Index: head/sys/dev/cxgbe/cxgbei/icl_cxgbei.c =================================================================== --- head/sys/dev/cxgbe/cxgbei/icl_cxgbei.c (revision 331648) +++ head/sys/dev/cxgbe/cxgbei/icl_cxgbei.c (revision 331649) @@ -1,1096 +1,1096 @@ /*- * Copyright (c) 2012 The FreeBSD Foundation * Copyright (c) 2015 Chelsio Communications, Inc. * All rights reserved. * * This software was developed by Edward Tomasz Napierala under sponsorship * from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /* * cxgbei implementation of iSCSI Common Layer kobj(9) interface. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #ifdef TCP_OFFLOAD #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "common/common.h" #include "common/t4_tcb.h" #include "tom/t4_tom.h" #include "cxgbei.h" SYSCTL_NODE(_kern_icl, OID_AUTO, cxgbei, CTLFLAG_RD, 0, "Chelsio iSCSI offload"); static int coalesce = 1; SYSCTL_INT(_kern_icl_cxgbei, OID_AUTO, coalesce, CTLFLAG_RWTUN, &coalesce, 0, "Try to coalesce PDUs before sending"); static int partial_receive_len = 128 * 1024; SYSCTL_INT(_kern_icl_cxgbei, OID_AUTO, partial_receive_len, CTLFLAG_RWTUN, &partial_receive_len, 0, "Minimum read size for partially received " "data segment"); static int sendspace = 1048576; SYSCTL_INT(_kern_icl_cxgbei, OID_AUTO, sendspace, CTLFLAG_RWTUN, &sendspace, 0, "Default send socket buffer size"); static int recvspace = 1048576; SYSCTL_INT(_kern_icl_cxgbei, OID_AUTO, recvspace, CTLFLAG_RWTUN, &recvspace, 0, "Default receive socket buffer size"); static uma_zone_t prsv_zone; static volatile u_int icl_cxgbei_ncons; #define ICL_CONN_LOCK(X) mtx_lock(X->ic_lock) #define ICL_CONN_UNLOCK(X) mtx_unlock(X->ic_lock) #define ICL_CONN_LOCK_ASSERT(X) mtx_assert(X->ic_lock, MA_OWNED) #define ICL_CONN_LOCK_ASSERT_NOT(X) mtx_assert(X->ic_lock, MA_NOTOWNED) struct icl_pdu *icl_cxgbei_new_pdu(int); void icl_cxgbei_new_pdu_set_conn(struct icl_pdu *, struct icl_conn *); static icl_conn_new_pdu_t icl_cxgbei_conn_new_pdu; icl_conn_pdu_free_t icl_cxgbei_conn_pdu_free; static icl_conn_pdu_data_segment_length_t icl_cxgbei_conn_pdu_data_segment_length; static icl_conn_pdu_append_data_t icl_cxgbei_conn_pdu_append_data; static icl_conn_pdu_get_data_t icl_cxgbei_conn_pdu_get_data; static icl_conn_pdu_queue_t icl_cxgbei_conn_pdu_queue; static icl_conn_handoff_t icl_cxgbei_conn_handoff; static icl_conn_free_t icl_cxgbei_conn_free; static icl_conn_close_t icl_cxgbei_conn_close; static icl_conn_task_setup_t icl_cxgbei_conn_task_setup; static icl_conn_task_done_t icl_cxgbei_conn_task_done; static icl_conn_transfer_setup_t icl_cxgbei_conn_transfer_setup; static icl_conn_transfer_done_t icl_cxgbei_conn_transfer_done; static kobj_method_t icl_cxgbei_methods[] = { KOBJMETHOD(icl_conn_new_pdu, icl_cxgbei_conn_new_pdu), KOBJMETHOD(icl_conn_pdu_free, icl_cxgbei_conn_pdu_free), KOBJMETHOD(icl_conn_pdu_data_segment_length, icl_cxgbei_conn_pdu_data_segment_length), KOBJMETHOD(icl_conn_pdu_append_data, icl_cxgbei_conn_pdu_append_data), KOBJMETHOD(icl_conn_pdu_get_data, icl_cxgbei_conn_pdu_get_data), KOBJMETHOD(icl_conn_pdu_queue, icl_cxgbei_conn_pdu_queue), KOBJMETHOD(icl_conn_handoff, icl_cxgbei_conn_handoff), KOBJMETHOD(icl_conn_free, icl_cxgbei_conn_free), KOBJMETHOD(icl_conn_close, icl_cxgbei_conn_close), KOBJMETHOD(icl_conn_task_setup, icl_cxgbei_conn_task_setup), KOBJMETHOD(icl_conn_task_done, icl_cxgbei_conn_task_done), KOBJMETHOD(icl_conn_transfer_setup, icl_cxgbei_conn_transfer_setup), KOBJMETHOD(icl_conn_transfer_done, icl_cxgbei_conn_transfer_done), { 0, 0 } }; DEFINE_CLASS(icl_cxgbei, icl_cxgbei_methods, sizeof(struct icl_cxgbei_conn)); void icl_cxgbei_conn_pdu_free(struct icl_conn *ic, struct icl_pdu *ip) { #ifdef INVARIANTS struct icl_cxgbei_pdu *icp = ip_to_icp(ip); #endif MPASS(icp->icp_signature == CXGBEI_PDU_SIGNATURE); MPASS(ic == ip->ip_conn); MPASS(ip->ip_bhs_mbuf != NULL); m_freem(ip->ip_ahs_mbuf); m_freem(ip->ip_data_mbuf); m_freem(ip->ip_bhs_mbuf); /* storage for icl_cxgbei_pdu itself */ #ifdef DIAGNOSTIC if (__predict_true(ic != NULL)) refcount_release(&ic->ic_outstanding_pdus); #endif } struct icl_pdu * icl_cxgbei_new_pdu(int flags) { struct icl_cxgbei_pdu *icp; struct icl_pdu *ip; struct mbuf *m; uintptr_t a; m = m_gethdr(flags, MT_DATA); if (__predict_false(m == NULL)) return (NULL); a = roundup2(mtod(m, uintptr_t), _Alignof(struct icl_cxgbei_pdu)); icp = (struct icl_cxgbei_pdu *)a; bzero(icp, sizeof(*icp)); icp->icp_signature = CXGBEI_PDU_SIGNATURE; ip = &icp->ip; ip->ip_bhs_mbuf = m; a = roundup2((uintptr_t)(icp + 1), _Alignof(struct iscsi_bhs *)); ip->ip_bhs = (struct iscsi_bhs *)a; #ifdef INVARIANTS /* Everything must fit entirely in the mbuf. */ a = (uintptr_t)(ip->ip_bhs + 1); MPASS(a <= (uintptr_t)m + MSIZE); #endif bzero(ip->ip_bhs, sizeof(*ip->ip_bhs)); m->m_data = (void *)ip->ip_bhs; m->m_len = sizeof(struct iscsi_bhs); m->m_pkthdr.len = m->m_len; return (ip); } void icl_cxgbei_new_pdu_set_conn(struct icl_pdu *ip, struct icl_conn *ic) { ip->ip_conn = ic; #ifdef DIAGNOSTIC refcount_acquire(&ic->ic_outstanding_pdus); #endif } /* * Allocate icl_pdu with empty BHS to fill up by the caller. */ static struct icl_pdu * icl_cxgbei_conn_new_pdu(struct icl_conn *ic, int flags) { struct icl_pdu *ip; ip = icl_cxgbei_new_pdu(flags); if (__predict_false(ip == NULL)) return (NULL); icl_cxgbei_new_pdu_set_conn(ip, ic); return (ip); } static size_t icl_pdu_data_segment_length(const struct icl_pdu *request) { uint32_t len = 0; len += request->ip_bhs->bhs_data_segment_len[0]; len <<= 8; len += request->ip_bhs->bhs_data_segment_len[1]; len <<= 8; len += request->ip_bhs->bhs_data_segment_len[2]; return (len); } size_t icl_cxgbei_conn_pdu_data_segment_length(struct icl_conn *ic, const struct icl_pdu *request) { return (icl_pdu_data_segment_length(request)); } static struct mbuf * finalize_pdu(struct icl_cxgbei_conn *icc, struct icl_cxgbei_pdu *icp) { struct icl_pdu *ip = &icp->ip; uint8_t ulp_submode, padding; struct mbuf *m, *last; struct iscsi_bhs *bhs; /* * Fix up the data segment mbuf first. */ m = ip->ip_data_mbuf; ulp_submode = icc->ulp_submode; if (m) { last = m_last(m); /* * Round up the data segment to a 4B boundary. Pad with 0 if * necessary. There will definitely be room in the mbuf. */ padding = roundup2(ip->ip_data_len, 4) - ip->ip_data_len; if (padding) { bzero(mtod(last, uint8_t *) + last->m_len, padding); last->m_len += padding; } } else { MPASS(ip->ip_data_len == 0); ulp_submode &= ~ULP_CRC_DATA; padding = 0; } /* * Now the header mbuf that has the BHS. */ m = ip->ip_bhs_mbuf; MPASS(m->m_pkthdr.len == sizeof(struct iscsi_bhs)); MPASS(m->m_len == sizeof(struct iscsi_bhs)); bhs = ip->ip_bhs; bhs->bhs_data_segment_len[2] = ip->ip_data_len; bhs->bhs_data_segment_len[1] = ip->ip_data_len >> 8; bhs->bhs_data_segment_len[0] = ip->ip_data_len >> 16; /* "Convert" PDU to mbuf chain. Do not use icp/ip after this. */ m->m_pkthdr.len = sizeof(struct iscsi_bhs) + ip->ip_data_len + padding; m->m_next = ip->ip_data_mbuf; set_mbuf_ulp_submode(m, ulp_submode); #ifdef INVARIANTS bzero(icp, sizeof(*icp)); #endif #ifdef DIAGNOSTIC refcount_release(&icc->ic.ic_outstanding_pdus); #endif return (m); } int icl_cxgbei_conn_pdu_append_data(struct icl_conn *ic, struct icl_pdu *ip, const void *addr, size_t len, int flags) { struct mbuf *m; #ifdef INVARIANTS struct icl_cxgbei_pdu *icp = ip_to_icp(ip); #endif MPASS(icp->icp_signature == CXGBEI_PDU_SIGNATURE); MPASS(ic == ip->ip_conn); KASSERT(len > 0, ("%s: len is %jd", __func__, (intmax_t)len)); m = ip->ip_data_mbuf; if (m == NULL) { m = m_getjcl(M_NOWAIT, MT_DATA, 0, MJUM16BYTES); if (__predict_false(m == NULL)) return (ENOMEM); ip->ip_data_mbuf = m; } if (__predict_true(m_append(m, len, addr) != 0)) { ip->ip_data_len += len; MPASS(ip->ip_data_len <= ic->ic_max_data_segment_length); return (0); } else { if (flags & M_WAITOK) { CXGBE_UNIMPLEMENTED("fail safe append"); } ip->ip_data_len = m_length(m, NULL); return (1); } } void icl_cxgbei_conn_pdu_get_data(struct icl_conn *ic, struct icl_pdu *ip, size_t off, void *addr, size_t len) { struct icl_cxgbei_pdu *icp = ip_to_icp(ip); if (icp->icp_flags & ICPF_RX_DDP) return; /* data is DDP'ed, no need to copy */ m_copydata(ip->ip_data_mbuf, off, len, addr); } void icl_cxgbei_conn_pdu_queue(struct icl_conn *ic, struct icl_pdu *ip) { struct icl_cxgbei_conn *icc = ic_to_icc(ic); struct icl_cxgbei_pdu *icp = ip_to_icp(ip); struct socket *so = ic->ic_socket; struct toepcb *toep = icc->toep; struct inpcb *inp; struct mbuf *m; MPASS(ic == ip->ip_conn); MPASS(ip->ip_bhs_mbuf != NULL); /* The kernel doesn't generate PDUs with AHS. */ MPASS(ip->ip_ahs_mbuf == NULL && ip->ip_ahs_len == 0); ICL_CONN_LOCK_ASSERT(ic); /* NOTE: sowriteable without so_snd lock is a mostly harmless race. */ if (ic->ic_disconnecting || so == NULL || !sowriteable(so)) { icl_cxgbei_conn_pdu_free(ic, ip); return; } m = finalize_pdu(icc, icp); M_ASSERTPKTHDR(m); MPASS((m->m_pkthdr.len & 3) == 0); /* * Do not get inp from toep->inp as the toepcb might have detached * already. */ inp = sotoinpcb(so); INP_WLOCK(inp); if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) || __predict_false((toep->flags & TPF_ATTACHED) == 0)) m_freem(m); else { mbufq_enqueue(&toep->ulp_pduq, m); t4_push_pdus(icc->sc, toep, 0); } INP_WUNLOCK(inp); } static struct icl_conn * icl_cxgbei_new_conn(const char *name, struct mtx *lock) { struct icl_cxgbei_conn *icc; struct icl_conn *ic; refcount_acquire(&icl_cxgbei_ncons); icc = (struct icl_cxgbei_conn *)kobj_create(&icl_cxgbei_class, M_CXGBE, M_WAITOK | M_ZERO); icc->icc_signature = CXGBEI_CONN_SIGNATURE; STAILQ_INIT(&icc->rcvd_pdus); ic = &icc->ic; ic->ic_lock = lock; /* XXXNP: review. Most of these icl_conn fields aren't really used */ STAILQ_INIT(&ic->ic_to_send); cv_init(&ic->ic_send_cv, "icl_cxgbei_tx"); cv_init(&ic->ic_receive_cv, "icl_cxgbei_rx"); #ifdef DIAGNOSTIC refcount_init(&ic->ic_outstanding_pdus, 0); #endif /* This is a stop-gap value that will be corrected during handoff. */ ic->ic_max_data_segment_length = 16384; ic->ic_name = name; ic->ic_offload = "cxgbei"; ic->ic_unmapped = false; CTR2(KTR_CXGBE, "%s: icc %p", __func__, icc); return (ic); } void icl_cxgbei_conn_free(struct icl_conn *ic) { struct icl_cxgbei_conn *icc = ic_to_icc(ic); MPASS(icc->icc_signature == CXGBEI_CONN_SIGNATURE); CTR2(KTR_CXGBE, "%s: icc %p", __func__, icc); cv_destroy(&ic->ic_send_cv); cv_destroy(&ic->ic_receive_cv); kobj_delete((struct kobj *)icc, M_CXGBE); refcount_release(&icl_cxgbei_ncons); } static int icl_cxgbei_setsockopt(struct icl_conn *ic, struct socket *so, int sspace, int rspace) { struct sockopt opt; int error, one = 1, ss, rs; ss = max(sendspace, sspace); rs = max(recvspace, rspace); error = soreserve(so, ss, rs); if (error != 0) { icl_cxgbei_conn_close(ic); return (error); } SOCKBUF_LOCK(&so->so_snd); so->so_snd.sb_flags |= SB_AUTOSIZE; SOCKBUF_UNLOCK(&so->so_snd); SOCKBUF_LOCK(&so->so_rcv); so->so_rcv.sb_flags |= SB_AUTOSIZE; SOCKBUF_UNLOCK(&so->so_rcv); /* * Disable Nagle. */ bzero(&opt, sizeof(opt)); opt.sopt_dir = SOPT_SET; opt.sopt_level = IPPROTO_TCP; opt.sopt_name = TCP_NODELAY; opt.sopt_val = &one; opt.sopt_valsize = sizeof(one); error = sosetopt(so, &opt); if (error != 0) { icl_cxgbei_conn_close(ic); return (error); } return (0); } /* * Request/response structure used to find out the adapter offloading a socket. */ struct find_ofld_adapter_rr { struct socket *so; struct adapter *sc; /* result */ }; static void find_offload_adapter(struct adapter *sc, void *arg) { struct find_ofld_adapter_rr *fa = arg; struct socket *so = fa->so; struct tom_data *td = sc->tom_softc; struct tcpcb *tp; struct inpcb *inp; /* Non-TCP were filtered out earlier. */ MPASS(so->so_proto->pr_protocol == IPPROTO_TCP); if (fa->sc != NULL) return; /* Found already. */ if (td == NULL) return; /* TOE not enabled on this adapter. */ inp = sotoinpcb(so); INP_WLOCK(inp); if ((inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) == 0) { tp = intotcpcb(inp); if (tp->t_flags & TF_TOE && tp->tod == &td->tod) fa->sc = sc; /* Found. */ } INP_WUNLOCK(inp); } /* XXXNP: move this to t4_tom. */ static void send_iscsi_flowc_wr(struct adapter *sc, struct toepcb *toep, int maxlen) { struct wrqe *wr; struct fw_flowc_wr *flowc; const u_int nparams = 1; u_int flowclen; struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx]; flowclen = sizeof(*flowc) + nparams * sizeof(struct fw_flowc_mnemval); wr = alloc_wrqe(roundup2(flowclen, 16), toep->ofld_txq); if (wr == NULL) { /* XXX */ panic("%s: allocation failure.", __func__); } flowc = wrtod(wr); memset(flowc, 0, wr->wr_len); flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | V_FW_FLOWC_WR_NPARAMS(nparams)); flowc->flowid_len16 = htonl(V_FW_WR_LEN16(howmany(flowclen, 16)) | V_FW_WR_FLOWID(toep->tid)); flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_TXDATAPLEN_MAX; flowc->mnemval[0].val = htobe32(maxlen); txsd->tx_credits = howmany(flowclen, 16); txsd->plen = 0; KASSERT(toep->tx_credits >= txsd->tx_credits && toep->txsd_avail > 0, ("%s: not enough credits (%d)", __func__, toep->tx_credits)); toep->tx_credits -= txsd->tx_credits; if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) toep->txsd_pidx = 0; toep->txsd_avail--; t4_wrq_tx(sc, wr); } static void set_ulp_mode_iscsi(struct adapter *sc, struct toepcb *toep, int hcrc, int dcrc) { uint64_t val = ULP_MODE_ISCSI; if (hcrc) val |= ULP_CRC_HEADER << 4; if (dcrc) val |= ULP_CRC_DATA << 4; CTR4(KTR_CXGBE, "%s: tid %u, ULP_MODE_ISCSI, CRC hdr=%d data=%d", __func__, toep->tid, hcrc, dcrc); - t4_set_tcb_field(sc, toep->ctrlq, toep->tid, W_TCB_ULP_TYPE, + t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_ULP_TYPE, V_TCB_ULP_TYPE(M_TCB_ULP_TYPE) | V_TCB_ULP_RAW(M_TCB_ULP_RAW), val, - 0, 0, toep->ofld_rxq->iq.abs_id); + 0, 0); } /* * XXXNP: Who is responsible for cleaning up the socket if this returns with an * error? Review all error paths. * * XXXNP: What happens to the socket's fd reference if the operation is * successful, and how does that affect the socket's life cycle? */ int icl_cxgbei_conn_handoff(struct icl_conn *ic, int fd) { struct icl_cxgbei_conn *icc = ic_to_icc(ic); struct cxgbei_data *ci; struct find_ofld_adapter_rr fa; struct file *fp; struct socket *so; struct inpcb *inp; struct tcpcb *tp; struct toepcb *toep; cap_rights_t rights; int error; MPASS(icc->icc_signature == CXGBEI_CONN_SIGNATURE); ICL_CONN_LOCK_ASSERT_NOT(ic); /* * Steal the socket from userland. */ error = fget(curthread, fd, cap_rights_init(&rights, CAP_SOCK_CLIENT), &fp); if (error != 0) return (error); if (fp->f_type != DTYPE_SOCKET) { fdrop(fp, curthread); return (EINVAL); } so = fp->f_data; if (so->so_type != SOCK_STREAM || so->so_proto->pr_protocol != IPPROTO_TCP) { fdrop(fp, curthread); return (EINVAL); } ICL_CONN_LOCK(ic); if (ic->ic_socket != NULL) { ICL_CONN_UNLOCK(ic); fdrop(fp, curthread); return (EBUSY); } ic->ic_disconnecting = false; ic->ic_socket = so; fp->f_ops = &badfileops; fp->f_data = NULL; fdrop(fp, curthread); ICL_CONN_UNLOCK(ic); /* Find the adapter offloading this socket. */ fa.sc = NULL; fa.so = so; t4_iterate(find_offload_adapter, &fa); if (fa.sc == NULL) return (EINVAL); icc->sc = fa.sc; ci = icc->sc->iscsi_ulp_softc; inp = sotoinpcb(so); INP_WLOCK(inp); tp = intotcpcb(inp); if (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) error = EBUSY; else { /* * socket could not have been "unoffloaded" if here. */ MPASS(tp->t_flags & TF_TOE); MPASS(tp->tod != NULL); MPASS(tp->t_toe != NULL); toep = tp->t_toe; MPASS(toep->vi->pi->adapter == icc->sc); icc->toep = toep; icc->cwt = cxgbei_select_worker_thread(icc); /* * We maintain the _send_ DSL in this field just to have a * convenient way to assert that the kernel never sends * oversized PDUs. This field is otherwise unused in the driver * or the kernel. */ ic->ic_max_data_segment_length = ci->max_tx_pdu_len - ISCSI_BHS_SIZE; icc->ulp_submode = 0; if (ic->ic_header_crc32c) { icc->ulp_submode |= ULP_CRC_HEADER; ic->ic_max_data_segment_length -= ISCSI_HEADER_DIGEST_SIZE; } if (ic->ic_data_crc32c) { icc->ulp_submode |= ULP_CRC_DATA; ic->ic_max_data_segment_length -= ISCSI_DATA_DIGEST_SIZE; } so->so_options |= SO_NO_DDP; toep->ulp_mode = ULP_MODE_ISCSI; toep->ulpcb = icc; send_iscsi_flowc_wr(icc->sc, toep, ci->max_tx_pdu_len); set_ulp_mode_iscsi(icc->sc, toep, ic->ic_header_crc32c, ic->ic_data_crc32c); error = 0; } INP_WUNLOCK(inp); if (error == 0) { error = icl_cxgbei_setsockopt(ic, so, ci->max_tx_pdu_len, ci->max_rx_pdu_len); } return (error); } void icl_cxgbei_conn_close(struct icl_conn *ic) { struct icl_cxgbei_conn *icc = ic_to_icc(ic); struct icl_pdu *ip; struct socket *so; struct sockbuf *sb; struct inpcb *inp; struct toepcb *toep = icc->toep; MPASS(icc->icc_signature == CXGBEI_CONN_SIGNATURE); ICL_CONN_LOCK_ASSERT_NOT(ic); ICL_CONN_LOCK(ic); so = ic->ic_socket; if (ic->ic_disconnecting || so == NULL) { CTR4(KTR_CXGBE, "%s: icc %p (disconnecting = %d), so %p", __func__, icc, ic->ic_disconnecting, so); ICL_CONN_UNLOCK(ic); return; } ic->ic_disconnecting = true; /* These are unused in this driver right now. */ MPASS(STAILQ_EMPTY(&ic->ic_to_send)); MPASS(ic->ic_receive_pdu == NULL); #ifdef DIAGNOSTIC KASSERT(ic->ic_outstanding_pdus == 0, ("destroying session with %d outstanding PDUs", ic->ic_outstanding_pdus)); #endif ICL_CONN_UNLOCK(ic); CTR3(KTR_CXGBE, "%s: tid %d, icc %p", __func__, toep ? toep->tid : -1, icc); inp = sotoinpcb(so); sb = &so->so_rcv; INP_WLOCK(inp); if (toep != NULL) { /* NULL if connection was never offloaded. */ toep->ulpcb = NULL; mbufq_drain(&toep->ulp_pduq); SOCKBUF_LOCK(sb); if (icc->rx_flags & RXF_ACTIVE) { volatile u_int *p = &icc->rx_flags; SOCKBUF_UNLOCK(sb); INP_WUNLOCK(inp); while (*p & RXF_ACTIVE) pause("conclo", 1); INP_WLOCK(inp); SOCKBUF_LOCK(sb); } while (!STAILQ_EMPTY(&icc->rcvd_pdus)) { ip = STAILQ_FIRST(&icc->rcvd_pdus); STAILQ_REMOVE_HEAD(&icc->rcvd_pdus, ip_next); icl_cxgbei_conn_pdu_free(ic, ip); } SOCKBUF_UNLOCK(sb); } INP_WUNLOCK(inp); ICL_CONN_LOCK(ic); ic->ic_socket = NULL; ICL_CONN_UNLOCK(ic); /* * XXXNP: we should send RST instead of FIN when PDUs held in various * queues were purged instead of delivered reliably but soabort isn't * really general purpose and wouldn't do the right thing here. */ soclose(so); } int icl_cxgbei_conn_task_setup(struct icl_conn *ic, struct icl_pdu *ip, struct ccb_scsiio *csio, uint32_t *ittp, void **arg) { struct icl_cxgbei_conn *icc = ic_to_icc(ic); struct toepcb *toep = icc->toep; struct adapter *sc = icc->sc; struct cxgbei_data *ci = sc->iscsi_ulp_softc; struct ppod_region *pr = &ci->pr; struct ppod_reservation *prsv; uint32_t itt; int rc = 0; /* This is for the offload driver's state. Must not be set already. */ MPASS(arg != NULL); MPASS(*arg == NULL); if ((csio->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_IN || csio->dxfer_len < ci->ddp_threshold) { no_ddp: /* * No DDP for this I/O. Allocate an ITT (based on the one * passed in) that cannot be a valid hardware DDP tag in the * iSCSI region. */ itt = *ittp & M_PPOD_TAG; itt = V_PPOD_TAG(itt) | pr->pr_invalid_bit; *ittp = htobe32(itt); MPASS(*arg == NULL); /* State is maintained for DDP only. */ if (rc != 0) counter_u64_add(ci->ddp_setup_error, 1); return (0); } /* * Reserve resources for DDP, update the itt that should be used in the * PDU, and save DDP specific state for this I/O in *arg. */ prsv = uma_zalloc(prsv_zone, M_NOWAIT); if (prsv == NULL) { rc = ENOMEM; goto no_ddp; } /* XXX add support for all CAM_DATA_ types */ MPASS((csio->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_VADDR); rc = t4_alloc_page_pods_for_buf(pr, (vm_offset_t)csio->data_ptr, csio->dxfer_len, prsv); if (rc != 0) { uma_zfree(prsv_zone, prsv); goto no_ddp; } rc = t4_write_page_pods_for_buf(sc, toep->ofld_txq, toep->tid, prsv, (vm_offset_t)csio->data_ptr, csio->dxfer_len); if (rc != 0) { t4_free_page_pods(prsv); uma_zfree(prsv_zone, prsv); goto no_ddp; } *ittp = htobe32(prsv->prsv_tag); *arg = prsv; counter_u64_add(ci->ddp_setup_ok, 1); return (0); } void icl_cxgbei_conn_task_done(struct icl_conn *ic, void *arg) { if (arg != NULL) { struct ppod_reservation *prsv = arg; t4_free_page_pods(prsv); uma_zfree(prsv_zone, prsv); } } /* XXXNP: PDU should be passed in as parameter, like on the initiator. */ #define io_to_request_pdu(io) ((io)->io_hdr.ctl_private[CTL_PRIV_FRONTEND].ptr) #define io_to_ppod_reservation(io) ((io)->io_hdr.ctl_private[CTL_PRIV_FRONTEND2].ptr) int icl_cxgbei_conn_transfer_setup(struct icl_conn *ic, union ctl_io *io, uint32_t *tttp, void **arg) { struct icl_cxgbei_conn *icc = ic_to_icc(ic); struct toepcb *toep = icc->toep; struct ctl_scsiio *ctsio = &io->scsiio; struct adapter *sc = icc->sc; struct cxgbei_data *ci = sc->iscsi_ulp_softc; struct ppod_region *pr = &ci->pr; struct ppod_reservation *prsv; uint32_t ttt; int xferlen, rc = 0, alias; /* This is for the offload driver's state. Must not be set already. */ MPASS(arg != NULL); MPASS(*arg == NULL); if (ctsio->ext_data_filled == 0) { int first_burst; struct icl_pdu *ip = io_to_request_pdu(io); vm_offset_t buf; #ifdef INVARIANTS struct icl_cxgbei_pdu *icp = ip_to_icp(ip); MPASS(icp->icp_signature == CXGBEI_PDU_SIGNATURE); MPASS(ic == ip->ip_conn); MPASS(ip->ip_bhs_mbuf != NULL); #endif first_burst = icl_pdu_data_segment_length(ip); /* * Note that ICL calls conn_transfer_setup even if the first * burst had everything and there's nothing left to transfer. */ MPASS(ctsio->kern_data_len >= first_burst); xferlen = ctsio->kern_data_len; if (xferlen - first_burst < ci->ddp_threshold) { no_ddp: /* * No DDP for this transfer. Allocate a TTT (based on * the one passed in) that cannot be a valid hardware * DDP tag in the iSCSI region. */ ttt = *tttp & M_PPOD_TAG; ttt = V_PPOD_TAG(ttt) | pr->pr_invalid_bit; *tttp = htobe32(ttt); MPASS(io_to_ppod_reservation(io) == NULL); if (rc != 0) counter_u64_add(ci->ddp_setup_error, 1); return (0); } if (ctsio->kern_sg_entries == 0) buf = (vm_offset_t)ctsio->kern_data_ptr; else if (ctsio->kern_sg_entries == 1) { struct ctl_sg_entry *sgl = (void *)ctsio->kern_data_ptr; MPASS(sgl->len == xferlen); buf = (vm_offset_t)sgl->addr; } else { rc = EAGAIN; /* XXX implement */ goto no_ddp; } /* * Reserve resources for DDP, update the ttt that should be used * in the PDU, and save DDP specific state for this I/O. */ MPASS(io_to_ppod_reservation(io) == NULL); prsv = uma_zalloc(prsv_zone, M_NOWAIT); if (prsv == NULL) { rc = ENOMEM; goto no_ddp; } rc = t4_alloc_page_pods_for_buf(pr, buf, xferlen, prsv); if (rc != 0) { uma_zfree(prsv_zone, prsv); goto no_ddp; } rc = t4_write_page_pods_for_buf(sc, toep->ofld_txq, toep->tid, prsv, buf, xferlen); if (rc != 0) { t4_free_page_pods(prsv); uma_zfree(prsv_zone, prsv); goto no_ddp; } *tttp = htobe32(prsv->prsv_tag); io_to_ppod_reservation(io) = prsv; *arg = ctsio; counter_u64_add(ci->ddp_setup_ok, 1); return (0); } /* * In the middle of an I/O. A non-NULL page pod reservation indicates * that a DDP buffer is being used for the I/O. */ prsv = io_to_ppod_reservation(ctsio); if (prsv == NULL) goto no_ddp; alias = (prsv->prsv_tag & pr->pr_alias_mask) >> pr->pr_alias_shift; alias++; prsv->prsv_tag &= ~pr->pr_alias_mask; prsv->prsv_tag |= alias << pr->pr_alias_shift & pr->pr_alias_mask; *tttp = htobe32(prsv->prsv_tag); *arg = ctsio; return (0); } void icl_cxgbei_conn_transfer_done(struct icl_conn *ic, void *arg) { struct ctl_scsiio *ctsio = arg; if (ctsio != NULL && ctsio->kern_data_len == ctsio->ext_data_filled) { struct ppod_reservation *prsv; prsv = io_to_ppod_reservation(ctsio); MPASS(prsv != NULL); t4_free_page_pods(prsv); uma_zfree(prsv_zone, prsv); } } static void cxgbei_limits(struct adapter *sc, void *arg) { struct icl_drv_limits *idl = arg; struct cxgbei_data *ci; int max_dsl; if (begin_synchronized_op(sc, NULL, HOLD_LOCK, "t4lims") != 0) return; if (uld_active(sc, ULD_ISCSI)) { ci = sc->iscsi_ulp_softc; MPASS(ci != NULL); /* * AHS is not supported by the kernel so we'll not account for * it either in our PDU len -> data segment len conversions. */ max_dsl = ci->max_rx_pdu_len - ISCSI_BHS_SIZE - ISCSI_HEADER_DIGEST_SIZE - ISCSI_DATA_DIGEST_SIZE; if (idl->idl_max_recv_data_segment_length > max_dsl) idl->idl_max_recv_data_segment_length = max_dsl; max_dsl = ci->max_tx_pdu_len - ISCSI_BHS_SIZE - ISCSI_HEADER_DIGEST_SIZE - ISCSI_DATA_DIGEST_SIZE; if (idl->idl_max_send_data_segment_length > max_dsl) idl->idl_max_send_data_segment_length = max_dsl; } end_synchronized_op(sc, LOCK_HELD); } static int icl_cxgbei_limits(struct icl_drv_limits *idl) { /* Maximum allowed by the RFC. cxgbei_limits will clip them. */ idl->idl_max_recv_data_segment_length = (1 << 24) - 1; idl->idl_max_send_data_segment_length = (1 << 24) - 1; /* These are somewhat arbitrary. */ idl->idl_max_burst_length = 2 * 1024 * 1024; idl->idl_first_burst_length = 8192; t4_iterate(cxgbei_limits, idl); return (0); } int icl_cxgbei_mod_load(void) { int rc; /* * Space to track pagepod reservations. */ prsv_zone = uma_zcreate("Pagepod reservations", sizeof(struct ppod_reservation), NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0); refcount_init(&icl_cxgbei_ncons, 0); rc = icl_register("cxgbei", false, -100, icl_cxgbei_limits, icl_cxgbei_new_conn); return (rc); } int icl_cxgbei_mod_unload(void) { if (icl_cxgbei_ncons != 0) return (EBUSY); icl_unregister("cxgbei", false); uma_zdestroy(prsv_zone); return (0); } #endif Index: head/sys/dev/cxgbe/tom/t4_cpl_io.c =================================================================== --- head/sys/dev/cxgbe/tom/t4_cpl_io.c (revision 331648) +++ head/sys/dev/cxgbe/tom/t4_cpl_io.c (revision 331649) @@ -1,2383 +1,2396 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2012, 2015 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ratelimit.h" #ifdef TCP_OFFLOAD #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TCPSTATES #include #include #include #include #include #include #include #include #include #include #include "common/common.h" #include "common/t4_msg.h" #include "common/t4_regs.h" #include "common/t4_tcb.h" #include "tom/t4_tom_l2t.h" #include "tom/t4_tom.h" static void t4_aiotx_cancel(struct kaiocb *job); static void t4_aiotx_queue_toep(struct toepcb *toep); static size_t aiotx_mbuf_pgoff(struct mbuf *m) { struct aiotx_buffer *ab; MPASS(IS_AIOTX_MBUF(m)); ab = m->m_ext.ext_arg1; return ((ab->ps.offset + (uintptr_t)m->m_ext.ext_arg2) % PAGE_SIZE); } static vm_page_t * aiotx_mbuf_pages(struct mbuf *m) { struct aiotx_buffer *ab; int npages; MPASS(IS_AIOTX_MBUF(m)); ab = m->m_ext.ext_arg1; npages = (ab->ps.offset + (uintptr_t)m->m_ext.ext_arg2) / PAGE_SIZE; return (ab->ps.pages + npages); } void send_flowc_wr(struct toepcb *toep, struct flowc_tx_params *ftxp) { struct wrqe *wr; struct fw_flowc_wr *flowc; unsigned int nparams, flowclen, paramidx; struct vi_info *vi = toep->vi; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; unsigned int pfvf = G_FW_VIID_PFN(vi->viid) << S_FW_VIID_PFN; struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx]; KASSERT(!