Index: head/stand/efi/include/efilib.h =================================================================== --- head/stand/efi/include/efilib.h (revision 329267) +++ head/stand/efi/include/efilib.h (revision 329268) @@ -1,109 +1,112 @@ /*- * Copyright (c) 2000 Doug Rabson * Copyright (c) 2006 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _LOADER_EFILIB_H #define _LOADER_EFILIB_H #include #include #include extern EFI_HANDLE IH; extern EFI_SYSTEM_TABLE *ST; extern EFI_BOOT_SERVICES *BS; extern EFI_RUNTIME_SERVICES *RS; extern struct devsw efipart_fddev; extern struct devsw efipart_cddev; extern struct devsw efipart_hddev; extern struct devsw efinet_dev; extern struct netif_driver efinetif; /* EFI block device data, included here to help efi_zfs_probe() */ typedef STAILQ_HEAD(pdinfo_list, pdinfo) pdinfo_list_t; typedef struct pdinfo { STAILQ_ENTRY(pdinfo) pd_link; /* link in device list */ pdinfo_list_t pd_part; /* list of partitions */ EFI_HANDLE pd_handle; EFI_HANDLE pd_alias; EFI_DEVICE_PATH *pd_devpath; EFI_BLOCK_IO *pd_blkio; uint32_t pd_unit; /* unit number */ uint32_t pd_open; /* reference counter */ void *pd_bcache; /* buffer cache data */ } pdinfo_t; pdinfo_list_t *efiblk_get_pdinfo_list(struct devsw *dev); pdinfo_t *efiblk_get_pdinfo(struct devdesc *dev); void *efi_get_table(EFI_GUID *tbl); int efi_getdev(void **vdev, const char *devspec, const char **path); char *efi_fmtdev(void *vdev); int efi_setcurrdev(struct env_var *ev, int flags, const void *value); int efi_register_handles(struct devsw *, EFI_HANDLE *, EFI_HANDLE *, int); EFI_HANDLE efi_find_handle(struct devsw *, int); int efi_handle_lookup(EFI_HANDLE, struct devsw **, int *, uint64_t *); int efi_handle_update_dev(EFI_HANDLE, struct devsw *, int, uint64_t); EFI_DEVICE_PATH *efi_lookup_image_devpath(EFI_HANDLE); EFI_DEVICE_PATH *efi_lookup_devpath(EFI_HANDLE); EFI_HANDLE efi_devpath_handle(EFI_DEVICE_PATH *); EFI_DEVICE_PATH *efi_devpath_last_node(EFI_DEVICE_PATH *); EFI_DEVICE_PATH *efi_devpath_trim(EFI_DEVICE_PATH *); bool efi_devpath_match(EFI_DEVICE_PATH *, EFI_DEVICE_PATH *); bool efi_devpath_is_prefix(EFI_DEVICE_PATH *, EFI_DEVICE_PATH *); CHAR16 *efi_devpath_name(EFI_DEVICE_PATH *); void efi_free_devpath_name(CHAR16 *); int efi_status_to_errno(EFI_STATUS); EFI_STATUS errno_to_efi_status(int errno); void efi_time_init(void); void efi_time_fini(void); EFI_STATUS efi_main(EFI_HANDLE Ximage, EFI_SYSTEM_TABLE* Xsystab); EFI_STATUS main(int argc, CHAR16 *argv[]); void efi_exit(EFI_STATUS status) __dead2; void delay(int usecs); /* EFI environment initialization. */ void efi_init_environment(void); /* CHAR16 utility functions. */ int wcscmp(CHAR16 *, CHAR16 *); void cpy8to16(const char *, CHAR16 *, size_t); void cpy16to8(const CHAR16 *, char *, size_t); +/* efipart.c */ +int efipart_inithandles(void); + #endif /* _LOADER_EFILIB_H */ Index: head/stand/efi/libefi/efipart.c =================================================================== --- head/stand/efi/libefi/efipart.c (revision 329267) +++ head/stand/efi/libefi/efipart.c (revision 329268) @@ -1,1083 +1,1075 @@ /*- * Copyright (c) 2010 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include static EFI_GUID blkio_guid = BLOCK_IO_PROTOCOL; static int efipart_initfd(void); static int efipart_initcd(void); static int efipart_inithd(void); static int efipart_strategy(void *, int, daddr_t, size_t, char *, size_t *); static int efipart_realstrategy(void *, int, daddr_t, size_t, char *, size_t *); static int efipart_open(struct open_file *, ...); static int efipart_close(struct open_file *); static int efipart_ioctl(struct open_file *, u_long, void *); static int efipart_printfd(int); static int efipart_printcd(int); static int efipart_printhd(int); /* EISA PNP ID's for floppy controllers */ #define PNP0604 0x604 #define PNP0700 0x700 #define PNP0701 0x701 struct devsw efipart_fddev = { .dv_name = "fd", .dv_type = DEVT_FD, .dv_init = efipart_initfd, .dv_strategy = efipart_strategy, .dv_open = efipart_open, .dv_close = efipart_close, .dv_ioctl = efipart_ioctl, .dv_print = efipart_printfd, .dv_cleanup = NULL }; struct devsw efipart_cddev = { .dv_name = "cd", .dv_type = DEVT_CD, .dv_init = efipart_initcd, .dv_strategy = efipart_strategy, .dv_open = efipart_open, .dv_close = efipart_close, .dv_ioctl = efipart_ioctl, .dv_print = efipart_printcd, .dv_cleanup = NULL }; struct devsw efipart_hddev = { .dv_name = "disk", .dv_type = DEVT_DISK, .dv_init = efipart_inithd, .dv_strategy = efipart_strategy, .dv_open = efipart_open, .dv_close = efipart_close, .dv_ioctl = efipart_ioctl, .dv_print = efipart_printhd, .dv_cleanup = NULL }; static pdinfo_list_t fdinfo; static pdinfo_list_t cdinfo; static pdinfo_list_t hdinfo; static EFI_HANDLE *efipart_handles = NULL; static UINTN efipart_nhandles = 0; pdinfo_list_t * efiblk_get_pdinfo_list(struct devsw *dev) { if (dev->dv_type == DEVT_DISK) return (&hdinfo); if (dev->dv_type == DEVT_CD) return (&cdinfo); if (dev->dv_type == DEVT_FD) return (&fdinfo); return (NULL); } pdinfo_t * efiblk_get_pdinfo(struct devdesc *dev) { pdinfo_list_t *pdi; pdinfo_t *pd = NULL; pdi = efiblk_get_pdinfo_list(dev->d_dev); if (pdi == NULL) return (pd); STAILQ_FOREACH(pd, pdi, pd_link) { if (pd->pd_unit == dev->d_unit) return (pd); } return (pd); } static int efiblk_pdinfo_count(pdinfo_list_t *pdi) { pdinfo_t *pd; int i = 0; STAILQ_FOREACH(pd, pdi, pd_link) { i++; } return (i); } -static int +int efipart_inithandles(void) { UINTN sz; EFI_HANDLE *hin; EFI_STATUS status; if (efipart_nhandles != 0) { free(efipart_handles); efipart_handles = NULL; efipart_nhandles = 0; } sz = 0; hin = NULL; status = BS->LocateHandle(ByProtocol, &blkio_guid, 0, &sz, hin); if (status == EFI_BUFFER_TOO_SMALL) { hin = malloc(sz); status = BS->LocateHandle(ByProtocol, &blkio_guid, 0, &sz, hin); if (EFI_ERROR(status)) free(hin); } if (EFI_ERROR(status)) return (efi_status_to_errno(status)); efipart_handles = hin; efipart_nhandles = sz; +#ifdef EFIPART_DEBUG + printf("%s: Got %d BLOCK IO MEDIA handle(s)\n", __func__, + efipart_nhandles); +#endif return (0); } static ACPI_HID_DEVICE_PATH * efipart_floppy(EFI_DEVICE_PATH *node) { ACPI_HID_DEVICE_PATH *acpi; if (DevicePathType(node) == ACPI_DEVICE_PATH && DevicePathSubType(node) == ACPI_DP) { acpi = (ACPI_HID_DEVICE_PATH *) node; if (acpi->HID == EISA_PNP_ID(PNP0604) || acpi->HID == EISA_PNP_ID(PNP0700) || acpi->HID == EISA_PNP_ID(PNP0701)) { return (acpi); } } return (NULL); } /* * Determine if the provided device path is hdd. * * There really is no simple fool proof way to classify the devices. * Since we do build three lists of devices - floppy, cd and hdd, we * will try to see if the device is floppy or cd, and list anything else * as hdd. */ static bool efipart_hdd(EFI_DEVICE_PATH *dp) { unsigned i, nin; EFI_DEVICE_PATH *devpath, *node; EFI_BLOCK_IO *blkio; EFI_STATUS status; if (dp == NULL) return (false); if ((node = efi_devpath_last_node(dp)) == NULL) return (false); if (efipart_floppy(node) != NULL) return (false); /* * Test every EFI BLOCK IO handle to make sure dp is not device path * for CD/DVD. */ nin = efipart_nhandles / sizeof (*efipart_handles); for (i = 0; i < nin; i++) { devpath = efi_lookup_devpath(efipart_handles[i]); if (devpath == NULL) return (false); /* Only continue testing when dp is prefix in devpath. */ if (!efi_devpath_is_prefix(dp, devpath)) continue; /* * The device path has to have last node describing the * device, or we can not test the type. */ if ((node = efi_devpath_last_node(devpath)) == NULL) return (false); if (DevicePathType(node) == MEDIA_DEVICE_PATH && DevicePathSubType(node) == MEDIA_CDROM_DP) { return (false); } /* Make sure we do have the media. */ status = BS->HandleProtocol(efipart_handles[i], &blkio_guid, (void **)&blkio); if (EFI_ERROR(status)) return (false); /* USB or SATA cd without the media. */ if (blkio->Media->RemovableMedia && !blkio->Media->MediaPresent) { return (false); } /* * We assume the block size 512 or greater power of 2. * iPXE is known to insert stub BLOCK IO device with * BlockSize 1. */ if (blkio->Media->BlockSize < 512 || !powerof2(blkio->Media->BlockSize)) { return (false); } } return (true); } /* * Add or update entries with new handle data. */ static int efipart_fdinfo_add(EFI_HANDLE handle, uint32_t uid, EFI_DEVICE_PATH *devpath) { pdinfo_t *fd; fd = calloc(1, sizeof(pdinfo_t)); if (fd == NULL) { printf("Failed to register floppy %d, out of memory\n", uid); return (ENOMEM); } STAILQ_INIT(&fd->pd_part); fd->pd_unit = uid; fd->pd_handle = handle; fd->pd_devpath = devpath; STAILQ_INSERT_TAIL(&fdinfo, fd, pd_link); return (0); } static void efipart_updatefd(void) { EFI_DEVICE_PATH *devpath, *node; ACPI_HID_DEVICE_PATH *acpi; int i, nin; nin = efipart_nhandles / sizeof (*efipart_handles); for (i = 0; i < nin; i++) { devpath = efi_lookup_devpath(efipart_handles[i]); if (devpath == NULL) continue; if ((node = efi_devpath_last_node(devpath)) == NULL) continue; if ((acpi = efipart_floppy(node)) != NULL) { efipart_fdinfo_add(efipart_handles[i], acpi->UID, devpath); } } } static int efipart_initfd(void) { - int rv; - rv = efipart_inithandles(); - if (rv != 0) - return (rv); STAILQ_INIT(&fdinfo); efipart_updatefd(); bcache_add_dev(efiblk_pdinfo_count(&fdinfo)); return (0); } /* * Add or update entries with new handle data. */ static int efipart_cdinfo_add(EFI_HANDLE handle, EFI_HANDLE alias, EFI_DEVICE_PATH *devpath) { int unit; pdinfo_t *cd; pdinfo_t *pd; unit = 0; STAILQ_FOREACH(pd, &cdinfo, pd_link) { if (efi_devpath_match(pd->pd_devpath, devpath) == true) { pd->pd_handle = handle; pd->pd_alias = alias; return (0); } unit++; } cd = calloc(1, sizeof(pdinfo_t)); if (cd == NULL) { printf("Failed to add cd %d, out of memory\n", unit); return (ENOMEM); } STAILQ_INIT(&cd->pd_part); cd->pd_handle = handle; cd->pd_unit = unit; cd->pd_alias = alias; cd->pd_devpath = devpath; STAILQ_INSERT_TAIL(&cdinfo, cd, pd_link); return (0); } static void efipart_updatecd(void) { int i, nin; EFI_DEVICE_PATH *devpath, *devpathcpy, *tmpdevpath, *node; EFI_HANDLE handle; EFI_BLOCK_IO *blkio; EFI_STATUS status; nin = efipart_nhandles / sizeof (*efipart_handles); for (i = 0; i < nin; i++) { devpath = efi_lookup_devpath(efipart_handles[i]); if (devpath == NULL) continue; if ((node = efi_devpath_last_node(devpath)) == NULL) continue; if (efipart_floppy(node) != NULL) continue; if (efipart_hdd(devpath)) continue; status = BS->HandleProtocol(efipart_handles[i], &blkio_guid, (void **)&blkio); if (EFI_ERROR(status)) continue; /* * If we come across a logical partition of subtype CDROM * it doesn't refer to the CD filesystem itself, but rather * to any usable El Torito boot image on it. In this case * we try to find the parent device and add that instead as * that will be the CD filesystem. */ if (DevicePathType(node) == MEDIA_DEVICE_PATH && DevicePathSubType(node) == MEDIA_CDROM_DP) { devpathcpy = efi_devpath_trim(devpath); if (devpathcpy == NULL) continue; tmpdevpath = devpathcpy; status = BS->LocateDevicePath(&blkio_guid, &tmpdevpath, &handle); free(devpathcpy); if (EFI_ERROR(status)) continue; devpath = efi_lookup_devpath(handle); efipart_cdinfo_add(handle, efipart_handles[i], devpath); continue; } if (DevicePathType(node) == MESSAGING_DEVICE_PATH && DevicePathSubType(node) == MSG_ATAPI_DP) { efipart_cdinfo_add(efipart_handles[i], NULL, devpath); continue; } /* USB or SATA cd without the media. */ if (blkio->Media->RemovableMedia && !blkio->Media->MediaPresent) { efipart_cdinfo_add(efipart_handles[i], NULL, devpath); } } } static