Index: head/sys/powerpc/aim/aim_machdep.c =================================================================== --- head/sys/powerpc/aim/aim_machdep.c (revision 330844) +++ head/sys/powerpc/aim/aim_machdep.c (revision 330845) @@ -1,655 +1,686 @@ /*- * Copyright (C) 1995, 1996 Wolfgang Solfrank. * Copyright (C) 1995, 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (C) 2001 Benno Rice * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * $NetBSD: machdep.c,v 1.74.2.1 2000/11/01 16:13:48 tv Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include "opt_ddb.h" #include "opt_kstack_pages.h" #include "opt_platform.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef __powerpc64__ #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __powerpc64__ #include "mmu_oea64.h" #endif #ifndef __powerpc64__ struct bat battable[16]; #endif #ifndef __powerpc64__ /* Bits for running on 64-bit systems in 32-bit mode. */ extern void *testppc64, *testppc64size; extern void *restorebridge, *restorebridgesize; extern void *rfid_patch, *rfi_patch1, *rfi_patch2; extern void *trapcode64; extern Elf_Addr _GLOBAL_OFFSET_TABLE_[]; #endif extern void *rstcode, *rstcodeend; extern void *trapcode, *trapcodeend; extern void *generictrap, *generictrap64; extern void *alitrap, *aliend; extern void *dsitrap, *dsiend; extern void *decrint, *decrsize; extern void *extint, *extsize; extern void *dblow, *dbend; extern void *imisstrap, *imisssize; extern void *dlmisstrap, *dlmisssize; extern void *dsmisstrap, *dsmisssize; extern void *ap_pcpu; +extern void __restartkernel(vm_offset_t, vm_offset_t, vm_offset_t, void *, uint32_t, register_t offset, register_t msr); +void aim_early_init(vm_offset_t fdt, vm_offset_t toc, vm_offset_t ofentry, + void *mdp, uint32_t mdp_cookie); void aim_cpu_init(vm_offset_t toc); void +aim_early_init(vm_offset_t fdt, vm_offset_t toc, vm_offset_t ofentry, void *mdp, + uint32_t mdp_cookie) +{ + register_t scratch; + + /* + * If running from an FDT, make sure we are in real mode to avoid + * tromping on firmware page tables. Everything in the kernel assumes + * 1:1 mappings out of firmware, so this won't break anything not + * already broken. This doesn't work if there is live OF, since OF + * may internally use non-1:1 mappings. + */ + if (ofentry == 0) + mtmsr(mfmsr() & ~(PSL_IR | PSL_DR)); + +#ifdef __powerpc64__ + /* + * If in real mode, relocate to high memory so that the kernel + * can execute from the direct map. + */ + if (!(mfmsr() & PSL_DR) && + (vm_offset_t)&aim_early_init < DMAP_BASE_ADDRESS) + __restartkernel(fdt, 0, ofentry, mdp, mdp_cookie, + DMAP_BASE_ADDRESS, mfmsr()); +#endif + + /* Various very early CPU fix ups */ + switch (mfpvr() >> 16) { + /* + * PowerPC 970 CPUs have a misfeature requested by Apple that + * makes them pretend they have a 32-byte cacheline. Turn this + * off before we measure the cacheline size. + */ + case IBM970: + case IBM970FX: + case IBM970MP: + case IBM970GX: + scratch = mfspr(SPR_HID5); + scratch &= ~HID5_970_DCBZ_SIZE_HI; + mtspr(SPR_HID5, scratch); + break; + #ifdef __powerpc64__ + case IBMPOWER7: + case IBMPOWER7PLUS: + case IBMPOWER8: + case IBMPOWER8E: + /* XXX: get from ibm,slb-size in device tree */ + n_slbs = 32; + break; + #endif + } +} + +void aim_cpu_init(vm_offset_t toc) { size_t trap_offset, trapsize; vm_offset_t trap; - register_t msr, scratch; + register_t msr; uint8_t *cache_check; int cacheline_warn; #ifndef __powerpc64__ int ppc64; #endif trap_offset = 0; cacheline_warn = 0; /* General setup for AIM CPUs */ psl_kernset = PSL_EE | PSL_ME | PSL_IR | PSL_DR | PSL_RI; #ifdef __powerpc64__ psl_kernset |= PSL_SF; if (mfmsr() & PSL_HV) psl_kernset |= PSL_HV; #endif psl_userset = psl_kernset | PSL_PR; #ifdef __powerpc64__ psl_userset32 = psl_userset & ~PSL_SF; #endif /* Bits that users aren't allowed to change */ psl_userstatic = ~(PSL_VEC | PSL_FP | PSL_FE0 | PSL_FE1); /* * Mask bits from the SRR1 that aren't really the MSR: * Bits 1-4, 10-15 (ppc32), 33-36, 42-47 (ppc64) */ psl_userstatic &= ~0x783f0000UL; - - /* Various very early CPU fix ups */ - switch (mfpvr() >> 16) { - /* - * PowerPC 970 CPUs have a misfeature requested by Apple that - * makes them pretend they have a 32-byte cacheline. Turn this - * off before we measure the cacheline size. - */ - case IBM970: - case IBM970FX: - case IBM970MP: - case IBM970GX: - scratch = mfspr(SPR_HID5); - scratch &= ~HID5_970_DCBZ_SIZE_HI; - mtspr(SPR_HID5, scratch); - break; - #ifdef __powerpc64__ - case IBMPOWER7: - case IBMPOWER7PLUS: - case IBMPOWER8: - case IBMPOWER8E: - /* XXX: get from ibm,slb-size in device tree */ - n_slbs = 32; - break; - #endif - } /* * Initialize the interrupt tables and figure out our cache line * size and whether or not we need the 64-bit bridge code. */ /* * Disable translation in case the vector area hasn't been * mapped (G5). Note that no OFW calls can be made until * translation is re-enabled. */ msr = mfmsr(); mtmsr((msr & ~(PSL_IR | PSL_DR)) | PSL_RI); /* * Measure the cacheline size using dcbz * * Use EXC_PGM as a playground. We are about to overwrite it * anyway, we know it exists, and we know it is cache-aligned. */ cache_check = (void *)EXC_PGM; for (cacheline_size = 0; cacheline_size < 0x100; cacheline_size++) cache_check[cacheline_size] = 0xff; __asm __volatile("dcbz 0,%0":: "r" (cache_check) : "memory"); /* Find the first byte dcbz did not zero to get the cache line size */ for (cacheline_size = 0; cacheline_size < 0x100 && cache_check[cacheline_size] == 0; cacheline_size++); /* Work around psim bug */ if (cacheline_size == 0) { cacheline_warn = 1; cacheline_size = 32; } #ifndef __powerpc64__ /* * Figure out whether we need to use the 64 bit PMAP. This works by * executing an instruction that is only legal on 64-bit PPC (mtmsrd), * and setting ppc64 = 0 if that causes a trap. */ ppc64 = 1; bcopy(&testppc64, (void *)EXC_PGM, (size_t)&testppc64size); __syncicache((void *)EXC_PGM, (size_t)&testppc64size); __asm __volatile("\ mfmsr %0; \ mtsprg2 %1; \ \ mtmsrd %0; \ mfsprg2 %1;" : "=r"(scratch), "=r"(ppc64)); if (ppc64) cpu_features |= PPC_FEATURE_64; /* * Now copy restorebridge into all the handlers, if necessary, * and set up the trap tables. */ if (cpu_features & PPC_FEATURE_64) { /* Patch the two instances of rfi -> rfid */ bcopy(&rfid_patch,&rfi_patch1,4); #ifdef KDB /* rfi_patch2 is at the end of dbleave */ bcopy(&rfid_patch,&rfi_patch2,4); #endif } #else /* powerpc64 */ cpu_features |= PPC_FEATURE_64; #endif trapsize = (size_t)&trapcodeend - (size_t)&trapcode; /* * Copy generic handler into every possible trap. Special cases will get * different ones in a minute. */ for (trap = EXC_RST; trap < EXC_LAST; trap += 0x20) bcopy(&trapcode, (void *)trap, trapsize); #ifndef __powerpc64__ if (cpu_features & PPC_FEATURE_64) { /* * Copy a code snippet to restore 32-bit bridge mode * to the top of every non-generic trap handler */ trap_offset += (size_t)&restorebridgesize; bcopy(&restorebridge, (void *)EXC_RST, trap_offset); bcopy(&restorebridge, (void *)EXC_DSI, trap_offset); bcopy(&restorebridge, (void *)EXC_ALI, trap_offset); bcopy(&restorebridge, (void *)EXC_PGM, trap_offset); bcopy(&restorebridge, (void *)EXC_MCHK, trap_offset); bcopy(&restorebridge, (void *)EXC_TRC, trap_offset); bcopy(&restorebridge, (void *)EXC_BPT, trap_offset); } #endif bcopy(&rstcode, (void *)(EXC_RST + trap_offset), (size_t)&rstcodeend - (size_t)&rstcode); #ifdef KDB bcopy(&dblow, (void *)(EXC_MCHK + trap_offset), (size_t)&dbend - (size_t)&dblow); bcopy(&dblow, (void *)(EXC_PGM + trap_offset), (size_t)&dbend - (size_t)&dblow); bcopy(&dblow, (void *)(EXC_TRC + trap_offset), (size_t)&dbend - (size_t)&dblow); bcopy(&dblow, (void *)(EXC_BPT + trap_offset), (size_t)&dbend - (size_t)&dblow); #endif bcopy(&alitrap, (void *)(EXC_ALI + trap_offset), (size_t)&aliend - (size_t)&alitrap); bcopy(&dsitrap, (void *)(EXC_DSI + trap_offset), (size_t)&dsiend - (size_t)&dsitrap); #ifdef __powerpc64__ /* Set TOC base so that the interrupt code can get at it */ *((void **)TRAP_GENTRAP) = &generictrap; *((register_t *)TRAP_TOCBASE) = toc; #else /* Set branch address for trap code */ if (cpu_features & PPC_FEATURE_64) *((void **)TRAP_GENTRAP) = &generictrap64; else *((void **)TRAP_GENTRAP) = &generictrap; *((void **)TRAP_TOCBASE) = _GLOBAL_OFFSET_TABLE_; /* G2-specific TLB miss helper handlers */ bcopy(&imisstrap, (void *)EXC_IMISS, (size_t)&imisssize); bcopy(&dlmisstrap, (void *)EXC_DLMISS, (size_t)&dlmisssize); bcopy(&dsmisstrap, (void *)EXC_DSMISS, (size_t)&dsmisssize); #endif __syncicache(EXC_RSVD, EXC_LAST - EXC_RSVD); /* * Restore MSR */ mtmsr(msr); /* Warn if cachline size was not determined */ if (cacheline_warn == 1) { printf("WARNING: cacheline size undetermined, setting to 32\n"); } /* * Initialise virtual memory. Use BUS_PROBE_GENERIC priority * in case the platform module had a better idea of what we * should do. */ if (cpu_features & PPC_FEATURE_64) pmap_mmu_install(MMU_TYPE_G5, BUS_PROBE_GENERIC); else pmap_mmu_install(MMU_TYPE_OEA, BUS_PROBE_GENERIC); } /* * Shutdown the CPU as much as possible. */ void cpu_halt(void) { OF_exit(); } int ptrace_single_step(struct thread *td) { struct trapframe *tf; tf = td->td_frame; tf->srr1 |= PSL_SE; return (0); } int ptrace_clear_single_step(struct thread *td) { struct trapframe *tf; tf = td->td_frame; tf->srr1 &= ~PSL_SE; return (0); } void kdb_cpu_clear_singlestep(void) { kdb_frame->srr1 &= ~PSL_SE; } void kdb_cpu_set_singlestep(void) { kdb_frame->srr1 |= PSL_SE; } /* * Initialise a struct pcpu. */ void cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t sz) { #ifdef __powerpc64__ /* Copy the SLB contents from the current CPU */ memcpy(pcpu->pc_aim.slb, PCPU_GET(aim.slb), sizeof(pcpu->pc_aim.slb)); #endif } #ifndef __powerpc64__ uint64_t va_to_vsid(pmap_t pm, vm_offset_t va) { return ((pm->pm_sr[(uintptr_t)va >> ADDR_SR_SHFT]) & SR_VSID_MASK); } #endif /* * These functions need to provide addresses that both (a) work in real mode * (or whatever mode/circumstances the kernel is in in early boot (now)) and * (b) can still, in principle, work once the kernel is going. Because these * rely on existing mappings/real mode, unmap is a no-op. */ vm_offset_t pmap_early_io_map(vm_paddr_t pa, vm_size_t size) { KASSERT(!pmap_bootstrapped, ("Not available after PMAP started!")); /* * If we have the MMU up in early boot, assume it is 1:1. Otherwise, * try to get the address in a memory region compatible with the * direct map for efficiency later. */ if (mfmsr() & PSL_DR) return (pa); else return (DMAP_BASE_ADDRESS + pa); } void pmap_early_io_unmap(vm_offset_t va, vm_size_t size) { KASSERT(!pmap_bootstrapped, ("Not available after PMAP started!")); } /* From p3-53 of the MPC7450 RISC Microprocessor Family Reference Manual */ void flush_disable_caches(void) { register_t msr; register_t msscr0; register_t cache_reg; volatile uint32_t *memp; uint32_t temp; int i; int x; msr = mfmsr(); powerpc_sync(); mtmsr(msr & ~(PSL_EE | PSL_DR)); msscr0 = mfspr(SPR_MSSCR0); msscr0 &= ~MSSCR0_L2PFE; mtspr(SPR_MSSCR0, msscr0); powerpc_sync(); isync(); __asm__ __volatile__("dssall; sync"); powerpc_sync(); isync(); __asm__ __volatile__("dcbf 0,%0" :: "r"(0)); __asm__ __volatile__("dcbf 0,%0" :: "r"(0)); __asm__ __volatile__("dcbf 0,%0" :: "r"(0)); /* Lock the L1 Data cache. */ mtspr(SPR_LDSTCR, mfspr(SPR_LDSTCR) | 0xFF); powerpc_sync(); isync(); mtspr(SPR_LDSTCR, 0); /* * Perform this in two stages: Flush the cache starting in RAM, then do it * from ROM. */ memp = (volatile uint32_t *)0x00000000; for (i = 0; i < 128 * 1024; i++) { temp = *memp; __asm__ __volatile__("dcbf 0,%0" :: "r"(memp)); memp += 32/sizeof(*memp); } memp = (volatile uint32_t *)0xfff00000; x = 0xfe; for (; x != 0xff;) { mtspr(SPR_LDSTCR, x); for (i = 0; i < 128; i++) { temp = *memp; __asm__ __volatile__("dcbf 0,%0" :: "r"(memp)); memp += 32/sizeof(*memp); } x = ((x << 1) | 1) & 0xff; } mtspr(SPR_LDSTCR, 0); cache_reg = mfspr(SPR_L2CR); if (cache_reg & L2CR_L2E) { cache_reg &= ~(L2CR_L2IO_7450 | L2CR_L2DO_7450); mtspr(SPR_L2CR, cache_reg); powerpc_sync(); mtspr(SPR_L2CR, cache_reg | L2CR_L2HWF); while (mfspr(SPR_L2CR) & L2CR_L2HWF) ; /* Busy wait for cache to flush */ powerpc_sync(); cache_reg &= ~L2CR_L2E; mtspr(SPR_L2CR, cache_reg); powerpc_sync(); mtspr(SPR_L2CR, cache_reg | L2CR_L2I); powerpc_sync(); while (mfspr(SPR_L2CR) & L2CR_L2I) ; /* Busy wait for L2 cache invalidate */ powerpc_sync(); } cache_reg = mfspr(SPR_L3CR); if (cache_reg & L3CR_L3E) { cache_reg &= ~(L3CR_L3IO | L3CR_L3DO); mtspr(SPR_L3CR, cache_reg); powerpc_sync(); mtspr(SPR_L3CR, cache_reg | L3CR_L3HWF); while (mfspr(SPR_L3CR) & L3CR_L3HWF) ; /* Busy wait for cache to flush */ powerpc_sync(); cache_reg &= ~L3CR_L3E; mtspr(SPR_L3CR, cache_reg); powerpc_sync(); mtspr(SPR_L3CR, cache_reg | L3CR_L3I); powerpc_sync(); while (mfspr(SPR_L3CR) & L3CR_L3I) ; /* Busy wait for L3 cache invalidate */ powerpc_sync(); } mtspr(SPR_HID0, mfspr(SPR_HID0) & ~HID0_DCE); powerpc_sync(); isync(); mtmsr(msr); } void cpu_sleep() { static