(toep->flags & TPF_FLOWC_WR_SENT), ("%s: flowc for tid %u sent already", __func__, toep->tid)); if (ftxp != NULL) nparams = 8; else nparams = 6; if (toep->ulp_mode == ULP_MODE_TLS) nparams++; if (toep->tls.fcplenmax != 0) nparams++; flowclen = sizeof(*flowc) + nparams * sizeof(struct fw_flowc_mnemval); wr = alloc_wrqe(roundup2(flowclen, 16), toep->ofld_txq); if (wr == NULL) { /* XXX */ panic("%s: allocation failure.", __func__); } flowc = wrtod(wr); memset(flowc, 0, wr->wr_len); flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | V_FW_FLOWC_WR_NPARAMS(nparams)); flowc->flowid_len16 = htonl(V_FW_WR_LEN16(howmany(flowclen, 16)) | V_FW_WR_FLOWID(toep->tid)); #define FLOWC_PARAM(__m, __v) \ do { \ flowc->mnemval[paramidx].mnemonic = FW_FLOWC_MNEM_##__m; \ flowc->mnemval[paramidx].val = htobe32(__v); \ paramidx++; \ } while (0) paramidx = 0; FLOWC_PARAM(PFNVFN, pfvf); FLOWC_PARAM(CH, pi->tx_chan); FLOWC_PARAM(PORT, pi->tx_chan); FLOWC_PARAM(IQID, toep->ofld_rxq->iq.abs_id); if (ftxp) { uint32_t sndbuf = min(ftxp->snd_space, sc->tt.sndbuf); FLOWC_PARAM(SNDNXT, ftxp->snd_nxt); FLOWC_PARAM(RCVNXT, ftxp->rcv_nxt); FLOWC_PARAM(SNDBUF, sndbuf); FLOWC_PARAM(MSS, ftxp->mss); CTR6(KTR_CXGBE, "%s: tid %u, mss %u, sndbuf %u, snd_nxt 0x%x, rcv_nxt 0x%x", __func__, toep->tid, ftxp->mss, sndbuf, ftxp->snd_nxt, ftxp->rcv_nxt); } else { FLOWC_PARAM(SNDBUF, 512); FLOWC_PARAM(MSS, 512); CTR2(KTR_CXGBE, "%s: tid %u", __func__, toep->tid); } if (toep->ulp_mode == ULP_MODE_TLS) FLOWC_PARAM(ULP_MODE, toep->ulp_mode); if (toep->tls.fcplenmax != 0) FLOWC_PARAM(TXDATAPLEN_MAX, toep->tls.fcplenmax); #undef FLOWC_PARAM KASSERT(paramidx == nparams, ("nparams mismatch")); txsd->tx_credits = howmany(flowclen, 16); txsd->plen = 0; KASSERT(toep->tx_credits >= txsd->tx_credits && toep->txsd_avail > 0, ("%s: not enough credits (%d)", __func__, toep->tx_credits)); toep->tx_credits -= txsd->tx_credits; if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) toep->txsd_pidx = 0; toep->txsd_avail--; toep->flags |= TPF_FLOWC_WR_SENT; t4_wrq_tx(sc, wr); } #ifdef RATELIMIT /* * Input is Bytes/second (so_max_pacing-rate), chip counts in Kilobits/second. */ static int update_tx_rate_limit(struct adapter *sc, struct toepcb *toep, u_int Bps) { int tc_idx, rc; const u_int kbps = (u_int) (uint64_t)Bps * 8ULL / 1000; const int port_id = toep->vi->pi->port_id; CTR3(KTR_CXGBE, "%s: tid %u, rate %uKbps", __func__, toep->tid, kbps); if (kbps == 0) { /* unbind */ tc_idx = -1; } else { rc = t4_reserve_cl_rl_kbps(sc, port_id, kbps, &tc_idx); if (rc != 0) return (rc); MPASS(tc_idx >= 0 && tc_idx < sc->chip_params->nsched_cls); } if (toep->tc_idx != tc_idx) { struct wrqe *wr; struct fw_flowc_wr *flowc; int nparams = 1, flowclen, flowclen16; struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx]; flowclen = sizeof(*flowc) + nparams * sizeof(struct fw_flowc_mnemval); flowclen16 = howmany(flowclen, 16); if (toep->tx_credits < flowclen16 || toep->txsd_avail == 0 || (wr = alloc_wrqe(roundup2(flowclen, 16), toep->ofld_txq)) == NULL) { if (tc_idx >= 0) t4_release_cl_rl_kbps(sc, port_id, tc_idx); return (ENOMEM); } flowc = wrtod(wr); memset(flowc, 0, wr->wr_len); flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | V_FW_FLOWC_WR_NPARAMS(nparams)); flowc->flowid_len16 = htonl(V_FW_WR_LEN16(flowclen16) | V_FW_WR_FLOWID(toep->tid)); flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; if (tc_idx == -1) flowc->mnemval[0].val = htobe32(0xff); else flowc->mnemval[0].val = htobe32(tc_idx); txsd->tx_credits = flowclen16; txsd->plen = 0; toep->tx_credits -= txsd->tx_credits; if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) toep->txsd_pidx = 0; toep->txsd_avail--; t4_wrq_tx(sc, wr); } if (toep->tc_idx >= 0) t4_release_cl_rl_kbps(sc, port_id, toep->tc_idx); toep->tc_idx = tc_idx; return (0); } #endif void send_reset(struct adapter *sc, struct toepcb *toep, uint32_t snd_nxt) { struct wrqe *wr; struct cpl_abort_req *req; int tid = toep->tid; struct inpcb *inp = toep->inp; struct tcpcb *tp = intotcpcb(inp); /* don't use if INP_DROPPED */ INP_WLOCK_ASSERT(inp); CTR6(KTR_CXGBE, "%s: tid %d (%s), toep_flags 0x%x, inp_flags 0x%x%s", __func__, toep->tid, inp->inp_flags & INP_DROPPED ? "inp dropped" : tcpstates[tp->t_state], toep->flags, inp->inp_flags, toep->flags & TPF_ABORT_SHUTDOWN ? " (abort already in progress)" : ""); if (toep->flags & TPF_ABORT_SHUTDOWN) return; /* abort already in progress */ toep->flags |= TPF_ABORT_SHUTDOWN; KASSERT(toep->flags & TPF_FLOWC_WR_SENT, ("%s: flowc_wr not sent for tid %d.", __func__, tid)); wr = alloc_wrqe(sizeof(*req), toep->ofld_txq); if (wr == NULL) { /* XXX */ panic("%s: allocation failure.", __func__); } req = wrtod(wr); INIT_TP_WR_MIT_CPL(req, CPL_ABORT_REQ, tid); if (inp->inp_flags & INP_DROPPED) req->rsvd0 = htobe32(snd_nxt); else req->rsvd0 = htobe32(tp->snd_nxt); req->rsvd1 = !(toep->flags & TPF_TX_DATA_SENT); req->cmd = CPL_ABORT_SEND_RST; /* * XXX: What's the correct way to tell that the inp hasn't been detached * from its socket? Should I even be flushing the snd buffer here? */ if ((inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) == 0) { struct socket *so = inp->inp_socket; if (so != NULL) /* because I'm not sure. See comment above */ sbflush(&so->so_snd); } t4_l2t_send(sc, wr, toep->l2te); } /* * Called when a connection is established to translate the TCP options * reported by HW to FreeBSD's native format. */ static void assign_rxopt(struct tcpcb *tp, unsigned int opt) { struct toepcb *toep = tp->t_toe; struct inpcb *inp = tp->t_inpcb; struct adapter *sc = td_adapter(toep->td); int n; INP_LOCK_ASSERT(inp); if (inp->inp_inc.inc_flags & INC_ISIPV6) n = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); else n = sizeof(struct ip) + sizeof(struct tcphdr); if (V_tcp_do_rfc1323) n += TCPOLEN_TSTAMP_APPA; tp->t_maxseg = sc->params.mtus[G_TCPOPT_MSS(opt)] - n; CTR4(KTR_CXGBE, "%s: tid %d, mtu_idx %u (%u)", __func__, toep->tid, G_TCPOPT_MSS(opt), sc->params.mtus[G_TCPOPT_MSS(opt)]); if (G_TCPOPT_TSTAMP(opt)) { tp->t_flags |= TF_RCVD_TSTMP; /* timestamps ok */ tp->ts_recent = 0; /* hmmm */ tp->ts_recent_age = tcp_ts_getticks(); } if (G_TCPOPT_SACK(opt)) tp->t_flags |= TF_SACK_PERMIT; /* should already be set */ else tp->t_flags &= ~TF_SACK_PERMIT; /* sack disallowed by peer */ if (G_TCPOPT_WSCALE_OK(opt)) tp->t_flags |= TF_RCVD_SCALE; /* Doing window scaling? */ if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == (TF_RCVD_SCALE | TF_REQ_SCALE)) { tp->rcv_scale = tp->request_r_scale; tp->snd_scale = G_TCPOPT_SND_WSCALE(opt); } } /* * Completes some final bits of initialization for just established connections * and changes their state to TCPS_ESTABLISHED. * * The ISNs are from after the exchange of SYNs. i.e., the true ISN + 1. */ void make_established(struct toepcb *toep, uint32_t snd_isn, uint32_t rcv_isn, uint16_t opt) { struct inpcb *inp = toep->inp; struct socket *so = inp->inp_socket; struct tcpcb *tp = intotcpcb(inp); long bufsize; uint32_t iss = be32toh(snd_isn) - 1; /* true ISS */ uint32_t irs = be32toh(rcv_isn) - 1; /* true IRS */ uint16_t tcpopt = be16toh(opt); struct flowc_tx_params ftxp; INP_WLOCK_ASSERT(inp); KASSERT(tp->t_state == TCPS_SYN_SENT || tp->t_state == TCPS_SYN_RECEIVED, ("%s: TCP state %s", __func__, tcpstates[tp->t_state])); CTR6(KTR_CXGBE, "%s: tid %d, so %p, inp %p, tp %p, toep %p", __func__, toep->tid, so, inp, tp, toep); tp->t_state = TCPS_ESTABLISHED; tp->t_starttime = ticks; TCPSTAT_INC(tcps_connects); tp->irs = irs; tcp_rcvseqinit(tp); tp->rcv_wnd = toep->rx_credits << 10; tp->rcv_adv += tp->rcv_wnd; tp->last_ack_sent = tp->rcv_nxt; /* * If we were unable to send all rx credits via opt0, save the remainder * in rx_credits so that they can be handed over with the next credit * update. */ SOCKBUF_LOCK(&so->so_rcv); bufsize = select_rcv_wnd(so); SOCKBUF_UNLOCK(&so->so_rcv); toep->rx_credits = bufsize - tp->rcv_wnd; tp->iss = iss; tcp_sendseqinit(tp); tp->snd_una = iss + 1; tp->snd_nxt = iss + 1; tp->snd_max = iss + 1; assign_rxopt(tp, tcpopt); SOCKBUF_LOCK(&so->so_snd); if (so->so_snd.sb_flags & SB_AUTOSIZE && V_tcp_do_autosndbuf) bufsize = V_tcp_autosndbuf_max; else bufsize = sbspace(&so->so_snd); SOCKBUF_UNLOCK(&so->so_snd); ftxp.snd_nxt = tp->snd_nxt; ftxp.rcv_nxt = tp->rcv_nxt; ftxp.snd_space = bufsize; ftxp.mss = tp->t_maxseg; send_flowc_wr(toep, &ftxp); soisconnected(so); } int send_rx_credits(struct adapter *sc, struct toepcb *toep, int credits) { struct wrqe *wr; struct cpl_rx_data_ack *req; uint32_t dack = F_RX_DACK_CHANGE | V_RX_DACK_MODE(1); KASSERT(credits >= 0, ("%s: %d credits", __func__, credits)); wr = alloc_wrqe(sizeof(*req), toep->ctrlq); if (wr == NULL) return (0); req = wrtod(wr); INIT_TP_WR_MIT_CPL(req, CPL_RX_DATA_ACK, toep->tid); req->credit_dack = htobe32(dack | V_RX_CREDITS(credits)); t4_wrq_tx(sc, wr); return (credits); } void send_rx_modulate(struct adapter *sc, struct toepcb *toep) { struct wrqe *wr; struct cpl_rx_data_ack *req; wr = alloc_wrqe(sizeof(*req), toep->ctrlq); if (wr == NULL) return; req = wrtod(wr); INIT_TP_WR_MIT_CPL(req, CPL_RX_DATA_ACK, toep->tid); req->credit_dack = htobe32(F_RX_MODULATE_RX); t4_wrq_tx(sc, wr); } void t4_rcvd_locked(struct toedev *tod, struct tcpcb *tp) { struct adapter *sc = tod->tod_softc; struct inpcb *inp = tp->t_inpcb; struct socket *so = inp->inp_socket; struct sockbuf *sb = &so->so_rcv; struct toepcb *toep = tp->t_toe; int credits; INP_WLOCK_ASSERT(inp); SOCKBUF_LOCK_ASSERT(sb); KASSERT(toep->sb_cc >= sbused(sb), ("%s: sb %p has more data (%d) than last time (%d).", __func__, sb, sbused(sb), toep->sb_cc)); credits = toep->sb_cc - sbused(sb); toep->sb_cc = sbused(sb); if (toep->ulp_mode == ULP_MODE_TLS) { if (toep->tls.rcv_over >= credits) { toep->tls.rcv_over -= credits; credits = 0; } else { credits -= toep->tls.rcv_over; toep->tls.rcv_over = 0; } } toep->rx_credits += credits; if (toep->rx_credits > 0 && (tp->rcv_wnd <= 32 * 1024 || toep->rx_credits >= 64 * 1024 || (toep->rx_credits >= 16 * 1024 && tp->rcv_wnd <= 128 * 1024) || toep->sb_cc + tp->rcv_wnd < sb->sb_lowat)) { credits = send_rx_credits(sc, toep, toep->rx_credits); toep->rx_credits -= credits; tp->rcv_wnd += credits; tp->rcv_adv += credits; } else if (toep->flags & TPF_FORCE_CREDITS) send_rx_modulate(sc, toep); } void t4_rcvd(struct toedev *tod, struct tcpcb *tp) { struct inpcb *inp = tp->t_inpcb; struct socket *so = inp->inp_socket; struct sockbuf *sb = &so->so_rcv; SOCKBUF_LOCK(sb); t4_rcvd_locked(tod, tp); SOCKBUF_UNLOCK(sb); } /* * Close a connection by sending a CPL_CLOSE_CON_REQ message. */ int t4_close_conn(struct adapter *sc, struct toepcb *toep) { struct wrqe *wr; struct cpl_close_con_req *req; unsigned int tid = toep->tid; CTR3(KTR_CXGBE, "%s: tid %u%s", __func__, toep->tid, toep->flags & TPF_FIN_SENT ? ", IGNORED" : ""); if (toep->flags & TPF_FIN_SENT) return (0); KASSERT(toep->flags & TPF_FLOWC_WR_SENT, ("%s: flowc_wr not sent for tid %u.", __func__, tid)); wr = alloc_wrqe(sizeof(*req), toep->ofld_txq); if (wr == NULL) { /* XXX */ panic("%s: allocation failure.", __func__); } req = wrtod(wr); req->wr.wr_hi = htonl(V_FW_WR_OP(FW_TP_WR) | V_FW_WR_IMMDLEN(sizeof(*req) - sizeof(req->wr))); req->wr.wr_mid = htonl(V_FW_WR_LEN16(howmany(sizeof(*req), 16)) | V_FW_WR_FLOWID(tid)); req->wr.wr_lo = cpu_to_be64(0); OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, tid)); req->rsvd = 0; toep->flags |= TPF_FIN_SENT; toep->flags &= ~TPF_SEND_FIN; t4_l2t_send(sc, wr, toep->l2te); return (0); } #define MAX_OFLD_TX_CREDITS (SGE_MAX_WR_LEN / 16) #define MIN_OFLD_TX_CREDITS (howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16)) /* Maximum amount of immediate data we could stuff in a WR */ static inline int max_imm_payload(int tx_credits) { const int n = 2; /* Use only up to 2 desc for imm. data WR */ KASSERT(tx_credits >= 0 && tx_credits <= MAX_OFLD_TX_CREDITS, ("%s: %d credits", __func__, tx_credits)); if (tx_credits < MIN_OFLD_TX_CREDITS) return (0); if (tx_credits >= (n * EQ_ESIZE) / 16) return ((n * EQ_ESIZE) - sizeof(struct fw_ofld_tx_data_wr)); else return (tx_credits * 16 - sizeof(struct fw_ofld_tx_data_wr)); } /* Maximum number of SGL entries we could stuff in a WR */ static inline int max_dsgl_nsegs(int tx_credits) { int nseg = 1; /* ulptx_sgl has room for 1, rest ulp_tx_sge_pair */ int sge_pair_credits = tx_credits - MIN_OFLD_TX_CREDITS; KASSERT(tx_credits >= 0 && tx_credits <= MAX_OFLD_TX_CREDITS, ("%s: %d credits", __func__, tx_credits)); if (tx_credits < MIN_OFLD_TX_CREDITS) return (0); nseg += 2 * (sge_pair_credits * 16 / 24); if ((sge_pair_credits * 16) % 24 == 16) nseg++; return (nseg); } static inline void write_tx_wr(void *dst, struct toepcb *toep, unsigned int immdlen, unsigned int plen, uint8_t credits, int shove, int ulp_submode, int txalign) { struct fw_ofld_tx_data_wr *txwr = dst; txwr->op_to_immdlen = htobe32(V_WR_OP(FW_OFLD_TX_DATA_WR) | V_FW_WR_IMMDLEN(immdlen)); txwr->flowid_len16 = htobe32(V_FW_WR_FLOWID(toep->tid) | V_FW_WR_LEN16(credits)); txwr->lsodisable_to_flags = htobe32(V_TX_ULP_MODE(toep->ulp_mode) | V_TX_ULP_SUBMODE(ulp_submode) | V_TX_URG(0) | V_TX_SHOVE(shove)); txwr->plen = htobe32(plen); if (txalign > 0) { struct tcpcb *tp = intotcpcb(toep->inp); if (plen < 2 * tp->t_maxseg || is_10G_port(toep->vi->pi)) txwr->lsodisable_to_flags |= htobe32(F_FW_OFLD_TX_DATA_WR_LSODISABLE); else txwr->lsodisable_to_flags |= htobe32(F_FW_OFLD_TX_DATA_WR_ALIGNPLD | (tp->t_flags & TF_NODELAY ? 0 : F_FW_OFLD_TX_DATA_WR_ALIGNPLDSHOVE)); } } /* * Generate a DSGL from a starting mbuf. The total number of segments and the * maximum segments in any one mbuf are provided. */ static void write_tx_sgl(void *dst, struct mbuf *start, struct mbuf *stop, int nsegs, int n) { struct mbuf *m; struct ulptx_sgl *usgl = dst; int i, j, rc; struct sglist sg; struct sglist_seg segs[n]; KASSERT(nsegs > 0, ("%s: nsegs 0", __func__)); sglist_init(&sg, n, segs); usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | V_ULPTX_NSGE(nsegs)); i = -1; for (m = start; m != stop; m = m->m_next) { if (IS_AIOTX_MBUF(m)) rc = sglist_append_vmpages(&sg, aiotx_mbuf_pages(m), aiotx_mbuf_pgoff(m), m->m_len); else rc = sglist_append(&sg, mtod(m, void *), m->m_len); if (__predict_false(rc != 0)) panic("%s: sglist_append %d", __func__, rc); for (j = 0; j < sg.sg_nseg; i++, j++) { if (i < 0) { usgl->len0 = htobe32(segs[j].ss_len); usgl->addr0 = htobe64(segs[j].ss_paddr); } else { usgl->sge[i / 2].len[i & 1] = htobe32(segs[j].ss_len); usgl->sge[i / 2].addr[i & 1] = htobe64(segs[j].ss_paddr); } #ifdef INVARIANTS nsegs--; #endif } sglist_reset(&sg); } if (i & 1) usgl->sge[i / 2].len[1] = htobe32(0); KASSERT(nsegs == 0, ("%s: nsegs %d, start %p, stop %p", __func__, nsegs, start, stop)); } /* * Max number of SGL entries an offload tx work request can have. This is 41 * (1 + 40) for a full 512B work request. * fw_ofld_tx_data_wr(16B) + ulptx_sgl(16B, 1) + ulptx_sge_pair(480B, 40) */ #define OFLD_SGL_LEN (41) /* * Send data and/or a FIN to the peer. * * The socket's so_snd buffer consists of a stream of data starting with sb_mb * and linked together with m_next. sb_sndptr, if set, is the last mbuf that * was transmitted. * * drop indicates the number of bytes that should be dropped from the head of * the send buffer. It is an optimization that lets do_fw4_ack avoid creating * contention on the send buffer lock (before this change it used to do * sowwakeup and then t4_push_frames right after that when recovering from tx * stalls). When drop is set this function MUST drop the bytes and wake up any * writers. */ void t4_push_frames(struct adapter *sc, struct toepcb *toep, int drop) { struct mbuf *sndptr, *m, *sb_sndptr; struct fw_ofld_tx_data_wr *txwr; struct wrqe *wr; u_int plen, nsegs, credits, max_imm, max_nsegs, max_nsegs_1mbuf; struct inpcb *inp = toep->inp; struct tcpcb *tp = intotcpcb(inp); struct socket *so = inp->inp_socket; struct sockbuf *sb = &so->so_snd; int tx_credits, shove, compl, sowwakeup; struct ofld_tx_sdesc *txsd; bool aiotx_mbuf_seen; INP_WLOCK_ASSERT(inp); KASSERT(toep->flags & TPF_FLOWC_WR_SENT, ("%s: flowc_wr not sent for tid %u.", __func__, toep->tid)); KASSERT(toep->ulp_mode == ULP_MODE_NONE || toep->ulp_mode == ULP_MODE_TCPDDP || toep->ulp_mode == ULP_MODE_TLS || toep->ulp_mode == ULP_MODE_RDMA, ("%s: ulp_mode %u for toep %p", __func__, toep->ulp_mode, toep)); #ifdef VERBOSE_TRACES CTR4(KTR_CXGBE, "%s: tid %d toep flags %#x tp flags %#x drop %d", __func__, toep->tid, toep->flags, tp->t_flags); #endif if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN)) return; #ifdef RATELIMIT if (__predict_false(inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) && (update_tx_rate_limit(sc, toep, so->so_max_pacing_rate) == 0)) { inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; } #endif /* * This function doesn't resume by itself. Someone else must clear the * flag and call this function. */ if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) { KASSERT(drop == 0, ("%s: drop (%d) != 0 but tx is suspended", __func__, drop)); return; } txsd = &toep->txsd[toep->txsd_pidx]; do { tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS); max_imm = max_imm_payload(tx_credits); max_nsegs = max_dsgl_nsegs(tx_credits); SOCKBUF_LOCK(sb); sowwakeup = drop; if (drop) { sbdrop_locked(sb, drop); drop = 0; } sb_sndptr = sb->sb_sndptr; sndptr = sb_sndptr ? sb_sndptr->m_next : sb->sb_mb; plen = 0; nsegs = 0; max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */ aiotx_mbuf_seen = false; for (m = sndptr; m != NULL; m = m->m_next) { int n; if (IS_AIOTX_MBUF(m)) n = sglist_count_vmpages(aiotx_mbuf_pages(m), aiotx_mbuf_pgoff(m), m->m_len); else n = sglist_count(mtod(m, void *), m->m_len); nsegs += n; plen += m->m_len; /* This mbuf sent us _over_ the nsegs limit, back out */ if (plen > max_imm && nsegs > max_nsegs) { nsegs -= n; plen -= m->m_len; if (plen == 0) { /* Too few credits */ toep->flags |= TPF_TX_SUSPENDED; if (sowwakeup) { if (!TAILQ_EMPTY( &toep->aiotx_jobq)) t4_aiotx_queue_toep( toep); sowwakeup_locked(so); } else SOCKBUF_UNLOCK(sb); SOCKBUF_UNLOCK_ASSERT(sb); return; } break; } if (IS_AIOTX_MBUF(m)) aiotx_mbuf_seen = true; if (max_nsegs_1mbuf < n) max_nsegs_1mbuf = n; sb_sndptr = m; /* new sb->sb_sndptr if all goes well */ /* This mbuf put us right at the max_nsegs limit */ if (plen > max_imm && nsegs == max_nsegs) { m = m->m_next; break; } } if (sbused(sb) > sb->sb_hiwat * 5 / 8 && toep->plen_nocompl + plen >= sb->sb_hiwat / 4) compl = 1; else compl = 0; if (sb->sb_flags & SB_AUTOSIZE && V_tcp_do_autosndbuf && sb->sb_hiwat < V_tcp_autosndbuf_max && sbused(sb) >= sb->sb_hiwat * 7 / 8) { int newsize = min(sb->sb_hiwat + V_tcp_autosndbuf_inc, V_tcp_autosndbuf_max); if (!sbreserve_locked(sb, newsize, so, NULL)) sb->sb_flags &= ~SB_AUTOSIZE; else sowwakeup = 1; /* room available */ } if (sowwakeup) { if (!TAILQ_EMPTY(&toep->aiotx_jobq)) t4_aiotx_queue_toep(toep); sowwakeup_locked(so); } else SOCKBUF_UNLOCK(sb); SOCKBUF_UNLOCK_ASSERT(sb); /* nothing to send */ if (plen == 0) { KASSERT(m == NULL, ("%s: nothing to send, but m != NULL", __func__)); break; } if (__predict_false(toep->flags & TPF_FIN_SENT)) panic("%s: excess tx.", __func__); shove = m == NULL && !(tp->t_flags & TF_MORETOCOME); if (plen <= max_imm && !aiotx_mbuf_seen) { /* Immediate data tx */ wr = alloc_wrqe(roundup2(sizeof(*txwr) + plen, 16), toep->ofld_txq); if (wr == NULL) { /* XXX: how will we recover from this? */ toep->flags |= TPF_TX_SUSPENDED; return; } txwr = wrtod(wr); credits = howmany(wr->wr_len, 16); write_tx_wr(txwr, toep, plen, plen, credits, shove, 0, sc->tt.tx_align); m_copydata(sndptr, 0, plen, (void *)(txwr + 1)); nsegs = 0; } else { int wr_len; /* DSGL tx */ wr_len = sizeof(*txwr) + sizeof(struct ulptx_sgl) + ((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8; wr = alloc_wrqe(roundup2(wr_len, 16), toep->ofld_txq); if (wr == NULL) { /* XXX: how will we recover from this? */ toep->flags |= TPF_TX_SUSPENDED; return; } txwr = wrtod(wr); credits = howmany(wr_len, 16); write_tx_wr(txwr, toep, 0, plen, credits, shove, 0, sc->tt.tx_align); write_tx_sgl(txwr + 1, sndptr, m, nsegs, max_nsegs_1mbuf); if (wr_len & 0xf) { uint64_t *pad = (uint64_t *) ((uintptr_t)txwr + wr_len); *pad = 0; } } KASSERT(toep->tx_credits >= credits, ("%s: not enough credits", __func__)); toep->tx_credits -= credits; toep->tx_nocompl += credits; toep->plen_nocompl += plen; if (toep->tx_credits <= toep->tx_total * 3 / 8 && toep->tx_nocompl >= toep->tx_total / 4) compl = 1; if (compl || toep->ulp_mode == ULP_MODE_RDMA) { txwr->op_to_immdlen |= htobe32(F_FW_WR_COMPL); toep->tx_nocompl = 0; toep->plen_nocompl = 0; } tp->snd_nxt += plen; tp->snd_max += plen; SOCKBUF_LOCK(sb); KASSERT(sb_sndptr, ("%s: sb_sndptr is NULL", __func__)); sb->sb_sndptr = sb_sndptr; SOCKBUF_UNLOCK(sb); toep->flags |= TPF_TX_DATA_SENT; if (toep->tx_credits < MIN_OFLD_TX_CREDITS) toep->flags |= TPF_TX_SUSPENDED; KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__)); txsd->plen = plen; txsd->tx_credits = credits; txsd++; if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) { toep->txsd_pidx = 0; txsd = &toep->txsd[0]; } toep->txsd_avail--; t4_l2t_send(sc, wr, toep->l2te); } while (m != NULL); /* Send a FIN if requested, but only if there's no more data to send */ if (m == NULL && toep->flags & TPF_SEND_FIN) t4_close_conn(sc, toep); } static inline void rqdrop_locked(struct mbufq *q, int plen) { struct mbuf *m; while (plen > 0) { m = mbufq_dequeue(q); /* Too many credits. */ MPASS(m != NULL); M_ASSERTPKTHDR(m); /* Partial credits. */ MPASS(plen >= m->m_pkthdr.len); plen -= m->m_pkthdr.len; m_freem(m); } } void t4_push_pdus(struct adapter *sc, struct toepcb *toep, int drop) { struct mbuf *sndptr, *m; struct fw_ofld_tx_data_wr *txwr; struct wrqe *wr; u_int plen, nsegs, credits, max_imm, max_nsegs, max_nsegs_1mbuf; u_int adjusted_plen, ulp_submode; struct inpcb *inp = toep->inp; struct tcpcb *tp = intotcpcb(inp); int tx_credits, shove; struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx]; struct mbufq *pduq = &toep->ulp_pduq; static const u_int ulp_extra_len[] = {0, 4, 4, 8}; INP_WLOCK_ASSERT(inp); KASSERT(toep->flags & TPF_FLOWC_WR_SENT, ("%s: flowc_wr not sent for tid %u.", __func__, toep->tid)); KASSERT(toep->ulp_mode == ULP_MODE_ISCSI, ("%s: ulp_mode %u for toep %p", __func__, toep->ulp_mode, toep)); if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN)) return; /* * This function doesn't resume by itself. Someone else must clear the * flag and call this function. */ if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) { KASSERT(drop == 0, ("%s: drop (%d) != 0 but tx is suspended", __func__, drop)); return; } if (drop) rqdrop_locked(&toep->ulp_pdu_reclaimq, drop); while ((sndptr = mbufq_first(pduq)) != NULL) { M_ASSERTPKTHDR(sndptr); tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS); max_imm = max_imm_payload(tx_credits); max_nsegs = max_dsgl_nsegs(tx_credits); plen = 0; nsegs = 0; max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */ for (m = sndptr; m != NULL; m = m->m_next) { int n = sglist_count(mtod(m, void *), m->m_len); nsegs += n; plen += m->m_len; /* * This mbuf would send us _over_ the nsegs limit. * Suspend tx because the PDU can't be sent out. */ if (plen > max_imm && nsegs > max_nsegs) { toep->flags |= TPF_TX_SUSPENDED; return; } if (max_nsegs_1mbuf < n) max_nsegs_1mbuf = n; } if (__predict_false(toep->flags & TPF_FIN_SENT)) panic("%s: excess tx.", __func__); /* * We have a PDU to send. All of it goes out in one WR so 'm' * is NULL. A PDU's length is always a multiple of 4. */ MPASS(m == NULL); MPASS((plen & 3) == 0); MPASS(sndptr->m_pkthdr.len == plen); shove = !