); static void so_rdknl_unlock(void *); static void so_rdknl_assert_locked(void *); static void so_rdknl_assert_unlocked(void *); static void so_wrknl_lock(void *); static void so_wrknl_unlock(void *); static void so_wrknl_assert_locked(void *); static void so_wrknl_assert_unlocked(void *); static void filt_sordetach(struct knote *kn); static int filt_soread(struct knote *kn, long hint); static void filt_sowdetach(struct knote *kn); static int filt_sowrite(struct knote *kn, long hint); static int filt_soempty(struct knote *kn, long hint); static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); fo_kqfilter_t soo_kqfilter; static struct filterops soread_filtops = { .f_isfd = 1, .f_detach = filt_sordetach, .f_event = filt_soread, }; static struct filterops sowrite_filtops = { .f_isfd = 1, .f_detach = filt_sowdetach, .f_event = filt_sowrite, }; static struct filterops soempty_filtops = { .f_isfd = 1, .f_detach = filt_sowdetach, .f_event = filt_soempty, }; so_gen_t so_gencnt; /* generation count for sockets */ MALLOC_DEFINE(M_SONAME, "soname", "socket name"); MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); #define VNET_SO_ASSERT(so) \ VNET_ASSERT(curvnet != NULL, \ ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); #define V_socket_hhh VNET(socket_hhh) /* * Limit on the number of connections in the listen queue waiting * for accept(2). * NB: The original sysctl somaxconn is still available but hidden * to prevent confusion about the actual purpose of this number. */ static u_int somaxconn = SOMAXCONN; static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS) { int error; int val; val = somaxconn; error = sysctl_handle_int(oidp, &val, 0, req); if (error || !req->newptr ) return (error); /* * The purpose of the UINT_MAX / 3 limit, is so that the formula * 3 * so_qlimit / 2 * below, will not overflow. */ if (val < 1 || val > UINT_MAX / 3) return (EINVAL); somaxconn = val; return (0); } SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW, 0, sizeof(int), sysctl_somaxconn, "I", "Maximum listen socket pending connection accept queue size"); SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP, 0, sizeof(int), sysctl_somaxconn, "I", "Maximum listen socket pending connection accept queue size (compat)"); static int numopensockets; SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, &numopensockets, 0, "Number of open sockets"); /* * accept_mtx locks down per-socket fields relating to accept queues. See * socketvar.h for an annotation of the protected fields of struct socket. */ struct mtx accept_mtx; MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); /* * so_global_mtx protects so_gencnt, numopensockets, and the per-socket * so_gencnt field. */ static struct mtx so_global_mtx; MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); /* * General IPC sysctl name space, used by sockets and a variety of other IPC * types. */ SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); /* * Initialize the socket subsystem and set up the socket * memory allocator. */ static uma_zone_t socket_zone; int maxsockets; static void socket_zone_change(void *tag) { maxsockets = uma_zone_set_max(socket_zone, maxsockets); } static void socket_hhook_register(int subtype) { if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, &V_socket_hhh[subtype], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) printf("%s: WARNING: unable to register hook\n", __func__); } static void socket_hhook_deregister(int subtype) { if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) printf("%s: WARNING: unable to deregister hook\n", __func__); } static void socket_init(void *tag) { socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); maxsockets = uma_zone_set_max(socket_zone, maxsockets); uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, EVENTHANDLER_PRI_FIRST); } SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); static void socket_vnet_init(const void *unused __unused) { int i; /* We expect a contiguous range */ for (i = 0; i <= HHOOK_SOCKET_LAST; i++) socket_hhook_register(i); } VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_vnet_init, NULL); static void socket_vnet_uninit(const void *unused __unused) { int i; for (i = 0; i <= HHOOK_SOCKET_LAST; i++) socket_hhook_deregister(i); } VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_vnet_uninit, NULL); /* * Initialise maxsockets. This SYSINIT must be run after * tunable_mbinit(). */ static void init_maxsockets(void *ignored) { TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); maxsockets = imax(maxsockets, maxfiles); } SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); /* * Sysctl to get and set the maximum global sockets limit. Notify protocols * of the change so that they can update their dependent limits as required. */ static int sysctl_maxsockets(SYSCTL_HANDLER_ARGS) { int error, newmaxsockets; newmaxsockets = maxsockets; error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); if (error == 0 && req->newptr) { if (newmaxsockets > maxsockets && newmaxsockets <= maxfiles) { maxsockets = newmaxsockets; EVENTHANDLER_INVOKE(maxsockets_change); } else error = EINVAL; } return (error); } SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW, &maxsockets, 0, sysctl_maxsockets, "IU", "Maximum number of sockets available"); /* * Socket operation routines. These routines are called by the routines in * sys_socket.c or from a system process, and implement the semantics of * socket operations by switching out to the protocol specific routines. */ /* * Get a socket structure from our zone, and initialize it. Note that it * would probably be better to allocate socket and PCB at the same time, but * I'm not convinced that all the protocols can be easily modified to do * this. * * soalloc() returns a socket with a ref count of 0. */ static struct socket * soalloc(struct vnet *vnet) { struct socket *so; so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); if (so == NULL) return (NULL); #ifdef MAC if (mac_socket_init(so, M_NOWAIT) != 0) { uma_zfree(socket_zone, so); return (NULL); } #endif if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { uma_zfree(socket_zone, so); return (NULL); } /* * The socket locking protocol allows to lock 2 sockets at a time, * however, the first one must be a listening socket. WITNESS lacks * a feature to change class of an existing lock, so we use DUPOK. */ mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); so->so_rcv.sb_sel = &so->so_rdsel; so->so_snd.sb_sel = &so->so_wrsel; sx_init(&so->so_snd.sb_sx, "so_snd_sx"); sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); TAILQ_INIT(&so->so_snd.sb_aiojobq); TAILQ_INIT(&so->so_rcv.sb_aiojobq); TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); #ifdef VIMAGE VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", __func__, __LINE__, so)); so->so_vnet = vnet; #endif /* We shouldn't need the so_global_mtx */ if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { /* Do we need more comprehensive error returns? */ uma_zfree(socket_zone, so); return (NULL); } mtx_lock(&so_global_mtx); so->so_gencnt = ++so_gencnt; ++numopensockets; #ifdef VIMAGE vnet->vnet_sockcnt++; #endif mtx_unlock(&so_global_mtx); return (so); } /* * Free the storage associated with a socket at the socket layer, tear down * locks, labels, etc. All protocol state is assumed already to have been * torn down (and possibly never set up) by the caller. */ static void sodealloc(struct socket *so) { KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); mtx_lock(&so_global_mtx); so->so_gencnt = ++so_gencnt; --numopensockets; /* Could be below, but faster here. */ #ifdef VIMAGE VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", __func__, __LINE__, so)); so->so_vnet->vnet_sockcnt--; #endif mtx_unlock(&so_global_mtx); #ifdef MAC mac_socket_destroy(so); #endif hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); crfree(so->so_cred); khelp_destroy_osd(&so->osd); if (SOLISTENING(so)) { if (so->sol_accept_filter != NULL) accept_filt_setopt(so, NULL); } else { if (so->so_rcv.sb_hiwat) (void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); if (so->so_snd.sb_hiwat) (void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); sx_destroy(&so->so_snd.sb_sx); sx_destroy(&so->so_rcv.sb_sx); SOCKBUF_LOCK_DESTROY(&so->so_snd); SOCKBUF_LOCK_DESTROY(&so->so_rcv); } mtx_destroy(&so->so_lock); uma_zfree(socket_zone, so); } /* * socreate returns a socket with a ref count of 1. The socket should be * closed with soclose(). */ int socreate(int dom, struct socket **aso, int type, int proto, struct ucred *cred, struct thread *td) { struct protosw *prp; struct socket *so; int error; if (proto) prp = pffindproto(dom, proto, type); else prp = pffindtype(dom, type); if (prp == NULL) { /* No support for domain. */ if (pffinddomain(dom) == NULL) return (EAFNOSUPPORT); /* No support for socket type. */ if (proto == 0 && type != 0) return (EPROTOTYPE); return (EPROTONOSUPPORT); } if (prp->pr_usrreqs->pru_attach == NULL || prp->pr_usrreqs->pru_attach == pru_attach_notsupp) return (EPROTONOSUPPORT); if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) return (EPROTONOSUPPORT); if (prp->pr_type != type) return (EPROTOTYPE); so = soalloc(CRED_TO_VNET(cred)); if (so == NULL) return (ENOBUFS); so->so_type = type; so->so_cred = crhold(cred); if ((prp->pr_domain->dom_family == PF_INET) || (prp->pr_domain->dom_family == PF_INET6) || (prp->pr_domain->dom_family == PF_ROUTE)) so->so_fibnum = td->td_proc->p_fibnum; else so->so_fibnum = 0; so->so_proto = prp; #ifdef MAC mac_socket_create(cred, so); #endif knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, so_rdknl_assert_locked, so_rdknl_assert_unlocked); knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, so_wrknl_assert_locked, so_wrknl_assert_unlocked); /* * Auto-sizing of socket buffers is managed by the protocols and * the appropriate flags must be set in the pru_attach function. */ CURVNET_SET(so->so_vnet); error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); CURVNET_RESTORE(); if (error) { sodealloc(so); return (error); } soref(so); *aso = so; return (0); } #ifdef REGRESSION static int regression_sonewconn_earlytest = 1; SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); #endif /* * When an attempt at a new connection is noted on a socket which accepts * connections, sonewconn is called. If the connection is possible (subject * to space constraints, etc.) then we allocate a new structure, properly * linked into the data structure of the original socket, and return this. * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. * * Note: the ref count on the socket is 0 on return. */ struct socket * sonewconn(struct socket *head, int connstatus) { static struct timeval lastover; static struct timeval overinterval = { 60, 0 }; static int overcount; struct socket *so; u_int over; SOLISTEN_LOCK(head); over = (head->sol_qlen > 3 * head->sol_qlimit / 2); SOLISTEN_UNLOCK(head); #ifdef REGRESSION if (regression_sonewconn_earlytest && over) { #else if (over) { #endif overcount++; if (ratecheck(&lastover, &overinterval)) { log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: " "%i already in queue awaiting acceptance " "(%d occurrences)\n", __func__, head->so_pcb, head->sol_qlen, overcount); overcount = 0; } return (NULL); } VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", __func__, head)); so = soalloc(head->so_vnet); if (so == NULL) { log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " "limit reached or out of memory\n", __func__, head->so_pcb); return (NULL); } so->so_listen = head; so->so_type = head->so_type; so->so_linger = head->so_linger; so->so_state = head->so_state | SS_NOFDREF; so->so_fibnum = head->so_fibnum; so->so_proto = head->so_proto; so->so_cred = crhold(head->so_cred); #ifdef MAC mac_socket_newconn(head, so); #endif knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, so_rdknl_assert_locked, so_rdknl_assert_unlocked); knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, so_wrknl_assert_locked, so_wrknl_assert_unlocked); VNET_SO_ASSERT(head); if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { sodealloc(so); log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", __func__, head->so_pcb); return (NULL); } if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { sodealloc(so); log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", __func__, head->so_pcb); return (NULL); } so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; so->so_snd.sb_lowat = head->sol_sbsnd_lowat; so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; so->so_snd.sb_timeo = head->sol_sbsnd_timeo; so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE; so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE; SOLISTEN_LOCK(head); if (head->sol_accept_filter != NULL) connstatus = 0; so->so_state |= connstatus; so->so_options = head->so_options & ~SO_ACCEPTCONN; soref(head); /* A socket on (in)complete queue refs head. */ if (connstatus) { TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); so->so_qstate = SQ_COMP; head->sol_qlen++; solisten_wakeup(head); /* unlocks */ } else { /* * Keep removing sockets from the head until there's room for * us to insert on the tail. In pre-locking revisions, this * was a simple if(), but as we could be racing with other * threads and soabort() requires dropping locks, we must * loop waiting for the condition to be true. */ while (head->sol_incqlen > head->sol_qlimit) { struct socket *sp; sp = TAILQ_FIRST(&head->sol_incomp); TAILQ_REMOVE(&head->sol_incomp, sp, so_list); head->sol_incqlen--; SOCK_LOCK(sp); sp->so_qstate = SQ_NONE; sp->so_listen = NULL; SOCK_UNLOCK(sp); sorele(head); /* does SOLISTEN_UNLOCK, head stays */ soabort(sp); SOLISTEN_LOCK(head); } TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); so->so_qstate = SQ_INCOMP; head->sol_incqlen++; SOLISTEN_UNLOCK(head); } return (so); } #ifdef SCTP /* * Socket part of sctp_peeloff(). Detach a new socket from an * association. The new socket is returned with a reference. */ struct socket * sopeeloff(struct socket *head) { struct socket *so; VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", __func__, __LINE__, head)); so = soalloc(head->so_vnet); if (so == NULL) { log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " "limit reached or out of memory\n", __func__, head->so_pcb); return (NULL); } so->so_type = head->so_type; so->so_options = head->so_options; so->so_linger = head->so_linger; so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; so->so_fibnum = head->so_fibnum; so->so_proto = head->so_proto; so->so_cred = crhold(head->so_cred); #ifdef MAC mac_socket_newconn(head, so); #endif knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, so_rdknl_assert_locked, so_rdknl_assert_unlocked); knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, so_wrknl_assert_locked, so_wrknl_assert_unlocked); VNET_SO_ASSERT(head); if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { sodealloc(so); log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", __func__, head->so_pcb); return (NULL); } if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { sodealloc(so); log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", __func__, head->so_pcb); return (NULL); } so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; so->so_snd.sb_lowat = head->so_snd.sb_lowat; so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; so->so_snd.sb_timeo = head->so_snd.sb_timeo; so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; soref(so); return (so); } #endif /* SCTP */ int sobind(struct socket *so, struct sockaddr *nam, struct thread *td) { int error; CURVNET_SET(so->so_vnet); error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); CURVNET_RESTORE(); return (error); } int sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) { int error; CURVNET_SET(so->so_vnet); error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); CURVNET_RESTORE(); return (error); } /* * solisten() transitions a socket from a non-listening state to a listening * state, but can also be used to update the listen queue depth on an * existing listen socket. The protocol will call back into the sockets * layer using solisten_proto_check() and solisten_proto() to check and set * socket-layer listen state. Call backs are used so that the protocol can * acquire both protocol and socket layer locks in whatever order is required * by the protocol. * * Protocol implementors are advised to hold the socket lock across the * socket-layer test and set to avoid races at the socket layer. */ int solisten(struct socket *so, int backlog, struct thread *td) { int error; CURVNET_SET(so->so_vnet); error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); CURVNET_RESTORE(); return (error); } int solisten_proto_check(struct socket *so) { SOCK_LOCK_ASSERT(so); if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) return (EINVAL); return (0); } void solisten_proto(struct socket *so, int backlog) { int sbrcv_lowat, sbsnd_lowat; u_int sbrcv_hiwat, sbsnd_hiwat; short sbrcv_flags, sbsnd_flags; sbintime_t sbrcv_timeo, sbsnd_timeo; SOCK_LOCK_ASSERT(so); if (SOLISTENING(so)) goto listening; /* * Change this socket to listening state. */ sbrcv_lowat = so->so_rcv.sb_lowat; sbsnd_lowat = so->so_snd.sb_lowat; sbrcv_hiwat = so->so_rcv.sb_hiwat; sbsnd_hiwat = so->so_snd.sb_hiwat; sbrcv_flags = so->so_rcv.sb_flags; sbsnd_flags = so->so_snd.sb_flags; sbrcv_timeo = so->so_rcv.sb_timeo; sbsnd_timeo = so->so_snd.sb_timeo; sbdestroy(&so->so_snd, so); sbdestroy(&so->so_rcv, so); sx_destroy(&so->so_snd.sb_sx); sx_destroy(&so->so_rcv.sb_sx); SOCKBUF_LOCK_DESTROY(&so->so_snd); SOCKBUF_LOCK_DESTROY(&so->so_rcv); #ifdef INVARIANTS bzero(&so->so_rcv, sizeof(struct socket) - offsetof(struct socket, so_rcv)); #endif so->sol_sbrcv_lowat = sbrcv_lowat; so->sol_sbsnd_lowat = sbsnd_lowat; so->sol_sbrcv_hiwat = sbrcv_hiwat; so->sol_sbsnd_hiwat = sbsnd_hiwat; so->sol_sbrcv_flags = sbrcv_flags; so->sol_sbsnd_flags = sbsnd_flags; so->sol_sbrcv_timeo = sbrcv_timeo; so->sol_sbsnd_timeo = sbsnd_timeo; so->sol_qlen = so->sol_incqlen = 0; TAILQ_INIT(&so->sol_incomp); TAILQ_INIT(&so->sol_comp); so->sol_accept_filter = NULL; so->sol_accept_filter_arg = NULL; so->sol_accept_filter_str = NULL; so->sol_upcall = NULL; so->sol_upcallarg = NULL; so->so_options |= SO_ACCEPTCONN; listening: if (backlog < 0 || backlog > somaxconn) backlog = somaxconn; so->sol_qlimit = backlog; } /* * Wakeup listeners/subsystems once we have a complete connection. * Enters with lock, returns unlocked. */ void solisten_wakeup(struct socket *sol) { if (sol->sol_upcall != NULL) (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); else { selwakeuppri(&sol->so_rdsel, PSOCK); KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); } SOLISTEN_UNLOCK(sol); wakeup_one(&sol->sol_comp); } /* * Return single connection off a listening socket queue. Main consumer of * the function is kern_accept4(). Some modules, that do their own accept * management also use the function. * * Listening socket must be locked on entry and is returned unlocked on * return. * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. */ int solisten_dequeue(struct socket *head, struct socket **ret, int flags) { struct socket *so; int error; SOLISTEN_LOCK_ASSERT(head); while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && head->so_error == 0) { error = msleep(&head->sol_comp, &head->so_lock, PSOCK | PCATCH, "accept", 0); if (error != 0) { SOLISTEN_UNLOCK(head); return (error); } } if (head->so_error) { error = head->so_error; head->so_error = 0; SOLISTEN_UNLOCK(head); return (error); } if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) { SOLISTEN_UNLOCK(head); return (EWOULDBLOCK); } so = TAILQ_FIRST(&head->sol_comp); SOCK_LOCK(so); KASSERT(so->so_qstate == SQ_COMP, ("%s: so %p not SQ_COMP", __func__, so)); soref(so); head->sol_qlen--; so->so_qstate = SQ_NONE; so->so_listen = NULL; TAILQ_REMOVE(&head->sol_comp, so, so_list); if (flags & ACCEPT4_INHERIT) so->so_state |= (head->so_state & SS_NBIO); else so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; SOCK_UNLOCK(so); sorele(head); *ret = so; return (0); } /* * Evaluate the reference count and named references on a socket; if no * references remain, free it. This should be called whenever a reference is * released, such as in sorele(), but also when named reference flags are * cleared in socket or protocol code. * * sofree() will free the socket if: * * - There are no outstanding file descriptor references or related consumers * (so_count == 0). * * - The socket has been closed by user space, if ever open (SS_NOFDREF). * * - The protocol does not have an outstanding strong reference on the socket * (SS_PROTOREF). * * - The socket is not in a completed connection queue, so a process has been * notified that it is present. If it is removed, the user process may * block in accept() despite select() saying the socket was ready. */ void sofree(struct socket *so) { struct protosw *pr = so->so_proto; SOCK_LOCK_ASSERT(so); if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || (so->so_state & SS_PROTOREF) || (so->so_qstate == SQ_COMP)) { SOCK_UNLOCK(so); return; } if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) { struct socket *sol; sol = so->so_listen; KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so)); /* * To solve race between close of a listening socket and * a socket on its incomplete queue, we need to lock both. * The order is first listening socket, then regular. * Since we don't have SS_NOFDREF neither SS_PROTOREF, this * function and the listening socket are the only pointers * to so. To preserve so and sol, we reference both and then * relock. * After relock the socket may not move to so_comp since it * doesn't have PCB already, but it may be removed from * so_incomp. If that happens, we share responsiblity on * freeing the socket, but soclose() has already removed * it from queue. */ soref(sol); soref(so); SOCK_UNLOCK(so); SOLISTEN_LOCK(sol); SOCK_LOCK(so); if (so->so_qstate == SQ_INCOMP) { KASSERT(so->so_listen == sol, ("%s: so %p migrated out of sol %p", __func__, so, sol)); TAILQ_REMOVE(&sol->sol_incomp, so, so_list); sol->sol_incqlen--; /* This is guarenteed not to be the last. */ refcount_release(&sol->so_count); so->so_qstate = SQ_NONE; so->so_listen = NULL; } else KASSERT(so->so_listen == NULL, ("%s: so %p not on (in)comp with so_listen", __func__, so)); sorele(sol); KASSERT(so->so_count == 1, ("%s: so %p count %u", __func__, so, so->so_count)); so->so_count = 0; } if (SOLISTENING(so)) so->so_error = ECONNABORTED; SOCK_UNLOCK(so); VNET_SO_ASSERT(so); if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) (*pr->pr_domain->dom_dispose)(so); if (pr->pr_usrreqs->pru_detach != NULL) (*pr->pr_usrreqs->pru_detach)(so); /* * From this point on, we assume that no other references to this * socket exist anywhere else in the stack. Therefore, no locks need * to be acquired or held. * * We used to do a lot of socket buffer and socket locking here, as * well as invoke sorflush() and perform wakeups. The direct call to * dom_dispose() and sbrelease_internal() are an inlining of what was * necessary from sorflush(). * * Notice that the socket buffer and kqueue state are torn down * before calling pru_detach. This means that protocols shold not * assume they can perform socket wakeups, etc, in their detach code. */ if (!SOLISTENING(so)) { sbdestroy(&so->so_snd, so); sbdestroy(&so->so_rcv, so); } seldrain(&so->so_rdsel); seldrain(&so->so_wrsel); knlist_destroy(&so->so_rdsel.si_note); knlist_destroy(&so->so_wrsel.si_note); sodealloc(so); } /* + * Let socket in same load balance group (same port and address) + * inherit pending sockets of the closing socket. + * + * "so_inh" will inherit sockets from "so" + */ +void +soinherit(struct socket *so, struct socket *so_inh) +{ + TAILQ_HEAD(, socket) comp, incomp; + struct socket *sp, *head, *head_inh; + int qlen, incqlen; + + KASSERT(so->so_options & SO_ACCEPTCONN, + ("so does not accept connection")); + KASSERT(so_inh->so_options & SO_ACCEPTCONN, + ("so_inh does not accept connection")); + + +restart: + SOCK_LOCK(so); + if ((head = so->so_listen) != NULL && + __predict_false(SOLISTEN_TRYLOCK(head) == 0)) { + SOCK_UNLOCK(so); + goto restart; + } + +restart_inh: + SOCK_LOCK(so_inh); + if ((head_inh = so_inh->so_listen) != NULL && + __predict_false(SOLISTEN_TRYLOCK(head_inh) == 0)) { + SOCK_UNLOCK(so_inh); + goto restart_inh; + } + + TAILQ_INIT(&comp); + TAILQ_INIT(&incomp); + + /* + * Save completed queue and incompleted queue + */ + TAILQ_CONCAT(&comp, &so->sol_comp, so_list); + qlen = so->sol_qlen; + so->sol_qlen = 0; + + TAILQ_CONCAT(&incomp, &so->sol_incomp, so_list); + incqlen = so->sol_incqlen; + so->sol_incqlen = 0; + + /* + * Append the saved completed queue and incompleted + * queue to the socket inherits them. + * + * XXX + * This may temporarily break the inheriting socket's + * so_qlimit. + */ + TAILQ_FOREACH(sp, &comp, so_list) { + refcount_acquire(&so_inh->so_count); + sp->so_listen = so_inh; + crfree(sp->so_cred); + sp->so_cred = crhold(so_inh->so_cred); + } + + TAILQ_FOREACH(sp, &incomp, so_list) { + refcount_acquire(&so_inh->so_count); + sp->so_listen = so_inh; + crfree(sp->so_cred); + sp->so_cred = crhold(so_inh->so_cred); + } + + TAILQ_CONCAT(&so_inh->sol_comp, &comp, so_list); + so_inh->sol_qlen += qlen; + + TAILQ_CONCAT(&so_inh->sol_incomp, &incomp, so_list); + so_inh->sol_incqlen += incqlen; + + SOCK_UNLOCK(so); + if(head != NULL) + SOLISTEN_UNLOCK(head); + + SOCK_UNLOCK(so_inh); + if(head_inh != NULL) { + if(qlen > 0) { + /* + * "New" connections have arrived + */ + solisten_wakeup(head_inh); + } else { + SOLISTEN_UNLOCK(head_inh); + } + } +} + +/* * Close a socket on last file table reference removal. Initiate disconnect * if connected. Free socket when disconnect complete. * * This function will sorele() the socket. Note that soclose() may be called * prior to the ref count reaching zero. The actual socket structure will * not be freed until the ref count reaches zero. */ int soclose(struct socket *so) { struct accept_queue lqueue; bool listening; int error = 0; KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); CURVNET_SET(so->so_vnet); funsetown(&so->so_sigio); if (so->so_state & SS_ISCONNECTED) { if ((so->so_state & SS_ISDISCONNECTING) == 0) { error = sodisconnect(so); if (error) { if (error == ENOTCONN) error = 0; goto drop; } } if (so->so_options & SO_LINGER) { if ((so->so_state & SS_ISDISCONNECTING) && (so->so_state & SS_NBIO)) goto drop; while (so->so_state & SS_ISCONNECTED) { error = tsleep(&so->so_timeo, PSOCK | PCATCH, "soclos", so->so_linger * hz); if (error) break; } } } drop: if (so->so_proto->pr_usrreqs->pru_close != NULL) (*so->so_proto->pr_usrreqs->pru_close)(so); SOCK_LOCK(so); if ((listening = (so->so_options & SO_ACCEPTCONN))) { struct socket *sp; TAILQ_INIT(&lqueue); TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); so->sol_qlen = so->sol_incqlen = 0; TAILQ_FOREACH(sp, &lqueue, so_list) { SOCK_LOCK(sp); sp->so_qstate = SQ_NONE; sp->so_listen = NULL; SOCK_UNLOCK(sp); /* Guaranteed not to be the last. */ refcount_release(&so->so_count); } } KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); so->so_state |= SS_NOFDREF; sorele(so); if (listening) { struct socket *sp; TAILQ_FOREACH(sp, &lqueue, so_list) { SOCK_LOCK(sp); if (sp->so_count == 0) { SOCK_UNLOCK(sp); soabort(sp); } else /* sp is now in sofree() */ SOCK_UNLOCK(sp); } } CURVNET_RESTORE(); return (error); } /* * soabort() is used to abruptly tear down a connection, such as when a * resource limit is reached (listen queue depth exceeded), or if a listen * socket is closed while there are sockets waiting to be accepted. * * This interface is tricky, because it is called on an unreferenced socket, * and must be called only by a thread that has actually removed the socket * from the listen queue it was on, or races with other threads are risked. * * This interface will call into the protocol code, so must not be called * with any socket locks held. Protocols do call it while holding their own * recursible protocol mutexes, but this is something that should be subject * to review in the future. */ void soabort(struct socket *so) { /* * In as much as is possible, assert that no references to this * socket are held. This is not quite the same as asserting that the * current thread is responsible for arranging for no references, but * is as close as we can get for now. */ KASSERT(so->so_count == 0, ("soabort: so_count")); KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); KASSERT(so->so_qstate == SQ_NONE, ("soabort: !SQ_NONE")); VNET_SO_ASSERT(so); if (so->so_proto->pr_usrreqs->pru_abort != NULL) (*so->so_proto->pr_usrreqs->pru_abort)(so); SOCK_LOCK(so); sofree(so); } int soaccept(struct socket *so, struct sockaddr **nam) { int error; SOCK_LOCK(so); KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); so->so_state &= ~SS_NOFDREF; SOCK_UNLOCK(so); CURVNET_SET(so->so_vnet); error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); CURVNET_RESTORE(); return (error); } int soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) { return (soconnectat(AT_FDCWD, so, nam, td)); } int soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) { int error; if (so->so_options & SO_ACCEPTCONN) return (EOPNOTSUPP); CURVNET_SET(so->so_vnet); /* * If protocol is connection-based, can only connect once. * Otherwise, if connected, try to disconnect first. This allows * user to disconnect by connecting to, e.g., a null address. */ if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && ((so->so_proto->pr_flags & PR_CONNREQUIRED) || (error = sodisconnect(so)))) { error = EISCONN; } else { /* * Prevent accumulated error from previous connection from * biting us. */ so->so_error = 0; if (fd == AT_FDCWD) { error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td); } else { error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, so, nam, td); } } CURVNET_RESTORE(); return (error); } int soconnect2(struct socket *so1, struct socket *so2) { int error; CURVNET_SET(so1->so_vnet); error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); CURVNET_RESTORE(); return (error); } int sodisconnect(struct socket *so) { int error; if ((so->so_state & SS_ISCONNECTED) == 0) return (ENOTCONN); if (so->so_state & SS_ISDISCONNECTING) return (EALREADY); VNET_SO_ASSERT(so); error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); return (error); } #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) int sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td) { long space; ssize_t resid; int clen = 0, error, dontroute; KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); KASSERT(so->so_proto->pr_flags & PR_ATOMIC, ("sosend_dgram: !PR_ATOMIC")); if (uio != NULL) resid = uio->uio_resid; else resid = top->m_pkthdr.len; /* * In theory resid should be unsigned. However, space must be * signed, as it might be less than 0 if we over-committed, and we * must use a signed comparison of space and resid. On the other * hand, a negative resid causes us to loop sending 0-length * segments to the protocol. */ if (resid < 0) { error = EINVAL; goto out; } dontroute = (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; if (td != NULL) td->td_ru.ru_msgsnd++; if (control != NULL) clen = control->m_len; SOCKBUF_LOCK(&so->so_snd); if (so->so_snd.sb_state & SBS_CANTSENDMORE) { SOCKBUF_UNLOCK(&so->so_snd); error = EPIPE; goto out; } if (so->so_error) { error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(&so->so_snd); goto out; } if ((so->so_state & SS_ISCONNECTED) == 0) { /* * `sendto' and `sendmsg' is allowed on a connection-based * socket if it supports implied connect. Return ENOTCONN if * not connected and no address is supplied. */ if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { if ((so->so_state & SS_ISCONFIRMING) == 0 && !(resid == 0 && clen != 0)) { SOCKBUF_UNLOCK(&so->so_snd); error = ENOTCONN; goto out; } } else if (addr == NULL) { if (so->so_proto->pr_flags & PR_CONNREQUIRED) error = ENOTCONN; else error = EDESTADDRREQ; SOCKBUF_UNLOCK(&so->so_snd); goto out; } } /* * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a * problem and need fixing. */ space = sbspace(&so->so_snd); if (flags & MSG_OOB) space += 1024; space -= clen; SOCKBUF_UNLOCK(&so->so_snd); if (resid > space) { error = EMSGSIZE; goto out; } if (uio == NULL) { resid = 0; if (flags & MSG_EOR) top->m_flags |= M_EOR; } else { /* * Copy the data from userland into a mbuf chain. * If no data is to be copied in, a single empty mbuf * is returned. */ top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); if (top == NULL) { error = EFAULT; /* only possible error */ goto out; } space -= resid - uio->uio_resid; resid = uio->uio_resid; } KASSERT(resid == 0, ("sosend_dgram: resid != 0")); /* * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock * than with. */ if (dontroute) { SOCK_LOCK(so); so->so_options |= SO_DONTROUTE; SOCK_UNLOCK(so); } /* * XXX all the SBS_CANTSENDMORE checks previously done could be out * of date. We could have received a reset packet in an interrupt or * maybe we slept while doing page faults in uiomove() etc. We could * probably recheck again inside the locking protection here, but * there are probably other places that this also happens. We must * rethink this. */ VNET_SO_ASSERT(so); error = (*so->so_proto->pr_usrreqs->pru_send)(so, (flags & MSG_OOB) ? PRUS_OOB : /* * If the user set MSG_EOF, the protocol understands this flag and * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. */ ((flags & MSG_EOF) && (so->so_proto->pr_flags & PR_IMPLOPCL) && (resid <= 0)) ? PRUS_EOF : /* If there is more to send set PRUS_MORETOCOME */ (flags & MSG_MORETOCOME) || (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, top, addr, control, td); if (dontroute) { SOCK_LOCK(so); so->so_options &= ~SO_DONTROUTE; SOCK_UNLOCK(so); } clen = 0; control = NULL; top = NULL; out: if (top != NULL) m_freem(top); if (control != NULL) m_freem(control); return (error); } /* * Send on a socket. If send must go all at once and message is larger than * send buffering, then hard error. Lock against other senders. If must go * all at once and not enough room now, then inform user that this would * block and do nothing. Otherwise, if nonblocking, send as much as * possible. The data to be sent is described by "uio" if nonzero, otherwise * by the mbuf chain "top" (which must be null if uio is not). Data provided * in mbuf chain must be small enough to send all at once. * * Returns nonzero on error, timeout or signal; callers must check for short * counts if EINTR/ERESTART are returned. Data and control buffers are freed * on return. */ int sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td) { long space; ssize_t resid; int clen = 0, error, dontroute; int atomic = sosendallatonce(so) || top; if (uio != NULL) resid = uio->uio_resid; else resid = top->m_pkthdr.len; /* * In theory resid should be unsigned. However, space must be * signed, as it might be less than 0 if we over-committed, and we * must use a signed comparison of space and resid. On the other * hand, a negative resid causes us to loop sending 0-length * segments to the protocol. * * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM * type sockets since that's an error. */ if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { error = EINVAL; goto out; } dontroute = (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && (so->so_proto->pr_flags & PR_ATOMIC); if (td != NULL) td->td_ru.ru_msgsnd++; if (control != NULL) clen = control->m_len; error = sblock(&so->so_snd, SBLOCKWAIT(flags)); if (error) goto out; restart: do { SOCKBUF_LOCK(&so->so_snd); if (so->so_snd.sb_state & SBS_CANTSENDMORE) { SOCKBUF_UNLOCK(&so->so_snd); error = EPIPE; goto release; } if (so->so_error) { error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(&so->so_snd); goto release; } if ((so->so_state & SS_ISCONNECTED) == 0) { /* * `sendto' and `sendmsg' is allowed on a connection- * based socket if it supports implied connect. * Return ENOTCONN if not connected and no address is * supplied. */ if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { if ((so->so_state & SS_ISCONFIRMING) == 0 && !(resid == 0 && clen != 0)) { SOCKBUF_UNLOCK(&so->so_snd); error = ENOTCONN; goto release; } } else if (addr == NULL) { SOCKBUF_UNLOCK(&so->so_snd); if (so->so_proto->pr_flags & PR_CONNREQUIRED) error = ENOTCONN; else error = EDESTADDRREQ; goto release; } } space = sbspace(&so->so_snd); if (flags & MSG_OOB) space += 1024; if ((atomic && resid > so->so_snd.sb_hiwat) || clen > so->so_snd.sb_hiwat) { SOCKBUF_UNLOCK(&so->so_snd); error = EMSGSIZE; goto release; } if (space < resid + clen && (atomic || space < so->so_snd.sb_lowat || space < clen)) { if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { SOCKBUF_UNLOCK(&so->so_snd); error = EWOULDBLOCK; goto release; } error = sbwait(&so->so_snd); SOCKBUF_UNLOCK(&so->so_snd); if (error) goto release; goto restart; } SOCKBUF_UNLOCK(&so->so_snd); space -= clen; do { if (uio == NULL) { resid = 0; if (flags & MSG_EOR) top->m_flags |= M_EOR; } else { /* * Copy the data from userland into a mbuf * chain. If resid is 0, which can happen * only if we have control to send, then * a single empty mbuf is returned. This * is a workaround to prevent protocol send * methods to panic. */ top = m_uiotombuf(uio, M_WAITOK, space, (atomic ? max_hdr : 0), (atomic ? M_PKTHDR : 0) | ((flags & MSG_EOR) ? M_EOR : 0)); if (top == NULL) { error = EFAULT; /* only possible error */ goto release; } space -= resid - uio->uio_resid; resid = uio->uio_resid; } if (dontroute) { SOCK_LOCK(so); so->so_options |= SO_DONTROUTE; SOCK_UNLOCK(so); } /* * XXX all the SBS_CANTSENDMORE checks previously * done could be out of date. We could have received * a reset packet in an interrupt or maybe we slept * while doing page faults in uiomove() etc. We * could probably recheck again inside the locking * protection here, but there are probably other * places that this also happens. We must rethink * this. */ VNET_SO_ASSERT(so); error = (*so->so_proto->pr_usrreqs->pru_send)(so, (flags & MSG_OOB) ? PRUS_OOB : /* * If the user set MSG_EOF, the protocol understands * this flag and nothing left to send then use * PRU_SEND_EOF instead of PRU_SEND. */ ((flags & MSG_EOF) && (so->so_proto->pr_flags & PR_IMPLOPCL) && (resid <= 0)) ? PRUS_EOF : /* If there is more to send set PRUS_MORETOCOME. */ (flags & MSG_MORETOCOME) || (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, top, addr, control, td); if (dontroute) { SOCK_LOCK(so); so->so_options &= ~SO_DONTROUTE; SOCK_UNLOCK(so); } clen = 0; control = NULL; top = NULL; if (error) goto release; } while (resid && space > 0); } while (resid); release: sbunlock(&so->so_snd); out: if (top != NULL) m_freem(top); if (control != NULL) m_freem(control); return (error); } int sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td) { int error; CURVNET_SET(so->so_vnet); if (!SOLISTENING(so)) error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top, control, flags, td); else { m_freem(top); m_freem(control); error = ENOTCONN; } CURVNET_RESTORE(); return (error); } /* * The part of soreceive() that implements reading non-inline out-of-band * data from a socket. For more complete comments, see soreceive(), from * which this code originated. * * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is * unable to return an mbuf chain to the caller. */ static int soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) { struct protosw *pr = so->so_proto; struct mbuf *m; int error; KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); VNET_SO_ASSERT(so); m = m_get(M_WAITOK, MT_DATA); error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); if (error) goto bad; do { error = uiomove(mtod(m, void *), (int) min(uio->uio_resid, m->m_len), uio); m = m_free(m); } while (uio->uio_resid && error == 0 && m); bad: if (m != NULL) m_freem(m); return (error); } /* * Following replacement or removal of the first mbuf on the first mbuf chain * of a socket buffer, push necessary state changes back into the socket * buffer so that other consumers see the values consistently. 'nextrecord' * is the callers locally stored value of the original value of * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. * NOTE: 'nextrecord' may be NULL. */ static __inline void sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) { SOCKBUF_LOCK_ASSERT(sb); /* * First, update for the new value of nextrecord. If necessary, make * it the first record. */ if (sb->sb_mb != NULL) sb->sb_mb->m_nextpkt = nextrecord; else sb->sb_mb = nextrecord; /* * Now update any dependent socket buffer fields to reflect the new * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the * addition of a second clause that takes care of the case where * sb_mb has been updated, but remains the last record. */ if (sb->sb_mb == NULL) { sb->sb_mbtail = NULL; sb->sb_lastrecord = NULL; } else if (sb->sb_mb->m_nextpkt == NULL) sb->sb_lastrecord = sb->sb_mb; } /* * Implement receive operations on a socket. We depend on the way that * records are added to the sockbuf by sbappend. In particular, each record * (mbufs linked through m_next) must begin with an address if the protocol * so specifies, followed by an optional mbuf or mbufs containing ancillary * data, and then zero or more mbufs of data. In order to allow parallelism * between network receive and copying to user space, as well as avoid * sleeping with a mutex held, we release the socket buffer mutex during the * user space copy. Although the sockbuf is locked, new data may still be * appended, and thus we must maintain consistency of the sockbuf during that * time. * * The caller may receive the data as a single mbuf chain by supplying an * mbuf **mp0 for use in returning the chain. The uio is then used only for * the count in uio_resid. */ int soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) { struct mbuf *m, **mp; int flags, error, offset; ssize_t len; struct protosw *pr = so->so_proto; struct mbuf *nextrecord; int moff, type = 0; ssize_t orig_resid = uio->uio_resid; mp = mp0; if (psa != NULL) *psa = NULL; if (controlp != NULL) *controlp = NULL; if (flagsp != NULL) flags = *flagsp &~ MSG_EOR; else flags = 0; if (flags & MSG_OOB) return (soreceive_rcvoob(so, uio, flags)); if (mp != NULL) *mp = NULL; if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) && uio->uio_resid) { VNET_SO_ASSERT(so); (*pr->pr_usrreqs->pru_rcvd)(so, 0); } error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); if (error) return (error); restart: SOCKBUF_LOCK(&so->so_rcv); m = so->so_rcv.sb_mb; /* * If we have less data than requested, block awaiting more (subject * to any timeout) if: * 1. the current count is less than the low water mark, or * 2. MSG_DONTWAIT is not set */ if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && sbavail(&so->so_rcv) < uio->uio_resid) && sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { KASSERT(m != NULL || !sbavail(&so->so_rcv), ("receive: m == %p sbavail == %u", m, sbavail(&so->so_rcv))); if (so->so_error) { if (m != NULL) goto dontblock; error = so->so_error; if ((flags & MSG_PEEK) == 0) so->so_error = 0; SOCKBUF_UNLOCK(&so->so_rcv); goto release; } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { if (m == NULL) { SOCKBUF_UNLOCK(&so->so_rcv); goto release; } else goto dontblock; } for (; m != NULL; m = m->m_next) if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { m = so->so_rcv.sb_mb; goto dontblock; } if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && (so->so_proto->pr_flags & PR_CONNREQUIRED)) { SOCKBUF_UNLOCK(&so->so_rcv); error = ENOTCONN; goto release; } if (uio->uio_resid == 0) { SOCKBUF_UNLOCK(&so->so_rcv); goto release; } if ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO))) { SOCKBUF_UNLOCK(&so->so_rcv); error = EWOULDBLOCK; goto release; } SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); error = sbwait(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_rcv); if (error) goto release; goto restart; } dontblock: /* * From this point onward, we maintain 'nextrecord' as a cache of the * pointer to the next record in the socket buffer. We must keep the * various socket buffer pointers and local stack versions of the * pointers in sync, pushing out modifications before dropping the * socket buffer mutex, and re-reading them when picking it up. * * Otherwise, we will race with the network stack appending new data * or records onto the socket buffer by using inconsistent/stale * versions of the field, possibly resulting in socket buffer * corruption. * * By holding the high-level sblock(), we prevent simultaneous * readers from pulling off the front of the socket buffer. */ SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (uio->uio_td) uio->uio_td->td_ru.ru_msgrcv++; KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); nextrecord = m->m_nextpkt; if (pr->pr_flags & PR_ADDR) { KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type)); orig_resid = 0; if (psa != NULL) *psa = sodupsockaddr(mtod(m, struct sockaddr *), M_NOWAIT); if (flags & MSG_PEEK) { m = m->m_next; } else { sbfree(&so->so_rcv, m); so->so_rcv.sb_mb = m_free(m); m = so->so_rcv.sb_mb; sockbuf_pushsync(&so->so_rcv, nextrecord); } } /* * Process one or more MT_CONTROL mbufs present before any data mbufs * in the first mbuf chain on the socket buffer. If MSG_PEEK, we * just copy the data; if !MSG_PEEK, we call into the protocol to * perform externalization (or freeing if controlp == NULL). */ if (m != NULL && m->m_type == MT_CONTROL) { struct mbuf *cm = NULL, *cmn; struct mbuf **cme = &cm; do { if (flags & MSG_PEEK) { if (controlp != NULL) { *controlp = m_copym(m, 0, m->m_len, M_NOWAIT); controlp = &(*controlp)->m_next; } m = m->m_next; } else { sbfree(&so->so_rcv, m); so->so_rcv.sb_mb = m->m_next; m->m_next = NULL; *cme = m; cme = &(*cme)->m_next; m = so->so_rcv.sb_mb; } } while (m != NULL && m->m_type == MT_CONTROL); if ((flags & MSG_PEEK) == 0) sockbuf_pushsync(&so->so_rcv, nextrecord); while (cm != NULL) { cmn = cm->m_next; cm->m_next = NULL; if (pr->pr_domain->dom_externalize != NULL) { SOCKBUF_UNLOCK(&so->so_rcv); VNET_SO_ASSERT(so); error = (*pr->pr_domain->dom_externalize) (cm, controlp, flags); SOCKBUF_LOCK(&so->so_rcv); } else if (controlp != NULL) *controlp = cm; else m_freem(cm); if (controlp != NULL) { orig_resid = 0; while (*controlp != NULL) controlp = &(*controlp)->m_next; } cm = cmn; } if (m != NULL) nextrecord = so->so_rcv.sb_mb->m_nextpkt; else nextrecord = so->so_rcv.sb_mb; orig_resid = 0; } if (m != NULL) { if ((flags & MSG_PEEK) == 0) { KASSERT(m->m_nextpkt == nextrecord, ("soreceive: post-control, nextrecord !sync")); if (nextrecord == NULL) { KASSERT(so->so_rcv.sb_mb == m, ("soreceive: post-control, sb_mb!=m")); KASSERT(so->so_rcv.sb_lastrecord == m, ("soreceive: post-control, lastrecord!=m")); } } type = m->m_type; if (type == MT_OOBDATA) flags |= MSG_OOB; } else { if ((flags & MSG_PEEK) == 0) { KASSERT(so->so_rcv.sb_mb == nextrecord, ("soreceive: sb_mb != nextrecord")); if (so->so_rcv.sb_mb == NULL) { KASSERT(so->so_rcv.sb_lastrecord == NULL, ("soreceive: sb_lastercord != NULL")); } } } SOCKBUF_LOCK_ASSERT(&so->so_rcv); SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); /* * Now continue to read any data mbufs off of the head of the socket * buffer until the read request is satisfied. Note that 'type' is * used to store the type of any mbuf reads that have happened so far * such that soreceive() can stop reading if the type changes, which * causes soreceive() to return only one of regular data and inline * out-of-band data in a single socket receive operation. */ moff = 0; offset = 0; while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 && error == 0) { /* * If the type of mbuf has changed since the last mbuf * examined ('type'), end the receive operation. */ SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { if (type != m->m_type) break; } else if (type == MT_OOBDATA) break; else KASSERT(m->m_type == MT_DATA, ("m->m_type == %d", m->m_type)); so->so_rcv.sb_state &= ~SBS_RCVATMARK; len = uio->uio_resid; if (so->so_oobmark && len > so->so_oobmark - offset) len = so->so_oobmark - offset; if (len > m->m_len - moff) len = m->m_len - moff; /* * If mp is set, just pass back the mbufs. Otherwise copy * them out via the uio, then free. Sockbuf must be * consistent here (points to current mbuf, it points to next * record) when we drop priority; we must note any additions * to the sockbuf when we block interrupts again. */ if (mp == NULL) { SOCKBUF_LOCK_ASSERT(&so->so_rcv); SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_rcv); error = uiomove(mtod(m, char *) + moff, (int)len, uio); SOCKBUF_LOCK(&so->so_rcv); if (error) { /* * The MT_SONAME mbuf has already been removed * from the record, so it is necessary to * remove the data mbufs, if any, to preserve * the invariant in the case of PR_ADDR that * requires MT_SONAME mbufs at the head of * each record. */ if (pr->pr_flags & PR_ATOMIC && ((flags & MSG_PEEK) == 0)) (void)sbdroprecord_locked(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_rcv); goto release; } } else uio->uio_resid -= len; SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (len == m->m_len - moff) { if (m->m_flags & M_EOR) flags |= MSG_EOR; if (flags & MSG_PEEK) { m = m->m_next; moff = 0; } else { nextrecord = m->m_nextpkt; sbfree(&so->so_rcv, m); if (mp != NULL) { m->m_nextpkt = NULL; *mp = m; mp = &m->m_next; so->so_rcv.sb_mb = m = m->m_next; *mp = NULL; } else { so->so_rcv.sb_mb = m_free(m); m = so->so_rcv.sb_mb; } sockbuf_pushsync(&so->so_rcv, nextrecord); SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); } } else { if (flags & MSG_PEEK) moff += len; else { if (mp != NULL) { if (flags & MSG_DONTWAIT) { *mp = m_copym(m, 0, len, M_NOWAIT); if (*mp == NULL) { /* * m_copym() couldn't * allocate an mbuf. * Adjust uio_resid back * (it was adjusted * down by len bytes, * which we didn't end * up "copying" over). */ uio->uio_resid += len; break; } } else { SOCKBUF_UNLOCK(&so->so_rcv); *mp = m_copym(m, 0, len, M_WAITOK); SOCKBUF_LOCK(&so->so_rcv); } } sbcut_locked(&so->so_rcv, len); } } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (so->so_oobmark) { if ((flags & MSG_PEEK) == 0) { so->so_oobmark -= len; if (so->so_oobmark == 0) { so->so_rcv.sb_state |= SBS_RCVATMARK; break; } } else { offset += len; if (offset == so->so_oobmark) break; } } if (flags & MSG_EOR) break; /* * If the MSG_WAITALL flag is set (for non-atomic socket), we * must not quit until "uio->uio_resid == 0" or an error * termination. If a signal/timeout occurs, return with a * short count but without error. Keep sockbuf locked * against other readers. */ while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && !sosendallatonce(so) && nextrecord == NULL) { SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE) break; /* * Notify the protocol that some data has been * drained before blocking. */ if (pr->pr_flags & PR_WANTRCVD) { SOCKBUF_UNLOCK(&so->so_rcv); VNET_SO_ASSERT(so); (*pr->pr_usrreqs->pru_rcvd)(so, flags); SOCKBUF_LOCK(&so->so_rcv); } SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); /* * We could receive some data while was notifying * the protocol. Skip blocking in this case. */ if (so->so_rcv.sb_mb == NULL) { error = sbwait(&so->so_rcv); if (error) { SOCKBUF_UNLOCK(&so->so_rcv); goto release; } } m = so->so_rcv.sb_mb; if (m != NULL) nextrecord = m->m_nextpkt; } } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (m != NULL && pr->pr_flags & PR_ATOMIC) { flags |= MSG_TRUNC; if ((flags & MSG_PEEK) == 0) (void) sbdroprecord_locked(&so->so_rcv); } if ((flags & MSG_PEEK) == 0) { if (m == NULL) { /* * First part is an inline SB_EMPTY_FIXUP(). Second * part makes sure sb_lastrecord is up-to-date if * there is still data in the socket buffer. */ so->so_rcv.sb_mb = nextrecord; if (so->so_rcv.sb_mb == NULL) { so->so_rcv.sb_mbtail = NULL; so->so_rcv.sb_lastrecord = NULL; } else if (nextrecord->m_nextpkt == NULL) so->so_rcv.sb_lastrecord = nextrecord; } SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); /* * If soreceive() is being done from the socket callback, * then don't need to generate ACK to peer to update window, * since ACK will be generated on return to TCP. */ if (!(flags & MSG_SOCALLBCK) && (pr->pr_flags & PR_WANTRCVD)) { SOCKBUF_UNLOCK(&so->so_rcv); VNET_SO_ASSERT(so); (*pr->pr_usrreqs->pru_rcvd)(so, flags); SOCKBUF_LOCK(&so->so_rcv); } } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (orig_resid == uio->uio_resid && orig_resid && (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { SOCKBUF_UNLOCK(&so->so_rcv); goto restart; } SOCKBUF_UNLOCK(&so->so_rcv); if (flagsp != NULL) *flagsp |= flags; release: sbunlock(&so->so_rcv); return (error); } /* * Optimized version of soreceive() for stream (TCP) sockets. * XXXAO: (MSG_WAITALL | MSG_PEEK) isn't properly handled. */ int soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) { int len = 0, error = 0, flags, oresid; struct sockbuf *sb; struct mbuf *m, *n = NULL; /* We only do stream sockets. */ if (so->so_type != SOCK_STREAM) return (EINVAL); if (psa != NULL) *psa = NULL; if (controlp != NULL) return (EINVAL); if (flagsp != NULL) flags = *flagsp &~ MSG_EOR; else flags = 0; if (flags & MSG_OOB) return (soreceive_rcvoob(so, uio, flags)); if (mp0 != NULL) *mp0 = NULL; sb = &so->so_rcv; /* Prevent other readers from entering the socket. */ error = sblock(sb, SBLOCKWAIT(flags)); if (error) goto out; SOCKBUF_LOCK(sb); /* Easy one, no space to copyout anything. */ if (uio->uio_resid == 0) { error = EINVAL; goto out; } oresid = uio->uio_resid; /* We will never ever get anything unless we are or were connected. */ if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { error = ENOTCONN; goto out; } restart: SOCKBUF_LOCK_ASSERT(&so->so_rcv); /* Abort if socket has reported problems. */ if (so->so_error) { if (sbavail(sb) > 0) goto deliver; if (oresid > uio->uio_resid) goto out; error = so->so_error; if (!(flags & MSG_PEEK)) so->so_error = 0; goto out; } /* Door is closed. Deliver what is left, if any. */ if (sb->sb_state & SBS_CANTRCVMORE) { if (sbavail(sb) > 0) goto deliver; else goto out; } /* Socket buffer is empty and we shall not block. */ if (sbavail(sb) == 0 && ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { error = EAGAIN; goto out; } /* Socket buffer got some data that we shall deliver now. */ if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)) || sbavail(sb) >= sb->sb_lowat || sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat) ) { goto deliver; } /* On MSG_WAITALL we must wait until all data or error arrives. */ if ((flags & MSG_WAITALL) && (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) goto deliver; /* * Wait and block until (more) data comes in. * NB: Drops the sockbuf lock during wait. */ error = sbwait(sb); if (error) goto out; goto restart; deliver: SOCKBUF_LOCK_ASSERT(&so->so_rcv); KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); /* Statistics. */ if (uio->uio_td) uio->uio_td->td_ru.ru_msgrcv++; /* Fill uio until full or current end of socket buffer is reached. */ len = min(uio->uio_resid, sbavail(sb)); if (mp0 != NULL) { /* Dequeue as many mbufs as possible. */ if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { if (*mp0 == NULL) *mp0 = sb->sb_mb; else m_cat(*mp0, sb->sb_mb); for (m = sb->sb_mb; m != NULL && m->m_len <= len; m = m->m_next) { KASSERT(!(m->m_flags & M_NOTAVAIL), ("%s: m %p not available", __func__, m)); len -= m->m_len; uio->uio_resid -= m->m_len; sbfree(sb, m); n = m; } n->m_next = NULL; sb->sb_mb = m; sb->sb_lastrecord = sb->sb_mb; if (sb->sb_mb == NULL) SB_EMPTY_FIXUP(sb); } /* Copy the remainder. */ if (len > 0) { KASSERT(sb->sb_mb != NULL, ("%s: len > 0 && sb->sb_mb empty", __func__)); m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); if (m == NULL) len = 0; /* Don't flush data from sockbuf. */ else uio->uio_resid -= len; if (*mp0 != NULL) m_cat(*mp0, m); else *mp0 = m; if (*mp0 == NULL) { error = ENOBUFS; goto out; } } } else { /* NB: Must unlock socket buffer as uiomove may sleep. */ SOCKBUF_UNLOCK(sb); error = m_mbuftouio(uio, sb->sb_mb, len); SOCKBUF_LOCK(sb); if (error) goto out; } SBLASTRECORDCHK(sb); SBLASTMBUFCHK(sb); /* * Remove the delivered data from the socket buffer unless we * were only peeking. */ if (!(flags & MSG_PEEK)) { if (len > 0) sbdrop_locked(sb, len); /* Notify protocol that we drained some data. */ if ((so->so_proto->pr_flags & PR_WANTRCVD) && (((flags & MSG_WAITALL) && uio->uio_resid > 0) || !(flags & MSG_SOCALLBCK))) { SOCKBUF_UNLOCK(sb); VNET_SO_ASSERT(so); (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); SOCKBUF_LOCK(sb); } } /* * For MSG_WAITALL we may have to loop again and wait for * more data to come in. */ if ((flags & MSG_WAITALL) && uio->uio_resid > 0) goto restart; out: SOCKBUF_LOCK_ASSERT(sb); SBLASTRECORDCHK(sb); SBLASTMBUFCHK(sb); SOCKBUF_UNLOCK(sb); sbunlock(sb); return (error); } /* * Optimized version of soreceive() for simple datagram cases from userspace. * Unlike in the stream case, we're able to drop a datagram if copyout() * fails, and because we handle datagrams atomically, we don't need to use a * sleep lock to prevent I/O interlacing. */ int soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) { struct mbuf *m, *m2; int flags, error; ssize_t len; struct protosw *pr = so->so_proto; struct mbuf *nextrecord; if (psa != NULL) *psa = NULL; if (controlp != NULL) *controlp = NULL; if (flagsp != NULL) flags = *flagsp &~ MSG_EOR; else flags = 0; /* * For any complicated cases, fall back to the full * soreceive_generic(). */ if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) return (soreceive_generic(so, psa, uio, mp0, controlp, flagsp)); /* * Enforce restrictions on use. */ KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, ("soreceive_dgram: wantrcvd")); KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, ("soreceive_dgram: SBS_RCVATMARK")); KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, ("soreceive_dgram: P_CONNREQUIRED")); /* * Loop blocking while waiting for a datagram. */ SOCKBUF_LOCK(&so->so_rcv); while ((m = so->so_rcv.sb_mb) == NULL) { KASSERT(sbavail(&so->so_rcv) == 0, ("soreceive_dgram: sb_mb NULL but sbavail %u", sbavail(&so->so_rcv))); if (so->so_error) { error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(&so->so_rcv); return (error); } if (so->so_rcv.sb_state & SBS_CANTRCVMORE || uio->uio_resid == 0) { SOCKBUF_UNLOCK(&so->so_rcv); return (0); } if ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO))) { SOCKBUF_UNLOCK(&so->so_rcv); return (EWOULDBLOCK); } SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); error = sbwait(&so->so_rcv); if (error) { SOCKBUF_UNLOCK(&so->so_rcv); return (error); } } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (uio->uio_td) uio->uio_td->td_ru.ru_msgrcv++; SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); nextrecord = m->m_nextpkt; if (nextrecord == NULL) { KASSERT(so->so_rcv.sb_lastrecord == m, ("soreceive_dgram: lastrecord != m")); } KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, ("soreceive_dgram: m_nextpkt != nextrecord")); /* * Pull 'm' and its chain off the front of the packet queue. */ so->so_rcv.sb_mb = NULL; sockbuf_pushsync(&so->so_rcv, nextrecord); /* * Walk 'm's chain and free that many bytes from the socket buffer. */ for (m2 = m; m2 != NULL; m2 = m2->m_next) sbfree(&so->so_rcv, m2); /* * Do a few last checks before we let go of the lock. */ SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_rcv); if (pr->pr_flags & PR_ADDR) { KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type)); if (psa != NULL) *psa = sodupsockaddr(mtod(m, struct sockaddr *), M_NOWAIT); m = m_free(m); } if (m == NULL) { /* XXXRW: Can this happen? */ return (0); } /* * Packet to copyout() is now in 'm' and it is disconnected from the * queue. * * Process one or more MT_CONTROL mbufs present before any data mbufs * in the first mbuf chain on the socket buffer. We call into the * protocol to perform externalization (or freeing if controlp == * NULL). In some cases there can be only MT_CONTROL mbufs without * MT_DATA mbufs. */ if (m->m_type == MT_CONTROL) { struct mbuf *cm = NULL, *cmn; struct mbuf **cme = &cm; do { m2 = m->m_next; m->m_next = NULL; *cme = m; cme = &(*cme)->m_next; m = m2; } while (m != NULL && m->m_type == MT_CONTROL); while (cm != NULL) { cmn = cm->m_next; cm->m_next = NULL; if (pr->pr_domain->dom_externalize != NULL) { error = (*pr->pr_domain->dom_externalize) (cm, controlp, flags); } else if (controlp != NULL) *controlp = cm; else m_freem(cm); if (controlp != NULL) { while (*controlp != NULL) controlp = &(*controlp)->m_next; } cm = cmn; } } KASSERT(m == NULL || m->m_type == MT_DATA, ("soreceive_dgram: !data")); while (m != NULL && uio->uio_resid > 0) { len = uio->uio_resid; if (len > m->m_len) len = m->m_len; error = uiomove(mtod(m, char *), (int)len, uio); if (error) { m_freem(m); return (error); } if (len == m->m_len) m = m_free(m); else { m->m_data += len; m->m_len -= len; } } if (m != NULL) { flags |= MSG_TRUNC; m_freem(m); } if (flagsp != NULL) *flagsp |= flags; return (0); } int soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) { int error; CURVNET_SET(so->so_vnet); if (!SOLISTENING(so)) error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0, controlp, flagsp)); else error = ENOTCONN; CURVNET_RESTORE(); return (error); } int soshutdown(struct socket *so, int how) { struct protosw *pr = so->so_proto; int error, soerror_enotconn; if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) return (EINVAL); soerror_enotconn = 0; if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { /* * POSIX mandates us to return ENOTCONN when shutdown(2) is * invoked on a datagram sockets, however historically we would * actually tear socket down. This is known to be leveraged by * some applications to unblock process waiting in recvXXX(2) * by other process that it shares that socket with. Try to meet * both backward-compatibility and POSIX requirements by forcing * ENOTCONN but still asking protocol to perform pru_shutdown(). */ if (so->so_type != SOCK_DGRAM) return (ENOTCONN); soerror_enotconn = 1; } CURVNET_SET(so->so_vnet); if (pr->pr_usrreqs->pru_flush != NULL) (*pr->pr_usrreqs->pru_flush)(so, how); if (how != SHUT_WR) sorflush(so); if (how != SHUT_RD) { error = (*pr->pr_usrreqs->pru_shutdown)(so); wakeup(&so->so_timeo); CURVNET_RESTORE(); return ((error == 0 && soerror_enotconn) ? ENOTCONN : error); } wakeup(&so->so_timeo); CURVNET_RESTORE(); return (soerror_enotconn ? ENOTCONN : 0); } void sorflush(struct socket *so) { struct sockbuf *sb = &so->so_rcv; struct protosw *pr = so->so_proto; struct socket aso; VNET_SO_ASSERT(so); /* * In order to avoid calling dom_dispose with the socket buffer mutex * held, and in order to generally avoid holding the lock for a long * time, we make a copy of the socket buffer and clear the original * (except locks, state). The new socket buffer copy won't have * initialized locks so we can only call routines that won't use or * assert those locks. * * Dislodge threads currently blocked in receive and wait to acquire * a lock against other simultaneous readers before clearing the * socket buffer. Don't let our acquire be interrupted by a signal * despite any existing socket disposition on interruptable waiting. */ socantrcvmore(so); (void) sblock(sb, SBL_WAIT | SBL_NOINTR); /* * Invalidate/clear most of the sockbuf structure, but leave selinfo * and mutex data unchanged. */ SOCKBUF_LOCK(sb); bzero(&aso, sizeof(aso)); aso.so_pcb = so->so_pcb; bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero, sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); bzero(&sb->sb_startzero, sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); SOCKBUF_UNLOCK(sb); sbunlock(sb); /* * Dispose of special rights and flush the copied socket. Don't call * any unsafe routines (that rely on locks being initialized) on aso. */ if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) (*pr->pr_domain->dom_dispose)(&aso); sbrelease_internal(&aso.so_rcv, so); } /* * Wrapper for Socket established helper hook. * Parameters: socket, context of the hook point, hook id. */ static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) { struct socket_hhook_data hhook_data = { .so = so, .hctx = hctx, .m = NULL, .status = 0 }; CURVNET_SET(so->so_vnet); HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); CURVNET_RESTORE(); /* Ugly but needed, since hhooks return void for now */ return (hhook_data.status); } /* * Perhaps this routine, and sooptcopyout(), below, ought to come in an * additional variant to handle the case where the option value needs to be * some kind of integer, but not a specific size. In addition to their use * here, these functions are also called by the protocol-level pr_ctloutput() * routines. */ int sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) { size_t valsize; /* * If the user gives us more than we wanted, we ignore it, but if we * don't get the minimum length the caller wants, we return EINVAL. * On success, sopt->sopt_valsize is set to however much we actually * retrieved. */ if ((valsize = sopt->sopt_valsize) < minlen) return EINVAL; if (valsize > len) sopt->sopt_valsize = valsize = len; if (sopt->sopt_td != NULL) return (copyin(sopt->sopt_val, buf, valsize)); bcopy(sopt->sopt_val, buf, valsize); return (0); } /* * Kernel version of setsockopt(2). * * XXX: optlen is size_t, not socklen_t */ int so_setsockopt(struct socket *so, int level, int optname, void *optval, size_t optlen) { struct sockopt sopt; sopt.sopt_level = level; sopt.sopt_name = optname; sopt.sopt_dir = SOPT_SET; sopt.sopt_val = optval; sopt.sopt_valsize = optlen; sopt.sopt_td = NULL; return (sosetopt(so, &sopt)); } int sosetopt(struct socket *so, struct sockopt *sopt) { int error, optval; struct linger l; struct timeval tv; sbintime_t val; uint32_t val32; #ifdef MAC struct mac extmac; #endif CURVNET_SET(so->so_vnet); error = 0; if (sopt->sopt_level != SOL_SOCKET) { if (so->so_proto->pr_ctloutput != NULL) { error = (*so->so_proto->pr_ctloutput)(so, sopt); CURVNET_RESTORE(); return (error); } error = ENOPROTOOPT; } else { switch (sopt->sopt_name) { case SO_ACCEPTFILTER: error = accept_filt_setopt(so, sopt); if (error) goto bad; break; case SO_LINGER: error = sooptcopyin(sopt, &l, sizeof l, sizeof l); if (error) goto bad; SOCK_LOCK(so); so->so_linger = l.l_linger; if (l.l_onoff) so->so_options |= SO_LINGER; else so->so_options &= ~SO_LINGER; SOCK_UNLOCK(so); break; case SO_DEBUG: case SO_KEEPALIVE: case SO_DONTROUTE: case SO_USELOOPBACK: case SO_BROADCAST: case SO_REUSEADDR: case SO_REUSEPORT: + case SO_REUSEPORT_LB: case SO_OOBINLINE: case SO_TIMESTAMP: case SO_BINTIME: case SO_NOSIGPIPE: case SO_NO_DDP: case SO_NO_OFFLOAD: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) goto bad; SOCK_LOCK(so); if (optval) so->so_options |= sopt->sopt_name; else so->so_options &= ~sopt->sopt_name; SOCK_UNLOCK(so); break; case SO_SETFIB: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) goto bad; if (optval < 0 || optval >= rt_numfibs) { error = EINVAL; goto bad; } if (((so->so_proto->pr_domain->dom_family == PF_INET) || (so->so_proto->pr_domain->dom_family == PF_INET6) || (so->so_proto->pr_domain->dom_family == PF_ROUTE))) so->so_fibnum = optval; else so->so_fibnum = 0; break; case SO_USER_COOKIE: error = sooptcopyin(sopt, &val32, sizeof val32, sizeof val32); if (error) goto bad; so->so_user_cookie = val32; break; case SO_SNDBUF: case SO_RCVBUF: case SO_SNDLOWAT: case SO_RCVLOWAT: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) goto bad; /* * Values < 1 make no sense for any of these options, * so disallow them. */ if (optval < 1) { error = EINVAL; goto bad; } error = sbsetopt(so, sopt->sopt_name, optval); break; case SO_SNDTIMEO: case SO_RCVTIMEO: #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) { struct timeval32 tv32; error = sooptcopyin(sopt, &tv32, sizeof tv32, sizeof tv32); CP(tv32, tv, tv_sec); CP(tv32, tv, tv_usec); } else #endif error = sooptcopyin(sopt, &tv, sizeof tv, sizeof tv); if (error) goto bad; if (tv.tv_sec < 0 || tv.tv_usec < 0 || tv.tv_usec >= 1000000) { error = EDOM; goto bad; } if (tv.tv_sec > INT32_MAX) val = SBT_MAX; else val = tvtosbt(tv); switch (sopt->sopt_name) { case SO_SNDTIMEO: so->so_snd.sb_timeo = val; break; case SO_RCVTIMEO: so->so_rcv.sb_timeo = val; break; } break; case SO_LABEL: #ifdef MAC error = sooptcopyin(sopt, &extmac, sizeof extmac, sizeof extmac); if (error) goto bad; error = mac_setsockopt_label(sopt->sopt_td->td_ucred, so, &extmac); #else error = EOPNOTSUPP; #endif break; case SO_TS_CLOCK: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) goto bad; if (optval < 0 || optval > SO_TS_CLOCK_MAX) { error = EINVAL; goto bad; } so->so_ts_clock = optval; break; case SO_MAX_PACING_RATE: error = sooptcopyin(sopt, &val32, sizeof(val32), sizeof(val32)); if (error) goto bad; so->so_max_pacing_rate = val32; break; default: if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) error = hhook_run_socket(so, sopt, HHOOK_SOCKET_OPT); else error = ENOPROTOOPT; break; } if (error == 0 && so->so_proto->pr_ctloutput != NULL) (void)(*so->so_proto->pr_ctloutput)(so, sopt); } bad: CURVNET_RESTORE(); return (error); } /* * Helper routine for getsockopt. */ int sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) { int error; size_t valsize; error = 0; /* * Documented get behavior is that we always return a value, possibly * truncated to fit in the user's buffer. Traditional behavior is * that we always tell the user precisely how much we copied, rather * than something useful like the total amount we had available for * her. Note that this interface is not idempotent; the entire * answer must be generated ahead of time. */ valsize = min(len, sopt->sopt_valsize); sopt->sopt_valsize = valsize; if (sopt->sopt_val != NULL) { if (sopt->sopt_td != NULL) error = copyout(buf, sopt->sopt_val, valsize); else bcopy(buf, sopt->sopt_val, valsize); } return (error); } int sogetopt(struct socket *so, struct sockopt *sopt) { int error, optval; struct linger l; struct timeval tv; #ifdef MAC struct mac extmac; #endif CURVNET_SET(so->so_vnet); error = 0; if (sopt->sopt_level != SOL_SOCKET) { if (so->so_proto->pr_ctloutput != NULL) error = (*so->so_proto->pr_ctloutput)(so, sopt); else error = ENOPROTOOPT; CURVNET_RESTORE(); return (error); } else { switch (sopt->sopt_name) { case SO_ACCEPTFILTER: error = accept_filt_getopt(so, sopt); break; case SO_LINGER: SOCK_LOCK(so); l.l_onoff = so->so_options & SO_LINGER; l.l_linger = so->so_linger; SOCK_UNLOCK(so); error = sooptcopyout(sopt, &l, sizeof l); break; case SO_USELOOPBACK: case SO_DONTROUTE: case SO_DEBUG: case SO_KEEPALIVE: case SO_REUSEADDR: case SO_REUSEPORT: + case SO_REUSEPORT_LB: case SO_BROADCAST: case SO_OOBINLINE: case SO_ACCEPTCONN: case SO_TIMESTAMP: case SO_BINTIME: case SO_NOSIGPIPE: optval = so->so_options & sopt->sopt_name; integer: error = sooptcopyout(sopt, &optval, sizeof optval); break; case SO_TYPE: optval = so->so_type; goto integer; case SO_PROTOCOL: optval = so->so_proto->pr_protocol; goto integer; case SO_ERROR: SOCK_LOCK(so); optval = so->so_error; so->so_error = 0; SOCK_UNLOCK(so); goto integer; case SO_SNDBUF: optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : so->so_snd.sb_hiwat; goto integer; case SO_RCVBUF: optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : so->so_rcv.sb_hiwat; goto integer; case SO_SNDLOWAT: optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : so->so_snd.sb_lowat; goto integer; case SO_RCVLOWAT: optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : so->so_rcv.sb_lowat; goto integer; case SO_SNDTIMEO: case SO_RCVTIMEO: tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? so->so_snd.sb_timeo : so->so_rcv.sb_timeo); #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) { struct timeval32 tv32; CP(tv, tv32, tv_sec); CP(tv, tv32, tv_usec); error = sooptcopyout(sopt, &tv32, sizeof tv32); } else #endif error = sooptcopyout(sopt, &tv, sizeof tv); break; case SO_LABEL: #ifdef MAC error = sooptcopyin(sopt, &extmac, sizeof(extmac), sizeof(extmac)); if (error) goto bad; error = mac_getsockopt_label(sopt->sopt_td->td_ucred, so, &extmac); if (error) goto bad; error = sooptcopyout(sopt, &extmac, sizeof extmac); #else error = EOPNOTSUPP; #endif break; case SO_PEERLABEL: #ifdef MAC error = sooptcopyin(sopt, &extmac, sizeof(extmac), sizeof(extmac)); if (error) goto bad; error = mac_getsockopt_peerlabel( sopt->sopt_td->td_ucred, so, &extmac); if (error) goto bad; error = sooptcopyout(sopt, &extmac, sizeof extmac); #else error = EOPNOTSUPP; #endif break; case SO_LISTENQLIMIT: optval = SOLISTENING(so) ? so->sol_qlimit : 0; goto integer; case SO_LISTENQLEN: optval = SOLISTENING(so) ? so->sol_qlen : 0; goto integer; case SO_LISTENINCQLEN: optval = SOLISTENING(so) ? so->sol_incqlen : 0; goto integer; case SO_TS_CLOCK: optval = so->so_ts_clock; goto integer; case SO_MAX_PACING_RATE: optval = so->so_max_pacing_rate; goto integer; default: if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) error = hhook_run_socket(so, sopt, HHOOK_SOCKET_OPT); else error = ENOPROTOOPT; break; } } #ifdef MAC bad: #endif CURVNET_RESTORE(); return (error); } int soopt_getm(struct sockopt *sopt, struct mbuf **mp) { struct mbuf *m, *m_prev; int sopt_size = sopt->sopt_valsize; MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); if (m == NULL) return ENOBUFS; if (sopt_size > MLEN) { MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); if ((m->m_flags & M_EXT) == 0) { m_free(m); return ENOBUFS; } m->m_len = min(MCLBYTES, sopt_size); } else { m->m_len = min(MLEN, sopt_size); } sopt_size -= m->m_len; *mp = m; m_prev = m; while (sopt_size) { MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); if (m == NULL) { m_freem(*mp); return ENOBUFS; } if (sopt_size > MLEN) { MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : M_NOWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); m_freem(*mp); return ENOBUFS; } m->m_len = min(MCLBYTES, sopt_size); } else { m->m_len = min(MLEN, sopt_size); } sopt_size -= m->m_len; m_prev->m_next = m; m_prev = m; } return (0); } int soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) { struct mbuf *m0 = m; if (sopt->sopt_val == NULL) return (0); while (m != NULL && sopt->sopt_valsize >= m->m_len) { if (sopt->sopt_td != NULL) { int error; error = copyin(sopt->sopt_val, mtod(m, char *), m->m_len); if (error != 0) { m_freem(m0); return(error); } } else bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); sopt->sopt_valsize -= m->m_len; sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; m = m->m_next; } if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ panic("ip6_sooptmcopyin"); return (0); } int soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) { struct mbuf *m0 = m; size_t valsize = 0; if (sopt->sopt_val == NULL) return (0); while (m != NULL && sopt->sopt_valsize >= m->m_len) { if (sopt->sopt_td != NULL) { int error; error = copyout(mtod(m, char *), sopt->sopt_val, m->m_len); if (error != 0) { m_freem(m0); return(error); } } else bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); sopt->sopt_valsize -= m->m_len; sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; valsize += m->m_len; m = m->m_next; } if (m != NULL) { /* enough soopt buffer should be given from user-land */ m_freem(m0); return(EINVAL); } sopt->sopt_valsize = valsize; return (0); } /* * sohasoutofband(): protocol notifies socket layer of the arrival of new * out-of-band data, which will then notify socket consumers. */ void sohasoutofband(struct socket *so) { if (so->so_sigio != NULL) pgsigio(&so->so_sigio, SIGURG, 0); selwakeuppri(&so->so_rdsel, PSOCK); } int sopoll(struct socket *so, int events, struct ucred *active_cred, struct thread *td) { /* * We do not need to set or assert curvnet as long as everyone uses * sopoll_generic(). */ return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, td)); } int sopoll_generic(struct socket *so, int events, struct ucred *active_cred, struct thread *td) { int revents; SOCK_LOCK(so); if (SOLISTENING(so)) { if (!