Index: head/sys/geom/bde/g_bde.c =================================================================== --- head/sys/geom/bde/g_bde.c (revision 332386) +++ head/sys/geom/bde/g_bde.c (revision 332387) @@ -1,294 +1,295 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002 Poul-Henning Kamp * Copyright (c) 2002 Networks Associates Technology, Inc. * All rights reserved. * * This software was developed for the FreeBSD Project by Poul-Henning Kamp * and NAI Labs, the Security Research Division of Network Associates, Inc. * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the * DARPA CHATS research program. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define BDE_CLASS_NAME "BDE" FEATURE(geom_bde, "GEOM-based Disk Encryption"); static void g_bde_start(struct bio *bp) { switch (bp->bio_cmd) { case BIO_DELETE: case BIO_READ: case BIO_WRITE: g_bde_start1(bp); break; case BIO_GETATTR: g_io_deliver(bp, EOPNOTSUPP); break; default: g_io_deliver(bp, EOPNOTSUPP); return; } return; } static void g_bde_orphan(struct g_consumer *cp) { struct g_geom *gp; struct g_provider *pp; struct g_bde_softc *sc; g_trace(G_T_TOPOLOGY, "g_bde_orphan(%p/%s)", cp, cp->provider->name); g_topology_assert(); gp = cp->geom; sc = gp->softc; gp->flags |= G_GEOM_WITHER; LIST_FOREACH(pp, &gp->provider, provider) g_wither_provider(pp, ENXIO); bzero(sc, sizeof(struct g_bde_softc)); /* destroy evidence */ return; } static int g_bde_access(struct g_provider *pp, int dr, int dw, int de) { struct g_geom *gp; struct g_consumer *cp; gp = pp->geom; cp = LIST_FIRST(&gp->consumer); if (cp->acr == 0 && cp->acw == 0 && cp->ace == 0) { de++; dr++; } /* ... and let go of it on last close */ if ((cp->acr + dr) == 0 && (cp->acw + dw) == 0 && (cp->ace + de) == 1) { de--; dr--; } return (g_access(cp, dr, dw, de)); } static void g_bde_create_geom(struct gctl_req *req, struct g_class *mp, struct g_provider *pp) { struct g_geom *gp; struct g_consumer *cp; struct g_bde_key *kp; int error, i; u_int sectorsize; off_t mediasize; struct g_bde_softc *sc; void *pass; void *key; g_trace(G_T_TOPOLOGY, "g_bde_create_geom(%s, %s)", mp->name, pp->name); g_topology_assert(); gp = NULL; gp = g_new_geomf(mp, "%s.bde", pp->name); cp = g_new_consumer(gp); g_attach(cp, pp); error = g_access(cp, 1, 1, 1); if (error) { g_detach(cp); g_destroy_consumer(cp); g_destroy_geom(gp); gctl_error(req, "could not access consumer"); return; } pass = NULL; key = NULL; do { pass = gctl_get_param(req, "pass", &i); if (pass == NULL || i != SHA512_DIGEST_LENGTH) { gctl_error(req, "No usable key presented"); break; } key = gctl_get_param(req, "key", &i); if (key != NULL && i != 16) { gctl_error(req, "Invalid key presented"); break; } sectorsize = cp->provider->sectorsize; mediasize = cp->provider->mediasize; sc = g_malloc(sizeof(struct g_bde_softc), M_WAITOK | M_ZERO); gp->softc = sc; sc->geom = gp; sc->consumer = cp; error = g_bde_decrypt_lock(sc, pass, key, mediasize, sectorsize, NULL); bzero(sc->sha2, sizeof sc->sha2); if (error) break; kp = &sc->key; /* Initialize helper-fields */ kp->keys_per_sector = kp->sectorsize / G_BDE_SKEYLEN; kp->zone_cont = kp->keys_per_sector * kp->sectorsize; kp->zone_width = kp->zone_cont + kp->sectorsize; kp->media_width = kp->sectorN - kp->sector0 - G_BDE_MAXKEYS * kp->sectorsize; /* Our external parameters */ sc->zone_cont = kp->zone_cont; sc->mediasize = g_bde_max_sector(kp); sc->sectorsize = kp->sectorsize; TAILQ_INIT(&sc->freelist); TAILQ_INIT(&sc->worklist); mtx_init(&sc->worklist_mutex, "g_bde_worklist", NULL, MTX_DEF); /* XXX: error check */ kproc_create(g_bde_worker, gp, &sc->thread, 0, 0, "g_bde %s", gp->name); pp = g_new_providerf(gp, "%s", gp->name); pp->stripesize = kp->zone_cont; pp->stripeoffset = 0; pp->mediasize = sc->mediasize; pp->sectorsize = sc->sectorsize; g_error_provider(pp, 0); break; } while (0); if (pass != NULL) bzero(pass, SHA512_DIGEST_LENGTH); if (key != NULL) bzero(key, 16); if (error == 0) return; g_access(cp, -1, -1, -1); g_detach(cp); g_destroy_consumer(cp); if (gp->softc != NULL) g_free(gp->softc); g_destroy_geom(gp); switch (error) { case ENOENT: gctl_error(req, "Lock was destroyed"); break; case ESRCH: gctl_error(req, "Lock was nuked"); break; case EINVAL: gctl_error(req, "Could not open lock"); break; case ENOTDIR: gctl_error(req, "Lock not found"); break; default: gctl_error(req, "Could not open lock (%d)", error); break; } return; } static int g_bde_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp) { struct g_consumer *cp; struct g_provider *pp; struct g_bde_softc *sc; g_trace(G_T_TOPOLOGY, "g_bde_destroy_geom(%s, %s)", mp->name, gp->name); g_topology_assert(); /* * Orderly detachment. */ KASSERT(gp != NULL, ("NULL geom")); pp = LIST_FIRST(&gp->provider); KASSERT(pp != NULL, ("NULL provider")); if (pp->acr > 0 || pp->acw > 0 || pp->ace > 0) return (EBUSY); sc = gp->softc; cp = LIST_FIRST(&gp->consumer); KASSERT(cp != NULL, ("NULL consumer")); sc->dead = 1; wakeup(sc); g_access(cp, -1, -1, -1); g_detach(cp); g_destroy_consumer(cp); while (sc->dead != 2 && !LIST_EMPTY(&pp->consumers)) tsleep(sc, PRIBIO, "g_bdedie", hz); mtx_destroy(&sc->worklist_mutex); bzero(&sc->key, sizeof sc->key); g_free(sc); g_wither_geom(gp, ENXIO); return (0); } static void g_bde_ctlreq(struct gctl_req *req, struct g_class *mp, char const *verb) { struct g_geom *gp; struct g_provider *pp; if (!strcmp(verb, "create geom")) { pp = gctl_get_provider(req, "provider"); if (pp != NULL) g_bde_create_geom(req, mp, pp); } else if (!strcmp(verb, "destroy geom")) { gp = gctl_get_geom(req, mp, "geom"); if (gp != NULL) g_bde_destroy_geom(req, mp, gp); } else { gctl_error(req, "unknown verb"); } } static struct g_class g_bde_class = { .name = BDE_CLASS_NAME, .version = G_VERSION, .destroy_geom = g_bde_destroy_geom, .ctlreq = g_bde_ctlreq, .start = g_bde_start, .orphan = g_bde_orphan, .access = g_bde_access, .spoiled = g_std_spoiled, }; DECLARE_GEOM_CLASS(g_bde_class, g_bde); +MODULE_VERSION(geom_bde, 0); Index: head/sys/geom/cache/g_cache.c =================================================================== --- head/sys/geom/cache/g_cache.c (revision 332386) +++ head/sys/geom/cache/g_cache.c (revision 332387) @@ -1,1018 +1,1019 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2006 Ruslan Ermilov * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include FEATURE(geom_cache, "GEOM cache module"); static MALLOC_DEFINE(M_GCACHE, "gcache_data", "GEOM_CACHE Data"); SYSCTL_DECL(_kern_geom); static SYSCTL_NODE(_kern_geom, OID_AUTO, cache, CTLFLAG_RW, 0, "GEOM_CACHE stuff"); static u_int g_cache_debug = 0; SYSCTL_UINT(_kern_geom_cache, OID_AUTO, debug, CTLFLAG_RW, &g_cache_debug, 0, "Debug level"); static u_int g_cache_enable = 1; SYSCTL_UINT(_kern_geom_cache, OID_AUTO, enable, CTLFLAG_RW, &g_cache_enable, 0, ""); static u_int g_cache_timeout = 10; SYSCTL_UINT(_kern_geom_cache, OID_AUTO, timeout, CTLFLAG_RW, &g_cache_timeout, 0, ""); static u_int g_cache_idletime = 5; SYSCTL_UINT(_kern_geom_cache, OID_AUTO, idletime, CTLFLAG_RW, &g_cache_idletime, 0, ""); static u_int g_cache_used_lo = 5; static u_int g_cache_used_hi = 20; static int sysctl_handle_pct(SYSCTL_HANDLER_ARGS) { u_int val = *(u_int *)arg1; int error; error = sysctl_handle_int(oidp, &val, 0, req); if (error || !req->newptr) return (error); if (val > 100) return (EINVAL); if ((arg1 == &g_cache_used_lo && val > g_cache_used_hi) || (arg1 == &g_cache_used_hi && g_cache_used_lo > val)) return (EINVAL); *(u_int *)arg1 = val; return (0); } SYSCTL_PROC(_kern_geom_cache, OID_AUTO, used_lo, CTLTYPE_UINT|CTLFLAG_RW, &g_cache_used_lo, 0, sysctl_handle_pct, "IU", ""); SYSCTL_PROC(_kern_geom_cache, OID_AUTO, used_hi, CTLTYPE_UINT|CTLFLAG_RW, &g_cache_used_hi, 0, sysctl_handle_pct, "IU", ""); static int g_cache_destroy(struct g_cache_softc *sc, boolean_t force); static g_ctl_destroy_geom_t g_cache_destroy_geom; static g_taste_t g_cache_taste; static g_ctl_req_t g_cache_config; static g_dumpconf_t g_cache_dumpconf; struct g_class g_cache_class = { .name = G_CACHE_CLASS_NAME, .version = G_VERSION, .ctlreq = g_cache_config, .taste = g_cache_taste, .destroy_geom = g_cache_destroy_geom }; #define OFF2BNO(off, sc) ((off) >> (sc)->sc_bshift) #define BNO2OFF(bno, sc) ((bno) << (sc)->sc_bshift) static struct g_cache_desc * g_cache_alloc(struct g_cache_softc *sc) { struct g_cache_desc *dp; mtx_assert(&sc->sc_mtx, MA_OWNED); if (!TAILQ_EMPTY(&sc->sc_usedlist)) { dp = TAILQ_FIRST(&sc->sc_usedlist); TAILQ_REMOVE(&sc->sc_usedlist, dp, d_used); sc->sc_nused--; dp->d_flags = 0; LIST_REMOVE(dp, d_next); return (dp); } if (sc->sc_nent > sc->sc_maxent) { sc->sc_cachefull++; return (NULL); } dp = malloc(sizeof(*dp), M_GCACHE, M_NOWAIT | M_ZERO); if (dp == NULL) return (NULL); dp->d_data = uma_zalloc(sc->sc_zone, M_NOWAIT); if (dp->d_data == NULL) { free(dp, M_GCACHE); return (NULL); } sc->sc_nent++; return (dp); } static void g_cache_free(struct g_cache_softc *sc, struct g_cache_desc *dp) { mtx_assert(&sc->sc_mtx, MA_OWNED); uma_zfree(sc->sc_zone, dp->d_data); free(dp, M_GCACHE); sc->sc_nent--; } static void g_cache_free_used(struct g_cache_softc *sc) { struct g_cache_desc *dp; u_int n; mtx_assert(&sc->sc_mtx, MA_OWNED); n = g_cache_used_lo * sc->sc_maxent / 100; while (sc->sc_nused > n) { KASSERT(!TAILQ_EMPTY(&sc->sc_usedlist), ("used list empty")); dp = TAILQ_FIRST(&sc->sc_usedlist); TAILQ_REMOVE(&sc->sc_usedlist, dp, d_used); sc->sc_nused--; LIST_REMOVE(dp, d_next); g_cache_free(sc, dp); } } static void g_cache_deliver(struct g_cache_softc *sc, struct bio *bp, struct g_cache_desc *dp, int error) { off_t off1, off, len; mtx_assert(&sc->sc_mtx, MA_OWNED); KASSERT(OFF2BNO(bp->bio_offset, sc) <= dp->d_bno, ("wrong entry")); KASSERT(OFF2BNO(bp->bio_offset + bp->bio_length - 1, sc) >= dp->d_bno, ("wrong entry")); off1 = BNO2OFF(dp->d_bno, sc); off = MAX(bp->bio_offset, off1); len = MIN(bp->bio_offset + bp->bio_length, off1 + sc->sc_bsize) - off; if (bp->bio_error == 0) bp->bio_error = error; if (bp->bio_error == 0) { bcopy(dp->d_data + (off - off1), bp->bio_data + (off - bp->bio_offset), len); } bp->bio_completed += len; KASSERT(bp->bio_completed <= bp->bio_length, ("extra data")); if (bp->bio_completed == bp->bio_length) { if (bp->bio_error != 0) bp->bio_completed = 0; g_io_deliver(bp, bp->bio_error); } if (dp->d_flags & D_FLAG_USED) { TAILQ_REMOVE(&sc->sc_usedlist, dp, d_used); TAILQ_INSERT_TAIL(&sc->sc_usedlist, dp, d_used); } else if (OFF2BNO(off + len, sc) > dp->d_bno) { TAILQ_INSERT_TAIL(&sc->sc_usedlist, dp, d_used); sc->sc_nused++; dp->d_flags |= D_FLAG_USED; } dp->d_atime = time_uptime; } static void g_cache_done(struct bio *bp) { struct g_cache_softc *sc; struct g_cache_desc *dp; struct bio *bp2, *tmpbp; sc = bp->bio_from->geom->softc; KASSERT(G_CACHE_DESC1(bp) == sc, ("corrupt bio_caller in g_cache_done()")); dp = G_CACHE_DESC2(bp); mtx_lock(&sc->sc_mtx); bp2 = dp->d_biolist; while (bp2 != NULL) { KASSERT(G_CACHE_NEXT_BIO1(bp2) == sc, ("corrupt bio_driver in g_cache_done()")); tmpbp = G_CACHE_NEXT_BIO2(bp2); g_cache_deliver(sc, bp2, dp, bp->bio_error); bp2 = tmpbp; } dp->d_biolist = NULL; if (dp->d_flags & D_FLAG_INVALID) { sc->sc_invalid--; g_cache_free(sc, dp); } else if (bp->bio_error) { LIST_REMOVE(dp, d_next); if (dp->d_flags & D_FLAG_USED) { TAILQ_REMOVE(&sc->sc_usedlist, dp, d_used); sc->sc_nused--; } g_cache_free(sc, dp); } mtx_unlock(&sc->sc_mtx); g_destroy_bio(bp); } static struct g_cache_desc * g_cache_lookup(struct g_cache_softc *sc, off_t bno) { struct g_cache_desc *dp; mtx_assert(&sc->sc_mtx, MA_OWNED); LIST_FOREACH(dp, &sc->sc_desclist[G_CACHE_BUCKET(bno)], d_next) if (dp->d_bno == bno) return (dp); return (NULL); } static int g_cache_read(struct g_cache_softc *sc, struct bio *bp) { struct bio *cbp; struct g_cache_desc *dp; mtx_lock(&sc->sc_mtx); dp = g_cache_lookup(sc, OFF2BNO(bp->bio_offset + bp->bio_completed, sc)); if (dp != NULL) { /* Add to waiters list or deliver. */ sc->sc_cachehits++; if (dp->d_biolist != NULL) { G_CACHE_NEXT_BIO1(bp) = sc; G_CACHE_NEXT_BIO2(bp) = dp->d_biolist; dp->d_biolist = bp; } else g_cache_deliver(sc, bp, dp, 0); mtx_unlock(&sc->sc_mtx); return (0); } /* Cache miss. Allocate entry and schedule bio. */ sc->sc_cachemisses++; dp = g_cache_alloc(sc); if (dp == NULL) { mtx_unlock(&sc->sc_mtx); return (ENOMEM); } cbp = g_clone_bio(bp); if (cbp == NULL) { g_cache_free(sc, dp); mtx_unlock(&sc->sc_mtx); return (ENOMEM); } dp->d_bno = OFF2BNO(bp->bio_offset + bp->bio_completed, sc); G_CACHE_NEXT_BIO1(bp) = sc; G_CACHE_NEXT_BIO2(bp) = NULL; dp->d_biolist = bp; LIST_INSERT_HEAD(&sc->sc_desclist[G_CACHE_BUCKET(dp->d_bno)], dp, d_next); mtx_unlock(&sc->sc_mtx); G_CACHE_DESC1(cbp) = sc; G_CACHE_DESC2(cbp) = dp; cbp->bio_done = g_cache_done; cbp->bio_offset = BNO2OFF(dp->d_bno, sc); cbp->bio_data = dp->d_data; cbp->bio_length = sc->sc_bsize; g_io_request(cbp, LIST_FIRST(&bp->bio_to->geom->consumer)); return (0); } static void g_cache_invalidate(struct g_cache_softc *sc, struct bio *bp) { struct g_cache_desc *dp; off_t bno, lim; mtx_lock(&sc->sc_mtx); bno = OFF2BNO(bp->bio_offset, sc); lim = OFF2BNO(bp->bio_offset + bp->bio_length - 1, sc); do { if ((dp = g_cache_lookup(sc, bno)) != NULL) { LIST_REMOVE(dp, d_next); if (dp->d_flags & D_FLAG_USED) { TAILQ_REMOVE(&sc->sc_usedlist, dp, d_used); sc->sc_nused--; } if (dp->d_biolist == NULL) g_cache_free(sc, dp); else { dp->d_flags = D_FLAG_INVALID; sc->sc_invalid++; } } bno++; } while (bno <= lim); mtx_unlock(&sc->sc_mtx); } static void g_cache_start(struct bio *bp) { struct g_cache_softc *sc; struct g_geom *gp; struct g_cache_desc *dp; struct bio *cbp; gp = bp->bio_to->geom; sc = gp->softc; G_CACHE_LOGREQ(bp, "Request received."); switch (bp->bio_cmd) { case BIO_READ: sc->sc_reads++; sc->sc_readbytes += bp->bio_length; if (!g_cache_enable) break; if (bp->bio_offset + bp->bio_length > sc->sc_tail) break; if (OFF2BNO(bp->bio_offset, sc) == OFF2BNO(bp->bio_offset + bp->bio_length - 1, sc)) { sc->sc_cachereads++; sc->sc_cachereadbytes += bp->bio_length; if (g_cache_read(sc, bp) == 0) return; sc->sc_cachereads--; sc->sc_cachereadbytes -= bp->bio_length; break; } else if (OFF2BNO(bp->bio_offset, sc) + 1 == OFF2BNO(bp->bio_offset + bp->bio_length - 1, sc)) { mtx_lock(&sc->sc_mtx); dp = g_cache_lookup(sc, OFF2BNO(bp->bio_offset, sc)); if (dp == NULL || dp->d_biolist != NULL) { mtx_unlock(&sc->sc_mtx); break; } sc->sc_cachereads++; sc->sc_cachereadbytes += bp->bio_length; g_cache_deliver(sc, bp, dp, 0); mtx_unlock(&sc->sc_mtx); if (g_cache_read(sc, bp) == 0) return; sc->sc_cachereads--; sc->sc_cachereadbytes -= bp->bio_length; break; } break; case BIO_WRITE: sc->sc_writes++; sc->sc_wrotebytes += bp->bio_length; g_cache_invalidate(sc, bp); break; } cbp = g_clone_bio(bp); if (cbp == NULL) { g_io_deliver(bp, ENOMEM); return; } cbp->bio_done = g_std_done; G_CACHE_LOGREQ(cbp, "Sending request."); g_io_request(cbp, LIST_FIRST(&gp->consumer)); } static void g_cache_go(void *arg) { struct g_cache_softc *sc = arg; struct g_cache_desc *dp; int i; mtx_assert(&sc->sc_mtx, MA_OWNED); /* Forcibly mark idle ready entries as used. */ for (i = 0; i < G_CACHE_BUCKETS; i++) { LIST_FOREACH(dp, &sc->sc_desclist[i], d_next) { if (dp->d_flags & D_FLAG_USED || dp->d_biolist != NULL || time_uptime - dp->d_atime < g_cache_idletime) continue; TAILQ_INSERT_TAIL(&sc->sc_usedlist, dp, d_used); sc->sc_nused++; dp->d_flags |= D_FLAG_USED; } } /* Keep the number of used entries low. */ if (sc->sc_nused > g_cache_used_hi * sc->sc_maxent / 100) g_cache_free_used(sc); callout_reset(&sc->sc_callout, g_cache_timeout * hz, g_cache_go, sc); } static int g_cache_access(struct g_provider *pp, int dr, int dw, int de) { struct g_geom *gp; struct g_consumer *cp; int error; gp = pp->geom; cp = LIST_FIRST(&gp->consumer); error = g_access(cp, dr, dw, de); return (error); } static void g_cache_orphan(struct g_consumer *cp) { g_topology_assert(); g_cache_destroy(cp->geom->softc, 1); } static struct g_cache_softc * g_cache_find_device(struct g_class *mp, const char *name) { struct g_geom *gp; LIST_FOREACH(gp, &mp->geom, geom) { if (strcmp(gp->name, name) == 0) return (gp->softc); } return (NULL); } static struct g_geom * g_cache_create(struct g_class *mp, struct g_provider *pp, const struct g_cache_metadata *md, u_int type) { struct g_cache_softc *sc; struct g_geom *gp; struct g_provider *newpp; struct g_consumer *cp; u_int bshift; int i; g_topology_assert(); gp = NULL; newpp = NULL; cp = NULL; G_CACHE_DEBUG(1, "Creating device %s.", md->md_name); /* Cache size is minimum 100. */ if (md->md_size < 100) { G_CACHE_DEBUG(0, "Invalid size for device %s.", md->md_name); return (NULL); } /* Block size restrictions. */ bshift = ffs(md->md_bsize) - 1; if (md->md_bsize == 0 || md->md_bsize > MAXPHYS || md->md_bsize != 1 << bshift || (md->md_bsize % pp->sectorsize) != 0) { G_CACHE_DEBUG(0, "Invalid blocksize for provider %s.", pp->name); return (NULL); } /* Check for duplicate unit. */ if (g_cache_find_device(mp, (const char *)&md->md_name) != NULL) { G_CACHE_DEBUG(0, "Provider %s already exists.", md->md_name); return (NULL); } gp = g_new_geomf(mp, "%s", md->md_name); sc = g_malloc(sizeof(*sc), M_WAITOK | M_ZERO); sc->sc_type = type; sc->sc_bshift = bshift; sc->sc_bsize = 1 << bshift; sc->sc_zone = uma_zcreate("gcache", sc->sc_bsize, NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); mtx_init(&sc->sc_mtx, "GEOM CACHE mutex", NULL, MTX_DEF); for (i = 0; i < G_CACHE_BUCKETS; i++) LIST_INIT(&sc->sc_desclist[i]); TAILQ_INIT(&sc->sc_usedlist); sc->sc_maxent = md->md_size; callout_init_mtx(&sc->sc_callout, &sc->sc_mtx, 0); gp->softc = sc; sc->sc_geom = gp; gp->start = g_cache_start; gp->orphan = g_cache_orphan; gp->access = g_cache_access; gp->dumpconf = g_cache_dumpconf; newpp = g_new_providerf(gp, "cache/%s", gp->name); newpp->sectorsize = pp->sectorsize; newpp->mediasize = pp->mediasize; if (type == G_CACHE_TYPE_AUTOMATIC) newpp->mediasize -= pp->sectorsize; sc->sc_tail = BNO2OFF(OFF2BNO(newpp->mediasize, sc), sc); cp = g_new_consumer(gp); if (g_attach(cp, pp) != 0) { G_CACHE_DEBUG(0, "Cannot attach to provider %s.", pp->name); g_destroy_consumer(cp); g_destroy_provider(newpp); mtx_destroy(&sc->sc_mtx); g_free(sc); g_destroy_geom(gp); return (NULL); } g_error_provider(newpp, 0); G_CACHE_DEBUG(0, "Device %s created.", gp->name); callout_reset(&sc->sc_callout, g_cache_timeout * hz, g_cache_go, sc); return (gp); } static int g_cache_destroy(struct g_cache_softc *sc, boolean_t force) { struct g_geom *gp; struct g_provider *pp; struct g_cache_desc *dp, *dp2; int i; g_topology_assert(); if (sc == NULL) return (ENXIO); gp = sc->sc_geom; pp = LIST_FIRST(&gp->provider); if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) { if (force) { G_CACHE_DEBUG(0, "Device %s is still open, so it " "can't be definitely removed.", pp->name); } else { G_CACHE_DEBUG(1, "Device %s is still open (r%dw%de%d).", pp->name, pp->acr, pp->acw, pp->ace); return (EBUSY); } } else { G_CACHE_DEBUG(0, "Device %s removed.", gp->name); } callout_drain(&sc->sc_callout); mtx_lock(&sc->sc_mtx); for (i = 0; i < G_CACHE_BUCKETS; i++) { dp = LIST_FIRST(&sc->sc_desclist[i]); while (dp != NULL) { dp2 = LIST_NEXT(dp, d_next); g_cache_free(sc, dp); dp = dp2; } } mtx_unlock(&sc->sc_mtx); mtx_destroy(&sc->sc_mtx); uma_zdestroy(sc->sc_zone); g_free(sc); gp->softc = NULL; g_wither_geom(gp, ENXIO); return (0); } static int g_cache_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp) { return (g_cache_destroy(gp->softc, 0)); } static int g_cache_read_metadata(struct g_consumer *cp, struct g_cache_metadata *md) { struct g_provider *pp; u_char *buf; int error; g_topology_assert(); error = g_access(cp, 1, 0, 0); if (error != 0) return (error); pp = cp->provider; g_topology_unlock(); buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, &error); g_topology_lock(); g_access(cp, -1, 0, 0); if (buf == NULL) return (error); /* Decode metadata. */ cache_metadata_decode(buf, md); g_free(buf); return (0); } static int g_cache_write_metadata(struct g_consumer *cp, struct g_cache_metadata *md) { struct g_provider *pp; u_char *buf; int error; g_topology_assert(); error = g_access(cp, 0, 1, 0); if (error != 0) return (error); pp = cp->provider; buf = malloc((size_t)pp->sectorsize, M_GCACHE, M_WAITOK | M_ZERO); cache_metadata_encode(md, buf); g_topology_unlock(); error = g_write_data(cp, pp->mediasize - pp->sectorsize, buf, pp->sectorsize); g_topology_lock(); g_access(cp, 0, -1, 0); free(buf, M_GCACHE); return (error); } static struct g_geom * g_cache_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) { struct g_cache_metadata md; struct g_consumer *cp; struct g_geom *gp; int error; g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); g_topology_assert(); G_CACHE_DEBUG(3, "Tasting %s.", pp->name); gp = g_new_geomf(mp, "cache:taste"); gp->start = g_cache_start; gp->orphan = g_cache_orphan; gp->access = g_cache_access; cp = g_new_consumer(gp); g_attach(cp, pp); error = g_cache_read_metadata(cp, &md); g_detach(cp); g_destroy_consumer(cp); g_destroy_geom(gp); if (error != 0) return (NULL); if (strcmp(md.md_magic, G_CACHE_MAGIC) != 0) return (NULL); if (md.md_version > G_CACHE_VERSION) { printf("geom_cache.ko module is too old to handle %s.\n", pp->name); return (NULL); } if (md.md_provsize != pp->mediasize) return (NULL); gp = g_cache_create(mp, pp, &md, G_CACHE_TYPE_AUTOMATIC); if (gp == NULL) { G_CACHE_DEBUG(0, "Can't create %s.", md.md_name); return (NULL); } return (gp); } static void g_cache_ctl_create(struct gctl_req *req, struct g_class *mp) { struct g_cache_metadata md; struct g_provider *pp; struct g_geom *gp; intmax_t *bsize, *size; const char *name; int *nargs; g_topology_assert(); nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); if (nargs == NULL) { gctl_error(req, "No '%s' argument", "nargs"); return; } if (*nargs != 2) { gctl_error(req, "Invalid number of arguments."); return; } strlcpy(md.md_magic, G_CACHE_MAGIC, sizeof(md.md_magic)); md.md_version = G_CACHE_VERSION; name = gctl_get_asciiparam(req, "arg0"); if (name == NULL) { gctl_error(req, "No 'arg0' argument"); return; } strlcpy(md.md_name, name, sizeof(md.md_name)); size = gctl_get_paraml(req, "size", sizeof(*size)); if (size == NULL) { gctl_error(req, "No '%s' argument", "size"); return; } if ((u_int)*size < 100) { gctl_error(req, "Invalid '%s' argument", "size"); return; } md.md_size = (u_int)*size; bsize = gctl_get_paraml(req, "blocksize", sizeof(*bsize)); if (bsize == NULL) { gctl_error(req, "No '%s' argument", "blocksize"); return; } if (*bsize < 0) { gctl_error(req, "Invalid '%s' argument", "blocksize"); return; } md.md_bsize = (u_int)*bsize; /* This field is not important here. */ md.md_provsize = 0; name = gctl_get_asciiparam(req, "arg1"); if (name == NULL) { gctl_error(req, "No 'arg1' argument"); return; } if (strncmp(name, "/dev/", strlen("/dev/")) == 0) name += strlen("/dev/"); pp = g_provider_by_name(name); if (pp == NULL) { G_CACHE_DEBUG(1, "Provider %s is invalid.", name); gctl_error(req, "Provider %s is invalid.", name); return; } gp = g_cache_create(mp, pp, &md, G_CACHE_TYPE_MANUAL); if (gp == NULL) { gctl_error(req, "Can't create %s.", md.md_name); return; } } static void g_cache_ctl_configure(struct gctl_req *req, struct g_class *mp) { struct g_cache_metadata md; struct g_cache_softc *sc; struct g_consumer *cp; intmax_t *bsize, *size; const char *name; int error, *nargs; g_topology_assert(); nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); if (nargs == NULL) { gctl_error(req, "No '%s' argument", "nargs"); return; } if (*nargs != 1) { gctl_error(req, "Missing device."); return; } name = gctl_get_asciiparam(req, "arg0"); if (name == NULL) { gctl_error(req, "No 'arg0' argument"); return; } sc = g_cache_find_device(mp, name); if (sc == NULL) { G_CACHE_DEBUG(1, "Device %s is invalid.", name); gctl_error(req, "Device %s is invalid.", name); return; } size = gctl_get_paraml(req, "size", sizeof(*size)); if (size == NULL) { gctl_error(req, "No '%s' argument", "size"); return; } if ((u_int)*size != 0 && (u_int)*size < 100) { gctl_error(req, "Invalid '%s' argument", "size"); return; } if ((u_int)*size != 0) sc->sc_maxent = (u_int)*size; bsize = gctl_get_paraml(req, "blocksize", sizeof(*bsize)); if (bsize == NULL) { gctl_error(req, "No '%s' argument", "blocksize"); return; } if (*bsize < 0) { gctl_error(req, "Invalid '%s' argument", "blocksize"); return; } if (sc->sc_type != G_CACHE_TYPE_AUTOMATIC) return; strlcpy(md.md_name, name, sizeof(md.md_name)); strlcpy(md.md_magic, G_CACHE_MAGIC, sizeof(md.md_magic)); md.md_version = G_CACHE_VERSION; if ((u_int)*size != 0) md.md_size = (u_int)*size; else md.md_size = sc->sc_maxent; if ((u_int)*bsize != 0) md.md_bsize = (u_int)*bsize; else md.md_bsize = sc->sc_bsize; cp = LIST_FIRST(&sc->sc_geom->consumer); md.md_provsize = cp->provider->mediasize; error = g_cache_write_metadata(cp, &md); if (error == 0) G_CACHE_DEBUG(2, "Metadata on %s updated.", cp->provider->name); else G_CACHE_DEBUG(0, "Cannot update metadata on %s (error=%d).", cp->provider->name, error); } static void g_cache_ctl_destroy(struct gctl_req *req, struct g_class *mp) { int *nargs, *force, error, i; struct g_cache_softc *sc; const char *name; char param[16]; g_topology_assert(); nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); if (nargs == NULL) { gctl_error(req, "No '%s' argument", "nargs"); return; } if (*nargs <= 0) { gctl_error(req, "Missing device(s)."); return; } force = gctl_get_paraml(req, "force", sizeof(*force)); if (force == NULL) { gctl_error(req, "No 'force' argument"); return; } for (i = 0; i < *nargs; i++) { snprintf(param, sizeof(param), "arg%d", i); name = gctl_get_asciiparam(req, param); if (name == NULL) { gctl_error(req, "No 'arg%d' argument", i); return; } sc = g_cache_find_device(mp, name); if (sc == NULL) { G_CACHE_DEBUG(1, "Device %s is invalid.", name); gctl_error(req, "Device %s is invalid.", name); return; } error = g_cache_destroy(sc, *force); if (error != 0) { gctl_error(req, "Cannot destroy device %s (error=%d).", sc->sc_name, error); return; } } } static void g_cache_ctl_reset(struct gctl_req *req, struct g_class *mp) { struct g_cache_softc *sc; const char *name; char param[16]; int i, *nargs; g_topology_assert(); nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); if (nargs == NULL) { gctl_error(req, "No '%s' argument", "nargs"); return; } if (*nargs <= 0) { gctl_error(req, "Missing device(s)."); return; } for (i = 0; i < *nargs; i++) { snprintf(param, sizeof(param), "arg%d", i); name = gctl_get_asciiparam(req, param); if (name == NULL) { gctl_error(req, "No 'arg%d' argument", i); return; } sc = g_cache_find_device(mp, name); if (sc == NULL) { G_CACHE_DEBUG(1, "Device %s is invalid.", name); gctl_error(req, "Device %s is invalid.", name); return; } sc->sc_reads = 0; sc->sc_readbytes = 0; sc->sc_cachereads = 0; sc->sc_cachereadbytes = 0; sc->sc_cachehits = 0; sc->sc_cachemisses = 0; sc->sc_cachefull = 0; sc->sc_writes = 0; sc->sc_wrotebytes = 0; } } static void g_cache_config(struct gctl_req *req, struct g_class *mp, const char *verb) { uint32_t *version; g_topology_assert(); version = gctl_get_paraml(req, "version", sizeof(*version)); if (version == NULL) { gctl_error(req, "No '%s' argument.", "version"); return; } if (*version != G_CACHE_VERSION) { gctl_error(req, "Userland and kernel parts are out of sync."); return; } if (strcmp(verb, "create") == 0) { g_cache_ctl_create(req, mp); return; } else if (strcmp(verb, "configure") == 0) { g_cache_ctl_configure(req, mp); return; } else if (strcmp(verb, "destroy") == 0 || strcmp(verb, "stop") == 0) { g_cache_ctl_destroy(req, mp); return; } else if (strcmp(verb, "reset") == 0) { g_cache_ctl_reset(req, mp); return; } gctl_error(req, "Unknown verb."); } static void g_cache_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp) { struct g_cache_softc *sc; if (pp != NULL || cp != NULL) return; sc = gp->softc; sbuf_printf(sb, "%s%u\n", indent, sc->sc_maxent); sbuf_printf(sb, "%s%u\n", indent, sc->sc_bsize); sbuf_printf(sb, "%s%ju\n", indent, (uintmax_t)sc->sc_tail); sbuf_printf(sb, "%s%u\n", indent, sc->sc_nent); sbuf_printf(sb, "%s%u\n", indent, sc->sc_nused); sbuf_printf(sb, "%s%u\n", indent, sc->sc_invalid); sbuf_printf(sb, "%s%ju\n", indent, sc->sc_reads); sbuf_printf(sb, "%s%ju\n", indent, sc->sc_readbytes); sbuf_printf(sb, "%s%ju\n", indent, sc->sc_cachereads); sbuf_printf(sb, "%s%ju\n", indent, sc->sc_cachereadbytes); sbuf_printf(sb, "%s%ju\n", indent, sc->sc_cachehits); sbuf_printf(sb, "%s%ju\n", indent, sc->sc_cachemisses); sbuf_printf(sb, "%s%ju\n", indent, sc->sc_cachefull); sbuf_printf(sb, "%s%ju\n", indent, sc->sc_writes); sbuf_printf(sb, "%s%ju\n", indent, sc->sc_wrotebytes); } DECLARE_GEOM_CLASS(g_cache_class, g_cache); +MODULE_VERSION(geom_cache, 0); Index: head/sys/geom/concat/g_concat.c =================================================================== --- head/sys/geom/concat/g_concat.c (revision 332386) +++ head/sys/geom/concat/g_concat.c (revision 332387) @@ -1,995 +1,996 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2004-2005 Pawel Jakub Dawidek * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include FEATURE(geom_concat, "GEOM concatenation support"); static MALLOC_DEFINE(M_CONCAT, "concat_data", "GEOM_CONCAT Data"); SYSCTL_DECL(_kern_geom); static SYSCTL_NODE(_kern_geom, OID_AUTO, concat, CTLFLAG_RW, 0, "GEOM_CONCAT stuff"); static u_int g_concat_debug = 0; SYSCTL_UINT(_kern_geom_concat, OID_AUTO, debug, CTLFLAG_RWTUN, &g_concat_debug, 0, "Debug level"); static int g_concat_destroy(struct g_concat_softc *sc, boolean_t force); static int g_concat_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp); static g_taste_t g_concat_taste; static g_ctl_req_t g_concat_config; static g_dumpconf_t g_concat_dumpconf; struct g_class g_concat_class = { .name = G_CONCAT_CLASS_NAME, .version = G_VERSION, .ctlreq = g_concat_config, .taste = g_concat_taste, .destroy_geom = g_concat_destroy_geom }; /* * Greatest Common Divisor. */ static u_int gcd(u_int a, u_int b) { u_int c; while (b != 0) { c = a; a = b; b = (c % b); } return (a); } /* * Least Common Multiple. */ static u_int lcm(u_int a, u_int b) { return ((a * b) / gcd(a, b)); } /* * Return the number of valid disks. */ static u_int g_concat_nvalid(struct g_concat_softc *sc) { u_int i, no; no = 0; for (i = 0; i < sc->sc_ndisks; i++) { if (sc->sc_disks[i].d_consumer != NULL) no++; } return (no); } static void g_concat_remove_disk(struct g_concat_disk *disk) { struct g_consumer *cp; struct g_concat_softc *sc; g_topology_assert(); KASSERT(disk->d_consumer != NULL, ("Non-valid disk in %s.", __func__)); sc = disk->d_softc; cp = disk->d_consumer; if (!disk->d_removed) { G_CONCAT_DEBUG(0, "Disk %s removed from %s.", cp->provider->name, sc->sc_name); disk->d_removed = 1; } if (sc->sc_provider != NULL) { G_CONCAT_DEBUG(0, "Device %s deactivated.", sc->sc_provider->name); g_wither_provider(sc->sc_provider, ENXIO); sc->sc_provider = NULL; } if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) return; disk->d_consumer = NULL; g_detach(cp); g_destroy_consumer(cp); /* If there are no valid disks anymore, remove device. */ if (LIST_EMPTY(&sc->sc_geom->consumer)) g_concat_destroy(sc, 1); } static void g_concat_orphan(struct g_consumer *cp) { struct g_concat_softc *sc; struct g_concat_disk *disk; struct g_geom *gp; g_topology_assert(); gp = cp->geom; sc = gp->softc; if (sc == NULL) return; disk = cp->private; if (disk == NULL) /* Possible? */ return; g_concat_remove_disk(disk); } static int g_concat_access(struct g_provider *pp, int dr, int dw, int de) { struct g_consumer *cp1, *cp2, *tmp; struct g_concat_disk *disk; struct g_geom *gp; int error; g_topology_assert(); gp = pp->geom; /* On first open, grab an extra "exclusive" bit */ if (pp->acr == 0 && pp->acw == 0 && pp->ace == 0) de++; /* ... and let go of it on last close */ if ((pp->acr + dr) == 0 && (pp->acw + dw) == 0 && (pp->ace + de) == 0) de--; LIST_FOREACH_SAFE(cp1, &gp->consumer, consumer, tmp) { error = g_access(cp1, dr, dw, de); if (error != 0) goto fail; disk = cp1->private; if (cp1->acr == 0 && cp1->acw == 0 && cp1->ace == 0 && disk->d_removed) { g_concat_remove_disk(disk); /* May destroy geom. */ } } return (0); fail: LIST_FOREACH(cp2, &gp->consumer, consumer) { if (cp1 == cp2) break; g_access(cp2, -dr, -dw, -de); } return (error); } static void g_concat_kernel_dump(struct bio *bp) { struct g_concat_softc *sc; struct g_concat_disk *disk; struct bio *cbp; struct g_kerneldump *gkd; u_int i; sc = bp->bio_to->geom->softc; gkd = (struct g_kerneldump *)bp->bio_data; for (i = 0; i < sc->sc_ndisks; i++) { if (sc->sc_disks[i].d_start <= gkd->offset && sc->sc_disks[i].d_end > gkd->offset) break; } if (i == sc->sc_ndisks) g_io_deliver(bp, EOPNOTSUPP); disk = &sc->sc_disks[i]; gkd->offset -= disk->d_start; if (gkd->length > disk->d_end - disk->d_start - gkd->offset) gkd->length = disk->d_end - disk->d_start - gkd->offset; cbp = g_clone_bio(bp); if (cbp == NULL) { g_io_deliver(bp, ENOMEM); return; } cbp->bio_done = g_std_done; g_io_request(cbp, disk->d_consumer); G_CONCAT_DEBUG(1, "Kernel dump will go to %s.", disk->d_consumer->provider->name); } static void g_concat_done(struct bio *bp) { struct g_concat_softc *sc; struct bio *pbp; pbp = bp->bio_parent; sc = pbp->bio_to->geom->softc; mtx_lock(&sc->sc_lock); if (pbp->bio_error == 0) pbp->bio_error = bp->bio_error; pbp->bio_completed += bp->bio_completed; pbp->bio_inbed++; if (pbp->bio_children == pbp->bio_inbed) { mtx_unlock(&sc->sc_lock); g_io_deliver(pbp, pbp->bio_error); } else mtx_unlock(&sc->sc_lock); g_destroy_bio(bp); } static void g_concat_flush(struct g_concat_softc *sc, struct bio *bp) { struct bio_queue_head queue; struct g_consumer *cp; struct bio *cbp; u_int no; bioq_init(&queue); for (no = 0; no < sc->sc_ndisks; no++) { cbp = g_clone_bio(bp); if (cbp == NULL) { while ((cbp = bioq_takefirst(&queue)) != NULL) g_destroy_bio(cbp); if (bp->bio_error == 0) bp->bio_error = ENOMEM; g_io_deliver(bp, bp->bio_error); return; } bioq_insert_tail(&queue, cbp); cbp->bio_done = g_concat_done; cbp->bio_caller1 = sc->sc_disks[no].d_consumer; cbp->bio_to = sc->sc_disks[no].d_consumer->provider; } while ((cbp = bioq_takefirst(&queue)) != NULL) { G_CONCAT_LOGREQ(cbp, "Sending request."); cp = cbp->bio_caller1; cbp->bio_caller1 = NULL; g_io_request(cbp, cp); } } static void g_concat_start(struct bio *bp) { struct bio_queue_head queue; struct g_concat_softc *sc; struct g_concat_disk *disk; struct g_provider *pp; off_t offset, end, length, off, len; struct bio *cbp; char *addr; u_int no; pp = bp->bio_to; sc = pp->geom->softc; /* * If sc == NULL, provider's error should be set and g_concat_start() * should not be called at all. */ KASSERT(sc != NULL, ("Provider's error should be set (error=%d)(device=%s).", bp->bio_to->error, bp->bio_to->name)); G_CONCAT_LOGREQ(bp, "Request received."); switch (bp->bio_cmd) { case BIO_READ: case BIO_WRITE: case BIO_DELETE: break; case BIO_FLUSH: g_concat_flush(sc, bp); return; case BIO_GETATTR: if (strcmp("GEOM::kerneldump", bp->bio_attribute) == 0) { g_concat_kernel_dump(bp); return; } /* To which provider it should be delivered? */ /* FALLTHROUGH */ default: g_io_deliver(bp, EOPNOTSUPP); return; } offset = bp->bio_offset; length = bp->bio_length; if ((bp->bio_flags & BIO_UNMAPPED) != 0) addr = NULL; else addr = bp->bio_data; end = offset + length; bioq_init(&queue); for (no = 0; no < sc->sc_ndisks; no++) { disk = &sc->sc_disks[no]; if (disk->d_end <= offset) continue; if (disk->d_start >= end) break; off = offset - disk->d_start; len = MIN(length, disk->d_end - offset); length -= len; offset += len; cbp = g_clone_bio(bp); if (cbp == NULL) { while ((cbp = bioq_takefirst(&queue)) != NULL) g_destroy_bio(cbp); if (bp->bio_error == 0) bp->bio_error = ENOMEM; g_io_deliver(bp, bp->bio_error); return; } bioq_insert_tail(&queue, cbp); /* * Fill in the component buf structure. */ if (len == bp->bio_length) cbp->bio_done = g_std_done; else cbp->bio_done = g_concat_done; cbp->bio_offset = off; cbp->bio_length = len; if ((bp->bio_flags & BIO_UNMAPPED) != 0) { cbp->bio_ma_offset += (uintptr_t)addr; cbp->bio_ma += cbp->bio_ma_offset / PAGE_SIZE; cbp->bio_ma_offset %= PAGE_SIZE; cbp->bio_ma_n = round_page(cbp->bio_ma_offset + cbp->bio_length) / PAGE_SIZE; } else cbp->bio_data = addr; addr += len; cbp->bio_to = disk->d_consumer->provider; cbp->bio_caller1 = disk; if (length == 0) break; } KASSERT(length == 0, ("Length is still greater than 0 (class=%s, name=%s).", bp->bio_to->geom->class->name, bp->bio_to->geom->name)); while ((cbp = bioq_takefirst(&queue)) != NULL) { G_CONCAT_LOGREQ(cbp, "Sending request."); disk = cbp->bio_caller1; cbp->bio_caller1 = NULL; g_io_request(cbp, disk->d_consumer); } } static void g_concat_check_and_run(struct g_concat_softc *sc) { struct g_concat_disk *disk; struct g_provider *dp, *pp; u_int no, sectorsize = 0; off_t start; g_topology_assert(); if (g_concat_nvalid(sc) != sc->sc_ndisks) return; pp = g_new_providerf(sc->sc_geom, "concat/%s", sc->sc_name); pp->flags |= G_PF_DIRECT_SEND | G_PF_DIRECT_RECEIVE | G_PF_ACCEPT_UNMAPPED; start = 0; for (no = 0; no < sc->sc_ndisks; no++) { disk = &sc->sc_disks[no]; dp = disk->d_consumer->provider; disk->d_start = start; disk->d_end = disk->d_start + dp->mediasize; if (sc->sc_type == G_CONCAT_TYPE_AUTOMATIC) disk->d_end -= dp->sectorsize; start = disk->d_end; if (no == 0) sectorsize = dp->sectorsize; else sectorsize = lcm(sectorsize, dp->sectorsize); /* A provider underneath us doesn't support unmapped */ if ((dp->flags & G_PF_ACCEPT_UNMAPPED) == 0) { G_CONCAT_DEBUG(1, "Cancelling unmapped " "because of %s.", dp->name); pp->flags &= ~G_PF_ACCEPT_UNMAPPED; } } pp->sectorsize = sectorsize; /* We have sc->sc_disks[sc->sc_ndisks - 1].d_end in 'start'. */ pp->mediasize = start; pp->stripesize = sc->sc_disks[0].d_consumer->provider->stripesize; pp->stripeoffset = sc->sc_disks[0].d_consumer->provider->stripeoffset; sc->sc_provider = pp; g_error_provider(pp, 0); G_CONCAT_DEBUG(0, "Device %s activated.", sc->sc_provider->name); } static int g_concat_read_metadata(struct g_consumer *cp, struct g_concat_metadata *md) { struct g_provider *pp; u_char *buf; int error; g_topology_assert(); error = g_access(cp, 1, 0, 0); if (error != 0) return (error); pp = cp->provider; g_topology_unlock(); buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, &error); g_topology_lock(); g_access(cp, -1, 0, 0); if (buf == NULL) return (error); /* Decode metadata. */ concat_metadata_decode(buf, md); g_free(buf); return (0); } /* * Add disk to given device. */ static int g_concat_add_disk(struct g_concat_softc *sc, struct g_provider *pp, u_int no) { struct g_concat_disk *disk; struct g_consumer *cp, *fcp; struct g_geom *gp; int error; g_topology_assert(); /* Metadata corrupted? */ if (no >= sc->sc_ndisks) return (EINVAL); disk = &sc->sc_disks[no]; /* Check if disk is not already attached. */ if (disk->d_consumer != NULL) return (EEXIST); gp = sc->sc_geom; fcp = LIST_FIRST(&gp->consumer); cp = g_new_consumer(gp); cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; error = g_attach(cp, pp); if (error != 0) { g_destroy_consumer(cp); return (error); } if (fcp != NULL && (fcp->acr > 0 || fcp->acw > 0 || fcp->ace > 0)) { error = g_access(cp, fcp->acr, fcp->acw, fcp->ace); if (error != 0) { g_detach(cp); g_destroy_consumer(cp); return (error); } } if (sc->sc_type == G_CONCAT_TYPE_AUTOMATIC) { struct g_concat_metadata md; /* Re-read metadata. */ error = g_concat_read_metadata(cp, &md); if (error != 0) goto fail; if (strcmp(md.md_magic, G_CONCAT_MAGIC) != 0 || strcmp(md.md_name, sc->sc_name) != 0 || md.md_id != sc->sc_id) { G_CONCAT_DEBUG(0, "Metadata on %s changed.", pp->name); goto fail; } } cp->private = disk; disk->d_consumer = cp; disk->d_softc = sc; disk->d_start = 0; /* not yet */ disk->d_end = 0; /* not yet */ disk->d_removed = 0; G_CONCAT_DEBUG(0, "Disk %s attached to %s.", pp->name, sc->sc_name); g_concat_check_and_run(sc); return (0); fail: if (fcp != NULL && (fcp->acr > 0 || fcp->acw > 0 || fcp->ace > 0)) g_access(cp, -fcp->acr, -fcp->acw, -fcp->ace); g_detach(cp); g_destroy_consumer(cp); return (error); } static struct g_geom * g_concat_create(struct g_class *mp, const struct g_concat_metadata *md, u_int type) { struct g_concat_softc *sc; struct g_geom *gp; u_int no; G_CONCAT_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id); /* One disks is minimum. */ if (md->md_all < 1) return (NULL); /* Check for duplicate unit */ LIST_FOREACH(gp, &mp->geom, geom) { sc = gp->softc; if (sc != NULL && strcmp(sc->sc_name, md->md_name) == 0) { G_CONCAT_DEBUG(0, "Device %s already configured.", gp->name); return (NULL); } } gp = g_new_geomf(mp, "%s", md->md_name); sc = malloc(sizeof(*sc), M_CONCAT, M_WAITOK | M_ZERO); gp->start = g_concat_start; gp->spoiled = g_concat_orphan; gp->orphan = g_concat_orphan; gp->access = g_concat_access; gp->dumpconf = g_concat_dumpconf; sc->sc_id = md->md_id; sc->sc_ndisks = md->md_all; sc->sc_disks = malloc(sizeof(struct g_concat_disk) * sc->sc_ndisks, M_CONCAT, M_WAITOK | M_ZERO); for (no = 0; no < sc->sc_ndisks; no++) sc->sc_disks[no].d_consumer = NULL; sc->sc_type = type; mtx_init(&sc->sc_lock, "gconcat lock", NULL, MTX_DEF); gp->softc = sc; sc->sc_geom = gp; sc->sc_provider = NULL; G_CONCAT_DEBUG(0, "Device %s created (id=%u).", sc->sc_name, sc->sc_id); return (gp); } static int g_concat_destroy(struct g_concat_softc *sc, boolean_t force) { struct g_provider *pp; struct g_consumer *cp, *cp1; struct g_geom *gp; g_topology_assert(); if (sc == NULL) return (ENXIO); pp = sc->sc_provider; if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) { if (force) { G_CONCAT_DEBUG(0, "Device %s is still open, so it " "can't be definitely removed.", pp->name); } else { G_CONCAT_DEBUG(1, "Device %s is still open (r%dw%de%d).", pp->name, pp->acr, pp->acw, pp->ace); return (EBUSY); } } gp = sc->sc_geom; LIST_FOREACH_SAFE(cp, &gp->consumer, consumer, cp1) { g_concat_remove_disk(cp->private); if (cp1 == NULL) return (0); /* Recursion happened. */ } if (!LIST_EMPTY(&gp->consumer)) return (EINPROGRESS); gp->softc = NULL; KASSERT(sc->sc_provider == NULL, ("Provider still exists? (device=%s)", gp->name)); free(sc->sc_disks, M_CONCAT); mtx_destroy(&sc->sc_lock); free(sc, M_CONCAT); G_CONCAT_DEBUG(0, "Device %s destroyed.", gp->name); g_wither_geom(gp, ENXIO); return (0); } static int g_concat_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused, struct g_geom *gp) { struct g_concat_softc *sc; sc = gp->softc; return (g_concat_destroy(sc, 0)); } static struct g_geom * g_concat_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) { struct g_concat_metadata md; struct g_concat_softc *sc; struct g_consumer *cp; struct g_geom *gp; int error; g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); g_topology_assert(); /* Skip providers that are already open for writing. */ if (pp->acw > 0) return (NULL); G_CONCAT_DEBUG(3, "Tasting %s.", pp->name); gp = g_new_geomf(mp, "concat:taste"); gp->start = g_concat_start; gp->access = g_concat_access; gp->orphan = g_concat_orphan; cp = g_new_consumer(gp); g_attach(cp, pp); error = g_concat_read_metadata(cp, &md); g_detach(cp); g_destroy_consumer(cp); g_destroy_geom(gp); if (error != 0) return (NULL); gp = NULL; if (strcmp(md.md_magic, G_CONCAT_MAGIC) != 0) return (NULL); if (md.md_version > G_CONCAT_VERSION) { printf("geom_concat.ko module is too old to handle %s.\n", pp->name); return (NULL); } /* * Backward compatibility: */ /* There was no md_provider field in earlier versions of metadata. */ if (md.md_version < 3) bzero(md.md_provider, sizeof(md.md_provider)); /* There was no md_provsize field in earlier versions of metadata. */ if (md.md_version < 4) md.md_provsize = pp->mediasize; if (md.md_provider[0] != '\0' && !g_compare_names(md.md_provider, pp->name)) return (NULL); if (md.md_provsize != pp->mediasize) return (NULL); /* * Let's check if device already exists. */ sc = NULL; LIST_FOREACH(gp, &mp->geom, geom) { sc = gp->softc; if (sc == NULL) continue; if (sc->sc_type != G_CONCAT_TYPE_AUTOMATIC) continue; if (strcmp(md.md_name, sc->sc_name) != 0) continue; if (md.md_id != sc->sc_id) continue; break; } if (gp != NULL) { G_CONCAT_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name); error = g_concat_add_disk(sc, pp, md.md_no); if (error != 0) { G_CONCAT_DEBUG(0, "Cannot add disk %s to %s (error=%d).", pp->name, gp->name, error); return (NULL); } } else { gp = g_concat_create(mp, &md, G_CONCAT_TYPE_AUTOMATIC); if (gp == NULL) { G_CONCAT_DEBUG(0, "Cannot create device %s.", md.md_name); return (NULL); } sc = gp->softc; G_CONCAT_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name); error = g_concat_add_disk(sc, pp, md.md_no); if (error != 0) { G_CONCAT_DEBUG(0, "Cannot add disk %s to %s (error=%d).", pp->name, gp->name, error); g_concat_destroy(sc, 1); return (NULL); } } return (gp); } static void g_concat_ctl_create(struct gctl_req *req, struct g_class *mp) { u_int attached, no; struct g_concat_metadata md; struct g_provider *pp; struct g_concat_softc *sc; struct g_geom *gp; struct sbuf *sb; const char *name; char param[16]; int *nargs; g_topology_assert(); nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); if (nargs == NULL) { gctl_error(req, "No '%s' argument.", "nargs"); return; } if (*nargs < 2) { gctl_error(req, "Too few arguments."); return; } strlcpy(md.md_magic, G_CONCAT_MAGIC, sizeof(md.md_magic)); md.md_version = G_CONCAT_VERSION; name = gctl_get_asciiparam(req, "arg0"); if (name == NULL) { gctl_error(req, "No 'arg%u' argument.", 0); return; } strlcpy(md.md_name, name, sizeof(md.md_name)); md.md_id = arc4random(); md.md_no = 0; md.md_all = *nargs - 1; bzero(md.md_provider, sizeof(md.md_provider)); /* This field is not important here. */ md.md_provsize = 0; /* Check all providers are valid */ for (no = 1; no < *nargs; no++) { snprintf(param, sizeof(param), "arg%u", no); name = gctl_get_asciiparam(req, param); if (name == NULL) { gctl_error(req, "No 'arg%u' argument.", no); return; } if (strncmp(name, "/dev/", strlen("/dev/")) == 0) name += strlen("/dev/"); pp = g_provider_by_name(name); if (pp == NULL) { G_CONCAT_DEBUG(1, "Disk %s is invalid.", name); gctl_error(req, "Disk %s is invalid.", name); return; } } gp = g_concat_create(mp, &md, G_CONCAT_TYPE_MANUAL); if (gp == NULL) { gctl_error(req, "Can't configure %s.", md.md_name); return; } sc = gp->softc; sb = sbuf_new_auto(); sbuf_printf(sb, "Can't attach disk(s) to %s:", gp->name); for (attached = 0, no = 1; no < *nargs; no++) { snprintf(param, sizeof(param), "arg%u", no); name = gctl_get_asciiparam(req, param); if (name == NULL) { gctl_error(req, "No 'arg%d' argument.", no); return; } if (strncmp(name, "/dev/", strlen("/dev/")) == 0) name += strlen("/dev/"); pp = g_provider_by_name(name); KASSERT(pp != NULL, ("Provider %s disappear?!", name)); if (g_concat_add_disk(sc, pp, no - 1) != 0) { G_CONCAT_DEBUG(1, "Disk %u (%s) not attached to %s.", no, pp->name, gp->name); sbuf_printf(sb, " %s", pp->name); continue; } attached++; } sbuf_finish(sb); if (md.md_all != attached) { g_concat_destroy(gp->softc, 1); gctl_error(req, "%s", sbuf_data(sb)); } sbuf_delete(sb); } static struct g_concat_softc * g_concat_find_device(struct g_class *mp, const char *name) { struct g_concat_softc *sc; struct g_geom *gp; LIST_FOREACH(gp, &mp->geom, geom) { sc = gp->softc; if (sc == NULL) continue; if (strcmp(sc->sc_name, name) == 0) return (sc); } return (NULL); } static void g_concat_ctl_destroy(struct gctl_req *req, struct g_class *mp) { struct g_concat_softc *sc; int *force, *nargs, error; const char *name; char param[16]; u_int i; g_topology_assert(); nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); if (nargs == NULL) { gctl_error(req, "No '%s' argument.", "nargs"); return; } if (*nargs <= 0) { gctl_error(req, "Missing device(s)."); return; } force = gctl_get_paraml(req, "force", sizeof(*force)); if (force == NULL) { gctl_error(req, "No '%s' argument.", "force"); return; } for (i = 0; i < (u_int)*nargs; i++) { snprintf(param, sizeof(param), "arg%u", i); name = gctl_get_asciiparam(req, param); if (name == NULL) { gctl_error(req, "No 'arg%u' argument.", i); return; } sc = g_concat_find_device(mp, name); if (sc == NULL) { gctl_error(req, "No such device: %s.", name); return; } error = g_concat_destroy(sc, *force); if (error != 0) { gctl_error(req, "Cannot destroy device %s (error=%d).", sc->sc_name, error); return; } } } static void g_concat_config(struct gctl_req *req, struct g_class *mp, const char *verb) { uint32_t *version; g_topology_assert(); version = gctl_get_paraml(req, "version", sizeof(*version)); if (version == NULL) { gctl_error(req, "No '%s' argument.", "version"); return; } if (*version != G_CONCAT_VERSION) { gctl_error(req, "Userland and kernel parts are out of sync."); return; } if (strcmp(verb, "create") == 0) { g_concat_ctl_create(req, mp); return; } else if (strcmp(verb, "destroy") == 0 || strcmp(verb, "stop") == 0) { g_concat_ctl_destroy(req, mp); return; } gctl_error(req, "Unknown verb."); } static void g_concat_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp) { struct g_concat_softc *sc; g_topology_assert(); sc = gp->softc; if (sc == NULL) return; if (pp != NULL) { /* Nothing here. */ } else if (cp != NULL) { struct g_concat_disk *disk; disk = cp->private; if (disk == NULL) return; sbuf_printf(sb, "%s%jd\n", indent, (intmax_t)disk->d_end); sbuf_printf(sb, "%s%jd\n", indent, (intmax_t)disk->d_start); } else { sbuf_printf(sb, "%s%u\n", indent, (u_int)sc->sc_id); sbuf_printf(sb, "%s", indent); switch (sc->sc_type) { case G_CONCAT_TYPE_AUTOMATIC: sbuf_printf(sb, "AUTOMATIC"); break; case G_CONCAT_TYPE_MANUAL: sbuf_printf(sb, "MANUAL"); break; default: sbuf_printf(sb, "UNKNOWN"); break; } sbuf_printf(sb, "\n"); sbuf_printf(sb, "%sTotal=%u, Online=%u\n", indent, sc->sc_ndisks, g_concat_nvalid(sc)); sbuf_printf(sb, "%s", indent); if (sc->sc_provider != NULL && sc->sc_provider->error == 0) sbuf_printf(sb, "UP"); else sbuf_printf(sb, "DOWN"); sbuf_printf(sb, "\n"); } } DECLARE_GEOM_CLASS(g_concat_class, g_concat); +MODULE_VERSION(geom_concat, 0); Index: head/sys/geom/eli/g_eli.c =================================================================== --- head/sys/geom/eli/g_eli.c (revision 332386) +++ head/sys/geom/eli/g_eli.c (revision 332387) @@ -1,1335 +1,1336 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2005-2011 Pawel Jakub Dawidek * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include FEATURE(geom_eli, "GEOM crypto module"); MALLOC_DEFINE(M_ELI, "eli data", "GEOM_ELI Data"); SYSCTL_DECL(_kern_geom); SYSCTL_NODE(_kern_geom, OID_AUTO, eli, CTLFLAG_RW, 0, "GEOM_ELI stuff"); static int g_eli_version = G_ELI_VERSION; SYSCTL_INT(_kern_geom_eli, OID_AUTO, version, CTLFLAG_RD, &g_eli_version, 0, "GELI version"); int g_eli_debug = 0; SYSCTL_INT(_kern_geom_eli, OID_AUTO, debug, CTLFLAG_RWTUN, &g_eli_debug, 0, "Debug level"); static u_int g_eli_tries = 3; SYSCTL_UINT(_kern_geom_eli, OID_AUTO, tries, CTLFLAG_RWTUN, &g_eli_tries, 0, "Number of tries for entering the passphrase"); static u_int g_eli_visible_passphrase = GETS_NOECHO; SYSCTL_UINT(_kern_geom_eli, OID_AUTO, visible_passphrase, CTLFLAG_RWTUN, &g_eli_visible_passphrase, 0, "Visibility of passphrase prompt (0 = invisible, 1 = visible, 2 = asterisk)"); u_int g_eli_overwrites = G_ELI_OVERWRITES; SYSCTL_UINT(_kern_geom_eli, OID_AUTO, overwrites, CTLFLAG_RWTUN, &g_eli_overwrites, 0, "Number of times on-disk keys should be overwritten when destroying them"); static u_int g_eli_threads = 0; SYSCTL_UINT(_kern_geom_eli, OID_AUTO, threads, CTLFLAG_RWTUN, &g_eli_threads, 0, "Number of threads doing crypto work"); u_int g_eli_batch = 0; SYSCTL_UINT(_kern_geom_eli, OID_AUTO, batch, CTLFLAG_RWTUN, &g_eli_batch, 0, "Use crypto operations batching"); /* * Passphrase cached during boot, in order to be more user-friendly if * there are multiple providers using the same passphrase. */ static char cached_passphrase[256]; static u_int g_eli_boot_passcache = 1; TUNABLE_INT("kern.geom.eli.boot_passcache", &g_eli_boot_passcache); SYSCTL_UINT(_kern_geom_eli, OID_AUTO, boot_passcache, CTLFLAG_RD, &g_eli_boot_passcache, 0, "Passphrases are cached during boot process for possible reuse"); static void fetch_loader_passphrase(void * dummy) { char * env_passphrase; KASSERT(dynamic_kenv, ("need dynamic kenv")); if ((env_passphrase = kern_getenv("kern.geom.eli.passphrase")) != NULL) { /* Extract passphrase from the environment. */ strlcpy(cached_passphrase, env_passphrase, sizeof(cached_passphrase)); freeenv(env_passphrase); /* Wipe the passphrase from the environment. */ kern_unsetenv("kern.geom.eli.passphrase"); } } SYSINIT(geli_fetch_loader_passphrase, SI_SUB_KMEM + 1, SI_ORDER_ANY, fetch_loader_passphrase, NULL); static void zero_boot_passcache(void) { explicit_bzero(cached_passphrase, sizeof(cached_passphrase)); } static void zero_geli_intake_keys(void) { struct keybuf *keybuf; int i; if ((keybuf = get_keybuf()) != NULL) { /* Scan the key buffer, clear all GELI keys. */ for (i = 0; i < keybuf->kb_nents; i++) { if (keybuf->kb_ents[i].ke_type == KEYBUF_TYPE_GELI) { explicit_bzero(keybuf->kb_ents[i].ke_data, sizeof(keybuf->kb_ents[i].ke_data)); keybuf->kb_ents[i].ke_type = KEYBUF_TYPE_NONE; } } } } static void zero_intake_passcache(void *dummy) { zero_boot_passcache(); zero_geli_intake_keys(); } EVENTHANDLER_DEFINE(mountroot, zero_intake_passcache, NULL, 0); static eventhandler_tag g_eli_pre_sync = NULL; static int g_eli_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp); static void g_eli_init(struct g_class *mp); static void g_eli_fini(struct g_class *mp); static g_taste_t g_eli_taste; static g_dumpconf_t g_eli_dumpconf; struct g_class g_eli_class = { .name = G_ELI_CLASS_NAME, .version = G_VERSION, .ctlreq = g_eli_config, .taste = g_eli_taste, .destroy_geom = g_eli_destroy_geom, .init = g_eli_init, .fini = g_eli_fini }; /* * Code paths: * BIO_READ: * g_eli_start -> g_eli_crypto_read -> g_io_request -> g_eli_read_done -> g_eli_crypto_run -> g_eli_crypto_read_done -> g_io_deliver * BIO_WRITE: * g_eli_start -> g_eli_crypto_run -> g_eli_crypto_write_done -> g_io_request -> g_eli_write_done -> g_io_deliver */ /* * EAGAIN from crypto(9) means, that we were probably balanced to another crypto * accelerator or something like this. * The function updates the SID and rerun the operation. */ int g_eli_crypto_rerun(struct cryptop *crp) { struct g_eli_softc *sc; struct g_eli_worker *wr; struct bio *bp; int error; bp = (struct bio *)crp->crp_opaque; sc = bp->bio_to->geom->softc; LIST_FOREACH(wr, &sc->sc_workers, w_next) { if (wr->w_number == bp->bio_pflags) break; } KASSERT(wr != NULL, ("Invalid worker (%u).", bp->bio_pflags)); G_ELI_DEBUG(1, "Rerunning crypto %s request (sid: %ju -> %ju).", bp->bio_cmd == BIO_READ ? "READ" : "WRITE", (uintmax_t)wr->w_sid, (uintmax_t)crp->crp_sid); wr->w_sid = crp->crp_sid; crp->crp_etype = 0; error = crypto_dispatch(crp); if (error == 0) return (0); G_ELI_DEBUG(1, "%s: crypto_dispatch() returned %d.", __func__, error); crp->crp_etype = error; return (error); } static void g_eli_getattr_done(struct bio *bp) { if (bp->bio_error == 0 && !strcmp(bp->bio_attribute, "GEOM::physpath")) { strlcat(bp->bio_data, "/eli", bp->bio_length); } g_std_done(bp); } /* * The function is called afer reading encrypted data from the provider. * * g_eli_start -> g_eli_crypto_read -> g_io_request -> G_ELI_READ_DONE -> g_eli_crypto_run -> g_eli_crypto_read_done -> g_io_deliver */ void g_eli_read_done(struct bio *bp) { struct g_eli_softc *sc; struct bio *pbp; G_ELI_LOGREQ(2, bp, "Request done."); pbp = bp->bio_parent; if (pbp->bio_error == 0 && bp->bio_error != 0) pbp->bio_error = bp->bio_error; g_destroy_bio(bp); /* * Do we have all sectors already? */ pbp->bio_inbed++; if (pbp->bio_inbed < pbp->bio_children) return; sc = pbp->bio_to->geom->softc; if (pbp->bio_error != 0) { G_ELI_LOGREQ(0, pbp, "%s() failed (error=%d)", __func__, pbp->bio_error); pbp->bio_completed = 0; if (pbp->bio_driver2 != NULL) { free(pbp->bio_driver2, M_ELI); pbp->bio_driver2 = NULL; } g_io_deliver(pbp, pbp->bio_error); atomic_subtract_int(&sc->sc_inflight, 1); return; } mtx_lock(&sc->sc_queue_mtx); bioq_insert_tail(&sc->sc_queue, pbp); mtx_unlock(&sc->sc_queue_mtx); wakeup(sc); } /* * The function is called after we encrypt and write data. * * g_eli_start -> g_eli_crypto_run -> g_eli_crypto_write_done -> g_io_request -> G_ELI_WRITE_DONE -> g_io_deliver */ void g_eli_write_done(struct bio *bp) { struct g_eli_softc *sc; struct bio *pbp; G_ELI_LOGREQ(2, bp, "Request done."); pbp = bp->bio_parent; if (pbp->bio_error == 0 && bp->bio_error != 0) pbp->bio_error = bp->bio_error; g_destroy_bio(bp); /* * Do we have all sectors already? */ pbp->bio_inbed++; if (pbp->bio_inbed < pbp->bio_children) return; free(pbp->bio_driver2, M_ELI); pbp->bio_driver2 = NULL; if (pbp->bio_error != 0) { G_ELI_LOGREQ(0, pbp, "%s() failed (error=%d)", __func__, pbp->bio_error); pbp->bio_completed = 0; } else pbp->bio_completed = pbp->bio_length; /* * Write is finished, send it up. */ sc = pbp->bio_to->geom->softc; g_io_deliver(pbp, pbp->bio_error); atomic_subtract_int(&sc->sc_inflight, 1); } /* * This function should never be called, but GEOM made as it set ->orphan() * method for every geom. */ static void g_eli_orphan_spoil_assert(struct g_consumer *cp) { panic("Function %s() called for %s.", __func__, cp->geom->name); } static void g_eli_orphan(struct g_consumer *cp) { struct g_eli_softc *sc; g_topology_assert(); sc = cp->geom->softc; if (sc == NULL) return; g_eli_destroy(sc, TRUE); } /* * BIO_READ: * G_ELI_START -> g_eli_crypto_read -> g_io_request -> g_eli_read_done -> g_eli_crypto_run -> g_eli_crypto_read_done -> g_io_deliver * BIO_WRITE: * G_ELI_START -> g_eli_crypto_run -> g_eli_crypto_write_done -> g_io_request -> g_eli_write_done -> g_io_deliver */ static void g_eli_start(struct bio *bp) { struct g_eli_softc *sc; struct g_consumer *cp; struct bio *cbp; sc = bp->bio_to->geom->softc; KASSERT(sc != NULL, ("Provider's error should be set (error=%d)(device=%s).", bp->bio_to->error, bp->bio_to->name)); G_ELI_LOGREQ(2, bp, "Request received."); switch (bp->bio_cmd) { case BIO_READ: case BIO_WRITE: case BIO_GETATTR: case BIO_FLUSH: case BIO_ZONE: break; case BIO_DELETE: /* * If the user hasn't set the NODELETE flag, we just pass * it down the stack and let the layers beneath us do (or * not) whatever they do with it. If they have, we * reject it. A possible extension would be an * additional flag to take it as a hint to shred the data * with [multiple?] overwrites. */ if (!(sc->sc_flags & G_ELI_FLAG_NODELETE)) break; default: g_io_deliver(bp, EOPNOTSUPP); return; } cbp = g_clone_bio(bp); if (cbp == NULL) { g_io_deliver(bp, ENOMEM); return; } bp->bio_driver1 = cbp; bp->bio_pflags = G_ELI_NEW_BIO; switch (bp->bio_cmd) { case BIO_READ: if (!(sc->sc_flags & G_ELI_FLAG_AUTH)) { g_eli_crypto_read(sc, bp, 0); break; } /* FALLTHROUGH */ case BIO_WRITE: mtx_lock(&sc->sc_queue_mtx); bioq_insert_tail(&sc->sc_queue, bp); mtx_unlock(&sc->sc_queue_mtx); wakeup(sc); break; case BIO_GETATTR: case BIO_FLUSH: case BIO_DELETE: case BIO_ZONE: if (bp->bio_cmd == BIO_GETATTR) cbp->bio_done = g_eli_getattr_done; else cbp->bio_done = g_std_done; cp = LIST_FIRST(&sc->sc_geom->consumer); cbp->bio_to = cp->provider; G_ELI_LOGREQ(2, cbp, "Sending request."); g_io_request(cbp, cp); break; } } static int g_eli_newsession(struct g_eli_worker *wr) { struct g_eli_softc *sc; struct cryptoini crie, cria; int error; sc = wr->w_softc; bzero(&crie, sizeof(crie)); crie.cri_alg = sc->sc_ealgo; crie.cri_klen = sc->sc_ekeylen; if (sc->sc_ealgo == CRYPTO_AES_XTS) crie.cri_klen <<= 1; if ((sc->sc_flags & G_ELI_FLAG_FIRST_KEY) != 0) { crie.cri_key = g_eli_key_hold(sc, 0, LIST_FIRST(&sc->sc_geom->consumer)->provider->sectorsize); } else { crie.cri_key = sc->sc_ekey; } if (sc->sc_flags & G_ELI_FLAG_AUTH) { bzero(&cria, sizeof(cria)); cria.cri_alg = sc->sc_aalgo; cria.cri_klen = sc->sc_akeylen; cria.cri_key = sc->sc_akey; crie.cri_next = &cria; } switch (sc->sc_crypto) { case G_ELI_CRYPTO_SW: error = crypto_newsession(&wr->w_sid, &crie, CRYPTOCAP_F_SOFTWARE); break; case G_ELI_CRYPTO_HW: error = crypto_newsession(&wr->w_sid, &crie, CRYPTOCAP_F_HARDWARE); break; case G_ELI_CRYPTO_UNKNOWN: error = crypto_newsession(&wr->w_sid, &crie, CRYPTOCAP_F_HARDWARE); if (error == 0) { mtx_lock(&sc->sc_queue_mtx); if (sc->sc_crypto == G_ELI_CRYPTO_UNKNOWN) sc->sc_crypto = G_ELI_CRYPTO_HW; mtx_unlock(&sc->sc_queue_mtx); } else { error = crypto_newsession(&wr->w_sid, &crie, CRYPTOCAP_F_SOFTWARE); mtx_lock(&sc->sc_queue_mtx); if (sc->sc_crypto == G_ELI_CRYPTO_UNKNOWN) sc->sc_crypto = G_ELI_CRYPTO_SW; mtx_unlock(&sc->sc_queue_mtx); } break; default: panic("%s: invalid condition", __func__); } if ((sc->sc_flags & G_ELI_FLAG_FIRST_KEY) != 0) g_eli_key_drop(sc, crie.cri_key); return (error); } static void g_eli_freesession(struct g_eli_worker *wr) { crypto_freesession(wr->w_sid); } static void g_eli_cancel(struct g_eli_softc *sc) { struct bio *bp; mtx_assert(&sc->sc_queue_mtx, MA_OWNED); while ((bp = bioq_takefirst(&sc->sc_queue)) != NULL) { KASSERT(bp->bio_pflags == G_ELI_NEW_BIO, ("Not new bio when canceling (bp=%p).", bp)); g_io_deliver(bp, ENXIO); } } static struct bio * g_eli_takefirst(struct g_eli_softc *sc) { struct bio *bp; mtx_assert(&sc->sc_queue_mtx, MA_OWNED); if (!(sc->sc_flags & G_ELI_FLAG_SUSPEND)) return (bioq_takefirst(&sc->sc_queue)); /* * Device suspended, so we skip new I/O requests. */ TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { if (bp->bio_pflags != G_ELI_NEW_BIO) break; } if (bp != NULL) bioq_remove(&sc->sc_queue, bp); return (bp); } /* * This is the main function for kernel worker thread when we don't have * hardware acceleration and we have to do cryptography in software. * Dedicated thread is needed, so we don't slow down g_up/g_down GEOM * threads with crypto work. */ static void g_eli_worker(void *arg) { struct g_eli_softc *sc; struct g_eli_worker *wr; struct bio *bp; int error; wr = arg; sc = wr->w_softc; #ifdef EARLY_AP_STARTUP MPASS(!sc->sc_cpubind || smp_started); #elif defined(SMP) /* Before sched_bind() to a CPU, wait for all CPUs to go on-line. */ if (sc->sc_cpubind) { while (!smp_started) tsleep(wr, 0, "geli:smp", hz / 4); } #endif thread_lock(curthread); sched_prio(curthread, PUSER); if (sc->sc_cpubind) sched_bind(curthread, wr->w_number % mp_ncpus); thread_unlock(curthread); G_ELI_DEBUG(1, "Thread %s started.", curthread->td_proc->p_comm); for (;;) { mtx_lock(&sc->sc_queue_mtx); again: bp = g_eli_takefirst(sc); if (bp == NULL) { if (sc->sc_flags & G_ELI_FLAG_DESTROY) { g_eli_cancel(sc); LIST_REMOVE(wr, w_next); g_eli_freesession(wr); free(wr, M_ELI); G_ELI_DEBUG(1, "Thread %s exiting.", curthread->td_proc->p_comm); wakeup(&sc->sc_workers); mtx_unlock(&sc->sc_queue_mtx); kproc_exit(0); } while (sc->sc_flags & G_ELI_FLAG_SUSPEND) { if (sc->sc_inflight > 0) { G_ELI_DEBUG(0, "inflight=%d", sc->sc_inflight); /* * We still have inflight BIOs, so * sleep and retry. */ msleep(sc, &sc->sc_queue_mtx, PRIBIO, "geli:inf", hz / 5); goto again; } /* * Suspend requested, mark the worker as * suspended and go to sleep. */ if (wr->w_active) { g_eli_freesession(wr); wr->w_active = FALSE; } wakeup(&sc->sc_workers); msleep(sc, &sc->sc_queue_mtx, PRIBIO, "geli:suspend", 0); if (!wr->w_active && !(sc->sc_flags & G_ELI_FLAG_SUSPEND)) { error = g_eli_newsession(wr); KASSERT(error == 0, ("g_eli_newsession() failed on resume (error=%d)", error)); wr->w_active = TRUE; } goto again; } msleep(sc, &sc->sc_queue_mtx, PDROP, "geli:w", 0); continue; } if (bp->bio_pflags == G_ELI_NEW_BIO) atomic_add_int(&sc->sc_inflight, 1); mtx_unlock(&sc->sc_queue_mtx); if (bp->bio_pflags == G_ELI_NEW_BIO) { bp->bio_pflags = 0; if (sc->sc_flags & G_ELI_FLAG_AUTH) { if (bp->bio_cmd == BIO_READ) g_eli_auth_read(sc, bp); else g_eli_auth_run(wr, bp); } else { if (bp->bio_cmd == BIO_READ) g_eli_crypto_read(sc, bp, 1); else g_eli_crypto_run(wr, bp); } } else { if (sc->sc_flags & G_ELI_FLAG_AUTH) g_eli_auth_run(wr, bp); else g_eli_crypto_run(wr, bp); } } } int g_eli_read_metadata(struct g_class *mp, struct g_provider *pp, struct g_eli_metadata *md) { struct g_geom *gp; struct g_consumer *cp; u_char *buf = NULL; int error; g_topology_assert(); gp = g_new_geomf(mp, "eli:taste"); gp->start = g_eli_start; gp->access = g_std_access; /* * g_eli_read_metadata() is always called from the event thread. * Our geom is created and destroyed in the same event, so there * could be no orphan nor spoil event in the meantime. */ gp->orphan = g_eli_orphan_spoil_assert; gp->spoiled = g_eli_orphan_spoil_assert; cp = g_new_consumer(gp); error = g_attach(cp, pp); if (error != 0) goto end; error = g_access(cp, 1, 0, 0); if (error != 0) goto end; g_topology_unlock(); buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, &error); g_topology_lock(); if (buf == NULL) goto end; error = eli_metadata_decode(buf, md); if (error != 0) goto end; /* Metadata was read and decoded successfully. */ end: if (buf != NULL) g_free(buf); if (cp->provider != NULL) { if (cp->acr == 1) g_access(cp, -1, 0, 0); g_detach(cp); } g_destroy_consumer(cp); g_destroy_geom(gp); return (error); } /* * The function is called when we had last close on provider and user requested * to close it when this situation occur. */ static void g_eli_last_close(void *arg, int flags __unused) { struct g_geom *gp; char gpname[64]; int error; g_topology_assert(); gp = arg; strlcpy(gpname, gp->name, sizeof(gpname)); error = g_eli_destroy(gp->softc, TRUE); KASSERT(error == 0, ("Cannot detach %s on last close (error=%d).", gpname, error)); G_ELI_DEBUG(0, "Detached %s on last close.", gpname); } int g_eli_access(struct g_provider *pp, int dr, int dw, int de) { struct g_eli_softc *sc; struct g_geom *gp; gp = pp->geom; sc = gp->softc; if (dw > 0) { if (sc->sc_flags & G_ELI_FLAG_RO) { /* Deny write attempts. */ return (EROFS); } /* Someone is opening us for write, we need to remember that. */ sc->sc_flags |= G_ELI_FLAG_WOPEN; return (0); } /* Is this the last close? */ if (pp->acr + dr > 0 || pp->acw + dw > 0 || pp->ace + de > 0) return (0); /* * Automatically detach on last close if requested. */ if ((sc->sc_flags & G_ELI_FLAG_RW_DETACH) || (sc->sc_flags & G_ELI_FLAG_WOPEN)) { g_post_event(g_eli_last_close, gp, M_WAITOK, NULL); } return (0); } static int g_eli_cpu_is_disabled(int cpu) { #ifdef SMP return (CPU_ISSET(cpu, &hlt_cpus_mask)); #else return (0); #endif } struct g_geom * g_eli_create(struct gctl_req *req, struct g_class *mp, struct g_provider *bpp, const struct g_eli_metadata *md, const u_char *mkey, int nkey) { struct g_eli_softc *sc; struct g_eli_worker *wr; struct g_geom *gp; struct g_provider *pp; struct g_consumer *cp; u_int i, threads; int error; G_ELI_DEBUG(1, "Creating device %s%s.", bpp->name, G_ELI_SUFFIX); gp = g_new_geomf(mp, "%s%s", bpp->name, G_ELI_SUFFIX); sc = malloc(sizeof(*sc), M_ELI, M_WAITOK | M_ZERO); gp->start = g_eli_start; /* * Spoiling can happen even though we have the provider open * exclusively, e.g. through media change events. */ gp->spoiled = g_eli_orphan; gp->orphan = g_eli_orphan; gp->dumpconf = g_eli_dumpconf; /* * If detach-on-last-close feature is not enabled and we don't operate * on read-only provider, we can simply use g_std_access(). */ if (md->md_flags & (G_ELI_FLAG_WO_DETACH | G_ELI_FLAG_RO)) gp->access = g_eli_access; else gp->access = g_std_access; eli_metadata_softc(sc, md, bpp->sectorsize, bpp->mediasize); sc->sc_nkey = nkey; gp->softc = sc; sc->sc_geom = gp; bioq_init(&sc->sc_queue); mtx_init(&sc->sc_queue_mtx, "geli:queue", NULL, MTX_DEF); mtx_init(&sc->sc_ekeys_lock, "geli:ekeys", NULL, MTX_DEF); pp = NULL; cp = g_new_consumer(gp); error = g_attach(cp, bpp); if (error != 0) { if (req != NULL) { gctl_error(req, "Cannot attach to %s (error=%d).", bpp->name, error); } else { G_ELI_DEBUG(1, "Cannot attach to %s (error=%d).", bpp->name, error); } goto failed; } /* * Keep provider open all the time, so we can run critical tasks, * like Master Keys deletion, without wondering if we can open * provider or not. * We don't open provider for writing only when user requested read-only * access. */ if (sc->sc_flags & G_ELI_FLAG_RO) error = g_access(cp, 1, 0, 1); else error = g_access(cp, 1, 1, 1); if (error != 0) { if (req != NULL) { gctl_error(req, "Cannot access %s (error=%d).", bpp->name, error); } else { G_ELI_DEBUG(1, "Cannot access %s (error=%d).", bpp->name, error); } goto failed; } /* * Remember the keys in our softc structure. */ g_eli_mkey_propagate(sc, mkey); LIST_INIT(&sc->sc_workers); threads = g_eli_threads; if (threads == 0) threads = mp_ncpus; sc->sc_cpubind = (mp_ncpus > 1 && threads == mp_ncpus); for (i = 0; i < threads; i++) { if (g_eli_cpu_is_disabled(i)) { G_ELI_DEBUG(1, "%s: CPU %u disabled, skipping.", bpp->name, i); continue; } wr = malloc(sizeof(*wr), M_ELI, M_WAITOK | M_ZERO); wr->w_softc = sc; wr->w_number = i; wr->w_active = TRUE; error = g_eli_newsession(wr); if (error != 0) { free(wr, M_ELI); if (req != NULL) { gctl_error(req, "Cannot set up crypto session " "for %s (error=%d).", bpp->name, error); } else { G_ELI_DEBUG(1, "Cannot set up crypto session " "for %s (error=%d).", bpp->name, error); } goto failed; } error = kproc_create(g_eli_worker, wr, &wr->w_proc, 0, 0, "g_eli[%u] %s", i, bpp->name); if (error != 0) { g_eli_freesession(wr); free(wr, M_ELI); if (req != NULL) { gctl_error(req, "Cannot create kernel thread " "for %s (error=%d).", bpp->name, error); } else { G_ELI_DEBUG(1, "Cannot create kernel thread " "for %s (error=%d).", bpp->name, error); } goto failed; } LIST_INSERT_HEAD(&sc->sc_workers, wr, w_next); } /* * Create decrypted provider. */ pp = g_new_providerf(gp, "%s%s", bpp->name, G_ELI_SUFFIX); pp->mediasize = sc->sc_mediasize; pp->sectorsize = sc->sc_sectorsize; g_error_provider(pp, 0); G_ELI_DEBUG(0, "Device %s created.", pp->name); G_ELI_DEBUG(0, "Encryption: %s %u", g_eli_algo2str(sc->sc_ealgo), sc->sc_ekeylen); if (sc->sc_flags & G_ELI_FLAG_AUTH) G_ELI_DEBUG(0, " Integrity: %s", g_eli_algo2str(sc->sc_aalgo)); G_ELI_DEBUG(0, " Crypto: %s", sc->sc_crypto == G_ELI_CRYPTO_SW ? "software" : "hardware"); return (gp); failed: mtx_lock(&sc->sc_queue_mtx); sc->sc_flags |= G_ELI_FLAG_DESTROY; wakeup(sc); /* * Wait for kernel threads self destruction. */ while (!LIST_EMPTY(&sc->sc_workers)) { msleep(&sc->sc_workers, &sc->sc_queue_mtx, PRIBIO, "geli:destroy", 0); } mtx_destroy(&sc->sc_queue_mtx); if (cp->provider != NULL) { if (cp->acr == 1) g_access(cp, -1, -1, -1); g_detach(cp); } g_destroy_consumer(cp); g_destroy_geom(gp); g_eli_key_destroy(sc); bzero(sc, sizeof(*sc)); free(sc, M_ELI); return (NULL); } int g_eli_destroy(struct g_eli_softc *sc, boolean_t force) { struct g_geom *gp; struct g_provider *pp; g_topology_assert(); if (sc == NULL) return (ENXIO); gp = sc->sc_geom; pp = LIST_FIRST(&gp->provider); if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) { if (force) { G_ELI_DEBUG(1, "Device %s is still open, so it " "cannot be definitely removed.", pp->name); sc->sc_flags |= G_ELI_FLAG_RW_DETACH; gp->access = g_eli_access; g_wither_provider(pp, ENXIO); return (EBUSY); } else { G_ELI_DEBUG(1, "Device %s is still open (r%dw%de%d).", pp->name, pp->acr, pp->acw, pp->ace); return (EBUSY); } } mtx_lock(&sc->sc_queue_mtx); sc->sc_flags |= G_ELI_FLAG_DESTROY; wakeup(sc); while (!LIST_EMPTY(&sc->sc_workers)) { msleep(&sc->sc_workers, &sc->sc_queue_mtx, PRIBIO, "geli:destroy", 0); } mtx_destroy(&sc->sc_queue_mtx); gp->softc = NULL; g_eli_key_destroy(sc); bzero(sc, sizeof(*sc)); free(sc, M_ELI); if (pp == NULL || (pp->acr == 0 && pp->acw == 0 && pp->ace == 0)) G_ELI_DEBUG(0, "Device %s destroyed.", gp->name); g_wither_geom_close(gp, ENXIO); return (0); } static int g_eli_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused, struct g_geom *gp) { struct g_eli_softc *sc; sc = gp->softc; return (g_eli_destroy(sc, FALSE)); } static int g_eli_keyfiles_load(struct hmac_ctx *ctx, const char *provider) { u_char *keyfile, *data; char *file, name[64]; size_t size; int i; for (i = 0; ; i++) { snprintf(name, sizeof(name), "%s:geli_keyfile%d", provider, i); keyfile = preload_search_by_type(name); if (keyfile == NULL && i == 0) { /* * If there is only one keyfile, allow simpler name. */ snprintf(name, sizeof(name), "%s:geli_keyfile", provider); keyfile = preload_search_by_type(name); } if (keyfile == NULL) return (i); /* Return number of loaded keyfiles. */ data = preload_fetch_addr(keyfile); if (data == NULL) { G_ELI_DEBUG(0, "Cannot find key file data for %s.", name); return (0); } size = preload_fetch_size(keyfile); if (size == 0) { G_ELI_DEBUG(0, "Cannot find key file size for %s.", name); return (0); } file = preload_search_info(keyfile, MODINFO_NAME); if (file == NULL) { G_ELI_DEBUG(0, "Cannot find key file name for %s.", name); return (0); } G_ELI_DEBUG(1, "Loaded keyfile %s for %s (type: %s).", file, provider, name); g_eli_crypto_hmac_update(ctx, data, size); } } static void g_eli_keyfiles_clear(const char *provider) { u_char *keyfile, *data; char name[64]; size_t size; int i; for (i = 0; ; i++) { snprintf(name, sizeof(name), "%s:geli_keyfile%d", provider, i); keyfile = preload_search_by_type(name); if (keyfile == NULL) return; data = preload_fetch_addr(keyfile); size = preload_fetch_size(keyfile); if (data != NULL && size != 0) bzero(data, size); } } /* * Tasting is only made on boot. * We detect providers which should be attached before root is mounted. */ static struct g_geom * g_eli_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) { struct g_eli_metadata md; struct g_geom *gp; struct hmac_ctx ctx; char passphrase[256]; u_char key[G_ELI_USERKEYLEN], mkey[G_ELI_DATAIVKEYLEN]; u_int i, nkey, nkeyfiles, tries, showpass; int error; struct keybuf *keybuf; g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); g_topology_assert(); if (root_mounted() || g_eli_tries == 0) return (NULL); G_ELI_DEBUG(3, "Tasting %s.", pp->name); error = g_eli_read_metadata(mp, pp, &md); if (error != 0) return (NULL); gp = NULL; if (strcmp(md.md_magic, G_ELI_MAGIC) != 0) return (NULL); if (md.md_version > G_ELI_VERSION) { printf("geom_eli.ko module is too old to handle %s.\n", pp->name); return (NULL); } if (md.md_provsize != pp->mediasize) return (NULL); /* Should we attach it on boot? */ if (!(md.md_flags & G_ELI_FLAG_BOOT)) return (NULL); if (md.md_keys == 0x00) { G_ELI_DEBUG(0, "No valid keys on %s.", pp->name); return (NULL); } if (md.md_iterations == -1) { /* If there is no passphrase, we try only once. */ tries = 1; } else { /* Ask for the passphrase no more than g_eli_tries times. */ tries = g_eli_tries; } if ((keybuf = get_keybuf()) != NULL) { /* Scan the key buffer, try all GELI keys. */ for (i = 0; i < keybuf->kb_nents; i++) { if (keybuf->kb_ents[i].ke_type == KEYBUF_TYPE_GELI) { memcpy(key, keybuf->kb_ents[i].ke_data, sizeof(key)); if (g_eli_mkey_decrypt(&md, key, mkey, &nkey) == 0 ) { explicit_bzero(key, sizeof(key)); goto have_key; } } } } for (i = 0; i <= tries; i++) { g_eli_crypto_hmac_init(&ctx, NULL, 0); /* * Load all key files. */ nkeyfiles = g_eli_keyfiles_load(&ctx, pp->name); if (nkeyfiles == 0 && md.md_iterations == -1) { /* * No key files and no passphrase, something is * definitely wrong here. * geli(8) doesn't allow for such situation, so assume * that there was really no passphrase and in that case * key files are no properly defined in loader.conf. */ G_ELI_DEBUG(0, "Found no key files in loader.conf for %s.", pp->name); return (NULL); } /* Ask for the passphrase if defined. */ if (md.md_iterations >= 0) { /* Try first with cached passphrase. */ if (i == 0) { if (!g_eli_boot_passcache) continue; memcpy(passphrase, cached_passphrase, sizeof(passphrase)); } else { printf("Enter passphrase for %s: ", pp->name); showpass = g_eli_visible_passphrase; if ((md.md_flags & G_ELI_FLAG_GELIDISPLAYPASS) != 0) showpass = GETS_ECHOPASS; cngets(passphrase, sizeof(passphrase), showpass); memcpy(cached_passphrase, passphrase, sizeof(passphrase)); } } /* * Prepare Derived-Key from the user passphrase. */ if (md.md_iterations == 0) { g_eli_crypto_hmac_update(&ctx, md.md_salt, sizeof(md.md_salt)); g_eli_crypto_hmac_update(&ctx, passphrase, strlen(passphrase)); explicit_bzero(passphrase, sizeof(passphrase)); } else if (md.md_iterations > 0) { u_char dkey[G_ELI_USERKEYLEN]; pkcs5v2_genkey(dkey, sizeof(dkey), md.md_salt, sizeof(md.md_salt), passphrase, md.md_iterations); bzero(passphrase, sizeof(passphrase)); g_eli_crypto_hmac_update(&ctx, dkey, sizeof(dkey)); explicit_bzero(dkey, sizeof(dkey)); } g_eli_crypto_hmac_final(&ctx, key, 0); /* * Decrypt Master-Key. */ error = g_eli_mkey_decrypt(&md, key, mkey, &nkey); bzero(key, sizeof(key)); if (error == -1) { if (i == tries) { G_ELI_DEBUG(0, "Wrong key for %s. No tries left.", pp->name); g_eli_keyfiles_clear(pp->name); return (NULL); } if (i > 0) { G_ELI_DEBUG(0, "Wrong key for %s. Tries left: %u.", pp->name, tries - i); } /* Try again. */ continue; } else if (error > 0) { G_ELI_DEBUG(0, "Cannot decrypt Master Key for %s (error=%d).", pp->name, error); g_eli_keyfiles_clear(pp->name); return (NULL); } g_eli_keyfiles_clear(pp->name); G_ELI_DEBUG(1, "Using Master Key %u for %s.", nkey, pp->name); break; } have_key: /* * We have correct key, let's attach provider. */ gp = g_eli_create(NULL, mp, pp, &md, mkey, nkey); bzero(mkey, sizeof(mkey)); bzero(&md, sizeof(md)); if (gp == NULL) { G_ELI_DEBUG(0, "Cannot create device %s%s.", pp->name, G_ELI_SUFFIX); return (NULL); } return (gp); } static void g_eli_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp) { struct g_eli_softc *sc; g_topology_assert(); sc = gp->softc; if (sc == NULL) return; if (pp != NULL || cp != NULL) return; /* Nothing here. */ sbuf_printf(sb, "%s%ju\n", indent, (uintmax_t)sc->sc_ekeys_total); sbuf_printf(sb, "%s%ju\n", indent, (uintmax_t)sc->sc_ekeys_allocated); sbuf_printf(sb, "%s", indent); if (sc->sc_flags == 0) sbuf_printf(sb, "NONE"); else { int first = 1; #define ADD_FLAG(flag, name) do { \ if (sc->sc_flags & (flag)) { \ if (!first) \ sbuf_printf(sb, ", "); \ else \ first = 0; \ sbuf_printf(sb, name); \ } \ } while (0) ADD_FLAG(G_ELI_FLAG_SUSPEND, "SUSPEND"); ADD_FLAG(G_ELI_FLAG_SINGLE_KEY, "SINGLE-KEY"); ADD_FLAG(G_ELI_FLAG_NATIVE_BYTE_ORDER, "NATIVE-BYTE-ORDER"); ADD_FLAG(G_ELI_FLAG_ONETIME, "ONETIME"); ADD_FLAG(G_ELI_FLAG_BOOT, "BOOT"); ADD_FLAG(G_ELI_FLAG_WO_DETACH, "W-DETACH"); ADD_FLAG(G_ELI_FLAG_RW_DETACH, "RW-DETACH"); ADD_FLAG(G_ELI_FLAG_AUTH, "AUTH"); ADD_FLAG(G_ELI_FLAG_WOPEN, "W-OPEN"); ADD_FLAG(G_ELI_FLAG_DESTROY, "DESTROY"); ADD_FLAG(G_ELI_FLAG_RO, "READ-ONLY"); ADD_FLAG(G_ELI_FLAG_NODELETE, "NODELETE"); ADD_FLAG(G_ELI_FLAG_GELIBOOT, "GELIBOOT"); ADD_FLAG(G_ELI_FLAG_GELIDISPLAYPASS, "GELIDISPLAYPASS"); #undef ADD_FLAG } sbuf_printf(sb, "\n"); if (!(sc->sc_flags & G_ELI_FLAG_ONETIME)) { sbuf_printf(sb, "%s%u\n", indent, sc->sc_nkey); } sbuf_printf(sb, "%s%u\n", indent, sc->sc_version); sbuf_printf(sb, "%s", indent); switch (sc->sc_crypto) { case G_ELI_CRYPTO_HW: sbuf_printf(sb, "hardware"); break; case G_ELI_CRYPTO_SW: sbuf_printf(sb, "software"); break; default: sbuf_printf(sb, "UNKNOWN"); break; } sbuf_printf(sb, "\n"); if (sc->sc_flags & G_ELI_FLAG_AUTH) { sbuf_printf(sb, "%s%s\n", indent, g_eli_algo2str(sc->sc_aalgo)); } sbuf_printf(sb, "%s%u\n", indent, sc->sc_ekeylen); sbuf_printf(sb, "%s%s\n", indent, g_eli_algo2str(sc->sc_ealgo)); sbuf_printf(sb, "%s%s\n", indent, (sc->sc_flags & G_ELI_FLAG_SUSPEND) ? "SUSPENDED" : "ACTIVE"); } static void g_eli_shutdown_pre_sync(void *arg, int howto) { struct g_class *mp; struct g_geom *gp, *gp2; struct g_provider *pp; struct g_eli_softc *sc; int error; mp = arg; g_topology_lock(); LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { sc = gp->softc; if (sc == NULL) continue; pp = LIST_FIRST(&gp->provider); KASSERT(pp != NULL, ("No provider? gp=%p (%s)", gp, gp->name)); if (pp->acr + pp->acw + pp->ace == 0) error = g_eli_destroy(sc, TRUE); else { sc->sc_flags |= G_ELI_FLAG_RW_DETACH; gp->access = g_eli_access; } } g_topology_unlock(); } static void g_eli_init(struct g_class *mp) { g_eli_pre_sync = EVENTHANDLER_REGISTER(shutdown_pre_sync, g_eli_shutdown_pre_sync, mp, SHUTDOWN_PRI_FIRST); if (g_eli_pre_sync == NULL) G_ELI_DEBUG(0, "Warning! Cannot register shutdown event."); } static void g_eli_fini(struct g_class *mp) { if (g_eli_pre_sync != NULL) EVENTHANDLER_DEREGISTER(shutdown_pre_sync, g_eli_pre_sync); } DECLARE_GEOM_CLASS(g_eli_class, g_eli); MODULE_DEPEND(g_eli, crypto, 1, 1, 1); +MODULE_VERSION(geom_eli, 0); Index: head/sys/geom/gate/g_gate.c =================================================================== --- head/sys/geom/gate/g_gate.c (revision 332386) +++ head/sys/geom/gate/g_gate.c (revision 332387) @@ -1,966 +1,967 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2004-2006 Pawel Jakub Dawidek * Copyright (c) 2009-2010 The FreeBSD Foundation * All rights reserved. * * Portions of this software were developed by Pawel Jakub Dawidek * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include FEATURE(geom_gate, "GEOM Gate module"); static MALLOC_DEFINE(M_GATE, "gg_data", "GEOM Gate Data"); SYSCTL_DECL(_kern_geom); static SYSCTL_NODE(_kern_geom, OID_AUTO, gate, CTLFLAG_RW, 0, "GEOM_GATE configuration"); static int g_gate_debug = 0; SYSCTL_INT(_kern_geom_gate, OID_AUTO, debug, CTLFLAG_RWTUN, &g_gate_debug, 0, "Debug level"); static u_int g_gate_maxunits = 256; SYSCTL_UINT(_kern_geom_gate, OID_AUTO, maxunits, CTLFLAG_RDTUN, &g_gate_maxunits, 0, "Maximum number of ggate devices"); struct g_class g_gate_class = { .name = G_GATE_CLASS_NAME, .version = G_VERSION, }; static struct cdev *status_dev; static d_ioctl_t g_gate_ioctl; static struct cdevsw g_gate_cdevsw = { .d_version = D_VERSION, .d_ioctl = g_gate_ioctl, .d_name = G_GATE_CTL_NAME }; static struct g_gate_softc **g_gate_units; static u_int g_gate_nunits; static struct mtx g_gate_units_lock; static int g_gate_destroy(struct g_gate_softc *sc, boolean_t force) { struct bio_queue_head queue; struct g_provider *pp; struct g_consumer *cp; struct g_geom *gp; struct bio *bp; g_topology_assert(); mtx_assert(&g_gate_units_lock, MA_OWNED); pp = sc->sc_provider; if (!force && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) { mtx_unlock(&g_gate_units_lock); return (EBUSY); } mtx_unlock(&g_gate_units_lock); mtx_lock(&sc->sc_queue_mtx); if ((sc->sc_flags & G_GATE_FLAG_DESTROY) == 0) sc->sc_flags |= G_GATE_FLAG_DESTROY; wakeup(sc); mtx_unlock(&sc->sc_queue_mtx); gp = pp->geom; g_wither_provider(pp, ENXIO); callout_drain(&sc->sc_callout); bioq_init(&queue); mtx_lock(&sc->sc_queue_mtx); while ((bp = bioq_takefirst(&sc->sc_inqueue)) != NULL) { sc->sc_queue_count--; bioq_insert_tail(&queue, bp); } while ((bp = bioq_takefirst(&sc->sc_outqueue)) != NULL) { sc->sc_queue_count--; bioq_insert_tail(&queue, bp); } mtx_unlock(&sc->sc_queue_mtx); g_topology_unlock(); while ((bp = bioq_takefirst(&queue)) != NULL) { G_GATE_LOGREQ(1, bp, "Request canceled."); g_io_deliver(bp, ENXIO); } mtx_lock(&g_gate_units_lock); /* One reference is ours. */ sc->sc_ref--; while (sc->sc_ref > 0) msleep(&sc->sc_ref, &g_gate_units_lock, 0, "gg:destroy", 0); g_gate_units[sc->sc_unit] = NULL; KASSERT(g_gate_nunits > 0, ("negative g_gate_nunits?")); g_gate_nunits--; mtx_unlock(&g_gate_units_lock); mtx_destroy(&sc->sc_queue_mtx); g_topology_lock(); if ((cp = sc->sc_readcons) != NULL) { sc->sc_readcons = NULL; (void)g_access(cp, -1, 0, 0); g_detach(cp); g_destroy_consumer(cp); } G_GATE_DEBUG(1, "Device %s destroyed.", gp->name); gp->softc = NULL; g_wither_geom(gp, ENXIO); sc->sc_provider = NULL; free(sc, M_GATE); return (0); } static int g_gate_access(struct g_provider *pp, int dr, int dw, int de) { struct g_gate_softc *sc; if (dr <= 0 && dw <= 0 && de <= 0) return (0); sc = pp->geom->softc; if (sc == NULL || (sc->sc_flags & G_GATE_FLAG_DESTROY) != 0) return (ENXIO); /* XXX: Hack to allow read-only mounts. */ #if 0 if ((sc->sc_flags & G_GATE_FLAG_READONLY) != 0 && dw > 0) return (EPERM); #endif if ((sc->sc_flags & G_GATE_FLAG_WRITEONLY) != 0 && dr > 0) return (EPERM); return (0); } static void g_gate_queue_io(struct bio *bp) { struct g_gate_softc *sc; sc = bp->bio_to->geom->softc; if (sc == NULL || (sc->sc_flags & G_GATE_FLAG_DESTROY) != 0) { g_io_deliver(bp, ENXIO); return; } mtx_lock(&sc->sc_queue_mtx); if (sc->sc_queue_size > 0 && sc->sc_queue_count > sc->sc_queue_size) { mtx_unlock(&sc->sc_queue_mtx); G_GATE_LOGREQ(1, bp, "Queue full, request canceled."); g_io_deliver(bp, ENOMEM); return; } bp->bio_driver1 = (void *)sc->sc_seq; sc->sc_seq++; sc->sc_queue_count++; bioq_insert_tail(&sc->sc_inqueue, bp); wakeup(sc); mtx_unlock(&sc->sc_queue_mtx); } static void g_gate_done(struct bio *cbp) { struct bio *pbp; pbp = cbp->bio_parent; if (cbp->bio_error == 0) { pbp->bio_completed = cbp->bio_completed; g_destroy_bio(cbp); pbp->bio_inbed++; g_io_deliver(pbp, 0); } else { /* If direct read failed, pass it through userland daemon. */ g_destroy_bio(cbp); pbp->bio_children--; g_gate_queue_io(pbp); } } static void g_gate_start(struct bio *pbp) { struct g_gate_softc *sc; sc = pbp->bio_to->geom->softc; if (sc == NULL || (sc->sc_flags & G_GATE_FLAG_DESTROY) != 0) { g_io_deliver(pbp, ENXIO); return; } G_GATE_LOGREQ(2, pbp, "Request received."); switch (pbp->bio_cmd) { case BIO_READ: if (sc->sc_readcons != NULL) { struct bio *cbp; cbp = g_clone_bio(pbp); if (cbp == NULL) { g_io_deliver(pbp, ENOMEM); return; } cbp->bio_done = g_gate_done; cbp->bio_offset = pbp->bio_offset + sc->sc_readoffset; cbp->bio_to = sc->sc_readcons->provider; g_io_request(cbp, sc->sc_readcons); return; } break; case BIO_DELETE: case BIO_WRITE: case BIO_FLUSH: /* XXX: Hack to allow read-only mounts. */ if ((sc->sc_flags & G_GATE_FLAG_READONLY) != 0) { g_io_deliver(pbp, EPERM); return; } break; case BIO_GETATTR: default: G_GATE_LOGREQ(2, pbp, "Ignoring request."); g_io_deliver(pbp, EOPNOTSUPP); return; } g_gate_queue_io(pbp); } static struct g_gate_softc * g_gate_hold(int unit, const char *name) { struct g_gate_softc *sc = NULL; mtx_lock(&g_gate_units_lock); if (unit >= 0 && unit < g_gate_maxunits) sc = g_gate_units[unit]; else if (unit == G_GATE_NAME_GIVEN) { KASSERT(name != NULL, ("name is NULL")); for (unit = 0; unit < g_gate_maxunits; unit++) { if (g_gate_units[unit] == NULL) continue; if (strcmp(name, g_gate_units[unit]->sc_provider->name) != 0) { continue; } sc = g_gate_units[unit]; break; } } if (sc != NULL) sc->sc_ref++; mtx_unlock(&g_gate_units_lock); return (sc); } static void g_gate_release(struct g_gate_softc *sc) { g_topology_assert_not(); mtx_lock(&g_gate_units_lock); sc->sc_ref--; KASSERT(sc->sc_ref >= 0, ("Negative sc_ref for %s.", sc->sc_name)); if (sc->sc_ref == 0 && (sc->sc_flags & G_GATE_FLAG_DESTROY) != 0) wakeup(&sc->sc_ref); mtx_unlock(&g_gate_units_lock); } static int g_gate_getunit(int unit, int *errorp) { mtx_assert(&g_gate_units_lock, MA_OWNED); if (unit >= 0) { if (unit >= g_gate_maxunits) *errorp = EINVAL; else if (g_gate_units[unit] == NULL) return (unit); else *errorp = EEXIST; } else { for (unit = 0; unit < g_gate_maxunits; unit++) { if (g_gate_units[unit] == NULL) return (unit); } *errorp = ENFILE; } return (-1); } static void g_gate_guard(void *arg) { struct bio_queue_head queue; struct g_gate_softc *sc; struct bintime curtime; struct bio *bp, *bp2; sc = arg; binuptime(&curtime); g_gate_hold(sc->sc_unit, NULL); bioq_init(&queue); mtx_lock(&sc->sc_queue_mtx); TAILQ_FOREACH_SAFE(bp, &sc->sc_inqueue.queue, bio_queue, bp2) { if (curtime.sec - bp->bio_t0.sec < 5) continue; bioq_remove(&sc->sc_inqueue, bp); sc->sc_queue_count--; bioq_insert_tail(&queue, bp); } TAILQ_FOREACH_SAFE(bp, &sc->sc_outqueue.queue, bio_queue, bp2) { if (curtime.sec - bp->bio_t0.sec < 5) continue; bioq_remove(&sc->sc_outqueue, bp); sc->sc_queue_count--; bioq_insert_tail(&queue, bp); } mtx_unlock(&sc->sc_queue_mtx); while ((bp = bioq_takefirst(&queue)) != NULL) { G_GATE_LOGREQ(1, bp, "Request timeout."); g_io_deliver(bp, EIO); } if ((sc->sc_flags & G_GATE_FLAG_DESTROY) == 0) { callout_reset(&sc->sc_callout, sc->sc_timeout * hz, g_gate_guard, sc); } g_gate_release(sc); } static void g_gate_orphan(struct g_consumer *cp) { struct g_gate_softc *sc; struct g_geom *gp; g_topology_assert(); gp = cp->geom; sc = gp->softc; if (sc == NULL) return; KASSERT(cp == sc->sc_readcons, ("cp=%p sc_readcons=%p", cp, sc->sc_readcons)); sc->sc_readcons = NULL; G_GATE_DEBUG(1, "Destroying read consumer on provider %s orphan.", cp->provider->name); (void)g_access(cp, -1, 0, 0); g_detach(cp); g_destroy_consumer(cp); } static void g_gate_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp) { struct g_gate_softc *sc; sc = gp->softc; if (sc == NULL || pp != NULL || cp != NULL) return; sc = g_gate_hold(sc->sc_unit, NULL); if (sc == NULL) return; if ((sc->sc_flags & G_GATE_FLAG_READONLY) != 0) { sbuf_printf(sb, "%s%s\n", indent, "read-only"); } else if ((sc->sc_flags & G_GATE_FLAG_WRITEONLY) != 0) { sbuf_printf(sb, "%s%s\n", indent, "write-only"); } else { sbuf_printf(sb, "%s%s\n", indent, "read-write"); } if (sc->sc_readcons != NULL) { sbuf_printf(sb, "%s%jd\n", indent, (intmax_t)sc->sc_readoffset); sbuf_printf(sb, "%s%s\n", indent, sc->sc_readcons->provider->name); } sbuf_printf(sb, "%s%u\n", indent, sc->sc_timeout); sbuf_printf(sb, "%s%s\n", indent, sc->sc_info); sbuf_printf(sb, "%s%u\n", indent, sc->sc_queue_count); sbuf_printf(sb, "%s%u\n", indent, sc->sc_queue_size); sbuf_printf(sb, "%s%u\n", indent, sc->sc_ref); sbuf_printf(sb, "%s%d\n", indent, sc->sc_unit); g_topology_unlock(); g_gate_release(sc); g_topology_lock(); } static int g_gate_create(struct g_gate_ctl_create *ggio) { struct g_gate_softc *sc; struct g_geom *gp; struct g_provider *pp, *ropp; struct g_consumer *cp; char name[NAME_MAX]; int error = 0, unit; if (ggio->gctl_mediasize <= 0) { G_GATE_DEBUG(1, "Invalid media size."); return (EINVAL); } if (ggio->gctl_sectorsize <= 0) { G_GATE_DEBUG(1, "Invalid sector size."); return (EINVAL); } if (!powerof2(ggio->gctl_sectorsize)) { G_GATE_DEBUG(1, "Invalid sector size."); return (EINVAL); } if ((ggio->gctl_mediasize % ggio->gctl_sectorsize) != 0) { G_GATE_DEBUG(1, "Invalid media size."); return (EINVAL); } if ((ggio->gctl_flags & G_GATE_FLAG_READONLY) != 0 && (ggio->gctl_flags & G_GATE_FLAG_WRITEONLY) != 0) { G_GATE_DEBUG(1, "Invalid flags."); return (EINVAL); } if (ggio->gctl_unit != G_GATE_UNIT_AUTO && ggio->gctl_unit != G_GATE_NAME_GIVEN && ggio->gctl_unit < 0) { G_GATE_DEBUG(1, "Invalid unit number."); return (EINVAL); } if (ggio->gctl_unit == G_GATE_NAME_GIVEN && ggio->gctl_name[0] == '\0') { G_GATE_DEBUG(1, "No device name."); return (EINVAL); } sc = malloc(sizeof(*sc), M_GATE, M_WAITOK | M_ZERO); sc->sc_flags = (ggio->gctl_flags & G_GATE_USERFLAGS); strlcpy(sc->sc_info, ggio->gctl_info, sizeof(sc->sc_info)); sc->sc_seq = 1; bioq_init(&sc->sc_inqueue); bioq_init(&sc->sc_outqueue); mtx_init(&sc->sc_queue_mtx, "gg:queue", NULL, MTX_DEF); sc->sc_queue_count = 0; sc->sc_queue_size = ggio->gctl_maxcount; if (sc->sc_queue_size > G_GATE_MAX_QUEUE_SIZE) sc->sc_queue_size = G_GATE_MAX_QUEUE_SIZE; sc->sc_timeout = ggio->gctl_timeout; callout_init(&sc->sc_callout, 1); mtx_lock(&g_gate_units_lock); sc->sc_unit = g_gate_getunit(ggio->gctl_unit, &error); if (sc->sc_unit < 0) goto fail1; if (ggio->gctl_unit == G_GATE_NAME_GIVEN) snprintf(name, sizeof(name), "%s", ggio->gctl_name); else { snprintf(name, sizeof(name), "%s%d", G_GATE_PROVIDER_NAME, sc->sc_unit); } /* Check for name collision. */ for (unit = 0; unit < g_gate_maxunits; unit++) { if (g_gate_units[unit] == NULL) continue; if (strcmp(name, g_gate_units[unit]->sc_name) != 0) continue; error = EEXIST; goto fail1; } sc->sc_name = name; g_gate_units[sc->sc_unit] = sc; g_gate_nunits++; mtx_unlock(&g_gate_units_lock); g_topology_lock(); if (ggio->gctl_readprov[0] == '\0') { ropp = NULL; } else { ropp = g_provider_by_name(ggio->gctl_readprov); if (ropp == NULL) { G_GATE_DEBUG(1, "Provider %s doesn't exist.", ggio->gctl_readprov); error = EINVAL; goto fail2; } if ((ggio->gctl_readoffset % ggio->gctl_sectorsize) != 0) { G_GATE_DEBUG(1, "Invalid read offset."); error = EINVAL; goto fail2; } if (ggio->gctl_mediasize + ggio->gctl_readoffset > ropp->mediasize) { G_GATE_DEBUG(1, "Invalid read offset or media size."); error = EINVAL; goto fail2; } } gp = g_new_geomf(&g_gate_class, "%s", name); gp->start = g_gate_start; gp->access = g_gate_access; gp->orphan = g_gate_orphan; gp->dumpconf = g_gate_dumpconf; gp->softc = sc; if (ropp != NULL) { cp = g_new_consumer(gp); cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; error = g_attach(cp, ropp); if (error != 0) { G_GATE_DEBUG(1, "Unable to attach to %s.", ropp->name); goto fail3; } error = g_access(cp, 1, 0, 0); if (error != 0) { G_GATE_DEBUG(1, "Unable to access %s.", ropp->name); g_detach(cp); goto fail3; } sc->sc_readcons = cp; sc->sc_readoffset = ggio->gctl_readoffset; } ggio->gctl_unit = sc->sc_unit; pp = g_new_providerf(gp, "%s", name); pp->flags |= G_PF_DIRECT_SEND | G_PF_DIRECT_RECEIVE; pp->mediasize = ggio->gctl_mediasize; pp->sectorsize = ggio->gctl_sectorsize; sc->sc_provider = pp; g_error_provider(pp, 0); g_topology_unlock(); mtx_lock(&g_gate_units_lock); sc->sc_name = sc->sc_provider->name; mtx_unlock(&g_gate_units_lock); G_GATE_DEBUG(1, "Device %s created.", gp->name); if (sc->sc_timeout > 0) { callout_reset(&sc->sc_callout, sc->sc_timeout * hz, g_gate_guard, sc); } return (0); fail3: g_destroy_consumer(cp); g_destroy_geom(gp); fail2: g_topology_unlock(); mtx_lock(&g_gate_units_lock); g_gate_units[sc->sc_unit] = NULL; KASSERT(g_gate_nunits > 0, ("negative g_gate_nunits?")); g_gate_nunits--; fail1: mtx_unlock(&g_gate_units_lock); mtx_destroy(&sc->sc_queue_mtx); free(sc, M_GATE); return (error); } static int g_gate_modify(struct g_gate_softc *sc, struct g_gate_ctl_modify *ggio) { struct g_provider *pp; struct g_consumer *cp; int error; if ((ggio->gctl_modify & GG_MODIFY_MEDIASIZE) != 0) { if (ggio->gctl_mediasize <= 0) { G_GATE_DEBUG(1, "Invalid media size."); return (EINVAL); } pp = sc->sc_provider; if ((ggio->gctl_mediasize % pp->sectorsize) != 0) { G_GATE_DEBUG(1, "Invalid media size."); return (EINVAL); } /* TODO */ return (EOPNOTSUPP); } if ((ggio->gctl_modify & GG_MODIFY_INFO) != 0) (void)strlcpy(sc->sc_info, ggio->gctl_info, sizeof(sc->sc_info)); cp = NULL; if ((ggio->gctl_modify & GG_MODIFY_READPROV) != 0) { g_topology_lock(); if (sc->sc_readcons != NULL) { cp = sc->sc_readcons; sc->sc_readcons = NULL; (void)g_access(cp, -1, 0, 0); g_detach(cp); g_destroy_consumer(cp); } if (ggio->gctl_readprov[0] != '\0') { pp = g_provider_by_name(ggio->gctl_readprov); if (pp == NULL) { g_topology_unlock(); G_GATE_DEBUG(1, "Provider %s doesn't exist.", ggio->gctl_readprov); return (EINVAL); } cp = g_new_consumer(sc->sc_provider->geom); cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; error = g_attach(cp, pp); if (error != 0) { G_GATE_DEBUG(1, "Unable to attach to %s.", pp->name); } else { error = g_access(cp, 1, 0, 0); if (error != 0) { G_GATE_DEBUG(1, "Unable to access %s.", pp->name); g_detach(cp); } } if (error != 0) { g_destroy_consumer(cp); g_topology_unlock(); return (error); } } } else { cp = sc->sc_readcons; } if ((ggio->gctl_modify & GG_MODIFY_READOFFSET) != 0) { if (cp == NULL) { G_GATE_DEBUG(1, "No read provider."); return (EINVAL); } pp = sc->sc_provider; if ((ggio->gctl_readoffset % pp->sectorsize) != 0) { G_GATE_DEBUG(1, "Invalid read offset."); return (EINVAL); } if (pp->mediasize + ggio->gctl_readoffset > cp->provider->mediasize) { G_GATE_DEBUG(1, "Invalid read offset or media size."); return (EINVAL); } sc->sc_readoffset = ggio->gctl_readoffset; } if ((ggio->gctl_modify & GG_MODIFY_READPROV) != 0) { sc->sc_readcons = cp; g_topology_unlock(); } return (0); } #define G_GATE_CHECK_VERSION(ggio) do { \ if ((ggio)->gctl_version != G_GATE_VERSION) { \ printf("Version mismatch %d != %d.