(tp->t_flags & TF_MORETOCOME); ulp_submode = mbuf_ulp_submode(sndptr); MPASS(ulp_submode < nitems(ulp_extra_len)); /* * plen doesn't include header and data digests, which are * generated and inserted in the right places by the TOE, but * they do occupy TCP sequence space and need to be accounted * for. */ adjusted_plen = plen + ulp_extra_len[ulp_submode]; if (plen <= max_imm) { /* Immediate data tx */ wr = alloc_wrqe(roundup2(sizeof(*txwr) + plen, 16), toep->ofld_txq); if (wr == NULL) { /* XXX: how will we recover from this? */ toep->flags |= TPF_TX_SUSPENDED; return; } txwr = wrtod(wr); credits = howmany(wr->wr_len, 16); write_tx_wr(txwr, toep, plen, adjusted_plen, credits, shove, ulp_submode, sc->tt.tx_align); m_copydata(sndptr, 0, plen, (void *)(txwr + 1)); nsegs = 0; } else { int wr_len; /* DSGL tx */ wr_len = sizeof(*txwr) + sizeof(struct ulptx_sgl) + ((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8; wr = alloc_wrqe(roundup2(wr_len, 16), toep->ofld_txq); if (wr == NULL) { /* XXX: how will we recover from this? */ toep->flags |= TPF_TX_SUSPENDED; return; } txwr = wrtod(wr); credits = howmany(wr_len, 16); write_tx_wr(txwr, toep, 0, adjusted_plen, credits, shove, ulp_submode, sc->tt.tx_align); write_tx_sgl(txwr + 1, sndptr, m, nsegs, max_nsegs_1mbuf); if (wr_len & 0xf) { uint64_t *pad = (uint64_t *) ((uintptr_t)txwr + wr_len); *pad = 0; } } KASSERT(toep->tx_credits >= credits, ("%s: not enough credits", __func__)); m = mbufq_dequeue(pduq); MPASS(m == sndptr); mbufq_enqueue(&toep->ulp_pdu_reclaimq, m); toep->tx_credits -= credits; toep->tx_nocompl += credits; toep->plen_nocompl += plen; if (toep->tx_credits <= toep->tx_total * 3 / 8 && toep->tx_nocompl >= toep->tx_total / 4) { txwr->op_to_immdlen |= htobe32(F_FW_WR_COMPL); toep->tx_nocompl = 0; toep->plen_nocompl = 0; } tp->snd_nxt += adjusted_plen; tp->snd_max += adjusted_plen; toep->flags |= TPF_TX_DATA_SENT; if (toep->tx_credits < MIN_OFLD_TX_CREDITS) toep->flags |= TPF_TX_SUSPENDED; KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__)); txsd->plen = plen; txsd->tx_credits = credits; txsd++; if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) { toep->txsd_pidx = 0; txsd = &toep->txsd[0]; } toep->txsd_avail--; t4_l2t_send(sc, wr, toep->l2te); } /* Send a FIN if requested, but only if there are no more PDUs to send */ if (mbufq_first(pduq) == NULL && toep->flags & TPF_SEND_FIN) t4_close_conn(sc, toep); } int t4_tod_output(struct toedev *tod, struct tcpcb *tp) { struct adapter *sc = tod->tod_softc; #ifdef INVARIANTS struct inpcb *inp = tp->t_inpcb; #endif struct toepcb *toep = tp->t_toe; INP_WLOCK_ASSERT(inp); KASSERT((inp->inp_flags & INP_DROPPED) == 0, ("%s: inp %p dropped.", __func__, inp)); KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); if (toep->ulp_mode == ULP_MODE_ISCSI) t4_push_pdus(sc, toep, 0); else if (tls_tx_key(toep)) t4_push_tls_records(sc, toep, 0); else t4_push_frames(sc, toep, 0); return (0); } int t4_send_fin(struct toedev *tod, struct tcpcb *tp) { struct adapter *sc = tod->tod_softc; #ifdef INVARIANTS struct inpcb *inp = tp->t_inpcb; #endif struct toepcb *toep = tp->t_toe; INP_WLOCK_ASSERT(inp); KASSERT((inp->inp_flags & INP_DROPPED) == 0, ("%s: inp %p dropped.", __func__, inp)); KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); toep->flags |= TPF_SEND_FIN; if (tp->t_state >= TCPS_ESTABLISHED) { if (toep->ulp_mode == ULP_MODE_ISCSI) t4_push_pdus(sc, toep, 0); else if (tls_tx_key(toep)) t4_push_tls_records(sc, toep, 0); else t4_push_frames(sc, toep, 0); } return (0); } int t4_send_rst(struct toedev *tod, struct tcpcb *tp) { struct adapter *sc = tod->tod_softc; #if defined(INVARIANTS) struct inpcb *inp = tp->t_inpcb; #endif struct toepcb *toep = tp->t_toe; INP_WLOCK_ASSERT(inp); KASSERT((inp->inp_flags & INP_DROPPED) == 0, ("%s: inp %p dropped.", __func__, inp)); KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); /* hmmmm */ KASSERT(toep->flags & TPF_FLOWC_WR_SENT, ("%s: flowc for tid %u [%s] not sent already", __func__, toep->tid, tcpstates[tp->t_state])); send_reset(sc, toep, 0); return (0); } /* * Peer has sent us a FIN. */ static int do_peer_close(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_peer_close *cpl = (const void *)(rss + 1); unsigned int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); struct inpcb *inp = toep->inp; struct tcpcb *tp = NULL; struct socket *so; #ifdef INVARIANTS unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl))); #endif KASSERT(opcode == CPL_PEER_CLOSE, ("%s: unexpected opcode 0x%x", __func__, opcode)); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); if (__predict_false(toep->flags & TPF_SYNQE)) { #ifdef INVARIANTS struct synq_entry *synqe = (void *)toep; INP_WLOCK(synqe->lctx->inp); if (synqe->flags & TPF_SYNQE_HAS_L2TE) { KASSERT(synqe->flags & TPF_ABORT_SHUTDOWN, ("%s: listen socket closed but tid %u not aborted.", __func__, tid)); } else { /* * do_pass_accept_req is still running and will * eventually take care of this tid. */ } INP_WUNLOCK(synqe->lctx->inp); #endif CTR4(KTR_CXGBE, "%s: tid %u, synqe %p (0x%x)", __func__, tid, toep, toep->flags); return (0); } KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); CURVNET_SET(toep->vnet); INP_INFO_RLOCK(&V_tcbinfo); INP_WLOCK(inp); tp = intotcpcb(inp); CTR5(KTR_CXGBE, "%s: tid %u (%s), toep_flags 0x%x, inp %p", __func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags, inp); if (toep->flags & TPF_ABORT_SHUTDOWN) goto done; tp->rcv_nxt++; /* FIN */ so = inp->inp_socket; if (toep->ulp_mode == ULP_MODE_TCPDDP) { DDP_LOCK(toep); if (__predict_false(toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE))) handle_ddp_close(toep, tp, cpl->rcv_nxt); DDP_UNLOCK(toep); } socantrcvmore(so); if (toep->ulp_mode != ULP_MODE_RDMA) { KASSERT(tp->rcv_nxt == be32toh(cpl->rcv_nxt), ("%s: rcv_nxt mismatch: %u %u", __func__, tp->rcv_nxt, be32toh(cpl->rcv_nxt))); } switch (tp->t_state) { case TCPS_SYN_RECEIVED: tp->t_starttime = ticks; /* FALLTHROUGH */ case TCPS_ESTABLISHED: tp->t_state = TCPS_CLOSE_WAIT; break; case TCPS_FIN_WAIT_1: tp->t_state = TCPS_CLOSING; break; case TCPS_FIN_WAIT_2: tcp_twstart(tp); INP_UNLOCK_ASSERT(inp); /* safe, we have a ref on the inp */ INP_INFO_RUNLOCK(&V_tcbinfo); CURVNET_RESTORE(); INP_WLOCK(inp); final_cpl_received(toep); return (0); default: log(LOG_ERR, "%s: TID %u received CPL_PEER_CLOSE in state %d\n", __func__, tid, tp->t_state); } done: INP_WUNLOCK(inp); INP_INFO_RUNLOCK(&V_tcbinfo); CURVNET_RESTORE(); return (0); } /* * Peer has ACK'd our FIN. */ static int do_close_con_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_close_con_rpl *cpl = (const void *)(rss + 1); unsigned int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); struct inpcb *inp = toep->inp; struct tcpcb *tp = NULL; struct socket *so = NULL; #ifdef INVARIANTS unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl))); #endif KASSERT(opcode == CPL_CLOSE_CON_RPL, ("%s: unexpected opcode 0x%x", __func__, opcode)); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); CURVNET_SET(toep->vnet); INP_INFO_RLOCK(&V_tcbinfo); INP_WLOCK(inp); tp = intotcpcb(inp); CTR4(KTR_CXGBE, "%s: tid %u (%s), toep_flags 0x%x", __func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags); if (toep->flags & TPF_ABORT_SHUTDOWN) goto done; so = inp->inp_socket; tp->snd_una = be32toh(cpl->snd_nxt) - 1; /* exclude FIN */ switch (tp->t_state) { case TCPS_CLOSING: /* see TCPS_FIN_WAIT_2 in do_peer_close too */ tcp_twstart(tp); release: INP_UNLOCK_ASSERT(inp); /* safe, we have a ref on the inp */ INP_INFO_RUNLOCK(&V_tcbinfo); CURVNET_RESTORE(); INP_WLOCK(inp); final_cpl_received(toep); /* no more CPLs expected */ return (0); case TCPS_LAST_ACK: if (tcp_close(tp)) INP_WUNLOCK(inp); goto release; case TCPS_FIN_WAIT_1: if (so->so_rcv.sb_state & SBS_CANTRCVMORE) soisdisconnected(so); tp->t_state = TCPS_FIN_WAIT_2; break; default: log(LOG_ERR, "%s: TID %u received CPL_CLOSE_CON_RPL in state %s\n", __func__, tid, tcpstates[tp->t_state]); } done: INP_WUNLOCK(inp); INP_INFO_RUNLOCK(&V_tcbinfo); CURVNET_RESTORE(); return (0); } void send_abort_rpl(struct adapter *sc, struct sge_wrq *ofld_txq, int tid, int rst_status) { struct wrqe *wr; struct cpl_abort_rpl *cpl; wr = alloc_wrqe(sizeof(*cpl), ofld_txq); if (wr == NULL) { /* XXX */ panic("%s: allocation failure.", __func__); } cpl = wrtod(wr); INIT_TP_WR_MIT_CPL(cpl, CPL_ABORT_RPL, tid); cpl->cmd = rst_status; t4_wrq_tx(sc, wr); } static int abort_status_to_errno(struct tcpcb *tp, unsigned int abort_reason) { switch (abort_reason) { case CPL_ERR_BAD_SYN: case CPL_ERR_CONN_RESET: return (tp->t_state == TCPS_CLOSE_WAIT ? EPIPE : ECONNRESET); case CPL_ERR_XMIT_TIMEDOUT: case CPL_ERR_PERSIST_TIMEDOUT: case CPL_ERR_FINWAIT2_TIMEDOUT: case CPL_ERR_KEEPALIVE_TIMEDOUT: return (ETIMEDOUT); default: return (EIO); } } /* * TCP RST from the peer, timeout, or some other such critical error. */ static int do_abort_req(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_abort_req_rss *cpl = (const void *)(rss + 1); unsigned int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); struct sge_wrq *ofld_txq = toep->ofld_txq; struct inpcb *inp; struct tcpcb *tp; #ifdef INVARIANTS unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl))); #endif KASSERT(opcode == CPL_ABORT_REQ_RSS, ("%s: unexpected opcode 0x%x", __func__, opcode)); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); if (toep->flags & TPF_SYNQE) return (do_abort_req_synqe(iq, rss, m)); KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); if (negative_advice(cpl->status)) { CTR4(KTR_CXGBE, "%s: negative advice %d for tid %d (0x%x)", __func__, cpl->status, tid, toep->flags); return (0); /* Ignore negative advice */ } inp = toep->inp; CURVNET_SET(toep->vnet); INP_INFO_RLOCK(&V_tcbinfo); /* for tcp_close */ INP_WLOCK(inp); tp = intotcpcb(inp); CTR6(KTR_CXGBE, "%s: tid %d (%s), toep_flags 0x%x, inp_flags 0x%x, status %d", __func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags, inp->inp_flags, cpl->status); /* * If we'd initiated an abort earlier the reply to it is responsible for * cleaning up resources. Otherwise we tear everything down right here * right now. We owe the T4 a CPL_ABORT_RPL no matter what. */ if (toep->flags & TPF_ABORT_SHUTDOWN) { INP_WUNLOCK(inp); goto done; } toep->flags |= TPF_ABORT_SHUTDOWN; if ((inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) == 0) { struct socket *so = inp->inp_socket; if (so != NULL) so_error_set(so, abort_status_to_errno(tp, cpl->status)); tp = tcp_close(tp); if (tp == NULL) INP_WLOCK(inp); /* re-acquire */ } final_cpl_received(toep); done: INP_INFO_RUNLOCK(&V_tcbinfo); CURVNET_RESTORE(); send_abort_rpl(sc, ofld_txq, tid, CPL_ABORT_NO_RST); return (0); } /* * Reply to the CPL_ABORT_REQ (send_reset) */ static int do_abort_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_abort_rpl_rss *cpl = (const void *)(rss + 1); unsigned int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); struct inpcb *inp = toep->inp; #ifdef INVARIANTS unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl))); #endif KASSERT(opcode == CPL_ABORT_RPL_RSS, ("%s: unexpected opcode 0x%x", __func__, opcode)); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); if (toep->flags & TPF_SYNQE) return (do_abort_rpl_synqe(iq, rss, m)); KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); CTR5(KTR_CXGBE, "%s: tid %u, toep %p, inp %p, status %d", __func__, tid, toep, inp, cpl->status); KASSERT(toep->flags & TPF_ABORT_SHUTDOWN, ("%s: wasn't expecting abort reply", __func__)); INP_WLOCK(inp); final_cpl_received(toep); return (0); } static int do_rx_data(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_rx_data *cpl = mtod(m, const void *); unsigned int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); struct inpcb *inp = toep->inp; struct tcpcb *tp; struct socket *so; struct sockbuf *sb; int len; uint32_t ddp_placed = 0; if (__predict_false(toep->flags & TPF_SYNQE)) { #ifdef INVARIANTS struct synq_entry *synqe = (void *)toep; INP_WLOCK(synqe->lctx->inp); if (synqe->flags & TPF_SYNQE_HAS_L2TE) { KASSERT(synqe->flags & TPF_ABORT_SHUTDOWN, ("%s: listen socket closed but tid %u not aborted.", __func__, tid)); } else { /* * do_pass_accept_req is still running and will * eventually take care of this tid. */ } INP_WUNLOCK(synqe->lctx->inp); #endif CTR4(KTR_CXGBE, "%s: tid %u, synqe %p (0x%x)", __func__, tid, toep, toep->flags); m_freem(m); return (0); } KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); /* strip off CPL header */ m_adj(m, sizeof(*cpl)); len = m->m_pkthdr.len; INP_WLOCK(inp); if (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) { CTR4(KTR_CXGBE, "%s: tid %u, rx (%d bytes), inp_flags 0x%x", __func__, tid, len, inp->inp_flags); INP_WUNLOCK(inp); m_freem(m); return (0); } tp = intotcpcb(inp); if (__predict_false(tp->rcv_nxt != be32toh(cpl->seq))) ddp_placed = be32toh(cpl->seq) - tp->rcv_nxt; tp->rcv_nxt += len; if (tp->rcv_wnd < len) { KASSERT(toep->ulp_mode == ULP_MODE_RDMA, ("%s: negative window size", __func__)); } tp->rcv_wnd -= len; tp->t_rcvtime = ticks; if (toep->ulp_mode == ULP_MODE_TCPDDP) DDP_LOCK(toep); so = inp_inpcbtosocket(inp); sb = &so->so_rcv; SOCKBUF_LOCK(sb); if (__predict_false(sb->sb_state & SBS_CANTRCVMORE)) { CTR3(KTR_CXGBE, "%s: tid %u, excess rx (%d bytes)", __func__, tid, len); m_freem(m); SOCKBUF_UNLOCK(sb); if (toep->ulp_mode == ULP_MODE_TCPDDP) DDP_UNLOCK(toep); INP_WUNLOCK(inp); CURVNET_SET(toep->vnet); INP_INFO_RLOCK(&V_tcbinfo); INP_WLOCK(inp); tp = tcp_drop(tp, ECONNRESET); if (tp) INP_WUNLOCK(inp); INP_INFO_RUNLOCK(&V_tcbinfo); CURVNET_RESTORE(); return (0); } /* receive buffer autosize */ MPASS(toep->vnet == so->so_vnet); CURVNET_SET(toep->vnet); if (sb->sb_flags & SB_AUTOSIZE && V_tcp_do_autorcvbuf && sb->sb_hiwat < V_tcp_autorcvbuf_max && len > (sbspace(sb) / 8 * 7)) { unsigned int hiwat = sb->sb_hiwat; unsigned int newsize = min(hiwat + V_tcp_autorcvbuf_inc, V_tcp_autorcvbuf_max); if (!sbreserve_locked(sb, newsize, so, NULL)) sb->sb_flags &= ~SB_AUTOSIZE; else toep->rx_credits += newsize - hiwat; } if (toep->ulp_mode == ULP_MODE_TCPDDP) { int changed = !(toep->ddp.flags & DDP_ON) ^ cpl->ddp_off; if (toep->ddp.waiting_count != 0 || toep->ddp.active_count != 0) CTR3(KTR_CXGBE, "%s: tid %u, non-ddp rx (%d bytes)", __func__, tid, len); if (changed) { if (toep->ddp.flags & DDP_SC_REQ) toep->ddp.flags ^= DDP_ON | DDP_SC_REQ; else { KASSERT(cpl->ddp_off == 1, ("%s: DDP switched on by itself.", __func__)); /* Fell out of DDP mode */ toep->ddp.flags &= ~DDP_ON; CTR1(KTR_CXGBE, "%s: fell out of DDP mode", __func__); insert_ddp_data(toep, ddp_placed); } } if (toep->ddp.flags & DDP_ON) { /* * CPL_RX_DATA with DDP on can only be an indicate. * Start posting queued AIO requests via DDP. The * payload that arrived in this indicate is appended * to the socket buffer as usual. */ handle_ddp_indicate(toep); } } KASSERT(toep->sb_cc >= sbused(sb), ("%s: sb %p has more data (%d) than last time (%d).", __func__, sb, sbused(sb), toep->sb_cc)); toep->rx_credits += toep->sb_cc - sbused(sb); sbappendstream_locked(sb, m, 0); toep->sb_cc = sbused(sb); if (toep->rx_credits > 0 && toep->sb_cc + tp->rcv_wnd < sb->sb_lowat) { int credits; credits = send_rx_credits(sc, toep, toep->rx_credits); toep->rx_credits -= credits; tp->rcv_wnd += credits; tp->rcv_adv += credits; } if (toep->ulp_mode == ULP_MODE_TCPDDP && toep->ddp.waiting_count > 0 && sbavail(sb) != 0) { CTR2(KTR_CXGBE, "%s: tid %u queueing AIO task", __func__, tid); ddp_queue_toep(toep); } sorwakeup_locked(so); SOCKBUF_UNLOCK_ASSERT(sb); if (toep->ulp_mode == ULP_MODE_TCPDDP) DDP_UNLOCK(toep); INP_WUNLOCK(inp); CURVNET_RESTORE(); return (0); } #define S_CPL_FW4_ACK_OPCODE 24 #define M_CPL_FW4_ACK_OPCODE 0xff #define V_CPL_FW4_ACK_OPCODE(x) ((x) << S_CPL_FW4_ACK_OPCODE) #define G_CPL_FW4_ACK_OPCODE(x) \ (((x) >> S_CPL_FW4_ACK_OPCODE) & M_CPL_FW4_ACK_OPCODE) #define S_CPL_FW4_ACK_FLOWID 0 #define M_CPL_FW4_ACK_FLOWID 0xffffff #define V_CPL_FW4_ACK_FLOWID(x) ((x) << S_CPL_FW4_ACK_FLOWID) #define G_CPL_FW4_ACK_FLOWID(x) \ (((x) >> S_CPL_FW4_ACK_FLOWID) & M_CPL_FW4_ACK_FLOWID) #define S_CPL_FW4_ACK_CR 24 #define M_CPL_FW4_ACK_CR 0xff #define V_CPL_FW4_ACK_CR(x) ((x) << S_CPL_FW4_ACK_CR) #define G_CPL_FW4_ACK_CR(x) (((x) >> S_CPL_FW4_ACK_CR) & M_CPL_FW4_ACK_CR) #define S_CPL_FW4_ACK_SEQVAL 0 #define M_CPL_FW4_ACK_SEQVAL 0x1 #define V_CPL_FW4_ACK_SEQVAL(x) ((x) << S_CPL_FW4_ACK_SEQVAL) #define G_CPL_FW4_ACK_SEQVAL(x) \ (((x) >> S_CPL_FW4_ACK_SEQVAL) & M_CPL_FW4_ACK_SEQVAL) #define F_CPL_FW4_ACK_SEQVAL V_CPL_FW4_ACK_SEQVAL(1U) static int do_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_fw4_ack *cpl = (const void *)(rss + 1); unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl))); struct toepcb *toep = lookup_tid(sc, tid); struct inpcb *inp; struct tcpcb *tp; struct socket *so; uint8_t credits = cpl->credits; struct ofld_tx_sdesc *txsd; int plen; #ifdef INVARIANTS unsigned int opcode = G_CPL_FW4_ACK_OPCODE(be32toh(OPCODE_TID(cpl))); #endif /* * Very unusual case: we'd sent a flowc + abort_req for a synq entry and * now this comes back carrying the credits for the flowc. */ if (__predict_false(toep->flags & TPF_SYNQE)) { KASSERT(toep->flags & TPF_ABORT_SHUTDOWN, ("%s: credits for a synq entry %p", __func__, toep)); return (0); } inp = toep->inp; KASSERT(opcode == CPL_FW4_ACK, ("%s: unexpected opcode 0x%x", __func__, opcode)); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); INP_WLOCK(inp); if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN)) { INP_WUNLOCK(inp); return (0); } KASSERT((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) == 0, ("%s: inp_flags 0x%x", __func__, inp->inp_flags)); tp = intotcpcb(inp); if (cpl->flags & CPL_FW4_ACK_FLAGS_SEQVAL) { tcp_seq snd_una = be32toh(cpl->snd_una); #ifdef INVARIANTS if (__predict_false(SEQ_LT(snd_una, tp->snd_una))) { log(LOG_ERR, "%s: unexpected seq# %x for TID %u, snd_una %x\n", __func__, snd_una, toep->tid, tp->snd_una); } #endif if (tp->snd_una != snd_una) { tp->snd_una = snd_una; tp->ts_recent_age = tcp_ts_getticks(); } } #ifdef VERBOSE_TRACES CTR3(KTR_CXGBE, "%s: tid %d credits %u", __func__, tid, credits); #endif so = inp->inp_socket; txsd = &toep->txsd[toep->txsd_cidx]; plen = 0; while (credits) { KASSERT(credits >= txsd->tx_credits, ("%s: too many (or partial) credits", __func__)); credits -= txsd->tx_credits; toep->tx_credits += txsd->tx_credits; plen += txsd->plen; if (txsd->iv_buffer) { free(txsd->iv_buffer, M_CXGBE); txsd->iv_buffer = NULL; } txsd++; toep->txsd_avail++; KASSERT(toep->txsd_avail <= toep->txsd_total, ("%s: txsd avail > total", __func__)); if (__predict_false(++toep->txsd_cidx == toep->txsd_total)) { txsd = &toep->txsd[0]; toep->txsd_cidx = 0; } } if (toep->tx_credits == toep->tx_total) { toep->tx_nocompl = 0; toep->plen_nocompl = 0; } if (toep->flags & TPF_TX_SUSPENDED && toep->tx_credits >= toep->tx_total / 4) { #ifdef VERBOSE_TRACES CTR2(KTR_CXGBE, "%s: tid %d calling t4_push_frames", __func__, tid); #endif toep->flags &= ~TPF_TX_SUSPENDED; CURVNET_SET(toep->vnet); if (toep->ulp_mode == ULP_MODE_ISCSI) t4_push_pdus(sc, toep, plen); else if (tls_tx_key(toep)) t4_push_tls_records(sc, toep, plen); else t4_push_frames(sc, toep, plen); CURVNET_RESTORE(); } else if (plen > 0) { struct sockbuf *sb = &so->so_snd; int sbu; SOCKBUF_LOCK(sb); sbu = sbused(sb); if (toep->ulp_mode == ULP_MODE_ISCSI) { if (__predict_false(sbu > 0)) { /* * The data trasmitted before the tid's ULP mode * changed to ISCSI is still in so_snd. * Incoming credits should account for so_snd * first. */ sbdrop_locked(sb, min(sbu, plen)); plen -= min(sbu, plen); } sowwakeup_locked(so); /* unlocks so_snd */ rqdrop_locked(&toep->ulp_pdu_reclaimq, plen); } else { #ifdef VERBOSE_TRACES CTR3(KTR_CXGBE, "%s: tid %d dropped %d bytes", __func__, tid, plen); #endif sbdrop_locked(sb, plen); if (tls_tx_key(toep)) { struct tls_ofld_info *tls_ofld = &toep->tls; MPASS(tls_ofld->sb_off >= plen); tls_ofld->sb_off -= plen; } if (!TAILQ_EMPTY(&toep->aiotx_jobq)) t4_aiotx_queue_toep(toep); sowwakeup_locked(so); /* unlocks so_snd */ } SOCKBUF_UNLOCK_ASSERT(sb); } INP_WUNLOCK(inp); return (0); } int do_set_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1); unsigned int tid = GET_TID(cpl); struct toepcb *toep; #ifdef INVARIANTS unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl))); #endif KASSERT(opcode == CPL_SET_TCB_RPL, ("%s: unexpected opcode 0x%x", __func__, opcode)); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); MPASS(iq != &sc->sge.fwq); toep = lookup_tid(sc, tid); if (toep->ulp_mode == ULP_MODE_TCPDDP) { handle_ddp_tcb_rpl(toep, cpl); return (0); } /* * TOM and/or other ULPs don't request replies for CPL_SET_TCB or * CPL_SET_TCB_FIELD requests. This can easily change and when it does * the dispatch code will go here. */ #ifdef INVARIANTS panic("%s: Unexpected CPL_SET_TCB_RPL for tid %u on iq %p", __func__, tid, iq); #else log(LOG_ERR, "%s: Unexpected CPL_SET_TCB_RPL for tid %u on iq %p\n", __func__, tid, iq); #endif return (0); } void -t4_set_tcb_field(struct adapter *sc, struct sge_wrq *wrq, int tid, - uint16_t word, uint64_t mask, uint64_t val, int reply, int cookie, int iqid) +t4_set_tcb_field(struct adapter *sc, struct sge_wrq *wrq, struct toepcb *toep, + uint16_t word, uint64_t mask, uint64_t val, int reply, int cookie) { struct wrqe *wr; struct cpl_set_tcb_field *req; + struct ofld_tx_sdesc *txsd; MPASS((cookie & ~M_COOKIE) == 0); - MPASS((iqid & ~M_QUEUENO) == 0); wr = alloc_wrqe(sizeof(*req), wrq); if (wr == NULL) { /* XXX */ panic("%s: allocation failure.", __func__); } req = wrtod(wr); - INIT_TP_WR_MIT_CPL(req, CPL_SET_TCB_FIELD, tid); - req->reply_ctrl = htobe16(V_QUEUENO(iqid)); + INIT_TP_WR_MIT_CPL(req, CPL_SET_TCB_FIELD, toep->tid); + req->reply_ctrl = htobe16(V_QUEUENO(toep->ofld_rxq->iq.abs_id)); if (reply == 0) req->reply_ctrl |= htobe16(F_NO_REPLY); req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(cookie)); req->mask = htobe64(mask); req->val = htobe64(val); + if ((wrq->eq.flags & EQ_TYPEMASK) == EQ_OFLD) { + txsd = &toep->txsd[toep->txsd_pidx]; + txsd->tx_credits = howmany(sizeof(*req), 16); + txsd->plen = 0; + KASSERT(toep->tx_credits >= txsd->tx_credits && + toep->txsd_avail > 0, + ("%s: not enough credits (%d)", __func__, + toep->tx_credits)); + toep->tx_credits -= txsd->tx_credits; + if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) + toep->txsd_pidx = 0; + toep->txsd_avail--; + } t4_wrq_tx(sc, wr); } void t4_init_cpl_io_handlers(void) { t4_register_cpl_handler(CPL_PEER_CLOSE, do_peer_close); t4_register_cpl_handler(CPL_CLOSE_CON_RPL, do_close_con_rpl); t4_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req); t4_register_cpl_handler(CPL_ABORT_RPL_RSS, do_abort_rpl); t4_register_cpl_handler(CPL_RX_DATA, do_rx_data); t4_register_cpl_handler(CPL_FW4_ACK, do_fw4_ack); } void t4_uninit_cpl_io_handlers(void) { t4_register_cpl_handler(CPL_PEER_CLOSE, NULL); t4_register_cpl_handler(CPL_CLOSE_CON_RPL, NULL); t4_register_cpl_handler(CPL_ABORT_REQ_RSS, NULL); t4_register_cpl_handler(CPL_ABORT_RPL_RSS, NULL); t4_register_cpl_handler(CPL_RX_DATA, NULL); t4_register_cpl_handler(CPL_FW4_ACK, NULL); } /* * Use the 'backend3' field in AIO jobs to store the amount of data * sent by the AIO job so far and the 'backend4' field to hold an * error that should be reported when the job is completed. */ #define aio_sent backend3 #define aio_error backend4 #define jobtotid(job) \ (((struct toepcb *)(so_sototcpcb((job)->fd_file->f_data)->t_toe))->tid) static void free_aiotx_buffer(struct aiotx_buffer *ab) { struct kaiocb *job; long status; int error; if (refcount_release(&ab->refcount) == 0) return; job = ab->job; error = job->aio_error; status = job->aio_sent; vm_page_unhold_pages(ab->ps.pages, ab->ps.npages); free(ab, M_CXGBE); #ifdef VERBOSE_TRACES CTR5(KTR_CXGBE, "%s: tid %d completed %p len %ld, error %d", __func__, jobtotid(job), job, status, error); #endif if (error == ECANCELED && status != 0) error = 0; if (error == ECANCELED) aio_cancel(job); else if (error) aio_complete(job, -1, error); else aio_complete(job, status, 0); } static void t4_aiotx_mbuf_free(struct mbuf *m) { struct aiotx_buffer *ab = m->m_ext.ext_arg1; #ifdef VERBOSE_TRACES CTR3(KTR_CXGBE, "%s: completed %d bytes for tid %d", __func__, m->m_len, jobtotid(ab->job)); #endif free_aiotx_buffer(ab); } /* * Hold the buffer backing an AIO request and return an AIO transmit * buffer. */ static int hold_aio(struct kaiocb *job) { struct aiotx_buffer *ab; struct vmspace *vm; vm_map_t map; vm_offset_t start, end, pgoff; int n; MPASS(job->backend1 == NULL); /* * The AIO subsystem will cancel and drain all requests before * permitting a process to exit or exec, so p_vmspace should * be stable here. */ vm = job->userproc->p_vmspace; map = &vm->vm_map; start = (uintptr_t)job->uaiocb.aio_buf; pgoff = start & PAGE_MASK; end = round_page(start + job->uaiocb.aio_nbytes); start = trunc_page(start); n = atop(end - start); ab = malloc(sizeof(*ab) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK | M_ZERO); refcount_init(&ab->refcount, 1); ab->ps.pages = (vm_page_t *)(ab + 1); ab->ps.npages = vm_fault_quick_hold_pages(map, start, end - start, VM_PROT_WRITE, ab->ps.pages, n); if (ab->ps.npages < 0) { free(ab, M_CXGBE); return (EFAULT); } KASSERT(ab->ps.npages == n, ("hold_aio: page count mismatch: %d vs %d", ab->ps.npages, n)); ab->ps.offset = pgoff; ab->ps.len = job->uaiocb.aio_nbytes; ab->job = job; job->backend1 = ab; #ifdef VERBOSE_TRACES CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d", __func__, jobtotid(job), &ab->ps, job, ab->ps.npages); #endif return (0); } static void t4_aiotx_process_job(struct toepcb *toep, struct socket *so, struct kaiocb *job) { struct adapter *sc; struct sockbuf *sb; struct file *fp; struct aiotx_buffer *ab; struct inpcb *inp; struct tcpcb *tp; struct mbuf *m; int error; bool moretocome, sendmore; sc = td_adapter(toep->td); sb = &so->so_snd; SOCKBUF_UNLOCK(sb); fp = job->fd_file; ab = job->backend1; m = NULL; #ifdef MAC error = mac_socket_check_send(fp->f_cred, so); if (error != 0) goto out; #endif if (ab == NULL) { error = hold_aio(job); if (error != 0) goto out; ab = job->backend1; } /* Inline sosend_generic(). */ job->msgsnd = 1; error = sblock(sb, SBL_WAIT); MPASS(error == 0); sendanother: m = m_get(M_WAITOK, MT_DATA); SOCKBUF_LOCK(sb); if (so->so_snd.sb_state & SBS_CANTSENDMORE) { SOCKBUF_UNLOCK(sb); sbunlock(sb); if ((so->so_options & SO_NOSIGPIPE) == 0) { PROC_LOCK(job->userproc); kern_psignal(job->userproc, SIGPIPE); PROC_UNLOCK(job->userproc); } error = EPIPE; goto out; } if (so->so_error) { error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(sb); sbunlock(sb); goto out; } if ((so->so_state & SS_ISCONNECTED) == 0) { SOCKBUF_UNLOCK(sb); sbunlock(sb); error = ENOTCONN; goto out; } if (sbspace(sb) < sb->sb_lowat) { MPASS(job->aio_sent == 0 || !(so->so_state & SS_NBIO)); /* * Don't block if there is too little room in the socket * buffer. Instead, requeue the request. */ if (!aio_set_cancel_function(job, t4_aiotx_cancel)) { SOCKBUF_UNLOCK(sb); sbunlock(sb); error = ECANCELED; goto out; } TAILQ_INSERT_HEAD(&toep->aiotx_jobq, job, list); SOCKBUF_UNLOCK(sb); sbunlock(sb); goto out; } /* * Write as much data as the socket permits, but no more than a * a single sndbuf at a time. */ m->m_len = sbspace(sb); if (m->m_len > ab->ps.len - job->aio_sent) { m->m_len = ab->ps.len - job->aio_sent; moretocome = false; } else moretocome = true; if (m->m_len > sc->tt.sndbuf) { m->m_len = sc->tt.sndbuf; sendmore = true; } else sendmore = false; if (!TAILQ_EMPTY(&toep->aiotx_jobq)) moretocome = true; SOCKBUF_UNLOCK(sb); MPASS(m->m_len != 0); /* Inlined tcp_usr_send(). */ inp = toep->inp; INP_WLOCK(inp); if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { INP_WUNLOCK(inp); sbunlock(sb); error = ECONNRESET; goto out; } refcount_acquire(&ab->refcount); m_extadd(m, NULL, ab->ps.len, t4_aiotx_mbuf_free, ab, (void *)(uintptr_t)job->aio_sent, 0, EXT_NET_DRV); m->m_ext.ext_flags |= EXT_FLAG_AIOTX; job->aio_sent += m->m_len; sbappendstream(sb, m, 0); m = NULL; if (!(inp->inp_flags & INP_DROPPED)) { tp = intotcpcb(inp); if (moretocome) tp->t_flags |= TF_MORETOCOME; error = tp->t_fb->tfb_tcp_output(tp); if (moretocome) tp->t_flags &= ~TF_MORETOCOME; } INP_WUNLOCK(inp); if (sendmore) goto sendanother; sbunlock(sb); if (error) goto out; /* * If this is a non-blocking socket and the request has not * been fully completed, requeue it until the socket is ready * again. */ if (job->aio_sent < job->uaiocb.aio_nbytes && !