(events & (POLLIN | POLLRDNORM))) revents = 0; else if (!TAILQ_EMPTY(&so->sol_comp)) revents = events & (POLLIN | POLLRDNORM); else { selrecord(td, &so->so_rdsel); revents = 0; } } else { revents = 0; SOCKBUF_LOCK(&so->so_snd); SOCKBUF_LOCK(&so->so_rcv); if (events & (POLLIN | POLLRDNORM)) if (soreadabledata(so)) revents |= events & (POLLIN | POLLRDNORM); if (events & (POLLOUT | POLLWRNORM)) if (sowriteable(so)) revents |= events & (POLLOUT | POLLWRNORM); if (events & (POLLPRI | POLLRDBAND)) if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) revents |= events & (POLLPRI | POLLRDBAND); if ((events & POLLINIGNEOF) == 0) { if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { revents |= events & (POLLIN | POLLRDNORM); if (so->so_snd.sb_state & SBS_CANTSENDMORE) revents |= POLLHUP; } } if (revents == 0) { if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { selrecord(td, &so->so_rdsel); so->so_rcv.sb_flags |= SB_SEL; } if (events & (POLLOUT | POLLWRNORM)) { selrecord(td, &so->so_wrsel); so->so_snd.sb_flags |= SB_SEL; } } SOCKBUF_UNLOCK(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_snd); } SOCK_UNLOCK(so); return (revents); } int soo_kqfilter(struct file *fp, struct knote *kn) { struct socket *so = kn->kn_fp->f_data; struct sockbuf *sb; struct knlist *knl; switch (kn->kn_filter) { case EVFILT_READ: kn->kn_fop = &soread_filtops; knl = &so->so_rdsel.si_note; sb = &so->so_rcv; break; case EVFILT_WRITE: kn->kn_fop = &sowrite_filtops; knl = &so->so_wrsel.si_note; sb = &so->so_snd; break; case EVFILT_EMPTY: kn->kn_fop = &soempty_filtops; knl = &so->so_wrsel.si_note; sb = &so->so_snd; break; default: return (EINVAL); } SOCK_LOCK(so); if (SOLISTENING(so)) { knlist_add(knl, kn, 1); } else { SOCKBUF_LOCK(sb); knlist_add(knl, kn, 1); sb->sb_flags |= SB_KNOTE; SOCKBUF_UNLOCK(sb); } SOCK_UNLOCK(so); return (0); } /* * Some routines that return EOPNOTSUPP for entry points that are not * supported by a protocol. Fill in as needed. */ int pru_accept_notsupp(struct socket *so, struct sockaddr **nam) { return EOPNOTSUPP; } int pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job) { return EOPNOTSUPP; } int pru_attach_notsupp(struct socket *so, int proto, struct thread *td) { return EOPNOTSUPP; } int pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) { return EOPNOTSUPP; } int pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) { return EOPNOTSUPP; } int pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) { return EOPNOTSUPP; } int pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) { return EOPNOTSUPP; } int pru_connect2_notsupp(struct socket *so1, struct socket *so2) { return EOPNOTSUPP; } int pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { return EOPNOTSUPP; } int pru_disconnect_notsupp(struct socket *so) { return EOPNOTSUPP; } int pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) { return EOPNOTSUPP; } int pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) { return EOPNOTSUPP; } int pru_rcvd_notsupp(struct socket *so, int flags) { return EOPNOTSUPP; } int pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) { return EOPNOTSUPP; } int pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct thread *td) { return EOPNOTSUPP; } int pru_ready_notsupp(struct socket *so, struct mbuf *m, int count) { return (EOPNOTSUPP); } /* * This isn't really a ``null'' operation, but it's the default one and * doesn't do anything destructive. */ int pru_sense_null(struct socket *so, struct stat *sb) { sb->st_blksize = so->so_snd.sb_hiwat; return 0; } int pru_shutdown_notsupp(struct socket *so) { return EOPNOTSUPP; } int pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) { return EOPNOTSUPP; } int pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td) { return EOPNOTSUPP; } int pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) { return EOPNOTSUPP; } int pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, struct thread *td) { return EOPNOTSUPP; } static void filt_sordetach(struct knote *kn) { struct socket *so = kn->kn_fp->f_data; so_rdknl_lock(so); knlist_remove(&so->so_rdsel.si_note, kn, 1); if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) so->so_rcv.sb_flags &= ~SB_KNOTE; so_rdknl_unlock(so); } /*ARGSUSED*/ static int filt_soread(struct knote *kn, long hint) { struct socket *so; so = kn->kn_fp->f_data; if (SOLISTENING(so)) { SOCK_LOCK_ASSERT(so); kn->kn_data = so->sol_qlen; return (!TAILQ_EMPTY(&so->sol_comp)); } SOCKBUF_LOCK_ASSERT(&so->so_rcv); kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { kn->kn_flags |= EV_EOF; kn->kn_fflags = so->so_error; return (1); } else if (so->so_error) /* temporary udp error */ return (1); if (kn->kn_sfflags & NOTE_LOWAT) { if (kn->kn_data >= kn->kn_sdata) return (1); } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) return (1); /* This hook returning non-zero indicates an event, not error */ return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); } static void filt_sowdetach(struct knote *kn) { struct socket *so = kn->kn_fp->f_data; so_wrknl_lock(so); knlist_remove(&so->so_wrsel.si_note, kn, 1); if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) so->so_snd.sb_flags &= ~SB_KNOTE; so_wrknl_unlock(so); } /*ARGSUSED*/ static int filt_sowrite(struct knote *kn, long hint) { struct socket *so; so = kn->kn_fp->f_data; if (SOLISTENING(so)) return (0); SOCKBUF_LOCK_ASSERT(&so->so_snd); kn->kn_data = sbspace(&so->so_snd); hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); if (so->so_snd.sb_state & SBS_CANTSENDMORE) { kn->kn_flags |= EV_EOF; kn->kn_fflags = so->so_error; return (1); } else if (so->so_error) /* temporary udp error */ return (1); else if (((so->so_state & SS_ISCONNECTED) == 0) && (so->so_proto->pr_flags & PR_CONNREQUIRED)) return (0); else if (kn->kn_sfflags & NOTE_LOWAT) return (kn->kn_data >= kn->kn_sdata); else return (kn->kn_data >= so->so_snd.sb_lowat); } static int filt_soempty(struct knote *kn, long hint) { struct socket *so; so = kn->kn_fp->f_data; if (SOLISTENING(so)) return (1); SOCKBUF_LOCK_ASSERT(&so->so_snd); kn->kn_data = sbused(&so->so_snd); if (kn->kn_data == 0) return (1); else return (0); } int socheckuid(struct socket *so, uid_t uid) { if (so == NULL) return (EPERM); if (so->so_cred->cr_uid != uid) return (EPERM); return (0); } /* * These functions are used by protocols to notify the socket layer (and its * consumers) of state changes in the sockets driven by protocol-side events. */ /* * Procedures to manipulate state flags of socket and do appropriate wakeups. * * Normal sequence from the active (originating) side is that * soisconnecting() is called during processing of connect() call, resulting * in an eventual call to soisconnected() if/when the connection is * established. When the connection is torn down soisdisconnecting() is * called during processing of disconnect() call, and soisdisconnected() is * called when the connection to the peer is totally severed. The semantics * of these routines are such that connectionless protocols can call * soisconnected() and soisdisconnected() only, bypassing the in-progress * calls when setting up a ``connection'' takes no time. * * From the passive side, a socket is created with two queues of sockets: * so_incomp for connections in progress and so_comp for connections already * made and awaiting user acceptance. As a protocol is preparing incoming * connections, it creates a socket structure queued on so_incomp by calling * sonewconn(). When the connection is established, soisconnected() is * called, and transfers the socket structure to so_comp, making it available * to accept(). * * If a socket is closed with sockets on either so_incomp or so_comp, these * sockets are dropped. * * If higher-level protocols are implemented in the kernel, the wakeups done * here will sometimes cause software-interrupt process scheduling. */ void soisconnecting(struct socket *so) { SOCK_LOCK(so); so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); so->so_state |= SS_ISCONNECTING; SOCK_UNLOCK(so); } void soisconnected(struct socket *so) { SOCK_LOCK(so); so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); so->so_state |= SS_ISCONNECTED; if (so->so_qstate == SQ_INCOMP) { struct socket *head = so->so_listen; int ret; KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); /* * Promoting a socket from incomplete queue to complete, we * need to go through reverse order of locking. We first do * trylock, and if that doesn't succeed, we go the hard way * leaving a reference and rechecking consistency after proper * locking. */ if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { soref(head); SOCK_UNLOCK(so); SOLISTEN_LOCK(head); SOCK_LOCK(so); if (__predict_false(head != so->so_listen)) { /* * The socket went off the listen queue, * should be lost race to close(2) of sol. * The socket is about to soabort(). */ SOCK_UNLOCK(so); sorele(head); return; } /* Not the last one, as so holds a ref. */ refcount_release(&head->so_count); } again: if ((so->so_options & SO_ACCEPTFILTER) == 0) { TAILQ_REMOVE(&head->sol_incomp, so, so_list); head->sol_incqlen--; TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); head->sol_qlen++; so->so_qstate = SQ_COMP; SOCK_UNLOCK(so); solisten_wakeup(head); /* unlocks */ } else { SOCKBUF_LOCK(&so->so_rcv); soupcall_set(so, SO_RCV, head->sol_accept_filter->accf_callback, head->sol_accept_filter_arg); so->so_options &= ~SO_ACCEPTFILTER; ret = head->sol_accept_filter->accf_callback(so, head->sol_accept_filter_arg, M_NOWAIT); if (ret == SU_ISCONNECTED) { soupcall_clear(so, SO_RCV); SOCKBUF_UNLOCK(&so->so_rcv); goto again; } SOCKBUF_UNLOCK(&so->so_rcv); SOCK_UNLOCK(so); SOLISTEN_UNLOCK(head); } return; } SOCK_UNLOCK(so); wakeup(&so->so_timeo); sorwakeup(so); sowwakeup(so); } void soisdisconnecting(struct socket *so) { SOCK_LOCK(so); so->so_state &= ~SS_ISCONNECTING; so->so_state |= SS_ISDISCONNECTING; if (!SOLISTENING(so)) { SOCKBUF_LOCK(&so->so_rcv); socantrcvmore_locked(so); SOCKBUF_LOCK(&so->so_snd); socantsendmore_locked(so); } SOCK_UNLOCK(so); wakeup(&so->so_timeo); } void soisdisconnected(struct socket *so) { SOCK_LOCK(so); so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); so->so_state |= SS_ISDISCONNECTED; if (!SOLISTENING(so)) { SOCK_UNLOCK(so); SOCKBUF_LOCK(&so->so_rcv); socantrcvmore_locked(so); SOCKBUF_LOCK(&so->so_snd); sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); socantsendmore_locked(so); } else SOCK_UNLOCK(so); wakeup(&so->so_timeo); } /* * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. */ struct sockaddr * sodupsockaddr(const struct sockaddr *sa, int mflags) { struct sockaddr *sa2; sa2 = malloc(sa->sa_len, M_SONAME, mflags); if (sa2) bcopy(sa, sa2, sa->sa_len); return sa2; } /* * Register per-socket buffer upcalls. */ void soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg) { struct sockbuf *sb; KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); switch (which) { case SO_RCV: sb = &so->so_rcv; break; case SO_SND: sb = &so->so_snd; break; default: panic("soupcall_set: bad which"); } SOCKBUF_LOCK_ASSERT(sb); sb->sb_upcall = func; sb->sb_upcallarg = arg; sb->sb_flags |= SB_UPCALL; } void soupcall_clear(struct socket *so, int which) { struct sockbuf *sb; KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); switch (which) { case SO_RCV: sb = &so->so_rcv; break; case SO_SND: sb = &so->so_snd; break; default: panic("soupcall_clear: bad which"); } SOCKBUF_LOCK_ASSERT(sb); KASSERT(sb->sb_upcall != NULL, ("%s: so %p no upcall to clear", __func__, so)); sb->sb_upcall = NULL; sb->sb_upcallarg = NULL; sb->sb_flags &= ~SB_UPCALL; } void solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) { SOLISTEN_LOCK_ASSERT(so); so->sol_upcall = func; so->sol_upcallarg = arg; } static void so_rdknl_lock(void *arg) { struct socket *so = arg; if (SOLISTENING(so)) SOCK_LOCK(so); else SOCKBUF_LOCK(&so->so_rcv); } static void so_rdknl_unlock(void *arg) { struct socket *so = arg; if (SOLISTENING(so)) SOCK_UNLOCK(so); else SOCKBUF_UNLOCK(&so->so_rcv); } static void so_rdknl_assert_locked(void *arg) { struct socket *so = arg; if (SOLISTENING(so)) SOCK_LOCK_ASSERT(so); else SOCKBUF_LOCK_ASSERT(&so->so_rcv); } static void so_rdknl_assert_unlocked(void *arg) { struct socket *so = arg; if (SOLISTENING(so)) SOCK_UNLOCK_ASSERT(so); else SOCKBUF_UNLOCK_ASSERT(&so->so_rcv); } static void so_wrknl_lock(void *arg) { struct socket *so = arg; if (SOLISTENING(so)) SOCK_LOCK(so); else SOCKBUF_LOCK(&so->so_snd); } static void so_wrknl_unlock(void *arg) { struct socket *so = arg; if (SOLISTENING(so)) SOCK_UNLOCK(so); else SOCKBUF_UNLOCK(&so->so_snd); } static void so_wrknl_assert_locked(void *arg) { struct socket *so = arg; if (SOLISTENING(so)) SOCK_LOCK_ASSERT(so); else SOCKBUF_LOCK_ASSERT(&so->so_snd); } static void so_wrknl_assert_unlocked(void *arg) { struct socket *so = arg; if (SOLISTENING(so)) SOCK_UNLOCK_ASSERT(so); else SOCKBUF_UNLOCK_ASSERT(&so->so_snd); } /* * Create an external-format (``xsocket'') structure using the information in * the kernel-format socket structure pointed to by so. This is done to * reduce the spew of irrelevant information over this interface, to isolate * user code from changes in the kernel structure, and potentially to provide * information-hiding if we decide that some of this information should be * hidden from users. */ void sotoxsocket(struct socket *so, struct xsocket *xso) { xso->xso_len = sizeof *xso; xso->xso_so = so; xso->so_type = so->so_type; xso->so_options = so->so_options; xso->so_linger = so->so_linger; xso->so_state = so->so_state; xso->so_pcb = so->so_pcb; xso->xso_protocol = so->so_proto->pr_protocol; xso->xso_family = so->so_proto->pr_domain->dom_family; xso->so_timeo = so->so_timeo; xso->so_error = so->so_error; xso->so_uid = so->so_cred->cr_uid; xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; if (SOLISTENING(so)) { xso->so_qlen = so->sol_qlen; xso->so_incqlen = so->sol_incqlen; xso->so_qlimit = so->sol_qlimit; xso->so_oobmark = 0; bzero(&xso->so_snd, sizeof(xso->so_snd)); bzero(&xso->so_rcv, sizeof(xso->so_rcv)); } else { xso->so_state |= so->so_qstate; xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; xso->so_oobmark = so->so_oobmark; sbtoxsockbuf(&so->so_snd, &xso->so_snd); sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); } } struct sockbuf * so_sockbuf_rcv(struct socket *so) { return (&so->so_rcv); } struct sockbuf * so_sockbuf_snd(struct socket *so) { return (&so->so_snd); } int so_state_get(const struct socket *so) { return (so->so_state); } void so_state_set(struct socket *so, int val) { so->so_state = val; } int so_options_get(const struct socket *so) { return (so->so_options); } void so_options_set(struct socket *so, int val) { so->so_options = val; } int so_error_get(const struct socket *so) { return (so->so_error); } void so_error_set(struct socket *so, int val) { so->so_error = val; } int so_linger_get(const struct socket *so) { return (so->so_linger); } void so_linger_set(struct socket *so, int val) { so->so_linger = val; } struct protosw * so_protosw_get(const struct socket *so) { return (so->so_proto); } void so_protosw_set(struct socket *so, struct protosw *val) { so->so_proto = val; } void so_sorwakeup(struct socket *so) { sorwakeup(so); } void so_sowwakeup(struct socket *so) { sowwakeup(so); } void so_sorwakeup_locked(struct socket *so) { sorwakeup_locked(so); } void so_sowwakeup_locked(struct socket *so) { sowwakeup_locked(so); } void so_lock(struct socket *so) { SOCK_LOCK(so); } void so_unlock(struct socket *so) { SOCK_UNLOCK(so); } Index: head/sys/netinet/in_pcb.c =================================================================== --- head/sys/netinet/in_pcb.c (revision 332893) +++ head/sys/netinet/in_pcb.c (revision 332894) @@ -1,3093 +1,3419 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1991, 1993, 1995 * The Regents of the University of California. * Copyright (c) 2007-2009 Robert N. M. Watson * Copyright (c) 2010-2011 Juniper Networks, Inc. * All rights reserved. * * Portions of this software were developed by Robert N. M. Watson under * contract to Juniper Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_ipsec.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ratelimit.h" #include "opt_pcbgroup.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #include #include #ifdef TCPHPTS #include #endif #include #include #endif #ifdef INET #include #endif #ifdef INET6 #include #include #include #include #endif /* INET6 */ #include #include +#define INPCBLBGROUP_SIZMIN 8 +#define INPCBLBGROUP_SIZMAX 256 + static struct callout ipport_tick_callout; /* * These configure the range of local port addresses assigned to * "unspecified" outgoing connections/packets/whatever. */ VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ /* * Reserved ports accessible only to root. There are significant * security considerations that must be accounted for when changing these, * but the security benefits can be great. Please be careful. */ VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ VNET_DEFINE(int, ipport_reservedlow); /* Variables dealing with random ephemeral port allocation. */ VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ VNET_DEFINE(int, ipport_tcpallocs); static VNET_DEFINE(int, ipport_tcplastcount); #define V_ipport_tcplastcount VNET(ipport_tcplastcount) static void in_pcbremlists(struct inpcb *inp); #ifdef INET static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, struct ifnet *ifp); #define RANGECHK(var, min, max) \ if ((var) < (min)) { (var) = (min); } \ else if ((var) > (max)) { (var) = (max); } static int sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) { int error; error = sysctl_handle_int(oidp, arg1, arg2, req); if (error == 0) { RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); } return (error); } #undef RANGECHK static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports"); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, ""); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " "allocations before switching to a sequental one"); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipport_randomtime), 0, "Minimum time to keep sequental port " "allocation before switching to a random one"); #endif /* INET */ /* * in_pcb.c: manage the Protocol Control Blocks. * * NOTE: It is assumed that most of these functions will be called with * the pcbinfo lock held, and often, the inpcb lock held, as these utility * functions often modify hash chains or addresses in pcbs. */ +static struct inpcblbgroup * +in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, + uint16_t port, const union in_dependaddr *addr, int size) +{ + struct inpcblbgroup *grp; + + size_t bytes = __offsetof(struct inpcblbgroup, il_inp[size]); + grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); + if(!grp) + return NULL; + grp->il_vflag = vflag; + grp->il_lport = port; + grp->il_dependladdr = *addr; + grp->il_inpsiz = size; + LIST_INSERT_HEAD(hdr, grp, il_list); + + return grp; +} + +static void +in_pcblbgroup_free(struct inpcblbgroup *grp) +{ + LIST_REMOVE(grp, il_list); + free(grp, M_TEMP); +} + +static struct inpcblbgroup * +in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, + struct inpcblbgroup *old_grp, int size) +{ + struct inpcblbgroup *grp; + int i; + + grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, + old_grp->il_lport, &old_grp->il_dependladdr, size); + if(!grp) + return NULL; + + KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, + ("invalid new local group size %d and old local group count %d", + grp->il_inpsiz, old_grp->il_inpcnt)); + for (i = 0; i < old_grp->il_inpcnt; ++i) + grp->il_inp[i] = old_grp->il_inp[i]; + grp->il_inpcnt = old_grp->il_inpcnt; + + in_pcblbgroup_free(old_grp); + + return grp; +} + /* + * Add PCB to lb group (load balance used by SO_REUSEPORT_LB) + */ +static int +in_pcbinslbgrouphash(struct inpcb *inp, struct inpcbinfo *pcbinfo) +{ + struct inpcblbgrouphead *hdr; + struct inpcblbgroup *grp; + + uint16_t hashmask = pcbinfo->ipi_lbgrouphashmask; + uint16_t lport = inp->inp_lport; + uint32_t group_index = INP_PCBLBGROUP_PORTHASH(lport, hashmask); + + hdr = &pcbinfo->ipi_lbgrouphashbase[group_index]; + + struct ucred *cred; + + if (pcbinfo->ipi_lbgrouphashbase == NULL) + return 0; + + /* + * don't allow jailed socket to join local group + */ + if (inp->inp_socket != NULL) + cred = inp->inp_socket->so_cred; + else + cred = NULL; + if (cred != NULL && jailed(cred)) + return 0; + +#ifdef INET6 + /* + * don't allow IPv4 mapped INET6 wild socket + */ + if ((inp->inp_vflag & INP_IPV4) && + inp->inp_laddr.s_addr == INADDR_ANY && + INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { + return 0; + } +#endif + + hdr = &pcbinfo->ipi_lbgrouphashbase[ + INP_PCBLBGROUP_PORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; + + LIST_FOREACH(grp, hdr, il_list) { + if (grp->il_vflag == inp->inp_vflag && + grp->il_lport == inp->inp_lport && + memcmp(&grp->il_dependladdr, + &inp->inp_inc.inc_ie.ie_dependladdr, + sizeof(grp->il_dependladdr)) == 0) { + break; + } + } + if (grp == NULL) { + /* Create new load balance group */ + grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, + inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, + INPCBLBGROUP_SIZMIN); + if(!grp) + return (ENOBUFS); + } else if (grp->il_inpcnt == grp->il_inpsiz) { + if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { + static int limit_logged = 0; + + if (!limit_logged) { + limit_logged = 1; + printf("lb group port %d, " + "limit reached\n", ntohs(grp->il_lport)); + } + return 0; + } + + /* Expand this local group */ + grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); + if(!grp) + return (ENOBUFS); + } + + KASSERT(grp->il_inpcnt < grp->il_inpsiz, + ("invalid local group size %d and count %d", + grp->il_inpsiz, grp->il_inpcnt)); + + grp->il_inp[grp->il_inpcnt] = inp; + grp->il_inpcnt++; + return 0; +} + +static void +in_pcbremlbgrouphash(struct inpcb *inp, struct inpcbinfo *pcbinfo) +{ + struct inpcblbgrouphead *hdr; + struct inpcblbgroup *grp; + + if (pcbinfo->ipi_lbgrouphashbase == NULL) + return; + + hdr = &pcbinfo->ipi_lbgrouphashbase[ + INP_PCBLBGROUP_PORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; + + LIST_FOREACH(grp, hdr, il_list) { + int i; + + for (i = 0; i < grp->il_inpcnt; ++i) { + if (grp->il_inp[i] != inp) + continue; + + if (grp->il_inpcnt == 1) { + /* Free this local group */ + in_pcblbgroup_free(grp); + } else { + /* Pull up inpcbs */ + for (; i + 1 < grp->il_inpcnt; ++i) + grp->il_inp[i] = grp->il_inp[i + 1]; + grp->il_inpcnt--; + + if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && + grp->il_inpcnt <= (grp->il_inpsiz / 4)) { + /* Shrink this local group */ + struct inpcblbgroup *new_grp = + in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); + if(new_grp) + grp = new_grp; + } + } + return; + } + } +} + +/* * Different protocols initialize their inpcbs differently - giving * different name to the lock. But they all are disposed the same. */ static void inpcb_fini(void *mem, int size) { struct inpcb *inp = mem; INP_LOCK_DESTROY(inp); } /* * Initialize an inpcbinfo -- we should be able to reduce the number of * arguments in time. */ void in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) { INP_INFO_LOCK_INIT(pcbinfo, name); INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); #ifdef VIMAGE pcbinfo->ipi_vnet = curvnet; #endif pcbinfo->ipi_listhead = listhead; LIST_INIT(pcbinfo->ipi_listhead); pcbinfo->ipi_count = 0; pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, &pcbinfo->ipi_hashmask); pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, &pcbinfo->ipi_porthashmask); + pcbinfo->ipi_lbgrouphashbase = hashinit(hash_nelements, M_PCB, + &pcbinfo->ipi_lbgrouphashmask); #ifdef PCBGROUP in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); #endif pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); uma_zone_set_warning(pcbinfo->ipi_zone, "kern.ipc.maxsockets limit reached"); } /* * Destroy an inpcbinfo. */ void in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) { KASSERT(pcbinfo->ipi_count == 0, ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, pcbinfo->ipi_porthashmask); + hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, + pcbinfo->ipi_lbgrouphashmask); #ifdef PCBGROUP in_pcbgroup_destroy(pcbinfo); #endif uma_zdestroy(pcbinfo->ipi_zone); INP_LIST_LOCK_DESTROY(pcbinfo); INP_HASH_LOCK_DESTROY(pcbinfo); INP_INFO_LOCK_DESTROY(pcbinfo); } /* * Allocate a PCB and associate it with the socket. * On success return with the PCB locked. */ int in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) { struct inpcb *inp; int error; #ifdef INVARIANTS if (pcbinfo == &V_tcbinfo) { INP_INFO_RLOCK_ASSERT(pcbinfo); } else { INP_INFO_WLOCK_ASSERT(pcbinfo); } #endif error = 0; inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); if (inp == NULL) return (ENOBUFS); bzero(&inp->inp_start_zero, inp_zero_size); inp->inp_pcbinfo = pcbinfo; inp->inp_socket = so; inp->inp_cred = crhold(so->so_cred); inp->inp_inc.inc_fibnum = so->so_fibnum; #ifdef MAC error = mac_inpcb_init(inp, M_NOWAIT); if (error != 0) goto out; mac_inpcb_create(so, inp); #endif #if defined(IPSEC) || defined(IPSEC_SUPPORT) error = ipsec_init_pcbpolicy(inp); if (error != 0) { #ifdef MAC mac_inpcb_destroy(inp); #endif goto out; } #endif /*IPSEC*/ #ifdef INET6 if (INP_SOCKAF(so) == AF_INET6) { inp->inp_vflag |= INP_IPV6PROTO; if (V_ip6_v6only) inp->inp_flags |= IN6P_IPV6_V6ONLY; } #endif INP_WLOCK(inp); INP_LIST_WLOCK(pcbinfo); LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); pcbinfo->ipi_count++; so->so_pcb = (caddr_t)inp; #ifdef INET6 if (V_ip6_auto_flowlabel) inp->inp_flags |= IN6P_AUTOFLOWLABEL; #endif inp->inp_gencnt = ++pcbinfo->ipi_gencnt; refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ /* * Routes in inpcb's can cache L2 as well; they are guaranteed * to be cleaned up. */ inp->inp_route.ro_flags = RT_LLE_CACHE; INP_LIST_WUNLOCK(pcbinfo); #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) out: if (error != 0) { crfree(inp->inp_cred); uma_zfree(pcbinfo->ipi_zone, inp); } #endif return (error); } #ifdef INET int in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) { int anonport, error; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) return (EINVAL); anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, &inp->inp_lport, cred); if (error) return (error); if (in_pcbinshash(inp) != 0) { inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_lport = 0; return (EAGAIN); } if (anonport) inp->inp_flags |= INP_ANONPORT; return (0); } #endif /* * Select a local port (number) to use. */ #if defined(INET) || defined(INET6) int in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, struct ucred *cred, int lookupflags) { struct inpcbinfo *pcbinfo; struct inpcb *tmpinp; unsigned short *lastport; int count, dorandom, error; u_short aux, first, last, lport; #ifdef INET struct in_addr laddr; #endif pcbinfo = inp->inp_pcbinfo; /* * Because no actual state changes occur here, a global write lock on * the pcbinfo isn't required. */ INP_LOCK_ASSERT(inp); INP_HASH_LOCK_ASSERT(pcbinfo); if (inp->inp_flags & INP_HIGHPORT) { first = V_ipport_hifirstauto; /* sysctl */ last = V_ipport_hilastauto; lastport = &pcbinfo->ipi_lasthi; } else if (inp->inp_flags & INP_LOWPORT) { error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); if (error) return (error); first = V_ipport_lowfirstauto; /* 1023 */ last = V_ipport_lowlastauto; /* 600 */ lastport = &pcbinfo->ipi_lastlow; } else { first = V_ipport_firstauto; /* sysctl */ last = V_ipport_lastauto; lastport = &pcbinfo->ipi_lastport; } /* * For UDP(-Lite), use random port allocation as long as the user * allows it. For TCP (and as of yet unknown) connections, * use random port allocation only if the user allows it AND * ipport_tick() allows it. */ if (V_ipport_randomized && (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || pcbinfo == &V_ulitecbinfo)) dorandom = 1; else dorandom = 0; /* * It makes no sense to do random port allocation if * we have the only port available. */ if (first == last) dorandom = 0; /* Make sure to not include UDP(-Lite) packets in the count. */ if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) V_ipport_tcpallocs++; /* * Instead of having two loops further down counting up or down * make sure that first is always <= last and go with only one * code path implementing all logic. */ if (first > last) { aux = first; first = last; last = aux; } #ifdef INET /* Make the compiler happy. */ laddr.s_addr = 0; if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", __func__, inp)); laddr = *laddrp; } #endif tmpinp = NULL; /* Make compiler happy. */ lport = *lportp; if (dorandom) *lastport = first + (arc4random() % (last - first)); count = last - first; do { if (count-- < 0) /* completely used? */ return (EADDRNOTAVAIL); ++*lastport; if (*lastport < first || *lastport > last) *lastport = first; lport = htons(*lastport); #ifdef INET6 if ((inp->inp_vflag & INP_IPV6) != 0) tmpinp = in6_pcblookup_local(pcbinfo, &inp->in6p_laddr, lport, lookupflags, cred); #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET tmpinp = in_pcblookup_local(pcbinfo, laddr, lport, lookupflags, cred); #endif } while (tmpinp != NULL); #ifdef INET if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) laddrp->s_addr = laddr.s_addr; #endif *lportp = lport; return (0); } /* * Return cached socket options. */ -short +int inp_so_options(const struct inpcb *inp) { - short so_options; + int so_options; - so_options = 0; + so_options = 0; - if ((inp->inp_flags2 & INP_REUSEPORT) != 0) - so_options |= SO_REUSEPORT; - if ((inp->inp_flags2 & INP_REUSEADDR) != 0) - so_options |= SO_REUSEADDR; - return (so_options); + if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) + so_options |= SO_REUSEPORT_LB; + if ((inp->inp_flags2 & INP_REUSEPORT) != 0) + so_options |= SO_REUSEPORT; + if ((inp->inp_flags2 & INP_REUSEADDR) != 0) + so_options |= SO_REUSEADDR; + return (so_options); } #endif /* INET || INET6 */ /* * Check if a new BINDMULTI socket is allowed to be created. * * ni points to the new inp. * oi points to the exisitng inp. * * This checks whether the existing inp also has BINDMULTI and * whether the credentials match. */ int in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) { /* Check permissions match */ if ((ni->inp_flags2 & INP_BINDMULTI) && (ni->inp_cred->cr_uid != oi->inp_cred->cr_uid)) return (0); /* Check the existing inp has BINDMULTI set */ if ((ni->inp_flags2 & INP_BINDMULTI) && ((oi->inp_flags2 & INP_BINDMULTI) == 0)) return (0); /* * We're okay - either INP_BINDMULTI isn't set on ni, or * it is and it matches the checks. */ return (1); } #ifdef INET /* * Set up a bind operation on a PCB, performing port allocation * as required, but do not actually modify the PCB. Callers can * either complete the bind by setting inp_laddr/inp_lport and * calling in_pcbinshash(), or they can just use the resulting * port and address to authorise the sending of a once-off packet. * * On error, the values of *laddrp and *lportp are not changed. */ int in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, u_short *lportp, struct ucred *cred) { struct socket *so = inp->inp_socket; struct sockaddr_in *sin; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct in_addr laddr; u_short lport = 0; int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); int error; /* + * XXX Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here + * so that we don't have to add to the (already messy) code below + */ + int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); + + /* * No state changes, so read locks are sufficient here. */ INP_LOCK_ASSERT(inp); INP_HASH_LOCK_ASSERT(pcbinfo); if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ return (EADDRNOTAVAIL); laddr.s_addr = *laddrp; if (nam != NULL && laddr.s_addr != INADDR_ANY) return (EINVAL); - if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) + if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) lookupflags = INPLOOKUP_WILDCARD; if (nam == NULL) { if ((error = prison_local_ip4(cred, &laddr)) != 0) return (error); } else { sin = (struct sockaddr_in *)nam; if (nam->sa_len != sizeof (*sin)) return (EINVAL); #ifdef notdef /* * We should check the family, but old programs * incorrectly fail to initialize it. */ if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); #endif error = prison_local_ip4(cred, &sin->sin_addr); if (error) return (error); if (sin->sin_port != *lportp) { /* Don't allow the port to change. */ if (*lportp != 0) return (EINVAL); lport = sin->sin_port; } /* NB: lport is left as 0 if the port isn't being changed. */ if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { /* * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; * allow complete duplication of binding if * SO_REUSEPORT is set, or if SO_REUSEADDR is set * and a multicast address is bound on both * new and duplicated sockets. */ if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) reuseport = SO_REUSEADDR|SO_REUSEPORT; + // XXX: How to deal with SO_REUSEPORT_LB here? + // Added equivalent treatment as SO_REUSEPORT here for now + if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) + reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; } else if (sin->sin_addr.s_addr != INADDR_ANY) { sin->sin_port = 0; /* yech... */ bzero(&sin->sin_zero, sizeof(sin->sin_zero)); /* - * Is the address a local IP address? + * Is the address a local IP address? * If INP_BINDANY is set, then the socket may be bound * to any endpoint address, local or not. */ if ((inp->inp_flags & INP_BINDANY) == 0 && - ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) + ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) return (EADDRNOTAVAIL); } laddr = sin->sin_addr; if (lport) { struct inpcb *t; struct tcptw *tw; /* GROSS */ if (ntohs(lport) <= V_ipport_reservedhigh && ntohs(lport) >= V_ipport_reservedlow && priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0)) return (EACCES); if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT, 0) != 0) { t = in_pcblookup_local(pcbinfo, sin->sin_addr, lport, INPLOOKUP_WILDCARD, cred); /* * XXX * This entire block sorely needs a rewrite. */ if (t && ((inp->inp_flags2 & INP_BINDMULTI) == 0) && ((t->inp_flags & INP_TIMEWAIT) == 0) && (so->so_type != SOCK_STREAM || ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || ntohl(t->inp_laddr.s_addr) != INADDR_ANY || - (t->inp_flags2 & INP_REUSEPORT) == 0) && + (t->inp_flags2 & INP_REUSEPORT) || + (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && (inp->inp_cred->cr_uid != t->inp_cred->cr_uid)) return (EADDRINUSE); /* * If the socket is a BINDMULTI socket, then * the credentials need to match and the * original socket also has to have been bound * with BINDMULTI. */ if (t && (! in_pcbbind_check_bindmulti(inp, t))) return (EADDRINUSE); } t = in_pcblookup_local(pcbinfo, sin->sin_addr, lport, lookupflags, cred); if (t && (t->inp_flags & INP_TIMEWAIT)) { /* * XXXRW: If an incpb has had its timewait * state recycled, we treat the address as * being in use (for now). This is better * than a panic, but not desirable. */ tw = intotw(t); if (tw == NULL || - (reuseport & tw->tw_so_options) == 0) + ((reuseport & tw->tw_so_options) == 0 && + (reuseport_lb & tw->tw_so_options) == 0)) { return (EADDRINUSE); + } } else if (t && - ((inp->inp_flags2 & INP_BINDMULTI) == 0) && - (reuseport & inp_so_options(t)) == 0) { + ((inp->inp_flags2 & INP_BINDMULTI) == 0) && + (reuseport & inp_so_options(t)) == 0 && + (reuseport_lb & inp_so_options(t)) == 0) { #ifdef INET6 if (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || ntohl(t->inp_laddr.s_addr) != INADDR_ANY || (inp->inp_vflag & INP_IPV6PROTO) == 0 || (t->inp_vflag & INP_IPV6PROTO) == 0) #endif - return (EADDRINUSE); + return (EADDRINUSE); if (t && (! in_pcbbind_check_bindmulti(inp, t))) return (EADDRINUSE); } } } if (*lportp != 0) lport = *lportp; if (lport == 0) { error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); if (error != 0) return (error); } *laddrp = laddr.s_addr; *lportp = lport; return (0); } /* * Connect from a socket to a specified address. * Both address and port must be specified in argument sin. * If don't have a local address for this socket yet, * then pick one. */ int in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred, struct mbuf *m) { u_short lport, fport; in_addr_t laddr, faddr; int anonport, error; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); lport = inp->inp_lport; laddr = inp->inp_laddr.s_addr; anonport = (lport == 0); error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, NULL, cred); if (error) return (error); /* Do the initial binding of the local address if required. */ if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { inp->inp_lport = lport; inp->inp_laddr.s_addr = laddr; if (in_pcbinshash(inp) != 0) { inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_lport = 0; return (EAGAIN); } } /* Commit the remaining changes. */ inp->inp_lport = lport; inp->inp_laddr.s_addr = laddr; inp->inp_faddr.s_addr = faddr; inp->inp_fport = fport; in_pcbrehash_mbuf(inp, m); if (anonport) inp->inp_flags |= INP_ANONPORT; return (0); } int in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) { return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); } /* * Do proper source address selection on an unbound socket in case * of connect. Take jails into account as well. */ int in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, struct ucred *cred) { struct ifaddr *ifa; struct sockaddr *sa; struct sockaddr_in *sin; struct route sro; int error; KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); /* * Bypass source address selection and use the primary jail IP * if requested. */ if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) return (0); error = 0; bzero(&sro, sizeof(sro)); sin = (struct sockaddr_in *)&sro.ro_dst; sin->sin_family = AF_INET; sin->sin_len = sizeof(struct sockaddr_in); sin->sin_addr.s_addr = faddr->s_addr; /* * If route is known our src addr is taken from the i/f, * else punt. * * Find out route to destination. */ if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); /* * If we found a route, use the address corresponding to * the outgoing interface. * * Otherwise assume faddr is reachable on a directly connected * network and try to find a corresponding interface to take * the source address from. */ if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { struct in_ifaddr *ia; struct ifnet *ifp; ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, inp->inp_socket->so_fibnum)); if (ia == NULL) ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, inp->inp_socket->so_fibnum)); if (ia == NULL) { error = ENETUNREACH; goto done; } if (cred == NULL || !prison_flag(cred, PR_IP4)) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; ifa_free(&ia->ia_ifa); goto done; } ifp = ia->ia_ifp; ifa_free(&ia->ia_ifa); ia = NULL; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { sa = ifa->ifa_addr; if (sa->sa_family != AF_INET) continue; sin = (struct sockaddr_in *)sa; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)ifa; break; } } if (ia != NULL) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; IF_ADDR_RUNLOCK(ifp); goto done; } IF_ADDR_RUNLOCK(ifp); /* 3. As a last resort return the 'default' jail address. */ error = prison_get_ip4(cred, laddr); goto done; } /* * If the outgoing interface on the route found is not * a loopback interface, use the address from that interface. * In case of jails do those three steps: * 1. check if the interface address belongs to the jail. If so use it. * 2. check if we have any address on the outgoing interface * belonging to this jail. If so use it. * 3. as a last resort return the 'default' jail address. */ if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { struct in_ifaddr *ia; struct ifnet *ifp; /* If not jailed, use the default returned. */ if (cred == NULL || !prison_flag(cred, PR_IP4)) { ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } /* Jailed. */ /* 1. Check if the iface address belongs to the jail. */ sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } /* * 2. Check if we have any address on the outgoing interface * belonging to this jail. */ ia = NULL; ifp = sro.ro_rt->rt_ifp; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { sa = ifa->ifa_addr; if (sa->sa_family != AF_INET) continue; sin = (struct sockaddr_in *)sa; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)ifa; break; } } if (ia != NULL) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; IF_ADDR_RUNLOCK(ifp); goto done; } IF_ADDR_RUNLOCK(ifp); /* 3. As a last resort return the 'default' jail address. */ error = prison_get_ip4(cred, laddr); goto done; } /* * The outgoing interface is marked with 'loopback net', so a route * to ourselves is here. * Try to find the interface of the destination address and then * take the address from there. That interface is not necessarily * a loopback interface. * In case of jails, check that it is an address of the jail * and if we cannot find, fall back to the 'default' jail address. */ if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { struct sockaddr_in sain; struct in_ifaddr *ia; bzero(&sain, sizeof(struct sockaddr_in)); sain.sin_family = AF_INET; sain.sin_len = sizeof(struct sockaddr_in); sain.sin_addr.s_addr = faddr->s_addr; ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), inp->inp_socket->so_fibnum)); if (ia == NULL) ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, inp->inp_socket->so_fibnum)); if (ia == NULL) ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); if (cred == NULL || !prison_flag(cred, PR_IP4)) { if (ia == NULL) { error = ENETUNREACH; goto done; } laddr->s_addr = ia->ia_addr.sin_addr.s_addr; ifa_free(&ia->ia_ifa); goto done; } /* Jailed. */ if (ia != NULL) { struct ifnet *ifp; ifp = ia->ia_ifp; ifa_free(&ia->ia_ifa); ia = NULL; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { sa = ifa->ifa_addr; if (sa->sa_family != AF_INET) continue; sin = (struct sockaddr_in *)sa; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)ifa; break; } } if (ia != NULL) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; IF_ADDR_RUNLOCK(ifp); goto done; } IF_ADDR_RUNLOCK(ifp); } /* 3. As a last resort return the 'default' jail address. */ error = prison_get_ip4(cred, laddr); goto done; } done: if (sro.ro_rt != NULL) RTFREE(sro.ro_rt); return (error); } /* * Set up for a connect from a socket to the specified address. * On entry, *laddrp and *lportp should contain the current local * address and port for the PCB; these are updated to the values * that should be placed in inp_laddr and inp_lport to complete * the connect. * * On success, *faddrp and *fportp will be set to the remote address * and port. These are not updated in the error case. * * If the operation fails because the connection already exists, * *oinpp will be set to the PCB of that connection so that the * caller can decide to override it. In all other cases, *oinpp * is set to NULL. */ int in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, struct inpcb **oinpp, struct ucred *cred) { struct rm_priotracker in_ifa_tracker; struct sockaddr_in *sin = (struct sockaddr_in *)nam; struct in_ifaddr *ia; struct inpcb *oinp; struct in_addr laddr, faddr; u_short lport, fport; int error; /* * Because a global state change doesn't actually occur here, a read * lock is sufficient. */ INP_LOCK_ASSERT(inp); INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); if (oinpp != NULL) *oinpp = NULL; if (nam->sa_len != sizeof (*sin)) return (EINVAL); if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); if (sin->sin_port == 0) return (EADDRNOTAVAIL); laddr.s_addr = *laddrp; lport = *lportp; faddr = sin->sin_addr; fport = sin->sin_port; if (!TAILQ_EMPTY(&V_in_ifaddrhead)) { /* * If the destination address is INADDR_ANY, * use the primary local address. * If the supplied address is INADDR_BROADCAST, * and the primary interface supports broadcast, * choose the broadcast address for that interface. */ if (faddr.s_addr == INADDR_ANY) { IN_IFADDR_RLOCK(&in_ifa_tracker); faddr = IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; IN_IFADDR_RUNLOCK(&in_ifa_tracker); if (cred != NULL && (error = prison_get_ip4(cred, &faddr)) != 0) return (error); } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { IN_IFADDR_RLOCK(&in_ifa_tracker); if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & IFF_BROADCAST) faddr = satosin(&TAILQ_FIRST( &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; IN_IFADDR_RUNLOCK(&in_ifa_tracker); } } if (laddr.s_addr == INADDR_ANY) { error = in_pcbladdr(inp, &faddr, &laddr, cred); /* * If the destination address is multicast and an outgoing * interface has been set as a multicast option, prefer the * address of that interface as our source address. */ if (IN_MULTICAST(ntohl(faddr.s_addr)) && inp->inp_moptions != NULL) { struct ip_moptions *imo; struct ifnet *ifp; imo = inp->inp_moptions; if (imo->imo_multicast_ifp != NULL) { ifp = imo->imo_multicast_ifp; IN_IFADDR_RLOCK(&in_ifa_tracker); TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { if ((ia->ia_ifp == ifp) && (cred == NULL || prison_check_ip4(cred, &ia->ia_addr.sin_addr) == 0)) break; } if (ia == NULL) error = EADDRNOTAVAIL; else { laddr = ia->ia_addr.sin_addr; error = 0; } IN_IFADDR_RUNLOCK(&in_ifa_tracker); } } if (error) return (error); } oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, laddr, lport, 0, NULL); if (oinp != NULL) { if (oinpp != NULL) *oinpp = oinp; return (EADDRINUSE); } if (lport == 0) { error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, cred); if (error) return (error); } *laddrp = laddr.s_addr; *lportp = lport; *faddrp = faddr.s_addr; *fportp = fport; return (0); } void in_pcbdisconnect(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); inp->inp_faddr.s_addr = INADDR_ANY; inp->inp_fport = 0; in_pcbrehash(inp); } #endif /* INET */ /* * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. * For most protocols, this will be invoked immediately prior to calling * in_pcbfree(). However, with TCP the inpcb may significantly outlive the * socket, in which case in_pcbfree() is deferred. */ void in_pcbdetach(struct inpcb *inp) { KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); #ifdef RATELIMIT if (inp->inp_snd_tag != NULL) in_pcbdetach_txrtlmt(inp); #endif inp->inp_socket->so_pcb = NULL; inp->inp_socket = NULL; } /* * in_pcbref() bumps the reference count on an inpcb in order to maintain * stability of an inpcb pointer despite the inpcb lock being released. This * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, * but where the inpcb lock may already held, or when acquiring a reference * via a pcbgroup. * * in_pcbref() should be used only to provide brief memory stability, and * must always be followed by a call to INP_WLOCK() and in_pcbrele() to * garbage collect the inpcb if it has been in_pcbfree()'d from another * context. Until in_pcbrele() has returned that the inpcb is still valid, * lock and rele are the *only* safe operations that may be performed on the * inpcb. * * While the inpcb will not be freed, releasing the inpcb lock means that the * connection's state may change, so the caller should be careful to * revalidate any cached state on reacquiring the lock. Drop the reference * using in_pcbrele(). */ void in_pcbref(struct inpcb *inp) { KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); refcount_acquire(&inp->inp_refcount); } /* * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we * return a flag indicating whether or not the inpcb remains valid. If it is * valid, we return with the inpcb lock held. * * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a * reference on an inpcb. Historically more work was done here (actually, in * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely * about memory stability (and continued use of the write lock). */ int in_pcbrele_rlocked(struct inpcb *inp) { struct inpcbinfo *pcbinfo; KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); INP_RLOCK_ASSERT(inp); if (refcount_release(&inp->inp_refcount) == 0) { /* * If the inpcb has been freed, let the caller know, even if * this isn't the last reference. */ if (inp->inp_flags2 & INP_FREED) { INP_RUNLOCK(inp); return (1); } return (0); } KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); #ifdef TCPHPTS if (inp->inp_in_hpts || inp->inp_in_input) { struct tcp_hpts_entry *hpts; /* * We should not be on the hpts at * this point in any form. we must * get the lock to be sure. */ hpts = tcp_hpts_lock(inp); if (inp->inp_in_hpts) panic("Hpts:%p inp:%p at free still on hpts", hpts, inp); mtx_unlock(&hpts->p_mtx); hpts = tcp_input_lock(inp); if (inp->inp_in_input) panic("Hpts:%p inp:%p at free still on input hpts", hpts, inp); mtx_unlock(&hpts->p_mtx); } #endif INP_RUNLOCK(inp); pcbinfo = inp->inp_pcbinfo; uma_zfree(pcbinfo->ipi_zone, inp); return (1); } int in_pcbrele_wlocked(struct inpcb *inp) { struct inpcbinfo *pcbinfo; KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); INP_WLOCK_ASSERT(inp); if (refcount_release(&inp->inp_refcount) == 0) { /* * If the inpcb has been freed, let the caller know, even if * this isn't the last reference. */ if (inp->inp_flags2 & INP_FREED) { INP_WUNLOCK(inp); return (1); } return (0); } KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); #ifdef TCPHPTS if (inp->inp_in_hpts || inp->inp_in_input) { struct tcp_hpts_entry *hpts; /* * We should not be on the hpts at * this point in any form. we must * get the lock to be sure. */ hpts = tcp_hpts_lock(inp); if (inp->inp_in_hpts) panic("Hpts:%p inp:%p at free still on hpts", hpts, inp); mtx_unlock(&hpts->p_mtx); hpts = tcp_input_lock(inp); if (inp->inp_in_input) panic("Hpts:%p inp:%p at free still on input hpts", hpts, inp); mtx_unlock(&hpts->p_mtx); } #endif INP_WUNLOCK(inp); pcbinfo = inp->inp_pcbinfo; uma_zfree(pcbinfo->ipi_zone, inp); return (1); } /* * Temporary wrapper. */ int in_pcbrele(struct inpcb *inp) { return (in_pcbrele_wlocked(inp)); } /* * Unconditionally schedule an inpcb to be freed by decrementing its * reference count, which should occur only after the inpcb has been detached * from its socket. If another thread holds a temporary reference (acquired * using in_pcbref()) then the free is deferred until that reference is * released using in_pcbrele(), but the inpcb is still unlocked. Almost all * work, including removal from global lists, is done in this context, where * the pcbinfo lock is held. */ void in_pcbfree(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); KASSERT((inp->inp_flags2 & INP_FREED) == 0, ("%s: called twice for pcb %p", __func__, inp)); if (inp->inp_flags2 & INP_FREED) { INP_WUNLOCK(inp); return; } #ifdef INVARIANTS if (pcbinfo == &V_tcbinfo) { INP_INFO_LOCK_ASSERT(pcbinfo); } else { INP_INFO_WLOCK_ASSERT(pcbinfo); } #endif INP_WLOCK_ASSERT(inp); /* XXXRW: Do as much as possible here. */ #if defined(IPSEC) || defined(IPSEC_SUPPORT) if (inp->inp_sp != NULL) ipsec_delete_pcbpolicy(inp); #endif INP_LIST_WLOCK(pcbinfo); inp->inp_gencnt = ++pcbinfo->ipi_gencnt; in_pcbremlists(inp); INP_LIST_WUNLOCK(pcbinfo); #ifdef INET6 if (inp->inp_vflag & INP_IPV6PROTO) { ip6_freepcbopts(inp->in6p_outputopts); if (inp->in6p_moptions != NULL) ip6_freemoptions(inp->in6p_moptions); } #endif if (inp->inp_options) (void)m_free(inp->inp_options); #ifdef INET if (inp->inp_moptions != NULL) inp_freemoptions(inp->inp_moptions); #endif RO_INVALIDATE_CACHE(&inp->inp_route); inp->inp_vflag = 0; inp->inp_flags2 |= INP_FREED; crfree(inp->inp_cred); #ifdef MAC mac_inpcb_destroy(inp); #endif if (!in_pcbrele_wlocked(inp)) INP_WUNLOCK(inp); } /* * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and * port reservation, and preventing it from being returned by inpcb lookups. * * It is used by TCP to mark an inpcb as unused and avoid future packet * delivery or event notification when a socket remains open but TCP has * closed. This might occur as a result of a shutdown()-initiated TCP close * or a RST on the wire, and allows the port binding to be reused while still * maintaining the invariant that so_pcb always points to a valid inpcb until * in_pcbdetach(). * * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by * in_pcbnotifyall() and in_pcbpurgeif0()? */ void in_pcbdrop(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); /* * XXXRW: Possibly we should protect the setting of INP_DROPPED with * the hash lock...? */ inp->inp_flags |= INP_DROPPED; if (inp->inp_flags & INP_INHASHLIST) { struct inpcbport *phd = inp->inp_phd; INP_HASH_WLOCK(inp->inp_pcbinfo); + in_pcbremlbgrouphash(inp, inp->inp_pcbinfo); LIST_REMOVE(inp, inp_hash); LIST_REMOVE(inp, inp_portlist); if (LIST_FIRST(&phd->phd_pcblist) == NULL) { LIST_REMOVE(phd, phd_hash); free(phd, M_PCB); } INP_HASH_WUNLOCK(inp->inp_pcbinfo); inp->inp_flags &= ~INP_INHASHLIST; #ifdef PCBGROUP in_pcbgroup_remove(inp); #endif } } #ifdef INET /* * Common routines to return the socket addresses associated with inpcbs. */ struct sockaddr * in_sockaddr(in_port_t port, struct in_addr *addr_p) { struct sockaddr_in *sin; sin = malloc(sizeof *sin, M_SONAME, M_WAITOK | M_ZERO); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = *addr_p; sin->sin_port = port; return (struct sockaddr *)sin; } int in_getsockaddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; struct in_addr addr; in_port_t port; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); INP_RLOCK(inp); port = inp->inp_lport; addr = inp->inp_laddr; INP_RUNLOCK(inp); *nam = in_sockaddr(port, &addr); return 0; } int in_getpeeraddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; struct in_addr addr; in_port_t port; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); INP_RLOCK(inp); port = inp->inp_fport; addr = inp->inp_faddr; INP_RUNLOCK(inp); *nam = in_sockaddr(port, &addr); return 0; } void in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, struct inpcb *(*notify)(struct inpcb *, int)) { struct inpcb *inp, *inp_temp; INP_INFO_WLOCK(pcbinfo); LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { INP_WLOCK(inp); #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) { INP_WUNLOCK(inp); continue; } #endif if (inp->inp_faddr.s_addr != faddr.s_addr || inp->inp_socket == NULL) { INP_WUNLOCK(inp); continue; } if ((*notify)(inp, errno)) INP_WUNLOCK(inp); } INP_INFO_WUNLOCK(pcbinfo); } void in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) { struct inpcb *inp; struct ip_moptions *imo; int i, gap; INP_INFO_WLOCK(pcbinfo); LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { INP_WLOCK(inp); imo = inp->inp_moptions; if ((inp->inp_vflag & INP_IPV4) && imo != NULL) { /* * Unselect the outgoing interface if it is being * detached. */ if (imo->imo_multicast_ifp == ifp) imo->imo_multicast_ifp = NULL; /* * Drop multicast group membership if we joined * through the interface being detached. */ for (i = 0, gap = 0; i < imo->imo_num_memberships; i++) { if (imo->imo_membership[i]->inm_ifp == ifp) { in_delmulti(imo->imo_membership[i]); gap++; } else if (gap != 0) imo->imo_membership[i - gap] = imo->imo_membership[i]; } imo->imo_num_memberships -= gap; } INP_WUNLOCK(inp); } INP_INFO_WUNLOCK(pcbinfo); } /* * Lookup a PCB based on the local address and port. Caller must hold the * hash lock. No inpcb locks or references are acquired. */ #define INP_LOOKUP_MAPPED_PCB_COST 3 struct inpcb * in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, u_short lport, int lookupflags, struct ucred *cred) { struct inpcb *inp; #ifdef INET6 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; #else int matchwild = 3; #endif int wildcard; KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); INP_HASH_LOCK_ASSERT(pcbinfo); if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { struct inpcbhead *head; /* * Look for an unconnected (wildcard foreign addr) PCB that * matches the local address and port we're looking for. */ head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == INADDR_ANY && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_lport == lport) { /* * Found? */ if (cred == NULL || prison_equal_ip4(cred->cr_prison, inp->inp_cred->cr_prison)) return (inp); } } /* * Not found. */ return (NULL); } else { struct inpcbporthead *porthash; struct inpcbport *phd; struct inpcb *match = NULL; /* * Best fit PCB lookup. * * First see if this local port is in use by looking on the * port hash list. */ porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, pcbinfo->ipi_porthashmask)]; LIST_FOREACH(phd, porthash, phd_hash) { if (phd->phd_port == lport) break; } if (phd != NULL) { /* * Port is in use by one or more PCBs. Look for best * fit. */ LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { wildcard = 0; if (cred != NULL && !prison_equal_ip4(inp->inp_cred->cr_prison, cred->cr_prison)) continue; #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; /* * We never select the PCB that has * INP_IPV6 flag and is bound to :: if * we have another PCB which is bound * to 0.0.0.0. If a PCB has the * INP_IPV6 flag, then we set its cost * higher than IPv4 only PCBs. * * Note that the case only happens * when a socket is bound to ::, under * the condition that the use of the * mapped address is allowed. */ if ((inp->inp_vflag & INP_IPV6) != 0) wildcard += INP_LOOKUP_MAPPED_PCB_COST; #endif if (inp->inp_faddr.s_addr != INADDR_ANY) wildcard++; if (inp->inp_laddr.s_addr != INADDR_ANY) { if (laddr.s_addr == INADDR_ANY) wildcard++; else if (inp->inp_laddr.s_addr != laddr.s_addr) continue; } else { if (laddr.s_addr != INADDR_ANY) wildcard++; } if (wildcard < matchwild) { match = inp; matchwild = wildcard; if (matchwild == 0) break; } } } return (match); } } #undef INP_LOOKUP_MAPPED_PCB_COST +struct inpcb * +in_pcblookup_lbgroup_last(const struct inpcb *inp) +{ + const struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; + const struct inpcblbgrouphead *hdr; + const struct inpcblbgroup *grp; + int i; + + if (pcbinfo->ipi_lbgrouphashbase == NULL) + return NULL; + + hdr = &pcbinfo->ipi_lbgrouphashbase[ + INP_PCBLBGROUP_PORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; + + LIST_FOREACH(grp, hdr, il_list) { + if (grp->il_vflag == inp->inp_vflag && + grp->il_lport == inp->inp_lport && + memcmp(&grp->il_dependladdr, + &inp->inp_inc.inc_ie.ie_dependladdr, + sizeof(grp->il_dependladdr)) == 0) { + break; + } + } + if (grp == NULL || grp->il_inpcnt == 1) + return NULL; + + KASSERT(grp->il_inpcnt >= 2, + ("invalid lbgroup inp count %d", grp->il_inpcnt)); + for (i = 0; i < grp->il_inpcnt; ++i) { + if (grp->il_inp[i] == inp) { + int last = grp->il_inpcnt - 1; + + if (i == last) + last = grp->il_inpcnt - 2; + return grp->il_inp[last]; + } + } + return NULL; +} + +static struct inpcb * +in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, + const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, + uint16_t fport, int lookupflags) +{ + struct inpcb *local_wild = NULL; + const struct inpcblbgrouphead *hdr; + struct inpcblbgroup *grp; + struct inpcblbgroup *grp_local_wild; + + hdr = &pcbinfo->ipi_lbgrouphashbase[ + INP_PCBLBGROUP_PORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; + + /* + * Order of socket selection: + * 1. non-wild. + * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). + * + * NOTE: + * - Load balanced group does not contain jailed sockets + * - Load balanced group does not contain IPv4 mapped INET6 wild sockets + */ + LIST_FOREACH(grp, hdr, il_list) { +#ifdef INET6 + if (!