\n", \ ggio->gctl_version, G_GATE_VERSION); \ return (EINVAL); \ } \ } while (0) static int g_gate_ioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags, struct thread *td) { struct g_gate_softc *sc; struct bio *bp; int error = 0; G_GATE_DEBUG(4, "ioctl(%s, %lx, %p, %x, %p)", devtoname(dev), cmd, addr, flags, td); switch (cmd) { case G_GATE_CMD_CREATE: { struct g_gate_ctl_create *ggio = (void *)addr; G_GATE_CHECK_VERSION(ggio); error = g_gate_create(ggio); /* * Reset TDP_GEOM flag. * There are pending events for sure, because we just created * new provider and other classes want to taste it, but we * cannot answer on I/O requests until we're here. */ td->td_pflags &= ~TDP_GEOM; return (error); } case G_GATE_CMD_MODIFY: { struct g_gate_ctl_modify *ggio = (void *)addr; G_GATE_CHECK_VERSION(ggio); sc = g_gate_hold(ggio->gctl_unit, NULL); if (sc == NULL) return (ENXIO); error = g_gate_modify(sc, ggio); g_gate_release(sc); return (error); } case G_GATE_CMD_DESTROY: { struct g_gate_ctl_destroy *ggio = (void *)addr; G_GATE_CHECK_VERSION(ggio); sc = g_gate_hold(ggio->gctl_unit, ggio->gctl_name); if (sc == NULL) return (ENXIO); g_topology_lock(); mtx_lock(&g_gate_units_lock); error = g_gate_destroy(sc, ggio->gctl_force); g_topology_unlock(); if (error != 0) g_gate_release(sc); return (error); } case G_GATE_CMD_CANCEL: { struct g_gate_ctl_cancel *ggio = (void *)addr; struct bio *tbp, *lbp; G_GATE_CHECK_VERSION(ggio); sc = g_gate_hold(ggio->gctl_unit, ggio->gctl_name); if (sc == NULL) return (ENXIO); lbp = NULL; mtx_lock(&sc->sc_queue_mtx); TAILQ_FOREACH_SAFE(bp, &sc->sc_outqueue.queue, bio_queue, tbp) { if (ggio->gctl_seq == 0 || ggio->gctl_seq == (uintptr_t)bp->bio_driver1) { G_GATE_LOGREQ(1, bp, "Request canceled."); bioq_remove(&sc->sc_outqueue, bp); /* * Be sure to put requests back onto incoming * queue in the proper order. */ if (lbp == NULL) bioq_insert_head(&sc->sc_inqueue, bp); else { TAILQ_INSERT_AFTER(&sc->sc_inqueue.queue, lbp, bp, bio_queue); } lbp = bp; /* * If only one request was canceled, leave now. */ if (ggio->gctl_seq != 0) break; } } if (ggio->gctl_unit == G_GATE_NAME_GIVEN) ggio->gctl_unit = sc->sc_unit; mtx_unlock(&sc->sc_queue_mtx); g_gate_release(sc); return (error); } case G_GATE_CMD_START: { struct g_gate_ctl_io *ggio = (void *)addr; G_GATE_CHECK_VERSION(ggio); sc = g_gate_hold(ggio->gctl_unit, NULL); if (sc == NULL) return (ENXIO); error = 0; for (;;) { mtx_lock(&sc->sc_queue_mtx); bp = bioq_first(&sc->sc_inqueue); if (bp != NULL) break; if ((sc->sc_flags & G_GATE_FLAG_DESTROY) != 0) { ggio->gctl_error = ECANCELED; mtx_unlock(&sc->sc_queue_mtx); goto start_end; } if (msleep(sc, &sc->sc_queue_mtx, PPAUSE | PDROP | PCATCH, "ggwait", 0) != 0) { ggio->gctl_error = ECANCELED; goto start_end; } } ggio->gctl_cmd = bp->bio_cmd; if (bp->bio_cmd == BIO_WRITE && bp->bio_length > ggio->gctl_length) { mtx_unlock(&sc->sc_queue_mtx); ggio->gctl_length = bp->bio_length; ggio->gctl_error = ENOMEM; goto start_end; } bioq_remove(&sc->sc_inqueue, bp); bioq_insert_tail(&sc->sc_outqueue, bp); mtx_unlock(&sc->sc_queue_mtx); ggio->gctl_seq = (uintptr_t)bp->bio_driver1; ggio->gctl_offset = bp->bio_offset; ggio->gctl_length = bp->bio_length; switch (bp->bio_cmd) { case BIO_READ: case BIO_DELETE: case BIO_FLUSH: break; case BIO_WRITE: error = copyout(bp->bio_data, ggio->gctl_data, bp->bio_length); if (error != 0) { mtx_lock(&sc->sc_queue_mtx); bioq_remove(&sc->sc_outqueue, bp); bioq_insert_head(&sc->sc_inqueue, bp); mtx_unlock(&sc->sc_queue_mtx); goto start_end; } break; } start_end: g_gate_release(sc); return (error); } case G_GATE_CMD_DONE: { struct g_gate_ctl_io *ggio = (void *)addr; G_GATE_CHECK_VERSION(ggio); sc = g_gate_hold(ggio->gctl_unit, NULL); if (sc == NULL) return (ENOENT); error = 0; mtx_lock(&sc->sc_queue_mtx); TAILQ_FOREACH(bp, &sc->sc_outqueue.queue, bio_queue) { if (ggio->gctl_seq == (uintptr_t)bp->bio_driver1) break; } if (bp != NULL) { bioq_remove(&sc->sc_outqueue, bp); sc->sc_queue_count--; } mtx_unlock(&sc->sc_queue_mtx); if (bp == NULL) { /* * Request was probably canceled. */ goto done_end; } if (ggio->gctl_error == EAGAIN) { bp->bio_error = 0; G_GATE_LOGREQ(1, bp, "Request desisted."); mtx_lock(&sc->sc_queue_mtx); sc->sc_queue_count++; bioq_insert_head(&sc->sc_inqueue, bp); wakeup(sc); mtx_unlock(&sc->sc_queue_mtx); } else { bp->bio_error = ggio->gctl_error; if (bp->bio_error == 0) { bp->bio_completed = bp->bio_length; switch (bp->bio_cmd) { case BIO_READ: error = copyin(ggio->gctl_data, bp->bio_data, bp->bio_length); if (error != 0) bp->bio_error = error; break; case BIO_DELETE: case BIO_WRITE: case BIO_FLUSH: break; } } G_GATE_LOGREQ(2, bp, "Request done."); g_io_deliver(bp, bp->bio_error); } done_end: g_gate_release(sc); return (error); } } return (ENOIOCTL); } static void g_gate_device(void) { status_dev = make_dev(&g_gate_cdevsw, 0x0, UID_ROOT, GID_WHEEL, 0600, G_GATE_CTL_NAME); } static int g_gate_modevent(module_t mod, int type, void *data) { int error = 0; switch (type) { case MOD_LOAD: mtx_init(&g_gate_units_lock, "gg_units_lock", NULL, MTX_DEF); g_gate_units = malloc(g_gate_maxunits * sizeof(g_gate_units[0]), M_GATE, M_WAITOK | M_ZERO); g_gate_nunits = 0; g_gate_device(); break; case MOD_UNLOAD: mtx_lock(&g_gate_units_lock); if (g_gate_nunits > 0) { mtx_unlock(&g_gate_units_lock); error = EBUSY; break; } mtx_unlock(&g_gate_units_lock); mtx_destroy(&g_gate_units_lock); if (status_dev != NULL) destroy_dev(status_dev); free(g_gate_units, M_GATE); break; default: return (EOPNOTSUPP); break; } return (error); } static moduledata_t g_gate_module = { G_GATE_MOD_NAME, g_gate_modevent, NULL }; DECLARE_MODULE(geom_gate, g_gate_module, SI_SUB_DRIVERS, SI_ORDER_MIDDLE); DECLARE_GEOM_CLASS(g_gate_class, g_gate); +MODULE_VERSION(geom_gate, 0); Index: head/sys/geom/geom_bsd.c =================================================================== --- head/sys/geom/geom_bsd.c (revision 332386) +++ head/sys/geom/geom_bsd.c (revision 332387) @@ -1,616 +1,617 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2002 Poul-Henning Kamp * Copyright (c) 2002 Networks Associates Technology, Inc. * All rights reserved. * * This software was developed for the FreeBSD Project by Poul-Henning Kamp * and NAI Labs, the Security Research Division of Network Associates, Inc. * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the * DARPA CHATS research program. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The names of the authors may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * This is the method for dealing with BSD disklabels. It has been * extensively (by my standards at least) commented, in the vain hope that * it will serve as the source in future copy&paste operations. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include FEATURE(geom_bsd, "GEOM BSD disklabels support"); #define BSD_CLASS_NAME "BSD" #define ALPHA_LABEL_OFFSET 64 #define HISTORIC_LABEL_OFFSET 512 #define LABELSIZE (148 + 16 * MAXPARTITIONS) static int g_bsd_once; static void g_bsd_hotwrite(void *arg, int flag); /* * Our private data about one instance. All the rest is handled by the * slice code and stored in its softc, so this is just the stuff * specific to BSD disklabels. */ struct g_bsd_softc { off_t labeloffset; off_t mbroffset; off_t rawoffset; struct disklabel ondisk; u_char label[LABELSIZE]; u_char labelsum[16]; }; /* * Modify our slicer to match proposed disklabel, if possible. * This is where we make sure we don't do something stupid. */ static int g_bsd_modify(struct g_geom *gp, u_char *label) { int i, error; struct partition *ppp; struct g_slicer *gsp; struct g_consumer *cp; struct g_bsd_softc *ms; u_int secsize, u; off_t rawoffset, o; struct disklabel dl; MD5_CTX md5sum; g_topology_assert(); gsp = gp->softc; ms = gsp->softc; error = bsd_disklabel_le_dec(label, &dl, MAXPARTITIONS); if (error) { return (error); } /* Get dimensions of our device. */ cp = LIST_FIRST(&gp->consumer); secsize = cp->provider->sectorsize; /* ... or a smaller sector size. */ if (dl.d_secsize < secsize) { return (EINVAL); } /* ... or a non-multiple sector size. */ if (dl.d_secsize % secsize != 0) { return (EINVAL); } /* Historical braindamage... */ rawoffset = (off_t)dl.d_partitions[RAW_PART].p_offset * dl.d_secsize; for (i = 0; i < dl.d_npartitions; i++) { ppp = &dl.d_partitions[i]; if (ppp->p_size == 0) continue; o = (off_t)ppp->p_offset * dl.d_secsize; if (o < rawoffset) rawoffset = 0; } if (rawoffset != 0 && (off_t)rawoffset != ms->mbroffset) printf("WARNING: %s expected rawoffset %jd, found %jd\n", gp->name, (intmax_t)ms->mbroffset/dl.d_secsize, (intmax_t)rawoffset/dl.d_secsize); /* Don't munge open partitions. */ for (i = 0; i < dl.d_npartitions; i++) { ppp = &dl.d_partitions[i]; o = (off_t)ppp->p_offset * dl.d_secsize; if (o == 0) o = rawoffset; error = g_slice_config(gp, i, G_SLICE_CONFIG_CHECK, o - rawoffset, (off_t)ppp->p_size * dl.d_secsize, dl.d_secsize, "%s%c", gp->name, 'a' + i); if (error) return (error); } /* Look good, go for it... */ for (u = 0; u < gsp->nslice; u++) { ppp = &dl.d_partitions[u]; o = (off_t)ppp->p_offset * dl.d_secsize; if (o == 0) o = rawoffset; g_slice_config(gp, u, G_SLICE_CONFIG_SET, o - rawoffset, (off_t)ppp->p_size * dl.d_secsize, dl.d_secsize, "%s%c", gp->name, 'a' + u); } /* Update our softc */ ms->ondisk = dl; if (label != ms->label) bcopy(label, ms->label, LABELSIZE); ms->rawoffset = rawoffset; /* * In order to avoid recursively attaching to the same * on-disk label (it's usually visible through the 'c' * partition) we calculate an MD5 and ask if other BSD's * below us love that label. If they do, we don't. */ MD5Init(&md5sum); MD5Update(&md5sum, ms->label, sizeof(ms->label)); MD5Final(ms->labelsum, &md5sum); return (0); } /* * This is an internal helper function, called multiple times from the taste * function to try to locate a disklabel on the disk. More civilized formats * will not need this, as there is only one possible place on disk to look * for the magic spot. */ static int g_bsd_try(struct g_geom *gp, struct g_slicer *gsp, struct g_consumer *cp, int secsize, struct g_bsd_softc *ms, off_t offset) { int error; u_char *buf; struct disklabel *dl; off_t secoff; /* * We need to read entire aligned sectors, and we assume that the * disklabel does not span sectors, so one sector is enough. */ secoff = offset % secsize; buf = g_read_data(cp, offset - secoff, secsize, NULL); if (buf == NULL) return (ENOENT); /* Decode into our native format. */ dl = &ms->ondisk; error = bsd_disklabel_le_dec(buf + secoff, dl, MAXPARTITIONS); if (!error) bcopy(buf + secoff, ms->label, LABELSIZE); /* Remember to free the buffer g_read_data() gave us. */ g_free(buf); ms->labeloffset = offset; return (error); } /* * This function writes the current label to disk, possibly updating * the alpha SRM checksum. */ static int g_bsd_writelabel(struct g_geom *gp, u_char *bootcode) { off_t secoff; u_int secsize; struct g_consumer *cp; struct g_slicer *gsp; struct g_bsd_softc *ms; u_char *buf; uint64_t sum; int error, i; gsp = gp->softc; ms = gsp->softc; cp = LIST_FIRST(&gp->consumer); /* Get sector size, we need it to read data. */ secsize = cp->provider->sectorsize; secoff = ms->labeloffset % secsize; if (bootcode == NULL) { buf = g_read_data(cp, ms->labeloffset - secoff, secsize, &error); if (buf == NULL) return (error); bcopy(ms->label, buf + secoff, sizeof(ms->label)); } else { buf = bootcode; bcopy(ms->label, buf + ms->labeloffset, sizeof(ms->label)); } if (ms->labeloffset == ALPHA_LABEL_OFFSET) { sum = 0; for (i = 0; i < 63; i++) sum += le64dec(buf + i * 8); le64enc(buf + 504, sum); } if (bootcode == NULL) { error = g_write_data(cp, ms->labeloffset - secoff, buf, secsize); g_free(buf); } else { error = g_write_data(cp, 0, bootcode, BBSIZE); } return(error); } /* * If the user tries to overwrite our disklabel through an open partition * or via a magicwrite config call, we end up here and try to prevent * footshooting as best we can. */ static void g_bsd_hotwrite(void *arg, int flag) { struct bio *bp; struct g_geom *gp; struct g_slicer *gsp; struct g_slice *gsl; struct g_bsd_softc *ms; u_char *p; int error; g_topology_assert(); /* * We should never get canceled, because that would amount to a removal * of the geom while there was outstanding I/O requests. */ KASSERT(flag != EV_CANCEL, ("g_bsd_hotwrite cancelled")); bp = arg; gp = bp->bio_to->geom; gsp = gp->softc; ms = gsp->softc; gsl = &gsp->slices[bp->bio_to->index]; p = (u_char*)bp->bio_data + ms->labeloffset - (bp->bio_offset + gsl->offset); error = g_bsd_modify(gp, p); if (error) { g_io_deliver(bp, EPERM); return; } g_slice_finish_hot(bp); } static int g_bsd_start(struct bio *bp) { struct g_geom *gp; struct g_bsd_softc *ms; struct g_slicer *gsp; gp = bp->bio_to->geom; gsp = gp->softc; ms = gsp->softc; if (bp->bio_cmd == BIO_GETATTR) { if (g_handleattr(bp, "BSD::labelsum", ms->labelsum, sizeof(ms->labelsum))) return (1); } return (0); } /* * Dump configuration information in XML format. * Notice that the function is called once for the geom and once for each * consumer and provider. We let g_slice_dumpconf() do most of the work. */ static void g_bsd_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp) { struct g_bsd_softc *ms; struct g_slicer *gsp; gsp = gp->softc; ms = gsp->softc; g_slice_dumpconf(sb, indent, gp, cp, pp); if (indent != NULL && pp == NULL && cp == NULL) { sbuf_printf(sb, "%s%jd\n", indent, (intmax_t)ms->labeloffset); sbuf_printf(sb, "%s%jd\n", indent, (intmax_t)ms->rawoffset); sbuf_printf(sb, "%s%jd\n", indent, (intmax_t)ms->mbroffset); } else if (pp != NULL) { if (indent == NULL) sbuf_printf(sb, " ty %d", ms->ondisk.d_partitions[pp->index].p_fstype); else sbuf_printf(sb, "%s%d\n", indent, ms->ondisk.d_partitions[pp->index].p_fstype); } } /* * The taste function is called from the event-handler, with the topology * lock already held and a provider to examine. The flags are unused. * * If flags == G_TF_NORMAL, the idea is to take a bite of the provider and * if we find valid, consistent magic on it, build a geom on it. * * There may be cases where the operator would like to put a BSD-geom on * providers which do not meet all of the requirements. This can be done * by instead passing the G_TF_INSIST flag, which will override these * checks. * * The final flags value is G_TF_TRANSPARENT, which instructs the method * to put a geom on top of the provider and configure it to be as transparent * as possible. This is not really relevant to the BSD method and therefore * not implemented here. */ static struct uuid freebsd_slice = GPT_ENT_TYPE_FREEBSD; static struct g_geom * g_bsd_taste(struct g_class *mp, struct g_provider *pp, int flags) { struct g_geom *gp; struct g_consumer *cp; int error, i; struct g_bsd_softc *ms; u_int secsize; struct g_slicer *gsp; u_char hash[16]; MD5_CTX md5sum; struct uuid uuid; g_trace(G_T_TOPOLOGY, "bsd_taste(%s,%s)", mp->name, pp->name); g_topology_assert(); /* We don't implement transparent inserts. */ if (flags == G_TF_TRANSPARENT) return (NULL); /* * BSD labels are a subclass of the general "slicing" topology so * a lot of the work can be done by the common "slice" code. * Create a geom with space for MAXPARTITIONS providers, one consumer * and a softc structure for us. Specify the provider to attach * the consumer to and our "start" routine for special requests. * The provider is opened with mode (1,0,0) so we can do reads * from it. */ gp = g_slice_new(mp, MAXPARTITIONS, pp, &cp, &ms, sizeof(*ms), g_bsd_start); if (gp == NULL) return (NULL); /* Get the geom_slicer softc from the geom. */ gsp = gp->softc; /* * The do...while loop here allows us to have multiple escapes * using a simple "break". This improves code clarity without * ending up in deep nesting and without using goto or come from. */ do { /* * If the provider is an MBR we will only auto attach * to type 165 slices in the G_TF_NORMAL case. We will * attach to any other type. */ error = g_getattr("MBR::type", cp, &i); if (!error) { if (i != 165 && flags == G_TF_NORMAL) break; error = g_getattr("MBR::offset", cp, &ms->mbroffset); if (error) break; } /* Same thing if we are inside a GPT */ error = g_getattr("GPT::type", cp, &uuid); if (!error) { if (memcmp(&uuid, &freebsd_slice, sizeof(uuid)) != 0 && flags == G_TF_NORMAL) break; } /* Get sector size, we need it to read data. */ secsize = cp->provider->sectorsize; if (secsize < 512) break; /* First look for a label at the start of the second sector. */ error = g_bsd_try(gp, gsp, cp, secsize, ms, secsize); /* * If sector size is not 512 the label still can be at * offset 512, not at the start of the second sector. At least * it's true for labels created by the FreeBSD's bsdlabel(8). */ if (error && secsize != HISTORIC_LABEL_OFFSET) error = g_bsd_try(gp, gsp, cp, secsize, ms, HISTORIC_LABEL_OFFSET); /* Next, look for alpha labels */ if (error) error = g_bsd_try(gp, gsp, cp, secsize, ms, ALPHA_LABEL_OFFSET); /* If we didn't find a label, punt. */ if (error) break; /* * In order to avoid recursively attaching to the same * on-disk label (it's usually visible through the 'c' * partition) we calculate an MD5 and ask if other BSD's * below us love that label. If they do, we don't. */ MD5Init(&md5sum); MD5Update(&md5sum, ms->label, sizeof(ms->label)); MD5Final(ms->labelsum, &md5sum); error = g_getattr("BSD::labelsum", cp, &hash); if (!error && !bcmp(ms->labelsum, hash, sizeof(hash))) break; /* * Process the found disklabel, and modify our "slice" * instance to match it, if possible. */ error = g_bsd_modify(gp, ms->label); } while (0); /* Success or failure, we can close our provider now. */ g_access(cp, -1, 0, 0); /* If we have configured any providers, return the new geom. */ if (gsp->nprovider > 0) { g_slice_conf_hot(gp, 0, ms->labeloffset, LABELSIZE, G_SLICE_HOT_ALLOW, G_SLICE_HOT_DENY, G_SLICE_HOT_CALL); gsp->hot = g_bsd_hotwrite; if (!g_bsd_once) { g_bsd_once = 1; printf( "WARNING: geom_bsd (geom %s) is deprecated, " "use gpart instead.\n", gp->name); } return (gp); } /* * ...else push the "self-destruct" button, by spoiling our own * consumer. This triggers a call to g_slice_spoiled which will * dismantle what was setup. */ g_slice_spoiled(cp); return (NULL); } struct h0h0 { struct g_geom *gp; struct g_bsd_softc *ms; u_char *label; int error; }; static void g_bsd_callconfig(void *arg, int flag) { struct h0h0 *hp; hp = arg; hp->error = g_bsd_modify(hp->gp, hp->label); if (!hp->error) hp->error = g_bsd_writelabel(hp->gp, NULL); } /* * NB! curthread is user process which GCTL'ed. */ static void g_bsd_config(struct gctl_req *req, struct g_class *mp, char const *verb) { u_char *label; int error; struct h0h0 h0h0; struct g_geom *gp; struct g_slicer *gsp; struct g_consumer *cp; struct g_bsd_softc *ms; g_topology_assert(); gp = gctl_get_geom(req, mp, "geom"); if (gp == NULL) return; cp = LIST_FIRST(&gp->consumer); gsp = gp->softc; ms = gsp->softc; if (!strcmp(verb, "read mbroffset")) { gctl_set_param_err(req, "mbroffset", &ms->mbroffset, sizeof(ms->mbroffset)); return; } else if (!strcmp(verb, "write label")) { label = gctl_get_paraml(req, "label", LABELSIZE); if (label == NULL) return; h0h0.gp = gp; h0h0.ms = gsp->softc; h0h0.label = label; h0h0.error = -1; /* XXX: Does this reference register with our selfdestruct code ? */ error = g_access(cp, 1, 1, 1); if (error) { gctl_error(req, "could not access consumer"); return; } g_bsd_callconfig(&h0h0, 0); error = h0h0.error; g_access(cp, -1, -1, -1); } else if (!strcmp(verb, "write bootcode")) { label = gctl_get_paraml(req, "bootcode", BBSIZE); if (label == NULL) return; /* XXX: Does this reference register with our selfdestruct code ? */ error = g_access(cp, 1, 1, 1); if (error) { gctl_error(req, "could not access consumer"); return; } error = g_bsd_writelabel(gp, label); g_access(cp, -1, -1, -1); } else { gctl_error(req, "Unknown verb parameter"); } return; } /* Finally, register with GEOM infrastructure. */ static struct g_class g_bsd_class = { .name = BSD_CLASS_NAME, .version = G_VERSION, .taste = g_bsd_taste, .ctlreq = g_bsd_config, .dumpconf = g_bsd_dumpconf, }; DECLARE_GEOM_CLASS(g_bsd_class, g_bsd); +MODULE_VERSION(geom_bsd, 0); Index: head/sys/geom/geom_ccd.c =================================================================== --- head/sys/geom/geom_ccd.c (revision 332386) +++ head/sys/geom/geom_ccd.c (revision 332387) @@ -1,938 +1,939 @@ /*- * SPDX-License-Identifier: (BSD-2-Clause-NetBSD AND BSD-3-Clause) * * Copyright (c) 2003 Poul-Henning Kamp. * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $NetBSD: ccd.c,v 1.22 1995/12/08 19:13:26 thorpej Exp $ */ /*- * Copyright (c) 1988 University of Utah. * Copyright (c) 1990, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: Utah $Hdr: cd.c 1.6 90/11/28$ * * @(#)cd.c 8.2 (Berkeley) 11/16/93 */ /* * Dynamic configuration and disklabel support by: * Jason R. Thorpe * Numerical Aerodynamic Simulation Facility * Mail Stop 258-6 * NASA Ames Research Center * Moffett Field, CA 94035 */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include /* * Number of blocks to untouched in front of a component partition. * This is to avoid violating its disklabel area when it starts at the * beginning of the slice. */ #if !defined(CCD_OFFSET) #define CCD_OFFSET 16 #endif /* sc_flags */ #define CCDF_UNIFORM 0x02 /* use LCCD of sizes for uniform interleave */ #define CCDF_MIRROR 0x04 /* use mirroring */ #define CCDF_NO_OFFSET 0x08 /* do not leave space in front */ #define CCDF_LINUX 0x10 /* use Linux compatibility mode */ /* Mask of user-settable ccd flags. */ #define CCDF_USERMASK (CCDF_UNIFORM|CCDF_MIRROR) /* * Interleave description table. * Computed at boot time to speed irregular-interleave lookups. * The idea is that we interleave in "groups". First we interleave * evenly over all component disks up to the size of the smallest * component (the first group), then we interleave evenly over all * remaining disks up to the size of the next-smallest (second group), * and so on. * * Each table entry describes the interleave characteristics of one * of these groups. For example if a concatenated disk consisted of * three components of 5, 3, and 7 DEV_BSIZE blocks interleaved at * DEV_BSIZE (1), the table would have three entries: * * ndisk startblk startoff dev * 3 0 0 0, 1, 2 * 2 9 3 0, 2 * 1 13 5 2 * 0 - - - * * which says that the first nine blocks (0-8) are interleaved over * 3 disks (0, 1, 2) starting at block offset 0 on any component disk, * the next 4 blocks (9-12) are interleaved over 2 disks (0, 2) starting * at component block 3, and the remaining blocks (13-14) are on disk * 2 starting at offset 5. */ struct ccdiinfo { int ii_ndisk; /* # of disks range is interleaved over */ daddr_t ii_startblk; /* starting scaled block # for range */ daddr_t ii_startoff; /* starting component offset (block #) */ int *ii_index; /* ordered list of components in range */ }; /* * Component info table. * Describes a single component of a concatenated disk. */ struct ccdcinfo { daddr_t ci_size; /* size */ struct g_provider *ci_provider; /* provider */ struct g_consumer *ci_consumer; /* consumer */ }; /* * A concatenated disk is described by this structure. */ struct ccd_s { LIST_ENTRY(ccd_s) list; int sc_unit; /* logical unit number */ int sc_flags; /* flags */ daddr_t sc_size; /* size of ccd */ int sc_ileave; /* interleave */ u_int sc_ndisks; /* number of components */ struct ccdcinfo *sc_cinfo; /* component info */ struct ccdiinfo *sc_itable; /* interleave table */ u_int32_t sc_secsize; /* # bytes per sector */ int sc_pick; /* side of mirror picked */ daddr_t sc_blk[2]; /* mirror localization */ u_int32_t sc_offset; /* actual offset used */ }; static g_start_t g_ccd_start; static void ccdiodone(struct bio *bp); static void ccdinterleave(struct ccd_s *); static int ccdinit(struct gctl_req *req, struct ccd_s *); static int ccdbuffer(struct bio **ret, struct ccd_s *, struct bio *, daddr_t, caddr_t, long); static void g_ccd_orphan(struct g_consumer *cp) { /* * XXX: We don't do anything here. It is not obvious * XXX: what DTRT would be, so we do what the previous * XXX: code did: ignore it and let the user cope. */ } static int g_ccd_access(struct g_provider *pp, int dr, int dw, int de) { struct g_geom *gp; struct g_consumer *cp1, *cp2; int error; de += dr; de += dw; gp = pp->geom; error = ENXIO; LIST_FOREACH(cp1, &gp->consumer, consumer) { error = g_access(cp1, dr, dw, de); if (error) { LIST_FOREACH(cp2, &gp->consumer, consumer) { if (cp1 == cp2) break; g_access(cp2, -dr, -dw, -de); } break; } } return (error); } /* * Free the softc and its substructures. */ static void g_ccd_freesc(struct ccd_s *sc) { struct ccdiinfo *ii; g_free(sc->sc_cinfo); if (sc->sc_itable != NULL) { for (ii = sc->sc_itable; ii->ii_ndisk > 0; ii++) if (ii->ii_index != NULL) g_free(ii->ii_index); g_free(sc->sc_itable); } g_free(sc); } static int ccdinit(struct gctl_req *req, struct ccd_s *cs) { struct ccdcinfo *ci; daddr_t size; int ix; daddr_t minsize; int maxsecsize; off_t mediasize; u_int sectorsize; cs->sc_size = 0; maxsecsize = 0; minsize = 0; if (cs->sc_flags & CCDF_LINUX) { cs->sc_offset = 0; cs->sc_ileave *= 2; if (cs->sc_flags & CCDF_MIRROR && cs->sc_ndisks != 2) gctl_error(req, "Mirror mode for Linux raids is " "only supported with 2 devices"); } else { if (cs->sc_flags & CCDF_NO_OFFSET) cs->sc_offset = 0; else cs->sc_offset = CCD_OFFSET; } for (ix = 0; ix < cs->sc_ndisks; ix++) { ci = &cs->sc_cinfo[ix]; mediasize = ci->ci_provider->mediasize; sectorsize = ci->ci_provider->sectorsize; if (sectorsize > maxsecsize) maxsecsize = sectorsize; size = mediasize / DEV_BSIZE - cs->sc_offset; /* Truncate to interleave boundary */ if (cs->sc_ileave > 1) size -= size % cs->sc_ileave; if (size == 0) { gctl_error(req, "Component %s has effective size zero", ci->ci_provider->name); return(ENODEV); } if (minsize == 0 || size < minsize) minsize = size; ci->ci_size = size; cs->sc_size += size; } /* * Don't allow the interleave to be smaller than * the biggest component sector. */ if ((cs->sc_ileave > 0) && (cs->sc_ileave < (maxsecsize / DEV_BSIZE))) { gctl_error(req, "Interleave to small for sector size"); return(EINVAL); } /* * If uniform interleave is desired set all sizes to that of * the smallest component. This will guarantee that a single * interleave table is generated. * * Lost space must be taken into account when calculating the * overall size. Half the space is lost when CCDF_MIRROR is * specified. */ if (cs->sc_flags & CCDF_UNIFORM) { for (ix = 0; ix < cs->sc_ndisks; ix++) { ci = &cs->sc_cinfo[ix]; ci->ci_size = minsize; } cs->sc_size = cs->sc_ndisks * minsize; } if (cs->sc_flags & CCDF_MIRROR) { /* * Check to see if an even number of components * have been specified. The interleave must also * be non-zero in order for us to be able to * guarantee the topology. */ if (cs->sc_ndisks % 2) { gctl_error(req, "Mirroring requires an even number of disks"); return(EINVAL); } if (cs->sc_ileave == 0) { gctl_error(req, "An interleave must be specified when mirroring"); return(EINVAL); } cs->sc_size = (cs->sc_ndisks/2) * minsize; } /* * Construct the interleave table. */ ccdinterleave(cs); /* * Create pseudo-geometry based on 1MB cylinders. It's * pretty close. */ cs->sc_secsize = maxsecsize; return (0); } static void ccdinterleave(struct ccd_s *cs) { struct ccdcinfo *ci, *smallci; struct ccdiinfo *ii; daddr_t bn, lbn; int ix; daddr_t size; /* * Allocate an interleave table. The worst case occurs when each * of N disks is of a different size, resulting in N interleave * tables. * * Chances are this is too big, but we don't care. */ size = (cs->sc_ndisks + 1) * sizeof(struct ccdiinfo); cs->sc_itable = g_malloc(size, M_WAITOK | M_ZERO); /* * Trivial case: no interleave (actually interleave of disk size). * Each table entry represents a single component in its entirety. * * An interleave of 0 may not be used with a mirror setup. */ if (cs->sc_ileave == 0) { bn = 0; ii = cs->sc_itable; for (ix = 0; ix < cs->sc_ndisks; ix++) { /* Allocate space for ii_index. */ ii->ii_index = g_malloc(sizeof(int), M_WAITOK); ii->ii_ndisk = 1; ii->ii_startblk = bn; ii->ii_startoff = 0; ii->ii_index[0] = ix; bn += cs->sc_cinfo[ix].ci_size; ii++; } ii->ii_ndisk = 0; return; } /* * The following isn't fast or pretty; it doesn't have to be. */ size = 0; bn = lbn = 0; for (ii = cs->sc_itable; ; ii++) { /* * Allocate space for ii_index. We might allocate more then * we use. */ ii->ii_index = g_malloc((sizeof(int) * cs->sc_ndisks), M_WAITOK); /* * Locate the smallest of the remaining components */ smallci = NULL; for (ci = cs->sc_cinfo; ci < &cs->sc_cinfo[cs->sc_ndisks]; ci++) { if (ci->ci_size > size && (smallci == NULL || ci->ci_size < smallci->ci_size)) { smallci = ci; } } /* * Nobody left, all done */ if (smallci == NULL) { ii->ii_ndisk = 0; g_free(ii->ii_index); ii->ii_index = NULL; break; } /* * Record starting logical block using an sc_ileave blocksize. */ ii->ii_startblk = bn / cs->sc_ileave; /* * Record starting component block using an sc_ileave * blocksize. This value is relative to the beginning of * a component disk. */ ii->ii_startoff = lbn; /* * Determine how many disks take part in this interleave * and record their indices. */ ix = 0; for (ci = cs->sc_cinfo; ci < &cs->sc_cinfo[cs->sc_ndisks]; ci++) { if (ci->ci_size >= smallci->ci_size) { ii->ii_index[ix++] = ci - cs->sc_cinfo; } } ii->ii_ndisk = ix; bn += ix * (smallci->ci_size - size); lbn = smallci->ci_size / cs->sc_ileave; size = smallci->ci_size; } } static void g_ccd_start(struct bio *bp) { long bcount, rcount; struct bio *cbp[2]; caddr_t addr; daddr_t bn; int err; struct ccd_s *cs; cs = bp->bio_to->geom->softc; /* * Block all GETATTR requests, we wouldn't know which of our * subdevices we should ship it off to. * XXX: this may not be the right policy. */ if(bp->bio_cmd == BIO_GETATTR) { g_io_deliver(bp, EINVAL); return; } /* * Translate the partition-relative block number to an absolute. */ bn = bp->bio_offset / cs->sc_secsize; /* * Allocate component buffers and fire off the requests */ addr = bp->bio_data; for (bcount = bp->bio_length; bcount > 0; bcount -= rcount) { err = ccdbuffer(cbp, cs, bp, bn, addr, bcount); if (err) { bp->bio_completed += bcount; if (bp->bio_error == 0) bp->bio_error = err; if (bp->bio_completed == bp->bio_length) g_io_deliver(bp, bp->bio_error); return; } rcount = cbp[0]->bio_length; if (cs->sc_flags & CCDF_MIRROR) { /* * Mirroring. Writes go to both disks, reads are * taken from whichever disk seems most appropriate. * * We attempt to localize reads to the disk whos arm * is nearest the read request. We ignore seeks due * to writes when making this determination and we * also try to avoid hogging. */ if (cbp[0]->bio_cmd != BIO_READ) { g_io_request(cbp[0], cbp[0]->bio_from); g_io_request(cbp[1], cbp[1]->bio_from); } else { int pick = cs->sc_pick; daddr_t range = cs->sc_size / 16; if (bn < cs->sc_blk[pick] - range || bn > cs->sc_blk[pick] + range ) { cs->sc_pick = pick = 1 - pick; } cs->sc_blk[pick] = bn + btodb(rcount); g_io_request(cbp[pick], cbp[pick]->bio_from); } } else { /* * Not mirroring */ g_io_request(cbp[0], cbp[0]->bio_from); } bn += btodb(rcount); addr += rcount; } } /* * Build a component buffer header. */ static int ccdbuffer(struct bio **cb, struct ccd_s *cs, struct bio *bp, daddr_t bn, caddr_t addr, long bcount) { struct ccdcinfo *ci, *ci2 = NULL; struct bio *cbp; daddr_t cbn, cboff; off_t cbc; /* * Determine which component bn falls in. */ cbn = bn; cboff = 0; if (cs->sc_ileave == 0) { /* * Serially concatenated and neither a mirror nor a parity * config. This is a special case. */ daddr_t sblk; sblk = 0; for (ci = cs->sc_cinfo; cbn >= sblk + ci->ci_size; ci++) sblk += ci->ci_size; cbn -= sblk; } else { struct ccdiinfo *ii; int ccdisk, off; /* * Calculate cbn, the logical superblock (sc_ileave chunks), * and cboff, a normal block offset (DEV_BSIZE chunks) relative * to cbn. */ cboff = cbn % cs->sc_ileave; /* DEV_BSIZE gran */ cbn = cbn / cs->sc_ileave; /* DEV_BSIZE * ileave gran */ /* * Figure out which interleave table to use. */ for (ii = cs->sc_itable; ii->ii_ndisk; ii++) { if (ii->ii_startblk > cbn) break; } ii--; /* * off is the logical superblock relative to the beginning * of this interleave block. */ off = cbn - ii->ii_startblk; /* * We must calculate which disk component to use (ccdisk), * and recalculate cbn to be the superblock relative to * the beginning of the component. This is typically done by * adding 'off' and ii->ii_startoff together. However, 'off' * must typically be divided by the number of components in * this interleave array to be properly convert it from a * CCD-relative logical superblock number to a * component-relative superblock number. */ if (ii->ii_ndisk == 1) { /* * When we have just one disk, it can't be a mirror * or a parity config. */ ccdisk = ii->ii_index[0]; cbn = ii->ii_startoff + off; } else { if (cs->sc_flags & CCDF_MIRROR) { /* * We have forced a uniform mapping, resulting * in a single interleave array. We double * up on the first half of the available * components and our mirror is in the second * half. This only works with a single * interleave array because doubling up * doubles the number of sectors, so there * cannot be another interleave array because * the next interleave array's calculations * would be off. */ int ndisk2 = ii->ii_ndisk / 2; ccdisk = ii->ii_index[off % ndisk2]; cbn = ii->ii_startoff + off / ndisk2; ci2 = &cs->sc_cinfo[ccdisk + ndisk2]; } else { ccdisk = ii->ii_index[off % ii->ii_ndisk]; cbn = ii->ii_startoff + off / ii->ii_ndisk; } } ci = &cs->sc_cinfo[ccdisk]; /* * Convert cbn from a superblock to a normal block so it * can be used to calculate (along with cboff) the normal * block index into this particular disk. */ cbn *= cs->sc_ileave; } /* * Fill in the component buf structure. */ cbp = g_clone_bio(bp); if (cbp == NULL) return (ENOMEM); cbp->bio_done = g_std_done; cbp->bio_offset = dbtob(cbn + cboff + cs->sc_offset); cbp->bio_data = addr; if (cs->sc_ileave == 0) cbc = dbtob((off_t)(ci->ci_size - cbn)); else cbc = dbtob((off_t)(cs->sc_ileave - cboff)); cbp->bio_length = (cbc < bcount) ? cbc : bcount; cbp->bio_from = ci->ci_consumer; cb[0] = cbp; if (cs->sc_flags & CCDF_MIRROR) { cbp = g_clone_bio(bp); if (cbp == NULL) return (ENOMEM); cbp->bio_done = cb[0]->bio_done = ccdiodone; cbp->bio_offset = cb[0]->bio_offset; cbp->bio_data = cb[0]->bio_data; cbp->bio_length = cb[0]->bio_length; cbp->bio_from = ci2->ci_consumer; cbp->bio_caller1 = cb[0]; cb[0]->bio_caller1 = cbp; cb[1] = cbp; } return (0); } /* * Called only for mirrored operations. */ static void ccdiodone(struct bio *cbp) { struct bio *mbp, *pbp; mbp = cbp->bio_caller1; pbp = cbp->bio_parent; if (pbp->bio_cmd == BIO_READ) { if (cbp->bio_error == 0) { /* We will not be needing the partner bio */ if (mbp != NULL) { pbp->bio_inbed++; g_destroy_bio(mbp); } g_std_done(cbp); return; } if (mbp != NULL) { /* Try partner the bio instead */ mbp->bio_caller1 = NULL; pbp->bio_inbed++; g_destroy_bio(cbp); g_io_request(mbp, mbp->bio_from); /* * XXX: If this comes back OK, we should actually * try to write the good data on the failed mirror */ return; } g_std_done(cbp); return; } if (mbp != NULL) { mbp->bio_caller1 = NULL; pbp->bio_inbed++; if (cbp->bio_error != 0 && pbp->bio_error == 0) pbp->bio_error = cbp->bio_error; g_destroy_bio(cbp); return; } g_std_done(cbp); } static void g_ccd_create(struct gctl_req *req, struct g_class *mp) { int *unit, *ileave, *nprovider; struct g_geom *gp; struct g_consumer *cp; struct g_provider *pp; struct ccd_s *sc; struct sbuf *sb; char buf[20]; int i, error; g_topology_assert(); unit = gctl_get_paraml(req, "unit", sizeof (*unit)); if (unit == NULL) { gctl_error(req, "unit parameter not given"); return; } ileave = gctl_get_paraml(req, "ileave", sizeof (*ileave)); if (ileave == NULL) { gctl_error(req, "ileave parameter not given"); return; } nprovider = gctl_get_paraml(req, "nprovider", sizeof (*nprovider)); if (nprovider == NULL) { gctl_error(req, "nprovider parameter not given"); return; } /* Check for duplicate unit */ LIST_FOREACH(gp, &mp->geom, geom) { sc = gp->softc; if (sc != NULL && sc->sc_unit == *unit) { gctl_error(req, "Unit %d already configured", *unit); return; } } if (*nprovider <= 0) { gctl_error(req, "Bogus nprovider argument (= %d)", *nprovider); return; } /* Check all providers are valid */ for (i = 0; i < *nprovider; i++) { sprintf(buf, "provider%d", i); pp = gctl_get_provider(req, buf); if (pp == NULL) return; } gp = g_new_geomf(mp, "ccd%d", *unit); sc = g_malloc(sizeof *sc, M_WAITOK | M_ZERO); gp->softc = sc; sc->sc_ndisks = *nprovider; /* Allocate space for the component info. */ sc->sc_cinfo = g_malloc(sc->sc_ndisks * sizeof(struct ccdcinfo), M_WAITOK | M_ZERO); /* Create consumers and attach to all providers */ for (i = 0; i < *nprovider; i++) { sprintf(buf, "provider%d", i); pp = gctl_get_provider(req, buf); cp = g_new_consumer(gp); error = g_attach(cp, pp); KASSERT(error == 0, ("attach to %s failed", pp->name)); sc->sc_cinfo[i].ci_consumer = cp; sc->sc_cinfo[i].ci_provider = pp; } sc->sc_unit = *unit; sc->sc_ileave = *ileave; if (gctl_get_param(req, "no_offset", NULL)) sc->sc_flags |= CCDF_NO_OFFSET; if (gctl_get_param(req, "linux", NULL)) sc->sc_flags |= CCDF_LINUX; if (gctl_get_param(req, "uniform", NULL)) sc->sc_flags |= CCDF_UNIFORM; if (gctl_get_param(req, "mirror", NULL)) sc->sc_flags |= CCDF_MIRROR; if (sc->sc_ileave == 0 && (sc->sc_flags & CCDF_MIRROR)) { printf("%s: disabling mirror, interleave is 0\n", gp->name); sc->sc_flags &= ~(CCDF_MIRROR); } if ((sc->sc_flags & CCDF_MIRROR) && !(sc->sc_flags & CCDF_UNIFORM)) { printf("%s: mirror/parity forces uniform flag\n", gp->name); sc->sc_flags |= CCDF_UNIFORM; } error = ccdinit(req, sc); if (error != 0) { g_ccd_freesc(sc); gp->softc = NULL; g_wither_geom(gp, ENXIO); return; } pp = g_new_providerf(gp, "%s", gp->name); pp->mediasize = sc->sc_size * (off_t)sc->sc_secsize; pp->sectorsize = sc->sc_secsize; g_error_provider(pp, 0); sb = sbuf_new_auto(); sbuf_printf(sb, "ccd%d: %d components ", sc->sc_unit, *nprovider); for (i = 0; i < *nprovider; i++) { sbuf_printf(sb, "%s%s", i == 0 ? "(" : ", ", sc->sc_cinfo[i].ci_provider->name); } sbuf_printf(sb, "), %jd blocks ", (off_t)pp->mediasize / DEV_BSIZE); if (sc->sc_ileave != 0) sbuf_printf(sb, "interleaved at %d blocks\n", sc->sc_ileave); else sbuf_printf(sb, "concatenated\n"); sbuf_finish(sb); gctl_set_param_err(req, "output", sbuf_data(sb), sbuf_len(sb) + 1); sbuf_delete(sb); } static int g_ccd_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp) { struct g_provider *pp; struct ccd_s *sc; g_topology_assert(); sc = gp->softc; pp = LIST_FIRST(&gp->provider); if (sc == NULL || pp == NULL) return (EBUSY); if (pp->acr != 0 || pp->acw != 0 || pp->ace != 0) { gctl_error(req, "%s is open(r%dw%de%d)", gp->name, pp->acr, pp->acw, pp->ace); return (EBUSY); } g_ccd_freesc(sc); gp->softc = NULL; g_wither_geom(gp, ENXIO); return (0); } static void g_ccd_list(struct gctl_req *req, struct g_class *mp) { struct sbuf *sb; struct ccd_s *cs; struct g_geom *gp; int i, unit, *up; up = gctl_get_paraml(req, "unit", sizeof (*up)); if (up == NULL) { gctl_error(req, "unit parameter not given"); return; } unit = *up; sb = sbuf_new_auto(); LIST_FOREACH(gp, &mp->geom, geom) { cs = gp->softc; if (cs == NULL || (unit >= 0 && unit != cs->sc_unit)) continue; sbuf_printf(sb, "ccd%d\t\t%d\t%d\t", cs->sc_unit, cs->sc_ileave, cs->sc_flags & CCDF_USERMASK); for (i = 0; i < cs->sc_ndisks; ++i) { sbuf_printf(sb, "%s/dev/%s", i == 0 ? "" : " ", cs->sc_cinfo[i].ci_provider->name); } sbuf_printf(sb, "\n"); } sbuf_finish(sb); gctl_set_param_err(req, "output", sbuf_data(sb), sbuf_len(sb) + 1); sbuf_delete(sb); } static void g_ccd_config(struct gctl_req *req, struct g_class *mp, char const *verb) { struct g_geom *gp; g_topology_assert(); if (!strcmp(verb, "create geom")) { g_ccd_create(req, mp); } else if (!strcmp(verb, "destroy geom")) { gp = gctl_get_geom(req, mp, "geom"); if (gp != NULL) g_ccd_destroy_geom(req, mp, gp); } else if (!strcmp(verb, "list")) { g_ccd_list(req, mp); } else { gctl_error(req, "unknown verb"); } } static struct g_class g_ccd_class = { .name = "CCD", .version = G_VERSION, .ctlreq = g_ccd_config, .destroy_geom = g_ccd_destroy_geom, .start = g_ccd_start, .orphan = g_ccd_orphan, .access = g_ccd_access, }; DECLARE_GEOM_CLASS(g_ccd_class, g_ccd); +MODULE_VERSION(geom_ccd, 0); Index: head/sys/geom/geom_fox.c =================================================================== --- head/sys/geom/geom_fox.c (revision 332386) +++ head/sys/geom/geom_fox.c (revision 332387) @@ -1,487 +1,488 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2003 Poul-Henning Kamp * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The names of the authors may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /* This is a GEOM module for handling path selection for multi-path * storage devices. It is named "fox" because it, like they, prefer * to have multiple exits to choose from. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define FOX_CLASS_NAME "FOX" #define FOX_MAGIC "GEOM::FOX" static int g_fox_once; FEATURE(geom_fox, "GEOM FOX redundant path mitigation support"); struct g_fox_softc { off_t mediasize; u_int sectorsize; TAILQ_HEAD(, bio) queue; struct mtx lock; u_char magic[16]; struct g_consumer *path; struct g_consumer *opath; int waiting; int cr, cw, ce; }; /* * This function is called whenever we need to select a new path. */ static void g_fox_select_path(void *arg, int flag) { struct g_geom *gp; struct g_fox_softc *sc; struct g_consumer *cp1; struct bio *bp; int error; g_topology_assert(); if (flag == EV_CANCEL) return; gp = arg; sc = gp->softc; if (sc->opath != NULL) { /* * First, close the old path entirely. */ printf("Closing old path (%s) on fox (%s)\n", sc->opath->provider->name, gp->name); cp1 = LIST_NEXT(sc->opath, consumer); g_access(sc->opath, -sc->cr, -sc->cw, -(sc->ce + 1)); /* * The attempt to reopen it with a exclusive count */ error = g_access(sc->opath, 0, 0, 1); if (error) { /* * Ok, ditch this consumer, we can't use it. */ printf("Drop old path (%s) on fox (%s)\n", sc->opath->provider->name, gp->name); g_detach(sc->opath); g_destroy_consumer(sc->opath); if (LIST_EMPTY(&gp->consumer)) { /* No consumers left */ g_wither_geom(gp, ENXIO); for (;;) { bp = TAILQ_FIRST(&sc->queue); if (bp == NULL) break; TAILQ_REMOVE(&sc->queue, bp, bio_queue); bp->bio_error = ENXIO; g_std_done(bp); } return; } } else { printf("Got e-bit on old path (%s) on fox (%s)\n", sc->opath->provider->name, gp->name); } sc->opath = NULL; } else { cp1 = LIST_FIRST(&gp->consumer); } if (cp1 == NULL) cp1 = LIST_FIRST(&gp->consumer); printf("Open new path (%s) on fox (%s)\n", cp1->provider->name, gp->name); error = g_access(cp1, sc->cr, sc->cw, sc->ce); if (error) { /* * If we failed, we take another trip through here */ printf("Open new path (%s) on fox (%s) failed, reselect.\n", cp1->provider->name, gp->name); sc->opath = cp1; g_post_event(g_fox_select_path, gp, M_WAITOK, gp, NULL); } else { printf("Open new path (%s) on fox (%s) succeeded\n", cp1->provider->name, gp->name); mtx_lock(&sc->lock); sc->path = cp1; sc->waiting = 0; for (;;) { bp = TAILQ_FIRST(&sc->queue); if (bp == NULL) break; TAILQ_REMOVE(&sc->queue, bp, bio_queue); g_io_request(bp, sc->path); } mtx_unlock(&sc->lock); } } static void g_fox_orphan(struct g_consumer *cp) { struct g_geom *gp; struct g_fox_softc *sc; int error, mark; g_topology_assert(); gp = cp->geom; sc = gp->softc; printf("Removing path (%s) from fox (%s)\n", cp->provider->name, gp->name); mtx_lock(&sc->lock); if (cp == sc->path) { sc->opath = NULL; sc->path = NULL; sc->waiting = 1; mark = 1; } else { mark = 0; } mtx_unlock(&sc->lock); g_access(cp, -cp->acr, -cp->acw, -cp->ace); error = cp->provider->error; g_detach(cp); g_destroy_consumer(cp); if (!LIST_EMPTY(&gp->consumer)) { if (mark) g_post_event(g_fox_select_path, gp, M_WAITOK, gp, NULL); return; } mtx_destroy(&sc->lock); g_free(gp->softc); gp->softc = NULL; g_wither_geom(gp, ENXIO); } static void g_fox_done(struct bio *bp) { struct g_geom *gp; struct g_fox_softc *sc; int error; if (bp->bio_error == 0) { g_std_done(bp); return; } gp = bp->bio_from->geom; sc = gp->softc; if (bp->bio_from != sc->path) { g_io_request(bp, sc->path); return; } mtx_lock(&sc->lock); sc->opath = sc->path; sc->path = NULL; error = g_post_event(g_fox_select_path, gp, M_NOWAIT, gp, NULL); if (error) { bp->bio_error = ENOMEM; g_std_done(bp); } else { sc->waiting = 1; TAILQ_INSERT_TAIL(&sc->queue, bp, bio_queue); } mtx_unlock(&sc->lock); } static void g_fox_start(struct bio *bp) { struct g_geom *gp; struct bio *bp2; struct g_fox_softc *sc; int error; gp = bp->bio_to->geom; sc = gp->softc; if (sc == NULL) { g_io_deliver(bp, ENXIO); return; } switch(bp->bio_cmd) { case BIO_READ: case BIO_WRITE: case BIO_DELETE: bp2 = g_clone_bio(bp); if (bp2 == NULL) { g_io_deliver(bp, ENOMEM); break; } bp2->bio_offset += sc->sectorsize; bp2->bio_done = g_fox_done; mtx_lock(&sc->lock); if (sc->path == NULL || !TAILQ_EMPTY(&sc->queue)) { if (sc->waiting == 0) { error = g_post_event(g_fox_select_path, gp, M_NOWAIT, gp, NULL); if (error) { g_destroy_bio(bp2); bp2 = NULL; g_io_deliver(bp, error); } else { sc->waiting = 1; } } if (bp2 != NULL) TAILQ_INSERT_TAIL(&sc->queue, bp2, bio_queue); } else { g_io_request(bp2, sc->path); } mtx_unlock(&sc->lock); break; default: g_io_deliver(bp, EOPNOTSUPP); break; } return; } static int g_fox_access(struct g_provider *pp, int dr, int dw, int de) { struct g_geom *gp; struct g_fox_softc *sc; struct g_consumer *cp1; int error; g_topology_assert(); gp = pp->geom; sc = gp->softc; if (sc == NULL) { if (dr <= 0 && dw <= 0 && de <= 0) return (0); else return (ENXIO); } if (sc->cr == 0 && sc->cw == 0 && sc->ce == 0) { /* * First open, open all consumers with an exclusive bit */ error = 0; LIST_FOREACH(cp1, &gp->consumer, consumer) { error = g_access(cp1, 0, 0, 1); if (error) { printf("FOX: access(%s,0,0,1) = %d\n", cp1->provider->name, error); break; } } if (error) { LIST_FOREACH(cp1, &gp->consumer, consumer) { if (cp1->ace) g_access(cp1, 0, 0, -1); } return (error); } } if (sc->path == NULL) g_fox_select_path(gp, 0); if (sc->path == NULL) error = ENXIO; else error = g_access(sc->path, dr, dw, de); if (error == 0) { sc->cr += dr; sc->cw += dw; sc->ce += de; if (sc->cr == 0 && sc->cw == 0 && sc->ce == 0) { /* * Last close, remove e-bit on all consumers */ LIST_FOREACH(cp1, &gp->consumer, consumer) g_access(cp1, 0, 0, -1); } } return (error); } static struct g_geom * g_fox_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) { struct g_geom *gp, *gp2; struct g_provider *pp2; struct g_consumer *cp, *cp2; struct g_fox_softc *sc, *sc2; int error; u_int sectorsize; u_char *buf; g_trace(G_T_TOPOLOGY, "fox_taste(%s, %s)", mp->name, pp->name); g_topology_assert(); if (!strcmp(pp->geom->class->name, mp->name)) return (NULL); gp = g_new_geomf(mp, "%s.fox", pp->name); gp->softc = g_malloc(sizeof(struct g_fox_softc), M_WAITOK | M_ZERO); sc = gp->softc; cp = g_new_consumer(gp); g_attach(cp, pp); error = g_access(cp, 1, 0, 0); if (error) { g_free(sc); g_detach(cp); g_destroy_consumer(cp); g_destroy_geom(gp); return(NULL); } do { sectorsize = cp->provider->sectorsize; g_topology_unlock(); buf = g_read_data(cp, 0, sectorsize, NULL); g_topology_lock(); if (buf == NULL) break; if (memcmp(buf, FOX_MAGIC, strlen(FOX_MAGIC))) break; /* * First we need to see if this a new path for an existing fox. */ LIST_FOREACH(gp2, &mp->geom, geom) { sc2 = gp2->softc; if (sc2 == NULL) continue; if (memcmp(buf + 16, sc2->magic, sizeof sc2->magic)) continue; break; } if (gp2 != NULL) { /* * It was. Create a new consumer for that fox, * attach it, and if the fox is open, open this * path with an exclusive count of one. */ printf("Adding path (%s) to fox (%s)\n", pp->name, gp2->name); cp2 = g_new_consumer(gp2); g_attach(cp2, pp); pp2 = LIST_FIRST(&gp2->provider); if (pp2->acr > 0 || pp2->acw > 0 || pp2->ace > 0) { error = g_access(cp2, 0, 0, 1); if (error) { /* * This is bad, or more likely, * the user is doing something stupid */ printf( "WARNING: New path (%s) to fox(%s) not added: %s\n%s", cp2->provider->name, gp2->name, "Could not get exclusive bit.", "WARNING: This indicates a risk of data inconsistency." ); g_detach(cp2); g_destroy_consumer(cp2); } } break; } printf("Creating new fox (%s)\n", pp->name); sc->path = cp; memcpy(sc->magic, buf + 16, sizeof sc->magic); pp2 = g_new_providerf(gp, "%s", gp->name); pp2->mediasize = sc->mediasize = pp->mediasize - pp->sectorsize; pp2->sectorsize = sc->sectorsize = pp->sectorsize; printf("fox %s lock %p\n", gp->name, &sc->lock); mtx_init(&sc->lock, "fox queue", NULL, MTX_DEF); TAILQ_INIT(&sc->queue); g_error_provider(pp2, 0); } while (0); if (buf != NULL) g_free(buf); g_access(cp, -1, 0, 0); if (!LIST_EMPTY(&gp->provider)) { if (!g_fox_once) { g_fox_once = 1; printf( "WARNING: geom_fox (geom %s) is deprecated, " "use gmultipath instead.\n", gp->name); } return (gp); } g_free(gp->softc); g_detach(cp); g_destroy_consumer(cp); g_destroy_geom(gp); return (NULL); } static int g_fox_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp) { struct g_fox_softc *sc; g_topology_assert(); sc = gp->softc; mtx_destroy(&sc->lock); g_free(gp->softc); gp->softc = NULL; g_wither_geom(gp, ENXIO); return (0); } static struct g_class g_fox_class = { .name = FOX_CLASS_NAME, .version = G_VERSION, .taste = g_fox_taste, .destroy_geom = g_fox_destroy_geom, .start = g_fox_start, .spoiled = g_fox_orphan, .orphan = g_fox_orphan, .access= g_fox_access, }; DECLARE_GEOM_CLASS(g_fox_class, g_fox); +MODULE_VERSION(geom_fox, 0); Index: head/sys/geom/geom_map.c =================================================================== --- head/sys/geom/geom_map.c (revision 332386) +++ head/sys/geom/geom_map.c (revision 332387) @@ -1,409 +1,410 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2010-2011 Aleksandr Rybalko * based on geom_redboot.c * Copyright (c) 2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MAP_CLASS_NAME "MAP" #define MAP_MAXSLICE 64 #define MAP_MAX_MARKER_LEN 64 struct g_map_softc { off_t offset[MAP_MAXSLICE]; /* offset in flash */ off_t size[MAP_MAXSLICE]; /* image size in bytes */ off_t entry[MAP_MAXSLICE]; off_t dsize[MAP_MAXSLICE]; uint8_t readonly[MAP_MAXSLICE]; g_access_t *parent_access; }; static int g_map_access(struct g_provider *pp, int dread, int dwrite, int dexcl) { struct g_geom *gp; struct g_slicer *gsp; struct g_map_softc *sc; gp = pp->geom; gsp = gp->softc; sc = gsp->softc; if (dwrite > 0 && sc->readonly[pp->index]) return (EPERM); return (sc->parent_access(pp, dread, dwrite, dexcl)); } static int g_map_start(struct bio *bp) { struct g_provider *pp; struct g_geom *gp; struct g_map_softc *sc; struct g_slicer *gsp; int idx; pp = bp->bio_to; idx = pp->index; gp = pp->geom; gsp = gp->softc; sc = gsp->softc; if (bp->bio_cmd == BIO_GETATTR) { if (g_handleattr_int(bp, MAP_CLASS_NAME "::entry", sc->entry[idx])) { return (1); } if (g_handleattr_int(bp, MAP_CLASS_NAME "::dsize", sc->dsize[idx])) { return (1); } } return (0); } static void g_map_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp __unused, struct g_provider *pp) { struct g_map_softc *sc; struct g_slicer *gsp; gsp = gp->softc; sc = gsp->softc; g_slice_dumpconf(sb, indent, gp, cp, pp); if (pp != NULL) { if (indent == NULL) { sbuf_printf(sb, " entry %jd", (intmax_t)sc->entry[pp->index]); sbuf_printf(sb, " dsize %jd", (intmax_t)sc->dsize[pp->index]); } else { sbuf_printf(sb, "%s%jd\n", indent, (intmax_t)sc->entry[pp->index]); sbuf_printf(sb, "%s%jd\n", indent, (intmax_t)sc->dsize[pp->index]); } } } static int find_marker(struct g_consumer *cp, const char *line, off_t *offset) { off_t search_start, search_offset, search_step; size_t sectorsize; uint8_t *buf; char *op, key[MAP_MAX_MARKER_LEN], search_key[MAP_MAX_MARKER_LEN]; int ret, c; /* Try convert to numeric first */ *offset = strtouq(line, &op, 0); if (*op == '\0') return (0); bzero(search_key, MAP_MAX_MARKER_LEN); sectorsize = cp->provider->sectorsize; #ifdef __LP64__ ret = sscanf(line, "search:%li:%li:%63c", &search_start, &search_step, search_key); #else ret = sscanf(line, "search:%qi:%qi:%63c", &search_start, &search_step, search_key); #endif if (ret < 3) return (1); if (bootverbose) { printf("MAP: search %s for key \"%s\" from 0x%jx, step 0x%jx\n", cp->geom->name, search_key, (intmax_t)search_start, (intmax_t)search_step); } /* error if search_key is empty */ if (strlen(search_key) < 1) return (1); /* sscanf successful, and we start marker search */ for (search_offset = search_start; search_offset < cp->provider->mediasize; search_offset += search_step) { g_topology_unlock(); buf = g_read_data(cp, rounddown(search_offset, sectorsize), roundup(strlen(search_key), sectorsize), NULL); g_topology_lock(); /* * Don't bother doing the rest if buf==NULL; eg derefencing * to assemble 'key'. */ if (buf == NULL) continue; /* Wildcard, replace '.' with byte from data */ /* TODO: add support wildcard escape '\.' */ strncpy(key, search_key, MAP_MAX_MARKER_LEN); for (c = 0; c < MAP_MAX_MARKER_LEN && key[c]; c++) { if (key[c] == '.') { key[c] = ((char *)(buf + (search_offset % sectorsize)))[c]; } } /* Assume buf != NULL here */ if (memcmp(buf + search_offset % sectorsize, key, strlen(search_key)) == 0) { g_free(buf); /* Marker found, so return their offset */ *offset = search_offset; return (0); } g_free(buf); } /* Marker not found */ return (1); } static int g_map_parse_part(struct g_class *mp, struct g_provider *pp, struct g_consumer *cp, struct g_geom *gp, struct g_map_softc *sc, int i) { const char *value, *name; char *op; off_t start, end, offset, size, dsize; int readonly, ret; /* hint.map.0.at="cfid0" - bind to cfid0 media */ if (resource_string_value("map", i, "at", &value) != 0) return (1); /* Check if this correct provider */ if (strcmp(pp->name, value) != 0) return (1); /* * hint.map.0.name="uboot" - name of partition, will be available * as "/dev/map/uboot" */ if (resource_string_value("map", i, "name", &name) != 0) { if (bootverbose) printf("MAP: hint.map.%d has no name\n", i); return (1); } /* * hint.map.0.start="0x00010000" - partition start at 0x00010000 * or hint.map.0.start="search:0x00010000:0x200:marker text" - * search for text "marker text", begin at 0x10000, step 0x200 * until we found marker or end of media reached */ if (resource_string_value("map", i, "start", &value) != 0) { if (bootverbose) printf("MAP: \"%s\" has no start value\n", name); return (1); } if (find_marker(cp, value, &start) != 0) { if (bootverbose) { printf("MAP: \"%s\" can't parse/use start value\n", name); } return (1); } /* like "start" */ if (resource_string_value("map", i, "end", &value) != 0) { if (bootverbose) printf("MAP: \"%s\" has no end value\n", name); return (1); } if (find_marker(cp, value, &end) != 0) { if (bootverbose) { printf("MAP: \"%s\" can't parse/use end value\n", name); } return (1); } /* variable readonly optional, disable write access */ if (resource_int_value("map", i, "readonly", &readonly) != 0) readonly = 0; /* offset of partition data, from partition begin */ if (resource_string_value("map", i, "offset", &value) == 0) { offset = strtouq(value, &op, 0); if (*op != '\0') { if (bootverbose) { printf("MAP: \"%s\" can't parse offset\n", name); } return (1); } } else { offset = 0; } /* partition data size */ if (resource_string_value("map", i, "dsize", &value) == 0) { dsize = strtouq(value, &op, 0); if (*op != '\0') { if (bootverbose) { printf("MAP: \"%s\" can't parse dsize\n", name); } return (1); } } else { dsize = 0; } size = end - start; if (dsize == 0) dsize = size - offset; /* end is 0 or size is 0, No MAP - so next */ if (end < start) { if (bootverbose) { printf("MAP: \"%s\", \"end\" less than " "\"start\"\n", name); } return (1); } if (offset + dsize > size) { if (bootverbose) { printf("MAP: \"%s\", \"dsize\" bigger than " "partition - offset\n", name); } return (1); } ret = g_slice_config(gp, i, G_SLICE_CONFIG_SET, start + offset, dsize, cp->provider->sectorsize, "map/%s", name); if (ret != 0) { if (bootverbose) { printf("MAP: g_slice_config returns %d for \"%s\"\n", ret, name); } return (1); } if (bootverbose) { printf("MAP: %s: %jxx%jx, data=%jxx%jx " "\"/dev/map/%s\"\n", cp->geom->name, (intmax_t)start, (intmax_t)size, (intmax_t)offset, (intmax_t)dsize, name); } sc->offset[i] = start; sc->size[i] = size; sc->entry[i] = offset; sc->dsize[i] = dsize; sc->readonly[i] = readonly ? 1 : 0; return (0); } static struct g_geom * g_map_taste(struct g_class *mp, struct g_provider *pp, int insist __unused) { struct g_map_softc *sc; struct g_consumer *cp; struct g_geom *gp; int i; g_trace(G_T_TOPOLOGY, "map_taste(%s,%s)", mp->name, pp->name); g_topology_assert(); if (strcmp(pp->geom->class->name, MAP_CLASS_NAME) == 0) return (NULL); gp = g_slice_new(mp, MAP_MAXSLICE, pp, &cp, &sc, sizeof(*sc), g_map_start); if (gp == NULL) return (NULL); /* interpose our access method */ sc->parent_access = gp->access; gp->access = g_map_access; for (i = 0; i < MAP_MAXSLICE; i++) g_map_parse_part(mp, pp, cp, gp, sc, i); g_access(cp, -1, 0, 0); if (LIST_EMPTY(&gp->provider)) { if (bootverbose) printf("MAP: No valid partition found at %s\n", pp->name); g_slice_spoiled(cp); return (NULL); } return (gp); } static void g_map_config(struct gctl_req *req, struct g_class *mp, const char *verb) { struct g_geom *gp; g_topology_assert(); gp = gctl_get_geom(req, mp, "geom"); if (gp == NULL) return; gctl_error(req, "Unknown verb"); } static struct g_class g_map_class = { .name = MAP_CLASS_NAME, .version = G_VERSION, .taste = g_map_taste, .dumpconf = g_map_dumpconf, .ctlreq = g_map_config, }; DECLARE_GEOM_CLASS(g_map_class, g_map); +MODULE_VERSION(geom_map, 0); Index: head/sys/geom/geom_mbr.c =================================================================== --- head/sys/geom/geom_mbr.c (revision 332386) +++ head/sys/geom/geom_mbr.c (revision 332387) @@ -1,530 +1,531 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002 Poul-Henning Kamp * Copyright (c) 2002 Networks Associates Technology, Inc. * All rights reserved. * * This software was developed for the FreeBSD Project by Poul-Henning Kamp * and NAI Labs, the Security Research Division of Network Associates, Inc. * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the * DARPA CHATS research program. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include FEATURE(geom_mbr, "GEOM DOS/MBR partitioning support"); #define MBR_CLASS_NAME "MBR" #define MBREXT_CLASS_NAME "MBREXT" static int g_mbr_once = 0; static struct dos_partition historical_bogus_partition_table[NDOSPART] = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, { 0x80, 0, 1, 0, DOSPTYP_386BSD, 255, 255, 255, 0, 50000, }, }; static struct dos_partition historical_bogus_partition_table_fixed[NDOSPART] = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, { 0x80, 0, 1, 0, DOSPTYP_386BSD, 254, 255, 255, 0, 50000, }, }; static void g_mbr_print(int i, struct dos_partition *dp) { printf("[%d] f:%02x typ:%d", i, dp->dp_flag, dp->dp_typ); printf(" s(CHS):%d/%d/%d", DPCYL(dp->dp_scyl, dp->dp_ssect), dp->dp_shd, DPSECT(dp->dp_ssect)); printf(" e(CHS):%d/%d/%d", DPCYL(dp->dp_ecyl, dp->dp_esect), dp->dp_ehd, DPSECT(dp->dp_esect)); printf(" s:%d l:%d\n", dp->dp_start, dp->dp_size); } struct g_mbr_softc { int type [NDOSPART]; u_int sectorsize; u_char sec0[512]; u_char slicesum[16]; }; /* * XXX: Add gctl_req arg and give good error msgs. * XXX: Check that length argument does not bring boot code inside any slice. */ static int g_mbr_modify(struct g_geom *gp, struct g_mbr_softc *ms, u_char *sec0, int len __unused) { int i, error; off_t l[NDOSPART]; struct dos_partition ndp[NDOSPART], *dp; MD5_CTX md5sum; g_topology_assert(); if (sec0[0x1fe] != 0x55 && sec0[0x1ff] != 0xaa) return (EBUSY); dp = ndp; for (i = 0; i < NDOSPART; i++) { dos_partition_dec( sec0 + DOSPARTOFF + i * sizeof(struct dos_partition), dp + i); } if ((!bcmp(dp, historical_bogus_partition_table, sizeof historical_bogus_partition_table)) || (!bcmp(dp, historical_bogus_partition_table_fixed, sizeof historical_bogus_partition_table_fixed))) { /* * We will not allow people to write these from "the inside", * Since properly selfdestructing takes too much code. If * people really want to do this, they cannot have any * providers of this geom open, and in that case they can just * as easily overwrite the MBR in the parent device. */ return(EBUSY); } for (i = 0; i < NDOSPART; i++) { /* * A Protective MBR (PMBR) has a single partition of * type 0xEE spanning the whole disk. Such a MBR * protects a GPT on the disk from MBR tools that * don't know anything about GPT. We're interpreting * it a bit more loosely: any partition of type 0xEE * is to be skipped as it doesn't contain any data * that we should care about. We still allow other * partitions to be present in the MBR. A PMBR will * be handled correctly anyway. */ if (dp[i].dp_typ == DOSPTYP_PMBR) l[i] = 0; else if (dp[i].dp_flag != 0 && dp[i].dp_flag != 0x80) l[i] = 0; else if (dp[i].dp_typ == 0) l[i] = 0; else l[i] = (off_t)dp[i].dp_size * ms->sectorsize; error = g_slice_config(gp, i, G_SLICE_CONFIG_CHECK, (off_t)dp[i].dp_start * ms->sectorsize, l[i], ms->sectorsize, "%ss%d", gp->name, 1 + i); if (error) return (error); } for (i = 0; i < NDOSPART; i++) { ms->type[i] = dp[i].dp_typ; g_slice_config(gp, i, G_SLICE_CONFIG_SET, (off_t)dp[i].dp_start * ms->sectorsize, l[i], ms->sectorsize, "%ss%d", gp->name, 1 + i); } bcopy(sec0, ms->sec0, 512); /* * Calculate MD5 from the first sector and use it for avoiding * recursive slices creation. */ MD5Init(&md5sum); MD5Update(&md5sum, ms->sec0, sizeof(ms->sec0)); MD5Final(ms->slicesum, &md5sum); return (0); } static int g_mbr_ioctl(struct g_provider *pp, u_long cmd, void *data, int fflag, struct thread *td) { struct g_geom *gp; struct g_mbr_softc *ms; struct g_slicer *gsp; struct g_consumer *cp; int error, opened; gp = pp->geom; gsp = gp->softc; ms = gsp->softc; opened = 0; error = 0; switch(cmd) { case DIOCSMBR: { if (!(fflag & FWRITE)) return (EPERM); g_topology_lock(); cp = LIST_FIRST(&gp->consumer); if (cp->acw == 0) { error = g_access(cp, 0, 1, 0); if (error == 0) opened = 1; } if (!error) error = g_mbr_modify(gp, ms, data, 512); if (!error) error = g_write_data(cp, 0, data, 512); if (opened) g_access(cp, 0, -1 , 0); g_topology_unlock(); return(error); } default: return (ENOIOCTL); } } static int g_mbr_start(struct bio *bp) { struct g_provider *pp; struct g_geom *gp; struct g_mbr_softc *mp; struct g_slicer *gsp; int idx; pp = bp->bio_to; idx = pp->index; gp = pp->geom; gsp = gp->softc; mp = gsp->softc; if (bp->bio_cmd == BIO_GETATTR) { if (g_handleattr_int(bp, "MBR::type", mp->type[idx])) return (1); if (g_handleattr_off_t(bp, "MBR::offset", gsp->slices[idx].offset)) return (1); if (g_handleattr(bp, "MBR::slicesum", mp->slicesum, sizeof(mp->slicesum))) return (1); } return (0); } static void g_mbr_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp __unused, struct g_provider *pp) { struct g_mbr_softc *mp; struct g_slicer *gsp; gsp = gp->softc; mp = gsp->softc; g_slice_dumpconf(sb, indent, gp, cp, pp); if (pp != NULL) { if (indent == NULL) sbuf_printf(sb, " ty %d", mp->type[pp->index]); else sbuf_printf(sb, "%s%d\n", indent, mp->type[pp->index]); } } static struct g_geom * g_mbr_taste(struct g_class *mp, struct g_provider *pp, int insist) { struct g_geom *gp; struct g_consumer *cp; int error; struct g_mbr_softc *ms; u_int fwsectors, sectorsize; u_char *buf; u_char hash[16]; MD5_CTX md5sum; g_trace(G_T_TOPOLOGY, "mbr_taste(%s,%s)", mp->name, pp->name); g_topology_assert(); if (!strcmp(pp->geom->class->name, MBR_CLASS_NAME)) return (NULL); gp = g_slice_new(mp, NDOSPART, pp, &cp, &ms, sizeof *ms, g_mbr_start); if (gp == NULL) return (NULL); g_topology_unlock(); do { error = g_getattr("GEOM::fwsectors", cp, &fwsectors); if (error) fwsectors = 17; sectorsize = cp->provider->sectorsize; if (sectorsize < 512) break; ms->sectorsize = sectorsize; buf = g_read_data(cp, 0, sectorsize, NULL); if (buf == NULL) break; /* * Calculate MD5 from the first sector and use it for avoiding * recursive slices creation. */ bcopy(buf, ms->sec0, 512); MD5Init(&md5sum); MD5Update(&md5sum, ms->sec0, sizeof(ms->sec0)); MD5Final(ms->slicesum, &md5sum); error = g_getattr("MBR::slicesum", cp, &hash); if (!error && !bcmp(ms->slicesum, hash, sizeof(hash))) { g_free(buf); break; } g_topology_lock(); g_mbr_modify(gp, ms, buf, 512); g_topology_unlock(); g_free(buf); break; } while (0); g_topology_lock(); g_access(cp, -1, 0, 0); if (LIST_EMPTY(&gp->provider)) { g_slice_spoiled(cp); return (NULL); } if (!g_mbr_once) { g_mbr_once = 1; printf( "WARNING: geom_mbr (geom %s) is deprecated, " "use gpart instead.\n", gp->name); } return (gp); } static void g_mbr_config(struct gctl_req *req, struct g_class *mp, const char *verb) { struct g_geom *gp; struct g_consumer *cp; struct g_mbr_softc *ms; struct g_slicer *gsp; int opened = 0, error = 0; void *data; int len; g_topology_assert(); gp = gctl_get_geom(req, mp, "geom"); if (gp == NULL) return; if (strcmp(verb, "write MBR")) { gctl_error(req, "Unknown verb"); return; } gsp = gp->softc; ms = gsp->softc; data = gctl_get_param(req, "data", &len); if (data == NULL) return; if (len < 512 || (len % 512)) { gctl_error(req, "Wrong request length"); return; } cp = LIST_FIRST(&gp->consumer); if (cp->acw == 0) { error = g_access(cp, 0, 1, 0); if (error == 0) opened = 1; } if (!error) error = g_mbr_modify(gp, ms, data, len); if (error) gctl_error(req, "conflict with open slices"); if (!error) error = g_write_data(cp, 0, data, len); if (error) gctl_error(req, "sector zero write failed"); if (opened) g_access(cp, 0, -1 , 0); return; } static struct g_class g_mbr_class = { .name = MBR_CLASS_NAME, .version = G_VERSION, .taste = g_mbr_taste, .dumpconf = g_mbr_dumpconf, .ctlreq = g_mbr_config, .ioctl = g_mbr_ioctl, }; DECLARE_GEOM_CLASS(g_mbr_class, g_mbr); #define NDOSEXTPART 32 struct g_mbrext_softc { int type [NDOSEXTPART]; }; static int g_mbrext_start(struct bio *bp) { struct g_provider *pp; struct g_geom *gp; struct g_mbrext_softc *mp; struct g_slicer *gsp; int idx; pp = bp->bio_to; idx = pp->index; gp = pp->geom; gsp = gp->softc; mp = gsp->softc; if (bp->bio_cmd == BIO_GETATTR) { if (g_handleattr_int(bp, "MBR::type", mp->type[idx])) return (1); } return (0); } static void g_mbrext_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp __unused, struct g_provider *pp) { struct g_mbrext_softc *mp; struct g_slicer *gsp; g_slice_dumpconf(sb, indent, gp, cp, pp); gsp = gp->softc; mp = gsp->softc; if (pp != NULL) { if (indent == NULL) sbuf_printf(sb, " ty %d", mp->type[pp->index]); else sbuf_printf(sb, "%s%d\n", indent, mp->type[pp->index]); } } static struct g_geom * g_mbrext_taste(struct g_class *mp, struct g_provider *pp, int insist __unused) { struct g_geom *gp; struct g_consumer *cp; int error, i, slice; struct g_mbrext_softc *ms; off_t off; u_char *buf; struct dos_partition dp[4]; u_int fwsectors, sectorsize; g_trace(G_T_TOPOLOGY, "g_mbrext_taste(%s,%s)", mp->name, pp->name); g_topology_assert(); if (strcmp(pp->geom->class->name, MBR_CLASS_NAME)) return (NULL); gp = g_slice_new(mp, NDOSEXTPART, pp, &cp, &ms, sizeof *ms, g_mbrext_start); if (gp == NULL) return (NULL); g_topology_unlock(); off = 0; slice = 0; do { error = g_getattr("MBR::type", cp, &i); if (error || (i != DOSPTYP_EXT && i != DOSPTYP_EXTLBA)) break; error = g_getattr("GEOM::fwsectors", cp, &fwsectors); if (error) fwsectors = 17; sectorsize = cp->provider->sectorsize; if (sectorsize != 512) break; for (;;) { buf = g_read_data(cp, off, sectorsize, NULL); if (buf == NULL) break; if (buf[0x1fe] != 0x55 && buf[0x1ff] != 0xaa) { g_free(buf); break; } for (i = 0; i < NDOSPART; i++) dos_partition_dec( buf + DOSPARTOFF + i * sizeof(struct dos_partition), dp + i); g_free(buf); if (0 && bootverbose) { printf("MBREXT Slice %d on %s:\n", slice + 5, gp->name); g_mbr_print(0, dp); g_mbr_print(1, dp + 1); } if ((dp[0].dp_flag & 0x7f) == 0 && dp[0].dp_size != 0 && dp[0].dp_typ != 0) { g_topology_lock(); g_slice_config(gp, slice, G_SLICE_CONFIG_SET, (((off_t)dp[0].dp_start) << 9ULL) + off, ((off_t)dp[0].dp_size) << 9ULL, sectorsize, "%*.*s%d", (int)strlen(gp->name) - 1, (int)strlen(gp->name) - 1, gp->name, slice + 5); g_topology_unlock(); ms->type[slice] = dp[0].dp_typ; slice++; } if (dp[1].dp_flag != 0) break; if (dp[1].dp_typ != DOSPTYP_EXT && dp[1].dp_typ != DOSPTYP_EXTLBA) break; if (dp[1].dp_size == 0) break; off = ((off_t)dp[1].dp_start) << 9ULL; } break; } while (0); g_topology_lock(); g_access(cp, -1, 0, 0); if (LIST_EMPTY(&gp->provider)) { g_slice_spoiled(cp); return (NULL); } return (gp); } static struct g_class g_mbrext_class = { .name = MBREXT_CLASS_NAME, .version = G_VERSION, .taste = g_mbrext_taste, .dumpconf = g_mbrext_dumpconf, }; DECLARE_GEOM_CLASS(g_mbrext_class, g_mbrext); +MODULE_VERSION(geom_mbr, 0); Index: head/sys/geom/geom_redboot.c =================================================================== --- head/sys/geom/geom_redboot.c (revision 332386) +++ head/sys/geom/geom_redboot.c (revision 332387) @@ -1,359 +1,360 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define REDBOOT_CLASS_NAME "REDBOOT" struct fis_image_desc { uint8_t name[16]; /* null-terminated name */ uint32_t offset; /* offset in flash */ uint32_t addr; /* address in memory */ uint32_t size; /* image size in bytes */ uint32_t entry; /* offset in image for entry point */ uint32_t dsize; /* data size in bytes */ uint8_t pad[256-(16+7*sizeof(uint32_t)+sizeof(void*))]; struct fis_image_desc *next; /* linked list (in memory) */ uint32_t dsum; /* descriptor checksum */ uint32_t fsum; /* checksum over image data */ }; #define FISDIR_NAME "FIS directory" #define REDBCFG_NAME "RedBoot config" #define REDBOOT_NAME "RedBoot" #define REDBOOT_MAXSLICE 64 #define REDBOOT_MAXOFF \ (REDBOOT_MAXSLICE*sizeof(struct fis_image_desc)) struct g_redboot_softc { uint32_t entry[REDBOOT_MAXSLICE]; uint32_t dsize[REDBOOT_MAXSLICE]; uint8_t readonly[REDBOOT_MAXSLICE]; g_access_t *parent_access; }; static void g_redboot_print(int i, struct fis_image_desc *fd) { printf("[%2d] \"%-15.15s\" %08x:%08x", i, fd->name, fd->offset, fd->size); printf(" addr %08x entry %08x\n", fd->addr, fd->entry); printf(" dsize 0x%x dsum 0x%x fsum 0x%x\n", fd->dsize, fd->dsum, fd->fsum); } static int g_redboot_ioctl(struct g_provider *pp, u_long cmd, void *data, int fflag, struct thread *td) { return (ENOIOCTL); } static int g_redboot_access(struct g_provider *pp, int dread, int dwrite, int dexcl) { struct g_geom *gp = pp->geom; struct g_slicer *gsp = gp->softc; struct g_redboot_softc *sc = gsp->softc; if (dwrite > 0 && sc->readonly[pp->index]) return (EPERM); return (sc->parent_access(pp, dread, dwrite, dexcl)); } static int g_redboot_start(struct bio *bp) { struct g_provider *pp; struct g_geom *gp; struct g_redboot_softc *sc; struct g_slicer *gsp; int idx; pp = bp->bio_to; idx = pp->index; gp = pp->geom; gsp = gp->softc; sc = gsp->softc; if (bp->bio_cmd == BIO_GETATTR) { if (g_handleattr_int(bp, REDBOOT_CLASS_NAME "::entry", sc->entry[idx])) return (1); if (g_handleattr_int(bp, REDBOOT_CLASS_NAME "::dsize", sc->dsize[idx])) return (1); } return (0); } static void g_redboot_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp __unused, struct g_provider *pp) { struct g_redboot_softc *sc; struct g_slicer *gsp; gsp = gp->softc; sc = gsp->softc; g_slice_dumpconf(sb, indent, gp, cp, pp); if (pp != NULL) { if (indent == NULL) { sbuf_printf(sb, " entry %d", sc->entry[pp->index]); sbuf_printf(sb, " dsize %d", sc->dsize[pp->index]); } else { sbuf_printf(sb, "%s%d\n", indent, sc->entry[pp->index]); sbuf_printf(sb, "%s%d\n", indent, sc->dsize[pp->index]); } } } #include static int nameok(const char name[16]) { int i; /* descriptor names are null-terminated printable ascii */ for (i = 0; i < 15; i++) if (!isprint(name[i])) break; return (name[i] == '\0'); } static struct fis_image_desc * parse_fis_directory(u_char *buf, size_t bufsize, off_t offset, uint32_t offmask) { #define match(a,b) (bcmp(a, b, sizeof(b)-1) == 0) struct fis_image_desc *fd, *efd; struct fis_image_desc *fisdir, *redbcfg; struct fis_image_desc *head, **tail; int i; fd = (struct fis_image_desc *)buf; efd = fd + (bufsize / sizeof(struct fis_image_desc)); #if 0 /* * Find the start of the FIS table. */ while (fd < efd && fd->name[0] != 0xff) fd++; if (fd == efd) return (NULL); if (bootverbose) printf("RedBoot FIS table starts at 0x%jx\n", offset + fd - (struct fis_image_desc *) buf); #endif /* * Scan forward collecting entries in a list. */ fisdir = redbcfg = NULL; *(tail = &head) = NULL; for (i = 0; fd < efd; i++, fd++) { if (fd->name[0] == 0xff) continue; if (match(fd->name, FISDIR_NAME)) fisdir = fd; else if (match(fd->name, REDBCFG_NAME)) redbcfg = fd; if (nameok(fd->name)) { /* * NB: flash address includes platform mapping; * strip it so we have only a flash offset. */ fd->offset &= offmask; if (bootverbose) g_redboot_print(i, fd); *tail = fd; *(tail = &fd->next) = NULL; } } if (fisdir == NULL) { if (bootverbose) printf("No RedBoot FIS table located at %lu\n", (long) offset); return (NULL); } if (redbcfg != NULL && fisdir->offset + fisdir->size == redbcfg->offset) { /* * Merged FIS/RedBoot config directory. */ if (bootverbose) printf("FIS/RedBoot merged at 0x%jx (not yet)\n", offset + fisdir->offset); /* XXX */ } return head; #undef match } static struct g_geom * g_redboot_taste(struct g_class *mp, struct g_provider *pp, int insist) { struct g_geom *gp; struct g_consumer *cp; struct g_redboot_softc *sc; int error, sectorsize, i; struct fis_image_desc *fd, *head; uint32_t offmask; u_int blksize; /* NB: flash block size stored as stripesize */ u_char *buf; off_t offset; const char *value; char *op; offset = 0; if (resource_string_value("redboot", 0, "fisoffset", &value) == 0) { offset = strtouq(value, &op, 0); if (*op != '\0') { offset = 0; } } g_trace(G_T_TOPOLOGY, "redboot_taste(%s,%s)", mp->name, pp->name); g_topology_assert(); if (!strcmp(pp->geom->class->name, REDBOOT_CLASS_NAME)) return (NULL); /* XXX only taste flash providers */ if (strncmp(pp->name, "cfi", 3) && strncmp(pp->name, "flash/spi", 9)) return (NULL); gp = g_slice_new(mp, REDBOOT_MAXSLICE, pp, &cp, &sc, sizeof(*sc), g_redboot_start); if (gp == NULL) return (NULL); /* interpose our access method */ sc->parent_access = gp->access; gp->access = g_redboot_access; sectorsize = cp->provider->sectorsize; blksize = cp->provider->stripesize; if (powerof2(cp->provider->mediasize)) offmask = cp->provider->mediasize-1; else offmask = 0xffffffff; /* XXX */ if (bootverbose) printf("%s: mediasize %ld secsize %d blksize %d offmask 0x%x\n", __func__, (long) cp->provider->mediasize, sectorsize, blksize, offmask); if (sectorsize < sizeof(struct fis_image_desc) || (sectorsize % sizeof(struct fis_image_desc))) return (NULL); g_topology_unlock(); head = NULL; if(offset == 0) offset = cp->provider->mediasize - blksize; again: buf = g_read_data(cp, offset, blksize, NULL); if (buf != NULL) head = parse_fis_directory(buf, blksize, offset, offmask); if (head == NULL && offset != 0) { if (buf != NULL) g_free(buf); offset = 0; /* check the front */ goto again; } g_topology_lock(); if (head == NULL) { if (buf != NULL) g_free(buf); return NULL; } /* * Craft a slice for each entry. */ for (fd = head, i = 0; fd != NULL; fd = fd->next) { if (fd->name[0] == '\0') continue; error = g_slice_config(gp, i, G_SLICE_CONFIG_SET, fd->offset, fd->size, sectorsize, "redboot/%s", fd->name); if (error) printf("%s: g_slice_config returns %d for \"%s\"\n", __func__, error, fd->name); sc->entry[i] = fd->entry; sc->dsize[i] = fd->dsize; /* disallow writing hard-to-recover entries */ sc->readonly[i] = (strcmp(fd->name, FISDIR_NAME) == 0) || (strcmp(fd->name, REDBOOT_NAME) == 0); i++; } g_free(buf); g_access(cp, -1, 0, 0); if (LIST_EMPTY(&gp->provider)) { g_slice_spoiled(cp); return (NULL); } return (gp); } static void g_redboot_config(struct gctl_req *req, struct g_class *mp, const char *verb) { struct g_geom *gp; g_topology_assert(); gp = gctl_get_geom(req, mp, "geom"); if (gp == NULL) return; gctl_error(req, "Unknown verb"); } static struct g_class g_redboot_class = { .name = REDBOOT_CLASS_NAME, .version = G_VERSION, .taste = g_redboot_taste, .dumpconf = g_redboot_dumpconf, .ctlreq = g_redboot_config, .ioctl = g_redboot_ioctl, }; DECLARE_GEOM_CLASS(g_redboot_class, g_redboot); +MODULE_VERSION(geom_redboot, 0); Index: head/sys/geom/geom_sunlabel.c =================================================================== --- head/sys/geom/geom_sunlabel.c (revision 332386) +++ head/sys/geom/geom_sunlabel.c (revision 332387) @@ -1,336 +1,337 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2002 Poul-Henning Kamp * Copyright (c) 2002 Networks Associates Technology, Inc. * All rights reserved. * * This software was developed for the FreeBSD Project by Poul-Henning Kamp * and NAI Labs, the Security Research Division of Network Associates, Inc. * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the * DARPA CHATS research program. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The names of the authors may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include FEATURE(geom_sunlabel, "GEOM Sun/Solaris partitioning support"); #define SUNLABEL_CLASS_NAME "SUN" struct g_sunlabel_softc { int sectorsize; int nheads; int nsects; int nalt; u_char labelsum[16]; }; static int g_sunlabel_once = 0; static int g_sunlabel_modify(struct g_geom *gp, struct g_sunlabel_softc *ms, u_char *sec0) { int i, error; u_int u, v, csize; struct sun_disklabel sl; MD5_CTX md5sum; error = sunlabel_dec(sec0, &sl); if (error) return (error); csize = sl.sl_ntracks * sl.sl_nsectors; for (i = 0; i < SUN_NPART; i++) { v = sl.sl_part[i].sdkp_cyloffset; u = sl.sl_part[i].sdkp_nsectors; error = g_slice_config(gp, i, G_SLICE_CONFIG_CHECK, ((off_t)v * csize) << 9ULL, ((off_t)u) << 9ULL, ms->sectorsize, "%s%c", gp->name, 'a' + i); if (error) return (error); } for (i = 0; i < SUN_NPART; i++) { v = sl.sl_part[i].sdkp_cyloffset; u = sl.sl_part[i].sdkp_nsectors; g_slice_config(gp, i, G_SLICE_CONFIG_SET, ((off_t)v * csize) << 9ULL, ((off_t)u) << 9ULL, ms->sectorsize, "%s%c", gp->name, 'a' + i); } ms->nalt = sl.sl_acylinders; ms->nheads = sl.sl_ntracks; ms->nsects = sl.sl_nsectors; /* * Calculate MD5 from the first sector and use it for avoiding * recursive labels creation. */ MD5Init(&md5sum); MD5Update(&md5sum, sec0, ms->sectorsize); MD5Final(ms->labelsum, &md5sum); return (0); } static void g_sunlabel_hotwrite(void *arg, int flag) { struct bio *bp; struct g_geom *gp; struct g_slicer *gsp; struct g_slice *gsl; struct g_sunlabel_softc *ms; u_char *p; int error; KASSERT(flag != EV_CANCEL, ("g_sunlabel_hotwrite cancelled")); bp = arg; gp = bp->bio_to->geom; gsp = gp->softc; ms = gsp->softc; gsl = &gsp->slices[bp->bio_to->index]; /* * XXX: For all practical purposes, this whould be equvivalent to * XXX: "p = (u_char *)bp->bio_data;" because the label is always * XXX: in the first sector and we refuse sectors smaller than the * XXX: label. */ p = (u_char *)bp->bio_data - (bp->bio_offset + gsl->offset); error = g_sunlabel_modify(gp, ms, p); if (error) { g_io_deliver(bp, EPERM); return; } g_slice_finish_hot(bp); } static void g_sunlabel_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp __unused, struct g_provider *pp) { struct g_slicer *gsp; struct g_sunlabel_softc *ms; gsp = gp->softc; ms = gsp->softc; g_slice_dumpconf(sb, indent, gp, cp, pp); if (indent == NULL) { sbuf_printf(sb, " sc %u hd %u alt %u", ms->nsects, ms->nheads, ms->nalt); } } struct g_hh01 { struct g_geom *gp; struct g_sunlabel_softc *ms; u_char *label; int error; }; static void g_sunlabel_callconfig(void *arg, int flag) { struct g_hh01 *hp; hp = arg; hp->error = g_sunlabel_modify(hp->gp, hp->ms, hp->label); if (!hp->error) hp->error = g_write_data(LIST_FIRST(&hp->gp->consumer), 0, hp->label, SUN_SIZE); } /* * NB! curthread is user process which GCTL'ed. */ static void g_sunlabel_config(struct gctl_req *req, struct g_class *mp, const char *verb) { u_char *label; int error, i; struct g_hh01 h0h0; struct g_slicer *gsp; struct g_geom *gp; struct g_consumer *cp; g_topology_assert(); gp = gctl_get_geom(req, mp, "geom"); if (gp == NULL) return; cp = LIST_FIRST(&gp->consumer); gsp = gp->softc; if (!strcmp(verb, "write label")) { label = gctl_get_paraml(req, "label", SUN_SIZE); if (label == NULL) return; h0h0.gp = gp; h0h0.ms = gsp->softc; h0h0.label = label; h0h0.error = -1; /* XXX: Does this reference register with our selfdestruct code ? */ error = g_access(cp, 1, 1, 1); if (error) { gctl_error(req, "could not access consumer"); return; } g_sunlabel_callconfig(&h0h0, 0); g_access(cp, -1, -1, -1); } else if (!strcmp(verb, "write bootcode")) { label = gctl_get_paraml(req, "bootcode", SUN_BOOTSIZE); if (label == NULL) return; /* XXX: Does this reference register with our selfdestruct code ? */ error = g_access(cp, 1, 1, 1); if (error) { gctl_error(req, "could not access consumer"); return; } for (i = 0; i < SUN_NPART; i++) { if (gsp->slices[i].length <= SUN_BOOTSIZE) continue; g_write_data(cp, gsp->slices[i].offset + SUN_SIZE, label + SUN_SIZE, SUN_BOOTSIZE - SUN_SIZE); } g_access(cp, -1, -1, -1); } else { gctl_error(req, "Unknown verb parameter"); } } static int g_sunlabel_start(struct bio *bp) { struct g_sunlabel_softc *mp; struct g_slicer *gsp; gsp = bp->bio_to->geom->softc; mp = gsp->softc; if (bp->bio_cmd == BIO_GETATTR) { if (g_handleattr(bp, "SUN::labelsum", mp->labelsum, sizeof(mp->labelsum))) return (1); } return (0); } static struct g_geom * g_sunlabel_taste(struct g_class *mp, struct g_provider *pp, int flags) { struct g_geom *gp; struct g_consumer *cp; struct g_sunlabel_softc *ms; struct g_slicer *gsp; u_char *buf, hash[16]; MD5_CTX md5sum; int error; g_trace(G_T_TOPOLOGY, "g_sunlabel_taste(%s,%s)", mp->name, pp->name); g_topology_assert(); if (flags == G_TF_NORMAL && !strcmp(pp->geom->class->name, SUNLABEL_CLASS_NAME)) return (NULL); gp = g_slice_new(mp, 8, pp, &cp, &ms, sizeof *ms, g_sunlabel_start); if (gp == NULL) return (NULL); gsp = gp->softc; do { ms->sectorsize = cp->provider->sectorsize; if (ms->sectorsize < 512) break; g_topology_unlock(); buf = g_read_data(cp, 0, ms->sectorsize, NULL); g_topology_lock(); if (buf == NULL) break; /* * Calculate MD5 from the first sector and use it for avoiding * recursive labels creation. */ MD5Init(&md5sum); MD5Update(&md5sum, buf, ms->sectorsize); MD5Final(ms->labelsum, &md5sum); error = g_getattr("SUN::labelsum", cp, &hash); if (!error && !bcmp(ms->labelsum, hash, sizeof(hash))) { g_free(buf); break; } g_sunlabel_modify(gp, ms, buf); g_free(buf); break; } while (0); g_access(cp, -1, 0, 0); if (LIST_EMPTY(&gp->provider)) { g_slice_spoiled(cp); return (NULL); } g_slice_conf_hot(gp, 0, 0, SUN_SIZE, G_SLICE_HOT_ALLOW, G_SLICE_HOT_DENY, G_SLICE_HOT_CALL); gsp->hot = g_sunlabel_hotwrite; if (!g_sunlabel_once) { g_sunlabel_once = 1; printf( "WARNING: geom_sunlabel (geom %s) is deprecated, " "use gpart instead.\n", gp->name); } return (gp); } static struct g_class g_sunlabel_class = { .name = SUNLABEL_CLASS_NAME, .version = G_VERSION, .taste = g_sunlabel_taste, .ctlreq = g_sunlabel_config, .dumpconf = g_sunlabel_dumpconf, }; DECLARE_GEOM_CLASS(g_sunlabel_class, g_sunlabel); +MODULE_VERSION(geom_sunlabel, 0); Index: head/sys/geom/geom_vol_ffs.c =================================================================== --- head/sys/geom/geom_vol_ffs.c (revision 332386) +++ head/sys/geom/geom_vol_ffs.c (revision 332387) @@ -1,166 +1,167 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002, 2003 Gordon Tetlow * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include FEATURE(geom_vol, "GEOM support for volume names from UFS superblock"); #define VOL_FFS_CLASS_NAME "VOL_FFS" static int superblocks[] = SBLOCKSEARCH; static int g_vol_ffs_once; struct g_vol_ffs_softc { char * vol; }; static int g_vol_ffs_start(struct bio *bp __unused) { return(0); } static struct g_geom * g_vol_ffs_taste(struct g_class *mp, struct g_provider *pp, int flags) { struct g_geom *gp; struct g_consumer *cp; struct g_vol_ffs_softc *ms; int sb, superblock; struct fs *fs; g_trace(G_T_TOPOLOGY, "vol_taste(%s,%s)", mp->name, pp->name); g_topology_assert(); /* * XXX This is a really weak way to make sure we don't recurse. * Probably ought to use BIO_GETATTR to check for this. */ if (flags == G_TF_NORMAL && !strcmp(pp->geom->class->name, VOL_FFS_CLASS_NAME)) return (NULL); gp = g_slice_new(mp, 1, pp, &cp, &ms, sizeof(*ms), g_vol_ffs_start); if (gp == NULL) return (NULL); g_topology_unlock(); /* * Walk through the standard places that superblocks hide and look * for UFS magic. If we find magic, then check that the size in the * superblock corresponds to the size of the underlying provider. * Finally, look for a volume label and create an appropriate * provider based on that. */ for (sb=0; (superblock = superblocks[sb]) != -1; sb++) { /* * Take care not to issue an invalid I/O request. The * offset and size of the superblock candidate must be * multiples of the provider's sector size, otherwise an * FFS can't exist on the provider anyway. */ if (superblock % cp->provider->sectorsize != 0 || SBLOCKSIZE % cp->provider->sectorsize != 0) continue; fs = (struct fs *) g_read_data(cp, superblock, SBLOCKSIZE, NULL); if (fs == NULL) continue; /* Check for magic and make sure things are the right size */ if (fs->fs_magic == FS_UFS1_MAGIC) { if (fs->fs_old_size * fs->fs_fsize != (int32_t) pp->mediasize) { g_free(fs); continue; } } else if (fs->fs_magic == FS_UFS2_MAGIC) { if (fs->fs_size * fs->fs_fsize != (int64_t) pp->mediasize) { g_free(fs); continue; } } else { g_free(fs); continue; } /* Check for volume label */ if (fs->fs_volname[0] == '\0') { g_free(fs); continue; } /* XXX We need to check for namespace conflicts. */ /* XXX How do you handle a mirror set? */ /* XXX We don't validate the volume name. */ g_topology_lock(); /* Alright, we have a label and a volume name, reconfig. */ g_slice_config(gp, 0, G_SLICE_CONFIG_SET, (off_t) 0, pp->mediasize, pp->sectorsize, "vol/%s", fs->fs_volname); g_free(fs); g_topology_unlock(); break; } g_topology_lock(); g_access(cp, -1, 0, 0); if (LIST_EMPTY(&gp->provider)) { g_slice_spoiled(cp); return (NULL); } if (!g_vol_ffs_once) { g_vol_ffs_once = 1; printf( "WARNING: geom_vol_Ffs (geom %s) is deprecated, " "use glabel instead.\n", gp->name); } return (gp); } static struct g_class g_vol_ffs_class = { .name = VOL_FFS_CLASS_NAME, .version = G_VERSION, .taste = g_vol_ffs_taste, }; DECLARE_GEOM_CLASS(g_vol_ffs_class, g_vol_ffs); +MODULE_VERSION(geom_vol_ffs, 0); Index: head/sys/geom/journal/g_journal_ufs.c =================================================================== --- head/sys/geom/journal/g_journal_ufs.c (revision 332386) +++ head/sys/geom/journal/g_journal_ufs.c (revision 332387) @@ -1,103 +1,104 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2005-2006 Pawel Jakub Dawidek * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include static int g_journal_ufs_clean(struct mount *mp) { struct ufsmount *ump; struct fs *fs; int flags; ump = VFSTOUFS(mp); fs = ump->um_fs; flags = fs->fs_flags; fs->fs_flags &= ~(FS_UNCLEAN | FS_NEEDSFSCK); ffs_sbupdate(ump, MNT_WAIT, 1); fs->fs_flags = flags; return (0); } static void g_journal_ufs_dirty(struct g_consumer *cp) { struct fs *fs; int error; fs = NULL; if (SBLOCKSIZE % cp->provider->sectorsize != 0 || ffs_sbget(cp, &fs, -1, M_GEOM, g_use_g_read_data) != 0) { GJ_DEBUG(0, "Cannot find superblock to mark file system %s " "as dirty.", cp->provider->name); KASSERT(fs == NULL, ("g_journal_ufs_dirty: non-NULL fs %p\n", fs)); return; } GJ_DEBUG(0, "clean=%d flags=0x%x", fs->fs_clean, fs->fs_flags); fs->fs_clean = 0; fs->fs_flags |= FS_NEEDSFSCK | FS_UNCLEAN; error = ffs_sbput(cp, fs, fs->fs_sblockloc, g_use_g_write_data); g_free(fs->fs_csp); g_free(fs); if (error != 0) { GJ_DEBUG(0, "Cannot mark file system %s as dirty " "(error=%d).", cp->provider->name, error); } else { GJ_DEBUG(0, "File system %s marked as dirty.", cp->provider->name); } } const struct g_journal_desc g_journal_ufs = { .jd_fstype = "ufs", .jd_clean = g_journal_ufs_clean, .jd_dirty = g_journal_ufs_dirty }; MODULE_DEPEND(g_journal, ufs, 1, 1, 1); +MODULE_VERSION(geom_journal, 0); Index: head/sys/geom/label/g_label.c =================================================================== --- head/sys/geom/label/g_label.c (revision 332386) +++ head/sys/geom/label/g_label.c (revision 332387) @@ -1,558 +1,559 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2004-2005 Pawel Jakub Dawidek * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_geom.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include FEATURE(geom_label, "GEOM labeling support"); SYSCTL_DECL(_kern_geom); SYSCTL_NODE(_kern_geom, OID_AUTO, label, CTLFLAG_RW, 0, "GEOM_LABEL stuff"); u_int g_label_debug = 0; SYSCTL_UINT(_kern_geom_label, OID_AUTO, debug, CTLFLAG_RWTUN, &g_label_debug, 0, "Debug level"); static int g_label_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp); static int g_label_destroy(struct g_geom *gp, boolean_t force); static struct g_geom *g_label_taste(struct g_class *mp, struct g_provider *pp, int flags __unused); static void g_label_config(struct gctl_req *req, struct g_class *mp, const char *verb); struct g_class g_label_class = { .name = G_LABEL_CLASS_NAME, .version = G_VERSION, .ctlreq = g_label_config, .taste = g_label_taste, .destroy_geom = g_label_destroy_geom }; /* * To add a new file system where you want to look for volume labels, * you have to: * 1. Add a file g_label_.c which implements labels recognition. * 2. Add an 'extern const struct g_label_desc g_label_;' into * g_label.h file. * 3. Add an element to the table below '&g_label_,'. * 4. Add your file to sys/conf/files. * 5. Add your file to sys/modules/geom/geom_label/Makefile. * 6. Add your file system to manual page sbin/geom/class/label/glabel.8. */ const struct g_label_desc *g_labels[] = { &g_label_gpt, &g_label_gpt_uuid, #ifdef GEOM_LABEL &g_label_ufs_id, &g_label_ufs_volume, &g_label_iso9660, &g_label_msdosfs, &g_label_ext2fs, &g_label_reiserfs, &g_label_ntfs, &g_label_disk_ident, #endif NULL }; void g_label_rtrim(char *label, size_t size) { ptrdiff_t i; for (i = size - 1; i >= 0; i--) { if (label[i] == '\0') continue; else if (label[i] == ' ') label[i] = '\0'; else break; } } static int g_label_destroy_geom(struct gctl_req *req __unused, struct g_class *mp, struct g_geom *gp __unused) { /* * XXX: Unloading a class which is using geom_slice:1.56 is currently * XXX: broken, so we deny unloading when we have geoms. */ return (EOPNOTSUPP); } static void g_label_orphan(struct g_consumer *cp) { G_LABEL_DEBUG(1, "Label %s removed.", LIST_FIRST(&cp->geom->provider)->name); g_slice_orphan(cp); } static void g_label_spoiled(struct g_consumer *cp) { G_LABEL_DEBUG(1, "Label %s removed.", LIST_FIRST(&cp->geom->provider)->name); g_slice_spoiled(cp); } static void g_label_resize(struct g_consumer *cp) { G_LABEL_DEBUG(1, "Label %s resized.", LIST_FIRST(&cp->geom->provider)->name); g_slice_config(cp->geom, 0, G_SLICE_CONFIG_FORCE, (off_t)0, cp->provider->mediasize, cp->provider->sectorsize, "notused"); } static int g_label_is_name_ok(const char *label) { const char *s; /* Check if the label starts from ../ */ if (strncmp(label, "../", 3) == 0) return (0); /* Check if the label contains /../ */ if (strstr(label, "/../") != NULL) return (0); /* Check if the label ends at ../ */ if ((s = strstr(label, "/..")) != NULL && s[3] == '\0') return (0); return (1); } static void g_label_mangle_name(char *label, size_t size) { struct sbuf *sb; const u_char *c; sb = sbuf_new(NULL, NULL, size, SBUF_FIXEDLEN); for (c = label; *c != '\0'; c++) { if (!isprint(*c) || isspace(*c) || *c =='"' || *c == '%') sbuf_printf(sb, "%%%02X", *c); else sbuf_putc(sb, *c); } if (sbuf_finish(sb) != 0) label[0] = '\0'; else strlcpy(label, sbuf_data(sb), size); sbuf_delete(sb); } static struct g_geom * g_label_create(struct gctl_req *req, struct g_class *mp, struct g_provider *pp, const char *label, const char *dir, off_t mediasize) { struct g_geom *gp; struct g_provider *pp2; struct g_consumer *cp; char name[64]; g_topology_assert(); if (!g_label_is_name_ok(label)) { G_LABEL_DEBUG(0, "%s contains suspicious label, skipping.", pp->name); G_LABEL_DEBUG(1, "%s suspicious label is: %s", pp->name, label); if (req != NULL) gctl_error(req, "Label name %s is invalid.", label); return (NULL); } gp = NULL; cp = NULL; if (snprintf(name, sizeof(name), "%s/%s", dir, label) >= sizeof(name)) { if (req != NULL) gctl_error(req, "Label name %s is too long.", label); return (NULL); } LIST_FOREACH(gp, &mp->geom, geom) { pp2 = LIST_FIRST(&gp->provider); if (pp2 == NULL) continue; if ((pp2->flags & G_PF_ORPHAN) != 0) continue; if (strcmp(pp2->name, name) == 0) { G_LABEL_DEBUG(1, "Label %s(%s) already exists (%s).", label, name, pp->name); if (req != NULL) { gctl_error(req, "Provider %s already exists.", name); } return (NULL); } } gp = g_slice_new(mp, 1, pp, &cp, NULL, 0, NULL); if (gp == NULL) { G_LABEL_DEBUG(0, "Cannot create slice %s.", label); if (req != NULL) gctl_error(req, "Cannot create slice %s.", label); return (NULL); } gp->orphan = g_label_orphan; gp->spoiled = g_label_spoiled; gp->resize = g_label_resize; g_access(cp, -1, 0, 0); g_slice_config(gp, 0, G_SLICE_CONFIG_SET, (off_t)0, mediasize, pp->sectorsize, "%s", name); G_LABEL_DEBUG(1, "Label for provider %s is %s.", pp->name, name); return (gp); } static int g_label_destroy(struct g_geom *gp, boolean_t force) { struct g_provider *pp; g_topology_assert(); pp = LIST_FIRST(&gp->provider); if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) { if (force) { G_LABEL_DEBUG(0, "Provider %s is still open, so it " "can't be definitely removed.", pp->name); } else { G_LABEL_DEBUG(1, "Provider %s is still open (r%dw%de%d).", pp->name, pp->acr, pp->acw, pp->ace); return (EBUSY); } } else if (pp != NULL) G_LABEL_DEBUG(1, "Label %s removed.", pp->name); g_slice_spoiled(LIST_FIRST(&gp->consumer)); return (0); } static int g_label_read_metadata(struct g_consumer *cp, struct g_label_metadata *md) { struct g_provider *pp; u_char *buf; int error; g_topology_assert(); pp = cp->provider; g_topology_unlock(); buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, &error); g_topology_lock(); if (buf == NULL) return (error); /* Decode metadata. */ label_metadata_decode(buf, md); g_free(buf); return (0); } static void g_label_orphan_taste(struct g_consumer *cp __unused) { KASSERT(1 == 0, ("%s called?", __func__)); } static void g_label_start_taste(struct bio *bp __unused) { KASSERT(1 == 0, ("%s called?", __func__)); } static int g_label_access_taste(struct g_provider *pp __unused, int dr __unused, int dw __unused, int de __unused) { KASSERT(1 == 0, ("%s called", __func__)); return (EOPNOTSUPP); } static struct g_geom * g_label_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) { struct g_label_metadata md; struct g_consumer *cp; struct g_geom *gp; int i; g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); g_topology_assert(); G_LABEL_DEBUG(2, "Tasting %s.", pp->name); /* Skip providers that are already open for writing. */ if (pp->acw > 0) return (NULL); if (strcmp(pp->geom->class->name, mp->name) == 0) return (NULL); gp = g_new_geomf(mp, "label:taste"); gp->start = g_label_start_taste; gp->access = g_label_access_taste; gp->orphan = g_label_orphan_taste; cp = g_new_consumer(gp); g_attach(cp, pp); if (g_access(cp, 1, 0, 0) != 0) goto end; do { if (g_label_read_metadata(cp, &md) != 0) break; if (strcmp(md.md_magic, G_LABEL_MAGIC) != 0) break; if (md.md_version > G_LABEL_VERSION) { printf("geom_label.ko module is too old to handle %s.