Index: head/sys/cam/scsi/scsi_pass.c
===================================================================
--- head/sys/cam/scsi/scsi_pass.c	(revision 330818)
+++ head/sys/cam/scsi/scsi_pass.c	(revision 330819)
@@ -1,2274 +1,2289 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
  *
  * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs.
  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions, and the following disclaimer,
  *    without modification, immediately at the beginning of the file.
  * 2. The name of the author may not be used to endorse or promote products
  *    derived from this software without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
+#include "opt_compat.h"
+
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/kernel.h>
 #include <sys/conf.h>
 #include <sys/types.h>
 #include <sys/bio.h>
 #include <sys/bus.h>
 #include <sys/devicestat.h>
 #include <sys/errno.h>
 #include <sys/fcntl.h>
 #include <sys/malloc.h>
 #include <sys/proc.h>
 #include <sys/poll.h>
 #include <sys/selinfo.h>
 #include <sys/sdt.h>
+#include <sys/sysent.h>
 #include <sys/taskqueue.h>
 #include <vm/uma.h>
 #include <vm/vm.h>
 #include <vm/vm_extern.h>
 
 #include <machine/bus.h>
 
 #include <cam/cam.h>
 #include <cam/cam_ccb.h>
 #include <cam/cam_periph.h>
 #include <cam/cam_queue.h>
 #include <cam/cam_xpt.h>
 #include <cam/cam_xpt_periph.h>
 #include <cam/cam_debug.h>
 #include <cam/cam_compat.h>
 #include <cam/cam_xpt_periph.h>
 
 #include <cam/scsi/scsi_all.h>
 #include <cam/scsi/scsi_pass.h>
 
 typedef enum {
 	PASS_FLAG_OPEN			= 0x01,
 	PASS_FLAG_LOCKED		= 0x02,
 	PASS_FLAG_INVALID		= 0x04,
 	PASS_FLAG_INITIAL_PHYSPATH	= 0x08,
 	PASS_FLAG_ZONE_INPROG		= 0x10,
 	PASS_FLAG_ZONE_VALID		= 0x20,
 	PASS_FLAG_UNMAPPED_CAPABLE	= 0x40,
 	PASS_FLAG_ABANDONED_REF_SET	= 0x80
 } pass_flags;
 
 typedef enum {
 	PASS_STATE_NORMAL
 } pass_state;
 
 typedef enum {
 	PASS_CCB_BUFFER_IO,
 	PASS_CCB_QUEUED_IO
 } pass_ccb_types;
 
 #define ccb_type	ppriv_field0
 #define ccb_ioreq	ppriv_ptr1
 
 /*
  * The maximum number of memory segments we preallocate.
  */
 #define	PASS_MAX_SEGS	16
 
 typedef enum {
 	PASS_IO_NONE		= 0x00,
 	PASS_IO_USER_SEG_MALLOC	= 0x01,
 	PASS_IO_KERN_SEG_MALLOC	= 0x02,
 	PASS_IO_ABANDONED	= 0x04
 } pass_io_flags; 
 
 struct pass_io_req {
 	union ccb			 ccb;
 	union ccb			*alloced_ccb;
 	union ccb			*user_ccb_ptr;
 	camq_entry			 user_periph_links;
 	ccb_ppriv_area			 user_periph_priv;
 	struct cam_periph_map_info	 mapinfo;
 	pass_io_flags			 flags;
 	ccb_flags			 data_flags;
 	int				 num_user_segs;
 	bus_dma_segment_t		 user_segs[PASS_MAX_SEGS];
 	int				 num_kern_segs;
 	bus_dma_segment_t		 kern_segs[PASS_MAX_SEGS];
 	bus_dma_segment_t		*user_segptr;
 	bus_dma_segment_t		*kern_segptr;
 	int				 num_bufs;
 	uint32_t			 dirs[CAM_PERIPH_MAXMAPS];
 	uint32_t			 lengths[CAM_PERIPH_MAXMAPS];
 	uint8_t				*user_bufs[CAM_PERIPH_MAXMAPS];
 	uint8_t				*kern_bufs[CAM_PERIPH_MAXMAPS];
 	struct bintime			 start_time;
 	TAILQ_ENTRY(pass_io_req)	 links;
 };
 
 struct pass_softc {
 	pass_state		  state;
 	pass_flags		  flags;
 	u_int8_t		  pd_type;
 	union ccb		  saved_ccb;
 	int			  open_count;
 	u_int		 	  maxio;
 	struct devstat		 *device_stats;
 	struct cdev		 *dev;
 	struct cdev		 *alias_dev;
 	struct task		  add_physpath_task;
 	struct task		  shutdown_kqueue_task;
 	struct selinfo		  read_select;
 	TAILQ_HEAD(, pass_io_req) incoming_queue;
 	TAILQ_HEAD(, pass_io_req) active_queue;
 	TAILQ_HEAD(, pass_io_req) abandoned_queue;
 	TAILQ_HEAD(, pass_io_req) done_queue;
 	struct cam_periph	 *periph;
 	char			  zone_name[12];
 	char			  io_zone_name[12];
 	uma_zone_t		  pass_zone;
 	uma_zone_t		  pass_io_zone;
 	size_t			  io_zone_size;
 };
 
 static	d_open_t	passopen;
 static	d_close_t	passclose;
 static	d_ioctl_t	passioctl;
 static	d_ioctl_t	passdoioctl;
 static	d_poll_t	passpoll;
 static	d_kqfilter_t	passkqfilter;
 static	void		passreadfiltdetach(struct knote *kn);
 static	int		passreadfilt(struct knote *kn, long hint);
 
 static	periph_init_t	passinit;
 static	periph_ctor_t	passregister;
 static	periph_oninv_t	passoninvalidate;
 static	periph_dtor_t	passcleanup;
 static	periph_start_t	passstart;
 static	void		pass_shutdown_kqueue(void *context, int pending);
 static	void		pass_add_physpath(void *context, int pending);
 static	void		passasync(void *callback_arg, u_int32_t code,
 				  struct cam_path *path, void *arg);
 static	void		passdone(struct cam_periph *periph, 
 				 union ccb *done_ccb);
 static	int		passcreatezone(struct cam_periph *periph);
 static	void		passiocleanup(struct pass_softc *softc, 
 				      struct pass_io_req *io_req);
 static	int		passcopysglist(struct cam_periph *periph,
 				       struct pass_io_req *io_req,
 				       ccb_flags direction);
 static	int		passmemsetup(struct cam_periph *periph,
 				     struct pass_io_req *io_req);
 static	int		passmemdone(struct cam_periph *periph,
 				    struct pass_io_req *io_req);
 static	int		passerror(union ccb *ccb, u_int32_t cam_flags, 
 				  u_int32_t sense_flags);
 static 	int		passsendccb(struct cam_periph *periph, union ccb *ccb,
 				    union ccb *inccb);
 
 static struct periph_driver passdriver =
 {
 	passinit, "pass",
 	TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0
 };
 
 PERIPHDRIVER_DECLARE(pass, passdriver);
 
 static struct cdevsw pass_cdevsw = {
 	.d_version =	D_VERSION,
 	.d_flags =	D_TRACKCLOSE,
 	.d_open =	passopen,
 	.d_close =	passclose,
 	.d_ioctl =	passioctl,
 	.d_poll = 	passpoll,
 	.d_kqfilter = 	passkqfilter,
 	.d_name =	"pass",
 };
 
 static struct filterops passread_filtops = {
 	.f_isfd	=	1,
 	.f_detach =	passreadfiltdetach,
 	.f_event =	passreadfilt
 };
 
 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers");
 
 static void
 passinit(void)
 {
 	cam_status status;
 
 	/*
 	 * Install a global async callback.  This callback will
 	 * receive async callbacks like "new device found".
 	 */
 	status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL);
 
 	if (status != CAM_REQ_CMP) {
 		printf("pass: Failed to attach master async callback "
 		       "due to status 0x%x!\n", status);
 	}
 
 }
 
 static void
 passrejectios(struct cam_periph *periph)
 {
 	struct pass_io_req *io_req, *io_req2;
 	struct pass_softc *softc;
 
 	softc = (struct pass_softc *)periph->softc;
 
 	/*
 	 * The user can no longer get status for I/O on the done queue, so
 	 * clean up all outstanding I/O on the done queue.
 	 */
 	TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
 		TAILQ_REMOVE(&softc->done_queue, io_req, links);
 		passiocleanup(softc, io_req);
 		uma_zfree(softc->pass_zone, io_req);
 	}
 
 	/*
 	 * The underlying device is gone, so we can't issue these I/Os.
 	 * The devfs node has been shut down, so we can't return status to
 	 * the user.  Free any I/O left on the incoming queue.
 	 */
 	TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) {
 		TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
 		passiocleanup(softc, io_req);
 		uma_zfree(softc->pass_zone, io_req);
 	}
 
