Index: head/cddl/contrib/opensolaris/cmd/zpool/zpool_main.c =================================================================== --- head/cddl/contrib/opensolaris/cmd/zpool/zpool_main.c (revision 329797) +++ head/cddl/contrib/opensolaris/cmd/zpool/zpool_main.c (revision 329798) @@ -1,5940 +1,5949 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2018 by Delphix. All rights reserved. * Copyright (c) 2012 by Frederik Wessels. All rights reserved. * Copyright (c) 2012 Martin Matuska . All rights reserved. * Copyright (c) 2013 by Prasad Joshi (sTec). All rights reserved. * Copyright 2016 Igor Kozhukhov . * Copyright 2016 Nexenta Systems, Inc. * Copyright (c) 2017 Datto Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zpool_util.h" #include "zfs_comutil.h" #include "zfeature_common.h" #include "statcommon.h" static int zpool_do_create(int, char **); static int zpool_do_destroy(int, char **); static int zpool_do_add(int, char **); static int zpool_do_remove(int, char **); static int zpool_do_labelclear(int, char **); static int zpool_do_list(int, char **); static int zpool_do_iostat(int, char **); static int zpool_do_status(int, char **); static int zpool_do_online(int, char **); static int zpool_do_offline(int, char **); static int zpool_do_clear(int, char **); static int zpool_do_reopen(int, char **); static int zpool_do_reguid(int, char **); static int zpool_do_attach(int, char **); static int zpool_do_detach(int, char **); static int zpool_do_replace(int, char **); static int zpool_do_split(int, char **); static int zpool_do_scrub(int, char **); static int zpool_do_import(int, char **); static int zpool_do_export(int, char **); static int zpool_do_upgrade(int, char **); static int zpool_do_history(int, char **); static int zpool_do_get(int, char **); static int zpool_do_set(int, char **); /* * These libumem hooks provide a reasonable set of defaults for the allocator's * debugging facilities. */ #ifdef DEBUG const char * _umem_debug_init(void) { return ("default,verbose"); /* $UMEM_DEBUG setting */ } const char * _umem_logging_init(void) { return ("fail,contents"); /* $UMEM_LOGGING setting */ } #endif typedef enum { HELP_ADD, HELP_ATTACH, HELP_CLEAR, HELP_CREATE, HELP_DESTROY, HELP_DETACH, HELP_EXPORT, HELP_HISTORY, HELP_IMPORT, HELP_IOSTAT, HELP_LABELCLEAR, HELP_LIST, HELP_OFFLINE, HELP_ONLINE, HELP_REPLACE, HELP_REMOVE, HELP_SCRUB, HELP_STATUS, HELP_UPGRADE, HELP_GET, HELP_SET, HELP_SPLIT, HELP_REGUID, HELP_REOPEN } zpool_help_t; typedef struct zpool_command { const char *name; int (*func)(int, char **); zpool_help_t usage; } zpool_command_t; /* * Master command table. Each ZFS command has a name, associated function, and * usage message. The usage messages need to be internationalized, so we have * to have a function to return the usage message based on a command index. * * These commands are organized according to how they are displayed in the usage * message. An empty command (one with a NULL name) indicates an empty line in * the generic usage message. */ static zpool_command_t command_table[] = { { "create", zpool_do_create, HELP_CREATE }, { "destroy", zpool_do_destroy, HELP_DESTROY }, { NULL }, { "add", zpool_do_add, HELP_ADD }, { "remove", zpool_do_remove, HELP_REMOVE }, { NULL }, { "labelclear", zpool_do_labelclear, HELP_LABELCLEAR }, { NULL }, { "list", zpool_do_list, HELP_LIST }, { "iostat", zpool_do_iostat, HELP_IOSTAT }, { "status", zpool_do_status, HELP_STATUS }, { NULL }, { "online", zpool_do_online, HELP_ONLINE }, { "offline", zpool_do_offline, HELP_OFFLINE }, { "clear", zpool_do_clear, HELP_CLEAR }, { "reopen", zpool_do_reopen, HELP_REOPEN }, { NULL }, { "attach", zpool_do_attach, HELP_ATTACH }, { "detach", zpool_do_detach, HELP_DETACH }, { "replace", zpool_do_replace, HELP_REPLACE }, { "split", zpool_do_split, HELP_SPLIT }, { NULL }, { "scrub", zpool_do_scrub, HELP_SCRUB }, { NULL }, { "import", zpool_do_import, HELP_IMPORT }, { "export", zpool_do_export, HELP_EXPORT }, { "upgrade", zpool_do_upgrade, HELP_UPGRADE }, { "reguid", zpool_do_reguid, HELP_REGUID }, { NULL }, { "history", zpool_do_history, HELP_HISTORY }, { "get", zpool_do_get, HELP_GET }, { "set", zpool_do_set, HELP_SET }, }; #define NCOMMAND (sizeof (command_table) / sizeof (command_table[0])) static zpool_command_t *current_command; static char history_str[HIS_MAX_RECORD_LEN]; static boolean_t log_history = B_TRUE; static uint_t timestamp_fmt = NODATE; static const char * get_usage(zpool_help_t idx) { switch (idx) { case HELP_ADD: return (gettext("\tadd [-fn] ...\n")); case HELP_ATTACH: return (gettext("\tattach [-f] " "\n")); case HELP_CLEAR: return (gettext("\tclear [-nF] [device]\n")); case HELP_CREATE: return (gettext("\tcreate [-fnd] [-B] " "[-o property=value] ... \n" "\t [-O file-system-property=value] ... \n" "\t [-m mountpoint] [-R root] ...\n")); case HELP_DESTROY: return (gettext("\tdestroy [-f] \n")); case HELP_DETACH: return (gettext("\tdetach \n")); case HELP_EXPORT: return (gettext("\texport [-f] ...\n")); case HELP_HISTORY: return (gettext("\thistory [-il] [] ...\n")); case HELP_IMPORT: return (gettext("\timport [-d dir] [-D]\n" "\timport [-d dir | -c cachefile] [-F [-n]] \n" "\timport [-o mntopts] [-o property=value] ... \n" "\t [-d dir | -c cachefile] [-D] [-f] [-m] [-N] " "[-R root] [-F [-n]] -a\n" "\timport [-o mntopts] [-o property=value] ... \n" "\t [-d dir | -c cachefile] [-D] [-f] [-m] [-N] " "[-R root] [-F [-n]]\n" "\t [newpool]\n")); case HELP_IOSTAT: return (gettext("\tiostat [-v] [-T d|u] [pool] ... [interval " "[count]]\n")); case HELP_LABELCLEAR: return (gettext("\tlabelclear [-f] \n")); case HELP_LIST: return (gettext("\tlist [-Hpv] [-o property[,...]] " "[-T d|u] [pool] ... [interval [count]]\n")); case HELP_OFFLINE: return (gettext("\toffline [-t] ...\n")); case HELP_ONLINE: return (gettext("\tonline [-e] ...\n")); case HELP_REPLACE: return (gettext("\treplace [-f] " "[new-device]\n")); case HELP_REMOVE: return (gettext("\tremove [-nps] ...\n")); case HELP_REOPEN: return (gettext("\treopen \n")); case HELP_SCRUB: return (gettext("\tscrub [-s | -p] ...\n")); case HELP_STATUS: return (gettext("\tstatus [-vx] [-T d|u] [pool] ... [interval " "[count]]\n")); case HELP_UPGRADE: return (gettext("\tupgrade [-v]\n" "\tupgrade [-V version] <-a | pool ...>\n")); case HELP_GET: return (gettext("\tget [-Hp] [-o \"all\" | field[,...]] " "<\"all\" | property[,...]> ...\n")); case HELP_SET: return (gettext("\tset \n")); case HELP_SPLIT: return (gettext("\tsplit [-n] [-R altroot] [-o mntopts]\n" "\t [-o property=value] " "[ ...]\n")); case HELP_REGUID: return (gettext("\treguid \n")); } abort(); /* NOTREACHED */ } /* * Callback routine that will print out a pool property value. */ static int print_prop_cb(int prop, void *cb) { FILE *fp = cb; (void) fprintf(fp, "\t%-15s ", zpool_prop_to_name(prop)); if (zpool_prop_readonly(prop)) (void) fprintf(fp, " NO "); else (void) fprintf(fp, " YES "); if (zpool_prop_values(prop) == NULL) (void) fprintf(fp, "-\n"); else (void) fprintf(fp, "%s\n", zpool_prop_values(prop)); return (ZPROP_CONT); } /* * Display usage message. If we're inside a command, display only the usage for * that command. Otherwise, iterate over the entire command table and display * a complete usage message. */ void usage(boolean_t requested) { FILE *fp = requested ? stdout : stderr; if (current_command == NULL) { int i; (void) fprintf(fp, gettext("usage: zpool command args ...\n")); (void) fprintf(fp, gettext("where 'command' is one of the following:\n\n")); for (i = 0; i < NCOMMAND; i++) { if (command_table[i].name == NULL) (void) fprintf(fp, "\n"); else (void) fprintf(fp, "%s", get_usage(command_table[i].usage)); } } else { (void) fprintf(fp, gettext("usage:\n")); (void) fprintf(fp, "%s", get_usage(current_command->usage)); } if (current_command != NULL && ((strcmp(current_command->name, "set") == 0) || (strcmp(current_command->name, "get") == 0) || (strcmp(current_command->name, "list") == 0))) { (void) fprintf(fp, gettext("\nthe following properties are supported:\n")); (void) fprintf(fp, "\n\t%-15s %s %s\n\n", "PROPERTY", "EDIT", "VALUES"); /* Iterate over all properties */ (void) zprop_iter(print_prop_cb, fp, B_FALSE, B_TRUE, ZFS_TYPE_POOL); (void) fprintf(fp, "\t%-15s ", "feature@..."); (void) fprintf(fp, "YES disabled | enabled | active\n"); (void) fprintf(fp, gettext("\nThe feature@ properties must be " "appended with a feature name.\nSee zpool-features(7).\n")); } /* * See comments at end of main(). */ if (getenv("ZFS_ABORT") != NULL) { (void) printf("dumping core by request\n"); abort(); } exit(requested ? 0 : 2); } void print_vdev_tree(zpool_handle_t *zhp, const char *name, nvlist_t *nv, int indent, boolean_t print_logs) { nvlist_t **child; uint_t c, children; char *vname; if (name != NULL) (void) printf("\t%*s%s\n", indent, "", name); if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) return; for (c = 0; c < children; c++) { uint64_t is_log = B_FALSE; (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG, &is_log); if ((is_log && !print_logs) || (!is_log && print_logs)) continue; vname = zpool_vdev_name(g_zfs, zhp, child[c], B_FALSE); print_vdev_tree(zhp, vname, child[c], indent + 2, B_FALSE); free(vname); } } static boolean_t prop_list_contains_feature(nvlist_t *proplist) { nvpair_t *nvp; for (nvp = nvlist_next_nvpair(proplist, NULL); NULL != nvp; nvp = nvlist_next_nvpair(proplist, nvp)) { if (zpool_prop_feature(nvpair_name(nvp))) return (B_TRUE); } return (B_FALSE); } /* * Add a property pair (name, string-value) into a property nvlist. */ static int add_prop_list(const char *propname, char *propval, nvlist_t **props, boolean_t poolprop) { zpool_prop_t prop = ZPROP_INVAL; zfs_prop_t fprop; nvlist_t *proplist; const char *normnm; char *strval; if (*props == NULL && nvlist_alloc(props, NV_UNIQUE_NAME, 0) != 0) { (void) fprintf(stderr, gettext("internal error: out of memory\n")); return (1); } proplist = *props; if (poolprop) { const char *vname = zpool_prop_to_name(ZPOOL_PROP_VERSION); if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL && !zpool_prop_feature(propname)) { (void) fprintf(stderr, gettext("property '%s' is " "not a valid pool property\n"), propname); return (2); } /* * feature@ properties and version should not be specified * at the same time. */ if ((prop == ZPOOL_PROP_INVAL && zpool_prop_feature(propname) && nvlist_exists(proplist, vname)) || (prop == ZPOOL_PROP_VERSION && prop_list_contains_feature(proplist))) { (void) fprintf(stderr, gettext("'feature@' and " "'version' properties cannot be specified " "together\n")); return (2); } if (zpool_prop_feature(propname)) normnm = propname; else normnm = zpool_prop_to_name(prop); } else { if ((fprop = zfs_name_to_prop(propname)) != ZPROP_INVAL) { normnm = zfs_prop_to_name(fprop); } else { normnm = propname; } } if (nvlist_lookup_string(proplist, normnm, &strval) == 0 && prop != ZPOOL_PROP_CACHEFILE) { (void) fprintf(stderr, gettext("property '%s' " "specified multiple times\n"), propname); return (2); } if (nvlist_add_string(proplist, normnm, propval) != 0) { (void) fprintf(stderr, gettext("internal " "error: out of memory\n")); return (1); } return (0); } /* * zpool add [-fn] ... * * -f Force addition of devices, even if they appear in use * -n Do not add the devices, but display the resulting layout if * they were to be added. * * Adds the given vdevs to 'pool'. As with create, the bulk of this work is * handled by get_vdev_spec(), which constructs the nvlist needed to pass to * libzfs. */ int zpool_do_add(int argc, char **argv) { boolean_t force = B_FALSE; boolean_t dryrun = B_FALSE; int c; nvlist_t *nvroot; char *poolname; zpool_boot_label_t boot_type; uint64_t boot_size; int ret; zpool_handle_t *zhp; nvlist_t *config; /* check options */ while ((c = getopt(argc, argv, "fn")) != -1) { switch (c) { case 'f': force = B_TRUE; break; case 'n': dryrun = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* get pool name and check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing pool name argument\n")); usage(B_FALSE); } if (argc < 2) { (void) fprintf(stderr, gettext("missing vdev specification\n")); usage(B_FALSE); } poolname = argv[0]; argc--; argv++; if ((zhp = zpool_open(g_zfs, poolname)) == NULL) return (1); if ((config = zpool_get_config(zhp, NULL)) == NULL) { (void) fprintf(stderr, gettext("pool '%s' is unavailable\n"), poolname); zpool_close(zhp); return (1); } if (zpool_is_bootable(zhp)) boot_type = ZPOOL_COPY_BOOT_LABEL; else boot_type = ZPOOL_NO_BOOT_LABEL; /* pass off to get_vdev_spec for processing */ boot_size = zpool_get_prop_int(zhp, ZPOOL_PROP_BOOTSIZE, NULL); nvroot = make_root_vdev(zhp, force, !force, B_FALSE, dryrun, boot_type, boot_size, argc, argv); if (nvroot == NULL) { zpool_close(zhp); return (1); } if (dryrun) { nvlist_t *poolnvroot; verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &poolnvroot) == 0); (void) printf(gettext("would update '%s' to the following " "configuration:\n"), zpool_get_name(zhp)); /* print original main pool and new tree */ print_vdev_tree(zhp, poolname, poolnvroot, 0, B_FALSE); print_vdev_tree(zhp, NULL, nvroot, 0, B_FALSE); /* Do the same for the logs */ if (num_logs(poolnvroot) > 0) { print_vdev_tree(zhp, "logs", poolnvroot, 0, B_TRUE); print_vdev_tree(zhp, NULL, nvroot, 0, B_TRUE); } else if (num_logs(nvroot) > 0) { print_vdev_tree(zhp, "logs", nvroot, 0, B_TRUE); } ret = 0; } else { ret = (zpool_add(zhp, nvroot) != 0); } nvlist_free(nvroot); zpool_close(zhp); return (ret); } /* * zpool remove ... * * Removes the given vdev from the pool. */ int zpool_do_remove(int argc, char **argv) { char *poolname; int i, ret = 0; zpool_handle_t *zhp; boolean_t stop = B_FALSE; boolean_t noop = B_FALSE; boolean_t parsable = B_FALSE; char c; /* check options */ while ((c = getopt(argc, argv, "nps")) != -1) { switch (c) { case 'n': noop = B_TRUE; break; case 'p': parsable = B_TRUE; break; case 's': stop = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* get pool name and check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing pool name argument\n")); usage(B_FALSE); } poolname = argv[0]; if ((zhp = zpool_open(g_zfs, poolname)) == NULL) return (1); if (stop && noop) { (void) fprintf(stderr, gettext("stop request ignored\n")); return (0); } if (stop) { if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if (zpool_vdev_remove_cancel(zhp) != 0) ret = 1; } else { if (argc < 2) { (void) fprintf(stderr, gettext("missing device\n")); usage(B_FALSE); } for (i = 1; i < argc; i++) { if (noop) { uint64_t size; if (zpool_vdev_indirect_size(zhp, argv[i], &size) != 0) { ret = 1; break; } if (parsable) { (void) printf("%s %llu\n", argv[i], size); } else { char valstr[32]; zfs_nicenum(size, valstr, sizeof (valstr)); (void) printf("Memory that will be " "used after removing %s: %s\n", argv[i], valstr); } } else { if (zpool_vdev_remove(zhp, argv[i]) != 0) ret = 1; } } } return (ret); } /* * zpool labelclear [-f] * * -f Force clearing the label for the vdevs which are members of * the exported or foreign pools. * * Verifies that the vdev is not active and zeros out the label information * on the device. */ int zpool_do_labelclear(int argc, char **argv) { char vdev[MAXPATHLEN]; char *name = NULL; struct stat st; int c, fd, ret = 0; nvlist_t *config; pool_state_t state; boolean_t inuse = B_FALSE; boolean_t force = B_FALSE; /* check options */ while ((c = getopt(argc, argv, "f")) != -1) { switch (c) { case 'f': force = B_TRUE; break; default: (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* get vdev name */ if (argc < 1) { (void) fprintf(stderr, gettext("missing vdev name\n")); usage(B_FALSE); } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } /* * Check if we were given absolute path and use it as is. * Otherwise if the provided vdev name doesn't point to a file, * try prepending dsk path and appending s0. */ (void) strlcpy(vdev, argv[0], sizeof (vdev)); if (vdev[0] != '/' && stat(vdev, &st) != 0) { char *s; (void) snprintf(vdev, sizeof (vdev), "%s/%s", #ifdef illumos ZFS_DISK_ROOT, argv[0]); if ((s = strrchr(argv[0], 's')) == NULL || !isdigit(*(s + 1))) (void) strlcat(vdev, "s0", sizeof (vdev)); #else "/dev", argv[0]); #endif if (stat(vdev, &st) != 0) { (void) fprintf(stderr, gettext( "failed to find device %s, try specifying absolute " "path instead\n"), argv[0]); return (1); } } if ((fd = open(vdev, O_RDWR)) < 0) { (void) fprintf(stderr, gettext("failed to open %s: %s\n"), vdev, strerror(errno)); return (1); } if (zpool_read_label(fd, &config) != 0) { (void) fprintf(stderr, gettext("failed to read label from %s\n"), vdev); return (1); } nvlist_free(config); ret = zpool_in_use(g_zfs, fd, &state, &name, &inuse); if (ret != 0) { (void) fprintf(stderr, gettext("failed to check state for %s\n"), vdev); return (1); } if (!inuse) goto wipe_label; switch (state) { default: case POOL_STATE_ACTIVE: case POOL_STATE_SPARE: case POOL_STATE_L2CACHE: (void) fprintf(stderr, gettext( "%s is a member (%s) of pool \"%s\"\n"), vdev, zpool_pool_state_to_name(state), name); ret = 1; goto errout; case POOL_STATE_EXPORTED: if (force) break; (void) fprintf(stderr, gettext( "use '-f' to override the following error:\n" "%s is a member of exported pool \"%s\"\n"), vdev, name); ret = 1; goto errout; case POOL_STATE_POTENTIALLY_ACTIVE: if (force) break; (void) fprintf(stderr, gettext( "use '-f' to override the following error:\n" "%s is a member of potentially active pool \"%s\"\n"), vdev, name); ret = 1; goto errout; case POOL_STATE_DESTROYED: /* inuse should never be set for a destroyed pool */ assert(0); break; } wipe_label: ret = zpool_clear_label(fd); if (ret != 0) { (void) fprintf(stderr, gettext("failed to clear label for %s\n"), vdev); } errout: free(name); (void) close(fd); return (ret); } /* * zpool create [-fnd] [-B] [-o property=value] ... * [-O file-system-property=value] ... * [-R root] [-m mountpoint] ... * * -B Create boot partition. * -f Force creation, even if devices appear in use * -n Do not create the pool, but display the resulting layout if it * were to be created. * -R Create a pool under an alternate root * -m Set default mountpoint for the root dataset. By default it's * '/' * -o Set property=value. * -d Don't automatically enable all supported pool features * (individual features can be enabled with -o). * -O Set fsproperty=value in the pool's root file system * * Creates the named pool according to the given vdev specification. The * bulk of the vdev processing is done in get_vdev_spec() in zpool_vdev.c. Once * we get the nvlist back from get_vdev_spec(), we either print out the contents * (if '-n' was specified), or pass it to libzfs to do the creation. */ #define SYSTEM256 (256 * 1024 * 1024) int zpool_do_create(int argc, char **argv) { boolean_t force = B_FALSE; boolean_t dryrun = B_FALSE; boolean_t enable_all_pool_feat = B_TRUE; zpool_boot_label_t boot_type = ZPOOL_NO_BOOT_LABEL; uint64_t boot_size = 0; int c; nvlist_t *nvroot = NULL; char *poolname; int ret = 1; char *altroot = NULL; char *mountpoint = NULL; nvlist_t *fsprops = NULL; nvlist_t *props = NULL; char *propval; /* check options */ while ((c = getopt(argc, argv, ":fndBR:m:o:O:")) != -1) { switch (c) { case 'f': force = B_TRUE; break; case 'n': dryrun = B_TRUE; break; case 'd': enable_all_pool_feat = B_FALSE; break; case 'B': #ifdef illumos /* * We should create the system partition. * Also make sure the size is set. */ boot_type = ZPOOL_CREATE_BOOT_LABEL; if (boot_size == 0) boot_size = SYSTEM256; break; #else (void) fprintf(stderr, gettext("option '%c' is not supported\n"), optopt); goto badusage; #endif case 'R': altroot = optarg; if (add_prop_list(zpool_prop_to_name( ZPOOL_PROP_ALTROOT), optarg, &props, B_TRUE)) goto errout; if (nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), &propval) == 0) break; if (add_prop_list(zpool_prop_to_name( ZPOOL_PROP_CACHEFILE), "none", &props, B_TRUE)) goto errout; break; case 'm': /* Equivalent to -O mountpoint=optarg */ mountpoint = optarg; break; case 'o': if ((propval = strchr(optarg, '=')) == NULL) { (void) fprintf(stderr, gettext("missing " "'=' for -o option\n")); goto errout; } *propval = '\0'; propval++; if (add_prop_list(optarg, propval, &props, B_TRUE)) goto errout; /* * Get bootsize value for make_root_vdev(). */ if (zpool_name_to_prop(optarg) == ZPOOL_PROP_BOOTSIZE) { if (zfs_nicestrtonum(g_zfs, propval, &boot_size) < 0 || boot_size == 0) { (void) fprintf(stderr, gettext("bad boot partition size " "'%s': %s\n"), propval, libzfs_error_description(g_zfs)); goto errout; } } /* * If the user is creating a pool that doesn't support * feature flags, don't enable any features. */ if (zpool_name_to_prop(optarg) == ZPOOL_PROP_VERSION) { char *end; u_longlong_t ver; ver = strtoull(propval, &end, 10); if (*end == '\0' && ver < SPA_VERSION_FEATURES) { enable_all_pool_feat = B_FALSE; } } if (zpool_name_to_prop(optarg) == ZPOOL_PROP_ALTROOT) altroot = propval; break; case 'O': if ((propval = strchr(optarg, '=')) == NULL) { (void) fprintf(stderr, gettext("missing " "'=' for -O option\n")); goto errout; } *propval = '\0'; propval++; /* * Mountpoints are checked and then added later. * Uniquely among properties, they can be specified * more than once, to avoid conflict with -m. */ if (0 == strcmp(optarg, zfs_prop_to_name(ZFS_PROP_MOUNTPOINT))) { mountpoint = propval; } else if (add_prop_list(optarg, propval, &fsprops, B_FALSE)) { goto errout; } break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); goto badusage; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); goto badusage; } } argc -= optind; argv += optind; /* get pool name and check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing pool name argument\n")); goto badusage; } if (argc < 2) { (void) fprintf(stderr, gettext("missing vdev specification\n")); goto badusage; } poolname = argv[0]; /* * As a special case, check for use of '/' in the name, and direct the * user to use 'zfs create' instead. */ if (strchr(poolname, '/') != NULL) { (void) fprintf(stderr, gettext("cannot create '%s': invalid " "character '/' in pool name\n"), poolname); (void) fprintf(stderr, gettext("use 'zfs create' to " "create a dataset\n")); goto errout; } /* * Make sure the bootsize is set when ZPOOL_CREATE_BOOT_LABEL is used, * and not set otherwise. */ if (boot_type == ZPOOL_CREATE_BOOT_LABEL) { const char *propname; char *strptr, *buf = NULL; int rv; propname = zpool_prop_to_name(ZPOOL_PROP_BOOTSIZE); if (nvlist_lookup_string(props, propname, &strptr) != 0) { (void) asprintf(&buf, "%" PRIu64, boot_size); if (buf == NULL) { (void) fprintf(stderr, gettext("internal error: out of memory\n")); goto errout; } rv = add_prop_list(propname, buf, &props, B_TRUE); free(buf); if (rv != 0) goto errout; } } else { const char *propname; char *strptr; propname = zpool_prop_to_name(ZPOOL_PROP_BOOTSIZE); if (nvlist_lookup_string(props, propname, &strptr) == 0) { (void) fprintf(stderr, gettext("error: setting boot " "partition size requires option '-B'\n")); goto errout; } } /* pass off to get_vdev_spec for bulk processing */ nvroot = make_root_vdev(NULL, force, !force, B_FALSE, dryrun, boot_type, boot_size, argc - 1, argv + 1); if (nvroot == NULL) goto errout; /* make_root_vdev() allows 0 toplevel children if there are spares */ if (!zfs_allocatable_devs(nvroot)) { (void) fprintf(stderr, gettext("invalid vdev " "specification: at least one toplevel vdev must be " "specified\n")); goto errout; } if (altroot != NULL && altroot[0] != '/') { (void) fprintf(stderr, gettext("invalid alternate root '%s': " "must be an absolute path\n"), altroot); goto errout; } /* * Check the validity of the mountpoint and direct the user to use the * '-m' mountpoint option if it looks like its in use. * Ignore the checks if the '-f' option is given. */ if (!force && (mountpoint == NULL || (strcmp(mountpoint, ZFS_MOUNTPOINT_LEGACY) != 0 && strcmp(mountpoint, ZFS_MOUNTPOINT_NONE) != 0))) { char buf[MAXPATHLEN]; DIR *dirp; if (mountpoint && mountpoint[0] != '/') { (void) fprintf(stderr, gettext("invalid mountpoint " "'%s': must be an absolute path, 'legacy', or " "'none'\n"), mountpoint); goto errout; } if (mountpoint == NULL) { if (altroot != NULL) (void) snprintf(buf, sizeof (buf), "%s/%s", altroot, poolname); else (void) snprintf(buf, sizeof (buf), "/%s", poolname); } else { if (altroot != NULL) (void) snprintf(buf, sizeof (buf), "%s%s", altroot, mountpoint); else (void) snprintf(buf, sizeof (buf), "%s", mountpoint); } if ((dirp = opendir(buf)) == NULL && errno != ENOENT) { (void) fprintf(stderr, gettext("mountpoint '%s' : " "%s\n"), buf, strerror(errno)); (void) fprintf(stderr, gettext("use '-m' " "option to provide a different default\n")); goto errout; } else if (dirp) { int count = 0; while (count < 3 && readdir(dirp) != NULL) count++; (void) closedir(dirp); if (count > 2) { (void) fprintf(stderr, gettext("mountpoint " "'%s' exists and is not empty\n"), buf); (void) fprintf(stderr, gettext("use '-m' " "option to provide a " "different default\n")); goto errout; } } } /* * Now that the mountpoint's validity has been checked, ensure that * the property is set appropriately prior to creating the pool. */ if (mountpoint != NULL) { ret = add_prop_list(zfs_prop_to_name(ZFS_PROP_MOUNTPOINT), mountpoint, &fsprops, B_FALSE); if (ret != 0) goto errout; } ret = 1; if (dryrun) { /* * For a dry run invocation, print out a basic message and run * through all the vdevs in the list and print out in an * appropriate hierarchy. */ (void) printf(gettext("would create '%s' with the " "following layout:\n\n"), poolname); print_vdev_tree(NULL, poolname, nvroot, 0, B_FALSE); if (num_logs(nvroot) > 0) print_vdev_tree(NULL, "logs", nvroot, 0, B_TRUE); ret = 0; } else { /* * Hand off to libzfs. */ if (enable_all_pool_feat) { spa_feature_t i; for (i = 0; i < SPA_FEATURES; i++) { char propname[MAXPATHLEN]; zfeature_info_t *feat = &spa_feature_table[i]; (void) snprintf(propname, sizeof (propname), "feature@%s", feat->fi_uname); /* * Skip feature if user specified it manually * on the command line. */ if (nvlist_exists(props, propname)) continue; ret = add_prop_list(propname, ZFS_FEATURE_ENABLED, &props, B_TRUE); if (ret != 0) goto errout; } } ret = 1; if (zpool_create(g_zfs, poolname, nvroot, props, fsprops) == 0) { zfs_handle_t *pool = zfs_open(g_zfs, poolname, ZFS_TYPE_FILESYSTEM); if (pool != NULL) { if (zfs_mount(pool, NULL, 0) == 0) ret = zfs_shareall(pool); zfs_close(pool); } } else if (libzfs_errno(g_zfs) == EZFS_INVALIDNAME) { (void) fprintf(stderr, gettext("pool name may have " "been omitted\n")); } } errout: nvlist_free(nvroot); nvlist_free(fsprops); nvlist_free(props); return (ret); badusage: nvlist_free(fsprops); nvlist_free(props); usage(B_FALSE); return (2); } /* * zpool destroy * * -f Forcefully unmount any datasets * * Destroy the given pool. Automatically unmounts any datasets in the pool. */ int zpool_do_destroy(int argc, char **argv) { boolean_t force = B_FALSE; int c; char *pool; zpool_handle_t *zhp; int ret; /* check options */ while ((c = getopt(argc, argv, "f")) != -1) { switch (c) { case 'f': force = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing pool argument\n")); usage(B_FALSE); } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } pool = argv[0]; if ((zhp = zpool_open_canfail(g_zfs, pool)) == NULL) { /* * As a special case, check for use of '/' in the name, and * direct the user to use 'zfs destroy' instead. */ if (strchr(pool, '/') != NULL) (void) fprintf(stderr, gettext("use 'zfs destroy' to " "destroy a dataset\n")); return (1); } if (zpool_disable_datasets(zhp, force) != 0) { (void) fprintf(stderr, gettext("could not destroy '%s': " "could not unmount datasets\n"), zpool_get_name(zhp)); return (1); } /* The history must be logged as part of the export */ log_history = B_FALSE; ret = (zpool_destroy(zhp, history_str) != 0); zpool_close(zhp); return (ret); } /* * zpool export [-f] ... * * -f Forcefully unmount datasets * * Export the given pools. By default, the command will attempt to cleanly * unmount any active datasets within the pool. If the '-f' flag is specified, * then the datasets will be forcefully unmounted. */ int zpool_do_export(int argc, char **argv) { boolean_t force = B_FALSE; boolean_t hardforce = B_FALSE; int c; zpool_handle_t *zhp; int ret; int i; /* check options */ while ((c = getopt(argc, argv, "fF")) != -1) { switch (c) { case 'f': force = B_TRUE; break; case 'F': hardforce = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing pool argument\n")); usage(B_FALSE); } ret = 0; for (i = 0; i < argc; i++) { if ((zhp = zpool_open_canfail(g_zfs, argv[i])) == NULL) { ret = 1; continue; } if (zpool_disable_datasets(zhp, force) != 0) { ret = 1; zpool_close(zhp); continue; } /* The history must be logged as part of the export */ log_history = B_FALSE; if (hardforce) { if (zpool_export_force(zhp, history_str) != 0) ret = 1; } else if (zpool_export(zhp, force, history_str) != 0) { ret = 1; } zpool_close(zhp); } return (ret); } /* * Given a vdev configuration, determine the maximum width needed for the device * name column. */ static int max_width(zpool_handle_t *zhp, nvlist_t *nv, int depth, int max) { char *name = zpool_vdev_name(g_zfs, zhp, nv, B_TRUE); nvlist_t **child; uint_t c, children; int ret; if (strlen(name) + depth > max) max = strlen(name) + depth; free(name); if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, &child, &children) == 0) { for (c = 0; c < children; c++) if ((ret = max_width(zhp, child[c], depth + 2, max)) > max) max = ret; } if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, &child, &children) == 0) { for (c = 0; c < children; c++) if ((ret = max_width(zhp, child[c], depth + 2, max)) > max) max = ret; } if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0) { for (c = 0; c < children; c++) if ((ret = max_width(zhp, child[c], depth + 2, max)) > max) max = ret; } return (max); } typedef struct spare_cbdata { uint64_t cb_guid; zpool_handle_t *cb_zhp; } spare_cbdata_t; static boolean_t find_vdev(nvlist_t *nv, uint64_t search) { uint64_t guid; nvlist_t **child; uint_t c, children; if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0 && search == guid) return (B_TRUE); if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0) { for (c = 0; c < children; c++) if (find_vdev(child[c], search)) return (B_TRUE); } return (B_FALSE); } static int find_spare(zpool_handle_t *zhp, void *data) { spare_cbdata_t *cbp = data; nvlist_t *config, *nvroot; config = zpool_get_config(zhp, NULL); verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); if (find_vdev(nvroot, cbp->cb_guid)) { cbp->cb_zhp = zhp; return (1); } zpool_close(zhp); return (0); } /* * Print out configuration state as requested by status_callback. */ void print_status_config(zpool_handle_t *zhp, const char *name, nvlist_t *nv, int namewidth, int depth, boolean_t isspare) { nvlist_t **child; uint_t c, vsc, children; pool_scan_stat_t *ps = NULL; vdev_stat_t *vs; char rbuf[6], wbuf[6], cbuf[6]; char *vname; uint64_t notpresent; uint64_t ashift; spare_cbdata_t cb; const char *state; char *type; if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) children = 0; verify(nvlist_lookup_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) == 0); verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); if (strcmp(type, VDEV_TYPE_INDIRECT) == 0) return; state = zpool_state_to_name(vs->vs_state, vs->vs_aux); if (isspare) { /* * For hot spares, we use the terms 'INUSE' and 'AVAILABLE' for * online drives. */ if (vs->vs_aux == VDEV_AUX_SPARED) state = "INUSE"; else if (vs->vs_state == VDEV_STATE_HEALTHY) state = "AVAIL"; } (void) printf("\t%*s%-*s %-8s", depth, "", namewidth - depth, name, state); if (!isspare) { zfs_nicenum(vs->vs_read_errors, rbuf, sizeof (rbuf)); zfs_nicenum(vs->vs_write_errors, wbuf, sizeof (wbuf)); zfs_nicenum(vs->vs_checksum_errors, cbuf, sizeof (cbuf)); (void) printf(" %5s %5s %5s", rbuf, wbuf, cbuf); } if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, ¬present) == 0 || vs->vs_state <= VDEV_STATE_CANT_OPEN) { char *path; if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0) (void) printf(" was %s", path); } else if (vs->vs_aux != 0) { (void) printf(" "); switch (vs->vs_aux) { case VDEV_AUX_OPEN_FAILED: (void) printf(gettext("cannot open")); break; case VDEV_AUX_BAD_GUID_SUM: (void) printf(gettext("missing device")); break; case VDEV_AUX_NO_REPLICAS: (void) printf(gettext("insufficient replicas")); break; case VDEV_AUX_VERSION_NEWER: (void) printf(gettext("newer version")); break; case VDEV_AUX_UNSUP_FEAT: (void) printf(gettext("unsupported feature(s)")); break; case VDEV_AUX_ASHIFT_TOO_BIG: (void) printf(gettext("unsupported minimum blocksize")); break; case VDEV_AUX_SPARED: verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &cb.cb_guid) == 0); if (zpool_iter(g_zfs, find_spare, &cb) == 1) { if (strcmp(zpool_get_name(cb.cb_zhp), zpool_get_name(zhp)) == 0) (void) printf(gettext("currently in " "use")); else (void) printf(gettext("in use by " "pool '%s'"), zpool_get_name(cb.cb_zhp)); zpool_close(cb.cb_zhp); } else { (void) printf(gettext("currently in use")); } break; case VDEV_AUX_ERR_EXCEEDED: (void) printf(gettext("too many errors")); break; case VDEV_AUX_IO_FAILURE: (void) printf(gettext("experienced I/O failures")); break; case VDEV_AUX_BAD_LOG: (void) printf(gettext("bad intent log")); break; case VDEV_AUX_EXTERNAL: (void) printf(gettext("external device fault")); break; case VDEV_AUX_SPLIT_POOL: (void) printf(gettext("split into new pool")); break; + case VDEV_AUX_CHILDREN_OFFLINE: + (void) printf(gettext("all children offline")); + break; + default: (void) printf(gettext("corrupted data")); break; } } else if (children == 0 && !isspare && VDEV_STAT_VALID(vs_physical_ashift, vsc) && vs->vs_configured_ashift < vs->vs_physical_ashift) { (void) printf( gettext(" block size: %dB configured, %dB native"), 1 << vs->vs_configured_ashift, 1 << vs->vs_physical_ashift); } (void) nvlist_lookup_uint64_array(nv, ZPOOL_CONFIG_SCAN_STATS, (uint64_t **)&ps, &c); if (ps && ps->pss_state == DSS_SCANNING && vs->vs_scan_processed != 0 && children == 0) { (void) printf(gettext(" (%s)"), (ps->pss_func == POOL_SCAN_RESILVER) ? "resilvering" : "repairing"); } (void) printf("\n"); for (c = 0; c < children; c++) { uint64_t islog = B_FALSE, ishole = B_FALSE; /* Don't print logs or holes here */ (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG, &islog); (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, &ishole); if (islog || ishole) continue; vname = zpool_vdev_name(g_zfs, zhp, child[c], B_TRUE); print_status_config(zhp, vname, child[c], namewidth, depth + 2, isspare); free(vname); } } /* * Print the configuration of an exported pool. Iterate over all vdevs in the * pool, printing out the name and status for each one. */ void print_import_config(const char *name, nvlist_t *nv, int namewidth, int depth) { nvlist_t **child; uint_t c, children; vdev_stat_t *vs; char *type, *vname; verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); if (strcmp(type, VDEV_TYPE_MISSING) == 0 || strcmp(type, VDEV_TYPE_HOLE) == 0) return; verify(nvlist_lookup_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &c) == 0); (void) printf("\t%*s%-*s", depth, "", namewidth - depth, name); (void) printf(" %s", zpool_state_to_name(vs->vs_state, vs->vs_aux)); if (vs->vs_aux != 0) { (void) printf(" "); switch (vs->vs_aux) { case VDEV_AUX_OPEN_FAILED: (void) printf(gettext("cannot open")); break; case VDEV_AUX_BAD_GUID_SUM: (void) printf(gettext("missing device")); break; case VDEV_AUX_NO_REPLICAS: (void) printf(gettext("insufficient replicas")); break; case VDEV_AUX_VERSION_NEWER: (void) printf(gettext("newer version")); break; case VDEV_AUX_UNSUP_FEAT: (void) printf(gettext("unsupported feature(s)")); break; case VDEV_AUX_ERR_EXCEEDED: (void) printf(gettext("too many errors")); break; + case VDEV_AUX_CHILDREN_OFFLINE: + (void) printf(gettext("all children offline")); + break; + default: (void) printf(gettext("corrupted data")); break; } } (void) printf("\n"); if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) return; for (c = 0; c < children; c++) { uint64_t is_log = B_FALSE; (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG, &is_log); if (is_log) continue; vname = zpool_vdev_name(g_zfs, NULL, child[c], B_TRUE); print_import_config(vname, child[c], namewidth, depth + 2); free(vname); } if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, &child, &children) == 0) { (void) printf(gettext("\tcache\n")); for (c = 0; c < children; c++) { vname = zpool_vdev_name(g_zfs, NULL, child[c], B_FALSE); (void) printf("\t %s\n", vname); free(vname); } } if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, &child, &children) == 0) { (void) printf(gettext("\tspares\n")); for (c = 0; c < children; c++) { vname = zpool_vdev_name(g_zfs, NULL, child[c], B_FALSE); (void) printf("\t %s\n", vname); free(vname); } } } /* * Print log vdevs. * Logs are recorded as top level vdevs in the main pool child array * but with "is_log" set to 1. We use either print_status_config() or * print_import_config() to print the top level logs then any log * children (eg mirrored slogs) are printed recursively - which * works because only the top level vdev is marked "is_log" */ static void print_logs(zpool_handle_t *zhp, nvlist_t *nv, int namewidth, boolean_t verbose) { uint_t c, children; nvlist_t **child; if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) return; (void) printf(gettext("\tlogs\n")); for (c = 0; c < children; c++) { uint64_t is_log = B_FALSE; char *name; (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG, &is_log); if (!is_log) continue; name = zpool_vdev_name(g_zfs, zhp, child[c], B_TRUE); if (verbose) print_status_config(zhp, name, child[c], namewidth, 2, B_FALSE); else print_import_config(name, child[c], namewidth, 2); free(name); } } /* * Display the status for the given pool. */ static void show_import(nvlist_t *config) { uint64_t pool_state; vdev_stat_t *vs; char *name; uint64_t guid; char *msgid; nvlist_t *nvroot; int reason; const char *health; uint_t vsc; int namewidth; char *comment; verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &name) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &pool_state) == 0); verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) == 0); health = zpool_state_to_name(vs->vs_state, vs->vs_aux); reason = zpool_import_status(config, &msgid); (void) printf(gettext(" pool: %s\n"), name); (void) printf(gettext(" id: %llu\n"), (u_longlong_t)guid); (void) printf(gettext(" state: %s"), health); if (pool_state == POOL_STATE_DESTROYED) (void) printf(gettext(" (DESTROYED)")); (void) printf("\n"); switch (reason) { case ZPOOL_STATUS_MISSING_DEV_R: case ZPOOL_STATUS_MISSING_DEV_NR: case ZPOOL_STATUS_BAD_GUID_SUM: (void) printf(gettext(" status: One or more devices are " "missing from the system.\n")); break; case ZPOOL_STATUS_CORRUPT_LABEL_R: case ZPOOL_STATUS_CORRUPT_LABEL_NR: (void) printf(gettext(" status: One or more devices contains " "corrupted data.\n")); break; case ZPOOL_STATUS_CORRUPT_DATA: (void) printf( gettext(" status: The pool data is corrupted.\n")); break; case ZPOOL_STATUS_OFFLINE_DEV: (void) printf(gettext(" status: One or more devices " "are offlined.\n")); break; case ZPOOL_STATUS_CORRUPT_POOL: (void) printf(gettext(" status: The pool metadata is " "corrupted.\n")); break; case ZPOOL_STATUS_VERSION_OLDER: (void) printf(gettext(" status: The pool is formatted using a " "legacy on-disk version.\n")); break; case ZPOOL_STATUS_VERSION_NEWER: (void) printf(gettext(" status: The pool is formatted using an " "incompatible version.\n")); break; case ZPOOL_STATUS_FEAT_DISABLED: (void) printf(gettext(" status: Some supported features are " "not enabled on the pool.\n")); break; case ZPOOL_STATUS_UNSUP_FEAT_READ: (void) printf(gettext("status: The pool uses the following " "feature(s) not supported on this sytem:\n")); zpool_print_unsup_feat(config); break; case ZPOOL_STATUS_UNSUP_FEAT_WRITE: (void) printf(gettext("status: The pool can only be accessed " "in read-only mode on this system. It\n\tcannot be " "accessed in read-write mode because it uses the " "following\n\tfeature(s) not supported on this system:\n")); zpool_print_unsup_feat(config); break; case ZPOOL_STATUS_HOSTID_MISMATCH: (void) printf(gettext(" status: The pool was last accessed by " "another system.\n")); break; case ZPOOL_STATUS_FAULTED_DEV_R: case ZPOOL_STATUS_FAULTED_DEV_NR: (void) printf(gettext(" status: One or more devices are " "faulted.\n")); break; case ZPOOL_STATUS_BAD_LOG: (void) printf(gettext(" status: An intent log record cannot be " "read.\n")); break; case ZPOOL_STATUS_RESILVERING: (void) printf(gettext(" status: One or more devices were being " "resilvered.\n")); break; case ZPOOL_STATUS_NON_NATIVE_ASHIFT: (void) printf(gettext("status: One or more devices were " "configured to use a non-native block size.\n" "\tExpect reduced performance.\n")); break; default: /* * No other status can be seen when importing pools. */ assert(reason == ZPOOL_STATUS_OK); } /* * Print out an action according to the overall state of the pool. */ if (vs->vs_state == VDEV_STATE_HEALTHY) { if (reason == ZPOOL_STATUS_VERSION_OLDER || reason == ZPOOL_STATUS_FEAT_DISABLED) { (void) printf(gettext(" action: The pool can be " "imported using its name or numeric identifier, " "though\n\tsome features will not be available " "without an explicit 'zpool upgrade'.\n")); } else if (reason == ZPOOL_STATUS_HOSTID_MISMATCH) { (void) printf(gettext(" action: The pool can be " "imported using its name or numeric " "identifier and\n\tthe '-f' flag.\n")); } else { (void) printf(gettext(" action: The pool can be " "imported using its name or numeric " "identifier.\n")); } } else if (vs->vs_state == VDEV_STATE_DEGRADED) { (void) printf(gettext(" action: The pool can be imported " "despite missing or damaged devices. The\n\tfault " "tolerance of the pool may be compromised if imported.\n")); } else { switch (reason) { case ZPOOL_STATUS_VERSION_NEWER: (void) printf(gettext(" action: The pool cannot be " "imported. Access the pool on a system running " "newer\n\tsoftware, or recreate the pool from " "backup.\n")); break; case ZPOOL_STATUS_UNSUP_FEAT_READ: (void) printf(gettext("action: The pool cannot be " "imported. Access the pool on a system that " "supports\n\tthe required feature(s), or recreate " "the pool from backup.\n")); break; case ZPOOL_STATUS_UNSUP_FEAT_WRITE: (void) printf(gettext("action: The pool cannot be " "imported in read-write mode. Import the pool " "with\n" "\t\"-o readonly=on\", access the pool on a system " "that supports the\n\trequired feature(s), or " "recreate the pool from backup.\n")); break; case ZPOOL_STATUS_MISSING_DEV_R: case ZPOOL_STATUS_MISSING_DEV_NR: case ZPOOL_STATUS_BAD_GUID_SUM: (void) printf(gettext(" action: The pool cannot be " "imported. Attach the missing\n\tdevices and try " "again.\n")); break; default: (void) printf(gettext(" action: The pool cannot be " "imported due to damaged devices or data.\n")); } } /* Print the comment attached to the pool. */ if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) (void) printf(gettext("comment: %s\n"), comment); /* * If the state is "closed" or "can't open", and the aux state * is "corrupt data": */ if (((vs->vs_state == VDEV_STATE_CLOSED) || (vs->vs_state == VDEV_STATE_CANT_OPEN)) && (vs->vs_aux == VDEV_AUX_CORRUPT_DATA)) { if (pool_state == POOL_STATE_DESTROYED) (void) printf(gettext("\tThe pool was destroyed, " "but can be imported using the '-Df' flags.\n")); else if (pool_state != POOL_STATE_EXPORTED) (void) printf(gettext("\tThe pool may be active on " "another system, but can be imported using\n\t" "the '-f' flag.\n")); } if (msgid != NULL) (void) printf(gettext(" see: http://illumos.org/msg/%s\n"), msgid); (void) printf(gettext(" config:\n\n")); namewidth = max_width(NULL, nvroot, 0, 0); if (namewidth < 10) namewidth = 10; print_import_config(name, nvroot, namewidth, 0); if (num_logs(nvroot) > 0) print_logs(NULL, nvroot, namewidth, B_FALSE); if (reason == ZPOOL_STATUS_BAD_GUID_SUM) { (void) printf(gettext("\n\tAdditional devices are known to " "be part of this pool, though their\n\texact " "configuration cannot be determined.\n")); } } /* * Perform the import for the given configuration. This passes the heavy * lifting off to zpool_import_props(), and then mounts the datasets contained * within the pool. */ static int do_import(nvlist_t *config, const char *newname, const char *mntopts, nvlist_t *props, int flags) { zpool_handle_t *zhp; char *name; uint64_t state; uint64_t version; verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &name) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) == 0); if (!SPA_VERSION_IS_SUPPORTED(version)) { (void) fprintf(stderr, gettext("cannot import '%s': pool " "is formatted using an unsupported ZFS version\n"), name); return (1); } else if (state != POOL_STATE_EXPORTED && !(flags & ZFS_IMPORT_ANY_HOST)) { uint64_t hostid; if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_HOSTID, &hostid) == 0) { if ((unsigned long)hostid != gethostid()) { char *hostname; uint64_t timestamp; time_t t; verify(nvlist_lookup_string(config, ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP, ×tamp) == 0); t = timestamp; (void) fprintf(stderr, gettext("cannot import " "'%s': pool may be in use from other " "system, it was last accessed by %s " "(hostid: 0x%lx) on %s"), name, hostname, (unsigned long)hostid, asctime(localtime(&t))); (void) fprintf(stderr, gettext("use '-f' to " "import anyway\n")); return (1); } } else { (void) fprintf(stderr, gettext("cannot import '%s': " "pool may be in use from other system\n"), name); (void) fprintf(stderr, gettext("use '-f' to import " "anyway\n")); return (1); } } if (zpool_import_props(g_zfs, config, newname, props, flags) != 0) return (1); if (newname != NULL) name = (char *)newname; if ((zhp = zpool_open_canfail(g_zfs, name)) == NULL) return (1); if (zpool_get_state(zhp) != POOL_STATE_UNAVAIL && !(flags & ZFS_IMPORT_ONLY) && zpool_enable_datasets(zhp, mntopts, 0) != 0) { zpool_close(zhp); return (1); } zpool_close(zhp); return (0); } /* * zpool import [-d dir] [-D] * import [-o mntopts] [-o prop=value] ... [-R root] [-D] * [-d dir | -c cachefile] [-f] -a * import [-o mntopts] [-o prop=value] ... [-R root] [-D] * [-d dir | -c cachefile] [-f] [-n] [-F] [newpool] * * -c Read pool information from a cachefile instead of searching * devices. * * -d Scan in a specific directory, other than /dev/dsk. More than * one directory can be specified using multiple '-d' options. * * -D Scan for previously destroyed pools or import all or only * specified destroyed pools. * * -R Temporarily import the pool, with all mountpoints relative to * the given root. The pool will remain exported when the machine * is rebooted. * * -V Import even in the presence of faulted vdevs. This is an * intentionally undocumented option for testing purposes, and * treats the pool configuration as complete, leaving any bad * vdevs in the FAULTED state. In other words, it does verbatim * import. * * -f Force import, even if it appears that the pool is active. * * -F Attempt rewind if necessary. * * -n See if rewind would work, but don't actually rewind. * * -N Import the pool but don't mount datasets. * * -T Specify a starting txg to use for import. This option is * intentionally undocumented option for testing purposes. * * -a Import all pools found. * * -o Set property=value and/or temporary mount options (without '='). * * The import command scans for pools to import, and import pools based on pool * name and GUID. The pool can also be renamed as part of the import process. */ int zpool_do_import(int argc, char **argv) { char **searchdirs = NULL; int nsearch = 0; int c; int err = 0; nvlist_t *pools = NULL; boolean_t do_all = B_FALSE; boolean_t do_destroyed = B_FALSE; char *mntopts = NULL; nvpair_t *elem; nvlist_t *config; uint64_t searchguid = 0; char *searchname = NULL; char *propval; nvlist_t *found_config; nvlist_t *policy = NULL; nvlist_t *props = NULL; boolean_t first; int flags = ZFS_IMPORT_NORMAL; uint32_t rewind_policy = ZPOOL_NO_REWIND; boolean_t dryrun = B_FALSE; boolean_t do_rewind = B_FALSE; boolean_t xtreme_rewind = B_FALSE; uint64_t pool_state, txg = -1ULL; char *cachefile = NULL; importargs_t idata = { 0 }; char *endptr; /* check options */ while ((c = getopt(argc, argv, ":aCc:d:DEfFmnNo:R:T:VX")) != -1) { switch (c) { case 'a': do_all = B_TRUE; break; case 'c': cachefile = optarg; break; case 'd': if (searchdirs == NULL) { searchdirs = safe_malloc(sizeof (char *)); } else { char **tmp = safe_malloc((nsearch + 1) * sizeof (char *)); bcopy(searchdirs, tmp, nsearch * sizeof (char *)); free(searchdirs); searchdirs = tmp; } searchdirs[nsearch++] = optarg; break; case 'D': do_destroyed = B_TRUE; break; case 'f': flags |= ZFS_IMPORT_ANY_HOST; break; case 'F': do_rewind = B_TRUE; break; case 'm': flags |= ZFS_IMPORT_MISSING_LOG; break; case 'n': dryrun = B_TRUE; break; case 'N': flags |= ZFS_IMPORT_ONLY; break; case 'o': if ((propval = strchr(optarg, '=')) != NULL) { *propval = '\0'; propval++; if (add_prop_list(optarg, propval, &props, B_TRUE)) goto error; } else { mntopts = optarg; } break; case 'R': if (add_prop_list(zpool_prop_to_name( ZPOOL_PROP_ALTROOT), optarg, &props, B_TRUE)) goto error; if (nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), &propval) == 0) break; if (add_prop_list(zpool_prop_to_name( ZPOOL_PROP_CACHEFILE), "none", &props, B_TRUE)) goto error; break; case 'T': errno = 0; txg = strtoull(optarg, &endptr, 0); if (errno != 0 || *endptr != '\0') { (void) fprintf(stderr, gettext("invalid txg value\n")); usage(B_FALSE); } rewind_policy = ZPOOL_DO_REWIND | ZPOOL_EXTREME_REWIND; break; case 'V': flags |= ZFS_IMPORT_VERBATIM; break; case 'X': xtreme_rewind = B_TRUE; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; if (cachefile && nsearch != 0) { (void) fprintf(stderr, gettext("-c is incompatible with -d\n")); usage(B_FALSE); } if ((dryrun || xtreme_rewind) && !do_rewind) { (void) fprintf(stderr, gettext("-n or -X only meaningful with -F\n")); usage(B_FALSE); } if (dryrun) rewind_policy = ZPOOL_TRY_REWIND; else if (do_rewind) rewind_policy = ZPOOL_DO_REWIND; if (xtreme_rewind) rewind_policy |= ZPOOL_EXTREME_REWIND; /* In the future, we can capture further policy and include it here */ if (nvlist_alloc(&policy, NV_UNIQUE_NAME, 0) != 0 || nvlist_add_uint64(policy, ZPOOL_REWIND_REQUEST_TXG, txg) != 0 || nvlist_add_uint32(policy, ZPOOL_REWIND_REQUEST, rewind_policy) != 0) goto error; if (searchdirs == NULL) { searchdirs = safe_malloc(sizeof (char *)); searchdirs[0] = "/dev"; nsearch = 1; } /* check argument count */ if (do_all) { if (argc != 0) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } } else { if (argc > 2) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } /* * Check for the SYS_CONFIG privilege. We do this explicitly * here because otherwise any attempt to discover pools will * silently fail. */ if (argc == 0 && !priv_ineffect(PRIV_SYS_CONFIG)) { (void) fprintf(stderr, gettext("cannot " "discover pools: permission denied\n")); free(searchdirs); nvlist_free(policy); return (1); } } /* * Depending on the arguments given, we do one of the following: * * Iterate through all pools and display information about * each one. * * -a Iterate through all pools and try to import each one. * * Find the pool that corresponds to the given GUID/pool * name and import that one. * * -D Above options applies only to destroyed pools. */ if (argc != 0) { char *endptr; errno = 0; searchguid = strtoull(argv[0], &endptr, 10); if (errno != 0 || *endptr != '\0') { searchname = argv[0]; searchguid = 0; } found_config = NULL; /* * User specified a name or guid. Ensure it's unique. */ idata.unique = B_TRUE; } idata.path = searchdirs; idata.paths = nsearch; idata.poolname = searchname; idata.guid = searchguid; idata.cachefile = cachefile; + idata.policy = policy; pools = zpool_search_import(g_zfs, &idata); if (pools != NULL && idata.exists && (argc == 1 || strcmp(argv[0], argv[1]) == 0)) { (void) fprintf(stderr, gettext("cannot import '%s': " "a pool with that name already exists\n"), argv[0]); (void) fprintf(stderr, gettext("use the form '%s " " ' to give it a new name\n"), "zpool import"); err = 1; } else if (pools == NULL && idata.exists) { (void) fprintf(stderr, gettext("cannot import '%s': " "a pool with that name is already created/imported,\n"), argv[0]); (void) fprintf(stderr, gettext("and no additional pools " "with that name were found\n")); err = 1; } else if (pools == NULL) { if (argc != 0) { (void) fprintf(stderr, gettext("cannot import '%s': " "no such pool available\n"), argv[0]); } err = 1; } if (err == 1) { free(searchdirs); nvlist_free(policy); return (1); } /* * At this point we have a list of import candidate configs. Even if * we were searching by pool name or guid, we still need to * post-process the list to deal with pool state and possible * duplicate names. */ err = 0; elem = NULL; first = B_TRUE; while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) { verify(nvpair_value_nvlist(elem, &config) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &pool_state) == 0); if (!do_destroyed && pool_state == POOL_STATE_DESTROYED) continue; if (do_destroyed && pool_state != POOL_STATE_DESTROYED) continue; verify(nvlist_add_nvlist(config, ZPOOL_REWIND_POLICY, policy) == 0); if (argc == 0) { if (first) first = B_FALSE; else if (!do_all) (void) printf("\n"); if (do_all) { err |= do_import(config, NULL, mntopts, props, flags); } else { show_import(config); } } else if (searchname != NULL) { char *name; /* * We are searching for a pool based on name. */ verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &name) == 0); if (strcmp(name, searchname) == 0) { if (found_config != NULL) { (void) fprintf(stderr, gettext( "cannot import '%s': more than " "one matching pool\n"), searchname); (void) fprintf(stderr, gettext( "import by numeric ID instead\n")); err = B_TRUE; } found_config = config; } } else { uint64_t guid; /* * Search for a pool by guid. */ verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) == 0); if (guid == searchguid) found_config = config; } } /* * If we were searching for a specific pool, verify that we found a * pool, and then do the import. */ if (argc != 0 && err == 0) { if (found_config == NULL) { (void) fprintf(stderr, gettext("cannot import '%s': " "no such pool available\n"), argv[0]); err = B_TRUE; } else { err |= do_import(found_config, argc == 1 ? NULL : argv[1], mntopts, props, flags); } } /* * If we were just looking for pools, report an error if none were * found. */ if (argc == 0 && first) (void) fprintf(stderr, gettext("no pools available to import\n")); error: nvlist_free(props); nvlist_free(pools); nvlist_free(policy); free(searchdirs); return (err ? 1 : 0); } typedef struct iostat_cbdata { boolean_t cb_verbose; int cb_namewidth; int cb_iteration; zpool_list_t *cb_list; } iostat_cbdata_t; static void print_iostat_separator(iostat_cbdata_t *cb) { int i = 0; for (i = 0; i < cb->cb_namewidth; i++) (void) printf("-"); (void) printf(" ----- ----- ----- ----- ----- -----\n"); } static void print_iostat_header(iostat_cbdata_t *cb) { (void) printf("%*s capacity operations bandwidth\n", cb->cb_namewidth, ""); (void) printf("%-*s alloc free read write read write\n", cb->cb_namewidth, "pool"); print_iostat_separator(cb); } /* * Display a single statistic. */ static void print_one_stat(uint64_t value) { char buf[64]; zfs_nicenum(value, buf, sizeof (buf)); (void) printf(" %5s", buf); } /* * Print out all the statistics for the given vdev. This can either be the * toplevel configuration, or called recursively. If 'name' is NULL, then this * is a verbose output, and we don't want to display the toplevel pool stats. */ void print_vdev_stats(zpool_handle_t *zhp, const char *name, nvlist_t *oldnv, nvlist_t *newnv, iostat_cbdata_t *cb, int depth) { nvlist_t **oldchild, **newchild; uint_t c, children; vdev_stat_t *oldvs, *newvs; vdev_stat_t zerovs = { 0 }; uint64_t tdelta; double scale; char *vname; if (strcmp(name, VDEV_TYPE_INDIRECT) == 0) return; if (oldnv != NULL) { verify(nvlist_lookup_uint64_array(oldnv, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&oldvs, &c) == 0); } else { oldvs = &zerovs; } verify(nvlist_lookup_uint64_array(newnv, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&newvs, &c) == 0); if (strlen(name) + depth > cb->cb_namewidth) (void) printf("%*s%s", depth, "", name); else (void) printf("%*s%s%*s", depth, "", name, (int)(cb->cb_namewidth - strlen(name) - depth), ""); tdelta = newvs->vs_timestamp - oldvs->vs_timestamp; if (tdelta == 0) scale = 1.0; else scale = (double)NANOSEC / tdelta; /* only toplevel vdevs have capacity stats */ if (newvs->vs_space == 0) { (void) printf(" - -"); } else { print_one_stat(newvs->vs_alloc); print_one_stat(newvs->vs_space - newvs->vs_alloc); } print_one_stat((uint64_t)(scale * (newvs->vs_ops[ZIO_TYPE_READ] - oldvs->vs_ops[ZIO_TYPE_READ]))); print_one_stat((uint64_t)(scale * (newvs->vs_ops[ZIO_TYPE_WRITE] - oldvs->vs_ops[ZIO_TYPE_WRITE]))); print_one_stat((uint64_t)(scale * (newvs->vs_bytes[ZIO_TYPE_READ] - oldvs->vs_bytes[ZIO_TYPE_READ]))); print_one_stat((uint64_t)(scale * (newvs->vs_bytes[ZIO_TYPE_WRITE] - oldvs->vs_bytes[ZIO_TYPE_WRITE]))); (void) printf("\n"); if (!cb->cb_verbose) return; if (nvlist_lookup_nvlist_array(newnv, ZPOOL_CONFIG_CHILDREN, &newchild, &children) != 0) return; if (oldnv && nvlist_lookup_nvlist_array(oldnv, ZPOOL_CONFIG_CHILDREN, &oldchild, &c) != 0) return; for (c = 0; c < children; c++) { uint64_t ishole = B_FALSE, islog = B_FALSE; (void) nvlist_lookup_uint64(newchild[c], ZPOOL_CONFIG_IS_HOLE, &ishole); (void) nvlist_lookup_uint64(newchild[c], ZPOOL_CONFIG_IS_LOG, &islog); if (ishole || islog) continue; vname = zpool_vdev_name(g_zfs, zhp, newchild[c], B_FALSE); print_vdev_stats(zhp, vname, oldnv ? oldchild[c] : NULL, newchild[c], cb, depth + 2); free(vname); } /* * Log device section */ if (num_logs(newnv) > 0) { (void) printf("%-*s - - - - - " "-\n", cb->cb_namewidth, "logs"); for (c = 0; c < children; c++) { uint64_t islog = B_FALSE; (void) nvlist_lookup_uint64(newchild[c], ZPOOL_CONFIG_IS_LOG, &islog); if (islog) { vname = zpool_vdev_name(g_zfs, zhp, newchild[c], B_FALSE); print_vdev_stats(zhp, vname, oldnv ? oldchild[c] : NULL, newchild[c], cb, depth + 2); free(vname); } } } /* * Include level 2 ARC devices in iostat output */ if (nvlist_lookup_nvlist_array(newnv, ZPOOL_CONFIG_L2CACHE, &newchild, &children) != 0) return; if (oldnv && nvlist_lookup_nvlist_array(oldnv, ZPOOL_CONFIG_L2CACHE, &oldchild, &c) != 0) return; if (children > 0) { (void) printf("%-*s - - - - - " "-\n", cb->cb_namewidth, "cache"); for (c = 0; c < children; c++) { vname = zpool_vdev_name(g_zfs, zhp, newchild[c], B_FALSE); print_vdev_stats(zhp, vname, oldnv ? oldchild[c] : NULL, newchild[c], cb, depth + 2); free(vname); } } } static int refresh_iostat(zpool_handle_t *zhp, void *data) { iostat_cbdata_t *cb = data; boolean_t missing; /* * If the pool has disappeared, remove it from the list and continue. */ if (zpool_refresh_stats(zhp, &missing) != 0) return (-1); if (missing) pool_list_remove(cb->cb_list, zhp); return (0); } /* * Callback to print out the iostats for the given pool. */ int print_iostat(zpool_handle_t *zhp, void *data) { iostat_cbdata_t *cb = data; nvlist_t *oldconfig, *newconfig; nvlist_t *oldnvroot, *newnvroot; newconfig = zpool_get_config(zhp, &oldconfig); if (cb->cb_iteration == 1) oldconfig = NULL; verify(nvlist_lookup_nvlist(newconfig, ZPOOL_CONFIG_VDEV_TREE, &newnvroot) == 0); if (oldconfig == NULL) oldnvroot = NULL; else verify(nvlist_lookup_nvlist(oldconfig, ZPOOL_CONFIG_VDEV_TREE, &oldnvroot) == 0); /* * Print out the statistics for the pool. */ print_vdev_stats(zhp, zpool_get_name(zhp), oldnvroot, newnvroot, cb, 0); if (cb->cb_verbose) print_iostat_separator(cb); return (0); } int get_namewidth(zpool_handle_t *zhp, void *data) { iostat_cbdata_t *cb = data; nvlist_t *config, *nvroot; if ((config = zpool_get_config(zhp, NULL)) != NULL) { verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); if (!cb->cb_verbose) cb->cb_namewidth = strlen(zpool_get_name(zhp)); else cb->cb_namewidth = max_width(zhp, nvroot, 0, cb->cb_namewidth); } /* * The width must fall into the range [10,38]. The upper limit is the * maximum we can have and still fit in 80 columns. */ if (cb->cb_namewidth < 10) cb->cb_namewidth = 10; if (cb->cb_namewidth > 38) cb->cb_namewidth = 38; return (0); } /* * Parse the input string, get the 'interval' and 'count' value if there is one. */ static void get_interval_count(int *argcp, char **argv, unsigned long *iv, unsigned long *cnt) { unsigned long interval = 0, count = 0; int argc = *argcp, errno; /* * Determine if the last argument is an integer or a pool name */ if (argc > 0 && isdigit(argv[argc - 1][0])) { char *end; errno = 0; interval = strtoul(argv[argc - 1], &end, 10); if (*end == '\0' && errno == 0) { if (interval == 0) { (void) fprintf(stderr, gettext("interval " "cannot be zero\n")); usage(B_FALSE); } /* * Ignore the last parameter */ argc--; } else { /* * If this is not a valid number, just plow on. The * user will get a more informative error message later * on. */ interval = 0; } } /* * If the last argument is also an integer, then we have both a count * and an interval. */ if (argc > 0 && isdigit(argv[argc - 1][0])) { char *end; errno = 0; count = interval; interval = strtoul(argv[argc - 1], &end, 10); if (*end == '\0' && errno == 0) { if (interval == 0) { (void) fprintf(stderr, gettext("interval " "cannot be zero\n")); usage(B_FALSE); } /* * Ignore the last parameter */ argc--; } else { interval = 0; } } *iv = interval; *cnt = count; *argcp = argc; } static void get_timestamp_arg(char c) { if (c == 'u') timestamp_fmt = UDATE; else if (c == 'd') timestamp_fmt = DDATE; else usage(B_FALSE); } /* * zpool iostat [-v] [-T d|u] [pool] ... [interval [count]] * * -v Display statistics for individual vdevs * -T Display a timestamp in date(1) or Unix format * * This command can be tricky because we want to be able to deal with pool * creation/destruction as well as vdev configuration changes. The bulk of this * processing is handled by the pool_list_* routines in zpool_iter.c. We rely * on pool_list_update() to detect the addition of new pools. Configuration * changes are all handled within libzfs. */ int zpool_do_iostat(int argc, char **argv) { int c; int ret; int npools; unsigned long interval = 0, count = 0; zpool_list_t *list; boolean_t verbose = B_FALSE; iostat_cbdata_t cb; /* check options */ while ((c = getopt(argc, argv, "T:v")) != -1) { switch (c) { case 'T': get_timestamp_arg(*optarg); break; case 'v': verbose = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; get_interval_count(&argc, argv, &interval, &count); /* * Construct the list of all interesting pools. */ ret = 0; if ((list = pool_list_get(argc, argv, NULL, &ret)) == NULL) return (1); if (pool_list_count(list) == 0 && argc != 0) { pool_list_free(list); return (1); } if (pool_list_count(list) == 0 && interval == 0) { pool_list_free(list); (void) fprintf(stderr, gettext("no pools available\n")); return (1); } /* * Enter the main iostat loop. */ cb.cb_list = list; cb.cb_verbose = verbose; cb.cb_iteration = 0; cb.cb_namewidth = 0; for (;;) { pool_list_update(list); if ((npools = pool_list_count(list)) == 0) break; /* * Refresh all statistics. This is done as an explicit step * before calculating the maximum name width, so that any * configuration changes are properly accounted for. */ (void) pool_list_iter(list, B_FALSE, refresh_iostat, &cb); /* * Iterate over all pools to determine the maximum width * for the pool / device name column across all pools. */ cb.cb_namewidth = 0; (void) pool_list_iter(list, B_FALSE, get_namewidth, &cb); if (timestamp_fmt != NODATE) print_timestamp(timestamp_fmt); /* * If it's the first time, or verbose mode, print the header. */ if (++cb.cb_iteration == 1 || verbose) print_iostat_header(&cb); (void) pool_list_iter(list, B_FALSE, print_iostat, &cb); /* * If there's more than one pool, and we're not in verbose mode * (which prints a separator for us), then print a separator. */ if (npools > 1 && !verbose) print_iostat_separator(&cb); if (verbose) (void) printf("\n"); /* * Flush the output so that redirection to a file isn't buffered * indefinitely. */ (void) fflush(stdout); if (interval == 0) break; if (count != 0 && --count == 0) break; (void) sleep(interval); } pool_list_free(list); return (ret); } typedef struct list_cbdata { boolean_t cb_verbose; int cb_namewidth; boolean_t cb_scripted; zprop_list_t *cb_proplist; boolean_t cb_literal; } list_cbdata_t; /* * Given a list of columns to display, output appropriate headers for each one. */ static void print_header(list_cbdata_t *cb) { zprop_list_t *pl = cb->cb_proplist; char headerbuf[ZPOOL_MAXPROPLEN]; const char *header; boolean_t first = B_TRUE; boolean_t right_justify; size_t width = 0; for (; pl != NULL; pl = pl->pl_next) { width = pl->pl_width; if (first && cb->cb_verbose) { /* * Reset the width to accommodate the verbose listing * of devices. */ width = cb->cb_namewidth; } if (!first) (void) printf(" "); else first = B_FALSE; right_justify = B_FALSE; if (pl->pl_prop != ZPROP_INVAL) { header = zpool_prop_column_name(pl->pl_prop); right_justify = zpool_prop_align_right(pl->pl_prop); } else { int i; for (i = 0; pl->pl_user_prop[i] != '\0'; i++) headerbuf[i] = toupper(pl->pl_user_prop[i]); headerbuf[i] = '\0'; header = headerbuf; } if (pl->pl_next == NULL && !right_justify) (void) printf("%s", header); else if (right_justify) (void) printf("%*s", width, header); else (void) printf("%-*s", width, header); } (void) printf("\n"); } /* * Given a pool and a list of properties, print out all the properties according * to the described layout. */ static void print_pool(zpool_handle_t *zhp, list_cbdata_t *cb) { zprop_list_t *pl = cb->cb_proplist; boolean_t first = B_TRUE; char property[ZPOOL_MAXPROPLEN]; char *propstr; boolean_t right_justify; size_t width; for (; pl != NULL; pl = pl->pl_next) { width = pl->pl_width; if (first && cb->cb_verbose) { /* * Reset the width to accommodate the verbose listing * of devices. */ width = cb->cb_namewidth; } if (!first) { if (cb->cb_scripted) (void) printf("\t"); else (void) printf(" "); } else { first = B_FALSE; } right_justify = B_FALSE; if (pl->pl_prop != ZPROP_INVAL) { if (zpool_get_prop(zhp, pl->pl_prop, property, sizeof (property), NULL, cb->cb_literal) != 0) propstr = "-"; else propstr = property; right_justify = zpool_prop_align_right(pl->pl_prop); } else if ((zpool_prop_feature(pl->pl_user_prop) || zpool_prop_unsupported(pl->pl_user_prop)) && zpool_prop_get_feature(zhp, pl->pl_user_prop, property, sizeof (property)) == 0) { propstr = property; } else { propstr = "-"; } /* * If this is being called in scripted mode, or if this is the * last column and it is left-justified, don't include a width * format specifier. */ if (cb->cb_scripted || (pl->pl_next == NULL && !right_justify)) (void) printf("%s", propstr); else if (right_justify) (void) printf("%*s", width, propstr); else (void) printf("%-*s", width, propstr); } (void) printf("\n"); } static void print_one_column(zpool_prop_t prop, uint64_t value, boolean_t scripted, boolean_t valid) { char propval[64]; boolean_t fixed; size_t width = zprop_width(prop, &fixed, ZFS_TYPE_POOL); switch (prop) { case ZPOOL_PROP_EXPANDSZ: if (value == 0) (void) strlcpy(propval, "-", sizeof (propval)); else zfs_nicenum(value, propval, sizeof (propval)); break; case ZPOOL_PROP_FRAGMENTATION: if (value == ZFS_FRAG_INVALID) { (void) strlcpy(propval, "-", sizeof (propval)); } else { (void) snprintf(propval, sizeof (propval), "%llu%%", value); } break; case ZPOOL_PROP_CAPACITY: (void) snprintf(propval, sizeof (propval), "%llu%%", value); break; default: zfs_nicenum(value, propval, sizeof (propval)); } if (!valid) (void) strlcpy(propval, "-", sizeof (propval)); if (scripted) (void) printf("\t%s", propval); else (void) printf(" %*s", width, propval); } void print_list_stats(zpool_handle_t *zhp, const char *name, nvlist_t *nv, list_cbdata_t *cb, int depth) { nvlist_t **child; vdev_stat_t *vs; uint_t c, children; char *vname; boolean_t scripted = cb->cb_scripted; uint64_t islog = B_FALSE; boolean_t haslog = B_FALSE; char *dashes = "%-*s - - - - - -\n"; verify(nvlist_lookup_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &c) == 0); if (name != NULL) { boolean_t toplevel = (vs->vs_space != 0); uint64_t cap; if (strcmp(name, VDEV_TYPE_INDIRECT) == 0) return; if (scripted) (void) printf("\t%s", name); else if (strlen(name) + depth > cb->cb_namewidth) (void) printf("%*s%s", depth, "", name); else (void) printf("%*s%s%*s", depth, "", name, (int)(cb->cb_namewidth - strlen(name) - depth), ""); /* * Print the properties for the individual vdevs. Some * properties are only applicable to toplevel vdevs. The * 'toplevel' boolean value is passed to the print_one_column() * to indicate that the value is valid. */ print_one_column(ZPOOL_PROP_SIZE, vs->vs_space, scripted, toplevel); print_one_column(ZPOOL_PROP_ALLOCATED, vs->vs_alloc, scripted, toplevel); print_one_column(ZPOOL_PROP_FREE, vs->vs_space - vs->vs_alloc, scripted, toplevel); print_one_column(ZPOOL_PROP_EXPANDSZ, vs->vs_esize, scripted, B_TRUE); print_one_column(ZPOOL_PROP_FRAGMENTATION, vs->vs_fragmentation, scripted, (vs->vs_fragmentation != ZFS_FRAG_INVALID && toplevel)); cap = (vs->vs_space == 0) ? 0 : (vs->vs_alloc * 100 / vs->vs_space); print_one_column(ZPOOL_PROP_CAPACITY, cap, scripted, toplevel); (void) printf("\n"); } if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) return; for (c = 0; c < children; c++) { uint64_t ishole = B_FALSE; if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, &ishole) == 0 && ishole) continue; if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG, &islog) == 0 && islog) { haslog = B_TRUE; continue; } vname = zpool_vdev_name(g_zfs, zhp, child[c], B_FALSE); print_list_stats(zhp, vname, child[c], cb, depth + 2); free(vname); } if (haslog == B_TRUE) { /* LINTED E_SEC_PRINTF_VAR_FMT */ (void) printf(dashes, cb->cb_namewidth, "log"); for (c = 0; c < children; c++) { if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG, &islog) != 0 || !islog) continue; vname = zpool_vdev_name(g_zfs, zhp, child[c], B_FALSE); print_list_stats(zhp, vname, child[c], cb, depth + 2); free(vname); } } if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, &child, &children) == 0 && children > 0) { /* LINTED E_SEC_PRINTF_VAR_FMT */ (void) printf(dashes, cb->cb_namewidth, "cache"); for (c = 0; c < children; c++) { vname = zpool_vdev_name(g_zfs, zhp, child[c], B_FALSE); print_list_stats(zhp, vname, child[c], cb, depth + 2); free(vname); } } if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, &child, &children) == 0 && children > 0) { /* LINTED E_SEC_PRINTF_VAR_FMT */ (void) printf(dashes, cb->cb_namewidth, "spare"); for (c = 0; c < children; c++) { vname = zpool_vdev_name(g_zfs, zhp, child[c], B_FALSE); print_list_stats(zhp, vname, child[c], cb, depth + 2); free(vname); } } } /* * Generic callback function to list a pool. */ int list_callback(zpool_handle_t *zhp, void *data) { list_cbdata_t *cbp = data; nvlist_t *config; nvlist_t *nvroot; config = zpool_get_config(zhp, NULL); print_pool(zhp, cbp); if (!cbp->cb_verbose) return (0); verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); print_list_stats(zhp, NULL, nvroot, cbp, 0); return (0); } /* * zpool list [-Hp] [-o prop[,prop]*] [-T d|u] [pool] ... [interval [count]] * * -H Scripted mode. Don't display headers, and separate properties * by a single tab. * -o List of properties to display. Defaults to * "name,size,allocated,free,expandsize,fragmentation,capacity," * "dedupratio,health,altroot" * -p Diplay values in parsable (exact) format. * -T Display a timestamp in date(1) or Unix format * * List all pools in the system, whether or not they're healthy. Output space * statistics for each one, as well as health status summary. */ int zpool_do_list(int argc, char **argv) { int c; int ret; list_cbdata_t cb = { 0 }; static char default_props[] = "name,size,allocated,free,expandsize,fragmentation,capacity," "dedupratio,health,altroot"; char *props = default_props; unsigned long interval = 0, count = 0; zpool_list_t *list; boolean_t first = B_TRUE; /* check options */ while ((c = getopt(argc, argv, ":Ho:pT:v")) != -1) { switch (c) { case 'H': cb.cb_scripted = B_TRUE; break; case 'o': props = optarg; break; case 'p': cb.cb_literal = B_TRUE; break; case 'T': get_timestamp_arg(*optarg); break; case 'v': cb.cb_verbose = B_TRUE; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; get_interval_count(&argc, argv, &interval, &count); if (zprop_get_list(g_zfs, props, &cb.cb_proplist, ZFS_TYPE_POOL) != 0) usage(B_FALSE); for (;;) { if ((list = pool_list_get(argc, argv, &cb.cb_proplist, &ret)) == NULL) return (1); if (pool_list_count(list) == 0) break; cb.cb_namewidth = 0; (void) pool_list_iter(list, B_FALSE, get_namewidth, &cb); if (timestamp_fmt != NODATE) print_timestamp(timestamp_fmt); if (!cb.cb_scripted && (first || cb.cb_verbose)) { print_header(&cb); first = B_FALSE; } ret = pool_list_iter(list, B_TRUE, list_callback, &cb); if (interval == 0) break; if (count != 0 && --count == 0) break; pool_list_free(list); (void) sleep(interval); } if (argc == 0 && !cb.cb_scripted && pool_list_count(list) == 0) { (void) printf(gettext("no pools available\n")); ret = 0; } pool_list_free(list); zprop_free_list(cb.cb_proplist); return (ret); } static int zpool_do_attach_or_replace(int argc, char **argv, int replacing) { boolean_t force = B_FALSE; int c; nvlist_t *nvroot; char *poolname, *old_disk, *new_disk; zpool_handle_t *zhp; zpool_boot_label_t boot_type; uint64_t boot_size; int ret; /* check options */ while ((c = getopt(argc, argv, "f")) != -1) { switch (c) { case 'f': force = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* get pool name and check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing pool name argument\n")); usage(B_FALSE); } poolname = argv[0]; if (argc < 2) { (void) fprintf(stderr, gettext("missing specification\n")); usage(B_FALSE); } old_disk = argv[1]; if (argc < 3) { if (!replacing) { (void) fprintf(stderr, gettext("missing specification\n")); usage(B_FALSE); } new_disk = old_disk; argc -= 1; argv += 1; } else { new_disk = argv[2]; argc -= 2; argv += 2; } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if ((zhp = zpool_open(g_zfs, poolname)) == NULL) return (1); if (zpool_get_config(zhp, NULL) == NULL) { (void) fprintf(stderr, gettext("pool '%s' is unavailable\n"), poolname); zpool_close(zhp); return (1); } if (zpool_is_bootable(zhp)) boot_type = ZPOOL_COPY_BOOT_LABEL; else boot_type = ZPOOL_NO_BOOT_LABEL; boot_size = zpool_get_prop_int(zhp, ZPOOL_PROP_BOOTSIZE, NULL); nvroot = make_root_vdev(zhp, force, B_FALSE, replacing, B_FALSE, boot_type, boot_size, argc, argv); if (nvroot == NULL) { zpool_close(zhp); return (1); } ret = zpool_vdev_attach(zhp, old_disk, new_disk, nvroot, replacing); nvlist_free(nvroot); zpool_close(zhp); return (ret); } /* * zpool replace [-f] * * -f Force attach, even if appears to be in use. * * Replace with . */ /* ARGSUSED */ int zpool_do_replace(int argc, char **argv) { return (zpool_do_attach_or_replace(argc, argv, B_TRUE)); } /* * zpool attach [-f] * * -f Force attach, even if appears to be in use. * * Attach to the mirror containing . If is not * part of a mirror, then will be transformed into a mirror of * and . In either case, will begin life * with a DTL of [0, now], and will immediately begin to resilver itself. */ int zpool_do_attach(int argc, char **argv) { return (zpool_do_attach_or_replace(argc, argv, B_FALSE)); } /* * zpool detach [-f] * * -f Force detach of , even if DTLs argue against it * (not supported yet) * * Detach a device from a mirror. The operation will be refused if * is the last device in the mirror, or if the DTLs indicate that this device * has the only valid copy of some data. */ /* ARGSUSED */ int zpool_do_detach(int argc, char **argv) { int c; char *poolname, *path; zpool_handle_t *zhp; int ret; /* check options */ while ((c = getopt(argc, argv, "f")) != -1) { switch (c) { case 'f': case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* get pool name and check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing pool name argument\n")); usage(B_FALSE); } if (argc < 2) { (void) fprintf(stderr, gettext("missing specification\n")); usage(B_FALSE); } poolname = argv[0]; path = argv[1]; if ((zhp = zpool_open(g_zfs, poolname)) == NULL) return (1); ret = zpool_vdev_detach(zhp, path); zpool_close(zhp); return (ret); } /* * zpool split [-n] [-o prop=val] ... * [-o mntopt] ... * [-R altroot] [ ...] * * -n Do not split the pool, but display the resulting layout if * it were to be split. * -o Set property=value, or set mount options. * -R Mount the split-off pool under an alternate root. * * Splits the named pool and gives it the new pool name. Devices to be split * off may be listed, provided that no more than one device is specified * per top-level vdev mirror. The newly split pool is left in an exported * state unless -R is specified. * * Restrictions: the top-level of the pool pool must only be made up of * mirrors; all devices in the pool must be healthy; no device may be * undergoing a resilvering operation. */ int zpool_do_split(int argc, char **argv) { char *srcpool, *newpool, *propval; char *mntopts = NULL; splitflags_t flags; int c, ret = 0; zpool_handle_t *zhp; nvlist_t *config, *props = NULL; flags.dryrun = B_FALSE; flags.import = B_FALSE; /* check options */ while ((c = getopt(argc, argv, ":R:no:")) != -1) { switch (c) { case 'R': flags.import = B_TRUE; if (add_prop_list( zpool_prop_to_name(ZPOOL_PROP_ALTROOT), optarg, &props, B_TRUE) != 0) { nvlist_free(props); usage(B_FALSE); } break; case 'n': flags.dryrun = B_TRUE; break; case 'o': if ((propval = strchr(optarg, '=')) != NULL) { *propval = '\0'; propval++; if (add_prop_list(optarg, propval, &props, B_TRUE) != 0) { nvlist_free(props); usage(B_FALSE); } } else { mntopts = optarg; } break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); break; } } if (!flags.import && mntopts != NULL) { (void) fprintf(stderr, gettext("setting mntopts is only " "valid when importing the pool\n")); usage(B_FALSE); } argc -= optind; argv += optind; if (argc < 1) { (void) fprintf(stderr, gettext("Missing pool name\n")); usage(B_FALSE); } if (argc < 2) { (void) fprintf(stderr, gettext("Missing new pool name\n")); usage(B_FALSE); } srcpool = argv[0]; newpool = argv[1]; argc -= 2; argv += 2; if ((zhp = zpool_open(g_zfs, srcpool)) == NULL) return (1); config = split_mirror_vdev(zhp, newpool, props, flags, argc, argv); if (config == NULL) { ret = 1; } else { if (flags.dryrun) { (void) printf(gettext("would create '%s' with the " "following layout:\n\n"), newpool); print_vdev_tree(NULL, newpool, config, 0, B_FALSE); } nvlist_free(config); } zpool_close(zhp); if (ret != 0 || flags.dryrun || !flags.import) return (ret); /* * The split was successful. Now we need to open the new * pool and import it. */ if ((zhp = zpool_open_canfail(g_zfs, newpool)) == NULL) return (1); if (zpool_get_state(zhp) != POOL_STATE_UNAVAIL && zpool_enable_datasets(zhp, mntopts, 0) != 0) { ret = 1; (void) fprintf(stderr, gettext("Split was successful, but " "the datasets could not all be mounted\n")); (void) fprintf(stderr, gettext("Try doing '%s' with a " "different altroot\n"), "zpool import"); } zpool_close(zhp); return (ret); } /* * zpool online ... */ int zpool_do_online(int argc, char **argv) { int c, i; char *poolname; zpool_handle_t *zhp; int ret = 0; vdev_state_t newstate; int flags = 0; /* check options */ while ((c = getopt(argc, argv, "et")) != -1) { switch (c) { case 'e': flags |= ZFS_ONLINE_EXPAND; break; case 't': case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* get pool name and check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing pool name\n")); usage(B_FALSE); } if (argc < 2) { (void) fprintf(stderr, gettext("missing device name\n")); usage(B_FALSE); } poolname = argv[0]; if ((zhp = zpool_open(g_zfs, poolname)) == NULL) return (1); for (i = 1; i < argc; i++) { if (zpool_vdev_online(zhp, argv[i], flags, &newstate) == 0) { if (newstate != VDEV_STATE_HEALTHY) { (void) printf(gettext("warning: device '%s' " "onlined, but remains in faulted state\n"), argv[i]); if (newstate == VDEV_STATE_FAULTED) (void) printf(gettext("use 'zpool " "clear' to restore a faulted " "device\n")); else (void) printf(gettext("use 'zpool " "replace' to replace devices " "that are no longer present\n")); } } else { ret = 1; } } zpool_close(zhp); return (ret); } /* * zpool offline [-ft] ... * * -f Force the device into the offline state, even if doing * so would appear to compromise pool availability. * (not supported yet) * * -t Only take the device off-line temporarily. The offline * state will not be persistent across reboots. */ /* ARGSUSED */ int zpool_do_offline(int argc, char **argv) { int c, i; char *poolname; zpool_handle_t *zhp; int ret = 0; boolean_t istmp = B_FALSE; /* check options */ while ((c = getopt(argc, argv, "ft")) != -1) { switch (c) { case 't': istmp = B_TRUE; break; case 'f': case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* get pool name and check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing pool name\n")); usage(B_FALSE); } if (argc < 2) { (void) fprintf(stderr, gettext("missing device name\n")); usage(B_FALSE); } poolname = argv[0]; if ((zhp = zpool_open(g_zfs, poolname)) == NULL) return (1); for (i = 1; i < argc; i++) { if (zpool_vdev_offline(zhp, argv[i], istmp) != 0) ret = 1; } zpool_close(zhp); return (ret); } /* * zpool clear [device] * * Clear all errors associated with a pool or a particular device. */ int zpool_do_clear(int argc, char **argv) { int c; int ret = 0; boolean_t dryrun = B_FALSE; boolean_t do_rewind = B_FALSE; boolean_t xtreme_rewind = B_FALSE; uint32_t rewind_policy = ZPOOL_NO_REWIND; nvlist_t *policy = NULL; zpool_handle_t *zhp; char *pool, *device; /* check options */ while ((c = getopt(argc, argv, "FnX")) != -1) { switch (c) { case 'F': do_rewind = B_TRUE; break; case 'n': dryrun = B_TRUE; break; case 'X': xtreme_rewind = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; if (argc < 1) { (void) fprintf(stderr, gettext("missing pool name\n")); usage(B_FALSE); } if (argc > 2) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if ((dryrun || xtreme_rewind) && !do_rewind) { (void) fprintf(stderr, gettext("-n or -X only meaningful with -F\n")); usage(B_FALSE); } if (dryrun) rewind_policy = ZPOOL_TRY_REWIND; else if (do_rewind) rewind_policy = ZPOOL_DO_REWIND; if (xtreme_rewind) rewind_policy |= ZPOOL_EXTREME_REWIND; /* In future, further rewind policy choices can be passed along here */ if (nvlist_alloc(&policy, NV_UNIQUE_NAME, 0) != 0 || nvlist_add_uint32(policy, ZPOOL_REWIND_REQUEST, rewind_policy) != 0) return (1); pool = argv[0]; device = argc == 2 ? argv[1] : NULL; if ((zhp = zpool_open_canfail(g_zfs, pool)) == NULL) { nvlist_free(policy); return (1); } if (zpool_clear(zhp, device, policy) != 0) ret = 1; zpool_close(zhp); nvlist_free(policy); return (ret); } /* * zpool reguid */ int zpool_do_reguid(int argc, char **argv) { int c; char *poolname; zpool_handle_t *zhp; int ret = 0; /* check options */ while ((c = getopt(argc, argv, "")) != -1) { switch (c) { case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* get pool name and check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing pool name\n")); usage(B_FALSE); } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } poolname = argv[0]; if ((zhp = zpool_open(g_zfs, poolname)) == NULL) return (1); ret = zpool_reguid(zhp); zpool_close(zhp); return (ret); } /* * zpool reopen * * Reopen the pool so that the kernel can update the sizes of all vdevs. */ int zpool_do_reopen(int argc, char **argv) { int c; int ret = 0; zpool_handle_t *zhp; char *pool; /* check options */ while ((c = getopt(argc, argv, "")) != -1) { switch (c) { case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc--; argv++; if (argc < 1) { (void) fprintf(stderr, gettext("missing pool name\n")); usage(B_FALSE); } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } pool = argv[0]; if ((zhp = zpool_open_canfail(g_zfs, pool)) == NULL) return (1); ret = zpool_reopen(zhp); zpool_close(zhp); return (ret); } typedef struct scrub_cbdata { int cb_type; int cb_argc; char **cb_argv; pool_scrub_cmd_t cb_scrub_cmd; } scrub_cbdata_t; int scrub_callback(zpool_handle_t *zhp, void *data) { scrub_cbdata_t *cb = data; int err; /* * Ignore faulted pools. */ if (zpool_get_state(zhp) == POOL_STATE_UNAVAIL) { (void) fprintf(stderr, gettext("cannot scrub '%s': pool is " "currently unavailable\n"), zpool_get_name(zhp)); return (1); } err = zpool_scan(zhp, cb->cb_type, cb->cb_scrub_cmd); return (err != 0); } /* * zpool scrub [-s | -p] ... * * -s Stop. Stops any in-progress scrub. * -p Pause. Pause in-progress scrub. */ int zpool_do_scrub(int argc, char **argv) { int c; scrub_cbdata_t cb; cb.cb_type = POOL_SCAN_SCRUB; cb.cb_scrub_cmd = POOL_SCRUB_NORMAL; /* check options */ while ((c = getopt(argc, argv, "sp")) != -1) { switch (c) { case 's': cb.cb_type = POOL_SCAN_NONE; break; case 'p': cb.cb_scrub_cmd = POOL_SCRUB_PAUSE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } if (cb.cb_type == POOL_SCAN_NONE && cb.cb_scrub_cmd == POOL_SCRUB_PAUSE) { (void) fprintf(stderr, gettext("invalid option combination: " "-s and -p are mutually exclusive\n")); usage(B_FALSE); } cb.cb_argc = argc; cb.cb_argv = argv; argc -= optind; argv += optind; if (argc < 1) { (void) fprintf(stderr, gettext("missing pool name argument\n")); usage(B_FALSE); } return (for_each_pool(argc, argv, B_TRUE, NULL, scrub_callback, &cb)); } typedef struct status_cbdata { int cb_count; boolean_t cb_allpools; boolean_t cb_verbose; boolean_t cb_explain; boolean_t cb_first; boolean_t cb_dedup_stats; } status_cbdata_t; /* * Print out detailed scrub status. */ static void print_scan_status(pool_scan_stat_t *ps) { time_t start, end, pause; uint64_t elapsed, mins_left, hours_left; uint64_t pass_exam, examined, total; uint_t rate; double fraction_done; char processed_buf[7], examined_buf[7], total_buf[7], rate_buf[7]; (void) printf(gettext(" scan: ")); /* If there's never been a scan, there's not much to say. */ if (ps == NULL || ps->pss_func == POOL_SCAN_NONE || ps->pss_func >= POOL_SCAN_FUNCS) { (void) printf(gettext("none requested\n")); return; } start = ps->pss_start_time; end = ps->pss_end_time; pause = ps->pss_pass_scrub_pause; zfs_nicenum(ps->pss_processed, processed_buf, sizeof (processed_buf)); assert(ps->pss_func == POOL_SCAN_SCRUB || ps->pss_func == POOL_SCAN_RESILVER); /* * Scan is finished or canceled. */ if (ps->pss_state == DSS_FINISHED) { uint64_t minutes_taken = (end - start) / 60; char *fmt = NULL; if (ps->pss_func == POOL_SCAN_SCRUB) { fmt = gettext("scrub repaired %s in %lluh%um with " "%llu errors on %s"); } else if (ps->pss_func == POOL_SCAN_RESILVER) { fmt = gettext("resilvered %s in %lluh%um with " "%llu errors on %s"); } /* LINTED */ (void) printf(fmt, processed_buf, (u_longlong_t)(minutes_taken / 60), (uint_t)(minutes_taken % 60), (u_longlong_t)ps->pss_errors, ctime((time_t *)&end)); return; } else if (ps->pss_state == DSS_CANCELED) { if (ps->pss_func == POOL_SCAN_SCRUB) { (void) printf(gettext("scrub canceled on %s"), ctime(&end)); } else if (ps->pss_func == POOL_SCAN_RESILVER) { (void) printf(gettext("resilver canceled on %s"), ctime(&end)); } return; } assert(ps->pss_state == DSS_SCANNING); /* * Scan is in progress. */ if (ps->pss_func == POOL_SCAN_SCRUB) { if (pause == 0) { (void) printf(gettext("scrub in progress since %s"), ctime(&start)); } else { char buf[32]; struct tm *p = localtime(&pause); (void) strftime(buf, sizeof (buf), "%a %b %e %T %Y", p); (void) printf(gettext("scrub paused since %s\n"), buf); (void) printf(gettext("\tscrub started on %s"), ctime(&start)); } } else if (ps->pss_func == POOL_SCAN_RESILVER) { (void) printf(gettext("resilver in progress since %s"), ctime(&start)); } examined = ps->pss_examined ? ps->pss_examined : 1; total = ps->pss_to_examine; fraction_done = (double)examined / total; /* elapsed time for this pass */ elapsed = time(NULL) - ps->pss_pass_start; elapsed -= ps->pss_pass_scrub_spent_paused; elapsed = elapsed ? elapsed : 1; pass_exam = ps->pss_pass_exam ? ps->pss_pass_exam : 1; rate = pass_exam / elapsed; rate = rate ? rate : 1; mins_left = ((total - examined) / rate) / 60; hours_left = mins_left / 60; zfs_nicenum(examined, examined_buf, sizeof (examined_buf)); zfs_nicenum(total, total_buf, sizeof (total_buf)); /* * do not print estimated time if hours_left is more than 30 days * or we have a paused scrub */ if (pause == 0) { zfs_nicenum(rate, rate_buf, sizeof (rate_buf)); (void) printf(gettext("\t%s scanned out of %s at %s/s"), examined_buf, total_buf, rate_buf); if (hours_left < (30 * 24)) { (void) printf(gettext(", %lluh%um to go\n"), (u_longlong_t)hours_left, (uint_t)(mins_left % 60)); } else { (void) printf(gettext( ", (scan is slow, no estimated time)\n")); } } else { (void) printf(gettext("\t%s scanned out of %s\n"), examined_buf, total_buf); } if (ps->pss_func == POOL_SCAN_RESILVER) { (void) printf(gettext(" %s resilvered, %.2f%% done\n"), processed_buf, 100 * fraction_done); } else if (ps->pss_func == POOL_SCAN_SCRUB) { (void) printf(gettext(" %s repaired, %.2f%% done\n"), processed_buf, 100 * fraction_done); } } /* * Print out detailed removal status. */ static void print_removal_status(zpool_handle_t *zhp, pool_removal_stat_t *prs) { char copied_buf[7], examined_buf[7], total_buf[7], rate_buf[7]; time_t start, end; nvlist_t *config, *nvroot; nvlist_t **child; uint_t children; char *vdev_name; if (prs == NULL || prs->prs_state == DSS_NONE) return; /* * Determine name of vdev. */ config = zpool_get_config(zhp, NULL); nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0); assert(prs->prs_removing_vdev < children); vdev_name = zpool_vdev_name(g_zfs, zhp, child[prs->prs_removing_vdev], B_TRUE); (void) printf(gettext("remove: ")); start = prs->prs_start_time; end = prs->prs_end_time; zfs_nicenum(prs->prs_copied, copied_buf, sizeof (copied_buf)); /* * Removal is finished or canceled. */ if (prs->prs_state == DSS_FINISHED) { uint64_t minutes_taken = (end - start) / 60; (void) printf(gettext("Removal of vdev %llu copied %s " "in %lluh%um, completed on %s"), (longlong_t)prs->prs_removing_vdev, copied_buf, (u_longlong_t)(minutes_taken / 60), (uint_t)(minutes_taken % 60), ctime((time_t *)&end)); } else if (prs->prs_state == DSS_CANCELED) { (void) printf(gettext("Removal of %s canceled on %s"), vdev_name, ctime(&end)); } else { uint64_t copied, total, elapsed, mins_left, hours_left; double fraction_done; uint_t rate; assert(prs->prs_state == DSS_SCANNING); /* * Removal is in progress. */ (void) printf(gettext( "Evacuation of %s in progress since %s"), vdev_name, ctime(&start)); copied = prs->prs_copied > 0 ? prs->prs_copied : 1; total = prs->prs_to_copy; fraction_done = (double)copied / total; /* elapsed time for this pass */ elapsed = time(NULL) - prs->prs_start_time; elapsed = elapsed > 0 ? elapsed : 1; rate = copied / elapsed; rate = rate > 0 ? rate : 1; mins_left = ((total - copied) / rate) / 60; hours_left = mins_left / 60; zfs_nicenum(copied, examined_buf, sizeof (examined_buf)); zfs_nicenum(total, total_buf, sizeof (total_buf)); zfs_nicenum(rate, rate_buf, sizeof (rate_buf)); /* * do not print estimated time if hours_left is more than * 30 days */ (void) printf(gettext(" %s copied out of %s at %s/s, " "%.2f%% done"), examined_buf, total_buf, rate_buf, 100 * fraction_done); if (hours_left < (30 * 24)) { (void) printf(gettext(", %lluh%um to go\n"), (u_longlong_t)hours_left, (uint_t)(mins_left % 60)); } else { (void) printf(gettext( ", (copy is slow, no estimated time)\n")); } } if (prs->prs_mapping_memory > 0) { char mem_buf[7]; zfs_nicenum(prs->prs_mapping_memory, mem_buf, sizeof (mem_buf)); (void) printf(gettext(" %s memory used for " "removed device mappings\n"), mem_buf); } } static void print_error_log(zpool_handle_t *zhp) { nvlist_t *nverrlist = NULL; nvpair_t *elem; char *pathname; size_t len = MAXPATHLEN * 2; if (zpool_get_errlog(zhp, &nverrlist) != 0) { (void) printf("errors: List of errors unavailable " "(insufficient privileges)\n"); return; } (void) printf("errors: Permanent errors have been " "detected in the following files:\n\n"); pathname = safe_malloc(len); elem = NULL; while ((elem = nvlist_next_nvpair(nverrlist, elem)) != NULL) { nvlist_t *nv; uint64_t dsobj, obj; verify(nvpair_value_nvlist(elem, &nv) == 0); verify(nvlist_lookup_uint64(nv, ZPOOL_ERR_DATASET, &dsobj) == 0); verify(nvlist_lookup_uint64(nv, ZPOOL_ERR_OBJECT, &obj) == 0); zpool_obj_to_path(zhp, dsobj, obj, pathname, len); (void) printf("%7s %s\n", "", pathname); } free(pathname); nvlist_free(nverrlist); } static void print_spares(zpool_handle_t *zhp, nvlist_t **spares, uint_t nspares, int namewidth) { uint_t i; char *name; if (nspares == 0) return; (void) printf(gettext("\tspares\n")); for (i = 0; i < nspares; i++) { name = zpool_vdev_name(g_zfs, zhp, spares[i], B_FALSE); print_status_config(zhp, name, spares[i], namewidth, 2, B_TRUE); free(name); } } static void print_l2cache(zpool_handle_t *zhp, nvlist_t **l2cache, uint_t nl2cache, int namewidth) { uint_t i; char *name; if (nl2cache == 0) return; (void) printf(gettext("\tcache\n")); for (i = 0; i < nl2cache; i++) { name = zpool_vdev_name(g_zfs, zhp, l2cache[i], B_FALSE); print_status_config(zhp, name, l2cache[i], namewidth, 2, B_FALSE); free(name); } } static void print_dedup_stats(nvlist_t *config) { ddt_histogram_t *ddh; ddt_stat_t *dds; ddt_object_t *ddo; uint_t c; /* * If the pool was faulted then we may not have been able to * obtain the config. Otherwise, if we have anything in the dedup * table continue processing the stats. */ if (nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_DDT_OBJ_STATS, (uint64_t **)&ddo, &c) != 0) return; (void) printf("\n"); (void) printf(gettext(" dedup: ")); if (ddo->ddo_count == 0) { (void) printf(gettext("no DDT entries\n")); return; } (void) printf("DDT entries %llu, size %llu on disk, %llu in core\n", (u_longlong_t)ddo->ddo_count, (u_longlong_t)ddo->ddo_dspace, (u_longlong_t)ddo->ddo_mspace); verify(nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_DDT_STATS, (uint64_t **)&dds, &c) == 0); verify(nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_DDT_HISTOGRAM, (uint64_t **)&ddh, &c) == 0); zpool_dump_ddt(dds, ddh); } /* * Display a summary of pool status. Displays a summary such as: * * pool: tank * status: DEGRADED * reason: One or more devices ... * see: http://illumos.org/msg/ZFS-xxxx-01 * config: * mirror DEGRADED * c1t0d0 OK * c2t0d0 UNAVAIL * * When given the '-v' option, we print out the complete config. If the '-e' * option is specified, then we print out error rate information as well. */ int status_callback(zpool_handle_t *zhp, void *data) { status_cbdata_t *cbp = data; nvlist_t *config, *nvroot; char *msgid; int reason; const char *health; uint_t c; vdev_stat_t *vs; config = zpool_get_config(zhp, NULL); reason = zpool_get_status(zhp, &msgid); cbp->cb_count++; /* * If we were given 'zpool status -x', only report those pools with * problems. */ if (cbp->cb_explain && (reason == ZPOOL_STATUS_OK || reason == ZPOOL_STATUS_VERSION_OLDER || reason == ZPOOL_STATUS_NON_NATIVE_ASHIFT || reason == ZPOOL_STATUS_FEAT_DISABLED)) { if (!cbp->cb_allpools) { (void) printf(gettext("pool '%s' is healthy\n"), zpool_get_name(zhp)); if (cbp->cb_first) cbp->cb_first = B_FALSE; } return (0); } if (cbp->cb_first) cbp->cb_first = B_FALSE; else (void) printf("\n"); nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &c) == 0); health = zpool_state_to_name(vs->vs_state, vs->vs_aux); (void) printf(gettext(" pool: %s\n"), zpool_get_name(zhp)); (void) printf(gettext(" state: %s\n"), health); switch (reason) { case ZPOOL_STATUS_MISSING_DEV_R: (void) printf(gettext("status: One or more devices could not " "be opened. Sufficient replicas exist for\n\tthe pool to " "continue functioning in a degraded state.\n")); (void) printf(gettext("action: Attach the missing device and " "online it using 'zpool online'.\n")); break; case ZPOOL_STATUS_MISSING_DEV_NR: (void) printf(gettext("status: One or more devices could not " "be opened. There are insufficient\n\treplicas for the " "pool to continue functioning.\n")); (void) printf(gettext("action: Attach the missing device and " "online it using 'zpool online'.\n")); break; case ZPOOL_STATUS_CORRUPT_LABEL_R: (void) printf(gettext("status: One or more devices could not " "be used because the label is missing or\n\tinvalid. " "Sufficient replicas exist for the pool to continue\n\t" "functioning in a degraded state.\n")); (void) printf(gettext("action: Replace the device using " "'zpool replace'.\n")); break; case ZPOOL_STATUS_CORRUPT_LABEL_NR: (void) printf(gettext("status: One or more devices could not " "be used because the label is missing \n\tor invalid. " "There are insufficient replicas for the pool to " "continue\n\tfunctioning.\n")); zpool_explain_recover(zpool_get_handle(zhp), zpool_get_name(zhp), reason, config); break; case ZPOOL_STATUS_FAILING_DEV: (void) printf(gettext("status: One or more devices has " "experienced an unrecoverable error. An\n\tattempt was " "made to correct the error. Applications are " "unaffected.\n")); (void) printf(gettext("action: Determine if the device needs " "to be replaced, and clear the errors\n\tusing " "'zpool clear' or replace the device with 'zpool " "replace'.\n")); break; case ZPOOL_STATUS_OFFLINE_DEV: (void) printf(gettext("status: One or more devices has " "been taken offline by the administrator.\n\tSufficient " "replicas exist for the pool to continue functioning in " "a\n\tdegraded state.\n")); (void) printf(gettext("action: Online the device using " "'zpool online' or replace the device with\n\t'zpool " "replace'.\n")); break; case ZPOOL_STATUS_REMOVED_DEV: (void) printf(gettext("status: One or more devices has " "been removed by the administrator.\n\tSufficient " "replicas exist for the pool to continue functioning in " "a\n\tdegraded state.\n")); (void) printf(gettext("action: Online the device using " "'zpool online' or replace the device with\n\t'zpool " "replace'.\n")); break; case ZPOOL_STATUS_RESILVERING: (void) printf(gettext("status: One or more devices is " "currently being resilvered. The pool will\n\tcontinue " "to function, possibly in a degraded state.\n")); (void) printf(gettext("action: Wait for the resilver to " "complete.\n")); break; case ZPOOL_STATUS_CORRUPT_DATA: (void) printf(gettext("status: One or more devices has " "experienced an error resulting in data\n\tcorruption. " "Applications may be affected.\n")); (void) printf(gettext("action: Restore the file in question " "if possible. Otherwise restore the\n\tentire pool from " "backup.\n")); break; case ZPOOL_STATUS_CORRUPT_POOL: (void) printf(gettext("status: The pool metadata is corrupted " "and the pool cannot be opened.\n")); zpool_explain_recover(zpool_get_handle(zhp), zpool_get_name(zhp), reason, config); break; case ZPOOL_STATUS_VERSION_OLDER: (void) printf(gettext("status: The pool is formatted using a " "legacy on-disk format. The pool can\n\tstill be used, " "but some features are unavailable.\n")); (void) printf(gettext("action: Upgrade the pool using 'zpool " "upgrade'. Once this is done, the\n\tpool will no longer " "be accessible on software that does not support feature\n" "\tflags.\n")); break; case ZPOOL_STATUS_VERSION_NEWER: (void) printf(gettext("status: The pool has been upgraded to a " "newer, incompatible on-disk version.\n\tThe pool cannot " "be accessed on this system.\n")); (void) printf(gettext("action: Access the pool from a system " "running more recent software, or\n\trestore the pool from " "backup.\n")); break; case ZPOOL_STATUS_FEAT_DISABLED: (void) printf(gettext("status: Some supported features are not " "enabled on the pool. The pool can\n\tstill be used, but " "some features are unavailable.\n")); (void) printf(gettext("action: Enable all features using " "'zpool upgrade'. Once this is done,\n\tthe pool may no " "longer be accessible by software that does not support\n\t" "the features. See zpool-features(7) for details.\n")); break; case ZPOOL_STATUS_UNSUP_FEAT_READ: (void) printf(gettext("status: The pool cannot be accessed on " "this system because it uses the\n\tfollowing feature(s) " "not supported on this system:\n")); zpool_print_unsup_feat(config); (void) printf("\n"); (void) printf(gettext("action: Access the pool from a system " "that supports the required feature(s),\n\tor restore the " "pool from backup.\n")); break; case ZPOOL_STATUS_UNSUP_FEAT_WRITE: (void) printf(gettext("status: The pool can only be accessed " "in read-only mode on this system. It\n\tcannot be " "accessed in read-write mode because it uses the " "following\n\tfeature(s) not supported on this system:\n")); zpool_print_unsup_feat(config); (void) printf("\n"); (void) printf(gettext("action: The pool cannot be accessed in " "read-write mode. Import the pool with\n" "\t\"-o readonly=on\", access the pool from a system that " "supports the\n\trequired feature(s), or restore the " "pool from backup.\n")); break; case ZPOOL_STATUS_FAULTED_DEV_R: (void) printf(gettext("status: One or more devices are " "faulted in response to persistent errors.\n\tSufficient " "replicas exist for the pool to continue functioning " "in a\n\tdegraded state.\n")); (void) printf(gettext("action: Replace the faulted device, " "or use 'zpool clear' to mark the device\n\trepaired.\n")); break; case ZPOOL_STATUS_FAULTED_DEV_NR: (void) printf(gettext("status: One or more devices are " "faulted in response to persistent errors. There are " "insufficient replicas for the pool to\n\tcontinue " "functioning.\n")); (void) printf(gettext("action: Destroy and re-create the pool " "from a backup source. Manually marking the device\n" "\trepaired using 'zpool clear' may allow some data " "to be recovered.\n")); break; case ZPOOL_STATUS_IO_FAILURE_WAIT: case ZPOOL_STATUS_IO_FAILURE_CONTINUE: (void) printf(gettext("status: One or more devices are " "faulted in response to IO failures.\n")); (void) printf(gettext("action: Make sure the affected devices " "are connected, then run 'zpool clear'.\n")); break; case ZPOOL_STATUS_BAD_LOG: (void) printf(gettext("status: An intent log record " "could not be read.\n" "\tWaiting for adminstrator intervention to fix the " "faulted pool.\n")); (void) printf(gettext("action: Either restore the affected " "device(s) and run 'zpool online',\n" "\tor ignore the intent log records by running " "'zpool clear'.\n")); break; case ZPOOL_STATUS_NON_NATIVE_ASHIFT: (void) printf(gettext("status: One or more devices are " "configured to use a non-native block size.\n" "\tExpect reduced performance.\n")); (void) printf(gettext("action: Replace affected devices with " "devices that support the\n\tconfigured block size, or " "migrate data to a properly configured\n\tpool.\n")); break; default: /* * The remaining errors can't actually be generated, yet. */ assert(reason == ZPOOL_STATUS_OK); } if (msgid != NULL) (void) printf(gettext(" see: http://illumos.org/msg/%s\n"), msgid); if (config != NULL) { int namewidth; uint64_t nerr; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; pool_scan_stat_t *ps = NULL; pool_removal_stat_t *prs = NULL; (void) nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_SCAN_STATS, (uint64_t **)&ps, &c); print_scan_status(ps); (void) nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t **)&prs, &c); print_removal_status(zhp, prs); namewidth = max_width(zhp, nvroot, 0, 0); if (namewidth < 10) namewidth = 10; (void) printf(gettext("config:\n\n")); (void) printf(gettext("\t%-*s %-8s %5s %5s %5s\n"), namewidth, "NAME", "STATE", "READ", "WRITE", "CKSUM"); print_status_config(zhp, zpool_get_name(zhp), nvroot, namewidth, 0, B_FALSE); if (num_logs(nvroot) > 0) print_logs(zhp, nvroot, namewidth, B_TRUE); if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) print_l2cache(zhp, l2cache, nl2cache, namewidth); if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) print_spares(zhp, spares, nspares, namewidth); if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_ERRCOUNT, &nerr) == 0) { nvlist_t *nverrlist = NULL; /* * If the approximate error count is small, get a * precise count by fetching the entire log and * uniquifying the results. */ if (nerr > 0 && nerr < 100 && !cbp->cb_verbose && zpool_get_errlog(zhp, &nverrlist) == 0) { nvpair_t *elem; elem = NULL; nerr = 0; while ((elem = nvlist_next_nvpair(nverrlist, elem)) != NULL) { nerr++; } } nvlist_free(nverrlist); (void) printf("\n"); if (nerr == 0) (void) printf(gettext("errors: No known data " "errors\n")); else if (!cbp->cb_verbose) (void) printf(gettext("errors: %llu data " "errors, use '-v' for a list\n"), (u_longlong_t)nerr); else print_error_log(zhp); } if (cbp->cb_dedup_stats) print_dedup_stats(config); } else { (void) printf(gettext("config: The configuration cannot be " "determined.\n")); } return (0); } /* * zpool status [-vx] [-T d|u] [pool] ... [interval [count]] * * -v Display complete error logs * -x Display only pools with potential problems * -D Display dedup status (undocumented) * -T Display a timestamp in date(1) or Unix format * * Describes the health status of all pools or some subset. */ int zpool_do_status(int argc, char **argv) { int c; int ret; unsigned long interval = 0, count = 0; status_cbdata_t cb = { 0 }; /* check options */ while ((c = getopt(argc, argv, "vxDT:")) != -1) { switch (c) { case 'v': cb.cb_verbose = B_TRUE; break; case 'x': cb.cb_explain = B_TRUE; break; case 'D': cb.cb_dedup_stats = B_TRUE; break; case 'T': get_timestamp_arg(*optarg); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; get_interval_count(&argc, argv, &interval, &count); if (argc == 0) cb.cb_allpools = B_TRUE; cb.cb_first = B_TRUE; for (;;) { if (timestamp_fmt != NODATE) print_timestamp(timestamp_fmt); ret = for_each_pool(argc, argv, B_TRUE, NULL, status_callback, &cb); if (argc == 0 && cb.cb_count == 0) (void) printf(gettext("no pools available\n")); else if (cb.cb_explain && cb.cb_first && cb.cb_allpools) (void) printf(gettext("all pools are healthy\n")); if (ret != 0) return (ret); if (interval == 0) break; if (count != 0 && --count == 0) break; (void) sleep(interval); } return (0); } typedef struct upgrade_cbdata { boolean_t cb_first; boolean_t cb_unavail; char cb_poolname[ZFS_MAX_DATASET_NAME_LEN]; int cb_argc; uint64_t cb_version; char **cb_argv; } upgrade_cbdata_t; #ifdef __FreeBSD__ static int is_root_pool(zpool_handle_t *zhp) { static struct statfs sfs; static char *poolname = NULL; static boolean_t stated = B_FALSE; char *slash; if (!stated) { stated = B_TRUE; if (statfs("/", &sfs) == -1) { (void) fprintf(stderr, "Unable to stat root file system: %s.\n", strerror(errno)); return (0); } if (strcmp(sfs.f_fstypename, "zfs") != 0) return (0); poolname = sfs.f_mntfromname; if ((slash = strchr(poolname, '/')) != NULL) *slash = '\0'; } return (poolname != NULL && strcmp(poolname, zpool_get_name(zhp)) == 0); } static void root_pool_upgrade_check(zpool_handle_t *zhp, char *poolname, int size) { if (poolname[0] == '\0' && is_root_pool(zhp)) (void) strlcpy(poolname, zpool_get_name(zhp), size); } #endif /* FreeBSD */ static int upgrade_version(zpool_handle_t *zhp, uint64_t version) { int ret; nvlist_t *config; uint64_t oldversion; config = zpool_get_config(zhp, NULL); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &oldversion) == 0); assert(SPA_VERSION_IS_SUPPORTED(oldversion)); assert(oldversion < version); ret = zpool_upgrade(zhp, version); if (ret != 0) return (ret); if (version >= SPA_VERSION_FEATURES) { (void) printf(gettext("Successfully upgraded " "'%s' from version %llu to feature flags.\n"), zpool_get_name(zhp), oldversion); } else { (void) printf(gettext("Successfully upgraded " "'%s' from version %llu to version %llu.\n"), zpool_get_name(zhp), oldversion, version); } return (0); } static int upgrade_enable_all(zpool_handle_t *zhp, int *countp) { int i, ret, count; boolean_t firstff = B_TRUE; nvlist_t *enabled = zpool_get_features(zhp); count = 0; for (i = 0; i < SPA_FEATURES; i++) { const char *fname = spa_feature_table[i].fi_uname; const char *fguid = spa_feature_table[i].fi_guid; if (!nvlist_exists(enabled, fguid)) { char *propname; verify(-1 != asprintf(&propname, "feature@%s", fname)); ret = zpool_set_prop(zhp, propname, ZFS_FEATURE_ENABLED); if (ret != 0) { free(propname); return (ret); } count++; if (firstff) { (void) printf(gettext("Enabled the " "following features on '%s':\n"), zpool_get_name(zhp)); firstff = B_FALSE; } (void) printf(gettext(" %s\n"), fname); free(propname); } } if (countp != NULL) *countp = count; return (0); } static int upgrade_cb(zpool_handle_t *zhp, void *arg) { upgrade_cbdata_t *cbp = arg; nvlist_t *config; uint64_t version; boolean_t printnl = B_FALSE; int ret; if (zpool_get_state(zhp) == POOL_STATE_UNAVAIL) { (void) fprintf(stderr, gettext("cannot upgrade '%s': pool is " "currently unavailable.\n\n"), zpool_get_name(zhp)); cbp->cb_unavail = B_TRUE; /* Allow iteration to continue. */ return (0); } config = zpool_get_config(zhp, NULL); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) == 0); assert(SPA_VERSION_IS_SUPPORTED(version)); if (version < cbp->cb_version) { cbp->cb_first = B_FALSE; ret = upgrade_version(zhp, cbp->cb_version); if (ret != 0) return (ret); #ifdef __FreeBSD__ root_pool_upgrade_check(zhp, cbp->cb_poolname, sizeof(cbp->cb_poolname)); #endif /* __FreeBSD__ */ printnl = B_TRUE; #ifdef illumos /* * If they did "zpool upgrade -a", then we could * be doing ioctls to different pools. We need * to log this history once to each pool, and bypass * the normal history logging that happens in main(). */ (void) zpool_log_history(g_zfs, history_str); log_history = B_FALSE; #endif } if (cbp->cb_version >= SPA_VERSION_FEATURES) { int count; ret = upgrade_enable_all(zhp, &count); if (ret != 0) return (ret); if (count > 0) { cbp->cb_first = B_FALSE; printnl = B_TRUE; #ifdef __FreeBSD__ root_pool_upgrade_check(zhp, cbp->cb_poolname, sizeof(cbp->cb_poolname)); #endif /* __FreeBSD__ */ /* * If they did "zpool upgrade -a", then we could * be doing ioctls to different pools. We need * to log this history once to each pool, and bypass * the normal history logging that happens in main(). */ (void) zpool_log_history(g_zfs, history_str); log_history = B_FALSE; } } if (printnl) { (void) printf(gettext("\n")); } return (0); } static int upgrade_list_unavail(zpool_handle_t *zhp, void *arg) { upgrade_cbdata_t *cbp = arg; if (zpool_get_state(zhp) == POOL_STATE_UNAVAIL) { if (cbp->cb_first) { (void) fprintf(stderr, gettext("The following pools " "are unavailable and cannot be upgraded as this " "time.\n\n")); (void) fprintf(stderr, gettext("POOL\n")); (void) fprintf(stderr, gettext("------------\n")); cbp->cb_first = B_FALSE; } (void) printf(gettext("%s\n"), zpool_get_name(zhp)); cbp->cb_unavail = B_TRUE; } return (0); } static int upgrade_list_older_cb(zpool_handle_t *zhp, void *arg) { upgrade_cbdata_t *cbp = arg; nvlist_t *config; uint64_t version; if (zpool_get_state(zhp) == POOL_STATE_UNAVAIL) { /* * This will have been reported by upgrade_list_unavail so * just allow iteration to continue. */ cbp->cb_unavail = B_TRUE; return (0); } config = zpool_get_config(zhp, NULL); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) == 0); assert(SPA_VERSION_IS_SUPPORTED(version)); if (version < SPA_VERSION_FEATURES) { if (cbp->cb_first) { (void) printf(gettext("The following pools are " "formatted with legacy version numbers and can\n" "be upgraded to use feature flags. After " "being upgraded, these pools\nwill no " "longer be accessible by software that does not " "support feature\nflags.\n\n")); (void) printf(gettext("VER POOL\n")); (void) printf(gettext("--- ------------\n")); cbp->cb_first = B_FALSE; } (void) printf("%2llu %s\n", (u_longlong_t)version, zpool_get_name(zhp)); } return (0); } static int upgrade_list_disabled_cb(zpool_handle_t *zhp, void *arg) { upgrade_cbdata_t *cbp = arg; nvlist_t *config; uint64_t version; if (zpool_get_state(zhp) == POOL_STATE_UNAVAIL) { /* * This will have been reported by upgrade_list_unavail so * just allow iteration to continue. */ cbp->cb_unavail = B_TRUE; return (0); } config = zpool_get_config(zhp, NULL); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) == 0); if (version >= SPA_VERSION_FEATURES) { int i; boolean_t poolfirst = B_TRUE; nvlist_t *enabled = zpool_get_features(zhp); for (i = 0; i < SPA_FEATURES; i++) { const char *fguid = spa_feature_table[i].fi_guid; const char *fname = spa_feature_table[i].fi_uname; if (!nvlist_exists(enabled, fguid)) { if (cbp->cb_first) { (void) printf(gettext("\nSome " "supported features are not " "enabled on the following pools. " "Once a\nfeature is enabled the " "pool may become incompatible with " "software\nthat does not support " "the feature. See " "zpool-features(7) for " "details.\n\n")); (void) printf(gettext("POOL " "FEATURE\n")); (void) printf(gettext("------" "---------\n")); cbp->cb_first = B_FALSE; } if (poolfirst) { (void) printf(gettext("%s\n"), zpool_get_name(zhp)); poolfirst = B_FALSE; } (void) printf(gettext(" %s\n"), fname); } } } return (0); } /* ARGSUSED */ static int upgrade_one(zpool_handle_t *zhp, void *data) { boolean_t printnl = B_FALSE; upgrade_cbdata_t *cbp = data; uint64_t cur_version; int ret; if (zpool_get_state(zhp) == POOL_STATE_UNAVAIL) { (void) fprintf(stderr, gettext("cannot upgrade '%s': pool is " "is currently unavailable.\n\n"), zpool_get_name(zhp)); cbp->cb_unavail = B_TRUE; return (1); } if (strcmp("log", zpool_get_name(zhp)) == 0) { (void) printf(gettext("'log' is now a reserved word\n" "Pool 'log' must be renamed using export and import" " to upgrade.\n\n")); return (1); } cur_version = zpool_get_prop_int(zhp, ZPOOL_PROP_VERSION, NULL); if (cur_version > cbp->cb_version) { (void) printf(gettext("Pool '%s' is already formatted " "using more current version '%llu'.\n\n"), zpool_get_name(zhp), cur_version); return (0); } if (cbp->cb_version != SPA_VERSION && cur_version == cbp->cb_version) { (void) printf(gettext("Pool '%s' is already formatted " "using version %llu.\n\n"), zpool_get_name(zhp), cbp->cb_version); return (0); } if (cur_version != cbp->cb_version) { printnl = B_TRUE; ret = upgrade_version(zhp, cbp->cb_version); if (ret != 0) return (ret); #ifdef __FreeBSD__ root_pool_upgrade_check(zhp, cbp->cb_poolname, sizeof(cbp->cb_poolname)); #endif /* __FreeBSD__ */ } if (cbp->cb_version >= SPA_VERSION_FEATURES) { int count = 0; ret = upgrade_enable_all(zhp, &count); if (ret != 0) return (ret); if (count != 0) { printnl = B_TRUE; #ifdef __FreeBSD__ root_pool_upgrade_check(zhp, cbp->cb_poolname, sizeof(cbp->cb_poolname)); #endif /* __FreeBSD __*/ } else if (cur_version == SPA_VERSION) { (void) printf(gettext("Pool '%s' already has all " "supported features enabled.\n\n"), zpool_get_name(zhp)); } } if (printnl) { (void) printf(gettext("\n")); } return (0); } /* * zpool upgrade * zpool upgrade -v * zpool upgrade [-V version] <-a | pool ...> * * With no arguments, display downrev'd ZFS pool available for upgrade. * Individual pools can be upgraded by specifying the pool, and '-a' will * upgrade all pools. */ int zpool_do_upgrade(int argc, char **argv) { int c; upgrade_cbdata_t cb = { 0 }; int ret = 0; boolean_t showversions = B_FALSE; boolean_t upgradeall = B_FALSE; char *end; /* check options */ while ((c = getopt(argc, argv, ":avV:")) != -1) { switch (c) { case 'a': upgradeall = B_TRUE; break; case 'v': showversions = B_TRUE; break; case 'V': cb.cb_version = strtoll(optarg, &end, 10); if (*end != '\0' || !SPA_VERSION_IS_SUPPORTED(cb.cb_version)) { (void) fprintf(stderr, gettext("invalid version '%s'\n"), optarg); usage(B_FALSE); } break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } cb.cb_argc = argc; cb.cb_argv = argv; argc -= optind; argv += optind; if (cb.cb_version == 0) { cb.cb_version = SPA_VERSION; } else if (!upgradeall && argc == 0) { (void) fprintf(stderr, gettext("-V option is " "incompatible with other arguments\n")); usage(B_FALSE); } if (showversions) { if (upgradeall || argc != 0) { (void) fprintf(stderr, gettext("-v option is " "incompatible with other arguments\n")); usage(B_FALSE); } } else if (upgradeall) { if (argc != 0) { (void) fprintf(stderr, gettext("-a option should not " "be used along with a pool name\n")); usage(B_FALSE); } } (void) printf(gettext("This system supports ZFS pool feature " "flags.\n\n")); if (showversions) { int i; (void) printf(gettext("The following features are " "supported:\n\n")); (void) printf(gettext("FEAT DESCRIPTION\n")); (void) printf("----------------------------------------------" "---------------\n"); for (i = 0; i < SPA_FEATURES; i++) { zfeature_info_t *fi = &spa_feature_table[i]; const char *ro = (fi->fi_flags & ZFEATURE_FLAG_READONLY_COMPAT) ? " (read-only compatible)" : ""; (void) printf("%-37s%s\n", fi->fi_uname, ro); (void) printf(" %s\n", fi->fi_desc); } (void) printf("\n"); (void) printf(gettext("The following legacy versions are also " "supported:\n\n")); (void) printf(gettext("VER DESCRIPTION\n")); (void) printf("--- -----------------------------------------" "---------------\n"); (void) printf(gettext(" 1 Initial ZFS version\n")); (void) printf(gettext(" 2 Ditto blocks " "(replicated metadata)\n")); (void) printf(gettext(" 3 Hot spares and double parity " "RAID-Z\n")); (void) printf(gettext(" 4 zpool history\n")); (void) printf(gettext(" 5 Compression using the gzip " "algorithm\n")); (void) printf(gettext(" 6 bootfs pool property\n")); (void) printf(gettext(" 7 Separate intent log devices\n")); (void) printf(gettext(" 8 Delegated administration\n")); (void) printf(gettext(" 9 refquota and refreservation " "properties\n")); (void) printf(gettext(" 10 Cache devices\n")); (void) printf(gettext(" 11 Improved scrub performance\n")); (void) printf(gettext(" 12 Snapshot properties\n")); (void) printf(gettext(" 13 snapused property\n")); (void) printf(gettext(" 14 passthrough-x aclinherit\n")); (void) printf(gettext(" 15 user/group space accounting\n")); (void) printf(gettext(" 16 stmf property support\n")); (void) printf(gettext(" 17 Triple-parity RAID-Z\n")); (void) printf(gettext(" 18 Snapshot user holds\n")); (void) printf(gettext(" 19 Log device removal\n")); (void) printf(gettext(" 20 Compression using zle " "(zero-length encoding)\n")); (void) printf(gettext(" 21 Deduplication\n")); (void) printf(gettext(" 22 Received properties\n")); (void) printf(gettext(" 23 Slim ZIL\n")); (void) printf(gettext(" 24 System attributes\n")); (void) printf(gettext(" 25 Improved scrub stats\n")); (void) printf(gettext(" 26 Improved snapshot deletion " "performance\n")); (void) printf(gettext(" 27 Improved snapshot creation " "performance\n")); (void) printf(gettext(" 28 Multiple vdev replacements\n")); (void) printf(gettext("\nFor more information on a particular " "version, including supported releases,\n")); (void) printf(gettext("see the ZFS Administration Guide.\n\n")); } else if (argc == 0 && upgradeall) { cb.cb_first = B_TRUE; ret = zpool_iter(g_zfs, upgrade_cb, &cb); if (ret == 0 && cb.cb_first) { if (cb.cb_version == SPA_VERSION) { (void) printf(gettext("All %spools are already " "formatted using feature flags.\n\n"), cb.cb_unavail ? gettext("available ") : ""); (void) printf(gettext("Every %sfeature flags " "pool already has all supported features " "enabled.\n"), cb.cb_unavail ? gettext("available ") : ""); } else { (void) printf(gettext("All pools are already " "formatted with version %llu or higher.\n"), cb.cb_version); } } } else if (argc == 0) { cb.cb_first = B_TRUE; ret = zpool_iter(g_zfs, upgrade_list_unavail, &cb); assert(ret == 0); if (!cb.cb_first) { (void) fprintf(stderr, "\n"); } cb.cb_first = B_TRUE; ret = zpool_iter(g_zfs, upgrade_list_older_cb, &cb); assert(ret == 0); if (cb.cb_first) { (void) printf(gettext("All %spools are formatted using " "feature flags.\n\n"), cb.cb_unavail ? gettext("available ") : ""); } else { (void) printf(gettext("\nUse 'zpool upgrade -v' " "for a list of available legacy versions.\n")); } cb.cb_first = B_TRUE; ret = zpool_iter(g_zfs, upgrade_list_disabled_cb, &cb); assert(ret == 0); if (cb.cb_first) { (void) printf(gettext("Every %sfeature flags pool has " "all supported features enabled.\n"), cb.cb_unavail ? gettext("available ") : ""); } else { (void) printf(gettext("\n")); } } else { ret = for_each_pool(argc, argv, B_TRUE, NULL, upgrade_one, &cb); } if (cb.cb_poolname[0] != '\0') { (void) printf( "If you boot from pool '%s', don't forget to update boot code.