\n", pp->name); break; } /* * Backward compatibility: */ /* * There was no md_provsize field in earlier versions of * metadata. */ if (md.md_version < 2) md.md_provsize = pp->mediasize; if (md.md_provsize != pp->mediasize) break; g_label_create(NULL, mp, pp, md.md_label, G_LABEL_DIR, pp->mediasize - pp->sectorsize); } while (0); for (i = 0; g_labels[i] != NULL; i++) { char label[128]; if (g_labels[i]->ld_enabled == 0) continue; g_topology_unlock(); g_labels[i]->ld_taste(cp, label, sizeof(label)); g_label_mangle_name(label, sizeof(label)); g_topology_lock(); if (label[0] == '\0') continue; g_label_create(NULL, mp, pp, label, g_labels[i]->ld_dir, pp->mediasize); } g_access(cp, -1, 0, 0); end: g_detach(cp); g_destroy_consumer(cp); g_destroy_geom(gp); return (NULL); } static void g_label_ctl_create(struct gctl_req *req, struct g_class *mp) { struct g_provider *pp; const char *name; int *nargs; g_topology_assert(); nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); if (nargs == NULL) { gctl_error(req, "No '%s' argument", "nargs"); return; } if (*nargs != 2) { gctl_error(req, "Invalid number of arguments."); return; } /* * arg1 is the name of provider. */ name = gctl_get_asciiparam(req, "arg1"); if (name == NULL) { gctl_error(req, "No 'arg%d' argument", 1); return; } if (strncmp(name, "/dev/", strlen("/dev/")) == 0) name += strlen("/dev/"); pp = g_provider_by_name(name); if (pp == NULL) { G_LABEL_DEBUG(1, "Provider %s is invalid.", name); gctl_error(req, "Provider %s is invalid.", name); return; } /* * arg0 is the label. */ name = gctl_get_asciiparam(req, "arg0"); if (name == NULL) { gctl_error(req, "No 'arg%d' argument", 0); return; } g_label_create(req, mp, pp, name, G_LABEL_DIR, pp->mediasize); } static const char * g_label_skip_dir(const char *name) { char path[64]; u_int i; if (strncmp(name, "/dev/", strlen("/dev/")) == 0) name += strlen("/dev/"); if (strncmp(name, G_LABEL_DIR "/", strlen(G_LABEL_DIR "/")) == 0) name += strlen(G_LABEL_DIR "/"); for (i = 0; g_labels[i] != NULL; i++) { snprintf(path, sizeof(path), "%s/", g_labels[i]->ld_dir); if (strncmp(name, path, strlen(path)) == 0) { name += strlen(path); break; } } return (name); } static struct g_geom * g_label_find_geom(struct g_class *mp, const char *name) { struct g_geom *gp; struct g_provider *pp; const char *pname; name = g_label_skip_dir(name); LIST_FOREACH(gp, &mp->geom, geom) { pp = LIST_FIRST(&gp->provider); pname = g_label_skip_dir(pp->name); if (strcmp(pname, name) == 0) return (gp); } return (NULL); } static void g_label_ctl_destroy(struct gctl_req *req, struct g_class *mp) { int *nargs, *force, error, i; struct g_geom *gp; const char *name; char param[16]; g_topology_assert(); nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); if (nargs == NULL) { gctl_error(req, "No '%s' argument", "nargs"); return; } if (*nargs <= 0) { gctl_error(req, "Missing device(s)."); return; } force = gctl_get_paraml(req, "force", sizeof(*force)); if (force == NULL) { gctl_error(req, "No 'force' argument"); return; } for (i = 0; i < *nargs; i++) { snprintf(param, sizeof(param), "arg%d", i); name = gctl_get_asciiparam(req, param); if (name == NULL) { gctl_error(req, "No 'arg%d' argument", i); return; } gp = g_label_find_geom(mp, name); if (gp == NULL) { G_LABEL_DEBUG(1, "Label %s is invalid.", name); gctl_error(req, "Label %s is invalid.", name); return; } error = g_label_destroy(gp, *force); if (error != 0) { gctl_error(req, "Cannot destroy label %s (error=%d).", LIST_FIRST(&gp->provider)->name, error); return; } } } static void g_label_config(struct gctl_req *req, struct g_class *mp, const char *verb) { uint32_t *version; g_topology_assert(); version = gctl_get_paraml(req, "version", sizeof(*version)); if (version == NULL) { gctl_error(req, "No '%s' argument.", "version"); return; } if (*version != G_LABEL_VERSION) { gctl_error(req, "Userland and kernel parts are out of sync."); return; } if (strcmp(verb, "create") == 0) { g_label_ctl_create(req, mp); return; } else if (strcmp(verb, "destroy") == 0 || strcmp(verb, "stop") == 0) { g_label_ctl_destroy(req, mp); return; } gctl_error(req, "Unknown verb."); } DECLARE_GEOM_CLASS(g_label_class, g_label); +MODULE_VERSION(geom_label, 0); Index: head/sys/geom/linux_lvm/g_linux_lvm.c =================================================================== --- head/sys/geom/linux_lvm/g_linux_lvm.c (revision 332386) +++ head/sys/geom/linux_lvm/g_linux_lvm.c (revision 332387) @@ -1,1192 +1,1193 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2008 Andrew Thompson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include FEATURE(geom_linux_lvm, "GEOM Linux LVM partitioning support"); /* Declare malloc(9) label */ static MALLOC_DEFINE(M_GLLVM, "gllvm", "GEOM_LINUX_LVM Data"); /* GEOM class methods */ static g_access_t g_llvm_access; static g_init_t g_llvm_init; static g_orphan_t g_llvm_orphan; static g_orphan_t g_llvm_taste_orphan; static g_start_t g_llvm_start; static g_taste_t g_llvm_taste; static g_ctl_destroy_geom_t g_llvm_destroy_geom; static void g_llvm_done(struct bio *); static void g_llvm_remove_disk(struct g_llvm_vg *, struct g_consumer *); static int g_llvm_activate_lv(struct g_llvm_vg *, struct g_llvm_lv *); static int g_llvm_add_disk(struct g_llvm_vg *, struct g_provider *, char *); static void g_llvm_free_vg(struct g_llvm_vg *); static int g_llvm_destroy(struct g_llvm_vg *, int); static int g_llvm_read_label(struct g_consumer *, struct g_llvm_label *); static int g_llvm_read_md(struct g_consumer *, struct g_llvm_metadata *, struct g_llvm_label *); static int llvm_label_decode(const u_char *, struct g_llvm_label *, int); static int llvm_md_decode(const u_char *, struct g_llvm_metadata *, struct g_llvm_label *); static int llvm_textconf_decode(u_char *, int, struct g_llvm_metadata *); static int llvm_textconf_decode_pv(char **, char *, struct g_llvm_vg *); static int llvm_textconf_decode_lv(char **, char *, struct g_llvm_vg *); static int llvm_textconf_decode_sg(char **, char *, struct g_llvm_lv *); SYSCTL_DECL(_kern_geom); SYSCTL_NODE(_kern_geom, OID_AUTO, linux_lvm, CTLFLAG_RW, 0, "GEOM_LINUX_LVM stuff"); static u_int g_llvm_debug = 0; SYSCTL_UINT(_kern_geom_linux_lvm, OID_AUTO, debug, CTLFLAG_RWTUN, &g_llvm_debug, 0, "Debug level"); LIST_HEAD(, g_llvm_vg) vg_list; /* * Called to notify geom when it's been opened, and for what intent */ static int g_llvm_access(struct g_provider *pp, int dr, int dw, int de) { struct g_consumer *c; struct g_llvm_vg *vg; struct g_geom *gp; int error; KASSERT(pp != NULL, ("%s: NULL provider", __func__)); gp = pp->geom; KASSERT(gp != NULL, ("%s: NULL geom", __func__)); vg = gp->softc; if (vg == NULL) { /* It seems that .access can be called with negative dr,dw,dx * in this case but I want to check for myself */ G_LLVM_DEBUG(0, "access(%d, %d, %d) for %s", dr, dw, de, pp->name); /* This should only happen when geom is withered so * allow only negative requests */ KASSERT(dr <= 0 && dw <= 0 && de <= 0, ("%s: Positive access for %s", __func__, pp->name)); if (pp->acr + dr == 0 && pp->acw + dw == 0 && pp->ace + de == 0) G_LLVM_DEBUG(0, "Device %s definitely destroyed", pp->name); return (0); } /* Grab an exclusive bit to propagate on our consumers on first open */ if (pp->acr == 0 && pp->acw == 0 && pp->ace == 0) de++; /* ... drop it on close */ if (pp->acr + dr == 0 && pp->acw + dw == 0 && pp->ace + de == 0) de--; error = ENXIO; LIST_FOREACH(c, &gp->consumer, consumer) { KASSERT(c != NULL, ("%s: consumer is NULL", __func__)); error = g_access(c, dr, dw, de); if (error != 0) { struct g_consumer *c2; /* Backout earlier changes */ LIST_FOREACH(c2, &gp->consumer, consumer) { if (c2 == c) /* all eariler components fixed */ return (error); g_access(c2, -dr, -dw, -de); } } } return (error); } /* * Dismantle bio_queue and destroy its components */ static void bioq_dismantle(struct bio_queue_head *bq) { struct bio *b; for (b = bioq_first(bq); b != NULL; b = bioq_first(bq)) { bioq_remove(bq, b); g_destroy_bio(b); } } /* * GEOM .done handler * Can't use standard handler because one requested IO may * fork into additional data IOs */ static void g_llvm_done(struct bio *b) { struct bio *parent_b; parent_b = b->bio_parent; if (b->bio_error != 0) { G_LLVM_DEBUG(0, "Error %d for offset=%ju, length=%ju on %s", b->bio_error, b->bio_offset, b->bio_length, b->bio_to->name); if (parent_b->bio_error == 0) parent_b->bio_error = b->bio_error; } parent_b->bio_inbed++; parent_b->bio_completed += b->bio_completed; if (parent_b->bio_children == parent_b->bio_inbed) { parent_b->bio_completed = parent_b->bio_length; g_io_deliver(parent_b, parent_b->bio_error); } g_destroy_bio(b); } static void g_llvm_start(struct bio *bp) { struct g_provider *pp; struct g_llvm_vg *vg; struct g_llvm_pv *pv; struct g_llvm_lv *lv; struct g_llvm_segment *sg; struct bio *cb; struct bio_queue_head bq; size_t chunk_size; off_t offset, length; char *addr; u_int count; pp = bp->bio_to; lv = pp->private; vg = pp->geom->softc; switch (bp->bio_cmd) { case BIO_READ: case BIO_WRITE: case BIO_DELETE: /* XXX BIO_GETATTR allowed? */ break; default: g_io_deliver(bp, EOPNOTSUPP); return; } bioq_init(&bq); chunk_size = vg->vg_extentsize; addr = bp->bio_data; offset = bp->bio_offset; /* virtual offset and length */ length = bp->bio_length; while (length > 0) { size_t chunk_index, in_chunk_offset, in_chunk_length; pv = NULL; cb = g_clone_bio(bp); if (cb == NULL) { bioq_dismantle(&bq); if (bp->bio_error == 0) bp->bio_error = ENOMEM; g_io_deliver(bp, bp->bio_error); return; } /* get the segment and the pv */ if (lv->lv_sgcount == 1) { /* skip much of the calculations for a single sg */ chunk_index = 0; in_chunk_offset = 0; in_chunk_length = length; sg = lv->lv_firstsg; pv = sg->sg_pv; cb->bio_offset = offset + sg->sg_pvoffset; } else { chunk_index = offset / chunk_size; /* round downwards */ in_chunk_offset = offset % chunk_size; in_chunk_length = min(length, chunk_size - in_chunk_offset); /* XXX could be faster */ LIST_FOREACH(sg, &lv->lv_segs, sg_next) { if (chunk_index >= sg->sg_start && chunk_index <= sg->sg_end) { /* adjust chunk index for sg start */ chunk_index -= sg->sg_start; pv = sg->sg_pv; break; } } cb->bio_offset = (off_t)chunk_index * (off_t)chunk_size + in_chunk_offset + sg->sg_pvoffset; } KASSERT(pv != NULL, ("Can't find PV for chunk %zu", chunk_index)); cb->bio_to = pv->pv_gprov; cb->bio_done = g_llvm_done; cb->bio_length = in_chunk_length; cb->bio_data = addr; cb->bio_caller1 = pv; bioq_disksort(&bq, cb); G_LLVM_DEBUG(5, "Mapped %s(%ju, %ju) on %s to %zu(%zu,%zu) @ %s:%ju", bp->bio_cmd == BIO_READ ? "R" : "W", offset, length, lv->lv_name, chunk_index, in_chunk_offset, in_chunk_length, pv->pv_name, cb->bio_offset); addr += in_chunk_length; length -= in_chunk_length; offset += in_chunk_length; } /* Fire off bio's here */ count = 0; for (cb = bioq_first(&bq); cb != NULL; cb = bioq_first(&bq)) { bioq_remove(&bq, cb); pv = cb->bio_caller1; cb->bio_caller1 = NULL; G_LLVM_DEBUG(6, "firing bio to %s, offset=%ju, length=%ju", cb->bio_to->name, cb->bio_offset, cb->bio_length); g_io_request(cb, pv->pv_gcons); count++; } if (count == 0) { /* We handled everything locally */ bp->bio_completed = bp->bio_length; g_io_deliver(bp, 0); } } static void g_llvm_remove_disk(struct g_llvm_vg *vg, struct g_consumer *cp) { struct g_llvm_pv *pv; struct g_llvm_lv *lv; struct g_llvm_segment *sg; int found; KASSERT(cp != NULL, ("Non-valid disk in %s.", __func__)); pv = (struct g_llvm_pv *)cp->private; G_LLVM_DEBUG(0, "Disk %s removed from %s.", cp->provider->name, pv->pv_name); LIST_FOREACH(lv, &vg->vg_lvs, lv_next) { /* Find segments that map to this disk */ found = 0; LIST_FOREACH(sg, &lv->lv_segs, sg_next) { if (sg->sg_pv == pv) { sg->sg_pv = NULL; lv->lv_sgactive--; found = 1; break; } } if (found) { G_LLVM_DEBUG(0, "Device %s removed.", lv->lv_gprov->name); g_wither_provider(lv->lv_gprov, ENXIO); lv->lv_gprov = NULL; } } if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) g_access(cp, -cp->acr, -cp->acw, -cp->ace); g_detach(cp); g_destroy_consumer(cp); } static void g_llvm_orphan(struct g_consumer *cp) { struct g_llvm_vg *vg; struct g_geom *gp; g_topology_assert(); gp = cp->geom; vg = gp->softc; if (vg == NULL) return; g_llvm_remove_disk(vg, cp); g_llvm_destroy(vg, 1); } static int g_llvm_activate_lv(struct g_llvm_vg *vg, struct g_llvm_lv *lv) { struct g_geom *gp; struct g_provider *pp; g_topology_assert(); KASSERT(lv->lv_sgactive == lv->lv_sgcount, ("segment missing")); gp = vg->vg_geom; pp = g_new_providerf(gp, "linux_lvm/%s-%s", vg->vg_name, lv->lv_name); pp->mediasize = vg->vg_extentsize * (off_t)lv->lv_extentcount; pp->sectorsize = vg->vg_sectorsize; g_error_provider(pp, 0); lv->lv_gprov = pp; pp->private = lv; G_LLVM_DEBUG(1, "Created %s, %juM", pp->name, pp->mediasize / (1024*1024)); return (0); } static int g_llvm_add_disk(struct g_llvm_vg *vg, struct g_provider *pp, char *uuid) { struct g_geom *gp; struct g_consumer *cp, *fcp; struct g_llvm_pv *pv; struct g_llvm_lv *lv; struct g_llvm_segment *sg; int error; g_topology_assert(); LIST_FOREACH(pv, &vg->vg_pvs, pv_next) { if (strcmp(pv->pv_uuid, uuid) == 0) break; /* found it */ } if (pv == NULL) { G_LLVM_DEBUG(3, "uuid %s not found in pv list", uuid); return (ENOENT); } if (pv->pv_gprov != NULL) { G_LLVM_DEBUG(0, "disk %s already initialised in %s", pv->pv_name, vg->vg_name); return (EEXIST); } pv->pv_start *= vg->vg_sectorsize; gp = vg->vg_geom; fcp = LIST_FIRST(&gp->consumer); cp = g_new_consumer(gp); error = g_attach(cp, pp); G_LLVM_DEBUG(1, "Attached %s to %s at offset %ju", pp->name, pv->pv_name, pv->pv_start); if (error != 0) { G_LLVM_DEBUG(0, "cannot attach %s to %s", pp->name, vg->vg_name); g_destroy_consumer(cp); return (error); } if (fcp != NULL) { if (fcp->provider->sectorsize != pp->sectorsize) { G_LLVM_DEBUG(0, "Provider %s of %s has invalid " "sector size (%d)", pp->name, vg->vg_name, pp->sectorsize); return (EINVAL); } if (fcp->acr > 0 || fcp->acw || fcp->ace > 0) { /* Replicate access permissions from first "live" * consumer to the new one */ error = g_access(cp, fcp->acr, fcp->acw, fcp->ace); if (error != 0) { g_detach(cp); g_destroy_consumer(cp); return (error); } } } cp->private = pv; pv->pv_gcons = cp; pv->pv_gprov = pp; LIST_FOREACH(lv, &vg->vg_lvs, lv_next) { /* Find segments that map to this disk */ LIST_FOREACH(sg, &lv->lv_segs, sg_next) { if (strcmp(sg->sg_pvname, pv->pv_name) == 0) { /* avtivate the segment */ KASSERT(sg->sg_pv == NULL, ("segment already mapped")); sg->sg_pvoffset = (off_t)sg->sg_pvstart * vg->vg_extentsize + pv->pv_start; sg->sg_pv = pv; lv->lv_sgactive++; G_LLVM_DEBUG(2, "%s: %d to %d @ %s:%d" " offset %ju sector %ju", lv->lv_name, sg->sg_start, sg->sg_end, sg->sg_pvname, sg->sg_pvstart, sg->sg_pvoffset, sg->sg_pvoffset / vg->vg_sectorsize); } } /* Activate any lvs waiting on this disk */ if (lv->lv_gprov == NULL && lv->lv_sgactive == lv->lv_sgcount) { error = g_llvm_activate_lv(vg, lv); if (error) break; } } return (error); } static void g_llvm_init(struct g_class *mp) { LIST_INIT(&vg_list); } static void g_llvm_free_vg(struct g_llvm_vg *vg) { struct g_llvm_pv *pv; struct g_llvm_lv *lv; struct g_llvm_segment *sg; /* Free all the structures */ while ((pv = LIST_FIRST(&vg->vg_pvs)) != NULL) { LIST_REMOVE(pv, pv_next); free(pv, M_GLLVM); } while ((lv = LIST_FIRST(&vg->vg_lvs)) != NULL) { while ((sg = LIST_FIRST(&lv->lv_segs)) != NULL) { LIST_REMOVE(sg, sg_next); free(sg, M_GLLVM); } LIST_REMOVE(lv, lv_next); free(lv, M_GLLVM); } LIST_REMOVE(vg, vg_next); free(vg, M_GLLVM); } static void g_llvm_taste_orphan(struct g_consumer *cp) { KASSERT(1 == 0, ("%s called while tasting %s.", __func__, cp->provider->name)); } static struct g_geom * g_llvm_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) { struct g_consumer *cp; struct g_geom *gp; struct g_llvm_label ll; struct g_llvm_metadata md; struct g_llvm_vg *vg; int error; bzero(&md, sizeof(md)); g_topology_assert(); g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); gp = g_new_geomf(mp, "linux_lvm:taste"); /* This orphan function should be never called. */ gp->orphan = g_llvm_taste_orphan; cp = g_new_consumer(gp); g_attach(cp, pp); error = g_llvm_read_label(cp, &ll); if (!error) error = g_llvm_read_md(cp, &md, &ll); g_detach(cp); g_destroy_consumer(cp); g_destroy_geom(gp); if (error != 0) return (NULL); vg = md.md_vg; if (vg->vg_geom == NULL) { /* new volume group */ gp = g_new_geomf(mp, "%s", vg->vg_name); gp->start = g_llvm_start; gp->spoiled = g_llvm_orphan; gp->orphan = g_llvm_orphan; gp->access = g_llvm_access; vg->vg_sectorsize = pp->sectorsize; vg->vg_extentsize *= vg->vg_sectorsize; vg->vg_geom = gp; gp->softc = vg; G_LLVM_DEBUG(1, "Created volume %s, extent size %zuK", vg->vg_name, vg->vg_extentsize / 1024); } /* initialise this disk in the volume group */ g_llvm_add_disk(vg, pp, ll.ll_uuid); return (vg->vg_geom); } static int g_llvm_destroy(struct g_llvm_vg *vg, int force) { struct g_provider *pp; struct g_geom *gp; g_topology_assert(); if (vg == NULL) return (ENXIO); gp = vg->vg_geom; LIST_FOREACH(pp, &gp->provider, provider) { if (pp->acr != 0 || pp->acw != 0 || pp->ace != 0) { G_LLVM_DEBUG(1, "Device %s is still open (r%dw%de%d)", pp->name, pp->acr, pp->acw, pp->ace); if (!force) return (EBUSY); } } g_llvm_free_vg(gp->softc); gp->softc = NULL; g_wither_geom(gp, ENXIO); return (0); } static int g_llvm_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused, struct g_geom *gp) { struct g_llvm_vg *vg; vg = gp->softc; return (g_llvm_destroy(vg, 0)); } int g_llvm_read_label(struct g_consumer *cp, struct g_llvm_label *ll) { struct g_provider *pp; u_char *buf; int i, error = 0; g_topology_assert(); /* The LVM label is stored on the first four sectors */ error = g_access(cp, 1, 0, 0); if (error != 0) return (error); pp = cp->provider; g_topology_unlock(); buf = g_read_data(cp, 0, pp->sectorsize * 4, &error); g_topology_lock(); g_access(cp, -1, 0, 0); if (buf == NULL) { G_LLVM_DEBUG(1, "Cannot read metadata from %s (error=%d)", pp->name, error); return (error); } /* Search the four sectors for the LVM label. */ for (i = 0; i < 4; i++) { error = llvm_label_decode(&buf[i * pp->sectorsize], ll, i); if (error == 0) break; /* found it */ } g_free(buf); return (error); } int g_llvm_read_md(struct g_consumer *cp, struct g_llvm_metadata *md, struct g_llvm_label *ll) { struct g_provider *pp; u_char *buf; int error; int size; g_topology_assert(); error = g_access(cp, 1, 0, 0); if (error != 0) return (error); pp = cp->provider; g_topology_unlock(); buf = g_read_data(cp, ll->ll_md_offset, pp->sectorsize, &error); g_topology_lock(); g_access(cp, -1, 0, 0); if (buf == NULL) { G_LLVM_DEBUG(0, "Cannot read metadata from %s (error=%d)", cp->provider->name, error); return (error); } error = llvm_md_decode(buf, md, ll); g_free(buf); if (error != 0) { return (error); } G_LLVM_DEBUG(1, "reading LVM2 config @ %s:%ju", pp->name, ll->ll_md_offset + md->md_reloffset); error = g_access(cp, 1, 0, 0); if (error != 0) return (error); pp = cp->provider; g_topology_unlock(); /* round up to the nearest sector */ size = md->md_relsize + (pp->sectorsize - md->md_relsize % pp->sectorsize); buf = g_read_data(cp, ll->ll_md_offset + md->md_reloffset, size, &error); g_topology_lock(); g_access(cp, -1, 0, 0); if (buf == NULL) { G_LLVM_DEBUG(0, "Cannot read LVM2 config from %s (error=%d)", pp->name, error); return (error); } buf[md->md_relsize] = '\0'; G_LLVM_DEBUG(10, "LVM config:\n%s\n", buf); error = llvm_textconf_decode(buf, md->md_relsize, md); g_free(buf); return (error); } static int llvm_label_decode(const u_char *data, struct g_llvm_label *ll, int sector) { uint64_t off; char *uuid; /* Magic string */ if (bcmp("LABELONE", data , 8) != 0) return (EINVAL); /* We only support LVM2 text format */ if (bcmp("LVM2 001", data + 24, 8) != 0) { G_LLVM_DEBUG(0, "Unsupported LVM format"); return (EINVAL); } ll->ll_sector = le64dec(data + 8); ll->ll_crc = le32dec(data + 16); ll->ll_offset = le32dec(data + 20); if (ll->ll_sector != sector) { G_LLVM_DEBUG(0, "Expected sector %ju, found at %d", ll->ll_sector, sector); return (EINVAL); } off = ll->ll_offset; /* * convert the binary uuid to string format, the format is * xxxxxx-xxxx-xxxx-xxxx-xxxx-xxxx-xxxxxx (6-4-4-4-4-4-6) */ uuid = ll->ll_uuid; bcopy(data + off, uuid, 6); off += 6; uuid += 6; *uuid++ = '-'; for (int i = 0; i < 5; i++) { bcopy(data + off, uuid, 4); off += 4; uuid += 4; *uuid++ = '-'; } bcopy(data + off, uuid, 6); off += 6; uuid += 6; *uuid++ = '\0'; ll->ll_size = le64dec(data + off); off += 8; ll->ll_pestart = le64dec(data + off); off += 16; /* Only one data section is supported */ if (le64dec(data + off) != 0) { G_LLVM_DEBUG(0, "Only one data section supported"); return (EINVAL); } off += 16; ll->ll_md_offset = le64dec(data + off); off += 8; ll->ll_md_size = le64dec(data + off); off += 8; G_LLVM_DEBUG(1, "LVM metadata: offset=%ju, size=%ju", ll->ll_md_offset, ll->ll_md_size); /* Only one data section is supported */ if (le64dec(data + off) != 0) { G_LLVM_DEBUG(0, "Only one metadata section supported"); return (EINVAL); } G_LLVM_DEBUG(2, "label uuid=%s", ll->ll_uuid); G_LLVM_DEBUG(2, "sector=%ju, crc=%u, offset=%u, size=%ju, pestart=%ju", ll->ll_sector, ll->ll_crc, ll->ll_offset, ll->ll_size, ll->ll_pestart); return (0); } static int llvm_md_decode(const u_char *data, struct g_llvm_metadata *md, struct g_llvm_label *ll) { uint64_t off; char magic[16]; off = 0; md->md_csum = le32dec(data + off); off += 4; bcopy(data + off, magic, 16); off += 16; md->md_version = le32dec(data + off); off += 4; md->md_start = le64dec(data + off); off += 8; md->md_size = le64dec(data + off); off += 8; if (bcmp(G_LLVM_MAGIC, magic, 16) != 0) { G_LLVM_DEBUG(0, "Incorrect md magic number"); return (EINVAL); } if (md->md_version != 1) { G_LLVM_DEBUG(0, "Incorrect md version number (%u)", md->md_version); return (EINVAL); } if (md->md_start != ll->ll_md_offset) { G_LLVM_DEBUG(0, "Incorrect md offset (%ju)", md->md_start); return (EINVAL); } /* Aparently only one is ever returned */ md->md_reloffset = le64dec(data + off); off += 8; md->md_relsize = le64dec(data + off); off += 16; /* XXX skipped checksum */ if (le64dec(data + off) != 0) { G_LLVM_DEBUG(0, "Only one reloc supported"); return (EINVAL); } G_LLVM_DEBUG(3, "reloc: offset=%ju, size=%ju", md->md_reloffset, md->md_relsize); G_LLVM_DEBUG(3, "md: version=%u, start=%ju, size=%ju", md->md_version, md->md_start, md->md_size); return (0); } #define GRAB_INT(key, tok1, tok2, v) \ if (tok1 && tok2 && strncmp(tok1, key, sizeof(key)) == 0) { \ v = strtol(tok2, &tok1, 10); \ if (tok1 == tok2) \ /* strtol did not eat any of the buffer */ \ goto bad; \ continue; \ } #define GRAB_STR(key, tok1, tok2, v, len) \ if (tok1 && tok2 && strncmp(tok1, key, sizeof(key)) == 0) { \ strsep(&tok2, "\""); \ if (tok2 == NULL) \ continue; \ tok1 = strsep(&tok2, "\""); \ if (tok2 == NULL) \ continue; \ strncpy(v, tok1, len); \ continue; \ } #define SPLIT(key, value, str) \ key = strsep(&value, str); \ /* strip trailing whitespace on the key */ \ for (char *t = key; *t != '\0'; t++) \ if (isspace(*t)) { \ *t = '\0'; \ break; \ } static size_t llvm_grab_name(char *name, const char *tok) { size_t len; len = 0; if (tok == NULL) return (0); if (tok[0] == '-') return (0); if (strcmp(tok, ".") == 0 || strcmp(tok, "..") == 0) return (0); while (tok[len] && (isalpha(tok[len]) || isdigit(tok[len]) || tok[len] == '.' || tok[len] == '_' || tok[len] == '-' || tok[len] == '+') && len < G_LLVM_NAMELEN - 1) len++; bcopy(tok, name, len); name[len] = '\0'; return (len); } static int llvm_textconf_decode(u_char *data, int buflen, struct g_llvm_metadata *md) { struct g_llvm_vg *vg; char *buf = data; char *tok, *v; char name[G_LLVM_NAMELEN]; char uuid[G_LLVM_UUIDLEN]; size_t len; if (buf == NULL || *buf == '\0') return (EINVAL); tok = strsep(&buf, "\n"); if (tok == NULL) return (EINVAL); len = llvm_grab_name(name, tok); if (len == 0) return (EINVAL); /* check too see if the vg has already been loaded off another disk */ LIST_FOREACH(vg, &vg_list, vg_next) { if (strcmp(vg->vg_name, name) == 0) { uuid[0] = '\0'; /* grab the volume group uuid */ while ((tok = strsep(&buf, "\n")) != NULL) { if (strstr(tok, "{")) break; if (strstr(tok, "=")) { SPLIT(v, tok, "="); GRAB_STR("id", v, tok, uuid, sizeof(uuid)); } } if (strcmp(vg->vg_uuid, uuid) == 0) { /* existing vg */ md->md_vg = vg; return (0); } /* XXX different volume group with name clash! */ G_LLVM_DEBUG(0, "%s already exists, volume group not loaded", name); return (EINVAL); } } vg = malloc(sizeof(*vg), M_GLLVM, M_NOWAIT|M_ZERO); if (vg == NULL) return (ENOMEM); strncpy(vg->vg_name, name, sizeof(vg->vg_name)); LIST_INIT(&vg->vg_pvs); LIST_INIT(&vg->vg_lvs); #define VOL_FOREACH(func, tok, buf, p) \ while ((tok = strsep(buf, "\n")) != NULL) { \ if (strstr(tok, "{")) { \ func(buf, tok, p); \ continue; \ } \ if (strstr(tok, "}")) \ break; \ } while ((tok = strsep(&buf, "\n")) != NULL) { if (strcmp(tok, "physical_volumes {") == 0) { VOL_FOREACH(llvm_textconf_decode_pv, tok, &buf, vg); continue; } if (strcmp(tok, "logical_volumes {") == 0) { VOL_FOREACH(llvm_textconf_decode_lv, tok, &buf, vg); continue; } if (strstr(tok, "{")) { G_LLVM_DEBUG(2, "unknown section %s", tok); continue; } /* parse 'key = value' lines */ if (strstr(tok, "=")) { SPLIT(v, tok, "="); GRAB_STR("id", v, tok, vg->vg_uuid, sizeof(vg->vg_uuid)); GRAB_INT("extent_size", v, tok, vg->vg_extentsize); continue; } } /* basic checking */ if (vg->vg_extentsize == 0) goto bad; md->md_vg = vg; LIST_INSERT_HEAD(&vg_list, vg, vg_next); G_LLVM_DEBUG(3, "vg: name=%s uuid=%s", vg->vg_name, vg->vg_uuid); return(0); bad: g_llvm_free_vg(vg); return (-1); } #undef VOL_FOREACH static int llvm_textconf_decode_pv(char **buf, char *tok, struct g_llvm_vg *vg) { struct g_llvm_pv *pv; char *v; size_t len; if (*buf == NULL || **buf == '\0') return (EINVAL); pv = malloc(sizeof(*pv), M_GLLVM, M_NOWAIT|M_ZERO); if (pv == NULL) return (ENOMEM); pv->pv_vg = vg; len = 0; if (tok == NULL) goto bad; len = llvm_grab_name(pv->pv_name, tok); if (len == 0) goto bad; while ((tok = strsep(buf, "\n")) != NULL) { if (strstr(tok, "{")) goto bad; if (strstr(tok, "}")) break; /* parse 'key = value' lines */ if (strstr(tok, "=")) { SPLIT(v, tok, "="); GRAB_STR("id", v, tok, pv->pv_uuid, sizeof(pv->pv_uuid)); GRAB_INT("pe_start", v, tok, pv->pv_start); GRAB_INT("pe_count", v, tok, pv->pv_count); continue; } } if (tok == NULL) goto bad; /* basic checking */ if (pv->pv_count == 0) goto bad; LIST_INSERT_HEAD(&vg->vg_pvs, pv, pv_next); G_LLVM_DEBUG(3, "pv: name=%s uuid=%s", pv->pv_name, pv->pv_uuid); return (0); bad: free(pv, M_GLLVM); return (-1); } static int llvm_textconf_decode_lv(char **buf, char *tok, struct g_llvm_vg *vg) { struct g_llvm_lv *lv; struct g_llvm_segment *sg; char *v; size_t len; if (*buf == NULL || **buf == '\0') return (EINVAL); lv = malloc(sizeof(*lv), M_GLLVM, M_NOWAIT|M_ZERO); if (lv == NULL) return (ENOMEM); lv->lv_vg = vg; LIST_INIT(&lv->lv_segs); if (tok == NULL) goto bad; len = llvm_grab_name(lv->lv_name, tok); if (len == 0) goto bad; while ((tok = strsep(buf, "\n")) != NULL) { if (strstr(tok, "{")) { if (strstr(tok, "segment")) { llvm_textconf_decode_sg(buf, tok, lv); continue; } else /* unexpected section */ goto bad; } if (strstr(tok, "}")) break; /* parse 'key = value' lines */ if (strstr(tok, "=")) { SPLIT(v, tok, "="); GRAB_STR("id", v, tok, lv->lv_uuid, sizeof(lv->lv_uuid)); GRAB_INT("segment_count", v, tok, lv->lv_sgcount); continue; } } if (tok == NULL) goto bad; if (lv->lv_sgcount == 0 || lv->lv_sgcount != lv->lv_numsegs) /* zero or incomplete segment list */ goto bad; /* Optimize for only one segment on the pv */ lv->lv_firstsg = LIST_FIRST(&lv->lv_segs); LIST_INSERT_HEAD(&vg->vg_lvs, lv, lv_next); G_LLVM_DEBUG(3, "lv: name=%s uuid=%s", lv->lv_name, lv->lv_uuid); return (0); bad: while ((sg = LIST_FIRST(&lv->lv_segs)) != NULL) { LIST_REMOVE(sg, sg_next); free(sg, M_GLLVM); } free(lv, M_GLLVM); return (-1); } static int llvm_textconf_decode_sg(char **buf, char *tok, struct g_llvm_lv *lv) { struct g_llvm_segment *sg; char *v; int count = 0; if (*buf == NULL || **buf == '\0') return (EINVAL); sg = malloc(sizeof(*sg), M_GLLVM, M_NOWAIT|M_ZERO); if (sg == NULL) return (ENOMEM); while ((tok = strsep(buf, "\n")) != NULL) { /* only a single linear stripe is supported */ if (strstr(tok, "stripe_count")) { SPLIT(v, tok, "="); GRAB_INT("stripe_count", v, tok, count); if (count != 1) goto bad; } if (strstr(tok, "{")) goto bad; if (strstr(tok, "}")) break; if (strcmp(tok, "stripes = [") == 0) { tok = strsep(buf, "\n"); if (tok == NULL) goto bad; strsep(&tok, "\""); if (tok == NULL) goto bad; /* missing open quotes */ v = strsep(&tok, "\""); if (tok == NULL) goto bad; /* missing close quotes */ strncpy(sg->sg_pvname, v, sizeof(sg->sg_pvname)); if (*tok != ',') goto bad; /* missing comma for stripe */ tok++; sg->sg_pvstart = strtol(tok, &v, 10); if (v == tok) /* strtol did not eat any of the buffer */ goto bad; continue; } /* parse 'key = value' lines */ if (strstr(tok, "=")) { SPLIT(v, tok, "="); GRAB_INT("start_extent", v, tok, sg->sg_start); GRAB_INT("extent_count", v, tok, sg->sg_count); continue; } } if (tok == NULL) goto bad; /* basic checking */ if (count != 1 || sg->sg_count == 0) goto bad; sg->sg_end = sg->sg_start + sg->sg_count - 1; lv->lv_numsegs++; lv->lv_extentcount += sg->sg_count; LIST_INSERT_HEAD(&lv->lv_segs, sg, sg_next); return (0); bad: free(sg, M_GLLVM); return (-1); } #undef GRAB_INT #undef GRAB_STR #undef SPLIT static struct g_class g_llvm_class = { .name = G_LLVM_CLASS_NAME, .version = G_VERSION, .init = g_llvm_init, .taste = g_llvm_taste, .destroy_geom = g_llvm_destroy_geom }; DECLARE_GEOM_CLASS(g_llvm_class, g_linux_lvm); +MODULE_VERSION(geom_linux_lvm, 0); Index: head/sys/geom/mirror/g_mirror.c =================================================================== --- head/sys/geom/mirror/g_mirror.c (revision 332386) +++ head/sys/geom/mirror/g_mirror.c (revision 332387) @@ -1,3494 +1,3495 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2004-2006 Pawel Jakub Dawidek * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include FEATURE(geom_mirror, "GEOM mirroring support"); static MALLOC_DEFINE(M_MIRROR, "mirror_data", "GEOM_MIRROR Data"); SYSCTL_DECL(_kern_geom); static SYSCTL_NODE(_kern_geom, OID_AUTO, mirror, CTLFLAG_RW, 0, "GEOM_MIRROR stuff"); int g_mirror_debug = 0; SYSCTL_INT(_kern_geom_mirror, OID_AUTO, debug, CTLFLAG_RWTUN, &g_mirror_debug, 0, "Debug level"); static u_int g_mirror_timeout = 4; SYSCTL_UINT(_kern_geom_mirror, OID_AUTO, timeout, CTLFLAG_RWTUN, &g_mirror_timeout, 0, "Time to wait on all mirror components"); static u_int g_mirror_idletime = 5; SYSCTL_UINT(_kern_geom_mirror, OID_AUTO, idletime, CTLFLAG_RWTUN, &g_mirror_idletime, 0, "Mark components as clean when idling"); static u_int g_mirror_disconnect_on_failure = 1; SYSCTL_UINT(_kern_geom_mirror, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN, &g_mirror_disconnect_on_failure, 0, "Disconnect component on I/O failure."); static u_int g_mirror_syncreqs = 2; SYSCTL_UINT(_kern_geom_mirror, OID_AUTO, sync_requests, CTLFLAG_RDTUN, &g_mirror_syncreqs, 0, "Parallel synchronization I/O requests."); static u_int g_mirror_sync_period = 5; SYSCTL_UINT(_kern_geom_mirror, OID_AUTO, sync_update_period, CTLFLAG_RWTUN, &g_mirror_sync_period, 0, "Metadata update period during synchronization, in seconds"); #define MSLEEP(ident, mtx, priority, wmesg, timeout) do { \ G_MIRROR_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \ msleep((ident), (mtx), (priority), (wmesg), (timeout)); \ G_MIRROR_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \ } while (0) static eventhandler_tag g_mirror_post_sync = NULL; static int g_mirror_shutdown = 0; static g_ctl_destroy_geom_t g_mirror_destroy_geom; static g_taste_t g_mirror_taste; static g_init_t g_mirror_init; static g_fini_t g_mirror_fini; static g_provgone_t g_mirror_providergone; static g_resize_t g_mirror_resize; struct g_class g_mirror_class = { .name = G_MIRROR_CLASS_NAME, .version = G_VERSION, .ctlreq = g_mirror_config, .taste = g_mirror_taste, .destroy_geom = g_mirror_destroy_geom, .init = g_mirror_init, .fini = g_mirror_fini, .providergone = g_mirror_providergone, .resize = g_mirror_resize }; static void g_mirror_destroy_provider(struct g_mirror_softc *sc); static int g_mirror_update_disk(struct g_mirror_disk *disk, u_int state); static void g_mirror_update_device(struct g_mirror_softc *sc, bool force); static void g_mirror_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); static void g_mirror_sync_reinit(const struct g_mirror_disk *disk, struct bio *bp, off_t offset); static void g_mirror_sync_stop(struct g_mirror_disk *disk, int type); static void g_mirror_register_request(struct g_mirror_softc *sc, struct bio *bp); static void g_mirror_sync_release(struct g_mirror_softc *sc); static const char * g_mirror_disk_state2str(int state) { switch (state) { case G_MIRROR_DISK_STATE_NONE: return ("NONE"); case G_MIRROR_DISK_STATE_NEW: return ("NEW"); case G_MIRROR_DISK_STATE_ACTIVE: return ("ACTIVE"); case G_MIRROR_DISK_STATE_STALE: return ("STALE"); case G_MIRROR_DISK_STATE_SYNCHRONIZING: return ("SYNCHRONIZING"); case G_MIRROR_DISK_STATE_DISCONNECTED: return ("DISCONNECTED"); case G_MIRROR_DISK_STATE_DESTROY: return ("DESTROY"); default: return ("INVALID"); } } static const char * g_mirror_device_state2str(int state) { switch (state) { case G_MIRROR_DEVICE_STATE_STARTING: return ("STARTING"); case G_MIRROR_DEVICE_STATE_RUNNING: return ("RUNNING"); default: return ("INVALID"); } } static const char * g_mirror_get_diskname(struct g_mirror_disk *disk) { if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL) return ("[unknown]"); return (disk->d_name); } /* * --- Events handling functions --- * Events in geom_mirror are used to maintain disks and device status * from one thread to simplify locking. */ static void g_mirror_event_free(struct g_mirror_event *ep) { free(ep, M_MIRROR); } int g_mirror_event_send(void *arg, int state, int flags) { struct g_mirror_softc *sc; struct g_mirror_disk *disk; struct g_mirror_event *ep; int error; ep = malloc(sizeof(*ep), M_MIRROR, M_WAITOK); G_MIRROR_DEBUG(4, "%s: Sending event %p.", __func__, ep); if ((flags & G_MIRROR_EVENT_DEVICE) != 0) { disk = NULL; sc = arg; } else { disk = arg; sc = disk->d_softc; } ep->e_disk = disk; ep->e_state = state; ep->e_flags = flags; ep->e_error = 0; mtx_lock(&sc->sc_events_mtx); TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next); mtx_unlock(&sc->sc_events_mtx); G_MIRROR_DEBUG(4, "%s: Waking up %p.", __func__, sc); mtx_lock(&sc->sc_queue_mtx); wakeup(sc); mtx_unlock(&sc->sc_queue_mtx); if ((flags & G_MIRROR_EVENT_DONTWAIT) != 0) return (0); sx_assert(&sc->sc_lock, SX_XLOCKED); G_MIRROR_DEBUG(4, "%s: Sleeping %p.", __func__, ep); sx_xunlock(&sc->sc_lock); while ((ep->e_flags & G_MIRROR_EVENT_DONE) == 0) { mtx_lock(&sc->sc_events_mtx); MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "m:event", hz * 5); } error = ep->e_error; g_mirror_event_free(ep); sx_xlock(&sc->sc_lock); return (error); } static struct g_mirror_event * g_mirror_event_first(struct g_mirror_softc *sc) { struct g_mirror_event *ep; mtx_lock(&sc->sc_events_mtx); ep = TAILQ_FIRST(&sc->sc_events); mtx_unlock(&sc->sc_events_mtx); return (ep); } static void g_mirror_event_remove(struct g_mirror_softc *sc, struct g_mirror_event *ep) { mtx_lock(&sc->sc_events_mtx); TAILQ_REMOVE(&sc->sc_events, ep, e_next); mtx_unlock(&sc->sc_events_mtx); } static void g_mirror_event_cancel(struct g_mirror_disk *disk) { struct g_mirror_softc *sc; struct g_mirror_event *ep, *tmpep; sc = disk->d_softc; sx_assert(&sc->sc_lock, SX_XLOCKED); mtx_lock(&sc->sc_events_mtx); TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) { if ((ep->e_flags & G_MIRROR_EVENT_DEVICE) != 0) continue; if (ep->e_disk != disk) continue; TAILQ_REMOVE(&sc->sc_events, ep, e_next); if ((ep->e_flags & G_MIRROR_EVENT_DONTWAIT) != 0) g_mirror_event_free(ep); else { ep->e_error = ECANCELED; wakeup(ep); } } mtx_unlock(&sc->sc_events_mtx); } /* * Return the number of disks in given state. * If state is equal to -1, count all connected disks. */ u_int g_mirror_ndisks(struct g_mirror_softc *sc, int state) { struct g_mirror_disk *disk; u_int n = 0; sx_assert(&sc->sc_lock, SX_LOCKED); LIST_FOREACH(disk, &sc->sc_disks, d_next) { if (state == -1 || disk->d_state == state) n++; } return (n); } /* * Find a disk in mirror by its disk ID. */ static struct g_mirror_disk * g_mirror_id2disk(struct g_mirror_softc *sc, uint32_t id) { struct g_mirror_disk *disk; sx_assert(&sc->sc_lock, SX_XLOCKED); LIST_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_id == id) return (disk); } return (NULL); } static u_int g_mirror_nrequests(struct g_mirror_softc *sc, struct g_consumer *cp) { struct bio *bp; u_int nreqs = 0; mtx_lock(&sc->sc_queue_mtx); TAILQ_FOREACH(bp, &sc->sc_queue, bio_queue) { if (bp->bio_from == cp) nreqs++; } mtx_unlock(&sc->sc_queue_mtx); return (nreqs); } static int g_mirror_is_busy(struct g_mirror_softc *sc, struct g_consumer *cp) { if (cp->index > 0) { G_MIRROR_DEBUG(2, "I/O requests for %s exist, can't destroy it now.", cp->provider->name); return (1); } if (g_mirror_nrequests(sc, cp) > 0) { G_MIRROR_DEBUG(2, "I/O requests for %s in queue, can't destroy it now.", cp->provider->name); return (1); } return (0); } static void g_mirror_destroy_consumer(void *arg, int flags __unused) { struct g_consumer *cp; g_topology_assert(); cp = arg; G_MIRROR_DEBUG(1, "Consumer %s destroyed.", cp->provider->name); g_detach(cp); g_destroy_consumer(cp); } static void g_mirror_kill_consumer(struct g_mirror_softc *sc, struct g_consumer *cp) { struct g_provider *pp; int retaste_wait; g_topology_assert(); cp->private = NULL; if (g_mirror_is_busy(sc, cp)) return; pp = cp->provider; retaste_wait = 0; if (cp->acw == 1) { if ((pp->geom->flags & G_GEOM_WITHER) == 0) retaste_wait = 1; } G_MIRROR_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr, -cp->acw, -cp->ace, 0); if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) g_access(cp, -cp->acr, -cp->acw, -cp->ace); if (retaste_wait) { /* * After retaste event was send (inside g_access()), we can send * event to detach and destroy consumer. * A class, which has consumer to the given provider connected * will not receive retaste event for the provider. * This is the way how I ignore retaste events when I close * consumers opened for write: I detach and destroy consumer * after retaste event is sent. */ g_post_event(g_mirror_destroy_consumer, cp, M_WAITOK, NULL); return; } G_MIRROR_DEBUG(1, "Consumer %s destroyed.", pp->name); g_detach(cp); g_destroy_consumer(cp); } static int g_mirror_connect_disk(struct g_mirror_disk *disk, struct g_provider *pp) { struct g_consumer *cp; int error; g_topology_assert_not(); KASSERT(disk->d_consumer == NULL, ("Disk already connected (device %s).", disk->d_softc->sc_name)); g_topology_lock(); cp = g_new_consumer(disk->d_softc->sc_geom); cp->flags |= G_CF_DIRECT_RECEIVE; error = g_attach(cp, pp); if (error != 0) { g_destroy_consumer(cp); g_topology_unlock(); return (error); } error = g_access(cp, 1, 1, 1); if (error != 0) { g_detach(cp); g_destroy_consumer(cp); g_topology_unlock(); G_MIRROR_DEBUG(0, "Cannot open consumer %s (error=%d).", pp->name, error); return (error); } g_topology_unlock(); disk->d_consumer = cp; disk->d_consumer->private = disk; disk->d_consumer->index = 0; G_MIRROR_DEBUG(2, "Disk %s connected.", g_mirror_get_diskname(disk)); return (0); } static void g_mirror_disconnect_consumer(struct g_mirror_softc *sc, struct g_consumer *cp) { g_topology_assert(); if (cp == NULL) return; if (cp->provider != NULL) g_mirror_kill_consumer(sc, cp); else g_destroy_consumer(cp); } /* * Initialize disk. This means allocate memory, create consumer, attach it * to the provider and open access (r1w1e1) to it. */ static struct g_mirror_disk * g_mirror_init_disk(struct g_mirror_softc *sc, struct g_provider *pp, struct g_mirror_metadata *md, int *errorp) { struct g_mirror_disk *disk; int i, error; disk = malloc(sizeof(*disk), M_MIRROR, M_NOWAIT | M_ZERO); if (disk == NULL) { error = ENOMEM; goto fail; } disk->d_softc = sc; error = g_mirror_connect_disk(disk, pp); if (error != 0) goto fail; disk->d_id = md->md_did; disk->d_state = G_MIRROR_DISK_STATE_NONE; disk->d_priority = md->md_priority; disk->d_flags = md->md_dflags; error = g_getattr("GEOM::candelete", disk->d_consumer, &i); if (error == 0 && i != 0) disk->d_flags |= G_MIRROR_DISK_FLAG_CANDELETE; if (md->md_provider[0] != '\0') disk->d_flags |= G_MIRROR_DISK_FLAG_HARDCODED; disk->d_sync.ds_consumer = NULL; disk->d_sync.ds_offset = md->md_sync_offset; disk->d_sync.ds_offset_done = md->md_sync_offset; disk->d_sync.ds_update_ts = time_uptime; disk->d_genid = md->md_genid; disk->d_sync.ds_syncid = md->md_syncid; if (errorp != NULL) *errorp = 0; return (disk); fail: if (errorp != NULL) *errorp = error; if (disk != NULL) free(disk, M_MIRROR); return (NULL); } static void g_mirror_destroy_disk(struct g_mirror_disk *disk) { struct g_mirror_softc *sc; g_topology_assert_not(); sc = disk->d_softc; sx_assert(&sc->sc_lock, SX_XLOCKED); LIST_REMOVE(disk, d_next); g_mirror_event_cancel(disk); if (sc->sc_hint == disk) sc->sc_hint = NULL; switch (disk->d_state) { case G_MIRROR_DISK_STATE_SYNCHRONIZING: g_mirror_sync_stop(disk, 1); /* FALLTHROUGH */ case G_MIRROR_DISK_STATE_NEW: case G_MIRROR_DISK_STATE_STALE: case G_MIRROR_DISK_STATE_ACTIVE: g_topology_lock(); g_mirror_disconnect_consumer(sc, disk->d_consumer); g_topology_unlock(); free(disk, M_MIRROR); break; default: KASSERT(0 == 1, ("Wrong disk state (%s, %s).", g_mirror_get_diskname(disk), g_mirror_disk_state2str(disk->d_state))); } } static void g_mirror_free_device(struct g_mirror_softc *sc) { mtx_destroy(&sc->sc_queue_mtx); mtx_destroy(&sc->sc_events_mtx); mtx_destroy(&sc->sc_done_mtx); sx_destroy(&sc->sc_lock); free(sc, M_MIRROR); } static void g_mirror_providergone(struct g_provider *pp) { struct g_mirror_softc *sc = pp->private; if ((--sc->sc_refcnt) == 0) g_mirror_free_device(sc); } static void g_mirror_destroy_device(struct g_mirror_softc *sc) { struct g_mirror_disk *disk; struct g_mirror_event *ep; struct g_geom *gp; struct g_consumer *cp, *tmpcp; g_topology_assert_not(); sx_assert(&sc->sc_lock, SX_XLOCKED); gp = sc->sc_geom; if (sc->sc_provider != NULL) g_mirror_destroy_provider(sc); for (disk = LIST_FIRST(&sc->sc_disks); disk != NULL; disk = LIST_FIRST(&sc->sc_disks)) { disk->d_flags &= ~G_MIRROR_DISK_FLAG_DIRTY; g_mirror_update_metadata(disk); g_mirror_destroy_disk(disk); } while ((ep = g_mirror_event_first(sc)) != NULL) { g_mirror_event_remove(sc, ep); if ((ep->e_flags & G_MIRROR_EVENT_DONTWAIT) != 0) g_mirror_event_free(ep); else { ep->e_error = ECANCELED; ep->e_flags |= G_MIRROR_EVENT_DONE; G_MIRROR_DEBUG(4, "%s: Waking up %p.", __func__, ep); mtx_lock(&sc->sc_events_mtx); wakeup(ep); mtx_unlock(&sc->sc_events_mtx); } } callout_drain(&sc->sc_callout); g_topology_lock(); LIST_FOREACH_SAFE(cp, &sc->sc_sync.ds_geom->consumer, consumer, tmpcp) { g_mirror_disconnect_consumer(sc, cp); } g_wither_geom(sc->sc_sync.ds_geom, ENXIO); G_MIRROR_DEBUG(0, "Device %s destroyed.", gp->name); g_wither_geom(gp, ENXIO); sx_xunlock(&sc->sc_lock); if ((--sc->sc_refcnt) == 0) g_mirror_free_device(sc); g_topology_unlock(); } static void g_mirror_orphan(struct g_consumer *cp) { struct g_mirror_disk *disk; g_topology_assert(); disk = cp->private; if (disk == NULL) return; disk->d_softc->sc_bump_id |= G_MIRROR_BUMP_SYNCID; g_mirror_event_send(disk, G_MIRROR_DISK_STATE_DISCONNECTED, G_MIRROR_EVENT_DONTWAIT); } /* * Function should return the next active disk on the list. * It is possible that it will be the same disk as given. * If there are no active disks on list, NULL is returned. */ static __inline struct g_mirror_disk * g_mirror_find_next(struct g_mirror_softc *sc, struct g_mirror_disk *disk) { struct g_mirror_disk *dp; for (dp = LIST_NEXT(disk, d_next); dp != disk; dp = LIST_NEXT(dp, d_next)) { if (dp == NULL) dp = LIST_FIRST(&sc->sc_disks); if (dp->d_state == G_MIRROR_DISK_STATE_ACTIVE) break; } if (dp->d_state != G_MIRROR_DISK_STATE_ACTIVE) return (NULL); return (dp); } static struct g_mirror_disk * g_mirror_get_disk(struct g_mirror_softc *sc) { struct g_mirror_disk *disk; if (sc->sc_hint == NULL) { sc->sc_hint = LIST_FIRST(&sc->sc_disks); if (sc->sc_hint == NULL) return (NULL); } disk = sc->sc_hint; if (disk->d_state != G_MIRROR_DISK_STATE_ACTIVE) { disk = g_mirror_find_next(sc, disk); if (disk == NULL) return (NULL); } sc->sc_hint = g_mirror_find_next(sc, disk); return (disk); } static int g_mirror_write_metadata(struct g_mirror_disk *disk, struct g_mirror_metadata *md) { struct g_mirror_softc *sc; struct g_consumer *cp; off_t offset, length; u_char *sector; int error = 0; g_topology_assert_not(); sc = disk->d_softc; sx_assert(&sc->sc_lock, SX_LOCKED); cp = disk->d_consumer; KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name)); KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name)); KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, ("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr, cp->acw, cp->ace)); length = cp->provider->sectorsize; offset = cp->provider->mediasize - length; sector = malloc((size_t)length, M_MIRROR, M_WAITOK | M_ZERO); if (md != NULL && (sc->sc_flags & G_MIRROR_DEVICE_FLAG_WIPE) == 0) { /* * Handle the case, when the size of parent provider reduced. */ if (offset < md->md_mediasize) error = ENOSPC; else mirror_metadata_encode(md, sector); } KFAIL_POINT_ERROR(DEBUG_FP, g_mirror_metadata_write, error); if (error == 0) error = g_write_data(cp, offset, sector, length); free(sector, M_MIRROR); if (error != 0) { if ((disk->d_flags & G_MIRROR_DISK_FLAG_BROKEN) == 0) { disk->d_flags |= G_MIRROR_DISK_FLAG_BROKEN; G_MIRROR_DEBUG(0, "Cannot write metadata on %s " "(device=%s, error=%d).", g_mirror_get_diskname(disk), sc->sc_name, error); } else { G_MIRROR_DEBUG(1, "Cannot write metadata on %s " "(device=%s, error=%d).", g_mirror_get_diskname(disk), sc->sc_name, error); } if (g_mirror_disconnect_on_failure && g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_ACTIVE) > 1) { sc->sc_bump_id |= G_MIRROR_BUMP_GENID; g_mirror_event_send(disk, G_MIRROR_DISK_STATE_DISCONNECTED, G_MIRROR_EVENT_DONTWAIT); } } return (error); } static int g_mirror_clear_metadata(struct g_mirror_disk *disk) { int error; g_topology_assert_not(); sx_assert(&disk->d_softc->sc_lock, SX_LOCKED); if (disk->d_softc->sc_type != G_MIRROR_TYPE_AUTOMATIC) return (0); error = g_mirror_write_metadata(disk, NULL); if (error == 0) { G_MIRROR_DEBUG(2, "Metadata on %s cleared.", g_mirror_get_diskname(disk)); } else { G_MIRROR_DEBUG(0, "Cannot clear metadata on disk %s (error=%d).", g_mirror_get_diskname(disk), error); } return (error); } void g_mirror_fill_metadata(struct g_mirror_softc *sc, struct g_mirror_disk *disk, struct g_mirror_metadata *md) { strlcpy(md->md_magic, G_MIRROR_MAGIC, sizeof(md->md_magic)); md->md_version = G_MIRROR_VERSION; strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name)); md->md_mid = sc->sc_id; md->md_all = sc->sc_ndisks; md->md_slice = sc->sc_slice; md->md_balance = sc->sc_balance; md->md_genid = sc->sc_genid; md->md_mediasize = sc->sc_mediasize; md->md_sectorsize = sc->sc_sectorsize; md->md_mflags = (sc->sc_flags & G_MIRROR_DEVICE_FLAG_MASK); bzero(md->md_provider, sizeof(md->md_provider)); if (disk == NULL) { md->md_did = arc4random(); md->md_priority = 0; md->md_syncid = 0; md->md_dflags = 0; md->md_sync_offset = 0; md->md_provsize = 0; } else { md->md_did = disk->d_id; md->md_priority = disk->d_priority; md->md_syncid = disk->d_sync.ds_syncid; md->md_dflags = (disk->d_flags & G_MIRROR_DISK_FLAG_MASK); if (disk->d_state == G_MIRROR_DISK_STATE_SYNCHRONIZING) md->md_sync_offset = disk->d_sync.ds_offset_done; else md->md_sync_offset = 0; if ((disk->d_flags & G_MIRROR_DISK_FLAG_HARDCODED) != 0) { strlcpy(md->md_provider, disk->d_consumer->provider->name, sizeof(md->md_provider)); } md->md_provsize = disk->d_consumer->provider->mediasize; } } void g_mirror_update_metadata(struct g_mirror_disk *disk) { struct g_mirror_softc *sc; struct g_mirror_metadata md; int error; g_topology_assert_not(); sc = disk->d_softc; sx_assert(&sc->sc_lock, SX_LOCKED); if (sc->sc_type != G_MIRROR_TYPE_AUTOMATIC) return; if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_WIPE) == 0) g_mirror_fill_metadata(sc, disk, &md); error = g_mirror_write_metadata(disk, &md); if (error == 0) { G_MIRROR_DEBUG(2, "Metadata on %s updated.", g_mirror_get_diskname(disk)); } else { G_MIRROR_DEBUG(0, "Cannot update metadata on disk %s (error=%d).", g_mirror_get_diskname(disk), error); } } static void g_mirror_bump_syncid(struct g_mirror_softc *sc) { struct g_mirror_disk *disk; g_topology_assert_not(); sx_assert(&sc->sc_lock, SX_XLOCKED); KASSERT(g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_ACTIVE) > 0, ("%s called with no active disks (device=%s).", __func__, sc->sc_name)); sc->sc_syncid++; G_MIRROR_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name, sc->sc_syncid); LIST_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_state == G_MIRROR_DISK_STATE_ACTIVE || disk->d_state == G_MIRROR_DISK_STATE_SYNCHRONIZING) { disk->d_sync.ds_syncid = sc->sc_syncid; g_mirror_update_metadata(disk); } } } static void g_mirror_bump_genid(struct g_mirror_softc *sc) { struct g_mirror_disk *disk; g_topology_assert_not(); sx_assert(&sc->sc_lock, SX_XLOCKED); KASSERT(g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_ACTIVE) > 0, ("%s called with no active disks (device=%s).", __func__, sc->sc_name)); sc->sc_genid++; G_MIRROR_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name, sc->sc_genid); LIST_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_state == G_MIRROR_DISK_STATE_ACTIVE || disk->d_state == G_MIRROR_DISK_STATE_SYNCHRONIZING) { disk->d_genid = sc->sc_genid; g_mirror_update_metadata(disk); } } } static int g_mirror_idle(struct g_mirror_softc *sc, int acw) { struct g_mirror_disk *disk; int timeout; g_topology_assert_not(); sx_assert(&sc->sc_lock, SX_XLOCKED); if (sc->sc_provider == NULL) return (0); if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_NOFAILSYNC) != 0) return (0); if (sc->sc_idle) return (0); if (sc->sc_writes > 0) return (0); if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) { timeout = g_mirror_idletime - (time_uptime - sc->sc_last_write); if (!g_mirror_shutdown && timeout > 0) return (timeout); } sc->sc_idle = 1; LIST_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_state != G_MIRROR_DISK_STATE_ACTIVE) continue; G_MIRROR_DEBUG(2, "Disk %s (device %s) marked as clean.", g_mirror_get_diskname(disk), sc->sc_name); disk->d_flags &= ~G_MIRROR_DISK_FLAG_DIRTY; g_mirror_update_metadata(disk); } return (0); } static void g_mirror_unidle(struct g_mirror_softc *sc) { struct g_mirror_disk *disk; g_topology_assert_not(); sx_assert(&sc->sc_lock, SX_XLOCKED); if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_NOFAILSYNC) != 0) return; sc->sc_idle = 0; sc->sc_last_write = time_uptime; LIST_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_state != G_MIRROR_DISK_STATE_ACTIVE) continue; G_MIRROR_DEBUG(2, "Disk %s (device %s) marked as dirty.", g_mirror_get_diskname(disk), sc->sc_name); disk->d_flags |= G_MIRROR_DISK_FLAG_DIRTY; g_mirror_update_metadata(disk); } } static void g_mirror_done(struct bio *bp) { struct g_mirror_softc *sc; sc = bp->bio_from->geom->softc; bp->bio_cflags = G_MIRROR_BIO_FLAG_REGULAR; mtx_lock(&sc->sc_queue_mtx); TAILQ_INSERT_TAIL(&sc->sc_queue, bp, bio_queue); mtx_unlock(&sc->sc_queue_mtx); wakeup(sc); } static void g_mirror_regular_request_error(struct g_mirror_softc *sc, struct g_mirror_disk *disk, struct bio *bp) { if (bp->bio_cmd == BIO_FLUSH && bp->bio_error == EOPNOTSUPP) return; if ((disk->d_flags & G_MIRROR_DISK_FLAG_BROKEN) == 0) { disk->d_flags |= G_MIRROR_DISK_FLAG_BROKEN; G_MIRROR_LOGREQ(0, bp, "Request failed (error=%d).", bp->bio_error); } else { G_MIRROR_LOGREQ(1, bp, "Request failed (error=%d).", bp->bio_error); } if (g_mirror_disconnect_on_failure && g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_ACTIVE) > 1) { if (bp->bio_error == ENXIO && bp->bio_cmd == BIO_READ) sc->sc_bump_id |= G_MIRROR_BUMP_SYNCID; else if (bp->bio_error == ENXIO) sc->sc_bump_id |= G_MIRROR_BUMP_SYNCID_NOW; else sc->sc_bump_id |= G_MIRROR_BUMP_GENID; g_mirror_event_send(disk, G_MIRROR_DISK_STATE_DISCONNECTED, G_MIRROR_EVENT_DONTWAIT); } } static void g_mirror_regular_request(struct g_mirror_softc *sc, struct bio *bp) { struct g_mirror_disk *disk; struct bio *pbp; g_topology_assert_not(); KASSERT(sc->sc_provider == bp->bio_parent->bio_to, ("regular request %p with unexpected origin", bp)); pbp = bp->bio_parent; bp->bio_from->index--; if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) sc->sc_writes--; disk = bp->bio_from->private; if (disk == NULL) { g_topology_lock(); g_mirror_kill_consumer(sc, bp->bio_from); g_topology_unlock(); } switch (bp->bio_cmd) { case BIO_READ: KFAIL_POINT_ERROR(DEBUG_FP, g_mirror_regular_request_read, bp->bio_error); break; case BIO_WRITE: KFAIL_POINT_ERROR(DEBUG_FP, g_mirror_regular_request_write, bp->bio_error); break; case BIO_DELETE: KFAIL_POINT_ERROR(DEBUG_FP, g_mirror_regular_request_delete, bp->bio_error); break; case BIO_FLUSH: KFAIL_POINT_ERROR(DEBUG_FP, g_mirror_regular_request_flush, bp->bio_error); break; } pbp->bio_inbed++; KASSERT(pbp->bio_inbed <= pbp->bio_children, ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed, pbp->bio_children)); if (bp->bio_error == 0 && pbp->bio_error == 0) { G_MIRROR_LOGREQ(3, bp, "Request delivered."); g_destroy_bio(bp); if (pbp->bio_children == pbp->bio_inbed) { G_MIRROR_LOGREQ(3, pbp, "Request delivered."); pbp->bio_completed = pbp->bio_length; if (pbp->bio_cmd == BIO_WRITE || pbp->bio_cmd == BIO_DELETE) { TAILQ_REMOVE(&sc->sc_inflight, pbp, bio_queue); /* Release delayed sync requests if possible. */ g_mirror_sync_release(sc); } g_io_deliver(pbp, pbp->bio_error); } return; } else if (bp->bio_error != 0) { if (pbp->bio_error == 0) pbp->bio_error = bp->bio_error; if (disk != NULL) g_mirror_regular_request_error(sc, disk, bp); switch (pbp->bio_cmd) { case BIO_DELETE: case BIO_WRITE: case BIO_FLUSH: pbp->bio_inbed--; pbp->bio_children--; break; } } g_destroy_bio(bp); switch (pbp->bio_cmd) { case BIO_READ: if (pbp->bio_inbed < pbp->bio_children) break; if (g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_ACTIVE) == 1) g_io_deliver(pbp, pbp->bio_error); else { pbp->bio_error = 0; mtx_lock(&sc->sc_queue_mtx); TAILQ_INSERT_TAIL(&sc->sc_queue, pbp, bio_queue); mtx_unlock(&sc->sc_queue_mtx); G_MIRROR_DEBUG(4, "%s: Waking up %p.", __func__, sc); wakeup(sc); } break; case BIO_DELETE: case BIO_WRITE: case BIO_FLUSH: if (pbp->bio_children == 0) { /* * All requests failed. */ } else if (pbp->bio_inbed < pbp->bio_children) { /* Do nothing. */ break; } else if (pbp->bio_children == pbp->bio_inbed) { /* Some requests succeeded. */ pbp->bio_error = 0; pbp->bio_completed = pbp->bio_length; } if (pbp->bio_cmd == BIO_WRITE || pbp->bio_cmd == BIO_DELETE) { TAILQ_REMOVE(&sc->sc_inflight, pbp, bio_queue); /* Release delayed sync requests if possible. */ g_mirror_sync_release(sc); } g_io_deliver(pbp, pbp->bio_error); break; default: KASSERT(1 == 0, ("Invalid request: %u.", pbp->bio_cmd)); break; } } static void g_mirror_sync_done(struct bio *bp) { struct g_mirror_softc *sc; G_MIRROR_LOGREQ(3, bp, "Synchronization request delivered."); sc = bp->bio_from->geom->softc; bp->bio_cflags = G_MIRROR_BIO_FLAG_SYNC; mtx_lock(&sc->sc_queue_mtx); TAILQ_INSERT_TAIL(&sc->sc_queue, bp, bio_queue); mtx_unlock(&sc->sc_queue_mtx); wakeup(sc); } static void g_mirror_candelete(struct bio *bp) { struct g_mirror_softc *sc; struct g_mirror_disk *disk; int *val; sc = bp->bio_to->private; LIST_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_flags & G_MIRROR_DISK_FLAG_CANDELETE) break; } val = (int *)bp->bio_data; *val = (disk != NULL); g_io_deliver(bp, 0); } static void g_mirror_kernel_dump(struct bio *bp) { struct g_mirror_softc *sc; struct g_mirror_disk *disk; struct bio *cbp; struct g_kerneldump *gkd; /* * We configure dumping to the first component, because this component * will be used for reading with 'prefer' balance algorithm. * If the component with the highest priority is currently disconnected * we will not be able to read the dump after the reboot if it will be * connected and synchronized later. Can we do something better? */ sc = bp->bio_to->private; disk = LIST_FIRST(&sc->sc_disks); gkd = (struct g_kerneldump *)bp->bio_data; if (gkd->length > bp->bio_to->mediasize) gkd->length = bp->bio_to->mediasize; cbp = g_clone_bio(bp); if (cbp == NULL) { g_io_deliver(bp, ENOMEM); return; } cbp->bio_done = g_std_done; g_io_request(cbp, disk->d_consumer); G_MIRROR_DEBUG(1, "Kernel dump will go to %s.", g_mirror_get_diskname(disk)); } static void g_mirror_start(struct bio *bp) { struct g_mirror_softc *sc; sc = bp->bio_to->private; /* * If sc == NULL or there are no valid disks, provider's error * should be set and g_mirror_start() should not be called at all. */ KASSERT(sc != NULL && sc->sc_state == G_MIRROR_DEVICE_STATE_RUNNING, ("Provider's error should be set (error=%d)(mirror=%s).", bp->bio_to->error, bp->bio_to->name)); G_MIRROR_LOGREQ(3, bp, "Request received."); switch (bp->bio_cmd) { case BIO_READ: case BIO_WRITE: case BIO_DELETE: case BIO_FLUSH: break; case BIO_GETATTR: if (!strcmp(bp->bio_attribute, "GEOM::candelete")) { g_mirror_candelete(bp); return; } else if (strcmp("GEOM::kerneldump", bp->bio_attribute) == 0) { g_mirror_kernel_dump(bp); return; } /* FALLTHROUGH */ default: g_io_deliver(bp, EOPNOTSUPP); return; } mtx_lock(&sc->sc_queue_mtx); if (bp->bio_to->error != 0) { mtx_unlock(&sc->sc_queue_mtx); g_io_deliver(bp, bp->bio_to->error); return; } TAILQ_INSERT_TAIL(&sc->sc_queue, bp, bio_queue); mtx_unlock(&sc->sc_queue_mtx); G_MIRROR_DEBUG(4, "%s: Waking up %p.", __func__, sc); wakeup(sc); } /* * Return TRUE if the given request is colliding with a in-progress * synchronization request. */ static bool g_mirror_sync_collision(struct g_mirror_softc *sc, struct bio *bp) { struct g_mirror_disk *disk; struct bio *sbp; off_t rstart, rend, sstart, send; u_int i; if (sc->sc_sync.ds_ndisks == 0) return (false); rstart = bp->bio_offset; rend = bp->bio_offset + bp->bio_length; LIST_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_state != G_MIRROR_DISK_STATE_SYNCHRONIZING) continue; for (i = 0; i < g_mirror_syncreqs; i++) { sbp = disk->d_sync.ds_bios[i]; if (sbp == NULL) continue; sstart = sbp->bio_offset; send = sbp->bio_offset + sbp->bio_length; if (rend > sstart && rstart < send) return (true); } } return (false); } /* * Return TRUE if the given sync request is colliding with a in-progress regular * request. */ static bool g_mirror_regular_collision(struct g_mirror_softc *sc, struct bio *sbp) { off_t rstart, rend, sstart, send; struct bio *bp; if (sc->sc_sync.ds_ndisks == 0) return (false); sstart = sbp->bio_offset; send = sbp->bio_offset + sbp->bio_length; TAILQ_FOREACH(bp, &sc->sc_inflight, bio_queue) { rstart = bp->bio_offset; rend = bp->bio_offset + bp->bio_length; if (rend > sstart && rstart < send) return (true); } return (false); } /* * Puts regular request onto delayed queue. */ static void g_mirror_regular_delay(struct g_mirror_softc *sc, struct bio *bp) { G_MIRROR_LOGREQ(2, bp, "Delaying request."); TAILQ_INSERT_TAIL(&sc->sc_regular_delayed, bp, bio_queue); } /* * Puts synchronization request onto delayed queue. */ static void g_mirror_sync_delay(struct g_mirror_softc *sc, struct bio *bp) { G_MIRROR_LOGREQ(2, bp, "Delaying synchronization request."); TAILQ_INSERT_TAIL(&sc->sc_sync_delayed, bp, bio_queue); } /* * Requeue delayed regular requests. */ static void g_mirror_regular_release(struct g_mirror_softc *sc) { struct bio *bp; if ((bp = TAILQ_FIRST(&sc->sc_regular_delayed)) == NULL) return; if (g_mirror_sync_collision(sc, bp)) return; G_MIRROR_DEBUG(2, "Requeuing regular requests after collision."); mtx_lock(&sc->sc_queue_mtx); TAILQ_CONCAT(&sc->sc_regular_delayed, &sc->sc_queue, bio_queue); TAILQ_SWAP(&sc->sc_regular_delayed, &sc->sc_queue, bio, bio_queue); mtx_unlock(&sc->sc_queue_mtx); } /* * Releases delayed sync requests which don't collide anymore with regular * requests. */ static void g_mirror_sync_release(struct g_mirror_softc *sc) { struct bio *bp, *bp2; TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed, bio_queue, bp2) { if (g_mirror_regular_collision(sc, bp)) continue; TAILQ_REMOVE(&sc->sc_sync_delayed, bp, bio_queue); G_MIRROR_LOGREQ(2, bp, "Releasing delayed synchronization request."); g_io_request(bp, bp->bio_from); } } /* * Free a synchronization request and clear its slot in the array. */ static void g_mirror_sync_request_free(struct g_mirror_disk *disk, struct bio *bp) { int idx; if (disk != NULL && disk->d_sync.ds_bios != NULL) { idx = (int)(uintptr_t)bp->bio_caller1; KASSERT(disk->d_sync.ds_bios[idx] == bp, ("unexpected sync BIO at %p:%d", disk, idx)); disk->d_sync.ds_bios[idx] = NULL; } free(bp->bio_data, M_MIRROR); g_destroy_bio(bp); } /* * Handle synchronization requests. * Every synchronization request is a two-step process: first, a read request is * sent to the mirror provider via the sync consumer. If that request completes * successfully, it is converted to a write and sent to the disk being * synchronized. If the write also completes successfully, the synchronization * offset is advanced and a new read request is submitted. */ static void g_mirror_sync_request(struct g_mirror_softc *sc, struct bio *bp) { struct g_mirror_disk *disk; struct g_mirror_disk_sync *sync; KASSERT((bp->bio_cmd == BIO_READ && bp->bio_from->geom == sc->sc_sync.ds_geom) || (bp->bio_cmd == BIO_WRITE && bp->bio_from->geom == sc->sc_geom), ("Sync BIO %p with unexpected origin", bp)); bp->bio_from->index--; disk = bp->bio_from->private; if (disk == NULL) { sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */ g_topology_lock(); g_mirror_kill_consumer(sc, bp->bio_from); g_topology_unlock(); g_mirror_sync_request_free(NULL, bp); sx_xlock(&sc->sc_lock); return; } sync = &disk->d_sync; /* * Synchronization request. */ switch (bp->bio_cmd) { case BIO_READ: { struct g_consumer *cp; KFAIL_POINT_ERROR(DEBUG_FP, g_mirror_sync_request_read, bp->bio_error); if (bp->bio_error != 0) { G_MIRROR_LOGREQ(0, bp, "Synchronization request failed (error=%d).", bp->bio_error); /* * The read error will trigger a syncid bump, so there's * no need to do that here. * * The read error handling for regular requests will * retry the read from all active mirrors before passing * the error back up, so there's no need to retry here. */ g_mirror_sync_request_free(disk, bp); g_mirror_event_send(disk, G_MIRROR_DISK_STATE_DISCONNECTED, G_MIRROR_EVENT_DONTWAIT); return; } G_MIRROR_LOGREQ(3, bp, "Synchronization request half-finished."); bp->bio_cmd = BIO_WRITE; bp->bio_cflags = 0; cp = disk->d_consumer; KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, cp->acr, cp->acw, cp->ace)); cp->index++; g_io_request(bp, cp); return; } case BIO_WRITE: { off_t offset; int i; KFAIL_POINT_ERROR(DEBUG_FP, g_mirror_sync_request_write, bp->bio_error); if (bp->bio_error != 0) { G_MIRROR_LOGREQ(0, bp, "Synchronization request failed (error=%d).", bp->bio_error); g_mirror_sync_request_free(disk, bp); sc->sc_bump_id |= G_MIRROR_BUMP_GENID; g_mirror_event_send(disk, G_MIRROR_DISK_STATE_DISCONNECTED, G_MIRROR_EVENT_DONTWAIT); return; } G_MIRROR_LOGREQ(3, bp, "Synchronization request finished."); if (sync->ds_offset >= sc->sc_mediasize || sync->ds_consumer == NULL || (sc->sc_flags & G_MIRROR_DEVICE_FLAG_DESTROY) != 0) { /* Don't send more synchronization requests. */ sync->ds_inflight--; g_mirror_sync_request_free(disk, bp); if (sync->ds_inflight > 0) return; if (sync->ds_consumer == NULL || (sc->sc_flags & G_MIRROR_DEVICE_FLAG_DESTROY) != 0) { return; } /* Disk up-to-date, activate it. */ g_mirror_event_send(disk, G_MIRROR_DISK_STATE_ACTIVE, G_MIRROR_EVENT_DONTWAIT); return; } /* Send next synchronization request. */ g_mirror_sync_reinit(disk, bp, sync->ds_offset); sync->ds_offset += bp->bio_length; G_MIRROR_LOGREQ(3, bp, "Sending synchronization request."); sync->ds_consumer->index++; /* * Delay the request if it is colliding with a regular request. */ if (g_mirror_regular_collision(sc, bp)) g_mirror_sync_delay(sc, bp); else g_io_request(bp, sync->ds_consumer); /* Requeue delayed requests if possible. */ g_mirror_regular_release(sc); /* Find the smallest offset */ offset = sc->sc_mediasize; for (i = 0; i < g_mirror_syncreqs; i++) { bp = sync->ds_bios[i]; if (bp != NULL && bp->bio_offset < offset) offset = bp->bio_offset; } if (g_mirror_sync_period > 0 && time_uptime - sync->ds_update_ts > g_mirror_sync_period) { sync->ds_offset_done = offset; g_mirror_update_metadata(disk); sync->ds_update_ts = time_uptime; } return; } default: panic("Invalid I/O request %p", bp); } } static void g_mirror_request_prefer(struct g_mirror_softc *sc, struct bio *bp) { struct g_mirror_disk *disk; struct g_consumer *cp; struct bio *cbp; LIST_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_state == G_MIRROR_DISK_STATE_ACTIVE) break; } if (disk == NULL) { if (bp->bio_error == 0) bp->bio_error = ENXIO; g_io_deliver(bp, bp->bio_error); return; } cbp = g_clone_bio(bp); if (cbp == NULL) { if (bp->bio_error == 0) bp->bio_error = ENOMEM; g_io_deliver(bp, bp->bio_error); return; } /* * Fill in the component buf structure. */ cp = disk->d_consumer; cbp->bio_done = g_mirror_done; cbp->bio_to = cp->provider; G_MIRROR_LOGREQ(3, cbp, "Sending request."); KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, cp->acr, cp->acw, cp->ace)); cp->index++; g_io_request(cbp, cp); } static void g_mirror_request_round_robin(struct g_mirror_softc *sc, struct bio *bp) { struct g_mirror_disk *disk; struct g_consumer *cp; struct bio *cbp; disk = g_mirror_get_disk(sc); if (disk == NULL) { if (bp->bio_error == 0) bp->bio_error = ENXIO; g_io_deliver(bp, bp->bio_error); return; } cbp = g_clone_bio(bp); if (cbp == NULL) { if (bp->bio_error == 0) bp->bio_error = ENOMEM; g_io_deliver(bp, bp->bio_error); return; } /* * Fill in the component buf structure. */ cp = disk->d_consumer; cbp->bio_done = g_mirror_done; cbp->bio_to = cp->provider; G_MIRROR_LOGREQ(3, cbp, "Sending request."); KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, cp->acr, cp->acw, cp->ace)); cp->index++; g_io_request(cbp, cp); } #define TRACK_SIZE (1 * 1024 * 1024) #define LOAD_SCALE 256 #define ABS(x) (((x) >= 0) ? (x) : (-(x))) static void g_mirror_request_load(struct g_mirror_softc *sc, struct bio *bp) { struct g_mirror_disk *disk, *dp; struct g_consumer *cp; struct bio *cbp; int prio, best; /* Find a disk with the smallest load. */ disk = NULL; best = INT_MAX; LIST_FOREACH(dp, &sc->sc_disks, d_next) { if (dp->d_state != G_MIRROR_DISK_STATE_ACTIVE) continue; prio = dp->load; /* If disk head is precisely in position - highly prefer it. */ if (dp->d_last_offset == bp->bio_offset) prio -= 2 * LOAD_SCALE; else /* If disk head is close to position - prefer it. */ if (ABS(dp->d_last_offset - bp->bio_offset) < TRACK_SIZE) prio -= 1 * LOAD_SCALE; if (prio <= best) { disk = dp; best = prio; } } KASSERT(disk != NULL, ("NULL disk for %s.", sc->sc_name)); cbp = g_clone_bio(bp); if (cbp == NULL) { if (bp->bio_error == 0) bp->bio_error = ENOMEM; g_io_deliver(bp, bp->bio_error); return; } /* * Fill in the component buf structure. */ cp = disk->d_consumer; cbp->bio_done = g_mirror_done; cbp->bio_to = cp->provider; G_MIRROR_LOGREQ(3, cbp, "Sending request."); KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, cp->acr, cp->acw, cp->ace)); cp->index++; /* Remember last head position */ disk->d_last_offset = bp->bio_offset + bp->bio_length; /* Update loads. */ LIST_FOREACH(dp, &sc->sc_disks, d_next) { dp->load = (dp->d_consumer->index * LOAD_SCALE + dp->load * 7) / 8; } g_io_request(cbp, cp); } static void g_mirror_request_split(struct g_mirror_softc *sc, struct bio *bp) { struct bio_queue queue; struct g_mirror_disk *disk; struct g_consumer *cp; struct bio *cbp; off_t left, mod, offset, slice; u_char *data; u_int ndisks; if (bp->bio_length <= sc->sc_slice) { g_mirror_request_round_robin(sc, bp); return; } ndisks = g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_ACTIVE); slice = bp->bio_length / ndisks; mod = slice % sc->sc_provider->sectorsize; if (mod != 0) slice += sc->sc_provider->sectorsize - mod; /* * Allocate all bios before sending any request, so we can * return ENOMEM in nice and clean way. */ left = bp->bio_length; offset = bp->bio_offset; data = bp->bio_data; TAILQ_INIT(&queue); LIST_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_state != G_MIRROR_DISK_STATE_ACTIVE) continue; cbp = g_clone_bio(bp); if (cbp == NULL) { while ((cbp = TAILQ_FIRST(&queue)) != NULL) { TAILQ_REMOVE(&queue, cbp, bio_queue); g_destroy_bio(cbp); } if (bp->bio_error == 0) bp->bio_error = ENOMEM; g_io_deliver(bp, bp->bio_error); return; } TAILQ_INSERT_TAIL(&queue, cbp, bio_queue); cbp->bio_done = g_mirror_done; cbp->bio_caller1 = disk; cbp->bio_to = disk->d_consumer->provider; cbp->bio_offset = offset; cbp->bio_data = data; cbp->bio_length = MIN(left, slice); left -= cbp->bio_length; if (left == 0) break; offset += cbp->bio_length; data += cbp->bio_length; } while ((cbp = TAILQ_FIRST(&queue)) != NULL) { TAILQ_REMOVE(&queue, cbp, bio_queue); G_MIRROR_LOGREQ(3, cbp, "Sending request."); disk = cbp->bio_caller1; cbp->bio_caller1 = NULL; cp = disk->d_consumer; KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, cp->acr, cp->acw, cp->ace)); disk->d_consumer->index++; g_io_request(cbp, disk->d_consumer); } } static void g_mirror_register_request(struct g_mirror_softc *sc, struct bio *bp) { struct bio_queue queue; struct bio *cbp; struct g_consumer *cp; struct g_mirror_disk *disk; sx_assert(&sc->sc_lock, SA_XLOCKED); /* * To avoid ordering issues, if a write is deferred because of a * collision with a sync request, all I/O is deferred until that * write is initiated. */ if (bp->bio_from->geom != sc->sc_sync.ds_geom && !TAILQ_EMPTY(&sc->sc_regular_delayed)) { g_mirror_regular_delay(sc, bp); return; } switch (bp->bio_cmd) { case BIO_READ: switch (sc->sc_balance) { case G_MIRROR_BALANCE_LOAD: g_mirror_request_load(sc, bp); break; case G_MIRROR_BALANCE_PREFER: g_mirror_request_prefer(sc, bp); break; case G_MIRROR_BALANCE_ROUND_ROBIN: g_mirror_request_round_robin(sc, bp); break; case G_MIRROR_BALANCE_SPLIT: g_mirror_request_split(sc, bp); break; } return; case BIO_WRITE: case BIO_DELETE: /* * Delay the request if it is colliding with a synchronization * request. */ if (g_mirror_sync_collision(sc, bp)) { g_mirror_regular_delay(sc, bp); return; } if (sc->sc_idle) g_mirror_unidle(sc); else sc->sc_last_write = time_uptime; /* * Bump syncid on first write. */ if ((sc->sc_bump_id & G_MIRROR_BUMP_SYNCID) != 0) { sc->sc_bump_id &= ~G_MIRROR_BUMP_SYNCID; g_mirror_bump_syncid(sc); } /* * Allocate all bios before sending any request, so we can * return ENOMEM in nice and clean way. */ TAILQ_INIT(&queue); LIST_FOREACH(disk, &sc->sc_disks, d_next) { switch (disk->d_state) { case G_MIRROR_DISK_STATE_ACTIVE: break; case G_MIRROR_DISK_STATE_SYNCHRONIZING: if (bp->bio_offset >= disk->d_sync.ds_offset) continue; break; default: continue; } if (bp->bio_cmd == BIO_DELETE && (disk->d_flags & G_MIRROR_DISK_FLAG_CANDELETE) == 0) continue; cbp = g_clone_bio(bp); if (cbp == NULL) { while ((cbp = TAILQ_FIRST(&queue)) != NULL) { TAILQ_REMOVE(&queue, cbp, bio_queue); g_destroy_bio(cbp); } if (bp->bio_error == 0) bp->bio_error = ENOMEM; g_io_deliver(bp, bp->bio_error); return; } TAILQ_INSERT_TAIL(&queue, cbp, bio_queue); cbp->bio_done = g_mirror_done; cp = disk->d_consumer; cbp->bio_caller1 = cp; cbp->bio_to = cp->provider; KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, cp->acr, cp->acw, cp->ace)); } if (TAILQ_EMPTY(&queue)) { KASSERT(bp->bio_cmd == BIO_DELETE, ("No consumers for regular request %p", bp)); g_io_deliver(bp, EOPNOTSUPP); return; } while ((cbp = TAILQ_FIRST(&queue)) != NULL) { G_MIRROR_LOGREQ(3, cbp, "Sending request."); TAILQ_REMOVE(&queue, cbp, bio_queue); cp = cbp->bio_caller1; cbp->bio_caller1 = NULL; cp->index++; sc->sc_writes++; g_io_request(cbp, cp); } /* * Put request onto inflight queue, so we can check if new * synchronization requests don't collide with it. */ TAILQ_INSERT_TAIL(&sc->sc_inflight, bp, bio_queue); return; case BIO_FLUSH: TAILQ_INIT(&queue); LIST_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_state != G_MIRROR_DISK_STATE_ACTIVE) continue; cbp = g_clone_bio(bp); if (cbp == NULL) { while ((cbp = TAILQ_FIRST(&queue)) != NULL) { TAILQ_REMOVE(&queue, cbp, bio_queue); g_destroy_bio(cbp); } if (bp->bio_error == 0) bp->bio_error = ENOMEM; g_io_deliver(bp, bp->bio_error); return; } TAILQ_INSERT_TAIL(&queue, cbp, bio_queue); cbp->bio_done = g_mirror_done; cbp->bio_caller1 = disk; cbp->bio_to = disk->d_consumer->provider; } KASSERT(!TAILQ_EMPTY(&queue), ("No consumers for regular request %p", bp)); while ((cbp = TAILQ_FIRST(&queue)) != NULL) { G_MIRROR_LOGREQ(3, cbp, "Sending request."); TAILQ_REMOVE(&queue, cbp, bio_queue); disk = cbp->bio_caller1; cbp->bio_caller1 = NULL; cp = disk->d_consumer; KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, cp->acr, cp->acw, cp->ace)); cp->index++; g_io_request(cbp, cp); } break; default: KASSERT(1 == 0, ("Invalid command here: %u (device=%s)", bp->bio_cmd, sc->sc_name)); break; } } static int g_mirror_can_destroy(struct g_mirror_softc *sc) { struct g_geom *gp; struct g_consumer *cp; g_topology_assert(); gp = sc->sc_geom; if (gp->softc == NULL) return (1); if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_TASTING) != 0) return (0); LIST_FOREACH(cp, &gp->consumer, consumer) { if (g_mirror_is_busy(sc, cp)) return (0); } gp = sc->sc_sync.ds_geom; LIST_FOREACH(cp, &gp->consumer, consumer) { if (g_mirror_is_busy(sc, cp)) return (0); } G_MIRROR_DEBUG(2, "No I/O requests for %s, it can be destroyed.", sc->sc_name); return (1); } static int g_mirror_try_destroy(struct g_mirror_softc *sc) { if (sc->sc_rootmount != NULL) { G_MIRROR_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, sc->sc_rootmount); root_mount_rel(sc->sc_rootmount); sc->sc_rootmount = NULL; } g_topology_lock(); if (!g_mirror_can_destroy(sc)) { g_topology_unlock(); return (0); } sc->sc_geom->softc = NULL; sc->sc_sync.ds_geom->softc = NULL; if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_DRAIN) != 0) { g_topology_unlock(); G_MIRROR_DEBUG(4, "%s: Waking up %p.", __func__, &sc->sc_worker); /* Unlock sc_lock here, as it can be destroyed after wakeup. */ sx_xunlock(&sc->sc_lock); wakeup(&sc->sc_worker); sc->sc_worker = NULL; } else { g_topology_unlock(); g_mirror_destroy_device(sc); } return (1); } /* * Worker thread. */ static void g_mirror_worker(void *arg) { struct g_mirror_softc *sc; struct g_mirror_event *ep; struct bio *bp; int timeout; sc = arg; thread_lock(curthread); sched_prio(curthread, PRIBIO); thread_unlock(curthread); sx_xlock(&sc->sc_lock); for (;;) { G_MIRROR_DEBUG(5, "%s: Let's see...", __func__); /* * First take a look at events. * This is important to handle events before any I/O requests. */ ep = g_mirror_event_first(sc); if (ep != NULL) { g_mirror_event_remove(sc, ep); if ((ep->e_flags & G_MIRROR_EVENT_DEVICE) != 0) { /* Update only device status. */ G_MIRROR_DEBUG(3, "Running event for device %s.", sc->sc_name); ep->e_error = 0; g_mirror_update_device(sc, true); } else { /* Update disk status. */ G_MIRROR_DEBUG(3, "Running event for disk %s.", g_mirror_get_diskname(ep->e_disk)); ep->e_error = g_mirror_update_disk(ep->e_disk, ep->e_state); if (ep->e_error == 0) g_mirror_update_device(sc, false); } if ((ep->e_flags & G_MIRROR_EVENT_DONTWAIT) != 0) { KASSERT(ep->e_error == 0, ("Error cannot be handled.")); g_mirror_event_free(ep); } else { ep->e_flags |= G_MIRROR_EVENT_DONE; G_MIRROR_DEBUG(4, "%s: Waking up %p.", __func__, ep); mtx_lock(&sc->sc_events_mtx); wakeup(ep); mtx_unlock(&sc->sc_events_mtx); } if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_DESTROY) != 0) { if (g_mirror_try_destroy(sc)) { curthread->td_pflags &= ~TDP_GEOM; G_MIRROR_DEBUG(1, "Thread exiting."); kproc_exit(0); } } G_MIRROR_DEBUG(5, "%s: I'm here 1.", __func__); continue; } /* * Check if we can mark array as CLEAN and if we can't take * how much seconds should we wait. */ timeout = g_mirror_idle(sc, -1); /* * Handle I/O requests. */ mtx_lock(&sc->sc_queue_mtx); bp = TAILQ_FIRST(&sc->sc_queue); if (bp != NULL) TAILQ_REMOVE(&sc->sc_queue, bp, bio_queue); else { if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_DESTROY) != 0) { mtx_unlock(&sc->sc_queue_mtx); if (g_mirror_try_destroy(sc)) { curthread->td_pflags &= ~TDP_GEOM; G_MIRROR_DEBUG(1, "Thread exiting."); kproc_exit(0); } mtx_lock(&sc->sc_queue_mtx); if (!TAILQ_EMPTY(&sc->sc_queue)) { mtx_unlock(&sc->sc_queue_mtx); continue; } } if (g_mirror_event_first(sc) != NULL) { mtx_unlock(&sc->sc_queue_mtx); continue; } sx_xunlock(&sc->sc_lock); MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:w1", timeout * hz); sx_xlock(&sc->sc_lock); G_MIRROR_DEBUG(5, "%s: I'm here 4.", __func__); continue; } mtx_unlock(&sc->sc_queue_mtx); if (bp->bio_from->geom == sc->sc_sync.ds_geom && (bp->bio_cflags & G_MIRROR_BIO_FLAG_SYNC) != 0) { /* * Handle completion of the first half (the read) of a * block synchronization operation. */ g_mirror_sync_request(sc, bp); } else if (bp->bio_to != sc->sc_provider) { if ((bp->bio_cflags & G_MIRROR_BIO_FLAG_REGULAR) != 0) /* * Handle completion of a regular I/O request. */ g_mirror_regular_request(sc, bp); else if ((bp->bio_cflags & G_MIRROR_BIO_FLAG_SYNC) != 0) /* * Handle completion of the second half (the * write) of a block synchronization operation. */ g_mirror_sync_request(sc, bp); else { KASSERT(0, ("Invalid request cflags=0x%hx to=%s.", bp->bio_cflags, bp->bio_to->name)); } } else { /* * Initiate an I/O request. */ g_mirror_register_request(sc, bp); } G_MIRROR_DEBUG(5, "%s: I'm here 9.", __func__); } } static void g_mirror_update_idle(struct g_mirror_softc *sc, struct g_mirror_disk *disk) { sx_assert(&sc->sc_lock, SX_LOCKED); if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_NOFAILSYNC) != 0) return; if (!sc->sc_idle && (disk->d_flags & G_MIRROR_DISK_FLAG_DIRTY) == 0) { G_MIRROR_DEBUG(2, "Disk %s (device %s) marked as dirty.", g_mirror_get_diskname(disk), sc->sc_name); disk->d_flags |= G_MIRROR_DISK_FLAG_DIRTY; } else if (sc->sc_idle && (disk->d_flags & G_MIRROR_DISK_FLAG_DIRTY) != 0) { G_MIRROR_DEBUG(2, "Disk %s (device %s) marked as clean.", g_mirror_get_diskname(disk), sc->sc_name); disk->d_flags &= ~G_MIRROR_DISK_FLAG_DIRTY; } } static void g_mirror_sync_reinit(const struct g_mirror_disk *disk, struct bio *bp, off_t offset) { void *data; int idx; data = bp->bio_data; idx = (int)(uintptr_t)bp->bio_caller1; g_reset_bio(bp); bp->bio_cmd = BIO_READ; bp->bio_data = data; bp->bio_done = g_mirror_sync_done; bp->bio_from = disk->d_sync.ds_consumer; bp->bio_to = disk->d_softc->sc_provider; bp->bio_caller1 = (void *)(uintptr_t)idx; bp->bio_offset = offset; bp->bio_length = MIN(MAXPHYS, disk->d_softc->sc_mediasize - bp->bio_offset); } static void g_mirror_sync_start(struct g_mirror_disk *disk) { struct g_mirror_softc *sc; struct g_mirror_disk_sync *sync; struct g_consumer *cp; struct bio *bp; int error, i; g_topology_assert_not(); sc = disk->d_softc; sync = &disk->d_sync; sx_assert(&sc->sc_lock, SX_LOCKED); KASSERT(disk->d_state == G_MIRROR_DISK_STATE_SYNCHRONIZING, ("Disk %s is not marked for synchronization.", g_mirror_get_diskname(disk))); KASSERT(sc->sc_state == G_MIRROR_DEVICE_STATE_RUNNING, ("Device not in RUNNING state (%s, %u).", sc->sc_name, sc->sc_state)); sx_xunlock(&sc->sc_lock); g_topology_lock(); cp = g_new_consumer(sc->sc_sync.ds_geom); cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; error = g_attach(cp, sc->sc_provider); KASSERT(error == 0, ("Cannot attach to %s (error=%d).", sc->sc_name, error)); error = g_access(cp, 1, 0, 0); KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error)); g_topology_unlock(); sx_xlock(&sc->sc_lock); G_MIRROR_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name, g_mirror_get_diskname(disk)); if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_NOFAILSYNC) == 0) disk->d_flags |= G_MIRROR_DISK_FLAG_DIRTY; KASSERT(sync->ds_consumer == NULL, ("Sync consumer already exists (device=%s, disk=%s).", sc->sc_name, g_mirror_get_diskname(disk))); sync->ds_consumer = cp; sync->ds_consumer->private = disk; sync->ds_consumer->index = 0; /* * Allocate memory for synchronization bios and initialize them. */ sync->ds_bios = malloc(sizeof(struct bio *) * g_mirror_syncreqs, M_MIRROR, M_WAITOK); for (i = 0; i < g_mirror_syncreqs; i++) { bp = g_alloc_bio(); sync->ds_bios[i] = bp; bp->bio_data = malloc(MAXPHYS, M_MIRROR, M_WAITOK); bp->bio_caller1 = (void *)(uintptr_t)i; g_mirror_sync_reinit(disk, bp, sync->ds_offset); sync->ds_offset += bp->bio_length; } /* Increase the number of disks in SYNCHRONIZING state. */ sc->sc_sync.ds_ndisks++; /* Set the number of in-flight synchronization requests. */ sync->ds_inflight = g_mirror_syncreqs; /* * Fire off first synchronization requests. */ for (i = 0; i < g_mirror_syncreqs; i++) { bp = sync->ds_bios[i]; G_MIRROR_LOGREQ(3, bp, "Sending synchronization request."); sync->ds_consumer->index++; /* * Delay the request if it is colliding with a regular request. */ if (g_mirror_regular_collision(sc, bp)) g_mirror_sync_delay(sc, bp); else g_io_request(bp, sync->ds_consumer); } } /* * Stop synchronization process. * type: 0 - synchronization finished * 1 - synchronization stopped */ static void g_mirror_sync_stop(struct g_mirror_disk *disk, int type) { struct g_mirror_softc *sc; struct g_consumer *cp; g_topology_assert_not(); sc = disk->d_softc; sx_assert(&sc->sc_lock, SX_LOCKED); KASSERT(disk->d_state == G_MIRROR_DISK_STATE_SYNCHRONIZING, ("Wrong disk state (%s, %s).", g_mirror_get_diskname(disk), g_mirror_disk_state2str(disk->d_state))); if (disk->d_sync.ds_consumer == NULL) return; if (type == 0) { G_MIRROR_DEBUG(0, "Device %s: rebuilding provider %s finished.", sc->sc_name, g_mirror_get_diskname(disk)); } else /* if (type == 1) */ { G_MIRROR_DEBUG(0, "Device %s: rebuilding provider %s stopped.", sc->sc_name, g_mirror_get_diskname(disk)); } g_mirror_regular_release(sc); free(disk->d_sync.ds_bios, M_MIRROR); disk->d_sync.ds_bios = NULL; cp = disk->d_sync.ds_consumer; disk->d_sync.ds_consumer = NULL; disk->d_flags &= ~G_MIRROR_DISK_FLAG_DIRTY; sc->sc_sync.ds_ndisks--; sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */ g_topology_lock(); g_mirror_kill_consumer(sc, cp); g_topology_unlock(); sx_xlock(&sc->sc_lock); } static void g_mirror_launch_provider(struct g_mirror_softc *sc) { struct g_mirror_disk *disk; struct g_provider *pp, *dp; sx_assert(&sc->sc_lock, SX_LOCKED); g_topology_lock(); pp = g_new_providerf(sc->sc_geom, "mirror/%s", sc->sc_name); pp->flags |= G_PF_DIRECT_RECEIVE; pp->mediasize = sc->sc_mediasize; pp->sectorsize = sc->sc_sectorsize; pp->stripesize = 0; pp->stripeoffset = 0; /* Splitting of unmapped BIO's could work but isn't implemented now */ if (sc->sc_balance != G_MIRROR_BALANCE_SPLIT) pp->flags |= G_PF_ACCEPT_UNMAPPED; LIST_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_consumer && disk->d_consumer->provider) { dp = disk->d_consumer->provider; if (dp->stripesize > pp->stripesize) { pp->stripesize = dp->stripesize; pp->stripeoffset = dp->stripeoffset; } /* A provider underneath us doesn't support unmapped */ if ((dp->flags & G_PF_ACCEPT_UNMAPPED) == 0) { G_MIRROR_DEBUG(0, "Cancelling unmapped " "because of %s.", dp->name); pp->flags &= ~G_PF_ACCEPT_UNMAPPED; } } } pp->private = sc; sc->sc_refcnt++; sc->sc_provider = pp; g_error_provider(pp, 0); g_topology_unlock(); G_MIRROR_DEBUG(0, "Device %s launched (%u/%u).", pp->name, g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_ACTIVE), sc->sc_ndisks); LIST_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_state == G_MIRROR_DISK_STATE_SYNCHRONIZING) g_mirror_sync_start(disk); } } static void g_mirror_destroy_provider(struct g_mirror_softc *sc) { struct g_mirror_disk *disk; struct bio *bp; g_topology_assert_not(); KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).", sc->sc_name)); LIST_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_state == G_MIRROR_DISK_STATE_SYNCHRONIZING) g_mirror_sync_stop(disk, 1); } g_topology_lock(); g_error_provider(sc->sc_provider, ENXIO); mtx_lock(&sc->sc_queue_mtx); while ((bp = TAILQ_FIRST(&sc->sc_queue)) != NULL) { TAILQ_REMOVE(&sc->sc_queue, bp, bio_queue); /* * Abort any pending I/O that wasn't generated by us. * Synchronization requests and requests destined for individual * mirror components can be destroyed immediately. */ if (bp->bio_to == sc->sc_provider && bp->bio_from->geom != sc->sc_sync.ds_geom) { g_io_deliver(bp, ENXIO); } else { if ((bp->bio_cflags & G_MIRROR_BIO_FLAG_SYNC) != 0) free(bp->bio_data, M_MIRROR); g_destroy_bio(bp); } } mtx_unlock(&sc->sc_queue_mtx); g_wither_provider(sc->sc_provider, ENXIO); sc->sc_provider = NULL; G_MIRROR_DEBUG(0, "Device %s: provider destroyed.", sc->sc_name); g_topology_unlock(); } static void g_mirror_go(void *arg) { struct g_mirror_softc *sc; sc = arg; G_MIRROR_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name); g_mirror_event_send(sc, 0, G_MIRROR_EVENT_DONTWAIT | G_MIRROR_EVENT_DEVICE); } static u_int g_mirror_determine_state(struct g_mirror_disk *disk) { struct g_mirror_softc *sc; u_int state; sc = disk->d_softc; if (sc->sc_syncid == disk->d_sync.ds_syncid) { if ((disk->d_flags & G_MIRROR_DISK_FLAG_SYNCHRONIZING) == 0 && (g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_ACTIVE) == 0 || (disk->d_flags & G_MIRROR_DISK_FLAG_DIRTY) == 0)) { /* Disk does not need synchronization. */ state = G_MIRROR_DISK_STATE_ACTIVE; } else { if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_NOAUTOSYNC) == 0 || (disk->d_flags & G_MIRROR_DISK_FLAG_FORCE_SYNC) != 0) { /* * We can start synchronization from * the stored offset. */ state = G_MIRROR_DISK_STATE_SYNCHRONIZING; } else { state = G_MIRROR_DISK_STATE_STALE; } } } else if (disk->d_sync.ds_syncid < sc->sc_syncid) { /* * Reset all synchronization data for this disk, * because if it even was synchronized, it was * synchronized to disks with different syncid. */ disk->d_flags |= G_MIRROR_DISK_FLAG_SYNCHRONIZING; disk->d_sync.ds_offset = 0; disk->d_sync.ds_offset_done = 0; disk->d_sync.ds_syncid = sc->sc_syncid; if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_NOAUTOSYNC) == 0 || (disk->d_flags & G_MIRROR_DISK_FLAG_FORCE_SYNC) != 0) { state = G_MIRROR_DISK_STATE_SYNCHRONIZING; } else { state = G_MIRROR_DISK_STATE_STALE; } } else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ { /* * Not good, NOT GOOD! * It means that mirror was started on stale disks * and more fresh disk just arrive. * If there were writes, mirror is broken, sorry. * I think the best choice here is don't touch * this disk and inform the user loudly. */ G_MIRROR_DEBUG(0, "Device %s was started before the freshest " "disk (%s) arrives!! It will not be connected to the " "running device.", sc->sc_name, g_mirror_get_diskname(disk)); g_mirror_destroy_disk(disk); state = G_MIRROR_DISK_STATE_NONE; /* Return immediately, because disk was destroyed. */ return (state); } G_MIRROR_DEBUG(3, "State for %s disk: %s.", g_mirror_get_diskname(disk), g_mirror_disk_state2str(state)); return (state); } /* * Update device state. */ static void g_mirror_update_device(struct g_mirror_softc *sc, bool force) { struct g_mirror_disk *disk; u_int state; sx_assert(&sc->sc_lock, SX_XLOCKED); switch (sc->sc_state) { case G_MIRROR_DEVICE_STATE_STARTING: { struct g_mirror_disk *pdisk, *tdisk; u_int dirty, ndisks, genid, syncid; bool broken; KASSERT(sc->sc_provider == NULL, ("Non-NULL provider in STARTING state (%s).", sc->sc_name)); /* * Are we ready? We are, if all disks are connected or * if we have any disks and 'force' is true. */ ndisks = g_mirror_ndisks(sc, -1); if (sc->sc_ndisks == ndisks || (force && ndisks > 0)) { ; } else if (ndisks == 0) { /* * Disks went down in starting phase, so destroy * device. */ callout_drain(&sc->sc_callout); sc->sc_flags |= G_MIRROR_DEVICE_FLAG_DESTROY; G_MIRROR_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, sc->sc_rootmount); root_mount_rel(sc->sc_rootmount); sc->sc_rootmount = NULL; return; } else { return; } /* * Activate all disks with the biggest syncid. */ if (force) { /* * If 'force' is true, we have been called due to * timeout, so don't bother canceling timeout. */ ndisks = 0; LIST_FOREACH(disk, &sc->sc_disks, d_next) { if ((disk->d_flags & G_MIRROR_DISK_FLAG_SYNCHRONIZING) == 0) { ndisks++; } } if (ndisks == 0) { /* No valid disks found, destroy device. */ sc->sc_flags |= G_MIRROR_DEVICE_FLAG_DESTROY; G_MIRROR_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, sc->sc_rootmount); root_mount_rel(sc->sc_rootmount); sc->sc_rootmount = NULL; return; } } else { /* Cancel timeout. */ callout_drain(&sc->sc_callout); } /* * Find the biggest genid. */ genid = 0; LIST_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_genid > genid) genid = disk->d_genid; } sc->sc_genid = genid; /* * Remove all disks without the biggest genid. */ broken = false; LIST_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tdisk) { if (disk->d_genid < genid) { G_MIRROR_DEBUG(0, "Component %s (device %s) broken, skipping.", g_mirror_get_diskname(disk), sc->sc_name); g_mirror_destroy_disk(disk); /* * Bump the syncid in case we discover a healthy * replacement disk after starting the mirror. */ broken = true; } } /* * Find the biggest syncid. */ syncid = 0; LIST_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_sync.ds_syncid > syncid) syncid = disk->d_sync.ds_syncid; } /* * Here we need to look for dirty disks and if all disks * with the biggest syncid are dirty, we have to choose * one with the biggest priority and rebuild the rest. */ /* * Find the number of dirty disks with the biggest syncid. * Find the number of disks with the biggest syncid. * While here, find a disk with the biggest priority. */ dirty = ndisks = 0; pdisk = NULL; LIST_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_sync.ds_syncid != syncid) continue; if ((disk->d_flags & G_MIRROR_DISK_FLAG_SYNCHRONIZING) != 0) { continue; } ndisks++; if ((disk->d_flags & G_MIRROR_DISK_FLAG_DIRTY) != 0) { dirty++; if (pdisk == NULL || pdisk->d_priority < disk->d_priority) { pdisk = disk; } } } if (dirty == 0) { /* No dirty disks at all, great. */ } else if (dirty == ndisks) { /* * Force synchronization for all dirty disks except one * with the biggest priority. */ KASSERT(pdisk != NULL, ("pdisk == NULL")); G_MIRROR_DEBUG(1, "Using disk %s (device %s) as a " "master disk for synchronization.", g_mirror_get_diskname(pdisk), sc->sc_name); LIST_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_sync.ds_syncid != syncid) continue; if ((disk->d_flags & G_MIRROR_DISK_FLAG_SYNCHRONIZING) != 0) { continue; } KASSERT((disk->d_flags & G_MIRROR_DISK_FLAG_DIRTY) != 0, ("Disk %s isn't marked as dirty.", g_mirror_get_diskname(disk))); /* Skip the disk with the biggest priority. */ if (disk == pdisk) continue; disk->d_sync.ds_syncid = 0; } } else if (dirty < ndisks) { /* * Force synchronization for all dirty disks. * We have some non-dirty disks. */ LIST_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_sync.ds_syncid != syncid) continue; if ((disk->d_flags & G_MIRROR_DISK_FLAG_SYNCHRONIZING) != 0) { continue; } if ((disk->d_flags & G_MIRROR_DISK_FLAG_DIRTY) == 0) { continue; } disk->d_sync.ds_syncid = 0; } } /* Reset hint. */ sc->sc_hint = NULL; sc->sc_syncid = syncid; if (force || broken) { /* Remember to bump syncid on first write. */ sc->sc_bump_id |= G_MIRROR_BUMP_SYNCID; } state = G_MIRROR_DEVICE_STATE_RUNNING; G_MIRROR_DEBUG(1, "Device %s state changed from %s to %s.", sc->sc_name, g_mirror_device_state2str(sc->sc_state), g_mirror_device_state2str(state)); sc->sc_state = state; LIST_FOREACH(disk, &sc->sc_disks, d_next) { state = g_mirror_determine_state(disk); g_mirror_event_send(disk, state, G_MIRROR_EVENT_DONTWAIT); if (state == G_MIRROR_DISK_STATE_STALE) sc->sc_bump_id |= G_MIRROR_BUMP_SYNCID; } break; } case G_MIRROR_DEVICE_STATE_RUNNING: if (g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_ACTIVE) == 0 && g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_NEW) == 0) { /* * No usable disks, so destroy the device. */ sc->sc_flags |= G_MIRROR_DEVICE_FLAG_DESTROY; break; } else if (g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_ACTIVE) > 0 && g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_NEW) == 0) { /* * We have active disks, launch provider if it doesn't * exist. */ if (sc->sc_provider == NULL) g_mirror_launch_provider(sc); if (sc->sc_rootmount != NULL) { G_MIRROR_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, sc->sc_rootmount); root_mount_rel(sc->sc_rootmount); sc->sc_rootmount = NULL; } } /* * Genid should be bumped immediately, so do it here. */ if ((sc->sc_bump_id & G_MIRROR_BUMP_GENID) != 0) { sc->sc_bump_id &= ~G_MIRROR_BUMP_GENID; g_mirror_bump_genid(sc); } if ((sc->sc_bump_id & G_MIRROR_BUMP_SYNCID_NOW) != 0) { sc->sc_bump_id &= ~G_MIRROR_BUMP_SYNCID_NOW; g_mirror_bump_syncid(sc); } break; default: KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name, g_mirror_device_state2str(sc->sc_state))); break; } } /* * Update disk state and device state if needed. */ #define DISK_STATE_CHANGED() G_MIRROR_DEBUG(1, \ "Disk %s state changed from %s to %s (device %s).", \ g_mirror_get_diskname(disk), \ g_mirror_disk_state2str(disk->d_state), \ g_mirror_disk_state2str(state), sc->sc_name) static int g_mirror_update_disk(struct g_mirror_disk *disk, u_int state) { struct g_mirror_softc *sc; sc = disk->d_softc; sx_assert(&sc->sc_lock, SX_XLOCKED); again: G_MIRROR_DEBUG(3, "Changing disk %s state from %s to %s.", g_mirror_get_diskname(disk), g_mirror_disk_state2str(disk->d_state), g_mirror_disk_state2str(state)); switch (state) { case G_MIRROR_DISK_STATE_NEW: /* * Possible scenarios: * 1. New disk arrive. */ /* Previous state should be NONE. */ KASSERT(disk->d_state == G_MIRROR_DISK_STATE_NONE, ("Wrong disk state (%s, %s).", g_mirror_get_diskname(disk), g_mirror_disk_state2str(disk->d_state))); DISK_STATE_CHANGED(); disk->d_state = state; if (LIST_EMPTY(&sc->sc_disks)) LIST_INSERT_HEAD(&sc->sc_disks, disk, d_next); else { struct g_mirror_disk *dp; LIST_FOREACH(dp, &sc->sc_disks, d_next) { if (disk->d_priority >= dp->d_priority) { LIST_INSERT_BEFORE(dp, disk, d_next); dp = NULL; break; } if (LIST_NEXT(dp, d_next) == NULL) break; } if (dp != NULL) LIST_INSERT_AFTER(dp, disk, d_next); } G_MIRROR_DEBUG(1, "Device %s: provider %s detected.", sc->sc_name, g_mirror_get_diskname(disk)); if (sc->sc_state == G_MIRROR_DEVICE_STATE_STARTING) break; KASSERT(sc->sc_state == G_MIRROR_DEVICE_STATE_RUNNING, ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, g_mirror_device_state2str(sc->sc_state), g_mirror_get_diskname(disk), g_mirror_disk_state2str(disk->d_state))); state = g_mirror_determine_state(disk); if (state != G_MIRROR_DISK_STATE_NONE) goto again; break; case G_MIRROR_DISK_STATE_ACTIVE: /* * Possible scenarios: * 1. New disk does not need synchronization. * 2. Synchronization process finished successfully. */ KASSERT(sc->sc_state == G_MIRROR_DEVICE_STATE_RUNNING, ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, g_mirror_device_state2str(sc->sc_state), g_mirror_get_diskname(disk), g_mirror_disk_state2str(disk->d_state))); /* Previous state should be NEW or SYNCHRONIZING. */ KASSERT(disk->d_state == G_MIRROR_DISK_STATE_NEW || disk->d_state == G_MIRROR_DISK_STATE_SYNCHRONIZING, ("Wrong disk state (%s, %s).", g_mirror_get_diskname(disk), g_mirror_disk_state2str(disk->d_state))); DISK_STATE_CHANGED(); if (disk->d_state == G_MIRROR_DISK_STATE_SYNCHRONIZING) { disk->d_flags &= ~G_MIRROR_DISK_FLAG_SYNCHRONIZING; disk->d_flags &= ~G_MIRROR_DISK_FLAG_FORCE_SYNC; g_mirror_sync_stop(disk, 0); } disk->d_state = state; disk->d_sync.ds_offset = 0; disk->d_sync.ds_offset_done = 0; g_mirror_update_idle(sc, disk); g_mirror_update_metadata(disk); G_MIRROR_DEBUG(1, "Device %s: provider %s activated.", sc->sc_name, g_mirror_get_diskname(disk)); break; case G_MIRROR_DISK_STATE_STALE: /* * Possible scenarios: * 1. Stale disk was connected. */ /* Previous state should be NEW. */ KASSERT(disk->d_state == G_MIRROR_DISK_STATE_NEW, ("Wrong disk state (%s, %s).", g_mirror_get_diskname(disk), g_mirror_disk_state2str(disk->d_state))); KASSERT(sc->sc_state == G_MIRROR_DEVICE_STATE_RUNNING, ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, g_mirror_device_state2str(sc->sc_state), g_mirror_get_diskname(disk), g_mirror_disk_state2str(disk->d_state))); /* * STALE state is only possible if device is marked * NOAUTOSYNC. */ KASSERT((sc->sc_flags & G_MIRROR_DEVICE_FLAG_NOAUTOSYNC) != 0, ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, g_mirror_device_state2str(sc->sc_state), g_mirror_get_diskname(disk), g_mirror_disk_state2str(disk->d_state))); DISK_STATE_CHANGED(); disk->d_flags &= ~G_MIRROR_DISK_FLAG_DIRTY; disk->d_state = state; g_mirror_update_metadata(disk); G_MIRROR_DEBUG(0, "Device %s: provider %s is stale.", sc->sc_name, g_mirror_get_diskname(disk)); break; case G_MIRROR_DISK_STATE_SYNCHRONIZING: /* * Possible scenarios: * 1. Disk