int efipart_initcd(void) { - int rv; - rv = efipart_inithandles(); - if (rv != 0) - return (rv); STAILQ_INIT(&cdinfo); efipart_updatecd(); bcache_add_dev(efiblk_pdinfo_count(&cdinfo)); return (0); } static int efipart_hdinfo_add(EFI_HANDLE disk_handle, EFI_HANDLE part_handle) { EFI_DEVICE_PATH *disk_devpath, *part_devpath; HARDDRIVE_DEVICE_PATH *node; int unit; pdinfo_t *hd, *pd, *last; disk_devpath = efi_lookup_devpath(disk_handle); if (disk_devpath == NULL) return (ENOENT); if (part_handle != NULL) { part_devpath = efi_lookup_devpath(part_handle); if (part_devpath == NULL) return (ENOENT); node = (HARDDRIVE_DEVICE_PATH *) efi_devpath_last_node(part_devpath); if (node == NULL) return (ENOENT); /* This should not happen. */ } else { part_devpath = NULL; node = NULL; } pd = calloc(1, sizeof(pdinfo_t)); if (pd == NULL) { printf("Failed to add disk, out of memory\n"); return (ENOMEM); } STAILQ_INIT(&pd->pd_part); STAILQ_FOREACH(hd, &hdinfo, pd_link) { if (efi_devpath_match(hd->pd_devpath, disk_devpath) == true) { if (part_devpath == NULL) return (0); /* Add the partition. */ pd->pd_handle = part_handle; pd->pd_unit = node->PartitionNumber; pd->pd_devpath = part_devpath; STAILQ_INSERT_TAIL(&hd->pd_part, pd, pd_link); return (0); } } last = STAILQ_LAST(&hdinfo, pdinfo, pd_link); if (last != NULL) unit = last->pd_unit + 1; else unit = 0; /* Add the disk. */ hd = pd; hd->pd_handle = disk_handle; hd->pd_unit = unit; hd->pd_devpath = disk_devpath; STAILQ_INSERT_TAIL(&hdinfo, hd, pd_link); if (part_devpath == NULL) return (0); pd = calloc(1, sizeof(pdinfo_t)); if (pd == NULL) { printf("Failed to add partition, out of memory\n"); return (ENOMEM); } STAILQ_INIT(&pd->pd_part); /* Add the partition. */ pd->pd_handle = part_handle; pd->pd_unit = node->PartitionNumber; pd->pd_devpath = part_devpath; STAILQ_INSERT_TAIL(&hd->pd_part, pd, pd_link); return (0); } /* * The MEDIA_FILEPATH_DP has device name. * From U-Boot sources it looks like names are in the form * of typeN:M, where type is interface type, N is disk id * and M is partition id. */ static int efipart_hdinfo_add_filepath(EFI_HANDLE disk_handle) { EFI_DEVICE_PATH *devpath; FILEPATH_DEVICE_PATH *node; char *pathname, *p; int unit, len; pdinfo_t *pd, *last; /* First collect and verify all the data */ if ((devpath = efi_lookup_devpath(disk_handle)) == NULL) return (ENOENT); node = (FILEPATH_DEVICE_PATH *)efi_devpath_last_node(devpath); if (node == NULL) return (ENOENT); /* This should not happen. */ pd = calloc(1, sizeof(pdinfo_t)); if (pd == NULL) { printf("Failed to add disk, out of memory\n"); return (ENOMEM); } STAILQ_INIT(&pd->pd_part); last = STAILQ_LAST(&hdinfo, pdinfo, pd_link); if (last != NULL) unit = last->pd_unit + 1; else unit = 0; /* FILEPATH_DEVICE_PATH has 0 terminated string */ len = ucs2len(node->PathName); if ((pathname = malloc(len + 1)) == NULL) { printf("Failed to add disk, out of memory\n"); free(pd); return (ENOMEM); } cpy16to8(node->PathName, pathname, len + 1); p = strchr(pathname, ':'); /* * Assume we are receiving handles in order, first disk handle, * then partitions for this disk. If this assumption proves * false, this code would need update. */ if (p == NULL) { /* no colon, add the disk */ pd->pd_handle = disk_handle; pd->pd_unit = unit; pd->pd_devpath = devpath; STAILQ_INSERT_TAIL(&hdinfo, pd, pd_link); free(pathname); return (0); } p++; /* skip the colon */ errno = 0; unit = (int)strtol(p, NULL, 0); if (errno != 0) { printf("Bad unit number for partition \"%s\"\n", pathname); free(pathname); free(pd); return (EUNIT); } /* * We should have disk registered, if not, we are receiving * handles out of order, and this code should be reworked * to create "blank" disk for partition, and to find the * disk based on PathName compares. */ if (last == NULL) { printf("BUG: No disk for partition \"%s\"\n", pathname); free(pathname); free(pd); return (EINVAL); } /* Add the partition. */ pd->pd_handle = disk_handle; pd->pd_unit = unit; pd->pd_devpath = devpath; STAILQ_INSERT_TAIL(&last->pd_part, pd, pd_link); free(pathname); return (0); } static void efipart_updatehd(void) { int i, nin; EFI_DEVICE_PATH *devpath, *devpathcpy, *tmpdevpath, *node; EFI_HANDLE handle; EFI_BLOCK_IO *blkio; EFI_STATUS status; nin = efipart_nhandles / sizeof (*efipart_handles); for (i = 0; i < nin; i++) { devpath = efi_lookup_devpath(efipart_handles[i]); if (devpath == NULL) continue; if ((node = efi_devpath_last_node(devpath)) == NULL) continue; if (!efipart_hdd(devpath)) continue; status = BS->HandleProtocol(efipart_handles[i], &blkio_guid, (void **)&blkio); if (EFI_ERROR(status)) continue; if (DevicePathType(node) == MEDIA_DEVICE_PATH && DevicePathSubType(node) == MEDIA_FILEPATH_DP) { efipart_hdinfo_add_filepath(efipart_handles[i]); continue; } if (DevicePathType(node) == MEDIA_DEVICE_PATH && DevicePathSubType(node) == MEDIA_HARDDRIVE_DP) { devpathcpy = efi_devpath_trim(devpath); if (devpathcpy == NULL) continue; tmpdevpath = devpathcpy; status = BS->LocateDevicePath(&blkio_guid, &tmpdevpath, &handle); free(devpathcpy); if (EFI_ERROR(status)) continue; /* * We do not support nested partitions. */ devpathcpy = efi_lookup_devpath(handle); if (devpathcpy == NULL) continue; if ((node = efi_devpath_last_node(devpathcpy)) == NULL) continue; if (DevicePathType(node) == MEDIA_DEVICE_PATH && DevicePathSubType(node) == MEDIA_HARDDRIVE_DP) continue; efipart_hdinfo_add(handle, efipart_handles[i]); continue; } efipart_hdinfo_add(efipart_handles[i], NULL); } } static int efipart_inithd(void) { - int rv; - rv = efipart_inithandles(); - if (rv != 0) - return (rv); STAILQ_INIT(&hdinfo); efipart_updatehd(); bcache_add_dev(efiblk_pdinfo_count(&hdinfo)); return (0); } static int efipart_print_common(struct devsw *dev, pdinfo_list_t *pdlist, int verbose) { int ret = 0; EFI_BLOCK_IO *blkio; EFI_STATUS status; EFI_HANDLE h; pdinfo_t *pd; CHAR16 *text; struct disk_devdesc pd_dev; char line[80]; if (STAILQ_EMPTY(pdlist)) return (0); printf("%s devices:", dev->dv_name); if ((ret = pager_output("\n")) != 0) return (ret); STAILQ_FOREACH(pd, pdlist, pd_link) { h = pd->pd_handle; if (verbose) { /* Output the device path. */ text = efi_devpath_name(efi_lookup_devpath(h)); if (text != NULL) { printf(" %S", text); efi_free_devpath_name(text); if ((ret = pager_output("\n")) != 0) break; } } snprintf(line, sizeof(line), " %s%d", dev->dv_name, pd->pd_unit); printf("%s:", line); status = BS->HandleProtocol(h, &blkio_guid, (void **)&blkio); if (!EFI_ERROR(status)) { printf(" %llu", blkio->Media->LastBlock == 0? 