u_quad_t timebase = 0; static register_t sprgs[4]; static register_t srrs[2]; jmp_buf resetjb; struct thread *fputd; struct thread *vectd; register_t hid0; register_t msr; register_t saved_msr; ap_pcpu = pcpup; PCPU_SET(restore, &resetjb); saved_msr = mfmsr(); fputd = PCPU_GET(fputhread); vectd = PCPU_GET(vecthread); if (fputd != NULL) save_fpu(fputd); if (vectd != NULL) save_vec(vectd); if (setjmp(resetjb) == 0) { sprgs[0] = mfspr(SPR_SPRG0); sprgs[1] = mfspr(SPR_SPRG1); sprgs[2] = mfspr(SPR_SPRG2); sprgs[3] = mfspr(SPR_SPRG3); srrs[0] = mfspr(SPR_SRR0); srrs[1] = mfspr(SPR_SRR1); timebase = mftb(); powerpc_sync(); flush_disable_caches(); hid0 = mfspr(SPR_HID0); hid0 = (hid0 & ~(HID0_DOZE | HID0_NAP)) | HID0_SLEEP; powerpc_sync(); isync(); msr = mfmsr() | PSL_POW; mtspr(SPR_HID0, hid0); powerpc_sync(); while (1) mtmsr(msr); } platform_smp_timebase_sync(timebase, 0); PCPU_SET(curthread, curthread); PCPU_SET(curpcb, curthread->td_pcb); pmap_activate(curthread); powerpc_sync(); mtspr(SPR_SPRG0, sprgs[0]); mtspr(SPR_SPRG1, sprgs[1]); mtspr(SPR_SPRG2, sprgs[2]); mtspr(SPR_SPRG3, sprgs[3]); mtspr(SPR_SRR0, srrs[0]); mtspr(SPR_SRR1, srrs[1]); mtmsr(saved_msr); if (fputd == curthread) enable_fpu(curthread); if (vectd == curthread) enable_vec(curthread); powerpc_sync(); } Index: head/sys/powerpc/aim/locore64.S =================================================================== --- head/sys/powerpc/aim/locore64.S (revision 330844) +++ head/sys/powerpc/aim/locore64.S (revision 330845) @@ -1,192 +1,210 @@ /* $FreeBSD$ */ /*- * Copyright (C) 2010-2016 Nathan Whitehorn * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #include "assym.s" #include #include #include #include #include #ifdef _CALL_ELF .abiversion _CALL_ELF #endif /* Glue for linker script */ .globl kernbase .set kernbase, KERNBASE /* * Globals */ .data .align 3 GLOBAL(__startkernel) .llong begin GLOBAL(__endkernel) .llong end GLOBAL(can_wakeup) .llong 0x0 .align 4 #define TMPSTKSZ 16384 /* 16K temporary stack */ GLOBAL(tmpstk) .space TMPSTKSZ TOC_ENTRY(tmpstk) TOC_ENTRY(can_wakeup) /* * Entry point for bootloaders that do not fully implement ELF and start * at the beginning of the image (kexec, notably). In its own section so * that it ends up before any linker-generated call stubs and actually at * the beginning of the image. kexec on some systems also enters at * (start of image) + 0x60, so put a spin loop there. */ .section ".text.kboot", "x", @progbits kbootentry: b __start . = kbootentry + 0x40 /* Magic address used in platform layer */ .global smp_spin_sem ap_kexec_spin_sem: .long -1 . = kbootentry + 0x60 /* Entry point for kexec APs */ ap_kexec_start: /* At 0x60 past start, copied to 0x60 by kexec */ /* r3 set to CPU ID by kexec */ /* Invalidate icache for low-memory copy and jump there */ li %r0,0x80 dcbst 0,%r0 sync icbi 0,%r0 isync ba 0x80 /* Absolute branch to next inst */ . = kbootentry + 0x80 /* Aligned to cache line */ 1: or 31,31,31 /* yield */ sync lwz %r1,0x40(0) /* Spin on ap_kexec_spin_sem */ cmpw %r1,%r3 /* Until it equals our CPU ID */ bne 1b /* Released */ or 2,2,2 /* unyield */ /* Make sure that it will be software reset. Clear SRR1 */ li %r1,0 mtsrr1 %r1 ba EXC_RST - /* * Now start the real text section */ .text .globl btext btext: /* * Main kernel entry point. * * Calling convention: * r3: Flattened Device Tree pointer (or zero) * r4: ignored * r5: OF client interface pointer (or zero) * r6: Loader metadata pointer (or zero) * r7: Magic cookie (0xfb5d104d) to indicate that r6 has loader metadata */ .text ASENTRY_NOPROF(__start) /* Set 64-bit mode if not yet set before branching to C */ mfmsr %r20 li %r21,1 insrdi %r20,%r21,1,0 mtmsrd %r20 isync nop /* Make this block a multiple of 8 bytes */ /* Set up the TOC pointer */ b 0f .align 3 0: nop bl 1f .llong __tocbase + 0x8000 - . 1: mflr %r2 ld %r1,0(%r2) add %r2,%r1,%r2 /* Get load offset */ ld %r31,-0x8000(%r2) /* First TOC entry is TOC base */ subf %r31,%r31,%r2 /* Subtract from real TOC base to get base */ /* Set up the stack pointer */ - ld %r1,TOC_REF(tmpstk)(%r2) - addi %r1,%r1,TMPSTKSZ-96 - add %r1,%r1,%r31 + bl 1f + .llong tmpstk + TMPSTKSZ - 96 - . +1: mflr %r30 + ld %r1,0(%r30) + add %r1,%r1,%r30 + nop /* Relocate kernel */ std %r3,48(%r1) std %r4,56(%r1) std %r5,64(%r1) std %r6,72(%r1) std %r7,80(%r1) bl 1f .llong _DYNAMIC-. 1: mflr %r3 ld %r4,0(%r3) add %r3,%r4,%r3 mr %r4,%r31 bl elf_reloc_self nop ld %r3,48(%r1) ld %r4,56(%r1) ld %r5,64(%r1) ld %r6,72(%r1) ld %r7,80(%r1) /* Begin CPU init */ mr %r4,%r2 /* Replace ignored r4 with tocbase for trap handlers */ bl powerpc_init nop /* Set stack pointer to new value and branch to mi_startup */ mr %r1, %r3 li %r3, 0 std %r3, 0(%r1) bl mi_startup nop /* Unreachable */ b . + +ASENTRY_NOPROF(__restartkernel) + /* + * r3-r7: arguments to go to __start + * r8: offset from current kernel address to apply + * r9: MSR to set when (atomically) jumping to __start + r8 + */ + mtsrr1 %r9 + bl 1f +1: mflr %r25 + add %r25,%r8,%r25 + addi %r25,%r25,2f-1b + mtsrr0 %r25 + rfid +2: bl __start + nop #include Index: head/sys/powerpc/aim/mmu_oea64.c =================================================================== --- head/sys/powerpc/aim/mmu_oea64.c (revision 330844) +++ head/sys/powerpc/aim/mmu_oea64.c (revision 330845) @@ -1,2855 +1,2860 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2008-2015 Nathan Whitehorn * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Manages physical address maps. * * Since the information managed by this module is also stored by the * logical address mapping module, this module may throw away valid virtual * to physical mappings at almost any time. However, invalidations of * mappings must be done as requested. * * In order to cope with hardware architectures which make virtual to * physical map invalidates expensive, this module may delay invalidate * reduced protection operations until such time as they are actually * necessary. This module is given full information as to which processors * are currently using which maps, and to when physical maps must be made * correct. */ #include "opt_compat.h" #include "opt_kstack_pages.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mmu_oea64.h" #include "mmu_if.h" #include "moea64_if.h" void moea64_release_vsid(uint64_t vsid); uintptr_t moea64_get_unique_vsid(void); #define DISABLE_TRANS(msr) msr = mfmsr(); mtmsr(msr & ~PSL_DR) #define ENABLE_TRANS(msr) mtmsr(msr) #define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4)) #define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff) #define VSID_HASH_MASK 0x0000007fffffffffULL /* * Locking semantics: * * There are two locks of interest: the page locks and the pmap locks, which * protect their individual PVO lists and are locked in that order. The contents * of all PVO entries are protected by the locks of their respective pmaps. * The pmap of any PVO is guaranteed not to change so long as the PVO is linked * into any list. * */ #define PV_LOCK_COUNT PA_LOCK_COUNT*3 static struct mtx_padalign pv_lock[PV_LOCK_COUNT]; #define PV_LOCKPTR(pa) ((struct mtx *)(&pv_lock[pa_index(pa) % PV_LOCK_COUNT])) #define PV_LOCK(pa) mtx_lock(PV_LOCKPTR(pa)) #define PV_UNLOCK(pa) mtx_unlock(PV_LOCKPTR(pa)) #define PV_LOCKASSERT(pa) mtx_assert(PV_LOCKPTR(pa), MA_OWNED) #define PV_PAGE_LOCK(m) PV_LOCK(VM_PAGE_TO_PHYS(m)) #define PV_PAGE_UNLOCK(m) PV_UNLOCK(VM_PAGE_TO_PHYS(m)) #define PV_PAGE_LOCKASSERT(m) PV_LOCKASSERT(VM_PAGE_TO_PHYS(m)) struct ofw_map { cell_t om_va; cell_t om_len; uint64_t om_pa; cell_t om_mode; }; extern unsigned char _etext[]; extern unsigned char _end[]; extern void *slbtrap, *slbtrapend; /* * Map of physical memory regions. */ static struct mem_region *regions; static struct mem_region *pregions; static u_int phys_avail_count; static int regions_sz, pregions_sz; extern void bs_remap_earlyboot(void); /* * Lock for the SLB tables. */ struct mtx moea64_slb_mutex; /* * PTEG data. */ u_int moea64_pteg_count; u_int moea64_pteg_mask; /* * PVO data. */ uma_zone_t moea64_pvo_zone; /* zone for pvo entries */ static struct pvo_entry *moea64_bpvo_pool; static int moea64_bpvo_pool_index = 0; static int moea64_bpvo_pool_size = 327680; TUNABLE_INT("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size); SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD, &moea64_bpvo_pool_index, 0, ""); #define VSID_NBPW (sizeof(u_int32_t) * 8) #ifdef __powerpc64__ #define NVSIDS (NPMAPS * 16) #define VSID_HASHMASK 0xffffffffUL #else #define NVSIDS NPMAPS #define VSID_HASHMASK 0xfffffUL #endif static u_int moea64_vsid_bitmap[NVSIDS / VSID_NBPW]; static boolean_t moea64_initialized = FALSE; /* * Statistics. */ u_int moea64_pte_valid = 0; u_int moea64_pte_overflow = 0; u_int moea64_pvo_entries = 0; u_int moea64_pvo_enter_calls = 0; u_int moea64_pvo_remove_calls = 0; SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD, &moea64_pte_valid, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD, &moea64_pte_overflow, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD, &moea64_pvo_entries, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD, &moea64_pvo_enter_calls, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD, &moea64_pvo_remove_calls, 0, ""); vm_offset_t moea64_scratchpage_va[2]; struct pvo_entry *moea64_scratchpage_pvo[2]; struct mtx moea64_scratchpage_mtx; uint64_t moea64_large_page_mask = 0; uint64_t moea64_large_page_size = 0; int moea64_large_page_shift = 0; /* * PVO calls. */ static int moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo, struct pvo_head *pvo_head); static void moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo); static void moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo); static struct pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t); /* * Utility routines. */ static boolean_t moea64_query_bit(mmu_t, vm_page_t, uint64_t); static u_int moea64_clear_bit(mmu_t, vm_page_t, uint64_t); static void moea64_kremove(mmu_t, vm_offset_t); static void moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va, vm_paddr_t pa, vm_size_t sz); static void moea64_pmap_init_qpages(void); /* * Kernel MMU interface */ void moea64_clear_modify(mmu_t, vm_page_t); void moea64_copy_page(mmu_t, vm_page_t, vm_page_t); void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, vm_page_t *mb, vm_offset_t b_offset, int xfersize); int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int flags, int8_t psind); void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t, vm_prot_t); void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t); vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t); vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t); void moea64_init(mmu_t); boolean_t moea64_is_modified(mmu_t, vm_page_t); boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t); boolean_t moea64_is_referenced(mmu_t, vm_page_t); int moea64_ts_referenced(mmu_t, vm_page_t); vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int); boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t); void moea64_page_init(mmu_t, vm_page_t); int moea64_page_wired_mappings(mmu_t, vm_page_t); void moea64_pinit(mmu_t, pmap_t); void moea64_pinit0(mmu_t, pmap_t); void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t); void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int); void moea64_qremove(mmu_t, vm_offset_t, int); void moea64_release(mmu_t, pmap_t); void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t); void moea64_remove_pages(mmu_t, pmap_t); void moea64_remove_all(mmu_t, vm_page_t); void moea64_remove_write(mmu_t, vm_page_t); void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t); void moea64_zero_page(mmu_t, vm_page_t); void moea64_zero_page_area(mmu_t, vm_page_t, int, int); void moea64_activate(mmu_t, struct thread *); void moea64_deactivate(mmu_t, struct thread *); void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t); void *moea64_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t); void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t); vm_paddr_t moea64_kextract(mmu_t, vm_offset_t); void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma); void moea64_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t ma); void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t); boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t); static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t); void moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va); void moea64_scan_init(mmu_t mmu); vm_offset_t moea64_quick_enter_page(mmu_t mmu, vm_page_t m); void moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr); static int moea64_map_user_ptr(mmu_t mmu, pmap_t pm, volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen); static int moea64_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr, int *is_user, vm_offset_t *decoded_addr); static mmu_method_t