which needs synchronization was connected. */ /* Previous state should be NEW. */ KASSERT(disk->d_state == G_MIRROR_DISK_STATE_NEW, ("Wrong disk state (%s, %s).", g_mirror_get_diskname(disk), g_mirror_disk_state2str(disk->d_state))); KASSERT(sc->sc_state == G_MIRROR_DEVICE_STATE_RUNNING, ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, g_mirror_device_state2str(sc->sc_state), g_mirror_get_diskname(disk), g_mirror_disk_state2str(disk->d_state))); DISK_STATE_CHANGED(); if (disk->d_state == G_MIRROR_DISK_STATE_NEW) disk->d_flags &= ~G_MIRROR_DISK_FLAG_DIRTY; disk->d_state = state; if (sc->sc_provider != NULL) { g_mirror_sync_start(disk); g_mirror_update_metadata(disk); } break; case G_MIRROR_DISK_STATE_DISCONNECTED: /* * Possible scenarios: * 1. Device wasn't running yet, but disk disappear. * 2. Disk was active and disapppear. * 3. Disk disappear during synchronization process. */ if (sc->sc_state == G_MIRROR_DEVICE_STATE_RUNNING) { /* * Previous state should be ACTIVE, STALE or * SYNCHRONIZING. */ KASSERT(disk->d_state == G_MIRROR_DISK_STATE_ACTIVE || disk->d_state == G_MIRROR_DISK_STATE_STALE || disk->d_state == G_MIRROR_DISK_STATE_SYNCHRONIZING, ("Wrong disk state (%s, %s).", g_mirror_get_diskname(disk), g_mirror_disk_state2str(disk->d_state))); } else if (sc->sc_state == G_MIRROR_DEVICE_STATE_STARTING) { /* Previous state should be NEW. */ KASSERT(disk->d_state == G_MIRROR_DISK_STATE_NEW, ("Wrong disk state (%s, %s).", g_mirror_get_diskname(disk), g_mirror_disk_state2str(disk->d_state))); /* * Reset bumping syncid if disk disappeared in STARTING * state. */ if ((sc->sc_bump_id & G_MIRROR_BUMP_SYNCID) != 0) sc->sc_bump_id &= ~G_MIRROR_BUMP_SYNCID; #ifdef INVARIANTS } else { KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, g_mirror_device_state2str(sc->sc_state), g_mirror_get_diskname(disk), g_mirror_disk_state2str(disk->d_state))); #endif } DISK_STATE_CHANGED(); G_MIRROR_DEBUG(0, "Device %s: provider %s disconnected.", sc->sc_name, g_mirror_get_diskname(disk)); g_mirror_destroy_disk(disk); break; case G_MIRROR_DISK_STATE_DESTROY: { int error; error = g_mirror_clear_metadata(disk); if (error != 0) { G_MIRROR_DEBUG(0, "Device %s: failed to clear metadata on %s: %d.", sc->sc_name, g_mirror_get_diskname(disk), error); break; } DISK_STATE_CHANGED(); G_MIRROR_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name, g_mirror_get_diskname(disk)); g_mirror_destroy_disk(disk); sc->sc_ndisks--; LIST_FOREACH(disk, &sc->sc_disks, d_next) { g_mirror_update_metadata(disk); } break; } default: KASSERT(1 == 0, ("Unknown state (%u).", state)); break; } return (0); } #undef DISK_STATE_CHANGED int g_mirror_read_metadata(struct g_consumer *cp, struct g_mirror_metadata *md) { struct g_provider *pp; u_char *buf; int error; g_topology_assert(); error = g_access(cp, 1, 0, 0); if (error != 0) return (error); pp = cp->provider; g_topology_unlock(); /* Metadata are stored on last sector. */ buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, &error); g_topology_lock(); g_access(cp, -1, 0, 0); if (buf == NULL) { G_MIRROR_DEBUG(1, "Cannot read metadata from %s (error=%d).", cp->provider->name, error); return (error); } /* Decode metadata. */ error = mirror_metadata_decode(buf, md); g_free(buf); if (strcmp(md->md_magic, G_MIRROR_MAGIC) != 0) return (EINVAL); if (md->md_version > G_MIRROR_VERSION) { G_MIRROR_DEBUG(0, "Kernel module is too old to handle metadata from %s.", cp->provider->name); return (EINVAL); } if (error != 0) { G_MIRROR_DEBUG(1, "MD5 metadata hash mismatch for provider %s.", cp->provider->name); return (error); } return (0); } static int g_mirror_check_metadata(struct g_mirror_softc *sc, struct g_provider *pp, struct g_mirror_metadata *md) { if (g_mirror_id2disk(sc, md->md_did) != NULL) { G_MIRROR_DEBUG(1, "Disk %s (id=%u) already exists, skipping.", pp->name, md->md_did); return (EEXIST); } if (md->md_all != sc->sc_ndisks) { G_MIRROR_DEBUG(1, "Invalid '%s' field on disk %s (device %s), skipping.", "md_all", pp->name, sc->sc_name); return (EINVAL); } if (md->md_slice != sc->sc_slice) { G_MIRROR_DEBUG(1, "Invalid '%s' field on disk %s (device %s), skipping.", "md_slice", pp->name, sc->sc_name); return (EINVAL); } if (md->md_balance != sc->sc_balance) { G_MIRROR_DEBUG(1, "Invalid '%s' field on disk %s (device %s), skipping.", "md_balance", pp->name, sc->sc_name); return (EINVAL); } #if 0 if (md->md_mediasize != sc->sc_mediasize) { G_MIRROR_DEBUG(1, "Invalid '%s' field on disk %s (device %s), skipping.", "md_mediasize", pp->name, sc->sc_name); return (EINVAL); } #endif if (sc->sc_mediasize > pp->mediasize) { G_MIRROR_DEBUG(1, "Invalid size of disk %s (device %s), skipping.", pp->name, sc->sc_name); return (EINVAL); } if (md->md_sectorsize != sc->sc_sectorsize) { G_MIRROR_DEBUG(1, "Invalid '%s' field on disk %s (device %s), skipping.", "md_sectorsize", pp->name, sc->sc_name); return (EINVAL); } if ((sc->sc_sectorsize % pp->sectorsize) != 0) { G_MIRROR_DEBUG(1, "Invalid sector size of disk %s (device %s), skipping.", pp->name, sc->sc_name); return (EINVAL); } if ((md->md_mflags & ~G_MIRROR_DEVICE_FLAG_MASK) != 0) { G_MIRROR_DEBUG(1, "Invalid device flags on disk %s (device %s), skipping.", pp->name, sc->sc_name); return (EINVAL); } if ((md->md_dflags & ~G_MIRROR_DISK_FLAG_MASK) != 0) { G_MIRROR_DEBUG(1, "Invalid disk flags on disk %s (device %s), skipping.", pp->name, sc->sc_name); return (EINVAL); } return (0); } int g_mirror_add_disk(struct g_mirror_softc *sc, struct g_provider *pp, struct g_mirror_metadata *md) { struct g_mirror_disk *disk; int error; g_topology_assert_not(); G_MIRROR_DEBUG(2, "Adding disk %s.", pp->name); error = g_mirror_check_metadata(sc, pp, md); if (error != 0) return (error); if (sc->sc_state == G_MIRROR_DEVICE_STATE_RUNNING && md->md_genid < sc->sc_genid) { G_MIRROR_DEBUG(0, "Component %s (device %s) broken, skipping.", pp->name, sc->sc_name); return (EINVAL); } disk = g_mirror_init_disk(sc, pp, md, &error); if (disk == NULL) return (error); error = g_mirror_event_send(disk, G_MIRROR_DISK_STATE_NEW, G_MIRROR_EVENT_WAIT); if (error != 0) return (error); if (md->md_version < G_MIRROR_VERSION) { G_MIRROR_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).", pp->name, md->md_version, G_MIRROR_VERSION); g_mirror_update_metadata(disk); } return (0); } static void g_mirror_destroy_delayed(void *arg, int flag) { struct g_mirror_softc *sc; int error; if (flag == EV_CANCEL) { G_MIRROR_DEBUG(1, "Destroying canceled."); return; } sc = arg; g_topology_unlock(); sx_xlock(&sc->sc_lock); KASSERT((sc->sc_flags & G_MIRROR_DEVICE_FLAG_DESTROY) == 0, ("DESTROY flag set on %s.", sc->sc_name)); KASSERT((sc->sc_flags & G_MIRROR_DEVICE_FLAG_CLOSEWAIT) != 0, ("CLOSEWAIT flag not set on %s.", sc->sc_name)); G_MIRROR_DEBUG(1, "Destroying %s (delayed).", sc->sc_name); error = g_mirror_destroy(sc, G_MIRROR_DESTROY_SOFT); if (error != 0) { G_MIRROR_DEBUG(0, "Cannot destroy %s (error=%d).", sc->sc_name, error); sx_xunlock(&sc->sc_lock); } g_topology_lock(); } static int g_mirror_access(struct g_provider *pp, int acr, int acw, int ace) { struct g_mirror_softc *sc; int error = 0; g_topology_assert(); G_MIRROR_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr, acw, ace); sc = pp->private; KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name)); g_topology_unlock(); sx_xlock(&sc->sc_lock); if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_DESTROY) != 0 || (sc->sc_flags & G_MIRROR_DEVICE_FLAG_CLOSEWAIT) != 0 || LIST_EMPTY(&sc->sc_disks)) { if (acr > 0 || acw > 0 || ace > 0) error = ENXIO; goto end; } sc->sc_provider_open += acr + acw + ace; if (pp->acw + acw == 0) g_mirror_idle(sc, 0); if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_CLOSEWAIT) != 0 && sc->sc_provider_open == 0) g_post_event(g_mirror_destroy_delayed, sc, M_WAITOK, sc, NULL); end: sx_xunlock(&sc->sc_lock); g_topology_lock(); return (error); } struct g_geom * g_mirror_create(struct g_class *mp, const struct g_mirror_metadata *md, u_int type) { struct g_mirror_softc *sc; struct g_geom *gp; int error, timeout; g_topology_assert(); G_MIRROR_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_mid); /* One disk is minimum. */ if (md->md_all < 1) return (NULL); /* * Action geom. */ gp = g_new_geomf(mp, "%s", md->md_name); sc = malloc(sizeof(*sc), M_MIRROR, M_WAITOK | M_ZERO); gp->start = g_mirror_start; gp->orphan = g_mirror_orphan; gp->access = g_mirror_access; gp->dumpconf = g_mirror_dumpconf; sc->sc_type = type; sc->sc_id = md->md_mid; sc->sc_slice = md->md_slice; sc->sc_balance = md->md_balance; sc->sc_mediasize = md->md_mediasize; sc->sc_sectorsize = md->md_sectorsize; sc->sc_ndisks = md->md_all; sc->sc_flags = md->md_mflags; sc->sc_bump_id = 0; sc->sc_idle = 1; sc->sc_last_write = time_uptime; sc->sc_writes = 0; sc->sc_refcnt = 1; sx_init(&sc->sc_lock, "gmirror:lock"); TAILQ_INIT(&sc->sc_queue); mtx_init(&sc->sc_queue_mtx, "gmirror:queue", NULL, MTX_DEF); TAILQ_INIT(&sc->sc_regular_delayed); TAILQ_INIT(&sc->sc_inflight); TAILQ_INIT(&sc->sc_sync_delayed); LIST_INIT(&sc->sc_disks); TAILQ_INIT(&sc->sc_events); mtx_init(&sc->sc_events_mtx, "gmirror:events", NULL, MTX_DEF); callout_init(&sc->sc_callout, 1); mtx_init(&sc->sc_done_mtx, "gmirror:done", NULL, MTX_DEF); sc->sc_state = G_MIRROR_DEVICE_STATE_STARTING; gp->softc = sc; sc->sc_geom = gp; sc->sc_provider = NULL; sc->sc_provider_open = 0; /* * Synchronization geom. */ gp = g_new_geomf(mp, "%s.sync", md->md_name); gp->softc = sc; gp->orphan = g_mirror_orphan; sc->sc_sync.ds_geom = gp; sc->sc_sync.ds_ndisks = 0; error = kproc_create(g_mirror_worker, sc, &sc->sc_worker, 0, 0, "g_mirror %s", md->md_name); if (error != 0) { G_MIRROR_DEBUG(1, "Cannot create kernel thread for %s.", sc->sc_name); g_destroy_geom(sc->sc_sync.ds_geom); g_destroy_geom(sc->sc_geom); g_mirror_free_device(sc); return (NULL); } G_MIRROR_DEBUG(1, "Device %s created (%u components, id=%u).", sc->sc_name, sc->sc_ndisks, sc->sc_id); sc->sc_rootmount = root_mount_hold("GMIRROR"); G_MIRROR_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount); /* * Run timeout. */ timeout = g_mirror_timeout * hz; callout_reset(&sc->sc_callout, timeout, g_mirror_go, sc); return (sc->sc_geom); } int g_mirror_destroy(struct g_mirror_softc *sc, int how) { struct g_mirror_disk *disk; g_topology_assert_not(); sx_assert(&sc->sc_lock, SX_XLOCKED); if (sc->sc_provider_open != 0) { switch (how) { case G_MIRROR_DESTROY_SOFT: G_MIRROR_DEBUG(1, "Device %s is still open (%d).", sc->sc_name, sc->sc_provider_open); return (EBUSY); case G_MIRROR_DESTROY_DELAYED: G_MIRROR_DEBUG(1, "Device %s will be destroyed on last close.", sc->sc_name); LIST_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_state == G_MIRROR_DISK_STATE_SYNCHRONIZING) { g_mirror_sync_stop(disk, 1); } } sc->sc_flags |= G_MIRROR_DEVICE_FLAG_CLOSEWAIT; return (EBUSY); case G_MIRROR_DESTROY_HARD: G_MIRROR_DEBUG(1, "Device %s is still open, so it " "can't be definitely removed.", sc->sc_name); } } if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_DESTROY) != 0) { sx_xunlock(&sc->sc_lock); return (0); } sc->sc_flags |= G_MIRROR_DEVICE_FLAG_DESTROY; sc->sc_flags |= G_MIRROR_DEVICE_FLAG_DRAIN; G_MIRROR_DEBUG(4, "%s: Waking up %p.", __func__, sc); sx_xunlock(&sc->sc_lock); mtx_lock(&sc->sc_queue_mtx); wakeup(sc); mtx_unlock(&sc->sc_queue_mtx); G_MIRROR_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker); while (sc->sc_worker != NULL) tsleep(&sc->sc_worker, PRIBIO, "m:destroy", hz / 5); G_MIRROR_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker); sx_xlock(&sc->sc_lock); g_mirror_destroy_device(sc); return (0); } static void g_mirror_taste_orphan(struct g_consumer *cp) { KASSERT(1 == 0, ("%s called while tasting %s.", __func__, cp->provider->name)); } static struct g_geom * g_mirror_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) { struct g_mirror_metadata md; struct g_mirror_softc *sc; struct g_consumer *cp; struct g_geom *gp; int error; g_topology_assert(); g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); G_MIRROR_DEBUG(2, "Tasting %s.", pp->name); gp = g_new_geomf(mp, "mirror:taste"); /* * This orphan function should be never called. */ gp->orphan = g_mirror_taste_orphan; cp = g_new_consumer(gp); g_attach(cp, pp); error = g_mirror_read_metadata(cp, &md); g_detach(cp); g_destroy_consumer(cp); g_destroy_geom(gp); if (error != 0) return (NULL); gp = NULL; if (md.md_provider[0] != '\0' && !g_compare_names(md.md_provider, pp->name)) return (NULL); if (md.md_provsize != 0 && md.md_provsize != pp->mediasize) return (NULL); if ((md.md_dflags & G_MIRROR_DISK_FLAG_INACTIVE) != 0) { G_MIRROR_DEBUG(0, "Device %s: provider %s marked as inactive, skipping.", md.md_name, pp->name); return (NULL); } if (g_mirror_debug >= 2) mirror_metadata_dump(&md); /* * Let's check if device already exists. */ sc = NULL; LIST_FOREACH(gp, &mp->geom, geom) { sc = gp->softc; if (sc == NULL) continue; if (sc->sc_type != G_MIRROR_TYPE_AUTOMATIC) continue; if (sc->sc_sync.ds_geom == gp) continue; if (strcmp(md.md_name, sc->sc_name) != 0) continue; if (md.md_mid != sc->sc_id) { G_MIRROR_DEBUG(0, "Device %s already configured.", sc->sc_name); return (NULL); } break; } if (gp == NULL) { gp = g_mirror_create(mp, &md, G_MIRROR_TYPE_AUTOMATIC); if (gp == NULL) { G_MIRROR_DEBUG(0, "Cannot create device %s.", md.md_name); return (NULL); } sc = gp->softc; } G_MIRROR_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name); g_topology_unlock(); sx_xlock(&sc->sc_lock); sc->sc_flags |= G_MIRROR_DEVICE_FLAG_TASTING; error = g_mirror_add_disk(sc, pp, &md); if (error != 0) { G_MIRROR_DEBUG(0, "Cannot add disk %s to %s (error=%d).", pp->name, gp->name, error); if (LIST_EMPTY(&sc->sc_disks)) { g_cancel_event(sc); g_mirror_destroy(sc, G_MIRROR_DESTROY_HARD); g_topology_lock(); return (NULL); } gp = NULL; } sc->sc_flags &= ~G_MIRROR_DEVICE_FLAG_TASTING; if ((sc->sc_flags & G_MIRROR_DEVICE_FLAG_DESTROY) != 0) { g_mirror_destroy(sc, G_MIRROR_DESTROY_HARD); g_topology_lock(); return (NULL); } sx_xunlock(&sc->sc_lock); g_topology_lock(); return (gp); } static void g_mirror_resize(struct g_consumer *cp) { struct g_mirror_disk *disk; g_topology_assert(); g_trace(G_T_TOPOLOGY, "%s(%s)", __func__, cp->provider->name); disk = cp->private; if (disk == NULL) return; g_topology_unlock(); g_mirror_update_metadata(disk); g_topology_lock(); } static int g_mirror_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused, struct g_geom *gp) { struct g_mirror_softc *sc; int error; g_topology_unlock(); sc = gp->softc; sx_xlock(&sc->sc_lock); g_cancel_event(sc); error = g_mirror_destroy(gp->softc, G_MIRROR_DESTROY_SOFT); if (error != 0) sx_xunlock(&sc->sc_lock); g_topology_lock(); return (error); } static void g_mirror_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp) { struct g_mirror_softc *sc; g_topology_assert(); sc = gp->softc; if (sc == NULL) return; /* Skip synchronization geom. */ if (gp == sc->sc_sync.ds_geom) return; if (pp != NULL) { /* Nothing here. */ } else if (cp != NULL) { struct g_mirror_disk *disk; disk = cp->private; if (disk == NULL) return; g_topology_unlock(); sx_xlock(&sc->sc_lock); sbuf_printf(sb, "%s%u\n", indent, (u_int)disk->d_id); if (disk->d_state == G_MIRROR_DISK_STATE_SYNCHRONIZING) { sbuf_printf(sb, "%s", indent); if (disk->d_sync.ds_offset == 0) sbuf_printf(sb, "0%%"); else { sbuf_printf(sb, "%u%%", (u_int)((disk->d_sync.ds_offset * 100) / sc->sc_provider->mediasize)); } sbuf_printf(sb, "\n"); if (disk->d_sync.ds_offset > 0) { sbuf_printf(sb, "%s%jd" "\n", indent, (intmax_t)disk->d_sync.ds_offset); } } sbuf_printf(sb, "%s%u\n", indent, disk->d_sync.ds_syncid); sbuf_printf(sb, "%s%u\n", indent, disk->d_genid); sbuf_printf(sb, "%s", indent); if (disk->d_flags == 0) sbuf_printf(sb, "NONE"); else { int first = 1; #define ADD_FLAG(flag, name) do { \ if ((disk->d_flags & (flag)) != 0) { \ if (!first) \ sbuf_printf(sb, ", "); \ else \ first = 0; \ sbuf_printf(sb, name); \ } \ } while (0) ADD_FLAG(G_MIRROR_DISK_FLAG_DIRTY, "DIRTY"); ADD_FLAG(G_MIRROR_DISK_FLAG_HARDCODED, "HARDCODED"); ADD_FLAG(G_MIRROR_DISK_FLAG_INACTIVE, "INACTIVE"); ADD_FLAG(G_MIRROR_DISK_FLAG_SYNCHRONIZING, "SYNCHRONIZING"); ADD_FLAG(G_MIRROR_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC"); ADD_FLAG(G_MIRROR_DISK_FLAG_BROKEN, "BROKEN"); #undef ADD_FLAG } sbuf_printf(sb, "\n"); sbuf_printf(sb, "%s%u\n", indent, disk->d_priority); sbuf_printf(sb, "%s%s\n", indent, g_mirror_disk_state2str(disk->d_state)); sx_xunlock(&sc->sc_lock); g_topology_lock(); } else { g_topology_unlock(); sx_xlock(&sc->sc_lock); sbuf_printf(sb, "%s", indent); switch (sc->sc_type) { case G_MIRROR_TYPE_AUTOMATIC: sbuf_printf(sb, "AUTOMATIC"); break; case G_MIRROR_TYPE_MANUAL: sbuf_printf(sb, "MANUAL"); break; default: sbuf_printf(sb, "UNKNOWN"); break; } sbuf_printf(sb, "\n"); sbuf_printf(sb, "%s%u\n", indent, (u_int)sc->sc_id); sbuf_printf(sb, "%s%u\n", indent, sc->sc_syncid); sbuf_printf(sb, "%s%u\n", indent, sc->sc_genid); sbuf_printf(sb, "%s", indent); if (sc->sc_flags == 0) sbuf_printf(sb, "NONE"); else { int first = 1; #define ADD_FLAG(flag, name) do { \ if ((sc->sc_flags & (flag)) != 0) { \ if (!first) \ sbuf_printf(sb, ", "); \ else \ first = 0; \ sbuf_printf(sb, name); \ } \ } while (0) ADD_FLAG(G_MIRROR_DEVICE_FLAG_NOFAILSYNC, "NOFAILSYNC"); ADD_FLAG(G_MIRROR_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC"); #undef ADD_FLAG } sbuf_printf(sb, "\n"); sbuf_printf(sb, "%s%u\n", indent, (u_int)sc->sc_slice); sbuf_printf(sb, "%s%s\n", indent, balance_name(sc->sc_balance)); sbuf_printf(sb, "%s%u\n", indent, sc->sc_ndisks); sbuf_printf(sb, "%s", indent); if (sc->sc_state == G_MIRROR_DEVICE_STATE_STARTING) sbuf_printf(sb, "%s", "STARTING"); else if (sc->sc_ndisks == g_mirror_ndisks(sc, G_MIRROR_DISK_STATE_ACTIVE)) sbuf_printf(sb, "%s", "COMPLETE"); else sbuf_printf(sb, "%s", "DEGRADED"); sbuf_printf(sb, "\n"); sx_xunlock(&sc->sc_lock); g_topology_lock(); } } static void g_mirror_shutdown_post_sync(void *arg, int howto) { struct g_class *mp; struct g_geom *gp, *gp2; struct g_mirror_softc *sc; int error; if (panicstr != NULL) return; mp = arg; g_topology_lock(); g_mirror_shutdown = 1; LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { if ((sc = gp->softc) == NULL) continue; /* Skip synchronization geom. */ if (gp == sc->sc_sync.ds_geom) continue; g_topology_unlock(); sx_xlock(&sc->sc_lock); g_mirror_idle(sc, -1); g_cancel_event(sc); error = g_mirror_destroy(sc, G_MIRROR_DESTROY_DELAYED); if (error != 0) sx_xunlock(&sc->sc_lock); g_topology_lock(); } g_topology_unlock(); } static void g_mirror_init(struct g_class *mp) { g_mirror_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync, g_mirror_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST); if (g_mirror_post_sync == NULL) G_MIRROR_DEBUG(0, "Warning! Cannot register shutdown event."); } static void g_mirror_fini(struct g_class *mp) { if (g_mirror_post_sync != NULL) EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_mirror_post_sync); } DECLARE_GEOM_CLASS(g_mirror_class, g_mirror); +MODULE_VERSION(geom_mirror, 0); Index: head/sys/geom/mountver/g_mountver.c =================================================================== --- head/sys/geom/mountver/g_mountver.c (revision 332386) +++ head/sys/geom/mountver/g_mountver.c (revision 332387) @@ -1,662 +1,663 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2010 Edward Tomasz Napierala * Copyright (c) 2004-2006 Pawel Jakub Dawidek * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include SYSCTL_DECL(_kern_geom); static SYSCTL_NODE(_kern_geom, OID_AUTO, mountver, CTLFLAG_RW, 0, "GEOM_MOUNTVER stuff"); static u_int g_mountver_debug = 0; static u_int g_mountver_check_ident = 1; SYSCTL_UINT(_kern_geom_mountver, OID_AUTO, debug, CTLFLAG_RW, &g_mountver_debug, 0, "Debug level"); SYSCTL_UINT(_kern_geom_mountver, OID_AUTO, check_ident, CTLFLAG_RW, &g_mountver_check_ident, 0, "Check disk ident when reattaching"); static eventhandler_tag g_mountver_pre_sync = NULL; static void g_mountver_queue(struct bio *bp); static void g_mountver_orphan(struct g_consumer *cp); static void g_mountver_resize(struct g_consumer *cp); static int g_mountver_destroy(struct g_geom *gp, boolean_t force); static g_taste_t g_mountver_taste; static int g_mountver_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp); static void g_mountver_config(struct gctl_req *req, struct g_class *mp, const char *verb); static void g_mountver_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); static void g_mountver_init(struct g_class *mp); static void g_mountver_fini(struct g_class *mp); struct g_class g_mountver_class = { .name = G_MOUNTVER_CLASS_NAME, .version = G_VERSION, .ctlreq = g_mountver_config, .taste = g_mountver_taste, .destroy_geom = g_mountver_destroy_geom, .init = g_mountver_init, .fini = g_mountver_fini }; static void g_mountver_done(struct bio *bp) { struct g_geom *gp; struct bio *pbp; if (bp->bio_error != ENXIO) { g_std_done(bp); return; } /* * When the device goes away, it's possible that few requests * will be completed with ENXIO before g_mountver_orphan() * gets called. To work around that, we have to queue requests * that failed with ENXIO, in order to send them later. */ gp = bp->bio_from->geom; pbp = bp->bio_parent; KASSERT(pbp->bio_to == LIST_FIRST(&gp->provider), ("parent request was for someone else")); g_destroy_bio(bp); pbp->bio_inbed++; g_mountver_queue(pbp); } static void g_mountver_send(struct bio *bp) { struct g_geom *gp; struct bio *cbp; gp = bp->bio_to->geom; cbp = g_clone_bio(bp); if (cbp == NULL) { g_io_deliver(bp, ENOMEM); return; } cbp->bio_done = g_mountver_done; g_io_request(cbp, LIST_FIRST(&gp->consumer)); } static void g_mountver_queue(struct bio *bp) { struct g_mountver_softc *sc; struct g_geom *gp; gp = bp->bio_to->geom; sc = gp->softc; mtx_lock(&sc->sc_mtx); TAILQ_INSERT_TAIL(&sc->sc_queue, bp, bio_queue); mtx_unlock(&sc->sc_mtx); } static void g_mountver_send_queued(struct g_geom *gp) { struct g_mountver_softc *sc; struct bio *bp; sc = gp->softc; mtx_lock(&sc->sc_mtx); while ((bp = TAILQ_FIRST(&sc->sc_queue)) != NULL) { TAILQ_REMOVE(&sc->sc_queue, bp, bio_queue); G_MOUNTVER_LOGREQ(bp, "Sending queued request."); g_mountver_send(bp); } mtx_unlock(&sc->sc_mtx); } static void g_mountver_discard_queued(struct g_geom *gp) { struct g_mountver_softc *sc; struct bio *bp; sc = gp->softc; mtx_lock(&sc->sc_mtx); while ((bp = TAILQ_FIRST(&sc->sc_queue)) != NULL) { TAILQ_REMOVE(&sc->sc_queue, bp, bio_queue); G_MOUNTVER_LOGREQ(bp, "Discarding queued request."); g_io_deliver(bp, ENXIO); } mtx_unlock(&sc->sc_mtx); } static void g_mountver_start(struct bio *bp) { struct g_mountver_softc *sc; struct g_geom *gp; gp = bp->bio_to->geom; sc = gp->softc; G_MOUNTVER_LOGREQ(bp, "Request received."); /* * It is possible that some bios were returned with ENXIO, even though * orphaning didn't happen yet. In that case, queue all subsequent * requests in order to maintain ordering. */ if (sc->sc_orphaned || !TAILQ_EMPTY(&sc->sc_queue)) { if (sc->sc_shutting_down) { G_MOUNTVER_LOGREQ(bp, "Discarding request due to shutdown."); g_io_deliver(bp, ENXIO); return; } G_MOUNTVER_LOGREQ(bp, "Queueing request."); g_mountver_queue(bp); if (!sc->sc_orphaned) g_mountver_send_queued(gp); } else { G_MOUNTVER_LOGREQ(bp, "Sending request."); g_mountver_send(bp); } } static int g_mountver_access(struct g_provider *pp, int dr, int dw, int de) { struct g_mountver_softc *sc; struct g_geom *gp; struct g_consumer *cp; g_topology_assert(); gp = pp->geom; cp = LIST_FIRST(&gp->consumer); sc = gp->softc; if (sc == NULL && dr <= 0 && dw <= 0 && de <= 0) return (0); KASSERT(sc != NULL, ("Trying to access withered provider \"%s\".", pp->name)); sc->sc_access_r += dr; sc->sc_access_w += dw; sc->sc_access_e += de; if (sc->sc_orphaned) return (0); return (g_access(cp, dr, dw, de)); } static int g_mountver_create(struct gctl_req *req, struct g_class *mp, struct g_provider *pp) { struct g_mountver_softc *sc; struct g_geom *gp; struct g_provider *newpp; struct g_consumer *cp; char name[64]; int error; int identsize = DISK_IDENT_SIZE; g_topology_assert(); gp = NULL; newpp = NULL; cp = NULL; snprintf(name, sizeof(name), "%s%s", pp->name, G_MOUNTVER_SUFFIX); LIST_FOREACH(gp, &mp->geom, geom) { if (strcmp(gp->name, name) == 0) { gctl_error(req, "Provider %s already exists.", name); return (EEXIST); } } gp = g_new_geomf(mp, "%s", name); sc = g_malloc(sizeof(*sc), M_WAITOK | M_ZERO); mtx_init(&sc->sc_mtx, "gmountver", NULL, MTX_DEF | MTX_RECURSE); TAILQ_INIT(&sc->sc_queue); sc->sc_provider_name = strdup(pp->name, M_GEOM); gp->softc = sc; gp->start = g_mountver_start; gp->orphan = g_mountver_orphan; gp->resize = g_mountver_resize; gp->access = g_mountver_access; gp->dumpconf = g_mountver_dumpconf; newpp = g_new_providerf(gp, "%s", gp->name); newpp->mediasize = pp->mediasize; newpp->sectorsize = pp->sectorsize; newpp->flags |= G_PF_DIRECT_SEND | G_PF_DIRECT_RECEIVE; if ((pp->flags & G_PF_ACCEPT_UNMAPPED) != 0) { G_MOUNTVER_DEBUG(0, "Unmapped supported for %s.", gp->name); newpp->flags |= G_PF_ACCEPT_UNMAPPED; } else { G_MOUNTVER_DEBUG(0, "Unmapped unsupported for %s.", gp->name); newpp->flags &= ~G_PF_ACCEPT_UNMAPPED; } cp = g_new_consumer(gp); cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; error = g_attach(cp, pp); if (error != 0) { gctl_error(req, "Cannot attach to provider %s.", pp->name); goto fail; } error = g_access(cp, 1, 0, 0); if (error != 0) { gctl_error(req, "Cannot access provider %s.", pp->name); goto fail; } error = g_io_getattr("GEOM::ident", cp, &identsize, sc->sc_ident); g_access(cp, -1, 0, 0); if (error != 0) { if (g_mountver_check_ident) { gctl_error(req, "Cannot get disk ident from %s; error = %d.", pp->name, error); goto fail; } G_MOUNTVER_DEBUG(0, "Cannot get disk ident from %s; error = %d.", pp->name, error); sc->sc_ident[0] = '\0'; } g_error_provider(newpp, 0); G_MOUNTVER_DEBUG(0, "Device %s created.", gp->name); return (0); fail: g_free(sc->sc_provider_name); if (cp->provider != NULL) g_detach(cp); g_destroy_consumer(cp); g_destroy_provider(newpp); g_free(gp->softc); g_destroy_geom(gp); return (error); } static int g_mountver_destroy(struct g_geom *gp, boolean_t force) { struct g_mountver_softc *sc; struct g_provider *pp; g_topology_assert(); if (gp->softc == NULL) return (ENXIO); sc = gp->softc; pp = LIST_FIRST(&gp->provider); if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) { if (force) { G_MOUNTVER_DEBUG(0, "Device %s is still open, so it " "can't be definitely removed.", pp->name); } else { G_MOUNTVER_DEBUG(1, "Device %s is still open (r%dw%de%d).", pp->name, pp->acr, pp->acw, pp->ace); return (EBUSY); } } else { G_MOUNTVER_DEBUG(0, "Device %s removed.", gp->name); } if (pp != NULL) g_wither_provider(pp, ENXIO); g_mountver_discard_queued(gp); g_free(sc->sc_provider_name); g_free(gp->softc); gp->softc = NULL; g_wither_geom(gp, ENXIO); return (0); } static int g_mountver_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp) { return (g_mountver_destroy(gp, 0)); } static void g_mountver_ctl_create(struct gctl_req *req, struct g_class *mp) { struct g_provider *pp; const char *name; char param[16]; int i, *nargs; g_topology_assert(); nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); if (nargs == NULL) { gctl_error(req, "No '%s' argument", "nargs"); return; } if (*nargs <= 0) { gctl_error(req, "Missing device(s)."); return; } for (i = 0; i < *nargs; i++) { snprintf(param, sizeof(param), "arg%d", i); name = gctl_get_asciiparam(req, param); if (name == NULL) { gctl_error(req, "No 'arg%d' argument", i); return; } if (strncmp(name, "/dev/", strlen("/dev/")) == 0) name += strlen("/dev/"); pp = g_provider_by_name(name); if (pp == NULL) { G_MOUNTVER_DEBUG(1, "Provider %s is invalid.", name); gctl_error(req, "Provider %s is invalid.", name); return; } if (g_mountver_create(req, mp, pp) != 0) return; } } static struct g_geom * g_mountver_find_geom(struct g_class *mp, const char *name) { struct g_geom *gp; LIST_FOREACH(gp, &mp->geom, geom) { if (strcmp(gp->name, name) == 0) return (gp); } return (NULL); } static void g_mountver_ctl_destroy(struct gctl_req *req, struct g_class *mp) { int *nargs, *force, error, i; struct g_geom *gp; const char *name; char param[16]; g_topology_assert(); nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); if (nargs == NULL) { gctl_error(req, "No '%s' argument", "nargs"); return; } if (*nargs <= 0) { gctl_error(req, "Missing device(s)."); return; } force = gctl_get_paraml(req, "force", sizeof(*force)); if (force == NULL) { gctl_error(req, "No 'force' argument"); return; } for (i = 0; i < *nargs; i++) { snprintf(param, sizeof(param), "arg%d", i); name = gctl_get_asciiparam(req, param); if (name == NULL) { gctl_error(req, "No 'arg%d' argument", i); return; } if (strncmp(name, "/dev/", strlen("/dev/")) == 0) name += strlen("/dev/"); gp = g_mountver_find_geom(mp, name); if (gp == NULL) { G_MOUNTVER_DEBUG(1, "Device %s is invalid.", name); gctl_error(req, "Device %s is invalid.", name); return; } error = g_mountver_destroy(gp, *force); if (error != 0) { gctl_error(req, "Cannot destroy device %s (error=%d).", gp->name, error); return; } } } static void g_mountver_orphan(struct g_consumer *cp) { struct g_mountver_softc *sc; g_topology_assert(); sc = cp->geom->softc; sc->sc_orphaned = 1; if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) g_access(cp, -cp->acr, -cp->acw, -cp->ace); g_detach(cp); G_MOUNTVER_DEBUG(0, "%s is offline. Mount verification in progress.", sc->sc_provider_name); } static void g_mountver_resize(struct g_consumer *cp) { struct g_geom *gp; struct g_provider *pp; gp = cp->geom; LIST_FOREACH(pp, &gp->provider, provider) g_resize_provider(pp, cp->provider->mediasize); } static int g_mountver_ident_matches(struct g_geom *gp) { struct g_consumer *cp; struct g_mountver_softc *sc; char ident[DISK_IDENT_SIZE]; int error, identsize = DISK_IDENT_SIZE; sc = gp->softc; cp = LIST_FIRST(&gp->consumer); if (g_mountver_check_ident == 0) return (0); error = g_access(cp, 1, 0, 0); if (error != 0) { G_MOUNTVER_DEBUG(0, "Cannot access %s; " "not attaching; error = %d.", gp->name, error); return (1); } error = g_io_getattr("GEOM::ident", cp, &identsize, ident); g_access(cp, -1, 0, 0); if (error != 0) { G_MOUNTVER_DEBUG(0, "Cannot get disk ident for %s; " "not attaching; error = %d.", gp->name, error); return (1); } if (strcmp(ident, sc->sc_ident) != 0) { G_MOUNTVER_DEBUG(1, "Disk ident for %s (\"%s\") is different " "from expected \"%s\", not attaching.", gp->name, ident, sc->sc_ident); return (1); } return (0); } static struct g_geom * g_mountver_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) { struct g_mountver_softc *sc; struct g_consumer *cp; struct g_geom *gp; int error; g_topology_assert(); g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); G_MOUNTVER_DEBUG(2, "Tasting %s.", pp->name); /* * Let's check if device already exists. */ LIST_FOREACH(gp, &mp->geom, geom) { sc = gp->softc; if (sc == NULL) continue; /* Already attached? */ if (pp == LIST_FIRST(&gp->provider)) return (NULL); if (sc->sc_orphaned && strcmp(pp->name, sc->sc_provider_name) == 0) break; } if (gp == NULL) return (NULL); cp = LIST_FIRST(&gp->consumer); g_attach(cp, pp); error = g_mountver_ident_matches(gp); if (error != 0) { g_detach(cp); return (NULL); } if (sc->sc_access_r > 0 || sc->sc_access_w > 0 || sc->sc_access_e > 0) { error = g_access(cp, sc->sc_access_r, sc->sc_access_w, sc->sc_access_e); if (error != 0) { G_MOUNTVER_DEBUG(0, "Cannot access %s; error = %d.", pp->name, error); g_detach(cp); return (NULL); } } g_mountver_send_queued(gp); sc->sc_orphaned = 0; G_MOUNTVER_DEBUG(0, "%s has completed mount verification.", sc->sc_provider_name); return (gp); } static void g_mountver_config(struct gctl_req *req, struct g_class *mp, const char *verb) { uint32_t *version; g_topology_assert(); version = gctl_get_paraml(req, "version", sizeof(*version)); if (version == NULL) { gctl_error(req, "No '%s' argument.", "version"); return; } if (*version != G_MOUNTVER_VERSION) { gctl_error(req, "Userland and kernel parts are out of sync."); return; } if (strcmp(verb, "create") == 0) { g_mountver_ctl_create(req, mp); return; } else if (strcmp(verb, "destroy") == 0) { g_mountver_ctl_destroy(req, mp); return; } gctl_error(req, "Unknown verb."); } static void g_mountver_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp) { struct g_mountver_softc *sc; if (pp != NULL || cp != NULL) return; sc = gp->softc; sbuf_printf(sb, "%s%s\n", indent, sc->sc_orphaned ? "OFFLINE" : "ONLINE"); sbuf_printf(sb, "%s%s\n", indent, sc->sc_provider_name); sbuf_printf(sb, "%s%s\n", indent, sc->sc_ident); } static void g_mountver_shutdown_pre_sync(void *arg, int howto) { struct g_mountver_softc *sc; struct g_class *mp; struct g_geom *gp, *gp2; mp = arg; g_topology_lock(); LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { if (gp->softc == NULL) continue; sc = gp->softc; sc->sc_shutting_down = 1; if (sc->sc_orphaned) g_mountver_destroy(gp, 1); } g_topology_unlock(); } static void g_mountver_init(struct g_class *mp) { g_mountver_pre_sync = EVENTHANDLER_REGISTER(shutdown_pre_sync, g_mountver_shutdown_pre_sync, mp, SHUTDOWN_PRI_FIRST); if (g_mountver_pre_sync == NULL) G_MOUNTVER_DEBUG(0, "Warning! Cannot register shutdown event."); } static void g_mountver_fini(struct g_class *mp) { if (g_mountver_pre_sync != NULL) EVENTHANDLER_DEREGISTER(shutdown_pre_sync, g_mountver_pre_sync); } DECLARE_GEOM_CLASS(g_mountver_class, g_mountver); +MODULE_VERSION(geom_mountver, 0); Index: head/sys/geom/multipath/g_multipath.c =================================================================== --- head/sys/geom/multipath/g_multipath.c (revision 332386) +++ head/sys/geom/multipath/g_multipath.c (revision 332387) @@ -1,1534 +1,1535 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2011-2013 Alexander Motin * Copyright (c) 2006-2007 Matthew Jacob * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Based upon work by Pawel Jakub Dawidek for all of the * fine geom examples, and by Poul Henning Kamp for GEOM * itself, all of which is most gratefully acknowledged. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include FEATURE(geom_multipath, "GEOM multipath support"); SYSCTL_DECL(_kern_geom); static SYSCTL_NODE(_kern_geom, OID_AUTO, multipath, CTLFLAG_RW, 0, "GEOM_MULTIPATH tunables"); static u_int g_multipath_debug = 0; SYSCTL_UINT(_kern_geom_multipath, OID_AUTO, debug, CTLFLAG_RW, &g_multipath_debug, 0, "Debug level"); static u_int g_multipath_exclusive = 1; SYSCTL_UINT(_kern_geom_multipath, OID_AUTO, exclusive, CTLFLAG_RW, &g_multipath_exclusive, 0, "Exclusively open providers"); static enum { GKT_NIL, GKT_RUN, GKT_DIE } g_multipath_kt_state; static struct bio_queue_head gmtbq; static struct mtx gmtbq_mtx; static int g_multipath_read_metadata(struct g_consumer *cp, struct g_multipath_metadata *md); static int g_multipath_write_metadata(struct g_consumer *cp, struct g_multipath_metadata *md); static void g_multipath_orphan(struct g_consumer *); static void g_multipath_resize(struct g_consumer *); static void g_multipath_start(struct bio *); static void g_multipath_done(struct bio *); static void g_multipath_done_error(struct bio *); static void g_multipath_kt(void *); static int g_multipath_destroy(struct g_geom *); static int g_multipath_destroy_geom(struct gctl_req *, struct g_class *, struct g_geom *); static struct g_geom *g_multipath_find_geom(struct g_class *, const char *); static int g_multipath_rotate(struct g_geom *); static g_taste_t g_multipath_taste; static g_ctl_req_t g_multipath_config; static g_init_t g_multipath_init; static g_fini_t g_multipath_fini; static g_dumpconf_t g_multipath_dumpconf; struct g_class g_multipath_class = { .name = G_MULTIPATH_CLASS_NAME, .version = G_VERSION, .ctlreq = g_multipath_config, .taste = g_multipath_taste, .destroy_geom = g_multipath_destroy_geom, .init = g_multipath_init, .fini = g_multipath_fini }; #define MP_FAIL 0x00000001 #define MP_LOST 0x00000002 #define MP_NEW 0x00000004 #define MP_POSTED 0x00000008 #define MP_BAD (MP_FAIL | MP_LOST | MP_NEW) #define MP_WITHER 0x00000010 #define MP_IDLE 0x00000020 #define MP_IDLE_MASK 0xffffffe0 static int g_multipath_good(struct g_geom *gp) { struct g_consumer *cp; int n = 0; LIST_FOREACH(cp, &gp->consumer, consumer) { if ((cp->index & MP_BAD) == 0) n++; } return (n); } static void g_multipath_fault(struct g_consumer *cp, int cause) { struct g_multipath_softc *sc; struct g_consumer *lcp; struct g_geom *gp; gp = cp->geom; sc = gp->softc; cp->index |= cause; if (g_multipath_good(gp) == 0 && sc->sc_ndisks > 0) { LIST_FOREACH(lcp, &gp->consumer, consumer) { if (lcp->provider == NULL || (lcp->index & (MP_LOST | MP_NEW))) continue; if (sc->sc_ndisks > 1 && lcp == cp) continue; printf("GEOM_MULTIPATH: " "all paths in %s were marked FAIL, restore %s\n", sc->sc_name, lcp->provider->name); lcp->index &= ~MP_FAIL; } } if (cp != sc->sc_active) return; sc->sc_active = NULL; LIST_FOREACH(lcp, &gp->consumer, consumer) { if ((lcp->index & MP_BAD) == 0) { sc->sc_active = lcp; break; } } if (sc->sc_active == NULL) { printf("GEOM_MULTIPATH: out of providers for %s\n", sc->sc_name); } else if (sc->sc_active_active != 1) { printf("GEOM_MULTIPATH: %s is now active path in %s\n", sc->sc_active->provider->name, sc->sc_name); } } static struct g_consumer * g_multipath_choose(struct g_geom *gp, struct bio *bp) { struct g_multipath_softc *sc; struct g_consumer *best, *cp; sc = gp->softc; if (sc->sc_active_active == 0 || (sc->sc_active_active == 2 && bp->bio_cmd != BIO_READ)) return (sc->sc_active); best = NULL; LIST_FOREACH(cp, &gp->consumer, consumer) { if (cp->index & MP_BAD) continue; cp->index += MP_IDLE; if (best == NULL || cp->private < best->private || (cp->private == best->private && cp->index > best->index)) best = cp; } if (best != NULL) best->index &= ~MP_IDLE_MASK; return (best); } static void g_mpd(void *arg, int flags __unused) { struct g_geom *gp; struct g_multipath_softc *sc; struct g_consumer *cp; int w; g_topology_assert(); cp = arg; gp = cp->geom; if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) { w = cp->acw; g_access(cp, -cp->acr, -cp->acw, -cp->ace); if (w > 0 && cp->provider != NULL && (cp->provider->geom->flags & G_GEOM_WITHER) == 0) { cp->index |= MP_WITHER; g_post_event(g_mpd, cp, M_WAITOK, NULL); return; } } sc = gp->softc; mtx_lock(&sc->sc_mtx); if (cp->provider) { printf("GEOM_MULTIPATH: %s removed from %s\n", cp->provider->name, gp->name); g_detach(cp); } g_destroy_consumer(cp); mtx_unlock(&sc->sc_mtx); if (LIST_EMPTY(&gp->consumer)) g_multipath_destroy(gp); } static void g_multipath_orphan(struct g_consumer *cp) { struct g_multipath_softc *sc; uintptr_t *cnt; g_topology_assert(); printf("GEOM_MULTIPATH: %s in %s was disconnected\n", cp->provider->name, cp->geom->name); sc = cp->geom->softc; cnt = (uintptr_t *)&cp->private; mtx_lock(&sc->sc_mtx); sc->sc_ndisks--; g_multipath_fault(cp, MP_LOST); if (*cnt == 0 && (cp->index & MP_POSTED) == 0) { cp->index |= MP_POSTED; mtx_unlock(&sc->sc_mtx); g_mpd(cp, 0); } else mtx_unlock(&sc->sc_mtx); } static void g_multipath_resize(struct g_consumer *cp) { struct g_multipath_softc *sc; struct g_geom *gp; struct g_consumer *cp1; struct g_provider *pp; struct g_multipath_metadata md; off_t size, psize, ssize; int error; g_topology_assert(); gp = cp->geom; pp = cp->provider; sc = gp->softc; if (sc->sc_stopping) return; if (pp->mediasize < sc->sc_size) { size = pp->mediasize; ssize = pp->sectorsize; } else { size = ssize = OFF_MAX; mtx_lock(&sc->sc_mtx); LIST_FOREACH(cp1, &gp->consumer, consumer) { pp = cp1->provider; if (pp == NULL) continue; if (pp->mediasize < size) { size = pp->mediasize; ssize = pp->sectorsize; } } mtx_unlock(&sc->sc_mtx); if (size == OFF_MAX || size == sc->sc_size) return; } psize = size - ((sc->sc_uuid[0] != 0) ? ssize : 0); printf("GEOM_MULTIPATH: %s size changed from %jd to %jd\n", sc->sc_name, sc->sc_pp->mediasize, psize); if (sc->sc_uuid[0] != 0 && size < sc->sc_size) { error = g_multipath_read_metadata(cp, &md); if (error || (strcmp(md.md_magic, G_MULTIPATH_MAGIC) != 0) || (memcmp(md.md_uuid, sc->sc_uuid, sizeof(sc->sc_uuid)) != 0) || (strcmp(md.md_name, sc->sc_name) != 0) || (md.md_size != 0 && md.md_size != size) || (md.md_sectorsize != 0 && md.md_sectorsize != ssize)) { g_multipath_destroy(gp); return; } } sc->sc_size = size; g_resize_provider(sc->sc_pp, psize); if (sc->sc_uuid[0] != 0) { pp = cp->provider; strlcpy(md.md_magic, G_MULTIPATH_MAGIC, sizeof(md.md_magic)); memcpy(md.md_uuid, sc->sc_uuid, sizeof (sc->sc_uuid)); strlcpy(md.md_name, sc->sc_name, sizeof(md.md_name)); md.md_version = G_MULTIPATH_VERSION; md.md_size = size; md.md_sectorsize = ssize; md.md_active_active = sc->sc_active_active; error = g_multipath_write_metadata(cp, &md); if (error != 0) printf("GEOM_MULTIPATH: Can't update metadata on %s " "(%d)\n", pp->name, error); } } static void g_multipath_start(struct bio *bp) { struct g_multipath_softc *sc; struct g_geom *gp; struct g_consumer *cp; struct bio *cbp; uintptr_t *cnt; gp = bp->bio_to->geom; sc = gp->softc; KASSERT(sc != NULL, ("NULL sc")); cbp = g_clone_bio(bp); if (cbp == NULL) { g_io_deliver(bp, ENOMEM); return; } mtx_lock(&sc->sc_mtx); cp = g_multipath_choose(gp, bp); if (cp == NULL) { mtx_unlock(&sc->sc_mtx); g_destroy_bio(cbp); g_io_deliver(bp, ENXIO); return; } if ((uintptr_t)bp->bio_driver1 < sc->sc_ndisks) bp->bio_driver1 = (void *)(uintptr_t)sc->sc_ndisks; cnt = (uintptr_t *)&cp->private; (*cnt)++; mtx_unlock(&sc->sc_mtx); cbp->bio_done = g_multipath_done; g_io_request(cbp, cp); } static void g_multipath_done(struct bio *bp) { struct g_multipath_softc *sc; struct g_consumer *cp; uintptr_t *cnt; if (bp->bio_error == ENXIO || bp->bio_error == EIO) { mtx_lock(&gmtbq_mtx); bioq_insert_tail(&gmtbq, bp); mtx_unlock(&gmtbq_mtx); wakeup(&g_multipath_kt_state); } else { cp = bp->bio_from; sc = cp->geom->softc; cnt = (uintptr_t *)&cp->private; mtx_lock(&sc->sc_mtx); (*cnt)--; if (*cnt == 0 && (cp->index & MP_LOST)) { if (g_post_event(g_mpd, cp, M_NOWAIT, NULL) == 0) cp->index |= MP_POSTED; mtx_unlock(&sc->sc_mtx); } else mtx_unlock(&sc->sc_mtx); g_std_done(bp); } } static void g_multipath_done_error(struct bio *bp) { struct bio *pbp; struct g_geom *gp; struct g_multipath_softc *sc; struct g_consumer *cp; struct g_provider *pp; uintptr_t *cnt; /* * If we had a failure, we have to check first to see * whether the consumer it failed on was the currently * active consumer (i.e., this is the first in perhaps * a number of failures). If so, we then switch consumers * to the next available consumer. */ pbp = bp->bio_parent; gp = pbp->bio_to->geom; sc = gp->softc; cp = bp->bio_from; pp = cp->provider; cnt = (uintptr_t *)&cp->private; mtx_lock(&sc->sc_mtx); if ((cp->index & MP_FAIL) == 0) { printf("GEOM_MULTIPATH: Error %d, %s in %s marked FAIL\n", bp->bio_error, pp->name, sc->sc_name); g_multipath_fault(cp, MP_FAIL); } (*cnt)--; if (*cnt == 0 && (cp->index & (MP_LOST | MP_POSTED)) == MP_LOST) { cp->index |= MP_POSTED; mtx_unlock(&sc->sc_mtx); g_post_event(g_mpd, cp, M_WAITOK, NULL); } else mtx_unlock(&sc->sc_mtx); /* * If we can fruitfully restart the I/O, do so. */ if (pbp->bio_children < (uintptr_t)pbp->bio_driver1) { pbp->bio_inbed++; g_destroy_bio(bp); g_multipath_start(pbp); } else { g_std_done(bp); } } static void g_multipath_kt(void *arg) { g_multipath_kt_state = GKT_RUN; mtx_lock(&gmtbq_mtx); while (g_multipath_kt_state == GKT_RUN) { for (;;) { struct bio *bp; bp = bioq_takefirst(&gmtbq); if (bp == NULL) break; mtx_unlock(&gmtbq_mtx); g_multipath_done_error(bp); mtx_lock(&gmtbq_mtx); } if (g_multipath_kt_state != GKT_RUN) break; msleep(&g_multipath_kt_state, &gmtbq_mtx, PRIBIO, "gkt:wait", 0); } mtx_unlock(&gmtbq_mtx); wakeup(&g_multipath_kt_state); kproc_exit(0); } static int g_multipath_access(struct g_provider *pp, int dr, int dw, int de) { struct g_geom *gp; struct g_consumer *cp, *badcp = NULL; struct g_multipath_softc *sc; int error; gp = pp->geom; /* Error used if we have no valid consumers. */ error = (dr > 0 || dw > 0 || de > 0) ? ENXIO : 0; LIST_FOREACH(cp, &gp->consumer, consumer) { if (cp->index & MP_WITHER) continue; error = g_access(cp, dr, dw, de); if (error) { badcp = cp; goto fail; } } if (error != 0) return (error); sc = gp->softc; sc->sc_opened += dr + dw + de; if (sc->sc_stopping && sc->sc_opened == 0) g_multipath_destroy(gp); return (0); fail: LIST_FOREACH(cp, &gp->consumer, consumer) { if (cp == badcp) break; if (cp->index & MP_WITHER) continue; (void) g_access(cp, -dr, -dw, -de); } return (error); } static struct g_geom * g_multipath_create(struct g_class *mp, struct g_multipath_metadata *md) { struct g_multipath_softc *sc; struct g_geom *gp; struct g_provider *pp; g_topology_assert(); LIST_FOREACH(gp, &mp->geom, geom) { sc = gp->softc; if (sc == NULL || sc->sc_stopping) continue; if (strcmp(gp->name, md->md_name) == 0) { printf("GEOM_MULTIPATH: name %s already exists\n", md->md_name); return (NULL); } } gp = g_new_geomf(mp, "%s", md->md_name); sc = g_malloc(sizeof(*sc), M_WAITOK | M_ZERO); mtx_init(&sc->sc_mtx, "multipath", NULL, MTX_DEF); memcpy(sc->sc_uuid, md->md_uuid, sizeof (sc->sc_uuid)); memcpy(sc->sc_name, md->md_name, sizeof (sc->sc_name)); sc->sc_active_active = md->md_active_active; sc->sc_size = md->md_size; gp->softc = sc; gp->start = g_multipath_start; gp->orphan = g_multipath_orphan; gp->resize = g_multipath_resize; gp->access = g_multipath_access; gp->dumpconf = g_multipath_dumpconf; pp = g_new_providerf(gp, "multipath/%s", md->md_name); pp->flags |= G_PF_DIRECT_SEND | G_PF_DIRECT_RECEIVE; if (md->md_size != 0) { pp->mediasize = md->md_size - ((md->md_uuid[0] != 0) ? md->md_sectorsize : 0); pp->sectorsize = md->md_sectorsize; } sc->sc_pp = pp; g_error_provider(pp, 0); printf("GEOM_MULTIPATH: %s created\n", gp->name); return (gp); } static int g_multipath_add_disk(struct g_geom *gp, struct g_provider *pp) { struct g_multipath_softc *sc; struct g_consumer *cp, *nxtcp; int error, acr, acw, ace; g_topology_assert(); sc = gp->softc; KASSERT(sc, ("no softc")); /* * Make sure that the passed provider isn't already attached */ LIST_FOREACH(cp, &gp->consumer, consumer) { if (cp->provider == pp) break; } if (cp) { printf("GEOM_MULTIPATH: provider %s already attached to %s\n", pp->name, gp->name); return (EEXIST); } nxtcp = LIST_FIRST(&gp->consumer); cp = g_new_consumer(gp); cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; cp->private = NULL; cp->index = MP_NEW; error = g_attach(cp, pp); if (error != 0) { printf("GEOM_MULTIPATH: cannot attach %s to %s", pp->name, sc->sc_name); g_destroy_consumer(cp); return (error); } /* * Set access permissions on new consumer to match other consumers */ if (sc->sc_pp) { acr = sc->sc_pp->acr; acw = sc->sc_pp->acw; ace = sc->sc_pp->ace; } else acr = acw = ace = 0; if (g_multipath_exclusive) { acr++; acw++; ace++; } error = g_access(cp, acr, acw, ace); if (error) { printf("GEOM_MULTIPATH: cannot set access in " "attaching %s to %s (%d)\n", pp->name, sc->sc_name, error); g_detach(cp); g_destroy_consumer(cp); return (error); } if (sc->sc_size == 0) { sc->sc_size = pp->mediasize - ((sc->sc_uuid[0] != 0) ? pp->sectorsize : 0); sc->sc_pp->mediasize = sc->sc_size; sc->sc_pp->sectorsize = pp->sectorsize; } if (sc->sc_pp->stripesize == 0 && sc->sc_pp->stripeoffset == 0) { sc->sc_pp->stripesize = pp->stripesize; sc->sc_pp->stripeoffset = pp->stripeoffset; } sc->sc_pp->flags |= pp->flags & G_PF_ACCEPT_UNMAPPED; mtx_lock(&sc->sc_mtx); cp->index = 0; sc->sc_ndisks++; mtx_unlock(&sc->sc_mtx); printf("GEOM_MULTIPATH: %s added to %s\n", pp->name, sc->sc_name); if (sc->sc_active == NULL) { sc->sc_active = cp; if (sc->sc_active_active != 1) printf("GEOM_MULTIPATH: %s is now active path in %s\n", pp->name, sc->sc_name); } return (0); } static int g_multipath_destroy(struct g_geom *gp) { struct g_multipath_softc *sc; struct g_consumer *cp, *cp1; g_topology_assert(); if (gp->softc == NULL) return (ENXIO); sc = gp->softc; if (!sc->sc_stopping) { printf("GEOM_MULTIPATH: destroying %s\n", gp->name); sc->sc_stopping = 1; } if (sc->sc_opened != 0) { g_wither_provider(sc->sc_pp, ENXIO); sc->sc_pp = NULL; return (EINPROGRESS); } LIST_FOREACH_SAFE(cp, &gp->consumer, consumer, cp1) { mtx_lock(&sc->sc_mtx); if ((cp->index & MP_POSTED) == 0) { cp->index |= MP_POSTED; mtx_unlock(&sc->sc_mtx); g_mpd(cp, 0); if (cp1 == NULL) return(0); /* Recursion happened. */ } else mtx_unlock(&sc->sc_mtx); } if (!LIST_EMPTY(&gp->consumer)) return (EINPROGRESS); mtx_destroy(&sc->sc_mtx); g_free(gp->softc); gp->softc = NULL; printf("GEOM_MULTIPATH: %s destroyed\n", gp->name); g_wither_geom(gp, ENXIO); return (0); } static int g_multipath_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp) { return (g_multipath_destroy(gp)); } static int g_multipath_rotate(struct g_geom *gp) { struct g_consumer *lcp, *first_good_cp = NULL; struct g_multipath_softc *sc = gp->softc; int active_cp_seen = 0; g_topology_assert(); if (sc == NULL) return (ENXIO); LIST_FOREACH(lcp, &gp->consumer, consumer) { if ((lcp->index & MP_BAD) == 0) { if (first_good_cp == NULL) first_good_cp = lcp; if (active_cp_seen) break; } if (sc->sc_active == lcp) active_cp_seen = 1; } if (lcp == NULL) lcp = first_good_cp; if (lcp && lcp != sc->sc_active) { sc->sc_active = lcp; if (sc->sc_active_active != 1) printf("GEOM_MULTIPATH: %s is now active path in %s\n", lcp->provider->name, sc->sc_name); } return (0); } static void g_multipath_init(struct g_class *mp) { bioq_init(&gmtbq); mtx_init(&gmtbq_mtx, "gmtbq", NULL, MTX_DEF); kproc_create(g_multipath_kt, mp, NULL, 0, 0, "g_mp_kt"); } static void g_multipath_fini(struct g_class *mp) { if (g_multipath_kt_state == GKT_RUN) { mtx_lock(&gmtbq_mtx); g_multipath_kt_state = GKT_DIE; wakeup(&g_multipath_kt_state); msleep(&g_multipath_kt_state, &gmtbq_mtx, PRIBIO, "gmp:fini", 0); mtx_unlock(&gmtbq_mtx); } } static int g_multipath_read_metadata(struct g_consumer *cp, struct g_multipath_metadata *md) { struct g_provider *pp; u_char *buf; int error; g_topology_assert(); error = g_access(cp, 1, 0, 0); if (error != 0) return (error); pp = cp->provider; g_topology_unlock(); buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, &error); g_topology_lock(); g_access(cp, -1, 0, 0); if (buf == NULL) return (error); multipath_metadata_decode(buf, md); g_free(buf); return (0); } static int g_multipath_write_metadata(struct g_consumer *cp, struct g_multipath_metadata *md) { struct g_provider *pp; u_char *buf; int error; g_topology_assert(); error = g_access(cp, 1, 1, 1); if (error != 0) return (error); pp = cp->provider; g_topology_unlock(); buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); multipath_metadata_encode(md, buf); error = g_write_data(cp, pp->mediasize - pp->sectorsize, buf, pp->sectorsize); g_topology_lock(); g_access(cp, -1, -1, -1); g_free(buf); return (error); } static struct g_geom * g_multipath_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) { struct g_multipath_metadata md; struct g_multipath_softc *sc; struct g_consumer *cp; struct g_geom *gp, *gp1; int error, isnew; g_topology_assert(); gp = g_new_geomf(mp, "multipath:taste"); gp->start = g_multipath_start; gp->access = g_multipath_access; gp->orphan = g_multipath_orphan; cp = g_new_consumer(gp); g_attach(cp, pp); error = g_multipath_read_metadata(cp, &md); g_detach(cp); g_destroy_consumer(cp); g_destroy_geom(gp); if (error != 0) return (NULL); gp = NULL; if (strcmp(md.md_magic, G_MULTIPATH_MAGIC) != 0) { if (g_multipath_debug) printf("%s is not MULTIPATH\n", pp->name); return (NULL); } if (md.md_version != G_MULTIPATH_VERSION) { printf("%s has version %d multipath id- this module is version " " %d: rejecting\n", pp->name, md.md_version, G_MULTIPATH_VERSION); return (NULL); } if (md.md_size != 0 && md.md_size != pp->mediasize) return (NULL); if (md.md_sectorsize != 0 && md.md_sectorsize != pp->sectorsize) return (NULL); if (g_multipath_debug) printf("MULTIPATH: %s/%s\n", md.md_name, md.md_uuid); /* * Let's check if such a device already is present. We check against * uuid alone first because that's the true distinguishor. If that * passes, then we check for name conflicts. If there are conflicts, * modify the name. * * The whole purpose of this is to solve the problem that people don't * pick good unique names, but good unique names (like uuids) are a * pain to use. So, we allow people to build GEOMs with friendly names * and uuids, and modify the names in case there's a collision. */ sc = NULL; LIST_FOREACH(gp, &mp->geom, geom) { sc = gp->softc; if (sc == NULL || sc->sc_stopping) continue; if (strncmp(md.md_uuid, sc->sc_uuid, sizeof(md.md_uuid)) == 0) break; } LIST_FOREACH(gp1, &mp->geom, geom) { if (gp1 == gp) continue; sc = gp1->softc; if (sc == NULL || sc->sc_stopping) continue; if (strncmp(md.md_name, sc->sc_name, sizeof(md.md_name)) == 0) break; } /* * If gp is NULL, we had no extant MULTIPATH geom with this uuid. * * If gp1 is *not* NULL, that means we have a MULTIPATH geom extant * with the same name (but a different UUID). * * If gp is NULL, then modify the name with a random number and * complain, but allow the creation of the geom to continue. * * If gp is *not* NULL, just use the geom's name as we're attaching * this disk to the (previously generated) name. */ if (gp1) { sc = gp1->softc; if (gp == NULL) { char buf[16]; u_long rand = random(); snprintf(buf, sizeof (buf), "%s-%lu", md.md_name, rand); printf("GEOM_MULTIPATH: geom %s/%s exists already\n", sc->sc_name, sc->sc_uuid); printf("GEOM_MULTIPATH: %s will be (temporarily) %s\n", md.md_uuid, buf); strlcpy(md.md_name, buf, sizeof(md.md_name)); } else { strlcpy(md.md_name, sc->sc_name, sizeof(md.md_name)); } } if (gp == NULL) { gp = g_multipath_create(mp, &md); if (gp == NULL) { printf("GEOM_MULTIPATH: cannot create geom %s/%s\n", md.md_name, md.md_uuid); return (NULL); } isnew = 1; } else { isnew = 0; } sc = gp->softc; KASSERT(sc != NULL, ("sc is NULL")); error = g_multipath_add_disk(gp, pp); if (error != 0) { if (isnew) g_multipath_destroy(gp); return (NULL); } return (gp); } static void g_multipath_ctl_add_name(struct gctl_req *req, struct g_class *mp, const char *name) { struct g_multipath_softc *sc; struct g_geom *gp; struct g_consumer *cp; struct g_provider *pp; const char *mpname; static const char devpf[6] = "/dev/"; int error; g_topology_assert(); mpname = gctl_get_asciiparam(req, "arg0"); if (mpname == NULL) { gctl_error(req, "No 'arg0' argument"); return; } gp = g_multipath_find_geom(mp, mpname); if (gp == NULL) { gctl_error(req, "Device %s is invalid", mpname); return; } sc = gp->softc; if (strncmp(name, devpf, 5) == 0) name += 5; pp = g_provider_by_name(name); if (pp == NULL) { gctl_error(req, "Provider %s is invalid", name); return; } /* * Check to make sure parameters match. */ LIST_FOREACH(cp, &gp->consumer, consumer) { if (cp->provider == pp) { gctl_error(req, "provider %s is already there", pp->name); return; } } if (sc->sc_pp->mediasize != 0 && sc->sc_pp->mediasize + (sc->sc_uuid[0] != 0 ? pp->sectorsize : 0) != pp->mediasize) { gctl_error(req, "Providers size mismatch %jd != %jd", (intmax_t) sc->sc_pp->mediasize + (sc->sc_uuid[0] != 0 ? pp->sectorsize : 0), (intmax_t) pp->mediasize); return; } if (sc->sc_pp->sectorsize != 0 && sc->sc_pp->sectorsize != pp->sectorsize) { gctl_error(req, "Providers sectorsize mismatch %u != %u", sc->sc_pp->sectorsize, pp->sectorsize); return; } error = g_multipath_add_disk(gp, pp); if (error != 0) gctl_error(req, "Provider addition error: %d", error); } static void g_multipath_ctl_prefer(struct gctl_req *req, struct g_class *mp) { struct g_geom *gp; struct g_multipath_softc *sc; struct g_consumer *cp; const char *name, *mpname; static const char devpf[6] = "/dev/"; int *nargs; g_topology_assert(); mpname = gctl_get_asciiparam(req, "arg0"); if (mpname == NULL) { gctl_error(req, "No 'arg0' argument"); return; } gp = g_multipath_find_geom(mp, mpname); if (gp == NULL) { gctl_error(req, "Device %s is invalid", mpname); return; } sc = gp->softc; nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); if (nargs == NULL) { gctl_error(req, "No 'nargs' argument"); return; } if (*nargs != 2) { gctl_error(req, "missing device"); return; } name = gctl_get_asciiparam(req, "arg1"); if (name == NULL) { gctl_error(req, "No 'arg1' argument"); return; } if (strncmp(name, devpf, 5) == 0) { name += 5; } LIST_FOREACH(cp, &gp->consumer, consumer) { if (cp->provider != NULL && strcmp(cp->provider->name, name) == 0) break; } if (cp == NULL) { gctl_error(req, "Provider %s not found", name); return; } mtx_lock(&sc->sc_mtx); if (cp->index & MP_BAD) { gctl_error(req, "Consumer %s is invalid", name); mtx_unlock(&sc->sc_mtx); return; } /* Here when the consumer is present and in good shape */ sc->sc_active = cp; if (!sc->sc_active_active) printf("GEOM_MULTIPATH: %s now active path in %s\n", sc->sc_active->provider->name, sc->sc_name); mtx_unlock(&sc->sc_mtx); } static void g_multipath_ctl_add(struct gctl_req *req, struct g_class *mp) { struct g_multipath_softc *sc; struct g_geom *gp; const char *mpname, *name; mpname = gctl_get_asciiparam(req, "arg0"); if (mpname == NULL) { gctl_error(req, "No 'arg0' argument"); return; } gp = g_multipath_find_geom(mp, mpname); if (gp == NULL) { gctl_error(req, "Device %s not found", mpname); return; } sc = gp->softc; name = gctl_get_asciiparam(req, "arg1"); if (name == NULL) { gctl_error(req, "No 'arg1' argument"); return; } g_multipath_ctl_add_name(req, mp, name); } static void g_multipath_ctl_create(struct gctl_req *req, struct g_class *mp) { struct g_multipath_metadata md; struct g_multipath_softc *sc; struct g_geom *gp; const char *mpname, *name; char param[16]; int *nargs, i, *val; g_topology_assert(); nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); if (*nargs < 2) { gctl_error(req, "wrong number of arguments."); return; } mpname = gctl_get_asciiparam(req, "arg0"); if (mpname == NULL) { gctl_error(req, "No 'arg0' argument"); return; } gp = g_multipath_find_geom(mp, mpname); if (gp != NULL) { gctl_error(req, "Device %s already exist", mpname); return; } memset(&md, 0, sizeof(md)); strlcpy(md.md_magic, G_MULTIPATH_MAGIC, sizeof(md.md_magic)); md.md_version = G_MULTIPATH_VERSION; strlcpy(md.md_name, mpname, sizeof(md.md_name)); md.md_size = 0; md.md_sectorsize = 0; md.md_uuid[0] = 0; md.md_active_active = 0; val = gctl_get_paraml(req, "active_active", sizeof(*val)); if (val != NULL && *val != 0) md.md_active_active = 1; val = gctl_get_paraml(req, "active_read", sizeof(*val)); if (val != NULL && *val != 0) md.md_active_active = 2; gp = g_multipath_create(mp, &md); if (gp == NULL) { gctl_error(req, "GEOM_MULTIPATH: cannot create geom %s/%s\n", md.md_name, md.md_uuid); return; } sc = gp->softc; for (i = 1; i < *nargs; i++) { snprintf(param, sizeof(param), "arg%d", i); name = gctl_get_asciiparam(req, param); g_multipath_ctl_add_name(req, mp, name); } if (sc->sc_ndisks != (*nargs - 1)) g_multipath_destroy(gp); } static void g_multipath_ctl_configure(struct gctl_req *req, struct g_class *mp) { struct g_multipath_softc *sc; struct g_geom *gp; struct g_consumer *cp; struct g_provider *pp; struct g_multipath_metadata md; const char *name; int error, *val; g_topology_assert(); name = gctl_get_asciiparam(req, "arg0"); if (name == NULL) { gctl_error(req, "No 'arg0' argument"); return; } gp = g_multipath_find_geom(mp, name); if (gp == NULL) { gctl_error(req, "Device %s is invalid", name); return; } sc = gp->softc; val = gctl_get_paraml(req, "active_active", sizeof(*val)); if (val != NULL && *val != 0) sc->sc_active_active = 1; val = gctl_get_paraml(req, "active_read", sizeof(*val)); if (val != NULL && *val != 0) sc->sc_active_active = 2; val = gctl_get_paraml(req, "active_passive", sizeof(*val)); if (val != NULL && *val != 0) sc->sc_active_active = 0; if (sc->sc_uuid[0] != 0 && sc->sc_active != NULL) { cp = sc->sc_active; pp = cp->provider; strlcpy(md.md_magic, G_MULTIPATH_MAGIC, sizeof(md.md_magic)); memcpy(md.md_uuid, sc->sc_uuid, sizeof (sc->sc_uuid)); strlcpy(md.md_name, name, sizeof(md.md_name)); md.md_version = G_MULTIPATH_VERSION; md.md_size = pp->mediasize; md.md_sectorsize = pp->sectorsize; md.md_active_active = sc->sc_active_active; error = g_multipath_write_metadata(cp, &md); if (error != 0) gctl_error(req, "Can't update metadata on %s (%d)", pp->name, error); } } static void g_multipath_ctl_fail(struct gctl_req *req, struct g_class *mp, int fail) { struct g_multipath_softc *sc; struct g_geom *gp; struct g_consumer *cp; const char *mpname, *name; int found; mpname = gctl_get_asciiparam(req, "arg0"); if (mpname == NULL) { gctl_error(req, "No 'arg0' argument"); return; } gp = g_multipath_find_geom(mp, mpname); if (gp == NULL) { gctl_error(req, "Device %s not found", mpname); return; } sc = gp->softc; name = gctl_get_asciiparam(req, "arg1"); if (name == NULL) { gctl_error(req, "No 'arg1' argument"); return; } found = 0; mtx_lock(&sc->sc_mtx); LIST_FOREACH(cp, &gp->consumer, consumer) { if (cp->provider != NULL && strcmp(cp->provider->name, name) == 0 && (cp->index & MP_LOST) == 0) { found = 1; if (!fail == !(cp->index & MP_FAIL)) continue; printf("GEOM_MULTIPATH: %s in %s is marked %s.\n", name, sc->sc_name, fail ? "FAIL" : "OK"); if (fail) { g_multipath_fault(cp, MP_FAIL); } else { cp->index &= ~MP_FAIL; } } } mtx_unlock(&sc->sc_mtx); if (found == 0) gctl_error(req, "Provider %s not found", name); } static void g_multipath_ctl_remove(struct gctl_req *req, struct g_class *mp) { struct g_multipath_softc *sc; struct g_geom *gp; struct g_consumer *cp, *cp1; const char *mpname, *name; uintptr_t *cnt; int found; mpname = gctl_get_asciiparam(req, "arg0"); if (mpname == NULL) { gctl_error(req, "No 'arg0' argument"); return; } gp = g_multipath_find_geom(mp, mpname); if (gp == NULL) { gctl_error(req, "Device %s not found", mpname); return; } sc = gp->softc; name = gctl_get_asciiparam(req, "arg1"); if (name == NULL) { gctl_error(req, "No 'arg1' argument"); return; } found = 0; mtx_lock(&sc->sc_mtx); LIST_FOREACH_SAFE(cp, &gp->consumer, consumer, cp1) { if (cp->provider != NULL && strcmp(cp->provider->name, name) == 0 && (cp->index & MP_LOST) == 0) { found = 1; printf("GEOM_MULTIPATH: removing %s from %s\n", cp->provider->name, cp->geom->name); sc->sc_ndisks--; g_multipath_fault(cp, MP_LOST); cnt = (uintptr_t *)&cp->private; if (*cnt == 0 && (cp->index & MP_POSTED) == 0) { cp->index |= MP_POSTED; mtx_unlock(&sc->sc_mtx); g_mpd(cp, 0); if (cp1 == NULL) return; /* Recursion happened. */ mtx_lock(&sc->sc_mtx); } } } mtx_unlock(&sc->sc_mtx); if (found == 0) gctl_error(req, "Provider %s not found", name); } static struct g_geom * g_multipath_find_geom(struct g_class *mp, const char *name) { struct g_geom *gp; struct g_multipath_softc *sc; LIST_FOREACH(gp, &mp->geom, geom) { sc = gp->softc; if (sc == NULL || sc->sc_stopping) continue; if (strcmp(gp->name, name) == 0) return (gp); } return (NULL); } static void g_multipath_ctl_stop(struct gctl_req *req, struct g_class *mp) { struct g_geom *gp; const char *name; int error; g_topology_assert(); name = gctl_get_asciiparam(req, "arg0"); if (name == NULL) { gctl_error(req, "No 'arg0' argument"); return; } gp = g_multipath_find_geom(mp, name); if (gp == NULL) { gctl_error(req, "Device %s is invalid", name); return; } error = g_multipath_destroy(gp); if (error != 0 && error != EINPROGRESS) gctl_error(req, "failed to stop %s (err=%d)", name, error); } static void g_multipath_ctl_destroy(struct gctl_req *req, struct g_class *mp) { struct g_geom *gp; struct g_multipath_softc *sc; struct g_consumer *cp; struct g_provider *pp; const char *name; uint8_t *buf; int error; g_topology_assert(); name = gctl_get_asciiparam(req, "arg0"); if (name == NULL) { gctl_error(req, "No 'arg0' argument"); return; } gp = g_multipath_find_geom(mp, name); if (gp == NULL) { gctl_error(req, "Device %s is invalid", name); return; } sc = gp->softc; if (sc->sc_uuid[0] != 0 && sc->sc_active != NULL) { cp = sc->sc_active; pp = cp->provider; error = g_access(cp, 1, 1, 1); if (error != 0) { gctl_error(req, "Can't open %s (%d)", pp->name, error); goto destroy; } g_topology_unlock(); buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); error = g_write_data(cp, pp->mediasize - pp->sectorsize, buf, pp->sectorsize); g_topology_lock(); g_access(cp, -1, -1, -1); if (error != 0) gctl_error(req, "Can't erase metadata on %s (%d)", pp->name, error); } destroy: error = g_multipath_destroy(gp); if (error != 0 && error != EINPROGRESS) gctl_error(req, "failed to destroy %s (err=%d)", name, error); } static void g_multipath_ctl_rotate(struct gctl_req *req, struct g_class *mp) { struct g_geom *gp; const char *name; int error; g_topology_assert(); name = gctl_get_asciiparam(req, "arg0"); if (name == NULL) { gctl_error(req, "No 'arg0' argument"); return; } gp = g_multipath_find_geom(mp, name); if (gp == NULL) { gctl_error(req, "Device %s is invalid", name); return; } error = g_multipath_rotate(gp); if (error != 0) { gctl_error(req, "failed to rotate %s (err=%d)", name, error); } } static void g_multipath_ctl_getactive(struct gctl_req *req, struct g_class *mp) { struct sbuf *sb; struct g_geom *gp; struct g_multipath_softc *sc; struct g_consumer *cp; const char *name; int empty; sb = sbuf_new_auto(); g_topology_assert(); name = gctl_get_asciiparam(req, "arg0"); if (name == NULL) { gctl_error(req, "No 'arg0' argument"); return; } gp = g_multipath_find_geom(mp, name); if (gp == NULL) { gctl_error(req, "Device %s is invalid", name); return; } sc = gp->softc; if (sc->sc_active_active == 1) { empty = 1; LIST_FOREACH(cp, &gp->consumer, consumer) { if (cp->index & MP_BAD) continue; if (!empty) sbuf_cat(sb, " "); sbuf_cat(sb, cp->provider->name); empty = 0; } if (empty) sbuf_cat(sb, "none"); sbuf_cat(sb, "\n"); } else if (sc->sc_active && sc->sc_active->provider) { sbuf_printf(sb, "%s\n", sc->sc_active->provider->name); } else { sbuf_printf(sb, "none\n"); } sbuf_finish(sb); gctl_set_param_err(req, "output", sbuf_data(sb), sbuf_len(sb) + 1); sbuf_delete(sb); } static void g_multipath_config(struct gctl_req *req, struct g_class *mp, const char *verb) { uint32_t *version; g_topology_assert(); version = gctl_get_paraml(req, "version", sizeof(*version)); if (version == NULL) { gctl_error(req, "No 'version' argument"); } else if (*version != G_MULTIPATH_VERSION) { gctl_error(req, "Userland and kernel parts are out of sync"); } else if (strcmp(verb, "add") == 0) { g_multipath_ctl_add(req, mp); } else if (strcmp(verb, "prefer") == 0) { g_multipath_ctl_prefer(req, mp); } else if (strcmp(verb, "create") == 0) { g_multipath_ctl_create(req, mp); } else if (strcmp(verb, "configure") == 0) { g_multipath_ctl_configure(req, mp); } else if (strcmp(verb, "stop") == 0) { g_multipath_ctl_stop(req, mp); } else if (strcmp(verb, "destroy") == 0) { g_multipath_ctl_destroy(req, mp); } else if (strcmp(verb, "fail") == 0) { g_multipath_ctl_fail(req, mp, 1); } else if (strcmp(verb, "restore") == 0) { g_multipath_ctl_fail(req, mp, 0); } else if (strcmp(verb, "remove") == 0) { g_multipath_ctl_remove(req, mp); } else if (strcmp(verb, "rotate") == 0) { g_multipath_ctl_rotate(req, mp); } else if (strcmp(verb, "getactive") == 0) { g_multipath_ctl_getactive(req, mp); } else { gctl_error(req, "Unknown verb %s", verb); } } static void g_multipath_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp) { struct g_multipath_softc *sc; int good; g_topology_assert(); sc = gp->softc; if (sc == NULL) return; if (cp != NULL) { sbuf_printf(sb, "%s%s\n", indent, (cp->index & MP_NEW) ? "NEW" : (cp->index & MP_LOST) ? "LOST" : (cp->index & MP_FAIL) ? "FAIL" : (sc->sc_active_active == 1 || sc->sc_active == cp) ? "ACTIVE" : sc->sc_active_active == 2 ? "READ" : "PASSIVE"); } else { good = g_multipath_good(gp); sbuf_printf(sb, "%s%s\n", indent, good == 0 ? "BROKEN" : (good != sc->sc_ndisks || sc->sc_ndisks == 1) ? "DEGRADED" : "OPTIMAL"); } if (cp == NULL && pp == NULL) { sbuf_printf(sb, "%s%s\n", indent, sc->sc_uuid); sbuf_printf(sb, "%sActive/%s\n", indent, sc->sc_active_active == 2 ? "Read" : sc->sc_active_active == 1 ? "Active" : "Passive"); sbuf_printf(sb, "%s%s\n", indent, sc->sc_uuid[0] == 0 ? "MANUAL" : "AUTOMATIC"); } } DECLARE_GEOM_CLASS(g_multipath_class, g_multipath); +MODULE_VERSION(geom_multipath, 0); Index: head/sys/geom/nop/g_nop.c =================================================================== --- head/sys/geom/nop/g_nop.c (revision 332386) +++ head/sys/geom/nop/g_nop.c (revision 332387) @@ -1,719 +1,720 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2004-2006 Pawel Jakub Dawidek * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include SYSCTL_DECL(_kern_geom); static SYSCTL_NODE(_kern_geom, OID_AUTO, nop, CTLFLAG_RW, 0, "GEOM_NOP stuff"); static u_int g_nop_debug = 0; SYSCTL_UINT(_kern_geom_nop, OID_AUTO, debug, CTLFLAG_RW, &g_nop_debug, 0, "Debug level"); static int g_nop_destroy(struct g_geom *gp, boolean_t force); static int g_nop_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp); static void g_nop_config(struct gctl_req *req, struct g_class *mp, const char *verb); static void g_nop_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); struct g_class g_nop_class = { .name = G_NOP_CLASS_NAME, .version = G_VERSION, .ctlreq = g_nop_config, .destroy_geom = g_nop_destroy_geom }; static void g_nop_orphan(struct g_consumer *cp) { g_topology_assert(); g_nop_destroy(cp->geom, 1); } static void g_nop_resize(struct g_consumer *cp) { struct g_nop_softc *sc; struct g_geom *gp; struct g_provider *pp; off_t size; g_topology_assert(); gp = cp->geom; sc = gp->softc; if (sc->sc_explicitsize != 0) return; if (cp->provider->mediasize < sc->sc_offset) { g_nop_destroy(gp, 1); return; } size = cp->provider->mediasize - sc->sc_offset; LIST_FOREACH(pp, &gp->provider, provider) g_resize_provider(pp, size); } static void g_nop_start(struct bio *bp) { struct g_nop_softc *sc; struct g_geom *gp; struct g_provider *pp; struct bio *cbp; u_int failprob = 0; gp = bp->bio_to->geom; sc = gp->softc; G_NOP_LOGREQ(bp, "Request received."); mtx_lock(&sc->sc_lock); switch (bp->bio_cmd) { case BIO_READ: sc->sc_reads++; sc->sc_readbytes += bp->bio_length; failprob = sc->sc_rfailprob; break; case BIO_WRITE: sc->sc_writes++; sc->sc_wrotebytes += bp->bio_length; failprob = sc->sc_wfailprob; break; case BIO_DELETE: sc->sc_deletes++; break; case BIO_GETATTR: sc->sc_getattrs++; if (sc->sc_physpath && g_handleattr_str(bp, "GEOM::physpath", sc->sc_physpath)) { mtx_unlock(&sc->sc_lock); return; } break; case BIO_FLUSH: sc->sc_flushes++; break; case BIO_CMD0: sc->sc_cmd0s++; break; case BIO_CMD1: sc->sc_cmd1s++; break; case BIO_CMD2: sc->sc_cmd2s++; break; } mtx_unlock(&sc->sc_lock); if (failprob > 0) { u_int rval; rval = arc4random() % 100; if (rval < failprob) { G_NOP_LOGREQLVL(1, bp, "Returning error=%d.", sc->sc_error); g_io_deliver(bp, sc->sc_error); return; } } cbp = g_clone_bio(bp); if (cbp == NULL) { g_io_deliver(bp, ENOMEM); return; } cbp->bio_done = g_std_done; cbp->bio_offset = bp->bio_offset + sc->sc_offset; pp = LIST_FIRST(&gp->provider); KASSERT(pp != NULL, ("NULL pp")); cbp->bio_to = pp; G_NOP_LOGREQ(cbp, "Sending request."); g_io_request(cbp, LIST_FIRST(&gp->consumer)); } static int g_nop_access(struct g_provider *pp, int dr, int dw, int de) { struct g_geom *gp; struct g_consumer *cp; int error; gp = pp->geom; cp = LIST_FIRST(&gp->consumer); error = g_access(cp, dr, dw, de); return (error); } static int g_nop_create(struct gctl_req *req, struct g_class *mp, struct g_provider *pp, int ioerror, u_int rfailprob, u_int wfailprob, off_t offset, off_t size, u_int secsize, u_int stripesize, u_int stripeoffset, const char *physpath) { struct g_nop_softc *sc; struct g_geom *gp; struct g_provider *newpp; struct g_consumer *cp; char name[64]; int error; off_t explicitsize; g_topology_assert(); gp = NULL; newpp = NULL; cp = NULL; if ((offset % pp->sectorsize) != 0) { gctl_error(req, "Invalid offset for provider %s.", pp->name); return (EINVAL); } if ((size % pp->sectorsize) != 0) { gctl_error(req, "Invalid size for provider %s.", pp->name); return (EINVAL); } if (offset >= pp->mediasize) { gctl_error(req, "Invalid offset for provider %s.", pp->name); return (EINVAL); } explicitsize = size; if (size == 0) size = pp->mediasize - offset; if (offset + size > pp->mediasize) { gctl_error(req, "Invalid size for provider %s.", pp->name); return (EINVAL); } if (secsize == 0) secsize = pp->sectorsize; else if ((secsize % pp->sectorsize) != 0) { gctl_error(req, "Invalid secsize for provider %s.", pp->name); return (EINVAL); } if (secsize > MAXPHYS) { gctl_error(req, "secsize is too big."); return (EINVAL); } size -= size % secsize; if ((stripesize % pp->sectorsize) != 0) { gctl_error(req, "Invalid stripesize for provider %s.", pp->name); return (EINVAL); } if ((stripeoffset % pp->sectorsize) != 0) { gctl_error(req, "Invalid stripeoffset for provider %s.", pp->name); return (EINVAL); } if (stripesize != 0 && stripeoffset >= stripesize) { gctl_error(req, "stripeoffset is too big."); return (EINVAL); } snprintf(name, sizeof(name), "%s%s", pp->name, G_NOP_SUFFIX); LIST_FOREACH(gp, &mp->geom, geom) { if (strcmp(gp->name, name) == 0) { gctl_error(req, "Provider %s already exists.", name); return (EEXIST); } } gp = g_new_geomf(mp, "%s", name); sc = g_malloc(sizeof(*sc), M_WAITOK | M_ZERO); sc->sc_offset = offset; sc->sc_explicitsize = explicitsize; sc->sc_stripesize = stripesize; sc->sc_stripeoffset = stripeoffset; if (physpath && strcmp(physpath, G_NOP_PHYSPATH_PASSTHROUGH)) { sc->sc_physpath = strndup(physpath, MAXPATHLEN, M_GEOM); } else sc->sc_physpath = NULL; sc->sc_error = ioerror; sc->sc_rfailprob = rfailprob; sc->sc_wfailprob = wfailprob; sc->sc_reads = 0; sc->sc_writes = 0; sc->sc_deletes = 0; sc->sc_getattrs = 0; sc->sc_flushes = 0; sc->sc_cmd0s = 0; sc->sc_cmd1s = 0; sc->sc_cmd2s = 0; sc->sc_readbytes = 0; sc->sc_wrotebytes = 0; mtx_init(&sc->sc_lock, "gnop lock", NULL, MTX_DEF); gp->softc = sc; gp->start = g_nop_start; gp->orphan = g_nop_orphan; gp->resize = g_nop_resize; gp->access = g_nop_access; gp->dumpconf = g_nop_dumpconf; newpp = g_new_providerf(gp, "%s", gp->name); newpp->flags |= G_PF_DIRECT_SEND | G_PF_DIRECT_RECEIVE; newpp->mediasize = size; newpp->sectorsize = secsize; newpp->stripesize = stripesize; newpp->stripeoffset = stripeoffset; cp = g_new_consumer(gp); cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; error = g_attach(cp, pp); if (error != 0) { gctl_error(req, "Cannot attach to provider %s.", pp->name); goto fail; } newpp->flags |= pp->flags & G_PF_ACCEPT_UNMAPPED; g_error_provider(newpp, 0); G_NOP_DEBUG(0, "Device %s created.", gp->name); return (0); fail: if (cp->provider != NULL) g_detach(cp); g_destroy_consumer(cp); g_destroy_provider(newpp); mtx_destroy(&sc->sc_lock); free(sc->sc_physpath, M_GEOM); g_free(gp->softc); g_destroy_geom(gp); return (error); } static int g_nop_destroy(struct g_geom *gp, boolean_t force) { struct g_nop_softc *sc; struct g_provider *pp; g_topology_assert(); sc = gp->softc; if (sc == NULL) return (ENXIO); free(sc->sc_physpath, M_GEOM); pp = LIST_FIRST(&gp->provider); if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) { if (force) { G_NOP_DEBUG(0, "Device %s is still open, so it " "can't be definitely removed.", pp->name); } else { G_NOP_DEBUG(1, "Device %s is still open (r%dw%de%d).", pp->name, pp->acr, pp->acw, pp->ace); return (EBUSY); } } else { G_NOP_DEBUG(0, "Device %s removed.", gp->name); } gp->softc = NULL; mtx_destroy(&sc->sc_lock); g_free(sc); g_wither_geom(gp, ENXIO); return (0); } static int g_nop_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp) { return (g_nop_destroy(gp, 0)); } static void g_nop_ctl_create(struct gctl_req *req, struct g_class *mp) { struct g_provider *pp; intmax_t *error, *rfailprob, *wfailprob, *offset, *secsize, *size, *stripesize, *stripeoffset; const char *name, *physpath; char param[16]; int i, *nargs; g_topology_assert(); nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); if (nargs == NULL) { gctl_error(req, "No '%s' argument", "nargs"); return; } if (*nargs <= 0) { gctl_error(req, "Missing device(s)."); return; } error = gctl_get_paraml(req, "error", sizeof(*error)); if (error == NULL) { gctl_error(req, "No '%s' argument", "error"); return; } rfailprob = gctl_get_paraml(req, "rfailprob", sizeof(*rfailprob)); if (rfailprob == NULL) { gctl_error(req, "No '%s' argument", "rfailprob"); return; } if (*rfailprob < -1 || *rfailprob > 100) { gctl_error(req, "Invalid '%s' argument", "rfailprob"); return; } wfailprob = gctl_get_paraml(req, "wfailprob", sizeof(*wfailprob)); if (wfailprob == NULL) { gctl_error(req, "No '%s' argument", "wfailprob"); return; } if (*wfailprob < -1 || *wfailprob > 100) { gctl_error(req, "Invalid '%s' argument", "wfailprob"); return; } offset = gctl_get_paraml(req, "offset", sizeof(*offset)); if (offset == NULL) { gctl_error(req, "No '%s' argument", "offset"); return; } if (*offset < 0) { gctl_error(req, "Invalid '%s' argument", "offset"); return; } size = gctl_get_paraml(req, "size", sizeof(*size)); if (size == NULL) { gctl_error(req, "No '%s' argument", "size"); return; } if (*size < 0) { gctl_error(req, "Invalid '%s' argument", "size"); return; } secsize = gctl_get_paraml(req, "secsize", sizeof(*secsize)); if (secsize == NULL) { gctl_error(req, "No '%s' argument", "secsize"); return; } if (*secsize < 0) { gctl_error(req, "Invalid '%s' argument", "secsize"); return; } stripesize = gctl_get_paraml(req, "stripesize", sizeof(*stripesize)); if (stripesize == NULL) { gctl_error(req, "No '%s' argument", "stripesize"); return; } if (*stripesize < 0) { gctl_error(req, "Invalid '%s' argument", "stripesize"); return; } stripeoffset = gctl_get_paraml(req, "stripeoffset", sizeof(*stripeoffset)); if (stripeoffset == NULL) { gctl_error(req, "No '%s' argument", "stripeoffset"); return; } if (*stripeoffset < 0) { gctl_error(req, "Invalid '%s' argument", "stripeoffset"); return; } physpath = gctl_get_asciiparam(req, "physpath"); for (i = 0; i < *nargs; i++) { snprintf(param, sizeof(param), "arg%d", i); name = gctl_get_asciiparam(req, param); if (name == NULL) { gctl_error(req, "No 'arg%d' argument", i); return; } if (strncmp(name, "/dev/", strlen("/dev/")) == 0) name += strlen("/dev/"); pp = g_provider_by_name(name); if (pp == NULL) { G_NOP_DEBUG(1, "Provider %s is invalid.", name); gctl_error(req, "Provider %s is invalid.", name); return; } if (g_nop_create(req, mp, pp, *error == -1 ? EIO : (int)*error, *rfailprob == -1 ? 0 : (u_int)*rfailprob, *wfailprob == -1 ? 0 : (u_int)*wfailprob, (off_t)*offset, (off_t)*size, (u_int)*secsize, (u_int)*stripesize, (u_int)*stripeoffset, physpath) != 0) { return; } } } static void g_nop_ctl_configure(struct gctl_req *req, struct g_class *mp) { struct g_nop_softc *sc; struct g_provider *pp; intmax_t *error, *rfailprob, *wfailprob; const char *name; char param[16]; int i, *nargs; g_topology_assert(); nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); if (nargs == NULL) { gctl_error(req, "No '%s' argument", "nargs"); return; } if (*nargs <= 0) { gctl_error(req, "Missing device(s)."); return; } error = gctl_get_paraml(req, "error", sizeof(*error)); if (error == NULL) { gctl_error(req, "No '%s' argument", "error"); return; } rfailprob = gctl_get_paraml(req, "rfailprob", sizeof(*rfailprob)); if (rfailprob == NULL) { gctl_error(req, "No '%s' argument", "rfailprob"); return; } if (*rfailprob < -1 || *rfailprob > 100) { gctl_error(req, "Invalid '%s' argument", "rfailprob"); return; } wfailprob = gctl_get_paraml(req, "wfailprob", sizeof(*wfailprob)); if (wfailprob == NULL) { gctl_error(req, "No '%s' argument", "wfailprob"); return; } if (*wfailprob < -1 || *wfailprob > 100) { gctl_error(req, "Invalid '%s' argument", "wfailprob"); return; } for (i = 0; i < *nargs; i++) { snprintf(param, sizeof(param), "arg%d", i); name = gctl_get_asciiparam(req, param); if (name == NULL) { gctl_error(req, "No 'arg%d' argument", i); return; } if (strncmp(name, "/dev/", strlen("/dev/")) == 0) name += strlen("/dev/"); pp = g_provider_by_name(name); if (pp == NULL || pp->geom->class != mp) { G_NOP_DEBUG(1, "Provider %s is invalid.", name); gctl_error(req, "Provider %s is invalid.", name); return; } sc = pp->geom->softc; if (*error != -1) sc->sc_error = (int)*error; if (*rfailprob != -1) sc->sc_rfailprob = (u_int)*rfailprob; if (*wfailprob != -1) sc->sc_wfailprob = (u_int)*wfailprob; } } static struct g_geom * g_nop_find_geom(struct g_class *mp, const char *name) { struct g_geom *gp; LIST_FOREACH(gp, &mp->geom, geom) { if (strcmp(gp->name, name) == 0) return (gp); } return (NULL); } static void g_nop_ctl_destroy(struct gctl_req *req, struct g_class *mp) { int *nargs, *force, error, i; struct g_geom *gp; const char *name; char param[16]; g_topology_assert(); nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); if (nargs == NULL) { gctl_error(req, "No '%s' argument", "nargs"); return; } if (*nargs <= 0) { gctl_error(req, "Missing device(s)."); return; } force = gctl_get_paraml(req, "force", sizeof(*force)); if (force == NULL) { gctl_error(req, "No 'force' argument"); return; } for (i = 0; i < *nargs; i++) { snprintf(param, sizeof(param), "arg%d", i); name = gctl_get_asciiparam(req, param); if (name == NULL) { gctl_error(req, "No 'arg%d' argument", i); return; } if (strncmp(name, "/dev/", strlen("/dev/")) == 0) name += strlen("/dev/"); gp = g_nop_find_geom(mp, name); if (gp == NULL) { G_NOP_DEBUG(1, "Device %s is invalid.", name); gctl_error(req, "Device %s is invalid.", name); return; } error = g_nop_destroy(gp, *force); if (error != 0) { gctl_error(req, "Cannot destroy device %s (error=%d).", gp->name, error); return; } } } static void g_nop_ctl_reset(struct gctl_req *req, struct g_class *mp) { struct g_nop_softc *sc; struct g_provider *pp; const char *name; char param[16]; int i, *nargs; g_topology_assert(); nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); if (nargs == NULL) { gctl_error(req, "No '%s' argument", "nargs"); return; } if (*nargs <= 0) { gctl_error(req, "Missing device(s)."); return; } for (i = 0; i < *nargs; i++) { snprintf(param, sizeof(param), "arg%d", i); name = gctl_get_asciiparam(req, param); if (name == NULL) { gctl_error(req, "No 'arg%d' argument", i); return; } if (strncmp(name, "/dev/", strlen("/dev/")) == 0) name += strlen("/dev/"); pp = g_provider_by_name(name); if (pp == NULL || pp->geom->class != mp) { G_NOP_DEBUG(1, "Provider %s is invalid.", name); gctl_error(req, "Provider %s is invalid.", name); return; } sc = pp->geom->softc; sc->sc_reads = 0; sc->sc_writes = 0; sc->sc_deletes = 0; sc->sc_getattrs = 0; sc->sc_flushes = 0; sc->sc_cmd0s = 0; sc->sc_cmd1s = 0; sc->sc_cmd2s = 0; sc->sc_readbytes = 0; sc->sc_wrotebytes = 0; } } static void g_nop_config(struct gctl_req *req, struct g_class *mp, const char *verb) { uint32_t *version; g_topology_assert(); version = gctl_get_paraml(req, "version", sizeof(*version)); if (version == NULL) { gctl_error(req, "No '%s' argument.", "version"); return; } if (*version != G_NOP_VERSION) { gctl_error(req, "Userland and kernel parts are out of sync."); return; } if (strcmp(verb, "create") == 0) { g_nop_ctl_create(req, mp); return; } else if (strcmp(verb, "configure") == 0) { g_nop_ctl_configure(req, mp); return; } else if (strcmp(verb, "destroy") == 0) { g_nop_ctl_destroy(req, mp); return; } else if (strcmp(verb, "reset") == 0) { g_nop_ctl_reset(req, mp); return; } gctl_error(req, "Unknown verb."); } static void g_nop_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp) { struct g_nop_softc *sc; if (pp != NULL || cp != NULL) return; sc = gp->softc; sbuf_printf(sb, "%s%jd\n", indent, (intmax_t)sc->sc_offset); sbuf_printf(sb, "%s%u\n", indent, sc->sc_rfailprob); sbuf_printf(sb, "%s%u\n", indent, sc->sc_wfailprob); sbuf_printf(sb, "%s%d\n", indent, sc->sc_error); sbuf_printf(sb, "%s%ju\n", indent, sc->sc_reads); sbuf_printf(sb, "%s%ju\n", indent, sc->sc_writes); sbuf_printf(sb, "%s%ju\n", indent, sc->sc_deletes); sbuf_printf(sb, "%s%ju\n", indent, sc->sc_getattrs); sbuf_printf(sb, "%s%ju\n", indent, sc->sc_flushes); sbuf_printf(sb, "%s%ju\n", indent, sc->sc_cmd0s); sbuf_printf(sb, "%s%ju\n", indent, sc->sc_cmd1s); sbuf_printf(sb, "%s%ju\n", indent, sc->sc_cmd2s); sbuf_printf(sb, "%s%ju\n", indent, sc->sc_readbytes); sbuf_printf(sb, "%s%ju\n", indent, sc->sc_wrotebytes); } DECLARE_GEOM_CLASS(g_nop_class, g_nop); +MODULE_VERSION(geom_nop, 0); Index: head/sys/geom/part/g_part_apm.c =================================================================== --- head/sys/geom/part/g_part_apm.c (revision 332386) +++ head/sys/geom/part/g_part_apm.c (revision 332387) @@ -1,596 +1,597 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2006-2008 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "g_part_if.h" FEATURE(geom_part_apm, "GEOM partitioning class for Apple-style partitions"); struct g_part_apm_table { struct g_part_table base; struct apm_ddr ddr; struct apm_ent self; int tivo_series1; }; struct g_part_apm_entry { struct g_part_entry base; struct apm_ent ent; }; static int g_part_apm_add(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static int g_part_apm_create(struct g_part_table *, struct g_part_parms *); static int g_part_apm_destroy(struct g_part_table *, struct g_part_parms *); static void g_part_apm_dumpconf(struct g_part_table *, struct g_part_entry *, struct sbuf *, const char *); static int g_part_apm_dumpto(struct g_part_table *, struct g_part_entry *); static int g_part_apm_modify(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static const char *g_part_apm_name(struct g_part_table *, struct g_part_entry *, char *, size_t); static int g_part_apm_probe(struct g_part_table *, struct g_consumer *); static int g_part_apm_read(struct g_part_table *, struct g_consumer *); static const char *g_part_apm_type(struct g_part_table *, struct g_part_entry *, char *, size_t); static int g_part_apm_write(struct g_part_table *, struct g_consumer *); static int g_part_apm_resize(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static kobj_method_t g_part_apm_methods[] = { KOBJMETHOD(g_part_add, g_part_apm_add), KOBJMETHOD(g_part_create, g_part_apm_create), KOBJMETHOD(g_part_destroy, g_part_apm_destroy), KOBJMETHOD(g_part_dumpconf, g_part_apm_dumpconf), KOBJMETHOD(g_part_dumpto, g_part_apm_dumpto), KOBJMETHOD(g_part_modify, g_part_apm_modify), KOBJMETHOD(g_part_resize, g_part_apm_resize), KOBJMETHOD(g_part_name, g_part_apm_name), KOBJMETHOD(g_part_probe, g_part_apm_probe), KOBJMETHOD(g_part_read, g_part_apm_read), KOBJMETHOD(g_part_type, g_part_apm_type), KOBJMETHOD(g_part_write, g_part_apm_write), { 0, 0 } }; static struct g_part_scheme g_part_apm_scheme = { "APM", g_part_apm_methods, sizeof(struct g_part_apm_table), .gps_entrysz = sizeof(struct g_part_apm_entry), .gps_minent = 16, .gps_maxent = 4096, }; G_PART_SCHEME_DECLARE(g_part_apm); +MODULE_VERSION(geom_part_apm, 0); static void swab(char *buf, size_t bufsz) { int i; char ch; for (i = 0; i < bufsz; i += 2) { ch = buf[i]; buf[i] = buf[i + 1]; buf[i + 1] = ch; } } static int apm_parse_type(const char *type, char *buf, size_t bufsz) { const char *alias; if (type[0] == '!') { type++; if (strlen(type) > bufsz) return (EINVAL); if (!strcmp(type, APM_ENT_TYPE_SELF) || !strcmp(type, APM_ENT_TYPE_UNUSED)) return (EINVAL); strncpy(buf, type, bufsz); return (0); } alias = g_part_alias_name(G_PART_ALIAS_APPLE_BOOT); if (!strcasecmp(type, alias)) { strcpy(buf, APM_ENT_TYPE_APPLE_BOOT); return (0); } alias = g_part_alias_name(G_PART_ALIAS_APPLE_HFS); if (!strcasecmp(type, alias)) { strcpy(buf, APM_ENT_TYPE_APPLE_HFS); return (0); } alias = g_part_alias_name(G_PART_ALIAS_APPLE_UFS); if (!strcasecmp(type, alias)) { strcpy(buf, APM_ENT_TYPE_APPLE_UFS); return (0); } alias = g_part_alias_name(G_PART_ALIAS_FREEBSD); if (!strcasecmp(type, alias)) { strcpy(buf, APM_ENT_TYPE_FREEBSD); return (0); } alias = g_part_alias_name(G_PART_ALIAS_FREEBSD_NANDFS); if (!strcasecmp(type, alias)) { strcpy(buf, APM_ENT_TYPE_FREEBSD_NANDFS); return (0); } alias = g_part_alias_name(G_PART_ALIAS_FREEBSD_SWAP); if (!strcasecmp(type, alias)) { strcpy(buf, APM_ENT_TYPE_FREEBSD_SWAP); return (0); } alias = g_part_alias_name(G_PART_ALIAS_FREEBSD_UFS); if (!strcasecmp(type, alias)) { strcpy(buf, APM_ENT_TYPE_FREEBSD_UFS); return (0); } alias = g_part_alias_name(G_PART_ALIAS_FREEBSD_VINUM); if (!strcasecmp(type, alias)) { strcpy(buf, APM_ENT_TYPE_FREEBSD_VINUM); return (0); } alias = g_part_alias_name(G_PART_ALIAS_FREEBSD_ZFS); if (!strcasecmp(type, alias)) { strcpy(buf, APM_ENT_TYPE_FREEBSD_ZFS); return (0); } return (EINVAL); } static int apm_read_ent(struct g_consumer *cp, uint32_t blk, struct apm_ent *ent, int tivo_series1) { struct g_provider *pp; char *buf; int error; pp = cp->provider; buf = g_read_data(cp, pp->sectorsize * blk, pp->sectorsize, &error); if (buf == NULL) return (error); if (tivo_series1) swab(buf, pp->sectorsize); ent->ent_sig = be16dec(buf); ent->ent_pmblkcnt = be32dec(buf + 4); ent->ent_start = be32dec(buf + 8); ent->ent_size = be32dec(buf + 12); bcopy(buf + 16, ent->ent_name, sizeof(ent->ent_name)); bcopy(buf + 48, ent->ent_type, sizeof(ent->ent_type)); g_free(buf); return (0); } static int g_part_apm_add(struct g_part_table *basetable, struct g_part_entry *baseentry, struct g_part_parms *gpp) { struct g_part_apm_entry *entry; struct g_part_apm_table *table; int error; entry = (struct g_part_apm_entry *)baseentry; table = (struct g_part_apm_table *)basetable; entry->ent.ent_sig = APM_ENT_SIG; entry->ent.ent_pmblkcnt = table->self.ent_pmblkcnt; entry->ent.ent_start = gpp->gpp_start; entry->ent.ent_size = gpp->gpp_size; if (baseentry->gpe_deleted) { bzero(entry->ent.ent_type, sizeof(entry->ent.ent_type)); bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); } error = apm_parse_type(gpp->gpp_type, entry->ent.ent_type, sizeof(entry->ent.ent_type)); if (error) return (error); if (gpp->gpp_parms & G_PART_PARM_LABEL) { if (strlen(gpp->gpp_label) > sizeof(entry->ent.ent_name)) return (EINVAL); strncpy(entry->ent.ent_name, gpp->gpp_label, sizeof(entry->ent.ent_name)); } if (baseentry->gpe_index >= table->self.ent_pmblkcnt) table->self.ent_pmblkcnt = baseentry->gpe_index + 1; KASSERT(table->self.ent_size >= table->self.ent_pmblkcnt, ("%s", __func__)); KASSERT(table->self.ent_size > baseentry->gpe_index, ("%s", __func__)); return (0); } static int g_part_apm_create(struct g_part_table *basetable, struct g_part_parms *gpp) { struct g_provider *pp; struct g_part_apm_table *table; uint32_t last; /* We don't nest, which means that our depth should be 0. */ if (basetable->gpt_depth != 0) return (ENXIO); table = (struct g_part_apm_table *)basetable; pp = gpp->gpp_provider; if (pp->sectorsize != 512 || pp->mediasize < (2 + 2 * basetable->gpt_entries) * pp->sectorsize) return (ENOSPC); /* APM uses 32-bit LBAs. */ last = MIN(pp->mediasize / pp->sectorsize, UINT32_MAX) - 1; basetable->gpt_first = 2 + basetable->gpt_entries; basetable->gpt_last = last; table->ddr.ddr_sig = APM_DDR_SIG; table->ddr.ddr_blksize = pp->sectorsize; table->ddr.ddr_blkcount = last + 1; table->self.ent_sig = APM_ENT_SIG; table->self.ent_pmblkcnt = basetable->gpt_entries + 1; table->self.ent_start = 1; table->self.ent_size = table->self.ent_pmblkcnt; strcpy(table->self.ent_name, "Apple"); strcpy(table->self.ent_type, APM_ENT_TYPE_SELF); return (0); } static int g_part_apm_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) { /* Wipe the first 2 sectors to clear the partitioning. */ basetable->gpt_smhead |= 3; return (0); } static void g_part_apm_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, struct sbuf *sb, const char *indent) { union { char name[APM_ENT_NAMELEN + 1]; char type[APM_ENT_TYPELEN + 1]; } u; struct g_part_apm_entry *entry; entry = (struct g_part_apm_entry *)baseentry; if (indent == NULL) { /* conftxt: libdisk compatibility */ sbuf_printf(sb, " xs APPLE xt %s", entry->ent.ent_type); } else if (entry != NULL) { /* confxml: partition entry information */ strncpy(u.name, entry->ent.ent_name, APM_ENT_NAMELEN); u.name[APM_ENT_NAMELEN] = '\0'; sbuf_printf(sb, "%s\n"); strncpy(u.type, entry->ent.ent_type, APM_ENT_TYPELEN); u.type[APM_ENT_TYPELEN] = '\0'; sbuf_printf(sb, "%s", indent); g_conf_printf_escaped(sb, "%s", u.type); sbuf_printf(sb, "\n"); } else { /* confxml: scheme information */ } } static int g_part_apm_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) { struct g_part_apm_entry *entry; entry = (struct g_part_apm_entry *)baseentry; return ((!strcmp(entry->ent.ent_type, APM_ENT_TYPE_FREEBSD_SWAP)) ? 