 	/*
 	 * Normally we would put I/Os on the abandoned queue and acquire a
 	 * reference when we saw the final close.  But, the device went
 	 * away and devfs may have moved everything off to deadfs by the
 	 * time the I/O done callback is called; as a result, we won't see
 	 * any more closes.  So, if we have any active I/Os, we need to put
 	 * them on the abandoned queue.  When the abandoned queue is empty,
 	 * we'll release the remaining reference (see below) to the peripheral.
 	 */
 	TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) {
 		TAILQ_REMOVE(&softc->active_queue, io_req, links);
 		io_req->flags |= PASS_IO_ABANDONED;
 		TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links);
 	}
 
 	/*
 	 * If we put any I/O on the abandoned queue, acquire a reference.
 	 */
 	if ((!TAILQ_EMPTY(&softc->abandoned_queue))
 	 && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) {
 		cam_periph_doacquire(periph);
 		softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
 	}
 }
 
 static void
 passdevgonecb(void *arg)
 {
 	struct cam_periph *periph;
 	struct mtx *mtx;
 	struct pass_softc *softc;
 	int i;
 
 	periph = (struct cam_periph *)arg;
 	mtx = cam_periph_mtx(periph);
 	mtx_lock(mtx);
 
 	softc = (struct pass_softc *)periph->softc;
 	KASSERT(softc->open_count >= 0, ("Negative open count %d",
 		softc->open_count));
 
 	/*
 	 * When we get this callback, we will get no more close calls from
 	 * devfs.  So if we have any dangling opens, we need to release the
 	 * reference held for that particular context.
 	 */
 	for (i = 0; i < softc->open_count; i++)
 		cam_periph_release_locked(periph);
 
 	softc->open_count = 0;
 
 	/*
 	 * Release the reference held for the device node, it is gone now.
 	 * Accordingly, inform all queued I/Os of their fate.
 	 */
 	cam_periph_release_locked(periph);
 	passrejectios(periph);
 
 	/*
 	 * We reference the SIM lock directly here, instead of using
 	 * cam_periph_unlock().  The reason is that the final call to
 	 * cam_periph_release_locked() above could result in the periph
 	 * getting freed.  If that is the case, dereferencing the periph
 	 * with a cam_periph_unlock() call would cause a page fault.
 	 */
 	mtx_unlock(mtx);
 
 	/*
 	 * We have to remove our kqueue context from a thread because it
 	 * may sleep.  It would be nice if we could get a callback from
 	 * kqueue when it is done cleaning up resources.
 	 */
 	taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task);
 }
 
 static void
 passoninvalidate(struct cam_periph *periph)
 {
 	struct pass_softc *softc;
 
 	softc = (struct pass_softc *)periph->softc;
 
 	/*
 	 * De-register any async callbacks.
 	 */
 	xpt_register_async(0, passasync, periph, periph->path);
 
 	softc->flags |= PASS_FLAG_INVALID;
 
 	/*
 	 * Tell devfs this device has gone away, and ask for a callback
 	 * when it has cleaned up its state.
 	 */
 	destroy_dev_sched_cb(softc->dev, passdevgonecb, periph);
 }
 
 static void
 passcleanup(struct cam_periph *periph)
 {
 	struct pass_softc *softc;
 
 	softc = (struct pass_softc *)periph->softc;
 
 	cam_periph_assert(periph, MA_OWNED);
 	KASSERT(TAILQ_EMPTY(&softc->active_queue),
 		("%s called when there are commands on the active queue!\n",
 		__func__));
 	KASSERT(TAILQ_EMPTY(&softc->abandoned_queue),
 		("%s called when there are commands on the abandoned queue!\n",
 		__func__));
 	KASSERT(TAILQ_EMPTY(&softc->incoming_queue),
 		("%s called when there are commands on the incoming queue!\n",
 		__func__));
 	KASSERT(TAILQ_EMPTY(&softc->done_queue),
 		("%s called when there are commands on the done queue!\n",
 		__func__));
 
 	devstat_remove_entry(softc->device_stats);
 
 	cam_periph_unlock(periph);
 
 	/*
 	 * We call taskqueue_drain() for the physpath task to make sure it
 	 * is complete.  We drop the lock because this can potentially
 	 * sleep.  XXX KDM that is bad.  Need a way to get a callback when
 	 * a taskqueue is drained.
 	 *
  	 * Note that we don't drain the kqueue shutdown task queue.  This
 	 * is because we hold a reference on the periph for kqueue, and
 	 * release that reference from the kqueue shutdown task queue.  So
 	 * we cannot come into this routine unless we've released that
 	 * reference.  Also, because that could be the last reference, we
 	 * could be called from the cam_periph_release() call in
 	 * pass_shutdown_kqueue().  In that case, the taskqueue_drain()
 	 * would deadlock.  It would be preferable if we had a way to
 	 * get a callback when a taskqueue is done.
 	 */
 	taskqueue_drain(taskqueue_thread, &softc->add_physpath_task);
 
 	cam_periph_lock(periph);
 
 	free(softc, M_DEVBUF);
 }
 
 static void
 pass_shutdown_kqueue(void *context, int pending)
 {
 	struct cam_periph *periph;
 	struct pass_softc *softc;
 
 	periph = context;
 	softc = periph->softc;
 
 	knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0);
 	knlist_destroy(&softc->read_select.si_note);
 
 	/*
 	 * Release the reference we held for kqueue.
 	 */
 	cam_periph_release(periph);
 }
 
 static void
 pass_add_physpath(void *context, int pending)
 {
 	struct cam_periph *periph;
 	struct pass_softc *softc;
 	struct mtx *mtx;
 	char *physpath;
 
 	/*
 	 * If we have one, create a devfs alias for our
 	 * physical path.
 	 */
 	periph = context;
 	softc = periph->softc;
 	physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK);
 	mtx = cam_periph_mtx(periph);
 	mtx_lock(mtx);
 
 	if (periph->flags & CAM_PERIPH_INVALID)
 		goto out;
 
 	if (xpt_getattr(physpath, MAXPATHLEN,
 			"GEOM::physpath", periph->path) == 0
 	 && strlen(physpath) != 0) {
 
 		mtx_unlock(mtx);
 		make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev,
 					softc->dev, softc->alias_dev, physpath);
 		mtx_lock(mtx);
 	}
 
 out:
 	/*
 	 * Now that we've made our alias, we no longer have to have a
 	 * reference to the device.
 	 */
 	if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0)
 		softc->flags |= PASS_FLAG_INITIAL_PHYSPATH;
 
 	/*
 	 * We always acquire a reference to the periph before queueing this
 	 * task queue function, so it won't go away before we run.
 	 */
 	while (pending-- > 0)
 		cam_periph_release_locked(periph);
 	mtx_unlock(mtx);
 
 	free(physpath, M_DEVBUF);
 }
 
 static void
 passasync(void *callback_arg, u_int32_t code,
 	  struct cam_path *path, void *arg)
 {
 	struct cam_periph *periph;
 
 	periph = (struct cam_periph *)callback_arg;
 
 	switch (code) {
 	case AC_FOUND_DEVICE:
 	{
 		struct ccb_getdev *cgd;
 		cam_status status;
  
 		cgd = (struct ccb_getdev *)arg;
 		if (cgd == NULL)
 			break;
 
 		/*
 		 * Allocate a peripheral instance for
 		 * this device and start the probe
 		 * process.
 		 */
 		status = cam_periph_alloc(passregister, passoninvalidate,
 					  passcleanup, passstart, "pass",
 					  CAM_PERIPH_BIO, path,
 					  passasync, AC_FOUND_DEVICE, cgd);
 
 		if (status != CAM_REQ_CMP
 		 && status != CAM_REQ_INPROG) {
 			const struct cam_status_entry *entry;
 
 			entry = cam_fetch_status_entry(status);
 
 			printf("passasync: Unable to attach new device "
 			       "due to status %#x: %s\n", status, entry ?
 			       entry->status_text : "Unknown");
 		}
 
 		break;
 	}
 	case AC_ADVINFO_CHANGED:
 	{
 		uintptr_t buftype;
 
 		buftype = (uintptr_t)arg;
 		if (buftype == CDAI_TYPE_PHYS_PATH) {
 			struct pass_softc *softc;
 
 			softc = (struct pass_softc *)periph->softc;
 			/*
 			 * Acquire a reference to the periph before we
 			 * start the taskqueue, so that we don't run into
 			 * a situation where the periph goes away before
 			 * the task queue has a chance to run.
 			 */
 			if (cam_periph_acquire(periph) != 0)
 				break;
 
 			taskqueue_enqueue(taskqueue_thread,
 					  &softc->add_physpath_task);
 		}
 		break;
 	}
 	default:
 		cam_periph_async(periph, code, path, arg);
 		break;
 	}
 }
 
 static cam_status
 passregister(struct cam_periph *periph, void *arg)
 {
 	struct pass_softc *softc;
 	struct ccb_getdev *cgd;
 	struct ccb_pathinq cpi;
 	struct make_dev_args args;
 	int error, no_tags;
 
 	cgd = (struct ccb_getdev *)arg;
 	if (cgd == NULL) {
 		printf("%s: no getdev CCB, can't register device\n", __func__);
 		return(CAM_REQ_CMP_ERR);
 	}
 