(grp->il_vflag & INP_IPV4)) + continue; +#endif + + if (grp->il_lport == lport) { + + uint32_t idx = 0; + int pkt_hash = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport); + + idx = pkt_hash % grp->il_inpcnt; + + if (grp->il_laddr.s_addr == laddr->s_addr) { + return grp->il_inp[idx]; + } else { + if (grp->il_laddr.s_addr == INADDR_ANY && + (lookupflags & INPLOOKUP_WILDCARD)) { + local_wild = grp->il_inp[idx]; + grp_local_wild = grp; + } + } + } + } + if (local_wild != NULL) { + return local_wild; + } + return NULL; +} + #ifdef PCBGROUP /* * Lookup PCB in hash list, using pcbgroup tables. */ static struct inpcb * in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, struct ifnet *ifp) { struct inpcbhead *head; struct inpcb *inp, *tmpinp; u_short fport = fport_arg, lport = lport_arg; bool locked; /* * First look for an exact match. */ tmpinp = NULL; INP_GROUP_LOCK(pcbgroup); head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbgroup->ipg_hashmask)]; LIST_FOREACH(inp, head, inp_pcbgrouphash) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == faddr.s_addr && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_fport == fport && inp->inp_lport == lport) { /* * XXX We should be able to directly return * the inp here, without any checks. * Well unless both bound with SO_REUSEPORT? */ if (prison_flag(inp->inp_cred, PR_IP4)) goto found; if (tmpinp == NULL) tmpinp = inp; } } if (tmpinp != NULL) { inp = tmpinp; goto found; } #ifdef RSS /* * For incoming connections, we may wish to do a wildcard * match for an RSS-local socket. */ if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { struct inpcb *local_wild = NULL, *local_exact = NULL; #ifdef INET6 struct inpcb *local_wild_mapped = NULL; #endif struct inpcb *jail_wild = NULL; struct inpcbhead *head; int injail; /* * Order of socket selection - we always prefer jails. * 1. jailed, non-wild. * 2. jailed, wild. * 3. non-jailed, non-wild. * 4. non-jailed, wild. */ head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbgroup->ipg_hashmask)]; LIST_FOREACH(inp, head, inp_pcbgrouphash) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport) continue; injail = prison_flag(inp->inp_cred, PR_IP4); if (injail) { if (prison_check_ip4(inp->inp_cred, &laddr) != 0) continue; } else { if (local_exact != NULL) continue; } if (inp->inp_laddr.s_addr == laddr.s_addr) { if (injail) goto found; else local_exact = inp; } else if (inp->inp_laddr.s_addr == INADDR_ANY) { #ifdef INET6 /* XXX inp locking, NULL check */ if (inp->inp_vflag & INP_IPV6PROTO) local_wild_mapped = inp; else #endif if (injail) jail_wild = inp; else local_wild = inp; } } /* LIST_FOREACH */ inp = jail_wild; if (inp == NULL) inp = local_exact; if (inp == NULL) inp = local_wild; #ifdef INET6 if (inp == NULL) inp = local_wild_mapped; #endif if (inp != NULL) goto found; } #endif /* * Then look for a wildcard match, if requested. */ if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { struct inpcb *local_wild = NULL, *local_exact = NULL; #ifdef INET6 struct inpcb *local_wild_mapped = NULL; #endif struct inpcb *jail_wild = NULL; struct inpcbhead *head; int injail; /* * Order of socket selection - we always prefer jails. * 1. jailed, non-wild. * 2. jailed, wild. * 3. non-jailed, non-wild. * 4. non-jailed, wild. */ head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->ipi_wildmask)]; LIST_FOREACH(inp, head, inp_pcbgroup_wild) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport) continue; injail = prison_flag(inp->inp_cred, PR_IP4); if (injail) { if (prison_check_ip4(inp->inp_cred, &laddr) != 0) continue; } else { if (local_exact != NULL) continue; } if (inp->inp_laddr.s_addr == laddr.s_addr) { if (injail) goto found; else local_exact = inp; } else if (inp->inp_laddr.s_addr == INADDR_ANY) { #ifdef INET6 /* XXX inp locking, NULL check */ if (inp->inp_vflag & INP_IPV6PROTO) local_wild_mapped = inp; else #endif if (injail) jail_wild = inp; else local_wild = inp; } } /* LIST_FOREACH */ inp = jail_wild; if (inp == NULL) inp = local_exact; if (inp == NULL) inp = local_wild; #ifdef INET6 if (inp == NULL) inp = local_wild_mapped; #endif if (inp != NULL) goto found; } /* if (lookupflags & INPLOOKUP_WILDCARD) */ INP_GROUP_UNLOCK(pcbgroup); return (NULL); found: if (lookupflags & INPLOOKUP_WLOCKPCB) locked = INP_TRY_WLOCK(inp); else if (lookupflags & INPLOOKUP_RLOCKPCB) locked = INP_TRY_RLOCK(inp); else panic("%s: locking bug", __func__); if (!locked) in_pcbref(inp); INP_GROUP_UNLOCK(pcbgroup); if (!locked) { if (lookupflags & INPLOOKUP_WLOCKPCB) { INP_WLOCK(inp); if (in_pcbrele_wlocked(inp)) return (NULL); } else { INP_RLOCK(inp); if (in_pcbrele_rlocked(inp)) return (NULL); } } #ifdef INVARIANTS if (lookupflags & INPLOOKUP_WLOCKPCB) INP_WLOCK_ASSERT(inp); else INP_RLOCK_ASSERT(inp); #endif return (inp); } #endif /* PCBGROUP */ /* * Lookup PCB in hash list, using pcbinfo tables. This variation assumes * that the caller has locked the hash list, and will not perform any further * locking or reference operations on either the hash list or the connection. */ static struct inpcb * in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, struct ifnet *ifp) { struct inpcbhead *head; struct inpcb *inp, *tmpinp; u_short fport = fport_arg, lport = lport_arg; KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); INP_HASH_LOCK_ASSERT(pcbinfo); /* * First look for an exact match. */ tmpinp = NULL; head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == faddr.s_addr && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_fport == fport && inp->inp_lport == lport) { /* * XXX We should be able to directly return * the inp here, without any checks. * Well unless both bound with SO_REUSEPORT? */ if (prison_flag(inp->inp_cred, PR_IP4)) return (inp); if (tmpinp == NULL) tmpinp = inp; } } if (tmpinp != NULL) return (tmpinp); /* + * Then look in lb group (for wildcard match) + */ + if (pcbinfo->ipi_lbgrouphashbase != NULL && + (lookupflags & INPLOOKUP_WILDCARD)) { + inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, fport, + lookupflags); + if (inp != NULL) { + return inp; + } + } + + /* * Then look for a wildcard match, if requested. */ if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { struct inpcb *local_wild = NULL, *local_exact = NULL; #ifdef INET6 struct inpcb *local_wild_mapped = NULL; #endif struct inpcb *jail_wild = NULL; int injail; /* * Order of socket selection - we always prefer jails. * 1. jailed, non-wild. * 2. jailed, wild. * 3. non-jailed, non-wild. * 4. non-jailed, wild. */ head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport) continue; injail = prison_flag(inp->inp_cred, PR_IP4); if (injail) { if (prison_check_ip4(inp->inp_cred, &laddr) != 0) continue; } else { if (local_exact != NULL) continue; } if (inp->inp_laddr.s_addr == laddr.s_addr) { if (injail) return (inp); else local_exact = inp; } else if (inp->inp_laddr.s_addr == INADDR_ANY) { #ifdef INET6 /* XXX inp locking, NULL check */ if (inp->inp_vflag & INP_IPV6PROTO) local_wild_mapped = inp; else #endif if (injail) jail_wild = inp; else local_wild = inp; } } /* LIST_FOREACH */ if (jail_wild != NULL) return (jail_wild); if (local_exact != NULL) return (local_exact); if (local_wild != NULL) return (local_wild); #ifdef INET6 if (local_wild_mapped != NULL) return (local_wild_mapped); #endif } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ return (NULL); } /* * Lookup PCB in hash list, using pcbinfo tables. This variation locks the * hash list lock, and will return the inpcb locked (i.e., requires * INPLOOKUP_LOCKPCB). */ static struct inpcb * in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) { struct inpcb *inp; bool locked; INP_HASH_RLOCK(pcbinfo); inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); if (inp != NULL) { if (lookupflags & INPLOOKUP_WLOCKPCB) locked = INP_TRY_WLOCK(inp); else if (lookupflags & INPLOOKUP_RLOCKPCB) locked = INP_TRY_RLOCK(inp); else panic("%s: locking bug", __func__); if (!locked) in_pcbref(inp); INP_HASH_RUNLOCK(pcbinfo); if (!locked) { if (lookupflags & INPLOOKUP_WLOCKPCB) { INP_WLOCK(inp); if (in_pcbrele_wlocked(inp)) return (NULL); } else { INP_RLOCK(inp); if (in_pcbrele_rlocked(inp)) return (NULL); } } #ifdef INVARIANTS if (lookupflags & INPLOOKUP_WLOCKPCB) INP_WLOCK_ASSERT(inp); else INP_RLOCK_ASSERT(inp); #endif } else INP_HASH_RUNLOCK(pcbinfo); return (inp); } /* * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf * from which a pre-calculated hash value may be extracted. * * Possibly more of this logic should be in in_pcbgroup.c. */ struct inpcb * in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) { #if defined(PCBGROUP) && !defined(RSS) struct inpcbgroup *pcbgroup; #endif KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, ("%s: LOCKPCB not set", __func__)); /* * When not using RSS, use connection groups in preference to the * reservation table when looking up 4-tuples. When using RSS, just * use the reservation table, due to the cost of the Toeplitz hash * in software. * * XXXRW: This policy belongs in the pcbgroup code, as in principle * we could be doing RSS with a non-Toeplitz hash that is affordable * in software. */ #if defined(PCBGROUP) && !defined(RSS) if (in_pcbgroup_enabled(pcbinfo)) { pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, fport); return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, laddr, lport, lookupflags, ifp)); } #endif return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, lookupflags, ifp)); } struct inpcb * in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp, struct mbuf *m) { #ifdef PCBGROUP struct inpcbgroup *pcbgroup; #endif KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, ("%s: LOCKPCB not set", __func__)); #ifdef PCBGROUP /* * If we can use a hardware-generated hash to look up the connection * group, use that connection group to find the inpcb. Otherwise * fall back on a software hash -- or the reservation table if we're * using RSS. * * XXXRW: As above, that policy belongs in the pcbgroup code. */ if (in_pcbgroup_enabled(pcbinfo) && !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), m->m_pkthdr.flowid); if (pcbgroup != NULL) return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, laddr, lport, lookupflags, ifp)); #ifndef RSS pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, fport); return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, laddr, lport, lookupflags, ifp)); #endif } #endif return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, lookupflags, ifp)); } #endif /* INET */ /* * Insert PCB onto various hash lists. */ static int in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) { struct inpcbhead *pcbhash; struct inpcbporthead *pcbporthash; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbport *phd; u_int32_t hashkey_faddr; + int so_options; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, ("in_pcbinshash: INP_INHASHLIST")); #ifdef INET6 if (inp->inp_vflag & INP_IPV6) hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); else #endif hashkey_faddr = inp->inp_faddr.s_addr; pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; pcbporthash = &pcbinfo->ipi_porthashbase[ INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; + /* + * Add entry in lb group + * Only do this if SO_REUSEPORT_LB is set + */ + so_options = inp_so_options(inp); + if(so_options & SO_REUSEPORT_LB) { + int ret = in_pcbinslbgrouphash(inp, pcbinfo); + if(ret) { + // pcb lb group malloc fail (ret=ENOBUFS) + return ret; + } + } + + /* * Go through port list and look for a head for this lport. */ LIST_FOREACH(phd, pcbporthash, phd_hash) { if (phd->phd_port == inp->inp_lport) break; } /* * If none exists, malloc one and tack it on. */ if (phd == NULL) { phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); if (phd == NULL) { return (ENOBUFS); /* XXX */ } phd->phd_port = inp->inp_lport; LIST_INIT(&phd->phd_pcblist); LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); } inp->inp_phd = phd; LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); LIST_INSERT_HEAD(pcbhash, inp, inp_hash); inp->inp_flags |= INP_INHASHLIST; #ifdef PCBGROUP if (do_pcbgroup_update) in_pcbgroup_update(inp); #endif return (0); } /* * For now, there are two public interfaces to insert an inpcb into the hash * lists -- one that does update pcbgroups, and one that doesn't. The latter * is used only in the TCP syncache, where in_pcbinshash is called before the * full 4-tuple is set for the inpcb, and we don't want to install in the * pcbgroup until later. * * XXXRW: This seems like a misfeature. in_pcbinshash should always update * connection groups, and partially initialised inpcbs should not be exposed * to either reservation hash tables or pcbgroups. */ int in_pcbinshash(struct inpcb *inp) { return (in_pcbinshash_internal(inp, 1)); } int in_pcbinshash_nopcbgroup(struct inpcb *inp) { return (in_pcbinshash_internal(inp, 0)); } /* * Move PCB to the proper hash bucket when { faddr, fport } have been * changed. NOTE: This does not handle the case of the lport changing (the * hashed port list would have to be updated as well), so the lport must * not change after in_pcbinshash() has been called. */ void in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbhead *head; u_int32_t hashkey_faddr; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); KASSERT(inp->inp_flags & INP_INHASHLIST, ("in_pcbrehash: !INP_INHASHLIST")); #ifdef INET6 if (inp->inp_vflag & INP_IPV6) hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); else #endif hashkey_faddr = inp->inp_faddr.s_addr; head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; LIST_REMOVE(inp, inp_hash); LIST_INSERT_HEAD(head, inp, inp_hash); #ifdef PCBGROUP if (m != NULL) in_pcbgroup_update_mbuf(inp, m); else in_pcbgroup_update(inp); #endif } void in_pcbrehash(struct inpcb *inp) { in_pcbrehash_mbuf(inp, NULL); } /* * Remove PCB from various lists. */ static void in_pcbremlists(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; #ifdef INVARIANTS if (pcbinfo == &V_tcbinfo) { INP_INFO_RLOCK_ASSERT(pcbinfo); } else { INP_INFO_WLOCK_ASSERT(pcbinfo); } #endif INP_WLOCK_ASSERT(inp); INP_LIST_WLOCK_ASSERT(pcbinfo); inp->inp_gencnt = ++pcbinfo->ipi_gencnt; if (inp->inp_flags & INP_INHASHLIST) { struct inpcbport *phd = inp->inp_phd; INP_HASH_WLOCK(pcbinfo); + + // XXX Only do if SO_REUSEPORT_LB set? + in_pcbremlbgrouphash(inp, pcbinfo); + LIST_REMOVE(inp, inp_hash); LIST_REMOVE(inp, inp_portlist); if (LIST_FIRST(&phd->phd_pcblist) == NULL) { LIST_REMOVE(phd, phd_hash); free(phd, M_PCB); } INP_HASH_WUNLOCK(pcbinfo); inp->inp_flags &= ~INP_INHASHLIST; } LIST_REMOVE(inp, inp_list); pcbinfo->ipi_count--; #ifdef PCBGROUP in_pcbgroup_remove(inp); #endif } /* * Check for alternatives when higher level complains * about service problems. For now, invalidate cached * routing information. If the route was created dynamically * (by a redirect), time to try a default gateway again. */ void in_losing(struct inpcb *inp) { RO_INVALIDATE_CACHE(&inp->inp_route); return; } /* * A set label operation has occurred at the socket layer, propagate the * label change into the in_pcb for the socket. */ void in_pcbsosetlabel(struct socket *so) { #ifdef MAC struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); INP_WLOCK(inp); SOCK_LOCK(so); mac_inpcb_sosetlabel(so, inp); SOCK_UNLOCK(so); INP_WUNLOCK(inp); #endif } /* * ipport_tick runs once per second, determining if random port allocation * should be continued. If more than ipport_randomcps ports have been * allocated in the last second, then we return to sequential port * allocation. We return to random allocation only once we drop below * ipport_randomcps for at least ipport_randomtime seconds. */ static void ipport_tick(void *xtp) { VNET_ITERATOR_DECL(vnet_iter); VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ if (V_ipport_tcpallocs <= V_ipport_tcplastcount + V_ipport_randomcps) { if (V_ipport_stoprandom > 0) V_ipport_stoprandom--; } else V_ipport_stoprandom = V_ipport_randomtime; V_ipport_tcplastcount = V_ipport_tcpallocs; CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); } static void ip_fini(void *xtp) { callout_stop(&ipport_tick_callout); } /* * The ipport_callout should start running at about the time we attach the * inet or inet6 domains. */ static void ipport_tick_init(const void *unused __unused) { /* Start ipport_tick. */ callout_init(&ipport_tick_callout, 1); callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, SHUTDOWN_PRI_DEFAULT); } SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, ipport_tick_init, NULL); void inp_wlock(struct inpcb *inp) { INP_WLOCK(inp); } void inp_wunlock(struct inpcb *inp) { INP_WUNLOCK(inp); } void inp_rlock(struct inpcb *inp) { INP_RLOCK(inp); } void inp_runlock(struct inpcb *inp) { INP_RUNLOCK(inp); } #ifdef INVARIANT_SUPPORT void inp_lock_assert(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); } void inp_unlock_assert(struct inpcb *inp) { INP_UNLOCK_ASSERT(inp); } #endif void inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) { struct inpcb *inp; INP_INFO_WLOCK(&V_tcbinfo); LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { INP_WLOCK(inp); func(inp, arg); INP_WUNLOCK(inp); } INP_INFO_WUNLOCK(&V_tcbinfo); } struct socket * inp_inpcbtosocket(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); return (inp->inp_socket); } struct tcpcb * inp_inpcbtotcpcb(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); return ((struct tcpcb *)inp->inp_ppcb); } int inp_ip_tos_get(const struct inpcb *inp) { return (inp->inp_ip_tos); } void inp_ip_tos_set(struct inpcb *inp, int val) { inp->inp_ip_tos = val; } void inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, uint32_t *faddr, uint16_t *fp) { INP_LOCK_ASSERT(inp); *laddr = inp->inp_laddr.s_addr; *faddr = inp->inp_faddr.s_addr; *lp = inp->inp_lport; *fp = inp->inp_fport; } struct inpcb * so_sotoinpcb(struct socket *so) { return (sotoinpcb(so)); } struct tcpcb * so_sototcpcb(struct socket *so) { return (sototcpcb(so)); } /* * Create an external-format (``xinpcb'') structure using the information in * the kernel-format in_pcb structure pointed to by inp. This is done to * reduce the spew of irrelevant information over this interface, to isolate * user code from changes in the kernel structure, and potentially to provide * information-hiding if we decide that some of this information should be * hidden from users. */ void in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) { xi->xi_len = sizeof(struct xinpcb); if (inp->inp_socket) sotoxsocket(inp->inp_socket, &xi->xi_socket); else bzero(&xi->xi_socket, sizeof(struct xsocket)); bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); xi->inp_gencnt = inp->inp_gencnt; xi->inp_ppcb = inp->inp_ppcb; xi->inp_flow = inp->inp_flow; xi->inp_flowid = inp->inp_flowid; xi->inp_flowtype = inp->inp_flowtype; xi->inp_flags = inp->inp_flags; xi->inp_flags2 = inp->inp_flags2; xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; xi->in6p_cksum = inp->in6p_cksum; xi->in6p_hops = inp->in6p_hops; xi->inp_ip_tos = inp->inp_ip_tos; xi->inp_vflag = inp->inp_vflag; xi->inp_ip_ttl = inp->inp_ip_ttl; xi->inp_ip_p = inp->inp_ip_p; xi->inp_ip_minttl = inp->inp_ip_minttl; } #ifdef DDB static void db_print_indent(int indent) { int i; for (i = 0; i < indent; i++) db_printf(" "); } static void db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) { char faddr_str[48], laddr_str[48]; db_print_indent(indent); db_printf("%s at %p\n", name, inc); indent += 2; #ifdef INET6 if (inc->inc_flags & INC_ISIPV6) { /* IPv6. */ ip6_sprintf(laddr_str, &inc->inc6_laddr); ip6_sprintf(faddr_str, &inc->inc6_faddr); } else #endif { /* IPv4. */ inet_ntoa_r(inc->inc_laddr, laddr_str); inet_ntoa_r(inc->inc_faddr, faddr_str); } db_print_indent(indent); db_printf("inc_laddr %s inc_lport %u\n", laddr_str, ntohs(inc->inc_lport)); db_print_indent(indent); db_printf("inc_faddr %s inc_fport %u\n", faddr_str, ntohs(inc->inc_fport)); } static void db_print_inpflags(int inp_flags) { int comma; comma = 0; if (inp_flags & INP_RECVOPTS) { db_printf("%sINP_RECVOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVRETOPTS) { db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVDSTADDR) { db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_ORIGDSTADDR) { db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_HDRINCL) { db_printf("%sINP_HDRINCL", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_HIGHPORT) { db_printf("%sINP_HIGHPORT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_LOWPORT) { db_printf("%sINP_LOWPORT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_ANONPORT) { db_printf("%sINP_ANONPORT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVIF) { db_printf("%sINP_RECVIF", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_MTUDISC) { db_printf("%sINP_MTUDISC", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVTTL) { db_printf("%sINP_RECVTTL", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_DONTFRAG) { db_printf("%sINP_DONTFRAG", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVTOS) { db_printf("%sINP_RECVTOS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_IPV6_V6ONLY) { db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_PKTINFO) { db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_HOPLIMIT) { db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_HOPOPTS) { db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_DSTOPTS) { db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_RTHDR) { db_printf("%sIN6P_RTHDR", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_RTHDRDSTOPTS) { db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_TCLASS) { db_printf("%sIN6P_TCLASS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_AUTOFLOWLABEL) { db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_TIMEWAIT) { db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_ONESBCAST) { db_printf("%sINP_ONESBCAST", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_DROPPED) { db_printf("%sINP_DROPPED", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_SOCKREF) { db_printf("%sINP_SOCKREF", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_RFC2292) { db_printf("%sIN6P_RFC2292", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_MTU) { db_printf("IN6P_MTU%s", comma ? ", " : ""); comma = 1; } } static void db_print_inpvflag(u_char inp_vflag) { int comma; comma = 0; if (inp_vflag & INP_IPV4) { db_printf("%sINP_IPV4", comma ? ", " : ""); comma = 1; } if (inp_vflag & INP_IPV6) { db_printf("%sINP_IPV6", comma ? ", " : ""); comma = 1; } if (inp_vflag & INP_IPV6PROTO) { db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); comma = 1; } } static void db_print_inpcb(struct inpcb *inp, const char *name, int indent) { db_print_indent(indent); db_printf("%s at %p\n", name, inp); indent += 2; db_print_indent(indent); db_printf("inp_flow: 0x%x\n", inp->inp_flow); db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); db_print_indent(indent); db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); db_print_indent(indent); db_printf("inp_label: %p inp_flags: 0x%x (", inp->inp_label, inp->inp_flags); db_print_inpflags(inp->inp_flags); db_printf(")\n"); db_print_indent(indent); db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, inp->inp_vflag); db_print_inpvflag(inp->inp_vflag); db_printf(")\n"); db_print_indent(indent); db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); db_print_indent(indent); #ifdef INET6 if (inp->inp_vflag & INP_IPV6) { db_printf("in6p_options: %p in6p_outputopts: %p " "in6p_moptions: %p\n", inp->in6p_options, inp->in6p_outputopts, inp->in6p_moptions); db_printf("in6p_icmp6filt: %p in6p_cksum %d " "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, inp->in6p_hops); } else #endif { db_printf("inp_ip_tos: %d inp_ip_options: %p " "inp_ip_moptions: %p\n", inp->inp_ip_tos, inp->inp_options, inp->inp_moptions); } db_print_indent(indent); db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, (uintmax_t)inp->inp_gencnt); } DB_SHOW_COMMAND(inpcb, db_show_inpcb) { struct inpcb *inp; if (!have_addr) { db_printf("usage: show inpcb \n"); return; } inp = (struct inpcb *)addr; db_print_inpcb(inp, "inpcb", 0); } #endif /* DDB */ #ifdef RATELIMIT /* * Modify TX rate limit based on the existing "inp->inp_snd_tag", * if any. */ int in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) { union if_snd_tag_modify_params params = { .rate_limit.max_rate = max_pacing_rate, }; struct m_snd_tag *mst; struct ifnet *ifp; int error; mst = inp->inp_snd_tag; if (mst == NULL) return (EINVAL); ifp = mst->ifp; if (ifp == NULL) return (EINVAL); if (ifp->if_snd_tag_modify == NULL) { error = EOPNOTSUPP; } else { error = ifp->if_snd_tag_modify(mst, ¶ms); } return (error); } /* * Query existing TX rate limit based on the existing * "inp->inp_snd_tag", if any. */ int in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) { union if_snd_tag_query_params params = { }; struct m_snd_tag *mst; struct ifnet *ifp; int error; mst = inp->inp_snd_tag; if (mst == NULL) return (EINVAL); ifp = mst->ifp; if (ifp == NULL) return (EINVAL); if (ifp->if_snd_tag_query == NULL) { error = EOPNOTSUPP; } else { error = ifp->if_snd_tag_query(mst, ¶ms); if (error == 0 && p_max_pacing_rate != NULL) *p_max_pacing_rate = params.rate_limit.max_rate; } return (error); } /* * Query existing TX queue level based on the existing * "inp->inp_snd_tag", if any. */ int in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) { union if_snd_tag_query_params params = { }; struct m_snd_tag *mst; struct ifnet *ifp; int error; mst = inp->inp_snd_tag; if (mst == NULL) return (EINVAL); ifp = mst->ifp; if (ifp == NULL) return (EINVAL); if (ifp->if_snd_tag_query == NULL) return (EOPNOTSUPP); error = ifp->if_snd_tag_query(mst, ¶ms); if (error == 0 && p_txqueue_level != NULL) *p_txqueue_level = params.rate_limit.queue_level; return (error); } /* * Allocate a new TX rate limit send tag from the network interface * given by the "ifp" argument and save it in "inp->inp_snd_tag": */ int in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate) { union if_snd_tag_alloc_params params = { .rate_limit.hdr.type = (max_pacing_rate == -1U) ? IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, .rate_limit.hdr.flowid = flowid, .rate_limit.hdr.flowtype = flowtype, .rate_limit.max_rate = max_pacing_rate, }; int error; INP_WLOCK_ASSERT(inp); if (inp->inp_snd_tag != NULL) return (EINVAL); if (ifp->if_snd_tag_alloc == NULL) { error = EOPNOTSUPP; } else { error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag); /* * At success increment the refcount on * the send tag's network interface: */ if (error == 0) if_ref(inp->inp_snd_tag->ifp); } return (error); } /* * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", * if any: */ void in_pcbdetach_txrtlmt(struct inpcb *inp) { struct m_snd_tag *mst; struct ifnet *ifp; INP_WLOCK_ASSERT(inp); mst = inp->inp_snd_tag; inp->inp_snd_tag = NULL; if (mst == NULL) return; ifp = mst->ifp; if (ifp == NULL) return; /* * If the device was detached while we still had reference(s) * on the ifp, we assume if_snd_tag_free() was replaced with * stubs. */ ifp->if_snd_tag_free(mst); /* release reference count on network interface */ if_rele(ifp); } /* * This function should be called when the INP_RATE_LIMIT_CHANGED flag * is set in the fast path and will attach/detach/modify the TX rate * limit send tag based on the socket's so_max_pacing_rate value. */ void in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) { struct socket *socket; uint32_t max_pacing_rate; bool did_upgrade; int error; if (inp == NULL) return; socket = inp->inp_socket; if (socket == NULL) return; if (!INP_WLOCKED(inp)) { /* * NOTE: If the write locking fails, we need to bail * out and use the non-ratelimited ring for the * transmit until there is a new chance to get the * write lock. */ if (!INP_TRY_UPGRADE(inp)) return; did_upgrade = 1; } else { did_upgrade = 0; } /* * NOTE: The so_max_pacing_rate value is read unlocked, * because atomic updates are not required since the variable * is checked at every mbuf we send. It is assumed that the * variable read itself will be atomic. */ max_pacing_rate = socket->so_max_pacing_rate; /* * NOTE: When attaching to a network interface a reference is * made to ensure the network interface doesn't go away until * all ratelimit connections are gone. The network interface * pointers compared below represent valid network interfaces, * except when comparing towards NULL. */ if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { error = 0; } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { if (inp->inp_snd_tag != NULL) in_pcbdetach_txrtlmt(inp); error = 0; } else if (inp->inp_snd_tag == NULL) { /* * In order to utilize packet pacing with RSS, we need * to wait until there is a valid RSS hash before we * can proceed: */ if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { error = EAGAIN; } else { error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), mb->m_pkthdr.flowid, max_pacing_rate); } } else { error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); } if (error == 0 || error == EOPNOTSUPP) inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; if (did_upgrade) INP_DOWNGRADE(inp); } /* * Track route changes for TX rate limiting. */ void in_pcboutput_eagain(struct inpcb *inp) { struct socket *socket; bool did_upgrade; if (inp == NULL) return; socket = inp->inp_socket; if (socket == NULL) return; if (inp->inp_snd_tag == NULL) return; if (!INP_WLOCKED(inp)) { /* * NOTE: If the write locking fails, we need to bail * out and use the non-ratelimited ring for the * transmit until there is a new chance to get the * write lock. */ if (!INP_TRY_UPGRADE(inp)) return; did_upgrade = 1; } else { did_upgrade = 0; } /* detach rate limiting */ in_pcbdetach_txrtlmt(inp); /* make sure new mbuf send tag allocation is made */ inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; if (did_upgrade) INP_DOWNGRADE(inp); } #endif /* RATELIMIT */ Index: head/sys/netinet/in_pcb.h =================================================================== --- head/sys/netinet/in_pcb.h (revision 332893) +++ head/sys/netinet/in_pcb.h (revision 332894) @@ -1,850 +1,876 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1990, 1993 * The Regents of the University of California. * Copyright (c) 2010-2011 Juniper Networks, Inc. * All rights reserved. * * Portions of this software were developed by Robert N. M. Watson under * contract to Juniper Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_pcb.h 8.1 (Berkeley) 6/10/93 * $FreeBSD$ */ #ifndef _NETINET_IN_PCB_H_ #define _NETINET_IN_PCB_H_ #include #include #include #include #include #ifdef _KERNEL #include #include #include #include #endif #define in6pcb inpcb /* for KAME src sync over BSD*'s */ #define in6p_sp inp_sp /* for KAME src sync over BSD*'s */ /* * struct inpcb is the common protocol control block structure used in most * IP transport protocols. * * Pointers to local and foreign host table entries, local and foreign socket * numbers, and pointers up (to a socket structure) and down (to a * protocol-specific control block) are stored here. */ LIST_HEAD(inpcbhead, inpcb); LIST_HEAD(inpcbporthead, inpcbport); typedef uint64_t inp_gen_t; /* * PCB with AF_INET6 null bind'ed laddr can receive AF_INET input packet. * So, AF_INET6 null laddr is also used as AF_INET null laddr, by utilizing * the following structure. */ struct in_addr_4in6 { u_int32_t ia46_pad32[3]; struct in_addr ia46_addr4; }; +union in_dependaddr { + struct in_addr_4in6 id46_addr; + struct in6_addr id6_addr; +}; + /* * NOTE: ipv6 addrs should be 64-bit aligned, per RFC 2553. in_conninfo has * some extra padding to accomplish this. * NOTE 2: tcp_syncache.c uses first 5 32-bit words, which identify fport, * lport, faddr to generate hash, so these fields shouldn't be moved. */ struct in_endpoints { u_int16_t ie_fport; /* foreign port */ u_int16_t ie_lport; /* local port */ /* protocol dependent part, local and foreign addr */ - union { - /* foreign host table entry */ - struct in_addr_4in6 ie46_foreign; - struct in6_addr ie6_foreign; - } ie_dependfaddr; - union { - /* local host table entry */ - struct in_addr_4in6 ie46_local; - struct in6_addr ie6_local; - } ie_dependladdr; + union in_dependaddr ie_dependfaddr; /* foreign host table entry */ + union in_dependaddr ie_dependladdr; /* local host table entry */ +#define ie_faddr ie_dependfaddr.id46_addr.ia46_addr4 +#define ie_laddr ie_dependladdr.id46_addr.ia46_addr4 +#define ie6_faddr ie_dependfaddr.id6_addr +#define ie6_laddr ie_dependladdr.id6_addr u_int32_t ie6_zoneid; /* scope zone id */ }; -#define ie_faddr ie_dependfaddr.ie46_foreign.ia46_addr4 -#define ie_laddr ie_dependladdr.ie46_local.ia46_addr4 -#define ie6_faddr ie_dependfaddr.ie6_foreign -#define ie6_laddr ie_dependladdr.ie6_local /* * XXX The defines for inc_* are hacks and should be changed to direct * references. */ struct in_conninfo { u_int8_t inc_flags; u_int8_t inc_len; u_int16_t inc_fibnum; /* XXX was pad, 16 bits is plenty */ /* protocol dependent part */ struct in_endpoints inc_ie; }; /* * Flags for inc_flags. */ #define INC_ISIPV6 0x01 #define inc_isipv6 inc_flags /* temp compatibility */ #define inc_fport inc_ie.ie_fport #define inc_lport inc_ie.ie_lport #define inc_faddr inc_ie.ie_faddr #define inc_laddr inc_ie.ie_laddr #define inc6_faddr inc_ie.ie6_faddr #define inc6_laddr inc_ie.ie6_laddr #define inc6_zoneid inc_ie.ie6_zoneid #if defined(_KERNEL) || defined(_WANT_INPCB) /* * struct inpcb captures the network layer state for TCP, UDP, and raw IPv4 and * IPv6 sockets. In the case of TCP and UDP, further per-connection state is * hung off of inp_ppcb most of the time. Almost all fields of struct inpcb * are static after creation or protected by a per-inpcb rwlock, inp_lock. A * few fields are protected by multiple locks as indicated in the locking notes * below. For these fields, all of the listed locks must be write-locked for * any modifications. However, these fields can be safely read while any one of * the listed locks are read-locked. This model can permit greater concurrency * for read operations. For example, connections can be looked up while only * holding a read lock on the global pcblist lock. This is important for * performance when attempting to find the connection for a packet given its IP * and port tuple. * * One noteworthy exception is that the global pcbinfo lock follows a different * set of rules in relation to the inp_list field. Rather than being * write-locked for modifications and read-locked for list iterations, it must * be read-locked during modifications and write-locked during list iterations. * This ensures that the relatively rare global list iterations safely walk a * stable snapshot of connections while allowing more common list modifications * to safely grab the pcblist lock just while adding or removing a connection * from the global list. * * Key: * (b) - Protected by the hpts lock. * (c) - Constant after initialization * (g) - Protected by the pcbgroup lock * (i) - Protected by the inpcb lock * (p) - Protected by the pcbinfo lock for the inpcb * (l) - Protected by the pcblist lock for the inpcb * (h) - Protected by the pcbhash lock for the inpcb * (s) - Protected by another subsystem's locks * (x) - Undefined locking * * Notes on the tcp_hpts: * * First Hpts lock order is * 1) INP_WLOCK() * 2) HPTS_LOCK() i.e. hpts->pmtx * * To insert a TCB on the hpts you *must* be holding the INP_WLOCK(). * You may check the inp->inp_in_hpts flag without the hpts lock. * The hpts is the only one that will clear this flag holding * only the hpts lock. This means that in your tcp_output() * routine when you test for the inp_in_hpts flag to be 1 * it may be transitioning to 0 (by the hpts). * That's ok since that will just mean an extra call to tcp_output * that most likely will find the call you executed * (when the mis-match occured) will have put the TCB back * on the hpts and it will return. If your * call did not add the inp back to the hpts then you will either * over-send or the cwnd will block you from sending more. * * Note you should also be holding the INP_WLOCK() when you * call the remove from the hpts as well. Though usually * you are either doing this from a timer, where you need and have * the INP_WLOCK() or from destroying your TCB where again * you should already have the INP_WLOCK(). * * The inp_hpts_cpu, inp_hpts_cpu_set, inp_input_cpu and * inp_input_cpu_set fields are controlled completely by * the hpts. Do not ever set these. The inp_hpts_cpu_set * and inp_input_cpu_set fields indicate if the hpts has * setup the respective cpu field. It is advised if this * field is 0, to enqueue the packet with the appropriate * hpts_immediate() call. If the _set field is 1, then * you may compare the inp_*_cpu field to the curcpu and * may want to again insert onto the hpts if these fields * are not equal (i.e. you are not on the expected CPU). * * A note on inp_hpts_calls and inp_input_calls, these * flags are set when the hpts calls either the output * or do_segment routines respectively. If the routine * being called wants to use this, then it needs to * clear the flag before returning. The hpts will not * clear the flag. The flags can be used to tell if * the hpts is the function calling the respective * routine. * * A few other notes: * * When a read lock is held, stability of the field is guaranteed; to write * to a field, a write lock must generally be held. * * netinet/netinet6-layer code should not assume that the inp_socket pointer * is safe to dereference without inp_lock being held, even for protocols * other than TCP (where the inpcb persists during TIMEWAIT even after the * socket has been freed), or there may be close(2)-related races. * * The inp_vflag field is overloaded, and would otherwise ideally be (c). * * TODO: Currently only the TCP stack is leveraging the global pcbinfo lock * read-lock usage during modification, this model can be applied to other * protocols (especially SCTP). */ struct icmp6_filter; struct inpcbpolicy; struct m_snd_tag; struct inpcb { /* Cache line #1 (amd64) */ LIST_ENTRY(inpcb) inp_hash; /* (h/i) hash list */ LIST_ENTRY(inpcb) inp_pcbgrouphash; /* (g/i) hash list */ struct rwlock inp_lock; /* Cache line #2 (amd64) */ #define inp_start_zero inp_hpts #define inp_zero_size (sizeof(struct inpcb) - \ offsetof(struct inpcb, inp_start_zero)) TAILQ_ENTRY(inpcb) inp_hpts; /* pacing out queue next lock(b) */ uint32_t inp_hpts_request; /* Current hpts request, zero if * fits in the pacing window (i&b). */ /* * Note the next fields are protected by a * different lock (hpts-lock). This means that * they must correspond in size to the smallest * protectable bit field (uint8_t on x86, and * other platfomrs potentially uint32_t?). Also * since CPU switches can occur at different times the two * fields can *not* be collapsed into a signal bit field. */ #if defined(__amd64__) || defined(__i386__) volatile uint8_t inp_in_hpts; /* on output hpts (lock b) */ volatile uint8_t inp_in_input; /* on input hpts (lock b) */ #else volatile uint32_t inp_in_hpts; /* on output hpts (lock b) */ volatile uint32_t inp_in_input; /* on input hpts (lock b) */ #endif volatile uint16_t inp_hpts_cpu; /* Lock (i) */ u_int inp_refcount; /* (i) refcount */ int inp_flags; /* (i) generic IP/datagram flags */ int inp_flags2; /* (i) generic IP/datagram flags #2*/ volatile uint16_t inp_input_cpu; /* Lock (i) */ volatile uint8_t inp_hpts_cpu_set :1, /* on output hpts (i) */ inp_input_cpu_set : 1, /* on input hpts (i) */ inp_hpts_calls :1, /* (i) from output hpts */ inp_input_calls :1, /* (i) from input hpts */ inp_spare_bits2 : 4; uint8_t inp_spare_byte; /* Compiler hole */ void *inp_ppcb; /* (i) pointer to per-protocol pcb */ struct socket *inp_socket; /* (i) back pointer to socket */ uint32_t inp_hptsslot; /* Hpts wheel slot this tcb is Lock(i&b) */ uint32_t inp_hpts_drop_reas; /* reason we are dropping the PCB (lock i&b) */ TAILQ_ENTRY(inpcb) inp_input; /* pacing in queue next lock(b) */ struct inpcbinfo *inp_pcbinfo; /* (c) PCB list info */ struct inpcbgroup *inp_pcbgroup; /* (g/i) PCB group list */ LIST_ENTRY(inpcb) inp_pcbgroup_wild; /* (g/i/h) group wildcard entry */ struct ucred *inp_cred; /* (c) cache of socket cred */ u_int32_t inp_flow; /* (i) IPv6 flow information */ u_char inp_vflag; /* (i) IP version flag (v4/v6) */ u_char inp_ip_ttl; /* (i) time to live proto */ u_char inp_ip_p; /* (c) protocol proto */ u_char inp_ip_minttl; /* (i) minimum TTL or drop */ uint32_t inp_flowid; /* (x) flow id / queue id */ struct m_snd_tag *inp_snd_tag; /* (i) send tag for outgoing mbufs */ uint32_t inp_flowtype; /* (x) M_HASHTYPE value */ uint32_t inp_rss_listen_bucket; /* (x) overridden RSS listen bucket */ /* Local and foreign ports, local and foreign addr. */ struct in_conninfo inp_inc; /* (i) list for PCB's local port */ /* MAC and IPSEC policy information. */ struct label *inp_label; /* (i) MAC label */ struct inpcbpolicy *inp_sp; /* (s) for IPSEC */ /* Protocol-dependent part; options. */ struct { u_char inp_ip_tos; /* (i) type of service proto */ struct mbuf *inp_options; /* (i) IP options */ struct ip_moptions *inp_moptions; /* (i) mcast options */ }; struct { /* (i) IP options */ struct mbuf *in6p_options; /* (i) IP6 options for outgoing packets */ struct ip6_pktopts *in6p_outputopts; /* (i) IP multicast options */ struct ip6_moptions *in6p_moptions; /* (i) ICMPv6 code type filter */ struct icmp6_filter *in6p_icmp6filt; /* (i) IPV6_CHECKSUM setsockopt */ int in6p_cksum; short in6p_hops; }; LIST_ENTRY(inpcb) inp_portlist; /* (i/h) */ struct inpcbport *inp_phd; /* (i/h) head of this list */ inp_gen_t inp_gencnt; /* (c) generation count */ struct llentry *inp_lle; /* cached L2 information */ rt_gen_t inp_rt_cookie; /* generation for route entry */ union { /* cached L3 information */ struct route inp_route; struct route_in6 inp_route6; }; LIST_ENTRY(inpcb) inp_list; /* (p/l) list for all PCBs for proto */ /* (p[w]) for list iteration */ /* (p[r]/l) for addition/removal */ }; #endif /* _KERNEL */ #define inp_fport inp_inc.inc_fport #define inp_lport inp_inc.inc_lport #define inp_faddr inp_inc.inc_faddr #define inp_laddr inp_inc.inc_laddr #define in6p_faddr inp_inc.inc6_faddr #define in6p_laddr inp_inc.inc6_laddr #define in6p_zoneid inp_inc.inc6_zoneid #define in6p_flowinfo inp_flow #define inp_vnet inp_pcbinfo->ipi_vnet /* * The range of the generation count, as used in this implementation, is 9e19. * We would have to create 300 billion connections per second for this number * to roll over in a year. This seems sufficiently unlikely that we simply * don't concern ourselves with that possibility. */ /* * Interface exported to userland by various protocols which use inpcbs. Hack * alert -- only define if struct xsocket is in scope. * Fields prefixed with "xi_" are unique to this structure, and the rest * match fields in the struct inpcb, to ease coding and porting. * * Legend: * (s) - used by userland utilities in src * (p) - used by utilities in ports * (3) - is known to be used by third party software not in ports * (n) - no known usage */ #ifdef _SYS_SOCKETVAR_H_ struct xinpcb { size_t xi_len; /* length of this structure */ struct xsocket xi_socket; /* (s,p) */ struct in_conninfo inp_inc; /* (s,p) */ uint64_t inp_gencnt; /* (s,p) */ union { void *inp_ppcb; /* (s) netstat(1) */ int64_t ph_ppcb; }; int64_t inp_spare64[4]; uint32_t inp_flow; /* (s) */ uint32_t inp_flowid; /* (s) */ uint32_t inp_flowtype; /* (s) */ int32_t inp_flags; /* (s,p) */ int32_t inp_flags2; /* (s) */ int32_t inp_rss_listen_bucket; /* (n) */ int32_t in6p_cksum; /* (n) */ int32_t inp_spare32[4]; uint16_t in6p_hops; /* (n) */ uint8_t inp_ip_tos; /* (n) */ int8_t pad8; uint8_t inp_vflag; /* (s,p) */ uint8_t inp_ip_ttl; /* (n) */ uint8_t inp_ip_p; /* (n) */ uint8_t inp_ip_minttl; /* (n) */ int8_t inp_spare8[4]; } __aligned(8); struct xinpgen { size_t xig_len; /* length of this structure */ u_int xig_count; /* number of PCBs at this time */ inp_gen_t xig_gen; /* generation count at this time */ so_gen_t xig_sogen; /* socket generation count this time */ } __aligned(8); #ifdef _KERNEL void in_pcbtoxinpcb(const struct inpcb *, struct xinpcb *); #endif #endif /* _SYS_SOCKETVAR_H_ */ struct inpcbport { LIST_ENTRY(inpcbport) phd_hash; struct inpcbhead phd_pcblist; u_short phd_port; }; +struct inpcblbgroup { + LIST_ENTRY(inpcblbgroup) il_list; + uint16_t il_lport; + u_char il_vflag; + u_char il_pad; + uint32_t il_pad2; + union in_dependaddr il_dependladdr; +#define il_laddr il_dependladdr.id46_addr.ia46_addr4 +#define il6_laddr il_dependladdr.id6_addr + uint32_t il_inpsiz; /* size of il_inp[] */ + uint32_t il_inpcnt; /* # of elem in il_inp[] */ + struct inpcb *il_inp[]; +}; +LIST_HEAD(inpcblbgrouphead, inpcblbgroup); + /*- * Global data structure for each high-level protocol (UDP, TCP, ...) in both * IPv4 and IPv6. Holds inpcb lists and information for managing them. * * Each pcbinfo is protected by three locks: ipi_lock, ipi_hash_lock and * ipi_list_lock: * - ipi_lock covering the global pcb list stability during loop iteration, * - ipi_hash_lock covering the hashed lookup tables, * - ipi_list_lock covering mutable global fields (such as the global * pcb list) * * The lock order is: * * ipi_lock (before) * inpcb locks (before) * ipi_list locks (before) * {ipi_hash_lock, pcbgroup locks} * * Locking key: * * (c) Constant or nearly constant after initialisation * (g) Locked by ipi_lock * (l) Locked by ipi_list_lock * (h) Read using either ipi_hash_lock or inpcb lock; write requires both * (p) Protected by one or more pcbgroup locks * (x) Synchronisation properties poorly defined */ struct inpcbinfo { /* * Global lock protecting full inpcb list traversal */ struct rwlock ipi_lock; /* * Global list of inpcbs on the protocol. */ struct inpcbhead *ipi_listhead; /* (g/l) */ u_int ipi_count; /* (l) */ /* * Generation count -- incremented each time a connection is allocated * or freed. */ u_quad_t ipi_gencnt; /* (l) */ /* * Fields associated with port lookup and allocation. */ u_short ipi_lastport; /* (x) */ u_short ipi_lastlow; /* (x) */ u_short ipi_lasthi; /* (x) */ /* * UMA zone from which inpcbs are allocated for this protocol. */ struct uma_zone *ipi_zone; /* (c) */ /* * Connection groups associated with this protocol. These fields are * constant, but pcbgroup structures themselves are protected by * per-pcbgroup locks. */ struct inpcbgroup *ipi_pcbgroups; /* (c) */ u_int ipi_npcbgroups; /* (c) */ u_int ipi_hashfields; /* (c) */ /* * Global lock protecting non-pcbgroup hash lookup tables. */ struct rwlock ipi_hash_lock; /* * Global hash of inpcbs, hashed by local and foreign addresses and * port numbers. */ struct inpcbhead *ipi_hashbase; /* (h) */ u_long ipi_hashmask; /* (h) */ /* * Global hash of inpcbs, hashed by only local port number. */ struct inpcbporthead *ipi_porthashbase; /* (h) */ u_long ipi_porthashmask; /* (h) */ /* * List of wildcard inpcbs for use with pcbgroups. In the past, was * per-pcbgroup but is now global. All pcbgroup locks must be held * to modify the list, so any is sufficient to read it. */ struct inpcbhead *ipi_wildbase; /* (p) */ u_long ipi_wildmask; /* (p) */ /* + * Load balanced group used by the SO_REUSEPORT_LB option, + * hashed by local address and local port. + */ + struct inpcblbgrouphead *ipi_lbgrouphashbase; + u_long ipi_lbgrouphashmask; + + /* * Pointer to network stack instance */ struct vnet *ipi_vnet; /* (c) */ /* * general use 2 */ void *ipi_pspare[2]; /* * Global lock protecting global inpcb list, inpcb count, etc. */ struct rwlock ipi_list_lock; }; #ifdef _KERNEL /* * Connection groups hold sets of connections that have similar CPU/thread * affinity. Each connection belongs to exactly one connection group. */ struct inpcbgroup { /* * Per-connection group hash of inpcbs, hashed by local and foreign * addresses and port numbers. */ struct inpcbhead *ipg_hashbase; /* (c) */ u_long ipg_hashmask; /* (c) */ /* * Notional affinity of this pcbgroup. */ u_int ipg_cpu; /* (p) */ /* * Per-connection group lock, not to be confused with ipi_lock. * Protects the hash table hung off the group, but also the global * wildcard list in inpcbinfo. */ struct mtx ipg_lock; } __aligned(CACHE_LINE_SIZE); #define INP_LOCK_INIT(inp, d, t) \ rw_init_flags(&(inp)->inp_lock, (t), RW_RECURSE | RW_DUPOK) #define INP_LOCK_DESTROY(inp) rw_destroy(&(inp)->inp_lock) #define INP_RLOCK(inp) rw_rlock(&(inp)->inp_lock) #define INP_WLOCK(inp) rw_wlock(&(inp)->inp_lock) #define INP_TRY_RLOCK(inp) rw_try_rlock(&(inp)->inp_lock) #define INP_TRY_WLOCK(inp) rw_try_wlock(&(inp)->inp_lock) #define INP_RUNLOCK(inp) rw_runlock(&(inp)->inp_lock) #define INP_WUNLOCK(inp) rw_wunlock(&(inp)->inp_lock) #define INP_TRY_UPGRADE(inp) rw_try_upgrade(&(inp)->inp_lock) #define INP_DOWNGRADE(inp) rw_downgrade(&(inp)->inp_lock) #define INP_WLOCKED(inp) rw_wowned(&(inp)->inp_lock) #define INP_LOCK_ASSERT(inp) rw_assert(&(inp)->inp_lock, RA_LOCKED) #define INP_RLOCK_ASSERT(inp) rw_assert(&(inp)->inp_lock, RA_RLOCKED) #define INP_WLOCK_ASSERT(inp) rw_assert(&(inp)->inp_lock, RA_WLOCKED) #define INP_UNLOCK_ASSERT(inp) rw_assert(&(inp)->inp_lock, RA_UNLOCKED) /* * These locking functions are for inpcb consumers outside of sys/netinet, * more specifically, they were added for the benefit of TOE drivers. The * macros are reserved for use by the stack. */ void inp_wlock(struct inpcb *); void inp_wunlock(struct inpcb *); void inp_rlock(struct inpcb *); void inp_runlock(struct inpcb *); #ifdef INVARIANT_SUPPORT void inp_lock_assert(struct inpcb *); void inp_unlock_assert(struct inpcb *); #else #define inp_lock_assert(inp) do {} while (0) #define inp_unlock_assert(inp) do {} while (0) #endif void inp_apply_all(void (*func)(struct inpcb *, void *), void *arg); int inp_ip_tos_get(const struct inpcb *inp); void inp_ip_tos_set(struct inpcb *inp, int val); struct socket * inp_inpcbtosocket(struct inpcb *inp); struct tcpcb * inp_inpcbtotcpcb(struct inpcb *inp); void inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, uint32_t *faddr, uint16_t *fp); -short inp_so_options(const struct inpcb *inp); +int inp_so_options(const struct inpcb *inp); #endif /* _KERNEL */ #define INP_INFO_LOCK_INIT(ipi, d) \ rw_init_flags(&(ipi)->ipi_lock, (d), RW_RECURSE) #define INP_INFO_LOCK_DESTROY(ipi) rw_destroy(&(ipi)->ipi_lock) #define INP_INFO_RLOCK(ipi) rw_rlock(&(ipi)->ipi_lock) #define INP_INFO_WLOCK(ipi) rw_wlock(&(ipi)->ipi_lock) #define INP_INFO_TRY_RLOCK(ipi) rw_try_rlock(&(ipi)->ipi_lock) #define INP_INFO_TRY_WLOCK(ipi) rw_try_wlock(&(ipi)->ipi_lock) #define INP_INFO_TRY_UPGRADE(ipi) rw_try_upgrade(&(ipi)->ipi_lock) #define INP_INFO_WLOCKED(ipi) rw_wowned(&(ipi)->ipi_lock) #define INP_INFO_RUNLOCK(ipi) rw_runlock(&(ipi)->ipi_lock) #define INP_INFO_WUNLOCK(ipi) rw_wunlock(&(ipi)->ipi_lock) #define INP_INFO_LOCK_ASSERT(ipi) rw_assert(&(ipi)->ipi_lock, RA_LOCKED) #define INP_INFO_RLOCK_ASSERT(ipi) rw_assert(&(ipi)->ipi_lock, RA_RLOCKED) #define INP_INFO_WLOCK_ASSERT(ipi) rw_assert(&(ipi)->ipi_lock, RA_WLOCKED) #define INP_INFO_UNLOCK_ASSERT(ipi) rw_assert(&(ipi)->ipi_lock, RA_UNLOCKED) #define INP_LIST_LOCK_INIT(ipi, d) \ rw_init_flags(&(ipi)->ipi_list_lock, (d), 0) #define INP_LIST_LOCK_DESTROY(ipi) rw_destroy(&(ipi)->ipi_list_lock) #define INP_LIST_RLOCK(ipi) rw_rlock(&(ipi)->ipi_list_lock) #define INP_LIST_WLOCK(ipi) rw_wlock(&(ipi)->ipi_list_lock) #define INP_LIST_TRY_RLOCK(ipi) rw_try_rlock(&(ipi)->ipi_list_lock) #define INP_LIST_TRY_WLOCK(ipi) rw_try_wlock(&(ipi)->ipi_list_lock) #define INP_LIST_TRY_UPGRADE(ipi) rw_try_upgrade(&(ipi)->ipi_list_lock) #define INP_LIST_RUNLOCK(ipi) rw_runlock(&(ipi)->ipi_list_lock) #define INP_LIST_WUNLOCK(ipi) rw_wunlock(&(ipi)->ipi_list_lock) #define INP_LIST_LOCK_ASSERT(ipi) \ rw_assert(&(ipi)->ipi_list_lock, RA_LOCKED) #define INP_LIST_RLOCK_ASSERT(ipi) \ rw_assert(&(ipi)->ipi_list_lock, RA_RLOCKED) #define INP_LIST_WLOCK_ASSERT(ipi) \ rw_assert(&(ipi)->ipi_list_lock, RA_WLOCKED) #define INP_LIST_UNLOCK_ASSERT(ipi) \ rw_assert(&(ipi)->ipi_list_lock, RA_UNLOCKED) #define INP_HASH_LOCK_INIT(ipi, d) \ rw_init_flags(&(ipi)->ipi_hash_lock, (d), 0) #define INP_HASH_LOCK_DESTROY(ipi) rw_destroy(&(ipi)->ipi_hash_lock) #define INP_HASH_RLOCK(ipi) rw_rlock(&(ipi)->ipi_hash_lock) #define INP_HASH_WLOCK(ipi) rw_wlock(&(ipi)->ipi_hash_lock) #define INP_HASH_RUNLOCK(ipi) rw_runlock(&(ipi)->ipi_hash_lock) #define INP_HASH_WUNLOCK(ipi) rw_wunlock(&(ipi)->ipi_hash_lock) #define INP_HASH_LOCK_ASSERT(ipi) rw_assert(&(ipi)->ipi_hash_lock, \ RA_LOCKED) #define INP_HASH_WLOCK_ASSERT(ipi) rw_assert(&(ipi)->ipi_hash_lock, \ RA_WLOCKED) #define INP_GROUP_LOCK_INIT(ipg, d) mtx_init(&(ipg)->ipg_lock, (d), NULL, \ MTX_DEF | MTX_DUPOK) #define INP_GROUP_LOCK_DESTROY(ipg) mtx_destroy(&(ipg)->ipg_lock) #define INP_GROUP_LOCK(ipg) mtx_lock(&(ipg)->ipg_lock) #define INP_GROUP_LOCK_ASSERT(ipg) mtx_assert(&(ipg)->ipg_lock, MA_OWNED) #define INP_GROUP_UNLOCK(ipg) mtx_unlock(&(ipg)->ipg_lock) #define INP_PCBHASH(faddr, lport, fport, mask) \ (((faddr) ^ ((faddr) >> 16) ^ ntohs((lport) ^ (fport))) & (mask)) #define INP_PCBPORTHASH(lport, mask) \ (ntohs((lport)) & (mask)) +#define INP_PCBLBGROUP_PORTHASH(lport, mask) \ + (ntohs((lport)) & (mask)) +#define INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) \ + ((faddr) ^ ((faddr) >> 16) ^ ntohs((lport) ^ (fport))) #define INP6_PCBHASHKEY(faddr) ((faddr)->s6_addr32[3]) /* * Flags for inp_vflags -- historically version flags only */ #define INP_IPV4 0x1 #define INP_IPV6 0x2 #define INP_IPV6PROTO 0x4 /* opened under IPv6 protocol */ /* * Flags for inp_flags. */ #define INP_RECVOPTS 0x00000001 /* receive incoming IP options */ #define INP_RECVRETOPTS 0x00000002 /* receive IP options for reply */ #define INP_RECVDSTADDR 0x00000004 /* receive IP dst address */ #define INP_HDRINCL 0x00000008 /* user supplies entire IP header */ #define INP_HIGHPORT 0x00000010 /* user wants "high" port binding */ #define INP_LOWPORT 0x00000020 /* user wants "low" port binding */ #define INP_ANONPORT 0x00000040 /* port chosen for user */ #define INP_RECVIF 0x00000080 /* receive incoming interface */ #define INP_MTUDISC 0x00000100 /* user can do MTU discovery */ /* 0x000200 unused: was INP_FAITH */ #define INP_RECVTTL 0x00000400 /* receive incoming IP TTL */ #define INP_DONTFRAG 0x00000800 /* don't fragment packet */ #define INP_BINDANY 0x00001000 /* allow bind to any address */ #define INP_INHASHLIST 0x00002000 /* in_pcbinshash() has been called */ #define INP_RECVTOS 0x00004000 /* receive incoming IP TOS */ #define IN6P_IPV6_V6ONLY 0x00008000 /* restrict AF_INET6 socket for v6 */ #define IN6P_PKTINFO 0x00010000 /* receive IP6 dst and I/F */ #define IN6P_HOPLIMIT 0x00020000 /* receive hoplimit */ #define IN6P_HOPOPTS 0x00040000 /* receive hop-by-hop options */ #define IN6P_DSTOPTS 0x00080000 /* receive dst options after rthdr */ #define IN6P_RTHDR 0x00100000 /* receive routing header */ #define IN6P_RTHDRDSTOPTS 0x00200000 /* receive dstoptions before rthdr */ #define IN6P_TCLASS 0x00400000 /* receive traffic class value */ #define IN6P_AUTOFLOWLABEL 0x00800000 /* attach flowlabel automatically */ #define INP_TIMEWAIT 0x01000000 /* in TIMEWAIT, ppcb is tcptw */ #define INP_ONESBCAST 0x02000000 /* send all-ones broadcast */ #define INP_DROPPED 0x04000000 /* protocol drop flag */ #define INP_SOCKREF 0x08000000 /* strong socket reference */ #define INP_RESERVED_0 0x10000000 /* reserved field */ #define INP_RESERVED_1 0x20000000 /* reserved field */ #define IN6P_RFC2292 0x40000000 /* used RFC2292 API on the socket */ #define IN6P_MTU 0x80000000 /* receive path MTU */ #define INP_CONTROLOPTS (INP_RECVOPTS|INP_RECVRETOPTS|INP_RECVDSTADDR|\ INP_RECVIF|INP_RECVTTL|INP_RECVTOS|\ IN6P_PKTINFO|IN6P_HOPLIMIT|IN6P_HOPOPTS|\ IN6P_DSTOPTS|IN6P_RTHDR|IN6P_RTHDRDSTOPTS|\ IN6P_TCLASS|IN6P_AUTOFLOWLABEL|IN6P_RFC2292|\ IN6P_MTU) /* * Flags for inp_flags2. */ #define INP_LLE_VALID 0x00000001 /* cached lle is valid */ #define INP_RT_VALID 0x00000002 /* cached rtentry is valid */ #define INP_PCBGROUPWILD 0x00000004 /* in pcbgroup wildcard list */ #define INP_REUSEPORT 0x00000008 /* SO_REUSEPORT option is set */ #define INP_FREED 0x00000010 /* inp itself is not valid */ #define INP_REUSEADDR 0x00000020 /* SO_REUSEADDR option is set */ #define INP_BINDMULTI 0x00000040 /* IP_BINDMULTI option is set */ #define INP_RSS_BUCKET_SET 0x00000080 /* IP_RSS_LISTEN_BUCKET is set */ #define INP_RECVFLOWID 0x00000100 /* populate recv datagram with flow info */ #define INP_RECVRSSBUCKETID 0x00000200 /* populate recv datagram with bucket id */ #define INP_RATE_LIMIT_CHANGED 0x00000400 /* rate limit needs attention */ #define INP_ORIGDSTADDR 0x00000800 /* receive IP dst address/port */ #define INP_CANNOT_DO_ECN 0x00001000 /* The stack does not do ECN */ +#define INP_REUSEPORT_LB 0x00002000 /* SO_REUSEPORT_LB option is set */ /* * Flags passed to in_pcblookup*() functions. */ #define INPLOOKUP_WILDCARD 0x00000001 /* Allow wildcard sockets. */ #define INPLOOKUP_RLOCKPCB 0x00000002 /* Return inpcb read-locked. */ #define INPLOOKUP_WLOCKPCB 0x00000004 /* Return inpcb write-locked. */ #define INPLOOKUP_MASK (INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB | \ INPLOOKUP_WLOCKPCB) #define sotoinpcb(so) ((struct inpcb *)(so)->so_pcb) #define sotoin6pcb(so) sotoinpcb(so) /* for KAME src sync over BSD*'s */ #define INP_SOCKAF(so) so->so_proto->pr_domain->dom_family #define INP_CHECK_SOCKAF(so, af) (INP_SOCKAF(so) == af) /* * Constants for pcbinfo.ipi_hashfields. */ #define IPI_HASHFIELDS_NONE 0 #define IPI_HASHFIELDS_2TUPLE 1 #define IPI_HASHFIELDS_4TUPLE 2 #ifdef _KERNEL VNET_DECLARE(int, ipport_reservedhigh); VNET_DECLARE(int, ipport_reservedlow); VNET_DECLARE(int, ipport_lowfirstauto); VNET_DECLARE(int, ipport_lowlastauto); VNET_DECLARE(int, ipport_firstauto); VNET_DECLARE(int, ipport_lastauto); VNET_DECLARE(int, ipport_hifirstauto); VNET_DECLARE(int, ipport_hilastauto); VNET_DECLARE(int, ipport_randomized); VNET_DECLARE(int, ipport_randomcps); VNET_DECLARE(int, ipport_randomtime); VNET_DECLARE(int, ipport_stoprandom); VNET_DECLARE(int, ipport_tcpallocs); #define V_ipport_reservedhigh VNET(ipport_reservedhigh) #define V_ipport_reservedlow VNET(ipport_reservedlow) #define V_ipport_lowfirstauto VNET(ipport_lowfirstauto) #define V_ipport_lowlastauto VNET(ipport_lowlastauto) #define V_ipport_firstauto VNET(ipport_firstauto) #define V_ipport_lastauto VNET(ipport_lastauto) #define V_ipport_hifirstauto VNET(ipport_hifirstauto) #define V_ipport_hilastauto VNET(ipport_hilastauto) #define V_ipport_randomized VNET(ipport_randomized) #define V_ipport_randomcps VNET(ipport_randomcps) #define V_ipport_randomtime VNET(ipport_randomtime) #define V_ipport_stoprandom VNET(ipport_stoprandom) #define V_ipport_tcpallocs VNET(ipport_tcpallocs) void in_pcbinfo_destroy(struct inpcbinfo *); void in_pcbinfo_init(struct inpcbinfo *, const char *, struct inpcbhead *, int, int, char *, uma_init, u_int); int in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi); struct inpcbgroup * in_pcbgroup_byhash(struct inpcbinfo *, u_int, uint32_t); struct inpcbgroup * in_pcbgroup_byinpcb(struct inpcb *); struct inpcbgroup * in_pcbgroup_bytuple(struct inpcbinfo *, struct in_addr, u_short, struct in_addr, u_short); void in_pcbgroup_destroy(struct inpcbinfo *); int in_pcbgroup_enabled(struct inpcbinfo *); void in_pcbgroup_init(struct inpcbinfo *, u_int, int); void in_pcbgroup_remove(struct inpcb *); void in_pcbgroup_update(struct inpcb *); void in_pcbgroup_update_mbuf(struct inpcb *, struct mbuf *); void in_pcbpurgeif0(struct inpcbinfo *, struct ifnet *); int in_pcballoc(struct socket *, struct inpcbinfo *); int in_pcbbind(struct inpcb *, struct sockaddr *, struct ucred *); int in_pcb_lport(struct inpcb *, struct in_addr *, u_short *, struct ucred *, int); int in_pcbbind_setup(struct inpcb *, struct sockaddr *, in_addr_t *, u_short *, struct ucred *); int in_pcbconnect(struct inpcb *, struct sockaddr *, struct ucred *); int in_pcbconnect_mbuf(struct inpcb *, struct sockaddr *, struct ucred *, struct mbuf *); int in_pcbconnect_setup(struct inpcb *, struct sockaddr *, in_addr_t *, u_short *, in_addr_t *, u_short *, struct inpcb **, struct ucred *); void in_pcbdetach(struct inpcb *); void in_pcbdisconnect(struct inpcb *); void in_pcbdrop(struct inpcb *); void in_pcbfree(struct inpcb *); int in_pcbinshash(struct inpcb *); int in_pcbinshash_nopcbgroup(struct inpcb *); int in_pcbladdr(struct inpcb *, struct in_addr *, struct in_addr *, struct ucred *); struct inpcb * in_pcblookup_local(struct inpcbinfo *, struct in_addr, u_short, int, struct ucred *); struct inpcb * in_pcblookup(struct inpcbinfo *, struct in_addr, u_int, struct in_addr, u_int, int, struct ifnet *); +struct inpcb * + in_pcblookup_lbgroup_last(const struct inpcb *inp); struct inpcb * in_pcblookup_mbuf(struct inpcbinfo *, struct in_addr, u_int, struct in_addr, u_int, int, struct ifnet *, struct mbuf *); void in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr, int, struct inpcb *(*)(struct inpcb *, int)); void in_pcbref(struct inpcb *); void in_pcbrehash(struct inpcb *); void in_pcbrehash_mbuf(struct inpcb *, struct mbuf *); int in_pcbrele(struct inpcb *); int in_pcbrele_rlocked(struct inpcb *); int in_pcbrele_wlocked(struct inpcb *); void in_losing(struct inpcb *); void in_pcbsetsolabel(struct socket *so); int in_getpeeraddr(struct socket *so, struct sockaddr **nam); int in_getsockaddr(struct socket *so, struct sockaddr **nam); struct sockaddr * in_sockaddr(in_port_t port, struct in_addr *addr); void in_pcbsosetlabel(struct socket *so); #ifdef RATELIMIT int in_pcbattach_txrtlmt(struct inpcb *, struct ifnet *, uint32_t, uint32_t, uint32_t); void in_pcbdetach_txrtlmt(struct inpcb *); int in_pcbmodify_txrtlmt(struct inpcb *, uint32_t); int in_pcbquery_txrtlmt(struct inpcb *, uint32_t *); int in_pcbquery_txrlevel(struct inpcb *, uint32_t *); void in_pcboutput_txrtlmt(struct inpcb *, struct ifnet *, struct mbuf *); void in_pcboutput_eagain(struct inpcb *); #endif #endif /* _KERNEL */ #endif /* !_NETINET_IN_PCB_H_ */ Index: head/sys/netinet/ip_output.c =================================================================== --- head/sys/netinet/ip_output.c (revision 332893) +++ head/sys/netinet/ip_output.c (revision 332894) @@ -1,1435 +1,1444 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1988, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_ratelimit.h" #include "opt_ipsec.h" #include "opt_mbuf_stress_test.h" #include "opt_mpath.h" #include "opt_route.h" #include "opt_sctp.