1 : 0); } static int g_part_apm_modify(struct g_part_table *basetable, struct g_part_entry *baseentry, struct g_part_parms *gpp) { struct g_part_apm_entry *entry; int error; entry = (struct g_part_apm_entry *)baseentry; if (gpp->gpp_parms & G_PART_PARM_LABEL) { if (strlen(gpp->gpp_label) > sizeof(entry->ent.ent_name)) return (EINVAL); } if (gpp->gpp_parms & G_PART_PARM_TYPE) { error = apm_parse_type(gpp->gpp_type, entry->ent.ent_type, sizeof(entry->ent.ent_type)); if (error) return (error); } if (gpp->gpp_parms & G_PART_PARM_LABEL) { strncpy(entry->ent.ent_name, gpp->gpp_label, sizeof(entry->ent.ent_name)); } return (0); } static int g_part_apm_resize(struct g_part_table *basetable, struct g_part_entry *baseentry, struct g_part_parms *gpp) { struct g_part_apm_entry *entry; struct g_provider *pp; if (baseentry == NULL) { pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; basetable->gpt_last = MIN(pp->mediasize / pp->sectorsize, UINT32_MAX) - 1; return (0); } entry = (struct g_part_apm_entry *)baseentry; baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; entry->ent.ent_size = gpp->gpp_size; return (0); } static const char * g_part_apm_name(struct g_part_table *table, struct g_part_entry *baseentry, char *buf, size_t bufsz) { snprintf(buf, bufsz, "s%d", baseentry->gpe_index + 1); return (buf); } static int g_part_apm_probe(struct g_part_table *basetable, struct g_consumer *cp) { struct g_provider *pp; struct g_part_apm_table *table; char *buf; int error; /* We don't nest, which means that our depth should be 0. */ if (basetable->gpt_depth != 0) return (ENXIO); table = (struct g_part_apm_table *)basetable; table->tivo_series1 = 0; pp = cp->provider; /* Sanity-check the provider. */ if (pp->mediasize < 4 * pp->sectorsize) return (ENOSPC); /* Check that there's a Driver Descriptor Record (DDR). */ buf = g_read_data(cp, 0L, pp->sectorsize, &error); if (buf == NULL) return (error); if (be16dec(buf) == APM_DDR_SIG) { /* Normal Apple DDR */ table->ddr.ddr_sig = be16dec(buf); table->ddr.ddr_blksize = be16dec(buf + 2); table->ddr.ddr_blkcount = be32dec(buf + 4); g_free(buf); if (table->ddr.ddr_blksize != pp->sectorsize) return (ENXIO); if (table->ddr.ddr_blkcount > pp->mediasize / pp->sectorsize) return (ENXIO); } else { /* * Check for Tivo drives, which have no DDR and a different * signature. Those whose first two bytes are 14 92 are * Series 2 drives, and aren't supported. Those that start * with 92 14 are series 1 drives and are supported. */ if (be16dec(buf) != 0x9214) { /* If this is 0x1492 it could be a series 2 drive */ g_free(buf); return (ENXIO); } table->ddr.ddr_sig = APM_DDR_SIG; /* XXX */ table->ddr.ddr_blksize = pp->sectorsize; /* XXX */ table->ddr.ddr_blkcount = MIN(pp->mediasize / pp->sectorsize, UINT32_MAX); table->tivo_series1 = 1; g_free(buf); } /* Check that there's a Partition Map. */ error = apm_read_ent(cp, 1, &table->self, table->tivo_series1); if (error) return (error); if (table->self.ent_sig != APM_ENT_SIG) return (ENXIO); if (strcmp(table->self.ent_type, APM_ENT_TYPE_SELF)) return (ENXIO); if (table->self.ent_pmblkcnt >= table->ddr.ddr_blkcount) return (ENXIO); return (G_PART_PROBE_PRI_NORM); } static int g_part_apm_read(struct g_part_table *basetable, struct g_consumer *cp) { struct apm_ent ent; struct g_part_apm_entry *entry; struct g_part_apm_table *table; int error, index; table = (struct g_part_apm_table *)basetable; basetable->gpt_first = table->self.ent_size + 1; basetable->gpt_last = table->ddr.ddr_blkcount - 1; basetable->gpt_entries = table->self.ent_size - 1; for (index = table->self.ent_pmblkcnt - 1; index > 0; index--) { error = apm_read_ent(cp, index + 1, &ent, table->tivo_series1); if (error) continue; if (!strcmp(ent.ent_type, APM_ENT_TYPE_UNUSED)) continue; entry = (struct g_part_apm_entry *)g_part_new_entry(basetable, index, ent.ent_start, ent.ent_start + ent.ent_size - 1); entry->ent = ent; } return (0); } static const char * g_part_apm_type(struct g_part_table *basetable, struct g_part_entry *baseentry, char *buf, size_t bufsz) { struct g_part_apm_entry *entry; const char *type; size_t len; entry = (struct g_part_apm_entry *)baseentry; type = entry->ent.ent_type; if (!strcmp(type, APM_ENT_TYPE_APPLE_BOOT)) return (g_part_alias_name(G_PART_ALIAS_APPLE_BOOT)); if (!strcmp(type, APM_ENT_TYPE_APPLE_HFS)) return (g_part_alias_name(G_PART_ALIAS_APPLE_HFS)); if (!strcmp(type, APM_ENT_TYPE_APPLE_UFS)) return (g_part_alias_name(G_PART_ALIAS_APPLE_UFS)); if (!strcmp(type, APM_ENT_TYPE_FREEBSD)) return (g_part_alias_name(G_PART_ALIAS_FREEBSD)); if (!strcmp(type, APM_ENT_TYPE_FREEBSD_NANDFS)) return (g_part_alias_name(G_PART_ALIAS_FREEBSD_NANDFS)); if (!strcmp(type, APM_ENT_TYPE_FREEBSD_SWAP)) return (g_part_alias_name(G_PART_ALIAS_FREEBSD_SWAP)); if (!strcmp(type, APM_ENT_TYPE_FREEBSD_UFS)) return (g_part_alias_name(G_PART_ALIAS_FREEBSD_UFS)); if (!strcmp(type, APM_ENT_TYPE_FREEBSD_VINUM)) return (g_part_alias_name(G_PART_ALIAS_FREEBSD_VINUM)); if (!strcmp(type, APM_ENT_TYPE_FREEBSD_ZFS)) return (g_part_alias_name(G_PART_ALIAS_FREEBSD_ZFS)); buf[0] = '!'; len = MIN(sizeof(entry->ent.ent_type), bufsz - 2); bcopy(type, buf + 1, len); buf[len + 1] = '\0'; return (buf); } static int g_part_apm_write(struct g_part_table *basetable, struct g_consumer *cp) { struct g_provider *pp; struct g_part_entry *baseentry; struct g_part_apm_entry *entry; struct g_part_apm_table *table; char *buf, *ptr; uint32_t index; int error; size_t tblsz; pp = cp->provider; table = (struct g_part_apm_table *)basetable; /* * Tivo Series 1 disk partitions are currently read-only. */ if (table->tivo_series1) return (EOPNOTSUPP); /* Write the DDR only when we're newly created. */ if (basetable->gpt_created) { buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); be16enc(buf, table->ddr.ddr_sig); be16enc(buf + 2, table->ddr.ddr_blksize); be32enc(buf + 4, table->ddr.ddr_blkcount); error = g_write_data(cp, 0, buf, pp->sectorsize); g_free(buf); if (error) return (error); } /* Allocate the buffer for all entries */ tblsz = table->self.ent_pmblkcnt; buf = g_malloc(tblsz * pp->sectorsize, M_WAITOK | M_ZERO); /* Fill the self entry */ be16enc(buf, APM_ENT_SIG); be32enc(buf + 4, table->self.ent_pmblkcnt); be32enc(buf + 8, table->self.ent_start); be32enc(buf + 12, table->self.ent_size); bcopy(table->self.ent_name, buf + 16, sizeof(table->self.ent_name)); bcopy(table->self.ent_type, buf + 48, sizeof(table->self.ent_type)); baseentry = LIST_FIRST(&basetable->gpt_entry); for (index = 1; index < tblsz; index++) { entry = (baseentry != NULL && index == baseentry->gpe_index) ? (struct g_part_apm_entry *)baseentry : NULL; ptr = buf + index * pp->sectorsize; be16enc(ptr, APM_ENT_SIG); be32enc(ptr + 4, table->self.ent_pmblkcnt); if (entry != NULL && !baseentry->gpe_deleted) { be32enc(ptr + 8, entry->ent.ent_start); be32enc(ptr + 12, entry->ent.ent_size); bcopy(entry->ent.ent_name, ptr + 16, sizeof(entry->ent.ent_name)); bcopy(entry->ent.ent_type, ptr + 48, sizeof(entry->ent.ent_type)); } else { strcpy(ptr + 48, APM_ENT_TYPE_UNUSED); } if (entry != NULL) baseentry = LIST_NEXT(baseentry, gpe_entry); } for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { error = g_write_data(cp, (1 + index) * pp->sectorsize, buf + index * pp->sectorsize, (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: (tblsz - index) * pp->sectorsize); if (error) { g_free(buf); return (error); } } g_free(buf); return (0); } Index: head/sys/geom/part/g_part_bsd.c =================================================================== --- head/sys/geom/part/g_part_bsd.c (revision 332386) +++ head/sys/geom/part/g_part_bsd.c (revision 332387) @@ -1,541 +1,542 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2007 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "g_part_if.h" #define BOOT1_SIZE 512 #define LABEL_SIZE 512 #define BOOT2_OFF (BOOT1_SIZE + LABEL_SIZE) #define BOOT2_SIZE (BBSIZE - BOOT2_OFF) FEATURE(geom_part_bsd, "GEOM partitioning class for BSD disklabels"); struct g_part_bsd_table { struct g_part_table base; u_char *bbarea; uint32_t offset; }; struct g_part_bsd_entry { struct g_part_entry base; struct partition part; }; static int g_part_bsd_add(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static int g_part_bsd_bootcode(struct g_part_table *, struct g_part_parms *); static int g_part_bsd_create(struct g_part_table *, struct g_part_parms *); static int g_part_bsd_destroy(struct g_part_table *, struct g_part_parms *); static void g_part_bsd_dumpconf(struct g_part_table *, struct g_part_entry *, struct sbuf *, const char *); static int g_part_bsd_dumpto(struct g_part_table *, struct g_part_entry *); static int g_part_bsd_modify(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static const char *g_part_bsd_name(struct g_part_table *, struct g_part_entry *, char *, size_t); static int g_part_bsd_probe(struct g_part_table *, struct g_consumer *); static int g_part_bsd_read(struct g_part_table *, struct g_consumer *); static const char *g_part_bsd_type(struct g_part_table *, struct g_part_entry *, char *, size_t); static int g_part_bsd_write(struct g_part_table *, struct g_consumer *); static int g_part_bsd_resize(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static kobj_method_t g_part_bsd_methods[] = { KOBJMETHOD(g_part_add, g_part_bsd_add), KOBJMETHOD(g_part_bootcode, g_part_bsd_bootcode), KOBJMETHOD(g_part_create, g_part_bsd_create), KOBJMETHOD(g_part_destroy, g_part_bsd_destroy), KOBJMETHOD(g_part_dumpconf, g_part_bsd_dumpconf), KOBJMETHOD(g_part_dumpto, g_part_bsd_dumpto), KOBJMETHOD(g_part_modify, g_part_bsd_modify), KOBJMETHOD(g_part_resize, g_part_bsd_resize), KOBJMETHOD(g_part_name, g_part_bsd_name), KOBJMETHOD(g_part_probe, g_part_bsd_probe), KOBJMETHOD(g_part_read, g_part_bsd_read), KOBJMETHOD(g_part_type, g_part_bsd_type), KOBJMETHOD(g_part_write, g_part_bsd_write), { 0, 0 } }; static struct g_part_scheme g_part_bsd_scheme = { "BSD", g_part_bsd_methods, sizeof(struct g_part_bsd_table), .gps_entrysz = sizeof(struct g_part_bsd_entry), .gps_minent = 8, .gps_maxent = 20, /* Only 22 entries fit in 512 byte sectors */ .gps_bootcodesz = BBSIZE, }; G_PART_SCHEME_DECLARE(g_part_bsd); +MODULE_VERSION(geom_part_bsd, 0); static struct g_part_bsd_alias { uint8_t type; int alias; } bsd_alias_match[] = { { FS_BSDFFS, G_PART_ALIAS_FREEBSD_UFS }, { FS_SWAP, G_PART_ALIAS_FREEBSD_SWAP }, { FS_ZFS, G_PART_ALIAS_FREEBSD_ZFS }, { FS_VINUM, G_PART_ALIAS_FREEBSD_VINUM }, { FS_NANDFS, G_PART_ALIAS_FREEBSD_NANDFS }, { FS_HAMMER, G_PART_ALIAS_DFBSD_HAMMER }, { FS_HAMMER2, G_PART_ALIAS_DFBSD_HAMMER2 }, }; static int bsd_parse_type(const char *type, uint8_t *fstype) { const char *alias; char *endp; long lt; int i; if (type[0] == '!') { lt = strtol(type + 1, &endp, 0); if (type[1] == '\0' || *endp != '\0' || lt <= 0 || lt >= 256) return (EINVAL); *fstype = (u_int)lt; return (0); } for (i = 0; i < nitems(bsd_alias_match); i++) { alias = g_part_alias_name(bsd_alias_match[i].alias); if (strcasecmp(type, alias) == 0) { *fstype = bsd_alias_match[i].type; return (0); } } return (EINVAL); } static int g_part_bsd_add(struct g_part_table *basetable, struct g_part_entry *baseentry, struct g_part_parms *gpp) { struct g_part_bsd_entry *entry; struct g_part_bsd_table *table; if (gpp->gpp_parms & G_PART_PARM_LABEL) return (EINVAL); entry = (struct g_part_bsd_entry *)baseentry; table = (struct g_part_bsd_table *)basetable; entry->part.p_size = gpp->gpp_size; entry->part.p_offset = gpp->gpp_start + table->offset; entry->part.p_fsize = 0; entry->part.p_frag = 0; entry->part.p_cpg = 0; return (bsd_parse_type(gpp->gpp_type, &entry->part.p_fstype)); } static int g_part_bsd_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) { struct g_part_bsd_table *table; const u_char *codeptr; if (gpp->gpp_codesize != BOOT1_SIZE && gpp->gpp_codesize != BBSIZE) return (ENODEV); table = (struct g_part_bsd_table *)basetable; codeptr = gpp->gpp_codeptr; bcopy(codeptr, table->bbarea, BOOT1_SIZE); if (gpp->gpp_codesize == BBSIZE) bcopy(codeptr + BOOT2_OFF, table->bbarea + BOOT2_OFF, BOOT2_SIZE); return (0); } static int g_part_bsd_create(struct g_part_table *basetable, struct g_part_parms *gpp) { struct g_provider *pp; struct g_part_entry *baseentry; struct g_part_bsd_entry *entry; struct g_part_bsd_table *table; u_char *ptr; uint32_t msize, ncyls, secpercyl; pp = gpp->gpp_provider; if (pp->sectorsize < sizeof(struct disklabel)) return (ENOSPC); if (BBSIZE % pp->sectorsize) return (ENOTBLK); msize = MIN(pp->mediasize / pp->sectorsize, UINT32_MAX); secpercyl = basetable->gpt_sectors * basetable->gpt_heads; ncyls = msize / secpercyl; table = (struct g_part_bsd_table *)basetable; table->bbarea = g_malloc(BBSIZE, M_WAITOK | M_ZERO); ptr = table->bbarea + pp->sectorsize; le32enc(ptr + 0, DISKMAGIC); /* d_magic */ le32enc(ptr + 40, pp->sectorsize); /* d_secsize */ le32enc(ptr + 44, basetable->gpt_sectors); /* d_nsectors */ le32enc(ptr + 48, basetable->gpt_heads); /* d_ntracks */ le32enc(ptr + 52, ncyls); /* d_ncylinders */ le32enc(ptr + 56, secpercyl); /* d_secpercyl */ le32enc(ptr + 60, msize); /* d_secperunit */ le16enc(ptr + 72, 3600); /* d_rpm */ le32enc(ptr + 132, DISKMAGIC); /* d_magic2 */ le16enc(ptr + 138, basetable->gpt_entries); /* d_npartitions */ le32enc(ptr + 140, BBSIZE); /* d_bbsize */ basetable->gpt_first = 0; basetable->gpt_last = msize - 1; basetable->gpt_isleaf = 1; baseentry = g_part_new_entry(basetable, RAW_PART + 1, basetable->gpt_first, basetable->gpt_last); baseentry->gpe_internal = 1; entry = (struct g_part_bsd_entry *)baseentry; entry->part.p_size = basetable->gpt_last + 1; entry->part.p_offset = table->offset; return (0); } static int g_part_bsd_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) { struct g_part_bsd_table *table; table = (struct g_part_bsd_table *)basetable; if (table->bbarea != NULL) g_free(table->bbarea); table->bbarea = NULL; /* Wipe the second sector to clear the partitioning. */ basetable->gpt_smhead |= 2; return (0); } static void g_part_bsd_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, struct sbuf *sb, const char *indent) { struct g_part_bsd_entry *entry; entry = (struct g_part_bsd_entry *)baseentry; if (indent == NULL) { /* conftxt: libdisk compatibility */ sbuf_printf(sb, " xs BSD xt %u", entry->part.p_fstype); } else if (entry != NULL) { /* confxml: partition entry information */ sbuf_printf(sb, "%s%u\n", indent, entry->part.p_fstype); } else { /* confxml: scheme information */ } } static int g_part_bsd_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) { struct g_part_bsd_entry *entry; /* Allow dumping to a swap partition or an unused partition. */ entry = (struct g_part_bsd_entry *)baseentry; return ((entry->part.p_fstype == FS_UNUSED || entry->part.p_fstype == FS_SWAP) ? 1 : 0); } static int g_part_bsd_modify(struct g_part_table *basetable, struct g_part_entry *baseentry, struct g_part_parms *gpp) { struct g_part_bsd_entry *entry; if (gpp->gpp_parms & G_PART_PARM_LABEL) return (EINVAL); entry = (struct g_part_bsd_entry *)baseentry; if (gpp->gpp_parms & G_PART_PARM_TYPE) return (bsd_parse_type(gpp->gpp_type, &entry->part.p_fstype)); return (0); } static void bsd_set_rawsize(struct g_part_table *basetable, struct g_provider *pp) { struct g_part_bsd_table *table; struct g_part_bsd_entry *entry; struct g_part_entry *baseentry; uint32_t msize; table = (struct g_part_bsd_table *)basetable; msize = MIN(pp->mediasize / pp->sectorsize, UINT32_MAX); le32enc(table->bbarea + pp->sectorsize + 60, msize); /* d_secperunit */ basetable->gpt_last = msize - 1; LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { if (baseentry->gpe_index != RAW_PART + 1) continue; baseentry->gpe_end = basetable->gpt_last; entry = (struct g_part_bsd_entry *)baseentry; entry->part.p_size = msize; return; } } static int g_part_bsd_resize(struct g_part_table *basetable, struct g_part_entry *baseentry, struct g_part_parms *gpp) { struct g_part_bsd_entry *entry; struct g_provider *pp; if (baseentry == NULL) { pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; bsd_set_rawsize(basetable, pp); return (0); } entry = (struct g_part_bsd_entry *)baseentry; baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; entry->part.p_size = gpp->gpp_size; return (0); } static const char * g_part_bsd_name(struct g_part_table *table, struct g_part_entry *baseentry, char *buf, size_t bufsz) { snprintf(buf, bufsz, "%c", 'a' + baseentry->gpe_index - 1); return (buf); } static int g_part_bsd_probe(struct g_part_table *table, struct g_consumer *cp) { struct g_provider *pp; u_char *buf; uint32_t magic1, magic2; int error; pp = cp->provider; /* Sanity-check the provider. */ if (pp->sectorsize < sizeof(struct disklabel) || pp->mediasize < BBSIZE) return (ENOSPC); if (BBSIZE % pp->sectorsize) return (ENOTBLK); /* Check that there's a disklabel. */ buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); if (buf == NULL) return (error); magic1 = le32dec(buf + 0); magic2 = le32dec(buf + 132); g_free(buf); return ((magic1 == DISKMAGIC && magic2 == DISKMAGIC) ? G_PART_PROBE_PRI_HIGH : ENXIO); } static int g_part_bsd_read(struct g_part_table *basetable, struct g_consumer *cp) { struct g_provider *pp; struct g_part_bsd_table *table; struct g_part_entry *baseentry; struct g_part_bsd_entry *entry; struct partition part; u_char *buf, *p; off_t chs, msize; u_int sectors, heads; int error, index; pp = cp->provider; table = (struct g_part_bsd_table *)basetable; msize = MIN(pp->mediasize / pp->sectorsize, UINT32_MAX); table->bbarea = g_read_data(cp, 0, BBSIZE, &error); if (table->bbarea == NULL) return (error); buf = table->bbarea + pp->sectorsize; if (le32dec(buf + 40) != pp->sectorsize) goto invalid_label; sectors = le32dec(buf + 44); if (sectors < 1 || sectors > 255) goto invalid_label; if (sectors != basetable->gpt_sectors && !basetable->gpt_fixgeom) { g_part_geometry_heads(msize, sectors, &chs, &heads); if (chs != 0) { basetable->gpt_sectors = sectors; basetable->gpt_heads = heads; } } heads = le32dec(buf + 48); if (heads < 1 || heads > 255) goto invalid_label; if (heads != basetable->gpt_heads && !basetable->gpt_fixgeom) basetable->gpt_heads = heads; chs = le32dec(buf + 60); if (chs < 1) goto invalid_label; /* Fix-up a sysinstall bug. */ if (chs > msize) { chs = msize; le32enc(buf + 60, msize); } basetable->gpt_first = 0; basetable->gpt_last = msize - 1; basetable->gpt_isleaf = 1; basetable->gpt_entries = le16dec(buf + 138); if (basetable->gpt_entries < g_part_bsd_scheme.gps_minent || basetable->gpt_entries > g_part_bsd_scheme.gps_maxent) goto invalid_label; table->offset = le32dec(buf + 148 + RAW_PART * 16 + 4); for (index = basetable->gpt_entries - 1; index >= 0; index--) { p = buf + 148 + index * 16; part.p_size = le32dec(p + 0); part.p_offset = le32dec(p + 4); part.p_fsize = le32dec(p + 8); part.p_fstype = p[12]; part.p_frag = p[13]; part.p_cpg = le16dec(p + 14); if (part.p_size == 0) continue; if (part.p_offset < table->offset) continue; if (part.p_offset - table->offset > basetable->gpt_last) goto invalid_label; baseentry = g_part_new_entry(basetable, index + 1, part.p_offset - table->offset, part.p_offset - table->offset + part.p_size - 1); entry = (struct g_part_bsd_entry *)baseentry; entry->part = part; if (index == RAW_PART) baseentry->gpe_internal = 1; } return (0); invalid_label: printf("GEOM: %s: invalid disklabel.\n", pp->name); g_free(table->bbarea); table->bbarea = NULL; return (EINVAL); } static const char * g_part_bsd_type(struct g_part_table *basetable, struct g_part_entry *baseentry, char *buf, size_t bufsz) { struct g_part_bsd_entry *entry; int type; entry = (struct g_part_bsd_entry *)baseentry; type = entry->part.p_fstype; if (type == FS_NANDFS) return (g_part_alias_name(G_PART_ALIAS_FREEBSD_NANDFS)); if (type == FS_SWAP) return (g_part_alias_name(G_PART_ALIAS_FREEBSD_SWAP)); if (type == FS_BSDFFS) return (g_part_alias_name(G_PART_ALIAS_FREEBSD_UFS)); if (type == FS_VINUM) return (g_part_alias_name(G_PART_ALIAS_FREEBSD_VINUM)); if (type == FS_ZFS) return (g_part_alias_name(G_PART_ALIAS_FREEBSD_ZFS)); snprintf(buf, bufsz, "!%d", type); return (buf); } static int g_part_bsd_write(struct g_part_table *basetable, struct g_consumer *cp) { struct g_provider *pp; struct g_part_entry *baseentry; struct g_part_bsd_entry *entry; struct g_part_bsd_table *table; uint16_t sum; u_char *label, *p, *pe; int error, index; pp = cp->provider; table = (struct g_part_bsd_table *)basetable; baseentry = LIST_FIRST(&basetable->gpt_entry); label = table->bbarea + pp->sectorsize; for (index = 1; index <= basetable->gpt_entries; index++) { p = label + 148 + (index - 1) * 16; entry = (baseentry != NULL && index == baseentry->gpe_index) ? (struct g_part_bsd_entry *)baseentry : NULL; if (entry != NULL && !baseentry->gpe_deleted) { le32enc(p + 0, entry->part.p_size); le32enc(p + 4, entry->part.p_offset); le32enc(p + 8, entry->part.p_fsize); p[12] = entry->part.p_fstype; p[13] = entry->part.p_frag; le16enc(p + 14, entry->part.p_cpg); } else bzero(p, 16); if (entry != NULL) baseentry = LIST_NEXT(baseentry, gpe_entry); } /* Calculate checksum. */ le16enc(label + 136, 0); pe = label + 148 + basetable->gpt_entries * 16; sum = 0; for (p = label; p < pe; p += 2) sum ^= le16dec(p); le16enc(label + 136, sum); error = g_write_data(cp, 0, table->bbarea, BBSIZE); return (error); } Index: head/sys/geom/part/g_part_bsd64.c =================================================================== --- head/sys/geom/part/g_part_bsd64.c (revision 332386) +++ head/sys/geom/part/g_part_bsd64.c (revision 332387) @@ -1,664 +1,665 @@ /*- * Copyright (c) 2014 Andrey V. Elsukov * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "g_part_if.h" FEATURE(geom_part_bsd64, "GEOM partitioning class for 64-bit BSD disklabels"); /* XXX: move this to sys/disklabel64.h */ #define DISKMAGIC64 ((uint32_t)0xc4464c59) #define MAXPARTITIONS64 16 #define RESPARTITIONS64 32 struct disklabel64 { char d_reserved0[512]; /* reserved or unused */ u_int32_t d_magic; /* the magic number */ u_int32_t d_crc; /* crc32() d_magic through last part */ u_int32_t d_align; /* partition alignment requirement */ u_int32_t d_npartitions; /* number of partitions */ struct uuid d_stor_uuid; /* unique uuid for label */ u_int64_t d_total_size; /* total size incl everything (bytes) */ u_int64_t d_bbase; /* boot area base offset (bytes) */ /* boot area is pbase - bbase */ u_int64_t d_pbase; /* first allocatable offset (bytes) */ u_int64_t d_pstop; /* last allocatable offset+1 (bytes) */ u_int64_t d_abase; /* location of backup copy if not 0 */ u_char d_packname[64]; u_char d_reserved[64]; /* * Note: offsets are relative to the base of the slice, NOT to * d_pbase. Unlike 32 bit disklabels the on-disk format for * a 64 bit disklabel remains slice-relative. * * An uninitialized partition has a p_boffset and p_bsize of 0. * * If p_fstype is not supported for a live partition it is set * to FS_OTHER. This is typically the case when the filesystem * is identified by its uuid. */ struct partition64 { /* the partition table */ u_int64_t p_boffset; /* slice relative offset, in bytes */ u_int64_t p_bsize; /* size of partition, in bytes */ u_int8_t p_fstype; u_int8_t p_unused01; /* reserved, must be 0 */ u_int8_t p_unused02; /* reserved, must be 0 */ u_int8_t p_unused03; /* reserved, must be 0 */ u_int32_t p_unused04; /* reserved, must be 0 */ u_int32_t p_unused05; /* reserved, must be 0 */ u_int32_t p_unused06; /* reserved, must be 0 */ struct uuid p_type_uuid;/* mount type as UUID */ struct uuid p_stor_uuid;/* unique uuid for storage */ } d_partitions[MAXPARTITIONS64];/* actually may be more */ }; struct g_part_bsd64_table { struct g_part_table base; uint32_t d_align; uint64_t d_bbase; uint64_t d_abase; struct uuid d_stor_uuid; char d_reserved0[512]; u_char d_packname[64]; u_char d_reserved[64]; }; struct g_part_bsd64_entry { struct g_part_entry base; uint8_t fstype; struct uuid type_uuid; struct uuid stor_uuid; }; static int g_part_bsd64_add(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static int g_part_bsd64_bootcode(struct g_part_table *, struct g_part_parms *); static int g_part_bsd64_create(struct g_part_table *, struct g_part_parms *); static int g_part_bsd64_destroy(struct g_part_table *, struct g_part_parms *); static void g_part_bsd64_dumpconf(struct g_part_table *, struct g_part_entry *, struct sbuf *, const char *); static int g_part_bsd64_dumpto(struct g_part_table *, struct g_part_entry *); static int g_part_bsd64_modify(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static const char *g_part_bsd64_name(struct g_part_table *, struct g_part_entry *, char *, size_t); static int g_part_bsd64_probe(struct g_part_table *, struct g_consumer *); static int g_part_bsd64_read(struct g_part_table *, struct g_consumer *); static const char *g_part_bsd64_type(struct g_part_table *, struct g_part_entry *, char *, size_t); static int g_part_bsd64_write(struct g_part_table *, struct g_consumer *); static int g_part_bsd64_resize(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static kobj_method_t g_part_bsd64_methods[] = { KOBJMETHOD(g_part_add, g_part_bsd64_add), KOBJMETHOD(g_part_bootcode, g_part_bsd64_bootcode), KOBJMETHOD(g_part_create, g_part_bsd64_create), KOBJMETHOD(g_part_destroy, g_part_bsd64_destroy), KOBJMETHOD(g_part_dumpconf, g_part_bsd64_dumpconf), KOBJMETHOD(g_part_dumpto, g_part_bsd64_dumpto), KOBJMETHOD(g_part_modify, g_part_bsd64_modify), KOBJMETHOD(g_part_resize, g_part_bsd64_resize), KOBJMETHOD(g_part_name, g_part_bsd64_name), KOBJMETHOD(g_part_probe, g_part_bsd64_probe), KOBJMETHOD(g_part_read, g_part_bsd64_read), KOBJMETHOD(g_part_type, g_part_bsd64_type), KOBJMETHOD(g_part_write, g_part_bsd64_write), { 0, 0 } }; static struct g_part_scheme g_part_bsd64_scheme = { "BSD64", g_part_bsd64_methods, sizeof(struct g_part_bsd64_table), .gps_entrysz = sizeof(struct g_part_bsd64_entry), .gps_minent = MAXPARTITIONS64, .gps_maxent = MAXPARTITIONS64 }; G_PART_SCHEME_DECLARE(g_part_bsd64); +MODULE_VERSION(geom_part_bsd64, 0); #define EQUUID(a, b) (memcmp(a, b, sizeof(struct uuid)) == 0) static struct uuid bsd64_uuid_unused = GPT_ENT_TYPE_UNUSED; static struct uuid bsd64_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP; static struct uuid bsd64_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1; static struct uuid bsd64_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM; static struct uuid bsd64_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD; static struct uuid bsd64_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY; static struct uuid bsd64_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER; static struct uuid bsd64_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2; static struct uuid bsd64_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; static struct uuid bsd64_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; static struct uuid bsd64_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; static struct uuid bsd64_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; static struct uuid bsd64_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; static struct uuid bsd64_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; struct bsd64_uuid_alias { struct uuid *uuid; uint8_t fstype; int alias; }; static struct bsd64_uuid_alias dfbsd_alias_match[] = { { &bsd64_uuid_dfbsd_swap, FS_SWAP, G_PART_ALIAS_DFBSD_SWAP }, { &bsd64_uuid_dfbsd_ufs1, FS_BSDFFS, G_PART_ALIAS_DFBSD_UFS }, { &bsd64_uuid_dfbsd_vinum, FS_VINUM, G_PART_ALIAS_DFBSD_VINUM }, { &bsd64_uuid_dfbsd_ccd, FS_CCD, G_PART_ALIAS_DFBSD_CCD }, { &bsd64_uuid_dfbsd_legacy, FS_OTHER, G_PART_ALIAS_DFBSD_LEGACY }, { &bsd64_uuid_dfbsd_hammer, FS_HAMMER, G_PART_ALIAS_DFBSD_HAMMER }, { &bsd64_uuid_dfbsd_hammer2, FS_HAMMER2, G_PART_ALIAS_DFBSD_HAMMER2 }, { NULL, 0, 0} }; static struct bsd64_uuid_alias fbsd_alias_match[] = { { &bsd64_uuid_freebsd_boot, FS_OTHER, G_PART_ALIAS_FREEBSD_BOOT }, { &bsd64_uuid_freebsd_swap, FS_OTHER, G_PART_ALIAS_FREEBSD_SWAP }, { &bsd64_uuid_freebsd_ufs, FS_OTHER, G_PART_ALIAS_FREEBSD_UFS }, { &bsd64_uuid_freebsd_zfs, FS_OTHER, G_PART_ALIAS_FREEBSD_ZFS }, { &bsd64_uuid_freebsd_vinum, FS_OTHER, G_PART_ALIAS_FREEBSD_VINUM }, { &bsd64_uuid_freebsd_nandfs, FS_OTHER, G_PART_ALIAS_FREEBSD_NANDFS }, { NULL, 0, 0} }; static int bsd64_parse_type(const char *type, struct g_part_bsd64_entry *entry) { struct uuid tmp; const struct bsd64_uuid_alias *uap; const char *alias; char *p; long lt; int error; if (type[0] == '!') { if (type[1] == '\0') return (EINVAL); lt = strtol(type + 1, &p, 0); /* The type specified as number */ if (*p == '\0') { if (lt <= 0 || lt > 255) return (EINVAL); entry->fstype = lt; entry->type_uuid = bsd64_uuid_unused; return (0); } /* The type specified as uuid */ error = parse_uuid(type + 1, &tmp); if (error != 0) return (error); if (EQUUID(&tmp, &bsd64_uuid_unused)) return (EINVAL); for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++) { if (EQUUID(&tmp, uap->uuid)) { /* Prefer fstype for known uuids */ entry->type_uuid = bsd64_uuid_unused; entry->fstype = uap->fstype; return (0); } } entry->type_uuid = tmp; entry->fstype = FS_OTHER; return (0); } /* The type specified as symbolic alias name */ for (uap = &fbsd_alias_match[0]; uap->uuid != NULL; uap++) { alias = g_part_alias_name(uap->alias); if (!strcasecmp(type, alias)) { entry->type_uuid = *uap->uuid; entry->fstype = uap->fstype; return (0); } } for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++) { alias = g_part_alias_name(uap->alias); if (!strcasecmp(type, alias)) { entry->type_uuid = bsd64_uuid_unused; entry->fstype = uap->fstype; return (0); } } return (EINVAL); } static int g_part_bsd64_add(struct g_part_table *basetable, struct g_part_entry *baseentry, struct g_part_parms *gpp) { struct g_part_bsd64_entry *entry; if (gpp->gpp_parms & G_PART_PARM_LABEL) return (EINVAL); entry = (struct g_part_bsd64_entry *)baseentry; if (bsd64_parse_type(gpp->gpp_type, entry) != 0) return (EINVAL); kern_uuidgen(&entry->stor_uuid, 1); return (0); } static int g_part_bsd64_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) { return (EOPNOTSUPP); } #define PALIGN_SIZE (1024 * 1024) #define PALIGN_MASK (PALIGN_SIZE - 1) #define BLKSIZE (4 * 1024) #define BOOTSIZE (32 * 1024) #define DALIGN_SIZE (32 * 1024) static int g_part_bsd64_create(struct g_part_table *basetable, struct g_part_parms *gpp) { struct g_part_bsd64_table *table; struct g_part_entry *baseentry; struct g_provider *pp; uint64_t blkmask, pbase; uint32_t blksize, ressize; pp = gpp->gpp_provider; if (pp->mediasize < 2* PALIGN_SIZE) return (ENOSPC); /* * Use at least 4KB block size. Blksize is stored in the d_align. * XXX: Actually it is used just for calculate d_bbase and used * for better alignment in bsdlabel64(8). */ blksize = pp->sectorsize < BLKSIZE ? BLKSIZE: pp->sectorsize; blkmask = blksize - 1; /* Reserve enough space for RESPARTITIONS64 partitions. */ ressize = offsetof(struct disklabel64, d_partitions[RESPARTITIONS64]); ressize = (ressize + blkmask) & ~blkmask; /* * Reserve enough space for bootcode and align first allocatable * offset to PALIGN_SIZE. * XXX: Currently DragonFlyBSD has 32KB bootcode, but the size could * be bigger, because it is possible change it (it is equal pbase-bbase) * in the bsdlabel64(8). */ pbase = ressize + ((BOOTSIZE + blkmask) & ~blkmask); pbase = (pbase + PALIGN_MASK) & ~PALIGN_MASK; /* * Take physical offset into account and make first allocatable * offset 32KB aligned to the start of the physical disk. * XXX: Actually there are no such restrictions, this is how * DragonFlyBSD behaves. */ pbase += DALIGN_SIZE - pp->stripeoffset % DALIGN_SIZE; table = (struct g_part_bsd64_table *)basetable; table->d_align = blksize; table->d_bbase = ressize / pp->sectorsize; table->d_abase = ((pp->mediasize - ressize) & ~blkmask) / pp->sectorsize; kern_uuidgen(&table->d_stor_uuid, 1); basetable->gpt_first = pbase / pp->sectorsize; basetable->gpt_last = table->d_abase - 1; /* XXX */ /* * Create 'c' partition and make it internal, so user will not be * able use it. */ baseentry = g_part_new_entry(basetable, RAW_PART + 1, 0, 0); baseentry->gpe_internal = 1; return (0); } static int g_part_bsd64_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) { struct g_provider *pp; pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; if (pp->sectorsize > offsetof(struct disklabel64, d_magic)) basetable->gpt_smhead |= 1; else basetable->gpt_smhead |= 3; return (0); } static void g_part_bsd64_dumpconf(struct g_part_table *basetable, struct g_part_entry *baseentry, struct sbuf *sb, const char *indent) { struct g_part_bsd64_table *table; struct g_part_bsd64_entry *entry; char buf[sizeof(table->d_packname)]; entry = (struct g_part_bsd64_entry *)baseentry; if (indent == NULL) { /* conftxt: libdisk compatibility */ sbuf_printf(sb, " xs BSD64 xt %u", entry->fstype); } else if (entry != NULL) { /* confxml: partition entry information */ sbuf_printf(sb, "%s%u\n", indent, entry->fstype); if (!EQUUID(&bsd64_uuid_unused, &entry->type_uuid)) { sbuf_printf(sb, "%s", indent); sbuf_printf_uuid(sb, &entry->type_uuid); sbuf_printf(sb, "\n"); } sbuf_printf(sb, "%s", indent); sbuf_printf_uuid(sb, &entry->stor_uuid); sbuf_printf(sb, "\n"); } else { /* confxml: scheme information */ table = (struct g_part_bsd64_table *)basetable; sbuf_printf(sb, "%s%ju\n", indent, (uintmax_t)table->d_bbase); if (table->d_abase) sbuf_printf(sb, "%s%ju\n", indent, (uintmax_t)table->d_abase); sbuf_printf(sb, "%s", indent); sbuf_printf_uuid(sb, &table->d_stor_uuid); sbuf_printf(sb, "\n"); sbuf_printf(sb, "%s\n"); } } static int g_part_bsd64_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) { struct g_part_bsd64_entry *entry; /* Allow dumping to a swap partition. */ entry = (struct g_part_bsd64_entry *)baseentry; if (entry->fstype == FS_SWAP || EQUUID(&entry->type_uuid, &bsd64_uuid_dfbsd_swap) || EQUUID(&entry->type_uuid, &bsd64_uuid_freebsd_swap)) return (1); return (0); } static int g_part_bsd64_modify(struct g_part_table *basetable, struct g_part_entry *baseentry, struct g_part_parms *gpp) { struct g_part_bsd64_entry *entry; if (gpp->gpp_parms & G_PART_PARM_LABEL) return (EINVAL); entry = (struct g_part_bsd64_entry *)baseentry; if (gpp->gpp_parms & G_PART_PARM_TYPE) return (bsd64_parse_type(gpp->gpp_type, entry)); return (0); } static int g_part_bsd64_resize(struct g_part_table *basetable, struct g_part_entry *baseentry, struct g_part_parms *gpp) { struct g_part_bsd64_table *table; struct g_provider *pp; if (baseentry == NULL) { pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; table = (struct g_part_bsd64_table *)basetable; table->d_abase = rounddown2(pp->mediasize - table->d_bbase * pp->sectorsize, table->d_align) / pp->sectorsize; basetable->gpt_last = table->d_abase - 1; return (0); } baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; return (0); } static const char * g_part_bsd64_name(struct g_part_table *table, struct g_part_entry *baseentry, char *buf, size_t bufsz) { snprintf(buf, bufsz, "%c", 'a' + baseentry->gpe_index - 1); return (buf); } static int g_part_bsd64_probe(struct g_part_table *table, struct g_consumer *cp) { struct g_provider *pp; uint32_t v; int error; u_char *buf; pp = cp->provider; if (pp->mediasize < 2 * PALIGN_SIZE) return (ENOSPC); v = rounddown2(pp->sectorsize + offsetof(struct disklabel64, d_magic), pp->sectorsize); buf = g_read_data(cp, 0, v, &error); if (buf == NULL) return (error); v = le32dec(buf + offsetof(struct disklabel64, d_magic)); g_free(buf); return (v == DISKMAGIC64 ? G_PART_PROBE_PRI_HIGH: ENXIO); } static int g_part_bsd64_read(struct g_part_table *basetable, struct g_consumer *cp) { struct g_part_bsd64_table *table; struct g_part_bsd64_entry *entry; struct g_part_entry *baseentry; struct g_provider *pp; struct disklabel64 *dlp; uint64_t v64, sz; uint32_t v32; int error, index; u_char *buf; pp = cp->provider; table = (struct g_part_bsd64_table *)basetable; v32 = roundup2(sizeof(struct disklabel64), pp->sectorsize); buf = g_read_data(cp, 0, v32, &error); if (buf == NULL) return (error); dlp = (struct disklabel64 *)buf; basetable->gpt_entries = le32toh(dlp->d_npartitions); if (basetable->gpt_entries > MAXPARTITIONS64 || basetable->gpt_entries < 1) goto invalid_label; v32 = le32toh(dlp->d_crc); dlp->d_crc = 0; if (crc32(&dlp->d_magic, offsetof(struct disklabel64, d_partitions[basetable->gpt_entries]) - offsetof(struct disklabel64, d_magic)) != v32) goto invalid_label; table->d_align = le32toh(dlp->d_align); if (table->d_align == 0 || (table->d_align & (pp->sectorsize - 1))) goto invalid_label; if (le64toh(dlp->d_total_size) > pp->mediasize) goto invalid_label; v64 = le64toh(dlp->d_pbase); if (v64 % pp->sectorsize) goto invalid_label; basetable->gpt_first = v64 / pp->sectorsize; v64 = le64toh(dlp->d_pstop); if (v64 % pp->sectorsize) goto invalid_label; basetable->gpt_last = v64 / pp->sectorsize; basetable->gpt_isleaf = 1; v64 = le64toh(dlp->d_bbase); if (v64 % pp->sectorsize) goto invalid_label; table->d_bbase = v64 / pp->sectorsize; v64 = le64toh(dlp->d_abase); if (v64 % pp->sectorsize) goto invalid_label; table->d_abase = v64 / pp->sectorsize; le_uuid_dec(&dlp->d_stor_uuid, &table->d_stor_uuid); for (index = basetable->gpt_entries - 1; index >= 0; index--) { if (index == RAW_PART) { /* Skip 'c' partition. */ baseentry = g_part_new_entry(basetable, index + 1, 0, 0); baseentry->gpe_internal = 1; continue; } v64 = le64toh(dlp->d_partitions[index].p_boffset); sz = le64toh(dlp->d_partitions[index].p_bsize); if (sz == 0 && v64 == 0) continue; if (sz == 0 || (v64 % pp->sectorsize) || (sz % pp->sectorsize)) goto invalid_label; baseentry = g_part_new_entry(basetable, index + 1, v64 / pp->sectorsize, (v64 + sz) / pp->sectorsize - 1); entry = (struct g_part_bsd64_entry *)baseentry; le_uuid_dec(&dlp->d_partitions[index].p_type_uuid, &entry->type_uuid); le_uuid_dec(&dlp->d_partitions[index].p_stor_uuid, &entry->stor_uuid); entry->fstype = dlp->d_partitions[index].p_fstype; } bcopy(dlp->d_reserved0, table->d_reserved0, sizeof(table->d_reserved0)); bcopy(dlp->d_packname, table->d_packname, sizeof(table->d_packname)); bcopy(dlp->d_reserved, table->d_reserved, sizeof(table->d_reserved)); g_free(buf); return (0); invalid_label: g_free(buf); return (EINVAL); } static const char * g_part_bsd64_type(struct g_part_table *basetable, struct g_part_entry *baseentry, char *buf, size_t bufsz) { struct g_part_bsd64_entry *entry; struct bsd64_uuid_alias *uap; entry = (struct g_part_bsd64_entry *)baseentry; if (entry->fstype != FS_OTHER) { for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++) if (uap->fstype == entry->fstype) return (g_part_alias_name(uap->alias)); } else { for (uap = &fbsd_alias_match[0]; uap->uuid != NULL; uap++) if (EQUUID(uap->uuid, &entry->type_uuid)) return (g_part_alias_name(uap->alias)); for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++) if (EQUUID(uap->uuid, &entry->type_uuid)) return (g_part_alias_name(uap->alias)); } if (EQUUID(&bsd64_uuid_unused, &entry->type_uuid)) snprintf(buf, bufsz, "!%d", entry->fstype); else { buf[0] = '!'; snprintf_uuid(buf + 1, bufsz - 1, &entry->type_uuid); } return (buf); } static int g_part_bsd64_write(struct g_part_table *basetable, struct g_consumer *cp) { struct g_provider *pp; struct g_part_entry *baseentry; struct g_part_bsd64_entry *entry; struct g_part_bsd64_table *table; struct disklabel64 *dlp; uint32_t v, sz; int error, index; pp = cp->provider; table = (struct g_part_bsd64_table *)basetable; sz = roundup2(sizeof(struct disklabel64), pp->sectorsize); dlp = g_malloc(sz, M_WAITOK | M_ZERO); memcpy(dlp->d_reserved0, table->d_reserved0, sizeof(table->d_reserved0)); memcpy(dlp->d_packname, table->d_packname, sizeof(table->d_packname)); memcpy(dlp->d_reserved, table->d_reserved, sizeof(table->d_reserved)); le32enc(&dlp->d_magic, DISKMAGIC64); le32enc(&dlp->d_align, table->d_align); le32enc(&dlp->d_npartitions, basetable->gpt_entries); le_uuid_enc(&dlp->d_stor_uuid, &table->d_stor_uuid); le64enc(&dlp->d_total_size, pp->mediasize); le64enc(&dlp->d_bbase, table->d_bbase * pp->sectorsize); le64enc(&dlp->d_pbase, basetable->gpt_first * pp->sectorsize); le64enc(&dlp->d_pstop, basetable->gpt_last * pp->sectorsize); le64enc(&dlp->d_abase, table->d_abase * pp->sectorsize); LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { if (baseentry->gpe_deleted) continue; index = baseentry->gpe_index - 1; entry = (struct g_part_bsd64_entry *)baseentry; if (index == RAW_PART) continue; le64enc(&dlp->d_partitions[index].p_boffset, baseentry->gpe_start * pp->sectorsize); le64enc(&dlp->d_partitions[index].p_bsize, pp->sectorsize * (baseentry->gpe_end - baseentry->gpe_start + 1)); dlp->d_partitions[index].p_fstype = entry->fstype; le_uuid_enc(&dlp->d_partitions[index].p_type_uuid, &entry->type_uuid); le_uuid_enc(&dlp->d_partitions[index].p_stor_uuid, &entry->stor_uuid); } /* Calculate checksum. */ v = offsetof(struct disklabel64, d_partitions[basetable->gpt_entries]) - offsetof(struct disklabel64, d_magic); le32enc(&dlp->d_crc, crc32(&dlp->d_magic, v)); error = g_write_data(cp, 0, dlp, sz); g_free(dlp); return (error); } Index: head/sys/geom/part/g_part_ebr.c =================================================================== --- head/sys/geom/part/g_part_ebr.c (revision 332386) +++ head/sys/geom/part/g_part_ebr.c (revision 332387) @@ -1,696 +1,697 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2007-2009 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "opt_geom.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "g_part_if.h" FEATURE(geom_part_ebr, "GEOM partitioning class for extended boot records support"); #if defined(GEOM_PART_EBR_COMPAT) FEATURE(geom_part_ebr_compat, "GEOM EBR partitioning class: backward-compatible partition names"); #endif #define EBRSIZE 512 struct g_part_ebr_table { struct g_part_table base; #ifndef GEOM_PART_EBR_COMPAT u_char ebr[EBRSIZE]; #endif }; struct g_part_ebr_entry { struct g_part_entry base; struct dos_partition ent; }; static int g_part_ebr_add(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static int g_part_ebr_create(struct g_part_table *, struct g_part_parms *); static int g_part_ebr_destroy(struct g_part_table *, struct g_part_parms *); static void g_part_ebr_dumpconf(struct g_part_table *, struct g_part_entry *, struct sbuf *, const char *); static int g_part_ebr_dumpto(struct g_part_table *, struct g_part_entry *); #if defined(GEOM_PART_EBR_COMPAT) static void g_part_ebr_fullname(struct g_part_table *, struct g_part_entry *, struct sbuf *, const char *); #endif static int g_part_ebr_modify(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static const char *g_part_ebr_name(struct g_part_table *, struct g_part_entry *, char *, size_t); static int g_part_ebr_precheck(struct g_part_table *, enum g_part_ctl, struct g_part_parms *); static int g_part_ebr_probe(struct g_part_table *, struct g_consumer *); static int g_part_ebr_read(struct g_part_table *, struct g_consumer *); static int g_part_ebr_setunset(struct g_part_table *, struct g_part_entry *, const char *, unsigned int); static const char *g_part_ebr_type(struct g_part_table *, struct g_part_entry *, char *, size_t); static int g_part_ebr_write(struct g_part_table *, struct g_consumer *); static int g_part_ebr_resize(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static kobj_method_t g_part_ebr_methods[] = { KOBJMETHOD(g_part_add, g_part_ebr_add), KOBJMETHOD(g_part_create, g_part_ebr_create), KOBJMETHOD(g_part_destroy, g_part_ebr_destroy), KOBJMETHOD(g_part_dumpconf, g_part_ebr_dumpconf), KOBJMETHOD(g_part_dumpto, g_part_ebr_dumpto), #if defined(GEOM_PART_EBR_COMPAT) KOBJMETHOD(g_part_fullname, g_part_ebr_fullname), #endif KOBJMETHOD(g_part_modify, g_part_ebr_modify), KOBJMETHOD(g_part_name, g_part_ebr_name), KOBJMETHOD(g_part_precheck, g_part_ebr_precheck), KOBJMETHOD(g_part_probe, g_part_ebr_probe), KOBJMETHOD(g_part_read, g_part_ebr_read), KOBJMETHOD(g_part_resize, g_part_ebr_resize), KOBJMETHOD(g_part_setunset, g_part_ebr_setunset), KOBJMETHOD(g_part_type, g_part_ebr_type), KOBJMETHOD(g_part_write, g_part_ebr_write), { 0, 0 } }; static struct g_part_scheme g_part_ebr_scheme = { "EBR", g_part_ebr_methods, sizeof(struct g_part_ebr_table), .gps_entrysz = sizeof(struct g_part_ebr_entry), .gps_minent = 1, .gps_maxent = INT_MAX, }; G_PART_SCHEME_DECLARE(g_part_ebr); +MODULE_VERSION(geom_part_ebr, 0); static struct g_part_ebr_alias { u_char typ; int alias; } ebr_alias_match[] = { { DOSPTYP_386BSD, G_PART_ALIAS_FREEBSD }, { DOSPTYP_NTFS, G_PART_ALIAS_MS_NTFS }, { DOSPTYP_FAT32, G_PART_ALIAS_MS_FAT32 }, { DOSPTYP_LINSWP, G_PART_ALIAS_LINUX_SWAP }, { DOSPTYP_LINUX, G_PART_ALIAS_LINUX_DATA }, { DOSPTYP_LINLVM, G_PART_ALIAS_LINUX_LVM }, { DOSPTYP_LINRAID, G_PART_ALIAS_LINUX_RAID }, }; static void ebr_set_chs(struct g_part_table *, uint32_t, u_char *, u_char *, u_char *); static void ebr_entry_decode(const char *p, struct dos_partition *ent) { ent->dp_flag = p[0]; ent->dp_shd = p[1]; ent->dp_ssect = p[2]; ent->dp_scyl = p[3]; ent->dp_typ = p[4]; ent->dp_ehd = p[5]; ent->dp_esect = p[6]; ent->dp_ecyl = p[7]; ent->dp_start = le32dec(p + 8); ent->dp_size = le32dec(p + 12); } static void ebr_entry_link(struct g_part_table *table, uint32_t start, uint32_t end, u_char *buf) { buf[0] = 0 /* dp_flag */; ebr_set_chs(table, start, &buf[3] /* dp_scyl */, &buf[1] /* dp_shd */, &buf[2] /* dp_ssect */); buf[4] = 5 /* dp_typ */; ebr_set_chs(table, end, &buf[7] /* dp_ecyl */, &buf[5] /* dp_ehd */, &buf[6] /* dp_esect */); le32enc(buf + 8, start); le32enc(buf + 12, end - start + 1); } static int ebr_parse_type(const char *type, u_char *dp_typ) { const char *alias; char *endp; long lt; int i; if (type[0] == '!') { lt = strtol(type + 1, &endp, 0); if (type[1] == '\0' || *endp != '\0' || lt <= 0 || lt >= 256) return (EINVAL); *dp_typ = (u_char)lt; return (0); } for (i = 0; i < nitems(ebr_alias_match); i++) { alias = g_part_alias_name(ebr_alias_match[i].alias); if (strcasecmp(type, alias) == 0) { *dp_typ = ebr_alias_match[i].typ; return (0); } } return (EINVAL); } static void ebr_set_chs(struct g_part_table *table, uint32_t lba, u_char *cylp, u_char *hdp, u_char *secp) { uint32_t cyl, hd, sec; sec = lba % table->gpt_sectors + 1; lba /= table->gpt_sectors; hd = lba % table->gpt_heads; lba /= table->gpt_heads; cyl = lba; if (cyl > 1023) sec = hd = cyl = ~0; *cylp = cyl & 0xff; *hdp = hd & 0xff; *secp = (sec & 0x3f) | ((cyl >> 2) & 0xc0); } static int ebr_align(struct g_part_table *basetable, uint32_t *start, uint32_t *size) { uint32_t sectors; sectors = basetable->gpt_sectors; if (*size < 2 * sectors) return (EINVAL); if (*start % sectors) { *size += (*start % sectors) - sectors; *start -= (*start % sectors) - sectors; } if (*size % sectors) *size -= (*size % sectors); if (*size < 2 * sectors) return (EINVAL); return (0); } static int g_part_ebr_add(struct g_part_table *basetable, struct g_part_entry *baseentry, struct g_part_parms *gpp) { struct g_provider *pp; struct g_part_ebr_entry *entry; uint32_t start, size; if (gpp->gpp_parms & G_PART_PARM_LABEL) return (EINVAL); pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; entry = (struct g_part_ebr_entry *)baseentry; start = gpp->gpp_start; size = gpp->gpp_size; if (ebr_align(basetable, &start, &size) != 0) return (EINVAL); if (baseentry->gpe_deleted) bzero(&entry->ent, sizeof(entry->ent)); KASSERT(baseentry->gpe_start <= start, ("%s", __func__)); KASSERT(baseentry->gpe_end >= start + size - 1, ("%s", __func__)); baseentry->gpe_index = (start / basetable->gpt_sectors) + 1; baseentry->gpe_offset = (off_t)(start + basetable->gpt_sectors) * pp->sectorsize; baseentry->gpe_start = start; baseentry->gpe_end = start + size - 1; entry->ent.dp_start = basetable->gpt_sectors; entry->ent.dp_size = size - basetable->gpt_sectors; ebr_set_chs(basetable, entry->ent.dp_start, &entry->ent.dp_scyl, &entry->ent.dp_shd, &entry->ent.dp_ssect); ebr_set_chs(basetable, baseentry->gpe_end, &entry->ent.dp_ecyl, &entry->ent.dp_ehd, &entry->ent.dp_esect); return (ebr_parse_type(gpp->gpp_type, &entry->ent.dp_typ)); } static int g_part_ebr_create(struct g_part_table *basetable, struct g_part_parms *gpp) { char type[64]; struct g_consumer *cp; struct g_provider *pp; uint32_t msize; int error; pp = gpp->gpp_provider; if (pp->sectorsize < EBRSIZE) return (ENOSPC); if (pp->sectorsize > 4096) return (ENXIO); /* Check that we have a parent and that it's a MBR. */ if (basetable->gpt_depth == 0) return (ENXIO); cp = LIST_FIRST(&pp->consumers); error = g_getattr("PART::scheme", cp, &type); if (error != 0) return (error); if (strcmp(type, "MBR") != 0) return (ENXIO); error = g_getattr("PART::type", cp, &type); if (error != 0) return (error); if (strcmp(type, "ebr") != 0) return (ENXIO); msize = MIN(pp->mediasize / pp->sectorsize, UINT32_MAX); basetable->gpt_first = 0; basetable->gpt_last = msize - 1; basetable->gpt_entries = msize / basetable->gpt_sectors; return (0); } static int g_part_ebr_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) { /* Wipe the first sector to clear the partitioning. */ basetable->gpt_smhead |= 1; return (0); } static void g_part_ebr_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, struct sbuf *sb, const char *indent) { struct g_part_ebr_entry *entry; entry = (struct g_part_ebr_entry *)baseentry; if (indent == NULL) { /* conftxt: libdisk compatibility */ sbuf_printf(sb, " xs MBREXT xt %u", entry->ent.dp_typ); } else if (entry != NULL) { /* confxml: partition entry information */ sbuf_printf(sb, "%s%u\n", indent, entry->ent.dp_typ); if (entry->ent.dp_flag & 0x80) sbuf_printf(sb, "%sactive\n", indent); } else { /* confxml: scheme information */ } } static int g_part_ebr_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) { struct g_part_ebr_entry *entry; /* Allow dumping to a FreeBSD partition or Linux swap partition only. */ entry = (struct g_part_ebr_entry *)baseentry; return ((entry->ent.dp_typ == DOSPTYP_386BSD || entry->ent.dp_typ == DOSPTYP_LINSWP) ? 1 : 0); } #if defined(GEOM_PART_EBR_COMPAT) static void g_part_ebr_fullname(struct g_part_table *table, struct g_part_entry *entry, struct sbuf *sb, const char *pfx) { struct g_part_entry *iter; u_int idx; idx = 5; LIST_FOREACH(iter, &table->gpt_entry, gpe_entry) { if (iter == entry) break; idx++; } sbuf_printf(sb, "%.*s%u", (int)strlen(pfx) - 1, pfx, idx); } #endif static int g_part_ebr_modify(struct g_part_table *basetable, struct g_part_entry *baseentry, struct g_part_parms *gpp) { struct g_part_ebr_entry *entry; if (gpp->gpp_parms & G_PART_PARM_LABEL) return (EINVAL); entry = (struct g_part_ebr_entry *)baseentry; if (gpp->gpp_parms & G_PART_PARM_TYPE) return (ebr_parse_type(gpp->gpp_type, &entry->ent.dp_typ)); return (0); } static int g_part_ebr_resize(struct g_part_table *basetable, struct g_part_entry *baseentry, struct g_part_parms *gpp) { struct g_provider *pp; if (baseentry != NULL) return (EOPNOTSUPP); pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; basetable->gpt_last = MIN(pp->mediasize / pp->sectorsize, UINT32_MAX) - 1; return (0); } static const char * g_part_ebr_name(struct g_part_table *table, struct g_part_entry *entry, char *buf, size_t bufsz) { snprintf(buf, bufsz, "+%08u", entry->gpe_index); return (buf); } static int g_part_ebr_precheck(struct g_part_table *table, enum g_part_ctl req, struct g_part_parms *gpp) { #if defined(GEOM_PART_EBR_COMPAT) if (req == G_PART_CTL_DESTROY) return (0); return (ECANCELED); #else /* * The index is a function of the start of the partition. * This is not something the user can override, nor is it * something the common code will do right. We can set the * index now so that we get what we need. */ if (req == G_PART_CTL_ADD) gpp->gpp_index = (gpp->gpp_start / table->gpt_sectors) + 1; return (0); #endif } static int g_part_ebr_probe(struct g_part_table *table, struct g_consumer *cp) { char type[64]; struct g_provider *pp; u_char *buf, *p; int error, index, res; uint16_t magic; pp = cp->provider; /* Sanity-check the provider. */ if (pp->sectorsize < EBRSIZE || pp->mediasize < pp->sectorsize) return (ENOSPC); if (pp->sectorsize > 4096) return (ENXIO); /* Check that we have a parent and that it's a MBR. */ if (table->gpt_depth == 0) return (ENXIO); error = g_getattr("PART::scheme", cp, &type); if (error != 0) return (error); if (strcmp(type, "MBR") != 0) return (ENXIO); /* Check that partition has type DOSPTYP_EBR. */ error = g_getattr("PART::type", cp, &type); if (error != 0) return (error); if (strcmp(type, "ebr") != 0) return (ENXIO); /* Check that there's a EBR. */ buf = g_read_data(cp, 0L, pp->sectorsize, &error); if (buf == NULL) return (error); /* We goto out on mismatch. */ res = ENXIO; magic = le16dec(buf + DOSMAGICOFFSET); if (magic != DOSMAGIC) goto out; for (index = 0; index < 2; index++) { p = buf + DOSPARTOFF + index * DOSPARTSIZE; if (p[0] != 0 && p[0] != 0x80) goto out; } res = G_PART_PROBE_PRI_NORM; out: g_free(buf); return (res); } static int g_part_ebr_read(struct g_part_table *basetable, struct g_consumer *cp) { struct dos_partition ent[2]; struct g_provider *pp; struct g_part_entry *baseentry; struct g_part_ebr_table *table; struct g_part_ebr_entry *entry; u_char *buf; off_t ofs, msize; u_int lba; int error, index; pp = cp->provider; table = (struct g_part_ebr_table *)basetable; msize = MIN(pp->mediasize / pp->sectorsize, UINT32_MAX); lba = 0; while (1) { ofs = (off_t)lba * pp->sectorsize; buf = g_read_data(cp, ofs, pp->sectorsize, &error); if (buf == NULL) return (error); ebr_entry_decode(buf + DOSPARTOFF + 0 * DOSPARTSIZE, ent + 0); ebr_entry_decode(buf + DOSPARTOFF + 1 * DOSPARTSIZE, ent + 1); /* The 3rd & 4th entries should be zeroes. */ if (le64dec(buf + DOSPARTOFF + 2 * DOSPARTSIZE) + le64dec(buf + DOSPARTOFF + 3 * DOSPARTSIZE) != 0) { basetable->gpt_corrupt = 1; printf("GEOM: %s: invalid entries in the EBR ignored.\n", pp->name); } #ifndef GEOM_PART_EBR_COMPAT /* Save the first EBR, it can contain a boot code */ if (lba == 0) bcopy(buf, table->ebr, sizeof(table->ebr)); #endif g_free(buf); if (ent[0].dp_typ == 0) break; if (ent[0].dp_typ == 5 && ent[1].dp_typ == 0) { lba = ent[0].dp_start; continue; } index = (lba / basetable->gpt_sectors) + 1; baseentry = (struct g_part_entry *)g_part_new_entry(basetable, index, lba, lba + ent[0].dp_start + ent[0].dp_size - 1); baseentry->gpe_offset = (off_t)(lba + ent[0].dp_start) * pp->sectorsize; entry = (struct g_part_ebr_entry *)baseentry; entry->ent = ent[0]; if (ent[1].dp_typ == 0) break; lba = ent[1].dp_start; } basetable->gpt_entries = msize / basetable->gpt_sectors; basetable->gpt_first = 0; basetable->gpt_last = msize - 1; return (0); } static int g_part_ebr_setunset(struct g_part_table *table, struct g_part_entry *baseentry, const char *attrib, unsigned int set) { struct g_part_entry *iter; struct g_part_ebr_entry *entry; int changed; if (baseentry == NULL) return (ENODEV); if (strcasecmp(attrib, "active") != 0) return (EINVAL); /* Only one entry can have the active attribute. */ LIST_FOREACH(iter, &table->gpt_entry, gpe_entry) { if (iter->gpe_deleted) continue; changed = 0; entry = (struct g_part_ebr_entry *)iter; if (iter == baseentry) { if (set && (entry->ent.dp_flag & 0x80) == 0) { entry->ent.dp_flag |= 0x80; changed = 1; } else if (!set && (entry->ent.dp_flag & 0x80)) { entry->ent.dp_flag &= ~0x80; changed = 1; } } else { if (set && (entry->ent.dp_flag & 0x80)) { entry->ent.dp_flag &= ~0x80; changed = 1; } } if (changed && !iter->gpe_created) iter->gpe_modified = 1; } return (0); } static const char * g_part_ebr_type(struct g_part_table *basetable, struct g_part_entry *baseentry, char *buf, size_t bufsz) { struct g_part_ebr_entry *entry; int i; entry = (struct g_part_ebr_entry *)baseentry; for (i = 0; i < nitems(ebr_alias_match); i++) { if (ebr_alias_match[i].typ == entry->ent.dp_typ) return (g_part_alias_name(ebr_alias_match[i].alias)); } snprintf(buf, bufsz, "!%d", entry->ent.dp_typ); return (buf); } static int g_part_ebr_write(struct g_part_table *basetable, struct g_consumer *cp) { #ifndef GEOM_PART_EBR_COMPAT struct g_part_ebr_table *table; #endif struct g_provider *pp; struct g_part_entry *baseentry, *next; struct g_part_ebr_entry *entry; u_char *buf; u_char *p; int error; pp = cp->provider; buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); #ifndef GEOM_PART_EBR_COMPAT table = (struct g_part_ebr_table *)basetable; bcopy(table->ebr, buf, DOSPARTOFF); #endif le16enc(buf + DOSMAGICOFFSET, DOSMAGIC); baseentry = LIST_FIRST(&basetable->gpt_entry); while (baseentry != NULL && baseentry->gpe_deleted) baseentry = LIST_NEXT(baseentry, gpe_entry); /* Wipe-out the first EBR when there are no slices. */ if (baseentry == NULL) { error = g_write_data(cp, 0, buf, pp->sectorsize); goto out; } /* * If the first partition is not in LBA 0, we need to * put a "link" EBR in LBA 0. */ if (baseentry->gpe_start != 0) { ebr_entry_link(basetable, (uint32_t)baseentry->gpe_start, (uint32_t)baseentry->gpe_end, buf + DOSPARTOFF); error = g_write_data(cp, 0, buf, pp->sectorsize); if (error) goto out; } do { entry = (struct g_part_ebr_entry *)baseentry; p = buf + DOSPARTOFF; p[0] = entry->ent.dp_flag; p[1] = entry->ent.dp_shd; p[2] = entry->ent.dp_ssect; p[3] = entry->ent.dp_scyl; p[4] = entry->ent.dp_typ; p[5] = entry->ent.dp_ehd; p[6] = entry->ent.dp_esect; p[7] = entry->ent.dp_ecyl; le32enc(p + 8, entry->ent.dp_start); le32enc(p + 12, entry->ent.dp_size); next = LIST_NEXT(baseentry, gpe_entry); while (next != NULL && next->gpe_deleted) next = LIST_NEXT(next, gpe_entry); p += DOSPARTSIZE; if (next != NULL) ebr_entry_link(basetable, (uint32_t)next->gpe_start, (uint32_t)next->gpe_end, p); else bzero(p, DOSPARTSIZE); error = g_write_data(cp, baseentry->gpe_start * pp->sectorsize, buf, pp->sectorsize); #ifndef GEOM_PART_EBR_COMPAT if (baseentry->gpe_start == 0) bzero(buf, DOSPARTOFF); #endif baseentry = next; } while (!error && baseentry != NULL); out: g_free(buf); return (error); } Index: head/sys/geom/part/g_part_gpt.c =================================================================== --- head/sys/geom/part/g_part_gpt.c (revision 332386) +++ head/sys/geom/part/g_part_gpt.c (revision 332387) @@ -1,1410 +1,1411 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "g_part_if.h" FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support"); CTASSERT(offsetof(struct gpt_hdr, padding) == 92); CTASSERT(sizeof(struct gpt_ent) == 128); #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) #define MBRSIZE 512 enum gpt_elt { GPT_ELT_PRIHDR, GPT_ELT_PRITBL, GPT_ELT_SECHDR, GPT_ELT_SECTBL, GPT_ELT_COUNT }; enum gpt_state { GPT_STATE_UNKNOWN, /* Not determined. */ GPT_STATE_MISSING, /* No signature found. */ GPT_STATE_CORRUPT, /* Checksum mismatch. */ GPT_STATE_INVALID, /* Nonconformant/invalid. */ GPT_STATE_OK /* Perfectly fine. */ }; struct g_part_gpt_table { struct g_part_table base; u_char mbr[MBRSIZE]; struct gpt_hdr *hdr; quad_t lba[GPT_ELT_COUNT]; enum gpt_state state[GPT_ELT_COUNT]; int bootcamp; }; struct g_part_gpt_entry { struct g_part_entry base; struct gpt_ent ent; }; static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *); static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, struct sbuf *, const char *); static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, char *, size_t); static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); static int g_part_gpt_setunset(struct g_part_table *table, struct g_part_entry *baseentry, const char *attrib, unsigned int set); static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, char *, size_t); static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static int g_part_gpt_recover(struct g_part_table *); static kobj_method_t g_part_gpt_methods[] = { KOBJMETHOD(g_part_add, g_part_gpt_add), KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), KOBJMETHOD(g_part_create, g_part_gpt_create), KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), KOBJMETHOD(g_part_modify, g_part_gpt_modify), KOBJMETHOD(g_part_resize, g_part_gpt_resize), KOBJMETHOD(g_part_name, g_part_gpt_name), KOBJMETHOD(g_part_probe, g_part_gpt_probe), KOBJMETHOD(g_part_read, g_part_gpt_read), KOBJMETHOD(g_part_recover, g_part_gpt_recover), KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), KOBJMETHOD(g_part_type, g_part_gpt_type), KOBJMETHOD(g_part_write, g_part_gpt_write), { 0, 0 } }; static struct g_part_scheme g_part_gpt_scheme = { "GPT", g_part_gpt_methods, sizeof(struct g_part_gpt_table), .gps_entrysz = sizeof(struct g_part_gpt_entry), .gps_minent = 128, .gps_maxent = 4096, .gps_bootcodesz = MBRSIZE, }; G_PART_SCHEME_DECLARE(g_part_gpt); +MODULE_VERSION(geom_part_gpt, 0); static struct uuid gpt_uuid_apple_apfs = GPT_ENT_TYPE_APPLE_APFS; static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; static struct uuid gpt_uuid_apple_core_storage = GPT_ENT_TYPE_APPLE_CORE_STORAGE; static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT; static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE; static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL; static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED; static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT; static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD; static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER; static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2; static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32; static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64; static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY; static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP; static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1; static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM; static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY; static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES; static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA; static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT; static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS; static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG; static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED; static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR; static struct g_part_uuid_alias { struct uuid *uuid; int alias; int mbrtype; } gpt_uuid_alias_match[] = { { &gpt_uuid_apple_apfs, G_PART_ALIAS_APPLE_APFS, 0 }, { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab }, { &gpt_uuid_apple_core_storage, G_PART_ALIAS_APPLE_CORE_STORAGE, 0 }, { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf }, { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 }, { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 }, { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 }, { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 }, { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 }, { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 }, { &gpt_uuid_chromeos_firmware, G_PART_ALIAS_CHROMEOS_FIRMWARE, 0 }, { &gpt_uuid_chromeos_kernel, G_PART_ALIAS_CHROMEOS_KERNEL, 0 }, { &gpt_uuid_chromeos_reserved, G_PART_ALIAS_CHROMEOS_RESERVED, 0 }, { &gpt_uuid_chromeos_root, G_PART_ALIAS_CHROMEOS_ROOT, 0 }, { &gpt_uuid_dfbsd_ccd, G_PART_ALIAS_DFBSD_CCD, 0 }, { &gpt_uuid_dfbsd_hammer, G_PART_ALIAS_DFBSD_HAMMER, 0 }, { &gpt_uuid_dfbsd_hammer2, G_PART_ALIAS_DFBSD_HAMMER2, 0 }, { &gpt_uuid_dfbsd_label32, G_PART_ALIAS_DFBSD, 0xa5 }, { &gpt_uuid_dfbsd_label64, G_PART_ALIAS_DFBSD64, 0xa5 }, { &gpt_uuid_dfbsd_legacy, G_PART_ALIAS_DFBSD_LEGACY, 0 }, { &gpt_uuid_dfbsd_swap, G_PART_ALIAS_DFBSD_SWAP, 0 }, { &gpt_uuid_dfbsd_ufs1, G_PART_ALIAS_DFBSD_UFS, 0 }, { &gpt_uuid_dfbsd_vinum, G_PART_ALIAS_DFBSD_VINUM, 0 }, { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee }, { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 }, { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 }, { &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 }, { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 }, { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 }, { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 }, { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 }, { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b }, { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 }, { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 }, { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 }, { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 }, { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b }, { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 }, { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 }, { &gpt_uuid_ms_recovery, G_PART_ALIAS_MS_RECOVERY, 0 }, { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 }, { &gpt_uuid_ms_spaces, G_PART_ALIAS_MS_SPACES, 0 }, { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 }, { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 }, { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 }, { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 }, { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 }, { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 }, { &gpt_uuid_openbsd_data, G_PART_ALIAS_OPENBSD_DATA, 0 }, { &gpt_uuid_prep_boot, G_PART_ALIAS_PREP_BOOT, 0x41 }, { &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 }, { &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 }, { &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 }, { &gpt_uuid_vmvsanhdr, G_PART_ALIAS_VMVSANHDR, 0 }, { NULL, 0, 0 } }; static int gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start, quad_t end) { if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX) return (EINVAL); mbr += DOSPARTOFF + idx * DOSPARTSIZE; mbr[0] = 0; if (start == 1) { /* * Treat the PMBR partition specially to maximize * interoperability with BIOSes. */ mbr[1] = mbr[3] = 0; mbr[2] = 2; } else mbr[1] = mbr[2] = mbr[3] = 0xff; mbr[4] = typ; mbr[5] = mbr[6] = mbr[7] = 0xff; le32enc(mbr + 8, (uint32_t)start); le32enc(mbr + 12, (uint32_t)(end - start + 1)); return (0); } static int gpt_map_type(struct uuid *t) { struct g_part_uuid_alias *uap; for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { if (EQUUID(t, uap->uuid)) return (uap->mbrtype); } return (0); } static void gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp) { bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); } /* * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the * whole disk anymore. Rather, it covers the GPT table and the EFI * system partition only. This way the HFS+ partition and any FAT * partitions can be added to the MBR without creating an overlap. */ static int gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname) { uint8_t *p; p = table->mbr + DOSPARTOFF; if (p[4] != 0xee || le32dec(p + 8) != 1) return (0); p += DOSPARTSIZE; if (p[4] != 0xaf) return (0); printf("GEOM: %s: enabling Boot Camp\n", provname); return (1); } static void gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp) { struct g_part_entry *baseentry; struct g_part_gpt_entry *entry; struct g_part_gpt_table *table; int bootable, error, index, slices, typ; table = (struct g_part_gpt_table *)basetable; bootable = -1; for (index = 0; index < NDOSPART; index++) { if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index]) bootable = index; } bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); slices = 0; LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { if (baseentry->gpe_deleted) continue; index = baseentry->gpe_index - 1; if (index >= NDOSPART) continue; entry = (struct g_part_gpt_entry *)baseentry; switch (index) { case 0: /* This must be the EFI system partition. */ if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi)) goto disable; error = gpt_write_mbr_entry(table->mbr, index, 0xee, 1ull, entry->ent.ent_lba_end); break; case 1: /* This must be the HFS+ partition. */ if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs)) goto disable; error = gpt_write_mbr_entry(table->mbr, index, 0xaf, entry->ent.ent_lba_start, entry->ent.ent_lba_end); break; default: typ = gpt_map_type(&entry->ent.ent_type); error = gpt_write_mbr_entry(table->mbr, index, typ, entry->ent.ent_lba_start, entry->ent.ent_lba_end); break; } if (error) continue; if (index == bootable) table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80; slices |= 1 << index; } if ((slices & 3) == 3) return; disable: table->bootcamp = 0; gpt_create_pmbr(table, pp); } static struct gpt_hdr * gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, enum gpt_elt elt) { struct gpt_hdr *buf, *hdr; struct g_provider *pp; quad_t lba, last; int error; uint32_t crc, sz; pp = cp->provider; last = (pp->mediasize / pp->sectorsize) - 1; table->state[elt] = GPT_STATE_MISSING; /* * If the primary header is valid look for secondary * header in AlternateLBA, otherwise in the last medium's LBA. */ if (elt == GPT_ELT_SECHDR) { if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) table->lba[elt] = last; } else table->lba[elt] = 1; buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, &error); if (buf == NULL) return (NULL); hdr = NULL; if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) goto fail; table->state[elt] = GPT_STATE_CORRUPT; sz = le32toh(buf->hdr_size); if (sz < 92 || sz > pp->sectorsize) goto fail; hdr = g_malloc(sz, M_WAITOK | M_ZERO); bcopy(buf, hdr, sz); hdr->hdr_size = sz; crc = le32toh(buf->hdr_crc_self); buf->hdr_crc_self = 0; if (crc32(buf, sz) != crc) goto fail; hdr->hdr_crc_self = crc; table->state[elt] = GPT_STATE_INVALID; hdr->hdr_revision = le32toh(buf->hdr_revision); if (hdr->hdr_revision < GPT_HDR_REVISION) goto fail; hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); if (hdr->hdr_lba_self != table->lba[elt]) goto fail; hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); if (hdr->hdr_lba_alt == hdr->hdr_lba_self || hdr->hdr_lba_alt > last) goto fail; /* Check the managed area. */ hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) goto fail; hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) goto fail; /* Check the table location and size of the table. */ hdr->hdr_entries = le32toh(buf->hdr_entries); hdr->hdr_entsz = le32toh(buf->hdr_entsz); if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || (hdr->hdr_entsz & 7) != 0) goto fail; hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) goto fail; if (hdr->hdr_lba_table >= hdr->hdr_lba_start && hdr->hdr_lba_table <= hdr->hdr_lba_end) goto fail; lba = hdr->hdr_lba_table + howmany(hdr->hdr_entries * hdr->hdr_entsz, pp->sectorsize) - 1; if (lba >= last) goto fail; if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) goto fail; table->state[elt] = GPT_STATE_OK; le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); /* save LBA for secondary header */ if (elt == GPT_ELT_PRIHDR) table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; g_free(buf); return (hdr); fail: if (hdr != NULL) g_free(hdr); g_free(buf); return (NULL); } static struct gpt_ent * gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, enum gpt_elt elt, struct gpt_hdr *hdr) { struct g_provider *pp; struct gpt_ent *ent, *tbl; char *buf, *p; unsigned int idx, sectors, tblsz, size; int error; if (hdr == NULL) return (NULL); pp = cp->provider; table->lba[elt] = hdr->hdr_lba_table; table->state[elt] = GPT_STATE_MISSING; tblsz = hdr->hdr_entries * hdr->hdr_entsz; sectors = howmany(tblsz, pp->sectorsize); buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO); for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) { size = (sectors - idx > MAXPHYS / pp->sectorsize) ? MAXPHYS: (sectors - idx) * pp->sectorsize; p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize, size, &error); if (p == NULL) { g_free(buf); return (NULL); } bcopy(p, buf + idx * pp->sectorsize, size); g_free(p); } table->state[elt] = GPT_STATE_CORRUPT; if (crc32(buf, tblsz) != hdr->hdr_crc_table) { g_free(buf); return (NULL); } table->state[elt] = GPT_STATE_OK; tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), M_WAITOK | M_ZERO); for (idx = 0, ent = tbl, p = buf; idx < hdr->hdr_entries; idx++, ent++, p += hdr->hdr_entsz) { le_uuid_dec(p, &ent->ent_type); le_uuid_dec(p + 16, &ent->ent_uuid); ent->ent_lba_start = le64dec(p + 32); ent->ent_lba_end = le64dec(p + 40); ent->ent_attr = le64dec(p + 48); /* Keep UTF-16 in little-endian. */ bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); } g_free(buf); return (tbl); } static int gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) { if (pri == NULL || sec == NULL) return (0); if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) return (0); return ((pri->hdr_revision == sec->hdr_revision && pri->hdr_size == sec->hdr_size && pri->hdr_lba_start == sec->hdr_lba_start && pri->hdr_lba_end == sec->hdr_lba_end && pri->hdr_entries == sec->hdr_entries && pri->hdr_entsz == sec->hdr_entsz && pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); } static int gpt_parse_type(const char *type, struct uuid *uuid) { struct uuid tmp; const char *alias; int error; struct g_part_uuid_alias *uap; if (type[0] == '!') { error = parse_uuid(type + 1, &tmp); if (error) return (error); if (EQUUID(&tmp, &gpt_uuid_unused)) return (EINVAL); *uuid = tmp; return (0); } for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { alias = g_part_alias_name(uap->alias); if (!strcasecmp(type, alias)) { *uuid = *uap->uuid; return (0); } } return (EINVAL); } static int g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, struct g_part_parms *gpp) { struct g_part_gpt_entry *entry; int error; entry = (struct g_part_gpt_entry *)baseentry; error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); if (error) return (error); kern_uuidgen(&entry->ent.ent_uuid, 1); entry->ent.ent_lba_start = baseentry->gpe_start; entry->ent.ent_lba_end = baseentry->gpe_end; if (baseentry->gpe_deleted) { entry->ent.ent_attr = 0; bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); } if (gpp->gpp_parms & G_PART_PARM_LABEL) g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, sizeof(entry->ent.ent_name) / sizeof(entry->ent.ent_name[0])); return (0); } static int g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) { struct g_part_gpt_table *table; size_t codesz; codesz = DOSPARTOFF; table = (struct g_part_gpt_table *)basetable; bzero(table->mbr, codesz); codesz = MIN(codesz, gpp->gpp_codesize); if (codesz > 0) bcopy(gpp->gpp_codeptr, table->mbr, codesz); return (0); } static int g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) { struct g_provider *pp; struct g_part_gpt_table *table; size_t tblsz; /* We don't nest, which means that our depth should be 0. */ if (basetable->gpt_depth != 0) return (ENXIO); table = (struct g_part_gpt_table *)basetable; pp = gpp->gpp_provider; tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), pp->sectorsize); if (pp->sectorsize < MBRSIZE || pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * pp->sectorsize) return (ENOSPC); gpt_create_pmbr(table, pp); /* Allocate space for the header */ table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); table->hdr->hdr_revision = GPT_HDR_REVISION; table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); kern_uuidgen(&table->hdr->hdr_uuid, 1); table->hdr->hdr_entries = basetable->gpt_entries; table->hdr->hdr_entsz = sizeof(struct gpt_ent); g_gpt_set_defaults(basetable, pp); return (0); } static int g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) { struct g_part_gpt_table *table; struct g_provider *pp; table = (struct g_part_gpt_table *)basetable; pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; g_free(table->hdr); table->hdr = NULL; /* * Wipe the first 2 sectors and last one to clear the partitioning. * Wipe sectors only if they have valid metadata. */ if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) basetable->gpt_smhead |= 3; if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) basetable->gpt_smtail |= 1; return (0); } static void g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, struct sbuf *sb, const char *indent) { struct g_part_gpt_entry *entry; entry = (struct g_part_gpt_entry *)baseentry; if (indent == NULL) { /* conftxt: libdisk compatibility */ sbuf_printf(sb, " xs GPT xt "); sbuf_printf_uuid(sb, &entry->ent.ent_type); } else if (entry != NULL) { /* confxml: partition entry information */ sbuf_printf(sb, "%s\n"); if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) sbuf_printf(sb, "%sbootme\n", indent); if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { sbuf_printf(sb, "%sbootonce\n", indent); } if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { sbuf_printf(sb, "%sbootfailed\n", indent); } sbuf_printf(sb, "%s", indent); sbuf_printf_uuid(sb, &entry->ent.ent_type); sbuf_printf(sb, "\n"); sbuf_printf(sb, "%s", indent); sbuf_printf_uuid(sb, &entry->ent.ent_uuid); sbuf_printf(sb, "\n"); sbuf_printf(sb, "%s", indent); sbuf_printf(sb, "HD(%d,GPT,", entry->base.gpe_index); sbuf_printf_uuid(sb, &entry->ent.ent_uuid); sbuf_printf(sb, ",%#jx,%#jx)", (intmax_t)entry->base.gpe_start, (intmax_t)(entry->base.gpe_end - entry->base.gpe_start + 1)); sbuf_printf(sb, "\n"); } else { /* confxml: scheme information */ } } static int g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) { struct g_part_gpt_entry *entry; entry = (struct g_part_gpt_entry *)baseentry; return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) || EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0); } static int g_part_gpt_modify(struct g_part_table *basetable, struct g_part_entry *baseentry, struct g_part_parms *gpp) { struct g_part_gpt_entry *entry; int error; entry = (struct g_part_gpt_entry *)baseentry; if (gpp->gpp_parms & G_PART_PARM_TYPE) { error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); if (error) return (error); } if (gpp->gpp_parms & G_PART_PARM_LABEL) g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, sizeof(entry->ent.ent_name) / sizeof(entry->ent.ent_name[0])); return (0); } static int g_part_gpt_resize(struct g_part_table *basetable, struct g_part_entry *baseentry, struct g_part_parms *gpp) { struct g_part_gpt_entry *entry; if (baseentry == NULL) return (g_part_gpt_recover(basetable)); entry = (struct g_part_gpt_entry *)baseentry; baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; entry->ent.ent_lba_end = baseentry->gpe_end; return (0); } static const char * g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, char *buf, size_t bufsz) { struct g_part_gpt_entry *entry; char c; entry = (struct g_part_gpt_entry *)baseentry; c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); return (buf); } static int g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) { struct g_provider *pp; u_char *buf; int error, index, pri, res; /* We don't nest, which means that our depth should be 0. */ if (table->gpt_depth != 0) return (ENXIO); pp = cp->provider; /* * Sanity-check the provider. Since the first sector on the provider * must be a PMBR and a PMBR is 512 bytes large, the sector size * must be at least 512 bytes. Also, since the theoretical minimum * number of sectors needed by GPT is 6, any medium that has less * than 6 sectors is never going to be able to hold a GPT. The * number 6 comes from: * 1 sector for the PMBR * 2 sectors for the GPT headers (each 1 sector) * 2 sectors for the GPT tables (each 1 sector) * 1 sector for an actual partition * It's better to catch this pathological case early than behaving * pathologically later on... */ if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) return (ENOSPC); /* * Check that there's a MBR or a PMBR. If it's a PMBR, we return * as the highest priority on a match, otherwise we assume some * GPT-unaware tool has destroyed the GPT by recreating a MBR and * we really want the MBR scheme to take precedence. */ buf = g_read_data(cp, 0L, pp->sectorsize, &error); if (buf == NULL) return (error); res = le16dec(buf + DOSMAGICOFFSET); pri = G_PART_PROBE_PRI_LOW; if (res == DOSMAGIC) { for (index = 0; index < NDOSPART; index++) { if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee) pri = G_PART_PROBE_PRI_HIGH; } g_free(buf); /* Check that there's a primary header. */ buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); if (buf == NULL) return (error); res = memcmp(buf, GPT_HDR_SIG, 8); g_free(buf); if (res == 0) return (pri); } else g_free(buf); /* No primary? Check that there's a secondary. */ buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, &error); if (buf == NULL) return (error); res = memcmp(buf, GPT_HDR_SIG, 8); g_free(buf); return ((res == 0) ? pri : ENXIO); } static int g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) { struct gpt_hdr *prihdr, *sechdr; struct gpt_ent *tbl, *pritbl, *sectbl; struct g_provider *pp; struct g_part_gpt_table *table; struct g_part_gpt_entry *entry; u_char *buf; uint64_t last; int error, index; table = (struct g_part_gpt_table *)basetable; pp = cp->provider; last = (pp->mediasize / pp->sectorsize) - 1; /* Read the PMBR */ buf = g_read_data(cp, 0, pp->sectorsize, &error); if (buf == NULL) return (error); bcopy(buf, table->mbr, MBRSIZE); g_free(buf); /* Read the primary header and table. */ prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); } else { table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; pritbl = NULL; } /* Read the secondary header and table. */ sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); } else { table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; sectbl = NULL; } /* Fail if we haven't got any good tables at all. */ if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { printf("GEOM: %s: corrupt or invalid GPT detected.\n", pp->name); printf("GEOM: %s: GPT rejected -- may not be recoverable.\n", pp->name); if (prihdr != NULL) g_free(prihdr); if (pritbl != NULL) g_free(pritbl); if (sechdr != NULL) g_free(sechdr); if (sectbl != NULL) g_free(sectbl); return (EINVAL); } /* * If both headers are good but they disagree with each other, * then invalidate one. We prefer to keep the primary header, * unless the primary table is corrupt. */ if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && !gpt_matched_hdrs(prihdr, sechdr)) { if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; g_free(sechdr); sechdr = NULL; } else { table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; g_free(prihdr); prihdr = NULL; } } if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { printf("GEOM: %s: the primary GPT table is corrupt or " "invalid.\n", pp->name); printf("GEOM: %s: using the secondary instead -- recovery " "strongly advised.\n", pp->name); table->hdr = sechdr; basetable->gpt_corrupt = 1; if (prihdr != NULL) g_free(prihdr); tbl = sectbl; if (pritbl != NULL) g_free(pritbl); } else { if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { printf("GEOM: %s: the secondary GPT table is corrupt " "or invalid.\n", pp->name); printf("GEOM: %s: using the primary only -- recovery " "suggested.\n", pp->name); basetable->gpt_corrupt = 1; } else if (table->lba[GPT_ELT_SECHDR] != last) { printf( "GEOM: %s: the secondary GPT header is not in " "the last LBA.\n", pp->name); basetable->gpt_corrupt = 1; } table->hdr = prihdr; if (sechdr != NULL) g_free(sechdr); tbl = pritbl; if (sectbl != NULL) g_free(sectbl); } basetable->gpt_first = table->hdr->hdr_lba_start; basetable->gpt_last = table->hdr->hdr_lba_end; basetable->gpt_entries = (table->hdr->hdr_lba_start - 2) * pp->sectorsize / table->hdr->hdr_entsz; for (index = table->hdr->hdr_entries - 1; index >= 0; index--) { if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) continue; entry = (struct g_part_gpt_entry *)g_part_new_entry( basetable, index + 1, tbl[index].ent_lba_start, tbl[index].ent_lba_end); entry->ent = tbl[index]; } g_free(tbl); /* * Under Mac OS X, the MBR mirrors the first 4 GPT partitions * if (and only if) any FAT32 or FAT16 partitions have been * created. This happens irrespective of whether Boot Camp is * used/enabled, though it's generally understood to be done * to support legacy Windows under Boot Camp. We refer to this * mirroring simply as Boot Camp. We try to detect Boot Camp * so that we can update the MBR if and when GPT changes have * been made. Note that we do not enable Boot Camp if not * previously enabled because we can't assume that we're on a * Mac alongside Mac OS X. */ table->bootcamp = gpt_is_bootcamp(table, pp->name); return (0); } static int g_part_gpt_recover(struct g_part_table *basetable) { struct g_part_gpt_table *table; struct g_provider *pp; table = (struct g_part_gpt_table *)basetable; pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; gpt_create_pmbr(table, pp); g_gpt_set_defaults(basetable, pp); basetable->gpt_corrupt = 0; return (0); } static int g_part_gpt_setunset(struct g_part_table *basetable, struct g_part_entry *baseentry, const char *attrib, unsigned int set) { struct g_part_gpt_entry *entry; struct g_part_gpt_table *table; struct g_provider *pp; uint8_t *p; uint64_t attr; int i; table = (struct g_part_gpt_table *)basetable; entry = (struct g_part_gpt_entry *)baseentry; if (strcasecmp(attrib, "active") == 0) { if (table->bootcamp) { /* The active flag must be set on a valid entry. */ if (entry == NULL) return (ENXIO); if (baseentry->gpe_index > NDOSPART) return (EINVAL); for (i = 0; i < NDOSPART; i++) { p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; p[0] = (i == baseentry->gpe_index - 1) ? ((set) ? 0x80 : 0) : 0; } } else { /* The PMBR is marked as active without an entry. */ if (entry != NULL) return (ENXIO); for (i = 0; i < NDOSPART; i++) { p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0; } } return (0); } else if (strcasecmp(attrib, "lenovofix") == 0) { /* * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR. * This workaround allows Lenovo X220, T420, T520, etc to boot * from GPT Partitions in BIOS mode. */ if (entry != NULL) return (ENXIO); pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1, MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); return (0); } if (entry == NULL) return (ENODEV); attr = 0; if (strcasecmp(attrib, "bootme") == 0) { attr |= GPT_ENT_ATTR_BOOTME; } else if (strcasecmp(attrib, "bootonce") == 0) { attr |= GPT_ENT_ATTR_BOOTONCE; if (set) attr |= GPT_ENT_ATTR_BOOTME; } else if (strcasecmp(attrib, "bootfailed") == 0) { /* * It should only be possible to unset BOOTFAILED, but it might * be useful for test purposes to also be able to set it. */ attr |= GPT_ENT_ATTR_BOOTFAILED; } if (attr == 0) return (EINVAL); if (set) attr = entry->ent.ent_attr | attr; else attr = entry->ent.ent_attr & ~attr; if (attr != entry->ent.ent_attr) { entry->ent.ent_attr = attr; if (!baseentry->gpe_created) baseentry->gpe_modified = 1; } return (0); } static const char * g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, char *buf, size_t bufsz) { struct g_part_gpt_entry *entry; struct uuid *type; struct g_part_uuid_alias *uap; entry = (struct g_part_gpt_entry *)baseentry; type = &entry->ent.ent_type; for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) if (EQUUID(type, uap->uuid)) return (g_part_alias_name(uap->alias)); buf[0] = '!'; snprintf_uuid(buf + 1, bufsz - 1, type); return (buf); } static int g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) { unsigned char *buf, *bp; struct g_provider *pp; struct g_part_entry *baseentry; struct g_part_gpt_entry *entry; struct g_part_gpt_table *table; size_t tblsz; uint32_t crc; int error, index; pp = cp->provider; table = (struct g_part_gpt_table *)basetable; tblsz = howmany(table->hdr->hdr_entries * table->hdr->hdr_entsz, pp->sectorsize); /* Reconstruct the MBR from the GPT if under Boot Camp. */ if (table->bootcamp) gpt_update_bootcamp(basetable, pp); /* Write the PMBR */ buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); bcopy(table->mbr, buf, MBRSIZE); error = g_write_data(cp, 0, buf, pp->sectorsize); g_free(buf); if (error) return (error); /* Allocate space for the header and entries. */ buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); le32enc(buf + 8, table->hdr->hdr_revision); le32enc(buf + 12, table->hdr->hdr_size); le64enc(buf + 40, table->hdr->hdr_lba_start); le64enc(buf + 48, table->hdr->hdr_lba_end); le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); le32enc(buf + 80, table->hdr->hdr_entries); le32enc(buf + 84, table->hdr->hdr_entsz); LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { if (baseentry->gpe_deleted) continue; entry = (struct g_part_gpt_entry *)baseentry; index = baseentry->gpe_index - 1; bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; le_uuid_enc(bp, &entry->ent.ent_type); le_uuid_enc(bp + 16, &entry->ent.ent_uuid); le64enc(bp + 32, entry->ent.ent_lba_start); le64enc(bp + 40, entry->ent.ent_lba_end); le64enc(bp + 48, entry->ent.ent_attr); memcpy(bp + 56, entry->ent.ent_name, sizeof(entry->ent.ent_name)); } crc = crc32(buf + pp->sectorsize, table->hdr->hdr_entries * table->hdr->hdr_entsz); le32enc(buf + 88, crc); /* Write primary meta-data. */ le32enc(buf + 16, 0); /* hdr_crc_self. */ le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ crc = crc32(buf, table->hdr->hdr_size); le32enc(buf + 16, crc); for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { error = g_write_data(cp, (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize, buf + (index + 1) * pp->sectorsize, (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: (tblsz - index) * pp->sectorsize); if (error) goto out; } error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, buf, pp->sectorsize); if (error) goto out; /* Write secondary meta-data. */ le32enc(buf + 16, 0); /* hdr_crc_self. */ le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ crc = crc32(buf, table->hdr->hdr_size); le32enc(buf + 16, crc); for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { error = g_write_data(cp, (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize, buf + (index + 1) * pp->sectorsize, (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: (tblsz - index) * pp->sectorsize); if (error) goto out; } error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, buf, pp->sectorsize); out: g_free(buf); return (error); } static void g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp) { struct g_part_entry *baseentry; struct g_part_gpt_entry *entry; struct g_part_gpt_table *table; quad_t start, end, min, max; quad_t lba, last; size_t spb, tblsz; table = (struct g_part_gpt_table *)basetable; last = pp->mediasize / pp->sectorsize - 1; tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), pp->sectorsize); table->lba[GPT_ELT_PRIHDR] = 1; table->lba[GPT_ELT_PRITBL] = 2; table->lba[GPT_ELT_SECHDR] = last; table->lba[GPT_ELT_SECTBL] = last - tblsz; table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; max = start = 2 + tblsz; min = end = last - tblsz - 1; LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { if (baseentry->gpe_deleted) continue; entry = (struct g_part_gpt_entry *)baseentry; if (entry->ent.ent_lba_start < min) min = entry->ent.ent_lba_start; if (entry->ent.ent_lba_end > max) max = entry->ent.ent_lba_end; } spb = 4096 / pp->sectorsize; if (spb > 1) { lba = start + ((start % spb) ? spb - start % spb : 0); if (lba <= min) start = lba; lba = end - (end + 1) % spb; if (max <= lba) end = lba; } table->hdr->hdr_lba_start = start; table->hdr->hdr_lba_end = end; basetable->gpt_first = start; basetable->gpt_last = end; } static void g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) { u_int bo; uint32_t ch; uint16_t c; bo = LITTLE_ENDIAN; /* GPT is little-endian */ while (len > 0 && *str != 0) { ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); str++, len--; if ((ch & 0xf800) == 0xd800) { if (len > 0) { c = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); str++, len--; } else c = 0xfffd; if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); ch += 0x10000; } else ch = 0xfffd; } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; continue; } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ continue; /* Write the Unicode character in UTF-8 */ if (ch < 0x80) g_conf_printf_escaped(sb, "%c", ch); else if (ch < 0x800) g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6), 0x80 | (ch & 0x3f)); else if (ch < 0x10000) g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12), 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); else if (ch < 0x200000) g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 | (ch >> 18), 0x80 | ((ch >> 12) & 0x3f), 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); } } static void g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) { size_t s16idx, s8idx; uint32_t utfchar; unsigned int c, utfbytes; s8idx = s16idx = 0; utfchar = 0; utfbytes = 0; bzero(s16, s16len << 1); while (s8[s8idx] != 0 && s16idx < s16len) { c = s8[s8idx++]; if ((c & 0xc0) != 0x80) { /* Initial characters. */ if (utfbytes != 0) { /* Incomplete encoding of previous char. */ s16[s16idx++] = htole16(0xfffd); } if ((c & 0xf8) == 0xf0) { utfchar = c & 0x07; utfbytes = 3; } else if ((c & 0xf0) == 0xe0) { utfchar = c & 0x0f; utfbytes = 2; } else if ((c & 0xe0) == 0xc0) { utfchar = c & 0x1f; utfbytes = 1; } else { utfchar = c & 0x7f; utfbytes = 0; } } else { /* Followup characters. */ if (utfbytes > 0) { utfchar = (utfchar << 6) + (c & 0x3f); utfbytes--; } else if (utfbytes == 0) utfbytes = ~0; } /* * Write the complete Unicode character as UTF-16 when we * have all the UTF-8 charactars collected. */ if (utfbytes == 0) { /* * If we need to write 2 UTF-16 characters, but * we only have room for 1, then we truncate the * string by writing a 0 instead. */ if (utfchar >= 0x10000 && s16idx < s16len - 1) { s16[s16idx++] = htole16(0xd800 | ((utfchar >> 10) - 0x40)); s16[s16idx++] = htole16(0xdc00 | (utfchar & 0x3ff)); } else s16[s16idx++] = (utfchar >= 0x10000) ? 0 : htole16(utfchar); } } /* * If our input string was truncated, append an invalid encoding * character to the output string. */ if (utfbytes != 0 && s16idx < s16len) s16[s16idx++] = htole16(0xfffd); } Index: head/sys/geom/part/g_part_ldm.c =================================================================== --- head/sys/geom/part/g_part_ldm.c (revision 332386) +++ head/sys/geom/part/g_part_ldm.c (revision 332387) @@ -1,1484 +1,1485 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2012 Andrey V. Elsukov * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "g_part_if.h" FEATURE(geom_part_ldm, "GEOM partitioning class for LDM support"); SYSCTL_DECL(_kern_geom_part); static SYSCTL_NODE(_kern_geom_part, OID_AUTO, ldm, CTLFLAG_RW, 0, "GEOM_PART_LDM Logical Disk Manager"); static u_int ldm_debug = 0; SYSCTL_UINT(_kern_geom_part_ldm, OID_AUTO, debug, CTLFLAG_RWTUN, &ldm_debug, 0, "Debug level"); /* * This allows access to mirrored LDM volumes. Since we do not * doing mirroring here, it is not enabled by default. */ static u_int show_mirrors = 0; SYSCTL_UINT(_kern_geom_part_ldm, OID_AUTO, show_mirrors, CTLFLAG_RWTUN, &show_mirrors, 0, "Show mirrored volumes"); #define LDM_DEBUG(lvl, fmt, ...) do { \ if (ldm_debug >= (lvl)) { \ printf("GEOM_PART: " fmt "\n", __VA_ARGS__); \ } \ } while (0) #define LDM_DUMP(buf, size) do { \ if (ldm_debug > 1) { \ hexdump(buf, size, NULL, 0); \ } \ } while (0) /* * There are internal representations of LDM structures. * * We do not keep all fields of on-disk structures, only most useful. * All numbers in an on-disk structures are in big-endian format. */ /* * Private header is 512 bytes long. There are three copies on each disk. * Offset and sizes are in sectors. Location of each copy: * - the first offset is relative to the disk start; * - the second and third offset are relative to the LDM database start. * * On a disk partitioned with GPT, the LDM has not first private header. */ #define LDM_PH_MBRINDEX 0 #define LDM_PH_GPTINDEX 2 static const uint64_t ldm_ph_off[] = {6, 1856, 2047}; #define LDM_VERSION_2K 0x2000b #define LDM_VERSION_VISTA 0x2000c #define LDM_PH_VERSION_OFF 0x00c #define LDM_PH_DISKGUID_OFF 0x030 #define LDM_PH_DGGUID_OFF 0x0b0 #define LDM_PH_DGNAME_OFF 0x0f0 #define LDM_PH_START_OFF 0x11b #define LDM_PH_SIZE_OFF 0x123 #define LDM_PH_DB_OFF 0x12b #define LDM_PH_DBSIZE_OFF 0x133 #define LDM_PH_TH1_OFF 0x13b #define LDM_PH_TH2_OFF 0x143 #define LDM_PH_CONFSIZE_OFF 0x153 #define LDM_PH_LOGSIZE_OFF 0x15b #define LDM_PH_SIGN "PRIVHEAD" struct ldm_privhdr { struct uuid disk_guid; struct uuid dg_guid; u_char dg_name[32]; uint64_t start; /* logical disk start */ uint64_t size; /* logical disk size */ uint64_t db_offset; /* LDM database start */ #define LDM_DB_SIZE 2048 uint64_t db_size; /* LDM database size */ #define LDM_TH_COUNT 2 uint64_t th_offset[LDM_TH_COUNT]; /* TOC header offsets */ uint64_t conf_size; /* configuration size */ uint64_t log_size; /* size of log */ }; /* * Table of contents header is 512 bytes long. * There are two identical copies at offsets from the private header. * Offsets are relative to the LDM database start. */ #define LDM_TH_SIGN "TOCBLOCK" #define LDM_TH_NAME1 "config" #define LDM_TH_NAME2 "log" #define LDM_TH_NAME1_OFF 0x024 #define LDM_TH_CONF_OFF 0x02e #define LDM_TH_CONFSIZE_OFF 0x036 #define LDM_TH_NAME2_OFF 0x046 #define LDM_TH_LOG_OFF 0x050 #define LDM_TH_LOGSIZE_OFF 0x058 struct ldm_tochdr { uint64_t conf_offset; /* configuration offset */ uint64_t log_offset; /* log offset */ }; /* * LDM database header is 512 bytes long. */ #define LDM_VMDB_SIGN "VMDB" #define LDM_DB_LASTSEQ_OFF 0x004 #define LDM_DB_SIZE_OFF 0x008 #define LDM_DB_STATUS_OFF 0x010 #define LDM_DB_VERSION_OFF 0x012 #define LDM_DB_DGNAME_OFF 0x016 #define LDM_DB_DGGUID_OFF 0x035 struct ldm_vmdbhdr { uint32_t last_seq; /* sequence number of last VBLK */ uint32_t size; /* size of VBLK */ }; /* * The LDM database configuration section contains VMDB header and * many VBLKs. Each VBLK represents a disk group, disk partition, * component or volume. * * The most interesting for us are volumes, they are represents * partitions in the GEOM_PART meaning. But volume VBLK does not * contain all information needed to create GEOM provider. And we * should get this information from the related VBLK. This is how * VBLK releated: * Volumes <- Components <- Partitions -> Disks * * One volume can contain several components. In this case LDM * does mirroring of volume data to each component. * * Also each component can contain several partitions (spanned or * striped volumes). */ struct ldm_component { uint64_t id; /* object id */ uint64_t vol_id; /* parent volume object id */ int count; LIST_HEAD(, ldm_partition) partitions; LIST_ENTRY(ldm_component) entry; }; struct ldm_volume { uint64_t id; /* object id */ uint64_t size; /* volume size */ uint8_t number; /* used for ordering */ uint8_t part_type; /* partition type */ int count; LIST_HEAD(, ldm_component) components; LIST_ENTRY(ldm_volume) entry; }; struct ldm_disk { uint64_t id; /* object id */ struct uuid guid; /* disk guid */ LIST_ENTRY(ldm_disk) entry; }; #if 0 struct ldm_disk_group { uint64_t id; /* object id */ struct uuid guid; /* disk group guid */ u_char name[32]; /* disk group name */ LIST_ENTRY(ldm_disk_group) entry; }; #endif struct ldm_partition { uint64_t id; /* object id */ uint64_t disk_id; /* disk object id */ uint64_t comp_id; /* parent component object id */ uint64_t start; /* offset relative to disk start */ uint64_t offset; /* offset for spanned volumes */ uint64_t size; /* partition size */ LIST_ENTRY(ldm_partition) entry; }; /* * Each VBLK is 128 bytes long and has standard 16 bytes header. * Some of VBLK's fields are fixed size, but others has variable size. * Fields with variable size are prefixed with one byte length marker. * Some fields are strings and also can have fixed size and variable. * Strings with fixed size are NULL-terminated, others are not. * All VBLKs have same several first fields: * Offset Size Description * ---------------+---------------+-------------------------- * 0x00 16 standard VBLK header * 0x10 2 update status * 0x13 1 VBLK type * 0x18 PS object id * 0x18+ PN object name * * o Offset 0x18+ means '0x18 + length of all variable-width fields' * o 'P' in size column means 'prefixed' (variable-width), * 'S' - string, 'N' - number. */ #define LDM_VBLK_SIGN "VBLK" #define LDM_VBLK_SEQ_OFF 0x04 #define LDM_VBLK_GROUP_OFF 0x08 #define LDM_VBLK_INDEX_OFF 0x0c #define LDM_VBLK_COUNT_OFF 0x0e #define LDM_VBLK_TYPE_OFF 0x13 #define LDM_VBLK_OID_OFF 0x18 struct ldm_vblkhdr { uint32_t seq; /* sequence number */ uint32_t group; /* group number */ uint16_t index; /* index in the group */ uint16_t count; /* number of entries in the group */ }; #define LDM_VBLK_T_COMPONENT 0x32 #define LDM_VBLK_T_PARTITION 0x33 #define LDM_VBLK_T_DISK 0x34 #define LDM_VBLK_T_DISKGROUP 0x35 #define LDM_VBLK_T_DISK4 0x44 #define LDM_VBLK_T_DISKGROUP4 0x45 #define LDM_VBLK_T_VOLUME 0x51 struct ldm_vblk { uint8_t type; /* VBLK type */ union { uint64_t id; struct ldm_volume vol; struct ldm_component comp; struct ldm_disk disk; struct ldm_partition part; #if 0 struct ldm_disk_group disk_group; #endif } u; LIST_ENTRY(ldm_vblk) entry; }; /* * Some VBLKs contains a bit more data than can fit into 128 bytes. These * VBLKs are called eXtended VBLK. Before parsing, the data from these VBLK * should be placed into continuous memory buffer. We can determine xVBLK * by the count field in the standard VBLK header (count > 1). */ struct ldm_xvblk { uint32_t group; /* xVBLK group number */ uint32_t size; /* the total size of xVBLK */ uint8_t map; /* bitmask of currently saved VBLKs */ u_char *data; /* xVBLK data */ LIST_ENTRY(ldm_xvblk) entry; }; /* The internal representation of LDM database. */ struct ldm_db { struct ldm_privhdr ph; /* private header */ struct ldm_tochdr th; /* TOC header */ struct ldm_vmdbhdr dh; /* VMDB header */ LIST_HEAD(, ldm_volume) volumes; LIST_HEAD(, ldm_disk) disks; LIST_HEAD(, ldm_vblk) vblks; LIST_HEAD(, ldm_xvblk) xvblks; }; static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; struct g_part_ldm_table { struct g_part_table base; uint64_t db_offset; int is_gpt; }; struct g_part_ldm_entry { struct g_part_entry base; uint8_t type; }; static int g_part_ldm_add(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static int g_part_ldm_bootcode(struct g_part_table *, struct g_part_parms *); static int g_part_ldm_create(struct g_part_table *, struct g_part_parms *); static int g_part_ldm_destroy(struct g_part_table *, struct g_part_parms *); static void g_part_ldm_dumpconf(struct g_part_table *, struct g_part_entry *, struct sbuf *, const char *); static int g_part_ldm_dumpto(struct g_part_table *, struct g_part_entry *); static int g_part_ldm_modify(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static const char *g_part_ldm_name(struct g_part_table *, struct g_part_entry *, char *, size_t); static int g_part_ldm_probe(struct g_part_table *, struct g_consumer *); static int g_part_ldm_read(struct g_part_table *, struct g_consumer *); static const char *g_part_ldm_type(struct g_part_table *, struct g_part_entry *, char *, size_t); static int g_part_ldm_write(struct g_part_table *, struct g_consumer *); static kobj_method_t g_part_ldm_methods[] = { KOBJMETHOD(g_part_add, g_part_ldm_add), KOBJMETHOD(g_part_bootcode, g_part_ldm_bootcode), KOBJMETHOD(g_part_create, g_part_ldm_create), KOBJMETHOD(g_part_destroy, g_part_ldm_destroy), KOBJMETHOD(g_part_dumpconf, g_part_ldm_dumpconf), KOBJMETHOD(g_part_dumpto, g_part_ldm_dumpto), KOBJMETHOD(g_part_modify, g_part_ldm_modify), KOBJMETHOD(g_part_name, g_part_ldm_name), KOBJMETHOD(g_part_probe, g_part_ldm_probe), KOBJMETHOD(g_part_read, g_part_ldm_read), KOBJMETHOD(g_part_type, g_part_ldm_type), KOBJMETHOD(g_part_write, g_part_ldm_write), { 0, 0 } }; static struct g_part_scheme g_part_ldm_scheme = { "LDM", g_part_ldm_methods, sizeof(struct g_part_ldm_table), .gps_entrysz = sizeof(struct g_part_ldm_entry) }; G_PART_SCHEME_DECLARE(g_part_ldm); +MODULE_VERSION(geom_part_ldm, 0); static struct g_part_ldm_alias { u_char typ; int alias; } ldm_alias_match[] = { { DOSPTYP_NTFS, G_PART_ALIAS_MS_NTFS }, { DOSPTYP_FAT32, G_PART_ALIAS_MS_FAT32 }, { DOSPTYP_386BSD, G_PART_ALIAS_FREEBSD }, { DOSPTYP_LDM, G_PART_ALIAS_MS_LDM_DATA }, { DOSPTYP_LINSWP, G_PART_ALIAS_LINUX_SWAP }, { DOSPTYP_LINUX, G_PART_ALIAS_LINUX_DATA }, { DOSPTYP_LINLVM, G_PART_ALIAS_LINUX_LVM }, { DOSPTYP_LINRAID, G_PART_ALIAS_LINUX_RAID }, }; static u_char* ldm_privhdr_read(struct g_consumer *cp, uint64_t off, int *error) { struct g_provider *pp; u_char *buf; pp = cp->provider; buf = g_read_data(cp, off, pp->sectorsize, error); if (buf == NULL) return (NULL); if (memcmp(buf, LDM_PH_SIGN, strlen(LDM_PH_SIGN)) != 0) { LDM_DEBUG(1, "%s: invalid LDM private header signature", pp->name); g_free(buf); buf = NULL; *error = EINVAL; } return (buf); } static int ldm_privhdr_parse(struct g_consumer *cp, struct ldm_privhdr *hdr, const u_char *buf) { uint32_t version; int error; memset(hdr, 0, sizeof(*hdr)); version = be32dec(buf + LDM_PH_VERSION_OFF); if (version != LDM_VERSION_2K && version != LDM_VERSION_VISTA) { LDM_DEBUG(0, "%s: unsupported LDM version %u.