 	softc = (struct pass_softc *)malloc(sizeof(*softc),
 					    M_DEVBUF, M_NOWAIT);
 
 	if (softc == NULL) {
 		printf("%s: Unable to probe new device. "
 		       "Unable to allocate softc\n", __func__);
 		return(CAM_REQ_CMP_ERR);
 	}
 
 	bzero(softc, sizeof(*softc));
 	softc->state = PASS_STATE_NORMAL;
 	if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI)
 		softc->pd_type = SID_TYPE(&cgd->inq_data);
 	else if (cgd->protocol == PROTO_SATAPM)
 		softc->pd_type = T_ENCLOSURE;
 	else
 		softc->pd_type = T_DIRECT;
 
 	periph->softc = softc;
 	softc->periph = periph;
 	TAILQ_INIT(&softc->incoming_queue);
 	TAILQ_INIT(&softc->active_queue);
 	TAILQ_INIT(&softc->abandoned_queue);
 	TAILQ_INIT(&softc->done_queue);
 	snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d",
 		 periph->periph_name, periph->unit_number);
 	snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO",
 		 periph->periph_name, periph->unit_number);
 	softc->io_zone_size = MAXPHYS;
 	knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph));
 
 	xpt_path_inq(&cpi, periph->path);
 
 	if (cpi.maxio == 0)
 		softc->maxio = DFLTPHYS;	/* traditional default */
 	else if (cpi.maxio > MAXPHYS)
 		softc->maxio = MAXPHYS;		/* for safety */
 	else
 		softc->maxio = cpi.maxio;	/* real value */
 
 	if (cpi.hba_misc & PIM_UNMAPPED)
 		softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE;
 
 	/*
 	 * We pass in 0 for a blocksize, since we don't 
 	 * know what the blocksize of this device is, if 
 	 * it even has a blocksize.
 	 */
 	cam_periph_unlock(periph);
 	no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0;
 	softc->device_stats = devstat_new_entry("pass",
 			  periph->unit_number, 0,
 			  DEVSTAT_NO_BLOCKSIZE
 			  | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0),
 			  softc->pd_type |
 			  XPORT_DEVSTAT_TYPE(cpi.transport) |
 			  DEVSTAT_TYPE_PASS,
 			  DEVSTAT_PRIORITY_PASS);
 
 	/*
 	 * Initialize the taskqueue handler for shutting down kqueue.
 	 */
 	TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0,
 		  pass_shutdown_kqueue, periph);
 
 	/*
 	 * Acquire a reference to the periph that we can release once we've
 	 * cleaned up the kqueue.
 	 */
 	if (cam_periph_acquire(periph) != 0) {
 		xpt_print(periph->path, "%s: lost periph during "
 			  "registration!\n", __func__);
 		cam_periph_lock(periph);
 		return (CAM_REQ_CMP_ERR);
 	}
 
 	/*
 	 * Acquire a reference to the periph before we create the devfs
 	 * instance for it.  We'll release this reference once the devfs
 	 * instance has been freed.
 	 */
 	if (cam_periph_acquire(periph) != 0) {
 		xpt_print(periph->path, "%s: lost periph during "
 			  "registration!\n", __func__);
 		cam_periph_lock(periph);
 		return (CAM_REQ_CMP_ERR);
 	}
 
 	/* Register the device */
 	make_dev_args_init(&args);
 	args.mda_devsw = &pass_cdevsw;
 	args.mda_unit = periph->unit_number;
 	args.mda_uid = UID_ROOT;
 	args.mda_gid = GID_OPERATOR;
 	args.mda_mode = 0600;
 	args.mda_si_drv1 = periph;
 	error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name,
 	    periph->unit_number);
 	if (error != 0) {
 		cam_periph_lock(periph);
 		cam_periph_release_locked(periph);
 		return (CAM_REQ_CMP_ERR);
 	}
 
 	/*
 	 * Hold a reference to the periph before we create the physical
 	 * path alias so it can't go away.
 	 */
 	if (cam_periph_acquire(periph) != 0) {
 		xpt_print(periph->path, "%s: lost periph during "
 			  "registration!\n", __func__);
 		cam_periph_lock(periph);
 		return (CAM_REQ_CMP_ERR);
 	}
 
 	cam_periph_lock(periph);
 
 	TASK_INIT(&softc->add_physpath_task, /*priority*/0,
 		  pass_add_physpath, periph);
 
 	/*
 	 * See if physical path information is already available.
 	 */
 	taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task);
 
 	/*
 	 * Add an async callback so that we get notified if
 	 * this device goes away or its physical path
 	 * (stored in the advanced info data of the EDT) has
 	 * changed.
 	 */
 	xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED,
 			   passasync, periph, periph->path);
 
 	if (bootverbose)
 		xpt_announce_periph(periph, NULL);
 
 	return(CAM_REQ_CMP);
 }
 
 static int
 passopen(struct cdev *dev, int flags, int fmt, struct thread *td)
 {
 	struct cam_periph *periph;
 	struct pass_softc *softc;
 	int error;
 
 	periph = (struct cam_periph *)dev->si_drv1;
 	if (cam_periph_acquire(periph) != 0)
 		return (ENXIO);
 
 	cam_periph_lock(periph);
 
 	softc = (struct pass_softc *)periph->softc;
 
 	if (softc->flags & PASS_FLAG_INVALID) {
 		cam_periph_release_locked(periph);
 		cam_periph_unlock(periph);
 		return(ENXIO);
 	}
 
 	/*
 	 * Don't allow access when we're running at a high securelevel.
 	 */
 	error = securelevel_gt(td->td_ucred, 1);
 	if (error) {
 		cam_periph_release_locked(periph);
 		cam_periph_unlock(periph);
 		return(error);
 	}
 
 	/*
 	 * Only allow read-write access.
 	 */
 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) {
 		cam_periph_release_locked(periph);
 		cam_periph_unlock(periph);
 		return(EPERM);
 	}
 
 	/*
 	 * We don't allow nonblocking access.
 	 */
 	if ((flags & O_NONBLOCK) != 0) {
 		xpt_print(periph->path, "can't do nonblocking access\n");
 		cam_periph_release_locked(periph);
 		cam_periph_unlock(periph);
 		return(EINVAL);
 	}
 
 	softc->open_count++;
 
 	cam_periph_unlock(periph);
 
 	return (error);
 }
 
 static int
 passclose(struct cdev *dev, int flag, int fmt, struct thread *td)
 {
 	struct 	cam_periph *periph;
 	struct  pass_softc *softc;
 	struct mtx *mtx;
 
 	periph = (struct cam_periph *)dev->si_drv1;
 	mtx = cam_periph_mtx(periph);
 	mtx_lock(mtx);
 
 	softc = periph->softc;
 	softc->open_count--;
 
 	if (softc->open_count == 0) {
 		struct pass_io_req *io_req, *io_req2;
 
 		TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
 			TAILQ_REMOVE(&softc->done_queue, io_req, links);
 			passiocleanup(softc, io_req);
 			uma_zfree(softc->pass_zone, io_req);
 		}
 
 		TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links,
 				   io_req2) {
 			TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
 			passiocleanup(softc, io_req);
 			uma_zfree(softc->pass_zone, io_req);
 		}
 
 		/*
 		 * If there are any active I/Os, we need to forcibly acquire a
 		 * reference to the peripheral so that we don't go away
 		 * before they complete.  We'll release the reference when
 		 * the abandoned queue is empty.
 		 */
 		io_req = TAILQ_FIRST(&softc->active_queue);
 		if ((io_req != NULL)
 		 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) {
 			cam_periph_doacquire(periph);
 			softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
 		}
 
 		/*
 		 * Since the I/O in the active queue is not under our
 		 * control, just set a flag so that we can clean it up when
 		 * it completes and put it on the abandoned queue.  This
 		 * will prevent our sending spurious completions in the
 		 * event that the device is opened again before these I/Os
 		 * complete.
 		 */
 		TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links,
 				   io_req2) {
 			TAILQ_REMOVE(&softc->active_queue, io_req, links);
 			io_req->flags |= PASS_IO_ABANDONED;
 			TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req,
 					  links);
 		}
 	}
 
 	cam_periph_release_locked(periph);
 
 	/*
 	 * We reference the lock directly here, instead of using
 	 * cam_periph_unlock().  The reason is that the call to
 	 * cam_periph_release_locked() above could result in the periph
 	 * getting freed.  If that is the case, dereferencing the periph
 	 * with a cam_periph_unlock() call would cause a page fault.
 	 *
 	 * cam_periph_release() avoids this problem using the same method,
 	 * but we're manually acquiring and dropping the lock here to
 	 * protect the open count and avoid another lock acquisition and
 	 * release.
 	 */
 	mtx_unlock(mtx);
 
 	return (0);
 }
 
 
 static void
 passstart(struct cam_periph *periph, union ccb *start_ccb)
 {
 	struct pass_softc *softc;
 
 	softc = (struct pass_softc *)periph->softc;
 
 	switch (softc->state) {
 	case PASS_STATE_NORMAL: {
 		struct pass_io_req *io_req;
 