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RADIX_MPATH #include #endif #include #include #include #include #include #include #include #include #include #include #include #ifdef SCTP #include #include #endif #include #include #include #ifdef MBUF_STRESS_TEST static int mbuf_frag_size = 0; SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); #endif static void ip_mloopback(struct ifnet *, const struct mbuf *, int); extern int in_mcast_loop; extern struct protosw inetsw[]; static inline int ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) { struct m_tag *fwd_tag = NULL; struct mbuf *m; struct in_addr odst; struct ip *ip; m = *mp; ip = mtod(m, struct ip *); /* Run through list of hooks for output packets. */ odst.s_addr = ip->ip_dst.s_addr; *error = pfil_run_hooks(&V_inet_pfil_hook, mp, ifp, PFIL_OUT, 0, inp); m = *mp; if ((*error) != 0 || m == NULL) return 1; /* Finished */ ip = mtod(m, struct ip *); /* See if destination IP address was changed by packet filter. */ if (odst.s_addr != ip->ip_dst.s_addr) { m->m_flags |= M_SKIP_FIREWALL; /* If destination is now ourself drop to ip_input(). */ if (in_localip(ip->ip_dst)) { m->m_flags |= M_FASTFWD_OURS; if (m->m_pkthdr.rcvif == NULL) m->m_pkthdr.rcvif = V_loif; if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID; #ifdef SCTP if (m->m_pkthdr.csum_flags & CSUM_SCTP) m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; #endif *error = netisr_queue(NETISR_IP, m); return 1; /* Finished */ } bzero(dst, sizeof(*dst)); dst->sin_family = AF_INET; dst->sin_len = sizeof(*dst); dst->sin_addr = ip->ip_dst; return -1; /* Reloop */ } /* See if fib was changed by packet filter. */ if ((*fibnum) != M_GETFIB(m)) { m->m_flags |= M_SKIP_FIREWALL; *fibnum = M_GETFIB(m); return -1; /* Reloop for FIB change */ } /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ if (m->m_flags & M_FASTFWD_OURS) { if (m->m_pkthdr.rcvif == NULL) m->m_pkthdr.rcvif = V_loif; if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } #ifdef SCTP if (m->m_pkthdr.csum_flags & CSUM_SCTP) m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; #endif m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID; *error = netisr_queue(NETISR_IP, m); return 1; /* Finished */ } /* Or forward to some other address? */ if ((m->m_flags & M_IP_NEXTHOP) && ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); m->m_flags |= M_SKIP_FIREWALL; m->m_flags &= ~M_IP_NEXTHOP; m_tag_delete(m, fwd_tag); return -1; /* Reloop for CHANGE of dst */ } return 0; } /* * IP output. The packet in mbuf chain m contains a skeletal IP * header (with len, off, ttl, proto, tos, src, dst). * The mbuf chain containing the packet will be freed. * The mbuf opt, if present, will not be freed. * If route ro is present and has ro_rt initialized, route lookup would be * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, * then result of route lookup is stored in ro->ro_rt. * * In the IP forwarding case, the packet will arrive with options already * inserted, so must have a NULL opt pointer. */ int ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, struct ip_moptions *imo, struct inpcb *inp) { struct rm_priotracker in_ifa_tracker; struct ip *ip; struct ifnet *ifp = NULL; /* keep compiler happy */ struct mbuf *m0; int hlen = sizeof (struct ip); int mtu; int error = 0; struct sockaddr_in *dst; const struct sockaddr_in *gw; struct in_ifaddr *ia; int isbroadcast; uint16_t ip_len, ip_off; struct route iproute; struct rtentry *rte; /* cache for ro->ro_rt */ uint32_t fibnum; int have_ia_ref; #if defined(IPSEC) || defined(IPSEC_SUPPORT) int no_route_but_check_spd = 0; #endif M_ASSERTPKTHDR(m); if (inp != NULL) { INP_LOCK_ASSERT(inp); M_SETFIB(m, inp->inp_inc.inc_fibnum); if ((flags & IP_NODEFAULTFLOWID) == 0) { m->m_pkthdr.flowid = inp->inp_flowid; M_HASHTYPE_SET(m, inp->inp_flowtype); } } if (ro == NULL) { ro = &iproute; bzero(ro, sizeof (*ro)); } if (opt) { int len = 0; m = ip_insertoptions(m, opt, &len); if (len != 0) hlen = len; /* ip->ip_hl is updated above */ } ip = mtod(m, struct ip *); ip_len = ntohs(ip->ip_len); ip_off = ntohs(ip->ip_off); if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { ip->ip_v = IPVERSION; ip->ip_hl = hlen >> 2; ip_fillid(ip); IPSTAT_INC(ips_localout); } else { /* Header already set, fetch hlen from there */ hlen = ip->ip_hl << 2; } /* * dst/gw handling: * * dst can be rewritten but always points to &ro->ro_dst. * gw is readonly but can point either to dst OR rt_gateway, * therefore we need restore gw if we're redoing lookup. */ gw = dst = (struct sockaddr_in *)&ro->ro_dst; fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); rte = ro->ro_rt; if (rte == NULL) { bzero(dst, sizeof(*dst)); dst->sin_family = AF_INET; dst->sin_len = sizeof(*dst); dst->sin_addr = ip->ip_dst; } again: /* * Validate route against routing table additions; * a better/more specific route might have been added. */ if (inp) RT_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); /* * If there is a cached route, * check that it is to the same destination * and is still up. If not, free it and try again. * The address family should also be checked in case of sharing the * cache with IPv6. * Also check whether routing cache needs invalidation. */ rte = ro->ro_rt; if (rte && ((rte->rt_flags & RTF_UP) == 0 || rte->rt_ifp == NULL || !RT_LINK_IS_UP(rte->rt_ifp) || dst->sin_family != AF_INET || dst->sin_addr.s_addr != ip->ip_dst.s_addr)) { RO_INVALIDATE_CACHE(ro); rte = NULL; } ia = NULL; have_ia_ref = 0; /* * If routing to interface only, short circuit routing lookup. * The use of an all-ones broadcast address implies this; an * interface is specified by the broadcast address of an interface, * or the destination address of a ptp interface. */ if (flags & IP_SENDONES) { if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), M_GETFIB(m)))) == NULL && (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), M_GETFIB(m)))) == NULL) { IPSTAT_INC(ips_noroute); error = ENETUNREACH; goto bad; } have_ia_ref = 1; ip->ip_dst.s_addr = INADDR_BROADCAST; dst->sin_addr = ip->ip_dst; ifp = ia->ia_ifp; ip->ip_ttl = 1; isbroadcast = 1; } else if (flags & IP_ROUTETOIF) { if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), M_GETFIB(m)))) == NULL && (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, M_GETFIB(m)))) == NULL) { IPSTAT_INC(ips_noroute); error = ENETUNREACH; goto bad; } have_ia_ref = 1; ifp = ia->ia_ifp; ip->ip_ttl = 1; isbroadcast = ifp->if_flags & IFF_BROADCAST ? in_ifaddr_broadcast(dst->sin_addr, ia) : 0; } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && imo != NULL && imo->imo_multicast_ifp != NULL) { /* * Bypass the normal routing lookup for multicast * packets if the interface is specified. */ ifp = imo->imo_multicast_ifp; IFP_TO_IA(ifp, ia, &in_ifa_tracker); if (ia) have_ia_ref = 1; isbroadcast = 0; /* fool gcc */ } else { /* * We want to do any cloning requested by the link layer, * as this is probably required in all cases for correct * operation (as it is for ARP). */ if (rte == NULL) { #ifdef RADIX_MPATH rtalloc_mpath_fib(ro, ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr), fibnum); #else in_rtalloc_ign(ro, 0, fibnum); #endif rte = ro->ro_rt; } if (rte == NULL || (rte->rt_flags & RTF_UP) == 0 || rte->rt_ifp == NULL || !RT_LINK_IS_UP(rte->rt_ifp)) { #if defined(IPSEC) || defined(IPSEC_SUPPORT) /* * There is no route for this packet, but it is * possible that a matching SPD entry exists. */ no_route_but_check_spd = 1; mtu = 0; /* Silence GCC warning. */ goto sendit; #endif IPSTAT_INC(ips_noroute); error = EHOSTUNREACH; goto bad; } ia = ifatoia(rte->rt_ifa); ifp = rte->rt_ifp; counter_u64_add(rte->rt_pksent, 1); rt_update_ro_flags(ro); if (rte->rt_flags & RTF_GATEWAY) gw = (struct sockaddr_in *)rte->rt_gateway; if (rte->rt_flags & RTF_HOST) isbroadcast = (rte->rt_flags & RTF_BROADCAST); else if (ifp->if_flags & IFF_BROADCAST) isbroadcast = in_ifaddr_broadcast(gw->sin_addr, ia); else isbroadcast = 0; } /* * Calculate MTU. If we have a route that is up, use that, * otherwise use the interface's MTU. */ if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) mtu = rte->rt_mtu; else mtu = ifp->if_mtu; /* Catch a possible divide by zero later. */ KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p", __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp)); if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { m->m_flags |= M_MCAST; /* * IP destination address is multicast. Make sure "gw" * still points to the address in "ro". (It may have been * changed to point to a gateway address, above.) */ gw = dst; /* * See if the caller provided any multicast options */ if (imo != NULL) { ip->ip_ttl = imo->imo_multicast_ttl; if (imo->imo_multicast_vif != -1) ip->ip_src.s_addr = ip_mcast_src ? ip_mcast_src(imo->imo_multicast_vif) : INADDR_ANY; } else ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; /* * Confirm that the outgoing interface supports multicast. */ if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { if ((ifp->if_flags & IFF_MULTICAST) == 0) { IPSTAT_INC(ips_noroute); error = ENETUNREACH; goto bad; } } /* * If source address not specified yet, use address * of outgoing interface. */ if (ip->ip_src.s_addr == INADDR_ANY) { /* Interface may have no addresses. */ if (ia != NULL) ip->ip_src = IA_SIN(ia)->sin_addr; } if ((imo == NULL && in_mcast_loop) || (imo && imo->imo_multicast_loop)) { /* * Loop back multicast datagram if not expressly * forbidden to do so, even if we are not a member * of the group; ip_input() will filter it later, * thus deferring a hash lookup and mutex acquisition * at the expense of a cheap copy using m_copym(). */ ip_mloopback(ifp, m, hlen); } else { /* * If we are acting as a multicast router, perform * multicast forwarding as if the packet had just * arrived on the interface to which we are about * to send. The multicast forwarding function * recursively calls this function, using the * IP_FORWARDING flag to prevent infinite recursion. * * Multicasts that are looped back by ip_mloopback(), * above, will be forwarded by the ip_input() routine, * if necessary. */ if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { /* * If rsvp daemon is not running, do not * set ip_moptions. This ensures that the packet * is multicast and not just sent down one link * as prescribed by rsvpd. */ if (!V_rsvp_on) imo = NULL; if (ip_mforward && ip_mforward(ip, ifp, m, imo) != 0) { m_freem(m); goto done; } } } /* * Multicasts with a time-to-live of zero may be looped- * back, above, but must not be transmitted on a network. * Also, multicasts addressed to the loopback interface * are not sent -- the above call to ip_mloopback() will * loop back a copy. ip_input() will drop the copy if * this host does not belong to the destination group on * the loopback interface. */ if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { m_freem(m); goto done; } goto sendit; } /* * If the source address is not specified yet, use the address * of the outoing interface. */ if (ip->ip_src.s_addr == INADDR_ANY) { /* Interface may have no addresses. */ if (ia != NULL) { ip->ip_src = IA_SIN(ia)->sin_addr; } } /* * Look for broadcast address and * verify user is allowed to send * such a packet. */ if (isbroadcast) { if ((ifp->if_flags & IFF_BROADCAST) == 0) { error = EADDRNOTAVAIL; goto bad; } if ((flags & IP_ALLOWBROADCAST) == 0) { error = EACCES; goto bad; } /* don't allow broadcast messages to be fragmented */ if (ip_len > mtu) { error = EMSGSIZE; goto bad; } m->m_flags |= M_BCAST; } else { m->m_flags &= ~M_BCAST; } sendit: #if defined(IPSEC) || defined(IPSEC_SUPPORT) if (IPSEC_ENABLED(ipv4)) { if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { if (error == EINPROGRESS) error = 0; goto done; } } /* * Check if there was a route for this packet; return error if not. */ if (no_route_but_check_spd) { IPSTAT_INC(ips_noroute); error = EHOSTUNREACH; goto bad; } /* Update variables that are affected by ipsec4_output(). */ ip = mtod(m, struct ip *); hlen = ip->ip_hl << 2; #endif /* IPSEC */ /* Jump over all PFIL processing if hooks are not active. */ if (PFIL_HOOKED(&V_inet_pfil_hook)) { switch (ip_output_pfil(&m, ifp, inp, dst, &fibnum, &error)) { case 1: /* Finished */ goto done; case 0: /* Continue normally */ ip = mtod(m, struct ip *); break; case -1: /* Need to try again */ /* Reset everything for a new round */ RO_RTFREE(ro); if (have_ia_ref) ifa_free(&ia->ia_ifa); ro->ro_prepend = NULL; rte = NULL; gw = dst; ip = mtod(m, struct ip *); goto again; } } /* 127/8 must not appear on wire - RFC1122. */ if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { if ((ifp->if_flags & IFF_LOOPBACK) == 0) { IPSTAT_INC(ips_badaddr); error = EADDRNOTAVAIL; goto bad; } } m->m_pkthdr.csum_flags |= CSUM_IP; if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { in_delayed_cksum(m); m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; } #ifdef SCTP if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); m->m_pkthdr.csum_flags &= ~CSUM_SCTP; } #endif /* * If small enough for interface, or the interface will take * care of the fragmentation for us, we can just send directly. */ if (ip_len <= mtu || (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { ip->ip_sum = 0; if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { ip->ip_sum = in_cksum(m, hlen); m->m_pkthdr.csum_flags &= ~CSUM_IP; } /* * Record statistics for this interface address. * With CSUM_TSO the byte/packet count will be slightly * incorrect because we count the IP+TCP headers only * once instead of for every generated packet. */ if (!(flags & IP_FORWARDING) && ia) { if (m->m_pkthdr.csum_flags & CSUM_TSO) counter_u64_add(ia->ia_ifa.ifa_opackets, m->m_pkthdr.len / m->m_pkthdr.tso_segsz); else counter_u64_add(ia->ia_ifa.ifa_opackets, 1); counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); } #ifdef MBUF_STRESS_TEST if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) m = m_fragment(m, M_NOWAIT, mbuf_frag_size); #endif /* * Reset layer specific mbuf flags * to avoid confusing lower layers. */ m_clrprotoflags(m); IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); #ifdef RATELIMIT if (inp != NULL) { if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) in_pcboutput_txrtlmt(inp, ifp, m); /* stamp send tag on mbuf */ m->m_pkthdr.snd_tag = inp->inp_snd_tag; } else { m->m_pkthdr.snd_tag = NULL; } #endif error = (*ifp->if_output)(ifp, m, (const struct sockaddr *)gw, ro); #ifdef RATELIMIT /* check for route change */ if (error == EAGAIN) in_pcboutput_eagain(inp); #endif goto done; } /* Balk when DF bit is set or the interface didn't support TSO. */ if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) { error = EMSGSIZE; IPSTAT_INC(ips_cantfrag); goto bad; } /* * Too large for interface; fragment if possible. If successful, * on return, m will point to a list of packets to be sent. */ error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); if (error) goto bad; for (; m; m = m0) { m0 = m->m_nextpkt; m->m_nextpkt = 0; if (error == 0) { /* Record statistics for this interface address. */ if (ia != NULL) { counter_u64_add(ia->ia_ifa.ifa_opackets, 1); counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); } /* * Reset layer specific mbuf flags * to avoid confusing upper layers. */ m_clrprotoflags(m); IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, mtod(m, struct ip *), NULL); #ifdef RATELIMIT if (inp != NULL) { if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) in_pcboutput_txrtlmt(inp, ifp, m); /* stamp send tag on mbuf */ m->m_pkthdr.snd_tag = inp->inp_snd_tag; } else { m->m_pkthdr.snd_tag = NULL; } #endif error = (*ifp->if_output)(ifp, m, (const struct sockaddr *)gw, ro); #ifdef RATELIMIT /* check for route change */ if (error == EAGAIN) in_pcboutput_eagain(inp); #endif } else m_freem(m); } if (error == 0) IPSTAT_INC(ips_fragmented); done: if (ro == &iproute) RO_RTFREE(ro); else if (rte == NULL) /* * If the caller supplied a route but somehow the reference * to it has been released need to prevent the caller * calling RTFREE on it again. */ ro->ro_rt = NULL; if (have_ia_ref) ifa_free(&ia->ia_ifa); return (error); bad: m_freem(m); goto done; } /* * Create a chain of fragments which fit the given mtu. m_frag points to the * mbuf to be fragmented; on return it points to the chain with the fragments. * Return 0 if no error. If error, m_frag may contain a partially built * chain of fragments that should be freed by the caller. * * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) */ int ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, u_long if_hwassist_flags) { int error = 0; int hlen = ip->ip_hl << 2; int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ int off; struct mbuf *m0 = *m_frag; /* the original packet */ int firstlen; struct mbuf **mnext; int nfrags; uint16_t ip_len, ip_off; ip_len = ntohs(ip->ip_len); ip_off = ntohs(ip->ip_off); if (ip_off & IP_DF) { /* Fragmentation not allowed */ IPSTAT_INC(ips_cantfrag); return EMSGSIZE; } /* * Must be able to put at least 8 bytes per fragment. */ if (len < 8) return EMSGSIZE; /* * If the interface will not calculate checksums on * fragmented packets, then do it here. */ if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { in_delayed_cksum(m0); m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; } #ifdef SCTP if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { sctp_delayed_cksum(m0, hlen); m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; } #endif if (len > PAGE_SIZE) { /* * Fragment large datagrams such that each segment * contains a multiple of PAGE_SIZE amount of data, * plus headers. This enables a receiver to perform * page-flipping zero-copy optimizations. * * XXX When does this help given that sender and receiver * could have different page sizes, and also mtu could * be less than the receiver's page size ? */ int newlen; off = MIN(mtu, m0->m_pkthdr.len); /* * firstlen (off - hlen) must be aligned on an * 8-byte boundary */ if (off < hlen) goto smart_frag_failure; off = ((off - hlen) & ~7) + hlen; newlen = (~PAGE_MASK) & mtu; if ((newlen + sizeof (struct ip)) > mtu) { /* we failed, go back the default */ smart_frag_failure: newlen = len; off = hlen + len; } len = newlen; } else { off = hlen + len; } firstlen = off - hlen; mnext = &m0->m_nextpkt; /* pointer to next packet */ /* * Loop through length of segment after first fragment, * make new header and copy data of each part and link onto chain. * Here, m0 is the original packet, m is the fragment being created. * The fragments are linked off the m_nextpkt of the original * packet, which after processing serves as the first fragment. */ for (nfrags = 1; off < ip_len; off += len, nfrags++) { struct ip *mhip; /* ip header on the fragment */ struct mbuf *m; int mhlen = sizeof (struct ip); m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) { error = ENOBUFS; IPSTAT_INC(ips_odropped); goto done; } /* * Make sure the complete packet header gets copied * from the originating mbuf to the newly created * mbuf. This also ensures that existing firewall * classification(s), VLAN tags and so on get copied * to the resulting fragmented packet(s): */ if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { m_free(m); error = ENOBUFS; IPSTAT_INC(ips_odropped); goto done; } /* * In the first mbuf, leave room for the link header, then * copy the original IP header including options. The payload * goes into an additional mbuf chain returned by m_copym(). */ m->m_data += max_linkhdr; mhip = mtod(m, struct ip *); *mhip = *ip; if (hlen > sizeof (struct ip)) { mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); mhip->ip_v = IPVERSION; mhip->ip_hl = mhlen >> 2; } m->m_len = mhlen; /* XXX do we need to add ip_off below ? */ mhip->ip_off = ((off - hlen) >> 3) + ip_off; if (off + len >= ip_len) len = ip_len - off; else mhip->ip_off |= IP_MF; mhip->ip_len = htons((u_short)(len + mhlen)); m->m_next = m_copym(m0, off, len, M_NOWAIT); if (m->m_next == NULL) { /* copy failed */ m_free(m); error = ENOBUFS; /* ??? */ IPSTAT_INC(ips_odropped); goto done; } m->m_pkthdr.len = mhlen + len; #ifdef MAC mac_netinet_fragment(m0, m); #endif mhip->ip_off = htons(mhip->ip_off); mhip->ip_sum = 0; if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { mhip->ip_sum = in_cksum(m, mhlen); m->m_pkthdr.csum_flags &= ~CSUM_IP; } *mnext = m; mnext = &m->m_nextpkt; } IPSTAT_ADD(ips_ofragments, nfrags); /* * Update first fragment by trimming what's been copied out * and updating header. */ m_adj(m0, hlen + firstlen - ip_len); m0->m_pkthdr.len = hlen + firstlen; ip->ip_len = htons((u_short)m0->m_pkthdr.len); ip->ip_off = htons(ip_off | IP_MF); ip->ip_sum = 0; if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { ip->ip_sum = in_cksum(m0, hlen); m0->m_pkthdr.csum_flags &= ~CSUM_IP; } done: *m_frag = m0; return error; } void in_delayed_cksum(struct mbuf *m) { struct ip *ip; uint16_t csum, offset, ip_len; ip = mtod(m, struct ip *); offset = ip->ip_hl << 2 ; ip_len = ntohs(ip->ip_len); csum = in_cksum_skip(m, ip_len, offset); if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0) csum = 0xffff; offset += m->m_pkthdr.csum_data; /* checksum offset */ /* find the mbuf in the chain where the checksum starts*/ while ((m != NULL) && (offset >= m->m_len)) { offset -= m->m_len; m = m->m_next; } KASSERT(m != NULL, ("in_delayed_cksum: checksum outside mbuf chain.")); KASSERT(offset + sizeof(u_short) <= m->m_len, ("in_delayed_cksum: checksum split between mbufs.")); *(u_short *)(m->m_data + offset) = csum; } /* * IP socket option processing. */ int ip_ctloutput(struct socket *so, struct sockopt *sopt) { struct inpcb *inp = sotoinpcb(so); int error, optval; #ifdef RSS uint32_t rss_bucket; int retval; #endif error = optval = 0; if (sopt->sopt_level != IPPROTO_IP) { error = EINVAL; if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_dir == SOPT_SET) { switch (sopt->sopt_name) { case SO_REUSEADDR: INP_WLOCK(inp); if ((so->so_options & SO_REUSEADDR) != 0) inp->inp_flags2 |= INP_REUSEADDR; else inp->inp_flags2 &= ~INP_REUSEADDR; INP_WUNLOCK(inp); error = 0; break; case SO_REUSEPORT: INP_WLOCK(inp); if ((so->so_options & SO_REUSEPORT) != 0) inp->inp_flags2 |= INP_REUSEPORT; else inp->inp_flags2 &= ~INP_REUSEPORT; INP_WUNLOCK(inp); error = 0; break; + case SO_REUSEPORT_LB: + INP_WLOCK(inp); + if ((so->so_options & SO_REUSEPORT_LB) != 0) + inp->inp_flags2 |= INP_REUSEPORT_LB; + else + inp->inp_flags2 &= ~INP_REUSEPORT_LB; + INP_WUNLOCK(inp); + error = 0; + break; case SO_SETFIB: INP_WLOCK(inp); inp->inp_inc.inc_fibnum = so->so_fibnum; INP_WUNLOCK(inp); error = 0; break; case SO_MAX_PACING_RATE: #ifdef RATELIMIT INP_WLOCK(inp); inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; INP_WUNLOCK(inp); error = 0; #else error = EOPNOTSUPP; #endif break; default: break; } } return (error); } switch (sopt->sopt_dir) { case SOPT_SET: switch (sopt->sopt_name) { case IP_OPTIONS: #ifdef notyet case IP_RETOPTS: #endif { struct mbuf *m; if (sopt->sopt_valsize > MLEN) { error = EMSGSIZE; break; } m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); if (m == NULL) { error = ENOBUFS; break; } m->m_len = sopt->sopt_valsize; error = sooptcopyin(sopt, mtod(m, char *), m->m_len, m->m_len); if (error) { m_free(m); break; } INP_WLOCK(inp); error = ip_pcbopts(inp, sopt->sopt_name, m); INP_WUNLOCK(inp); return (error); } case IP_BINDANY: if (sopt->sopt_td != NULL) { error = priv_check(sopt->sopt_td, PRIV_NETINET_BINDANY); if (error) break; } /* FALLTHROUGH */ case IP_BINDMULTI: #ifdef RSS case IP_RSS_LISTEN_BUCKET: #endif case IP_TOS: case IP_TTL: case IP_MINTTL: case IP_RECVOPTS: case IP_RECVRETOPTS: case IP_ORIGDSTADDR: case IP_RECVDSTADDR: case IP_RECVTTL: case IP_RECVIF: case IP_ONESBCAST: case IP_DONTFRAG: case IP_RECVTOS: case IP_RECVFLOWID: #ifdef RSS case IP_RECVRSSBUCKETID: #endif error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; switch (sopt->sopt_name) { case IP_TOS: inp->inp_ip_tos = optval; break; case IP_TTL: inp->inp_ip_ttl = optval; break; case IP_MINTTL: if (optval >= 0 && optval <= MAXTTL) inp->inp_ip_minttl = optval; else error = EINVAL; break; #define OPTSET(bit) do { \ INP_WLOCK(inp); \ if (optval) \ inp->inp_flags |= bit; \ else \ inp->inp_flags &= ~bit; \ INP_WUNLOCK(inp); \ } while (0) #define OPTSET2(bit, val) do { \ INP_WLOCK(inp); \ if (val) \ inp->inp_flags2 |= bit; \ else \ inp->inp_flags2 &= ~bit; \ INP_WUNLOCK(inp); \ } while (0) case IP_RECVOPTS: OPTSET(INP_RECVOPTS); break; case IP_RECVRETOPTS: OPTSET(INP_RECVRETOPTS); break; case IP_RECVDSTADDR: OPTSET(INP_RECVDSTADDR); break; case IP_ORIGDSTADDR: OPTSET2(INP_ORIGDSTADDR, optval); break; case IP_RECVTTL: OPTSET(INP_RECVTTL); break; case IP_RECVIF: OPTSET(INP_RECVIF); break; case IP_ONESBCAST: OPTSET(INP_ONESBCAST); break; case IP_DONTFRAG: OPTSET(INP_DONTFRAG); break; case IP_BINDANY: OPTSET(INP_BINDANY); break; case IP_RECVTOS: OPTSET(INP_RECVTOS); break; case IP_BINDMULTI: OPTSET2(INP_BINDMULTI, optval); break; case IP_RECVFLOWID: OPTSET2(INP_RECVFLOWID, optval); break; #ifdef RSS case IP_RSS_LISTEN_BUCKET: if ((optval >= 0) && (optval < rss_getnumbuckets())) { inp->inp_rss_listen_bucket = optval; OPTSET2(INP_RSS_BUCKET_SET, 1); } else { error = EINVAL; } break; case IP_RECVRSSBUCKETID: OPTSET2(INP_RECVRSSBUCKETID, optval); break; #endif } break; #undef OPTSET #undef OPTSET2 /* * Multicast socket options are processed by the in_mcast * module. */ case IP_MULTICAST_IF: case IP_MULTICAST_VIF: case IP_MULTICAST_TTL: case IP_MULTICAST_LOOP: case IP_ADD_MEMBERSHIP: case IP_DROP_MEMBERSHIP: case IP_ADD_SOURCE_MEMBERSHIP: case IP_DROP_SOURCE_MEMBERSHIP: case IP_BLOCK_SOURCE: case IP_UNBLOCK_SOURCE: case IP_MSFILTER: case MCAST_JOIN_GROUP: case MCAST_LEAVE_GROUP: case MCAST_JOIN_SOURCE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: error = inp_setmoptions(inp, sopt); break; case IP_PORTRANGE: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; INP_WLOCK(inp); switch (optval) { case IP_PORTRANGE_DEFAULT: inp->inp_flags &= ~(INP_LOWPORT); inp->inp_flags &= ~(INP_HIGHPORT); break; case IP_PORTRANGE_HIGH: inp->inp_flags &= ~(INP_LOWPORT); inp->inp_flags |= INP_HIGHPORT; break; case IP_PORTRANGE_LOW: inp->inp_flags &= ~(INP_HIGHPORT); inp->inp_flags |= INP_LOWPORT; break; default: error = EINVAL; break; } INP_WUNLOCK(inp); break; #if defined(IPSEC) || defined(IPSEC_SUPPORT) case IP_IPSEC_POLICY: if (IPSEC_ENABLED(ipv4)) { error = IPSEC_PCBCTL(ipv4, inp, sopt); break; } /* FALLTHROUGH */ #endif /* IPSEC */ default: error = ENOPROTOOPT; break; } break; case SOPT_GET: switch (sopt->sopt_name) { case IP_OPTIONS: case IP_RETOPTS: if (inp->inp_options) error = sooptcopyout(sopt, mtod(inp->inp_options, char *), inp->inp_options->m_len); else sopt->sopt_valsize = 0; break; case IP_TOS: case IP_TTL: case IP_MINTTL: case IP_RECVOPTS: case IP_RECVRETOPTS: case IP_ORIGDSTADDR: case IP_RECVDSTADDR: case IP_RECVTTL: case IP_RECVIF: case IP_PORTRANGE: case IP_ONESBCAST: case IP_DONTFRAG: case IP_BINDANY: case IP_RECVTOS: case IP_BINDMULTI: case IP_FLOWID: case IP_FLOWTYPE: case IP_RECVFLOWID: #ifdef RSS case IP_RSSBUCKETID: case IP_RECVRSSBUCKETID: #endif switch (sopt->sopt_name) { case IP_TOS: optval = inp->inp_ip_tos; break; case IP_TTL: optval = inp->inp_ip_ttl; break; case IP_MINTTL: optval = inp->inp_ip_minttl; break; #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) case IP_RECVOPTS: optval = OPTBIT(INP_RECVOPTS); break; case IP_RECVRETOPTS: optval = OPTBIT(INP_RECVRETOPTS); break; case IP_RECVDSTADDR: optval = OPTBIT(INP_RECVDSTADDR); break; case IP_ORIGDSTADDR: optval = OPTBIT2(INP_ORIGDSTADDR); break; case IP_RECVTTL: optval = OPTBIT(INP_RECVTTL); break; case IP_RECVIF: optval = OPTBIT(INP_RECVIF); break; case IP_PORTRANGE: if (inp->inp_flags & INP_HIGHPORT) optval = IP_PORTRANGE_HIGH; else if (inp->inp_flags & INP_LOWPORT) optval = IP_PORTRANGE_LOW; else optval = 0; break; case IP_ONESBCAST: optval = OPTBIT(INP_ONESBCAST); break; case IP_DONTFRAG: optval = OPTBIT(INP_DONTFRAG); break; case IP_BINDANY: optval = OPTBIT(INP_BINDANY); break; case IP_RECVTOS: optval = OPTBIT(INP_RECVTOS); break; case IP_FLOWID: optval = inp->inp_flowid; break; case IP_FLOWTYPE: optval = inp->inp_flowtype; break; case IP_RECVFLOWID: optval = OPTBIT2(INP_RECVFLOWID); break; #ifdef RSS case IP_RSSBUCKETID: retval = rss_hash2bucket(inp->inp_flowid, inp->inp_flowtype, &rss_bucket); if (retval == 0) optval = rss_bucket; else error = EINVAL; break; case IP_RECVRSSBUCKETID: optval = OPTBIT2(INP_RECVRSSBUCKETID); break; #endif case IP_BINDMULTI: optval = OPTBIT2(INP_BINDMULTI); break; } error = sooptcopyout(sopt, &optval, sizeof optval); break; /* * Multicast socket options are processed by the in_mcast * module. */ case IP_MULTICAST_IF: case IP_MULTICAST_VIF: case IP_MULTICAST_TTL: case IP_MULTICAST_LOOP: case IP_MSFILTER: error = inp_getmoptions(inp, sopt); break; #if defined(IPSEC) || defined(IPSEC_SUPPORT) case IP_IPSEC_POLICY: if (IPSEC_ENABLED(ipv4)) { error = IPSEC_PCBCTL(ipv4, inp, sopt); break; } /* FALLTHROUGH */ #endif /* IPSEC */ default: error = ENOPROTOOPT; break; } break; } return (error); } /* * Routine called from ip_output() to loop back a copy of an IP multicast * packet to the input queue of a specified interface. Note that this * calls the output routine of the loopback "driver", but with an interface * pointer that might NOT be a loopback interface -- evil, but easier than * replicating that code here. */ static void ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) { struct ip *ip; struct mbuf *copym; /* * Make a deep copy of the packet because we're going to * modify the pack in order to generate checksums. */ copym = m_dup(m, M_NOWAIT); if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) copym = m_pullup(copym, hlen); if (copym != NULL) { /* If needed, compute the checksum and mark it as valid. */ if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { in_delayed_cksum(copym); copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; copym->m_pkthdr.csum_data = 0xffff; } /* * We don't bother to fragment if the IP length is greater * than the interface's MTU. Can this possibly matter? */ ip = mtod(copym, struct ip *); ip->ip_sum = 0; ip->ip_sum = in_cksum(copym, hlen); if_simloop(ifp, copym, AF_INET, 0); } } Index: head/sys/netinet/tcp_subr.c =================================================================== --- head/sys/netinet/tcp_subr.c (revision 332893) +++ head/sys/netinet/tcp_subr.c (revision 332894) @@ -1,3219 +1,3246 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_tcpdebug.h" #include #include #include #include #ifdef TCP_HHOOK #include #endif #include #ifdef TCP_HHOOK #include #endif #include #include #include #include #include #ifdef INET6 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #include #include #include #include #endif #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif #include #include #ifdef TCPPCAP #include #endif #ifdef TCPDEBUG #include #endif #ifdef INET6 #include #endif #ifdef TCP_OFFLOAD #include #endif #include #include #include #include VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS; #ifdef INET6 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS; #endif struct rwlock tcp_function_lock; static int sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS) { int error, new; new = V_tcp_mssdflt; error = sysctl_handle_int(oidp, &new, 0, req); if (error == 0 && req->newptr) { if (new < TCP_MINMSS) error = EINVAL; else V_tcp_mssdflt = new; } return (error); } SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0, &sysctl_net_inet_tcp_mss_check, "I", "Default TCP Maximum Segment Size"); #ifdef INET6 static int sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS) { int error, new; new = V_tcp_v6mssdflt; error = sysctl_handle_int(oidp, &new, 0, req); if (error == 0 && req->newptr) { if (new < TCP_MINMSS) error = EINVAL; else V_tcp_v6mssdflt = new; } return (error); } SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0, &sysctl_net_inet_tcp_mss_v6_check, "I", "Default TCP Maximum Segment Size for IPv6"); #endif /* INET6 */ /* * Minimum MSS we accept and use. This prevents DoS attacks where * we are forced to a ridiculous low MSS like 20 and send hundreds * of packets instead of one. The effect scales with the available * bandwidth and quickly saturates the CPU and network interface * with packet generation and sending. Set to zero to disable MINMSS * checking. This setting prevents us from sending too small packets. */ VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS; SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_minmss), 0, "Minimum TCP Maximum Segment Size"); VNET_DEFINE(int, tcp_do_rfc1323) = 1; SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_do_rfc1323), 0, "Enable rfc1323 (high performance TCP) extensions"); static int tcp_log_debug = 0; SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW, &tcp_log_debug, 0, "Log errors caused by incoming TCP segments"); static int tcp_tcbhashsize; SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable"); static int do_tcpdrain = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0, "Enable tcp_drain routine for extra help when low on mbufs"); SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs"); static VNET_DEFINE(int, icmp_may_rst) = 1; #define V_icmp_may_rst VNET(icmp_may_rst) SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(icmp_may_rst), 0, "Certain ICMP unreachable messages may abort connections in SYN_SENT"); static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0; #define V_tcp_isn_reseed_interval VNET(tcp_isn_reseed_interval) SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_isn_reseed_interval), 0, "Seconds between reseeding of ISN secret"); static int tcp_soreceive_stream; SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN, &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets"); VNET_DEFINE(uma_zone_t, sack_hole_zone); #define V_sack_hole_zone VNET(sack_hole_zone) #ifdef TCP_HHOOK VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]); #endif static int tcp_default_fb_init(struct tcpcb *tp); static void tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged); static int tcp_default_handoff_ok(struct tcpcb *tp); static struct inpcb *tcp_notify(struct inpcb *, int); static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int); static void tcp_mtudisc(struct inpcb *, int); static char * tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, const void *ip6hdr); static struct tcp_function_block tcp_def_funcblk = { .tfb_tcp_block_name = "freebsd", .tfb_tcp_output = tcp_output, .tfb_tcp_do_segment = tcp_do_segment, .tfb_tcp_ctloutput = tcp_default_ctloutput, .tfb_tcp_handoff_ok = tcp_default_handoff_ok, .tfb_tcp_fb_init = tcp_default_fb_init, .tfb_tcp_fb_fini = tcp_default_fb_fini, }; int t_functions_inited = 0; static int tcp_fb_cnt = 0; struct tcp_funchead t_functions; static struct tcp_function_block *tcp_func_set_ptr = &tcp_def_funcblk; static void init_tcp_functions(void) { if (t_functions_inited == 0) { TAILQ_INIT(&t_functions); rw_init_flags(&tcp_function_lock, "tcp_func_lock" , 0); t_functions_inited = 1; } } static struct tcp_function_block * find_tcp_functions_locked(struct tcp_function_set *fs) { struct tcp_function *f; struct tcp_function_block *blk=NULL; TAILQ_FOREACH(f, &t_functions, tf_next) { if (strcmp(f->tf_name, fs->function_set_name) == 0) { blk = f->tf_fb; break; } } return(blk); } static struct tcp_function_block * find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s) { struct tcp_function_block *rblk=NULL; struct tcp_function *f; TAILQ_FOREACH(f, &t_functions, tf_next) { if (f->tf_fb == blk) { rblk = blk; if (s) { *s = f; } break; } } return (rblk); } struct tcp_function_block * find_and_ref_tcp_functions(struct tcp_function_set *fs) { struct tcp_function_block *blk; rw_rlock(&tcp_function_lock); blk = find_tcp_functions_locked(fs); if (blk) refcount_acquire(&blk->tfb_refcnt); rw_runlock(&tcp_function_lock); return(blk); } struct tcp_function_block * find_and_ref_tcp_fb(struct tcp_function_block *blk) { struct tcp_function_block *rblk; rw_rlock(&tcp_function_lock); rblk = find_tcp_fb_locked(blk, NULL); if (rblk) refcount_acquire(&rblk->tfb_refcnt); rw_runlock(&tcp_function_lock); return(rblk); } static struct tcp_function_block * find_and_ref_tcp_default_fb(void) { struct tcp_function_block *rblk; rw_rlock(&tcp_function_lock); rblk = tcp_func_set_ptr; refcount_acquire(&rblk->tfb_refcnt); rw_runlock(&tcp_function_lock); return (rblk); } void tcp_switch_back_to_default(struct tcpcb *tp) { struct tcp_function_block *tfb; KASSERT(tp->t_fb != &tcp_def_funcblk, ("%s: called by the built-in default stack", __func__)); /* * Release the old stack. This function will either find a new one * or panic. */ if (tp->t_fb->tfb_tcp_fb_fini != NULL) (*tp->t_fb->tfb_tcp_fb_fini)(tp, 0); refcount_release(&tp->t_fb->tfb_refcnt); /* * Now, we'll find a new function block to use. * Start by trying the current user-selected * default, unless this stack is the user-selected * default. */ tfb = find_and_ref_tcp_default_fb(); if (tfb == tp->t_fb) { refcount_release(&tfb->tfb_refcnt); tfb = NULL; } /* Does the stack accept this connection? */ if (tfb != NULL && tfb->tfb_tcp_handoff_ok != NULL && (*tfb->tfb_tcp_handoff_ok)(tp)) { refcount_release(&tfb->tfb_refcnt); tfb = NULL; } /* Try to use that stack. */ if (tfb != NULL) { /* Initialize the new stack. If it succeeds, we are done. */ tp->t_fb = tfb; if (tp->t_fb->tfb_tcp_fb_init == NULL || (*tp->t_fb->tfb_tcp_fb_init)(tp) == 0) return; /* * Initialization failed. Release the reference count on * the stack. */ refcount_release(&tfb->tfb_refcnt); } /* * If that wasn't feasible, use the built-in default * stack which is not allowed to reject anyone. */ tfb = find_and_ref_tcp_fb(&tcp_def_funcblk); if (tfb == NULL) { /* there always should be a default */ panic("Can't refer to tcp_def_funcblk"); } if (tfb->tfb_tcp_handoff_ok != NULL) { if ((*tfb->tfb_tcp_handoff_ok) (tp)) { /* The default stack cannot say no */ panic("Default stack rejects a new session?"); } } tp->t_fb = tfb; if (tp->t_fb->tfb_tcp_fb_init != NULL && (*tp->t_fb->tfb_tcp_fb_init)(tp)) { /* The default stack cannot fail */ panic("Default stack initialization failed"); } } static int sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS) { int error=ENOENT; struct tcp_function_set fs; struct tcp_function_block *blk; memset(&fs, 0, sizeof(fs)); rw_rlock(&tcp_function_lock); blk = find_tcp_fb_locked(tcp_func_set_ptr, NULL); if (blk) { /* Found him */ strcpy(fs.function_set_name, blk->tfb_tcp_block_name); fs.pcbcnt = blk->tfb_refcnt; } rw_runlock(&tcp_function_lock); error = sysctl_handle_string(oidp, fs.function_set_name, sizeof(fs.function_set_name), req); /* Check for error or no change */ if (error != 0 || req->newptr == NULL) return(error); rw_wlock(&tcp_function_lock); blk = find_tcp_functions_locked(&fs); if ((blk == NULL) || (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) { error = ENOENT; goto done; } tcp_func_set_ptr = blk; done: rw_wunlock(&tcp_function_lock); return (error); } SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default, CTLTYPE_STRING | CTLFLAG_RW, NULL, 0, sysctl_net_inet_default_tcp_functions, "A", "Set/get the default TCP functions"); static int sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS) { int error, cnt, linesz; struct tcp_function *f; char *buffer, *cp; size_t bufsz, outsz; bool alias; cnt = 0; rw_rlock(&tcp_function_lock); TAILQ_FOREACH(f, &t_functions, tf_next) { cnt++; } rw_runlock(&tcp_function_lock); bufsz = (cnt+2) * ((TCP_FUNCTION_NAME_LEN_MAX * 2) + 13) + 1; buffer = malloc(bufsz, M_TEMP, M_WAITOK); error = 0; cp = buffer; linesz = snprintf(cp, bufsz, "\n%-32s%c %-32s %s\n", "Stack", 'D', "Alias", "PCB count"); cp += linesz; bufsz -= linesz; outsz = linesz; rw_rlock(&tcp_function_lock); TAILQ_FOREACH(f, &t_functions, tf_next) { alias = (f->tf_name != f->tf_fb->tfb_tcp_block_name); linesz = snprintf(cp, bufsz, "%-32s%c %-32s %u\n", f->tf_fb->tfb_tcp_block_name, (f->tf_fb == tcp_func_set_ptr) ? '*' : ' ', alias ? f->tf_name : "-", f->tf_fb->tfb_refcnt); if (linesz >= bufsz) { error = EOVERFLOW; break; } cp += linesz; bufsz -= linesz; outsz += linesz; } rw_runlock(&tcp_function_lock); if (error == 0) error = sysctl_handle_string(oidp, buffer, outsz + 1, req); free(buffer, M_TEMP); return (error); } SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available, CTLTYPE_STRING|CTLFLAG_RD, NULL, 0, sysctl_net_inet_list_available, "A", "list available TCP Function sets"); /* * Exports one (struct tcp_function_info) for each alias/name. */ static int sysctl_net_inet_list_func_info(SYSCTL_HANDLER_ARGS) { int cnt, error; struct tcp_function *f; struct tcp_function_info tfi; /* * We don't allow writes. */ if (req->newptr != NULL) return (EINVAL); /* * Wire the old buffer so we can directly copy the functions to * user space without dropping the lock. */ if (req->oldptr != NULL) { error = sysctl_wire_old_buffer(req, 0); if (error) return (error); } /* * Walk the list and copy out matching entries. If INVARIANTS * is compiled in, also walk the list to verify the length of * the list matches what we have recorded. */ rw_rlock(&tcp_function_lock); #ifdef INVARIANTS cnt = 0; #else if (req->oldptr == NULL) { cnt = tcp_fb_cnt; goto skip_loop; } #endif TAILQ_FOREACH(f, &t_functions, tf_next) { #ifdef INVARIANTS cnt++; #endif if (req->oldptr != NULL) { tfi.tfi_refcnt = f->tf_fb->tfb_refcnt; tfi.tfi_id = f->tf_fb->tfb_id; (void)strncpy(tfi.tfi_alias, f->tf_name, TCP_FUNCTION_NAME_LEN_MAX); tfi.tfi_alias[TCP_FUNCTION_NAME_LEN_MAX - 1] = '\0'; (void)strncpy(tfi.tfi_name, f->tf_fb->tfb_tcp_block_name, TCP_FUNCTION_NAME_LEN_MAX); tfi.tfi_name[TCP_FUNCTION_NAME_LEN_MAX - 1] = '\0'; error = SYSCTL_OUT(req, &tfi, sizeof(tfi)); /* * Don't stop on error, as that is the * mechanism we use to accumulate length * information if the buffer was too short. */ } } KASSERT(cnt == tcp_fb_cnt, ("%s: cnt (%d) != tcp_fb_cnt (%d)", __func__, cnt, tcp_fb_cnt)); #ifndef INVARIANTS skip_loop: #endif rw_runlock(&tcp_function_lock); if (req->oldptr == NULL) error = SYSCTL_OUT(req, NULL, (cnt + 1) * sizeof(struct tcp_function_info)); return (error); } SYSCTL_PROC(_net_inet_tcp, OID_AUTO, function_info, CTLTYPE_OPAQUE | CTLFLAG_SKIP | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, sysctl_net_inet_list_func_info, "S,tcp_function_info", "List TCP function block name-to-ID mappings"); /* * tfb_tcp_handoff_ok() function for the default stack. * Note that we'll basically try to take all comers. */ static int tcp_default_handoff_ok(struct tcpcb *tp) { return (0); } /* * tfb_tcp_fb_init() function for the default stack. * * This handles making sure we have appropriate timers set if you are * transitioning a socket that has some amount of setup done. * * The init() fuction from the default can *never* return non-zero i.e. * it is required to always succeed since it is the stack of last resort! */ static int tcp_default_fb_init(struct tcpcb *tp) { struct socket *so; INP_WLOCK_ASSERT(tp->t_inpcb); KASSERT(tp->t_state >= 0 && tp->t_state < TCPS_TIME_WAIT, ("%s: connection %p in unexpected state %d", __func__, tp, tp->t_state)); /* * Nothing to do for ESTABLISHED or LISTEN states. And, we don't * know what to do for unexpected states (which includes TIME_WAIT). */ if (tp->t_state <= TCPS_LISTEN || tp->t_state >= TCPS_TIME_WAIT) return (0); /* * Make sure some kind of transmission timer is set if there is * outstanding data. */ so = tp->t_inpcb->inp_socket; if ((!TCPS_HAVEESTABLISHED(tp->t_state) || sbavail(&so->so_snd) || tp->snd_una != tp->snd_max) && !(tcp_timer_active(tp, TT_REXMT) || tcp_timer_active(tp, TT_PERSIST))) { /* * If the session has established and it looks like it should * be in the persist state, set the persist timer. Otherwise, * set the retransmit timer. */ if (TCPS_HAVEESTABLISHED(tp->t_state) && tp->snd_wnd == 0 && (int32_t)(tp->snd_nxt - tp->snd_una) < (int32_t)sbavail(&so->so_snd)) tcp_setpersist(tp); else tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur); } /* All non-embryonic sessions get a keepalive timer. */ if (!tcp_timer_active(tp, TT_KEEP)) tcp_timer_activate(tp, TT_KEEP, TCPS_HAVEESTABLISHED(tp->t_state) ? TP_KEEPIDLE(tp) : TP_KEEPINIT(tp)); return (0); } /* * tfb_tcp_fb_fini() function for the default stack. * * This changes state as necessary (or prudent) to prepare for another stack * to assume responsibility for the connection. */ static void tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged) { INP_WLOCK_ASSERT(tp->t_inpcb); return; } /* * Target size of TCP PCB hash tables. Must be a power of two. * * Note that this can be overridden by the kernel environment * variable net.inet.tcp.tcbhashsize */ #ifndef TCBHASHSIZE #define TCBHASHSIZE 0 #endif /* * XXX * Callouts should be moved into struct tcp directly. They are currently * separate because the tcpcb structure is exported to userland for sysctl * parsing purposes, which do not know about callouts. */ struct tcpcb_mem { struct tcpcb tcb; struct tcp_timer tt; struct cc_var ccv; #ifdef TCP_HHOOK struct osd osd; #endif }; static VNET_DEFINE(uma_zone_t, tcpcb_zone); #define V_tcpcb_zone VNET(tcpcb_zone) MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers"); MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory"); static struct mtx isn_mtx; #define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF) #define ISN_LOCK() mtx_lock(&isn_mtx) #define ISN_UNLOCK() mtx_unlock(&isn_mtx) /* * TCP initialization. */ static void tcp_zone_change(void *tag) { uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets); uma_zone_set_max(V_tcpcb_zone, maxsockets); tcp_tw_zone_change(); } static int tcp_inpcb_init(void *mem, int size, int flags) { struct inpcb *inp = mem; INP_LOCK_INIT(inp, "inp", "tcpinp"); return (0); } /* * Take a value and get the next power of 2 that doesn't overflow. * Used to size the tcp_inpcb hash buckets. */ static int maketcp_hashsize(int size) { int hashsize; /* * auto tune. * get the next power of 2 higher than maxsockets. */ hashsize = 1 << fls(size); /* catch overflow, and just go one power of 2 smaller */ if (hashsize < size) { hashsize = 1 << (fls(size) - 1); } return (hashsize); } static volatile int next_tcp_stack_id = 1; /* * Register a TCP function block with the name provided in the names * array. (Note that this function does NOT automatically register * blk->tfb_tcp_block_name as a stack name. Therefore, you should * explicitly include blk->tfb_tcp_block_name in the list of names if * you wish to register the stack with that name.) * * Either all name registrations will succeed or all will fail. If * a name registration fails, the function will update the num_names * argument to point to the array index of the name that encountered * the failure. * * Returns 0 on success, or an error code on failure. */ int register_tcp_functions_as_names(struct tcp_function_block *blk, int wait, const char *names[], int *num_names) { struct tcp_function *n; struct tcp_function_set fs; int error, i; KASSERT(names != NULL && *num_names > 0, ("%s: Called with 0-length name list", __func__)); KASSERT(names != NULL, ("%s: Called with NULL name list", __func__)); if (t_functions_inited == 0) { init_tcp_functions(); } if ((blk->tfb_tcp_output == NULL) || (blk->tfb_tcp_do_segment == NULL) || (blk->tfb_tcp_ctloutput == NULL) || (strlen(blk->tfb_tcp_block_name) == 0)) { /* * These functions are required and you * need a name. */ *num_names = 0; return (EINVAL); } if (blk->tfb_tcp_timer_stop_all || blk->tfb_tcp_timer_activate || blk->tfb_tcp_timer_active || blk->tfb_tcp_timer_stop) { /* * If you define one timer function you * must have them all. */ if ((blk->tfb_tcp_timer_stop_all == NULL) || (blk->tfb_tcp_timer_activate == NULL) || (blk->tfb_tcp_timer_active == NULL) || (blk->tfb_tcp_timer_stop == NULL)) { *num_names = 0; return (EINVAL); } } refcount_init(&blk->tfb_refcnt, 0); blk->tfb_flags = 0; blk->tfb_id = atomic_fetchadd_int(&next_tcp_stack_id, 1); for (i = 0; i < *num_names; i++) { n = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait); if (n == NULL) { error = ENOMEM; goto cleanup; } n->tf_fb = blk; (void)strncpy(fs.function_set_name, names[i], TCP_FUNCTION_NAME_LEN_MAX); fs.function_set_name[TCP_FUNCTION_NAME_LEN_MAX - 1] = '\0'; rw_wlock(&tcp_function_lock); if (find_tcp_functions_locked(&fs) != NULL) { /* Duplicate name space not allowed */ rw_wunlock(&tcp_function_lock); free(n, M_TCPFUNCTIONS); error = EALREADY; goto cleanup; } (void)strncpy(n->tf_name, names[i], TCP_FUNCTION_NAME_LEN_MAX); n->tf_name[TCP_FUNCTION_NAME_LEN_MAX - 1] = '\0'; TAILQ_INSERT_TAIL(&t_functions, n, tf_next); tcp_fb_cnt++; rw_wunlock(&tcp_function_lock); } return(0); cleanup: /* * Deregister the names we just added. Because registration failed * for names[i], we don't need to deregister that name. */ *num_names = i; rw_wlock(&tcp_function_lock); while (--i >= 0) { TAILQ_FOREACH(n, &t_functions, tf_next) { if (!strncmp(n->tf_name, names[i], TCP_FUNCTION_NAME_LEN_MAX)) { TAILQ_REMOVE(&t_functions, n, tf_next); tcp_fb_cnt--; n->tf_fb = NULL; free(n, M_TCPFUNCTIONS); break; } } } rw_wunlock(&tcp_function_lock); return (error); } /* * Register a TCP function block using the name provided in the name * argument. * * Returns 0 on success, or an error code on failure. */ int register_tcp_functions_as_name(struct tcp_function_block *blk, const char *name, int wait) { const char *name_list[1]; int num_names, rv; num_names = 1; if (name != NULL) name_list[0] = name; else name_list[0] = blk->tfb_tcp_block_name; rv = register_tcp_functions_as_names(blk, wait, name_list, &num_names); return (rv); } /* * Register a TCP function block using the name defined in * blk->tfb_tcp_block_name. * * Returns 0 on success, or an error code on failure. */ int register_tcp_functions(struct tcp_function_block *blk, int wait) { return (register_tcp_functions_as_name(blk, NULL, wait)); } /* * Deregister all names associated with a function block. This * functionally removes the function block from use within the system. * * When called with a true quiesce argument, mark the function block * as being removed so no more stacks will use it and determine * whether the removal would succeed. * * When called with a false quiesce argument, actually attempt the * removal. * * When called with a force argument, attempt to switch all TCBs to * use the default stack instead of returning EBUSY. * * Returns 0 on success (or if the removal would succeed, or an error * code on failure. */ int deregister_tcp_functions(struct tcp_function_block *blk, bool quiesce, bool force) { struct tcp_function *f; if (strcmp(blk->tfb_tcp_block_name, "default") == 0) { /* You can't un-register the default */ return (EPERM); } rw_wlock(&tcp_function_lock); if (blk == tcp_func_set_ptr) { /* You can't free the current default */ rw_wunlock(&tcp_function_lock); return (EBUSY); } /* Mark the block so no more stacks can use it. */ blk->tfb_flags |= TCP_FUNC_BEING_REMOVED; /* * If TCBs are still attached to the stack, attempt to switch them * to the default stack. */ if (force && blk->tfb_refcnt) { struct inpcb *inp; struct tcpcb *tp; VNET_ITERATOR_DECL(vnet_iter); rw_wunlock(&tcp_function_lock); VNET_LIST_RLOCK(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); INP_INFO_WLOCK(&V_tcbinfo); LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { INP_WLOCK(inp); if (inp->inp_flags & INP_TIMEWAIT) { INP_WUNLOCK(inp); continue; } tp = intotcpcb(inp); if (tp == NULL || tp->t_fb != blk) { INP_WUNLOCK(inp); continue; } tcp_switch_back_to_default(tp); INP_WUNLOCK(inp); } INP_INFO_WUNLOCK(&V_tcbinfo); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK(); rw_wlock(&tcp_function_lock); } if (blk->tfb_refcnt) { /* TCBs still attached. */ rw_wunlock(&tcp_function_lock); return (EBUSY); } if (quiesce) { /* Skip removal. */ rw_wunlock(&tcp_function_lock); return (0); } /* Remove any function names that map to this function block. */ while (find_tcp_fb_locked(blk, &f) != NULL) { TAILQ_REMOVE(&t_functions, f, tf_next); tcp_fb_cnt--; f->tf_fb = NULL; free(f, M_TCPFUNCTIONS); } rw_wunlock(&tcp_function_lock); return (0); } void tcp_init(void) { const char *tcbhash_tuneable; int hashsize; tcbhash_tuneable = "net.inet.tcp.tcbhashsize"; #ifdef TCP_HHOOK if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) printf("%s: WARNING: unable to register helper hook\n", __func__); if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) printf("%s: WARNING: unable to register helper hook\n", __func__); #endif hashsize = TCBHASHSIZE; TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize); if (hashsize == 0) { /* * Auto tune the hash size based on maxsockets. * A perfect hash would have a 1:1 mapping * (hashsize = maxsockets) however it's been * suggested that O(2) average is better. */ hashsize = maketcp_hashsize(maxsockets / 4); /* * Our historical default is 512, * do not autotune lower than this. */ if (hashsize < 512) hashsize = 512; if (bootverbose && IS_DEFAULT_VNET(curvnet)) printf("%s: %s auto tuned to %d\n", __func__, tcbhash_tuneable, hashsize); } /* * We require a hashsize to be a power of two. * Previously if it was not a power of two we would just reset it * back to 512, which could be a nasty surprise if you did not notice * the error message. * Instead what we do is clip it to the closest power of two lower * than the specified hash value. */ if (!powerof2(hashsize)) { int oldhashsize = hashsize; hashsize = maketcp_hashsize(hashsize); /* prevent absurdly low value */ if (hashsize < 16) hashsize = 16; printf("%s: WARNING: TCB hash size not a power of 2, " "clipped from %d to %d.\n", __func__, oldhashsize, hashsize); } in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize, "tcp_inpcb", tcp_inpcb_init, IPI_HASHFIELDS_4TUPLE); /* * These have to be type stable for the benefit of the timers. */ V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); uma_zone_set_max(V_tcpcb_zone, maxsockets); uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached"); tcp_tw_init(); syncache_init(); tcp_hc_init(); TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack); V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); tcp_fastopen_init(); /* Skip initialization of globals for non-default instances. */ if (!IS_DEFAULT_VNET(curvnet)) return; tcp_reass_global_init(); /* XXX virtualize those bellow? */ tcp_delacktime = TCPTV_DELACK; tcp_keepinit = TCPTV_KEEP_INIT; tcp_keepidle = TCPTV_KEEP_IDLE; tcp_keepintvl = TCPTV_KEEPINTVL; tcp_maxpersistidle = TCPTV_KEEP_IDLE; tcp_msl = TCPTV_MSL; tcp_rexmit_min = TCPTV_MIN; if (tcp_rexmit_min < 1) tcp_rexmit_min = 1; tcp_persmin = TCPTV_PERSMIN; tcp_persmax = TCPTV_PERSMAX; tcp_rexmit_slop = TCPTV_CPU_VAR; tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT; tcp_tcbhashsize = hashsize; /* Setup the tcp function block list */ init_tcp_functions(); register_tcp_functions(&tcp_def_funcblk, M_WAITOK); #ifdef TCP_BLACKBOX /* Initialize the TCP logging data. */ tcp_log_init(); #endif if (tcp_soreceive_stream) { #ifdef INET tcp_usrreqs.pru_soreceive = soreceive_stream; #endif #ifdef INET6 tcp6_usrreqs.pru_soreceive = soreceive_stream; #endif /* INET6 */ } #ifdef INET6 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr)) #else /* INET6 */ #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr)) #endif /* INET6 */ if (max_protohdr < TCP_MINPROTOHDR) max_protohdr = TCP_MINPROTOHDR; if (max_linkhdr + TCP_MINPROTOHDR > MHLEN) panic("tcp_init"); #undef TCP_MINPROTOHDR ISN_LOCK_INIT(); EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL, SHUTDOWN_PRI_DEFAULT); EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL, EVENTHANDLER_PRI_ANY); #ifdef TCPPCAP tcp_pcap_init(); #endif } #ifdef VIMAGE static void tcp_destroy(void *unused __unused) { int n; #ifdef TCP_HHOOK int error; #endif /* * All our processes are gone, all our sockets should be cleaned * up, which means, we should be past the tcp_discardcb() calls. * Sleep to let all tcpcb timers really disappear and cleanup. */ for (;;) { INP_LIST_RLOCK(&V_tcbinfo); n = V_tcbinfo.ipi_count; INP_LIST_RUNLOCK(&V_tcbinfo); if (n == 0) break; pause("tcpdes", hz / 10); } tcp_hc_destroy(); syncache_destroy(); tcp_tw_destroy(); in_pcbinfo_destroy(&V_tcbinfo); /* tcp_discardcb() clears the sack_holes up. */ uma_zdestroy(V_sack_hole_zone); uma_zdestroy(V_tcpcb_zone); /* * Cannot free the zone until all tcpcbs are released as we attach * the allocations to them. */ tcp_fastopen_destroy(); #ifdef TCP_HHOOK error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]); if (error != 0) { printf("%s: WARNING: unable to deregister helper hook " "type=%d, id=%d: error %d returned\n", __func__, HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error); } error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]); if (error != 0) { printf("%s: WARNING: unable to deregister helper hook " "type=%d, id=%d: error %d returned\n", __func__, HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error); } #endif } VNET_SYSUNINIT(tcp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, tcp_destroy, NULL); #endif void tcp_fini(void *xtp) { } /* * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb. * tcp_template used to store this data in mbufs, but we now recopy it out * of the tcpcb each time to conserve mbufs. */ void tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr) { struct tcphdr *th = (struct tcphdr *)tcp_ptr; INP_WLOCK_ASSERT(inp); #ifdef INET6 if ((inp->inp_vflag & INP_IPV6) != 0) { struct ip6_hdr *ip6; ip6 = (struct ip6_hdr *)ip_ptr; ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | (inp->inp_flow & IPV6_FLOWINFO_MASK); ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | (IPV6_VERSION & IPV6_VERSION_MASK); ip6->ip6_nxt = IPPROTO_TCP; ip6->ip6_plen = htons(sizeof(struct tcphdr)); ip6->ip6_src = inp->in6p_laddr; ip6->ip6_dst = inp->in6p_faddr; } #endif /* INET6 */ #if defined(INET6) && defined(INET) else #endif #ifdef INET { struct ip *ip; ip = (struct ip *)ip_ptr; ip->ip_v = IPVERSION; ip->ip_hl = 5; ip->ip_tos = inp->inp_ip_tos; ip->ip_len = 0; ip->ip_id = 0; ip->ip_off = 0; ip->ip_ttl = inp->inp_ip_ttl; ip->ip_sum = 0; ip->ip_p = IPPROTO_TCP; ip->ip_src = inp->inp_laddr; ip->ip_dst = inp->inp_faddr; } #endif /* INET */ th->th_sport = inp->inp_lport; th->th_dport = inp->inp_fport; th->th_seq = 0; th->th_ack = 0; th->th_x2 = 0; th->th_off = 5; th->th_flags = 0; th->th_win = 0; th->th_urp = 0; th->th_sum = 0; /* in_pseudo() is called later for ipv4 */ } /* * Create template to be used to send tcp packets on a connection. * Allocates an mbuf and fills in a skeletal tcp/ip header. The only * use for this function is in keepalives, which use tcp_respond. */ struct tcptemp * tcpip_maketemplate(struct inpcb *inp) { struct tcptemp *t; t = malloc(sizeof(*t), M_TEMP, M_NOWAIT); if (t == NULL) return (NULL); tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t); return (t); } /* * Send a single message to the TCP at address specified by * the given TCP/IP header. If m == NULL, then we make a copy * of the tcpiphdr at th and send directly to the addressed host. * This is used to force keep alive messages out using the TCP * template for a connection. If flags are given then we send * a message back to the TCP which originated the segment th, * and discard the mbuf containing it and any other attached mbufs. * * In any case the ack and sequence number of the transmitted * segment are as specified by the parameters. * * NOTE: If m != NULL, then th must point to *inside* the mbuf. */ void tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags) { struct tcpopt to; struct inpcb *inp; struct ip *ip; struct mbuf *optm; struct tcphdr *nth; u_char *optp; #ifdef INET6 struct ip6_hdr *ip6; int isipv6; #endif /* INET6 */ int optlen, tlen, win; bool incl_opts; KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL")); #ifdef INET6 isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4); ip6 = ipgen; #endif /* INET6 */ ip = ipgen; if (tp != NULL) { inp = tp->t_inpcb; KASSERT(inp != NULL, ("tcp control block w/o inpcb")); INP_WLOCK_ASSERT(inp); } else inp = NULL; incl_opts = false; win = 0; if (tp != NULL) { if (!(flags & TH_RST)) { win = sbspace(&inp->inp_socket->so_rcv); if (win > TCP_MAXWIN << tp->rcv_scale) win = TCP_MAXWIN << tp->rcv_scale; } if ((tp->t_flags & TF_NOOPT) == 0) incl_opts = true; } if (m == NULL) { m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) return; m->m_data += max_linkhdr; #ifdef INET6 if (isipv6) { bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr)); ip6 = mtod(m, struct ip6_hdr *); nth = (struct tcphdr *)(ip6 + 1); } else #endif /* INET6 */ { bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); ip = mtod(m, struct ip *); nth = (struct tcphdr *)(ip + 1); } bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); flags = TH_ACK; } else if (!M_WRITABLE(m)) { struct mbuf *n; /* Can't reuse 'm', allocate a new mbuf. */ n = m_gethdr(M_NOWAIT, MT_DATA); if (n == NULL) { m_freem(m); return; } if (!m_dup_pkthdr(n, m, M_NOWAIT)) { m_freem(m); m_freem(n); return; } n->m_data += max_linkhdr; /* m_len is set later */ #define xchg(a,b,type) { type t; t=a; a=b; b=t; } #ifdef INET6 if (isipv6) { bcopy((caddr_t)ip6, mtod(n, caddr_t), sizeof(struct ip6_hdr)); ip6 = mtod(n, struct ip6_hdr *); xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); nth = (struct tcphdr *)(ip6 + 1); } else #endif /* INET6 */ { bcopy((caddr_t)ip, mtod(n, caddr_t), sizeof(struct ip)); ip = mtod(n, struct ip *); xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); nth = (struct tcphdr *)(ip + 1); } bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); xchg(nth->th_dport, nth->th_sport, uint16_t); th = nth; m_freem(m); m = n; } else { /* * reuse the mbuf. * XXX MRT We inherit the FIB, which is lucky. */ m_freem(m->m_next); m->m_next = NULL; m->m_data = (caddr_t)ipgen; /* m_len is set later */ #ifdef INET6 if (isipv6) { xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); nth = (struct tcphdr *)(ip6 + 1); } else #endif /* INET6 */ { xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); nth = (struct tcphdr *)(ip + 1); } if (th != nth) { /* * this is usually a case when an extension header * exists between the IPv6 header and the * TCP header. */ nth->th_sport = th->th_sport; nth->th_dport = th->th_dport; } xchg(nth->th_dport, nth->th_sport, uint16_t); #undef xchg } tlen = 0; #ifdef INET6 if (isipv6) tlen = sizeof (struct ip6_hdr) + sizeof (struct tcphdr); #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET tlen = sizeof (struct tcpiphdr); #endif #ifdef INVARIANTS m->m_len = 0; KASSERT(M_TRAILINGSPACE(m) >= tlen, ("Not enough trailing space for message (m=%p, need=%d, have=%ld)", m, tlen, (long)M_TRAILINGSPACE(m))); #endif m->m_len = tlen; to.to_flags = 0; if (incl_opts) { /* Make sure we have room. */ if (M_TRAILINGSPACE(m) < TCP_MAXOLEN) { m->m_next = m_get(M_NOWAIT, MT_DATA); if (m->m_next) { optp = mtod(m->m_next, u_char *); optm = m->m_next; } else incl_opts = false; } else { optp = (u_char *) (nth + 1); optm = m; } } if (incl_opts) { /* Timestamps. */ if (tp->t_flags & TF_RCVD_TSTMP) { to.to_tsval = tcp_ts_getticks() + tp->ts_offset; to.to_tsecr = tp->ts_recent; to.to_flags |= TOF_TS; } #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) /* TCP-MD5 (RFC2385). */ if (tp->t_flags & TF_SIGNATURE) to.to_flags |= TOF_SIGNATURE; #endif /* Add the options. */ tlen += optlen = tcp_addoptions(&to, optp); /* Update m_len in the correct mbuf. */ optm->m_len += optlen; } else optlen = 0; #ifdef INET6 if (isipv6) { ip6->ip6_flow = 0; ip6->ip6_vfc = IPV6_VERSION; ip6->ip6_nxt = IPPROTO_TCP; ip6->ip6_plen = htons(tlen - sizeof(*ip6)); } #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET { ip->ip_len = htons(tlen); ip->ip_ttl = V_ip_defttl; if (V_path_mtu_discovery) ip->ip_off |= htons(IP_DF); } #endif m->m_pkthdr.len = tlen; m->m_pkthdr.rcvif = NULL; #ifdef MAC if (inp != NULL) { /* * Packet is associated with a socket, so allow the * label of the response to reflect the socket label. */ INP_WLOCK_ASSERT(inp); mac_inpcb_create_mbuf(inp, m); } else { /* * Packet is not associated with a socket, so possibly * update the label in place. */ mac_netinet_tcp_reply(m); } #endif nth->th_seq = htonl(seq); nth->th_ack = htonl(ack); nth->th_x2 = 0; nth->th_off = (sizeof (struct tcphdr) + optlen) >> 2; nth->th_flags = flags; if (tp != NULL) nth->th_win = htons((u_short) (win >> tp->rcv_scale)); else nth->th_win = htons((u_short)win); nth->th_urp = 0; #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) if (to.to_flags & TOF_SIGNATURE) { if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, nth, to.to_signature) != 0) { m_freem(m); return; } } #endif m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); #ifdef INET6 if (isipv6) { m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; nth->th_sum = in6_cksum_pseudo(ip6, tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0); ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb : NULL, NULL); } #endif /* INET6 */ #if defined(INET6) && defined(INET) else #endif #ifdef INET { m->m_pkthdr.csum_flags = CSUM_TCP; nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p))); } #endif /* INET */ #ifdef TCPDEBUG if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG)) tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0); #endif TCP_PROBE3(debug__output, tp, th, m); if (flags & TH_RST) TCP_PROBE5(accept__refused, NULL, NULL, m, tp, nth); #ifdef INET6 if (isipv6) { TCP_PROBE5(send, NULL, tp, ip6, tp, nth); (void)ip6_output(m, NULL, NULL, 0, NULL, NULL, inp); } #endif /* INET6 */ #if defined(INET) && defined(INET6) else #endif #ifdef INET { TCP_PROBE5(send, NULL, tp, ip, tp, nth); (void)ip_output(m, NULL, NULL, 0, NULL, inp); } #endif } /* * Create a new TCP control block, making an * empty reassembly queue and hooking it to the argument * protocol control block. The `inp' parameter must have * come from the zone allocator set up in tcp_init(). */ struct tcpcb * tcp_newtcpcb(struct inpcb *inp) { struct tcpcb_mem *tm; struct tcpcb *tp; #ifdef INET6 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; #endif /* INET6 */ tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO); if (tm == NULL) return (NULL); tp = &tm->tcb; /* Initialise cc_var struct for this tcpcb. */ tp->ccv = &tm->ccv; tp->ccv->type = IPPROTO_TCP; tp->ccv->ccvc.tcp = tp; rw_rlock(&tcp_function_lock); tp->t_fb = tcp_func_set_ptr; refcount_acquire(&tp->t_fb->tfb_refcnt); rw_runlock(&tcp_function_lock); /* * Use the current system default CC algorithm. */ CC_LIST_RLOCK(); KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!")); CC_ALGO(tp) = CC_DEFAULT(); CC_LIST_RUNLOCK(); if (CC_ALGO(tp)->cb_init != NULL) if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) { if (tp->t_fb->tfb_tcp_fb_fini) (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); refcount_release(&tp->t_fb->tfb_refcnt); uma_zfree(V_tcpcb_zone, tm); return (NULL); } #ifdef TCP_HHOOK tp->osd = &tm->osd; if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) { if (tp->t_fb->tfb_tcp_fb_fini) (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); refcount_release(&tp->t_fb->tfb_refcnt); uma_zfree(V_tcpcb_zone, tm); return (NULL); } #endif #ifdef VIMAGE tp->t_vnet = inp->inp_vnet; #endif tp->t_timers = &tm->tt; /* LIST_INIT(&tp->t_segq); */ /* XXX covered by M_ZERO */ tp->t_maxseg = #ifdef INET6 isipv6 ? V_tcp_v6mssdflt : #endif /* INET6 */ V_tcp_mssdflt; /* Set up our timeouts. */ callout_init(&tp->t_timers->tt_rexmt, 1); callout_init(&tp->t_timers->tt_persist, 1); callout_init(&tp->t_timers->tt_keep, 1); callout_init(&tp->t_timers->tt_2msl, 1); callout_init(&tp->t_timers->tt_delack, 1); if (V_tcp_do_rfc1323) tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); if (V_tcp_do_sack) tp->t_flags |= TF_SACK_PERMIT; TAILQ_INIT(&tp->snd_holes); /* * The tcpcb will hold a reference on its inpcb until tcp_discardcb() * is called. */ in_pcbref(inp); /* Reference for tcpcb */ tp->t_inpcb = inp; /* * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives * reasonable initial retransmit time. */ tp->t_srtt = TCPTV_SRTTBASE; tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; tp->t_rttmin = tcp_rexmit_min; tp->t_rxtcur = TCPTV_RTOBASE; tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; tp->t_rcvtime = ticks; /* * IPv4 TTL initialization is necessary for an IPv6 socket as well, * because the socket may be bound to an IPv6 wildcard address, * which may match an IPv4-mapped IPv6 address. */ inp->inp_ip_ttl = V_ip_defttl; inp->inp_ppcb = tp; #ifdef TCPPCAP /* * Init the TCP PCAP queues. */ tcp_pcap_tcpcb_init(tp); #endif #ifdef TCP_BLACKBOX /* Initialize the per-TCPCB log data. */ tcp_log_tcpcbinit(tp); #endif if (tp->t_fb->tfb_tcp_fb_init) { (*tp->t_fb->tfb_tcp_fb_init)(tp); } return (tp); /* XXX */ } /* * Switch the congestion control algorithm back to NewReno for any active * control blocks using an algorithm which is about to go away. * This ensures the CC framework can allow the unload to proceed without leaving * any dangling pointers which would trigger a panic. * Returning non-zero would inform the CC framework that something went wrong * and it would be unsafe to allow the unload to proceed. However, there is no * way for this to occur with this implementation so we always return zero. */ int tcp_ccalgounload(struct cc_algo *unload_algo) { struct cc_algo *tmpalgo; struct inpcb *inp; struct tcpcb *tp; VNET_ITERATOR_DECL(vnet_iter); /* * Check all active control blocks across all network stacks and change * any that are using "unload_algo" back to NewReno. If "unload_algo" * requires cleanup code to be run, call it. */ VNET_LIST_RLOCK(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); INP_INFO_WLOCK(&V_tcbinfo); /* * New connections already part way through being initialised * with the CC algo we're removing will not race with this code * because the INP_INFO_WLOCK is held during initialisation. We * therefore don't enter the loop below until the connection * list has stabilised. */ LIST_FOREACH(inp, &V_tcb, inp_list) { INP_WLOCK(inp); /* Important to skip tcptw structs. */ if (!