\n" "Assuming you use GPT partitioning and da0 is your boot disk\n" "the following command will do it:\n" "\n" "\tgpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 da0\n\n", cb.cb_poolname); } return (ret); } typedef struct hist_cbdata { boolean_t first; boolean_t longfmt; boolean_t internal; } hist_cbdata_t; /* * Print out the command history for a specific pool. */ static int get_history_one(zpool_handle_t *zhp, void *data) { nvlist_t *nvhis; nvlist_t **records; uint_t numrecords; int ret, i; hist_cbdata_t *cb = (hist_cbdata_t *)data; cb->first = B_FALSE; (void) printf(gettext("History for '%s':\n"), zpool_get_name(zhp)); if ((ret = zpool_get_history(zhp, &nvhis)) != 0) return (ret); verify(nvlist_lookup_nvlist_array(nvhis, ZPOOL_HIST_RECORD, &records, &numrecords) == 0); for (i = 0; i < numrecords; i++) { nvlist_t *rec = records[i]; char tbuf[30] = ""; if (nvlist_exists(rec, ZPOOL_HIST_TIME)) { time_t tsec; struct tm t; tsec = fnvlist_lookup_uint64(records[i], ZPOOL_HIST_TIME); (void) localtime_r(&tsec, &t); (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); } if (nvlist_exists(rec, ZPOOL_HIST_CMD)) { (void) printf("%s %s", tbuf, fnvlist_lookup_string(rec, ZPOOL_HIST_CMD)); } else if (nvlist_exists(rec, ZPOOL_HIST_INT_EVENT)) { int ievent = fnvlist_lookup_uint64(rec, ZPOOL_HIST_INT_EVENT); if (!cb->internal) continue; if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) { (void) printf("%s unrecognized record:\n", tbuf); dump_nvlist(rec, 4); continue; } (void) printf("%s [internal %s txg:%lld] %s", tbuf, zfs_history_event_names[ievent], fnvlist_lookup_uint64(rec, ZPOOL_HIST_TXG), fnvlist_lookup_string(rec, ZPOOL_HIST_INT_STR)); } else if (nvlist_exists(rec, ZPOOL_HIST_INT_NAME)) { if (!cb->internal) continue; (void) printf("%s [txg:%lld] %s", tbuf, fnvlist_lookup_uint64(rec, ZPOOL_HIST_TXG), fnvlist_lookup_string(rec, ZPOOL_HIST_INT_NAME)); if (nvlist_exists(rec, ZPOOL_HIST_DSNAME)) { (void) printf(" %s (%llu)", fnvlist_lookup_string(rec, ZPOOL_HIST_DSNAME), fnvlist_lookup_uint64(rec, ZPOOL_HIST_DSID)); } (void) printf(" %s", fnvlist_lookup_string(rec, ZPOOL_HIST_INT_STR)); } else if (nvlist_exists(rec, ZPOOL_HIST_IOCTL)) { if (!cb->internal) continue; (void) printf("%s ioctl %s\n", tbuf, fnvlist_lookup_string(rec, ZPOOL_HIST_IOCTL)); if (nvlist_exists(rec, ZPOOL_HIST_INPUT_NVL)) { (void) printf(" input:\n"); dump_nvlist(fnvlist_lookup_nvlist(rec, ZPOOL_HIST_INPUT_NVL), 8); } if (nvlist_exists(rec, ZPOOL_HIST_OUTPUT_NVL)) { (void) printf(" output:\n"); dump_nvlist(fnvlist_lookup_nvlist(rec, ZPOOL_HIST_OUTPUT_NVL), 8); } if (nvlist_exists(rec, ZPOOL_HIST_ERRNO)) { (void) printf(" errno: %lld\n", fnvlist_lookup_int64(rec, ZPOOL_HIST_ERRNO)); } } else { if (!cb->internal) continue; (void) printf("%s unrecognized record:\n", tbuf); dump_nvlist(rec, 4); } if (!cb->longfmt) { (void) printf("\n"); continue; } (void) printf(" ["); if (nvlist_exists(rec, ZPOOL_HIST_WHO)) { uid_t who = fnvlist_lookup_uint64(rec, ZPOOL_HIST_WHO); struct passwd *pwd = getpwuid(who); (void) printf("user %d ", (int)who); if (pwd != NULL) (void) printf("(%s) ", pwd->pw_name); } if (nvlist_exists(rec, ZPOOL_HIST_HOST)) { (void) printf("on %s", fnvlist_lookup_string(rec, ZPOOL_HIST_HOST)); } if (nvlist_exists(rec, ZPOOL_HIST_ZONE)) { (void) printf(":%s", fnvlist_lookup_string(rec, ZPOOL_HIST_ZONE)); } (void) printf("]"); (void) printf("\n"); } (void) printf("\n"); nvlist_free(nvhis); return (ret); } /* * zpool history * * Displays the history of commands that modified pools. */ int zpool_do_history(int argc, char **argv) { hist_cbdata_t cbdata = { 0 }; int ret; int c; cbdata.first = B_TRUE; /* check options */ while ((c = getopt(argc, argv, "li")) != -1) { switch (c) { case 'l': cbdata.longfmt = B_TRUE; break; case 'i': cbdata.internal = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; ret = for_each_pool(argc, argv, B_FALSE, NULL, get_history_one, &cbdata); if (argc == 0 && cbdata.first == B_TRUE) { (void) printf(gettext("no pools available\n")); return (0); } return (ret); } static int get_callback(zpool_handle_t *zhp, void *data) { zprop_get_cbdata_t *cbp = (zprop_get_cbdata_t *)data; char value[MAXNAMELEN]; zprop_source_t srctype; zprop_list_t *pl; for (pl = cbp->cb_proplist; pl != NULL; pl = pl->pl_next) { /* * Skip the special fake placeholder. This will also skip * over the name property when 'all' is specified. */ if (pl->pl_prop == ZPOOL_PROP_NAME && pl == cbp->cb_proplist) continue; if (pl->pl_prop == ZPROP_INVAL && (zpool_prop_feature(pl->pl_user_prop) || zpool_prop_unsupported(pl->pl_user_prop))) { srctype = ZPROP_SRC_LOCAL; if (zpool_prop_get_feature(zhp, pl->pl_user_prop, value, sizeof (value)) == 0) { zprop_print_one_property(zpool_get_name(zhp), cbp, pl->pl_user_prop, value, srctype, NULL, NULL); } } else { if (zpool_get_prop(zhp, pl->pl_prop, value, sizeof (value), &srctype, cbp->cb_literal) != 0) continue; zprop_print_one_property(zpool_get_name(zhp), cbp, zpool_prop_to_name(pl->pl_prop), value, srctype, NULL, NULL); } } return (0); } /* * zpool get [-Hp] [-o "all" | field[,...]] <"all" | property[,...]> ... * * -H Scripted mode. Don't display headers, and separate properties * by a single tab. * -o List of columns to display. Defaults to * "name,property,value,source". * -p Diplay values in parsable (exact) format. * * Get properties of pools in the system. Output space statistics * for each one as well as other attributes. */ int zpool_do_get(int argc, char **argv) { zprop_get_cbdata_t cb = { 0 }; zprop_list_t fake_name = { 0 }; int ret; int c, i; char *value; cb.cb_first = B_TRUE; /* * Set up default columns and sources. */ cb.cb_sources = ZPROP_SRC_ALL; cb.cb_columns[0] = GET_COL_NAME; cb.cb_columns[1] = GET_COL_PROPERTY; cb.cb_columns[2] = GET_COL_VALUE; cb.cb_columns[3] = GET_COL_SOURCE; cb.cb_type = ZFS_TYPE_POOL; /* check options */ while ((c = getopt(argc, argv, ":Hpo:")) != -1) { switch (c) { case 'p': cb.cb_literal = B_TRUE; break; case 'H': cb.cb_scripted = B_TRUE; break; case 'o': bzero(&cb.cb_columns, sizeof (cb.cb_columns)); i = 0; while (*optarg != '\0') { static char *col_subopts[] = { "name", "property", "value", "source", "all", NULL }; if (i == ZFS_GET_NCOLS) { (void) fprintf(stderr, gettext("too " "many fields given to -o " "option\n")); usage(B_FALSE); } switch (getsubopt(&optarg, col_subopts, &value)) { case 0: cb.cb_columns[i++] = GET_COL_NAME; break; case 1: cb.cb_columns[i++] = GET_COL_PROPERTY; break; case 2: cb.cb_columns[i++] = GET_COL_VALUE; break; case 3: cb.cb_columns[i++] = GET_COL_SOURCE; break; case 4: if (i > 0) { (void) fprintf(stderr, gettext("\"all\" conflicts " "with specific fields " "given to -o option\n")); usage(B_FALSE); } cb.cb_columns[0] = GET_COL_NAME; cb.cb_columns[1] = GET_COL_PROPERTY; cb.cb_columns[2] = GET_COL_VALUE; cb.cb_columns[3] = GET_COL_SOURCE; i = ZFS_GET_NCOLS; break; default: (void) fprintf(stderr, gettext("invalid column name " "'%s'\n"), suboptarg); usage(B_FALSE); } } break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; if (argc < 1) { (void) fprintf(stderr, gettext("missing property " "argument\n")); usage(B_FALSE); } if (zprop_get_list(g_zfs, argv[0], &cb.cb_proplist, ZFS_TYPE_POOL) != 0) usage(B_FALSE); argc--; argv++; if (cb.cb_proplist != NULL) { fake_name.pl_prop = ZPOOL_PROP_NAME; fake_name.pl_width = strlen(gettext("NAME")); fake_name.pl_next = cb.cb_proplist; cb.cb_proplist = &fake_name; } ret = for_each_pool(argc, argv, B_TRUE, &cb.cb_proplist, get_callback, &cb); if (cb.cb_proplist == &fake_name) zprop_free_list(fake_name.pl_next); else zprop_free_list(cb.cb_proplist); return (ret); } typedef struct set_cbdata { char *cb_propname; char *cb_value; boolean_t cb_any_successful; } set_cbdata_t; int set_callback(zpool_handle_t *zhp, void *data) { int error; set_cbdata_t *cb = (set_cbdata_t *)data; error = zpool_set_prop(zhp, cb->cb_propname, cb->cb_value); if (!error) cb->cb_any_successful = B_TRUE; return (error); } int zpool_do_set(int argc, char **argv) { set_cbdata_t cb = { 0 }; int error; if (argc > 1 && argv[1][0] == '-') { (void) fprintf(stderr, gettext("invalid option '%c'\n"), argv[1][1]); usage(B_FALSE); } if (argc < 2) { (void) fprintf(stderr, gettext("missing property=value " "argument\n")); usage(B_FALSE); } if (argc < 3) { (void) fprintf(stderr, gettext("missing pool name\n")); usage(B_FALSE); } if (argc > 3) { (void) fprintf(stderr, gettext("too many pool names\n")); usage(B_FALSE); } cb.cb_propname = argv[1]; cb.cb_value = strchr(cb.cb_propname, '='); if (cb.cb_value == NULL) { (void) fprintf(stderr, gettext("missing value in " "property=value argument\n")); usage(B_FALSE); } *(cb.cb_value) = '\0'; cb.cb_value++; error = for_each_pool(argc - 2, argv + 2, B_TRUE, NULL, set_callback, &cb); return (error); } static int find_command_idx(char *command, int *idx) { int i; for (i = 0; i < NCOMMAND; i++) { if (command_table[i].name == NULL) continue; if (strcmp(command, command_table[i].name) == 0) { *idx = i; return (0); } } return (1); } int main(int argc, char **argv) { int ret = 0; int i; char *cmdname; (void) setlocale(LC_ALL, ""); (void) textdomain(TEXT_DOMAIN); if ((g_zfs = libzfs_init()) == NULL) { (void) fprintf(stderr, gettext("internal error: failed to " "initialize ZFS library\n")); return (1); } libzfs_print_on_error(g_zfs, B_TRUE); opterr = 0; /* * Make sure the user has specified some command. */ if (argc < 2) { (void) fprintf(stderr, gettext("missing command\n")); usage(B_FALSE); } cmdname = argv[1]; /* * Special case '-?' */ if (strcmp(cmdname, "-?") == 0) usage(B_TRUE); zfs_save_arguments(argc, argv, history_str, sizeof (history_str)); /* * Run the appropriate command. */ if (find_command_idx(cmdname, &i) == 0) { current_command = &command_table[i]; ret = command_table[i].func(argc - 1, argv + 1); } else if (strchr(cmdname, '=')) { verify(find_command_idx("set", &i) == 0); current_command = &command_table[i]; ret = command_table[i].func(argc, argv); } else if (strcmp(cmdname, "freeze") == 0 && argc == 3) { /* * 'freeze' is a vile debugging abomination, so we treat * it as such. */ zfs_cmd_t zc = { 0 }; (void) strlcpy(zc.zc_name, argv[2], sizeof (zc.zc_name)); return (!!zfs_ioctl(g_zfs, ZFS_IOC_POOL_FREEZE, &zc)); } else { (void) fprintf(stderr, gettext("unrecognized " "command '%s'\n"), cmdname); usage(B_FALSE); } if (ret == 0 && log_history) (void) zpool_log_history(g_zfs, history_str); libzfs_fini(g_zfs); /* * The 'ZFS_ABORT' environment variable causes us to dump core on exit * for the purposes of running ::findleaks. */ if (getenv("ZFS_ABORT") != NULL) { (void) printf("dumping core by request\n"); abort(); } return (ret); } Index: head/cddl/contrib/opensolaris/lib/libzfs/common/libzfs.h =================================================================== --- head/cddl/contrib/opensolaris/lib/libzfs/common/libzfs.h (revision 329797) +++ head/cddl/contrib/opensolaris/lib/libzfs/common/libzfs.h (revision 329798) @@ -1,837 +1,838 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011 Pawel Jakub Dawidek. All rights reserved. * Copyright (c) 2011, 2017 by Delphix. All rights reserved. * Copyright (c) 2012, Joyent, Inc. All rights reserved. * Copyright (c) 2012 Martin Matuska . All rights reserved. * Copyright (c) 2013 Steven Hartland. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2016 Nexenta Systems, Inc. * Copyright (c) 2017 Datto Inc. */ #ifndef _LIBZFS_H #define _LIBZFS_H #include #include #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif /* * Miscellaneous ZFS constants */ #define ZFS_MAXPROPLEN MAXPATHLEN #define ZPOOL_MAXPROPLEN MAXPATHLEN /* * libzfs errors */ typedef enum zfs_error { EZFS_SUCCESS = 0, /* no error -- success */ EZFS_NOMEM = 2000, /* out of memory */ EZFS_BADPROP, /* invalid property value */ EZFS_PROPREADONLY, /* cannot set readonly property */ EZFS_PROPTYPE, /* property does not apply to dataset type */ EZFS_PROPNONINHERIT, /* property is not inheritable */ EZFS_PROPSPACE, /* bad quota or reservation */ EZFS_BADTYPE, /* dataset is not of appropriate type */ EZFS_BUSY, /* pool or dataset is busy */ EZFS_EXISTS, /* pool or dataset already exists */ EZFS_NOENT, /* no such pool or dataset */ EZFS_BADSTREAM, /* bad backup stream */ EZFS_DSREADONLY, /* dataset is readonly */ EZFS_VOLTOOBIG, /* volume is too large for 32-bit system */ EZFS_INVALIDNAME, /* invalid dataset name */ EZFS_BADRESTORE, /* unable to restore to destination */ EZFS_BADBACKUP, /* backup failed */ EZFS_BADTARGET, /* bad attach/detach/replace target */ EZFS_NODEVICE, /* no such device in pool */ EZFS_BADDEV, /* invalid device to add */ EZFS_NOREPLICAS, /* no valid replicas */ EZFS_RESILVERING, /* currently resilvering */ EZFS_BADVERSION, /* unsupported version */ EZFS_POOLUNAVAIL, /* pool is currently unavailable */ EZFS_DEVOVERFLOW, /* too many devices in one vdev */ EZFS_BADPATH, /* must be an absolute path */ EZFS_CROSSTARGET, /* rename or clone across pool or dataset */ EZFS_ZONED, /* used improperly in local zone */ EZFS_MOUNTFAILED, /* failed to mount dataset */ EZFS_UMOUNTFAILED, /* failed to unmount dataset */ EZFS_UNSHARENFSFAILED, /* unshare(1M) failed */ EZFS_SHARENFSFAILED, /* share(1M) failed */ EZFS_PERM, /* permission denied */ EZFS_NOSPC, /* out of space */ EZFS_FAULT, /* bad address */ EZFS_IO, /* I/O error */ EZFS_INTR, /* signal received */ EZFS_ISSPARE, /* device is a hot spare */ EZFS_INVALCONFIG, /* invalid vdev configuration */ EZFS_RECURSIVE, /* recursive dependency */ EZFS_NOHISTORY, /* no history object */ EZFS_POOLPROPS, /* couldn't retrieve pool props */ EZFS_POOL_NOTSUP, /* ops not supported for this type of pool */ EZFS_POOL_INVALARG, /* invalid argument for this pool operation */ EZFS_NAMETOOLONG, /* dataset name is too long */ EZFS_OPENFAILED, /* open of device failed */ EZFS_NOCAP, /* couldn't get capacity */ EZFS_LABELFAILED, /* write of label failed */ EZFS_BADWHO, /* invalid permission who */ EZFS_BADPERM, /* invalid permission */ EZFS_BADPERMSET, /* invalid permission set name */ EZFS_NODELEGATION, /* delegated administration is disabled */ EZFS_UNSHARESMBFAILED, /* failed to unshare over smb */ EZFS_SHARESMBFAILED, /* failed to share over smb */ EZFS_BADCACHE, /* bad cache file */ EZFS_ISL2CACHE, /* device is for the level 2 ARC */ EZFS_VDEVNOTSUP, /* unsupported vdev type */ EZFS_NOTSUP, /* ops not supported on this dataset */ EZFS_ACTIVE_SPARE, /* pool has active shared spare devices */ EZFS_UNPLAYED_LOGS, /* log device has unplayed logs */ EZFS_REFTAG_RELE, /* snapshot release: tag not found */ EZFS_REFTAG_HOLD, /* snapshot hold: tag already exists */ EZFS_TAGTOOLONG, /* snapshot hold/rele: tag too long */ EZFS_PIPEFAILED, /* pipe create failed */ EZFS_THREADCREATEFAILED, /* thread create failed */ EZFS_POSTSPLIT_ONLINE, /* onlining a disk after splitting it */ EZFS_SCRUBBING, /* currently scrubbing */ EZFS_NO_SCRUB, /* no active scrub */ EZFS_DIFF, /* general failure of zfs diff */ EZFS_DIFFDATA, /* bad zfs diff data */ EZFS_POOLREADONLY, /* pool is in read-only mode */ EZFS_SCRUB_PAUSED, /* scrub currently paused */ EZFS_NO_PENDING, /* cannot cancel, no operation is pending */ EZFS_UNKNOWN } zfs_error_t; /* * UEFI boot support parameters. When creating whole disk boot pool, * zpool create should allow to create EFI System partition for UEFI boot * program. In case of BIOS, the EFI System partition is not used * even if it does exist. */ typedef enum zpool_boot_label { ZPOOL_NO_BOOT_LABEL = 0, ZPOOL_CREATE_BOOT_LABEL, ZPOOL_COPY_BOOT_LABEL } zpool_boot_label_t; /* * The following data structures are all part * of the zfs_allow_t data structure which is * used for printing 'allow' permissions. * It is a linked list of zfs_allow_t's which * then contain avl tree's for user/group/sets/... * and each one of the entries in those trees have * avl tree's for the permissions they belong to and * whether they are local,descendent or local+descendent * permissions. The AVL trees are used primarily for * sorting purposes, but also so that we can quickly find * a given user and or permission. */ typedef struct zfs_perm_node { avl_node_t z_node; char z_pname[MAXPATHLEN]; } zfs_perm_node_t; typedef struct zfs_allow_node { avl_node_t z_node; char z_key[MAXPATHLEN]; /* name, such as joe */ avl_tree_t z_localdescend; /* local+descendent perms */ avl_tree_t z_local; /* local permissions */ avl_tree_t z_descend; /* descendent permissions */ } zfs_allow_node_t; typedef struct zfs_allow { struct zfs_allow *z_next; char z_setpoint[MAXPATHLEN]; avl_tree_t z_sets; avl_tree_t z_crperms; avl_tree_t z_user; avl_tree_t z_group; avl_tree_t z_everyone; } zfs_allow_t; /* * Basic handle types */ typedef struct zfs_handle zfs_handle_t; typedef struct zpool_handle zpool_handle_t; typedef struct libzfs_handle libzfs_handle_t; /* * Library initialization */ extern libzfs_handle_t *libzfs_init(void); extern void libzfs_fini(libzfs_handle_t *); extern libzfs_handle_t *zpool_get_handle(zpool_handle_t *); extern libzfs_handle_t *zfs_get_handle(zfs_handle_t *); extern void libzfs_print_on_error(libzfs_handle_t *, boolean_t); extern void zfs_save_arguments(int argc, char **, char *, int); extern int zpool_log_history(libzfs_handle_t *, const char *); extern int libzfs_errno(libzfs_handle_t *); extern const char *libzfs_error_action(libzfs_handle_t *); extern const char *libzfs_error_description(libzfs_handle_t *); extern int zfs_standard_error(libzfs_handle_t *, int, const char *); extern void libzfs_mnttab_init(libzfs_handle_t *); extern void libzfs_mnttab_fini(libzfs_handle_t *); extern void libzfs_mnttab_cache(libzfs_handle_t *, boolean_t); extern int libzfs_mnttab_find(libzfs_handle_t *, const char *, struct mnttab *); extern void libzfs_mnttab_add(libzfs_handle_t *, const char *, const char *, const char *); extern void libzfs_mnttab_remove(libzfs_handle_t *, const char *); /* * Basic handle functions */ extern zpool_handle_t *zpool_open(libzfs_handle_t *, const char *); extern zpool_handle_t *zpool_open_canfail(libzfs_handle_t *, const char *); extern void zpool_close(zpool_handle_t *); extern const char *zpool_get_name(zpool_handle_t *); extern int zpool_get_state(zpool_handle_t *); extern const char *zpool_state_to_name(vdev_state_t, vdev_aux_t); extern const char *zpool_pool_state_to_name(pool_state_t); extern void zpool_free_handles(libzfs_handle_t *); extern int zpool_nextboot(libzfs_handle_t *, uint64_t, uint64_t, const char *); /* * Iterate over all active pools in the system. */ typedef int (*zpool_iter_f)(zpool_handle_t *, void *); extern int zpool_iter(libzfs_handle_t *, zpool_iter_f, void *); extern boolean_t zpool_skip_pool(const char *); /* * Functions to create and destroy pools */ extern int zpool_create(libzfs_handle_t *, const char *, nvlist_t *, nvlist_t *, nvlist_t *); extern int zpool_destroy(zpool_handle_t *, const char *); extern int zpool_add(zpool_handle_t *, nvlist_t *); typedef struct splitflags { /* do not split, but return the config that would be split off */ int dryrun : 1; /* after splitting, import the pool */ int import : 1; } splitflags_t; /* * Functions to manipulate pool and vdev state */ extern int zpool_scan(zpool_handle_t *, pool_scan_func_t, pool_scrub_cmd_t); extern int zpool_clear(zpool_handle_t *, const char *, nvlist_t *); extern int zpool_reguid(zpool_handle_t *); extern int zpool_reopen(zpool_handle_t *); extern int zpool_vdev_online(zpool_handle_t *, const char *, int, vdev_state_t *); extern int zpool_vdev_offline(zpool_handle_t *, const char *, boolean_t); extern int zpool_vdev_attach(zpool_handle_t *, const char *, const char *, nvlist_t *, int); extern int zpool_vdev_detach(zpool_handle_t *, const char *); extern int zpool_vdev_remove(zpool_handle_t *, const char *); extern int zpool_vdev_remove_cancel(zpool_handle_t *); extern int zpool_vdev_indirect_size(zpool_handle_t *, const char *, uint64_t *); extern int zpool_vdev_split(zpool_handle_t *, char *, nvlist_t **, nvlist_t *, splitflags_t); extern int zpool_vdev_fault(zpool_handle_t *, uint64_t, vdev_aux_t); extern int zpool_vdev_degrade(zpool_handle_t *, uint64_t, vdev_aux_t); extern int zpool_vdev_clear(zpool_handle_t *, uint64_t); extern nvlist_t *zpool_find_vdev(zpool_handle_t *, const char *, boolean_t *, boolean_t *, boolean_t *); extern nvlist_t *zpool_find_vdev_by_physpath(zpool_handle_t *, const char *, boolean_t *, boolean_t *, boolean_t *); extern int zpool_label_disk(libzfs_handle_t *, zpool_handle_t *, const char *, zpool_boot_label_t, uint64_t, int *); /* * Functions to manage pool properties */ extern int zpool_set_prop(zpool_handle_t *, const char *, const char *); extern int zpool_get_prop(zpool_handle_t *, zpool_prop_t, char *, size_t proplen, zprop_source_t *, boolean_t); extern uint64_t zpool_get_prop_int(zpool_handle_t *, zpool_prop_t, zprop_source_t *); extern const char *zpool_prop_to_name(zpool_prop_t); extern const char *zpool_prop_values(zpool_prop_t); /* * Pool health statistics. */ typedef enum { /* * The following correspond to faults as defined in the (fault.fs.zfs.*) * event namespace. Each is associated with a corresponding message ID. */ ZPOOL_STATUS_CORRUPT_CACHE, /* corrupt /kernel/drv/zpool.cache */ ZPOOL_STATUS_MISSING_DEV_R, /* missing device with replicas */ ZPOOL_STATUS_MISSING_DEV_NR, /* missing device with no replicas */ ZPOOL_STATUS_CORRUPT_LABEL_R, /* bad device label with replicas */ ZPOOL_STATUS_CORRUPT_LABEL_NR, /* bad device label with no replicas */ ZPOOL_STATUS_BAD_GUID_SUM, /* sum of device guids didn't match */ ZPOOL_STATUS_CORRUPT_POOL, /* pool metadata is corrupted */ ZPOOL_STATUS_CORRUPT_DATA, /* data errors in user (meta)data */ ZPOOL_STATUS_FAILING_DEV, /* device experiencing errors */ ZPOOL_STATUS_VERSION_NEWER, /* newer on-disk version */ ZPOOL_STATUS_HOSTID_MISMATCH, /* last accessed by another system */ ZPOOL_STATUS_IO_FAILURE_WAIT, /* failed I/O, failmode 'wait' */ ZPOOL_STATUS_IO_FAILURE_CONTINUE, /* failed I/O, failmode 'continue' */ ZPOOL_STATUS_BAD_LOG, /* cannot read log chain(s) */ /* * If the pool has unsupported features but can still be opened in * read-only mode, its status is ZPOOL_STATUS_UNSUP_FEAT_WRITE. If the * pool has unsupported features but cannot be opened at all, its * status is ZPOOL_STATUS_UNSUP_FEAT_READ. */ ZPOOL_STATUS_UNSUP_FEAT_READ, /* unsupported features for read */ ZPOOL_STATUS_UNSUP_FEAT_WRITE, /* unsupported features for write */ /* * These faults have no corresponding message ID. At the time we are * checking the status, the original reason for the FMA fault (I/O or * checksum errors) has been lost. */ ZPOOL_STATUS_FAULTED_DEV_R, /* faulted device with replicas */ ZPOOL_STATUS_FAULTED_DEV_NR, /* faulted device with no replicas */ /* * The following are not faults per se, but still an error possibly * requiring administrative attention. There is no corresponding * message ID. */ ZPOOL_STATUS_VERSION_OLDER, /* older legacy on-disk version */ ZPOOL_STATUS_FEAT_DISABLED, /* supported features are disabled */ ZPOOL_STATUS_RESILVERING, /* device being resilvered */ ZPOOL_STATUS_OFFLINE_DEV, /* device offline */ ZPOOL_STATUS_REMOVED_DEV, /* removed device */ ZPOOL_STATUS_NON_NATIVE_ASHIFT, /* (e.g. 512e dev with ashift of 9) */ /* * Finally, the following indicates a healthy pool. */ ZPOOL_STATUS_OK } zpool_status_t; extern zpool_status_t zpool_get_status(zpool_handle_t *, char **); extern zpool_status_t zpool_import_status(nvlist_t *, char **); extern void zpool_dump_ddt(const ddt_stat_t *dds, const ddt_histogram_t *ddh); /* * Statistics and configuration functions. */ extern nvlist_t *zpool_get_config(zpool_handle_t *, nvlist_t **); extern nvlist_t *zpool_get_features(zpool_handle_t *); extern int zpool_refresh_stats(zpool_handle_t *, boolean_t *); extern int zpool_get_errlog(zpool_handle_t *, nvlist_t **); extern boolean_t zpool_is_bootable(zpool_handle_t *); /* * Import and export functions */ extern int zpool_export(zpool_handle_t *, boolean_t, const char *); extern int zpool_export_force(zpool_handle_t *, const char *); extern int zpool_import(libzfs_handle_t *, nvlist_t *, const char *, char *altroot); extern int zpool_import_props(libzfs_handle_t *, nvlist_t *, const char *, nvlist_t *, int); extern void zpool_print_unsup_feat(nvlist_t *config); /* * Search for pools to import */ typedef struct importargs { char **path; /* a list of paths to search */ int paths; /* number of paths to search */ char *poolname; /* name of a pool to find */ uint64_t guid; /* guid of a pool to find */ char *cachefile; /* cachefile to use for import */ int can_be_active : 1; /* can the pool be active? */ int unique : 1; /* does 'poolname' already exist? */ int exists : 1; /* set on return if pool already exists */ + nvlist_t *policy; /* rewind policy (rewind txg, etc.) */ } importargs_t; extern nvlist_t *zpool_search_import(libzfs_handle_t *, importargs_t *); /* legacy pool search routines */ extern nvlist_t *zpool_find_import(libzfs_handle_t *, int, char **); extern nvlist_t *zpool_find_import_cached(libzfs_handle_t *, const char *, char *, uint64_t); /* * Miscellaneous pool functions */ struct zfs_cmd; extern const char *zfs_history_event_names[]; extern char *zpool_vdev_name(libzfs_handle_t *, zpool_handle_t *, nvlist_t *, boolean_t verbose); extern int zpool_upgrade(zpool_handle_t *, uint64_t); extern int zpool_get_history(zpool_handle_t *, nvlist_t **); extern int zpool_history_unpack(char *, uint64_t, uint64_t *, nvlist_t ***, uint_t *); extern void zpool_obj_to_path(zpool_handle_t *, uint64_t, uint64_t, char *, size_t len); extern int zfs_ioctl(libzfs_handle_t *, int request, struct zfs_cmd *); extern int zpool_get_physpath(zpool_handle_t *, char *, size_t); extern void zpool_explain_recover(libzfs_handle_t *, const char *, int, nvlist_t *); /* * Basic handle manipulations. These functions do not create or destroy the * underlying datasets, only the references to them. */ extern zfs_handle_t *zfs_open(libzfs_handle_t *, const char *, int); extern zfs_handle_t *zfs_handle_dup(zfs_handle_t *); extern void zfs_close(zfs_handle_t *); extern zfs_type_t zfs_get_type(const zfs_handle_t *); extern const char *zfs_get_name(const zfs_handle_t *); extern zpool_handle_t *zfs_get_pool_handle(const zfs_handle_t *); extern const char *zfs_get_pool_name(const zfs_handle_t *); /* * Property management functions. Some functions are shared with the kernel, * and are found in sys/fs/zfs.h. */ /* * zfs dataset property management */ extern const char *zfs_prop_default_string(zfs_prop_t); extern uint64_t zfs_prop_default_numeric(zfs_prop_t); extern const char *zfs_prop_column_name(zfs_prop_t); extern boolean_t zfs_prop_align_right(zfs_prop_t); extern nvlist_t *zfs_valid_proplist(libzfs_handle_t *, zfs_type_t, nvlist_t *, uint64_t, zfs_handle_t *, zpool_handle_t *, const char *); extern const char *zfs_prop_to_name(zfs_prop_t); extern int zfs_prop_set(zfs_handle_t *, const char *, const char *); extern int zfs_prop_set_list(zfs_handle_t *, nvlist_t *); extern int zfs_prop_get(zfs_handle_t *, zfs_prop_t, char *, size_t, zprop_source_t *, char *, size_t, boolean_t); extern int zfs_prop_get_recvd(zfs_handle_t *, const char *, char *, size_t, boolean_t); extern int zfs_prop_get_numeric(zfs_handle_t *, zfs_prop_t, uint64_t *, zprop_source_t *, char *, size_t); extern int zfs_prop_get_userquota_int(zfs_handle_t *zhp, const char *propname, uint64_t *propvalue); extern int zfs_prop_get_userquota(zfs_handle_t *zhp, const char *propname, char *propbuf, int proplen, boolean_t literal); extern int zfs_prop_get_written_int(zfs_handle_t *zhp, const char *propname, uint64_t *propvalue); extern int zfs_prop_get_written(zfs_handle_t *zhp, const char *propname, char *propbuf, int proplen, boolean_t literal); extern int zfs_prop_get_feature(zfs_handle_t *zhp, const char *propname, char *buf, size_t len); extern uint64_t zfs_prop_get_int(zfs_handle_t *, zfs_prop_t); extern int zfs_prop_inherit(zfs_handle_t *, const char *, boolean_t); extern const char *zfs_prop_values(zfs_prop_t); extern int zfs_prop_is_string(zfs_prop_t prop); extern nvlist_t *zfs_get_user_props(zfs_handle_t *); extern nvlist_t *zfs_get_recvd_props(zfs_handle_t *); extern nvlist_t *zfs_get_clones_nvl(zfs_handle_t *); typedef struct zprop_list { int pl_prop; char *pl_user_prop; struct zprop_list *pl_next; boolean_t pl_all; size_t pl_width; size_t pl_recvd_width; boolean_t pl_fixed; } zprop_list_t; extern int zfs_expand_proplist(zfs_handle_t *, zprop_list_t **, boolean_t, boolean_t); extern void zfs_prune_proplist(zfs_handle_t *, uint8_t *); #define ZFS_MOUNTPOINT_NONE "none" #define ZFS_MOUNTPOINT_LEGACY "legacy" #define ZFS_FEATURE_DISABLED "disabled" #define ZFS_FEATURE_ENABLED "enabled" #define ZFS_FEATURE_ACTIVE "active" #define ZFS_UNSUPPORTED_INACTIVE "inactive" #define ZFS_UNSUPPORTED_READONLY "readonly" /* * zpool property management */ extern int zpool_expand_proplist(zpool_handle_t *, zprop_list_t **); extern int zpool_prop_get_feature(zpool_handle_t *, const char *, char *, size_t); extern const char *zpool_prop_default_string(zpool_prop_t); extern uint64_t zpool_prop_default_numeric(zpool_prop_t); extern const char *zpool_prop_column_name(zpool_prop_t); extern boolean_t zpool_prop_align_right(zpool_prop_t); /* * Functions shared by zfs and zpool property management. */ extern int zprop_iter(zprop_func func, void *cb, boolean_t show_all, boolean_t ordered, zfs_type_t type); extern int zprop_get_list(libzfs_handle_t *, char *, zprop_list_t **, zfs_type_t); extern void zprop_free_list(zprop_list_t *); #define ZFS_GET_NCOLS 5 typedef enum { GET_COL_NONE, GET_COL_NAME, GET_COL_PROPERTY, GET_COL_VALUE, GET_COL_RECVD, GET_COL_SOURCE } zfs_get_column_t; /* * Functions for printing zfs or zpool properties */ typedef struct zprop_get_cbdata { int cb_sources; zfs_get_column_t cb_columns[ZFS_GET_NCOLS]; int cb_colwidths[ZFS_GET_NCOLS + 1]; boolean_t cb_scripted; boolean_t cb_literal; boolean_t cb_first; zprop_list_t *cb_proplist; zfs_type_t cb_type; } zprop_get_cbdata_t; void zprop_print_one_property(const char *, zprop_get_cbdata_t *, const char *, const char *, zprop_source_t, const char *, const char *); /* * Iterator functions. */ typedef int (*zfs_iter_f)(zfs_handle_t *, void *); extern int zfs_iter_root(libzfs_handle_t *, zfs_iter_f, void *); extern int zfs_iter_children(zfs_handle_t *, zfs_iter_f, void *); extern int zfs_iter_dependents(zfs_handle_t *, boolean_t, zfs_iter_f, void *); extern int zfs_iter_filesystems(zfs_handle_t *, zfs_iter_f, void *); extern int zfs_iter_snapshots(zfs_handle_t *, boolean_t, zfs_iter_f, void *); extern int zfs_iter_snapshots_sorted(zfs_handle_t *, zfs_iter_f, void *); extern int zfs_iter_snapspec(zfs_handle_t *, const char *, zfs_iter_f, void *); extern int zfs_iter_bookmarks(zfs_handle_t *, zfs_iter_f, void *); typedef struct get_all_cb { zfs_handle_t **cb_handles; size_t cb_alloc; size_t cb_used; boolean_t cb_verbose; int (*cb_getone)(zfs_handle_t *, void *); } get_all_cb_t; void libzfs_add_handle(get_all_cb_t *, zfs_handle_t *); int libzfs_dataset_cmp(const void *, const void *); /* * Functions to create and destroy datasets. */ extern int zfs_create(libzfs_handle_t *, const char *, zfs_type_t, nvlist_t *); extern int zfs_create_ancestors(libzfs_handle_t *, const char *); extern int zfs_destroy(zfs_handle_t *, boolean_t); extern int zfs_destroy_snaps(zfs_handle_t *, char *, boolean_t); extern int zfs_destroy_snaps_nvl(libzfs_handle_t *, nvlist_t *, boolean_t); extern int zfs_clone(zfs_handle_t *, const char *, nvlist_t *); extern int zfs_snapshot(libzfs_handle_t *, const char *, boolean_t, nvlist_t *); extern int zfs_snapshot_nvl(libzfs_handle_t *hdl, nvlist_t *snaps, nvlist_t *props); extern int zfs_rollback(zfs_handle_t *, zfs_handle_t *, boolean_t); typedef struct renameflags { /* recursive rename */ int recurse : 1; /* don't unmount file systems */ int nounmount : 1; /* force unmount file systems */ int forceunmount : 1; } renameflags_t; extern int zfs_rename(zfs_handle_t *, const char *, const char *, renameflags_t flags); typedef struct sendflags { /* print informational messages (ie, -v was specified) */ boolean_t verbose; /* recursive send (ie, -R) */ boolean_t replicate; /* for incrementals, do all intermediate snapshots */ boolean_t doall; /* if dataset is a clone, do incremental from its origin */ boolean_t fromorigin; /* do deduplication */ boolean_t dedup; /* send properties (ie, -p) */ boolean_t props; /* do not send (no-op, ie. -n) */ boolean_t dryrun; /* parsable verbose output (ie. -P) */ boolean_t parsable; /* show progress (ie. -v) */ boolean_t progress; /* large blocks (>128K) are permitted */ boolean_t largeblock; /* WRITE_EMBEDDED records of type DATA are permitted */ boolean_t embed_data; /* compressed WRITE records are permitted */ boolean_t compress; } sendflags_t; typedef boolean_t (snapfilter_cb_t)(zfs_handle_t *, void *); extern int zfs_send(zfs_handle_t *, const char *, const char *, sendflags_t *, int, snapfilter_cb_t, void *, nvlist_t **); extern int zfs_send_one(zfs_handle_t *, const char *, int, enum lzc_send_flags); extern int zfs_send_resume(libzfs_handle_t *, sendflags_t *, int outfd, const char *); extern nvlist_t *zfs_send_resume_token_to_nvlist(libzfs_handle_t *hdl, const char *token); extern int zfs_promote(zfs_handle_t *); extern int zfs_hold(zfs_handle_t *, const char *, const char *, boolean_t, int); extern int zfs_hold_nvl(zfs_handle_t *, int, nvlist_t *); extern int zfs_release(zfs_handle_t *, const char *, const char *, boolean_t); extern int zfs_get_holds(zfs_handle_t *, nvlist_t **); extern uint64_t zvol_volsize_to_reservation(uint64_t, nvlist_t *); typedef int (*zfs_userspace_cb_t)(void *arg, const char *domain, uid_t rid, uint64_t space); extern int zfs_userspace(zfs_handle_t *, zfs_userquota_prop_t, zfs_userspace_cb_t, void *); extern int zfs_get_fsacl(zfs_handle_t *, nvlist_t **); extern int zfs_set_fsacl(zfs_handle_t *, boolean_t, nvlist_t *); typedef struct recvflags { /* print informational messages (ie, -v was specified) */ boolean_t verbose; /* the destination is a prefix, not the exact fs (ie, -d) */ boolean_t isprefix; /* * Only the tail of the sent snapshot path is appended to the * destination to determine the received snapshot name (ie, -e). */ boolean_t istail; /* do not actually do the recv, just check if it would work (ie, -n) */ boolean_t dryrun; /* rollback/destroy filesystems as necessary (eg, -F) */ boolean_t force; /* set "canmount=off" on all modified filesystems */ boolean_t canmountoff; /* * Mark the file systems as "resumable" and do not destroy them if the * receive is interrupted */ boolean_t resumable; /* byteswap flag is used internally; callers need not specify */ boolean_t byteswap; /* do not mount file systems as they are extracted (private) */ boolean_t nomount; } recvflags_t; extern int zfs_receive(libzfs_handle_t *, const char *, nvlist_t *, recvflags_t *, int, avl_tree_t *); typedef enum diff_flags { ZFS_DIFF_PARSEABLE = 0x1, ZFS_DIFF_TIMESTAMP = 0x2, ZFS_DIFF_CLASSIFY = 0x4 } diff_flags_t; extern int zfs_show_diffs(zfs_handle_t *, int, const char *, const char *, int); /* * Miscellaneous functions. */ extern const char *zfs_type_to_name(zfs_type_t); extern void zfs_refresh_properties(zfs_handle_t *); extern int zfs_name_valid(const char *, zfs_type_t); extern zfs_handle_t *zfs_path_to_zhandle(libzfs_handle_t *, char *, zfs_type_t); extern boolean_t zfs_dataset_exists(libzfs_handle_t *, const char *, zfs_type_t); extern int zfs_spa_version(zfs_handle_t *, int *); extern boolean_t zfs_bookmark_exists(const char *path); /* * Mount support functions. */ extern boolean_t is_mounted(libzfs_handle_t *, const char *special, char **); extern boolean_t zfs_is_mounted(zfs_handle_t *, char **); extern int zfs_mount(zfs_handle_t *, const char *, int); extern int zfs_unmount(zfs_handle_t *, const char *, int); extern int zfs_unmountall(zfs_handle_t *, int); /* * Share support functions. */ extern boolean_t zfs_is_shared(zfs_handle_t *); extern int zfs_share(zfs_handle_t *); extern int zfs_unshare(zfs_handle_t *); /* * Protocol-specific share support functions. */ extern boolean_t zfs_is_shared_nfs(zfs_handle_t *, char **); extern boolean_t zfs_is_shared_smb(zfs_handle_t *, char **); extern int zfs_share_nfs(zfs_handle_t *); extern int zfs_share_smb(zfs_handle_t *); extern int zfs_shareall(zfs_handle_t *); extern int zfs_unshare_nfs(zfs_handle_t *, const char *); extern int zfs_unshare_smb(zfs_handle_t *, const char *); extern int zfs_unshareall_nfs(zfs_handle_t *); extern int zfs_unshareall_smb(zfs_handle_t *); extern int zfs_unshareall_bypath(zfs_handle_t *, const char *); extern int zfs_unshareall(zfs_handle_t *); extern int zfs_deleg_share_nfs(libzfs_handle_t *, char *, char *, char *, void *, void *, int, zfs_share_op_t); /* * FreeBSD-specific jail support function. */ extern int zfs_jail(zfs_handle_t *, int, int); /* * When dealing with nvlists, verify() is extremely useful */ #ifndef verify #ifdef NDEBUG #define verify(EX) ((void)(EX)) #else #define verify(EX) assert(EX) #endif #endif /* * Utility function to convert a number to a human-readable form. */ extern void zfs_nicenum(uint64_t, char *, size_t); extern int zfs_nicestrtonum(libzfs_handle_t *, const char *, uint64_t *); /* * Given a device or file, determine if it is part of a pool. */ extern int zpool_in_use(libzfs_handle_t *, int, pool_state_t *, char **, boolean_t *); /* * Label manipulation. */ extern int zpool_read_label(int, nvlist_t **); extern int zpool_read_all_labels(int, nvlist_t **); extern int zpool_clear_label(int); /* is this zvol valid for use as a dump device? */ extern int zvol_check_dump_config(char *); /* * Management interfaces for SMB ACL files */ int zfs_smb_acl_add(libzfs_handle_t *, char *, char *, char *); int zfs_smb_acl_remove(libzfs_handle_t *, char *, char *, char *); int zfs_smb_acl_purge(libzfs_handle_t *, char *, char *); int zfs_smb_acl_rename(libzfs_handle_t *, char *, char *, char *, char *); /* * Enable and disable datasets within a pool by mounting/unmounting and * sharing/unsharing them. */ extern int zpool_enable_datasets(zpool_handle_t *, const char *, int); extern int zpool_disable_datasets(zpool_handle_t *, boolean_t); /* * Mappings between vdev and FRU. */ extern void libzfs_fru_refresh(libzfs_handle_t *); extern const char *libzfs_fru_lookup(libzfs_handle_t *, const char *); extern const char *libzfs_fru_devpath(libzfs_handle_t *, const char *); extern boolean_t libzfs_fru_compare(libzfs_handle_t *, const char *, const char *); extern boolean_t libzfs_fru_notself(libzfs_handle_t *, const char *); extern int zpool_fru_set(zpool_handle_t *, uint64_t, const char *); #ifndef illumos extern int zmount(const char *, const char *, int, char *, char *, int, char *, int); #endif extern int zfs_remap_indirects(libzfs_handle_t *hdl, const char *); #ifdef __cplusplus } #endif #endif /* _LIBZFS_H */ Index: head/cddl/contrib/opensolaris/lib/libzfs/common/libzfs_import.c =================================================================== --- head/cddl/contrib/opensolaris/lib/libzfs/common/libzfs_import.c (revision 329797) +++ head/cddl/contrib/opensolaris/lib/libzfs/common/libzfs_import.c (revision 329798) @@ -1,1838 +1,1853 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2016 by Delphix. All rights reserved. * Copyright 2015 RackTop Systems. * Copyright 2016 Nexenta Systems, Inc. */ /* * Pool import support functions. * * To import a pool, we rely on reading the configuration information from the * ZFS label of each device. If we successfully read the label, then we * organize the configuration information in the following hierarchy: * * pool guid -> toplevel vdev guid -> label txg * * Duplicate entries matching this same tuple will be discarded. Once we have * examined every device, we pick the best label txg config for each toplevel * vdev. We then arrange these toplevel vdevs into a complete pool config, and * update any paths that have changed. Finally, we attempt to import the pool * using our derived config, and record the results. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "libzfs.h" #include "libzfs_impl.h" /* * Intermediate structures used to gather configuration information. */ typedef struct config_entry { uint64_t ce_txg; nvlist_t *ce_config; struct config_entry *ce_next; } config_entry_t; typedef struct vdev_entry { uint64_t ve_guid; config_entry_t *ve_configs; struct vdev_entry *ve_next; } vdev_entry_t; typedef struct pool_entry { uint64_t pe_guid; vdev_entry_t *pe_vdevs; struct pool_entry *pe_next; } pool_entry_t; typedef struct name_entry { char *ne_name; uint64_t ne_guid; struct name_entry *ne_next; } name_entry_t; typedef struct pool_list { pool_entry_t *pools; name_entry_t *names; } pool_list_t; static char * get_devid(const char *path) { #ifdef have_devid int fd; ddi_devid_t devid; char *minor, *ret; if ((fd = open(path, O_RDONLY)) < 0) return (NULL); minor = NULL; ret = NULL; if (devid_get(fd, &devid) == 0) { if (devid_get_minor_name(fd, &minor) == 0) ret = devid_str_encode(devid, minor); if (minor != NULL) devid_str_free(minor); devid_free(devid); } (void) close(fd); return (ret); #else return (NULL); #endif } /* * Go through and fix up any path and/or devid information for the given vdev * configuration. */ static int fix_paths(nvlist_t *nv, name_entry_t *names) { nvlist_t **child; uint_t c, children; uint64_t guid; name_entry_t *ne, *best; char *path, *devid; int matched; if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0) { for (c = 0; c < children; c++) if (fix_paths(child[c], names) != 0) return (-1); return (0); } /* * This is a leaf (file or disk) vdev. In either case, go through * the name list and see if we find a matching guid. If so, replace * the path and see if we can calculate a new devid. * * There may be multiple names associated with a particular guid, in * which case we have overlapping slices or multiple paths to the same * disk. If this is the case, then we want to pick the path that is * the most similar to the original, where "most similar" is the number * of matching characters starting from the end of the path. This will * preserve slice numbers even if the disks have been reorganized, and * will also catch preferred disk names if multiple paths exist. */ verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) path = NULL; matched = 0; best = NULL; for (ne = names; ne != NULL; ne = ne->ne_next) { if (ne->ne_guid == guid) { const char *src, *dst; int count; if (path == NULL) { best = ne; break; } src = ne->ne_name + strlen(ne->ne_name) - 1; dst = path + strlen(path) - 1; for (count = 0; src >= ne->ne_name && dst >= path; src--, dst--, count++) if (*src != *dst) break; /* * At this point, 'count' is the number of characters * matched from the end. */ if (count > matched || best == NULL) { best = ne; matched = count; } } } if (best == NULL) return (0); if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) return (-1); if ((devid = get_devid(best->ne_name)) == NULL) { (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); } else { if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) { devid_str_free(devid); return (-1); } devid_str_free(devid); } return (0); } /* * Add the given configuration to the list of known devices. */ static int add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path, nvlist_t *config) { uint64_t pool_guid, vdev_guid, top_guid, txg, state; pool_entry_t *pe; vdev_entry_t *ve; config_entry_t *ce; name_entry_t *ne; /* * If this is a hot spare not currently in use or level 2 cache * device, add it to the list of names to translate, but don't do * anything else. */ if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state) == 0 && (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) return (-1); if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { free(ne); return (-1); } ne->ne_guid = vdev_guid; ne->ne_next = pl->names; pl->names = ne; nvlist_free(config); return (0); } /* * If we have a valid config but cannot read any of these fields, then * it means we have a half-initialized label. In vdev_label_init() * we write a label with txg == 0 so that we can identify the device * in case the user refers to the same disk later on. If we fail to * create the pool, we'll be left with a label in this state * which should not be considered part of a valid pool. */ if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid) != 0 || nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) != 0 || nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, &top_guid) != 0 || nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) != 0 || txg == 0) { nvlist_free(config); return (0); } /* * First, see if we know about this pool. If not, then add it to the * list of known pools. */ for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { if (pe->pe_guid == pool_guid) break; } if (pe == NULL) { if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) { nvlist_free(config); return (-1); } pe->pe_guid = pool_guid; pe->pe_next = pl->pools; pl->pools = pe; } /* * Second, see if we know about this toplevel vdev. Add it if its * missing. */ for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { if (ve->ve_guid == top_guid) break; } if (ve == NULL) { if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { nvlist_free(config); return (-1); } ve->ve_guid = top_guid; ve->ve_next = pe->pe_vdevs; pe->pe_vdevs = ve; } /* * Third, see if we have a config with a matching transaction group. If * so, then we do nothing. Otherwise, add it to the list of known * configs. */ for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { if (ce->ce_txg == txg) break; } if (ce == NULL) { if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) { nvlist_free(config); return (-1); } ce->ce_txg = txg; ce->ce_config = config; ce->ce_next = ve->ve_configs; ve->ve_configs = ce; } else { nvlist_free(config); } /* * At this point we've successfully added our config to the list of * known configs. The last thing to do is add the vdev guid -> path * mappings so that we can fix up the configuration as necessary before * doing the import. */ if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) return (-1); if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { free(ne); return (-1); } ne->ne_guid = vdev_guid; ne->ne_next = pl->names; pl->names = ne; return (0); } /* * Returns true if the named pool matches the given GUID. */ static int pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid, boolean_t *isactive) { zpool_handle_t *zhp; uint64_t theguid; if (zpool_open_silent(hdl, name, &zhp) != 0) return (-1); if (zhp == NULL) { *isactive = B_FALSE; return (0); } verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID, &theguid) == 0); zpool_close(zhp); *isactive = (theguid == guid); return (0); } static nvlist_t * refresh_config(libzfs_handle_t *hdl, nvlist_t *config) { nvlist_t *nvl; zfs_cmd_t zc = { 0 }; int err, dstbuf_size; if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0) return (NULL); dstbuf_size = MAX(CONFIG_BUF_MINSIZE, zc.zc_nvlist_conf_size * 4); if (zcmd_alloc_dst_nvlist(hdl, &zc, dstbuf_size) != 0) { zcmd_free_nvlists(&zc); return (NULL); } while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT, &zc)) != 0 && errno == ENOMEM) { if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { zcmd_free_nvlists(&zc); return (NULL); } } if (err) { zcmd_free_nvlists(&zc); return (NULL); } if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) { zcmd_free_nvlists(&zc); return (NULL); } zcmd_free_nvlists(&zc); return (nvl); } /* * Determine if the vdev id is a hole in the namespace. */ boolean_t vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) { for (int c = 0; c < holes; c++) { /* Top-level is a hole */ if (hole_array[c] == id) return (B_TRUE); } return (B_FALSE); } /* * Convert our list of pools into the definitive set of configurations. We * start by picking the best config for each toplevel vdev. Once that's done, * we assemble the toplevel vdevs into a full config for the pool. We make a * pass to fix up any incorrect paths, and then add it to the main list to * return to the user. */ static nvlist_t * -get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok) +get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok, + nvlist_t *policy) { pool_entry_t *pe; vdev_entry_t *ve; config_entry_t *ce; nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot; nvlist_t **spares, **l2cache; uint_t i, nspares, nl2cache; boolean_t config_seen; uint64_t best_txg; char *name, *hostname = NULL; uint64_t guid; uint_t children = 0; nvlist_t **child = NULL; uint_t holes; uint64_t *hole_array, max_id; uint_t c; boolean_t isactive; uint64_t hostid; nvlist_t *nvl; boolean_t found_one = B_FALSE; boolean_t valid_top_config = B_FALSE; if (nvlist_alloc(&ret, 0, 0) != 0) goto nomem; for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { uint64_t id, max_txg = 0; if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) goto nomem; config_seen = B_FALSE; /* * Iterate over all toplevel vdevs. Grab the pool configuration * from the first one we find, and then go through the rest and * add them as necessary to the 'vdevs' member of the config. */ for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { /* * Determine the best configuration for this vdev by * selecting the config with the latest transaction * group. */ best_txg = 0; for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { if (ce->ce_txg > best_txg) { tmp = ce->ce_config; best_txg = ce->ce_txg; } } /* * We rely on the fact that the max txg for the * pool will contain the most up-to-date information * about the valid top-levels in the vdev namespace. */ if (best_txg > max_txg) { (void) nvlist_remove(config, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64); (void) nvlist_remove(config, ZPOOL_CONFIG_HOLE_ARRAY, DATA_TYPE_UINT64_ARRAY); max_txg = best_txg; hole_array = NULL; holes = 0; max_id = 0; valid_top_config = B_FALSE; if (nvlist_lookup_uint64(tmp, ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { verify(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, max_id) == 0); valid_top_config = B_TRUE; } if (nvlist_lookup_uint64_array(tmp, ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, &holes) == 0) { verify(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, hole_array, holes) == 0); } } if (!config_seen) { /* * Copy the relevant pieces of data to the pool * configuration: * * version * pool guid * name * comment (if available) * pool state * hostid (if available) * hostname (if available) */ uint64_t state, version; char *comment = NULL; version = fnvlist_lookup_uint64(tmp, ZPOOL_CONFIG_VERSION); fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, version); guid = fnvlist_lookup_uint64(tmp, ZPOOL_CONFIG_POOL_GUID); fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, guid); name = fnvlist_lookup_string(tmp, ZPOOL_CONFIG_POOL_NAME); fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, name); if (nvlist_lookup_string(tmp, ZPOOL_CONFIG_COMMENT, &comment) == 0) fnvlist_add_string(config, ZPOOL_CONFIG_COMMENT, comment); state = fnvlist_lookup_uint64(tmp, ZPOOL_CONFIG_POOL_STATE); fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state); hostid = 0; if (nvlist_lookup_uint64(tmp, ZPOOL_CONFIG_HOSTID, &hostid) == 0) { fnvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, hostid); hostname = fnvlist_lookup_string(tmp, ZPOOL_CONFIG_HOSTNAME); fnvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, hostname); } config_seen = B_TRUE; } /* * Add this top-level vdev to the child array. */ verify(nvlist_lookup_nvlist(tmp, ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, &id) == 0); if (id >= children) { nvlist_t **newchild; newchild = zfs_alloc(hdl, (id + 1) * sizeof (nvlist_t *)); if (newchild == NULL) goto nomem; for (c = 0; c < children; c++) newchild[c] = child[c]; free(child); child = newchild; children = id + 1; } if (nvlist_dup(nvtop, &child[id], 0) != 0) goto nomem; } /* * If we have information about all the top-levels then * clean up the nvlist which we've constructed. This * means removing any extraneous devices that are * beyond the valid range or adding devices to the end * of our array which appear to be missing. */ if (valid_top_config) { if (max_id < children) { for (c = max_id; c < children; c++) nvlist_free(child[c]); children = max_id; } else if (max_id > children) { nvlist_t **newchild; newchild = zfs_alloc(hdl, (max_id) * sizeof (nvlist_t *)); if (newchild == NULL) goto nomem; for (c = 0; c < children; c++) newchild[c] = child[c]; free(child); child = newchild; children = max_id; } } verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) == 0); /* * The vdev namespace may contain holes as a result of * device removal. We must add them back into the vdev * tree before we process any missing devices. */ if (holes > 0) { ASSERT(valid_top_config); for (c = 0; c < children; c++) { nvlist_t *holey; if (child[c] != NULL || !vdev_is_hole(hole_array, holes, c)) continue; if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 0) != 0) goto nomem; /* * Holes in the namespace are treated as * "hole" top-level vdevs and have a * special flag set on them. */ if (nvlist_add_string(holey, ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) != 0 || nvlist_add_uint64(holey, ZPOOL_CONFIG_ID, c) != 0 || nvlist_add_uint64(holey, ZPOOL_CONFIG_GUID, 0ULL) != 0) { nvlist_free(holey); goto nomem; } child[c] = holey; } } /* * Look for any missing top-level vdevs. If this is the case, * create a faked up 'missing' vdev as a placeholder. We cannot * simply compress the child array, because the kernel performs * certain checks to make sure the vdev IDs match their location * in the configuration. */ for (c = 0; c < children; c++) { if (child[c] == NULL) { nvlist_t *missing; if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 0) != 0) goto nomem; if (nvlist_add_string(missing, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MISSING) != 0 || nvlist_add_uint64(missing, ZPOOL_CONFIG_ID, c) != 0 || nvlist_add_uint64(missing, ZPOOL_CONFIG_GUID, 0ULL) != 0) { nvlist_free(missing); goto nomem; } child[c] = missing; } } /* * Put all of this pool's top-level vdevs into a root vdev. */ if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) goto nomem; if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 || nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, child, children) != 0) { nvlist_free(nvroot); goto nomem; } for (c = 0; c < children; c++) nvlist_free(child[c]); free(child); children = 0; child = NULL; /* * Go through and fix up any paths and/or devids based on our * known list of vdev GUID -> path mappings. */ if (fix_paths(nvroot, pl->names) != 0) { nvlist_free(nvroot); goto nomem; } /* * Add the root vdev to this pool's configuration. */ if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) != 0) { nvlist_free(nvroot); goto nomem; } nvlist_free(nvroot); /* * zdb uses this path to report on active pools that were * imported or created using -R. */ if (active_ok) goto add_pool; /* * Determine if this pool is currently active, in which case we * can't actually import it. */ verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &name) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) == 0); if (pool_active(hdl, name, guid, &isactive) != 0) goto error; if (isactive) { nvlist_free(config); config = NULL; continue; } + if (policy != NULL) { + if (nvlist_add_nvlist(config, ZPOOL_REWIND_POLICY, + policy) != 0) + goto nomem; + } + if ((nvl = refresh_config(hdl, config)) == NULL) { nvlist_free(config); config = NULL; continue; } nvlist_free(config); config = nvl; /* * Go through and update the paths for spares, now that we have * them. */ verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { for (i = 0; i < nspares; i++) { if (fix_paths(spares[i], pl->names) != 0) goto nomem; } } /* * Update the paths for l2cache devices. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { for (i = 0; i < nl2cache; i++) { if (fix_paths(l2cache[i], pl->names) != 0) goto nomem; } } /* * Restore the original information read from the actual label. */ (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, DATA_TYPE_UINT64); (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, DATA_TYPE_STRING); if (hostid != 0) { verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, hostid) == 0); verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, hostname) == 0); } add_pool: /* * Add this pool to the list of configs. */ verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &name) == 0); if (nvlist_add_nvlist(ret, name, config) != 0) goto nomem; found_one = B_TRUE; nvlist_free(config); config = NULL; } if (!found_one) { nvlist_free(ret); ret = NULL; } return (ret); nomem: (void) no_memory(hdl); error: nvlist_free(config); nvlist_free(ret); for (c = 0; c < children; c++) nvlist_free(child[c]); free(child); return (NULL); } /* * Return the offset of the given label. */ static uint64_t label_offset(uint64_t size, int l) { ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); } /* * Given a file descriptor, read the label information and return an nvlist * describing the configuration, if there is one. * Return 0 on success, or -1 on failure */ int zpool_read_label(int fd, nvlist_t **config) { struct stat64 statbuf; int l; vdev_label_t *label; uint64_t state, txg, size; *config = NULL; if (fstat64(fd, &statbuf) == -1) return (-1); size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); if ((label = malloc(sizeof (vdev_label_t))) == NULL) return (-1); for (l = 0; l < VDEV_LABELS; l++) { if (pread64(fd, label, sizeof (vdev_label_t), label_offset(size, l)) != sizeof (vdev_label_t)) continue; if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) continue; if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, &state) != 0 || state > POOL_STATE_L2CACHE) { nvlist_free(*config); continue; } if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, &txg) != 0 || txg == 0)) { nvlist_free(*config); continue; } free(label); return (0); } free(label); *config = NULL; return (-1); } /* * Given a file descriptor, read the label information and return an nvlist * describing the configuration, if there is one. * returns the number of valid labels found * If a label is found, returns it via config. The caller is responsible for * freeing it. */ int zpool_read_all_labels(int fd, nvlist_t **config) { struct stat64 statbuf; struct aiocb aiocbs[VDEV_LABELS]; struct aiocb *aiocbps[VDEV_LABELS]; int l; vdev_phys_t *labels; uint64_t state, txg, size; int nlabels = 0; *config = NULL; if (fstat64(fd, &statbuf) == -1) return (0); size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); if ((labels = calloc(VDEV_LABELS, sizeof (vdev_phys_t))) == NULL) return (0); memset(aiocbs, 0, sizeof(aiocbs)); for (l = 0; l < VDEV_LABELS; l++) { aiocbs[l].aio_fildes = fd; aiocbs[l].aio_offset = label_offset(size, l) + VDEV_SKIP_SIZE; aiocbs[l].aio_buf = &labels[l]; aiocbs[l].aio_nbytes = sizeof(vdev_phys_t); aiocbs[l].aio_lio_opcode = LIO_READ; aiocbps[l] = &aiocbs[l]; } if (lio_listio(LIO_WAIT, aiocbps, VDEV_LABELS, NULL) != 0) { if (errno == EAGAIN || errno == EINTR || errno == EIO) { for (l = 0; l < VDEV_LABELS; l++) { errno = 0; int r = aio_error(&aiocbs[l]); if (r != EINVAL) (void)aio_return(&aiocbs[l]); } } free(labels); return (0); } for (l = 0; l < VDEV_LABELS; l++) { nvlist_t *temp = NULL; if (aio_return(&aiocbs[l]) != sizeof(vdev_phys_t)) continue; if (nvlist_unpack(labels[l].vp_nvlist, sizeof (labels[l].vp_nvlist), &temp, 0) != 0) continue; if (nvlist_lookup_uint64(temp, ZPOOL_CONFIG_POOL_STATE, &state) != 0 || state > POOL_STATE_L2CACHE) { nvlist_free(temp); temp = NULL; continue; } if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && (nvlist_lookup_uint64(temp, ZPOOL_CONFIG_POOL_TXG, &txg) != 0 || txg == 0)) { nvlist_free(temp); temp = NULL; continue; } if (temp) *config = temp; nlabels++; } free(labels); return (nlabels); } typedef struct rdsk_node { char *rn_name; int rn_dfd; libzfs_handle_t *rn_hdl; nvlist_t *rn_config; avl_tree_t *rn_avl; avl_node_t rn_node; boolean_t rn_nozpool; } rdsk_node_t; static int slice_cache_compare(const void *arg1, const void *arg2) { const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; char *nm1slice, *nm2slice; int rv; /* * slices zero and two are the most likely to provide results, * so put those first */ nm1slice = strstr(nm1, "s0"); nm2slice = strstr(nm2, "s0"); if (nm1slice && !nm2slice) { return (-1); } if (!nm1slice && nm2slice) { return (1); } nm1slice = strstr(nm1, "s2"); nm2slice = strstr(nm2, "s2"); if (nm1slice && !nm2slice) { return (-1); } if (!nm1slice && nm2slice) { return (1); } rv = strcmp(nm1, nm2); if (rv == 0) return (0); return (rv > 0 ? 1 : -1); } #ifdef illumos static void check_one_slice(avl_tree_t *r, char *diskname, uint_t partno, diskaddr_t size, uint_t blksz) { rdsk_node_t tmpnode; rdsk_node_t *node; char sname[MAXNAMELEN]; tmpnode.rn_name = &sname[0]; (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u", diskname, partno); /* * protect against division by zero for disk labels that * contain a bogus sector size */ if (blksz == 0) blksz = DEV_BSIZE; /* too small to contain a zpool? */ if ((size < (SPA_MINDEVSIZE / blksz)) && (node = avl_find(r, &tmpnode, NULL))) node->rn_nozpool = B_TRUE; } #endif /* illumos */ static void nozpool_all_slices(avl_tree_t *r, const char *sname) { #ifdef illumos char diskname[MAXNAMELEN]; char *ptr; int i; (void) strncpy(diskname, sname, MAXNAMELEN); if (((ptr = strrchr(diskname, 's')) == NULL) && ((ptr = strrchr(diskname, 'p')) == NULL)) return; ptr[0] = 's'; ptr[1] = '\0'; for (i = 0; i < NDKMAP; i++) check_one_slice(r, diskname, i, 0, 1); ptr[0] = 'p'; for (i = 0; i <= FD_NUMPART; i++) check_one_slice(r, diskname, i, 0, 1); #endif /* illumos */ } #ifdef illumos static void check_slices(avl_tree_t *r, int fd, const char *sname) { struct extvtoc vtoc; struct dk_gpt *gpt; char diskname[MAXNAMELEN]; char *ptr; int i; (void) strncpy(diskname, sname, MAXNAMELEN); if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1])) return; ptr[1] = '\0'; if (read_extvtoc(fd, &vtoc) >= 0) { for (i = 0; i < NDKMAP; i++) check_one_slice(r, diskname, i, vtoc.v_part[i].p_size, vtoc.v_sectorsz); } else if (efi_alloc_and_read(fd, &gpt) >= 0) { /* * on x86 we'll still have leftover links that point * to slices s[9-15], so use NDKMAP instead */ for (i = 0; i < NDKMAP; i++) check_one_slice(r, diskname, i, gpt->efi_parts[i].p_size, gpt->efi_lbasize); /* nodes p[1-4] are never used with EFI labels */ ptr[0] = 'p'; for (i = 1; i <= FD_NUMPART; i++) check_one_slice(r, diskname, i, 0, 1); efi_free(gpt); } } #endif /* illumos */ static void zpool_open_func(void *arg) { rdsk_node_t *rn = arg; struct stat64 statbuf; nvlist_t *config; int fd; if (rn->rn_nozpool) return; if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) { /* symlink to a device that's no longer there */ if (errno == ENOENT) nozpool_all_slices(rn->rn_avl, rn->rn_name); return; } /* * Ignore failed stats. We only want regular * files, character devs and block devs. */ if (fstat64(fd, &statbuf) != 0 || (!S_ISREG(statbuf.st_mode) && !S_ISCHR(statbuf.st_mode) && !S_ISBLK(statbuf.st_mode))) { (void) close(fd); return; } /* this file is too small to hold a zpool */ #ifdef illumos if (S_ISREG(statbuf.st_mode) && statbuf.st_size < SPA_MINDEVSIZE) { (void) close(fd); return; } else if (!S_ISREG(statbuf.st_mode)) { /* * Try to read the disk label first so we don't have to * open a bunch of minor nodes that can't have a zpool. */ check_slices(rn->rn_avl, fd, rn->rn_name); } #else /* !illumos */ if (statbuf.st_size < SPA_MINDEVSIZE) { (void) close(fd); return; } #endif /* illumos */ if ((zpool_read_label(fd, &config)) != 0 && errno == ENOMEM) { (void) close(fd); (void) no_memory(rn->rn_hdl); return; } (void) close(fd); rn->rn_config = config; } /* * Given a file descriptor, clear (zero) the label information. */ int zpool_clear_label(int fd) { struct stat64 statbuf; int l; vdev_label_t *label; uint64_t size; if (fstat64(fd, &statbuf) == -1) return (0); size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL) return (-1); for (l = 0; l < VDEV_LABELS; l++) { if (pwrite64(fd, label, sizeof (vdev_label_t), label_offset(size, l)) != sizeof (vdev_label_t)) { free(label); return (-1); } } free(label); return (0); } /* * Given a list of directories to search, find all pools stored on disk. This * includes partial pools which are not available to import. If no args are * given (argc is 0), then the default directory (/dev/dsk) is searched. * poolname or guid (but not both) are provided by the caller when trying * to import a specific pool. */ static nvlist_t * zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg) { int i, dirs = iarg->paths; struct dirent64 *dp; char path[MAXPATHLEN]; char *end, **dir = iarg->path; size_t pathleft; nvlist_t *ret = NULL; static char *default_dir = "/dev"; pool_list_t pools = { 0 }; pool_entry_t *pe, *penext; vdev_entry_t *ve, *venext; config_entry_t *ce, *cenext; name_entry_t *ne, *nenext; avl_tree_t slice_cache; rdsk_node_t *slice; void *cookie; if (dirs == 0) { dirs = 1; dir = &default_dir; } /* * Go through and read the label configuration information from every * possible device, organizing the information according to pool GUID * and toplevel GUID. */ for (i = 0; i < dirs; i++) { tpool_t *t; char rdsk[MAXPATHLEN]; int dfd; boolean_t config_failed = B_FALSE; DIR *dirp; /* use realpath to normalize the path */ if (realpath(dir[i], path) == 0) { (void) zfs_error_fmt(hdl, EZFS_BADPATH, dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]); goto error; } end = &path[strlen(path)]; *end++ = '/'; *end = 0; pathleft = &path[sizeof (path)] - end; #ifdef illumos /* * Using raw devices instead of block devices when we're * reading the labels skips a bunch of slow operations during * close(2) processing, so we replace /dev/dsk with /dev/rdsk. */ if (strcmp(path, ZFS_DISK_ROOTD) == 0) (void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk)); else #endif (void) strlcpy(rdsk, path, sizeof (rdsk)); if ((dfd = open64(rdsk, O_RDONLY)) < 0 || (dirp = fdopendir(dfd)) == NULL) { if (dfd >= 0) (void) close(dfd); zfs_error_aux(hdl, strerror(errno)); (void) zfs_error_fmt(hdl, EZFS_BADPATH, dgettext(TEXT_DOMAIN, "cannot open '%s'"), rdsk); goto error; } avl_create(&slice_cache, slice_cache_compare, sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node)); if (strcmp(rdsk, "/dev/") == 0) { struct gmesh mesh; struct gclass *mp; struct ggeom *gp; struct gprovider *pp; errno = geom_gettree(&mesh); if (errno != 0) { zfs_error_aux(hdl, strerror(errno)); (void) zfs_error_fmt(hdl, EZFS_BADPATH, dgettext(TEXT_DOMAIN, "cannot get GEOM tree")); goto error; } LIST_FOREACH(mp, &mesh.lg_class, lg_class) { LIST_FOREACH(gp, &mp->lg_geom, lg_geom) { LIST_FOREACH(pp, &gp->lg_provider, lg_provider) { slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); slice->rn_name = zfs_strdup(hdl, pp->lg_name); slice->rn_avl = &slice_cache; slice->rn_dfd = dfd; slice->rn_hdl = hdl; slice->rn_nozpool = B_FALSE; avl_add(&slice_cache, slice); } } } geom_deletetree(&mesh); goto skipdir; } /* * This is not MT-safe, but we have no MT consumers of libzfs */ while ((dp = readdir64(dirp)) != NULL) { const char *name = dp->d_name; if (name[0] == '.' && (name[1] == 0 || (name[1] == '.' && name[2] == 0))) continue; slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); slice->rn_name = zfs_strdup(hdl, name); slice->rn_avl = &slice_cache; slice->rn_dfd = dfd; slice->rn_hdl = hdl; slice->rn_nozpool = B_FALSE; avl_add(&slice_cache, slice); } skipdir: /* * create a thread pool to do all of this in parallel; * rn_nozpool is not protected, so this is racy in that * multiple tasks could decide that the same slice can * not hold a zpool, which is benign. Also choose * double the number of processors; we hold a lot of * locks in the kernel, so going beyond this doesn't * buy us much. */ t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 0, NULL); for (slice = avl_first(&slice_cache); slice; (slice = avl_walk(&slice_cache, slice, AVL_AFTER))) (void) tpool_dispatch(t, zpool_open_func, slice); tpool_wait(t); tpool_destroy(t); cookie = NULL; while ((slice = avl_destroy_nodes(&slice_cache, &cookie)) != NULL) { if (slice->rn_config != NULL && !config_failed) { nvlist_t *config = slice->rn_config; boolean_t matched = B_TRUE; if (iarg->poolname != NULL) { char *pname; matched = nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &pname) == 0 && strcmp(iarg->poolname, pname) == 0; } else if (iarg->guid != 0) { uint64_t this_guid; matched = nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &this_guid) == 0 && iarg->guid == this_guid; } if (!matched) { nvlist_free(config); } else { /* * use the non-raw path for the config */ (void) strlcpy(end, slice->rn_name, pathleft); if (add_config(hdl, &pools, path, config) != 0) config_failed = B_TRUE; } } free(slice->rn_name); free(slice); } avl_destroy(&slice_cache); (void) closedir(dirp); if (config_failed) goto error; } - ret = get_configs(hdl, &pools, iarg->can_be_active); + ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy); error: for (pe = pools.pools; pe != NULL; pe = penext) { penext = pe->pe_next; for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { venext = ve->ve_next; for (ce = ve->ve_configs; ce != NULL; ce = cenext) { cenext = ce->ce_next; nvlist_free(ce->ce_config); free(ce); } free(ve); } free(pe); } for (ne = pools.names; ne != NULL; ne = nenext) { nenext = ne->ne_next; free(ne->ne_name); free(ne); } return (ret); } nvlist_t * zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv) { importargs_t iarg = { 0 }; iarg.paths = argc; iarg.path = argv; return (zpool_find_import_impl(hdl, &iarg)); } /* * Given a cache file, return the contents as a list of importable pools. * poolname or guid (but not both) are provided by the caller when trying * to import a specific pool. */ nvlist_t * zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile, char *poolname, uint64_t guid) { char *buf; int fd; struct stat64 statbuf; nvlist_t *raw, *src, *dst; nvlist_t *pools; nvpair_t *elem; char *name; uint64_t this_guid; boolean_t active; verify(poolname == NULL || guid == 0); if ((fd = open(cachefile, O_RDONLY)) < 0) { zfs_error_aux(hdl, "%s", strerror(errno)); (void) zfs_error(hdl, EZFS_BADCACHE, dgettext(TEXT_DOMAIN, "failed to open cache file")); return (NULL); } if (fstat64(fd, &statbuf) != 0) { zfs_error_aux(hdl, "%s", strerror(errno)); (void) close(fd); (void) zfs_error(hdl, EZFS_BADCACHE, dgettext(TEXT_DOMAIN, "failed to get size of cache file")); return (NULL); } if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) { (void) close(fd); return (NULL); } if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { (void) close(fd); free(buf); (void) zfs_error(hdl, EZFS_BADCACHE, dgettext(TEXT_DOMAIN, "failed to read cache file contents")); return (NULL); } (void) close(fd); if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { free(buf); (void) zfs_error(hdl, EZFS_BADCACHE, dgettext(TEXT_DOMAIN, "invalid or corrupt cache file contents")); return (NULL); } free(buf); /* * Go through and get the current state of the pools and refresh their * state. */ if (nvlist_alloc(&pools, 0, 0) != 0) { (void) no_memory(hdl); nvlist_free(raw); return (NULL); } elem = NULL; while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { src = fnvpair_value_nvlist(elem); name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME); if (poolname != NULL && strcmp(poolname, name) != 0) continue; this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID); if (guid != 0 && guid != this_guid) continue; if (pool_active(hdl, name, this_guid, &active) != 0) { nvlist_free(raw); nvlist_free(pools); return (NULL); } if (active) continue; + + if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE, + cachefile) != 0) { + (void) no_memory(hdl); + nvlist_free(raw); + nvlist_free(pools); + return (NULL); + } if ((dst = refresh_config(hdl, src)) == NULL) { nvlist_free(raw); nvlist_free(pools); return (NULL); } if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { (void) no_memory(hdl); nvlist_free(dst); nvlist_free(raw); nvlist_free(pools); return (NULL); } nvlist_free(dst); } nvlist_free(raw); return (pools); } static int name_or_guid_exists(zpool_handle_t *zhp, void *data) { importargs_t *import = data; int found = 0; if (import->poolname != NULL) { char *pool_name; verify(nvlist_lookup_string(zhp->zpool_config, ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0); if (strcmp(pool_name, import->poolname) == 0) found = 1; } else { uint64_t pool_guid; verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0); if (pool_guid == import->guid) found = 1; } zpool_close(zhp); return (found); } nvlist_t * zpool_search_import(libzfs_handle_t *hdl, importargs_t *import) { verify(import->poolname == NULL || import->guid == 0); if (import->unique) import->exists = zpool_iter(hdl, name_or_guid_exists, import); if (import->cachefile != NULL) return (zpool_find_import_cached(hdl, import->cachefile, import->poolname, import->guid)); return (zpool_find_import_impl(hdl, import)); } boolean_t find_guid(nvlist_t *nv, uint64_t guid) { uint64_t tmp; nvlist_t **child; uint_t c, children; verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0); if (tmp == guid) return (B_TRUE); if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0) { for (c = 0; c < children; c++) if (find_guid(child[c], guid)) return (B_TRUE); } return (B_FALSE); } typedef struct aux_cbdata { const char *cb_type; uint64_t cb_guid; zpool_handle_t *cb_zhp; } aux_cbdata_t; static int find_aux(zpool_handle_t *zhp, void *data) { aux_cbdata_t *cbp = data; nvlist_t **list; uint_t i, count; uint64_t guid; nvlist_t *nvroot; verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type, &list, &count) == 0) { for (i = 0; i < count; i++) { verify(nvlist_lookup_uint64(list[i], ZPOOL_CONFIG_GUID, &guid) == 0); if (guid == cbp->cb_guid) { cbp->cb_zhp = zhp; return (1); } } } zpool_close(zhp); return (0); } /* * Determines if the pool is in use. If so, it returns true and the state of * the pool as well as the name of the pool. Both strings are allocated and * must be freed by the caller. */ int zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr, boolean_t *inuse) { nvlist_t *config; char *name; boolean_t ret; uint64_t guid, vdev_guid; zpool_handle_t *zhp; nvlist_t *pool_config; uint64_t stateval, isspare; aux_cbdata_t cb = { 0 }; boolean_t isactive; *inuse = B_FALSE; if (zpool_read_label(fd, &config) != 0 && errno == ENOMEM) { (void) no_memory(hdl); return (-1); } if (config == NULL) return (0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &stateval) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0); if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) { verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &name) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) == 0); } switch (stateval) { case POOL_STATE_EXPORTED: /* * A pool with an exported state may in fact be imported * read-only, so check the in-core state to see if it's * active and imported read-only. If it is, set * its state to active. */ if (pool_active(hdl, name, guid, &isactive) == 0 && isactive && (zhp = zpool_open_canfail(hdl, name)) != NULL) { if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL)) stateval = POOL_STATE_ACTIVE; /* * All we needed the zpool handle for is the * readonly prop check. */ zpool_close(zhp); } ret = B_TRUE; break; case POOL_STATE_ACTIVE: /* * For an active pool, we have to determine if it's really part * of a currently active pool (in which case the pool will exist * and the guid will be the same), or whether it's part of an * active pool that was disconnected without being explicitly * exported. */ if (pool_active(hdl, name, guid, &isactive) != 0) { nvlist_free(config); return (-1); } if (isactive) { /* * Because the device may have been removed while * offlined, we only report it as active if the vdev is * still present in the config. Otherwise, pretend like * it's not in use. */ if ((zhp = zpool_open_canfail(hdl, name)) != NULL && (pool_config = zpool_get_config(zhp, NULL)) != NULL) { nvlist_t *nvroot; verify(nvlist_lookup_nvlist(pool_config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); ret = find_guid(nvroot, vdev_guid); } else { ret = B_FALSE; } /* * If this is an active spare within another pool, we * treat it like an unused hot spare. This allows the * user to create a pool with a hot spare that currently * in use within another pool. Since we return B_TRUE, * libdiskmgt will continue to prevent generic consumers * from using the device. */ if (ret && nvlist_lookup_uint64(config, ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare) stateval = POOL_STATE_SPARE; if (zhp != NULL) zpool_close(zhp); } else { stateval = POOL_STATE_POTENTIALLY_ACTIVE; ret = B_TRUE; } break; case POOL_STATE_SPARE: /* * For a hot spare, it can be either definitively in use, or * potentially active. To determine if it's in use, we iterate * over all pools in the system and search for one with a spare * with a matching guid. * * Due to the shared nature of spares, we don't actually report * the potentially active case as in use. This means the user * can freely create pools on the hot spares of exported pools, * but to do otherwise makes the resulting code complicated, and * we end up having to deal with this case anyway. */ cb.cb_zhp = NULL; cb.cb_guid = vdev_guid; cb.cb_type = ZPOOL_CONFIG_SPARES; if (zpool_iter(hdl, find_aux, &cb) == 1) { name = (char *)zpool_get_name(cb.cb_zhp); ret = B_TRUE; } else { ret = B_FALSE; } break; case POOL_STATE_L2CACHE: /* * Check if any pool is currently using this l2cache device. */ cb.cb_zhp = NULL; cb.cb_guid = vdev_guid; cb.cb_type = ZPOOL_CONFIG_L2CACHE; if (zpool_iter(hdl, find_aux, &cb) == 1) { name = (char *)zpool_get_name(cb.cb_zhp); ret = B_TRUE; } else { ret = B_FALSE; } break; default: ret = B_FALSE; } if (ret) { if ((*namestr = zfs_strdup(hdl, name)) == NULL) { if (cb.cb_zhp) zpool_close(cb.cb_zhp); nvlist_free(config); return (-1); } *state = (pool_state_t)stateval; } if (cb.cb_zhp) zpool_close(cb.cb_zhp); nvlist_free(config); *inuse = ret; return (0); } Index: head/cddl/contrib/opensolaris/lib/libzfs/common/libzfs_pool.c =================================================================== --- head/cddl/contrib/opensolaris/lib/libzfs/common/libzfs_pool.c (revision 329797) +++ head/cddl/contrib/opensolaris/lib/libzfs/common/libzfs_pool.c (revision 329798) @@ -1,4356 +1,4357 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2017 by Delphix. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. * Copyright 2016 Nexenta Systems, Inc. * Copyright 2016 Igor Kozhukhov * Copyright (c) 2017 Datto Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #include "zfs_prop.h" #include "libzfs_impl.h" #include "zfs_comutil.h" #include "zfeature_common.h" static int read_efi_label(nvlist_t *, diskaddr_t *, boolean_t *); static boolean_t zpool_vdev_is_interior(const char *name); #define BACKUP_SLICE "s2" typedef struct prop_flags { int create:1; /* Validate property on creation */ int import:1; /* Validate property on import */ } prop_flags_t; /* * ==================================================================== * zpool property functions * ==================================================================== */ static int zpool_get_all_props(zpool_handle_t *zhp) { zfs_cmd_t zc = { 0 }; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if (zcmd_alloc_dst_nvlist(hdl, &zc, 0) != 0) return (-1); while (ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_GET_PROPS, &zc) != 0) { if (errno == ENOMEM) { if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { zcmd_free_nvlists(&zc); return (-1); } } else { zcmd_free_nvlists(&zc); return (-1); } } if (zcmd_read_dst_nvlist(hdl, &zc, &zhp->zpool_props) != 0) { zcmd_free_nvlists(&zc); return (-1); } zcmd_free_nvlists(&zc); return (0); } static int zpool_props_refresh(zpool_handle_t *zhp) { nvlist_t *old_props; old_props = zhp->zpool_props; if (zpool_get_all_props(zhp) != 0) return (-1); nvlist_free(old_props); return (0); } static char * zpool_get_prop_string(zpool_handle_t *zhp, zpool_prop_t prop, zprop_source_t *src) { nvlist_t *nv, *nvl; uint64_t ival; char *value; zprop_source_t source; nvl = zhp->zpool_props; if (nvlist_lookup_nvlist(nvl, zpool_prop_to_name(prop), &nv) == 0) { verify(nvlist_lookup_uint64(nv, ZPROP_SOURCE, &ival) == 0); source = ival; verify(nvlist_lookup_string(nv, ZPROP_VALUE, &value) == 0); } else { source = ZPROP_SRC_DEFAULT; if ((value = (char *)zpool_prop_default_string(prop)) == NULL) value = "-"; } if (src) *src = source; return (value); } uint64_t zpool_get_prop_int(zpool_handle_t *zhp, zpool_prop_t prop, zprop_source_t *src) { nvlist_t *nv, *nvl; uint64_t value; zprop_source_t source; if (zhp->zpool_props == NULL && zpool_get_all_props(zhp)) { /* * zpool_get_all_props() has most likely failed because * the pool is faulted, but if all we need is the top level * vdev's guid then get it from the zhp config nvlist. */ if ((prop == ZPOOL_PROP_GUID) && (nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0) && (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &value) == 0)) { return (value); } return (zpool_prop_default_numeric(prop)); } nvl = zhp->zpool_props; if (nvlist_lookup_nvlist(nvl, zpool_prop_to_name(prop), &nv) == 0) { verify(nvlist_lookup_uint64(nv, ZPROP_SOURCE, &value) == 0); source = value; verify(nvlist_lookup_uint64(nv, ZPROP_VALUE, &value) == 0); } else { source = ZPROP_SRC_DEFAULT; value = zpool_prop_default_numeric(prop); } if (src) *src = source; return (value); } /* * Map VDEV STATE to printed strings. */ const char * zpool_state_to_name(vdev_state_t state, vdev_aux_t aux) { switch (state) { case VDEV_STATE_CLOSED: case VDEV_STATE_OFFLINE: return (gettext("OFFLINE")); case VDEV_STATE_REMOVED: return (gettext("REMOVED")); case VDEV_STATE_CANT_OPEN: if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG) return (gettext("FAULTED")); else if (aux == VDEV_AUX_SPLIT_POOL) return (gettext("SPLIT")); else return (gettext("UNAVAIL")); case VDEV_STATE_FAULTED: return (gettext("FAULTED")); case VDEV_STATE_DEGRADED: return (gettext("DEGRADED")); case VDEV_STATE_HEALTHY: return (gettext("ONLINE")); default: break; } return (gettext("UNKNOWN")); } /* * Map POOL STATE to printed strings. */ const char * zpool_pool_state_to_name(pool_state_t state) { switch (state) { case POOL_STATE_ACTIVE: return (gettext("ACTIVE")); case POOL_STATE_EXPORTED: return (gettext("EXPORTED")); case POOL_STATE_DESTROYED: return (gettext("DESTROYED")); case POOL_STATE_SPARE: return (gettext("SPARE")); case POOL_STATE_L2CACHE: return (gettext("L2CACHE")); case POOL_STATE_UNINITIALIZED: return (gettext("UNINITIALIZED")); case POOL_STATE_UNAVAIL: return (gettext("UNAVAIL")); case POOL_STATE_POTENTIALLY_ACTIVE: return (gettext("POTENTIALLY_ACTIVE")); } return (gettext("UNKNOWN")); } /* * Get a zpool property value for 'prop' and return the value in * a pre-allocated buffer. */ int zpool_get_prop(zpool_handle_t *zhp, zpool_prop_t prop, char *buf, size_t len, zprop_source_t *srctype, boolean_t literal) { uint64_t intval; const char *strval; zprop_source_t src = ZPROP_SRC_NONE; nvlist_t *nvroot; vdev_stat_t *vs; uint_t vsc; if (zpool_get_state(zhp) == POOL_STATE_UNAVAIL) { switch (prop) { case ZPOOL_PROP_NAME: (void) strlcpy(buf, zpool_get_name(zhp), len); break; case ZPOOL_PROP_HEALTH: (void) strlcpy(buf, zpool_pool_state_to_name(POOL_STATE_UNAVAIL), len); break; case ZPOOL_PROP_GUID: intval = zpool_get_prop_int(zhp, prop, &src); (void) snprintf(buf, len, "%llu", intval); break; case ZPOOL_PROP_ALTROOT: case ZPOOL_PROP_CACHEFILE: case ZPOOL_PROP_COMMENT: if (zhp->zpool_props != NULL || zpool_get_all_props(zhp) == 0) { (void) strlcpy(buf, zpool_get_prop_string(zhp, prop, &src), len); break; } /* FALLTHROUGH */ default: (void) strlcpy(buf, "-", len); break; } if (srctype != NULL) *srctype = src; return (0); } if (zhp->zpool_props == NULL && zpool_get_all_props(zhp) && prop != ZPOOL_PROP_NAME) return (-1); switch (zpool_prop_get_type(prop)) { case PROP_TYPE_STRING: (void) strlcpy(buf, zpool_get_prop_string(zhp, prop, &src), len); break; case PROP_TYPE_NUMBER: intval = zpool_get_prop_int(zhp, prop, &src); switch (prop) { case ZPOOL_PROP_SIZE: case ZPOOL_PROP_ALLOCATED: case ZPOOL_PROP_FREE: case ZPOOL_PROP_FREEING: case ZPOOL_PROP_LEAKED: if (literal) { (void) snprintf(buf, len, "%llu", (u_longlong_t)intval); } else { (void) zfs_nicenum(intval, buf, len); } break; case ZPOOL_PROP_BOOTSIZE: case ZPOOL_PROP_EXPANDSZ: if (intval == 0) { (void) strlcpy(buf, "-", len); } else if (literal) { (void) snprintf(buf, len, "%llu", (u_longlong_t)intval); } else { (void) zfs_nicenum(intval, buf, len); } break; case ZPOOL_PROP_CAPACITY: if (literal) { (void) snprintf(buf, len, "%llu", (u_longlong_t)intval); } else { (void) snprintf(buf, len, "%llu%%", (u_longlong_t)intval); } break; case ZPOOL_PROP_FRAGMENTATION: if (intval == UINT64_MAX) { (void) strlcpy(buf, "-", len); } else { (void) snprintf(buf, len, "%llu%%", (u_longlong_t)intval); } break; case ZPOOL_PROP_DEDUPRATIO: (void) snprintf(buf, len, "%llu.%02llux", (u_longlong_t)(intval / 100), (u_longlong_t)(intval % 100)); break; case ZPOOL_PROP_HEALTH: verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL), ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) == 0); (void) strlcpy(buf, zpool_state_to_name(intval, vs->vs_aux), len); break; case ZPOOL_PROP_VERSION: if (intval >= SPA_VERSION_FEATURES) { (void) snprintf(buf, len, "-"); break; } /* FALLTHROUGH */ default: (void) snprintf(buf, len, "%llu", intval); } break; case PROP_TYPE_INDEX: intval = zpool_get_prop_int(zhp, prop, &src); if (zpool_prop_index_to_string(prop, intval, &strval) != 0) return (-1); (void) strlcpy(buf, strval, len); break; default: abort(); } if (srctype) *srctype = src; return (0); } /* * Check if the bootfs name has the same pool name as it is set to. * Assuming bootfs is a valid dataset name. */ static boolean_t bootfs_name_valid(const char *pool, char *bootfs) { int len = strlen(pool); if (!zfs_name_valid(bootfs, ZFS_TYPE_FILESYSTEM|ZFS_TYPE_SNAPSHOT)) return (B_FALSE); if (strncmp(pool, bootfs, len) == 0 && (bootfs[len] == '/' || bootfs[len] == '\0')) return (B_TRUE); return (B_FALSE); } boolean_t zpool_is_bootable(zpool_handle_t *zhp) { char bootfs[ZFS_MAX_DATASET_NAME_LEN]; return (zpool_get_prop(zhp, ZPOOL_PROP_BOOTFS, bootfs, sizeof (bootfs), NULL, B_FALSE) == 0 && strncmp(bootfs, "-", sizeof (bootfs)) != 0); } /* * Given an nvlist of zpool properties to be set, validate that they are * correct, and parse any numeric properties (index, boolean, etc) if they are * specified as strings. */ static nvlist_t * zpool_valid_proplist(libzfs_handle_t *hdl, const char *poolname, nvlist_t *props, uint64_t version, prop_flags_t flags, char *errbuf) { nvpair_t *elem; nvlist_t *retprops; zpool_prop_t prop; char *strval; uint64_t intval; char *slash, *check; struct stat64 statbuf; zpool_handle_t *zhp; if (nvlist_alloc(&retprops, NV_UNIQUE_NAME, 0) != 0) { (void) no_memory(hdl); return (NULL); } elem = NULL; while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { const char *propname = nvpair_name(elem); prop = zpool_name_to_prop(propname); if (prop == ZPOOL_PROP_INVAL && zpool_prop_feature(propname)) { int err; char *fname = strchr(propname, '@') + 1; err = zfeature_lookup_name(fname, NULL); if (err != 0) { ASSERT3U(err, ==, ENOENT); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid feature '%s'"), fname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (nvpair_type(elem) != DATA_TYPE_STRING) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be a string"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } (void) nvpair_value_string(elem, &strval); if (strcmp(strval, ZFS_FEATURE_ENABLED) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' can only be set to " "'enabled'"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (nvlist_add_uint64(retprops, propname, 0) != 0) { (void) no_memory(hdl); goto error; } continue; } /* * Make sure this property is valid and applies to this type. */ if (prop == ZPOOL_PROP_INVAL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid property '%s'"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (zpool_prop_readonly(prop)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' " "is readonly"), propname); (void) zfs_error(hdl, EZFS_PROPREADONLY, errbuf); goto error; } if (zprop_parse_value(hdl, elem, prop, ZFS_TYPE_POOL, retprops, &strval, &intval, errbuf) != 0) goto error; /* * Perform additional checking for specific properties. */ switch (prop) { case ZPOOL_PROP_VERSION: if (intval < version || !SPA_VERSION_IS_SUPPORTED(intval)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' number %d is invalid."), propname, intval); (void) zfs_error(hdl, EZFS_BADVERSION, errbuf); goto error; } break; case ZPOOL_PROP_BOOTSIZE: if (!flags.create) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' can only be set during pool " "creation"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; case ZPOOL_PROP_BOOTFS: if (flags.create || flags.import) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' cannot be set at creation " "or import time"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (version < SPA_VERSION_BOOTFS) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded to support " "'%s' property"), propname); (void) zfs_error(hdl, EZFS_BADVERSION, errbuf); goto error; } /* * bootfs property value has to be a dataset name and * the dataset has to be in the same pool as it sets to. */ if (strval[0] != '\0' && !bootfs_name_valid(poolname, strval)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' " "is an invalid name"), strval); (void) zfs_error(hdl, EZFS_INVALIDNAME, errbuf); goto error; } if ((zhp = zpool_open_canfail(hdl, poolname)) == NULL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "could not open pool '%s'"), poolname); (void) zfs_error(hdl, EZFS_OPENFAILED, errbuf); goto error; } zpool_close(zhp); break; case ZPOOL_PROP_ALTROOT: if (!flags.create && !flags.import) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' can only be set during pool " "creation or import"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (strval[0] != '/') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "bad alternate root '%s'"), strval); (void) zfs_error(hdl, EZFS_BADPATH, errbuf); goto error; } break; case ZPOOL_PROP_CACHEFILE: if (strval[0] == '\0') break; if (strcmp(strval, "none") == 0) break; if (strval[0] != '/') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' must be empty, an " "absolute path, or 'none'"), propname); (void) zfs_error(hdl, EZFS_BADPATH, errbuf); goto error; } slash = strrchr(strval, '/'); if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || strcmp(slash, "/..") == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' is not a valid file"), strval); (void) zfs_error(hdl, EZFS_BADPATH, errbuf); goto error; } *slash = '\0'; if (strval[0] != '\0' && (stat64(strval, &statbuf) != 0 || !S_ISDIR(statbuf.st_mode))) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' is not a valid directory"), strval); (void) zfs_error(hdl, EZFS_BADPATH, errbuf); goto error; } *slash = '/'; break; case ZPOOL_PROP_COMMENT: for (check = strval; *check != '\0'; check++) { if (!isprint(*check)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "comment may only have printable " "characters")); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } } if (strlen(strval) > ZPROP_MAX_COMMENT) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "comment must not exceed %d characters"), ZPROP_MAX_COMMENT); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; case ZPOOL_PROP_READONLY: if (!flags.import) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' can only be set at " "import time"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; default: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s'(%d) not defined"), propname, prop); break; } } return (retprops); error: nvlist_free(retprops); return (NULL); } /* * Set zpool property : propname=propval. */ int zpool_set_prop(zpool_handle_t *zhp, const char *propname, const char *propval) { zfs_cmd_t zc = { 0 }; int ret = -1; char errbuf[1024]; nvlist_t *nvl = NULL; nvlist_t *realprops; uint64_t version; prop_flags_t flags = { 0 }; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot set property for '%s'"), zhp->zpool_name); if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) return (no_memory(zhp->zpool_hdl)); if (nvlist_add_string(nvl, propname, propval) != 0) { nvlist_free(nvl); return (no_memory(zhp->zpool_hdl)); } version = zpool_get_prop_int(zhp, ZPOOL_PROP_VERSION, NULL); if ((realprops = zpool_valid_proplist(zhp->zpool_hdl, zhp->zpool_name, nvl, version, flags, errbuf)) == NULL) { nvlist_free(nvl); return (-1); } nvlist_free(nvl); nvl = realprops; /* * Execute the corresponding ioctl() to set this property. */ (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if (zcmd_write_src_nvlist(zhp->zpool_hdl, &zc, nvl) != 0) { nvlist_free(nvl); return (-1); } ret = zfs_ioctl(zhp->zpool_hdl, ZFS_IOC_POOL_SET_PROPS, &zc); zcmd_free_nvlists(&zc); nvlist_free(nvl); if (ret) (void) zpool_standard_error(zhp->zpool_hdl, errno, errbuf); else (void) zpool_props_refresh(zhp); return (ret); } int zpool_expand_proplist(zpool_handle_t *zhp, zprop_list_t **plp) { libzfs_handle_t *hdl = zhp->zpool_hdl; zprop_list_t *entry; char buf[ZFS_MAXPROPLEN]; nvlist_t *features = NULL; zprop_list_t **last; boolean_t firstexpand = (NULL == *plp); if (zprop_expand_list(hdl, plp, ZFS_TYPE_POOL) != 0) return (-1); last = plp; while (*last != NULL) last = &(*last)->pl_next; if ((*plp)->pl_all) features = zpool_get_features(zhp); if ((*plp)->pl_all && firstexpand) { for (int i = 0; i < SPA_FEATURES; i++) { zprop_list_t *entry = zfs_alloc(hdl, sizeof (zprop_list_t)); entry->pl_prop = ZPROP_INVAL; entry->pl_user_prop = zfs_asprintf(hdl, "feature@%s", spa_feature_table[i].fi_uname); entry->pl_width = strlen(entry->pl_user_prop); entry->pl_all = B_TRUE; *last = entry; last = &entry->pl_next; } } /* add any unsupported features */ for (nvpair_t *nvp = nvlist_next_nvpair(features, NULL); nvp != NULL; nvp = nvlist_next_nvpair(features, nvp)) { char *propname; boolean_t found; zprop_list_t *entry; if (zfeature_is_supported(nvpair_name(nvp))) continue; propname = zfs_asprintf(hdl, "unsupported@%s", nvpair_name(nvp)); /* * Before adding the property to the list make sure that no * other pool already added the same property. */ found = B_FALSE; entry = *plp; while (entry != NULL) { if (entry->pl_user_prop != NULL && strcmp(propname, entry->pl_user_prop) == 0) { found = B_TRUE; break; } entry = entry->pl_next; } if (found) { free(propname); continue; } entry = zfs_alloc(hdl, sizeof (zprop_list_t)); entry->pl_prop = ZPROP_INVAL; entry->pl_user_prop = propname; entry->pl_width = strlen(entry->pl_user_prop); entry->pl_all = B_TRUE; *last = entry; last = &entry->pl_next; } for (entry = *plp; entry != NULL; entry = entry->pl_next) { if (entry->pl_fixed) continue; if (entry->pl_prop != ZPROP_INVAL && zpool_get_prop(zhp, entry->pl_prop, buf, sizeof (buf), NULL, B_FALSE) == 0) { if (strlen(buf) > entry->pl_width) entry->pl_width = strlen(buf); } } return (0); } /* * Get the state for the given feature on the given ZFS pool. */ int zpool_prop_get_feature(zpool_handle_t *zhp, const char *propname, char *buf, size_t len) { uint64_t refcount; boolean_t found = B_FALSE; nvlist_t *features = zpool_get_features(zhp); boolean_t supported; const char *feature = strchr(propname, '@') + 1; supported = zpool_prop_feature(propname); ASSERT(supported || zpool_prop_unsupported(propname)); /* * Convert from feature name to feature guid. This conversion is * unecessary for unsupported@... properties because they already * use guids. */ if (supported) { int ret; spa_feature_t fid; ret = zfeature_lookup_name(feature, &fid); if (ret != 0) { (void) strlcpy(buf, "-", len); return (ENOTSUP); } feature = spa_feature_table[fid].fi_guid; } if (nvlist_lookup_uint64(features, feature, &refcount) == 0) found = B_TRUE; if (supported) { if (!found) { (void) strlcpy(buf, ZFS_FEATURE_DISABLED, len); } else { if (refcount == 0) (void) strlcpy(buf, ZFS_FEATURE_ENABLED, len); else (void) strlcpy(buf, ZFS_FEATURE_ACTIVE, len); } } else { if (found) { if (refcount == 0) { (void) strcpy(buf, ZFS_UNSUPPORTED_INACTIVE); } else { (void) strcpy(buf, ZFS_UNSUPPORTED_READONLY); } } else { (void) strlcpy(buf, "-", len); return (ENOTSUP); } } return (0); } /* * Don't start the slice at the default block of 34; many storage * devices will use a stripe width of 128k, so start there instead. */ #define NEW_START_BLOCK 256 /* * Validate the given pool name, optionally putting an extended error message in * 'buf'. */ boolean_t zpool_name_valid(libzfs_handle_t *hdl, boolean_t isopen, const char *pool) { namecheck_err_t why; char what; int ret; ret = pool_namecheck(pool, &why, &what); /* * The rules for reserved pool names were extended at a later point. * But we need to support users with existing pools that may now be * invalid. So we only check for this expanded set of names during a * create (or import), and only in userland. */ if (ret == 0 && !isopen && (strncmp(pool, "mirror", 6) == 0 || strncmp(pool, "raidz", 5) == 0 || strncmp(pool, "spare", 5) == 0 || strcmp(pool, "log") == 0)) { if (hdl != NULL) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "name is reserved")); return (B_FALSE); } if (ret != 0) { if (hdl != NULL) { switch (why) { case NAME_ERR_TOOLONG: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "name is too long")); break; case NAME_ERR_INVALCHAR: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid character " "'%c' in pool name"), what); break; case NAME_ERR_NOLETTER: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "name must begin with a letter")); break; case NAME_ERR_RESERVED: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "name is reserved")); break; case NAME_ERR_DISKLIKE: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool name is reserved")); break; case NAME_ERR_LEADING_SLASH: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "leading slash in name")); break; case NAME_ERR_EMPTY_COMPONENT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "empty component in name")); break; case NAME_ERR_TRAILING_SLASH: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "trailing slash in name")); break; case NAME_ERR_MULTIPLE_DELIMITERS: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "multiple '@' and/or '#' delimiters in " "name")); break; default: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "(%d) not defined"), why); break; } } return (B_FALSE); } return (B_TRUE); } /* * Open a handle to the given pool, even if the pool is currently in the FAULTED * state. */ zpool_handle_t * zpool_open_canfail(libzfs_handle_t *hdl, const char *pool) { zpool_handle_t *zhp; boolean_t missing; /* * Make sure the pool name is valid. */ if (!zpool_name_valid(hdl, B_TRUE, pool)) { (void) zfs_error_fmt(hdl, EZFS_INVALIDNAME, dgettext(TEXT_DOMAIN, "cannot open '%s'"), pool); return (NULL); } if ((zhp = zfs_alloc(hdl, sizeof (zpool_handle_t))) == NULL) return (NULL); zhp->zpool_hdl = hdl; (void) strlcpy(zhp->zpool_name, pool, sizeof (zhp->zpool_name)); if (zpool_refresh_stats(zhp, &missing) != 0) { zpool_close(zhp); return (NULL); } if (missing) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "no such pool")); (void) zfs_error_fmt(hdl, EZFS_NOENT, dgettext(TEXT_DOMAIN, "cannot open '%s'"), pool); zpool_close(zhp); return (NULL); } return (zhp); } /* * Like the above, but silent on error. Used when iterating over pools (because * the configuration cache may be out of date). */ int zpool_open_silent(libzfs_handle_t *hdl, const char *pool, zpool_handle_t **ret) { zpool_handle_t *zhp; boolean_t missing; if ((zhp = zfs_alloc(hdl, sizeof (zpool_handle_t))) == NULL) return (-1); zhp->zpool_hdl = hdl; (void) strlcpy(zhp->zpool_name, pool, sizeof (zhp->zpool_name)); if (zpool_refresh_stats(zhp, &missing) != 0) { zpool_close(zhp); return (-1); } if (missing) { zpool_close(zhp); *ret = NULL; return (0); } *ret = zhp; return (0); } /* * Similar to zpool_open_canfail(), but refuses to open pools in the faulted * state. */ zpool_handle_t * zpool_open(libzfs_handle_t *hdl, const char *pool) { zpool_handle_t *zhp; if ((zhp = zpool_open_canfail(hdl, pool)) == NULL) return (NULL); if (zhp->zpool_state == POOL_STATE_UNAVAIL) { (void) zfs_error_fmt(hdl, EZFS_POOLUNAVAIL, dgettext(TEXT_DOMAIN, "cannot open '%s'"), zhp->zpool_name); zpool_close(zhp); return (NULL); } return (zhp); } /* * Close the handle. Simply frees the memory associated with the handle. */ void zpool_close(zpool_handle_t *zhp) { nvlist_free(zhp->zpool_config); nvlist_free(zhp->zpool_old_config); nvlist_free(zhp->zpool_props); free(zhp); } /* * Return the name of the pool. */ const char * zpool_get_name(zpool_handle_t *zhp) { return (zhp->zpool_name); } /* * Return the state of the pool (ACTIVE or UNAVAILABLE) */ int zpool_get_state(zpool_handle_t *zhp) { return (zhp->zpool_state); } /* * Create the named pool, using the provided vdev list. It is assumed * that the consumer has already validated the contents of the nvlist, so we * don't have to worry about error semantics. */ int zpool_create(libzfs_handle_t *hdl, const char *pool, nvlist_t *nvroot, nvlist_t *props, nvlist_t *fsprops) { zfs_cmd_t zc = { 0 }; nvlist_t *zc_fsprops = NULL; nvlist_t *zc_props = NULL; char msg[1024]; int ret = -1; (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot create '%s'"), pool); if (!zpool_name_valid(hdl, B_FALSE, pool)) return (zfs_error(hdl, EZFS_INVALIDNAME, msg)); if (zcmd_write_conf_nvlist(hdl, &zc, nvroot) != 0) return (-1); if (props) { prop_flags_t flags = { .create = B_TRUE, .import = B_FALSE }; if ((zc_props = zpool_valid_proplist(hdl, pool, props, SPA_VERSION_1, flags, msg)) == NULL) { goto create_failed; } } if (fsprops) { uint64_t zoned; char *zonestr; zoned = ((nvlist_lookup_string(fsprops, zfs_prop_to_name(ZFS_PROP_ZONED), &zonestr) == 0) && strcmp(zonestr, "on") == 0); if ((zc_fsprops = zfs_valid_proplist(hdl, ZFS_TYPE_FILESYSTEM, fsprops, zoned, NULL, NULL, msg)) == NULL) { goto create_failed; } if (!zc_props && (nvlist_alloc(&zc_props, NV_UNIQUE_NAME, 0) != 0)) { goto create_failed; } if (nvlist_add_nvlist(zc_props, ZPOOL_ROOTFS_PROPS, zc_fsprops) != 0) { goto create_failed; } } if (zc_props && zcmd_write_src_nvlist(hdl, &zc, zc_props) != 0) goto create_failed; (void) strlcpy(zc.zc_name, pool, sizeof (zc.zc_name)); if ((ret = zfs_ioctl(hdl, ZFS_IOC_POOL_CREATE, &zc)) != 0) { zcmd_free_nvlists(&zc); nvlist_free(zc_props); nvlist_free(zc_fsprops); switch (errno) { case EBUSY: /* * This can happen if the user has specified the same * device multiple times. We can't reliably detect this * until we try to add it and see we already have a * label. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "one or more vdevs refer to the same device")); return (zfs_error(hdl, EZFS_BADDEV, msg)); case ERANGE: /* * This happens if the record size is smaller or larger * than the allowed size range, or not a power of 2. * * NOTE: although zfs_valid_proplist is called earlier, * this case may have slipped through since the * pool does not exist yet and it is therefore * impossible to read properties e.g. max blocksize * from the pool. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "record size invalid")); return (zfs_error(hdl, EZFS_BADPROP, msg)); case EOVERFLOW: /* * This occurs when one of the devices is below * SPA_MINDEVSIZE. Unfortunately, we can't detect which * device was the problem device since there's no * reliable way to determine device size from userland. */ { char buf[64]; zfs_nicenum(SPA_MINDEVSIZE, buf, sizeof (buf)); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "one or more devices is less than the " "minimum size (%s)"), buf); } return (zfs_error(hdl, EZFS_BADDEV, msg)); case ENOSPC: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "one or more devices is out of space")); return (zfs_error(hdl, EZFS_BADDEV, msg)); case ENOTBLK: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cache device must be a disk or disk slice")); return (zfs_error(hdl, EZFS_BADDEV, msg)); default: return (zpool_standard_error(hdl, errno, msg)); } } create_failed: zcmd_free_nvlists(&zc); nvlist_free(zc_props); nvlist_free(zc_fsprops); return (ret); } /* * Destroy the given pool. It is up to the caller to ensure that there are no * datasets left in the pool. */ int zpool_destroy(zpool_handle_t *zhp, const char *log_str) { zfs_cmd_t zc = { 0 }; zfs_handle_t *zfp = NULL; libzfs_handle_t *hdl = zhp->zpool_hdl; char msg[1024]; if (zhp->zpool_state == POOL_STATE_ACTIVE && (zfp = zfs_open(hdl, zhp->zpool_name, ZFS_TYPE_FILESYSTEM)) == NULL) return (-1); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_history = (uint64_t)(uintptr_t)log_str; if (zfs_ioctl(hdl, ZFS_IOC_POOL_DESTROY, &zc) != 0) { (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot destroy '%s'"), zhp->zpool_name); if (errno == EROFS) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "one or more devices is read only")); (void) zfs_error(hdl, EZFS_BADDEV, msg); } else { (void) zpool_standard_error(hdl, errno, msg); } if (zfp) zfs_close(zfp); return (-1); } if (zfp) { remove_mountpoint(zfp); zfs_close(zfp); } return (0); } /* * Add the given vdevs to the pool. The caller must have already performed the * necessary verification to ensure that the vdev specification is well-formed. */ int zpool_add(zpool_handle_t *zhp, nvlist_t *nvroot) { zfs_cmd_t zc = { 0 }; int ret; libzfs_handle_t *hdl = zhp->zpool_hdl; char msg[1024]; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot add to '%s'"), zhp->zpool_name); if (zpool_get_prop_int(zhp, ZPOOL_PROP_VERSION, NULL) < SPA_VERSION_SPARES && nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be " "upgraded to add hot spares")); return (zfs_error(hdl, EZFS_BADVERSION, msg)); } if (zpool_get_prop_int(zhp, ZPOOL_PROP_VERSION, NULL) < SPA_VERSION_L2CACHE && nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be " "upgraded to add cache devices")); return (zfs_error(hdl, EZFS_BADVERSION, msg)); } if (zcmd_write_conf_nvlist(hdl, &zc, nvroot) != 0) return (-1); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if (zfs_ioctl(hdl, ZFS_IOC_VDEV_ADD, &zc) != 0) { switch (errno) { case EBUSY: /* * This can happen if the user has specified the same * device multiple times. We can't reliably detect this * until we try to add it and see we already have a * label. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "one or more vdevs refer to the same device")); (void) zfs_error(hdl, EZFS_BADDEV, msg); break; case EINVAL: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid config; a pool with removing/removed " "vdevs does not support adding raidz vdevs")); (void) zfs_error(hdl, EZFS_BADDEV, msg); break; case EOVERFLOW: /* * This occurrs when one of the devices is below * SPA_MINDEVSIZE. Unfortunately, we can't detect which * device was the problem device since there's no * reliable way to determine device size from userland. */ { char buf[64]; zfs_nicenum(SPA_MINDEVSIZE, buf, sizeof (buf)); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "device is less than the minimum " "size (%s)"), buf); } (void) zfs_error(hdl, EZFS_BADDEV, msg); break; case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded to add these vdevs")); (void) zfs_error(hdl, EZFS_BADVERSION, msg); break; case EDOM: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "root pool can not have multiple vdevs" " or separate logs")); (void) zfs_error(hdl, EZFS_POOL_NOTSUP, msg); break; case ENOTBLK: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cache device must be a disk or disk slice")); (void) zfs_error(hdl, EZFS_BADDEV, msg); break; default: (void) zpool_standard_error(hdl, errno, msg); } ret = -1; } else { ret = 0; } zcmd_free_nvlists(&zc); return (ret); } /* * Exports the pool from the system. The caller must ensure that there are no * mounted datasets in the pool. */ static int zpool_export_common(zpool_handle_t *zhp, boolean_t force, boolean_t hardforce, const char *log_str) { zfs_cmd_t zc = { 0 }; char msg[1024]; (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot export '%s'"), zhp->zpool_name); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_cookie = force; zc.zc_guid = hardforce; zc.zc_history = (uint64_t)(uintptr_t)log_str; if (zfs_ioctl(zhp->zpool_hdl, ZFS_IOC_POOL_EXPORT, &zc) != 0) { switch (errno) { case EXDEV: zfs_error_aux(zhp->zpool_hdl, dgettext(TEXT_DOMAIN, "use '-f' to override the following errors:\n" "'%s' has an active shared spare which could be" " used by other pools once '%s' is exported."), zhp->zpool_name, zhp->zpool_name); return (zfs_error(zhp->zpool_hdl, EZFS_ACTIVE_SPARE, msg)); default: return (zpool_standard_error_fmt(zhp->zpool_hdl, errno, msg)); } } return (0); } int zpool_export(zpool_handle_t *zhp, boolean_t force, const char *log_str) { return (zpool_export_common(zhp, force, B_FALSE, log_str)); } int zpool_export_force(zpool_handle_t *zhp, const char *log_str) { return (zpool_export_common(zhp, B_TRUE, B_TRUE, log_str)); } static void zpool_rewind_exclaim(libzfs_handle_t *hdl, const char *name, boolean_t dryrun, nvlist_t *config) { nvlist_t *nv = NULL; uint64_t rewindto; int64_t loss = -1; struct tm t; char timestr[128]; if (!hdl->libzfs_printerr || config == NULL) return; if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, &nv) != 0 || nvlist_lookup_nvlist(nv, ZPOOL_CONFIG_REWIND_INFO, &nv) != 0) { return; } if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_LOAD_TIME, &rewindto) != 0) return; (void) nvlist_lookup_int64(nv, ZPOOL_CONFIG_REWIND_TIME, &loss); if (localtime_r((time_t *)&rewindto, &t) != NULL && strftime(timestr, 128, 0, &t) != 0) { if (dryrun) { (void) printf(dgettext(TEXT_DOMAIN, "Would be able to return %s " "to its state as of %s.\n"), name, timestr); } else { (void) printf(dgettext(TEXT_DOMAIN, "Pool %s returned to its state as of %s.\n"), name, timestr); } if (loss > 120) { (void) printf(dgettext(TEXT_DOMAIN, "%s approximately %lld "), dryrun ? "Would discard" : "Discarded", (loss + 30) / 60); (void) printf(dgettext(TEXT_DOMAIN, "minutes of transactions.\n")); } else if (loss > 0) { (void) printf(dgettext(TEXT_DOMAIN, "%s approximately %lld "), dryrun ? "Would discard" : "Discarded", loss); (void) printf(dgettext(TEXT_DOMAIN, "seconds of transactions.\n")); } } } void zpool_explain_recover(libzfs_handle_t *hdl, const char *name, int reason, nvlist_t *config) { nvlist_t *nv = NULL; int64_t loss = -1; uint64_t edata = UINT64_MAX; uint64_t rewindto; struct tm t; char timestr[128]; if (!hdl->libzfs_printerr) return; if (reason >= 0) (void) printf(dgettext(TEXT_DOMAIN, "action: ")); else (void) printf(dgettext(TEXT_DOMAIN, "\t")); /* All attempted rewinds failed if ZPOOL_CONFIG_LOAD_TIME missing */ if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, &nv) != 0 || nvlist_lookup_nvlist(nv, ZPOOL_CONFIG_REWIND_INFO, &nv) != 0 || nvlist_lookup_uint64(nv, ZPOOL_CONFIG_LOAD_TIME, &rewindto) != 0) goto no_info; (void) nvlist_lookup_int64(nv, ZPOOL_CONFIG_REWIND_TIME, &loss); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_LOAD_DATA_ERRORS, &edata); (void) printf(dgettext(TEXT_DOMAIN, "Recovery is possible, but will result in some data loss.\n")); if (localtime_r((time_t *)&rewindto, &t) != NULL && strftime(timestr, 128, 0, &t) != 0) { (void) printf(dgettext(TEXT_DOMAIN, "\tReturning the pool to its state as of %s\n" "\tshould correct the problem. "), timestr); } else { (void) printf(dgettext(TEXT_DOMAIN, "\tReverting the pool to an earlier state " "should correct the problem.\n\t")); } if (loss > 120) { (void) printf(dgettext(TEXT_DOMAIN, "Approximately %lld minutes of data\n" "\tmust be discarded, irreversibly. "), (loss + 30) / 60); } else if (loss > 0) { (void) printf(dgettext(TEXT_DOMAIN, "Approximately %lld seconds of data\n" "\tmust be discarded, irreversibly. "), loss); } if (edata != 0 && edata != UINT64_MAX) { if (edata == 1) { (void) printf(dgettext(TEXT_DOMAIN, "After rewind, at least\n" "\tone persistent user-data error will remain. ")); } else { (void) printf(dgettext(TEXT_DOMAIN, "After rewind, several\n" "\tpersistent user-data errors will remain. ")); } } (void) printf(dgettext(TEXT_DOMAIN, "Recovery can be attempted\n\tby executing 'zpool %s -F %s'. "), reason >= 0 ? "clear" : "import", name); (void) printf(dgettext(TEXT_DOMAIN, "A scrub of the pool\n" "\tis strongly recommended after recovery.\n")); return; no_info: (void) printf(dgettext(TEXT_DOMAIN, "Destroy and re-create the pool from\n\ta backup source.\n")); } /* * zpool_import() is a contracted interface. Should be kept the same * if possible. * * Applications should use zpool_import_props() to import a pool with * new properties value to be set. */ int zpool_import(libzfs_handle_t *hdl, nvlist_t *config, const char *newname, char *altroot) { nvlist_t *props = NULL; int ret; if (altroot != NULL) { if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0) { return (zfs_error_fmt(hdl, EZFS_NOMEM, dgettext(TEXT_DOMAIN, "cannot import '%s'"), newname)); } if (nvlist_add_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), altroot) != 0 || nvlist_add_string(props, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), "none") != 0) { nvlist_free(props); return (zfs_error_fmt(hdl, EZFS_NOMEM, dgettext(TEXT_DOMAIN, "cannot import '%s'"), newname)); } } ret = zpool_import_props(hdl, config, newname, props, ZFS_IMPORT_NORMAL); nvlist_free(props); return (ret); } static void print_vdev_tree(libzfs_handle_t *hdl, const char *name, nvlist_t *nv, int indent) { nvlist_t **child; uint_t c, children; char *vname; uint64_t is_log = 0; (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log); if (name != NULL) (void) printf("\t%*s%s%s\n", indent, "", name, is_log ? " [log]" : ""); if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) return; for (c = 0; c < children; c++) { vname = zpool_vdev_name(hdl, NULL, child[c], B_TRUE); print_vdev_tree(hdl, vname, child[c], indent + 2); free(vname); } } void zpool_print_unsup_feat(nvlist_t *config) { nvlist_t *nvinfo, *unsup_feat; verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, &nvinfo) == 0); verify(nvlist_lookup_nvlist(nvinfo, ZPOOL_CONFIG_UNSUP_FEAT, &unsup_feat) == 0); for (nvpair_t *nvp = nvlist_next_nvpair(unsup_feat, NULL); nvp != NULL; nvp = nvlist_next_nvpair(unsup_feat, nvp)) { char *desc; verify(nvpair_type(nvp) == DATA_TYPE_STRING); verify(nvpair_value_string(nvp, &desc) == 0); if (strlen(desc) > 0) (void) printf("\t%s (%s)\n", nvpair_name(nvp), desc); else (void) printf("\t%s\n", nvpair_name(nvp)); } } /* * Import the given pool using the known configuration and a list of * properties to be set. The configuration should have come from * zpool_find_import(). The 'newname' parameters control whether the pool * is imported with a different name. */ int zpool_import_props(libzfs_handle_t *hdl, nvlist_t *config, const char *newname, nvlist_t *props, int flags) { zfs_cmd_t zc = { 0 }; zpool_rewind_policy_t policy; nvlist_t *nv = NULL; nvlist_t *nvinfo = NULL; nvlist_t *missing = NULL; char *thename; char *origname; int ret; int error = 0; char errbuf[1024]; verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &origname) == 0); (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot import pool '%s'"), origname); if (newname != NULL) { if (!zpool_name_valid(hdl, B_FALSE, newname)) return (zfs_error_fmt(hdl, EZFS_INVALIDNAME, dgettext(TEXT_DOMAIN, "cannot import '%s'"), newname)); thename = (char *)newname; } else { thename = origname; } if (props != NULL) { uint64_t version; prop_flags_t flags = { .create = B_FALSE, .import = B_TRUE }; verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) == 0); if ((props = zpool_valid_proplist(hdl, origname, props, version, flags, errbuf)) == NULL) return (-1); if (zcmd_write_src_nvlist(hdl, &zc, props) != 0) { nvlist_free(props); return (-1); } nvlist_free(props); } (void) strlcpy(zc.zc_name, thename, sizeof (zc.zc_name)); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &zc.zc_guid) == 0); if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0) { zcmd_free_nvlists(&zc); return (-1); } if (zcmd_alloc_dst_nvlist(hdl, &zc, zc.zc_nvlist_conf_size * 2) != 0) { zcmd_free_nvlists(&zc); return (-1); } zc.zc_cookie = flags; while ((ret = zfs_ioctl(hdl, ZFS_IOC_POOL_IMPORT, &zc)) != 0 && errno == ENOMEM) { if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { zcmd_free_nvlists(&zc); return (-1); } } if (ret != 0) error = errno; (void) zcmd_read_dst_nvlist(hdl, &zc, &nv); zcmd_free_nvlists(&zc); zpool_get_rewind_policy(config, &policy); if (error) { char desc[1024]; /* * Dry-run failed, but we print out what success * looks like if we found a best txg */ if (policy.zrp_request & ZPOOL_TRY_REWIND) { zpool_rewind_exclaim(hdl, newname ? origname : thename, B_TRUE, nv); nvlist_free(nv); return (-1); } if (newname == NULL) (void) snprintf(desc, sizeof (desc), dgettext(TEXT_DOMAIN, "cannot import '%s'"), thename); else (void) snprintf(desc, sizeof (desc), dgettext(TEXT_DOMAIN, "cannot import '%s' as '%s'"), origname, thename); switch (error) { case ENOTSUP: if (nv != NULL && nvlist_lookup_nvlist(nv, ZPOOL_CONFIG_LOAD_INFO, &nvinfo) == 0 && nvlist_exists(nvinfo, ZPOOL_CONFIG_UNSUP_FEAT)) { (void) printf(dgettext(TEXT_DOMAIN, "This " "pool uses the following feature(s) not " "supported by this system:\n")); zpool_print_unsup_feat(nv); if (nvlist_exists(nvinfo, ZPOOL_CONFIG_CAN_RDONLY)) { (void) printf(dgettext(TEXT_DOMAIN, "All unsupported features are only " "required for writing to the pool." "\nThe pool can be imported using " "'-o readonly=on'.