0: (unsigned long long) (blkio->Media->LastBlock + 1)); if (blkio->Media->LastBlock != 0) { printf(" X %u", blkio->Media->BlockSize); } printf(" blocks"); if (blkio->Media->MediaPresent) { if (blkio->Media->RemovableMedia) printf(" (removable)"); } else { printf(" (no media)"); } if ((ret = pager_output("\n")) != 0) break; if (!blkio->Media->MediaPresent) continue; pd->pd_blkio = blkio; pd_dev.d_dev = dev; pd_dev.d_unit = pd->pd_unit; pd_dev.d_slice = -1; pd_dev.d_partition = -1; pd_dev.d_opendata = blkio; ret = disk_open(&pd_dev, blkio->Media->BlockSize * (blkio->Media->LastBlock + 1), blkio->Media->BlockSize); if (ret == 0) { ret = disk_print(&pd_dev, line, verbose); disk_close(&pd_dev); if (ret != 0) return (ret); } else { /* Do not fail from disk_open() */ ret = 0; } } else { if ((ret = pager_output("\n")) != 0) break; } } return (ret); } static int efipart_printfd(int verbose) { return (efipart_print_common(&efipart_fddev, &fdinfo, verbose)); } static int efipart_printcd(int verbose) { return (efipart_print_common(&efipart_cddev, &cdinfo, verbose)); } static int efipart_printhd(int verbose) { return (efipart_print_common(&efipart_hddev, &hdinfo, verbose)); } static int efipart_open(struct open_file *f, ...) { va_list args; struct disk_devdesc *dev; pdinfo_t *pd; EFI_BLOCK_IO *blkio; EFI_STATUS status; va_start(args, f); dev = va_arg(args, struct disk_devdesc*); va_end(args); if (dev == NULL) return (EINVAL); pd = efiblk_get_pdinfo((struct devdesc *)dev); if (pd == NULL) return (EIO); if (pd->pd_blkio == NULL) { status = BS->HandleProtocol(pd->pd_handle, &blkio_guid, (void **)&pd->pd_blkio); if (EFI_ERROR(status)) return (efi_status_to_errno(status)); } blkio = pd->pd_blkio; if (!blkio->Media->MediaPresent) return (EAGAIN); pd->pd_open++; if (pd->pd_bcache == NULL) pd->pd_bcache = bcache_allocate(); if (dev->d_dev->dv_type == DEVT_DISK) { int rc; rc = disk_open(dev, blkio->Media->BlockSize * (blkio->Media->LastBlock + 1), blkio->Media->BlockSize); if (rc != 0) { pd->pd_open--; if (pd->pd_open == 0) { pd->pd_blkio = NULL; bcache_free(pd->pd_bcache); pd->pd_bcache = NULL; } } return (rc); } return (0); } static int efipart_close(struct open_file *f) { struct disk_devdesc *dev; pdinfo_t *pd; dev = (struct disk_devdesc *)(f->f_devdata); if (dev == NULL) return (EINVAL); pd = efiblk_get_pdinfo((struct devdesc *)dev); if (pd == NULL) return (EINVAL); pd->pd_open--; if (pd->pd_open == 0) { pd->pd_blkio = NULL; bcache_free(pd->pd_bcache); pd->pd_bcache = NULL; } if (dev->d_dev->dv_type == DEVT_DISK) return (disk_close(dev)); return (0); } static int efipart_ioctl(struct open_file *f, u_long cmd, void *data) { struct disk_devdesc *dev; pdinfo_t *pd; int rc; dev = (struct disk_devdesc *)(f->f_devdata); if (dev == NULL) return (EINVAL); pd = efiblk_get_pdinfo((struct devdesc *)dev); if (pd == NULL) return (EINVAL); if (dev->d_dev->dv_type == DEVT_DISK) { rc = disk_ioctl(dev, cmd, data); if (rc != ENOTTY) return (rc); } switch (cmd) { case DIOCGSECTORSIZE: *(u_int *)data = pd->pd_blkio->Media->BlockSize; break; case DIOCGMEDIASIZE: *(uint64_t *)data = pd->pd_blkio->Media->BlockSize * (pd->pd_blkio->Media->LastBlock + 1); break; default: return (ENOTTY); } return (0); } /* * efipart_readwrite() * Internal equivalent of efipart_strategy(), which operates on the * media-native block size. This function expects all I/O requests * to be within the media size and returns an error if such is not * the case. */ static int efipart_readwrite(EFI_BLOCK_IO *blkio, int rw, daddr_t blk, daddr_t nblks, char *buf) { EFI_STATUS status; if (blkio == NULL) return (ENXIO); if (blk < 0 || blk > blkio->Media->LastBlock) return (EIO); if ((blk + nblks - 1) > blkio->Media->LastBlock) return (EIO); switch (rw & F_MASK) { case F_READ: status = blkio->ReadBlocks(blkio, blkio->Media->MediaId, blk, nblks * blkio->Media->BlockSize, buf); break; case F_WRITE: if (blkio->Media->ReadOnly) return (EROFS); status = blkio->WriteBlocks(blkio, blkio->Media->MediaId, blk, nblks * blkio->Media->BlockSize, buf); break; default: return (ENOSYS); } if (EFI_ERROR(status)) { printf("%s: rw=%d, blk=%ju size=%ju status=%lu\n", __func__, rw, blk, nblks, EFI_ERROR_CODE(status)); } return (efi_status_to_errno(status)); } static int efipart_strategy(void *devdata, int rw, daddr_t blk, size_t size, char *buf, size_t *rsize) { struct bcache_devdata bcd; struct disk_devdesc *dev; pdinfo_t *pd; dev = (struct disk_devdesc *)devdata; if (dev == NULL) return (EINVAL); pd = efiblk_get_pdinfo((struct devdesc *)dev); if (pd == NULL) return (EINVAL); if (pd->pd_blkio->Media->RemovableMedia && !pd->pd_blkio->Media->MediaPresent) return (ENXIO); bcd.dv_strategy = efipart_realstrategy; bcd.dv_devdata = devdata; bcd.dv_cache = pd->pd_bcache; if (dev->d_dev->dv_type == DEVT_DISK) { daddr_t offset; offset = dev->d_offset * pd->pd_blkio->Media->BlockSize; offset /= 512; return (bcache_strategy(&bcd, rw, blk + offset, size, buf, rsize)); } return (bcache_strategy(&bcd, rw, blk, size, buf, rsize)); } static int efipart_realstrategy(void *devdata, int rw, daddr_t blk, size_t size, char *buf, size_t *rsize) { struct disk_devdesc *dev = (struct disk_devdesc *)devdata; pdinfo_t *pd; EFI_BLOCK_IO *blkio; uint64_t off, disk_blocks, d_offset = 0; char *blkbuf; size_t blkoff, blksz; int error; size_t diskend, readstart; if (dev == NULL || blk < 0) return (EINVAL); pd = efiblk_get_pdinfo((struct devdesc *)dev); if (pd == NULL) return (EINVAL); blkio = pd->pd_blkio; if (blkio == NULL) return (ENXIO); if (size == 0 || (size % 512) != 0) return (EIO); off = blk * 512; /* * Get disk blocks, this value is either for whole disk or for * partition. */ disk_blocks = 0; if (dev->d_dev->dv_type == DEVT_DISK) { if (disk_ioctl(dev, DIOCGMEDIASIZE, &disk_blocks) == 0) { /* DIOCGMEDIASIZE does return bytes. */ disk_blocks /= blkio->Media->BlockSize; } d_offset = dev->d_offset; } if (disk_blocks == 0) disk_blocks = blkio->Media->LastBlock + 1 - d_offset; /* make sure we don't read past disk end */ if ((off + size) / blkio->Media->BlockSize > d_offset + disk_blocks) { diskend = d_offset + disk_blocks; readstart = off / blkio->Media->BlockSize; if (diskend <= readstart) { if (rsize != NULL) *rsize = 0; return (EIO); } size = diskend - readstart; size = size * blkio->Media->BlockSize; } if (rsize != NULL) *rsize = size; if ((size % blkio->Media->BlockSize == 0) && (off % blkio->Media->BlockSize == 0)) return (efipart_readwrite(blkio, rw, off / blkio->Media->BlockSize, size / blkio->Media->BlockSize, buf)); /* * The block size of the media is not a multiple of I/O. */ blkbuf = malloc(blkio->Media->BlockSize); if (blkbuf == NULL) return (ENOMEM); error = 0; blk = off / blkio->Media->BlockSize; blkoff = off % blkio->Media->BlockSize; blksz = blkio->Media->BlockSize - blkoff; while (size > 0) { error = efipart_readwrite(blkio, rw, blk, 1, blkbuf); if (error) break; if (size < blksz) blksz = size; bcopy(blkbuf + blkoff, buf, blksz); buf += blksz; size -= blksz; blk++; blkoff = 0; blksz = blkio->Media->BlockSize; } free(blkbuf); return (error); } Index: head/stand/efi/loader/main.c =================================================================== --- head/stand/efi/loader/main.c (revision 329267) +++ head/stand/efi/loader/main.c (revision 329268) @@ -1,948 +1,952 @@ /*- * Copyright (c) 2008-2010 Rui Paulo * Copyright (c) 2006 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef EFI_ZFS_BOOT #include #include "efizfs.h" #endif #include "loader_efi.h" extern char bootprog_info[]; struct arch_switch archsw; /* MI/MD interface boundary */ EFI_GUID acpi = ACPI_TABLE_GUID; EFI_GUID acpi20 = ACPI_20_TABLE_GUID; EFI_GUID devid = DEVICE_PATH_PROTOCOL; EFI_GUID imgid = LOADED_IMAGE_PROTOCOL; EFI_GUID mps = MPS_TABLE_GUID; EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL; EFI_GUID smbios = SMBIOS_TABLE_GUID; EFI_GUID smbios3 = SMBIOS3_TABLE_GUID; EFI_GUID dxe = DXE_SERVICES_TABLE_GUID; EFI_GUID hoblist = HOB_LIST_TABLE_GUID; EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID; EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID; EFI_GUID esrt = ESRT_TABLE_GUID; EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID; EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID; EFI_GUID fdtdtb = FDT_TABLE_GUID; EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL; static EFI_LOADED_IMAGE *img; #ifdef EFI_ZFS_BOOT bool efi_zfs_is_preferred(EFI_HANDLE *h) { return (h == img->DeviceHandle); } #endif static int has_keyboard(void) { EFI_STATUS status; EFI_DEVICE_PATH *path; EFI_HANDLE *hin, *hin_end, *walker; UINTN sz; int retval = 0; /* * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and * do the typical dance to get the right sized buffer. */ sz = 0; hin = NULL; status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0); if (status == EFI_BUFFER_TOO_SMALL) { hin = (EFI_HANDLE *)malloc(sz); status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, hin); if (EFI_ERROR(status)) free(hin); } if (EFI_ERROR(status)) return retval; /* * Look at each of the handles. If it supports the device path protocol, * use it to get the device path for this handle. Then see if that * device path matches either the USB device path for keyboards or the * legacy device path for keyboards. */ hin_end = &hin[sz / sizeof(*hin)]; for (walker = hin; walker < hin_end; walker++) { status = BS->HandleProtocol(*walker, &devid, (VOID **)&path); if (EFI_ERROR(status)) continue; while (!IsDevicePathEnd(path)) { /* * Check for the ACPI keyboard node. All PNP3xx nodes * are keyboards of different flavors. Note: It is * unclear of there's always a keyboard node when * there's a keyboard controller, or if there's only one * when a keyboard is detected at boot. */ if (DevicePathType(path) == ACPI_DEVICE_PATH && (DevicePathSubType(path) == ACPI_DP || DevicePathSubType(path) == ACPI_EXTENDED_DP)) { ACPI_HID_DEVICE_PATH *acpi; acpi = (ACPI_HID_DEVICE_PATH *)(void *)path; if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 && (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) { retval = 1; goto out; } /* * Check for USB keyboard node, if present. Unlike a * PS/2 keyboard, these definitely only appear when * connected to the system. */ } else if (DevicePathType(path) == MESSAGING_DEVICE_PATH && DevicePathSubType(path) == MSG_USB_CLASS_DP) { USB_CLASS_DEVICE_PATH *usb; usb = (USB_CLASS_DEVICE_PATH *)(void *)path; if (usb->DeviceClass == 3 && /* HID */ usb->DeviceSubClass == 1 && /* Boot devices */ usb->DeviceProtocol == 1) { /* Boot keyboards */ retval = 1; goto out; } } path = NextDevicePathNode(path); } } out: free(hin); return retval; } static void set_devdesc_currdev(struct devsw *dev, int unit) { struct devdesc currdev; char *devname; currdev.d_dev = dev; currdev.d_type = currdev.d_dev->dv_type; currdev.d_unit = unit; currdev.d_opendata = NULL; devname = efi_fmtdev(&currdev); env_setenv("currdev", EV_VOLATILE, devname, efi_setcurrdev, env_nounset); env_setenv("loaddev", EV_VOLATILE, devname, env_noset, env_nounset); } static int find_currdev(EFI_LOADED_IMAGE *img) { pdinfo_list_t *pdi_list; pdinfo_t *dp, *pp; EFI_DEVICE_PATH *devpath, *copy; EFI_HANDLE h; char *devname; struct devsw *dev; int unit; uint64_t extra; #ifdef EFI_ZFS_BOOT /* Did efi_zfs_probe() detect the boot pool? */ if (pool_guid != 0) { struct zfs_devdesc currdev; currdev.d_dev = &zfs_dev; currdev.d_unit = 0; currdev.d_type = currdev.d_dev->dv_type; currdev.d_opendata = NULL; currdev.pool_guid = pool_guid; currdev.root_guid = 0; devname = efi_fmtdev(&currdev); env_setenv("currdev", EV_VOLATILE, devname, efi_setcurrdev, env_nounset); env_setenv("loaddev", EV_VOLATILE, devname, env_noset, env_nounset); init_zfs_bootenv(devname); return (0); } #endif /* EFI_ZFS_BOOT */ /* We have device lists for hd, cd, fd, walk them all. */ pdi_list = efiblk_get_pdinfo_list(&efipart_hddev); STAILQ_FOREACH(dp, pdi_list, pd_link) { struct disk_devdesc currdev; currdev.d_dev = &efipart_hddev; currdev.d_type = currdev.d_dev->dv_type; currdev.d_unit = dp->pd_unit; currdev.d_opendata = NULL; currdev.d_slice = -1; currdev.d_partition = -1; if (dp->pd_handle == img->DeviceHandle) { devname = efi_fmtdev(&currdev); env_setenv("currdev", EV_VOLATILE, devname, efi_setcurrdev, env_nounset); env_setenv("loaddev", EV_VOLATILE, devname, env_noset, env_nounset); return (0); } /* Assuming GPT partitioning. */ STAILQ_FOREACH(pp, &dp->pd_part, pd_link) { if (pp->pd_handle == img->DeviceHandle) { currdev.d_slice = pp->pd_unit; currdev.d_partition = 255; devname = efi_fmtdev(&currdev); env_setenv("currdev", EV_VOLATILE, devname, efi_setcurrdev, env_nounset); env_setenv("loaddev", EV_VOLATILE, devname, env_noset, env_nounset); return (0); } } } pdi_list = efiblk_get_pdinfo_list(&efipart_cddev); STAILQ_FOREACH(dp, pdi_list, pd_link) { if (dp->pd_handle == img->DeviceHandle || dp->pd_alias == img->DeviceHandle) { set_devdesc_currdev(&efipart_cddev, dp->pd_unit); return (0); } } pdi_list = efiblk_get_pdinfo_list(&efipart_fddev); STAILQ_FOREACH(dp, pdi_list, pd_link) { if (dp->pd_handle == img->DeviceHandle) { set_devdesc_currdev(&efipart_fddev, dp->pd_unit); return (0); } } /* * Try the device handle from our loaded image first. If that * fails, use the device path from the loaded image and see if * any of the nodes in that path match one of the enumerated * handles. */ if (efi_handle_lookup(img->DeviceHandle, &dev, &unit, &extra) == 0) { set_devdesc_currdev(dev, unit); return (0); } copy = NULL; devpath = efi_lookup_image_devpath(IH); while (devpath != NULL) { h = efi_devpath_handle(devpath); if (h == NULL) break; free(copy); copy = NULL; if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) { set_devdesc_currdev(dev, unit); return (0); } devpath = efi_lookup_devpath(h); if (devpath != NULL) { copy = efi_devpath_trim(devpath); devpath = copy; } } free(copy); return (ENOENT); } EFI_STATUS main(int argc, CHAR16 *argv[]) { char var[128]; EFI_GUID *guid; int i, j, vargood, howto; UINTN k; int has_kbd; #if !defined(__arm__) char buf[40]; #endif archsw.arch_autoload = efi_autoload; archsw.arch_getdev = efi_getdev; archsw.arch_copyin = efi_copyin; archsw.arch_copyout = efi_copyout; archsw.arch_readin = efi_readin; #ifdef EFI_ZFS_BOOT /* Note this needs to be set before ZFS init. */ archsw.arch_zfs_probe = efi_zfs_probe; #endif /* Get our loaded image protocol interface structure. */ BS->HandleProtocol(IH, &imgid, (VOID**)&img); /* Init the time source */ efi_time_init(); has_kbd = has_keyboard(); /* * XXX Chicken-and-egg problem; we want to have console output * early, but some console attributes may depend on reading from * eg. the boot device, which we can't do yet. We can use * printf() etc. once this is done. */ cons_probe(); /* * Initialise the block cache. Set the upper limit. */ bcache_init(32768, 512); /* * Parse the args to set the console settings, etc * boot1.efi passes these in, if it can read /boot.config or /boot/config * or iPXE may be setup to pass these in. * * Loop through the args, and for each one that contains an '=' that is * not the first character, add it to the environment. This allows * loader and kernel env vars to be passed on the command line. Convert * args from UCS-2 to ASCII (16 to 8 bit) as they are copied. */ howto = 0; for (i = 1; i < argc; i++) { if (argv[i][0] == '-') { for (j = 1; argv[i][j] != 0; j++) { int ch; ch = argv[i][j]; switch (ch) { case 'a': howto |= RB_ASKNAME; break; case 'd': howto |= RB_KDB; break; case 'D': howto |= RB_MULTIPLE; break; case 'h': howto |= RB_SERIAL; break; case 'm': howto |= RB_MUTE; break; case 'p': howto |= RB_PAUSE; break; case 'P': if (!has_kbd) howto |= RB_SERIAL | RB_MULTIPLE; break; case 'r': howto |= RB_DFLTROOT; break; case 's': howto |= RB_SINGLE; break; case 'S': if (argv[i][j + 1] == 0) { if (i + 1 == argc) { setenv("comconsole_speed", "115200", 1); } else { cpy16to8(&argv[i + 1][0], var, sizeof(var)); setenv("comconsole_speed", var, 1); } i++; break; } else { cpy16to8(&argv[i][j + 1], var, sizeof(var)); setenv("comconsole_speed", var, 1); break; } case 'v': howto |= RB_VERBOSE; break; } } } else { vargood = 0; for (j = 0; argv[i][j] != 0; j++) { if (j == sizeof(var)) { vargood = 0; break; } if (j > 0 && argv[i][j] == '=') vargood = 1; var[j] = (char)argv[i][j]; } if (vargood) { var[j] = 0; putenv(var); } } } for (i = 0; howto_names[i].ev != NULL; i++) if (howto & howto_names[i].mask) setenv(howto_names[i].ev, "YES", 1); if (howto & RB_MULTIPLE) { if (howto & RB_SERIAL) setenv("console", "comconsole efi" , 1); else setenv("console", "efi comconsole" , 1); } else if (howto & RB_SERIAL) { setenv("console", "comconsole" , 1); } if (efi_copy_init()) { printf("failed to allocate staging area\n"); return (EFI_BUFFER_TOO_SMALL); } /* - * March through the device switch probing for things. + * Scan the BLOCK IO MEDIA handles then + * march through the device switch probing for things. */ - for (i = 0; devsw[i] != NULL; i++) - if (devsw[i]->dv_init != NULL) - (devsw[i]->dv_init)(); + if ((i = efipart_inithandles()) == 0) { + for (i = 0; devsw[i] != NULL; i++) + if (devsw[i]->dv_init != NULL) + (devsw[i]->dv_init)(); + } else + printf("efipart_inithandles failed %d, expect failures", i); printf("Command line arguments:"); for (i = 0; i < argc; i++) printf(" %S", argv[i]); printf("\n"); printf("Image base: 0x%lx\n", (u_long)img->ImageBase); printf("EFI version: %d.