 		/*
 		 * Check for any queued I/O requests that require an
 		 * allocated slot.
 		 */
 		io_req = TAILQ_FIRST(&softc->incoming_queue);
 		if (io_req == NULL) {
 			xpt_release_ccb(start_ccb);
 			break;
 		}
 		TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
 		TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
 		/*
 		 * Merge the user's CCB into the allocated CCB.
 		 */
 		xpt_merge_ccb(start_ccb, &io_req->ccb);
 		start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO;
 		start_ccb->ccb_h.ccb_ioreq = io_req;
 		start_ccb->ccb_h.cbfcnp = passdone;
 		io_req->alloced_ccb = start_ccb;
 		binuptime(&io_req->start_time);
 		devstat_start_transaction(softc->device_stats,
 					  &io_req->start_time);
 
 		xpt_action(start_ccb);
 
 		/*
 		 * If we have any more I/O waiting, schedule ourselves again.
 		 */
 		if (!TAILQ_EMPTY(&softc->incoming_queue))
 			xpt_schedule(periph, CAM_PRIORITY_NORMAL);
 		break;
 	}
 	default:
 		break;
 	}
 }
 
 static void
 passdone(struct cam_periph *periph, union ccb *done_ccb)
 { 
 	struct pass_softc *softc;
 	struct ccb_scsiio *csio;
 
 	softc = (struct pass_softc *)periph->softc;
 
 	cam_periph_assert(periph, MA_OWNED);
 
 	csio = &done_ccb->csio;
 	switch (csio->ccb_h.ccb_type) {
 	case PASS_CCB_QUEUED_IO: {
 		struct pass_io_req *io_req;
 
 		io_req = done_ccb->ccb_h.ccb_ioreq;
 #if 0
 		xpt_print(periph->path, "%s: called for user CCB %p\n",
 			  __func__, io_req->user_ccb_ptr);
 #endif
 		if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
 		 && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER)
 		 && ((io_req->flags & PASS_IO_ABANDONED) == 0)) {
 			int error;
 
 			error = passerror(done_ccb, CAM_RETRY_SELTO,
 					  SF_RETRY_UA | SF_NO_PRINT);
 
 			if (error == ERESTART) {
 				/*
 				 * A retry was scheduled, so
  				 * just return.
 				 */
 				return;
 			}
 		}
 
 		/*
 		 * Copy the allocated CCB contents back to the malloced CCB
 		 * so we can give status back to the user when he requests it.
 		 */
 		bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb));
 
 		/*
 		 * Log data/transaction completion with devstat(9).
 		 */
 		switch (done_ccb->ccb_h.func_code) {
 		case XPT_SCSI_IO:
 			devstat_end_transaction(softc->device_stats,
 			    done_ccb->csio.dxfer_len - done_ccb->csio.resid,
 			    done_ccb->csio.tag_action & 0x3,
 			    ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
 			    CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
 			    (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
 			    DEVSTAT_WRITE : DEVSTAT_READ, NULL,
 			    &io_req->start_time);
 			break;
 		case XPT_ATA_IO:
 			devstat_end_transaction(softc->device_stats,
 			    done_ccb->ataio.dxfer_len - done_ccb->ataio.resid,
 			    0, /* Not used in ATA */
 			    ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
 			    CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 
 			    (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
 			    DEVSTAT_WRITE : DEVSTAT_READ, NULL,
 			    &io_req->start_time);
 			break;
 		case XPT_SMP_IO:
 			/*
 			 * XXX KDM this isn't quite right, but there isn't
 			 * currently an easy way to represent a bidirectional 
 			 * transfer in devstat.  The only way to do it
 			 * and have the byte counts come out right would
 			 * mean that we would have to record two
 			 * transactions, one for the request and one for the
 			 * response.  For now, so that we report something,
 			 * just treat the entire thing as a read.
 			 */
 			devstat_end_transaction(softc->device_stats,
 			    done_ccb->smpio.smp_request_len +
 			    done_ccb->smpio.smp_response_len,
 			    DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL,
 			    &io_req->start_time);
 			break;
 		default:
 			devstat_end_transaction(softc->device_stats, 0,
 			    DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL,
 			    &io_req->start_time);
 			break;
 		}
 
 		/*
 		 * In the normal case, take the completed I/O off of the
 		 * active queue and put it on the done queue.  Notitfy the
 		 * user that we have a completed I/O.
 		 */
 		if ((io_req->flags & PASS_IO_ABANDONED) == 0) {
 			TAILQ_REMOVE(&softc->active_queue, io_req, links);
 			TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
 			selwakeuppri(&softc->read_select, PRIBIO);
 			KNOTE_LOCKED(&softc->read_select.si_note, 0);
 		} else {
 			/*
 			 * In the case of an abandoned I/O (final close
 			 * without fetching the I/O), take it off of the
 			 * abandoned queue and free it.
 			 */
 			TAILQ_REMOVE(&softc->abandoned_queue, io_req, links);
 			passiocleanup(softc, io_req);
 			uma_zfree(softc->pass_zone, io_req);
 
 			/*
 			 * Release the done_ccb here, since we may wind up
 			 * freeing the peripheral when we decrement the
 			 * reference count below.
 			 */
 			xpt_release_ccb(done_ccb);
 
 			/*
 			 * If the abandoned queue is empty, we can release
 			 * our reference to the periph since we won't have
 			 * any more completions coming.
 			 */
 			if ((TAILQ_EMPTY(&softc->abandoned_queue))
 			 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) {
 				softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET;
 				cam_periph_release_locked(periph);
 			}
 
 			/*
 			 * We have already released the CCB, so we can
 			 * return.
 			 */
 			return;
 		}
 		break;
 	}
 	}
 	xpt_release_ccb(done_ccb);
 }
 
 static int
 passcreatezone(struct cam_periph *periph)
 {
 	struct pass_softc *softc;
 	int error;
 
 	error = 0;
 	softc = (struct pass_softc *)periph->softc;
 
 	cam_periph_assert(periph, MA_OWNED);
 	KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0), 
 		("%s called when the pass(4) zone is valid!\n", __func__));
 	KASSERT((softc->pass_zone == NULL), 
 		("%s called when the pass(4) zone is allocated!\n", __func__));
 
 	if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) {
 
 		/*
 		 * We're the first context through, so we need to create
 		 * the pass(4) UMA zone for I/O requests.
 		 */
 		softc->flags |= PASS_FLAG_ZONE_INPROG;
 
 		/*
 		 * uma_zcreate() does a blocking (M_WAITOK) allocation,
 		 * so we cannot hold a mutex while we call it.
 		 */
 		cam_periph_unlock(periph);
 
 		softc->pass_zone = uma_zcreate(softc->zone_name,
 		    sizeof(struct pass_io_req), NULL, NULL, NULL, NULL,
 		    /*align*/ 0, /*flags*/ 0);
 
 		softc->pass_io_zone = uma_zcreate(softc->io_zone_name,
 		    softc->io_zone_size, NULL, NULL, NULL, NULL,
 		    /*align*/ 0, /*flags*/ 0);
 
 		cam_periph_lock(periph);
 
 		if ((softc->pass_zone == NULL)
 		 || (softc->pass_io_zone == NULL)) {
 			if (softc->pass_zone == NULL)
 				xpt_print(periph->path, "unable to allocate "
 				    "IO Req UMA zone\n");
 			else
 				xpt_print(periph->path, "unable to allocate "
 				    "IO UMA zone\n");
 			softc->flags &= ~PASS_FLAG_ZONE_INPROG;
 			goto bailout;
 		}
 