\n")); } } /* * Unsupported version. */ (void) zfs_error(hdl, EZFS_BADVERSION, desc); break; case EINVAL: (void) zfs_error(hdl, EZFS_INVALCONFIG, desc); break; case EROFS: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "one or more devices is read only")); (void) zfs_error(hdl, EZFS_BADDEV, desc); break; case ENXIO: if (nv && nvlist_lookup_nvlist(nv, ZPOOL_CONFIG_LOAD_INFO, &nvinfo) == 0 && nvlist_lookup_nvlist(nvinfo, ZPOOL_CONFIG_MISSING_DEVICES, &missing) == 0) { (void) printf(dgettext(TEXT_DOMAIN, - "The devices below are missing, use " - "'-m' to import the pool anyway:\n")); + "The devices below are missing or " + "corrupted, use '-m' to import the pool " + "anyway:\n")); print_vdev_tree(hdl, NULL, missing, 2); (void) printf("\n"); } (void) zpool_standard_error(hdl, error, desc); break; case EEXIST: (void) zpool_standard_error(hdl, error, desc); break; case ENAMETOOLONG: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "new name of at least one dataset is longer than " "the maximum allowable length")); (void) zfs_error(hdl, EZFS_NAMETOOLONG, desc); break; default: (void) zpool_standard_error(hdl, error, desc); zpool_explain_recover(hdl, newname ? origname : thename, -error, nv); break; } nvlist_free(nv); ret = -1; } else { zpool_handle_t *zhp; /* * This should never fail, but play it safe anyway. */ if (zpool_open_silent(hdl, thename, &zhp) != 0) ret = -1; else if (zhp != NULL) zpool_close(zhp); if (policy.zrp_request & (ZPOOL_DO_REWIND | ZPOOL_TRY_REWIND)) { zpool_rewind_exclaim(hdl, newname ? origname : thename, ((policy.zrp_request & ZPOOL_TRY_REWIND) != 0), nv); } nvlist_free(nv); return (0); } return (ret); } /* * Scan the pool. */ int zpool_scan(zpool_handle_t *zhp, pool_scan_func_t func, pool_scrub_cmd_t cmd) { zfs_cmd_t zc = { 0 }; char msg[1024]; int err; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_cookie = func; zc.zc_flags = cmd; if (zfs_ioctl(hdl, ZFS_IOC_POOL_SCAN, &zc) == 0) return (0); err = errno; /* ECANCELED on a scrub means we resumed a paused scrub */ if (err == ECANCELED && func == POOL_SCAN_SCRUB && cmd == POOL_SCRUB_NORMAL) return (0); if (err == ENOENT && func != POOL_SCAN_NONE && cmd == POOL_SCRUB_NORMAL) return (0); if (func == POOL_SCAN_SCRUB) { if (cmd == POOL_SCRUB_PAUSE) { (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot pause scrubbing %s"), zc.zc_name); } else { assert(cmd == POOL_SCRUB_NORMAL); (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot scrub %s"), zc.zc_name); } } else if (func == POOL_SCAN_NONE) { (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot cancel scrubbing %s"), zc.zc_name); } else { assert(!"unexpected result"); } if (err == EBUSY) { nvlist_t *nvroot; pool_scan_stat_t *ps = NULL; uint_t psc; verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); (void) nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_SCAN_STATS, (uint64_t **)&ps, &psc); if (ps && ps->pss_func == POOL_SCAN_SCRUB) { if (cmd == POOL_SCRUB_PAUSE) return (zfs_error(hdl, EZFS_SCRUB_PAUSED, msg)); else return (zfs_error(hdl, EZFS_SCRUBBING, msg)); } else { return (zfs_error(hdl, EZFS_RESILVERING, msg)); } } else if (err == ENOENT) { return (zfs_error(hdl, EZFS_NO_SCRUB, msg)); } else { return (zpool_standard_error(hdl, err, msg)); } } #ifdef illumos /* * This provides a very minimal check whether a given string is likely a * c#t#d# style string. Users of this are expected to do their own * verification of the s# part. */ #define CTD_CHECK(str) (str && str[0] == 'c' && isdigit(str[1])) /* * More elaborate version for ones which may start with "/dev/dsk/" * and the like. */ static int ctd_check_path(char *str) { /* * If it starts with a slash, check the last component. */ if (str && str[0] == '/') { char *tmp = strrchr(str, '/'); /* * If it ends in "/old", check the second-to-last * component of the string instead. */ if (tmp != str && strcmp(tmp, "/old") == 0) { for (tmp--; *tmp != '/'; tmp--) ; } str = tmp + 1; } return (CTD_CHECK(str)); } #endif /* * Find a vdev that matches the search criteria specified. We use the * the nvpair name to determine how we should look for the device. * 'avail_spare' is set to TRUE if the provided guid refers to an AVAIL * spare; but FALSE if its an INUSE spare. */ static nvlist_t * vdev_to_nvlist_iter(nvlist_t *nv, nvlist_t *search, boolean_t *avail_spare, boolean_t *l2cache, boolean_t *log) { uint_t c, children; nvlist_t **child; nvlist_t *ret; uint64_t is_log; char *srchkey; nvpair_t *pair = nvlist_next_nvpair(search, NULL); /* Nothing to look for */ if (search == NULL || pair == NULL) return (NULL); /* Obtain the key we will use to search */ srchkey = nvpair_name(pair); switch (nvpair_type(pair)) { case DATA_TYPE_UINT64: if (strcmp(srchkey, ZPOOL_CONFIG_GUID) == 0) { uint64_t srchval, theguid; verify(nvpair_value_uint64(pair, &srchval) == 0); verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &theguid) == 0); if (theguid == srchval) return (nv); } break; case DATA_TYPE_STRING: { char *srchval, *val; verify(nvpair_value_string(pair, &srchval) == 0); if (nvlist_lookup_string(nv, srchkey, &val) != 0) break; /* * Search for the requested value. Special cases: * * - ZPOOL_CONFIG_PATH for whole disk entries. To support * UEFI boot, these end in "s0" or "s0/old" or "s1" or * "s1/old". The "s0" or "s1" part is hidden from the user, * but included in the string, so this matches around it. * - looking for a top-level vdev name (i.e. ZPOOL_CONFIG_TYPE). * * Otherwise, all other searches are simple string compares. */ #ifdef illumos if (strcmp(srchkey, ZPOOL_CONFIG_PATH) == 0 && ctd_check_path(val)) { uint64_t wholedisk = 0; (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk); if (wholedisk) { int slen = strlen(srchval); int vlen = strlen(val); if (slen != vlen - 2) break; /* * make_leaf_vdev() should only set * wholedisk for ZPOOL_CONFIG_PATHs which * will include "/dev/dsk/", giving plenty of * room for the indices used next. */ ASSERT(vlen >= 6); /* * strings identical except trailing "s0" */ if ((strcmp(&val[vlen - 2], "s0") == 0 || strcmp(&val[vlen - 2], "s1") == 0) && strncmp(srchval, val, slen) == 0) return (nv); /* * strings identical except trailing "s0/old" */ if ((strcmp(&val[vlen - 6], "s0/old") == 0 || strcmp(&val[vlen - 6], "s1/old") == 0) && strcmp(&srchval[slen - 4], "/old") == 0 && strncmp(srchval, val, slen - 4) == 0) return (nv); break; } } else if (strcmp(srchkey, ZPOOL_CONFIG_TYPE) == 0 && val) { #else if (strcmp(srchkey, ZPOOL_CONFIG_TYPE) == 0 && val) { #endif char *type, *idx, *end, *p; uint64_t id, vdev_id; /* * Determine our vdev type, keeping in mind * that the srchval is composed of a type and * vdev id pair (i.e. mirror-4). */ if ((type = strdup(srchval)) == NULL) return (NULL); if ((p = strrchr(type, '-')) == NULL) { free(type); break; } idx = p + 1; *p = '\0'; /* * If the types don't match then keep looking. */ if (strncmp(val, type, strlen(val)) != 0) { free(type); break; } verify(zpool_vdev_is_interior(type)); verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &id) == 0); errno = 0; vdev_id = strtoull(idx, &end, 10); free(type); if (errno != 0) return (NULL); /* * Now verify that we have the correct vdev id. */ if (vdev_id == id) return (nv); } /* * Common case */ if (strcmp(srchval, val) == 0) return (nv); break; } default: break; } if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) return (NULL); for (c = 0; c < children; c++) { if ((ret = vdev_to_nvlist_iter(child[c], search, avail_spare, l2cache, NULL)) != NULL) { /* * The 'is_log' value is only set for the toplevel * vdev, not the leaf vdevs. So we always lookup the * log device from the root of the vdev tree (where * 'log' is non-NULL). */ if (log != NULL && nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG, &is_log) == 0 && is_log) { *log = B_TRUE; } return (ret); } } if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, &child, &children) == 0) { for (c = 0; c < children; c++) { if ((ret = vdev_to_nvlist_iter(child[c], search, avail_spare, l2cache, NULL)) != NULL) { *avail_spare = B_TRUE; return (ret); } } } if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, &child, &children) == 0) { for (c = 0; c < children; c++) { if ((ret = vdev_to_nvlist_iter(child[c], search, avail_spare, l2cache, NULL)) != NULL) { *l2cache = B_TRUE; return (ret); } } } return (NULL); } /* * Given a physical path (minus the "/devices" prefix), find the * associated vdev. */ nvlist_t * zpool_find_vdev_by_physpath(zpool_handle_t *zhp, const char *ppath, boolean_t *avail_spare, boolean_t *l2cache, boolean_t *log) { nvlist_t *search, *nvroot, *ret; verify(nvlist_alloc(&search, NV_UNIQUE_NAME, KM_SLEEP) == 0); verify(nvlist_add_string(search, ZPOOL_CONFIG_PHYS_PATH, ppath) == 0); verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); *avail_spare = B_FALSE; *l2cache = B_FALSE; if (log != NULL) *log = B_FALSE; ret = vdev_to_nvlist_iter(nvroot, search, avail_spare, l2cache, log); nvlist_free(search); return (ret); } /* * Determine if we have an "interior" top-level vdev (i.e mirror/raidz). */ static boolean_t zpool_vdev_is_interior(const char *name) { if (strncmp(name, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0 || strncmp(name, VDEV_TYPE_SPARE, strlen(VDEV_TYPE_SPARE)) == 0 || strncmp(name, VDEV_TYPE_REPLACING, strlen(VDEV_TYPE_REPLACING)) == 0 || strncmp(name, VDEV_TYPE_MIRROR, strlen(VDEV_TYPE_MIRROR)) == 0) return (B_TRUE); return (B_FALSE); } nvlist_t * zpool_find_vdev(zpool_handle_t *zhp, const char *path, boolean_t *avail_spare, boolean_t *l2cache, boolean_t *log) { char buf[MAXPATHLEN]; char *end; nvlist_t *nvroot, *search, *ret; uint64_t guid; verify(nvlist_alloc(&search, NV_UNIQUE_NAME, KM_SLEEP) == 0); guid = strtoull(path, &end, 10); if (guid != 0 && *end == '\0') { verify(nvlist_add_uint64(search, ZPOOL_CONFIG_GUID, guid) == 0); } else if (zpool_vdev_is_interior(path)) { verify(nvlist_add_string(search, ZPOOL_CONFIG_TYPE, path) == 0); } else if (path[0] != '/') { (void) snprintf(buf, sizeof (buf), "%s%s", _PATH_DEV, path); verify(nvlist_add_string(search, ZPOOL_CONFIG_PATH, buf) == 0); } else { verify(nvlist_add_string(search, ZPOOL_CONFIG_PATH, path) == 0); } verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); *avail_spare = B_FALSE; *l2cache = B_FALSE; if (log != NULL) *log = B_FALSE; ret = vdev_to_nvlist_iter(nvroot, search, avail_spare, l2cache, log); nvlist_free(search); return (ret); } static int vdev_online(nvlist_t *nv) { uint64_t ival; if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &ival) == 0 || nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, &ival) == 0 || nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, &ival) == 0) return (0); return (1); } /* * Helper function for zpool_get_physpaths(). */ static int vdev_get_one_physpath(nvlist_t *config, char *physpath, size_t physpath_size, size_t *bytes_written) { size_t bytes_left, pos, rsz; char *tmppath; const char *format; if (nvlist_lookup_string(config, ZPOOL_CONFIG_PHYS_PATH, &tmppath) != 0) return (EZFS_NODEVICE); pos = *bytes_written; bytes_left = physpath_size - pos; format = (pos == 0) ? "%s" : " %s"; rsz = snprintf(physpath + pos, bytes_left, format, tmppath); *bytes_written += rsz; if (rsz >= bytes_left) { /* if physpath was not copied properly, clear it */ if (bytes_left != 0) { physpath[pos] = 0; } return (EZFS_NOSPC); } return (0); } static int vdev_get_physpaths(nvlist_t *nv, char *physpath, size_t phypath_size, size_t *rsz, boolean_t is_spare) { char *type; int ret; if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) return (EZFS_INVALCONFIG); if (strcmp(type, VDEV_TYPE_DISK) == 0) { /* * An active spare device has ZPOOL_CONFIG_IS_SPARE set. * For a spare vdev, we only want to boot from the active * spare device. */ if (is_spare) { uint64_t spare = 0; (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, &spare); if (!spare) return (EZFS_INVALCONFIG); } if (vdev_online(nv)) { if ((ret = vdev_get_one_physpath(nv, physpath, phypath_size, rsz)) != 0) return (ret); } } else if (strcmp(type, VDEV_TYPE_MIRROR) == 0 || strcmp(type, VDEV_TYPE_RAIDZ) == 0 || strcmp(type, VDEV_TYPE_REPLACING) == 0 || (is_spare = (strcmp(type, VDEV_TYPE_SPARE) == 0))) { nvlist_t **child; uint_t count; int i, ret; if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &count) != 0) return (EZFS_INVALCONFIG); for (i = 0; i < count; i++) { ret = vdev_get_physpaths(child[i], physpath, phypath_size, rsz, is_spare); if (ret == EZFS_NOSPC) return (ret); } } return (EZFS_POOL_INVALARG); } /* * Get phys_path for a root pool config. * Return 0 on success; non-zero on failure. */ static int zpool_get_config_physpath(nvlist_t *config, char *physpath, size_t phypath_size) { size_t rsz; nvlist_t *vdev_root; nvlist_t **child; uint_t count; char *type; rsz = 0; if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vdev_root) != 0) return (EZFS_INVALCONFIG); if (nvlist_lookup_string(vdev_root, ZPOOL_CONFIG_TYPE, &type) != 0 || nvlist_lookup_nvlist_array(vdev_root, ZPOOL_CONFIG_CHILDREN, &child, &count) != 0) return (EZFS_INVALCONFIG); /* * root pool can only have a single top-level vdev. */ if (strcmp(type, VDEV_TYPE_ROOT) != 0 || count != 1) return (EZFS_POOL_INVALARG); (void) vdev_get_physpaths(child[0], physpath, phypath_size, &rsz, B_FALSE); /* No online devices */ if (rsz == 0) return (EZFS_NODEVICE); return (0); } /* * Get phys_path for a root pool * Return 0 on success; non-zero on failure. */ int zpool_get_physpath(zpool_handle_t *zhp, char *physpath, size_t phypath_size) { return (zpool_get_config_physpath(zhp->zpool_config, physpath, phypath_size)); } /* * If the device has being dynamically expanded then we need to relabel * the disk to use the new unallocated space. */ static int zpool_relabel_disk(libzfs_handle_t *hdl, const char *name) { #ifdef illumos char path[MAXPATHLEN]; char errbuf[1024]; int fd, error; int (*_efi_use_whole_disk)(int); if ((_efi_use_whole_disk = (int (*)(int))dlsym(RTLD_DEFAULT, "efi_use_whole_disk")) == NULL) return (-1); (void) snprintf(path, sizeof (path), "%s/%s", ZFS_RDISK_ROOT, name); if ((fd = open(path, O_RDWR | O_NDELAY)) < 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cannot " "relabel '%s': unable to open device"), name); return (zfs_error(hdl, EZFS_OPENFAILED, errbuf)); } /* * It's possible that we might encounter an error if the device * does not have any unallocated space left. If so, we simply * ignore that error and continue on. */ error = _efi_use_whole_disk(fd); (void) close(fd); if (error && error != VT_ENOSPC) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cannot " "relabel '%s': unable to read disk capacity"), name); return (zfs_error(hdl, EZFS_NOCAP, errbuf)); } #endif /* illumos */ return (0); } /* * Bring the specified vdev online. The 'flags' parameter is a set of the * ZFS_ONLINE_* flags. */ int zpool_vdev_online(zpool_handle_t *zhp, const char *path, int flags, vdev_state_t *newstate) { zfs_cmd_t zc = { 0 }; char msg[1024]; char *pathname; nvlist_t *tgt; boolean_t avail_spare, l2cache, islog; libzfs_handle_t *hdl = zhp->zpool_hdl; if (flags & ZFS_ONLINE_EXPAND) { (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot expand %s"), path); } else { (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot online %s"), path); } (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if ((tgt = zpool_find_vdev(zhp, path, &avail_spare, &l2cache, &islog)) == NULL) return (zfs_error(hdl, EZFS_NODEVICE, msg)); verify(nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID, &zc.zc_guid) == 0); if (avail_spare) return (zfs_error(hdl, EZFS_ISSPARE, msg)); if ((flags & ZFS_ONLINE_EXPAND || zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOEXPAND, NULL)) && nvlist_lookup_string(tgt, ZPOOL_CONFIG_PATH, &pathname) == 0) { uint64_t wholedisk = 0; (void) nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk); /* * XXX - L2ARC 1.0 devices can't support expansion. */ if (l2cache) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cannot expand cache devices")); return (zfs_error(hdl, EZFS_VDEVNOTSUP, msg)); } if (wholedisk) { pathname += strlen(ZFS_DISK_ROOT) + 1; (void) zpool_relabel_disk(hdl, pathname); } } zc.zc_cookie = VDEV_STATE_ONLINE; zc.zc_obj = flags; if (zfs_ioctl(hdl, ZFS_IOC_VDEV_SET_STATE, &zc) != 0) { if (errno == EINVAL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "was split " "from this pool into a new one. Use '%s' " "instead"), "zpool detach"); return (zfs_error(hdl, EZFS_POSTSPLIT_ONLINE, msg)); } return (zpool_standard_error(hdl, errno, msg)); } *newstate = zc.zc_cookie; return (0); } /* * Take the specified vdev offline */ int zpool_vdev_offline(zpool_handle_t *zhp, const char *path, boolean_t istmp) { zfs_cmd_t zc = { 0 }; char msg[1024]; nvlist_t *tgt; boolean_t avail_spare, l2cache; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot offline %s"), path); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if ((tgt = zpool_find_vdev(zhp, path, &avail_spare, &l2cache, NULL)) == NULL) return (zfs_error(hdl, EZFS_NODEVICE, msg)); verify(nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID, &zc.zc_guid) == 0); if (avail_spare) return (zfs_error(hdl, EZFS_ISSPARE, msg)); zc.zc_cookie = VDEV_STATE_OFFLINE; zc.zc_obj = istmp ? ZFS_OFFLINE_TEMPORARY : 0; if (zfs_ioctl(hdl, ZFS_IOC_VDEV_SET_STATE, &zc) == 0) return (0); switch (errno) { case EBUSY: /* * There are no other replicas of this device. */ return (zfs_error(hdl, EZFS_NOREPLICAS, msg)); case EEXIST: /* * The log device has unplayed logs */ return (zfs_error(hdl, EZFS_UNPLAYED_LOGS, msg)); default: return (zpool_standard_error(hdl, errno, msg)); } } /* * Mark the given vdev faulted. */ int zpool_vdev_fault(zpool_handle_t *zhp, uint64_t guid, vdev_aux_t aux) { zfs_cmd_t zc = { 0 }; char msg[1024]; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot fault %llu"), guid); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_guid = guid; zc.zc_cookie = VDEV_STATE_FAULTED; zc.zc_obj = aux; if (ioctl(hdl->libzfs_fd, ZFS_IOC_VDEV_SET_STATE, &zc) == 0) return (0); switch (errno) { case EBUSY: /* * There are no other replicas of this device. */ return (zfs_error(hdl, EZFS_NOREPLICAS, msg)); default: return (zpool_standard_error(hdl, errno, msg)); } } /* * Mark the given vdev degraded. */ int zpool_vdev_degrade(zpool_handle_t *zhp, uint64_t guid, vdev_aux_t aux) { zfs_cmd_t zc = { 0 }; char msg[1024]; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot degrade %llu"), guid); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_guid = guid; zc.zc_cookie = VDEV_STATE_DEGRADED; zc.zc_obj = aux; if (ioctl(hdl->libzfs_fd, ZFS_IOC_VDEV_SET_STATE, &zc) == 0) return (0); return (zpool_standard_error(hdl, errno, msg)); } /* * Returns TRUE if the given nvlist is a vdev that was originally swapped in as * a hot spare. */ static boolean_t is_replacing_spare(nvlist_t *search, nvlist_t *tgt, int which) { nvlist_t **child; uint_t c, children; char *type; if (nvlist_lookup_nvlist_array(search, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0) { verify(nvlist_lookup_string(search, ZPOOL_CONFIG_TYPE, &type) == 0); if (strcmp(type, VDEV_TYPE_SPARE) == 0 && children == 2 && child[which] == tgt) return (B_TRUE); for (c = 0; c < children; c++) if (is_replacing_spare(child[c], tgt, which)) return (B_TRUE); } return (B_FALSE); } /* * Attach new_disk (fully described by nvroot) to old_disk. * If 'replacing' is specified, the new disk will replace the old one. */ int zpool_vdev_attach(zpool_handle_t *zhp, const char *old_disk, const char *new_disk, nvlist_t *nvroot, int replacing) { zfs_cmd_t zc = { 0 }; char msg[1024]; int ret; nvlist_t *tgt; boolean_t avail_spare, l2cache, islog; uint64_t val; char *newname; nvlist_t **child; uint_t children; nvlist_t *config_root; libzfs_handle_t *hdl = zhp->zpool_hdl; boolean_t rootpool = zpool_is_bootable(zhp); if (replacing) (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot replace %s with %s"), old_disk, new_disk); else (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot attach %s to %s"), new_disk, old_disk); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if ((tgt = zpool_find_vdev(zhp, old_disk, &avail_spare, &l2cache, &islog)) == NULL) return (zfs_error(hdl, EZFS_NODEVICE, msg)); if (avail_spare) return (zfs_error(hdl, EZFS_ISSPARE, msg)); if (l2cache) return (zfs_error(hdl, EZFS_ISL2CACHE, msg)); verify(nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID, &zc.zc_guid) == 0); zc.zc_cookie = replacing; if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0 || children != 1) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "new device must be a single disk")); return (zfs_error(hdl, EZFS_INVALCONFIG, msg)); } verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL), ZPOOL_CONFIG_VDEV_TREE, &config_root) == 0); if ((newname = zpool_vdev_name(NULL, NULL, child[0], B_FALSE)) == NULL) return (-1); /* * If the target is a hot spare that has been swapped in, we can only * replace it with another hot spare. */ if (replacing && nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_IS_SPARE, &val) == 0 && (zpool_find_vdev(zhp, newname, &avail_spare, &l2cache, NULL) == NULL || !avail_spare) && is_replacing_spare(config_root, tgt, 1)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "can only be replaced by another hot spare")); free(newname); return (zfs_error(hdl, EZFS_BADTARGET, msg)); } free(newname); if (zcmd_write_conf_nvlist(hdl, &zc, nvroot) != 0) return (-1); ret = zfs_ioctl(hdl, ZFS_IOC_VDEV_ATTACH, &zc); zcmd_free_nvlists(&zc); if (ret == 0) { if (rootpool) { /* * XXX need a better way to prevent user from * booting up a half-baked vdev. */ (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "Make " "sure to wait until resilver is done " "before rebooting.\n")); (void) fprintf(stderr, "\n"); (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "If " "you boot from pool '%s', you may need to update\n" "boot code on newly attached disk '%s'.\n\n" "Assuming you use GPT partitioning and 'da0' is " "your new boot disk\n" "you may use the following command:\n\n" "\tgpart bootcode -b /boot/pmbr -p " "/boot/gptzfsboot -i 1 da0\n\n"), zhp->zpool_name, new_disk); } return (0); } switch (errno) { case ENOTSUP: /* * Can't attach to or replace this type of vdev. */ if (replacing) { uint64_t version = zpool_get_prop_int(zhp, ZPOOL_PROP_VERSION, NULL); if (islog) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cannot replace a log with a spare")); else if (version >= SPA_VERSION_MULTI_REPLACE) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "already in replacing/spare config; wait " "for completion or use 'zpool detach'")); else zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cannot replace a replacing device")); } else { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "can only attach to mirrors and top-level " "disks")); } (void) zfs_error(hdl, EZFS_BADTARGET, msg); break; case EINVAL: /* * The new device must be a single disk. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "new device must be a single disk")); (void) zfs_error(hdl, EZFS_INVALCONFIG, msg); break; case EBUSY: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "%s is busy, " "or pool has removing/removed vdevs"), new_disk); (void) zfs_error(hdl, EZFS_BADDEV, msg); break; case EOVERFLOW: /* * The new device is too small. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "device is too small")); (void) zfs_error(hdl, EZFS_BADDEV, msg); break; case EDOM: /* * The new device has a different alignment requirement. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "devices have different sector alignment")); (void) zfs_error(hdl, EZFS_BADDEV, msg); break; case ENAMETOOLONG: /* * The resulting top-level vdev spec won't fit in the label. */ (void) zfs_error(hdl, EZFS_DEVOVERFLOW, msg); break; default: (void) zpool_standard_error(hdl, errno, msg); } return (-1); } /* * Detach the specified device. */ int zpool_vdev_detach(zpool_handle_t *zhp, const char *path) { zfs_cmd_t zc = { 0 }; char msg[1024]; nvlist_t *tgt; boolean_t avail_spare, l2cache; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot detach %s"), path); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if ((tgt = zpool_find_vdev(zhp, path, &avail_spare, &l2cache, NULL)) == NULL) return (zfs_error(hdl, EZFS_NODEVICE, msg)); if (avail_spare) return (zfs_error(hdl, EZFS_ISSPARE, msg)); if (l2cache) return (zfs_error(hdl, EZFS_ISL2CACHE, msg)); verify(nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID, &zc.zc_guid) == 0); if (zfs_ioctl(hdl, ZFS_IOC_VDEV_DETACH, &zc) == 0) return (0); switch (errno) { case ENOTSUP: /* * Can't detach from this type of vdev. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "only " "applicable to mirror and replacing vdevs")); (void) zfs_error(hdl, EZFS_BADTARGET, msg); break; case EBUSY: /* * There are no other replicas of this device. */ (void) zfs_error(hdl, EZFS_NOREPLICAS, msg); break; default: (void) zpool_standard_error(hdl, errno, msg); } return (-1); } /* * Find a mirror vdev in the source nvlist. * * The mchild array contains a list of disks in one of the top-level mirrors * of the source pool. The schild array contains a list of disks that the * user specified on the command line. We loop over the mchild array to * see if any entry in the schild array matches. * * If a disk in the mchild array is found in the schild array, we return * the index of that entry. Otherwise we return -1. */ static int find_vdev_entry(zpool_handle_t *zhp, nvlist_t **mchild, uint_t mchildren, nvlist_t **schild, uint_t schildren) { uint_t mc; for (mc = 0; mc < mchildren; mc++) { uint_t sc; char *mpath = zpool_vdev_name(zhp->zpool_hdl, zhp, mchild[mc], B_FALSE); for (sc = 0; sc < schildren; sc++) { char *spath = zpool_vdev_name(zhp->zpool_hdl, zhp, schild[sc], B_FALSE); boolean_t result = (strcmp(mpath, spath) == 0); free(spath); if (result) { free(mpath); return (mc); } } free(mpath); } return (-1); } /* * Split a mirror pool. If newroot points to null, then a new nvlist * is generated and it is the responsibility of the caller to free it. */ int zpool_vdev_split(zpool_handle_t *zhp, char *newname, nvlist_t **newroot, nvlist_t *props, splitflags_t flags) { zfs_cmd_t zc = { 0 }; char msg[1024]; nvlist_t *tree, *config, **child, **newchild, *newconfig = NULL; nvlist_t **varray = NULL, *zc_props = NULL; uint_t c, children, newchildren, lastlog = 0, vcount, found = 0; libzfs_handle_t *hdl = zhp->zpool_hdl; uint64_t vers; boolean_t freelist = B_FALSE, memory_err = B_TRUE; int retval = 0; (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "Unable to split %s"), zhp->zpool_name); if (!zpool_name_valid(hdl, B_FALSE, newname)) return (zfs_error(hdl, EZFS_INVALIDNAME, msg)); if ((config = zpool_get_config(zhp, NULL)) == NULL) { (void) fprintf(stderr, gettext("Internal error: unable to " "retrieve pool configuration\n")); return (-1); } verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &tree) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &vers) == 0); if (props) { prop_flags_t flags = { .create = B_FALSE, .import = B_TRUE }; if ((zc_props = zpool_valid_proplist(hdl, zhp->zpool_name, props, vers, flags, msg)) == NULL) return (-1); } if (nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Source pool is missing vdev tree")); nvlist_free(zc_props); return (-1); } varray = zfs_alloc(hdl, children * sizeof (nvlist_t *)); vcount = 0; if (*newroot == NULL || nvlist_lookup_nvlist_array(*newroot, ZPOOL_CONFIG_CHILDREN, &newchild, &newchildren) != 0) newchildren = 0; for (c = 0; c < children; c++) { uint64_t is_log = B_FALSE, is_hole = B_FALSE; char *type; nvlist_t **mchild, *vdev; uint_t mchildren; int entry; /* * Unlike cache & spares, slogs are stored in the * ZPOOL_CONFIG_CHILDREN array. We filter them out here. */ (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG, &is_log); (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, &is_hole); if (is_log || is_hole) { /* * Create a hole vdev and put it in the config. */ if (nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) != 0) goto out; if (nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) != 0) goto out; if (nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_HOLE, 1) != 0) goto out; if (lastlog == 0) lastlog = vcount; varray[vcount++] = vdev; continue; } lastlog = 0; verify(nvlist_lookup_string(child[c], ZPOOL_CONFIG_TYPE, &type) == 0); if (strcmp(type, VDEV_TYPE_MIRROR) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Source pool must be composed only of mirrors\n")); retval = zfs_error(hdl, EZFS_INVALCONFIG, msg); goto out; } verify(nvlist_lookup_nvlist_array(child[c], ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); /* find or add an entry for this top-level vdev */ if (newchildren > 0 && (entry = find_vdev_entry(zhp, mchild, mchildren, newchild, newchildren)) >= 0) { /* We found a disk that the user specified. */ vdev = mchild[entry]; ++found; } else { /* User didn't specify a disk for this vdev. */ vdev = mchild[mchildren - 1]; } if (nvlist_dup(vdev, &varray[vcount++], 0) != 0) goto out; } /* did we find every disk the user specified? */ if (found != newchildren) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Device list must " "include at most one disk from each mirror")); retval = zfs_error(hdl, EZFS_INVALCONFIG, msg); goto out; } /* Prepare the nvlist for populating. */ if (*newroot == NULL) { if (nvlist_alloc(newroot, NV_UNIQUE_NAME, 0) != 0) goto out; freelist = B_TRUE; if (nvlist_add_string(*newroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0) goto out; } else { verify(nvlist_remove_all(*newroot, ZPOOL_CONFIG_CHILDREN) == 0); } /* Add all the children we found */ if (nvlist_add_nvlist_array(*newroot, ZPOOL_CONFIG_CHILDREN, varray, lastlog == 0 ? vcount : lastlog) != 0) goto out; /* * If we're just doing a dry run, exit now with success. */ if (flags.dryrun) { memory_err = B_FALSE; freelist = B_FALSE; goto out; } /* now build up the config list & call the ioctl */ if (nvlist_alloc(&newconfig, NV_UNIQUE_NAME, 0) != 0) goto out; if (nvlist_add_nvlist(newconfig, ZPOOL_CONFIG_VDEV_TREE, *newroot) != 0 || nvlist_add_string(newconfig, ZPOOL_CONFIG_POOL_NAME, newname) != 0 || nvlist_add_uint64(newconfig, ZPOOL_CONFIG_VERSION, vers) != 0) goto out; /* * The new pool is automatically part of the namespace unless we * explicitly export it. */ if (!flags.import) zc.zc_cookie = ZPOOL_EXPORT_AFTER_SPLIT; (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_string, newname, sizeof (zc.zc_string)); if (zcmd_write_conf_nvlist(hdl, &zc, newconfig) != 0) goto out; if (zc_props != NULL && zcmd_write_src_nvlist(hdl, &zc, zc_props) != 0) goto out; if (zfs_ioctl(hdl, ZFS_IOC_VDEV_SPLIT, &zc) != 0) { retval = zpool_standard_error(hdl, errno, msg); goto out; } freelist = B_FALSE; memory_err = B_FALSE; out: if (varray != NULL) { int v; for (v = 0; v < vcount; v++) nvlist_free(varray[v]); free(varray); } zcmd_free_nvlists(&zc); nvlist_free(zc_props); nvlist_free(newconfig); if (freelist) { nvlist_free(*newroot); *newroot = NULL; } if (retval != 0) return (retval); if (memory_err) return (no_memory(hdl)); return (0); } /* * Remove the given device. */ int zpool_vdev_remove(zpool_handle_t *zhp, const char *path) { zfs_cmd_t zc = { 0 }; char msg[1024]; nvlist_t *tgt; boolean_t avail_spare, l2cache, islog; libzfs_handle_t *hdl = zhp->zpool_hdl; uint64_t version; (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot remove %s"), path); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if ((tgt = zpool_find_vdev(zhp, path, &avail_spare, &l2cache, &islog)) == NULL) return (zfs_error(hdl, EZFS_NODEVICE, msg)); version = zpool_get_prop_int(zhp, ZPOOL_PROP_VERSION, NULL); if (islog && version < SPA_VERSION_HOLES) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded to support log removal")); return (zfs_error(hdl, EZFS_BADVERSION, msg)); } if (!islog && !avail_spare && !l2cache && zpool_is_bootable(zhp)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "root pool can not have removed devices, " "because GRUB does not understand them")); return (zfs_error(hdl, EINVAL, msg)); } zc.zc_guid = fnvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID); if (zfs_ioctl(hdl, ZFS_IOC_VDEV_REMOVE, &zc) == 0) return (0); switch (errno) { case EINVAL: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid config; all top-level vdevs must " "have the same sector size and not be raidz.")); (void) zfs_error(hdl, EZFS_INVALCONFIG, msg); break; case EBUSY: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Pool busy; removal may already be in progress")); (void) zfs_error(hdl, EZFS_BUSY, msg); break; default: (void) zpool_standard_error(hdl, errno, msg); } return (-1); } int zpool_vdev_remove_cancel(zpool_handle_t *zhp) { zfs_cmd_t zc = { 0 }; char msg[1024]; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot cancel removal")); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_cookie = 1; if (zfs_ioctl(hdl, ZFS_IOC_VDEV_REMOVE, &zc) == 0) return (0); return (zpool_standard_error(hdl, errno, msg)); } int zpool_vdev_indirect_size(zpool_handle_t *zhp, const char *path, uint64_t *sizep) { char msg[1024]; nvlist_t *tgt; boolean_t avail_spare, l2cache, islog; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot determine indirect size of %s"), path); if ((tgt = zpool_find_vdev(zhp, path, &avail_spare, &l2cache, &islog)) == NULL) return (zfs_error(hdl, EZFS_NODEVICE, msg)); if (avail_spare || l2cache || islog) { *sizep = 0; return (0); } if (nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_INDIRECT_SIZE, sizep) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "indirect size not available")); return (zfs_error(hdl, EINVAL, msg)); } return (0); } /* * Clear the errors for the pool, or the particular device if specified. */ int zpool_clear(zpool_handle_t *zhp, const char *path, nvlist_t *rewindnvl) { zfs_cmd_t zc = { 0 }; char msg[1024]; nvlist_t *tgt; zpool_rewind_policy_t policy; boolean_t avail_spare, l2cache; libzfs_handle_t *hdl = zhp->zpool_hdl; nvlist_t *nvi = NULL; int error; if (path) (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot clear errors for %s"), path); else (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot clear errors for %s"), zhp->zpool_name); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if (path) { if ((tgt = zpool_find_vdev(zhp, path, &avail_spare, &l2cache, NULL)) == NULL) return (zfs_error(hdl, EZFS_NODEVICE, msg)); /* * Don't allow error clearing for hot spares. Do allow * error clearing for l2cache devices. */ if (avail_spare) return (zfs_error(hdl, EZFS_ISSPARE, msg)); verify(nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID, &zc.zc_guid) == 0); } zpool_get_rewind_policy(rewindnvl, &policy); zc.zc_cookie = policy.zrp_request; if (zcmd_alloc_dst_nvlist(hdl, &zc, zhp->zpool_config_size * 2) != 0) return (-1); if (zcmd_write_src_nvlist(hdl, &zc, rewindnvl) != 0) return (-1); while ((error = zfs_ioctl(hdl, ZFS_IOC_CLEAR, &zc)) != 0 && errno == ENOMEM) { if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { zcmd_free_nvlists(&zc); return (-1); } } if (!error || ((policy.zrp_request & ZPOOL_TRY_REWIND) && errno != EPERM && errno != EACCES)) { if (policy.zrp_request & (ZPOOL_DO_REWIND | ZPOOL_TRY_REWIND)) { (void) zcmd_read_dst_nvlist(hdl, &zc, &nvi); zpool_rewind_exclaim(hdl, zc.zc_name, ((policy.zrp_request & ZPOOL_TRY_REWIND) != 0), nvi); nvlist_free(nvi); } zcmd_free_nvlists(&zc); return (0); } zcmd_free_nvlists(&zc); return (zpool_standard_error(hdl, errno, msg)); } /* * Similar to zpool_clear(), but takes a GUID (used by fmd). */ int zpool_vdev_clear(zpool_handle_t *zhp, uint64_t guid) { zfs_cmd_t zc = { 0 }; char msg[1024]; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot clear errors for %llx"), guid); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_guid = guid; zc.zc_cookie = ZPOOL_NO_REWIND; if (ioctl(hdl->libzfs_fd, ZFS_IOC_CLEAR, &zc) == 0) return (0); return (zpool_standard_error(hdl, errno, msg)); } /* * Change the GUID for a pool. */ int zpool_reguid(zpool_handle_t *zhp) { char msg[1024]; libzfs_handle_t *hdl = zhp->zpool_hdl; zfs_cmd_t zc = { 0 }; (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot reguid '%s'"), zhp->zpool_name); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if (zfs_ioctl(hdl, ZFS_IOC_POOL_REGUID, &zc) == 0) return (0); return (zpool_standard_error(hdl, errno, msg)); } /* * Reopen the pool. */ int zpool_reopen(zpool_handle_t *zhp) { zfs_cmd_t zc = { 0 }; char msg[1024]; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot reopen '%s'"), zhp->zpool_name); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if (zfs_ioctl(hdl, ZFS_IOC_POOL_REOPEN, &zc) == 0) return (0); return (zpool_standard_error(hdl, errno, msg)); } /* * Convert from a devid string to a path. */ static char * devid_to_path(char *devid_str) { ddi_devid_t devid; char *minor; char *path; devid_nmlist_t *list = NULL; int ret; if (devid_str_decode(devid_str, &devid, &minor) != 0) return (NULL); ret = devid_deviceid_to_nmlist("/dev", devid, minor, &list); devid_str_free(minor); devid_free(devid); if (ret != 0) return (NULL); /* * In a case the strdup() fails, we will just return NULL below. */ path = strdup(list[0].devname); devid_free_nmlist(list); return (path); } /* * Convert from a path to a devid string. */ static char * path_to_devid(const char *path) { #ifdef have_devid int fd; ddi_devid_t devid; char *minor, *ret; if ((fd = open(path, O_RDONLY)) < 0) return (NULL); minor = NULL; ret = NULL; if (devid_get(fd, &devid) == 0) { if (devid_get_minor_name(fd, &minor) == 0) ret = devid_str_encode(devid, minor); if (minor != NULL) devid_str_free(minor); devid_free(devid); } (void) close(fd); return (ret); #else return (NULL); #endif } /* * Issue the necessary ioctl() to update the stored path value for the vdev. We * ignore any failure here, since a common case is for an unprivileged user to * type 'zpool status', and we'll display the correct information anyway. */ static void set_path(zpool_handle_t *zhp, nvlist_t *nv, const char *path) { zfs_cmd_t zc = { 0 }; (void) strncpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); (void) strncpy(zc.zc_value, path, sizeof (zc.zc_value)); verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &zc.zc_guid) == 0); (void) ioctl(zhp->zpool_hdl->libzfs_fd, ZFS_IOC_VDEV_SETPATH, &zc); } /* * Given a vdev, return the name to display in iostat. If the vdev has a path, * we use that, stripping off any leading "/dev/dsk/"; if not, we use the type. * We also check if this is a whole disk, in which case we strip off the * trailing 's0' slice name. * * This routine is also responsible for identifying when disks have been * reconfigured in a new location. The kernel will have opened the device by * devid, but the path will still refer to the old location. To catch this, we * first do a path -> devid translation (which is fast for the common case). If * the devid matches, we're done. If not, we do a reverse devid -> path * translation and issue the appropriate ioctl() to update the path of the vdev. * If 'zhp' is NULL, then this is an exported pool, and we don't need to do any * of these checks. */ char * zpool_vdev_name(libzfs_handle_t *hdl, zpool_handle_t *zhp, nvlist_t *nv, boolean_t verbose) { char *path, *devid; uint64_t value; char buf[64]; vdev_stat_t *vs; uint_t vsc; int have_stats; int have_path; have_stats = nvlist_lookup_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) == 0; have_path = nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0; /* * If the device is not currently present, assume it will not * come back at the same device path. Display the device by GUID. */ if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, &value) == 0 || have_path && have_stats && vs->vs_state <= VDEV_STATE_CANT_OPEN) { verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &value) == 0); (void) snprintf(buf, sizeof (buf), "%llu", (u_longlong_t)value); path = buf; } else if (have_path) { /* * If the device is dead (faulted, offline, etc) then don't * bother opening it. Otherwise we may be forcing the user to * open a misbehaving device, which can have undesirable * effects. */ if ((have_stats == 0 || vs->vs_state >= VDEV_STATE_DEGRADED) && zhp != NULL && nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &devid) == 0) { /* * Determine if the current path is correct. */ char *newdevid = path_to_devid(path); if (newdevid == NULL || strcmp(devid, newdevid) != 0) { char *newpath; if ((newpath = devid_to_path(devid)) != NULL) { /* * Update the path appropriately. */ set_path(zhp, nv, newpath); if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, newpath) == 0) verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0); free(newpath); } } if (newdevid) devid_str_free(newdevid); } #ifdef illumos if (strncmp(path, ZFS_DISK_ROOTD, strlen(ZFS_DISK_ROOTD)) == 0) path += strlen(ZFS_DISK_ROOTD); if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, &value) == 0 && value) { int pathlen = strlen(path); char *tmp = zfs_strdup(hdl, path); /* * If it starts with c#, and ends with "s0" or "s1", * chop the slice off, or if it ends with "s0/old" or * "s1/old", remove the slice from the middle. */ if (CTD_CHECK(tmp)) { if (strcmp(&tmp[pathlen - 2], "s0") == 0 || strcmp(&tmp[pathlen - 2], "s1") == 0) { tmp[pathlen - 2] = '\0'; } else if (pathlen > 6 && (strcmp(&tmp[pathlen - 6], "s0/old") == 0 || strcmp(&tmp[pathlen - 6], "s1/old") == 0)) { (void) strcpy(&tmp[pathlen - 6], "/old"); } } return (tmp); } #else /* !illumos */ if (strncmp(path, _PATH_DEV, sizeof(_PATH_DEV) - 1) == 0) path += sizeof(_PATH_DEV) - 1; #endif /* illumos */ } else { verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &path) == 0); /* * If it's a raidz device, we need to stick in the parity level. */ if (strcmp(path, VDEV_TYPE_RAIDZ) == 0) { verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &value) == 0); (void) snprintf(buf, sizeof (buf), "%s%llu", path, (u_longlong_t)value); path = buf; } /* * We identify each top-level vdev by using a * naming convention. */ if (verbose) { uint64_t id; verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &id) == 0); (void) snprintf(buf, sizeof (buf), "%s-%llu", path, (u_longlong_t)id); path = buf; } } return (zfs_strdup(hdl, path)); } static int zbookmark_mem_compare(const void *a, const void *b) { return (memcmp(a, b, sizeof (zbookmark_phys_t))); } /* * Retrieve the persistent error log, uniquify the members, and return to the * caller. */ int zpool_get_errlog(zpool_handle_t *zhp, nvlist_t **nverrlistp) { zfs_cmd_t zc = { 0 }; uint64_t count; zbookmark_phys_t *zb = NULL; int i; /* * Retrieve the raw error list from the kernel. If the number of errors * has increased, allocate more space and continue until we get the * entire list. */ verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_ERRCOUNT, &count) == 0); if (count == 0) return (0); if ((zc.zc_nvlist_dst = (uintptr_t)zfs_alloc(zhp->zpool_hdl, count * sizeof (zbookmark_phys_t))) == (uintptr_t)NULL) return (-1); zc.zc_nvlist_dst_size = count; (void) strcpy(zc.zc_name, zhp->zpool_name); for (;;) { if (ioctl(zhp->zpool_hdl->libzfs_fd, ZFS_IOC_ERROR_LOG, &zc) != 0) { free((void *)(uintptr_t)zc.zc_nvlist_dst); if (errno == ENOMEM) { void *dst; count = zc.zc_nvlist_dst_size; dst = zfs_alloc(zhp->zpool_hdl, count * sizeof (zbookmark_phys_t)); if (dst == NULL) return (-1); zc.zc_nvlist_dst = (uintptr_t)dst; } else { return (-1); } } else { break; } } /* * Sort the resulting bookmarks. This is a little confusing due to the * implementation of ZFS_IOC_ERROR_LOG. The bookmarks are copied last * to first, and 'zc_nvlist_dst_size' indicates the number of boomarks * _not_ copied as part of the process. So we point the start of our * array appropriate and decrement the total number of elements. */ zb = ((zbookmark_phys_t *)(uintptr_t)zc.zc_nvlist_dst) + zc.zc_nvlist_dst_size; count -= zc.zc_nvlist_dst_size; qsort(zb, count, sizeof (zbookmark_phys_t), zbookmark_mem_compare); verify(nvlist_alloc(nverrlistp, 0, KM_SLEEP) == 0); /* * Fill in the nverrlistp with nvlist's of dataset and object numbers. */ for (i = 0; i < count; i++) { nvlist_t *nv; /* ignoring zb_blkid and zb_level for now */ if (i > 0 && zb[i-1].zb_objset == zb[i].zb_objset && zb[i-1].zb_object == zb[i].zb_object) continue; if (nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) != 0) goto nomem; if (nvlist_add_uint64(nv, ZPOOL_ERR_DATASET, zb[i].zb_objset) != 0) { nvlist_free(nv); goto nomem; } if (nvlist_add_uint64(nv, ZPOOL_ERR_OBJECT, zb[i].zb_object) != 0) { nvlist_free(nv); goto nomem; } if (nvlist_add_nvlist(*nverrlistp, "ejk", nv) != 0) { nvlist_free(nv); goto nomem; } nvlist_free(nv); } free((void *)(uintptr_t)zc.zc_nvlist_dst); return (0); nomem: free((void *)(uintptr_t)zc.zc_nvlist_dst); return (no_memory(zhp->zpool_hdl)); } /* * Upgrade a ZFS pool to the latest on-disk version. */ int zpool_upgrade(zpool_handle_t *zhp, uint64_t new_version) { zfs_cmd_t zc = { 0 }; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) strcpy(zc.zc_name, zhp->zpool_name); zc.zc_cookie = new_version; if (zfs_ioctl(hdl, ZFS_IOC_POOL_UPGRADE, &zc) != 0) return (zpool_standard_error_fmt(hdl, errno, dgettext(TEXT_DOMAIN, "cannot upgrade '%s'"), zhp->zpool_name)); return (0); } void zfs_save_arguments(int argc, char **argv, char *string, int len) { (void) strlcpy(string, basename(argv[0]), len); for (int i = 1; i < argc; i++) { (void) strlcat(string, " ", len); (void) strlcat(string, argv[i], len); } } int zpool_log_history(libzfs_handle_t *hdl, const char *message) { zfs_cmd_t zc = { 0 }; nvlist_t *args; int err; args = fnvlist_alloc(); fnvlist_add_string(args, "message", message); err = zcmd_write_src_nvlist(hdl, &zc, args); if (err == 0) err = ioctl(hdl->libzfs_fd, ZFS_IOC_LOG_HISTORY, &zc); nvlist_free(args); zcmd_free_nvlists(&zc); return (err); } /* * Perform ioctl to get some command history of a pool. * * 'buf' is the buffer to fill up to 'len' bytes. 'off' is the * logical offset of the history buffer to start reading from. * * Upon return, 'off' is the next logical offset to read from and * 'len' is the actual amount of bytes read into 'buf'. */ static int get_history(zpool_handle_t *zhp, char *buf, uint64_t *off, uint64_t *len) { zfs_cmd_t zc = { 0 }; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_history = (uint64_t)(uintptr_t)buf; zc.zc_history_len = *len; zc.zc_history_offset = *off; if (ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_GET_HISTORY, &zc) != 0) { switch (errno) { case EPERM: return (zfs_error_fmt(hdl, EZFS_PERM, dgettext(TEXT_DOMAIN, "cannot show history for pool '%s'"), zhp->zpool_name)); case ENOENT: return (zfs_error_fmt(hdl, EZFS_NOHISTORY, dgettext(TEXT_DOMAIN, "cannot get history for pool " "'%s'"), zhp->zpool_name)); case ENOTSUP: return (zfs_error_fmt(hdl, EZFS_BADVERSION, dgettext(TEXT_DOMAIN, "cannot get history for pool " "'%s', pool must be upgraded"), zhp->zpool_name)); default: return (zpool_standard_error_fmt(hdl, errno, dgettext(TEXT_DOMAIN, "cannot get history for '%s'"), zhp->zpool_name)); } } *len = zc.zc_history_len; *off = zc.zc_history_offset; return (0); } /* * Process the buffer of nvlists, unpacking and storing each nvlist record * into 'records'. 'leftover' is set to the number of bytes that weren't * processed as there wasn't a complete record. */ int zpool_history_unpack(char *buf, uint64_t bytes_read, uint64_t *leftover, nvlist_t ***records, uint_t *numrecords) { uint64_t reclen; nvlist_t *nv; int i; while (bytes_read > sizeof (reclen)) { /* get length of packed record (stored as little endian) */ for (i = 0, reclen = 0; i < sizeof (reclen); i++) reclen += (uint64_t)(((uchar_t *)buf)[i]) << (8*i); if (bytes_read < sizeof (reclen) + reclen) break; /* unpack record */ if (nvlist_unpack(buf + sizeof (reclen), reclen, &nv, 0) != 0) return (ENOMEM); bytes_read -= sizeof (reclen) + reclen; buf += sizeof (reclen) + reclen; /* add record to nvlist array */ (*numrecords)++; if (ISP2(*numrecords + 1)) { *records = realloc(*records, *numrecords * 2 * sizeof (nvlist_t *)); } (*records)[*numrecords - 1] = nv; } *leftover = bytes_read; return (0); } /* from spa_history.c: spa_history_create_obj() */ #define HIS_BUF_LEN_DEF (128 << 10) #define HIS_BUF_LEN_MAX (1 << 30) /* * Retrieve the command history of a pool. */ int zpool_get_history(zpool_handle_t *zhp, nvlist_t **nvhisp) { char *buf; uint64_t buflen = HIS_BUF_LEN_DEF; uint64_t off = 0; nvlist_t **records = NULL; uint_t numrecords = 0; int err, i; buf = malloc(buflen); if (buf == NULL) return (ENOMEM); do { uint64_t bytes_read = buflen; uint64_t leftover; if ((err = get_history(zhp, buf, &off, &bytes_read)) != 0) break; /* if nothing else was read in, we're at EOF, just return */ if (bytes_read == 0) break; if ((err = zpool_history_unpack(buf, bytes_read, &leftover, &records, &numrecords)) != 0) break; off -= leftover; if (leftover == bytes_read) { /* * no progress made, because buffer is not big enough * to hold this record; resize and retry. */ buflen *= 2; free(buf); buf = NULL; if ((buflen >= HIS_BUF_LEN_MAX) || ((buf = malloc(buflen)) == NULL)) { err = ENOMEM; break; } } /* CONSTCOND */ } while (1); free(buf); if (!err) { verify(nvlist_alloc(nvhisp, NV_UNIQUE_NAME, 0) == 0); verify(nvlist_add_nvlist_array(*nvhisp, ZPOOL_HIST_RECORD, records, numrecords) == 0); } for (i = 0; i < numrecords; i++) nvlist_free(records[i]); free(records); return (err); } void zpool_obj_to_path(zpool_handle_t *zhp, uint64_t dsobj, uint64_t obj, char *pathname, size_t len) { zfs_cmd_t zc = { 0 }; boolean_t mounted = B_FALSE; char *mntpnt = NULL; char dsname[ZFS_MAX_DATASET_NAME_LEN]; if (dsobj == 0) { /* special case for the MOS */ (void) snprintf(pathname, len, ":<0x%llx>", obj); return; } /* get the dataset's name */ (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_obj = dsobj; if (ioctl(zhp->zpool_hdl->libzfs_fd, ZFS_IOC_DSOBJ_TO_DSNAME, &zc) != 0) { /* just write out a path of two object numbers */ (void) snprintf(pathname, len, "<0x%llx>:<0x%llx>", dsobj, obj); return; } (void) strlcpy(dsname, zc.zc_value, sizeof (dsname)); /* find out if the dataset is mounted */ mounted = is_mounted(zhp->zpool_hdl, dsname, &mntpnt); /* get the corrupted object's path */ (void) strlcpy(zc.zc_name, dsname, sizeof (zc.zc_name)); zc.zc_obj = obj; if (ioctl(zhp->zpool_hdl->libzfs_fd, ZFS_IOC_OBJ_TO_PATH, &zc) == 0) { if (mounted) { (void) snprintf(pathname, len, "%s%s", mntpnt, zc.zc_value); } else { (void) snprintf(pathname, len, "%s:%s", dsname, zc.zc_value); } } else { (void) snprintf(pathname, len, "%s:<0x%llx>", dsname, obj); } free(mntpnt); } #ifdef illumos /* * Read the EFI label from the config, if a label does not exist then * pass back the error to the caller. If the caller has passed a non-NULL * diskaddr argument then we set it to the starting address of the EFI * partition. If the caller has passed a non-NULL boolean argument, then * we set it to indicate if the disk does have efi system partition. */ static int read_efi_label(nvlist_t *config, diskaddr_t *sb, boolean_t *system) { char *path; int fd; char diskname[MAXPATHLEN]; boolean_t boot = B_FALSE; int err = -1; int slice; if (nvlist_lookup_string(config, ZPOOL_CONFIG_PATH, &path) != 0) return (err); (void) snprintf(diskname, sizeof (diskname), "%s%s", ZFS_RDISK_ROOT, strrchr(path, '/')); if ((fd = open(diskname, O_RDONLY|O_NDELAY)) >= 0) { struct dk_gpt *vtoc; if ((err = efi_alloc_and_read(fd, &vtoc)) >= 0) { for (slice = 0; slice < vtoc->efi_nparts; slice++) { if (vtoc->efi_parts[slice].p_tag == V_SYSTEM) boot = B_TRUE; if (vtoc->efi_parts[slice].p_tag == V_USR) break; } if (sb != NULL && vtoc->efi_parts[slice].p_tag == V_USR) *sb = vtoc->efi_parts[slice].p_start; if (system != NULL) *system = boot; efi_free(vtoc); } (void) close(fd); } return (err); } /* * determine where a partition starts on a disk in the current * configuration */ static diskaddr_t find_start_block(nvlist_t *config) { nvlist_t **child; uint_t c, children; diskaddr_t sb = MAXOFFSET_T; uint64_t wholedisk; if (nvlist_lookup_nvlist_array(config, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) { if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk) != 0 || !wholedisk) { return (MAXOFFSET_T); } if (read_efi_label(config, &sb, NULL) < 0) sb = MAXOFFSET_T; return (sb); } for (c = 0; c < children; c++) { sb = find_start_block(child[c]); if (sb != MAXOFFSET_T) { return (sb); } } return (MAXOFFSET_T); } #endif /* illumos */ /* * Label an individual disk. The name provided is the short name, * stripped of any leading /dev path. */ int zpool_label_disk(libzfs_handle_t *hdl, zpool_handle_t *zhp, const char *name, zpool_boot_label_t boot_type, uint64_t boot_size, int *slice) { #ifdef illumos char path[MAXPATHLEN]; struct dk_gpt *vtoc; int fd; size_t resv = EFI_MIN_RESV_SIZE; uint64_t slice_size; diskaddr_t start_block; char errbuf[1024]; /* prepare an error message just in case */ (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot label '%s'"), name); if (zhp) { nvlist_t *nvroot; verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); if (zhp->zpool_start_block == 0) start_block = find_start_block(nvroot); else start_block = zhp->zpool_start_block; zhp->zpool_start_block = start_block; } else { /* new pool */ start_block = NEW_START_BLOCK; } (void) snprintf(path, sizeof (path), "%s/%s%s", ZFS_RDISK_ROOT, name, BACKUP_SLICE); if ((fd = open(path, O_RDWR | O_NDELAY)) < 0) { /* * This shouldn't happen. We've long since verified that this * is a valid device. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "unable to open device")); return (zfs_error(hdl, EZFS_OPENFAILED, errbuf)); } if (efi_alloc_and_init(fd, EFI_NUMPAR, &vtoc) != 0) { /* * The only way this can fail is if we run out of memory, or we * were unable to read the disk's capacity */ if (errno == ENOMEM) (void) no_memory(hdl); (void) close(fd); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "unable to read disk capacity"), name); return (zfs_error(hdl, EZFS_NOCAP, errbuf)); } /* * Why we use V_USR: V_BACKUP confuses users, and is considered * disposable by some EFI utilities (since EFI doesn't have a backup * slice). V_UNASSIGNED is supposed to be used only for zero size * partitions, and efi_write() will fail if we use it. V_ROOT, V_BOOT, * etc. were all pretty specific. V_USR is as close to reality as we * can get, in the absence of V_OTHER. */ /* first fix the partition start block */ if (start_block == MAXOFFSET_T) start_block = NEW_START_BLOCK; /* * EFI System partition is using slice 0. * ZFS is on slice 1 and slice 8 is reserved. * We assume the GPT partition table without system * partition has zfs p_start == NEW_START_BLOCK. * If start_block != NEW_START_BLOCK, it means we have * system partition. Correct solution would be to query/cache vtoc * from existing vdev member. */ if (boot_type == ZPOOL_CREATE_BOOT_LABEL) { if (boot_size % vtoc->efi_lbasize != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "boot partition size must be a multiple of %d"), vtoc->efi_lbasize); (void) close(fd); efi_free(vtoc); return (zfs_error(hdl, EZFS_LABELFAILED, errbuf)); } /* * System partition size checks. * Note the 1MB is quite arbitrary value, since we * are creating dedicated pool, it should be enough * to hold fat + efi bootloader. May need to be * adjusted if the bootloader size will grow. */ if (boot_size < 1024 * 1024) { char buf[64]; zfs_nicenum(boot_size, buf, sizeof (buf)); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Specified size %s for EFI System partition is too " "small, the minimum size is 1MB."), buf); (void) close(fd); efi_free(vtoc); return (zfs_error(hdl, EZFS_LABELFAILED, errbuf)); } /* 33MB is tested with mkfs -F pcfs */ if (hdl->libzfs_printerr && ((vtoc->efi_lbasize == 512 && boot_size < 33 * 1024 * 1024) || (vtoc->efi_lbasize == 4096 && boot_size < 256 * 1024 * 1024))) { char buf[64]; zfs_nicenum(boot_size, buf, sizeof (buf)); (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "Warning: EFI System partition size %s is " "not allowing to create FAT32 file\nsystem, which " "may result in unbootable system.\n"), buf); } /* Adjust zfs partition start by size of system partition. */ start_block += boot_size / vtoc->efi_lbasize; } if (start_block == NEW_START_BLOCK) { /* * Use default layout. * ZFS is on slice 0 and slice 8 is reserved. */ slice_size = vtoc->efi_last_u_lba + 1; slice_size -= EFI_MIN_RESV_SIZE; slice_size -= start_block; if (slice != NULL) *slice = 0; vtoc->efi_parts[0].p_start = start_block; vtoc->efi_parts[0].p_size = slice_size; vtoc->efi_parts[0].p_tag = V_USR; (void) strcpy(vtoc->efi_parts[0].p_name, "zfs"); vtoc->efi_parts[8].p_start = slice_size + start_block; vtoc->efi_parts[8].p_size = resv; vtoc->efi_parts[8].p_tag = V_RESERVED; } else { slice_size = start_block - NEW_START_BLOCK; vtoc->efi_parts[0].p_start = NEW_START_BLOCK; vtoc->efi_parts[0].p_size = slice_size; vtoc->efi_parts[0].p_tag = V_SYSTEM; (void) strcpy(vtoc->efi_parts[0].p_name, "loader"); if (slice != NULL) *slice = 1; /* prepare slice 1 */ slice_size = vtoc->efi_last_u_lba + 1 - slice_size; slice_size -= resv; slice_size -= NEW_START_BLOCK; vtoc->efi_parts[1].p_start = start_block; vtoc->efi_parts[1].p_size = slice_size; vtoc->efi_parts[1].p_tag = V_USR; (void) strcpy(vtoc->efi_parts[1].p_name, "zfs"); vtoc->efi_parts[8].p_start = slice_size + start_block; vtoc->efi_parts[8].p_size = resv; vtoc->efi_parts[8].p_tag = V_RESERVED; } if (efi_write(fd, vtoc) != 0) { /* * Some block drivers (like pcata) may not support EFI * GPT labels. Print out a helpful error message dir- * ecting the user to manually label the disk and give * a specific slice. */ (void) close(fd); efi_free(vtoc); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "try using fdisk(1M) and then provide a specific slice")); return (zfs_error(hdl, EZFS_LABELFAILED, errbuf)); } (void) close(fd); efi_free(vtoc); #endif /* illumos */ return (0); } static boolean_t supported_dump_vdev_type(libzfs_handle_t *hdl, nvlist_t *config, char *errbuf) { char *type; nvlist_t **child; uint_t children, c; verify(nvlist_lookup_string(config, ZPOOL_CONFIG_TYPE, &type) == 0); if (strcmp(type, VDEV_TYPE_FILE) == 0 || strcmp(type, VDEV_TYPE_HOLE) == 0 || strcmp(type, VDEV_TYPE_MISSING) == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "vdev type '%s' is not supported"), type); (void) zfs_error(hdl, EZFS_VDEVNOTSUP, errbuf); return (B_FALSE); } if (nvlist_lookup_nvlist_array(config, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0) { for (c = 0; c < children; c++) { if (!supported_dump_vdev_type(hdl, child[c], errbuf)) return (B_FALSE); } } return (B_TRUE); } /* * Check if this zvol is allowable for use as a dump device; zero if * it is, > 0 if it isn't, < 0 if it isn't a zvol. * * Allowable storage configurations include mirrors, all raidz variants, and * pools with log, cache, and spare devices. Pools which are backed by files or * have missing/hole vdevs are not suitable. */ int zvol_check_dump_config(char *arg) { zpool_handle_t *zhp = NULL; nvlist_t *config, *nvroot; char *p, *volname; nvlist_t **top; uint_t toplevels; libzfs_handle_t *hdl; char errbuf[1024]; char poolname[ZFS_MAX_DATASET_NAME_LEN]; int pathlen = strlen(ZVOL_FULL_DEV_DIR); int ret = 1; if (strncmp(arg, ZVOL_FULL_DEV_DIR, pathlen)) { return (-1); } (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "dump is not supported on device '%s'"), arg); if ((hdl = libzfs_init()) == NULL) return (1); libzfs_print_on_error(hdl, B_TRUE); volname = arg + pathlen; /* check the configuration of the pool */ if ((p = strchr(volname, '/')) == NULL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "malformed dataset name")); (void) zfs_error(hdl, EZFS_INVALIDNAME, errbuf); return (1); } else if (p - volname >= ZFS_MAX_DATASET_NAME_LEN) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dataset name is too long")); (void) zfs_error(hdl, EZFS_NAMETOOLONG, errbuf); return (1); } else { (void) strncpy(poolname, volname, p - volname); poolname[p - volname] = '\0'; } if ((zhp = zpool_open(hdl, poolname)) == NULL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "could not open pool '%s'"), poolname); (void) zfs_error(hdl, EZFS_OPENFAILED, errbuf); goto out; } config = zpool_get_config(zhp, NULL); if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "could not obtain vdev configuration for '%s'"), poolname); (void) zfs_error(hdl, EZFS_INVALCONFIG, errbuf); goto out; } verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, &top, &toplevels) == 0); if (!supported_dump_vdev_type(hdl, top[0], errbuf)) { goto out; } ret = 0; out: if (zhp) zpool_close(zhp); libzfs_fini(hdl); return (ret); } int zpool_nextboot(libzfs_handle_t *hdl, uint64_t pool_guid, uint64_t dev_guid, const char *command) { zfs_cmd_t zc = { 0 }; nvlist_t *args; char *packed; size_t size; int error; args = fnvlist_alloc(); fnvlist_add_uint64(args, ZPOOL_CONFIG_POOL_GUID, pool_guid); fnvlist_add_uint64(args, ZPOOL_CONFIG_GUID, dev_guid); fnvlist_add_string(args, "command", command); error = zcmd_write_src_nvlist(hdl, &zc, args); if (error == 0) error = ioctl(hdl->libzfs_fd, ZFS_IOC_NEXTBOOT, &zc); zcmd_free_nvlists(&zc); nvlist_free(args); return (error); } Index: head/cddl/contrib/opensolaris/lib/libzfs =================================================================== --- head/cddl/contrib/opensolaris/lib/libzfs (revision 329797) +++ head/cddl/contrib/opensolaris/lib/libzfs (revision 329798) Property changes on: head/cddl/contrib/opensolaris/lib/libzfs ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /vendor/illumos/dist/lib/libzfs:r329793 Index: head/cddl/contrib/opensolaris/lib/libzpool/common/kernel.c =================================================================== --- head/cddl/contrib/opensolaris/lib/libzpool/common/kernel.c (revision 329797) +++ head/cddl/contrib/opensolaris/lib/libzpool/common/kernel.c (revision 329798) @@ -1,1214 +1,1224 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2015 by Delphix. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Emulation of kernel services in userland. */ #ifndef __FreeBSD__ int aok; #endif uint64_t physmem; vnode_t *rootdir = (vnode_t *)0xabcd1234; char hw_serial[HW_HOSTID_LEN]; #ifdef illumos kmutex_t cpu_lock; #endif /* If set, all blocks read will be copied to the specified directory. */ char *vn_dumpdir = NULL; struct utsname utsname = { "userland", "libzpool", "1", "1", "na" }; /* this only exists to have its address taken */ struct proc p0; /* * ========================================================================= * threads * ========================================================================= */ /*ARGSUSED*/ kthread_t * zk_thread_create(void (*func)(), void *arg) { thread_t tid; VERIFY(thr_create(0, 0, (void *(*)(void *))func, arg, THR_DETACHED, &tid) == 0); return ((void *)(uintptr_t)tid); } /* * ========================================================================= * kstats * ========================================================================= */ /*ARGSUSED*/ kstat_t * kstat_create(char *module, int instance, char *name, char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag) { return (NULL); } /*ARGSUSED*/ void kstat_named_init(kstat_named_t *knp, const char *name, uchar_t type) {} /*ARGSUSED*/ void kstat_install(kstat_t *ksp) {} /*ARGSUSED*/ void kstat_delete(kstat_t *ksp) {} /* * ========================================================================= * mutexes * ========================================================================= */ void zmutex_init(kmutex_t *mp) { mp->m_owner = NULL; mp->initialized = B_TRUE; (void) _mutex_init(&mp->m_lock, USYNC_THREAD, NULL); } void zmutex_destroy(kmutex_t *mp) { ASSERT(mp->initialized == B_TRUE); ASSERT(mp->m_owner == NULL); (void) _mutex_destroy(&(mp)->m_lock); mp->m_owner = (void *)-1UL; mp->initialized = B_FALSE; } int zmutex_owned(kmutex_t *mp) { ASSERT(mp->initialized == B_TRUE); return (mp->m_owner == curthread); } void mutex_enter(kmutex_t *mp) { ASSERT(mp->initialized == B_TRUE); ASSERT(mp->m_owner != (void *)-1UL); ASSERT(mp->m_owner != curthread); VERIFY(mutex_lock(&mp->m_lock) == 0); ASSERT(mp->m_owner == NULL); mp->m_owner = curthread; } int mutex_tryenter(kmutex_t *mp) { ASSERT(mp->initialized == B_TRUE); ASSERT(mp->m_owner != (void *)-1UL); if (0 == mutex_trylock(&mp->m_lock)) { ASSERT(mp->m_owner == NULL); mp->m_owner = curthread; return (1); } else { return (0); } } void mutex_exit(kmutex_t *mp) { ASSERT(mp->initialized == B_TRUE); ASSERT(mutex_owner(mp) == curthread); mp->m_owner = NULL; VERIFY(mutex_unlock(&mp->m_lock) == 0); } void * mutex_owner(kmutex_t *mp) { ASSERT(mp->initialized == B_TRUE); return (mp->m_owner); } /* * ========================================================================= * rwlocks * ========================================================================= */ /*ARGSUSED*/ void rw_init(krwlock_t *rwlp, char *name, int type, void *arg) { rwlock_init(&rwlp->rw_lock, USYNC_THREAD, NULL); rwlp->rw_owner = NULL; rwlp->initialized = B_TRUE; rwlp->rw_count = 0; } void rw_destroy(krwlock_t *rwlp) { ASSERT(rwlp->rw_count == 0); rwlock_destroy(&rwlp->rw_lock); rwlp->rw_owner = (void *)-1UL; rwlp->initialized = B_FALSE; } void rw_enter(krwlock_t *rwlp, krw_t rw) { //ASSERT(!RW_LOCK_HELD(rwlp)); ASSERT(rwlp->initialized == B_TRUE); ASSERT(rwlp->rw_owner != (void *)-1UL); ASSERT(rwlp->rw_owner != curthread); if (rw == RW_READER) { VERIFY(rw_rdlock(&rwlp->rw_lock) == 0); ASSERT(rwlp->rw_count >= 0); atomic_add_int(&rwlp->rw_count, 1); } else { VERIFY(rw_wrlock(&rwlp->rw_lock) == 0); ASSERT(rwlp->rw_count == 0); rwlp->rw_count = -1; rwlp->rw_owner = curthread; } } void rw_exit(krwlock_t *rwlp) { ASSERT(rwlp->initialized == B_TRUE); ASSERT(rwlp->rw_owner != (void *)-1UL); if (rwlp->rw_owner == curthread) { /* Write locked. */ ASSERT(rwlp->rw_count == -1); rwlp->rw_count = 0; rwlp->rw_owner = NULL; } else { /* Read locked. */ ASSERT(rwlp->rw_count > 0); atomic_add_int(&rwlp->rw_count, -1); } VERIFY(rw_unlock(&rwlp->rw_lock) == 0); } int rw_tryenter(krwlock_t *rwlp, krw_t rw) { int rv; ASSERT(rwlp->initialized == B_TRUE); ASSERT(rwlp->rw_owner != (void *)-1UL); ASSERT(rwlp->rw_owner != curthread); if (rw == RW_READER) rv = rw_tryrdlock(&rwlp->rw_lock); else rv = rw_trywrlock(&rwlp->rw_lock); if (rv == 0) { ASSERT(rwlp->rw_owner == NULL); if (rw == RW_READER) { ASSERT(rwlp->rw_count >= 0); atomic_add_int(&rwlp->rw_count, 1); } else { ASSERT(rwlp->rw_count == 0); rwlp->rw_count = -1; rwlp->rw_owner = curthread; } return (1); } return (0); } /*ARGSUSED*/ int rw_tryupgrade(krwlock_t *rwlp) { ASSERT(rwlp->initialized == B_TRUE); ASSERT(rwlp->rw_owner != (void *)-1UL); return (0); } int rw_lock_held(krwlock_t *rwlp) { return (rwlp->rw_count != 0); } /* * ========================================================================= * condition variables * ========================================================================= */ /*ARGSUSED*/ void cv_init(kcondvar_t *cv, char *name, int type, void *arg) { VERIFY(cond_init(cv, name, NULL) == 0); } void cv_destroy(kcondvar_t *cv) { VERIFY(cond_destroy(cv) == 0); } void cv_wait(kcondvar_t *cv, kmutex_t *mp) { ASSERT(mutex_owner(mp) == curthread); mp->m_owner = NULL; int ret = cond_wait(cv, &mp->m_lock); VERIFY(ret == 0 || ret == EINTR); mp->m_owner = curthread; } clock_t cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime) { int error; struct timespec ts; struct timeval tv; clock_t delta; abstime += ddi_get_lbolt(); top: delta = abstime - ddi_get_lbolt(); if (delta <= 0) return (-1); if (gettimeofday(&tv, NULL) != 0) assert(!"gettimeofday() failed"); ts.tv_sec = tv.tv_sec + delta / hz; ts.tv_nsec = tv.tv_usec * 1000 + (delta % hz) * (NANOSEC / hz); ASSERT(ts.tv_nsec >= 0); if (ts.tv_nsec >= NANOSEC) { ts.tv_sec++; ts.tv_nsec -= NANOSEC; } ASSERT(mutex_owner(mp) == curthread); mp->m_owner = NULL; error = pthread_cond_timedwait(cv, &mp->m_lock, &ts); mp->m_owner = curthread; if (error == EINTR) goto top; if (error == ETIMEDOUT) return (-1); ASSERT(error == 0); return (1); } /*ARGSUSED*/ clock_t cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res, int flag) { int error; timespec_t ts; hrtime_t delta; ASSERT(flag == 0 || flag == CALLOUT_FLAG_ABSOLUTE); top: delta = tim; if (flag & CALLOUT_FLAG_ABSOLUTE) delta -= gethrtime(); if (delta <= 0) return (-1); clock_gettime(CLOCK_REALTIME, &ts); ts.tv_sec += delta / NANOSEC; ts.tv_nsec += delta % NANOSEC; if (ts.tv_nsec >= NANOSEC) { ts.tv_sec++; ts.tv_nsec -= NANOSEC; } ASSERT(mutex_owner(mp) == curthread); mp->m_owner = NULL; error = pthread_cond_timedwait(cv, &mp->m_lock, &ts); mp->m_owner = curthread; if (error == ETIMEDOUT) return (-1); if (error == EINTR) goto top; ASSERT(error == 0); return (1); } void cv_signal(kcondvar_t *cv) { VERIFY(cond_signal(cv) == 0); } void cv_broadcast(kcondvar_t *cv) { VERIFY(cond_broadcast(cv) == 0); } /* * ========================================================================= * vnode operations * ========================================================================= */ /* * Note: for the xxxat() versions of these functions, we assume that the * starting vp is always rootdir (which is true for spa_directory.c, the only * ZFS consumer of these interfaces). We assert this is true, and then emulate * them by adding '/' in front of the path. */ /*ARGSUSED*/ int vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3) { int fd; int dump_fd; vnode_t *vp; int old_umask; char realpath[MAXPATHLEN]; struct stat64 st; /* * If we're accessing a real disk from userland, we need to use * the character interface to avoid caching. This is particularly * important if we're trying to look at a real in-kernel storage * pool from userland, e.g. via zdb, because otherwise we won't * see the changes occurring under the segmap cache. * On the other hand, the stupid character device returns zero * for its size. So -- gag -- we open the block device to get * its size, and remember it for subsequent VOP_GETATTR(). */ if (strncmp(path, "/dev/", 5) == 0) { char *dsk; fd = open64(path, O_RDONLY); if (fd == -1) return (errno); if (fstat64(fd, &st) == -1) { close(fd); return (errno); } close(fd); (void) sprintf(realpath, "%s", path); dsk = strstr(path, "/dsk/"); if (dsk != NULL) (void) sprintf(realpath + (dsk - path) + 1, "r%s", dsk + 1); } else { (void) sprintf(realpath, "%s", path); if (!(flags & FCREAT) && stat64(realpath, &st) == -1) return (errno); } if (flags & FCREAT) old_umask = umask(0); /* * The construct 'flags - FREAD' conveniently maps combinations of * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR. */ fd = open64(realpath, flags - FREAD, mode); if (flags & FCREAT) (void) umask(old_umask); if (vn_dumpdir != NULL) { char dumppath[MAXPATHLEN]; (void) snprintf(dumppath, sizeof (dumppath), "%s/%s", vn_dumpdir, basename(realpath)); dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666); if (dump_fd == -1) return (errno); } else { dump_fd = -1; } if (fd == -1) return (errno); if (fstat64(fd, &st) == -1) { close(fd); return (errno); } (void) fcntl(fd, F_SETFD, FD_CLOEXEC); *vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL); vp->v_fd = fd; vp->v_size = st.st_size; vp->v_path = spa_strdup(path); vp->v_dump_fd = dump_fd; return (0); } /*ARGSUSED*/ int vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3, vnode_t *startvp, int fd) { char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL); int ret; ASSERT(startvp == rootdir); (void) sprintf(realpath, "/%s", path); /* fd ignored for now, need if want to simulate nbmand support */ ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3); umem_free(realpath, strlen(path) + 2); return (ret); } /*ARGSUSED*/ int vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset, int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp) { ssize_t iolen, split; if (uio == UIO_READ) { iolen = pread64(vp->v_fd, addr, len, offset); if (vp->v_dump_fd != -1) { int status = pwrite64(vp->v_dump_fd, addr, iolen, offset); ASSERT(status != -1); } } else { /* * To simulate partial disk writes, we split writes into two * system calls so that the process can be killed in between. */ int sectors = len >> SPA_MINBLOCKSHIFT; split = (sectors > 0 ? rand() % sectors : 0) << SPA_MINBLOCKSHIFT; iolen = pwrite64(vp->v_fd, addr, split, offset); iolen += pwrite64(vp->v_fd, (char *)addr + split, len - split, offset + split); } if (iolen == -1) return (errno); if (residp) *residp = len - iolen; else if (iolen != len) return (EIO); return (0); } void vn_close(vnode_t *vp, int openflag, cred_t *cr, kthread_t *td) { close(vp->v_fd); if (vp->v_dump_fd != -1) close(vp->v_dump_fd); spa_strfree(vp->v_path); umem_free(vp, sizeof (vnode_t)); } /* * At a minimum we need to update the size since vdev_reopen() * will no longer call vn_openat(). */ int fop_getattr(vnode_t *vp, vattr_t *vap) { struct stat64 st; if (fstat64(vp->v_fd, &st) == -1) { close(vp->v_fd); return (errno); } vap->va_size = st.st_size; return (0); } #ifdef ZFS_DEBUG /* * ========================================================================= * Figure out which debugging statements to print * ========================================================================= */ static char *dprintf_string; static int dprintf_print_all; int dprintf_find_string(const char *string) { char *tmp_str = dprintf_string; int len = strlen(string); /* * Find out if this is a string we want to print. * String format: file1.c,function_name1,file2.c,file3.c */ while (tmp_str != NULL) { if (strncmp(tmp_str, string, len) == 0 && (tmp_str[len] == ',' || tmp_str[len] == '\0')) return (1); tmp_str = strchr(tmp_str, ','); if (tmp_str != NULL) tmp_str++; /* Get rid of , */ } return (0); } void dprintf_setup(int *argc, char **argv) { int i, j; /* * Debugging can be specified two ways: by setting the * environment variable ZFS_DEBUG, or by including a * "debug=..." argument on the command line. The command * line setting overrides the environment variable. */ for (i = 1; i < *argc; i++) { int len = strlen("debug="); /* First look for a command line argument */ if (strncmp("debug=", argv[i], len) == 0) { dprintf_string = argv[i] + len; /* Remove from args */ for (j = i; j < *argc; j++) argv[j] = argv[j+1]; argv[j] = NULL; (*argc)--; } } if (dprintf_string == NULL) { /* Look for ZFS_DEBUG environment variable */ dprintf_string = getenv("ZFS_DEBUG"); } /* * Are we just turning on all debugging? */ if (dprintf_find_string("on")) dprintf_print_all = 1; if (dprintf_string != NULL) zfs_flags |= ZFS_DEBUG_DPRINTF; } int sysctl_handle_64(SYSCTL_HANDLER_ARGS) { return (0); } /* * ========================================================================= * debug printfs * ========================================================================= */ void __dprintf(const char *file, const char *func, int line, const char *fmt, ...) { const char *newfile; va_list adx; /* * Get rid of annoying "../common/" prefix to filename. */ newfile = strrchr(file, '/'); if (newfile != NULL) { newfile = newfile + 1; /* Get rid of leading / */ } else { newfile = file; } if (dprintf_print_all || dprintf_find_string(newfile) || dprintf_find_string(func)) { /* Print out just the function name if requested */ flockfile(stdout); if (dprintf_find_string("pid")) (void) printf("%d ", getpid()); if (dprintf_find_string("tid")) (void) printf("%lu ", thr_self()); #if 0 if (dprintf_find_string("cpu")) (void) printf("%u ", getcpuid()); #endif if (dprintf_find_string("time")) (void) printf("%llu ", gethrtime()); if (dprintf_find_string("long")) (void) printf("%s, line %d: ", newfile, line); (void) printf("%s: ", func); va_start(adx, fmt); (void) vprintf(fmt, adx); va_end(adx); funlockfile(stdout); } } #endif /* ZFS_DEBUG */ /* * ========================================================================= * cmn_err() and panic() * ========================================================================= */ static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" }; static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" }; void vpanic(const char *fmt, va_list adx) { char buf[512]; (void) vsnprintf(buf, 512, fmt, adx); assfail(buf, NULL, 0); abort(); /* necessary to make vpanic meet noreturn requirements */ } void panic(const char *fmt, ...) { va_list adx; va_start(adx, fmt); vpanic(fmt, adx); va_end(adx); } void vcmn_err(int ce, const char *fmt, va_list adx) { if (ce == CE_PANIC) vpanic(fmt, adx); if (ce != CE_NOTE) { /* suppress noise in userland stress testing */ (void) fprintf(stderr, "%s", ce_prefix[ce]); (void) vfprintf(stderr, fmt, adx); (void) fprintf(stderr, "%s", ce_suffix[ce]); } } /*PRINTFLIKE2*/ void cmn_err(int ce, const char *fmt, ...) { va_list adx; va_start(adx, fmt); vcmn_err(ce, fmt, adx); va_end(adx); } /* * ========================================================================= * kobj interfaces * ========================================================================= */ struct _buf * kobj_open_file(char *name) { struct _buf *file; vnode_t *vp; /* set vp as the _fd field of the file */ if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir, -1) != 0) return ((void *)-1UL); file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL); file->_fd = (intptr_t)vp; return (file); } int kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off) { ssize_t resid; vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off, UIO_SYSSPACE, 0, 0, 0, &resid); return (size - resid); } void kobj_close_file(struct _buf *file) { vn_close((vnode_t *)file->_fd, 0, NULL, NULL); umem_free(file, sizeof (struct _buf)); } int kobj_get_filesize(struct _buf *file, uint64_t *size) { struct stat64 st; vnode_t *vp = (vnode_t *)file->_fd; if (fstat64(vp->v_fd, &st) == -1) { vn_close(vp, 0, NULL, NULL); return (errno); } *size = st.st_size; return (0); } /* * ========================================================================= * misc routines * ========================================================================= */ void delay(clock_t ticks) { poll(0, 0, ticks * (1000 / hz)); } #if 0 /* * Find highest one bit set. * Returns bit number + 1 of highest bit that is set, otherwise returns 0. */ int highbit64(uint64_t i) { int h = 1; if (i == 0) return (0); if (i & 0xffffffff00000000ULL) { h += 32; i >>= 32; } if (i & 0xffff0000) { h += 16; i >>= 16; } if (i & 0xff00) { h += 8; i >>= 8; } if (i & 0xf0) { h += 4; i >>= 4; } if (i & 0xc) { h += 2; i >>= 2; } if (i & 0x2) { h += 1; } return (h); } #endif static int random_fd = -1, urandom_fd = -1; static int random_get_bytes_common(uint8_t *ptr, size_t len, int fd) { size_t resid = len; ssize_t bytes; ASSERT(fd != -1); while (resid != 0) { bytes = read(fd, ptr, resid); ASSERT3S(bytes, >=, 0); ptr += bytes; resid -= bytes; } return (0); } int random_get_bytes(uint8_t *ptr, size_t len) { return (random_get_bytes_common(ptr, len, random_fd)); } int random_get_pseudo_bytes(uint8_t *ptr, size_t len) { return (random_get_bytes_common(ptr, len, urandom_fd)); } int ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result) { char *end; *result = strtoul(hw_serial, &end, base); if (*result == 0) return (errno); return (0); } int ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result) { char *end; *result = strtoull(str, &end, base); if (*result == 0) return (errno); return (0); } #ifdef illumos /* ARGSUSED */ cyclic_id_t cyclic_add(cyc_handler_t *hdlr, cyc_time_t *when) { return (1); } /* ARGSUSED */ void cyclic_remove(cyclic_id_t id) { } /* ARGSUSED */ int cyclic_reprogram(cyclic_id_t id, hrtime_t expiration) { return (1); } #endif /* * ========================================================================= * kernel emulation setup & teardown * ========================================================================= */ static int umem_out_of_memory(void) { char errmsg[] = "out of memory -- generating core dump\n"; write(fileno(stderr), errmsg, sizeof (errmsg)); abort(); return (0); } void kernel_init(int mode) { extern uint_t rrw_tsd_key; umem_nofail_callback(umem_out_of_memory); physmem = sysconf(_SC_PHYS_PAGES); dprintf("physmem = %llu pages (%.2f GB)\n", physmem, (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30)); (void) snprintf(hw_serial, sizeof (hw_serial), "%lu", (mode & FWRITE) ? (unsigned long)gethostid() : 0); VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1); VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1); system_taskq_init(); #ifdef illumos mutex_init(&cpu_lock, NULL, MUTEX_DEFAULT, NULL); #endif spa_init(mode); tsd_create(&rrw_tsd_key, rrw_tsd_destroy); } void kernel_fini(void) { spa_fini(); system_taskq_fini(); close(random_fd); close(urandom_fd); random_fd = -1; urandom_fd = -1; } +/* ARGSUSED */ +uint32_t +zone_get_hostid(void *zonep) +{ + /* + * We're emulating the system's hostid in userland. + */ + return (strtoul(hw_serial, NULL, 10)); +} + int z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen) { int ret; uLongf len = *dstlen; if ((ret = uncompress(dst, &len, src, srclen)) == Z_OK) *dstlen = (size_t)len; return (ret); } int z_compress_level(void *dst, size_t *dstlen, const void *src, size_t srclen, int level) { int ret; uLongf len = *dstlen; if ((ret = compress2(dst, &len, src, srclen, level)) == Z_OK) *dstlen = (size_t)len; return (ret); } uid_t crgetuid(cred_t *cr) { return (0); } uid_t crgetruid(cred_t *cr) { return (0); } gid_t crgetgid(cred_t *cr) { return (0); } int crgetngroups(cred_t *cr) { return (0); } gid_t * crgetgroups(cred_t *cr) { return (NULL); } int zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) { return (0); } int zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) { return (0); } int zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) { return (0); } ksiddomain_t * ksid_lookupdomain(const char *dom) { ksiddomain_t *kd; kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL); kd->kd_name = spa_strdup(dom); return (kd); } void ksiddomain_rele(ksiddomain_t *ksid) { spa_strfree(ksid->kd_name); umem_free(ksid, sizeof (ksiddomain_t)); } /* * Do not change the length of the returned string; it must be freed * with strfree(). */ char * kmem_asprintf(const char *fmt, ...) { int size; va_list adx; char *buf; va_start(adx, fmt); size = vsnprintf(NULL, 0, fmt, adx) + 1; va_end(adx); buf = kmem_alloc(size, KM_SLEEP); va_start(adx, fmt); size = vsnprintf(buf, size, fmt, adx); va_end(adx); return (buf); } /* ARGSUSED */ int zfs_onexit_fd_hold(int fd, minor_t *minorp) { *minorp = 0; return (0); } /* ARGSUSED */ void zfs_onexit_fd_rele(int fd) { } /* ARGSUSED */ int zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data, uint64_t *action_handle) { return (0); } /* ARGSUSED */ int zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire) { return (0); } /* ARGSUSED */ int zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data) { return (0); } #ifdef __FreeBSD__ /* ARGSUSED */ int zvol_create_minors(const char *name) { return (0); } #endif #ifdef illumos void bioinit(buf_t *bp) { bzero(bp, sizeof (buf_t)); } void biodone(buf_t *bp) { if (bp->b_iodone != NULL) { (*(bp->b_iodone))(bp); return; } ASSERT((bp->b_flags & B_DONE) == 0); bp->b_flags |= B_DONE; } void bioerror(buf_t *bp, int error) { ASSERT(bp != NULL); ASSERT(error >= 0); if (error != 0) { bp->b_flags |= B_ERROR; } else { bp->b_flags &= ~B_ERROR; } bp->b_error = error; } int geterror(struct buf *bp) { int error = 0; if (bp->b_flags & B_ERROR) { error = bp->b_error; if (!error) error = EIO; } return (error); } #endif Index: head/cddl/contrib/opensolaris/lib/libzpool/common/sys/zfs_context.h =================================================================== --- head/cddl/contrib/opensolaris/lib/libzpool/common/sys/zfs_context.h (revision 329797) +++ head/cddl/contrib/opensolaris/lib/libzpool/common/sys/zfs_context.h (revision 329798) @@ -1,827 +1,828 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2016 by Delphix. All rights reserved. * Copyright (c) 2012, Joyent, Inc. All rights reserved. */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ #ifndef _SYS_ZFS_CONTEXT_H #define _SYS_ZFS_CONTEXT_H #ifdef __cplusplus extern "C" { #endif #define _SYS_MUTEX_H #define _SYS_RWLOCK_H #define _SYS_CONDVAR_H #define _SYS_SYSTM_H #define _SYS_T_LOCK_H #define _SYS_VNODE_H #define _SYS_VFS_H #define _SYS_SUNDDI_H #define _SYS_CALLB_H #define _SYS_SCHED_H_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef illumos #include "zfs.h" #endif #define ZFS_EXPORTS_PATH "/etc/zfs/exports" /* * Debugging */ /* * Note that we are not using the debugging levels. */ #define CE_CONT 0 /* continuation */ #define CE_NOTE 1 /* notice */ #define CE_WARN 2 /* warning */ #define CE_PANIC 3 /* panic */ #define CE_IGNORE 4 /* print nothing */ /* * ZFS debugging */ #define ZFS_LOG(...) do { } while (0) typedef u_longlong_t rlim64_t; #define RLIM64_INFINITY ((rlim64_t)-3) #ifdef ZFS_DEBUG extern void dprintf_setup(int *argc, char **argv); #endif /* ZFS_DEBUG */ extern void cmn_err(int, const char *, ...); extern void vcmn_err(int, const char *, __va_list); extern void panic(const char *, ...) __NORETURN; extern void vpanic(const char *, __va_list) __NORETURN; #define fm_panic panic extern int aok; /* * DTrace SDT probes have different signatures in userland than they do in * the kernel. If they're being used in kernel code, re-define them out of * existence for their counterparts in libzpool. * * Here's an example of how to use the set-error probes in userland: * zfs$target:::set-error /arg0 == EBUSY/ {stack();} * * Here's an example of how to use DTRACE_PROBE probes in userland: * If there is a probe declared as follows: * DTRACE_PROBE2(zfs__probe_name, uint64_t, blkid, dnode_t *, dn); * Then you can use it as follows: * zfs$target:::probe2 /copyinstr(arg0) == "zfs__probe_name"/ * {printf("%u %p\n", arg1, arg2);} */ #ifdef DTRACE_PROBE #undef DTRACE_PROBE #endif /* DTRACE_PROBE */ #ifdef illumos #define DTRACE_PROBE(a) \ ZFS_PROBE0(#a) #endif #ifdef DTRACE_PROBE1 #undef DTRACE_PROBE1 #endif /* DTRACE_PROBE1 */ #ifdef illumos #define DTRACE_PROBE1(a, b, c) \ ZFS_PROBE1(#a, (unsigned long)c) #endif #ifdef DTRACE_PROBE2 #undef DTRACE_PROBE2 #endif /* DTRACE_PROBE2 */ #ifdef illumos #define DTRACE_PROBE2(a, b, c, d, e) \ ZFS_PROBE2(#a, (unsigned long)c, (unsigned long)e) #endif #ifdef DTRACE_PROBE3 #undef DTRACE_PROBE3 #endif /* DTRACE_PROBE3 */ #ifdef illumos #define DTRACE_PROBE3(a, b, c, d, e, f, g) \ ZFS_PROBE3(#a, (unsigned long)c, (unsigned long)e, (unsigned long)g) #endif #ifdef DTRACE_PROBE4 #undef DTRACE_PROBE4 #endif /* DTRACE_PROBE4 */ #ifdef illumos #define DTRACE_PROBE4(a, b, c, d, e, f, g, h, i) \ ZFS_PROBE4(#a, (unsigned long)c, (unsigned long)e, (unsigned long)g, \ (unsigned long)i) #endif #ifdef illumos /* * We use the comma operator so that this macro can be used without much * additional code. For example, "return (EINVAL);" becomes * "return (SET_ERROR(EINVAL));". Note that the argument will be evaluated * twice, so it should not have side effects (e.g. something like: * "return (SET_ERROR(log_error(EINVAL, info)));" would log the error twice). */ #define SET_ERROR(err) (ZFS_SET_ERROR(err), err) #else /* !illumos */ #define DTRACE_PROBE(a) ((void)0) #define DTRACE_PROBE1(a, b, c) ((void)0) #define DTRACE_PROBE2(a, b, c, d, e) ((void)0) #define DTRACE_PROBE3(a, b, c, d, e, f, g) ((void)0) #define DTRACE_PROBE4(a, b, c, d, e, f, g, h, i) ((void)0) #define SET_ERROR(err) (err) #endif /* !illumos */ /* * Threads */ #define curthread ((void *)(uintptr_t)thr_self()) #define kpreempt(x) sched_yield() typedef struct kthread kthread_t; #define thread_create(stk, stksize, func, arg, len, pp, state, pri) \ zk_thread_create(func, arg) #define thread_exit() thr_exit(NULL) #define thread_join(t) panic("libzpool cannot join threads") #define newproc(f, a, cid, pri, ctp, pid) (ENOSYS) /* in libzpool, p0 exists only to have its address taken */ struct proc { uintptr_t this_is_never_used_dont_dereference_it; }; extern struct proc p0; #define curproc (&p0) #define PS_NONE -1 extern kthread_t *zk_thread_create(void (*func)(void*), void *arg); #define issig(why) (FALSE) #define ISSIG(thr, why) (FALSE) /* * Mutexes */ typedef struct kmutex { void *m_owner; boolean_t initialized; mutex_t m_lock; } kmutex_t; #define MUTEX_DEFAULT USYNC_THREAD #undef MUTEX_HELD #undef MUTEX_NOT_HELD #define MUTEX_HELD(m) ((m)->m_owner == curthread) #define MUTEX_NOT_HELD(m) (!MUTEX_HELD(m)) #define _mutex_held(m) pthread_mutex_isowned_np(m) /* * Argh -- we have to get cheesy here because the kernel and userland * have different signatures for the same routine. */ //extern int _mutex_init(mutex_t *mp, int type, void *arg); //extern int _mutex_destroy(mutex_t *mp); //extern int _mutex_owned(mutex_t *mp); #define mutex_init(mp, b, c, d) zmutex_init((kmutex_t *)(mp)) #define mutex_destroy(mp) zmutex_destroy((kmutex_t *)(mp)) #define mutex_owned(mp) zmutex_owned((kmutex_t *)(mp)) extern void zmutex_init(kmutex_t *mp); extern void zmutex_destroy(kmutex_t *mp); extern int zmutex_owned(kmutex_t *mp); extern void mutex_enter(kmutex_t *mp); extern void mutex_exit(kmutex_t *mp); extern int mutex_tryenter(kmutex_t *mp); extern void *mutex_owner(kmutex_t *mp); /* * RW locks */ typedef struct krwlock { int rw_count; void *rw_owner; boolean_t initialized; rwlock_t rw_lock; } krwlock_t; typedef int krw_t; #define RW_READER 0 #define RW_WRITER 1 #define RW_DEFAULT USYNC_THREAD #undef RW_READ_HELD #define RW_READ_HELD(x) ((x)->rw_owner == NULL && (x)->rw_count > 0) #undef RW_WRITE_HELD #define RW_WRITE_HELD(x) ((x)->rw_owner == curthread) #define RW_LOCK_HELD(x) rw_lock_held(x) #undef RW_LOCK_HELD #define RW_LOCK_HELD(x) (RW_READ_HELD(x) || RW_WRITE_HELD(x)) extern void rw_init(krwlock_t *rwlp, char *name, int type, void *arg); extern void rw_destroy(krwlock_t *rwlp); extern void rw_enter(krwlock_t *rwlp, krw_t rw); extern int rw_tryenter(krwlock_t *rwlp, krw_t rw); extern int rw_tryupgrade(krwlock_t *rwlp); extern void rw_exit(krwlock_t *rwlp); extern int rw_lock_held(krwlock_t *rwlp); #define rw_downgrade(rwlp) do { } while (0) extern uid_t crgetuid(cred_t *cr); extern uid_t crgetruid(cred_t *cr); extern gid_t crgetgid(cred_t *cr); extern int crgetngroups(cred_t *cr); extern gid_t *crgetgroups(cred_t *cr); /* * Condition variables */ typedef cond_t kcondvar_t; #define CV_DEFAULT USYNC_THREAD #define CALLOUT_FLAG_ABSOLUTE 0x2 extern void cv_init(kcondvar_t *cv, char *name, int type, void *arg); extern void cv_destroy(kcondvar_t *cv); extern void cv_wait(kcondvar_t *cv, kmutex_t *mp); extern clock_t cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime); extern clock_t cv_timedwait_hires(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim, hrtime_t res, int flag); extern void cv_signal(kcondvar_t *cv); extern void cv_broadcast(kcondvar_t *cv); /* * Thread-specific data */ #define tsd_get(k) pthread_getspecific(k) #define tsd_set(k, v) pthread_setspecific(k, v) #define tsd_create(kp, d) pthread_key_create(kp, d) #define tsd_destroy(kp) /* nothing */ /* * Kernel memory */ #define KM_SLEEP UMEM_NOFAIL #define KM_PUSHPAGE KM_SLEEP #define KM_NOSLEEP UMEM_DEFAULT #define KM_NORMALPRI 0 /* not needed with UMEM_DEFAULT */ #define KMC_NODEBUG UMC_NODEBUG #define KMC_NOTOUCH 0 /* not needed for userland caches */ #define KM_NODEBUG 0 #define kmem_alloc(_s, _f) umem_alloc(_s, _f) #define kmem_zalloc(_s, _f) umem_zalloc(_s, _f) #define kmem_free(_b, _s) umem_free(_b, _s) #define kmem_size() (physmem * PAGESIZE) #define kmem_cache_create(_a, _b, _c, _d, _e, _f, _g, _h, _i) \ umem_cache_create(_a, _b, _c, _d, _e, _f, _g, _h, _i) #define kmem_cache_destroy(_c) umem_cache_destroy(_c) #define kmem_cache_alloc(_c, _f) umem_cache_alloc(_c, _f) #define kmem_cache_free(_c, _b) umem_cache_free(_c, _b) #define kmem_debugging() 0 #define kmem_cache_reap_active() (B_FALSE) #define kmem_cache_reap_soon(_c) /* nothing */ #define kmem_cache_set_move(_c, _cb) /* nothing */ #define POINTER_INVALIDATE(_pp) /* nothing */ #define POINTER_IS_VALID(_p) 0 typedef umem_cache_t kmem_cache_t; typedef enum kmem_cbrc { KMEM_CBRC_YES, KMEM_CBRC_NO, KMEM_CBRC_LATER, KMEM_CBRC_DONT_NEED, KMEM_CBRC_DONT_KNOW } kmem_cbrc_t; /* * Task queues */ typedef struct taskq taskq_t; typedef uintptr_t taskqid_t; typedef void (task_func_t)(void *); typedef struct taskq_ent { struct taskq_ent *tqent_next; struct taskq_ent *tqent_prev; task_func_t *tqent_func; void *tqent_arg; uintptr_t tqent_flags; } taskq_ent_t; #define TQENT_FLAG_PREALLOC 0x1 /* taskq_dispatch_ent used */ #define TASKQ_PREPOPULATE 0x0001 #define TASKQ_CPR_SAFE 0x0002 /* Use CPR safe protocol */ #define TASKQ_DYNAMIC 0x0004 /* Use dynamic thread scheduling */ #define TASKQ_THREADS_CPU_PCT 0x0008 /* Scale # threads by # cpus */ #define TASKQ_DC_BATCH 0x0010 /* Mark threads as batch */ #define TQ_SLEEP KM_SLEEP /* Can block for memory */ #define TQ_NOSLEEP KM_NOSLEEP /* cannot block for memory; may fail */ #define TQ_NOQUEUE 0x02 /* Do not enqueue if can't dispatch */ #define TQ_FRONT 0x08 /* Queue in front */ extern taskq_t *system_taskq; extern taskq_t *taskq_create(const char *, int, pri_t, int, int, uint_t); #define taskq_create_proc(a, b, c, d, e, p, f) \ (taskq_create(a, b, c, d, e, f)) #define taskq_create_sysdc(a, b, d, e, p, dc, f) \ (taskq_create(a, b, maxclsyspri, d, e, f)) extern taskqid_t taskq_dispatch(taskq_t *, task_func_t, void *, uint_t); extern void taskq_dispatch_ent(taskq_t *, task_func_t, void *, uint_t, taskq_ent_t *); extern void taskq_destroy(taskq_t *); extern void taskq_wait(taskq_t *); extern int taskq_member(taskq_t *, void *); extern void system_taskq_init(void); extern void system_taskq_fini(void); #define taskq_dispatch_safe(tq, func, arg, flags, task) \ taskq_dispatch((tq), (func), (arg), (flags)) #define XVA_MAPSIZE 3 #define XVA_MAGIC 0x78766174 /* * vnodes */ typedef struct vnode { uint64_t v_size; int v_fd; char *v_path; int v_dump_fd; } vnode_t; extern char *vn_dumpdir; #define AV_SCANSTAMP_SZ 32 /* length of anti-virus scanstamp */ typedef struct xoptattr { timestruc_t xoa_createtime; /* Create time of file */ uint8_t xoa_archive; uint8_t xoa_system; uint8_t xoa_readonly; uint8_t xoa_hidden; uint8_t xoa_nounlink; uint8_t xoa_immutable; uint8_t xoa_appendonly; uint8_t xoa_nodump; uint8_t xoa_settable; uint8_t xoa_opaque; uint8_t xoa_av_quarantined; uint8_t xoa_av_modified; uint8_t xoa_av_scanstamp[AV_SCANSTAMP_SZ]; uint8_t xoa_reparse; uint8_t xoa_offline; uint8_t xoa_sparse; } xoptattr_t; typedef struct vattr { uint_t va_mask; /* bit-mask of attributes */ u_offset_t va_size; /* file size in bytes */ } vattr_t; typedef struct xvattr { vattr_t xva_vattr; /* Embedded vattr structure */ uint32_t xva_magic; /* Magic Number */ uint32_t xva_mapsize; /* Size of attr bitmap (32-bit words) */ uint32_t *xva_rtnattrmapp; /* Ptr to xva_rtnattrmap[] */ uint32_t xva_reqattrmap[XVA_MAPSIZE]; /* Requested attrs */ uint32_t xva_rtnattrmap[XVA_MAPSIZE]; /* Returned attrs */ xoptattr_t xva_xoptattrs; /* Optional attributes */ } xvattr_t; typedef struct vsecattr { uint_t vsa_mask; /* See below */ int vsa_aclcnt; /* ACL entry count */ void *vsa_aclentp; /* pointer to ACL entries */ int vsa_dfaclcnt; /* default ACL entry count */ void *vsa_dfaclentp; /* pointer to default ACL entries */ size_t vsa_aclentsz; /* ACE size in bytes of vsa_aclentp */ } vsecattr_t; #define AT_TYPE 0x00001 #define AT_MODE 0x00002 #define AT_UID 0x00004 #define AT_GID 0x00008 #define AT_FSID 0x00010 #define AT_NODEID 0x00020 #define AT_NLINK 0x00040 #define AT_SIZE 0x00080 #define AT_ATIME 0x00100 #define AT_MTIME 0x00200 #define AT_CTIME 0x00400 #define AT_RDEV 0x00800 #define AT_BLKSIZE 0x01000 #define AT_NBLOCKS 0x02000 #define AT_SEQ 0x08000 #define AT_XVATTR 0x10000 #define CRCREAT 0 extern int fop_getattr(vnode_t *vp, vattr_t *vap); #define VOP_CLOSE(vp, f, c, o, cr, ct) 0 #define VOP_PUTPAGE(vp, of, sz, fl, cr, ct) 0 #define VOP_GETATTR(vp, vap, cr) fop_getattr((vp), (vap)); #define VOP_FSYNC(vp, f, cr, ct) fsync((vp)->v_fd) #define VN_RELE(vp) vn_close(vp, 0, NULL, NULL) #define VN_RELE_ASYNC(vp, taskq) vn_close(vp, 0, NULL, NULL) #define vn_lock(vp, type) #define VOP_UNLOCK(vp, type) extern int vn_open(char *path, int x1, int oflags, int mode, vnode_t **vpp, int x2, int x3); extern int vn_openat(char *path, int x1, int oflags, int mode, vnode_t **vpp, int x2, int x3, vnode_t *vp, int fd); extern int vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset, int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp); extern void vn_close(vnode_t *vp, int openflag, cred_t *cr, kthread_t *td); #define vn_remove(path, x1, x2) remove(path) #define vn_rename(from, to, seg) rename((from), (to)) #define vn_is_readonly(vp) B_FALSE extern vnode_t *rootdir; #include /* for FREAD, FWRITE, etc */ #define FTRUNC O_TRUNC /* * Random stuff */ #define ddi_get_lbolt() (gethrtime() >> 23) #define ddi_get_lbolt64() (gethrtime() >> 23) #define hz 119 /* frequency when using gethrtime() >> 23 for lbolt */ extern void delay(clock_t ticks); #define SEC_TO_TICK(sec) ((sec) * hz) #define NSEC_TO_TICK(nsec) ((nsec) / (NANOSEC / hz)) #define gethrestime_sec() time(NULL) #define gethrestime(t) \ do {\ (t)->tv_sec = gethrestime_sec();\ (t)->tv_nsec = 0;\ } while (0); #define max_ncpus 64 #define minclsyspri 60 #define maxclsyspri 99 #define CPU_SEQID (thr_self() & (max_ncpus - 1)) #define kcred NULL #define CRED() NULL #ifndef ptob #define ptob(x) ((x) * PAGESIZE) #endif extern uint64_t physmem; extern int highbit64(uint64_t i); extern int random_get_bytes(uint8_t *ptr, size_t len); extern int random_get_pseudo_bytes(uint8_t *ptr, size_t len); extern void kernel_init(int); extern void kernel_fini(void); struct spa; extern void nicenum(uint64_t num, char *buf, size_t); extern void show_pool_stats(struct spa *); extern int set_global_var(char *arg); typedef struct callb_cpr { kmutex_t *cc_lockp; } callb_cpr_t; #define CALLB_CPR_INIT(cp, lockp, func, name) { \ (cp)->cc_lockp = lockp; \ } #define CALLB_CPR_SAFE_BEGIN(cp) { \ ASSERT(MUTEX_HELD((cp)->cc_lockp)); \ } #define CALLB_CPR_SAFE_END(cp, lockp) { \ ASSERT(MUTEX_HELD((cp)->cc_lockp)); \ } #define CALLB_CPR_EXIT(cp) { \ ASSERT(MUTEX_HELD((cp)->cc_lockp)); \ mutex_exit((cp)->cc_lockp); \ } #define zone_dataset_visible(x, y) (1) #define INGLOBALZONE(z) (1) +extern uint32_t zone_get_hostid(void *zonep); extern char *kmem_asprintf(const char *fmt, ...); #define strfree(str) kmem_free((str), strlen(str) + 1) /* * Hostname information */ extern struct utsname utsname; extern char hw_serial[]; /* for userland-emulated hostid access */ extern int ddi_strtoul(const char *str, char **nptr, int base, unsigned long *result); extern int ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result); /* ZFS Boot Related stuff. */ struct _buf { intptr_t _fd; }; struct bootstat { uint64_t st_size; }; typedef struct ace_object { uid_t a_who; uint32_t a_access_mask; uint16_t a_flags; uint16_t a_type; uint8_t a_obj_type[16]; uint8_t a_inherit_obj_type[16]; } ace_object_t; #define ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE 0x05 #define ACE_ACCESS_DENIED_OBJECT_ACE_TYPE 0x06 #define ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE 0x07 #define ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE 0x08 extern struct _buf *kobj_open_file(char *name); extern int kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off); extern void kobj_close_file(struct _buf *file); extern int kobj_get_filesize(struct _buf *file, uint64_t *size); extern int zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr); extern int zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr); extern int zfs_secpolicy_destroy_perms(const char *name, cred_t *cr); extern zoneid_t getzoneid(void); /* Random compatibility stuff. */ #define pwrite64(d, p, n, o) pwrite(d, p, n, o) #define readdir64(d) readdir(d) #define SIGPENDING(td) (0) #define root_mount_wait() do { } while (0) #define root_mounted() (1) struct file { void *dummy; }; #define FCREAT O_CREAT #define FOFFMAX 0x0 /* SID stuff */ typedef struct ksiddomain { uint_t kd_ref; uint_t kd_len; char *kd_name; } ksiddomain_t; ksiddomain_t *ksid_lookupdomain(const char *); void ksiddomain_rele(ksiddomain_t *); typedef uint32_t idmap_rid_t; #define DDI_SLEEP KM_SLEEP #define ddi_log_sysevent(_a, _b, _c, _d, _e, _f, _g) (0) #define SX_SYSINIT(name, lock, desc) #define SYSCTL_HANDLER_ARGS struct sysctl_oid *oidp, void *arg1, \ intptr_t arg2, struct sysctl_req *req /* * This describes the access space for a sysctl request. This is needed * so that we can use the interface from the kernel or from user-space. */ struct sysctl_req { struct thread *td; /* used for access checking */ int lock; /* wiring state */ void *oldptr; size_t oldlen; size_t oldidx; int (*oldfunc)(struct sysctl_req *, const void *, size_t); void *newptr; size_t newlen; size_t newidx; int (*newfunc)(struct sysctl_req *, void *, size_t); size_t validlen; int flags; }; SLIST_HEAD(sysctl_oid_list, sysctl_oid); /* * This describes one "oid" in the MIB tree. Potentially more nodes can * be hidden behind it, expanded by the handler. */ struct sysctl_oid { struct sysctl_oid_list *oid_parent; SLIST_ENTRY(sysctl_oid) oid_link; int oid_number; u_int oid_kind; void *oid_arg1; intptr_t oid_arg2; const char *oid_name; int (*oid_handler)(SYSCTL_HANDLER_ARGS); const char *oid_fmt; int oid_refcnt; u_int oid_running; const char *oid_descr; }; #define SYSCTL_DECL(...) #define SYSCTL_NODE(...) #define SYSCTL_INT(...) #define SYSCTL_UINT(...) #define SYSCTL_ULONG(...) #define SYSCTL_PROC(...) #define SYSCTL_QUAD(...) #define SYSCTL_UQUAD(...) #ifdef TUNABLE_INT #undef TUNABLE_INT #undef TUNABLE_ULONG #undef TUNABLE_QUAD #endif #define TUNABLE_INT(...) #define TUNABLE_ULONG(...) #define TUNABLE_QUAD(...) int sysctl_handle_64(SYSCTL_HANDLER_ARGS); /* Errors */ #ifndef ERESTART #define ERESTART (-1) #endif #ifdef illumos /* * Cyclic information */ extern kmutex_t cpu_lock; typedef uintptr_t cyclic_id_t; typedef uint16_t cyc_level_t; typedef void (*cyc_func_t)(void *); #define CY_LOW_LEVEL 0 #define CY_INFINITY INT64_MAX #define CYCLIC_NONE ((cyclic_id_t)0) typedef struct cyc_time { hrtime_t cyt_when; hrtime_t cyt_interval; } cyc_time_t; typedef struct cyc_handler { cyc_func_t cyh_func; void *cyh_arg; cyc_level_t cyh_level; } cyc_handler_t; extern cyclic_id_t cyclic_add(cyc_handler_t *, cyc_time_t *); extern void cyclic_remove(cyclic_id_t); extern int cyclic_reprogram(cyclic_id_t, hrtime_t); #endif /* illumos */ #ifdef illumos /* * Buf structure */ #define B_BUSY 0x0001 #define B_DONE 0x0002 #define B_ERROR 0x0004 #define B_READ 0x0040 /* read when I/O occurs */ #define B_WRITE 0x0100 /* non-read pseudo-flag */ typedef struct buf { int b_flags; size_t b_bcount; union { caddr_t b_addr; } b_un; lldaddr_t _b_blkno; #define b_lblkno _b_blkno._f size_t b_resid; size_t b_bufsize; int (*b_iodone)(struct buf *); int b_error; void *b_private; } buf_t; extern void bioinit(buf_t *); extern void biodone(buf_t *); extern void bioerror(buf_t *, int); extern int geterror(buf_t *); #endif #ifdef __cplusplus } #endif #endif /* _SYS_ZFS_CONTEXT_H */ Index: head/cddl/contrib/opensolaris =================================================================== --- head/cddl/contrib/opensolaris (revision 329797) +++ head/cddl/contrib/opensolaris (revision 329798) Property changes on: head/cddl/contrib/opensolaris ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /vendor/illumos/dist:r329793 Index: head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/spa.c =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/spa.c (revision 329797) +++ head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/spa.c (revision 329798) @@ -1,7773 +1,7942 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2018 by Delphix. All rights reserved. * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2013 Martin Matuska . All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright 2013 Saso Kiselkov. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2016 Toomas Soome * Copyright 2017 Joyent, Inc. * Copyright (c) 2017 Datto Inc. * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. */ /* * SPA: Storage Pool Allocator * * This file contains all the routines used when modifying on-disk SPA state. * This includes opening, importing, destroying, exporting a pool, and syncing a * pool. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #include #include #endif /* _KERNEL */ #include "zfs_prop.h" #include "zfs_comutil.h" /* Check hostid on import? */ static int check_hostid = 1; /* * The interval, in seconds, at which failed configuration cache file writes * should be retried. */ int zfs_ccw_retry_interval = 300; SYSCTL_DECL(_vfs_zfs); SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0, "Check hostid on import?"); TUNABLE_INT("vfs.zfs.ccw_retry_interval", &zfs_ccw_retry_interval); SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RW, &zfs_ccw_retry_interval, 0, "Configuration cache file write, retry after failure, interval (seconds)"); typedef enum zti_modes { ZTI_MODE_FIXED, /* value is # of threads (min 1) */ ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ ZTI_MODE_NULL, /* don't create a taskq */ ZTI_NMODES } zti_modes_t; #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } #define ZTI_N(n) ZTI_P(n, 1) #define ZTI_ONE ZTI_N(1) typedef struct zio_taskq_info { zti_modes_t zti_mode; uint_t zti_value; uint_t zti_count; } zio_taskq_info_t; static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { "issue", "issue_high", "intr", "intr_high" }; /* * This table defines the taskq settings for each ZFS I/O type. When * initializing a pool, we use this table to create an appropriately sized * taskq. Some operations are low volume and therefore have a small, static * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE * macros. Other operations process a large amount of data; the ZTI_BATCH * macro causes us to create a taskq oriented for throughput. Some operations * are so high frequency and short-lived that the taskq itself can become a a * point of lock contention. The ZTI_P(#, #) macro indicates that we need an * additional degree of parallelism specified by the number of threads per- * taskq and the number of taskqs; when dispatching an event in this case, the * particular taskq is chosen at random. * * The different taskq priorities are to handle the different contexts (issue * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that * need to be handled with minimum delay. */ const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ }; static void spa_sync_version(void *arg, dmu_tx_t *tx); static void spa_sync_props(void *arg, dmu_tx_t *tx); static boolean_t spa_has_active_shared_spare(spa_t *spa); -static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, - spa_load_state_t state, spa_import_type_t type, boolean_t trust_config, - char **ereport); +static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport, + boolean_t reloading); static void spa_vdev_resilver_done(spa_t *spa); uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ #ifdef PSRSET_BIND id_t zio_taskq_psrset_bind = PS_NONE; #endif #ifdef SYSDC boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ uint_t zio_taskq_basedc = 80; /* base duty cycle */ #endif boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ extern int zfs_sync_pass_deferred_free; /* * Report any spa_load_verify errors found, but do not fail spa_load. * This is used by zdb to analyze non-idle pools. */ boolean_t spa_load_verify_dryrun = B_FALSE; /* * This (illegal) pool name is used when temporarily importing a spa_t in order * to get the vdev stats associated with the imported devices. */ #define TRYIMPORT_NAME "$import" /* + * For debugging purposes: print out vdev tree during pool import. + */ +int spa_load_print_vdev_tree = B_FALSE; + +/* + * A non-zero value for zfs_max_missing_tvds means that we allow importing + * pools with missing top-level vdevs. This is strictly intended for advanced + * pool recovery cases since missing data is almost inevitable. Pools with + * missing devices can only be imported read-only for safety reasons, and their + * fail-mode will be automatically set to "continue". + * + * With 1 missing vdev we should be able to import the pool and mount all + * datasets. User data that was not modified after the missing device has been + * added should be recoverable. This means that snapshots created prior to the + * addition of that device should be completely intact. + * + * With 2 missing vdevs, some datasets may fail to mount since there are + * dataset statistics that are stored as regular metadata. Some data might be + * recoverable if those vdevs were added recently. + * + * With 3 or more missing vdevs, the pool is severely damaged and MOS entries + * may be missing entirely. Chances of data recovery are very low. Note that + * there are also risks of performing an inadvertent rewind as we might be + * missing all the vdevs with the latest uberblocks. + */ +uint64_t zfs_max_missing_tvds = 0; + +/* + * The parameters below are similar to zfs_max_missing_tvds but are only + * intended for a preliminary open of the pool with an untrusted config which + * might be incomplete or out-dated. + * + * We are more tolerant for pools opened from a cachefile since we could have + * an out-dated cachefile where a device removal was not registered. + * We could have set the limit arbitrarily high but in the case where devices + * are really missing we would want to return the proper error codes; we chose + * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available + * and we get a chance to retrieve the trusted config. + */ +uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1; +/* + * In the case where config was assembled by scanning device paths (/dev/dsks + * by default) we are less tolerant since all the existing devices should have + * been detected and we want spa_load to return the right error codes. + */ +uint64_t zfs_max_missing_tvds_scan = 0; + + +SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_print_vdev_tree, CTLFLAG_RWTUN, + &spa_load_print_vdev_tree, 0, + "print out vdev tree during pool import"); +SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, max_missing_tvds, CTLFLAG_RWTUN, + &zfs_max_missing_tvds, 0, + "allow importing pools with missing top-level vdevs"); +SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, max_missing_tvds_cachefile, CTLFLAG_RWTUN, + &zfs_max_missing_tvds_cachefile, 0, + "allow importing pools with missing top-level vdevs in cache file"); +SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, max_missing_tvds_scan, CTLFLAG_RWTUN, + &zfs_max_missing_tvds_scan, 0, + "allow importing pools with missing top-level vdevs during scan"); + +/* * ========================================================================== * SPA properties routines * ========================================================================== */ /* * Add a (source=src, propname=propval) list to an nvlist. */ static void spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, uint64_t intval, zprop_source_t src) { const char *propname = zpool_prop_to_name(prop); nvlist_t *propval; VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); if (strval != NULL) VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); else VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); nvlist_free(propval); } /* * Get property values from the spa configuration. */ static void spa_prop_get_config(spa_t *spa, nvlist_t **nvp) { vdev_t *rvd = spa->spa_root_vdev; dsl_pool_t *pool = spa->spa_dsl_pool; uint64_t size, alloc, cap, version; zprop_source_t src = ZPROP_SRC_NONE; spa_config_dirent_t *dp; metaslab_class_t *mc = spa_normal_class(spa); ASSERT(MUTEX_HELD(&spa->spa_props_lock)); if (rvd != NULL) { alloc = metaslab_class_get_alloc(spa_normal_class(spa)); size = metaslab_class_get_space(spa_normal_class(spa)); spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, size - alloc, src); spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, metaslab_class_fragmentation(mc), src); spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, metaslab_class_expandable_space(mc), src); spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, (spa_mode(spa) == FREAD), src); cap = (size == 0) ? 0 : (alloc * 100 / size); spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, ddt_get_pool_dedup_ratio(spa), src); spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, rvd->vdev_state, src); version = spa_version(spa); if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) src = ZPROP_SRC_DEFAULT; else src = ZPROP_SRC_LOCAL; spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); } if (pool != NULL) { /* * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, * when opening pools before this version freedir will be NULL. */ if (pool->dp_free_dir != NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, src); } else { spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 0, src); } if (pool->dp_leak_dir != NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, src); } else { spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 0, src); } } spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); if (spa->spa_comment != NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 0, ZPROP_SRC_LOCAL); } if (spa->spa_root != NULL) spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 0, ZPROP_SRC_LOCAL); if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); } else { spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); } if ((dp = list_head(&spa->spa_config_list)) != NULL) { if (dp->scd_path == NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, "none", 0, ZPROP_SRC_LOCAL); } else if (strcmp(dp->scd_path, spa_config_path) != 0) { spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, dp->scd_path, 0, ZPROP_SRC_LOCAL); } } } /* * Get zpool property values. */ int spa_prop_get(spa_t *spa, nvlist_t **nvp) { objset_t *mos = spa->spa_meta_objset; zap_cursor_t zc; zap_attribute_t za; int err; VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); mutex_enter(&spa->spa_props_lock); /* * Get properties from the spa config. */ spa_prop_get_config(spa, nvp); /* If no pool property object, no more prop to get. */ if (mos == NULL || spa->spa_pool_props_object == 0) { mutex_exit(&spa->spa_props_lock); return (0); } /* * Get properties from the MOS pool property object. */ for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); (err = zap_cursor_retrieve(&zc, &za)) == 0; zap_cursor_advance(&zc)) { uint64_t intval = 0; char *strval = NULL; zprop_source_t src = ZPROP_SRC_DEFAULT; zpool_prop_t prop; if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL) continue; switch (za.za_integer_length) { case 8: /* integer property */ if (za.za_first_integer != zpool_prop_default_numeric(prop)) src = ZPROP_SRC_LOCAL; if (prop == ZPOOL_PROP_BOOTFS) { dsl_pool_t *dp; dsl_dataset_t *ds = NULL; dp = spa_get_dsl(spa); dsl_pool_config_enter(dp, FTAG); if (err = dsl_dataset_hold_obj(dp, za.za_first_integer, FTAG, &ds)) { dsl_pool_config_exit(dp, FTAG); break; } strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); dsl_dataset_name(ds, strval); dsl_dataset_rele(ds, FTAG); dsl_pool_config_exit(dp, FTAG); } else { strval = NULL; intval = za.za_first_integer; } spa_prop_add_list(*nvp, prop, strval, intval, src); if (strval != NULL) kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); break; case 1: /* string property */ strval = kmem_alloc(za.za_num_integers, KM_SLEEP); err = zap_lookup(mos, spa->spa_pool_props_object, za.za_name, 1, za.za_num_integers, strval); if (err) { kmem_free(strval, za.za_num_integers); break; } spa_prop_add_list(*nvp, prop, strval, 0, src); kmem_free(strval, za.za_num_integers); break; default: break; } } zap_cursor_fini(&zc); mutex_exit(&spa->spa_props_lock); out: if (err && err != ENOENT) { nvlist_free(*nvp); *nvp = NULL; return (err); } return (0); } /* * Validate the given pool properties nvlist and modify the list * for the property values to be set. */ static int spa_prop_validate(spa_t *spa, nvlist_t *props) { nvpair_t *elem; int error = 0, reset_bootfs = 0; uint64_t objnum = 0; boolean_t has_feature = B_FALSE; elem = NULL; while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { uint64_t intval; char *strval, *slash, *check, *fname; const char *propname = nvpair_name(elem); zpool_prop_t prop = zpool_name_to_prop(propname); switch (prop) { case ZPOOL_PROP_INVAL: if (!zpool_prop_feature(propname)) { error = SET_ERROR(EINVAL); break; } /* * Sanitize the input. */ if (nvpair_type(elem) != DATA_TYPE_UINT64) { error = SET_ERROR(EINVAL); break; } if (nvpair_value_uint64(elem, &intval) != 0) { error = SET_ERROR(EINVAL); break; } if (intval != 0) { error = SET_ERROR(EINVAL); break; } fname = strchr(propname, '@') + 1; if (zfeature_lookup_name(fname, NULL) != 0) { error = SET_ERROR(EINVAL); break; } has_feature = B_TRUE; break; case ZPOOL_PROP_VERSION: error = nvpair_value_uint64(elem, &intval); if (!error && (intval < spa_version(spa) || intval > SPA_VERSION_BEFORE_FEATURES || has_feature)) error = SET_ERROR(EINVAL); break; case ZPOOL_PROP_DELEGATION: case ZPOOL_PROP_AUTOREPLACE: case ZPOOL_PROP_LISTSNAPS: case ZPOOL_PROP_AUTOEXPAND: error = nvpair_value_uint64(elem, &intval); if (!error && intval > 1) error = SET_ERROR(EINVAL); break; case ZPOOL_PROP_BOOTFS: /* * If the pool version is less than SPA_VERSION_BOOTFS, * or the pool is still being created (version == 0), * the bootfs property cannot be set. */ if (spa_version(spa) < SPA_VERSION_BOOTFS) { error = SET_ERROR(ENOTSUP); break; } /* * Make sure the vdev config is bootable */ if (!vdev_is_bootable(spa->spa_root_vdev)) { error = SET_ERROR(ENOTSUP); break; } reset_bootfs = 1; error = nvpair_value_string(elem, &strval); if (!error) { objset_t *os; uint64_t propval; if (strval == NULL || strval[0] == '\0') { objnum = zpool_prop_default_numeric( ZPOOL_PROP_BOOTFS); break; } if (error = dmu_objset_hold(strval, FTAG, &os)) break; /* * Must be ZPL, and its property settings * must be supported by GRUB (compression * is not gzip, and large blocks are not used). */ if (dmu_objset_type(os) != DMU_OST_ZFS) { error = SET_ERROR(ENOTSUP); } else if ((error = dsl_prop_get_int_ds(dmu_objset_ds(os), zfs_prop_to_name(ZFS_PROP_COMPRESSION), &propval)) == 0 && !BOOTFS_COMPRESS_VALID(propval)) { error = SET_ERROR(ENOTSUP); } else { objnum = dmu_objset_id(os); } dmu_objset_rele(os, FTAG); } break; case ZPOOL_PROP_FAILUREMODE: error = nvpair_value_uint64(elem, &intval); if (!error && (intval < ZIO_FAILURE_MODE_WAIT || intval > ZIO_FAILURE_MODE_PANIC)) error = SET_ERROR(EINVAL); /* * This is a special case which only occurs when * the pool has completely failed. This allows * the user to change the in-core failmode property * without syncing it out to disk (I/Os might * currently be blocked). We do this by returning * EIO to the caller (spa_prop_set) to trick it * into thinking we encountered a property validation * error. */ if (!error && spa_suspended(spa)) { spa->spa_failmode = intval; error = SET_ERROR(EIO); } break; case ZPOOL_PROP_CACHEFILE: if ((error = nvpair_value_string(elem, &strval)) != 0) break; if (strval[0] == '\0') break; if (strcmp(strval, "none") == 0) break; if (strval[0] != '/') { error = SET_ERROR(EINVAL); break; } slash = strrchr(strval, '/'); ASSERT(slash != NULL); if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || strcmp(slash, "/..") == 0) error = SET_ERROR(EINVAL); break; case ZPOOL_PROP_COMMENT: if ((error = nvpair_value_string(elem, &strval)) != 0) break; for (check = strval; *check != '\0'; check++) { /* * The kernel doesn't have an easy isprint() * check. For this kernel check, we merely * check ASCII apart from DEL. Fix this if * there is an easy-to-use kernel isprint(). */ if (*check >= 0x7f) { error = SET_ERROR(EINVAL); break; } } if (strlen(strval) > ZPROP_MAX_COMMENT) error = E2BIG; break; case ZPOOL_PROP_DEDUPDITTO: if (spa_version(spa) < SPA_VERSION_DEDUP) error = SET_ERROR(ENOTSUP); else error = nvpair_value_uint64(elem, &intval); if (error == 0 && intval != 0 && intval < ZIO_DEDUPDITTO_MIN) error = SET_ERROR(EINVAL); break; } if (error) break; } if (!error && reset_bootfs) { error = nvlist_remove(props, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); if (!error) { error = nvlist_add_uint64(props, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); } } return (error); } void spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) { char *cachefile; spa_config_dirent_t *dp; if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), &cachefile) != 0) return; dp = kmem_alloc(sizeof (spa_config_dirent_t), KM_SLEEP); if (cachefile[0] == '\0') dp->scd_path = spa_strdup(spa_config_path); else if (strcmp(cachefile, "none") == 0) dp->scd_path = NULL; else dp->scd_path = spa_strdup(cachefile); list_insert_head(&spa->spa_config_list, dp); if (need_sync) spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); } int spa_prop_set(spa_t *spa, nvlist_t *nvp) { int error; nvpair_t *elem = NULL; boolean_t need_sync = B_FALSE; if ((error = spa_prop_validate(spa, nvp)) != 0) return (error); while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT || prop == ZPOOL_PROP_READONLY) continue; if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) { uint64_t ver; if (prop == ZPOOL_PROP_VERSION) { VERIFY(nvpair_value_uint64(elem, &ver) == 0); } else { ASSERT(zpool_prop_feature(nvpair_name(elem))); ver = SPA_VERSION_FEATURES; need_sync = B_TRUE; } /* Save time if the version is already set. */ if (ver == spa_version(spa)) continue; /* * In addition to the pool directory object, we might * create the pool properties object, the features for * read object, the features for write object, or the * feature descriptions object. */ error = dsl_sync_task(spa->spa_name, NULL, spa_sync_version, &ver, 6, ZFS_SPACE_CHECK_RESERVED); if (error) return (error); continue; } need_sync = B_TRUE; break; } if (need_sync) { return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, nvp, 6, ZFS_SPACE_CHECK_RESERVED)); } return (0); } /* * If the bootfs property value is dsobj, clear it. */ void spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) { if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { VERIFY(zap_remove(spa->spa_meta_objset, spa->spa_pool_props_object, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); spa->spa_bootfs = 0; } } /*ARGSUSED*/ static int spa_change_guid_check(void *arg, dmu_tx_t *tx) { uint64_t *newguid = arg; spa_t *spa = dmu_tx_pool(tx)->dp_spa; vdev_t *rvd = spa->spa_root_vdev; uint64_t vdev_state; spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); vdev_state = rvd->vdev_state; spa_config_exit(spa, SCL_STATE, FTAG); if (vdev_state != VDEV_STATE_HEALTHY) return (SET_ERROR(ENXIO)); ASSERT3U(spa_guid(spa), !=, *newguid); return (0); } static void spa_change_guid_sync(void *arg, dmu_tx_t *tx) { uint64_t *newguid = arg; spa_t *spa = dmu_tx_pool(tx)->dp_spa; uint64_t oldguid; vdev_t *rvd = spa->spa_root_vdev; oldguid = spa_guid(spa); spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); rvd->vdev_guid = *newguid; rvd->vdev_guid_sum += (*newguid - oldguid); vdev_config_dirty(rvd); spa_config_exit(spa, SCL_STATE, FTAG); spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", oldguid, *newguid); } /* * Change the GUID for the pool. This is done so that we can later * re-import a pool built from a clone of our own vdevs. We will modify * the root vdev's guid, our own pool guid, and then mark all of our * vdevs dirty. Note that we must make sure that all our vdevs are * online when we do this, or else any vdevs that weren't present * would be orphaned from our pool. We are also going to issue a * sysevent to update any watchers. */ int spa_change_guid(spa_t *spa) { int error; uint64_t guid; mutex_enter(&spa->spa_vdev_top_lock); mutex_enter(&spa_namespace_lock); guid = spa_generate_guid(NULL); error = dsl_sync_task(spa->spa_name, spa_change_guid_check, spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); if (error == 0) { spa_write_cachefile(spa, B_FALSE, B_TRUE); spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID); } mutex_exit(&spa_namespace_lock); mutex_exit(&spa->spa_vdev_top_lock); return (error); } /* * ========================================================================== * SPA state manipulation (open/create/destroy/import/export) * ========================================================================== */ static int spa_error_entry_compare(const void *a, const void *b) { spa_error_entry_t *sa = (spa_error_entry_t *)a; spa_error_entry_t *sb = (spa_error_entry_t *)b; int ret; ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, sizeof (zbookmark_phys_t)); if (ret < 0) return (-1); else if (ret > 0) return (1); else return (0); } /* * Utility function which retrieves copies of the current logs and * re-initializes them in the process. */ void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) { ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); avl_create(&spa->spa_errlist_scrub, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); avl_create(&spa->spa_errlist_last, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); } static void spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) { const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; enum zti_modes mode = ztip->zti_mode; uint_t value = ztip->zti_value; uint_t count = ztip->zti_count; spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; char name[32]; uint_t flags = 0; boolean_t batch = B_FALSE; if (mode == ZTI_MODE_NULL) { tqs->stqs_count = 0; tqs->stqs_taskq = NULL; return; } ASSERT3U(count, >, 0); tqs->stqs_count = count; tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); switch (mode) { case ZTI_MODE_FIXED: ASSERT3U(value, >=, 1); value = MAX(value, 1); break; case ZTI_MODE_BATCH: batch = B_TRUE; flags |= TASKQ_THREADS_CPU_PCT; value = zio_taskq_batch_pct; break; default: panic("unrecognized mode for %s_%s taskq (%u:%u) in " "spa_activate()", zio_type_name[t], zio_taskq_types[q], mode, value); break; } for (uint_t i = 0; i < count; i++) { taskq_t *tq; if (count > 1) { (void) snprintf(name, sizeof (name), "%s_%s_%u", zio_type_name[t], zio_taskq_types[q], i); } else { (void) snprintf(name, sizeof (name), "%s_%s", zio_type_name[t], zio_taskq_types[q]); } #ifdef SYSDC if (zio_taskq_sysdc && spa->spa_proc != &p0) { if (batch) flags |= TASKQ_DC_BATCH; tq = taskq_create_sysdc(name, value, 50, INT_MAX, spa->spa_proc, zio_taskq_basedc, flags); } else { #endif pri_t pri = maxclsyspri; /* * The write issue taskq can be extremely CPU * intensive. Run it at slightly lower priority * than the other taskqs. * FreeBSD notes: * - numerically higher priorities are lower priorities; * - if priorities divided by four (RQ_PPQ) are equal * then a difference between them is insignificant. */ if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) #ifdef illumos pri--; #else pri += 4; #endif tq = taskq_create_proc(name, value, pri, 50, INT_MAX, spa->spa_proc, flags); #ifdef SYSDC } #endif tqs->stqs_taskq[i] = tq; } } static void spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) { spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; if (tqs->stqs_taskq == NULL) { ASSERT0(tqs->stqs_count); return; } for (uint_t i = 0; i < tqs->stqs_count; i++) { ASSERT3P(tqs->stqs_taskq[i], !=, NULL); taskq_destroy(tqs->stqs_taskq[i]); } kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); tqs->stqs_taskq = NULL; } /* * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. * Note that a type may have multiple discrete taskqs to avoid lock contention * on the taskq itself. In that case we choose which taskq at random by using * the low bits of gethrtime(). */ void spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) { spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; taskq_t *tq; ASSERT3P(tqs->stqs_taskq, !=, NULL); ASSERT3U(tqs->stqs_count, !=, 0); if (tqs->stqs_count == 1) { tq = tqs->stqs_taskq[0]; } else { #ifdef _KERNEL tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count]; #else tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; #endif } taskq_dispatch_ent(tq, func, arg, flags, ent); } static void spa_create_zio_taskqs(spa_t *spa) { for (int t = 0; t < ZIO_TYPES; t++) { for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { spa_taskqs_init(spa, t, q); } } } #ifdef _KERNEL #ifdef SPA_PROCESS static void spa_thread(void *arg) { callb_cpr_t cprinfo; spa_t *spa = arg; user_t *pu = PTOU(curproc); CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, spa->spa_name); ASSERT(curproc != &p0); (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), "zpool-%s", spa->spa_name); (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); #ifdef PSRSET_BIND /* bind this thread to the requested psrset */ if (zio_taskq_psrset_bind != PS_NONE) { pool_lock(); mutex_enter(&cpu_lock); mutex_enter(&pidlock); mutex_enter(&curproc->p_lock); if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 0, NULL, NULL) == 0) { curthread->t_bind_pset = zio_taskq_psrset_bind; } else { cmn_err(CE_WARN, "Couldn't bind process for zfs pool \"%s\" to " "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); } mutex_exit(&curproc->p_lock); mutex_exit(&pidlock); mutex_exit(&cpu_lock); pool_unlock(); } #endif #ifdef SYSDC if (zio_taskq_sysdc) { sysdc_thread_enter(curthread, 100, 0); } #endif spa->spa_proc = curproc; spa->spa_did = curthread->t_did; spa_create_zio_taskqs(spa); mutex_enter(&spa->spa_proc_lock); ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); spa->spa_proc_state = SPA_PROC_ACTIVE; cv_broadcast(&spa->spa_proc_cv); CALLB_CPR_SAFE_BEGIN(&cprinfo); while (spa->spa_proc_state == SPA_PROC_ACTIVE) cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); spa->spa_proc_state = SPA_PROC_GONE; spa->spa_proc = &p0; cv_broadcast(&spa->spa_proc_cv); CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ mutex_enter(&curproc->p_lock); lwp_exit(); } #endif /* SPA_PROCESS */ #endif /* * Activate an uninitialized pool. */ static void spa_activate(spa_t *spa, int mode) { ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); spa->spa_state = POOL_STATE_ACTIVE; spa->spa_mode = mode; spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); /* Try to create a covering process */ mutex_enter(&spa->spa_proc_lock); ASSERT(spa->spa_proc_state == SPA_PROC_NONE); ASSERT(spa->spa_proc == &p0); spa->spa_did = 0; #ifdef SPA_PROCESS /* Only create a process if we're going to be around a while. */ if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, NULL, 0) == 0) { spa->spa_proc_state = SPA_PROC_CREATED; while (spa->spa_proc_state == SPA_PROC_CREATED) { cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); } ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); ASSERT(spa->spa_proc != &p0); ASSERT(spa->spa_did != 0); } else { #ifdef _KERNEL cmn_err(CE_WARN, "Couldn't create process for zfs pool \"%s\"\n", spa->spa_name); #endif } } #endif /* SPA_PROCESS */ mutex_exit(&spa->spa_proc_lock); /* If we didn't create a process, we need to create our taskqs. */ ASSERT(spa->spa_proc == &p0); if (spa->spa_proc == &p0) { spa_create_zio_taskqs(spa); } /* * Start TRIM thread. */ trim_thread_create(spa); for (size_t i = 0; i < TXG_SIZE; i++) spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 0); list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), offsetof(vdev_t, vdev_config_dirty_node)); list_create(&spa->spa_evicting_os_list, sizeof (objset_t), offsetof(objset_t, os_evicting_node)); list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), offsetof(vdev_t, vdev_state_dirty_node)); txg_list_create(&spa->spa_vdev_txg_list, spa, offsetof(struct vdev, vdev_txg_node)); avl_create(&spa->spa_errlist_scrub, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); avl_create(&spa->spa_errlist_last, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); } /* * Opposite of spa_activate(). */ static void spa_deactivate(spa_t *spa) { ASSERT(spa->spa_sync_on == B_FALSE); ASSERT(spa->spa_dsl_pool == NULL); ASSERT(spa->spa_root_vdev == NULL); ASSERT(spa->spa_async_zio_root == NULL); ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); /* * Stop TRIM thread in case spa_unload() wasn't called directly * before spa_deactivate(). */ trim_thread_destroy(spa); spa_evicting_os_wait(spa); txg_list_destroy(&spa->spa_vdev_txg_list); list_destroy(&spa->spa_config_dirty_list); list_destroy(&spa->spa_evicting_os_list); list_destroy(&spa->spa_state_dirty_list); for (int t = 0; t < ZIO_TYPES; t++) { for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { spa_taskqs_fini(spa, t, q); } } for (size_t i = 0; i < TXG_SIZE; i++) { ASSERT3P(spa->spa_txg_zio[i], !