%u", cp->provider->name, version >> 16, version & 0xFFFF); return (ENXIO); } error = parse_uuid(buf + LDM_PH_DISKGUID_OFF, &hdr->disk_guid); if (error != 0) return (error); error = parse_uuid(buf + LDM_PH_DGGUID_OFF, &hdr->dg_guid); if (error != 0) return (error); strncpy(hdr->dg_name, buf + LDM_PH_DGNAME_OFF, sizeof(hdr->dg_name)); hdr->start = be64dec(buf + LDM_PH_START_OFF); hdr->size = be64dec(buf + LDM_PH_SIZE_OFF); hdr->db_offset = be64dec(buf + LDM_PH_DB_OFF); hdr->db_size = be64dec(buf + LDM_PH_DBSIZE_OFF); hdr->th_offset[0] = be64dec(buf + LDM_PH_TH1_OFF); hdr->th_offset[1] = be64dec(buf + LDM_PH_TH2_OFF); hdr->conf_size = be64dec(buf + LDM_PH_CONFSIZE_OFF); hdr->log_size = be64dec(buf + LDM_PH_LOGSIZE_OFF); return (0); } static int ldm_privhdr_check(struct ldm_db *db, struct g_consumer *cp, int is_gpt) { struct g_consumer *cp2; struct g_provider *pp; struct ldm_privhdr hdr; uint64_t offset, last; int error, found, i; u_char *buf; pp = cp->provider; if (is_gpt) { /* * The last LBA is used in several checks below, for the * GPT case it should be calculated relative to the whole * disk. */ cp2 = LIST_FIRST(&pp->geom->consumer); last = cp2->provider->mediasize / cp2->provider->sectorsize - 1; } else last = pp->mediasize / pp->sectorsize - 1; for (found = 0, i = is_gpt; i < nitems(ldm_ph_off); i++) { offset = ldm_ph_off[i]; /* * In the GPT case consumer is attached to the LDM metadata * partition and we don't need add db_offset. */ if (!is_gpt) offset += db->ph.db_offset; if (i == LDM_PH_MBRINDEX) { /* * Prepare to errors and setup new base offset * to read backup private headers. Assume that LDM * database is in the last 1Mbyte area. */ db->ph.db_offset = last - LDM_DB_SIZE; } buf = ldm_privhdr_read(cp, offset * pp->sectorsize, &error); if (buf == NULL) { LDM_DEBUG(1, "%s: failed to read private header " "%d at LBA %ju", pp->name, i, (uintmax_t)offset); continue; } error = ldm_privhdr_parse(cp, &hdr, buf); if (error != 0) { LDM_DEBUG(1, "%s: failed to parse private " "header %d", pp->name, i); LDM_DUMP(buf, pp->sectorsize); g_free(buf); continue; } g_free(buf); if (hdr.start > last || hdr.start + hdr.size - 1 > last || (hdr.start + hdr.size - 1 > hdr.db_offset && !is_gpt) || hdr.db_size != LDM_DB_SIZE || hdr.db_offset + LDM_DB_SIZE - 1 > last || hdr.th_offset[0] >= LDM_DB_SIZE || hdr.th_offset[1] >= LDM_DB_SIZE || hdr.conf_size + hdr.log_size >= LDM_DB_SIZE) { LDM_DEBUG(1, "%s: invalid values in the " "private header %d", pp->name, i); LDM_DEBUG(2, "%s: start: %jd, size: %jd, " "db_offset: %jd, db_size: %jd, th_offset0: %jd, " "th_offset1: %jd, conf_size: %jd, log_size: %jd, " "last: %jd", pp->name, hdr.start, hdr.size, hdr.db_offset, hdr.db_size, hdr.th_offset[0], hdr.th_offset[1], hdr.conf_size, hdr.log_size, last); continue; } if (found != 0 && memcmp(&db->ph, &hdr, sizeof(hdr)) != 0) { LDM_DEBUG(0, "%s: private headers are not equal", pp->name); if (i > 1) { /* * We have different headers in the LDM. * We can not trust this metadata. */ LDM_DEBUG(0, "%s: refuse LDM metadata", pp->name); return (EINVAL); } /* * We already have read primary private header * and it differs from this backup one. * Prefer the backup header and save it. */ found = 0; } if (found == 0) memcpy(&db->ph, &hdr, sizeof(hdr)); found = 1; } if (found == 0) { LDM_DEBUG(1, "%s: valid LDM private header not found", pp->name); return (ENXIO); } return (0); } static int ldm_gpt_check(struct ldm_db *db, struct g_consumer *cp) { struct g_part_table *gpt; struct g_part_entry *e; struct g_consumer *cp2; int error; cp2 = LIST_NEXT(cp, consumer); g_topology_lock(); gpt = cp->provider->geom->softc; error = 0; LIST_FOREACH(e, &gpt->gpt_entry, gpe_entry) { if (cp->provider == e->gpe_pp) { /* ms-ldm-metadata partition */ if (e->gpe_start != db->ph.db_offset || e->gpe_end != db->ph.db_offset + LDM_DB_SIZE - 1) error++; } else if (cp2->provider == e->gpe_pp) { /* ms-ldm-data partition */ if (e->gpe_start != db->ph.start || e->gpe_end != db->ph.start + db->ph.size - 1) error++; } if (error != 0) { LDM_DEBUG(0, "%s: GPT partition %d boundaries " "do not match with the LDM metadata", e->gpe_pp->name, e->gpe_index); error = ENXIO; break; } } g_topology_unlock(); return (error); } static int ldm_tochdr_check(struct ldm_db *db, struct g_consumer *cp) { struct g_provider *pp; struct ldm_tochdr hdr; uint64_t offset, conf_size, log_size; int error, found, i; u_char *buf; pp = cp->provider; for (i = 0, found = 0; i < LDM_TH_COUNT; i++) { offset = db->ph.db_offset + db->ph.th_offset[i]; buf = g_read_data(cp, offset * pp->sectorsize, pp->sectorsize, &error); if (buf == NULL) { LDM_DEBUG(1, "%s: failed to read TOC header " "at LBA %ju", pp->name, (uintmax_t)offset); continue; } if (memcmp(buf, LDM_TH_SIGN, strlen(LDM_TH_SIGN)) != 0 || memcmp(buf + LDM_TH_NAME1_OFF, LDM_TH_NAME1, strlen(LDM_TH_NAME1)) != 0 || memcmp(buf + LDM_TH_NAME2_OFF, LDM_TH_NAME2, strlen(LDM_TH_NAME2)) != 0) { LDM_DEBUG(1, "%s: failed to parse TOC header " "at LBA %ju", pp->name, (uintmax_t)offset); LDM_DUMP(buf, pp->sectorsize); g_free(buf); continue; } hdr.conf_offset = be64dec(buf + LDM_TH_CONF_OFF); hdr.log_offset = be64dec(buf + LDM_TH_LOG_OFF); conf_size = be64dec(buf + LDM_TH_CONFSIZE_OFF); log_size = be64dec(buf + LDM_TH_LOGSIZE_OFF); if (conf_size != db->ph.conf_size || hdr.conf_offset + conf_size >= LDM_DB_SIZE || log_size != db->ph.log_size || hdr.log_offset + log_size >= LDM_DB_SIZE) { LDM_DEBUG(1, "%s: invalid values in the " "TOC header at LBA %ju", pp->name, (uintmax_t)offset); LDM_DUMP(buf, pp->sectorsize); g_free(buf); continue; } g_free(buf); if (found == 0) memcpy(&db->th, &hdr, sizeof(hdr)); found = 1; } if (found == 0) { LDM_DEBUG(0, "%s: valid LDM TOC header not found.", pp->name); return (ENXIO); } return (0); } static int ldm_vmdbhdr_check(struct ldm_db *db, struct g_consumer *cp) { struct g_provider *pp; struct uuid dg_guid; uint64_t offset; uint32_t version; int error; u_char *buf; pp = cp->provider; offset = db->ph.db_offset + db->th.conf_offset; buf = g_read_data(cp, offset * pp->sectorsize, pp->sectorsize, &error); if (buf == NULL) { LDM_DEBUG(0, "%s: failed to read VMDB header at " "LBA %ju", pp->name, (uintmax_t)offset); return (error); } if (memcmp(buf, LDM_VMDB_SIGN, strlen(LDM_VMDB_SIGN)) != 0) { g_free(buf); LDM_DEBUG(0, "%s: failed to parse VMDB header at " "LBA %ju", pp->name, (uintmax_t)offset); return (ENXIO); } /* Check version. */ version = be32dec(buf + LDM_DB_VERSION_OFF); if (version != 0x4000A) { g_free(buf); LDM_DEBUG(0, "%s: unsupported VMDB version %u.%u", pp->name, version >> 16, version & 0xFFFF); return (ENXIO); } /* * Check VMDB update status: * 1 - in a consistent state; * 2 - in a creation phase; * 3 - in a deletion phase; */ if (be16dec(buf + LDM_DB_STATUS_OFF) != 1) { g_free(buf); LDM_DEBUG(0, "%s: VMDB is not in a consistent state", pp->name); return (ENXIO); } db->dh.last_seq = be32dec(buf + LDM_DB_LASTSEQ_OFF); db->dh.size = be32dec(buf + LDM_DB_SIZE_OFF); error = parse_uuid(buf + LDM_DB_DGGUID_OFF, &dg_guid); /* Compare disk group name and guid from VMDB and private headers */ if (error != 0 || db->dh.size == 0 || pp->sectorsize % db->dh.size != 0 || strncmp(buf + LDM_DB_DGNAME_OFF, db->ph.dg_name, 31) != 0 || memcmp(&dg_guid, &db->ph.dg_guid, sizeof(dg_guid)) != 0 || db->dh.size * db->dh.last_seq > db->ph.conf_size * pp->sectorsize) { LDM_DEBUG(0, "%s: invalid values in the VMDB header", pp->name); LDM_DUMP(buf, pp->sectorsize); g_free(buf); return (EINVAL); } g_free(buf); return (0); } static int ldm_xvblk_handle(struct ldm_db *db, struct ldm_vblkhdr *vh, const u_char *p) { struct ldm_xvblk *blk; size_t size; size = db->dh.size - 16; LIST_FOREACH(blk, &db->xvblks, entry) if (blk->group == vh->group) break; if (blk == NULL) { blk = g_malloc(sizeof(*blk), M_WAITOK | M_ZERO); blk->group = vh->group; blk->size = size * vh->count + 16; blk->data = g_malloc(blk->size, M_WAITOK | M_ZERO); blk->map = 0xFF << vh->count; LIST_INSERT_HEAD(&db->xvblks, blk, entry); } if ((blk->map & (1 << vh->index)) != 0) { /* Block with given index has been already saved. */ return (EINVAL); } /* Copy the data block to the place related to index. */ memcpy(blk->data + size * vh->index + 16, p + 16, size); blk->map |= 1 << vh->index; return (0); } /* Read the variable-width numeric field and return new offset */ static int ldm_vnum_get(const u_char *buf, int offset, uint64_t *result, size_t range) { uint64_t num; uint8_t len; len = buf[offset++]; if (len > sizeof(uint64_t) || len + offset >= range) return (-1); for (num = 0; len > 0; len--) num = (num << 8) | buf[offset++]; *result = num; return (offset); } /* Read the variable-width string and return new offset */ static int ldm_vstr_get(const u_char *buf, int offset, u_char *result, size_t maxlen, size_t range) { uint8_t len; len = buf[offset++]; if (len >= maxlen || len + offset >= range) return (-1); memcpy(result, buf + offset, len); result[len] = '\0'; return (offset + len); } /* Just skip the variable-width variable and return new offset */ static int ldm_vparm_skip(const u_char *buf, int offset, size_t range) { uint8_t len; len = buf[offset++]; if (offset + len >= range) return (-1); return (offset + len); } static int ldm_vblk_handle(struct ldm_db *db, const u_char *p, size_t size) { struct ldm_vblk *blk; struct ldm_volume *volume, *last; const char *errstr; u_char vstr[64]; int error, offset; blk = g_malloc(sizeof(*blk), M_WAITOK | M_ZERO); blk->type = p[LDM_VBLK_TYPE_OFF]; offset = ldm_vnum_get(p, LDM_VBLK_OID_OFF, &blk->u.id, size); if (offset < 0) { errstr = "object id"; goto fail; } offset = ldm_vstr_get(p, offset, vstr, sizeof(vstr), size); if (offset < 0) { errstr = "object name"; goto fail; } switch (blk->type) { /* * Component VBLK fields: * Offset Size Description * ------------+-------+------------------------ * 0x18+ PS volume state * 0x18+5 PN component children count * 0x1D+16 PN parent's volume object id * 0x2D+1 PN stripe size */ case LDM_VBLK_T_COMPONENT: offset = ldm_vparm_skip(p, offset, size); if (offset < 0) { errstr = "volume state"; goto fail; } offset = ldm_vparm_skip(p, offset + 5, size); if (offset < 0) { errstr = "children count"; goto fail; } offset = ldm_vnum_get(p, offset + 16, &blk->u.comp.vol_id, size); if (offset < 0) { errstr = "volume id"; goto fail; } break; /* * Partition VBLK fields: * Offset Size Description * ------------+-------+------------------------ * 0x18+12 8 partition start offset * 0x18+20 8 volume offset * 0x18+28 PN partition size * 0x34+ PN parent's component object id * 0x34+ PN disk's object id */ case LDM_VBLK_T_PARTITION: if (offset + 28 >= size) { errstr = "too small buffer"; goto fail; } blk->u.part.start = be64dec(p + offset + 12); blk->u.part.offset = be64dec(p + offset + 20); offset = ldm_vnum_get(p, offset + 28, &blk->u.part.size, size); if (offset < 0) { errstr = "partition size"; goto fail; } offset = ldm_vnum_get(p, offset, &blk->u.part.comp_id, size); if (offset < 0) { errstr = "component id"; goto fail; } offset = ldm_vnum_get(p, offset, &blk->u.part.disk_id, size); if (offset < 0) { errstr = "disk id"; goto fail; } break; /* * Disk VBLK fields: * Offset Size Description * ------------+-------+------------------------ * 0x18+ PS disk GUID */ case LDM_VBLK_T_DISK: errstr = "disk guid"; offset = ldm_vstr_get(p, offset, vstr, sizeof(vstr), size); if (offset < 0) goto fail; error = parse_uuid(vstr, &blk->u.disk.guid); if (error != 0) goto fail; LIST_INSERT_HEAD(&db->disks, &blk->u.disk, entry); break; /* * Disk group VBLK fields: * Offset Size Description * ------------+-------+------------------------ * 0x18+ PS disk group GUID */ case LDM_VBLK_T_DISKGROUP: #if 0 strncpy(blk->u.disk_group.name, vstr, sizeof(blk->u.disk_group.name)); offset = ldm_vstr_get(p, offset, vstr, sizeof(vstr), size); if (offset < 0) { errstr = "disk group guid"; goto fail; } error = parse_uuid(name, &blk->u.disk_group.guid); if (error != 0) { errstr = "disk group guid"; goto fail; } LIST_INSERT_HEAD(&db->groups, &blk->u.disk_group, entry); #endif break; /* * Disk VBLK fields: * Offset Size Description * ------------+-------+------------------------ * 0x18+ 16 disk GUID */ case LDM_VBLK_T_DISK4: be_uuid_dec(p + offset, &blk->u.disk.guid); LIST_INSERT_HEAD(&db->disks, &blk->u.disk, entry); break; /* * Disk group VBLK fields: * Offset Size Description * ------------+-------+------------------------ * 0x18+ 16 disk GUID */ case LDM_VBLK_T_DISKGROUP4: #if 0 strncpy(blk->u.disk_group.name, vstr, sizeof(blk->u.disk_group.name)); be_uuid_dec(p + offset, &blk->u.disk.guid); LIST_INSERT_HEAD(&db->groups, &blk->u.disk_group, entry); #endif break; /* * Volume VBLK fields: * Offset Size Description * ------------+-------+------------------------ * 0x18+ PS volume type * 0x18+ PS unknown * 0x18+ 14(S) volume state * 0x18+16 1 volume number * 0x18+21 PN volume children count * 0x2D+16 PN volume size * 0x3D+4 1 partition type */ case LDM_VBLK_T_VOLUME: offset = ldm_vparm_skip(p, offset, size); if (offset < 0) { errstr = "volume type"; goto fail; } offset = ldm_vparm_skip(p, offset, size); if (offset < 0) { errstr = "unknown param"; goto fail; } if (offset + 21 >= size) { errstr = "too small buffer"; goto fail; } blk->u.vol.number = p[offset + 16]; offset = ldm_vparm_skip(p, offset + 21, size); if (offset < 0) { errstr = "children count"; goto fail; } offset = ldm_vnum_get(p, offset + 16, &blk->u.vol.size, size); if (offset < 0) { errstr = "volume size"; goto fail; } if (offset + 4 >= size) { errstr = "too small buffer"; goto fail; } blk->u.vol.part_type = p[offset + 4]; /* keep volumes ordered by volume number */ last = NULL; LIST_FOREACH(volume, &db->volumes, entry) { if (volume->number > blk->u.vol.number) break; last = volume; } if (last != NULL) LIST_INSERT_AFTER(last, &blk->u.vol, entry); else LIST_INSERT_HEAD(&db->volumes, &blk->u.vol, entry); break; default: LDM_DEBUG(1, "unknown VBLK type 0x%02x\n", blk->type); LDM_DUMP(p, size); } LIST_INSERT_HEAD(&db->vblks, blk, entry); return (0); fail: LDM_DEBUG(0, "failed to parse '%s' in VBLK of type 0x%02x\n", errstr, blk->type); LDM_DUMP(p, size); g_free(blk); return (EINVAL); } static void ldm_vmdb_free(struct ldm_db *db) { struct ldm_vblk *vblk; struct ldm_xvblk *xvblk; while (!LIST_EMPTY(&db->xvblks)) { xvblk = LIST_FIRST(&db->xvblks); LIST_REMOVE(xvblk, entry); g_free(xvblk->data); g_free(xvblk); } while (!LIST_EMPTY(&db->vblks)) { vblk = LIST_FIRST(&db->vblks); LIST_REMOVE(vblk, entry); g_free(vblk); } } static int ldm_vmdb_parse(struct ldm_db *db, struct g_consumer *cp) { struct g_provider *pp; struct ldm_vblk *vblk; struct ldm_xvblk *xvblk; struct ldm_volume *volume; struct ldm_component *comp; struct ldm_vblkhdr vh; u_char *buf, *p; size_t size, n, sectors; uint64_t offset; int error; pp = cp->provider; size = howmany(db->dh.last_seq * db->dh.size, pp->sectorsize); size -= 1; /* one sector takes vmdb header */ for (n = 0; n < size; n += MAXPHYS / pp->sectorsize) { offset = db->ph.db_offset + db->th.conf_offset + n + 1; sectors = (size - n) > (MAXPHYS / pp->sectorsize) ? MAXPHYS / pp->sectorsize: size - n; /* read VBLKs */ buf = g_read_data(cp, offset * pp->sectorsize, sectors * pp->sectorsize, &error); if (buf == NULL) { LDM_DEBUG(0, "%s: failed to read VBLK\n", pp->name); goto fail; } for (p = buf; p < buf + sectors * pp->sectorsize; p += db->dh.size) { if (memcmp(p, LDM_VBLK_SIGN, strlen(LDM_VBLK_SIGN)) != 0) { LDM_DEBUG(0, "%s: no VBLK signature\n", pp->name); LDM_DUMP(p, db->dh.size); goto fail; } vh.seq = be32dec(p + LDM_VBLK_SEQ_OFF); vh.group = be32dec(p + LDM_VBLK_GROUP_OFF); /* skip empty blocks */ if (vh.seq == 0 || vh.group == 0) continue; vh.index = be16dec(p + LDM_VBLK_INDEX_OFF); vh.count = be16dec(p + LDM_VBLK_COUNT_OFF); if (vh.count == 0 || vh.count > 4 || vh.seq > db->dh.last_seq) { LDM_DEBUG(0, "%s: invalid values " "in the VBLK header\n", pp->name); LDM_DUMP(p, db->dh.size); goto fail; } if (vh.count > 1) { error = ldm_xvblk_handle(db, &vh, p); if (error != 0) { LDM_DEBUG(0, "%s: xVBLK " "is corrupted\n", pp->name); LDM_DUMP(p, db->dh.size); goto fail; } continue; } if (be16dec(p + 16) != 0) LDM_DEBUG(1, "%s: VBLK update" " status is %u\n", pp->name, be16dec(p + 16)); error = ldm_vblk_handle(db, p, db->dh.size); if (error != 0) goto fail; } g_free(buf); buf = NULL; } /* Parse xVBLKs */ while (!LIST_EMPTY(&db->xvblks)) { xvblk = LIST_FIRST(&db->xvblks); if (xvblk->map == 0xFF) { error = ldm_vblk_handle(db, xvblk->data, xvblk->size); if (error != 0) goto fail; } else { LDM_DEBUG(0, "%s: incomplete or corrupt " "xVBLK found\n", pp->name); goto fail; } LIST_REMOVE(xvblk, entry); g_free(xvblk->data); g_free(xvblk); } /* construct all VBLKs relations */ LIST_FOREACH(volume, &db->volumes, entry) { LIST_FOREACH(vblk, &db->vblks, entry) if (vblk->type == LDM_VBLK_T_COMPONENT && vblk->u.comp.vol_id == volume->id) { LIST_INSERT_HEAD(&volume->components, &vblk->u.comp, entry); volume->count++; } LIST_FOREACH(comp, &volume->components, entry) LIST_FOREACH(vblk, &db->vblks, entry) if (vblk->type == LDM_VBLK_T_PARTITION && vblk->u.part.comp_id == comp->id) { LIST_INSERT_HEAD(&comp->partitions, &vblk->u.part, entry); comp->count++; } } return (0); fail: ldm_vmdb_free(db); g_free(buf); return (ENXIO); } static int g_part_ldm_add(struct g_part_table *basetable, struct g_part_entry *baseentry, struct g_part_parms *gpp) { return (ENOSYS); } static int g_part_ldm_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) { return (ENOSYS); } static int g_part_ldm_create(struct g_part_table *basetable, struct g_part_parms *gpp) { return (ENOSYS); } static int g_part_ldm_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) { struct g_part_ldm_table *table; struct g_provider *pp; table = (struct g_part_ldm_table *)basetable; /* * To destroy LDM on a disk partitioned with GPT we should delete * ms-ldm-metadata partition, but we can't do this via standard * GEOM_PART method. */ if (table->is_gpt) return (ENOSYS); pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; /* * To destroy LDM we should wipe MBR, first private header and * backup private headers. */ basetable->gpt_smhead = (1 << ldm_ph_off[0]) | 1; /* * Don't touch last backup private header when LDM database is * not located in the last 1MByte area. * XXX: can't remove all blocks. */ if (table->db_offset + LDM_DB_SIZE == pp->mediasize / pp->sectorsize) basetable->gpt_smtail = 1; return (0); } static void g_part_ldm_dumpconf(struct g_part_table *basetable, struct g_part_entry *baseentry, struct sbuf *sb, const char *indent) { struct g_part_ldm_entry *entry; entry = (struct g_part_ldm_entry *)baseentry; if (indent == NULL) { /* conftxt: libdisk compatibility */ sbuf_printf(sb, " xs LDM xt %u", entry->type); } else if (entry != NULL) { /* confxml: partition entry information */ sbuf_printf(sb, "%s%u\n", indent, entry->type); } else { /* confxml: scheme information */ } } static int g_part_ldm_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) { return (0); } static int g_part_ldm_modify(struct g_part_table *basetable, struct g_part_entry *baseentry, struct g_part_parms *gpp) { return (ENOSYS); } static const char * g_part_ldm_name(struct g_part_table *table, struct g_part_entry *baseentry, char *buf, size_t bufsz) { snprintf(buf, bufsz, "s%d", baseentry->gpe_index); return (buf); } static int ldm_gpt_probe(struct g_part_table *basetable, struct g_consumer *cp) { struct g_part_ldm_table *table; struct g_part_table *gpt; struct g_part_entry *entry; struct g_consumer *cp2; struct gpt_ent *part; u_char *buf; int error; /* * XXX: We use some knowledge about GEOM_PART_GPT internal * structures, but it is easier than parse GPT by himself. */ g_topology_lock(); gpt = cp->provider->geom->softc; LIST_FOREACH(entry, &gpt->gpt_entry, gpe_entry) { part = (struct gpt_ent *)(entry + 1); /* Search ms-ldm-metadata partition */ if (memcmp(&part->ent_type, &gpt_uuid_ms_ldm_metadata, sizeof(struct uuid)) != 0 || entry->gpe_end - entry->gpe_start < LDM_DB_SIZE - 1) continue; /* Create new consumer and attach it to metadata partition */ cp2 = g_new_consumer(cp->geom); error = g_attach(cp2, entry->gpe_pp); if (error != 0) { g_destroy_consumer(cp2); g_topology_unlock(); return (ENXIO); } error = g_access(cp2, 1, 0, 0); if (error != 0) { g_detach(cp2); g_destroy_consumer(cp2); g_topology_unlock(); return (ENXIO); } g_topology_unlock(); LDM_DEBUG(2, "%s: LDM metadata partition %s found in the GPT", cp->provider->name, cp2->provider->name); /* Read the LDM private header */ buf = ldm_privhdr_read(cp2, ldm_ph_off[LDM_PH_GPTINDEX] * cp2->provider->sectorsize, &error); if (buf != NULL) { table = (struct g_part_ldm_table *)basetable; table->is_gpt = 1; g_free(buf); return (G_PART_PROBE_PRI_HIGH); } /* second consumer is no longer needed. */ g_topology_lock(); g_access(cp2, -1, 0, 0); g_detach(cp2); g_destroy_consumer(cp2); break; } g_topology_unlock(); return (ENXIO); } static int g_part_ldm_probe(struct g_part_table *basetable, struct g_consumer *cp) { struct g_provider *pp; u_char *buf, type[64]; int error, idx; pp = cp->provider; if (pp->sectorsize != 512) return (ENXIO); error = g_getattr("PART::scheme", cp, &type); if (error == 0 && strcmp(type, "GPT") == 0) { if (g_getattr("PART::type", cp, &type) != 0 || strcmp(type, "ms-ldm-data") != 0) return (ENXIO); error = ldm_gpt_probe(basetable, cp); return (error); } if (basetable->gpt_depth != 0) return (ENXIO); /* LDM has 1M metadata area */ if (pp->mediasize <= 1024 * 1024) return (ENOSPC); /* Check that there's a MBR */ buf = g_read_data(cp, 0, pp->sectorsize, &error); if (buf == NULL) return (error); if (le16dec(buf + DOSMAGICOFFSET) != DOSMAGIC) { g_free(buf); return (ENXIO); } error = ENXIO; /* Check that we have LDM partitions in the MBR */ for (idx = 0; idx < NDOSPART && error != 0; idx++) { if (buf[DOSPARTOFF + idx * DOSPARTSIZE + 4] == DOSPTYP_LDM) error = 0; } g_free(buf); if (error == 0) { LDM_DEBUG(2, "%s: LDM data partitions found in MBR", pp->name); /* Read the LDM private header */ buf = ldm_privhdr_read(cp, ldm_ph_off[LDM_PH_MBRINDEX] * pp->sectorsize, &error); if (buf == NULL) return (error); g_free(buf); return (G_PART_PROBE_PRI_HIGH); } return (error); } static int g_part_ldm_read(struct g_part_table *basetable, struct g_consumer *cp) { struct g_part_ldm_table *table; struct g_part_ldm_entry *entry; struct g_consumer *cp2; struct ldm_component *comp; struct ldm_partition *part; struct ldm_volume *vol; struct ldm_disk *disk; struct ldm_db db; int error, index, skipped; table = (struct g_part_ldm_table *)basetable; memset(&db, 0, sizeof(db)); cp2 = cp; /* ms-ldm-data */ if (table->is_gpt) cp = LIST_FIRST(&cp->geom->consumer); /* ms-ldm-metadata */ /* Read and parse LDM private headers. */ error = ldm_privhdr_check(&db, cp, table->is_gpt); if (error != 0) goto gpt_cleanup; basetable->gpt_first = table->is_gpt ? 0: db.ph.start; basetable->gpt_last = basetable->gpt_first + db.ph.size - 1; table->db_offset = db.ph.db_offset; /* Make additional checks for GPT */ if (table->is_gpt) { error = ldm_gpt_check(&db, cp); if (error != 0) goto gpt_cleanup; /* * Now we should reset database offset to zero, because our * consumer cp is attached to the ms-ldm-metadata partition * and we don't need add db_offset to read from it. */ db.ph.db_offset = 0; } /* Read and parse LDM TOC headers. */ error = ldm_tochdr_check(&db, cp); if (error != 0) goto gpt_cleanup; /* Read and parse LDM VMDB header. */ error = ldm_vmdbhdr_check(&db, cp); if (error != 0) goto gpt_cleanup; error = ldm_vmdb_parse(&db, cp); /* * For the GPT case we must detach and destroy * second consumer before return. */ gpt_cleanup: if (table->is_gpt) { g_topology_lock(); g_access(cp, -1, 0, 0); g_detach(cp); g_destroy_consumer(cp); g_topology_unlock(); cp = cp2; } if (error != 0) return (error); /* Search current disk in the disk list. */ LIST_FOREACH(disk, &db.disks, entry) if (memcmp(&disk->guid, &db.ph.disk_guid, sizeof(struct uuid)) == 0) break; if (disk == NULL) { LDM_DEBUG(1, "%s: no LDM volumes on this disk", cp->provider->name); ldm_vmdb_free(&db); return (ENXIO); } index = 1; LIST_FOREACH(vol, &db.volumes, entry) { LIST_FOREACH(comp, &vol->components, entry) { /* Skip volumes from different disks. */ part = LIST_FIRST(&comp->partitions); if (part->disk_id != disk->id) continue; skipped = 0; /* We don't support spanned and striped volumes. */ if (comp->count > 1 || part->offset != 0) { LDM_DEBUG(1, "%s: LDM volume component " "%ju has %u partitions. Skipped", cp->provider->name, (uintmax_t)comp->id, comp->count); skipped = 1; } /* * Allow mirrored volumes only when they are explicitly * allowed with kern.geom.part.ldm.show_mirrors=1. */ if (vol->count > 1 && show_mirrors == 0) { LDM_DEBUG(1, "%s: LDM volume %ju has %u " "components. Skipped", cp->provider->name, (uintmax_t)vol->id, vol->count); skipped = 1; } entry = (struct g_part_ldm_entry *)g_part_new_entry( basetable, index++, basetable->gpt_first + part->start, basetable->gpt_first + part->start + part->size - 1); /* * Mark skipped partition as ms-ldm-data partition. * We do not support them, but it is better to show * that we have something there, than just show * free space. */ if (skipped == 0) entry->type = vol->part_type; else entry->type = DOSPTYP_LDM; LDM_DEBUG(1, "%s: new volume id: %ju, start: %ju," " end: %ju, type: 0x%02x\n", cp->provider->name, (uintmax_t)part->id,(uintmax_t)part->start + basetable->gpt_first, (uintmax_t)part->start + part->size + basetable->gpt_first - 1, vol->part_type); } } ldm_vmdb_free(&db); return (error); } static const char * g_part_ldm_type(struct g_part_table *basetable, struct g_part_entry *baseentry, char *buf, size_t bufsz) { struct g_part_ldm_entry *entry; int i; entry = (struct g_part_ldm_entry *)baseentry; for (i = 0; i < nitems(ldm_alias_match); i++) { if (ldm_alias_match[i].typ == entry->type) return (g_part_alias_name(ldm_alias_match[i].alias)); } snprintf(buf, bufsz, "!%d", entry->type); return (buf); } static int g_part_ldm_write(struct g_part_table *basetable, struct g_consumer *cp) { return (ENOSYS); } Index: head/sys/geom/part/g_part_mbr.c =================================================================== --- head/sys/geom/part/g_part_mbr.c (revision 332386) +++ head/sys/geom/part/g_part_mbr.c (revision 332387) @@ -1,615 +1,616 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2007, 2008 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "g_part_if.h" FEATURE(geom_part_mbr, "GEOM partitioning class for MBR support"); SYSCTL_DECL(_kern_geom_part); static SYSCTL_NODE(_kern_geom_part, OID_AUTO, mbr, CTLFLAG_RW, 0, "GEOM_PART_MBR Master Boot Record"); static u_int enforce_chs = 0; SYSCTL_UINT(_kern_geom_part_mbr, OID_AUTO, enforce_chs, CTLFLAG_RWTUN, &enforce_chs, 0, "Enforce alignment to CHS addressing"); #define MBRSIZE 512 struct g_part_mbr_table { struct g_part_table base; u_char mbr[MBRSIZE]; }; struct g_part_mbr_entry { struct g_part_entry base; struct dos_partition ent; }; static int g_part_mbr_add(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static int g_part_mbr_bootcode(struct g_part_table *, struct g_part_parms *); static int g_part_mbr_create(struct g_part_table *, struct g_part_parms *); static int g_part_mbr_destroy(struct g_part_table *, struct g_part_parms *); static void g_part_mbr_dumpconf(struct g_part_table *, struct g_part_entry *, struct sbuf *, const char *); static int g_part_mbr_dumpto(struct g_part_table *, struct g_part_entry *); static int g_part_mbr_modify(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static const char *g_part_mbr_name(struct g_part_table *, struct g_part_entry *, char *, size_t); static int g_part_mbr_probe(struct g_part_table *, struct g_consumer *); static int g_part_mbr_read(struct g_part_table *, struct g_consumer *); static int g_part_mbr_setunset(struct g_part_table *, struct g_part_entry *, const char *, unsigned int); static const char *g_part_mbr_type(struct g_part_table *, struct g_part_entry *, char *, size_t); static int g_part_mbr_write(struct g_part_table *, struct g_consumer *); static int g_part_mbr_resize(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static kobj_method_t g_part_mbr_methods[] = { KOBJMETHOD(g_part_add, g_part_mbr_add), KOBJMETHOD(g_part_bootcode, g_part_mbr_bootcode), KOBJMETHOD(g_part_create, g_part_mbr_create), KOBJMETHOD(g_part_destroy, g_part_mbr_destroy), KOBJMETHOD(g_part_dumpconf, g_part_mbr_dumpconf), KOBJMETHOD(g_part_dumpto, g_part_mbr_dumpto), KOBJMETHOD(g_part_modify, g_part_mbr_modify), KOBJMETHOD(g_part_resize, g_part_mbr_resize), KOBJMETHOD(g_part_name, g_part_mbr_name), KOBJMETHOD(g_part_probe, g_part_mbr_probe), KOBJMETHOD(g_part_read, g_part_mbr_read), KOBJMETHOD(g_part_setunset, g_part_mbr_setunset), KOBJMETHOD(g_part_type, g_part_mbr_type), KOBJMETHOD(g_part_write, g_part_mbr_write), { 0, 0 } }; static struct g_part_scheme g_part_mbr_scheme = { "MBR", g_part_mbr_methods, sizeof(struct g_part_mbr_table), .gps_entrysz = sizeof(struct g_part_mbr_entry), .gps_minent = NDOSPART, .gps_maxent = NDOSPART, .gps_bootcodesz = MBRSIZE, }; G_PART_SCHEME_DECLARE(g_part_mbr); +MODULE_VERSION(geom_part_mbr, 0); static struct g_part_mbr_alias { u_char typ; int alias; } mbr_alias_match[] = { { DOSPTYP_386BSD, G_PART_ALIAS_FREEBSD }, { DOSPTYP_EXT, G_PART_ALIAS_EBR }, { DOSPTYP_NTFS, G_PART_ALIAS_MS_NTFS }, { DOSPTYP_FAT16, G_PART_ALIAS_MS_FAT16 }, { DOSPTYP_FAT32, G_PART_ALIAS_MS_FAT32 }, { DOSPTYP_EXTLBA, G_PART_ALIAS_EBR }, { DOSPTYP_LDM, G_PART_ALIAS_MS_LDM_DATA }, { DOSPTYP_LINSWP, G_PART_ALIAS_LINUX_SWAP }, { DOSPTYP_LINUX, G_PART_ALIAS_LINUX_DATA }, { DOSPTYP_LINLVM, G_PART_ALIAS_LINUX_LVM }, { DOSPTYP_LINRAID, G_PART_ALIAS_LINUX_RAID }, { DOSPTYP_PPCBOOT, G_PART_ALIAS_PREP_BOOT }, { DOSPTYP_VMFS, G_PART_ALIAS_VMFS }, { DOSPTYP_VMKDIAG, G_PART_ALIAS_VMKDIAG }, { DOSPTYP_APPLE_UFS, G_PART_ALIAS_APPLE_UFS }, { DOSPTYP_APPLE_BOOT, G_PART_ALIAS_APPLE_BOOT }, { DOSPTYP_HFS, G_PART_ALIAS_APPLE_HFS }, }; static int mbr_parse_type(const char *type, u_char *dp_typ) { const char *alias; char *endp; long lt; int i; if (type[0] == '!') { lt = strtol(type + 1, &endp, 0); if (type[1] == '\0' || *endp != '\0' || lt <= 0 || lt >= 256) return (EINVAL); *dp_typ = (u_char)lt; return (0); } for (i = 0; i < nitems(mbr_alias_match); i++) { alias = g_part_alias_name(mbr_alias_match[i].alias); if (strcasecmp(type, alias) == 0) { *dp_typ = mbr_alias_match[i].typ; return (0); } } return (EINVAL); } static int mbr_probe_bpb(u_char *bpb) { uint16_t secsz; uint8_t clstsz; #define PO2(x) ((x & (x - 1)) == 0) secsz = le16dec(bpb); if (secsz < 512 || secsz > 4096 || !PO2(secsz)) return (0); clstsz = bpb[2]; if (clstsz < 1 || clstsz > 128 || !PO2(clstsz)) return (0); #undef PO2 return (1); } static void mbr_set_chs(struct g_part_table *table, uint32_t lba, u_char *cylp, u_char *hdp, u_char *secp) { uint32_t cyl, hd, sec; sec = lba % table->gpt_sectors + 1; lba /= table->gpt_sectors; hd = lba % table->gpt_heads; lba /= table->gpt_heads; cyl = lba; if (cyl > 1023) sec = hd = cyl = ~0; *cylp = cyl & 0xff; *hdp = hd & 0xff; *secp = (sec & 0x3f) | ((cyl >> 2) & 0xc0); } static int mbr_align(struct g_part_table *basetable, uint32_t *start, uint32_t *size) { uint32_t sectors; if (enforce_chs == 0) return (0); sectors = basetable->gpt_sectors; if (*size < sectors) return (EINVAL); if (start != NULL && (*start % sectors)) { *size += (*start % sectors) - sectors; *start -= (*start % sectors) - sectors; } if (*size % sectors) *size -= (*size % sectors); if (*size < sectors) return (EINVAL); return (0); } static int g_part_mbr_add(struct g_part_table *basetable, struct g_part_entry *baseentry, struct g_part_parms *gpp) { struct g_part_mbr_entry *entry; uint32_t start, size; if (gpp->gpp_parms & G_PART_PARM_LABEL) return (EINVAL); entry = (struct g_part_mbr_entry *)baseentry; start = gpp->gpp_start; size = gpp->gpp_size; if (mbr_align(basetable, &start, &size) != 0) return (EINVAL); if (baseentry->gpe_deleted) bzero(&entry->ent, sizeof(entry->ent)); KASSERT(baseentry->gpe_start <= start, ("%s", __func__)); KASSERT(baseentry->gpe_end >= start + size - 1, ("%s", __func__)); baseentry->gpe_start = start; baseentry->gpe_end = start + size - 1; entry->ent.dp_start = start; entry->ent.dp_size = size; mbr_set_chs(basetable, baseentry->gpe_start, &entry->ent.dp_scyl, &entry->ent.dp_shd, &entry->ent.dp_ssect); mbr_set_chs(basetable, baseentry->gpe_end, &entry->ent.dp_ecyl, &entry->ent.dp_ehd, &entry->ent.dp_esect); return (mbr_parse_type(gpp->gpp_type, &entry->ent.dp_typ)); } static int g_part_mbr_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) { struct g_part_mbr_table *table; uint32_t dsn; if (gpp->gpp_codesize != MBRSIZE) return (ENODEV); table = (struct g_part_mbr_table *)basetable; dsn = *(uint32_t *)(table->mbr + DOSDSNOFF); bcopy(gpp->gpp_codeptr, table->mbr, DOSPARTOFF); if (dsn != 0) *(uint32_t *)(table->mbr + DOSDSNOFF) = dsn; return (0); } static int g_part_mbr_create(struct g_part_table *basetable, struct g_part_parms *gpp) { struct g_provider *pp; struct g_part_mbr_table *table; pp = gpp->gpp_provider; if (pp->sectorsize < MBRSIZE) return (ENOSPC); basetable->gpt_first = basetable->gpt_sectors; basetable->gpt_last = MIN(pp->mediasize / pp->sectorsize, UINT32_MAX) - 1; table = (struct g_part_mbr_table *)basetable; le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); return (0); } static int g_part_mbr_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) { /* Wipe the first sector to clear the partitioning. */ basetable->gpt_smhead |= 1; return (0); } static void g_part_mbr_dumpconf(struct g_part_table *basetable, struct g_part_entry *baseentry, struct sbuf *sb, const char *indent) { struct g_part_mbr_entry *entry; struct g_part_mbr_table *table; uint32_t dsn; table = (struct g_part_mbr_table *)basetable; entry = (struct g_part_mbr_entry *)baseentry; if (indent == NULL) { /* conftxt: libdisk compatibility */ sbuf_printf(sb, " xs MBR xt %u", entry->ent.dp_typ); } else if (entry != NULL) { /* confxml: partition entry information */ sbuf_printf(sb, "%s%u\n", indent, entry->ent.dp_typ); if (entry->ent.dp_flag & 0x80) sbuf_printf(sb, "%sactive\n", indent); dsn = le32dec(table->mbr + DOSDSNOFF); sbuf_printf(sb, "%sHD(%d,MBR,%#08x,%#jx,%#jx)", indent, entry->base.gpe_index, dsn, (intmax_t)entry->base.gpe_start, (intmax_t)(entry->base.gpe_end - entry->base.gpe_start + 1)); sbuf_printf(sb, "\n"); } else { /* confxml: scheme information */ } } static int g_part_mbr_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) { struct g_part_mbr_entry *entry; /* Allow dumping to a FreeBSD partition or Linux swap partition only. */ entry = (struct g_part_mbr_entry *)baseentry; return ((entry->ent.dp_typ == DOSPTYP_386BSD || entry->ent.dp_typ == DOSPTYP_LINSWP) ? 1 : 0); } static int g_part_mbr_modify(struct g_part_table *basetable, struct g_part_entry *baseentry, struct g_part_parms *gpp) { struct g_part_mbr_entry *entry; if (gpp->gpp_parms & G_PART_PARM_LABEL) return (EINVAL); entry = (struct g_part_mbr_entry *)baseentry; if (gpp->gpp_parms & G_PART_PARM_TYPE) return (mbr_parse_type(gpp->gpp_type, &entry->ent.dp_typ)); return (0); } static int g_part_mbr_resize(struct g_part_table *basetable, struct g_part_entry *baseentry, struct g_part_parms *gpp) { struct g_part_mbr_entry *entry; struct g_provider *pp; uint32_t size; if (baseentry == NULL) { pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; basetable->gpt_last = MIN(pp->mediasize / pp->sectorsize, UINT32_MAX) - 1; return (0); } size = gpp->gpp_size; if (mbr_align(basetable, NULL, &size) != 0) return (EINVAL); /* XXX: prevent unexpected shrinking. */ pp = baseentry->gpe_pp; if ((g_debugflags & 0x10) == 0 && size < gpp->gpp_size && pp->mediasize / pp->sectorsize > size) return (EBUSY); entry = (struct g_part_mbr_entry *)baseentry; baseentry->gpe_end = baseentry->gpe_start + size - 1; entry->ent.dp_size = size; mbr_set_chs(basetable, baseentry->gpe_end, &entry->ent.dp_ecyl, &entry->ent.dp_ehd, &entry->ent.dp_esect); return (0); } static const char * g_part_mbr_name(struct g_part_table *table, struct g_part_entry *baseentry, char *buf, size_t bufsz) { snprintf(buf, bufsz, "s%d", baseentry->gpe_index); return (buf); } static int g_part_mbr_probe(struct g_part_table *table, struct g_consumer *cp) { char psn[8]; struct g_provider *pp; u_char *buf, *p; int error, index, res, sum; uint16_t magic; pp = cp->provider; /* Sanity-check the provider. */ if (pp->sectorsize < MBRSIZE || pp->mediasize < pp->sectorsize) return (ENOSPC); if (pp->sectorsize > 4096) return (ENXIO); /* We don't nest under an MBR (see EBR instead). */ error = g_getattr("PART::scheme", cp, &psn); if (error == 0 && strcmp(psn, g_part_mbr_scheme.name) == 0) return (ELOOP); /* Check that there's a MBR. */ buf = g_read_data(cp, 0L, pp->sectorsize, &error); if (buf == NULL) return (error); /* We goto out on mismatch. */ res = ENXIO; magic = le16dec(buf + DOSMAGICOFFSET); if (magic != DOSMAGIC) goto out; for (index = 0; index < NDOSPART; index++) { p = buf + DOSPARTOFF + index * DOSPARTSIZE; if (p[0] != 0 && p[0] != 0x80) goto out; } /* * If the partition table does not consist of all zeroes, * assume we have a MBR. If it's all zeroes, we could have * a boot sector. For example, a boot sector that doesn't * have boot code -- common on non-i386 hardware. In that * case we check if we have a possible BPB. If so, then we * assume we have a boot sector instead. */ sum = 0; for (index = 0; index < NDOSPART * DOSPARTSIZE; index++) sum += buf[DOSPARTOFF + index]; if (sum != 0 || !mbr_probe_bpb(buf + 0x0b)) res = G_PART_PROBE_PRI_NORM; out: g_free(buf); return (res); } static int g_part_mbr_read(struct g_part_table *basetable, struct g_consumer *cp) { struct dos_partition ent; struct g_provider *pp; struct g_part_mbr_table *table; struct g_part_mbr_entry *entry; u_char *buf, *p; off_t chs, msize, first; u_int sectors, heads; int error, index; pp = cp->provider; table = (struct g_part_mbr_table *)basetable; first = basetable->gpt_sectors; msize = MIN(pp->mediasize / pp->sectorsize, UINT32_MAX); buf = g_read_data(cp, 0L, pp->sectorsize, &error); if (buf == NULL) return (error); bcopy(buf, table->mbr, sizeof(table->mbr)); for (index = NDOSPART - 1; index >= 0; index--) { p = buf + DOSPARTOFF + index * DOSPARTSIZE; ent.dp_flag = p[0]; ent.dp_shd = p[1]; ent.dp_ssect = p[2]; ent.dp_scyl = p[3]; ent.dp_typ = p[4]; ent.dp_ehd = p[5]; ent.dp_esect = p[6]; ent.dp_ecyl = p[7]; ent.dp_start = le32dec(p + 8); ent.dp_size = le32dec(p + 12); if (ent.dp_typ == 0 || ent.dp_typ == DOSPTYP_PMBR) continue; if (ent.dp_start == 0 || ent.dp_size == 0) continue; sectors = ent.dp_esect & 0x3f; if (sectors > basetable->gpt_sectors && !basetable->gpt_fixgeom) { g_part_geometry_heads(msize, sectors, &chs, &heads); if (chs != 0) { basetable->gpt_sectors = sectors; basetable->gpt_heads = heads; } } if (ent.dp_start < first) first = ent.dp_start; entry = (struct g_part_mbr_entry *)g_part_new_entry(basetable, index + 1, ent.dp_start, ent.dp_start + ent.dp_size - 1); entry->ent = ent; } basetable->gpt_entries = NDOSPART; basetable->gpt_first = basetable->gpt_sectors; basetable->gpt_last = msize - 1; if (first < basetable->gpt_first) basetable->gpt_first = 1; g_free(buf); return (0); } static int g_part_mbr_setunset(struct g_part_table *table, struct g_part_entry *baseentry, const char *attrib, unsigned int set) { struct g_part_entry *iter; struct g_part_mbr_entry *entry; int changed; if (baseentry == NULL) return (ENODEV); if (strcasecmp(attrib, "active") != 0) return (EINVAL); /* Only one entry can have the active attribute. */ LIST_FOREACH(iter, &table->gpt_entry, gpe_entry) { if (iter->gpe_deleted) continue; changed = 0; entry = (struct g_part_mbr_entry *)iter; if (iter == baseentry) { if (set && (entry->ent.dp_flag & 0x80) == 0) { entry->ent.dp_flag |= 0x80; changed = 1; } else if (!set && (entry->ent.dp_flag & 0x80)) { entry->ent.dp_flag &= ~0x80; changed = 1; } } else { if (set && (entry->ent.dp_flag & 0x80)) { entry->ent.dp_flag &= ~0x80; changed = 1; } } if (changed && !iter->gpe_created) iter->gpe_modified = 1; } return (0); } static const char * g_part_mbr_type(struct g_part_table *basetable, struct g_part_entry *baseentry, char *buf, size_t bufsz) { struct g_part_mbr_entry *entry; int i; entry = (struct g_part_mbr_entry *)baseentry; for (i = 0; i < nitems(mbr_alias_match); i++) { if (mbr_alias_match[i].typ == entry->ent.dp_typ) return (g_part_alias_name(mbr_alias_match[i].alias)); } snprintf(buf, bufsz, "!%d", entry->ent.dp_typ); return (buf); } static int g_part_mbr_write(struct g_part_table *basetable, struct g_consumer *cp) { struct g_part_entry *baseentry; struct g_part_mbr_entry *entry; struct g_part_mbr_table *table; u_char *p; int error, index; table = (struct g_part_mbr_table *)basetable; baseentry = LIST_FIRST(&basetable->gpt_entry); for (index = 1; index <= basetable->gpt_entries; index++) { p = table->mbr + DOSPARTOFF + (index - 1) * DOSPARTSIZE; entry = (baseentry != NULL && index == baseentry->gpe_index) ? (struct g_part_mbr_entry *)baseentry : NULL; if (entry != NULL && !baseentry->gpe_deleted) { p[0] = entry->ent.dp_flag; p[1] = entry->ent.dp_shd; p[2] = entry->ent.dp_ssect; p[3] = entry->ent.dp_scyl; p[4] = entry->ent.dp_typ; p[5] = entry->ent.dp_ehd; p[6] = entry->ent.dp_esect; p[7] = entry->ent.dp_ecyl; le32enc(p + 8, entry->ent.dp_start); le32enc(p + 12, entry->ent.dp_size); } else bzero(p, DOSPARTSIZE); if (entry != NULL) baseentry = LIST_NEXT(baseentry, gpe_entry); } error = g_write_data(cp, 0, table->mbr, cp->provider->sectorsize); return (error); } Index: head/sys/geom/part/g_part_vtoc8.c =================================================================== --- head/sys/geom/part/g_part_vtoc8.c (revision 332386) +++ head/sys/geom/part/g_part_vtoc8.c (revision 332387) @@ -1,601 +1,602 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2008 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "g_part_if.h" FEATURE(geom_part_vtoc8, "GEOM partitioning class for SMI VTOC8 disk labels"); struct g_part_vtoc8_table { struct g_part_table base; struct vtoc8 vtoc; uint32_t secpercyl; }; static int g_part_vtoc8_add(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static int g_part_vtoc8_create(struct g_part_table *, struct g_part_parms *); static int g_part_vtoc8_destroy(struct g_part_table *, struct g_part_parms *); static void g_part_vtoc8_dumpconf(struct g_part_table *, struct g_part_entry *, struct sbuf *, const char *); static int g_part_vtoc8_dumpto(struct g_part_table *, struct g_part_entry *); static int g_part_vtoc8_modify(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static const char *g_part_vtoc8_name(struct g_part_table *, struct g_part_entry *, char *, size_t); static int g_part_vtoc8_probe(struct g_part_table *, struct g_consumer *); static int g_part_vtoc8_read(struct g_part_table *, struct g_consumer *); static const char *g_part_vtoc8_type(struct g_part_table *, struct g_part_entry *, char *, size_t); static int g_part_vtoc8_write(struct g_part_table *, struct g_consumer *); static int g_part_vtoc8_resize(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static kobj_method_t g_part_vtoc8_methods[] = { KOBJMETHOD(g_part_add, g_part_vtoc8_add), KOBJMETHOD(g_part_create, g_part_vtoc8_create), KOBJMETHOD(g_part_destroy, g_part_vtoc8_destroy), KOBJMETHOD(g_part_dumpconf, g_part_vtoc8_dumpconf), KOBJMETHOD(g_part_dumpto, g_part_vtoc8_dumpto), KOBJMETHOD(g_part_modify, g_part_vtoc8_modify), KOBJMETHOD(g_part_resize, g_part_vtoc8_resize), KOBJMETHOD(g_part_name, g_part_vtoc8_name), KOBJMETHOD(g_part_probe, g_part_vtoc8_probe), KOBJMETHOD(g_part_read, g_part_vtoc8_read), KOBJMETHOD(g_part_type, g_part_vtoc8_type), KOBJMETHOD(g_part_write, g_part_vtoc8_write), { 0, 0 } }; static struct g_part_scheme g_part_vtoc8_scheme = { "VTOC8", g_part_vtoc8_methods, sizeof(struct g_part_vtoc8_table), .gps_entrysz = sizeof(struct g_part_entry), .gps_minent = VTOC8_NPARTS, .gps_maxent = VTOC8_NPARTS, }; G_PART_SCHEME_DECLARE(g_part_vtoc8); +MODULE_VERSION(geom_part_vtoc8, 0); static int vtoc8_parse_type(const char *type, uint16_t *tag) { const char *alias; char *endp; long lt; if (type[0] == '!') { lt = strtol(type + 1, &endp, 0); if (type[1] == '\0' || *endp != '\0' || lt <= 0 || lt >= 65536) return (EINVAL); *tag = (uint16_t)lt; return (0); } alias = g_part_alias_name(G_PART_ALIAS_FREEBSD_NANDFS); if (!strcasecmp(type, alias)) { *tag = VTOC_TAG_FREEBSD_NANDFS; return (0); } alias = g_part_alias_name(G_PART_ALIAS_FREEBSD_SWAP); if (!strcasecmp(type, alias)) { *tag = VTOC_TAG_FREEBSD_SWAP; return (0); } alias = g_part_alias_name(G_PART_ALIAS_FREEBSD_UFS); if (!strcasecmp(type, alias)) { *tag = VTOC_TAG_FREEBSD_UFS; return (0); } alias = g_part_alias_name(G_PART_ALIAS_FREEBSD_VINUM); if (!strcasecmp(type, alias)) { *tag = VTOC_TAG_FREEBSD_VINUM; return (0); } alias = g_part_alias_name(G_PART_ALIAS_FREEBSD_ZFS); if (!strcasecmp(type, alias)) { *tag = VTOC_TAG_FREEBSD_ZFS; return (0); } return (EINVAL); } static int vtoc8_align(struct g_part_vtoc8_table *table, uint64_t *start, uint64_t *size) { if (*size < table->secpercyl) return (EINVAL); if (start != NULL && (*start % table->secpercyl)) { *size += (*start % table->secpercyl) - table->secpercyl; *start -= (*start % table->secpercyl) - table->secpercyl; } if (*size % table->secpercyl) *size -= (*size % table->secpercyl); if (*size < table->secpercyl) return (EINVAL); return (0); } static int g_part_vtoc8_add(struct g_part_table *basetable, struct g_part_entry *entry, struct g_part_parms *gpp) { struct g_part_vtoc8_table *table; int error, index; uint64_t start, size; uint16_t tag; if (gpp->gpp_parms & G_PART_PARM_LABEL) return (EINVAL); error = vtoc8_parse_type(gpp->gpp_type, &tag); if (error) return (error); table = (struct g_part_vtoc8_table *)basetable; index = entry->gpe_index - 1; start = gpp->gpp_start; size = gpp->gpp_size; if (vtoc8_align(table, &start, &size) != 0) return (EINVAL); KASSERT(entry->gpe_start <= start, (__func__)); KASSERT(entry->gpe_end >= start + size - 1, (__func__)); entry->gpe_start = start; entry->gpe_end = start + size - 1; be16enc(&table->vtoc.part[index].tag, tag); be16enc(&table->vtoc.part[index].flag, 0); be32enc(&table->vtoc.timestamp[index], 0); be32enc(&table->vtoc.map[index].cyl, start / table->secpercyl); be32enc(&table->vtoc.map[index].nblks, size); return (0); } static int g_part_vtoc8_create(struct g_part_table *basetable, struct g_part_parms *gpp) { struct g_provider *pp; struct g_part_entry *entry; struct g_part_vtoc8_table *table; uint64_t msize; uint32_t acyls, ncyls, pcyls; pp = gpp->gpp_provider; if (pp->sectorsize < sizeof(struct vtoc8)) return (ENOSPC); if (pp->sectorsize > sizeof(struct vtoc8)) return (ENXIO); table = (struct g_part_vtoc8_table *)basetable; msize = MIN(pp->mediasize / pp->sectorsize, UINT32_MAX); table->secpercyl = basetable->gpt_sectors * basetable->gpt_heads; pcyls = msize / table->secpercyl; acyls = 2; ncyls = pcyls - acyls; msize = ncyls * table->secpercyl; sprintf(table->vtoc.ascii, "FreeBSD%lldM cyl %u alt %u hd %u sec %u", (long long)(msize / 2048), ncyls, acyls, basetable->gpt_heads, basetable->gpt_sectors); be32enc(&table->vtoc.version, VTOC_VERSION); be16enc(&table->vtoc.nparts, VTOC8_NPARTS); be32enc(&table->vtoc.sanity, VTOC_SANITY); be16enc(&table->vtoc.rpm, 3600); be16enc(&table->vtoc.physcyls, pcyls); be16enc(&table->vtoc.ncyls, ncyls); be16enc(&table->vtoc.altcyls, acyls); be16enc(&table->vtoc.nheads, basetable->gpt_heads); be16enc(&table->vtoc.nsecs, basetable->gpt_sectors); be16enc(&table->vtoc.magic, VTOC_MAGIC); basetable->gpt_first = 0; basetable->gpt_last = msize - 1; basetable->gpt_isleaf = 1; entry = g_part_new_entry(basetable, VTOC_RAW_PART + 1, basetable->gpt_first, basetable->gpt_last); entry->gpe_internal = 1; be16enc(&table->vtoc.part[VTOC_RAW_PART].tag, VTOC_TAG_BACKUP); be32enc(&table->vtoc.map[VTOC_RAW_PART].nblks, msize); return (0); } static int g_part_vtoc8_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) { /* Wipe the first sector to clear the partitioning. */ basetable->gpt_smhead |= 1; return (0); } static void g_part_vtoc8_dumpconf(struct g_part_table *basetable, struct g_part_entry *entry, struct sbuf *sb, const char *indent) { struct g_part_vtoc8_table *table; table = (struct g_part_vtoc8_table *)basetable; if (indent == NULL) { /* conftxt: libdisk compatibility */ sbuf_printf(sb, " xs SUN sc %u hd %u alt %u", be16dec(&table->vtoc.nsecs), be16dec(&table->vtoc.nheads), be16dec(&table->vtoc.altcyls)); } else if (entry != NULL) { /* confxml: partition entry information */ sbuf_printf(sb, "%s%u\n", indent, be16dec(&table->vtoc.part[entry->gpe_index - 1].tag)); } else { /* confxml: scheme information */ } } static int g_part_vtoc8_dumpto(struct g_part_table *basetable, struct g_part_entry *entry) { struct g_part_vtoc8_table *table; uint16_t tag; /* * Allow dumping to a swap partition or a partition that * has no type. */ table = (struct g_part_vtoc8_table *)basetable; tag = be16dec(&table->vtoc.part[entry->gpe_index - 1].tag); return ((tag == 0 || tag == VTOC_TAG_FREEBSD_SWAP || tag == VTOC_TAG_SWAP) ? 1 : 0); } static int g_part_vtoc8_modify(struct g_part_table *basetable, struct g_part_entry *entry, struct g_part_parms *gpp) { struct g_part_vtoc8_table *table; int error; uint16_t tag; if (gpp->gpp_parms & G_PART_PARM_LABEL) return (EINVAL); table = (struct g_part_vtoc8_table *)basetable; if (gpp->gpp_parms & G_PART_PARM_TYPE) { error = vtoc8_parse_type(gpp->gpp_type, &tag); if (error) return(error); be16enc(&table->vtoc.part[entry->gpe_index - 1].tag, tag); } return (0); } static int vtoc8_set_rawsize(struct g_part_table *basetable, struct g_provider *pp) { struct g_part_vtoc8_table *table; struct g_part_entry *baseentry; off_t msize; uint32_t acyls, ncyls, pcyls; table = (struct g_part_vtoc8_table *)basetable; msize = MIN(pp->mediasize / pp->sectorsize, UINT32_MAX); pcyls = msize / table->secpercyl; if (pcyls > UINT16_MAX) return (ERANGE); acyls = be16dec(&table->vtoc.altcyls); ncyls = pcyls - acyls; msize = ncyls * table->secpercyl; basetable->gpt_last = msize - 1; bzero(table->vtoc.ascii, sizeof(table->vtoc.ascii)); sprintf(table->vtoc.ascii, "FreeBSD%lldM cyl %u alt %u hd %u sec %u", (long long)(msize / 2048), ncyls, acyls, basetable->gpt_heads, basetable->gpt_sectors); be16enc(&table->vtoc.physcyls, pcyls); be16enc(&table->vtoc.ncyls, ncyls); be32enc(&table->vtoc.map[VTOC_RAW_PART].nblks, msize); if (be32dec(&table->vtoc.sanity) == VTOC_SANITY) be16enc(&table->vtoc.part[VTOC_RAW_PART].tag, VTOC_TAG_BACKUP); LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { if (baseentry->gpe_index == VTOC_RAW_PART + 1) { baseentry->gpe_end = basetable->gpt_last; return (0); } } return (ENXIO); } static int g_part_vtoc8_resize(struct g_part_table *basetable, struct g_part_entry *entry, struct g_part_parms *gpp) { struct g_part_vtoc8_table *table; struct g_provider *pp; uint64_t size; if (entry == NULL) { pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; return (vtoc8_set_rawsize(basetable, pp)); } table = (struct g_part_vtoc8_table *)basetable; size = gpp->gpp_size; if (vtoc8_align(table, NULL, &size) != 0) return (EINVAL); /* XXX: prevent unexpected shrinking. */ pp = entry->gpe_pp; if ((g_debugflags & 0x10) == 0 && size < gpp->gpp_size && pp->mediasize / pp->sectorsize > size) return (EBUSY); entry->gpe_end = entry->gpe_start + size - 1; be32enc(&table->vtoc.map[entry->gpe_index - 1].nblks, size); return (0); } static const char * g_part_vtoc8_name(struct g_part_table *table, struct g_part_entry *baseentry, char *buf, size_t bufsz) { snprintf(buf, bufsz, "%c", 'a' + baseentry->gpe_index - 1); return (buf); } static int g_part_vtoc8_probe(struct g_part_table *table, struct g_consumer *cp) { struct g_provider *pp; u_char *buf; int error, ofs, res; uint16_t cksum, magic; pp = cp->provider; /* Sanity-check the provider. */ if (pp->sectorsize != sizeof(struct vtoc8)) return (ENOSPC); /* Check that there's a disklabel. */ buf = g_read_data(cp, 0, pp->sectorsize, &error); if (buf == NULL) return (error); res = ENXIO; /* Assume mismatch */ /* Check the magic */ magic = be16dec(buf + offsetof(struct vtoc8, magic)); if (magic != VTOC_MAGIC) goto out; /* Check the sum */ cksum = 0; for (ofs = 0; ofs < sizeof(struct vtoc8); ofs += 2) cksum ^= be16dec(buf + ofs); if (cksum != 0) goto out; res = G_PART_PROBE_PRI_NORM; out: g_free(buf); return (res); } static int g_part_vtoc8_read(struct g_part_table *basetable, struct g_consumer *cp) { struct g_provider *pp; struct g_part_vtoc8_table *table; struct g_part_entry *entry; u_char *buf; off_t chs, msize; uint64_t offset, size; u_int cyls, heads, sectors; int error, index, withtags; uint16_t tag; pp = cp->provider; buf = g_read_data(cp, 0, pp->sectorsize, &error); if (buf == NULL) return (error); table = (struct g_part_vtoc8_table *)basetable; bcopy(buf, &table->vtoc, sizeof(table->vtoc)); g_free(buf); msize = MIN(pp->mediasize / pp->sectorsize, UINT32_MAX); sectors = be16dec(&table->vtoc.nsecs); if (sectors < 1) goto invalid_label; if (sectors != basetable->gpt_sectors && !basetable->gpt_fixgeom) { g_part_geometry_heads(msize, sectors, &chs, &heads); if (chs != 0) { basetable->gpt_sectors = sectors; basetable->gpt_heads = heads; } } heads = be16dec(&table->vtoc.nheads); if (heads < 1) goto invalid_label; if (heads != basetable->gpt_heads && !basetable->gpt_fixgeom) basetable->gpt_heads = heads; /* * Except for ATA disks > 32GB, Solaris uses the native geometry * as reported by the target for the labels while da(4) typically * uses a synthetic one so we don't complain too loudly if these * geometries don't match. */ if (bootverbose && (sectors != basetable->gpt_sectors || heads != basetable->gpt_heads)) printf("GEOM: %s: geometry does not match VTOC8 label " "(label: %uh,%us GEOM: %uh,%us).\n", pp->name, heads, sectors, basetable->gpt_heads, basetable->gpt_sectors); table->secpercyl = heads * sectors; cyls = be16dec(&table->vtoc.ncyls); chs = cyls * table->secpercyl; if (chs < 1 || chs > msize) goto invalid_label; basetable->gpt_first = 0; basetable->gpt_last = chs - 1; basetable->gpt_isleaf = 1; withtags = (be32dec(&table->vtoc.sanity) == VTOC_SANITY) ? 1 : 0; if (!withtags) { printf("GEOM: %s: adding VTOC8 information.\n", pp->name); be32enc(&table->vtoc.version, VTOC_VERSION); bzero(&table->vtoc.volume, VTOC_VOLUME_LEN); be16enc(&table->vtoc.nparts, VTOC8_NPARTS); bzero(&table->vtoc.part, sizeof(table->vtoc.part)); be32enc(&table->vtoc.sanity, VTOC_SANITY); } basetable->gpt_entries = be16dec(&table->vtoc.nparts); if (basetable->gpt_entries < g_part_vtoc8_scheme.gps_minent || basetable->gpt_entries > g_part_vtoc8_scheme.gps_maxent) goto invalid_label; for (index = basetable->gpt_entries - 1; index >= 0; index--) { offset = be32dec(&table->vtoc.map[index].cyl) * table->secpercyl; size = be32dec(&table->vtoc.map[index].nblks); if (size == 0) continue; if (withtags) tag = be16dec(&table->vtoc.part[index].tag); else tag = (index == VTOC_RAW_PART) ? VTOC_TAG_BACKUP : VTOC_TAG_UNASSIGNED; if (index == VTOC_RAW_PART && tag != VTOC_TAG_BACKUP) continue; if (index != VTOC_RAW_PART && tag == VTOC_TAG_BACKUP) continue; entry = g_part_new_entry(basetable, index + 1, offset, offset + size - 1); if (tag == VTOC_TAG_BACKUP) entry->gpe_internal = 1; if (!withtags) be16enc(&table->vtoc.part[index].tag, tag); } return (0); invalid_label: printf("GEOM: %s: invalid VTOC8 label.\n", pp->name); return (EINVAL); } static const char * g_part_vtoc8_type(struct g_part_table *basetable, struct g_part_entry *entry, char *buf, size_t bufsz) { struct g_part_vtoc8_table *table; uint16_t tag; table = (struct g_part_vtoc8_table *)basetable; tag = be16dec(&table->vtoc.part[entry->gpe_index - 1].tag); if (tag == VTOC_TAG_FREEBSD_NANDFS) return (g_part_alias_name(G_PART_ALIAS_FREEBSD_NANDFS)); if (tag == VTOC_TAG_FREEBSD_SWAP) return (g_part_alias_name(G_PART_ALIAS_FREEBSD_SWAP)); if (tag == VTOC_TAG_FREEBSD_UFS) return (g_part_alias_name(G_PART_ALIAS_FREEBSD_UFS)); if (tag == VTOC_TAG_FREEBSD_VINUM) return (g_part_alias_name(G_PART_ALIAS_FREEBSD_VINUM)); if (tag == VTOC_TAG_FREEBSD_ZFS) return (g_part_alias_name(G_PART_ALIAS_FREEBSD_ZFS)); snprintf(buf, bufsz, "!%d", tag); return (buf); } static int g_part_vtoc8_write(struct g_part_table *basetable, struct g_consumer *cp) { struct g_provider *pp; struct g_part_entry *entry; struct g_part_vtoc8_table *table; uint16_t sum; u_char *p; int error, index, match, offset; pp = cp->provider; table = (struct g_part_vtoc8_table *)basetable; entry = LIST_FIRST(&basetable->gpt_entry); for (index = 0; index < basetable->gpt_entries; index++) { match = (entry != NULL && index == entry->gpe_index - 1) ? 1 : 0; if (match) { if (entry->gpe_deleted) { be16enc(&table->vtoc.part[index].tag, 0); be16enc(&table->vtoc.part[index].flag, 0); be32enc(&table->vtoc.map[index].cyl, 0); be32enc(&table->vtoc.map[index].nblks, 0); } entry = LIST_NEXT(entry, gpe_entry); } } /* Calculate checksum. */ sum = 0; p = (void *)&table->vtoc; for (offset = 0; offset < sizeof(table->vtoc) - 2; offset += 2) sum ^= be16dec(p + offset); be16enc(&table->vtoc.cksum, sum); error = g_write_data(cp, 0, p, pp->sectorsize); return (error); } Index: head/sys/geom/raid3/g_raid3.c =================================================================== --- head/sys/geom/raid3/g_raid3.c (revision 332386) +++ head/sys/geom/raid3/g_raid3.c (revision 332387) @@ -1,3585 +1,3586 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2004-2006 Pawel Jakub Dawidek * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include FEATURE(geom_raid3, "GEOM RAID-3 functionality"); static MALLOC_DEFINE(M_RAID3, "raid3_data", "GEOM_RAID3 Data"); SYSCTL_DECL(_kern_geom); static SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW, 0, "GEOM_RAID3 stuff"); u_int g_raid3_debug = 0; SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid3_debug, 0, "Debug level"); static u_int g_raid3_timeout = 4; SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RWTUN, &g_raid3_timeout, 0, "Time to wait on all raid3 components"); static u_int g_raid3_idletime = 5; SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RWTUN, &g_raid3_idletime, 0, "Mark components as clean when idling"); static u_int g_raid3_disconnect_on_failure = 1; SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN, &g_raid3_disconnect_on_failure, 0, "Disconnect component on I/O failure."); static u_int g_raid3_syncreqs = 2; SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, sync_requests, CTLFLAG_RDTUN, &g_raid3_syncreqs, 0, "Parallel synchronization I/O requests."); static u_int g_raid3_use_malloc = 0; SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, use_malloc, CTLFLAG_RDTUN, &g_raid3_use_malloc, 0, "Use malloc(9) instead of uma(9)."); static u_int g_raid3_n64k = 50; SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RDTUN, &g_raid3_n64k, 0, "Maximum number of 64kB allocations"); static u_int g_raid3_n16k = 200; SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RDTUN, &g_raid3_n16k, 0, "Maximum number of 16kB allocations"); static u_int g_raid3_n4k = 1200; SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RDTUN, &g_raid3_n4k, 0, "Maximum number of 4kB allocations"); static SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat, CTLFLAG_RW, 0, "GEOM_RAID3 statistics"); static u_int g_raid3_parity_mismatch = 0; SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD, &g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode"); #define MSLEEP(ident, mtx, priority, wmesg, timeout) do { \ G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \ msleep((ident), (mtx), (priority), (wmesg), (timeout)); \ G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \ } while (0) static eventhandler_tag g_raid3_post_sync = NULL; static int g_raid3_shutdown = 0; static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp); static g_taste_t g_raid3_taste; static void g_raid3_init(struct g_class *mp); static void g_raid3_fini(struct g_class *mp); struct g_class g_raid3_class = { .name = G_RAID3_CLASS_NAME, .version = G_VERSION, .ctlreq = g_raid3_config, .taste = g_raid3_taste, .destroy_geom = g_raid3_destroy_geom, .init = g_raid3_init, .fini = g_raid3_fini }; static void g_raid3_destroy_provider(struct g_raid3_softc *sc); static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state); static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force); static void g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type); static int g_raid3_register_request(struct bio *pbp); static void g_raid3_sync_release(struct g_raid3_softc *sc); static const char * g_raid3_disk_state2str(int state) { switch (state) { case G_RAID3_DISK_STATE_NODISK: return ("NODISK"); case G_RAID3_DISK_STATE_NONE: return ("NONE"); case G_RAID3_DISK_STATE_NEW: return ("NEW"); case G_RAID3_DISK_STATE_ACTIVE: return ("ACTIVE"); case G_RAID3_DISK_STATE_STALE: return ("STALE"); case G_RAID3_DISK_STATE_SYNCHRONIZING: return ("SYNCHRONIZING"); case G_RAID3_DISK_STATE_DISCONNECTED: return ("DISCONNECTED"); default: return ("INVALID"); } } static const char * g_raid3_device_state2str(int state) { switch (state) { case G_RAID3_DEVICE_STATE_STARTING: return ("STARTING"); case G_RAID3_DEVICE_STATE_DEGRADED: return ("DEGRADED"); case G_RAID3_DEVICE_STATE_COMPLETE: return ("COMPLETE"); default: return ("INVALID"); } } const char * g_raid3_get_diskname(struct g_raid3_disk *disk) { if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL) return ("[unknown]"); return (disk->d_name); } static void * g_raid3_alloc(struct g_raid3_softc *sc, size_t size, int flags) { void *ptr; enum g_raid3_zones zone; if (g_raid3_use_malloc || (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES) ptr = malloc(size, M_RAID3, flags); else { ptr = uma_zalloc_arg(sc->sc_zones[zone].sz_zone, &sc->sc_zones[zone], flags); sc->sc_zones[zone].sz_requested++; if (ptr == NULL) sc->sc_zones[zone].sz_failed++; } return (ptr); } static void g_raid3_free(struct g_raid3_softc *sc, void *ptr, size_t size) { enum g_raid3_zones zone; if (g_raid3_use_malloc || (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES) free(ptr, M_RAID3); else { uma_zfree_arg(sc->sc_zones[zone].sz_zone, ptr, &sc->sc_zones[zone]); } } static int g_raid3_uma_ctor(void *mem, int size, void *arg, int flags) { struct g_raid3_zone *sz = arg; if (sz->sz_max > 0 && sz->sz_inuse == sz->sz_max) return (ENOMEM); sz->sz_inuse++; return (0); } static void g_raid3_uma_dtor(void *mem, int size, void *arg) { struct g_raid3_zone *sz = arg; sz->sz_inuse--; } #define g_raid3_xor(src, dst, size) \ _g_raid3_xor((uint64_t *)(src), \ (uint64_t *)(dst), (size_t)size) static void _g_raid3_xor(uint64_t *src, uint64_t *dst, size_t size) { KASSERT((size % 128) == 0, ("Invalid size: %zu.", size)); for (; size > 0; size -= 128) { *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); *dst++ ^= (*src++); } } static int g_raid3_is_zero(struct bio *bp) { static const uint64_t zeros[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; u_char *addr; ssize_t size; size = bp->bio_length; addr = (u_char *)bp->bio_data; for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) { if (bcmp(addr, zeros, sizeof(zeros)) != 0) return (0); } return (1); } /* * --- Events handling functions --- * Events in geom_raid3 are used to maintain disks and device status * from one thread to simplify locking. */ static void g_raid3_event_free(struct g_raid3_event *ep) { free(ep, M_RAID3); } int g_raid3_event_send(void *arg, int state, int flags) { struct g_raid3_softc *sc; struct g_raid3_disk *disk; struct g_raid3_event *ep; int error; ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK); G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep); if ((flags & G_RAID3_EVENT_DEVICE) != 0) { disk = NULL; sc = arg; } else { disk = arg; sc = disk->d_softc; } ep->e_disk = disk; ep->e_state = state; ep->e_flags = flags; ep->e_error = 0; mtx_lock(&sc->sc_events_mtx); TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next); mtx_unlock(&sc->sc_events_mtx); G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); mtx_lock(&sc->sc_queue_mtx); wakeup(sc); wakeup(&sc->sc_queue); mtx_unlock(&sc->sc_queue_mtx); if ((flags & G_RAID3_EVENT_DONTWAIT) != 0) return (0); sx_assert(&sc->sc_lock, SX_XLOCKED); G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep); sx_xunlock(&sc->sc_lock); while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) { mtx_lock(&sc->sc_events_mtx); MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event", hz * 5); } error = ep->e_error; g_raid3_event_free(ep); sx_xlock(&sc->sc_lock); return (error); } static struct g_raid3_event * g_raid3_event_get(struct g_raid3_softc *sc) { struct g_raid3_event *ep; mtx_lock(&sc->sc_events_mtx); ep = TAILQ_FIRST(&sc->sc_events); mtx_unlock(&sc->sc_events_mtx); return (ep); } static void g_raid3_event_remove(struct g_raid3_softc *sc, struct g_raid3_event *ep) { mtx_lock(&sc->sc_events_mtx); TAILQ_REMOVE(&sc->sc_events, ep, e_next); mtx_unlock(&sc->sc_events_mtx); } static void g_raid3_event_cancel(struct g_raid3_disk *disk) { struct g_raid3_softc *sc; struct g_raid3_event *ep, *tmpep; sc = disk->d_softc; sx_assert(&sc->sc_lock, SX_XLOCKED); mtx_lock(&sc->sc_events_mtx); TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) { if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) continue; if (ep->e_disk != disk) continue; TAILQ_REMOVE(&sc->sc_events, ep, e_next); if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) g_raid3_event_free(ep); else { ep->e_error = ECANCELED; wakeup(ep); } } mtx_unlock(&sc->sc_events_mtx); } /* * Return the number of disks in the given state. * If state is equal to -1, count all connected disks. */ u_int g_raid3_ndisks(struct g_raid3_softc *sc, int state) { struct g_raid3_disk *disk; u_int n, ndisks; sx_assert(&sc->sc_lock, SX_LOCKED); for (n = ndisks = 0; n < sc->sc_ndisks; n++) { disk = &sc->sc_disks[n]; if (disk->d_state == G_RAID3_DISK_STATE_NODISK) continue; if (state == -1 || disk->d_state == state) ndisks++; } return (ndisks); } static u_int g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp) { struct bio *bp; u_int nreqs = 0; mtx_lock(&sc->sc_queue_mtx); TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { if (bp->bio_from == cp) nreqs++; } mtx_unlock(&sc->sc_queue_mtx); return (nreqs); } static int g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp) { if (cp->index > 0) { G_RAID3_DEBUG(2, "I/O requests for %s exist, can't destroy it now.", cp->provider->name); return (1); } if (g_raid3_nrequests(sc, cp) > 0) { G_RAID3_DEBUG(2, "I/O requests for %s in queue, can't destroy it now.", cp->provider->name); return (1); } return (0); } static void g_raid3_destroy_consumer(void *arg, int flags __unused) { struct g_consumer *cp; g_topology_assert(); cp = arg; G_RAID3_DEBUG(1, "Consumer %s destroyed.", cp->provider->name); g_detach(cp); g_destroy_consumer(cp); } static void g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp) { struct g_provider *pp; int retaste_wait; g_topology_assert(); cp->private = NULL; if (g_raid3_is_busy(sc, cp)) return; G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name); pp = cp->provider; retaste_wait = 0; if (cp->acw == 1) { if ((pp->geom->flags & G_GEOM_WITHER) == 0) retaste_wait = 1; } G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr, -cp->acw, -cp->ace, 0); if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) g_access(cp, -cp->acr, -cp->acw, -cp->ace); if (retaste_wait) { /* * After retaste event was send (inside g_access()), we can send * event to detach and destroy consumer. * A class, which has consumer to the given provider connected * will not receive retaste event for the provider. * This is the way how I ignore retaste events when I close * consumers opened for write: I detach and destroy consumer * after retaste event is sent. */ g_post_event(g_raid3_destroy_consumer, cp, M_WAITOK, NULL); return; } G_RAID3_DEBUG(1, "Consumer %s destroyed.", pp->name); g_detach(cp); g_destroy_consumer(cp); } static int g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp) { struct g_consumer *cp; int error; g_topology_assert_not(); KASSERT(disk->d_consumer == NULL, ("Disk already connected (device %s).", disk->d_softc->sc_name)); g_topology_lock(); cp = g_new_consumer(disk->d_softc->sc_geom); error = g_attach(cp, pp); if (error != 0) { g_destroy_consumer(cp); g_topology_unlock(); return (error); } error = g_access(cp, 1, 1, 1); g_topology_unlock(); if (error != 0) { g_detach(cp); g_destroy_consumer(cp); G_RAID3_DEBUG(0, "Cannot open consumer %s (error=%d).", pp->name, error); return (error); } disk->d_consumer = cp; disk->d_consumer->private = disk; disk->d_consumer->index = 0; G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk)); return (0); } static void g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp) { g_topology_assert(); if (cp == NULL) return; if (cp->provider != NULL) g_raid3_kill_consumer(sc, cp); else g_destroy_consumer(cp); } /* * Initialize disk. This means allocate memory, create consumer, attach it * to the provider and open access (r1w1e1) to it. */ static struct g_raid3_disk * g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp, struct g_raid3_metadata *md, int *errorp) { struct g_raid3_disk *disk; int error; disk = &sc->sc_disks[md->md_no]; error = g_raid3_connect_disk(disk, pp); if (error != 0) { if (errorp != NULL) *errorp = error; return (NULL); } disk->d_state = G_RAID3_DISK_STATE_NONE; disk->d_flags = md->md_dflags; if (md->md_provider[0] != '\0') disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED; disk->d_sync.ds_consumer = NULL; disk->d_sync.ds_offset = md->md_sync_offset; disk->d_sync.ds_offset_done = md->md_sync_offset; disk->d_genid = md->md_genid; disk->d_sync.ds_syncid = md->md_syncid; if (errorp != NULL) *errorp = 0; return (disk); } static void g_raid3_destroy_disk(struct g_raid3_disk *disk) { struct g_raid3_softc *sc; g_topology_assert_not(); sc = disk->d_softc; sx_assert(&sc->sc_lock, SX_XLOCKED); if (disk->d_state == G_RAID3_DISK_STATE_NODISK) return; g_raid3_event_cancel(disk); switch (disk->d_state) { case G_RAID3_DISK_STATE_SYNCHRONIZING: if (sc->sc_syncdisk != NULL) g_raid3_sync_stop(sc, 1); /* FALLTHROUGH */ case G_RAID3_DISK_STATE_NEW: case G_RAID3_DISK_STATE_STALE: case G_RAID3_DISK_STATE_ACTIVE: g_topology_lock(); g_raid3_disconnect_consumer(sc, disk->d_consumer); g_topology_unlock(); disk->d_consumer = NULL; break; default: KASSERT(0 == 1, ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); } disk->d_state = G_RAID3_DISK_STATE_NODISK; } static void g_raid3_destroy_device(struct g_raid3_softc *sc) { struct g_raid3_event *ep; struct g_raid3_disk *disk; struct g_geom *gp; struct g_consumer *cp; u_int n; g_topology_assert_not(); sx_assert(&sc->sc_lock, SX_XLOCKED); gp = sc->sc_geom; if (sc->sc_provider != NULL) g_raid3_destroy_provider(sc); for (n = 0; n < sc->sc_ndisks; n++) { disk = &sc->sc_disks[n]; if (disk->d_state != G_RAID3_DISK_STATE_NODISK) { disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; g_raid3_update_metadata(disk); g_raid3_destroy_disk(disk); } } while ((ep = g_raid3_event_get(sc)) != NULL) { g_raid3_event_remove(sc, ep); if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) g_raid3_event_free(ep); else { ep->e_error = ECANCELED; ep->e_flags |= G_RAID3_EVENT_DONE; G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep); mtx_lock(&sc->sc_events_mtx); wakeup(ep); mtx_unlock(&sc->sc_events_mtx); } } callout_drain(&sc->sc_callout); cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer); g_topology_lock(); if (cp != NULL) g_raid3_disconnect_consumer(sc, cp); g_wither_geom(sc->sc_sync.ds_geom, ENXIO); G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name); g_wither_geom(gp, ENXIO); g_topology_unlock(); if (!g_raid3_use_malloc) { uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone); uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone); uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone); } mtx_destroy(&sc->sc_queue_mtx); mtx_destroy(&sc->sc_events_mtx); sx_xunlock(&sc->sc_lock); sx_destroy(&sc->sc_lock); } static void g_raid3_orphan(struct g_consumer *cp) { struct g_raid3_disk *disk; g_topology_assert(); disk = cp->private; if (disk == NULL) return; disk->d_softc->sc_bump_id = G_RAID3_BUMP_SYNCID; g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, G_RAID3_EVENT_DONTWAIT); } static int g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md) { struct g_raid3_softc *sc; struct g_consumer *cp; off_t offset, length; u_char *sector; int error = 0; g_topology_assert_not(); sc = disk->d_softc; sx_assert(&sc->sc_lock, SX_LOCKED); cp = disk->d_consumer; KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name)); KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name)); KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, ("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr, cp->acw, cp->ace)); length = cp->provider->sectorsize; offset = cp->provider->mediasize - length; sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO); if (md != NULL) raid3_metadata_encode(md, sector); error = g_write_data(cp, offset, sector, length); free(sector, M_RAID3); if (error != 0) { if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { G_RAID3_DEBUG(0, "Cannot write metadata on %s " "(device=%s, error=%d).", g_raid3_get_diskname(disk), sc->sc_name, error); disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; } else { G_RAID3_DEBUG(1, "Cannot write metadata on %s " "(device=%s, error=%d).", g_raid3_get_diskname(disk), sc->sc_name, error); } if (g_raid3_disconnect_on_failure && sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { sc->sc_bump_id |= G_RAID3_BUMP_GENID; g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, G_RAID3_EVENT_DONTWAIT); } } return (error); } int g_raid3_clear_metadata(struct g_raid3_disk *disk) { int error; g_topology_assert_not(); sx_assert(&disk->d_softc->sc_lock, SX_LOCKED); error = g_raid3_write_metadata(disk, NULL); if (error == 0) { G_RAID3_DEBUG(2, "Metadata on %s cleared.", g_raid3_get_diskname(disk)); } else { G_RAID3_DEBUG(0, "Cannot clear metadata on disk %s (error=%d).", g_raid3_get_diskname(disk), error); } return (error); } void g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md) { struct g_raid3_softc *sc; struct g_provider *pp; sc = disk->d_softc; strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic)); md->md_version = G_RAID3_VERSION; strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name)); md->md_id = sc->sc_id; md->md_all = sc->sc_ndisks; md->md_genid = sc->sc_genid; md->md_mediasize = sc->sc_mediasize; md->md_sectorsize = sc->sc_sectorsize; md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK); md->md_no = disk->d_no; md->md_syncid = disk->d_sync.ds_syncid; md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK); if (disk->d_state != G_RAID3_DISK_STATE_SYNCHRONIZING) md->md_sync_offset = 0; else { md->md_sync_offset = disk->d_sync.ds_offset_done / (sc->sc_ndisks - 1); } if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL) pp = disk->d_consumer->provider; else pp = NULL; if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && pp != NULL) strlcpy(md->md_provider, pp->name, sizeof(md->md_provider)); else bzero(md->md_provider, sizeof(md->md_provider)); if (pp != NULL) md->md_provsize = pp->mediasize; else md->md_provsize = 0; } void g_raid3_update_metadata(struct g_raid3_disk *disk) { struct g_raid3_softc *sc; struct g_raid3_metadata md; int error; g_topology_assert_not(); sc = disk->d_softc; sx_assert(&sc->sc_lock, SX_LOCKED); g_raid3_fill_metadata(disk, &md); error = g_raid3_write_metadata(disk, &md); if (error == 0) { G_RAID3_DEBUG(2, "Metadata on %s updated.", g_raid3_get_diskname(disk)); } else { G_RAID3_DEBUG(0, "Cannot update metadata on disk %s (error=%d).", g_raid3_get_diskname(disk), error); } } static void g_raid3_bump_syncid(struct g_raid3_softc *sc) { struct g_raid3_disk *disk; u_int n; g_topology_assert_not(); sx_assert(&sc->sc_lock, SX_XLOCKED); KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0, ("%s called with no active disks (device=%s).", __func__, sc->sc_name)); sc->sc_syncid++; G_RAID3_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name, sc->sc_syncid); for (n = 0; n < sc->sc_ndisks; n++) { disk = &sc->sc_disks[n]; if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { disk->d_sync.ds_syncid = sc->sc_syncid; g_raid3_update_metadata(disk); } } } static void g_raid3_bump_genid(struct g_raid3_softc *sc) { struct g_raid3_disk *disk; u_int n; g_topology_assert_not(); sx_assert(&sc->sc_lock, SX_XLOCKED); KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0, ("%s called with no active disks (device=%s).", __func__, sc->sc_name)); sc->sc_genid++; G_RAID3_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name, sc->sc_genid); for (n = 0; n < sc->sc_ndisks; n++) { disk = &sc->sc_disks[n]; if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { disk->d_genid = sc->sc_genid; g_raid3_update_metadata(disk); } } } static int g_raid3_idle(struct g_raid3_softc *sc, int acw) { struct g_raid3_disk *disk; u_int i; int timeout; g_topology_assert_not(); sx_assert(&sc->sc_lock, SX_XLOCKED); if (sc->sc_provider == NULL) return (0); if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0) return (0); if (sc->sc_idle) return (0); if (sc->sc_writes > 0) return (0); if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) { timeout = g_raid3_idletime - (time_uptime - sc->sc_last_write); if (!g_raid3_shutdown && timeout > 0) return (timeout); } sc->sc_idle = 1; for (i = 0; i < sc->sc_ndisks; i++) { disk = &sc->sc_disks[i]; if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) continue; G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.", g_raid3_get_diskname(disk), sc->sc_name); disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; g_raid3_update_metadata(disk); } return (0); } static void g_raid3_unidle(struct g_raid3_softc *sc) { struct g_raid3_disk *disk; u_int i; g_topology_assert_not(); sx_assert(&sc->sc_lock, SX_XLOCKED); if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0) return; sc->sc_idle = 0; sc->sc_last_write = time_uptime; for (i = 0; i < sc->sc_ndisks; i++) { disk = &sc->sc_disks[i]; if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) continue; G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.", g_raid3_get_diskname(disk), sc->sc_name); disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; g_raid3_update_metadata(disk); } } /* * Treat bio_driver1 field in parent bio as list head and field bio_caller1 * in child bio as pointer to the next element on the list. */ #define G_RAID3_HEAD_BIO(pbp) (pbp)->bio_driver1 #define G_RAID3_NEXT_BIO(cbp) (cbp)->bio_caller1 #define G_RAID3_FOREACH_BIO(pbp, bp) \ for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL; \ (bp) = G_RAID3_NEXT_BIO(bp)) #define G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp) \ for ((bp) = G_RAID3_HEAD_BIO(pbp); \ (bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1); \ (bp) = (tmpbp)) static void g_raid3_init_bio(struct bio *pbp) { G_RAID3_HEAD_BIO(pbp) = NULL; } static void g_raid3_remove_bio(struct bio *cbp) { struct bio *pbp, *bp; pbp = cbp->bio_parent; if (G_RAID3_HEAD_BIO(pbp) == cbp) G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp); else { G_RAID3_FOREACH_BIO(pbp, bp) { if (G_RAID3_NEXT_BIO(bp) == cbp) { G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp); break; } } } G_RAID3_NEXT_BIO(cbp) = NULL; } static void g_raid3_replace_bio(struct bio *sbp, struct bio *dbp) { struct bio *pbp, *bp; g_raid3_remove_bio(sbp); pbp = dbp->bio_parent; G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp); if (G_RAID3_HEAD_BIO(pbp) == dbp) G_RAID3_HEAD_BIO(pbp) = sbp; else { G_RAID3_FOREACH_BIO(pbp, bp) { if (G_RAID3_NEXT_BIO(bp) == dbp) { G_RAID3_NEXT_BIO(bp) = sbp; break; } } } G_RAID3_NEXT_BIO(dbp) = NULL; } static void g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp) { struct bio *bp, *pbp; size_t size; pbp = cbp->bio_parent; pbp->bio_children--; KASSERT(cbp->bio_data != NULL, ("NULL bio_data")); size = pbp->bio_length / (sc->sc_ndisks - 1); g_raid3_free(sc, cbp->bio_data, size); if (G_RAID3_HEAD_BIO(pbp) == cbp) { G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp); G_RAID3_NEXT_BIO(cbp) = NULL; g_destroy_bio(cbp); } else { G_RAID3_FOREACH_BIO(pbp, bp) { if (G_RAID3_NEXT_BIO(bp) == cbp) break; } if (bp != NULL) { KASSERT(G_RAID3_NEXT_BIO(bp) != NULL, ("NULL bp->bio_driver1")); G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp); G_RAID3_NEXT_BIO(cbp) = NULL; } g_destroy_bio(cbp); } } static struct bio * g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp) { struct bio *bp, *cbp; size_t size; int memflag; cbp = g_clone_bio(pbp); if (cbp == NULL) return (NULL); size = pbp->bio_length / (sc->sc_ndisks - 1); if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0) memflag = M_WAITOK; else memflag = M_NOWAIT; cbp->bio_data = g_raid3_alloc(sc, size, memflag); if (cbp->bio_data == NULL) { pbp->bio_children--; g_destroy_bio(cbp); return (NULL); } G_RAID3_NEXT_BIO(cbp) = NULL; if (G_RAID3_HEAD_BIO(pbp) == NULL) G_RAID3_HEAD_BIO(pbp) = cbp; else { G_RAID3_FOREACH_BIO(pbp, bp) { if (G_RAID3_NEXT_BIO(bp) == NULL) { G_RAID3_NEXT_BIO(bp) = cbp; break; } } } return (cbp); } static void g_raid3_scatter(struct bio *pbp) { struct g_raid3_softc *sc; struct g_raid3_disk *disk; struct bio *bp, *cbp, *tmpbp; off_t atom, cadd, padd, left; int first; sc = pbp->bio_to->geom->softc; bp = NULL; if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) { /* * Find bio for which we should calculate data. */ G_RAID3_FOREACH_BIO(pbp, cbp) { if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) { bp = cbp; break; } } KASSERT(bp != NULL, ("NULL parity bio.")); } atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); cadd = padd = 0; for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) { G_RAID3_FOREACH_BIO(pbp, cbp) { if (cbp == bp) continue; bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom); padd += atom; } cadd += atom; } if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) { /* * Calculate parity. */ first = 1; G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { if (cbp == bp) continue; if (first) { bcopy(cbp->bio_data, bp->bio_data, bp->bio_length); first = 0; } else { g_raid3_xor(cbp->bio_data, bp->bio_data, bp->bio_length); } if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0) g_raid3_destroy_bio(sc, cbp); } } G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { struct g_consumer *cp; disk = cbp->bio_caller2; cp = disk->d_consumer; cbp->bio_to = cp->provider; G_RAID3_LOGREQ(3, cbp, "Sending request."); KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, cp->acr, cp->acw, cp->ace)); cp->index++; sc->sc_writes++; g_io_request(cbp, cp); } } static void g_raid3_gather(struct bio *pbp) { struct g_raid3_softc *sc; struct g_raid3_disk *disk; struct bio *xbp, *fbp, *cbp; off_t atom, cadd, padd, left; sc = pbp->bio_to->geom->softc; /* * Find bio for which we have to calculate data. * While going through this path, check if all requests * succeeded, if not, deny whole request. * If we're in COMPLETE mode, we allow one request to fail, * so if we find one, we're sending it to the parity consumer. * If there are more failed requests, we deny whole request. */ xbp = fbp = NULL; G_RAID3_FOREACH_BIO(pbp, cbp) { if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) { KASSERT(xbp == NULL, ("More than one parity bio.")); xbp = cbp; } if (cbp->bio_error == 0) continue; /* * Found failed request. */ if (fbp == NULL) { if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) { /* * We are already in degraded mode, so we can't * accept any failures. */ if (pbp->bio_error == 0) pbp->bio_error = cbp->bio_error; } else { fbp = cbp; } } else { /* * Next failed request, that's too many. */ if (pbp->bio_error == 0) pbp->bio_error = fbp->bio_error; } disk = cbp->bio_caller2; if (disk == NULL) continue; if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).", cbp->bio_error); } else { G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).", cbp->bio_error); } if (g_raid3_disconnect_on_failure && sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { sc->sc_bump_id |= G_RAID3_BUMP_GENID; g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, G_RAID3_EVENT_DONTWAIT); } } if (pbp->bio_error != 0) goto finish; if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) { pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY; if (xbp != fbp) g_raid3_replace_bio(xbp, fbp); g_raid3_destroy_bio(sc, fbp); } else if (fbp != NULL) { struct g_consumer *cp; /* * One request failed, so send the same request to * the parity consumer. */ disk = pbp->bio_driver2; if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) { pbp->bio_error = fbp->bio_error; goto finish; } pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; pbp->bio_inbed--; fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR); if (disk->d_no == sc->sc_ndisks - 1) fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; fbp->bio_error = 0; fbp->bio_completed = 0; fbp->bio_children = 0; fbp->bio_inbed = 0; cp = disk->d_consumer; fbp->bio_caller2 = disk; fbp->bio_to = cp->provider; G_RAID3_LOGREQ(3, fbp, "Sending request (recover)."); KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, cp->acr, cp->acw, cp->ace)); cp->index++; g_io_request(fbp, cp); return; } if (xbp != NULL) { /* * Calculate parity. */ G_RAID3_FOREACH_BIO(pbp, cbp) { if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) continue; g_raid3_xor(cbp->bio_data, xbp->bio_data, xbp->bio_length); } xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY; if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) { if (!g_raid3_is_zero(xbp)) { g_raid3_parity_mismatch++; pbp->bio_error = EIO; goto finish; } g_raid3_destroy_bio(sc, xbp); } } atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); cadd = padd = 0; for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) { G_RAID3_FOREACH_BIO(pbp, cbp) { bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom); pbp->bio_completed += atom; padd += atom; } cadd += atom; } finish: if (pbp->bio_error == 0) G_RAID3_LOGREQ(3, pbp, "Request finished."); else { if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) G_RAID3_LOGREQ(1, pbp, "Verification error."); else G_RAID3_LOGREQ(0, pbp, "Request failed."); } pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK; while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) g_raid3_destroy_bio(sc, cbp); g_io_deliver(pbp, pbp->bio_error); } static void g_raid3_done(struct bio *bp) { struct g_raid3_softc *sc; sc = bp->bio_from->geom->softc; bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR; G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error); mtx_lock(&sc->sc_queue_mtx); bioq_insert_head(&sc->sc_queue, bp); mtx_unlock(&sc->sc_queue_mtx); wakeup(sc); wakeup(&sc->sc_queue); } static void g_raid3_regular_request(struct bio *cbp) { struct g_raid3_softc *sc; struct g_raid3_disk *disk; struct bio *pbp; g_topology_assert_not(); pbp = cbp->bio_parent; sc = pbp->bio_to->geom->softc; cbp->bio_from->index--; if (cbp->bio_cmd == BIO_WRITE) sc->sc_writes--; disk = cbp->bio_from->private; if (disk == NULL) { g_topology_lock(); g_raid3_kill_consumer(sc, cbp->bio_from); g_topology_unlock(); } G_RAID3_LOGREQ(3, cbp, "Request finished."); pbp->bio_inbed++; KASSERT(pbp->bio_inbed <= pbp->bio_children, ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed, pbp->bio_children)); if (pbp->bio_inbed != pbp->bio_children) return; switch (pbp->bio_cmd) { case BIO_READ: g_raid3_gather(pbp); break; case BIO_WRITE: case BIO_DELETE: { int error = 0; pbp->bio_completed = pbp->bio_length; while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) { if (cbp->bio_error == 0) { g_raid3_destroy_bio(sc, cbp); continue; } if (error == 0) error = cbp->bio_error; else if (pbp->bio_error == 0) { /* * Next failed request, that's too many. */ pbp->bio_error = error; } disk = cbp->bio_caller2; if (disk == NULL) { g_raid3_destroy_bio(sc, cbp); continue; } if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).", cbp->bio_error); } else { G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).", cbp->bio_error); } if (g_raid3_disconnect_on_failure && sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { sc->sc_bump_id |= G_RAID3_BUMP_GENID; g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, G_RAID3_EVENT_DONTWAIT); } g_raid3_destroy_bio(sc, cbp); } if (pbp->bio_error == 0) G_RAID3_LOGREQ(3, pbp, "Request finished."); else G_RAID3_LOGREQ(0, pbp, "Request failed."); pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED; pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY; bioq_remove(&sc->sc_inflight, pbp); /* Release delayed sync requests if possible. */ g_raid3_sync_release(sc); g_io_deliver(pbp, pbp->bio_error); break; } } } static void g_raid3_sync_done(struct bio *bp) { struct g_raid3_softc *sc; G_RAID3_LOGREQ(3, bp, "Synchronization request delivered."); sc = bp->bio_from->geom->softc; bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC; mtx_lock(&sc->sc_queue_mtx); bioq_insert_head(&sc->sc_queue, bp); mtx_unlock(&sc->sc_queue_mtx); wakeup(sc); wakeup(&sc->sc_queue); } static void g_raid3_flush(struct g_raid3_softc *sc, struct bio *bp) { struct bio_queue_head queue; struct g_raid3_disk *disk; struct g_consumer *cp; struct bio *cbp; u_int i; bioq_init(&queue); for (i = 0; i < sc->sc_ndisks; i++) { disk = &sc->sc_disks[i]; if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) continue; cbp = g_clone_bio(bp); if (cbp == NULL) { for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) { bioq_remove(&queue, cbp); g_destroy_bio(cbp); } if (bp->bio_error == 0) bp->bio_error = ENOMEM; g_io_deliver(bp, bp->bio_error); return; } bioq_insert_tail(&queue, cbp); cbp->bio_done = g_std_done; cbp->bio_caller1 = disk; cbp->bio_to = disk->d_consumer->provider; } for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) { bioq_remove(&queue, cbp); G_RAID3_LOGREQ(3, cbp, "Sending request."); disk = cbp->bio_caller1; cbp->bio_caller1 = NULL; cp = disk->d_consumer; KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, cp->acr, cp->acw, cp->ace)); g_io_request(cbp, disk->d_consumer); } } static void g_raid3_start(struct bio *bp) { struct g_raid3_softc *sc; sc = bp->bio_to->geom->softc; /* * If sc == NULL or there are no valid disks, provider's error * should be set and g_raid3_start() should not be called at all. */ KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE), ("Provider's error should be set (error=%d)(device=%s).", bp->bio_to->error, bp->bio_to->name)); G_RAID3_LOGREQ(3, bp, "Request received."); switch (bp->bio_cmd) { case BIO_READ: case BIO_WRITE: case BIO_DELETE: break; case BIO_FLUSH: g_raid3_flush(sc, bp); return; case BIO_GETATTR: default: g_io_deliver(bp, EOPNOTSUPP); return; } mtx_lock(&sc->sc_queue_mtx); bioq_insert_tail(&sc->sc_queue, bp); mtx_unlock(&sc->sc_queue_mtx); G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); wakeup(sc); } /* * Return TRUE if the given request is colliding with a in-progress * synchronization request. */ static int g_raid3_sync_collision(struct g_raid3_softc *sc, struct bio *bp) { struct g_raid3_disk *disk; struct bio *sbp; off_t rstart, rend, sstart, send; int i; disk = sc->sc_syncdisk; if (disk == NULL) return (0); rstart = bp->bio_offset; rend = bp->bio_offset + bp->bio_length; for (i = 0; i < g_raid3_syncreqs; i++) { sbp = disk->d_sync.ds_bios[i]; if (sbp == NULL) continue; sstart = sbp->bio_offset; send = sbp->bio_length; if (sbp->bio_cmd == BIO_WRITE) { sstart *= sc->sc_ndisks - 1; send *= sc->sc_ndisks - 1; } send += sstart; if (rend > sstart && rstart < send) return (1); } return (0); } /* * Return TRUE if the given sync request is colliding with a in-progress regular * request. */ static int g_raid3_regular_collision(struct g_raid3_softc *sc, struct bio *sbp) { off_t rstart, rend, sstart, send; struct bio *bp; if (sc->sc_syncdisk == NULL) return (0); sstart = sbp->bio_offset; send = sstart + sbp->bio_length; TAILQ_FOREACH(bp, &sc->sc_inflight.queue, bio_queue) { rstart = bp->bio_offset; rend = bp->bio_offset + bp->bio_length; if (rend > sstart && rstart < send) return (1); } return (0); } /* * Puts request onto delayed queue. */ static void g_raid3_regular_delay(struct g_raid3_softc *sc, struct bio *bp) { G_RAID3_LOGREQ(2, bp, "Delaying request."); bioq_insert_head(&sc->sc_regular_delayed, bp); } /* * Puts synchronization request onto delayed queue. */ static void g_raid3_sync_delay(struct g_raid3_softc *sc, struct bio *bp) { G_RAID3_LOGREQ(2, bp, "Delaying synchronization request."); bioq_insert_tail(&sc->sc_sync_delayed, bp); } /* * Releases delayed regular requests which don't collide anymore with sync * requests. */ static void g_raid3_regular_release(struct g_raid3_softc *sc) { struct bio *bp, *bp2; TAILQ_FOREACH_SAFE(bp, &sc->sc_regular_delayed.queue, bio_queue, bp2) { if (g_raid3_sync_collision(sc, bp)) continue; bioq_remove(&sc->sc_regular_delayed, bp); G_RAID3_LOGREQ(2, bp, "Releasing delayed request (%p).", bp); mtx_lock(&sc->sc_queue_mtx); bioq_insert_head(&sc->sc_queue, bp); #if 0 /* * wakeup() is not needed, because this function is called from * the worker thread. */ wakeup(&sc->sc_queue); #endif mtx_unlock(&sc->sc_queue_mtx); } } /* * Releases delayed sync requests which don't collide anymore with regular * requests. */ static void g_raid3_sync_release(struct g_raid3_softc *sc) { struct bio *bp, *bp2; TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed.queue, bio_queue, bp2) { if (g_raid3_regular_collision(sc, bp)) continue; bioq_remove(&sc->sc_sync_delayed, bp); G_RAID3_LOGREQ(2, bp, "Releasing delayed synchronization request."); g_io_request(bp, bp->bio_from); } } /* * Handle synchronization requests. * Every synchronization request is two-steps process: first, READ request is * send to active provider and then WRITE request (with read data) to the provider * being synchronized. When WRITE is finished, new synchronization request is * send. */ static void g_raid3_sync_request(struct bio *bp) { struct g_raid3_softc *sc; struct g_raid3_disk *disk; bp->bio_from->index--; sc = bp->bio_from->geom->softc; disk = bp->bio_from->private; if (disk == NULL) { sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */ g_topology_lock(); g_raid3_kill_consumer(sc, bp->bio_from); g_topology_unlock(); free(bp->bio_data, M_RAID3); g_destroy_bio(bp); sx_xlock(&sc->sc_lock); return; } /* * Synchronization request. */ switch (bp->bio_cmd) { case BIO_READ: { struct g_consumer *cp; u_char *dst, *src; off_t left; u_int atom; if (bp->bio_error != 0) { G_RAID3_LOGREQ(0, bp, "Synchronization request failed (error=%d).", bp->bio_error); g_destroy_bio(bp); return; } G_RAID3_LOGREQ(3, bp, "Synchronization request finished."); atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); dst = src = bp->bio_data; if (disk->d_no == sc->sc_ndisks - 1) { u_int n; /* Parity component. */ for (left = bp->bio_length; left > 0; left -= sc->sc_sectorsize) { bcopy(src, dst, atom); src += atom; for (n = 1; n < sc->sc_ndisks - 1; n++) { g_raid3_xor(src, dst, atom); src += atom; } dst += atom; } } else { /* Regular component. */ src += atom * disk->d_no; for (left = bp->bio_length; left > 0; left -= sc->sc_sectorsize) { bcopy(src, dst, atom); src += sc->sc_sectorsize; dst += atom; } } bp->bio_driver1 = bp->bio_driver2 = NULL; bp->bio_pflags = 0; bp->bio_offset /= sc->sc_ndisks - 1; bp->bio_length /= sc->sc_ndisks - 1; bp->bio_cmd = BIO_WRITE; bp->bio_cflags = 0; bp->bio_children = bp->bio_inbed = 0; cp = disk->d_consumer; KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, cp->acr, cp->acw, cp->ace)); cp->index++; g_io_request(bp, cp); return; } case BIO_WRITE: { struct g_raid3_disk_sync *sync; off_t boffset, moffset; void *data; int i; if (bp->bio_error != 0) { G_RAID3_LOGREQ(0, bp, "Synchronization request failed (error=%d).", bp->bio_error); g_destroy_bio(bp); sc->sc_bump_id |= G_RAID3_BUMP_GENID; g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, G_RAID3_EVENT_DONTWAIT); return; } G_RAID3_LOGREQ(3, bp, "Synchronization request finished."); sync = &disk->d_sync; if (sync->ds_offset == sc->sc_mediasize / (sc->sc_ndisks - 1) || sync->ds_consumer == NULL || (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) { /* Don't send more synchronization requests. */ sync->ds_inflight--; if (sync->ds_bios != NULL) { i = (int)(uintptr_t)bp->bio_caller1; sync->ds_bios[i] = NULL; } free(bp->bio_data, M_RAID3); g_destroy_bio(bp); if (sync->ds_inflight > 0) return; if (sync->ds_consumer == NULL || (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) { return; } /* * Disk up-to-date, activate it. */ g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE, G_RAID3_EVENT_DONTWAIT); return; } /* Send next synchronization request. */ data = bp->bio_data; g_reset_bio(bp); bp->bio_cmd = BIO_READ; bp->bio_offset = sync->ds_offset * (sc->sc_ndisks - 1); bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset); sync->ds_offset += bp->bio_length / (sc->sc_ndisks - 1); bp->bio_done = g_raid3_sync_done; bp->bio_data = data; bp->bio_from = sync->ds_consumer; bp->bio_to = sc->sc_provider; G_RAID3_LOGREQ(3, bp, "Sending synchronization request."); sync->ds_consumer->index++; /* * Delay the request if it is colliding with a regular request. */ if (g_raid3_regular_collision(sc, bp)) g_raid3_sync_delay(sc, bp); else g_io_request(bp, sync->ds_consumer); /* Release delayed requests if possible. */ g_raid3_regular_release(sc); /* Find the smallest offset. */ moffset = sc->sc_mediasize; for (i = 0; i < g_raid3_syncreqs; i++) { bp = sync->ds_bios[i]; boffset = bp->bio_offset; if (bp->bio_cmd == BIO_WRITE) boffset *= sc->sc_ndisks - 1; if (boffset < moffset) moffset = boffset; } if (sync->ds_offset_done + (MAXPHYS * 100) < moffset) { /* Update offset_done on every 100 blocks. */ sync->ds_offset_done = moffset; g_raid3_update_metadata(disk); } return; } default: KASSERT(1 == 0, ("Invalid command here: %u (device=%s)", bp->bio_cmd, sc->sc_name)); break; } } static int g_raid3_register_request(struct bio *pbp) { struct g_raid3_softc *sc; struct g_raid3_disk *disk; struct g_consumer *cp; struct bio *cbp, *tmpbp; off_t offset, length; u_int n, ndisks; int round_robin, verify; ndisks = 0; sc = pbp->bio_to->geom->softc; if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 && sc->sc_syncdisk == NULL) { g_io_deliver(pbp, EIO); return (0); } g_raid3_init_bio(pbp); length = pbp->bio_length / (sc->sc_ndisks - 1); offset = pbp->bio_offset / (sc->sc_ndisks - 1); round_robin = verify = 0; switch (pbp->bio_cmd) { case BIO_READ: if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 && sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY; verify = 1; ndisks = sc->sc_ndisks; } else { verify = 0; ndisks = sc->sc_ndisks - 1; } if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 && sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { round_robin = 1; } else { round_robin = 0; } KASSERT(!round_robin || !verify, ("ROUND-ROBIN and VERIFY are mutually exclusive.")); pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1]; break; case BIO_WRITE: case BIO_DELETE: /* * Delay the request if it is colliding with a synchronization * request. */ if (g_raid3_sync_collision(sc, pbp)) { g_raid3_regular_delay(sc, pbp); return (0); } if (sc->sc_idle) g_raid3_unidle(sc); else sc->sc_last_write = time_uptime; ndisks = sc->sc_ndisks; break; } for (n = 0; n < ndisks; n++) { disk = &sc->sc_disks[n]; cbp = g_raid3_clone_bio(sc, pbp); if (cbp == NULL) { while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) g_raid3_destroy_bio(sc, cbp); /* * To prevent deadlock, we must run back up * with the ENOMEM for failed requests of any * of our consumers. Our own sync requests * can stick around, as they are finite. */ if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0) { g_io_deliver(pbp, ENOMEM); return (0); } return (ENOMEM); } cbp->bio_offset = offset; cbp->bio_length = length; cbp->bio_done = g_raid3_done; switch (pbp->bio_cmd) { case BIO_READ: if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) { /* * Replace invalid component with the parity * component. */ disk = &sc->sc_disks[sc->sc_ndisks - 1]; cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; } else if (round_robin && disk->d_no == sc->sc_round_robin) { /* * In round-robin mode skip one data component * and use parity component when reading. */ pbp->bio_driver2 = disk; disk = &sc->sc_disks[sc->sc_ndisks - 1]; cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; sc->sc_round_robin++; round_robin = 0; } else if (verify && disk->d_no == sc->sc_ndisks - 1) { cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; } break; case BIO_WRITE: case BIO_DELETE: if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { if (n == ndisks - 1) { /* * Active parity component, mark it as such. */ cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; } } else { pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; if (n == ndisks - 1) { /* * Parity component is not connected, * so destroy its request. */ pbp->bio_pflags |= G_RAID3_BIO_PFLAG_NOPARITY; g_raid3_destroy_bio(sc, cbp); cbp = NULL; } else { cbp->bio_cflags |= G_RAID3_BIO_CFLAG_NODISK; disk = NULL; } } break; } if (cbp != NULL) cbp->bio_caller2 = disk; } switch (pbp->bio_cmd) { case BIO_READ: if (round_robin) { /* * If we are in round-robin mode and 'round_robin' is * still 1, it means, that we skipped parity component * for this read and must reset sc_round_robin field. */ sc->sc_round_robin = 0; } G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { disk = cbp->bio_caller2; cp = disk->d_consumer; cbp->bio_to = cp->provider; G_RAID3_LOGREQ(3, cbp, "Sending request."); KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, cp->acr, cp->acw, cp->ace)); cp->index++; g_io_request(cbp, cp); } break; case BIO_WRITE: case BIO_DELETE: /* * Put request onto inflight queue, so we can check if new * synchronization requests don't collide with it. */ bioq_insert_tail(&sc->sc_inflight, pbp); /* * Bump syncid on first write. */ if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) { sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID; g_raid3_bump_syncid(sc); } g_raid3_scatter(pbp); break; } return (0); } static int g_raid3_can_destroy(struct g_raid3_softc *sc) { struct g_geom *gp; struct g_consumer *cp; g_topology_assert(); gp = sc->sc_geom; if (gp->softc == NULL) return (1); LIST_FOREACH(cp, &gp->consumer, consumer) { if (g_raid3_is_busy(sc, cp)) return (0); } gp = sc->sc_sync.ds_geom; LIST_FOREACH(cp, &gp->consumer, consumer) { if (g_raid3_is_busy(sc, cp)) return (0); } G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.", sc->sc_name); return (1); } static int g_raid3_try_destroy(struct g_raid3_softc *sc) { g_topology_assert_not(); sx_assert(&sc->sc_lock, SX_XLOCKED); if (sc->sc_rootmount != NULL) { G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, sc->sc_rootmount); root_mount_rel(sc->sc_rootmount); sc->sc_rootmount = NULL; } g_topology_lock(); if (!g_raid3_can_destroy(sc)) { g_topology_unlock(); return (0); } sc->sc_geom->softc = NULL; sc->sc_sync.ds_geom->softc = NULL; if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) { g_topology_unlock(); G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, &sc->sc_worker); /* Unlock sc_lock here, as it can be destroyed after wakeup. */ sx_xunlock(&sc->sc_lock); wakeup(&sc->sc_worker); sc->sc_worker = NULL; } else { g_topology_unlock(); g_raid3_destroy_device(sc); free(sc->sc_disks, M_RAID3); free(sc, M_RAID3); } return (1); } /* * Worker thread. */ static void g_raid3_worker(void *arg) { struct g_raid3_softc *sc; struct g_raid3_event *ep; struct bio *bp; int timeout; sc = arg; thread_lock(curthread); sched_prio(curthread, PRIBIO); thread_unlock(curthread); sx_xlock(&sc->sc_lock); for (;;) { G_RAID3_DEBUG(5, "%s: Let's see...", __func__); /* * First take a look at events. * This is important to handle events before any I/O requests. */ ep = g_raid3_event_get(sc); if (ep != NULL) { g_raid3_event_remove(sc, ep); if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) { /* Update only device status. */ G_RAID3_DEBUG(3, "Running event for device %s.", sc->sc_name); ep->e_error = 0; g_raid3_update_device(sc, 1); } else { /* Update disk status. */ G_RAID3_DEBUG(3, "Running event for disk %s.", g_raid3_get_diskname(ep->e_disk)); ep->e_error = g_raid3_update_disk(ep->e_disk, ep->e_state); if (ep->e_error == 0) g_raid3_update_device(sc, 0); } if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) { KASSERT(ep->e_error == 0, ("Error cannot be handled.")); g_raid3_event_free(ep); } else { ep->e_flags |= G_RAID3_EVENT_DONE; G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep); mtx_lock(&sc->sc_events_mtx); wakeup(ep); mtx_unlock(&sc->sc_events_mtx); } if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) { if (g_raid3_try_destroy(sc)) { curthread->td_pflags &= ~TDP_GEOM; G_RAID3_DEBUG(1, "Thread exiting."); kproc_exit(0); } } G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__); continue; } /* * Check if we can mark array as CLEAN and if we can't take * how much seconds should we wait. */ timeout = g_raid3_idle(sc, -1); /* * Now I/O requests. */ /* Get first request from the queue. */ mtx_lock(&sc->sc_queue_mtx); bp = bioq_first(&sc->sc_queue); if (bp == NULL) { if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) { mtx_unlock(&sc->sc_queue_mtx); if (g_raid3_try_destroy(sc)) { curthread->td_pflags &= ~TDP_GEOM; G_RAID3_DEBUG(1, "Thread exiting."); kproc_exit(0); } mtx_lock(&sc->sc_queue_mtx); } sx_xunlock(&sc->sc_lock); /* * XXX: We can miss an event here, because an event * can be added without sx-device-lock and without * mtx-queue-lock. Maybe I should just stop using * dedicated mutex for events synchronization and * stick with the queue lock? * The event will hang here until next I/O request * or next event is received. */ MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w1", timeout * hz); sx_xlock(&sc->sc_lock); G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__); continue; } process: bioq_remove(&sc->sc_queue, bp); mtx_unlock(&sc->sc_queue_mtx); if (bp->bio_from->geom == sc->sc_sync.ds_geom && (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) { g_raid3_sync_request(bp); /* READ */ } else if (bp->bio_to != sc->sc_provider) { if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0) g_raid3_regular_request(bp); else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) g_raid3_sync_request(bp); /* WRITE */ else { KASSERT(0, ("Invalid request cflags=0x%hx to=%s.", bp->bio_cflags, bp->bio_to->name)); } } else if (g_raid3_register_request(bp) != 0) { mtx_lock(&sc->sc_queue_mtx); bioq_insert_head(&sc->sc_queue, bp); /* * We are short in memory, let see if there are finished * request we can free. */ TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { if (bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) goto process; } /* * No finished regular request, so at least keep * synchronization running. */ TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { if (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) goto process; } sx_xunlock(&sc->sc_lock); MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:lowmem", hz / 10); sx_xlock(&sc->sc_lock); } G_RAID3_DEBUG(5, "%s: I'm here 9.", __func__); } } static void g_raid3_update_idle(struct g_raid3_softc *sc, struct g_raid3_disk *disk) { sx_assert(&sc->sc_lock, SX_LOCKED); if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0) return; if (!sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) { G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.", g_raid3_get_diskname(disk), sc->sc_name); disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; } else if (sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) { G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.", g_raid3_get_diskname(disk), sc->sc_name); disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; } } static void g_raid3_sync_start(struct g_raid3_softc *sc) { struct g_raid3_disk *disk; struct g_consumer *cp; struct bio *bp; int error; u_int n; g_topology_assert_not(); sx_assert(&sc->sc_lock, SX_XLOCKED); KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, ("Device not in DEGRADED state (%s, %u).", sc->sc_name, sc->sc_state)); KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).", sc->sc_name, sc->sc_state)); disk = NULL; for (n = 0; n < sc->sc_ndisks; n++) { if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING) continue; disk = &sc->sc_disks[n]; break; } if (disk == NULL) return; sx_xunlock(&sc->sc_lock); g_topology_lock(); cp = g_new_consumer(sc->sc_sync.ds_geom); error = g_attach(cp, sc->sc_provider); KASSERT(error == 0, ("Cannot attach to %s (error=%d).", sc->sc_name, error)); error = g_access(cp, 1, 0, 0); KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error)); g_topology_unlock(); sx_xlock(&sc->sc_lock); G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name, g_raid3_get_diskname(disk)); if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) == 0) disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; KASSERT(disk->d_sync.ds_consumer == NULL, ("Sync consumer already exists (device=%s, disk=%s).", sc->sc_name, g_raid3_get_diskname(disk))); disk->d_sync.ds_consumer = cp; disk->d_sync.ds_consumer->private = disk; disk->d_sync.ds_consumer->index = 0; sc->sc_syncdisk = disk; /* * Allocate memory for synchronization bios and initialize them. */ disk->d_sync.ds_bios = malloc(sizeof(struct bio *) * g_raid3_syncreqs, M_RAID3, M_WAITOK); for (n = 0; n < g_raid3_syncreqs; n++) { bp = g_alloc_bio(); disk->d_sync.ds_bios[n] = bp; bp->bio_parent = NULL; bp->bio_cmd = BIO_READ; bp->bio_data = malloc(MAXPHYS, M_RAID3, M_WAITOK); bp->bio_cflags = 0; bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1); bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset); disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1); bp->bio_done = g_raid3_sync_done; bp->bio_from = disk->d_sync.ds_consumer; bp->bio_to = sc->sc_provider; bp->bio_caller1 = (void *)(uintptr_t)n; } /* Set the number of in-flight synchronization requests. */ disk->d_sync.ds_inflight = g_raid3_syncreqs; /* * Fire off first synchronization requests. */ for (n = 0; n < g_raid3_syncreqs; n++) { bp = disk->d_sync.ds_bios[n]; G_RAID3_LOGREQ(3, bp, "Sending synchronization request."); disk->d_sync.ds_consumer->index++; /* * Delay the request if it is colliding with a regular request. */ if (g_raid3_regular_collision(sc, bp)) g_raid3_sync_delay(sc, bp); else g_io_request(bp, disk->d_sync.ds_consumer); } } /* * Stop synchronization process. * type: 0 - synchronization finished * 1 - synchronization stopped */ static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type) { struct g_raid3_disk *disk; struct g_consumer *cp; g_topology_assert_not(); sx_assert(&sc->sc_lock, SX_LOCKED); KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, ("Device not in DEGRADED state (%s, %u).", sc->sc_name, sc->sc_state)); disk = sc->sc_syncdisk; sc->sc_syncdisk = NULL; KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name)); KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); if (disk->d_sync.ds_consumer == NULL) return; if (type == 0) { G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.", sc->sc_name, g_raid3_get_diskname(disk)); } else /* if (type == 1) */ { G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.", sc->sc_name, g_raid3_get_diskname(disk)); } free(disk->d_sync.ds_bios, M_RAID3); disk->d_sync.ds_bios = NULL; cp = disk->d_sync.ds_consumer; disk->d_sync.ds_consumer = NULL; disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */ g_topology_lock(); g_raid3_kill_consumer(sc, cp); g_topology_unlock(); sx_xlock(&sc->sc_lock); } static void g_raid3_launch_provider(struct g_raid3_softc *sc) { struct g_provider *pp; struct g_raid3_disk *disk; int n; sx_assert(&sc->sc_lock, SX_LOCKED); g_topology_lock(); pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name); pp->mediasize = sc->sc_mediasize; pp->sectorsize = sc->sc_sectorsize; pp->stripesize = 0; pp->stripeoffset = 0; for (n = 0; n < sc->sc_ndisks; n++) { disk = &sc->sc_disks[n]; if (disk->d_consumer && disk->d_consumer->provider && disk->d_consumer->provider->stripesize > pp->stripesize) { pp->stripesize = disk->d_consumer->provider->stripesize; pp->stripeoffset = disk->d_consumer->provider->stripeoffset; } } pp->stripesize *= sc->sc_ndisks - 1; pp->stripeoffset *= sc->sc_ndisks - 1; sc->sc_provider = pp; g_error_provider(pp, 0); g_topology_unlock(); G_RAID3_DEBUG(0, "Device %s launched (%u/%u).", pp->name, g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE), sc->sc_ndisks); if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED) g_raid3_sync_start(sc); } static void g_raid3_destroy_provider(struct g_raid3_softc *sc) { struct bio *bp; g_topology_assert_not(); KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).", sc->sc_name)); g_topology_lock(); g_error_provider(sc->sc_provider, ENXIO); mtx_lock(&sc->sc_queue_mtx); while ((bp = bioq_first(&sc->sc_queue)) != NULL) { bioq_remove(&sc->sc_queue, bp); g_io_deliver(bp, ENXIO); } mtx_unlock(&sc->sc_queue_mtx); G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name, sc->sc_provider->name); g_wither_provider(sc->sc_provider, ENXIO); g_topology_unlock(); sc->sc_provider = NULL; if (sc->sc_syncdisk != NULL) g_raid3_sync_stop(sc, 1); } static void g_raid3_go(void *arg) { struct g_raid3_softc *sc; sc = arg; G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name); g_raid3_event_send(sc, 0, G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE); } static u_int g_raid3_determine_state(struct g_raid3_disk *disk) { struct g_raid3_softc *sc; u_int state; sc = disk->d_softc; if (sc->sc_syncid == disk->d_sync.ds_syncid) { if ((disk->d_flags & G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) { /* Disk does not need synchronization. */ state = G_RAID3_DISK_STATE_ACTIVE; } else { if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 || (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) { /* * We can start synchronization from * the stored offset. */ state = G_RAID3_DISK_STATE_SYNCHRONIZING; } else { state = G_RAID3_DISK_STATE_STALE; } } } else if (disk->d_sync.ds_syncid < sc->sc_syncid) { /* * Reset all synchronization data for this disk, * because if it even was synchronized, it was * synchronized to disks with different syncid. */ disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; disk->d_sync.ds_offset = 0; disk->d_sync.ds_offset_done = 0; disk->d_sync.ds_syncid = sc->sc_syncid; if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 || (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) { state = G_RAID3_DISK_STATE_SYNCHRONIZING; } else { state = G_RAID3_DISK_STATE_STALE; } } else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ { /* * Not good, NOT GOOD! * It means that device was started on stale disks * and more fresh disk just arrive. * If there were writes, device is broken, sorry. * I think the best choice here is don't touch * this disk and inform the user loudly. */ G_RAID3_DEBUG(0, "Device %s was started before the freshest " "disk (%s) arrives!! It will not be connected to the " "running device.", sc->sc_name, g_raid3_get_diskname(disk)); g_raid3_destroy_disk(disk); state = G_RAID3_DISK_STATE_NONE; /* Return immediately, because disk was destroyed. */ return (state); } G_RAID3_DEBUG(3, "State for %s disk: %s.", g_raid3_get_diskname(disk), g_raid3_disk_state2str(state)); return (state); } /* * Update device state. */ static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force) { struct g_raid3_disk *disk; u_int state; sx_assert(&sc->sc_lock, SX_XLOCKED); switch (sc->sc_state) { case G_RAID3_DEVICE_STATE_STARTING: { u_int n, ndirty, ndisks, genid, syncid; KASSERT(sc->sc_provider == NULL, ("Non-NULL provider in STARTING state (%s).", sc->sc_name)); /* * Are we ready? We are, if all disks are connected or * one disk is missing and 'force' is true. */ if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) { if (!force) callout_drain(&sc->sc_callout); } else { if (force) { /* * Timeout expired, so destroy device. */ sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, sc->sc_rootmount); root_mount_rel(sc->sc_rootmount); sc->sc_rootmount = NULL; } return; } /* * Find the biggest genid. */ genid = 0; for (n = 0; n < sc->sc_ndisks; n++) { disk = &sc->sc_disks[n]; if (disk->d_state == G_RAID3_DISK_STATE_NODISK) continue; if (disk->d_genid > genid) genid = disk->d_genid; } sc->sc_genid = genid; /* * Remove all disks without the biggest genid. */ for (n = 0; n < sc->sc_ndisks; n++) { disk = &sc->sc_disks[n]; if (disk->d_state == G_RAID3_DISK_STATE_NODISK) continue; if (disk->d_genid < genid) { G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.", g_raid3_get_diskname(disk), sc->sc_name); g_raid3_destroy_disk(disk); } } /* * There must be at least 'sc->sc_ndisks - 1' components * with the same syncid and without SYNCHRONIZING flag. */ /* * Find the biggest syncid, number of valid components and * number of dirty components. */ ndirty = ndisks = syncid = 0; for (n = 0; n < sc->sc_ndisks; n++) { disk = &sc->sc_disks[n]; if (disk->d_state == G_RAID3_DISK_STATE_NODISK) continue; if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) ndirty++; if (disk->d_sync.ds_syncid > syncid) { syncid = disk->d_sync.ds_syncid; ndisks = 0; } else if (disk->d_sync.ds_syncid < syncid) { continue; } if ((disk->d_flags & G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) { continue; } ndisks++; } /* * Do we have enough valid components? */ if (ndisks + 1 < sc->sc_ndisks) { G_RAID3_DEBUG(0, "Device %s is broken, too few valid components.", sc->sc_name); sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; return; } /* * If there is one DIRTY component and all disks are present, * mark it for synchronization. If there is more than one DIRTY * component, mark parity component for synchronization. */ if (ndisks == sc->sc_ndisks && ndirty == 1) { for (n = 0; n < sc->sc_ndisks; n++) { disk = &sc->sc_disks[n]; if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) { continue; } disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; } } else if (ndisks == sc->sc_ndisks && ndirty > 1) { disk = &sc->sc_disks[sc->sc_ndisks - 1]; disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; } sc->sc_syncid = syncid; if (force) { /* Remember to bump syncid on first write. */ sc->sc_bump_id |= G_RAID3_BUMP_SYNCID; } if (ndisks == sc->sc_ndisks) state = G_RAID3_DEVICE_STATE_COMPLETE; else /* if (ndisks == sc->sc_ndisks - 1) */ state = G_RAID3_DEVICE_STATE_DEGRADED; G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.", sc->sc_name, g_raid3_device_state2str(sc->sc_state), g_raid3_device_state2str(state)); sc->sc_state = state; for (n = 0; n < sc->sc_ndisks; n++) { disk = &sc->sc_disks[n]; if (disk->d_state == G_RAID3_DISK_STATE_NODISK) continue; state = g_raid3_determine_state(disk); g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT); if (state == G_RAID3_DISK_STATE_STALE) sc->sc_bump_id |= G_RAID3_BUMP_SYNCID; } break; } case G_RAID3_DEVICE_STATE_DEGRADED: /* * Genid need to be bumped immediately, so do it here. */ if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) { sc->sc_bump_id &= ~G_RAID3_BUMP_GENID; g_raid3_bump_genid(sc); } if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0) return; if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) { if (sc->sc_provider != NULL) g_raid3_destroy_provider(sc); sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; return; } if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) == sc->sc_ndisks) { state = G_RAID3_DEVICE_STATE_COMPLETE; G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.", sc->sc_name, g_raid3_device_state2str(sc->sc_state), g_raid3_device_state2str(state)); sc->sc_state = state; } if (sc->sc_provider == NULL) g_raid3_launch_provider(sc); if (sc->sc_rootmount != NULL) { G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, sc->sc_rootmount); root_mount_rel(sc->sc_rootmount); sc->sc_rootmount = NULL; } break; case G_RAID3_DEVICE_STATE_COMPLETE: /* * Genid need to be bumped immediately, so do it here. */ if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) { sc->sc_bump_id &= ~G_RAID3_BUMP_GENID; g_raid3_bump_genid(sc); } if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0) return; KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >= sc->sc_ndisks - 1, ("Too few ACTIVE components in COMPLETE state (device %s).", sc->sc_name)); if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) == sc->sc_ndisks - 1) { state = G_RAID3_DEVICE_STATE_DEGRADED; G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.", sc->sc_name, g_raid3_device_state2str(sc->sc_state), g_raid3_device_state2str(state)); sc->sc_state = state; } if (sc->sc_provider == NULL) g_raid3_launch_provider(sc); if (sc->sc_rootmount != NULL) { G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, sc->sc_rootmount); root_mount_rel(sc->sc_rootmount); sc->sc_rootmount = NULL; } break; default: KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name, g_raid3_device_state2str(sc->sc_state))); break; } } /* * Update disk state and device state if needed. */ #define DISK_STATE_CHANGED() G_RAID3_DEBUG(1, \ "Disk %s state changed from %s to %s (device %s).", \ g_raid3_get_diskname(disk), \ g_raid3_disk_state2str(disk->d_state), \ g_raid3_disk_state2str(state), sc->sc_name) static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state) { struct g_raid3_softc *sc; sc = disk->d_softc; sx_assert(&sc->sc_lock, SX_XLOCKED); again: G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.", g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state), g_raid3_disk_state2str(state)); switch (state) { case G_RAID3_DISK_STATE_NEW: /* * Possible scenarios: * 1. New disk arrive. */ /* Previous state should be NONE. */ KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE, ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); DISK_STATE_CHANGED(); disk->d_state = state; G_RAID3_DEBUG(1, "Device %s: provider %s detected.", sc->sc_name, g_raid3_get_diskname(disk)); if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) break; KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, g_raid3_device_state2str(sc->sc_state), g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); state = g_raid3_determine_state(disk); if (state != G_RAID3_DISK_STATE_NONE) goto again; break; case G_RAID3_DISK_STATE_ACTIVE: /* * Possible scenarios: * 1. New disk does not need synchronization. * 2. Synchronization process finished successfully. */ KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, g_raid3_device_state2str(sc->sc_state), g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); /* Previous state should be NEW or SYNCHRONIZING. */ KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW || disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); DISK_STATE_CHANGED(); if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING; disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC; g_raid3_sync_stop(sc, 0); } disk->d_state = state; disk->d_sync.ds_offset = 0; disk->d_sync.ds_offset_done = 0; g_raid3_update_idle(sc, disk); g_raid3_update_metadata(disk); G_RAID3_DEBUG(1, "Device %s: provider %s activated.", sc->sc_name, g_raid3_get_diskname(disk)); break; case G_RAID3_DISK_STATE_STALE: /* * Possible scenarios: * 1. Stale disk was connected. */ /* Previous state should be NEW. */ KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, g_raid3_device_state2str(sc->sc_state), g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); /* * STALE state is only possible if device is marked * NOAUTOSYNC. */ KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0, ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, g_raid3_device_state2str(sc->sc_state), g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); DISK_STATE_CHANGED(); disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; disk->d_state = state; g_raid3_update_metadata(disk); G_RAID3_DEBUG(0, "Device %s: provider %s is stale.", sc->sc_name, g_raid3_get_diskname(disk)); break; case G_RAID3_DISK_STATE_SYNCHRONIZING: /* * Possible scenarios: * 1. Disk which needs synchronization was connected. */ /* Previous state should be NEW. */ KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, g_raid3_device_state2str(sc->sc_state), g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); DISK_STATE_CHANGED(); if (disk->d_state == G_RAID3_DISK_STATE_NEW) disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; disk->d_state = state; if (sc->sc_provider != NULL) { g_raid3_sync_start(sc); g_raid3_update_metadata(disk); } break; case G_RAID3_DISK_STATE_DISCONNECTED: /* * Possible scenarios: * 1. Device wasn't running yet, but disk disappear. * 2. Disk was active and disapppear. * 3. Disk disappear during synchronization process. */ if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { /* * Previous state should be ACTIVE, STALE or * SYNCHRONIZING. */ KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE || disk->d_state == G_RAID3_DISK_STATE_STALE || disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); } else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) { /* Previous state should be NEW. */ KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); /* * Reset bumping syncid if disk disappeared in STARTING * state. */ if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID; #ifdef INVARIANTS } else { KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, g_raid3_device_state2str(sc->sc_state), g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state))); #endif } DISK_STATE_CHANGED(); G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.", sc->sc_name, g_raid3_get_diskname(disk)); g_raid3_destroy_disk(disk); break; default: KASSERT(1 == 0, ("Unknown state (%u).", state)); break; } return (0); } #undef DISK_STATE_CHANGED int g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md) { struct g_provider *pp; u_char *buf; int error; g_topology_assert(); error = g_access(cp, 1, 0, 0); if (error != 0) return (error); pp = cp->provider; g_topology_unlock(); /* Metadata are stored on last sector. */ buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, &error); g_topology_lock(); g_access(cp, -1, 0, 0); if (buf == NULL) { G_RAID3_DEBUG(1, "Cannot read metadata from %s (error=%d).", cp->provider->name, error); return (error); } /* Decode metadata. */ error = raid3_metadata_decode(buf, md); g_free(buf); if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0) return (EINVAL); if (md->md_version > G_RAID3_VERSION) { G_RAID3_DEBUG(0, "Kernel module is too old to handle metadata from %s.", cp->provider->name); return (EINVAL); } if (error != 0) { G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.", cp->provider->name); return (error); } if (md->md_sectorsize > MAXPHYS) { G_RAID3_DEBUG(0, "The blocksize is too big."); return (EINVAL); } return (0); } static int g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp, struct g_raid3_metadata *md) { if (md->md_no >= sc->sc_ndisks) { G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.", pp->name, md->md_no); return (EINVAL); } if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) { G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.", pp->name, md->md_no); return (EEXIST); } if (md->md_all != sc->sc_ndisks) { G_RAID3_DEBUG(1, "Invalid '%s' field on disk %s (device %s), skipping.", "md_all", pp->name, sc->sc_name); return (EINVAL); } if ((md->md_mediasize % md->md_sectorsize) != 0) { G_RAID3_DEBUG(1, "Invalid metadata (mediasize %% sectorsize != " "0) on disk %s (device %s), skipping.", pp->name, sc->sc_name); return (EINVAL); } if (md->md_mediasize != sc->sc_mediasize) { G_RAID3_DEBUG(1, "Invalid '%s' field on disk %s (device %s), skipping.", "md_mediasize", pp->name, sc->sc_name); return (EINVAL); } if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) { G_RAID3_DEBUG(1, "Invalid '%s' field on disk %s (device %s), skipping.", "md_mediasize", pp->name, sc->sc_name); return (EINVAL); } if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) { G_RAID3_DEBUG(1, "Invalid size of disk %s (device %s), skipping.", pp->name, sc->sc_name); return (EINVAL); } if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) { G_RAID3_DEBUG(1, "Invalid '%s' field on disk %s (device %s), skipping.", "md_sectorsize", pp->name, sc->sc_name); return (EINVAL); } if (md->md_sectorsize != sc->sc_sectorsize) { G_RAID3_DEBUG(1, "Invalid '%s' field on disk %s (device %s), skipping.", "md_sectorsize", pp->name, sc->sc_name); return (EINVAL); } if ((sc->sc_sectorsize % pp->sectorsize) != 0) { G_RAID3_DEBUG(1, "Invalid sector size of disk %s (device %s), skipping.", pp->name, sc->sc_name); return (EINVAL); } if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) { G_RAID3_DEBUG(1, "Invalid device flags on disk %s (device %s), skipping.", pp->name, sc->sc_name); return (EINVAL); } if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 && (md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) { /* * VERIFY and ROUND-ROBIN options are mutally exclusive. */ G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on " "disk %s (device %s), skipping.", pp->name, sc->sc_name); return (EINVAL); } if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) { G_RAID3_DEBUG(1, "Invalid disk flags on disk %s (device %s), skipping.", pp->name, sc->sc_name); return (EINVAL); } return (0); } int g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp, struct g_raid3_metadata *md) { struct g_raid3_disk *disk; int error; g_topology_assert_not(); G_RAID3_DEBUG(2, "Adding disk %s.", pp->name); error = g_raid3_check_metadata(sc, pp, md); if (error != 0) return (error); if (sc->sc_state != G_RAID3_DEVICE_STATE_STARTING && md->md_genid < sc->sc_genid) { G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.", pp->name, sc->sc_name); return (EINVAL); } disk = g_raid3_init_disk(sc, pp, md, &error); if (disk == NULL) return (error); error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW, G_RAID3_EVENT_WAIT); if (error != 0) return (error); if (md->md_version < G_RAID3_VERSION) { G_RAID3_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).", pp->name, md->md_version, G_RAID3_VERSION); g_raid3_update_metadata(disk); } return (0); } static void g_raid3_destroy_delayed(void *arg, int flag) { struct g_raid3_softc *sc; int error; if (flag == EV_CANCEL) { G_RAID3_DEBUG(1, "Destroying canceled."); return; } sc = arg; g_topology_unlock(); sx_xlock(&sc->sc_lock); KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) == 0, ("DESTROY flag set on %s.", sc->sc_name)); KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0, ("DESTROYING flag not set on %s.", sc->sc_name)); G_RAID3_DEBUG(0, "Destroying %s (delayed).", sc->sc_name); error = g_raid3_destroy(sc, G_RAID3_DESTROY_SOFT); if (error != 0) { G_RAID3_DEBUG(0, "Cannot destroy %s.", sc->sc_name); sx_xunlock(&sc->sc_lock); } g_topology_lock(); } static int g_raid3_access(struct g_provider *pp, int acr, int acw, int ace) { struct g_raid3_softc *sc; int dcr, dcw, dce, error = 0; g_topology_assert(); G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr, acw, ace); sc = pp->geom->softc; if (sc == NULL && acr <= 0 && acw <= 0 && ace <= 0) return (0); KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name)); dcr = pp->acr + acr; dcw = pp->acw + acw; dce = pp->ace + ace; g_topology_unlock(); sx_xlock(&sc->sc_lock); if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0 || g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) { if (acr > 0 || acw > 0 || ace > 0) error = ENXIO; goto end; } if (dcw == 0) g_raid3_idle(sc, dcw); if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0) { if (acr > 0 || acw > 0 || ace > 0) { error = ENXIO; goto end; } if (dcr == 0 && dcw == 0 && dce == 0) { g_post_event(g_raid3_destroy_delayed, sc, M_WAITOK, sc, NULL); } } end: sx_xunlock(&sc->sc_lock); g_topology_lock(); return (error); } static struct g_geom * g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md) { struct g_raid3_softc *sc; struct g_geom *gp; int error, timeout; u_int n; g_topology_assert(); G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id); /* One disk is minimum. */ if (md->md_all < 1) return (NULL); /* * Action geom. */ gp = g_new_geomf(mp, "%s", md->md_name); sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO); sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3, M_WAITOK | M_ZERO); gp->start = g_raid3_start; gp->orphan = g_raid3_orphan; gp->access = g_raid3_access; gp->dumpconf = g_raid3_dumpconf; sc->sc_id = md->md_id; sc->sc_mediasize = md->md_mediasize; sc->sc_sectorsize = md->md_sectorsize; sc->sc_ndisks = md->md_all; sc->sc_round_robin = 0; sc->sc_flags = md->md_mflags; sc->sc_bump_id = 0; sc->sc_idle = 1; sc->sc_last_write = time_uptime; sc->sc_writes = 0; for (n = 0; n < sc->sc_ndisks; n++) { sc->sc_disks[n].d_softc = sc; sc->sc_disks[n].d_no = n; sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK; } sx_init(&sc->sc_lock, "graid3:lock"); bioq_init(&sc->sc_queue); mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF); bioq_init(&sc->sc_regular_delayed); bioq_init(&sc->sc_inflight); bioq_init(&sc->sc_sync_delayed); TAILQ_INIT(&sc->sc_events); mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF); callout_init(&sc->sc_callout, 1); sc->sc_state = G_RAID3_DEVICE_STATE_STARTING; gp->softc = sc; sc->sc_geom = gp; sc->sc_provider = NULL; /* * Synchronization geom. */ gp = g_new_geomf(mp, "%s.sync", md->md_name); gp->softc = sc; gp->orphan = g_raid3_orphan; sc->sc_sync.ds_geom = gp; if (!g_raid3_use_malloc) { sc->sc_zones[G_RAID3_ZONE_64K].sz_zone = uma_zcreate("gr3:64k", 65536, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, UMA_ALIGN_PTR, 0); sc->sc_zones[G_RAID3_ZONE_64K].sz_inuse = 0; sc->sc_zones[G_RAID3_ZONE_64K].sz_max = g_raid3_n64k; sc->sc_zones[G_RAID3_ZONE_64K].sz_requested = sc->sc_zones[G_RAID3_ZONE_64K].sz_failed = 0; sc->sc_zones[G_RAID3_ZONE_16K].sz_zone = uma_zcreate("gr3:16k", 16384, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, UMA_ALIGN_PTR, 0); sc->sc_zones[G_RAID3_ZONE_16K].sz_inuse = 0; sc->sc_zones[G_RAID3_ZONE_16K].sz_max = g_raid3_n16k; sc->sc_zones[G_RAID3_ZONE_16K].sz_requested = sc->sc_zones[G_RAID3_ZONE_16K].sz_failed = 0; sc->sc_zones[G_RAID3_ZONE_4K].sz_zone = uma_zcreate("gr3:4k", 4096, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, UMA_ALIGN_PTR, 0); sc->sc_zones[G_RAID3_ZONE_4K].sz_inuse = 0; sc->sc_zones[G_RAID3_ZONE_4K].sz_max = g_raid3_n4k; sc->sc_zones[G_RAID3_ZONE_4K].sz_requested = sc->sc_zones[G_RAID3_ZONE_4K].sz_failed = 0; } error = kproc_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0, "g_raid3 %s", md->md_name); if (error != 0) { G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.", sc->sc_name); if (!g_raid3_use_malloc) { uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone); uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone); uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone); } g_destroy_geom(sc->sc_sync.ds_geom); mtx_destroy(&sc->sc_events_mtx); mtx_destroy(&sc->sc_queue_mtx); sx_destroy(&sc->sc_lock); g_destroy_geom(sc->sc_geom); free(sc->sc_disks, M_RAID3); free(sc, M_RAID3); return (NULL); } G_RAID3_DEBUG(1, "Device %s created (%u components, id=%u).", sc->sc_name, sc->sc_ndisks, sc->sc_id); sc->sc_rootmount = root_mount_hold("GRAID3"); G_RAID3_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount); /* * Run timeout. */ timeout = atomic_load_acq_int(&g_raid3_timeout); callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc); return (sc->sc_geom); } int g_raid3_destroy(struct g_raid3_softc *sc, int how) { struct g_provider *pp; g_topology_assert_not(); if (sc == NULL) return (ENXIO); sx_assert(&sc->sc_lock, SX_XLOCKED); pp = sc->sc_provider; if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) { switch (how) { case G_RAID3_DESTROY_SOFT: G_RAID3_DEBUG(1, "Device %s is still open (r%dw%de%d).", pp->name, pp->acr, pp->acw, pp->ace); return (EBUSY); case G_RAID3_DESTROY_DELAYED: G_RAID3_DEBUG(1, "Device %s will be destroyed on last close.", pp->name); if (sc->sc_syncdisk != NULL) g_raid3_sync_stop(sc, 1); sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROYING; return (EBUSY); case G_RAID3_DESTROY_HARD: G_RAID3_DEBUG(1, "Device %s is still open, so it " "can't be definitely removed.", pp->name); break; } } g_topology_lock(); if (sc->sc_geom->softc == NULL) { g_topology_unlock(); return (0); } sc->sc_geom->softc = NULL; sc->sc_sync.ds_geom->softc = NULL; g_topology_unlock(); sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT; G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); sx_xunlock(&sc->sc_lock); mtx_lock(&sc->sc_queue_mtx); wakeup(sc); wakeup(&sc->sc_queue); mtx_unlock(&sc->sc_queue_mtx); G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker); while (sc->sc_worker != NULL) tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5); G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker); sx_xlock(&sc->sc_lock); g_raid3_destroy_device(sc); free(sc->sc_disks, M_RAID3); free(sc, M_RAID3); return (0); } static void g_raid3_taste_orphan(struct g_consumer *cp) { KASSERT(1 == 0, ("%s called while tasting %s.", __func__, cp->provider->name)); } static struct g_geom * g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) { struct g_raid3_metadata md; struct g_raid3_softc *sc; struct g_consumer *cp; struct g_geom *gp; int error; g_topology_assert(); g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); G_RAID3_DEBUG(2, "Tasting %s.", pp->name); gp = g_new_geomf(mp, "raid3:taste"); /* This orphan function should be never called. */ gp->orphan = g_raid3_taste_orphan; cp = g_new_consumer(gp); g_attach(cp, pp); error = g_raid3_read_metadata(cp, &md); g_detach(cp); g_destroy_consumer(cp); g_destroy_geom(gp); if (error != 0) return (NULL); gp = NULL; if (md.md_provider[0] != '\0' && !g_compare_names(md.md_provider, pp->name)) return (NULL); if (md.md_provsize != 0 && md.md_provsize != pp->mediasize) return (NULL); if (g_raid3_debug >= 2) raid3_metadata_dump(&md); /* * Let's check if device already exists. */ sc = NULL; LIST_FOREACH(gp, &mp->geom, geom) { sc = gp->softc; if (sc == NULL) continue; if (sc->sc_sync.ds_geom == gp) continue; if (strcmp(md.md_name, sc->sc_name) != 0) continue; if (md.md_id != sc->sc_id) { G_RAID3_DEBUG(0, "Device %s already configured.", sc->sc_name); return (NULL); } break; } if (gp == NULL) { gp = g_raid3_create(mp, &md); if (gp == NULL) { G_RAID3_DEBUG(0, "Cannot create device %s.", md.md_name); return (NULL); } sc = gp->softc; } G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name); g_topology_unlock(); sx_xlock(&sc->sc_lock); error = g_raid3_add_disk(sc, pp, &md); if (error != 0) { G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).", pp->name, gp->name, error); if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) == sc->sc_ndisks) { g_cancel_event(sc); g_raid3_destroy(sc, G_RAID3_DESTROY_HARD); g_topology_lock(); return (NULL); } gp = NULL; } sx_xunlock(&sc->sc_lock); g_topology_lock(); return (gp); } static int g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused, struct g_geom *gp) { struct g_raid3_softc *sc; int error; g_topology_unlock(); sc = gp->softc; sx_xlock(&sc->sc_lock); g_cancel_event(sc); error = g_raid3_destroy(gp->softc, G_RAID3_DESTROY_SOFT); if (error != 0) sx_xunlock(&sc->sc_lock); g_topology_lock(); return (error); } static void g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp) { struct g_raid3_softc *sc; g_topology_assert(); sc = gp->softc; if (sc == NULL) return; /* Skip synchronization geom. */ if (gp == sc->sc_sync.ds_geom) return; if (pp != NULL) { /* Nothing here. */ } else if (cp != NULL) { struct g_raid3_disk *disk; disk = cp->private; if (disk == NULL) return; g_topology_unlock(); sx_xlock(&sc->sc_lock); sbuf_printf(sb, "%s", indent); if (disk->d_no == sc->sc_ndisks - 1) sbuf_printf(sb, "PARITY"); else sbuf_printf(sb, "DATA"); sbuf_printf(sb, "\n"); sbuf_printf(sb, "%s%u\n", indent, (u_int)disk->d_no); if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { sbuf_printf(sb, "%s", indent); if (disk->d_sync.ds_offset == 0) sbuf_printf(sb, "0%%"); else { sbuf_printf(sb, "%u%%", (u_int)((disk->d_sync.ds_offset * 100) / (sc->sc_mediasize / (sc->sc_ndisks - 1)))); } sbuf_printf(sb, "\n"); if (disk->d_sync.ds_offset > 0) { sbuf_printf(sb, "%s%jd" "\n", indent, (intmax_t)disk->d_sync.ds_offset); } } sbuf_printf(sb, "%s%u\n", indent, disk->d_sync.ds_syncid); sbuf_printf(sb, "%s%u\n", indent, disk->d_genid); sbuf_printf(sb, "%s", indent); if (disk->d_flags == 0) sbuf_printf(sb, "NONE"); else { int first = 1; #define ADD_FLAG(flag, name) do { \ if ((disk->d_flags & (flag)) != 0) { \ if (!first) \ sbuf_printf(sb, ", "); \ else \ first = 0; \ sbuf_printf(sb, name); \ } \ } while (0) ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY"); ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED"); ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING, "SYNCHRONIZING"); ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC"); ADD_FLAG(G_RAID3_DISK_FLAG_BROKEN, "BROKEN"); #undef ADD_FLAG } sbuf_printf(sb, "\n"); sbuf_printf(sb, "%s%s\n", indent, g_raid3_disk_state2str(disk->d_state)); sx_xunlock(&sc->sc_lock); g_topology_lock(); } else { g_topology_unlock(); sx_xlock(&sc->sc_lock); if (!g_raid3_use_malloc) { sbuf_printf(sb, "%s%u\n", indent, sc->sc_zones[G_RAID3_ZONE_4K].sz_requested); sbuf_printf(sb, "%s%u\n", indent, sc->sc_zones[G_RAID3_ZONE_4K].sz_failed); sbuf_printf(sb, "%s%u\n", indent, sc->sc_zones[G_RAID3_ZONE_16K].sz_requested); sbuf_printf(sb, "%s%u\n", indent, sc->sc_zones[G_RAID3_ZONE_16K].sz_failed); sbuf_printf(sb, "%s%u\n", indent, sc->sc_zones[G_RAID3_ZONE_64K].sz_requested); sbuf_printf(sb, "%s%u\n", indent, sc->sc_zones[G_RAID3_ZONE_64K].sz_failed); } sbuf_printf(sb, "%s%u\n", indent, (u_int)sc->sc_id); sbuf_printf(sb, "%s%u\n", indent, sc->sc_syncid); sbuf_printf(sb, "%s%u\n", indent, sc->sc_genid); sbuf_printf(sb, "%s", indent); if (sc->sc_flags == 0) sbuf_printf(sb, "NONE"); else { int first = 1; #define ADD_FLAG(flag, name) do { \ if ((sc->sc_flags & (flag)) != 0) { \ if (!first) \ sbuf_printf(sb, ", "); \ else \ first = 0; \ sbuf_printf(sb, name); \ } \ } while (0) ADD_FLAG(G_RAID3_DEVICE_FLAG_NOFAILSYNC, "NOFAILSYNC"); ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC"); ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN, "ROUND-ROBIN"); ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY"); #undef ADD_FLAG } sbuf_printf(sb, "\n"); sbuf_printf(sb, "%s%u\n", indent, sc->sc_ndisks); sbuf_printf(sb, "%s%s\n", indent, g_raid3_device_state2str(sc->sc_state)); sx_xunlock(&sc->sc_lock); g_topology_lock(); } } static void g_raid3_shutdown_post_sync(void *arg, int howto) { struct g_class *mp; struct g_geom *gp, *gp2; struct g_raid3_softc *sc; int error; mp = arg; g_topology_lock(); g_raid3_shutdown = 1; LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { if ((sc = gp->softc) == NULL) continue; /* Skip synchronization geom. */ if (gp == sc->sc_sync.ds_geom) continue; g_topology_unlock(); sx_xlock(&sc->sc_lock); g_raid3_idle(sc, -1); g_cancel_event(sc); error = g_raid3_destroy(sc, G_RAID3_DESTROY_DELAYED); if (error != 0) sx_xunlock(&sc->sc_lock); g_topology_lock(); } g_topology_unlock(); } static void g_raid3_init(struct g_class *mp) { g_raid3_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync, g_raid3_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST); if (g_raid3_post_sync == NULL) G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event."); } static void g_raid3_fini(struct g_class *mp) { if (g_raid3_post_sync != NULL) EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid3_post_sync); } DECLARE_GEOM_CLASS(g_raid3_class, g_raid3); +MODULE_VERSION(geom_raid3, 0); Index: head/sys/geom/shsec/g_shsec.c =================================================================== --- head/sys/geom/shsec/g_shsec.c (revision 332386) +++ head/sys/geom/shsec/g_shsec.c (revision 332387) @@ -1,838 +1,839 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2005 Pawel Jakub Dawidek * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include FEATURE(geom_shsec, "GEOM shared secret device support"); static MALLOC_DEFINE(M_SHSEC, "shsec_data", "GEOM_SHSEC Data"); static uma_zone_t g_shsec_zone; static int g_shsec_destroy(struct g_shsec_softc *sc, boolean_t force); static int g_shsec_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp); static g_taste_t g_shsec_taste; static g_ctl_req_t g_shsec_config; static g_dumpconf_t g_shsec_dumpconf; static g_init_t g_shsec_init; static g_fini_t g_shsec_fini; struct g_class g_shsec_class = { .name = G_SHSEC_CLASS_NAME, .version = G_VERSION, .ctlreq = g_shsec_config, .taste = g_shsec_taste, .destroy_geom = g_shsec_destroy_geom, .init = g_shsec_init, .fini = g_shsec_fini }; SYSCTL_DECL(_kern_geom); static SYSCTL_NODE(_kern_geom, OID_AUTO, shsec, CTLFLAG_RW, 0, "GEOM_SHSEC stuff"); static u_int g_shsec_debug = 0; SYSCTL_UINT(_kern_geom_shsec, OID_AUTO, debug, CTLFLAG_RWTUN, &g_shsec_debug, 0, "Debug level"); static u_int g_shsec_maxmem = MAXPHYS * 100; SYSCTL_UINT(_kern_geom_shsec, OID_AUTO, maxmem, CTLFLAG_RDTUN, &g_shsec_maxmem, 0, "Maximum memory that can be allocated for I/O (in bytes)"); static u_int g_shsec_alloc_failed = 0; SYSCTL_UINT(_kern_geom_shsec, OID_AUTO, alloc_failed, CTLFLAG_RD, &g_shsec_alloc_failed, 0, "How many times I/O allocation failed"); /* * Greatest Common Divisor. */ static u_int gcd(u_int a, u_int b) { u_int c; while (b != 0) { c = a; a = b; b = (c % b); } return (a); } /* * Least Common Multiple. */ static u_int lcm(u_int a, u_int b) { return ((a * b) / gcd(a, b)); } static void g_shsec_init(struct g_class *mp __unused) { g_shsec_zone = uma_zcreate("g_shsec_zone", MAXPHYS, NULL, NULL, NULL, NULL, 0, 0); g_shsec_maxmem -= g_shsec_maxmem % MAXPHYS; uma_zone_set_max(g_shsec_zone, g_shsec_maxmem / MAXPHYS); } static void g_shsec_fini(struct g_class *mp __unused) { uma_zdestroy(g_shsec_zone); } /* * Return the number of valid disks. */ static u_int g_shsec_nvalid(struct g_shsec_softc *sc) { u_int i, no; no = 0; for (i = 0; i < sc->sc_ndisks; i++) { if (sc->sc_disks[i] != NULL) no++; } return (no); } static void g_shsec_remove_disk(struct g_consumer *cp) { struct g_shsec_softc *sc; u_int no; KASSERT(cp != NULL, ("Non-valid disk in %s.", __func__)); sc = (struct g_shsec_softc *)cp->private; KASSERT(sc != NULL, ("NULL sc in %s.", __func__)); no = cp->index; G_SHSEC_DEBUG(0, "Disk %s removed from %s.", cp->provider->name, sc->sc_name); sc->sc_disks[no] = NULL; if (sc->sc_provider != NULL) { g_wither_provider(sc->sc_provider, ENXIO); sc->sc_provider = NULL; G_SHSEC_DEBUG(0, "Device %s removed.", sc->sc_name); } if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) g_access(cp, -cp->acr, -cp->acw, -cp->ace); g_detach(cp); g_destroy_consumer(cp); } static void g_shsec_orphan(struct g_consumer *cp) { struct g_shsec_softc *sc; struct g_geom *gp; g_topology_assert(); gp = cp->geom; sc = gp->softc; if (sc == NULL) return; g_shsec_remove_disk(cp); /* If there are no valid disks anymore, remove device. */ if (g_shsec_nvalid(sc) == 0) g_shsec_destroy(sc, 1); } static int g_shsec_access(struct g_provider *pp, int dr, int dw, int de) { struct g_consumer *cp1, *cp2; struct g_shsec_softc *sc; struct g_geom *gp; int error; gp = pp->geom; sc = gp->softc; if (sc == NULL) { /* * It looks like geom is being withered. * In that case we allow only negative requests. */ KASSERT(dr <= 0 && dw <= 0 && de <= 0, ("Positive access request (device=%s).", pp->name)); if ((pp->acr + dr) == 0 && (pp->acw + dw) == 0 && (pp->ace + de) == 0) { G_SHSEC_DEBUG(0, "Device %s definitely destroyed.", gp->name); } return (0); } /* On first open, grab an extra "exclusive" bit */ if (pp->acr == 0 && pp->acw == 0 && pp->ace == 0) de++; /* ... and let go of it on last close */ if ((pp->acr + dr) == 0 && (pp->acw + dw) == 0 && (pp->ace + de) == 0) de--; error = ENXIO; LIST_FOREACH(cp1, &gp->consumer, consumer) { error = g_access(cp1, dr, dw, de); if (error == 0) continue; /* * If we fail here, backout all previous changes. */ LIST_FOREACH(cp2, &gp->consumer, consumer) { if (cp1 == cp2) return (error); g_access(cp2, -dr, -dw, -de); } /* NOTREACHED */ } return (error); } static void g_shsec_xor1(uint32_t *src, uint32_t *dst, ssize_t len) { for (; len > 0; len -= sizeof(uint32_t), dst++) *dst = *dst ^ *src++; KASSERT(len == 0, ("len != 0 (len=%zd)", len)); } static void g_shsec_done(struct bio *bp) { struct g_shsec_softc *sc; struct bio *pbp; pbp = bp->bio_parent; sc = pbp->bio_to->geom->softc; if (bp->bio_error == 0) G_SHSEC_LOGREQ(2, bp, "Request done."); else { G_SHSEC_LOGREQ(0, bp, "Request failed (error=%d).", bp->bio_error); if (pbp->bio_error == 0) pbp->bio_error = bp->bio_error; } if (pbp->bio_cmd == BIO_READ) { if ((pbp->bio_pflags & G_SHSEC_BFLAG_FIRST) != 0) { bcopy(bp->bio_data, pbp->bio_data, pbp->bio_length); pbp->bio_pflags = 0; } else { g_shsec_xor1((uint32_t *)bp->bio_data, (uint32_t *)pbp->bio_data, (ssize_t)pbp->bio_length); } } bzero(bp->bio_data, bp->bio_length); uma_zfree(g_shsec_zone, bp->bio_data); g_destroy_bio(bp); pbp->bio_inbed++; if (pbp->bio_children == pbp->bio_inbed) { pbp->bio_completed = pbp->bio_length; g_io_deliver(pbp, pbp->bio_error); } } static void g_shsec_xor2(uint32_t *rand, uint32_t *dst, ssize_t len) { for (; len > 0; len -= sizeof(uint32_t), dst++) { *rand = arc4random(); *dst = *dst ^ *rand++; } KASSERT(len == 0, ("len != 0 (len=%zd)", len)); } static void g_shsec_start(struct bio *bp) { TAILQ_HEAD(, bio) queue = TAILQ_HEAD_INITIALIZER(queue); struct g_shsec_softc *sc; struct bio *cbp; uint32_t *dst; ssize_t len; u_int no; int error; sc = bp->bio_to->geom->softc; /* * If sc == NULL, provider's error should be set and g_shsec_start() * should not be called at all. */ KASSERT(sc != NULL, ("Provider's error should be set (error=%d)(device=%s).", bp->bio_to->error, bp->bio_to->name)); G_SHSEC_LOGREQ(2, bp, "Request received."); switch (bp->bio_cmd) { case BIO_READ: case BIO_WRITE: case BIO_FLUSH: /* * Only those requests are supported. */ break; case BIO_DELETE: case BIO_GETATTR: /* To which provider it should be delivered? */ default: g_io_deliver(bp, EOPNOTSUPP); return; } /* * Allocate all bios first and calculate XOR. */ dst = NULL; len = bp->bio_length; if (bp->bio_cmd == BIO_READ) bp->bio_pflags = G_SHSEC_BFLAG_FIRST; for (no = 0; no < sc->sc_ndisks; no++) { cbp = g_clone_bio(bp); if (cbp == NULL) { error = ENOMEM; goto failure; } TAILQ_INSERT_TAIL(&queue, cbp, bio_queue); /* * Fill in the component buf structure. */ cbp->bio_done = g_shsec_done; cbp->bio_data = uma_zalloc(g_shsec_zone, M_NOWAIT); if (cbp->bio_data == NULL) { g_shsec_alloc_failed++; error = ENOMEM; goto failure; } cbp->bio_caller2 = sc->sc_disks[no]; if (bp->bio_cmd == BIO_WRITE) { if (no == 0) { dst = (uint32_t *)cbp->bio_data; bcopy(bp->bio_data, dst, len); } else { g_shsec_xor2((uint32_t *)cbp->bio_data, dst, len); } } } /* * Fire off all allocated requests! */ while ((cbp = TAILQ_FIRST(&queue)) != NULL) { struct g_consumer *cp; TAILQ_REMOVE(&queue, cbp, bio_queue); cp = cbp->bio_caller2; cbp->bio_caller2 = NULL; cbp->bio_to = cp->provider; G_SHSEC_LOGREQ(2, cbp, "Sending request."); g_io_request(cbp, cp); } return; failure: while ((cbp = TAILQ_FIRST(&queue)) != NULL) { TAILQ_REMOVE(&queue, cbp, bio_queue); bp->bio_children--; if (cbp->bio_data != NULL) { bzero(cbp->bio_data, cbp->bio_length); uma_zfree(g_shsec_zone, cbp->bio_data); } g_destroy_bio(cbp); } if (bp->bio_error == 0) bp->bio_error = error; g_io_deliver(bp, bp->bio_error); } static void g_shsec_check_and_run(struct g_shsec_softc *sc) { off_t mediasize, ms; u_int no, sectorsize = 0; if (g_shsec_nvalid(sc) != sc->sc_ndisks) return; sc->sc_provider = g_new_providerf(sc->sc_geom, "shsec/%s", sc->sc_name); /* * Find the smallest disk. */ mediasize = sc->sc_disks[0]->provider->mediasize; mediasize -= sc->sc_disks[0]->provider->sectorsize; sectorsize = sc->sc_disks[0]->provider->sectorsize; for (no = 1; no < sc->sc_ndisks; no++) { ms = sc->sc_disks[no]->provider->mediasize; ms -= sc->sc_disks[no]->provider->sectorsize; if (ms < mediasize) mediasize = ms; sectorsize = lcm(sectorsize, sc->sc_disks[no]->provider->sectorsize); } sc->sc_provider->sectorsize = sectorsize; sc->sc_provider->mediasize = mediasize; g_error_provider(sc->sc_provider, 0); G_SHSEC_DEBUG(0, "Device %s activated.", sc->sc_name); } static int g_shsec_read_metadata(struct g_consumer *cp, struct g_shsec_metadata *md) { struct g_provider *pp; u_char *buf; int error; g_topology_assert(); error = g_access(cp, 1, 0, 0); if (error != 0) return (error); pp = cp->provider; g_topology_unlock(); buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, &error); g_topology_lock(); g_access(cp, -1, 0, 0); if (buf == NULL) return (error); /* Decode metadata. */ shsec_metadata_decode(buf, md); g_free(buf); return (0); } /* * Add disk to given device. */ static int g_shsec_add_disk(struct g_shsec_softc *sc, struct g_provider *pp, u_int no) { struct g_consumer *cp, *fcp; struct g_geom *gp; struct g_shsec_metadata md; int error; /* Metadata corrupted? */ if (no >= sc->sc_ndisks) return (EINVAL); /* Check if disk is not already attached. */ if (sc->sc_disks[no] != NULL) return (EEXIST); gp = sc->sc_geom; fcp = LIST_FIRST(&gp->consumer); cp = g_new_consumer(gp); error = g_attach(cp, pp); if (error != 0) { g_destroy_consumer(cp); return (error); } if (fcp != NULL && (fcp->acr > 0 || fcp->acw > 0 || fcp->ace > 0)) { error = g_access(cp, fcp->acr, fcp->acw, fcp->ace); if (error != 0) { g_detach(cp); g_destroy_consumer(cp); return (error); } } /* Reread metadata. */ error = g_shsec_read_metadata(cp, &md); if (error != 0) goto fail; if (strcmp(md.md_magic, G_SHSEC_MAGIC) != 0 || strcmp(md.md_name, sc->sc_name) != 0 || md.md_id != sc->sc_id) { G_SHSEC_DEBUG(0, "Metadata on %s changed.", pp->name); goto fail; } cp->private = sc; cp->index = no; sc->sc_disks[no] = cp; G_SHSEC_DEBUG(0, "Disk %s attached to %s.", pp->name, sc->sc_name); g_shsec_check_and_run(sc); return (0); fail: if (fcp != NULL && (fcp->acr > 0 || fcp->acw > 0 || fcp->ace > 0)) g_access(cp, -fcp->acr, -fcp->acw, -fcp->ace); g_detach(cp); g_destroy_consumer(cp); return (error); } static struct g_geom * g_shsec_create(struct g_class *mp, const struct g_shsec_metadata *md) { struct g_shsec_softc *sc; struct g_geom *gp; u_int no; G_SHSEC_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id); /* Two disks is minimum. */ if (md->md_all < 2) { G_SHSEC_DEBUG(0, "Too few disks defined for %s.", md->md_name); return (NULL); } /* Check for duplicate unit */ LIST_FOREACH(gp, &mp->geom, geom) { sc = gp->softc; if (sc != NULL && strcmp(sc->sc_name, md->md_name) == 0) { G_SHSEC_DEBUG(0, "Device %s already configured.", sc->sc_name); return (NULL); } } gp = g_new_geomf(mp, "%s", md->md_name); sc = malloc(sizeof(*sc), M_SHSEC, M_WAITOK | M_ZERO); gp->start = g_shsec_start; gp->spoiled = g_shsec_orphan; gp->orphan = g_shsec_orphan; gp->access = g_shsec_access; gp->dumpconf = g_shsec_dumpconf; sc->sc_id = md->md_id; sc->sc_ndisks = md->md_all; sc->sc_disks = malloc(sizeof(struct g_consumer *) * sc->sc_ndisks, M_SHSEC, M_WAITOK | M_ZERO); for (no = 0; no < sc->sc_ndisks; no++) sc->sc_disks[no] = NULL; gp->softc = sc; sc->sc_geom = gp; sc->sc_provider = NULL; G_SHSEC_DEBUG(0, "Device %s created (id=%u).", sc->sc_name, sc->sc_id); return (gp); } static int g_shsec_destroy(struct g_shsec_softc *sc, boolean_t force) { struct g_provider *pp; struct g_geom *gp; u_int no; g_topology_assert(); if (sc == NULL) return (ENXIO); pp = sc->sc_provider; if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) { if (force) { G_SHSEC_DEBUG(0, "Device %s is still open, so it " "can't be definitely removed.", pp->name); } else { G_SHSEC_DEBUG(1, "Device %s is still open (r%dw%de%d).", pp->name, pp->acr, pp->acw, pp->ace); return (EBUSY); } } for (no = 0; no < sc->sc_ndisks; no++) { if (sc->sc_disks[no] != NULL) g_shsec_remove_disk(sc->sc_disks[no]); } gp = sc->sc_geom; gp->softc = NULL; KASSERT(sc->sc_provider == NULL, ("Provider still exists? (device=%s)", gp->name)); free(sc->sc_disks, M_SHSEC); free(sc, M_SHSEC); pp = LIST_FIRST(&gp->provider); if (pp == NULL || (pp->acr == 0 && pp->acw == 0 && pp->ace == 0)) G_SHSEC_DEBUG(0, "Device %s destroyed.", gp->name); g_wither_geom(gp, ENXIO); return (0); } static int g_shsec_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused, struct g_geom *gp) { struct g_shsec_softc *sc; sc = gp->softc; return (g_shsec_destroy(sc, 0)); } static struct g_geom * g_shsec_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) { struct g_shsec_metadata md; struct g_shsec_softc *sc; struct g_consumer *cp; struct g_geom *gp; int error; g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); g_topology_assert(); /* Skip providers that are already open for writing. */ if (pp->acw > 0) return (NULL); G_SHSEC_DEBUG(3, "Tasting %s.", pp->name); gp = g_new_geomf(mp, "shsec:taste"); gp->start = g_shsec_start; gp->access = g_shsec_access; gp->orphan = g_shsec_orphan; cp = g_new_consumer(gp); g_attach(cp, pp); error = g_shsec_read_metadata(cp, &md); g_detach(cp); g_destroy_consumer(cp); g_destroy_geom(gp); if (error != 0) return (NULL); gp = NULL; if (strcmp(md.md_magic, G_SHSEC_MAGIC) != 0) return (NULL); if (md.md_version > G_SHSEC_VERSION) { G_SHSEC_DEBUG(0, "Kernel module is too old to handle %s.\n", pp->name); return (NULL); } /* * Backward compatibility: */ /* There was no md_provsize field in earlier versions of metadata. */ if (md.md_version < 1) md.md_provsize = pp->mediasize; if (md.md_provider[0] != '\0' && !g_compare_names(md.md_provider, pp->name)) return (NULL); if (md.md_provsize != pp->mediasize) return (NULL); /* * Let's check if device already exists. */ sc = NULL; LIST_FOREACH(gp, &mp->geom, geom) { sc = gp->softc; if (sc == NULL) continue; if (strcmp(md.md_name, sc->sc_name) != 0) continue; if (md.md_id != sc->sc_id) continue; break; } if (gp != NULL) { G_SHSEC_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name); error = g_shsec_add_disk(sc, pp, md.md_no); if (error != 0) { G_SHSEC_DEBUG(0, "Cannot add disk %s to %s (error=%d).", pp->name, gp->name, error); return (NULL); } } else { gp = g_shsec_create(mp, &md); if (gp == NULL) { G_SHSEC_DEBUG(0, "Cannot create device %s.", md.md_name); return (NULL); } sc = gp->softc; G_SHSEC_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name); error = g_shsec_add_disk(sc, pp, md.md_no); if (error != 0) { G_SHSEC_DEBUG(0, "Cannot add disk %s to %s (error=%d).", pp->name, gp->name, error); g_shsec_destroy(sc, 1); return (NULL); } } return (gp); } static struct g_shsec_softc * g_shsec_find_device(struct g_class *mp, const char *name) { struct g_shsec_softc *sc; struct g_geom *gp; LIST_FOREACH(gp, &mp->geom, geom) { sc = gp->softc; if (sc == NULL) continue; if (strcmp(sc->sc_name, name) == 0) return (sc); } return (NULL); } static void g_shsec_ctl_destroy(struct gctl_req *req, struct g_class *mp) { struct g_shsec_softc *sc; int *force, *nargs, error; const char *name; char param[16]; u_int i; g_topology_assert(); nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); if (nargs == NULL) { gctl_error(req, "No '%s' argument.", "nargs"); return; } if (*nargs <= 0) { gctl_error(req, "Missing device(s)."); return; } force = gctl_get_paraml(req, "force", sizeof(*force)); if (force == NULL) { gctl_error(req, "No '%s' argument.", "force"); return; } for (i = 0; i < (u_int)*nargs; i++) { snprintf(param, sizeof(param), "arg%u", i); name = gctl_get_asciiparam(req, param); if (name == NULL) { gctl_error(req, "No 'arg%u' argument.", i); return; } sc = g_shsec_find_device(mp, name); if (sc == NULL) { gctl_error(req, "No such device: %s.", name); return; } error = g_shsec_destroy(sc, *force); if (error != 0) { gctl_error(req, "Cannot destroy device %s (error=%d).", sc->sc_name, error); return; } } } static void g_shsec_config(struct gctl_req *req, struct g_class *mp, const char *verb) { uint32_t *version; g_topology_assert(); version = gctl_get_paraml(req, "version", sizeof(*version)); if (version == NULL) { gctl_error(req, "No '%s' argument.", "version"); return; } if (*version != G_SHSEC_VERSION) { gctl_error(req, "Userland and kernel parts are out of sync."); return; } if (strcmp(verb, "stop") == 0) { g_shsec_ctl_destroy(req, mp); return; } gctl_error(req, "Unknown verb."); } static void g_shsec_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp) { struct g_shsec_softc *sc; sc = gp->softc; if (sc == NULL) return; if (pp != NULL) { /* Nothing here. */ } else if (cp != NULL) { sbuf_printf(sb, "%s%u\n", indent, (u_int)cp->index); } else { sbuf_printf(sb, "%s%u\n", indent, (u_int)sc->sc_id); sbuf_printf(sb, "%sTotal=%u, Online=%u\n", indent, sc->sc_ndisks, g_shsec_nvalid(sc)); sbuf_printf(sb, "%s", indent); if (sc->sc_provider != NULL && sc->sc_provider->error == 0) sbuf_printf(sb, "UP"); else sbuf_printf(sb, "DOWN"); sbuf_printf(sb, "\n"); } } DECLARE_GEOM_CLASS(g_shsec_class, g_shsec); +MODULE_VERSION(geom_shsec, 0); Index: head/sys/geom/stripe/g_stripe.c =================================================================== --- head/sys/geom/stripe/g_stripe.c (revision 332386) +++ head/sys/geom/stripe/g_stripe.c (revision 332387) @@ -1,1272 +1,1273 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2004-2005 Pawel Jakub Dawidek * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include FEATURE(geom_stripe, "GEOM striping support"); static MALLOC_DEFINE(M_STRIPE, "stripe_data", "GEOM_STRIPE Data"); static uma_zone_t g_stripe_zone; static int g_stripe_destroy(struct g_stripe_softc *sc, boolean_t force); static int g_stripe_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp); static g_taste_t g_stripe_taste; static g_ctl_req_t g_stripe_config; static g_dumpconf_t g_stripe_dumpconf; static g_init_t g_stripe_init; static g_fini_t g_stripe_fini; struct g_class g_stripe_class = { .name = G_STRIPE_CLASS_NAME, .version = G_VERSION, .ctlreq = g_stripe_config, .taste = g_stripe_taste, .destroy_geom = g_stripe_destroy_geom, .init = g_stripe_init, .fini = g_stripe_fini }; SYSCTL_DECL(_kern_geom); static SYSCTL_NODE(_kern_geom, OID_AUTO, stripe, CTLFLAG_RW, 0, "GEOM_STRIPE stuff"); static u_int g_stripe_debug = 0; SYSCTL_UINT(_kern_geom_stripe, OID_AUTO, debug, CTLFLAG_RWTUN, &g_stripe_debug, 0, "Debug level"); static int g_stripe_fast = 0; static int g_sysctl_stripe_fast(SYSCTL_HANDLER_ARGS) { int error, fast; fast = g_stripe_fast; error = sysctl_handle_int(oidp, &fast, 0, req); if (error == 0 && req->newptr != NULL) g_stripe_fast = fast; return (error); } SYSCTL_PROC(_kern_geom_stripe, OID_AUTO, fast, CTLTYPE_INT | CTLFLAG_RWTUN, NULL, 0, g_sysctl_stripe_fast, "I", "Fast, but memory-consuming, mode"); static u_int g_stripe_maxmem = MAXPHYS * 100; SYSCTL_UINT(_kern_geom_stripe, OID_AUTO, maxmem, CTLFLAG_RDTUN, &g_stripe_maxmem, 0, "Maximum memory that can be allocated in \"fast\" mode (in bytes)"); static u_int g_stripe_fast_failed = 0; SYSCTL_UINT(_kern_geom_stripe, OID_AUTO, fast_failed, CTLFLAG_RD, &g_stripe_fast_failed, 0, "How many times \"fast\" mode failed"); /* * Greatest Common Divisor. */ static u_int gcd(u_int a, u_int b) { u_int c; while (b != 0) { c = a; a = b; b = (c % b); } return (a); } /* * Least Common Multiple. */ static u_int lcm(u_int a, u_int b) { return ((a * b) / gcd(a, b)); } static void g_stripe_init(struct g_class *mp __unused) { g_stripe_zone = uma_zcreate("g_stripe_zone", MAXPHYS, NULL, NULL, NULL, NULL, 0, 0); g_stripe_maxmem -= g_stripe_maxmem % MAXPHYS; uma_zone_set_max(g_stripe_zone, g_stripe_maxmem / MAXPHYS); } static void g_stripe_fini(struct g_class *mp __unused) { uma_zdestroy(g_stripe_zone); } /* * Return the number of valid disks. */ static u_int g_stripe_nvalid(struct g_stripe_softc *sc) { u_int i, no; no = 0; for (i = 0; i < sc->sc_ndisks; i++) { if (sc->sc_disks[i] != NULL) no++; } return (no); } static void g_stripe_remove_disk(struct g_consumer *cp) { struct g_stripe_softc *sc; g_topology_assert(); KASSERT(cp != NULL, ("Non-valid disk in %s.", __func__)); sc = (struct g_stripe_softc *)cp->geom->softc; KASSERT(sc != NULL, ("NULL sc in %s.", __func__)); if (cp->private == NULL) { G_STRIPE_DEBUG(0, "Disk %s removed from %s.", cp->provider->name, sc->sc_name); cp->private = (void *)(uintptr_t)-1; } if (sc->sc_provider != NULL) { G_STRIPE_DEBUG(0, "Device %s deactivated.", sc->sc_provider->name); g_wither_provider(sc->sc_provider, ENXIO); sc->sc_provider = NULL; } if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) return; sc->sc_disks[cp->index] = NULL; cp->index = 0; g_detach(cp); g_destroy_consumer(cp); /* If there are no valid disks anymore, remove device. */ if (LIST_EMPTY(&sc->sc_geom->consumer)) g_stripe_destroy(sc, 1); } static void g_stripe_orphan(struct g_consumer *cp) { struct g_stripe_softc *sc; struct g_geom *gp; g_topology_assert(); gp = cp->geom; sc = gp->softc; if (sc == NULL) return; g_stripe_remove_disk(cp); } static int g_stripe_access(struct g_provider *pp, int dr, int dw, int de) { struct g_consumer *cp1, *cp2, *tmp; struct g_stripe_softc *sc; struct g_geom *gp; int error; g_topology_assert(); gp = pp->geom; sc = gp->softc; KASSERT(sc != NULL, ("NULL sc in %s.", __func__)); /* On first open, grab an extra "exclusive" bit */ if (pp->acr == 0 && pp->acw == 0 && pp->ace == 0) de++; /* ... and let go of it on last close */ if ((pp->acr + dr) == 0 && (pp->acw + dw) == 0 && (pp->ace + de) == 0) de--; LIST_FOREACH_SAFE(cp1, &gp->consumer, consumer, tmp) { error = g_access(cp1, dr, dw, de); if (error != 0) goto fail; if (cp1->acr == 0 && cp1->acw == 0 && cp1->ace == 0 && cp1->private != NULL) { g_stripe_remove_disk(cp1); /* May destroy geom. */ } } return (0); fail: LIST_FOREACH(cp2, &gp->consumer, consumer) { if (cp1 == cp2) break; g_access(cp2, -dr, -dw, -de); } return (error); } static void g_stripe_copy(struct g_stripe_softc *sc, char *src, char *dst, off_t offset, off_t length, int mode) { u_int stripesize; size_t len; stripesize = sc->sc_stripesize; len = (size_t)(stripesize - (offset & (stripesize - 1))); do { bcopy(src, dst, len); if (mode) { dst += len + stripesize * (sc->sc_ndisks - 1); src += len; } else { dst += len; src += len + stripesize * (sc->sc_ndisks - 1); } length -= len; KASSERT(length >= 0, ("Length < 0 (stripesize=%zu, offset=%jd, length=%jd).", (size_t)stripesize, (intmax_t)offset, (intmax_t)length)); if (length > stripesize) len = stripesize; else len = length; } while (length > 0); } static void g_stripe_done(struct bio *bp) { struct g_stripe_softc *sc; struct bio *pbp; pbp = bp->bio_parent; sc = pbp->bio_to->geom->softc; if (bp->bio_cmd == BIO_READ && bp->bio_caller1 != NULL) { g_stripe_copy(sc, bp->bio_data, bp->bio_caller1, bp->bio_offset, bp->bio_length, 1); bp->bio_data = bp->bio_caller1; bp->bio_caller1 = NULL; } mtx_lock(&sc->sc_lock); if (pbp->bio_error == 0) pbp->bio_error = bp->bio_error; pbp->bio_completed += bp->bio_completed; pbp->bio_inbed++; if (pbp->bio_children == pbp->bio_inbed) { mtx_unlock(&sc->sc_lock); if (pbp->bio_driver1 != NULL) uma_zfree(g_stripe_zone, pbp->bio_driver1); g_io_deliver(pbp, pbp->bio_error); } else mtx_unlock(&sc->sc_lock); g_destroy_bio(bp); } static int g_stripe_start_fast(struct bio *bp, u_int no, off_t offset, off_t length) { TAILQ_HEAD(, bio) queue = TAILQ_HEAD_INITIALIZER(queue); u_int nparts = 0, stripesize; struct g_stripe_softc *sc; char *addr, *data = NULL; struct bio *cbp; int error; sc = bp->bio_to->geom->softc; addr = bp->bio_data; stripesize = sc->sc_stripesize; cbp = g_clone_bio(bp); if (cbp == NULL) { error = ENOMEM; goto failure; } TAILQ_INSERT_TAIL(&queue, cbp, bio_queue); nparts++; /* * Fill in the component buf structure. */ cbp->bio_done = g_stripe_done; cbp->bio_offset = offset; cbp->bio_data = addr; cbp->bio_caller1 = NULL; cbp->bio_length = length; cbp->bio_caller2 = sc->sc_disks[no]; /* offset -= offset % stripesize; */ offset -= offset & (stripesize - 1); addr += length; length = bp->bio_length - length; for (no++; length > 0; no++, length -= stripesize, addr += stripesize) { if (no > sc->sc_ndisks - 1) { no = 0; offset += stripesize; } if (nparts >= sc->sc_ndisks) { cbp = TAILQ_NEXT(cbp, bio_queue); if (cbp == NULL) cbp = TAILQ_FIRST(&queue); nparts++; /* * Update bio structure. */ /* * MIN() is in case when * (bp->bio_length % sc->sc_stripesize) != 0. */ cbp->bio_length += MIN(stripesize, length); if (cbp->bio_caller1 == NULL) { cbp->bio_caller1 = cbp->bio_data; cbp->bio_data = NULL; if (data == NULL) { data = uma_zalloc(g_stripe_zone, M_NOWAIT); if (data == NULL) { error = ENOMEM; goto failure; } } } } else { cbp = g_clone_bio(bp); if (cbp == NULL) { error = ENOMEM; goto failure; } TAILQ_INSERT_TAIL(&queue, cbp, bio_queue); nparts++; /* * Fill in the component buf structure. */ cbp->bio_done = g_stripe_done; cbp->bio_offset = offset; cbp->bio_data = addr; cbp->bio_caller1 = NULL; /* * MIN() is in case when * (bp->bio_length % sc->sc_stripesize) != 0. */ cbp->bio_length = MIN(stripesize, length); cbp->bio_caller2 = sc->sc_disks[no]; } } if (data != NULL) bp->bio_driver1 = data; /* * Fire off all allocated requests! */ while ((cbp = TAILQ_FIRST(&queue)) != NULL) { struct g_consumer *cp; TAILQ_REMOVE(&queue, cbp, bio_queue); cp = cbp->bio_caller2; cbp->bio_caller2 = NULL; cbp->bio_to = cp->provider; if (cbp->bio_caller1 != NULL) { cbp->bio_data = data; if (bp->bio_cmd == BIO_WRITE) { g_stripe_copy(sc, cbp->bio_caller1, data, cbp->bio_offset, cbp->bio_length, 0); } data += cbp->bio_length; } G_STRIPE_LOGREQ(cbp, "Sending request."); g_io_request(cbp, cp); } return (0); failure: if (data != NULL) uma_zfree(g_stripe_zone, data); while ((cbp = TAILQ_FIRST(&queue)) != NULL) { TAILQ_REMOVE(&queue, cbp, bio_queue); if (cbp->bio_caller1 != NULL) { cbp->bio_data = cbp->bio_caller1; cbp->bio_caller1 = NULL; } bp->bio_children--; g_destroy_bio(cbp); } return (error); } static int g_stripe_start_economic(struct bio *bp, u_int no, off_t offset, off_t length) { TAILQ_HEAD(, bio) queue = TAILQ_HEAD_INITIALIZER(queue); struct g_stripe_softc *sc; uint32_t stripesize; struct bio *cbp; char *addr; int error; sc = bp->bio_to->geom->softc; stripesize = sc->sc_stripesize; cbp = g_clone_bio(bp); if (cbp == NULL) { error = ENOMEM; goto failure; } TAILQ_INSERT_TAIL(&queue, cbp, bio_queue); /* * Fill in the component buf structure. */ if (bp->bio_length == length) cbp->bio_done = g_std_done; /* Optimized lockless case. */ else cbp->bio_done = g_stripe_done; cbp->bio_offset = offset; cbp->bio_length = length; if ((bp->bio_flags & BIO_UNMAPPED) != 0) { bp->bio_ma_n = round_page(bp->bio_ma_offset + bp->bio_length) / PAGE_SIZE; addr = NULL; } else addr = bp->bio_data; cbp->bio_caller2 = sc->sc_disks[no]; /* offset -= offset % stripesize; */ offset -= offset & (stripesize - 1); if (bp->bio_cmd != BIO_DELETE) addr += length; length = bp->bio_length - length; for (no++; length > 0; no++, length -= stripesize) { if (no > sc->sc_ndisks - 1) { no = 0; offset += stripesize; } cbp = g_clone_bio(bp); if (cbp == NULL) { error = ENOMEM; goto failure; } TAILQ_INSERT_TAIL(&queue, cbp, bio_queue); /* * Fill in the component buf structure. */ cbp->bio_done = g_stripe_done; cbp->bio_offset = offset; /* * MIN() is in case when * (bp->bio_length % sc->sc_stripesize) != 0. */ cbp->bio_length = MIN(stripesize, length); if ((bp->bio_flags & BIO_UNMAPPED) != 0) { cbp->bio_ma_offset += (uintptr_t)addr; cbp->bio_ma += cbp->bio_ma_offset / PAGE_SIZE; cbp->bio_ma_offset %= PAGE_SIZE; cbp->bio_ma_n = round_page(cbp->bio_ma_offset + cbp->bio_length) / PAGE_SIZE; } else cbp->bio_data = addr; cbp->bio_caller2 = sc->sc_disks[no]; if (bp->bio_cmd != BIO_DELETE) addr += stripesize; } /* * Fire off all allocated requests! */ while ((cbp = TAILQ_FIRST(&queue)) != NULL) { struct g_consumer *cp; TAILQ_REMOVE(&queue, cbp, bio_queue); cp = cbp->bio_caller2; cbp->bio_caller2 = NULL; cbp->bio_to = cp->provider; G_STRIPE_LOGREQ(cbp, "Sending request."); g_io_request(cbp, cp); } return (0); failure: while ((cbp = TAILQ_FIRST(&queue)) != NULL) { TAILQ_REMOVE(&queue, cbp, bio_queue); bp->bio_children--; g_destroy_bio(cbp); } return (error); } static void g_stripe_flush(struct g_stripe_softc *sc, struct bio *bp) { struct bio_queue_head queue; struct g_consumer *cp; struct bio *cbp; u_int no; bioq_init(&queue); for (no = 0; no < sc->sc_ndisks; no++) { cbp = g_clone_bio(bp); if (cbp == NULL) { for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) { bioq_remove(&queue, cbp); g_destroy_bio(cbp); } if (bp->bio_error == 0) bp->bio_error = ENOMEM; g_io_deliver(bp, bp->bio_error); return; } bioq_insert_tail(&queue, cbp); cbp->bio_done = g_stripe_done; cbp->bio_caller2 = sc->sc_disks[no]; cbp->bio_to = sc->sc_disks[no]->provider; } for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) { bioq_remove(&queue, cbp); G_STRIPE_LOGREQ(cbp, "Sending request."); cp = cbp->bio_caller2; cbp->bio_caller2 = NULL; g_io_request(cbp, cp); } } static void g_stripe_start(struct bio *bp) { off_t offset, start, length, nstripe; struct g_stripe_softc *sc; u_int no, stripesize; int error, fast = 0; sc = bp->bio_to->geom->softc; /* * If sc == NULL, provider's error should be set and g_stripe_start() * should not be called at all. */ KASSERT(sc != NULL, ("Provider's error should be set (error=%d)(device=%s).", bp->bio_to->error, bp->bio_to->name)); G_STRIPE_LOGREQ(bp, "Request received."); switch (bp->bio_cmd) { case BIO_READ: case BIO_WRITE: case BIO_DELETE: break; case BIO_FLUSH: g_stripe_flush(sc, bp); return; case BIO_GETATTR: /* To which provider it should be delivered? */ default: g_io_deliver(bp, EOPNOTSUPP); return; } stripesize = sc->sc_stripesize; /* * Calculations are quite messy, but fast I hope. */ /* Stripe number. */ /* nstripe = bp->bio_offset / stripesize; */ nstripe = bp->bio_offset >> (off_t)sc->sc_stripebits; /* Disk number. */ no = nstripe % sc->sc_ndisks; /* Start position in stripe. */ /* start = bp->bio_offset % stripesize; */ start = bp->bio_offset & (stripesize - 1); /* Start position in disk. */ /* offset = (nstripe / sc->sc_ndisks) * stripesize + start; */ offset = ((nstripe / sc->sc_ndisks) << sc->sc_stripebits) + start; /* Length of data to operate. */ length = MIN(bp->bio_length, stripesize - start); /* * Do use "fast" mode when: * 1. "Fast" mode is ON. * and * 2. Request size is less than or equal to MAXPHYS, * which should always be true. * and * 3. Request size is bigger than stripesize * ndisks. If it isn't, * there will be no need to send more than one I/O request to * a provider, so there is nothing to optmize. * and * 4. Request is not unmapped. * and * 5. It is not a BIO_DELETE. */ if (g_stripe_fast && bp->bio_length <= MAXPHYS && bp->bio_length >= stripesize * sc->sc_ndisks && (bp->bio_flags & BIO_UNMAPPED) == 0 && bp->bio_cmd != BIO_DELETE) { fast = 1; } error = 0; if (fast) { error = g_stripe_start_fast(bp, no, offset, length); if (error != 0) g_stripe_fast_failed++; } /* * Do use "economic" when: * 1. "Economic" mode is ON. * or * 2. "Fast" mode failed. It can only fail if there is no memory. */ if (!fast || error != 0) error = g_stripe_start_economic(bp, no, offset, length); if (error != 0) { if (bp->bio_error == 0) bp->bio_error = error; g_io_deliver(bp, bp->bio_error); } } static void g_stripe_check_and_run(struct g_stripe_softc *sc) { struct g_provider *dp; off_t mediasize, ms; u_int no, sectorsize = 0; g_topology_assert(); if (g_stripe_nvalid(sc) != sc->sc_ndisks) return; sc->sc_provider = g_new_providerf(sc->sc_geom, "stripe/%s", sc->sc_name); sc->sc_provider->flags |= G_PF_DIRECT_SEND | G_PF_DIRECT_RECEIVE; if (g_stripe_fast == 0) sc->sc_provider->flags |= G_PF_ACCEPT_UNMAPPED; /* * Find the smallest disk. */ mediasize = sc->sc_disks[0]->provider->mediasize; if (sc->sc_type == G_STRIPE_TYPE_AUTOMATIC) mediasize -= sc->sc_disks[0]->provider->sectorsize; mediasize -= mediasize % sc->sc_stripesize; sectorsize = sc->sc_disks[0]->provider->sectorsize; for (no = 1; no < sc->sc_ndisks; no++) { dp = sc->sc_disks[no]->provider; ms = dp->mediasize; if (sc->sc_type == G_STRIPE_TYPE_AUTOMATIC) ms -= dp->sectorsize; ms -= ms % sc->sc_stripesize; if (ms < mediasize) mediasize = ms; sectorsize = lcm(sectorsize, dp->sectorsize); /* A provider underneath us doesn't support unmapped */ if ((dp->flags & G_PF_ACCEPT_UNMAPPED) == 0) { G_STRIPE_DEBUG(1, "Cancelling unmapped " "because of %s.", dp->name); sc->sc_provider->flags &= ~G_PF_ACCEPT_UNMAPPED; } } sc->sc_provider->sectorsize = sectorsize; sc->sc_provider->mediasize = mediasize * sc->sc_ndisks; sc->sc_provider->stripesize = sc->sc_stripesize; sc->sc_provider->stripeoffset = 0; g_error_provider(sc->sc_provider, 0); G_STRIPE_DEBUG(0, "Device %s activated.", sc->sc_provider->name); } static int g_stripe_read_metadata(struct g_consumer *cp, struct g_stripe_metadata *md) { struct g_provider *pp; u_char *buf; int error; g_topology_assert(); error = g_access(cp, 1, 0, 0); if (error != 0) return (error); pp = cp->provider; g_topology_unlock(); buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, &error); g_topology_lock(); g_access(cp, -1, 0, 0); if (buf == NULL) return (error); /* Decode metadata. */ stripe_metadata_decode(buf, md); g_free(buf); return (0); } /* * Add disk to given device. */ static int g_stripe_add_disk(struct g_stripe_softc *sc, struct g_provider *pp, u_int no) { struct g_consumer *cp, *fcp; struct g_geom *gp; int error; g_topology_assert(); /* Metadata corrupted? */ if (no >= sc->sc_ndisks) return (EINVAL); /* Check if disk is not already attached. */ if (sc->sc_disks[no] != NULL) return (EEXIST); gp = sc->sc_geom; fcp = LIST_FIRST(&gp->consumer); cp = g_new_consumer(gp); cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; cp->private = NULL; cp->index = no; error = g_attach(cp, pp); if (error != 0) { g_destroy_consumer(cp); return (error); } if (fcp != NULL && (fcp->acr > 0 || fcp->acw > 0 || fcp->ace > 0)) { error = g_access(cp, fcp->acr, fcp->acw, fcp->ace); if (error != 0) { g_detach(cp); g_destroy_consumer(cp); return (error); } } if (sc->sc_type == G_STRIPE_TYPE_AUTOMATIC) { struct g_stripe_metadata md; /* Reread metadata. */ error = g_stripe_read_metadata(cp, &md); if (error != 0) goto fail; if (strcmp(md.md_magic, G_STRIPE_MAGIC) != 0 || strcmp(md.md_name, sc->sc_name) != 0 || md.md_id != sc->sc_id) { G_STRIPE_DEBUG(0, "Metadata on %s changed.", pp->name); goto fail; } } sc->sc_disks[no] = cp; G_STRIPE_DEBUG(0, "Disk %s attached to %s.", pp->name, sc->sc_name); g_stripe_check_and_run(sc); return (0); fail: if (fcp != NULL && (fcp->acr > 0 || fcp->acw > 0 || fcp->ace > 0)) g_access(cp, -fcp->acr, -fcp->acw, -fcp->ace); g_detach(cp); g_destroy_consumer(cp); return (error); } static struct g_geom * g_stripe_create(struct g_class *mp, const struct g_stripe_metadata *md, u_int type) { struct g_stripe_softc *sc; struct g_geom *gp; u_int no; g_topology_assert(); G_STRIPE_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id); /* Two disks is minimum. */ if (md->md_all < 2) { G_STRIPE_DEBUG(0, "Too few disks defined for %s.", md->md_name); return (NULL); } #if 0 /* Stripe size have to be grater than or equal to sector size. */ if (md->md_stripesize < sectorsize) { G_STRIPE_DEBUG(0, "Invalid stripe size for %s.", md->md_name); return (NULL); } #endif /* Stripe size have to be power of 2. */ if (!powerof2(md->md_stripesize)) { G_STRIPE_DEBUG(0, "Invalid stripe size for %s.", md->md_name); return (NULL); } /* Check for duplicate unit */ LIST_FOREACH(gp, &mp->geom, geom) { sc = gp->softc; if (sc != NULL && strcmp(sc->sc_name, md->md_name) == 0) { G_STRIPE_DEBUG(0, "Device %s already configured.", sc->sc_name); return (NULL); } } gp = g_new_geomf(mp, "%s", md->md_name); sc = malloc(sizeof(*sc), M_STRIPE, M_WAITOK | M_ZERO); gp->start = g_stripe_start; gp->spoiled = g_stripe_orphan; gp->orphan = g_stripe_orphan; gp->access = g_stripe_access; gp->dumpconf = g_stripe_dumpconf; sc->sc_id = md->md_id; sc->sc_stripesize = md->md_stripesize; sc->sc_stripebits = bitcount32(sc->sc_stripesize - 1); sc->sc_ndisks = md->md_all; sc->sc_disks = malloc(sizeof(struct g_consumer *) * sc->sc_ndisks, M_STRIPE, M_WAITOK | M_ZERO); for (no = 0; no < sc->sc_ndisks; no++) sc->sc_disks[no] = NULL; sc->sc_type = type; mtx_init(&sc->sc_lock, "gstripe lock", NULL, MTX_DEF); gp->softc = sc; sc->sc_geom = gp; sc->sc_provider = NULL; G_STRIPE_DEBUG(0, "Device %s created (id=%u).", sc->sc_name, sc->sc_id); return (gp); } static int g_stripe_destroy(struct g_stripe_softc *sc, boolean_t force) { struct g_provider *pp; struct g_consumer *cp, *cp1; struct g_geom *gp; g_topology_assert(); if (sc == NULL) return (ENXIO); pp = sc->sc_provider; if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) { if (force) { G_STRIPE_DEBUG(0, "Device %s is still open, so it " "can't be definitely removed.", pp->name); } else { G_STRIPE_DEBUG(1, "Device %s is still open (r%dw%de%d).", pp->name, pp->acr, pp->acw, pp->ace); return (EBUSY); } } gp = sc->sc_geom; LIST_FOREACH_SAFE(cp, &gp->consumer, consumer, cp1) { g_stripe_remove_disk(cp); if (cp1 == NULL) return (0); /* Recursion happened. */ } if (!LIST_EMPTY(&gp->consumer)) return (EINPROGRESS); gp->softc = NULL; KASSERT(sc->sc_provider == NULL, ("Provider still exists? (device=%s)", gp->name)); free(sc->sc_disks, M_STRIPE); mtx_destroy(&sc->sc_lock); free(sc, M_STRIPE); G_STRIPE_DEBUG(0, "Device %s destroyed.", gp->name); g_wither_geom(gp, ENXIO); return (0); } static int g_stripe_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused, struct g_geom *gp) { struct g_stripe_softc *sc; sc = gp->softc; return (g_stripe_destroy(sc, 0)); } static struct g_geom * g_stripe_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) { struct g_stripe_metadata md; struct g_stripe_softc *sc; struct g_consumer *cp; struct g_geom *gp; int error; g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); g_topology_assert(); /* Skip providers that are already open for writing. */ if (pp->acw > 0) return (NULL); G_STRIPE_DEBUG(3, "Tasting %s.", pp->name); gp = g_new_geomf(mp, "stripe:taste"); gp->start = g_stripe_start; gp->access = g_stripe_access; gp->orphan = g_stripe_orphan; cp = g_new_consumer(gp); g_attach(cp, pp); error = g_stripe_read_metadata(cp, &md); g_detach(cp); g_destroy_consumer(cp); g_destroy_geom(gp); if (error != 0) return (NULL); gp = NULL; if (strcmp(md.md_magic, G_STRIPE_MAGIC) != 0) return (NULL); if (md.md_version > G_STRIPE_VERSION) { printf("geom_stripe.ko module is too old to handle %s.\n", pp->name); return (NULL); } /* * Backward compatibility: */ /* There was no md_provider field in earlier versions of metadata. */ if (md.md_version < 2) bzero(md.md_provider, sizeof(md.md_provider)); /* There was no md_provsize field in earlier versions of metadata. */ if (md.md_version < 3) md.md_provsize = pp->mediasize; if (md.md_provider[0] != '\0' && !g_compare_names(md.md_provider, pp->name)) return (NULL); if (md.md_provsize != pp->mediasize) return (NULL); /* * Let's check if device already exists. */ sc = NULL; LIST_FOREACH(gp, &mp->geom, geom) { sc = gp->softc; if (sc == NULL) continue; if (sc->sc_type != G_STRIPE_TYPE_AUTOMATIC) continue; if (strcmp(md.md_name, sc->sc_name) != 0) continue; if (md.md_id != sc->sc_id) continue; break; } if (gp != NULL) { G_STRIPE_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name); error = g_stripe_add_disk(sc, pp, md.md_no); if (error != 0) { G_STRIPE_DEBUG(0, "Cannot add disk %s to %s (error=%d).", pp->name, gp->name, error); return (NULL); } } else { gp = g_stripe_create(mp, &md, G_STRIPE_TYPE_AUTOMATIC); if (gp == NULL) { G_STRIPE_DEBUG(0, "Cannot create device %s.", md.md_name); return (NULL); } sc = gp->softc; G_STRIPE_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name); error = g_stripe_add_disk(sc, pp, md.md_no); if (error != 0) { G_STRIPE_DEBUG(0, "Cannot add disk %s to %s (error=%d).", pp->name, gp->name, error); g_stripe_destroy(sc, 1); return (NULL); } } return (gp); } static void g_stripe_ctl_create(struct gctl_req *req, struct g_class *mp) { u_int attached, no; struct g_stripe_metadata md; struct g_provider *pp; struct g_stripe_softc *sc; struct g_geom *gp; struct sbuf *sb; intmax_t *stripesize; const char *name; char param[16]; int *nargs; g_topology_assert(); nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); if (nargs == NULL) { gctl_error(req, "No '%s' argument.", "nargs"); return; } if (*nargs <= 2) { gctl_error(req, "Too few arguments."); return; } strlcpy(md.md_magic, G_STRIPE_MAGIC, sizeof(md.md_magic)); md.md_version = G_STRIPE_VERSION; name = gctl_get_asciiparam(req, "arg0"); if (name == NULL) { gctl_error(req, "No 'arg%u' argument.", 0); return; } strlcpy(md.md_name, name, sizeof(md.md_name)); md.md_id = arc4random(); md.md_no = 0; md.md_all = *nargs - 1; stripesize = gctl_get_paraml(req, "stripesize", sizeof(*stripesize)); if (stripesize == NULL) { gctl_error(req, "No '%s' argument.", "stripesize"); return; } md.md_stripesize = *stripesize; bzero(md.md_provider, sizeof(md.md_provider)); /* This field is not important here. */ md.md_provsize = 0; /* Check all providers are valid */ for (no = 1; no < *nargs; no++) { snprintf(param, sizeof(param), "arg%u", no); name = gctl_get_asciiparam(req, param); if (name == NULL) { gctl_error(req, "No 'arg%u' argument.", no); return; } if (strncmp(name, "/dev/", strlen("/dev/")) == 0) name += strlen("/dev/"); pp = g_provider_by_name(name); if (pp == NULL) { G_STRIPE_DEBUG(1, "Disk %s is invalid.", name); gctl_error(req, "Disk %s is invalid.", name); return; } } gp = g_stripe_create(mp, &md, G_STRIPE_TYPE_MANUAL); if (gp == NULL) { gctl_error(req, "Can't configure %s.", md.md_name); return; } sc = gp->softc; sb = sbuf_new_auto(); sbuf_printf(sb, "Can't attach disk(s) to %s:", gp->name); for (attached = 0, no = 1; no < *nargs; no++) { snprintf(param, sizeof(param), "arg%u", no); name = gctl_get_asciiparam(req, param); if (name == NULL) { gctl_error(req, "No 'arg%u' argument.", no); continue; } if (strncmp(name, "/dev/", strlen("/dev/")) == 0) name += strlen("/dev/"); pp = g_provider_by_name(name); KASSERT(pp != NULL, ("Provider %s disappear?!", name)); if (g_stripe_add_disk(sc, pp, no - 1) != 0) { G_STRIPE_DEBUG(1, "Disk %u (%s) not attached to %s.", no, pp->name, gp->name); sbuf_printf(sb, " %s", pp->name); continue; } attached++; } sbuf_finish(sb); if (md.md_all != attached) { g_stripe_destroy(gp->softc, 1); gctl_error(req, "%s", sbuf_data(sb)); } sbuf_delete(sb); } static struct g_stripe_softc * g_stripe_find_device(struct g_class *mp, const char *name) { struct g_stripe_softc *sc; struct g_geom *gp; LIST_FOREACH(gp, &mp->geom, geom) { sc = gp->softc; if (sc == NULL) continue; if (strcmp(sc->sc_name, name) == 0) return (sc); } return (NULL); } static void g_stripe_ctl_destroy(struct gctl_req *req, struct g_class *mp) { struct g_stripe_softc *sc; int *force, *nargs, error; const char *name; char param[16]; u_int i; g_topology_assert(); nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); if (nargs == NULL) { gctl_error(req, "No '%s' argument.", "nargs"); return; } if (*nargs <= 0) { gctl_error(req, "Missing device(s)."); return; } force = gctl_get_paraml(req, "force", sizeof(*force)); if (force == NULL) { gctl_error(req, "No '%s' argument.", "force"); return; } for (i = 0; i < (u_int)*nargs; i++) { snprintf(param, sizeof(param), "arg%u", i); name = gctl_get_asciiparam(req, param); if (name == NULL) { gctl_error(req, "No 'arg%u' argument.", i); return; } sc = g_stripe_find_device(mp, name); if (sc == NULL) { gctl_error(req, "No such device: %s.", name); return; } error = g_stripe_destroy(sc, *force); if (error != 0) { gctl_error(req, "Cannot destroy device %s (error=%d).", sc->sc_name, error); return; } } } static void g_stripe_config(struct gctl_req *req, struct g_class *mp, const char *verb) { uint32_t *version; g_topology_assert(); version = gctl_get_paraml(req, "version", sizeof(*version)); if (version == NULL) { gctl_error(req, "No '%s' argument.", "version"); return; } if (*version != G_STRIPE_VERSION) { gctl_error(req, "Userland and kernel parts are out of sync."); return; } if (strcmp(verb, "create") == 0) { g_stripe_ctl_create(req, mp); return; } else if (strcmp(verb, "destroy") == 0 || strcmp(verb, "stop") == 0) { g_stripe_ctl_destroy(req, mp); return; } gctl_error(req, "Unknown verb."); } static void g_stripe_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp) { struct g_stripe_softc *sc; sc = gp->softc; if (sc == NULL) return; if (pp != NULL) { /* Nothing here. */ } else if (cp != NULL) { sbuf_printf(sb, "%s%u\n", indent, (u_int)cp->index); } else { sbuf_printf(sb, "%s%u\n", indent, (u_int)sc->sc_id); sbuf_printf(sb, "%s%u\n", indent, (u_int)sc->sc_stripesize); sbuf_printf(sb, "%s", indent); switch (sc->sc_type) { case G_STRIPE_TYPE_AUTOMATIC: sbuf_printf(sb, "AUTOMATIC"); break; case G_STRIPE_TYPE_MANUAL: sbuf_printf(sb, "MANUAL"); break; default: sbuf_printf(sb, "UNKNOWN"); break; } sbuf_printf(sb, "\n"); sbuf_printf(sb, "%sTotal=%u, Online=%u\n", indent, sc->sc_ndisks, g_stripe_nvalid(sc)); sbuf_printf(sb, "%s", indent); if (sc->sc_provider != NULL && sc->sc_provider->error == 0) sbuf_printf(sb, "UP"); else sbuf_printf(sb, "DOWN"); sbuf_printf(sb, "\n"); } } DECLARE_GEOM_CLASS(g_stripe_class, g_stripe); +MODULE_VERSION(geom_stripe, 0); Index: head/sys/geom/uzip/g_uzip.c =================================================================== --- head/sys/geom/uzip/g_uzip.c (revision 332386) +++ head/sys/geom/uzip/g_uzip.c (revision 332387) @@ -1,924 +1,925 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2004 Max Khon * Copyright (c) 2014 Juniper Networks, Inc. * Copyright (c) 2006-2016 Maxim Sobolev * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "opt_geom.h" MALLOC_DEFINE(M_GEOM_UZIP, "geom_uzip", "GEOM UZIP data structures"); FEATURE(geom_uzip, "GEOM read-only compressed disks support"); struct g_uzip_blk { uint64_t offset; uint32_t blen; unsigned char last:1; unsigned char padded:1; #define BLEN_UNDEF UINT32_MAX }; #ifndef ABS #define ABS(a) ((a) < 0 ? -(a) : (a)) #endif #define BLK_IN_RANGE(mcn, bcn, ilen) \ (((bcn) != BLEN_UNDEF) && ( \ ((ilen) >= 0 && (mcn >= bcn) && (mcn <= ((intmax_t)(bcn) + (ilen)))) || \ ((ilen) < 0 && (mcn <= bcn) && (mcn >= ((intmax_t)(bcn) + (ilen)))) \ )) #ifdef GEOM_UZIP_DEBUG # define GEOM_UZIP_DBG_DEFAULT 3 #else # define GEOM_UZIP_DBG_DEFAULT 0 #endif #define GUZ_DBG_ERR 1 #define GUZ_DBG_INFO 2 #define GUZ_DBG_IO 3 #define GUZ_DBG_TOC 4 #define GUZ_DEV_SUFX ".uzip" #define GUZ_DEV_NAME(p) (p GUZ_DEV_SUFX) static char g_uzip_attach_to[MAXPATHLEN] = {"*"}; static char g_uzip_noattach_to[MAXPATHLEN] = {GUZ_DEV_NAME("*")}; TUNABLE_STR("kern.geom.uzip.attach_to", g_uzip_attach_to, sizeof(g_uzip_attach_to)); TUNABLE_STR("kern.geom.uzip.noattach_to", g_uzip_noattach_to, sizeof(g_uzip_noattach_to)); SYSCTL_DECL(_kern_geom); SYSCTL_NODE(_kern_geom, OID_AUTO, uzip, CTLFLAG_RW, 0, "GEOM_UZIP stuff"); static u_int g_uzip_debug = GEOM_UZIP_DBG_DEFAULT; SYSCTL_UINT(_kern_geom_uzip, OID_AUTO, debug, CTLFLAG_RWTUN, &g_uzip_debug, 0, "Debug level (0-4)"); static u_int g_uzip_debug_block = BLEN_UNDEF; SYSCTL_UINT(_kern_geom_uzip, OID_AUTO, debug_block, CTLFLAG_RWTUN, &g_uzip_debug_block, 0, "Debug operations around specific cluster#"); #define DPRINTF(lvl, a) \ if ((lvl) <= g_uzip_debug) { \ printf a; \ } #define DPRINTF_BLK(lvl, cn, a) \ if ((lvl) <= g_uzip_debug || \ BLK_IN_RANGE(cn, g_uzip_debug_block, 8) || \ BLK_IN_RANGE(cn, g_uzip_debug_block, -8)) { \ printf a; \ } #define DPRINTF_BRNG(lvl, bcn, ecn, a) \ KASSERT(bcn < ecn, ("DPRINTF_BRNG: invalid range (%ju, %ju)", \ (uintmax_t)bcn, (uintmax_t)ecn)); \ if (((lvl) <= g_uzip_debug) || \ BLK_IN_RANGE(g_uzip_debug_block, bcn, \ (intmax_t)ecn - (intmax_t)bcn)) { \ printf a; \ } #define UZIP_CLASS_NAME "UZIP" /* * Maximum allowed valid block size (to prevent foot-shooting) */ #define MAX_BLKSZ (MAXPHYS) static char CLOOP_MAGIC_START[] = "#!