 		/*
 		 * Set the flags appropriately and notify any other waiters.
 		 */
 		softc->flags &= PASS_FLAG_ZONE_INPROG;
 		softc->flags |= PASS_FLAG_ZONE_VALID;
 		wakeup(&softc->pass_zone);
 	} else {
 		/*
 		 * In this case, the UMA zone has not yet been created, but
 		 * another context is in the process of creating it.  We
 		 * need to sleep until the creation is either done or has
 		 * failed.
 		 */
 		while ((softc->flags & PASS_FLAG_ZONE_INPROG)
 		    && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) {
 			error = msleep(&softc->pass_zone,
 				       cam_periph_mtx(periph), PRIBIO,
 				       "paszon", 0);
 			if (error != 0)
 				goto bailout;
 		}
 		/*
 		 * If the zone creation failed, no luck for the user.
 		 */
 		if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){
 			error = ENOMEM;
 			goto bailout;
 		}
 	}
 bailout:
 	return (error);
 }
 
 static void
 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req)
 {
 	union ccb *ccb;
 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
 	int i, numbufs;
 
 	ccb = &io_req->ccb;
 
 	switch (ccb->ccb_h.func_code) {
 	case XPT_DEV_MATCH:
 		numbufs = min(io_req->num_bufs, 2);
 
 		if (numbufs == 1) {
 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
 		} else {
 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
 		}
 		break;
 	case XPT_SCSI_IO:
 	case XPT_CONT_TARGET_IO:
 		data_ptrs[0] = &ccb->csio.data_ptr;
 		numbufs = min(io_req->num_bufs, 1);
 		break;
 	case XPT_ATA_IO:
 		data_ptrs[0] = &ccb->ataio.data_ptr;
 		numbufs = min(io_req->num_bufs, 1);
 		break;
 	case XPT_SMP_IO:
 		numbufs = min(io_req->num_bufs, 2);
 		data_ptrs[0] = &ccb->smpio.smp_request;
 		data_ptrs[1] = &ccb->smpio.smp_response;
 		break;
 	case XPT_DEV_ADVINFO:
 		numbufs = min(io_req->num_bufs, 1);
 		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
 		break;
 	case XPT_NVME_IO:
 	case XPT_NVME_ADMIN:
 		data_ptrs[0] = &ccb->nvmeio.data_ptr;
 		numbufs = min(io_req->num_bufs, 1);
 		break;
 	default:
 		/* allow ourselves to be swapped once again */
 		return;
 		break; /* NOTREACHED */ 
 	}
 
 	if (io_req->flags & PASS_IO_USER_SEG_MALLOC) {
 		free(io_req->user_segptr, M_SCSIPASS);
 		io_req->user_segptr = NULL;
 	}
 
 	/*
 	 * We only want to free memory we malloced.
 	 */
 	if (io_req->data_flags == CAM_DATA_VADDR) {
 		for (i = 0; i < io_req->num_bufs; i++) {
 			if (io_req->kern_bufs[i] == NULL)
 				continue;
 
 			free(io_req->kern_bufs[i], M_SCSIPASS);
 			io_req->kern_bufs[i] = NULL;
 		}
 	} else if (io_req->data_flags == CAM_DATA_SG) {
 		for (i = 0; i < io_req->num_kern_segs; i++) {
 			if ((uint8_t *)(uintptr_t)
 			    io_req->kern_segptr[i].ds_addr == NULL)
 				continue;
 
 			uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t)
 			    io_req->kern_segptr[i].ds_addr);
 			io_req->kern_segptr[i].ds_addr = 0;
 		}
 	}
 
 	if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) {
 		free(io_req->kern_segptr, M_SCSIPASS);
 		io_req->kern_segptr = NULL;
 	}
 
 	if (io_req->data_flags != CAM_DATA_PADDR) {
 		for (i = 0; i < numbufs; i++) {
 			/*
 			 * Restore the user's buffer pointers to their
 			 * previous values.
 			 */
 			if (io_req->user_bufs[i] != NULL)
 				*data_ptrs[i] = io_req->user_bufs[i];
 		}
 	}
 
 }
 
 static int
 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req,
 	       ccb_flags direction)
 {
 	bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy;
 	bus_dma_segment_t *user_sglist, *kern_sglist;
 	int i, j, error;
 
 	error = 0;
 	kern_watermark = 0;
 	user_watermark = 0;
 	len_to_copy = 0;
 	len_copied = 0;
 	user_sglist = io_req->user_segptr;
 	kern_sglist = io_req->kern_segptr;
 
 	for (i = 0, j = 0; i < io_req->num_user_segs &&
 	     j < io_req->num_kern_segs;) {
 		uint8_t *user_ptr, *kern_ptr;
 
 		len_to_copy = min(user_sglist[i].ds_len -user_watermark,
 		    kern_sglist[j].ds_len - kern_watermark);
 
 		user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr;
 		user_ptr = user_ptr + user_watermark;
 		kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr;
 		kern_ptr = kern_ptr + kern_watermark;
 
 		user_watermark += len_to_copy;
 		kern_watermark += len_to_copy;
 
 		if (!useracc(user_ptr, len_to_copy,
 		    (direction == CAM_DIR_IN) ? VM_PROT_WRITE : VM_PROT_READ)) {
 			xpt_print(periph->path, "%s: unable to access user "
 				  "S/G list element %p len %zu\n", __func__,
 				  user_ptr, len_to_copy);
 			error = EFAULT;
 			goto bailout;
 		}
 
 		if (direction == CAM_DIR_IN) {
 			error = copyout(kern_ptr, user_ptr, len_to_copy);
 			if (error != 0) {
 				xpt_print(periph->path, "%s: copyout of %u "
 					  "bytes from %p to %p failed with "
 					  "error %d\n", __func__, len_to_copy,
 					  kern_ptr, user_ptr, error);
 				goto bailout;
 			}
 		} else {
 			error = copyin(user_ptr, kern_ptr, len_to_copy);
 			if (error != 0) {
 				xpt_print(periph->path, "%s: copyin of %u "
 					  "bytes from %p to %p failed with "
 					  "error %d\n", __func__, len_to_copy,
 					  user_ptr, kern_ptr, error);
 				goto bailout;
 			}
 		}
 
 		len_copied += len_to_copy;
 
 		if (user_sglist[i].ds_len == user_watermark) {
 			i++;
 			user_watermark = 0;
 		}
 
 		if (kern_sglist[j].ds_len == kern_watermark) {
 			j++;
 			kern_watermark = 0;
 		}
 	}
 
 bailout:
 
 	return (error);
 }
 
 static int
 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req)
 {
 	union ccb *ccb;
 	struct pass_softc *softc;
 	int numbufs, i;
 	uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
 	uint32_t lengths[CAM_PERIPH_MAXMAPS];
 	uint32_t dirs[CAM_PERIPH_MAXMAPS];
 	uint32_t num_segs;
 	uint16_t *seg_cnt_ptr;
 	size_t maxmap;
 	int error;
 
 	cam_periph_assert(periph, MA_NOTOWNED);
 
 	softc = periph->softc;
 
 	error = 0;
 	ccb = &io_req->ccb;
 	maxmap = 0;
 	num_segs = 0;
 	seg_cnt_ptr = NULL;
 
 	switch(ccb->ccb_h.func_code) {
 	case XPT_DEV_MATCH:
 		if (ccb->cdm.match_buf_len == 0) {
 			printf("%s: invalid match buffer length 0\n", __func__);
 			return(EINVAL);
 		}
 		if (ccb->cdm.pattern_buf_len > 0) {
 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
 			lengths[0] = ccb->cdm.pattern_buf_len;
 			dirs[0] = CAM_DIR_OUT;
 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
 			lengths[1] = ccb->cdm.match_buf_len;
 			dirs[1] = CAM_DIR_IN;
 			numbufs = 2;
 		} else {
 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
 			lengths[0] = ccb->cdm.match_buf_len;
 			dirs[0] = CAM_DIR_IN;
 			numbufs = 1;
 		}
 		io_req->data_flags = CAM_DATA_VADDR;
 		break;
 	case XPT_SCSI_IO:
 	case XPT_CONT_TARGET_IO:
 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
 			return(0);
 
 		/*
 		 * The user shouldn't be able to supply a bio.
 		 */
 		if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO)
 			return (EINVAL);
 
 		io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
 
 		data_ptrs[0] = &ccb->csio.data_ptr;
 		lengths[0] = ccb->csio.dxfer_len;
 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
 		num_segs = ccb->csio.sglist_cnt;
 		seg_cnt_ptr = &ccb->csio.sglist_cnt;
 		numbufs = 1;
 		maxmap = softc->maxio;
 		break;
 	case XPT_ATA_IO:
 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
 			return(0);
 
 		/*
 		 * We only support a single virtual address for ATA I/O.
 		 */
 		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
 			return (EINVAL);
 
 		io_req->data_flags = CAM_DATA_VADDR;
 
 		data_ptrs[0] = &ccb->ataio.data_ptr;
 		lengths[0] = ccb->ataio.dxfer_len;
 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
 		numbufs = 1;
 		maxmap = softc->maxio;
 		break;
 	case XPT_SMP_IO:
 		io_req->data_flags = CAM_DATA_VADDR;
 
 		data_ptrs[0] = &ccb->smpio.smp_request;
 		lengths[0] = ccb->smpio.smp_request_len;
 		dirs[0] = CAM_DIR_OUT;
 		data_ptrs[1] = &ccb->smpio.smp_response;
 		lengths[1] = ccb->smpio.smp_response_len;
 		dirs[1] = CAM_DIR_IN;
 		numbufs = 2;
 		maxmap = softc->maxio;
 		break;
 	case XPT_DEV_ADVINFO:
 		if (ccb->cdai.bufsiz == 0)
 			return (0);
 
 		io_req->data_flags = CAM_DATA_VADDR;
 
 		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
 		lengths[0] = ccb->cdai.bufsiz;
 		dirs[0] = CAM_DIR_IN;
 		numbufs = 1;
 		break;
 	case XPT_NVME_ADMIN:
 	case XPT_NVME_IO:
 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
 			return (0);
 
 		io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
 
 		data_ptrs[0] = &ccb->nvmeio.data_ptr;
 		lengths[0] = ccb->nvmeio.dxfer_len;
 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
 		num_segs = ccb->nvmeio.sglist_cnt;
 		seg_cnt_ptr = &ccb->nvmeio.sglist_cnt;
 		numbufs = 1;
 		maxmap = softc->maxio;
 		break;
 	default:
 		return(EINVAL);
 		break; /* NOTREACHED */
 	}
 
 	io_req->num_bufs = numbufs;
 
