Index: head/sys/fs/ext2fs/ext2_csum.c =================================================================== --- head/sys/fs/ext2fs/ext2_csum.c (revision 328279) +++ head/sys/fs/ext2fs/ext2_csum.c (revision 328280) @@ -1,731 +1,730 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2017, Fedor Uporov * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define EXT2_BG_INODE_BITMAP_CSUM_HI_END \ (offsetof(struct ext2_gd, ext4bgd_i_bmap_csum_hi) + \ sizeof(uint16_t)) #define EXT2_INODE_CSUM_HI_EXTRA_END \ (offsetof(struct ext2fs_dinode, e2di_chksum_hi) + sizeof(uint16_t) - \ E2FS_REV0_INODE_SIZE) #define EXT2_BG_BLOCK_BITMAP_CSUM_HI_LOCATION \ (offsetof(struct ext2_gd, ext4bgd_b_bmap_csum_hi) + \ sizeof(uint16_t)) void ext2_sb_csum_set_seed(struct m_ext2fs *fs) { if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_CSUM_SEED)) fs->e2fs_csum_seed = fs->e2fs->e4fs_chksum_seed; else if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) { fs->e2fs_csum_seed = calculate_crc32c(~0, fs->e2fs->e2fs_uuid, sizeof(fs->e2fs->e2fs_uuid)); } else fs->e2fs_csum_seed = 0; } int ext2_sb_csum_verify(struct m_ext2fs *fs) { if (fs->e2fs->e4fs_chksum_type != EXT4_CRC32C_CHKSUM) { printf( "WARNING: mount of %s denied due bad sb csum type\n", fs->e2fs_fsmnt); return (EINVAL); } if (fs->e2fs->e4fs_sbchksum != calculate_crc32c(~0, (const char *)fs->e2fs, offsetof(struct ext2fs, e4fs_sbchksum))) { printf( "WARNING: mount of %s denied due bad sb csum=0x%x, expected=0x%x - run fsck\n", fs->e2fs_fsmnt, fs->e2fs->e4fs_sbchksum, calculate_crc32c(~0, (const char *)fs->e2fs, offsetof(struct ext2fs, e4fs_sbchksum))); return (EINVAL); } return (0); } void ext2_sb_csum_set(struct m_ext2fs *fs) { fs->e2fs->e4fs_sbchksum = calculate_crc32c(~0, (const char *)fs->e2fs, offsetof(struct ext2fs, e4fs_sbchksum)); } static uint32_t ext2_extattr_blk_csum(struct inode *ip, uint64_t facl, struct ext2fs_extattr_header *header) { struct m_ext2fs *fs; uint32_t crc, old_crc; fs = ip->i_e2fs; old_crc = header->h_checksum; header->h_checksum = 0; crc = calculate_crc32c(fs->e2fs_csum_seed, (uint8_t *)&facl, sizeof(facl)); crc = calculate_crc32c(crc, (uint8_t *)header, fs->e2fs_bsize); header->h_checksum = old_crc; return (crc); } int ext2_extattr_blk_csum_verify(struct inode *ip, struct buf *bp) { struct ext2fs_extattr_header *header; header = (struct ext2fs_extattr_header *)bp->b_data; if (EXT2_HAS_RO_COMPAT_FEATURE(ip->i_e2fs, EXT2F_ROCOMPAT_METADATA_CKSUM) && (header->h_checksum != ext2_extattr_blk_csum(ip, ip->i_facl, header))) { printf("WARNING: bad extattr csum detected, ip=%lu - run fsck\n", (unsigned long)ip->i_number); return (EIO); } return (0); } void ext2_extattr_blk_csum_set(struct inode *ip, struct buf *bp) { struct ext2fs_extattr_header *header; if (!EXT2_HAS_RO_COMPAT_FEATURE(ip->i_e2fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) return; header = (struct ext2fs_extattr_header *)bp->b_data; header->h_checksum = ext2_extattr_blk_csum(ip, ip->i_facl, header); } static struct ext2fs_direct_tail * ext2_get_dirent_tail(struct inode *ip, struct ext2fs_direct_2 *ep) { struct ext2fs_direct_tail *tp; tp = EXT2_DIRENT_TAIL(ep, ip->i_e2fs->e2fs_bsize); if (tp->e2dt_reserved_zero1 || tp->e2dt_rec_len != sizeof(struct ext2fs_direct_tail) || tp->e2dt_reserved_zero2 || tp->e2dt_reserved_ft != EXT2_FT_DIR_CSUM) return (NULL); return (tp); } static uint32_t ext2_dirent_csum(struct inode *ip, struct ext2fs_direct_2 *ep, int size) { struct m_ext2fs *fs; char *buf; uint32_t inum, gen, crc; fs = ip->i_e2fs; buf = (char *)ep; inum = ip->i_number; gen = ip->i_gen; crc = calculate_crc32c(fs->e2fs_csum_seed, (uint8_t *)&inum, sizeof(inum)); crc = calculate_crc32c(crc, (uint8_t *)&gen, sizeof(gen)); crc = calculate_crc32c(crc, (uint8_t *)buf, size); return (crc); } static int ext2_dirent_csum_verify(struct inode *ip, struct ext2fs_direct_2 *ep) { uint32_t calculated; struct ext2fs_direct_tail *tp; tp = ext2_get_dirent_tail(ip, ep); if (tp == NULL) return (0); calculated = ext2_dirent_csum(ip, ep, (char *)tp - (char *)ep); if (calculated != tp->e2dt_checksum) return (EIO); return (0); } static struct ext2fs_htree_count * ext2_get_dx_count(struct inode *ip, struct ext2fs_direct_2 *ep, int *offset) { struct ext2fs_direct_2 *dp; struct ext2fs_htree_root_info *root; int count_offset; if (ep->e2d_reclen == EXT2_BLOCK_SIZE(ip->i_e2fs)) count_offset = 8; else if (ep->e2d_reclen == 12) { dp = (struct ext2fs_direct_2 *)(((char *)ep) + 12); if (dp->e2d_reclen != EXT2_BLOCK_SIZE(ip->i_e2fs) - 12) return (NULL); root = (struct ext2fs_htree_root_info *)(((char *)dp + 12)); if (root->h_reserved1 || root->h_info_len != sizeof(struct ext2fs_htree_root_info)) return (NULL); count_offset = 32; } else return (NULL); if (offset) *offset = count_offset; return ((struct ext2fs_htree_count *)(((char *)ep) + count_offset)); } static uint32_t ext2_dx_csum(struct inode *ip, struct ext2fs_direct_2 *ep, int count_offset, int count, struct ext2fs_htree_tail *tp) { struct m_ext2fs *fs; char *buf; int size; uint32_t inum, old_csum, gen, crc; fs = ip->i_e2fs; buf = (char *)ep; size = count_offset + (count * sizeof(struct ext2fs_htree_entry)); old_csum = tp->ht_checksum; tp->ht_checksum = 0; inum = ip->i_number; gen = ip->i_gen; crc = calculate_crc32c(fs->e2fs_csum_seed, (uint8_t *)&inum, sizeof(inum)); crc = calculate_crc32c(crc, (uint8_t *)&gen, sizeof(gen)); crc = calculate_crc32c(crc, (uint8_t *)buf, size); crc = calculate_crc32c(crc, (uint8_t *)tp, sizeof(struct ext2fs_htree_tail)); tp->ht_checksum = old_csum; return (crc); } static int ext2_dx_csum_verify(struct inode *ip, struct ext2fs_direct_2 *ep) { uint32_t calculated; struct ext2fs_htree_count *cp; struct ext2fs_htree_tail *tp; int count_offset, limit, count; cp = ext2_get_dx_count(ip, ep, &count_offset); if (cp == NULL) return (0); limit = cp->h_entries_max; count = cp->h_entries_num; if (count_offset + (limit * sizeof(struct ext2fs_htree_entry)) > ip->i_e2fs->e2fs_bsize - sizeof(struct ext2fs_htree_tail)) return (EIO); tp = (struct ext2fs_htree_tail *)(((struct ext2fs_htree_entry *)cp) + limit); calculated = ext2_dx_csum(ip, ep, count_offset, count, tp); if (tp->ht_checksum != calculated) return (EIO); return (0); } int ext2_dir_blk_csum_verify(struct inode *ip, struct buf *bp) { struct m_ext2fs *fs; struct ext2fs_direct_2 *ep; int error = 0; fs = ip->i_e2fs; if (!EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) return (error); ep = (struct ext2fs_direct_2 *)bp->b_data; if (ext2_get_dirent_tail(ip, ep) != NULL) error = ext2_dirent_csum_verify(ip, ep); else if (ext2_get_dx_count(ip, ep, NULL) != NULL) error = ext2_dx_csum_verify(ip, ep); if (error) printf("WARNING: bad directory csum detected, ip=%lu" " - run fsck\n", (unsigned long)ip->i_number); return (error); } static void ext2_dirent_csum_set(struct inode *ip, struct ext2fs_direct_2 *ep) { struct ext2fs_direct_tail *tp; tp = ext2_get_dirent_tail(ip, ep); if (tp == NULL) return; tp->e2dt_checksum = ext2_dirent_csum(ip, ep, (char *)tp - (char *)ep); } static void ext2_dx_csum_set(struct inode *ip, struct ext2fs_direct_2 *ep) { struct ext2fs_htree_count *cp; struct ext2fs_htree_tail *tp; int count_offset, limit, count; cp = ext2_get_dx_count(ip, ep, &count_offset); if (cp == NULL) return; limit = cp->h_entries_max; count = cp->h_entries_num; if (count_offset + (limit * sizeof(struct ext2fs_htree_entry)) > ip->i_e2fs->e2fs_bsize - sizeof(struct ext2fs_htree_tail)) return; tp = (struct ext2fs_htree_tail *)(((struct ext2fs_htree_entry *)cp) + limit); tp->ht_checksum = ext2_dx_csum(ip, ep, count_offset, count, tp); } void ext2_dir_blk_csum_set_mem(struct inode *ip, char *buf, int size) { struct m_ext2fs *fs; struct ext2fs_direct_2 *ep; fs = ip->i_e2fs; if (!EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) return; ep = (struct ext2fs_direct_2 *)buf; if (ext2_htree_has_idx(ip)) { if (ext2_get_dx_count(ip, ep, NULL) != NULL) ext2_dx_csum_set(ip, ep); } else { if (ext2_get_dirent_tail(ip, ep) != NULL) ext2_dirent_csum_set(ip, ep); } } void ext2_dir_blk_csum_set(struct inode *ip, struct buf *bp) { ext2_dir_blk_csum_set_mem(ip, bp->b_data, bp->b_bufsize); } static uint32_t ext2_extent_blk_csum(struct inode *ip, struct ext4_extent_header *ehp) { struct m_ext2fs *fs; size_t size; uint32_t inum, gen, crc; fs = ip->i_e2fs; size = EXT4_EXTENT_TAIL_OFFSET(ehp) + offsetof(struct ext4_extent_tail, et_checksum); inum = ip->i_number; gen = ip->i_gen; crc = calculate_crc32c(fs->e2fs_csum_seed, (uint8_t *)&inum, sizeof(inum)); crc = calculate_crc32c(crc, (uint8_t *)&gen, sizeof(gen)); crc = calculate_crc32c(crc, (uint8_t *)ehp, size); return (crc); } int ext2_extent_blk_csum_verify(struct inode *ip, void *data) { struct m_ext2fs *fs; struct ext4_extent_header *ehp; struct ext4_extent_tail *etp; uint32_t provided, calculated; fs = ip->i_e2fs; if (!EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) return (0); ehp = (struct ext4_extent_header *)data; etp = (struct ext4_extent_tail *)(((char *)ehp) + EXT4_EXTENT_TAIL_OFFSET(ehp)); provided = etp->et_checksum; calculated = ext2_extent_blk_csum(ip, ehp); if (provided != calculated) { printf("WARNING: bad extent csum detected, ip=%lu - run fsck\n", (unsigned long)ip->i_number); return (EIO); } return (0); } void ext2_extent_blk_csum_set(struct inode *ip, void *data) { struct m_ext2fs *fs; struct ext4_extent_header *ehp; struct ext4_extent_tail *etp; fs = ip->i_e2fs; if (!EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) return; ehp = (struct ext4_extent_header *)data; etp = (struct ext4_extent_tail *)(((char *)data) + EXT4_EXTENT_TAIL_OFFSET(ehp)); etp->et_checksum = ext2_extent_blk_csum(ip, (struct ext4_extent_header *)data); } int ext2_gd_i_bitmap_csum_verify(struct m_ext2fs *fs, int cg, struct buf *bp) { uint32_t hi, provided, calculated; if (!EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) return (0); provided = fs->e2fs_gd[cg].ext4bgd_i_bmap_csum; calculated = calculate_crc32c(fs->e2fs_csum_seed, bp->b_data, fs->e2fs->e2fs_ipg / 8); if (fs->e2fs->e3fs_desc_size >= EXT2_BG_INODE_BITMAP_CSUM_HI_END) { hi = fs->e2fs_gd[cg].ext4bgd_i_bmap_csum_hi; provided |= (hi << 16); } else calculated &= 0xFFFF; if (provided != calculated) { printf("WARNING: bad inode bitmap csum detected, " "cg=%d - run fsck\n", cg); return (EIO); } return (0); } void ext2_gd_i_bitmap_csum_set(struct m_ext2fs *fs, int cg, struct buf *bp) { uint32_t csum; if (!EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) return; csum = calculate_crc32c(fs->e2fs_csum_seed, bp->b_data, fs->e2fs->e2fs_ipg / 8); fs->e2fs_gd[cg].ext4bgd_i_bmap_csum = csum & 0xFFFF; if (fs->e2fs->e3fs_desc_size >= EXT2_BG_INODE_BITMAP_CSUM_HI_END) fs->e2fs_gd[cg].ext4bgd_i_bmap_csum_hi = csum >> 16; } int ext2_gd_b_bitmap_csum_verify(struct m_ext2fs *fs, int cg, struct buf *bp) { uint32_t hi, provided, calculated, size; if (!EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) return (0); size = fs->e2fs_fpg / 8; provided = fs->e2fs_gd[cg].ext4bgd_b_bmap_csum; calculated = calculate_crc32c(fs->e2fs_csum_seed, bp->b_data, size); if (fs->e2fs->e3fs_desc_size >= EXT2_BG_BLOCK_BITMAP_CSUM_HI_LOCATION) { hi = fs->e2fs_gd[cg].ext4bgd_b_bmap_csum_hi; provided |= (hi << 16); } else calculated &= 0xFFFF; if (provided != calculated) { printf("WARNING: bad block bitmap csum detected, " "cg=%d - run fsck\n", cg); return (EIO); } return (0); } void ext2_gd_b_bitmap_csum_set(struct m_ext2fs *fs, int cg, struct buf *bp) { uint32_t csum, size; if (!EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) return; size = fs->e2fs_fpg / 8; csum = calculate_crc32c(fs->e2fs_csum_seed, bp->b_data, size); fs->e2fs_gd[cg].ext4bgd_b_bmap_csum = csum & 0xFFFF; if (fs->e2fs->e3fs_desc_size >= EXT2_BG_BLOCK_BITMAP_CSUM_HI_LOCATION) fs->e2fs_gd[cg].ext4bgd_b_bmap_csum_hi = csum >> 16; } static uint32_t ext2_ei_csum(struct inode *ip, struct ext2fs_dinode *ei) { struct m_ext2fs *fs; - uint16_t old_lo, old_hi; + uint16_t old_hi; uint32_t inum, gen, crc; fs = ip->i_e2fs; - old_lo = ei->e2di_chksum_lo; ei->e2di_chksum_lo = 0; if ((EXT2_INODE_SIZE(ip->i_e2fs) > E2FS_REV0_INODE_SIZE && ei->e2di_extra_isize >= EXT2_INODE_CSUM_HI_EXTRA_END)) { old_hi = ei->e2di_chksum_hi; ei->e2di_chksum_hi = 0; } inum = ip->i_number; gen = ip->i_gen; crc = calculate_crc32c(fs->e2fs_csum_seed, (uint8_t *)&inum, sizeof(inum)); crc = calculate_crc32c(crc, (uint8_t *)&gen, sizeof(gen)); crc = calculate_crc32c(crc, (uint8_t *)ei, fs->e2fs->e2fs_inode_size); if ((EXT2_INODE_SIZE(fs) > E2FS_REV0_INODE_SIZE && ei->e2di_extra_isize >= EXT2_INODE_CSUM_HI_EXTRA_END)) ei->e2di_chksum_hi = old_hi; return (crc); } int ext2_ei_csum_verify(struct inode *ip, struct ext2fs_dinode *ei) { struct m_ext2fs *fs; const static struct ext2fs_dinode ei_zero; uint32_t hi, provided, calculated; fs = ip->i_e2fs; if (!EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) return (0); /* Check case, when dinode was not initialized */ if (!memcmp(ei, &ei_zero, sizeof(struct ext2fs_dinode))) return (0); provided = ei->e2di_chksum_lo; calculated = ext2_ei_csum(ip, ei); if ((EXT2_INODE_SIZE(fs) > E2FS_REV0_INODE_SIZE && ei->e2di_extra_isize >= EXT2_INODE_CSUM_HI_EXTRA_END)) { hi = ei->e2di_chksum_hi; provided |= hi << 16; } else calculated &= 0xFFFF; if (provided != calculated) return (EIO); return (0); } void ext2_ei_csum_set(struct inode *ip, struct ext2fs_dinode *ei) { struct m_ext2fs *fs; uint32_t crc; fs = ip->i_e2fs; if (!EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) return; crc = ext2_ei_csum(ip, ei); ei->e2di_chksum_lo = crc & 0xFFFF; if ((EXT2_INODE_SIZE(fs) > E2FS_REV0_INODE_SIZE && ei->e2di_extra_isize >= EXT2_INODE_CSUM_HI_EXTRA_END)) ei->e2di_chksum_hi = crc >> 16; } static uint16_t ext2_crc16(uint16_t crc, const void *buffer, unsigned int len) { const unsigned char *cp = buffer; /* CRC table for the CRC-16. The poly is 0x8005 (x16 + x15 + x2 + 1). */ static uint16_t const crc16_table[256] = { 0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241, 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440, 0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40, 0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841, 0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40, 0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41, 0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641, 0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040, 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240, 0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441, 0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41, 0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840, 0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41, 0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40, 0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640, 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041, 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240, 0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441, 0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41, 0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840, 0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41, 0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40, 0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640, 0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041, 0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241, 0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440, 0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40, 0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841, 0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40, 0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41, 0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641, 0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040 }; while (len--) crc = (((crc >> 8) & 0xffU) ^ crc16_table[(crc ^ *cp++) & 0xffU]) & 0x0000ffffU; return crc; } static uint16_t ext2_gd_csum(struct m_ext2fs *fs, uint32_t block_group, struct ext2_gd *gd) { size_t offset; uint32_t csum32; uint16_t crc, dummy_csum; offset = offsetof(struct ext2_gd, ext4bgd_csum); if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) { csum32 = calculate_crc32c(fs->e2fs_csum_seed, (uint8_t *)&block_group, sizeof(block_group)); csum32 = calculate_crc32c(csum32, (uint8_t *)gd, offset); dummy_csum = 0; csum32 = calculate_crc32c(csum32, (uint8_t *)&dummy_csum, sizeof(dummy_csum)); offset += sizeof(dummy_csum); if (offset < fs->e2fs->e3fs_desc_size) csum32 = calculate_crc32c(csum32, (uint8_t *)gd + offset, fs->e2fs->e3fs_desc_size - offset); crc = csum32 & 0xFFFF; return (crc); } else if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM)) { crc = ext2_crc16(~0, fs->e2fs->e2fs_uuid, sizeof(fs->e2fs->e2fs_uuid)); crc = ext2_crc16(crc, (uint8_t *)&block_group, sizeof(block_group)); crc = ext2_crc16(crc, (uint8_t *)gd, offset); offset += sizeof(gd->ext4bgd_csum); /* skip checksum */ if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_64BIT) && offset < fs->e2fs->e3fs_desc_size) crc = ext2_crc16(crc, (uint8_t *)gd + offset, fs->e2fs->e3fs_desc_size - offset); return (crc); } return (0); } int ext2_gd_csum_verify(struct m_ext2fs *fs, struct cdev *dev) { unsigned int i; int error = 0; for (i = 0; i < fs->e2fs_gcount; i++) { if (fs->e2fs_gd[i].ext4bgd_csum != ext2_gd_csum(fs, i, &fs->e2fs_gd[i])) { printf( "WARNING: mount of %s denied due bad gd=%d csum=0x%x, expected=0x%x - run fsck\n", devtoname(dev), i, fs->e2fs_gd[i].ext4bgd_csum, ext2_gd_csum(fs, i, &fs->e2fs_gd[i])); error = EIO; break; } } return (error); } void ext2_gd_csum_set(struct m_ext2fs *fs) { unsigned int i; for (i = 0; i < fs->e2fs_gcount; i++) fs->e2fs_gd[i].ext4bgd_csum = ext2_gd_csum(fs, i, &fs->e2fs_gd[i]); } Index: head/sys/fs/ext2fs/ext2_extents.c =================================================================== --- head/sys/fs/ext2fs/ext2_extents.c (revision 328279) +++ head/sys/fs/ext2fs/ext2_extents.c (revision 328280) @@ -1,1589 +1,1578 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2010 Zheng Liu * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_EXT2EXTENTS, "ext2_extents", "EXT2 extents"); #ifdef EXT2FS_DEBUG static void ext4_ext_print_extent(struct ext4_extent *ep) { printf(" ext %p => (blk %u len %u start %lu)\n", ep, ep->e_blk, ep->e_len, (uint64_t)ep->e_start_hi << 32 | ep->e_start_lo); } static void ext4_ext_print_header(struct inode *ip, struct ext4_extent_header *ehp); static void ext4_ext_print_index(struct inode *ip, struct ext4_extent_index *ex, int do_walk) { struct m_ext2fs *fs; struct buf *bp; int error; fs = ip->i_e2fs; printf(" index %p => (blk %u pblk %lu)\n", ex, ex->ei_blk, (uint64_t)ex->ei_leaf_hi << 32 | ex->ei_leaf_lo); if(!do_walk) return; if ((error = bread(ip->i_devvp, fsbtodb(fs, ((uint64_t)ex->ei_leaf_hi << 32 | ex->ei_leaf_lo)), (int)fs->e2fs_bsize, NOCRED, &bp)) != 0) { brelse(bp); return; } ext4_ext_print_header(ip, (struct ext4_extent_header *)bp->b_data); brelse(bp); } static void ext4_ext_print_header(struct inode *ip, struct ext4_extent_header *ehp) { int i; printf("header %p => (magic 0x%x entries %d max %d depth %d gen %d)\n", ehp, ehp->eh_magic, ehp->eh_ecount, ehp->eh_max, ehp->eh_depth, ehp->eh_gen); for (i = 0; i < ehp->eh_ecount; i++) if (ehp->eh_depth != 0) ext4_ext_print_index(ip, (struct ext4_extent_index *)(ehp + 1 + i), 1); else ext4_ext_print_extent((struct ext4_extent *)(ehp + 1 + i)); } static void ext4_ext_print_path(struct inode *ip, struct ext4_extent_path *path) { int k, l; l = path->ep_depth printf("ip=%d, Path:\n", ip->i_number); for (k = 0; k <= l; k++, path++) { if (path->ep_index) { ext4_ext_print_index(ip, path->ep_index, 0); } else if (path->ep_ext) { ext4_ext_print_extent(path->ep_ext); } } } void ext4_ext_print_extent_tree_status(struct inode * ip) { - struct m_ext2fs *fs; struct ext4_extent_header *ehp; - fs = ip->i_e2fs; ehp = (struct ext4_extent_header *)(char *)ip->i_db; printf("Extent status:ip=%d\n", ip->i_number); if (!