(so->so_state & SS_NBIO)) { SOCKBUF_LOCK(sb); if (!aio_set_cancel_function(job, t4_aiotx_cancel)) { SOCKBUF_UNLOCK(sb); error = ECANCELED; goto out; } TAILQ_INSERT_HEAD(&toep->aiotx_jobq, job, list); return; } /* * If the request will not be requeued, drop a reference on * the aiotx buffer. Any mbufs in flight should still * contain a reference, but this drops the reference that the * job owns while it is waiting to queue mbufs to the socket. */ free_aiotx_buffer(ab); out: if (error) { if (ab != NULL) { job->aio_error = error; free_aiotx_buffer(ab); } else { MPASS(job->aio_sent == 0); aio_complete(job, -1, error); } } if (m != NULL) m_free(m); SOCKBUF_LOCK(sb); } static void t4_aiotx_task(void *context, int pending) { struct toepcb *toep = context; struct inpcb *inp = toep->inp; struct socket *so = inp->inp_socket; struct kaiocb *job; CURVNET_SET(toep->vnet); SOCKBUF_LOCK(&so->so_snd); while (!TAILQ_EMPTY(&toep->aiotx_jobq) && sowriteable(so)) { job = TAILQ_FIRST(&toep->aiotx_jobq); TAILQ_REMOVE(&toep->aiotx_jobq, job, list); if (!aio_clear_cancel_function(job)) continue; t4_aiotx_process_job(toep, so, job); } toep->aiotx_task_active = false; SOCKBUF_UNLOCK(&so->so_snd); CURVNET_RESTORE(); free_toepcb(toep); } static void t4_aiotx_queue_toep(struct toepcb *toep) { SOCKBUF_LOCK_ASSERT(&toep->inp->inp_socket->so_snd); #ifdef VERBOSE_TRACES CTR3(KTR_CXGBE, "%s: queueing aiotx task for tid %d, active = %s", __func__, toep->tid, toep->aiotx_task_active ? "true" : "false"); #endif if (toep->aiotx_task_active) return; toep->aiotx_task_active = true; hold_toepcb(toep); soaio_enqueue(&toep->aiotx_task); } static void t4_aiotx_cancel(struct kaiocb *job) { struct aiotx_buffer *ab; struct socket *so; struct sockbuf *sb; struct tcpcb *tp; struct toepcb *toep; so = job->fd_file->f_data; tp = so_sototcpcb(so); toep = tp->t_toe; MPASS(job->uaiocb.aio_lio_opcode == LIO_WRITE); sb = &so->so_snd; SOCKBUF_LOCK(sb); if (!aio_cancel_cleared(job)) TAILQ_REMOVE(&toep->aiotx_jobq, job, list); SOCKBUF_UNLOCK(sb); ab = job->backend1; if (ab != NULL) free_aiotx_buffer(ab); else aio_cancel(job); } int t4_aio_queue_aiotx(struct socket *so, struct kaiocb *job) { struct tcpcb *tp = so_sototcpcb(so); struct toepcb *toep = tp->t_toe; struct adapter *sc = td_adapter(toep->td); /* This only handles writes. */ if (job->uaiocb.aio_lio_opcode != LIO_WRITE) return (EOPNOTSUPP); if (!sc->tt.tx_zcopy) return (EOPNOTSUPP); if (tls_tx_key(toep)) return (EOPNOTSUPP); SOCKBUF_LOCK(&so->so_snd); #ifdef VERBOSE_TRACES CTR2(KTR_CXGBE, "%s: queueing %p", __func__, job); #endif if (!aio_set_cancel_function(job, t4_aiotx_cancel)) panic("new job was cancelled"); TAILQ_INSERT_TAIL(&toep->aiotx_jobq, job, list); if (sowriteable(so)) t4_aiotx_queue_toep(toep); SOCKBUF_UNLOCK(&so->so_snd); return (0); } void aiotx_init_toep(struct toepcb *toep) { TAILQ_INIT(&toep->aiotx_jobq); TASK_INIT(&toep->aiotx_task, 0, t4_aiotx_task, toep); } #endif Index: head/sys/dev/cxgbe/tom/t4_ddp.c =================================================================== --- head/sys/dev/cxgbe/tom/t4_ddp.c (revision 331648) +++ head/sys/dev/cxgbe/tom/t4_ddp.c (revision 331649) @@ -1,1963 +1,1961 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2012 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TCPSTATES #include #include #include #include #include #include #include #include #include #ifdef TCP_OFFLOAD #include "common/common.h" #include "common/t4_msg.h" #include "common/t4_regs.h" #include "common/t4_tcb.h" #include "tom/t4_tom.h" /* * Use the 'backend3' field in AIO jobs to store the amount of data * received by the AIO job so far. */ #define aio_received backend3 static void aio_ddp_requeue_task(void *context, int pending); static void ddp_complete_all(struct toepcb *toep, int error); static void t4_aio_cancel_active(struct kaiocb *job); static void t4_aio_cancel_queued(struct kaiocb *job); static TAILQ_HEAD(, pageset) ddp_orphan_pagesets; static struct mtx ddp_orphan_pagesets_lock; static struct task ddp_orphan_task; #define MAX_DDP_BUFFER_SIZE (M_TCB_RX_DDP_BUF0_LEN) /* * A page set holds information about a buffer used for DDP. The page * set holds resources such as the VM pages backing the buffer (either * held or wired) and the page pods associated with the buffer. * Recently used page sets are cached to allow for efficient reuse of * buffers (avoiding the need to re-fault in pages, hold them, etc.). * Note that cached page sets keep the backing pages wired. The * number of wired pages is capped by only allowing for two wired * pagesets per connection. This is not a perfect cap, but is a * trade-off for performance. * * If an application ping-pongs two buffers for a connection via * aio_read(2) then those buffers should remain wired and expensive VM * fault lookups should be avoided after each buffer has been used * once. If an application uses more than two buffers then this will * fall back to doing expensive VM fault lookups for each operation. */ static void free_pageset(struct tom_data *td, struct pageset *ps) { vm_page_t p; int i; if (ps->prsv.prsv_nppods > 0) t4_free_page_pods(&ps->prsv); if (ps->flags & PS_WIRED) { for (i = 0; i < ps->npages; i++) { p = ps->pages[i]; vm_page_lock(p); vm_page_unwire(p, PQ_INACTIVE); vm_page_unlock(p); } } else vm_page_unhold_pages(ps->pages, ps->npages); mtx_lock(&ddp_orphan_pagesets_lock); TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link); taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task); mtx_unlock(&ddp_orphan_pagesets_lock); } static void ddp_free_orphan_pagesets(void *context, int pending) { struct pageset *ps; mtx_lock(&ddp_orphan_pagesets_lock); while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) { ps = TAILQ_FIRST(&ddp_orphan_pagesets); TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link); mtx_unlock(&ddp_orphan_pagesets_lock); if (ps->vm) vmspace_free(ps->vm); free(ps, M_CXGBE); mtx_lock(&ddp_orphan_pagesets_lock); } mtx_unlock(&ddp_orphan_pagesets_lock); } static void recycle_pageset(struct toepcb *toep, struct pageset *ps) { DDP_ASSERT_LOCKED(toep); if (!(toep->ddp.flags & DDP_DEAD) && ps->flags & PS_WIRED) { KASSERT(toep->ddp.cached_count + toep->ddp.active_count < nitems(toep->ddp.db), ("too many wired pagesets")); TAILQ_INSERT_HEAD(&toep->ddp.cached_pagesets, ps, link); toep->ddp.cached_count++; } else free_pageset(toep->td, ps); } static void ddp_complete_one(struct kaiocb *job, int error) { long copied; /* * If this job had copied data out of the socket buffer before * it was cancelled, report it as a short read rather than an * error. */ copied = job->aio_received; if (copied != 0 || error == 0) aio_complete(job, copied, 0); else aio_complete(job, -1, error); } static void free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db) { if (db->job) { /* * XXX: If we are un-offloading the socket then we * should requeue these on the socket somehow. If we * got a FIN from the remote end, then this completes * any remaining requests with an EOF read. */ if (!aio_clear_cancel_function(db->job)) ddp_complete_one(db->job, 0); } if (db->ps) free_pageset(td, db->ps); } void ddp_init_toep(struct toepcb *toep) { TAILQ_INIT(&toep->ddp.aiojobq); TASK_INIT(&toep->ddp.requeue_task, 0, aio_ddp_requeue_task, toep); toep->ddp.flags = DDP_OK; toep->ddp.active_id = -1; mtx_init(&toep->ddp.lock, "t4 ddp", NULL, MTX_DEF); } void ddp_uninit_toep(struct toepcb *toep) { mtx_destroy(&toep->ddp.lock); } void release_ddp_resources(struct toepcb *toep) { struct pageset *ps; int i; DDP_LOCK(toep); toep->flags |= DDP_DEAD; for (i = 0; i < nitems(toep->ddp.db); i++) { free_ddp_buffer(toep->td, &toep->ddp.db[i]); } while ((ps = TAILQ_FIRST(&toep->ddp.cached_pagesets)) != NULL) { TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); free_pageset(toep->td, ps); } ddp_complete_all(toep, 0); DDP_UNLOCK(toep); } #ifdef INVARIANTS void ddp_assert_empty(struct toepcb *toep) { int i; MPASS(!(toep->ddp.flags & DDP_TASK_ACTIVE)); for (i = 0; i < nitems(toep->ddp.db); i++) { MPASS(toep->ddp.db[i].job == NULL); MPASS(toep->ddp.db[i].ps == NULL); } MPASS(TAILQ_EMPTY(&toep->ddp.cached_pagesets)); MPASS(TAILQ_EMPTY(&toep->ddp.aiojobq)); } #endif static void complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db, unsigned int db_idx) { unsigned int db_flag; toep->ddp.active_count--; if (toep->ddp.active_id == db_idx) { if (toep->ddp.active_count == 0) { KASSERT(toep->ddp.db[db_idx ^ 1].job == NULL, ("%s: active_count mismatch", __func__)); toep->ddp.active_id = -1; } else toep->ddp.active_id ^= 1; #ifdef VERBOSE_TRACES CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__, toep->ddp.active_id); #endif } else { KASSERT(toep->ddp.active_count != 0 && toep->ddp.active_id != -1, ("%s: active count mismatch", __func__)); } db->cancel_pending = 0; db->job = NULL; recycle_pageset(toep, db->ps); db->ps = NULL; db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; KASSERT(toep->ddp.flags & db_flag, ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x", __func__, toep, toep->ddp.flags)); toep->ddp.flags &= ~db_flag; } /* XXX: handle_ddp_data code duplication */ void insert_ddp_data(struct toepcb *toep, uint32_t n) { struct inpcb *inp = toep->inp; struct tcpcb *tp = intotcpcb(inp); struct ddp_buffer *db; struct kaiocb *job; size_t placed; long copied; unsigned int db_flag, db_idx; INP_WLOCK_ASSERT(inp); DDP_ASSERT_LOCKED(toep); tp->rcv_nxt += n; #ifndef USE_DDP_RX_FLOW_CONTROL KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__)); tp->rcv_wnd -= n; #endif #ifndef USE_DDP_RX_FLOW_CONTROL toep->rx_credits += n; #endif CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP", __func__, n); while (toep->ddp.active_count > 0) { MPASS(toep->ddp.active_id != -1); db_idx = toep->ddp.active_id; db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; MPASS((toep->ddp.flags & db_flag) != 0); db = &toep->ddp.db[db_idx]; job = db->job; copied = job->aio_received; placed = n; if (placed > job->uaiocb.aio_nbytes - copied) placed = job->uaiocb.aio_nbytes - copied; if (placed > 0) job->msgrcv = 1; if (!aio_clear_cancel_function(job)) { /* * Update the copied length for when * t4_aio_cancel_active() completes this * request. */ job->aio_received += placed; } else if (copied + placed != 0) { CTR4(KTR_CXGBE, "%s: completing %p (copied %ld, placed %lu)", __func__, job, copied, placed); /* XXX: This always completes if there is some data. */ aio_complete(job, copied + placed, 0); } else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) { TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); toep->ddp.waiting_count++; } else aio_cancel(job); n -= placed; complete_ddp_buffer(toep, db, db_idx); } MPASS(n == 0); } /* SET_TCB_FIELD sent as a ULP command looks like this */ #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \ sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core)) /* RX_DATA_ACK sent as a ULP command looks like this */ #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \ sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core)) static inline void * mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep, uint64_t word, uint64_t mask, uint64_t val) { struct ulptx_idata *ulpsc; struct cpl_set_tcb_field_core *req; ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16)); ulpsc = (struct ulptx_idata *)(ulpmc + 1); ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); ulpsc->len = htobe32(sizeof(*req)); req = (struct cpl_set_tcb_field_core *)(ulpsc + 1); OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid)); req->reply_ctrl = htobe16(V_NO_REPLY(1) | V_QUEUENO(toep->ofld_rxq->iq.abs_id)); req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0)); req->mask = htobe64(mask); req->val = htobe64(val); ulpsc = (struct ulptx_idata *)(req + 1); if (LEN__SET_TCB_FIELD_ULP % 16) { ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); ulpsc->len = htobe32(0); return (ulpsc + 1); } return (ulpsc); } static inline void * mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep) { struct ulptx_idata *ulpsc; struct cpl_rx_data_ack_core *req; ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16)); ulpsc = (struct ulptx_idata *)(ulpmc + 1); ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); ulpsc->len = htobe32(sizeof(*req)); req = (struct cpl_rx_data_ack_core *)(ulpsc + 1); OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid)); req->credit_dack = htobe32(F_RX_MODULATE_RX); ulpsc = (struct ulptx_idata *)(req + 1); if (LEN__RX_DATA_ACK_ULP % 16) { ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); ulpsc->len = htobe32(0); return (ulpsc + 1); } return (ulpsc); } static struct wrqe * mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx, struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask) { struct wrqe *wr; struct work_request_hdr *wrh; struct ulp_txpkt *ulpmc; int len; KASSERT(db_idx == 0 || db_idx == 1, ("%s: bad DDP buffer index %d", __func__, db_idx)); /* * We'll send a compound work request that has 3 SET_TCB_FIELDs and an * RX_DATA_ACK (with RX_MODULATE to speed up delivery). * * The work request header is 16B and always ends at a 16B boundary. * The ULPTX master commands that follow must all end at 16B boundaries * too so we round up the size to 16. */ len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) + roundup2(LEN__RX_DATA_ACK_ULP, 16); wr = alloc_wrqe(len, toep->ctrlq); if (wr == NULL) return (NULL); wrh = wrtod(wr); INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ ulpmc = (struct ulp_txpkt *)(wrh + 1); /* Write the buffer's tag */ ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_BUF0_TAG + db_idx, V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG), V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag)); /* Update the current offset in the DDP buffer and its total length */ if (db_idx == 0) ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_BUF0_OFFSET, V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) | V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN), V_TCB_RX_DDP_BUF0_OFFSET(offset) | V_TCB_RX_DDP_BUF0_LEN(ps->len)); else ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_BUF1_OFFSET, V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) | V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32), V_TCB_RX_DDP_BUF1_OFFSET(offset) | V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32)); /* Update DDP flags */ ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS, ddp_flags_mask, ddp_flags); /* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */ ulpmc = mk_rx_data_ack_ulp(ulpmc, toep); return (wr); } static int handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len) { uint32_t report = be32toh(ddp_report); unsigned int db_idx; struct inpcb *inp = toep->inp; struct ddp_buffer *db; struct tcpcb *tp; struct socket *so; struct sockbuf *sb; struct kaiocb *job; long copied; db_idx = report & F_DDP_BUF_IDX ? 1 : 0; if (__predict_false(!(report & F_DDP_INV))) CXGBE_UNIMPLEMENTED("DDP buffer still valid"); INP_WLOCK(inp); so = inp_inpcbtosocket(inp); sb = &so->so_rcv; DDP_LOCK(toep); KASSERT(toep->ddp.active_id == db_idx, ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx, toep->ddp.active_id, toep->tid)); db = &toep->ddp.db[db_idx]; job = db->job; if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) { /* * This can happen due to an administrative tcpdrop(8). * Just fail the request with ECONNRESET. */ CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x", __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags); if (aio_clear_cancel_function(job)) ddp_complete_one(job, ECONNRESET); goto completed; } tp = intotcpcb(inp); /* * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the * sequence number of the next byte to receive. The length of * the data received for this message must be computed by * comparing the new and old values of rcv_nxt. * * For RX_DATA_DDP, len might be non-zero, but it is only the * length of the most recent DMA. It does not include the * total length of the data received since the previous update * for this DDP buffer. rcv_nxt is the sequence number of the * first received byte from the most recent DMA. */ len += be32toh(rcv_nxt) - tp->rcv_nxt; tp->rcv_nxt += len; tp->t_rcvtime = ticks; #ifndef USE_DDP_RX_FLOW_CONTROL KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__)); tp->rcv_wnd -= len; #endif #ifdef VERBOSE_TRACES CTR4(KTR_CXGBE, "%s: DDP[%d] placed %d bytes (%#x)", __func__, db_idx, len, report); #endif /* receive buffer autosize */ MPASS(toep->vnet == so->so_vnet); CURVNET_SET(toep->vnet); SOCKBUF_LOCK(sb); if (sb->sb_flags & SB_AUTOSIZE && V_tcp_do_autorcvbuf && sb->sb_hiwat < V_tcp_autorcvbuf_max && len > (sbspace(sb) / 8 * 7)) { unsigned int hiwat = sb->sb_hiwat; unsigned int newsize = min(hiwat + V_tcp_autorcvbuf_inc, V_tcp_autorcvbuf_max); if (!sbreserve_locked(sb, newsize, so, NULL)) sb->sb_flags &= ~SB_AUTOSIZE; else toep->rx_credits += newsize - hiwat; } SOCKBUF_UNLOCK(sb); CURVNET_RESTORE(); #ifndef USE_DDP_RX_FLOW_CONTROL toep->rx_credits += len; #endif job->msgrcv = 1; if (db->cancel_pending) { /* * Update the job's length but defer completion to the * TCB_RPL callback. */ job->aio_received += len; goto out; } else if (!aio_clear_cancel_function(job)) { /* * Update the copied length for when * t4_aio_cancel_active() completes this request. */ job->aio_received += len; } else { copied = job->aio_received; #ifdef VERBOSE_TRACES CTR4(KTR_CXGBE, "%s: completing %p (copied %ld, placed %d)", __func__, job, copied, len); #endif aio_complete(job, copied + len, 0); t4_rcvd(&toep->td->tod, tp); } completed: complete_ddp_buffer(toep, db, db_idx); if (toep->ddp.waiting_count > 0) ddp_queue_toep(toep); out: DDP_UNLOCK(toep); INP_WUNLOCK(inp); return (0); } void handle_ddp_indicate(struct toepcb *toep) { DDP_ASSERT_LOCKED(toep); MPASS(toep->ddp.active_count == 0); MPASS((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0); if (toep->ddp.waiting_count == 0) { /* * The pending requests that triggered the request for an * an indicate were cancelled. Those cancels should have * already disabled DDP. Just ignore this as the data is * going into the socket buffer anyway. */ return; } CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__, toep->tid, toep->ddp.waiting_count); ddp_queue_toep(toep); } enum { DDP_BUF0_INVALIDATED = 0x2, DDP_BUF1_INVALIDATED }; void handle_ddp_tcb_rpl(struct toepcb *toep, const struct cpl_set_tcb_rpl *cpl) { unsigned int db_idx; struct inpcb *inp = toep->inp; struct ddp_buffer *db; struct kaiocb *job; long copied; if (cpl->status != CPL_ERR_NONE) panic("XXX: tcp_rpl failed: %d", cpl->status); switch (cpl->cookie) { case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF0_INVALIDATED): case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF1_INVALIDATED): /* * XXX: This duplicates a lot of code with handle_ddp_data(). */ db_idx = G_COOKIE(cpl->cookie) - DDP_BUF0_INVALIDATED; INP_WLOCK(inp); DDP_LOCK(toep); db = &toep->ddp.db[db_idx]; /* * handle_ddp_data() should leave the job around until * this callback runs once a cancel is pending. */ MPASS(db != NULL); MPASS(db->job != NULL); MPASS(db->cancel_pending); /* * XXX: It's not clear what happens if there is data * placed when the buffer is invalidated. I suspect we * need to read the TCB to see how much data was placed. * * For now this just pretends like nothing was placed. * * XXX: Note that if we did check the PCB we would need to * also take care of updating the tp, etc. */ job = db->job; copied = job->aio_received; if (copied == 0) { CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job); aio_cancel(job); } else { CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)", __func__, job, copied); aio_complete(job, copied, 0); t4_rcvd(&toep->td->tod, intotcpcb(inp)); } complete_ddp_buffer(toep, db, db_idx); if (toep->ddp.waiting_count > 0) ddp_queue_toep(toep); DDP_UNLOCK(toep); INP_WUNLOCK(inp); break; default: panic("XXX: unknown tcb_rpl offset %#x, cookie %#x", G_WORD(cpl->cookie), G_COOKIE(cpl->cookie)); } } void handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt) { struct ddp_buffer *db; struct kaiocb *job; long copied; unsigned int db_flag, db_idx; int len, placed; INP_WLOCK_ASSERT(toep->inp); DDP_ASSERT_LOCKED(toep); len = be32toh(rcv_nxt) - tp->rcv_nxt; tp->rcv_nxt += len; #ifndef USE_DDP_RX_FLOW_CONTROL toep->rx_credits += len; #endif while (toep->ddp.active_count > 0) { MPASS(toep->ddp.active_id != -1); db_idx = toep->ddp.active_id; db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; MPASS((toep->ddp.flags & db_flag) != 0); db = &toep->ddp.db[db_idx]; job = db->job; copied = job->aio_received; placed = len; if (placed > job->uaiocb.aio_nbytes - copied) placed = job->uaiocb.aio_nbytes - copied; if (placed > 0) job->msgrcv = 1; if (!aio_clear_cancel_function(job)) { /* * Update the copied length for when * t4_aio_cancel_active() completes this * request. */ job->aio_received += placed; } else { CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d", __func__, toep->tid, db_idx, placed); aio_complete(job, copied + placed, 0); } len -= placed; complete_ddp_buffer(toep, db, db_idx); } MPASS(len == 0); ddp_complete_all(toep, 0); } #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\ F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\ F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\ F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR) extern cpl_handler_t t4_cpl_handler[]; static int do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1); unsigned int tid = GET_TID(cpl); uint32_t vld; struct toepcb *toep = lookup_tid(sc, tid); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); KASSERT(!(toep->flags & TPF_SYNQE), ("%s: toep %p claims to be a synq entry", __func__, toep)); vld = be32toh(cpl->ddpvld); if (__predict_false(vld & DDP_ERR)) { panic("%s: DDP error 0x%x (tid %d, toep %p)", __func__, vld, tid, toep); } if (toep->ulp_mode == ULP_MODE_ISCSI) { t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m); return (0); } handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len)); return (0); } static int do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1); unsigned int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); KASSERT(!(toep->flags & TPF_SYNQE), ("%s: toep %p claims to be a synq entry", __func__, toep)); handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0); return (0); } static void enable_ddp(struct adapter *sc, struct toepcb *toep) { KASSERT((toep->ddp.flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK, ("%s: toep %p has bad ddp_flags 0x%x", __func__, toep, toep->ddp.flags)); CTR3(KTR_CXGBE, "%s: tid %u (time %u)", __func__, toep->tid, time_uptime); DDP_ASSERT_LOCKED(toep); toep->ddp.flags |= DDP_SC_REQ; - t4_set_tcb_field(sc, toep->ctrlq, toep->tid, W_TCB_RX_DDP_FLAGS, + t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS, V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) | V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) | V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1), - V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0, - toep->ofld_rxq->iq.abs_id); - t4_set_tcb_field(sc, toep->ctrlq, toep->tid, W_TCB_T_FLAGS, - V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0, toep->ofld_rxq->iq.abs_id); + V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0); + t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, + V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0); } static int calculate_hcf(int n1, int n2) { int a, b, t; if (n1 <= n2) { a = n1; b = n2; } else { a = n2; b = n1; } while (a != 0) { t = a; a = b % a; b = t; } return (b); } static inline int pages_to_nppods(int npages, int ddp_page_shift) { MPASS(ddp_page_shift >= PAGE_SHIFT); return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES)); } static int alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx, struct ppod_reservation *prsv) { vmem_addr_t addr; /* relative to start of region */ if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT, &addr) != 0) return (ENOMEM); CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d", __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask, nppods, 1 << pr->pr_page_shift[pgsz_idx]); /* * The hardware tagmask includes an extra invalid bit but the arena was * seeded with valid values only. An allocation out of this arena will * fit inside the tagmask but won't have the invalid bit set. */ MPASS((addr & pr->pr_tag_mask) == addr); MPASS((addr & pr->pr_invalid_bit) == 0); prsv->prsv_pr = pr; prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr; prsv->prsv_nppods = nppods; return (0); } int t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps) { int i, hcf, seglen, idx, nppods; struct ppod_reservation *prsv = &ps->prsv; KASSERT(prsv->prsv_nppods == 0, ("%s: page pods already allocated", __func__)); /* * The DDP page size is unrelated to the VM page size. We combine * contiguous physical pages into larger segments to get the best DDP * page size possible. This is the largest of the four sizes in * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in * the page list. */ hcf = 0; for (i = 0; i < ps->npages; i++) { seglen = PAGE_SIZE; while (i < ps->npages - 1 && ps->pages[i]->phys_addr + PAGE_SIZE == ps->pages[i + 1]->phys_addr) { seglen += PAGE_SIZE; i++; } hcf = calculate_hcf(hcf, seglen); if (hcf < (1 << pr->pr_page_shift[1])) { idx = 0; goto have_pgsz; /* give up, short circuit */ } } #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { if ((hcf & PR_PAGE_MASK(idx)) == 0) break; } #undef PR_PAGE_MASK have_pgsz: MPASS(idx <= M_PPOD_PGSZ); nppods = pages_to_nppods(ps->npages, pr->pr_page_shift[idx]); if (alloc_page_pods(pr, nppods, idx, prsv) != 0) return (0); MPASS(prsv->prsv_nppods > 0); return (1); } int t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len, struct ppod_reservation *prsv) { int hcf, seglen, idx, npages, nppods; uintptr_t start_pva, end_pva, pva, p1; MPASS(buf > 0); MPASS(len > 0); /* * The DDP page size is unrelated to the VM page size. We combine * contiguous physical pages into larger segments to get the best DDP * page size possible. This is the largest of the four sizes in * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes * in the page list. */ hcf = 0; start_pva = trunc_page(buf); end_pva = trunc_page(buf + len - 1); pva = start_pva; while (pva <= end_pva) { seglen = PAGE_SIZE; p1 = pmap_kextract(pva); pva += PAGE_SIZE; while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) { seglen += PAGE_SIZE; pva += PAGE_SIZE; } hcf = calculate_hcf(hcf, seglen); if (hcf < (1 << pr->pr_page_shift[1])) { idx = 0; goto have_pgsz; /* give up, short circuit */ } } #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { if ((hcf & PR_PAGE_MASK(idx)) == 0) break; } #undef PR_PAGE_MASK have_pgsz: MPASS(idx <= M_PPOD_PGSZ); npages = 1; npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; nppods = howmany(npages, PPOD_PAGES); if (alloc_page_pods(pr, nppods, idx, prsv) != 0) return (ENOMEM); MPASS(prsv->prsv_nppods > 0); return (0); } void t4_free_page_pods(struct ppod_reservation *prsv) { struct ppod_region *pr = prsv->prsv_pr; vmem_addr_t addr; MPASS(prsv != NULL); MPASS(prsv->prsv_nppods != 0); addr = prsv->prsv_tag & pr->pr_tag_mask; MPASS((addr & pr->pr_invalid_bit) == 0); CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__, pr->pr_arena, addr, prsv->prsv_nppods); vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods)); prsv->prsv_nppods = 0; } #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE) int t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid, struct pageset *ps) { struct wrqe *wr; struct ulp_mem_io *ulpmc; struct ulptx_idata *ulpsc; struct pagepod *ppod; int i, j, k, n, chunk, len, ddp_pgsz, idx; u_int ppod_addr; uint32_t cmd; struct ppod_reservation *prsv = &ps->prsv; struct ppod_region *pr = prsv->prsv_pr; KASSERT(!