%02d\n", ST->Hdr.Revision >> 16, ST->Hdr.Revision & 0xffff); printf("EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor, ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff); printf("\n%s", bootprog_info); /* * Disable the watchdog timer. By default the boot manager sets * the timer to 5 minutes before invoking a boot option. If we * want to return to the boot manager, we have to disable the * watchdog timer and since we're an interactive program, we don't * want to wait until the user types "quit". The timer may have * fired by then. We don't care if this fails. It does not prevent * normal functioning in any way... */ BS->SetWatchdogTimer(0, 0, 0, NULL); if (find_currdev(img) != 0) return (EFI_NOT_FOUND); efi_init_environment(); setenv("LINES", "24", 1); /* optional */ for (k = 0; k < ST->NumberOfTableEntries; k++) { guid = &ST->ConfigurationTable[k].VendorGuid; #if !defined(__arm__) if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) { snprintf(buf, sizeof(buf), "%p", ST->ConfigurationTable[k].VendorTable); setenv("hint.smbios.0.mem", buf, 1); smbios_detect(ST->ConfigurationTable[k].VendorTable); break; } #endif } interact(); /* doesn't return */ return (EFI_SUCCESS); /* keep compiler happy */ } COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot); static int command_reboot(int argc, char *argv[]) { int i; for (i = 0; devsw[i] != NULL; ++i) if (devsw[i]->dv_cleanup != NULL) (devsw[i]->dv_cleanup)(); RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL); /* NOTREACHED */ return (CMD_ERROR); } COMMAND_SET(quit, "quit", "exit the loader", command_quit); static int command_quit(int argc, char *argv[]) { exit(0); return (CMD_OK); } COMMAND_SET(memmap, "memmap", "print memory map", command_memmap); static int command_memmap(int argc, char *argv[]) { UINTN sz; EFI_MEMORY_DESCRIPTOR *map, *p; UINTN key, dsz; UINT32 dver; EFI_STATUS status; int i, ndesc; char line[80]; static char *types[] = { "Reserved", "LoaderCode", "LoaderData", "BootServicesCode", "BootServicesData", "RuntimeServicesCode", "RuntimeServicesData", "ConventionalMemory", "UnusableMemory", "ACPIReclaimMemory", "ACPIMemoryNVS", "MemoryMappedIO", "MemoryMappedIOPortSpace", "PalCode" }; sz = 0; status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver); if (status != EFI_BUFFER_TOO_SMALL) { printf("Can't determine memory map size\n"); return (CMD_ERROR); } map = malloc(sz); status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver); if (EFI_ERROR(status)) { printf("Can't read memory map\n"); return (CMD_ERROR); } ndesc = sz / dsz; snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n", "Type", "Physical", "Virtual", "#Pages", "Attr"); pager_open(); if (pager_output(line)) { pager_close(); return (CMD_OK); } for (i = 0, p = map; i < ndesc; i++, p = NextMemoryDescriptor(p, dsz)) { printf("%23s %012jx %012jx %08jx ", types[p->Type], (uintmax_t)p->PhysicalStart, (uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages); if (p->Attribute & EFI_MEMORY_UC) printf("UC "); if (p->Attribute & EFI_MEMORY_WC) printf("WC "); if (p->Attribute & EFI_MEMORY_WT) printf("WT "); if (p->Attribute & EFI_MEMORY_WB) printf("WB "); if (p->Attribute & EFI_MEMORY_UCE) printf("UCE "); if (p->Attribute & EFI_MEMORY_WP) printf("WP "); if (p->Attribute & EFI_MEMORY_RP) printf("RP "); if (p->Attribute & EFI_MEMORY_XP) printf("XP "); if (pager_output("\n")) break; } pager_close(); return (CMD_OK); } COMMAND_SET(configuration, "configuration", "print configuration tables", command_configuration); static const char * guid_to_string(EFI_GUID *guid) { static char buf[40]; sprintf(buf, "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x", guid->Data1, guid->Data2, guid->Data3, guid->Data4[0], guid->Data4[1], guid->Data4[2], guid->Data4[3], guid->Data4[4], guid->Data4[5], guid->Data4[6], guid->Data4[7]); return (buf); } static int command_configuration(int argc, char *argv[]) { char line[80]; UINTN i; snprintf(line, sizeof(line), "NumberOfTableEntries=%lu\n", (unsigned long)ST->NumberOfTableEntries); pager_open(); if (pager_output(line)) { pager_close(); return (CMD_OK); } for (i = 0; i < ST->NumberOfTableEntries; i++) { EFI_GUID *guid; printf(" "); guid = &ST->ConfigurationTable[i].VendorGuid; if (!memcmp(guid, &mps, sizeof(EFI_GUID))) printf("MPS Table"); else if (!memcmp(guid, &acpi, sizeof(EFI_GUID))) printf("ACPI Table"); else if (!memcmp(guid, &acpi20, sizeof(EFI_GUID))) printf("ACPI 2.0 Table"); else if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) printf("SMBIOS Table %p", ST->ConfigurationTable[i].VendorTable); else if (!memcmp(guid, &smbios3, sizeof(EFI_GUID))) printf("SMBIOS3 Table"); else if (!memcmp(guid, &dxe, sizeof(EFI_GUID))) printf("DXE Table"); else if (!memcmp(guid, &hoblist, sizeof(EFI_GUID))) printf("HOB List Table"); else if (!memcmp(guid, &lzmadecomp, sizeof(EFI_GUID))) printf("LZMA Compression"); else if (!memcmp(guid, &mpcore, sizeof(EFI_GUID))) printf("ARM MpCore Information Table"); else if (!memcmp(guid, &esrt, sizeof(EFI_GUID))) printf("ESRT Table"); else if (!memcmp(guid, &memtype, sizeof(EFI_GUID))) printf("Memory Type Information Table"); else if (!memcmp(guid, &debugimg, sizeof(EFI_GUID))) printf("Debug Image Info Table"); else if (!memcmp(guid, &fdtdtb, sizeof(EFI_GUID))) printf("FDT Table"); else printf("Unknown Table (%s)", guid_to_string(guid)); snprintf(line, sizeof(line), " at %p\n", ST->ConfigurationTable[i].VendorTable); if (pager_output(line)) break; } pager_close(); return (CMD_OK); } COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode); static int command_mode(int argc, char *argv[]) { UINTN cols, rows; unsigned int mode; int i; char *cp; char rowenv[8]; EFI_STATUS status; SIMPLE_TEXT_OUTPUT_INTERFACE *conout; extern void HO(void); conout = ST->ConOut; if (argc > 1) { mode = strtol(argv[1], &cp, 0); if (cp[0] != '\0') { printf("Invalid mode\n"); return (CMD_ERROR); } status = conout->QueryMode(conout, mode, &cols, &rows); if (EFI_ERROR(status)) { printf("invalid mode %d\n", mode); return (CMD_ERROR); } status = conout->SetMode(conout, mode); if (EFI_ERROR(status)) { printf("couldn't set mode %d\n", mode); return (CMD_ERROR); } sprintf(rowenv, "%u", (unsigned)rows); setenv("LINES", rowenv, 1); HO(); /* set cursor */ return (CMD_OK); } printf("Current mode: %d\n", conout->Mode->Mode); for (i = 0; i <= conout->Mode->MaxMode; i++) { status = conout->QueryMode(conout, i, &cols, &rows); if (EFI_ERROR(status)) continue; printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols, (unsigned)rows); } if (i != 0) printf("Select a mode with the command \"mode \"\n"); return (CMD_OK); } #ifdef EFI_ZFS_BOOT COMMAND_SET(lszfs, "lszfs", "list child datasets of a zfs dataset", command_lszfs); static int command_lszfs(int argc, char *argv[]) { int err; if (argc != 2) { command_errmsg = "wrong number of arguments"; return (CMD_ERROR); } err = zfs_list(argv[1]); if (err != 0) { command_errmsg = strerror(err); return (CMD_ERROR); } return (CMD_OK); } COMMAND_SET(reloadbe, "reloadbe", "refresh the list of ZFS Boot Environments", command_reloadbe); static int command_reloadbe(int argc, char *argv[]) { int err; char *root; if (argc > 2) { command_errmsg = "wrong number of arguments"; return (CMD_ERROR); } if (argc == 2) { err = zfs_bootenv(argv[1]); } else { root = getenv("zfs_be_root"); if (root == NULL) { return (CMD_OK); } err = zfs_bootenv(root); } if (err != 0) { command_errmsg = strerror(err); return (CMD_ERROR); } return (CMD_OK); } #endif #ifdef LOADER_FDT_SUPPORT extern int command_fdt_internal(int argc, char *argv[]); /* * Since proper fdt command handling function is defined in fdt_loader_cmd.c, * and declaring it as extern is in contradiction with COMMAND_SET() macro * (which uses static pointer), we're defining wrapper function, which * calls the proper fdt handling routine. */ static int command_fdt(int argc, char *argv[]) { return (command_fdt_internal(argc, argv)); } COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt); #endif /* * Chain load another efi loader. */ static int command_chain(int argc, char *argv[]) { EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL; EFI_HANDLE loaderhandle; EFI_LOADED_IMAGE *loaded_image; EFI_STATUS status; struct stat st; struct devdesc *dev; char *name, *path; void *buf; int fd; if (argc < 2) { command_errmsg = "wrong number of arguments"; return (CMD_ERROR); } name = argv[1]; if ((fd = open(name, O_RDONLY)) < 0) { command_errmsg = "no such file"; return (CMD_ERROR); } if (fstat(fd, &st) < -1) { command_errmsg = "stat failed"; close(fd); return (CMD_ERROR); } status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf); if (status != EFI_SUCCESS) { command_errmsg = "failed to allocate buffer"; close(fd); return (CMD_ERROR); } if (read(fd, buf, st.st_size) != st.st_size) { command_errmsg = "error while reading the file"; (void)BS->FreePool(buf); close(fd); return (CMD_ERROR); } close(fd); status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle); (void)BS->FreePool(buf); if (status != EFI_SUCCESS) { command_errmsg = "LoadImage failed"; return (CMD_ERROR); } status = BS->HandleProtocol(loaderhandle, &LoadedImageGUID, (void **)&loaded_image); if (argc > 2) { int i, len = 0; CHAR16 *argp; for (i = 2; i < argc; i++) len += strlen(argv[i]) + 1; len *= sizeof (*argp); loaded_image->LoadOptions = argp = malloc (len); loaded_image->LoadOptionsSize = len; for (i = 2; i < argc; i++) { char *ptr = argv[i]; while (*ptr) *(argp++) = *(ptr++); *(argp++) = ' '; } *(--argv) = 0; } if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) { #ifdef EFI_ZFS_BOOT struct zfs_devdesc *z_dev; #endif struct disk_devdesc *d_dev; pdinfo_t *hd, *pd; switch (dev->d_type) { #ifdef EFI_ZFS_BOOT case DEVT_ZFS: z_dev = (struct zfs_devdesc *)dev; loaded_image->DeviceHandle = efizfs_get_handle_by_guid(z_dev->pool_guid); break; #endif case DEVT_NET: loaded_image->DeviceHandle = efi_find_handle(dev->d_dev, dev->d_unit); break; default: hd = efiblk_get_pdinfo(dev); if (STAILQ_EMPTY(&hd->pd_part)) { loaded_image->DeviceHandle = hd->pd_handle; break; } d_dev = (struct disk_devdesc *)dev; STAILQ_FOREACH(pd, &hd->pd_part, pd_link) { /* * d_partition should be 255 */ if (pd->pd_unit == (uint32_t)d_dev->d_slice) { loaded_image->DeviceHandle = pd->pd_handle; break; } } break; } } dev_cleanup(); status = BS->StartImage(loaderhandle, NULL, NULL); if (status != EFI_SUCCESS) { command_errmsg = "StartImage failed"; free(loaded_image->LoadOptions); loaded_image->LoadOptions = NULL; status = BS->UnloadImage(loaded_image); return (CMD_ERROR); } return (CMD_ERROR); /* not reached */ } COMMAND_SET(chain, "chain", "chain load file", command_chain);