moea64_methods[] = { MMUMETHOD(mmu_clear_modify, moea64_clear_modify), MMUMETHOD(mmu_copy_page, moea64_copy_page), MMUMETHOD(mmu_copy_pages, moea64_copy_pages), MMUMETHOD(mmu_enter, moea64_enter), MMUMETHOD(mmu_enter_object, moea64_enter_object), MMUMETHOD(mmu_enter_quick, moea64_enter_quick), MMUMETHOD(mmu_extract, moea64_extract), MMUMETHOD(mmu_extract_and_hold, moea64_extract_and_hold), MMUMETHOD(mmu_init, moea64_init), MMUMETHOD(mmu_is_modified, moea64_is_modified), MMUMETHOD(mmu_is_prefaultable, moea64_is_prefaultable), MMUMETHOD(mmu_is_referenced, moea64_is_referenced), MMUMETHOD(mmu_ts_referenced, moea64_ts_referenced), MMUMETHOD(mmu_map, moea64_map), MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick), MMUMETHOD(mmu_page_init, moea64_page_init), MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings), MMUMETHOD(mmu_pinit, moea64_pinit), MMUMETHOD(mmu_pinit0, moea64_pinit0), MMUMETHOD(mmu_protect, moea64_protect), MMUMETHOD(mmu_qenter, moea64_qenter), MMUMETHOD(mmu_qremove, moea64_qremove), MMUMETHOD(mmu_release, moea64_release), MMUMETHOD(mmu_remove, moea64_remove), MMUMETHOD(mmu_remove_pages, moea64_remove_pages), MMUMETHOD(mmu_remove_all, moea64_remove_all), MMUMETHOD(mmu_remove_write, moea64_remove_write), MMUMETHOD(mmu_sync_icache, moea64_sync_icache), MMUMETHOD(mmu_unwire, moea64_unwire), MMUMETHOD(mmu_zero_page, moea64_zero_page), MMUMETHOD(mmu_zero_page_area, moea64_zero_page_area), MMUMETHOD(mmu_activate, moea64_activate), MMUMETHOD(mmu_deactivate, moea64_deactivate), MMUMETHOD(mmu_page_set_memattr, moea64_page_set_memattr), MMUMETHOD(mmu_quick_enter_page, moea64_quick_enter_page), MMUMETHOD(mmu_quick_remove_page, moea64_quick_remove_page), /* Internal interfaces */ MMUMETHOD(mmu_mapdev, moea64_mapdev), MMUMETHOD(mmu_mapdev_attr, moea64_mapdev_attr), MMUMETHOD(mmu_unmapdev, moea64_unmapdev), MMUMETHOD(mmu_kextract, moea64_kextract), MMUMETHOD(mmu_kenter, moea64_kenter), MMUMETHOD(mmu_kenter_attr, moea64_kenter_attr), MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped), MMUMETHOD(mmu_scan_init, moea64_scan_init), MMUMETHOD(mmu_dumpsys_map, moea64_dumpsys_map), MMUMETHOD(mmu_map_user_ptr, moea64_map_user_ptr), MMUMETHOD(mmu_decode_kernel_ptr, moea64_decode_kernel_ptr), { 0, 0 } }; MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0); static struct pvo_head * vm_page_to_pvoh(vm_page_t m) { mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED); return (&m->md.mdpg_pvoh); } static struct pvo_entry * alloc_pvo_entry(int bootstrap) { struct pvo_entry *pvo; if (!moea64_initialized || bootstrap) { if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) { panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd", moea64_bpvo_pool_index, moea64_bpvo_pool_size, moea64_bpvo_pool_size * sizeof(struct pvo_entry)); } pvo = &moea64_bpvo_pool[ atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)]; bzero(pvo, sizeof(*pvo)); pvo->pvo_vaddr = PVO_BOOTSTRAP; } else { pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT); bzero(pvo, sizeof(*pvo)); } return (pvo); } static void init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va) { uint64_t vsid; uint64_t hash; int shift; PMAP_LOCK_ASSERT(pmap, MA_OWNED); pvo->pvo_pmap = pmap; va &= ~ADDR_POFF; pvo->pvo_vaddr |= va; vsid = va_to_vsid(pmap, va); pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT) | (vsid << 16); shift = (pvo->pvo_vaddr & PVO_LARGE) ? moea64_large_page_shift : ADDR_PIDX_SHFT; hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift); pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3; } static void free_pvo_entry(struct pvo_entry *pvo) { if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP)) uma_zfree(moea64_pvo_zone, pvo); } void moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte) { lpte->pte_hi = (pvo->pvo_vpn >> (ADDR_API_SHFT64 - ADDR_PIDX_SHFT)) & LPTE_AVPN_MASK; lpte->pte_hi |= LPTE_VALID; if (pvo->pvo_vaddr & PVO_LARGE) lpte->pte_hi |= LPTE_BIG; if (pvo->pvo_vaddr & PVO_WIRED) lpte->pte_hi |= LPTE_WIRED; if (pvo->pvo_vaddr & PVO_HID) lpte->pte_hi |= LPTE_HID; lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */ if (pvo->pvo_pte.prot & VM_PROT_WRITE) lpte->pte_lo |= LPTE_BW; else lpte->pte_lo |= LPTE_BR; if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE)) lpte->pte_lo |= LPTE_NOEXEC; } static __inline uint64_t moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma) { uint64_t pte_lo; int i; if (ma != VM_MEMATTR_DEFAULT) { switch (ma) { case VM_MEMATTR_UNCACHEABLE: return (LPTE_I | LPTE_G); case VM_MEMATTR_CACHEABLE: return (LPTE_M); case VM_MEMATTR_WRITE_COMBINING: case VM_MEMATTR_WRITE_BACK: case VM_MEMATTR_PREFETCHABLE: return (LPTE_I); case VM_MEMATTR_WRITE_THROUGH: return (LPTE_W | LPTE_M); } } /* * Assume the page is cache inhibited and access is guarded unless * it's in our available memory array. */ pte_lo = LPTE_I | LPTE_G; for (i = 0; i < pregions_sz; i++) { if ((pa >= pregions[i].mr_start) && (pa < (pregions[i].mr_start + pregions[i].mr_size))) { pte_lo &= ~(LPTE_I | LPTE_G); pte_lo |= LPTE_M; break; } } return pte_lo; } /* * Quick sort callout for comparing memory regions. */ static int om_cmp(const void *a, const void *b); static int om_cmp(const void *a, const void *b) { const struct ofw_map *mapa; const struct ofw_map *mapb; mapa = a; mapb = b; if (mapa->om_pa < mapb->om_pa) return (-1); else if (mapa->om_pa > mapb->om_pa) return (1); else return (0); } static void moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz) { struct ofw_map translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */ pcell_t acells, trans_cells[sz/sizeof(cell_t)]; struct pvo_entry *pvo; register_t msr; vm_offset_t off; vm_paddr_t pa_base; int i, j; bzero(translations, sz); OF_getencprop(OF_finddevice("/"), "#address-cells", &acells, sizeof(acells)); if (OF_getencprop(mmu, "translations", trans_cells, sz) == -1) panic("moea64_bootstrap: can't get ofw translations"); CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations"); sz /= sizeof(cell_t); for (i = 0, j = 0; i < sz; j++) { translations[j].om_va = trans_cells[i++]; translations[j].om_len = trans_cells[i++]; translations[j].om_pa = trans_cells[i++]; if (acells == 2) { translations[j].om_pa <<= 32; translations[j].om_pa |= trans_cells[i++]; } translations[j].om_mode = trans_cells[i++]; } KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)", i, sz)); sz = j; qsort(translations, sz, sizeof (*translations), om_cmp); for (i = 0; i < sz; i++) { pa_base = translations[i].om_pa; #ifndef __powerpc64__ if ((translations[i].om_pa >> 32) != 0) panic("OFW translations above 32-bit boundary!"); #endif if (pa_base % PAGE_SIZE) panic("OFW translation not page-aligned (phys)!"); if (translations[i].om_va % PAGE_SIZE) panic("OFW translation not page-aligned (virt)!"); CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x", pa_base, translations[i].om_va, translations[i].om_len); /* Now enter the pages for this mapping */ DISABLE_TRANS(msr); for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) { /* If this address is direct-mapped, skip remapping */ if (hw_direct_map && translations[i].om_va == PHYS_TO_DMAP(pa_base) && moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT) == LPTE_M) continue; PMAP_LOCK(kernel_pmap); pvo = moea64_pvo_find_va(kernel_pmap, translations[i].om_va + off); PMAP_UNLOCK(kernel_pmap); if (pvo != NULL) continue; moea64_kenter(mmup, translations[i].om_va + off, pa_base + off); } ENABLE_TRANS(msr); } } #ifdef __powerpc64__ static void moea64_probe_large_page(void) { uint16_t pvr = mfpvr() >> 16; switch (pvr) { case IBM970: case IBM970FX: case IBM970MP: powerpc_sync(); isync(); mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG); powerpc_sync(); isync(); /* FALLTHROUGH */ default: if (moea64_large_page_size == 0) { moea64_large_page_size = 0x1000000; /* 16 MB */ moea64_large_page_shift = 24; } } moea64_large_page_mask = moea64_large_page_size - 1; } static void moea64_bootstrap_slb_prefault(vm_offset_t va, int large) { struct slb *cache; struct slb entry; uint64_t esid, slbe; uint64_t i; cache = PCPU_GET(aim.slb); esid = va >> ADDR_SR_SHFT; slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID; for (i = 0; i < 64; i++) { if (cache[i].slbe == (slbe | i)) return; } entry.slbe = slbe; entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT; if (large) entry.slbv |= SLBV_L; slb_insert_kernel(entry.slbe, entry.slbv); } #endif static void moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend) { struct pvo_entry *pvo; register_t msr; vm_paddr_t pa; vm_offset_t size, off; uint64_t pte_lo; int i; if (moea64_large_page_size == 0) hw_direct_map = 0; DISABLE_TRANS(msr); if (hw_direct_map) { PMAP_LOCK(kernel_pmap); for (i = 0; i < pregions_sz; i++) { for (pa = pregions[i].mr_start; pa < pregions[i].mr_start + pregions[i].mr_size; pa += moea64_large_page_size) { pte_lo = LPTE_M; pvo = alloc_pvo_entry(1 /* bootstrap */); pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE; init_pvo_entry(pvo, kernel_pmap, PHYS_TO_DMAP(pa)); /* * Set memory access as guarded if prefetch within * the page could exit the available physmem area. */ if (pa & moea64_large_page_mask) { pa &= moea64_large_page_mask; pte_lo |= LPTE_G; } if (pa + moea64_large_page_size > pregions[i].mr_start + pregions[i].mr_size) pte_lo |= LPTE_G; pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; pvo->pvo_pte.pa = pa | pte_lo; moea64_pvo_enter(mmup, pvo, NULL); } } PMAP_UNLOCK(kernel_pmap); } /* * Make sure the kernel and BPVO pool stay mapped on systems either * without a direct map or on which the kernel is not already executing * out of the direct-mapped region. */ if (!hw_direct_map || kernelstart < DMAP_BASE_ADDRESS) { for (pa = kernelstart & ~PAGE_MASK; pa < kernelend; pa += PAGE_SIZE) moea64_kenter(mmup, pa, pa); } if (!hw_direct_map) { size = moea64_bpvo_pool_size*sizeof(struct pvo_entry); off = (vm_offset_t)(moea64_bpvo_pool); for (pa = off; pa < off + size; pa += PAGE_SIZE) moea64_kenter(mmup, pa, pa); } ENABLE_TRANS(msr); /* * Allow user to override unmapped_buf_allowed for testing. * XXXKIB Only direct map implementation was tested. */ if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed", &unmapped_buf_allowed)) unmapped_buf_allowed = hw_direct_map; } void moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend) { int i, j; vm_size_t physsz, hwphyssz; + vm_paddr_t kernelphysstart, kernelphysend; #ifndef __powerpc64__ /* We don't have a direct map since there is no BAT */ hw_direct_map = 0; /* Make sure battable is zero, since we have no BAT */ for (i = 0; i < 16; i++) { battable[i].batu = 0; battable[i].batl = 0; } #else moea64_probe_large_page(); /* Use a direct map if we have large page support */ if (moea64_large_page_size > 0) hw_direct_map = 1; else hw_direct_map = 0; /* Install trap handlers for SLBs */ bcopy(&slbtrap, (void *)EXC_DSE,(size_t)&slbtrapend - (size_t)&slbtrap); bcopy(&slbtrap, (void *)EXC_ISE,(size_t)&slbtrapend - (size_t)&slbtrap); __syncicache((void *)EXC_DSE, 0x80); __syncicache((void *)EXC_ISE, 0x80); #endif + kernelphysstart = kernelstart & ~DMAP_BASE_ADDRESS; + kernelphysend = kernelend & ~DMAP_BASE_ADDRESS; + /* Get physical memory regions from firmware */ mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz); CTR0(KTR_PMAP, "moea64_bootstrap: physical memory"); if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz) panic("moea64_bootstrap: phys_avail too small"); phys_avail_count = 0; physsz = 0; hwphyssz = 0; TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); for (i = 0, j = 0; i < regions_sz; i++, j += 2) { CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)", regions[i].mr_start, regions[i].mr_start + regions[i].mr_size, regions[i].mr_size); if (hwphyssz != 0 && (physsz + regions[i].mr_size) >= hwphyssz) { if (physsz < hwphyssz) { phys_avail[j] = regions[i].mr_start; phys_avail[j + 1] = regions[i].mr_start + hwphyssz - physsz; physsz = hwphyssz; phys_avail_count++; } break; } phys_avail[j] = regions[i].mr_start; phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size; phys_avail_count++; physsz += regions[i].mr_size; } /* Check for overlap with the kernel and exception vectors */ for (j = 0; j < 2*phys_avail_count; j+=2) { if (phys_avail[j] < EXC_LAST) phys_avail[j] += EXC_LAST; - if (kernelstart >= phys_avail[j] && - kernelstart < phys_avail[j+1]) { - if (kernelend < phys_avail[j+1]) { + if (kernelphysstart >= phys_avail[j] && + kernelphysstart < phys_avail[j+1]) { + if (kernelphysend < phys_avail[j+1]) { phys_avail[2*phys_avail_count] = - (kernelend & ~PAGE_MASK) + PAGE_SIZE; + (kernelphysend & ~PAGE_MASK) + PAGE_SIZE; phys_avail[2*phys_avail_count + 1] = phys_avail[j+1]; phys_avail_count++; } - phys_avail[j+1] = kernelstart & ~PAGE_MASK; + phys_avail[j+1] = kernelphysstart & ~PAGE_MASK; } - if (kernelend >= phys_avail[j] && - kernelend < phys_avail[j+1]) { - if (kernelstart > phys_avail[j]) { + if (kernelphysend >= phys_avail[j] && + kernelphysend < phys_avail[j+1]) { + if (kernelphysstart > phys_avail[j]) { phys_avail[2*phys_avail_count] = phys_avail[j]; phys_avail[2*phys_avail_count + 1] = - kernelstart & ~PAGE_MASK; + kernelphysstart & ~PAGE_MASK; phys_avail_count++; } - phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE; + phys_avail[j] = (kernelphysend & ~PAGE_MASK) + + PAGE_SIZE; } } physmem = btoc(physsz); #ifdef PTEGCOUNT moea64_pteg_count = PTEGCOUNT; #else moea64_pteg_count = 0x1000; while (moea64_pteg_count < physmem) moea64_pteg_count <<= 1; moea64_pteg_count >>= 1; #endif /* PTEGCOUNT */ } void moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend) { int i; /* * Set PTEG mask */ moea64_pteg_mask = moea64_pteg_count - 1; /* * Initialize SLB table lock and page locks */ mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF); for (i = 0; i < PV_LOCK_COUNT; i++) mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF); /* * Initialise the bootstrap pvo pool. */ moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc( moea64_bpvo_pool_size*sizeof(struct pvo_entry), 0); moea64_bpvo_pool_index = 0; /* Place at address usable through the direct map */ if (hw_direct_map) moea64_bpvo_pool = (struct pvo_entry *) PHYS_TO_DMAP((uintptr_t)moea64_bpvo_pool); /* * Make sure kernel vsid is allocated as well as VSID 0. */ #ifndef __powerpc64__ moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW] |= 1 << (KERNEL_VSIDBITS % VSID_NBPW); moea64_vsid_bitmap[0] |= 1; #endif /* * Initialize the kernel pmap (which is statically allocated). */ #ifdef __powerpc64__ for (i = 0; i < 64; i++) { pcpup->pc_aim.slb[i].slbv = 0; pcpup->pc_aim.slb[i].slbe = 0; } #else for (i = 0; i < 16; i++) kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i; #endif kernel_pmap->pmap_phys = kernel_pmap; CPU_FILL(&kernel_pmap->pm_active); RB_INIT(&kernel_pmap->pmap_pvo); PMAP_LOCK_INIT(kernel_pmap); /* * Now map in all the other buffers we allocated earlier */ moea64_setup_direct_map(mmup, kernelstart, kernelend); } void moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend) { ihandle_t mmui; phandle_t chosen; phandle_t mmu; ssize_t sz; int i; vm_offset_t pa, va; void *dpcpu; /* * Set up the Open Firmware pmap and add its mappings if not in real * mode. */ chosen = OF_finddevice("/chosen"); if (chosen != -1 && OF_getencprop(chosen, "mmu", &mmui, 4) != -1) { mmu = OF_instance_to_package(mmui); if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1) sz = 0; if (sz > 6144 /* tmpstksz - 2 KB headroom */) panic("moea64_bootstrap: too many ofw translations"); if (sz > 0) moea64_add_ofw_mappings(mmup, mmu, sz); } /* * Calculate the last available physical address. */ Maxmem = 0; for (i = 0; phys_avail[i + 2] != 0; i += 2) Maxmem = max(Maxmem, powerpc_btop(phys_avail[i + 1])); /* * Initialize MMU. */ MMU_CPU_BOOTSTRAP(mmup,0); mtmsr(mfmsr() | PSL_DR | PSL_IR); pmap_bootstrapped++; /* * Set the start and end of kva. */ virtual_avail = VM_MIN_KERNEL_ADDRESS; virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS; /* * Map the entire KVA range into the SLB. We must not fault there. */ #ifdef __powerpc64__ for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH) moea64_bootstrap_slb_prefault(va, 0); #endif /* * Remap any early IO mappings (console framebuffer, etc.) */ bs_remap_earlyboot(); /* * Figure out how far we can extend virtual_end into segment 16 * without running into existing mappings. Segment 16 is guaranteed * to contain neither RAM nor devices (at least on Apple hardware), * but will generally contain some OFW mappings we should not * step on. */ #ifndef __powerpc64__ /* KVA is in high memory on PPC64 */ PMAP_LOCK(kernel_pmap); while (virtual_end < VM_MAX_KERNEL_ADDRESS && moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL) virtual_end += PAGE_SIZE; PMAP_UNLOCK(kernel_pmap); #endif /* * Allocate a kernel stack with a guard page for thread0 and map it * into the kernel page map. */ pa = moea64_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE); va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; virtual_avail = va + kstack_pages * PAGE_SIZE; CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va); thread0.td_kstack = va; thread0.td_kstack_pages = kstack_pages; for (i = 0; i < kstack_pages; i++) { moea64_kenter(mmup, va, pa); pa += PAGE_SIZE; va += PAGE_SIZE; } /* * Allocate virtual address space for the message buffer. */ pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE); msgbufp = (struct msgbuf *)virtual_avail; va = virtual_avail; virtual_avail += round_page(msgbufsize); while (va < virtual_avail) { moea64_kenter(mmup, va, pa); pa += PAGE_SIZE; va += PAGE_SIZE; } /* * Allocate virtual address space for the dynamic percpu area. */ pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE); dpcpu = (void *)virtual_avail; va = virtual_avail; virtual_avail += DPCPU_SIZE; while (va < virtual_avail) { moea64_kenter(mmup, va, pa); pa += PAGE_SIZE; va += PAGE_SIZE; } dpcpu_init(dpcpu, curcpu); /* * Allocate some things for page zeroing. We put this directly * in the page table and use MOEA64_PTE_REPLACE to avoid any * of the PVO book-keeping or other parts of the VM system * from even knowing that this hack exists. */ if (!hw_direct_map) { mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL, MTX_DEF); for (i = 0; i < 2; i++) { moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE; virtual_end -= PAGE_SIZE; moea64_kenter(mmup, moea64_scratchpage_va[i], 0); PMAP_LOCK(kernel_pmap); moea64_scratchpage_pvo[i] = moea64_pvo_find_va( kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]); PMAP_UNLOCK(kernel_pmap); } } } static void moea64_pmap_init_qpages(void) { struct pcpu *pc; int i; if (hw_direct_map) return; CPU_FOREACH(i) { pc = pcpu_find(i); pc->pc_qmap_addr = kva_alloc(PAGE_SIZE); if (pc->pc_qmap_addr == 0) panic("pmap_init_qpages: unable to allocate KVA"); PMAP_LOCK(kernel_pmap); pc->pc_aim.qmap_pvo = moea64_pvo_find_va(kernel_pmap, pc->pc_qmap_addr); PMAP_UNLOCK(kernel_pmap); mtx_init(&pc->pc_aim.qmap_lock, "qmap lock", NULL, MTX_DEF); } } SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, moea64_pmap_init_qpages, NULL); /* * Activate a user pmap. This mostly involves setting some non-CPU * state. */ void moea64_activate(mmu_t mmu, struct thread *td) { pmap_t pm; pm = &td->td_proc->p_vmspace->vm_pmap; CPU_SET(PCPU_GET(cpuid), &pm->pm_active); #ifdef __powerpc64__ PCPU_SET(aim.userslb, pm->pm_slb); __asm __volatile("slbmte %0, %1; isync" :: "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE)); #else PCPU_SET(curpmap, pm->pmap_phys); mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid); #endif } void moea64_deactivate(mmu_t mmu, struct thread *td) { pmap_t pm; __asm __volatile("isync; slbie %0" :: "r"(USER_ADDR)); pm = &td->td_proc->p_vmspace->vm_pmap; CPU_CLR(PCPU_GET(cpuid), &pm->pm_active); #ifdef __powerpc64__ PCPU_SET(aim.userslb, NULL); #else PCPU_SET(curpmap, NULL); #endif } void moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva) { struct pvo_entry key, *pvo; vm_page_t m; int64_t refchg; key.pvo_vaddr = sva; PMAP_LOCK(pm); for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); pvo != NULL && PVO_VADDR(pvo) < eva; pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) { if ((pvo->pvo_vaddr & PVO_WIRED) == 0) panic("moea64_unwire: pvo %p is missing PVO_WIRED", pvo); pvo->pvo_vaddr &= ~PVO_WIRED; refchg = MOEA64_PTE_REPLACE(mmu, pvo, 0 /* No invalidation */); if ((pvo->pvo_vaddr & PVO_MANAGED) && (pvo->pvo_pte.prot & VM_PROT_WRITE)) { if (refchg < 0) refchg = LPTE_CHG; m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN); refchg |= atomic_readandclear_32(&m->md.mdpg_attrs); if (refchg & LPTE_CHG) vm_page_dirty(m); if (refchg & LPTE_REF) vm_page_aflag_set(m, PGA_REFERENCED); } pm->pm_stats.wired_count--; } PMAP_UNLOCK(pm); } /* * This goes through and sets the physical address of our * special scratch PTE to the PA we want to zero or copy. Because * of locking issues (this can get called in pvo_enter() by * the UMA allocator), we can't use most other utility functions here */ static __inline void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_paddr_t pa) { KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!")); mtx_assert(&moea64_scratchpage_mtx, MA_OWNED); moea64_scratchpage_pvo[which]->pvo_pte.pa = moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa; MOEA64_PTE_REPLACE(mmup, moea64_scratchpage_pvo[which], MOEA64_PTE_INVALIDATE); isync(); } void moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst) { vm_offset_t dst; vm_offset_t src; dst = VM_PAGE_TO_PHYS(mdst); src = VM_PAGE_TO_PHYS(msrc); if (hw_direct_map) { bcopy((void *)PHYS_TO_DMAP(src), (void *)PHYS_TO_DMAP(dst), PAGE_SIZE); } else { mtx_lock(&moea64_scratchpage_mtx); moea64_set_scratchpage_pa(mmu, 0, src); moea64_set_scratchpage_pa(mmu, 1, dst); bcopy((void *)moea64_scratchpage_va[0], (void *)moea64_scratchpage_va[1], PAGE_SIZE); mtx_unlock(&moea64_scratchpage_mtx); } } static inline void moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, vm_page_t *mb, vm_offset_t b_offset, int xfersize) { void *a_cp, *b_cp; vm_offset_t a_pg_offset, b_pg_offset; int cnt; while (xfersize > 0) { a_pg_offset = a_offset & PAGE_MASK; cnt = min(xfersize, PAGE_SIZE - a_pg_offset); a_cp = (char *)(uintptr_t)PHYS_TO_DMAP( VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) + a_pg_offset; b_pg_offset = b_offset & PAGE_MASK; cnt = min(cnt, PAGE_SIZE - b_pg_offset); b_cp = (char *)(uintptr_t)PHYS_TO_DMAP( VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) + b_pg_offset; bcopy(a_cp, b_cp, cnt); a_offset += cnt; b_offset += cnt; xfersize -= cnt; } } static inline void moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, vm_page_t *mb, vm_offset_t b_offset, int xfersize) { void *a_cp, *b_cp; vm_offset_t a_pg_offset, b_pg_offset; int cnt; mtx_lock(&moea64_scratchpage_mtx); while (xfersize > 0) { a_pg_offset = a_offset & PAGE_MASK; cnt = min(xfersize, PAGE_SIZE - a_pg_offset); moea64_set_scratchpage_pa(mmu, 0, VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])); a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset; b_pg_offset = b_offset & PAGE_MASK; cnt = min(cnt, PAGE_SIZE - b_pg_offset); moea64_set_scratchpage_pa(mmu, 1, VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])); b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset; bcopy(a_cp, b_cp, cnt); a_offset += cnt; b_offset += cnt; xfersize -= cnt; } mtx_unlock(&moea64_scratchpage_mtx); } void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, vm_page_t *mb, vm_offset_t b_offset, int xfersize) { if (hw_direct_map) { moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset, xfersize); } else { moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset, xfersize); } } void moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size) { vm_paddr_t pa = VM_PAGE_TO_PHYS(m); if (size + off > PAGE_SIZE) panic("moea64_zero_page: size + off > PAGE_SIZE"); if (hw_direct_map) { bzero((caddr_t)(uintptr_t)PHYS_TO_DMAP(pa) + off, size); } else { mtx_lock(&moea64_scratchpage_mtx); moea64_set_scratchpage_pa(mmu, 0, pa); bzero((caddr_t)moea64_scratchpage_va[0] + off, size); mtx_unlock(&moea64_scratchpage_mtx); } } /* * Zero a page of physical memory by temporarily mapping it */ void moea64_zero_page(mmu_t mmu, vm_page_t m) { vm_paddr_t pa = VM_PAGE_TO_PHYS(m); vm_offset_t va, off; if (!hw_direct_map) { mtx_lock(&moea64_scratchpage_mtx); moea64_set_scratchpage_pa(mmu, 0, pa); va = moea64_scratchpage_va[0]; } else { va = PHYS_TO_DMAP(pa); } for (off = 0; off < PAGE_SIZE; off += cacheline_size) __asm __volatile("dcbz 0,%0" :: "r"(va + off)); if (!hw_direct_map) mtx_unlock(&moea64_scratchpage_mtx); } vm_offset_t moea64_quick_enter_page(mmu_t mmu, vm_page_t m) { struct pvo_entry *pvo; vm_paddr_t pa = VM_PAGE_TO_PHYS(m); if (hw_direct_map) return (PHYS_TO_DMAP(pa)); /* * MOEA64_PTE_REPLACE does some locking, so we can't just grab * a critical section and access the PCPU data like on i386. * Instead, pin the thread and grab the PCPU lock to prevent * a preempting thread from using the same PCPU data. */ sched_pin(); mtx_assert(PCPU_PTR(aim.qmap_lock), MA_NOTOWNED); pvo = PCPU_GET(aim.qmap_pvo); mtx_lock(PCPU_PTR(aim.qmap_lock)); pvo->pvo_pte.pa = moea64_calc_wimg(pa, pmap_page_get_memattr(m)) | (uint64_t)pa; MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_INVALIDATE); isync(); return (PCPU_GET(qmap_addr)); } void moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr) { if (hw_direct_map) return; mtx_assert(PCPU_PTR(aim.qmap_lock), MA_OWNED); KASSERT(PCPU_GET(qmap_addr) == addr, ("moea64_quick_remove_page: invalid address")); mtx_unlock(PCPU_PTR(aim.qmap_lock)); sched_unpin(); } /* * Map the given physical page at the specified virtual address in the * target pmap with the protection requested. If specified the page * will be wired down. */ int moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind) { struct pvo_entry *pvo, *oldpvo; struct pvo_head *pvo_head; uint64_t pte_lo; int error; if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m)) VM_OBJECT_ASSERT_LOCKED(m->object); pvo = alloc_pvo_entry(0); pvo->pvo_pmap = NULL; /* to be filled in later */ pvo->pvo_pte.prot = prot; pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m)); pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | pte_lo; if ((flags & PMAP_ENTER_WIRED) != 0) pvo->pvo_vaddr |= PVO_WIRED; if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) { pvo_head = NULL; } else { pvo_head = &m->md.mdpg_pvoh; pvo->pvo_vaddr |= PVO_MANAGED; } for (;;) { PV_PAGE_LOCK(m); PMAP_LOCK(pmap); if (pvo->pvo_pmap == NULL) init_pvo_entry(pvo, pmap, va); if (prot & VM_PROT_WRITE) if (pmap_bootstrapped && (m->oflags & VPO_UNMANAGED) == 0) vm_page_aflag_set(m, PGA_WRITEABLE); oldpvo = moea64_pvo_find_va(pmap, va); if (oldpvo != NULL) { if (oldpvo->pvo_vaddr == pvo->pvo_vaddr && oldpvo->pvo_pte.pa == pvo->pvo_pte.pa && oldpvo->pvo_pte.prot == prot) { /* Identical mapping already exists */ error = 0; /* If not in page table, reinsert it */ if (MOEA64_PTE_SYNCH(mmu, oldpvo) < 0) { moea64_pte_overflow--; MOEA64_PTE_INSERT(mmu, oldpvo); } /* Then just clean up and go home */ PV_PAGE_UNLOCK(m); PMAP_UNLOCK(pmap); free_pvo_entry(pvo); break; } /* Otherwise, need to kill it first */ KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old " "mapping does not match new mapping")); moea64_pvo_remove_from_pmap(mmu, oldpvo); } error = moea64_pvo_enter(mmu, pvo, pvo_head); PV_PAGE_UNLOCK(m); PMAP_UNLOCK(pmap); /* Free any dead pages */ if (oldpvo != NULL) { PV_LOCK(oldpvo->pvo_pte.pa & LPTE_RPGN); moea64_pvo_remove_from_page(mmu, oldpvo); PV_UNLOCK(oldpvo->pvo_pte.pa & LPTE_RPGN); free_pvo_entry(oldpvo); } if (error != ENOMEM) break; if ((flags & PMAP_ENTER_NOSLEEP) != 0) return (KERN_RESOURCE_SHORTAGE); VM_OBJECT_ASSERT_UNLOCKED(m->object); vm_wait(NULL); } /* * Flush the page from the instruction cache if this page is * mapped executable and cacheable. */ if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) && (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) { vm_page_aflag_set(m, PGA_EXECUTABLE); moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE); } return (KERN_SUCCESS); } static void moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_paddr_t pa, vm_size_t sz) { /* * This is much trickier than on older systems because * we can't sync the icache on physical addresses directly * without a direct map. Instead we check a couple of cases * where the memory is already mapped in and, failing that, * use the same trick we use for page zeroing to create * a temporary mapping for this physical address. */ if (!pmap_bootstrapped) { /* * If PMAP is not bootstrapped, we are likely to be * in real mode. */ __syncicache((void *)(uintptr_t)pa, sz); } else if (pmap == kernel_pmap) { __syncicache((void *)va, sz); } else if (hw_direct_map) { __syncicache((void *)(uintptr_t)PHYS_TO_DMAP(pa), sz); } else { /* Use the scratch page to set up a temp mapping */ mtx_lock(&moea64_scratchpage_mtx); moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF); __syncicache((void *)(moea64_scratchpage_va[1] + (va & ADDR_POFF)), sz); mtx_unlock(&moea64_scratchpage_mtx); } } /* * Maps a sequence of resident pages belonging to the same object. * The sequence begins with the given page m_start. This page is * mapped at the given virtual address start. Each subsequent page is * mapped at a virtual address that is offset from start by the same * amount as the page is offset from m_start within the object. The * last page in the sequence is the page with the largest offset from * m_start that can be mapped at a virtual address less than the given * virtual address end. Not every virtual page between start and end * is mapped; only those for which a resident page exists with the * corresponding offset from m_start are mapped. */ void moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end, vm_page_t m_start, vm_prot_t prot) { vm_page_t m; vm_pindex_t diff, psize; VM_OBJECT_ASSERT_LOCKED(m_start->object); psize = atop(end - start); m = m_start; while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { moea64_enter(mmu, pm, start + ptoa(diff), m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0); m = TAILQ_NEXT(m, listq); } } void moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m, vm_prot_t prot) { moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0); } vm_paddr_t moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va) { struct pvo_entry *pvo; vm_paddr_t pa; PMAP_LOCK(pm); pvo = moea64_pvo_find_va(pm, va); if (pvo == NULL) pa = 0; else pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo)); PMAP_UNLOCK(pm); return (pa); } /* * Atomically extract and hold the physical page with the given * pmap and virtual address pair if that mapping permits the given * protection. */ vm_page_t moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot) { struct pvo_entry *pvo; vm_page_t m; vm_paddr_t pa; m = NULL; pa = 0; PMAP_LOCK(pmap); retry: pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF); if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) { if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pa & LPTE_RPGN, &pa)) goto retry; m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN); vm_page_hold(m); } PA_UNLOCK_COND(pa); PMAP_UNLOCK(pmap); return (m); } static mmu_t installed_mmu; static void * moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, int wait) { struct pvo_entry *pvo; vm_offset_t va; vm_page_t m; int needed_lock; /* * This entire routine is a horrible hack to avoid bothering kmem * for new KVA addresses. Because this can get called from inside * kmem allocation routines, calling kmem for a new address here * can lead to multiply locking non-recursive mutexes. */ *flags = UMA_SLAB_PRIV; needed_lock = !PMAP_LOCKED(kernel_pmap); m = vm_page_alloc_domain(NULL, 0, domain, malloc2vm_flags(wait) | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ); if (m == NULL) return (NULL); va = VM_PAGE_TO_PHYS(m); pvo = alloc_pvo_entry(1 /* bootstrap */); pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE; pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M; if (needed_lock) PMAP_LOCK(kernel_pmap); init_pvo_entry(pvo, kernel_pmap, va); pvo->pvo_vaddr |= PVO_WIRED; moea64_pvo_enter(installed_mmu, pvo, NULL); if (needed_lock) PMAP_UNLOCK(kernel_pmap); if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0) bzero((void *)va, PAGE_SIZE); return (void *)va; } extern int elf32_nxstack; void moea64_init(mmu_t mmu) { CTR0(KTR_PMAP, "moea64_init"); moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); if (!hw_direct_map) { installed_mmu = mmu; uma_zone_set_allocf(moea64_pvo_zone, moea64_uma_page_alloc); } #ifdef COMPAT_FREEBSD32 elf32_nxstack = 1; #endif moea64_initialized = TRUE; } boolean_t moea64_is_referenced(mmu_t mmu, vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea64_is_referenced: page %p is not managed", m)); return (moea64_query_bit(mmu, m, LPTE_REF)); } boolean_t moea64_is_modified(mmu_t mmu, vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea64_is_modified: page %p is not managed", m)); /* * If the page is not exclusive busied, then PGA_WRITEABLE cannot be * concurrently set while the object is locked. Thus, if PGA_WRITEABLE * is clear, no PTEs can have LPTE_CHG set. */ VM_OBJECT_ASSERT_LOCKED(m->object); if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) return (FALSE); return (moea64_query_bit(mmu, m, LPTE_CHG)); } boolean_t moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va) { struct pvo_entry *pvo; boolean_t rv = TRUE; PMAP_LOCK(pmap); pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF); if (pvo != NULL) rv = FALSE; PMAP_UNLOCK(pmap); return (rv); } void moea64_clear_modify(mmu_t mmu, vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea64_clear_modify: page %p is not managed", m)); VM_OBJECT_ASSERT_WLOCKED(m->object); KASSERT(!vm_page_xbusied(m), ("moea64_clear_modify: page %p is exclusive busied", m)); /* * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG * set. If the object containing the page is locked and the page is * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set. */ if ((m->aflags & PGA_WRITEABLE) == 0) return; moea64_clear_bit(mmu, m, LPTE_CHG); } /* * Clear the write and modified bits in each of the given page's mappings. */ void moea64_remove_write(mmu_t mmu, vm_page_t m) { struct pvo_entry *pvo; int64_t refchg, ret; pmap_t pmap; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea64_remove_write: page %p is not managed", m)); /* * If the page is not exclusive busied, then PGA_WRITEABLE cannot be * set by another thread while the object is locked. Thus, * if PGA_WRITEABLE is clear, no page table entries need updating. */ VM_OBJECT_ASSERT_WLOCKED(m->object); if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) return; powerpc_sync(); PV_PAGE_LOCK(m); refchg = 0; LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { pmap = pvo->pvo_pmap; PMAP_LOCK(pmap); if (!(pvo->pvo_vaddr & PVO_DEAD) && (pvo->pvo_pte.prot & VM_PROT_WRITE)) { pvo->pvo_pte.prot &= ~VM_PROT_WRITE; ret = MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_PROT_UPDATE); if (ret < 0) ret = LPTE_CHG; refchg |= ret; if (pvo->pvo_pmap == kernel_pmap) isync(); } PMAP_UNLOCK(pmap); } if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG) vm_page_dirty(m); vm_page_aflag_clear(m, PGA_WRITEABLE); PV_PAGE_UNLOCK(m); } /* * moea64_ts_referenced: * * Return a count of reference bits for a page, clearing those bits. * It is not necessary for every reference bit to be cleared, but it * is necessary that 0 only be returned when there are truly no * reference bits set. * * XXX: The exact number of bits to check and clear is a matter that * should be tested and standardized at some point in the future for * optimal aging of shared pages. */ int moea64_ts_referenced(mmu_t mmu, vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea64_ts_referenced: page %p is not managed", m)); return (moea64_clear_bit(mmu, m, LPTE_REF)); } /* * Modify the WIMG settings of all mappings for a page. */ void moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma) { struct pvo_entry *pvo; int64_t refchg; pmap_t pmap; uint64_t lo; if ((m->oflags & VPO_UNMANAGED) != 0) { m->md.mdpg_cache_attrs = ma; return; } lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma); PV_PAGE_LOCK(m); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { pmap = pvo->pvo_pmap; PMAP_LOCK(pmap); if (!(pvo->pvo_vaddr & PVO_DEAD)) { pvo->pvo_pte.pa &= ~LPTE_WIMG; pvo->pvo_pte.pa |= lo; refchg = MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_INVALIDATE); if (refchg < 0) refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ? LPTE_CHG : 0; if ((pvo->pvo_vaddr & PVO_MANAGED) && (pvo->pvo_pte.prot & VM_PROT_WRITE)) { refchg |= atomic_readandclear_32(&m->md.mdpg_attrs); if (refchg & LPTE_CHG) vm_page_dirty(m); if (refchg & LPTE_REF) vm_page_aflag_set(m, PGA_REFERENCED); } if (pvo->pvo_pmap == kernel_pmap) isync(); } PMAP_UNLOCK(pmap); } m->md.mdpg_cache_attrs = ma; PV_PAGE_UNLOCK(m); } /* * Map a wired page into kernel virtual address space. */ void moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma) { int error; struct pvo_entry *pvo, *oldpvo; pvo = alloc_pvo_entry(0); pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma); pvo->pvo_vaddr |= PVO_WIRED; PMAP_LOCK(kernel_pmap); oldpvo = moea64_pvo_find_va(kernel_pmap, va); if (oldpvo != NULL) moea64_pvo_remove_from_pmap(mmu, oldpvo); init_pvo_entry(pvo, kernel_pmap, va); error = moea64_pvo_enter(mmu, pvo, NULL); PMAP_UNLOCK(kernel_pmap); /* Free any dead pages */ if (oldpvo != NULL) { PV_LOCK(oldpvo->pvo_pte.pa & LPTE_RPGN); moea64_pvo_remove_from_page(mmu, oldpvo); PV_UNLOCK(oldpvo->pvo_pte.pa & LPTE_RPGN); free_pvo_entry(oldpvo); } if (error != 0 && error != ENOENT) panic("moea64_kenter: failed to enter va %#zx pa %#jx: %d", va, (uintmax_t)pa, error); } void moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa) { moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT); } /* * Extract the physical page address associated with the given kernel virtual * address. */ vm_paddr_t moea64_kextract(mmu_t mmu, vm_offset_t va) { struct pvo_entry *pvo; vm_paddr_t pa; /* * Shortcut the direct-mapped case when applicable. We never put * anything but 1:1 (or 62-bit aliased) mappings below * VM_MIN_KERNEL_ADDRESS. */ if (va < VM_MIN_KERNEL_ADDRESS) return (va & ~DMAP_BASE_ADDRESS); PMAP_LOCK(kernel_pmap); pvo = moea64_pvo_find_va(kernel_pmap, va); KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR, va)); pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo)); PMAP_UNLOCK(kernel_pmap); return (pa); } /* * Remove a wired page from kernel virtual address space. */ void moea64_kremove(mmu_t mmu, vm_offset_t va) { moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE); } /* * Provide a kernel pointer corresponding to a given userland pointer. * The returned pointer is valid until the next time this function is * called in this thread. This is used internally in copyin/copyout. */ static int moea64_map_user_ptr(mmu_t mmu, pmap_t pm, volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen) { size_t l; #ifdef __powerpc64__ struct slb *slb; #endif register_t