(ps->flags & PS_PPODS_WRITTEN), ("%s: page pods already written", __func__)); MPASS(prsv->prsv_nppods > 0); cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); if (is_t4(sc)) cmd |= htobe32(F_ULP_MEMIO_ORDER); else cmd |= htobe32(F_T5_ULP_MEMIO_IMM); ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { /* How many page pods are we writing in this cycle */ n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); chunk = PPOD_SZ(n); len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); wr = alloc_wrqe(len, wrq); if (wr == NULL) return (ENOMEM); /* ok to just bail out */ ulpmc = wrtod(wr); INIT_ULPTX_WR(ulpmc, len, 0, 0); ulpmc->cmd = cmd; ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); ulpsc = (struct ulptx_idata *)(ulpmc + 1); ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); ulpsc->len = htobe32(chunk); ppod = (struct pagepod *)(ulpsc + 1); for (j = 0; j < n; i++, j++, ppod++) { ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | V_PPOD_TID(tid) | prsv->prsv_tag); ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) | V_PPOD_OFST(ps->offset)); ppod->rsvd = 0; idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); for (k = 0; k < nitems(ppod->addr); k++) { if (idx < ps->npages) { ppod->addr[k] = htobe64(ps->pages[idx]->phys_addr); idx += ddp_pgsz / PAGE_SIZE; } else ppod->addr[k] = 0; #if 0 CTR5(KTR_CXGBE, "%s: tid %d ppod[%d]->addr[%d] = %p", __func__, toep->tid, i, k, htobe64(ppod->addr[k])); #endif } } t4_wrq_tx(sc, wr); } ps->flags |= PS_PPODS_WRITTEN; return (0); } int t4_write_page_pods_for_buf(struct adapter *sc, struct sge_wrq *wrq, int tid, struct ppod_reservation *prsv, vm_offset_t buf, int buflen) { struct wrqe *wr; struct ulp_mem_io *ulpmc; struct ulptx_idata *ulpsc; struct pagepod *ppod; int i, j, k, n, chunk, len, ddp_pgsz; u_int ppod_addr, offset; uint32_t cmd; struct ppod_region *pr = prsv->prsv_pr; uintptr_t end_pva, pva, pa; cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); if (is_t4(sc)) cmd |= htobe32(F_ULP_MEMIO_ORDER); else cmd |= htobe32(F_T5_ULP_MEMIO_IMM); ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; offset = buf & PAGE_MASK; ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); pva = trunc_page(buf); end_pva = trunc_page(buf + buflen - 1); for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { /* How many page pods are we writing in this cycle */ n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); MPASS(n > 0); chunk = PPOD_SZ(n); len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); wr = alloc_wrqe(len, wrq); if (wr == NULL) return (ENOMEM); /* ok to just bail out */ ulpmc = wrtod(wr); INIT_ULPTX_WR(ulpmc, len, 0, 0); ulpmc->cmd = cmd; ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); ulpsc = (struct ulptx_idata *)(ulpmc + 1); ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); ulpsc->len = htobe32(chunk); ppod = (struct pagepod *)(ulpsc + 1); for (j = 0; j < n; i++, j++, ppod++) { ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | V_PPOD_TID(tid) | (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); ppod->len_offset = htobe64(V_PPOD_LEN(buflen) | V_PPOD_OFST(offset)); ppod->rsvd = 0; for (k = 0; k < nitems(ppod->addr); k++) { if (pva > end_pva) ppod->addr[k] = 0; else { pa = pmap_kextract(pva); ppod->addr[k] = htobe64(pa); pva += ddp_pgsz; } #if 0 CTR5(KTR_CXGBE, "%s: tid %d ppod[%d]->addr[%d] = %p", __func__, tid, i, k, htobe64(ppod->addr[k])); #endif } /* * Walk back 1 segment so that the first address in the * next pod is the same as the last one in the current * pod. */ pva -= ddp_pgsz; } t4_wrq_tx(sc, wr); } MPASS(pva <= end_pva); return (0); } static void wire_pageset(struct pageset *ps) { vm_page_t p; int i; KASSERT(!(ps->flags & PS_WIRED), ("pageset already wired")); for (i = 0; i < ps->npages; i++) { p = ps->pages[i]; vm_page_lock(p); vm_page_wire(p); vm_page_unhold(p); vm_page_unlock(p); } ps->flags |= PS_WIRED; } /* * Prepare a pageset for DDP. This wires the pageset and sets up page * pods. */ static int prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps) { struct tom_data *td = sc->tom_softc; if (!(ps->flags & PS_WIRED)) wire_pageset(ps); if (ps->prsv.prsv_nppods == 0 && !t4_alloc_page_pods_for_ps(&td->pr, ps)) { return (0); } if (!(ps->flags & PS_PPODS_WRITTEN) && t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) { return (0); } return (1); } int t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz, const char *name) { int i; MPASS(pr != NULL); MPASS(r->size > 0); pr->pr_start = r->start; pr->pr_len = r->size; pr->pr_page_shift[0] = 12 + G_HPZ0(psz); pr->pr_page_shift[1] = 12 + G_HPZ1(psz); pr->pr_page_shift[2] = 12 + G_HPZ2(psz); pr->pr_page_shift[3] = 12 + G_HPZ3(psz); /* The SGL -> page pod algorithm requires the sizes to be in order. */ for (i = 1; i < nitems(pr->pr_page_shift); i++) { if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1]) return (ENXIO); } pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG); pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask; if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0) return (ENXIO); pr->pr_alias_shift = fls(pr->pr_tag_mask); pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1); pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0, M_FIRSTFIT | M_NOWAIT); if (pr->pr_arena == NULL) return (ENOMEM); return (0); } void t4_free_ppod_region(struct ppod_region *pr) { MPASS(pr != NULL); if (pr->pr_arena) vmem_destroy(pr->pr_arena); bzero(pr, sizeof(*pr)); } static int pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages, int pgoff, int len) { if (ps->start != start || ps->npages != npages || ps->offset != pgoff || ps->len != len) return (1); return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp); } static int hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps) { struct vmspace *vm; vm_map_t map; vm_offset_t start, end, pgoff; struct pageset *ps; int n; DDP_ASSERT_LOCKED(toep); /* * The AIO subsystem will cancel and drain all requests before * permitting a process to exit or exec, so p_vmspace should * be stable here. */ vm = job->userproc->p_vmspace; map = &vm->vm_map; start = (uintptr_t)job->uaiocb.aio_buf; pgoff = start & PAGE_MASK; end = round_page(start + job->uaiocb.aio_nbytes); start = trunc_page(start); if (end - start > MAX_DDP_BUFFER_SIZE) { /* * Truncate the request to a short read. * Alternatively, we could DDP in chunks to the larger * buffer, but that would be quite a bit more work. * * When truncating, round the request down to avoid * crossing a cache line on the final transaction. */ end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE); #ifdef VERBOSE_TRACES CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu", __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes, (unsigned long)(end - (start + pgoff))); job->uaiocb.aio_nbytes = end - (start + pgoff); #endif end = round_page(end); } n = atop(end - start); /* * Try to reuse a cached pageset. */ TAILQ_FOREACH(ps, &toep->ddp.cached_pagesets, link) { if (pscmp(ps, vm, start, n, pgoff, job->uaiocb.aio_nbytes) == 0) { TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); toep->ddp.cached_count--; *pps = ps; return (0); } } /* * If there are too many cached pagesets to create a new one, * free a pageset before creating a new one. */ KASSERT(toep->ddp.active_count + toep->ddp.cached_count <= nitems(toep->ddp.db), ("%s: too many wired pagesets", __func__)); if (toep->ddp.active_count + toep->ddp.cached_count == nitems(toep->ddp.db)) { KASSERT(toep->ddp.cached_count > 0, ("no cached pageset to free")); ps = TAILQ_LAST(&toep->ddp.cached_pagesets, pagesetq); TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); toep->ddp.cached_count--; free_pageset(toep->td, ps); } DDP_UNLOCK(toep); /* Create a new pageset. */ ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK | M_ZERO); ps->pages = (vm_page_t *)(ps + 1); ps->vm_timestamp = map->timestamp; ps->npages = vm_fault_quick_hold_pages(map, start, end - start, VM_PROT_WRITE, ps->pages, n); DDP_LOCK(toep); if (ps->npages < 0) { free(ps, M_CXGBE); return (EFAULT); } KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d", ps->npages, n)); ps->offset = pgoff; ps->len = job->uaiocb.aio_nbytes; atomic_add_int(&vm->vm_refcnt, 1); ps->vm = vm; ps->start = start; CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d", __func__, toep->tid, ps, job, ps->npages); *pps = ps; return (0); } static void ddp_complete_all(struct toepcb *toep, int error) { struct kaiocb *job; DDP_ASSERT_LOCKED(toep); while (!TAILQ_EMPTY(&toep->ddp.aiojobq)) { job = TAILQ_FIRST(&toep->ddp.aiojobq); TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); toep->ddp.waiting_count--; if (aio_clear_cancel_function(job)) ddp_complete_one(job, error); } } static void aio_ddp_cancel_one(struct kaiocb *job) { long copied; /* * If this job had copied data out of the socket buffer before * it was cancelled, report it as a short read rather than an * error. */ copied = job->aio_received; if (copied != 0) aio_complete(job, copied, 0); else aio_cancel(job); } /* * Called when the main loop wants to requeue a job to retry it later. * Deals with the race of the job being cancelled while it was being * examined. */ static void aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job) { DDP_ASSERT_LOCKED(toep); if (!(toep->ddp.flags & DDP_DEAD) && aio_set_cancel_function(job, t4_aio_cancel_queued)) { TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); toep->ddp.waiting_count++; } else aio_ddp_cancel_one(job); } static void aio_ddp_requeue(struct toepcb *toep) { struct adapter *sc = td_adapter(toep->td); struct socket *so; struct sockbuf *sb; struct inpcb *inp; struct kaiocb *job; struct ddp_buffer *db; size_t copied, offset, resid; struct pageset *ps; struct mbuf *m; uint64_t ddp_flags, ddp_flags_mask; struct wrqe *wr; int buf_flag, db_idx, error; DDP_ASSERT_LOCKED(toep); restart: if (toep->ddp.flags & DDP_DEAD) { MPASS(toep->ddp.waiting_count == 0); MPASS(toep->ddp.active_count == 0); return; } if (toep->ddp.waiting_count == 0 || toep->ddp.active_count == nitems(toep->ddp.db)) { return; } job = TAILQ_FIRST(&toep->ddp.aiojobq); so = job->fd_file->f_data; sb = &so->so_rcv; SOCKBUF_LOCK(sb); /* We will never get anything unless we are or were connected. */ if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { SOCKBUF_UNLOCK(sb); ddp_complete_all(toep, ENOTCONN); return; } KASSERT(toep->ddp.active_count == 0 || sbavail(sb) == 0, ("%s: pending sockbuf data and DDP is active", __func__)); /* Abort if socket has reported problems. */ /* XXX: Wait for any queued DDP's to finish and/or flush them? */ if (so->so_error && sbavail(sb) == 0) { toep->ddp.waiting_count--; TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); if (!aio_clear_cancel_function(job)) { SOCKBUF_UNLOCK(sb); goto restart; } /* * If this job has previously copied some data, report * a short read and leave the error to be reported by * a future request. */ copied = job->aio_received; if (copied != 0) { SOCKBUF_UNLOCK(sb); aio_complete(job, copied, 0); goto restart; } error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(sb); aio_complete(job, -1, error); goto restart; } /* * Door is closed. If there is pending data in the socket buffer, * deliver it. If there are pending DDP requests, wait for those * to complete. Once they have completed, return EOF reads. */ if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { SOCKBUF_UNLOCK(sb); if (toep->ddp.active_count != 0) return; ddp_complete_all(toep, 0); return; } /* * If DDP is not enabled and there is no pending socket buffer * data, try to enable DDP. */ if (sbavail(sb) == 0 && (toep->ddp.flags & DDP_ON) == 0) { SOCKBUF_UNLOCK(sb); /* * Wait for the card to ACK that DDP is enabled before * queueing any buffers. Currently this waits for an * indicate to arrive. This could use a TCB_SET_FIELD_RPL * message to know that DDP was enabled instead of waiting * for the indicate which would avoid copying the indicate * if no data is pending. * * XXX: Might want to limit the indicate size to the size * of the first queued request. */ if ((toep->ddp.flags & DDP_SC_REQ) == 0) enable_ddp(sc, toep); return; } SOCKBUF_UNLOCK(sb); /* * If another thread is queueing a buffer for DDP, let it * drain any work and return. */ if (toep->ddp.queueing != NULL) return; /* Take the next job to prep it for DDP. */ toep->ddp.waiting_count--; TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); if (!aio_clear_cancel_function(job)) goto restart; toep->ddp.queueing = job; /* NB: This drops DDP_LOCK while it holds the backing VM pages. */ error = hold_aio(toep, job, &ps); if (error != 0) { ddp_complete_one(job, error); toep->ddp.queueing = NULL; goto restart; } SOCKBUF_LOCK(sb); if (so->so_error && sbavail(sb) == 0) { copied = job->aio_received; if (copied != 0) { SOCKBUF_UNLOCK(sb); recycle_pageset(toep, ps); aio_complete(job, copied, 0); toep->ddp.queueing = NULL; goto restart; } error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(sb); recycle_pageset(toep, ps); aio_complete(job, -1, error); toep->ddp.queueing = NULL; goto restart; } if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { SOCKBUF_UNLOCK(sb); recycle_pageset(toep, ps); if (toep->ddp.active_count != 0) { /* * The door is closed, but there are still pending * DDP buffers. Requeue. These jobs will all be * completed once those buffers drain. */ aio_ddp_requeue_one(toep, job); toep->ddp.queueing = NULL; return; } ddp_complete_one(job, 0); ddp_complete_all(toep, 0); toep->ddp.queueing = NULL; return; } sbcopy: /* * If the toep is dead, there shouldn't be any data in the socket * buffer, so the above case should have handled this. */ MPASS(!(toep->ddp.flags & DDP_DEAD)); /* * If there is pending data in the socket buffer (either * from before the requests were queued or a DDP indicate), * copy those mbufs out directly. */ copied = 0; offset = ps->offset + job->aio_received; MPASS(job->aio_received <= job->uaiocb.aio_nbytes); resid = job->uaiocb.aio_nbytes - job->aio_received; m = sb->sb_mb; KASSERT(m == NULL || toep->ddp.active_count == 0, ("%s: sockbuf data with active DDP", __func__)); while (m != NULL && resid > 0) { struct iovec iov[1]; struct uio uio; int error; iov[0].iov_base = mtod(m, void *); iov[0].iov_len = m->m_len; if (iov[0].iov_len > resid) iov[0].iov_len = resid; uio.uio_iov = iov; uio.uio_iovcnt = 1; uio.uio_offset = 0; uio.uio_resid = iov[0].iov_len; uio.uio_segflg = UIO_SYSSPACE; uio.uio_rw = UIO_WRITE; error = uiomove_fromphys(ps->pages, offset + copied, uio.uio_resid, &uio); MPASS(error == 0 && uio.uio_resid == 0); copied += uio.uio_offset; resid -= uio.uio_offset; m = m->m_next; } if (copied != 0) { sbdrop_locked(sb, copied); job->aio_received += copied; job->msgrcv = 1; copied = job->aio_received; inp = sotoinpcb(so); if (!INP_TRY_WLOCK(inp)) { /* * The reference on the socket file descriptor in * the AIO job should keep 'sb' and 'inp' stable. * Our caller has a reference on the 'toep' that * keeps it stable. */ SOCKBUF_UNLOCK(sb); DDP_UNLOCK(toep); INP_WLOCK(inp); DDP_LOCK(toep); SOCKBUF_LOCK(sb); /* * If the socket has been closed, we should detect * that and complete this request if needed on * the next trip around the loop. */ } t4_rcvd_locked(&toep->td->tod, intotcpcb(inp)); INP_WUNLOCK(inp); if (resid == 0 || toep->ddp.flags & DDP_DEAD) { /* * We filled the entire buffer with socket * data, DDP is not being used, or the socket * is being shut down, so complete the * request. */ SOCKBUF_UNLOCK(sb); recycle_pageset(toep, ps); aio_complete(job, copied, 0); toep->ddp.queueing = NULL; goto restart; } /* * If DDP is not enabled, requeue this request and restart. * This will either enable DDP or wait for more data to * arrive on the socket buffer. */ if ((toep->ddp.flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) { SOCKBUF_UNLOCK(sb); recycle_pageset(toep, ps); aio_ddp_requeue_one(toep, job); toep->ddp.queueing = NULL; goto restart; } /* * An indicate might have arrived and been added to * the socket buffer while it was unlocked after the * copy to lock the INP. If so, restart the copy. */ if (sbavail(sb) != 0) goto sbcopy; } SOCKBUF_UNLOCK(sb); if (prep_pageset(sc, toep, ps) == 0) { recycle_pageset(toep, ps); aio_ddp_requeue_one(toep, job); toep->ddp.queueing = NULL; /* * XXX: Need to retry this later. Mostly need a trigger * when page pods are freed up. */ printf("%s: prep_pageset failed\n", __func__); return; } /* Determine which DDP buffer to use. */ if (toep->ddp.db[0].job == NULL) { db_idx = 0; } else { MPASS(toep->ddp.db[1].job == NULL); db_idx = 1; } ddp_flags = 0; ddp_flags_mask = 0; if (db_idx == 0) { ddp_flags |= V_TF_DDP_BUF0_VALID(1); if (so->so_state & SS_NBIO) ddp_flags |= V_TF_DDP_BUF0_FLUSH(1); ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) | V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) | V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1); buf_flag = DDP_BUF0_ACTIVE; } else { ddp_flags |= V_TF_DDP_BUF1_VALID(1); if (so->so_state & SS_NBIO) ddp_flags |= V_TF_DDP_BUF1_FLUSH(1); ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) | V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) | V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1); buf_flag = DDP_BUF1_ACTIVE; } MPASS((toep->ddp.flags & buf_flag) == 0); if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) { MPASS(db_idx == 0); MPASS(toep->ddp.active_id == -1); MPASS(toep->ddp.active_count == 0); ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1); } /* * The TID for this connection should still be valid. If DDP_DEAD * is set, SBS_CANTRCVMORE should be set, so we shouldn't be * this far anyway. Even if the socket is closing on the other * end, the AIO job holds a reference on this end of the socket * which will keep it open and keep the TCP PCB attached until * after the job is completed. */ wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received, ddp_flags, ddp_flags_mask); if (wr == NULL) { recycle_pageset(toep, ps); aio_ddp_requeue_one(toep, job); toep->ddp.queueing = NULL; /* * XXX: Need a way to kick a retry here. * * XXX: We know the fixed size needed and could * preallocate this using a blocking request at the * start of the task to avoid having to handle this * edge case. */ printf("%s: mk_update_tcb_for_ddp failed\n", __func__); return; } if (!aio_set_cancel_function(job, t4_aio_cancel_active)) { free_wrqe(wr); recycle_pageset(toep, ps); aio_ddp_cancel_one(job); toep->ddp.queueing = NULL; goto restart; } #ifdef VERBOSE_TRACES CTR5(KTR_CXGBE, "%s: scheduling %p for DDP[%d] (flags %#lx/%#lx)", __func__, job, db_idx, ddp_flags, ddp_flags_mask); #endif /* Give the chip the go-ahead. */ t4_wrq_tx(sc, wr); db = &toep->ddp.db[db_idx]; db->cancel_pending = 0; db->job = job; db->ps = ps; toep->ddp.queueing = NULL; toep->ddp.flags |= buf_flag; toep->ddp.active_count++; if (toep->ddp.active_count == 1) { MPASS(toep->ddp.active_id == -1); toep->ddp.active_id = db_idx; CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__, toep->ddp.active_id); } goto restart; } void ddp_queue_toep(struct toepcb *toep) { DDP_ASSERT_LOCKED(toep); if (toep->ddp.flags & DDP_TASK_ACTIVE) return; toep->ddp.flags |= DDP_TASK_ACTIVE; hold_toepcb(toep); soaio_enqueue(&toep->ddp.requeue_task); } static void aio_ddp_requeue_task(void *context, int pending) { struct toepcb *toep = context; DDP_LOCK(toep); aio_ddp_requeue(toep); toep->ddp.flags &= ~DDP_TASK_ACTIVE; DDP_UNLOCK(toep); free_toepcb(toep); } static void t4_aio_cancel_active(struct kaiocb *job) { struct socket *so = job->fd_file->f_data; struct tcpcb *tp = so_sototcpcb(so); struct toepcb *toep = tp->t_toe; struct adapter *sc = td_adapter(toep->td); uint64_t valid_flag; int i; DDP_LOCK(toep); if (aio_cancel_cleared(job)) { DDP_UNLOCK(toep); aio_ddp_cancel_one(job); return; } for (i = 0; i < nitems(toep->ddp.db); i++) { if (toep->ddp.db[i].job == job) { /* Should only ever get one cancel request for a job. */ MPASS(toep->ddp.db[i].cancel_pending == 0); /* * Invalidate this buffer. It will be * cancelled or partially completed once the * card ACKs the invalidate. */ valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) : V_TF_DDP_BUF1_VALID(1); - t4_set_tcb_field(sc, toep->ctrlq, toep->tid, + t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1, - i + DDP_BUF0_INVALIDATED, - toep->ofld_rxq->iq.abs_id); + i + DDP_BUF0_INVALIDATED); toep->ddp.db[i].cancel_pending = 1; CTR2(KTR_CXGBE, "%s: request %p marked pending", __func__, job); break; } } DDP_UNLOCK(toep); } static void t4_aio_cancel_queued(struct kaiocb *job) { struct socket *so = job->fd_file->f_data; struct tcpcb *tp = so_sototcpcb(so); struct toepcb *toep = tp->t_toe; DDP_LOCK(toep); if (!aio_cancel_cleared(job)) { TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); toep->ddp.waiting_count--; if (toep->ddp.waiting_count == 0) ddp_queue_toep(toep); } CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job); DDP_UNLOCK(toep); aio_ddp_cancel_one(job); } int t4_aio_queue_ddp(struct socket *so, struct kaiocb *job) { struct tcpcb *tp = so_sototcpcb(so); struct toepcb *toep = tp->t_toe; /* Ignore writes. */ if (job->uaiocb.aio_lio_opcode != LIO_READ) return (EOPNOTSUPP); DDP_LOCK(toep); /* * XXX: Think about possibly returning errors for ENOTCONN, * etc. Perhaps the caller would only queue the request * if it failed with EOPNOTSUPP? */ #ifdef VERBOSE_TRACES CTR2(KTR_CXGBE, "%s: queueing %p", __func__, job); #endif if (!aio_set_cancel_function(job, t4_aio_cancel_queued)) panic("new job was cancelled"); TAILQ_INSERT_TAIL(&toep->ddp.aiojobq, job, list); toep->ddp.waiting_count++; toep->ddp.flags |= DDP_OK; /* * Try to handle this request synchronously. If this has * to block because the task is running, it will just bail * and let the task handle it instead. */ aio_ddp_requeue(toep); DDP_UNLOCK(toep); return (0); } void t4_ddp_mod_load(void) { t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp); t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete); TAILQ_INIT(&ddp_orphan_pagesets); mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF); TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL); } void t4_ddp_mod_unload(void) { taskqueue_drain(taskqueue_thread, &ddp_orphan_task); MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets)); mtx_destroy(&ddp_orphan_pagesets_lock); t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL); t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL); } #endif Index: head/sys/dev/cxgbe/tom/t4_tls.c =================================================================== --- head/sys/dev/cxgbe/tom/t4_tls.c (revision 331648) +++ head/sys/dev/cxgbe/tom/t4_tls.c (revision 331649) @@ -1,1650 +1,1649 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2017-2018 Chelsio Communications, Inc. * All rights reserved. * Written by: John Baldwin * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_inet.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #ifdef TCP_OFFLOAD #include "common/common.h" #include "common/t4_tcb.h" #include "tom/t4_tom_l2t.h" #include "tom/t4_tom.h" /* * The TCP sequence number of a CPL_TLS_DATA mbuf is saved here while * the mbuf is in the ulp_pdu_reclaimq. */ #define tls_tcp_seq PH_loc.thirtytwo[0] /* * Handshake lock used for the handshake timer. Having a global lock * is perhaps not ideal, but it avoids having to use callout_drain() * in tls_uninit_toep() which can't block. Also, the timer shouldn't * actually fire for most connections. */ static struct mtx tls_handshake_lock; static void t4_set_tls_tcb_field(struct toepcb *toep, uint16_t word, uint64_t mask, uint64_t val) { struct adapter *sc = td_adapter(toep->td); - t4_set_tcb_field(sc, toep->ctrlq, toep->tid, word, mask, val, 0, 0, - toep->ofld_rxq->iq.abs_id); + t4_set_tcb_field(sc, toep->ofld_txq, toep, word, mask, val, 0, 0); } /* TLS and DTLS common routines */ bool can_tls_offload(struct adapter *sc) { return (sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS); } int tls_tx_key(struct toepcb *toep) { struct tls_ofld_info *tls_ofld = &toep->tls; return (tls_ofld->tx_key_addr >= 0); } int tls_rx_key(struct toepcb *toep) { struct tls_ofld_info *tls_ofld = &toep->tls; return (tls_ofld->rx_key_addr >= 0); } static int key_size(struct toepcb *toep) { struct tls_ofld_info *tls_ofld = &toep->tls; return ((tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_IMMEDIATE) ? tls_ofld->k_ctx.tx_key_info_size : KEY_IN_DDR_SIZE); } /* Set TLS Key-Id in TCB */ static void t4_set_tls_keyid(struct toepcb *toep, unsigned int key_id) { t4_set_tls_tcb_field(toep, W_TCB_RX_TLS_KEY_TAG, V_TCB_RX_TLS_KEY_TAG(M_TCB_RX_TLS_BUF_TAG), V_TCB_RX_TLS_KEY_TAG(key_id)); } /* Clear TF_RX_QUIESCE to re-enable receive. */ static void t4_clear_rx_quiesce(struct toepcb *toep) { t4_set_tls_tcb_field(toep, W_TCB_T_FLAGS, V_TF_RX_QUIESCE(1), 0); } static void tls_clr_ofld_mode(struct toepcb *toep) { tls_stop_handshake_timer(toep); /* Operate in PDU extraction mode only. */ t4_set_tls_tcb_field(toep, W_TCB_ULP_RAW, V_TCB_ULP_RAW(M_TCB_ULP_RAW), V_TCB_ULP_RAW(V_TF_TLS_ENABLE(1))); t4_clear_rx_quiesce(toep); } static void tls_clr_quiesce(struct toepcb *toep) { tls_stop_handshake_timer(toep); t4_clear_rx_quiesce(toep); } /* * Calculate the TLS data expansion size */ static int tls_expansion_size(struct toepcb *toep, int data_len, int full_pdus_only, unsigned short *pdus_per_ulp) { struct tls_ofld_info *tls_ofld = &toep->tls; struct tls_scmd *scmd = &tls_ofld->scmd0; int expn_size = 0, frag_count = 0, pad_per_pdu = 0, pad_last_pdu = 0, last_frag_size = 0, max_frag_size = 0; int exp_per_pdu = 0; int hdr_len = TLS_HEADER_LENGTH; do { max_frag_size = tls_ofld->k_ctx.frag_size; if (G_SCMD_CIPH_MODE(scmd->seqno_numivs) == SCMD_CIPH_MODE_AES_GCM) { frag_count = (data_len / max_frag_size); exp_per_pdu = GCM_TAG_SIZE + AEAD_EXPLICIT_DATA_SIZE + hdr_len; expn_size = frag_count * exp_per_pdu; if (full_pdus_only) { *pdus_per_ulp = data_len / (exp_per_pdu + max_frag_size); if (*pdus_per_ulp > 32) *pdus_per_ulp = 32; else if(!*pdus_per_ulp) *pdus_per_ulp = 1; expn_size = (*pdus_per_ulp) * exp_per_pdu; break; } if ((last_frag_size = data_len % max_frag_size) > 0) { frag_count += 1; expn_size += exp_per_pdu; } break; } else if (G_SCMD_CIPH_MODE(scmd->seqno_numivs) != SCMD_CIPH_MODE_NOP) { /* Calculate the number of fragments we can make */ frag_count = (data_len / max_frag_size); if (frag_count > 0) { pad_per_pdu = (((howmany((max_frag_size + tls_ofld->mac_length), CIPHER_BLOCK_SIZE)) * CIPHER_BLOCK_SIZE) - (max_frag_size + tls_ofld->mac_length)); if (!pad_per_pdu) pad_per_pdu = CIPHER_BLOCK_SIZE; exp_per_pdu = pad_per_pdu + tls_ofld->mac_length + hdr_len + CIPHER_BLOCK_SIZE; expn_size = frag_count * exp_per_pdu; } if (full_pdus_only) { *pdus_per_ulp = data_len / (exp_per_pdu + max_frag_size); if (*pdus_per_ulp > 32) *pdus_per_ulp = 32; else if (!