 	/*
 	 * If there is a maximum, check to make sure that the user's
 	 * request fits within the limit.  In general, we should only have
 	 * a maximum length for requests that go to hardware.  Otherwise it
 	 * is whatever we're able to malloc.
 	 */
 	for (i = 0; i < numbufs; i++) {
 		io_req->user_bufs[i] = *data_ptrs[i];
 		io_req->dirs[i] = dirs[i];
 		io_req->lengths[i] = lengths[i];
 
 		if (maxmap == 0)
 			continue;
 
 		if (lengths[i] <= maxmap)
 			continue;
 
 		xpt_print(periph->path, "%s: data length %u > max allowed %u "
 			  "bytes\n", __func__, lengths[i], maxmap);
 		error = EINVAL;
 		goto bailout;
 	}
 
 	switch (io_req->data_flags) {
 	case CAM_DATA_VADDR:
 		/* Map or copy the buffer into kernel address space */
 		for (i = 0; i < numbufs; i++) {
 			uint8_t *tmp_buf;
 
 			/*
 			 * If for some reason no length is specified, we
 			 * don't need to allocate anything.
 			 */
 			if (io_req->lengths[i] == 0)
 				continue;
 
 			/*
 			 * Make sure that the user's buffer is accessible
 			 * to that process.
 			 */
 			if (!useracc(io_req->user_bufs[i], io_req->lengths[i],
 			    (io_req->dirs[i] == CAM_DIR_IN) ? VM_PROT_WRITE :
 			     VM_PROT_READ)) {
 				xpt_print(periph->path, "%s: user address %p "
 				    "length %u is not accessible\n", __func__,
 				    io_req->user_bufs[i], io_req->lengths[i]);
 				error = EFAULT;
 				goto bailout;
 			}
 
 			tmp_buf = malloc(lengths[i], M_SCSIPASS,
 					 M_WAITOK | M_ZERO);
 			io_req->kern_bufs[i] = tmp_buf;
 			*data_ptrs[i] = tmp_buf;
 
 #if 0
 			xpt_print(periph->path, "%s: malloced %p len %u, user "
 				  "buffer %p, operation: %s\n", __func__,
 				  tmp_buf, lengths[i], io_req->user_bufs[i],
 				  (dirs[i] == CAM_DIR_IN) ? "read" : "write");
 #endif
 			/*
 			 * We only need to copy in if the user is writing.
 			 */
 			if (dirs[i] != CAM_DIR_OUT)
 				continue;
 
 			error = copyin(io_req->user_bufs[i],
 				       io_req->kern_bufs[i], lengths[i]);
 			if (error != 0) {
 				xpt_print(periph->path, "%s: copy of user "
 					  "buffer from %p to %p failed with "
 					  "error %d\n", __func__,
 					  io_req->user_bufs[i],
 					  io_req->kern_bufs[i], error);
 				goto bailout;
 			}
 		}
 		break;
 	case CAM_DATA_PADDR:
 		/* Pass down the pointer as-is */
 		break;
 	case CAM_DATA_SG: {
 		size_t sg_length, size_to_go, alloc_size;
 		uint32_t num_segs_needed;
 
 		/*
 		 * Copy the user S/G list in, and then copy in the
 		 * individual segments.
 		 */
 		/*
 		 * We shouldn't see this, but check just in case.
 		 */
 		if (numbufs != 1) {
 			xpt_print(periph->path, "%s: cannot currently handle "
 				  "more than one S/G list per CCB\n", __func__);
 			error = EINVAL;
 			goto bailout;
 		}
 
 		/*
 		 * We have to have at least one segment.
 		 */
 		if (num_segs == 0) {
 			xpt_print(periph->path, "%s: CAM_DATA_SG flag set, "
 				  "but sglist_cnt=0!\n", __func__);
 			error = EINVAL;
 			goto bailout;
 		}
 
 		/*
 		 * Make sure the user specified the total length and didn't
 		 * just leave it to us to decode the S/G list.
 		 */
 		if (lengths[0] == 0) {
 			xpt_print(periph->path, "%s: no dxfer_len specified, "
 				  "but CAM_DATA_SG flag is set!\n", __func__);
 			error = EINVAL;
 			goto bailout;
 		}
 
 		/*
 		 * We allocate buffers in io_zone_size increments for an
 		 * S/G list.  This will generally be MAXPHYS.
 		 */
 		if (lengths[0] <= softc->io_zone_size)
 			num_segs_needed = 1;
 		else {
 			num_segs_needed = lengths[0] / softc->io_zone_size;
 			if ((lengths[0] % softc->io_zone_size) != 0)
 				num_segs_needed++;
 		}
 
 		/* Figure out the size of the S/G list */
 		sg_length = num_segs * sizeof(bus_dma_segment_t);
 		io_req->num_user_segs = num_segs;
 		io_req->num_kern_segs = num_segs_needed;
 
 		/* Save the user's S/G list pointer for later restoration */
 		io_req->user_bufs[0] = *data_ptrs[0];
 
 		/*
 		 * If we have enough segments allocated by default to handle
 		 * the length of the user's S/G list,
 		 */
 		if (num_segs > PASS_MAX_SEGS) {
 			io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
 			    num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
 			io_req->flags |= PASS_IO_USER_SEG_MALLOC;
 		} else
 			io_req->user_segptr = io_req->user_segs;
 
 		if (!useracc(*data_ptrs[0], sg_length, VM_PROT_READ)) {
 			xpt_print(periph->path, "%s: unable to access user "
 				  "S/G list at %p\n", __func__, *data_ptrs[0]);
 			error = EFAULT;
 			goto bailout;
 		}
 
 		error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
 		if (error != 0) {
 			xpt_print(periph->path, "%s: copy of user S/G list "
 				  "from %p to %p failed with error %d\n",
 				  __func__, *data_ptrs[0], io_req->user_segptr,
 				  error);
 			goto bailout;
 		}
 
 		if (num_segs_needed > PASS_MAX_SEGS) {
 			io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) *
 			    num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO);
 			io_req->flags |= PASS_IO_KERN_SEG_MALLOC;
 		} else {
 			io_req->kern_segptr = io_req->kern_segs;
 		}
 
 		/*
 		 * Allocate the kernel S/G list.
 		 */
 		for (size_to_go = lengths[0], i = 0;
 		     size_to_go > 0 && i < num_segs_needed;
 		     i++, size_to_go -= alloc_size) {
 			uint8_t *kern_ptr;
 
 			alloc_size = min(size_to_go, softc->io_zone_size);
 			kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK);
 			io_req->kern_segptr[i].ds_addr =
 			    (bus_addr_t)(uintptr_t)kern_ptr;
 			io_req->kern_segptr[i].ds_len = alloc_size;
 		}
 		if (size_to_go > 0) {
 			printf("%s: size_to_go = %zu, software error!\n",
 			       __func__, size_to_go);
 			error = EINVAL;
 			goto bailout;
 		}
 
 		*data_ptrs[0] = (uint8_t *)io_req->kern_segptr;
 		*seg_cnt_ptr = io_req->num_kern_segs;
 
 		/*
 		 * We only need to copy data here if the user is writing.
 		 */
 		if (dirs[0] == CAM_DIR_OUT)
 			error = passcopysglist(periph, io_req, dirs[0]);
 		break;
 	}
 	case CAM_DATA_SG_PADDR: {
 		size_t sg_length;
 
 		/*
 		 * We shouldn't see this, but check just in case.
 		 */
 		if (numbufs != 1) {
 			printf("%s: cannot currently handle more than one "
 			       "S/G list per CCB\n", __func__);
 			error = EINVAL;
 			goto bailout;
 		}
 
 		/*
 		 * We have to have at least one segment.
 		 */
 		if (num_segs == 0) {
 			xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag "
 				  "set, but sglist_cnt=0!\n", __func__);
 			error = EINVAL;
 			goto bailout;
 		}
 
 		/*
 		 * Make sure the user specified the total length and didn't
 		 * just leave it to us to decode the S/G list.
 		 */
 		if (lengths[0] == 0) {
 			xpt_print(periph->path, "%s: no dxfer_len specified, "
 				  "but CAM_DATA_SG flag is set!\n", __func__);
 			error = EINVAL;
 			goto bailout;
 		}
 
 		/* Figure out the size of the S/G list */
 		sg_length = num_segs * sizeof(bus_dma_segment_t);
 		io_req->num_user_segs = num_segs;
 		io_req->num_kern_segs = io_req->num_user_segs;
 