slbv; *kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK); l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr); if (l > ulen) l = ulen; if (klen) *klen = l; else if (l != ulen) return (EFAULT); #ifdef __powerpc64__ /* Try lockless look-up first */ slb = user_va_to_slb_entry(pm, (vm_offset_t)uaddr); if (slb == NULL) { /* If it isn't there, we need to pre-fault the VSID */ PMAP_LOCK(pm); slbv = va_to_vsid(pm, (vm_offset_t)uaddr) << SLBV_VSID_SHIFT; PMAP_UNLOCK(pm); } else { slbv = slb->slbv; } /* Mark segment no-execute */ slbv |= SLBV_N; #else slbv = va_to_vsid(pm, (vm_offset_t)uaddr); /* Mark segment no-execute */ slbv |= SR_N; #endif /* If we have already set this VSID, we can just return */ if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == slbv) return (0); __asm __volatile("isync"); curthread->td_pcb->pcb_cpu.aim.usr_segm = (uintptr_t)uaddr >> ADDR_SR_SHFT; curthread->td_pcb->pcb_cpu.aim.usr_vsid = slbv; #ifdef __powerpc64__ __asm __volatile ("slbie %0; slbmte %1, %2; isync" :: "r"(USER_ADDR), "r"(slbv), "r"(USER_SLB_SLBE)); #else __asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(slbv)); #endif return (0); } /* * Figure out where a given kernel pointer (usually in a fault) points * to from the VM's perspective, potentially remapping into userland's * address space. */ static int moea64_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr, int *is_user, vm_offset_t *decoded_addr) { vm_offset_t user_sr; if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) { user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm; addr &= ADDR_PIDX | ADDR_POFF; addr |= user_sr << ADDR_SR_SHFT; *decoded_addr = addr; *is_user = 1; } else { *decoded_addr = addr; *is_user = 0; } return (0); } /* * Map a range of physical addresses into kernel virtual address space. * * The value passed in *virt is a suggested virtual address for the mapping. * Architectures which can support a direct-mapped physical to virtual region * can return the appropriate address within that region, leaving '*virt' * unchanged. Other architectures should map the pages starting at '*virt' and * update '*virt' with the first usable address after the mapped region. */ vm_offset_t moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start, vm_paddr_t pa_end, int prot) { vm_offset_t sva, va; if (hw_direct_map) { /* * Check if every page in the region is covered by the direct * map. The direct map covers all of physical memory. Use * moea64_calc_wimg() as a shortcut to see if the page is in * physical memory as a way to see if the direct map covers it. */ for (va = pa_start; va < pa_end; va += PAGE_SIZE) if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M) break; if (va == pa_end) return (PHYS_TO_DMAP(pa_start)); } sva = *virt; va = sva; /* XXX respect prot argument */ for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE) moea64_kenter(mmu, va, pa_start); *virt = va; return (sva); } /* * Returns true if the pmap's pv is one of the first * 16 pvs linked to from this page. This count may * be changed upwards or downwards in the future; it * is only necessary that true be returned for a small * subset of pmaps for proper page aging. */ boolean_t moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m) { int loops; struct pvo_entry *pvo; boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea64_page_exists_quick: page %p is not managed", m)); loops = 0; rv = FALSE; PV_PAGE_LOCK(m); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) { rv = TRUE; break; } if (++loops >= 16) break; } PV_PAGE_UNLOCK(m); return (rv); } void moea64_page_init(mmu_t mmu __unused, vm_page_t m) { m->md.mdpg_attrs = 0; m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT; LIST_INIT(&m->md.mdpg_pvoh); } /* * Return the number of managed mappings to the given physical page * that are wired. */ int moea64_page_wired_mappings(mmu_t mmu, vm_page_t m) { struct pvo_entry *pvo; int count; count = 0; if ((m->oflags & VPO_UNMANAGED) != 0) return (count); PV_PAGE_LOCK(m); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED) count++; PV_PAGE_UNLOCK(m); return (count); } static uintptr_t moea64_vsidcontext; uintptr_t moea64_get_unique_vsid(void) { u_int entropy; register_t hash; uint32_t mask; int i; entropy = 0; __asm __volatile("mftb %0" : "=r"(entropy)); mtx_lock(&moea64_slb_mutex); for (i = 0; i < NVSIDS; i += VSID_NBPW) { u_int n; /* * Create a new value by mutiplying by a prime and adding in * entropy from the timebase register. This is to make the * VSID more random so that the PT hash function collides * less often. (Note that the prime casues gcc to do shifts * instead of a multiply.) */ moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy; hash = moea64_vsidcontext & (NVSIDS - 1); if (hash == 0) /* 0 is special, avoid it */ continue; n = hash >> 5; mask = 1 << (hash & (VSID_NBPW - 1)); hash = (moea64_vsidcontext & VSID_HASHMASK); if (moea64_vsid_bitmap[n] & mask) { /* collision? */ /* anything free in this bucket? */ if (moea64_vsid_bitmap[n] == 0xffffffff) { entropy = (moea64_vsidcontext >> 20); continue; } i = ffs(~moea64_vsid_bitmap[n]) - 1; mask = 1 << i; hash &= rounddown2(VSID_HASHMASK, VSID_NBPW); hash |= i; } if (hash == VSID_VRMA) /* also special, avoid this too */ continue; KASSERT(!(moea64_vsid_bitmap[n] & mask), ("Allocating in-use VSID %#zx\n", hash)); moea64_vsid_bitmap[n] |= mask; mtx_unlock(&moea64_slb_mutex); return (hash); } mtx_unlock(&moea64_slb_mutex); panic("%s: out of segments",__func__); } #ifdef __powerpc64__ void moea64_pinit(mmu_t mmu, pmap_t pmap) { RB_INIT(&pmap->pmap_pvo); pmap->pm_slb_tree_root = slb_alloc_tree(); pmap->pm_slb = slb_alloc_user_cache(); pmap->pm_slb_len = 0; } #else void moea64_pinit(mmu_t mmu, pmap_t pmap) { int i; uint32_t hash; RB_INIT(&pmap->pmap_pvo); if (pmap_bootstrapped) pmap->pmap_phys = (pmap_t)moea64_kextract(mmu, (vm_offset_t)pmap); else pmap->pmap_phys = pmap; /* * Allocate some segment registers for this pmap. */ hash = moea64_get_unique_vsid(); for (i = 0; i < 16; i++) pmap->pm_sr[i] = VSID_MAKE(i, hash); KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0")); } #endif /* * Initialize the pmap associated with process 0. */ void moea64_pinit0(mmu_t mmu, pmap_t pm) { PMAP_LOCK_INIT(pm); moea64_pinit(mmu, pm); bzero(&pm->pm_stats, sizeof(pm->pm_stats)); } /* * Set the physical protection on the specified range of this map as requested. */ static void moea64_pvo_protect(mmu_t mmu, pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot) { struct vm_page *pg; vm_prot_t oldprot; int32_t refchg; PMAP_LOCK_ASSERT(pm, MA_OWNED); /* * Change the protection of the page. */ oldprot = pvo->pvo_pte.prot; pvo->pvo_pte.prot = prot; pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN); /* * If the PVO is in the page table, update mapping */ refchg = MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_PROT_UPDATE); if (refchg < 0) refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0; if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) && (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) { if ((pg->oflags & VPO_UNMANAGED) == 0) vm_page_aflag_set(pg, PGA_EXECUTABLE); moea64_syncicache(mmu, pm, PVO_VADDR(pvo), pvo->pvo_pte.pa & LPTE_RPGN, PAGE_SIZE); } /* * Update vm about the REF/CHG bits if the page is managed and we have * removed write access. */ if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) && (oldprot & VM_PROT_WRITE)) { refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs); if (refchg & LPTE_CHG) vm_page_dirty(pg); if (refchg & LPTE_REF) vm_page_aflag_set(pg, PGA_REFERENCED); } } void moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot) { struct pvo_entry *pvo, *tpvo, key; CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva, eva, prot); KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap, ("moea64_protect: non current pmap")); if ((prot & VM_PROT_READ) == VM_PROT_NONE) { moea64_remove(mmu, pm, sva, eva); return; } PMAP_LOCK(pm); key.pvo_vaddr = sva; for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) { tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo); moea64_pvo_protect(mmu, pm, pvo, prot); } PMAP_UNLOCK(pm); } /* * Map a list of wired pages into kernel virtual address space. This is * intended for temporary mappings which do not need page modification or * references recorded. Existing mappings in the region are overwritten. */ void moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count) { while (count-- > 0) { moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m)); va += PAGE_SIZE; m++; } } /* * Remove page mappings from kernel virtual address space. Intended for * temporary mappings entered by moea64_qenter. */ void moea64_qremove(mmu_t mmu, vm_offset_t va, int count) { while (count-- > 0) { moea64_kremove(mmu, va); va += PAGE_SIZE; } } void moea64_release_vsid(uint64_t vsid) { int idx, mask; mtx_lock(&moea64_slb_mutex); idx = vsid & (NVSIDS-1); mask = 1 << (idx % VSID_NBPW); idx /= VSID_NBPW; KASSERT(moea64_vsid_bitmap[idx] & mask, ("Freeing unallocated VSID %#jx", vsid)); moea64_vsid_bitmap[idx] &= ~mask; mtx_unlock(&moea64_slb_mutex); } void moea64_release(mmu_t mmu, pmap_t pmap) { /* * Free segment registers' VSIDs */ #ifdef __powerpc64__ slb_free_tree(pmap); slb_free_user_cache(pmap->pm_slb); #else KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0")); moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0])); #endif } /* * Remove all pages mapped by the specified pmap */ void moea64_remove_pages(mmu_t mmu, pmap_t pm) { struct pvo_entry *pvo, *tpvo; struct pvo_tree tofree; RB_INIT(&tofree); PMAP_LOCK(pm); RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) { if (pvo->pvo_vaddr & PVO_WIRED) continue; /* * For locking reasons, remove this from the page table and * pmap, but save delinking from the vm_page for a second * pass */ moea64_pvo_remove_from_pmap(mmu, pvo); RB_INSERT(pvo_tree, &tofree, pvo); } PMAP_UNLOCK(pm); RB_FOREACH_SAFE(pvo, pvo_tree, &tofree, tpvo) { PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN); moea64_pvo_remove_from_page(mmu, pvo); PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN); RB_REMOVE(pvo_tree, &tofree, pvo); free_pvo_entry(pvo); } } /* * Remove the given range of addresses from the specified map. */ void moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva) { struct pvo_entry *pvo, *tpvo, key; struct pvo_tree tofree; /* * Perform an unsynchronized read. This is, however, safe. */ if (pm->pm_stats.resident_count == 0) return; key.pvo_vaddr = sva; RB_INIT(&tofree); PMAP_LOCK(pm); for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) { tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo); /* * For locking reasons, remove this from the page table and * pmap, but save delinking from the vm_page for a second * pass */ moea64_pvo_remove_from_pmap(mmu, pvo); RB_INSERT(pvo_tree, &tofree, pvo); } PMAP_UNLOCK(pm); RB_FOREACH_SAFE(pvo, pvo_tree, &tofree, tpvo) { PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN); moea64_pvo_remove_from_page(mmu, pvo); PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN); RB_REMOVE(pvo_tree, &tofree, pvo); free_pvo_entry(pvo); } } /* * Remove physical page from all pmaps in which it resides. moea64_pvo_remove() * will reflect changes in pte's back to the vm_page. */ void moea64_remove_all(mmu_t mmu, vm_page_t m) { struct pvo_entry *pvo, *next_pvo; struct pvo_head freequeue; int wasdead; pmap_t pmap; LIST_INIT(&freequeue); PV_PAGE_LOCK(m); LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) { pmap = pvo->pvo_pmap; PMAP_LOCK(pmap); wasdead = (pvo->pvo_vaddr & PVO_DEAD); if (!wasdead) moea64_pvo_remove_from_pmap(mmu, pvo); moea64_pvo_remove_from_page(mmu, pvo); if (!wasdead) LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink); PMAP_UNLOCK(pmap); } KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings")); KASSERT(!