(ip->i_flag & IN_E4EXTENTS)) return; ext4_ext_print_header(ip, ehp); return; } #endif static inline struct ext4_extent_header * ext4_ext_inode_header(struct inode *ip) { return ((struct ext4_extent_header *)ip->i_db); } static inline struct ext4_extent_header * ext4_ext_block_header(char *bdata) { return ((struct ext4_extent_header *)bdata); } static inline unsigned short ext4_ext_inode_depth(struct inode *ip) { struct ext4_extent_header *ehp; ehp = (struct ext4_extent_header *)ip->i_data; return (ehp->eh_depth); } static inline e4fs_daddr_t ext4_ext_index_pblock(struct ext4_extent_index *index) { e4fs_daddr_t blk; blk = index->ei_leaf_lo; blk |= (e4fs_daddr_t)index->ei_leaf_hi << 32; return (blk); } static inline void ext4_index_store_pblock(struct ext4_extent_index *index, e4fs_daddr_t pb) { index->ei_leaf_lo = pb & 0xffffffff; index->ei_leaf_hi = (pb >> 32) & 0xffff; } static inline e4fs_daddr_t ext4_ext_extent_pblock(struct ext4_extent *extent) { e4fs_daddr_t blk; blk = extent->e_start_lo; blk |= (e4fs_daddr_t)extent->e_start_hi << 32; return (blk); } static inline void ext4_ext_store_pblock(struct ext4_extent *ex, e4fs_daddr_t pb) { ex->e_start_lo = pb & 0xffffffff; ex->e_start_hi = (pb >> 32) & 0xffff; } int ext4_ext_in_cache(struct inode *ip, daddr_t lbn, struct ext4_extent *ep) { struct ext4_extent_cache *ecp; int ret = EXT4_EXT_CACHE_NO; ecp = &ip->i_ext_cache; if (ecp->ec_type == EXT4_EXT_CACHE_NO) return (ret); if (lbn >= ecp->ec_blk && lbn < ecp->ec_blk + ecp->ec_len) { ep->e_blk = ecp->ec_blk; ep->e_start_lo = ecp->ec_start & 0xffffffff; ep->e_start_hi = ecp->ec_start >> 32 & 0xffff; ep->e_len = ecp->ec_len; ret = ecp->ec_type; } return (ret); } static int ext4_ext_check_header(struct inode *ip, struct ext4_extent_header *eh) { struct m_ext2fs *fs; char *error_msg; fs = ip->i_e2fs; if (eh->eh_magic != EXT4_EXT_MAGIC) { error_msg = "invalid magic"; goto corrupted; } if (eh->eh_max == 0) { error_msg = "invalid eh_max"; goto corrupted; } if (eh->eh_ecount > eh->eh_max) { error_msg = "invalid eh_entries"; goto corrupted; } return (0); corrupted: ext2_fserr(fs, ip->i_uid, error_msg); return (EIO); } static void ext4_ext_binsearch_index(struct ext4_extent_path *path, int blk) { struct ext4_extent_header *eh; struct ext4_extent_index *r, *l, *m; eh = path->ep_header; KASSERT(eh->eh_ecount <= eh->eh_max && eh->eh_ecount > 0, ("ext4_ext_binsearch_index: bad args")); l = EXT_FIRST_INDEX(eh) + 1; r = EXT_FIRST_INDEX(eh) + eh->eh_ecount - 1; while (l <= r) { m = l + (r - l) / 2; if (blk < m->ei_blk) r = m - 1; else l = m + 1; } path->ep_index = l - 1; } static void ext4_ext_binsearch_ext(struct ext4_extent_path *path, int blk) { struct ext4_extent_header *eh; struct ext4_extent *r, *l, *m; eh = path->ep_header; KASSERT(eh->eh_ecount <= eh->eh_max, ("ext4_ext_binsearch_ext: bad args")); if (eh->eh_ecount == 0) return; l = EXT_FIRST_EXTENT(eh) + 1; r = EXT_FIRST_EXTENT(eh) + eh->eh_ecount - 1; while (l <= r) { m = l + (r - l) / 2; if (blk < m->e_blk) r = m - 1; else l = m + 1; } path->ep_ext = l - 1; } static int ext4_ext_fill_path_bdata(struct ext4_extent_path *path, struct buf *bp, uint64_t blk) { KASSERT(path->ep_data == NULL, ("ext4_ext_fill_path_bdata: bad ep_data")); path->ep_data = malloc(bp->b_bufsize, M_EXT2EXTENTS, M_WAITOK); if (!path->ep_data) return (ENOMEM); memcpy(path->ep_data, bp->b_data, bp->b_bufsize); path->ep_blk = blk; return (0); } static void ext4_ext_fill_path_buf(struct ext4_extent_path *path, struct buf *bp) { KASSERT(path->ep_data != NULL, ("ext4_ext_fill_path_buf: bad ep_data")); memcpy(bp->b_data, path->ep_data, bp->b_bufsize); } static void ext4_ext_drop_refs(struct ext4_extent_path *path) { int depth, i; if (!path) return; depth = path->ep_depth; for (i = 0; i <= depth; i++, path++) if (path->ep_data) { free(path->ep_data, M_EXT2EXTENTS); path->ep_data = NULL; } } void ext4_ext_path_free(struct ext4_extent_path *path) { if (!path) return; ext4_ext_drop_refs(path); free(path, M_EXT2EXTENTS); } int ext4_ext_find_extent(struct inode *ip, daddr_t block, struct ext4_extent_path **ppath) { struct m_ext2fs *fs; struct ext4_extent_header *eh; struct ext4_extent_path *path; struct buf *bp; uint64_t blk; int error, depth, i, ppos, alloc; fs = ip->i_e2fs; eh = ext4_ext_inode_header(ip); depth = ext4_ext_inode_depth(ip); ppos = 0; alloc = 0; error = ext4_ext_check_header(ip, eh); if (error) return (error); if (ppath == NULL) return (EINVAL); path = *ppath; if (path == NULL) { path = malloc(EXT4_EXT_DEPTH_MAX * sizeof(struct ext4_extent_path), M_EXT2EXTENTS, M_WAITOK | M_ZERO); if (!path) return (ENOMEM); *ppath = path; alloc = 1; } path[0].ep_header = eh; path[0].ep_data = NULL; /* Walk through the tree. */ i = depth; while (i) { ext4_ext_binsearch_index(&path[ppos], block); blk = ext4_ext_index_pblock(path[ppos].ep_index); path[ppos].ep_depth = i; path[ppos].ep_ext = NULL; error = bread(ip->i_devvp, fsbtodb(ip->i_e2fs, blk), ip->i_e2fs->e2fs_bsize, NOCRED, &bp); if (error) { brelse(bp); goto error; } ppos++; if (ppos > depth) { ext2_fserr(fs, ip->i_uid, "ppos > depth => extent corrupted"); error = EIO; brelse(bp); goto error; } ext4_ext_fill_path_bdata(&path[ppos], bp, blk); bqrelse(bp); eh = ext4_ext_block_header(path[ppos].ep_data); if (ext4_ext_check_header(ip, eh) || ext2_extent_blk_csum_verify(ip, path[ppos].ep_data)) { error = EIO; goto error; } path[ppos].ep_header = eh; i--; } error = ext4_ext_check_header(ip, eh); if (error) goto error; /* Find extent. */ path[ppos].ep_depth = i; path[ppos].ep_header = eh; path[ppos].ep_ext = NULL; path[ppos].ep_index = NULL; ext4_ext_binsearch_ext(&path[ppos], block); return (0); error: ext4_ext_drop_refs(path); if (alloc) free(path, M_EXT2EXTENTS); *ppath = NULL; return (error); } static inline int ext4_ext_space_root(struct inode *ip) { int size; size = sizeof(ip->i_data); size -= sizeof(struct ext4_extent_header); size /= sizeof(struct ext4_extent); return (size); } static inline int ext4_ext_space_block(struct inode *ip) { struct m_ext2fs *fs; int size; fs = ip->i_e2fs; size = (fs->e2fs_bsize - sizeof(struct ext4_extent_header)) / sizeof(struct ext4_extent); return (size); } static inline int ext4_ext_space_block_index(struct inode *ip) { struct m_ext2fs *fs; int size; fs = ip->i_e2fs; size = (fs->e2fs_bsize - sizeof(struct ext4_extent_header)) / sizeof(struct ext4_extent_index); return (size); } void ext4_ext_tree_init(struct inode *ip) { struct ext4_extent_header *ehp; ip->i_flag |= IN_E4EXTENTS; memset(ip->i_data, 0, EXT2_NDADDR + EXT2_NIADDR); ehp = (struct ext4_extent_header *)ip->i_data; ehp->eh_magic = EXT4_EXT_MAGIC; ehp->eh_max = ext4_ext_space_root(ip); ip->i_ext_cache.ec_type = EXT4_EXT_CACHE_NO; ip->i_flag |= IN_CHANGE | IN_UPDATE; ext2_update(ip->i_vnode, 1); } static inline void ext4_ext_put_in_cache(struct inode *ip, uint32_t blk, uint32_t len, uint32_t start, int type) { KASSERT(len != 0, ("ext4_ext_put_in_cache: bad input")); ip->i_ext_cache.ec_type = type; ip->i_ext_cache.ec_blk = blk; ip->i_ext_cache.ec_len = len; ip->i_ext_cache.ec_start = start; } static e4fs_daddr_t ext4_ext_blkpref(struct inode *ip, struct ext4_extent_path *path, e4fs_daddr_t block) { struct m_ext2fs *fs; struct ext4_extent *ex; e4fs_daddr_t bg_start; int depth; fs = ip->i_e2fs; if (path) { depth = path->ep_depth; ex = path[depth].ep_ext; if (ex) { e4fs_daddr_t pblk = ext4_ext_extent_pblock(ex); e2fs_daddr_t blk = ex->e_blk; if (block > blk) return (pblk + (block - blk)); else return (pblk - (blk - block)); } /* Try to get block from index itself. */ if (path[depth].ep_data) return (path[depth].ep_blk); } /* Use inode's group. */ bg_start = (ip->i_block_group * EXT2_BLOCKS_PER_GROUP(ip->i_e2fs)) + fs->e2fs->e2fs_first_dblock; return (bg_start + block); } static int inline ext4_can_extents_be_merged(struct ext4_extent *ex1, struct ext4_extent *ex2) { if (ex1->e_blk + ex1->e_len != ex2->e_blk) return (0); if (ex1->e_len + ex2->e_len > EXT4_MAX_LEN) return (0); if (ext4_ext_extent_pblock(ex1) + ex1->e_len == ext4_ext_extent_pblock(ex2)) return (1); return (0); } static unsigned ext4_ext_next_leaf_block(struct inode *ip, struct ext4_extent_path *path) { int depth = path->ep_depth; /* Empty tree */ if (depth == 0) return (EXT4_MAX_BLOCKS); /* Go to indexes. */ depth--; while (depth >= 0) { if (path[depth].ep_index != EXT_LAST_INDEX(path[depth].ep_header)) return (path[depth].ep_index[1].ei_blk); depth--; } return (EXT4_MAX_BLOCKS); } static int ext4_ext_dirty(struct inode *ip, struct ext4_extent_path *path) { struct m_ext2fs *fs; struct buf *bp; uint64_t blk; int error; fs = ip->i_e2fs; if (!path) return (EINVAL); if (path->ep_data) { blk = path->ep_blk; bp = getblk(ip->i_devvp, fsbtodb(fs, blk), fs->e2fs_bsize, 0, 0, 0); if (!bp) return (EIO); ext4_ext_fill_path_buf(path, bp); ext2_extent_blk_csum_set(ip, bp->b_data); error = bwrite(bp); } else { ip->i_flag |= IN_CHANGE | IN_UPDATE; error = ext2_update(ip->i_vnode, 1); } return (error); } static int ext4_ext_insert_index(struct inode *ip, struct ext4_extent_path *path, uint32_t lblk, e4fs_daddr_t blk) { struct m_ext2fs *fs; struct ext4_extent_index *idx; int len; fs = ip->i_e2fs; if (lblk == path->ep_index->ei_blk) { ext2_fserr(fs, ip->i_uid, "lblk == index blk => extent corrupted"); return (EIO); } if (path->ep_header->eh_ecount >= path->ep_header->eh_max) { ext2_fserr(fs, ip->i_uid, "ecout > maxcount => extent corrupted"); return (EIO); } if (lblk > path->ep_index->ei_blk) { /* Insert after. */ idx = path->ep_index + 1; } else { /* Insert before. */ idx = path->ep_index; } len = EXT_LAST_INDEX(path->ep_header) - idx + 1; if (len > 0) memmove(idx + 1, idx, len * sizeof(struct ext4_extent_index)); if (idx > EXT_MAX_INDEX(path->ep_header)) { ext2_fserr(fs, ip->i_uid, "index is out of range => extent corrupted"); return (EIO); } idx->ei_blk = lblk; ext4_index_store_pblock(idx, blk); path->ep_header->eh_ecount++; return (ext4_ext_dirty(ip, path)); } static e4fs_daddr_t ext4_ext_alloc_meta(struct inode *ip) { e4fs_daddr_t blk = ext2_alloc_meta(ip); if (blk) { ip->i_blocks += btodb(ip->i_e2fs->e2fs_bsize); ip->i_flag |= IN_CHANGE | IN_UPDATE; ext2_update(ip->i_vnode, 