=, NULL); VERIFY0(zio_wait(spa->spa_txg_zio[i])); spa->spa_txg_zio[i] = NULL; } metaslab_class_destroy(spa->spa_normal_class); spa->spa_normal_class = NULL; metaslab_class_destroy(spa->spa_log_class); spa->spa_log_class = NULL; /* * If this was part of an import or the open otherwise failed, we may * still have errors left in the queues. Empty them just in case. */ spa_errlog_drain(spa); avl_destroy(&spa->spa_errlist_scrub); avl_destroy(&spa->spa_errlist_last); spa->spa_state = POOL_STATE_UNINITIALIZED; mutex_enter(&spa->spa_proc_lock); if (spa->spa_proc_state != SPA_PROC_NONE) { ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); spa->spa_proc_state = SPA_PROC_DEACTIVATE; cv_broadcast(&spa->spa_proc_cv); while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { ASSERT(spa->spa_proc != &p0); cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); } ASSERT(spa->spa_proc_state == SPA_PROC_GONE); spa->spa_proc_state = SPA_PROC_NONE; } ASSERT(spa->spa_proc == &p0); mutex_exit(&spa->spa_proc_lock); #ifdef SPA_PROCESS /* * We want to make sure spa_thread() has actually exited the ZFS * module, so that the module can't be unloaded out from underneath * it. */ if (spa->spa_did != 0) { thread_join(spa->spa_did); spa->spa_did = 0; } #endif /* SPA_PROCESS */ } /* * Verify a pool configuration, and construct the vdev tree appropriately. This * will create all the necessary vdevs in the appropriate layout, with each vdev * in the CLOSED state. This will prep the pool before open/creation/import. * All vdev validation is done by the vdev_alloc() routine. */ static int spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, int atype) { nvlist_t **child; uint_t children; int error; if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) return (error); if ((*vdp)->vdev_ops->vdev_op_leaf) return (0); error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children); if (error == ENOENT) return (0); if (error) { vdev_free(*vdp); *vdp = NULL; return (SET_ERROR(EINVAL)); } for (int c = 0; c < children; c++) { vdev_t *vd; if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, atype)) != 0) { vdev_free(*vdp); *vdp = NULL; return (error); } } ASSERT(*vdp != NULL); return (0); } /* * Opposite of spa_load(). */ static void spa_unload(spa_t *spa) { int i; ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa_load_note(spa, "UNLOADING"); /* * Stop TRIM thread. */ trim_thread_destroy(spa); /* * Stop async tasks. */ spa_async_suspend(spa); /* * Stop syncing. */ if (spa->spa_sync_on) { txg_sync_stop(spa->spa_dsl_pool); spa->spa_sync_on = B_FALSE; } /* * Even though vdev_free() also calls vdev_metaslab_fini, we need * to call it earlier, before we wait for async i/o to complete. * This ensures that there is no async metaslab prefetching, by * calling taskq_wait(mg_taskq). */ if (spa->spa_root_vdev != NULL) { spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]); spa_config_exit(spa, SCL_ALL, FTAG); } /* * Wait for any outstanding async I/O to complete. */ if (spa->spa_async_zio_root != NULL) { for (int i = 0; i < max_ncpus; i++) (void) zio_wait(spa->spa_async_zio_root[i]); kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); spa->spa_async_zio_root = NULL; } if (spa->spa_vdev_removal != NULL) { spa_vdev_removal_destroy(spa->spa_vdev_removal); spa->spa_vdev_removal = NULL; } spa_condense_fini(spa); bpobj_close(&spa->spa_deferred_bpobj); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); /* * Close all vdevs. */ if (spa->spa_root_vdev) vdev_free(spa->spa_root_vdev); ASSERT(spa->spa_root_vdev == NULL); /* * Close the dsl pool. */ if (spa->spa_dsl_pool) { dsl_pool_close(spa->spa_dsl_pool); spa->spa_dsl_pool = NULL; spa->spa_meta_objset = NULL; } ddt_unload(spa); /* * Drop and purge level 2 cache */ spa_l2cache_drop(spa); for (i = 0; i < spa->spa_spares.sav_count; i++) vdev_free(spa->spa_spares.sav_vdevs[i]); if (spa->spa_spares.sav_vdevs) { kmem_free(spa->spa_spares.sav_vdevs, spa->spa_spares.sav_count * sizeof (void *)); spa->spa_spares.sav_vdevs = NULL; } if (spa->spa_spares.sav_config) { nvlist_free(spa->spa_spares.sav_config); spa->spa_spares.sav_config = NULL; } spa->spa_spares.sav_count = 0; for (i = 0; i < spa->spa_l2cache.sav_count; i++) { vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); vdev_free(spa->spa_l2cache.sav_vdevs[i]); } if (spa->spa_l2cache.sav_vdevs) { kmem_free(spa->spa_l2cache.sav_vdevs, spa->spa_l2cache.sav_count * sizeof (void *)); spa->spa_l2cache.sav_vdevs = NULL; } if (spa->spa_l2cache.sav_config) { nvlist_free(spa->spa_l2cache.sav_config); spa->spa_l2cache.sav_config = NULL; } spa->spa_l2cache.sav_count = 0; spa->spa_async_suspended = 0; spa->spa_indirect_vdevs_loaded = B_FALSE; if (spa->spa_comment != NULL) { spa_strfree(spa->spa_comment); spa->spa_comment = NULL; } spa_config_exit(spa, SCL_ALL, FTAG); } /* * Load (or re-load) the current list of vdevs describing the active spares for * this pool. When this is called, we have some form of basic information in * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and * then re-generate a more complete list including status information. */ void spa_load_spares(spa_t *spa) { nvlist_t **spares; uint_t nspares; int i; vdev_t *vd, *tvd; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); /* * First, close and free any existing spare vdevs. */ for (i = 0; i < spa->spa_spares.sav_count; i++) { vd = spa->spa_spares.sav_vdevs[i]; /* Undo the call to spa_activate() below */ if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, B_FALSE)) != NULL && tvd->vdev_isspare) spa_spare_remove(tvd); vdev_close(vd); vdev_free(vd); } if (spa->spa_spares.sav_vdevs) kmem_free(spa->spa_spares.sav_vdevs, spa->spa_spares.sav_count * sizeof (void *)); if (spa->spa_spares.sav_config == NULL) nspares = 0; else VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); spa->spa_spares.sav_count = (int)nspares; spa->spa_spares.sav_vdevs = NULL; if (nspares == 0) return; /* * Construct the array of vdevs, opening them to get status in the * process. For each spare, there is potentially two different vdev_t * structures associated with it: one in the list of spares (used only * for basic validation purposes) and one in the active vdev * configuration (if it's spared in). During this phase we open and * validate each vdev on the spare list. If the vdev also exists in the * active configuration, then we also mark this vdev as an active spare. */ spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), KM_SLEEP); for (i = 0; i < spa->spa_spares.sav_count; i++) { VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, VDEV_ALLOC_SPARE) == 0); ASSERT(vd != NULL); spa->spa_spares.sav_vdevs[i] = vd; if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, B_FALSE)) != NULL) { if (!tvd->vdev_isspare) spa_spare_add(tvd); /* * We only mark the spare active if we were successfully * able to load the vdev. Otherwise, importing a pool * with a bad active spare would result in strange * behavior, because multiple pool would think the spare * is actively in use. * * There is a vulnerability here to an equally bizarre * circumstance, where a dead active spare is later * brought back to life (onlined or otherwise). Given * the rarity of this scenario, and the extra complexity * it adds, we ignore the possibility. */ if (!vdev_is_dead(tvd)) spa_spare_activate(tvd); } vd->vdev_top = vd; vd->vdev_aux = &spa->spa_spares; if (vdev_open(vd) != 0) continue; if (vdev_validate_aux(vd) == 0) spa_spare_add(vd); } /* * Recompute the stashed list of spares, with status information * this time. */ VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), KM_SLEEP); for (i = 0; i < spa->spa_spares.sav_count; i++) spares[i] = vdev_config_generate(spa, spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); for (i = 0; i < spa->spa_spares.sav_count; i++) nvlist_free(spares[i]); kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); } /* * Load (or re-load) the current list of vdevs describing the active l2cache for * this pool. When this is called, we have some form of basic information in * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and * then re-generate a more complete list including status information. * Devices which are already active have their details maintained, and are * not re-opened. */ void spa_load_l2cache(spa_t *spa) { nvlist_t **l2cache; uint_t nl2cache; int i, j, oldnvdevs; uint64_t guid; vdev_t *vd, **oldvdevs, **newvdevs; spa_aux_vdev_t *sav = &spa->spa_l2cache; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); if (sav->sav_config != NULL) { VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); } else { nl2cache = 0; newvdevs = NULL; } oldvdevs = sav->sav_vdevs; oldnvdevs = sav->sav_count; sav->sav_vdevs = NULL; sav->sav_count = 0; /* * Process new nvlist of vdevs. */ for (i = 0; i < nl2cache; i++) { VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, &guid) == 0); newvdevs[i] = NULL; for (j = 0; j < oldnvdevs; j++) { vd = oldvdevs[j]; if (vd != NULL && guid == vd->vdev_guid) { /* * Retain previous vdev for add/remove ops. */ newvdevs[i] = vd; oldvdevs[j] = NULL; break; } } if (newvdevs[i] == NULL) { /* * Create new vdev */ VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, VDEV_ALLOC_L2CACHE) == 0); ASSERT(vd != NULL); newvdevs[i] = vd; /* * Commit this vdev as an l2cache device, * even if it fails to open. */ spa_l2cache_add(vd); vd->vdev_top = vd; vd->vdev_aux = sav; spa_l2cache_activate(vd); if (vdev_open(vd) != 0) continue; (void) vdev_validate_aux(vd); if (!vdev_is_dead(vd)) l2arc_add_vdev(spa, vd); } } /* * Purge vdevs that were dropped */ for (i = 0; i < oldnvdevs; i++) { uint64_t pool; vd = oldvdevs[i]; if (vd != NULL) { ASSERT(vd->vdev_isl2cache); if (spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL && l2arc_vdev_present(vd)) l2arc_remove_vdev(vd); vdev_clear_stats(vd); vdev_free(vd); } } if (oldvdevs) kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); if (sav->sav_config == NULL) goto out; sav->sav_vdevs = newvdevs; sav->sav_count = (int)nl2cache; /* * Recompute the stashed list of l2cache devices, with status * information this time. */ VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); for (i = 0; i < sav->sav_count; i++) l2cache[i] = vdev_config_generate(spa, sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); VERIFY(nvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); out: for (i = 0; i < sav->sav_count; i++) nvlist_free(l2cache[i]); if (sav->sav_count) kmem_free(l2cache, sav->sav_count * sizeof (void *)); } static int load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) { dmu_buf_t *db; char *packed = NULL; size_t nvsize = 0; int error; *value = NULL; error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); if (error != 0) return (error); nvsize = *(uint64_t *)db->db_data; dmu_buf_rele(db, FTAG); packed = kmem_alloc(nvsize, KM_SLEEP); error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, DMU_READ_PREFETCH); if (error == 0) error = nvlist_unpack(packed, nvsize, value, 0); kmem_free(packed, nvsize); return (error); } /* + * Concrete top-level vdevs that are not missing and are not logs. At every + * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds. + */ +static uint64_t +spa_healthy_core_tvds(spa_t *spa) +{ + vdev_t *rvd = spa->spa_root_vdev; + uint64_t tvds = 0; + + for (uint64_t i = 0; i < rvd->vdev_children; i++) { + vdev_t *vd = rvd->vdev_child[i]; + if (vd->vdev_islog) + continue; + if (vdev_is_concrete(vd) && !vdev_is_dead(vd)) + tvds++; + } + + return (tvds); +} + +/* * Checks to see if the given vdev could not be opened, in which case we post a * sysevent to notify the autoreplace code that the device has been removed. */ static void spa_check_removed(vdev_t *vd) { - for (int c = 0; c < vd->vdev_children; c++) + for (uint64_t c = 0; c < vd->vdev_children; c++) spa_check_removed(vd->vdev_child[c]); if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && vdev_is_concrete(vd)) { zfs_post_autoreplace(vd->vdev_spa, vd); spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK); } } -static void -spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd) +static int +spa_check_for_missing_logs(spa_t *spa) { - ASSERT3U(vd->vdev_children, ==, mvd->vdev_children); + vdev_t *rvd = spa->spa_root_vdev; - vd->vdev_top_zap = mvd->vdev_top_zap; - vd->vdev_leaf_zap = mvd->vdev_leaf_zap; - - for (uint64_t i = 0; i < vd->vdev_children; i++) { - spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]); - } -} - -/* - * Validate the current config against the MOS config - */ -static boolean_t -spa_config_valid(spa_t *spa, nvlist_t *config) -{ - vdev_t *mrvd, *rvd = spa->spa_root_vdev; - nvlist_t *nv; - - VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); - - spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); - VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); - - ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); - /* * If we're doing a normal import, then build up any additional - * diagnostic information about missing devices in this config. + * diagnostic information about missing log devices. * We'll pass this up to the user for further processing. */ if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { nvlist_t **child, *nv; uint64_t idx = 0; child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), KM_SLEEP); VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); - for (int c = 0; c < rvd->vdev_children; c++) { + for (uint64_t c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; - vdev_t *mtvd = mrvd->vdev_child[c]; - if (tvd->vdev_ops == &vdev_missing_ops && - mtvd->vdev_ops != &vdev_missing_ops && - mtvd->vdev_islog) - child[idx++] = vdev_config_generate(spa, mtvd, - B_FALSE, 0); + /* + * We consider a device as missing only if it failed + * to open (i.e. offline or faulted is not considered + * as missing). + */ + if (tvd->vdev_islog && + tvd->vdev_state == VDEV_STATE_CANT_OPEN) { + child[idx++] = vdev_config_generate(spa, tvd, + B_FALSE, VDEV_CONFIG_MISSING); + } } - if (idx) { - VERIFY(nvlist_add_nvlist_array(nv, - ZPOOL_CONFIG_CHILDREN, child, idx) == 0); - VERIFY(nvlist_add_nvlist(spa->spa_load_info, - ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); + if (idx > 0) { + fnvlist_add_nvlist_array(nv, + ZPOOL_CONFIG_CHILDREN, child, idx); + fnvlist_add_nvlist(spa->spa_load_info, + ZPOOL_CONFIG_MISSING_DEVICES, nv); - for (int i = 0; i < idx; i++) + for (uint64_t i = 0; i < idx; i++) nvlist_free(child[i]); } nvlist_free(nv); kmem_free(child, rvd->vdev_children * sizeof (char **)); - } - /* - * Compare the root vdev tree with the information we have - * from the MOS config (mrvd). Check each top-level vdev - * with the corresponding MOS config top-level (mtvd). - */ - for (int c = 0; c < rvd->vdev_children; c++) { - vdev_t *tvd = rvd->vdev_child[c]; - vdev_t *mtvd = mrvd->vdev_child[c]; + if (idx > 0) { + spa_load_failed(spa, "some log devices are missing"); + return (SET_ERROR(ENXIO)); + } + } else { + for (uint64_t c = 0; c < rvd->vdev_children; c++) { + vdev_t *tvd = rvd->vdev_child[c]; - /* - * Resolve any "missing" vdevs in the current configuration. - * Also trust the MOS config about any "indirect" vdevs. - * If we find that the MOS config has more accurate information - * about the top-level vdev then use that vdev instead. - */ - if ((tvd->vdev_ops == &vdev_missing_ops && - mtvd->vdev_ops != &vdev_missing_ops) || - (mtvd->vdev_ops == &vdev_indirect_ops && - tvd->vdev_ops != &vdev_indirect_ops)) { - - /* - * Device specific actions. - */ - if (mtvd->vdev_islog) { - if (!(spa->spa_import_flags & - ZFS_IMPORT_MISSING_LOG)) { - continue; - } - + if (tvd->vdev_islog && + tvd->vdev_state == VDEV_STATE_CANT_OPEN) { spa_set_log_state(spa, SPA_LOG_CLEAR); - } else if (mtvd->vdev_ops != &vdev_indirect_ops) { - continue; + spa_load_note(spa, "some log devices are " + "missing, ZIL is dropped."); + break; } - - /* - * Swap the missing vdev with the data we were - * able to obtain from the MOS config. - */ - vdev_remove_child(rvd, tvd); - vdev_remove_child(mrvd, mtvd); - - vdev_add_child(rvd, mtvd); - vdev_add_child(mrvd, tvd); - - vdev_reopen(rvd); - } else { - if (mtvd->vdev_islog) { - /* - * Load the slog device's state from the MOS - * config since it's possible that the label - * does not contain the most up-to-date - * information. - */ - vdev_load_log_state(tvd, mtvd); - vdev_reopen(tvd); - } - - /* - * Per-vdev ZAP info is stored exclusively in the MOS. - */ - spa_config_valid_zaps(tvd, mtvd); } - - /* - * Never trust this info from userland; always use what's - * in the MOS. This prevents it from getting out of sync - * with the rest of the info in the MOS. - */ - tvd->vdev_removing = mtvd->vdev_removing; - tvd->vdev_indirect_config = mtvd->vdev_indirect_config; } - vdev_free(mrvd); - spa_config_exit(spa, SCL_ALL, FTAG); - - /* - * Ensure we were able to validate the config. - */ - return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); + return (0); } /* * Check for missing log devices */ static boolean_t spa_check_logs(spa_t *spa) { boolean_t rv = B_FALSE; dsl_pool_t *dp = spa_get_dsl(spa); switch (spa->spa_log_state) { case SPA_LOG_MISSING: /* need to recheck in case slog has been restored */ case SPA_LOG_UNKNOWN: rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); if (rv) spa_set_log_state(spa, SPA_LOG_MISSING); break; } return (rv); } static boolean_t spa_passivate_log(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; boolean_t slog_found = B_FALSE; ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); if (!spa_has_slogs(spa)) return (B_FALSE); for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; metaslab_group_t *mg = tvd->vdev_mg; if (tvd->vdev_islog) { metaslab_group_passivate(mg); slog_found = B_TRUE; } } return (slog_found); } static void spa_activate_log(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; metaslab_group_t *mg = tvd->vdev_mg; if (tvd->vdev_islog) metaslab_group_activate(mg); } } int spa_reset_logs(spa_t *spa) { int error; error = dmu_objset_find(spa_name(spa), zil_reset, NULL, DS_FIND_CHILDREN); if (error == 0) { /* * We successfully offlined the log device, sync out the * current txg so that the "stubby" block can be removed * by zil_sync(). */ txg_wait_synced(spa->spa_dsl_pool, 0); } return (error); } static void spa_aux_check_removed(spa_aux_vdev_t *sav) { int i; for (i = 0; i < sav->sav_count; i++) spa_check_removed(sav->sav_vdevs[i]); } void spa_claim_notify(zio_t *zio) { spa_t *spa = zio->io_spa; if (zio->io_error) return; mutex_enter(&spa->spa_props_lock); /* any mutex will do */ if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) spa->spa_claim_max_txg = zio->io_bp->blk_birth; mutex_exit(&spa->spa_props_lock); } typedef struct spa_load_error { uint64_t sle_meta_count; uint64_t sle_data_count; } spa_load_error_t; static void spa_load_verify_done(zio_t *zio) { blkptr_t *bp = zio->io_bp; spa_load_error_t *sle = zio->io_private; dmu_object_type_t type = BP_GET_TYPE(bp); int error = zio->io_error; spa_t *spa = zio->io_spa; abd_free(zio->io_abd); if (error) { if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && type != DMU_OT_INTENT_LOG) atomic_inc_64(&sle->sle_meta_count); else atomic_inc_64(&sle->sle_data_count); } mutex_enter(&spa->spa_scrub_lock); spa->spa_scrub_inflight--; cv_broadcast(&spa->spa_scrub_io_cv); mutex_exit(&spa->spa_scrub_lock); } /* * Maximum number of concurrent scrub i/os to create while verifying * a pool while importing it. */ int spa_load_verify_maxinflight = 10000; boolean_t spa_load_verify_metadata = B_TRUE; boolean_t spa_load_verify_data = B_TRUE; SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN, &spa_load_verify_maxinflight, 0, "Maximum number of concurrent scrub I/Os to create while verifying a " "pool while importing it"); SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN, &spa_load_verify_metadata, 0, "Check metadata on import?"); SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN, &spa_load_verify_data, 0, "Check user data on import?"); /*ARGSUSED*/ static int spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) { if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) return (0); /* * Note: normally this routine will not be called if * spa_load_verify_metadata is not set. However, it may be useful * to manually set the flag after the traversal has begun. */ if (!spa_load_verify_metadata) return (0); if (!BP_IS_METADATA(bp) && !spa_load_verify_data) return (0); zio_t *rio = arg; size_t size = BP_GET_PSIZE(bp); mutex_enter(&spa->spa_scrub_lock); while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight) cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); spa->spa_scrub_inflight++; mutex_exit(&spa->spa_scrub_lock); zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); return (0); } /* ARGSUSED */ int verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) { if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) return (SET_ERROR(ENAMETOOLONG)); return (0); } static int spa_load_verify(spa_t *spa) { zio_t *rio; spa_load_error_t sle = { 0 }; zpool_rewind_policy_t policy; boolean_t verify_ok = B_FALSE; int error = 0; zpool_get_rewind_policy(spa->spa_config, &policy); if (policy.zrp_request & ZPOOL_NEVER_REWIND) return (0); dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); error = dmu_objset_find_dp(spa->spa_dsl_pool, spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, DS_FIND_CHILDREN); dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); if (error != 0) return (error); rio = zio_root(spa, NULL, &sle, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); if (spa_load_verify_metadata) { if (spa->spa_extreme_rewind) { spa_load_note(spa, "performing a complete scan of the " "pool since extreme rewind is on. This may take " "a very long time.\n (spa_load_verify_data=%u, " "spa_load_verify_metadata=%u)", spa_load_verify_data, spa_load_verify_metadata); } error = traverse_pool(spa, spa->spa_verify_min_txg, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, spa_load_verify_cb, rio); } (void) zio_wait(rio); spa->spa_load_meta_errors = sle.sle_meta_count; spa->spa_load_data_errors = sle.sle_data_count; if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) { spa_load_note(spa, "spa_load_verify found %llu metadata errors " "and %llu data errors", (u_longlong_t)sle.sle_meta_count, (u_longlong_t)sle.sle_data_count); } if (spa_load_verify_dryrun || (!error && sle.sle_meta_count <= policy.zrp_maxmeta && sle.sle_data_count <= policy.zrp_maxdata)) { int64_t loss = 0; verify_ok = B_TRUE; spa->spa_load_txg = spa->spa_uberblock.ub_txg; spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; VERIFY(nvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); VERIFY(nvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME, loss) == 0); VERIFY(nvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); } else { spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; } if (spa_load_verify_dryrun) return (0); if (error) { if (error != ENXIO && error != EIO) error = SET_ERROR(EIO); return (error); } return (verify_ok ? 0 : EIO); } /* * Find a value in the pool props object. */ static void spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) { (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); } /* * Find a value in the pool directory object. */ static int spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent) { int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1, val); if (error != 0 && (error != ENOENT || log_enoent)) { spa_load_failed(spa, "couldn't get '%s' value in MOS directory " "[error=%d]", name, error); } return (error); } static int spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) { vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); return (SET_ERROR(err)); } /* * Fix up config after a partly-completed split. This is done with the * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off * pool have that entry in their config, but only the splitting one contains * a list of all the guids of the vdevs that are being split off. * * This function determines what to do with that list: either rejoin * all the disks to the pool, or complete the splitting process. To attempt * the rejoin, each disk that is offlined is marked online again, and * we do a reopen() call. If the vdev label for every disk that was * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) * then we call vdev_split() on each disk, and complete the split. * * Otherwise we leave the config alone, with all the vdevs in place in * the original pool. */ static void spa_try_repair(spa_t *spa, nvlist_t *config) { uint_t extracted; uint64_t *glist; uint_t i, gcount; nvlist_t *nvl; vdev_t **vd; boolean_t attempt_reopen; if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) return; /* check that the config is complete */ if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, &glist, &gcount) != 0) return; vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); /* attempt to online all the vdevs & validate */ attempt_reopen = B_TRUE; for (i = 0; i < gcount; i++) { if (glist[i] == 0) /* vdev is hole */ continue; vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); if (vd[i] == NULL) { /* * Don't bother attempting to reopen the disks; * just do the split. */ attempt_reopen = B_FALSE; } else { /* attempt to re-online it */ vd[i]->vdev_offline = B_FALSE; } } if (attempt_reopen) { vdev_reopen(spa->spa_root_vdev); /* check each device to see what state it's in */ for (extracted = 0, i = 0; i < gcount; i++) { if (vd[i] != NULL && vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) break; ++extracted; } } /* * If every disk has been moved to the new pool, or if we never * even attempted to look at them, then we split them off for * good. */ if (!attempt_reopen || gcount == extracted) { for (i = 0; i < gcount; i++) if (vd[i] != NULL) vdev_split(vd[i]); vdev_reopen(spa->spa_root_vdev); } kmem_free(vd, gcount * sizeof (vdev_t *)); } static int -spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, - boolean_t trust_config) +spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type) { - nvlist_t *config = spa->spa_config; char *ereport = FM_EREPORT_ZFS_POOL; - char *comment; int error; - uint64_t pool_guid; - nvlist_t *nvl; - if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) - return (SET_ERROR(EINVAL)); + spa->spa_load_state = state; - ASSERT(spa->spa_comment == NULL); - if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) - spa->spa_comment = spa_strdup(comment); + gethrestime(&spa->spa_loaded_ts); + error = spa_load_impl(spa, type, &ereport, B_FALSE); /* - * Versioning wasn't explicitly added to the label until later, so if - * it's not present treat it as the initial version. - */ - if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, - &spa->spa_ubsync.ub_version) != 0) - spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; - - (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, - &spa->spa_config_txg); - - if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && - spa_guid_exists(pool_guid, 0)) { - error = SET_ERROR(EEXIST); - } else { - spa->spa_config_guid = pool_guid; - - if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, - &nvl) == 0) { - VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, - KM_SLEEP) == 0); - } - - nvlist_free(spa->spa_load_info); - spa->spa_load_info = fnvlist_alloc(); - - gethrestime(&spa->spa_loaded_ts); - error = spa_load_impl(spa, pool_guid, config, state, type, - trust_config, &ereport); - } - - /* * Don't count references from objsets that are already closed * and are making their way through the eviction process. */ spa_evicting_os_wait(spa); spa->spa_minref = refcount_count(&spa->spa_refcount); if (error) { if (error != EEXIST) { spa->spa_loaded_ts.tv_sec = 0; spa->spa_loaded_ts.tv_nsec = 0; } if (error != EBADF) { zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); } } spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; spa->spa_ena = 0; return (error); } /* * Count the number of per-vdev ZAPs associated with all of the vdevs in the * vdev tree rooted in the given vd, and ensure that each ZAP is present in the * spa's per-vdev ZAP list. */ static uint64_t vdev_count_verify_zaps(vdev_t *vd) { spa_t *spa = vd->vdev_spa; uint64_t total = 0; if (vd->vdev_top_zap != 0) { total++; ASSERT0(zap_lookup_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, vd->vdev_top_zap)); } if (vd->vdev_leaf_zap != 0) { total++; ASSERT0(zap_lookup_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); } for (uint64_t i = 0; i < vd->vdev_children; i++) { total += vdev_count_verify_zaps(vd->vdev_child[i]); } return (total); } static int -spa_ld_parse_config(spa_t *spa, uint64_t pool_guid, nvlist_t *config, - spa_import_type_t type) +spa_verify_host(spa_t *spa, nvlist_t *mos_config) { + uint64_t hostid; + char *hostname; + uint64_t myhostid = 0; + + if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config, + ZPOOL_CONFIG_HOSTID, &hostid) == 0) { + hostname = fnvlist_lookup_string(mos_config, + ZPOOL_CONFIG_HOSTNAME); + + myhostid = zone_get_hostid(NULL); + + if (hostid != 0 && myhostid != 0 && hostid != myhostid) { + cmn_err(CE_WARN, "pool '%s' could not be " + "loaded as it was last accessed by " + "another system (host: %s hostid: 0x%llx). " + "See: http://illumos.org/msg/ZFS-8000-EY", + spa_name(spa), hostname, (u_longlong_t)hostid); + spa_load_failed(spa, "hostid verification failed: pool " + "last accessed by host: %s (hostid: 0x%llx)", + hostname, (u_longlong_t)hostid); + return (SET_ERROR(EBADF)); + } + } + + return (0); +} + +static int +spa_ld_parse_config(spa_t *spa, spa_import_type_t type) +{ int error = 0; - nvlist_t *nvtree = NULL; + nvlist_t *nvtree, *nvl, *config = spa->spa_config; int parse; vdev_t *rvd; + uint64_t pool_guid; + char *comment; + /* + * Versioning wasn't explicitly added to the label until later, so if + * it's not present treat it as the initial version. + */ + if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, + &spa->spa_ubsync.ub_version) != 0) + spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; + + if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { + spa_load_failed(spa, "invalid config provided: '%s' missing", + ZPOOL_CONFIG_POOL_GUID); + return (SET_ERROR(EINVAL)); + } + + if ((spa->spa_load_state == SPA_LOAD_IMPORT || spa->spa_load_state == + SPA_LOAD_TRYIMPORT) && spa_guid_exists(pool_guid, 0)) { + spa_load_failed(spa, "a pool with guid %llu is already open", + (u_longlong_t)pool_guid); + return (SET_ERROR(EEXIST)); + } + + spa->spa_config_guid = pool_guid; + + nvlist_free(spa->spa_load_info); + spa->spa_load_info = fnvlist_alloc(); + + ASSERT(spa->spa_comment == NULL); + if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) + spa->spa_comment = spa_strdup(comment); + + (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, + &spa->spa_config_txg); + + if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0) + spa->spa_config_splitting = fnvlist_dup(nvl); + if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) { spa_load_failed(spa, "invalid config provided: '%s' missing", ZPOOL_CONFIG_VDEV_TREE); return (SET_ERROR(EINVAL)); } - parse = (type == SPA_IMPORT_EXISTING ? - VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); - /* * Create "The Godfather" zio to hold all async IOs */ spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), KM_SLEEP); for (int i = 0; i < max_ncpus; i++) { spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); } /* * Parse the configuration into a vdev tree. We explicitly set the * value that will be returned by spa_version() since parsing the * configuration requires knowing the version number. */ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); + parse = (type == SPA_IMPORT_EXISTING ? + VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse); spa_config_exit(spa, SCL_ALL, FTAG); if (error != 0) { spa_load_failed(spa, "unable to parse config [error=%d]", error); return (error); } ASSERT(spa->spa_root_vdev == rvd); ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); if (type != SPA_IMPORT_ASSEMBLE) { ASSERT(spa_guid(spa) == pool_guid); } return (0); } +/* + * Recursively open all vdevs in the vdev tree. This function is called twice: + * first with the untrusted config, then with the trusted config. + */ static int spa_ld_open_vdevs(spa_t *spa) { int error = 0; + /* + * spa_missing_tvds_allowed defines how many top-level vdevs can be + * missing/unopenable for the root vdev to be still considered openable. + */ + if (spa->spa_trust_config) { + spa->spa_missing_tvds_allowed = zfs_max_missing_tvds; + } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) { + spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile; + } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) { + spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan; + } else { + spa->spa_missing_tvds_allowed = 0; + } + + spa->spa_missing_tvds_allowed = + MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed); + spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); error = vdev_open(spa->spa_root_vdev); spa_config_exit(spa, SCL_ALL, FTAG); + + if (spa->spa_missing_tvds != 0) { + spa_load_note(spa, "vdev tree has %lld missing top-level " + "vdevs.", (u_longlong_t)spa->spa_missing_tvds); + if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) { + /* + * Although theoretically we could allow users to open + * incomplete pools in RW mode, we'd need to add a lot + * of extra logic (e.g. adjust pool space to account + * for missing vdevs). + * This limitation also prevents users from accidentally + * opening the pool in RW mode during data recovery and + * damaging it further. + */ + spa_load_note(spa, "pools with missing top-level " + "vdevs can only be opened in read-only mode."); + error = SET_ERROR(ENXIO); + } else { + spa_load_note(spa, "current settings allow for maximum " + "%lld missing top-level vdevs at this stage.", + (u_longlong_t)spa->spa_missing_tvds_allowed); + } + } if (error != 0) { spa_load_failed(spa, "unable to open vdev tree [error=%d]", error); } + if (spa->spa_missing_tvds != 0 || error != 0) + vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2); return (error); } +/* + * We need to validate the vdev labels against the configuration that + * we have in hand. This function is called twice: first with an untrusted + * config, then with a trusted config. The validation is more strict when the + * config is trusted. + */ static int -spa_ld_validate_vdevs(spa_t *spa, spa_import_type_t type, - boolean_t trust_config) +spa_ld_validate_vdevs(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; - /* - * We need to validate the vdev labels against the configuration that - * we have in hand, which is dependent on the setting of trust_config. - * If trust_config is true then we're validating the vdev labels based - * on that config. Otherwise, we're validating against the cached - * config (zpool.cache) that was read when we loaded the zfs module, and - * then later we will recursively call spa_load() and validate against - * the vdev config. - * - * If we're assembling a new pool that's been split off from an - * existing pool, the labels haven't yet been updated so we skip - * validation for now. - */ - if (type != SPA_IMPORT_ASSEMBLE) { - spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); - error = vdev_validate(rvd, trust_config); - spa_config_exit(spa, SCL_ALL, FTAG); + spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); + error = vdev_validate(rvd); + spa_config_exit(spa, SCL_ALL, FTAG); - if (error != 0) { - spa_load_failed(spa, "vdev_validate failed [error=%d]", - error); - return (error); - } + if (error != 0) { + spa_load_failed(spa, "vdev_validate failed [error=%d]", error); + return (error); + } - if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { - spa_load_failed(spa, "cannot open vdev tree after " - "invalidating some vdevs"); - return (SET_ERROR(ENXIO)); - } + if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { + spa_load_failed(spa, "cannot open vdev tree after invalidating " + "some vdevs"); + vdev_dbgmsg_print_tree(rvd, 2); + return (SET_ERROR(ENXIO)); } return (0); } static int -spa_ld_select_uberblock(spa_t *spa, nvlist_t *config, spa_import_type_t type, - boolean_t trust_config) +spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type) { vdev_t *rvd = spa->spa_root_vdev; nvlist_t *label; uberblock_t *ub = &spa->spa_uberblock; - uint64_t children; /* * Find the best uberblock. */ vdev_uberblock_load(rvd, ub, &label); /* * If we weren't able to find a single valid uberblock, return failure. */ if (ub->ub_txg == 0) { nvlist_free(label); spa_load_failed(spa, "no valid uberblock found"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); } spa_load_note(spa, "using uberblock with txg=%llu", (u_longlong_t)ub->ub_txg); /* * If the pool has an unsupported version we can't open it. */ if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { nvlist_free(label); spa_load_failed(spa, "version %llu is not supported", (u_longlong_t)ub->ub_version); return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); } if (ub->ub_version >= SPA_VERSION_FEATURES) { nvlist_t *features; /* * If we weren't able to find what's necessary for reading the * MOS in the label, return failure. */ if (label == NULL) { spa_load_failed(spa, "label config unavailable"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); } if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { nvlist_free(label); spa_load_failed(spa, "invalid label: '%s' missing", ZPOOL_CONFIG_FEATURES_FOR_READ); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); } /* * Update our in-core representation with the definitive values * from the label. */ nvlist_free(spa->spa_label_features); VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); } nvlist_free(label); /* * Look through entries in the label nvlist's features_for_read. If * there is a feature listed there which we don't understand then we * cannot open a pool. */ if (ub->ub_version >= SPA_VERSION_FEATURES) { nvlist_t *unsup_feat; VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 0); for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, NULL); nvp != NULL; nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { if (!zfeature_is_supported(nvpair_name(nvp))) { VERIFY(nvlist_add_string(unsup_feat, nvpair_name(nvp), "") == 0); } } if (!nvlist_empty(unsup_feat)) { VERIFY(nvlist_add_nvlist(spa->spa_load_info, ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); nvlist_free(unsup_feat); spa_load_failed(spa, "some features are unsupported"); return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); } nvlist_free(unsup_feat); } - /* - * If the vdev guid sum doesn't match the uberblock, we have an - * incomplete configuration. We first check to see if the pool - * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). - * If it is, defer the vdev_guid_sum check till later so we - * can handle missing vdevs. - */ - if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, - &children) != 0 && trust_config && type != SPA_IMPORT_ASSEMBLE && - rvd->vdev_guid_sum != ub->ub_guid_sum) { - spa_load_failed(spa, "guid sum in config doesn't match guid " - "sum in uberblock (%llu != %llu)", - (u_longlong_t)rvd->vdev_guid_sum, - (u_longlong_t)ub->ub_guid_sum); - return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); - } - if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); - spa_try_repair(spa, config); + spa_try_repair(spa, spa->spa_config); spa_config_exit(spa, SCL_ALL, FTAG); nvlist_free(spa->spa_config_splitting); spa->spa_config_splitting = NULL; } /* * Initialize internal SPA structures. */ spa->spa_state = POOL_STATE_ACTIVE; spa->spa_ubsync = spa->spa_uberblock; spa->spa_verify_min_txg = spa->spa_extreme_rewind ? TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; spa->spa_first_txg = spa->spa_last_ubsync_txg ? spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; spa->spa_claim_max_txg = spa->spa_first_txg; spa->spa_prev_software_version = ub->ub_software_version; return (0); } static int spa_ld_open_rootbp(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); if (error != 0) { spa_load_failed(spa, "unable to open rootbp in dsl_pool_init " "[error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; return (0); } static int -spa_ld_validate_config(spa_t *spa, spa_import_type_t type) +spa_ld_load_trusted_config(spa_t *spa, spa_import_type_t type, + boolean_t reloading) { - vdev_t *rvd = spa->spa_root_vdev; + vdev_t *mrvd, *rvd = spa->spa_root_vdev; + nvlist_t *nv, *mos_config, *policy; + int error = 0, copy_error; + uint64_t healthy_tvds, healthy_tvds_mos; + uint64_t mos_config_txg; if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE) != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* - * Validate the config, using the MOS config to fill in any - * information which might be missing. If we fail to validate - * the config then declare the pool unfit for use. If we're - * assembling a pool from a split, the log is not transferred - * over. + * If we're assembling a pool from a split, the config provided is + * already trusted so there is nothing to do. */ - if (type != SPA_IMPORT_ASSEMBLE) { - nvlist_t *mos_config; - if (load_nvlist(spa, spa->spa_config_object, &mos_config) - != 0) { - spa_load_failed(spa, "unable to retrieve MOS config"); - return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); - } + if (type == SPA_IMPORT_ASSEMBLE) + return (0); - if (!spa_config_valid(spa, mos_config)) { + healthy_tvds = spa_healthy_core_tvds(spa); + + if (load_nvlist(spa, spa->spa_config_object, &mos_config) + != 0) { + spa_load_failed(spa, "unable to retrieve MOS config"); + return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); + } + + /* + * If we are doing an open, pool owner wasn't verified yet, thus do + * the verification here. + */ + if (spa->spa_load_state == SPA_LOAD_OPEN) { + error = spa_verify_host(spa, mos_config); + if (error != 0) { nvlist_free(mos_config); - spa_load_failed(spa, "mismatch between config provided " - "and config stored in MOS"); - return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, - ENXIO)); + return (error); } - nvlist_free(mos_config); + } + nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE); + + spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); + + /* + * Build a new vdev tree from the trusted config + */ + VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); + + /* + * Vdev paths in the MOS may be obsolete. If the untrusted config was + * obtained by scanning /dev/dsk, then it will have the right vdev + * paths. We update the trusted MOS config with this information. + * We first try to copy the paths with vdev_copy_path_strict, which + * succeeds only when both configs have exactly the same vdev tree. + * If that fails, we fall back to a more flexible method that has a + * best effort policy. + */ + copy_error = vdev_copy_path_strict(rvd, mrvd); + if (copy_error != 0 || spa_load_print_vdev_tree) { + spa_load_note(spa, "provided vdev tree:"); + vdev_dbgmsg_print_tree(rvd, 2); + spa_load_note(spa, "MOS vdev tree:"); + vdev_dbgmsg_print_tree(mrvd, 2); + } + if (copy_error != 0) { + spa_load_note(spa, "vdev_copy_path_strict failed, falling " + "back to vdev_copy_path_relaxed"); + vdev_copy_path_relaxed(rvd, mrvd); + } + + vdev_close(rvd); + vdev_free(rvd); + spa->spa_root_vdev = mrvd; + rvd = mrvd; + spa_config_exit(spa, SCL_ALL, FTAG); + + /* + * We will use spa_config if we decide to reload the spa or if spa_load + * fails and we rewind. We must thus regenerate the config using the + * MOS information with the updated paths. Rewind policy is an import + * setting and is not in the MOS. We copy it over to our new, trusted + * config. + */ + mos_config_txg = fnvlist_lookup_uint64(mos_config, + ZPOOL_CONFIG_POOL_TXG); + nvlist_free(mos_config); + mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE); + if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_REWIND_POLICY, + &policy) == 0) + fnvlist_add_nvlist(mos_config, ZPOOL_REWIND_POLICY, policy); + spa_config_set(spa, mos_config); + spa->spa_config_source = SPA_CONFIG_SRC_MOS; + + /* + * Now that we got the config from the MOS, we should be more strict + * in checking blkptrs and can make assumptions about the consistency + * of the vdev tree. spa_trust_config must be set to true before opening + * vdevs in order for them to be writeable. + */ + spa->spa_trust_config = B_TRUE; + + /* + * Open and validate the new vdev tree + */ + error = spa_ld_open_vdevs(spa); + if (error != 0) + return (error); + + error = spa_ld_validate_vdevs(spa); + if (error != 0) + return (error); + + if (copy_error != 0 || spa_load_print_vdev_tree) { + spa_load_note(spa, "final vdev tree:"); + vdev_dbgmsg_print_tree(rvd, 2); + } + + if (spa->spa_load_state != SPA_LOAD_TRYIMPORT && + !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) { /* - * Now that we've validated the config, check the state of the - * root vdev. If it can't be opened, it indicates one or - * more toplevel vdevs are faulted. + * Sanity check to make sure that we are indeed loading the + * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds + * in the config provided and they happened to be the only ones + * to have the latest uberblock, we could involuntarily perform + * an extreme rewind. */ - if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { - spa_load_failed(spa, "some top vdevs are unavailable"); - return (SET_ERROR(ENXIO)); + healthy_tvds_mos = spa_healthy_core_tvds(spa); + if (healthy_tvds_mos - healthy_tvds >= + SPA_SYNC_MIN_VDEVS) { + spa_load_note(spa, "config provided misses too many " + "top-level vdevs compared to MOS (%lld vs %lld). ", + (u_longlong_t)healthy_tvds, + (u_longlong_t)healthy_tvds_mos); + spa_load_note(spa, "vdev tree:"); + vdev_dbgmsg_print_tree(rvd, 2); + if (reloading) { + spa_load_failed(spa, "config was already " + "provided from MOS. Aborting."); + return (spa_vdev_err(rvd, + VDEV_AUX_CORRUPT_DATA, EIO)); + } + spa_load_note(spa, "spa must be reloaded using MOS " + "config"); + return (SET_ERROR(EAGAIN)); } } + error = spa_check_for_missing_logs(spa); + if (error != 0) + return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); + + if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) { + spa_load_failed(spa, "uberblock guid sum doesn't match MOS " + "guid sum (%llu != %llu)", + (u_longlong_t)spa->spa_uberblock.ub_guid_sum, + (u_longlong_t)rvd->vdev_guid_sum); + return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, + ENXIO)); + } + return (0); } static int spa_ld_open_indirect_vdev_metadata(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; /* * Everything that we read before spa_remove_init() must be stored * on concreted vdevs. Therefore we do this as early as possible. */ error = spa_remove_init(spa); if (error != 0) { spa_load_failed(spa, "spa_remove_init failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } /* * Retrieve information needed to condense indirect vdev mappings. */ error = spa_condense_init(spa); if (error != 0) { spa_load_failed(spa, "spa_condense_init failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); } return (0); } static int spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; if (spa_version(spa) >= SPA_VERSION_FEATURES) { boolean_t missing_feat_read = B_FALSE; nvlist_t *unsup_feat, *enabled_feat; if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, &spa->spa_feat_for_read_obj, B_TRUE) != 0) { return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, &spa->spa_feat_for_write_obj, B_TRUE) != 0) { return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, &spa->spa_feat_desc_obj, B_TRUE) != 0) { return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } enabled_feat = fnvlist_alloc(); unsup_feat = fnvlist_alloc(); if (!spa_features_check(spa, B_FALSE, unsup_feat, enabled_feat)) missing_feat_read = B_TRUE; if (spa_writeable(spa) || spa->spa_load_state == SPA_LOAD_TRYIMPORT) { if (!spa_features_check(spa, B_TRUE, unsup_feat, enabled_feat)) { *missing_feat_writep = B_TRUE; } } fnvlist_add_nvlist(spa->spa_load_info, ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); if (!nvlist_empty(unsup_feat)) { fnvlist_add_nvlist(spa->spa_load_info, ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); } fnvlist_free(enabled_feat); fnvlist_free(unsup_feat); if (!missing_feat_read) { fnvlist_add_boolean(spa->spa_load_info, ZPOOL_CONFIG_CAN_RDONLY); } /* * If the state is SPA_LOAD_TRYIMPORT, our objective is * twofold: to determine whether the pool is available for * import in read-write mode and (if it is not) whether the * pool is available for import in read-only mode. If the pool * is available for import in read-write mode, it is displayed * as available in userland; if it is not available for import * in read-only mode, it is displayed as unavailable in * userland. If the pool is available for import in read-only * mode but not read-write mode, it is displayed as unavailable * in userland with a special note that the pool is actually * available for open in read-only mode. * * As a result, if the state is SPA_LOAD_TRYIMPORT and we are * missing a feature for write, we must first determine whether * the pool can be opened read-only before returning to * userland in order to know whether to display the * abovementioned note. */ if (missing_feat_read || (*missing_feat_writep && spa_writeable(spa))) { spa_load_failed(spa, "pool uses unsupported features"); return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); } /* * Load refcounts for ZFS features from disk into an in-memory * cache during SPA initialization. */ for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { uint64_t refcount; error = feature_get_refcount_from_disk(spa, &spa_feature_table[i], &refcount); if (error == 0) { spa->spa_feat_refcount_cache[i] = refcount; } else if (error == ENOTSUP) { spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; } else { spa_load_failed(spa, "error getting refcount " "for feature %s [error=%d]", spa_feature_table[i].fi_guid, error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } } } if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } return (0); } static int spa_ld_load_special_directories(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; spa->spa_is_initializing = B_TRUE; error = dsl_pool_open(spa->spa_dsl_pool); spa->spa_is_initializing = B_FALSE; if (error != 0) { spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } return (0); } static int -spa_ld_prepare_for_reload(spa_t *spa, int orig_mode) -{ - vdev_t *rvd = spa->spa_root_vdev; - - uint64_t hostid; - nvlist_t *policy = NULL; - nvlist_t *mos_config; - - if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { - spa_load_failed(spa, "unable to retrieve MOS config"); - return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); - } - - if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config, - ZPOOL_CONFIG_HOSTID, &hostid) == 0) { - char *hostname; - unsigned long myhostid = 0; - - VERIFY(nvlist_lookup_string(mos_config, - ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); - -#ifdef _KERNEL - myhostid = zone_get_hostid(NULL); -#else /* _KERNEL */ - /* - * We're emulating the system's hostid in userland, so - * we can't use zone_get_hostid(). - */ - (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); -#endif /* _KERNEL */ - if (check_hostid && hostid != 0 && myhostid != 0 && - hostid != myhostid) { - nvlist_free(mos_config); - cmn_err(CE_WARN, "pool '%s' could not be " - "loaded as it was last accessed by " - "another system (host: %s hostid: 0x%lx). " - "See: http://illumos.org/msg/ZFS-8000-EY", - spa_name(spa), hostname, - (unsigned long)hostid); - return (SET_ERROR(EBADF)); - } - } - if (nvlist_lookup_nvlist(spa->spa_config, - ZPOOL_REWIND_POLICY, &policy) == 0) - VERIFY(nvlist_add_nvlist(mos_config, - ZPOOL_REWIND_POLICY, policy) == 0); - - spa_config_set(spa, mos_config); - spa_unload(spa); - spa_deactivate(spa); - spa_activate(spa, orig_mode); - - return (0); -} - -static int spa_ld_get_props(spa_t *spa) { int error = 0; uint64_t obj; vdev_t *rvd = spa->spa_root_vdev; /* Grab the secret checksum salt from the MOS. */ error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, sizeof (spa->spa_cksum_salt.zcs_bytes), spa->spa_cksum_salt.zcs_bytes); if (error == ENOENT) { /* Generate a new salt for subsequent use */ (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, sizeof (spa->spa_cksum_salt.zcs_bytes)); } else if (error != 0) { spa_load_failed(spa, "unable to retrieve checksum salt from " "MOS [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); if (error != 0) { spa_load_failed(spa, "error opening deferred-frees bpobj " "[error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } /* * Load the bit that tells us to use the new accounting function * (raid-z deflation). If we have an older pool, this will not * be present. */ error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, &spa->spa_creation_version, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * Load the persistent error log. If we have an older pool, this will * not be present. */ error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, &spa->spa_errlog_scrub, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * Load the history object. If we have an older pool, this * will not be present. */ error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * Load the per-vdev ZAP map. If we have an older pool, this will not * be present; in this case, defer its creation to a later time to * avoid dirtying the MOS this early / out of sync context. See * spa_sync_config_object. */ /* The sentinel is only available in the MOS config. */ nvlist_t *mos_config; if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { spa_load_failed(spa, "unable to retrieve MOS config"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, &spa->spa_all_vdev_zaps, B_FALSE); if (error == ENOENT) { VERIFY(!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); spa->spa_avz_action = AVZ_ACTION_INITIALIZE; ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); } else if (error != 0) { return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { /* * An older version of ZFS overwrote the sentinel value, so * we have orphaned per-vdev ZAPs in the MOS. Defer their * destruction to later; see spa_sync_config_object. */ spa->spa_avz_action = AVZ_ACTION_DESTROY; /* * We're assuming that no vdevs have had their ZAPs created * before this. Better be sure of it. */ ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); } nvlist_free(mos_config); spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object, B_FALSE); if (error && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); if (error == 0) { uint64_t autoreplace; spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, &spa->spa_dedup_ditto); spa->spa_autoreplace = (autoreplace != 0); } + /* + * If we are importing a pool with missing top-level vdevs, + * we enforce that the pool doesn't panic or get suspended on + * error since the likelihood of missing data is extremely high. + */ + if (spa->spa_missing_tvds > 0 && + spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE && + spa->spa_load_state != SPA_LOAD_TRYIMPORT) { + spa_load_note(spa, "forcing failmode to 'continue' " + "as some top level vdevs are missing"); + spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE; + } + return (0); } static int spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; /* * If we're assembling the pool from the split-off vdevs of * an existing pool, we don't want to attach the spares & cache * devices. */ /* * Load any hot spares for this pool. */ error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); if (load_nvlist(spa, spa->spa_spares.sav_object, &spa->spa_spares.sav_config) != 0) { spa_load_failed(spa, "error loading spares nvlist"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_spares(spa); spa_config_exit(spa, SCL_ALL, FTAG); } else if (error == 0) { spa->spa_spares.sav_sync = B_TRUE; } /* * Load any level 2 ARC devices for this pool. */ error = spa_dir_prop(spa, DMU_POOL_L2CACHE, &spa->spa_l2cache.sav_object, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); if (load_nvlist(spa, spa->spa_l2cache.sav_object, &spa->spa_l2cache.sav_config) != 0) { spa_load_failed(spa, "error loading l2cache nvlist"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_l2cache(spa); spa_config_exit(spa, SCL_ALL, FTAG); } else if (error == 0) { spa->spa_l2cache.sav_sync = B_TRUE; } return (0); } static int spa_ld_load_vdev_metadata(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; /* * If the 'autoreplace' property is set, then post a resource notifying * the ZFS DE that it should not issue any faults for unopenable * devices. We also iterate over the vdevs, and post a sysevent for any * unopenable vdevs so that the normal autoreplace handler can take * over. */ if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { spa_check_removed(spa->spa_root_vdev); /* * For the import case, this is done in spa_import(), because * at this point we're using the spare definitions from * the MOS config, not necessarily from the userland config. */ if (spa->spa_load_state != SPA_LOAD_IMPORT) { spa_aux_check_removed(&spa->spa_spares); spa_aux_check_removed(&spa->spa_l2cache); } } /* * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc. */ error = vdev_load(rvd); if (error != 0) { spa_load_failed(spa, "vdev_load failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); } /* * Propagate the leaf DTLs we just loaded all the way up the vdev tree. */ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); vdev_dtl_reassess(rvd, 0, 0, B_FALSE); spa_config_exit(spa, SCL_ALL, FTAG); return (0); } static int spa_ld_load_dedup_tables(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; error = ddt_load(spa); if (error != 0) { spa_load_failed(spa, "ddt_load failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } return (0); } static int spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport) { vdev_t *rvd = spa->spa_root_vdev; if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) { boolean_t missing = spa_check_logs(spa); if (missing) { - *ereport = FM_EREPORT_ZFS_LOG_REPLAY; - spa_load_failed(spa, "spa_check_logs failed"); - return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); + if (spa->spa_missing_tvds != 0) { + spa_load_note(spa, "spa_check_logs failed " + "so dropping the logs"); + } else { + *ereport = FM_EREPORT_ZFS_LOG_REPLAY; + spa_load_failed(spa, "spa_check_logs failed"); + return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, + ENXIO)); + } } } return (0); } static int spa_ld_verify_pool_data(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; /* * We've successfully opened the pool, verify that we're ready * to start pushing transactions. */ if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) { error = spa_load_verify(spa); if (error != 0) { spa_load_failed(spa, "spa_load_verify failed " "[error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); } } return (0); } static void spa_ld_claim_log_blocks(spa_t *spa) { dmu_tx_t *tx; dsl_pool_t *dp = spa_get_dsl(spa); /* * Claim log blocks that haven't been committed yet. * This must all happen in a single txg. * Note: spa_claim_max_txg is updated by spa_claim_notify(), * invoked from zil_claim_log_block()'s i/o done callback. * Price of rollback is that we abandon the log. */ spa->spa_claiming = B_TRUE; tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, zil_claim, tx, DS_FIND_CHILDREN); dmu_tx_commit(tx); spa->spa_claiming = B_FALSE; spa_set_log_state(spa, SPA_LOG_GOOD); } static void -spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg) +spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg, + boolean_t reloading) { vdev_t *rvd = spa->spa_root_vdev; int need_update = B_FALSE; /* * If the config cache is stale, or we have uninitialized * metaslabs (see spa_vdev_add()), then update the config. * * If this is a verbatim import, trust the current * in-core spa_config and update the disk labels. */ - if (config_cache_txg != spa->spa_config_txg || + if (reloading || config_cache_txg != spa->spa_config_txg || spa->spa_load_state == SPA_LOAD_IMPORT || spa->spa_load_state == SPA_LOAD_RECOVER || (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) need_update = B_TRUE; for (int c = 0; c < rvd->vdev_children; c++) if (rvd->vdev_child[c]->vdev_ms_array == 0) need_update = B_TRUE; /* * Update the config cache asychronously in case we're the * root pool, in which case the config cache isn't writable yet. */ if (need_update) spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); } +static void +spa_ld_prepare_for_reload(spa_t *spa) +{ + int mode = spa->spa_mode; + int async_suspended = spa->spa_async_suspended; + + spa_unload(spa); + spa_deactivate(spa); + spa_activate(spa, mode); + + /* + * We save the value of spa_async_suspended as it gets reset to 0 by + * spa_unload(). We want to restore it back to the original value before + * returning as we might be calling spa_async_resume() later. + */ + spa->spa_async_suspended = async_suspended; +} + /* * Load an existing storage pool, using the config provided. This config * describes which vdevs are part of the pool and is later validated against * partial configs present in each vdev's label and an entire copy of the * config stored in the MOS. */ static int -spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, - spa_load_state_t state, spa_import_type_t type, boolean_t trust_config, - char **ereport) +spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport, + boolean_t reloading) { int error = 0; - uint64_t config_cache_txg = spa->spa_config_txg; - int orig_mode = spa->spa_mode; boolean_t missing_feat_write = B_FALSE; ASSERT(MUTEX_HELD(&spa_namespace_lock)); + ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); - spa->spa_load_state = state; - spa_load_note(spa, "LOADING"); - /* - * If this is an untrusted config, first access the pool in read-only - * mode. We will then retrieve a trusted copy of the config from the MOS - * and use it to reopen the pool in read-write mode. + * Never trust the config that is provided unless we are assembling + * a pool following a split. + * This means don't trust blkptrs and the vdev tree in general. This + * also effectively puts the spa in read-only mode since + * spa_writeable() checks for spa_trust_config to be true. + * We will later load a trusted config from the MOS. */ - if (!trust_config) - spa->spa_mode = FREAD; + if (type != SPA_IMPORT_ASSEMBLE) + spa->spa_trust_config = B_FALSE; + if (reloading) + spa_load_note(spa, "RELOADING"); + else + spa_load_note(spa, "LOADING"); + /* * Parse the config provided to create a vdev tree. */ - error = spa_ld_parse_config(spa, pool_guid, config, type); + error = spa_ld_parse_config(spa, type); if (error != 0) return (error); /* * Now that we have the vdev tree, try to open each vdev. This involves * opening the underlying physical device, retrieving its geometry and * probing the vdev with a dummy I/O. The state of each vdev will be set * based on the success of those operations. After this we'll be ready * to read from the vdevs. */ error = spa_ld_open_vdevs(spa); if (error != 0) return (error); /* * Read the label of each vdev and make sure that the GUIDs stored * there match the GUIDs in the config provided. + * If we're assembling a new pool that's been split off from an + * existing pool, the labels haven't yet been updated so we skip + * validation for now. */ - error = spa_ld_validate_vdevs(spa, type, trust_config); - if (error != 0) - return (error); + if (type != SPA_IMPORT_ASSEMBLE) { + error = spa_ld_validate_vdevs(spa); + if (error != 0) + return (error); + } /* * Read vdev labels to find the best uberblock (i.e. latest, unless * spa_load_max_txg is set) and store it in spa_uberblock. We get the * list of features required to read blkptrs in the MOS from the vdev * label with the best uberblock and verify that our version of zfs * supports them all. */ - error = spa_ld_select_uberblock(spa, config, type, trust_config); + error = spa_ld_select_uberblock(spa, type); if (error != 0) return (error); /* * Pass that uberblock to the dsl_pool layer which will open the root * blkptr. This blkptr points to the latest version of the MOS and will * allow us to read its contents. */ error = spa_ld_open_rootbp(spa); if (error != 0) return (error); /* - * Retrieve the config stored in the MOS and use it to validate the - * config provided. Also extract some information from the MOS config - * to update our vdev tree. + * Retrieve the trusted config stored in the MOS and use it to create + * a new, exact version of the vdev tree, then reopen all vdevs. */ - error = spa_ld_validate_config(spa, type); - if (error != 0) + error = spa_ld_load_trusted_config(spa, type, reloading); + if (error == EAGAIN) { + VERIFY(!reloading); + /* + * Redo the loading process with the trusted config if it is + * too different from the untrusted config. + */ + spa_ld_prepare_for_reload(spa); + return (spa_load_impl(spa, type, ereport, B_TRUE)); + } else if (error != 0) { return (error); + } /* * Retrieve the mapping of indirect vdevs. Those vdevs were removed * from the pool and their contents were re-mapped to other vdevs. Note * that everything that we read before this step must have been * rewritten on concrete vdevs after the last device removal was * initiated. Otherwise we could be reading from indirect vdevs before * we have loaded their mappings. */ error = spa_ld_open_indirect_vdev_metadata(spa); if (error != 0) return (error); /* * Retrieve the full list of active features from the MOS and check if * they are all supported. */ error = spa_ld_check_features(spa, &missing_feat_write); if (error != 0) return (error); /* * Load several special directories from the MOS needed by the dsl_pool * layer. */ error = spa_ld_load_special_directories(spa); if (error != 0) return (error); /* - * If the config provided is not trusted, discard it and use the config - * from the MOS to reload the pool. - */ - if (!trust_config) { - error = spa_ld_prepare_for_reload(spa, orig_mode); - if (error != 0) - return (error); - - spa_load_note(spa, "RELOADING"); - return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); - } - - /* * Retrieve pool properties from the MOS. */ error = spa_ld_get_props(spa); if (error != 0) return (error); /* * Retrieve the list of auxiliary devices - cache devices and spares - * and open them. */ error = spa_ld_open_aux_vdevs(spa, type); if (error != 0) return (error); /* * Load the metadata for all vdevs. Also check if unopenable devices * should be autoreplaced. */ error = spa_ld_load_vdev_metadata(spa); if (error != 0) return (error); error = spa_ld_load_dedup_tables(spa); if (error != 0) return (error); /* * Verify the logs now to make sure we don't have any unexpected errors * when we claim log blocks later. */ error = spa_ld_verify_logs(spa, type, ereport); if (error != 0) return (error); if (missing_feat_write) { - ASSERT(state == SPA_LOAD_TRYIMPORT); + ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT); /* * At this point, we know that we can open the pool in * read-only mode but not read-write mode. We now have enough * information and can return to userland. */ return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); } /* * Traverse the last txgs to make sure the pool was left off in a safe * state. When performing an extreme rewind, we verify the whole pool, * which can take a very long time. */ error = spa_ld_verify_pool_data(spa); if (error != 0) return (error); /* * Calculate the deflated space for the pool. This must be done before * we write anything to the pool because we'd need to update the space * accounting using the deflated sizes. */ spa_update_dspace(spa); /* * We have now retrieved all the information we needed to open the * pool. If we are importing the pool in read-write mode, a few * additional steps must be performed to finish the import. */ - if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || + if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER || spa->spa_load_max_txg == UINT64_MAX)) { - ASSERT(state != SPA_LOAD_TRYIMPORT); + uint64_t config_cache_txg = spa->spa_config_txg; + ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT); + /* * We must check this before we start the sync thread, because * we only want to start a condense thread for condense * operations that were in progress when the pool was * imported. Once we start syncing, spa_sync() could * initiate a condense (and start a thread for it). In * that case it would be wrong to start a second * condense thread. */ boolean_t condense_in_progress = (spa->spa_condensing_indirect != NULL); /* * Traverse the ZIL and claim all blocks. */ spa_ld_claim_log_blocks(spa); /* * Kick-off the syncing thread. */ spa->spa_sync_on = B_TRUE; txg_sync_start(spa->spa_dsl_pool); /* * Wait for all claims to sync. We sync up to the highest * claimed log block birth time so that claimed log blocks * don't appear to be from the future. spa_claim_max_txg * will have been set for us by ZIL traversal operations * performed above. */ txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); /* * Check if we need to request an update of the config. On the * next sync, we would update the config stored in vdev labels * and the cachefile (by default /etc/zfs/zpool.cache). */ - spa_ld_check_for_config_update(spa, config_cache_txg); + spa_ld_check_for_config_update(spa, config_cache_txg, + reloading); /* * Check all DTLs to see if anything needs resilvering. */ if (!dsl_scan_resilvering(spa->spa_dsl_pool) && vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) spa_async_request(spa, SPA_ASYNC_RESILVER); /* * Log the fact that we booted up (so that we can detect if * we rebooted in the middle of an operation). */ spa_history_log_version(spa, "open"); /* * Delete any inconsistent datasets. */ (void) dmu_objset_find(spa_name(spa), dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); /* * Clean up any stale temporary dataset userrefs. */ dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); /* * Note: unlike condensing, we don't need an analogous * "removal_in_progress" dance because no other thread * can start a removal while we hold the spa_namespace_lock. */ spa_restart_removal(spa); if (condense_in_progress) spa_condense_indirect_restart(spa); } spa_load_note(spa, "LOADED"); return (0); } static int -spa_load_retry(spa_t *spa, spa_load_state_t state, int trust_config) +spa_load_retry(spa_t *spa, spa_load_state_t state) { int mode = spa->spa_mode; spa_unload(spa); spa_deactivate(spa); spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; spa_activate(spa, mode); spa_async_suspend(spa); spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu", (u_longlong_t)spa->spa_load_max_txg); - return (spa_load(spa, state, SPA_IMPORT_EXISTING, trust_config)); + return (spa_load(spa, state, SPA_IMPORT_EXISTING)); } /* * If spa_load() fails this function will try loading prior txg's. If * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this * function will not rewind the pool and will return the same error as * spa_load(). */ static int -spa_load_best(spa_t *spa, spa_load_state_t state, int trust_config, - uint64_t max_request, int rewind_flags) +spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request, + int rewind_flags) { nvlist_t *loadinfo = NULL; nvlist_t *config = NULL; int load_error, rewind_error; uint64_t safe_rewind_txg; uint64_t min_txg; if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { spa->spa_load_max_txg = spa->spa_load_txg; spa_set_log_state(spa, SPA_LOG_CLEAR); } else { spa->spa_load_max_txg = max_request; if (max_request != UINT64_MAX) spa->spa_extreme_rewind = B_TRUE; } - load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, - trust_config); + load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING); if (load_error == 0) return (0); if (spa->spa_root_vdev != NULL) config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; if (rewind_flags & ZPOOL_NEVER_REWIND) { nvlist_free(config); return (load_error); } if (state == SPA_LOAD_RECOVER) { /* Price of rolling back is discarding txgs, including log */ spa_set_log_state(spa, SPA_LOG_CLEAR); } else { /* * If we aren't rolling back save the load info from our first * import attempt so that we can restore it after attempting * to rewind. */ loadinfo = spa->spa_load_info; spa->spa_load_info = fnvlist_alloc(); } spa->spa_load_max_txg = spa->spa_last_ubsync_txg; safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? TXG_INITIAL : safe_rewind_txg; /* * Continue as long as we're finding errors, we're still within * the acceptable rewind range, and we're still finding uberblocks */ while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { if (spa->spa_load_max_txg < safe_rewind_txg) spa->spa_extreme_rewind = B_TRUE; - rewind_error = spa_load_retry(spa, state, trust_config); + rewind_error = spa_load_retry(spa, state); } spa->spa_extreme_rewind = B_FALSE; spa->spa_load_max_txg = UINT64_MAX; if (config && (rewind_error || state != SPA_LOAD_RECOVER)) spa_config_set(spa, config); else nvlist_free(config); if (state == SPA_LOAD_RECOVER) { ASSERT3P(loadinfo, ==, NULL); return (rewind_error); } else { /* Store the rewind info as part of the initial load info */ fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, spa->spa_load_info); /* Restore the initial load info */ fnvlist_free(spa->spa_load_info); spa->spa_load_info = loadinfo; return (load_error); } } /* * Pool Open/Import * * The import case is identical to an open except that the configuration is sent * down from userland, instead of grabbed from the configuration cache. For the * case of an open, the pool configuration will exist in the * POOL_STATE_UNINITIALIZED state. * * The stats information (gen/count/ustats) is used to gather vdev statistics at * the same time open the pool, without having to keep around the spa_t in some * ambiguous state. */ static int spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, nvlist_t **config) { spa_t *spa; spa_load_state_t state = SPA_LOAD_OPEN; int error; int locked = B_FALSE; int firstopen = B_FALSE; *spapp = NULL; /* * As disgusting as this is, we need to support recursive calls to this * function because dsl_dir_open() is called during spa_load(), and ends * up calling spa_open() again. The real fix is to figure out how to * avoid dsl_dir_open() calling this in the first place. */ if (mutex_owner(&spa_namespace_lock) != curthread) { mutex_enter(&spa_namespace_lock); locked = B_TRUE; } if ((spa = spa_lookup(pool)) == NULL) { if (locked) mutex_exit(&spa_namespace_lock); return (SET_ERROR(ENOENT)); } if (spa->spa_state == POOL_STATE_UNINITIALIZED) { zpool_rewind_policy_t policy; firstopen = B_TRUE; zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, &policy); if (policy.zrp_request & ZPOOL_DO_REWIND) state = SPA_LOAD_RECOVER; spa_activate(spa, spa_mode_global); if (state != SPA_LOAD_RECOVER) spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; + spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; zfs_dbgmsg("spa_open_common: opening %s", pool); - error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, + error = spa_load_best(spa, state, policy.zrp_txg, policy.zrp_request); if (error == EBADF) { /* * If vdev_validate() returns failure (indicated by * EBADF), it indicates that one of the vdevs indicates * that the pool has been exported or destroyed. If * this is the case, the config cache is out of sync and * we should remove the pool from the namespace. */ spa_unload(spa); spa_deactivate(spa); spa_write_cachefile(spa, B_TRUE, B_TRUE); spa_remove(spa); if (locked) mutex_exit(&spa_namespace_lock); return (SET_ERROR(ENOENT)); } if (error) { /* * We can't open the pool, but we still have useful * information: the state of each vdev after the * attempted vdev_open(). Return this to the user. */ if (config != NULL && spa->spa_config) { VERIFY(nvlist_dup(spa->spa_config, config, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info) == 0); } spa_unload(spa); spa_deactivate(spa); spa->spa_last_open_failed = error; if (locked) mutex_exit(&spa_namespace_lock); *spapp = NULL; return (error); } } spa_open_ref(spa, tag); if (config != NULL) *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); /* * If we've recovered the pool, pass back any information we * gathered while doing the load. */ if (state == SPA_LOAD_RECOVER) { VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info) == 0); } if (locked) { spa->spa_last_open_failed = 0; spa->spa_last_ubsync_txg = 0; spa->spa_load_txg = 0; mutex_exit(&spa_namespace_lock); #ifdef __FreeBSD__ #ifdef _KERNEL if (firstopen) zvol_create_minors(spa->spa_name); #endif #endif } *spapp = spa; return (0); } int spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, nvlist_t **config) { return (spa_open_common(name, spapp, tag, policy, config)); } int spa_open(const char *name, spa_t **spapp, void *tag) { return (spa_open_common(name, spapp, tag, NULL, NULL)); } /* * Lookup the given spa_t, incrementing the inject count in the process, * preventing it from being exported or destroyed. */ spa_t * spa_inject_addref(char *name) { spa_t *spa; mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(name)) == NULL) { mutex_exit(&spa_namespace_lock); return (NULL); } spa->spa_inject_ref++; mutex_exit(&spa_namespace_lock); return (spa); } void spa_inject_delref(spa_t *spa) { mutex_enter(&spa_namespace_lock); spa->spa_inject_ref--; mutex_exit(&spa_namespace_lock); } /* * Add spares device information to the nvlist. */ static void spa_add_spares(spa_t *spa, nvlist_t *config) { nvlist_t **spares; uint_t i, nspares; nvlist_t *nvroot; uint64_t guid; vdev_stat_t *vs; uint_t vsc; uint64_t pool; ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); if (spa->spa_spares.sav_count == 0) return; VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); if (nspares != 0) { VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, spares, nspares) == 0); VERIFY(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); /* * Go through and find any spares which have since been * repurposed as an active spare. If this is the case, update * their status appropriately. */ for (i = 0; i < nspares; i++) { VERIFY(nvlist_lookup_uint64(spares[i], ZPOOL_CONFIG_GUID, &guid) == 0); if (spa_spare_exists(guid, &pool, NULL) && pool != 0ULL) { VERIFY(nvlist_lookup_uint64_array( spares[i], ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) == 0); vs->vs_state = VDEV_STATE_CANT_OPEN; vs->vs_aux = VDEV_AUX_SPARED; } } } } /* * Add l2cache device information to the nvlist, including vdev stats. */ static void spa_add_l2cache(spa_t *spa, nvlist_t *config) { nvlist_t **l2cache; uint_t i, j, nl2cache; nvlist_t *nvroot; uint64_t guid; vdev_t *vd; vdev_stat_t *vs; uint_t vsc; ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); if (spa->spa_l2cache.sav_count == 0) return; VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); if (nl2cache != 0) { VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); VERIFY(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); /* * Update level 2 cache device stats. */ for (i = 0; i < nl2cache; i++) { VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, &guid) == 0); vd = NULL; for (j = 0; j < spa->spa_l2cache.sav_count; j++) { if (guid == spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { vd = spa->spa_l2cache.sav_vdevs[j]; break; } } ASSERT(vd != NULL); VERIFY(nvlist_lookup_uint64_array(l2cache[i], ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) == 0); vdev_get_stats(vd, vs); } } } static void spa_add_feature_stats(spa_t *spa, nvlist_t *config) { nvlist_t *features; zap_cursor_t zc; zap_attribute_t za; ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); /* We may be unable to read features if pool is suspended. */ if (spa_suspended(spa)) goto out; if (spa->spa_feat_for_read_obj != 0) { for (zap_cursor_init(&zc, spa->spa_meta_objset, spa->spa_feat_for_read_obj); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { ASSERT(za.za_integer_length == sizeof (uint64_t) && za.za_num_integers == 1); VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, za.za_first_integer)); } zap_cursor_fini(&zc); } if (spa->spa_feat_for_write_obj != 0) { for (zap_cursor_init(&zc, spa->spa_meta_objset, spa->spa_feat_for_write_obj); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { ASSERT(za.za_integer_length == sizeof (uint64_t) && za.za_num_integers == 1); VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, za.za_first_integer)); } zap_cursor_fini(&zc); } out: VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, features) == 0); nvlist_free(features); } int spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) { int error; spa_t *spa; *config = NULL; error = spa_open_common(name, &spa, FTAG, NULL, config); if (spa != NULL) { /* * This still leaves a window of inconsistency where the spares * or l2cache devices could change and the config would be * self-inconsistent. */ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); if (*config != NULL) { uint64_t loadtimes[2]; loadtimes[0] = spa->spa_loaded_ts.tv_sec; loadtimes[1] = spa->spa_loaded_ts.tv_nsec; VERIFY(nvlist_add_uint64_array(*config, ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT, spa_get_errlog_size(spa)) == 0); if (spa_suspended(spa)) VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_SUSPENDED, spa->spa_failmode) == 0); spa_add_spares(spa, *config); spa_add_l2cache(spa, *config); spa_add_feature_stats(spa, *config); } } /* * We want to get the alternate root even for faulted pools, so we cheat * and call spa_lookup() directly. */ if (altroot) { if (spa == NULL) { mutex_enter(&spa_namespace_lock); spa = spa_lookup(name); if (spa) spa_altroot(spa, altroot, buflen); else altroot[0] = '\0'; spa = NULL; mutex_exit(&spa_namespace_lock); } else { spa_altroot(spa, altroot, buflen); } } if (spa != NULL) { spa_config_exit(spa, SCL_CONFIG, FTAG); spa_close(spa, FTAG); } return (error); } /* * Validate that the auxiliary device array is well formed. We must have an * array of nvlists, each which describes a valid leaf vdev. If this is an * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be * specified, as long as they are well-formed. */ static int spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, spa_aux_vdev_t *sav, const char *config, uint64_t version, vdev_labeltype_t label) { nvlist_t **dev; uint_t i, ndev; vdev_t *vd; int error; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); /* * It's acceptable to have no devs specified. */ if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) return (0); if (ndev == 0) return (SET_ERROR(EINVAL)); /* * Make sure the pool is formatted with a version that supports this * device type. */ if (spa_version(spa) < version) return (SET_ERROR(ENOTSUP)); /* * Set the pending device list so we correctly handle device in-use * checking. */ sav->sav_pending = dev; sav->sav_npending = ndev; for (i = 0; i < ndev; i++) { if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, mode)) != 0) goto out; if (!vd->vdev_ops->vdev_op_leaf) { vdev_free(vd); error = SET_ERROR(EINVAL); goto out; } /* * The L2ARC currently only supports disk devices in * kernel context. For user-level testing, we allow it. */ #ifdef _KERNEL if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { error = SET_ERROR(ENOTBLK); vdev_free(vd); goto out; } #endif vd->vdev_top = vd; if ((error = vdev_open(vd)) == 0 && (error = vdev_label_init(vd, crtxg, label)) == 0) { VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); } vdev_free(vd); if (error && (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) goto out; else error = 0; } out: sav->sav_pending = NULL; sav->sav_npending = 0; return (error); } static int spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) { int error; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, VDEV_LABEL_SPARE)) != 0) { return (error); } return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, VDEV_LABEL_L2CACHE)); } static void spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, const char *config) { int i; if (sav->sav_config != NULL) { nvlist_t **olddevs; uint_t oldndevs; nvlist_t **newdevs; /* * Generate new dev list by concatentating with the * current dev list. */ VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, &olddevs, &oldndevs) == 0); newdevs = kmem_alloc(sizeof (void *) * (ndevs + oldndevs), KM_SLEEP); for (i = 0; i < oldndevs; i++) VERIFY(nvlist_dup(olddevs[i], &newdevs[i], KM_SLEEP) == 0); for (i = 0; i < ndevs; i++) VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], KM_SLEEP) == 0); VERIFY(nvlist_remove(sav->sav_config, config, DATA_TYPE_NVLIST_ARRAY) == 0); VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, newdevs, ndevs + oldndevs) == 0); for (i = 0; i < oldndevs + ndevs; i++) nvlist_free(newdevs[i]); kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); } else { /* * Generate a new dev list. */ VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, devs, ndevs) == 0); } } /* * Stop and drop level 2 ARC devices */ void spa_l2cache_drop(spa_t *spa) { vdev_t *vd; int i; spa_aux_vdev_t *sav = &spa->spa_l2cache; for (i = 0; i < sav->sav_count; i++) { uint64_t pool; vd = sav->sav_vdevs[i]; ASSERT(vd != NULL); if (spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL && l2arc_vdev_present(vd)) l2arc_remove_vdev(vd); } } /* * Pool Creation */ int spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, nvlist_t *zplprops) { spa_t *spa; char *altroot = NULL; vdev_t *rvd; dsl_pool_t *dp; dmu_tx_t *tx; int error = 0; uint64_t txg = TXG_INITIAL; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; uint64_t version, obj; boolean_t has_features; /* * If this pool already exists, return failure. */ mutex_enter(&spa_namespace_lock); if (spa_lookup(pool) != NULL) { mutex_exit(&spa_namespace_lock); return (SET_ERROR(EEXIST)); } /* * Allocate a new spa_t structure. */ (void) nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); spa = spa_add(pool, NULL, altroot); spa_activate(spa, spa_mode_global); if (props && (error = spa_prop_validate(spa, props))) { spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } has_features = B_FALSE; for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); elem != NULL; elem = nvlist_next_nvpair(props, elem)) { if (zpool_prop_feature(nvpair_name(elem))) has_features = B_TRUE; } if (has_features || nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { version = SPA_VERSION; } ASSERT(SPA_VERSION_IS_SUPPORTED(version)); spa->spa_first_txg = txg; spa->spa_uberblock.ub_txg = txg - 1; spa->spa_uberblock.ub_version = version; spa->spa_ubsync = spa->spa_uberblock; spa->spa_load_state = SPA_LOAD_CREATE; spa->spa_removing_phys.sr_state = DSS_NONE; spa->spa_removing_phys.sr_removing_vdev = -1; spa->spa_removing_phys.sr_prev_indirect_vdev = -1; /* * Create "The Godfather" zio to hold all async IOs */ spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), KM_SLEEP); for (int i = 0; i < max_ncpus; i++) { spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); } /* * Create the root vdev. */ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); ASSERT(error != 0 || rvd != NULL); ASSERT(error != 0 || spa->spa_root_vdev == rvd); if (error == 0 && !zfs_allocatable_devs(nvroot)) error = SET_ERROR(EINVAL); if (error == 0 && (error = vdev_create(rvd, txg, B_FALSE)) == 0 && (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) { for (int c = 0; c < rvd->vdev_children; c++) { vdev_ashift_optimize(rvd->vdev_child[c]); vdev_metaslab_set_size(rvd->vdev_child[c]); vdev_expand(rvd->vdev_child[c], txg); } } spa_config_exit(spa, SCL_ALL, FTAG); if (error != 0) { spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } /* * Get the list of spares, if specified. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, spares, nspares) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_spares(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_spares.sav_sync = B_TRUE; } /* * Get the list of level 2 cache devices, if specified. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_l2cache(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_l2cache.sav_sync = B_TRUE; } spa->spa_is_initializing = B_TRUE; spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); spa->spa_meta_objset = dp->dp_meta_objset; spa->spa_is_initializing = B_FALSE; /* * Create DDTs (dedup tables). */ ddt_create(spa); spa_update_dspace(spa); tx = dmu_tx_create_assigned(dp, txg); /* * Create the pool config object. */ spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { cmn_err(CE_PANIC, "failed to add pool config"); } if (spa_version(spa) >= SPA_VERSION_FEATURES) spa_feature_create_zap_objects(spa, tx); if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, sizeof (uint64_t), 1, &version, tx) != 0) { cmn_err(CE_PANIC, "failed to add pool version"); } /* Newly created pools with the right version are always deflated. */ if (version >= SPA_VERSION_RAIDZ_DEFLATE) { spa->spa_deflate = TRUE; if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { cmn_err(CE_PANIC, "failed to add deflate"); } } /* * Create the deferred-free bpobj. Turn off compression * because sync-to-convergence takes longer if the blocksize * keeps changing. */ obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); dmu_object_set_compress(spa->spa_meta_objset, obj, ZIO_COMPRESS_OFF, tx); if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, sizeof (uint64_t), 1, &obj, tx) != 0) { cmn_err(CE_PANIC, "failed to add bpobj"); } VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj)); /* * Create the pool's history object. */ if (version >= SPA_VERSION_ZPOOL_HISTORY) spa_history_create_obj(spa, tx); /* * Generate some random noise for salted checksums to operate on. */ (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, sizeof (spa->spa_cksum_salt.zcs_bytes)); /* * Set pool properties. */ spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); if (props != NULL) { spa_configfile_set(spa, props, B_FALSE); spa_sync_props(props, tx); } dmu_tx_commit(tx); spa->spa_sync_on = B_TRUE; txg_sync_start(spa->spa_dsl_pool); /* * We explicitly wait for the first transaction to complete so that our * bean counters are appropriately updated. */ txg_wait_synced(spa->spa_dsl_pool, txg); spa_write_cachefile(spa, B_FALSE, B_TRUE); spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE); spa_history_log_version(spa, "create"); /* * Don't count references from objsets that are already closed * and are making their way through the eviction process. */ spa_evicting_os_wait(spa); spa->spa_minref = refcount_count(&spa->spa_refcount); spa->spa_load_state = SPA_LOAD_NONE; mutex_exit(&spa_namespace_lock); return (0); } #ifdef _KERNEL #ifdef illumos /* * Get the root pool information from the root disk, then import the root pool * during the system boot up time. */ extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); static nvlist_t * spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) { nvlist_t *config; nvlist_t *nvtop, *nvroot; uint64_t pgid; if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) return (NULL); /* * Add this top-level vdev to the child array. */ VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pgid) == 0); VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); /* * Put this pool's top-level vdevs into a root vdev. */ VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, &nvtop, 1) == 0); /* * Replace the existing vdev_tree with the new root vdev in * this pool's configuration (remove the old, add the new). */ VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); nvlist_free(nvroot); return (config); } /* * Walk the vdev tree and see if we can find a device with "better" * configuration. A configuration is "better" if the label on that * device has a more recent txg. */ static void spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) { for (int c = 0; c < vd->vdev_children; c++) spa_alt_rootvdev(vd->vdev_child[c], avd, txg); if (vd->vdev_ops->vdev_op_leaf) { nvlist_t *label; uint64_t label_txg; if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, &label) != 0) return; VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, &label_txg) == 0); /* * Do we have a better boot device? */ if (label_txg > *txg) { *txg = label_txg; *avd = vd; } nvlist_free(label); } } /* * Import a root pool. * * For x86. devpath_list will consist of devid and/or physpath name of * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). * The GRUB "findroot" command will return the vdev we should boot. * * For Sparc, devpath_list consists the physpath name of the booting device * no matter the rootpool is a single device pool or a mirrored pool. * e.g. * "/pci@1f,0/ide@d/disk@0,0:a" */ int spa_import_rootpool(char *devpath, char *devid) { spa_t *spa; vdev_t *rvd, *bvd, *avd = NULL; nvlist_t *config, *nvtop; uint64_t guid, txg; char *pname; int error; /* * Read the label from the boot device and generate a configuration. */ config = spa_generate_rootconf(devpath, devid, &guid); #if defined(_OBP) && defined(_KERNEL) if (config == NULL) { if (strstr(devpath, "/iscsi/ssd") != NULL) { /* iscsi boot */ get_iscsi_bootpath_phy(devpath); config = spa_generate_rootconf(devpath, devid, &guid); } } #endif if (config == NULL) { cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", devpath); return (SET_ERROR(EIO)); } VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &pname) == 0); VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(pname)) != NULL) { /* * Remove the existing root pool from the namespace so that we * can replace it with the correct config we just read in. */ spa_remove(spa); } spa = spa_add(pname, config, NULL); spa->spa_is_root = B_TRUE; spa->spa_import_flags = ZFS_IMPORT_VERBATIM; if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &spa->spa_ubsync.ub_version) != 0) spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; /* * Build up a vdev tree based on the boot device's label config. */ VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, VDEV_ALLOC_ROOTPOOL); spa_config_exit(spa, SCL_ALL, FTAG); if (error) { mutex_exit(&spa_namespace_lock); nvlist_free(config); cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", pname); return (error); } /* * Get the boot vdev. */ if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", (u_longlong_t)guid); error = SET_ERROR(ENOENT); goto out; } /* * Determine if there is a better boot device. */ avd = bvd; spa_alt_rootvdev(rvd, &avd, &txg); if (avd != bvd) { cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " "try booting from '%s'", avd->vdev_path); error = SET_ERROR(EINVAL); goto out; } /* * If the boot device is part of a spare vdev then ensure that * we're booting off the active spare. */ if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && !bvd->vdev_isspare) { cmn_err(CE_NOTE, "The boot device is currently spared. Please " "try booting from '%s'", bvd->vdev_parent-> vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); error = SET_ERROR(EINVAL); goto out; } error = 0; out: spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); vdev_free(rvd); spa_config_exit(spa, SCL_ALL, FTAG); mutex_exit(&spa_namespace_lock); nvlist_free(config); return (error); } #else /* !illumos */ extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs, uint64_t *count); static nvlist_t * spa_generate_rootconf(const char *name) { nvlist_t **configs, **tops; nvlist_t *config; nvlist_t *best_cfg, *nvtop, *nvroot; uint64_t *holes; uint64_t best_txg; uint64_t nchildren; uint64_t pgid; uint64_t count; uint64_t i; uint_t nholes; if (vdev_geom_read_pool_label(name, &configs, &count) != 0) return (NULL); ASSERT3U(count, !=, 0); best_txg = 0; for (i = 0; i < count; i++) { uint64_t txg; VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG, &txg) == 0); if (txg > best_txg) { best_txg = txg; best_cfg = configs[i]; } } nchildren = 1; nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren); holes = NULL; nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY, &holes, &nholes); tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP); for (i = 0; i < nchildren; i++) { if (i >= count) break; if (configs[i] == NULL) continue; VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); nvlist_dup(nvtop, &tops[i], KM_SLEEP); } for (i = 0; holes != NULL && i < nholes; i++) { if (i >= nchildren) continue; if (tops[holes[i]] != NULL) continue; nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP); VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID, holes[i]) == 0); VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID, 0) == 0); } for (i = 0; i < nchildren; i++) { if (tops[i] != NULL) continue; nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP); VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE, VDEV_TYPE_MISSING) == 0); VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID, i) == 0); VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID, 0) == 0); } /* * Create pool config based on the best vdev config. */ nvlist_dup(best_cfg, &config, KM_SLEEP); /* * Put this pool's top-level vdevs into a root vdev. */ VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pgid) == 0); VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, tops, nchildren) == 0); /* * Replace the existing vdev_tree with the new root vdev in * this pool's configuration (remove the old, add the new). */ VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); /* * Drop vdev config elements that should not be present at pool level. */ nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64); nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64); for (i = 0; i < count; i++) nvlist_free(configs[i]); kmem_free(configs, count * sizeof(void *)); for (i = 0; i < nchildren; i++) nvlist_free(tops[i]); kmem_free(tops, nchildren * sizeof(void *)); nvlist_free(nvroot); return (config); } int spa_import_rootpool(const char *name) { spa_t *spa; vdev_t *rvd, *bvd, *avd = NULL; nvlist_t *config, *nvtop; uint64_t txg; char *pname; int error; /* * Read the label from the boot device and generate a configuration. */ config = spa_generate_rootconf(name); mutex_enter(&spa_namespace_lock); if (config != NULL) { VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &pname) == 0 && strcmp(name, pname) == 0); VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); if ((spa = spa_lookup(pname)) != NULL) { /* * The pool could already be imported, * e.g., after reboot -r. */ if (spa->spa_state == POOL_STATE_ACTIVE) { mutex_exit(&spa_namespace_lock); nvlist_free(config); return (0); } /* * Remove the existing root pool from the namespace so * that we can replace it with the correct config * we just read in. */ spa_remove(spa); } spa = spa_add(pname, config, NULL); /* * Set spa_ubsync.ub_version as it can be used in vdev_alloc() * via spa_version(). */ if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &spa->spa_ubsync.ub_version) != 0) spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; } else if ((spa = spa_lookup(name)) == NULL) { mutex_exit(&spa_namespace_lock); nvlist_free(config); cmn_err(CE_NOTE, "Cannot find the pool label for '%s'", name); return (EIO); } else { VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0); } spa->spa_is_root = B_TRUE; spa->spa_import_flags = ZFS_IMPORT_VERBATIM; /* * Build up a vdev tree based on the boot device's label config. */ VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, VDEV_ALLOC_ROOTPOOL); spa_config_exit(spa, SCL_ALL, FTAG); if (error) { mutex_exit(&spa_namespace_lock); nvlist_free(config); cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", pname); return (error); } spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); vdev_free(rvd); spa_config_exit(spa, SCL_ALL, FTAG); mutex_exit(&spa_namespace_lock); nvlist_free(config); return (0); } #endif /* illumos */ #endif /* _KERNEL */ /* * Import a non-root pool into the system. */ int spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) { spa_t *spa; char *altroot = NULL; spa_load_state_t state = SPA_LOAD_IMPORT; zpool_rewind_policy_t policy; uint64_t mode = spa_mode_global; uint64_t readonly = B_FALSE; int error; nvlist_t *nvroot; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; /* * If a pool with this name exists, return failure. */ mutex_enter(&spa_namespace_lock); if (spa_lookup(pool) != NULL) { mutex_exit(&spa_namespace_lock); return (SET_ERROR(EEXIST)); } /* * Create and initialize the spa structure. */ (void) nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); (void) nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); if (readonly) mode = FREAD; spa = spa_add(pool, config, altroot); spa->spa_import_flags = flags; /* * Verbatim import - Take a pool and insert it into the namespace * as if it had been loaded at boot. */ if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { if (props != NULL) spa_configfile_set(spa, props, B_FALSE); spa_write_cachefile(spa, B_FALSE, B_TRUE); spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); zfs_dbgmsg("spa_import: verbatim import of %s", pool); mutex_exit(&spa_namespace_lock); return (0); } spa_activate(spa, mode); /* * Don't start async tasks until we know everything is healthy. */ spa_async_suspend(spa); zpool_get_rewind_policy(config, &policy); if (policy.zrp_request & ZPOOL_DO_REWIND) state = SPA_LOAD_RECOVER; - /* - * Pass off the heavy lifting to spa_load(). Pass TRUE for trust_config - * because the user-supplied config is actually the one to trust when - * doing an import. - */ - if (state != SPA_LOAD_RECOVER) + spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT; + + if (state != SPA_LOAD_RECOVER) { spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; + zfs_dbgmsg("spa_import: importing %s", pool); + } else { + zfs_dbgmsg("spa_import: importing %s, max_txg=%lld " + "(RECOVERY MODE)", pool, (longlong_t)policy.zrp_txg); + } + error = spa_load_best(spa, state, policy.zrp_txg, policy.zrp_request); - zfs_dbgmsg("spa_import: importing %s%s", pool, - (state == SPA_LOAD_RECOVER) ? " (RECOVERY MODE)" : ""); - error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, - policy.zrp_request); - /* * Propagate anything learned while loading the pool and pass it * back to caller (i.e. rewind info, missing devices, etc). */ VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); /* * Toss any existing sparelist, as it doesn't have any validity * anymore, and conflicts with spa_has_spare(). */ if (spa->spa_spares.sav_config) { nvlist_free(spa->spa_spares.sav_config); spa->spa_spares.sav_config = NULL; spa_load_spares(spa); } if (spa->spa_l2cache.sav_config) { nvlist_free(spa->spa_l2cache.sav_config); spa->spa_l2cache.sav_config = NULL; spa_load_l2cache(spa); } VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); if (error == 0) error = spa_validate_aux(spa, nvroot, -1ULL, VDEV_ALLOC_SPARE); if (error == 0) error = spa_validate_aux(spa, nvroot, -1ULL, VDEV_ALLOC_L2CACHE); spa_config_exit(spa, SCL_ALL, FTAG); if (props != NULL) spa_configfile_set(spa, props, B_FALSE); if (error != 0 || (props && spa_writeable(spa) && (error = spa_prop_set(spa, props)))) { spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } spa_async_resume(spa); /* * Override any spares and level 2 cache devices as specified by * the user, as these may have correct device names/devids, etc. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { if (spa->spa_spares.sav_config) VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); else VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, spares, nspares) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_spares(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_spares.sav_sync = B_TRUE; } if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { if (spa->spa_l2cache.sav_config) VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); else VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_l2cache(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_l2cache.sav_sync = B_TRUE; } /* * Check for any removed devices. */ if (spa->spa_autoreplace) { spa_aux_check_removed(&spa->spa_spares); spa_aux_check_removed(&spa->spa_l2cache); } if (spa_writeable(spa)) { /* * Update the config cache to include the newly-imported pool. */ spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); } /* * It's possible that the pool was expanded while it was exported. * We kick off an async task to handle this for us. */ spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); spa_history_log_version(spa, "import"); spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); mutex_exit(&spa_namespace_lock); #ifdef __FreeBSD__ #ifdef _KERNEL zvol_create_minors(pool); #endif #endif return (0); } nvlist_t * spa_tryimport(nvlist_t *tryconfig) { nvlist_t *config = NULL; - char *poolname; + char *poolname, *cachefile; spa_t *spa; uint64_t state; int error; + zpool_rewind_policy_t policy; if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) return (NULL); if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) return (NULL); /* * Create and initialize the spa structure. */ mutex_enter(&spa_namespace_lock); spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); spa_activate(spa, FREAD); - zfs_dbgmsg("spa_tryimport: importing %s", poolname); - /* - * Pass off the heavy lifting to spa_load(). - * Pass TRUE for trust_config because the user-supplied config - * is actually the one to trust when doing an import. + * Rewind pool if a max txg was provided. Note that even though we + * retrieve the complete rewind policy, only the rewind txg is relevant + * for tryimport. */ - error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); + zpool_get_rewind_policy(spa->spa_config, &policy); + if (policy.zrp_txg != UINT64_MAX) { + spa->spa_load_max_txg = policy.zrp_txg; + spa->spa_extreme_rewind = B_TRUE; + zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld", + poolname, (longlong_t)policy.zrp_txg); + } else { + zfs_dbgmsg("spa_tryimport: importing %s", poolname); + } + if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile) + == 0) { + zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile); + spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; + } else { + spa->spa_config_source = SPA_CONFIG_SRC_SCAN; + } + + error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING); + /* * If 'tryconfig' was at least parsable, return the current config. */ if (spa->spa_root_vdev != NULL) { config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, spa->spa_uberblock.ub_timestamp) == 0); VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info) == 0); /* * If the bootfs property exists on this pool then we * copy it out so that external consumers can tell which * pools are bootable. */ if ((!error || error == EEXIST) && spa->spa_bootfs) { char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); /* * We have to play games with the name since the * pool was opened as TRYIMPORT_NAME. */ if (dsl_dsobj_to_dsname(spa_name(spa), spa->spa_bootfs, tmpname) == 0) { char *cp; char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); cp = strchr(tmpname, '/'); if (cp == NULL) { (void) strlcpy(dsname, tmpname, MAXPATHLEN); } else { (void) snprintf(dsname, MAXPATHLEN, "%s/%s", poolname, ++cp); } VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_BOOTFS, dsname) == 0); kmem_free(dsname, MAXPATHLEN); } kmem_free(tmpname, MAXPATHLEN); } /* * Add the list of hot spares and level 2 cache devices. */ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); spa_add_spares(spa, config); spa_add_l2cache(spa, config); spa_config_exit(spa, SCL_CONFIG, FTAG); } spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (config); } /* * Pool export/destroy * * The act of destroying or exporting a pool is very simple. We make sure there * is no more pending I/O and any references to the pool are gone. Then, we * update the pool state and sync all the labels to disk, removing the * configuration from the cache afterwards. If the 'hardforce' flag is set, then * we don't sync the labels or remove the configuration cache. */ static int spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, boolean_t force, boolean_t hardforce) { spa_t *spa; if (oldconfig) *oldconfig = NULL; if (!