 		/* Save the user's S/G list pointer for later restoration */
 		io_req->user_bufs[0] = *data_ptrs[0];
 
 		if (num_segs > PASS_MAX_SEGS) {
 			io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
 			    num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
 			io_req->flags |= PASS_IO_USER_SEG_MALLOC;
 		} else
 			io_req->user_segptr = io_req->user_segs;
 
 		io_req->kern_segptr = io_req->user_segptr;
 
 		error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
 		if (error != 0) {
 			xpt_print(periph->path, "%s: copy of user S/G list "
 				  "from %p to %p failed with error %d\n",
 				  __func__, *data_ptrs[0], io_req->user_segptr,
 				  error);
 			goto bailout;
 		}
 		break;
 	}
 	default:
 	case CAM_DATA_BIO:
 		/*
 		 * A user shouldn't be attaching a bio to the CCB.  It
 		 * isn't a user-accessible structure.
 		 */
 		error = EINVAL;
 		break;
 	}
 
 bailout:
 	if (error != 0)
 		passiocleanup(softc, io_req);
 
 	return (error);
 }
 
 static int
 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req)
 {
 	struct pass_softc *softc;
 	int error;
 	int i;
 
 	error = 0;
 	softc = (struct pass_softc *)periph->softc;
 
 	switch (io_req->data_flags) {
 	case CAM_DATA_VADDR:
 		/*
 		 * Copy back to the user buffer if this was a read.
 		 */
 		for (i = 0; i < io_req->num_bufs; i++) {
 			if (io_req->dirs[i] != CAM_DIR_IN)
 				continue;
 
 			error = copyout(io_req->kern_bufs[i],
 			    io_req->user_bufs[i], io_req->lengths[i]);
 			if (error != 0) {
 				xpt_print(periph->path, "Unable to copy %u "
 					  "bytes from %p to user address %p\n",
 					  io_req->lengths[i],
 					  io_req->kern_bufs[i],
 					  io_req->user_bufs[i]);
 				goto bailout;
 			}
 
 		}
 		break;
 	case CAM_DATA_PADDR:
 		/* Do nothing.  The pointer is a physical address already */
 		break;
 	case CAM_DATA_SG:
 		/*
 		 * Copy back to the user buffer if this was a read.
 		 * Restore the user's S/G list buffer pointer.
 		 */
 		if (io_req->dirs[0] == CAM_DIR_IN)
 			error = passcopysglist(periph, io_req, io_req->dirs[0]);
 		break;
 	case CAM_DATA_SG_PADDR:
 		/*
 		 * Restore the user's S/G list buffer pointer.  No need to
 		 * copy.
 		 */
 		break;
 	default:
 	case CAM_DATA_BIO:
 		error = EINVAL;
 		break;
 	}
 
 bailout:
 	/*
 	 * Reset the user's pointers to their original values and free
 	 * allocated memory.
 	 */
 	passiocleanup(softc, io_req);
 
 	return (error);
 }
 
 static int
 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
 {
 	int error;
 
 	if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl);
 	}
 	return (error);
 }
 
 static int
 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
 {
 	struct	cam_periph *periph;
 	struct	pass_softc *softc;
 	int	error;
 	uint32_t priority;
 
 	periph = (struct cam_periph *)dev->si_drv1;
 	cam_periph_lock(periph);
 	softc = (struct pass_softc *)periph->softc;
 
 	error = 0;
 
 	switch (cmd) {
 
 	case CAMIOCOMMAND:
 	{
 		union ccb *inccb;
 		union ccb *ccb;
 		int ccb_malloced;
 
 		inccb = (union ccb *)addr;
 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
 		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
 			inccb->csio.bio = NULL;
 #endif
 
 		if (inccb->ccb_h.flags & CAM_UNLOCKED) {
 			error = EINVAL;
 			break;
 		}
 
 		/*
 		 * Some CCB types, like scan bus and scan lun can only go
 		 * through the transport layer device.
 		 */
 		if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
 			xpt_print(periph->path, "CCB function code %#x is "
 			    "restricted to the XPT device\n",
 			    inccb->ccb_h.func_code);
 			error = ENODEV;
 			break;
 		}
 
 		/* Compatibility for RL/priority-unaware code. */
 		priority = inccb->ccb_h.pinfo.priority;
 		if (priority <= CAM_PRIORITY_OOB)
 		    priority += CAM_PRIORITY_OOB + 1;
 
 		/*
 		 * Non-immediate CCBs need a CCB from the per-device pool
 		 * of CCBs, which is scheduled by the transport layer.
 		 * Immediate CCBs and user-supplied CCBs should just be
 		 * malloced.
 		 */
 		if ((inccb->ccb_h.func_code & XPT_FC_QUEUED)
 		 && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) {
 			ccb = cam_periph_getccb(periph, priority);
 			ccb_malloced = 0;
 		} else {
 			ccb = xpt_alloc_ccb_nowait();
 
 			if (ccb != NULL)
 				xpt_setup_ccb(&ccb->ccb_h, periph->path,
 					      priority);
 			ccb_malloced = 1;
 		}
 
 		if (ccb == NULL) {
 			xpt_print(periph->path, "unable to allocate CCB\n");
 			error = ENOMEM;
 			break;
 		}
 
 		error = passsendccb(periph, ccb, inccb);
 
 		if (ccb_malloced)
 			xpt_free_ccb(ccb);
 		else
 			xpt_release_ccb(ccb);
 
 		break;
 	}
 	case CAMIOQUEUE:
 	{
 		struct pass_io_req *io_req;
 		union ccb **user_ccb, *ccb;
 		xpt_opcode fc;
 
+#ifdef COMPAT_FREEBSD32
+		if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
+			error = ENOTTY;
+			goto bailout;
+		}
+#endif
 		if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) {
 			error = passcreatezone(periph);
 			if (error != 0)
 				goto bailout;
 		}
 
 		/*
 		 * We're going to do a blocking allocation for this I/O
 		 * request, so we have to drop the lock.
 		 */
 		cam_periph_unlock(periph);
 
 		io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO);
 		ccb = &io_req->ccb;
 		user_ccb = (union ccb **)addr;
 
 		/*
 		 * Unlike the CAMIOCOMMAND ioctl above, we only have a
 		 * pointer to the user's CCB, so we have to copy the whole
 		 * thing in to a buffer we have allocated (above) instead
 		 * of allowing the ioctl code to malloc a buffer and copy
 		 * it in.
 		 *
 		 * This is an advantage for this asynchronous interface,
 		 * since we don't want the memory to get freed while the
 		 * CCB is outstanding.
 		 */
 #if 0
 		xpt_print(periph->path, "Copying user CCB %p to "
 			  "kernel address %p\n", *user_ccb, ccb);
 #endif
 		error = copyin(*user_ccb, ccb, sizeof(*ccb));
 		if (error != 0) {
 			xpt_print(periph->path, "Copy of user CCB %p to "
 				  "kernel address %p failed with error %d\n",
 				  *user_ccb, ccb, error);
 			goto camioqueue_error;
 		}
 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
 		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
 			ccb->csio.bio = NULL;
 #endif
 
 		if (ccb->ccb_h.flags & CAM_UNLOCKED) {
 			error = EINVAL;
 			goto camioqueue_error;
 		}
 
 		if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
 			if (ccb->csio.cdb_len > IOCDBLEN) {
 				error = EINVAL;
 				goto camioqueue_error;
 			}
 			error = copyin(ccb->csio.cdb_io.cdb_ptr,
 			    ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len);
 			if (error != 0)
 				goto camioqueue_error;
 			ccb->ccb_h.flags &= ~CAM_CDB_POINTER;
 		}
 
 		/*
 		 * Some CCB types, like scan bus and scan lun can only go
 		 * through the transport layer device.
 		 */
 		if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
 			xpt_print(periph->path, "CCB function code %#x is "
 			    "restricted to the XPT device\n",
 			    ccb->ccb_h.func_code);
 			error = ENODEV;
 			goto camioqueue_error;
 		}
 
 		/*
 		 * Save the user's CCB pointer as well as his linked list
 		 * pointers and peripheral private area so that we can
 		 * restore these later.
 		 */
 		io_req->user_ccb_ptr = *user_ccb;
 		io_req->user_periph_links = ccb->ccb_h.periph_links;
 		io_req->user_periph_priv = ccb->ccb_h.periph_priv;
 
 		/*
 		 * Now that we've saved the user's values, we can set our
 		 * own peripheral private entry.
 		 */
 		ccb->ccb_h.ccb_ioreq = io_req;
 
 		/* Compatibility for RL/priority-unaware code. */
 		priority = ccb->ccb_h.pinfo.priority;
 		if (priority <= CAM_PRIORITY_OOB)
 		    priority += CAM_PRIORITY_OOB + 1;
 
 		/*
 		 * Setup fields in the CCB like the path and the priority.
 		 * The path in particular cannot be done in userland, since
 		 * it is a pointer to a kernel data structure.
 		 */
 		xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority,
 				    ccb->ccb_h.flags);
 