(inp->inp_flags & INP_TIMEWAIT) && (tp = intotcpcb(inp)) != NULL) { /* * By holding INP_WLOCK here, we are assured * that the connection is not currently * executing inside the CC module's functions * i.e. it is safe to make the switch back to * NewReno. */ if (CC_ALGO(tp) == unload_algo) { tmpalgo = CC_ALGO(tp); /* NewReno does not require any init. */ CC_ALGO(tp) = &newreno_cc_algo; if (tmpalgo->cb_destroy != NULL) tmpalgo->cb_destroy(tp->ccv); } } INP_WUNLOCK(inp); } INP_INFO_WUNLOCK(&V_tcbinfo); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK(); return (0); } /* * Drop a TCP connection, reporting * the specified error. If connection is synchronized, * then send a RST to peer. */ struct tcpcb * tcp_drop(struct tcpcb *tp, int errno) { struct socket *so = tp->t_inpcb->inp_socket; INP_INFO_LOCK_ASSERT(&V_tcbinfo); INP_WLOCK_ASSERT(tp->t_inpcb); if (TCPS_HAVERCVDSYN(tp->t_state)) { tcp_state_change(tp, TCPS_CLOSED); (void) tp->t_fb->tfb_tcp_output(tp); TCPSTAT_INC(tcps_drops); } else TCPSTAT_INC(tcps_conndrops); if (errno == ETIMEDOUT && tp->t_softerror) errno = tp->t_softerror; so->so_error = errno; return (tcp_close(tp)); } void tcp_discardcb(struct tcpcb *tp) { struct inpcb *inp = tp->t_inpcb; struct socket *so = inp->inp_socket; #ifdef INET6 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; #endif /* INET6 */ int released; INP_WLOCK_ASSERT(inp); /* * Make sure that all of our timers are stopped before we delete the * PCB. * * If stopping a timer fails, we schedule a discard function in same * callout, and the last discard function called will take care of * deleting the tcpcb. */ tp->t_timers->tt_draincnt = 0; tcp_timer_stop(tp, TT_REXMT); tcp_timer_stop(tp, TT_PERSIST); tcp_timer_stop(tp, TT_KEEP); tcp_timer_stop(tp, TT_2MSL); tcp_timer_stop(tp, TT_DELACK); if (tp->t_fb->tfb_tcp_timer_stop_all) { /* * Call the stop-all function of the methods, * this function should call the tcp_timer_stop() * method with each of the function specific timeouts. * That stop will be called via the tfb_tcp_timer_stop() * which should use the async drain function of the * callout system (see tcp_var.h). */ tp->t_fb->tfb_tcp_timer_stop_all(tp); } /* * If we got enough samples through the srtt filter, * save the rtt and rttvar in the routing entry. * 'Enough' is arbitrarily defined as 4 rtt samples. * 4 samples is enough for the srtt filter to converge * to within enough % of the correct value; fewer samples * and we could save a bogus rtt. The danger is not high * as tcp quickly recovers from everything. * XXX: Works very well but needs some more statistics! */ if (tp->t_rttupdated >= 4) { struct hc_metrics_lite metrics; uint32_t ssthresh; bzero(&metrics, sizeof(metrics)); /* * Update the ssthresh always when the conditions below * are satisfied. This gives us better new start value * for the congestion avoidance for new connections. * ssthresh is only set if packet loss occurred on a session. * * XXXRW: 'so' may be NULL here, and/or socket buffer may be * being torn down. Ideally this code would not use 'so'. */ ssthresh = tp->snd_ssthresh; if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) { /* * convert the limit from user data bytes to * packets then to packet data bytes. */ ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg; if (ssthresh < 2) ssthresh = 2; ssthresh *= (tp->t_maxseg + #ifdef INET6 (isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr) : #endif sizeof (struct tcpiphdr) #ifdef INET6 ) #endif ); } else ssthresh = 0; metrics.rmx_ssthresh = ssthresh; metrics.rmx_rtt = tp->t_srtt; metrics.rmx_rttvar = tp->t_rttvar; metrics.rmx_cwnd = tp->snd_cwnd; metrics.rmx_sendpipe = 0; metrics.rmx_recvpipe = 0; tcp_hc_update(&inp->inp_inc, &metrics); } /* free the reassembly queue, if any */ tcp_reass_flush(tp); #ifdef TCP_OFFLOAD /* Disconnect offload device, if any. */ if (tp->t_flags & TF_TOE) tcp_offload_detach(tp); #endif tcp_free_sackholes(tp); #ifdef TCPPCAP /* Free the TCP PCAP queues. */ tcp_pcap_drain(&(tp->t_inpkts)); tcp_pcap_drain(&(tp->t_outpkts)); #endif /* Allow the CC algorithm to clean up after itself. */ if (CC_ALGO(tp)->cb_destroy != NULL) CC_ALGO(tp)->cb_destroy(tp->ccv); #ifdef TCP_HHOOK khelp_destroy_osd(tp->osd); #endif CC_ALGO(tp) = NULL; inp->inp_ppcb = NULL; if (tp->t_timers->tt_draincnt == 0) { /* We own the last reference on tcpcb, let's free it. */ #ifdef TCP_BLACKBOX tcp_log_tcpcbfini(tp); #endif TCPSTATES_DEC(tp->t_state); if (tp->t_fb->tfb_tcp_fb_fini) (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); refcount_release(&tp->t_fb->tfb_refcnt); tp->t_inpcb = NULL; uma_zfree(V_tcpcb_zone, tp); released = in_pcbrele_wlocked(inp); KASSERT(!released, ("%s: inp %p should not have been released " "here", __func__, inp)); } } void tcp_timer_discard(void *ptp) { struct inpcb *inp; struct tcpcb *tp; tp = (struct tcpcb *)ptp; CURVNET_SET(tp->t_vnet); INP_INFO_RLOCK(&V_tcbinfo); inp = tp->t_inpcb; KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", __func__, tp)); INP_WLOCK(inp); KASSERT((tp->t_timers->tt_flags & TT_STOPPED) != 0, ("%s: tcpcb has to be stopped here", __func__)); tp->t_timers->tt_draincnt--; if (tp->t_timers->tt_draincnt == 0) { /* We own the last reference on this tcpcb, let's free it. */ #ifdef TCP_BLACKBOX tcp_log_tcpcbfini(tp); #endif TCPSTATES_DEC(tp->t_state); if (tp->t_fb->tfb_tcp_fb_fini) (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); refcount_release(&tp->t_fb->tfb_refcnt); tp->t_inpcb = NULL; uma_zfree(V_tcpcb_zone, tp); if (in_pcbrele_wlocked(inp)) { INP_INFO_RUNLOCK(&V_tcbinfo); CURVNET_RESTORE(); return; } } INP_WUNLOCK(inp); INP_INFO_RUNLOCK(&V_tcbinfo); CURVNET_RESTORE(); } /* * Attempt to close a TCP control block, marking it as dropped, and freeing * the socket if we hold the only reference. */ struct tcpcb * tcp_close(struct tcpcb *tp) { struct inpcb *inp = tp->t_inpcb; struct socket *so; + struct inpcb *inp_inh = NULL; + int listen = tp->t_state & TCPS_LISTEN; INP_INFO_LOCK_ASSERT(&V_tcbinfo); INP_WLOCK_ASSERT(inp); + if (listen) { + /* + * Pending socket/syncache inheritance + * + * If this is a listen(2) socket, find another listen(2) + * socket in the same local group, which could inherit + * the syncache and sockets pending on the completion + * and incompletion queues. + * + * NOTE: + * Currently the inheritance could only happen on the + * listen(2) sockets with SO_REUSEPORT_LB set. + */ + inp_inh = in_pcblookup_lbgroup_last(inp); + } + #ifdef TCP_OFFLOAD if (tp->t_state == TCPS_LISTEN) tcp_offload_listen_stop(tp); #endif /* * This releases the TFO pending counter resource for TFO listen * sockets as well as passively-created TFO sockets that transition * from SYN_RECEIVED to CLOSED. */ if (tp->t_tfo_pending) { tcp_fastopen_decrement_counter(tp->t_tfo_pending); tp->t_tfo_pending = NULL; } in_pcbdrop(inp); TCPSTAT_INC(tcps_closed); if (tp->t_state != TCPS_CLOSED) tcp_state_change(tp, TCPS_CLOSED); KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL")); so = inp->inp_socket; + soisdisconnected(so); + + if(listen) + { + if(inp_inh != NULL && inp_inh->inp_socket != NULL) { + soinherit(so, inp_inh->inp_socket); + } + } + if (inp->inp_flags & INP_SOCKREF) { KASSERT(so->so_state & SS_PROTOREF, ("tcp_close: !SS_PROTOREF")); inp->inp_flags &= ~INP_SOCKREF; INP_WUNLOCK(inp); SOCK_LOCK(so); so->so_state &= ~SS_PROTOREF; sofree(so); return (NULL); } return (tp); } void tcp_drain(void) { VNET_ITERATOR_DECL(vnet_iter); if (!do_tcpdrain) return; VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); struct inpcb *inpb; struct tcpcb *tcpb; /* * Walk the tcpbs, if existing, and flush the reassembly queue, * if there is one... * XXX: The "Net/3" implementation doesn't imply that the TCP * reassembly queue should be flushed, but in a situation * where we're really low on mbufs, this is potentially * useful. */ INP_INFO_WLOCK(&V_tcbinfo); LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) { if (inpb->inp_flags & INP_TIMEWAIT) continue; INP_WLOCK(inpb); if ((tcpb = intotcpcb(inpb)) != NULL) { tcp_reass_flush(tcpb); tcp_clean_sackreport(tcpb); #ifdef TCP_BLACKBOX tcp_log_drain(tcpb); #endif #ifdef TCPPCAP if (tcp_pcap_aggressive_free) { /* Free the TCP PCAP queues. */ tcp_pcap_drain(&(tcpb->t_inpkts)); tcp_pcap_drain(&(tcpb->t_outpkts)); } #endif } INP_WUNLOCK(inpb); } INP_INFO_WUNLOCK(&V_tcbinfo); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); } /* * Notify a tcp user of an asynchronous error; * store error as soft error, but wake up user * (for now, won't do anything until can select for soft error). * * Do not wake up user since there currently is no mechanism for * reporting soft errors (yet - a kqueue filter may be added). */ static struct inpcb * tcp_notify(struct inpcb *inp, int error) { struct tcpcb *tp; INP_INFO_LOCK_ASSERT(&V_tcbinfo); INP_WLOCK_ASSERT(inp); if ((inp->inp_flags & INP_TIMEWAIT) || (inp->inp_flags & INP_DROPPED)) return (inp); tp = intotcpcb(inp); KASSERT(tp != NULL, ("tcp_notify: tp == NULL")); /* * Ignore some errors if we are hooked up. * If connection hasn't completed, has retransmitted several times, * and receives a second error, give up now. This is better * than waiting a long time to establish a connection that * can never complete. */ if (tp->t_state == TCPS_ESTABLISHED && (error == EHOSTUNREACH || error == ENETUNREACH || error == EHOSTDOWN)) { if (inp->inp_route.ro_rt) { RTFREE(inp->inp_route.ro_rt); inp->inp_route.ro_rt = (struct rtentry *)NULL; } return (inp); } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && tp->t_softerror) { tp = tcp_drop(tp, error); if (tp != NULL) return (inp); else return (NULL); } else { tp->t_softerror = error; return (inp); } #if 0 wakeup( &so->so_timeo); sorwakeup(so); sowwakeup(so); #endif } static int tcp_pcblist(SYSCTL_HANDLER_ARGS) { int error, i, m, n, pcb_count; struct inpcb *inp, **inp_list; inp_gen_t gencnt; struct xinpgen xig; /* * The process of preparing the TCB list is too time-consuming and * resource-intensive to repeat twice on every request. */ if (req->oldptr == NULL) { n = V_tcbinfo.ipi_count + counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]); n += imax(n / 8, 10); req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb); return (0); } if (req->newptr != NULL) return (EPERM); /* * OK, now we're committed to doing something. */ INP_LIST_RLOCK(&V_tcbinfo); gencnt = V_tcbinfo.ipi_gencnt; n = V_tcbinfo.ipi_count; INP_LIST_RUNLOCK(&V_tcbinfo); m = counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]); error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) + (n + m) * sizeof(struct xtcpcb)); if (error != 0) return (error); xig.xig_len = sizeof xig; xig.xig_count = n + m; xig.xig_gen = gencnt; xig.xig_sogen = so_gencnt; error = SYSCTL_OUT(req, &xig, sizeof xig); if (error) return (error); error = syncache_pcblist(req, m, &pcb_count); if (error) return (error); inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); INP_INFO_WLOCK(&V_tcbinfo); for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0; inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) { INP_WLOCK(inp); if (inp->inp_gencnt <= gencnt) { /* * XXX: This use of cr_cansee(), introduced with * TCP state changes, is not quite right, but for * now, better than nothing. */ if (inp->inp_flags & INP_TIMEWAIT) { if (intotw(inp) != NULL) error = cr_cansee(req->td->td_ucred, intotw(inp)->tw_cred); else error = EINVAL; /* Skip this inp. */ } else error = cr_canseeinpcb(req->td->td_ucred, inp); if (error == 0) { in_pcbref(inp); inp_list[i++] = inp; } } INP_WUNLOCK(inp); } INP_INFO_WUNLOCK(&V_tcbinfo); n = i; error = 0; for (i = 0; i < n; i++) { inp = inp_list[i]; INP_RLOCK(inp); if (inp->inp_gencnt <= gencnt) { struct xtcpcb xt; tcp_inptoxtp(inp, &xt); INP_RUNLOCK(inp); error = SYSCTL_OUT(req, &xt, sizeof xt); } else INP_RUNLOCK(inp); } INP_INFO_RLOCK(&V_tcbinfo); for (i = 0; i < n; i++) { inp = inp_list[i]; INP_RLOCK(inp); if (!in_pcbrele_rlocked(inp)) INP_RUNLOCK(inp); } INP_INFO_RUNLOCK(&V_tcbinfo); if (!error) { /* * Give the user an updated idea of our state. * If the generation differs from what we told * her before, she knows that something happened * while we were processing this request, and it * might be necessary to retry. */ INP_LIST_RLOCK(&V_tcbinfo); xig.xig_gen = V_tcbinfo.ipi_gencnt; xig.xig_sogen = so_gencnt; xig.xig_count = V_tcbinfo.ipi_count + pcb_count; INP_LIST_RUNLOCK(&V_tcbinfo); error = SYSCTL_OUT(req, &xig, sizeof xig); } free(inp_list, M_TEMP); return (error); } SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, tcp_pcblist, "S,xtcpcb", "List of active TCP connections"); #ifdef INET static int tcp_getcred(SYSCTL_HANDLER_ARGS) { struct xucred xuc; struct sockaddr_in addrs[2]; struct inpcb *inp; int error; error = priv_check(req->td, PRIV_NETINET_GETCRED); if (error) return (error); error = SYSCTL_IN(req, addrs, sizeof(addrs)); if (error) return (error); inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL); if (inp != NULL) { if (inp->inp_socket == NULL) error = ENOENT; if (error == 0) error = cr_canseeinpcb(req->td->td_ucred, inp); if (error == 0) cru2x(inp->inp_cred, &xuc); INP_RUNLOCK(inp); } else error = ENOENT; if (error == 0) error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); return (error); } SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, tcp_getcred, "S,xucred", "Get the xucred of a TCP connection"); #endif /* INET */ #ifdef INET6 static int tcp6_getcred(SYSCTL_HANDLER_ARGS) { struct xucred xuc; struct sockaddr_in6 addrs[2]; struct inpcb *inp; int error; #ifdef INET int mapped = 0; #endif error = priv_check(req->td, PRIV_NETINET_GETCRED); if (error) return (error); error = SYSCTL_IN(req, addrs, sizeof(addrs)); if (error) return (error); if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 || (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) { return (error); } if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) { #ifdef INET if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr)) mapped = 1; else #endif return (EINVAL); } #ifdef INET if (mapped == 1) inp = in_pcblookup(&V_tcbinfo, *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12], addrs[1].sin6_port, *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12], addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL); else #endif inp = in6_pcblookup(&V_tcbinfo, &addrs[1].sin6_addr, addrs[1].sin6_port, &addrs[0].sin6_addr, addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL); if (inp != NULL) { if (inp->inp_socket == NULL) error = ENOENT; if (error == 0) error = cr_canseeinpcb(req->td->td_ucred, inp); if (error == 0) cru2x(inp->inp_cred, &xuc); INP_RUNLOCK(inp); } else error = ENOENT; if (error == 0) error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); return (error); } SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection"); #endif /* INET6 */ #ifdef INET void tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip) { struct ip *ip = vip; struct tcphdr *th; struct in_addr faddr; struct inpcb *inp; struct tcpcb *tp; struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; struct icmp *icp; struct in_conninfo inc; tcp_seq icmp_tcp_seq; int mtu; faddr = ((struct sockaddr_in *)sa)->sin_addr; if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) return; if (cmd == PRC_MSGSIZE) notify = tcp_mtudisc_notify; else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB || cmd == PRC_UNREACH_PORT || cmd == PRC_UNREACH_PROTOCOL || cmd == PRC_TIMXCEED_INTRANS) && ip) notify = tcp_drop_syn_sent; /* * Hostdead is ugly because it goes linearly through all PCBs. * XXX: We never get this from ICMP, otherwise it makes an * excellent DoS attack on machines with many connections. */ else if (cmd == PRC_HOSTDEAD) ip = NULL; else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) return; if (ip == NULL) { in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify); return; } icp = (struct icmp *)((caddr_t)ip - offsetof(struct icmp, icmp_ip)); th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); INP_INFO_RLOCK(&V_tcbinfo); inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport, ip->ip_src, th->th_sport, INPLOOKUP_WLOCKPCB, NULL); if (inp != NULL && PRC_IS_REDIRECT(cmd)) { /* signal EHOSTDOWN, as it flushes the cached route */ inp = (*notify)(inp, EHOSTDOWN); goto out; } icmp_tcp_seq = th->th_seq; if (inp != NULL) { if (!(inp->inp_flags & INP_TIMEWAIT) && !(inp->inp_flags & INP_DROPPED) && !(inp->inp_socket == NULL)) { tp = intotcpcb(inp); if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) && SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) { if (cmd == PRC_MSGSIZE) { /* * MTU discovery: * If we got a needfrag set the MTU * in the route to the suggested new * value (if given) and then notify. */ mtu = ntohs(icp->icmp_nextmtu); /* * If no alternative MTU was * proposed, try the next smaller * one. */ if (!mtu) mtu = ip_next_mtu( ntohs(ip->ip_len), 1); if (mtu < V_tcp_minmss + sizeof(struct tcpiphdr)) mtu = V_tcp_minmss + sizeof(struct tcpiphdr); /* * Only process the offered MTU if it * is smaller than the current one. */ if (mtu < tp->t_maxseg + sizeof(struct tcpiphdr)) { bzero(&inc, sizeof(inc)); inc.inc_faddr = faddr; inc.inc_fibnum = inp->inp_inc.inc_fibnum; tcp_hc_updatemtu(&inc, mtu); tcp_mtudisc(inp, mtu); } } else inp = (*notify)(inp, inetctlerrmap[cmd]); } } } else { bzero(&inc, sizeof(inc)); inc.inc_fport = th->th_dport; inc.inc_lport = th->th_sport; inc.inc_faddr = faddr; inc.inc_laddr = ip->ip_src; syncache_unreach(&inc, icmp_tcp_seq); } out: if (inp != NULL) INP_WUNLOCK(inp); INP_INFO_RUNLOCK(&V_tcbinfo); } #endif /* INET */ #ifdef INET6 void tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d) { struct in6_addr *dst; struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; struct ip6_hdr *ip6; struct mbuf *m; struct inpcb *inp; struct tcpcb *tp; struct icmp6_hdr *icmp6; struct ip6ctlparam *ip6cp = NULL; const struct sockaddr_in6 *sa6_src = NULL; struct in_conninfo inc; struct tcp_ports { uint16_t th_sport; uint16_t th_dport; } t_ports; tcp_seq icmp_tcp_seq; unsigned int mtu; unsigned int off; if (sa->sa_family != AF_INET6 || sa->sa_len != sizeof(struct sockaddr_in6)) return; /* if the parameter is from icmp6, decode it. */ if (d != NULL) { ip6cp = (struct ip6ctlparam *)d; icmp6 = ip6cp->ip6c_icmp6; m = ip6cp->ip6c_m; ip6 = ip6cp->ip6c_ip6; off = ip6cp->ip6c_off; sa6_src = ip6cp->ip6c_src; dst = ip6cp->ip6c_finaldst; } else { m = NULL; ip6 = NULL; off = 0; /* fool gcc */ sa6_src = &sa6_any; dst = NULL; } if (cmd == PRC_MSGSIZE) notify = tcp_mtudisc_notify; else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB || cmd == PRC_UNREACH_PORT || cmd == PRC_UNREACH_PROTOCOL || cmd == PRC_TIMXCEED_INTRANS) && ip6 != NULL) notify = tcp_drop_syn_sent; /* * Hostdead is ugly because it goes linearly through all PCBs. * XXX: We never get this from ICMP, otherwise it makes an * excellent DoS attack on machines with many connections. */ else if (cmd == PRC_HOSTDEAD) ip6 = NULL; else if ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0) return; if (ip6 == NULL) { in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify); return; } /* Check if we can safely get the ports from the tcp hdr */ if (m == NULL || (m->m_pkthdr.len < (int32_t) (off + sizeof(struct tcp_ports)))) { return; } bzero(&t_ports, sizeof(struct tcp_ports)); m_copydata(m, off, sizeof(struct tcp_ports), (caddr_t)&t_ports); INP_INFO_RLOCK(&V_tcbinfo); inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_dst, t_ports.th_dport, &ip6->ip6_src, t_ports.th_sport, INPLOOKUP_WLOCKPCB, NULL); if (inp != NULL && PRC_IS_REDIRECT(cmd)) { /* signal EHOSTDOWN, as it flushes the cached route */ inp = (*notify)(inp, EHOSTDOWN); goto out; } off += sizeof(struct tcp_ports); if (m->m_pkthdr.len < (int32_t) (off + sizeof(tcp_seq))) { goto out; } m_copydata(m, off, sizeof(tcp_seq), (caddr_t)&icmp_tcp_seq); if (inp != NULL) { if (!(inp->inp_flags & INP_TIMEWAIT) && !(inp->inp_flags & INP_DROPPED) && !(inp->inp_socket == NULL)) { tp = intotcpcb(inp); if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) && SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) { if (cmd == PRC_MSGSIZE) { /* * MTU discovery: * If we got a needfrag set the MTU * in the route to the suggested new * value (if given) and then notify. */ mtu = ntohl(icmp6->icmp6_mtu); /* * If no alternative MTU was * proposed, or the proposed * MTU was too small, set to * the min. */ if (mtu < IPV6_MMTU) mtu = IPV6_MMTU - 8; bzero(&inc, sizeof(inc)); inc.inc_fibnum = M_GETFIB(m); inc.inc_flags |= INC_ISIPV6; inc.inc6_faddr = *dst; if (in6_setscope(&inc.inc6_faddr, m->m_pkthdr.rcvif, NULL)) goto out; /* * Only process the offered MTU if it * is smaller than the current one. */ if (mtu < tp->t_maxseg + sizeof (struct tcphdr) + sizeof (struct ip6_hdr)) { tcp_hc_updatemtu(&inc, mtu); tcp_mtudisc(inp, mtu); ICMP6STAT_INC(icp6s_pmtuchg); } } else inp = (*notify)(inp, inet6ctlerrmap[cmd]); } } } else { bzero(&inc, sizeof(inc)); inc.inc_fibnum = M_GETFIB(m); inc.inc_flags |= INC_ISIPV6; inc.inc_fport = t_ports.th_dport; inc.inc_lport = t_ports.th_sport; inc.inc6_faddr = *dst; inc.inc6_laddr = ip6->ip6_src; syncache_unreach(&inc, icmp_tcp_seq); } out: if (inp != NULL) INP_WUNLOCK(inp); INP_INFO_RUNLOCK(&V_tcbinfo); } #endif /* INET6 */ /* * Following is where TCP initial sequence number generation occurs. * * There are two places where we must use initial sequence numbers: * 1. In SYN-ACK packets. * 2. In SYN packets. * * All ISNs for SYN-ACK packets are generated by the syncache. See * tcp_syncache.c for details. * * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling * depends on this property. In addition, these ISNs should be * unguessable so as to prevent connection hijacking. To satisfy * the requirements of this situation, the algorithm outlined in * RFC 1948 is used, with only small modifications. * * Implementation details: * * Time is based off the system timer, and is corrected so that it * increases by one megabyte per second. This allows for proper * recycling on high speed LANs while still leaving over an hour * before rollover. * * As reading the *exact* system time is too expensive to be done * whenever setting up a TCP connection, we increment the time * offset in two ways. First, a small random positive increment * is added to isn_offset for each connection that is set up. * Second, the function tcp_isn_tick fires once per clock tick * and increments isn_offset as necessary so that sequence numbers * are incremented at approximately ISN_BYTES_PER_SECOND. The * random positive increments serve only to ensure that the same * exact sequence number is never sent out twice (as could otherwise * happen when a port is recycled in less than the system tick * interval.) * * net.inet.tcp.isn_reseed_interval controls the number of seconds * between seeding of isn_secret. This is normally set to zero, * as reseeding should not be necessary. * * Locking of the global variables isn_secret, isn_last_reseed, isn_offset, * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock. In * general, this means holding an exclusive (write) lock. */ #define ISN_BYTES_PER_SECOND 1048576 #define ISN_STATIC_INCREMENT 4096 #define ISN_RANDOM_INCREMENT (4096 - 1) static VNET_DEFINE(u_char, isn_secret[32]); static VNET_DEFINE(int, isn_last); static VNET_DEFINE(int, isn_last_reseed); static VNET_DEFINE(u_int32_t, isn_offset); static VNET_DEFINE(u_int32_t, isn_offset_old); #define V_isn_secret VNET(isn_secret) #define V_isn_last VNET(isn_last) #define V_isn_last_reseed VNET(isn_last_reseed) #define V_isn_offset VNET(isn_offset) #define V_isn_offset_old VNET(isn_offset_old) tcp_seq tcp_new_isn(struct tcpcb *tp) { MD5_CTX isn_ctx; u_int32_t md5_buffer[4]; tcp_seq new_isn; u_int32_t projected_offset; INP_WLOCK_ASSERT(tp->t_inpcb); ISN_LOCK(); /* Seed if this is the first use, reseed if requested. */ if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) && (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz) < (u_int)ticks))) { read_random(&V_isn_secret, sizeof(V_isn_secret)); V_isn_last_reseed = ticks; } /* Compute the md5 hash and return the ISN. */ MD5Init(&isn_ctx); MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short)); MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short)); #ifdef INET6 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) { MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr, sizeof(struct in6_addr)); MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr, sizeof(struct in6_addr)); } else #endif { MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr, sizeof(struct in_addr)); MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr, sizeof(struct in_addr)); } MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret)); MD5Final((u_char *) &md5_buffer, &isn_ctx); new_isn = (tcp_seq) md5_buffer[0]; V_isn_offset += ISN_STATIC_INCREMENT + (arc4random() & ISN_RANDOM_INCREMENT); if (ticks != V_isn_last) { projected_offset = V_isn_offset_old + ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last); if (SEQ_GT(projected_offset, V_isn_offset)) V_isn_offset = projected_offset; V_isn_offset_old = V_isn_offset; V_isn_last = ticks; } new_isn += V_isn_offset; ISN_UNLOCK(); return (new_isn); } /* * When a specific ICMP unreachable message is received and the * connection state is SYN-SENT, drop the connection. This behavior * is controlled by the icmp_may_rst sysctl. */ struct inpcb * tcp_drop_syn_sent(struct inpcb *inp, int errno) { struct tcpcb *tp; INP_INFO_RLOCK_ASSERT(&V_tcbinfo); INP_WLOCK_ASSERT(inp); if ((inp->inp_flags & INP_TIMEWAIT) || (inp->inp_flags & INP_DROPPED)) return (inp); tp = intotcpcb(inp); if (tp->t_state != TCPS_SYN_SENT) return (inp); if (IS_FASTOPEN(tp->t_flags)) tcp_fastopen_disable_path(tp); tp = tcp_drop(tp, errno); if (tp != NULL) return (inp); else return (NULL); } /* * When `need fragmentation' ICMP is received, update our idea of the MSS * based on the new value. Also nudge TCP to send something, since we * know the packet we just sent was dropped. * This duplicates some code in the tcp_mss() function in tcp_input.c. */ static struct inpcb * tcp_mtudisc_notify(struct inpcb *inp, int error) { tcp_mtudisc(inp, -1); return (inp); } static void tcp_mtudisc(struct inpcb *inp, int mtuoffer) { struct tcpcb *tp; struct socket *so; INP_WLOCK_ASSERT(inp); if ((inp->inp_flags & INP_TIMEWAIT) || (inp->inp_flags & INP_DROPPED)) return; tp = intotcpcb(inp); KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL")); tcp_mss_update(tp, -1, mtuoffer, NULL, NULL); so = inp->inp_socket; SOCKBUF_LOCK(&so->so_snd); /* If the mss is larger than the socket buffer, decrease the mss. */ if (so->so_snd.sb_hiwat < tp->t_maxseg) tp->t_maxseg = so->so_snd.sb_hiwat; SOCKBUF_UNLOCK(&so->so_snd); TCPSTAT_INC(tcps_mturesent); tp->t_rtttime = 0; tp->snd_nxt = tp->snd_una; tcp_free_sackholes(tp); tp->snd_recover = tp->snd_max; if (tp->t_flags & TF_SACK_PERMIT) EXIT_FASTRECOVERY(tp->t_flags); tp->t_fb->tfb_tcp_output(tp); } #ifdef INET /* * Look-up the routing entry to the peer of this inpcb. If no route * is found and it cannot be allocated, then return 0. This routine * is called by TCP routines that access the rmx structure and by * tcp_mss_update to get the peer/interface MTU. */ uint32_t tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap) { struct nhop4_extended nh4; struct ifnet *ifp; uint32_t maxmtu = 0; KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer")); if (inc->inc_faddr.s_addr != INADDR_ANY) { if (fib4_lookup_nh_ext(inc->inc_fibnum, inc->inc_faddr, NHR_REF, 0, &nh4) != 0) return (0); ifp = nh4.nh_ifp; maxmtu = nh4.nh_mtu; /* Report additional interface capabilities. */ if (cap != NULL) { if (ifp->if_capenable & IFCAP_TSO4 && ifp->if_hwassist & CSUM_TSO) { cap->ifcap |= CSUM_TSO; cap->tsomax = ifp->if_hw_tsomax; cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; } } fib4_free_nh_ext(inc->inc_fibnum, &nh4); } return (maxmtu); } #endif /* INET */ #ifdef INET6 uint32_t tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap) { struct nhop6_extended nh6; struct in6_addr dst6; uint32_t scopeid; struct ifnet *ifp; uint32_t maxmtu = 0; KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer")); if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) { in6_splitscope(&inc->inc6_faddr, &dst6, &scopeid); if (fib6_lookup_nh_ext(inc->inc_fibnum, &dst6, scopeid, 0, 0, &nh6) != 0) return (0); ifp = nh6.nh_ifp; maxmtu = nh6.nh_mtu; /* Report additional interface capabilities. */ if (cap != NULL) { if (ifp->if_capenable & IFCAP_TSO6 && ifp->if_hwassist & CSUM_TSO) { cap->ifcap |= CSUM_TSO; cap->tsomax = ifp->if_hw_tsomax; cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; } } fib6_free_nh_ext(inc->inc_fibnum, &nh6); } return (maxmtu); } #endif /* INET6 */ /* * Calculate effective SMSS per RFC5681 definition for a given TCP * connection at its current state, taking into account SACK and etc. */ u_int tcp_maxseg(const struct tcpcb *tp) { u_int optlen; if (tp->t_flags & TF_NOOPT) return (tp->t_maxseg); /* * Here we have a simplified code from tcp_addoptions(), * without a proper loop, and having most of paddings hardcoded. * We might make mistakes with padding here in some edge cases, * but this is harmless, since result of tcp_maxseg() is used * only in cwnd and ssthresh estimations. */ #define PAD(len) ((((len) / 4) + !!((len) % 4)) * 4) if (TCPS_HAVEESTABLISHED(tp->t_state)) { if (tp->t_flags & TF_RCVD_TSTMP) optlen = TCPOLEN_TSTAMP_APPA; else optlen = 0; #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) if (tp->t_flags & TF_SIGNATURE) optlen += PAD(TCPOLEN_SIGNATURE); #endif if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) { optlen += TCPOLEN_SACKHDR; optlen += tp->rcv_numsacks * TCPOLEN_SACK; optlen = PAD(optlen); } } else { if (tp->t_flags & TF_REQ_TSTMP) optlen = TCPOLEN_TSTAMP_APPA; else optlen = PAD(TCPOLEN_MAXSEG); if (tp->t_flags & TF_REQ_SCALE) optlen += PAD(TCPOLEN_WINDOW); #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) if (tp->t_flags & TF_SIGNATURE) optlen += PAD(TCPOLEN_SIGNATURE); #endif if (tp->t_flags & TF_SACK_PERMIT) optlen += PAD(TCPOLEN_SACK_PERMITTED); } #undef PAD optlen = min(optlen, TCP_MAXOLEN); return (tp->t_maxseg - optlen); } static int sysctl_drop(SYSCTL_HANDLER_ARGS) { /* addrs[0] is a foreign socket, addrs[1] is a local one. */ struct sockaddr_storage addrs[2]; struct inpcb *inp; struct tcpcb *tp; struct tcptw *tw; struct sockaddr_in *fin, *lin; #ifdef INET6 struct sockaddr_in6 *fin6, *lin6; #endif int error; inp = NULL; fin = lin = NULL; #ifdef INET6 fin6 = lin6 = NULL; #endif error = 0; if (req->oldptr != NULL || req->oldlen != 0) return (EINVAL); if (req->newptr == NULL) return (EPERM); if (req->newlen < sizeof(addrs)) return (ENOMEM); error = SYSCTL_IN(req, &addrs, sizeof(addrs)); if (error) return (error); switch (addrs[0].ss_family) { #ifdef INET6 case AF_INET6: fin6 = (struct sockaddr_in6 *)&addrs[0]; lin6 = (struct sockaddr_in6 *)&addrs[1]; if (fin6->sin6_len != sizeof(struct sockaddr_in6) || lin6->sin6_len != sizeof(struct sockaddr_in6)) return (EINVAL); if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) { if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr)) return (EINVAL); in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]); in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]); fin = (struct sockaddr_in *)&addrs[0]; lin = (struct sockaddr_in *)&addrs[1]; break; } error = sa6_embedscope(fin6, V_ip6_use_defzone); if (error) return (error); error = sa6_embedscope(lin6, V_ip6_use_defzone); if (error) return (error); break; #endif #ifdef INET case AF_INET: fin = (struct sockaddr_in *)&addrs[0]; lin = (struct sockaddr_in *)&addrs[1]; if (fin->sin_len != sizeof(struct sockaddr_in) || lin->sin_len != sizeof(struct sockaddr_in)) return (EINVAL); break; #endif default: return (EINVAL); } INP_INFO_RLOCK(&V_tcbinfo); switch (addrs[0].ss_family) { #ifdef INET6 case AF_INET6: inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr, fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, INPLOOKUP_WLOCKPCB, NULL); break; #endif #ifdef INET case AF_INET: inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port, lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL); break; #endif } if (inp != NULL) { if (inp->inp_flags & INP_TIMEWAIT) { /* * XXXRW: There currently exists a state where an * inpcb is present, but its timewait state has been * discarded. For now, don't allow dropping of this * type of inpcb. */ tw = intotw(inp); if (tw != NULL) tcp_twclose(tw, 0); else INP_WUNLOCK(inp); } else if (!(inp->inp_flags & INP_DROPPED) && !(inp->inp_socket->so_options & SO_ACCEPTCONN)) { tp = intotcpcb(inp); tp = tcp_drop(tp, ECONNABORTED); if (tp != NULL) INP_WUNLOCK(inp); } else INP_WUNLOCK(inp); } else error = ESRCH; INP_INFO_RUNLOCK(&V_tcbinfo); return (error); } SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop, CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL, 0, sysctl_drop, "", "Drop TCP connection"); /* * Generate a standardized TCP log line for use throughout the * tcp subsystem. Memory allocation is done with M_NOWAIT to * allow use in the interrupt context. * * NB: The caller MUST free(s, M_TCPLOG) the returned string. * NB: The function may return NULL if memory allocation failed. * * Due to header inclusion and ordering limitations the struct ip * and ip6_hdr pointers have to be passed as void pointers. */ char * tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, const void *ip6hdr) { /* Is logging enabled? */ if (tcp_log_in_vain == 0) return (NULL); return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); } char * tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, const void *ip6hdr) { /* Is logging enabled? */ if (tcp_log_debug == 0) return (NULL); return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); } static char * tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, const void *ip6hdr) { char *s, *sp; size_t size; struct ip *ip; #ifdef INET6 const struct ip6_hdr *ip6; ip6 = (const struct ip6_hdr *)ip6hdr; #endif /* INET6 */ ip = (struct ip *)ip4hdr; /* * The log line looks like this: * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2" */ size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") + sizeof(PRINT_TH_FLAGS) + 1 + #ifdef INET6 2 * INET6_ADDRSTRLEN; #else 2 * INET_ADDRSTRLEN; #endif /* INET6 */ s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT); if (s == NULL) return (NULL); strcat(s, "TCP: ["); sp = s + strlen(s); if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) { inet_ntoa_r(inc->inc_faddr, sp); sp = s + strlen(s); sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); sp = s + strlen(s); inet_ntoa_r(inc->inc_laddr, sp); sp = s + strlen(s); sprintf(sp, "]:%i", ntohs(inc->inc_lport)); #ifdef INET6 } else if (inc) { ip6_sprintf(sp, &inc->inc6_faddr); sp = s + strlen(s); sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); sp = s + strlen(s); ip6_sprintf(sp, &inc->inc6_laddr); sp = s + strlen(s); sprintf(sp, "]:%i", ntohs(inc->inc_lport)); } else if (ip6 && th) { ip6_sprintf(sp, &ip6->ip6_src); sp = s + strlen(s); sprintf(sp, "]:%i to [", ntohs(th->th_sport)); sp = s + strlen(s); ip6_sprintf(sp, &ip6->ip6_dst); sp = s + strlen(s); sprintf(sp, "]:%i", ntohs(th->th_dport)); #endif /* INET6 */ #ifdef INET } else if (ip && th) { inet_ntoa_r(ip->ip_src, sp); sp = s + strlen(s); sprintf(sp, "]:%i to [", ntohs(th->th_sport)); sp = s + strlen(s); inet_ntoa_r(ip->ip_dst, sp); sp = s + strlen(s); sprintf(sp, "]:%i", ntohs(th->th_dport)); #endif /* INET */ } else { free(s, M_TCPLOG); return (NULL); } sp = s + strlen(s); if (th) sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS); if (*(s + size - 1) != '\0') panic("%s: string too long", __func__); return (s); } /* * A subroutine which makes it easy to track TCP state changes with DTrace. * This function shouldn't be called for t_state initializations that don't * correspond to actual TCP state transitions. */ void tcp_state_change(struct tcpcb *tp, int newstate) { #if defined(KDTRACE_HOOKS) int pstate = tp->t_state; #endif TCPSTATES_DEC(tp->t_state); TCPSTATES_INC(newstate); tp->t_state = newstate; TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate); } /* * Create an external-format (``xtcpcb'') structure using the information in * the kernel-format tcpcb structure pointed to by tp. This is done to * reduce the spew of irrelevant information over this interface, to isolate * user code from changes in the kernel structure, and potentially to provide * information-hiding if we decide that some of this information should be * hidden from users. */ void tcp_inptoxtp(const struct inpcb *inp, struct xtcpcb *xt) { struct tcpcb *tp = intotcpcb(inp); sbintime_t now; if (inp->inp_flags & INP_TIMEWAIT) { bzero(xt, sizeof(struct xtcpcb)); xt->t_state = TCPS_TIME_WAIT; } else { xt->t_state = tp->t_state; xt->t_logstate = tp->t_logstate; xt->t_flags = tp->t_flags; xt->t_sndzerowin = tp->t_sndzerowin; xt->t_sndrexmitpack = tp->t_sndrexmitpack; xt->t_rcvoopack = tp->t_rcvoopack; now = getsbinuptime(); #define COPYTIMER(ttt) do { \ if (callout_active(&tp->t_timers->ttt)) \ xt->ttt = (tp->t_timers->ttt.c_time - now) / \ SBT_1MS; \ else \ xt->ttt = 0; \ } while (0) COPYTIMER(tt_delack); COPYTIMER(tt_rexmt); COPYTIMER(tt_persist); COPYTIMER(tt_keep); COPYTIMER(tt_2msl); #undef COPYTIMER xt->t_rcvtime = 1000 * (ticks - tp->t_rcvtime) / hz; bcopy(tp->t_fb->tfb_tcp_block_name, xt->xt_stack, TCP_FUNCTION_NAME_LEN_MAX); bzero(xt->xt_logid, TCP_LOG_ID_LEN); #ifdef TCP_BLACKBOX (void)tcp_log_get_id(tp, xt->xt_logid); #endif } xt->xt_len = sizeof(struct xtcpcb); in_pcbtoxinpcb(inp, &xt->xt_inp); if (inp->inp_socket == NULL) xt->xt_inp.xi_socket.xso_protocol = IPPROTO_TCP; } Index: head/sys/netinet/udp_usrreq.c =================================================================== --- head/sys/netinet/udp_usrreq.c (revision 332893) +++ head/sys/netinet/udp_usrreq.c (revision 332894) @@ -1,1795 +1,1795 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 * The Regents of the University of California. * Copyright (c) 2008 Robert N. M. Watson * Copyright (c) 2010-2011 Juniper Networks, Inc. * Copyright (c) 2014 Kevin Lo * All rights reserved. * * Portions of this software were developed by Robert N. M. Watson under * contract to Juniper Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif #include #include #include #include #ifdef INET6 #include #endif #include #include #include #include #include #include #include /* * UDP and UDP-Lite protocols implementation. * Per RFC 768, August, 1980. * Per RFC 3828, July, 2004. */ /* * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums * removes the only data integrity mechanism for packets and malformed * packets that would otherwise be discarded due to bad checksums, and may * cause problems (especially for NFS data blocks). */ VNET_DEFINE(int, udp_cksum) = 1; SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(udp_cksum), 0, "compute udp checksum"); int udp_log_in_vain = 0; SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW, &udp_log_in_vain, 0, "Log all incoming UDP packets"); VNET_DEFINE(int, udp_blackhole) = 0; SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(udp_blackhole), 0, "Do not send port unreachables for refused connects"); u_long udp_sendspace = 9216; /* really max datagram size */ SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); u_long udp_recvspace = 40 * (1024 + #ifdef INET6 sizeof(struct sockaddr_in6) #else sizeof(struct sockaddr_in) #endif ); /* 40 1K datagrams */ SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, &udp_recvspace, 0, "Maximum space for incoming UDP datagrams"); VNET_DEFINE(struct inpcbhead, udb); /* from udp_var.h */ VNET_DEFINE(struct inpcbinfo, udbinfo); VNET_DEFINE(struct inpcbhead, ulitecb); VNET_DEFINE(struct inpcbinfo, ulitecbinfo); static VNET_DEFINE(uma_zone_t, udpcb_zone); #define V_udpcb_zone VNET(udpcb_zone) #ifndef UDBHASHSIZE #define UDBHASHSIZE 128 #endif VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */ VNET_PCPUSTAT_SYSINIT(udpstat); SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat, udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); #ifdef VIMAGE VNET_PCPUSTAT_SYSUNINIT(udpstat); #endif /* VIMAGE */ #ifdef INET static void udp_detach(struct socket *so); static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *, struct mbuf *, struct thread *); #endif static void udp_zone_change(void *tag) { uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets); uma_zone_set_max(V_udpcb_zone, maxsockets); } static int udp_inpcb_init(void *mem, int size, int flags) { struct inpcb *inp; inp = mem; INP_LOCK_INIT(inp, "inp", "udpinp"); return (0); } static int udplite_inpcb_init(void *mem, int size, int flags) { struct inpcb *inp; inp = mem; INP_LOCK_INIT(inp, "inp", "udpliteinp"); return (0); } void udp_init(void) { /* * For now default to 2-tuple UDP hashing - until the fragment * reassembly code can also update the flowid. * * Once we can calculate the flowid that way and re-establish * a 4-tuple, flip this to 4-tuple. */ in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE, "udp_inpcb", udp_inpcb_init, IPI_HASHFIELDS_2TUPLE); V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); uma_zone_set_max(V_udpcb_zone, maxsockets); uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached"); EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL, EVENTHANDLER_PRI_ANY); } void udplite_init(void) { in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE, UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init, IPI_HASHFIELDS_2TUPLE); } /* * Kernel module interface for updating udpstat. The argument is an index * into udpstat treated as an array of u_long. While this encodes the * general layout of udpstat into the caller, it doesn't encode its location, * so that future changes to add, for example, per-CPU stats support won't * cause binary compatibility problems for kernel modules. */ void kmod_udpstat_inc(int statnum) { counter_u64_add(VNET(udpstat)[statnum], 1); } int udp_newudpcb(struct inpcb *inp) { struct udpcb *up; up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO); if (up == NULL) return (ENOBUFS); inp->inp_ppcb = up; return (0); } void udp_discardcb(struct udpcb *up) { uma_zfree(V_udpcb_zone, up); } #ifdef VIMAGE static void udp_destroy(void *unused __unused) { in_pcbinfo_destroy(&V_udbinfo); uma_zdestroy(V_udpcb_zone); } VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL); static void udplite_destroy(void *unused __unused) { in_pcbinfo_destroy(&V_ulitecbinfo); } VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy, NULL); #endif #ifdef INET /* * Subroutine of udp_input(), which appends the provided mbuf chain to the * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that * contains the source address. If the socket ends up being an IPv6 socket, * udp_append() will convert to a sockaddr_in6 before passing the address * into the socket code. * * In the normal case udp_append() will return 0, indicating that you * must unlock the inp. However if a tunneling protocol is in place we increment * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we * then decrement the reference count. If the inp_rele returns 1, indicating the * inp is gone, we return that to the caller to tell them *not* to unlock * the inp. In the case of multi-cast this will cause the distribution * to stop (though most tunneling protocols known currently do *not* use * multicast). */ static int udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off, struct sockaddr_in *udp_in) { struct sockaddr *append_sa; struct socket *so; struct mbuf *tmpopts, *opts = NULL; #ifdef INET6 struct sockaddr_in6 udp_in6; #endif struct udpcb *up; INP_LOCK_ASSERT(inp); /* * Engage the tunneling protocol. */ up = intoudpcb(inp); if (up->u_tun_func != NULL) { in_pcbref(inp); INP_RUNLOCK(inp); (*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0], up->u_tun_ctx); INP_RLOCK(inp); return (in_pcbrele_rlocked(inp)); } off += sizeof(struct udphdr); #if defined(IPSEC) || defined(IPSEC_SUPPORT) /* Check AH/ESP integrity. */ if (IPSEC_ENABLED(ipv4) && IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) { m_freem(n); return (0); } if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */ if (IPSEC_ENABLED(ipv4) && UDPENCAP_INPUT(n, off, AF_INET) != 0) return (0); /* Consumed. */ } #endif /* IPSEC */ #ifdef MAC if (mac_inpcb_check_deliver(inp, n) != 0) { m_freem(n); return (0); } #endif /* MAC */ if (inp->inp_flags & INP_CONTROLOPTS || inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) { #ifdef INET6 if (inp->inp_vflag & INP_IPV6) (void)ip6_savecontrol_v4(inp, n, &opts, NULL); else #endif /* INET6 */ ip_savecontrol(inp, &opts, ip, n); } if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) { tmpopts = sbcreatecontrol((caddr_t)&udp_in[1], sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP); if (tmpopts) { if (opts) { tmpopts->m_next = opts; opts = tmpopts; } else opts = tmpopts; } } #ifdef INET6 if (inp->inp_vflag & INP_IPV6) { bzero(&udp_in6, sizeof(udp_in6)); udp_in6.sin6_len = sizeof(udp_in6); udp_in6.sin6_family = AF_INET6; in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6); append_sa = (struct sockaddr *)&udp_in6; } else #endif /* INET6 */ append_sa = (struct sockaddr *)&udp_in[0]; m_adj(n, off); so = inp->inp_socket; SOCKBUF_LOCK(&so->so_rcv); if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) { SOCKBUF_UNLOCK(&so->so_rcv); m_freem(n); if (opts) m_freem(opts); UDPSTAT_INC(udps_fullsock); } else sorwakeup_locked(so); return (0); } int udp_input(struct mbuf **mp, int *offp, int proto) { struct ip *ip; struct udphdr *uh; struct ifnet *ifp; struct inpcb *inp; uint16_t len, ip_len; struct inpcbinfo *pcbinfo; struct ip save_ip; struct sockaddr_in udp_in[2]; struct mbuf *m; struct m_tag *fwd_tag; int cscov_partial, iphlen; m = *mp; iphlen = *offp; ifp = m->m_pkthdr.rcvif; *mp = NULL; UDPSTAT_INC(udps_ipackets); /* * Strip IP options, if any; should skip this, make available to * user, and use on returned packets, but we don't yet have a way to * check the checksum with options still present. */ if (iphlen > sizeof (struct ip)) { ip_stripoptions(m); iphlen = sizeof(struct ip); } /* * Get IP and UDP header together in first mbuf. */ ip = mtod(m, struct ip *); if (m->m_len < iphlen + sizeof(struct udphdr)) { if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) { UDPSTAT_INC(udps_hdrops); return (IPPROTO_DONE); } ip = mtod(m, struct ip *); } uh = (struct udphdr *)((caddr_t)ip + iphlen); cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0; /* * Destination port of 0 is illegal, based on RFC768. */ if (uh->uh_dport == 0) goto badunlocked; /* * Construct sockaddr format source address. Stuff source address * and datagram in user buffer. */ bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2); udp_in[0].sin_len = sizeof(struct sockaddr_in); udp_in[0].sin_family = AF_INET; udp_in[0].sin_port = uh->uh_sport; udp_in[0].sin_addr = ip->ip_src; udp_in[1].sin_len = sizeof(struct sockaddr_in); udp_in[1].sin_family = AF_INET; udp_in[1].sin_port = uh->uh_dport; udp_in[1].sin_addr = ip->ip_dst; /* * Make mbuf data length reflect UDP length. If not enough data to * reflect UDP length, drop. */ len = ntohs((u_short)uh->uh_ulen); ip_len = ntohs(ip->ip_len) - iphlen; if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) { /* Zero means checksum over the complete packet. */ if (len == 0) len = ip_len; cscov_partial = 0; } if (ip_len != len) { if (len > ip_len || len < sizeof(struct udphdr)) { UDPSTAT_INC(udps_badlen); goto badunlocked; } if (proto == IPPROTO_UDP) m_adj(m, len - ip_len); } /* * Save a copy of the IP header in case we want restore it for * sending an ICMP error message in response. */ if (!V_udp_blackhole) save_ip = *ip; else memset(&save_ip, 0, sizeof(save_ip)); /* * Checksum extended UDP header and data. */ if (uh->uh_sum) { u_short uh_sum; if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && !cscov_partial) { if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) uh_sum = m->m_pkthdr.csum_data; else uh_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htonl((u_short)len + m->m_pkthdr.csum_data + proto)); uh_sum ^= 0xffff; } else { char b[9]; bcopy(((struct ipovly *)ip)->ih_x1, b, 9); bzero(((struct ipovly *)ip)->ih_x1, 9); ((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ? uh->uh_ulen : htons(ip_len); uh_sum = in_cksum(m, len + sizeof (struct ip)); bcopy(b, ((struct ipovly *)ip)->ih_x1, 9); } if (uh_sum) { UDPSTAT_INC(udps_badsum); m_freem(m); return (IPPROTO_DONE); } } else { if (proto == IPPROTO_UDP) { UDPSTAT_INC(udps_nosum); } else { /* UDPLite requires a checksum */ /* XXX: What is the right UDPLite MIB counter here? */ m_freem(m); return (IPPROTO_DONE); } } pcbinfo = udp_get_inpcbinfo(proto); if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || in_broadcast(ip->ip_dst, ifp)) { struct inpcb *last; struct inpcbhead *pcblist; struct ip_moptions *imo; INP_INFO_RLOCK(pcbinfo); pcblist = udp_get_pcblist(proto); last = NULL; LIST_FOREACH(inp, pcblist, inp_list) { if (inp->inp_lport != uh->uh_dport) continue; #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_laddr.s_addr != INADDR_ANY && inp->inp_laddr.s_addr != ip->ip_dst.s_addr) continue; if (inp->inp_faddr.s_addr != INADDR_ANY && inp->inp_faddr.s_addr != ip->ip_src.s_addr) continue; if (inp->inp_fport != 0 && inp->inp_fport != uh->uh_sport) continue; INP_RLOCK(inp); /* * XXXRW: Because we weren't holding either the inpcb * or the hash lock when we checked for a match * before, we should probably recheck now that the * inpcb lock is held. */ /* * Handle socket delivery policy for any-source * and source-specific multicast. [RFC3678] */ imo = inp->inp_moptions; if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { struct sockaddr_in group; int blocked; if (imo == NULL) { INP_RUNLOCK(inp); continue; } bzero(&group, sizeof(struct sockaddr_in)); group.sin_len = sizeof(struct sockaddr_in); group.sin_family = AF_INET; group.sin_addr = ip->ip_dst; blocked = imo_multi_filter(imo, ifp, (struct sockaddr *)&group, (struct sockaddr *)&udp_in[0]); if (blocked != MCAST_PASS) { if (blocked == MCAST_NOTGMEMBER) IPSTAT_INC(ips_notmember); if (blocked == MCAST_NOTSMEMBER || blocked == MCAST_MUTED) UDPSTAT_INC(udps_filtermcast); INP_RUNLOCK(inp); continue; } } if (last != NULL) { struct mbuf *n; if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) != NULL) { UDP_PROBE(receive, NULL, last, ip, last, uh); if (udp_append(last, ip, n, iphlen, udp_in)) { goto inp_lost; } } INP_RUNLOCK(last); } last = inp; /* * Don't look for additional matches if this one does * not have either the SO_REUSEPORT or SO_REUSEADDR * socket options set. This heuristic avoids * searching through all pcbs in the common case of a * non-shared port. It assumes that an application * will never clear these options after setting them. */ if ((last->inp_socket->so_options & - (SO_REUSEPORT|SO_REUSEADDR)) == 0) + (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0) break; } if (last == NULL) { /* * No matching pcb found; discard datagram. (No need * to send an ICMP Port Unreachable for a broadcast * or multicast datgram.) */ UDPSTAT_INC(udps_noportbcast); if (inp) INP_RUNLOCK(inp); INP_INFO_RUNLOCK(pcbinfo); goto badunlocked; } UDP_PROBE(receive, NULL, last, ip, last, uh); if (udp_append(last, ip, m, iphlen, udp_in) == 0) INP_RUNLOCK(last); inp_lost: INP_INFO_RUNLOCK(pcbinfo); return (IPPROTO_DONE); } /* * Locate pcb for datagram. */ /* * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */ if ((m->m_flags & M_IP_NEXTHOP) && (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { struct sockaddr_in *next_hop; next_hop = (struct sockaddr_in *)(fwd_tag + 1); /* * Transparently forwarded. Pretend to be the destination. * Already got one like this? */ inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m); if (!inp) { /* * It's new. Try to find the ambushing socket. * Because we've rewritten the destination address, * any hardware-generated hash is ignored. */ inp = in_pcblookup(pcbinfo, ip->ip_src, uh->uh_sport, next_hop->sin_addr, next_hop->sin_port ? htons(next_hop->sin_port) : uh->uh_dport, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, ifp); } /* Remove the tag from the packet. We don't need it anymore. */ m_tag_delete(m, fwd_tag); m->m_flags &= ~M_IP_NEXTHOP; } else inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, ifp, m); if (inp == NULL) { if (udp_log_in_vain) { char src[INET_ADDRSTRLEN]; char dst[INET_ADDRSTRLEN]; log(LOG_INFO, "Connection attempt to UDP %s:%d from %s:%d\n", inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport), inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport)); } UDPSTAT_INC(udps_noport); if (m->m_flags & (M_BCAST | M_MCAST)) { UDPSTAT_INC(udps_noportbcast); goto badunlocked; } if (V_udp_blackhole) goto badunlocked; if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) goto badunlocked; *ip = save_ip; icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); return (IPPROTO_DONE); } /* * Check the minimum TTL for socket. */ INP_RLOCK_ASSERT(inp); if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) { INP_RUNLOCK(inp); m_freem(m); return (IPPROTO_DONE); } if (cscov_partial) { struct udpcb *up; up = intoudpcb(inp); if (up->u_rxcslen == 0 || up->u_rxcslen > len) { INP_RUNLOCK(inp); m_freem(m); return (IPPROTO_DONE); } } UDP_PROBE(receive, NULL, inp, ip, inp, uh); if (udp_append(inp, ip, m, iphlen, udp_in) == 0) INP_RUNLOCK(inp); return (IPPROTO_DONE); badunlocked: m_freem(m); return (IPPROTO_DONE); } #endif /* INET */ /* * Notify a udp user of an asynchronous error; just wake up so that they can * collect error status. */ struct inpcb * udp_notify(struct inpcb *inp, int errno) { /* * While udp_ctlinput() always calls udp_notify() with a read lock * when invoking it directly, in_pcbnotifyall() currently uses write * locks due to sharing code with TCP. For now, accept either a read * or a write lock, but a read lock is sufficient. */ INP_LOCK_ASSERT(inp); if ((errno == EHOSTUNREACH || errno == ENETUNREACH || errno == EHOSTDOWN) && inp->inp_route.ro_rt) { RTFREE(inp->inp_route.ro_rt); inp->inp_route.ro_rt = (struct rtentry *)NULL; } inp->inp_socket->so_error = errno; sorwakeup(inp->inp_socket); sowwakeup(inp->inp_socket); return (inp); } #ifdef INET static void udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip, struct inpcbinfo *pcbinfo) { struct ip *ip = vip; struct udphdr *uh; struct in_addr faddr; struct inpcb *inp; faddr = ((struct sockaddr_in *)sa)->sin_addr; if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) return; if (PRC_IS_REDIRECT(cmd)) { /* signal EHOSTDOWN, as it flushes the cached route */ in_pcbnotifyall(&V_udbinfo, faddr, EHOSTDOWN, udp_notify); return; } /* * Hostdead is ugly because it goes linearly through all PCBs. * * XXX: We never get this from ICMP, otherwise it makes an excellent * DoS attack on machines with many connections. */ if (cmd == PRC_HOSTDEAD) ip = NULL; else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) return; if (ip != NULL) { uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport, ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL); if (inp != NULL) { INP_RLOCK_ASSERT(inp); if (inp->inp_socket != NULL) { udp_notify(inp, inetctlerrmap[cmd]); } INP_RUNLOCK(inp); } else { inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport, ip->ip_src, uh->uh_sport, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); if (inp != NULL) { struct udpcb *up; up = intoudpcb(inp); if (up->u_icmp_func != NULL) { INP_RUNLOCK(inp); (*up->u_icmp_func)(cmd, sa, vip, up->u_tun_ctx); } else { INP_RUNLOCK(inp); } } } } else in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd], udp_notify); } void udp_ctlinput(int cmd, struct sockaddr *sa, void *vip) { return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo)); } void udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip) { return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo)); } #endif /* INET */ static int udp_pcblist(SYSCTL_HANDLER_ARGS) { int error, i, n; struct inpcb *inp, **inp_list; inp_gen_t gencnt; struct xinpgen xig; /* * The process of preparing the PCB list is too time-consuming and * resource-intensive to repeat twice on every request. */ if (req->oldptr == 0) { n = V_udbinfo.ipi_count; n += imax(n / 8, 10); req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); return (0); } if (req->newptr != 0) return (EPERM); /* * OK, now we're committed to doing something. */ INP_INFO_RLOCK(&V_udbinfo); gencnt = V_udbinfo.ipi_gencnt; n = V_udbinfo.ipi_count; INP_INFO_RUNLOCK(&V_udbinfo); error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) + n * sizeof(struct xinpcb)); if (error != 0) return (error); xig.xig_len = sizeof xig; xig.xig_count = n; xig.xig_gen = gencnt; xig.xig_sogen = so_gencnt; error = SYSCTL_OUT(req, &xig, sizeof xig); if (error) return (error); inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); if (inp_list == NULL) return (ENOMEM); INP_INFO_RLOCK(&V_udbinfo); for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n; inp = LIST_NEXT(inp, inp_list)) { INP_WLOCK(inp); if (inp->inp_gencnt <= gencnt && cr_canseeinpcb(req->td->td_ucred, inp) == 0) { in_pcbref(inp); inp_list[i++] = inp; } INP_WUNLOCK(inp); } INP_INFO_RUNLOCK(&V_udbinfo); n = i; error = 0; for (i = 0; i < n; i++) { inp = inp_list[i]; INP_RLOCK(inp); if (inp->inp_gencnt <= gencnt) { struct xinpcb xi; in_pcbtoxinpcb(inp, &xi); INP_RUNLOCK(inp); error = SYSCTL_OUT(req, &xi, sizeof xi); } else INP_RUNLOCK(inp); } INP_INFO_WLOCK(&V_udbinfo); for (i = 0; i < n; i++) { inp = inp_list[i]; INP_RLOCK(inp); if (!in_pcbrele_rlocked(inp)) INP_RUNLOCK(inp); } INP_INFO_WUNLOCK(&V_udbinfo); if (!error) { /* * Give the user an updated idea of our state. If the * generation differs from what we told her before, she knows * that something happened while we were processing this * request, and it might be necessary to retry. */ INP_INFO_RLOCK(&V_udbinfo); xig.xig_gen = V_udbinfo.ipi_gencnt; xig.xig_sogen = so_gencnt; xig.xig_count = V_udbinfo.ipi_count; INP_INFO_RUNLOCK(&V_udbinfo); error = SYSCTL_OUT(req, &xig, sizeof xig); } free(inp_list, M_TEMP); return (error); } SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, udp_pcblist, "S,xinpcb", "List of active UDP sockets"); #ifdef INET static int udp_getcred(SYSCTL_HANDLER_ARGS) { struct xucred xuc; struct sockaddr_in addrs[2]; struct inpcb *inp; int error; error = priv_check(req->td, PRIV_NETINET_GETCRED); if (error) return (error); error = SYSCTL_IN(req, addrs, sizeof(addrs)); if (error) return (error); inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); if (inp != NULL) { INP_RLOCK_ASSERT(inp); if (inp->inp_socket == NULL) error = ENOENT; if (error == 0) error = cr_canseeinpcb(req->td->td_ucred, inp); if (error == 0) cru2x(inp->inp_cred, &xuc); INP_RUNLOCK(inp); } else error = ENOENT; if (error == 0) error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); return (error); } SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, udp_getcred, "S,xucred", "Get the xucred of a UDP connection"); #endif /* INET */ int udp_ctloutput(struct socket *so, struct sockopt *sopt) { struct inpcb *inp; struct udpcb *up; int isudplite, error, optval; error = 0; isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0; inp = sotoinpcb(so); KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); INP_WLOCK(inp); if (sopt->sopt_level != so->so_proto->pr_protocol) { #ifdef INET6 if (INP_CHECK_SOCKAF(so, AF_INET6)) { INP_WUNLOCK(inp); error = ip6_ctloutput(so, sopt); } #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET { INP_WUNLOCK(inp); error = ip_ctloutput(so, sopt); } #endif return (error); } switch (sopt->sopt_dir) { case SOPT_SET: switch (sopt->sopt_name) { #if defined(IPSEC) || defined(IPSEC_SUPPORT) #ifdef INET case UDP_ENCAP: if (!IPSEC_ENABLED(ipv4)) { INP_WUNLOCK(inp); return (ENOPROTOOPT); } error = UDPENCAP_PCBCTL(inp, sopt); break; #endif /* INET */ #endif /* IPSEC */ case UDPLITE_SEND_CSCOV: case UDPLITE_RECV_CSCOV: if (!isudplite) { INP_WUNLOCK(inp); error = ENOPROTOOPT; break; } INP_WUNLOCK(inp); error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error != 0) break; inp = sotoinpcb(so); KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); INP_WLOCK(inp); up = intoudpcb(inp); KASSERT(up != NULL, ("%s: up == NULL", __func__)); if ((optval != 0 && optval < 8) || (optval > 65535)) { INP_WUNLOCK(inp); error = EINVAL; break; } if (sopt->sopt_name == UDPLITE_SEND_CSCOV) up->u_txcslen = optval; else up->u_rxcslen = optval; INP_WUNLOCK(inp); break; default: INP_WUNLOCK(inp); error = ENOPROTOOPT; break; } break; case SOPT_GET: switch (sopt->sopt_name) { #if defined(IPSEC) || defined(IPSEC_SUPPORT) #ifdef INET case UDP_ENCAP: if (!IPSEC_ENABLED(ipv4)) { INP_WUNLOCK(inp); return (ENOPROTOOPT); } error = UDPENCAP_PCBCTL(inp, sopt); break; #endif /* INET */ #endif /* IPSEC */ case UDPLITE_SEND_CSCOV: case UDPLITE_RECV_CSCOV: if (!isudplite) { INP_WUNLOCK(inp); error = ENOPROTOOPT; break; } up = intoudpcb(inp); KASSERT(up != NULL, ("%s: up == NULL", __func__)); if (sopt->sopt_name == UDPLITE_SEND_CSCOV) optval = up->u_txcslen; else optval = up->u_rxcslen; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof(optval)); break; default: INP_WUNLOCK(inp); error = ENOPROTOOPT; break; } break; } return (error); } #ifdef INET #define UH_WLOCKED 2 #define UH_RLOCKED 1 #define UH_UNLOCKED 0 static int udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct thread *td) { struct udpiphdr *ui; int len = m->m_pkthdr.len; struct in_addr faddr, laddr; struct cmsghdr *cm; struct inpcbinfo *pcbinfo; struct sockaddr_in *sin, src; int cscov_partial = 0; int error = 0; int ipflags; u_short fport, lport; int unlock_udbinfo, unlock_inp; u_char tos; uint8_t pr; uint16_t cscov = 0; uint32_t flowid = 0; uint8_t flowtype = M_HASHTYPE_NONE; /* * udp_output() may need to temporarily bind or connect the current * inpcb. As such, we don't know up front whether we will need the * pcbinfo lock or not. Do any work to decide what is needed up * front before acquiring any locks. */ if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { if (control) m_freem(control); m_freem(m); return (EMSGSIZE); } src.sin_family = 0; sin = (struct sockaddr_in *)addr; if (sin == NULL || (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) { INP_WLOCK(inp); unlock_inp = UH_WLOCKED; } else { INP_RLOCK(inp); unlock_inp = UH_RLOCKED; } tos = inp->inp_ip_tos; if (control != NULL) { /* * XXX: Currently, we assume all the optional information is * stored in a single mbuf. */ if (control->m_next) { if (unlock_inp == UH_WLOCKED) INP_WUNLOCK(inp); else INP_RUNLOCK(inp); m_freem(control); m_freem(m); return (EINVAL); } for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { cm = mtod(control, struct cmsghdr *); if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) { error = EINVAL; break; } if (cm->cmsg_level != IPPROTO_IP) continue; switch (cm->cmsg_type) { case IP_SENDSRCADDR: if (cm->cmsg_len != CMSG_LEN(sizeof(struct in_addr))) { error = EINVAL; break; } bzero(&src, sizeof(src)); src.sin_family = AF_INET; src.sin_len = sizeof(src); src.sin_port = inp->inp_lport; src.sin_addr = *(struct in_addr *)CMSG_DATA(cm); break; case IP_TOS: if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) { error = EINVAL; break; } tos = *(u_char *)CMSG_DATA(cm); break; case IP_FLOWID: if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { error = EINVAL; break; } flowid = *(uint32_t *) CMSG_DATA(cm); break; case IP_FLOWTYPE: if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { error = EINVAL; break; } flowtype = *(uint32_t *) CMSG_DATA(cm); break; #ifdef RSS case IP_RSSBUCKETID: if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { error = EINVAL; break; } /* This is just a placeholder for now */ break; #endif /* RSS */ default: error = ENOPROTOOPT; break; } if (error) break; } m_freem(control); } if (error) { if (unlock_inp == UH_WLOCKED) INP_WUNLOCK(inp); else INP_RUNLOCK(inp); m_freem(m); return (error); } /* * Depending on whether or not the application has bound or connected * the socket, we may have to do varying levels of work. The optimal * case is for a connected UDP socket, as a global lock isn't * required at all. * * In order to decide which we need, we require stability of the * inpcb binding, which we ensure by acquiring a read lock on the * inpcb. This doesn't strictly follow the lock order, so we play * the trylock and retry game; note that we may end up with more * conservative locks than required the second time around, so later * assertions have to accept that. Further analysis of the number of * misses under contention is required. * * XXXRW: Check that hash locking update here is correct. */ pr = inp->inp_socket->so_proto->pr_protocol; pcbinfo = udp_get_inpcbinfo(pr); sin = (struct sockaddr_in *)addr; if (sin != NULL && (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) { INP_HASH_WLOCK(pcbinfo); unlock_udbinfo = UH_WLOCKED; } else if ((sin != NULL && ( (sin->sin_addr.s_addr == INADDR_ANY) || (sin->sin_addr.s_addr == INADDR_BROADCAST) || (inp->inp_laddr.s_addr == INADDR_ANY) || (inp->inp_lport == 0))) || (src.sin_family == AF_INET)) { INP_HASH_RLOCK(pcbinfo); unlock_udbinfo = UH_RLOCKED; } else unlock_udbinfo = UH_UNLOCKED; /* * If the IP_SENDSRCADDR control message was specified, override the * source address for this datagram. Its use is invalidated if the * address thus specified is incomplete or clobbers other inpcbs. */ laddr = inp->inp_laddr; lport = inp->inp_lport; if (src.sin_family == AF_INET) { INP_HASH_LOCK_ASSERT(pcbinfo); if ((lport == 0) || (laddr.s_addr == INADDR_ANY && src.sin_addr.s_addr == INADDR_ANY)) { error = EINVAL; goto release; } error = in_pcbbind_setup(inp, (struct sockaddr *)&src, &laddr.s_addr, &lport, td->td_ucred); if (error) goto release; } /* * If a UDP socket has been connected, then a local address/port will * have been selected and bound. * * If a UDP socket has not been connected to, then an explicit * destination address must be used, in which case a local * address/port may not have been selected and bound. */ if (sin != NULL) { INP_LOCK_ASSERT(inp); if (inp->inp_faddr.s_addr != INADDR_ANY) { error = EISCONN; goto release; } /* * Jail may rewrite the destination address, so let it do * that before we use it. */ error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); if (error) goto release; /* * If a local address or port hasn't yet been selected, or if * the destination address needs to be rewritten due to using * a special INADDR_ constant, invoke in_pcbconnect_setup() * to do the heavy lifting. Once a port is selected, we * commit the binding back to the socket; we also commit the * binding of the address if in jail. * * If we already have a valid binding and we're not * requesting a destination address rewrite, use a fast path. */ if (inp->inp_laddr.s_addr == INADDR_ANY || inp->inp_lport == 0 || sin->sin_addr.s_addr == INADDR_ANY || sin->sin_addr.s_addr == INADDR_BROADCAST) { INP_HASH_LOCK_ASSERT(pcbinfo); error = in_pcbconnect_setup(inp, addr, &laddr.s_addr, &lport, &faddr.s_addr, &fport, NULL, td->td_ucred); if (error) goto release; /* * XXXRW: Why not commit the port if the address is * !INADDR_ANY? */ /* Commit the local port if newly assigned. */ if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); /* * Remember addr if jailed, to prevent * rebinding. */ if (prison_flag(td->td_ucred, PR_IP4)) inp->inp_laddr = laddr; inp->inp_lport = lport; if (in_pcbinshash(inp) != 0) { inp->inp_lport = 0; error = EAGAIN; goto release; } inp->inp_flags |= INP_ANONPORT; } } else { faddr = sin->sin_addr; fport = sin->sin_port; } } else { INP_LOCK_ASSERT(inp); faddr = inp->inp_faddr; fport = inp->inp_fport; if (faddr.s_addr == INADDR_ANY) { error = ENOTCONN; goto release; } } /* * Calculate data length and get a mbuf for UDP, IP, and possible * link-layer headers. Immediate slide the data pointer back forward * since we won't use that space at this layer. */ M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT); if (m == NULL) { error = ENOBUFS; goto release; } m->m_data += max_linkhdr; m->m_len -= max_linkhdr; m->m_pkthdr.len -= max_linkhdr; /* * Fill in mbuf with extended UDP header and addresses and length put * into network format. */ ui = mtod(m, struct udpiphdr *); bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */ ui->ui_pr = pr; ui->ui_src = laddr; ui->ui_dst = faddr; ui->ui_sport = lport; ui->ui_dport = fport; ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); if (pr == IPPROTO_UDPLITE) { struct udpcb *up; uint16_t plen; up = intoudpcb(inp); cscov = up->u_txcslen; plen = (u_short)len + sizeof(struct udphdr); if (cscov >= plen) cscov = 0; ui->ui_len = htons(plen); ui->ui_ulen = htons(cscov); /* * For UDP-Lite, checksum coverage length of zero means * the entire UDPLite packet is covered by the checksum. */ cscov_partial = (cscov == 0) ? 