(spa_mode_global & FWRITE)) return (SET_ERROR(EROFS)); mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(pool)) == NULL) { mutex_exit(&spa_namespace_lock); return (SET_ERROR(ENOENT)); } /* * Put a hold on the pool, drop the namespace lock, stop async tasks, * reacquire the namespace lock, and see if we can export. */ spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); spa_async_suspend(spa); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); /* * The pool will be in core if it's openable, * in which case we can modify its state. */ if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { /* * Objsets may be open only because they're dirty, so we * have to force it to sync before checking spa_refcnt. */ txg_wait_synced(spa->spa_dsl_pool, 0); spa_evicting_os_wait(spa); /* * A pool cannot be exported or destroyed if there are active * references. If we are resetting a pool, allow references by * fault injection handlers. */ if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0 && new_state != POOL_STATE_UNINITIALIZED)) { spa_async_resume(spa); mutex_exit(&spa_namespace_lock); return (SET_ERROR(EBUSY)); } /* * A pool cannot be exported if it has an active shared spare. * This is to prevent other pools stealing the active spare * from an exported pool. At user's own will, such pool can * be forcedly exported. */ if (!force && new_state == POOL_STATE_EXPORTED && spa_has_active_shared_spare(spa)) { spa_async_resume(spa); mutex_exit(&spa_namespace_lock); return (SET_ERROR(EXDEV)); } /* * We want this to be reflected on every label, * so mark them all dirty. spa_unload() will do the * final sync that pushes these changes out. */ if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa->spa_state = new_state; spa->spa_final_txg = spa_last_synced_txg(spa) + TXG_DEFER_SIZE + 1; vdev_config_dirty(spa->spa_root_vdev); spa_config_exit(spa, SCL_ALL, FTAG); } } spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY); if (spa->spa_state != POOL_STATE_UNINITIALIZED) { spa_unload(spa); spa_deactivate(spa); } if (oldconfig && spa->spa_config) VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); if (new_state != POOL_STATE_UNINITIALIZED) { if (!hardforce) spa_write_cachefile(spa, B_TRUE, B_TRUE); spa_remove(spa); } mutex_exit(&spa_namespace_lock); return (0); } /* * Destroy a storage pool. */ int spa_destroy(char *pool) { return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, B_FALSE, B_FALSE)); } /* * Export a storage pool. */ int spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, boolean_t hardforce) { return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, force, hardforce)); } /* * Similar to spa_export(), this unloads the spa_t without actually removing it * from the namespace in any way. */ int spa_reset(char *pool) { return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, B_FALSE, B_FALSE)); } /* * ========================================================================== * Device manipulation * ========================================================================== */ /* * Add a device to a storage pool. */ int spa_vdev_add(spa_t *spa, nvlist_t *nvroot) { uint64_t txg, id; int error; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd, *tvd; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; ASSERT(spa_writeable(spa)); txg = spa_vdev_enter(spa); if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, VDEV_ALLOC_ADD)) != 0) return (spa_vdev_exit(spa, NULL, txg, error)); spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0) nspares = 0; if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) != 0) nl2cache = 0; if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) return (spa_vdev_exit(spa, vd, txg, EINVAL)); if (vd->vdev_children != 0 && (error = vdev_create(vd, txg, B_FALSE)) != 0) return (spa_vdev_exit(spa, vd, txg, error)); /* * We must validate the spares and l2cache devices after checking the * children. Otherwise, vdev_inuse() will blindly overwrite the spare. */ if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) return (spa_vdev_exit(spa, vd, txg, error)); /* * If we are in the middle of a device removal, we can only add * devices which match the existing devices in the pool. * If we are in the middle of a removal, or have some indirect * vdevs, we can not add raidz toplevels. */ if (spa->spa_vdev_removal != NULL || spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { for (int c = 0; c < vd->vdev_children; c++) { tvd = vd->vdev_child[c]; if (spa->spa_vdev_removal != NULL && tvd->vdev_ashift != spa->spa_vdev_removal->svr_vdev->vdev_ashift) { return (spa_vdev_exit(spa, vd, txg, EINVAL)); } /* Fail if top level vdev is raidz */ if (tvd->vdev_ops == &vdev_raidz_ops) { return (spa_vdev_exit(spa, vd, txg, EINVAL)); } /* * Need the top level mirror to be * a mirror of leaf vdevs only */ if (tvd->vdev_ops == &vdev_mirror_ops) { for (uint64_t cid = 0; cid < tvd->vdev_children; cid++) { vdev_t *cvd = tvd->vdev_child[cid]; if (!cvd->vdev_ops->vdev_op_leaf) { return (spa_vdev_exit(spa, vd, txg, EINVAL)); } } } } } for (int c = 0; c < vd->vdev_children; c++) { /* * Set the vdev id to the first hole, if one exists. */ for (id = 0; id < rvd->vdev_children; id++) { if (rvd->vdev_child[id]->vdev_ishole) { vdev_free(rvd->vdev_child[id]); break; } } tvd = vd->vdev_child[c]; vdev_remove_child(vd, tvd); tvd->vdev_id = id; vdev_add_child(rvd, tvd); vdev_config_dirty(tvd); } if (nspares != 0) { spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, ZPOOL_CONFIG_SPARES); spa_load_spares(spa); spa->spa_spares.sav_sync = B_TRUE; } if (nl2cache != 0) { spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, ZPOOL_CONFIG_L2CACHE); spa_load_l2cache(spa); spa->spa_l2cache.sav_sync = B_TRUE; } /* * We have to be careful when adding new vdevs to an existing pool. * If other threads start allocating from these vdevs before we * sync the config cache, and we lose power, then upon reboot we may * fail to open the pool because there are DVAs that the config cache * can't translate. Therefore, we first add the vdevs without * initializing metaslabs; sync the config cache (via spa_vdev_exit()); * and then let spa_config_update() initialize the new metaslabs. * * spa_load() checks for added-but-not-initialized vdevs, so that * if we lose power at any point in this sequence, the remaining * steps will be completed the next time we load the pool. */ (void) spa_vdev_exit(spa, vd, txg, 0); mutex_enter(&spa_namespace_lock); spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD); mutex_exit(&spa_namespace_lock); return (0); } /* * Attach a device to a mirror. The arguments are the path to any device * in the mirror, and the nvroot for the new device. If the path specifies * a device that is not mirrored, we automatically insert the mirror vdev. * * If 'replacing' is specified, the new device is intended to replace the * existing device; in this case the two devices are made into their own * mirror using the 'replacing' vdev, which is functionally identical to * the mirror vdev (it actually reuses all the same ops) but has a few * extra rules: you can't attach to it after it's been created, and upon * completion of resilvering, the first disk (the one being replaced) * is automatically detached. */ int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) { uint64_t txg, dtl_max_txg; vdev_t *rvd = spa->spa_root_vdev; vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; vdev_ops_t *pvops; char *oldvdpath, *newvdpath; int newvd_isspare; int error; ASSERT(spa_writeable(spa)); txg = spa_vdev_enter(spa); oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); if (spa->spa_vdev_removal != NULL || spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { return (spa_vdev_exit(spa, NULL, txg, EBUSY)); } if (oldvd == NULL) return (spa_vdev_exit(spa, NULL, txg, ENODEV)); if (!oldvd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); pvd = oldvd->vdev_parent; if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, VDEV_ALLOC_ATTACH)) != 0) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); if (newrootvd->vdev_children != 1) return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); newvd = newrootvd->vdev_child[0]; if (!newvd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); if ((error = vdev_create(newrootvd, txg, replacing)) != 0) return (spa_vdev_exit(spa, newrootvd, txg, error)); /* * Spares can't replace logs */ if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); if (!replacing) { /* * For attach, the only allowable parent is a mirror or the root * vdev. */ if (pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_root_ops) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); pvops = &vdev_mirror_ops; } else { /* * Active hot spares can only be replaced by inactive hot * spares. */ if (pvd->vdev_ops == &vdev_spare_ops && oldvd->vdev_isspare && !spa_has_spare(spa, newvd->vdev_guid)) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); /* * If the source is a hot spare, and the parent isn't already a * spare, then we want to create a new hot spare. Otherwise, we * want to create a replacing vdev. The user is not allowed to * attach to a spared vdev child unless the 'isspare' state is * the same (spare replaces spare, non-spare replaces * non-spare). */ if (pvd->vdev_ops == &vdev_replacing_ops && spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); } else if (pvd->vdev_ops == &vdev_spare_ops && newvd->vdev_isspare != oldvd->vdev_isspare) { return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); } if (newvd->vdev_isspare) pvops = &vdev_spare_ops; else pvops = &vdev_replacing_ops; } /* * Make sure the new device is big enough. */ if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); /* * The new device cannot have a higher alignment requirement * than the top-level vdev. */ if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); /* * If this is an in-place replacement, update oldvd's path and devid * to make it distinguishable from newvd, and unopenable from now on. */ if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { spa_strfree(oldvd->vdev_path); oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, KM_SLEEP); (void) sprintf(oldvd->vdev_path, "%s/%s", newvd->vdev_path, "old"); if (oldvd->vdev_devid != NULL) { spa_strfree(oldvd->vdev_devid); oldvd->vdev_devid = NULL; } } /* mark the device being resilvered */ newvd->vdev_resilver_txg = txg; /* * If the parent is not a mirror, or if we're replacing, insert the new * mirror/replacing/spare vdev above oldvd. */ if (pvd->vdev_ops != pvops) pvd = vdev_add_parent(oldvd, pvops); ASSERT(pvd->vdev_top->vdev_parent == rvd); ASSERT(pvd->vdev_ops == pvops); ASSERT(oldvd->vdev_parent == pvd); /* * Extract the new device from its root and add it to pvd. */ vdev_remove_child(newrootvd, newvd); newvd->vdev_id = pvd->vdev_children; newvd->vdev_crtxg = oldvd->vdev_crtxg; vdev_add_child(pvd, newvd); tvd = newvd->vdev_top; ASSERT(pvd->vdev_top == tvd); ASSERT(tvd->vdev_parent == rvd); vdev_config_dirty(tvd); /* * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account * for any dmu_sync-ed blocks. It will propagate upward when * spa_vdev_exit() calls vdev_dtl_reassess(). */ dtl_max_txg = txg + TXG_CONCURRENT_STATES; vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, dtl_max_txg - TXG_INITIAL); if (newvd->vdev_isspare) { spa_spare_activate(newvd); spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE); } oldvdpath = spa_strdup(oldvd->vdev_path); newvdpath = spa_strdup(newvd->vdev_path); newvd_isspare = newvd->vdev_isspare; /* * Mark newvd's DTL dirty in this txg. */ vdev_dirty(tvd, VDD_DTL, newvd, txg); /* * Schedule the resilver to restart in the future. We do this to * ensure that dmu_sync-ed blocks have been stitched into the * respective datasets. */ dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); if (spa->spa_bootfs) spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH); spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH); /* * Commit the config */ (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); spa_history_log_internal(spa, "vdev attach", NULL, "%s vdev=%s %s vdev=%s", replacing && newvd_isspare ? "spare in" : replacing ? "replace" : "attach", newvdpath, replacing ? "for" : "to", oldvdpath); spa_strfree(oldvdpath); spa_strfree(newvdpath); return (0); } /* * Detach a device from a mirror or replacing vdev. * * If 'replace_done' is specified, only detach if the parent * is a replacing vdev. */ int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) { uint64_t txg; int error; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd, *pvd, *cvd, *tvd; boolean_t unspare = B_FALSE; uint64_t unspare_guid = 0; char *vdpath; ASSERT(spa_writeable(spa)); txg = spa_vdev_enter(spa); vd = spa_lookup_by_guid(spa, guid, B_FALSE); if (vd == NULL) return (spa_vdev_exit(spa, NULL, txg, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); pvd = vd->vdev_parent; /* * If the parent/child relationship is not as expected, don't do it. * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing * vdev that's replacing B with C. The user's intent in replacing * is to go from M(A,B) to M(A,C). If the user decides to cancel * the replace by detaching C, the expected behavior is to end up * M(A,B). But suppose that right after deciding to detach C, * the replacement of B completes. We would have M(A,C), and then * ask to detach C, which would leave us with just A -- not what * the user wanted. To prevent this, we make sure that the * parent/child relationship hasn't changed -- in this example, * that C's parent is still the replacing vdev R. */ if (pvd->vdev_guid != pguid && pguid != 0) return (spa_vdev_exit(spa, NULL, txg, EBUSY)); /* * Only 'replacing' or 'spare' vdevs can be replaced. */ if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && pvd->vdev_ops != &vdev_spare_ops) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); ASSERT(pvd->vdev_ops != &vdev_spare_ops || spa_version(spa) >= SPA_VERSION_SPARES); /* * Only mirror, replacing, and spare vdevs support detach. */ if (pvd->vdev_ops != &vdev_replacing_ops && pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_spare_ops) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); /* * If this device has the only valid copy of some data, * we cannot safely detach it. */ if (vdev_dtl_required(vd)) return (spa_vdev_exit(spa, NULL, txg, EBUSY)); ASSERT(pvd->vdev_children >= 2); /* * If we are detaching the second disk from a replacing vdev, then * check to see if we changed the original vdev's path to have "/old" * at the end in spa_vdev_attach(). If so, undo that change now. */ if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && vd->vdev_path != NULL) { size_t len = strlen(vd->vdev_path); for (int c = 0; c < pvd->vdev_children; c++) { cvd = pvd->vdev_child[c]; if (cvd == vd || cvd->vdev_path == NULL) continue; if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && strcmp(cvd->vdev_path + len, "/old") == 0) { spa_strfree(cvd->vdev_path); cvd->vdev_path = spa_strdup(vd->vdev_path); break; } } } /* * If we are detaching the original disk from a spare, then it implies * that the spare should become a real disk, and be removed from the * active spare list for the pool. */ if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0 && pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) unspare = B_TRUE; /* * Erase the disk labels so the disk can be used for other things. * This must be done after all other error cases are handled, * but before we disembowel vd (so we can still do I/O to it). * But if we can't do it, don't treat the error as fatal -- * it may be that the unwritability of the disk is the reason * it's being detached! */ error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); /* * Remove vd from its parent and compact the parent's children. */ vdev_remove_child(pvd, vd); vdev_compact_children(pvd); /* * Remember one of the remaining children so we can get tvd below. */ cvd = pvd->vdev_child[pvd->vdev_children - 1]; /* * If we need to remove the remaining child from the list of hot spares, * do it now, marking the vdev as no longer a spare in the process. * We must do this before vdev_remove_parent(), because that can * change the GUID if it creates a new toplevel GUID. For a similar * reason, we must remove the spare now, in the same txg as the detach; * otherwise someone could attach a new sibling, change the GUID, and * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. */ if (unspare) { ASSERT(cvd->vdev_isspare); spa_spare_remove(cvd); unspare_guid = cvd->vdev_guid; (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); cvd->vdev_unspare = B_TRUE; } /* * If the parent mirror/replacing vdev only has one child, * the parent is no longer needed. Remove it from the tree. */ if (pvd->vdev_children == 1) { if (pvd->vdev_ops == &vdev_spare_ops) cvd->vdev_unspare = B_FALSE; vdev_remove_parent(cvd); } /* * We don't set tvd until now because the parent we just removed * may have been the previous top-level vdev. */ tvd = cvd->vdev_top; ASSERT(tvd->vdev_parent == rvd); /* * Reevaluate the parent vdev state. */ vdev_propagate_state(cvd); /* * If the 'autoexpand' property is set on the pool then automatically * try to expand the size of the pool. For example if the device we * just detached was smaller than the others, it may be possible to * add metaslabs (i.e. grow the pool). We need to reopen the vdev * first so that we can obtain the updated sizes of the leaf vdevs. */ if (spa->spa_autoexpand) { vdev_reopen(tvd); vdev_expand(tvd, txg); } vdev_config_dirty(tvd); /* * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that * vd->vdev_detached is set and free vd's DTL object in syncing context. * But first make sure we're not on any *other* txg's DTL list, to * prevent vd from being accessed after it's freed. */ vdpath = spa_strdup(vd->vdev_path); for (int t = 0; t < TXG_SIZE; t++) (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); vd->vdev_detached = B_TRUE; vdev_dirty(tvd, VDD_DTL, vd, txg); spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE); /* hang on to the spa before we release the lock */ spa_open_ref(spa, FTAG); error = spa_vdev_exit(spa, vd, txg, 0); spa_history_log_internal(spa, "detach", NULL, "vdev=%s", vdpath); spa_strfree(vdpath); /* * If this was the removal of the original device in a hot spare vdev, * then we want to go through and remove the device from the hot spare * list of every other pool. */ if (unspare) { spa_t *altspa = NULL; mutex_enter(&spa_namespace_lock); while ((altspa = spa_next(altspa)) != NULL) { if (altspa->spa_state != POOL_STATE_ACTIVE || altspa == spa) continue; spa_open_ref(altspa, FTAG); mutex_exit(&spa_namespace_lock); (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); mutex_enter(&spa_namespace_lock); spa_close(altspa, FTAG); } mutex_exit(&spa_namespace_lock); /* search the rest of the vdevs for spares to remove */ spa_vdev_resilver_done(spa); } /* all done with the spa; OK to release */ mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); mutex_exit(&spa_namespace_lock); return (error); } /* * Split a set of devices from their mirrors, and create a new pool from them. */ int spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, nvlist_t *props, boolean_t exp) { int error = 0; uint64_t txg, *glist; spa_t *newspa; uint_t c, children, lastlog; nvlist_t **child, *nvl, *tmp; dmu_tx_t *tx; char *altroot = NULL; vdev_t *rvd, **vml = NULL; /* vdev modify list */ boolean_t activate_slog; ASSERT(spa_writeable(spa)); txg = spa_vdev_enter(spa); /* clear the log and flush everything up to now */ activate_slog = spa_passivate_log(spa); (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); error = spa_reset_logs(spa); txg = spa_vdev_config_enter(spa); if (activate_slog) spa_activate_log(spa); if (error != 0) return (spa_vdev_exit(spa, NULL, txg, error)); /* check new spa name before going any further */ if (spa_lookup(newname) != NULL) return (spa_vdev_exit(spa, NULL, txg, EEXIST)); /* * scan through all the children to ensure they're all mirrors */ if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); /* first, check to ensure we've got the right child count */ rvd = spa->spa_root_vdev; lastlog = 0; for (c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; /* don't count the holes & logs as children */ if (vd->vdev_islog || !vdev_is_concrete(vd)) { if (lastlog == 0) lastlog = c; continue; } lastlog = 0; } if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); /* next, ensure no spare or cache devices are part of the split */ if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); /* then, loop over each vdev and validate it */ for (c = 0; c < children; c++) { uint64_t is_hole = 0; (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, &is_hole); if (is_hole != 0) { if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || spa->spa_root_vdev->vdev_child[c]->vdev_islog) { continue; } else { error = SET_ERROR(EINVAL); break; } } /* which disk is going to be split? */ if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, &glist[c]) != 0) { error = SET_ERROR(EINVAL); break; } /* look it up in the spa */ vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); if (vml[c] == NULL) { error = SET_ERROR(ENODEV); break; } /* make sure there's nothing stopping the split */ if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || vml[c]->vdev_islog || !vdev_is_concrete(vml[c]) || vml[c]->vdev_isspare || vml[c]->vdev_isl2cache || !vdev_writeable(vml[c]) || vml[c]->vdev_children != 0 || vml[c]->vdev_state != VDEV_STATE_HEALTHY || c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { error = SET_ERROR(EINVAL); break; } if (vdev_dtl_required(vml[c])) { error = SET_ERROR(EBUSY); break; } /* we need certain info from the top level */ VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, vml[c]->vdev_top->vdev_ms_array) == 0); VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, vml[c]->vdev_top->vdev_ms_shift) == 0); VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, vml[c]->vdev_top->vdev_asize) == 0); VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, vml[c]->vdev_top->vdev_ashift) == 0); /* transfer per-vdev ZAPs */ ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); VERIFY0(nvlist_add_uint64(child[c], ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); VERIFY0(nvlist_add_uint64(child[c], ZPOOL_CONFIG_VDEV_TOP_ZAP, vml[c]->vdev_parent->vdev_top_zap)); } if (error != 0) { kmem_free(vml, children * sizeof (vdev_t *)); kmem_free(glist, children * sizeof (uint64_t)); return (spa_vdev_exit(spa, NULL, txg, error)); } /* stop writers from using the disks */ for (c = 0; c < children; c++) { if (vml[c] != NULL) vml[c]->vdev_offline = B_TRUE; } vdev_reopen(spa->spa_root_vdev); /* * Temporarily record the splitting vdevs in the spa config. This * will disappear once the config is regenerated. */ VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children) == 0); kmem_free(glist, children * sizeof (uint64_t)); mutex_enter(&spa->spa_props_lock); VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl) == 0); mutex_exit(&spa->spa_props_lock); spa->spa_config_splitting = nvl; vdev_config_dirty(spa->spa_root_vdev); /* configure and create the new pool */ VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa)) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, spa_generate_guid(NULL)) == 0); VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); (void) nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); /* add the new pool to the namespace */ newspa = spa_add(newname, config, altroot); newspa->spa_avz_action = AVZ_ACTION_REBUILD; newspa->spa_config_txg = spa->spa_config_txg; spa_set_log_state(newspa, SPA_LOG_CLEAR); /* release the spa config lock, retaining the namespace lock */ spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); if (zio_injection_enabled) zio_handle_panic_injection(spa, FTAG, 1); spa_activate(newspa, spa_mode_global); spa_async_suspend(newspa); #ifndef illumos /* mark that we are creating new spa by splitting */ newspa->spa_splitting_newspa = B_TRUE; #endif + newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT; + /* create the new pool from the disks of the original pool */ - error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); + error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE); #ifndef illumos newspa->spa_splitting_newspa = B_FALSE; #endif if (error) goto out; /* if that worked, generate a real config for the new pool */ if (newspa->spa_root_vdev != NULL) { VERIFY(nvlist_alloc(&newspa->spa_config_splitting, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, B_TRUE)); } /* set the props */ if (props != NULL) { spa_configfile_set(newspa, props, B_FALSE); error = spa_prop_set(newspa, props); if (error) goto out; } /* flush everything */ txg = spa_vdev_config_enter(newspa); vdev_config_dirty(newspa->spa_root_vdev); (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); if (zio_injection_enabled) zio_handle_panic_injection(spa, FTAG, 2); spa_async_resume(newspa); /* finally, update the original pool's config */ txg = spa_vdev_config_enter(spa); tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); error = dmu_tx_assign(tx, TXG_WAIT); if (error != 0) dmu_tx_abort(tx); for (c = 0; c < children; c++) { if (vml[c] != NULL) { vdev_split(vml[c]); if (error == 0) spa_history_log_internal(spa, "detach", tx, "vdev=%s", vml[c]->vdev_path); vdev_free(vml[c]); } } spa->spa_avz_action = AVZ_ACTION_REBUILD; vdev_config_dirty(spa->spa_root_vdev); spa->spa_config_splitting = NULL; nvlist_free(nvl); if (error == 0) dmu_tx_commit(tx); (void) spa_vdev_exit(spa, NULL, txg, 0); if (zio_injection_enabled) zio_handle_panic_injection(spa, FTAG, 3); /* split is complete; log a history record */ spa_history_log_internal(newspa, "split", NULL, "from pool %s", spa_name(spa)); kmem_free(vml, children * sizeof (vdev_t *)); /* if we're not going to mount the filesystems in userland, export */ if (exp) error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, B_FALSE, B_FALSE); return (error); out: spa_unload(newspa); spa_deactivate(newspa); spa_remove(newspa); txg = spa_vdev_config_enter(spa); /* re-online all offlined disks */ for (c = 0; c < children; c++) { if (vml[c] != NULL) vml[c]->vdev_offline = B_FALSE; } vdev_reopen(spa->spa_root_vdev); nvlist_free(spa->spa_config_splitting); spa->spa_config_splitting = NULL; (void) spa_vdev_exit(spa, NULL, txg, error); kmem_free(vml, children * sizeof (vdev_t *)); return (error); } /* * Find any device that's done replacing, or a vdev marked 'unspare' that's * currently spared, so we can detach it. */ static vdev_t * spa_vdev_resilver_done_hunt(vdev_t *vd) { vdev_t *newvd, *oldvd; for (int c = 0; c < vd->vdev_children; c++) { oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); if (oldvd != NULL) return (oldvd); } /* * Check for a completed replacement. We always consider the first * vdev in the list to be the oldest vdev, and the last one to be * the newest (see spa_vdev_attach() for how that works). In * the case where the newest vdev is faulted, we will not automatically * remove it after a resilver completes. This is OK as it will require * user intervention to determine which disk the admin wishes to keep. */ if (vd->vdev_ops == &vdev_replacing_ops) { ASSERT(vd->vdev_children > 1); newvd = vd->vdev_child[vd->vdev_children - 1]; oldvd = vd->vdev_child[0]; if (vdev_dtl_empty(newvd, DTL_MISSING) && vdev_dtl_empty(newvd, DTL_OUTAGE) && !vdev_dtl_required(oldvd)) return (oldvd); } /* * Check for a completed resilver with the 'unspare' flag set. */ if (vd->vdev_ops == &vdev_spare_ops) { vdev_t *first = vd->vdev_child[0]; vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; if (last->vdev_unspare) { oldvd = first; newvd = last; } else if (first->vdev_unspare) { oldvd = last; newvd = first; } else { oldvd = NULL; } if (oldvd != NULL && vdev_dtl_empty(newvd, DTL_MISSING) && vdev_dtl_empty(newvd, DTL_OUTAGE) && !vdev_dtl_required(oldvd)) return (oldvd); /* * If there are more than two spares attached to a disk, * and those spares are not required, then we want to * attempt to free them up now so that they can be used * by other pools. Once we're back down to a single * disk+spare, we stop removing them. */ if (vd->vdev_children > 2) { newvd = vd->vdev_child[1]; if (newvd->vdev_isspare && last->vdev_isspare && vdev_dtl_empty(last, DTL_MISSING) && vdev_dtl_empty(last, DTL_OUTAGE) && !vdev_dtl_required(newvd)) return (newvd); } } return (NULL); } static void spa_vdev_resilver_done(spa_t *spa) { vdev_t *vd, *pvd, *ppvd; uint64_t guid, sguid, pguid, ppguid; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { pvd = vd->vdev_parent; ppvd = pvd->vdev_parent; guid = vd->vdev_guid; pguid = pvd->vdev_guid; ppguid = ppvd->vdev_guid; sguid = 0; /* * If we have just finished replacing a hot spared device, then * we need to detach the parent's first child (the original hot * spare) as well. */ if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && ppvd->vdev_children == 2) { ASSERT(pvd->vdev_ops == &vdev_replacing_ops); sguid = ppvd->vdev_child[1]->vdev_guid; } ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); spa_config_exit(spa, SCL_ALL, FTAG); if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) return; if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) return; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); } spa_config_exit(spa, SCL_ALL, FTAG); } /* * Update the stored path or FRU for this vdev. */ int spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, boolean_t ispath) { vdev_t *vd; boolean_t sync = B_FALSE; ASSERT(spa_writeable(spa)); spa_vdev_state_enter(spa, SCL_ALL); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, ENOENT)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); if (ispath) { if (strcmp(value, vd->vdev_path) != 0) { spa_strfree(vd->vdev_path); vd->vdev_path = spa_strdup(value); sync = B_TRUE; } } else { if (vd->vdev_fru == NULL) { vd->vdev_fru = spa_strdup(value); sync = B_TRUE; } else if (strcmp(value, vd->vdev_fru) != 0) { spa_strfree(vd->vdev_fru); vd->vdev_fru = spa_strdup(value); sync = B_TRUE; } } return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); } int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) { return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); } int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) { return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); } /* * ========================================================================== * SPA Scanning * ========================================================================== */ int spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd) { ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); if (dsl_scan_resilvering(spa->spa_dsl_pool)) return (SET_ERROR(EBUSY)); return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd)); } int spa_scan_stop(spa_t *spa) { ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); if (dsl_scan_resilvering(spa->spa_dsl_pool)) return (SET_ERROR(EBUSY)); return (dsl_scan_cancel(spa->spa_dsl_pool)); } int spa_scan(spa_t *spa, pool_scan_func_t func) { ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) return (SET_ERROR(ENOTSUP)); /* * If a resilver was requested, but there is no DTL on a * writeable leaf device, we have nothing to do. */ if (func == POOL_SCAN_RESILVER && !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); return (0); } return (dsl_scan(spa->spa_dsl_pool, func)); } /* * ========================================================================== * SPA async task processing * ========================================================================== */ static void spa_async_remove(spa_t *spa, vdev_t *vd) { if (vd->vdev_remove_wanted) { vd->vdev_remove_wanted = B_FALSE; vd->vdev_delayed_close = B_FALSE; vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); /* * We want to clear the stats, but we don't want to do a full * vdev_clear() as that will cause us to throw away * degraded/faulted state as well as attempt to reopen the * device, all of which is a waste. */ vd->vdev_stat.vs_read_errors = 0; vd->vdev_stat.vs_write_errors = 0; vd->vdev_stat.vs_checksum_errors = 0; vdev_state_dirty(vd->vdev_top); /* Tell userspace that the vdev is gone. */ zfs_post_remove(spa, vd); } for (int c = 0; c < vd->vdev_children; c++) spa_async_remove(spa, vd->vdev_child[c]); } static void spa_async_probe(spa_t *spa, vdev_t *vd) { if (vd->vdev_probe_wanted) { vd->vdev_probe_wanted = B_FALSE; vdev_reopen(vd); /* vdev_open() does the actual probe */ } for (int c = 0; c < vd->vdev_children; c++) spa_async_probe(spa, vd->vdev_child[c]); } static void spa_async_autoexpand(spa_t *spa, vdev_t *vd) { sysevent_id_t eid; nvlist_t *attr; char *physpath; if (!spa->spa_autoexpand) return; for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; spa_async_autoexpand(spa, cvd); } if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) return; physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP); nvlist_free(attr); kmem_free(physpath, MAXPATHLEN); } static void spa_async_thread(void *arg) { spa_t *spa = (spa_t *)arg; int tasks; ASSERT(spa->spa_sync_on); mutex_enter(&spa->spa_async_lock); tasks = spa->spa_async_tasks; spa->spa_async_tasks &= SPA_ASYNC_REMOVE; mutex_exit(&spa->spa_async_lock); /* * See if the config needs to be updated. */ if (tasks & SPA_ASYNC_CONFIG_UPDATE) { uint64_t old_space, new_space; mutex_enter(&spa_namespace_lock); old_space = metaslab_class_get_space(spa_normal_class(spa)); spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); new_space = metaslab_class_get_space(spa_normal_class(spa)); mutex_exit(&spa_namespace_lock); /* * If the pool grew as a result of the config update, * then log an internal history event. */ if (new_space != old_space) { spa_history_log_internal(spa, "vdev online", NULL, "pool '%s' size: %llu(+%llu)", spa_name(spa), new_space, new_space - old_space); } } if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); spa_async_autoexpand(spa, spa->spa_root_vdev); spa_config_exit(spa, SCL_CONFIG, FTAG); } /* * See if any devices need to be probed. */ if (tasks & SPA_ASYNC_PROBE) { spa_vdev_state_enter(spa, SCL_NONE); spa_async_probe(spa, spa->spa_root_vdev); (void) spa_vdev_state_exit(spa, NULL, 0); } /* * If any devices are done replacing, detach them. */ if (tasks & SPA_ASYNC_RESILVER_DONE) spa_vdev_resilver_done(spa); /* * Kick off a resilver. */ if (tasks & SPA_ASYNC_RESILVER) dsl_resilver_restart(spa->spa_dsl_pool, 0); /* * Let the world know that we're done. */ mutex_enter(&spa->spa_async_lock); spa->spa_async_thread = NULL; cv_broadcast(&spa->spa_async_cv); mutex_exit(&spa->spa_async_lock); thread_exit(); } static void spa_async_thread_vd(void *arg) { spa_t *spa = arg; int tasks; mutex_enter(&spa->spa_async_lock); tasks = spa->spa_async_tasks; retry: spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE; mutex_exit(&spa->spa_async_lock); /* * See if any devices need to be marked REMOVED. */ if (tasks & SPA_ASYNC_REMOVE) { spa_vdev_state_enter(spa, SCL_NONE); spa_async_remove(spa, spa->spa_root_vdev); for (int i = 0; i < spa->spa_l2cache.sav_count; i++) spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); for (int i = 0; i < spa->spa_spares.sav_count; i++) spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); (void) spa_vdev_state_exit(spa, NULL, 0); } /* * Let the world know that we're done. */ mutex_enter(&spa->spa_async_lock); tasks = spa->spa_async_tasks; if ((tasks & SPA_ASYNC_REMOVE) != 0) goto retry; spa->spa_async_thread_vd = NULL; cv_broadcast(&spa->spa_async_cv); mutex_exit(&spa->spa_async_lock); thread_exit(); } void spa_async_suspend(spa_t *spa) { mutex_enter(&spa->spa_async_lock); spa->spa_async_suspended++; while (spa->spa_async_thread != NULL || spa->spa_async_thread_vd != NULL || spa->spa_condense_thread != NULL) cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); mutex_exit(&spa->spa_async_lock); spa_vdev_remove_suspend(spa); } void spa_async_resume(spa_t *spa) { mutex_enter(&spa->spa_async_lock); ASSERT(spa->spa_async_suspended != 0); spa->spa_async_suspended--; mutex_exit(&spa->spa_async_lock); spa_restart_removal(spa); } static boolean_t spa_async_tasks_pending(spa_t *spa) { uint_t non_config_tasks; uint_t config_task; boolean_t config_task_suspended; non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE | SPA_ASYNC_REMOVE); config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; if (spa->spa_ccw_fail_time == 0) { config_task_suspended = B_FALSE; } else { config_task_suspended = (gethrtime() - spa->spa_ccw_fail_time) < (zfs_ccw_retry_interval * NANOSEC); } return (non_config_tasks || (config_task && !config_task_suspended)); } static void spa_async_dispatch(spa_t *spa) { mutex_enter(&spa->spa_async_lock); if (spa_async_tasks_pending(spa) && !spa->spa_async_suspended && spa->spa_async_thread == NULL && rootdir != NULL) spa->spa_async_thread = thread_create(NULL, 0, spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); mutex_exit(&spa->spa_async_lock); } static void spa_async_dispatch_vd(spa_t *spa) { mutex_enter(&spa->spa_async_lock); if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 && !spa->spa_async_suspended && spa->spa_async_thread_vd == NULL && rootdir != NULL) spa->spa_async_thread_vd = thread_create(NULL, 0, spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri); mutex_exit(&spa->spa_async_lock); } void spa_async_request(spa_t *spa, int task) { zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); mutex_enter(&spa->spa_async_lock); spa->spa_async_tasks |= task; mutex_exit(&spa->spa_async_lock); spa_async_dispatch_vd(spa); } /* * ========================================================================== * SPA syncing routines * ========================================================================== */ static int bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { bpobj_t *bpo = arg; bpobj_enqueue(bpo, bp, tx); return (0); } static int spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { zio_t *zio = arg; zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, BP_GET_PSIZE(bp), zio->io_flags)); return (0); } /* * Note: this simple function is not inlined to make it easier to dtrace the * amount of time spent syncing frees. */ static void spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) { zio_t *zio = zio_root(spa, NULL, NULL, 0); bplist_iterate(bpl, spa_free_sync_cb, zio, tx); VERIFY(zio_wait(zio) == 0); } /* * Note: this simple function is not inlined to make it easier to dtrace the * amount of time spent syncing deferred frees. */ static void spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) { zio_t *zio = zio_root(spa, NULL, NULL, 0); VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, spa_free_sync_cb, zio, tx), ==, 0); VERIFY0(zio_wait(zio)); } static void spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) { char *packed = NULL; size_t bufsize; size_t nvsize = 0; dmu_buf_t *db; VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); /* * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration * information. This avoids the dmu_buf_will_dirty() path and * saves us a pre-read to get data we don't actually care about. */ bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); packed = kmem_alloc(bufsize, KM_SLEEP); VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, KM_SLEEP) == 0); bzero(packed + nvsize, bufsize - nvsize); dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); kmem_free(packed, bufsize); VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); dmu_buf_will_dirty(db, tx); *(uint64_t *)db->db_data = nvsize; dmu_buf_rele(db, FTAG); } static void spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, const char *config, const char *entry) { nvlist_t *nvroot; nvlist_t **list; int i; if (!sav->sav_sync) return; /* * Update the MOS nvlist describing the list of available devices. * spa_validate_aux() will have already made sure this nvlist is * valid and the vdevs are labeled appropriately. */ if (sav->sav_object == 0) { sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); VERIFY(zap_update(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, &sav->sav_object, tx) == 0); } VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); if (sav->sav_count == 0) { VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); } else { list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); for (i = 0; i < sav->sav_count; i++) list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], B_FALSE, VDEV_CONFIG_L2CACHE); VERIFY(nvlist_add_nvlist_array(nvroot, config, list, sav->sav_count) == 0); for (i = 0; i < sav->sav_count; i++) nvlist_free(list[i]); kmem_free(list, sav->sav_count * sizeof (void *)); } spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); nvlist_free(nvroot); sav->sav_sync = B_FALSE; } /* * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. * The all-vdev ZAP must be empty. */ static void spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) { spa_t *spa = vd->vdev_spa; if (vd->vdev_top_zap != 0) { VERIFY0(zap_add_int(spa->spa_meta_objset, avz, vd->vdev_top_zap, tx)); } if (vd->vdev_leaf_zap != 0) { VERIFY0(zap_add_int(spa->spa_meta_objset, avz, vd->vdev_leaf_zap, tx)); } for (uint64_t i = 0; i < vd->vdev_children; i++) { spa_avz_build(vd->vdev_child[i], avz, tx); } } static void spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) { nvlist_t *config; /* * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, * its config may not be dirty but we still need to build per-vdev ZAPs. * Similarly, if the pool is being assembled (e.g. after a split), we * need to rebuild the AVZ although the config may not be dirty. */ if (list_is_empty(&spa->spa_config_dirty_list) && spa->spa_avz_action == AVZ_ACTION_NONE) return; spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || spa->spa_avz_action == AVZ_ACTION_INITIALIZE || spa->spa_all_vdev_zaps != 0); if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { /* Make and build the new AVZ */ uint64_t new_avz = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); spa_avz_build(spa->spa_root_vdev, new_avz, tx); /* Diff old AVZ with new one */ zap_cursor_t zc; zap_attribute_t za; for (zap_cursor_init(&zc, spa->spa_meta_objset, spa->spa_all_vdev_zaps); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { uint64_t vdzap = za.za_first_integer; if (zap_lookup_int(spa->spa_meta_objset, new_avz, vdzap) == ENOENT) { /* * ZAP is listed in old AVZ but not in new one; * destroy it */ VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, tx)); } } zap_cursor_fini(&zc); /* Destroy the old AVZ */ VERIFY0(zap_destroy(spa->spa_meta_objset, spa->spa_all_vdev_zaps, tx)); /* Replace the old AVZ in the dir obj with the new one */ VERIFY0(zap_update(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, sizeof (new_avz), 1, &new_avz, tx)); spa->spa_all_vdev_zaps = new_avz; } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { zap_cursor_t zc; zap_attribute_t za; /* Walk through the AVZ and destroy all listed ZAPs */ for (zap_cursor_init(&zc, spa->spa_meta_objset, spa->spa_all_vdev_zaps); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { uint64_t zap = za.za_first_integer; VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); } zap_cursor_fini(&zc); /* Destroy and unlink the AVZ itself */ VERIFY0(zap_destroy(spa->spa_meta_objset, spa->spa_all_vdev_zaps, tx)); VERIFY0(zap_remove(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); spa->spa_all_vdev_zaps = 0; } if (spa->spa_all_vdev_zaps == 0) { spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx); } spa->spa_avz_action = AVZ_ACTION_NONE; /* Create ZAPs for vdevs that don't have them. */ vdev_construct_zaps(spa->spa_root_vdev, tx); config = spa_config_generate(spa, spa->spa_root_vdev, dmu_tx_get_txg(tx), B_FALSE); /* * If we're upgrading the spa version then make sure that * the config object gets updated with the correct version. */ if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa->spa_uberblock.ub_version); spa_config_exit(spa, SCL_STATE, FTAG); nvlist_free(spa->spa_config_syncing); spa->spa_config_syncing = config; spa_sync_nvlist(spa, spa->spa_config_object, config, tx); } static void spa_sync_version(void *arg, dmu_tx_t *tx) { uint64_t *versionp = arg; uint64_t version = *versionp; spa_t *spa = dmu_tx_pool(tx)->dp_spa; /* * Setting the version is special cased when first creating the pool. */ ASSERT(tx->tx_txg != TXG_INITIAL); ASSERT(SPA_VERSION_IS_SUPPORTED(version)); ASSERT(version >= spa_version(spa)); spa->spa_uberblock.ub_version = version; vdev_config_dirty(spa->spa_root_vdev); spa_history_log_internal(spa, "set", tx, "version=%lld", version); } /* * Set zpool properties. */ static void spa_sync_props(void *arg, dmu_tx_t *tx) { nvlist_t *nvp = arg; spa_t *spa = dmu_tx_pool(tx)->dp_spa; objset_t *mos = spa->spa_meta_objset; nvpair_t *elem = NULL; mutex_enter(&spa->spa_props_lock); while ((elem = nvlist_next_nvpair(nvp, elem))) { uint64_t intval; char *strval, *fname; zpool_prop_t prop; const char *propname; zprop_type_t proptype; spa_feature_t fid; switch (prop = zpool_name_to_prop(nvpair_name(elem))) { case ZPOOL_PROP_INVAL: /* * We checked this earlier in spa_prop_validate(). */ ASSERT(zpool_prop_feature(nvpair_name(elem))); fname = strchr(nvpair_name(elem), '@') + 1; VERIFY0(zfeature_lookup_name(fname, &fid)); spa_feature_enable(spa, fid, tx); spa_history_log_internal(spa, "set", tx, "%s=enabled", nvpair_name(elem)); break; case ZPOOL_PROP_VERSION: intval = fnvpair_value_uint64(elem); /* * The version is synced seperatly before other * properties and should be correct by now. */ ASSERT3U(spa_version(spa), >=, intval); break; case ZPOOL_PROP_ALTROOT: /* * 'altroot' is a non-persistent property. It should * have been set temporarily at creation or import time. */ ASSERT(spa->spa_root != NULL); break; case ZPOOL_PROP_READONLY: case ZPOOL_PROP_CACHEFILE: /* * 'readonly' and 'cachefile' are also non-persisitent * properties. */ break; case ZPOOL_PROP_COMMENT: strval = fnvpair_value_string(elem); if (spa->spa_comment != NULL) spa_strfree(spa->spa_comment); spa->spa_comment = spa_strdup(strval); /* * We need to dirty the configuration on all the vdevs * so that their labels get updated. It's unnecessary * to do this for pool creation since the vdev's * configuratoin has already been dirtied. */ if (tx->tx_txg != TXG_INITIAL) vdev_config_dirty(spa->spa_root_vdev); spa_history_log_internal(spa, "set", tx, "%s=%s", nvpair_name(elem), strval); break; default: /* * Set pool property values in the poolprops mos object. */ if (spa->spa_pool_props_object == 0) { spa->spa_pool_props_object = zap_create_link(mos, DMU_OT_POOL_PROPS, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, tx); } /* normalize the property name */ propname = zpool_prop_to_name(prop); proptype = zpool_prop_get_type(prop); if (nvpair_type(elem) == DATA_TYPE_STRING) { ASSERT(proptype == PROP_TYPE_STRING); strval = fnvpair_value_string(elem); VERIFY0(zap_update(mos, spa->spa_pool_props_object, propname, 1, strlen(strval) + 1, strval, tx)); spa_history_log_internal(spa, "set", tx, "%s=%s", nvpair_name(elem), strval); } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { intval = fnvpair_value_uint64(elem); if (proptype == PROP_TYPE_INDEX) { const char *unused; VERIFY0(zpool_prop_index_to_string( prop, intval, &unused)); } VERIFY0(zap_update(mos, spa->spa_pool_props_object, propname, 8, 1, &intval, tx)); spa_history_log_internal(spa, "set", tx, "%s=%lld", nvpair_name(elem), intval); } else { ASSERT(0); /* not allowed */ } switch (prop) { case ZPOOL_PROP_DELEGATION: spa->spa_delegation = intval; break; case ZPOOL_PROP_BOOTFS: spa->spa_bootfs = intval; break; case ZPOOL_PROP_FAILUREMODE: spa->spa_failmode = intval; break; case ZPOOL_PROP_AUTOEXPAND: spa->spa_autoexpand = intval; if (tx->tx_txg != TXG_INITIAL) spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); break; case ZPOOL_PROP_DEDUPDITTO: spa->spa_dedup_ditto = intval; break; default: break; } } } mutex_exit(&spa->spa_props_lock); } /* * Perform one-time upgrade on-disk changes. spa_version() does not * reflect the new version this txg, so there must be no changes this * txg to anything that the upgrade code depends on after it executes. * Therefore this must be called after dsl_pool_sync() does the sync * tasks. */ static void spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) { dsl_pool_t *dp = spa->spa_dsl_pool; ASSERT(spa->spa_sync_pass == 1); rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { dsl_pool_create_origin(dp, tx); /* Keeping the origin open increases spa_minref */ spa->spa_minref += 3; } if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { dsl_pool_upgrade_clones(dp, tx); } if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { dsl_pool_upgrade_dir_clones(dp, tx); /* Keeping the freedir open increases spa_minref */ spa->spa_minref += 3; } if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { spa_feature_create_zap_objects(spa, tx); } /* * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable * when possibility to use lz4 compression for metadata was added * Old pools that have this feature enabled must be upgraded to have * this feature active */ if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { boolean_t lz4_en = spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS); boolean_t lz4_ac = spa_feature_is_active(spa, SPA_FEATURE_LZ4_COMPRESS); if (lz4_en && !lz4_ac) spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); } /* * If we haven't written the salt, do so now. Note that the * feature may not be activated yet, but that's fine since * the presence of this ZAP entry is backwards compatible. */ if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT) == ENOENT) { VERIFY0(zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, sizeof (spa->spa_cksum_salt.zcs_bytes), spa->spa_cksum_salt.zcs_bytes, tx)); } rrw_exit(&dp->dp_config_rwlock, FTAG); } static void vdev_indirect_state_sync_verify(vdev_t *vd) { vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; vdev_indirect_births_t *vib = vd->vdev_indirect_births; if (vd->vdev_ops == &vdev_indirect_ops) { ASSERT(vim != NULL); ASSERT(vib != NULL); } if (vdev_obsolete_sm_object(vd) != 0) { ASSERT(vd->vdev_obsolete_sm != NULL); ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops); ASSERT(vdev_indirect_mapping_num_entries(vim) > 0); ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0); ASSERT3U(vdev_obsolete_sm_object(vd), ==, space_map_object(vd->vdev_obsolete_sm)); ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=, space_map_allocated(vd->vdev_obsolete_sm)); } ASSERT(vd->vdev_obsolete_segments != NULL); /* * Since frees / remaps to an indirect vdev can only * happen in syncing context, the obsolete segments * tree must be empty when we start syncing. */ ASSERT0(range_tree_space(vd->vdev_obsolete_segments)); } /* * Sync the specified transaction group. New blocks may be dirtied as * part of the process, so we iterate until it converges. */ void spa_sync(spa_t *spa, uint64_t txg) { dsl_pool_t *dp = spa->spa_dsl_pool; objset_t *mos = spa->spa_meta_objset; bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd; dmu_tx_t *tx; int error; uint32_t max_queue_depth = zfs_vdev_async_write_max_active * zfs_vdev_queue_depth_pct / 100; VERIFY(spa_writeable(spa)); /* * Wait for i/os issued in open context that need to complete * before this txg syncs. */ VERIFY0(zio_wait(spa->spa_txg_zio[txg & TXG_MASK])); spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 0); /* * Lock out configuration changes. */ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); spa->spa_syncing_txg = txg; spa->spa_sync_pass = 0; mutex_enter(&spa->spa_alloc_lock); VERIFY0(avl_numnodes(&spa->spa_alloc_tree)); mutex_exit(&spa->spa_alloc_lock); /* * If there are any pending vdev state changes, convert them * into config changes that go out with this transaction group. */ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); while (list_head(&spa->spa_state_dirty_list) != NULL) { /* * We need the write lock here because, for aux vdevs, * calling vdev_config_dirty() modifies sav_config. * This is ugly and will become unnecessary when we * eliminate the aux vdev wart by integrating all vdevs * into the root vdev tree. */ spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { vdev_state_clean(vd); vdev_config_dirty(vd); } spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); } spa_config_exit(spa, SCL_STATE, FTAG); tx = dmu_tx_create_assigned(dp, txg); spa->spa_sync_starttime = gethrtime(); #ifdef illumos VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, spa->spa_sync_starttime + spa->spa_deadman_synctime)); #else /* !illumos */ #ifdef _KERNEL callout_schedule(&spa->spa_deadman_cycid, hz * spa->spa_deadman_synctime / NANOSEC); #endif #endif /* illumos */ /* * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, * set spa_deflate if we have no raid-z vdevs. */ if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { int i; for (i = 0; i < rvd->vdev_children; i++) { vd = rvd->vdev_child[i]; if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) break; } if (i == rvd->vdev_children) { spa->spa_deflate = TRUE; VERIFY(0 == zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, sizeof (uint64_t), 1, &spa->spa_deflate, tx)); } } /* * Set the top-level vdev's max queue depth. Evaluate each * top-level's async write queue depth in case it changed. * The max queue depth will not change in the middle of syncing * out this txg. */ uint64_t queue_depth_total = 0; for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; metaslab_group_t *mg = tvd->vdev_mg; if (mg == NULL || mg->mg_class != spa_normal_class(spa) || !metaslab_group_initialized(mg)) continue; /* * It is safe to do a lock-free check here because only async * allocations look at mg_max_alloc_queue_depth, and async * allocations all happen from spa_sync(). */ ASSERT0(refcount_count(&mg->mg_alloc_queue_depth)); mg->mg_max_alloc_queue_depth = max_queue_depth; queue_depth_total += mg->mg_max_alloc_queue_depth; } metaslab_class_t *mc = spa_normal_class(spa); ASSERT0(refcount_count(&mc->mc_alloc_slots)); mc->mc_alloc_max_slots = queue_depth_total; mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; ASSERT3U(mc->mc_alloc_max_slots, <=, max_queue_depth * rvd->vdev_children); for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; vdev_indirect_state_sync_verify(vd); if (vdev_indirect_should_condense(vd)) { spa_condense_indirect_start_sync(vd, tx); break; } } /* * Iterate to convergence. */ do { int pass = ++spa->spa_sync_pass; spa_sync_config_object(spa, tx); spa_sync_aux_dev(spa, &spa->spa_spares, tx, ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); spa_errlog_sync(spa, txg); dsl_pool_sync(dp, txg); if (pass < zfs_sync_pass_deferred_free) { spa_sync_frees(spa, free_bpl, tx); } else { /* * We can not defer frees in pass 1, because * we sync the deferred frees later in pass 1. */ ASSERT3U(pass, >, 1); bplist_iterate(free_bpl, bpobj_enqueue_cb, &spa->spa_deferred_bpobj, tx); } ddt_sync(spa, txg); dsl_scan_sync(dp, tx); if (spa->spa_vdev_removal != NULL) svr_sync(spa, tx); while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) != NULL) vdev_sync(vd, txg); if (pass == 1) { spa_sync_upgrades(spa, tx); ASSERT3U(txg, >=, spa->spa_uberblock.ub_rootbp.blk_birth); /* * Note: We need to check if the MOS is dirty * because we could have marked the MOS dirty * without updating the uberblock (e.g. if we * have sync tasks but no dirty user data). We * need to check the uberblock's rootbp because * it is updated if we have synced out dirty * data (though in this case the MOS will most * likely also be dirty due to second order * effects, we don't want to rely on that here). */ if (spa->spa_uberblock.ub_rootbp.blk_birth < txg && !dmu_objset_is_dirty(mos, txg)) { /* * Nothing changed on the first pass, * therefore this TXG is a no-op. Avoid * syncing deferred frees, so that we * can keep this TXG as a no-op. */ ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); break; } spa_sync_deferred_frees(spa, tx); } } while (dmu_objset_is_dirty(mos, txg)); if (!list_is_empty(&spa->spa_config_dirty_list)) { /* * Make sure that the number of ZAPs for all the vdevs matches * the number of ZAPs in the per-vdev ZAP list. This only gets * called if the config is dirty; otherwise there may be * outstanding AVZ operations that weren't completed in * spa_sync_config_object. */ uint64_t all_vdev_zap_entry_count; ASSERT0(zap_count(spa->spa_meta_objset, spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, all_vdev_zap_entry_count); } if (spa->spa_vdev_removal != NULL) { ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]); } /* * Rewrite the vdev configuration (which includes the uberblock) * to commit the transaction group. * * If there are no dirty vdevs, we sync the uberblock to a few * random top-level vdevs that are known to be visible in the * config cache (see spa_vdev_add() for a complete description). * If there *are* dirty vdevs, sync the uberblock to all vdevs. */ for (;;) { /* * We hold SCL_STATE to prevent vdev open/close/etc. * while we're attempting to write the vdev labels. */ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); if (list_is_empty(&spa->spa_config_dirty_list)) { - vdev_t *svd[SPA_DVAS_PER_BP]; + vdev_t *svd[SPA_SYNC_MIN_VDEVS]; int svdcount = 0; int children = rvd->vdev_children; int c0 = spa_get_random(children); for (int c = 0; c < children; c++) { vd = rvd->vdev_child[(c0 + c) % children]; if (vd->vdev_ms_array == 0 || vd->vdev_islog || !vdev_is_concrete(vd)) continue; svd[svdcount++] = vd; - if (svdcount == SPA_DVAS_PER_BP) + if (svdcount == SPA_SYNC_MIN_VDEVS) break; } error = vdev_config_sync(svd, svdcount, txg); } else { error = vdev_config_sync(rvd->vdev_child, rvd->vdev_children, txg); } if (error == 0) spa->spa_last_synced_guid = rvd->vdev_guid; spa_config_exit(spa, SCL_STATE, FTAG); if (error == 0) break; zio_suspend(spa, NULL); zio_resume_wait(spa); } dmu_tx_commit(tx); #ifdef illumos VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); #else /* !illumos */ #ifdef _KERNEL callout_drain(&spa->spa_deadman_cycid); #endif #endif /* illumos */ /* * Clear the dirty config list. */ while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) vdev_config_clean(vd); /* * Now that the new config has synced transactionally, * let it become visible to the config cache. */ if (spa->spa_config_syncing != NULL) { spa_config_set(spa, spa->spa_config_syncing); spa->spa_config_txg = txg; spa->spa_config_syncing = NULL; } dsl_pool_sync_done(dp, txg); mutex_enter(&spa->spa_alloc_lock); VERIFY0(avl_numnodes(&spa->spa_alloc_tree)); mutex_exit(&spa->spa_alloc_lock); /* * Update usable space statistics. */ while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) vdev_sync_done(vd, txg); spa_update_dspace(spa); /* * It had better be the case that we didn't dirty anything * since vdev_config_sync(). */ ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); spa->spa_sync_pass = 0; /* * Update the last synced uberblock here. We want to do this at * the end of spa_sync() so that consumers of spa_last_synced_txg() * will be guaranteed that all the processing associated with * that txg has been completed. */ spa->spa_ubsync = spa->spa_uberblock; spa_config_exit(spa, SCL_CONFIG, FTAG); spa_handle_ignored_writes(spa); /* * If any async tasks have been requested, kick them off. */ spa_async_dispatch(spa); spa_async_dispatch_vd(spa); } /* * Sync all pools. We don't want to hold the namespace lock across these * operations, so we take a reference on the spa_t and drop the lock during the * sync. */ void spa_sync_allpools(void) { spa_t *spa = NULL; mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) { if (spa_state(spa) != POOL_STATE_ACTIVE || !spa_writeable(spa) || spa_suspended(spa)) continue; spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); txg_wait_synced(spa_get_dsl(spa), 0); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); } mutex_exit(&spa_namespace_lock); } /* * ========================================================================== * Miscellaneous routines * ========================================================================== */ /* * Remove all pools in the system. */ void spa_evict_all(void) { spa_t *spa; /* * Remove all cached state. All pools should be closed now, * so every spa in the AVL tree should be unreferenced. */ mutex_enter(&spa_namespace_lock); while ((spa = spa_next(NULL)) != NULL) { /* * Stop async tasks. The async thread may need to detach * a device that's been replaced, which requires grabbing * spa_namespace_lock, so we must drop it here. */ spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); spa_async_suspend(spa); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); if (spa->spa_state != POOL_STATE_UNINITIALIZED) { spa_unload(spa); spa_deactivate(spa); } spa_remove(spa); } mutex_exit(&spa_namespace_lock); } vdev_t * spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) { vdev_t *vd; int i; if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) return (vd); if (aux) { for (i = 0; i < spa->spa_l2cache.sav_count; i++) { vd = spa->spa_l2cache.sav_vdevs[i]; if (vd->vdev_guid == guid) return (vd); } for (i = 0; i < spa->spa_spares.sav_count; i++) { vd = spa->spa_spares.sav_vdevs[i]; if (vd->vdev_guid == guid) return (vd); } } return (NULL); } void spa_upgrade(spa_t *spa, uint64_t version) { ASSERT(spa_writeable(spa)); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); /* * This should only be called for a non-faulted pool, and since a * future version would result in an unopenable pool, this shouldn't be * possible. */ ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); ASSERT3U(version, >=, spa->spa_uberblock.ub_version); spa->spa_uberblock.ub_version = version; vdev_config_dirty(spa->spa_root_vdev); spa_config_exit(spa, SCL_ALL, FTAG); txg_wait_synced(spa_get_dsl(spa), 0); } boolean_t spa_has_spare(spa_t *spa, uint64_t guid) { int i; uint64_t spareguid; spa_aux_vdev_t *sav = &spa->spa_spares; for (i = 0; i < sav->sav_count; i++) if (sav->sav_vdevs[i]->vdev_guid == guid) return (B_TRUE); for (i = 0; i < sav->sav_npending; i++) { if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, &spareguid) == 0 && spareguid == guid) return (B_TRUE); } return (B_FALSE); } /* * Check if a pool has an active shared spare device. * Note: reference count of an active spare is 2, as a spare and as a replace */ static boolean_t spa_has_active_shared_spare(spa_t *spa) { int i, refcnt; uint64_t pool; spa_aux_vdev_t *sav = &spa->spa_spares; for (i = 0; i < sav->sav_count; i++) { if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, &refcnt) && pool != 0ULL && pool == spa_guid(spa) && refcnt > 2) return (B_TRUE); } return (B_FALSE); } sysevent_t * spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) { sysevent_t *ev = NULL; #ifdef _KERNEL sysevent_attr_list_t *attr = NULL; sysevent_value_t value; ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", SE_SLEEP); ASSERT(ev != NULL); value.value_type = SE_DATA_TYPE_STRING; value.value.sv_string = spa_name(spa); if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) goto done; value.value_type = SE_DATA_TYPE_UINT64; value.value.sv_uint64 = spa_guid(spa); if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) goto done; if (vd) { value.value_type = SE_DATA_TYPE_UINT64; value.value.sv_uint64 = vd->vdev_guid; if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, SE_SLEEP) != 0) goto done; if (vd->vdev_path) { value.value_type = SE_DATA_TYPE_STRING; value.value.sv_string = vd->vdev_path; if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, &value, SE_SLEEP) != 0) goto done; } } if (hist_nvl != NULL) { fnvlist_merge((nvlist_t *)attr, hist_nvl); } if (sysevent_attach_attributes(ev, attr) != 0) goto done; attr = NULL; done: if (attr) sysevent_free_attr(attr); #endif return (ev); } void spa_event_post(sysevent_t *ev) { #ifdef _KERNEL sysevent_id_t eid; (void) log_sysevent(ev, SE_SLEEP, &eid); sysevent_free(ev); #endif } void spa_event_discard(sysevent_t *ev) { #ifdef _KERNEL sysevent_free(ev); #endif } /* * Post a sysevent corresponding to the given event. The 'name' must be one of * the event definitions in sys/sysevent/eventdefs.h. The payload will be * filled in from the spa and (optionally) the vdev and history nvl. This * doesn't do anything in the userland libzpool, as we don't want consumers to * misinterpret ztest or zdb as real changes. */ void spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) { spa_event_post(spa_event_create(spa, vd, hist_nvl, name)); } Index: head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/spa_config.c =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/spa_config.c (revision 329797) +++ head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/spa_config.c (revision 329798) @@ -1,563 +1,557 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2011, 2015 by Delphix. All rights reserved. * Copyright 2017 Joyent, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #include #endif /* * Pool configuration repository. * * Pool configuration is stored as a packed nvlist on the filesystem. By * default, all pools are stored in /etc/zfs/zpool.cache and loaded on boot * (when the ZFS module is loaded). Pools can also have the 'cachefile' * property set that allows them to be stored in an alternate location until * the control of external software. * * For each cache file, we have a single nvlist which holds all the * configuration information. When the module loads, we read this information * from /etc/zfs/zpool.cache and populate the SPA namespace. This namespace is * maintained independently in spa.c. Whenever the namespace is modified, or * the configuration of a pool is changed, we call spa_write_cachefile(), which * walks through all the active pools and writes the configuration to disk. */ static uint64_t spa_config_generation = 1; /* * This can be overridden in userland to preserve an alternate namespace for * userland pools when doing testing. */ const char *spa_config_path = ZPOOL_CACHE; /* * Called when the module is first loaded, this routine loads the configuration * file into the SPA namespace. It does not actually open or load the pools; it * only populates the namespace. */ void spa_config_load(void) { void *buf = NULL; nvlist_t *nvlist, *child; nvpair_t *nvpair; char *pathname; struct _buf *file; uint64_t fsize; /* * Open the configuration file. */ pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP); (void) snprintf(pathname, MAXPATHLEN, "%s", spa_config_path); file = kobj_open_file(pathname); kmem_free(pathname, MAXPATHLEN); if (file == (struct _buf *)-1) return; if (kobj_get_filesize(file, &fsize) != 0) goto out; buf = kmem_alloc(fsize, KM_SLEEP); /* * Read the nvlist from the file. */ if (kobj_read_file(file, buf, fsize, 0) < 0) goto out; /* * Unpack the nvlist. */ if (nvlist_unpack(buf, fsize, &nvlist, KM_SLEEP) != 0) goto out; /* * Iterate over all elements in the nvlist, creating a new spa_t for * each one with the specified configuration. */ mutex_enter(&spa_namespace_lock); nvpair = NULL; while ((nvpair = nvlist_next_nvpair(nvlist, nvpair)) != NULL) { if (nvpair_type(nvpair) != DATA_TYPE_NVLIST) continue; child = fnvpair_value_nvlist(nvpair); if (spa_lookup(nvpair_name(nvpair)) != NULL) continue; (void) spa_add(nvpair_name(nvpair), child, NULL); } mutex_exit(&spa_namespace_lock); nvlist_free(nvlist); out: if (buf != NULL) kmem_free(buf, fsize); kobj_close_file(file); } static void spa_config_clean(nvlist_t *nvl) { nvlist_t **child; nvlist_t *nvroot = NULL; uint_t c, children; if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0) { for (c = 0; c < children; c++) spa_config_clean(child[c]); } if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0) spa_config_clean(nvroot); nvlist_remove(nvl, ZPOOL_CONFIG_VDEV_STATS, DATA_TYPE_UINT64_ARRAY); nvlist_remove(nvl, ZPOOL_CONFIG_SCAN_STATS, DATA_TYPE_UINT64_ARRAY); } static int spa_config_write(spa_config_dirent_t *dp, nvlist_t *nvl) { size_t buflen; char *buf; vnode_t *vp; int oflags = FWRITE | FTRUNC | FCREAT | FOFFMAX; char *temp; int err; /* * If the nvlist is empty (NULL), then remove the old cachefile. */ if (nvl == NULL) { err = vn_remove(dp->scd_path, UIO_SYSSPACE, RMFILE); return (err); } /* * Pack the configuration into a buffer. */ buf = fnvlist_pack(nvl, &buflen); temp = kmem_zalloc(MAXPATHLEN, KM_SLEEP); /* * Write the configuration to disk. We need to do the traditional * 'write to temporary file, sync, move over original' to make sure we * always have a consistent view of the data. */ (void) snprintf(temp, MAXPATHLEN, "%s.tmp", dp->scd_path); err = vn_open(temp, UIO_SYSSPACE, oflags, 0644, &vp, CRCREAT, 0); if (err == 0) { err = vn_rdwr(UIO_WRITE, vp, buf, buflen, 0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, NULL); if (err == 0) err = VOP_FSYNC(vp, FSYNC, kcred, NULL); if (err == 0) err = vn_rename(temp, dp->scd_path, UIO_SYSSPACE); (void) VOP_CLOSE(vp, oflags, 1, 0, kcred, NULL); } (void) vn_remove(temp, UIO_SYSSPACE, RMFILE); fnvlist_pack_free(buf, buflen); kmem_free(temp, MAXPATHLEN); return (err); } /* * Synchronize pool configuration to disk. This must be called with the * namespace lock held. Synchronizing the pool cache is typically done after * the configuration has been synced to the MOS. This exposes a window where * the MOS config will have been updated but the cache file has not. If * the system were to crash at that instant then the cached config may not * contain the correct information to open the pool and an explicit import * would be required. */ void spa_write_cachefile(spa_t *target, boolean_t removing, boolean_t postsysevent) { spa_config_dirent_t *dp, *tdp; nvlist_t *nvl; boolean_t ccw_failure; int error; ASSERT(MUTEX_HELD(&spa_namespace_lock)); if (rootdir == NULL || !(spa_mode_global & FWRITE)) return; /* * Iterate over all cachefiles for the pool, past or present. When the * cachefile is changed, the new one is pushed onto this list, allowing * us to update previous cachefiles that no longer contain this pool. */ ccw_failure = B_FALSE; for (dp = list_head(&target->spa_config_list); dp != NULL; dp = list_next(&target->spa_config_list, dp)) { spa_t *spa = NULL; if (dp->scd_path == NULL) continue; /* * Iterate over all pools, adding any matching pools to 'nvl'. */ nvl = NULL; while ((spa = spa_next(spa)) != NULL) { nvlist_t *nvroot = NULL; /* * Skip over our own pool if we're about to remove * ourselves from the spa namespace or any pool that * is readonly. Since we cannot guarantee that a * readonly pool would successfully import upon reboot, * we don't allow them to be written to the cache file. */ if ((spa == target && removing) || (spa_state(spa) == POOL_STATE_ACTIVE && !spa_writeable(spa))) continue; mutex_enter(&spa->spa_props_lock); tdp = list_head(&spa->spa_config_list); if (spa->spa_config == NULL || tdp->scd_path == NULL || strcmp(tdp->scd_path, dp->scd_path) != 0) { mutex_exit(&spa->spa_props_lock); continue; } if (nvl == NULL) nvl = fnvlist_alloc(); fnvlist_add_nvlist(nvl, spa->spa_name, spa->spa_config); mutex_exit(&spa->spa_props_lock); if (nvlist_lookup_nvlist(nvl, spa->spa_name, &nvroot) == 0) spa_config_clean(nvroot); } error = spa_config_write(dp, nvl); if (error != 0) ccw_failure = B_TRUE; nvlist_free(nvl); } if (ccw_failure) { /* * Keep trying so that configuration data is * written if/when any temporary filesystem * resource issues are resolved. */ if (target->spa_ccw_fail_time == 0) { zfs_ereport_post(FM_EREPORT_ZFS_CONFIG_CACHE_WRITE, target, NULL, NULL, 0, 0); } target->spa_ccw_fail_time = gethrtime(); spa_async_request(target, SPA_ASYNC_CONFIG_UPDATE); } else { /* * Do not rate limit future attempts to update * the config cache. */ target->spa_ccw_fail_time = 0; } /* * Remove any config entries older than the current one. */ dp = list_head(&target->spa_config_list); while ((tdp = list_next(&target->spa_config_list, dp)) != NULL) { list_remove(&target->spa_config_list, tdp); if (tdp->scd_path != NULL) spa_strfree(tdp->scd_path); kmem_free(tdp, sizeof (spa_config_dirent_t)); } spa_config_generation++; if (postsysevent) spa_event_notify(target, NULL, NULL, ESC_ZFS_CONFIG_SYNC); } /* * Sigh. Inside a local zone, we don't have access to /etc/zfs/zpool.cache, * and we don't want to allow the local zone to see all the pools anyway. * So we have to invent the ZFS_IOC_CONFIG ioctl to grab the configuration * information for all pool visible within the zone. */ nvlist_t * spa_all_configs(uint64_t *generation) { nvlist_t *pools; spa_t *spa = NULL; if (*generation == spa_config_generation) return (NULL); pools = fnvlist_alloc(); mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) { if (INGLOBALZONE(curthread) || zone_dataset_visible(spa_name(spa), NULL)) { mutex_enter(&spa->spa_props_lock); fnvlist_add_nvlist(pools, spa_name(spa), spa->spa_config); mutex_exit(&spa->spa_props_lock); } } *generation = spa_config_generation; mutex_exit(&spa_namespace_lock); return (pools); } void spa_config_set(spa_t *spa, nvlist_t *config) { mutex_enter(&spa->spa_props_lock); - nvlist_free(spa->spa_config); + if (spa->spa_config != NULL && spa->spa_config != config) + nvlist_free(spa->spa_config); spa->spa_config = config; mutex_exit(&spa->spa_props_lock); } /* * Generate the pool's configuration based on the current in-core state. * * We infer whether to generate a complete config or just one top-level config * based on whether vd is the root vdev. */ nvlist_t * spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats) { nvlist_t *config, *nvroot; vdev_t *rvd = spa->spa_root_vdev; unsigned long hostid = 0; boolean_t locked = B_FALSE; uint64_t split_guid; if (vd == NULL) { vd = rvd; locked = B_TRUE; spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); } ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER) == (SCL_CONFIG | SCL_STATE)); /* * If txg is -1, report the current value of spa->spa_config_txg. */ if (txg == -1ULL) txg = spa->spa_config_txg; config = fnvlist_alloc(); fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa)); fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, spa_name(spa)); fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, spa_state(spa)); fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, txg); fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, spa_guid(spa)); if (spa->spa_comment != NULL) { fnvlist_add_string(config, ZPOOL_CONFIG_COMMENT, spa->spa_comment); } -#ifdef _KERNEL hostid = zone_get_hostid(NULL); -#else /* _KERNEL */ - /* - * We're emulating the system's hostid in userland, so we can't use - * zone_get_hostid(). - */ - (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); -#endif /* _KERNEL */ + if (hostid != 0) { fnvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, hostid); } fnvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, utsname.nodename); int config_gen_flags = 0; if (vd != rvd) { fnvlist_add_uint64(config, ZPOOL_CONFIG_TOP_GUID, vd->vdev_top->vdev_guid); fnvlist_add_uint64(config, ZPOOL_CONFIG_GUID, vd->vdev_guid); if (vd->vdev_isspare) { fnvlist_add_uint64(config, ZPOOL_CONFIG_IS_SPARE, 1ULL); } if (vd->vdev_islog) { fnvlist_add_uint64(config, ZPOOL_CONFIG_IS_LOG, 1ULL); } vd = vd->vdev_top; /* label contains top config */ } else { /* * Only add the (potentially large) split information * in the mos config, and not in the vdev labels */ if (spa->spa_config_splitting != NULL) fnvlist_add_nvlist(config, ZPOOL_CONFIG_SPLIT, spa->spa_config_splitting); fnvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS); config_gen_flags |= VDEV_CONFIG_MOS; } /* * Add the top-level config. We even add this on pools which * don't support holes in the namespace. */ vdev_top_config_generate(spa, config); /* * If we're splitting, record the original pool's guid. */ if (spa->spa_config_splitting != NULL && nvlist_lookup_uint64(spa->spa_config_splitting, ZPOOL_CONFIG_SPLIT_GUID, &split_guid) == 0) { fnvlist_add_uint64(config, ZPOOL_CONFIG_SPLIT_GUID, split_guid); } nvroot = vdev_config_generate(spa, vd, getstats, config_gen_flags); fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot); nvlist_free(nvroot); /* * Store what's necessary for reading the MOS in the label. */ fnvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, spa->spa_label_features); if (getstats && spa_load_state(spa) == SPA_LOAD_NONE) { ddt_histogram_t *ddh; ddt_stat_t *dds; ddt_object_t *ddo; ddh = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP); ddt_get_dedup_histogram(spa, ddh); fnvlist_add_uint64_array(config, ZPOOL_CONFIG_DDT_HISTOGRAM, (uint64_t *)ddh, sizeof (*ddh) / sizeof (uint64_t)); kmem_free(ddh, sizeof (ddt_histogram_t)); ddo = kmem_zalloc(sizeof (ddt_object_t), KM_SLEEP); ddt_get_dedup_object_stats(spa, ddo); fnvlist_add_uint64_array(config, ZPOOL_CONFIG_DDT_OBJ_STATS, (uint64_t *)ddo, sizeof (*ddo) / sizeof (uint64_t)); kmem_free(ddo, sizeof (ddt_object_t)); dds = kmem_zalloc(sizeof (ddt_stat_t), KM_SLEEP); ddt_get_dedup_stats(spa, dds); fnvlist_add_uint64_array(config, ZPOOL_CONFIG_DDT_STATS, (uint64_t *)dds, sizeof (*dds) / sizeof (uint64_t)); kmem_free(dds, sizeof (ddt_stat_t)); } if (locked) spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (config); } /* * Update all disk labels, generate a fresh config based on the current * in-core state, and sync the global config cache (do not sync the config * cache if this is a booting rootpool). */ void spa_config_update(spa_t *spa, int what) { vdev_t *rvd = spa->spa_root_vdev; uint64_t txg; int c; ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); txg = spa_last_synced_txg(spa) + 1; if (what == SPA_CONFIG_UPDATE_POOL) { vdev_config_dirty(rvd); } else { /* * If we have top-level vdevs that were added but have * not yet been prepared for allocation, do that now. * (It's safe now because the config cache is up to date, * so it will be able to translate the new DVAs.) * See comments in spa_vdev_add() for full details. */ for (c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; if (tvd->vdev_ms_array == 0) { vdev_ashift_optimize(tvd); vdev_metaslab_set_size(tvd); } vdev_expand(tvd, txg); } } spa_config_exit(spa, SCL_ALL, FTAG); /* * Wait for the mosconfig to be regenerated and synced. */ txg_wait_synced(spa->spa_dsl_pool, txg); /* * Update the global config cache to reflect the new mosconfig. */ spa_write_cachefile(spa, B_FALSE, what != SPA_CONFIG_UPDATE_POOL); if (what == SPA_CONFIG_UPDATE_POOL) spa_config_update(spa, SPA_CONFIG_UPDATE_VDEVS); } Index: head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/spa_misc.c =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/spa_misc.c (revision 329797) +++ head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/spa_misc.c (revision 329798) @@ -1,2300 +1,2321 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2017 by Delphix. All rights reserved. * Copyright 2015 Nexenta Systems, Inc. All rights reserved. * Copyright 2013 Martin Matuska . All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright 2013 Saso Kiselkov. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright (c) 2017 Datto Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_prop.h" #include #if defined(__FreeBSD__) && defined(_KERNEL) #include #include #endif /* * SPA locking * * There are four basic locks for managing spa_t structures: * * spa_namespace_lock (global mutex) * * This lock must be acquired to do any of the following: * * - Lookup a spa_t by name * - Add or remove a spa_t from the namespace * - Increase spa_refcount from non-zero * - Check if spa_refcount is zero * - Rename a spa_t * - add/remove/attach/detach devices * - Held for the duration of create/destroy/import/export * * It does not need to handle recursion. A create or destroy may * reference objects (files or zvols) in other pools, but by * definition they must have an existing reference, and will never need * to lookup a spa_t by name. * * spa_refcount (per-spa refcount_t protected by mutex) * * This reference count keep track of any active users of the spa_t. The * spa_t cannot be destroyed or freed while this is non-zero. Internally, * the refcount is never really 'zero' - opening a pool implicitly keeps * some references in the DMU. Internally we check against spa_minref, but * present the image of a zero/non-zero value to consumers. * * spa_config_lock[] (per-spa array of rwlocks) * * This protects the spa_t from config changes, and must be held in * the following circumstances: * * - RW_READER to perform I/O to the spa * - RW_WRITER to change the vdev config * * The locking order is fairly straightforward: * * spa_namespace_lock -> spa_refcount * * The namespace lock must be acquired to increase the refcount from 0 * or to check if it is zero. * * spa_refcount -> spa_config_lock[] * * There must be at least one valid reference on the spa_t to acquire * the config lock. * * spa_namespace_lock -> spa_config_lock[] * * The namespace lock must always be taken before the config lock. * * * The spa_namespace_lock can be acquired directly and is globally visible. * * The namespace is manipulated using the following functions, all of which * require the spa_namespace_lock to be held. * * spa_lookup() Lookup a spa_t by name. * * spa_add() Create a new spa_t in the namespace. * * spa_remove() Remove a spa_t from the namespace. This also * frees up any memory associated with the spa_t. * * spa_next() Returns the next spa_t in the system, or the * first if NULL is passed. * * spa_evict_all() Shutdown and remove all spa_t structures in * the system. * * spa_guid_exists() Determine whether a pool/device guid exists. * * The spa_refcount is manipulated using the following functions: * * spa_open_ref() Adds a reference to the given spa_t. Must be * called with spa_namespace_lock held if the * refcount is currently zero. * * spa_close() Remove a reference from the spa_t. This will * not free the spa_t or remove it from the * namespace. No locking is required. * * spa_refcount_zero() Returns true if the refcount is currently * zero. Must be called with spa_namespace_lock * held. * * The spa_config_lock[] is an array of rwlocks, ordered as follows: * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). * * To read the configuration, it suffices to hold one of these locks as reader. * To modify the configuration, you must hold all locks as writer. To modify * vdev state without altering the vdev tree's topology (e.g. online/offline), * you must hold SCL_STATE and SCL_ZIO as writer. * * We use these distinct config locks to avoid recursive lock entry. * For example, spa_sync() (which holds SCL_CONFIG as reader) induces * block allocations (SCL_ALLOC), which may require reading space maps * from disk (dmu_read() -> zio_read() -> SCL_ZIO). * * The spa config locks cannot be normal rwlocks because we need the * ability to hand off ownership. For example, SCL_ZIO is acquired * by the issuing thread and later released by an interrupt thread. * They do, however, obey the usual write-wanted semantics to prevent * writer (i.e. system administrator) starvation. * * The lock acquisition rules are as follows: * * SCL_CONFIG * Protects changes to the vdev tree topology, such as vdev * add/remove/attach/detach. Protects the dirty config list * (spa_config_dirty_list) and the set of spares and l2arc devices. * * SCL_STATE * Protects changes to pool state and vdev state, such as vdev * online/offline/fault/degrade/clear. Protects the dirty state list * (spa_state_dirty_list) and global pool state (spa_state). * * SCL_ALLOC * Protects changes to metaslab groups and classes. * Held as reader by metaslab_alloc() and metaslab_claim(). * * SCL_ZIO * Held by bp-level zios (those which have no io_vd upon entry) * to prevent changes to the vdev tree. The bp-level zio implicitly * protects all of its vdev child zios, which do not hold SCL_ZIO. * * SCL_FREE * Protects changes to metaslab groups and classes. * Held as reader by metaslab_free(). SCL_FREE is distinct from * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free * blocks in zio_done() while another i/o that holds either * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. * * SCL_VDEV * Held as reader to prevent changes to the vdev tree during trivial * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the * other locks, and lower than all of them, to ensure that it's safe * to acquire regardless of caller context. * * In addition, the following rules apply: * * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. * The lock ordering is SCL_CONFIG > spa_props_lock. * * (b) I/O operations on leaf vdevs. For any zio operation that takes * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), * or zio_write_phys() -- the caller must ensure that the config cannot * cannot change in the interim, and that the vdev cannot be reopened. * SCL_STATE as reader suffices for both. * * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). * * spa_vdev_enter() Acquire the namespace lock and the config lock * for writing. * * spa_vdev_exit() Release the config lock, wait for all I/O * to complete, sync the updated configs to the * cache, and release the namespace lock. * * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual * locking is, always, based on spa_namespace_lock and spa_config_lock[]. * * spa_rename() is also implemented within this file since it requires * manipulation of the namespace. */ static avl_tree_t spa_namespace_avl; kmutex_t spa_namespace_lock; static kcondvar_t spa_namespace_cv; static int spa_active_count; int spa_max_replication_override = SPA_DVAS_PER_BP; static kmutex_t spa_spare_lock; static avl_tree_t spa_spare_avl; static kmutex_t spa_l2cache_lock; static avl_tree_t spa_l2cache_avl; kmem_cache_t *spa_buffer_pool; int spa_mode_global; #ifdef ZFS_DEBUG /* * Everything except dprintf, spa, and indirect_remap is on by default * in debug builds. */ int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA | ZFS_DEBUG_INDIRECT_REMAP); #else int zfs_flags = 0; #endif /* * zfs_recover can be set to nonzero to attempt to recover from * otherwise-fatal errors, typically caused by on-disk corruption. When * set, calls to zfs_panic_recover() will turn into warning messages. * This should only be used as a last resort, as it typically results * in leaked space, or worse. */ boolean_t zfs_recover = B_FALSE; /* * If destroy encounters an EIO while reading metadata (e.g. indirect * blocks), space referenced by the missing metadata can not be freed. * Normally this causes the background destroy to become "stalled", as * it is unable to make forward progress. While in this stalled state, * all remaining space to free from the error-encountering filesystem is * "temporarily leaked". Set this flag to cause it to ignore the EIO, * permanently leak the space from indirect blocks that can not be read, * and continue to free everything else that it can. * * The default, "stalling" behavior is useful if the storage partially * fails (i.e. some but not all i/os fail), and then later recovers. In * this case, we will be able to continue pool operations while it is * partially failed, and when it recovers, we can continue to free the * space, with no leaks. However, note that this case is actually * fairly rare. * * Typically pools either (a) fail completely (but perhaps temporarily, * e.g. a top-level vdev going offline), or (b) have localized, * permanent errors (e.g. disk returns the wrong data due to bit flip or * firmware bug). In case (a), this setting does not matter because the * pool will be suspended and the sync thread will not be able to make * forward progress regardless. In case (b), because the error is * permanent, the best we can do is leak the minimum amount of space, * which is what setting this flag will do. Therefore, it is reasonable * for this flag to normally be set, but we chose the more conservative * approach of not setting it, so that there is no possibility of * leaking space in the "partial temporary" failure case. */ boolean_t zfs_free_leak_on_eio = B_FALSE; /* * Expiration time in milliseconds. This value has two meanings. First it is * used to determine when the spa_deadman() logic should fire. By default the * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds. * Secondly, the value determines if an I/O is considered "hung". Any I/O that * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting * in a system panic. */ uint64_t zfs_deadman_synctime_ms = 1000000ULL; /* * Check time in milliseconds. This defines the frequency at which we check * for hung I/O. */ uint64_t zfs_deadman_checktime_ms = 5000ULL; /* * Default value of -1 for zfs_deadman_enabled is resolved in * zfs_deadman_init() */ int zfs_deadman_enabled = -1; /* * The worst case is single-sector max-parity RAID-Z blocks, in which * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) * times the size; so just assume that. Add to this the fact that * we can have up to 3 DVAs per bp, and one more factor of 2 because * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, * the worst case is: * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 */ int spa_asize_inflation = 24; #if defined(__FreeBSD__) && defined(_KERNEL) SYSCTL_DECL(_vfs_zfs); SYSCTL_INT(_vfs_zfs, OID_AUTO, recover, CTLFLAG_RWTUN, &zfs_recover, 0, "Try to recover from otherwise-fatal errors."); static int sysctl_vfs_zfs_debug_flags(SYSCTL_HANDLER_ARGS) { int err, val; val = zfs_flags; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (err); /* * ZFS_DEBUG_MODIFY must be enabled prior to boot so all * arc buffers in the system have the necessary additional * checksum data. However, it is safe to disable at any * time. */ if (!(zfs_flags & ZFS_DEBUG_MODIFY)) val &= ~ZFS_DEBUG_MODIFY; zfs_flags = val; return (0); } SYSCTL_PROC(_vfs_zfs, OID_AUTO, debugflags, CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int), sysctl_vfs_zfs_debug_flags, "IU", "Debug flags for ZFS testing."); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_synctime_ms, CTLFLAG_RDTUN, &zfs_deadman_synctime_ms, 0, "Stalled ZFS I/O expiration time in milliseconds"); SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_checktime_ms, CTLFLAG_RDTUN, &zfs_deadman_checktime_ms, 0, "Period of checks for stalled ZFS I/O in milliseconds"); SYSCTL_INT(_vfs_zfs, OID_AUTO, deadman_enabled, CTLFLAG_RDTUN, &zfs_deadman_enabled, 0, "Kernel panic on stalled ZFS I/O"); SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_asize_inflation, CTLFLAG_RWTUN, &spa_asize_inflation, 0, "Worst case inflation factor for single sector writes"); #endif #ifndef illumos #ifdef _KERNEL static void zfs_deadman_init() { /* * If we are not i386 or amd64 or in a virtual machine, * disable ZFS deadman thread by default */ if (zfs_deadman_enabled == -1) { #if defined(__amd64__) || defined(__i386__) zfs_deadman_enabled = (vm_guest == VM_GUEST_NO) ? 1 : 0; #else zfs_deadman_enabled = 0; #endif } } #endif /* _KERNEL */ #endif /* !illumos */ /* * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in * the pool to be consumed. This ensures that we don't run the pool * completely out of space, due to unaccounted changes (e.g. to the MOS). * It also limits the worst-case time to allocate space. If we have * less than this amount of free space, most ZPL operations (e.g. write, * create) will return ENOSPC. * * Certain operations (e.g. file removal, most administrative actions) can * use half the slop space. They will only return ENOSPC if less than half * the slop space is free. Typically, once the pool has less than the slop * space free, the user will use these operations to free up space in the pool. * These are the operations that call dsl_pool_adjustedsize() with the netfree * argument set to TRUE. * * A very restricted set of operations are always permitted, regardless of * the amount of free space. These are the operations that call * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy". If these * operations result in a net increase in the amount of space used, * it is possible to run the pool completely out of space, causing it to * be permanently read-only. * * Note that on very small pools, the slop space will be larger than * 3.2%, in an effort to have it be at least spa_min_slop (128MB), * but we never allow it to be more than half the pool size. * * See also the comments in zfs_space_check_t. */ int spa_slop_shift = 5; SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_slop_shift, CTLFLAG_RWTUN, &spa_slop_shift, 0, "Shift value of reserved space (1/(2^spa_slop_shift))."); uint64_t spa_min_slop = 128 * 1024 * 1024; SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, spa_min_slop, CTLFLAG_RWTUN, &spa_min_slop, 0, "Minimal value of reserved space"); /*PRINTFLIKE2*/ void spa_load_failed(spa_t *spa, const char *fmt, ...) { va_list adx; char buf[256]; va_start(adx, fmt); (void) vsnprintf(buf, sizeof (buf), fmt, adx); va_end(adx); - zfs_dbgmsg("spa_load(%s): FAILED: %s", spa->spa_name, buf); + zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, + spa->spa_trust_config ? "trusted" : "untrusted", buf); } /*PRINTFLIKE2*/ void spa_load_note(spa_t *spa, const char *fmt, ...) { va_list adx; char buf[256]; va_start(adx, fmt); (void) vsnprintf(buf, sizeof (buf), fmt, adx); va_end(adx); - zfs_dbgmsg("spa_load(%s): %s", spa->spa_name, buf); + zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, + spa->spa_trust_config ? "trusted" : "untrusted", buf); } /* * ========================================================================== * SPA config locking * ========================================================================== */ static void spa_config_lock_init(spa_t *spa) { for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); refcount_create_untracked(&scl->scl_count); scl->scl_writer = NULL; scl->scl_write_wanted = 0; } } static void spa_config_lock_destroy(spa_t *spa) { for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; mutex_destroy(&scl->scl_lock); cv_destroy(&scl->scl_cv); refcount_destroy(&scl->scl_count); ASSERT(scl->scl_writer == NULL); ASSERT(scl->scl_write_wanted == 0); } } int spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) { for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (!(locks & (1 << i))) continue; mutex_enter(&scl->scl_lock); if (rw == RW_READER) { if (scl->scl_writer || scl->scl_write_wanted) { mutex_exit(&scl->scl_lock); spa_config_exit(spa, locks & ((1 << i) - 1), tag); return (0); } } else { ASSERT(scl->scl_writer != curthread); if (!refcount_is_zero(&scl->scl_count)) { mutex_exit(&scl->scl_lock); spa_config_exit(spa, locks & ((1 << i) - 1), tag); return (0); } scl->scl_writer = curthread; } (void) refcount_add(&scl->scl_count, tag); mutex_exit(&scl->scl_lock); } return (1); } void spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) { int wlocks_held = 0; ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (scl->scl_writer == curthread) wlocks_held |= (1 << i); if (!(locks & (1 << i))) continue; mutex_enter(&scl->scl_lock); if (rw == RW_READER) { while (scl->scl_writer || scl->scl_write_wanted) { cv_wait(&scl->scl_cv, &scl->scl_lock); } } else { ASSERT(scl->scl_writer != curthread); while (!refcount_is_zero(&scl->scl_count)) { scl->scl_write_wanted++; cv_wait(&scl->scl_cv, &scl->scl_lock); scl->scl_write_wanted--; } scl->scl_writer = curthread; } (void) refcount_add(&scl->scl_count, tag); mutex_exit(&scl->scl_lock); } ASSERT3U(wlocks_held, <=, locks); } void spa_config_exit(spa_t *spa, int locks, void *tag) { for (int i = SCL_LOCKS - 1; i >= 0; i--) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (!(locks & (1 << i))) continue; mutex_enter(&scl->scl_lock); ASSERT(!refcount_is_zero(&scl->scl_count)); if (refcount_remove(&scl->scl_count, tag) == 0) { ASSERT(scl->scl_writer == NULL || scl->scl_writer == curthread); scl->scl_writer = NULL; /* OK in either case */ cv_broadcast(&scl->scl_cv); } mutex_exit(&scl->scl_lock); } } int spa_config_held(spa_t *spa, int locks, krw_t rw) { int locks_held = 0; for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (!(locks & (1 << i))) continue; if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) || (rw == RW_WRITER && scl->scl_writer == curthread)) locks_held |= 1 << i; } return (locks_held); } /* * ========================================================================== * SPA namespace functions * ========================================================================== */ /* * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. * Returns NULL if no matching spa_t is found. */ spa_t * spa_lookup(const char *name) { static spa_t search; /* spa_t is large; don't allocate on stack */ spa_t *spa; avl_index_t where; char *cp; ASSERT(MUTEX_HELD(&spa_namespace_lock)); (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); /* * If it's a full dataset name, figure out the pool name and * just use that. */ cp = strpbrk(search.spa_name, "/@#"); if (cp != NULL) *cp = '\0'; spa = avl_find(&spa_namespace_avl, &search, &where); return (spa); } /* * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. * If the zfs_deadman_enabled flag is set then it inspects all vdev queues * looking for potentially hung I/Os. */ static void spa_deadman(void *arg, int pending) { spa_t *spa = arg; /* * Disable the deadman timer if the pool is suspended. */ if (spa_suspended(spa)) { #ifdef illumos VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); #else /* Nothing. just don't schedule any future callouts. */ #endif return; } zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", (gethrtime() - spa->spa_sync_starttime) / NANOSEC, ++spa->spa_deadman_calls); if (zfs_deadman_enabled) vdev_deadman(spa->spa_root_vdev); #ifdef __FreeBSD__ #ifdef _KERNEL callout_schedule(&spa->spa_deadman_cycid, hz * zfs_deadman_checktime_ms / MILLISEC); #endif #endif } #if defined(__FreeBSD__) && defined(_KERNEL) static void spa_deadman_timeout(void *arg) { spa_t *spa = arg; taskqueue_enqueue(taskqueue_thread, &spa->spa_deadman_task); } #endif /* * Create an uninitialized spa_t with the given name. Requires * spa_namespace_lock. The caller must ensure that the spa_t doesn't already * exist by calling spa_lookup() first. */ spa_t * spa_add(const char *name, nvlist_t *config, const char *altroot) { spa_t *spa; spa_config_dirent_t *dp; #ifdef illumos cyc_handler_t hdlr; cyc_time_t when; #endif ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); for (int t = 0; t < TXG_SIZE; t++) bplist_create(&spa->spa_free_bplist[t]); (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); spa->spa_state = POOL_STATE_UNINITIALIZED; spa->spa_freeze_txg = UINT64_MAX; spa->spa_final_txg = UINT64_MAX; spa->spa_load_max_txg = UINT64_MAX; spa->spa_proc = &p0; spa->spa_proc_state = SPA_PROC_NONE; + spa->spa_trust_config = B_TRUE; #ifdef illumos hdlr.cyh_func = spa_deadman; hdlr.cyh_arg = spa; hdlr.cyh_level = CY_LOW_LEVEL; #endif spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); #ifdef illumos /* * This determines how often we need to check for hung I/Os after * the cyclic has already fired. Since checking for hung I/Os is * an expensive operation we don't want to check too frequently. * Instead wait for 5 seconds before checking again. */ when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms); when.cyt_when = CY_INFINITY; mutex_enter(&cpu_lock); spa->spa_deadman_cycid = cyclic_add(&hdlr, &when); mutex_exit(&cpu_lock); #else /* !illumos */ #ifdef _KERNEL /* * callout(9) does not provide a way to initialize a callout with * a function and an argument, so we use callout_reset() to schedule * the callout in the very distant future. Even if that event ever * fires, it should be okayas we won't have any active zio-s. * But normally spa_sync() will reschedule the callout with a proper * timeout. * callout(9) does not allow the callback function to sleep but * vdev_deadman() needs to acquire vq_lock and illumos mutexes are * emulated using sx(9). For this reason spa_deadman_timeout() * will schedule spa_deadman() as task on a taskqueue that allows * sleeping. */ TASK_INIT(&spa->spa_deadman_task, 0, spa_deadman, spa); callout_init(&spa->spa_deadman_cycid, 1); callout_reset_sbt(&spa->spa_deadman_cycid, SBT_MAX, 0, spa_deadman_timeout, spa, 0); #endif #endif refcount_create(&spa->spa_refcount); spa_config_lock_init(spa); avl_add(&spa_namespace_avl, spa); /* * Set the alternate root, if there is one. */ if (altroot) { spa->spa_root = spa_strdup(altroot); spa_active_count++; } avl_create(&spa->spa_alloc_tree, zio_bookmark_compare, sizeof (zio_t), offsetof(zio_t, io_alloc_node)); /* * Every pool starts with the default cachefile */ list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), offsetof(spa_config_dirent_t, scd_link)); dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); list_insert_head(&spa->spa_config_list, dp); VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, KM_SLEEP) == 0); if (config != NULL) { nvlist_t *features; if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, &features) == 0) { VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); } VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); } if (spa->spa_label_features == NULL) { VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, KM_SLEEP) == 0); } spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0); spa->spa_min_ashift = INT_MAX; spa->spa_max_ashift = 0; /* * As a pool is being created, treat all features as disabled by * setting SPA_FEATURE_DISABLED for all entries in the feature * refcount cache. */ for (int i = 0; i < SPA_FEATURES; i++) { spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; } return (spa); } /* * Removes a spa_t from the namespace, freeing up any memory used. Requires * spa_namespace_lock. This is called only after the spa_t has been closed and * deactivated. */ void spa_remove(spa_t *spa) { spa_config_dirent_t *dp; ASSERT(MUTEX_HELD(&spa_namespace_lock)); ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0); nvlist_free(spa->spa_config_splitting); avl_remove(&spa_namespace_avl, spa); cv_broadcast(&spa_namespace_cv); if (spa->spa_root) { spa_strfree(spa->spa_root); spa_active_count--; } while ((dp = list_head(&spa->spa_config_list)) != NULL) { list_remove(&spa->spa_config_list, dp); if (dp->scd_path != NULL) spa_strfree(dp->scd_path); kmem_free(dp, sizeof (spa_config_dirent_t)); } avl_destroy(&spa->spa_alloc_tree); list_destroy(&spa->spa_config_list); nvlist_free(spa->spa_label_features); nvlist_free(spa->spa_load_info); spa_config_set(spa, NULL); #ifdef illumos mutex_enter(&cpu_lock); if (spa->spa_deadman_cycid != CYCLIC_NONE) cyclic_remove(spa->spa_deadman_cycid); mutex_exit(&cpu_lock); spa->spa_deadman_cycid = CYCLIC_NONE; #else /* !illumos */ #ifdef _KERNEL callout_drain(&spa->spa_deadman_cycid); taskqueue_drain(taskqueue_thread, &spa->spa_deadman_task); #endif #endif refcount_destroy(&spa->spa_refcount); spa_config_lock_destroy(spa); for (int t = 0; t < TXG_SIZE; t++) bplist_destroy(&spa->spa_free_bplist[t]); zio_checksum_templates_free(spa); cv_destroy(&spa->spa_async_cv); cv_destroy(&spa->spa_evicting_os_cv); cv_destroy(&spa->spa_proc_cv); cv_destroy(&spa->spa_scrub_io_cv); cv_destroy(&spa->spa_suspend_cv); mutex_destroy(&spa->spa_alloc_lock); mutex_destroy(&spa->spa_async_lock); mutex_destroy(&spa->spa_errlist_lock); mutex_destroy(&spa->spa_errlog_lock); mutex_destroy(&spa->spa_evicting_os_lock); mutex_destroy(&spa->spa_history_lock); mutex_destroy(&spa->spa_proc_lock); mutex_destroy(&spa->spa_props_lock); mutex_destroy(&spa->spa_cksum_tmpls_lock); mutex_destroy(&spa->spa_scrub_lock); mutex_destroy(&spa->spa_suspend_lock); mutex_destroy(&spa->spa_vdev_top_lock); kmem_free(spa, sizeof (spa_t)); } /* * Given a pool, return the next pool in the namespace, or NULL if there is * none. If 'prev' is NULL, return the first pool. */ spa_t * spa_next(spa_t *prev) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); if (prev) return (AVL_NEXT(&spa_namespace_avl, prev)); else return (avl_first(&spa_namespace_avl)); } /* * ========================================================================== * SPA refcount functions * ========================================================================== */ /* * Add a reference to the given spa_t. Must have at least one reference, or * have the namespace lock held. */ void spa_open_ref(spa_t *spa, void *tag) { ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref || MUTEX_HELD(&spa_namespace_lock)); (void) refcount_add(&spa->spa_refcount, tag); } /* * Remove a reference to the given spa_t. Must have at least one reference, or * have the namespace lock held. */ void spa_close(spa_t *spa, void *tag) { ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref || MUTEX_HELD(&spa_namespace_lock)); (void) refcount_remove(&spa->spa_refcount, tag); } /* * Remove a reference to the given spa_t held by a dsl dir that is * being asynchronously released. Async releases occur from a taskq * performing eviction of dsl datasets and dirs. The namespace lock * isn't held and the hold by the object being evicted may contribute to * spa_minref (e.g. dataset or directory released during pool export), * so the asserts in spa_close() do not apply. */ void spa_async_close(spa_t *spa, void *tag) { (void) refcount_remove(&spa->spa_refcount, tag); } /* * Check to see if the spa refcount is zero. Must be called with * spa_namespace_lock held. We really compare against spa_minref, which is the * number of references acquired when opening a pool */ boolean_t spa_refcount_zero(spa_t *spa) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); return (refcount_count(&spa->spa_refcount) == spa->spa_minref); } /* * ========================================================================== * SPA spare and l2cache tracking * ========================================================================== */ /* * Hot spares and cache devices are tracked using the same code below, * for 'auxiliary' devices. */ typedef struct spa_aux { uint64_t aux_guid; uint64_t aux_pool; avl_node_t aux_avl; int aux_count; } spa_aux_t; static int spa_aux_compare(const void *a, const void *b) { const spa_aux_t *sa = a; const spa_aux_t *sb = b; if (sa->aux_guid < sb->aux_guid) return (-1); else if (sa->aux_guid > sb->aux_guid) return (1); else return (0); } void spa_aux_add(vdev_t *vd, avl_tree_t *avl) { avl_index_t where; spa_aux_t search; spa_aux_t *aux; search.aux_guid = vd->vdev_guid; if ((aux = avl_find(avl, &search, &where)) != NULL) { aux->aux_count++; } else { aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); aux->aux_guid = vd->vdev_guid; aux->aux_count = 1; avl_insert(avl, aux, where); } } void spa_aux_remove(vdev_t *vd, avl_tree_t *avl) { spa_aux_t search; spa_aux_t *aux; avl_index_t where; search.aux_guid = vd->vdev_guid; aux = avl_find(avl, &search, &where); ASSERT(aux != NULL); if (--aux->aux_count == 0) { avl_remove(avl, aux); kmem_free(aux, sizeof (spa_aux_t)); } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { aux->aux_pool = 0ULL; } } boolean_t spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) { spa_aux_t search, *found; search.aux_guid = guid; found = avl_find(avl, &search, NULL); if (pool) { if (found) *pool = found->aux_pool; else *pool = 0ULL; } if (refcnt) { if (found) *refcnt = found->aux_count; else *refcnt = 0; } return (found != NULL); } void spa_aux_activate(vdev_t *vd, avl_tree_t *avl) { spa_aux_t search, *found; avl_index_t where; search.aux_guid = vd->vdev_guid; found = avl_find(avl, &search, &where); ASSERT(found != NULL); ASSERT(found->aux_pool == 0ULL); found->aux_pool = spa_guid(vd->vdev_spa); } /* * Spares are tracked globally due to the following constraints: * * - A spare may be part of multiple pools. * - A spare may be added to a pool even if it's actively in use within * another pool. * - A spare in use in any pool can only be the source of a replacement if * the target is a spare in the same pool. * * We keep track of all spares on the system through the use of a reference * counted AVL tree. When a vdev is added as a spare, or used as a replacement * spare, then we bump the reference count in the AVL tree. In addition, we set * the 'vdev_isspare' member to indicate that the device is a spare (active or * inactive). When a spare is made active (used to replace a device in the * pool), we also keep track of which pool its been made a part of. * * The 'spa_spare_lock' protects the AVL tree. These functions are normally * called under the spa_namespace lock as part of vdev reconfiguration. The * separate spare lock exists for the status query path, which does not need to * be completely consistent with respect to other vdev configuration changes. */ static int spa_spare_compare(const void *a, const void *b) { return (spa_aux_compare(a, b)); } void spa_spare_add(vdev_t *vd) { mutex_enter(&spa_spare_lock); ASSERT(!vd->vdev_isspare); spa_aux_add(vd, &spa_spare_avl); vd->vdev_isspare = B_TRUE; mutex_exit(&spa_spare_lock); } void spa_spare_remove(vdev_t *vd) { mutex_enter(&spa_spare_lock); ASSERT(vd->vdev_isspare); spa_aux_remove(vd, &spa_spare_avl); vd->vdev_isspare = B_FALSE; mutex_exit(&spa_spare_lock); } boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) { boolean_t found; mutex_enter(&spa_spare_lock); found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); mutex_exit(&spa_spare_lock); return (found); } void spa_spare_activate(vdev_t *vd) { mutex_enter(&spa_spare_lock); ASSERT(vd->vdev_isspare); spa_aux_activate(vd, &spa_spare_avl); mutex_exit(&spa_spare_lock); } /* * Level 2 ARC devices are tracked globally for the same reasons as spares. * Cache devices currently only support one pool per cache device, and so * for these devices the aux reference count is currently unused beyond 1. */ static int spa_l2cache_compare(const void *a, const void *b) { return (spa_aux_compare(a, b)); } void spa_l2cache_add(vdev_t *vd) { mutex_enter(&spa_l2cache_lock); ASSERT(!vd->vdev_isl2cache); spa_aux_add(vd, &spa_l2cache_avl); vd->vdev_isl2cache = B_TRUE; mutex_exit(&spa_l2cache_lock); } void spa_l2cache_remove(vdev_t *vd) { mutex_enter(&spa_l2cache_lock); ASSERT(vd->vdev_isl2cache); spa_aux_remove(vd, &spa_l2cache_avl); vd->vdev_isl2cache = B_FALSE; mutex_exit(&spa_l2cache_lock); } boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool) { boolean_t found; mutex_enter(&spa_l2cache_lock); found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); mutex_exit(&spa_l2cache_lock); return (found); } void spa_l2cache_activate(vdev_t *vd) { mutex_enter(&spa_l2cache_lock); ASSERT(vd->vdev_isl2cache); spa_aux_activate(vd, &spa_l2cache_avl); mutex_exit(&spa_l2cache_lock); } /* * ========================================================================== * SPA vdev locking * ========================================================================== */ /* * Lock the given spa_t for the purpose of adding or removing a vdev. * Grabs the global spa_namespace_lock plus the spa config lock for writing. * It returns the next transaction group for the spa_t. */ uint64_t spa_vdev_enter(spa_t *spa) { mutex_enter(&spa->spa_vdev_top_lock); mutex_enter(&spa_namespace_lock); return (spa_vdev_config_enter(spa)); } /* * Internal implementation for spa_vdev_enter(). Used when a vdev * operation requires multiple syncs (i.e. removing a device) while * keeping the spa_namespace_lock held. */ uint64_t spa_vdev_config_enter(spa_t *spa) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); return (spa_last_synced_txg(spa) + 1); } /* * Used in combination with spa_vdev_config_enter() to allow the syncing * of multiple transactions without releasing the spa_namespace_lock. */ void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); int config_changed = B_FALSE; ASSERT(txg > spa_last_synced_txg(spa)); spa->spa_pending_vdev = NULL; /* * Reassess the DTLs. */ vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { config_changed = B_TRUE; spa->spa_config_generation++; } /* * Verify the metaslab classes. */ ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); spa_config_exit(spa, SCL_ALL, spa); /* * Panic the system if the specified tag requires it. This * is useful for ensuring that configurations are updated * transactionally. */ if (zio_injection_enabled) zio_handle_panic_injection(spa, tag, 0); /* * Note: this txg_wait_synced() is important because it ensures * that there won't be more than one config change per txg. * This allows us to use the txg as the generation number. */ if (error == 0) txg_wait_synced(spa->spa_dsl_pool, txg); if (vd != NULL) { ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); vdev_free(vd); spa_config_exit(spa, SCL_ALL, spa); } /* * If the config changed, update the config cache. */ if (config_changed) spa_write_cachefile(spa, B_FALSE, B_TRUE); } /* * Unlock the spa_t after adding or removing a vdev. Besides undoing the * locking of spa_vdev_enter(), we also want make sure the transactions have * synced to disk, and then update the global configuration cache with the new * information. */ int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) { spa_vdev_config_exit(spa, vd, txg, error, FTAG); mutex_exit(&spa_namespace_lock); mutex_exit(&spa->spa_vdev_top_lock); return (error); } /* * Lock the given spa_t for the purpose of changing vdev state. */ void spa_vdev_state_enter(spa_t *spa, int oplocks) { int locks = SCL_STATE_ALL | oplocks; /* * Root pools may need to read of the underlying devfs filesystem * when opening up a vdev. Unfortunately if we're holding the * SCL_ZIO lock it will result in a deadlock when we try to issue * the read from the root filesystem. Instead we "prefetch" * the associated vnodes that we need prior to opening the * underlying devices and cache them so that we can prevent * any I/O when we are doing the actual open. */ if (spa_is_root(spa)) { int low = locks & ~(SCL_ZIO - 1); int high = locks & ~low; spa_config_enter(spa, high, spa, RW_WRITER); vdev_hold(spa->spa_root_vdev); spa_config_enter(spa, low, spa, RW_WRITER); } else { spa_config_enter(spa, locks, spa, RW_WRITER); } spa->spa_vdev_locks = locks; } int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) { boolean_t config_changed = B_FALSE; if (vd != NULL || error == 0) vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 0, 0, B_FALSE); if (vd != NULL) { vdev_state_dirty(vd->vdev_top); config_changed = B_TRUE; spa->spa_config_generation++; } if (spa_is_root(spa)) vdev_rele(spa->spa_root_vdev); ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); spa_config_exit(spa, spa->spa_vdev_locks, spa); /* * If anything changed, wait for it to sync. This ensures that, * from the system administrator's perspective, zpool(1M) commands * are synchronous. This is important for things like zpool offline: * when the command completes, you expect no further I/O from ZFS. */ if (vd != NULL) txg_wait_synced(spa->spa_dsl_pool, 0); /* * If the config changed, update the config cache. */ if (config_changed) { mutex_enter(&spa_namespace_lock); spa_write_cachefile(spa, B_FALSE, B_TRUE); mutex_exit(&spa_namespace_lock); } return (error); } /* * ========================================================================== * Miscellaneous functions * ========================================================================== */ void spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) { if (!nvlist_exists(spa->spa_label_features, feature)) { fnvlist_add_boolean(spa->spa_label_features, feature); /* * When we are creating the pool (tx_txg==TXG_INITIAL), we can't * dirty the vdev config because lock SCL_CONFIG is not held. * Thankfully, in this case we don't need to dirty the config * because it will be written out anyway when we finish * creating the pool. */ if (tx->tx_txg != TXG_INITIAL) vdev_config_dirty(spa->spa_root_vdev); } } void spa_deactivate_mos_feature(spa_t *spa, const char *feature) { if (nvlist_remove_all(spa->spa_label_features, feature) == 0) vdev_config_dirty(spa->spa_root_vdev); } /* * Rename a spa_t. */ int spa_rename(const char *name, const char *newname) { spa_t *spa; int err; /* * Lookup the spa_t and grab the config lock for writing. We need to * actually open the pool so that we can sync out the necessary labels. * It's OK to call spa_open() with the namespace lock held because we * allow recursive calls for other reasons. */ mutex_enter(&spa_namespace_lock); if ((err = spa_open(name, &spa, FTAG)) != 0) { mutex_exit(&spa_namespace_lock); return (err); } spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); avl_remove(&spa_namespace_avl, spa); (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name)); avl_add(&spa_namespace_avl, spa); /* * Sync all labels to disk with the new names by marking the root vdev * dirty and waiting for it to sync. It will pick up the new pool name * during the sync. */ vdev_config_dirty(spa->spa_root_vdev); spa_config_exit(spa, SCL_ALL, FTAG); txg_wait_synced(spa->spa_dsl_pool, 0); /* * Sync the updated config cache. */ spa_write_cachefile(spa, B_FALSE, B_TRUE); spa_close(spa, FTAG); mutex_exit(&spa_namespace_lock); return (0); } /* * Return the spa_t associated with given pool_guid, if it exists. If * device_guid is non-zero, determine whether the pool exists *and* contains * a device with the specified device_guid. */ spa_t * spa_by_guid(uint64_t pool_guid, uint64_t device_guid) { spa_t *spa; avl_tree_t *t = &spa_namespace_avl; ASSERT(MUTEX_HELD(&spa_namespace_lock)); for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { if (spa->spa_state == POOL_STATE_UNINITIALIZED) continue; if (spa->spa_root_vdev == NULL) continue; if (spa_guid(spa) == pool_guid) { if (device_guid == 0) break; if (vdev_lookup_by_guid(spa->spa_root_vdev, device_guid) != NULL) break; /* * Check any devices we may be in the process of adding. */ if (spa->spa_pending_vdev) { if (vdev_lookup_by_guid(spa->spa_pending_vdev, device_guid) != NULL) break; } } } return (spa); } /* * Determine whether a pool with the given pool_guid exists. */ boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) { return (spa_by_guid(pool_guid, device_guid) != NULL); } char * spa_strdup(const char *s) { size_t len; char *new; len = strlen(s); new = kmem_alloc(len + 1, KM_SLEEP); bcopy(s, new, len); new[len] = '\0'; return (new); } void spa_strfree(char *s) { kmem_free(s, strlen(s) + 1); } uint64_t spa_get_random(uint64_t range) { uint64_t r; ASSERT(range != 0); (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); return (r % range); } uint64_t spa_generate_guid(spa_t *spa) { uint64_t guid = spa_get_random(-1ULL); if (spa != NULL) { while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) guid = spa_get_random(-1ULL); } else { while (guid == 0 || spa_guid_exists(guid, 0)) guid = spa_get_random(-1ULL); } return (guid); } void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) { char type[256]; char *checksum = NULL; char *compress = NULL; if (bp != NULL) { if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { dmu_object_byteswap_t bswap = DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); (void) snprintf(type, sizeof (type), "bswap %s %s", DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? "metadata" : "data", dmu_ot_byteswap[bswap].ob_name); } else { (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, sizeof (type)); } if (!BP_IS_EMBEDDED(bp)) { checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; } compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; } SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum, compress); } void spa_freeze(spa_t *spa) { uint64_t freeze_txg = 0; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); if (spa->spa_freeze_txg == UINT64_MAX) { freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; spa->spa_freeze_txg = freeze_txg; } spa_config_exit(spa, SCL_ALL, FTAG); if (freeze_txg != 0) txg_wait_synced(spa_get_dsl(spa), freeze_txg); } void zfs_panic_recover(const char *fmt, ...) { va_list adx; va_start(adx, fmt); vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); va_end(adx); } /* * This is a stripped-down version of strtoull, suitable only for converting * lowercase hexadecimal numbers that don't overflow. */ uint64_t zfs_strtonum(const char *str, char **nptr) { uint64_t val = 0; char c; int digit; while ((c = *str) != '\0') { if (c >= '0' && c <= '9') digit = c - '0'; else if (c >= 'a' && c <= 'f') digit = 10 + c - 'a'; else break; val *= 16; val += digit; str++; } if (nptr) *nptr = (char *)str; return (val); } /* * ========================================================================== * Accessor functions * ========================================================================== */ boolean_t spa_shutting_down(spa_t *spa) { return (spa->spa_async_suspended); } dsl_pool_t * spa_get_dsl(spa_t *spa) { return (spa->spa_dsl_pool); } boolean_t spa_is_initializing(spa_t *spa) { return (spa->spa_is_initializing); } boolean_t spa_indirect_vdevs_loaded(spa_t *spa) { return (spa->spa_indirect_vdevs_loaded); } blkptr_t * spa_get_rootblkptr(spa_t *spa) { return (&spa->spa_ubsync.ub_rootbp); } void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) { spa->spa_uberblock.ub_rootbp = *bp; } void spa_altroot(spa_t *spa, char *buf, size_t buflen) { if (spa->spa_root == NULL) buf[0] = '\0'; else (void) strncpy(buf, spa->spa_root, buflen); } int spa_sync_pass(spa_t *spa) { return (spa->spa_sync_pass); } char * spa_name(spa_t *spa) { return (spa->spa_name); } uint64_t spa_guid(spa_t *spa) { dsl_pool_t *dp = spa_get_dsl(spa); uint64_t guid; /* * If we fail to parse the config during spa_load(), we can go through * the error path (which posts an ereport) and end up here with no root * vdev. We stash the original pool guid in 'spa_config_guid' to handle * this case. */ if (spa->spa_root_vdev == NULL) return (spa->spa_config_guid); guid = spa->spa_last_synced_guid != 0 ? spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; /* * Return the most recently synced out guid unless we're * in syncing context. */ if (dp && dsl_pool_sync_context(dp)) return (spa->spa_root_vdev->vdev_guid); else return (guid); } uint64_t spa_load_guid(spa_t *spa) { /* * This is a GUID that exists solely as a reference for the * purposes of the arc. It is generated at load time, and * is never written to persistent storage. */ return (spa->spa_load_guid); } uint64_t spa_last_synced_txg(spa_t *spa) { return (spa->spa_ubsync.ub_txg); } uint64_t spa_first_txg(spa_t *spa) { return (spa->spa_first_txg); } uint64_t spa_syncing_txg(spa_t *spa) { return (spa->spa_syncing_txg); } /* * Return the last txg where data can be dirtied. The final txgs * will be used to just clear out any deferred frees that remain. */ uint64_t spa_final_dirty_txg(spa_t *spa) { return (spa->spa_final_txg - TXG_DEFER_SIZE); } pool_state_t spa_state(spa_t *spa) { return (spa->spa_state); } spa_load_state_t spa_load_state(spa_t *spa) { return (spa->spa_load_state); } uint64_t spa_freeze_txg(spa_t *spa) { return (spa->spa_freeze_txg); } /* ARGSUSED */ uint64_t spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) { return (lsize * spa_asize_inflation); } /* * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%), * or at least 128MB, unless that would cause it to be more than half the * pool size. * * See the comment above spa_slop_shift for details. */ uint64_t spa_get_slop_space(spa_t *spa) { uint64_t space = spa_get_dspace(spa); return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop))); } uint64_t spa_get_dspace(spa_t *spa) { return (spa->spa_dspace); } void spa_update_dspace(spa_t *spa) { spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + ddt_get_dedup_dspace(spa); if (spa->spa_vdev_removal != NULL) { /* * We can't allocate from the removing device, so * subtract its size. This prevents the DMU/DSL from * filling up the (now smaller) pool while we are in the * middle of removing the device. * * Note that the DMU/DSL doesn't actually know or care * how much space is allocated (it does its own tracking * of how much space has been logically used). So it * doesn't matter that the data we are moving may be * allocated twice (on the old device and the new * device). */ vdev_t *vd = spa->spa_vdev_removal->svr_vdev; spa->spa_dspace -= spa_deflate(spa) ? vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; } } /* * Return the failure mode that has been set to this pool. The default * behavior will be to block all I/Os when a complete failure occurs. */ uint8_t spa_get_failmode(spa_t *spa) { return (spa->spa_failmode); } boolean_t spa_suspended(spa_t *spa) { return (spa->spa_suspended); } uint64_t spa_version(spa_t *spa) { return (spa->spa_ubsync.ub_version); } boolean_t spa_deflate(spa_t *spa) { return (spa->spa_deflate); } metaslab_class_t * spa_normal_class(spa_t *spa) { return (spa->spa_normal_class); } metaslab_class_t * spa_log_class(spa_t *spa) { return (spa->spa_log_class); } void spa_evicting_os_register(spa_t *spa, objset_t *os) { mutex_enter(&spa->spa_evicting_os_lock); list_insert_head(&spa->spa_evicting_os_list, os); mutex_exit(&spa->spa_evicting_os_lock); } void spa_evicting_os_deregister(spa_t *spa, objset_t *os) { mutex_enter(&spa->spa_evicting_os_lock); list_remove(&spa->spa_evicting_os_list, os); cv_broadcast(&spa->spa_evicting_os_cv); mutex_exit(&spa->spa_evicting_os_lock); } void spa_evicting_os_wait(spa_t *spa) { mutex_enter(&spa->spa_evicting_os_lock); while (!list_is_empty(&spa->spa_evicting_os_list)) cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); mutex_exit(&spa->spa_evicting_os_lock); dmu_buf_user_evict_wait(); } int spa_max_replication(spa_t *spa) { /* * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to * handle BPs with more than one DVA allocated. Set our max * replication level accordingly. */ if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) return (1); return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); } int spa_prev_software_version(spa_t *spa) { return (spa->spa_prev_software_version); } uint64_t spa_deadman_synctime(spa_t *spa) { return (spa->spa_deadman_synctime); } uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva) { uint64_t asize = DVA_GET_ASIZE(dva); uint64_t dsize = asize; ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); if (asize != 0 && spa->spa_deflate) { uint64_t vdev = DVA_GET_VDEV(dva); vdev_t *vd = vdev_lookup_top(spa, vdev); if (vd == NULL) { panic( "dva_get_dsize_sync(): bad DVA %llu:%llu", (u_longlong_t)vdev, (u_longlong_t)asize); } dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; } return (dsize); } uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) { uint64_t dsize = 0; for (int d = 0; d < BP_GET_NDVAS(bp); d++) dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); return (dsize); } uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp) { uint64_t dsize = 0; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); for (int d = 0; d < BP_GET_NDVAS(bp); d++) dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); spa_config_exit(spa, SCL_VDEV, FTAG); return (dsize); } /* * ========================================================================== * Initialization and Termination * ========================================================================== */ static int spa_name_compare(const void *a1, const void *a2) { const spa_t *s1 = a1; const spa_t *s2 = a2; int s; s = strcmp(s1->spa_name, s2->spa_name); if (s > 0) return (1); if (s < 0) return (-1); return (0); } int spa_busy(void) { return (spa_active_count); } void spa_boot_init() { spa_config_load(); } #ifdef _KERNEL EVENTHANDLER_DEFINE(mountroot, spa_boot_init, NULL, 0); #endif void spa_init(int mode) { mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), offsetof(spa_t, spa_avl)); avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), offsetof(spa_aux_t, aux_avl)); avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), offsetof(spa_aux_t, aux_avl)); spa_mode_global = mode; #ifdef illumos #ifdef _KERNEL spa_arch_init(); #else if (spa_mode_global != FREAD && dprintf_find_string("watch")) { arc_procfd = open("/proc/self/ctl", O_WRONLY); if (arc_procfd == -1) { perror("could not enable watchpoints: " "opening /proc/self/ctl failed: "); } else { arc_watch = B_TRUE; } } #endif #endif /* illumos */ refcount_sysinit(); unique_init(); range_tree_init(); metaslab_alloc_trace_init(); zio_init(); lz4_init(); dmu_init(); zil_init(); vdev_cache_stat_init(); vdev_file_init(); zfs_prop_init(); zpool_prop_init(); zpool_feature_init(); spa_config_load(); l2arc_start(); #ifndef illumos #ifdef _KERNEL zfs_deadman_init(); #endif #endif /* !illumos */ } void spa_fini(void) { l2arc_stop(); spa_evict_all(); vdev_file_fini(); vdev_cache_stat_fini(); zil_fini(); dmu_fini(); lz4_fini(); zio_fini(); metaslab_alloc_trace_fini(); range_tree_fini(); unique_fini(); refcount_fini(); avl_destroy(&spa_namespace_avl); avl_destroy(&spa_spare_avl); avl_destroy(&spa_l2cache_avl); cv_destroy(&spa_namespace_cv); mutex_destroy(&spa_namespace_lock); mutex_destroy(&spa_spare_lock); mutex_destroy(&spa_l2cache_lock); } /* * Return whether this pool has slogs. No locking needed. * It's not a problem if the wrong answer is returned as it's only for * performance and not correctness */ boolean_t spa_has_slogs(spa_t *spa) { return (spa->spa_log_class->mc_rotor != NULL); } spa_log_state_t spa_get_log_state(spa_t *spa) { return (spa->spa_log_state); } void spa_set_log_state(spa_t *spa, spa_log_state_t state) { spa->spa_log_state = state; } boolean_t spa_is_root(spa_t *spa) { return (spa->spa_is_root); } boolean_t spa_writeable(spa_t *spa) { - return (!!(spa->spa_mode & FWRITE)); + return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config); } /* * Returns true if there is a pending sync task in any of the current * syncing txg, the current quiescing txg, or the current open txg. */ boolean_t spa_has_pending_synctask(spa_t *spa) { return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks)); } int spa_mode(spa_t *spa) { return (spa->spa_mode); } uint64_t spa_bootfs(spa_t *spa) { return (spa->spa_bootfs); } uint64_t spa_delegation(spa_t *spa) { return (spa->spa_delegation); } objset_t * spa_meta_objset(spa_t *spa) { return (spa->spa_meta_objset); } enum zio_checksum spa_dedup_checksum(spa_t *spa) { return (spa->spa_dedup_checksum); } /* * Reset pool scan stat per scan pass (or reboot). */ void spa_scan_stat_init(spa_t *spa) { /* data not stored on disk */ spa->spa_scan_pass_start = gethrestime_sec(); if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; else spa->spa_scan_pass_scrub_pause = 0; spa->spa_scan_pass_scrub_spent_paused = 0; spa->spa_scan_pass_exam = 0; vdev_scan_stat_init(spa->spa_root_vdev); } /* * Get scan stats for zpool status reports */ int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) { dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) return (SET_ERROR(ENOENT)); bzero(ps, sizeof (pool_scan_stat_t)); /* data stored on disk */ ps->pss_func = scn->scn_phys.scn_func; ps->pss_start_time = scn->scn_phys.scn_start_time; ps->pss_end_time = scn->scn_phys.scn_end_time; ps->pss_to_examine = scn->scn_phys.scn_to_examine; ps->pss_examined = scn->scn_phys.scn_examined; ps->pss_to_process = scn->scn_phys.scn_to_process; ps->pss_processed = scn->scn_phys.scn_processed; ps->pss_errors = scn->scn_phys.scn_errors; ps->pss_state = scn->scn_phys.scn_state; /* data not stored on disk */ ps->pss_pass_start = spa->spa_scan_pass_start; ps->pss_pass_exam = spa->spa_scan_pass_exam; ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; return (0); } boolean_t spa_debug_enabled(spa_t *spa) { return (spa->spa_debug); } int spa_maxblocksize(spa_t *spa) { if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) return (SPA_MAXBLOCKSIZE); else return (SPA_OLD_MAXBLOCKSIZE); } /* * Returns the txg that the last device removal completed. No indirect mappings * have been added since this txg. */ uint64_t spa_get_last_removal_txg(spa_t *spa) { uint64_t vdevid; uint64_t ret = -1ULL; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); /* * sr_prev_indirect_vdev is only modified while holding all the * config locks, so it is sufficient to hold SCL_VDEV as reader when * examining it. */ vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; while (vdevid != -1ULL) { vdev_t *vd = vdev_lookup_top(spa, vdevid); vdev_indirect_births_t *vib = vd->vdev_indirect_births; ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); /* * If the removal did not remap any data, we don't care. */ if (vdev_indirect_births_count(vib) != 0) { ret = vdev_indirect_births_last_entry_txg(vib); break; } vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; } spa_config_exit(spa, SCL_VDEV, FTAG); IMPLY(ret != -1ULL, spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); return (ret); +} + +boolean_t +spa_trust_config(spa_t *spa) +{ + return (spa->spa_trust_config); +} + +uint64_t +spa_missing_tvds_allowed(spa_t *spa) +{ + return (spa->spa_missing_tvds_allowed); +} + +void +spa_set_missing_tvds(spa_t *spa, uint64_t missing) +{ + spa->spa_missing_tvds = missing; } Index: head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/spa.h =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/spa.h (revision 329797) +++ head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/spa.h (revision 329798) @@ -1,947 +1,953 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2018 by Delphix. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright 2013 Saso Kiselkov. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2017 Joyent, Inc. * Copyright (c) 2017 Datto Inc. */ #ifndef _SYS_SPA_H #define _SYS_SPA_H #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif /* * Forward references that lots of things need. */ typedef struct spa spa_t; typedef struct vdev vdev_t; typedef struct metaslab metaslab_t; typedef struct metaslab_group metaslab_group_t; typedef struct metaslab_class metaslab_class_t; typedef struct zio zio_t; typedef struct zilog zilog_t; typedef struct spa_aux_vdev spa_aux_vdev_t; typedef struct ddt ddt_t; typedef struct ddt_entry ddt_entry_t; struct dsl_pool; struct dsl_dataset; /* * General-purpose 32-bit and 64-bit bitfield encodings. */ #define BF32_DECODE(x, low, len) P2PHASE((x) >> (low), 1U << (len)) #define BF64_DECODE(x, low, len) P2PHASE((x) >> (low), 1ULL << (len)) #define BF32_ENCODE(x, low, len) (P2PHASE((x), 1U << (len)) << (low)) #define BF64_ENCODE(x, low, len) (P2PHASE((x), 1ULL << (len)) << (low)) #define BF32_GET(x, low, len) BF32_DECODE(x, low, len) #define BF64_GET(x, low, len) BF64_DECODE(x, low, len) #define BF32_SET(x, low, len, val) do { \ ASSERT3U(val, <, 1U << (len)); \ ASSERT3U(low + len, <=, 32); \ (x) ^= BF32_ENCODE((x >> low) ^ (val), low, len); \ _NOTE(CONSTCOND) } while (0) #define BF64_SET(x, low, len, val) do { \ ASSERT3U(val, <, 1ULL << (len)); \ ASSERT3U(low + len, <=, 64); \ ((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len)); \ _NOTE(CONSTCOND) } while (0) #define BF32_GET_SB(x, low, len, shift, bias) \ ((BF32_GET(x, low, len) + (bias)) << (shift)) #define BF64_GET_SB(x, low, len, shift, bias) \ ((BF64_GET(x, low, len) + (bias)) << (shift)) #define BF32_SET_SB(x, low, len, shift, bias, val) do { \ ASSERT(IS_P2ALIGNED(val, 1U << shift)); \ ASSERT3S((val) >> (shift), >=, bias); \ BF32_SET(x, low, len, ((val) >> (shift)) - (bias)); \ _NOTE(CONSTCOND) } while (0) #define BF64_SET_SB(x, low, len, shift, bias, val) do { \ ASSERT(IS_P2ALIGNED(val, 1ULL << shift)); \ ASSERT3S((val) >> (shift), >=, bias); \ BF64_SET(x, low, len, ((val) >> (shift)) - (bias)); \ _NOTE(CONSTCOND) } while (0) /* * We currently support block sizes from 512 bytes to 16MB. * The benefits of larger blocks, and thus larger IO, need to be weighed * against the cost of COWing a giant block to modify one byte, and the * large latency of reading or writing a large block. * * Note that although blocks up to 16MB are supported, the recordsize * property can not be set larger than zfs_max_recordsize (default 1MB). * See the comment near zfs_max_recordsize in dsl_dataset.c for details. * * Note that although the LSIZE field of the blkptr_t can store sizes up * to 32MB, the dnode's dn_datablkszsec can only store sizes up to * 32MB - 512 bytes. Therefore, we limit SPA_MAXBLOCKSIZE to 16MB. */ #define SPA_MINBLOCKSHIFT 9 #define SPA_OLD_MAXBLOCKSHIFT 17 #define SPA_MAXBLOCKSHIFT 24 #define SPA_MINBLOCKSIZE (1ULL << SPA_MINBLOCKSHIFT) #define SPA_OLD_MAXBLOCKSIZE (1ULL << SPA_OLD_MAXBLOCKSHIFT) #define SPA_MAXBLOCKSIZE (1ULL << SPA_MAXBLOCKSHIFT) /* * Default maximum supported logical ashift. * * The current 8k allocation block size limit is due to the 8k * aligned/sized operations performed by vdev_probe() on * vdev_label->vl_pad2. Using another "safe region" for these tests * would allow the limit to be raised to 16k, at the expense of * only having 8 available uberblocks in the label area. */ #define SPA_MAXASHIFT 13 /* * Default minimum supported logical ashift. */ #define SPA_MINASHIFT SPA_MINBLOCKSHIFT /* * Size of block to hold the configuration data (a packed nvlist) */ #define SPA_CONFIG_BLOCKSIZE (1ULL << 14) /* * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB. * The ASIZE encoding should be at least 64 times larger (6 more bits) * to support up to 4-way RAID-Z mirror mode with worst-case gang block * overhead, three DVAs per bp, plus one more bit in case we do anything * else that expands the ASIZE. */ #define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */ #define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */ #define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */ #define SPA_COMPRESSBITS 7 /* * All SPA data is represented by 128-bit data virtual addresses (DVAs). * The members of the dva_t should be considered opaque outside the SPA. */ typedef struct dva { uint64_t dva_word[2]; } dva_t; /* * Each block has a 256-bit checksum -- strong enough for cryptographic hashes. */ typedef struct zio_cksum { uint64_t zc_word[4]; } zio_cksum_t; /* * Some checksums/hashes need a 256-bit initialization salt. This salt is kept * secret and is suitable for use in MAC algorithms as the key. */ typedef struct zio_cksum_salt { uint8_t zcs_bytes[32]; } zio_cksum_salt_t; /* * Each block is described by its DVAs, time of birth, checksum, etc. * The word-by-word, bit-by-bit layout of the blkptr is as follows: * * 64 56 48 40 32 24 16 8 0 * +-------+-------+-------+-------+-------+-------+-------+-------+ * 0 | vdev1 | GRID | ASIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 1 |G| offset1 | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 2 | vdev2 | GRID | ASIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 3 |G| offset2 | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 4 | vdev3 | GRID | ASIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 5 |G| offset3 | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 7 | padding | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 8 | padding | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 9 | physical birth txg | * +-------+-------+-------+-------+-------+-------+-------+-------+ * a | logical birth txg | * +-------+-------+-------+-------+-------+-------+-------+-------+ * b | fill count | * +-------+-------+-------+-------+-------+-------+-------+-------+ * c | checksum[0] | * +-------+-------+-------+-------+-------+-------+-------+-------+ * d | checksum[1] | * +-------+-------+-------+-------+-------+-------+-------+-------+ * e | checksum[2] | * +-------+-------+-------+-------+-------+-------+-------+-------+ * f | checksum[3] | * +-------+-------+-------+-------+-------+-------+-------+-------+ * * Legend: * * vdev virtual device ID * offset offset into virtual device * LSIZE logical size * PSIZE physical size (after compression) * ASIZE allocated size (including RAID-Z parity and gang block headers) * GRID RAID-Z layout information (reserved for future use) * cksum checksum function * comp compression function * G gang block indicator * B byteorder (endianness) * D dedup * X encryption (on version 30, which is not supported) * E blkptr_t contains embedded data (see below) * lvl level of indirection * type DMU object type * phys birth txg when dva[0] was written; zero if same as logical birth txg * note that typically all the dva's would be written in this * txg, but they could be different if they were moved by * device removal. * log. birth transaction group in which the block was logically born * fill count number of non-zero blocks under this bp * checksum[4] 256-bit checksum of the data this bp describes */ /* * "Embedded" blkptr_t's don't actually point to a block, instead they * have a data payload embedded in the blkptr_t itself. See the comment * in blkptr.c for more details. * * The blkptr_t is laid out as follows: * * 64 56 48 40 32 24 16 8 0 * +-------+-------+-------+-------+-------+-------+-------+-------+ * 0 | payload | * 1 | payload | * 2 | payload | * 3 | payload | * 4 | payload | * 5 | payload | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 6 |BDX|lvl| type | etype |E| comp| PSIZE| LSIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 7 | payload | * 8 | payload | * 9 | payload | * +-------+-------+-------+-------+-------+-------+-------+-------+ * a | logical birth txg | * +-------+-------+-------+-------+-------+-------+-------+-------+ * b | payload | * c | payload | * d | payload | * e | payload | * f | payload | * +-------+-------+-------+-------+-------+-------+-------+-------+ * * Legend: * * payload contains the embedded data * B (byteorder) byteorder (endianness) * D (dedup) padding (set to zero) * X encryption (set to zero; see above) * E (embedded) set to one * lvl indirection level * type DMU object type * etype how to interpret embedded data (BP_EMBEDDED_TYPE_*) * comp compression function of payload * PSIZE size of payload after compression, in bytes * LSIZE logical size of payload, in bytes * note that 25 bits is enough to store the largest * "normal" BP's LSIZE (2^16 * 2^9) in bytes * log. birth transaction group in which the block was logically born * * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded * bp's they are stored in units of SPA_MINBLOCKSHIFT. * Generally, the generic BP_GET_*() macros can be used on embedded BP's. * The B, D, X, lvl, type, and comp fields are stored the same as with normal * BP's so the BP_SET_* macros can be used with them. etype, PSIZE, LSIZE must * be set with the BPE_SET_* macros. BP_SET_EMBEDDED() should be called before * other macros, as they assert that they are only used on BP's of the correct * "embedded-ness". */ #define BPE_GET_ETYPE(bp) \ (ASSERT(BP_IS_EMBEDDED(bp)), \ BF64_GET((bp)->blk_prop, 40, 8)) #define BPE_SET_ETYPE(bp, t) do { \ ASSERT(BP_IS_EMBEDDED(bp)); \ BF64_SET((bp)->blk_prop, 40, 8, t); \ _NOTE(CONSTCOND) } while (0) #define BPE_GET_LSIZE(bp) \ (ASSERT(BP_IS_EMBEDDED(bp)), \ BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1)) #define BPE_SET_LSIZE(bp, x) do { \ ASSERT(BP_IS_EMBEDDED(bp)); \ BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \ _NOTE(CONSTCOND) } while (0) #define BPE_GET_PSIZE(bp) \ (ASSERT(BP_IS_EMBEDDED(bp)), \ BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1)) #define BPE_SET_PSIZE(bp, x) do { \ ASSERT(BP_IS_EMBEDDED(bp)); \ BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \ _NOTE(CONSTCOND) } while (0) typedef enum bp_embedded_type { BP_EMBEDDED_TYPE_DATA, BP_EMBEDDED_TYPE_RESERVED, /* Reserved for an unintegrated feature. */ NUM_BP_EMBEDDED_TYPES = BP_EMBEDDED_TYPE_RESERVED } bp_embedded_type_t; #define BPE_NUM_WORDS 14 #define BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t)) #define BPE_IS_PAYLOADWORD(bp, wp) \ ((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth) #define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */ #define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */ +#define SPA_SYNC_MIN_VDEVS 3 /* min vdevs to update during sync */ /* * A block is a hole when it has either 1) never been written to, or * 2) is zero-filled. In both cases, ZFS can return all zeroes for all reads * without physically allocating disk space. Holes are represented in the * blkptr_t structure by zeroed blk_dva. Correct checking for holes is * done through the BP_IS_HOLE macro. For holes, the logical size, level, * DMU object type, and birth times are all also stored for holes that * were written to at some point (i.e. were punched after having been filled). */ typedef struct blkptr { dva_t blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */ uint64_t blk_prop; /* size, compression, type, etc */ uint64_t blk_pad[2]; /* Extra space for the future */ uint64_t blk_phys_birth; /* txg when block was allocated */ uint64_t blk_birth; /* transaction group at birth */ uint64_t blk_fill; /* fill count */ zio_cksum_t blk_cksum; /* 256-bit checksum */ } blkptr_t; /* * Macros to get and set fields in a bp or DVA. */ #define DVA_GET_ASIZE(dva) \ BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0) #define DVA_SET_ASIZE(dva, x) \ BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \ SPA_MINBLOCKSHIFT, 0, x) #define DVA_GET_GRID(dva) BF64_GET((dva)->dva_word[0], 24, 8) #define DVA_SET_GRID(dva, x) BF64_SET((dva)->dva_word[0], 24, 8, x) #define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, 32) #define DVA_SET_VDEV(dva, x) BF64_SET((dva)->dva_word[0], 32, 32, x) #define DVA_GET_OFFSET(dva) \ BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0) #define DVA_SET_OFFSET(dva, x) \ BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x) #define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1) #define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x) #define BP_GET_LSIZE(bp) \ (BP_IS_EMBEDDED(bp) ? \ (BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \ BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1)) #define BP_SET_LSIZE(bp, x) do { \ ASSERT(!BP_IS_EMBEDDED(bp)); \ BF64_SET_SB((bp)->blk_prop, \ 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \ _NOTE(CONSTCOND) } while (0) #define BP_GET_PSIZE(bp) \ (BP_IS_EMBEDDED(bp) ? 0 : \ BF64_GET_SB((bp)->blk_prop, 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1)) #define BP_SET_PSIZE(bp, x) do { \ ASSERT(!BP_IS_EMBEDDED(bp)); \ BF64_SET_SB((bp)->blk_prop, \ 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \ _NOTE(CONSTCOND) } while (0) #define BP_GET_COMPRESS(bp) \ BF64_GET((bp)->blk_prop, 32, SPA_COMPRESSBITS) #define BP_SET_COMPRESS(bp, x) \ BF64_SET((bp)->blk_prop, 32, SPA_COMPRESSBITS, x) #define BP_IS_EMBEDDED(bp) BF64_GET((bp)->blk_prop, 39, 1) #define BP_SET_EMBEDDED(bp, x) BF64_SET((bp)->blk_prop, 39, 1, x) #define BP_GET_CHECKSUM(bp) \ (BP_IS_EMBEDDED(bp) ? ZIO_CHECKSUM_OFF : \ BF64_GET((bp)->blk_prop, 40, 8)) #define BP_SET_CHECKSUM(bp, x) do { \ ASSERT(!BP_IS_EMBEDDED(bp)); \ BF64_SET((bp)->blk_prop, 40, 8, x); \ _NOTE(CONSTCOND) } while (0) #define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8) #define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x) #define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5) #define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x) #define BP_GET_DEDUP(bp) BF64_GET((bp)->blk_prop, 62, 1) #define BP_SET_DEDUP(bp, x) BF64_SET((bp)->blk_prop, 62, 1, x) #define BP_GET_BYTEORDER(bp) BF64_GET((bp)->blk_prop, 63, 1) #define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x) #define BP_PHYSICAL_BIRTH(bp) \ (BP_IS_EMBEDDED(bp) ? 0 : \ (bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth) #define BP_SET_BIRTH(bp, logical, physical) \ { \ ASSERT(!BP_IS_EMBEDDED(bp)); \ (bp)->blk_birth = (logical); \ (bp)->blk_phys_birth = ((logical) == (physical) ? 0 : (physical)); \ } #define BP_GET_FILL(bp) (BP_IS_EMBEDDED(bp) ? 1 : (bp)->blk_fill) #define BP_IS_METADATA(bp) \ (BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) #define BP_GET_ASIZE(bp) \ (BP_IS_EMBEDDED(bp) ? 0 : \ DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \ DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ DVA_GET_ASIZE(&(bp)->blk_dva[2])) #define BP_GET_UCSIZE(bp) \ (BP_IS_METADATA(bp) ? BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp)) #define BP_GET_NDVAS(bp) \ (BP_IS_EMBEDDED(bp) ? 0 : \ !!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \ !!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ !!DVA_GET_ASIZE(&(bp)->blk_dva[2])) #define BP_COUNT_GANG(bp) \ (BP_IS_EMBEDDED(bp) ? 0 : \ (DVA_GET_GANG(&(bp)->blk_dva[0]) + \ DVA_GET_GANG(&(bp)->blk_dva[1]) + \ DVA_GET_GANG(&(bp)->blk_dva[2]))) #define DVA_EQUAL(dva1, dva2) \ ((dva1)->dva_word[1] == (dva2)->dva_word[1] && \ (dva1)->dva_word[0] == (dva2)->dva_word[0]) #define BP_EQUAL(bp1, bp2) \ (BP_PHYSICAL_BIRTH(bp1) == BP_PHYSICAL_BIRTH(bp2) && \ (bp1)->blk_birth == (bp2)->blk_birth && \ DVA_EQUAL(&(bp1)->blk_dva[0], &(bp2)->blk_dva[0]) && \ DVA_EQUAL(&(bp1)->blk_dva[1], &(bp2)->blk_dva[1]) && \ DVA_EQUAL(&(bp1)->blk_dva[2], &(bp2)->blk_dva[2])) #define ZIO_CHECKSUM_EQUAL(zc1, zc2) \ (0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \ ((zc1).zc_word[1] - (zc2).zc_word[1]) | \ ((zc1).zc_word[2] - (zc2).zc_word[2]) | \ ((zc1).zc_word[3] - (zc2).zc_word[3]))) #define ZIO_CHECKSUM_IS_ZERO(zc) \ (0 == ((zc)->zc_word[0] | (zc)->zc_word[1] | \ (zc)->zc_word[2] | (zc)->zc_word[3])) #define ZIO_CHECKSUM_BSWAP(zcp) \ { \ (zcp)->zc_word[0] = BSWAP_64((zcp)->zc_word[0]); \ (zcp)->zc_word[1] = BSWAP_64((zcp)->zc_word[1]); \ (zcp)->zc_word[2] = BSWAP_64((zcp)->zc_word[2]); \ (zcp)->zc_word[3] = BSWAP_64((zcp)->zc_word[3]); \ } #define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0) #define ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3) \ { \ (zcp)->zc_word[0] = w0; \ (zcp)->zc_word[1] = w1; \ (zcp)->zc_word[2] = w2; \ (zcp)->zc_word[3] = w3; \ } #define BP_IDENTITY(bp) (ASSERT(!BP_IS_EMBEDDED(bp)), &(bp)->blk_dva[0]) #define BP_IS_GANG(bp) \ (BP_IS_EMBEDDED(bp) ? B_FALSE : DVA_GET_GANG(BP_IDENTITY(bp))) #define DVA_IS_EMPTY(dva) ((dva)->dva_word[0] == 0ULL && \ (dva)->dva_word[1] == 0ULL) #define BP_IS_HOLE(bp) \ (!BP_IS_EMBEDDED(bp) && DVA_IS_EMPTY(BP_IDENTITY(bp))) /* BP_IS_RAIDZ(bp) assumes no block compression */ #define BP_IS_RAIDZ(bp) (DVA_GET_ASIZE(&(bp)->blk_dva[0]) > \ BP_GET_PSIZE(bp)) #define BP_ZERO(bp) \ { \ (bp)->blk_dva[0].dva_word[0] = 0; \ (bp)->blk_dva[0].dva_word[1] = 0; \ (bp)->blk_dva[1].dva_word[0] = 0; \ (bp)->blk_dva[1].dva_word[1] = 0; \ (bp)->blk_dva[2].dva_word[0] = 0; \ (bp)->blk_dva[2].dva_word[1] = 0; \ (bp)->blk_prop = 0; \ (bp)->blk_pad[0] = 0; \ (bp)->blk_pad[1] = 0; \ (bp)->blk_phys_birth = 0; \ (bp)->blk_birth = 0; \ (bp)->blk_fill = 0; \ ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \ } #if BYTE_ORDER == _BIG_ENDIAN #define ZFS_HOST_BYTEORDER (0ULL) #else #define ZFS_HOST_BYTEORDER (1ULL) #endif #define BP_SHOULD_BYTESWAP(bp) (BP_GET_BYTEORDER(bp) != ZFS_HOST_BYTEORDER) #define BP_SPRINTF_LEN 320 /* * This macro allows code sharing between zfs, libzpool, and mdb. * 'func' is either snprintf() or mdb_snprintf(). * 'ws' (whitespace) can be ' ' for single-line format, '\n' for multi-line. */ #define SNPRINTF_BLKPTR(func, ws, buf, size, bp, type, checksum, compress) \ { \ static const char *copyname[] = \ { "zero", "single", "double", "triple" }; \ int len = 0; \ int copies = 0; \ \ if (bp == NULL) { \ len += func(buf + len, size - len, ""); \ } else if (BP_IS_HOLE(bp)) { \ len += func(buf + len, size - len, \ "HOLE [L%llu %s] " \ "size=%llxL birth=%lluL", \ (u_longlong_t)BP_GET_LEVEL(bp), \ type, \ (u_longlong_t)BP_GET_LSIZE(bp), \ (u_longlong_t)bp->blk_birth); \ } else if (BP_IS_EMBEDDED(bp)) { \ len = func(buf + len, size - len, \ "EMBEDDED [L%llu %s] et=%u %s " \ "size=%llxL/%llxP birth=%lluL", \ (u_longlong_t)BP_GET_LEVEL(bp), \ type, \ (int)BPE_GET_ETYPE(bp), \ compress, \ (u_longlong_t)BPE_GET_LSIZE(bp), \ (u_longlong_t)BPE_GET_PSIZE(bp), \ (u_longlong_t)bp->blk_birth); \ } else { \ for (int d = 0; d < BP_GET_NDVAS(bp); d++) { \ const dva_t *dva = &bp->blk_dva[d]; \ if (DVA_IS_VALID(dva)) \ copies++; \ len += func(buf + len, size - len, \ "DVA[%d]=<%llu:%llx:%llx>%c", d, \ (u_longlong_t)DVA_GET_VDEV(dva), \ (u_longlong_t)DVA_GET_OFFSET(dva), \ (u_longlong_t)DVA_GET_ASIZE(dva), \ ws); \ } \ if (BP_IS_GANG(bp) && \ DVA_GET_ASIZE(&bp->blk_dva[2]) <= \ DVA_GET_ASIZE(&bp->blk_dva[1]) / 2) \ copies--; \ len += func(buf + len, size - len, \ "[L%llu %s] %s %s %s %s %s %s%c" \ "size=%llxL/%llxP birth=%lluL/%lluP fill=%llu%c" \ "cksum=%llx:%llx:%llx:%llx", \ (u_longlong_t)BP_GET_LEVEL(bp), \ type, \ checksum, \ compress, \ BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", \ BP_IS_GANG(bp) ? "gang" : "contiguous", \ BP_GET_DEDUP(bp) ? "dedup" : "unique", \ copyname[copies], \ ws, \ (u_longlong_t)BP_GET_LSIZE(bp), \ (u_longlong_t)BP_GET_PSIZE(bp), \ (u_longlong_t)bp->blk_birth, \ (u_longlong_t)BP_PHYSICAL_BIRTH(bp), \ (u_longlong_t)BP_GET_FILL(bp), \ ws, \ (u_longlong_t)bp->blk_cksum.zc_word[0], \ (u_longlong_t)bp->blk_cksum.zc_word[1], \ (u_longlong_t)bp->blk_cksum.zc_word[2], \ (u_longlong_t)bp->blk_cksum.zc_word[3]); \ } \ ASSERT(len < size); \ } #define BP_GET_BUFC_TYPE(bp) \ (BP_IS_METADATA(bp) ? ARC_BUFC_METADATA : ARC_BUFC_DATA) typedef enum spa_import_type { SPA_IMPORT_EXISTING, SPA_IMPORT_ASSEMBLE } spa_import_type_t; /* state manipulation functions */ extern int spa_open(const char *pool, spa_t **, void *tag); extern int spa_open_rewind(const char *pool, spa_t **, void *tag, nvlist_t *policy, nvlist_t **config); extern int spa_get_stats(const char *pool, nvlist_t **config, char *altroot, size_t buflen); extern int spa_create(const char *pool, nvlist_t *config, nvlist_t *props, nvlist_t *zplprops); #ifdef illumos extern int spa_import_rootpool(char *devpath, char *devid); #else extern int spa_import_rootpool(const char *name); #endif extern int spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags); extern nvlist_t *spa_tryimport(nvlist_t *tryconfig); extern int spa_destroy(char *pool); extern int spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, boolean_t hardforce); extern int spa_reset(char *pool); extern void spa_async_request(spa_t *spa, int flag); extern void spa_async_unrequest(spa_t *spa, int flag); extern void spa_async_suspend(spa_t *spa); extern void spa_async_resume(spa_t *spa); extern spa_t *spa_inject_addref(char *pool); extern void spa_inject_delref(spa_t *spa); extern void spa_scan_stat_init(spa_t *spa); extern int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps); #define SPA_ASYNC_CONFIG_UPDATE 0x01 #define SPA_ASYNC_REMOVE 0x02 #define SPA_ASYNC_PROBE 0x04 #define SPA_ASYNC_RESILVER_DONE 0x08 #define SPA_ASYNC_RESILVER 0x10 #define SPA_ASYNC_AUTOEXPAND 0x20 #define SPA_ASYNC_REMOVE_DONE 0x40 #define SPA_ASYNC_REMOVE_STOP 0x80 /* * Controls the behavior of spa_vdev_remove(). */ #define SPA_REMOVE_UNSPARE 0x01 #define SPA_REMOVE_DONE 0x02 /* device manipulation */ extern int spa_vdev_add(spa_t *spa, nvlist_t *nvroot); extern int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing); extern int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done); extern int spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare); extern boolean_t spa_vdev_remove_active(spa_t *spa); extern int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath); extern int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru); extern int spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, nvlist_t *props, boolean_t exp); /* spare state (which is global across all pools) */ extern void spa_spare_add(vdev_t *vd); extern void spa_spare_remove(vdev_t *vd); extern boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt); extern void spa_spare_activate(vdev_t *vd); /* L2ARC state (which is global across all pools) */ extern void spa_l2cache_add(vdev_t *vd); extern void spa_l2cache_remove(vdev_t *vd); extern boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool); extern void spa_l2cache_activate(vdev_t *vd); extern void spa_l2cache_drop(spa_t *spa); /* scanning */ extern int spa_scan(spa_t *spa, pool_scan_func_t func); extern int spa_scan_stop(spa_t *spa); extern int spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t flag); /* spa syncing */ extern void spa_sync(spa_t *spa, uint64_t txg); /* only for DMU use */ extern void spa_sync_allpools(void); /* spa namespace global mutex */ extern kmutex_t spa_namespace_lock; /* * SPA configuration functions in spa_config.c */ #define SPA_CONFIG_UPDATE_POOL 0 #define SPA_CONFIG_UPDATE_VDEVS 1 extern void spa_write_cachefile(spa_t *, boolean_t, boolean_t); extern void spa_config_load(void); extern nvlist_t *spa_all_configs(uint64_t *); extern void spa_config_set(spa_t *spa, nvlist_t *config); extern nvlist_t *spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats); extern void spa_config_update(spa_t *spa, int what); /* * Miscellaneous SPA routines in spa_misc.c */ /* Namespace manipulation */ extern spa_t *spa_lookup(const char *name); extern spa_t *spa_add(const char *name, nvlist_t *config, const char *altroot); extern void spa_remove(spa_t *spa); extern spa_t *spa_next(spa_t *prev); /* Refcount functions */ extern void spa_open_ref(spa_t *spa, void *tag); extern void spa_close(spa_t *spa, void *tag); extern void spa_async_close(spa_t *spa, void *tag); extern boolean_t spa_refcount_zero(spa_t *spa); #define SCL_NONE 0x00 #define SCL_CONFIG 0x01 #define SCL_STATE 0x02 #define SCL_L2ARC 0x04 /* hack until L2ARC 2.0 */ #define SCL_ALLOC 0x08 #define SCL_ZIO 0x10 #define SCL_FREE 0x20 #define SCL_VDEV 0x40 #define SCL_LOCKS 7 #define SCL_ALL ((1 << SCL_LOCKS) - 1) #define SCL_STATE_ALL (SCL_STATE | SCL_L2ARC | SCL_ZIO) /* Pool configuration locks */ extern int spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw); extern void spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw); extern void spa_config_exit(spa_t *spa, int locks, void *tag); extern int spa_config_held(spa_t *spa, int locks, krw_t rw); /* Pool vdev add/remove lock */ extern uint64_t spa_vdev_enter(spa_t *spa); extern uint64_t spa_vdev_config_enter(spa_t *spa); extern void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag); extern int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error); /* Pool vdev state change lock */ extern void spa_vdev_state_enter(spa_t *spa, int oplock); extern int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error); /* Log state */ typedef enum spa_log_state { SPA_LOG_UNKNOWN = 0, /* unknown log state */ SPA_LOG_MISSING, /* missing log(s) */ SPA_LOG_CLEAR, /* clear the log(s) */ SPA_LOG_GOOD, /* log(s) are good */ } spa_log_state_t; extern spa_log_state_t spa_get_log_state(spa_t *spa); extern void spa_set_log_state(spa_t *spa, spa_log_state_t state); extern int spa_reset_logs(spa_t *spa); /* Log claim callback */ extern void spa_claim_notify(zio_t *zio); /* Accessor functions */ extern boolean_t spa_shutting_down(spa_t *spa); extern struct dsl_pool *spa_get_dsl(spa_t *spa); extern boolean_t spa_is_initializing(spa_t *spa); extern boolean_t spa_indirect_vdevs_loaded(spa_t *spa); extern blkptr_t *spa_get_rootblkptr(spa_t *spa); extern void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp); extern void spa_altroot(spa_t *, char *, size_t); extern int spa_sync_pass(spa_t *spa); extern char *spa_name(spa_t *spa); extern uint64_t spa_guid(spa_t *spa); extern uint64_t spa_load_guid(spa_t *spa); extern uint64_t spa_last_synced_txg(spa_t *spa); extern uint64_t spa_first_txg(spa_t *spa); extern uint64_t spa_syncing_txg(spa_t *spa); extern uint64_t spa_final_dirty_txg(spa_t *spa); extern uint64_t spa_version(spa_t *spa); extern pool_state_t spa_state(spa_t *spa); extern spa_load_state_t spa_load_state(spa_t *spa); extern uint64_t spa_freeze_txg(spa_t *spa); extern uint64_t spa_get_worst_case_asize(spa_t *spa, uint64_t lsize); extern uint64_t spa_get_dspace(spa_t *spa); extern uint64_t spa_get_slop_space(spa_t *spa); extern void spa_update_dspace(spa_t *spa); extern uint64_t spa_version(spa_t *spa); extern boolean_t spa_deflate(spa_t *spa); extern metaslab_class_t *spa_normal_class(spa_t *spa); extern metaslab_class_t *spa_log_class(spa_t *spa); extern void spa_evicting_os_register(spa_t *, objset_t *os); extern void spa_evicting_os_deregister(spa_t *, objset_t *os); extern void spa_evicting_os_wait(spa_t *spa); extern int spa_max_replication(spa_t *spa); extern int spa_prev_software_version(spa_t *spa); extern int spa_busy(void); extern uint8_t spa_get_failmode(spa_t *spa); extern boolean_t spa_suspended(spa_t *spa); extern uint64_t spa_bootfs(spa_t *spa); extern uint64_t spa_delegation(spa_t *spa); extern objset_t *spa_meta_objset(spa_t *spa); extern uint64_t spa_deadman_synctime(spa_t *spa); /* Miscellaneous support routines */ extern void spa_load_failed(spa_t *spa, const char *fmt, ...); extern void spa_load_note(spa_t *spa, const char *fmt, ...); extern void spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx); extern void spa_deactivate_mos_feature(spa_t *spa, const char *feature); extern int spa_rename(const char *oldname, const char *newname); extern spa_t *spa_by_guid(uint64_t pool_guid, uint64_t device_guid); extern boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid); extern char *spa_strdup(const char *); extern void spa_strfree(char *); extern uint64_t spa_get_random(uint64_t range); extern uint64_t spa_generate_guid(spa_t *spa); extern void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp); extern void spa_freeze(spa_t *spa); extern int spa_change_guid(spa_t *spa); extern void spa_upgrade(spa_t *spa, uint64_t version); extern void spa_evict_all(void); extern vdev_t *spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t l2cache); extern boolean_t spa_has_spare(spa_t *, uint64_t guid); extern uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva); extern uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp); extern uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp); extern boolean_t spa_has_slogs(spa_t *spa); extern boolean_t spa_is_root(spa_t *spa); extern boolean_t spa_writeable(spa_t *spa); extern boolean_t spa_has_pending_synctask(spa_t *spa); extern int spa_maxblocksize(spa_t *spa); extern void zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp); +extern boolean_t zfs_dva_valid(spa_t *spa, const dva_t *dva, + const blkptr_t *bp); typedef void (*spa_remap_cb_t)(uint64_t vdev, uint64_t offset, uint64_t size, void *arg); extern boolean_t spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg); extern uint64_t spa_get_last_removal_txg(spa_t *spa); +extern boolean_t spa_trust_config(spa_t *spa); +extern uint64_t spa_missing_tvds_allowed(spa_t *spa); +extern void spa_set_missing_tvds(spa_t *spa, uint64_t missing); extern int spa_mode(spa_t *spa); extern uint64_t zfs_strtonum(const char *str, char **nptr); extern char *spa_his_ievent_table[]; extern void spa_history_create_obj(spa_t *spa, dmu_tx_t *tx); extern int spa_history_get(spa_t *spa, uint64_t *offset, uint64_t *len_read, char *his_buf); extern int spa_history_log(spa_t *spa, const char *his_buf); extern int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl); extern void spa_history_log_version(spa_t *spa, const char *operation); extern void spa_history_log_internal(spa_t *spa, const char *operation, dmu_tx_t *tx, const char *fmt, ...); extern void spa_history_log_internal_ds(struct dsl_dataset *ds, const char *op, dmu_tx_t *tx, const char *fmt, ...); extern void spa_history_log_internal_dd(dsl_dir_t *dd, const char *operation, dmu_tx_t *tx, const char *fmt, ...); /* error handling */ struct zbookmark_phys; extern void spa_log_error(spa_t *spa, zio_t *zio); extern void zfs_ereport_post(const char *cls, spa_t *spa, vdev_t *vd, zio_t *zio, uint64_t stateoroffset, uint64_t length); extern void zfs_post_remove(spa_t *spa, vdev_t *vd); extern void zfs_post_state_change(spa_t *spa, vdev_t *vd); extern void zfs_post_autoreplace(spa_t *spa, vdev_t *vd); extern uint64_t spa_get_errlog_size(spa_t *spa); extern int spa_get_errlog(spa_t *spa, void *uaddr, size_t *count); extern void spa_errlog_rotate(spa_t *spa); extern void spa_errlog_drain(spa_t *spa); extern void spa_errlog_sync(spa_t *spa, uint64_t txg); extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub); /* vdev cache */ extern void vdev_cache_stat_init(void); extern void vdev_cache_stat_fini(void); /* Initialization and termination */ extern void spa_init(int flags); extern void spa_fini(void); extern void spa_boot_init(void); /* properties */ extern int spa_prop_set(spa_t *spa, nvlist_t *nvp); extern int spa_prop_get(spa_t *spa, nvlist_t **nvp); extern void spa_prop_clear_bootfs(spa_t *spa, uint64_t obj, dmu_tx_t *tx); extern void spa_configfile_set(spa_t *, nvlist_t *, boolean_t); /* asynchronous event notification */ extern void spa_event_notify(spa_t *spa, vdev_t *vdev, nvlist_t *hist_nvl, const char *name); extern sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name); extern void spa_event_post(sysevent_t *ev); extern void spa_event_discard(sysevent_t *ev); #ifdef ZFS_DEBUG #define dprintf_bp(bp, fmt, ...) do { \ if (zfs_flags & ZFS_DEBUG_DPRINTF) { \ char *__blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_SLEEP); \ snprintf_blkptr(__blkbuf, BP_SPRINTF_LEN, (bp)); \ dprintf(fmt " %s\n", __VA_ARGS__, __blkbuf); \ kmem_free(__blkbuf, BP_SPRINTF_LEN); \ } \ _NOTE(CONSTCOND) } while (0) #else #define dprintf_bp(bp, fmt, ...) #endif extern boolean_t spa_debug_enabled(spa_t *spa); #define spa_dbgmsg(spa, ...) \ { \ if (spa_debug_enabled(spa)) \ zfs_dbgmsg(__VA_ARGS__); \ } extern int spa_mode_global; /* mode, e.g. FREAD | FWRITE */ #ifdef __cplusplus } #endif #endif /* _SYS_SPA_H */ Index: head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/spa_impl.h =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/spa_impl.h (revision 329797) +++ head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/spa_impl.h (revision 329798) @@ -1,389 +1,402 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2018 by Delphix. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright 2013 Martin Matuska . All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright 2013 Saso Kiselkov. All rights reserved. * Copyright (c) 2017 Datto Inc. */ #ifndef _SYS_SPA_IMPL_H #define _SYS_SPA_IMPL_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif typedef struct spa_error_entry { zbookmark_phys_t se_bookmark; char *se_name; avl_node_t se_avl; } spa_error_entry_t; typedef struct spa_history_phys { uint64_t sh_pool_create_len; /* ending offset of zpool create */ uint64_t sh_phys_max_off; /* physical EOF */ uint64_t sh_bof; /* logical BOF */ uint64_t sh_eof; /* logical EOF */ uint64_t sh_records_lost; /* num of records overwritten */ } spa_history_phys_t; /* * All members must be uint64_t, for byteswap purposes. */ typedef struct spa_removing_phys { uint64_t sr_state; /* dsl_scan_state_t */ /* * The vdev ID that we most recently attempted to remove, * or -1 if no removal has been attempted. */ uint64_t sr_removing_vdev; /* * The vdev ID that we most recently successfully removed, * or -1 if no devices have been removed. */ uint64_t sr_prev_indirect_vdev; uint64_t sr_start_time; uint64_t sr_end_time; /* * Note that we can not use the space map's or indirect mapping's * accounting as a substitute for these values, because we need to * count frees of not-yet-copied data as though it did the copy. * Otherwise, we could get into a situation where copied > to_copy, * or we complete before copied == to_copy. */ uint64_t sr_to_copy; /* bytes that need to be copied */ uint64_t sr_copied; /* bytes that have been copied or freed */ } spa_removing_phys_t; /* * This struct is stored as an entry in the DMU_POOL_DIRECTORY_OBJECT * (with key DMU_POOL_CONDENSING_INDIRECT). It is present if a condense * of an indirect vdev's mapping object is in progress. */ typedef struct spa_condensing_indirect_phys { /* * The vdev ID of the indirect vdev whose indirect mapping is * being condensed. */ uint64_t scip_vdev; /* * The vdev's old obsolete spacemap. This spacemap's contents are * being integrated into the new mapping. */ uint64_t scip_prev_obsolete_sm_object; /* * The new mapping object that is being created. */ uint64_t scip_next_mapping_object; } spa_condensing_indirect_phys_t; struct spa_aux_vdev { uint64_t sav_object; /* MOS object for device list */ nvlist_t *sav_config; /* cached device config */ vdev_t **sav_vdevs; /* devices */ int sav_count; /* number devices */ boolean_t sav_sync; /* sync the device list */ nvlist_t **sav_pending; /* pending device additions */ uint_t sav_npending; /* # pending devices */ }; typedef struct spa_config_lock { kmutex_t scl_lock; kthread_t *scl_writer; int scl_write_wanted; kcondvar_t scl_cv; refcount_t scl_count; } spa_config_lock_t; typedef struct spa_config_dirent { list_node_t scd_link; char *scd_path; } spa_config_dirent_t; typedef enum zio_taskq_type { ZIO_TASKQ_ISSUE = 0, ZIO_TASKQ_ISSUE_HIGH, ZIO_TASKQ_INTERRUPT, ZIO_TASKQ_INTERRUPT_HIGH, ZIO_TASKQ_TYPES } zio_taskq_type_t; /* * State machine for the zpool-poolname process. The states transitions * are done as follows: * * From To Routine * PROC_NONE -> PROC_CREATED spa_activate() * PROC_CREATED -> PROC_ACTIVE spa_thread() * PROC_ACTIVE -> PROC_DEACTIVATE spa_deactivate() * PROC_DEACTIVATE -> PROC_GONE spa_thread() * PROC_GONE -> PROC_NONE spa_deactivate() */ typedef enum spa_proc_state { SPA_PROC_NONE, /* spa_proc = &p0, no process created */ SPA_PROC_CREATED, /* spa_activate() has proc, is waiting */ SPA_PROC_ACTIVE, /* taskqs created, spa_proc set */ SPA_PROC_DEACTIVATE, /* spa_deactivate() requests process exit */ SPA_PROC_GONE /* spa_thread() is exiting, spa_proc = &p0 */ } spa_proc_state_t; typedef struct spa_taskqs { uint_t stqs_count; taskq_t **stqs_taskq; } spa_taskqs_t; typedef enum spa_all_vdev_zap_action { AVZ_ACTION_NONE = 0, AVZ_ACTION_DESTROY, /* Destroy all per-vdev ZAPs and the AVZ. */ AVZ_ACTION_REBUILD, /* Populate the new AVZ, see spa_avz_rebuild */ AVZ_ACTION_INITIALIZE } spa_avz_action_t; +typedef enum spa_config_source { + SPA_CONFIG_SRC_NONE = 0, + SPA_CONFIG_SRC_SCAN, /* scan of path (default: /dev/dsk) */ + SPA_CONFIG_SRC_CACHEFILE, /* any cachefile */ + SPA_CONFIG_SRC_TRYIMPORT, /* returned from call to tryimport */ + SPA_CONFIG_SRC_SPLIT, /* new pool in a pool split */ + SPA_CONFIG_SRC_MOS /* MOS, but not always from right txg */ +} spa_config_source_t; + struct spa { /* * Fields protected by spa_namespace_lock. */ char spa_name[ZFS_MAX_DATASET_NAME_LEN]; /* pool name */ char *spa_comment; /* comment */ avl_node_t spa_avl; /* node in spa_namespace_avl */ nvlist_t *spa_config; /* last synced config */ nvlist_t *spa_config_syncing; /* currently syncing config */ nvlist_t *spa_config_splitting; /* config for splitting */ nvlist_t *spa_load_info; /* info and errors from load */ uint64_t spa_config_txg; /* txg of last config change */ int spa_sync_pass; /* iterate-to-convergence */ pool_state_t spa_state; /* pool state */ int spa_inject_ref; /* injection references */ uint8_t spa_sync_on; /* sync threads are running */ spa_load_state_t spa_load_state; /* current load operation */ boolean_t spa_indirect_vdevs_loaded; /* mappings loaded? */ + boolean_t spa_trust_config; /* do we trust vdev tree? */ + spa_config_source_t spa_config_source; /* where config comes from? */ uint64_t spa_import_flags; /* import specific flags */ spa_taskqs_t spa_zio_taskq[ZIO_TYPES][ZIO_TASKQ_TYPES]; dsl_pool_t *spa_dsl_pool; boolean_t spa_is_initializing; /* true while opening pool */ metaslab_class_t *spa_normal_class; /* normal data class */ metaslab_class_t *spa_log_class; /* intent log data class */ uint64_t spa_first_txg; /* first txg after spa_open() */ uint64_t spa_final_txg; /* txg of export/destroy */ uint64_t spa_freeze_txg; /* freeze pool at this txg */ uint64_t spa_load_max_txg; /* best initial ub_txg */ uint64_t spa_claim_max_txg; /* highest claimed birth txg */ timespec_t spa_loaded_ts; /* 1st successful open time */ objset_t *spa_meta_objset; /* copy of dp->dp_meta_objset */ kmutex_t spa_evicting_os_lock; /* Evicting objset list lock */ list_t spa_evicting_os_list; /* Objsets being evicted. */ kcondvar_t spa_evicting_os_cv; /* Objset Eviction Completion */ txg_list_t spa_vdev_txg_list; /* per-txg dirty vdev list */ vdev_t *spa_root_vdev; /* top-level vdev container */ int spa_min_ashift; /* of vdevs in normal class */ int spa_max_ashift; /* of vdevs in normal class */ uint64_t spa_config_guid; /* config pool guid */ uint64_t spa_load_guid; /* spa_load initialized guid */ uint64_t spa_last_synced_guid; /* last synced guid */ list_t spa_config_dirty_list; /* vdevs with dirty config */ list_t spa_state_dirty_list; /* vdevs with dirty state */ kmutex_t spa_alloc_lock; avl_tree_t spa_alloc_tree; spa_aux_vdev_t spa_spares; /* hot spares */ spa_aux_vdev_t spa_l2cache; /* L2ARC cache devices */ nvlist_t *spa_label_features; /* Features for reading MOS */ uint64_t spa_config_object; /* MOS object for pool config */ uint64_t spa_config_generation; /* config generation number */ uint64_t spa_syncing_txg; /* txg currently syncing */ bpobj_t spa_deferred_bpobj; /* deferred-free bplist */ bplist_t spa_free_bplist[TXG_SIZE]; /* bplist of stuff to free */ zio_cksum_salt_t spa_cksum_salt; /* secret salt for cksum */ /* checksum context templates */ kmutex_t spa_cksum_tmpls_lock; void *spa_cksum_tmpls[ZIO_CHECKSUM_FUNCTIONS]; uberblock_t spa_ubsync; /* last synced uberblock */ uberblock_t spa_uberblock; /* current uberblock */ boolean_t spa_extreme_rewind; /* rewind past deferred frees */ uint64_t spa_last_io; /* lbolt of last non-scan I/O */ kmutex_t spa_scrub_lock; /* resilver/scrub lock */ uint64_t spa_scrub_inflight; /* in-flight scrub I/Os */ kcondvar_t spa_scrub_io_cv; /* scrub I/O completion */ uint8_t spa_scrub_active; /* active or suspended? */ uint8_t spa_scrub_type; /* type of scrub we're doing */ uint8_t spa_scrub_finished; /* indicator to rotate logs */ uint8_t spa_scrub_started; /* started since last boot */ uint8_t spa_scrub_reopen; /* scrub doing vdev_reopen */ uint64_t spa_scan_pass_start; /* start time per pass/reboot */ uint64_t spa_scan_pass_scrub_pause; /* scrub pause time */ uint64_t spa_scan_pass_scrub_spent_paused; /* total paused */ uint64_t spa_scan_pass_exam; /* examined bytes per pass */ kmutex_t spa_async_lock; /* protect async state */ kthread_t *spa_async_thread; /* thread doing async task */ kthread_t *spa_async_thread_vd; /* thread doing vd async task */ int spa_async_suspended; /* async tasks suspended */ kcondvar_t spa_async_cv; /* wait for thread_exit() */ uint16_t spa_async_tasks; /* async task mask */ + uint64_t spa_missing_tvds; /* unopenable tvds on load */ + uint64_t spa_missing_tvds_allowed; /* allow loading spa? */ spa_removing_phys_t spa_removing_phys; spa_vdev_removal_t *spa_vdev_removal; spa_condensing_indirect_phys_t spa_condensing_indirect_phys; spa_condensing_indirect_t *spa_condensing_indirect; kthread_t *spa_condense_thread; /* thread doing condense. */ char *spa_root; /* alternate root directory */ uint64_t spa_ena; /* spa-wide ereport ENA */ int spa_last_open_failed; /* error if last open failed */ uint64_t spa_last_ubsync_txg; /* "best" uberblock txg */ uint64_t spa_last_ubsync_txg_ts; /* timestamp from that ub */ uint64_t spa_load_txg; /* ub txg that loaded */ uint64_t spa_load_txg_ts; /* timestamp from that ub */ uint64_t spa_load_meta_errors; /* verify metadata err count */ uint64_t spa_load_data_errors; /* verify data err count */ uint64_t spa_verify_min_txg; /* start txg of verify scrub */ kmutex_t spa_errlog_lock; /* error log lock */ uint64_t spa_errlog_last; /* last error log object */ uint64_t spa_errlog_scrub; /* scrub error log object */ kmutex_t spa_errlist_lock; /* error list/ereport lock */ avl_tree_t spa_errlist_last; /* last error list */ avl_tree_t spa_errlist_scrub; /* scrub error list */ uint64_t spa_deflate; /* should we deflate? */ uint64_t spa_history; /* history object */ kmutex_t spa_history_lock; /* history lock */ vdev_t *spa_pending_vdev; /* pending vdev additions */ kmutex_t spa_props_lock; /* property lock */ uint64_t spa_pool_props_object; /* object for properties */ uint64_t spa_bootfs; /* default boot filesystem */ uint64_t spa_failmode; /* failure mode for the pool */ uint64_t spa_delegation; /* delegation on/off */ list_t spa_config_list; /* previous cache file(s) */ /* per-CPU array of root of async I/O: */ zio_t **spa_async_zio_root; zio_t *spa_suspend_zio_root; /* root of all suspended I/O */ zio_t *spa_txg_zio[TXG_SIZE]; /* spa_sync() waits for this */ kmutex_t spa_suspend_lock; /* protects suspend_zio_root */ kcondvar_t spa_suspend_cv; /* notification of resume */ uint8_t spa_suspended; /* pool is suspended */ uint8_t spa_claiming; /* pool is doing zil_claim() */ boolean_t spa_debug; /* debug enabled? */ boolean_t spa_is_root; /* pool is root */ int spa_minref; /* num refs when first opened */ int spa_mode; /* FREAD | FWRITE */ spa_log_state_t spa_log_state; /* log state */ uint64_t spa_autoexpand; /* lun expansion on/off */ uint64_t spa_bootsize; /* efi system partition size */ ddt_t *spa_ddt[ZIO_CHECKSUM_FUNCTIONS]; /* in-core DDTs */ uint64_t spa_ddt_stat_object; /* DDT statistics */ uint64_t spa_dedup_ditto; /* dedup ditto threshold */ uint64_t spa_dedup_checksum; /* default dedup checksum */ uint64_t spa_dspace; /* dspace in normal class */ kmutex_t spa_vdev_top_lock; /* dueling offline/remove */ kmutex_t spa_proc_lock; /* protects spa_proc* */ kcondvar_t spa_proc_cv; /* spa_proc_state transitions */ spa_proc_state_t spa_proc_state; /* see definition */ struct proc *spa_proc; /* "zpool-poolname" process */ uint64_t spa_did; /* if procp != p0, did of t1 */ kthread_t *spa_trim_thread; /* thread sending TRIM I/Os */ kmutex_t spa_trim_lock; /* protects spa_trim_cv */ kcondvar_t spa_trim_cv; /* used to notify TRIM thread */ boolean_t spa_autoreplace; /* autoreplace set in open */ int spa_vdev_locks; /* locks grabbed */ uint64_t spa_creation_version; /* version at pool creation */ uint64_t spa_prev_software_version; /* See ub_software_version */ uint64_t spa_feat_for_write_obj; /* required to write to pool */ uint64_t spa_feat_for_read_obj; /* required to read from pool */ uint64_t spa_feat_desc_obj; /* Feature descriptions */ uint64_t spa_feat_enabled_txg_obj; /* Feature enabled txg */ /* cache feature refcounts */ uint64_t spa_feat_refcount_cache[SPA_FEATURES]; #ifdef illumos cyclic_id_t spa_deadman_cycid; /* cyclic id */ #else /* !illumos */ #ifdef _KERNEL struct callout spa_deadman_cycid; /* callout id */ struct task spa_deadman_task; #endif #endif /* illumos */ uint64_t spa_deadman_calls; /* number of deadman calls */ hrtime_t spa_sync_starttime; /* starting time fo spa_sync */ uint64_t spa_deadman_synctime; /* deadman expiration timer */ uint64_t spa_all_vdev_zaps; /* ZAP of per-vd ZAP obj #s */ spa_avz_action_t spa_avz_action; /* destroy/rebuild AVZ? */ #ifdef illumos /* * spa_iokstat_lock protects spa_iokstat and * spa_queue_stats[]. */ kmutex_t spa_iokstat_lock; struct kstat *spa_iokstat; /* kstat of io to this pool */ struct { int spa_active; int spa_queued; } spa_queue_stats[ZIO_PRIORITY_NUM_QUEUEABLE]; #endif hrtime_t spa_ccw_fail_time; /* Conf cache write fail time */ /* * spa_refcount & spa_config_lock must be the last elements * because refcount_t changes size based on compilation options. * In order for the MDB module to function correctly, the other * fields must remain in the same location. */ spa_config_lock_t spa_config_lock[SCL_LOCKS]; /* config changes */ refcount_t spa_refcount; /* number of opens */ #ifndef illumos boolean_t spa_splitting_newspa; /* creating new spa in split */ #endif }; extern const char *spa_config_path; extern void spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent); extern void spa_load_spares(spa_t *spa); extern void spa_load_l2cache(spa_t *spa); #ifdef __cplusplus } #endif #endif /* _SYS_SPA_IMPL_H */ Index: head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/vdev.h =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/vdev.h (revision 329797) +++ head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/vdev.h (revision 329798) @@ -1,181 +1,186 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2016 by Delphix. All rights reserved. */ #ifndef _SYS_VDEV_H #define _SYS_VDEV_H #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif typedef enum vdev_dtl_type { DTL_MISSING, /* 0% replication: no copies of the data */ DTL_PARTIAL, /* less than 100% replication: some copies missing */ DTL_SCRUB, /* unable to fully repair during scrub/resilver */ DTL_OUTAGE, /* temporarily missing (used to attempt detach) */ DTL_TYPES } vdev_dtl_type_t; extern boolean_t zfs_nocacheflush; extern boolean_t zfs_trim_enabled; extern void vdev_dbgmsg(vdev_t *vd, const char *fmt, ...); +extern void vdev_dbgmsg_print_tree(vdev_t *, int); extern int vdev_open(vdev_t *); extern void vdev_open_children(vdev_t *); extern boolean_t vdev_uses_zvols(vdev_t *); -extern int vdev_validate(vdev_t *, boolean_t); +extern int vdev_validate(vdev_t *); +extern int vdev_copy_path_strict(vdev_t *, vdev_t *); +extern void vdev_copy_path_relaxed(vdev_t *, vdev_t *); extern void vdev_close(vdev_t *); extern int vdev_create(vdev_t *, uint64_t txg, boolean_t isreplace); extern void vdev_reopen(vdev_t *); extern int vdev_validate_aux(vdev_t *vd); extern zio_t *vdev_probe(vdev_t *vd, zio_t *pio); extern boolean_t vdev_is_concrete(vdev_t *vd); extern boolean_t vdev_is_bootable(vdev_t *vd); extern vdev_t *vdev_lookup_top(spa_t *spa, uint64_t vdev); extern vdev_t *vdev_lookup_by_guid(vdev_t *vd, uint64_t guid); extern int vdev_count_leaves(spa_t *spa); extern void vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t d, uint64_t txg, uint64_t size); extern boolean_t vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t d, uint64_t txg, uint64_t size); extern boolean_t vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t d); extern void vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done); extern boolean_t vdev_dtl_required(vdev_t *vd); extern boolean_t vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp); extern void vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx); extern uint64_t vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx); extern void vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx); extern void vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx); extern void vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg); extern void spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev, uint64_t offset, uint64_t size, dmu_tx_t *tx); extern void vdev_hold(vdev_t *); extern void vdev_rele(vdev_t *); extern int vdev_metaslab_init(vdev_t *vd, uint64_t txg); extern void vdev_metaslab_fini(vdev_t *vd); extern void vdev_metaslab_set_size(vdev_t *); extern void vdev_ashift_optimize(vdev_t *); extern void vdev_expand(vdev_t *vd, uint64_t txg); extern void vdev_split(vdev_t *vd); extern void vdev_deadman(vdev_t *vd); extern void vdev_get_stats(vdev_t *vd, vdev_stat_t *vs); extern void vdev_clear_stats(vdev_t *vd); extern void vdev_stat_update(zio_t *zio, uint64_t psize); extern void vdev_scan_stat_init(vdev_t *vd); extern void vdev_propagate_state(vdev_t *vd); extern void vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux); +extern boolean_t vdev_children_are_offline(vdev_t *vd); extern void vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, int64_t space_delta); extern uint64_t vdev_psize_to_asize(vdev_t *vd, uint64_t psize); extern int vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux); extern int vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux); extern int vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *); extern int vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags); extern void vdev_clear(spa_t *spa, vdev_t *vd); extern boolean_t vdev_is_dead(vdev_t *vd); extern boolean_t vdev_readable(vdev_t *vd); extern boolean_t vdev_writeable(vdev_t *vd); extern boolean_t vdev_allocatable(vdev_t *vd); extern boolean_t vdev_accessible(vdev_t *vd, zio_t *zio); extern void vdev_cache_init(vdev_t *vd); extern void vdev_cache_fini(vdev_t *vd); extern boolean_t vdev_cache_read(zio_t *zio); extern void vdev_cache_write(zio_t *zio); extern void vdev_cache_purge(vdev_t *vd); extern void vdev_queue_init(vdev_t *vd); extern void vdev_queue_fini(vdev_t *vd); extern zio_t *vdev_queue_io(zio_t *zio); extern void vdev_queue_io_done(zio_t *zio); extern int vdev_queue_length(vdev_t *vd); extern uint64_t vdev_queue_lastoffset(vdev_t *vd); extern void vdev_queue_register_lastoffset(vdev_t *vd, zio_t *zio); extern void vdev_config_dirty(vdev_t *vd); extern void vdev_config_clean(vdev_t *vd); extern int vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg); extern void vdev_state_dirty(vdev_t *vd); extern void vdev_state_clean(vdev_t *vd); typedef enum vdev_config_flag { VDEV_CONFIG_SPARE = 1 << 0, VDEV_CONFIG_L2CACHE = 1 << 1, VDEV_CONFIG_REMOVING = 1 << 2, - VDEV_CONFIG_MOS = 1 << 3 + VDEV_CONFIG_MOS = 1 << 3, + VDEV_CONFIG_MISSING = 1 << 4 } vdev_config_flag_t; extern void vdev_top_config_generate(spa_t *spa, nvlist_t *config); extern nvlist_t *vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, vdev_config_flag_t flags); /* * Label routines */ struct uberblock; extern uint64_t vdev_label_offset(uint64_t psize, int l, uint64_t offset); extern int vdev_label_number(uint64_t psise, uint64_t offset); extern nvlist_t *vdev_label_read_config(vdev_t *vd, uint64_t txg); extern void vdev_uberblock_load(vdev_t *, struct uberblock *, nvlist_t **); typedef enum { VDEV_LABEL_CREATE, /* create/add a new device */ VDEV_LABEL_REPLACE, /* replace an existing device */ VDEV_LABEL_SPARE, /* add a new hot spare */ VDEV_LABEL_REMOVE, /* remove an existing device */ VDEV_LABEL_L2CACHE, /* add an L2ARC cache device */ VDEV_LABEL_SPLIT /* generating new label for split-off dev */ } vdev_labeltype_t; extern int vdev_label_init(vdev_t *vd, uint64_t txg, vdev_labeltype_t reason); extern int vdev_label_write_pad2(vdev_t *vd, const char *buf, size_t size); #ifdef __cplusplus } #endif #endif /* _SYS_VDEV_H */ Index: head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/vdev_impl.h =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/vdev_impl.h (revision 329797) +++ head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/vdev_impl.h (revision 329798) @@ -1,496 +1,495 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2015 by Delphix. All rights reserved. */ #ifndef _SYS_VDEV_IMPL_H #define _SYS_VDEV_IMPL_H #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif /* * Virtual device descriptors. * * All storage pool operations go through the virtual device framework, * which provides data replication and I/O scheduling. */ /* * Forward declarations that lots of things need. */ typedef struct vdev_queue vdev_queue_t; typedef struct vdev_cache vdev_cache_t; typedef struct vdev_cache_entry vdev_cache_entry_t; struct abd; extern int zfs_vdev_queue_depth_pct; extern uint32_t zfs_vdev_async_write_max_active; /* * Virtual device operations */ typedef int vdev_open_func_t(vdev_t *vd, uint64_t *size, uint64_t *max_size, uint64_t *logical_ashift, uint64_t *physical_ashift); typedef void vdev_close_func_t(vdev_t *vd); typedef uint64_t vdev_asize_func_t(vdev_t *vd, uint64_t psize); typedef void vdev_io_start_func_t(zio_t *zio); typedef void vdev_io_done_func_t(zio_t *zio); typedef void vdev_state_change_func_t(vdev_t *vd, int, int); typedef void vdev_hold_func_t(vdev_t *vd); typedef void vdev_rele_func_t(vdev_t *vd); typedef void vdev_remap_cb_t(uint64_t inner_offset, vdev_t *vd, uint64_t offset, uint64_t size, void *arg); typedef void vdev_remap_func_t(vdev_t *vd, uint64_t offset, uint64_t size, vdev_remap_cb_t callback, void *arg); typedef struct vdev_ops { vdev_open_func_t *vdev_op_open; vdev_close_func_t *vdev_op_close; vdev_asize_func_t *vdev_op_asize; vdev_io_start_func_t *vdev_op_io_start; vdev_io_done_func_t *vdev_op_io_done; vdev_state_change_func_t *vdev_op_state_change; vdev_hold_func_t *vdev_op_hold; vdev_rele_func_t *vdev_op_rele; vdev_remap_func_t *vdev_op_remap; char vdev_op_type[16]; boolean_t vdev_op_leaf; } vdev_ops_t; /* * Virtual device properties */ struct vdev_cache_entry { struct abd *ve_abd; uint64_t ve_offset; uint64_t ve_lastused; avl_node_t ve_offset_node; avl_node_t ve_lastused_node; uint32_t ve_hits; uint16_t ve_missed_update; zio_t *ve_fill_io; }; struct vdev_cache { avl_tree_t vc_offset_tree; avl_tree_t vc_lastused_tree; kmutex_t vc_lock; }; typedef struct vdev_queue_class { uint32_t vqc_active; /* * Sorted by offset or timestamp, depending on if the queue is * LBA-ordered vs FIFO. */ avl_tree_t vqc_queued_tree; } vdev_queue_class_t; struct vdev_queue { vdev_t *vq_vdev; vdev_queue_class_t vq_class[ZIO_PRIORITY_NUM_QUEUEABLE]; avl_tree_t vq_active_tree; avl_tree_t vq_read_offset_tree; avl_tree_t vq_write_offset_tree; uint64_t vq_last_offset; hrtime_t vq_io_complete_ts; /* time last i/o completed */ kmutex_t vq_lock; uint64_t vq_lastoffset; }; /* * On-disk indirect vdev state. * * An indirect vdev is described exclusively in the MOS config of a pool. * The config for an indirect vdev includes several fields, which are * accessed in memory by a vdev_indirect_config_t. */ typedef struct vdev_indirect_config { /* * Object (in MOS) which contains the indirect mapping. This object * contains an array of vdev_indirect_mapping_entry_phys_t ordered by * vimep_src. The bonus buffer for this object is a * vdev_indirect_mapping_phys_t. This object is allocated when a vdev * removal is initiated. * * Note that this object can be empty if none of the data on the vdev * has been copied yet. */ uint64_t vic_mapping_object; /* * Object (in MOS) which contains the birth times for the mapping * entries. This object contains an array of * vdev_indirect_birth_entry_phys_t sorted by vibe_offset. The bonus * buffer for this object is a vdev_indirect_birth_phys_t. This object * is allocated when a vdev removal is initiated. * * Note that this object can be empty if none of the vdev has yet been * copied. */ uint64_t vic_births_object; /* * This is the vdev ID which was removed previous to this vdev, or * UINT64_MAX if there are no previously removed vdevs. */ uint64_t vic_prev_indirect_vdev; } vdev_indirect_config_t; /* * Virtual device descriptor */ struct vdev { /* * Common to all vdev types. */ uint64_t vdev_id; /* child number in vdev parent */ uint64_t vdev_guid; /* unique ID for this vdev */ uint64_t vdev_guid_sum; /* self guid + all child guids */ uint64_t vdev_orig_guid; /* orig. guid prior to remove */ uint64_t vdev_asize; /* allocatable device capacity */ uint64_t vdev_min_asize; /* min acceptable asize */ uint64_t vdev_max_asize; /* max acceptable asize */ uint64_t vdev_ashift; /* block alignment shift */ /* * Logical block alignment shift * * The smallest sized/aligned I/O supported by the device. */ uint64_t vdev_logical_ashift; /* * Physical block alignment shift * * The device supports logical I/Os with vdev_logical_ashift * size/alignment, but optimum performance will be achieved by * aligning/sizing requests to vdev_physical_ashift. Smaller * requests may be inflated or incur device level read-modify-write * operations. * * May be 0 to indicate no preference (i.e. use vdev_logical_ashift). */ uint64_t vdev_physical_ashift; uint64_t vdev_state; /* see VDEV_STATE_* #defines */ uint64_t vdev_prevstate; /* used when reopening a vdev */ vdev_ops_t *vdev_ops; /* vdev operations */ spa_t *vdev_spa; /* spa for this vdev */ void *vdev_tsd; /* type-specific data */ vnode_t *vdev_name_vp; /* vnode for pathname */ vnode_t *vdev_devid_vp; /* vnode for devid */ vdev_t *vdev_top; /* top-level vdev */ vdev_t *vdev_parent; /* parent vdev */ vdev_t **vdev_child; /* array of children */ uint64_t vdev_children; /* number of children */ vdev_stat_t vdev_stat; /* virtual device statistics */ boolean_t vdev_expanding; /* expand the vdev? */ boolean_t vdev_reopening; /* reopen in progress? */ int vdev_open_error; /* error on last open */ kthread_t *vdev_open_thread; /* thread opening children */ uint64_t vdev_crtxg; /* txg when top-level was added */ /* * Top-level vdev state. */ uint64_t vdev_ms_array; /* metaslab array object */ uint64_t vdev_ms_shift; /* metaslab size shift */ uint64_t vdev_ms_count; /* number of metaslabs */ metaslab_group_t *vdev_mg; /* metaslab group */ metaslab_t **vdev_ms; /* metaslab array */ txg_list_t vdev_ms_list; /* per-txg dirty metaslab lists */ txg_list_t vdev_dtl_list; /* per-txg dirty DTL lists */ txg_node_t vdev_txg_node; /* per-txg dirty vdev linkage */ boolean_t vdev_remove_wanted; /* async remove wanted? */ boolean_t vdev_probe_wanted; /* async probe wanted? */ list_node_t vdev_config_dirty_node; /* config dirty list */ list_node_t vdev_state_dirty_node; /* state dirty list */ uint64_t vdev_deflate_ratio; /* deflation ratio (x512) */ uint64_t vdev_islog; /* is an intent log device */ uint64_t vdev_removing; /* device is being removed? */ boolean_t vdev_ishole; /* is a hole in the namespace */ kmutex_t vdev_queue_lock; /* protects vdev_queue_depth */ uint64_t vdev_top_zap; /* * Values stored in the config for an indirect or removing vdev. */ vdev_indirect_config_t vdev_indirect_config; /* * The vdev_indirect_rwlock protects the vdev_indirect_mapping * pointer from changing on indirect vdevs (when it is condensed). * Note that removing (not yet indirect) vdevs have different * access patterns (the mapping is not accessed from open context, * e.g. from zio_read) and locking strategy (e.g. svr_lock). */ krwlock_t vdev_indirect_rwlock; vdev_indirect_mapping_t *vdev_indirect_mapping; vdev_indirect_births_t *vdev_indirect_births; /* * In memory data structures used to manage the obsolete sm, for * indirect or removing vdevs. * * The vdev_obsolete_segments is the in-core record of the segments * that are no longer referenced anywhere in the pool (due to * being freed or remapped and not referenced by any snapshots). * During a sync, segments are added to vdev_obsolete_segments * via vdev_indirect_mark_obsolete(); at the end of each sync * pass, this is appended to vdev_obsolete_sm via * vdev_indirect_sync_obsolete(). The vdev_obsolete_lock * protects against concurrent modifications of vdev_obsolete_segments * from multiple zio threads. */ kmutex_t vdev_obsolete_lock; range_tree_t *vdev_obsolete_segments; space_map_t *vdev_obsolete_sm; /* * The queue depth parameters determine how many async writes are * still pending (i.e. allocated by net yet issued to disk) per * top-level (vdev_async_write_queue_depth) and the maximum allowed * (vdev_max_async_write_queue_depth). These values only apply to * top-level vdevs. */ uint64_t vdev_async_write_queue_depth; uint64_t vdev_max_async_write_queue_depth; /* * Leaf vdev state. */ range_tree_t *vdev_dtl[DTL_TYPES]; /* dirty time logs */ space_map_t *vdev_dtl_sm; /* dirty time log space map */ txg_node_t vdev_dtl_node; /* per-txg dirty DTL linkage */ uint64_t vdev_dtl_object; /* DTL object */ uint64_t vdev_psize; /* physical device capacity */ uint64_t vdev_wholedisk; /* true if this is a whole disk */ uint64_t vdev_offline; /* persistent offline state */ uint64_t vdev_faulted; /* persistent faulted state */ uint64_t vdev_degraded; /* persistent degraded state */ uint64_t vdev_removed; /* persistent removed state */ uint64_t vdev_resilver_txg; /* persistent resilvering state */ uint64_t vdev_nparity; /* number of parity devices for raidz */ char *vdev_path; /* vdev path (if any) */ char *vdev_devid; /* vdev devid (if any) */ char *vdev_physpath; /* vdev device path (if any) */ char *vdev_fru; /* physical FRU location */ uint64_t vdev_not_present; /* not present during import */ uint64_t vdev_unspare; /* unspare when resilvering done */ boolean_t vdev_nowritecache; /* true if flushwritecache failed */ boolean_t vdev_notrim; /* true if trim failed */ boolean_t vdev_checkremove; /* temporary online test */ boolean_t vdev_forcefault; /* force online fault */ boolean_t vdev_splitting; /* split or repair in progress */ boolean_t vdev_delayed_close; /* delayed device close? */ boolean_t vdev_tmpoffline; /* device taken offline temporarily? */ boolean_t vdev_detached; /* device detached? */ boolean_t vdev_cant_read; /* vdev is failing all reads */ boolean_t vdev_cant_write; /* vdev is failing all writes */ boolean_t vdev_isspare; /* was a hot spare */ boolean_t vdev_isl2cache; /* was a l2cache device */ vdev_queue_t vdev_queue; /* I/O deadline schedule queue */ vdev_cache_t vdev_cache; /* physical block cache */ spa_aux_vdev_t *vdev_aux; /* for l2cache and spares vdevs */ zio_t *vdev_probe_zio; /* root of current probe */ vdev_aux_t vdev_label_aux; /* on-disk aux state */ struct trim_map *vdev_trimmap; /* map on outstanding trims */ uint16_t vdev_rotation_rate; /* rotational rate of the media */ #define VDEV_RATE_UNKNOWN 0 #define VDEV_RATE_NON_ROTATING 1 uint64_t vdev_leaf_zap; /* * For DTrace to work in userland (libzpool) context, these fields must * remain at the end of the structure. DTrace will use the kernel's * CTF definition for 'struct vdev', and since the size of a kmutex_t is * larger in userland, the offsets for the rest of the fields would be * incorrect. */ kmutex_t vdev_dtl_lock; /* vdev_dtl_{map,resilver} */ kmutex_t vdev_stat_lock; /* vdev_stat */ kmutex_t vdev_probe_lock; /* protects vdev_probe_zio */ }; #define VDEV_RAIDZ_MAXPARITY 3 #define VDEV_PAD_SIZE (8 << 10) /* 2 padding areas (vl_pad1 and vl_pad2) to skip */ #define VDEV_SKIP_SIZE VDEV_PAD_SIZE * 2 #define VDEV_PHYS_SIZE (112 << 10) #define VDEV_UBERBLOCK_RING (128 << 10) /* The largest uberblock we support is 8k. */ #define MAX_UBERBLOCK_SHIFT (13) #define VDEV_UBERBLOCK_SHIFT(vd) \ MIN(MAX((vd)->vdev_top->vdev_ashift, UBERBLOCK_SHIFT), \ MAX_UBERBLOCK_SHIFT) #define VDEV_UBERBLOCK_COUNT(vd) \ (VDEV_UBERBLOCK_RING >> VDEV_UBERBLOCK_SHIFT(vd)) #define VDEV_UBERBLOCK_OFFSET(vd, n) \ offsetof(vdev_label_t, vl_uberblock[(n) << VDEV_UBERBLOCK_SHIFT(vd)]) #define VDEV_UBERBLOCK_SIZE(vd) (1ULL << VDEV_UBERBLOCK_SHIFT(vd)) typedef struct vdev_phys { char vp_nvlist[VDEV_PHYS_SIZE - sizeof (zio_eck_t)]; zio_eck_t vp_zbt; } vdev_phys_t; typedef struct vdev_label { char vl_pad1[VDEV_PAD_SIZE]; /* 8K */ char vl_pad2[VDEV_PAD_SIZE]; /* 8K */ vdev_phys_t vl_vdev_phys; /* 112K */ char vl_uberblock[VDEV_UBERBLOCK_RING]; /* 128K */ } vdev_label_t; /* 256K total */ /* * vdev_dirty() flags */ #define VDD_METASLAB 0x01 #define VDD_DTL 0x02 /* Offset of embedded boot loader region on each label */ #define VDEV_BOOT_OFFSET (2 * sizeof (vdev_label_t)) /* * Size of embedded boot loader region on each label. * The total size of the first two labels plus the boot area is 4MB. */ #define VDEV_BOOT_SIZE (7ULL << 19) /* 3.5M */ /* * Size of label regions at the start and end of each leaf device. */ #define VDEV_LABEL_START_SIZE (2 * sizeof (vdev_label_t) + VDEV_BOOT_SIZE) #define VDEV_LABEL_END_SIZE (2 * sizeof (vdev_label_t)) #define VDEV_LABELS 4 #define VDEV_BEST_LABEL VDEV_LABELS #define VDEV_ALLOC_LOAD 0 #define VDEV_ALLOC_ADD 1 #define VDEV_ALLOC_SPARE 2 #define VDEV_ALLOC_L2CACHE 3 #define VDEV_ALLOC_ROOTPOOL 4 #define VDEV_ALLOC_SPLIT 5 #define VDEV_ALLOC_ATTACH 6 /* * Allocate or free a vdev */ extern vdev_t *vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops); extern int vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *config, vdev_t *parent, uint_t id, int alloctype); extern void vdev_free(vdev_t *vd); /* * Add or remove children and parents */ extern void vdev_add_child(vdev_t *pvd, vdev_t *cvd); extern void vdev_remove_child(vdev_t *pvd, vdev_t *cvd); extern void vdev_compact_children(vdev_t *pvd); extern vdev_t *vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops); extern void vdev_remove_parent(vdev_t *cvd); /* * vdev sync load and sync */ -extern void vdev_load_log_state(vdev_t *nvd, vdev_t *ovd); extern boolean_t vdev_log_state_valid(vdev_t *vd); extern int vdev_load(vdev_t *vd); extern int vdev_dtl_load(vdev_t *vd); extern void vdev_sync(vdev_t *vd, uint64_t txg); extern void vdev_sync_done(vdev_t *vd, uint64_t txg); extern void vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg); extern void vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg); /* * Available vdev types. */ extern vdev_ops_t vdev_root_ops; extern vdev_ops_t vdev_mirror_ops; extern vdev_ops_t vdev_replacing_ops; extern vdev_ops_t vdev_raidz_ops; #ifdef _KERNEL extern vdev_ops_t vdev_geom_ops; #else extern vdev_ops_t vdev_disk_ops; #endif extern vdev_ops_t vdev_file_ops; extern vdev_ops_t vdev_missing_ops; extern vdev_ops_t vdev_hole_ops; extern vdev_ops_t vdev_spare_ops; extern vdev_ops_t vdev_indirect_ops; /* * Common size functions */ extern uint64_t vdev_default_asize(vdev_t *vd, uint64_t psize); extern uint64_t vdev_get_min_asize(vdev_t *vd); extern void vdev_set_min_asize(vdev_t *vd); /* * Global variables */ /* zdb uses this tunable, so it must be declared here to make lint happy. */ extern int zfs_vdev_cache_size; extern uint_t zfs_geom_probe_vdev_key; /* * Functions from vdev_indirect.c */ extern void vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx); extern boolean_t vdev_indirect_should_condense(vdev_t *vd); extern void spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx); extern int vdev_obsolete_sm_object(vdev_t *vd); extern boolean_t vdev_obsolete_counts_are_precise(vdev_t *vd); #ifdef illumos /* * The vdev_buf_t is used to translate between zio_t and buf_t, and back again. */ typedef struct vdev_buf { buf_t vb_buf; /* buffer that describes the io */ zio_t *vb_io; /* pointer back to the original zio_t */ } vdev_buf_t; #endif #ifdef __cplusplus } #endif #endif /* _SYS_VDEV_IMPL_H */ Index: head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c (revision 329797) +++ head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c (revision 329798) @@ -1,3875 +1,4078 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2018 by Delphix. All rights reserved. * Copyright 2017 Nexenta Systems, Inc. * Copyright 2013 Martin Matuska . All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2016 Toomas Soome * Copyright 2017 Joyent, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include SYSCTL_DECL(_vfs_zfs); SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV"); /* * Virtual device management. */ /* * The limit for ZFS to automatically increase a top-level vdev's ashift * from logical ashift to physical ashift. * * Example: one or more 512B emulation child vdevs * child->vdev_ashift = 9 (512 bytes) * child->vdev_physical_ashift = 12 (4096 bytes) * zfs_max_auto_ashift = 11 (2048 bytes) * zfs_min_auto_ashift = 9 (512 bytes) * * On pool creation or the addition of a new top-level vdev, ZFS will * increase the ashift of the top-level vdev to 2048 as limited by * zfs_max_auto_ashift. * * Example: one or more 512B emulation child vdevs * child->vdev_ashift = 9 (512 bytes) * child->vdev_physical_ashift = 12 (4096 bytes) * zfs_max_auto_ashift = 13 (8192 bytes) * zfs_min_auto_ashift = 9 (512 bytes) * * On pool creation or the addition of a new top-level vdev, ZFS will * increase the ashift of the top-level vdev to 4096 to match the * max vdev_physical_ashift. * * Example: one or more 512B emulation child vdevs * child->vdev_ashift = 9 (512 bytes) * child->vdev_physical_ashift = 9 (512 bytes) * zfs_max_auto_ashift = 13 (8192 bytes) * zfs_min_auto_ashift = 12 (4096 bytes) * * On pool creation or the addition of a new top-level vdev, ZFS will * increase the ashift of the top-level vdev to 4096 to match the * zfs_min_auto_ashift. */ static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT; static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT; static int sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS) { uint64_t val; int err; val = zfs_max_auto_ashift; err = sysctl_handle_64(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (err); if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift) return (EINVAL); zfs_max_auto_ashift = val; return (0); } SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift, CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t), sysctl_vfs_zfs_max_auto_ashift, "QU", "Max ashift used when optimising for logical -> physical sectors size on " "new top-level vdevs."); static int sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS) { uint64_t val; int err; val = zfs_min_auto_ashift; err = sysctl_handle_64(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (err); if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift) return (EINVAL); zfs_min_auto_ashift = val; return (0); } SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift, CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t), sysctl_vfs_zfs_min_auto_ashift, "QU", "Min ashift used when creating new top-level vdevs."); static vdev_ops_t *vdev_ops_table[] = { &vdev_root_ops, &vdev_raidz_ops, &vdev_mirror_ops, &vdev_replacing_ops, &vdev_spare_ops, #ifdef _KERNEL &vdev_geom_ops, #else &vdev_disk_ops, #endif &vdev_file_ops, &vdev_missing_ops, &vdev_hole_ops, &vdev_indirect_ops, NULL }; /* * When a vdev is added, it will be divided into approximately (but no * more than) this number of metaslabs. */ int metaslabs_per_vdev = 200; SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, metaslabs_per_vdev, CTLFLAG_RDTUN, &metaslabs_per_vdev, 0, "When a vdev is added, how many metaslabs the vdev should be divided into"); +boolean_t vdev_validate_skip = B_FALSE; + /*PRINTFLIKE2*/ void vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) { va_list adx; char buf[256]; va_start(adx, fmt); (void) vsnprintf(buf, sizeof (buf), fmt, adx); va_end(adx); if (vd->vdev_path != NULL) { zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, vd->vdev_path, buf); } else { zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", vd->vdev_ops->vdev_op_type, (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid, buf); } } +void +vdev_dbgmsg_print_tree(vdev_t *vd, int indent) +{ + char state[20]; + + if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { + zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id, + vd->vdev_ops->vdev_op_type); + return; + } + + switch (vd->vdev_state) { + case VDEV_STATE_UNKNOWN: + (void) snprintf(state, sizeof (state), "unknown"); + break; + case VDEV_STATE_CLOSED: + (void) snprintf(state, sizeof (state), "closed"); + break; + case VDEV_STATE_OFFLINE: + (void) snprintf(state, sizeof (state), "offline"); + break; + case VDEV_STATE_REMOVED: + (void) snprintf(state, sizeof (state), "removed"); + break; + case VDEV_STATE_CANT_OPEN: + (void) snprintf(state, sizeof (state), "can't open"); + break; + case VDEV_STATE_FAULTED: + (void) snprintf(state, sizeof (state), "faulted"); + break; + case VDEV_STATE_DEGRADED: + (void) snprintf(state, sizeof (state), "degraded"); + break; + case VDEV_STATE_HEALTHY: + (void) snprintf(state, sizeof (state), "healthy"); + break; + default: + (void) snprintf(state, sizeof (state), "", + (uint_t)vd->vdev_state); + } + + zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, + "", vd->vdev_id, vd->vdev_ops->vdev_op_type, + vd->vdev_islog ? " (log)" : "", + (u_longlong_t)vd->vdev_guid, + vd->vdev_path ? vd->vdev_path : "N/A", state); + + for (uint64_t i = 0; i < vd->vdev_children; i++) + vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); +} + /* * Given a vdev type, return the appropriate ops vector. */ static vdev_ops_t * vdev_getops(const char *type) { vdev_ops_t *ops, **opspp; for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) if (strcmp(ops->vdev_op_type, type) == 0) break; return (ops); } /* * Default asize function: return the MAX of psize with the asize of * all children. This is what's used by anything other than RAID-Z. */ uint64_t vdev_default_asize(vdev_t *vd, uint64_t psize) { uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); uint64_t csize; for (int c = 0; c < vd->vdev_children; c++) { csize = vdev_psize_to_asize(vd->vdev_child[c], psize); asize = MAX(asize, csize); } return (asize); } /* * Get the minimum allocatable size. We define the allocatable size as * the vdev's asize rounded to the nearest metaslab. This allows us to * replace or attach devices which don't have the same physical size but * can still satisfy the same number of allocations. */ uint64_t vdev_get_min_asize(vdev_t *vd) { vdev_t *pvd = vd->vdev_parent; /* * If our parent is NULL (inactive spare or cache) or is the root, * just return our own asize. */ if (pvd == NULL) return (vd->vdev_asize); /* * The top-level vdev just returns the allocatable size rounded * to the nearest metaslab. */ if (vd == vd->vdev_top) return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); /* * The allocatable space for a raidz vdev is N * sizeof(smallest child), * so each child must provide at least 1/Nth of its asize. */ if (pvd->vdev_ops == &vdev_raidz_ops) return ((pvd->vdev_min_asize + pvd->vdev_children - 1) / pvd->vdev_children); return (pvd->vdev_min_asize); } void vdev_set_min_asize(vdev_t *vd) { vd->vdev_min_asize = vdev_get_min_asize(vd); for (int c = 0; c < vd->vdev_children; c++) vdev_set_min_asize(vd->vdev_child[c]); } vdev_t * vdev_lookup_top(spa_t *spa, uint64_t vdev) { vdev_t *rvd = spa->spa_root_vdev; ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); if (vdev < rvd->vdev_children) { ASSERT(rvd->vdev_child[vdev] != NULL); return (rvd->vdev_child[vdev]); } return (NULL); } vdev_t * vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) { vdev_t *mvd; if (vd->vdev_guid == guid) return (vd); for (int c = 0; c < vd->vdev_children; c++) if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != NULL) return (mvd); return (NULL); } static int vdev_count_leaves_impl(vdev_t *vd) { int n = 0; if (vd->vdev_ops->vdev_op_leaf) return (1); for (int c = 0; c < vd->vdev_children; c++) n += vdev_count_leaves_impl(vd->vdev_child[c]); return (n); } int vdev_count_leaves(spa_t *spa) { return (vdev_count_leaves_impl(spa->spa_root_vdev)); } void vdev_add_child(vdev_t *pvd, vdev_t *cvd) { size_t oldsize, newsize; uint64_t id = cvd->vdev_id; vdev_t **newchild; spa_t *spa = cvd->vdev_spa; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); ASSERT(cvd->vdev_parent == NULL); cvd->vdev_parent = pvd; if (pvd == NULL) return; ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); oldsize = pvd->vdev_children * sizeof (vdev_t *); pvd->vdev_children = MAX(pvd->vdev_children, id + 1); newsize = pvd->vdev_children * sizeof (vdev_t *); newchild = kmem_zalloc(newsize, KM_SLEEP); if (pvd->vdev_child != NULL) { bcopy(pvd->vdev_child, newchild, oldsize); kmem_free(pvd->vdev_child, oldsize); } pvd->vdev_child = newchild; pvd->vdev_child[id] = cvd; cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); /* * Walk up all ancestors to update guid sum. */ for (; pvd != NULL; pvd = pvd->vdev_parent) pvd->vdev_guid_sum += cvd->vdev_guid_sum; } void vdev_remove_child(vdev_t *pvd, vdev_t *cvd) { int c; uint_t id = cvd->vdev_id; ASSERT(cvd->vdev_parent == pvd); if (pvd == NULL) return; ASSERT(id < pvd->vdev_children); ASSERT(pvd->vdev_child[id] == cvd); pvd->vdev_child[id] = NULL; cvd->vdev_parent = NULL; for (c = 0; c < pvd->vdev_children; c++) if (pvd->vdev_child[c]) break; if (c == pvd->vdev_children) { kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); pvd->vdev_child = NULL; pvd->vdev_children = 0; } /* * Walk up all ancestors to update guid sum. */ for (; pvd != NULL; pvd = pvd->vdev_parent) pvd->vdev_guid_sum -= cvd->vdev_guid_sum; } /* * Remove any holes in the child array. */ void vdev_compact_children(vdev_t *pvd) { vdev_t **newchild, *cvd; int oldc = pvd->vdev_children; int newc; ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); for (int c = newc = 0; c < oldc; c++) if (pvd->vdev_child[c]) newc++; newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); for (int c = newc = 0; c < oldc; c++) { if ((cvd = pvd->vdev_child[c]) != NULL) { newchild[newc] = cvd; cvd->vdev_id = newc++; } } kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); pvd->vdev_child = newchild; pvd->vdev_children = newc; } /* * Allocate and minimally initialize a vdev_t. */ vdev_t * vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) { vdev_t *vd; vdev_indirect_config_t *vic; vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); vic = &vd->vdev_indirect_config; if (spa->spa_root_vdev == NULL) { ASSERT(ops == &vdev_root_ops); spa->spa_root_vdev = vd; spa->spa_load_guid = spa_generate_guid(NULL); } if (guid == 0 && ops != &vdev_hole_ops) { if (spa->spa_root_vdev == vd) { /* * The root vdev's guid will also be the pool guid, * which must be unique among all pools. */ guid = spa_generate_guid(NULL); } else { /* * Any other vdev's guid must be unique within the pool. */ guid = spa_generate_guid(spa); } ASSERT(!spa_guid_exists(spa_guid(spa), guid)); } vd->vdev_spa = spa; vd->vdev_id = id; vd->vdev_guid = guid; vd->vdev_guid_sum = guid; vd->vdev_ops = ops; vd->vdev_state = VDEV_STATE_CLOSED; vd->vdev_ishole = (ops == &vdev_hole_ops); vic->vic_prev_indirect_vdev = UINT64_MAX; rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); vd->vdev_obsolete_segments = range_tree_create(NULL, NULL); mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL); for (int t = 0; t < DTL_TYPES; t++) { vd->vdev_dtl[t] = range_tree_create(NULL, NULL); } txg_list_create(&vd->vdev_ms_list, spa, offsetof(struct metaslab, ms_txg_node)); txg_list_create(&vd->vdev_dtl_list, spa, offsetof(struct vdev, vdev_dtl_node)); vd->vdev_stat.vs_timestamp = gethrtime(); vdev_queue_init(vd); vdev_cache_init(vd); return (vd); } /* * Allocate a new vdev. The 'alloctype' is used to control whether we are * creating a new vdev or loading an existing one - the behavior is slightly * different for each case. */ int vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, int alloctype) { vdev_ops_t *ops; char *type; uint64_t guid = 0, islog, nparity; vdev_t *vd; vdev_indirect_config_t *vic; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) return (SET_ERROR(EINVAL)); if ((ops = vdev_getops(type)) == NULL) return (SET_ERROR(EINVAL)); /* * If this is a load, get the vdev guid from the nvlist. * Otherwise, vdev_alloc_common() will generate one for us. */ if (alloctype == VDEV_ALLOC_LOAD) { uint64_t label_id; if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || label_id != id) return (SET_ERROR(EINVAL)); if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) return (SET_ERROR(EINVAL)); } else if (alloctype == VDEV_ALLOC_SPARE) { if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) return (SET_ERROR(EINVAL)); } else if (alloctype == VDEV_ALLOC_L2CACHE) { if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) return (SET_ERROR(EINVAL)); } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) return (SET_ERROR(EINVAL)); } /* * The first allocated vdev must be of type 'root'. */ if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) return (SET_ERROR(EINVAL)); /* * Determine whether we're a log vdev. */ islog = 0; (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); if (islog && spa_version(spa) < SPA_VERSION_SLOGS) return (SET_ERROR(ENOTSUP)); if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) return (SET_ERROR(ENOTSUP)); /* * Set the nparity property for RAID-Z vdevs. */ nparity = -1ULL; if (ops == &vdev_raidz_ops) { if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) == 0) { if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) return (SET_ERROR(EINVAL)); /* * Previous versions could only support 1 or 2 parity * device. */ if (nparity > 1 && spa_version(spa) < SPA_VERSION_RAIDZ2) return (SET_ERROR(ENOTSUP)); if (nparity > 2 && spa_version(spa) < SPA_VERSION_RAIDZ3) return (SET_ERROR(ENOTSUP)); } else { /* * We require the parity to be specified for SPAs that * support multiple parity levels. */ if (spa_version(spa) >= SPA_VERSION_RAIDZ2) return (SET_ERROR(EINVAL)); /* * Otherwise, we default to 1 parity device for RAID-Z. */ nparity = 1; } } else { nparity = 0; } ASSERT(nparity != -1ULL); vd = vdev_alloc_common(spa, id, guid, ops); vic = &vd->vdev_indirect_config; vd->vdev_islog = islog; vd->vdev_nparity = nparity; if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) vd->vdev_path = spa_strdup(vd->vdev_path); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) vd->vdev_devid = spa_strdup(vd->vdev_devid); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &vd->vdev_physpath) == 0) vd->vdev_physpath = spa_strdup(vd->vdev_physpath); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) vd->vdev_fru = spa_strdup(vd->vdev_fru); /* * Set the whole_disk property. If it's not specified, leave the value * as -1. */ if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, &vd->vdev_wholedisk) != 0) vd->vdev_wholedisk = -1ULL; ASSERT0(vic->vic_mapping_object); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, &vic->vic_mapping_object); ASSERT0(vic->vic_births_object); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, &vic->vic_births_object); ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, &vic->vic_prev_indirect_vdev); /* * Look for the 'not present' flag. This will only be set if the device * was not present at the time of import. */ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, &vd->vdev_not_present); /* * Get the alignment requirement. */ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); /* * Retrieve the vdev creation time. */ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, &vd->vdev_crtxg); /* * If we're a top-level vdev, try to load the allocation parameters. */ if (parent && !parent->vdev_parent && (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, &vd->vdev_ms_array); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, &vd->vdev_ms_shift); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, &vd->vdev_asize); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, &vd->vdev_removing); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, &vd->vdev_top_zap); } else { ASSERT0(vd->vdev_top_zap); } if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { ASSERT(alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_ADD || alloctype == VDEV_ALLOC_SPLIT || alloctype == VDEV_ALLOC_ROOTPOOL); vd->vdev_mg = metaslab_group_create(islog ? spa_log_class(spa) : spa_normal_class(spa), vd); } if (vd->vdev_ops->vdev_op_leaf && (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); } else { ASSERT0(vd->vdev_leaf_zap); } /* * If we're a leaf vdev, try to load the DTL object and other state. */ if (vd->vdev_ops->vdev_op_leaf && (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || alloctype == VDEV_ALLOC_ROOTPOOL)) { if (alloctype == VDEV_ALLOC_LOAD) { (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, &vd->vdev_dtl_object); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, &vd->vdev_unspare); } if (alloctype == VDEV_ALLOC_ROOTPOOL) { uint64_t spare = 0; if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, &spare) == 0 && spare) spa_spare_add(vd); } (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &vd->vdev_offline); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, &vd->vdev_resilver_txg); /* * When importing a pool, we want to ignore the persistent fault * state, as the diagnosis made on another system may not be * valid in the current context. Local vdevs will * remain in the faulted state. */ if (spa_load_state(spa) == SPA_LOAD_OPEN) { (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, &vd->vdev_faulted); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, &vd->vdev_degraded); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, &vd->vdev_removed); if (vd->vdev_faulted || vd->vdev_degraded) { char *aux; vd->vdev_label_aux = VDEV_AUX_ERR_EXCEEDED; if (nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && strcmp(aux, "external") == 0) vd->vdev_label_aux = VDEV_AUX_EXTERNAL; } } } /* * Add ourselves to the parent's list of children. */ vdev_add_child(parent, vd); *vdp = vd; return (0); } void vdev_free(vdev_t *vd) { spa_t *spa = vd->vdev_spa; /* * vdev_free() implies closing the vdev first. This is simpler than * trying to ensure complicated semantics for all callers. */ vdev_close(vd); ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); /* * Free all children. */ for (int c = 0; c < vd->vdev_children; c++) vdev_free(vd->vdev_child[c]); ASSERT(vd->vdev_child == NULL); ASSERT(vd->vdev_guid_sum == vd->vdev_guid); /* * Discard allocation state. */ if (vd->vdev_mg != NULL) { vdev_metaslab_fini(vd); metaslab_group_destroy(vd->vdev_mg); } ASSERT0(vd->vdev_stat.vs_space); ASSERT0(vd->vdev_stat.vs_dspace); ASSERT0(vd->vdev_stat.vs_alloc); /* * Remove this vdev from its parent's child list. */ vdev_remove_child(vd->vdev_parent, vd); ASSERT(vd->vdev_parent == NULL); /* * Clean up vdev structure. */ vdev_queue_fini(vd); vdev_cache_fini(vd); if (vd->vdev_path) spa_strfree(vd->vdev_path); if (vd->vdev_devid) spa_strfree(vd->vdev_devid); if (vd->vdev_physpath) spa_strfree(vd->vdev_physpath); if (vd->vdev_fru) spa_strfree(vd->vdev_fru); if (vd->vdev_isspare) spa_spare_remove(vd); if (vd->vdev_isl2cache) spa_l2cache_remove(vd); txg_list_destroy(&vd->vdev_ms_list); txg_list_destroy(&vd->vdev_dtl_list); mutex_enter(&vd->vdev_dtl_lock); space_map_close(vd->vdev_dtl_sm); for (int t = 0; t < DTL_TYPES; t++) { range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); range_tree_destroy(vd->vdev_dtl[t]); } mutex_exit(&vd->vdev_dtl_lock); EQUIV(vd->vdev_indirect_births != NULL, vd->vdev_indirect_mapping != NULL); if (vd->vdev_indirect_births != NULL) { vdev_indirect_mapping_close(vd->vdev_indirect_mapping); vdev_indirect_births_close(vd->vdev_indirect_births); } if (vd->vdev_obsolete_sm != NULL) { ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops); space_map_close(vd->vdev_obsolete_sm); vd->vdev_obsolete_sm = NULL; } range_tree_destroy(vd->vdev_obsolete_segments); rw_destroy(&vd->vdev_indirect_rwlock); mutex_destroy(&vd->vdev_obsolete_lock); mutex_destroy(&vd->vdev_queue_lock); mutex_destroy(&vd->vdev_dtl_lock); mutex_destroy(&vd->vdev_stat_lock); mutex_destroy(&vd->vdev_probe_lock); if (vd == spa->spa_root_vdev) spa->spa_root_vdev = NULL; kmem_free(vd, sizeof (vdev_t)); } /* * Transfer top-level vdev state from svd to tvd. */ static void vdev_top_transfer(vdev_t *svd, vdev_t *tvd) { spa_t *spa = svd->vdev_spa; metaslab_t *msp; vdev_t *vd; int t; ASSERT(tvd == tvd->vdev_top); tvd->vdev_ms_array = svd->vdev_ms_array; tvd->vdev_ms_shift = svd->vdev_ms_shift; tvd->vdev_ms_count = svd->vdev_ms_count; tvd->vdev_top_zap = svd->vdev_top_zap; svd->vdev_ms_array = 0; svd->vdev_ms_shift = 0; svd->vdev_ms_count = 0; svd->vdev_top_zap = 0; if (tvd->vdev_mg) ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); tvd->vdev_mg = svd->vdev_mg; tvd->vdev_ms = svd->vdev_ms; svd->vdev_mg = NULL; svd->vdev_ms = NULL; if (tvd->vdev_mg != NULL) tvd->vdev_mg->mg_vd = tvd; tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; svd->vdev_stat.vs_alloc = 0; svd->vdev_stat.vs_space = 0; svd->vdev_stat.vs_dspace = 0; for (t = 0; t < TXG_SIZE; t++) { while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) (void) txg_list_add(&tvd->vdev_ms_list, msp, t); while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); } if (list_link_active(&svd->vdev_config_dirty_node)) { vdev_config_clean(svd); vdev_config_dirty(tvd); } if (list_link_active(&svd->vdev_state_dirty_node)) { vdev_state_clean(svd); vdev_state_dirty(tvd); } tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; svd->vdev_deflate_ratio = 0; tvd->vdev_islog = svd->vdev_islog; svd->vdev_islog = 0; } static void vdev_top_update(vdev_t *tvd, vdev_t *vd) { if (vd == NULL) return; vd->vdev_top = tvd; for (int c = 0; c < vd->vdev_children; c++) vdev_top_update(tvd, vd->vdev_child[c]); } /* * Add a mirror/replacing vdev above an existing vdev. */ vdev_t * vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) { spa_t *spa = cvd->vdev_spa; vdev_t *pvd = cvd->vdev_parent; vdev_t *mvd; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); mvd->vdev_asize = cvd->vdev_asize; mvd->vdev_min_asize = cvd->vdev_min_asize; mvd->vdev_max_asize = cvd->vdev_max_asize; mvd->vdev_psize = cvd->vdev_psize; mvd->vdev_ashift = cvd->vdev_ashift; mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; mvd->vdev_state = cvd->vdev_state; mvd->vdev_crtxg = cvd->vdev_crtxg; vdev_remove_child(pvd, cvd); vdev_add_child(pvd, mvd); cvd->vdev_id = mvd->vdev_children; vdev_add_child(mvd, cvd); vdev_top_update(cvd->vdev_top, cvd->vdev_top); if (mvd == mvd->vdev_top) vdev_top_transfer(cvd, mvd); return (mvd); } /* * Remove a 1-way mirror/replacing vdev from the tree. */ void vdev_remove_parent(vdev_t *cvd) { vdev_t *mvd = cvd->vdev_parent; vdev_t *pvd = mvd->vdev_parent; ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); ASSERT(mvd->vdev_children == 1); ASSERT(mvd->vdev_ops == &vdev_mirror_ops || mvd->vdev_ops == &vdev_replacing_ops || mvd->vdev_ops == &vdev_spare_ops); cvd->vdev_ashift = mvd->vdev_ashift; cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; vdev_remove_child(mvd, cvd); vdev_remove_child(pvd, mvd); /* * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. * Otherwise, we could have detached an offline device, and when we * go to import the pool we'll think we have two top-level vdevs, * instead of a different version of the same top-level vdev. */ if (mvd->vdev_top == mvd) { uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; cvd->vdev_orig_guid = cvd->vdev_guid; cvd->vdev_guid += guid_delta; cvd->vdev_guid_sum += guid_delta; } cvd->vdev_id = mvd->vdev_id; vdev_add_child(pvd, cvd); vdev_top_update(cvd->vdev_top, cvd->vdev_top); if (cvd == cvd->vdev_top) vdev_top_transfer(mvd, cvd); ASSERT(mvd->vdev_children == 0); vdev_free(mvd); } int vdev_metaslab_init(vdev_t *vd, uint64_t txg) { spa_t *spa = vd->vdev_spa; objset_t *mos = spa->spa_meta_objset; uint64_t m; uint64_t oldc = vd->vdev_ms_count; uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; metaslab_t **mspp; int error; ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); /* * This vdev is not being allocated from yet or is a hole. */ if (vd->vdev_ms_shift == 0) return (0); ASSERT(!vd->vdev_ishole); ASSERT(oldc <= newc); mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); if (oldc != 0) { bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); } vd->vdev_ms = mspp; vd->vdev_ms_count = newc; for (m = oldc; m < newc; m++) { uint64_t object = 0; /* * vdev_ms_array may be 0 if we are creating the "fake" * metaslabs for an indirect vdev for zdb's leak detection. * See zdb_leak_init(). */ if (txg == 0 && vd->vdev_ms_array != 0) { error = dmu_read(mos, vd->vdev_ms_array, m * sizeof (uint64_t), sizeof (uint64_t), &object, DMU_READ_PREFETCH); if (error != 0) { vdev_dbgmsg(vd, "unable to read the metaslab " "array [error=%d]", error); return (error); } } error = metaslab_init(vd->vdev_mg, m, object, txg, &(vd->vdev_ms[m])); if (error != 0) { vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", error); return (error); } } if (txg == 0) spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); /* * If the vdev is being removed we don't activate * the metaslabs since we want to ensure that no new * allocations are performed on this device. */ if (oldc == 0 && !vd->vdev_removing) metaslab_group_activate(vd->vdev_mg); if (txg == 0) spa_config_exit(spa, SCL_ALLOC, FTAG); return (0); } void vdev_metaslab_fini(vdev_t *vd) { if (vd->vdev_ms != NULL) { uint64_t count = vd->vdev_ms_count; metaslab_group_passivate(vd->vdev_mg); for (uint64_t m = 0; m < count; m++) { metaslab_t *msp = vd->vdev_ms[m]; if (msp != NULL) metaslab_fini(msp); } kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); vd->vdev_ms = NULL; vd->vdev_ms_count = 0; } ASSERT0(vd->vdev_ms_count); } typedef struct vdev_probe_stats { boolean_t vps_readable; boolean_t vps_writeable; int vps_flags; } vdev_probe_stats_t; static void vdev_probe_done(zio_t *zio) { spa_t *spa = zio->io_spa; vdev_t *vd = zio->io_vd; vdev_probe_stats_t *vps = zio->io_private; ASSERT(vd->vdev_probe_zio != NULL); if (zio->io_type == ZIO_TYPE_READ) { if (zio->io_error == 0) vps->vps_readable = 1; if (zio->io_error == 0 && spa_writeable(spa)) { zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, zio->io_offset, zio->io_size, zio->io_abd, ZIO_CHECKSUM_OFF, vdev_probe_done, vps, ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); } else { abd_free(zio->io_abd); } } else if (zio->io_type == ZIO_TYPE_WRITE) { if (zio->io_error == 0) vps->vps_writeable = 1; abd_free(zio->io_abd); } else if (zio->io_type == ZIO_TYPE_NULL) { zio_t *pio; vd->vdev_cant_read |= !vps->vps_readable; vd->vdev_cant_write |= !vps->vps_writeable; if (vdev_readable(vd) && (vdev_writeable(vd) || !spa_writeable(spa))) { zio->io_error = 0; } else { ASSERT(zio->io_error != 0); vdev_dbgmsg(vd, "failed probe"); zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, spa, vd, NULL, 0, 0); zio->io_error = SET_ERROR(ENXIO); } mutex_enter(&vd->vdev_probe_lock); ASSERT(vd->vdev_probe_zio == zio); vd->vdev_probe_zio = NULL; mutex_exit(&vd->vdev_probe_lock); zio_link_t *zl = NULL; while ((pio = zio_walk_parents(zio, &zl)) != NULL) if (!vdev_accessible(vd, pio)) pio->io_error = SET_ERROR(ENXIO); kmem_free(vps, sizeof (*vps)); } } /* * Determine whether this device is accessible. * * Read and write to several known locations: the pad regions of each * vdev label but the first, which we leave alone in case it contains * a VTOC. */ zio_t * vdev_probe(vdev_t *vd, zio_t *zio) { spa_t *spa = vd->vdev_spa; vdev_probe_stats_t *vps = NULL; zio_t *pio; ASSERT(vd->vdev_ops->vdev_op_leaf); /* * Don't probe the probe. */ if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) return (NULL); /* * To prevent 'probe storms' when a device fails, we create * just one probe i/o at a time. All zios that want to probe * this vdev will become parents of the probe io. */ mutex_enter(&vd->vdev_probe_lock); if ((pio = vd->vdev_probe_zio) == NULL) { vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD; if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { /* * vdev_cant_read and vdev_cant_write can only * transition from TRUE to FALSE when we have the * SCL_ZIO lock as writer; otherwise they can only * transition from FALSE to TRUE. This ensures that * any zio looking at these values can assume that * failures persist for the life of the I/O. That's * important because when a device has intermittent * connectivity problems, we want to ensure that * they're ascribed to the device (ENXIO) and not * the zio (EIO). * * Since we hold SCL_ZIO as writer here, clear both * values so the probe can reevaluate from first * principles. */ vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; vd->vdev_cant_read = B_FALSE; vd->vdev_cant_write = B_FALSE; } vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, vdev_probe_done, vps, vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); /* * We can't change the vdev state in this context, so we * kick off an async task to do it on our behalf. */ if (zio != NULL) { vd->vdev_probe_wanted = B_TRUE; spa_async_request(spa, SPA_ASYNC_PROBE); } } if (zio != NULL) zio_add_child(zio, pio); mutex_exit(&vd->vdev_probe_lock); if (vps == NULL) { ASSERT(zio != NULL); return (NULL); } for (int l = 1; l < VDEV_LABELS; l++) { zio_nowait(zio_read_phys(pio, vd, vdev_label_offset(vd->vdev_psize, l, offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE, abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), ZIO_CHECKSUM_OFF, vdev_probe_done, vps, ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); } if (zio == NULL) return (pio); zio_nowait(pio); return (NULL); } static void vdev_open_child(void *arg) { vdev_t *vd = arg; vd->vdev_open_thread = curthread; vd->vdev_open_error = vdev_open(vd); vd->vdev_open_thread = NULL; } boolean_t vdev_uses_zvols(vdev_t *vd) { if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, strlen(ZVOL_DIR)) == 0) return (B_TRUE); for (int c = 0; c < vd->vdev_children; c++) if (vdev_uses_zvols(vd->vdev_child[c])) return (B_TRUE); return (B_FALSE); } void vdev_open_children(vdev_t *vd) { taskq_t *tq; int children = vd->vdev_children; /* * in order to handle pools on top of zvols, do the opens * in a single thread so that the same thread holds the * spa_namespace_lock */ if (B_TRUE || vdev_uses_zvols(vd)) { for (int c = 0; c < children; c++) vd->vdev_child[c]->vdev_open_error = vdev_open(vd->vdev_child[c]); return; } tq = taskq_create("vdev_open", children, minclsyspri, children, children, TASKQ_PREPOPULATE); for (int c = 0; c < children; c++) VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], TQ_SLEEP) != 0); taskq_destroy(tq); } /* * Compute the raidz-deflation ratio. Note, we hard-code * in 128k (1 << 17) because it is the "typical" blocksize. * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, * otherwise it would inconsistently account for existing bp's. */ static void vdev_set_deflate_ratio(vdev_t *vd) { if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { vd->vdev_deflate_ratio = (1 << 17) / (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); } } /* * Prepare a virtual device for access. */ int vdev_open(vdev_t *vd) { spa_t *spa = vd->vdev_spa; int error; uint64_t osize = 0; uint64_t max_osize = 0; uint64_t asize, max_asize, psize; uint64_t logical_ashift = 0; uint64_t physical_ashift = 0; ASSERT(vd->vdev_open_thread == curthread || spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || vd->vdev_state == VDEV_STATE_CANT_OPEN || vd->vdev_state == VDEV_STATE_OFFLINE); vd->vdev_stat.vs_aux = VDEV_AUX_NONE; vd->vdev_cant_read = B_FALSE; vd->vdev_cant_write = B_FALSE; vd->vdev_notrim = B_FALSE; vd->vdev_min_asize = vdev_get_min_asize(vd); /* * If this vdev is not removed, check its fault status. If it's * faulted, bail out of the open. */ if (!vd->vdev_removed && vd->vdev_faulted) { ASSERT(vd->vdev_children == 0); ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || vd->vdev_label_aux == VDEV_AUX_EXTERNAL); vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, vd->vdev_label_aux); return (SET_ERROR(ENXIO)); } else if (vd->vdev_offline) { ASSERT(vd->vdev_children == 0); vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); return (SET_ERROR(ENXIO)); } error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &logical_ashift, &physical_ashift); /* * Reset the vdev_reopening flag so that we actually close * the vdev on error. */ vd->vdev_reopening = B_FALSE; if (zio_injection_enabled && error == 0) error = zio_handle_device_injection(vd, NULL, ENXIO); if (error) { if (vd->vdev_removed && vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) vd->vdev_removed = B_FALSE; - vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, - vd->vdev_stat.vs_aux); + if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { + vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, + vd->vdev_stat.vs_aux); + } else { + vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, + vd->vdev_stat.vs_aux); + } return (error); } vd->vdev_removed = B_FALSE; /* * Recheck the faulted flag now that we have confirmed that * the vdev is accessible. If we're faulted, bail. */ if (vd->vdev_faulted) { ASSERT(vd->vdev_children == 0); ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || vd->vdev_label_aux == VDEV_AUX_EXTERNAL); vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, vd->vdev_label_aux); return (SET_ERROR(ENXIO)); } if (vd->vdev_degraded) { ASSERT(vd->vdev_children == 0); vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, VDEV_AUX_ERR_EXCEEDED); } else { vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); } /* * For hole or missing vdevs we just return success. */ if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) return (0); if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf) trim_map_create(vd); for (int c = 0; c < vd->vdev_children; c++) { if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); break; } } osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); if (vd->vdev_children == 0) { if (osize < SPA_MINDEVSIZE) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_TOO_SMALL); return (SET_ERROR(EOVERFLOW)); } psize = osize; asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); max_asize = max_osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); } else { if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_TOO_SMALL); return (SET_ERROR(EOVERFLOW)); } psize = 0; asize = osize; max_asize = max_osize; } vd->vdev_psize = psize; /* * Make sure the allocatable size hasn't shrunk too much. */ if (asize < vd->vdev_min_asize) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_BAD_LABEL); return (SET_ERROR(EINVAL)); } vd->vdev_physical_ashift = MAX(physical_ashift, vd->vdev_physical_ashift); vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift); vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift); if (vd->vdev_logical_ashift > SPA_MAXASHIFT) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_ASHIFT_TOO_BIG); return (EINVAL); } if (vd->vdev_asize == 0) { /* * This is the first-ever open, so use the computed values. * For testing purposes, a higher ashift can be requested. */ vd->vdev_asize = asize; vd->vdev_max_asize = max_asize; } else { /* * Make sure the alignment requirement hasn't increased. */ if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && vd->vdev_ops->vdev_op_leaf) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_BAD_LABEL); return (EINVAL); } vd->vdev_max_asize = max_asize; } /* * If all children are healthy we update asize if either: * The asize has increased, due to a device expansion caused by dynamic * LUN growth or vdev replacement, and automatic expansion is enabled; * making the additional space available. * * The asize has decreased, due to a device shrink usually caused by a * vdev replace with a smaller device. This ensures that calculations * based of max_asize and asize e.g. esize are always valid. It's safe * to do this as we've already validated that asize is greater than * vdev_min_asize. */ if (vd->vdev_state == VDEV_STATE_HEALTHY && ((asize > vd->vdev_asize && (vd->vdev_expanding || spa->spa_autoexpand)) || (asize < vd->vdev_asize))) vd->vdev_asize = asize; vdev_set_min_asize(vd); /* * Ensure we can issue some IO before declaring the * vdev open for business. */ if (vd->vdev_ops->vdev_op_leaf && (error = zio_wait(vdev_probe(vd, NULL))) != 0) { vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED); return (error); } if (vd->vdev_top == vd && vd->vdev_ashift != 0 && !vd->vdev_isl2cache && !vd->vdev_islog) { if (vd->vdev_ashift > spa->spa_max_ashift) spa->spa_max_ashift = vd->vdev_ashift; if (vd->vdev_ashift < spa->spa_min_ashift) spa->spa_min_ashift = vd->vdev_ashift; } /* * Track the min and max ashift values for normal data devices. */ if (vd->vdev_top == vd && vd->vdev_ashift != 0 && !vd->vdev_islog && vd->vdev_aux == NULL) { if (vd->vdev_ashift > spa->spa_max_ashift) spa->spa_max_ashift = vd->vdev_ashift; if (vd->vdev_ashift < spa->spa_min_ashift) spa->spa_min_ashift = vd->vdev_ashift; } /* * If a leaf vdev has a DTL, and seems healthy, then kick off a * resilver. But don't do this if we are doing a reopen for a scrub, * since this would just restart the scrub we are already doing. */ if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && vdev_resilver_needed(vd, NULL, NULL)) spa_async_request(spa, SPA_ASYNC_RESILVER); return (0); } /* * Called once the vdevs are all opened, this routine validates the label - * contents. This needs to be done before vdev_load() so that we don't + * contents. This needs to be done before vdev_load() so that we don't * inadvertently do repair I/Os to the wrong device. * - * If 'strict' is false ignore the spa guid check. This is necessary because - * if the machine crashed during a re-guid the new guid might have been written - * to all of the vdev labels, but not the cached config. The strict check - * will be performed when the pool is opened again using the mos config. - * * This function will only return failure if one of the vdevs indicates that it * has since been destroyed or exported. This is only possible if * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state * will be updated but the function will return 0. */ int -vdev_validate(vdev_t *vd, boolean_t strict) +vdev_validate(vdev_t *vd) { spa_t *spa = vd->vdev_spa; nvlist_t *label; - uint64_t guid = 0, top_guid; + uint64_t guid = 0, aux_guid = 0, top_guid; uint64_t state; + nvlist_t *nvl; + uint64_t txg; - for (int c = 0; c < vd->vdev_children; c++) - if (vdev_validate(vd->vdev_child[c], strict) != 0) + if (vdev_validate_skip) + return (0); + + for (uint64_t c = 0; c < vd->vdev_children; c++) + if (vdev_validate(vd->vdev_child[c]) != 0) return (SET_ERROR(EBADF)); /* * If the device has already failed, or was marked offline, don't do * any further validation. Otherwise, label I/O will fail and we will * overwrite the previous state. */ - if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { - uint64_t aux_guid = 0; - nvlist_t *nvl; - uint64_t txg = spa_last_synced_txg(spa) != 0 ? - spa_last_synced_txg(spa) : -1ULL; + if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) + return (0); - if ((label = vdev_label_read_config(vd, txg)) == NULL) { - vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, - VDEV_AUX_BAD_LABEL); - vdev_dbgmsg(vd, "vdev_validate: failed reading config"); - return (0); - } + /* + * If we are performing an extreme rewind, we allow for a label that + * was modified at a point after the current txg. + */ + if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0) + txg = UINT64_MAX; + else + txg = spa_last_synced_txg(spa); - /* - * Determine if this vdev has been split off into another - * pool. If so, then refuse to open it. - */ - if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, - &aux_guid) == 0 && aux_guid == spa_guid(spa)) { - vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, - VDEV_AUX_SPLIT_POOL); - nvlist_free(label); - vdev_dbgmsg(vd, "vdev_validate: vdev split into other " - "pool"); - return (0); - } + if ((label = vdev_label_read_config(vd, txg)) == NULL) { + vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_BAD_LABEL); + vdev_dbgmsg(vd, "vdev_validate: failed reading config"); + return (0); + } - if (strict && (nvlist_lookup_uint64(label, - ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || - guid != spa_guid(spa))) { - vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, - VDEV_AUX_CORRUPT_DATA); - nvlist_free(label); - vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid " - "doesn't match config (%llu != %llu)", - (u_longlong_t)guid, - (u_longlong_t)spa_guid(spa)); - return (0); - } + /* + * Determine if this vdev has been split off into another + * pool. If so, then refuse to open it. + */ + if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, + &aux_guid) == 0 && aux_guid == spa_guid(spa)) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_SPLIT_POOL); + nvlist_free(label); + vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); + return (0); + } - if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) - != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, - &aux_guid) != 0) - aux_guid = 0; + if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + nvlist_free(label); + vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", + ZPOOL_CONFIG_POOL_GUID); + return (0); + } - /* - * If this vdev just became a top-level vdev because its - * sibling was detached, it will have adopted the parent's - * vdev guid -- but the label may or may not be on disk yet. - * Fortunately, either version of the label will have the - * same top guid, so if we're a top-level vdev, we can - * safely compare to that instead. - * - * If we split this vdev off instead, then we also check the - * original pool's guid. We don't want to consider the vdev - * corrupt if it is partway through a split operation. - */ - if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, - &guid) != 0 || - nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, - &top_guid) != 0 || - ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && - (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { - vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, - VDEV_AUX_CORRUPT_DATA); - nvlist_free(label); - vdev_dbgmsg(vd, "vdev_validate: config guid doesn't " - "match label guid (%llu != %llu)", - (u_longlong_t)vd->vdev_guid, (u_longlong_t)guid); - return (0); + /* + * If config is not trusted then ignore the spa guid check. This is + * necessary because if the machine crashed during a re-guid the new + * guid might have been written to all of the vdev labels, but not the + * cached config. The check will be performed again once we have the + * trusted config from the MOS. + */ + if (spa->spa_trust_config && guid != spa_guid(spa)) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + nvlist_free(label); + vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " + "match config (%llu != %llu)", (u_longlong_t)guid, + (u_longlong_t)spa_guid(spa)); + return (0); + } + + if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) + != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, + &aux_guid) != 0) + aux_guid = 0; + + if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + nvlist_free(label); + vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", + ZPOOL_CONFIG_GUID); + return (0); + } + + if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) + != 0) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + nvlist_free(label); + vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", + ZPOOL_CONFIG_TOP_GUID); + return (0); + } + + /* + * If this vdev just became a top-level vdev because its sibling was + * detached, it will have adopted the parent's vdev guid -- but the + * label may or may not be on disk yet. Fortunately, either version + * of the label will have the same top guid, so if we're a top-level + * vdev, we can safely compare to that instead. + * However, if the config comes from a cachefile that failed to update + * after the detach, a top-level vdev will appear as a non top-level + * vdev in the config. Also relax the constraints if we perform an + * extreme rewind. + * + * If we split this vdev off instead, then we also check the + * original pool's guid. We don't want to consider the vdev + * corrupt if it is partway through a split operation. + */ + if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { + boolean_t mismatch = B_FALSE; + if (spa->spa_trust_config && !spa->spa_extreme_rewind) { + if (vd != vd->vdev_top || vd->vdev_guid != top_guid) + mismatch = B_TRUE; + } else { + if (vd->vdev_guid != top_guid && + vd->vdev_top->vdev_guid != guid) + mismatch = B_TRUE; } - if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, - &state) != 0) { + if (mismatch) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); - vdev_dbgmsg(vd, "vdev_validate: '%s' missing", - ZPOOL_CONFIG_POOL_STATE); + vdev_dbgmsg(vd, "vdev_validate: config guid " + "doesn't match label guid"); + vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", + (u_longlong_t)vd->vdev_guid, + (u_longlong_t)vd->vdev_top->vdev_guid); + vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " + "aux_guid %llu", (u_longlong_t)guid, + (u_longlong_t)top_guid, (u_longlong_t)aux_guid); return (0); } + } + if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, + &state) != 0) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); nvlist_free(label); + vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", + ZPOOL_CONFIG_POOL_STATE); + return (0); + } - /* - * If this is a verbatim import, no need to check the - * state of the pool. - */ - if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && - spa_load_state(spa) == SPA_LOAD_OPEN && - state != POOL_STATE_ACTIVE) { - vdev_dbgmsg(vd, "vdev_validate: invalid pool state " - "(%llu) for spa %s", (u_longlong_t)state, - spa->spa_name); - return (SET_ERROR(EBADF)); + nvlist_free(label); + + /* + * If this is a verbatim import, no need to check the + * state of the pool. + */ + if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && + spa_load_state(spa) == SPA_LOAD_OPEN && + state != POOL_STATE_ACTIVE) { + vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " + "for spa %s", (u_longlong_t)state, spa->spa_name); + return (SET_ERROR(EBADF)); + } + + /* + * If we were able to open and validate a vdev that was + * previously marked permanently unavailable, clear that state + * now. + */ + if (vd->vdev_not_present) + vd->vdev_not_present = 0; + + return (0); +} + +static void +vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) +{ + if (svd->vdev_path != NULL && dvd->vdev_path != NULL) { + if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) { + zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed " + "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, + dvd->vdev_path, svd->vdev_path); + spa_strfree(dvd->vdev_path); + dvd->vdev_path = spa_strdup(svd->vdev_path); } + } else if (svd->vdev_path != NULL) { + dvd->vdev_path = spa_strdup(svd->vdev_path); + zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", + (u_longlong_t)dvd->vdev_guid, dvd->vdev_path); + } +} - /* - * If we were able to open and validate a vdev that was - * previously marked permanently unavailable, clear that state - * now. - */ - if (vd->vdev_not_present) - vd->vdev_not_present = 0; +/* + * Recursively copy vdev paths from one vdev to another. Source and destination + * vdev trees must have same geometry otherwise return error. Intended to copy + * paths from userland config into MOS config. + */ +int +vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) +{ + if ((svd->vdev_ops == &vdev_missing_ops) || + (svd->vdev_ishole && dvd->vdev_ishole) || + (dvd->vdev_ops == &vdev_indirect_ops)) + return (0); + + if (svd->vdev_ops != dvd->vdev_ops) { + vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", + svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); + return (SET_ERROR(EINVAL)); } + if (svd->vdev_guid != dvd->vdev_guid) { + vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " + "%llu)", (u_longlong_t)svd->vdev_guid, + (u_longlong_t)dvd->vdev_guid); + return (SET_ERROR(EINVAL)); + } + + if (svd->vdev_children != dvd->vdev_children) { + vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " + "%llu != %llu", (u_longlong_t)svd->vdev_children, + (u_longlong_t)dvd->vdev_children); + return (SET_ERROR(EINVAL)); + } + + for (uint64_t i = 0; i < svd->vdev_children; i++) { + int error = vdev_copy_path_strict(svd->vdev_child[i], + dvd->vdev_child[i]); + if (error != 0) + return (error); + } + + if (svd->vdev_ops->vdev_op_leaf) + vdev_copy_path_impl(svd, dvd); + return (0); } +static void +vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) +{ + ASSERT(stvd->vdev_top == stvd); + ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); + + for (uint64_t i = 0; i < dvd->vdev_children; i++) { + vdev_copy_path_search(stvd, dvd->vdev_child[i]); + } + + if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) + return; + + /* + * The idea here is that while a vdev can shift positions within + * a top vdev (when replacing, attaching mirror, etc.) it cannot + * step outside of it. + */ + vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); + + if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) + return; + + ASSERT(vd->vdev_ops->vdev_op_leaf); + + vdev_copy_path_impl(vd, dvd); +} + /* + * Recursively copy vdev paths from one root vdev to another. Source and + * destination vdev trees may differ in geometry. For each destination leaf + * vdev, search a vdev with the same guid and top vdev id in the source. + * Intended to copy paths from userland config into MOS config. + */ +void +vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) +{ + uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); + ASSERT(srvd->vdev_ops == &vdev_root_ops); + ASSERT(drvd->vdev_ops == &vdev_root_ops); + + for (uint64_t i = 0; i < children; i++) { + vdev_copy_path_search(srvd->vdev_child[i], + drvd->vdev_child[i]); + } +} + +/* * Close a virtual device. */ void vdev_close(vdev_t *vd) { spa_t *spa = vd->vdev_spa; vdev_t *pvd = vd->vdev_parent; ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); /* * If our parent is reopening, then we are as well, unless we are * going offline. */ if (pvd != NULL && pvd->vdev_reopening) vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); vd->vdev_ops->vdev_op_close(vd); vdev_cache_purge(vd); if (vd->vdev_ops->vdev_op_leaf) trim_map_destroy(vd); /* * We record the previous state before we close it, so that if we are * doing a reopen(), we don't generate FMA ereports if we notice that * it's still faulted. */ vd->vdev_prevstate = vd->vdev_state; if (vd->vdev_offline) vd->vdev_state = VDEV_STATE_OFFLINE; else vd->vdev_state = VDEV_STATE_CLOSED; vd->vdev_stat.vs_aux = VDEV_AUX_NONE; } void vdev_hold(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_is_root(spa)); if (spa->spa_state == POOL_STATE_UNINITIALIZED) return; for (int c = 0; c < vd->vdev_children; c++) vdev_hold(vd->vdev_child[c]); if (vd->vdev_ops->vdev_op_leaf) vd->vdev_ops->vdev_op_hold(vd); } void vdev_rele(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_is_root(spa)); for (int c = 0; c < vd->vdev_children; c++) vdev_rele(vd->vdev_child[c]); if (vd->vdev_ops->vdev_op_leaf) vd->vdev_ops->vdev_op_rele(vd); } /* * Reopen all interior vdevs and any unopened leaves. We don't actually * reopen leaf vdevs which had previously been opened as they might deadlock * on the spa_config_lock. Instead we only obtain the leaf's physical size. * If the leaf has never been opened then open it, as usual. */ void vdev_reopen(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); /* set the reopening flag unless we're taking the vdev offline */ vd->vdev_reopening = !vd->vdev_offline; vdev_close(vd); (void) vdev_open(vd); /* * Call vdev_validate() here to make sure we have the same device. * Otherwise, a device with an invalid label could be successfully * opened in response to vdev_reopen(). */ if (vd->vdev_aux) { (void) vdev_validate_aux(vd); if (vdev_readable(vd) && vdev_writeable(vd) && vd->vdev_aux == &spa->spa_l2cache && !l2arc_vdev_present(vd)) l2arc_add_vdev(spa, vd); } else { - (void) vdev_validate(vd, B_TRUE); + (void) vdev_validate(vd); } /* * Reassess parent vdev's health. */ vdev_propagate_state(vd); } int vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) { int error; /* * Normally, partial opens (e.g. of a mirror) are allowed. * For a create, however, we want to fail the request if * there are any components we can't open. */ error = vdev_open(vd); if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { vdev_close(vd); return (error ? error : ENXIO); } /* * Recursively load DTLs and initialize all labels. */ if ((error = vdev_dtl_load(vd)) != 0 || (error = vdev_label_init(vd, txg, isreplacing ? VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { vdev_close(vd); return (error); } return (0); } void vdev_metaslab_set_size(vdev_t *vd) { /* * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev. */ vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev); vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); } /* * Maximize performance by inflating the configured ashift for top level * vdevs to be as close to the physical ashift as possible while maintaining * administrator defined limits and ensuring it doesn't go below the * logical ashift. */ void vdev_ashift_optimize(vdev_t *vd) { if (vd == vd->vdev_top) { if (vd->vdev_ashift < vd->vdev_physical_ashift) { vd->vdev_ashift = MIN( MAX(zfs_max_auto_ashift, vd->vdev_ashift), MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift)); } else { /* * Unusual case where logical ashift > physical ashift * so we can't cap the calculated ashift based on max * ashift as that would cause failures. * We still check if we need to increase it to match * the min ashift. */ vd->vdev_ashift = MAX(zfs_min_auto_ashift, vd->vdev_ashift); } } } void vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) { ASSERT(vd == vd->vdev_top); /* indirect vdevs don't have metaslabs or dtls */ ASSERT(vdev_is_concrete(vd) || flags == 0); ASSERT(ISP2(flags)); ASSERT(spa_writeable(vd->vdev_spa)); if (flags & VDD_METASLAB) (void) txg_list_add(&vd->vdev_ms_list, arg, txg); if (flags & VDD_DTL) (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); } void vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) { for (int c = 0; c < vd->vdev_children; c++) vdev_dirty_leaves(vd->vdev_child[c], flags, txg); if (vd->vdev_ops->vdev_op_leaf) vdev_dirty(vd->vdev_top, flags, vd, txg); } /* * DTLs. * * A vdev's DTL (dirty time log) is the set of transaction groups for which * the vdev has less than perfect replication. There are four kinds of DTL: * * DTL_MISSING: txgs for which the vdev has no valid copies of the data * * DTL_PARTIAL: txgs for which data is available, but not fully replicated * * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of * txgs that was scrubbed. * * DTL_OUTAGE: txgs which cannot currently be read, whether due to * persistent errors or just some device being offline. * Unlike the other three, the DTL_OUTAGE map is not generally * maintained; it's only computed when needed, typically to * determine whether a device can be detached. * * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device * either has the data or it doesn't. * * For interior vdevs such as mirror and RAID-Z the picture is more complex. * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because * if any child is less than fully replicated, then so is its parent. * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, * comprising only those txgs which appear in 'maxfaults' or more children; * those are the txgs we don't have enough replication to read. For example, * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); * thus, its DTL_MISSING consists of the set of txgs that appear in more than * two child DTL_MISSING maps. * * It should be clear from the above that to compute the DTLs and outage maps * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. * Therefore, that is all we keep on disk. When loading the pool, or after * a configuration change, we generate all other DTLs from first principles. */ void vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) { range_tree_t *rt = vd->vdev_dtl[t]; ASSERT(t < DTL_TYPES); ASSERT(vd != vd->vdev_spa->spa_root_vdev); ASSERT(spa_writeable(vd->vdev_spa)); mutex_enter(&vd->vdev_dtl_lock); if (!range_tree_contains(rt, txg, size)) range_tree_add(rt, txg, size); mutex_exit(&vd->vdev_dtl_lock); } boolean_t vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) { range_tree_t *rt = vd->vdev_dtl[t]; boolean_t dirty = B_FALSE; ASSERT(t < DTL_TYPES); ASSERT(vd != vd->vdev_spa->spa_root_vdev); /* * While we are loading the pool, the DTLs have not been loaded yet. * Ignore the DTLs and try all devices. This avoids a recursive * mutex enter on the vdev_dtl_lock, and also makes us try hard * when loading the pool (relying on the checksum to ensure that * we get the right data -- note that we while loading, we are * only reading the MOS, which is always checksummed). */ if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE) return (B_FALSE); mutex_enter(&vd->vdev_dtl_lock); if (range_tree_space(rt) != 0) dirty = range_tree_contains(rt, txg, size); mutex_exit(&vd->vdev_dtl_lock); return (dirty); } boolean_t vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) { range_tree_t *rt = vd->vdev_dtl[t]; boolean_t empty; mutex_enter(&vd->vdev_dtl_lock); empty = (range_tree_space(rt) == 0); mutex_exit(&vd->vdev_dtl_lock); return (empty); } /* * Returns the lowest txg in the DTL range. */ static uint64_t vdev_dtl_min(vdev_t *vd) { range_seg_t *rs; ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); ASSERT0(vd->vdev_children); rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); return (rs->rs_start - 1); } /* * Returns the highest txg in the DTL. */ static uint64_t vdev_dtl_max(vdev_t *vd) { range_seg_t *rs; ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); ASSERT0(vd->vdev_children); rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); return (rs->rs_end); } /* * Determine if a resilvering vdev should remove any DTL entries from * its range. If the vdev was resilvering for the entire duration of the * scan then it should excise that range from its DTLs. Otherwise, this * vdev is considered partially resilvered and should leave its DTL * entries intact. The comment in vdev_dtl_reassess() describes how we * excise the DTLs. */ static boolean_t vdev_dtl_should_excise(vdev_t *vd) { spa_t *spa = vd->vdev_spa; dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; ASSERT0(scn->scn_phys.scn_errors); ASSERT0(vd->vdev_children); if (vd->vdev_state < VDEV_STATE_DEGRADED) return (B_FALSE); if (vd->vdev_resilver_txg == 0 || range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0) return (B_TRUE); /* * When a resilver is initiated the scan will assign the scn_max_txg * value to the highest txg value that exists in all DTLs. If this * device's max DTL is not part of this scan (i.e. it is not in * the range (scn_min_txg, scn_max_txg] then it is not eligible * for excision. */ if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); return (B_TRUE); } return (B_FALSE); } /* * Reassess DTLs after a config change or scrub completion. */ void vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) { spa_t *spa = vd->vdev_spa; avl_tree_t reftree; int minref; ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); for (int c = 0; c < vd->vdev_children; c++) vdev_dtl_reassess(vd->vdev_child[c], txg, scrub_txg, scrub_done); if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) return; if (vd->vdev_ops->vdev_op_leaf) { dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; mutex_enter(&vd->vdev_dtl_lock); /* * If we've completed a scan cleanly then determine * if this vdev should remove any DTLs. We only want to * excise regions on vdevs that were available during * the entire duration of this scan. */ if (scrub_txg != 0 && (spa->spa_scrub_started || (scn != NULL && scn->scn_phys.scn_errors == 0)) && vdev_dtl_should_excise(vd)) { /* * We completed a scrub up to scrub_txg. If we * did it without rebooting, then the scrub dtl * will be valid, so excise the old region and * fold in the scrub dtl. Otherwise, leave the * dtl as-is if there was an error. * * There's little trick here: to excise the beginning * of the DTL_MISSING map, we put it into a reference * tree and then add a segment with refcnt -1 that * covers the range [0, scrub_txg). This means * that each txg in that range has refcnt -1 or 0. * We then add DTL_SCRUB with a refcnt of 2, so that * entries in the range [0, scrub_txg) will have a * positive refcnt -- either 1 or 2. We then convert * the reference tree into the new DTL_MISSING map. */ space_reftree_create(&reftree); space_reftree_add_map(&reftree, vd->vdev_dtl[DTL_MISSING], 1); space_reftree_add_seg(&reftree, 0, scrub_txg, -1); space_reftree_add_map(&reftree, vd->vdev_dtl[DTL_SCRUB], 2); space_reftree_generate_map(&reftree, vd->vdev_dtl[DTL_MISSING], 1); space_reftree_destroy(&reftree); } range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); range_tree_walk(vd->vdev_dtl[DTL_MISSING], range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); if (scrub_done) range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); if (!vdev_readable(vd)) range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); else range_tree_walk(vd->vdev_dtl[DTL_MISSING], range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); /* * If the vdev was resilvering and no longer has any * DTLs then reset its resilvering flag and dirty * the top level so that we persist the change. */ if (vd->vdev_resilver_txg != 0 && range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 && range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) { vd->vdev_resilver_txg = 0; vdev_config_dirty(vd->vdev_top); } mutex_exit(&vd->vdev_dtl_lock); if (txg != 0) vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); return; } mutex_enter(&vd->vdev_dtl_lock); for (int t = 0; t < DTL_TYPES; t++) { /* account for child's outage in parent's missing map */ int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; if (t == DTL_SCRUB) continue; /* leaf vdevs only */ if (t == DTL_PARTIAL) minref = 1; /* i.e. non-zero */ else if (vd->vdev_nparity != 0) minref = vd->vdev_nparity + 1; /* RAID-Z */ else minref = vd->vdev_children; /* any kind of mirror */ space_reftree_create(&reftree); for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; mutex_enter(&cvd->vdev_dtl_lock); space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); mutex_exit(&cvd->vdev_dtl_lock); } space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); space_reftree_destroy(&reftree); } mutex_exit(&vd->vdev_dtl_lock); } int vdev_dtl_load(vdev_t *vd) { spa_t *spa = vd->vdev_spa; objset_t *mos = spa->spa_meta_objset; int error = 0; if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { ASSERT(vdev_is_concrete(vd)); error = space_map_open(&vd->vdev_dtl_sm, mos, vd->vdev_dtl_object, 0, -1ULL, 0); if (error) return (error); ASSERT(vd->vdev_dtl_sm != NULL); mutex_enter(&vd->vdev_dtl_lock); /* * Now that we've opened the space_map we need to update * the in-core DTL. */ space_map_update(vd->vdev_dtl_sm); error = space_map_load(vd->vdev_dtl_sm, vd->vdev_dtl[DTL_MISSING], SM_ALLOC); mutex_exit(&vd->vdev_dtl_lock); return (error); } for (int c = 0; c < vd->vdev_children; c++) { error = vdev_dtl_load(vd->vdev_child[c]); if (error != 0) break; } return (error); } void vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) { spa_t *spa = vd->vdev_spa; VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, zapobj, tx)); } uint64_t vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) { spa_t *spa = vd->vdev_spa; uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); ASSERT(zap != 0); VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, zap, tx)); return (zap); } void vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) { if (vd->vdev_ops != &vdev_hole_ops && vd->vdev_ops != &vdev_missing_ops && vd->vdev_ops != &vdev_root_ops && !vd->vdev_top->vdev_removing) { if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); } if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { vd->vdev_top_zap = vdev_create_link_zap(vd, tx); } } for (uint64_t i = 0; i < vd->vdev_children; i++) { vdev_construct_zaps(vd->vdev_child[i], tx); } } void vdev_dtl_sync(vdev_t *vd, uint64_t txg) { spa_t *spa = vd->vdev_spa; range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; objset_t *mos = spa->spa_meta_objset; range_tree_t *rtsync; dmu_tx_t *tx; uint64_t object = space_map_object(vd->vdev_dtl_sm); ASSERT(vdev_is_concrete(vd)); ASSERT(vd->vdev_ops->vdev_op_leaf); tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); if (vd->vdev_detached || vd->vdev_top->vdev_removing) { mutex_enter(&vd->vdev_dtl_lock); space_map_free(vd->vdev_dtl_sm, tx); space_map_close(vd->vdev_dtl_sm); vd->vdev_dtl_sm = NULL; mutex_exit(&vd->vdev_dtl_lock); /* * We only destroy the leaf ZAP for detached leaves or for * removed log devices. Removed data devices handle leaf ZAP * cleanup later, once cancellation is no longer possible. */ if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || vd->vdev_top->vdev_islog)) { vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); vd->vdev_leaf_zap = 0; } dmu_tx_commit(tx); return; } if (vd->vdev_dtl_sm == NULL) { uint64_t new_object; new_object = space_map_alloc(mos, tx); VERIFY3U(new_object, !