1); } return (blk); } static void ext4_ext_blkfree(struct inode *ip, uint64_t blk, int count, int flags) { struct m_ext2fs *fs; int i, blocksreleased; fs = ip->i_e2fs; blocksreleased = count; for(i = 0; i < count; i++) ext2_blkfree(ip, blk + i, fs->e2fs_bsize); if (ip->i_blocks >= blocksreleased) ip->i_blocks -= (btodb(fs->e2fs_bsize)*blocksreleased); else ip->i_blocks = 0; ip->i_flag |= IN_CHANGE | IN_UPDATE; ext2_update(ip->i_vnode, 1); } static int ext4_ext_split(struct inode *ip, struct ext4_extent_path *path, struct ext4_extent *newext, int at) { struct m_ext2fs *fs; struct buf *bp; int depth = ext4_ext_inode_depth(ip); struct ext4_extent_header *neh; struct ext4_extent_index *fidx; struct ext4_extent *ex; int i = at, k, m, a; e4fs_daddr_t newblk, oldblk; uint32_t border; e4fs_daddr_t *ablks = NULL; int error = 0; fs = ip->i_e2fs; bp = NULL; /* * We will split at current extent for now. */ if (path[depth].ep_ext > EXT_MAX_EXTENT(path[depth].ep_header)) { ext2_fserr(fs, ip->i_uid, "extent is out of range => extent corrupted"); return (EIO); } if (path[depth].ep_ext != EXT_MAX_EXTENT(path[depth].ep_header)) border = path[depth].ep_ext[1].e_blk; else border = newext->e_blk; /* Allocate new blocks. */ ablks = malloc(sizeof(e4fs_daddr_t) * depth, M_EXT2EXTENTS, M_WAITOK | M_ZERO); if (!ablks) return (ENOMEM); for (a = 0; a < depth - at; a++) { newblk = ext4_ext_alloc_meta(ip); if (newblk == 0) goto cleanup; ablks[a] = newblk; } newblk = ablks[--a]; bp = getblk(ip->i_devvp, fsbtodb(fs, newblk), fs->e2fs_bsize, 0, 0, 0); if (!bp) { error = EIO; goto cleanup; } neh = ext4_ext_block_header(bp->b_data); neh->eh_ecount = 0; neh->eh_max = ext4_ext_space_block(ip); neh->eh_magic = EXT4_EXT_MAGIC; neh->eh_depth = 0; ex = EXT_FIRST_EXTENT(neh); if (path[depth].ep_header->eh_ecount != path[depth].ep_header->eh_max) { ext2_fserr(fs, ip->i_uid, "extents count out of range => extent corrupted"); error = EIO; goto cleanup; } /* Start copy from next extent. */ m = 0; path[depth].ep_ext++; while (path[depth].ep_ext <= EXT_MAX_EXTENT(path[depth].ep_header)) { path[depth].ep_ext++; m++; } if (m) { memmove(ex, path[depth].ep_ext - m, sizeof(struct ext4_extent) * m); neh->eh_ecount = neh->eh_ecount + m; } ext2_extent_blk_csum_set(ip, bp->b_data); bwrite(bp); bp = NULL; /* Fix old leaf. */ if (m) { path[depth].ep_header->eh_ecount = path[depth].ep_header->eh_ecount - m; ext4_ext_dirty(ip, path + depth); } /* Create intermediate indexes. */ k = depth - at - 1; KASSERT(k >= 0, ("ext4_ext_split: negative k")); /* Insert new index into current index block. */ i = depth - 1; while (k--) { oldblk = newblk; newblk = ablks[--a]; error = bread(ip->i_devvp, fsbtodb(fs, newblk), (int)fs->e2fs_bsize, NOCRED, &bp); if (error) { brelse(bp); goto cleanup; } neh = (struct ext4_extent_header *)bp->b_data; neh->eh_ecount = 1; neh->eh_magic = EXT4_EXT_MAGIC; neh->eh_max = ext4_ext_space_block_index(ip); neh->eh_depth = depth - i; fidx = EXT_FIRST_INDEX(neh); fidx->ei_blk = border; ext4_index_store_pblock(fidx, oldblk); m = 0; path[i].ep_index++; while (path[i].ep_index <= EXT_MAX_INDEX(path[i].ep_header)) { path[i].ep_index++; m++; } if (m) { memmove(++fidx, path[i].ep_index - m, sizeof(struct ext4_extent_index) * m); neh->eh_ecount = neh->eh_ecount + m; } ext2_extent_blk_csum_set(ip, bp->b_data); bwrite(bp); bp = NULL; /* Fix old index. */ if (m) { path[i].ep_header->eh_ecount = path[i].ep_header->eh_ecount - m; ext4_ext_dirty(ip, path + i); } i--; } error = ext4_ext_insert_index(ip, path + at, border, newblk); cleanup: if (bp) brelse(bp); if (error) { for (i = 0; i < depth; i++) { if (!ablks[i]) continue; ext4_ext_blkfree(ip, ablks[i], 1, 0); } } free(ablks, M_EXT2EXTENTS); return (error); } static int ext4_ext_grow_indepth(struct inode *ip, struct ext4_extent_path *path, struct ext4_extent *newext) { struct m_ext2fs *fs; struct ext4_extent_path *curpath; struct ext4_extent_header *neh; - struct ext4_extent_index *fidx; struct buf *bp; e4fs_daddr_t newblk; int error = 0; fs = ip->i_e2fs; curpath = path; newblk = ext4_ext_alloc_meta(ip); if (newblk == 0) return (error); bp = getblk(ip->i_devvp, fsbtodb(fs, newblk), fs->e2fs_bsize, 0, 0, 0); if (!bp) return (EIO); /* Move top-level index/leaf into new block. */ memmove(bp->b_data, curpath->ep_header, sizeof(ip->i_data)); /* Set size of new block */ neh = ext4_ext_block_header(bp->b_data); neh->eh_magic = EXT4_EXT_MAGIC; if (ext4_ext_inode_depth(ip)) neh->eh_max = ext4_ext_space_block_index(ip); else neh->eh_max = ext4_ext_space_block(ip); ext2_extent_blk_csum_set(ip, bp->b_data); error = bwrite(bp); if (error) goto out; bp = NULL; curpath->ep_header->eh_magic = EXT4_EXT_MAGIC; curpath->ep_header->eh_max = ext4_ext_space_root(ip); curpath->ep_header->eh_ecount = 1; curpath->ep_index = EXT_FIRST_INDEX(curpath->ep_header); curpath->ep_index->ei_blk = EXT_FIRST_EXTENT(path[0].ep_header)->e_blk; ext4_index_store_pblock(curpath->ep_index, newblk); neh = ext4_ext_inode_header(ip); - fidx = EXT_FIRST_INDEX(neh); neh->eh_depth = path->ep_depth + 1; ext4_ext_dirty(ip, curpath); out: brelse(bp); return (error); } static int ext4_ext_create_new_leaf(struct inode *ip, struct ext4_extent_path *path, struct ext4_extent *newext) { - struct m_ext2fs *fs; struct ext4_extent_path *curpath; int depth, i, error; - fs = ip->i_e2fs; - repeat: i = depth = ext4_ext_inode_depth(ip); /* Look for free index entry int the tree */ curpath = path + depth; while (i > 0 && !EXT_HAS_FREE_INDEX(curpath)) { i--; curpath--; } /* * We use already allocated block for index block, * so subsequent data blocks should be contiguous. */ if (EXT_HAS_FREE_INDEX(curpath)) { error = ext4_ext_split(ip, path, newext, i); if (error) goto out; /* Refill path. */ ext4_ext_drop_refs(path); error = ext4_ext_find_extent(ip, newext->e_blk, &path); if (error) goto out; } else { /* Tree is full, do grow in depth. */ error = ext4_ext_grow_indepth(ip, path, newext); if (error) goto out; /* Refill path. */ ext4_ext_drop_refs(path); error = ext4_ext_find_extent(ip, newext->e_blk, &path); if (error) goto out; /* Check and split tree if required. */ depth = ext4_ext_inode_depth(ip); if (path[depth].ep_header->eh_ecount == path[depth].ep_header->eh_max) goto repeat; } out: return (error); } static int ext4_ext_correct_indexes(struct inode *ip, struct ext4_extent_path *path) { struct ext4_extent_header *eh; struct ext4_extent *ex; int32_t border; int depth, k; depth = ext4_ext_inode_depth(ip); eh = path[depth].ep_header; ex = path[depth].ep_ext; if (ex == NULL || eh == NULL) return (EIO); if (!depth) return (0); /* We will correct tree if first leaf got modified only. */ if (ex != EXT_FIRST_EXTENT(eh)) return (0); k = depth - 1; border = path[depth].ep_ext->e_blk; path[k].ep_index->ei_blk = border; ext4_ext_dirty(ip, path + k); while (k--) { /* Change all left-side indexes. */ if (path[k+1].ep_index != EXT_FIRST_INDEX(path[k+1].ep_header)) break; path[k].ep_index->ei_blk = border; ext4_ext_dirty(ip, path + k); } return (0); } static int ext4_ext_insert_extent(struct inode *ip, struct ext4_extent_path *path, struct ext4_extent *newext) { - struct m_ext2fs *fs; struct ext4_extent_header * eh; struct ext4_extent *ex, *nex, *nearex; struct ext4_extent_path *npath; int depth, len, error, next; - fs = ip->i_e2fs; depth = ext4_ext_inode_depth(ip); ex = path[depth].ep_ext; npath = NULL; if (newext->e_len == 0 || path[depth].ep_header == NULL) return (EINVAL); /* Insert block into found extent. */ if (ex && ext4_can_extents_be_merged(ex, newext)) { ex->e_len = ex->e_len + newext->e_len; eh = path[depth].ep_header; nearex = ex; goto merge; } repeat: depth = ext4_ext_inode_depth(ip); eh = path[depth].ep_header; if (eh->eh_ecount < eh->eh_max) goto has_space; /* Try next leaf */ nex = EXT_LAST_EXTENT(eh); next = ext4_ext_next_leaf_block(ip, path); if (newext->e_blk > nex->e_blk && next != EXT4_MAX_BLOCKS) { KASSERT(npath == NULL, ("ext4_ext_insert_extent: bad path")); error = ext4_ext_find_extent(ip, next, &npath); if (error) goto cleanup; if (npath->ep_depth != path->ep_depth) { error = EIO; goto cleanup; } eh = npath[depth].ep_header; if (eh->eh_ecount < eh->eh_max) { path = npath; goto repeat; } } /* * There is no free space in the found leaf, * try to add a new leaf to the tree. */ error = ext4_ext_create_new_leaf(ip, path, newext); if (error) goto cleanup; depth = ext4_ext_inode_depth(ip); eh = path[depth].ep_header; has_space: nearex = path[depth].ep_ext; if (!nearex) { /* Create new extent in the leaf. */ path[depth].ep_ext = EXT_FIRST_EXTENT(eh); } else if (newext->e_blk > nearex->e_blk) { if (nearex != EXT_LAST_EXTENT(eh)) { len = EXT_MAX_EXTENT(eh) - nearex; len = (len - 1) * sizeof(struct ext4_extent); len = len < 0 ? 0 : len; memmove(nearex + 2, nearex + 1, len); } path[depth].ep_ext = nearex + 1; } else { len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent); len = len < 0 ? 