0 : 1; } else ui->ui_v = IPVERSION << 4; /* * Set the Don't Fragment bit in the IP header. */ if (inp->inp_flags & INP_DONTFRAG) { struct ip *ip; ip = (struct ip *)&ui->ui_i; ip->ip_off |= htons(IP_DF); } ipflags = 0; if (inp->inp_socket->so_options & SO_DONTROUTE) ipflags |= IP_ROUTETOIF; if (inp->inp_socket->so_options & SO_BROADCAST) ipflags |= IP_ALLOWBROADCAST; if (inp->inp_flags & INP_ONESBCAST) ipflags |= IP_SENDONES; #ifdef MAC mac_inpcb_create_mbuf(inp, m); #endif /* * Set up checksum and output datagram. */ ui->ui_sum = 0; if (pr == IPPROTO_UDPLITE) { if (inp->inp_flags & INP_ONESBCAST) faddr.s_addr = INADDR_BROADCAST; if (cscov_partial) { if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0) ui->ui_sum = 0xffff; } else { if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0) ui->ui_sum = 0xffff; } } else if (V_udp_cksum) { if (inp->inp_flags & INP_ONESBCAST) faddr.s_addr = INADDR_BROADCAST; ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr, htons((u_short)len + sizeof(struct udphdr) + pr)); m->m_pkthdr.csum_flags = CSUM_UDP; m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); } ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len); ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ ((struct ip *)ui)->ip_tos = tos; /* XXX */ UDPSTAT_INC(udps_opackets); /* * Setup flowid / RSS information for outbound socket. * * Once the UDP code decides to set a flowid some other way, * this allows the flowid to be overridden by userland. */ if (flowtype != M_HASHTYPE_NONE) { m->m_pkthdr.flowid = flowid; M_HASHTYPE_SET(m, flowtype); #ifdef RSS } else { uint32_t hash_val, hash_type; /* * Calculate an appropriate RSS hash for UDP and * UDP Lite. * * The called function will take care of figuring out * whether a 2-tuple or 4-tuple hash is required based * on the currently configured scheme. * * Later later on connected socket values should be * cached in the inpcb and reused, rather than constantly * re-calculating it. * * UDP Lite is a different protocol number and will * likely end up being hashed as a 2-tuple until * RSS / NICs grow UDP Lite protocol awareness. */ if (rss_proto_software_hash_v4(faddr, laddr, fport, lport, pr, &hash_val, &hash_type) == 0) { m->m_pkthdr.flowid = hash_val; M_HASHTYPE_SET(m, hash_type); } #endif } #ifdef RSS /* * Don't override with the inp cached flowid value. * * Depending upon the kind of send being done, the inp * flowid/flowtype values may actually not be appropriate * for this particular socket send. * * We should either leave the flowid at zero (which is what is * currently done) or set it to some software generated * hash value based on the packet contents. */ ipflags |= IP_NODEFAULTFLOWID; #endif /* RSS */ if (unlock_udbinfo == UH_WLOCKED) INP_HASH_WUNLOCK(pcbinfo); else if (unlock_udbinfo == UH_RLOCKED) INP_HASH_RUNLOCK(pcbinfo); UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); error = ip_output(m, inp->inp_options, (unlock_inp == UH_WLOCKED ? &inp->inp_route : NULL), ipflags, inp->inp_moptions, inp); if (unlock_inp == UH_WLOCKED) INP_WUNLOCK(inp); else INP_RUNLOCK(inp); return (error); release: if (unlock_udbinfo == UH_WLOCKED) { KASSERT(unlock_inp == UH_WLOCKED, ("%s: excl udbinfo lock, shared inp lock", __func__)); INP_HASH_WUNLOCK(pcbinfo); INP_WUNLOCK(inp); } else if (unlock_udbinfo == UH_RLOCKED) { KASSERT(unlock_inp == UH_RLOCKED, ("%s: shared udbinfo lock, excl inp lock", __func__)); INP_HASH_RUNLOCK(pcbinfo); INP_RUNLOCK(inp); } else if (unlock_inp == UH_WLOCKED) INP_WUNLOCK(inp); else INP_RUNLOCK(inp); m_freem(m); return (error); } static void udp_abort(struct socket *so) { struct inpcb *inp; struct inpcbinfo *pcbinfo; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_abort: inp == NULL")); INP_WLOCK(inp); if (inp->inp_faddr.s_addr != INADDR_ANY) { INP_HASH_WLOCK(pcbinfo); in_pcbdisconnect(inp); inp->inp_laddr.s_addr = INADDR_ANY; INP_HASH_WUNLOCK(pcbinfo); soisdisconnected(so); } INP_WUNLOCK(inp); } static int udp_attach(struct socket *so, int proto, struct thread *td) { struct inpcb *inp; struct inpcbinfo *pcbinfo; int error; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp == NULL, ("udp_attach: inp != NULL")); error = soreserve(so, udp_sendspace, udp_recvspace); if (error) return (error); INP_INFO_WLOCK(pcbinfo); error = in_pcballoc(so, pcbinfo); if (error) { INP_INFO_WUNLOCK(pcbinfo); return (error); } inp = sotoinpcb(so); inp->inp_vflag |= INP_IPV4; inp->inp_ip_ttl = V_ip_defttl; error = udp_newudpcb(inp); if (error) { in_pcbdetach(inp); in_pcbfree(inp); INP_INFO_WUNLOCK(pcbinfo); return (error); } INP_WUNLOCK(inp); INP_INFO_WUNLOCK(pcbinfo); return (0); } #endif /* INET */ int udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx) { struct inpcb *inp; struct udpcb *up; KASSERT(so->so_type == SOCK_DGRAM, ("udp_set_kernel_tunneling: !dgram")); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL")); INP_WLOCK(inp); up = intoudpcb(inp); if ((up->u_tun_func != NULL) || (up->u_icmp_func != NULL)) { INP_WUNLOCK(inp); return (EBUSY); } up->u_tun_func = f; up->u_icmp_func = i; up->u_tun_ctx = ctx; INP_WUNLOCK(inp); return (0); } #ifdef INET static int udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { struct inpcb *inp; struct inpcbinfo *pcbinfo; int error; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_bind: inp == NULL")); INP_WLOCK(inp); INP_HASH_WLOCK(pcbinfo); error = in_pcbbind(inp, nam, td->td_ucred); INP_HASH_WUNLOCK(pcbinfo); INP_WUNLOCK(inp); return (error); } static void udp_close(struct socket *so) { struct inpcb *inp; struct inpcbinfo *pcbinfo; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_close: inp == NULL")); INP_WLOCK(inp); if (inp->inp_faddr.s_addr != INADDR_ANY) { INP_HASH_WLOCK(pcbinfo); in_pcbdisconnect(inp); inp->inp_laddr.s_addr = INADDR_ANY; INP_HASH_WUNLOCK(pcbinfo); soisdisconnected(so); } INP_WUNLOCK(inp); } static int udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { struct inpcb *inp; struct inpcbinfo *pcbinfo; struct sockaddr_in *sin; int error; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_connect: inp == NULL")); INP_WLOCK(inp); if (inp->inp_faddr.s_addr != INADDR_ANY) { INP_WUNLOCK(inp); return (EISCONN); } sin = (struct sockaddr_in *)nam; error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); if (error != 0) { INP_WUNLOCK(inp); return (error); } INP_HASH_WLOCK(pcbinfo); error = in_pcbconnect(inp, nam, td->td_ucred); INP_HASH_WUNLOCK(pcbinfo); if (error == 0) soisconnected(so); INP_WUNLOCK(inp); return (error); } static void udp_detach(struct socket *so) { struct inpcb *inp; struct inpcbinfo *pcbinfo; struct udpcb *up; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_detach: inp == NULL")); KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, ("udp_detach: not disconnected")); INP_INFO_WLOCK(pcbinfo); INP_WLOCK(inp); up = intoudpcb(inp); KASSERT(up != NULL, ("%s: up == NULL", __func__)); inp->inp_ppcb = NULL; in_pcbdetach(inp); in_pcbfree(inp); INP_INFO_WUNLOCK(pcbinfo); udp_discardcb(up); } static int udp_disconnect(struct socket *so) { struct inpcb *inp; struct inpcbinfo *pcbinfo; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_disconnect: inp == NULL")); INP_WLOCK(inp); if (inp->inp_faddr.s_addr == INADDR_ANY) { INP_WUNLOCK(inp); return (ENOTCONN); } INP_HASH_WLOCK(pcbinfo); in_pcbdisconnect(inp); inp->inp_laddr.s_addr = INADDR_ANY; INP_HASH_WUNLOCK(pcbinfo); SOCK_LOCK(so); so->so_state &= ~SS_ISCONNECTED; /* XXX */ SOCK_UNLOCK(so); INP_WUNLOCK(inp); return (0); } static int udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct thread *td) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_send: inp == NULL")); return (udp_output(inp, m, addr, control, td)); } #endif /* INET */ int udp_shutdown(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_shutdown: inp == NULL")); INP_WLOCK(inp); socantsendmore(so); INP_WUNLOCK(inp); return (0); } #ifdef INET struct pr_usrreqs udp_usrreqs = { .pru_abort = udp_abort, .pru_attach = udp_attach, .pru_bind = udp_bind, .pru_connect = udp_connect, .pru_control = in_control, .pru_detach = udp_detach, .pru_disconnect = udp_disconnect, .pru_peeraddr = in_getpeeraddr, .pru_send = udp_send, .pru_soreceive = soreceive_dgram, .pru_sosend = sosend_dgram, .pru_shutdown = udp_shutdown, .pru_sockaddr = in_getsockaddr, .pru_sosetlabel = in_pcbsosetlabel, .pru_close = udp_close, }; #endif /* INET */ Index: head/sys/netinet6/in6_pcb.c =================================================================== --- head/sys/netinet6/in6_pcb.c (revision 332893) +++ head/sys/netinet6/in6_pcb.c (revision 332894) @@ -1,1315 +1,1393 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * Copyright (c) 2010-2011 Juniper Networks, Inc. * All rights reserved. * * Portions of this software were developed by Robert N. M. Watson under * contract to Juniper Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: in6_pcb.c,v 1.31 2001/05/21 05:45:10 jinmei Exp $ */ /*- * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_pcb.c 8.2 (Berkeley) 1/4/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_pcbgroup.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct inpcb *in6_pcblookup_hash_locked(struct inpcbinfo *, struct in6_addr *, u_int, struct in6_addr *, u_int, int, struct ifnet *); int in6_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) { struct socket *so = inp->inp_socket; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)NULL; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; u_short lport = 0; int error, lookupflags = 0; int reuseport = (so->so_options & SO_REUSEPORT); + /* + * XXX Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here + * so that we don't have to add to the (already messy) code below + */ + int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); + INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); if (TAILQ_EMPTY(&V_in6_ifaddrhead)) /* XXX broken! */ return (EADDRNOTAVAIL); if (inp->inp_lport || !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) return (EINVAL); - if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) + if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) lookupflags = INPLOOKUP_WILDCARD; if (nam == NULL) { if ((error = prison_local_ip6(cred, &inp->in6p_laddr, ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0))) != 0) return (error); } else { sin6 = (struct sockaddr_in6 *)nam; if (nam->sa_len != sizeof(*sin6)) return (EINVAL); /* * family check. */ if (nam->sa_family != AF_INET6) return (EAFNOSUPPORT); if ((error = sa6_embedscope(sin6, V_ip6_use_defzone)) != 0) return(error); if ((error = prison_local_ip6(cred, &sin6->sin6_addr, ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0))) != 0) return (error); lport = sin6->sin6_port; if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { /* * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; * allow compepte duplication of binding if * SO_REUSEPORT is set, or if SO_REUSEADDR is set * and a multicast address is bound on both * new and duplicated sockets. */ if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) reuseport = SO_REUSEADDR|SO_REUSEPORT; + // XXX: How to deal with SO_REUSEPORT_LB here? + // Added equivalent treatment as SO_REUSEPORT here for now + if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) + reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; } else if (!IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { struct ifaddr *ifa; sin6->sin6_port = 0; /* yech... */ if ((ifa = ifa_ifwithaddr((struct sockaddr *)sin6)) == NULL && (inp->inp_flags & INP_BINDANY) == 0) { return (EADDRNOTAVAIL); } /* * XXX: bind to an anycast address might accidentally * cause sending a packet with anycast source address. * We should allow to bind to a deprecated address, since * the application dares to use it. */ if (ifa != NULL && ((struct in6_ifaddr *)ifa)->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY|IN6_IFF_DETACHED)) { ifa_free(ifa); return (EADDRNOTAVAIL); } if (ifa != NULL) ifa_free(ifa); } if (lport) { struct inpcb *t; struct tcptw *tw; /* GROSS */ if (ntohs(lport) <= V_ipport_reservedhigh && ntohs(lport) >= V_ipport_reservedlow && priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0)) return (EACCES); if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr) && priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT, 0) != 0) { t = in6_pcblookup_local(pcbinfo, &sin6->sin6_addr, lport, INPLOOKUP_WILDCARD, cred); if (t && ((inp->inp_flags2 & INP_BINDMULTI) == 0) && ((t->inp_flags & INP_TIMEWAIT) == 0) && (so->so_type != SOCK_STREAM || IN6_IS_ADDR_UNSPECIFIED(&t->in6p_faddr)) && (!IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr) || !IN6_IS_ADDR_UNSPECIFIED(&t->in6p_laddr) || - (t->inp_flags2 & INP_REUSEPORT) == 0) && + (t->inp_flags2 & INP_REUSEPORT) || + (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && (inp->inp_cred->cr_uid != t->inp_cred->cr_uid)) return (EADDRINUSE); /* * If the socket is a BINDMULTI socket, then * the credentials need to match and the * original socket also has to have been bound * with BINDMULTI. */ if (t && (! in_pcbbind_check_bindmulti(inp, t))) return (EADDRINUSE); #ifdef INET if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0 && IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { struct sockaddr_in sin; in6_sin6_2_sin(&sin, sin6); t = in_pcblookup_local(pcbinfo, sin.sin_addr, lport, INPLOOKUP_WILDCARD, cred); if (t && ((inp->inp_flags2 & INP_BINDMULTI) == 0) && ((t->inp_flags & INP_TIMEWAIT) == 0) && (so->so_type != SOCK_STREAM || ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && (inp->inp_cred->cr_uid != t->inp_cred->cr_uid)) return (EADDRINUSE); if (t && (! in_pcbbind_check_bindmulti(inp, t))) return (EADDRINUSE); } #endif } t = in6_pcblookup_local(pcbinfo, &sin6->sin6_addr, lport, lookupflags, cred); if (t && (t->inp_flags & INP_TIMEWAIT)) { /* * XXXRW: If an incpb has had its timewait * state recycled, we treat the address as * being in use (for now). This is better * than a panic, but not desirable. */ tw = intotw(t); if (tw == NULL || - (reuseport & tw->tw_so_options) == 0) + ((reuseport & tw->tw_so_options) == 0 && + (reuseport_lb & tw->tw_so_options) == 0)) return (EADDRINUSE); - } else if (t && (reuseport & inp_so_options(t)) == 0) { + } else if (t && (reuseport & inp_so_options(t)) == 0 && + (reuseport_lb & inp_so_options(t)) == 0) { return (EADDRINUSE); } #ifdef INET if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0 && - IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { + IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { struct sockaddr_in sin; in6_sin6_2_sin(&sin, sin6); t = in_pcblookup_local(pcbinfo, sin.sin_addr, - lport, lookupflags, cred); + lport, lookupflags, cred); if (t && t->inp_flags & INP_TIMEWAIT) { tw = intotw(t); if (tw == NULL) return (EADDRINUSE); if ((reuseport & tw->tw_so_options) == 0 - && (ntohl(t->inp_laddr.s_addr) != - INADDR_ANY || ((inp->inp_vflag & - INP_IPV6PROTO) == - (t->inp_vflag & INP_IPV6PROTO)))) + && (reuseport_lb & tw->tw_so_options) == 0 + && (ntohl(t->inp_laddr.s_addr) != + INADDR_ANY || ((inp->inp_vflag & + INP_IPV6PROTO) == + (t->inp_vflag & INP_IPV6PROTO)))) return (EADDRINUSE); } else if (t && - (reuseport & inp_so_options(t)) == 0 && - (ntohl(t->inp_laddr.s_addr) != INADDR_ANY || - (t->inp_vflag & INP_IPV6PROTO) != 0)) + (reuseport & inp_so_options(t)) == 0 && + (reuseport_lb & inp_so_options(t)) == 0 && + (ntohl(t->inp_laddr.s_addr) != INADDR_ANY || + (t->inp_vflag & INP_IPV6PROTO) != 0)) { return (EADDRINUSE); + } } #endif } inp->in6p_laddr = sin6->sin6_addr; } if (lport == 0) { if ((error = in6_pcbsetport(&inp->in6p_laddr, inp, cred)) != 0) { /* Undo an address bind that may have occurred. */ inp->in6p_laddr = in6addr_any; return (error); } } else { inp->inp_lport = lport; if (in_pcbinshash(inp) != 0) { inp->in6p_laddr = in6addr_any; inp->inp_lport = 0; return (EAGAIN); } } return (0); } /* * Transform old in6_pcbconnect() into an inner subroutine for new * in6_pcbconnect(): Do some validity-checking on the remote * address (in mbuf 'nam') and then determine local host address * (i.e., which interface) to use to access that remote host. * * This preserves definition of in6_pcbconnect(), while supporting a * slightly different version for T/TCP. (This is more than * a bit of a kludge, but cleaning up the internal interfaces would * have forced minor changes in every protocol). */ static int in6_pcbladdr(struct inpcb *inp, struct sockaddr *nam, struct in6_addr *plocal_addr6) { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)nam; int error = 0; int scope_ambiguous = 0; struct in6_addr in6a; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); /* XXXRW: why? */ if (nam->sa_len != sizeof (*sin6)) return (EINVAL); if (sin6->sin6_family != AF_INET6) return (EAFNOSUPPORT); if (sin6->sin6_port == 0) return (EADDRNOTAVAIL); if (sin6->sin6_scope_id == 0 && !V_ip6_use_defzone) scope_ambiguous = 1; if ((error = sa6_embedscope(sin6, V_ip6_use_defzone)) != 0) return(error); if (!TAILQ_EMPTY(&V_in6_ifaddrhead)) { /* * If the destination address is UNSPECIFIED addr, * use the loopback addr, e.g ::1. */ if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) sin6->sin6_addr = in6addr_loopback; } if ((error = prison_remote_ip6(inp->inp_cred, &sin6->sin6_addr)) != 0) return (error); error = in6_selectsrc_socket(sin6, inp->in6p_outputopts, inp, inp->inp_cred, scope_ambiguous, &in6a, NULL); if (error) return (error); /* * Do not update this earlier, in case we return with an error. * * XXX: this in6_selectsrc_socket result might replace the bound local * address with the address specified by setsockopt(IPV6_PKTINFO). * Is it the intended behavior? */ *plocal_addr6 = in6a; /* * Don't do pcblookup call here; return interface in * plocal_addr6 * and exit to caller, that will do the lookup. */ return (0); } /* * Outer subroutine: * Connect from a socket to a specified address. * Both address and port must be specified in argument sin. * If don't have a local address for this socket yet, * then pick one. */ int in6_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred, struct mbuf *m) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)nam; struct in6_addr addr6; int error; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); /* * Call inner routine, to assign local interface address. * in6_pcbladdr() may automatically fill in sin6_scope_id. */ if ((error = in6_pcbladdr(inp, nam, &addr6)) != 0) return (error); if (in6_pcblookup_hash_locked(pcbinfo, &sin6->sin6_addr, sin6->sin6_port, IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) ? &addr6 : &inp->in6p_laddr, inp->inp_lport, 0, NULL) != NULL) { return (EADDRINUSE); } if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { if (inp->inp_lport == 0) { error = in6_pcbbind(inp, (struct sockaddr *)0, cred); if (error) return (error); } inp->in6p_laddr = addr6; } inp->in6p_faddr = sin6->sin6_addr; inp->inp_fport = sin6->sin6_port; /* update flowinfo - draft-itojun-ipv6-flowlabel-api-00 */ inp->inp_flow &= ~IPV6_FLOWLABEL_MASK; if (inp->inp_flags & IN6P_AUTOFLOWLABEL) inp->inp_flow |= (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK); in_pcbrehash_mbuf(inp, m); return (0); } int in6_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) { return (in6_pcbconnect_mbuf(inp, nam, cred, NULL)); } void in6_pcbdisconnect(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); bzero((caddr_t)&inp->in6p_faddr, sizeof(inp->in6p_faddr)); inp->inp_fport = 0; /* clear flowinfo - draft-itojun-ipv6-flowlabel-api-00 */ inp->inp_flow &= ~IPV6_FLOWLABEL_MASK; in_pcbrehash(inp); } struct sockaddr * in6_sockaddr(in_port_t port, struct in6_addr *addr_p) { struct sockaddr_in6 *sin6; sin6 = malloc(sizeof *sin6, M_SONAME, M_WAITOK); bzero(sin6, sizeof *sin6); sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(*sin6); sin6->sin6_port = port; sin6->sin6_addr = *addr_p; (void)sa6_recoverscope(sin6); /* XXX: should catch errors */ return (struct sockaddr *)sin6; } struct sockaddr * in6_v4mapsin6_sockaddr(in_port_t port, struct in_addr *addr_p) { struct sockaddr_in sin; struct sockaddr_in6 *sin6_p; bzero(&sin, sizeof sin); sin.sin_family = AF_INET; sin.sin_len = sizeof(sin); sin.sin_port = port; sin.sin_addr = *addr_p; sin6_p = malloc(sizeof *sin6_p, M_SONAME, M_WAITOK); in6_sin_2_v4mapsin6(&sin, sin6_p); return (struct sockaddr *)sin6_p; } int in6_getsockaddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; struct in6_addr addr; in_port_t port; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in6_getsockaddr: inp == NULL")); INP_RLOCK(inp); port = inp->inp_lport; addr = inp->in6p_laddr; INP_RUNLOCK(inp); *nam = in6_sockaddr(port, &addr); return 0; } int in6_getpeeraddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; struct in6_addr addr; in_port_t port; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in6_getpeeraddr: inp == NULL")); INP_RLOCK(inp); port = inp->inp_fport; addr = inp->in6p_faddr; INP_RUNLOCK(inp); *nam = in6_sockaddr(port, &addr); return 0; } int in6_mapped_sockaddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; int error; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in6_mapped_sockaddr: inp == NULL")); #ifdef INET if ((inp->inp_vflag & (INP_IPV4 | INP_IPV6)) == INP_IPV4) { error = in_getsockaddr(so, nam); if (error == 0) in6_sin_2_v4mapsin6_in_sock(nam); } else #endif { /* scope issues will be handled in in6_getsockaddr(). */ error = in6_getsockaddr(so, nam); } return error; } int in6_mapped_peeraddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; int error; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in6_mapped_peeraddr: inp == NULL")); #ifdef INET if ((inp->inp_vflag & (INP_IPV4 | INP_IPV6)) == INP_IPV4) { error = in_getpeeraddr(so, nam); if (error == 0) in6_sin_2_v4mapsin6_in_sock(nam); } else #endif /* scope issues will be handled in in6_getpeeraddr(). */ error = in6_getpeeraddr(so, nam); return error; } /* * Pass some notification to all connections of a protocol * associated with address dst. The local address and/or port numbers * may be specified to limit the search. The "usual action" will be * taken, depending on the ctlinput cmd. The caller must filter any * cmds that are uninteresting (e.g., no error in the map). * Call the protocol specific routine (if any) to report * any errors for each matching socket. */ void in6_pcbnotify(struct inpcbinfo *pcbinfo, struct sockaddr *dst, u_int fport_arg, const struct sockaddr *src, u_int lport_arg, int cmd, void *cmdarg, struct inpcb *(*notify)(struct inpcb *, int)) { struct inpcb *inp, *inp_temp; struct sockaddr_in6 sa6_src, *sa6_dst; u_short fport = fport_arg, lport = lport_arg; u_int32_t flowinfo; int errno; if ((unsigned)cmd >= PRC_NCMDS || dst->sa_family != AF_INET6) return; sa6_dst = (struct sockaddr_in6 *)dst; if (IN6_IS_ADDR_UNSPECIFIED(&sa6_dst->sin6_addr)) return; /* * note that src can be NULL when we get notify by local fragmentation. */ sa6_src = (src == NULL) ? sa6_any : *(const struct sockaddr_in6 *)src; flowinfo = sa6_src.sin6_flowinfo; /* * Redirects go to all references to the destination, * and use in6_rtchange to invalidate the route cache. * Dead host indications: also use in6_rtchange to invalidate * the cache, and deliver the error to all the sockets. * Otherwise, if we have knowledge of the local port and address, * deliver only to that socket. */ if (PRC_IS_REDIRECT(cmd) || cmd == PRC_HOSTDEAD) { fport = 0; lport = 0; bzero((caddr_t)&sa6_src.sin6_addr, sizeof(sa6_src.sin6_addr)); if (cmd != PRC_HOSTDEAD) notify = in6_rtchange; } errno = inet6ctlerrmap[cmd]; INP_INFO_WLOCK(pcbinfo); LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { INP_WLOCK(inp); if ((inp->inp_vflag & INP_IPV6) == 0) { INP_WUNLOCK(inp); continue; } /* * If the error designates a new path MTU for a destination * and the application (associated with this socket) wanted to * know the value, notify. * XXX: should we avoid to notify the value to TCP sockets? */ if (cmd == PRC_MSGSIZE && cmdarg != NULL) ip6_notify_pmtu(inp, (struct sockaddr_in6 *)dst, *(u_int32_t *)cmdarg); /* * Detect if we should notify the error. If no source and * destination ports are specifed, but non-zero flowinfo and * local address match, notify the error. This is the case * when the error is delivered with an encrypted buffer * by ESP. Otherwise, just compare addresses and ports * as usual. */ if (lport == 0 && fport == 0 && flowinfo && inp->inp_socket != NULL && flowinfo == (inp->inp_flow & IPV6_FLOWLABEL_MASK) && IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, &sa6_src.sin6_addr)) goto do_notify; else if (!IN6_ARE_ADDR_EQUAL(&inp->in6p_faddr, &sa6_dst->sin6_addr) || inp->inp_socket == 0 || (lport && inp->inp_lport != lport) || (!IN6_IS_ADDR_UNSPECIFIED(&sa6_src.sin6_addr) && !IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, &sa6_src.sin6_addr)) || (fport && inp->inp_fport != fport)) { INP_WUNLOCK(inp); continue; } do_notify: if (notify) { if ((*notify)(inp, errno)) INP_WUNLOCK(inp); } else INP_WUNLOCK(inp); } INP_INFO_WUNLOCK(pcbinfo); } /* * Lookup a PCB based on the local address and port. Caller must hold the * hash lock. No inpcb locks or references are acquired. */ struct inpcb * in6_pcblookup_local(struct inpcbinfo *pcbinfo, struct in6_addr *laddr, u_short lport, int lookupflags, struct ucred *cred) { struct inpcb *inp; int matchwild = 3, wildcard; KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); INP_HASH_WLOCK_ASSERT(pcbinfo); if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { struct inpcbhead *head; /* * Look for an unconnected (wildcard foreign addr) PCB that * matches the local address and port we're looking for. */ head = &pcbinfo->ipi_hashbase[INP_PCBHASH( INP6_PCBHASHKEY(&in6addr_any), lport, 0, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV6) == 0) continue; if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr) && IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, laddr) && inp->inp_lport == lport) { /* Found. */ if (cred == NULL || prison_equal_ip6(cred->cr_prison, inp->inp_cred->cr_prison)) return (inp); } } /* * Not found. */ return (NULL); } else { struct inpcbporthead *porthash; struct inpcbport *phd; struct inpcb *match = NULL; /* * Best fit PCB lookup. * * First see if this local port is in use by looking on the * port hash list. */ porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, pcbinfo->ipi_porthashmask)]; LIST_FOREACH(phd, porthash, phd_hash) { if (phd->phd_port == lport) break; } if (phd != NULL) { /* * Port is in use by one or more PCBs. Look for best * fit. */ LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { wildcard = 0; if (cred != NULL && !prison_equal_ip6(cred->cr_prison, inp->inp_cred->cr_prison)) continue; /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV6) == 0) continue; if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) wildcard++; if (!IN6_IS_ADDR_UNSPECIFIED( &inp->in6p_laddr)) { if (IN6_IS_ADDR_UNSPECIFIED(laddr)) wildcard++; else if (!IN6_ARE_ADDR_EQUAL( &inp->in6p_laddr, laddr)) continue; } else { if (!IN6_IS_ADDR_UNSPECIFIED(laddr)) wildcard++; } if (wildcard < matchwild) { match = inp; matchwild = wildcard; if (matchwild == 0) break; } } } return (match); } } void in6_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) { struct inpcb *in6p; struct ip6_moptions *im6o; int i, gap; INP_INFO_WLOCK(pcbinfo); LIST_FOREACH(in6p, pcbinfo->ipi_listhead, inp_list) { INP_WLOCK(in6p); im6o = in6p->in6p_moptions; if ((in6p->inp_vflag & INP_IPV6) && im6o != NULL) { /* * Unselect the outgoing ifp for multicast if it * is being detached. */ if (im6o->im6o_multicast_ifp == ifp) im6o->im6o_multicast_ifp = NULL; /* * Drop multicast group membership if we joined * through the interface being detached. */ gap = 0; for (i = 0; i < im6o->im6o_num_memberships; i++) { if (im6o->im6o_membership[i]->in6m_ifp == ifp) { in6_mc_leave(im6o->im6o_membership[i], NULL); gap++; } else if (gap != 0) { im6o->im6o_membership[i - gap] = im6o->im6o_membership[i]; } } im6o->im6o_num_memberships -= gap; } INP_WUNLOCK(in6p); } INP_INFO_WUNLOCK(pcbinfo); } /* * Check for alternatives when higher level complains * about service problems. For now, invalidate cached * routing information. If the route was created dynamically * (by a redirect), time to try a default gateway again. */ void in6_losing(struct inpcb *in6p) { if (in6p->inp_route6.ro_rt) { RTFREE(in6p->inp_route6.ro_rt); in6p->inp_route6.ro_rt = (struct rtentry *)NULL; } if (in6p->inp_route.ro_lle) LLE_FREE(in6p->inp_route.ro_lle); /* zeros ro_lle */ return; } /* * After a routing change, flush old routing * and allocate a (hopefully) better one. */ struct inpcb * in6_rtchange(struct inpcb *inp, int errno) { if (inp->inp_route6.ro_rt) { RTFREE(inp->inp_route6.ro_rt); inp->inp_route6.ro_rt = (struct rtentry *)NULL; } if (inp->inp_route.ro_lle) LLE_FREE(inp->inp_route.ro_lle); /* zeros ro_lle */ return inp; } +static struct inpcb * +in6_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, + const struct in6_addr *laddr, uint16_t lport, const struct in6_addr *faddr, + uint16_t fport, int lookupflags) +{ + struct inpcb *local_wild = NULL; + const struct inpcblbgrouphead *hdr; + struct inpcblbgroup *grp; + struct inpcblbgroup *grp_local_wild; + + hdr = &pcbinfo->ipi_lbgrouphashbase[ + INP_PCBLBGROUP_PORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; + + /* + * Order of socket selection: + * 1. non-wild. + * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). + * + * NOTE: + * - Load balanced group does not contain jailed sockets + * - Load balanced does not contain IPv4 mapped INET6 wild sockets + */ + LIST_FOREACH(grp, hdr, il_list) { + + if (grp->il_lport == lport) { + uint32_t idx = 0; + int pkt_hash = INP_PCBLBGROUP_PKTHASH( + INP6_PCBHASHKEY(faddr), lport, fport); + + idx = pkt_hash % grp->il_inpcnt; + + if (IN6_ARE_ADDR_EQUAL(&grp->il6_laddr, laddr)) { + return grp->il_inp[idx]; + } else { + if (IN6_IS_ADDR_UNSPECIFIED(&grp->il6_laddr) && + (lookupflags & INPLOOKUP_WILDCARD)) { + local_wild = grp->il_inp[idx]; + grp_local_wild = grp; + } + } + } + } + if (local_wild != NULL) { + return local_wild; + } + return NULL; +} + #ifdef PCBGROUP /* * Lookup PCB in hash list, using pcbgroup tables. */ static struct inpcb * in6_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, struct in6_addr *faddr, u_int fport_arg, struct in6_addr *laddr, u_int lport_arg, int lookupflags, struct ifnet *ifp) { struct inpcbhead *head; struct inpcb *inp, *tmpinp; u_short fport = fport_arg, lport = lport_arg; bool locked; /* * First look for an exact match. */ tmpinp = NULL; INP_GROUP_LOCK(pcbgroup); head = &pcbgroup->ipg_hashbase[INP_PCBHASH( INP6_PCBHASHKEY(faddr), lport, fport, pcbgroup->ipg_hashmask)]; LIST_FOREACH(inp, head, inp_pcbgrouphash) { /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV6) == 0) continue; if (IN6_ARE_ADDR_EQUAL(&inp->in6p_faddr, faddr) && IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, laddr) && inp->inp_fport == fport && inp->inp_lport == lport) { /* * XXX We should be able to directly return * the inp here, without any checks. * Well unless both bound with SO_REUSEPORT? */ if (prison_flag(inp->inp_cred, PR_IP6)) goto found; if (tmpinp == NULL) tmpinp = inp; } } if (tmpinp != NULL) { inp = tmpinp; goto found; } /* * Then look for a wildcard match in the pcbgroup. */ if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { struct inpcb *local_wild = NULL, *local_exact = NULL; struct inpcb *jail_wild = NULL; int injail; /* * Order of socket selection - we always prefer jails. * 1. jailed, non-wild. * 2. jailed, wild. * 3. non-jailed, non-wild. * 4. non-jailed, wild. */ head = &pcbgroup->ipg_hashbase[ INP_PCBHASH(INADDR_ANY, lport, 0, pcbgroup->ipg_hashmask)]; LIST_FOREACH(inp, head, inp_pcbgrouphash) { /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV6) == 0) continue; if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr) || inp->inp_lport != lport) { continue; } injail = prison_flag(inp->inp_cred, PR_IP6); if (injail) { if (prison_check_ip6(inp->inp_cred, laddr) != 0) continue; } else { if (local_exact != NULL) continue; } if (IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, laddr)) { if (injail) goto found; else local_exact = inp; } else if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { if (injail) jail_wild = inp; else local_wild = inp; } } /* LIST_FOREACH */ inp = jail_wild; if (inp == NULL) inp = jail_wild; if (inp == NULL) inp = local_exact; if (inp == NULL) inp = local_wild; if (inp != NULL) goto found; } /* * Then look for a wildcard match, if requested. */ if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { struct inpcb *local_wild = NULL, *local_exact = NULL; struct inpcb *jail_wild = NULL; int injail; /* * Order of socket selection - we always prefer jails. * 1. jailed, non-wild. * 2. jailed, wild. * 3. non-jailed, non-wild. * 4. non-jailed, wild. */ head = &pcbinfo->ipi_wildbase[INP_PCBHASH( INP6_PCBHASHKEY(&in6addr_any), lport, 0, pcbinfo->ipi_wildmask)]; LIST_FOREACH(inp, head, inp_pcbgroup_wild) { /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV6) == 0) continue; if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr) || inp->inp_lport != lport) { continue; } injail = prison_flag(inp->inp_cred, PR_IP6); if (injail) { if (prison_check_ip6(inp->inp_cred, laddr) != 0) continue; } else { if (local_exact != NULL) continue; } if (IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, laddr)) { if (injail) goto found; else local_exact = inp; } else if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { if (injail) jail_wild = inp; else local_wild = inp; } } /* LIST_FOREACH */ inp = jail_wild; if (inp == NULL) inp = jail_wild; if (inp == NULL) inp = local_exact; if (inp == NULL) inp = local_wild; if (inp != NULL) goto found; } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ INP_GROUP_UNLOCK(pcbgroup); return (NULL); found: if (lookupflags & INPLOOKUP_WLOCKPCB) locked = INP_TRY_WLOCK(inp); else if (lookupflags & INPLOOKUP_RLOCKPCB) locked = INP_TRY_RLOCK(inp); else panic("%s: locking buf", __func__); if (!locked) in_pcbref(inp); INP_GROUP_UNLOCK(pcbgroup); if (!locked) { if (lookupflags & INPLOOKUP_WLOCKPCB) { INP_WLOCK(inp); if (in_pcbrele_wlocked(inp)) return (NULL); } else { INP_RLOCK(inp); if (in_pcbrele_rlocked(inp)) return (NULL); } } #ifdef INVARIANTS if (lookupflags & INPLOOKUP_WLOCKPCB) INP_WLOCK_ASSERT(inp); else INP_RLOCK_ASSERT(inp); #endif return (inp); } #endif /* PCBGROUP */ + + /* * Lookup PCB in hash list. */ static struct inpcb * in6_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in6_addr *faddr, u_int fport_arg, struct in6_addr *laddr, u_int lport_arg, int lookupflags, struct ifnet *ifp) { struct inpcbhead *head; struct inpcb *inp, *tmpinp; u_short fport = fport_arg, lport = lport_arg; KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); INP_HASH_LOCK_ASSERT(pcbinfo); /* * First look for an exact match. */ tmpinp = NULL; head = &pcbinfo->ipi_hashbase[INP_PCBHASH( INP6_PCBHASHKEY(faddr), lport, fport, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV6) == 0) continue; if (IN6_ARE_ADDR_EQUAL(&inp->in6p_faddr, faddr) && IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, laddr) && inp->inp_fport == fport && inp->inp_lport == lport) { /* * XXX We should be able to directly return * the inp here, without any checks. * Well unless both bound with SO_REUSEPORT? */ if (prison_flag(inp->inp_cred, PR_IP6)) return (inp); if (tmpinp == NULL) tmpinp = inp; } } if (tmpinp != NULL) return (tmpinp); + + /* + * Then look in lb group (for wildcard match) + */ + if (pcbinfo->ipi_lbgrouphashbase != NULL && + (lookupflags & INPLOOKUP_WILDCARD)) { + inp = in6_pcblookup_lbgroup(pcbinfo, laddr, lport, faddr, + fport, lookupflags); + if (inp != NULL) { + return inp; + } + } /* * Then look for a wildcard match, if requested. */ if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { struct inpcb *local_wild = NULL, *local_exact = NULL; struct inpcb *jail_wild = NULL; int injail; /* * Order of socket selection - we always prefer jails. * 1. jailed, non-wild. * 2. jailed, wild. * 3. non-jailed, non-wild. * 4. non-jailed, wild. */ head = &pcbinfo->ipi_hashbase[INP_PCBHASH( INP6_PCBHASHKEY(&in6addr_any), lport, 0, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV6) == 0) continue; if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr) || inp->inp_lport != lport) { continue; } injail = prison_flag(inp->inp_cred, PR_IP6); if (injail) { if (prison_check_ip6(inp->inp_cred, laddr) != 0) continue; } else { if (local_exact != NULL) continue; } if (IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, laddr)) { if (injail) return (inp); else local_exact = inp; } else if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { if (injail) jail_wild = inp; else local_wild = inp; } } /* LIST_FOREACH */ if (jail_wild != NULL) return (jail_wild); if (local_exact != NULL) return (local_exact); if (local_wild != NULL) return (local_wild); } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ /* * Not found. */ return (NULL); } /* * Lookup PCB in hash list, using pcbinfo tables. This variation locks the * hash list lock, and will return the inpcb locked (i.e., requires * INPLOOKUP_LOCKPCB). */ static struct inpcb * in6_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in6_addr *faddr, u_int fport, struct in6_addr *laddr, u_int lport, int lookupflags, struct ifnet *ifp) { struct inpcb *inp; bool locked; INP_HASH_RLOCK(pcbinfo); inp = in6_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); if (inp != NULL) { if (lookupflags & INPLOOKUP_WLOCKPCB) locked = INP_TRY_WLOCK(inp); else if (lookupflags & INPLOOKUP_RLOCKPCB) locked = INP_TRY_RLOCK(inp); else panic("%s: locking bug", __func__); if (!locked) in_pcbref(inp); INP_HASH_RUNLOCK(pcbinfo); if (!locked) { if (lookupflags & INPLOOKUP_WLOCKPCB) { INP_WLOCK(inp); if (in_pcbrele_wlocked(inp)) return (NULL); } else { INP_RLOCK(inp); if (in_pcbrele_rlocked(inp)) return (NULL); } } #ifdef INVARIANTS if (lookupflags & INPLOOKUP_WLOCKPCB) INP_WLOCK_ASSERT(inp); else INP_RLOCK_ASSERT(inp); #endif } else INP_HASH_RUNLOCK(pcbinfo); return (inp); } /* * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf * from which a pre-calculated hash value may be extracted. * * Possibly more of this logic should be in in6_pcbgroup.c. */ struct inpcb * in6_pcblookup(struct inpcbinfo *pcbinfo, struct in6_addr *faddr, u_int fport, struct in6_addr *laddr, u_int lport, int lookupflags, struct ifnet *ifp) { #if defined(PCBGROUP) && !defined(RSS) struct inpcbgroup *pcbgroup; #endif KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, ("%s: LOCKPCB not set", __func__)); /* * When not using RSS, use connection groups in preference to the * reservation table when looking up 4-tuples. When using RSS, just * use the reservation table, due to the cost of the Toeplitz hash * in software. * * XXXRW: This policy belongs in the pcbgroup code, as in principle * we could be doing RSS with a non-Toeplitz hash that is affordable * in software. */ #if defined(PCBGROUP) && !defined(RSS) if (in_pcbgroup_enabled(pcbinfo)) { pcbgroup = in6_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, fport); return (in6_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, laddr, lport, lookupflags, ifp)); } #endif return (in6_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, lookupflags, ifp)); } struct inpcb * in6_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in6_addr *faddr, u_int fport, struct in6_addr *laddr, u_int lport, int lookupflags, struct ifnet *ifp, struct mbuf *m) { #ifdef PCBGROUP struct inpcbgroup *pcbgroup; #endif KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, ("%s: LOCKPCB not set", __func__)); #ifdef PCBGROUP /* * If we can use a hardware-generated hash to look up the connection * group, use that connection group to find the inpcb. Otherwise * fall back on a software hash -- or the reservation table if we're * using RSS. * * XXXRW: As above, that policy belongs in the pcbgroup code. */ if (in_pcbgroup_enabled(pcbinfo) && M_HASHTYPE_TEST(m, M_HASHTYPE_NONE) == 0) { pcbgroup = in6_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), m->m_pkthdr.flowid); if (pcbgroup != NULL) return (in6_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, laddr, lport, lookupflags, ifp)); #ifndef RSS pcbgroup = in6_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, fport); return (in6_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, laddr, lport, lookupflags, ifp)); #endif } #endif return (in6_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, lookupflags, ifp)); } void init_sin6(struct sockaddr_in6 *sin6, struct mbuf *m, int srcordst) { struct ip6_hdr *ip; ip = mtod(m, struct ip6_hdr *); bzero(sin6, sizeof(*sin6)); sin6->sin6_len = sizeof(*sin6); sin6->sin6_family = AF_INET6; sin6->sin6_addr = srcordst ? ip->ip6_dst : ip->ip6_src; (void)sa6_recoverscope(sin6); /* XXX: should catch errors... */ return; } Index: head/sys/netinet6/in6_src.c =================================================================== --- head/sys/netinet6/in6_src.c (revision 332893) +++ head/sys/netinet6/in6_src.c (revision 332894) @@ -1,1243 +1,1243 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: in6_src.c,v 1.132 2003/08/26 04:42:27 keiichi Exp $ */ /*- * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_pcb.c 8.2 (Berkeley) 1/4/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_mpath.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RADIX_MPATH #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct mtx addrsel_lock; #define ADDRSEL_LOCK_INIT() mtx_init(&addrsel_lock, "addrsel_lock", NULL, MTX_DEF) #define ADDRSEL_LOCK() mtx_lock(&addrsel_lock) #define ADDRSEL_UNLOCK() mtx_unlock(&addrsel_lock) #define ADDRSEL_LOCK_ASSERT() mtx_assert(&addrsel_lock, MA_OWNED) static struct sx addrsel_sxlock; #define ADDRSEL_SXLOCK_INIT() sx_init(&addrsel_sxlock, "addrsel_sxlock") #define ADDRSEL_SLOCK() sx_slock(&addrsel_sxlock) #define ADDRSEL_SUNLOCK() sx_sunlock(&addrsel_sxlock) #define ADDRSEL_XLOCK() sx_xlock(&addrsel_sxlock) #define ADDRSEL_XUNLOCK() sx_xunlock(&addrsel_sxlock) #define ADDR_LABEL_NOTAPP (-1) static VNET_DEFINE(struct in6_addrpolicy, defaultaddrpolicy); #define V_defaultaddrpolicy VNET(defaultaddrpolicy) VNET_DEFINE(int, ip6_prefer_tempaddr) = 0; static int selectroute(struct sockaddr_in6 *, struct ip6_pktopts *, struct ip6_moptions *, struct route_in6 *, struct ifnet **, struct rtentry **, int, u_int); static int in6_selectif(struct sockaddr_in6 *, struct ip6_pktopts *, struct ip6_moptions *, struct ifnet **, struct ifnet *, u_int); static int in6_selectsrc(uint32_t, struct sockaddr_in6 *, struct ip6_pktopts *, struct inpcb *, struct ucred *, struct ifnet **, struct in6_addr *); static struct in6_addrpolicy *lookup_addrsel_policy(struct sockaddr_in6 *); static void init_policy_queue(void); static int add_addrsel_policyent(struct in6_addrpolicy *); static int delete_addrsel_policyent(struct in6_addrpolicy *); static int walk_addrsel_policy(int (*)(struct in6_addrpolicy *, void *), void *); static int dump_addrsel_policyent(struct in6_addrpolicy *, void *); static struct in6_addrpolicy *match_addrsel_policy(struct sockaddr_in6 *); /* * Return an IPv6 address, which is the most appropriate for a given * destination and user specified options. * If necessary, this function lookups the routing table and returns * an entry to the caller for later use. */ #define REPLACE(r) do {\ IP6STAT_INC(ip6s_sources_rule[(r)]); \ /* { \ char ip6buf[INET6_ADDRSTRLEN], ip6b[INET6_ADDRSTRLEN]; \ printf("in6_selectsrc: replace %s with %s by %d\n", ia_best ? ip6_sprintf(ip6buf, &ia_best->ia_addr.sin6_addr) : "none", ip6_sprintf(ip6b, &ia->ia_addr.sin6_addr), (r)); \ } */ \ goto replace; \ } while(0) #define NEXT(r) do {\ /* { \ char ip6buf[INET6_ADDRSTRLEN], ip6b[INET6_ADDRSTRLEN]; \ printf("in6_selectsrc: keep %s against %s by %d\n", ia_best ? ip6_sprintf(ip6buf, &ia_best->ia_addr.sin6_addr) : "none", ip6_sprintf(ip6b, &ia->ia_addr.sin6_addr), (r)); \ } */ \ goto next; /* XXX: we can't use 'continue' here */ \ } while(0) #define BREAK(r) do { \ IP6STAT_INC(ip6s_sources_rule[(r)]); \ goto out; /* XXX: we can't use 'break' here */ \ } while(0) static int in6_selectsrc(uint32_t fibnum, struct sockaddr_in6 *dstsock, struct ip6_pktopts *opts, struct inpcb *inp, struct ucred *cred, struct ifnet **ifpp, struct in6_addr *srcp) { struct rm_priotracker in6_ifa_tracker; struct in6_addr dst, tmp; struct ifnet *ifp = NULL, *oifp = NULL; struct in6_ifaddr *ia = NULL, *ia_best = NULL; struct in6_pktinfo *pi = NULL; int dst_scope = -1, best_scope = -1, best_matchlen = -1; struct in6_addrpolicy *dst_policy = NULL, *best_policy = NULL; u_int32_t odstzone; int prefer_tempaddr; int error; struct ip6_moptions *mopts; KASSERT(srcp != NULL, ("%s: srcp is NULL", __func__)); dst = dstsock->sin6_addr; /* make a copy for local operation */ if (ifpp) { /* * Save a possibly passed in ifp for in6_selectsrc. Only * neighbor discovery code should use this feature, where * we may know the interface but not the FIB number holding * the connected subnet in case someone deleted it from the * default FIB and we need to check the interface. */ if (*ifpp != NULL) oifp = *ifpp; *ifpp = NULL; } if (inp != NULL) { INP_LOCK_ASSERT(inp); mopts = inp->in6p_moptions; } else { mopts = NULL; } /* * If the source address is explicitly specified by the caller, * check if the requested source address is indeed a unicast address * assigned to the node, and can be used as the packet's source * address. If everything is okay, use the address as source. */ if (opts && (pi = opts->ip6po_pktinfo) && !IN6_IS_ADDR_UNSPECIFIED(&pi->ipi6_addr)) { /* get the outgoing interface */ if ((error = in6_selectif(dstsock, opts, mopts, &ifp, oifp, fibnum)) != 0) return (error); /* * determine the appropriate zone id of the source based on * the zone of the destination and the outgoing interface. * If the specified address is ambiguous wrt the scope zone, * the interface must be specified; otherwise, ifa_ifwithaddr() * will fail matching the address. */ tmp = pi->ipi6_addr; if (ifp) { error = in6_setscope(&tmp, ifp, &odstzone); if (error) return (error); } if (cred != NULL && (error = prison_local_ip6(cred, &tmp, (inp->inp_flags & IN6P_IPV6_V6ONLY) != 0)) != 0) return (error); /* * If IPV6_BINDANY socket option is set, we allow to specify * non local addresses as source address in IPV6_PKTINFO * ancillary data. */ if ((inp->inp_flags & INP_BINDANY) == 0) { ia = in6ifa_ifwithaddr(&tmp, 0 /* XXX */); if (ia == NULL || (ia->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_NOTREADY))) { if (ia != NULL) ifa_free(&ia->ia_ifa); return (EADDRNOTAVAIL); } bcopy(&ia->ia_addr.sin6_addr, srcp, sizeof(*srcp)); ifa_free(&ia->ia_ifa); } else bcopy(&tmp, srcp, sizeof(*srcp)); pi->ipi6_addr = tmp; /* XXX: this overrides pi */ if (ifpp) *ifpp = ifp; return (0); } /* * Otherwise, if the socket has already bound the source, just use it. */ if (inp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { if (cred != NULL && (error = prison_local_ip6(cred, &inp->in6p_laddr, ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0))) != 0) return (error); bcopy(&inp->in6p_laddr, srcp, sizeof(*srcp)); return (0); } /* * Bypass source address selection and use the primary jail IP * if requested. */ if (cred != NULL && !prison_saddrsel_ip6(cred, srcp)) return (0); /* * If the address is not specified, choose the best one based on * the outgoing interface and the destination address. */ /* get the outgoing interface */ if ((error = in6_selectif(dstsock, opts, mopts, &ifp, oifp, (inp != NULL) ? inp->inp_inc.inc_fibnum : fibnum)) != 0) return (error); #ifdef DIAGNOSTIC if (ifp == NULL) /* this should not happen */ panic("in6_selectsrc: NULL ifp"); #endif error = in6_setscope(&dst, ifp, &odstzone); if (error) return (error); IN6_IFADDR_RLOCK(&in6_ifa_tracker); TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { int new_scope = -1, new_matchlen = -1; struct in6_addrpolicy *new_policy = NULL; u_int32_t srczone, osrczone, dstzone; struct in6_addr src; struct ifnet *ifp1 = ia->ia_ifp; /* * We'll never take an address that breaks the scope zone * of the destination. We also skip an address if its zone * does not contain the outgoing interface. * XXX: we should probably use sin6_scope_id here. */ if (in6_setscope(&dst, ifp1, &dstzone) || odstzone != dstzone) { continue; } src = ia->ia_addr.sin6_addr; if (in6_setscope(&src, ifp, &osrczone) || in6_setscope(&src, ifp1, &srczone) || osrczone != srczone) { continue; } /* avoid unusable addresses */ if ((ia->ia6_flags & (IN6_IFF_NOTREADY | IN6_IFF_ANYCAST | IN6_IFF_DETACHED))) { continue; } if (!V_ip6_use_deprecated && IFA6_IS_DEPRECATED(ia)) continue; /* If jailed only take addresses of the jail into account. */ if (cred != NULL && prison_check_ip6(cred, &ia->ia_addr.sin6_addr) != 0) continue; /* Rule 1: Prefer same address */ if (IN6_ARE_ADDR_EQUAL(&dst, &ia->ia_addr.sin6_addr)) { ia_best = ia; BREAK(1); /* there should be no better candidate */ } if (ia_best == NULL) REPLACE(0); /* Rule 2: Prefer appropriate scope */ if (dst_scope < 0) dst_scope = in6_addrscope(&dst); new_scope = in6_addrscope(&ia->ia_addr.sin6_addr); if (IN6_ARE_SCOPE_CMP(best_scope, new_scope) < 0) { if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0) REPLACE(2); NEXT(2); } else if (IN6_ARE_SCOPE_CMP(new_scope, best_scope) < 0) { if (IN6_ARE_SCOPE_CMP(new_scope, dst_scope) < 0) NEXT(2); REPLACE(2); } /* * Rule 3: Avoid deprecated addresses. Note that the case of * !ip6_use_deprecated is already rejected above. */ if (!IFA6_IS_DEPRECATED(ia_best) && IFA6_IS_DEPRECATED(ia)) NEXT(3); if (IFA6_IS_DEPRECATED(ia_best) && !IFA6_IS_DEPRECATED(ia)) REPLACE(3); /* Rule 4: Prefer home addresses */ /* * XXX: This is a TODO. We should probably merge the MIP6 * case above. */ /* Rule 5: Prefer outgoing interface */ if (!(ND_IFINFO(ifp)->flags & ND6_IFF_NO_PREFER_IFACE)) { if (ia_best->ia_ifp == ifp && ia->ia_ifp != ifp) NEXT(5); if (ia_best->ia_ifp != ifp && ia->ia_ifp == ifp) REPLACE(5); } /* * Rule 6: Prefer matching label * Note that best_policy should be non-NULL here. */ if (dst_policy == NULL) dst_policy = lookup_addrsel_policy(dstsock); if (dst_policy->label != ADDR_LABEL_NOTAPP) { new_policy = lookup_addrsel_policy(&ia->ia_addr); if (dst_policy->label == best_policy->label && dst_policy->label != new_policy->label) NEXT(6); if (dst_policy->label != best_policy->label && dst_policy->label == new_policy->label) REPLACE(6); } /* * Rule 7: Prefer public addresses. * We allow users to reverse the logic by configuring * a sysctl variable, so that privacy conscious users can * always prefer temporary addresses. */ if (opts == NULL || opts->ip6po_prefer_tempaddr == IP6PO_TEMPADDR_SYSTEM) { prefer_tempaddr = V_ip6_prefer_tempaddr; } else if (opts->ip6po_prefer_tempaddr == IP6PO_TEMPADDR_NOTPREFER) { prefer_tempaddr = 0; } else prefer_tempaddr = 1; if (!(ia_best->ia6_flags & IN6_IFF_TEMPORARY) && (ia->ia6_flags & IN6_IFF_TEMPORARY)) { if (prefer_tempaddr) REPLACE(7); else NEXT(7); } if ((ia_best->ia6_flags & IN6_IFF_TEMPORARY) && !(ia->ia6_flags & IN6_IFF_TEMPORARY)) { if (prefer_tempaddr) NEXT(7); else REPLACE(7); } /* * Rule 8: prefer addresses on alive interfaces. * This is a KAME specific rule. */ if ((ia_best->ia_ifp->if_flags & IFF_UP) && !(ia->ia_ifp->if_flags & IFF_UP)) NEXT(8); if (!(ia_best->ia_ifp->if_flags & IFF_UP) && (ia->ia_ifp->if_flags & IFF_UP)) REPLACE(8); /* * Rule 9: prefer address with better virtual status. */ if (ifa_preferred(&ia_best->ia_ifa, &ia->ia_ifa)) REPLACE(9); if (ifa_preferred(&ia->ia_ifa, &ia_best->ia_ifa)) NEXT(9); /* * Rule 10: prefer address with `prefer_source' flag. */ if ((ia_best->ia6_flags & IN6_IFF_PREFER_SOURCE) == 0 && (ia->ia6_flags & IN6_IFF_PREFER_SOURCE) != 0) REPLACE(10); if ((ia_best->ia6_flags & IN6_IFF_PREFER_SOURCE) != 0 && (ia->ia6_flags & IN6_IFF_PREFER_SOURCE) == 0) NEXT(10); /* * Rule 14: Use longest matching prefix. * Note: in the address selection draft, this rule is * documented as "Rule 8". However, since it is also * documented that this rule can be overridden, we assign * a large number so that it is easy to assign smaller numbers * to more preferred rules. */ new_matchlen = in6_matchlen(&ia->ia_addr.sin6_addr, &dst); if (best_matchlen < new_matchlen) REPLACE(14); if (new_matchlen < best_matchlen) NEXT(14); /* Rule 15 is reserved. */ /* * Last resort: just keep the current candidate. * Or, do we need more rules? */ continue; replace: ia_best = ia; best_scope = (new_scope >= 0 ? new_scope : in6_addrscope(&ia_best->ia_addr.sin6_addr)); best_policy = (new_policy ? new_policy : lookup_addrsel_policy(&ia_best->ia_addr)); best_matchlen = (new_matchlen >= 0 ? new_matchlen : in6_matchlen(&ia_best->ia_addr.sin6_addr, &dst)); next: continue; out: break; } if ((ia = ia_best) == NULL) { IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); IP6STAT_INC(ip6s_sources_none); return (EADDRNOTAVAIL); } /* * At this point at least one of the addresses belonged to the jail * but it could still be, that we want to further restrict it, e.g. * theoratically IN6_IS_ADDR_LOOPBACK. * It must not be IN6_IS_ADDR_UNSPECIFIED anymore. * prison_local_ip6() will fix an IN6_IS_ADDR_LOOPBACK but should * let all others previously selected pass. * Use tmp to not change ::1 on lo0 to the primary jail address. */ tmp = ia->ia_addr.sin6_addr; if (cred != NULL && prison_local_ip6(cred, &tmp, (inp != NULL && (inp->inp_flags & IN6P_IPV6_V6ONLY) != 0)) != 0) { IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); IP6STAT_INC(ip6s_sources_none); return (EADDRNOTAVAIL); } if (ifpp) *ifpp = ifp; bcopy(&tmp, srcp, sizeof(*srcp)); if (ia->ia_ifp == ifp) IP6STAT_INC(ip6s_sources_sameif[best_scope]); else IP6STAT_INC(ip6s_sources_otherif[best_scope]); if (dst_scope == best_scope) IP6STAT_INC(ip6s_sources_samescope[best_scope]); else IP6STAT_INC(ip6s_sources_otherscope[best_scope]); if (IFA6_IS_DEPRECATED(ia)) IP6STAT_INC(ip6s_sources_deprecated[best_scope]); IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); return (0); } /* * Select source address based on @inp, @dstsock and @opts. * Stores selected address to @srcp. If @scope_ambiguous is set, * embed scope from selected outgoing interface. If @hlim pointer * is provided, stores calculated hop limit there. * Returns 0 on success. */ int in6_selectsrc_socket(struct sockaddr_in6 *dstsock, struct ip6_pktopts *opts, struct inpcb *inp, struct ucred *cred, int scope_ambiguous, struct in6_addr *srcp, int *hlim) { struct ifnet *retifp; uint32_t fibnum; int error; fibnum = inp->inp_inc.inc_fibnum; retifp = NULL; error = in6_selectsrc(fibnum, dstsock, opts, inp, cred, &retifp, srcp); if (error != 0) return (error); if (hlim != NULL) *hlim = in6_selecthlim(inp, retifp); if (retifp == NULL || scope_ambiguous == 0) return (0); /* * Application should provide a proper zone ID or the use of * default zone IDs should be enabled. Unfortunately, some * applications do not behave as it should, so we need a * workaround. Even if an appropriate ID is not determined * (when it's required), if we can determine the outgoing * interface. determine the zone ID based on the interface. */ error = in6_setscope(&dstsock->sin6_addr, retifp, NULL); return (error); } /* * Select source address based on @fibnum, @dst and @scopeid. * Stores selected address to @srcp. * Returns 0 on success. * * Used by non-socket based consumers (ND code mostly) */ int in6_selectsrc_addr(uint32_t fibnum, const struct in6_addr *dst, uint32_t scopeid, struct ifnet *ifp, struct in6_addr *srcp, int *hlim) { struct ifnet *retifp; struct sockaddr_in6 dst_sa; int error; retifp = ifp; bzero(&dst_sa, sizeof(dst_sa)); dst_sa.sin6_family = AF_INET6; dst_sa.sin6_len = sizeof(dst_sa); dst_sa.sin6_addr = *dst; dst_sa.sin6_scope_id = scopeid; sa6_embedscope(&dst_sa, 0); error = in6_selectsrc(fibnum, &dst_sa, NULL, NULL, NULL, &retifp, srcp); if (hlim != NULL) *hlim = in6_selecthlim(NULL, retifp); return (error); } /* * clone - meaningful only for bsdi and freebsd */ static int selectroute(struct sockaddr_in6 *dstsock, struct ip6_pktopts *opts, struct ip6_moptions *mopts, struct route_in6 *ro, struct ifnet **retifp, struct rtentry **retrt, int norouteok, u_int fibnum) { int error = 0; struct ifnet *ifp = NULL; struct rtentry *rt = NULL; struct sockaddr_in6 *sin6_next; struct in6_pktinfo *pi = NULL; struct in6_addr *dst = &dstsock->sin6_addr; uint32_t zoneid; #if 0 char ip6buf[INET6_ADDRSTRLEN]; if (dstsock->sin6_addr.s6_addr32[0] == 0 && dstsock->sin6_addr.s6_addr32[1] == 0 && !IN6_IS_ADDR_LOOPBACK(&dstsock->sin6_addr)) { printf("in6_selectroute: strange destination %s\n", ip6_sprintf(ip6buf, &dstsock->sin6_addr)); } else { printf("in6_selectroute: destination = %s%%%d\n", ip6_sprintf(ip6buf, &dstsock->sin6_addr), dstsock->sin6_scope_id); /* for debug */ } #endif /* If the caller specify the outgoing interface explicitly, use it. */ if (opts && (pi = opts->ip6po_pktinfo) != NULL && pi->ipi6_ifindex) { /* XXX boundary check is assumed to be already done. */ ifp = ifnet_byindex(pi->ipi6_ifindex); if (ifp != NULL && (norouteok || retrt == NULL || IN6_IS_ADDR_MULTICAST(dst))) { /* * we do not have to check or get the route for * multicast. */ goto done; } else goto getroute; } /* * If the destination address is a multicast address and the outgoing * interface for the address is specified by the caller, use it. */ if (IN6_IS_ADDR_MULTICAST(dst) && mopts != NULL && (ifp = mopts->im6o_multicast_ifp) != NULL) { goto done; /* we do not need a route for multicast. */ } /* * If destination address is LLA or link- or node-local multicast, * use it's embedded scope zone id to determine outgoing interface. */ if (IN6_IS_ADDR_MC_LINKLOCAL(dst) || IN6_IS_ADDR_MC_NODELOCAL(dst)) { zoneid = ntohs(in6_getscope(dst)); if (zoneid > 0) { ifp = in6_getlinkifnet(zoneid); goto done; } } getroute: /* * If the next hop address for the packet is specified by the caller, * use it as the gateway. */ if (opts && opts->ip6po_nexthop) { struct route_in6 *ron; sin6_next = satosin6(opts->ip6po_nexthop); if (IN6_IS_ADDR_LINKLOCAL(&sin6_next->sin6_addr)) { /* * Next hop is LLA, thus it should be neighbor. * Determine outgoing interface by zone index. */ zoneid = ntohs(in6_getscope(&sin6_next->sin6_addr)); if (zoneid > 0) { ifp = in6_getlinkifnet(zoneid); goto done; } } ron = &opts->ip6po_nextroute; /* Use a cached route if it exists and is valid. */ if (ron->ro_rt != NULL && ( (ron->ro_rt->rt_flags & RTF_UP) == 0 || ron->ro_dst.sin6_family != AF_INET6 || !IN6_ARE_ADDR_EQUAL(&ron->ro_dst.sin6_addr, &sin6_next->sin6_addr))) RO_RTFREE(ron); if (ron->ro_rt == NULL) { ron->ro_dst = *sin6_next; in6_rtalloc(ron, fibnum); /* multi path case? */ } /* * The node identified by that address must be a * neighbor of the sending host. */ if (ron->ro_rt == NULL || (ron->ro_rt->rt_flags & RTF_GATEWAY) != 0) error = EHOSTUNREACH; goto done; } /* * Use a cached route if it exists and is valid, else try to allocate * a new one. Note that we should check the address family of the * cached destination, in case of sharing the cache with IPv4. */ if (ro) { if (ro->ro_rt && (!(ro->ro_rt->rt_flags & RTF_UP) || ((struct sockaddr *)(&ro->ro_dst))->sa_family != AF_INET6 || !IN6_ARE_ADDR_EQUAL(&satosin6(&ro->ro_dst)->sin6_addr, dst))) { RTFREE(ro->ro_rt); ro->ro_rt = (struct rtentry *)NULL; } if (ro->ro_rt == (struct rtentry *)NULL) { struct sockaddr_in6 *sa6; /* No route yet, so try to acquire one */ bzero(&ro->ro_dst, sizeof(struct sockaddr_in6)); sa6 = (struct sockaddr_in6 *)&ro->ro_dst; *sa6 = *dstsock; sa6->sin6_scope_id = 0; #ifdef RADIX_MPATH rtalloc_mpath_fib((struct route *)ro, ntohl(sa6->sin6_addr.s6_addr32[3]), fibnum); #else ro->ro_rt = in6_rtalloc1((struct sockaddr *) &ro->ro_dst, 0, 0UL, fibnum); if (ro->ro_rt) RT_UNLOCK(ro->ro_rt); #endif } /* * do not care about the result if we have the nexthop * explicitly specified. */ if (opts && opts->ip6po_nexthop) goto done; if (ro->ro_rt) { ifp = ro->ro_rt->rt_ifp; if (ifp == NULL) { /* can this really happen? */ RTFREE(ro->ro_rt); ro->ro_rt = NULL; } } if (ro->ro_rt == NULL) error = EHOSTUNREACH; rt = ro->ro_rt; /* * Check if the outgoing interface conflicts with * the interface specified by ipi6_ifindex (if specified). * Note that loopback interface is always okay. * (this may happen when we are sending a packet to one of * our own addresses.) */ if (ifp && opts && opts->ip6po_pktinfo && opts->ip6po_pktinfo->ipi6_ifindex) { if (!(ifp->if_flags & IFF_LOOPBACK) && ifp->if_index != opts->ip6po_pktinfo->ipi6_ifindex) { error = EHOSTUNREACH; goto done; } } } done: if (ifp == NULL && rt == NULL) { /* * This can happen if the caller did not pass a cached route * nor any other hints. We treat this case an error. */ error = EHOSTUNREACH; } if (error == EHOSTUNREACH) IP6STAT_INC(ip6s_noroute); if (retifp != NULL) { *retifp = ifp; /* * Adjust the "outgoing" interface. If we're going to loop * the packet back to ourselves, the ifp would be the loopback * interface. However, we'd rather know the interface associated * to the destination address (which should probably be one of * our own addresses.) */ if (rt) { if ((rt->rt_ifp->if_flags & IFF_LOOPBACK) && (rt->rt_gateway->sa_family == AF_LINK)) *retifp = ifnet_byindex(((struct sockaddr_dl *) rt->rt_gateway)->sdl_index); } } if (retrt != NULL) *retrt = rt; /* rt may be NULL */ return (error); } static int in6_selectif(struct sockaddr_in6 *dstsock, struct ip6_pktopts *opts, struct ip6_moptions *mopts, struct ifnet **retifp, struct ifnet *oifp, u_int fibnum) { int error; struct route_in6 sro; struct rtentry *rt = NULL; int rt_flags; KASSERT(retifp != NULL, ("%s: retifp is NULL", __func__)); bzero(&sro, sizeof(sro)); rt_flags = 0; error = selectroute(dstsock, opts, mopts, &sro, retifp, &rt, 1, fibnum); if (rt) rt_flags = rt->rt_flags; if (rt && rt == sro.ro_rt) RTFREE(rt); if (error != 0) { /* Help ND. See oifp comment in in6_selectsrc(). */ if (oifp != NULL && fibnum == RT_DEFAULT_FIB) { *retifp = oifp; error = 0; } return (error); } /* * do not use a rejected or black hole route. * XXX: this check should be done in the L2 output routine. * However, if we skipped this check here, we'd see the following * scenario: * - install a rejected route for a scoped address prefix * (like fe80::/10) * - send a packet to a destination that matches the scoped prefix, * with ambiguity about the scope zone. * - pick the outgoing interface from the route, and disambiguate the * scope zone with the interface. * - ip6_output() would try to get another route with the "new" * destination, which may be valid. * - we'd see no error on output. * Although this may not be very harmful, it should still be confusing. * We thus reject the case here. */ if (rt_flags & (RTF_REJECT | RTF_BLACKHOLE)) { error = (rt_flags & RTF_HOST ? EHOSTUNREACH : ENETUNREACH); return (error); } return (0); } /* * Public wrapper function to selectroute(). * * XXX-BZ in6_selectroute() should and will grow the FIB argument. The * in6_selectroute_fib() function is only there for backward compat on stable. */ int in6_selectroute(struct sockaddr_in6 *dstsock, struct ip6_pktopts *opts, struct ip6_moptions *mopts, struct route_in6 *ro, struct ifnet **retifp, struct rtentry **retrt) { return (selectroute(dstsock, opts, mopts, ro, retifp, retrt, 0, RT_DEFAULT_FIB)); } #ifndef BURN_BRIDGES int in6_selectroute_fib(struct sockaddr_in6 *dstsock, struct ip6_pktopts *opts, struct ip6_moptions *mopts, struct route_in6 *ro, struct ifnet **retifp, struct rtentry **retrt, u_int fibnum) { return (selectroute(dstsock, opts, mopts, ro, retifp, retrt, 0, fibnum)); } #endif /* * Default hop limit selection. The precedence is as follows: * 1. Hoplimit value specified via ioctl. * 2. (If the outgoing interface is detected) the current * hop limit of the interface specified by router advertisement. * 3. The system default hoplimit. */ int in6_selecthlim(struct inpcb *in6p, struct ifnet *ifp) { if (in6p && in6p->in6p_hops >= 0) return (in6p->in6p_hops); else if (ifp) return (ND_IFINFO(ifp)->chlim); else if (in6p && !