=, 0); VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 0, -1ULL, 0)); ASSERT(vd->vdev_dtl_sm != NULL); } rtsync = range_tree_create(NULL, NULL); mutex_enter(&vd->vdev_dtl_lock); range_tree_walk(rt, range_tree_add, rtsync); mutex_exit(&vd->vdev_dtl_lock); space_map_truncate(vd->vdev_dtl_sm, tx); space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx); range_tree_vacate(rtsync, NULL, NULL); range_tree_destroy(rtsync); /* * If the object for the space map has changed then dirty * the top level so that we update the config. */ if (object != space_map_object(vd->vdev_dtl_sm)) { vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " "new object %llu", (u_longlong_t)txg, spa_name(spa), (u_longlong_t)object, (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); vdev_config_dirty(vd->vdev_top); } dmu_tx_commit(tx); mutex_enter(&vd->vdev_dtl_lock); space_map_update(vd->vdev_dtl_sm); mutex_exit(&vd->vdev_dtl_lock); } /* * Determine whether the specified vdev can be offlined/detached/removed * without losing data. */ boolean_t vdev_dtl_required(vdev_t *vd) { spa_t *spa = vd->vdev_spa; vdev_t *tvd = vd->vdev_top; uint8_t cant_read = vd->vdev_cant_read; boolean_t required; ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); if (vd == spa->spa_root_vdev || vd == tvd) return (B_TRUE); /* * Temporarily mark the device as unreadable, and then determine * whether this results in any DTL outages in the top-level vdev. * If not, we can safely offline/detach/remove the device. */ vd->vdev_cant_read = B_TRUE; vdev_dtl_reassess(tvd, 0, 0, B_FALSE); required = !vdev_dtl_empty(tvd, DTL_OUTAGE); vd->vdev_cant_read = cant_read; vdev_dtl_reassess(tvd, 0, 0, B_FALSE); if (!required && zio_injection_enabled) required = !!zio_handle_device_injection(vd, NULL, ECHILD); return (required); } /* * Determine if resilver is needed, and if so the txg range. */ boolean_t vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) { boolean_t needed = B_FALSE; uint64_t thismin = UINT64_MAX; uint64_t thismax = 0; if (vd->vdev_children == 0) { mutex_enter(&vd->vdev_dtl_lock); if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 && vdev_writeable(vd)) { thismin = vdev_dtl_min(vd); thismax = vdev_dtl_max(vd); needed = B_TRUE; } mutex_exit(&vd->vdev_dtl_lock); } else { for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; uint64_t cmin, cmax; if (vdev_resilver_needed(cvd, &cmin, &cmax)) { thismin = MIN(thismin, cmin); thismax = MAX(thismax, cmax); needed = B_TRUE; } } } if (needed && minp) { *minp = thismin; *maxp = thismax; } return (needed); } int vdev_load(vdev_t *vd) { int error = 0; /* * Recursively load all children. */ for (int c = 0; c < vd->vdev_children; c++) { error = vdev_load(vd->vdev_child[c]); if (error != 0) { return (error); } } vdev_set_deflate_ratio(vd); /* * If this is a top-level vdev, initialize its metaslabs. */ if (vd == vd->vdev_top && vdev_is_concrete(vd)) { if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " "asize=%llu", (u_longlong_t)vd->vdev_ashift, (u_longlong_t)vd->vdev_asize); return (SET_ERROR(ENXIO)); } else if ((error = vdev_metaslab_init(vd, 0)) != 0) { vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " "[error=%d]", error); vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); return (error); } } /* * If this is a leaf vdev, load its DTL. */ if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " "[error=%d]", error); return (error); } uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd); if (obsolete_sm_object != 0) { objset_t *mos = vd->vdev_spa->spa_meta_objset; ASSERT(vd->vdev_asize != 0); ASSERT(vd->vdev_obsolete_sm == NULL); if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, obsolete_sm_object, 0, vd->vdev_asize, 0))) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " "obsolete spacemap (obj %llu) [error=%d]", (u_longlong_t)obsolete_sm_object, error); return (error); } space_map_update(vd->vdev_obsolete_sm); } return (0); } /* * The special vdev case is used for hot spares and l2cache devices. Its * sole purpose it to set the vdev state for the associated vdev. To do this, * we make sure that we can open the underlying device, then try to read the * label, and make sure that the label is sane and that it hasn't been * repurposed to another pool. */ int vdev_validate_aux(vdev_t *vd) { nvlist_t *label; uint64_t guid, version; uint64_t state; if (!vdev_readable(vd)) return (0); if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); return (-1); } if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || !SPA_VERSION_IS_SUPPORTED(version) || nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || guid != vd->vdev_guid || nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); return (-1); } /* * We don't actually check the pool state here. If it's in fact in * use by another pool, we update this fact on the fly when requested. */ nvlist_free(label); return (0); } /* * Free the objects used to store this vdev's spacemaps, and the array * that points to them. */ void vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) { if (vd->vdev_ms_array == 0) return; objset_t *mos = vd->vdev_spa->spa_meta_objset; uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; size_t array_bytes = array_count * sizeof (uint64_t); uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, array_bytes, smobj_array, 0)); for (uint64_t i = 0; i < array_count; i++) { uint64_t smobj = smobj_array[i]; if (smobj == 0) continue; space_map_free_obj(mos, smobj, tx); } kmem_free(smobj_array, array_bytes); VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); vd->vdev_ms_array = 0; } static void vdev_remove_empty(vdev_t *vd, uint64_t txg) { spa_t *spa = vd->vdev_spa; dmu_tx_t *tx; ASSERT(vd == vd->vdev_top); ASSERT3U(txg, ==, spa_syncing_txg(spa)); if (vd->vdev_ms != NULL) { metaslab_group_t *mg = vd->vdev_mg; metaslab_group_histogram_verify(mg); metaslab_class_histogram_verify(mg->mg_class); for (int m = 0; m < vd->vdev_ms_count; m++) { metaslab_t *msp = vd->vdev_ms[m]; if (msp == NULL || msp->ms_sm == NULL) continue; mutex_enter(&msp->ms_lock); /* * If the metaslab was not loaded when the vdev * was removed then the histogram accounting may * not be accurate. Update the histogram information * here so that we ensure that the metaslab group * and metaslab class are up-to-date. */ metaslab_group_histogram_remove(mg, msp); VERIFY0(space_map_allocated(msp->ms_sm)); space_map_close(msp->ms_sm); msp->ms_sm = NULL; mutex_exit(&msp->ms_lock); } metaslab_group_histogram_verify(mg); metaslab_class_histogram_verify(mg->mg_class); for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) ASSERT0(mg->mg_histogram[i]); } tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); vdev_destroy_spacemaps(vd, tx); if (vd->vdev_islog && vd->vdev_top_zap != 0) { vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); vd->vdev_top_zap = 0; } dmu_tx_commit(tx); } void vdev_sync_done(vdev_t *vd, uint64_t txg) { metaslab_t *msp; boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); ASSERT(vdev_is_concrete(vd)); while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) metaslab_sync_done(msp, txg); if (reassess) metaslab_sync_reassess(vd->vdev_mg); } void vdev_sync(vdev_t *vd, uint64_t txg) { spa_t *spa = vd->vdev_spa; vdev_t *lvd; metaslab_t *msp; dmu_tx_t *tx; if (range_tree_space(vd->vdev_obsolete_segments) > 0) { dmu_tx_t *tx; ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops); tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); vdev_indirect_sync_obsolete(vd, tx); dmu_tx_commit(tx); /* * If the vdev is indirect, it can't have dirty * metaslabs or DTLs. */ if (vd->vdev_ops == &vdev_indirect_ops) { ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); return; } } ASSERT(vdev_is_concrete(vd)); if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && !vd->vdev_removing) { ASSERT(vd == vd->vdev_top); ASSERT0(vd->vdev_indirect_config.vic_mapping_object); tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); ASSERT(vd->vdev_ms_array != 0); vdev_config_dirty(vd); dmu_tx_commit(tx); } while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { metaslab_sync(msp, txg); (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); } while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) vdev_dtl_sync(lvd, txg); /* * Remove the metadata associated with this vdev once it's empty. * Note that this is typically used for log/cache device removal; * we don't empty toplevel vdevs when removing them. But if * a toplevel happens to be emptied, this is not harmful. */ if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) { vdev_remove_empty(vd, txg); } (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); } uint64_t vdev_psize_to_asize(vdev_t *vd, uint64_t psize) { return (vd->vdev_ops->vdev_op_asize(vd, psize)); } /* * Mark the given vdev faulted. A faulted vdev behaves as if the device could * not be opened, and no I/O is attempted. */ int vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) { vdev_t *vd, *tvd; spa_vdev_state_enter(spa, SCL_NONE); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); tvd = vd->vdev_top; /* * We don't directly use the aux state here, but if we do a * vdev_reopen(), we need this value to be present to remember why we * were faulted. */ vd->vdev_label_aux = aux; /* * Faulted state takes precedence over degraded. */ vd->vdev_delayed_close = B_FALSE; vd->vdev_faulted = 1ULL; vd->vdev_degraded = 0ULL; vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); /* * If this device has the only valid copy of the data, then * back off and simply mark the vdev as degraded instead. */ if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { vd->vdev_degraded = 1ULL; vd->vdev_faulted = 0ULL; /* * If we reopen the device and it's not dead, only then do we * mark it degraded. */ vdev_reopen(tvd); if (vdev_readable(vd)) vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); } return (spa_vdev_state_exit(spa, vd, 0)); } /* * Mark the given vdev degraded. A degraded vdev is purely an indication to the * user that something is wrong. The vdev continues to operate as normal as far * as I/O is concerned. */ int vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) { vdev_t *vd; spa_vdev_state_enter(spa, SCL_NONE); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); /* * If the vdev is already faulted, then don't do anything. */ if (vd->vdev_faulted || vd->vdev_degraded) return (spa_vdev_state_exit(spa, NULL, 0)); vd->vdev_degraded = 1ULL; if (!vdev_is_dead(vd)) vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); return (spa_vdev_state_exit(spa, vd, 0)); } /* * Online the given vdev. * * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached * spare device should be detached when the device finishes resilvering. * Second, the online should be treated like a 'test' online case, so no FMA * events are generated if the device fails to open. */ int vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) { vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; boolean_t wasoffline; vdev_state_t oldstate; spa_vdev_state_enter(spa, SCL_NONE); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); oldstate = vd->vdev_state; tvd = vd->vdev_top; vd->vdev_offline = B_FALSE; vd->vdev_tmpoffline = B_FALSE; vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); /* XXX - L2ARC 1.0 does not support expansion */ if (!vd->vdev_aux) { for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); } vdev_reopen(tvd); vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; if (!vd->vdev_aux) { for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) pvd->vdev_expanding = B_FALSE; } if (newstate) *newstate = vd->vdev_state; if ((flags & ZFS_ONLINE_UNSPARE) && !vdev_is_dead(vd) && vd->vdev_parent && vd->vdev_parent->vdev_ops == &vdev_spare_ops && vd->vdev_parent->vdev_child[0] == vd) vd->vdev_unspare = B_TRUE; if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { /* XXX - L2ARC 1.0 does not support expansion */ if (vd->vdev_aux) return (spa_vdev_state_exit(spa, vd, ENOTSUP)); spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); } if (wasoffline || (oldstate < VDEV_STATE_DEGRADED && vd->vdev_state >= VDEV_STATE_DEGRADED)) spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); return (spa_vdev_state_exit(spa, vd, 0)); } static int vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) { vdev_t *vd, *tvd; int error = 0; uint64_t generation; metaslab_group_t *mg; top: spa_vdev_state_enter(spa, SCL_ALLOC); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); tvd = vd->vdev_top; mg = tvd->vdev_mg; generation = spa->spa_config_generation + 1; /* * If the device isn't already offline, try to offline it. */ if (!vd->vdev_offline) { /* * If this device has the only valid copy of some data, * don't allow it to be offlined. Log devices are always * expendable. */ if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) return (spa_vdev_state_exit(spa, NULL, EBUSY)); /* * If the top-level is a slog and it has had allocations * then proceed. We check that the vdev's metaslab group * is not NULL since it's possible that we may have just * added this vdev but not yet initialized its metaslabs. */ if (tvd->vdev_islog && mg != NULL) { /* * Prevent any future allocations. */ metaslab_group_passivate(mg); (void) spa_vdev_state_exit(spa, vd, 0); error = spa_reset_logs(spa); spa_vdev_state_enter(spa, SCL_ALLOC); /* * Check to see if the config has changed. */ if (error || generation != spa->spa_config_generation) { metaslab_group_activate(mg); if (error) return (spa_vdev_state_exit(spa, vd, error)); (void) spa_vdev_state_exit(spa, vd, 0); goto top; } ASSERT0(tvd->vdev_stat.vs_alloc); } /* * Offline this device and reopen its top-level vdev. * If the top-level vdev is a log device then just offline * it. Otherwise, if this action results in the top-level * vdev becoming unusable, undo it and fail the request. */ vd->vdev_offline = B_TRUE; vdev_reopen(tvd); if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_is_dead(tvd)) { vd->vdev_offline = B_FALSE; vdev_reopen(tvd); return (spa_vdev_state_exit(spa, NULL, EBUSY)); } /* * Add the device back into the metaslab rotor so that * once we online the device it's open for business. */ if (tvd->vdev_islog && mg != NULL) metaslab_group_activate(mg); } vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); return (spa_vdev_state_exit(spa, vd, 0)); } int vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) { int error; mutex_enter(&spa->spa_vdev_top_lock); error = vdev_offline_locked(spa, guid, flags); mutex_exit(&spa->spa_vdev_top_lock); return (error); } /* * Clear the error counts associated with this vdev. Unlike vdev_online() and * vdev_offline(), we assume the spa config is locked. We also clear all * children. If 'vd' is NULL, then the user wants to clear all vdevs. */ void vdev_clear(spa_t *spa, vdev_t *vd) { vdev_t *rvd = spa->spa_root_vdev; ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); if (vd == NULL) vd = rvd; vd->vdev_stat.vs_read_errors = 0; vd->vdev_stat.vs_write_errors = 0; vd->vdev_stat.vs_checksum_errors = 0; for (int c = 0; c < vd->vdev_children; c++) vdev_clear(spa, vd->vdev_child[c]); if (vd == rvd) { for (int c = 0; c < spa->spa_l2cache.sav_count; c++) vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]); for (int c = 0; c < spa->spa_spares.sav_count; c++) vdev_clear(spa, spa->spa_spares.sav_vdevs[c]); } /* * It makes no sense to "clear" an indirect vdev. */ if (!vdev_is_concrete(vd)) return; /* * If we're in the FAULTED state or have experienced failed I/O, then * clear the persistent state and attempt to reopen the device. We * also mark the vdev config dirty, so that the new faulted state is * written out to disk. */ if (vd->vdev_faulted || vd->vdev_degraded || !vdev_readable(vd) || !vdev_writeable(vd)) { /* * When reopening in reponse to a clear event, it may be due to * a fmadm repair request. In this case, if the device is * still broken, we want to still post the ereport again. */ vd->vdev_forcefault = B_TRUE; vd->vdev_faulted = vd->vdev_degraded = 0ULL; vd->vdev_cant_read = B_FALSE; vd->vdev_cant_write = B_FALSE; vdev_reopen(vd == rvd ? rvd : vd->vdev_top); vd->vdev_forcefault = B_FALSE; if (vd != rvd && vdev_writeable(vd->vdev_top)) vdev_state_dirty(vd->vdev_top); if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) spa_async_request(spa, SPA_ASYNC_RESILVER); spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); } /* * When clearing a FMA-diagnosed fault, we always want to * unspare the device, as we assume that the original spare was * done in response to the FMA fault. */ if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && vd->vdev_parent->vdev_ops == &vdev_spare_ops && vd->vdev_parent->vdev_child[0] == vd) vd->vdev_unspare = B_TRUE; } boolean_t vdev_is_dead(vdev_t *vd) { /* * Holes and missing devices are always considered "dead". * This simplifies the code since we don't have to check for * these types of devices in the various code paths. * Instead we rely on the fact that we skip over dead devices * before issuing I/O to them. */ return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ops == &vdev_hole_ops || vd->vdev_ops == &vdev_missing_ops); } boolean_t vdev_readable(vdev_t *vd) { return (!vdev_is_dead(vd) && !vd->vdev_cant_read); } boolean_t vdev_writeable(vdev_t *vd) { return (!vdev_is_dead(vd) && !vd->vdev_cant_write && vdev_is_concrete(vd)); } boolean_t vdev_allocatable(vdev_t *vd) { uint64_t state = vd->vdev_state; /* * We currently allow allocations from vdevs which may be in the * process of reopening (i.e. VDEV_STATE_CLOSED). If the device * fails to reopen then we'll catch it later when we're holding * the proper locks. Note that we have to get the vdev state * in a local variable because although it changes atomically, * we're asking two separate questions about it. */ return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && !vd->vdev_cant_write && vdev_is_concrete(vd) && vd->vdev_mg->mg_initialized); } boolean_t vdev_accessible(vdev_t *vd, zio_t *zio) { ASSERT(zio->io_vd == vd); if (vdev_is_dead(vd) || vd->vdev_remove_wanted) return (B_FALSE); if (zio->io_type == ZIO_TYPE_READ) return (!vd->vdev_cant_read); if (zio->io_type == ZIO_TYPE_WRITE) return (!vd->vdev_cant_write); return (B_TRUE); } /* * Get statistics for the given vdev. */ void vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) { spa_t *spa = vd->vdev_spa; vdev_t *rvd = spa->spa_root_vdev; vdev_t *tvd = vd->vdev_top; ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); mutex_enter(&vd->vdev_stat_lock); bcopy(&vd->vdev_stat, vs, sizeof (*vs)); vs->vs_timestamp = gethrtime() - vs->vs_timestamp; vs->vs_state = vd->vdev_state; vs->vs_rsize = vdev_get_min_asize(vd); if (vd->vdev_ops->vdev_op_leaf) vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; /* * Report expandable space on top-level, non-auxillary devices only. * The expandable space is reported in terms of metaslab sized units * since that determines how much space the pool can expand. */ if (vd->vdev_aux == NULL && tvd != NULL && vd->vdev_max_asize != 0) { vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize - spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift); } vs->vs_configured_ashift = vd->vdev_top != NULL ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; vs->vs_logical_ashift = vd->vdev_logical_ashift; vs->vs_physical_ashift = vd->vdev_physical_ashift; if (vd->vdev_aux == NULL && vd == vd->vdev_top && vdev_is_concrete(vd)) { vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation; } /* * If we're getting stats on the root vdev, aggregate the I/O counts * over all top-level vdevs (i.e. the direct children of the root). */ if (vd == rvd) { for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *cvd = rvd->vdev_child[c]; vdev_stat_t *cvs = &cvd->vdev_stat; for (int t = 0; t < ZIO_TYPES; t++) { vs->vs_ops[t] += cvs->vs_ops[t]; vs->vs_bytes[t] += cvs->vs_bytes[t]; } cvs->vs_scan_removing = cvd->vdev_removing; } } mutex_exit(&vd->vdev_stat_lock); } void vdev_clear_stats(vdev_t *vd) { mutex_enter(&vd->vdev_stat_lock); vd->vdev_stat.vs_space = 0; vd->vdev_stat.vs_dspace = 0; vd->vdev_stat.vs_alloc = 0; mutex_exit(&vd->vdev_stat_lock); } void vdev_scan_stat_init(vdev_t *vd) { vdev_stat_t *vs = &vd->vdev_stat; for (int c = 0; c < vd->vdev_children; c++) vdev_scan_stat_init(vd->vdev_child[c]); mutex_enter(&vd->vdev_stat_lock); vs->vs_scan_processed = 0; mutex_exit(&vd->vdev_stat_lock); } void vdev_stat_update(zio_t *zio, uint64_t psize) { spa_t *spa = zio->io_spa; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; vdev_t *pvd; uint64_t txg = zio->io_txg; vdev_stat_t *vs = &vd->vdev_stat; zio_type_t type = zio->io_type; int flags = zio->io_flags; /* * If this i/o is a gang leader, it didn't do any actual work. */ if (zio->io_gang_tree) return; if (zio->io_error == 0) { /* * If this is a root i/o, don't count it -- we've already * counted the top-level vdevs, and vdev_get_stats() will * aggregate them when asked. This reduces contention on * the root vdev_stat_lock and implicitly handles blocks * that compress away to holes, for which there is no i/o. * (Holes never create vdev children, so all the counters * remain zero, which is what we want.) * * Note: this only applies to successful i/o (io_error == 0) * because unlike i/o counts, errors are not additive. * When reading a ditto block, for example, failure of * one top-level vdev does not imply a root-level error. */ if (vd == rvd) return; ASSERT(vd == zio->io_vd); if (flags & ZIO_FLAG_IO_BYPASS) return; mutex_enter(&vd->vdev_stat_lock); if (flags & ZIO_FLAG_IO_REPAIR) { if (flags & ZIO_FLAG_SCAN_THREAD) { dsl_scan_phys_t *scn_phys = &spa->spa_dsl_pool->dp_scan->scn_phys; uint64_t *processed = &scn_phys->scn_processed; /* XXX cleanup? */ if (vd->vdev_ops->vdev_op_leaf) atomic_add_64(processed, psize); vs->vs_scan_processed += psize; } if (flags & ZIO_FLAG_SELF_HEAL) vs->vs_self_healed += psize; } vs->vs_ops[type]++; vs->vs_bytes[type] += psize; mutex_exit(&vd->vdev_stat_lock); return; } if (flags & ZIO_FLAG_SPECULATIVE) return; /* * If this is an I/O error that is going to be retried, then ignore the * error. Otherwise, the user may interpret B_FAILFAST I/O errors as * hard errors, when in reality they can happen for any number of * innocuous reasons (bus resets, MPxIO link failure, etc). */ if (zio->io_error == EIO && !(zio->io_flags & ZIO_FLAG_IO_RETRY)) return; /* * Intent logs writes won't propagate their error to the root * I/O so don't mark these types of failures as pool-level * errors. */ if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) return; mutex_enter(&vd->vdev_stat_lock); if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { if (zio->io_error == ECKSUM) vs->vs_checksum_errors++; else vs->vs_read_errors++; } if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) vs->vs_write_errors++; mutex_exit(&vd->vdev_stat_lock); if (spa->spa_load_state == SPA_LOAD_NONE && type == ZIO_TYPE_WRITE && txg != 0 && (!(flags & ZIO_FLAG_IO_REPAIR) || (flags & ZIO_FLAG_SCAN_THREAD) || spa->spa_claiming)) { /* * This is either a normal write (not a repair), or it's * a repair induced by the scrub thread, or it's a repair * made by zil_claim() during spa_load() in the first txg. * In the normal case, we commit the DTL change in the same * txg as the block was born. In the scrub-induced repair * case, we know that scrubs run in first-pass syncing context, * so we commit the DTL change in spa_syncing_txg(spa). * In the zil_claim() case, we commit in spa_first_txg(spa). * * We currently do not make DTL entries for failed spontaneous * self-healing writes triggered by normal (non-scrubbing) * reads, because we have no transactional context in which to * do so -- and it's not clear that it'd be desirable anyway. */ if (vd->vdev_ops->vdev_op_leaf) { uint64_t commit_txg = txg; if (flags & ZIO_FLAG_SCAN_THREAD) { ASSERT(flags & ZIO_FLAG_IO_REPAIR); ASSERT(spa_sync_pass(spa) == 1); vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); commit_txg = spa_syncing_txg(spa); } else if (spa->spa_claiming) { ASSERT(flags & ZIO_FLAG_IO_REPAIR); commit_txg = spa_first_txg(spa); } ASSERT(commit_txg >= spa_syncing_txg(spa)); if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) return; for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); } if (vd != rvd) vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); } } /* * Update the in-core space usage stats for this vdev, its metaslab class, * and the root vdev. */ void vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, int64_t space_delta) { int64_t dspace_delta = space_delta; spa_t *spa = vd->vdev_spa; vdev_t *rvd = spa->spa_root_vdev; metaslab_group_t *mg = vd->vdev_mg; metaslab_class_t *mc = mg ? mg->mg_class : NULL; ASSERT(vd == vd->vdev_top); /* * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion * factor. We must calculate this here and not at the root vdev * because the root vdev's psize-to-asize is simply the max of its * childrens', thus not accurate enough for us. */ ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; mutex_enter(&vd->vdev_stat_lock); vd->vdev_stat.vs_alloc += alloc_delta; vd->vdev_stat.vs_space += space_delta; vd->vdev_stat.vs_dspace += dspace_delta; mutex_exit(&vd->vdev_stat_lock); if (mc == spa_normal_class(spa)) { mutex_enter(&rvd->vdev_stat_lock); rvd->vdev_stat.vs_alloc += alloc_delta; rvd->vdev_stat.vs_space += space_delta; rvd->vdev_stat.vs_dspace += dspace_delta; mutex_exit(&rvd->vdev_stat_lock); } if (mc != NULL) { ASSERT(rvd == vd->vdev_parent); ASSERT(vd->vdev_ms_count != 0); metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta, dspace_delta); } } /* * Mark a top-level vdev's config as dirty, placing it on the dirty list * so that it will be written out next time the vdev configuration is synced. * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. */ void vdev_config_dirty(vdev_t *vd) { spa_t *spa = vd->vdev_spa; vdev_t *rvd = spa->spa_root_vdev; int c; ASSERT(spa_writeable(spa)); /* * If this is an aux vdev (as with l2cache and spare devices), then we * update the vdev config manually and set the sync flag. */ if (vd->vdev_aux != NULL) { spa_aux_vdev_t *sav = vd->vdev_aux; nvlist_t **aux; uint_t naux; for (c = 0; c < sav->sav_count; c++) { if (sav->sav_vdevs[c] == vd) break; } if (c == sav->sav_count) { /* * We're being removed. There's nothing more to do. */ ASSERT(sav->sav_sync == B_TRUE); return; } sav->sav_sync = B_TRUE; if (nvlist_lookup_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); } ASSERT(c < naux); /* * Setting the nvlist in the middle if the array is a little * sketchy, but it will work. */ nvlist_free(aux[c]); aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); return; } /* * The dirty list is protected by the SCL_CONFIG lock. The caller * must either hold SCL_CONFIG as writer, or must be the sync thread * (which holds SCL_CONFIG as reader). There's only one sync thread, * so this is sufficient to ensure mutual exclusion. */ ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || (dsl_pool_sync_context(spa_get_dsl(spa)) && spa_config_held(spa, SCL_CONFIG, RW_READER))); if (vd == rvd) { for (c = 0; c < rvd->vdev_children; c++) vdev_config_dirty(rvd->vdev_child[c]); } else { ASSERT(vd == vd->vdev_top); if (!list_link_active(&vd->vdev_config_dirty_node) && vdev_is_concrete(vd)) { list_insert_head(&spa->spa_config_dirty_list, vd); } } } void vdev_config_clean(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || (dsl_pool_sync_context(spa_get_dsl(spa)) && spa_config_held(spa, SCL_CONFIG, RW_READER))); ASSERT(list_link_active(&vd->vdev_config_dirty_node)); list_remove(&spa->spa_config_dirty_list, vd); } /* * Mark a top-level vdev's state as dirty, so that the next pass of * spa_sync() can convert this into vdev_config_dirty(). We distinguish * the state changes from larger config changes because they require * much less locking, and are often needed for administrative actions. */ void vdev_state_dirty(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_writeable(spa)); ASSERT(vd == vd->vdev_top); /* * The state list is protected by the SCL_STATE lock. The caller * must either hold SCL_STATE as writer, or must be the sync thread * (which holds SCL_STATE as reader). There's only one sync thread, * so this is sufficient to ensure mutual exclusion. */ ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || (dsl_pool_sync_context(spa_get_dsl(spa)) && spa_config_held(spa, SCL_STATE, RW_READER))); if (!list_link_active(&vd->vdev_state_dirty_node) && vdev_is_concrete(vd)) list_insert_head(&spa->spa_state_dirty_list, vd); } void vdev_state_clean(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || (dsl_pool_sync_context(spa_get_dsl(spa)) && spa_config_held(spa, SCL_STATE, RW_READER))); ASSERT(list_link_active(&vd->vdev_state_dirty_node)); list_remove(&spa->spa_state_dirty_list, vd); } /* * Propagate vdev state up from children to parent. */ void vdev_propagate_state(vdev_t *vd) { spa_t *spa = vd->vdev_spa; vdev_t *rvd = spa->spa_root_vdev; int degraded = 0, faulted = 0; int corrupted = 0; vdev_t *child; if (vd->vdev_children > 0) { for (int c = 0; c < vd->vdev_children; c++) { child = vd->vdev_child[c]; /* * Don't factor holes or indirect vdevs into the * decision. */ if (!vdev_is_concrete(child)) continue; if (!vdev_readable(child) || (!vdev_writeable(child) && spa_writeable(spa))) { /* * Root special: if there is a top-level log * device, treat the root vdev as if it were * degraded. */ if (child->vdev_islog && vd == rvd) degraded++; else faulted++; } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { degraded++; } if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) corrupted++; } vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); /* * Root special: if there is a top-level vdev that cannot be * opened due to corrupted metadata, then propagate the root * vdev's aux state as 'corrupt' rather than 'insufficient * replicas'. */ if (corrupted && vd == rvd && rvd->vdev_state == VDEV_STATE_CANT_OPEN) vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); } if (vd->vdev_parent) vdev_propagate_state(vd->vdev_parent); } /* * Set a vdev's state. If this is during an open, we don't update the parent * state, because we're in the process of opening children depth-first. * Otherwise, we propagate the change to the parent. * * If this routine places a device in a faulted state, an appropriate ereport is * generated. */ void vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) { uint64_t save_state; spa_t *spa = vd->vdev_spa; if (state == vd->vdev_state) { vd->vdev_stat.vs_aux = aux; return; } save_state = vd->vdev_state; vd->vdev_state = state; vd->vdev_stat.vs_aux = aux; /* * If we are setting the vdev state to anything but an open state, then * always close the underlying device unless the device has requested * a delayed close (i.e. we're about to remove or fault the device). * Otherwise, we keep accessible but invalid devices open forever. * We don't call vdev_close() itself, because that implies some extra * checks (offline, etc) that we don't want here. This is limited to * leaf devices, because otherwise closing the device will affect other * children. */ if (!vd->vdev_delayed_close && vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf) vd->vdev_ops->vdev_op_close(vd); if (vd->vdev_removed && state == VDEV_STATE_CANT_OPEN && (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { /* * If the previous state is set to VDEV_STATE_REMOVED, then this * device was previously marked removed and someone attempted to * reopen it. If this failed due to a nonexistent device, then * keep the device in the REMOVED state. We also let this be if * it is one of our special test online cases, which is only * attempting to online the device and shouldn't generate an FMA * fault. */ vd->vdev_state = VDEV_STATE_REMOVED; vd->vdev_stat.vs_aux = VDEV_AUX_NONE; } else if (state == VDEV_STATE_REMOVED) { vd->vdev_removed = B_TRUE; } else if (state == VDEV_STATE_CANT_OPEN) { /* * If we fail to open a vdev during an import or recovery, we * mark it as "not available", which signifies that it was * never there to begin with. Failure to open such a device * is not considered an error. */ if ((spa_load_state(spa) == SPA_LOAD_IMPORT || spa_load_state(spa) == SPA_LOAD_RECOVER) && vd->vdev_ops->vdev_op_leaf) vd->vdev_not_present = 1; /* * Post the appropriate ereport. If the 'prevstate' field is * set to something other than VDEV_STATE_UNKNOWN, it indicates * that this is part of a vdev_reopen(). In this case, we don't * want to post the ereport if the device was already in the * CANT_OPEN state beforehand. * * If the 'checkremove' flag is set, then this is an attempt to * online the device in response to an insertion event. If we * hit this case, then we have detected an insertion event for a * faulted or offline device that wasn't in the removed state. * In this scenario, we don't post an ereport because we are * about to replace the device, or attempt an online with * vdev_forcefault, which will generate the fault for us. */ if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && !vd->vdev_not_present && !vd->vdev_checkremove && vd != spa->spa_root_vdev) { const char *class; switch (aux) { case VDEV_AUX_OPEN_FAILED: class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; break; case VDEV_AUX_CORRUPT_DATA: class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; break; case VDEV_AUX_NO_REPLICAS: class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; break; case VDEV_AUX_BAD_GUID_SUM: class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; break; case VDEV_AUX_TOO_SMALL: class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; break; case VDEV_AUX_BAD_LABEL: class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; break; default: class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; } zfs_ereport_post(class, spa, vd, NULL, save_state, 0); } /* Erase any notion of persistent removed state */ vd->vdev_removed = B_FALSE; } else { vd->vdev_removed = B_FALSE; } /* * Notify the fmd of the state change. Be verbose and post * notifications even for stuff that's not important; the fmd agent can * sort it out. Don't emit state change events for non-leaf vdevs since * they can't change state on their own. The FMD can check their state * if it wants to when it sees that a leaf vdev had a state change. */ if (vd->vdev_ops->vdev_op_leaf) zfs_post_state_change(spa, vd); if (!isopen && vd->vdev_parent) vdev_propagate_state(vd->vdev_parent); } +boolean_t +vdev_children_are_offline(vdev_t *vd) +{ + ASSERT(!vd->vdev_ops->vdev_op_leaf); + + for (uint64_t i = 0; i < vd->vdev_children; i++) { + if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) + return (B_FALSE); + } + + return (B_TRUE); +} + /* * Check the vdev configuration to ensure that it's capable of supporting * a root pool. We do not support partial configuration. * In addition, only a single top-level vdev is allowed. * * FreeBSD does not have above limitations. */ boolean_t vdev_is_bootable(vdev_t *vd) { #ifdef illumos if (!vd->vdev_ops->vdev_op_leaf) { char *vdev_type = vd->vdev_ops->vdev_op_type; if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && vd->vdev_children > 1) { return (B_FALSE); } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 || strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) { return (B_FALSE); } } for (int c = 0; c < vd->vdev_children; c++) { if (!vdev_is_bootable(vd->vdev_child[c])) return (B_FALSE); } #endif /* illumos */ return (B_TRUE); } boolean_t vdev_is_concrete(vdev_t *vd) { vdev_ops_t *ops = vd->vdev_ops; if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || ops == &vdev_missing_ops || ops == &vdev_root_ops) { return (B_FALSE); } else { return (B_TRUE); - } -} - -/* - * Load the state from the original vdev tree (ovd) which - * we've retrieved from the MOS config object. If the original - * vdev was offline or faulted then we transfer that state to the - * device in the current vdev tree (nvd). - */ -void -vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) -{ - spa_t *spa = nvd->vdev_spa; - - ASSERT(nvd->vdev_top->vdev_islog); - ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); - ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); - - for (int c = 0; c < nvd->vdev_children; c++) - vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); - - if (nvd->vdev_ops->vdev_op_leaf) { - /* - * Restore the persistent vdev state - */ - nvd->vdev_offline = ovd->vdev_offline; - nvd->vdev_faulted = ovd->vdev_faulted; - nvd->vdev_degraded = ovd->vdev_degraded; - nvd->vdev_removed = ovd->vdev_removed; } } /* * Determine if a log device has valid content. If the vdev was * removed or faulted in the MOS config then we know that * the content on the log device has already been written to the pool. */ boolean_t vdev_log_state_valid(vdev_t *vd) { if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && !vd->vdev_removed) return (B_TRUE); for (int c = 0; c < vd->vdev_children; c++) if (vdev_log_state_valid(vd->vdev_child[c])) return (B_TRUE); return (B_FALSE); } /* * Expand a vdev if possible. */ void vdev_expand(vdev_t *vd, uint64_t txg) { ASSERT(vd->vdev_top == vd); ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); vdev_set_deflate_ratio(vd); if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && vdev_is_concrete(vd)) { VERIFY(vdev_metaslab_init(vd, txg) == 0); vdev_config_dirty(vd); } } /* * Split a vdev. */ void vdev_split(vdev_t *vd) { vdev_t *cvd, *pvd = vd->vdev_parent; vdev_remove_child(pvd, vd); vdev_compact_children(pvd); cvd = pvd->vdev_child[0]; if (pvd->vdev_children == 1) { vdev_remove_parent(cvd); cvd->vdev_splitting = B_TRUE; } vdev_propagate_state(cvd); } void vdev_deadman(vdev_t *vd) { for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; vdev_deadman(cvd); } if (vd->vdev_ops->vdev_op_leaf) { vdev_queue_t *vq = &vd->vdev_queue; mutex_enter(&vq->vq_lock); if (avl_numnodes(&vq->vq_active_tree) > 0) { spa_t *spa = vd->vdev_spa; zio_t *fio; uint64_t delta; /* * Look at the head of all the pending queues, * if any I/O has been outstanding for longer than * the spa_deadman_synctime we panic the system. */ fio = avl_first(&vq->vq_active_tree); delta = gethrtime() - fio->io_timestamp; if (delta > spa_deadman_synctime(spa)) { vdev_dbgmsg(vd, "SLOW IO: zio timestamp " "%lluns, delta %lluns, last io %lluns", fio->io_timestamp, (u_longlong_t)delta, vq->vq_io_complete_ts); fm_panic("I/O to pool '%s' appears to be " "hung on vdev guid %llu at '%s'.", spa_name(spa), (long long unsigned int) vd->vdev_guid, vd->vdev_path); } } mutex_exit(&vq->vq_lock); } } Index: head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_label.c =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_label.c (revision 329797) +++ head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_label.c (revision 329798) @@ -1,1441 +1,1446 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2016 by Delphix. All rights reserved. */ /* * Virtual Device Labels * --------------------- * * The vdev label serves several distinct purposes: * * 1. Uniquely identify this device as part of a ZFS pool and confirm its * identity within the pool. * * 2. Verify that all the devices given in a configuration are present * within the pool. * * 3. Determine the uberblock for the pool. * * 4. In case of an import operation, determine the configuration of the * toplevel vdev of which it is a part. * * 5. If an import operation cannot find all the devices in the pool, * provide enough information to the administrator to determine which * devices are missing. * * It is important to note that while the kernel is responsible for writing the * label, it only consumes the information in the first three cases. The * latter information is only consumed in userland when determining the * configuration to import a pool. * * * Label Organization * ------------------ * * Before describing the contents of the label, it's important to understand how * the labels are written and updated with respect to the uberblock. * * When the pool configuration is altered, either because it was newly created * or a device was added, we want to update all the labels such that we can deal * with fatal failure at any point. To this end, each disk has two labels which * are updated before and after the uberblock is synced. Assuming we have * labels and an uberblock with the following transaction groups: * * L1 UB L2 * +------+ +------+ +------+ * | | | | | | * | t10 | | t10 | | t10 | * | | | | | | * +------+ +------+ +------+ * * In this stable state, the labels and the uberblock were all updated within * the same transaction group (10). Each label is mirrored and checksummed, so * that we can detect when we fail partway through writing the label. * * In order to identify which labels are valid, the labels are written in the * following manner: * * 1. For each vdev, update 'L1' to the new label * 2. Update the uberblock * 3. For each vdev, update 'L2' to the new label * * Given arbitrary failure, we can determine the correct label to use based on * the transaction group. If we fail after updating L1 but before updating the * UB, we will notice that L1's transaction group is greater than the uberblock, * so L2 must be valid. If we fail after writing the uberblock but before * writing L2, we will notice that L2's transaction group is less than L1, and * therefore L1 is valid. * * Another added complexity is that not every label is updated when the config * is synced. If we add a single device, we do not want to have to re-write * every label for every device in the pool. This means that both L1 and L2 may * be older than the pool uberblock, because the necessary information is stored * on another vdev. * * * On-disk Format * -------------- * * The vdev label consists of two distinct parts, and is wrapped within the * vdev_label_t structure. The label includes 8k of padding to permit legacy * VTOC disk labels, but is otherwise ignored. * * The first half of the label is a packed nvlist which contains pool wide * properties, per-vdev properties, and configuration information. It is * described in more detail below. * * The latter half of the label consists of a redundant array of uberblocks. * These uberblocks are updated whenever a transaction group is committed, * or when the configuration is updated. When a pool is loaded, we scan each * vdev for the 'best' uberblock. * * * Configuration Information * ------------------------- * * The nvlist describing the pool and vdev contains the following elements: * * version ZFS on-disk version * name Pool name * state Pool state * txg Transaction group in which this label was written * pool_guid Unique identifier for this pool * vdev_tree An nvlist describing vdev tree. * features_for_read * An nvlist of the features necessary for reading the MOS. * * Each leaf device label also contains the following: * * top_guid Unique ID for top-level vdev in which this is contained * guid Unique ID for the leaf vdev * * The 'vs' configuration follows the format described in 'spa_config.c'. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static boolean_t vdev_trim_on_init = B_TRUE; SYSCTL_DECL(_vfs_zfs_vdev); SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, trim_on_init, CTLFLAG_RW, &vdev_trim_on_init, 0, "Enable/disable full vdev trim on initialisation"); /* * Basic routines to read and write from a vdev label. * Used throughout the rest of this file. */ uint64_t vdev_label_offset(uint64_t psize, int l, uint64_t offset) { ASSERT(offset < sizeof (vdev_label_t)); ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); } /* * Returns back the vdev label associated with the passed in offset. */ int vdev_label_number(uint64_t psize, uint64_t offset) { int l; if (offset >= psize - VDEV_LABEL_END_SIZE) { offset -= psize - VDEV_LABEL_END_SIZE; offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); } l = offset / sizeof (vdev_label_t); return (l < VDEV_LABELS ? l : -1); } static void vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, uint64_t size, zio_done_func_t *done, void *private, int flags) { ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); zio_nowait(zio_read_phys(zio, vd, vdev_label_offset(vd->vdev_psize, l, offset), size, buf, ZIO_CHECKSUM_LABEL, done, private, ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); } static void vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, uint64_t size, zio_done_func_t *done, void *private, int flags) { ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL || (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) == (SCL_CONFIG | SCL_STATE) && dsl_pool_sync_context(spa_get_dsl(zio->io_spa)))); ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); zio_nowait(zio_write_phys(zio, vd, vdev_label_offset(vd->vdev_psize, l, offset), size, buf, ZIO_CHECKSUM_LABEL, done, private, ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); } /* * Generate the nvlist representing this vdev's config. */ nvlist_t * vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, vdev_config_flag_t flags) { nvlist_t *nv = NULL; vdev_indirect_config_t *vic = &vd->vdev_indirect_config; nv = fnvlist_alloc(); fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type); if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id); fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid); if (vd->vdev_path != NULL) fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path); if (vd->vdev_devid != NULL) fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid); if (vd->vdev_physpath != NULL) fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, vd->vdev_physpath); if (vd->vdev_fru != NULL) fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru); if (vd->vdev_nparity != 0) { ASSERT(strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_RAIDZ) == 0); /* * Make sure someone hasn't managed to sneak a fancy new vdev * into a crufty old storage pool. */ ASSERT(vd->vdev_nparity == 1 || (vd->vdev_nparity <= 2 && spa_version(spa) >= SPA_VERSION_RAIDZ2) || (vd->vdev_nparity <= 3 && spa_version(spa) >= SPA_VERSION_RAIDZ3)); /* * Note that we'll add the nparity tag even on storage pools * that only support a single parity device -- older software * will just ignore it. */ fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity); } if (vd->vdev_wholedisk != -1ULL) fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, vd->vdev_wholedisk); - if (vd->vdev_not_present) + if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING)) fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1); if (vd->vdev_isspare) fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && vd == vd->vdev_top) { fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, vd->vdev_ms_array); fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, vd->vdev_ms_shift); fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, vd->vdev_asize); fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog); if (vd->vdev_removing) { fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, vd->vdev_removing); } } if (vd->vdev_dtl_sm != NULL) { fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, space_map_object(vd->vdev_dtl_sm)); } if (vic->vic_mapping_object != 0) { fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, vic->vic_mapping_object); } if (vic->vic_births_object != 0) { fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, vic->vic_births_object); } if (vic->vic_prev_indirect_vdev != UINT64_MAX) { fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, vic->vic_prev_indirect_vdev); } if (vd->vdev_crtxg) fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); if (flags & VDEV_CONFIG_MOS) { if (vd->vdev_leaf_zap != 0) { ASSERT(vd->vdev_ops->vdev_op_leaf); fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP, vd->vdev_leaf_zap); } if (vd->vdev_top_zap != 0) { ASSERT(vd == vd->vdev_top); fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, vd->vdev_top_zap); } } if (getstats) { vdev_stat_t vs; vdev_get_stats(vd, &vs); fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)); /* provide either current or previous scan information */ pool_scan_stat_t ps; if (spa_scan_get_stats(spa, &ps) == 0) { fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, sizeof (pool_scan_stat_t) / sizeof (uint64_t)); } pool_removal_stat_t prs; if (spa_removal_get_stats(spa, &prs) == 0) { fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs, sizeof (prs) / sizeof (uint64_t)); } /* * Note: this can be called from open context * (spa_get_stats()), so we need the rwlock to prevent * the mapping from being changed by condensing. */ rw_enter(&vd->vdev_indirect_rwlock, RW_READER); if (vd->vdev_indirect_mapping != NULL) { ASSERT(vd->vdev_indirect_births != NULL); vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, vdev_indirect_mapping_size(vim)); } rw_exit(&vd->vdev_indirect_rwlock); if (vd->vdev_mg != NULL && vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) { /* * Compute approximately how much memory would be used * for the indirect mapping if this device were to * be removed. * * Note: If the frag metric is invalid, then not * enough metaslabs have been converted to have * histograms. */ uint64_t seg_count = 0; /* * There are the same number of allocated segments * as free segments, so we will have at least one * entry per free segment. */ for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { seg_count += vd->vdev_mg->mg_histogram[i]; } /* * The maximum length of a mapping is SPA_MAXBLOCKSIZE, * so we need at least one entry per SPA_MAXBLOCKSIZE * of allocated data. */ seg_count += vd->vdev_stat.vs_alloc / SPA_MAXBLOCKSIZE; fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, seg_count * sizeof (vdev_indirect_mapping_entry_phys_t)); } } if (!vd->vdev_ops->vdev_op_leaf) { nvlist_t **child; int c, idx; ASSERT(!vd->vdev_ishole); child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), KM_SLEEP); for (c = 0, idx = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; /* * If we're generating an nvlist of removing * vdevs then skip over any device which is * not being removed. */ if ((flags & VDEV_CONFIG_REMOVING) && !cvd->vdev_removing) continue; child[idx++] = vdev_config_generate(spa, cvd, getstats, flags); } if (idx) { fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, child, idx); } for (c = 0; c < idx; c++) nvlist_free(child[c]); kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); } else { const char *aux = NULL; if (vd->vdev_offline && !vd->vdev_tmpoffline) fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE); if (vd->vdev_resilver_txg != 0) fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, vd->vdev_resilver_txg); if (vd->vdev_faulted) fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE); if (vd->vdev_degraded) fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE); if (vd->vdev_removed) fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE); if (vd->vdev_unspare) fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE); if (vd->vdev_ishole) fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE); switch (vd->vdev_stat.vs_aux) { case VDEV_AUX_ERR_EXCEEDED: aux = "err_exceeded"; break; case VDEV_AUX_EXTERNAL: aux = "external"; break; } if (aux != NULL) fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux); if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, vd->vdev_orig_guid); } } return (nv); } /* * Generate a view of the top-level vdevs. If we currently have holes * in the namespace, then generate an array which contains a list of holey * vdevs. Additionally, add the number of top-level children that currently * exist. */ void vdev_top_config_generate(spa_t *spa, nvlist_t *config) { vdev_t *rvd = spa->spa_root_vdev; uint64_t *array; uint_t c, idx; array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); for (c = 0, idx = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; if (tvd->vdev_ishole) { array[idx++] = c; } } if (idx) { VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, array, idx) == 0); } VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, rvd->vdev_children) == 0); kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); } /* * Returns the configuration from the label of the given vdev. For vdevs * which don't have a txg value stored on their label (i.e. spares/cache) * or have not been completely initialized (txg = 0) just return * the configuration from the first valid label we find. Otherwise, * find the most up-to-date label that does not exceed the specified * 'txg' value. */ nvlist_t * vdev_label_read_config(vdev_t *vd, uint64_t txg) { spa_t *spa = vd->vdev_spa; nvlist_t *config = NULL; vdev_phys_t *vp; abd_t *vp_abd; zio_t *zio; uint64_t best_txg = 0; int error = 0; int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); if (!vdev_readable(vd)) return (NULL); vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); vp = abd_to_buf(vp_abd); retry: for (int l = 0; l < VDEV_LABELS; l++) { nvlist_t *label = NULL; zio = zio_root(spa, NULL, NULL, flags); vdev_label_read(zio, vd, l, vp_abd, offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t), NULL, NULL, flags); if (zio_wait(zio) == 0 && nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), &label, 0) == 0) { uint64_t label_txg = 0; /* * Auxiliary vdevs won't have txg values in their * labels and newly added vdevs may not have been * completely initialized so just return the * configuration from the first valid label we * encounter. */ error = nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, &label_txg); if ((error || label_txg == 0) && !config) { config = label; break; } else if (label_txg <= txg && label_txg > best_txg) { best_txg = label_txg; nvlist_free(config); config = fnvlist_dup(label); } } if (label != NULL) { nvlist_free(label); label = NULL; } } if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { flags |= ZIO_FLAG_TRYHARD; goto retry; } abd_free(vp_abd); return (config); } /* * Determine if a device is in use. The 'spare_guid' parameter will be filled * in with the device guid if this spare is active elsewhere on the system. */ static boolean_t vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, uint64_t *spare_guid, uint64_t *l2cache_guid) { spa_t *spa = vd->vdev_spa; uint64_t state, pool_guid, device_guid, txg, spare_pool; uint64_t vdtxg = 0; nvlist_t *label; if (spare_guid) *spare_guid = 0ULL; if (l2cache_guid) *l2cache_guid = 0ULL; /* * Read the label, if any, and perform some basic sanity checks. */ if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) return (B_FALSE); (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, &vdtxg); if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0 || nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &device_guid) != 0) { nvlist_free(label); return (B_FALSE); } if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &pool_guid) != 0 || nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, &txg) != 0)) { nvlist_free(label); return (B_FALSE); } nvlist_free(label); /* * Check to see if this device indeed belongs to the pool it claims to * be a part of. The only way this is allowed is if the device is a hot * spare (which we check for later on). */ if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && !spa_guid_exists(pool_guid, device_guid) && !spa_spare_exists(device_guid, NULL, NULL) && !spa_l2cache_exists(device_guid, NULL)) return (B_FALSE); /* * If the transaction group is zero, then this an initialized (but * unused) label. This is only an error if the create transaction * on-disk is the same as the one we're using now, in which case the * user has attempted to add the same vdev multiple times in the same * transaction. */ if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && txg == 0 && vdtxg == crtxg) return (B_TRUE); /* * Check to see if this is a spare device. We do an explicit check for * spa_has_spare() here because it may be on our pending list of spares * to add. We also check if it is an l2cache device. */ if (spa_spare_exists(device_guid, &spare_pool, NULL) || spa_has_spare(spa, device_guid)) { if (spare_guid) *spare_guid = device_guid; switch (reason) { case VDEV_LABEL_CREATE: case VDEV_LABEL_L2CACHE: return (B_TRUE); case VDEV_LABEL_REPLACE: return (!spa_has_spare(spa, device_guid) || spare_pool != 0ULL); case VDEV_LABEL_SPARE: return (spa_has_spare(spa, device_guid)); } } /* * Check to see if this is an l2cache device. */ if (spa_l2cache_exists(device_guid, NULL)) return (B_TRUE); /* * We can't rely on a pool's state if it's been imported * read-only. Instead we look to see if the pools is marked * read-only in the namespace and set the state to active. */ if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && (spa = spa_by_guid(pool_guid, device_guid)) != NULL && spa_mode(spa) == FREAD) state = POOL_STATE_ACTIVE; /* * If the device is marked ACTIVE, then this device is in use by another * pool on the system. */ return (state == POOL_STATE_ACTIVE); } /* * Initialize a vdev label. We check to make sure each leaf device is not in * use, and writable. We put down an initial label which we will later * overwrite with a complete label. Note that it's important to do this * sequentially, not in parallel, so that we catch cases of multiple use of the * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with * itself. */ int vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) { spa_t *spa = vd->vdev_spa; nvlist_t *label; vdev_phys_t *vp; abd_t *vp_abd; abd_t *pad2; uberblock_t *ub; abd_t *ub_abd; zio_t *zio; char *buf; size_t buflen; int error; uint64_t spare_guid, l2cache_guid; int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); for (int c = 0; c < vd->vdev_children; c++) if ((error = vdev_label_init(vd->vdev_child[c], crtxg, reason)) != 0) return (error); /* Track the creation time for this vdev */ vd->vdev_crtxg = crtxg; if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa)) return (0); /* * Dead vdevs cannot be initialized. */ if (vdev_is_dead(vd)) return (SET_ERROR(EIO)); /* * Determine if the vdev is in use. */ if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) return (SET_ERROR(EBUSY)); /* * If this is a request to add or replace a spare or l2cache device * that is in use elsewhere on the system, then we must update the * guid (which was initialized to a random value) to reflect the * actual GUID (which is shared between multiple pools). */ if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && spare_guid != 0ULL) { uint64_t guid_delta = spare_guid - vd->vdev_guid; vd->vdev_guid += guid_delta; for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) pvd->vdev_guid_sum += guid_delta; /* * If this is a replacement, then we want to fallthrough to the * rest of the code. If we're adding a spare, then it's already * labeled appropriately and we can just return. */ if (reason == VDEV_LABEL_SPARE) return (0); ASSERT(reason == VDEV_LABEL_REPLACE || reason == VDEV_LABEL_SPLIT); } if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && l2cache_guid != 0ULL) { uint64_t guid_delta = l2cache_guid - vd->vdev_guid; vd->vdev_guid += guid_delta; for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) pvd->vdev_guid_sum += guid_delta; /* * If this is a replacement, then we want to fallthrough to the * rest of the code. If we're adding an l2cache, then it's * already labeled appropriately and we can just return. */ if (reason == VDEV_LABEL_L2CACHE) return (0); ASSERT(reason == VDEV_LABEL_REPLACE); } /* * TRIM the whole thing so that we start with a clean slate. * It's just an optimization, so we don't care if it fails. * Don't TRIM if removing so that we don't interfere with zpool * disaster recovery. */ if (zfs_trim_enabled && vdev_trim_on_init && !vd->vdev_notrim && (reason == VDEV_LABEL_CREATE || reason == VDEV_LABEL_SPARE || reason == VDEV_LABEL_L2CACHE)) zio_wait(zio_trim(NULL, spa, vd, 0, vd->vdev_psize)); /* * Initialize its label. */ vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); abd_zero(vp_abd, sizeof (vdev_phys_t)); vp = abd_to_buf(vp_abd); /* * Generate a label describing the pool and our top-level vdev. * We mark it as being from txg 0 to indicate that it's not * really part of an active pool just yet. The labels will * be written again with a meaningful txg by spa_sync(). */ if (reason == VDEV_LABEL_SPARE || (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { /* * For inactive hot spares, we generate a special label that * identifies as a mutually shared hot spare. We write the * label if we are adding a hot spare, or if we are removing an * active hot spare (in which case we want to revert the * labels). */ VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, spa_version(spa)) == 0); VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, POOL_STATE_SPARE) == 0); VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); } else if (reason == VDEV_LABEL_L2CACHE || (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { /* * For level 2 ARC devices, add a special label. */ VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, spa_version(spa)) == 0); VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, POOL_STATE_L2CACHE) == 0); VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); } else { uint64_t txg = 0ULL; if (reason == VDEV_LABEL_SPLIT) txg = spa->spa_uberblock.ub_txg; label = spa_config_generate(spa, vd, txg, B_FALSE); /* * Add our creation time. This allows us to detect multiple * vdev uses as described above, and automatically expires if we * fail. */ VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, crtxg) == 0); } buf = vp->vp_nvlist; buflen = sizeof (vp->vp_nvlist); error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); if (error != 0) { nvlist_free(label); abd_free(vp_abd); /* EFAULT means nvlist_pack ran out of room */ return (error == EFAULT ? ENAMETOOLONG : EINVAL); } /* * Initialize uberblock template. */ ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE); abd_zero(ub_abd, VDEV_UBERBLOCK_RING); abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t)); ub = abd_to_buf(ub_abd); ub->ub_txg = 0; /* Initialize the 2nd padding area. */ pad2 = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); abd_zero(pad2, VDEV_PAD_SIZE); /* * Write everything in parallel. */ retry: zio = zio_root(spa, NULL, NULL, flags); for (int l = 0; l < VDEV_LABELS; l++) { vdev_label_write(zio, vd, l, vp_abd, offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t), NULL, NULL, flags); /* * Skip the 1st padding area. * Zero out the 2nd padding area where it might have * left over data from previous filesystem format. */ vdev_label_write(zio, vd, l, pad2, offsetof(vdev_label_t, vl_pad2), VDEV_PAD_SIZE, NULL, NULL, flags); vdev_label_write(zio, vd, l, ub_abd, offsetof(vdev_label_t, vl_uberblock), VDEV_UBERBLOCK_RING, NULL, NULL, flags); } error = zio_wait(zio); if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { flags |= ZIO_FLAG_TRYHARD; goto retry; } nvlist_free(label); abd_free(pad2); abd_free(ub_abd); abd_free(vp_abd); /* * If this vdev hasn't been previously identified as a spare, then we * mark it as such only if a) we are labeling it as a spare, or b) it * exists as a spare elsewhere in the system. Do the same for * level 2 ARC devices. */ if (error == 0 && !vd->vdev_isspare && (reason == VDEV_LABEL_SPARE || spa_spare_exists(vd->vdev_guid, NULL, NULL))) spa_spare_add(vd); if (error == 0 && !vd->vdev_isl2cache && (reason == VDEV_LABEL_L2CACHE || spa_l2cache_exists(vd->vdev_guid, NULL))) spa_l2cache_add(vd); return (error); } int vdev_label_write_pad2(vdev_t *vd, const char *buf, size_t size) { spa_t *spa = vd->vdev_spa; zio_t *zio; abd_t *pad2; int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; int error; if (size > VDEV_PAD_SIZE) return (EINVAL); if (!vd->vdev_ops->vdev_op_leaf) return (ENODEV); if (vdev_is_dead(vd)) return (ENXIO); ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); pad2 = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); abd_zero(pad2, VDEV_PAD_SIZE); abd_copy_from_buf(pad2, buf, size); retry: zio = zio_root(spa, NULL, NULL, flags); vdev_label_write(zio, vd, 0, pad2, offsetof(vdev_label_t, vl_pad2), VDEV_PAD_SIZE, NULL, NULL, flags); error = zio_wait(zio); if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { flags |= ZIO_FLAG_TRYHARD; goto retry; } abd_free(pad2); return (error); } /* * ========================================================================== * uberblock load/sync * ========================================================================== */ /* * Consider the following situation: txg is safely synced to disk. We've * written the first uberblock for txg + 1, and then we lose power. When we * come back up, we fail to see the uberblock for txg + 1 because, say, * it was on a mirrored device and the replica to which we wrote txg + 1 * is now offline. If we then make some changes and sync txg + 1, and then * the missing replica comes back, then for a few seconds we'll have two * conflicting uberblocks on disk with the same txg. The solution is simple: * among uberblocks with equal txg, choose the one with the latest timestamp. */ static int vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) { if (ub1->ub_txg < ub2->ub_txg) return (-1); if (ub1->ub_txg > ub2->ub_txg) return (1); if (ub1->ub_timestamp < ub2->ub_timestamp) return (-1); if (ub1->ub_timestamp > ub2->ub_timestamp) return (1); return (0); } struct ubl_cbdata { uberblock_t *ubl_ubbest; /* Best uberblock */ vdev_t *ubl_vd; /* vdev associated with the above */ }; static void vdev_uberblock_load_done(zio_t *zio) { vdev_t *vd = zio->io_vd; spa_t *spa = zio->io_spa; zio_t *rio = zio->io_private; uberblock_t *ub = abd_to_buf(zio->io_abd); struct ubl_cbdata *cbp = rio->io_private; ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); if (zio->io_error == 0 && uberblock_verify(ub) == 0) { mutex_enter(&rio->io_lock); if (ub->ub_txg <= spa->spa_load_max_txg && vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { /* * Keep track of the vdev in which this uberblock * was found. We will use this information later * to obtain the config nvlist associated with * this uberblock. */ *cbp->ubl_ubbest = *ub; cbp->ubl_vd = vd; } mutex_exit(&rio->io_lock); } abd_free(zio->io_abd); } static void vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, struct ubl_cbdata *cbp) { for (int c = 0; c < vd->vdev_children; c++) vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { for (int l = 0; l < VDEV_LABELS; l++) { for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { vdev_label_read(zio, vd, l, abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), vdev_uberblock_load_done, zio, flags); } } } } /* * Reads the 'best' uberblock from disk along with its associated * configuration. First, we read the uberblock array of each label of each * vdev, keeping track of the uberblock with the highest txg in each array. * Then, we read the configuration from the same vdev as the best uberblock. */ void vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) { zio_t *zio; spa_t *spa = rvd->vdev_spa; struct ubl_cbdata cb; int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; ASSERT(ub); ASSERT(config); bzero(ub, sizeof (uberblock_t)); *config = NULL; cb.ubl_ubbest = ub; cb.ubl_vd = NULL; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); zio = zio_root(spa, NULL, &cb, flags); vdev_uberblock_load_impl(zio, rvd, flags, &cb); (void) zio_wait(zio); /* * It's possible that the best uberblock was discovered on a label * that has a configuration which was written in a future txg. * Search all labels on this vdev to find the configuration that * matches the txg for our uberblock. */ if (cb.ubl_vd != NULL) { vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. " "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg); *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); + if (*config == NULL && spa->spa_extreme_rewind) { + vdev_dbgmsg(cb.ubl_vd, "failed to read label config. " + "Trying again without txg restrictions."); + *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX); + } if (*config == NULL) { vdev_dbgmsg(cb.ubl_vd, "failed to read label config"); } } spa_config_exit(spa, SCL_ALL, FTAG); } /* * On success, increment root zio's count of good writes. * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). */ static void vdev_uberblock_sync_done(zio_t *zio) { uint64_t *good_writes = zio->io_private; if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) atomic_inc_64(good_writes); } /* * Write the uberblock to all labels of all leaves of the specified vdev. */ static void vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags) { - for (int c = 0; c < vd->vdev_children; c++) + for (uint64_t c = 0; c < vd->vdev_children; c++) vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags); if (!vd->vdev_ops->vdev_op_leaf) return; if (!vdev_writeable(vd)) return; int n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); /* Copy the uberblock_t into the ABD */ abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd)); abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t)); for (int l = 0; l < VDEV_LABELS; l++) vdev_label_write(zio, vd, l, ub_abd, VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), vdev_uberblock_sync_done, zio->io_private, flags | ZIO_FLAG_DONT_PROPAGATE); abd_free(ub_abd); } /* Sync the uberblocks to all vdevs in svd[] */ int vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) { spa_t *spa = svd[0]->vdev_spa; zio_t *zio; uint64_t good_writes = 0; zio = zio_root(spa, NULL, &good_writes, flags); for (int v = 0; v < svdcount; v++) vdev_uberblock_sync(zio, ub, svd[v], flags); (void) zio_wait(zio); /* * Flush the uberblocks to disk. This ensures that the odd labels * are no longer needed (because the new uberblocks and the even * labels are safely on disk), so it is safe to overwrite them. */ zio = zio_root(spa, NULL, NULL, flags); for (int v = 0; v < svdcount; v++) { if (vdev_writeable(svd[v])) { zio_flush(zio, svd[v]); } } (void) zio_wait(zio); return (good_writes >= 1 ? 0 : EIO); } /* * On success, increment the count of good writes for our top-level vdev. */ static void vdev_label_sync_done(zio_t *zio) { uint64_t *good_writes = zio->io_private; if (zio->io_error == 0) atomic_inc_64(good_writes); } /* * If there weren't enough good writes, indicate failure to the parent. */ static void vdev_label_sync_top_done(zio_t *zio) { uint64_t *good_writes = zio->io_private; if (*good_writes == 0) zio->io_error = SET_ERROR(EIO); kmem_free(good_writes, sizeof (uint64_t)); } /* * We ignore errors for log and cache devices, simply free the private data. */ static void vdev_label_sync_ignore_done(zio_t *zio) { kmem_free(zio->io_private, sizeof (uint64_t)); } /* * Write all even or odd labels to all leaves of the specified vdev. */ static void vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags) { nvlist_t *label; vdev_phys_t *vp; abd_t *vp_abd; char *buf; size_t buflen; for (int c = 0; c < vd->vdev_children; c++) vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags); if (!vd->vdev_ops->vdev_op_leaf) return; if (!vdev_writeable(vd)) return; /* * Generate a label describing the top-level config to which we belong. */ label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); abd_zero(vp_abd, sizeof (vdev_phys_t)); vp = abd_to_buf(vp_abd); buf = vp->vp_nvlist; buflen = sizeof (vp->vp_nvlist); if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) { for (; l < VDEV_LABELS; l += 2) { vdev_label_write(zio, vd, l, vp_abd, offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t), vdev_label_sync_done, zio->io_private, flags | ZIO_FLAG_DONT_PROPAGATE); } } abd_free(vp_abd); nvlist_free(label); } int vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) { list_t *dl = &spa->spa_config_dirty_list; vdev_t *vd; zio_t *zio; int error; /* * Write the new labels to disk. */ zio = zio_root(spa, NULL, NULL, flags); for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); ASSERT(!vd->vdev_ishole); zio_t *vio = zio_null(zio, spa, NULL, (vd->vdev_islog || vd->vdev_aux != NULL) ? vdev_label_sync_ignore_done : vdev_label_sync_top_done, good_writes, flags); vdev_label_sync(vio, vd, l, txg, flags); zio_nowait(vio); } error = zio_wait(zio); /* * Flush the new labels to disk. */ zio = zio_root(spa, NULL, NULL, flags); for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) zio_flush(zio, vd); (void) zio_wait(zio); return (error); } /* * Sync the uberblock and any changes to the vdev configuration. * * The order of operations is carefully crafted to ensure that * if the system panics or loses power at any time, the state on disk * is still transactionally consistent. The in-line comments below * describe the failure semantics at each stage. * * Moreover, vdev_config_sync() is designed to be idempotent: if it fails * at any time, you can just call it again, and it will resume its work. */ int vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg) { spa_t *spa = svd[0]->vdev_spa; uberblock_t *ub = &spa->spa_uberblock; vdev_t *vd; zio_t *zio; int error = 0; int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; retry: /* * Normally, we don't want to try too hard to write every label and * uberblock. If there is a flaky disk, we don't want the rest of the * sync process to block while we retry. But if we can't write a * single label out, we should retry with ZIO_FLAG_TRYHARD before * bailing out and declaring the pool faulted. */ if (error != 0) { if ((flags & ZIO_FLAG_TRYHARD) != 0) return (error); flags |= ZIO_FLAG_TRYHARD; } ASSERT(ub->ub_txg <= txg); /* * If this isn't a resync due to I/O errors, * and nothing changed in this transaction group, * and the vdev configuration hasn't changed, * then there's nothing to do. */ if (ub->ub_txg < txg && uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE && list_is_empty(&spa->spa_config_dirty_list)) return (0); if (txg > spa_freeze_txg(spa)) return (0); ASSERT(txg <= spa->spa_final_txg); /* * Flush the write cache of every disk that's been written to * in this transaction group. This ensures that all blocks * written in this txg will be committed to stable storage * before any uberblock that references them. */ zio = zio_root(spa, NULL, NULL, flags); for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) zio_flush(zio, vd); (void) zio_wait(zio); /* * Sync out the even labels (L0, L2) for every dirty vdev. If the * system dies in the middle of this process, that's OK: all of the * even labels that made it to disk will be newer than any uberblock, * and will therefore be considered invalid. The odd labels (L1, L3), * which have not yet been touched, will still be valid. We flush * the new labels to disk to ensure that all even-label updates * are committed to stable storage before the uberblock update. */ if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) goto retry; /* * Sync the uberblocks to all vdevs in svd[]. * If the system dies in the middle of this step, there are two cases * to consider, and the on-disk state is consistent either way: * * (1) If none of the new uberblocks made it to disk, then the * previous uberblock will be the newest, and the odd labels * (which had not yet been touched) will be valid with respect * to that uberblock. * * (2) If one or more new uberblocks made it to disk, then they * will be the newest, and the even labels (which had all * been successfully committed) will be valid with respect * to the new uberblocks. */ if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) goto retry; /* * Sync out odd labels for every dirty vdev. If the system dies * in the middle of this process, the even labels and the new * uberblocks will suffice to open the pool. The next time * the pool is opened, the first thing we'll do -- before any * user data is modified -- is mark every vdev dirty so that * all labels will be brought up to date. We flush the new labels * to disk to ensure that all odd-label updates are committed to * stable storage before the next transaction group begins. */ if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) goto retry;; trim_thread_wakeup(spa); return (0); } Index: head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_mirror.c =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_mirror.c (revision 329797) +++ head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_mirror.c (revision 329798) @@ -1,711 +1,755 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2012, 2015 by Delphix. All rights reserved. */ #include #include #include #include #include #include #include #include #include /* * Virtual device vector for mirroring. */ typedef struct mirror_child { vdev_t *mc_vd; uint64_t mc_offset; int mc_error; int mc_load; uint8_t mc_tried; uint8_t mc_skipped; uint8_t mc_speculative; } mirror_child_t; typedef struct mirror_map { int *mm_preferred; int mm_preferred_cnt; int mm_children; boolean_t mm_resilvering; boolean_t mm_root; mirror_child_t mm_child[]; } mirror_map_t; static int vdev_mirror_shift = 21; #ifdef _KERNEL SYSCTL_DECL(_vfs_zfs_vdev); static SYSCTL_NODE(_vfs_zfs_vdev, OID_AUTO, mirror, CTLFLAG_RD, 0, "ZFS VDEV Mirror"); #endif /* * The load configuration settings below are tuned by default for * the case where all devices are of the same rotational type. * * If there is a mixture of rotating and non-rotating media, setting * non_rotating_seek_inc to 0 may well provide better results as it * will direct more reads to the non-rotating vdevs which are more * likely to have a higher performance. */ /* Rotating media load calculation configuration. */ static int rotating_inc = 0; #ifdef _KERNEL SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, rotating_inc, CTLFLAG_RWTUN, &rotating_inc, 0, "Rotating media load increment for non-seeking I/O's"); #endif static int rotating_seek_inc = 5; #ifdef _KERNEL SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, rotating_seek_inc, CTLFLAG_RWTUN, &rotating_seek_inc, 0, "Rotating media load increment for seeking I/O's"); #endif static int rotating_seek_offset = 1 * 1024 * 1024; #ifdef _KERNEL SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, rotating_seek_offset, CTLFLAG_RWTUN, &rotating_seek_offset, 0, "Offset in bytes from the last I/O which " "triggers a reduced rotating media seek increment"); #endif /* Non-rotating media load calculation configuration. */ static int non_rotating_inc = 0; #ifdef _KERNEL SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, non_rotating_inc, CTLFLAG_RWTUN, &non_rotating_inc, 0, "Non-rotating media load increment for non-seeking I/O's"); #endif static int non_rotating_seek_inc = 1; #ifdef _KERNEL SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, non_rotating_seek_inc, CTLFLAG_RWTUN, &non_rotating_seek_inc, 0, "Non-rotating media load increment for seeking I/O's"); #endif static inline size_t vdev_mirror_map_size(int children) { return (offsetof(mirror_map_t, mm_child[children]) + sizeof(int) * children); } static inline mirror_map_t * vdev_mirror_map_alloc(int children, boolean_t resilvering, boolean_t root) { mirror_map_t *mm; mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP); mm->mm_children = children; mm->mm_resilvering = resilvering; mm->mm_root = root; mm->mm_preferred = (int *)((uintptr_t)mm + offsetof(mirror_map_t, mm_child[children])); return mm; } static void vdev_mirror_map_free(zio_t *zio) { mirror_map_t *mm = zio->io_vsd; kmem_free(mm, vdev_mirror_map_size(mm->mm_children)); } static const zio_vsd_ops_t vdev_mirror_vsd_ops = { vdev_mirror_map_free, zio_vsd_default_cksum_report }; static int vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset) { uint64_t lastoffset; int load; /* All DVAs have equal weight at the root. */ if (mm->mm_root) return (INT_MAX); /* * We don't return INT_MAX if the device is resilvering i.e. * vdev_resilver_txg != 0 as when tested performance was slightly * worse overall when resilvering with compared to without. */ /* Standard load based on pending queue length. */ load = vdev_queue_length(vd); lastoffset = vdev_queue_lastoffset(vd); if (vd->vdev_rotation_rate == VDEV_RATE_NON_ROTATING) { /* Non-rotating media. */ if (lastoffset == zio_offset) return (load + non_rotating_inc); /* * Apply a seek penalty even for non-rotating devices as * sequential I/O'a can be aggregated into fewer operations * on the device, thus avoiding unnecessary per-command * overhead and boosting performance. */ return (load + non_rotating_seek_inc); } /* Rotating media I/O's which directly follow the last I/O. */ if (lastoffset == zio_offset) return (load + rotating_inc); /* * Apply half the seek increment to I/O's within seek offset * of the last I/O queued to this vdev as they should incure less * of a seek increment. */ if (ABS(lastoffset - zio_offset) < rotating_seek_offset) return (load + (rotating_seek_inc / 2)); /* Apply the full seek increment to all other I/O's. */ return (load + rotating_seek_inc); } static mirror_map_t * vdev_mirror_map_init(zio_t *zio) { mirror_map_t *mm = NULL; mirror_child_t *mc; vdev_t *vd = zio->io_vd; int c; if (vd == NULL) { dva_t *dva = zio->io_bp->blk_dva; spa_t *spa = zio->io_spa; + dva_t dva_copy[SPA_DVAS_PER_BP]; - mm = vdev_mirror_map_alloc(BP_GET_NDVAS(zio->io_bp), B_FALSE, - B_TRUE); + c = BP_GET_NDVAS(zio->io_bp); + + /* + * If we do not trust the pool config, some DVAs might be + * invalid or point to vdevs that do not exist. We skip them. + */ + if (!spa_trust_config(spa)) { + ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ); + int j = 0; + for (int i = 0; i < c; i++) { + if (zfs_dva_valid(spa, &dva[i], zio->io_bp)) + dva_copy[j++] = dva[i]; + } + if (j == 0) { + zio->io_vsd = NULL; + zio->io_error = ENXIO; + return (NULL); + } + if (j < c) { + dva = dva_copy; + c = j; + } + } + + mm = vdev_mirror_map_alloc(c, B_FALSE, B_TRUE); + for (c = 0; c < mm->mm_children; c++) { mc = &mm->mm_child[c]; mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c])); mc->mc_offset = DVA_GET_OFFSET(&dva[c]); } } else { /* * If we are resilvering, then we should handle scrub reads * differently; we shouldn't issue them to the resilvering * device because it might not have those blocks. * * We are resilvering iff: * 1) We are a replacing vdev (ie our name is "replacing-1" or * "spare-1" or something like that), and * 2) The pool is currently being resilvered. * * We cannot simply check vd->vdev_resilver_txg, because it's * not set in this path. * * Nor can we just check our vdev_ops; there are cases (such as * when a user types "zpool replace pool odev spare_dev" and * spare_dev is in the spare list, or when a spare device is * automatically used to replace a DEGRADED device) when * resilvering is complete but both the original vdev and the * spare vdev remain in the pool. That behavior is intentional. * It helps implement the policy that a spare should be * automatically removed from the pool after the user replaces * the device that originally failed. * * If a spa load is in progress, then spa_dsl_pool may be * uninitialized. But we shouldn't be resilvering during a spa * load anyway. */ boolean_t replacing = (vd->vdev_ops == &vdev_replacing_ops || vd->vdev_ops == &vdev_spare_ops) && spa_load_state(vd->vdev_spa) == SPA_LOAD_NONE && dsl_scan_resilvering(vd->vdev_spa->spa_dsl_pool); mm = vdev_mirror_map_alloc(vd->vdev_children, replacing, B_FALSE); for (c = 0; c < mm->mm_children; c++) { mc = &mm->mm_child[c]; mc->mc_vd = vd->vdev_child[c]; mc->mc_offset = zio->io_offset; } } zio->io_vsd = mm; zio->io_vsd_ops = &vdev_mirror_vsd_ops; return (mm); } static int vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize, uint64_t *logical_ashift, uint64_t *physical_ashift) { int numerrors = 0; int lasterror = 0; if (vd->vdev_children == 0) { vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; return (SET_ERROR(EINVAL)); } vdev_open_children(vd); for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; if (cvd->vdev_open_error) { lasterror = cvd->vdev_open_error; numerrors++; continue; } *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1; *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1; *logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift); *physical_ashift = MAX(*physical_ashift, cvd->vdev_physical_ashift); } if (numerrors == vd->vdev_children) { - vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS; + if (vdev_children_are_offline(vd)) + vd->vdev_stat.vs_aux = VDEV_AUX_CHILDREN_OFFLINE; + else + vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS; return (lasterror); } return (0); } static void vdev_mirror_close(vdev_t *vd) { for (int c = 0; c < vd->vdev_children; c++) vdev_close(vd->vdev_child[c]); } static void vdev_mirror_child_done(zio_t *zio) { mirror_child_t *mc = zio->io_private; mc->mc_error = zio->io_error; mc->mc_tried = 1; mc->mc_skipped = 0; } static void vdev_mirror_scrub_done(zio_t *zio) { mirror_child_t *mc = zio->io_private; if (zio->io_error == 0) { zio_t *pio; zio_link_t *zl = NULL; mutex_enter(&zio->io_lock); while ((pio = zio_walk_parents(zio, &zl)) != NULL) { mutex_enter(&pio->io_lock); ASSERT3U(zio->io_size, >=, pio->io_size); abd_copy(pio->io_abd, zio->io_abd, pio->io_size); mutex_exit(&pio->io_lock); } mutex_exit(&zio->io_lock); } abd_free(zio->io_abd); mc->mc_error = zio->io_error; mc->mc_tried = 1; mc->mc_skipped = 0; } /* * Check the other, lower-index DVAs to see if they're on the same * vdev as the child we picked. If they are, use them since they * are likely to have been allocated from the primary metaslab in * use at the time, and hence are more likely to have locality with * single-copy data. */ static int vdev_mirror_dva_select(zio_t *zio, int p) { dva_t *dva = zio->io_bp->blk_dva; mirror_map_t *mm = zio->io_vsd; int preferred; int c; preferred = mm->mm_preferred[p]; for (p-- ; p >= 0; p--) { c = mm->mm_preferred[p]; if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred])) preferred = c; } return (preferred); } static int vdev_mirror_preferred_child_randomize(zio_t *zio) { mirror_map_t *mm = zio->io_vsd; int p; if (mm->mm_root) { p = spa_get_random(mm->mm_preferred_cnt); return (vdev_mirror_dva_select(zio, p)); } /* * To ensure we don't always favour the first matching vdev, * which could lead to wear leveling issues on SSD's, we * use the I/O offset as a pseudo random seed into the vdevs * which have the lowest load. */ p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt; return (mm->mm_preferred[p]); } /* * Try to find a vdev whose DTL doesn't contain the block we want to read * prefering vdevs based on determined load. * * If we can't, try the read on any vdev we haven't already tried. */ static int vdev_mirror_child_select(zio_t *zio) { mirror_map_t *mm = zio->io_vsd; uint64_t txg = zio->io_txg; int c, lowest_load; ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg); lowest_load = INT_MAX; mm->mm_preferred_cnt = 0; for (c = 0; c < mm->mm_children; c++) { mirror_child_t *mc; mc = &mm->mm_child[c]; if (mc->mc_tried || mc->mc_skipped) continue; if (!vdev_readable(mc->mc_vd)) { mc->mc_error = SET_ERROR(ENXIO); mc->mc_tried = 1; /* don't even try */ mc->mc_skipped = 1; continue; } if (vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1)) { mc->mc_error = SET_ERROR(ESTALE); mc->mc_skipped = 1; mc->mc_speculative = 1; continue; } mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset); if (mc->mc_load > lowest_load) continue; if (mc->mc_load < lowest_load) { lowest_load = mc->mc_load; mm->mm_preferred_cnt = 0; } mm->mm_preferred[mm->mm_preferred_cnt] = c; mm->mm_preferred_cnt++; } if (mm->mm_preferred_cnt == 1) { vdev_queue_register_lastoffset( mm->mm_child[mm->mm_preferred[0]].mc_vd, zio); return (mm->mm_preferred[0]); } if (mm->mm_preferred_cnt > 1) { int c = vdev_mirror_preferred_child_randomize(zio); vdev_queue_register_lastoffset(mm->mm_child[c].mc_vd, zio); return (c); } /* * Every device is either missing or has this txg in its DTL. * Look for any child we haven't already tried before giving up. */ for (c = 0; c < mm->mm_children; c++) { if (!mm->mm_child[c].mc_tried) { vdev_queue_register_lastoffset(mm->mm_child[c].mc_vd, zio); return (c); } } /* * Every child failed. There's no place left to look. */ return (-1); } static void vdev_mirror_io_start(zio_t *zio) { mirror_map_t *mm; mirror_child_t *mc; int c, children; mm = vdev_mirror_map_init(zio); + if (mm == NULL) { + ASSERT(!spa_trust_config(zio->io_spa)); + ASSERT(zio->io_type == ZIO_TYPE_READ); + zio_execute(zio); + return; + } + if (zio->io_type == ZIO_TYPE_READ) { if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_resilvering && mm->mm_children > 1) { /* * For scrubbing reads we need to allocate a read * buffer for each child and issue reads to all * children. If any child succeeds, it will copy its * data into zio->io_data in vdev_mirror_scrub_done. */ for (c = 0; c < mm->mm_children; c++) { mc = &mm->mm_child[c]; zio_nowait(zio_vdev_child_io(zio, zio->io_bp, mc->mc_vd, mc->mc_offset, abd_alloc_sametype(zio->io_abd, zio->io_size), zio->io_size, zio->io_type, zio->io_priority, 0, vdev_mirror_scrub_done, mc)); } zio_execute(zio); return; } /* * For normal reads just pick one child. */ c = vdev_mirror_child_select(zio); children = (c >= 0); } else { ASSERT(zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE); /* * Writes and frees go to all children. */ c = 0; children = mm->mm_children; } while (children--) { mc = &mm->mm_child[c]; zio_nowait(zio_vdev_child_io(zio, zio->io_bp, mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size, zio->io_type, zio->io_priority, 0, vdev_mirror_child_done, mc)); c++; } zio_execute(zio); } static int vdev_mirror_worst_error(mirror_map_t *mm) { int error[2] = { 0, 0 }; for (int c = 0; c < mm->mm_children; c++) { mirror_child_t *mc = &mm->mm_child[c]; int s = mc->mc_speculative; error[s] = zio_worst_error(error[s], mc->mc_error); } return (error[0] ? error[0] : error[1]); } static void vdev_mirror_io_done(zio_t *zio) { mirror_map_t *mm = zio->io_vsd; mirror_child_t *mc; int c; int good_copies = 0; int unexpected_errors = 0; + if (mm == NULL) + return; + for (c = 0; c < mm->mm_children; c++) { mc = &mm->mm_child[c]; if (mc->mc_error) { if (!mc->mc_skipped) unexpected_errors++; } else if (mc->mc_tried) { good_copies++; } } if (zio->io_type == ZIO_TYPE_WRITE) { /* * XXX -- for now, treat partial writes as success. * * Now that we support write reallocation, it would be better * to treat partial failure as real failure unless there are * no non-degraded top-level vdevs left, and not update DTLs * if we intend to reallocate. */ /* XXPOLICY */ if (good_copies != mm->mm_children) { /* * Always require at least one good copy. * * For ditto blocks (io_vd == NULL), require * all copies to be good. * * XXX -- for replacing vdevs, there's no great answer. * If the old device is really dead, we may not even * be able to access it -- so we only want to * require good writes to the new device. But if * the new device turns out to be flaky, we want * to be able to detach it -- which requires all * writes to the old device to have succeeded. */ if (good_copies == 0 || zio->io_vd == NULL) zio->io_error = vdev_mirror_worst_error(mm); } return; } else if (zio->io_type == ZIO_TYPE_FREE) { return; } ASSERT(zio->io_type == ZIO_TYPE_READ); /* * If we don't have a good copy yet, keep trying other children. */ /* XXPOLICY */ if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) { ASSERT(c >= 0 && c < mm->mm_children); mc = &mm->mm_child[c]; zio_vdev_io_redone(zio); zio_nowait(zio_vdev_child_io(zio, zio->io_bp, mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size, ZIO_TYPE_READ, zio->io_priority, 0, vdev_mirror_child_done, mc)); return; } /* XXPOLICY */ if (good_copies == 0) { zio->io_error = vdev_mirror_worst_error(mm); ASSERT(zio->io_error != 0); } if (good_copies && spa_writeable(zio->io_spa) && (unexpected_errors || (zio->io_flags & ZIO_FLAG_RESILVER) || ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_resilvering))) { /* * Use the good data we have in hand to repair damaged children. */ for (c = 0; c < mm->mm_children; c++) { /* * Don't rewrite known good children. * Not only is it unnecessary, it could * actually be harmful: if the system lost * power while rewriting the only good copy, * there would be no good copies left! */ mc = &mm->mm_child[c]; if (mc->mc_error == 0) { if (mc->mc_tried) continue; if (!(zio->io_flags & ZIO_FLAG_SCRUB) && !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL, zio->io_txg, 1)) continue; mc->mc_error = SET_ERROR(ESTALE); } zio_nowait(zio_vdev_child_io(zio, zio->io_bp, mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size, ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_IO_REPAIR | (unexpected_errors ? ZIO_FLAG_SELF_HEAL : 0), NULL, NULL)); } } } static void vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded) { - if (faulted == vd->vdev_children) - vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, - VDEV_AUX_NO_REPLICAS); - else if (degraded + faulted != 0) + if (faulted == vd->vdev_children) { + if (vdev_children_are_offline(vd)) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_OFFLINE, + VDEV_AUX_CHILDREN_OFFLINE); + } else { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_NO_REPLICAS); + } + } else if (degraded + faulted != 0) { vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); - else + } else { vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE); + } } vdev_ops_t vdev_mirror_ops = { vdev_mirror_open, vdev_mirror_close, vdev_default_asize, vdev_mirror_io_start, vdev_mirror_io_done, vdev_mirror_state_change, NULL, NULL, NULL, VDEV_TYPE_MIRROR, /* name of this vdev type */ B_FALSE /* not a leaf vdev */ }; vdev_ops_t vdev_replacing_ops = { vdev_mirror_open, vdev_mirror_close, vdev_default_asize, vdev_mirror_io_start, vdev_mirror_io_done, vdev_mirror_state_change, NULL, NULL, NULL, VDEV_TYPE_REPLACING, /* name of this vdev type */ B_FALSE /* not a leaf vdev */ }; vdev_ops_t vdev_spare_ops = { vdev_mirror_open, vdev_mirror_close, vdev_default_asize, vdev_mirror_io_start, vdev_mirror_io_done, vdev_mirror_state_change, NULL, NULL, NULL, VDEV_TYPE_SPARE, /* name of this vdev type */ B_FALSE /* not a leaf vdev */ }; Index: head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_root.c =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_root.c (revision 329797) +++ head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_root.c (revision 329798) @@ -1,124 +1,155 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2012, 2014 by Delphix. All rights reserved. */ #include #include #include #include #include /* * Virtual device vector for the pool's root vdev. */ +static uint64_t +vdev_root_core_tvds(vdev_t *vd) +{ + uint64_t tvds = 0; + + for (uint64_t c = 0; c < vd->vdev_children; c++) { + vdev_t *cvd = vd->vdev_child[c]; + + if (!cvd->vdev_ishole && !cvd->vdev_islog && + cvd->vdev_ops != &vdev_indirect_ops) { + tvds++; + } + } + + return (tvds); +} + /* * We should be able to tolerate one failure with absolutely no damage * to our metadata. Two failures will take out space maps, a bunch of * indirect block trees, meta dnodes, dnodes, etc. Probably not a happy * place to live. When we get smarter, we can liberalize this policy. * e.g. If we haven't lost two consecutive top-level vdevs, then we are * probably fine. Adding bean counters during alloc/free can make this * future guesswork more accurate. */ -static int -too_many_errors(vdev_t *vd, int numerrors) +static boolean_t +too_many_errors(vdev_t *vd, uint64_t numerrors) { - ASSERT3U(numerrors, <=, vd->vdev_children); - return (numerrors > 0); + uint64_t tvds; + + if (numerrors == 0) + return (B_FALSE); + + tvds = vdev_root_core_tvds(vd); + ASSERT3U(numerrors, <=, tvds); + + if (numerrors == tvds) + return (B_TRUE); + + return (numerrors > spa_missing_tvds_allowed(vd->vdev_spa)); } static int vdev_root_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize, uint64_t *logical_ashift, uint64_t *physical_ashift) { + spa_t *spa = vd->vdev_spa; int lasterror = 0; int numerrors = 0; if (vd->vdev_children == 0) { vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; return (SET_ERROR(EINVAL)); } vdev_open_children(vd); for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; if (cvd->vdev_open_error && !cvd->vdev_islog) { lasterror = cvd->vdev_open_error; numerrors++; } } + if (spa_load_state(spa) != SPA_LOAD_NONE) + spa_set_missing_tvds(spa, numerrors); + if (too_many_errors(vd, numerrors)) { vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS; return (lasterror); } *asize = 0; *max_asize = 0; *logical_ashift = 0; *physical_ashift = 0; return (0); } static void vdev_root_close(vdev_t *vd) { for (int c = 0; c < vd->vdev_children; c++) vdev_close(vd->vdev_child[c]); } static void vdev_root_state_change(vdev_t *vd, int faulted, int degraded) { if (too_many_errors(vd, faulted)) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_NO_REPLICAS); - } else if (degraded) { + } else if (degraded || faulted) { vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); } else { vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE); } } vdev_ops_t vdev_root_ops = { vdev_root_open, vdev_root_close, vdev_default_asize, NULL, /* io_start - not applicable to the root */ NULL, /* io_done - not applicable to the root */ vdev_root_state_change, NULL, NULL, NULL, VDEV_TYPE_ROOT, /* name of this vdev type */ B_FALSE /* not a leaf vdev */ }; Index: head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zio.c =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zio.c (revision 329797) +++ head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zio.c (revision 329798) @@ -1,4183 +1,4224 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2017 by Delphix. All rights reserved. * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2014 Integros [integros.com] */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include SYSCTL_DECL(_vfs_zfs); SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO"); #if defined(__amd64__) static int zio_use_uma = 1; #else static int zio_use_uma = 0; #endif SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, use_uma, CTLFLAG_RDTUN, &zio_use_uma, 0, "Use uma(9) for ZIO allocations"); static int zio_exclude_metadata = 0; SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0, "Exclude metadata buffers from dumps as well"); zio_trim_stats_t zio_trim_stats = { { "bytes", KSTAT_DATA_UINT64, "Number of bytes successfully TRIMmed" }, { "success", KSTAT_DATA_UINT64, "Number of successful TRIM requests" }, { "unsupported", KSTAT_DATA_UINT64, "Number of TRIM requests that failed because TRIM is not supported" }, { "failed", KSTAT_DATA_UINT64, "Number of TRIM requests that failed for reasons other than not supported" }, }; static kstat_t *zio_trim_ksp; /* * ========================================================================== * I/O type descriptions * ========================================================================== */ const char *zio_type_name[ZIO_TYPES] = { "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim", "zio_ioctl" }; boolean_t zio_dva_throttle_enabled = B_TRUE; SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, dva_throttle_enabled, CTLFLAG_RDTUN, &zio_dva_throttle_enabled, 0, ""); /* * ========================================================================== * I/O kmem caches * ========================================================================== */ kmem_cache_t *zio_cache; kmem_cache_t *zio_link_cache; kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; #ifdef _KERNEL extern vmem_t *zio_alloc_arena; #endif #define ZIO_PIPELINE_CONTINUE 0x100 #define ZIO_PIPELINE_STOP 0x101 #define BP_SPANB(indblkshift, level) \ (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) #define COMPARE_META_LEVEL 0x80000000ul /* * The following actions directly effect the spa's sync-to-convergence logic. * The values below define the sync pass when we start performing the action. * Care should be taken when changing these values as they directly impact * spa_sync() performance. Tuning these values may introduce subtle performance * pathologies and should only be done in the context of performance analysis. * These tunables will eventually be removed and replaced with #defines once * enough analysis has been done to determine optimal values. * * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that * regular blocks are not deferred. */ int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_deferred_free, CTLFLAG_RDTUN, &zfs_sync_pass_deferred_free, 0, "defer frees starting in this pass"); int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */ SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_dont_compress, CTLFLAG_RDTUN, &zfs_sync_pass_dont_compress, 0, "don't compress starting in this pass"); int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_rewrite, CTLFLAG_RDTUN, &zfs_sync_pass_rewrite, 0, "rewrite new bps starting in this pass"); /* * An allocating zio is one that either currently has the DVA allocate * stage set or will have it later in its lifetime. */ #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) boolean_t zio_requeue_io_start_cut_in_line = B_TRUE; #ifdef illumos #ifdef ZFS_DEBUG int zio_buf_debug_limit = 16384; #else int zio_buf_debug_limit = 0; #endif #endif static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); void zio_init(void) { size_t c; zio_cache = kmem_cache_create("zio_cache", sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); zio_link_cache = kmem_cache_create("zio_link_cache", sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); if (!zio_use_uma) goto out; /* * For small buffers, we want a cache for each multiple of * SPA_MINBLOCKSIZE. For larger buffers, we want a cache * for each quarter-power of 2. */ for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { size_t size = (c + 1) << SPA_MINBLOCKSHIFT; size_t p2 = size; size_t align = 0; int cflags = zio_exclude_metadata ? KMC_NODEBUG : 0; while (!ISP2(p2)) p2 &= p2 - 1; #ifdef illumos #ifndef _KERNEL /* * If we are using watchpoints, put each buffer on its own page, * to eliminate the performance overhead of trapping to the * kernel when modifying a non-watched buffer that shares the * page with a watched buffer. */ if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) continue; #endif #endif /* illumos */ if (size <= 4 * SPA_MINBLOCKSIZE) { align = SPA_MINBLOCKSIZE; } else if (IS_P2ALIGNED(size, p2 >> 2)) { align = MIN(p2 >> 2, PAGESIZE); } if (align != 0) { char name[36]; (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); zio_buf_cache[c] = kmem_cache_create(name, size, align, NULL, NULL, NULL, NULL, NULL, cflags); /* * Since zio_data bufs do not appear in crash dumps, we * pass KMC_NOTOUCH so that no allocator metadata is * stored with the buffers. */ (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); zio_data_buf_cache[c] = kmem_cache_create(name, size, align, NULL, NULL, NULL, NULL, NULL, cflags | KMC_NOTOUCH | KMC_NODEBUG); } } while (--c != 0) { ASSERT(zio_buf_cache[c] != NULL); if (zio_buf_cache[c - 1] == NULL) zio_buf_cache[c - 1] = zio_buf_cache[c]; ASSERT(zio_data_buf_cache[c] != NULL); if (zio_data_buf_cache[c - 1] == NULL) zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; } out: zio_inject_init(); zio_trim_ksp = kstat_create("zfs", 0, "zio_trim", "misc", KSTAT_TYPE_NAMED, sizeof(zio_trim_stats) / sizeof(kstat_named_t), KSTAT_FLAG_VIRTUAL); if (zio_trim_ksp != NULL) { zio_trim_ksp->ks_data = &zio_trim_stats; kstat_install(zio_trim_ksp); } } void zio_fini(void) { size_t c; kmem_cache_t *last_cache = NULL; kmem_cache_t *last_data_cache = NULL; for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { if (zio_buf_cache[c] != last_cache) { last_cache = zio_buf_cache[c]; kmem_cache_destroy(zio_buf_cache[c]); } zio_buf_cache[c] = NULL; if (zio_data_buf_cache[c] != last_data_cache) { last_data_cache = zio_data_buf_cache[c]; kmem_cache_destroy(zio_data_buf_cache[c]); } zio_data_buf_cache[c] = NULL; } kmem_cache_destroy(zio_link_cache); kmem_cache_destroy(zio_cache); zio_inject_fini(); if (zio_trim_ksp != NULL) { kstat_delete(zio_trim_ksp); zio_trim_ksp = NULL; } } /* * ========================================================================== * Allocate and free I/O buffers * ========================================================================== */ /* * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a * crashdump if the kernel panics, so use it judiciously. Obviously, it's * useful to inspect ZFS metadata, but if possible, we should avoid keeping * excess / transient data in-core during a crashdump. */ void * zio_buf_alloc(size_t size) { size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; int flags = zio_exclude_metadata ? KM_NODEBUG : 0; VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); if (zio_use_uma) return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); else return (kmem_alloc(size, KM_SLEEP|flags)); } /* * Use zio_data_buf_alloc to allocate data. The data will not appear in a * crashdump if the kernel panics. This exists so that we will limit the amount * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount * of kernel heap dumped to disk when the kernel panics) */ void * zio_data_buf_alloc(size_t size) { size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); if (zio_use_uma) return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); else return (kmem_alloc(size, KM_SLEEP | KM_NODEBUG)); } void zio_buf_free(void *buf, size_t size) { size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); if (zio_use_uma) kmem_cache_free(zio_buf_cache[c], buf); else kmem_free(buf, size); } void zio_data_buf_free(void *buf, size_t size) { size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); if (zio_use_uma) kmem_cache_free(zio_data_buf_cache[c], buf); else kmem_free(buf, size); } /* * ========================================================================== * Push and pop I/O transform buffers * ========================================================================== */ void zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, zio_transform_func_t *transform) { zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); /* * Ensure that anyone expecting this zio to contain a linear ABD isn't * going to get a nasty surprise when they try to access the data. */ #ifdef illumos IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data)); #else IMPLY(zio->io_abd != NULL && abd_is_linear(zio->io_abd), abd_is_linear(data)); #endif zt->zt_orig_abd = zio->io_abd; zt->zt_orig_size = zio->io_size; zt->zt_bufsize = bufsize; zt->zt_transform = transform; zt->zt_next = zio->io_transform_stack; zio->io_transform_stack = zt; zio->io_abd = data; zio->io_size = size; } void zio_pop_transforms(zio_t *zio) { zio_transform_t *zt; while ((zt = zio->io_transform_stack) != NULL) { if (zt->zt_transform != NULL) zt->zt_transform(zio, zt->zt_orig_abd, zt->zt_orig_size); if (zt->zt_bufsize != 0) abd_free(zio->io_abd); zio->io_abd = zt->zt_orig_abd; zio->io_size = zt->zt_orig_size; zio->io_transform_stack = zt->zt_next; kmem_free(zt, sizeof (zio_transform_t)); } } /* * ========================================================================== * I/O transform callbacks for subblocks and decompression * ========================================================================== */ static void zio_subblock(zio_t *zio, abd_t *data, uint64_t size) { ASSERT(zio->io_size > size); if (zio->io_type == ZIO_TYPE_READ) abd_copy(data, zio->io_abd, size); } static void zio_decompress(zio_t *zio, abd_t *data, uint64_t size) { if (zio->io_error == 0) { void *tmp = abd_borrow_buf(data, size); int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), zio->io_abd, tmp, zio->io_size, size); abd_return_buf_copy(data, tmp, size); if (ret != 0) zio->io_error = SET_ERROR(EIO); } } /* * ========================================================================== * I/O parent/child relationships and pipeline interlocks * ========================================================================== */ zio_t * zio_walk_parents(zio_t *cio, zio_link_t **zl) { list_t *pl = &cio->io_parent_list; *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); if (*zl == NULL) return (NULL); ASSERT((*zl)->zl_child == cio); return ((*zl)->zl_parent); } zio_t * zio_walk_children(zio_t *pio, zio_link_t **zl) { list_t *cl = &pio->io_child_list; *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); if (*zl == NULL) return (NULL); ASSERT((*zl)->zl_parent == pio); return ((*zl)->zl_child); } zio_t * zio_unique_parent(zio_t *cio) { zio_link_t *zl = NULL; zio_t *pio = zio_walk_parents(cio, &zl); VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); return (pio); } void zio_add_child(zio_t *pio, zio_t *cio) { zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); /* * Logical I/Os can have logical, gang, or vdev children. * Gang I/Os can have gang or vdev children. * Vdev I/Os can only have vdev children. * The following ASSERT captures all of these constraints. */ ASSERT3S(cio->io_child_type, <=, pio->io_child_type); zl->zl_parent = pio; zl->zl_child = cio; mutex_enter(&cio->io_lock); mutex_enter(&pio->io_lock); ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); for (int w = 0; w < ZIO_WAIT_TYPES; w++) pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; list_insert_head(&pio->io_child_list, zl); list_insert_head(&cio->io_parent_list, zl); pio->io_child_count++; cio->io_parent_count++; mutex_exit(&pio->io_lock); mutex_exit(&cio->io_lock); } static void zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) { ASSERT(zl->zl_parent == pio); ASSERT(zl->zl_child == cio); mutex_enter(&cio->io_lock); mutex_enter(&pio->io_lock); list_remove(&pio->io_child_list, zl); list_remove(&cio->io_parent_list, zl); pio->io_child_count--; cio->io_parent_count--; mutex_exit(&pio->io_lock); mutex_exit(&cio->io_lock); kmem_cache_free(zio_link_cache, zl); } static boolean_t zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) { boolean_t waiting = B_FALSE; mutex_enter(&zio->io_lock); ASSERT(zio->io_stall == NULL); for (int c = 0; c < ZIO_CHILD_TYPES; c++) { if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) continue; uint64_t *countp = &zio->io_children[c][wait]; if (*countp != 0) { zio->io_stage >>= 1; ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); zio->io_stall = countp; waiting = B_TRUE; break; } } mutex_exit(&zio->io_lock); return (waiting); } static void zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) { uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; int *errorp = &pio->io_child_error[zio->io_child_type]; mutex_enter(&pio->io_lock); if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) *errorp = zio_worst_error(*errorp, zio->io_error); pio->io_reexecute |= zio->io_reexecute; ASSERT3U(*countp, >, 0); (*countp)--; if (*countp == 0 && pio->io_stall == countp) { zio_taskq_type_t type = pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : ZIO_TASKQ_INTERRUPT; pio->io_stall = NULL; mutex_exit(&pio->io_lock); /* * Dispatch the parent zio in its own taskq so that * the child can continue to make progress. This also * prevents overflowing the stack when we have deeply nested * parent-child relationships. */ zio_taskq_dispatch(pio, type, B_FALSE); } else { mutex_exit(&pio->io_lock); } } static void zio_inherit_child_errors(zio_t *zio, enum zio_child c) { if (zio->io_child_error[c] != 0 && zio->io_error == 0) zio->io_error = zio->io_child_error[c]; } int zio_bookmark_compare(const void *x1, const void *x2) { const zio_t *z1 = x1; const zio_t *z2 = x2; if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) return (-1); if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) return (1); if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) return (-1); if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) return (1); if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) return (-1); if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) return (1); if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) return (-1); if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) return (1); if (z1 < z2) return (-1); if (z1 > z2) return (1); return (0); } /* * ========================================================================== * Create the various types of I/O (read, write, free, etc) * ========================================================================== */ static zio_t * zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, void *private, zio_type_t type, zio_priority_t priority, enum zio_flag flags, vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline) { zio_t *zio; ASSERT3U(type == ZIO_TYPE_FREE || psize, <=, SPA_MAXBLOCKSIZE); ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); ASSERT(vd || stage == ZIO_STAGE_OPEN); IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW) != 0); zio = kmem_cache_alloc(zio_cache, KM_SLEEP); bzero(zio, sizeof (zio_t)); mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); list_create(&zio->io_parent_list, sizeof (zio_link_t), offsetof(zio_link_t, zl_parent_node)); list_create(&zio->io_child_list, sizeof (zio_link_t), offsetof(zio_link_t, zl_child_node)); metaslab_trace_init(&zio->io_alloc_list); if (vd != NULL) zio->io_child_type = ZIO_CHILD_VDEV; else if (flags & ZIO_FLAG_GANG_CHILD) zio->io_child_type = ZIO_CHILD_GANG; else if (flags & ZIO_FLAG_DDT_CHILD) zio->io_child_type = ZIO_CHILD_DDT; else zio->io_child_type = ZIO_CHILD_LOGICAL; if (bp != NULL) { zio->io_bp = (blkptr_t *)bp; zio->io_bp_copy = *bp; zio->io_bp_orig = *bp; if (type != ZIO_TYPE_WRITE || zio->io_child_type == ZIO_CHILD_DDT) zio->io_bp = &zio->io_bp_copy; /* so caller can free */ if (zio->io_child_type == ZIO_CHILD_LOGICAL) zio->io_logical = zio; if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) pipeline |= ZIO_GANG_STAGES; } zio->io_spa = spa; zio->io_txg = txg; zio->io_done = done; zio->io_private = private; zio->io_type = type; zio->io_priority = priority; zio->io_vd = vd; zio->io_offset = offset; zio->io_orig_abd = zio->io_abd = data; zio->io_orig_size = zio->io_size = psize; zio->io_lsize = lsize; zio->io_orig_flags = zio->io_flags = flags; zio->io_orig_stage = zio->io_stage = stage; zio->io_orig_pipeline = zio->io_pipeline = pipeline; zio->io_pipeline_trace = ZIO_STAGE_OPEN; zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); if (zb != NULL) zio->io_bookmark = *zb; if (pio != NULL) { if (zio->io_logical == NULL) zio->io_logical = pio->io_logical; if (zio->io_child_type == ZIO_CHILD_GANG) zio->io_gang_leader = pio->io_gang_leader; zio_add_child(pio, zio); } return (zio); } static void zio_destroy(zio_t *zio) { metaslab_trace_fini(&zio->io_alloc_list); list_destroy(&zio->io_parent_list); list_destroy(&zio->io_child_list); mutex_destroy(&zio->io_lock); cv_destroy(&zio->io_cv); kmem_cache_free(zio_cache, zio); } zio_t * zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, void *private, enum zio_flag flags) { zio_t *zio; zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); return (zio); } zio_t * zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) { return (zio_null(NULL, spa, NULL, done, private, flags)); } void zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp) { if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { zfs_panic_recover("blkptr at %p has invalid TYPE %llu", bp, (longlong_t)BP_GET_TYPE(bp)); } if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu", bp, (longlong_t)BP_GET_CHECKSUM(bp)); } if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu", bp, (longlong_t)BP_GET_COMPRESS(bp)); } if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { zfs_panic_recover("blkptr at %p has invalid LSIZE %llu", bp, (longlong_t)BP_GET_LSIZE(bp)); } if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { zfs_panic_recover("blkptr at %p has invalid PSIZE %llu", bp, (longlong_t)BP_GET_PSIZE(bp)); } if (BP_IS_EMBEDDED(bp)) { if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) { zfs_panic_recover("blkptr at %p has invalid ETYPE %llu", bp, (longlong_t)BPE_GET_ETYPE(bp)); } } /* + * Do not verify individual DVAs if the config is not trusted. This + * will be done once the zio is executed in vdev_mirror_map_alloc. + */ + if (!spa->spa_trust_config) + return; + + /* * Pool-specific checks. * * Note: it would be nice to verify that the blk_birth and * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() * allows the birth time of log blocks (and dmu_sync()-ed blocks * that are in the log) to be arbitrarily large. */ for (int i = 0; i < BP_GET_NDVAS(bp); i++) { uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]); if (vdevid >= spa->spa_root_vdev->vdev_children) { zfs_panic_recover("blkptr at %p DVA %u has invalid " "VDEV %llu", bp, i, (longlong_t)vdevid); continue; } vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; if (vd == NULL) { zfs_panic_recover("blkptr at %p DVA %u has invalid " "VDEV %llu", bp, i, (longlong_t)vdevid); continue; } if (vd->vdev_ops == &vdev_hole_ops) { zfs_panic_recover("blkptr at %p DVA %u has hole " "VDEV %llu", bp, i, (longlong_t)vdevid); continue; } if (vd->vdev_ops == &vdev_missing_ops) { /* * "missing" vdevs are valid during import, but we * don't have their detailed info (e.g. asize), so * we can't perform any more checks on them. */ continue; } uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]); if (BP_IS_GANG(bp)) asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); if (offset + asize > vd->vdev_asize) { zfs_panic_recover("blkptr at %p DVA %u has invalid " "OFFSET %llu", bp, i, (longlong_t)offset); } } } +boolean_t +zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) +{ + uint64_t vdevid = DVA_GET_VDEV(dva); + + if (vdevid >= spa->spa_root_vdev->vdev_children) + return (B_FALSE); + + vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; + if (vd == NULL) + return (B_FALSE); + + if (vd->vdev_ops == &vdev_hole_ops) + return (B_FALSE); + + if (vd->vdev_ops == &vdev_missing_ops) { + return (B_FALSE); + } + + uint64_t offset = DVA_GET_OFFSET(dva); + uint64_t asize = DVA_GET_ASIZE(dva); + + if (BP_IS_GANG(bp)) + asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); + if (offset + asize > vd->vdev_asize) + return (B_FALSE); + + return (B_TRUE); +} + zio_t * zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, abd_t *data, uint64_t size, zio_done_func_t *done, void *private, zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) { zio_t *zio; zfs_blkptr_verify(spa, bp); zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, data, size, size, done, private, ZIO_TYPE_READ, priority, flags, NULL, 0, zb, ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); return (zio); } zio_t * zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, zio_done_func_t *ready, zio_done_func_t *children_ready, zio_done_func_t *physdone, zio_done_func_t *done, void *private, zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) { zio_t *zio; ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && zp->zp_compress >= ZIO_COMPRESS_OFF && zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && DMU_OT_IS_VALID(zp->zp_type) && zp->zp_level < 32 && zp->zp_copies > 0 && zp->zp_copies <= spa_max_replication(spa)); zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); zio->io_ready = ready; zio->io_children_ready = children_ready; zio->io_physdone = physdone; zio->io_prop = *zp; /* * Data can be NULL if we are going to call zio_write_override() to * provide the already-allocated BP. But we may need the data to * verify a dedup hit (if requested). In this case, don't try to * dedup (just take the already-allocated BP verbatim). */ if (data == NULL && zio->io_prop.zp_dedup_verify) { zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; } return (zio); } zio_t * zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, uint64_t size, zio_done_func_t *done, void *private, zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) { zio_t *zio; zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); return (zio); } void zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) { ASSERT(zio->io_type == ZIO_TYPE_WRITE); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(zio->io_stage == ZIO_STAGE_OPEN); ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); /* * We must reset the io_prop to match the values that existed * when the bp was first written by dmu_sync() keeping in mind * that nopwrite and dedup are mutually exclusive. */ zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; zio->io_prop.zp_nopwrite = nopwrite; zio->io_prop.zp_copies = copies; zio->io_bp_override = bp; } void zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) { zfs_blkptr_verify(spa, bp); /* * The check for EMBEDDED is a performance optimization. We * process the free here (by ignoring it) rather than * putting it on the list and then processing it in zio_free_sync(). */ if (BP_IS_EMBEDDED(bp)) return; metaslab_check_free(spa, bp); /* * Frees that are for the currently-syncing txg, are not going to be * deferred, and which will not need to do a read (i.e. not GANG or * DEDUP), can be processed immediately. Otherwise, put them on the * in-memory list for later processing. */ if (zfs_trim_enabled || BP_IS_GANG(bp) || BP_GET_DEDUP(bp) || txg != spa->spa_syncing_txg || spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) { bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); } else { VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, BP_GET_PSIZE(bp), 0))); } } zio_t * zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, uint64_t size, enum zio_flag flags) { zio_t *zio; enum zio_stage stage = ZIO_FREE_PIPELINE; ASSERT(!BP_IS_HOLE(bp)); ASSERT(spa_syncing_txg(spa) == txg); ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free); if (BP_IS_EMBEDDED(bp)) return (zio_null(pio, spa, NULL, NULL, NULL, 0)); metaslab_check_free(spa, bp); arc_freed(spa, bp); if (zfs_trim_enabled) stage |= ZIO_STAGE_ISSUE_ASYNC | ZIO_STAGE_VDEV_IO_START | ZIO_STAGE_VDEV_IO_ASSESS; /* * GANG and DEDUP blocks can induce a read (for the gang block header, * or the DDT), so issue them asynchronously so that this thread is * not tied up. */ else if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) stage |= ZIO_STAGE_ISSUE_ASYNC; flags |= ZIO_FLAG_DONT_QUEUE; zio = zio_create(pio, spa, txg, bp, NULL, size, size, NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage); return (zio); } zio_t * zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, zio_done_func_t *done, void *private, enum zio_flag flags) { zio_t *zio; zfs_blkptr_verify(spa, bp); if (BP_IS_EMBEDDED(bp)) return (zio_null(pio, spa, NULL, NULL, NULL, 0)); /* * A claim is an allocation of a specific block. Claims are needed * to support immediate writes in the intent log. The issue is that * immediate writes contain committed data, but in a txg that was * *not* committed. Upon opening the pool after an unclean shutdown, * the intent log claims all blocks that contain immediate write data * so that the SPA knows they're in use. * * All claims *must* be resolved in the first txg -- before the SPA * starts allocating blocks -- so that nothing is allocated twice. * If txg == 0 we just verify that the block is claimable. */ ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); ASSERT(txg == spa_first_txg(spa) || txg == 0); ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */ zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); ASSERT0(zio->io_queued_timestamp); return (zio); } zio_t * zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, uint64_t offset, uint64_t size, zio_done_func_t *done, void *private, zio_priority_t priority, enum zio_flag flags) { zio_t *zio; int c; if (vd->vdev_children == 0) { zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); zio->io_cmd = cmd; } else { zio = zio_null(pio, spa, NULL, NULL, NULL, flags); for (c = 0; c < vd->vdev_children; c++) zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, offset, size, done, private, priority, flags)); } return (zio); } zio_t * zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, abd_t *data, int checksum, zio_done_func_t *done, void *private, zio_priority_t priority, enum zio_flag flags, boolean_t labels) { zio_t *zio; ASSERT(vd->vdev_children == 0); ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); ASSERT3U(offset + size, <=, vd->vdev_psize); zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); zio->io_prop.zp_checksum = checksum; return (zio); } zio_t * zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, abd_t *data, int checksum, zio_done_func_t *done, void *private, zio_priority_t priority, enum zio_flag flags, boolean_t labels) { zio_t *zio; ASSERT(vd->vdev_children == 0); ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); ASSERT3U(offset + size, <=, vd->vdev_psize); zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); zio->io_prop.zp_checksum = checksum; if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { /* * zec checksums are necessarily destructive -- they modify * the end of the write buffer to hold the verifier/checksum. * Therefore, we must make a local copy in case the data is * being written to multiple places in parallel. */ abd_t *wbuf = abd_alloc_sametype(data, size); abd_copy(wbuf, data, size); zio_push_transform(zio, wbuf, size, size, NULL); } return (zio); } /* * Create a child I/O to do some work for us. */ zio_t * zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, int type, zio_priority_t priority, enum zio_flag flags, zio_done_func_t *done, void *private) { enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; zio_t *zio; /* * vdev child I/Os do not propagate their error to the parent. * Therefore, for correct operation the caller *must* check for * and handle the error in the child i/o's done callback. * The only exceptions are i/os that we don't care about * (OPTIONAL or REPAIR). */ ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || done != NULL); /* * In the common case, where the parent zio was to a normal vdev, * the child zio must be to a child vdev of that vdev. Otherwise, * the child zio must be to a top-level vdev. */ if (pio->io_vd != NULL && pio->io_vd->vdev_ops != &vdev_indirect_ops) { ASSERT3P(vd->vdev_parent, ==, pio->io_vd); } else { ASSERT3P(vd, ==, vd->vdev_top); } if (type == ZIO_TYPE_READ && bp != NULL) { /* * If we have the bp, then the child should perform the * checksum and the parent need not. This pushes error * detection as close to the leaves as possible and * eliminates redundant checksums in the interior nodes. */ pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; } /* Not all IO types require vdev io done stage e.g. free */ if (!