 		/*
 		 * Setup our done routine.  There is no way for the user to
 		 * have a valid pointer here.
 		 */
 		ccb->ccb_h.cbfcnp = passdone;
 
 		fc = ccb->ccb_h.func_code;
 		/*
 		 * If this function code has memory that can be mapped in
 		 * or out, we need to call passmemsetup().
 		 */
 		if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO)
 		 || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH)
 		 || (fc == XPT_DEV_ADVINFO)
 		 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
 			error = passmemsetup(periph, io_req);
 			if (error != 0)
 				goto camioqueue_error;
 		} else
 			io_req->mapinfo.num_bufs_used = 0;
 
 		cam_periph_lock(periph);
 
 		/*
 		 * Everything goes on the incoming queue initially.
 		 */
 		TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links);
 
 		/*
 		 * If the CCB is queued, and is not a user CCB, then
 		 * we need to allocate a slot for it.  Call xpt_schedule()
 		 * so that our start routine will get called when a CCB is
 		 * available.
 		 */
 		if ((fc & XPT_FC_QUEUED)
 		 && ((fc & XPT_FC_USER_CCB) == 0)) {
 			xpt_schedule(periph, priority);
 			break;
 		} 
 
 		/*
 		 * At this point, the CCB in question is either an
 		 * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB
 		 * and therefore should be malloced, not allocated via a slot.
 		 * Remove the CCB from the incoming queue and add it to the
 		 * active queue.
 		 */
 		TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
 		TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
 
 		xpt_action(ccb);
 
 		/*
 		 * If this is not a queued CCB (i.e. it is an immediate CCB),
 		 * then it is already done.  We need to put it on the done
 		 * queue for the user to fetch.
 		 */
 		if ((fc & XPT_FC_QUEUED) == 0) {
 			TAILQ_REMOVE(&softc->active_queue, io_req, links);
 			TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
 		}
 		break;
 
 camioqueue_error:
 		uma_zfree(softc->pass_zone, io_req);
 		cam_periph_lock(periph);
 		break;
 	}
 	case CAMIOGET:
 	{
 		union ccb **user_ccb;
 		struct pass_io_req *io_req;
 		int old_error;
 
+#ifdef COMPAT_FREEBSD32
+		if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
+			error = ENOTTY;
+			goto bailout;
+		}
+#endif
 		user_ccb = (union ccb **)addr;
 		old_error = 0;
 
 		io_req = TAILQ_FIRST(&softc->done_queue);
 		if (io_req == NULL) {
 			error = ENOENT;
 			break;
 		}
 
 		/*
 		 * Remove the I/O from the done queue.
 		 */
 		TAILQ_REMOVE(&softc->done_queue, io_req, links);
 
 		/*
 		 * We have to drop the lock during the copyout because the
 		 * copyout can result in VM faults that require sleeping.
 		 */
 		cam_periph_unlock(periph);
 
 		/*
 		 * Do any needed copies (e.g. for reads) and revert the
 		 * pointers in the CCB back to the user's pointers.
 		 */
 		error = passmemdone(periph, io_req);
 
 		old_error = error;
 
 		io_req->ccb.ccb_h.periph_links = io_req->user_periph_links;
 		io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv;
 
 #if 0
 		xpt_print(periph->path, "Copying to user CCB %p from "
 			  "kernel address %p\n", *user_ccb, &io_req->ccb);
 #endif
 
 		error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb));
 		if (error != 0) {
 			xpt_print(periph->path, "Copy to user CCB %p from "
 				  "kernel address %p failed with error %d\n",
 				  *user_ccb, &io_req->ccb, error);
 		}
 
 		/*
 		 * Prefer the first error we got back, and make sure we
 		 * don't overwrite bad status with good.
 		 */
 		if (old_error != 0)
 			error = old_error;
 
 		cam_periph_lock(periph);
 
 		/*
 		 * At this point, if there was an error, we could potentially
 		 * re-queue the I/O and try again.  But why?  The error
 		 * would almost certainly happen again.  We might as well
 		 * not leak memory.
 		 */
 		uma_zfree(softc->pass_zone, io_req);
 		break;
 	}
 	default:
 		error = cam_periph_ioctl(periph, cmd, addr, passerror);
 		break;
 	}
 
 bailout:
 	cam_periph_unlock(periph);
 
 	return(error);
 }
 
 static int
 passpoll(struct cdev *dev, int poll_events, struct thread *td)
 {
 	struct cam_periph *periph;
 	struct pass_softc *softc;
 	int revents;
 
 	periph = (struct cam_periph *)dev->si_drv1;
 	softc = (struct pass_softc *)periph->softc;
 
 	revents = poll_events & (POLLOUT | POLLWRNORM);
 	if ((poll_events & (POLLIN | POLLRDNORM)) != 0) {
 		cam_periph_lock(periph);
 
 		if (!TAILQ_EMPTY(&softc->done_queue)) {
 			revents |= poll_events & (POLLIN | POLLRDNORM);
 		}
 		cam_periph_unlock(periph);
 		if (revents == 0)
 			selrecord(td, &softc->read_select);
 	}
 
 	return (revents);
 }
 
 static int
 passkqfilter(struct cdev *dev, struct knote *kn)
 {
 	struct cam_periph *periph;
 	struct pass_softc *softc;
 
 	periph = (struct cam_periph *)dev->si_drv1;
 	softc = (struct pass_softc *)periph->softc;
 
 	kn->kn_hook = (caddr_t)periph;
 	kn->kn_fop = &passread_filtops;
 	knlist_add(&softc->read_select.si_note, kn, 0);
 
 	return (0);
 }
 
 static void
 passreadfiltdetach(struct knote *kn)
 {
 	struct cam_periph *periph;
 	struct pass_softc *softc;
 
 	periph = (struct cam_periph *)kn->kn_hook;
 	softc = (struct pass_softc *)periph->softc;
 
 	knlist_remove(&softc->read_select.si_note, kn, 0);
 }
 
 static int
 passreadfilt(struct knote *kn, long hint)
 {
 	struct cam_periph *periph;
 	struct pass_softc *softc;
 	int retval;
 
 	periph = (struct cam_periph *)kn->kn_hook;
 	softc = (struct pass_softc *)periph->softc;
 
 	cam_periph_assert(periph, MA_OWNED);
 
 	if (TAILQ_EMPTY(&softc->done_queue))
 		retval = 0;
 	else
 		retval = 1;
 
 	return (retval);
 }
 
 /*
  * Generally, "ccb" should be the CCB supplied by the kernel.  "inccb"
  * should be the CCB that is copied in from the user.
  */
 static int
 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb)
 {
 	struct pass_softc *softc;
 	struct cam_periph_map_info mapinfo;
 	uint8_t *cmd;
 	xpt_opcode fc;
 	int error;
 
 	softc = (struct pass_softc *)periph->softc;
 
 	/*
 	 * There are some fields in the CCB header that need to be
 	 * preserved, the rest we get from the user.
 	 */
 	xpt_merge_ccb(ccb, inccb);
 
 	if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
 		cmd = __builtin_alloca(ccb->csio.cdb_len);
 		error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len);
 		if (error)
 			return (error);
 		ccb->csio.cdb_io.cdb_ptr = cmd;
 	}
 
 	/*
 	 */
 	ccb->ccb_h.cbfcnp = passdone;
 
 	/*
 	 * Let cam_periph_mapmem do a sanity check on the data pointer format.
 	 * Even if no data transfer is needed, it's a cheap check and it
 	 * simplifies the code.
 	 */
 	fc = ccb->ccb_h.func_code;
 	if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO)
             || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO) || (fc == XPT_MMC_IO)
             || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
 
 		bzero(&mapinfo, sizeof(mapinfo));
 
 		/*
 		 * cam_periph_mapmem calls into proc and vm functions that can
 		 * sleep as well as trigger I/O, so we can't hold the lock.
 		 * Dropping it here is reasonably safe.
 		 */
 		cam_periph_unlock(periph);
 		error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio);
 		cam_periph_lock(periph);
 
 		/*
 		 * cam_periph_mapmem returned an error, we can't continue.
 		 * Return the error to the user.
 		 */
 		if (error)
 			return(error);
 	} else
 		/* Ensure that the unmap call later on is a no-op. */
 		mapinfo.num_bufs_used = 0;
 
 	/*
 	 * If the user wants us to perform any error recovery, then honor
 	 * that request.  Otherwise, it's up to the user to perform any
 	 * error recovery.
 	 */
 	cam_periph_runccb(ccb, (ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ? 
 	    passerror : NULL, /* cam_flags */ CAM_RETRY_SELTO,
 	    /* sense_flags */ SF_RETRY_UA | SF_NO_PRINT,
 	    softc->device_stats);
 
 	cam_periph_unmapmem(ccb, &mapinfo);
 
 	ccb->ccb_h.cbfcnp = NULL;
 	ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv;
 	bcopy(ccb, inccb, sizeof(union ccb));
 
 	return(0);
 }
 
 static int
 passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags)
 {
 	struct cam_periph *periph;
 	struct pass_softc *softc;
 
 	periph = xpt_path_periph(ccb->ccb_h.path);
 	softc = (struct pass_softc *)periph->softc;
 	
 	return(cam_periph_error(ccb, cam_flags, sense_flags));
 }