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) { struct nhop6_basic nh6; struct in6_addr dst; uint32_t fibnum, scopeid; int hlim; fibnum = in6p->inp_inc.inc_fibnum; in6_splitscope(&in6p->in6p_faddr, &dst, &scopeid); if (fib6_lookup_nh_basic(fibnum, &dst, scopeid, 0, 0, &nh6)==0){ hlim = ND_IFINFO(nh6.nh_ifp)->chlim; return (hlim); } } return (V_ip6_defhlim); } /* * XXX: this is borrowed from in6_pcbbind(). If possible, we should * share this function by all *bsd*... */ int in6_pcbsetport(struct in6_addr *laddr, struct inpcb *inp, struct ucred *cred) { struct socket *so = inp->inp_socket; u_int16_t lport = 0; int error, lookupflags = 0; #ifdef INVARIANTS struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; #endif INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); error = prison_local_ip6(cred, laddr, ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0)); if (error) return(error); /* XXX: this is redundant when called from in6_pcbbind */ - if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) + if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) lookupflags = INPLOOKUP_WILDCARD; inp->inp_flags |= INP_ANONPORT; error = in_pcb_lport(inp, NULL, &lport, cred, lookupflags); if (error != 0) return (error); inp->inp_lport = lport; if (in_pcbinshash(inp) != 0) { inp->in6p_laddr = in6addr_any; inp->inp_lport = 0; return (EAGAIN); } return (0); } void addrsel_policy_init(void) { init_policy_queue(); /* initialize the "last resort" policy */ bzero(&V_defaultaddrpolicy, sizeof(V_defaultaddrpolicy)); V_defaultaddrpolicy.label = ADDR_LABEL_NOTAPP; if (!IS_DEFAULT_VNET(curvnet)) return; ADDRSEL_LOCK_INIT(); ADDRSEL_SXLOCK_INIT(); } static struct in6_addrpolicy * lookup_addrsel_policy(struct sockaddr_in6 *key) { struct in6_addrpolicy *match = NULL; ADDRSEL_LOCK(); match = match_addrsel_policy(key); if (match == NULL) match = &V_defaultaddrpolicy; else match->use++; ADDRSEL_UNLOCK(); return (match); } /* * Subroutines to manage the address selection policy table via sysctl. */ struct walkarg { struct sysctl_req *w_req; }; static int in6_src_sysctl(SYSCTL_HANDLER_ARGS); SYSCTL_DECL(_net_inet6_ip6); static SYSCTL_NODE(_net_inet6_ip6, IPV6CTL_ADDRCTLPOLICY, addrctlpolicy, CTLFLAG_RD, in6_src_sysctl, ""); static int in6_src_sysctl(SYSCTL_HANDLER_ARGS) { struct walkarg w; if (req->newptr) return EPERM; bzero(&w, sizeof(w)); w.w_req = req; return (walk_addrsel_policy(dump_addrsel_policyent, &w)); } int in6_src_ioctl(u_long cmd, caddr_t data) { struct in6_addrpolicy ent0; if (cmd != SIOCAADDRCTL_POLICY && cmd != SIOCDADDRCTL_POLICY) return (EOPNOTSUPP); /* check for safety */ ent0 = *(struct in6_addrpolicy *)data; if (ent0.label == ADDR_LABEL_NOTAPP) return (EINVAL); /* check if the prefix mask is consecutive. */ if (in6_mask2len(&ent0.addrmask.sin6_addr, NULL) < 0) return (EINVAL); /* clear trailing garbages (if any) of the prefix address. */ IN6_MASK_ADDR(&ent0.addr.sin6_addr, &ent0.addrmask.sin6_addr); ent0.use = 0; switch (cmd) { case SIOCAADDRCTL_POLICY: return (add_addrsel_policyent(&ent0)); case SIOCDADDRCTL_POLICY: return (delete_addrsel_policyent(&ent0)); } return (0); /* XXX: compromise compilers */ } /* * The followings are implementation of the policy table using a * simple tail queue. * XXX such details should be hidden. * XXX implementation using binary tree should be more efficient. */ struct addrsel_policyent { TAILQ_ENTRY(addrsel_policyent) ape_entry; struct in6_addrpolicy ape_policy; }; TAILQ_HEAD(addrsel_policyhead, addrsel_policyent); static VNET_DEFINE(struct addrsel_policyhead, addrsel_policytab); #define V_addrsel_policytab VNET(addrsel_policytab) static void init_policy_queue(void) { TAILQ_INIT(&V_addrsel_policytab); } static int add_addrsel_policyent(struct in6_addrpolicy *newpolicy) { struct addrsel_policyent *new, *pol; new = malloc(sizeof(*new), M_IFADDR, M_WAITOK); ADDRSEL_XLOCK(); ADDRSEL_LOCK(); /* duplication check */ TAILQ_FOREACH(pol, &V_addrsel_policytab, ape_entry) { if (IN6_ARE_ADDR_EQUAL(&newpolicy->addr.sin6_addr, &pol->ape_policy.addr.sin6_addr) && IN6_ARE_ADDR_EQUAL(&newpolicy->addrmask.sin6_addr, &pol->ape_policy.addrmask.sin6_addr)) { ADDRSEL_UNLOCK(); ADDRSEL_XUNLOCK(); free(new, M_IFADDR); return (EEXIST); /* or override it? */ } } bzero(new, sizeof(*new)); /* XXX: should validate entry */ new->ape_policy = *newpolicy; TAILQ_INSERT_TAIL(&V_addrsel_policytab, new, ape_entry); ADDRSEL_UNLOCK(); ADDRSEL_XUNLOCK(); return (0); } static int delete_addrsel_policyent(struct in6_addrpolicy *key) { struct addrsel_policyent *pol; ADDRSEL_XLOCK(); ADDRSEL_LOCK(); /* search for the entry in the table */ TAILQ_FOREACH(pol, &V_addrsel_policytab, ape_entry) { if (IN6_ARE_ADDR_EQUAL(&key->addr.sin6_addr, &pol->ape_policy.addr.sin6_addr) && IN6_ARE_ADDR_EQUAL(&key->addrmask.sin6_addr, &pol->ape_policy.addrmask.sin6_addr)) { break; } } if (pol == NULL) { ADDRSEL_UNLOCK(); ADDRSEL_XUNLOCK(); return (ESRCH); } TAILQ_REMOVE(&V_addrsel_policytab, pol, ape_entry); ADDRSEL_UNLOCK(); ADDRSEL_XUNLOCK(); free(pol, M_IFADDR); return (0); } static int walk_addrsel_policy(int (*callback)(struct in6_addrpolicy *, void *), void *w) { struct addrsel_policyent *pol; int error = 0; ADDRSEL_SLOCK(); TAILQ_FOREACH(pol, &V_addrsel_policytab, ape_entry) { if ((error = (*callback)(&pol->ape_policy, w)) != 0) { ADDRSEL_SUNLOCK(); return (error); } } ADDRSEL_SUNLOCK(); return (error); } static int dump_addrsel_policyent(struct in6_addrpolicy *pol, void *arg) { int error = 0; struct walkarg *w = arg; error = SYSCTL_OUT(w->w_req, pol, sizeof(*pol)); return (error); } static struct in6_addrpolicy * match_addrsel_policy(struct sockaddr_in6 *key) { struct addrsel_policyent *pent; struct in6_addrpolicy *bestpol = NULL, *pol; int matchlen, bestmatchlen = -1; u_char *mp, *ep, *k, *p, m; TAILQ_FOREACH(pent, &V_addrsel_policytab, ape_entry) { matchlen = 0; pol = &pent->ape_policy; mp = (u_char *)&pol->addrmask.sin6_addr; ep = mp + 16; /* XXX: scope field? */ k = (u_char *)&key->sin6_addr; p = (u_char *)&pol->addr.sin6_addr; for (; mp < ep && *mp; mp++, k++, p++) { m = *mp; if ((*k & m) != *p) goto next; /* not match */ if (m == 0xff) /* short cut for a typical case */ matchlen += 8; else { while (m >= 0x80) { matchlen++; m <<= 1; } } } /* matched. check if this is better than the current best. */ if (bestpol == NULL || matchlen > bestmatchlen) { bestpol = pol; bestmatchlen = matchlen; } next: continue; } return (bestpol); } Index: head/sys/netinet6/ip6_output.c =================================================================== --- head/sys/netinet6/ip6_output.c (revision 332893) +++ head/sys/netinet6/ip6_output.c (revision 332894) @@ -1,3106 +1,3115 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ */ /*- * Copyright (c) 1982, 1986, 1988, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ratelimit.h" #include "opt_ipsec.h" #include "opt_sctp.h" #include "opt_route.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SCTP #include #include #endif #include #include extern int in6_mcast_loop; struct ip6_exthdrs { struct mbuf *ip6e_ip6; struct mbuf *ip6e_hbh; struct mbuf *ip6e_dest1; struct mbuf *ip6e_rthdr; struct mbuf *ip6e_dest2; }; static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, struct ucred *, int); static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, struct socket *, struct sockopt *); static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, struct ucred *, int, int, int); static int ip6_copyexthdr(struct mbuf **, caddr_t, int); static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, struct ip6_frag **); static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); static int ip6_getpmtu(struct route_in6 *, int, struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, u_int); static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, u_long *, int *, u_int); static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); /* * Make an extension header from option data. hp is the source, and * mp is the destination. */ #define MAKE_EXTHDR(hp, mp) \ do { \ if (hp) { \ struct ip6_ext *eh = (struct ip6_ext *)(hp); \ error = ip6_copyexthdr((mp), (caddr_t)(hp), \ ((eh)->ip6e_len + 1) << 3); \ if (error) \ goto freehdrs; \ } \ } while (/*CONSTCOND*/ 0) /* * Form a chain of extension headers. * m is the extension header mbuf * mp is the previous mbuf in the chain * p is the next header * i is the type of option. */ #define MAKE_CHAIN(m, mp, p, i)\ do {\ if (m) {\ if (!hdrsplit) \ panic("assumption failed: hdr not split"); \ *mtod((m), u_char *) = *(p);\ *(p) = (i);\ p = mtod((m), u_char *);\ (m)->m_next = (mp)->m_next;\ (mp)->m_next = (m);\ (mp) = (m);\ }\ } while (/*CONSTCOND*/ 0) void in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) { u_short csum; csum = in_cksum_skip(m, offset + plen, offset); if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) csum = 0xffff; offset += m->m_pkthdr.csum_data; /* checksum offset */ if (offset + sizeof(u_short) > m->m_len) { printf("%s: delayed m_pullup, m->len: %d plen %u off %u " "csum_flags=%b\n", __func__, m->m_len, plen, offset, (int)m->m_pkthdr.csum_flags, CSUM_BITS); /* * XXX this should not happen, but if it does, the correct * behavior may be to insert the checksum in the appropriate * next mbuf in the chain. */ return; } *(u_short *)(m->m_data + offset) = csum; } int ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, int fraglen , uint32_t id) { struct mbuf *m, **mnext, *m_frgpart; struct ip6_hdr *ip6, *mhip6; struct ip6_frag *ip6f; int off; int error; int tlen = m0->m_pkthdr.len; KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); m = m0; ip6 = mtod(m, struct ip6_hdr *); mnext = &m->m_nextpkt; for (off = hlen; off < tlen; off += fraglen) { m = m_gethdr(M_NOWAIT, MT_DATA); if (!m) { IP6STAT_INC(ip6s_odropped); return (ENOBUFS); } m->m_flags = m0->m_flags & M_COPYFLAGS; *mnext = m; mnext = &m->m_nextpkt; m->m_data += max_linkhdr; mhip6 = mtod(m, struct ip6_hdr *); *mhip6 = *ip6; m->m_len = sizeof(*mhip6); error = ip6_insertfraghdr(m0, m, hlen, &ip6f); if (error) { IP6STAT_INC(ip6s_odropped); return (error); } ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); if (off + fraglen >= tlen) fraglen = tlen - off; else ip6f->ip6f_offlg |= IP6F_MORE_FRAG; mhip6->ip6_plen = htons((u_short)(fraglen + hlen + sizeof(*ip6f) - sizeof(struct ip6_hdr))); if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { IP6STAT_INC(ip6s_odropped); return (ENOBUFS); } m_cat(m, m_frgpart); m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; m->m_pkthdr.rcvif = NULL; ip6f->ip6f_reserved = 0; ip6f->ip6f_ident = id; ip6f->ip6f_nxt = nextproto; IP6STAT_INC(ip6s_ofragments); in6_ifstat_inc(ifp, ifs6_out_fragcreat); } return (0); } /* * IP6 output. The packet in mbuf chain m contains a skeletal IP6 * header (with pri, len, nxt, hlim, src, dst). * This function may modify ver and hlim only. * The mbuf chain containing the packet will be freed. * The mbuf opt, if present, will not be freed. * If route_in6 ro is present and has ro_rt initialized, route lookup would be * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, * then result of route lookup is stored in ro->ro_rt. * * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, * which is rt_mtu. * * ifpp - XXX: just for statistics */ /* * XXX TODO: no flowid is assigned for outbound flows? */ int ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, struct route_in6 *ro, int flags, struct ip6_moptions *im6o, struct ifnet **ifpp, struct inpcb *inp) { struct ip6_hdr *ip6; struct ifnet *ifp, *origifp; struct mbuf *m = m0; struct mbuf *mprev = NULL; int hlen, tlen, len; struct route_in6 ip6route; struct rtentry *rt = NULL; struct sockaddr_in6 *dst, src_sa, dst_sa; struct in6_addr odst; int error = 0; struct in6_ifaddr *ia = NULL; u_long mtu; int alwaysfrag, dontfrag; u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; struct ip6_exthdrs exthdrs; struct in6_addr src0, dst0; u_int32_t zone; struct route_in6 *ro_pmtu = NULL; int hdrsplit = 0; int sw_csum, tso; int needfiblookup; uint32_t fibnum; struct m_tag *fwd_tag = NULL; uint32_t id; if (inp != NULL) { INP_LOCK_ASSERT(inp); M_SETFIB(m, inp->inp_inc.inc_fibnum); if ((flags & IP_NODEFAULTFLOWID) == 0) { /* unconditionally set flowid */ m->m_pkthdr.flowid = inp->inp_flowid; M_HASHTYPE_SET(m, inp->inp_flowtype); } } #if defined(IPSEC) || defined(IPSEC_SUPPORT) /* * IPSec checking which handles several cases. * FAST IPSEC: We re-injected the packet. * XXX: need scope argument. */ if (IPSEC_ENABLED(ipv6)) { if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { if (error == EINPROGRESS) error = 0; goto done; } } #endif /* IPSEC */ bzero(&exthdrs, sizeof(exthdrs)); if (opt) { /* Hop-by-Hop options header */ MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); /* Destination options header(1st part) */ if (opt->ip6po_rthdr) { /* * Destination options header(1st part) * This only makes sense with a routing header. * See Section 9.2 of RFC 3542. * Disabling this part just for MIP6 convenience is * a bad idea. We need to think carefully about a * way to make the advanced API coexist with MIP6 * options, which might automatically be inserted in * the kernel. */ MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); } /* Routing header */ MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); /* Destination options header(2nd part) */ MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); } /* * Calculate the total length of the extension header chain. * Keep the length of the unfragmentable part for fragmentation. */ optlen = 0; if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; unfragpartlen = optlen + sizeof(struct ip6_hdr); /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; /* * If there is at least one extension header, * separate IP6 header from the payload. */ if (optlen && !hdrsplit) { if ((error = ip6_splithdr(m, &exthdrs)) != 0) { m = NULL; goto freehdrs; } m = exthdrs.ip6e_ip6; hdrsplit++; } ip6 = mtod(m, struct ip6_hdr *); /* adjust mbuf packet header length */ m->m_pkthdr.len += optlen; plen = m->m_pkthdr.len - sizeof(*ip6); /* If this is a jumbo payload, insert a jumbo payload option. */ if (plen > IPV6_MAXPACKET) { if (!hdrsplit) { if ((error = ip6_splithdr(m, &exthdrs)) != 0) { m = NULL; goto freehdrs; } m = exthdrs.ip6e_ip6; hdrsplit++; } /* adjust pointer */ ip6 = mtod(m, struct ip6_hdr *); if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) goto freehdrs; ip6->ip6_plen = 0; } else ip6->ip6_plen = htons(plen); /* * Concatenate headers and fill in next header fields. * Here we have, on "m" * IPv6 payload * and we insert headers accordingly. Finally, we should be getting: * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] * * during the header composing process, "m" points to IPv6 header. * "mprev" points to an extension header prior to esp. */ u_char *nexthdrp = &ip6->ip6_nxt; mprev = m; /* * we treat dest2 specially. this makes IPsec processing * much easier. the goal here is to make mprev point the * mbuf prior to dest2. * * result: IPv6 dest2 payload * m and mprev will point to IPv6 header. */ if (exthdrs.ip6e_dest2) { if (!hdrsplit) panic("assumption failed: hdr not split"); exthdrs.ip6e_dest2->m_next = m->m_next; m->m_next = exthdrs.ip6e_dest2; *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; ip6->ip6_nxt = IPPROTO_DSTOPTS; } /* * result: IPv6 hbh dest1 rthdr dest2 payload * m will point to IPv6 header. mprev will point to the * extension header prior to dest2 (rthdr in the above case). */ MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, IPPROTO_DSTOPTS); MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, IPPROTO_ROUTING); /* * If there is a routing header, discard the packet. */ if (exthdrs.ip6e_rthdr) { error = EINVAL; goto bad; } /* Source address validation */ if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && (flags & IPV6_UNSPECSRC) == 0) { error = EOPNOTSUPP; IP6STAT_INC(ip6s_badscope); goto bad; } if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { error = EOPNOTSUPP; IP6STAT_INC(ip6s_badscope); goto bad; } IP6STAT_INC(ip6s_localout); /* * Route packet. */ if (ro == NULL) { ro = &ip6route; bzero((caddr_t)ro, sizeof(*ro)); } ro_pmtu = ro; if (opt && opt->ip6po_rthdr) ro = &opt->ip6po_route; dst = (struct sockaddr_in6 *)&ro->ro_dst; fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); again: /* * if specified, try to fill in the traffic class field. * do not override if a non-zero value is already set. * we check the diffserv field and the ecn field separately. */ if (opt && opt->ip6po_tclass >= 0) { int mask = 0; if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) mask |= 0xfc; if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) mask |= 0x03; if (mask != 0) ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); } /* fill in or override the hop limit field, if necessary. */ if (opt && opt->ip6po_hlim != -1) ip6->ip6_hlim = opt->ip6po_hlim & 0xff; else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { if (im6o != NULL) ip6->ip6_hlim = im6o->im6o_multicast_hlim; else ip6->ip6_hlim = V_ip6_defmcasthlim; } /* * Validate route against routing table additions; * a better/more specific route might have been added. * Make sure address family is set in route. */ if (inp) { ro->ro_dst.sin6_family = AF_INET6; RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, fibnum); } if (ro->ro_rt && fwd_tag == NULL && (ro->ro_rt->rt_flags & RTF_UP) && ro->ro_dst.sin6_family == AF_INET6 && IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { rt = ro->ro_rt; ifp = ro->ro_rt->rt_ifp; } else { if (ro->ro_lle) LLE_FREE(ro->ro_lle); /* zeros ro_lle */ ro->ro_lle = NULL; if (fwd_tag == NULL) { bzero(&dst_sa, sizeof(dst_sa)); dst_sa.sin6_family = AF_INET6; dst_sa.sin6_len = sizeof(dst_sa); dst_sa.sin6_addr = ip6->ip6_dst; } error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, &rt, fibnum); if (error != 0) { if (ifp != NULL) in6_ifstat_inc(ifp, ifs6_out_discard); goto bad; } } if (rt == NULL) { /* * If in6_selectroute() does not return a route entry, * dst may not have been updated. */ *dst = dst_sa; /* XXX */ } /* * then rt (for unicast) and ifp must be non-NULL valid values. */ if ((flags & IPV6_FORWARDING) == 0) { /* XXX: the FORWARDING flag can be set for mrouting. */ in6_ifstat_inc(ifp, ifs6_out_request); } if (rt != NULL) { ia = (struct in6_ifaddr *)(rt->rt_ifa); counter_u64_add(rt->rt_pksent, 1); } /* * The outgoing interface must be in the zone of source and * destination addresses. */ origifp = ifp; src0 = ip6->ip6_src; if (in6_setscope(&src0, origifp, &zone)) goto badscope; bzero(&src_sa, sizeof(src_sa)); src_sa.sin6_family = AF_INET6; src_sa.sin6_len = sizeof(src_sa); src_sa.sin6_addr = ip6->ip6_src; if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) goto badscope; dst0 = ip6->ip6_dst; if (in6_setscope(&dst0, origifp, &zone)) goto badscope; /* re-initialize to be sure */ bzero(&dst_sa, sizeof(dst_sa)); dst_sa.sin6_family = AF_INET6; dst_sa.sin6_len = sizeof(dst_sa); dst_sa.sin6_addr = ip6->ip6_dst; if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { goto badscope; } /* We should use ia_ifp to support the case of * sending packets to an address of our own. */ if (ia != NULL && ia->ia_ifp) ifp = ia->ia_ifp; /* scope check is done. */ goto routefound; badscope: IP6STAT_INC(ip6s_badscope); in6_ifstat_inc(origifp, ifs6_out_discard); if (error == 0) error = EHOSTUNREACH; /* XXX */ goto bad; routefound: if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { if (opt && opt->ip6po_nextroute.ro_rt) { /* * The nexthop is explicitly specified by the * application. We assume the next hop is an IPv6 * address. */ dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; } else if ((rt->rt_flags & RTF_GATEWAY)) dst = (struct sockaddr_in6 *)rt->rt_gateway; } if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ } else { m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; in6_ifstat_inc(ifp, ifs6_out_mcast); /* * Confirm that the outgoing interface supports multicast. */ if (!(ifp->if_flags & IFF_MULTICAST)) { IP6STAT_INC(ip6s_noroute); in6_ifstat_inc(ifp, ifs6_out_discard); error = ENETUNREACH; goto bad; } if ((im6o == NULL && in6_mcast_loop) || (im6o && im6o->im6o_multicast_loop)) { /* * Loop back multicast datagram if not expressly * forbidden to do so, even if we have not joined * the address; protocols will filter it later, * thus deferring a hash lookup and lock acquisition * at the expense of an m_copym(). */ ip6_mloopback(ifp, m); } else { /* * If we are acting as a multicast router, perform * multicast forwarding as if the packet had just * arrived on the interface to which we are about * to send. The multicast forwarding function * recursively calls this function, using the * IPV6_FORWARDING flag to prevent infinite recursion. * * Multicasts that are looped back by ip6_mloopback(), * above, will be forwarded by the ip6_input() routine, * if necessary. */ if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { /* * XXX: ip6_mforward expects that rcvif is NULL * when it is called from the originating path. * However, it may not always be the case. */ m->m_pkthdr.rcvif = NULL; if (ip6_mforward(ip6, ifp, m) != 0) { m_freem(m); goto done; } } } /* * Multicasts with a hoplimit of zero may be looped back, * above, but must not be transmitted on a network. * Also, multicasts addressed to the loopback interface * are not sent -- the above call to ip6_mloopback() will * loop back a copy if this host actually belongs to the * destination group on the loopback interface. */ if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { m_freem(m); goto done; } } /* * Fill the outgoing inteface to tell the upper layer * to increment per-interface statistics. */ if (ifpp) *ifpp = ifp; /* Determine path MTU. */ if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) goto bad; /* * The caller of this function may specify to use the minimum MTU * in some cases. * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU * setting. The logic is a bit complicated; by default, unicast * packets will follow path MTU while multicast packets will be sent at * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets * including unicast ones will be sent at the minimum MTU. Multicast * packets will always be sent at the minimum MTU unless * IP6PO_MINMTU_DISABLE is explicitly specified. * See RFC 3542 for more details. */ if (mtu > IPV6_MMTU) { if ((flags & IPV6_MINMTU)) mtu = IPV6_MMTU; else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) mtu = IPV6_MMTU; else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && (opt == NULL || opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { mtu = IPV6_MMTU; } } /* * clear embedded scope identifiers if necessary. * in6_clearscope will touch the addresses only when necessary. */ in6_clearscope(&ip6->ip6_src); in6_clearscope(&ip6->ip6_dst); /* * If the outgoing packet contains a hop-by-hop options header, * it must be examined and processed even by the source node. * (RFC 2460, section 4.) */ if (exthdrs.ip6e_hbh) { struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); u_int32_t dummy; /* XXX unused */ u_int32_t plen = 0; /* XXX: ip6_process will check the value */ #ifdef DIAGNOSTIC if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) panic("ip6e_hbh is not contiguous"); #endif /* * XXX: if we have to send an ICMPv6 error to the sender, * we need the M_LOOP flag since icmp6_error() expects * the IPv6 and the hop-by-hop options header are * contiguous unless the flag is set. */ m->m_flags |= M_LOOP; m->m_pkthdr.rcvif = ifp; if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), &dummy, &plen) < 0) { /* m was already freed at this point */ error = EINVAL;/* better error? */ goto done; } m->m_flags &= ~M_LOOP; /* XXX */ m->m_pkthdr.rcvif = NULL; } /* Jump over all PFIL processing if hooks are not active. */ if (!PFIL_HOOKED(&V_inet6_pfil_hook)) goto passout; odst = ip6->ip6_dst; /* Run through list of hooks for output packets. */ error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, 0, inp); if (error != 0 || m == NULL) goto done; /* adjust pointer */ ip6 = mtod(m, struct ip6_hdr *); needfiblookup = 0; /* See if destination IP address was changed by packet filter. */ if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { m->m_flags |= M_SKIP_FIREWALL; /* If destination is now ourself drop to ip6_input(). */ if (in6_localip(&ip6->ip6_dst)) { m->m_flags |= M_FASTFWD_OURS; if (m->m_pkthdr.rcvif == NULL) m->m_pkthdr.rcvif = V_loif; if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } #ifdef SCTP if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; #endif error = netisr_queue(NETISR_IPV6, m); goto done; } else { RO_RTFREE(ro); needfiblookup = 1; /* Redo the routing table lookup. */ if (ro->ro_lle) LLE_FREE(ro->ro_lle); /* zeros ro_lle */ ro->ro_lle = NULL; } } /* See if fib was changed by packet filter. */ if (fibnum != M_GETFIB(m)) { m->m_flags |= M_SKIP_FIREWALL; fibnum = M_GETFIB(m); RO_RTFREE(ro); needfiblookup = 1; if (ro->ro_lle) LLE_FREE(ro->ro_lle); /* zeros ro_lle */ ro->ro_lle = NULL; } if (needfiblookup) goto again; /* See if local, if yes, send it to netisr. */ if (m->m_flags & M_FASTFWD_OURS) { if (m->m_pkthdr.rcvif == NULL) m->m_pkthdr.rcvif = V_loif; if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } #ifdef SCTP if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; #endif error = netisr_queue(NETISR_IPV6, m); goto done; } /* Or forward to some other address? */ if ((m->m_flags & M_IP6_NEXTHOP) && (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { dst = (struct sockaddr_in6 *)&ro->ro_dst; bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); m->m_flags |= M_SKIP_FIREWALL; m->m_flags &= ~M_IP6_NEXTHOP; m_tag_delete(m, fwd_tag); goto again; } passout: /* * Send the packet to the outgoing interface. * If necessary, do IPv6 fragmentation before sending. * * the logic here is rather complex: * 1: normal case (dontfrag == 0, alwaysfrag == 0) * 1-a: send as is if tlen <= path mtu * 1-b: fragment if tlen > path mtu * * 2: if user asks us not to fragment (dontfrag == 1) * 2-a: send as is if tlen <= interface mtu * 2-b: error if tlen > interface mtu * * 3: if we always need to attach fragment header (alwaysfrag == 1) * always fragment * * 4: if dontfrag == 1 && alwaysfrag == 1 * error, as we cannot handle this conflicting request */ sw_csum = m->m_pkthdr.csum_flags; if (!hdrsplit) { tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; sw_csum &= ~ifp->if_hwassist; } else tso = 0; /* * If we added extension headers, we will not do TSO and calculate the * checksums ourselves for now. * XXX-BZ Need a framework to know when the NIC can handle it, even * with ext. hdrs. */ if (sw_csum & CSUM_DELAY_DATA_IPV6) { sw_csum &= ~CSUM_DELAY_DATA_IPV6; in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); } #ifdef SCTP if (sw_csum & CSUM_SCTP_IPV6) { sw_csum &= ~CSUM_SCTP_IPV6; sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); } #endif m->m_pkthdr.csum_flags &= ifp->if_hwassist; tlen = m->m_pkthdr.len; if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) dontfrag = 1; else dontfrag = 0; if (dontfrag && alwaysfrag) { /* case 4 */ /* conflicting request - can't transmit */ error = EMSGSIZE; goto bad; } if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ /* * Even if the DONTFRAG option is specified, we cannot send the * packet when the data length is larger than the MTU of the * outgoing interface. * Notify the error by sending IPV6_PATHMTU ancillary data if * application wanted to know the MTU value. Also return an * error code (this is not described in the API spec). */ if (inp != NULL) ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); error = EMSGSIZE; goto bad; } /* * transmit packet without fragmentation */ if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ struct in6_ifaddr *ia6; ip6 = mtod(m, struct ip6_hdr *); ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); if (ia6) { /* Record statistics for this interface address. */ counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); counter_u64_add(ia6->ia_ifa.ifa_obytes, m->m_pkthdr.len); ifa_free(&ia6->ia_ifa); } #ifdef RATELIMIT if (inp != NULL) { if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) in_pcboutput_txrtlmt(inp, ifp, m); /* stamp send tag on mbuf */ m->m_pkthdr.snd_tag = inp->inp_snd_tag; } else { m->m_pkthdr.snd_tag = NULL; } #endif error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); #ifdef RATELIMIT /* check for route change */ if (error == EAGAIN) in_pcboutput_eagain(inp); #endif goto done; } /* * try to fragment the packet. case 1-b and 3 */ if (mtu < IPV6_MMTU) { /* path MTU cannot be less than IPV6_MMTU */ error = EMSGSIZE; in6_ifstat_inc(ifp, ifs6_out_fragfail); goto bad; } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ error = EMSGSIZE; in6_ifstat_inc(ifp, ifs6_out_fragfail); goto bad; } else { u_char nextproto; /* * Too large for the destination or interface; * fragment if possible. * Must be able to put at least 8 bytes per fragment. */ hlen = unfragpartlen; if (mtu > IPV6_MAXPACKET) mtu = IPV6_MAXPACKET; len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; if (len < 8) { error = EMSGSIZE; in6_ifstat_inc(ifp, ifs6_out_fragfail); goto bad; } /* * If the interface will not calculate checksums on * fragmented packets, then do it here. * XXX-BZ handle the hw offloading case. Need flags. */ if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { in6_delayed_cksum(m, plen, hlen); m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; } #ifdef SCTP if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { sctp_delayed_cksum(m, hlen); m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; } #endif /* * Change the next header field of the last header in the * unfragmentable part. */ if (exthdrs.ip6e_rthdr) { nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; } else if (exthdrs.ip6e_dest1) { nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; } else if (exthdrs.ip6e_hbh) { nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; } else { nextproto = ip6->ip6_nxt; ip6->ip6_nxt = IPPROTO_FRAGMENT; } /* * Loop through length of segment after first fragment, * make new header and copy data of each part and link onto * chain. */ m0 = m; id = htonl(ip6_randomid()); if ((error = ip6_fragment(ifp, m, hlen, nextproto, len, id))) goto sendorfree; in6_ifstat_inc(ifp, ifs6_out_fragok); } /* * Remove leading garbages. */ sendorfree: m = m0->m_nextpkt; m0->m_nextpkt = 0; m_freem(m0); for (; m; m = m0) { m0 = m->m_nextpkt; m->m_nextpkt = 0; if (error == 0) { /* Record statistics for this interface address. */ if (ia) { counter_u64_add(ia->ia_ifa.ifa_opackets, 1); counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); } #ifdef RATELIMIT if (inp != NULL) { if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) in_pcboutput_txrtlmt(inp, ifp, m); /* stamp send tag on mbuf */ m->m_pkthdr.snd_tag = inp->inp_snd_tag; } else { m->m_pkthdr.snd_tag = NULL; } #endif error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); #ifdef RATELIMIT /* check for route change */ if (error == EAGAIN) in_pcboutput_eagain(inp); #endif } else m_freem(m); } if (error == 0) IP6STAT_INC(ip6s_fragmented); done: if (ro == &ip6route) RO_RTFREE(ro); return (error); freehdrs: m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ m_freem(exthdrs.ip6e_dest1); m_freem(exthdrs.ip6e_rthdr); m_freem(exthdrs.ip6e_dest2); /* FALLTHROUGH */ bad: if (m) m_freem(m); goto done; } static int ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) { struct mbuf *m; if (hlen > MCLBYTES) return (ENOBUFS); /* XXX */ if (hlen > MLEN) m = m_getcl(M_NOWAIT, MT_DATA, 0); else m = m_get(M_NOWAIT, MT_DATA); if (m == NULL) return (ENOBUFS); m->m_len = hlen; if (hdr) bcopy(hdr, mtod(m, caddr_t), hlen); *mp = m; return (0); } /* * Insert jumbo payload option. */ static int ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) { struct mbuf *mopt; u_char *optbuf; u_int32_t v; #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ /* * If there is no hop-by-hop options header, allocate new one. * If there is one but it doesn't have enough space to store the * jumbo payload option, allocate a cluster to store the whole options. * Otherwise, use it to store the options. */ if (exthdrs->ip6e_hbh == NULL) { mopt = m_get(M_NOWAIT, MT_DATA); if (mopt == NULL) return (ENOBUFS); mopt->m_len = JUMBOOPTLEN; optbuf = mtod(mopt, u_char *); optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ exthdrs->ip6e_hbh = mopt; } else { struct ip6_hbh *hbh; mopt = exthdrs->ip6e_hbh; if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { /* * XXX assumption: * - exthdrs->ip6e_hbh is not referenced from places * other than exthdrs. * - exthdrs->ip6e_hbh is not an mbuf chain. */ int oldoptlen = mopt->m_len; struct mbuf *n; /* * XXX: give up if the whole (new) hbh header does * not fit even in an mbuf cluster. */ if (oldoptlen + JUMBOOPTLEN > MCLBYTES) return (ENOBUFS); /* * As a consequence, we must always prepare a cluster * at this point. */ n = m_getcl(M_NOWAIT, MT_DATA, 0); if (n == NULL) return (ENOBUFS); n->m_len = oldoptlen + JUMBOOPTLEN; bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), oldoptlen); optbuf = mtod(n, caddr_t) + oldoptlen; m_freem(mopt); mopt = exthdrs->ip6e_hbh = n; } else { optbuf = mtod(mopt, u_char *) + mopt->m_len; mopt->m_len += JUMBOOPTLEN; } optbuf[0] = IP6OPT_PADN; optbuf[1] = 1; /* * Adjust the header length according to the pad and * the jumbo payload option. */ hbh = mtod(mopt, struct ip6_hbh *); hbh->ip6h_len += (JUMBOOPTLEN >> 3); } /* fill in the option. */ optbuf[2] = IP6OPT_JUMBO; optbuf[3] = 4; v = (u_int32_t)htonl(plen + JUMBOOPTLEN); bcopy(&v, &optbuf[4], sizeof(u_int32_t)); /* finally, adjust the packet header length */ exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; return (0); #undef JUMBOOPTLEN } /* * Insert fragment header and copy unfragmentable header portions. */ static int ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, struct ip6_frag **frghdrp) { struct mbuf *n, *mlast; if (hlen > sizeof(struct ip6_hdr)) { n = m_copym(m0, sizeof(struct ip6_hdr), hlen - sizeof(struct ip6_hdr), M_NOWAIT); if (n == NULL) return (ENOBUFS); m->m_next = n; } else n = m; /* Search for the last mbuf of unfragmentable part. */ for (mlast = n; mlast->m_next; mlast = mlast->m_next) ; if (M_WRITABLE(mlast) && M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { /* use the trailing space of the last mbuf for the fragment hdr */ *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); mlast->m_len += sizeof(struct ip6_frag); m->m_pkthdr.len += sizeof(struct ip6_frag); } else { /* allocate a new mbuf for the fragment header */ struct mbuf *mfrg; mfrg = m_get(M_NOWAIT, MT_DATA); if (mfrg == NULL) return (ENOBUFS); mfrg->m_len = sizeof(struct ip6_frag); *frghdrp = mtod(mfrg, struct ip6_frag *); mlast->m_next = mfrg; } return (0); } /* * Calculates IPv6 path mtu for destination @dst. * Resulting MTU is stored in @mtup. * * Returns 0 on success. */ static int ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) { struct nhop6_extended nh6; struct in6_addr kdst; uint32_t scopeid; struct ifnet *ifp; u_long mtu; int error; in6_splitscope(dst, &kdst, &scopeid); if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0) return (EHOSTUNREACH); ifp = nh6.nh_ifp; mtu = nh6.nh_mtu; error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL, 0); fib6_free_nh_ext(fibnum, &nh6); return (error); } /* * Calculates IPv6 path MTU for @dst based on transmit @ifp, * and cached data in @ro_pmtu. * MTU from (successful) route lookup is saved (along with dst) * inside @ro_pmtu to avoid subsequent route lookups after packet * filter processing. * * Stores mtu and always-frag value into @mtup and @alwaysfragp. * Returns 0 on success. */ static int ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, int *alwaysfragp, u_int fibnum, u_int proto) { struct nhop6_basic nh6; struct in6_addr kdst; uint32_t scopeid; struct sockaddr_in6 *sa6_dst; u_long mtu; mtu = 0; if (do_lookup) { /* * Here ro_pmtu has final destination address, while * ro might represent immediate destination. * Use ro_pmtu destination since mtu might differ. */ sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) ro_pmtu->ro_mtu = 0; if (ro_pmtu->ro_mtu == 0) { bzero(sa6_dst, sizeof(*sa6_dst)); sa6_dst->sin6_family = AF_INET6; sa6_dst->sin6_len = sizeof(struct sockaddr_in6); sa6_dst->sin6_addr = *dst; in6_splitscope(dst, &kdst, &scopeid); if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0, &nh6) == 0) ro_pmtu->ro_mtu = nh6.nh_mtu; } mtu = ro_pmtu->ro_mtu; } if (ro_pmtu->ro_rt) mtu = ro_pmtu->ro_rt->rt_mtu; return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); } /* * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and * hostcache data for @dst. * Stores mtu and always-frag value into @mtup and @alwaysfragp. * * Returns 0 on success. */ static int ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, u_long *mtup, int *alwaysfragp, u_int proto) { u_long mtu = 0; int alwaysfrag = 0; int error = 0; if (rt_mtu > 0) { u_int32_t ifmtu; struct in_conninfo inc; bzero(&inc, sizeof(inc)); inc.inc_flags |= INC_ISIPV6; inc.inc6_faddr = *dst; ifmtu = IN6_LINKMTU(ifp); /* TCP is known to react to pmtu changes so skip hc */ if (proto != IPPROTO_TCP) mtu = tcp_hc_getmtu(&inc); if (mtu) mtu = min(mtu, rt_mtu); else mtu = rt_mtu; if (mtu == 0) mtu = ifmtu; else if (mtu < IPV6_MMTU) { /* * RFC2460 section 5, last paragraph: * if we record ICMPv6 too big message with * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU * or smaller, with framgent header attached. * (fragment header is needed regardless from the * packet size, for translators to identify packets) */ alwaysfrag = 1; mtu = IPV6_MMTU; } } else if (ifp) { mtu = IN6_LINKMTU(ifp); } else error = EHOSTUNREACH; /* XXX */ *mtup = mtu; if (alwaysfragp) *alwaysfragp = alwaysfrag; return (error); } /* * IP6 socket option processing. */ int ip6_ctloutput(struct socket *so, struct sockopt *sopt) { int optdatalen, uproto; void *optdata; struct inpcb *in6p = sotoinpcb(so); int error, optval; int level, op, optname; int optlen; struct thread *td; #ifdef RSS uint32_t rss_bucket; int retval; #endif /* * Don't use more than a quarter of mbuf clusters. N.B.: * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow * on LP64 architectures, so cast to u_long to avoid undefined * behavior. ILP32 architectures cannot have nmbclusters * large enough to overflow for other reasons. */ #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) level = sopt->sopt_level; op = sopt->sopt_dir; optname = sopt->sopt_name; optlen = sopt->sopt_valsize; td = sopt->sopt_td; error = 0; optval = 0; uproto = (int)so->so_proto->pr_protocol; if (level != IPPROTO_IPV6) { error = EINVAL; if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_dir == SOPT_SET) { switch (sopt->sopt_name) { case SO_REUSEADDR: INP_WLOCK(in6p); if ((so->so_options & SO_REUSEADDR) != 0) in6p->inp_flags2 |= INP_REUSEADDR; else in6p->inp_flags2 &= ~INP_REUSEADDR; INP_WUNLOCK(in6p); error = 0; break; case SO_REUSEPORT: INP_WLOCK(in6p); if ((so->so_options & SO_REUSEPORT) != 0) in6p->inp_flags2 |= INP_REUSEPORT; else in6p->inp_flags2 &= ~INP_REUSEPORT; INP_WUNLOCK(in6p); error = 0; break; + case SO_REUSEPORT_LB: + INP_WLOCK(in6p); + if ((so->so_options & SO_REUSEPORT_LB) != 0) + in6p->inp_flags2 |= INP_REUSEPORT_LB; + else + in6p->inp_flags2 &= ~INP_REUSEPORT_LB; + INP_WUNLOCK(in6p); + error = 0; + break; case SO_SETFIB: INP_WLOCK(in6p); in6p->inp_inc.inc_fibnum = so->so_fibnum; INP_WUNLOCK(in6p); error = 0; break; case SO_MAX_PACING_RATE: #ifdef RATELIMIT INP_WLOCK(in6p); in6p->inp_flags2 |= INP_RATE_LIMIT_CHANGED; INP_WUNLOCK(in6p); error = 0; #else error = EOPNOTSUPP; #endif break; default: break; } } } else { /* level == IPPROTO_IPV6 */ switch (op) { case SOPT_SET: switch (optname) { case IPV6_2292PKTOPTIONS: #ifdef IPV6_PKTOPTIONS case IPV6_PKTOPTIONS: #endif { struct mbuf *m; if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { printf("ip6_ctloutput: mbuf limit hit\n"); error = ENOBUFS; break; } error = soopt_getm(sopt, &m); /* XXX */ if (error != 0) break; error = soopt_mcopyin(sopt, m); /* XXX */ if (error != 0) break; error = ip6_pcbopts(&in6p->in6p_outputopts, m, so, sopt); m_freem(m); /* XXX */ break; } /* * Use of some Hop-by-Hop options or some * Destination options, might require special * privilege. That is, normal applications * (without special privilege) might be forbidden * from setting certain options in outgoing packets, * and might never see certain options in received * packets. [RFC 2292 Section 6] * KAME specific note: * KAME prevents non-privileged users from sending or * receiving ANY hbh/dst options in order to avoid * overhead of parsing options in the kernel. */ case IPV6_RECVHOPOPTS: case IPV6_RECVDSTOPTS: case IPV6_RECVRTHDRDSTOPTS: if (td != NULL) { error = priv_check(td, PRIV_NETINET_SETHDROPTS); if (error) break; } /* FALLTHROUGH */ case IPV6_UNICAST_HOPS: case IPV6_HOPLIMIT: case IPV6_RECVPKTINFO: case IPV6_RECVHOPLIMIT: case IPV6_RECVRTHDR: case IPV6_RECVPATHMTU: case IPV6_RECVTCLASS: case IPV6_RECVFLOWID: #ifdef RSS case IPV6_RECVRSSBUCKETID: #endif case IPV6_V6ONLY: case IPV6_AUTOFLOWLABEL: case IPV6_ORIGDSTADDR: case IPV6_BINDANY: case IPV6_BINDMULTI: #ifdef RSS case IPV6_RSS_LISTEN_BUCKET: #endif if (optname == IPV6_BINDANY && td != NULL) { error = priv_check(td, PRIV_NETINET_BINDANY); if (error) break; } if (optlen != sizeof(int)) { error = EINVAL; break; } error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; switch (optname) { case IPV6_UNICAST_HOPS: if (optval < -1 || optval >= 256) error = EINVAL; else { /* -1 = kernel default */ in6p->in6p_hops = optval; if ((in6p->inp_vflag & INP_IPV4) != 0) in6p->inp_ip_ttl = optval; } break; #define OPTSET(bit) \ do { \ INP_WLOCK(in6p); \ if (optval) \ in6p->inp_flags |= (bit); \ else \ in6p->inp_flags &= ~(bit); \ INP_WUNLOCK(in6p); \ } while (/*CONSTCOND*/ 0) #define OPTSET2292(bit) \ do { \ INP_WLOCK(in6p); \ in6p->inp_flags |= IN6P_RFC2292; \ if (optval) \ in6p->inp_flags |= (bit); \ else \ in6p->inp_flags &= ~(bit); \ INP_WUNLOCK(in6p); \ } while (/*CONSTCOND*/ 0) #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) #define OPTSET2_N(bit, val) do { \ if (val) \ in6p->inp_flags2 |= bit; \ else \ in6p->inp_flags2 &= ~bit; \ } while (0) #define OPTSET2(bit, val) do { \ INP_WLOCK(in6p); \ OPTSET2_N(bit, val); \ INP_WUNLOCK(in6p); \ } while (0) #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) #define OPTSET2292_EXCLUSIVE(bit) \ do { \ INP_WLOCK(in6p); \ if (OPTBIT(IN6P_RFC2292)) { \ error = EINVAL; \ } else { \ if (optval) \ in6p->inp_flags |= (bit); \ else \ in6p->inp_flags &= ~(bit); \ } \ INP_WUNLOCK(in6p); \ } while (/*CONSTCOND*/ 0) case IPV6_RECVPKTINFO: OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); break; case IPV6_HOPLIMIT: { struct ip6_pktopts **optp; /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } optp = &in6p->in6p_outputopts; error = ip6_pcbopt(IPV6_HOPLIMIT, (u_char *)&optval, sizeof(optval), optp, (td != NULL) ? td->td_ucred : NULL, uproto); break; } case IPV6_RECVHOPLIMIT: OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); break; case IPV6_RECVHOPOPTS: OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); break; case IPV6_RECVDSTOPTS: OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); break; case IPV6_RECVRTHDRDSTOPTS: OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); break; case IPV6_RECVRTHDR: OPTSET2292_EXCLUSIVE(IN6P_RTHDR); break; case IPV6_RECVPATHMTU: /* * We ignore this option for TCP * sockets. * (RFC3542 leaves this case * unspecified.) */ if (uproto != IPPROTO_TCP) OPTSET(IN6P_MTU); break; case IPV6_RECVFLOWID: OPTSET2(INP_RECVFLOWID, optval); break; #ifdef RSS case IPV6_RECVRSSBUCKETID: OPTSET2(INP_RECVRSSBUCKETID, optval); break; #endif case IPV6_V6ONLY: /* * make setsockopt(IPV6_V6ONLY) * available only prior to bind(2). * see ipng mailing list, Jun 22 2001. */ if (in6p->inp_lport || !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { error = EINVAL; break; } OPTSET(IN6P_IPV6_V6ONLY); if (optval) in6p->inp_vflag &= ~INP_IPV4; else in6p->inp_vflag |= INP_IPV4; break; case IPV6_RECVTCLASS: /* cannot mix with RFC2292 XXX */ OPTSET2292_EXCLUSIVE(IN6P_TCLASS); break; case IPV6_AUTOFLOWLABEL: OPTSET(IN6P_AUTOFLOWLABEL); break; case IPV6_ORIGDSTADDR: OPTSET2(INP_ORIGDSTADDR, optval); break; case IPV6_BINDANY: OPTSET(INP_BINDANY); break; case IPV6_BINDMULTI: OPTSET2(INP_BINDMULTI, optval); break; #ifdef RSS case IPV6_RSS_LISTEN_BUCKET: if ((optval >= 0) && (optval < rss_getnumbuckets())) { INP_WLOCK(in6p); in6p->inp_rss_listen_bucket = optval; OPTSET2_N(INP_RSS_BUCKET_SET, 1); INP_WUNLOCK(in6p); } else { error = EINVAL; } break; #endif } break; case IPV6_TCLASS: case IPV6_DONTFRAG: case IPV6_USE_MIN_MTU: case IPV6_PREFER_TEMPADDR: if (optlen != sizeof(optval)) { error = EINVAL; break; } error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; { struct ip6_pktopts **optp; optp = &in6p->in6p_outputopts; error = ip6_pcbopt(optname, (u_char *)&optval, sizeof(optval), optp, (td != NULL) ? td->td_ucred : NULL, uproto); break; } case IPV6_2292PKTINFO: case IPV6_2292HOPLIMIT: case IPV6_2292HOPOPTS: case IPV6_2292DSTOPTS: case IPV6_2292RTHDR: /* RFC 2292 */ if (optlen != sizeof(int)) { error = EINVAL; break; } error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; switch (optname) { case IPV6_2292PKTINFO: OPTSET2292(IN6P_PKTINFO); break; case IPV6_2292HOPLIMIT: OPTSET2292(IN6P_HOPLIMIT); break; case IPV6_2292HOPOPTS: /* * Check super-user privilege. * See comments for IPV6_RECVHOPOPTS. */ if (td != NULL) { error = priv_check(td, PRIV_NETINET_SETHDROPTS); if (error) return (error); } OPTSET2292(IN6P_HOPOPTS); break; case IPV6_2292DSTOPTS: if (td != NULL) { error = priv_check(td, PRIV_NETINET_SETHDROPTS); if (error) return (error); } OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ break; case IPV6_2292RTHDR: OPTSET2292(IN6P_RTHDR); break; } break; case IPV6_PKTINFO: case IPV6_HOPOPTS: case IPV6_RTHDR: case IPV6_DSTOPTS: case IPV6_RTHDRDSTOPTS: case IPV6_NEXTHOP: { /* new advanced API (RFC3542) */ u_char *optbuf; u_char optbuf_storage[MCLBYTES]; int optlen; struct ip6_pktopts **optp; /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } /* * We only ensure valsize is not too large * here. Further validation will be done * later. */ error = sooptcopyin(sopt, optbuf_storage, sizeof(optbuf_storage), 0); if (error) break; optlen = sopt->sopt_valsize; optbuf = optbuf_storage; optp = &in6p->in6p_outputopts; error = ip6_pcbopt(optname, optbuf, optlen, optp, (td != NULL) ? td->td_ucred : NULL, uproto); break; } #undef OPTSET case IPV6_MULTICAST_IF: case IPV6_MULTICAST_HOPS: case IPV6_MULTICAST_LOOP: case IPV6_JOIN_GROUP: case IPV6_LEAVE_GROUP: case IPV6_MSFILTER: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: case MCAST_JOIN_GROUP: case MCAST_LEAVE_GROUP: case MCAST_JOIN_SOURCE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: error = ip6_setmoptions(in6p, sopt); break; case IPV6_PORTRANGE: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; INP_WLOCK(in6p); switch (optval) { case IPV6_PORTRANGE_DEFAULT: in6p->inp_flags &= ~(INP_LOWPORT); in6p->inp_flags &= ~(INP_HIGHPORT); break; case IPV6_PORTRANGE_HIGH: in6p->inp_flags &= ~(INP_LOWPORT); in6p->inp_flags |= INP_HIGHPORT; break; case IPV6_PORTRANGE_LOW: in6p->inp_flags &= ~(INP_HIGHPORT); in6p->inp_flags |= INP_LOWPORT; break; default: error = EINVAL; break; } INP_WUNLOCK(in6p); break; #if defined(IPSEC) || defined(IPSEC_SUPPORT) case IPV6_IPSEC_POLICY: if (IPSEC_ENABLED(ipv6)) { error = IPSEC_PCBCTL(ipv6, in6p, sopt); break; } /* FALLTHROUGH */ #endif /* IPSEC */ default: error = ENOPROTOOPT; break; } break; case SOPT_GET: switch (optname) { case IPV6_2292PKTOPTIONS: #ifdef IPV6_PKTOPTIONS case IPV6_PKTOPTIONS: #endif /* * RFC3542 (effectively) deprecated the * semantics of the 2292-style pktoptions. * Since it was not reliable in nature (i.e., * applications had to expect the lack of some * information after all), it would make sense * to simplify this part by always returning * empty data. */ sopt->sopt_valsize = 0; break; case IPV6_RECVHOPOPTS: case IPV6_RECVDSTOPTS: case IPV6_RECVRTHDRDSTOPTS: case IPV6_UNICAST_HOPS: case IPV6_RECVPKTINFO: case IPV6_RECVHOPLIMIT: case IPV6_RECVRTHDR: case IPV6_RECVPATHMTU: case IPV6_V6ONLY: case IPV6_PORTRANGE: case IPV6_RECVTCLASS: case IPV6_AUTOFLOWLABEL: case IPV6_BINDANY: case IPV6_FLOWID: case IPV6_FLOWTYPE: case IPV6_RECVFLOWID: #ifdef RSS case IPV6_RSSBUCKETID: case IPV6_RECVRSSBUCKETID: #endif case IPV6_BINDMULTI: switch (optname) { case IPV6_RECVHOPOPTS: optval = OPTBIT(IN6P_HOPOPTS); break; case IPV6_RECVDSTOPTS: optval = OPTBIT(IN6P_DSTOPTS); break; case IPV6_RECVRTHDRDSTOPTS: optval = OPTBIT(IN6P_RTHDRDSTOPTS); break; case IPV6_UNICAST_HOPS: optval = in6p->in6p_hops; break; case IPV6_RECVPKTINFO: optval = OPTBIT(IN6P_PKTINFO); break; case IPV6_RECVHOPLIMIT: optval = OPTBIT(IN6P_HOPLIMIT); break; case IPV6_RECVRTHDR: optval = OPTBIT(IN6P_RTHDR); break; case IPV6_RECVPATHMTU: optval = OPTBIT(IN6P_MTU); break; case IPV6_V6ONLY: optval = OPTBIT(IN6P_IPV6_V6ONLY); break; case IPV6_PORTRANGE: { int flags; flags = in6p->inp_flags; if (flags & INP_HIGHPORT) optval = IPV6_PORTRANGE_HIGH; else if (flags & INP_LOWPORT) optval = IPV6_PORTRANGE_LOW; else optval = 0; break; } case IPV6_RECVTCLASS: optval = OPTBIT(IN6P_TCLASS); break; case IPV6_AUTOFLOWLABEL: optval = OPTBIT(IN6P_AUTOFLOWLABEL); break; case IPV6_ORIGDSTADDR: optval = OPTBIT2(INP_ORIGDSTADDR); break; case IPV6_BINDANY: optval = OPTBIT(INP_BINDANY); break; case IPV6_FLOWID: optval = in6p->inp_flowid; break; case IPV6_FLOWTYPE: optval = in6p->inp_flowtype; break; case IPV6_RECVFLOWID: optval = OPTBIT2(INP_RECVFLOWID); break; #ifdef RSS case IPV6_RSSBUCKETID: retval = rss_hash2bucket(in6p->inp_flowid, in6p->inp_flowtype, &rss_bucket); if (retval == 0) optval = rss_bucket; else error = EINVAL; break; case IPV6_RECVRSSBUCKETID: optval = OPTBIT2(INP_RECVRSSBUCKETID); break; #endif case IPV6_BINDMULTI: optval = OPTBIT2(INP_BINDMULTI); break; } if (error) break; error = sooptcopyout(sopt, &optval, sizeof optval); break; case IPV6_PATHMTU: { u_long pmtu = 0; struct ip6_mtuinfo mtuinfo; struct in6_addr addr; if (!(so->so_state & SS_ISCONNECTED)) return (ENOTCONN); /* * XXX: we dot not consider the case of source * routing, or optional information to specify * the outgoing interface. * Copy faddr out of in6p to avoid holding lock * on inp during route lookup. */ INP_RLOCK(in6p); bcopy(&in6p->in6p_faddr, &addr, sizeof(addr)); INP_RUNLOCK(in6p); error = ip6_getpmtu_ctl(so->so_fibnum, &addr, &pmtu); if (error) break; if (pmtu > IPV6_MAXPACKET) pmtu = IPV6_MAXPACKET; bzero(&mtuinfo, sizeof(mtuinfo)); mtuinfo.ip6m_mtu = (u_int32_t)pmtu; optdata = (void *)&mtuinfo; optdatalen = sizeof(mtuinfo); error = sooptcopyout(sopt, optdata, optdatalen); break; } case IPV6_2292PKTINFO: case IPV6_2292HOPLIMIT: case IPV6_2292HOPOPTS: case IPV6_2292RTHDR: case IPV6_2292DSTOPTS: switch (optname) { case IPV6_2292PKTINFO: optval = OPTBIT(IN6P_PKTINFO); break; case IPV6_2292HOPLIMIT: optval = OPTBIT(IN6P_HOPLIMIT); break; case IPV6_2292HOPOPTS: optval = OPTBIT(IN6P_HOPOPTS); break; case IPV6_2292RTHDR: optval = OPTBIT(IN6P_RTHDR); break; case IPV6_2292DSTOPTS: optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); break; } error = sooptcopyout(sopt, &optval, sizeof optval); break; case IPV6_PKTINFO: case IPV6_HOPOPTS: case IPV6_RTHDR: case IPV6_DSTOPTS: case IPV6_RTHDRDSTOPTS: case IPV6_NEXTHOP: case IPV6_TCLASS: case IPV6_DONTFRAG: case IPV6_USE_MIN_MTU: case IPV6_PREFER_TEMPADDR: error = ip6_getpcbopt(in6p, optname, sopt); break; case IPV6_MULTICAST_IF: case IPV6_MULTICAST_HOPS: case IPV6_MULTICAST_LOOP: case IPV6_MSFILTER: error = ip6_getmoptions(in6p, sopt); break; #if defined(IPSEC) || defined(IPSEC_SUPPORT) case IPV6_IPSEC_POLICY: if (IPSEC_ENABLED(ipv6)) { error = IPSEC_PCBCTL(ipv6, in6p, sopt); break; } /* FALLTHROUGH */ #endif /* IPSEC */ default: error = ENOPROTOOPT; break; } break; } } return (error); } int ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) { int error = 0, optval, optlen; const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); struct inpcb *in6p = sotoinpcb(so); int level, op, optname; level = sopt->sopt_level; op = sopt->sopt_dir; optname = sopt->sopt_name; optlen = sopt->sopt_valsize; if (level != IPPROTO_IPV6) { return (EINVAL); } switch (optname) { case IPV6_CHECKSUM: /* * For ICMPv6 sockets, no modification allowed for checksum * offset, permit "no change" values to help existing apps. * * RFC3542 says: "An attempt to set IPV6_CHECKSUM * for an ICMPv6 socket will fail." * The current behavior does not meet RFC3542. */ switch (op) { case SOPT_SET: if (optlen != sizeof(int)) { error = EINVAL; break; } error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) break; if ((optval % 2) != 0) { /* the API assumes even offset values */ error = EINVAL; } else if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) { if (optval != icmp6off) error = EINVAL; } else in6p->in6p_cksum = optval; break; case SOPT_GET: if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) optval = icmp6off; else optval = in6p->in6p_cksum; error = sooptcopyout(sopt, &optval, sizeof(optval)); break; default: error = EINVAL; break; } break; default: error = ENOPROTOOPT; break; } return (error); } /* * Set up IP6 options in pcb for insertion in output packets or * specifying behavior of outgoing packets. */ static int ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, struct socket *so, struct sockopt *sopt) { struct ip6_pktopts *opt = *pktopt; int error = 0; struct thread *td = sopt->sopt_td; /* turn off any old options. */ if (opt) { #ifdef DIAGNOSTIC if (opt->ip6po_pktinfo || opt->ip6po_nexthop || opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || opt->ip6po_rhinfo.ip6po_rhi_rthdr) printf("ip6_pcbopts: all specified options are cleared.\n"); #endif ip6_clearpktopts(opt, -1); } else opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); *pktopt = NULL; if (!m || m->m_len == 0) { /* * Only turning off any previous options, regardless of * whether the opt is just created or given. */ free(opt, M_IP6OPT); return (0); } /* set options specified by user. */ if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { ip6_clearpktopts(opt, -1); /* XXX: discard all options */ free(opt, M_IP6OPT); return (error); } *pktopt = opt; return (0); } /* * initialize ip6_pktopts. beware that there are non-zero default values in * the struct. */ void ip6_initpktopts(struct ip6_pktopts *opt) { bzero(opt, sizeof(*opt)); opt->ip6po_hlim = -1; /* -1 means default hop limit */ opt->ip6po_tclass = -1; /* -1 means default traffic class */ opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; } static int ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, struct ucred *cred, int uproto) { struct ip6_pktopts *opt; if (*pktopt == NULL) { *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, M_WAITOK); ip6_initpktopts(*pktopt); } opt = *pktopt; return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); } #define GET_PKTOPT_VAR(field, lenexpr) do { \ if (pktopt && pktopt->field) { \ INP_RUNLOCK(in6p); \ optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ malloc_optdata = true; \ INP_RLOCK(in6p); \ if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ INP_RUNLOCK(in6p); \ free(optdata, M_TEMP); \ return (ECONNRESET); \ } \ pktopt = in6p->in6p_outputopts; \ if (pktopt && pktopt->field) { \ optdatalen = min(lenexpr, sopt->sopt_valsize); \ bcopy(&pktopt->field, optdata, optdatalen); \ } else { \ free(optdata, M_TEMP); \ optdata = NULL; \ malloc_optdata = false; \ } \ } \ } while(0) #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ pktopt->field->sa_len) static int ip6_getpcbopt(struct inpcb *in6p, int optname, struct sockopt *sopt) { void *optdata = NULL; bool malloc_optdata = false; int optdatalen = 0; int error = 0; struct in6_pktinfo null_pktinfo; int deftclass = 0, on; int defminmtu = IP6PO_MINMTU_MCASTONLY; int defpreftemp = IP6PO_TEMPADDR_SYSTEM; struct ip6_pktopts *pktopt; INP_RLOCK(in6p); pktopt = in6p->in6p_outputopts; switch (optname) { case IPV6_PKTINFO: optdata = (void *)&null_pktinfo; if (pktopt && pktopt->ip6po_pktinfo) { bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, sizeof(null_pktinfo)); in6_clearscope(&null_pktinfo.ipi6_addr); } else { /* XXX: we don't have to do this every time... */ bzero(&null_pktinfo, sizeof(null_pktinfo)); } optdatalen = sizeof(struct in6_pktinfo); break; case IPV6_TCLASS: if (pktopt && pktopt->ip6po_tclass >= 0) deftclass = pktopt->ip6po_tclass; optdata = (void *)&deftclass; optdatalen = sizeof(int); break; case IPV6_HOPOPTS: GET_PKTOPT_EXT_HDR(ip6po_hbh); break; case IPV6_RTHDR: GET_PKTOPT_EXT_HDR(ip6po_rthdr); break; case IPV6_RTHDRDSTOPTS: GET_PKTOPT_EXT_HDR(ip6po_dest1); break; case IPV6_DSTOPTS: GET_PKTOPT_EXT_HDR(ip6po_dest2); break; case IPV6_NEXTHOP: GET_PKTOPT_SOCKADDR(ip6po_nexthop); break; case IPV6_USE_MIN_MTU: if (pktopt) defminmtu = pktopt->ip6po_minmtu; optdata = (void *)&defminmtu; optdatalen = sizeof(int); break; case IPV6_DONTFRAG: if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) on = 1; else on = 0; optdata = (void *)&on; optdatalen = sizeof(on); break; case IPV6_PREFER_TEMPADDR: if (pktopt) defpreftemp = pktopt->ip6po_prefer_tempaddr; optdata = (void *)&defpreftemp; optdatalen = sizeof(int); break; default: /* should not happen */ #ifdef DIAGNOSTIC panic("ip6_getpcbopt: unexpected option\n"); #endif INP_RUNLOCK(in6p); return (ENOPROTOOPT); } INP_RUNLOCK(in6p); error = sooptcopyout(sopt, optdata, optdatalen); if (malloc_optdata) free(optdata, M_TEMP); return (error); } void ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) { if (pktopt == NULL) return; if (optname == -1 || optname == IPV6_PKTINFO) { if (pktopt->ip6po_pktinfo) free(pktopt->ip6po_pktinfo, M_IP6OPT); pktopt->ip6po_pktinfo = NULL; } if (optname == -1 || optname == IPV6_HOPLIMIT) pktopt->ip6po_hlim = -1; if (optname == -1 || optname == IPV6_TCLASS) pktopt->ip6po_tclass = -1; if (optname == -1 || optname == IPV6_NEXTHOP) { if (pktopt->ip6po_nextroute.ro_rt) { RTFREE(pktopt->ip6po_nextroute.ro_rt); pktopt->ip6po_nextroute.ro_rt = NULL; } if (pktopt->ip6po_nexthop) free(pktopt->ip6po_nexthop, M_IP6OPT); pktopt->ip6po_nexthop = NULL; } if (optname == -1 || optname == IPV6_HOPOPTS) { if (pktopt->ip6po_hbh) free(pktopt->ip6po_hbh, M_IP6OPT); pktopt->ip6po_hbh = NULL; } if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { if (pktopt->ip6po_dest1) free(pktopt->ip6po_dest1, M_IP6OPT); pktopt->ip6po_dest1 = NULL; } if (optname == -1 || optname == IPV6_RTHDR) { if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; if (pktopt->ip6po_route.ro_rt) { RTFREE(pktopt->ip6po_route.ro_rt); pktopt->ip6po_route.ro_rt = NULL; } } if (optname == -1 || optname == IPV6_DSTOPTS) { if (pktopt->ip6po_dest2) free(pktopt->ip6po_dest2, M_IP6OPT); pktopt->ip6po_dest2 = NULL; } } #define PKTOPT_EXTHDRCPY(type) \ do {\ if (src->type) {\ int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ dst->type = malloc(hlen, M_IP6OPT, canwait);\ if (dst->type == NULL)\ goto bad;\ bcopy(src->type, dst->type, hlen);\ }\ } while (/*CONSTCOND*/ 0) static int copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) { if (dst == NULL || src == NULL) { printf("ip6_clearpktopts: invalid argument\n"); return (EINVAL); } dst->ip6po_hlim = src->ip6po_hlim; dst->ip6po_tclass = src->ip6po_tclass; dst->ip6po_flags = src->ip6po_flags; dst->ip6po_minmtu = src->ip6po_minmtu; dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; if (src->ip6po_pktinfo) { dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), M_IP6OPT, canwait); if (dst->ip6po_pktinfo == NULL) goto bad; *dst->ip6po_pktinfo = *src->ip6po_pktinfo; } if (src->ip6po_nexthop) { dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, M_IP6OPT, canwait); if (dst->ip6po_nexthop == NULL) goto bad; bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, src->ip6po_nexthop->sa_len); } PKTOPT_EXTHDRCPY(ip6po_hbh); PKTOPT_EXTHDRCPY(ip6po_dest1); PKTOPT_EXTHDRCPY(ip6po_dest2); PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ return (0); bad: ip6_clearpktopts(dst, -1); return (ENOBUFS); } #undef PKTOPT_EXTHDRCPY struct ip6_pktopts * ip6_copypktopts(struct ip6_pktopts *src, int canwait) { int error; struct ip6_pktopts *dst; dst = malloc(sizeof(*dst), M_IP6OPT, canwait); if (dst == NULL) return (NULL); ip6_initpktopts(dst); if ((error = copypktopts(dst, src, canwait)) != 0) { free(dst, M_IP6OPT); return (NULL); } return (dst); } void ip6_freepcbopts(struct ip6_pktopts *pktopt) { if (pktopt == NULL) return; ip6_clearpktopts(pktopt, -1); free(pktopt, M_IP6OPT); } /* * Set IPv6 outgoing packet options based on advanced API. */ int ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) { struct cmsghdr *cm = NULL; if (control == NULL || opt == NULL) return (EINVAL); ip6_initpktopts(opt); if (stickyopt) { int error; /* * If stickyopt is provided, make a local copy of the options * for this particular packet, then override them by ancillary * objects. * XXX: copypktopts() does not copy the cached route to a next * hop (if any). This is not very good in terms of efficiency, * but we can allow this since this option should be rarely * used. */ if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) return (error); } /* * XXX: Currently, we assume all the optional information is stored * in a single mbuf. */ if (control->m_next) return (EINVAL); for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { int error; if (control->m_len < CMSG_LEN(0)) return (EINVAL); cm = mtod(control, struct cmsghdr *); if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) return (EINVAL); if (cm->cmsg_level != IPPROTO_IPV6) continue; error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); if (error) return (error); } return (0); } /* * Set a particular packet option, as a sticky option or an ancillary data * item. "len" can be 0 only when it's a sticky option. * We have 4 cases of combination of "sticky" and "cmsg": * "sticky=0, cmsg=0": impossible * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data * "sticky=1, cmsg=0": RFC3542 socket option * "sticky=1, cmsg=1": RFC2292 socket option */ static int ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, struct ucred *cred, int sticky, int cmsg, int uproto) { int minmtupolicy, preftemp; int error; if (!sticky && !cmsg) { #ifdef DIAGNOSTIC printf("ip6_setpktopt: impossible case\n"); #endif return (EINVAL); } /* * IPV6_2292xxx is for backward compatibility to RFC2292, and should * not be specified in the context of RFC3542. Conversely, * RFC3542 types should not be specified in the context of RFC2292. */ if (!cmsg) { switch (optname) { case IPV6_2292PKTINFO: case IPV6_2292HOPLIMIT: case IPV6_2292NEXTHOP: case IPV6_2292HOPOPTS: case IPV6_2292DSTOPTS: case IPV6_2292RTHDR: case IPV6_2292PKTOPTIONS: return (ENOPROTOOPT); } } if (sticky && cmsg) { switch (optname) { case IPV6_PKTINFO: case IPV6_HOPLIMIT: case IPV6_NEXTHOP: case IPV6_HOPOPTS: case IPV6_DSTOPTS: case IPV6_RTHDRDSTOPTS: case IPV6_RTHDR: case IPV6_USE_MIN_MTU: case IPV6_DONTFRAG: case IPV6_TCLASS: case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ return (ENOPROTOOPT); } } switch (optname) { case IPV6_2292PKTINFO: case IPV6_PKTINFO: { struct ifnet *ifp = NULL; struct in6_pktinfo *pktinfo; if (len != sizeof(struct in6_pktinfo)) return (EINVAL); pktinfo = (struct in6_pktinfo *)buf; /* * An application can clear any sticky IPV6_PKTINFO option by * doing a "regular" setsockopt with ipi6_addr being * in6addr_any and ipi6_ifindex being zero. * [RFC 3542, Section 6] */ if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && pktinfo->ipi6_ifindex == 0 && IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { ip6_clearpktopts(opt, optname); break; } if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { return (EINVAL); } if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) return (EINVAL); /* validate the interface index if specified. */ if (pktinfo->ipi6_ifindex > V_if_index) return (ENXIO); if (pktinfo->ipi6_ifindex) { ifp = ifnet_byindex(pktinfo->ipi6_ifindex); if (ifp == NULL) return (ENXIO); } if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) return (ENETDOWN); if (ifp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { struct in6_ifaddr *ia; in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); if (ia == NULL) return (EADDRNOTAVAIL); ifa_free(&ia->ia_ifa); } /* * We store the address anyway, and let in6_selectsrc() * validate the specified address. This is because ipi6_addr * may not have enough information about its scope zone, and * we may need additional information (such as outgoing * interface or the scope zone of a destination address) to * disambiguate the scope. * XXX: the delay of the validation may confuse the * application when it is used as a sticky option. */ if (opt->ip6po_pktinfo == NULL) { opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), M_IP6OPT, M_NOWAIT); if (opt->ip6po_pktinfo == NULL) return (ENOBUFS); } bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); break; } case IPV6_2292HOPLIMIT: case IPV6_HOPLIMIT: { int *hlimp; /* * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT * to simplify the ordering among hoplimit options. */ if (optname == IPV6_HOPLIMIT && sticky) return (ENOPROTOOPT); if (len != sizeof(int)) return (EINVAL); hlimp = (int *)buf; if (*hlimp < -1 || *hlimp > 255) return (EINVAL); opt->ip6po_hlim = *hlimp; break; } case IPV6_TCLASS: { int tclass; if (len != sizeof(int)) return (EINVAL); tclass = *(int *)buf; if (tclass < -1 || tclass > 255) return (EINVAL); opt->ip6po_tclass = tclass; break; } case IPV6_2292NEXTHOP: case IPV6_NEXTHOP: if (cred != NULL) { error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS, 0); if (error) return (error); } if (len == 0) { /* just remove the option */ ip6_clearpktopts(opt, IPV6_NEXTHOP); break; } /* check if cmsg_len is large enough for sa_len */ if (len < sizeof(struct sockaddr) || len < *buf) return (EINVAL); switch (((struct sockaddr *)buf)->sa_family) { case AF_INET6: { struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; int error; if (sa6->sin6_len != sizeof(struct sockaddr_in6)) return (EINVAL); if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { return (EINVAL); } if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) != 0) { return (error); } break; } case AF_LINK: /* should eventually be supported */ default: return (EAFNOSUPPORT); } /* turn off the previous option, then set the new option. */ ip6_clearpktopts(opt, IPV6_NEXTHOP); opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); if (opt->ip6po_nexthop == NULL) return (ENOBUFS); bcopy(buf, opt->ip6po_nexthop, *buf); break; case IPV6_2292HOPOPTS: case IPV6_HOPOPTS: { struct ip6_hbh *hbh; int hbhlen; /* * XXX: We don't allow a non-privileged user to set ANY HbH * options, since per-option restriction has too much * overhead. */ if (cred != NULL) { error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS, 0); if (error) return (error); } if (len == 0) { ip6_clearpktopts(opt, IPV6_HOPOPTS); break; /* just remove the option */ } /* message length validation */ if (len < sizeof(struct ip6_hbh)) return (EINVAL); hbh = (struct ip6_hbh *)buf; hbhlen = (hbh->ip6h_len + 1) << 3; if (len != hbhlen) return (EINVAL); /* turn off the previous option, then set the new option. */ ip6_clearpktopts(opt, IPV6_HOPOPTS); opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); if (opt->ip6po_hbh == NULL) return (ENOBUFS); bcopy(hbh, opt->ip6po_hbh, hbhlen); break; } case IPV6_2292DSTOPTS: case IPV6_DSTOPTS: case IPV6_RTHDRDSTOPTS: { struct ip6_dest *dest, **newdest = NULL; int destlen; if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS, 0); if (error) return (error); } if (len == 0) { ip6_clearpktopts(opt, optname); break; /* just remove the option */ } /* message length validation */ if (len < sizeof(struct ip6_dest)) return (EINVAL); dest = (struct ip6_dest *)buf; destlen = (dest->ip6d_len + 1) << 3; if (len != destlen) return (EINVAL); /* * Determine the position that the destination options header * should be inserted; before or after the routing header. */ switch (optname) { case IPV6_2292DSTOPTS: /* * The old advacned API is ambiguous on this point. * Our approach is to determine the position based * according to the existence of a routing header. * Note, however, that this depends on the order of the * extension headers in the ancillary data; the 1st * part of the destination options header must appear * before the routing header in the ancillary data, * too. * RFC3542 solved the ambiguity by introducing * separate ancillary data or option types. */ if (opt->ip6po_rthdr == NULL) newdest = &opt->ip6po_dest1; else newdest = &opt->ip6po_dest2; break; case IPV6_RTHDRDSTOPTS: newdest = &opt->ip6po_dest1; break; case IPV6_DSTOPTS: newdest = &opt->ip6po_dest2; break; } /* turn off the previous option, then set the new option. */ ip6_clearpktopts(opt, optname); *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); if (*newdest == NULL) return (ENOBUFS); bcopy(dest, *newdest, destlen); break; } case IPV6_2292RTHDR: case IPV6_RTHDR: { struct ip6_rthdr *rth; int rthlen; if (len == 0) { ip6_clearpktopts(opt, IPV6_RTHDR); break; /* just remove the option */ } /* message length validation */ if (len < sizeof(struct ip6_rthdr)) return (EINVAL); rth = (struct ip6_rthdr *)buf; rthlen = (rth->ip6r_len + 1) << 3; if (len != rthlen) return (EINVAL); switch (rth->ip6r_type) { case IPV6_RTHDR_TYPE_0: if (rth->ip6r_len == 0) /* must contain one addr */ return (EINVAL); if (rth->ip6r_len % 2) /* length must be even */ return (EINVAL); if (rth->ip6r_len / 2 != rth->ip6r_segleft) return (EINVAL); break; default: return (EINVAL); /* not supported */ } /* turn off the previous option */ ip6_clearpktopts(opt, IPV6_RTHDR); opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); if (opt->ip6po_rthdr == NULL) return (ENOBUFS); bcopy(rth, opt->ip6po_rthdr, rthlen); break; } case IPV6_USE_MIN_MTU: if (len != sizeof(int)) return (EINVAL); minmtupolicy = *(int *)buf; if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && minmtupolicy != IP6PO_MINMTU_DISABLE && minmtupolicy != IP6PO_MINMTU_ALL) { return (EINVAL); } opt->ip6po_minmtu = minmtupolicy; break; case IPV6_DONTFRAG: if (len != sizeof(int)) return (EINVAL); if (uproto == IPPROTO_TCP || *(int *)buf == 0) { /* * we ignore this option for TCP sockets. * (RFC3542 leaves this case unspecified.) */ opt->ip6po_flags &= ~IP6PO_DONTFRAG; } else opt->ip6po_flags |= IP6PO_DONTFRAG; break; case IPV6_PREFER_TEMPADDR: if (len != sizeof(int)) return (EINVAL); preftemp = *(int *)buf; if (preftemp != IP6PO_TEMPADDR_SYSTEM && preftemp != IP6PO_TEMPADDR_NOTPREFER && preftemp != IP6PO_TEMPADDR_PREFER) { return (EINVAL); } opt->ip6po_prefer_tempaddr = preftemp; break; default: return (ENOPROTOOPT); } /* end of switch */ return (0); } /* * Routine called from ip6_output() to loop back a copy of an IP6 multicast * packet to the input queue of a specified interface. Note that this * calls the output routine of the loopback "driver", but with an interface * pointer that might NOT be &loif -- easier than replicating that code here. */ void ip6_mloopback(struct ifnet *ifp, struct mbuf *m) { struct mbuf *copym; struct ip6_hdr *ip6; copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); if (copym == NULL) return; /* * Make sure to deep-copy IPv6 header portion in case the data * is in an mbuf cluster, so that we can safely override the IPv6 * header portion later. */ if (!M_WRITABLE(copym) || copym->m_len < sizeof(struct ip6_hdr)) { copym = m_pullup(copym, sizeof(struct ip6_hdr)); if (copym == NULL) return; } ip6 = mtod(copym, struct ip6_hdr *); /* * clear embedded scope identifiers if necessary. * in6_clearscope will touch the addresses only when necessary. */ in6_clearscope(&ip6->ip6_src); in6_clearscope(&ip6->ip6_dst); if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; copym->m_pkthdr.csum_data = 0xffff; } if_simloop(ifp, copym, AF_INET6, 0); } /* * Chop IPv6 header off from the payload. */ static int ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) { struct mbuf *mh; struct ip6_hdr *ip6; ip6 = mtod(m, struct ip6_hdr *); if (m->m_len > sizeof(*ip6)) { mh = m_gethdr(M_NOWAIT, MT_DATA); if (mh == NULL) { m_freem(m); return ENOBUFS; } m_move_pkthdr(mh, m); M_ALIGN(mh, sizeof(*ip6)); m->m_len -= sizeof(*ip6); m->m_data += sizeof(*ip6); mh->m_next = m; m = mh; m->m_len = sizeof(*ip6); bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); } exthdrs->ip6e_ip6 = m; return 0; } /* * Compute IPv6 extension header length. */ int ip6_optlen(struct inpcb *in6p) { int len; if (!in6p->in6p_outputopts) return 0; len = 0; #define elen(x) \ (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) len += elen(in6p->in6p_outputopts->ip6po_hbh); if (in6p->in6p_outputopts->ip6po_rthdr) /* dest1 is valid with rthdr only */ len += elen(in6p->in6p_outputopts->ip6po_dest1); len += elen(in6p->in6p_outputopts->ip6po_rthdr); len += elen(in6p->in6p_outputopts->ip6po_dest2); return len; #undef elen } Index: head/sys/netinet6/udp6_usrreq.c =================================================================== --- head/sys/netinet6/udp6_usrreq.c (revision 332893) +++ head/sys/netinet6/udp6_usrreq.c (revision 332894) @@ -1,1320 +1,1320 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * Copyright (c) 2010-2011 Juniper Networks, Inc. * Copyright (c) 2014 Kevin Lo * All rights reserved. * * Portions of this software were developed by Robert N. M. Watson under * contract to Juniper Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: udp6_usrreq.c,v 1.27 2001/05/21 05:45:10 jinmei Exp $ * $KAME: udp6_output.c,v 1.31 2001/05/21 16:39:15 jinmei Exp $ */ /*- * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 * The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * UDP protocol implementation. * Per RFC 768, August, 1980. */ extern struct protosw inetsw[]; static void udp6_detach(struct socket *so); static int udp6_append(struct inpcb *inp, struct mbuf *n, int off, struct sockaddr_in6 *fromsa) { struct socket *so; struct mbuf *opts = NULL, *tmp_opts; struct udpcb *up; INP_LOCK_ASSERT(inp); /* * Engage the tunneling protocol. */ up = intoudpcb(inp); if (up->u_tun_func != NULL) { in_pcbref(inp); INP_RUNLOCK(inp); (*up->u_tun_func)(n, off, inp, (struct sockaddr *)&fromsa[0], up->u_tun_ctx); INP_RLOCK(inp); return (in_pcbrele_rlocked(inp)); } #if defined(IPSEC) || defined(IPSEC_SUPPORT) /* Check AH/ESP integrity. */ if (IPSEC_ENABLED(ipv6)) { if (IPSEC_CHECK_POLICY(ipv6, n, inp) != 0) { m_freem(n); return (0); } } #endif /* IPSEC */ #ifdef MAC if (mac_inpcb_check_deliver(inp, n) != 0) { m_freem(n); return (0); } #endif opts = NULL; if (inp->inp_flags & INP_CONTROLOPTS || inp->inp_socket->so_options & SO_TIMESTAMP) ip6_savecontrol(inp, n, &opts); if ((inp->inp_vflag & INP_IPV6) && (inp->inp_flags2 & INP_ORIGDSTADDR)) { tmp_opts = sbcreatecontrol((caddr_t)&fromsa[1], sizeof(struct sockaddr_in6), IPV6_ORIGDSTADDR, IPPROTO_IPV6); if (tmp_opts) { if (opts) { tmp_opts->m_next = opts; opts = tmp_opts; } else opts = tmp_opts; } } m_adj(n, off + sizeof(struct udphdr)); so = inp->inp_socket; SOCKBUF_LOCK(&so->so_rcv); if (sbappendaddr_locked(&so->so_rcv, (struct sockaddr *)&fromsa[0], n, opts) == 0) { SOCKBUF_UNLOCK(&so->so_rcv); m_freem(n); if (opts) m_freem(opts); UDPSTAT_INC(udps_fullsock); } else sorwakeup_locked(so); return (0); } int udp6_input(struct mbuf **mp, int *offp, int proto) { struct mbuf *m = *mp; struct ifnet *ifp; struct ip6_hdr *ip6; struct udphdr *uh; struct inpcb *inp; struct inpcbinfo *pcbinfo; struct udpcb *up; int off = *offp; int cscov_partial; int plen, ulen; struct sockaddr_in6 fromsa[2]; struct m_tag *fwd_tag; uint16_t uh_sum; uint8_t nxt; ifp = m->m_pkthdr.rcvif; #ifndef PULLDOWN_TEST IP6_EXTHDR_CHECK(m, off, sizeof(struct udphdr), IPPROTO_DONE); ip6 = mtod(m, struct ip6_hdr *); uh = (struct udphdr *)((caddr_t)ip6 + off); #else IP6_EXTHDR_GET(uh, struct udphdr *, m, off, sizeof(*uh)); if (!uh) return (IPPROTO_DONE); ip6 = mtod(m, struct ip6_hdr *); #endif UDPSTAT_INC(udps_ipackets); /* * Destination port of 0 is illegal, based on RFC768. */ if (uh->uh_dport == 0) goto badunlocked; plen = ntohs(ip6->ip6_plen) - off + sizeof(*ip6); ulen = ntohs((u_short)uh->uh_ulen); nxt = proto; cscov_partial = (nxt == IPPROTO_UDPLITE) ? 