(pio->io_pipeline & ZIO_STAGE_VDEV_IO_DONE)) pipeline &= ~ZIO_STAGE_VDEV_IO_DONE; if (vd->vdev_ops->vdev_op_leaf) { ASSERT0(vd->vdev_children); offset += VDEV_LABEL_START_SIZE; } flags |= ZIO_VDEV_CHILD_FLAGS(pio); /* * If we've decided to do a repair, the write is not speculative -- * even if the original read was. */ if (flags & ZIO_FLAG_IO_REPAIR) flags &= ~ZIO_FLAG_SPECULATIVE; /* * If we're creating a child I/O that is not associated with a * top-level vdev, then the child zio is not an allocating I/O. * If this is a retried I/O then we ignore it since we will * have already processed the original allocating I/O. */ if (flags & ZIO_FLAG_IO_ALLOCATING && (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { metaslab_class_t *mc = spa_normal_class(pio->io_spa); ASSERT(mc->mc_alloc_throttle_enabled); ASSERT(type == ZIO_TYPE_WRITE); ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || pio->io_child_type == ZIO_CHILD_GANG); flags &= ~ZIO_FLAG_IO_ALLOCATING; } zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, done, private, type, priority, flags, vd, offset, &pio->io_bookmark, ZIO_STAGE_VDEV_IO_START >> 1, pipeline); ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); zio->io_physdone = pio->io_physdone; if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) zio->io_logical->io_phys_children++; return (zio); } zio_t * zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, int type, zio_priority_t priority, enum zio_flag flags, zio_done_func_t *done, void *private) { zio_t *zio; ASSERT(vd->vdev_ops->vdev_op_leaf); zio = zio_create(NULL, vd->vdev_spa, 0, NULL, data, size, size, done, private, type, priority, flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, vd, offset, NULL, ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); return (zio); } void zio_flush(zio_t *zio, vdev_t *vd) { zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 0, 0, NULL, NULL, ZIO_PRIORITY_NOW, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); } zio_t * zio_trim(zio_t *zio, spa_t *spa, vdev_t *vd, uint64_t offset, uint64_t size) { ASSERT(vd->vdev_ops->vdev_op_leaf); return (zio_create(zio, spa, 0, NULL, NULL, size, size, NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_TRIM, ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PHYS_PIPELINE)); } void zio_shrink(zio_t *zio, uint64_t size) { ASSERT3P(zio->io_executor, ==, NULL); ASSERT3P(zio->io_orig_size, ==, zio->io_size); ASSERT3U(size, <=, zio->io_size); /* * We don't shrink for raidz because of problems with the * reconstruction when reading back less than the block size. * Note, BP_IS_RAIDZ() assumes no compression. */ ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); if (!BP_IS_RAIDZ(zio->io_bp)) { /* we are not doing a raw write */ ASSERT3U(zio->io_size, ==, zio->io_lsize); zio->io_orig_size = zio->io_size = zio->io_lsize = size; } } /* * ========================================================================== * Prepare to read and write logical blocks * ========================================================================== */ static int zio_read_bp_init(zio_t *zio) { blkptr_t *bp = zio->io_bp; ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && zio->io_child_type == ZIO_CHILD_LOGICAL && !(zio->io_flags & ZIO_FLAG_RAW)) { uint64_t psize = BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), psize, psize, zio_decompress); } if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; int psize = BPE_GET_PSIZE(bp); void *data = abd_borrow_buf(zio->io_abd, psize); decode_embedded_bp_compressed(bp, data); abd_return_buf_copy(zio->io_abd, data, psize); } else { ASSERT(!BP_IS_EMBEDDED(bp)); ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); } if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) zio->io_flags |= ZIO_FLAG_DONT_CACHE; if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) zio->io_flags |= ZIO_FLAG_DONT_CACHE; if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) zio->io_pipeline = ZIO_DDT_READ_PIPELINE; return (ZIO_PIPELINE_CONTINUE); } static int zio_write_bp_init(zio_t *zio) { if (!IO_IS_ALLOCATING(zio)) return (ZIO_PIPELINE_CONTINUE); ASSERT(zio->io_child_type != ZIO_CHILD_DDT); if (zio->io_bp_override) { blkptr_t *bp = zio->io_bp; zio_prop_t *zp = &zio->io_prop; ASSERT(bp->blk_birth != zio->io_txg); ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); *bp = *zio->io_bp_override; zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; if (BP_IS_EMBEDDED(bp)) return (ZIO_PIPELINE_CONTINUE); /* * If we've been overridden and nopwrite is set then * set the flag accordingly to indicate that a nopwrite * has already occurred. */ if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { ASSERT(!zp->zp_dedup); ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); zio->io_flags |= ZIO_FLAG_NOPWRITE; return (ZIO_PIPELINE_CONTINUE); } ASSERT(!zp->zp_nopwrite); if (BP_IS_HOLE(bp) || !zp->zp_dedup) return (ZIO_PIPELINE_CONTINUE); ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) { BP_SET_DEDUP(bp, 1); zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; return (ZIO_PIPELINE_CONTINUE); } /* * We were unable to handle this as an override bp, treat * it as a regular write I/O. */ zio->io_bp_override = NULL; *bp = zio->io_bp_orig; zio->io_pipeline = zio->io_orig_pipeline; } return (ZIO_PIPELINE_CONTINUE); } static int zio_write_compress(zio_t *zio) { spa_t *spa = zio->io_spa; zio_prop_t *zp = &zio->io_prop; enum zio_compress compress = zp->zp_compress; blkptr_t *bp = zio->io_bp; uint64_t lsize = zio->io_lsize; uint64_t psize = zio->io_size; int pass = 1; EQUIV(lsize != psize, (zio->io_flags & ZIO_FLAG_RAW) != 0); /* * If our children haven't all reached the ready stage, * wait for them and then repeat this pipeline stage. */ if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { return (ZIO_PIPELINE_STOP); } if (!IO_IS_ALLOCATING(zio)) return (ZIO_PIPELINE_CONTINUE); if (zio->io_children_ready != NULL) { /* * Now that all our children are ready, run the callback * associated with this zio in case it wants to modify the * data to be written. */ ASSERT3U(zp->zp_level, >, 0); zio->io_children_ready(zio); } ASSERT(zio->io_child_type != ZIO_CHILD_DDT); ASSERT(zio->io_bp_override == NULL); if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { /* * We're rewriting an existing block, which means we're * working on behalf of spa_sync(). For spa_sync() to * converge, it must eventually be the case that we don't * have to allocate new blocks. But compression changes * the blocksize, which forces a reallocate, and makes * convergence take longer. Therefore, after the first * few passes, stop compressing to ensure convergence. */ pass = spa_sync_pass(spa); ASSERT(zio->io_txg == spa_syncing_txg(spa)); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(!BP_GET_DEDUP(bp)); if (pass >= zfs_sync_pass_dont_compress) compress = ZIO_COMPRESS_OFF; /* Make sure someone doesn't change their mind on overwrites */ ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), spa_max_replication(spa)) == BP_GET_NDVAS(bp)); } /* If it's a compressed write that is not raw, compress the buffer. */ if (compress != ZIO_COMPRESS_OFF && psize == lsize) { void *cbuf = zio_buf_alloc(lsize); psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize); if (psize == 0 || psize == lsize) { compress = ZIO_COMPRESS_OFF; zio_buf_free(cbuf, lsize); } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE && zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { encode_embedded_bp_compressed(bp, cbuf, compress, lsize, psize); BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); BP_SET_TYPE(bp, zio->io_prop.zp_type); BP_SET_LEVEL(bp, zio->io_prop.zp_level); zio_buf_free(cbuf, lsize); bp->blk_birth = zio->io_txg; zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; ASSERT(spa_feature_is_active(spa, SPA_FEATURE_EMBEDDED_DATA)); return (ZIO_PIPELINE_CONTINUE); } else { /* * Round up compressed size up to the ashift * of the smallest-ashift device, and zero the tail. * This ensures that the compressed size of the BP * (and thus compressratio property) are correct, * in that we charge for the padding used to fill out * the last sector. */ ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); size_t rounded = (size_t)P2ROUNDUP(psize, 1ULL << spa->spa_min_ashift); if (rounded >= lsize) { compress = ZIO_COMPRESS_OFF; zio_buf_free(cbuf, lsize); psize = lsize; } else { abd_t *cdata = abd_get_from_buf(cbuf, lsize); abd_take_ownership_of_buf(cdata, B_TRUE); abd_zero_off(cdata, psize, rounded - psize); psize = rounded; zio_push_transform(zio, cdata, psize, lsize, NULL); } } /* * We were unable to handle this as an override bp, treat * it as a regular write I/O. */ zio->io_bp_override = NULL; *bp = zio->io_bp_orig; zio->io_pipeline = zio->io_orig_pipeline; } else { ASSERT3U(psize, !=, 0); } /* * The final pass of spa_sync() must be all rewrites, but the first * few passes offer a trade-off: allocating blocks defers convergence, * but newly allocated blocks are sequential, so they can be written * to disk faster. Therefore, we allow the first few passes of * spa_sync() to allocate new blocks, but force rewrites after that. * There should only be a handful of blocks after pass 1 in any case. */ if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize && pass >= zfs_sync_pass_rewrite) { ASSERT(psize != 0); enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; zio->io_flags |= ZIO_FLAG_IO_REWRITE; } else { BP_ZERO(bp); zio->io_pipeline = ZIO_WRITE_PIPELINE; } if (psize == 0) { if (zio->io_bp_orig.blk_birth != 0 && spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { BP_SET_LSIZE(bp, lsize); BP_SET_TYPE(bp, zp->zp_type); BP_SET_LEVEL(bp, zp->zp_level); BP_SET_BIRTH(bp, zio->io_txg, 0); } zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; } else { ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); BP_SET_LSIZE(bp, lsize); BP_SET_TYPE(bp, zp->zp_type); BP_SET_LEVEL(bp, zp->zp_level); BP_SET_PSIZE(bp, psize); BP_SET_COMPRESS(bp, compress); BP_SET_CHECKSUM(bp, zp->zp_checksum); BP_SET_DEDUP(bp, zp->zp_dedup); BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); if (zp->zp_dedup) { ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; } if (zp->zp_nopwrite) { ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; } } return (ZIO_PIPELINE_CONTINUE); } static int zio_free_bp_init(zio_t *zio) { blkptr_t *bp = zio->io_bp; if (zio->io_child_type == ZIO_CHILD_LOGICAL) { if (BP_GET_DEDUP(bp)) zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; } ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); return (ZIO_PIPELINE_CONTINUE); } /* * ========================================================================== * Execute the I/O pipeline * ========================================================================== */ static void zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) { spa_t *spa = zio->io_spa; zio_type_t t = zio->io_type; int flags = (cutinline ? TQ_FRONT : 0); ASSERT(q == ZIO_TASKQ_ISSUE || q == ZIO_TASKQ_INTERRUPT); /* * If we're a config writer or a probe, the normal issue and * interrupt threads may all be blocked waiting for the config lock. * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. */ if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) t = ZIO_TYPE_NULL; /* * A similar issue exists for the L2ARC write thread until L2ARC 2.0. */ if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) t = ZIO_TYPE_NULL; /* * If this is a high priority I/O, then use the high priority taskq if * available. */ if (zio->io_priority == ZIO_PRIORITY_NOW && spa->spa_zio_taskq[t][q + 1].stqs_count != 0) q++; ASSERT3U(q, <, ZIO_TASKQ_TYPES); /* * NB: We are assuming that the zio can only be dispatched * to a single taskq at a time. It would be a grievous error * to dispatch the zio to another taskq at the same time. */ #if defined(illumos) || !defined(_KERNEL) ASSERT(zio->io_tqent.tqent_next == NULL); #else ASSERT(zio->io_tqent.tqent_task.ta_pending == 0); #endif spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, flags, &zio->io_tqent); } static boolean_t zio_taskq_member(zio_t *zio, zio_taskq_type_t q) { kthread_t *executor = zio->io_executor; spa_t *spa = zio->io_spa; for (zio_type_t t = 0; t < ZIO_TYPES; t++) { spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; uint_t i; for (i = 0; i < tqs->stqs_count; i++) { if (taskq_member(tqs->stqs_taskq[i], executor)) return (B_TRUE); } } return (B_FALSE); } static int zio_issue_async(zio_t *zio) { zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); return (ZIO_PIPELINE_STOP); } void zio_interrupt(zio_t *zio) { zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); } void zio_delay_interrupt(zio_t *zio) { /* * The timeout_generic() function isn't defined in userspace, so * rather than trying to implement the function, the zio delay * functionality has been disabled for userspace builds. */ #ifdef _KERNEL /* * If io_target_timestamp is zero, then no delay has been registered * for this IO, thus jump to the end of this function and "skip" the * delay; issuing it directly to the zio layer. */ if (zio->io_target_timestamp != 0) { hrtime_t now = gethrtime(); if (now >= zio->io_target_timestamp) { /* * This IO has already taken longer than the target * delay to complete, so we don't want to delay it * any longer; we "miss" the delay and issue it * directly to the zio layer. This is likely due to * the target latency being set to a value less than * the underlying hardware can satisfy (e.g. delay * set to 1ms, but the disks take 10ms to complete an * IO request). */ DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, hrtime_t, now); zio_interrupt(zio); } else { hrtime_t diff = zio->io_target_timestamp - now; DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, hrtime_t, now, hrtime_t, diff); (void) timeout_generic(CALLOUT_NORMAL, (void (*)(void *))zio_interrupt, zio, diff, 1, 0); } return; } #endif DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); zio_interrupt(zio); } /* * Execute the I/O pipeline until one of the following occurs: * * (1) the I/O completes * (2) the pipeline stalls waiting for dependent child I/Os * (3) the I/O issues, so we're waiting for an I/O completion interrupt * (4) the I/O is delegated by vdev-level caching or aggregation * (5) the I/O is deferred due to vdev-level queueing * (6) the I/O is handed off to another thread. * * In all cases, the pipeline stops whenever there's no CPU work; it never * burns a thread in cv_wait(). * * There's no locking on io_stage because there's no legitimate way * for multiple threads to be attempting to process the same I/O. */ static zio_pipe_stage_t *zio_pipeline[]; void zio_execute(zio_t *zio) { zio->io_executor = curthread; ASSERT3U(zio->io_queued_timestamp, >, 0); while (zio->io_stage < ZIO_STAGE_DONE) { enum zio_stage pipeline = zio->io_pipeline; enum zio_stage stage = zio->io_stage; int rv; ASSERT(!MUTEX_HELD(&zio->io_lock)); ASSERT(ISP2(stage)); ASSERT(zio->io_stall == NULL); do { stage <<= 1; } while ((stage & pipeline) == 0); ASSERT(stage <= ZIO_STAGE_DONE); /* * If we are in interrupt context and this pipeline stage * will grab a config lock that is held across I/O, * or may wait for an I/O that needs an interrupt thread * to complete, issue async to avoid deadlock. * * For VDEV_IO_START, we cut in line so that the io will * be sent to disk promptly. */ if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? zio_requeue_io_start_cut_in_line : B_FALSE; zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); return; } zio->io_stage = stage; zio->io_pipeline_trace |= zio->io_stage; rv = zio_pipeline[highbit64(stage) - 1](zio); if (rv == ZIO_PIPELINE_STOP) return; ASSERT(rv == ZIO_PIPELINE_CONTINUE); } } /* * ========================================================================== * Initiate I/O, either sync or async * ========================================================================== */ int zio_wait(zio_t *zio) { int error; ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN); ASSERT3P(zio->io_executor, ==, NULL); zio->io_waiter = curthread; ASSERT0(zio->io_queued_timestamp); zio->io_queued_timestamp = gethrtime(); zio_execute(zio); mutex_enter(&zio->io_lock); while (zio->io_executor != NULL) cv_wait(&zio->io_cv, &zio->io_lock); mutex_exit(&zio->io_lock); error = zio->io_error; zio_destroy(zio); return (error); } void zio_nowait(zio_t *zio) { ASSERT3P(zio->io_executor, ==, NULL); if (zio->io_child_type == ZIO_CHILD_LOGICAL && zio_unique_parent(zio) == NULL) { /* * This is a logical async I/O with no parent to wait for it. * We add it to the spa_async_root_zio "Godfather" I/O which * will ensure they complete prior to unloading the pool. */ spa_t *spa = zio->io_spa; zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio); } ASSERT0(zio->io_queued_timestamp); zio->io_queued_timestamp = gethrtime(); zio_execute(zio); } /* * ========================================================================== * Reexecute, cancel, or suspend/resume failed I/O * ========================================================================== */ static void zio_reexecute(zio_t *pio) { zio_t *cio, *cio_next; ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); ASSERT(pio->io_gang_leader == NULL); ASSERT(pio->io_gang_tree == NULL); pio->io_flags = pio->io_orig_flags; pio->io_stage = pio->io_orig_stage; pio->io_pipeline = pio->io_orig_pipeline; pio->io_reexecute = 0; pio->io_flags |= ZIO_FLAG_REEXECUTED; pio->io_pipeline_trace = 0; pio->io_error = 0; for (int w = 0; w < ZIO_WAIT_TYPES; w++) pio->io_state[w] = 0; for (int c = 0; c < ZIO_CHILD_TYPES; c++) pio->io_child_error[c] = 0; if (IO_IS_ALLOCATING(pio)) BP_ZERO(pio->io_bp); /* * As we reexecute pio's children, new children could be created. * New children go to the head of pio's io_child_list, however, * so we will (correctly) not reexecute them. The key is that * the remainder of pio's io_child_list, from 'cio_next' onward, * cannot be affected by any side effects of reexecuting 'cio'. */ zio_link_t *zl = NULL; for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { cio_next = zio_walk_children(pio, &zl); mutex_enter(&pio->io_lock); for (int w = 0; w < ZIO_WAIT_TYPES; w++) pio->io_children[cio->io_child_type][w]++; mutex_exit(&pio->io_lock); zio_reexecute(cio); } /* * Now that all children have been reexecuted, execute the parent. * We don't reexecute "The Godfather" I/O here as it's the * responsibility of the caller to wait on it. */ if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { pio->io_queued_timestamp = gethrtime(); zio_execute(pio); } } void zio_suspend(spa_t *spa, zio_t *zio) { if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) fm_panic("Pool '%s' has encountered an uncorrectable I/O " "failure and the failure mode property for this pool " "is set to panic.", spa_name(spa)); zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0); mutex_enter(&spa->spa_suspend_lock); if (spa->spa_suspend_zio_root == NULL) spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); spa->spa_suspended = B_TRUE; if (zio != NULL) { ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); ASSERT(zio != spa->spa_suspend_zio_root); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(zio_unique_parent(zio) == NULL); ASSERT(zio->io_stage == ZIO_STAGE_DONE); zio_add_child(spa->spa_suspend_zio_root, zio); } mutex_exit(&spa->spa_suspend_lock); } int zio_resume(spa_t *spa) { zio_t *pio; /* * Reexecute all previously suspended i/o. */ mutex_enter(&spa->spa_suspend_lock); spa->spa_suspended = B_FALSE; cv_broadcast(&spa->spa_suspend_cv); pio = spa->spa_suspend_zio_root; spa->spa_suspend_zio_root = NULL; mutex_exit(&spa->spa_suspend_lock); if (pio == NULL) return (0); zio_reexecute(pio); return (zio_wait(pio)); } void zio_resume_wait(spa_t *spa) { mutex_enter(&spa->spa_suspend_lock); while (spa_suspended(spa)) cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); mutex_exit(&spa->spa_suspend_lock); } /* * ========================================================================== * Gang blocks. * * A gang block is a collection of small blocks that looks to the DMU * like one large block. When zio_dva_allocate() cannot find a block * of the requested size, due to either severe fragmentation or the pool * being nearly full, it calls zio_write_gang_block() to construct the * block from smaller fragments. * * A gang block consists of a gang header (zio_gbh_phys_t) and up to * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like * an indirect block: it's an array of block pointers. It consumes * only one sector and hence is allocatable regardless of fragmentation. * The gang header's bps point to its gang members, which hold the data. * * Gang blocks are self-checksumming, using the bp's * as the verifier to ensure uniqueness of the SHA256 checksum. * Critically, the gang block bp's blk_cksum is the checksum of the data, * not the gang header. This ensures that data block signatures (needed for * deduplication) are independent of how the block is physically stored. * * Gang blocks can be nested: a gang member may itself be a gang block. * Thus every gang block is a tree in which root and all interior nodes are * gang headers, and the leaves are normal blocks that contain user data. * The root of the gang tree is called the gang leader. * * To perform any operation (read, rewrite, free, claim) on a gang block, * zio_gang_assemble() first assembles the gang tree (minus data leaves) * in the io_gang_tree field of the original logical i/o by recursively * reading the gang leader and all gang headers below it. This yields * an in-core tree containing the contents of every gang header and the * bps for every constituent of the gang block. * * With the gang tree now assembled, zio_gang_issue() just walks the gang tree * and invokes a callback on each bp. To free a gang block, zio_gang_issue() * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). * zio_read_gang() is a wrapper around zio_read() that omits reading gang * headers, since we already have those in io_gang_tree. zio_rewrite_gang() * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() * of the gang header plus zio_checksum_compute() of the data to update the * gang header's blk_cksum as described above. * * The two-phase assemble/issue model solves the problem of partial failure -- * what if you'd freed part of a gang block but then couldn't read the * gang header for another part? Assembling the entire gang tree first * ensures that all the necessary gang header I/O has succeeded before * starting the actual work of free, claim, or write. Once the gang tree * is assembled, free and claim are in-memory operations that cannot fail. * * In the event that a gang write fails, zio_dva_unallocate() walks the * gang tree to immediately free (i.e. insert back into the space map) * everything we've allocated. This ensures that we don't get ENOSPC * errors during repeated suspend/resume cycles due to a flaky device. * * Gang rewrites only happen during sync-to-convergence. If we can't assemble * the gang tree, we won't modify the block, so we can safely defer the free * (knowing that the block is still intact). If we *can* assemble the gang * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free * each constituent bp and we can allocate a new block on the next sync pass. * * In all cases, the gang tree allows complete recovery from partial failure. * ========================================================================== */ static void zio_gang_issue_func_done(zio_t *zio) { abd_put(zio->io_abd); } static zio_t * zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, uint64_t offset) { if (gn != NULL) return (pio); return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), BP_GET_PSIZE(bp), zio_gang_issue_func_done, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark)); } static zio_t * zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, uint64_t offset) { zio_t *zio; if (gn != NULL) { abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); /* * As we rewrite each gang header, the pipeline will compute * a new gang block header checksum for it; but no one will * compute a new data checksum, so we do that here. The one * exception is the gang leader: the pipeline already computed * its data checksum because that stage precedes gang assembly. * (Presently, nothing actually uses interior data checksums; * this is just good hygiene.) */ if (gn != pio->io_gang_leader->io_gang_tree) { abd_t *buf = abd_get_offset(data, offset); zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), buf, BP_GET_PSIZE(bp)); abd_put(buf); } /* * If we are here to damage data for testing purposes, * leave the GBH alone so that we can detect the damage. */ if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; } else { zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, abd_get_offset(data, offset), BP_GET_PSIZE(bp), zio_gang_issue_func_done, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); } return (zio); } /* ARGSUSED */ static zio_t * zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, uint64_t offset) { return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp), ZIO_GANG_CHILD_FLAGS(pio))); } /* ARGSUSED */ static zio_t * zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, uint64_t offset) { return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); } static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { NULL, zio_read_gang, zio_rewrite_gang, zio_free_gang, zio_claim_gang, NULL }; static void zio_gang_tree_assemble_done(zio_t *zio); static zio_gang_node_t * zio_gang_node_alloc(zio_gang_node_t **gnpp) { zio_gang_node_t *gn; ASSERT(*gnpp == NULL); gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); *gnpp = gn; return (gn); } static void zio_gang_node_free(zio_gang_node_t **gnpp) { zio_gang_node_t *gn = *gnpp; for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) ASSERT(gn->gn_child[g] == NULL); zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); kmem_free(gn, sizeof (*gn)); *gnpp = NULL; } static void zio_gang_tree_free(zio_gang_node_t **gnpp) { zio_gang_node_t *gn = *gnpp; if (gn == NULL) return; for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) zio_gang_tree_free(&gn->gn_child[g]); zio_gang_node_free(gnpp); } static void zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) { zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); ASSERT(gio->io_gang_leader == gio); ASSERT(BP_IS_GANG(bp)); zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn, gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); } static void zio_gang_tree_assemble_done(zio_t *zio) { zio_t *gio = zio->io_gang_leader; zio_gang_node_t *gn = zio->io_private; blkptr_t *bp = zio->io_bp; ASSERT(gio == zio_unique_parent(zio)); ASSERT(zio->io_child_count == 0); if (zio->io_error) return; /* this ABD was created from a linear buf in zio_gang_tree_assemble */ if (BP_SHOULD_BYTESWAP(bp)) byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); abd_put(zio->io_abd); for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; if (!BP_IS_GANG(gbp)) continue; zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); } } static void zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, uint64_t offset) { zio_t *gio = pio->io_gang_leader; zio_t *zio; ASSERT(BP_IS_GANG(bp) == !!gn); ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); /* * If you're a gang header, your data is in gn->gn_gbh. * If you're a gang member, your data is in 'data' and gn == NULL. */ zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); if (gn != NULL) { ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; if (BP_IS_HOLE(gbp)) continue; zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, offset); offset += BP_GET_PSIZE(gbp); } } if (gn == gio->io_gang_tree && gio->io_abd != NULL) ASSERT3U(gio->io_size, ==, offset); if (zio != pio) zio_nowait(zio); } static int zio_gang_assemble(zio_t *zio) { blkptr_t *bp = zio->io_bp; ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); ASSERT(zio->io_child_type > ZIO_CHILD_GANG); zio->io_gang_leader = zio; zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); return (ZIO_PIPELINE_CONTINUE); } static int zio_gang_issue(zio_t *zio) { blkptr_t *bp = zio->io_bp; if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { return (ZIO_PIPELINE_STOP); } ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); ASSERT(zio->io_child_type > ZIO_CHILD_GANG); if (zio->io_child_error[ZIO_CHILD_GANG] == 0) zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 0); else zio_gang_tree_free(&zio->io_gang_tree); zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; return (ZIO_PIPELINE_CONTINUE); } static void zio_write_gang_member_ready(zio_t *zio) { zio_t *pio = zio_unique_parent(zio); zio_t *gio = zio->io_gang_leader; dva_t *cdva = zio->io_bp->blk_dva; dva_t *pdva = pio->io_bp->blk_dva; uint64_t asize; if (BP_IS_HOLE(zio->io_bp)) return; ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); ASSERT(zio->io_child_type == ZIO_CHILD_GANG); ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); mutex_enter(&pio->io_lock); for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { ASSERT(DVA_GET_GANG(&pdva[d])); asize = DVA_GET_ASIZE(&pdva[d]); asize += DVA_GET_ASIZE(&cdva[d]); DVA_SET_ASIZE(&pdva[d], asize); } mutex_exit(&pio->io_lock); } static void zio_write_gang_done(zio_t *zio) { abd_put(zio->io_abd); } static int zio_write_gang_block(zio_t *pio) { spa_t *spa = pio->io_spa; metaslab_class_t *mc = spa_normal_class(spa); blkptr_t *bp = pio->io_bp; zio_t *gio = pio->io_gang_leader; zio_t *zio; zio_gang_node_t *gn, **gnpp; zio_gbh_phys_t *gbh; abd_t *gbh_abd; uint64_t txg = pio->io_txg; uint64_t resid = pio->io_size; uint64_t lsize; int copies = gio->io_prop.zp_copies; int gbh_copies = MIN(copies + 1, spa_max_replication(spa)); zio_prop_t zp; int error; int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA)); flags |= METASLAB_ASYNC_ALLOC; VERIFY(refcount_held(&mc->mc_alloc_slots, pio)); /* * The logical zio has already placed a reservation for * 'copies' allocation slots but gang blocks may require * additional copies. These additional copies * (i.e. gbh_copies - copies) are guaranteed to succeed * since metaslab_class_throttle_reserve() always allows * additional reservations for gang blocks. */ VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, pio, flags)); } error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, &pio->io_alloc_list, pio); if (error) { if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA)); /* * If we failed to allocate the gang block header then * we remove any additional allocation reservations that * we placed here. The original reservation will * be removed when the logical I/O goes to the ready * stage. */ metaslab_class_throttle_unreserve(mc, gbh_copies - copies, pio); } pio->io_error = error; return (ZIO_PIPELINE_CONTINUE); } if (pio == gio) { gnpp = &gio->io_gang_tree; } else { gnpp = pio->io_private; ASSERT(pio->io_ready == zio_write_gang_member_ready); } gn = zio_gang_node_alloc(gnpp); gbh = gn->gn_gbh; bzero(gbh, SPA_GANGBLOCKSIZE); gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); /* * Create the gang header. */ zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, zio_write_gang_done, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); /* * Create and nowait the gang children. */ for (int g = 0; resid != 0; resid -= lsize, g++) { lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), SPA_MINBLOCKSIZE); ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); zp.zp_checksum = gio->io_prop.zp_checksum; zp.zp_compress = ZIO_COMPRESS_OFF; zp.zp_type = DMU_OT_NONE; zp.zp_level = 0; zp.zp_copies = gio->io_prop.zp_copies; zp.zp_dedup = B_FALSE; zp.zp_dedup_verify = B_FALSE; zp.zp_nopwrite = B_FALSE; zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], abd_get_offset(pio->io_abd, pio->io_size - resid), lsize, lsize, &zp, zio_write_gang_member_ready, NULL, NULL, zio_write_gang_done, &gn->gn_child[g], pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA)); /* * Gang children won't throttle but we should * account for their work, so reserve an allocation * slot for them here. */ VERIFY(metaslab_class_throttle_reserve(mc, zp.zp_copies, cio, flags)); } zio_nowait(cio); } /* * Set pio's pipeline to just wait for zio to finish. */ pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; zio_nowait(zio); return (ZIO_PIPELINE_CONTINUE); } /* * The zio_nop_write stage in the pipeline determines if allocating a * new bp is necessary. The nopwrite feature can handle writes in * either syncing or open context (i.e. zil writes) and as a result is * mutually exclusive with dedup. * * By leveraging a cryptographically secure checksum, such as SHA256, we * can compare the checksums of the new data and the old to determine if * allocating a new block is required. Note that our requirements for * cryptographic strength are fairly weak: there can't be any accidental * hash collisions, but we don't need to be secure against intentional * (malicious) collisions. To trigger a nopwrite, you have to be able * to write the file to begin with, and triggering an incorrect (hash * collision) nopwrite is no worse than simply writing to the file. * That said, there are no known attacks against the checksum algorithms * used for nopwrite, assuming that the salt and the checksums * themselves remain secret. */ static int zio_nop_write(zio_t *zio) { blkptr_t *bp = zio->io_bp; blkptr_t *bp_orig = &zio->io_bp_orig; zio_prop_t *zp = &zio->io_prop; ASSERT(BP_GET_LEVEL(bp) == 0); ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); ASSERT(zp->zp_nopwrite); ASSERT(!zp->zp_dedup); ASSERT(zio->io_bp_override == NULL); ASSERT(IO_IS_ALLOCATING(zio)); /* * Check to see if the original bp and the new bp have matching * characteristics (i.e. same checksum, compression algorithms, etc). * If they don't then just continue with the pipeline which will * allocate a new bp. */ if (BP_IS_HOLE(bp_orig) || !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & ZCHECKSUM_FLAG_NOPWRITE) || BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || zp->zp_copies != BP_GET_NDVAS(bp_orig)) return (ZIO_PIPELINE_CONTINUE); /* * If the checksums match then reset the pipeline so that we * avoid allocating a new bp and issuing any I/O. */ if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & ZCHECKSUM_FLAG_NOPWRITE); ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, sizeof (uint64_t)) == 0); *bp = *bp_orig; zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; zio->io_flags |= ZIO_FLAG_NOPWRITE; } return (ZIO_PIPELINE_CONTINUE); } /* * ========================================================================== * Dedup * ========================================================================== */ static void zio_ddt_child_read_done(zio_t *zio) { blkptr_t *bp = zio->io_bp; ddt_entry_t *dde = zio->io_private; ddt_phys_t *ddp; zio_t *pio = zio_unique_parent(zio); mutex_enter(&pio->io_lock); ddp = ddt_phys_select(dde, bp); if (zio->io_error == 0) ddt_phys_clear(ddp); /* this ddp doesn't need repair */ if (zio->io_error == 0 && dde->dde_repair_abd == NULL) dde->dde_repair_abd = zio->io_abd; else abd_free(zio->io_abd); mutex_exit(&pio->io_lock); } static int zio_ddt_read_start(zio_t *zio) { blkptr_t *bp = zio->io_bp; ASSERT(BP_GET_DEDUP(bp)); ASSERT(BP_GET_PSIZE(bp) == zio->io_size); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); if (zio->io_child_error[ZIO_CHILD_DDT]) { ddt_t *ddt = ddt_select(zio->io_spa, bp); ddt_entry_t *dde = ddt_repair_start(ddt, bp); ddt_phys_t *ddp = dde->dde_phys; ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); blkptr_t blk; ASSERT(zio->io_vsd == NULL); zio->io_vsd = dde; if (ddp_self == NULL) return (ZIO_PIPELINE_CONTINUE); for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) continue; ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, &blk); zio_nowait(zio_read(zio, zio->io_spa, &blk, abd_alloc_for_io(zio->io_size, B_TRUE), zio->io_size, zio_ddt_child_read_done, dde, zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); } return (ZIO_PIPELINE_CONTINUE); } zio_nowait(zio_read(zio, zio->io_spa, bp, zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); return (ZIO_PIPELINE_CONTINUE); } static int zio_ddt_read_done(zio_t *zio) { blkptr_t *bp = zio->io_bp; if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { return (ZIO_PIPELINE_STOP); } ASSERT(BP_GET_DEDUP(bp)); ASSERT(BP_GET_PSIZE(bp) == zio->io_size); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); if (zio->io_child_error[ZIO_CHILD_DDT]) { ddt_t *ddt = ddt_select(zio->io_spa, bp); ddt_entry_t *dde = zio->io_vsd; if (ddt == NULL) { ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); return (ZIO_PIPELINE_CONTINUE); } if (dde == NULL) { zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); return (ZIO_PIPELINE_STOP); } if (dde->dde_repair_abd != NULL) { abd_copy(zio->io_abd, dde->dde_repair_abd, zio->io_size); zio->io_child_error[ZIO_CHILD_DDT] = 0; } ddt_repair_done(ddt, dde); zio->io_vsd = NULL; } ASSERT(zio->io_vsd == NULL); return (ZIO_PIPELINE_CONTINUE); } static boolean_t zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) { spa_t *spa = zio->io_spa; boolean_t do_raw = (zio->io_flags & ZIO_FLAG_RAW); /* We should never get a raw, override zio */ ASSERT(!(zio->io_bp_override && do_raw)); /* * Note: we compare the original data, not the transformed data, * because when zio->io_bp is an override bp, we will not have * pushed the I/O transforms. That's an important optimization * because otherwise we'd compress/encrypt all dmu_sync() data twice. */ for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { zio_t *lio = dde->dde_lead_zio[p]; if (lio != NULL) { return (lio->io_orig_size != zio->io_orig_size || abd_cmp(zio->io_orig_abd, lio->io_orig_abd, zio->io_orig_size) != 0); } } for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { ddt_phys_t *ddp = &dde->dde_phys[p]; if (ddp->ddp_phys_birth != 0) { arc_buf_t *abuf = NULL; arc_flags_t aflags = ARC_FLAG_WAIT; int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; blkptr_t blk = *zio->io_bp; int error; ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); ddt_exit(ddt); /* * Intuitively, it would make more sense to compare * io_abd than io_orig_abd in the raw case since you * don't want to look at any transformations that have * happened to the data. However, for raw I/Os the * data will actually be the same in io_abd and * io_orig_abd, so all we have to do is issue this as * a raw ARC read. */ if (do_raw) { zio_flags |= ZIO_FLAG_RAW; ASSERT3U(zio->io_size, ==, zio->io_orig_size); ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd, zio->io_size)); ASSERT3P(zio->io_transform_stack, ==, NULL); } error = arc_read(NULL, spa, &blk, arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zio->io_bookmark); if (error == 0) { if (arc_buf_size(abuf) != zio->io_orig_size || abd_cmp_buf(zio->io_orig_abd, abuf->b_data, zio->io_orig_size) != 0) error = SET_ERROR(EEXIST); arc_buf_destroy(abuf, &abuf); } ddt_enter(ddt); return (error != 0); } } return (B_FALSE); } static void zio_ddt_child_write_ready(zio_t *zio) { int p = zio->io_prop.zp_copies; ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); ddt_entry_t *dde = zio->io_private; ddt_phys_t *ddp = &dde->dde_phys[p]; zio_t *pio; if (zio->io_error) return; ddt_enter(ddt); ASSERT(dde->dde_lead_zio[p] == zio); ddt_phys_fill(ddp, zio->io_bp); zio_link_t *zl = NULL; while ((pio = zio_walk_parents(zio, &zl)) != NULL) ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); ddt_exit(ddt); } static void zio_ddt_child_write_done(zio_t *zio) { int p = zio->io_prop.zp_copies; ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); ddt_entry_t *dde = zio->io_private; ddt_phys_t *ddp = &dde->dde_phys[p]; ddt_enter(ddt); ASSERT(ddp->ddp_refcnt == 0); ASSERT(dde->dde_lead_zio[p] == zio); dde->dde_lead_zio[p] = NULL; if (zio->io_error == 0) { zio_link_t *zl = NULL; while (zio_walk_parents(zio, &zl) != NULL) ddt_phys_addref(ddp); } else { ddt_phys_clear(ddp); } ddt_exit(ddt); } static void zio_ddt_ditto_write_done(zio_t *zio) { int p = DDT_PHYS_DITTO; zio_prop_t *zp = &zio->io_prop; blkptr_t *bp = zio->io_bp; ddt_t *ddt = ddt_select(zio->io_spa, bp); ddt_entry_t *dde = zio->io_private; ddt_phys_t *ddp = &dde->dde_phys[p]; ddt_key_t *ddk = &dde->dde_key; ddt_enter(ddt); ASSERT(ddp->ddp_refcnt == 0); ASSERT(dde->dde_lead_zio[p] == zio); dde->dde_lead_zio[p] = NULL; if (zio->io_error == 0) { ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum)); ASSERT(zp->zp_copies < SPA_DVAS_PER_BP); ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp)); if (ddp->ddp_phys_birth != 0) ddt_phys_free(ddt, ddk, ddp, zio->io_txg); ddt_phys_fill(ddp, bp); } ddt_exit(ddt); } static int zio_ddt_write(zio_t *zio) { spa_t *spa = zio->io_spa; blkptr_t *bp = zio->io_bp; uint64_t txg = zio->io_txg; zio_prop_t *zp = &zio->io_prop; int p = zp->zp_copies; int ditto_copies; zio_t *cio = NULL; zio_t *dio = NULL; ddt_t *ddt = ddt_select(spa, bp); ddt_entry_t *dde; ddt_phys_t *ddp; ASSERT(BP_GET_DEDUP(bp)); ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); ddt_enter(ddt); dde = ddt_lookup(ddt, bp, B_TRUE); ddp = &dde->dde_phys[p]; if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { /* * If we're using a weak checksum, upgrade to a strong checksum * and try again. If we're already using a strong checksum, * we can't resolve it, so just convert to an ordinary write. * (And automatically e-mail a paper to Nature?) */ if (!(zio_checksum_table[zp->zp_checksum].ci_flags & ZCHECKSUM_FLAG_DEDUP)) { zp->zp_checksum = spa_dedup_checksum(spa); zio_pop_transforms(zio); zio->io_stage = ZIO_STAGE_OPEN; BP_ZERO(bp); } else { zp->zp_dedup = B_FALSE; BP_SET_DEDUP(bp, B_FALSE); } ASSERT(!BP_GET_DEDUP(bp)); zio->io_pipeline = ZIO_WRITE_PIPELINE; ddt_exit(ddt); return (ZIO_PIPELINE_CONTINUE); } ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp); ASSERT(ditto_copies < SPA_DVAS_PER_BP); if (ditto_copies > ddt_ditto_copies_present(dde) && dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) { zio_prop_t czp = *zp; czp.zp_copies = ditto_copies; /* * If we arrived here with an override bp, we won't have run * the transform stack, so we won't have the data we need to * generate a child i/o. So, toss the override bp and restart. * This is safe, because using the override bp is just an * optimization; and it's rare, so the cost doesn't matter. */ if (zio->io_bp_override) { zio_pop_transforms(zio); zio->io_stage = ZIO_STAGE_OPEN; zio->io_pipeline = ZIO_WRITE_PIPELINE; zio->io_bp_override = NULL; BP_ZERO(bp); ddt_exit(ddt); return (ZIO_PIPELINE_CONTINUE); } dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL, NULL, zio_ddt_ditto_write_done, dde, zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL); dde->dde_lead_zio[DDT_PHYS_DITTO] = dio; } if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { if (ddp->ddp_phys_birth != 0) ddt_bp_fill(ddp, bp, txg); if (dde->dde_lead_zio[p] != NULL) zio_add_child(zio, dde->dde_lead_zio[p]); else ddt_phys_addref(ddp); } else if (zio->io_bp_override) { ASSERT(bp->blk_birth == txg); ASSERT(BP_EQUAL(bp, zio->io_bp_override)); ddt_phys_fill(ddp, bp); ddt_phys_addref(ddp); } else { cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, zio->io_orig_size, zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL, NULL, zio_ddt_child_write_done, dde, zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); dde->dde_lead_zio[p] = cio; } ddt_exit(ddt); if (cio) zio_nowait(cio); if (dio) zio_nowait(dio); return (ZIO_PIPELINE_CONTINUE); } ddt_entry_t *freedde; /* for debugging */ static int zio_ddt_free(zio_t *zio) { spa_t *spa = zio->io_spa; blkptr_t *bp = zio->io_bp; ddt_t *ddt = ddt_select(spa, bp); ddt_entry_t *dde; ddt_phys_t *ddp; ASSERT(BP_GET_DEDUP(bp)); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ddt_enter(ddt); freedde = dde = ddt_lookup(ddt, bp, B_TRUE); ddp = ddt_phys_select(dde, bp); ddt_phys_decref(ddp); ddt_exit(ddt); return (ZIO_PIPELINE_CONTINUE); } /* * ========================================================================== * Allocate and free blocks * ========================================================================== */ static zio_t * zio_io_to_allocate(spa_t *spa) { zio_t *zio; ASSERT(MUTEX_HELD(&spa->spa_alloc_lock)); zio = avl_first(&spa->spa_alloc_tree); if (zio == NULL) return (NULL); ASSERT(IO_IS_ALLOCATING(zio)); /* * Try to place a reservation for this zio. If we're unable to * reserve then we throttle. */ if (!metaslab_class_throttle_reserve(spa_normal_class(spa), zio->io_prop.zp_copies, zio, 0)) { return (NULL); } avl_remove(&spa->spa_alloc_tree, zio); ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); return (zio); } static int zio_dva_throttle(zio_t *zio) { spa_t *spa = zio->io_spa; zio_t *nio; if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled || zio->io_child_type == ZIO_CHILD_GANG || zio->io_flags & ZIO_FLAG_NODATA) { return (ZIO_PIPELINE_CONTINUE); } ASSERT(zio->io_child_type > ZIO_CHILD_GANG); ASSERT3U(zio->io_queued_timestamp, >, 0); ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); mutex_enter(&spa->spa_alloc_lock); ASSERT(zio->io_type == ZIO_TYPE_WRITE); avl_add(&spa->spa_alloc_tree, zio); nio = zio_io_to_allocate(zio->io_spa); mutex_exit(&spa->spa_alloc_lock); if (nio == zio) return (ZIO_PIPELINE_CONTINUE); if (nio != NULL) { ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE); /* * We are passing control to a new zio so make sure that * it is processed by a different thread. We do this to * avoid stack overflows that can occur when parents are * throttled and children are making progress. We allow * it to go to the head of the taskq since it's already * been waiting. */ zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE); } return (ZIO_PIPELINE_STOP); } void zio_allocate_dispatch(spa_t *spa) { zio_t *zio; mutex_enter(&spa->spa_alloc_lock); zio = zio_io_to_allocate(spa); mutex_exit(&spa->spa_alloc_lock); if (zio == NULL) return; ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); ASSERT0(zio->io_error); zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); } static int zio_dva_allocate(zio_t *zio) { spa_t *spa = zio->io_spa; metaslab_class_t *mc = spa_normal_class(spa); blkptr_t *bp = zio->io_bp; int error; int flags = 0; if (zio->io_gang_leader == NULL) { ASSERT(zio->io_child_type > ZIO_CHILD_GANG); zio->io_gang_leader = zio; } ASSERT(BP_IS_HOLE(bp)); ASSERT0(BP_GET_NDVAS(bp)); ASSERT3U(zio->io_prop.zp_copies, >, 0); ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); if (zio->io_flags & ZIO_FLAG_NODATA) { flags |= METASLAB_DONT_THROTTLE; } if (zio->io_flags & ZIO_FLAG_GANG_CHILD) { flags |= METASLAB_GANG_CHILD; } if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) { flags |= METASLAB_ASYNC_ALLOC; } error = metaslab_alloc(spa, mc, zio->io_size, bp, zio->io_prop.zp_copies, zio->io_txg, NULL, flags, &zio->io_alloc_list, zio); if (error != 0) { spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, " "size %llu, error %d", spa_name(spa), zio, zio->io_size, error); if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) return (zio_write_gang_block(zio)); zio->io_error = error; } return (ZIO_PIPELINE_CONTINUE); } static int zio_dva_free(zio_t *zio) { metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); return (ZIO_PIPELINE_CONTINUE); } static int zio_dva_claim(zio_t *zio) { int error; error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); if (error) zio->io_error = error; return (ZIO_PIPELINE_CONTINUE); } /* * Undo an allocation. This is used by zio_done() when an I/O fails * and we want to give back the block we just allocated. * This handles both normal blocks and gang blocks. */ static void zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) { ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); ASSERT(zio->io_bp_override == NULL); if (!BP_IS_HOLE(bp)) metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); if (gn != NULL) { for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { zio_dva_unallocate(zio, gn->gn_child[g], &gn->gn_gbh->zg_blkptr[g]); } } } /* * Try to allocate an intent log block. Return 0 on success, errno on failure. */ int zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp, uint64_t size, boolean_t *slog) { int error = 1; zio_alloc_list_t io_alloc_list; ASSERT(txg > spa_syncing_txg(spa)); metaslab_trace_init(&io_alloc_list); error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL); if (error == 0) { *slog = TRUE; } else { error = metaslab_alloc(spa, spa_normal_class(spa), size, new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL); if (error == 0) *slog = FALSE; } metaslab_trace_fini(&io_alloc_list); if (error == 0) { BP_SET_LSIZE(new_bp, size); BP_SET_PSIZE(new_bp, size); BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); BP_SET_CHECKSUM(new_bp, spa_version(spa) >= SPA_VERSION_SLIM_ZIL ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); BP_SET_LEVEL(new_bp, 0); BP_SET_DEDUP(new_bp, 0); BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); } else { zfs_dbgmsg("%s: zil block allocation failure: " "size %llu, error %d", spa_name(spa), size, error); } return (error); } /* * Free an intent log block. */ void zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp) { ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG); ASSERT(!BP_IS_GANG(bp)); zio_free(spa, txg, bp); } /* * ========================================================================== * Read, write and delete to physical devices * ========================================================================== */ /* * Issue an I/O to the underlying vdev. Typically the issue pipeline * stops after this stage and will resume upon I/O completion. * However, there are instances where the vdev layer may need to * continue the pipeline when an I/O was not issued. Since the I/O * that was sent to the vdev layer might be different than the one * currently active in the pipeline (see vdev_queue_io()), we explicitly * force the underlying vdev layers to call either zio_execute() or * zio_interrupt() to ensure that the pipeline continues with the correct I/O. */ static int zio_vdev_io_start(zio_t *zio) { vdev_t *vd = zio->io_vd; uint64_t align; spa_t *spa = zio->io_spa; int ret; ASSERT(zio->io_error == 0); ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); if (vd == NULL) { if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) spa_config_enter(spa, SCL_ZIO, zio, RW_READER); /* * The mirror_ops handle multiple DVAs in a single BP. */ vdev_mirror_ops.vdev_op_io_start(zio); return (ZIO_PIPELINE_STOP); } if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_FREE && zio->io_priority == ZIO_PRIORITY_NOW) { trim_map_free(vd, zio->io_offset, zio->io_size, zio->io_txg); return (ZIO_PIPELINE_CONTINUE); } ASSERT3P(zio->io_logical, !=, zio); - if (zio->io_type == ZIO_TYPE_WRITE && zio->io_vd->vdev_removing) { - ASSERT(zio->io_flags & - (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | - ZIO_FLAG_INDUCE_DAMAGE)); + if (zio->io_type == ZIO_TYPE_WRITE) { + ASSERT(spa->spa_trust_config); + + if (zio->io_vd->vdev_removing) { + ASSERT(zio->io_flags & + (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | + ZIO_FLAG_INDUCE_DAMAGE)); + } } /* * We keep track of time-sensitive I/Os so that the scan thread * can quickly react to certain workloads. In particular, we care * about non-scrubbing, top-level reads and writes with the following * characteristics: * - synchronous writes of user data to non-slog devices * - any reads of user data * When these conditions are met, adjust the timestamp of spa_last_io * which allows the scan thread to adjust its workload accordingly. */ if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL && vd == vd->vdev_top && !vd->vdev_islog && zio->io_bookmark.zb_objset != DMU_META_OBJSET && zio->io_txg != spa_syncing_txg(spa)) { uint64_t old = spa->spa_last_io; uint64_t new = ddi_get_lbolt64(); if (old != new) (void) atomic_cas_64(&spa->spa_last_io, old, new); } align = 1ULL << vd->vdev_top->vdev_ashift; if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && P2PHASE(zio->io_size, align) != 0) { /* Transform logical writes to be a full physical block size. */ uint64_t asize = P2ROUNDUP(zio->io_size, align); abd_t *abuf = NULL; if (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE) abuf = abd_alloc_sametype(zio->io_abd, asize); ASSERT(vd == vd->vdev_top); if (zio->io_type == ZIO_TYPE_WRITE) { abd_copy(abuf, zio->io_abd, zio->io_size); abd_zero_off(abuf, zio->io_size, asize - zio->io_size); } zio_push_transform(zio, abuf, asize, abuf ? asize : 0, zio_subblock); } /* * If this is not a physical io, make sure that it is properly aligned * before proceeding. */ if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { ASSERT0(P2PHASE(zio->io_offset, align)); ASSERT0(P2PHASE(zio->io_size, align)); } else { /* * For the physical io we allow alignment * to a logical block size. */ uint64_t log_align = 1ULL << vd->vdev_top->vdev_logical_ashift; ASSERT0(P2PHASE(zio->io_offset, log_align)); ASSERT0(P2PHASE(zio->io_size, log_align)); } VERIFY(zio->io_type == ZIO_TYPE_READ || spa_writeable(spa)); /* * If this is a repair I/O, and there's no self-healing involved -- * that is, we're just resilvering what we expect to resilver -- * then don't do the I/O unless zio's txg is actually in vd's DTL. * This prevents spurious resilvering with nested replication. * For example, given a mirror of mirrors, (A+B)+(C+D), if only * A is out of date, we'll read from C+D, then use the data to * resilver A+B -- but we don't actually want to resilver B, just A. * The top-level mirror has no way to know this, so instead we just * discard unnecessary repairs as we work our way down the vdev tree. * The same logic applies to any form of nested replication: * ditto + mirror, RAID-Z + replacing, etc. This covers them all. */ if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && zio->io_txg != 0 && /* not a delegated i/o */ !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { ASSERT(zio->io_type == ZIO_TYPE_WRITE); zio_vdev_io_bypass(zio); return (ZIO_PIPELINE_CONTINUE); } if (vd->vdev_ops->vdev_op_leaf) { switch (zio->io_type) { case ZIO_TYPE_READ: if (vdev_cache_read(zio)) return (ZIO_PIPELINE_CONTINUE); /* FALLTHROUGH */ case ZIO_TYPE_WRITE: case ZIO_TYPE_FREE: if ((zio = vdev_queue_io(zio)) == NULL) return (ZIO_PIPELINE_STOP); if (!vdev_accessible(vd, zio)) { zio->io_error = SET_ERROR(ENXIO); zio_interrupt(zio); return (ZIO_PIPELINE_STOP); } break; } /* * Note that we ignore repair writes for TRIM because they can * conflict with normal writes. This isn't an issue because, by * definition, we only repair blocks that aren't freed. */ if (zio->io_type == ZIO_TYPE_WRITE && !(zio->io_flags & ZIO_FLAG_IO_REPAIR) && !trim_map_write_start(zio)) return (ZIO_PIPELINE_STOP); } vd->vdev_ops->vdev_op_io_start(zio); return (ZIO_PIPELINE_STOP); } static int zio_vdev_io_done(zio_t *zio) { vdev_t *vd = zio->io_vd; vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; boolean_t unexpected_error = B_FALSE; if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { return (ZIO_PIPELINE_STOP); } ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE); if (vd != NULL && vd->vdev_ops->vdev_op_leaf && (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE)) { if (zio->io_type == ZIO_TYPE_WRITE && !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) trim_map_write_done(zio); vdev_queue_io_done(zio); if (zio->io_type == ZIO_TYPE_WRITE) vdev_cache_write(zio); if (zio_injection_enabled && zio->io_error == 0) zio->io_error = zio_handle_device_injection(vd, zio, EIO); if (zio_injection_enabled && zio->io_error == 0) zio->io_error = zio_handle_label_injection(zio, EIO); if (zio->io_error) { if (zio->io_error == ENOTSUP && zio->io_type == ZIO_TYPE_FREE) { /* Not all devices support TRIM. */ } else if (!vdev_accessible(vd, zio)) { zio->io_error = SET_ERROR(ENXIO); } else { unexpected_error = B_TRUE; } } } ops->vdev_op_io_done(zio); if (unexpected_error) VERIFY(vdev_probe(vd, zio) == NULL); return (ZIO_PIPELINE_CONTINUE); } /* * For non-raidz ZIOs, we can just copy aside the bad data read from the * disk, and use that to finish the checksum ereport later. */ static void zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, const void *good_buf) { /* no processing needed */ zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); } /*ARGSUSED*/ void zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored) { void *buf = zio_buf_alloc(zio->io_size); abd_copy_to_buf(buf, zio->io_abd, zio->io_size); zcr->zcr_cbinfo = zio->io_size; zcr->zcr_cbdata = buf; zcr->zcr_finish = zio_vsd_default_cksum_finish; zcr->zcr_free = zio_buf_free; } static int zio_vdev_io_assess(zio_t *zio) { vdev_t *vd = zio->io_vd; if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { return (ZIO_PIPELINE_STOP); } if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) spa_config_exit(zio->io_spa, SCL_ZIO, zio); if (zio->io_vsd != NULL) { zio->io_vsd_ops->vsd_free(zio); zio->io_vsd = NULL; } if (zio_injection_enabled && zio->io_error == 0) zio->io_error = zio_handle_fault_injection(zio, EIO); if (zio->io_type == ZIO_TYPE_FREE && zio->io_priority != ZIO_PRIORITY_NOW) { switch (zio->io_error) { case 0: ZIO_TRIM_STAT_INCR(bytes, zio->io_size); ZIO_TRIM_STAT_BUMP(success); break; case EOPNOTSUPP: ZIO_TRIM_STAT_BUMP(unsupported); break; default: ZIO_TRIM_STAT_BUMP(failed); break; } } /* * If the I/O failed, determine whether we should attempt to retry it. * * On retry, we cut in line in the issue queue, since we don't want * compression/checksumming/etc. work to prevent our (cheap) IO reissue. */ if (zio->io_error && vd == NULL && !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ zio->io_error = 0; zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, zio_requeue_io_start_cut_in_line); return (ZIO_PIPELINE_STOP); } /* * If we got an error on a leaf device, convert it to ENXIO * if the device is not accessible at all. */ if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && !vdev_accessible(vd, zio)) zio->io_error = SET_ERROR(ENXIO); /* * If we can't write to an interior vdev (mirror or RAID-Z), * set vdev_cant_write so that we stop trying to allocate from it. */ if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && vd != NULL && !vd->vdev_ops->vdev_op_leaf) { vd->vdev_cant_write = B_TRUE; } /* * If a cache flush returns ENOTSUP or ENOTTY, we know that no future * attempts will ever succeed. In this case we set a persistent bit so * that we don't bother with it in the future. */ if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && zio->io_type == ZIO_TYPE_IOCTL && zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) vd->vdev_nowritecache = B_TRUE; if (zio->io_error) zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; if (vd != NULL && vd->vdev_ops->vdev_op_leaf && zio->io_physdone != NULL) { ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); zio->io_physdone(zio->io_logical); } return (ZIO_PIPELINE_CONTINUE); } void zio_vdev_io_reissue(zio_t *zio) { ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); ASSERT(zio->io_error == 0); zio->io_stage >>= 1; } void zio_vdev_io_redone(zio_t *zio) { ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); zio->io_stage >>= 1; } void zio_vdev_io_bypass(zio_t *zio) { ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); ASSERT(zio->io_error == 0); zio->io_flags |= ZIO_FLAG_IO_BYPASS; zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; } /* * ========================================================================== * Generate and verify checksums * ========================================================================== */ static int zio_checksum_generate(zio_t *zio) { blkptr_t *bp = zio->io_bp; enum zio_checksum checksum; if (bp == NULL) { /* * This is zio_write_phys(). * We're either generating a label checksum, or none at all. */ checksum = zio->io_prop.zp_checksum; if (checksum == ZIO_CHECKSUM_OFF) return (ZIO_PIPELINE_CONTINUE); ASSERT(checksum == ZIO_CHECKSUM_LABEL); } else { if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { ASSERT(!IO_IS_ALLOCATING(zio)); checksum = ZIO_CHECKSUM_GANG_HEADER; } else { checksum = BP_GET_CHECKSUM(bp); } } zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); return (ZIO_PIPELINE_CONTINUE); } static int zio_checksum_verify(zio_t *zio) { zio_bad_cksum_t info; blkptr_t *bp = zio->io_bp; int error; ASSERT(zio->io_vd != NULL); if (bp == NULL) { /* * This is zio_read_phys(). * We're either verifying a label checksum, or nothing at all. */ if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) return (ZIO_PIPELINE_CONTINUE); ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); } if ((error = zio_checksum_error(zio, &info)) != 0) { zio->io_error = error; if (error == ECKSUM && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { zfs_ereport_start_checksum(zio->io_spa, zio->io_vd, zio, zio->io_offset, zio->io_size, NULL, &info); } } return (ZIO_PIPELINE_CONTINUE); } /* * Called by RAID-Z to ensure we don't compute the checksum twice. */ void zio_checksum_verified(zio_t *zio) { zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; } /* * ========================================================================== * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. * An error of 0 indicates success. ENXIO indicates whole-device failure, * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO * indicate errors that are specific to one I/O, and most likely permanent. * Any other error is presumed to be worse because we weren't expecting it. * ========================================================================== */ int zio_worst_error(int e1, int e2) { static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; int r1, r2; for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) if (e1 == zio_error_rank[r1]) break; for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) if (e2 == zio_error_rank[r2]) break; return (r1 > r2 ? e1 : e2); } /* * ========================================================================== * I/O completion * ========================================================================== */ static int zio_ready(zio_t *zio) { blkptr_t *bp = zio->io_bp; zio_t *pio, *pio_next; zio_link_t *zl = NULL; if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, ZIO_WAIT_READY)) { return (ZIO_PIPELINE_STOP); } if (zio->io_ready) { ASSERT(IO_IS_ALLOCATING(zio)); ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || (zio->io_flags & ZIO_FLAG_NOPWRITE)); ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); zio->io_ready(zio); } if (bp != NULL && bp != &zio->io_bp_copy) zio->io_bp_copy = *bp; if (zio->io_error != 0) { zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { ASSERT(IO_IS_ALLOCATING(zio)); ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); /* * We were unable to allocate anything, unreserve and * issue the next I/O to allocate. */ metaslab_class_throttle_unreserve( spa_normal_class(zio->io_spa), zio->io_prop.zp_copies, zio); zio_allocate_dispatch(zio->io_spa); } } mutex_enter(&zio->io_lock); zio->io_state[ZIO_WAIT_READY] = 1; pio = zio_walk_parents(zio, &zl); mutex_exit(&zio->io_lock); /* * As we notify zio's parents, new parents could be added. * New parents go to the head of zio's io_parent_list, however, * so we will (correctly) not notify them. The remainder of zio's * io_parent_list, from 'pio_next' onward, cannot change because * all parents must wait for us to be done before they can be done. */ for (; pio != NULL; pio = pio_next) { pio_next = zio_walk_parents(zio, &zl); zio_notify_parent(pio, zio, ZIO_WAIT_READY); } if (zio->io_flags & ZIO_FLAG_NODATA) { if (BP_IS_GANG(bp)) { zio->io_flags &= ~ZIO_FLAG_NODATA; } else { ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; } } if (zio_injection_enabled && zio->io_spa->spa_syncing_txg == zio->io_txg) zio_handle_ignored_writes(zio); return (ZIO_PIPELINE_CONTINUE); } /* * Update the allocation throttle accounting. */ static void zio_dva_throttle_done(zio_t *zio) { zio_t *lio = zio->io_logical; zio_t *pio = zio_unique_parent(zio); vdev_t *vd = zio->io_vd; int flags = METASLAB_ASYNC_ALLOC; ASSERT3P(zio->io_bp, !=, NULL); ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); ASSERT(vd != NULL); ASSERT3P(vd, ==, vd->vdev_top); ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY))); ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); /* * Parents of gang children can have two flavors -- ones that * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) * and ones that allocated the constituent blocks. The allocation * throttle needs to know the allocating parent zio so we must find * it here. */ if (pio->io_child_type == ZIO_CHILD_GANG) { /* * If our parent is a rewrite gang child then our grandparent * would have been the one that performed the allocation. */ if (pio->io_flags & ZIO_FLAG_IO_REWRITE) pio = zio_unique_parent(pio); flags |= METASLAB_GANG_CHILD; } ASSERT(IO_IS_ALLOCATING(pio)); ASSERT3P(zio, !=, zio->io_logical); ASSERT(zio->io_logical != NULL); ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); mutex_enter(&pio->io_lock); metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags); mutex_exit(&pio->io_lock); metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa), 1, pio); /* * Call into the pipeline to see if there is more work that * needs to be done. If there is work to be done it will be * dispatched to another taskq thread. */ zio_allocate_dispatch(zio->io_spa); } static int zio_done(zio_t *zio) { spa_t *spa = zio->io_spa; zio_t *lio = zio->io_logical; blkptr_t *bp = zio->io_bp; vdev_t *vd = zio->io_vd; uint64_t psize = zio->io_size; zio_t *pio, *pio_next; metaslab_class_t *mc = spa_normal_class(spa); zio_link_t *zl = NULL; /* * If our children haven't all completed, * wait for them and then repeat this pipeline stage. */ if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { return (ZIO_PIPELINE_STOP); } /* * If the allocation throttle is enabled, then update the accounting. * We only track child I/Os that are part of an allocating async * write. We must do this since the allocation is performed * by the logical I/O but the actual write is done by child I/Os. */ if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && zio->io_child_type == ZIO_CHILD_VDEV) { ASSERT(mc->mc_alloc_throttle_enabled); zio_dva_throttle_done(zio); } /* * If the allocation throttle is enabled, verify that * we have decremented the refcounts for every I/O that was throttled. */ if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { ASSERT(zio->io_type == ZIO_TYPE_WRITE); ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); ASSERT(bp != NULL); metaslab_group_alloc_verify(spa, zio->io_bp, zio); VERIFY(refcount_not_held(&mc->mc_alloc_slots, zio)); } for (int c = 0; c < ZIO_CHILD_TYPES; c++) for (int w = 0; w < ZIO_WAIT_TYPES; w++) ASSERT(zio->io_children[c][w] == 0); if (bp != NULL && !BP_IS_EMBEDDED(bp)) { ASSERT(bp->blk_pad[0] == 0); ASSERT(bp->blk_pad[1] == 0); ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || (bp == zio_unique_parent(zio)->io_bp)); if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && zio->io_bp_override == NULL && !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { ASSERT(!BP_SHOULD_BYTESWAP(bp)); ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp)); ASSERT(BP_COUNT_GANG(bp) == 0 || (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); } if (zio->io_flags & ZIO_FLAG_NOPWRITE) VERIFY(BP_EQUAL(bp, &zio->io_bp_orig)); } /* * If there were child vdev/gang/ddt errors, they apply to us now. */ zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); zio_inherit_child_errors(zio, ZIO_CHILD_GANG); zio_inherit_child_errors(zio, ZIO_CHILD_DDT); /* * If the I/O on the transformed data was successful, generate any * checksum reports now while we still have the transformed data. */ if (zio->io_error == 0) { while (zio->io_cksum_report != NULL) { zio_cksum_report_t *zcr = zio->io_cksum_report; uint64_t align = zcr->zcr_align; uint64_t asize = P2ROUNDUP(psize, align); char *abuf = NULL; abd_t *adata = zio->io_abd; if (asize != psize) { adata = abd_alloc_linear(asize, B_TRUE); abd_copy(adata, zio->io_abd, psize); abd_zero_off(adata, psize, asize - psize); } if (adata != NULL) abuf = abd_borrow_buf_copy(adata, asize); zio->io_cksum_report = zcr->zcr_next; zcr->zcr_next = NULL; zcr->zcr_finish(zcr, abuf); zfs_ereport_free_checksum(zcr); if (adata != NULL) abd_return_buf(adata, abuf, asize); if (asize != psize) abd_free(adata); } } zio_pop_transforms(zio); /* note: may set zio->io_error */ vdev_stat_update(zio, psize); if (zio->io_error) { /* * If this I/O is attached to a particular vdev, * generate an error message describing the I/O failure * at the block level. We ignore these errors if the * device is currently unavailable. */ if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); if ((zio->io_error == EIO || !(zio->io_flags & (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && zio == lio) { /* * For logical I/O requests, tell the SPA to log the * error and generate a logical data ereport. */ spa_log_error(spa, zio); zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 0, 0); } } if (zio->io_error && zio == lio) { /* * Determine whether zio should be reexecuted. This will * propagate all the way to the root via zio_notify_parent(). */ ASSERT(vd == NULL && bp != NULL); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); if (IO_IS_ALLOCATING(zio) && !(zio->io_flags & ZIO_FLAG_CANFAIL)) { if (zio->io_error != ENOSPC) zio->io_reexecute |= ZIO_REEXECUTE_NOW; else zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; } if ((zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_FREE) && !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_error == ENXIO && spa_load_state(spa) == SPA_LOAD_NONE && spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; /* * Here is a possibly good place to attempt to do * either combinatorial reconstruction or error correction * based on checksums. It also might be a good place * to send out preliminary ereports before we suspend * processing. */ } /* * If there were logical child errors, they apply to us now. * We defer this until now to avoid conflating logical child * errors with errors that happened to the zio itself when * updating vdev stats and reporting FMA events above. */ zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); if ((zio->io_error || zio->io_reexecute) && IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) zio_dva_unallocate(zio, zio->io_gang_tree, bp); zio_gang_tree_free(&zio->io_gang_tree); /* * Godfather I/Os should never suspend. */ if ((zio->io_flags & ZIO_FLAG_GODFATHER) && (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) zio->io_reexecute = 0; if (zio->io_reexecute) { /* * This is a logical I/O that wants to reexecute. * * Reexecute is top-down. When an i/o fails, if it's not * the root, it simply notifies its parent and sticks around. * The parent, seeing that it still has children in zio_done(), * does the same. This percolates all the way up to the root. * The root i/o will reexecute or suspend the entire tree. * * This approach ensures that zio_reexecute() honors * all the original i/o dependency relationships, e.g. * parents not executing until children are ready. */ ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); zio->io_gang_leader = NULL; mutex_enter(&zio->io_lock); zio->io_state[ZIO_WAIT_DONE] = 1; mutex_exit(&zio->io_lock); /* * "The Godfather" I/O monitors its children but is * not a true parent to them. It will track them through * the pipeline but severs its ties whenever they get into * trouble (e.g. suspended). This allows "The Godfather" * I/O to return status without blocking. */ zl = NULL; for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { zio_link_t *remove_zl = zl; pio_next = zio_walk_parents(zio, &zl); if ((pio->io_flags & ZIO_FLAG_GODFATHER) && (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { zio_remove_child(pio, zio, remove_zl); zio_notify_parent(pio, zio, ZIO_WAIT_DONE); } } if ((pio = zio_unique_parent(zio)) != NULL) { /* * We're not a root i/o, so there's nothing to do * but notify our parent. Don't propagate errors * upward since we haven't permanently failed yet. */ ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; zio_notify_parent(pio, zio, ZIO_WAIT_DONE); } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { /* * We'd fail again if we reexecuted now, so suspend * until conditions improve (e.g. device comes online). */ zio_suspend(spa, zio); } else { /* * Reexecution is potentially a huge amount of work. * Hand it off to the otherwise-unused claim taskq. */ #if defined(illumos) || !defined(_KERNEL) ASSERT(zio->io_tqent.tqent_next == NULL); #else ASSERT(zio->io_tqent.tqent_task.ta_pending == 0); #endif spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio, 0, &zio->io_tqent); } return (ZIO_PIPELINE_STOP); } ASSERT(zio->io_child_count == 0); ASSERT(zio->io_reexecute == 0); ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); /* * Report any checksum errors, since the I/O is complete. */ while (zio->io_cksum_report != NULL) { zio_cksum_report_t *zcr = zio->io_cksum_report; zio->io_cksum_report = zcr->zcr_next; zcr->zcr_next = NULL; zcr->zcr_finish(zcr, NULL); zfs_ereport_free_checksum(zcr); } /* * It is the responsibility of the done callback to ensure that this * particular zio is no longer discoverable for adoption, and as * such, cannot acquire any new parents. */ if (zio->io_done) zio->io_done(zio); mutex_enter(&zio->io_lock); zio->io_state[ZIO_WAIT_DONE] = 1; mutex_exit(&zio->io_lock); zl = NULL; for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { zio_link_t *remove_zl = zl; pio_next = zio_walk_parents(zio, &zl); zio_remove_child(pio, zio, remove_zl); zio_notify_parent(pio, zio, ZIO_WAIT_DONE); } if (zio->io_waiter != NULL) { mutex_enter(&zio->io_lock); zio->io_executor = NULL; cv_broadcast(&zio->io_cv); mutex_exit(&zio->io_lock); } else { zio_destroy(zio); } return (ZIO_PIPELINE_STOP); } /* * ========================================================================== * I/O pipeline definition * ========================================================================== */ static zio_pipe_stage_t *zio_pipeline[] = { NULL, zio_read_bp_init, zio_write_bp_init, zio_free_bp_init, zio_issue_async, zio_write_compress, zio_checksum_generate, zio_nop_write, zio_ddt_read_start, zio_ddt_read_done, zio_ddt_write, zio_ddt_free, zio_gang_assemble, zio_gang_issue, zio_dva_throttle, zio_dva_allocate, zio_dva_free, zio_dva_claim, zio_ready, zio_vdev_io_start, zio_vdev_io_done, zio_vdev_io_assess, zio_checksum_verify, zio_done }; /* * Compare two zbookmark_phys_t's to see which we would reach first in a * pre-order traversal of the object tree. * * This is simple in every case aside from the meta-dnode object. For all other * objects, we traverse them in order (object 1 before object 2, and so on). * However, all of these objects are traversed while traversing object 0, since * the data it points to is the list of objects. Thus, we need to convert to a * canonical representation so we can compare meta-dnode bookmarks to * non-meta-dnode bookmarks. * * We do this by calculating "equivalents" for each field of the zbookmark. * zbookmarks outside of the meta-dnode use their own object and level, and * calculate the level 0 equivalent (the first L0 blkid that is contained in the * blocks this bookmark refers to) by multiplying their blkid by their span * (the number of L0 blocks contained within one block at their level). * zbookmarks inside the meta-dnode calculate their object equivalent * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use * level + 1<<31 (any value larger than a level could ever be) for their level. * This causes them to always compare before a bookmark in their object * equivalent, compare appropriately to bookmarks in other objects, and to * compare appropriately to other bookmarks in the meta-dnode. */ int zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) { /* * These variables represent the "equivalent" values for the zbookmark, * after converting zbookmarks inside the meta dnode to their * normal-object equivalents. */ uint64_t zb1obj, zb2obj; uint64_t zb1L0, zb2L0; uint64_t zb1level, zb2level; if (zb1->zb_object == zb2->zb_object && zb1->zb_level == zb2->zb_level && zb1->zb_blkid == zb2->zb_blkid) return (0); /* * BP_SPANB calculates the span in blocks. */ zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); if (zb1->zb_object == DMU_META_DNODE_OBJECT) { zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); zb1L0 = 0; zb1level = zb1->zb_level + COMPARE_META_LEVEL; } else { zb1obj = zb1->zb_object; zb1level = zb1->zb_level; } if (zb2->zb_object == DMU_META_DNODE_OBJECT) { zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); zb2L0 = 0; zb2level = zb2->zb_level + COMPARE_META_LEVEL; } else { zb2obj = zb2->zb_object; zb2level = zb2->zb_level; } /* Now that we have a canonical representation, do the comparison. */ if (zb1obj != zb2obj) return (zb1obj < zb2obj ? -1 : 1); else if (zb1L0 != zb2L0) return (zb1L0 < zb2L0 ? -1 : 1); else if (zb1level != zb2level) return (zb1level > zb2level ? -1 : 1); /* * This can (theoretically) happen if the bookmarks have the same object * and level, but different blkids, if the block sizes are not the same. * There is presently no way to change the indirect block sizes */ return (0); } /* * This function checks the following: given that last_block is the place that * our traversal stopped last time, does that guarantee that we've visited * every node under subtree_root? Therefore, we can't just use the raw output * of zbookmark_compare. We have to pass in a modified version of * subtree_root; by incrementing the block id, and then checking whether * last_block is before or equal to that, we can tell whether or not having * visited last_block implies that all of subtree_root's children have been * visited. */ boolean_t zbookmark_subtree_completed(const dnode_phys_t *dnp, const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) { zbookmark_phys_t mod_zb = *subtree_root; mod_zb.zb_blkid++; ASSERT(last_block->zb_level == 0); /* The objset_phys_t isn't before anything. */ if (dnp == NULL) return (B_FALSE); /* * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the * data block size in sectors, because that variable is only used if * the bookmark refers to a block in the meta-dnode. Since we don't * know without examining it what object it refers to, and there's no * harm in passing in this value in other cases, we always pass it in. * * We pass in 0 for the indirect block size shift because zb2 must be * level 0. The indirect block size is only used to calculate the span * of the bookmark, but since the bookmark must be level 0, the span is * always 1, so the math works out. * * If you make changes to how the zbookmark_compare code works, be sure * to make sure that this code still works afterwards. */ return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, last_block) <= 0); } Index: head/sys/cddl/contrib/opensolaris/uts/common/sys/fs/zfs.h =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/sys/fs/zfs.h (revision 329797) +++ head/sys/cddl/contrib/opensolaris/uts/common/sys/fs/zfs.h (revision 329798) @@ -1,1096 +1,1098 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2016 by Delphix. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2012, Martin Matuska . All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2017 Joyent, Inc. * Copyright (c) 2017 Datto Inc. */ /* Portions Copyright 2010 Robert Milkowski */ #ifndef _SYS_FS_ZFS_H #define _SYS_FS_ZFS_H #include #include #include #ifdef __cplusplus extern "C" { #endif /* * Types and constants shared between userland and the kernel. */ /* * Each dataset can be one of the following types. These constants can be * combined into masks that can be passed to various functions. */ typedef enum { ZFS_TYPE_FILESYSTEM = (1 << 0), ZFS_TYPE_SNAPSHOT = (1 << 1), ZFS_TYPE_VOLUME = (1 << 2), ZFS_TYPE_POOL = (1 << 3), ZFS_TYPE_BOOKMARK = (1 << 4) } zfs_type_t; /* * NB: lzc_dataset_type should be updated whenever a new objset type is added, * if it represents a real type of a dataset that can be created from userland. */ typedef enum dmu_objset_type { DMU_OST_NONE, DMU_OST_META, DMU_OST_ZFS, DMU_OST_ZVOL, DMU_OST_OTHER, /* For testing only! */ DMU_OST_ANY, /* Be careful! */ DMU_OST_NUMTYPES } dmu_objset_type_t; #define ZFS_TYPE_DATASET \ (ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME | ZFS_TYPE_SNAPSHOT) /* * All of these include the terminating NUL byte. */ #define ZAP_MAXNAMELEN 256 #define ZAP_MAXVALUELEN (1024 * 8) #define ZAP_OLDMAXVALUELEN 1024 #define ZFS_MAX_DATASET_NAME_LEN 256 /* * Dataset properties are identified by these constants and must be added to * the end of this list to ensure that external consumers are not affected * by the change. If you make any changes to this list, be sure to update * the property table in usr/src/common/zfs/zfs_prop.c. */ typedef enum { ZPROP_CONT = -2, ZPROP_INVAL = -1, ZFS_PROP_TYPE = 0, ZFS_PROP_CREATION, ZFS_PROP_USED, ZFS_PROP_AVAILABLE, ZFS_PROP_REFERENCED, ZFS_PROP_COMPRESSRATIO, ZFS_PROP_MOUNTED, ZFS_PROP_ORIGIN, ZFS_PROP_QUOTA, ZFS_PROP_RESERVATION, ZFS_PROP_VOLSIZE, ZFS_PROP_VOLBLOCKSIZE, ZFS_PROP_RECORDSIZE, ZFS_PROP_MOUNTPOINT, ZFS_PROP_SHARENFS, ZFS_PROP_CHECKSUM, ZFS_PROP_COMPRESSION, ZFS_PROP_ATIME, ZFS_PROP_DEVICES, ZFS_PROP_EXEC, ZFS_PROP_SETUID, ZFS_PROP_READONLY, ZFS_PROP_ZONED, ZFS_PROP_SNAPDIR, ZFS_PROP_ACLMODE, ZFS_PROP_ACLINHERIT, ZFS_PROP_CREATETXG, /* not exposed to the user */ ZFS_PROP_NAME, /* not exposed to the user */ ZFS_PROP_CANMOUNT, ZFS_PROP_ISCSIOPTIONS, /* not exposed to the user */ ZFS_PROP_XATTR, ZFS_PROP_NUMCLONES, /* not exposed to the user */ ZFS_PROP_COPIES, ZFS_PROP_VERSION, ZFS_PROP_UTF8ONLY, ZFS_PROP_NORMALIZE, ZFS_PROP_CASE, ZFS_PROP_VSCAN, ZFS_PROP_NBMAND, ZFS_PROP_SHARESMB, ZFS_PROP_REFQUOTA, ZFS_PROP_REFRESERVATION, ZFS_PROP_GUID, ZFS_PROP_PRIMARYCACHE, ZFS_PROP_SECONDARYCACHE, ZFS_PROP_USEDSNAP, ZFS_PROP_USEDDS, ZFS_PROP_USEDCHILD, ZFS_PROP_USEDREFRESERV, ZFS_PROP_USERACCOUNTING, /* not exposed to the user */ ZFS_PROP_STMF_SHAREINFO, /* not exposed to the user */ ZFS_PROP_DEFER_DESTROY, ZFS_PROP_USERREFS, ZFS_PROP_LOGBIAS, ZFS_PROP_UNIQUE, /* not exposed to the user */ ZFS_PROP_OBJSETID, /* not exposed to the user */ ZFS_PROP_DEDUP, ZFS_PROP_MLSLABEL, ZFS_PROP_SYNC, ZFS_PROP_REFRATIO, ZFS_PROP_WRITTEN, ZFS_PROP_CLONES, ZFS_PROP_LOGICALUSED, ZFS_PROP_LOGICALREFERENCED, ZFS_PROP_INCONSISTENT, /* not exposed to the user */ ZFS_PROP_VOLMODE, ZFS_PROP_FILESYSTEM_LIMIT, ZFS_PROP_SNAPSHOT_LIMIT, ZFS_PROP_FILESYSTEM_COUNT, ZFS_PROP_SNAPSHOT_COUNT, ZFS_PROP_REDUNDANT_METADATA, ZFS_PROP_PREV_SNAP, ZFS_PROP_RECEIVE_RESUME_TOKEN, ZFS_PROP_REMAPTXG, /* not exposed to the user */ ZFS_NUM_PROPS } zfs_prop_t; typedef enum { ZFS_PROP_USERUSED, ZFS_PROP_USERQUOTA, ZFS_PROP_GROUPUSED, ZFS_PROP_GROUPQUOTA, ZFS_NUM_USERQUOTA_PROPS } zfs_userquota_prop_t; extern const char *zfs_userquota_prop_prefixes[ZFS_NUM_USERQUOTA_PROPS]; /* * Pool properties are identified by these constants and must be added to the * end of this list to ensure that external consumers are not affected * by the change. If you make any changes to this list, be sure to update * the property table in usr/src/common/zfs/zpool_prop.c. */ typedef enum { ZPOOL_PROP_INVAL = -1, ZPOOL_PROP_NAME, ZPOOL_PROP_SIZE, ZPOOL_PROP_CAPACITY, ZPOOL_PROP_ALTROOT, ZPOOL_PROP_HEALTH, ZPOOL_PROP_GUID, ZPOOL_PROP_VERSION, ZPOOL_PROP_BOOTFS, ZPOOL_PROP_DELEGATION, ZPOOL_PROP_AUTOREPLACE, ZPOOL_PROP_CACHEFILE, ZPOOL_PROP_FAILUREMODE, ZPOOL_PROP_LISTSNAPS, ZPOOL_PROP_AUTOEXPAND, ZPOOL_PROP_DEDUPDITTO, ZPOOL_PROP_DEDUPRATIO, ZPOOL_PROP_FREE, ZPOOL_PROP_ALLOCATED, ZPOOL_PROP_READONLY, ZPOOL_PROP_COMMENT, ZPOOL_PROP_EXPANDSZ, ZPOOL_PROP_FREEING, ZPOOL_PROP_FRAGMENTATION, ZPOOL_PROP_LEAKED, ZPOOL_PROP_MAXBLOCKSIZE, ZPOOL_PROP_BOOTSIZE, ZPOOL_NUM_PROPS } zpool_prop_t; /* Small enough to not hog a whole line of printout in zpool(1M). */ #define ZPROP_MAX_COMMENT 32 #define ZPROP_VALUE "value" #define ZPROP_SOURCE "source" typedef enum { ZPROP_SRC_NONE = 0x1, ZPROP_SRC_DEFAULT = 0x2, ZPROP_SRC_TEMPORARY = 0x4, ZPROP_SRC_LOCAL = 0x8, ZPROP_SRC_INHERITED = 0x10, ZPROP_SRC_RECEIVED = 0x20 } zprop_source_t; #define ZPROP_SRC_ALL 0x3f #define ZPROP_SOURCE_VAL_RECVD "$recvd" #define ZPROP_N_MORE_ERRORS "N_MORE_ERRORS" /* * Dataset flag implemented as a special entry in the props zap object * indicating that the dataset has received properties on or after * SPA_VERSION_RECVD_PROPS. The first such receive blows away local properties * just as it did in earlier versions, and thereafter, local properties are * preserved. */ #define ZPROP_HAS_RECVD "$hasrecvd" typedef enum { ZPROP_ERR_NOCLEAR = 0x1, /* failure to clear existing props */ ZPROP_ERR_NORESTORE = 0x2 /* failure to restore props on error */ } zprop_errflags_t; typedef int (*zprop_func)(int, void *); /* * Properties to be set on the root file system of a new pool * are stuffed into their own nvlist, which is then included in * the properties nvlist with the pool properties. */ #define ZPOOL_ROOTFS_PROPS "root-props-nvl" /* * Length of 'written@' and 'written#' */ #define ZFS_WRITTEN_PROP_PREFIX_LEN 8 /* * Dataset property functions shared between libzfs and kernel. */ const char *zfs_prop_default_string(zfs_prop_t); uint64_t zfs_prop_default_numeric(zfs_prop_t); boolean_t zfs_prop_readonly(zfs_prop_t); boolean_t zfs_prop_visible(zfs_prop_t prop); boolean_t zfs_prop_inheritable(zfs_prop_t); boolean_t zfs_prop_setonce(zfs_prop_t); const char *zfs_prop_to_name(zfs_prop_t); zfs_prop_t zfs_name_to_prop(const char *); boolean_t zfs_prop_user(const char *); boolean_t zfs_prop_userquota(const char *); int zfs_prop_index_to_string(zfs_prop_t, uint64_t, const char **); int zfs_prop_string_to_index(zfs_prop_t, const char *, uint64_t *); uint64_t zfs_prop_random_value(zfs_prop_t, uint64_t seed); boolean_t zfs_prop_valid_for_type(int, zfs_type_t); /* * Pool property functions shared between libzfs and kernel. */ zpool_prop_t zpool_name_to_prop(const char *); const char *zpool_prop_to_name(zpool_prop_t); const char *zpool_prop_default_string(zpool_prop_t); uint64_t zpool_prop_default_numeric(zpool_prop_t); boolean_t zpool_prop_readonly(zpool_prop_t); boolean_t zpool_prop_feature(const char *); boolean_t zpool_prop_unsupported(const char *name); int zpool_prop_index_to_string(zpool_prop_t, uint64_t, const char **); int zpool_prop_string_to_index(zpool_prop_t, const char *, uint64_t *); uint64_t zpool_prop_random_value(zpool_prop_t, uint64_t seed); /* * Definitions for the Delegation. */ typedef enum { ZFS_DELEG_WHO_UNKNOWN = 0, ZFS_DELEG_USER = 'u', ZFS_DELEG_USER_SETS = 'U', ZFS_DELEG_GROUP = 'g', ZFS_DELEG_GROUP_SETS = 'G', ZFS_DELEG_EVERYONE = 'e', ZFS_DELEG_EVERYONE_SETS = 'E', ZFS_DELEG_CREATE = 'c', ZFS_DELEG_CREATE_SETS = 'C', ZFS_DELEG_NAMED_SET = 's', ZFS_DELEG_NAMED_SET_SETS = 'S' } zfs_deleg_who_type_t; typedef enum { ZFS_DELEG_NONE = 0, ZFS_DELEG_PERM_LOCAL = 1, ZFS_DELEG_PERM_DESCENDENT = 2, ZFS_DELEG_PERM_LOCALDESCENDENT = 3, ZFS_DELEG_PERM_CREATE = 4 } zfs_deleg_inherit_t; #define ZFS_DELEG_PERM_UID "uid" #define ZFS_DELEG_PERM_GID "gid" #define ZFS_DELEG_PERM_GROUPS "groups" #define ZFS_MLSLABEL_DEFAULT "none" #define ZFS_SMB_ACL_SRC "src" #define ZFS_SMB_ACL_TARGET "target" typedef enum { ZFS_CANMOUNT_OFF = 0, ZFS_CANMOUNT_ON = 1, ZFS_CANMOUNT_NOAUTO = 2 } zfs_canmount_type_t; typedef enum { ZFS_LOGBIAS_LATENCY = 0, ZFS_LOGBIAS_THROUGHPUT = 1 } zfs_logbias_op_t; typedef enum zfs_share_op { ZFS_SHARE_NFS = 0, ZFS_UNSHARE_NFS = 1, ZFS_SHARE_SMB = 2, ZFS_UNSHARE_SMB = 3 } zfs_share_op_t; typedef enum zfs_smb_acl_op { ZFS_SMB_ACL_ADD, ZFS_SMB_ACL_REMOVE, ZFS_SMB_ACL_RENAME, ZFS_SMB_ACL_PURGE } zfs_smb_acl_op_t; typedef enum zfs_cache_type { ZFS_CACHE_NONE = 0, ZFS_CACHE_METADATA = 1, ZFS_CACHE_ALL = 2 } zfs_cache_type_t; typedef enum { ZFS_SYNC_STANDARD = 0, ZFS_SYNC_ALWAYS = 1, ZFS_SYNC_DISABLED = 2 } zfs_sync_type_t; typedef enum { ZFS_VOLMODE_DEFAULT = 0, ZFS_VOLMODE_GEOM = 1, ZFS_VOLMODE_DEV = 2, ZFS_VOLMODE_NONE = 3 } zfs_volmode_t; typedef enum { ZFS_REDUNDANT_METADATA_ALL, ZFS_REDUNDANT_METADATA_MOST } zfs_redundant_metadata_type_t; /* * On-disk version number. */ #define SPA_VERSION_1 1ULL #define SPA_VERSION_2 2ULL #define SPA_VERSION_3 3ULL #define SPA_VERSION_4 4ULL #define SPA_VERSION_5 5ULL #define SPA_VERSION_6 6ULL #define SPA_VERSION_7 7ULL #define SPA_VERSION_8 8ULL #define SPA_VERSION_9 9ULL #define SPA_VERSION_10 10ULL #define SPA_VERSION_11 11ULL #define SPA_VERSION_12 12ULL #define SPA_VERSION_13 13ULL #define SPA_VERSION_14 14ULL #define SPA_VERSION_15 15ULL #define SPA_VERSION_16 16ULL #define SPA_VERSION_17 17ULL #define SPA_VERSION_18 18ULL #define SPA_VERSION_19 19ULL #define SPA_VERSION_20 20ULL #define SPA_VERSION_21 21ULL #define SPA_VERSION_22 22ULL #define SPA_VERSION_23 23ULL #define SPA_VERSION_24 24ULL #define SPA_VERSION_25 25ULL #define SPA_VERSION_26 26ULL #define SPA_VERSION_27 27ULL #define SPA_VERSION_28 28ULL #define SPA_VERSION_5000 5000ULL /* * When bumping up SPA_VERSION, make sure GRUB ZFS understands the on-disk * format change. Go to usr/src/grub/grub-0.97/stage2/{zfs-include/, fsys_zfs*}, * and do the appropriate changes. Also bump the version number in * usr/src/grub/capability. */ #define SPA_VERSION SPA_VERSION_5000 #define SPA_VERSION_STRING "5000" /* * Symbolic names for the changes that caused a SPA_VERSION switch. * Used in the code when checking for presence or absence of a feature. * Feel free to define multiple symbolic names for each version if there * were multiple changes to on-disk structures during that version. * * NOTE: When checking the current SPA_VERSION in your code, be sure * to use spa_version() since it reports the version of the * last synced uberblock. Checking the in-flight version can * be dangerous in some cases. */ #define SPA_VERSION_INITIAL SPA_VERSION_1 #define SPA_VERSION_DITTO_BLOCKS SPA_VERSION_2 #define SPA_VERSION_SPARES SPA_VERSION_3 #define SPA_VERSION_RAIDZ2 SPA_VERSION_3 #define SPA_VERSION_BPOBJ_ACCOUNT SPA_VERSION_3 #define SPA_VERSION_RAIDZ_DEFLATE SPA_VERSION_3 #define SPA_VERSION_DNODE_BYTES SPA_VERSION_3 #define SPA_VERSION_ZPOOL_HISTORY SPA_VERSION_4 #define SPA_VERSION_GZIP_COMPRESSION SPA_VERSION_5 #define SPA_VERSION_BOOTFS SPA_VERSION_6 #define SPA_VERSION_SLOGS SPA_VERSION_7 #define SPA_VERSION_DELEGATED_PERMS SPA_VERSION_8 #define SPA_VERSION_FUID SPA_VERSION_9 #define SPA_VERSION_REFRESERVATION SPA_VERSION_9 #define SPA_VERSION_REFQUOTA SPA_VERSION_9 #define SPA_VERSION_UNIQUE_ACCURATE SPA_VERSION_9 #define SPA_VERSION_L2CACHE SPA_VERSION_10 #define SPA_VERSION_NEXT_CLONES SPA_VERSION_11 #define SPA_VERSION_ORIGIN SPA_VERSION_11 #define SPA_VERSION_DSL_SCRUB SPA_VERSION_11 #define SPA_VERSION_SNAP_PROPS SPA_VERSION_12 #define SPA_VERSION_USED_BREAKDOWN SPA_VERSION_13 #define SPA_VERSION_PASSTHROUGH_X SPA_VERSION_14 #define SPA_VERSION_USERSPACE SPA_VERSION_15 #define SPA_VERSION_STMF_PROP SPA_VERSION_16 #define SPA_VERSION_RAIDZ3 SPA_VERSION_17 #define SPA_VERSION_USERREFS SPA_VERSION_18 #define SPA_VERSION_HOLES SPA_VERSION_19 #define SPA_VERSION_ZLE_COMPRESSION SPA_VERSION_20 #define SPA_VERSION_DEDUP SPA_VERSION_21 #define SPA_VERSION_RECVD_PROPS SPA_VERSION_22 #define SPA_VERSION_SLIM_ZIL SPA_VERSION_23 #define SPA_VERSION_SA SPA_VERSION_24 #define SPA_VERSION_SCAN SPA_VERSION_25 #define SPA_VERSION_DIR_CLONES SPA_VERSION_26 #define SPA_VERSION_DEADLISTS SPA_VERSION_26 #define SPA_VERSION_FAST_SNAP SPA_VERSION_27 #define SPA_VERSION_MULTI_REPLACE SPA_VERSION_28 #define SPA_VERSION_BEFORE_FEATURES SPA_VERSION_28 #define SPA_VERSION_FEATURES SPA_VERSION_5000 #define SPA_VERSION_IS_SUPPORTED(v) \ (((v) >= SPA_VERSION_INITIAL && (v) <= SPA_VERSION_BEFORE_FEATURES) || \ ((v) >= SPA_VERSION_FEATURES && (v) <= SPA_VERSION)) /* * ZPL version - rev'd whenever an incompatible on-disk format change * occurs. This is independent of SPA/DMU/ZAP versioning. You must * also update the version_table[] and help message in zfs_prop.c. * * When changing, be sure to teach GRUB how to read the new format! * See usr/src/grub/grub-0.97/stage2/{zfs-include/,fsys_zfs*} */ #define ZPL_VERSION_1 1ULL #define ZPL_VERSION_2 2ULL #define ZPL_VERSION_3 3ULL #define ZPL_VERSION_4 4ULL #define ZPL_VERSION_5 5ULL #define ZPL_VERSION ZPL_VERSION_5 #define ZPL_VERSION_STRING "5" #define ZPL_VERSION_INITIAL ZPL_VERSION_1 #define ZPL_VERSION_DIRENT_TYPE ZPL_VERSION_2 #define ZPL_VERSION_FUID ZPL_VERSION_3 #define ZPL_VERSION_NORMALIZATION ZPL_VERSION_3 #define ZPL_VERSION_SYSATTR ZPL_VERSION_3 #define ZPL_VERSION_USERSPACE ZPL_VERSION_4 #define ZPL_VERSION_SA ZPL_VERSION_5 /* Rewind request information */ #define ZPOOL_NO_REWIND 1 /* No policy - default behavior */ #define ZPOOL_NEVER_REWIND 2 /* Do not search for best txg or rewind */ #define ZPOOL_TRY_REWIND 4 /* Search for best txg, but do not rewind */ #define ZPOOL_DO_REWIND 8 /* Rewind to best txg w/in deferred frees */ #define ZPOOL_EXTREME_REWIND 16 /* Allow extreme measures to find best txg */ #define ZPOOL_REWIND_MASK 28 /* All the possible rewind bits */ #define ZPOOL_REWIND_POLICIES 31 /* All the possible policy bits */ typedef struct zpool_rewind_policy { uint32_t zrp_request; /* rewind behavior requested */ uint64_t zrp_maxmeta; /* max acceptable meta-data errors */ uint64_t zrp_maxdata; /* max acceptable data errors */ uint64_t zrp_txg; /* specific txg to load */ } zpool_rewind_policy_t; /* * The following are configuration names used in the nvlist describing a pool's * configuration. New on-disk names should be prefixed with ":" * (e.g. "org.open-zfs:") to avoid conflicting names being developed * independently. */ #define ZPOOL_CONFIG_VERSION "version" #define ZPOOL_CONFIG_POOL_NAME "name" #define ZPOOL_CONFIG_POOL_STATE "state" #define ZPOOL_CONFIG_POOL_TXG "txg" #define ZPOOL_CONFIG_POOL_GUID "pool_guid" #define ZPOOL_CONFIG_CREATE_TXG "create_txg" #define ZPOOL_CONFIG_TOP_GUID "top_guid" #define ZPOOL_CONFIG_VDEV_TREE "vdev_tree" #define ZPOOL_CONFIG_TYPE "type" #define ZPOOL_CONFIG_CHILDREN "children" #define ZPOOL_CONFIG_ID "id" #define ZPOOL_CONFIG_GUID "guid" #define ZPOOL_CONFIG_INDIRECT_OBJECT "com.delphix:indirect_object" #define ZPOOL_CONFIG_INDIRECT_BIRTHS "com.delphix:indirect_births" #define ZPOOL_CONFIG_PREV_INDIRECT_VDEV "com.delphix:prev_indirect_vdev" #define ZPOOL_CONFIG_PATH "path" #define ZPOOL_CONFIG_DEVID "devid" #define ZPOOL_CONFIG_METASLAB_ARRAY "metaslab_array" #define ZPOOL_CONFIG_METASLAB_SHIFT "metaslab_shift" #define ZPOOL_CONFIG_ASHIFT "ashift" #define ZPOOL_CONFIG_ASIZE "asize" #define ZPOOL_CONFIG_DTL "DTL" #define ZPOOL_CONFIG_SCAN_STATS "scan_stats" /* not stored on disk */ #define ZPOOL_CONFIG_REMOVAL_STATS "removal_stats" /* not stored on disk */ #define ZPOOL_CONFIG_VDEV_STATS "vdev_stats" /* not stored on disk */ #define ZPOOL_CONFIG_INDIRECT_SIZE "indirect_size" /* not stored on disk */ #define ZPOOL_CONFIG_WHOLE_DISK "whole_disk" #define ZPOOL_CONFIG_ERRCOUNT "error_count" #define ZPOOL_CONFIG_NOT_PRESENT "not_present" #define ZPOOL_CONFIG_SPARES "spares" #define ZPOOL_CONFIG_IS_SPARE "is_spare" #define ZPOOL_CONFIG_NPARITY "nparity" #define ZPOOL_CONFIG_HOSTID "hostid" #define ZPOOL_CONFIG_HOSTNAME "hostname" #define ZPOOL_CONFIG_LOADED_TIME "initial_load_time" #define ZPOOL_CONFIG_UNSPARE "unspare" #define ZPOOL_CONFIG_PHYS_PATH "phys_path" #define ZPOOL_CONFIG_IS_LOG "is_log" #define ZPOOL_CONFIG_L2CACHE "l2cache" #define ZPOOL_CONFIG_HOLE_ARRAY "hole_array" #define ZPOOL_CONFIG_VDEV_CHILDREN "vdev_children" #define ZPOOL_CONFIG_IS_HOLE "is_hole" #define ZPOOL_CONFIG_DDT_HISTOGRAM "ddt_histogram" #define ZPOOL_CONFIG_DDT_OBJ_STATS "ddt_object_stats" #define ZPOOL_CONFIG_DDT_STATS "ddt_stats" #define ZPOOL_CONFIG_SPLIT "splitcfg" #define ZPOOL_CONFIG_ORIG_GUID "orig_guid" #define ZPOOL_CONFIG_SPLIT_GUID "split_guid" #define ZPOOL_CONFIG_SPLIT_LIST "guid_list" #define ZPOOL_CONFIG_REMOVING "removing" #define ZPOOL_CONFIG_RESILVER_TXG "resilver_txg" #define ZPOOL_CONFIG_COMMENT "comment" #define ZPOOL_CONFIG_SUSPENDED "suspended" /* not stored on disk */ #define ZPOOL_CONFIG_TIMESTAMP "timestamp" /* not stored on disk */ #define ZPOOL_CONFIG_BOOTFS "bootfs" /* not stored on disk */ #define ZPOOL_CONFIG_MISSING_DEVICES "missing_vdevs" /* not stored on disk */ #define ZPOOL_CONFIG_LOAD_INFO "load_info" /* not stored on disk */ #define ZPOOL_CONFIG_REWIND_INFO "rewind_info" /* not stored on disk */ #define ZPOOL_CONFIG_UNSUP_FEAT "unsup_feat" /* not stored on disk */ #define ZPOOL_CONFIG_ENABLED_FEAT "enabled_feat" /* not stored on disk */ #define ZPOOL_CONFIG_CAN_RDONLY "can_rdonly" /* not stored on disk */ #define ZPOOL_CONFIG_FEATURES_FOR_READ "features_for_read" #define ZPOOL_CONFIG_FEATURE_STATS "feature_stats" /* not stored on disk */ #define ZPOOL_CONFIG_VDEV_TOP_ZAP "com.delphix:vdev_zap_top" #define ZPOOL_CONFIG_VDEV_LEAF_ZAP "com.delphix:vdev_zap_leaf" #define ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS "com.delphix:has_per_vdev_zaps" +#define ZPOOL_CONFIG_CACHEFILE "cachefile" /* not stored on disk */ /* * The persistent vdev state is stored as separate values rather than a single * 'vdev_state' entry. This is because a device can be in multiple states, such * as offline and degraded. */ #define ZPOOL_CONFIG_OFFLINE "offline" #define ZPOOL_CONFIG_FAULTED "faulted" #define ZPOOL_CONFIG_DEGRADED "degraded" #define ZPOOL_CONFIG_REMOVED "removed" #define ZPOOL_CONFIG_FRU "fru" #define ZPOOL_CONFIG_AUX_STATE "aux_state" /* Rewind policy parameters */ #define ZPOOL_REWIND_POLICY "rewind-policy" #define ZPOOL_REWIND_REQUEST "rewind-request" #define ZPOOL_REWIND_REQUEST_TXG "rewind-request-txg" #define ZPOOL_REWIND_META_THRESH "rewind-meta-thresh" #define ZPOOL_REWIND_DATA_THRESH "rewind-data-thresh" /* Rewind data discovered */ #define ZPOOL_CONFIG_LOAD_TIME "rewind_txg_ts" #define ZPOOL_CONFIG_LOAD_DATA_ERRORS "verify_data_errors" #define ZPOOL_CONFIG_REWIND_TIME "seconds_of_rewind" #define VDEV_TYPE_ROOT "root" #define VDEV_TYPE_MIRROR "mirror" #define VDEV_TYPE_REPLACING "replacing" #define VDEV_TYPE_RAIDZ "raidz" #define VDEV_TYPE_DISK "disk" #define VDEV_TYPE_FILE "file" #define VDEV_TYPE_MISSING "missing" #define VDEV_TYPE_HOLE "hole" #define VDEV_TYPE_SPARE "spare" #define VDEV_TYPE_LOG "log" #define VDEV_TYPE_L2CACHE "l2cache" #define VDEV_TYPE_INDIRECT "indirect" /* VDEV_TOP_ZAP_* are used in top-level vdev ZAP objects. */ #define VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM \ "com.delphix:indirect_obsolete_sm" #define VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE \ "com.delphix:obsolete_counts_are_precise" /* * This is needed in userland to report the minimum necessary device size. * * Note that the zfs test suite uses 64MB vdevs. */ #define SPA_MINDEVSIZE (64ULL << 20) /* * Set if the fragmentation has not yet been calculated. This can happen * because the space maps have not been upgraded or the histogram feature * is not enabled. */ #define ZFS_FRAG_INVALID UINT64_MAX /* * The location of the pool configuration repository, shared between kernel and * userland. */ #define ZPOOL_CACHE "/boot/zfs/zpool.cache" /* * vdev states are ordered from least to most healthy. * A vdev that's CANT_OPEN or below is considered unusable. */ typedef enum vdev_state { VDEV_STATE_UNKNOWN = 0, /* Uninitialized vdev */ VDEV_STATE_CLOSED, /* Not currently open */ VDEV_STATE_OFFLINE, /* Not allowed to open */ VDEV_STATE_REMOVED, /* Explicitly removed from system */ VDEV_STATE_CANT_OPEN, /* Tried to open, but failed */ VDEV_STATE_FAULTED, /* External request to fault device */ VDEV_STATE_DEGRADED, /* Replicated vdev with unhealthy kids */ VDEV_STATE_HEALTHY /* Presumed good */ } vdev_state_t; #define VDEV_STATE_ONLINE VDEV_STATE_HEALTHY /* * vdev aux states. When a vdev is in the CANT_OPEN state, the aux field * of the vdev stats structure uses these constants to distinguish why. */ typedef enum vdev_aux { VDEV_AUX_NONE, /* no error */ VDEV_AUX_OPEN_FAILED, /* ldi_open_*() or vn_open() failed */ VDEV_AUX_CORRUPT_DATA, /* bad label or disk contents */ VDEV_AUX_NO_REPLICAS, /* insufficient number of replicas */ VDEV_AUX_BAD_GUID_SUM, /* vdev guid sum doesn't match */ VDEV_AUX_TOO_SMALL, /* vdev size is too small */ VDEV_AUX_BAD_LABEL, /* the label is OK but invalid */ VDEV_AUX_VERSION_NEWER, /* on-disk version is too new */ VDEV_AUX_VERSION_OLDER, /* on-disk version is too old */ VDEV_AUX_UNSUP_FEAT, /* unsupported features */ VDEV_AUX_SPARED, /* hot spare used in another pool */ VDEV_AUX_ERR_EXCEEDED, /* too many errors */ VDEV_AUX_IO_FAILURE, /* experienced I/O failure */ VDEV_AUX_BAD_LOG, /* cannot read log chain(s) */ VDEV_AUX_EXTERNAL, /* external diagnosis */ VDEV_AUX_SPLIT_POOL, /* vdev was split off into another pool */ - VDEV_AUX_ASHIFT_TOO_BIG /* vdev's min block size is too large */ + VDEV_AUX_ASHIFT_TOO_BIG, /* vdev's min block size is too large */ + VDEV_AUX_CHILDREN_OFFLINE /* all children are offline */ } vdev_aux_t; /* * pool state. The following states are written to disk as part of the normal * SPA lifecycle: ACTIVE, EXPORTED, DESTROYED, SPARE, L2CACHE. The remaining * states are software abstractions used at various levels to communicate * pool state. */ typedef enum pool_state { POOL_STATE_ACTIVE = 0, /* In active use */ POOL_STATE_EXPORTED, /* Explicitly exported */ POOL_STATE_DESTROYED, /* Explicitly destroyed */ POOL_STATE_SPARE, /* Reserved for hot spare use */ POOL_STATE_L2CACHE, /* Level 2 ARC device */ POOL_STATE_UNINITIALIZED, /* Internal spa_t state */ POOL_STATE_UNAVAIL, /* Internal libzfs state */ POOL_STATE_POTENTIALLY_ACTIVE /* Internal libzfs state */ } pool_state_t; /* * Scan Functions. */ typedef enum pool_scan_func { POOL_SCAN_NONE, POOL_SCAN_SCRUB, POOL_SCAN_RESILVER, POOL_SCAN_FUNCS } pool_scan_func_t; /* * Used to control scrub pause and resume. */ typedef enum pool_scrub_cmd { POOL_SCRUB_NORMAL = 0, POOL_SCRUB_PAUSE, POOL_SCRUB_FLAGS_END } pool_scrub_cmd_t; /* * ZIO types. Needed to interpret vdev statistics below. */ typedef enum zio_type { ZIO_TYPE_NULL = 0, ZIO_TYPE_READ, ZIO_TYPE_WRITE, ZIO_TYPE_FREE, ZIO_TYPE_CLAIM, ZIO_TYPE_IOCTL, ZIO_TYPES } zio_type_t; /* * Pool statistics. Note: all fields should be 64-bit because this * is passed between kernel and userland as an nvlist uint64 array. */ typedef struct pool_scan_stat { /* values stored on disk */ uint64_t pss_func; /* pool_scan_func_t */ uint64_t pss_state; /* dsl_scan_state_t */ uint64_t pss_start_time; /* scan start time */ uint64_t pss_end_time; /* scan end time */ uint64_t pss_to_examine; /* total bytes to scan */ uint64_t pss_examined; /* total examined bytes */ uint64_t pss_to_process; /* total bytes to process */ uint64_t pss_processed; /* total processed bytes */ uint64_t pss_errors; /* scan errors */ /* values not stored on disk */ uint64_t pss_pass_exam; /* examined bytes per scan pass */ uint64_t pss_pass_start; /* start time of a scan pass */ uint64_t pss_pass_scrub_pause; /* pause time of a scurb pass */ /* cumulative time scrub spent paused, needed for rate calculation */ uint64_t pss_pass_scrub_spent_paused; } pool_scan_stat_t; typedef struct pool_removal_stat { uint64_t prs_state; /* dsl_scan_state_t */ uint64_t prs_removing_vdev; uint64_t prs_start_time; uint64_t prs_end_time; uint64_t prs_to_copy; /* bytes that need to be copied */ uint64_t prs_copied; /* bytes copied so far */ /* * bytes of memory used for indirect mappings. * This includes all removed vdevs. */ uint64_t prs_mapping_memory; } pool_removal_stat_t; typedef enum dsl_scan_state { DSS_NONE, DSS_SCANNING, DSS_FINISHED, DSS_CANCELED, DSS_NUM_STATES } dsl_scan_state_t; /* * Vdev statistics. Note: all fields should be 64-bit because this * is passed between kernel and userland as an nvlist uint64 array. */ typedef struct vdev_stat { hrtime_t vs_timestamp; /* time since vdev load */ uint64_t vs_state; /* vdev state */ uint64_t vs_aux; /* see vdev_aux_t */ uint64_t vs_alloc; /* space allocated */ uint64_t vs_space; /* total capacity */ uint64_t vs_dspace; /* deflated capacity */ uint64_t vs_rsize; /* replaceable dev size */ uint64_t vs_esize; /* expandable dev size */ uint64_t vs_ops[ZIO_TYPES]; /* operation count */ uint64_t vs_bytes[ZIO_TYPES]; /* bytes read/written */ uint64_t vs_read_errors; /* read errors */ uint64_t vs_write_errors; /* write errors */ uint64_t vs_checksum_errors; /* checksum errors */ uint64_t vs_self_healed; /* self-healed bytes */ uint64_t vs_scan_removing; /* removing? */ uint64_t vs_scan_processed; /* scan processed bytes */ uint64_t vs_configured_ashift; /* TLV vdev_ashift */ uint64_t vs_logical_ashift; /* vdev_logical_ashift */ uint64_t vs_physical_ashift; /* vdev_physical_ashift */ uint64_t vs_fragmentation; /* device fragmentation */ } vdev_stat_t; #define VDEV_STAT_VALID(field, uint64_t_field_count) \ ((uint64_t_field_count * sizeof(uint64_t)) >= \ (offsetof(vdev_stat_t, field) + sizeof(((vdev_stat_t *)NULL)->field))) /* * DDT statistics. Note: all fields should be 64-bit because this * is passed between kernel and userland as an nvlist uint64 array. */ typedef struct ddt_object { uint64_t ddo_count; /* number of elments in ddt */ uint64_t ddo_dspace; /* size of ddt on disk */ uint64_t ddo_mspace; /* size of ddt in-core */ } ddt_object_t; typedef struct ddt_stat { uint64_t dds_blocks; /* blocks */ uint64_t dds_lsize; /* logical size */ uint64_t dds_psize; /* physical size */ uint64_t dds_dsize; /* deflated allocated size */ uint64_t dds_ref_blocks; /* referenced blocks */ uint64_t dds_ref_lsize; /* referenced lsize * refcnt */ uint64_t dds_ref_psize; /* referenced psize * refcnt */ uint64_t dds_ref_dsize; /* referenced dsize * refcnt */ } ddt_stat_t; typedef struct ddt_histogram { ddt_stat_t ddh_stat[64]; /* power-of-two histogram buckets */ } ddt_histogram_t; #define ZVOL_DRIVER "zvol" #define ZFS_DRIVER "zfs" #define ZFS_DEV_NAME "zfs" #define ZFS_DEV "/dev/" ZFS_DEV_NAME #define ZFS_DISK_ROOT "/dev/dsk" #define ZFS_DISK_ROOTD ZFS_DISK_ROOT "/" #define ZFS_RDISK_ROOT "/dev/rdsk" #define ZFS_RDISK_ROOTD ZFS_RDISK_ROOT "/" /* general zvol path */ #define ZVOL_DIR "/dev/zvol" /* expansion */ #define ZVOL_PSEUDO_DEV "/devices/pseudo/zfs@0:" /* for dump and swap */ #define ZVOL_FULL_DEV_DIR ZVOL_DIR "/dsk/" #define ZVOL_FULL_RDEV_DIR ZVOL_DIR "/rdsk/" #define ZVOL_PROP_NAME "name" #define ZVOL_DEFAULT_BLOCKSIZE 8192 /* * /dev/zfs ioctl numbers. */ typedef enum zfs_ioc { ZFS_IOC_FIRST = 0, ZFS_IOC_POOL_CREATE = ZFS_IOC_FIRST, ZFS_IOC_POOL_DESTROY, ZFS_IOC_POOL_IMPORT, ZFS_IOC_POOL_EXPORT, ZFS_IOC_POOL_CONFIGS, ZFS_IOC_POOL_STATS, ZFS_IOC_POOL_TRYIMPORT, ZFS_IOC_POOL_SCAN, ZFS_IOC_POOL_FREEZE, ZFS_IOC_POOL_UPGRADE, ZFS_IOC_POOL_GET_HISTORY, ZFS_IOC_VDEV_ADD, ZFS_IOC_VDEV_REMOVE, ZFS_IOC_VDEV_SET_STATE, ZFS_IOC_VDEV_ATTACH, ZFS_IOC_VDEV_DETACH, ZFS_IOC_VDEV_SETPATH, ZFS_IOC_VDEV_SETFRU, ZFS_IOC_OBJSET_STATS, ZFS_IOC_OBJSET_ZPLPROPS, ZFS_IOC_DATASET_LIST_NEXT, ZFS_IOC_SNAPSHOT_LIST_NEXT, ZFS_IOC_SET_PROP, ZFS_IOC_CREATE, ZFS_IOC_DESTROY, ZFS_IOC_ROLLBACK, ZFS_IOC_RENAME, ZFS_IOC_RECV, ZFS_IOC_SEND, ZFS_IOC_INJECT_FAULT, ZFS_IOC_CLEAR_FAULT, ZFS_IOC_INJECT_LIST_NEXT, ZFS_IOC_ERROR_LOG, ZFS_IOC_CLEAR, ZFS_IOC_PROMOTE, ZFS_IOC_DESTROY_SNAPS, ZFS_IOC_SNAPSHOT, ZFS_IOC_DSOBJ_TO_DSNAME, ZFS_IOC_OBJ_TO_PATH, ZFS_IOC_POOL_SET_PROPS, ZFS_IOC_POOL_GET_PROPS, ZFS_IOC_SET_FSACL, ZFS_IOC_GET_FSACL, ZFS_IOC_SHARE, ZFS_IOC_INHERIT_PROP, ZFS_IOC_SMB_ACL, ZFS_IOC_USERSPACE_ONE, ZFS_IOC_USERSPACE_MANY, ZFS_IOC_USERSPACE_UPGRADE, ZFS_IOC_HOLD, ZFS_IOC_RELEASE, ZFS_IOC_GET_HOLDS, ZFS_IOC_OBJSET_RECVD_PROPS, ZFS_IOC_VDEV_SPLIT, ZFS_IOC_NEXT_OBJ, ZFS_IOC_DIFF, ZFS_IOC_TMP_SNAPSHOT, ZFS_IOC_OBJ_TO_STATS, ZFS_IOC_JAIL, ZFS_IOC_UNJAIL, ZFS_IOC_POOL_REGUID, ZFS_IOC_SPACE_WRITTEN, ZFS_IOC_SPACE_SNAPS, ZFS_IOC_SEND_PROGRESS, ZFS_IOC_POOL_REOPEN, ZFS_IOC_LOG_HISTORY, ZFS_IOC_SEND_NEW, ZFS_IOC_SEND_SPACE, ZFS_IOC_CLONE, ZFS_IOC_BOOKMARK, ZFS_IOC_GET_BOOKMARKS, ZFS_IOC_DESTROY_BOOKMARKS, #ifdef __FreeBSD__ ZFS_IOC_NEXTBOOT, #endif ZFS_IOC_CHANNEL_PROGRAM, ZFS_IOC_REMAP, ZFS_IOC_LAST } zfs_ioc_t; /* * Internal SPA load state. Used by FMA diagnosis engine. */ typedef enum { SPA_LOAD_NONE, /* no load in progress */ SPA_LOAD_OPEN, /* normal open */ SPA_LOAD_IMPORT, /* import in progress */ SPA_LOAD_TRYIMPORT, /* tryimport in progress */ SPA_LOAD_RECOVER, /* recovery requested */ SPA_LOAD_ERROR, /* load failed */ SPA_LOAD_CREATE /* creation in progress */ } spa_load_state_t; /* * Bookmark name values. */ #define ZPOOL_ERR_LIST "error list" #define ZPOOL_ERR_DATASET "dataset" #define ZPOOL_ERR_OBJECT "object" #define HIS_MAX_RECORD_LEN (MAXPATHLEN + MAXPATHLEN + 1) /* * The following are names used in the nvlist describing * the pool's history log. */ #define ZPOOL_HIST_RECORD "history record" #define ZPOOL_HIST_TIME "history time" #define ZPOOL_HIST_CMD "history command" #define ZPOOL_HIST_WHO "history who" #define ZPOOL_HIST_ZONE "history zone" #define ZPOOL_HIST_HOST "history hostname" #define ZPOOL_HIST_TXG "history txg" #define ZPOOL_HIST_INT_EVENT "history internal event" #define ZPOOL_HIST_INT_STR "history internal str" #define ZPOOL_HIST_INT_NAME "internal_name" #define ZPOOL_HIST_IOCTL "ioctl" #define ZPOOL_HIST_INPUT_NVL "in_nvl" #define ZPOOL_HIST_OUTPUT_NVL "out_nvl" #define ZPOOL_HIST_DSNAME "dsname" #define ZPOOL_HIST_DSID "dsid" #define ZPOOL_HIST_ERRNO "errno" /* * Flags for ZFS_IOC_VDEV_SET_STATE */ #define ZFS_ONLINE_CHECKREMOVE 0x1 #define ZFS_ONLINE_UNSPARE 0x2 #define ZFS_ONLINE_FORCEFAULT 0x4 #define ZFS_ONLINE_EXPAND 0x8 #define ZFS_OFFLINE_TEMPORARY 0x1 /* * Flags for ZFS_IOC_POOL_IMPORT */ #define ZFS_IMPORT_NORMAL 0x0 #define ZFS_IMPORT_VERBATIM 0x1 #define ZFS_IMPORT_ANY_HOST 0x2 #define ZFS_IMPORT_MISSING_LOG 0x4 #define ZFS_IMPORT_ONLY 0x8 /* * Channel program argument/return nvlist keys and defaults. */ #define ZCP_ARG_PROGRAM "program" #define ZCP_ARG_ARGLIST "arg" #define ZCP_ARG_SYNC "sync" #define ZCP_ARG_INSTRLIMIT "instrlimit" #define ZCP_ARG_MEMLIMIT "memlimit" #define ZCP_ARG_CLIARGV "argv" #define ZCP_RET_ERROR "error" #define ZCP_RET_RETURN "return" #define ZCP_DEFAULT_INSTRLIMIT (10 * 1000 * 1000) #define ZCP_MAX_INSTRLIMIT (10 * ZCP_DEFAULT_INSTRLIMIT) #define ZCP_DEFAULT_MEMLIMIT (10 * 1024 * 1024) #define ZCP_MAX_MEMLIMIT (10 * ZCP_DEFAULT_MEMLIMIT) /* * Sysevent payload members. ZFS will generate the following sysevents with the * given payloads: * * ESC_ZFS_RESILVER_START * ESC_ZFS_RESILVER_END * ESC_ZFS_POOL_DESTROY * ESC_ZFS_POOL_REGUID * * ZFS_EV_POOL_NAME DATA_TYPE_STRING * ZFS_EV_POOL_GUID DATA_TYPE_UINT64 * * ESC_ZFS_VDEV_REMOVE * ESC_ZFS_VDEV_CLEAR * ESC_ZFS_VDEV_CHECK * * ZFS_EV_POOL_NAME DATA_TYPE_STRING * ZFS_EV_POOL_GUID DATA_TYPE_UINT64 * ZFS_EV_VDEV_PATH DATA_TYPE_STRING (optional) * ZFS_EV_VDEV_GUID DATA_TYPE_UINT64 * * ESC_ZFS_HISTORY_EVENT * * ZFS_EV_POOL_NAME DATA_TYPE_STRING * ZFS_EV_POOL_GUID DATA_TYPE_UINT64 * ZFS_EV_HIST_TIME DATA_TYPE_UINT64 (optional) * ZFS_EV_HIST_CMD DATA_TYPE_STRING (optional) * ZFS_EV_HIST_WHO DATA_TYPE_UINT64 (optional) * ZFS_EV_HIST_ZONE DATA_TYPE_STRING (optional) * ZFS_EV_HIST_HOST DATA_TYPE_STRING (optional) * ZFS_EV_HIST_TXG DATA_TYPE_UINT64 (optional) * ZFS_EV_HIST_INT_EVENT DATA_TYPE_UINT64 (optional) * ZFS_EV_HIST_INT_STR DATA_TYPE_STRING (optional) * ZFS_EV_HIST_INT_NAME DATA_TYPE_STRING (optional) * ZFS_EV_HIST_IOCTL DATA_TYPE_STRING (optional) * ZFS_EV_HIST_DSNAME DATA_TYPE_STRING (optional) * ZFS_EV_HIST_DSID DATA_TYPE_UINT64 (optional) * * The ZFS_EV_HIST_* members will correspond to the ZPOOL_HIST_* members in the * history log nvlist. The keynames will be free of any spaces or other * characters that could be potentially unexpected to consumers of the * sysevents. */ #define ZFS_EV_POOL_NAME "pool_name" #define ZFS_EV_POOL_GUID "pool_guid" #define ZFS_EV_VDEV_PATH "vdev_path" #define ZFS_EV_VDEV_GUID "vdev_guid" #define ZFS_EV_HIST_TIME "history_time" #define ZFS_EV_HIST_CMD "history_command" #define ZFS_EV_HIST_WHO "history_who" #define ZFS_EV_HIST_ZONE "history_zone" #define ZFS_EV_HIST_HOST "history_hostname" #define ZFS_EV_HIST_TXG "history_txg" #define ZFS_EV_HIST_INT_EVENT "history_internal_event" #define ZFS_EV_HIST_INT_STR "history_internal_str" #define ZFS_EV_HIST_INT_NAME "history_internal_name" #define ZFS_EV_HIST_IOCTL "history_ioctl" #define ZFS_EV_HIST_DSNAME "history_dsname" #define ZFS_EV_HIST_DSID "history_dsid" #ifdef __cplusplus } #endif #endif /* _SYS_FS_ZFS_H */ Index: head/sys/cddl/contrib/opensolaris =================================================================== --- head/sys/cddl/contrib/opensolaris (revision 329797) +++ head/sys/cddl/contrib/opensolaris (revision 329798) Property changes on: head/sys/cddl/contrib/opensolaris ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /vendor-sys/illumos/dist:r329793,329795