*pdus_per_ulp) *pdus_per_ulp = 1; expn_size = (*pdus_per_ulp) * exp_per_pdu; break; } /* Consider the last fragment */ if ((last_frag_size = data_len % max_frag_size) > 0) { pad_last_pdu = (((howmany((last_frag_size + tls_ofld->mac_length), CIPHER_BLOCK_SIZE)) * CIPHER_BLOCK_SIZE) - (last_frag_size + tls_ofld->mac_length)); if (!pad_last_pdu) pad_last_pdu = CIPHER_BLOCK_SIZE; expn_size += (pad_last_pdu + tls_ofld->mac_length + hdr_len + CIPHER_BLOCK_SIZE); } } } while (0); return (expn_size); } /* Copy Key to WR */ static void tls_copy_tx_key(struct toepcb *toep, void *dst) { struct tls_ofld_info *tls_ofld = &toep->tls; struct ulptx_sc_memrd *sc_memrd; struct ulptx_idata *sc; if (tls_ofld->k_ctx.tx_key_info_size <= 0) return; if (tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_DDR) { sc = dst; sc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); sc->len = htobe32(0); sc_memrd = (struct ulptx_sc_memrd *)(sc + 1); sc_memrd->cmd_to_len = htobe32(V_ULPTX_CMD(ULP_TX_SC_MEMRD) | V_ULP_TX_SC_MORE(1) | V_ULPTX_LEN16(tls_ofld->k_ctx.tx_key_info_size >> 4)); sc_memrd->addr = htobe32(tls_ofld->tx_key_addr >> 5); } else if (tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_IMMEDIATE) { memcpy(dst, &tls_ofld->k_ctx.tx, tls_ofld->k_ctx.tx_key_info_size); } } /* TLS/DTLS content type for CPL SFO */ static inline unsigned char tls_content_type(unsigned char content_type) { /* * XXX: Shouldn't this map CONTENT_TYPE_APP_DATA to DATA and * default to "CUSTOM" for all other types including * heartbeat? */ switch (content_type) { case CONTENT_TYPE_CCS: return CPL_TX_TLS_SFO_TYPE_CCS; case CONTENT_TYPE_ALERT: return CPL_TX_TLS_SFO_TYPE_ALERT; case CONTENT_TYPE_HANDSHAKE: return CPL_TX_TLS_SFO_TYPE_HANDSHAKE; case CONTENT_TYPE_HEARTBEAT: return CPL_TX_TLS_SFO_TYPE_HEARTBEAT; } return CPL_TX_TLS_SFO_TYPE_DATA; } static unsigned char get_cipher_key_size(unsigned int ck_size) { switch (ck_size) { case AES_NOP: /* NOP */ return 15; case AES_128: /* AES128 */ return CH_CK_SIZE_128; case AES_192: /* AES192 */ return CH_CK_SIZE_192; case AES_256: /* AES256 */ return CH_CK_SIZE_256; default: return CH_CK_SIZE_256; } } static unsigned char get_mac_key_size(unsigned int mk_size) { switch (mk_size) { case SHA_NOP: /* NOP */ return CH_MK_SIZE_128; case SHA_GHASH: /* GHASH */ case SHA_512: /* SHA512 */ return CH_MK_SIZE_512; case SHA_224: /* SHA2-224 */ return CH_MK_SIZE_192; case SHA_256: /* SHA2-256*/ return CH_MK_SIZE_256; case SHA_384: /* SHA384 */ return CH_MK_SIZE_512; case SHA1: /* SHA1 */ default: return CH_MK_SIZE_160; } } static unsigned int get_proto_ver(int proto_ver) { switch (proto_ver) { case TLS1_2_VERSION: return TLS_1_2_VERSION; case TLS1_1_VERSION: return TLS_1_1_VERSION; case DTLS1_2_VERSION: return DTLS_1_2_VERSION; default: return TLS_VERSION_MAX; } } static void tls_rxkey_flit1(struct tls_keyctx *kwr, struct tls_key_context *kctx) { if (kctx->state.enc_mode == CH_EVP_CIPH_GCM_MODE) { kwr->u.rxhdr.ivinsert_to_authinsrt = htobe64(V_TLS_KEYCTX_TX_WR_IVINSERT(6ULL) | V_TLS_KEYCTX_TX_WR_AADSTRTOFST(1ULL) | V_TLS_KEYCTX_TX_WR_AADSTOPOFST(5ULL) | V_TLS_KEYCTX_TX_WR_AUTHSRTOFST(14ULL) | V_TLS_KEYCTX_TX_WR_AUTHSTOPOFST(16ULL) | V_TLS_KEYCTX_TX_WR_CIPHERSRTOFST(14ULL) | V_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST(0ULL) | V_TLS_KEYCTX_TX_WR_AUTHINSRT(16ULL)); kwr->u.rxhdr.ivpresent_to_rxmk_size &= ~(V_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT(1)); kwr->u.rxhdr.authmode_to_rxvalid &= ~(V_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL(1)); } else { kwr->u.rxhdr.ivinsert_to_authinsrt = htobe64(V_TLS_KEYCTX_TX_WR_IVINSERT(6ULL) | V_TLS_KEYCTX_TX_WR_AADSTRTOFST(1ULL) | V_TLS_KEYCTX_TX_WR_AADSTOPOFST(5ULL) | V_TLS_KEYCTX_TX_WR_AUTHSRTOFST(22ULL) | V_TLS_KEYCTX_TX_WR_AUTHSTOPOFST(0ULL) | V_TLS_KEYCTX_TX_WR_CIPHERSRTOFST(22ULL) | V_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST(0ULL) | V_TLS_KEYCTX_TX_WR_AUTHINSRT(0ULL)); } } /* Rx key */ static void prepare_rxkey_wr(struct tls_keyctx *kwr, struct tls_key_context *kctx) { unsigned int ck_size = kctx->cipher_secret_size; unsigned int mk_size = kctx->mac_secret_size; int proto_ver = kctx->proto_ver; kwr->u.rxhdr.flitcnt_hmacctrl = ((kctx->tx_key_info_size >> 4) << 3) | kctx->hmac_ctrl; kwr->u.rxhdr.protover_ciphmode = V_TLS_KEYCTX_TX_WR_PROTOVER(get_proto_ver(proto_ver)) | V_TLS_KEYCTX_TX_WR_CIPHMODE(kctx->state.enc_mode); kwr->u.rxhdr.authmode_to_rxvalid = V_TLS_KEYCTX_TX_WR_AUTHMODE(kctx->state.auth_mode) | V_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL(1) | V_TLS_KEYCTX_TX_WR_SEQNUMCTRL(3) | V_TLS_KEYCTX_TX_WR_RXVALID(1); kwr->u.rxhdr.ivpresent_to_rxmk_size = V_TLS_KEYCTX_TX_WR_IVPRESENT(0) | V_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT(1) | V_TLS_KEYCTX_TX_WR_RXCK_SIZE(get_cipher_key_size(ck_size)) | V_TLS_KEYCTX_TX_WR_RXMK_SIZE(get_mac_key_size(mk_size)); tls_rxkey_flit1(kwr, kctx); /* No key reversal for GCM */ if (kctx->state.enc_mode != CH_EVP_CIPH_GCM_MODE) { t4_aes_getdeckey(kwr->keys.edkey, kctx->rx.key, (kctx->cipher_secret_size << 3)); memcpy(kwr->keys.edkey + kctx->cipher_secret_size, kctx->rx.key + kctx->cipher_secret_size, (IPAD_SIZE + OPAD_SIZE)); } else { memcpy(kwr->keys.edkey, kctx->rx.key, (kctx->tx_key_info_size - SALT_SIZE)); memcpy(kwr->u.rxhdr.rxsalt, kctx->rx.salt, SALT_SIZE); } } /* Tx key */ static void prepare_txkey_wr(struct tls_keyctx *kwr, struct tls_key_context *kctx) { unsigned int ck_size = kctx->cipher_secret_size; unsigned int mk_size = kctx->mac_secret_size; kwr->u.txhdr.ctxlen = (kctx->tx_key_info_size >> 4); kwr->u.txhdr.dualck_to_txvalid = V_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT(1) | V_TLS_KEYCTX_TX_WR_SALT_PRESENT(1) | V_TLS_KEYCTX_TX_WR_TXCK_SIZE(get_cipher_key_size(ck_size)) | V_TLS_KEYCTX_TX_WR_TXMK_SIZE(get_mac_key_size(mk_size)) | V_TLS_KEYCTX_TX_WR_TXVALID(1); memcpy(kwr->keys.edkey, kctx->tx.key, HDR_KCTX_SIZE); if (kctx->state.enc_mode == CH_EVP_CIPH_GCM_MODE) { memcpy(kwr->u.txhdr.txsalt, kctx->tx.salt, SALT_SIZE); kwr->u.txhdr.dualck_to_txvalid &= ~(V_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT(1)); } kwr->u.txhdr.dualck_to_txvalid = htons(kwr->u.txhdr.dualck_to_txvalid); } /* TLS Key memory management */ int tls_init_kmap(struct adapter *sc, struct tom_data *td) { td->key_map = vmem_create("T4TLS key map", sc->vres.key.start, sc->vres.key.size, 8, 0, M_FIRSTFIT | M_NOWAIT); if (td->key_map == NULL) return (ENOMEM); return (0); } void tls_free_kmap(struct tom_data *td) { if (td->key_map != NULL) vmem_destroy(td->key_map); } static int get_new_keyid(struct toepcb *toep, struct tls_key_context *k_ctx) { struct tom_data *td = toep->td; vmem_addr_t addr; if (vmem_alloc(td->key_map, TLS_KEY_CONTEXT_SZ, M_NOWAIT | M_FIRSTFIT, &addr) != 0) return (-1); return (addr); } static void free_keyid(struct toepcb *toep, int keyid) { struct tom_data *td = toep->td; vmem_free(td->key_map, keyid, TLS_KEY_CONTEXT_SZ); } static void clear_tls_keyid(struct toepcb *toep) { struct tls_ofld_info *tls_ofld = &toep->tls; if (tls_ofld->rx_key_addr >= 0) { free_keyid(toep, tls_ofld->rx_key_addr); tls_ofld->rx_key_addr = -1; } if (tls_ofld->tx_key_addr >= 0) { free_keyid(toep, tls_ofld->tx_key_addr); tls_ofld->tx_key_addr = -1; } } static int get_keyid(struct tls_ofld_info *tls_ofld, unsigned int ops) { return (ops & KEY_WRITE_RX ? tls_ofld->rx_key_addr : ((ops & KEY_WRITE_TX) ? tls_ofld->rx_key_addr : -1)); } static int get_tp_plen_max(struct tls_ofld_info *tls_ofld) { int plen = ((min(3*4096, TP_TX_PG_SZ))/1448) * 1448; return (tls_ofld->k_ctx.frag_size <= 8192 ? plen : FC_TP_PLEN_MAX); } /* Send request to get the key-id */ static int tls_program_key_id(struct toepcb *toep, struct tls_key_context *k_ctx) { struct tls_ofld_info *tls_ofld = &toep->tls; struct adapter *sc = td_adapter(toep->td); struct ofld_tx_sdesc *txsd; int kwrlen, kctxlen, keyid, len; struct wrqe *wr; struct tls_key_req *kwr; struct tls_keyctx *kctx; kwrlen = roundup2(sizeof(*kwr), 16); kctxlen = roundup2(sizeof(*kctx), 32); len = kwrlen + kctxlen; if (toep->txsd_avail == 0) return (EAGAIN); /* Dont initialize key for re-neg */ if (!G_KEY_CLR_LOC(k_ctx->l_p_key)) { if ((keyid = get_new_keyid(toep, k_ctx)) < 0) { return (ENOSPC); } } else { keyid = get_keyid(tls_ofld, k_ctx->l_p_key); } wr = alloc_wrqe(len, toep->ofld_txq); if (wr == NULL) { free_keyid(toep, keyid); return (ENOMEM); } kwr = wrtod(wr); memset(kwr, 0, kwrlen); kwr->wr_hi = htobe32(V_FW_WR_OP(FW_ULPTX_WR) | F_FW_WR_COMPL | F_FW_WR_ATOMIC); kwr->wr_mid = htobe32(V_FW_WR_LEN16(DIV_ROUND_UP(len, 16)) | V_FW_WR_FLOWID(toep->tid)); kwr->protocol = get_proto_ver(k_ctx->proto_ver); kwr->mfs = htons(k_ctx->frag_size); kwr->reneg_to_write_rx = k_ctx->l_p_key; /* master command */ kwr->cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE) | V_T5_ULP_MEMIO_ORDER(1) | V_T5_ULP_MEMIO_IMM(1)); kwr->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(kctxlen >> 5)); kwr->len16 = htobe32((toep->tid << 8) | DIV_ROUND_UP(len - sizeof(struct work_request_hdr), 16)); kwr->kaddr = htobe32(V_ULP_MEMIO_ADDR(keyid >> 5)); /* sub command */ kwr->sc_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); kwr->sc_len = htobe32(kctxlen); /* XXX: This assumes that kwrlen == sizeof(*kwr). */ kctx = (struct tls_keyctx *)(kwr + 1); memset(kctx, 0, kctxlen); if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_TX) { tls_ofld->tx_key_addr = keyid; prepare_txkey_wr(kctx, k_ctx); } else if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) { tls_ofld->rx_key_addr = keyid; prepare_rxkey_wr(kctx, k_ctx); } txsd = &toep->txsd[toep->txsd_pidx]; txsd->tx_credits = DIV_ROUND_UP(len, 16); txsd->plen = 0; toep->tx_credits -= txsd->tx_credits; if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) toep->txsd_pidx = 0; toep->txsd_avail--; t4_wrq_tx(sc, wr); return (0); } /* Store a key received from SSL in DDR. */ static int program_key_context(struct tcpcb *tp, struct toepcb *toep, struct tls_key_context *uk_ctx) { struct adapter *sc = td_adapter(toep->td); struct tls_ofld_info *tls_ofld = &toep->tls; struct tls_key_context *k_ctx; int error, key_offset; if (tp->t_state != TCPS_ESTABLISHED) { /* * XXX: Matches Linux driver, but not sure this is a * very appropriate error. */ return (ENOENT); } /* Stop timer on handshake completion */ tls_stop_handshake_timer(toep); toep->flags &= ~TPF_FORCE_CREDITS; CTR4(KTR_CXGBE, "%s: tid %d %s proto_ver %#x", __func__, toep->tid, G_KEY_GET_LOC(uk_ctx->l_p_key) == KEY_WRITE_RX ? "KEY_WRITE_RX" : "KEY_WRITE_TX", uk_ctx->proto_ver); if (G_KEY_GET_LOC(uk_ctx->l_p_key) == KEY_WRITE_RX && toep->ulp_mode != ULP_MODE_TLS) return (EOPNOTSUPP); /* Don't copy the 'tx' and 'rx' fields. */ k_ctx = &tls_ofld->k_ctx; memcpy(&k_ctx->l_p_key, &uk_ctx->l_p_key, sizeof(*k_ctx) - offsetof(struct tls_key_context, l_p_key)); /* TLS version != 1.1 and !1.2 OR DTLS != 1.2 */ if (get_proto_ver(k_ctx->proto_ver) > DTLS_1_2_VERSION) { if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) { tls_ofld->rx_key_addr = -1; t4_clear_rx_quiesce(toep); } else { tls_ofld->tx_key_addr = -1; } return (0); } if (k_ctx->state.enc_mode == CH_EVP_CIPH_GCM_MODE) { k_ctx->iv_size = 4; k_ctx->mac_first = 0; k_ctx->hmac_ctrl = 0; } else { k_ctx->iv_size = 8; /* for CBC, iv is 16B, unit of 2B */ k_ctx->mac_first = 1; } tls_ofld->scmd0.seqno_numivs = (V_SCMD_SEQ_NO_CTRL(3) | V_SCMD_PROTO_VERSION(get_proto_ver(k_ctx->proto_ver)) | V_SCMD_ENC_DEC_CTRL(SCMD_ENCDECCTRL_ENCRYPT) | V_SCMD_CIPH_AUTH_SEQ_CTRL((k_ctx->mac_first == 0)) | V_SCMD_CIPH_MODE(k_ctx->state.enc_mode) | V_SCMD_AUTH_MODE(k_ctx->state.auth_mode) | V_SCMD_HMAC_CTRL(k_ctx->hmac_ctrl) | V_SCMD_IV_SIZE(k_ctx->iv_size)); tls_ofld->scmd0.ivgen_hdrlen = (V_SCMD_IV_GEN_CTRL(k_ctx->iv_ctrl) | V_SCMD_KEY_CTX_INLINE(0) | V_SCMD_TLS_FRAG_ENABLE(1)); tls_ofld->mac_length = k_ctx->mac_secret_size; if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) { k_ctx->rx = uk_ctx->rx; /* Dont initialize key for re-neg */ if (!G_KEY_CLR_LOC(k_ctx->l_p_key)) tls_ofld->rx_key_addr = -1; } else { k_ctx->tx = uk_ctx->tx; /* Dont initialize key for re-neg */ if (!G_KEY_CLR_LOC(k_ctx->l_p_key)) tls_ofld->tx_key_addr = -1; } /* Flush pending data before new Tx key becomes active */ if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_TX) { struct sockbuf *sb; /* XXX: This might not drain everything. */ t4_push_frames(sc, toep, 0); sb = &toep->inp->inp_socket->so_snd; SOCKBUF_LOCK(sb); /* XXX: This asserts that everything has been pushed. */ MPASS(sb->sb_sndptr == NULL || sb->sb_sndptr->m_next == NULL); sb->sb_sndptr = NULL; tls_ofld->sb_off = sbavail(sb); SOCKBUF_UNLOCK(sb); tls_ofld->tx_seq_no = 0; } if ((G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) || (tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_DDR)) { error = tls_program_key_id(toep, k_ctx); if (error) { /* XXX: Only clear quiesce for KEY_WRITE_RX? */ t4_clear_rx_quiesce(toep); return (error); } } if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) { /* * RX key tags are an index into the key portion of MA * memory stored as an offset from the base address in * units of 64 bytes. */ key_offset = tls_ofld->rx_key_addr - sc->vres.key.start; t4_set_tls_keyid(toep, key_offset / 64); t4_set_tls_tcb_field(toep, W_TCB_ULP_RAW, V_TCB_ULP_RAW(M_TCB_ULP_RAW), V_TCB_ULP_RAW((V_TF_TLS_KEY_SIZE(3) | V_TF_TLS_CONTROL(1) | V_TF_TLS_ACTIVE(1) | V_TF_TLS_ENABLE(1)))); t4_set_tls_tcb_field(toep, W_TCB_TLS_SEQ, V_TCB_TLS_SEQ(M_TCB_TLS_SEQ), V_TCB_TLS_SEQ(0)); t4_clear_rx_quiesce(toep); } else { unsigned short pdus_per_ulp; if (tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_IMMEDIATE) tls_ofld->tx_key_addr = 1; tls_ofld->fcplenmax = get_tp_plen_max(tls_ofld); tls_ofld->expn_per_ulp = tls_expansion_size(toep, tls_ofld->fcplenmax, 1, &pdus_per_ulp); tls_ofld->pdus_per_ulp = pdus_per_ulp; tls_ofld->adjusted_plen = tls_ofld->pdus_per_ulp * ((tls_ofld->expn_per_ulp/tls_ofld->pdus_per_ulp) + tls_ofld->k_ctx.frag_size); } return (0); } /* * In some cases a client connection can hang without sending the * ServerHelloDone message from the NIC to the host. Send a dummy * RX_DATA_ACK with RX_MODULATE to unstick the connection. */ static void tls_send_handshake_ack(void *arg) { struct toepcb *toep = arg; struct tls_ofld_info *tls_ofld = &toep->tls; struct adapter *sc = td_adapter(toep->td); /* * XXX: Does not have the t4_get_tcb() checks to refine the * workaround. */ callout_schedule(&tls_ofld->handshake_timer, TLS_SRV_HELLO_RD_TM * hz); CTR2(KTR_CXGBE, "%s: tid %d sending RX_DATA_ACK", __func__, toep->tid); send_rx_modulate(sc, toep); } static void tls_start_handshake_timer(struct toepcb *toep) { struct tls_ofld_info *tls_ofld = &toep->tls; mtx_lock(&tls_handshake_lock); callout_reset(&tls_ofld->handshake_timer, TLS_SRV_HELLO_BKOFF_TM * hz, tls_send_handshake_ack, toep); mtx_unlock(&tls_handshake_lock); } void tls_stop_handshake_timer(struct toepcb *toep) { struct tls_ofld_info *tls_ofld = &toep->tls; mtx_lock(&tls_handshake_lock); callout_stop(&tls_ofld->handshake_timer); mtx_unlock(&tls_handshake_lock); } int t4_ctloutput_tls(struct socket *so, struct sockopt *sopt) { struct tls_key_context uk_ctx; struct inpcb *inp; struct tcpcb *tp; struct toepcb *toep; int error, optval; error = 0; if (sopt->sopt_dir == SOPT_SET && sopt->sopt_name == TCP_TLSOM_SET_TLS_CONTEXT) { error = sooptcopyin(sopt, &uk_ctx, sizeof(uk_ctx), sizeof(uk_ctx)); if (error) return (error); } inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_ctloutput: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { INP_WUNLOCK(inp); return (ECONNRESET); } tp = intotcpcb(inp); toep = tp->t_toe; switch (sopt->sopt_dir) { case SOPT_SET: switch (sopt->sopt_name) { case TCP_TLSOM_SET_TLS_CONTEXT: error = program_key_context(tp, toep, &uk_ctx); INP_WUNLOCK(inp); break; case TCP_TLSOM_CLR_TLS_TOM: if (toep->ulp_mode == ULP_MODE_TLS) { CTR2(KTR_CXGBE, "%s: tid %d CLR_TLS_TOM", __func__, toep->tid); tls_clr_ofld_mode(toep); } else error = EOPNOTSUPP; INP_WUNLOCK(inp); break; case TCP_TLSOM_CLR_QUIES: if (toep->ulp_mode == ULP_MODE_TLS) { CTR2(KTR_CXGBE, "%s: tid %d CLR_QUIES", __func__, toep->tid); tls_clr_quiesce(toep); } else error = EOPNOTSUPP; INP_WUNLOCK(inp); break; default: INP_WUNLOCK(inp); error = EOPNOTSUPP; break; } break; case SOPT_GET: switch (sopt->sopt_name) { case TCP_TLSOM_GET_TLS_TOM: /* * TLS TX is permitted on any TOE socket, but * TLS RX requires a TLS ULP mode. */ optval = TLS_TOM_NONE; if (can_tls_offload(td_adapter(toep->td))) { switch (toep->ulp_mode) { case ULP_MODE_NONE: case ULP_MODE_TCPDDP: optval = TLS_TOM_TXONLY; break; case ULP_MODE_TLS: optval = TLS_TOM_BOTH; break; } } CTR3(KTR_CXGBE, "%s: tid %d GET_TLS_TOM = %d", __func__, toep->tid, optval); INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof(optval)); break; default: INP_WUNLOCK(inp); error = EOPNOTSUPP; break; } break; } return (error); } void tls_init_toep(struct toepcb *toep) { struct tls_ofld_info *tls_ofld = &toep->tls; tls_ofld->key_location = TLS_SFO_WR_CONTEXTLOC_DDR; tls_ofld->rx_key_addr = -1; tls_ofld->tx_key_addr = -1; if (toep->ulp_mode == ULP_MODE_TLS) callout_init_mtx(&tls_ofld->handshake_timer, &tls_handshake_lock, 0); } void tls_establish(struct toepcb *toep) { /* * Enable PDU extraction. * * XXX: Supposedly this should be done by the firmware when * the ULP_MODE FLOWC parameter is set in send_flowc_wr(), but * in practice this seems to be required. */ CTR2(KTR_CXGBE, "%s: tid %d setting TLS_ENABLE", __func__, toep->tid); t4_set_tls_tcb_field(toep, W_TCB_ULP_RAW, V_TCB_ULP_RAW(M_TCB_ULP_RAW), V_TCB_ULP_RAW(V_TF_TLS_ENABLE(1))); toep->flags |= TPF_FORCE_CREDITS; tls_start_handshake_timer(toep); } void tls_uninit_toep(struct toepcb *toep) { if (toep->ulp_mode == ULP_MODE_TLS) tls_stop_handshake_timer(toep); clear_tls_keyid(toep); } #define MAX_OFLD_TX_CREDITS (SGE_MAX_WR_LEN / 16) #define MIN_OFLD_TLSTX_CREDITS(toep) \ (howmany(sizeof(struct fw_tlstx_data_wr) + \ sizeof(struct cpl_tx_tls_sfo) + key_size((toep)) + \ CIPHER_BLOCK_SIZE + 1, 16)) static inline u_int max_imm_tls_space(int tx_credits) { const int n = 2; /* Use only up to 2 desc for imm. data WR */ int space; KASSERT(tx_credits >= 0 && tx_credits <= MAX_OFLD_TX_CREDITS, ("%s: %d credits", __func__, tx_credits)); if (tx_credits >= (n * EQ_ESIZE) / 16) space = (n * EQ_ESIZE); else space = tx_credits * 16; return (space); } static int count_mbuf_segs(struct mbuf *m, int skip, int len, int *max_nsegs_1mbufp) { int max_nsegs_1mbuf, n, nsegs; while (skip >= m->m_len) { skip -= m->m_len; m = m->m_next; } nsegs = 0; max_nsegs_1mbuf = 0; while (len > 0) { n = sglist_count(mtod(m, char *) + skip, m->m_len - skip); if (n > max_nsegs_1mbuf) max_nsegs_1mbuf = n; nsegs += n; len -= m->m_len - skip; skip = 0; m = m->m_next; } *max_nsegs_1mbufp = max_nsegs_1mbuf; return (nsegs); } static void write_tlstx_wr(struct fw_tlstx_data_wr *txwr, struct toepcb *toep, unsigned int immdlen, unsigned int plen, unsigned int expn, unsigned int pdus, uint8_t credits, int shove, int imm_ivs) { struct tls_ofld_info *tls_ofld = &toep->tls; unsigned int len = plen + expn; txwr->op_to_immdlen = htobe32(V_WR_OP(FW_TLSTX_DATA_WR) | V_FW_TLSTX_DATA_WR_COMPL(1) | V_FW_TLSTX_DATA_WR_IMMDLEN(immdlen)); txwr->flowid_len16 = htobe32(V_FW_TLSTX_DATA_WR_FLOWID(toep->tid) | V_FW_TLSTX_DATA_WR_LEN16(credits)); txwr->plen = htobe32(len); txwr->lsodisable_to_flags = htobe32(V_TX_ULP_MODE(ULP_MODE_TLS) | V_TX_URG(0) | /* F_T6_TX_FORCE | */ V_TX_SHOVE(shove)); txwr->ctxloc_to_exp = htobe32(V_FW_TLSTX_DATA_WR_NUMIVS(pdus) | V_FW_TLSTX_DATA_WR_EXP(expn) | V_FW_TLSTX_DATA_WR_CTXLOC(tls_ofld->key_location) | V_FW_TLSTX_DATA_WR_IVDSGL(!imm_ivs) | V_FW_TLSTX_DATA_WR_KEYSIZE(tls_ofld->k_ctx.tx_key_info_size >> 4)); txwr->mfs = htobe16(tls_ofld->k_ctx.frag_size); txwr->adjustedplen_pkd = htobe16( V_FW_TLSTX_DATA_WR_ADJUSTEDPLEN(tls_ofld->adjusted_plen)); txwr->expinplenmax_pkd = htobe16( V_FW_TLSTX_DATA_WR_EXPINPLENMAX(tls_ofld->expn_per_ulp)); txwr->pdusinplenmax_pkd = htobe16( V_FW_TLSTX_DATA_WR_PDUSINPLENMAX(tls_ofld->pdus_per_ulp)); } static void write_tlstx_cpl(struct cpl_tx_tls_sfo *cpl, struct toepcb *toep, struct tls_hdr *tls_hdr, unsigned int plen, unsigned int pdus) { struct tls_ofld_info *tls_ofld = &toep->tls; int data_type, seglen; if (plen < tls_ofld->k_ctx.frag_size) seglen = plen; else seglen = tls_ofld->k_ctx.frag_size; data_type = tls_content_type(tls_hdr->type); cpl->op_to_seg_len = htobe32(V_CPL_TX_TLS_SFO_OPCODE(CPL_TX_TLS_SFO) | V_CPL_TX_TLS_SFO_DATA_TYPE(data_type) | V_CPL_TX_TLS_SFO_CPL_LEN(2) | V_CPL_TX_TLS_SFO_SEG_LEN(seglen)); cpl->pld_len = htobe32(plen); if (data_type == CPL_TX_TLS_SFO_TYPE_HEARTBEAT) cpl->type_protover = htobe32( V_CPL_TX_TLS_SFO_TYPE(tls_hdr->type)); cpl->seqno_numivs = htobe32(tls_ofld->scmd0.seqno_numivs | V_SCMD_NUM_IVS(pdus)); cpl->ivgen_hdrlen = htobe32(tls_ofld->scmd0.ivgen_hdrlen); cpl->scmd1 = htobe64(tls_ofld->tx_seq_no); tls_ofld->tx_seq_no += pdus; } /* * Similar to write_tx_sgl() except that it accepts an optional * trailer buffer for IVs. */ static void write_tlstx_sgl(void *dst, struct mbuf *start, int skip, int plen, void *iv_buffer, int iv_len, int nsegs, int n) { struct mbuf *m; struct ulptx_sgl *usgl = dst; int i, j, rc; struct sglist sg; struct sglist_seg segs[n]; KASSERT(nsegs > 0, ("%s: nsegs 0", __func__)); sglist_init(&sg, n, segs); usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | V_ULPTX_NSGE(nsegs)); for (m = start; skip >= m->m_len; m = m->m_next) skip -= m->m_len; i = -1; for (m = start; plen > 0; m = m->m_next) { rc = sglist_append(&sg, mtod(m, char *) + skip, m->m_len - skip); if (__predict_false(rc != 0)) panic("%s: sglist_append %d", __func__, rc); plen -= m->m_len - skip; skip = 0; for (j = 0; j < sg.sg_nseg; i++, j++) { if (i < 0) { usgl->len0 = htobe32(segs[j].ss_len); usgl->addr0 = htobe64(segs[j].ss_paddr); } else { usgl->sge[i / 2].len[i & 1] = htobe32(segs[j].ss_len); usgl->sge[i / 2].addr[i & 1] = htobe64(segs[j].ss_paddr); } #ifdef INVARIANTS nsegs--; #endif } sglist_reset(&sg); } if (iv_buffer != NULL) { rc = sglist_append(&sg, iv_buffer, iv_len); if (__predict_false(rc != 0)) panic("%s: sglist_append %d", __func__, rc); for (j = 0; j < sg.sg_nseg; i++, j++) { if (i < 0) { usgl->len0 = htobe32(segs[j].ss_len); usgl->addr0 = htobe64(segs[j].ss_paddr); } else { usgl->sge[i / 2].len[i & 1] = htobe32(segs[j].ss_len); usgl->sge[i / 2].addr[i & 1] = htobe64(segs[j].ss_paddr); } #ifdef INVARIANTS nsegs--; #endif } } if (i & 1) usgl->sge[i / 2].len[1] = htobe32(0); KASSERT(nsegs == 0, ("%s: nsegs %d, start %p, iv_buffer %p", __func__, nsegs, start, iv_buffer)); } /* * Similar to t4_push_frames() but handles TLS sockets when TLS offload * is enabled. Rather than transmitting bulk data, the socket buffer * contains TLS records. The work request requires a full TLS record, * so batch mbufs up until a full TLS record is seen. This requires * reading the TLS header out of the start of each record to determine * its length. */ void t4_push_tls_records(struct adapter *sc, struct toepcb *toep, int drop) { struct tls_hdr thdr; struct mbuf *sndptr; struct fw_tlstx_data_wr *txwr; struct cpl_tx_tls_sfo *cpl; struct wrqe *wr; u_int plen, nsegs, credits, space, max_nsegs_1mbuf, wr_len; u_int expn_size, iv_len, pdus, sndptroff; struct tls_ofld_info *tls_ofld = &toep->tls; struct inpcb *inp = toep->inp; struct tcpcb *tp = intotcpcb(inp); struct socket *so = inp->inp_socket; struct sockbuf *sb = &so->so_snd; int tls_size, tx_credits, shove, /* compl,*/ sowwakeup; struct ofld_tx_sdesc *txsd; bool imm_ivs, imm_payload; void *iv_buffer, *iv_dst, *buf; INP_WLOCK_ASSERT(inp); KASSERT(toep->flags & TPF_FLOWC_WR_SENT, ("%s: flowc_wr not sent for tid %u.", __func__, toep->tid)); KASSERT(toep->ulp_mode == ULP_MODE_NONE || toep->ulp_mode == ULP_MODE_TCPDDP || toep->ulp_mode == ULP_MODE_TLS, ("%s: ulp_mode %u for toep %p", __func__, toep->ulp_mode, toep)); KASSERT(tls_tx_key(toep), ("%s: TX key not set for toep %p", __func__, toep)); #ifdef VERBOSE_TRACES CTR4(KTR_CXGBE, "%s: tid %d toep flags %#x tp flags %#x drop %d", __func__, toep->tid, toep->flags, tp->t_flags); #endif if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN)) return; #ifdef RATELIMIT if (__predict_false(inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) && (update_tx_rate_limit(sc, toep, so->so_max_pacing_rate) == 0)) { inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; } #endif /* * This function doesn't resume by itself. Someone else must clear the * flag and call this function. */ if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) { KASSERT(drop == 0, ("%s: drop (%d) != 0 but tx is suspended", __func__, drop)); return; } txsd = &toep->txsd[toep->txsd_pidx]; for (;;) { tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS); space = max_imm_tls_space(tx_credits); wr_len = sizeof(struct fw_tlstx_data_wr) + sizeof(struct cpl_tx_tls_sfo) + key_size(toep); if (wr_len + CIPHER_BLOCK_SIZE + 1 > space) { #ifdef VERBOSE_TRACES CTR5(KTR_CXGBE, "%s: tid %d tx_credits %d min_wr %d space %d", __func__, toep->tid, tx_credits, wr_len + CIPHER_BLOCK_SIZE + 1, space); #endif return; } SOCKBUF_LOCK(sb); sowwakeup = drop; if (drop) { sbdrop_locked(sb, drop); MPASS(tls_ofld->sb_off >= drop); tls_ofld->sb_off -= drop; drop = 0; } /* * Send a FIN if requested, but only if there's no * more data to send. */ if (sbavail(sb) == tls_ofld->sb_off && toep->flags & TPF_SEND_FIN) { if (sowwakeup) sowwakeup_locked(so); else SOCKBUF_UNLOCK(sb); SOCKBUF_UNLOCK_ASSERT(sb); t4_close_conn(sc, toep); return; } if (sbavail(sb) < tls_ofld->sb_off + TLS_HEADER_LENGTH) { /* * A full TLS header is not yet queued, stop * for now until more data is added to the * socket buffer. */ #ifdef VERBOSE_TRACES CTR4(KTR_CXGBE, "%s: tid %d sbavail %d sb_off %d", __func__, toep->tid, sbavail(sb), tls_ofld->sb_off); #endif if (sowwakeup) sowwakeup_locked(so); else SOCKBUF_UNLOCK(sb); SOCKBUF_UNLOCK_ASSERT(sb); return; } /* Read the header of the next TLS record. */ sndptr = sbsndmbuf(sb, tls_ofld->sb_off, &sndptroff); MPASS(!IS_AIOTX_MBUF(sndptr)); m_copydata(sndptr, sndptroff, sizeof(thdr), (caddr_t)&thdr); tls_size = htons(thdr.length); plen = TLS_HEADER_LENGTH + tls_size; pdus = howmany(tls_size, tls_ofld->k_ctx.frag_size); iv_len = pdus * CIPHER_BLOCK_SIZE; if (sbavail(sb) < tls_ofld->sb_off + plen) { /* * The full TLS record is not yet queued, stop * for now until more data is added to the * socket buffer. */ #ifdef VERBOSE_TRACES CTR5(KTR_CXGBE, "%s: tid %d sbavail %d sb_off %d plen %d", __func__, toep->tid, sbavail(sb), tls_ofld->sb_off, plen); #endif if (sowwakeup) sowwakeup_locked(so); else SOCKBUF_UNLOCK(sb); SOCKBUF_UNLOCK_ASSERT(sb); return; } /* Shove if there is no additional data pending. */ shove = (sbavail(sb) == tls_ofld->sb_off + plen) && !