(m->aflags & PGA_WRITEABLE), ("Page still writable")); PV_PAGE_UNLOCK(m); /* Clean up UMA allocations */ LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo) free_pvo_entry(pvo); } /* * Allocate a physical page of memory directly from the phys_avail map. * Can only be called from moea64_bootstrap before avail start and end are * calculated. */ vm_offset_t moea64_bootstrap_alloc(vm_size_t size, u_int align) { vm_offset_t s, e; int i, j; size = round_page(size); for (i = 0; phys_avail[i + 1] != 0; i += 2) { if (align != 0) s = roundup2(phys_avail[i], align); else s = phys_avail[i]; e = s + size; if (s < phys_avail[i] || e > phys_avail[i + 1]) continue; if (s + size > platform_real_maxaddr()) continue; if (s == phys_avail[i]) { phys_avail[i] += size; } else if (e == phys_avail[i + 1]) { phys_avail[i + 1] -= size; } else { for (j = phys_avail_count * 2; j > i; j -= 2) { phys_avail[j] = phys_avail[j - 2]; phys_avail[j + 1] = phys_avail[j - 1]; } phys_avail[i + 3] = phys_avail[i + 1]; phys_avail[i + 1] = s; phys_avail[i + 2] = e; phys_avail_count++; } return (s); } panic("moea64_bootstrap_alloc: could not allocate memory"); } static int moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo, struct pvo_head *pvo_head) { int first, err; PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED); KASSERT(moea64_pvo_find_va(pvo->pvo_pmap, PVO_VADDR(pvo)) == NULL, ("Existing mapping for VA %#jx", (uintmax_t)PVO_VADDR(pvo))); moea64_pvo_enter_calls++; /* * Add to pmap list */ RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo); /* * Remember if the list was empty and therefore will be the first * item. */ if (pvo_head != NULL) { if (LIST_FIRST(pvo_head) == NULL) first = 1; LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink); } if (pvo->pvo_vaddr & PVO_WIRED) pvo->pvo_pmap->pm_stats.wired_count++; pvo->pvo_pmap->pm_stats.resident_count++; /* * Insert it into the hardware page table */ err = MOEA64_PTE_INSERT(mmu, pvo); if (err != 0) { panic("moea64_pvo_enter: overflow"); } moea64_pvo_entries++; if (pvo->pvo_pmap == kernel_pmap) isync(); #ifdef __powerpc64__ /* * Make sure all our bootstrap mappings are in the SLB as soon * as virtual memory is switched on. */ if (!pmap_bootstrapped) moea64_bootstrap_slb_prefault(PVO_VADDR(pvo), pvo->pvo_vaddr & PVO_LARGE); #endif return (first ? ENOENT : 0); } static void moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo) { struct vm_page *pg; int32_t refchg; KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap")); PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED); KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO")); /* * If there is an active pte entry, we need to deactivate it */ refchg = MOEA64_PTE_UNSET(mmu, pvo); if (refchg < 0) { /* * If it was evicted from the page table, be pessimistic and * dirty the page. */ if (pvo->pvo_pte.prot & VM_PROT_WRITE) refchg = LPTE_CHG; else refchg = 0; } /* * Update our statistics. */ pvo->pvo_pmap->pm_stats.resident_count--; if (pvo->pvo_vaddr & PVO_WIRED) pvo->pvo_pmap->pm_stats.wired_count--; /* * Remove this PVO from the pmap list. */ RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo); /* * Mark this for the next sweep */ pvo->pvo_vaddr |= PVO_DEAD; /* Send RC bits to VM */ if ((pvo->pvo_vaddr & PVO_MANAGED) && (pvo->pvo_pte.prot & VM_PROT_WRITE)) { pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN); if (pg != NULL) { refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs); if (refchg & LPTE_CHG) vm_page_dirty(pg); if (refchg & LPTE_REF) vm_page_aflag_set(pg, PGA_REFERENCED); } } } static void moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo) { struct vm_page *pg; KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page")); /* Use NULL pmaps as a sentinel for races in page deletion */ if (pvo->pvo_pmap == NULL) return; pvo->pvo_pmap = NULL; /* * Update vm about page writeability/executability if managed */ PV_LOCKASSERT(pvo->pvo_pte.pa & LPTE_RPGN); if (pvo->pvo_vaddr & PVO_MANAGED) { pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN); if (pg != NULL) { LIST_REMOVE(pvo, pvo_vlink); if (LIST_EMPTY(vm_page_to_pvoh(pg))) vm_page_aflag_clear(pg, PGA_WRITEABLE | PGA_EXECUTABLE); } } moea64_pvo_entries--; moea64_pvo_remove_calls++; } static struct pvo_entry * moea64_pvo_find_va(pmap_t pm, vm_offset_t va) { struct pvo_entry key; PMAP_LOCK_ASSERT(pm, MA_OWNED); key.pvo_vaddr = va & ~ADDR_POFF; return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key)); } static boolean_t moea64_query_bit(mmu_t mmu, vm_page_t m, uint64_t ptebit) { struct pvo_entry *pvo; int64_t ret; boolean_t rv; /* * See if this bit is stored in the page already. */ if (m->md.mdpg_attrs & ptebit) return (TRUE); /* * Examine each PTE. Sync so that any pending REF/CHG bits are * flushed to the PTEs. */ rv = FALSE; powerpc_sync(); PV_PAGE_LOCK(m); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { ret = 0; /* * See if this pvo has a valid PTE. if so, fetch the * REF/CHG bits from the valid PTE. If the appropriate * ptebit is set, return success. */ PMAP_LOCK(pvo->pvo_pmap); if (!(pvo->pvo_vaddr & PVO_DEAD)) ret = MOEA64_PTE_SYNCH(mmu, pvo); PMAP_UNLOCK(pvo->pvo_pmap); if (ret > 0) { atomic_set_32(&m->md.mdpg_attrs, ret & (LPTE_CHG | LPTE_REF)); if (ret & ptebit) { rv = TRUE; break; } } } PV_PAGE_UNLOCK(m); return (rv); } static u_int moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit) { u_int count; struct pvo_entry *pvo; int64_t ret; /* * Sync so that any pending REF/CHG bits are flushed to the PTEs (so * we can reset the right ones). */ powerpc_sync(); /* * For each pvo entry, clear the pte's ptebit. */ count = 0; PV_PAGE_LOCK(m); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { ret = 0; PMAP_LOCK(pvo->pvo_pmap); if (!(pvo->pvo_vaddr & PVO_DEAD)) ret = MOEA64_PTE_CLEAR(mmu, pvo, ptebit); PMAP_UNLOCK(pvo->pvo_pmap); if (ret > 0 && (ret & ptebit)) count++; } atomic_clear_32(&m->md.mdpg_attrs, ptebit); PV_PAGE_UNLOCK(m); return (count); } boolean_t moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size) { struct pvo_entry *pvo, key; vm_offset_t ppa; int error = 0; if (hw_direct_map && mem_valid(pa, size) == 0) return (0); PMAP_LOCK(kernel_pmap); ppa = pa & ~ADDR_POFF; key.pvo_vaddr = DMAP_BASE_ADDRESS + ppa; for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key); ppa < pa + size; ppa += PAGE_SIZE, pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) { if (pvo == NULL || (pvo->pvo_pte.pa & LPTE_RPGN) != ppa) { error = EFAULT; break; } } PMAP_UNLOCK(kernel_pmap); return (error); } /* * Map a set of physical memory pages into the kernel virtual * address space. Return a pointer to where it is mapped. This * routine is intended to be used for mapping device memory, * NOT real memory. */ void * moea64_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma) { vm_offset_t va, tmpva, ppa, offset; ppa = trunc_page(pa); offset = pa & PAGE_MASK; size = roundup2(offset + size, PAGE_SIZE); va = kva_alloc(size); if (!va) panic("moea64_mapdev: Couldn't alloc kernel virtual memory"); for (tmpva = va; size > 0;) { moea64_kenter_attr(mmu, tmpva, ppa, ma); size -= PAGE_SIZE; tmpva += PAGE_SIZE; ppa += PAGE_SIZE; } return ((void *)(va + offset)); } void * moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size) { return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT); } void moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size) { vm_offset_t base, offset; base = trunc_page(va); offset = va & PAGE_MASK; size = roundup2(offset + size, PAGE_SIZE); kva_free(base, size); } void moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz) { struct pvo_entry *pvo; vm_offset_t lim; vm_paddr_t pa; vm_size_t len; PMAP_LOCK(pm); while (sz > 0) { lim = round_page(va); len = MIN(lim - va, sz); pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF); if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) { pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va & ADDR_POFF); moea64_syncicache(mmu, pm, va, pa, len); } va += len; sz -= len; } PMAP_UNLOCK(pm); } void moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va) { *va = (void *)(uintptr_t)pa; } extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1]; void moea64_scan_init(mmu_t mmu) { struct pvo_entry *pvo; vm_offset_t va; int i; if (!do_minidump) { /* Initialize phys. segments for dumpsys(). */ memset(&dump_map, 0, sizeof(dump_map)); mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz); for (i = 0; i < pregions_sz; i++) { dump_map[i].pa_start = pregions[i].mr_start; dump_map[i].pa_size = pregions[i].mr_size; } return; } /* Virtual segments for minidumps: */ memset(&dump_map, 0, sizeof(dump_map)); /* 1st: kernel .data and .bss. */ dump_map[0].pa_start = trunc_page((uintptr_t)_etext); dump_map[0].pa_size = round_page((uintptr_t)_end) - dump_map[0].pa_start; /* 2nd: msgbuf and tables (see pmap_bootstrap()). */ dump_map[1].pa_start = (vm_paddr_t)(uintptr_t)msgbufp->msg_ptr; dump_map[1].pa_size = round_page(msgbufp->msg_size); /* 3rd: kernel VM. */ va = dump_map[1].pa_start + dump_map[1].pa_size; /* Find start of next chunk (from va). */ while (va < virtual_end) { /* Don't dump the buffer cache. */ if (va >= kmi.buffer_sva && va < kmi.buffer_eva) { va = kmi.buffer_eva; continue; } pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF); if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD)) break; va += PAGE_SIZE; } if (va < virtual_end) { dump_map[2].pa_start = va; va += PAGE_SIZE; /* Find last page in chunk. */ while (va < virtual_end) { /* Don't run into the buffer cache. */ if (va == kmi.buffer_sva) break; pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF); if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD)) break; va += PAGE_SIZE; } dump_map[2].pa_size = va - dump_map[2].pa_start; } } Index: head/sys/powerpc/ofw/ofwcall64.S =================================================================== --- head/sys/powerpc/ofw/ofwcall64.S (revision 330844) +++ head/sys/powerpc/ofw/ofwcall64.S (revision 330845) @@ -1,300 +1,327 @@ /*- * Copyright (C) 2009-2011 Nathan Whitehorn * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #define OFWSTKSZ 4096 /* 4K Open Firmware stack */ /* * Globals */ .data .align 4 ofwstk: .space OFWSTKSZ rtas_regsave: - .space 24 /* 3 * sizeof(register_t) */ + .space 32 /* 4 * sizeof(register_t) */ GLOBAL(ofmsr) .llong 0, 0, 0, 0, 0 /* msr/sprg0-3 used in Open Firmware */ GLOBAL(rtasmsr) .llong 0 GLOBAL(openfirmware_entry) .llong 0 /* Open Firmware entry point */ GLOBAL(rtas_entry) .llong 0 /* RTAS entry point */ TOC_ENTRY(ofmsr) TOC_ENTRY(ofwstk) TOC_ENTRY(rtasmsr) TOC_ENTRY(openfirmware_entry) TOC_ENTRY(rtas_entry) TOC_ENTRY(rtas_regsave) /* * Open Firmware Real-mode Entry Point. This is a huge pain. */ ASENTRY_NOPROF(ofwcall) - mflr %r0 - std %r0,16(%r1) + mflr %r8 + std %r8,16(%r1) stdu %r1,-208(%r1) /* * We need to save the following, because OF's register save/ * restore code assumes that the contents of registers are * at most 32 bits wide: lr, cr, r2, r13-r31, the old MSR. These * get placed in that order in the stack. */ mfcr %r4 std %r4,48(%r1) std %r13,56(%r1) std %r14,64(%r1) std %r15,72(%r1) std %r16,80(%r1) std %r17,88(%r1) std %r18,96(%r1) std %r19,104(%r1) std %r20,112(%r1) std %r21,120(%r1) std %r22,128(%r1) std %r23,136(%r1) std %r24,144(%r1) std %r25,152(%r1) std %r26,160(%r1) std %r27,168(%r1) std %r28,176(%r1) std %r29,184(%r1) std %r30,192(%r1) std %r31,200(%r1) /* Record the old MSR */ mfmsr %r6 /* read client interface handler */ ld %r4,TOC_REF(openfirmware_entry)(%r2) ld %r4,0(%r4) /* Get OF stack pointer */ ld %r7,TOC_REF(ofwstk)(%r2) - addi %r7,%r7,OFWSTKSZ-32 + addi %r7,%r7,OFWSTKSZ-40 /* * Set the MSR to the OF value. This has the side effect of disabling * exceptions, which is important for the next few steps. */ ld %r5,TOC_REF(ofmsr)(%r2) ld %r5,0(%r5) mtmsrd %r5 isync /* * Set up OF stack. This needs to be accessible in real mode and * use the 32-bit ABI stack frame format. The pointer to the current * kernel stack is placed at the very top of the stack along with * the old MSR so we can get them back later. */ mr %r5,%r1 mr %r1,%r7 std %r5,8(%r1) /* Save real stack pointer */ std %r2,16(%r1) /* Save old TOC */ std %r6,24(%r1) /* Save old MSR */ + std %r8,32(%r1) /* Save high 32-bits of the kernel's PC */ + li %r5,0 stw %r5,4(%r1) stw %r5,0(%r1) /* Finally, branch to OF */ mtctr %r4 bctrl - /* Reload stack pointer and MSR from the OFW stack */ + /* Reload stack pointer, MSR, and reference PC from the OFW stack */ + ld %r7,32(%r1) ld %r6,24(%r1) ld %r2,16(%r1) ld %r1,8(%r1) - /* Now set the real MSR */ - mtmsrd %r6 - isync + /* Get back to the MSR/PC we want, using the cached high bits of PC */ + mtsrr1 %r6 + clrrdi %r7,%r7,32 + bl 1f +1: mflr %r8 + or %r8,%r8,%r7 + addi %r8,%r8,2f-1b + mtsrr0 %r8 + rfid /* Turn on MMU, exceptions, and 64-bit mode */ +2: /* Sign-extend the return value from OF */ extsw %r3,%r3 /* Restore all the non-volatile registers */ ld %r5,48(%r1) mtcr %r5 ld %r13,56(%r1) ld %r14,64(%r1) ld %r15,72(%r1) ld %r16,80(%r1) ld %r17,88(%r1) ld %r18,96(%r1) ld %r19,104(%r1) ld %r20,112(%r1) ld %r21,120(%r1) ld %r22,128(%r1) ld %r23,136(%r1) ld %r24,144(%r1) ld %r25,152(%r1) ld %r26,160(%r1) ld %r27,168(%r1) ld %r28,176(%r1) ld %r29,184(%r1) ld %r30,192(%r1) ld %r31,200(%r1) /* Restore the stack and link register */ ld %r1,0(%r1) ld %r0,16(%r1) mtlr %r0 blr /* * RTAS 32-bit Entry Point. Similar to the OF one, but simpler (no separate * stack) * * C prototype: int rtascall(void *callbuffer, void *rtas_privdat); */ ASENTRY_NOPROF(rtascall) - mflr %r0 - std %r0,16(%r1) + mflr %r9 + std %r9,16(%r1) stdu %r1,-208(%r1) /* * We need to save the following, because RTAS's register save/ * restore code assumes that the contents of registers are * at most 32 bits wide: lr, cr, r2, r13-r31, the old MSR. These * get placed in that order in the stack. */ mfcr %r5 std %r5,48(%r1) std %r13,56(%r1) std %r14,64(%r1) std %r15,72(%r1) std %r16,80(%r1) std %r17,88(%r1) std %r18,96(%r1) std %r19,104(%r1) std %r20,112(%r1) std %r21,120(%r1) std %r22,128(%r1) std %r23,136(%r1) std %r24,144(%r1) std %r25,152(%r1) std %r26,160(%r1) std %r27,168(%r1) std %r28,176(%r1) std %r29,184(%r1) std %r30,192(%r1) std %r31,200(%r1) /* Record the old MSR */ mfmsr %r6 /* Read RTAS entry and reg save area pointers */ ld %r5,TOC_REF(rtas_entry)(%r2) ld %r5,0(%r5) ld %r8,TOC_REF(rtas_regsave)(%r2) /* * Set the MSR to the RTAS value. This has the side effect of disabling * exceptions, which is important for the next few steps. */ ld %r7,TOC_REF(rtasmsr)(%r2) ld %r7,0(%r7) mtmsrd %r7 isync /* * Set up RTAS register save area, so that we can get back all of * our 64-bit pointers. Save our stack pointer, the TOC, and the MSR. * Put this in r1, since RTAS is obliged to save it. Kernel globals * are below 4 GB, so this is safe. */ mr %r7,%r1 mr %r1,%r8 std %r7,0(%r1) /* Save 64-bit stack pointer */ std %r2,8(%r1) /* Save TOC */ std %r6,16(%r1) /* Save MSR */ + std %r9,24(%r1) /* Save reference PC for high 32 bits */ /* Finally, branch to RTAS */ mtctr %r5 bctrl /* - * Reload stack pointer and MSR from the reg save area in r1. We are - * running in 32-bit mode at this point, so it doesn't matter if r1 + * Reload stack pointer, MSR, reg PC from the reg save area in r1. We + * are running in 32-bit mode at this point, so it doesn't matter if r1 * has become sign-extended. */ + ld %r7,24(%r1) ld %r6,16(%r1) ld %r2,8(%r1) ld %r1,0(%r1) - /* Now set the real MSR */ - mtmsrd %r6 - isync + /* + * Get back to the right PC. We need to atomically re-enable + * exceptions, 64-bit mode, and the MMU. One thing that has likely + * happened is that, if we were running in the high-memory direct + * map, we no longer are as a result of LR truncation in RTAS. + * Fix this by copying the high-order bits of the LR at function + * entry onto the current PC and then jumping there while flipping + * all the MSR bits. + */ + mtsrr1 %r6 + clrrdi %r7,%r7,32 + bl 1f +1: mflr %r8 + or %r8,%r8,%r7 + addi %r8,%r8,2f-1b + mtsrr0 %r8 + rfid /* Turn on MMU, exceptions, and 64-bit mode */ +2: /* Sign-extend the return value from RTAS */ extsw %r3,%r3 /* Restore all the non-volatile registers */ ld %r5,48(%r1) mtcr %r5 ld %r13,56(%r1) ld %r14,64(%r1) ld %r15,72(%r1) ld %r16,80(%r1) ld %r17,88(%r1) ld %r18,96(%r1) ld %r19,104(%r1) ld %r20,112(%r1) ld %r21,120(%r1) ld %r22,128(%r1) ld %r23,136(%r1) ld %r24,144(%r1) ld %r25,152(%r1) ld %r26,160(%r1) ld %r27,168(%r1) ld %r28,176(%r1) ld %r29,184(%r1) ld %r30,192(%r1) ld %r31,200(%r1) /* Restore the stack and link register */ ld %r1,0(%r1) ld %r0,16(%r1) mtlr %r0 blr Index: head/sys/powerpc/powerpc/machdep.c =================================================================== --- head/sys/powerpc/powerpc/machdep.c (revision 330844) +++ head/sys/powerpc/powerpc/machdep.c (revision 330845) @@ -1,567 +1,577 @@ /*- * Copyright (C) 1995, 1996 Wolfgang Solfrank. * Copyright (C) 1995, 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (C) 2001 Benno Rice * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * $NetBSD: machdep.c,v 1.74.2.1 2000/11/01 16:13:48 tv Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include "opt_ddb.h" #include "opt_kstack_pages.h" #include "opt_platform.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef __powerpc64__ #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int cold = 1; #ifdef __powerpc64__ int cacheline_size = 128; #else int cacheline_size = 32; #endif int hw_direct_map = 1; extern void *ap_pcpu; struct pcpu __pcpu[MAXCPU]; static char init_kenv[2048]; static struct trapframe frame0; char machine[] = "powerpc"; SYSCTL_STRING(_hw, HW_MACHINE, machine, CTLFLAG_RD, machine, 0, ""); static void cpu_startup(void *); SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL); SYSCTL_INT(_machdep, CPU_CACHELINE, cacheline_size, CTLFLAG_RD, &cacheline_size, 0, ""); uintptr_t powerpc_init(vm_offset_t, vm_offset_t, vm_offset_t, void *, uint32_t); long Maxmem = 0; long realmem = 0; /* Default MSR values set in the AIM/Book-E early startup code */ register_t psl_kernset; register_t psl_userset; register_t psl_userstatic; #ifdef __powerpc64__ register_t psl_userset32; #endif struct kva_md_info kmi; static void cpu_startup(void *dummy) { /* * Initialise the decrementer-based clock. */ decr_init(); /* * Good {morning,afternoon,evening,night}. */ cpu_setup(PCPU_GET(cpuid)); #ifdef PERFMON perfmon_init(); #endif printf("real memory = %ju (%ju MB)\n", ptoa((uintmax_t)physmem), ptoa((uintmax_t)physmem) / 1048576); realmem = physmem; if (bootverbose) printf("available KVA = %zu (%zu MB)\n", virtual_end - virtual_avail, (virtual_end - virtual_avail) / 1048576); /* * Display any holes after the first chunk of extended memory. */ if (bootverbose) { int indx; printf("Physical memory chunk(s):\n"); for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) { vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx]; #ifdef __powerpc64__ printf("0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n", #else printf("0x%09jx - 0x%09jx, %ju bytes (%ju pages)\n", #endif (uintmax_t)phys_avail[indx], (uintmax_t)phys_avail[indx + 1] - 1, (uintmax_t)size1, (uintmax_t)size1 / PAGE_SIZE); } } vm_ksubmap_init(&kmi); printf("avail memory = %ju (%ju MB)\n", ptoa((uintmax_t)vm_free_count()), ptoa((uintmax_t)vm_free_count()) / 1048576); /* * Set up buffers, so they can be used to read disk labels. */ bufinit(); vm_pager_bufferinit(); } extern vm_offset_t __startkernel, __endkernel; extern unsigned char __bss_start[]; extern unsigned char __sbss_start[]; extern unsigned char __sbss_end[]; extern unsigned char _end[]; +void aim_early_init(vm_offset_t fdt, vm_offset_t toc, vm_offset_t ofentry, + void *mdp, uint32_t mdp_cookie); void aim_cpu_init(vm_offset_t toc); void booke_cpu_init(void); uintptr_t powerpc_init(vm_offset_t fdt, vm_offset_t toc, vm_offset_t ofentry, void *mdp, uint32_t mdp_cookie) { struct pcpu *pc; struct cpuref bsp; vm_offset_t startkernel, endkernel; - void *kmdp; char *env; bool ofw_bootargs = false; #ifdef DDB vm_offset_t ksym_start; vm_offset_t ksym_end; #endif - kmdp = NULL; - /* First guess at start/end kernel positions */ startkernel = __startkernel; endkernel = __endkernel; /* * If the metadata pointer cookie is not set to the magic value, * the number in mdp should be treated as nonsense. */ if (mdp_cookie != 0xfb5d104d) mdp = NULL; #if !defined(BOOKE) /* * On BOOKE the BSS is already cleared and some variables * initialized. Do not wipe them out. */ bzero(__sbss_start, __sbss_end - __sbss_start); bzero(__bss_start, _end - __bss_start); #endif #ifdef AIM - /* - * If running from an FDT, make sure we are in real mode to avoid - * tromping on firmware page tables. Everything in the kernel assumes - * 1:1 mappings out of firmware, so this won't break anything not - * already broken. This doesn't work if there is live OF, since OF - * may internally use non-1:1 mappings. - */ - if (ofentry == 0) - mtmsr(mfmsr() & ~(PSL_IR | PSL_DR)); + aim_early_init(fdt, toc, ofentry, mdp, mdp_cookie); #endif /* * Parse metadata if present and fetch parameters. Must be done * before console is inited so cninit gets the right value of * boothowto. */ if (mdp != NULL) { + void *kmdp = NULL; + char *envp = NULL; + uintptr_t md_offset = 0; + vm_paddr_t kernelendphys; + +#ifdef AIM + if ((uintptr_t)&powerpc_init > DMAP_BASE_ADDRESS) + md_offset = DMAP_BASE_ADDRESS; +#endif + preload_metadata = mdp; + if (md_offset > 0) { + preload_metadata += md_offset; + preload_bootstrap_relocate(md_offset); + } kmdp = preload_search_by_type("elf kernel"); if (kmdp != NULL) { boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int); - init_static_kenv(MD_FETCH(kmdp, MODINFOMD_ENVP, char *), - 0); - endkernel = ulmax(endkernel, MD_FETCH(kmdp, - MODINFOMD_KERNEND, vm_offset_t)); + envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *); + if (envp != NULL) + envp += md_offset; + init_static_kenv(envp, 0); + kernelendphys = MD_FETCH(kmdp, MODINFOMD_KERNEND, + vm_offset_t); + if (kernelendphys != 0) + kernelendphys += md_offset; + endkernel = ulmax(endkernel, kernelendphys); #ifdef DDB ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t); ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t); db_fetch_ksymtab(ksym_start, ksym_end); #endif } } else { init_static_kenv(init_kenv, sizeof(init_kenv)); ofw_bootargs = true; } /* Store boot environment state */ OF_initial_setup((void *)fdt, NULL, (int (*)(void *))ofentry); /* * Init params/tunables that can be overridden by the loader */ init_param1(); /* * Start initializing proc0 and thread0. */ proc_linkup0(&proc0, &thread0); thread0.td_frame = &frame0; #ifdef __powerpc64__ __asm __volatile("mr 13,%0" :: "r"(&thread0)); #else __asm __volatile("mr 2,%0" :: "r"(&thread0)); #endif /* * Init mutexes, which we use heavily in PMAP */ mutex_init(); /* * Install the OF client interface */ OF_bootstrap(); if (ofw_bootargs) ofw_parse_bootargs(); /* * Initialize the console before printing anything. */ cninit(); #ifdef AIM aim_cpu_init(toc); #else /* BOOKE */ booke_cpu_init(); /* Make sure the kernel icache is valid before we go too much further */ __syncicache((caddr_t)startkernel, endkernel - startkernel); #endif /* * Choose a platform module so we can get the physical memory map. */ platform_probe_and_attach(); /* * Set up per-cpu data for the BSP now that the platform can tell * us which that is. */ if (platform_smp_get_bsp(&bsp) != 0) bsp.cr_cpuid = 0; pc = &__pcpu[bsp.cr_cpuid]; pcpu_init(pc, bsp.cr_cpuid, sizeof(struct pcpu)); pc->pc_curthread = &thread0; thread0.td_oncpu = bsp.cr_cpuid; pc->pc_cpuid = bsp.cr_cpuid; pc->pc_hwref = bsp.cr_hwref; __asm __volatile("mtsprg 0, %0" :: "r"(pc)); /* * Init KDB */ kdb_init(); /* * Bring up MMU */ pmap_bootstrap(startkernel, endkernel); mtmsr(psl_kernset & ~PSL_EE); /* * Initialize params/tunables that are derived from memsize */ init_param2(physmem); /* * Grab booted kernel's name */ env = kern_getenv("kernelname"); if (env != NULL) { strlcpy(kernelname, env, sizeof(kernelname)); freeenv(env); } /* * Finish setting up thread0. */ thread0.td_pcb = (struct pcb *) ((thread0.td_kstack + thread0.td_kstack_pages * PAGE_SIZE - sizeof(struct pcb)) & ~15UL); bzero((void *)thread0.td_pcb, sizeof(struct pcb)); pc->pc_curpcb = thread0.td_pcb; /* Initialise the message buffer. */ msgbufinit(msgbufp, msgbufsize); #ifdef KDB if (boothowto & RB_KDB) kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger"); #endif return (((uintptr_t)thread0.td_pcb - (sizeof(struct callframe) - 3*sizeof(register_t))) & ~15UL); } /* * Flush the D-cache for non-DMA I/O so that the I-cache can * be made coherent later. */ void cpu_flush_dcache(void *ptr, size_t len) { register_t addr, off; /* * Align the address to a cacheline and adjust the length * accordingly. Then round the length to a multiple of the * cacheline for easy looping. */ addr = (uintptr_t)ptr; off = addr & (cacheline_size - 1); addr -= off; len = roundup2(len + off, cacheline_size); while (len > 0) { __asm __volatile ("dcbf 0,%0" :: "r"(addr)); __asm __volatile ("sync"); addr += cacheline_size; len -= cacheline_size; } } int ptrace_set_pc(struct thread *td, unsigned long addr) { struct trapframe *tf; tf = td->td_frame; tf->srr0 = (register_t)addr; return (0); } void spinlock_enter(void) { struct thread *td; register_t msr; td = curthread; if (td->td_md.md_spinlock_count == 0) { __asm __volatile("or 2,2,2"); /* Set high thread priority */ msr = intr_disable(); td->td_md.md_spinlock_count = 1; td->td_md.md_saved_msr = msr; } else td->td_md.md_spinlock_count++; critical_enter(); } void spinlock_exit(void) { struct thread *td; register_t msr; td = curthread; critical_exit(); msr = td->td_md.md_saved_msr; td->td_md.md_spinlock_count--; if (td->td_md.md_spinlock_count == 0) { intr_restore(msr); __asm __volatile("or 6,6,6"); /* Set normal thread priority */ } } /* * Simple ddb(4) command/hack to view any SPR on the running CPU. * Uses a trivial asm function to perform the mfspr, and rewrites the mfspr * instruction each time. * XXX: Since it uses code modification, it won't work if the kernel code pages * are marked RO. */ extern register_t get_spr(int); #ifdef DDB DB_SHOW_COMMAND(spr, db_show_spr) { register_t spr; volatile uint32_t *p; int sprno, saved_sprno; if (!have_addr) return; saved_sprno = sprno = (intptr_t) addr; sprno = ((sprno & 0x3e0) >> 5) | ((sprno & 0x1f) << 5); p = (uint32_t *)(void *)&get_spr; *p = (*p & ~0x001ff800) | (sprno << 11); __syncicache(get_spr, cacheline_size); spr = get_spr(sprno); db_printf("SPR %d(%x): %lx\n", saved_sprno, saved_sprno, (unsigned long)spr); } #endif #undef bzero void bzero(void *buf, size_t len) { caddr_t p; p = buf; while (((vm_offset_t) p & (sizeof(u_long) - 1)) && len) { *p++ = 0; len--; } while (len >= sizeof(u_long) * 8) { *(u_long*) p = 0; *((u_long*) p + 1) = 0; *((u_long*) p + 2) = 0; *((u_long*) p + 3) = 0; len -= sizeof(u_long) * 8; *((u_long*) p + 4) = 0; *((u_long*) p + 5) = 0; *((u_long*) p + 6) = 0; *((u_long*) p + 7) = 0; p += sizeof(u_long) * 8; } while (len >= sizeof(u_long)) { *(u_long*) p = 0; len -= sizeof(u_long); p += sizeof(u_long); } while (len) { *p++ = 0; len--; } }