0 : len; memmove(nearex + 1, nearex, len); path[depth].ep_ext = nearex; } eh->eh_ecount = eh->eh_ecount + 1; nearex = path[depth].ep_ext; nearex->e_blk = newext->e_blk; nearex->e_start_lo = newext->e_start_lo; nearex->e_start_hi = newext->e_start_hi; nearex->e_len = newext->e_len; merge: /* Try to merge extents to the right. */ while (nearex < EXT_LAST_EXTENT(eh)) { if (!ext4_can_extents_be_merged(nearex, nearex + 1)) break; /* Merge with next extent. */ nearex->e_len = nearex->e_len + nearex[1].e_len; if (nearex + 1 < EXT_LAST_EXTENT(eh)) { len = (EXT_LAST_EXTENT(eh) - nearex - 1) * sizeof(struct ext4_extent); memmove(nearex + 1, nearex + 2, len); } eh->eh_ecount = eh->eh_ecount - 1; KASSERT(eh->eh_ecount != 0, ("ext4_ext_insert_extent: bad ecount")); } /* * Try to merge extents to the left, * start from inexes correction. */ error = ext4_ext_correct_indexes(ip, path); if (error) goto cleanup; ext4_ext_dirty(ip, path + depth); cleanup: if (npath) { ext4_ext_drop_refs(npath); free(npath, M_EXT2EXTENTS); } ip->i_ext_cache.ec_type = EXT4_EXT_CACHE_NO; return (error); } static e4fs_daddr_t ext4_new_blocks(struct inode *ip, daddr_t lbn, e4fs_daddr_t pref, struct ucred *cred, unsigned long *count, int *perror) { struct m_ext2fs *fs; - struct ext2mount *ump; e4fs_daddr_t newblk; fs = ip->i_e2fs; - ump = ip->i_ump; /* * We will allocate only single block for now. */ if (*count > 1) return (0); EXT2_LOCK(ip->i_ump); *perror = ext2_alloc(ip, lbn, pref, (int)fs->e2fs_bsize, cred, &newblk); if (*perror) return (0); if (newblk) { ip->i_flag |= IN_CHANGE | IN_UPDATE; ext2_update(ip->i_vnode, 1); } return (newblk); } int ext4_ext_get_blocks(struct inode *ip, e4fs_daddr_t iblk, unsigned long max_blocks, struct ucred *cred, struct buf **bpp, int *pallocated, daddr_t *nb) { struct m_ext2fs *fs; struct buf *bp = NULL; struct ext4_extent_path *path; struct ext4_extent newex, *ex; e4fs_daddr_t bpref, newblk = 0; unsigned long allocated = 0; int error = 0, depth; fs = ip->i_e2fs; *pallocated = 0; path = NULL; if(bpp) *bpp = NULL; /* Check cache. */ if ((bpref = ext4_ext_in_cache(ip, iblk, &newex))) { if (bpref == EXT4_EXT_CACHE_IN) { /* Block is already allocated. */ newblk = iblk - newex.e_blk + ext4_ext_extent_pblock(&newex); allocated = newex.e_len - (iblk - newex.e_blk); goto out; } else { error = EIO; goto out2; } } error = ext4_ext_find_extent(ip, iblk, &path); if (error) { goto out2; } depth = ext4_ext_inode_depth(ip); if (path[depth].ep_ext == NULL && depth != 0) { error = EIO; goto out2; } if ((ex = path[depth].ep_ext)) { uint64_t lblk = ex->e_blk; uint16_t e_len = ex->e_len; e4fs_daddr_t e_start = ext4_ext_extent_pblock(ex); if (e_len > EXT4_MAX_LEN) goto out2; /* If we found extent covers block, simply return it. */ if (iblk >= lblk && iblk < lblk + e_len) { newblk = iblk - lblk + e_start; allocated = e_len - (iblk - lblk); ext4_ext_put_in_cache(ip, lblk, e_len, e_start, EXT4_EXT_CACHE_IN); goto out; } } /* Allocate the new block. */ if (S_ISREG(ip->i_mode) && (!ip->i_next_alloc_block)) { ip->i_next_alloc_goal = 0; } bpref = ext4_ext_blkpref(ip, path, iblk); allocated = max_blocks; newblk = ext4_new_blocks(ip, iblk, bpref, cred, &allocated, &error); if (!newblk) goto out2; /* Try to insert new extent into found leaf and return. */ newex.e_blk = iblk; ext4_ext_store_pblock(&newex, newblk); newex.e_len = allocated; error = ext4_ext_insert_extent(ip, path, &newex); if (error) goto out2; newblk = ext4_ext_extent_pblock(&newex); ext4_ext_put_in_cache(ip, iblk, allocated, newblk, EXT4_EXT_CACHE_IN); *pallocated = 1; out: if (allocated > max_blocks) allocated = max_blocks; if (bpp) { error = bread(ip->i_devvp, fsbtodb(fs, newblk), fs->e2fs_bsize, cred, &bp); if (error) { brelse(bp); } else { *bpp = bp; } } out2: if (path) { ext4_ext_drop_refs(path); free(path, M_EXT2EXTENTS); } if (nb) *nb = newblk; return (error); } static inline uint16_t ext4_ext_get_actual_len(struct ext4_extent *ext) { return (ext->e_len <= EXT_INIT_MAX_LEN ? ext->e_len : (ext->e_len - EXT_INIT_MAX_LEN)); } static inline struct ext4_extent_header * ext4_ext_header(struct inode *ip) { return (struct ext4_extent_header *)ip->i_db; } static int ext4_remove_blocks(struct inode *ip, struct ext4_extent *ex, unsigned long from, unsigned long to) { unsigned long num, start; if (from >= ex->e_blk && to == ex->e_blk + ext4_ext_get_actual_len(ex) - 1) { /* Tail cleanup. */ num = ex->e_blk + ext4_ext_get_actual_len(ex) - from; start = ext4_ext_extent_pblock(ex) + ext4_ext_get_actual_len(ex) - num; ext4_ext_blkfree(ip, start, num, 0); } return (0); } static int ext4_ext_rm_index(struct inode *ip, struct ext4_extent_path *path) { e4fs_daddr_t leaf; /* Free index block. */ path--; leaf = ext4_ext_index_pblock(path->ep_index); KASSERT(path->ep_header->eh_ecount != 0, ("ext4_ext_rm_index: bad ecount")); path->ep_header->eh_ecount--; ext4_ext_dirty(ip, path); ext4_ext_blkfree(ip, leaf, 1, 0); return (0); } static int ext4_ext_rm_leaf(struct inode *ip, struct ext4_extent_path *path, uint64_t start) { struct m_ext2fs *fs; int depth; struct ext4_extent_header *eh; unsigned int a, b, block, num; unsigned long ex_blk; unsigned short ex_len; struct ext4_extent *ex; int error, correct_index; fs = ip->i_e2fs; depth = ext4_ext_inode_depth(ip); correct_index = 0; if (!path[depth].ep_header) { if (path[depth].ep_data == NULL) return (EINVAL); path[depth].ep_header = (struct ext4_extent_header* )path[depth].ep_data; } eh = path[depth].ep_header; if (!eh) { ext2_fserr(fs, ip->i_uid, "bad header => extent corrupted"); return (EIO); } ex = EXT_LAST_EXTENT(eh); ex_blk = ex->e_blk; ex_len = ext4_ext_get_actual_len(ex); while (ex >= EXT_FIRST_EXTENT(eh) && ex_blk + ex_len > start) { path[depth].ep_ext = ex; a = ex_blk > start ? ex_blk : start; b = (uint64_t)ex_blk + ex_len - 1 < EXT4_MAX_BLOCKS ? ex_blk + ex_len - 1 : EXT4_MAX_BLOCKS; if (a != ex_blk && b != ex_blk + ex_len - 1) return (EINVAL); else if (a != ex_blk) { /* Remove tail of the extent. */ block = ex_blk; num = a - block; } else if (b != ex_blk + ex_len - 1) { /* Remove head of the extent, not implemented. */ return (EINVAL); } else { /* Remove whole extent. */ block = ex_blk; num = 0; } if (ex == EXT_FIRST_EXTENT(eh)) correct_index = 1; error = ext4_remove_blocks(ip, ex, a, b); if (error) goto out; if (num == 0) { ext4_ext_store_pblock(ex, 0); eh->eh_ecount--; } ex->e_blk = block; ex->e_len = num; ext4_ext_dirty(ip, path + depth); ex--; ex_blk = ex->e_blk; ex_len = ext4_ext_get_actual_len(ex); }; if (correct_index && eh->eh_ecount) error = ext4_ext_correct_indexes(ip, path); /* * If this leaf is free, we should * remove it from index block above. */ if (error == 0 && eh->eh_ecount == 0 && path[depth].ep_data != NULL) error = ext4_ext_rm_index(ip, path + depth); out: return (error); } static struct buf * ext4_read_extent_tree_block(struct inode *ip, e4fs_daddr_t pblk, int depth, int flags) { struct m_ext2fs *fs; struct ext4_extent_header *eh; struct buf *bp; int error; fs = ip->i_e2fs; error = bread(ip->i_devvp, fsbtodb(fs, pblk), fs->e2fs_bsize, NOCRED, &bp); if (error) { brelse(bp); return (NULL); } eh = ext4_ext_block_header(bp->b_data); if (eh->eh_depth != depth) { ext2_fserr(fs, ip->i_uid, "unexpected eh_depth"); goto err; } error = ext4_ext_check_header(ip, eh); if (error) goto err; return (bp); err: brelse(bp); return (NULL); } static int inline ext4_ext_more_to_rm(struct ext4_extent_path *path) { KASSERT(path->ep_index != NULL, ("ext4_ext_more_to_rm: bad index from path")); if (path->ep_index < EXT_FIRST_INDEX(path->ep_header)) return (0); if (path->ep_header->eh_ecount == path->index_count) return (0); return (1); } int ext4_ext_remove_space(struct inode *ip, off_t length, int flags, struct ucred *cred, struct thread *td) { struct buf *bp; struct ext4_extent_header *ehp; struct ext4_extent_path *path; int depth; int i, error; ehp = (struct ext4_extent_header *)ip->i_db; depth = ext4_ext_inode_depth(ip); error = ext4_ext_check_header(ip, ehp); if(error) return (error); path = malloc(sizeof(struct ext4_extent_path) * (depth + 1), M_EXT2EXTENTS, M_WAITOK | M_ZERO); if (!path) return (ENOMEM); i = 0; path[0].ep_header = ehp; path[0].ep_depth = depth; while (i >= 0 && error == 0) { if (i == depth) { /* This is leaf. */ error = ext4_ext_rm_leaf(ip, path, length); if (error) break; free(path[i].ep_data, M_EXT2EXTENTS); path[i].ep_data = NULL; i--; continue; } /* This is index. */ if (!path[i].ep_header) path[i].ep_header = (struct ext4_extent_header *)path[i].ep_data; if (!path[i].ep_index) { /* This level hasn't touched yet. */ path[i].ep_index = EXT_LAST_INDEX(path[i].ep_header); path[i].index_count = path[i].ep_header->eh_ecount + 1; } else { /* We've already was here, see at next index. */ path[i].ep_index--; } if (ext4_ext_more_to_rm(path + i)) { memset(path + i + 1, 0, sizeof(*path)); bp = ext4_read_extent_tree_block(ip, ext4_ext_index_pblock(path[i].ep_index), path[0].ep_depth - (i + 1), 0); if (!bp) { error = EIO; break; } ext4_ext_fill_path_bdata(&path[i+1], bp, ext4_ext_index_pblock(path[i].ep_index)); brelse(bp); path[i].index_count = path[i].ep_header->eh_ecount; i++; } else { if (path[i].ep_header->eh_ecount == 0 && i > 0) { /* Index is empty, remove it. */ error = ext4_ext_rm_index(ip, path + i); } free(path[i].ep_data, M_EXT2EXTENTS); path[i].ep_data = NULL; i--; } } if (path->ep_header->eh_ecount == 0) { /* * Truncate the tree to zero. */ ext4_ext_header(ip)->eh_depth = 0; ext4_ext_header(ip)->eh_max = ext4_ext_space_root(ip); ext4_ext_dirty(ip, path); } ext4_ext_drop_refs(path); free(path, M_EXT2EXTENTS); return (error); } Index: head/sys/fs/ext2fs/ext2_lookup.c =================================================================== --- head/sys/fs/ext2fs/ext2_lookup.c (revision 328279) +++ head/sys/fs/ext2fs/ext2_lookup.c (revision 328280) @@ -1,1241 +1,1240 @@ /*- * modified for Lites 1.1 * * Aug 1995, Godmar Back (gback@cs.utah.edu) * University of Utah, Department of Computer Science */ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ufs_lookup.c 8.6 (Berkeley) 4/1/94 * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INVARIANTS static int dirchk = 1; #else static int dirchk = 0; #endif static SYSCTL_NODE(_vfs, OID_AUTO, e2fs, CTLFLAG_RD, 0, "EXT2FS filesystem"); SYSCTL_INT(_vfs_e2fs, OID_AUTO, dircheck, CTLFLAG_RW, &dirchk, 0, ""); /* DIRBLKSIZE in ffs is DEV_BSIZE (in most cases 512) while it is the native blocksize in ext2fs - thus, a #define is no longer appropriate */ #undef DIRBLKSIZ static u_char ext2_ft_to_dt[] = { DT_UNKNOWN, /* EXT2_FT_UNKNOWN */ DT_REG, /* EXT2_FT_REG_FILE */ DT_DIR, /* EXT2_FT_DIR */ DT_CHR, /* EXT2_FT_CHRDEV */ DT_BLK, /* EXT2_FT_BLKDEV */ DT_FIFO, /* EXT2_FT_FIFO */ DT_SOCK, /* EXT2_FT_SOCK */ DT_LNK, /* EXT2_FT_SYMLINK */ }; #define FTTODT(ft) \ ((ft) < nitems(ext2_ft_to_dt) ? ext2_ft_to_dt[(ft)] : DT_UNKNOWN) static u_char dt_to_ext2_ft[] = { EXT2_FT_UNKNOWN, /* DT_UNKNOWN */ EXT2_FT_FIFO, /* DT_FIFO */ EXT2_FT_CHRDEV, /* DT_CHR */ EXT2_FT_UNKNOWN, /* unused */ EXT2_FT_DIR, /* DT_DIR */ EXT2_FT_UNKNOWN, /* unused */ EXT2_FT_BLKDEV, /* DT_BLK */ EXT2_FT_UNKNOWN, /* unused */ EXT2_FT_REG_FILE, /* DT_REG */ EXT2_FT_UNKNOWN, /* unused */ EXT2_FT_SYMLINK, /* DT_LNK */ EXT2_FT_UNKNOWN, /* unused */ EXT2_FT_SOCK, /* DT_SOCK */ EXT2_FT_UNKNOWN, /* unused */ EXT2_FT_UNKNOWN, /* DT_WHT */ }; #define DTTOFT(dt) \ ((dt) < nitems(dt_to_ext2_ft) ? dt_to_ext2_ft[(dt)] : EXT2_FT_UNKNOWN) static int ext2_dirbadentry(struct vnode *dp, struct ext2fs_direct_2 *de, int entryoffsetinblock); static int ext2_is_dot_entry(struct componentname *cnp); static int ext2_lookup_ino(struct vnode *vdp, struct vnode **vpp, struct componentname *cnp, ino_t *dd_ino); static int ext2_is_dot_entry(struct componentname *cnp) { if (cnp->cn_namelen <= 2 && cnp->cn_nameptr[0] == '.' && (cnp->cn_nameptr[1] == '.' || cnp->cn_nameptr[1] == '\0')) return (1); return (0); } /* * Vnode op for reading directories. */ int ext2_readdir(struct vop_readdir_args *ap) { struct vnode *vp = ap->a_vp; struct uio *uio = ap->a_uio; struct buf *bp; struct inode *ip; struct ext2fs_direct_2 *dp, *edp; u_long *cookies; struct dirent dstdp; off_t offset, startoffset; size_t readcnt, skipcnt; ssize_t startresid; int DIRBLKSIZ = VTOI(ap->a_vp)->i_e2fs->e2fs_bsize; int error; u_int ncookies; if (uio->uio_offset < 0) return (EINVAL); ip = VTOI(vp); if (ap->a_ncookies != NULL) { ncookies = uio->uio_resid; if (uio->uio_offset >= ip->i_size) ncookies = 0; else if (ip->i_size - uio->uio_offset < ncookies) ncookies = ip->i_size - uio->uio_offset; ncookies = ncookies / (offsetof(struct ext2fs_direct_2, e2d_namlen) + 4) + 1; cookies = mallocarray(ncookies, sizeof(*cookies), M_TEMP, M_WAITOK); *ap->a_ncookies = ncookies; *ap->a_cookies = cookies; } else { ncookies = 0; cookies = NULL; } offset = startoffset = uio->uio_offset; startresid = uio->uio_resid; error = 0; while (error == 0 && uio->uio_resid > 0 && uio->uio_offset < ip->i_size) { error = ext2_blkatoff(vp, uio->uio_offset, NULL, &bp); if (error) break; if (bp->b_offset + bp->b_bcount > ip->i_size) readcnt = ip->i_size - bp->b_offset; else readcnt = bp->b_bcount; skipcnt = (size_t)(uio->uio_offset - bp->b_offset) & ~(size_t)(DIRBLKSIZ - 1); offset = bp->b_offset + skipcnt; dp = (struct ext2fs_direct_2 *)&bp->b_data[skipcnt]; edp = (struct ext2fs_direct_2 *)&bp->b_data[readcnt]; while (error == 0 && uio->uio_resid > 0 && dp < edp) { if (dp->e2d_reclen <= offsetof(struct ext2fs_direct_2, e2d_namlen) || (caddr_t)dp + dp->e2d_reclen > (caddr_t)edp) { error = EIO; break; } /*- * "New" ext2fs directory entries differ in 3 ways * from ufs on-disk ones: * - the name is not necessarily NUL-terminated. * - the file type field always exists and always * follows the name length field. * - the file type is encoded in a different way. * * "Old" ext2fs directory entries need no special * conversions, since they are binary compatible * with "new" entries having a file type of 0 (i.e., * EXT2_FT_UNKNOWN). Splitting the old name length * field didn't make a mess like it did in ufs, * because ext2fs uses a machine-independent disk * layout. */ dstdp.d_namlen = dp->e2d_namlen; dstdp.d_type = FTTODT(dp->e2d_type); if (offsetof(struct ext2fs_direct_2, e2d_namlen) + dstdp.d_namlen > dp->e2d_reclen) { error = EIO; break; } if (offset < startoffset || dp->e2d_ino == 0) goto nextentry; dstdp.d_fileno = dp->e2d_ino; dstdp.d_reclen = GENERIC_DIRSIZ(&dstdp); bcopy(dp->e2d_name, dstdp.d_name, dstdp.d_namlen); dstdp.d_name[dstdp.d_namlen] = '\0'; if (dstdp.d_reclen > uio->uio_resid) { if (uio->uio_resid == startresid) error = EINVAL; else error = EJUSTRETURN; break; } /* Advance dp. */ error = uiomove((caddr_t)&dstdp, dstdp.d_reclen, uio); if (error) break; if (cookies != NULL) { KASSERT(ncookies > 0, ("ext2_readdir: cookies buffer too small")); *cookies = offset + dp->e2d_reclen; cookies++; ncookies--; } nextentry: offset += dp->e2d_reclen; dp = (struct ext2fs_direct_2 *)((caddr_t)dp + dp->e2d_reclen); } bqrelse(bp); uio->uio_offset = offset; } /* We need to correct uio_offset. */ uio->uio_offset = offset; if (error == EJUSTRETURN) error = 0; if (ap->a_ncookies != NULL) { if (error == 0) { ap->a_ncookies -= ncookies; } else { free(*ap->a_cookies, M_TEMP); *ap->a_ncookies = 0; *ap->a_cookies = NULL; } } if (error == 0 && ap->a_eofflag) *ap->a_eofflag = ip->i_size <= uio->uio_offset; return (error); } /* * Convert a component of a pathname into a pointer to a locked inode. * This is a very central and rather complicated routine. * If the file system is not maintained in a strict tree hierarchy, * this can result in a deadlock situation (see comments in code below). * * The cnp->cn_nameiop argument is LOOKUP, CREATE, RENAME, or DELETE depending * on whether the name is to be looked up, created, renamed, or deleted. * When CREATE, RENAME, or DELETE is specified, information usable in * creating, renaming, or deleting a directory entry may be calculated. * If flag has LOCKPARENT or'ed into it and the target of the pathname * exists, lookup returns both the target and its parent directory locked. * When creating or renaming and LOCKPARENT is specified, the target may * not be ".". When deleting and LOCKPARENT is specified, the target may * be "."., but the caller must check to ensure it does an vrele and vput * instead of two vputs. * * Overall outline of ext2_lookup: * * search for name in directory, to found or notfound * notfound: * if creating, return locked directory, leaving info on available slots * else return error * found: * if at end of path and deleting, return information to allow delete * if at end of path and rewriting (RENAME and LOCKPARENT), lock target * inode and return info to allow rewrite * if not at end, add name to cache; if at end and neither creating * nor deleting, add name to cache */ int ext2_lookup(struct vop_cachedlookup_args *ap) { return (ext2_lookup_ino(ap->a_dvp, ap->a_vpp, ap->a_cnp, NULL)); } static int ext2_lookup_ino(struct vnode *vdp, struct vnode **vpp, struct componentname *cnp, ino_t *dd_ino) { struct inode *dp; /* inode for directory being searched */ struct buf *bp; /* a buffer of directory entries */ struct ext2fs_direct_2 *ep; /* the current directory entry */ int entryoffsetinblock; /* offset of ep in bp's buffer */ struct ext2fs_searchslot ss; doff_t i_diroff; /* cached i_diroff value */ doff_t i_offset; /* cached i_offset value */ int numdirpasses; /* strategy for directory search */ doff_t endsearch; /* offset to end directory search */ doff_t prevoff; /* prev entry dp->i_offset */ struct vnode *pdp; /* saved dp during symlink work */ struct vnode *tdp; /* returned by VFS_VGET */ doff_t enduseful; /* pointer past last used dir slot */ u_long bmask; /* block offset mask */ int error; struct ucred *cred = cnp->cn_cred; int flags = cnp->cn_flags; int nameiop = cnp->cn_nameiop; ino_t ino, ino1; int ltype; int entry_found = 0; int DIRBLKSIZ = VTOI(vdp)->i_e2fs->e2fs_bsize; if (vpp != NULL) *vpp = NULL; dp = VTOI(vdp); bmask = VFSTOEXT2(vdp->v_mount)->um_mountp->mnt_stat.f_iosize - 1; restart: bp = NULL; ss.slotoffset = -1; /* * We now have a segment name to search for, and a directory to search. * * Suppress search for slots unless creating * file and at end of pathname, in which case * we watch for a place to put the new file in * case it doesn't already exist. */ i_diroff = dp->i_diroff; ss.slotstatus = FOUND; ss.slotfreespace = ss.slotsize = ss.slotneeded = 0; if ((nameiop == CREATE || nameiop == RENAME) && (flags & ISLASTCN)) { ss.slotstatus = NONE; ss.slotneeded = EXT2_DIR_REC_LEN(cnp->cn_namelen); /* * was ss.slotneeded = (sizeof(struct direct) - MAXNAMLEN + * cnp->cn_namelen + 3) &~ 3; */ } /* * Try to lookup dir entry using htree directory index. * * If we got an error or we want to find '.' or '..' entry, * we will fall back to linear search. */ if (!ext2_is_dot_entry(cnp) && ext2_htree_has_idx(dp)) { numdirpasses = 1; entryoffsetinblock = 0; switch (ext2_htree_lookup(dp, cnp->cn_nameptr, cnp->cn_namelen, &bp, &entryoffsetinblock, &i_offset, &prevoff, &enduseful, &ss)) { case 0: ep = (struct ext2fs_direct_2 *)((char *)bp->b_data + (i_offset & bmask)); goto foundentry; case ENOENT: i_offset = roundup2(dp->i_size, DIRBLKSIZ); goto notfound; default: /* * Something failed; just fallback to do a linear * search. */ break; } } /* * If there is cached information on a previous search of * this directory, pick up where we last left off. * We cache only lookups as these are the most common * and have the greatest payoff. Caching CREATE has little * benefit as it usually must search the entire directory * to determine that the entry does not exist. Caching the * location of the last DELETE or RENAME has not reduced * profiling time and hence has been removed in the interest * of simplicity. */ if (nameiop != LOOKUP || i_diroff == 0 || i_diroff > dp->i_size) { entryoffsetinblock = 0; i_offset = 0; numdirpasses = 1; } else { i_offset = i_diroff; if ((entryoffsetinblock = i_offset & bmask) && (error = ext2_blkatoff(vdp, (off_t)i_offset, NULL, &bp))) return (error); numdirpasses = 2; nchstats.ncs_2passes++; } prevoff = i_offset; endsearch = roundup2(dp->i_size, DIRBLKSIZ); enduseful = 0; searchloop: while (i_offset < endsearch) { /* * If necessary, get the next directory block. */ if (bp != NULL) brelse(bp); error = ext2_blkatoff(vdp, (off_t)i_offset, NULL, &bp); if (error != 0) return (error); entryoffsetinblock = 0; /* * If still looking for a slot, and at a DIRBLKSIZE * boundary, have to start looking for free space again. */ if (ss.slotstatus == NONE && (entryoffsetinblock & (DIRBLKSIZ - 1)) == 0) { ss.slotoffset = -1; ss.slotfreespace = 0; } error = ext2_search_dirblock(dp, bp->b_data, &entry_found, cnp->cn_nameptr, cnp->cn_namelen, &entryoffsetinblock, &i_offset, &prevoff, &enduseful, &ss); if (error != 0) { brelse(bp); return (error); } if (entry_found) { ep = (struct ext2fs_direct_2 *)((char *)bp->b_data + (entryoffsetinblock & bmask)); foundentry: ino = ep->e2d_ino; goto found; } } notfound: /* * If we started in the middle of the directory and failed * to find our target, we must check the beginning as well. */ if (numdirpasses == 2) { numdirpasses--; i_offset = 0; endsearch = i_diroff; goto