(tp->t_flags & TF_MORETOCOME); if (sb->sb_flags & SB_AUTOSIZE && V_tcp_do_autosndbuf && sb->sb_hiwat < V_tcp_autosndbuf_max && sbused(sb) >= sb->sb_hiwat * 7 / 8) { int newsize = min(sb->sb_hiwat + V_tcp_autosndbuf_inc, V_tcp_autosndbuf_max); if (!sbreserve_locked(sb, newsize, so, NULL)) sb->sb_flags &= ~SB_AUTOSIZE; else sowwakeup = 1; /* room available */ } if (sowwakeup) sowwakeup_locked(so); else SOCKBUF_UNLOCK(sb); SOCKBUF_UNLOCK_ASSERT(sb); if (__predict_false(toep->flags & TPF_FIN_SENT)) panic("%s: excess tx.", __func__); /* Determine whether to use immediate vs SGL. */ imm_payload = false; imm_ivs = false; if (wr_len + iv_len <= space) { imm_ivs = true; wr_len += iv_len; if (wr_len + tls_size <= space) { wr_len += tls_size; imm_payload = true; } } /* Allocate space for IVs if needed. */ if (!imm_ivs) { iv_buffer = malloc(iv_len, M_CXGBE, M_NOWAIT); if (iv_buffer == NULL) { /* * XXX: How to restart this? */ if (sowwakeup) sowwakeup_locked(so); else SOCKBUF_UNLOCK(sb); SOCKBUF_UNLOCK_ASSERT(sb); CTR3(KTR_CXGBE, "%s: tid %d failed to alloc IV space len %d", __func__, toep->tid, iv_len); return; } } else iv_buffer = NULL; /* Determine size of SGL. */ nsegs = 0; max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */ if (!imm_payload) { nsegs = count_mbuf_segs(sndptr, sndptroff + TLS_HEADER_LENGTH, tls_size, &max_nsegs_1mbuf); if (!imm_ivs) { int n = sglist_count(iv_buffer, iv_len); nsegs += n; if (n > max_nsegs_1mbuf) max_nsegs_1mbuf = n; } /* Account for SGL in work request length. */ wr_len += sizeof(struct ulptx_sgl) + ((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8; } wr = alloc_wrqe(roundup2(wr_len, 16), toep->ofld_txq); if (wr == NULL) { /* XXX: how will we recover from this? */ toep->flags |= TPF_TX_SUSPENDED; return; } #ifdef VERBOSE_TRACES CTR5(KTR_CXGBE, "%s: tid %d TLS record %d len %#x pdus %d", __func__, toep->tid, thdr.type, tls_size, pdus); #endif txwr = wrtod(wr); cpl = (struct cpl_tx_tls_sfo *)(txwr + 1); memset(txwr, 0, roundup2(wr_len, 16)); credits = howmany(wr_len, 16); expn_size = tls_expansion_size(toep, tls_size, 0, NULL); write_tlstx_wr(txwr, toep, imm_payload ? tls_size : 0, tls_size, expn_size, pdus, credits, shove, imm_ivs ? 1 : 0); write_tlstx_cpl(cpl, toep, &thdr, tls_size, pdus); tls_copy_tx_key(toep, cpl + 1); /* Generate random IVs */ buf = (char *)(cpl + 1) + key_size(toep); if (imm_ivs) { MPASS(iv_buffer == NULL); iv_dst = buf; buf = (char *)iv_dst + iv_len; } else iv_dst = iv_buffer; arc4rand(iv_dst, iv_len, 0); if (imm_payload) { m_copydata(sndptr, sndptroff + TLS_HEADER_LENGTH, tls_size, buf); } else { write_tlstx_sgl(buf, sndptr, sndptroff + TLS_HEADER_LENGTH, tls_size, iv_buffer, iv_len, nsegs, max_nsegs_1mbuf); } KASSERT(toep->tx_credits >= credits, ("%s: not enough credits", __func__)); toep->tx_credits -= credits; tp->snd_nxt += plen; tp->snd_max += plen; SOCKBUF_LOCK(sb); sbsndptr(sb, tls_ofld->sb_off, plen, &sndptroff); tls_ofld->sb_off += plen; SOCKBUF_UNLOCK(sb); toep->flags |= TPF_TX_DATA_SENT; if (toep->tx_credits < MIN_OFLD_TLSTX_CREDITS(toep)) toep->flags |= TPF_TX_SUSPENDED; KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__)); txsd->plen = plen; txsd->tx_credits = credits; txsd->iv_buffer = iv_buffer; txsd++; if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) { toep->txsd_pidx = 0; txsd = &toep->txsd[0]; } toep->txsd_avail--; atomic_add_long(&toep->vi->pi->tx_tls_records, 1); atomic_add_long(&toep->vi->pi->tx_tls_octets, plen); t4_l2t_send(sc, wr, toep->l2te); } } /* * For TLS data we place received mbufs received via CPL_TLS_DATA into * an mbufq in the TLS offload state. When CPL_RX_TLS_CMP is * received, the completed PDUs are placed into the socket receive * buffer. * * The TLS code reuses the ulp_pdu_reclaimq to hold the pending mbufs. */ static int do_tls_data(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_tls_data *cpl = mtod(m, const void *); unsigned int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); struct inpcb *inp = toep->inp; struct tcpcb *tp; int len; /* XXX: Should this match do_rx_data instead? */ KASSERT(!(toep->flags & TPF_SYNQE), ("%s: toep %p claims to be a synq entry", __func__, toep)); KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); /* strip off CPL header */ m_adj(m, sizeof(*cpl)); len = m->m_pkthdr.len; atomic_add_long(&toep->vi->pi->rx_tls_octets, len); KASSERT(len == G_CPL_TLS_DATA_LENGTH(be32toh(cpl->length_pkd)), ("%s: payload length mismatch", __func__)); INP_WLOCK(inp); if (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) { CTR4(KTR_CXGBE, "%s: tid %u, rx (%d bytes), inp_flags 0x%x", __func__, tid, len, inp->inp_flags); INP_WUNLOCK(inp); m_freem(m); return (0); } /* Save TCP sequence number. */ m->m_pkthdr.tls_tcp_seq = be32toh(cpl->seq); if (mbufq_enqueue(&toep->ulp_pdu_reclaimq, m)) { #ifdef INVARIANTS panic("Failed to queue TLS data packet"); #else printf("%s: Failed to queue TLS data packet\n", __func__); INP_WUNLOCK(inp); m_freem(m); return (0); #endif } tp = intotcpcb(inp); tp->t_rcvtime = ticks; #ifdef VERBOSE_TRACES CTR4(KTR_CXGBE, "%s: tid %u len %d seq %u", __func__, tid, len, be32toh(cpl->seq)); #endif INP_WUNLOCK(inp); return (0); } static int do_rx_tls_cmp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_rx_tls_cmp *cpl = mtod(m, const void *); struct tlsrx_hdr_pkt *tls_hdr_pkt; unsigned int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); struct inpcb *inp = toep->inp; struct tcpcb *tp; struct socket *so; struct sockbuf *sb; struct mbuf *tls_data; int len, pdu_length, pdu_overhead, sb_length; KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); KASSERT(!(toep->flags & TPF_SYNQE), ("%s: toep %p claims to be a synq entry", __func__, toep)); /* strip off CPL header */ m_adj(m, sizeof(*cpl)); len = m->m_pkthdr.len; atomic_add_long(&toep->vi->pi->rx_tls_records, 1); KASSERT(len == G_CPL_RX_TLS_CMP_LENGTH(be32toh(cpl->pdulength_length)), ("%s: payload length mismatch", __func__)); INP_WLOCK(inp); if (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) { CTR4(KTR_CXGBE, "%s: tid %u, rx (%d bytes), inp_flags 0x%x", __func__, tid, len, inp->inp_flags); INP_WUNLOCK(inp); m_freem(m); return (0); } pdu_length = G_CPL_RX_TLS_CMP_PDULENGTH(be32toh(cpl->pdulength_length)); tp = intotcpcb(inp); #ifdef VERBOSE_TRACES CTR6(KTR_CXGBE, "%s: tid %u PDU len %d len %d seq %u, rcv_nxt %u", __func__, tid, pdu_length, len, be32toh(cpl->seq), tp->rcv_nxt); #endif tp->rcv_nxt += pdu_length; if (tp->rcv_wnd < pdu_length) { toep->tls.rcv_over += pdu_length - tp->rcv_wnd; tp->rcv_wnd = 0; } else tp->rcv_wnd -= pdu_length; /* XXX: Not sure what to do about urgent data. */ /* * The payload of this CPL is the TLS header followed by * additional fields. */ KASSERT(m->m_len >= sizeof(*tls_hdr_pkt), ("%s: payload too small", __func__)); tls_hdr_pkt = mtod(m, void *); /* * Only the TLS header is sent to OpenSSL, so report errors by * altering the record type. */ if ((tls_hdr_pkt->res_to_mac_error & M_TLSRX_HDR_PKT_ERROR) != 0) tls_hdr_pkt->type = CONTENT_TYPE_ERROR; /* Trim this CPL's mbuf to only include the TLS header. */ KASSERT(m->m_len == len && m->m_next == NULL, ("%s: CPL spans multiple mbufs", __func__)); m->m_len = TLS_HEADER_LENGTH; m->m_pkthdr.len = TLS_HEADER_LENGTH; tls_data = mbufq_dequeue(&toep->ulp_pdu_reclaimq); if (tls_data != NULL) { KASSERT(be32toh(cpl->seq) == tls_data->m_pkthdr.tls_tcp_seq, ("%s: sequence mismatch", __func__)); /* * Update the TLS header length to be the length of * the payload data. */ tls_hdr_pkt->length = htobe16(tls_data->m_pkthdr.len); m->m_next = tls_data; m->m_pkthdr.len += tls_data->m_len; } so = inp_inpcbtosocket(inp); sb = &so->so_rcv; SOCKBUF_LOCK(sb); if (__predict_false(sb->sb_state & SBS_CANTRCVMORE)) { CTR3(KTR_CXGBE, "%s: tid %u, excess rx (%d bytes)", __func__, tid, pdu_length); m_freem(m); SOCKBUF_UNLOCK(sb); INP_WUNLOCK(inp); CURVNET_SET(toep->vnet); INP_INFO_RLOCK(&V_tcbinfo); INP_WLOCK(inp); tp = tcp_drop(tp, ECONNRESET); if (tp) INP_WUNLOCK(inp); INP_INFO_RUNLOCK(&V_tcbinfo); CURVNET_RESTORE(); return (0); } /* * Not all of the bytes on the wire are included in the socket * buffer (e.g. the MAC of the TLS record). However, those * bytes are included in the TCP sequence space. To handle * this, compute the delta for this TLS record in * 'pdu_overhead' and treat those bytes as having already been * "read" by the application for the purposes of expanding the * window. The meat of the TLS record passed to the * application ('sb_length') will still not be counted as * "read" until userland actually reads the bytes. * * XXX: Some of the calculations below are probably still not * really correct. */ sb_length = m->m_pkthdr.len; pdu_overhead = pdu_length - sb_length; toep->rx_credits += pdu_overhead; tp->rcv_wnd += pdu_overhead; tp->rcv_adv += pdu_overhead; /* receive buffer autosize */ MPASS(toep->vnet == so->so_vnet); CURVNET_SET(toep->vnet); if (sb->sb_flags & SB_AUTOSIZE && V_tcp_do_autorcvbuf && sb->sb_hiwat < V_tcp_autorcvbuf_max && sb_length > (sbspace(sb) / 8 * 7)) { unsigned int hiwat = sb->sb_hiwat; unsigned int newsize = min(hiwat + V_tcp_autorcvbuf_inc, V_tcp_autorcvbuf_max); if (!sbreserve_locked(sb, newsize, so, NULL)) sb->sb_flags &= ~SB_AUTOSIZE; else toep->rx_credits += newsize - hiwat; } KASSERT(toep->sb_cc >= sbused(sb), ("%s: sb %p has more data (%d) than last time (%d).", __func__, sb, sbused(sb), toep->sb_cc)); toep->rx_credits += toep->sb_cc - sbused(sb); sbappendstream_locked(sb, m, 0); toep->sb_cc = sbused(sb); #ifdef VERBOSE_TRACES CTR5(KTR_CXGBE, "%s: tid %u PDU overhead %d rx_credits %u rcv_wnd %u", __func__, tid, pdu_overhead, toep->rx_credits, tp->rcv_wnd); #endif if (toep->rx_credits > 0 && toep->sb_cc + tp->rcv_wnd < sb->sb_lowat) { int credits; credits = send_rx_credits(sc, toep, toep->rx_credits); toep->rx_credits -= credits; tp->rcv_wnd += credits; tp->rcv_adv += credits; } sorwakeup_locked(so); SOCKBUF_UNLOCK_ASSERT(sb); INP_WUNLOCK(inp); CURVNET_RESTORE(); return (0); } void t4_tls_mod_load(void) { mtx_init(&tls_handshake_lock, "t4tls handshake", NULL, MTX_DEF); t4_register_cpl_handler(CPL_TLS_DATA, do_tls_data); t4_register_cpl_handler(CPL_RX_TLS_CMP, do_rx_tls_cmp); } void t4_tls_mod_unload(void) { t4_register_cpl_handler(CPL_TLS_DATA, NULL); t4_register_cpl_handler(CPL_RX_TLS_CMP, NULL); mtx_destroy(&tls_handshake_lock); } #endif /* TCP_OFFLOAD */ Index: head/sys/dev/cxgbe/tom/t4_tom.c =================================================================== --- head/sys/dev/cxgbe/tom/t4_tom.c (revision 331648) +++ head/sys/dev/cxgbe/tom/t4_tom.c (revision 331649) @@ -1,1342 +1,1342 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2012 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ratelimit.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TCPSTATES #include #include #include #include #ifdef TCP_OFFLOAD #include "common/common.h" #include "common/t4_msg.h" #include "common/t4_regs.h" #include "common/t4_regs_values.h" #include "common/t4_tcb.h" #include "tom/t4_tom_l2t.h" #include "tom/t4_tom.h" #include "tom/t4_tls.h" static struct protosw toe_protosw; static struct pr_usrreqs toe_usrreqs; static struct protosw toe6_protosw; static struct pr_usrreqs toe6_usrreqs; /* Module ops */ static int t4_tom_mod_load(void); static int t4_tom_mod_unload(void); static int t4_tom_modevent(module_t, int, void *); /* ULD ops and helpers */ static int t4_tom_activate(struct adapter *); static int t4_tom_deactivate(struct adapter *); static struct uld_info tom_uld_info = { .uld_id = ULD_TOM, .activate = t4_tom_activate, .deactivate = t4_tom_deactivate, }; static void queue_tid_release(struct adapter *, int); static void release_offload_resources(struct toepcb *); static int alloc_tid_tabs(struct tid_info *); static void free_tid_tabs(struct tid_info *); static int add_lip(struct adapter *, struct in6_addr *); static int delete_lip(struct adapter *, struct in6_addr *); static struct clip_entry *search_lip(struct tom_data *, struct in6_addr *); static void init_clip_table(struct adapter *, struct tom_data *); static void update_clip(struct adapter *, void *); static void t4_clip_task(void *, int); static void update_clip_table(struct adapter *, struct tom_data *); static void destroy_clip_table(struct adapter *, struct tom_data *); static void free_tom_data(struct adapter *, struct tom_data *); static void reclaim_wr_resources(void *, int); static int in6_ifaddr_gen; static eventhandler_tag ifaddr_evhandler; static struct timeout_task clip_task; struct toepcb * alloc_toepcb(struct vi_info *vi, int txqid, int rxqid, int flags) { struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct toepcb *toep; int tx_credits, txsd_total, len; /* * The firmware counts tx work request credits in units of 16 bytes * each. Reserve room for an ABORT_REQ so the driver never has to worry * about tx credits if it wants to abort a connection. */ tx_credits = sc->params.ofldq_wr_cred; tx_credits -= howmany(sizeof(struct cpl_abort_req), 16); /* * Shortest possible tx work request is a fw_ofld_tx_data_wr + 1 byte * immediate payload, and firmware counts tx work request credits in * units of 16 byte. Calculate the maximum work requests possible. */ txsd_total = tx_credits / howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16); if (txqid < 0) txqid = (arc4random() % vi->nofldtxq) + vi->first_ofld_txq; KASSERT(txqid >= vi->first_ofld_txq && txqid < vi->first_ofld_txq + vi->nofldtxq, ("%s: txqid %d for vi %p (first %d, n %d)", __func__, txqid, vi, vi->first_ofld_txq, vi->nofldtxq)); if (rxqid < 0) rxqid = (arc4random() % vi->nofldrxq) + vi->first_ofld_rxq; KASSERT(rxqid >= vi->first_ofld_rxq && rxqid < vi->first_ofld_rxq + vi->nofldrxq, ("%s: rxqid %d for vi %p (first %d, n %d)", __func__, rxqid, vi, vi->first_ofld_rxq, vi->nofldrxq)); len = offsetof(struct toepcb, txsd) + txsd_total * sizeof(struct ofld_tx_sdesc); toep = malloc(len, M_CXGBE, M_ZERO | flags); if (toep == NULL) return (NULL); refcount_init(&toep->refcount, 1); toep->td = sc->tom_softc; toep->vi = vi; toep->tc_idx = -1; toep->tx_total = tx_credits; toep->tx_credits = tx_credits; toep->ofld_txq = &sc->sge.ofld_txq[txqid]; toep->ofld_rxq = &sc->sge.ofld_rxq[rxqid]; toep->ctrlq = &sc->sge.ctrlq[pi->port_id]; mbufq_init(&toep->ulp_pduq, INT_MAX); mbufq_init(&toep->ulp_pdu_reclaimq, INT_MAX); toep->txsd_total = txsd_total; toep->txsd_avail = txsd_total; toep->txsd_pidx = 0; toep->txsd_cidx = 0; aiotx_init_toep(toep); return (toep); } struct toepcb * hold_toepcb(struct toepcb *toep) { refcount_acquire(&toep->refcount); return (toep); } void free_toepcb(struct toepcb *toep) { if (refcount_release(&toep->refcount) == 0) return; KASSERT(!(toep->flags & TPF_ATTACHED), ("%s: attached to an inpcb", __func__)); KASSERT(!(toep->flags & TPF_CPL_PENDING), ("%s: CPL pending", __func__)); if (toep->ulp_mode == ULP_MODE_TCPDDP) ddp_uninit_toep(toep); tls_uninit_toep(toep); free(toep, M_CXGBE); } /* * Set up the socket for TCP offload. */ void offload_socket(struct socket *so, struct toepcb *toep) { struct tom_data *td = toep->td; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = intotcpcb(inp); struct sockbuf *sb; INP_WLOCK_ASSERT(inp); /* Update socket */ sb = &so->so_snd; SOCKBUF_LOCK(sb); sb->sb_flags |= SB_NOCOALESCE; SOCKBUF_UNLOCK(sb); sb = &so->so_rcv; SOCKBUF_LOCK(sb); sb->sb_flags |= SB_NOCOALESCE; if (inp->inp_vflag & INP_IPV6) so->so_proto = &toe6_protosw; else so->so_proto = &toe_protosw; SOCKBUF_UNLOCK(sb); /* Update TCP PCB */ tp->tod = &td->tod; tp->t_toe = toep; tp->t_flags |= TF_TOE; /* Install an extra hold on inp */ toep->inp = inp; toep->flags |= TPF_ATTACHED; in_pcbref(inp); /* Add the TOE PCB to the active list */ mtx_lock(&td->toep_list_lock); TAILQ_INSERT_HEAD(&td->toep_list, toep, link); mtx_unlock(&td->toep_list_lock); } /* This is _not_ the normal way to "unoffload" a socket. */ void undo_offload_socket(struct socket *so) { struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = intotcpcb(inp); struct toepcb *toep = tp->t_toe; struct tom_data *td = toep->td; struct sockbuf *sb; INP_WLOCK_ASSERT(inp); sb = &so->so_snd; SOCKBUF_LOCK(sb); sb->sb_flags &= ~SB_NOCOALESCE; SOCKBUF_UNLOCK(sb); sb = &so->so_rcv; SOCKBUF_LOCK(sb); sb->sb_flags &= ~SB_NOCOALESCE; SOCKBUF_UNLOCK(sb); tp->tod = NULL; tp->t_toe = NULL; tp->t_flags &= ~TF_TOE; toep->inp = NULL; toep->flags &= ~TPF_ATTACHED; if (in_pcbrele_wlocked(inp)) panic("%s: inp freed.", __func__); mtx_lock(&td->toep_list_lock); TAILQ_REMOVE(&td->toep_list, toep, link); mtx_unlock(&td->toep_list_lock); } static void release_offload_resources(struct toepcb *toep) { struct tom_data *td = toep->td; struct adapter *sc = td_adapter(td); int tid = toep->tid; KASSERT(!(toep->flags & TPF_CPL_PENDING), ("%s: %p has CPL pending.", __func__, toep)); KASSERT(!(toep->flags & TPF_ATTACHED), ("%s: %p is still attached.", __func__, toep)); CTR5(KTR_CXGBE, "%s: toep %p (tid %d, l2te %p, ce %p)", __func__, toep, tid, toep->l2te, toep->ce); /* * These queues should have been emptied at approximately the same time * that a normal connection's socket's so_snd would have been purged or * drained. Do _not_ clean up here. */ MPASS(mbufq_len(&toep->ulp_pduq) == 0); MPASS(mbufq_len(&toep->ulp_pdu_reclaimq) == 0); #ifdef INVARIANTS if (toep->ulp_mode == ULP_MODE_TCPDDP) ddp_assert_empty(toep); #endif if (toep->l2te) t4_l2t_release(toep->l2te); if (tid >= 0) { remove_tid(sc, tid, toep->ce ? 2 : 1); release_tid(sc, tid, toep->ctrlq); } if (toep->ce) release_lip(td, toep->ce); #ifdef RATELIMIT if (toep->tc_idx != -1) t4_release_cl_rl_kbps(sc, toep->vi->pi->port_id, toep->tc_idx); #endif mtx_lock(&td->toep_list_lock); TAILQ_REMOVE(&td->toep_list, toep, link); mtx_unlock(&td->toep_list_lock); free_toepcb(toep); } /* * The kernel is done with the TCP PCB and this is our opportunity to unhook the * toepcb hanging off of it. If the TOE driver is also done with the toepcb (no * pending CPL) then it is time to release all resources tied to the toepcb. * * Also gets called when an offloaded active open fails and the TOM wants the * kernel to take the TCP PCB back. */ static void t4_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp) { #if defined(KTR) || defined(INVARIANTS) struct inpcb *inp = tp->t_inpcb; #endif struct toepcb *toep = tp->t_toe; INP_WLOCK_ASSERT(inp); KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); KASSERT(toep->flags & TPF_ATTACHED, ("%s: not attached", __func__)); #ifdef KTR if (tp->t_state == TCPS_SYN_SENT) { CTR6(KTR_CXGBE, "%s: atid %d, toep %p (0x%x), inp %p (0x%x)", __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags); } else { CTR6(KTR_CXGBE, "t4_pcb_detach: tid %d (%s), toep %p (0x%x), inp %p (0x%x)", toep->tid, tcpstates[tp->t_state], toep, toep->flags, inp, inp->inp_flags); } #endif tp->t_toe = NULL; tp->t_flags &= ~TF_TOE; toep->flags &= ~TPF_ATTACHED; if (!(toep->flags & TPF_CPL_PENDING)) release_offload_resources(toep); } /* * setsockopt handler. */ static void t4_ctloutput(struct toedev *tod, struct tcpcb *tp, int dir, int name) { struct adapter *sc = tod->tod_softc; struct toepcb *toep = tp->t_toe; if (dir == SOPT_GET) return; CTR4(KTR_CXGBE, "%s: tp %p, dir %u, name %u", __func__, tp, dir, name); switch (name) { case TCP_NODELAY: if (tp->t_state != TCPS_ESTABLISHED) break; - t4_set_tcb_field(sc, toep->ctrlq, toep->tid, W_TCB_T_FLAGS, + t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, V_TF_NAGLE(1), V_TF_NAGLE(tp->t_flags & TF_NODELAY ? 0 : 1), - 0, 0, toep->ofld_rxq->iq.abs_id); + 0, 0); break; default: break; } } /* * The TOE driver will not receive any more CPLs for the tid associated with the * toepcb; release the hold on the inpcb. */ void final_cpl_received(struct toepcb *toep) { struct inpcb *inp = toep->inp; KASSERT(inp != NULL, ("%s: inp is NULL", __func__)); INP_WLOCK_ASSERT(inp); KASSERT(toep->flags & TPF_CPL_PENDING, ("%s: CPL not pending already?", __func__)); CTR6(KTR_CXGBE, "%s: tid %d, toep %p (0x%x), inp %p (0x%x)", __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags); if (toep->ulp_mode == ULP_MODE_TCPDDP) release_ddp_resources(toep); toep->inp = NULL; toep->flags &= ~TPF_CPL_PENDING; mbufq_drain(&toep->ulp_pdu_reclaimq); if (!(toep->flags & TPF_ATTACHED)) release_offload_resources(toep); if (!in_pcbrele_wlocked(inp)) INP_WUNLOCK(inp); } void insert_tid(struct adapter *sc, int tid, void *ctx, int ntids) { struct tid_info *t = &sc->tids; t->tid_tab[tid] = ctx; atomic_add_int(&t->tids_in_use, ntids); } void * lookup_tid(struct adapter *sc, int tid) { struct tid_info *t = &sc->tids; return (t->tid_tab[tid]); } void update_tid(struct adapter *sc, int tid, void *ctx) { struct tid_info *t = &sc->tids; t->tid_tab[tid] = ctx; } void remove_tid(struct adapter *sc, int tid, int ntids) { struct tid_info *t = &sc->tids; t->tid_tab[tid] = NULL; atomic_subtract_int(&t->tids_in_use, ntids); } void release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) { struct wrqe *wr; struct cpl_tid_release *req; wr = alloc_wrqe(sizeof(*req), ctrlq); if (wr == NULL) { queue_tid_release(sc, tid); /* defer */ return; } req = wrtod(wr); INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); t4_wrq_tx(sc, wr); } static void queue_tid_release(struct adapter *sc, int tid) { CXGBE_UNIMPLEMENTED("deferred tid release"); } /* * What mtu_idx to use, given a 4-tuple and/or an MSS cap */ int find_best_mtu_idx(struct adapter *sc, struct in_conninfo *inc, int pmss) { unsigned short *mtus = &sc->params.mtus[0]; int i, mss, n; KASSERT(inc != NULL || pmss > 0, ("%s: at least one of inc/pmss must be specified", __func__)); mss = inc ? tcp_mssopt(inc) : pmss; if (pmss > 0 && mss > pmss) mss = pmss; if (inc->inc_flags & INC_ISIPV6) n = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); else n = sizeof(struct ip) + sizeof(struct tcphdr); for (i = 0; i < NMTUS - 1 && mtus[i + 1] <= mss + n; i++) continue; return (i); } /* * Determine the receive window size for a socket. */ u_long select_rcv_wnd(struct socket *so) { unsigned long wnd; SOCKBUF_LOCK_ASSERT(&so->so_rcv); wnd = sbspace(&so->so_rcv); if (wnd < MIN_RCV_WND) wnd = MIN_RCV_WND; return min(wnd, MAX_RCV_WND); } int select_rcv_wscale(void) { int wscale = 0; unsigned long space = sb_max; if (space > MAX_RCV_WND) space = MAX_RCV_WND; while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < space) wscale++; return (wscale); } /* * socket so could be a listening socket too. */ uint64_t calc_opt0(struct socket *so, struct vi_info *vi, struct l2t_entry *e, int mtu_idx, int rscale, int rx_credits, int ulp_mode) { uint64_t opt0; KASSERT(rx_credits <= M_RCV_BUFSIZ, ("%s: rcv_bufsiz too high", __func__)); opt0 = F_TCAM_BYPASS | V_WND_SCALE(rscale) | V_MSS_IDX(mtu_idx) | V_ULP_MODE(ulp_mode) | V_RCV_BUFSIZ(rx_credits); if (so != NULL) { struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = intotcpcb(inp); int keepalive = tcp_always_keepalive || so_options_get(so) & SO_KEEPALIVE; opt0 |= V_NAGLE((tp->t_flags & TF_NODELAY) == 0); opt0 |= V_KEEP_ALIVE(keepalive != 0); } if (e != NULL) opt0 |= V_L2T_IDX(e->idx); if (vi != NULL) { opt0 |= V_SMAC_SEL(vi->smt_idx); opt0 |= V_TX_CHAN(vi->pi->tx_chan); } return htobe64(opt0); } uint64_t select_ntuple(struct vi_info *vi, struct l2t_entry *e) { struct adapter *sc = vi->pi->adapter; struct tp_params *tp = &sc->params.tp; uint16_t viid = vi->viid; uint64_t ntuple = 0; /* * Initialize each of the fields which we care about which are present * in the Compressed Filter Tuple. */ if (tp->vlan_shift >= 0 && e->vlan != CPL_L2T_VLAN_NONE) ntuple |= (uint64_t)(F_FT_VLAN_VLD | e->vlan) << tp->vlan_shift; if (tp->port_shift >= 0) ntuple |= (uint64_t)e->lport << tp->port_shift; if (tp->protocol_shift >= 0) ntuple |= (uint64_t)IPPROTO_TCP << tp->protocol_shift; if (tp->vnic_shift >= 0) { uint32_t vf = G_FW_VIID_VIN(viid); uint32_t pf = G_FW_VIID_PFN(viid); uint32_t vld = G_FW_VIID_VIVLD(viid); ntuple |= (uint64_t)(V_FT_VNID_ID_VF(vf) | V_FT_VNID_ID_PF(pf) | V_FT_VNID_ID_VLD(vld)) << tp->vnic_shift; } if (is_t4(sc)) return (htobe32((uint32_t)ntuple)); else return (htobe64(V_FILTER_TUPLE(ntuple))); } static int is_tls_sock(struct socket *so, struct adapter *sc) { struct inpcb *inp = sotoinpcb(so); int i, rc; /* XXX: Eventually add a SO_WANT_TLS socket option perhaps? */ rc = 0; ADAPTER_LOCK(sc); for (i = 0; i < sc->tt.num_tls_rx_ports; i++) { if (inp->inp_lport == htons(sc->tt.tls_rx_ports[i]) || inp->inp_fport == htons(sc->tt.tls_rx_ports[i])) { rc = 1; break; } } ADAPTER_UNLOCK(sc); return (rc); } int select_ulp_mode(struct socket *so, struct adapter *sc) { if (can_tls_offload(sc) && is_tls_sock(so, sc)) return (ULP_MODE_TLS); else if (sc->tt.ddp && (so->so_options & SO_NO_DDP) == 0) return (ULP_MODE_TCPDDP); else return (ULP_MODE_NONE); } void set_ulp_mode(struct toepcb *toep, int ulp_mode) { CTR4(KTR_CXGBE, "%s: toep %p (tid %d) ulp_mode %d", __func__, toep, toep->tid, ulp_mode); toep->ulp_mode = ulp_mode; tls_init_toep(toep); if (toep->ulp_mode == ULP_MODE_TCPDDP) ddp_init_toep(toep); } int negative_advice(int status) { return (status == CPL_ERR_RTX_NEG_ADVICE || status == CPL_ERR_PERSIST_NEG_ADVICE || status == CPL_ERR_KEEPALV_NEG_ADVICE); } static int alloc_tid_tabs(struct tid_info *t) { size_t size; unsigned int i; size = t->ntids * sizeof(*t->tid_tab) + t->natids * sizeof(*t->atid_tab) + t->nstids * sizeof(*t->stid_tab); t->tid_tab = malloc(size, M_CXGBE, M_ZERO | M_NOWAIT); if (t->tid_tab == NULL) return (ENOMEM); mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; t->afree = t->atid_tab; t->atids_in_use = 0; for (i = 1; i < t->natids; i++) t->atid_tab[i - 1].next = &t->atid_tab[i]; t->atid_tab[t->natids - 1].next = NULL; mtx_init(&t->stid_lock, "stid lock", NULL, MTX_DEF); t->stid_tab = (struct listen_ctx **)&t->atid_tab[t->natids]; t->stids_in_use = 0; TAILQ_INIT(&t->stids); t->nstids_free_head = t->nstids; atomic_store_rel_int(&t->tids_in_use, 0); return (0); } static void free_tid_tabs(struct tid_info *t) { KASSERT(t->tids_in_use == 0, ("%s: %d tids still in use.", __func__, t->tids_in_use)); KASSERT(t->atids_in_use == 0, ("%s: %d atids still in use.", __func__, t->atids_in_use)); KASSERT(t->stids_in_use == 0, ("%s: %d tids still in use.", __func__, t->stids_in_use)); free(t->tid_tab, M_CXGBE); t->tid_tab = NULL; if (mtx_initialized(&t->atid_lock)) mtx_destroy(&t->atid_lock); if (mtx_initialized(&t->stid_lock)) mtx_destroy(&t->stid_lock); } static int add_lip(struct adapter *sc, struct in6_addr *lip) { struct fw_clip_cmd c; ASSERT_SYNCHRONIZED_OP(sc); /* mtx_assert(&td->clip_table_lock, MA_OWNED); */ memset(&c, 0, sizeof(c)); c.op_to_write = htonl(V_FW_CMD_OP(FW_CLIP_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE); c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c)); c.ip_hi = *(uint64_t *)&lip->s6_addr[0]; c.ip_lo = *(uint64_t *)&lip->s6_addr[8]; return (-t4_wr_mbox_ns(sc, sc->mbox, &c, sizeof(c), &c)); } static int delete_lip(struct adapter *sc, struct in6_addr *lip) { struct fw_clip_cmd c; ASSERT_SYNCHRONIZED_OP(sc); /* mtx_assert(&td->clip_table_lock, MA_OWNED); */ memset(&c, 0, sizeof(c)); c.op_to_write = htonl(V_FW_CMD_OP(FW_CLIP_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ); c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c)); c.ip_hi = *(uint64_t *)&lip->s6_addr[0]; c.ip_lo = *(uint64_t *)&lip->s6_addr[8]; return (-t4_wr_mbox_ns(sc, sc->mbox, &c, sizeof(c), &c)); } static struct clip_entry * search_lip(struct tom_data *td, struct in6_addr *lip) { struct clip_entry *ce; mtx_assert(&td->clip_table_lock, MA_OWNED); TAILQ_FOREACH(ce, &td->clip_table, link) { if (IN6_ARE_ADDR_EQUAL(&ce->lip, lip)) return (ce); } return (NULL); } struct clip_entry * hold_lip(struct tom_data *td, struct in6_addr *lip, struct clip_entry *ce) { mtx_lock(&td->clip_table_lock); if (ce == NULL) ce = search_lip(td, lip); if (ce != NULL) ce->refcount++; mtx_unlock(&td->clip_table_lock); return (ce); } void release_lip(struct tom_data *td, struct clip_entry *ce) { mtx_lock(&td->clip_table_lock); KASSERT(search_lip(td, &ce->lip) == ce, ("%s: CLIP entry %p p not in CLIP table.", __func__, ce)); KASSERT(ce->refcount > 0, ("%s: CLIP entry %p has refcount 0", __func__, ce)); --ce->refcount; mtx_unlock(&td->clip_table_lock); } static void init_clip_table(struct adapter *sc, struct tom_data *td) { ASSERT_SYNCHRONIZED_OP(sc); mtx_init(&td->clip_table_lock, "CLIP table lock", NULL, MTX_DEF); TAILQ_INIT(&td->clip_table); td->clip_gen = -1; update_clip_table(sc, td); } static void update_clip(struct adapter *sc, void *arg __unused) { if (begin_synchronized_op(sc, NULL, HOLD_LOCK, "t4tomuc")) return; if (uld_active(sc, ULD_TOM)) update_clip_table(sc, sc->tom_softc); end_synchronized_op(sc, LOCK_HELD); } static void t4_clip_task(void *arg, int count) { t4_iterate(update_clip, NULL); } static void update_clip_table(struct adapter *sc, struct tom_data *td) { struct rm_priotracker in6_ifa_tracker; struct in6_ifaddr *ia; struct in6_addr *lip, tlip; struct clip_head stale; struct clip_entry *ce, *ce_temp; struct vi_info *vi; int rc, gen, i, j; uintptr_t last_vnet; ASSERT_SYNCHRONIZED_OP(sc); IN6_IFADDR_RLOCK(&in6_ifa_tracker); mtx_lock(&td->clip_table_lock); gen = atomic_load_acq_int(&in6_ifaddr_gen); if (gen == td->clip_gen) goto done; TAILQ_INIT(&stale); TAILQ_CONCAT(&stale, &td->clip_table, link); /* * last_vnet optimizes the common cases where all if_vnet = NULL (no * VIMAGE) or all if_vnet = vnet0. */ last_vnet = (uintptr_t)(-1); for_each_port(sc, i) for_each_vi(sc->port[i], j, vi) { if (last_vnet == (uintptr_t)vi->ifp->if_vnet) continue; /* XXX: races with if_vmove */ CURVNET_SET(vi->ifp->if_vnet); TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { lip = &ia->ia_addr.sin6_addr; KASSERT(!IN6_IS_ADDR_MULTICAST(lip), ("%s: mcast address in in6_ifaddr list", __func__)); if (IN6_IS_ADDR_LOOPBACK(lip)) continue; if (IN6_IS_SCOPE_EMBED(lip)) { /* Remove the embedded scope */ tlip = *lip; lip = &tlip; in6_clearscope(lip); } /* * XXX: how to weed out the link local address for the * loopback interface? It's fe80::1 usually (always?). */ /* * If it's in the main list then we already know it's * not stale. */ TAILQ_FOREACH(ce, &td->clip_table, link) { if (IN6_ARE_ADDR_EQUAL(&ce->lip, lip)) goto next; } /* * If it's in the stale list we should move it to the * main list. */ TAILQ_FOREACH(ce, &stale, link) { if (IN6_ARE_ADDR_EQUAL(&ce->lip, lip)) { TAILQ_REMOVE(&stale, ce, link); TAILQ_INSERT_TAIL(&td->clip_table, ce, link); goto next; } } /* A new IP6 address; add it to the CLIP table */ ce = malloc(sizeof(*ce), M_CXGBE, M_NOWAIT); memcpy(&ce->lip, lip, sizeof(ce->lip)); ce->refcount = 0; rc = add_lip(sc, lip); if (rc == 0) TAILQ_INSERT_TAIL(&td->clip_table, ce, link); else { char ip[INET6_ADDRSTRLEN]; inet_ntop(AF_INET6, &ce->lip, &ip[0], sizeof(ip)); log(LOG_ERR, "%s: could not add %s (%d)\n", __func__, ip, rc); free(ce, M_CXGBE); } next: continue; } CURVNET_RESTORE(); last_vnet = (uintptr_t)vi->ifp->if_vnet; } /* * Remove stale addresses (those no longer in V_in6_ifaddrhead) that are * no longer referenced by the driver. */ TAILQ_FOREACH_SAFE(ce, &stale, link, ce_temp) { if (ce->refcount == 0) { rc = delete_lip(sc, &ce->lip); if (rc == 0) { TAILQ_REMOVE(&stale, ce, link); free(ce, M_CXGBE); } else { char ip[INET6_ADDRSTRLEN]; inet_ntop(AF_INET6, &ce->lip, &ip[0], sizeof(ip)); log(LOG_ERR, "%s: could not delete %s (%d)\n", __func__, ip, rc); } } } /* The ones that are still referenced need to stay in the CLIP table */ TAILQ_CONCAT(&td->clip_table, &stale, link); td->clip_gen = gen; done: mtx_unlock(&td->clip_table_lock); IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); } static void destroy_clip_table(struct adapter *sc, struct tom_data *td) { struct clip_entry *ce, *ce_temp; if (mtx_initialized(&td->clip_table_lock)) { mtx_lock(&td->clip_table_lock); TAILQ_FOREACH_SAFE(ce, &td->clip_table, link, ce_temp) { KASSERT(ce->refcount == 0, ("%s: CLIP entry %p still in use (%d)", __func__, ce, ce->refcount)); TAILQ_REMOVE(&td->clip_table, ce, link); delete_lip(sc, &ce->lip); free(ce, M_CXGBE); } mtx_unlock(&td->clip_table_lock); mtx_destroy(&td->clip_table_lock); } } static void free_tom_data(struct adapter *sc, struct tom_data *td) { ASSERT_SYNCHRONIZED_OP(sc); KASSERT(TAILQ_EMPTY(&td->toep_list), ("%s: TOE PCB list is not empty.", __func__)); KASSERT(td->lctx_count == 0, ("%s: lctx hash table is not empty.", __func__)); tls_free_kmap(td); t4_free_ppod_region(&td->pr); destroy_clip_table(sc, td); if (td->listen_mask != 0) hashdestroy(td->listen_hash, M_CXGBE, td->listen_mask); if (mtx_initialized(&td->unsent_wr_lock)) mtx_destroy(&td->unsent_wr_lock); if (mtx_initialized(&td->lctx_hash_lock)) mtx_destroy(&td->lctx_hash_lock); if (mtx_initialized(&td->toep_list_lock)) mtx_destroy(&td->toep_list_lock); free_tid_tabs(&sc->tids); free(td, M_CXGBE); } static void reclaim_wr_resources(void *arg, int count) { struct tom_data *td = arg; STAILQ_HEAD(, wrqe) twr_list = STAILQ_HEAD_INITIALIZER(twr_list); struct cpl_act_open_req *cpl; u_int opcode, atid; struct wrqe *wr; struct adapter *sc; mtx_lock(&td->unsent_wr_lock); STAILQ_SWAP(&td->unsent_wr_list, &twr_list, wrqe); mtx_unlock(&td->unsent_wr_lock); while ((wr = STAILQ_FIRST(&twr_list)) != NULL) { STAILQ_REMOVE_HEAD(&twr_list, link); cpl = wrtod(wr); opcode = GET_OPCODE(cpl); switch (opcode) { case CPL_ACT_OPEN_REQ: case CPL_ACT_OPEN_REQ6: atid = G_TID_TID(be32toh(OPCODE_TID(cpl))); sc = td_adapter(td); CTR2(KTR_CXGBE, "%s: atid %u ", __func__, atid); act_open_failure_cleanup(sc, atid, EHOSTUNREACH); free(wr, M_CXGBE); break; default: log(LOG_ERR, "%s: leaked work request %p, wr_len %d, " "opcode %x\n", __func__, wr, wr->wr_len, opcode); /* WR not freed here; go look at it with a debugger. */ } } } /* * Ground control to Major TOM * Commencing countdown, engines on */ static int t4_tom_activate(struct adapter *sc) { struct tom_data *td; struct toedev *tod; struct vi_info *vi; struct sge_ofld_rxq *ofld_rxq; int i, j, rc, v; ASSERT_SYNCHRONIZED_OP(sc); /* per-adapter softc for TOM */ td = malloc(sizeof(*td), M_CXGBE, M_ZERO | M_NOWAIT); if (td == NULL) return (ENOMEM); /* List of TOE PCBs and associated lock */ mtx_init(&td->toep_list_lock, "PCB list lock", NULL, MTX_DEF); TAILQ_INIT(&td->toep_list); /* Listen context */ mtx_init(&td->lctx_hash_lock, "lctx hash lock", NULL, MTX_DEF); td->listen_hash = hashinit_flags(LISTEN_HASH_SIZE, M_CXGBE, &td->listen_mask, HASH_NOWAIT); /* List of WRs for which L2 resolution failed */ mtx_init(&td->unsent_wr_lock, "Unsent WR list lock", NULL, MTX_DEF); STAILQ_INIT(&td->unsent_wr_list); TASK_INIT(&td->reclaim_wr_resources, 0, reclaim_wr_resources, td); /* TID tables */ rc = alloc_tid_tabs(&sc->tids); if (rc != 0) goto done; rc = t4_init_ppod_region(&td->pr, &sc->vres.ddp, t4_read_reg(sc, A_ULP_RX_TDDP_PSZ), "TDDP page pods"); if (rc != 0) goto done; t4_set_reg_field(sc, A_ULP_RX_TDDP_TAGMASK, V_TDDPTAGMASK(M_TDDPTAGMASK), td->pr.pr_tag_mask); /* CLIP table for IPv6 offload */ init_clip_table(sc, td); if (sc->vres.key.size != 0) { rc = tls_init_kmap(sc, td); if (rc != 0) goto done; } /* toedev ops */ tod = &td->tod; init_toedev(tod); tod->tod_softc = sc; tod->tod_connect = t4_connect; tod->tod_listen_start = t4_listen_start; tod->tod_listen_stop = t4_listen_stop; tod->tod_rcvd = t4_rcvd; tod->tod_output = t4_tod_output; tod->tod_send_rst = t4_send_rst; tod->tod_send_fin = t4_send_fin; tod->tod_pcb_detach = t4_pcb_detach; tod->tod_l2_update = t4_l2_update; tod->tod_syncache_added = t4_syncache_added; tod->tod_syncache_removed = t4_syncache_removed; tod->tod_syncache_respond = t4_syncache_respond; tod->tod_offload_socket = t4_offload_socket; tod->tod_ctloutput = t4_ctloutput; for_each_port(sc, i) { for_each_vi(sc->port[i], v, vi) { TOEDEV(vi->ifp) = &td->tod; for_each_ofld_rxq(vi, j, ofld_rxq) { ofld_rxq->iq.set_tcb_rpl = do_set_tcb_rpl; ofld_rxq->iq.l2t_write_rpl = do_l2t_write_rpl2; } } } sc->tom_softc = td; register_toedev(sc->tom_softc); done: if (rc != 0) free_tom_data(sc, td); return (rc); } static int t4_tom_deactivate(struct adapter *sc) { int rc = 0; struct tom_data *td = sc->tom_softc; ASSERT_SYNCHRONIZED_OP(sc); if (td == NULL) return (0); /* XXX. KASSERT? */ if (sc->offload_map != 0) return (EBUSY); /* at least one port has IFCAP_TOE enabled */ if (uld_active(sc, ULD_IWARP) || uld_active(sc, ULD_ISCSI)) return (EBUSY); /* both iWARP and iSCSI rely on the TOE. */ mtx_lock(&td->toep_list_lock); if (!TAILQ_EMPTY(&td->toep_list)) rc = EBUSY; mtx_unlock(&td->toep_list_lock); mtx_lock(&td->lctx_hash_lock); if (td->lctx_count > 0) rc = EBUSY; mtx_unlock(&td->lctx_hash_lock); taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources); mtx_lock(&td->unsent_wr_lock); if (!STAILQ_EMPTY(&td->unsent_wr_list)) rc = EBUSY; mtx_unlock(&td->unsent_wr_lock); if (rc == 0) { unregister_toedev(sc->tom_softc); free_tom_data(sc, td); sc->tom_softc = NULL; } return (rc); } static void t4_tom_ifaddr_event(void *arg __unused, struct ifnet *ifp) { atomic_add_rel_int(&in6_ifaddr_gen, 1); taskqueue_enqueue_timeout(taskqueue_thread, &clip_task, -hz / 4); } static int t4_aio_queue_tom(struct socket *so, struct kaiocb *job) { struct tcpcb *tp = so_sototcpcb(so); struct toepcb *toep = tp->t_toe; int error; if (toep->ulp_mode == ULP_MODE_TCPDDP) { error = t4_aio_queue_ddp(so, job); if (error != EOPNOTSUPP) return (error); } return (t4_aio_queue_aiotx(so, job)); } static int t4_ctloutput_tom(struct socket *so, struct sockopt *sopt) { if (sopt->sopt_level != IPPROTO_TCP) return (tcp_ctloutput(so, sopt)); switch (sopt->sopt_name) { case TCP_TLSOM_SET_TLS_CONTEXT: case TCP_TLSOM_GET_TLS_TOM: case TCP_TLSOM_CLR_TLS_TOM: case TCP_TLSOM_CLR_QUIES: return (t4_ctloutput_tls(so, sopt)); default: return (tcp_ctloutput(so, sopt)); } } static int t4_tom_mod_load(void) { struct protosw *tcp_protosw, *tcp6_protosw; /* CPL handlers */ t4_init_connect_cpl_handlers(); t4_init_listen_cpl_handlers(); t4_init_cpl_io_handlers(); t4_ddp_mod_load(); t4_tls_mod_load(); tcp_protosw = pffindproto(PF_INET, IPPROTO_TCP, SOCK_STREAM); if (tcp_protosw == NULL) return (ENOPROTOOPT); bcopy(tcp_protosw, &toe_protosw, sizeof(toe_protosw)); bcopy(tcp_protosw->pr_usrreqs, &toe_usrreqs, sizeof(toe_usrreqs)); toe_usrreqs.pru_aio_queue = t4_aio_queue_tom; toe_protosw.pr_ctloutput = t4_ctloutput_tom; toe_protosw.pr_usrreqs = &toe_usrreqs; tcp6_protosw = pffindproto(PF_INET6, IPPROTO_TCP, SOCK_STREAM); if (tcp6_protosw == NULL) return (ENOPROTOOPT); bcopy(tcp6_protosw, &toe6_protosw, sizeof(toe6_protosw)); bcopy(tcp6_protosw->pr_usrreqs, &toe6_usrreqs, sizeof(toe6_usrreqs)); toe6_usrreqs.pru_aio_queue = t4_aio_queue_tom; toe6_protosw.pr_ctloutput = t4_ctloutput_tom; toe6_protosw.pr_usrreqs = &toe6_usrreqs; TIMEOUT_TASK_INIT(taskqueue_thread, &clip_task, 0, t4_clip_task, NULL); ifaddr_evhandler = EVENTHANDLER_REGISTER(ifaddr_event, t4_tom_ifaddr_event, NULL, EVENTHANDLER_PRI_ANY); return (t4_register_uld(&tom_uld_info)); } static void tom_uninit(struct adapter *sc, void *arg __unused) { if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tomun")) return; /* Try to free resources (works only if no port has IFCAP_TOE) */ if (uld_active(sc, ULD_TOM)) t4_deactivate_uld(sc, ULD_TOM); end_synchronized_op(sc, 0); } static int t4_tom_mod_unload(void) { t4_iterate(tom_uninit, NULL); if (t4_unregister_uld(&tom_uld_info) == EBUSY) return (EBUSY); if (ifaddr_evhandler) { EVENTHANDLER_DEREGISTER(ifaddr_event, ifaddr_evhandler); taskqueue_cancel_timeout(taskqueue_thread, &clip_task, NULL); } t4_tls_mod_unload(); t4_ddp_mod_unload(); t4_uninit_connect_cpl_handlers(); t4_uninit_listen_cpl_handlers(); t4_uninit_cpl_io_handlers(); return (0); } #endif /* TCP_OFFLOAD */ static int t4_tom_modevent(module_t mod, int cmd, void *arg) { int rc = 0; #ifdef TCP_OFFLOAD switch (cmd) { case MOD_LOAD: rc = t4_tom_mod_load(); break; case MOD_UNLOAD: rc = t4_tom_mod_unload(); break; default: rc = EINVAL; } #else printf("t4_tom: compiled without TCP_OFFLOAD support.\n"); rc = EOPNOTSUPP; #endif return (rc); } static moduledata_t t4_tom_moddata= { "t4_tom", t4_tom_modevent, 0 }; MODULE_VERSION(t4_tom, 1); MODULE_DEPEND(t4_tom, toecore, 1, 1, 1); MODULE_DEPEND(t4_tom, t4nex, 1, 1, 1); DECLARE_MODULE(t4_tom, t4_tom_moddata, SI_SUB_EXEC, SI_ORDER_ANY); Index: head/sys/dev/cxgbe/tom/t4_tom.h =================================================================== --- head/sys/dev/cxgbe/tom/t4_tom.h (revision 331648) +++ head/sys/dev/cxgbe/tom/t4_tom.h (revision 331649) @@ -1,435 +1,435 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2012, 2015 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ * */ #ifndef __T4_TOM_H__ #define __T4_TOM_H__ #include #include "tom/t4_tls.h" #define LISTEN_HASH_SIZE 32 /* * Min receive window. We want it to be large enough to accommodate receive * coalescing, handle jumbo frames, and not trigger sender SWS avoidance. */ #define MIN_RCV_WND (24 * 1024U) /* * Max receive window supported by HW in bytes. Only a small part of it can * be set through option0, the rest needs to be set through RX_DATA_ACK. */ #define MAX_RCV_WND ((1U << 27) - 1) #define DDP_RSVD_WIN (16 * 1024U) #define SB_DDP_INDICATE SB_IN_TOE /* soreceive must respond to indicate */ #define USE_DDP_RX_FLOW_CONTROL #define PPOD_SZ(n) ((n) * sizeof(struct pagepod)) #define PPOD_SIZE (PPOD_SZ(1)) /* TOE PCB flags */ enum { TPF_ATTACHED = (1 << 0), /* a tcpcb refers to this toepcb */ TPF_FLOWC_WR_SENT = (1 << 1), /* firmware flow context WR sent */ TPF_TX_DATA_SENT = (1 << 2), /* some data sent */ TPF_TX_SUSPENDED = (1 << 3), /* tx suspended for lack of resources */ TPF_SEND_FIN = (1 << 4), /* send FIN after all pending data */ TPF_FIN_SENT = (1 << 5), /* FIN has been sent */ TPF_ABORT_SHUTDOWN = (1 << 6), /* connection abort is in progress */ TPF_CPL_PENDING = (1 << 7), /* haven't received the last CPL */ TPF_SYNQE = (1 << 8), /* synq_entry, not really a toepcb */ TPF_SYNQE_NEEDFREE = (1 << 9), /* synq_entry was malloc'd separately */ TPF_SYNQE_TCPDDP = (1 << 10), /* ulp_mode TCPDDP in toepcb */ TPF_SYNQE_EXPANDED = (1 << 11), /* toepcb ready, tid context updated */ TPF_SYNQE_HAS_L2TE = (1 << 12), /* we've replied to PASS_ACCEPT_REQ */ TPF_SYNQE_TLS = (1 << 13), /* ulp_mode TLS in toepcb */ TPF_FORCE_CREDITS = (1 << 14), /* always send credits */ }; enum { DDP_OK = (1 << 0), /* OK to turn on DDP */ DDP_SC_REQ = (1 << 1), /* state change (on/off) requested */ DDP_ON = (1 << 2), /* DDP is turned on */ DDP_BUF0_ACTIVE = (1 << 3), /* buffer 0 in use (not invalidated) */ DDP_BUF1_ACTIVE = (1 << 4), /* buffer 1 in use (not invalidated) */ DDP_TASK_ACTIVE = (1 << 5), /* requeue task is queued / running */ DDP_DEAD = (1 << 6), /* toepcb is shutting down */ }; struct sockopt; struct ofld_tx_sdesc { uint32_t plen; /* payload length */ uint8_t tx_credits; /* firmware tx credits (unit is 16B) */ void *iv_buffer; /* optional buffer holding IVs for TLS */ }; struct ppod_region { u_int pr_start; u_int pr_len; u_int pr_page_shift[4]; uint32_t pr_tag_mask; /* hardware tagmask for this region. */ uint32_t pr_invalid_bit; /* OR with this to invalidate tag. */ uint32_t pr_alias_mask; /* AND with tag to get alias bits. */ u_int pr_alias_shift; /* shift this much for first alias bit. */ vmem_t *pr_arena; }; struct ppod_reservation { struct ppod_region *prsv_pr; uint32_t prsv_tag; /* Full tag: pgsz, alias, tag, color */ u_int prsv_nppods; }; struct pageset { TAILQ_ENTRY(pageset) link; vm_page_t *pages; int npages; int flags; int offset; /* offset in first page */ int len; struct ppod_reservation prsv; struct vmspace *vm; vm_offset_t start; u_int vm_timestamp; }; TAILQ_HEAD(pagesetq, pageset); #define PS_WIRED 0x0001 /* Pages wired rather than held. */ #define PS_PPODS_WRITTEN 0x0002 /* Page pods written to the card. */ #define EXT_FLAG_AIOTX EXT_FLAG_VENDOR1 #define IS_AIOTX_MBUF(m) \ ((m)->m_flags & M_EXT && (m)->m_ext.ext_flags & EXT_FLAG_AIOTX) struct ddp_buffer { struct pageset *ps; struct kaiocb *job; int cancel_pending; }; struct ddp_pcb { u_int flags; struct ddp_buffer db[2]; TAILQ_HEAD(, pageset) cached_pagesets; TAILQ_HEAD(, kaiocb) aiojobq; u_int waiting_count; u_int active_count; u_int cached_count; int active_id; /* the currently active DDP buffer */ struct task requeue_task; struct kaiocb *queueing; struct mtx lock; }; struct aiotx_buffer { struct pageset ps; struct kaiocb *job; int refcount; }; struct toepcb { TAILQ_ENTRY(toepcb) link; /* toep_list */ u_int flags; /* miscellaneous flags */ int refcount; struct tom_data *td; struct inpcb *inp; /* backpointer to host stack's PCB */ struct vnet *vnet; struct vi_info *vi; /* virtual interface */ struct sge_wrq *ofld_txq; struct sge_ofld_rxq *ofld_rxq; struct sge_wrq *ctrlq; struct l2t_entry *l2te; /* L2 table entry used by this connection */ struct clip_entry *ce; /* CLIP table entry used by this tid */ int tid; /* Connection identifier */ int tc_idx; /* traffic class that this tid is bound to */ /* tx credit handling */ u_int tx_total; /* total tx WR credits (in 16B units) */ u_int tx_credits; /* tx WR credits (in 16B units) available */ u_int tx_nocompl; /* tx WR credits since last compl request */ u_int plen_nocompl; /* payload since last compl request */ /* rx credit handling */ u_int sb_cc; /* last noted value of so_rcv->sb_cc */ int rx_credits; /* rx credits (in bytes) to be returned to hw */ u_int ulp_mode; /* ULP mode */ void *ulpcb; void *ulpcb2; struct mbufq ulp_pduq; /* PDUs waiting to be sent out. */ struct mbufq ulp_pdu_reclaimq; struct ddp_pcb ddp; struct tls_ofld_info tls; TAILQ_HEAD(, kaiocb) aiotx_jobq; struct task aiotx_task; bool aiotx_task_active; /* Tx software descriptor */ uint8_t txsd_total; uint8_t txsd_pidx; uint8_t txsd_cidx; uint8_t txsd_avail; struct ofld_tx_sdesc txsd[]; }; #define DDP_LOCK(toep) mtx_lock(&(toep)->ddp.lock) #define DDP_UNLOCK(toep) mtx_unlock(&(toep)->ddp.lock) #define DDP_ASSERT_LOCKED(toep) mtx_assert(&(toep)->ddp.lock, MA_OWNED) struct flowc_tx_params { uint32_t snd_nxt; uint32_t rcv_nxt; unsigned int snd_space; unsigned int mss; }; #define DDP_RETRY_WAIT 5 /* seconds to wait before re-enabling DDP */ #define DDP_LOW_SCORE 1 #define DDP_HIGH_SCORE 3 /* * Compressed state for embryonic connections for a listener. Barely fits in * 64B, try not to grow it further. */ struct synq_entry { TAILQ_ENTRY(synq_entry) link; /* listen_ctx's synq link */ int flags; /* same as toepcb's tp_flags */ int tid; struct listen_ctx *lctx; /* backpointer to listen ctx */ struct mbuf *syn; uint32_t iss; uint32_t ts; volatile uintptr_t wr; volatile u_int refcnt; uint16_t l2e_idx; uint16_t rcv_bufsize; }; /* listen_ctx flags */ #define LCTX_RPL_PENDING 1 /* waiting for a CPL_PASS_OPEN_RPL */ struct listen_ctx { LIST_ENTRY(listen_ctx) link; /* listen hash linkage */ volatile int refcount; int stid; struct stid_region stid_region; int flags; struct inpcb *inp; /* listening socket's inp */ struct vnet *vnet; struct sge_wrq *ctrlq; struct sge_ofld_rxq *ofld_rxq; struct clip_entry *ce; TAILQ_HEAD(, synq_entry) synq; }; struct clip_entry { TAILQ_ENTRY(clip_entry) link; struct in6_addr lip; /* local IPv6 address */ u_int refcount; }; TAILQ_HEAD(clip_head, clip_entry); struct tom_data { struct toedev tod; /* toepcb's associated with this TOE device */ struct mtx toep_list_lock; TAILQ_HEAD(, toepcb) toep_list; struct mtx lctx_hash_lock; LIST_HEAD(, listen_ctx) *listen_hash; u_long listen_mask; int lctx_count; /* # of lctx in the hash table */ struct ppod_region pr; vmem_t *key_map; struct mtx clip_table_lock; struct clip_head clip_table; int clip_gen; /* WRs that will not be sent to the chip because L2 resolution failed */ struct mtx unsent_wr_lock; STAILQ_HEAD(, wrqe) unsent_wr_list; struct task reclaim_wr_resources; }; static inline struct tom_data * tod_td(struct toedev *tod) { return (__containerof(tod, struct tom_data, tod)); } static inline struct adapter * td_adapter(struct tom_data *td) { return (td->tod.tod_softc); } static inline void set_mbuf_ulp_submode(struct mbuf *m, uint8_t ulp_submode) { M_ASSERTPKTHDR(m); m->m_pkthdr.PH_per.eight[0] = ulp_submode; } static inline uint8_t mbuf_ulp_submode(struct mbuf *m) { M_ASSERTPKTHDR(m); return (m->m_pkthdr.PH_per.eight[0]); } /* t4_tom.c */ struct toepcb *alloc_toepcb(struct vi_info *, int, int, int); struct toepcb *hold_toepcb(struct toepcb *); void free_toepcb(struct toepcb *); void offload_socket(struct socket *, struct toepcb *); void undo_offload_socket(struct socket *); void final_cpl_received(struct toepcb *); void insert_tid(struct adapter *, int, void *, int); void *lookup_tid(struct adapter *, int); void update_tid(struct adapter *, int, void *); void remove_tid(struct adapter *, int, int); void release_tid(struct adapter *, int, struct sge_wrq *); int find_best_mtu_idx(struct adapter *, struct in_conninfo *, int); u_long select_rcv_wnd(struct socket *); int select_rcv_wscale(void); uint64_t calc_opt0(struct socket *, struct vi_info *, struct l2t_entry *, int, int, int, int); uint64_t select_ntuple(struct vi_info *, struct l2t_entry *); int select_ulp_mode(struct socket *, struct adapter *); void set_ulp_mode(struct toepcb *, int); int negative_advice(int); struct clip_entry *hold_lip(struct tom_data *, struct in6_addr *, struct clip_entry *); void release_lip(struct tom_data *, struct clip_entry *); /* t4_connect.c */ void t4_init_connect_cpl_handlers(void); void t4_uninit_connect_cpl_handlers(void); int t4_connect(struct toedev *, struct socket *, struct rtentry *, struct sockaddr *); void act_open_failure_cleanup(struct adapter *, u_int, u_int); /* t4_listen.c */ void t4_init_listen_cpl_handlers(void); void t4_uninit_listen_cpl_handlers(void); int t4_listen_start(struct toedev *, struct tcpcb *); int t4_listen_stop(struct toedev *, struct tcpcb *); void t4_syncache_added(struct toedev *, void *); void t4_syncache_removed(struct toedev *, void *); int t4_syncache_respond(struct toedev *, void *, struct mbuf *); int do_abort_req_synqe(struct sge_iq *, const struct rss_header *, struct mbuf *); int do_abort_rpl_synqe(struct sge_iq *, const struct rss_header *, struct mbuf *); void t4_offload_socket(struct toedev *, void *, struct socket *); /* t4_cpl_io.c */ void aiotx_init_toep(struct toepcb *); int t4_aio_queue_aiotx(struct socket *, struct kaiocb *); void t4_init_cpl_io_handlers(void); void t4_uninit_cpl_io_handlers(void); void send_abort_rpl(struct adapter *, struct sge_wrq *, int , int); void send_flowc_wr(struct toepcb *, struct flowc_tx_params *); void send_reset(struct adapter *, struct toepcb *, uint32_t); int send_rx_credits(struct adapter *, struct toepcb *, int); void send_rx_modulate(struct adapter *, struct toepcb *); void make_established(struct toepcb *, uint32_t, uint32_t, uint16_t); int t4_close_conn(struct adapter *, struct toepcb *); void t4_rcvd(struct toedev *, struct tcpcb *); void t4_rcvd_locked(struct toedev *, struct tcpcb *); int t4_tod_output(struct toedev *, struct tcpcb *); int t4_send_fin(struct toedev *, struct tcpcb *); int t4_send_rst(struct toedev *, struct tcpcb *); -void t4_set_tcb_field(struct adapter *, struct sge_wrq *, int, uint16_t, - uint64_t, uint64_t, int, int, int); +void t4_set_tcb_field(struct adapter *, struct sge_wrq *, struct toepcb *, + uint16_t, uint64_t, uint64_t, int, int); void t4_push_frames(struct adapter *sc, struct toepcb *toep, int drop); void t4_push_pdus(struct adapter *sc, struct toepcb *toep, int drop); int do_set_tcb_rpl(struct sge_iq *, const struct rss_header *, struct mbuf *); /* t4_ddp.c */ int t4_init_ppod_region(struct ppod_region *, struct t4_range *, u_int, const char *); void t4_free_ppod_region(struct ppod_region *); int t4_alloc_page_pods_for_ps(struct ppod_region *, struct pageset *); int t4_alloc_page_pods_for_buf(struct ppod_region *, vm_offset_t, int, struct ppod_reservation *); int t4_write_page_pods_for_ps(struct adapter *, struct sge_wrq *, int, struct pageset *); int t4_write_page_pods_for_buf(struct adapter *, struct sge_wrq *, int tid, struct ppod_reservation *, vm_offset_t, int); void t4_free_page_pods(struct ppod_reservation *); int t4_soreceive_ddp(struct socket *, struct sockaddr **, struct uio *, struct mbuf **, struct mbuf **, int *); int t4_aio_queue_ddp(struct socket *, struct kaiocb *); void t4_ddp_mod_load(void); void t4_ddp_mod_unload(void); void ddp_assert_empty(struct toepcb *); void ddp_init_toep(struct toepcb *); void ddp_uninit_toep(struct toepcb *); void ddp_queue_toep(struct toepcb *); void release_ddp_resources(struct toepcb *toep); void handle_ddp_close(struct toepcb *, struct tcpcb *, uint32_t); void handle_ddp_indicate(struct toepcb *); void handle_ddp_tcb_rpl(struct toepcb *, const struct cpl_set_tcb_rpl *); void insert_ddp_data(struct toepcb *, uint32_t); /* t4_tls.c */ bool can_tls_offload(struct adapter *); int t4_ctloutput_tls(struct socket *, struct sockopt *); void t4_push_tls_records(struct adapter *, struct toepcb *, int); void t4_tls_mod_load(void); void t4_tls_mod_unload(void); void tls_establish(struct toepcb *); void tls_free_kmap(struct tom_data *); int tls_init_kmap(struct adapter *, struct tom_data *); void tls_init_toep(struct toepcb *); int tls_rx_key(struct toepcb *); void tls_stop_handshake_timer(struct toepcb *); int tls_tx_key(struct toepcb *); void tls_uninit_toep(struct toepcb *); #endif