/bin/sh\n"; static void g_uzip_read_done(struct bio *bp); static void g_uzip_do(struct g_uzip_softc *, struct bio *bp); static void g_uzip_softc_free(struct g_uzip_softc *sc, struct g_geom *gp) { if (gp != NULL) { DPRINTF(GUZ_DBG_INFO, ("%s: %d requests, %d cached\n", gp->name, sc->req_total, sc->req_cached)); } mtx_lock(&sc->queue_mtx); sc->wrkthr_flags |= GUZ_SHUTDOWN; wakeup(sc); while (!(sc->wrkthr_flags & GUZ_EXITING)) { msleep(sc->procp, &sc->queue_mtx, PRIBIO, "guzfree", hz / 10); } mtx_unlock(&sc->queue_mtx); sc->dcp->free(sc->dcp); free(sc->toc, M_GEOM_UZIP); mtx_destroy(&sc->queue_mtx); mtx_destroy(&sc->last_mtx); free(sc->last_buf, M_GEOM_UZIP); free(sc, M_GEOM_UZIP); } static int g_uzip_cached(struct g_geom *gp, struct bio *bp) { struct g_uzip_softc *sc; off_t ofs; size_t blk, blkofs, usz; sc = gp->softc; ofs = bp->bio_offset + bp->bio_completed; blk = ofs / sc->blksz; mtx_lock(&sc->last_mtx); if (blk == sc->last_blk) { blkofs = ofs % sc->blksz; usz = sc->blksz - blkofs; if (bp->bio_resid < usz) usz = bp->bio_resid; memcpy(bp->bio_data + bp->bio_completed, sc->last_buf + blkofs, usz); sc->req_cached++; mtx_unlock(&sc->last_mtx); DPRINTF(GUZ_DBG_IO, ("%s/%s: %p: offset=%jd: got %jd bytes " "from cache\n", __func__, gp->name, bp, (intmax_t)ofs, (intmax_t)usz)); bp->bio_completed += usz; bp->bio_resid -= usz; if (bp->bio_resid == 0) { g_io_deliver(bp, 0); return (1); } } else mtx_unlock(&sc->last_mtx); return (0); } #define BLK_ENDS(sc, bi) ((sc)->toc[(bi)].offset + \ (sc)->toc[(bi)].blen) #define BLK_IS_CONT(sc, bi) (BLK_ENDS((sc), (bi) - 1) == \ (sc)->toc[(bi)].offset) #define BLK_IS_NIL(sc, bi) ((sc)->toc[(bi)].blen == 0) #define TOFF_2_BOFF(sc, pp, bi) ((sc)->toc[(bi)].offset - \ (sc)->toc[(bi)].offset % (pp)->sectorsize) #define TLEN_2_BLEN(sc, pp, bp, ei) roundup(BLK_ENDS((sc), (ei)) - \ (bp)->bio_offset, (pp)->sectorsize) static int g_uzip_request(struct g_geom *gp, struct bio *bp) { struct g_uzip_softc *sc; struct bio *bp2; struct g_consumer *cp; struct g_provider *pp; off_t ofs, start_blk_ofs; size_t i, start_blk, end_blk, zsize; if (g_uzip_cached(gp, bp) != 0) return (1); sc = gp->softc; cp = LIST_FIRST(&gp->consumer); pp = cp->provider; ofs = bp->bio_offset + bp->bio_completed; start_blk = ofs / sc->blksz; KASSERT(start_blk < sc->nblocks, ("start_blk out of range")); end_blk = howmany(ofs + bp->bio_resid, sc->blksz); KASSERT(end_blk <= sc->nblocks, ("end_blk out of range")); for (; BLK_IS_NIL(sc, start_blk) && start_blk < end_blk; start_blk++) { /* Fill in any leading Nil blocks */ start_blk_ofs = ofs % sc->blksz; zsize = MIN(sc->blksz - start_blk_ofs, bp->bio_resid); DPRINTF_BLK(GUZ_DBG_IO, start_blk, ("%s/%s: %p/%ju: " "filling %ju zero bytes\n", __func__, gp->name, gp, (uintmax_t)bp->bio_completed, (uintmax_t)zsize)); bzero(bp->bio_data + bp->bio_completed, zsize); bp->bio_completed += zsize; bp->bio_resid -= zsize; ofs += zsize; } if (start_blk == end_blk) { KASSERT(bp->bio_resid == 0, ("bp->bio_resid is invalid")); /* * No non-Nil data is left, complete request immediately. */ DPRINTF(GUZ_DBG_IO, ("%s/%s: %p: all done returning %ju " "bytes\n", __func__, gp->name, gp, (uintmax_t)bp->bio_completed)); g_io_deliver(bp, 0); return (1); } for (i = start_blk + 1; i < end_blk; i++) { /* Trim discontinuous areas if any */ if (!BLK_IS_CONT(sc, i)) { end_blk = i; break; } } DPRINTF_BRNG(GUZ_DBG_IO, start_blk, end_blk, ("%s/%s: %p: " "start=%u (%ju[%jd]), end=%u (%ju)\n", __func__, gp->name, bp, (u_int)start_blk, (uintmax_t)sc->toc[start_blk].offset, (intmax_t)sc->toc[start_blk].blen, (u_int)end_blk, (uintmax_t)BLK_ENDS(sc, end_blk - 1))); bp2 = g_clone_bio(bp); if (bp2 == NULL) { g_io_deliver(bp, ENOMEM); return (1); } bp2->bio_done = g_uzip_read_done; bp2->bio_offset = TOFF_2_BOFF(sc, pp, start_blk); while (1) { bp2->bio_length = TLEN_2_BLEN(sc, pp, bp2, end_blk - 1); if (bp2->bio_length <= MAXPHYS) { break; } if (end_blk == (start_blk + 1)) { break; } end_blk--; } DPRINTF(GUZ_DBG_IO, ("%s/%s: bp2->bio_length = %jd, " "bp2->bio_offset = %jd\n", __func__, gp->name, (intmax_t)bp2->bio_length, (intmax_t)bp2->bio_offset)); bp2->bio_data = malloc(bp2->bio_length, M_GEOM_UZIP, M_NOWAIT); if (bp2->bio_data == NULL) { g_destroy_bio(bp2); g_io_deliver(bp, ENOMEM); return (1); } DPRINTF_BRNG(GUZ_DBG_IO, start_blk, end_blk, ("%s/%s: %p: " "reading %jd bytes from offset %jd\n", __func__, gp->name, bp, (intmax_t)bp2->bio_length, (intmax_t)bp2->bio_offset)); g_io_request(bp2, cp); return (0); } static void g_uzip_read_done(struct bio *bp) { struct bio *bp2; struct g_geom *gp; struct g_uzip_softc *sc; bp2 = bp->bio_parent; gp = bp2->bio_to->geom; sc = gp->softc; mtx_lock(&sc->queue_mtx); bioq_disksort(&sc->bio_queue, bp); mtx_unlock(&sc->queue_mtx); wakeup(sc); } static int g_uzip_memvcmp(const void *memory, unsigned char val, size_t size) { const u_char *mm; mm = (const u_char *)memory; return (*mm == val) && memcmp(mm, mm + 1, size - 1) == 0; } static void g_uzip_do(struct g_uzip_softc *sc, struct bio *bp) { struct bio *bp2; struct g_provider *pp; struct g_consumer *cp; struct g_geom *gp; char *data, *data2; off_t ofs; size_t blk, blkofs, len, ulen, firstblk; int err; bp2 = bp->bio_parent; gp = bp2->bio_to->geom; cp = LIST_FIRST(&gp->consumer); pp = cp->provider; bp2->bio_error = bp->bio_error; if (bp2->bio_error != 0) goto done; /* Make sure there's forward progress. */ if (bp->bio_completed == 0) { bp2->bio_error = ECANCELED; goto done; } ofs = bp2->bio_offset + bp2->bio_completed; firstblk = blk = ofs / sc->blksz; blkofs = ofs % sc->blksz; data = bp->bio_data + sc->toc[blk].offset % pp->sectorsize; data2 = bp2->bio_data + bp2->bio_completed; while (bp->bio_completed && bp2->bio_resid) { if (blk > firstblk && !BLK_IS_CONT(sc, blk)) { DPRINTF_BLK(GUZ_DBG_IO, blk, ("%s/%s: %p: backref'ed " "cluster #%u requested, looping around\n", __func__, gp->name, bp2, (u_int)blk)); goto done; } ulen = MIN(sc->blksz - blkofs, bp2->bio_resid); len = sc->toc[blk].blen; DPRINTF(GUZ_DBG_IO, ("%s/%s: %p/%ju: data2=%p, ulen=%u, " "data=%p, len=%u\n", __func__, gp->name, gp, bp->bio_completed, data2, (u_int)ulen, data, (u_int)len)); if (len == 0) { /* All zero block: no cache update */ zero_block: bzero(data2, ulen); } else if (len <= bp->bio_completed) { mtx_lock(&sc->last_mtx); err = sc->dcp->decompress(sc->dcp, gp->name, data, len, sc->last_buf); if (err != 0 && sc->toc[blk].last != 0) { /* * Last block decompression has failed, check * if it's just zero padding. */ if (g_uzip_memvcmp(data, '\0', len) == 0) { sc->toc[blk].blen = 0; sc->last_blk = -1; mtx_unlock(&sc->last_mtx); len = 0; goto zero_block; } } if (err != 0) { sc->last_blk = -1; mtx_unlock(&sc->last_mtx); bp2->bio_error = EILSEQ; DPRINTF(GUZ_DBG_ERR, ("%s/%s: decompress" "(%p, %ju, %ju) failed\n", __func__, gp->name, sc->dcp, (uintmax_t)blk, (uintmax_t)len)); goto done; } sc->last_blk = blk; memcpy(data2, sc->last_buf + blkofs, ulen); mtx_unlock(&sc->last_mtx); err = sc->dcp->rewind(sc->dcp, gp->name); if (err != 0) { bp2->bio_error = EILSEQ; DPRINTF(GUZ_DBG_ERR, ("%s/%s: rewind(%p) " "failed\n", __func__, gp->name, sc->dcp)); goto done; } data += len; } else break; data2 += ulen; bp2->bio_completed += ulen; bp2->bio_resid -= ulen; bp->bio_completed -= len; blkofs = 0; blk++; } done: /* Finish processing the request. */ free(bp->bio_data, M_GEOM_UZIP); g_destroy_bio(bp); if (bp2->bio_error != 0 || bp2->bio_resid == 0) g_io_deliver(bp2, bp2->bio_error); else g_uzip_request(gp, bp2); } static void g_uzip_start(struct bio *bp) { struct g_provider *pp; struct g_geom *gp; struct g_uzip_softc *sc; pp = bp->bio_to; gp = pp->geom; DPRINTF(GUZ_DBG_IO, ("%s/%s: %p: cmd=%d, offset=%jd, length=%jd, " "buffer=%p\n", __func__, gp->name, bp, bp->bio_cmd, (intmax_t)bp->bio_offset, (intmax_t)bp->bio_length, bp->bio_data)); sc = gp->softc; sc->req_total++; if (bp->bio_cmd == BIO_GETATTR) { struct bio *bp2; struct g_consumer *cp; struct g_geom *gp; struct g_provider *pp; /* pass on MNT:* requests and ignore others */ if (strncmp(bp->bio_attribute, "MNT:", 4) == 0) { bp2 = g_clone_bio(bp); if (bp2 == NULL) { g_io_deliver(bp, ENOMEM); return; } bp2->bio_done = g_std_done; pp = bp->bio_to; gp = pp->geom; cp = LIST_FIRST(&gp->consumer); g_io_request(bp2, cp); return; } } if (bp->bio_cmd != BIO_READ) { g_io_deliver(bp, EOPNOTSUPP); return; } bp->bio_resid = bp->bio_length; bp->bio_completed = 0; g_uzip_request(gp, bp); } static void g_uzip_orphan(struct g_consumer *cp) { struct g_geom *gp; g_trace(G_T_TOPOLOGY, "%s(%p/%s)", __func__, cp, cp->provider->name); g_topology_assert(); gp = cp->geom; g_uzip_softc_free(gp->softc, gp); gp->softc = NULL; g_wither_geom(gp, ENXIO); } static int g_uzip_access(struct g_provider *pp, int dr, int dw, int de) { struct g_geom *gp; struct g_consumer *cp; gp = pp->geom; cp = LIST_FIRST(&gp->consumer); KASSERT (cp != NULL, ("g_uzip_access but no consumer")); if (cp->acw + dw > 0) return (EROFS); return (g_access(cp, dr, dw, de)); } static void g_uzip_spoiled(struct g_consumer *cp) { struct g_geom *gp; G_VALID_CONSUMER(cp); gp = cp->geom; g_trace(G_T_TOPOLOGY, "%s(%p/%s)", __func__, cp, gp->name); g_topology_assert(); g_uzip_softc_free(gp->softc, gp); gp->softc = NULL; g_wither_geom(gp, ENXIO); } static int g_uzip_parse_toc(struct g_uzip_softc *sc, struct g_provider *pp, struct g_geom *gp) { uint32_t i, j, backref_to; uint64_t max_offset, min_offset; struct g_uzip_blk *last_blk; min_offset = sizeof(struct cloop_header) + (sc->nblocks + 1) * sizeof(uint64_t); max_offset = sc->toc[0].offset - 1; last_blk = &sc->toc[0]; for (i = 0; i < sc->nblocks; i++) { /* First do some bounds checking */ if ((sc->toc[i].offset < min_offset) || (sc->toc[i].offset > pp->mediasize)) { goto error_offset; } DPRINTF_BLK(GUZ_DBG_IO, i, ("%s: cluster #%u " "offset=%ju max_offset=%ju\n", gp->name, (u_int)i, (uintmax_t)sc->toc[i].offset, (uintmax_t)max_offset)); backref_to = BLEN_UNDEF; if (sc->toc[i].offset < max_offset) { /* * For the backref'ed blocks search already parsed * TOC entries for the matching offset and copy the * size from matched entry. */ for (j = 0; j <= i; j++) { if (sc->toc[j].offset == sc->toc[i].offset && !BLK_IS_NIL(sc, j)) { break; } if (j != i) { continue; } DPRINTF(GUZ_DBG_ERR, ("%s: cannot match " "backref'ed offset at cluster #%u\n", gp->name, i)); return (-1); } sc->toc[i].blen = sc->toc[j].blen; backref_to = j; } else { last_blk = &sc->toc[i]; /* * For the "normal blocks" seek forward until we hit * block whose offset is larger than ours and assume * it's going to be the next one. */ for (j = i + 1; j < sc->nblocks; j++) { if (sc->toc[j].offset > max_offset) { break; } } sc->toc[i].blen = sc->toc[j].offset - sc->toc[i].offset; if (BLK_ENDS(sc, i) > pp->mediasize) { DPRINTF(GUZ_DBG_ERR, ("%s: cluster #%u " "extends past media boundary (%ju > %ju)\n", gp->name, (u_int)i, (uintmax_t)BLK_ENDS(sc, i), (intmax_t)pp->mediasize)); return (-1); } KASSERT(max_offset <= sc->toc[i].offset, ( "%s: max_offset is incorrect: %ju", gp->name, (uintmax_t)max_offset)); max_offset = BLK_ENDS(sc, i) - 1; } DPRINTF_BLK(GUZ_DBG_TOC, i, ("%s: cluster #%u, original %u " "bytes, in %u bytes", gp->name, i, sc->blksz, sc->toc[i].blen)); if (backref_to != BLEN_UNDEF) { DPRINTF_BLK(GUZ_DBG_TOC, i, (" (->#%u)", (u_int)backref_to)); } DPRINTF_BLK(GUZ_DBG_TOC, i, ("\n")); } last_blk->last = 1; /* Do a second pass to validate block lengths */ for (i = 0; i < sc->nblocks; i++) { if (sc->toc[i].blen > sc->dcp->max_blen) { if (sc->toc[i].last == 0) { DPRINTF(GUZ_DBG_ERR, ("%s: cluster #%u " "length (%ju) exceeds " "max_blen (%ju)\n", gp->name, i, (uintmax_t)sc->toc[i].blen, (uintmax_t)sc->dcp->max_blen)); return (-1); } DPRINTF(GUZ_DBG_INFO, ("%s: cluster #%u extra " "padding is detected, trimmed to %ju\n", gp->name, i, (uintmax_t)sc->dcp->max_blen)); sc->toc[i].blen = sc->dcp->max_blen; sc->toc[i].padded = 1; } } return (0); error_offset: DPRINTF(GUZ_DBG_ERR, ("%s: cluster #%u: invalid offset %ju, " "min_offset=%ju mediasize=%jd\n", gp->name, (u_int)i, sc->toc[i].offset, min_offset, pp->mediasize)); return (-1); } static struct g_geom * g_uzip_taste(struct g_class *mp, struct g_provider *pp, int flags) { int error; uint32_t i, total_offsets, offsets_read, blk; void *buf; struct cloop_header *header; struct g_consumer *cp; struct g_geom *gp; struct g_provider *pp2; struct g_uzip_softc *sc; enum { G_UZIP = 1, G_ULZMA } type; g_trace(G_T_TOPOLOGY, "%s(%s,%s)", __func__, mp->name, pp->name); g_topology_assert(); /* Skip providers that are already open for writing. */ if (pp->acw > 0) return (NULL); if ((fnmatch(g_uzip_attach_to, pp->name, 0) != 0) || (fnmatch(g_uzip_noattach_to, pp->name, 0) == 0)) { DPRINTF(GUZ_DBG_INFO, ("%s(%s,%s), ignoring\n", __func__, mp->name, pp->name)); return (NULL); } buf = NULL; /* * Create geom instance. */ gp = g_new_geomf(mp, GUZ_DEV_NAME("%s"), pp->name); cp = g_new_consumer(gp); error = g_attach(cp, pp); if (error == 0) error = g_access(cp, 1, 0, 0); if (error) { goto e1; } g_topology_unlock(); /* * Read cloop header, look for CLOOP magic, perform * other validity checks. */ DPRINTF(GUZ_DBG_INFO, ("%s: media sectorsize %u, mediasize %jd\n", gp->name, pp->sectorsize, (intmax_t)pp->mediasize)); buf = g_read_data(cp, 0, pp->sectorsize, NULL); if (buf == NULL) goto e2; header = (struct cloop_header *) buf; if (strncmp(header->magic, CLOOP_MAGIC_START, sizeof(CLOOP_MAGIC_START) - 1) != 0) { DPRINTF(GUZ_DBG_ERR, ("%s: no CLOOP magic\n", gp->name)); goto e3; } switch (header->magic[CLOOP_OFS_COMPR]) { case CLOOP_COMP_LZMA: case CLOOP_COMP_LZMA_DDP: type = G_ULZMA; if (header->magic[CLOOP_OFS_VERSN] < CLOOP_MINVER_LZMA) { DPRINTF(GUZ_DBG_ERR, ("%s: image version too old\n", gp->name)); goto e3; } DPRINTF(GUZ_DBG_INFO, ("%s: GEOM_UZIP_LZMA image found\n", gp->name)); break; case CLOOP_COMP_LIBZ: case CLOOP_COMP_LIBZ_DDP: type = G_UZIP; if (header->magic[CLOOP_OFS_VERSN] < CLOOP_MINVER_ZLIB) { DPRINTF(GUZ_DBG_ERR, ("%s: image version too old\n", gp->name)); goto e3; } DPRINTF(GUZ_DBG_INFO, ("%s: GEOM_UZIP_ZLIB image found\n", gp->name)); break; default: DPRINTF(GUZ_DBG_ERR, ("%s: unsupported image type\n", gp->name)); goto e3; } /* * Initialize softc and read offsets. */ sc = malloc(sizeof(*sc), M_GEOM_UZIP, M_WAITOK | M_ZERO); gp->softc = sc; sc->blksz = ntohl(header->blksz); sc->nblocks = ntohl(header->nblocks); if (sc->blksz % 512 != 0) { printf("%s: block size (%u) should be multiple of 512.\n", gp->name, sc->blksz); goto e4; } if (sc->blksz > MAX_BLKSZ) { printf("%s: block size (%u) should not be larger than %d.\n", gp->name, sc->blksz, MAX_BLKSZ); } total_offsets = sc->nblocks + 1; if (sizeof(struct cloop_header) + total_offsets * sizeof(uint64_t) > pp->mediasize) { printf("%s: media too small for %u blocks\n", gp->name, sc->nblocks); goto e4; } sc->toc = malloc(total_offsets * sizeof(struct g_uzip_blk), M_GEOM_UZIP, M_WAITOK | M_ZERO); offsets_read = MIN(total_offsets, (pp->sectorsize - sizeof(*header)) / sizeof(uint64_t)); for (i = 0; i < offsets_read; i++) { sc->toc[i].offset = be64toh(((uint64_t *) (header + 1))[i]); sc->toc[i].blen = BLEN_UNDEF; } DPRINTF(GUZ_DBG_INFO, ("%s: %u offsets in the first sector\n", gp->name, offsets_read)); for (blk = 1; offsets_read < total_offsets; blk++) { uint32_t nread; free(buf, M_GEOM); buf = g_read_data( cp, blk * pp->sectorsize, pp->sectorsize, NULL); if (buf == NULL) goto e5; nread = MIN(total_offsets - offsets_read, pp->sectorsize / sizeof(uint64_t)); DPRINTF(GUZ_DBG_TOC, ("%s: %u offsets read from sector %d\n", gp->name, nread, blk)); for (i = 0; i < nread; i++) { sc->toc[offsets_read + i].offset = be64toh(((uint64_t *) buf)[i]); sc->toc[offsets_read + i].blen = BLEN_UNDEF; } offsets_read += nread; } free(buf, M_GEOM); buf = NULL; offsets_read -= 1; DPRINTF(GUZ_DBG_INFO, ("%s: done reading %u block offsets from %u " "sectors\n", gp->name, offsets_read, blk)); if (sc->nblocks != offsets_read) { DPRINTF(GUZ_DBG_ERR, ("%s: read %s offsets than expected " "blocks\n", gp->name, sc->nblocks < offsets_read ? "more" : "less")); goto e5; } if (type == G_UZIP) { sc->dcp = g_uzip_zlib_ctor(sc->blksz); } else { sc->dcp = g_uzip_lzma_ctor(sc->blksz); } if (sc->dcp == NULL) { goto e5; } /* * "Fake" last+1 block, to make it easier for the TOC parser to * iterate without making the last element a special case. */ sc->toc[sc->nblocks].offset = pp->mediasize; /* Massage TOC (table of contents), make sure it is sound */ if (g_uzip_parse_toc(sc, pp, gp) != 0) { DPRINTF(GUZ_DBG_ERR, ("%s: TOC error\n", gp->name)); goto e6; } mtx_init(&sc->last_mtx, "geom_uzip cache", NULL, MTX_DEF); mtx_init(&sc->queue_mtx, "geom_uzip wrkthread", NULL, MTX_DEF); bioq_init(&sc->bio_queue); sc->last_blk = -1; sc->last_buf = malloc(sc->blksz, M_GEOM_UZIP, M_WAITOK); sc->req_total = 0; sc->req_cached = 0; sc->uzip_do = &g_uzip_do; error = kproc_create(g_uzip_wrkthr, sc, &sc->procp, 0, 0, "%s", gp->name); if (error != 0) { goto e7; } g_topology_lock(); pp2 = g_new_providerf(gp, "%s", gp->name); pp2->sectorsize = 512; pp2->mediasize = (off_t)sc->nblocks * sc->blksz; pp2->stripesize = pp->stripesize; pp2->stripeoffset = pp->stripeoffset; g_error_provider(pp2, 0); g_access(cp, -1, 0, 0); DPRINTF(GUZ_DBG_INFO, ("%s: taste ok (%d, %jd), (%d, %d), %x\n", gp->name, pp2->sectorsize, (intmax_t)pp2->mediasize, pp2->stripeoffset, pp2->stripesize, pp2->flags)); DPRINTF(GUZ_DBG_INFO, ("%s: %u x %u blocks\n", gp->name, sc->nblocks, sc->blksz)); return (gp); e7: free(sc->last_buf, M_GEOM); mtx_destroy(&sc->queue_mtx); mtx_destroy(&sc->last_mtx); e6: sc->dcp->free(sc->dcp); e5: free(sc->toc, M_GEOM); e4: free(gp->softc, M_GEOM_UZIP); e3: if (buf != NULL) { free(buf, M_GEOM); } e2: g_topology_lock(); g_access(cp, -1, 0, 0); e1: g_detach(cp); g_destroy_consumer(cp); g_destroy_geom(gp); return (NULL); } static int g_uzip_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp) { struct g_provider *pp; g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, gp->name); g_topology_assert(); if (gp->softc == NULL) { DPRINTF(GUZ_DBG_ERR, ("%s(%s): gp->softc == NULL\n", __func__, gp->name)); return (ENXIO); } KASSERT(gp != NULL, ("NULL geom")); pp = LIST_FIRST(&gp->provider); KASSERT(pp != NULL, ("NULL provider")); if (pp->acr > 0 || pp->acw > 0 || pp->ace > 0) return (EBUSY); g_uzip_softc_free(gp->softc, gp); gp->softc = NULL; g_wither_geom(gp, ENXIO); return (0); } static struct g_class g_uzip_class = { .name = UZIP_CLASS_NAME, .version = G_VERSION, .taste = g_uzip_taste, .destroy_geom = g_uzip_destroy_geom, .start = g_uzip_start, .orphan = g_uzip_orphan, .access = g_uzip_access, .spoiled = g_uzip_spoiled, }; DECLARE_GEOM_CLASS(g_uzip_class, g_uzip); MODULE_DEPEND(g_uzip, zlib, 1, 1, 1); +MODULE_VERSION(geom_uzip, 0); Index: head/sys/geom/vinum/geom_vinum.c =================================================================== --- head/sys/geom/vinum/geom_vinum.c (revision 332386) +++ head/sys/geom/vinum/geom_vinum.c (revision 332387) @@ -1,1050 +1,1051 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2004, 2007 Lukas Ertl * Copyright (c) 2007, 2009 Ulf Lilleengen * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include SYSCTL_DECL(_kern_geom); static SYSCTL_NODE(_kern_geom, OID_AUTO, vinum, CTLFLAG_RW, 0, "GEOM_VINUM stuff"); u_int g_vinum_debug = 0; SYSCTL_UINT(_kern_geom_vinum, OID_AUTO, debug, CTLFLAG_RWTUN, &g_vinum_debug, 0, "Debug level"); static int gv_create(struct g_geom *, struct gctl_req *); static void gv_attach(struct gv_softc *, struct gctl_req *); static void gv_detach(struct gv_softc *, struct gctl_req *); static void gv_parityop(struct gv_softc *, struct gctl_req *); static void gv_orphan(struct g_consumer *cp) { struct g_geom *gp; struct gv_softc *sc; struct gv_drive *d; g_topology_assert(); KASSERT(cp != NULL, ("gv_orphan: null cp")); gp = cp->geom; KASSERT(gp != NULL, ("gv_orphan: null gp")); sc = gp->softc; KASSERT(sc != NULL, ("gv_orphan: null sc")); d = cp->private; KASSERT(d != NULL, ("gv_orphan: null d")); g_trace(G_T_TOPOLOGY, "gv_orphan(%s)", gp->name); gv_post_event(sc, GV_EVENT_DRIVE_LOST, d, NULL, 0, 0); } void gv_start(struct bio *bp) { struct g_geom *gp; struct gv_softc *sc; gp = bp->bio_to->geom; sc = gp->softc; switch (bp->bio_cmd) { case BIO_READ: case BIO_WRITE: case BIO_DELETE: break; case BIO_GETATTR: default: g_io_deliver(bp, EOPNOTSUPP); return; } mtx_lock(&sc->bqueue_mtx); bioq_disksort(sc->bqueue_down, bp); wakeup(sc); mtx_unlock(&sc->bqueue_mtx); } void gv_done(struct bio *bp) { struct g_geom *gp; struct gv_softc *sc; KASSERT(bp != NULL, ("NULL bp")); gp = bp->bio_from->geom; sc = gp->softc; mtx_lock(&sc->bqueue_mtx); bioq_disksort(sc->bqueue_up, bp); wakeup(sc); mtx_unlock(&sc->bqueue_mtx); } int gv_access(struct g_provider *pp, int dr, int dw, int de) { struct g_geom *gp; struct gv_softc *sc; struct gv_drive *d, *d2; int error; gp = pp->geom; sc = gp->softc; /* * We want to modify the read count with the write count in case we have * plexes in a RAID-5 organization. */ dr += dw; LIST_FOREACH(d, &sc->drives, drive) { if (d->consumer == NULL) continue; error = g_access(d->consumer, dr, dw, de); if (error) { LIST_FOREACH(d2, &sc->drives, drive) { if (d == d2) break; g_access(d2->consumer, -dr, -dw, -de); } G_VINUM_DEBUG(0, "g_access '%s' failed: %d", d->name, error); return (error); } } return (0); } static void gv_init(struct g_class *mp) { struct g_geom *gp; struct gv_softc *sc; g_trace(G_T_TOPOLOGY, "gv_init(%p)", mp); gp = g_new_geomf(mp, "VINUM"); gp->spoiled = gv_orphan; gp->orphan = gv_orphan; gp->access = gv_access; gp->start = gv_start; gp->softc = g_malloc(sizeof(struct gv_softc), M_WAITOK | M_ZERO); sc = gp->softc; sc->geom = gp; sc->bqueue_down = g_malloc(sizeof(struct bio_queue_head), M_WAITOK | M_ZERO); sc->bqueue_up = g_malloc(sizeof(struct bio_queue_head), M_WAITOK | M_ZERO); bioq_init(sc->bqueue_down); bioq_init(sc->bqueue_up); LIST_INIT(&sc->drives); LIST_INIT(&sc->subdisks); LIST_INIT(&sc->plexes); LIST_INIT(&sc->volumes); TAILQ_INIT(&sc->equeue); mtx_init(&sc->config_mtx, "gv_config", NULL, MTX_DEF); mtx_init(&sc->equeue_mtx, "gv_equeue", NULL, MTX_DEF); mtx_init(&sc->bqueue_mtx, "gv_bqueue", NULL, MTX_DEF); kproc_create(gv_worker, sc, &sc->worker, 0, 0, "gv_worker"); } static int gv_unload(struct gctl_req *req, struct g_class *mp, struct g_geom *gp) { struct gv_softc *sc; g_trace(G_T_TOPOLOGY, "gv_unload(%p)", mp); g_topology_assert(); sc = gp->softc; if (sc != NULL) { gv_worker_exit(sc); gp->softc = NULL; g_wither_geom(gp, ENXIO); } return (0); } /* Handle userland request of attaching object. */ static void gv_attach(struct gv_softc *sc, struct gctl_req *req) { struct gv_volume *v; struct gv_plex *p; struct gv_sd *s; off_t *offset; int *rename, type_child, type_parent; char *child, *parent; child = gctl_get_param(req, "child", NULL); if (child == NULL) { gctl_error(req, "no child given"); return; } parent = gctl_get_param(req, "parent", NULL); if (parent == NULL) { gctl_error(req, "no parent given"); return; } offset = gctl_get_paraml(req, "offset", sizeof(*offset)); if (offset == NULL) { gctl_error(req, "no offset given"); return; } rename = gctl_get_paraml(req, "rename", sizeof(*rename)); if (rename == NULL) { gctl_error(req, "no rename flag given"); return; } type_child = gv_object_type(sc, child); type_parent = gv_object_type(sc, parent); switch (type_child) { case GV_TYPE_PLEX: if (type_parent != GV_TYPE_VOL) { gctl_error(req, "no such volume to attach to"); return; } v = gv_find_vol(sc, parent); p = gv_find_plex(sc, child); gv_post_event(sc, GV_EVENT_ATTACH_PLEX, p, v, *offset, *rename); break; case GV_TYPE_SD: if (type_parent != GV_TYPE_PLEX) { gctl_error(req, "no such plex to attach to"); return; } p = gv_find_plex(sc, parent); s = gv_find_sd(sc, child); gv_post_event(sc, GV_EVENT_ATTACH_SD, s, p, *offset, *rename); break; default: gctl_error(req, "invalid child type"); break; } } /* Handle userland request of detaching object. */ static void gv_detach(struct gv_softc *sc, struct gctl_req *req) { struct gv_plex *p; struct gv_sd *s; int *flags, type; char *object; object = gctl_get_param(req, "object", NULL); if (object == NULL) { gctl_error(req, "no argument given"); return; } flags = gctl_get_paraml(req, "flags", sizeof(*flags)); type = gv_object_type(sc, object); switch (type) { case GV_TYPE_PLEX: p = gv_find_plex(sc, object); gv_post_event(sc, GV_EVENT_DETACH_PLEX, p, NULL, *flags, 0); break; case GV_TYPE_SD: s = gv_find_sd(sc, object); gv_post_event(sc, GV_EVENT_DETACH_SD, s, NULL, *flags, 0); break; default: gctl_error(req, "invalid object type"); break; } } /* Handle userland requests for creating new objects. */ static int gv_create(struct g_geom *gp, struct gctl_req *req) { struct gv_softc *sc; struct gv_drive *d, *d2; struct gv_plex *p, *p2; struct gv_sd *s, *s2; struct gv_volume *v, *v2; struct g_provider *pp; int error, i, *drives, *flags, *plexes, *subdisks, *volumes; char buf[20]; g_topology_assert(); sc = gp->softc; /* Find out how many of each object have been passed in. */ volumes = gctl_get_paraml(req, "volumes", sizeof(*volumes)); plexes = gctl_get_paraml(req, "plexes", sizeof(*plexes)); subdisks = gctl_get_paraml(req, "subdisks", sizeof(*subdisks)); drives = gctl_get_paraml(req, "drives", sizeof(*drives)); if (volumes == NULL || plexes == NULL || subdisks == NULL || drives == NULL) { gctl_error(req, "number of objects not given"); return (-1); } flags = gctl_get_paraml(req, "flags", sizeof(*flags)); if (flags == NULL) { gctl_error(req, "flags not given"); return (-1); } /* First, handle drive definitions ... */ for (i = 0; i < *drives; i++) { snprintf(buf, sizeof(buf), "drive%d", i); d2 = gctl_get_paraml(req, buf, sizeof(*d2)); if (d2 == NULL) { gctl_error(req, "no drive definition given"); return (-1); } /* * Make sure that the device specified in the drive config is * an active GEOM provider. */ pp = g_provider_by_name(d2->device); if (pp == NULL) { gctl_error(req, "%s: device not found", d2->device); goto error; } if (gv_find_drive(sc, d2->name) != NULL) { /* Ignore error. */ if (*flags & GV_FLAG_F) continue; gctl_error(req, "drive '%s' already exists", d2->name); goto error; } if (gv_find_drive_device(sc, d2->device) != NULL) { gctl_error(req, "device '%s' already configured in " "gvinum", d2->device); goto error; } d = g_malloc(sizeof(*d), M_WAITOK | M_ZERO); bcopy(d2, d, sizeof(*d)); gv_post_event(sc, GV_EVENT_CREATE_DRIVE, d, NULL, 0, 0); } /* ... then volume definitions ... */ for (i = 0; i < *volumes; i++) { error = 0; snprintf(buf, sizeof(buf), "volume%d", i); v2 = gctl_get_paraml(req, buf, sizeof(*v2)); if (v2 == NULL) { gctl_error(req, "no volume definition given"); return (-1); } if (gv_find_vol(sc, v2->name) != NULL) { /* Ignore error. */ if (*flags & GV_FLAG_F) continue; gctl_error(req, "volume '%s' already exists", v2->name); goto error; } v = g_malloc(sizeof(*v), M_WAITOK | M_ZERO); bcopy(v2, v, sizeof(*v)); gv_post_event(sc, GV_EVENT_CREATE_VOLUME, v, NULL, 0, 0); } /* ... then plex definitions ... */ for (i = 0; i < *plexes; i++) { error = 0; snprintf(buf, sizeof(buf), "plex%d", i); p2 = gctl_get_paraml(req, buf, sizeof(*p2)); if (p2 == NULL) { gctl_error(req, "no plex definition given"); return (-1); } if (gv_find_plex(sc, p2->name) != NULL) { /* Ignore error. */ if (*flags & GV_FLAG_F) continue; gctl_error(req, "plex '%s' already exists", p2->name); goto error; } p = g_malloc(sizeof(*p), M_WAITOK | M_ZERO); bcopy(p2, p, sizeof(*p)); gv_post_event(sc, GV_EVENT_CREATE_PLEX, p, NULL, 0, 0); } /* ... and, finally, subdisk definitions. */ for (i = 0; i < *subdisks; i++) { error = 0; snprintf(buf, sizeof(buf), "sd%d", i); s2 = gctl_get_paraml(req, buf, sizeof(*s2)); if (s2 == NULL) { gctl_error(req, "no subdisk definition given"); return (-1); } if (gv_find_sd(sc, s2->name) != NULL) { /* Ignore error. */ if (*flags & GV_FLAG_F) continue; gctl_error(req, "sd '%s' already exists", s2->name); goto error; } s = g_malloc(sizeof(*s), M_WAITOK | M_ZERO); bcopy(s2, s, sizeof(*s)); gv_post_event(sc, GV_EVENT_CREATE_SD, s, NULL, 0, 0); } error: gv_post_event(sc, GV_EVENT_SETUP_OBJECTS, sc, NULL, 0, 0); gv_post_event(sc, GV_EVENT_SAVE_CONFIG, sc, NULL, 0, 0); return (0); } static void gv_config(struct gctl_req *req, struct g_class *mp, char const *verb) { struct g_geom *gp; struct gv_softc *sc; struct sbuf *sb; char *comment; g_topology_assert(); gp = LIST_FIRST(&mp->geom); sc = gp->softc; if (!strcmp(verb, "attach")) { gv_attach(sc, req); } else if (!strcmp(verb, "concat")) { gv_concat(gp, req); } else if (!strcmp(verb, "detach")) { gv_detach(sc, req); } else if (!strcmp(verb, "list")) { gv_list(gp, req); /* Save our configuration back to disk. */ } else if (!strcmp(verb, "saveconfig")) { gv_post_event(sc, GV_EVENT_SAVE_CONFIG, sc, NULL, 0, 0); /* Return configuration in string form. */ } else if (!strcmp(verb, "getconfig")) { comment = gctl_get_param(req, "comment", NULL); if (comment == NULL) { gctl_error(req, "no comment parameter given"); return; } sb = sbuf_new(NULL, NULL, GV_CFG_LEN, SBUF_FIXEDLEN); gv_format_config(sc, sb, 0, comment); sbuf_finish(sb); gctl_set_param(req, "config", sbuf_data(sb), sbuf_len(sb) + 1); sbuf_delete(sb); } else if (!strcmp(verb, "create")) { gv_create(gp, req); } else if (!strcmp(verb, "mirror")) { gv_mirror(gp, req); } else if (!strcmp(verb, "move")) { gv_move(gp, req); } else if (!strcmp(verb, "raid5")) { gv_raid5(gp, req); } else if (!strcmp(verb, "rebuildparity") || !strcmp(verb, "checkparity")) { gv_parityop(sc, req); } else if (!strcmp(verb, "remove")) { gv_remove(gp, req); } else if (!strcmp(verb, "rename")) { gv_rename(gp, req); } else if (!strcmp(verb, "resetconfig")) { gv_post_event(sc, GV_EVENT_RESET_CONFIG, sc, NULL, 0, 0); } else if (!strcmp(verb, "start")) { gv_start_obj(gp, req); } else if (!strcmp(verb, "stripe")) { gv_stripe(gp, req); } else if (!strcmp(verb, "setstate")) { gv_setstate(gp, req); } else gctl_error(req, "Unknown verb parameter"); } static void gv_parityop(struct gv_softc *sc, struct gctl_req *req) { struct gv_plex *p; int *flags, *rebuild, type; char *plex; plex = gctl_get_param(req, "plex", NULL); if (plex == NULL) { gctl_error(req, "no plex given"); return; } flags = gctl_get_paraml(req, "flags", sizeof(*flags)); if (flags == NULL) { gctl_error(req, "no flags given"); return; } rebuild = gctl_get_paraml(req, "rebuild", sizeof(*rebuild)); if (rebuild == NULL) { gctl_error(req, "no operation given"); return; } type = gv_object_type(sc, plex); if (type != GV_TYPE_PLEX) { gctl_error(req, "'%s' is not a plex", plex); return; } p = gv_find_plex(sc, plex); if (p->state != GV_PLEX_UP) { gctl_error(req, "plex %s is not completely accessible", p->name); return; } if (p->org != GV_PLEX_RAID5) { gctl_error(req, "plex %s is not a RAID5 plex", p->name); return; } /* Put it in the event queue. */ /* XXX: The state of the plex might have changed when this event is * picked up ... We should perhaps check this afterwards. */ if (*rebuild) gv_post_event(sc, GV_EVENT_PARITY_REBUILD, p, NULL, 0, 0); else gv_post_event(sc, GV_EVENT_PARITY_CHECK, p, NULL, 0, 0); } static struct g_geom * gv_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) { struct g_geom *gp; struct g_consumer *cp; struct gv_softc *sc; struct gv_hdr vhdr; int error; g_topology_assert(); g_trace(G_T_TOPOLOGY, "gv_taste(%s, %s)", mp->name, pp->name); gp = LIST_FIRST(&mp->geom); if (gp == NULL) { G_VINUM_DEBUG(0, "error: tasting, but not initialized?"); return (NULL); } sc = gp->softc; cp = g_new_consumer(gp); if (g_attach(cp, pp) != 0) { g_destroy_consumer(cp); return (NULL); } if (g_access(cp, 1, 0, 0) != 0) { g_detach(cp); g_destroy_consumer(cp); return (NULL); } g_topology_unlock(); error = gv_read_header(cp, &vhdr); g_topology_lock(); g_access(cp, -1, 0, 0); g_detach(cp); g_destroy_consumer(cp); /* Check if what we've been given is a valid vinum drive. */ if (!error) gv_post_event(sc, GV_EVENT_DRIVE_TASTED, pp, NULL, 0, 0); return (NULL); } void gv_worker(void *arg) { struct g_provider *pp; struct gv_softc *sc; struct gv_event *ev; struct gv_volume *v; struct gv_plex *p; struct gv_sd *s; struct gv_drive *d; struct bio *bp; int newstate, flags, err, rename; char *newname; off_t offset; sc = arg; KASSERT(sc != NULL, ("NULL sc")); for (;;) { /* Look at the events first... */ ev = gv_get_event(sc); if (ev != NULL) { gv_remove_event(sc, ev); switch (ev->type) { case GV_EVENT_DRIVE_TASTED: G_VINUM_DEBUG(2, "event 'drive tasted'"); pp = ev->arg1; gv_drive_tasted(sc, pp); break; case GV_EVENT_DRIVE_LOST: G_VINUM_DEBUG(2, "event 'drive lost'"); d = ev->arg1; gv_drive_lost(sc, d); break; case GV_EVENT_CREATE_DRIVE: G_VINUM_DEBUG(2, "event 'create drive'"); d = ev->arg1; gv_create_drive(sc, d); break; case GV_EVENT_CREATE_VOLUME: G_VINUM_DEBUG(2, "event 'create volume'"); v = ev->arg1; gv_create_volume(sc, v); break; case GV_EVENT_CREATE_PLEX: G_VINUM_DEBUG(2, "event 'create plex'"); p = ev->arg1; gv_create_plex(sc, p); break; case GV_EVENT_CREATE_SD: G_VINUM_DEBUG(2, "event 'create sd'"); s = ev->arg1; gv_create_sd(sc, s); break; case GV_EVENT_RM_DRIVE: G_VINUM_DEBUG(2, "event 'remove drive'"); d = ev->arg1; flags = ev->arg3; gv_rm_drive(sc, d, flags); /*gv_setup_objects(sc);*/ break; case GV_EVENT_RM_VOLUME: G_VINUM_DEBUG(2, "event 'remove volume'"); v = ev->arg1; gv_rm_vol(sc, v); /*gv_setup_objects(sc);*/ break; case GV_EVENT_RM_PLEX: G_VINUM_DEBUG(2, "event 'remove plex'"); p = ev->arg1; gv_rm_plex(sc, p); /*gv_setup_objects(sc);*/ break; case GV_EVENT_RM_SD: G_VINUM_DEBUG(2, "event 'remove sd'"); s = ev->arg1; gv_rm_sd(sc, s); /*gv_setup_objects(sc);*/ break; case GV_EVENT_SAVE_CONFIG: G_VINUM_DEBUG(2, "event 'save config'"); gv_save_config(sc); break; case GV_EVENT_SET_SD_STATE: G_VINUM_DEBUG(2, "event 'setstate sd'"); s = ev->arg1; newstate = ev->arg3; flags = ev->arg4; err = gv_set_sd_state(s, newstate, flags); if (err) G_VINUM_DEBUG(0, "error setting subdisk" " state: error code %d", err); break; case GV_EVENT_SET_DRIVE_STATE: G_VINUM_DEBUG(2, "event 'setstate drive'"); d = ev->arg1; newstate = ev->arg3; flags = ev->arg4; err = gv_set_drive_state(d, newstate, flags); if (err) G_VINUM_DEBUG(0, "error setting drive " "state: error code %d", err); break; case GV_EVENT_SET_VOL_STATE: G_VINUM_DEBUG(2, "event 'setstate volume'"); v = ev->arg1; newstate = ev->arg3; flags = ev->arg4; err = gv_set_vol_state(v, newstate, flags); if (err) G_VINUM_DEBUG(0, "error setting volume " "state: error code %d", err); break; case GV_EVENT_SET_PLEX_STATE: G_VINUM_DEBUG(2, "event 'setstate plex'"); p = ev->arg1; newstate = ev->arg3; flags = ev->arg4; err = gv_set_plex_state(p, newstate, flags); if (err) G_VINUM_DEBUG(0, "error setting plex " "state: error code %d", err); break; case GV_EVENT_SETUP_OBJECTS: G_VINUM_DEBUG(2, "event 'setup objects'"); gv_setup_objects(sc); break; case GV_EVENT_RESET_CONFIG: G_VINUM_DEBUG(2, "event 'resetconfig'"); err = gv_resetconfig(sc); if (err) G_VINUM_DEBUG(0, "error resetting " "config: error code %d", err); break; case GV_EVENT_PARITY_REBUILD: /* * Start the rebuild. The gv_plex_done will * handle issuing of the remaining rebuild bio's * until it's finished. */ G_VINUM_DEBUG(2, "event 'rebuild'"); p = ev->arg1; if (p->state != GV_PLEX_UP) { G_VINUM_DEBUG(0, "plex %s is not " "completely accessible", p->name); break; } if (p->flags & GV_PLEX_SYNCING || p->flags & GV_PLEX_REBUILDING || p->flags & GV_PLEX_GROWING) { G_VINUM_DEBUG(0, "plex %s is busy with " "syncing or parity build", p->name); break; } p->synced = 0; p->flags |= GV_PLEX_REBUILDING; g_topology_assert_not(); g_topology_lock(); err = gv_access(p->vol_sc->provider, 1, 1, 0); if (err) { G_VINUM_DEBUG(0, "unable to access " "provider"); break; } g_topology_unlock(); gv_parity_request(p, GV_BIO_CHECK | GV_BIO_PARITY, 0); break; case GV_EVENT_PARITY_CHECK: /* Start parity check. */ G_VINUM_DEBUG(2, "event 'check'"); p = ev->arg1; if (p->state != GV_PLEX_UP) { G_VINUM_DEBUG(0, "plex %s is not " "completely accessible", p->name); break; } if (p->flags & GV_PLEX_SYNCING || p->flags & GV_PLEX_REBUILDING || p->flags & GV_PLEX_GROWING) { G_VINUM_DEBUG(0, "plex %s is busy with " "syncing or parity build", p->name); break; } p->synced = 0; g_topology_assert_not(); g_topology_lock(); err = gv_access(p->vol_sc->provider, 1, 1, 0); if (err) { G_VINUM_DEBUG(0, "unable to access " "provider"); break; } g_topology_unlock(); gv_parity_request(p, GV_BIO_CHECK, 0); break; case GV_EVENT_START_PLEX: G_VINUM_DEBUG(2, "event 'start' plex"); p = ev->arg1; gv_start_plex(p); break; case GV_EVENT_START_VOLUME: G_VINUM_DEBUG(2, "event 'start' volume"); v = ev->arg1; gv_start_vol(v); break; case GV_EVENT_ATTACH_PLEX: G_VINUM_DEBUG(2, "event 'attach' plex"); p = ev->arg1; v = ev->arg2; rename = ev->arg4; err = gv_attach_plex(p, v, rename); if (err) G_VINUM_DEBUG(0, "error attaching %s to" " %s: error code %d", p->name, v->name, err); break; case GV_EVENT_ATTACH_SD: G_VINUM_DEBUG(2, "event 'attach' sd"); s = ev->arg1; p = ev->arg2; offset = ev->arg3; rename = ev->arg4; err = gv_attach_sd(s, p, offset, rename); if (err) G_VINUM_DEBUG(0, "error attaching %s to" " %s: error code %d", s->name, p->name, err); break; case GV_EVENT_DETACH_PLEX: G_VINUM_DEBUG(2, "event 'detach' plex"); p = ev->arg1; flags = ev->arg3; err = gv_detach_plex(p, flags); if (err) G_VINUM_DEBUG(0, "error detaching %s: " "error code %d", p->name, err); break; case GV_EVENT_DETACH_SD: G_VINUM_DEBUG(2, "event 'detach' sd"); s = ev->arg1; flags = ev->arg3; err = gv_detach_sd(s, flags); if (err) G_VINUM_DEBUG(0, "error detaching %s: " "error code %d", s->name, err); break; case GV_EVENT_RENAME_VOL: G_VINUM_DEBUG(2, "event 'rename' volume"); v = ev->arg1; newname = ev->arg2; flags = ev->arg3; err = gv_rename_vol(sc, v, newname, flags); if (err) G_VINUM_DEBUG(0, "error renaming %s to " "%s: error code %d", v->name, newname, err); g_free(newname); /* Destroy and recreate the provider if we can. */ if (gv_provider_is_open(v->provider)) { G_VINUM_DEBUG(0, "unable to rename " "provider to %s: provider in use", v->name); break; } g_topology_lock(); g_wither_provider(v->provider, ENOENT); g_topology_unlock(); v->provider = NULL; gv_post_event(sc, GV_EVENT_SETUP_OBJECTS, sc, NULL, 0, 0); break; case GV_EVENT_RENAME_PLEX: G_VINUM_DEBUG(2, "event 'rename' plex"); p = ev->arg1; newname = ev->arg2; flags = ev->arg3; err = gv_rename_plex(sc, p, newname, flags); if (err) G_VINUM_DEBUG(0, "error renaming %s to " "%s: error code %d", p->name, newname, err); g_free(newname); break; case GV_EVENT_RENAME_SD: G_VINUM_DEBUG(2, "event 'rename' sd"); s = ev->arg1; newname = ev->arg2; flags = ev->arg3; err = gv_rename_sd(sc, s, newname, flags); if (err) G_VINUM_DEBUG(0, "error renaming %s to " "%s: error code %d", s->name, newname, err); g_free(newname); break; case GV_EVENT_RENAME_DRIVE: G_VINUM_DEBUG(2, "event 'rename' drive"); d = ev->arg1; newname = ev->arg2; flags = ev->arg3; err = gv_rename_drive(sc, d, newname, flags); if (err) G_VINUM_DEBUG(0, "error renaming %s to " "%s: error code %d", d->name, newname, err); g_free(newname); break; case GV_EVENT_MOVE_SD: G_VINUM_DEBUG(2, "event 'move' sd"); s = ev->arg1; d = ev->arg2; flags = ev->arg3; err = gv_move_sd(sc, s, d, flags); if (err) G_VINUM_DEBUG(0, "error moving %s to " "%s: error code %d", s->name, d->name, err); break; case GV_EVENT_THREAD_EXIT: G_VINUM_DEBUG(2, "event 'thread exit'"); g_free(ev); mtx_lock(&sc->equeue_mtx); mtx_lock(&sc->bqueue_mtx); gv_cleanup(sc); mtx_destroy(&sc->bqueue_mtx); mtx_destroy(&sc->equeue_mtx); g_free(sc->bqueue_down); g_free(sc->bqueue_up); g_free(sc); kproc_exit(0); /* NOTREACHED */ default: G_VINUM_DEBUG(1, "unknown event %d", ev->type); } g_free(ev); continue; } /* ... then do I/O processing. */ mtx_lock(&sc->bqueue_mtx); /* First do new requests. */ bp = bioq_takefirst(sc->bqueue_down); if (bp != NULL) { mtx_unlock(&sc->bqueue_mtx); /* A bio that interfered with another bio. */ if (bp->bio_pflags & GV_BIO_ONHOLD) { s = bp->bio_caller1; p = s->plex_sc; /* Is it still locked out? */ if (gv_stripe_active(p, bp)) { /* Park the bio on the waiting queue. */ bioq_disksort(p->wqueue, bp); } else { bp->bio_pflags &= ~GV_BIO_ONHOLD; g_io_request(bp, s->drive_sc->consumer); } /* A special request requireing special handling. */ } else if (bp->bio_pflags & GV_BIO_INTERNAL) { p = bp->bio_caller1; gv_plex_start(p, bp); } else { gv_volume_start(sc, bp); } mtx_lock(&sc->bqueue_mtx); } /* Then do completed requests. */ bp = bioq_takefirst(sc->bqueue_up); if (bp == NULL) { msleep(sc, &sc->bqueue_mtx, PRIBIO, "-", hz/10); mtx_unlock(&sc->bqueue_mtx); continue; } mtx_unlock(&sc->bqueue_mtx); gv_bio_done(sc, bp); } } #define VINUM_CLASS_NAME "VINUM" static struct g_class g_vinum_class = { .name = VINUM_CLASS_NAME, .version = G_VERSION, .init = gv_init, .taste = gv_taste, .ctlreq = gv_config, .destroy_geom = gv_unload, }; DECLARE_GEOM_CLASS(g_vinum_class, g_vinum); +MODULE_VERSION(geom_vinum, 0); Index: head/sys/geom/virstor/g_virstor.c =================================================================== --- head/sys/geom/virstor/g_virstor.c (revision 332386) +++ head/sys/geom/virstor/g_virstor.c (revision 332387) @@ -1,1893 +1,1894 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2006-2007 Ivan Voras * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* Implementation notes: * - "Components" are wrappers around providers that make up the * virtual storage (i.e. a virstor has "physical" components) */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include FEATURE(g_virstor, "GEOM virtual storage support"); /* Declare malloc(9) label */ static MALLOC_DEFINE(M_GVIRSTOR, "gvirstor", "GEOM_VIRSTOR Data"); /* GEOM class methods */ static g_init_t g_virstor_init; static g_fini_t g_virstor_fini; static g_taste_t g_virstor_taste; static g_ctl_req_t g_virstor_config; static g_ctl_destroy_geom_t g_virstor_destroy_geom; /* Declare & initialize class structure ("geom class") */ struct g_class g_virstor_class = { .name = G_VIRSTOR_CLASS_NAME, .version = G_VERSION, .init = g_virstor_init, .fini = g_virstor_fini, .taste = g_virstor_taste, .ctlreq = g_virstor_config, .destroy_geom = g_virstor_destroy_geom /* The .dumpconf and the rest are only usable for a geom instance, so * they will be set when such instance is created. */ }; /* Declare sysctl's and loader tunables */ SYSCTL_DECL(_kern_geom); static SYSCTL_NODE(_kern_geom, OID_AUTO, virstor, CTLFLAG_RW, 0, "GEOM_GVIRSTOR information"); static u_int g_virstor_debug = 2; /* XXX: lower to 2 when released to public */ SYSCTL_UINT(_kern_geom_virstor, OID_AUTO, debug, CTLFLAG_RWTUN, &g_virstor_debug, 0, "Debug level (2=production, 5=normal, 15=excessive)"); static u_int g_virstor_chunk_watermark = 100; SYSCTL_UINT(_kern_geom_virstor, OID_AUTO, chunk_watermark, CTLFLAG_RWTUN, &g_virstor_chunk_watermark, 0, "Minimum number of free chunks before issuing administrative warning"); static u_int g_virstor_component_watermark = 1; SYSCTL_UINT(_kern_geom_virstor, OID_AUTO, component_watermark, CTLFLAG_RWTUN, &g_virstor_component_watermark, 0, "Minimum number of free components before issuing administrative warning"); static int read_metadata(struct g_consumer *, struct g_virstor_metadata *); static void write_metadata(struct g_consumer *, struct g_virstor_metadata *); static int clear_metadata(struct g_virstor_component *); static int add_provider_to_geom(struct g_virstor_softc *, struct g_provider *, struct g_virstor_metadata *); static struct g_geom *create_virstor_geom(struct g_class *, struct g_virstor_metadata *); static void virstor_check_and_run(struct g_virstor_softc *); static u_int virstor_valid_components(struct g_virstor_softc *); static int virstor_geom_destroy(struct g_virstor_softc *, boolean_t, boolean_t); static void remove_component(struct g_virstor_softc *, struct g_virstor_component *, boolean_t); static void bioq_dismantle(struct bio_queue_head *); static int allocate_chunk(struct g_virstor_softc *, struct g_virstor_component **, u_int *, u_int *); static void delay_destroy_consumer(void *, int); static void dump_component(struct g_virstor_component *comp); #if 0 static void dump_me(struct virstor_map_entry *me, unsigned int nr); #endif static void virstor_ctl_stop(struct gctl_req *, struct g_class *); static void virstor_ctl_add(struct gctl_req *, struct g_class *); static void virstor_ctl_remove(struct gctl_req *, struct g_class *); static struct g_virstor_softc * virstor_find_geom(const struct g_class *, const char *); static void update_metadata(struct g_virstor_softc *); static void fill_metadata(struct g_virstor_softc *, struct g_virstor_metadata *, u_int, u_int); static void g_virstor_orphan(struct g_consumer *); static int g_virstor_access(struct g_provider *, int, int, int); static void g_virstor_start(struct bio *); static void g_virstor_dumpconf(struct sbuf *, const char *, struct g_geom *, struct g_consumer *, struct g_provider *); static void g_virstor_done(struct bio *); static void invalid_call(void); /* * Initialise GEOM class (per-class callback) */ static void g_virstor_init(struct g_class *mp __unused) { /* Catch map struct size mismatch at compile time; Map entries must * fit into MAXPHYS exactly, with no wasted space. */ CTASSERT(VIRSTOR_MAP_BLOCK_ENTRIES*VIRSTOR_MAP_ENTRY_SIZE == MAXPHYS); /* Init UMA zones, TAILQ's, other global vars */ } /* * Finalise GEOM class (per-class callback) */ static void g_virstor_fini(struct g_class *mp __unused) { /* Deinit UMA zones & global vars */ } /* * Config (per-class callback) */ static void g_virstor_config(struct gctl_req *req, struct g_class *cp, char const *verb) { uint32_t *version; g_topology_assert(); version = gctl_get_paraml(req, "version", sizeof(*version)); if (version == NULL) { gctl_error(req, "Failed to get 'version' argument"); return; } if (*version != G_VIRSTOR_VERSION) { gctl_error(req, "Userland and kernel versions out of sync"); return; } g_topology_unlock(); if (strcmp(verb, "add") == 0) virstor_ctl_add(req, cp); else if (strcmp(verb, "stop") == 0 || strcmp(verb, "destroy") == 0) virstor_ctl_stop(req, cp); else if (strcmp(verb, "remove") == 0) virstor_ctl_remove(req, cp); else gctl_error(req, "unknown verb: '%s'", verb); g_topology_lock(); } /* * "stop" verb from userland */ static void virstor_ctl_stop(struct gctl_req *req, struct g_class *cp) { int *force, *nargs; int i; nargs = gctl_get_paraml(req, "nargs", sizeof *nargs); if (nargs == NULL) { gctl_error(req, "Error fetching argument '%s'", "nargs"); return; } if (*nargs < 1) { gctl_error(req, "Invalid number of arguments"); return; } force = gctl_get_paraml(req, "force", sizeof *force); if (force == NULL) { gctl_error(req, "Error fetching argument '%s'", "force"); return; } g_topology_lock(); for (i = 0; i < *nargs; i++) { char param[8]; const char *name; struct g_virstor_softc *sc; int error; sprintf(param, "arg%d", i); name = gctl_get_asciiparam(req, param); if (name == NULL) { gctl_error(req, "No 'arg%d' argument", i); g_topology_unlock(); return; } sc = virstor_find_geom(cp, name); if (sc == NULL) { gctl_error(req, "Don't know anything about '%s'", name); g_topology_unlock(); return; } LOG_MSG(LVL_INFO, "Stopping %s by the userland command", sc->geom->name); update_metadata(sc); if ((error = virstor_geom_destroy(sc, TRUE, TRUE)) != 0) { LOG_MSG(LVL_ERROR, "Cannot destroy %s: %d", sc->geom->name, error); } } g_topology_unlock(); } /* * "add" verb from userland - add new component(s) to the structure. * This will be done all at once in here, without going through the * .taste function for new components. */ static void virstor_ctl_add(struct gctl_req *req, struct g_class *cp) { /* Note: while this is going on, I/O is being done on * the g_up and g_down threads. The idea is to make changes * to softc members in a way that can atomically activate * them all at once. */ struct g_virstor_softc *sc; int *hardcode, *nargs; const char *geom_name; /* geom to add a component to */ struct g_consumer *fcp; struct g_virstor_bio_q *bq; u_int added; int error; int i; nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); if (nargs == NULL) { gctl_error(req, "Error fetching argument '%s'", "nargs"); return; } if (*nargs < 2) { gctl_error(req, "Invalid number of arguments"); return; } hardcode = gctl_get_paraml(req, "hardcode", sizeof(*hardcode)); if (hardcode == NULL) { gctl_error(req, "Error fetching argument '%s'", "hardcode"); return; } /* Find "our" geom */ geom_name = gctl_get_asciiparam(req, "arg0"); if (geom_name == NULL) { gctl_error(req, "Error fetching argument '%s'", "geom_name (arg0)"); return; } sc = virstor_find_geom(cp, geom_name); if (sc == NULL) { gctl_error(req, "Don't know anything about '%s'", geom_name); return; } if (virstor_valid_components(sc) != sc->n_components) { LOG_MSG(LVL_ERROR, "Cannot add components to incomplete " "virstor %s", sc->geom->name); gctl_error(req, "Virstor %s is incomplete", sc->geom->name); return; } fcp = sc->components[0].gcons; added = 0; g_topology_lock(); for (i = 1; i < *nargs; i++) { struct g_virstor_metadata md; char aname[8]; const char *prov_name; struct g_provider *pp; struct g_consumer *cp; u_int nc; u_int j; snprintf(aname, sizeof aname, "arg%d", i); prov_name = gctl_get_asciiparam(req, aname); if (prov_name == NULL) { gctl_error(req, "Error fetching argument '%s'", aname); g_topology_unlock(); return; } if (strncmp(prov_name, _PATH_DEV, sizeof(_PATH_DEV) - 1) == 0) prov_name += sizeof(_PATH_DEV) - 1; pp = g_provider_by_name(prov_name); if (pp == NULL) { /* This is the most common error so be verbose about it */ if (added != 0) { gctl_error(req, "Invalid provider: '%s' (added" " %u components)", prov_name, added); update_metadata(sc); } else { gctl_error(req, "Invalid provider: '%s'", prov_name); } g_topology_unlock(); return; } cp = g_new_consumer(sc->geom); if (cp == NULL) { gctl_error(req, "Cannot create consumer"); g_topology_unlock(); return; } error = g_attach(cp, pp); if (error != 0) { gctl_error(req, "Cannot attach a consumer to %s", pp->name); g_destroy_consumer(cp); g_topology_unlock(); return; } if (fcp->acr != 0 || fcp->acw != 0 || fcp->ace != 0) { error = g_access(cp, fcp->acr, fcp->acw, fcp->ace); if (error != 0) { gctl_error(req, "Access request failed for %s", pp->name); g_destroy_consumer(cp); g_topology_unlock(); return; } } if (fcp->provider->sectorsize != pp->sectorsize) { gctl_error(req, "Sector size doesn't fit for %s", pp->name); g_destroy_consumer(cp); g_topology_unlock(); return; } for (j = 0; j < sc->n_components; j++) { if (strcmp(sc->components[j].gcons->provider->name, pp->name) == 0) { gctl_error(req, "Component %s already in %s", pp->name, sc->geom->name); g_destroy_consumer(cp); g_topology_unlock(); return; } } sc->components = realloc(sc->components, sizeof(*sc->components) * (sc->n_components + 1), M_GVIRSTOR, M_WAITOK); nc = sc->n_components; sc->components[nc].gcons = cp; sc->components[nc].sc = sc; sc->components[nc].index = nc; sc->components[nc].chunk_count = cp->provider->mediasize / sc->chunk_size; sc->components[nc].chunk_next = 0; sc->components[nc].chunk_reserved = 0; if (sc->components[nc].chunk_count < 4) { gctl_error(req, "Provider too small: %s", cp->provider->name); g_destroy_consumer(cp); g_topology_unlock(); return; } fill_metadata(sc, &md, nc, *hardcode); write_metadata(cp, &md); /* The new component becomes visible when n_components is * incremented */ sc->n_components++; added++; } /* This call to update_metadata() is critical. In case there's a * power failure in the middle of it and some components are updated * while others are not, there will be trouble on next .taste() iff * a non-updated component is detected first */ update_metadata(sc); g_topology_unlock(); LOG_MSG(LVL_INFO, "Added %d component(s) to %s", added, sc->geom->name); /* Fire off BIOs previously queued because there wasn't any * physical space left. If the BIOs still can't be satisfied * they will again be added to the end of the queue (during * which the mutex will be recursed) */ bq = malloc(sizeof(*bq), M_GVIRSTOR, M_WAITOK); bq->bio = NULL; mtx_lock(&sc->delayed_bio_q_mtx); /* First, insert a sentinel to the queue end, so we don't * end up in an infinite loop if there's still no free * space available. */ STAILQ_INSERT_TAIL(&sc->delayed_bio_q, bq, linkage); while (!STAILQ_EMPTY(&sc->delayed_bio_q)) { bq = STAILQ_FIRST(&sc->delayed_bio_q); if (bq->bio != NULL) { g_virstor_start(bq->bio); STAILQ_REMOVE_HEAD(&sc->delayed_bio_q, linkage); free(bq, M_GVIRSTOR); } else { STAILQ_REMOVE_HEAD(&sc->delayed_bio_q, linkage); free(bq, M_GVIRSTOR); break; } } mtx_unlock(&sc->delayed_bio_q_mtx); } /* * Find a geom handled by the class */ static struct g_virstor_softc * virstor_find_geom(const struct g_class *cp, const char *name) { struct g_geom *gp; LIST_FOREACH(gp, &cp->geom, geom) { if (strcmp(name, gp->name) == 0) return (gp->softc); } return (NULL); } /* * Update metadata on all components to reflect the current state * of these fields: * - chunk_next * - flags * - md_count * Expects things to be set up so write_metadata() can work, i.e. * the topology lock must be held. */ static void update_metadata(struct g_virstor_softc *sc) { struct g_virstor_metadata md; u_int n; if (virstor_valid_components(sc) != sc->n_components) return; /* Incomplete device */ LOG_MSG(LVL_DEBUG, "Updating metadata on components for %s", sc->geom->name); /* Update metadata on components */ g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, sc->geom->class->name, sc->geom->name); g_topology_assert(); for (n = 0; n < sc->n_components; n++) { read_metadata(sc->components[n].gcons, &md); md.chunk_next = sc->components[n].chunk_next; md.flags = sc->components[n].flags; md.md_count = sc->n_components; write_metadata(sc->components[n].gcons, &md); } } /* * Fills metadata (struct md) from information stored in softc and the nc'th * component of virstor */ static void fill_metadata(struct g_virstor_softc *sc, struct g_virstor_metadata *md, u_int nc, u_int hardcode) { struct g_virstor_component *c; bzero(md, sizeof *md); c = &sc->components[nc]; strncpy(md->md_magic, G_VIRSTOR_MAGIC, sizeof md->md_magic); md->md_version = G_VIRSTOR_VERSION; strncpy(md->md_name, sc->geom->name, sizeof md->md_name); md->md_id = sc->id; md->md_virsize = sc->virsize; md->md_chunk_size = sc->chunk_size; md->md_count = sc->n_components; if (hardcode) { strncpy(md->provider, c->gcons->provider->name, sizeof md->provider); } md->no = nc; md->provsize = c->gcons->provider->mediasize; md->chunk_count = c->chunk_count; md->chunk_next = c->chunk_next; md->chunk_reserved = c->chunk_reserved; md->flags = c->flags; } /* * Remove a component from virstor device. * Can only be done if the component is unallocated. */ static void virstor_ctl_remove(struct gctl_req *req, struct g_class *cp) { /* As this is executed in parallel to I/O, operations on virstor * structures must be as atomic as possible. */ struct g_virstor_softc *sc; int *nargs; const char *geom_name; u_int removed; int i; nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); if (nargs == NULL) { gctl_error(req, "Error fetching argument '%s'", "nargs"); return; } if (*nargs < 2) { gctl_error(req, "Invalid number of arguments"); return; } /* Find "our" geom */ geom_name = gctl_get_asciiparam(req, "arg0"); if (geom_name == NULL) { gctl_error(req, "Error fetching argument '%s'", "geom_name (arg0)"); return; } sc = virstor_find_geom(cp, geom_name); if (sc == NULL) { gctl_error(req, "Don't know anything about '%s'", geom_name); return; } if (virstor_valid_components(sc) != sc->n_components) { LOG_MSG(LVL_ERROR, "Cannot remove components from incomplete " "virstor %s", sc->geom->name); gctl_error(req, "Virstor %s is incomplete", sc->geom->name); return; } removed = 0; for (i = 1; i < *nargs; i++) { char param[8]; const char *prov_name; int j, found; struct g_virstor_component *newcomp, *compbak; sprintf(param, "arg%d", i); prov_name = gctl_get_asciiparam(req, param); if (prov_name == NULL) { gctl_error(req, "Error fetching argument '%s'", param); return; } if (strncmp(prov_name, _PATH_DEV, sizeof(_PATH_DEV) - 1) == 0) prov_name += sizeof(_PATH_DEV) - 1; found = -1; for (j = 0; j < sc->n_components; j++) { if (strcmp(sc->components[j].gcons->provider->name, prov_name) == 0) { found = j; break; } } if (found == -1) { LOG_MSG(LVL_ERROR, "No %s component in %s", prov_name, sc->geom->name); continue; } compbak = sc->components; newcomp = malloc(sc->n_components * sizeof(*sc->components), M_GVIRSTOR, M_WAITOK | M_ZERO); bcopy(sc->components, newcomp, found * sizeof(*sc->components)); bcopy(&sc->components[found + 1], newcomp + found, found * sizeof(*sc->components)); if ((sc->components[j].flags & VIRSTOR_PROVIDER_ALLOCATED) != 0) { LOG_MSG(LVL_ERROR, "Allocated provider %s cannot be " "removed from %s", prov_name, sc->geom->name); free(newcomp, M_GVIRSTOR); /* We'll consider this non-fatal error */ continue; } /* Renumerate unallocated components */ for (j = 0; j < sc->n_components-1; j++) { if ((sc->components[j].flags & VIRSTOR_PROVIDER_ALLOCATED) == 0) { sc->components[j].index = j; } } /* This is the critical section. If a component allocation * event happens while both variables are not yet set, * there will be trouble. Something will panic on encountering * NULL sc->components[x].gcomp member. * Luckily, component allocation happens very rarely and * removing components is an abnormal action in any case. */ sc->components = newcomp; sc->n_components--; /* End critical section */ g_topology_lock(); if (clear_metadata(&compbak[found]) != 0) { LOG_MSG(LVL_WARNING, "Trouble ahead: cannot clear " "metadata on %s", prov_name); } g_detach(compbak[found].gcons); g_destroy_consumer(compbak[found].gcons); g_topology_unlock(); free(compbak, M_GVIRSTOR); removed++; } /* This call to update_metadata() is critical. In case there's a * power failure in the middle of it and some components are updated * while others are not, there will be trouble on next .taste() iff * a non-updated component is detected first */ g_topology_lock(); update_metadata(sc); g_topology_unlock(); LOG_MSG(LVL_INFO, "Removed %d component(s) from %s", removed, sc->geom->name); } /* * Clear metadata sector on component */ static int clear_metadata(struct g_virstor_component *comp) { char *buf; int error; LOG_MSG(LVL_INFO, "Clearing metadata on %s", comp->gcons->provider->name); g_topology_assert(); error = g_access(comp->gcons, 0, 1, 0); if (error != 0) return (error); buf = malloc(comp->gcons->provider->sectorsize, M_GVIRSTOR, M_WAITOK | M_ZERO); error = g_write_data(comp->gcons, comp->gcons->provider->mediasize - comp->gcons->provider->sectorsize, buf, comp->gcons->provider->sectorsize); free(buf, M_GVIRSTOR); g_access(comp->gcons, 0, -1, 0); return (error); } /* * Destroy geom forcibly. */ static int g_virstor_destroy_geom(struct gctl_req *req __unused, struct g_class *mp, struct g_geom *gp) { struct g_virstor_softc *sc; int exitval; sc = gp->softc; KASSERT(sc != NULL, ("%s: NULL sc", __func__)); exitval = 0; LOG_MSG(LVL_DEBUG, "%s called for %s, sc=%p", __func__, gp->name, gp->softc); if (sc != NULL) { #ifdef INVARIANTS char *buf; int error; off_t off; int isclean, count; int n; LOG_MSG(LVL_INFO, "INVARIANTS detected"); LOG_MSG(LVL_INFO, "Verifying allocation " "table for %s", sc->geom->name); count = 0; for (n = 0; n < sc->chunk_count; n++) { if (sc->map[n].flags || VIRSTOR_MAP_ALLOCATED != 0) count++; } LOG_MSG(LVL_INFO, "Device %s has %d allocated chunks", sc->geom->name, count); n = off = count = 0; isclean = 1; if (virstor_valid_components(sc) != sc->n_components) { /* This is a incomplete virstor device (not all * components have been found) */ LOG_MSG(LVL_ERROR, "Device %s is incomplete", sc->geom->name); goto bailout; } error = g_access(sc->components[0].gcons, 1, 0, 0); KASSERT(error == 0, ("%s: g_access failed (%d)", __func__, error)); /* Compare the whole on-disk allocation table with what's * currently in memory */ while (n < sc->chunk_count) { buf = g_read_data(sc->components[0].gcons, off, sc->sectorsize, &error); KASSERT(buf != NULL, ("g_read_data returned NULL (%d) " "for read at %jd", error, off)); if (bcmp(buf, &sc->map[n], sc->sectorsize) != 0) { LOG_MSG(LVL_ERROR, "ERROR in allocation table, " "entry %d, offset %jd", n, off); isclean = 0; count++; } n += sc->me_per_sector; off += sc->sectorsize; g_free(buf); } error = g_access(sc->components[0].gcons, -1, 0, 0); KASSERT(error == 0, ("%s: g_access failed (%d) on exit", __func__, error)); if (isclean != 1) { LOG_MSG(LVL_ERROR, "ALLOCATION TABLE CORRUPTED FOR %s " "(%d sectors don't match, max %zu allocations)", sc->geom->name, count, count * sc->me_per_sector); } else { LOG_MSG(LVL_INFO, "Allocation table ok for %s", sc->geom->name); } bailout: #endif update_metadata(sc); virstor_geom_destroy(sc, FALSE, FALSE); exitval = EAGAIN; } else exitval = 0; return (exitval); } /* * Taste event (per-class callback) * Examines a provider and creates geom instances if needed */ static struct g_geom * g_virstor_taste(struct g_class *mp, struct g_provider *pp, int flags) { struct g_virstor_metadata md; struct g_geom *gp; struct g_consumer *cp; struct g_virstor_softc *sc; int error; g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); g_topology_assert(); LOG_MSG(LVL_DEBUG, "Tasting %s", pp->name); /* We need a dummy geom to attach a consumer to the given provider */ gp = g_new_geomf(mp, "virstor:taste.helper"); gp->start = (void *)invalid_call; /* XXX: hacked up so the */ gp->access = (void *)invalid_call; /* compiler doesn't complain. */ gp->orphan = (void *)invalid_call; /* I really want these to fail. */ cp = g_new_consumer(gp); g_attach(cp, pp); error = read_metadata(cp, &md); g_detach(cp); g_destroy_consumer(cp); g_destroy_geom(gp); if (error != 0) return (NULL); if (strcmp(md.md_magic, G_VIRSTOR_MAGIC) != 0) return (NULL); if (md.md_version != G_VIRSTOR_VERSION) { LOG_MSG(LVL_ERROR, "Kernel module version invalid " "to handle %s (%s) : %d should be %d", md.md_name, pp->name, md.md_version, G_VIRSTOR_VERSION); return (NULL); } if (md.provsize != pp->mediasize) return (NULL); /* If the provider name is hardcoded, use the offered provider only * if it's been offered with its proper name (the one used in * the label command). */ if (md.provider[0] != '\0' && !g_compare_names(md.provider, pp->name)) return (NULL); /* Iterate all geoms this class already knows about to see if a new * geom instance of this class needs to be created (in case the provider * is first from a (possibly) multi-consumer geom) or it just needs * to be added to an existing instance. */ sc = NULL; gp = NULL; LIST_FOREACH(gp, &mp->geom, geom) { sc = gp->softc; if (sc == NULL) continue; if (strcmp(md.md_name, sc->geom->name) != 0) continue; if (md.md_id != sc->id) continue; break; } if (gp != NULL) { /* We found an existing geom instance; add to it */ LOG_MSG(LVL_INFO, "Adding %s to %s", pp->name, md.md_name); error = add_provider_to_geom(sc, pp, &md); if (error != 0) { LOG_MSG(LVL_ERROR, "Error adding %s to %s (error %d)", pp->name, md.md_name, error); return (NULL); } } else { /* New geom instance needs to be created */ gp = create_virstor_geom(mp, &md); if (gp == NULL) { LOG_MSG(LVL_ERROR, "Error creating new instance of " "class %s: %s", mp->name, md.md_name); LOG_MSG(LVL_DEBUG, "Error creating %s at %s", md.md_name, pp->name); return (NULL); } sc = gp->softc; LOG_MSG(LVL_INFO, "Adding %s to %s (first found)", pp->name, md.md_name); error = add_provider_to_geom(sc, pp, &md); if (error != 0) { LOG_MSG(LVL_ERROR, "Error adding %s to %s (error %d)", pp->name, md.md_name, error); virstor_geom_destroy(sc, TRUE, FALSE); return (NULL); } } return (gp); } /* * Destroyes consumer passed to it in arguments. Used as a callback * on g_event queue. */ static void delay_destroy_consumer(void *arg, int flags __unused) { struct g_consumer *c = arg; KASSERT(c != NULL, ("%s: invalid consumer", __func__)); LOG_MSG(LVL_DEBUG, "Consumer %s destroyed with delay", c->provider->name); g_detach(c); g_destroy_consumer(c); } /* * Remove a component (consumer) from geom instance; If it's the first * component being removed, orphan the provider to announce geom's being * dismantled */ static void remove_component(struct g_virstor_softc *sc, struct g_virstor_component *comp, boolean_t delay) { struct g_consumer *c; KASSERT(comp->gcons != NULL, ("Component with no consumer in %s", sc->geom->name)); c = comp->gcons; comp->gcons = NULL; KASSERT(c->provider != NULL, ("%s: no provider", __func__)); LOG_MSG(LVL_DEBUG, "Component %s removed from %s", c->provider->name, sc->geom->name); if (sc->provider != NULL) { LOG_MSG(LVL_INFO, "Removing provider %s", sc->provider->name); g_wither_provider(sc->provider, ENXIO); sc->provider = NULL; } if (c->acr > 0 || c->acw > 0 || c->ace > 0) g_access(c, -c->acr, -c->acw, -c->ace); if (delay) { /* Destroy consumer after it's tasted */ g_post_event(delay_destroy_consumer, c, M_WAITOK, NULL); } else { g_detach(c); g_destroy_consumer(c); } } /* * Destroy geom - called internally * See g_virstor_destroy_geom for the other one */ static int virstor_geom_destroy(struct g_virstor_softc *sc, boolean_t force, boolean_t delay) { struct g_provider *pp; struct g_geom *gp; u_int n; g_topology_assert(); if (sc == NULL) return (ENXIO); pp = sc->provider; if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) { LOG_MSG(force ? LVL_WARNING : LVL_ERROR, "Device %s is still open.", pp->name); if (!force) return (EBUSY); } for (n = 0; n < sc->n_components; n++) { if (sc->components[n].gcons != NULL) remove_component(sc, &sc->components[n], delay); } gp = sc->geom; gp->softc = NULL; KASSERT(sc->provider == NULL, ("Provider still exists for %s", gp->name)); /* XXX: This might or might not work, since we're called with * the topology lock held. Also, it might panic the kernel if * the error'd BIO is in softupdates code. */ mtx_lock(&sc->delayed_bio_q_mtx); while (!STAILQ_EMPTY(&sc->delayed_bio_q)) { struct g_virstor_bio_q *bq; bq = STAILQ_FIRST(&sc->delayed_bio_q); bq->bio->bio_error = ENOSPC; g_io_deliver(bq->bio, EIO); STAILQ_REMOVE_HEAD(&sc->delayed_bio_q, linkage); free(bq, M_GVIRSTOR); } mtx_unlock(&sc->delayed_bio_q_mtx); mtx_destroy(&sc->delayed_bio_q_mtx); free(sc->map, M_GVIRSTOR); free(sc->components, M_GVIRSTOR); bzero(sc, sizeof *sc); free(sc, M_GVIRSTOR); pp = LIST_FIRST(&gp->provider); /* We only offer one provider */ if (pp == NULL || (pp->acr == 0 && pp->acw == 0 && pp->ace == 0)) LOG_MSG(LVL_DEBUG, "Device %s destroyed", gp->name); g_wither_geom(gp, ENXIO); return (0); } /* * Utility function: read metadata & decode. Wants topology lock to be * held. */ static int read_metadata(struct g_consumer *cp, struct g_virstor_metadata *md) { struct g_provider *pp; char *buf; int error; g_topology_assert(); error = g_access(cp, 1, 0, 0); if (error != 0) return (error); pp = cp->provider; g_topology_unlock(); buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, &error); g_topology_lock(); g_access(cp, -1, 0, 0); if (buf == NULL) return (error); virstor_metadata_decode(buf, md); g_free(buf); return (0); } /** * Utility function: encode & write metadata. Assumes topology lock is * held. * * There is no useful way of recovering from errors in this function, * not involving panicking the kernel. If the metadata cannot be written * the most we can do is notify the operator and hope he spots it and * replaces the broken drive. */ static void write_metadata(struct g_consumer *cp, struct g_virstor_metadata *md) { struct g_provider *pp; char *buf; int error; KASSERT(cp != NULL && md != NULL && cp->provider != NULL, ("Something's fishy in %s", __func__)); LOG_MSG(LVL_DEBUG, "Writing metadata on %s", cp->provider->name); g_topology_assert(); error = g_access(cp, 0, 1, 0); if (error != 0) { LOG_MSG(LVL_ERROR, "g_access(0,1,0) failed for %s: %d", cp->provider->name, error); return; } pp = cp->provider; buf = malloc(pp->sectorsize, M_GVIRSTOR, M_WAITOK); bzero(buf, pp->sectorsize); virstor_metadata_encode(md, buf); g_topology_unlock(); error = g_write_data(cp, pp->mediasize - pp->sectorsize, buf, pp->sectorsize); g_topology_lock(); g_access(cp, 0, -1, 0); free(buf, M_GVIRSTOR); if (error != 0) LOG_MSG(LVL_ERROR, "Error %d writing metadata to %s", error, cp->provider->name); } /* * Creates a new instance of this GEOM class, initialise softc */ static struct g_geom * create_virstor_geom(struct g_class *mp, struct g_virstor_metadata *md) { struct g_geom *gp; struct g_virstor_softc *sc; LOG_MSG(LVL_DEBUG, "Creating geom instance for %s (id=%u)", md->md_name, md->md_id); if (md->md_count < 1 || md->md_chunk_size < 1 || md->md_virsize < md->md_chunk_size) { /* This is bogus configuration, and probably means data is * somehow corrupted. Panic, maybe? */ LOG_MSG(LVL_ERROR, "Nonsensical metadata information for %s", md->md_name); return (NULL); } /* Check if it's already created */ LIST_FOREACH(gp, &mp->geom, geom) { sc = gp->softc; if (sc != NULL && strcmp(sc->geom->name, md->md_name) == 0) { LOG_MSG(LVL_WARNING, "Geom %s already exists", md->md_name); if (sc->id != md->md_id) { LOG_MSG(LVL_ERROR, "Some stale or invalid components " "exist for virstor device named %s. " "You will need to all stale " "components and maybe reconfigure " "the virstor device. Tune " "kern.geom.virstor.debug sysctl up " "for more information.", sc->geom->name); } return (NULL); } } gp = g_new_geomf(mp, "%s", md->md_name); gp->softc = NULL; /* to circumevent races that test softc */ gp->start = g_virstor_start; gp->spoiled = g_virstor_orphan; gp->orphan = g_virstor_orphan; gp->access = g_virstor_access; gp->dumpconf = g_virstor_dumpconf; sc = malloc(sizeof(*sc), M_GVIRSTOR, M_WAITOK | M_ZERO); sc->id = md->md_id; sc->n_components = md->md_count; sc->components = malloc(sizeof(struct g_virstor_component) * md->md_count, M_GVIRSTOR, M_WAITOK | M_ZERO); sc->chunk_size = md->md_chunk_size; sc->virsize = md->md_virsize; STAILQ_INIT(&sc->delayed_bio_q); mtx_init(&sc->delayed_bio_q_mtx, "gvirstor_delayed_bio_q_mtx", "gvirstor", MTX_DEF | MTX_RECURSE); sc->geom = gp; sc->provider = NULL; /* virstor_check_and_run will create it */ gp->softc = sc; LOG_MSG(LVL_ANNOUNCE, "Device %s created", sc->geom->name); return (gp); } /* * Add provider to a GEOM class instance */ static int add_provider_to_geom(struct g_virstor_softc *sc, struct g_provider *pp, struct g_virstor_metadata *md) { struct g_virstor_component *component; struct g_consumer *cp, *fcp; struct g_geom *gp; int error; if (md->no >= sc->n_components) return (EINVAL); /* "Current" compontent */ component = &(sc->components[md->no]); if (component->gcons != NULL) return (EEXIST); gp = sc->geom; fcp = LIST_FIRST(&gp->consumer); cp = g_new_consumer(gp); error = g_attach(cp, pp); if (error != 0) { g_destroy_consumer(cp); return (error); } if (fcp != NULL) { if (fcp->provider->sectorsize != pp->sectorsize) { /* TODO: this can be made to work */ LOG_MSG(LVL_ERROR, "Provider %s of %s has invalid " "sector size (%d)", pp->name, sc->geom->name, pp->sectorsize); return (EINVAL); } if (fcp->acr > 0 || fcp->acw || fcp->ace > 0) { /* Replicate access permissions from first "live" consumer * to the new one */ error = g_access(cp, fcp->acr, fcp->acw, fcp->ace); if (error != 0) { g_detach(cp); g_destroy_consumer(cp); return (error); } } } /* Bring up a new component */ cp->private = component; component->gcons = cp; component->sc = sc; component->index = md->no; component->chunk_count = md->chunk_count; component->chunk_next = md->chunk_next; component->chunk_reserved = md->chunk_reserved; component->flags = md->flags; LOG_MSG(LVL_DEBUG, "%s attached to %s", pp->name, sc->geom->name); virstor_check_and_run(sc); return (0); } /* * Check if everything's ready to create the geom provider & device entry, * create and start provider. * Called ultimately by .taste, from g_event thread */ static void virstor_check_and_run(struct g_virstor_softc *sc) { off_t off; size_t n, count; int index; int error; if (virstor_valid_components(sc) != sc->n_components) return; if (virstor_valid_components(sc) == 0) { /* This is actually a candidate for panic() */ LOG_MSG(LVL_ERROR, "No valid components for %s?", sc->provider->name); return; } sc->sectorsize = sc->components[0].gcons->provider->sectorsize; /* Initialise allocation map from the first consumer */ sc->chunk_count = sc->virsize / sc->chunk_size; if (sc->chunk_count * (off_t)sc->chunk_size != sc->virsize) { LOG_MSG(LVL_WARNING, "Device %s truncated to %ju bytes", sc->provider->name, sc->chunk_count * (off_t)sc->chunk_size); } sc->map_size = sc->chunk_count * sizeof *(sc->map); /* The following allocation is in order of 4MB - 8MB */ sc->map = malloc(sc->map_size, M_GVIRSTOR, M_WAITOK); KASSERT(sc->map != NULL, ("%s: Memory allocation error (%zu bytes) for %s", __func__, sc->map_size, sc->provider->name)); sc->map_sectors = sc->map_size / sc->sectorsize; count = 0; for (n = 0; n < sc->n_components; n++) count += sc->components[n].chunk_count; LOG_MSG(LVL_INFO, "Device %s has %zu physical chunks and %zu virtual " "(%zu KB chunks)", sc->geom->name, count, sc->chunk_count, sc->chunk_size / 1024); error = g_access(sc->components[0].gcons, 1, 0, 0); if (error != 0) { LOG_MSG(LVL_ERROR, "Cannot acquire read access for %s to " "read allocation map for %s", sc->components[0].gcons->provider->name, sc->geom->name); return; } /* Read in the allocation map */ LOG_MSG(LVL_DEBUG, "Reading map for %s from %s", sc->geom->name, sc->components[0].gcons->provider->name); off = count = n = 0; while (count < sc->map_size) { struct g_virstor_map_entry *mapbuf; size_t bs; bs = MIN(MAXPHYS, sc->map_size - count); if (bs % sc->sectorsize != 0) { /* Check for alignment errors */ bs = rounddown(bs, sc->sectorsize); if (bs == 0) break; LOG_MSG(LVL_ERROR, "Trouble: map is not sector-aligned " "for %s on %s", sc->geom->name, sc->components[0].gcons->provider->name); } mapbuf = g_read_data(sc->components[0].gcons, off, bs, &error); if (mapbuf == NULL) { free(sc->map, M_GVIRSTOR); LOG_MSG(LVL_ERROR, "Error reading allocation map " "for %s from %s (offset %ju) (error %d)", sc->geom->name, sc->components[0].gcons->provider->name, off, error); return; } bcopy(mapbuf, &sc->map[n], bs); off += bs; count += bs; n += bs / sizeof *(sc->map); g_free(mapbuf); } g_access(sc->components[0].gcons, -1, 0, 0); LOG_MSG(LVL_DEBUG, "Read map for %s", sc->geom->name); /* find first component with allocatable chunks */ index = -1; for (n = 0; n < sc->n_components; n++) { if (sc->components[n].chunk_next < sc->components[n].chunk_count) { index = n; break; } } if (index == -1) /* not found? set it to the last component and handle it * later */ index = sc->n_components - 1; if (index >= sc->n_components - g_virstor_component_watermark - 1) { LOG_MSG(LVL_WARNING, "Device %s running out of components " "(%d/%u: %s)", sc->geom->name, index+1, sc->n_components, sc->components[index].gcons->provider->name); } sc->curr_component = index; if (sc->components[index].chunk_next >= sc->components[index].chunk_count - g_virstor_chunk_watermark) { LOG_MSG(LVL_WARNING, "Component %s of %s is running out of free space " "(%u chunks left)", sc->components[index].gcons->provider->name, sc->geom->name, sc->components[index].chunk_count - sc->components[index].chunk_next); } sc->me_per_sector = sc->sectorsize / sizeof *(sc->map); if (sc->sectorsize % sizeof *(sc->map) != 0) { LOG_MSG(LVL_ERROR, "%s: Map entries don't fit exactly in a sector (%s)", __func__, sc->geom->name); return; } /* Recalculate allocated chunks in components & at the same time * verify map data is sane. We could trust metadata on this, but * we want to make sure. */ for (n = 0; n < sc->n_components; n++) sc->components[n].chunk_next = sc->components[n].chunk_reserved; for (n = 0; n < sc->chunk_count; n++) { if (sc->map[n].provider_no >= sc->n_components || sc->map[n].provider_chunk >= sc->components[sc->map[n].provider_no].chunk_count) { LOG_MSG(LVL_ERROR, "%s: Invalid entry %u in map for %s", __func__, (u_int)n, sc->geom->name); LOG_MSG(LVL_ERROR, "%s: provider_no: %u, n_components: %u" " provider_chunk: %u, chunk_count: %u", __func__, sc->map[n].provider_no, sc->n_components, sc->map[n].provider_chunk, sc->components[sc->map[n].provider_no].chunk_count); return; } if (sc->map[n].flags & VIRSTOR_MAP_ALLOCATED) sc->components[sc->map[n].provider_no].chunk_next++; } sc->provider = g_new_providerf(sc->geom, "virstor/%s", sc->geom->name); sc->provider->sectorsize = sc->sectorsize; sc->provider->mediasize = sc->virsize; g_error_provider(sc->provider, 0); LOG_MSG(LVL_INFO, "%s activated", sc->provider->name); LOG_MSG(LVL_DEBUG, "%s starting with current component %u, starting " "chunk %u", sc->provider->name, sc->curr_component, sc->components[sc->curr_component].chunk_next); } /* * Returns count of active providers in this geom instance */ static u_int virstor_valid_components(struct g_virstor_softc *sc) { unsigned int nc, i; nc = 0; KASSERT(sc != NULL, ("%s: softc is NULL", __func__)); KASSERT(sc->components != NULL, ("%s: sc->components is NULL", __func__)); for (i = 0; i < sc->n_components; i++) if (sc->components[i].gcons != NULL) nc++; return (nc); } /* * Called when the consumer gets orphaned (?) */ static void g_virstor_orphan(struct g_consumer *cp) { struct g_virstor_softc *sc; struct g_virstor_component *comp; struct g_geom *gp; g_topology_assert(); gp = cp->geom; sc = gp->softc; if (sc == NULL) return; comp = cp->private; KASSERT(comp != NULL, ("%s: No component in private part of consumer", __func__)); remove_component(sc, comp, FALSE); if (virstor_valid_components(sc) == 0) virstor_geom_destroy(sc, TRUE, FALSE); } /* * Called to notify geom when it's been opened, and for what intent */ static int g_virstor_access(struct g_provider *pp, int dr, int dw, int de) { struct g_consumer *c; struct g_virstor_softc *sc; struct g_geom *gp; int error; KASSERT(pp != NULL, ("%s: NULL provider", __func__)); gp = pp->geom; KASSERT(gp != NULL, ("%s: NULL geom", __func__)); sc = gp->softc; if (sc == NULL) { /* It seems that .access can be called with negative dr,dw,dx * in this case but I want to check for myself */ LOG_MSG(LVL_WARNING, "access(%d, %d, %d) for %s", dr, dw, de, pp->name); /* This should only happen when geom is withered so * allow only negative requests */ KASSERT(dr <= 0 && dw <= 0 && de <= 0, ("%s: Positive access for %s", __func__, pp->name)); if (pp->acr + dr == 0 && pp->acw + dw == 0 && pp->ace + de == 0) LOG_MSG(LVL_DEBUG, "Device %s definitely destroyed", pp->name); return (0); } /* Grab an exclusive bit to propagate on our consumers on first open */ if (pp->acr == 0 && pp->acw == 0 && pp->ace == 0) de++; /* ... drop it on close */ if (pp->acr + dr == 0 && pp->acw + dw == 0 && pp->ace + de == 0) { de--; update_metadata(sc); /* Writes statistical information */ } error = ENXIO; LIST_FOREACH(c, &gp->consumer, consumer) { KASSERT(c != NULL, ("%s: consumer is NULL", __func__)); error = g_access(c, dr, dw, de); if (error != 0) { struct g_consumer *c2; /* Backout earlier changes */ LIST_FOREACH(c2, &gp->consumer, consumer) { if (c2 == c) /* all eariler components fixed */ return (error); g_access(c2, -dr, -dw, -de); } } } return (error); } /* * Generate XML dump of current state */ static void g_virstor_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp) { struct g_virstor_softc *sc; g_topology_assert(); sc = gp->softc; if (sc == NULL || pp != NULL) return; if (cp != NULL) { /* For each component */ struct g_virstor_component *comp; comp = cp->private; if (comp == NULL) return; sbuf_printf(sb, "%s%u\n", indent, comp->index); sbuf_printf(sb, "%s%u\n", indent, comp->chunk_count); sbuf_printf(sb, "%s%u\n", indent, comp->chunk_next); sbuf_printf(sb, "%s%u\n", indent, comp->chunk_reserved); sbuf_printf(sb, "%s%u%%\n", indent, comp->chunk_next > 0 ? 100 - ((comp->chunk_next + comp->chunk_reserved) * 100) / comp->chunk_count : 100); } else { /* For the whole thing */ u_int count, used, i; off_t size; count = used = size = 0; for (i = 0; i < sc->n_components; i++) { if (sc->components[i].gcons != NULL) { count += sc->components[i].chunk_count; used += sc->components[i].chunk_next + sc->components[i].chunk_reserved; size += sc->components[i].gcons-> provider->mediasize; } } sbuf_printf(sb, "%s" "Components=%u, Online=%u\n", indent, sc->n_components, virstor_valid_components(sc)); sbuf_printf(sb, "%s%u%% physical free\n", indent, 100-(used * 100) / count); sbuf_printf(sb, "%s%zu\n", indent, sc->chunk_size); sbuf_printf(sb, "%s%u%%\n", indent, used > 0 ? 100 - (used * 100) / count : 100); sbuf_printf(sb, "%s%u\n", indent, count); sbuf_printf(sb, "%s%zu\n", indent, sc->chunk_count); sbuf_printf(sb, "%s%zu%%\n", indent, (count * 100) / sc->chunk_count); sbuf_printf(sb, "%s%jd\n", indent, size); sbuf_printf(sb, "%s%jd\n", indent, sc->virsize); } } /* * GEOM .done handler * Can't use standard handler because one requested IO may * fork into additional data IOs */ static void g_virstor_done(struct bio *b) { struct g_virstor_softc *sc; struct bio *parent_b; parent_b = b->bio_parent; sc = parent_b->bio_to->geom->softc; if (b->bio_error != 0) { LOG_MSG(LVL_ERROR, "Error %d for offset=%ju, length=%ju, %s", b->bio_error, b->bio_offset, b->bio_length, b->bio_to->name); if (parent_b->bio_error == 0) parent_b->bio_error = b->bio_error; } parent_b->bio_inbed++; parent_b->bio_completed += b->bio_completed; if (parent_b->bio_children == parent_b->bio_inbed) { parent_b->bio_completed = parent_b->bio_length; g_io_deliver(parent_b, parent_b->bio_error); } g_destroy_bio(b); } /* * I/O starts here * Called in g_down thread */ static void g_virstor_start(struct bio *b) { struct g_virstor_softc *sc; struct g_virstor_component *comp; struct bio *cb; struct g_provider *pp; char *addr; off_t offset, length; struct bio_queue_head bq; size_t chunk_size; /* cached for convenience */ u_int count; pp = b->bio_to; sc = pp->geom->softc; KASSERT(sc != NULL, ("%s: no softc (error=%d, device=%s)", __func__, b->bio_to->error, b->bio_to->name)); LOG_REQ(LVL_MOREDEBUG, b, "%s", __func__); switch (b->bio_cmd) { case BIO_READ: case BIO_WRITE: case BIO_DELETE: break; default: g_io_deliver(b, EOPNOTSUPP); return; } LOG_MSG(LVL_DEBUG2, "BIO arrived, size=%ju", b->bio_length); bioq_init(&bq); chunk_size = sc->chunk_size; addr = b->bio_data; offset = b->bio_offset; /* virtual offset and length */ length = b->bio_length; while (length > 0) { size_t chunk_index, in_chunk_offset, in_chunk_length; struct virstor_map_entry *me; chunk_index = offset / chunk_size; /* round downwards */ in_chunk_offset = offset % chunk_size; in_chunk_length = min(length, chunk_size - in_chunk_offset); LOG_MSG(LVL_DEBUG, "Mapped %s(%ju, %ju) to (%zu,%zu,%zu)", b->bio_cmd == BIO_READ ? "R" : "W", offset, length, chunk_index, in_chunk_offset, in_chunk_length); me = &sc->map[chunk_index]; if (b->bio_cmd == BIO_READ || b->bio_cmd == BIO_DELETE) { if ((me->flags & VIRSTOR_MAP_ALLOCATED) == 0) { /* Reads from unallocated chunks return zeroed * buffers */ if (b->bio_cmd == BIO_READ) bzero(addr, in_chunk_length); } else { comp = &sc->components[me->provider_no]; cb = g_clone_bio(b); if (cb == NULL) { bioq_dismantle(&bq); if (b->bio_error == 0) b->bio_error = ENOMEM; g_io_deliver(b, b->bio_error); return; } cb->bio_to = comp->gcons->provider; cb->bio_done = g_virstor_done; cb->bio_offset = (off_t)me->provider_chunk * (off_t)chunk_size + in_chunk_offset; cb->bio_length = in_chunk_length; cb->bio_data = addr; cb->bio_caller1 = comp; bioq_disksort(&bq, cb); } } else { /* handle BIO_WRITE */ KASSERT(b->bio_cmd == BIO_WRITE, ("%s: Unknown command %d", __func__, b->bio_cmd)); if ((me->flags & VIRSTOR_MAP_ALLOCATED) == 0) { /* We have a virtual chunk, represented by * the "me" entry, but it's not yet allocated * (tied to) a physical chunk. So do it now. */ struct virstor_map_entry *data_me; u_int phys_chunk, comp_no; off_t s_offset; int error; error = allocate_chunk(sc, &comp, &comp_no, &phys_chunk); if (error != 0) { /* We cannot allocate a physical chunk * to satisfy this request, so we'll * delay it to when we can... * XXX: this will prevent the fs from * being umounted! */ struct g_virstor_bio_q *biq; biq = malloc(sizeof *biq, M_GVIRSTOR, M_NOWAIT); if (biq == NULL) { bioq_dismantle(&bq); if (b->bio_error == 0) b->bio_error = ENOMEM; g_io_deliver(b, b->bio_error); return; } biq->bio = b; mtx_lock(&sc->delayed_bio_q_mtx); STAILQ_INSERT_TAIL(&sc->delayed_bio_q, biq, linkage); mtx_unlock(&sc->delayed_bio_q_mtx); LOG_MSG(LVL_WARNING, "Delaying BIO " "(size=%ju) until free physical " "space can be found on %s", b->bio_length, sc->provider->name); return; } LOG_MSG(LVL_DEBUG, "Allocated chunk %u on %s " "for %s", phys_chunk, comp->gcons->provider->name, sc->provider->name); me->provider_no = comp_no; me->provider_chunk = phys_chunk; me->flags |= VIRSTOR_MAP_ALLOCATED; cb = g_clone_bio(b); if (cb == NULL) { me->flags &= ~VIRSTOR_MAP_ALLOCATED; me->provider_no = 0; me->provider_chunk = 0; bioq_dismantle(&bq); if (b->bio_error == 0) b->bio_error = ENOMEM; g_io_deliver(b, b->bio_error); return; } /* The allocation table is stored continuously * at the start of the drive. We need to * calculate the offset of the sector that holds * this map entry both on the drive and in the * map array. * sc_offset will end up pointing to the drive * sector. */ s_offset = chunk_index * sizeof *me; s_offset = rounddown(s_offset, sc->sectorsize); /* data_me points to map entry sector * in memory (analogous to offset) */ data_me = &sc->map[rounddown(chunk_index, sc->me_per_sector)]; /* Commit sector with map entry to storage */ cb->bio_to = sc->components[0].gcons->provider; cb->bio_done = g_virstor_done; cb->bio_offset = s_offset; cb->bio_data = (char *)data_me; cb->bio_length = sc->sectorsize; cb->bio_caller1 = &sc->components[0]; bioq_disksort(&bq, cb); } comp = &sc->components[me->provider_no]; cb = g_clone_bio(b); if (cb == NULL) { bioq_dismantle(&bq); if (b->bio_error == 0) b->bio_error = ENOMEM; g_io_deliver(b, b->bio_error); return; } /* Finally, handle the data */ cb->bio_to = comp->gcons->provider; cb->bio_done = g_virstor_done; cb->bio_offset = (off_t)me->provider_chunk*(off_t)chunk_size + in_chunk_offset; cb->bio_length = in_chunk_length; cb->bio_data = addr; cb->bio_caller1 = comp; bioq_disksort(&bq, cb); } addr += in_chunk_length; length -= in_chunk_length; offset += in_chunk_length; } /* Fire off bio's here */ count = 0; for (cb = bioq_first(&bq); cb != NULL; cb = bioq_first(&bq)) { bioq_remove(&bq, cb); LOG_REQ(LVL_MOREDEBUG, cb, "Firing request"); comp = cb->bio_caller1; cb->bio_caller1 = NULL; LOG_MSG(LVL_DEBUG, " firing bio, offset=%ju, length=%ju", cb->bio_offset, cb->bio_length); g_io_request(cb, comp->gcons); count++; } if (count == 0) { /* We handled everything locally */ b->bio_completed = b->bio_length; g_io_deliver(b, 0); } } /* * Allocate a chunk from a physical provider. Returns physical component, * chunk index relative to the component and the component's index. */ static int allocate_chunk(struct g_virstor_softc *sc, struct g_virstor_component **comp, u_int *comp_no_p, u_int *chunk) { u_int comp_no; KASSERT(sc->curr_component < sc->n_components, ("%s: Invalid curr_component: %u", __func__, sc->curr_component)); comp_no = sc->curr_component; *comp = &sc->components[comp_no]; dump_component(*comp); if ((*comp)->chunk_next >= (*comp)->chunk_count) { /* This component is full. Allocate next component */ if (comp_no >= sc->n_components-1) { LOG_MSG(LVL_ERROR, "All physical space allocated for %s", sc->geom->name); return (-1); } (*comp)->flags &= ~VIRSTOR_PROVIDER_CURRENT; sc->curr_component = ++comp_no; *comp = &sc->components[comp_no]; if (comp_no >= sc->n_components - g_virstor_component_watermark-1) LOG_MSG(LVL_WARNING, "Device %s running out of components " "(switching to %u/%u: %s)", sc->geom->name, comp_no+1, sc->n_components, (*comp)->gcons->provider->name); /* Take care not to overwrite reserved chunks */ if ( (*comp)->chunk_reserved > 0 && (*comp)->chunk_next < (*comp)->chunk_reserved) (*comp)->chunk_next = (*comp)->chunk_reserved; (*comp)->flags |= VIRSTOR_PROVIDER_ALLOCATED | VIRSTOR_PROVIDER_CURRENT; dump_component(*comp); *comp_no_p = comp_no; *chunk = (*comp)->chunk_next++; } else { *comp_no_p = comp_no; *chunk = (*comp)->chunk_next++; } return (0); } /* Dump a component */ static void dump_component(struct g_virstor_component *comp) { if (g_virstor_debug < LVL_DEBUG2) return; printf("Component %d: %s\n", comp->index, comp->gcons->provider->name); printf(" chunk_count: %u\n", comp->chunk_count); printf(" chunk_next: %u\n", comp->chunk_next); printf(" flags: %u\n", comp->flags); } #if 0 /* Dump a map entry */ static void dump_me(struct virstor_map_entry *me, unsigned int nr) { if (g_virstor_debug < LVL_DEBUG) return; printf("VIRT. CHUNK #%d: ", nr); if ((me->flags & VIRSTOR_MAP_ALLOCATED) == 0) printf("(unallocated)\n"); else printf("allocated at provider %u, provider_chunk %u\n", me->provider_no, me->provider_chunk); } #endif /* * Dismantle bio_queue and destroy its components */ static void bioq_dismantle(struct bio_queue_head *bq) { struct bio *b; for (b = bioq_first(bq); b != NULL; b = bioq_first(bq)) { bioq_remove(bq, b); g_destroy_bio(b); } } /* * The function that shouldn't be called. * When this is called, the stack is already garbled because of * argument mismatch. There's nothing to do now but panic, which is * accidentally the whole purpose of this function. * Motivation: to guard from accidentally calling geom methods when * they shouldn't be called. (see g_..._taste) */ static void invalid_call(void) { panic("invalid_call() has just been called. Something's fishy here."); } DECLARE_GEOM_CLASS(g_virstor_class, g_virstor); /* Let there be light */ +MODULE_VERSION(geom_virstor, 0); Index: head/sys/geom/zero/g_zero.c =================================================================== --- head/sys/geom/zero/g_zero.c (revision 332386) +++ head/sys/geom/zero/g_zero.c (revision 332387) @@ -1,145 +1,146 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2005 Pawel Jakub Dawidek * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #define G_ZERO_CLASS_NAME "ZERO" static int g_zero_clear_sysctl(SYSCTL_HANDLER_ARGS); SYSCTL_DECL(_kern_geom); static SYSCTL_NODE(_kern_geom, OID_AUTO, zero, CTLFLAG_RW, 0, "GEOM_ZERO stuff"); static int g_zero_clear = 1; SYSCTL_PROC(_kern_geom_zero, OID_AUTO, clear, CTLTYPE_INT|CTLFLAG_RW, &g_zero_clear, 0, g_zero_clear_sysctl, "I", "Clear read data buffer"); static int g_zero_byte = 0; SYSCTL_INT(_kern_geom_zero, OID_AUTO, byte, CTLFLAG_RW, &g_zero_byte, 0, "Byte (octet) value to clear the buffers with"); static struct g_provider *gpp; static int g_zero_clear_sysctl(SYSCTL_HANDLER_ARGS) { int error; error = sysctl_handle_int(oidp, &g_zero_clear, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (gpp == NULL) return (ENXIO); if (g_zero_clear) gpp->flags &= ~G_PF_ACCEPT_UNMAPPED; else gpp->flags |= G_PF_ACCEPT_UNMAPPED; return (0); } static void g_zero_start(struct bio *bp) { int error = ENXIO; switch (bp->bio_cmd) { case BIO_READ: if (g_zero_clear && (bp->bio_flags & BIO_UNMAPPED) == 0) memset(bp->bio_data, g_zero_byte, bp->bio_length); /* FALLTHROUGH */ case BIO_DELETE: case BIO_WRITE: bp->bio_completed = bp->bio_length; error = 0; break; case BIO_GETATTR: default: error = EOPNOTSUPP; break; } g_io_deliver(bp, error); } static void g_zero_init(struct g_class *mp) { struct g_geom *gp; struct g_provider *pp; g_topology_assert(); gp = g_new_geomf(mp, "gzero"); gp->start = g_zero_start; gp->access = g_std_access; gpp = pp = g_new_providerf(gp, "%s", gp->name); pp->flags |= G_PF_DIRECT_SEND | G_PF_DIRECT_RECEIVE; if (!g_zero_clear) pp->flags |= G_PF_ACCEPT_UNMAPPED; pp->mediasize = 1152921504606846976LLU; pp->sectorsize = 512; g_error_provider(pp, 0); } static int g_zero_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused, struct g_geom *gp) { struct g_provider *pp; g_topology_assert(); if (gp == NULL) return (0); pp = LIST_FIRST(&gp->provider); if (pp == NULL) return (0); if (pp->acr > 0 || pp->acw > 0 || pp->ace > 0) return (EBUSY); gpp = NULL; g_wither_geom(gp, ENXIO); return (0); } static struct g_class g_zero_class = { .name = G_ZERO_CLASS_NAME, .version = G_VERSION, .init = g_zero_init, .destroy_geom = g_zero_destroy_geom }; DECLARE_GEOM_CLASS(g_zero_class, g_zero); +MODULE_VERSION(geom_zero, 0);