searchloop; } if (bp != NULL) brelse(bp); /* * If creating, and at end of pathname and current * directory has not been removed, then can consider * allowing file to be created. */ if ((nameiop == CREATE || nameiop == RENAME) && (flags & ISLASTCN) && dp->i_nlink != 0) { /* * Access for write is interpreted as allowing * creation of files in the directory. */ if ((error = VOP_ACCESS(vdp, VWRITE, cred, cnp->cn_thread)) != 0) return (error); /* * Return an indication of where the new directory * entry should be put. If we didn't find a slot, * then set dp->i_count to 0 indicating * that the new slot belongs at the end of the * directory. If we found a slot, then the new entry * can be put in the range from dp->i_offset to * dp->i_offset + dp->i_count. */ if (ss.slotstatus == NONE) { dp->i_offset = roundup2(dp->i_size, DIRBLKSIZ); dp->i_count = 0; enduseful = dp->i_offset; } else { dp->i_offset = ss.slotoffset; dp->i_count = ss.slotsize; if (enduseful < ss.slotoffset + ss.slotsize) enduseful = ss.slotoffset + ss.slotsize; } dp->i_endoff = roundup2(enduseful, DIRBLKSIZ); /* * We return with the directory locked, so that * the parameters we set up above will still be * valid if we actually decide to do a direnter(). * We return ni_vp == NULL to indicate that the entry * does not currently exist; we leave a pointer to * the (locked) directory inode in ndp->ni_dvp. * The pathname buffer is saved so that the name * can be obtained later. * * NB - if the directory is unlocked, then this * information cannot be used. */ cnp->cn_flags |= SAVENAME; return (EJUSTRETURN); } /* * Insert name into cache (as non-existent) if appropriate. */ if ((cnp->cn_flags & MAKEENTRY) != 0) cache_enter(vdp, NULL, cnp); return (ENOENT); found: if (dd_ino != NULL) *dd_ino = ino; if (numdirpasses == 2) nchstats.ncs_pass2++; /* * Check that directory length properly reflects presence * of this entry. */ if (entryoffsetinblock + EXT2_DIR_REC_LEN(ep->e2d_namlen) > dp->i_size) { ext2_dirbad(dp, i_offset, "i_size too small"); dp->i_size = entryoffsetinblock + EXT2_DIR_REC_LEN(ep->e2d_namlen); dp->i_flag |= IN_CHANGE | IN_UPDATE; } brelse(bp); /* * Found component in pathname. * If the final component of path name, save information * in the cache as to where the entry was found. */ if ((flags & ISLASTCN) && nameiop == LOOKUP) dp->i_diroff = rounddown2(i_offset, DIRBLKSIZ); /* * If deleting, and at end of pathname, return * parameters which can be used to remove file. */ if (nameiop == DELETE && (flags & ISLASTCN)) { if (flags & LOCKPARENT) ASSERT_VOP_ELOCKED(vdp, __FUNCTION__); /* * Write access to directory required to delete files. */ if ((error = VOP_ACCESS(vdp, VWRITE, cred, cnp->cn_thread)) != 0) return (error); /* * Return pointer to current entry in dp->i_offset, * and distance past previous entry (if there * is a previous entry in this block) in dp->i_count. * Save directory inode pointer in ndp->ni_dvp for dirremove(). * * Technically we shouldn't be setting these in the * WANTPARENT case (first lookup in rename()), but any * lookups that will result in directory changes will * overwrite these. */ dp->i_offset = i_offset; if ((dp->i_offset & (DIRBLKSIZ - 1)) == 0) dp->i_count = 0; else dp->i_count = dp->i_offset - prevoff; if (dd_ino != NULL) return (0); if (dp->i_number == ino) { VREF(vdp); *vpp = vdp; return (0); } if ((error = VFS_VGET(vdp->v_mount, ino, LK_EXCLUSIVE, &tdp)) != 0) return (error); /* * If directory is "sticky", then user must own * the directory, or the file in it, else she * may not delete it (unless she's root). This * implements append-only directories. */ if ((dp->i_mode & ISVTX) && cred->cr_uid != 0 && cred->cr_uid != dp->i_uid && VTOI(tdp)->i_uid != cred->cr_uid) { vput(tdp); return (EPERM); } *vpp = tdp; return (0); } /* * If rewriting (RENAME), return the inode and the * information required to rewrite the present directory * Must get inode of directory entry to verify it's a * regular file, or empty directory. */ if (nameiop == RENAME && (flags & ISLASTCN)) { if ((error = VOP_ACCESS(vdp, VWRITE, cred, cnp->cn_thread)) != 0) return (error); /* * Careful about locking second inode. * This can only occur if the target is ".". */ dp->i_offset = i_offset; if (dp->i_number == ino) return (EISDIR); if (dd_ino != NULL) return (0); if ((error = VFS_VGET(vdp->v_mount, ino, LK_EXCLUSIVE, &tdp)) != 0) return (error); *vpp = tdp; cnp->cn_flags |= SAVENAME; return (0); } if (dd_ino != NULL) return (0); /* * Step through the translation in the name. We do not `vput' the * directory because we may need it again if a symbolic link * is relative to the current directory. Instead we save it * unlocked as "pdp". We must get the target inode before unlocking * the directory to insure that the inode will not be removed * before we get it. We prevent deadlock by always fetching * inodes from the root, moving down the directory tree. Thus * when following backward pointers ".." we must unlock the * parent directory before getting the requested directory. * There is a potential race condition here if both the current * and parent directories are removed before the VFS_VGET for the * inode associated with ".." returns. We hope that this occurs * infrequently since we cannot avoid this race condition without * implementing a sophisticated deadlock detection algorithm. * Note also that this simple deadlock detection scheme will not * work if the file system has any hard links other than ".." * that point backwards in the directory structure. */ pdp = vdp; if (flags & ISDOTDOT) { error = vn_vget_ino(pdp, ino, cnp->cn_lkflags, &tdp); if (pdp->v_iflag & VI_DOOMED) { if (error == 0) vput(tdp); error = ENOENT; } if (error) return (error); /* * Recheck that ".." entry in the vdp directory points * to the inode we looked up before vdp lock was * dropped. */ error = ext2_lookup_ino(pdp, NULL, cnp, &ino1); if (error) { vput(tdp); return (error); } if (ino1 != ino) { vput(tdp); goto restart; } *vpp = tdp; } else if (dp->i_number == ino) { VREF(vdp); /* we want ourself, ie "." */ /* * When we lookup "." we still can be asked to lock it * differently. */ ltype = cnp->cn_lkflags & LK_TYPE_MASK; if (ltype != VOP_ISLOCKED(vdp)) { if (ltype == LK_EXCLUSIVE) vn_lock(vdp, LK_UPGRADE | LK_RETRY); else /* if (ltype == LK_SHARED) */ vn_lock(vdp, LK_DOWNGRADE | LK_RETRY); } *vpp = vdp; } else { if ((error = VFS_VGET(vdp->v_mount, ino, cnp->cn_lkflags, &tdp)) != 0) return (error); *vpp = tdp; } /* * Insert name into cache if appropriate. */ if (cnp->cn_flags & MAKEENTRY) cache_enter(vdp, *vpp, cnp); return (0); } int ext2_search_dirblock(struct inode *ip, void *data, int *foundp, const char *name, int namelen, int *entryoffsetinblockp, doff_t *offp, doff_t *prevoffp, doff_t *endusefulp, struct ext2fs_searchslot *ssp) { struct vnode *vdp; struct ext2fs_direct_2 *ep, *top; uint32_t bsize = ip->i_e2fs->e2fs_bsize; int offset = *entryoffsetinblockp; int namlen; vdp = ITOV(ip); ep = (struct ext2fs_direct_2 *)((char *)data + offset); top = (struct ext2fs_direct_2 *)((char *)data + bsize - EXT2_DIR_REC_LEN(0)); while (ep < top) { /* * Full validation checks are slow, so we only check * enough to insure forward progress through the * directory. Complete checks can be run by setting * "vfs.e2fs.dirchk" to be true. */ if (ep->e2d_reclen == 0 || (dirchk && ext2_dirbadentry(vdp, ep, offset))) { int i; ext2_dirbad(ip, *offp, "mangled entry"); i = bsize - (offset & (bsize - 1)); *offp += i; offset += i; continue; } /* * If an appropriate sized slot has not yet been found, * check to see if one is available. Also accumulate space * in the current block so that we can determine if * compaction is viable. */ if (ssp->slotstatus != FOUND) { int size = ep->e2d_reclen; if (ep->e2d_ino != 0) size -= EXT2_DIR_REC_LEN(ep->e2d_namlen); if (size > 0) { if (size >= ssp->slotneeded) { ssp->slotstatus = FOUND; ssp->slotoffset = *offp; ssp->slotsize = ep->e2d_reclen; } else if (ssp->slotstatus == NONE) { ssp->slotfreespace += size; if (ssp->slotoffset == -1) ssp->slotoffset = *offp; if (ssp->slotfreespace >= ssp->slotneeded) { ssp->slotstatus = COMPACT; ssp->slotsize = *offp + ep->e2d_reclen - ssp->slotoffset; } } } } /* * Check for a name match. */ if (ep->e2d_ino) { namlen = ep->e2d_namlen; if (namlen == namelen && !bcmp(name, ep->e2d_name, (unsigned)namlen)) { /* * Save directory entry's inode number and * reclen in ndp->ni_ufs area, and release * directory buffer. */ *foundp = 1; return (0); } } *prevoffp = *offp; *offp += ep->e2d_reclen; offset += ep->e2d_reclen; *entryoffsetinblockp = offset; if (ep->e2d_ino) *endusefulp = *offp; /* * Get pointer to the next entry. */ ep = (struct ext2fs_direct_2 *)((char *)data + offset); } return (0); } void ext2_dirbad(struct inode *ip, doff_t offset, char *how) { struct mount *mp; mp = ITOV(ip)->v_mount; if ((mp->mnt_flag & MNT_RDONLY) == 0) panic("ext2_dirbad: %s: bad dir ino %ju at offset %ld: %s\n", mp->mnt_stat.f_mntonname, (uintmax_t)ip->i_number, (long)offset, how); else (void)printf("%s: bad dir ino %ju at offset %ld: %s\n", mp->mnt_stat.f_mntonname, (uintmax_t)ip->i_number, (long)offset, how); } /* * Do consistency checking on a directory entry: * record length must be multiple of 4 * entry must fit in rest of its DIRBLKSIZ block * record must be large enough to contain entry * name is not longer than MAXNAMLEN * name must be as long as advertised, and null terminated */ /* * changed so that it confirms to ext2_check_dir_entry */ static int ext2_dirbadentry(struct vnode *dp, struct ext2fs_direct_2 *de, int entryoffsetinblock) { int DIRBLKSIZ = VTOI(dp)->i_e2fs->e2fs_bsize; char *error_msg = NULL; if (de->e2d_reclen < EXT2_DIR_REC_LEN(1)) error_msg = "rec_len is smaller than minimal"; else if (de->e2d_reclen % 4 != 0) error_msg = "rec_len % 4 != 0"; else if (de->e2d_reclen < EXT2_DIR_REC_LEN(de->e2d_namlen)) error_msg = "reclen is too small for name_len"; else if (entryoffsetinblock + de->e2d_reclen > DIRBLKSIZ) error_msg = "directory entry across blocks"; /* else LATER if (de->inode > dir->i_sb->u.ext2_sb.s_es->s_inodes_count) error_msg = "inode out of bounds"; */ if (error_msg != NULL) { printf("bad directory entry: %s\n", error_msg); printf("offset=%d, inode=%lu, rec_len=%u, name_len=%u\n", entryoffsetinblock, (unsigned long)de->e2d_ino, de->e2d_reclen, de->e2d_namlen); } return error_msg == NULL ? 