1 : 0; if (nxt == IPPROTO_UDPLITE) { /* Zero means checksum over the complete packet. */ if (ulen == 0) ulen = plen; if (ulen == plen) cscov_partial = 0; if ((ulen < sizeof(struct udphdr)) || (ulen > plen)) { /* XXX: What is the right UDPLite MIB counter? */ goto badunlocked; } if (uh->uh_sum == 0) { /* XXX: What is the right UDPLite MIB counter? */ goto badunlocked; } } else { if ((ulen < sizeof(struct udphdr)) || (plen != ulen)) { UDPSTAT_INC(udps_badlen); goto badunlocked; } if (uh->uh_sum == 0) { UDPSTAT_INC(udps_nosum); goto badunlocked; } } if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) && !cscov_partial) { if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) uh_sum = m->m_pkthdr.csum_data; else uh_sum = in6_cksum_pseudo(ip6, ulen, nxt, m->m_pkthdr.csum_data); uh_sum ^= 0xffff; } else uh_sum = in6_cksum_partial(m, nxt, off, plen, ulen); if (uh_sum != 0) { UDPSTAT_INC(udps_badsum); goto badunlocked; } /* * Construct sockaddr format source address. */ init_sin6(&fromsa[0], m, 0); fromsa[0].sin6_port = uh->uh_sport; init_sin6(&fromsa[1], m, 1); fromsa[1].sin6_port = uh->uh_dport; pcbinfo = udp_get_inpcbinfo(nxt); if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { struct inpcb *last; struct inpcbhead *pcblist; struct ip6_moptions *imo; INP_INFO_RLOCK(pcbinfo); /* * In the event that laddr should be set to the link-local * address (this happens in RIPng), the multicast address * specified in the received packet will not match laddr. To * handle this situation, matching is relaxed if the * receiving interface is the same as one specified in the * socket and if the destination multicast address matches * one of the multicast groups specified in the socket. */ /* * KAME note: traditionally we dropped udpiphdr from mbuf * here. We need udphdr for IPsec processing so we do that * later. */ pcblist = udp_get_pcblist(nxt); last = NULL; LIST_FOREACH(inp, pcblist, inp_list) { if ((inp->inp_vflag & INP_IPV6) == 0) continue; if (inp->inp_lport != uh->uh_dport) continue; if (inp->inp_fport != 0 && inp->inp_fport != uh->uh_sport) continue; if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { if (!IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, &ip6->ip6_dst)) continue; } if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { if (!IN6_ARE_ADDR_EQUAL(&inp->in6p_faddr, &ip6->ip6_src) || inp->inp_fport != uh->uh_sport) continue; } /* * XXXRW: Because we weren't holding either the inpcb * or the hash lock when we checked for a match * before, we should probably recheck now that the * inpcb lock is (supposed to be) held. */ /* * Handle socket delivery policy for any-source * and source-specific multicast. [RFC3678] */ imo = inp->in6p_moptions; if (imo && IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { struct sockaddr_in6 mcaddr; int blocked; INP_RLOCK(inp); bzero(&mcaddr, sizeof(struct sockaddr_in6)); mcaddr.sin6_len = sizeof(struct sockaddr_in6); mcaddr.sin6_family = AF_INET6; mcaddr.sin6_addr = ip6->ip6_dst; blocked = im6o_mc_filter(imo, ifp, (struct sockaddr *)&mcaddr, (struct sockaddr *)&fromsa[0]); if (blocked != MCAST_PASS) { if (blocked == MCAST_NOTGMEMBER) IP6STAT_INC(ip6s_notmember); if (blocked == MCAST_NOTSMEMBER || blocked == MCAST_MUTED) UDPSTAT_INC(udps_filtermcast); INP_RUNLOCK(inp); /* XXX */ continue; } INP_RUNLOCK(inp); } if (last != NULL) { struct mbuf *n; if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) != NULL) { INP_RLOCK(last); UDP_PROBE(receive, NULL, last, ip6, last, uh); if (udp6_append(last, n, off, fromsa)) goto inp_lost; INP_RUNLOCK(last); } } last = inp; /* * Don't look for additional matches if this one does * not have either the SO_REUSEPORT or SO_REUSEADDR * socket options set. This heuristic avoids * searching through all pcbs in the common case of a * non-shared port. It assumes that an application * will never clear these options after setting them. */ if ((last->inp_socket->so_options & - (SO_REUSEPORT|SO_REUSEADDR)) == 0) + (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0) break; } if (last == NULL) { /* * No matching pcb found; discard datagram. (No need * to send an ICMP Port Unreachable for a broadcast * or multicast datgram.) */ UDPSTAT_INC(udps_noport); UDPSTAT_INC(udps_noportmcast); goto badheadlocked; } INP_RLOCK(last); INP_INFO_RUNLOCK(pcbinfo); UDP_PROBE(receive, NULL, last, ip6, last, uh); if (udp6_append(last, m, off, fromsa) == 0) INP_RUNLOCK(last); inp_lost: return (IPPROTO_DONE); } /* * Locate pcb for datagram. */ /* * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */ if ((m->m_flags & M_IP6_NEXTHOP) && (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { struct sockaddr_in6 *next_hop6; next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1); /* * Transparently forwarded. Pretend to be the destination. * Already got one like this? */ inp = in6_pcblookup_mbuf(pcbinfo, &ip6->ip6_src, uh->uh_sport, &ip6->ip6_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif, m); if (!inp) { /* * It's new. Try to find the ambushing socket. * Because we've rewritten the destination address, * any hardware-generated hash is ignored. */ inp = in6_pcblookup(pcbinfo, &ip6->ip6_src, uh->uh_sport, &next_hop6->sin6_addr, next_hop6->sin6_port ? htons(next_hop6->sin6_port) : uh->uh_dport, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif); } /* Remove the tag from the packet. We don't need it anymore. */ m_tag_delete(m, fwd_tag); m->m_flags &= ~M_IP6_NEXTHOP; } else inp = in6_pcblookup_mbuf(pcbinfo, &ip6->ip6_src, uh->uh_sport, &ip6->ip6_dst, uh->uh_dport, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif, m); if (inp == NULL) { if (udp_log_in_vain) { char ip6bufs[INET6_ADDRSTRLEN]; char ip6bufd[INET6_ADDRSTRLEN]; log(LOG_INFO, "Connection attempt to UDP [%s]:%d from [%s]:%d\n", ip6_sprintf(ip6bufd, &ip6->ip6_dst), ntohs(uh->uh_dport), ip6_sprintf(ip6bufs, &ip6->ip6_src), ntohs(uh->uh_sport)); } UDPSTAT_INC(udps_noport); if (m->m_flags & M_MCAST) { printf("UDP6: M_MCAST is set in a unicast packet.\n"); UDPSTAT_INC(udps_noportmcast); goto badunlocked; } if (V_udp_blackhole) goto badunlocked; icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_NOPORT, 0); return (IPPROTO_DONE); } INP_RLOCK_ASSERT(inp); up = intoudpcb(inp); if (cscov_partial) { if (up->u_rxcslen == 0 || up->u_rxcslen > ulen) { INP_RUNLOCK(inp); m_freem(m); return (IPPROTO_DONE); } } UDP_PROBE(receive, NULL, inp, ip6, inp, uh); if (udp6_append(inp, m, off, fromsa) == 0) INP_RUNLOCK(inp); return (IPPROTO_DONE); badheadlocked: INP_INFO_RUNLOCK(pcbinfo); badunlocked: if (m) m_freem(m); return (IPPROTO_DONE); } static void udp6_common_ctlinput(int cmd, struct sockaddr *sa, void *d, struct inpcbinfo *pcbinfo) { struct udphdr uh; struct ip6_hdr *ip6; struct mbuf *m; int off = 0; struct ip6ctlparam *ip6cp = NULL; const struct sockaddr_in6 *sa6_src = NULL; void *cmdarg; struct inpcb *(*notify)(struct inpcb *, int) = udp_notify; struct udp_portonly { u_int16_t uh_sport; u_int16_t uh_dport; } *uhp; if (sa->sa_family != AF_INET6 || sa->sa_len != sizeof(struct sockaddr_in6)) return; if ((unsigned)cmd >= PRC_NCMDS) return; if (PRC_IS_REDIRECT(cmd)) notify = in6_rtchange, d = NULL; else if (cmd == PRC_HOSTDEAD) d = NULL; else if (inet6ctlerrmap[cmd] == 0) return; /* if the parameter is from icmp6, decode it. */ if (d != NULL) { ip6cp = (struct ip6ctlparam *)d; m = ip6cp->ip6c_m; ip6 = ip6cp->ip6c_ip6; off = ip6cp->ip6c_off; cmdarg = ip6cp->ip6c_cmdarg; sa6_src = ip6cp->ip6c_src; } else { m = NULL; ip6 = NULL; cmdarg = NULL; sa6_src = &sa6_any; } if (ip6) { /* * XXX: We assume that when IPV6 is non NULL, * M and OFF are valid. */ /* Check if we can safely examine src and dst ports. */ if (m->m_pkthdr.len < off + sizeof(*uhp)) return; bzero(&uh, sizeof(uh)); m_copydata(m, off, sizeof(*uhp), (caddr_t)&uh); if (!PRC_IS_REDIRECT(cmd)) { /* Check to see if its tunneled */ struct inpcb *inp; inp = in6_pcblookup_mbuf(pcbinfo, &ip6->ip6_dst, uh.uh_dport, &ip6->ip6_src, uh.uh_sport, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif, m); if (inp != NULL) { struct udpcb *up; up = intoudpcb(inp); if (up->u_icmp_func) { /* Yes it is. */ INP_RUNLOCK(inp); (*up->u_icmp_func)(cmd, (struct sockaddr *)ip6cp->ip6c_src, d, up->u_tun_ctx); return; } else { /* Can't find it. */ INP_RUNLOCK(inp); } } } (void)in6_pcbnotify(pcbinfo, sa, uh.uh_dport, (struct sockaddr *)ip6cp->ip6c_src, uh.uh_sport, cmd, cmdarg, notify); } else (void)in6_pcbnotify(pcbinfo, sa, 0, (const struct sockaddr *)sa6_src, 0, cmd, cmdarg, notify); } void udp6_ctlinput(int cmd, struct sockaddr *sa, void *d) { return (udp6_common_ctlinput(cmd, sa, d, &V_udbinfo)); } void udplite6_ctlinput(int cmd, struct sockaddr *sa, void *d) { return (udp6_common_ctlinput(cmd, sa, d, &V_ulitecbinfo)); } static int udp6_getcred(SYSCTL_HANDLER_ARGS) { struct xucred xuc; struct sockaddr_in6 addrs[2]; struct inpcb *inp; int error; error = priv_check(req->td, PRIV_NETINET_GETCRED); if (error) return (error); if (req->newlen != sizeof(addrs)) return (EINVAL); if (req->oldlen != sizeof(struct xucred)) return (EINVAL); error = SYSCTL_IN(req, addrs, sizeof(addrs)); if (error) return (error); if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 || (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) { return (error); } inp = in6_pcblookup(&V_udbinfo, &addrs[1].sin6_addr, addrs[1].sin6_port, &addrs[0].sin6_addr, addrs[0].sin6_port, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); if (inp != NULL) { INP_RLOCK_ASSERT(inp); if (inp->inp_socket == NULL) error = ENOENT; if (error == 0) error = cr_canseesocket(req->td->td_ucred, inp->inp_socket); if (error == 0) cru2x(inp->inp_cred, &xuc); INP_RUNLOCK(inp); } else error = ENOENT; if (error == 0) error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); return (error); } SYSCTL_PROC(_net_inet6_udp6, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW, 0, 0, udp6_getcred, "S,xucred", "Get the xucred of a UDP6 connection"); static int udp6_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr6, struct mbuf *control, struct thread *td) { u_int32_t ulen = m->m_pkthdr.len; u_int32_t plen = sizeof(struct udphdr) + ulen; struct ip6_hdr *ip6; struct udphdr *udp6; struct in6_addr *laddr, *faddr, in6a; struct sockaddr_in6 *sin6 = NULL; int cscov_partial = 0; int scope_ambiguous = 0; u_short fport; int error = 0; uint8_t nxt; uint16_t cscov = 0; struct ip6_pktopts *optp, opt; int af = AF_INET6, hlen = sizeof(struct ip6_hdr); int flags; struct sockaddr_in6 tmp; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); if (addr6) { /* addr6 has been validated in udp6_send(). */ sin6 = (struct sockaddr_in6 *)addr6; /* protect *sin6 from overwrites */ tmp = *sin6; sin6 = &tmp; /* * Application should provide a proper zone ID or the use of * default zone IDs should be enabled. Unfortunately, some * applications do not behave as it should, so we need a * workaround. Even if an appropriate ID is not determined, * we'll see if we can determine the outgoing interface. If we * can, determine the zone ID based on the interface below. */ if (sin6->sin6_scope_id == 0 && !V_ip6_use_defzone) scope_ambiguous = 1; if ((error = sa6_embedscope(sin6, V_ip6_use_defzone)) != 0) return (error); } nxt = (inp->inp_socket->so_proto->pr_protocol == IPPROTO_UDP) ? IPPROTO_UDP : IPPROTO_UDPLITE; if (control) { if ((error = ip6_setpktopts(control, &opt, inp->in6p_outputopts, td->td_ucred, nxt)) != 0) goto release; optp = &opt; } else optp = inp->in6p_outputopts; if (sin6) { faddr = &sin6->sin6_addr; /* * Since we saw no essential reason for calling in_pcbconnect, * we get rid of such kind of logic, and call in6_selectsrc * and in6_pcbsetport in order to fill in the local address * and the local port. */ if (sin6->sin6_port == 0) { error = EADDRNOTAVAIL; goto release; } if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { /* how about ::ffff:0.0.0.0 case? */ error = EISCONN; goto release; } fport = sin6->sin6_port; /* allow 0 port */ if (IN6_IS_ADDR_V4MAPPED(faddr)) { if ((inp->inp_flags & IN6P_IPV6_V6ONLY)) { /* * I believe we should explicitly discard the * packet when mapped addresses are disabled, * rather than send the packet as an IPv6 one. * If we chose the latter approach, the packet * might be sent out on the wire based on the * default route, the situation which we'd * probably want to avoid. * (20010421 jinmei@kame.net) */ error = EINVAL; goto release; } if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) && !IN6_IS_ADDR_V4MAPPED(&inp->in6p_laddr)) { /* * when remote addr is an IPv4-mapped address, * local addr should not be an IPv6 address, * since you cannot determine how to map IPv6 * source address to IPv4. */ error = EINVAL; goto release; } af = AF_INET; } if (!IN6_IS_ADDR_V4MAPPED(faddr)) { error = in6_selectsrc_socket(sin6, optp, inp, td->td_ucred, scope_ambiguous, &in6a, NULL); if (error) goto release; laddr = &in6a; } else laddr = &inp->in6p_laddr; /* XXX */ if (laddr == NULL) { if (error == 0) error = EADDRNOTAVAIL; goto release; } if (inp->inp_lport == 0 && (error = in6_pcbsetport(laddr, inp, td->td_ucred)) != 0) { /* Undo an address bind that may have occurred. */ inp->in6p_laddr = in6addr_any; goto release; } } else { if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { error = ENOTCONN; goto release; } if (IN6_IS_ADDR_V4MAPPED(&inp->in6p_faddr)) { if ((inp->inp_flags & IN6P_IPV6_V6ONLY)) { /* * XXX: this case would happen when the * application sets the V6ONLY flag after * connecting the foreign address. * Such applications should be fixed, * so we bark here. */ log(LOG_INFO, "udp6_output: IPV6_V6ONLY " "option was set for a connected socket\n"); error = EINVAL; goto release; } else af = AF_INET; } laddr = &inp->in6p_laddr; faddr = &inp->in6p_faddr; fport = inp->inp_fport; } if (af == AF_INET) hlen = sizeof(struct ip); /* * Calculate data length and get a mbuf * for UDP and IP6 headers. */ M_PREPEND(m, hlen + sizeof(struct udphdr), M_NOWAIT); if (m == NULL) { error = ENOBUFS; goto release; } /* * Stuff checksum and output datagram. */ udp6 = (struct udphdr *)(mtod(m, caddr_t) + hlen); udp6->uh_sport = inp->inp_lport; /* lport is always set in the PCB */ udp6->uh_dport = fport; if (nxt == IPPROTO_UDPLITE) { struct udpcb *up; up = intoudpcb(inp); cscov = up->u_txcslen; if (cscov >= plen) cscov = 0; udp6->uh_ulen = htons(cscov); /* * For UDP-Lite, checksum coverage length of zero means * the entire UDPLite packet is covered by the checksum. */ cscov_partial = (cscov == 0) ? 0 : 1; } else if (plen <= 0xffff) udp6->uh_ulen = htons((u_short)plen); else udp6->uh_ulen = 0; udp6->uh_sum = 0; switch (af) { case AF_INET6: ip6 = mtod(m, struct ip6_hdr *); ip6->ip6_flow = inp->inp_flow & IPV6_FLOWINFO_MASK; ip6->ip6_vfc &= ~IPV6_VERSION_MASK; ip6->ip6_vfc |= IPV6_VERSION; ip6->ip6_plen = htons((u_short)plen); ip6->ip6_nxt = nxt; ip6->ip6_hlim = in6_selecthlim(inp, NULL); ip6->ip6_src = *laddr; ip6->ip6_dst = *faddr; if (cscov_partial) { if ((udp6->uh_sum = in6_cksum_partial(m, nxt, sizeof(struct ip6_hdr), plen, cscov)) == 0) udp6->uh_sum = 0xffff; } else { udp6->uh_sum = in6_cksum_pseudo(ip6, plen, nxt, 0); m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); } #ifdef RSS { uint32_t hash_val, hash_type; uint8_t pr; pr = inp->inp_socket->so_proto->pr_protocol; /* * Calculate an appropriate RSS hash for UDP and * UDP Lite. * * The called function will take care of figuring out * whether a 2-tuple or 4-tuple hash is required based * on the currently configured scheme. * * Later later on connected socket values should be * cached in the inpcb and reused, rather than constantly * re-calculating it. * * UDP Lite is a different protocol number and will * likely end up being hashed as a 2-tuple until * RSS / NICs grow UDP Lite protocol awareness. */ if (rss_proto_software_hash_v6(faddr, laddr, fport, inp->inp_lport, pr, &hash_val, &hash_type) == 0) { m->m_pkthdr.flowid = hash_val; M_HASHTYPE_SET(m, hash_type); } } #endif flags = 0; #ifdef RSS /* * Don't override with the inp cached flowid. * * Until the whole UDP path is vetted, it may actually * be incorrect. */ flags |= IP_NODEFAULTFLOWID; #endif UDP_PROBE(send, NULL, inp, ip6, inp, udp6); UDPSTAT_INC(udps_opackets); error = ip6_output(m, optp, &inp->inp_route6, flags, inp->in6p_moptions, NULL, inp); break; case AF_INET: error = EAFNOSUPPORT; goto release; } goto releaseopt; release: m_freem(m); releaseopt: if (control) { ip6_clearpktopts(&opt, -1); m_freem(control); } return (error); } static void udp6_abort(struct socket *so) { struct inpcb *inp; struct inpcbinfo *pcbinfo; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp6_abort: inp == NULL")); INP_WLOCK(inp); #ifdef INET if (inp->inp_vflag & INP_IPV4) { struct pr_usrreqs *pru; uint8_t nxt; nxt = (inp->inp_socket->so_proto->pr_protocol == IPPROTO_UDP) ? IPPROTO_UDP : IPPROTO_UDPLITE; INP_WUNLOCK(inp); pru = inetsw[ip_protox[nxt]].pr_usrreqs; (*pru->pru_abort)(so); return; } #endif if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { INP_HASH_WLOCK(pcbinfo); in6_pcbdisconnect(inp); inp->in6p_laddr = in6addr_any; INP_HASH_WUNLOCK(pcbinfo); soisdisconnected(so); } INP_WUNLOCK(inp); } static int udp6_attach(struct socket *so, int proto, struct thread *td) { struct inpcb *inp; struct inpcbinfo *pcbinfo; int error; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp == NULL, ("udp6_attach: inp != NULL")); if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { error = soreserve(so, udp_sendspace, udp_recvspace); if (error) return (error); } INP_INFO_WLOCK(pcbinfo); error = in_pcballoc(so, pcbinfo); if (error) { INP_INFO_WUNLOCK(pcbinfo); return (error); } inp = (struct inpcb *)so->so_pcb; inp->inp_vflag |= INP_IPV6; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) inp->inp_vflag |= INP_IPV4; inp->in6p_hops = -1; /* use kernel default */ inp->in6p_cksum = -1; /* just to be sure */ /* * XXX: ugly!! * IPv4 TTL initialization is necessary for an IPv6 socket as well, * because the socket may be bound to an IPv6 wildcard address, * which may match an IPv4-mapped IPv6 address. */ inp->inp_ip_ttl = V_ip_defttl; error = udp_newudpcb(inp); if (error) { in_pcbdetach(inp); in_pcbfree(inp); INP_INFO_WUNLOCK(pcbinfo); return (error); } INP_WUNLOCK(inp); INP_INFO_WUNLOCK(pcbinfo); return (0); } static int udp6_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { struct inpcb *inp; struct inpcbinfo *pcbinfo; int error; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp6_bind: inp == NULL")); INP_WLOCK(inp); INP_HASH_WLOCK(pcbinfo); inp->inp_vflag &= ~INP_IPV4; inp->inp_vflag |= INP_IPV6; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { struct sockaddr_in6 *sin6_p; sin6_p = (struct sockaddr_in6 *)nam; if (IN6_IS_ADDR_UNSPECIFIED(&sin6_p->sin6_addr)) inp->inp_vflag |= INP_IPV4; #ifdef INET else if (IN6_IS_ADDR_V4MAPPED(&sin6_p->sin6_addr)) { struct sockaddr_in sin; in6_sin6_2_sin(&sin, sin6_p); inp->inp_vflag |= INP_IPV4; inp->inp_vflag &= ~INP_IPV6; error = in_pcbbind(inp, (struct sockaddr *)&sin, td->td_ucred); goto out; } #endif } error = in6_pcbbind(inp, nam, td->td_ucred); #ifdef INET out: #endif INP_HASH_WUNLOCK(pcbinfo); INP_WUNLOCK(inp); return (error); } static void udp6_close(struct socket *so) { struct inpcb *inp; struct inpcbinfo *pcbinfo; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp6_close: inp == NULL")); INP_WLOCK(inp); #ifdef INET if (inp->inp_vflag & INP_IPV4) { struct pr_usrreqs *pru; uint8_t nxt; nxt = (inp->inp_socket->so_proto->pr_protocol == IPPROTO_UDP) ? IPPROTO_UDP : IPPROTO_UDPLITE; INP_WUNLOCK(inp); pru = inetsw[ip_protox[nxt]].pr_usrreqs; (*pru->pru_disconnect)(so); return; } #endif if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { INP_HASH_WLOCK(pcbinfo); in6_pcbdisconnect(inp); inp->in6p_laddr = in6addr_any; INP_HASH_WUNLOCK(pcbinfo); soisdisconnected(so); } INP_WUNLOCK(inp); } static int udp6_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { struct inpcb *inp; struct inpcbinfo *pcbinfo; struct sockaddr_in6 *sin6; int error; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); sin6 = (struct sockaddr_in6 *)nam; KASSERT(inp != NULL, ("udp6_connect: inp == NULL")); /* * XXXRW: Need to clarify locking of v4/v6 flags. */ INP_WLOCK(inp); #ifdef INET if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { struct sockaddr_in sin; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0) { error = EINVAL; goto out; } if ((inp->inp_vflag & INP_IPV4) == 0) { error = EAFNOSUPPORT; goto out; } if (inp->inp_faddr.s_addr != INADDR_ANY) { error = EISCONN; goto out; } in6_sin6_2_sin(&sin, sin6); inp->inp_vflag |= INP_IPV4; inp->inp_vflag &= ~INP_IPV6; error = prison_remote_ip4(td->td_ucred, &sin.sin_addr); if (error != 0) goto out; INP_HASH_WLOCK(pcbinfo); error = in_pcbconnect(inp, (struct sockaddr *)&sin, td->td_ucred); INP_HASH_WUNLOCK(pcbinfo); if (error == 0) soisconnected(so); goto out; } else { if ((inp->inp_vflag & INP_IPV6) == 0) { error = EAFNOSUPPORT; goto out; } } #endif if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { error = EISCONN; goto out; } inp->inp_vflag &= ~INP_IPV4; inp->inp_vflag |= INP_IPV6; error = prison_remote_ip6(td->td_ucred, &sin6->sin6_addr); if (error != 0) goto out; INP_HASH_WLOCK(pcbinfo); error = in6_pcbconnect(inp, nam, td->td_ucred); INP_HASH_WUNLOCK(pcbinfo); if (error == 0) soisconnected(so); out: INP_WUNLOCK(inp); return (error); } static void udp6_detach(struct socket *so) { struct inpcb *inp; struct inpcbinfo *pcbinfo; struct udpcb *up; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp6_detach: inp == NULL")); INP_INFO_WLOCK(pcbinfo); INP_WLOCK(inp); up = intoudpcb(inp); KASSERT(up != NULL, ("%s: up == NULL", __func__)); in_pcbdetach(inp); in_pcbfree(inp); INP_INFO_WUNLOCK(pcbinfo); udp_discardcb(up); } static int udp6_disconnect(struct socket *so) { struct inpcb *inp; struct inpcbinfo *pcbinfo; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp6_disconnect: inp == NULL")); INP_WLOCK(inp); #ifdef INET if (inp->inp_vflag & INP_IPV4) { struct pr_usrreqs *pru; uint8_t nxt; nxt = (inp->inp_socket->so_proto->pr_protocol == IPPROTO_UDP) ? IPPROTO_UDP : IPPROTO_UDPLITE; INP_WUNLOCK(inp); pru = inetsw[ip_protox[nxt]].pr_usrreqs; (void)(*pru->pru_disconnect)(so); return (0); } #endif if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { INP_WUNLOCK(inp); return (ENOTCONN); } INP_HASH_WLOCK(pcbinfo); in6_pcbdisconnect(inp); inp->in6p_laddr = in6addr_any; INP_HASH_WUNLOCK(pcbinfo); SOCK_LOCK(so); so->so_state &= ~SS_ISCONNECTED; /* XXX */ SOCK_UNLOCK(so); INP_WUNLOCK(inp); return (0); } static int udp6_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct thread *td) { struct inpcb *inp; struct inpcbinfo *pcbinfo; int error = 0; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp6_send: inp == NULL")); INP_WLOCK(inp); if (addr) { if (addr->sa_len != sizeof(struct sockaddr_in6)) { error = EINVAL; goto bad; } if (addr->sa_family != AF_INET6) { error = EAFNOSUPPORT; goto bad; } } #ifdef INET if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { int hasv4addr; struct sockaddr_in6 *sin6 = NULL; if (addr == NULL) hasv4addr = (inp->inp_vflag & INP_IPV4); else { sin6 = (struct sockaddr_in6 *)addr; hasv4addr = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 1 : 0; } if (hasv4addr) { struct pr_usrreqs *pru; uint8_t nxt; nxt = (inp->inp_socket->so_proto->pr_protocol == IPPROTO_UDP) ? IPPROTO_UDP : IPPROTO_UDPLITE; /* * XXXRW: We release UDP-layer locks before calling * udp_send() in order to avoid recursion. However, * this does mean there is a short window where inp's * fields are unstable. Could this lead to a * potential race in which the factors causing us to * select the UDPv4 output routine are invalidated? */ INP_WUNLOCK(inp); if (sin6) in6_sin6_2_sin_in_sock(addr); pru = inetsw[ip_protox[nxt]].pr_usrreqs; /* addr will just be freed in sendit(). */ return ((*pru->pru_send)(so, flags, m, addr, control, td)); } } #endif #ifdef MAC mac_inpcb_create_mbuf(inp, m); #endif INP_HASH_WLOCK(pcbinfo); error = udp6_output(inp, m, addr, control, td); INP_HASH_WUNLOCK(pcbinfo); INP_WUNLOCK(inp); return (error); bad: INP_WUNLOCK(inp); m_freem(m); return (error); } struct pr_usrreqs udp6_usrreqs = { .pru_abort = udp6_abort, .pru_attach = udp6_attach, .pru_bind = udp6_bind, .pru_connect = udp6_connect, .pru_control = in6_control, .pru_detach = udp6_detach, .pru_disconnect = udp6_disconnect, .pru_peeraddr = in6_mapped_peeraddr, .pru_send = udp6_send, .pru_shutdown = udp_shutdown, .pru_sockaddr = in6_mapped_sockaddr, .pru_soreceive = soreceive_dgram, .pru_sosend = sosend_dgram, .pru_sosetlabel = in_pcbsosetlabel, .pru_close = udp6_close }; Index: head/sys/sys/socket.h =================================================================== --- head/sys/sys/socket.h (revision 332893) +++ head/sys/sys/socket.h (revision 332894) @@ -1,729 +1,732 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1985, 1986, 1988, 1993, 1994 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)socket.h 8.4 (Berkeley) 2/21/94 * $FreeBSD$ */ #ifndef _SYS_SOCKET_H_ #define _SYS_SOCKET_H_ #include #include #include #include /* * Definitions related to sockets: types, address families, options. */ /* * Data types. */ #if __BSD_VISIBLE #ifndef _GID_T_DECLARED typedef __gid_t gid_t; #define _GID_T_DECLARED #endif #ifndef _OFF_T_DECLARED typedef __off_t off_t; #define _OFF_T_DECLARED #endif #ifndef _PID_T_DECLARED typedef __pid_t pid_t; #define _PID_T_DECLARED #endif #endif #ifndef _SA_FAMILY_T_DECLARED typedef __sa_family_t sa_family_t; #define _SA_FAMILY_T_DECLARED #endif #ifndef _SOCKLEN_T_DECLARED typedef __socklen_t socklen_t; #define _SOCKLEN_T_DECLARED #endif #ifndef _SSIZE_T_DECLARED typedef __ssize_t ssize_t; #define _SSIZE_T_DECLARED #endif #if __BSD_VISIBLE #ifndef _UID_T_DECLARED typedef __uid_t uid_t; #define _UID_T_DECLARED #endif #endif #ifndef _UINT32_T_DECLARED typedef __uint32_t uint32_t; #define _UINT32_T_DECLARED #endif #ifndef _UINTPTR_T_DECLARED typedef __uintptr_t uintptr_t; #define _UINTPTR_T_DECLARED #endif /* * Types */ #define SOCK_STREAM 1 /* stream socket */ #define SOCK_DGRAM 2 /* datagram socket */ #define SOCK_RAW 3 /* raw-protocol interface */ #if __BSD_VISIBLE #define SOCK_RDM 4 /* reliably-delivered message */ #endif #define SOCK_SEQPACKET 5 /* sequenced packet stream */ #if __BSD_VISIBLE /* * Creation flags, OR'ed into socket() and socketpair() type argument. */ #define SOCK_CLOEXEC 0x10000000 #define SOCK_NONBLOCK 0x20000000 #ifdef _KERNEL /* * Flags for accept1(), kern_accept4() and solisten_dequeue, in addition * to SOCK_CLOEXEC and SOCK_NONBLOCK. */ #define ACCEPT4_INHERIT 0x1 #define ACCEPT4_COMPAT 0x2 #endif /* _KERNEL */ #endif /* __BSD_VISIBLE */ /* * Option flags per-socket. */ #define SO_DEBUG 0x0001 /* turn on debugging info recording */ #define SO_ACCEPTCONN 0x0002 /* socket has had listen() */ #define SO_REUSEADDR 0x0004 /* allow local address reuse */ #define SO_KEEPALIVE 0x0008 /* keep connections alive */ #define SO_DONTROUTE 0x0010 /* just use interface addresses */ #define SO_BROADCAST 0x0020 /* permit sending of broadcast msgs */ #if __BSD_VISIBLE #define SO_USELOOPBACK 0x0040 /* bypass hardware when possible */ #endif #define SO_LINGER 0x0080 /* linger on close if data present */ #define SO_OOBINLINE 0x0100 /* leave received OOB data in line */ #if __BSD_VISIBLE #define SO_REUSEPORT 0x0200 /* allow local address & port reuse */ #define SO_TIMESTAMP 0x0400 /* timestamp received dgram traffic */ #define SO_NOSIGPIPE 0x0800 /* no SIGPIPE from EPIPE */ #define SO_ACCEPTFILTER 0x1000 /* there is an accept filter */ #define SO_BINTIME 0x2000 /* timestamp received dgram traffic */ #endif #define SO_NO_OFFLOAD 0x4000 /* socket cannot be offloaded */ #define SO_NO_DDP 0x8000 /* disable direct data placement */ +// XXX: so_options was only 16 bit, now globally increased to 32 bit +#define SO_REUSEPORT_LB 0x00010000 /* reuse with load balancing */ + /* * Additional options, not kept in so_options. */ #define SO_SNDBUF 0x1001 /* send buffer size */ #define SO_RCVBUF 0x1002 /* receive buffer size */ #define SO_SNDLOWAT 0x1003 /* send low-water mark */ #define SO_RCVLOWAT 0x1004 /* receive low-water mark */ #define SO_SNDTIMEO 0x1005 /* send timeout */ #define SO_RCVTIMEO 0x1006 /* receive timeout */ #define SO_ERROR 0x1007 /* get error status and clear */ #define SO_TYPE 0x1008 /* get socket type */ #if __BSD_VISIBLE #define SO_LABEL 0x1009 /* socket's MAC label */ #define SO_PEERLABEL 0x1010 /* socket's peer's MAC label */ #define SO_LISTENQLIMIT 0x1011 /* socket's backlog limit */ #define SO_LISTENQLEN 0x1012 /* socket's complete queue length */ #define SO_LISTENINCQLEN 0x1013 /* socket's incomplete queue length */ #define SO_SETFIB 0x1014 /* use this FIB to route */ #define SO_USER_COOKIE 0x1015 /* user cookie (dummynet etc.) */ #define SO_PROTOCOL 0x1016 /* get socket protocol (Linux name) */ #define SO_PROTOTYPE SO_PROTOCOL /* alias for SO_PROTOCOL (SunOS name) */ #define SO_TS_CLOCK 0x1017 /* clock type used for SO_TIMESTAMP */ #define SO_MAX_PACING_RATE 0x1018 /* socket's max TX pacing rate (Linux name) */ #endif #if __BSD_VISIBLE #define SO_TS_REALTIME_MICRO 0 /* microsecond resolution, realtime */ #define SO_TS_BINTIME 1 /* sub-nanosecond resolution, realtime */ #define SO_TS_REALTIME 2 /* nanosecond resolution, realtime */ #define SO_TS_MONOTONIC 3 /* nanosecond resolution, monotonic */ #define SO_TS_DEFAULT SO_TS_REALTIME_MICRO #define SO_TS_CLOCK_MAX SO_TS_MONOTONIC #endif /* * Space reserved for new socket options added by third-party vendors. * This range applies to all socket option levels. New socket options * in FreeBSD should always use an option value less than SO_VENDOR. */ #if __BSD_VISIBLE #define SO_VENDOR 0x80000000 #endif /* * Structure used for manipulating linger option. */ struct linger { int l_onoff; /* option on/off */ int l_linger; /* linger time */ }; #if __BSD_VISIBLE struct accept_filter_arg { char af_name[16]; char af_arg[256-16]; }; #endif /* * Level number for (get/set)sockopt() to apply to socket itself. */ #define SOL_SOCKET 0xffff /* options for socket level */ /* * Address families. */ #define AF_UNSPEC 0 /* unspecified */ #if __BSD_VISIBLE #define AF_LOCAL AF_UNIX /* local to host (pipes, portals) */ #endif #define AF_UNIX 1 /* standardized name for AF_LOCAL */ #define AF_INET 2 /* internetwork: UDP, TCP, etc. */ #if __BSD_VISIBLE #define AF_IMPLINK 3 /* arpanet imp addresses */ #define AF_PUP 4 /* pup protocols: e.g. BSP */ #define AF_CHAOS 5 /* mit CHAOS protocols */ #define AF_NETBIOS 6 /* SMB protocols */ #define AF_ISO 7 /* ISO protocols */ #define AF_OSI AF_ISO #define AF_ECMA 8 /* European computer manufacturers */ #define AF_DATAKIT 9 /* datakit protocols */ #define AF_CCITT 10 /* CCITT protocols, X.25 etc */ #define AF_SNA 11 /* IBM SNA */ #define AF_DECnet 12 /* DECnet */ #define AF_DLI 13 /* DEC Direct data link interface */ #define AF_LAT 14 /* LAT */ #define AF_HYLINK 15 /* NSC Hyperchannel */ #define AF_APPLETALK 16 /* Apple Talk */ #define AF_ROUTE 17 /* Internal Routing Protocol */ #define AF_LINK 18 /* Link layer interface */ #define pseudo_AF_XTP 19 /* eXpress Transfer Protocol (no AF) */ #define AF_COIP 20 /* connection-oriented IP, aka ST II */ #define AF_CNT 21 /* Computer Network Technology */ #define pseudo_AF_RTIP 22 /* Help Identify RTIP packets */ #define AF_IPX 23 /* Novell Internet Protocol */ #define AF_SIP 24 /* Simple Internet Protocol */ #define pseudo_AF_PIP 25 /* Help Identify PIP packets */ #define AF_ISDN 26 /* Integrated Services Digital Network*/ #define AF_E164 AF_ISDN /* CCITT E.164 recommendation */ #define pseudo_AF_KEY 27 /* Internal key-management function */ #endif #define AF_INET6 28 /* IPv6 */ #if __BSD_VISIBLE #define AF_NATM 29 /* native ATM access */ #define AF_ATM 30 /* ATM */ #define pseudo_AF_HDRCMPLT 31 /* Used by BPF to not rewrite headers * in interface output routine */ #define AF_NETGRAPH 32 /* Netgraph sockets */ #define AF_SLOW 33 /* 802.3ad slow protocol */ #define AF_SCLUSTER 34 /* Sitara cluster protocol */ #define AF_ARP 35 #define AF_BLUETOOTH 36 /* Bluetooth sockets */ #define AF_IEEE80211 37 /* IEEE 802.11 protocol */ #define AF_INET_SDP 40 /* OFED Socket Direct Protocol ipv4 */ #define AF_INET6_SDP 42 /* OFED Socket Direct Protocol ipv6 */ #define AF_MAX 42 /* * When allocating a new AF_ constant, please only allocate * even numbered constants for FreeBSD until 134 as odd numbered AF_ * constants 39-133 are now reserved for vendors. */ #define AF_VENDOR00 39 #define AF_VENDOR01 41 #define AF_VENDOR02 43 #define AF_VENDOR03 45 #define AF_VENDOR04 47 #define AF_VENDOR05 49 #define AF_VENDOR06 51 #define AF_VENDOR07 53 #define AF_VENDOR08 55 #define AF_VENDOR09 57 #define AF_VENDOR10 59 #define AF_VENDOR11 61 #define AF_VENDOR12 63 #define AF_VENDOR13 65 #define AF_VENDOR14 67 #define AF_VENDOR15 69 #define AF_VENDOR16 71 #define AF_VENDOR17 73 #define AF_VENDOR18 75 #define AF_VENDOR19 77 #define AF_VENDOR20 79 #define AF_VENDOR21 81 #define AF_VENDOR22 83 #define AF_VENDOR23 85 #define AF_VENDOR24 87 #define AF_VENDOR25 89 #define AF_VENDOR26 91 #define AF_VENDOR27 93 #define AF_VENDOR28 95 #define AF_VENDOR29 97 #define AF_VENDOR30 99 #define AF_VENDOR31 101 #define AF_VENDOR32 103 #define AF_VENDOR33 105 #define AF_VENDOR34 107 #define AF_VENDOR35 109 #define AF_VENDOR36 111 #define AF_VENDOR37 113 #define AF_VENDOR38 115 #define AF_VENDOR39 117 #define AF_VENDOR40 119 #define AF_VENDOR41 121 #define AF_VENDOR42 123 #define AF_VENDOR43 125 #define AF_VENDOR44 127 #define AF_VENDOR45 129 #define AF_VENDOR46 131 #define AF_VENDOR47 133 #endif /* * Structure used by kernel to store most * addresses. */ struct sockaddr { unsigned char sa_len; /* total length */ sa_family_t sa_family; /* address family */ char sa_data[14]; /* actually longer; address value */ }; #if __BSD_VISIBLE #define SOCK_MAXADDRLEN 255 /* longest possible addresses */ /* * Structure used by kernel to pass protocol * information in raw sockets. */ struct sockproto { unsigned short sp_family; /* address family */ unsigned short sp_protocol; /* protocol */ }; #endif #include #if __BSD_VISIBLE /* * Protocol families, same as address families for now. */ #define PF_UNSPEC AF_UNSPEC #define PF_LOCAL AF_LOCAL #define PF_UNIX PF_LOCAL /* backward compatibility */ #define PF_INET AF_INET #define PF_IMPLINK AF_IMPLINK #define PF_PUP AF_PUP #define PF_CHAOS AF_CHAOS #define PF_NETBIOS AF_NETBIOS #define PF_ISO AF_ISO #define PF_OSI AF_ISO #define PF_ECMA AF_ECMA #define PF_DATAKIT AF_DATAKIT #define PF_CCITT AF_CCITT #define PF_SNA AF_SNA #define PF_DECnet AF_DECnet #define PF_DLI AF_DLI #define PF_LAT AF_LAT #define PF_HYLINK AF_HYLINK #define PF_APPLETALK AF_APPLETALK #define PF_ROUTE AF_ROUTE #define PF_LINK AF_LINK #define PF_XTP pseudo_AF_XTP /* really just proto family, no AF */ #define PF_COIP AF_COIP #define PF_CNT AF_CNT #define PF_SIP AF_SIP #define PF_IPX AF_IPX #define PF_RTIP pseudo_AF_RTIP /* same format as AF_INET */ #define PF_PIP pseudo_AF_PIP #define PF_ISDN AF_ISDN #define PF_KEY pseudo_AF_KEY #define PF_INET6 AF_INET6 #define PF_NATM AF_NATM #define PF_ATM AF_ATM #define PF_NETGRAPH AF_NETGRAPH #define PF_SLOW AF_SLOW #define PF_SCLUSTER AF_SCLUSTER #define PF_ARP AF_ARP #define PF_BLUETOOTH AF_BLUETOOTH #define PF_IEEE80211 AF_IEEE80211 #define PF_INET_SDP AF_INET_SDP #define PF_INET6_SDP AF_INET6_SDP #define PF_MAX AF_MAX /* * Definitions for network related sysctl, CTL_NET. * * Second level is protocol family. * Third level is protocol number. * * Further levels are defined by the individual families. */ /* * PF_ROUTE - Routing table * * Three additional levels are defined: * Fourth: address family, 0 is wildcard * Fifth: type of info, defined below * Sixth: flag(s) to mask with for NET_RT_FLAGS */ #define NET_RT_DUMP 1 /* dump; may limit to a.f. */ #define NET_RT_FLAGS 2 /* by flags, e.g. RESOLVING */ #define NET_RT_IFLIST 3 /* survey interface list */ #define NET_RT_IFMALIST 4 /* return multicast address list */ #define NET_RT_IFLISTL 5 /* Survey interface list, using 'l'en * versions of msghdr structs. */ #endif /* __BSD_VISIBLE */ /* * Maximum queue length specifiable by listen. */ #define SOMAXCONN 128 /* * Message header for recvmsg and sendmsg calls. * Used value-result for recvmsg, value only for sendmsg. */ struct msghdr { void *msg_name; /* optional address */ socklen_t msg_namelen; /* size of address */ struct iovec *msg_iov; /* scatter/gather array */ int msg_iovlen; /* # elements in msg_iov */ void *msg_control; /* ancillary data, see below */ socklen_t msg_controllen; /* ancillary data buffer len */ int msg_flags; /* flags on received message */ }; #define MSG_OOB 0x00000001 /* process out-of-band data */ #define MSG_PEEK 0x00000002 /* peek at incoming message */ #define MSG_DONTROUTE 0x00000004 /* send without using routing tables */ #define MSG_EOR 0x00000008 /* data completes record */ #define MSG_TRUNC 0x00000010 /* data discarded before delivery */ #define MSG_CTRUNC 0x00000020 /* control data lost before delivery */ #define MSG_WAITALL 0x00000040 /* wait for full request or error */ #if __BSD_VISIBLE #define MSG_DONTWAIT 0x00000080 /* this message should be nonblocking */ #define MSG_EOF 0x00000100 /* data completes connection */ /* 0x00000200 unused */ /* 0x00000400 unused */ /* 0x00000800 unused */ /* 0x00001000 unused */ #define MSG_NOTIFICATION 0x00002000 /* SCTP notification */ #define MSG_NBIO 0x00004000 /* FIONBIO mode, used by fifofs */ #define MSG_COMPAT 0x00008000 /* used in sendit() */ #endif #ifdef _KERNEL #define MSG_SOCALLBCK 0x00010000 /* for use by socket callbacks - soreceive (TCP) */ #endif #if __POSIX_VISIBLE >= 200809 #define MSG_NOSIGNAL 0x00020000 /* do not generate SIGPIPE on EOF */ #endif #if __BSD_VISIBLE #define MSG_CMSG_CLOEXEC 0x00040000 /* make received fds close-on-exec */ #define MSG_WAITFORONE 0x00080000 /* for recvmmsg() */ #endif #ifdef _KERNEL #define MSG_MORETOCOME 0x00100000 /* additional data pending */ #endif /* * Header for ancillary data objects in msg_control buffer. * Used for additional information with/about a datagram * not expressible by flags. The format is a sequence * of message elements headed by cmsghdr structures. */ struct cmsghdr { socklen_t cmsg_len; /* data byte count, including hdr */ int cmsg_level; /* originating protocol */ int cmsg_type; /* protocol-specific type */ /* followed by u_char cmsg_data[]; */ }; #if __BSD_VISIBLE /* * While we may have more groups than this, the cmsgcred struct must * be able to fit in an mbuf and we have historically supported a * maximum of 16 groups. */ #define CMGROUP_MAX 16 /* * Credentials structure, used to verify the identity of a peer * process that has sent us a message. This is allocated by the * peer process but filled in by the kernel. This prevents the * peer from lying about its identity. (Note that cmcred_groups[0] * is the effective GID.) */ struct cmsgcred { pid_t cmcred_pid; /* PID of sending process */ uid_t cmcred_uid; /* real UID of sending process */ uid_t cmcred_euid; /* effective UID of sending process */ gid_t cmcred_gid; /* real GID of sending process */ short cmcred_ngroups; /* number or groups */ gid_t cmcred_groups[CMGROUP_MAX]; /* groups */ }; /* * Socket credentials. */ struct sockcred { uid_t sc_uid; /* real user id */ uid_t sc_euid; /* effective user id */ gid_t sc_gid; /* real group id */ gid_t sc_egid; /* effective group id */ int sc_ngroups; /* number of supplemental groups */ gid_t sc_groups[1]; /* variable length */ }; /* * Compute size of a sockcred structure with groups. */ #define SOCKCREDSIZE(ngrps) \ (sizeof(struct sockcred) + (sizeof(gid_t) * ((ngrps) - 1))) #endif /* __BSD_VISIBLE */ /* given pointer to struct cmsghdr, return pointer to data */ #define CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ _ALIGN(sizeof(struct cmsghdr))) /* given pointer to struct cmsghdr, return pointer to next cmsghdr */ #define CMSG_NXTHDR(mhdr, cmsg) \ ((char *)(cmsg) == (char *)0 ? CMSG_FIRSTHDR(mhdr) : \ ((char *)(cmsg) + _ALIGN(((struct cmsghdr *)(cmsg))->cmsg_len) + \ _ALIGN(sizeof(struct cmsghdr)) > \ (char *)(mhdr)->msg_control + (mhdr)->msg_controllen) ? \ (struct cmsghdr *)0 : \ (struct cmsghdr *)(void *)((char *)(cmsg) + \ _ALIGN(((struct cmsghdr *)(cmsg))->cmsg_len))) /* * RFC 2292 requires to check msg_controllen, in case that the kernel returns * an empty list for some reasons. */ #define CMSG_FIRSTHDR(mhdr) \ ((mhdr)->msg_controllen >= sizeof(struct cmsghdr) ? \ (struct cmsghdr *)(mhdr)->msg_control : \ (struct cmsghdr *)0) #if __BSD_VISIBLE /* RFC 2292 additions */ #define CMSG_SPACE(l) (_ALIGN(sizeof(struct cmsghdr)) + _ALIGN(l)) #define CMSG_LEN(l) (_ALIGN(sizeof(struct cmsghdr)) + (l)) #endif #ifdef _KERNEL #define CMSG_ALIGN(n) _ALIGN(n) #endif /* "Socket"-level control message types: */ #define SCM_RIGHTS 0x01 /* access rights (array of int) */ #if __BSD_VISIBLE #define SCM_TIMESTAMP 0x02 /* timestamp (struct timeval) */ #define SCM_CREDS 0x03 /* process creds (struct cmsgcred) */ #define SCM_BINTIME 0x04 /* timestamp (struct bintime) */ #define SCM_REALTIME 0x05 /* timestamp (struct timespec) */ #define SCM_MONOTONIC 0x06 /* timestamp (struct timespec) */ #define SCM_TIME_INFO 0x07 /* timestamp info */ struct sock_timestamp_info { __uint32_t st_info_flags; __uint32_t st_info_pad0; __uint64_t st_info_rsv[7]; }; #define ST_INFO_HW 0x0001 /* SCM_TIMESTAMP was hw */ #define ST_INFO_HW_HPREC 0x0002 /* SCM_TIMESTAMP was hw-assisted on entrance */ #endif #if __BSD_VISIBLE /* * 4.3 compat sockaddr, move to compat file later */ struct osockaddr { unsigned short sa_family; /* address family */ char sa_data[14]; /* up to 14 bytes of direct address */ }; /* * 4.3-compat message header (move to compat file later). */ struct omsghdr { char *msg_name; /* optional address */ int msg_namelen; /* size of address */ struct iovec *msg_iov; /* scatter/gather array */ int msg_iovlen; /* # elements in msg_iov */ char *msg_accrights; /* access rights sent/received */ int msg_accrightslen; }; #endif /* * howto arguments for shutdown(2), specified by Posix.1g. */ #define SHUT_RD 0 /* shut down the reading side */ #define SHUT_WR 1 /* shut down the writing side */ #define SHUT_RDWR 2 /* shut down both sides */ #if __BSD_VISIBLE /* for SCTP */ /* we cheat and use the SHUT_XX defines for these */ #define PRU_FLUSH_RD SHUT_RD #define PRU_FLUSH_WR SHUT_WR #define PRU_FLUSH_RDWR SHUT_RDWR #endif #if __BSD_VISIBLE /* * sendfile(2) header/trailer struct */ struct sf_hdtr { struct iovec *headers; /* pointer to an array of header struct iovec's */ int hdr_cnt; /* number of header iovec's */ struct iovec *trailers; /* pointer to an array of trailer struct iovec's */ int trl_cnt; /* number of trailer iovec's */ }; /* * Sendfile-specific flag(s) */ #define SF_NODISKIO 0x00000001 #define SF_MNOWAIT 0x00000002 /* obsolete */ #define SF_SYNC 0x00000004 #define SF_USER_READAHEAD 0x00000008 #define SF_NOCACHE 0x00000010 #define SF_FLAGS(rh, flags) (((rh) << 16) | (flags)) #ifdef _KERNEL #define SF_READAHEAD(flags) ((flags) >> 16) #endif /* _KERNEL */ /* * Sendmmsg/recvmmsg specific structure(s) */ struct mmsghdr { struct msghdr msg_hdr; /* message header */ ssize_t msg_len; /* message length */ }; #endif /* __BSD_VISIBLE */ #ifndef _KERNEL #include __BEGIN_DECLS int accept(int, struct sockaddr * __restrict, socklen_t * __restrict); int bind(int, const struct sockaddr *, socklen_t); int connect(int, const struct sockaddr *, socklen_t); #if __BSD_VISIBLE int accept4(int, struct sockaddr * __restrict, socklen_t * __restrict, int); int bindat(int, int, const struct sockaddr *, socklen_t); int connectat(int, int, const struct sockaddr *, socklen_t); #endif int getpeername(int, struct sockaddr * __restrict, socklen_t * __restrict); int getsockname(int, struct sockaddr * __restrict, socklen_t * __restrict); int getsockopt(int, int, int, void * __restrict, socklen_t * __restrict); int listen(int, int); ssize_t recv(int, void *, size_t, int); ssize_t recvfrom(int, void *, size_t, int, struct sockaddr * __restrict, socklen_t * __restrict); ssize_t recvmsg(int, struct msghdr *, int); #if __BSD_VISIBLE struct timespec; ssize_t recvmmsg(int, struct mmsghdr * __restrict, size_t, int, const struct timespec * __restrict); #endif ssize_t send(int, const void *, size_t, int); ssize_t sendto(int, const void *, size_t, int, const struct sockaddr *, socklen_t); ssize_t sendmsg(int, const struct msghdr *, int); #if __BSD_VISIBLE int sendfile(int, int, off_t, size_t, struct sf_hdtr *, off_t *, int); ssize_t sendmmsg(int, struct mmsghdr * __restrict, size_t, int); int setfib(int); #endif int setsockopt(int, int, int, const void *, socklen_t); int shutdown(int, int); int sockatmark(int); int socket(int, int, int); int socketpair(int, int, int, int *); __END_DECLS #endif /* !_KERNEL */ #ifdef _KERNEL struct socket; struct tcpcb *so_sototcpcb(struct socket *so); struct inpcb *so_sotoinpcb(struct socket *so); struct sockbuf *so_sockbuf_snd(struct socket *); struct sockbuf *so_sockbuf_rcv(struct socket *); int so_state_get(const struct socket *); void so_state_set(struct socket *, int); int so_options_get(const struct socket *); void so_options_set(struct socket *, int); int so_error_get(const struct socket *); void so_error_set(struct socket *, int); int so_linger_get(const struct socket *); void so_linger_set(struct socket *, int); struct protosw *so_protosw_get(const struct socket *); void so_protosw_set(struct socket *, struct protosw *); void so_sorwakeup_locked(struct socket *so); void so_sowwakeup_locked(struct socket *so); void so_sorwakeup(struct socket *so); void so_sowwakeup(struct socket *so); void so_lock(struct socket *so); void so_unlock(struct socket *so); #endif /* _KERNEL */ #endif /* !_SYS_SOCKET_H_ */ Index: head/sys/sys/socketvar.h =================================================================== --- head/sys/sys/socketvar.h (revision 332893) +++ head/sys/sys/socketvar.h (revision 332894) @@ -1,524 +1,525 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)socketvar.h 8.3 (Berkeley) 2/19/95 * * $FreeBSD$ */ #ifndef _SYS_SOCKETVAR_H_ #define _SYS_SOCKETVAR_H_ /* * Socket generation count type. Also used in xinpcb, xtcpcb, xunpcb. */ typedef uint64_t so_gen_t; #if defined(_KERNEL) || defined(_WANT_SOCKET) #include /* for TAILQ macros */ #include /* for struct selinfo */ #include #include #include #include #include #ifdef _KERNEL #include #include #endif struct vnet; /* * Kernel structure per socket. * Contains send and receive buffer queues, * handle on protocol and pointer to protocol * private data and error information. */ typedef int so_upcall_t(struct socket *, void *, int); struct socket; /*- * Locking key to struct socket: * (a) constant after allocation, no locking required. * (b) locked by SOCK_LOCK(so). * (cr) locked by SOCKBUF_LOCK(&so->so_rcv). * (cs) locked by SOCKBUF_LOCK(&so->so_snd). * (e) locked by SOLISTEN_LOCK() of corresponding listening socket. * (f) not locked since integer reads/writes are atomic. * (g) used only as a sleep/wakeup address, no value. * (h) locked by global mutex so_global_mtx. */ TAILQ_HEAD(accept_queue, socket); struct socket { struct mtx so_lock; volatile u_int so_count; /* (b / refcount) */ struct selinfo so_rdsel; /* (b/cr) for so_rcv/so_comp */ struct selinfo so_wrsel; /* (b/cs) for so_snd */ short so_type; /* (a) generic type, see socket.h */ - short so_options; /* (b) from socket call, see socket.h */ + int so_options; /* (b) from socket call, see socket.h */ short so_linger; /* time to linger close(2) */ short so_state; /* (b) internal state flags SS_* */ void *so_pcb; /* protocol control block */ struct vnet *so_vnet; /* (a) network stack instance */ struct protosw *so_proto; /* (a) protocol handle */ short so_timeo; /* (g) connection timeout */ u_short so_error; /* (f) error affecting connection */ struct sigio *so_sigio; /* [sg] information for async I/O or out of band data (SIGURG) */ struct ucred *so_cred; /* (a) user credentials */ struct label *so_label; /* (b) MAC label for socket */ /* NB: generation count must not be first. */ so_gen_t so_gencnt; /* (h) generation count */ void *so_emuldata; /* (b) private data for emulators */ struct osd osd; /* Object Specific extensions */ /* * so_fibnum, so_user_cookie and friends can be used to attach * some user-specified metadata to a socket, which then can be * used by the kernel for various actions. * so_user_cookie is used by ipfw/dummynet. */ int so_fibnum; /* routing domain for this socket */ uint32_t so_user_cookie; int so_ts_clock; /* type of the clock used for timestamps */ uint32_t so_max_pacing_rate; /* (f) TX rate limit in bytes/s */ union { /* Regular (data flow) socket. */ struct { /* (cr, cs) Receive and send buffers. */ struct sockbuf so_rcv, so_snd; /* (e) Our place on accept queue. */ TAILQ_ENTRY(socket) so_list; struct socket *so_listen; /* (b) */ enum { SQ_NONE = 0, SQ_INCOMP = 0x0800, /* on sol_incomp */ SQ_COMP = 0x1000, /* on sol_comp */ } so_qstate; /* (b) */ /* (b) cached MAC label for peer */ struct label *so_peerlabel; u_long so_oobmark; /* chars to oob mark */ }; /* * Listening socket, where accepts occur, is so_listen in all * subsidiary sockets. If so_listen is NULL, socket is not * related to an accept. For a listening socket itself * sol_incomp queues partially completed connections, while * sol_comp is a queue of connections ready to be accepted. * If a connection is aborted and it has so_listen set, then * it has to be pulled out of either sol_incomp or sol_comp. * We allow connections to queue up based on current queue * lengths and limit on number of queued connections for this * socket. */ struct { /* (e) queue of partial unaccepted connections */ struct accept_queue sol_incomp; /* (e) queue of complete unaccepted connections */ struct accept_queue sol_comp; u_int sol_qlen; /* (e) sol_comp length */ u_int sol_incqlen; /* (e) sol_incomp length */ u_int sol_qlimit; /* (e) queue limit */ /* accept_filter(9) optional data */ struct accept_filter *sol_accept_filter; void *sol_accept_filter_arg; /* saved filter args */ char *sol_accept_filter_str; /* saved user args */ /* Optional upcall, for kernel socket. */ so_upcall_t *sol_upcall; /* (e) */ void *sol_upcallarg; /* (e) */ /* Socket buffer parameters, to be copied to * dataflow sockets, accepted from this one. */ int sol_sbrcv_lowat; int sol_sbsnd_lowat; u_int sol_sbrcv_hiwat; u_int sol_sbsnd_hiwat; short sol_sbrcv_flags; short sol_sbsnd_flags; sbintime_t sol_sbrcv_timeo; sbintime_t sol_sbsnd_timeo; }; }; }; #endif /* defined(_KERNEL) || defined(_WANT_SOCKET) */ /* * Socket state bits. * * Historically, this bits were all kept in the so_state field. For * locking reasons, they are now in multiple fields, as they are * locked differently. so_state maintains basic socket state protected * by the socket lock. so_qstate holds information about the socket * accept queues. Each socket buffer also has a state field holding * information relevant to that socket buffer (can't send, rcv). Many * fields will be read without locks to improve performance and avoid * lock order issues. However, this approach must be used with caution. */ #define SS_NOFDREF 0x0001 /* no file table ref any more */ #define SS_ISCONNECTED 0x0002 /* socket connected to a peer */ #define SS_ISCONNECTING 0x0004 /* in process of connecting to peer */ #define SS_ISDISCONNECTING 0x0008 /* in process of disconnecting */ #define SS_NBIO 0x0100 /* non-blocking ops */ #define SS_ASYNC 0x0200 /* async i/o notify */ #define SS_ISCONFIRMING 0x0400 /* deciding to accept connection req */ #define SS_ISDISCONNECTED 0x2000 /* socket disconnected from peer */ /* * Protocols can mark a socket as SS_PROTOREF to indicate that, following * pru_detach, they still want the socket to persist, and will free it * themselves when they are done. Protocols should only ever call sofree() * following setting this flag in pru_detach(), and never otherwise, as * sofree() bypasses socket reference counting. */ #define SS_PROTOREF 0x4000 /* strong protocol reference */ #ifdef _KERNEL #define SOCK_MTX(so) &(so)->so_lock #define SOCK_LOCK(so) mtx_lock(&(so)->so_lock) #define SOCK_OWNED(so) mtx_owned(&(so)->so_lock) #define SOCK_UNLOCK(so) mtx_unlock(&(so)->so_lock) #define SOCK_LOCK_ASSERT(so) mtx_assert(&(so)->so_lock, MA_OWNED) #define SOCK_UNLOCK_ASSERT(so) mtx_assert(&(so)->so_lock, MA_NOTOWNED) #define SOLISTENING(sol) (((sol)->so_options & SO_ACCEPTCONN) != 0) #define SOLISTEN_LOCK(sol) do { \ mtx_lock(&(sol)->so_lock); \ KASSERT(SOLISTENING(sol), \ ("%s: %p not listening", __func__, (sol))); \ } while (0) #define SOLISTEN_TRYLOCK(sol) mtx_trylock(&(sol)->so_lock) #define SOLISTEN_UNLOCK(sol) do { \ KASSERT(SOLISTENING(sol), \ ("%s: %p not listening", __func__, (sol))); \ mtx_unlock(&(sol)->so_lock); \ } while (0) #define SOLISTEN_LOCK_ASSERT(sol) do { \ mtx_assert(&(sol)->so_lock, MA_OWNED); \ KASSERT(SOLISTENING(sol), \ ("%s: %p not listening", __func__, (sol))); \ } while (0) /* * Macros for sockets and socket buffering. */ /* * Flags to sblock(). */ #define SBL_WAIT 0x00000001 /* Wait if not immediately available. */ #define SBL_NOINTR 0x00000002 /* Force non-interruptible sleep. */ #define SBL_VALID (SBL_WAIT | SBL_NOINTR) /* * Do we need to notify the other side when I/O is possible? */ #define sb_notify(sb) (((sb)->sb_flags & (SB_WAIT | SB_SEL | SB_ASYNC | \ SB_UPCALL | SB_AIO | SB_KNOTE)) != 0) /* do we have to send all at once on a socket? */ #define sosendallatonce(so) \ ((so)->so_proto->pr_flags & PR_ATOMIC) /* can we read something from so? */ #define soreadabledata(so) \ (sbavail(&(so)->so_rcv) >= (so)->so_rcv.sb_lowat || (so)->so_error) #define soreadable(so) \ (soreadabledata(so) || ((so)->so_rcv.sb_state & SBS_CANTRCVMORE)) /* can we write something to so? */ #define sowriteable(so) \ ((sbspace(&(so)->so_snd) >= (so)->so_snd.sb_lowat && \ (((so)->so_state&SS_ISCONNECTED) || \ ((so)->so_proto->pr_flags&PR_CONNREQUIRED)==0)) || \ ((so)->so_snd.sb_state & SBS_CANTSENDMORE) || \ (so)->so_error) /* * soref()/sorele() ref-count the socket structure. * soref() may be called without owning socket lock, but in that case a * caller must own something that holds socket, and so_count must be not 0. * Note that you must still explicitly close the socket, but the last ref * count will free the structure. */ #define soref(so) refcount_acquire(&(so)->so_count) #define sorele(so) do { \ SOCK_LOCK_ASSERT(so); \ if (refcount_release(&(so)->so_count)) \ sofree(so); \ else \ SOCK_UNLOCK(so); \ } while (0) /* * In sorwakeup() and sowwakeup(), acquire the socket buffer lock to * avoid a non-atomic test-and-wakeup. However, sowakeup is * responsible for releasing the lock if it is called. We unlock only * if we don't call into sowakeup. If any code is introduced that * directly invokes the underlying sowakeup() primitives, it must * maintain the same semantics. */ #define sorwakeup_locked(so) do { \ SOCKBUF_LOCK_ASSERT(&(so)->so_rcv); \ if (sb_notify(&(so)->so_rcv)) \ sowakeup((so), &(so)->so_rcv); \ else \ SOCKBUF_UNLOCK(&(so)->so_rcv); \ } while (0) #define sorwakeup(so) do { \ SOCKBUF_LOCK(&(so)->so_rcv); \ sorwakeup_locked(so); \ } while (0) #define sowwakeup_locked(so) do { \ SOCKBUF_LOCK_ASSERT(&(so)->so_snd); \ if (sb_notify(&(so)->so_snd)) \ sowakeup((so), &(so)->so_snd); \ else \ SOCKBUF_UNLOCK(&(so)->so_snd); \ } while (0) #define sowwakeup(so) do { \ SOCKBUF_LOCK(&(so)->so_snd); \ sowwakeup_locked(so); \ } while (0) struct accept_filter { char accf_name[16]; int (*accf_callback) (struct socket *so, void *arg, int waitflag); void * (*accf_create) (struct socket *so, char *arg); void (*accf_destroy) (struct socket *so); SLIST_ENTRY(accept_filter) accf_next; }; #ifdef MALLOC_DECLARE MALLOC_DECLARE(M_ACCF); MALLOC_DECLARE(M_PCB); MALLOC_DECLARE(M_SONAME); #endif /* * Socket specific helper hook point identifiers * Do not leave holes in the sequence, hook registration is a loop. */ #define HHOOK_SOCKET_OPT 0 #define HHOOK_SOCKET_CREATE 1 #define HHOOK_SOCKET_RCV 2 #define HHOOK_SOCKET_SND 3 #define HHOOK_FILT_SOREAD 4 #define HHOOK_FILT_SOWRITE 5 #define HHOOK_SOCKET_CLOSE 6 #define HHOOK_SOCKET_LAST HHOOK_SOCKET_CLOSE struct socket_hhook_data { struct socket *so; struct mbuf *m; void *hctx; /* hook point specific data*/ int status; }; extern int maxsockets; extern u_long sb_max; extern so_gen_t so_gencnt; struct file; struct filecaps; struct filedesc; struct mbuf; struct sockaddr; struct ucred; struct uio; /* 'which' values for socket upcalls. */ #define SO_RCV 1 #define SO_SND 2 /* Return values for socket upcalls. */ #define SU_OK 0 #define SU_ISCONNECTED 1 /* * From uipc_socket and friends */ int getsockaddr(struct sockaddr **namp, caddr_t uaddr, size_t len); int getsock_cap(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp, u_int *fflagp, struct filecaps *havecaps); void soabort(struct socket *so); int soaccept(struct socket *so, struct sockaddr **nam); void soaio_enqueue(struct task *task); void soaio_rcv(void *context, int pending); void soaio_snd(void *context, int pending); int socheckuid(struct socket *so, uid_t uid); int sobind(struct socket *so, struct sockaddr *nam, struct thread *td); int sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td); int soclose(struct socket *so); int soconnect(struct socket *so, struct sockaddr *nam, struct thread *td); int soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td); int soconnect2(struct socket *so1, struct socket *so2); int socreate(int dom, struct socket **aso, int type, int proto, struct ucred *cred, struct thread *td); int sodisconnect(struct socket *so); struct sockaddr *sodupsockaddr(const struct sockaddr *sa, int mflags); void sofree(struct socket *so); +void soinherit(struct socket *so, struct socket *so_inh); void sohasoutofband(struct socket *so); int solisten(struct socket *so, int backlog, struct thread *td); void solisten_proto(struct socket *so, int backlog); int solisten_proto_check(struct socket *so); int solisten_dequeue(struct socket *, struct socket **, int); struct socket * sonewconn(struct socket *head, int connstatus); struct socket * sopeeloff(struct socket *); int sopoll(struct socket *so, int events, struct ucred *active_cred, struct thread *td); int sopoll_generic(struct socket *so, int events, struct ucred *active_cred, struct thread *td); int soreceive(struct socket *so, struct sockaddr **paddr, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp); int soreceive_stream(struct socket *so, struct sockaddr **paddr, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp); int soreceive_dgram(struct socket *so, struct sockaddr **paddr, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp); int soreceive_generic(struct socket *so, struct sockaddr **paddr, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp); int soreserve(struct socket *so, u_long sndcc, u_long rcvcc); void sorflush(struct socket *so); int sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td); int sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td); int sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td); int soshutdown(struct socket *so, int how); void soupcall_clear(struct socket *, int); void soupcall_set(struct socket *, int, so_upcall_t, void *); void solisten_upcall_set(struct socket *, so_upcall_t, void *); void sowakeup(struct socket *so, struct sockbuf *sb); void sowakeup_aio(struct socket *so, struct sockbuf *sb); void solisten_wakeup(struct socket *); int selsocket(struct socket *so, int events, struct timeval *tv, struct thread *td); void soisconnected(struct socket *so); void soisconnecting(struct socket *so); void soisdisconnected(struct socket *so); void soisdisconnecting(struct socket *so); void socantrcvmore(struct socket *so); void socantrcvmore_locked(struct socket *so); void socantsendmore(struct socket *so); void socantsendmore_locked(struct socket *so); /* * Accept filter functions (duh). */ int accept_filt_add(struct accept_filter *filt); int accept_filt_del(char *name); struct accept_filter *accept_filt_get(char *name); #ifdef ACCEPT_FILTER_MOD #ifdef SYSCTL_DECL SYSCTL_DECL(_net_inet_accf); #endif int accept_filt_generic_mod_event(module_t mod, int event, void *data); #endif #endif /* _KERNEL */ /* * Structure to export socket from kernel to utilities, via sysctl(3). */ struct xsocket { size_t xso_len; /* length of this structure */ union { void *xso_so; /* kernel address of struct socket */ int64_t ph_so; }; union { void *so_pcb; /* kernel address of struct inpcb */ int64_t ph_pcb; }; uint64_t so_oobmark; int64_t so_spare64[8]; int32_t xso_protocol; int32_t xso_family; uint32_t so_qlen; uint32_t so_incqlen; uint32_t so_qlimit; pid_t so_pgid; uid_t so_uid; int32_t so_spare32[8]; int16_t so_type; int16_t so_options; int16_t so_linger; int16_t so_state; int16_t so_timeo; uint16_t so_error; struct xsockbuf { uint32_t sb_cc; uint32_t sb_hiwat; uint32_t sb_mbcnt; uint32_t sb_mcnt; uint32_t sb_ccnt; uint32_t sb_mbmax; int32_t sb_lowat; int32_t sb_timeo; int16_t sb_flags; } so_rcv, so_snd; }; #ifdef _KERNEL void sotoxsocket(struct socket *so, struct xsocket *xso); void sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb); #endif /* * Socket buffer state bits. Exported via libprocstat(3). */ #define SBS_CANTSENDMORE 0x0010 /* can't send more data to peer */ #define SBS_CANTRCVMORE 0x0020 /* can't receive more data from peer */ #define SBS_RCVATMARK 0x0040 /* at mark on input */ #endif /* !_SYS_SOCKETVAR_H_ */