0 : 1; } /* * Write a directory entry after a call to namei, using the parameters * that it left in nameidata. The argument ip is the inode which the new * directory entry will refer to. Dvp is a pointer to the directory to * be written, which was left locked by namei. Remaining parameters * (dp->i_offset, dp->i_count) indicate how the space for the new * entry is to be obtained. */ int ext2_direnter(struct inode *ip, struct vnode *dvp, struct componentname *cnp) { struct inode *dp; struct ext2fs_direct_2 newdir; struct buf *bp; - int error, newentrysize; int DIRBLKSIZ = ip->i_e2fs->e2fs_bsize; + int error; #ifdef INVARIANTS if ((cnp->cn_flags & SAVENAME) == 0) panic("ext2_direnter: missing name"); #endif dp = VTOI(dvp); newdir.e2d_ino = ip->i_number; newdir.e2d_namlen = cnp->cn_namelen; if (EXT2_HAS_INCOMPAT_FEATURE(ip->i_e2fs, EXT2F_INCOMPAT_FTYPE)) newdir.e2d_type = DTTOFT(IFTODT(ip->i_mode)); else newdir.e2d_type = EXT2_FT_UNKNOWN; bcopy(cnp->cn_nameptr, newdir.e2d_name, (unsigned)cnp->cn_namelen + 1); - newentrysize = EXT2_DIR_REC_LEN(newdir.e2d_namlen); if (ext2_htree_has_idx(dp)) { error = ext2_htree_add_entry(dvp, &newdir, cnp); if (error) { dp->i_flag &= ~IN_E3INDEX; dp->i_flag |= IN_CHANGE | IN_UPDATE; } return (error); } if (EXT2_HAS_COMPAT_FEATURE(ip->i_e2fs, EXT2F_COMPAT_DIRHASHINDEX) && !ext2_htree_has_idx(dp)) { if ((dp->i_size / DIRBLKSIZ) == 1 && dp->i_offset == DIRBLKSIZ) { /* * Making indexed directory when one block is not * enough to save all entries. */ return ext2_htree_create_index(dvp, cnp, &newdir); } } if (dp->i_count == 0) { /* * If dp->i_count is 0, then namei could find no * space in the directory. Here, dp->i_offset will * be on a directory block boundary and we will write the * new entry into a fresh block. */ if (dp->i_offset & (DIRBLKSIZ - 1)) panic("ext2_direnter: newblk"); newdir.e2d_reclen = DIRBLKSIZ; bp = getblk(ip->i_devvp, lblkno(dp->i_e2fs, dp->i_offset), DIRBLKSIZ, 0, 0, 0); if (!bp) return (EIO); memcpy(bp->b_data, &newdir, sizeof(struct ext2fs_direct_2)); ext2_dir_blk_csum_set(dp, bp); error = bwrite(bp); if (error) return (error); dp->i_size = roundup2(dp->i_size, DIRBLKSIZ); dp->i_flag |= IN_CHANGE; return (0); } error = ext2_add_entry(dvp, &newdir); if (!error && dp->i_endoff && dp->i_endoff < dp->i_size) error = ext2_truncate(dvp, (off_t)dp->i_endoff, IO_SYNC, cnp->cn_cred, cnp->cn_thread); return (error); } /* * Insert an entry into the directory block. * Compact the contents. */ int ext2_add_entry(struct vnode *dvp, struct ext2fs_direct_2 *entry) { struct ext2fs_direct_2 *ep, *nep; struct inode *dp; struct buf *bp; u_int dsize; int error, loc, newentrysize, spacefree; char *dirbuf; dp = VTOI(dvp); /* * If dp->i_count is non-zero, then namei found space * for the new entry in the range dp->i_offset to * dp->i_offset + dp->i_count in the directory. * To use this space, we may have to compact the entries located * there, by copying them together towards the beginning of the * block, leaving the free space in one usable chunk at the end. */ /* * Increase size of directory if entry eats into new space. * This should never push the size past a new multiple of * DIRBLKSIZE. * * N.B. - THIS IS AN ARTIFACT OF 4.2 AND SHOULD NEVER HAPPEN. */ if (dp->i_offset + dp->i_count > dp->i_size) dp->i_size = dp->i_offset + dp->i_count; /* * Get the block containing the space for the new directory entry. */ if ((error = ext2_blkatoff(dvp, (off_t)dp->i_offset, &dirbuf, &bp)) != 0) return (error); /* * Find space for the new entry. In the simple case, the entry at * offset base will have the space. If it does not, then namei * arranged that compacting the region dp->i_offset to * dp->i_offset + dp->i_count would yield the * space. */ newentrysize = EXT2_DIR_REC_LEN(entry->e2d_namlen); ep = (struct ext2fs_direct_2 *)dirbuf; dsize = EXT2_DIR_REC_LEN(ep->e2d_namlen); spacefree = ep->e2d_reclen - dsize; for (loc = ep->e2d_reclen; loc < dp->i_count; ) { nep = (struct ext2fs_direct_2 *)(dirbuf + loc); if (ep->e2d_ino) { /* trim the existing slot */ ep->e2d_reclen = dsize; ep = (struct ext2fs_direct_2 *)((char *)ep + dsize); } else { /* overwrite; nothing there; header is ours */ spacefree += dsize; } dsize = EXT2_DIR_REC_LEN(nep->e2d_namlen); spacefree += nep->e2d_reclen - dsize; loc += nep->e2d_reclen; bcopy((caddr_t)nep, (caddr_t)ep, dsize); } /* * Update the pointer fields in the previous entry (if any), * copy in the new entry, and write out the block. */ if (ep->e2d_ino == 0) { if (spacefree + dsize < newentrysize) panic("ext2_direnter: compact1"); entry->e2d_reclen = spacefree + dsize; } else { if (spacefree < newentrysize) panic("ext2_direnter: compact2"); entry->e2d_reclen = spacefree; ep->e2d_reclen = dsize; ep = (struct ext2fs_direct_2 *)((char *)ep + dsize); } bcopy((caddr_t)entry, (caddr_t)ep, (u_int)newentrysize); ext2_dir_blk_csum_set(dp, bp); if (DOINGASYNC(dvp)) { bdwrite(bp); error = 0; } else { error = bwrite(bp); } dp->i_flag |= IN_CHANGE | IN_UPDATE; return (error); } /* * Remove a directory entry after a call to namei, using * the parameters which it left in nameidata. The entry * dp->i_offset contains the offset into the directory of the * entry to be eliminated. The dp->i_count field contains the * size of the previous record in the directory. If this * is 0, the first entry is being deleted, so we need only * zero the inode number to mark the entry as free. If the * entry is not the first in the directory, we must reclaim * the space of the now empty record by adding the record size * to the size of the previous entry. */ int ext2_dirremove(struct vnode *dvp, struct componentname *cnp) { struct inode *dp; struct ext2fs_direct_2 *ep, *rep; struct buf *bp; int error; dp = VTOI(dvp); if (dp->i_count == 0) { /* * First entry in block: set d_ino to zero. */ if ((error = ext2_blkatoff(dvp, (off_t)dp->i_offset, (char **)&ep, &bp)) != 0) return (error); ep->e2d_ino = 0; error = bwrite(bp); dp->i_flag |= IN_CHANGE | IN_UPDATE; return (error); } /* * Collapse new free space into previous entry. */ if ((error = ext2_blkatoff(dvp, (off_t)(dp->i_offset - dp->i_count), (char **)&ep, &bp)) != 0) return (error); /* Set 'rep' to the entry being removed. */ if (dp->i_count == 0) rep = ep; else rep = (struct ext2fs_direct_2 *)((char *)ep + ep->e2d_reclen); ep->e2d_reclen += rep->e2d_reclen; ext2_dir_blk_csum_set(dp, bp); if (DOINGASYNC(dvp) && dp->i_count != 0) bdwrite(bp); else error = bwrite(bp); dp->i_flag |= IN_CHANGE | IN_UPDATE; return (error); } /* * Rewrite an existing directory entry to point at the inode * supplied. The parameters describing the directory entry are * set up by a call to namei. */ int ext2_dirrewrite(struct inode *dp, struct inode *ip, struct componentname *cnp) { struct buf *bp; struct ext2fs_direct_2 *ep; struct vnode *vdp = ITOV(dp); int error; if ((error = ext2_blkatoff(vdp, (off_t)dp->i_offset, (char **)&ep, &bp)) != 0) return (error); ep->e2d_ino = ip->i_number; if (EXT2_HAS_INCOMPAT_FEATURE(ip->i_e2fs, EXT2F_INCOMPAT_FTYPE)) ep->e2d_type = DTTOFT(IFTODT(ip->i_mode)); else ep->e2d_type = EXT2_FT_UNKNOWN; ext2_dir_blk_csum_set(dp, bp); error = bwrite(bp); dp->i_flag |= IN_CHANGE | IN_UPDATE; return (error); } /* * Check if a directory is empty or not. * Inode supplied must be locked. * * Using a struct dirtemplate here is not precisely * what we want, but better than using a struct direct. * * NB: does not handle corrupted directories. */ int ext2_dirempty(struct inode *ip, ino_t parentino, struct ucred *cred) { off_t off; struct dirtemplate dbuf; struct ext2fs_direct_2 *dp = (struct ext2fs_direct_2 *)&dbuf; int error, namlen; ssize_t count; #define MINDIRSIZ (sizeof(struct dirtemplate) / 2) for (off = 0; off < ip->i_size; off += dp->e2d_reclen) { error = vn_rdwr(UIO_READ, ITOV(ip), (caddr_t)dp, MINDIRSIZ, off, UIO_SYSSPACE, IO_NODELOCKED | IO_NOMACCHECK, cred, NOCRED, &count, (struct thread *)0); /* * Since we read MINDIRSIZ, residual must * be 0 unless we're at end of file. */ if (error || count != 0) return (0); /* avoid infinite loops */ if (dp->e2d_reclen == 0) return (0); /* skip empty entries */ if (dp->e2d_ino == 0) continue; /* accept only "." and ".." */ namlen = dp->e2d_namlen; if (namlen > 2) return (0); if (dp->e2d_name[0] != '.') return (0); /* * At this point namlen must be 1 or 2. * 1 implies ".", 2 implies ".." if second * char is also "." */ if (namlen == 1) continue; if (dp->e2d_name[1] == '.' && dp->e2d_ino == parentino) continue; return (0); } return (1); } /* * Check if source directory is in the path of the target directory. * Target is supplied locked, source is unlocked. * The target is always vput before returning. */ int ext2_checkpath(struct inode *source, struct inode *target, struct ucred *cred) { struct vnode *vp; int error, namlen; struct dirtemplate dirbuf; vp = ITOV(target); if (target->i_number == source->i_number) { error = EEXIST; goto out; } if (target->i_number == EXT2_ROOTINO) { error = 0; goto out; } for (;;) { if (vp->v_type != VDIR) { error = ENOTDIR; break; } error = vn_rdwr(UIO_READ, vp, (caddr_t)&dirbuf, sizeof(struct dirtemplate), (off_t)0, UIO_SYSSPACE, IO_NODELOCKED | IO_NOMACCHECK, cred, NOCRED, NULL, NULL); if (error != 0) break; namlen = dirbuf.dotdot_type; /* like ufs little-endian */ if (namlen != 2 || dirbuf.dotdot_name[0] != '.' || dirbuf.dotdot_name[1] != '.') { error = ENOTDIR; break; } if (dirbuf.dotdot_ino == source->i_number) { error = EINVAL; break; } if (dirbuf.dotdot_ino == EXT2_ROOTINO) break; vput(vp); if ((error = VFS_VGET(vp->v_mount, dirbuf.dotdot_ino, LK_EXCLUSIVE, &vp)) != 0) { vp = NULL; break; } } out: if (error == ENOTDIR) printf("checkpath: .. not a directory\n"); if (vp != NULL) vput(vp); return (error); }