Index: head/cddl/contrib/opensolaris/cmd/dtrace/test/tst/common/safety/tst.jailname.d =================================================================== --- head/cddl/contrib/opensolaris/cmd/dtrace/test/tst/common/safety/tst.jailname.d (nonexistent) +++ head/cddl/contrib/opensolaris/cmd/dtrace/test/tst/common/safety/tst.jailname.d (revision 327888) @@ -0,0 +1,44 @@ +/* + * This file and its contents are supplied under the terms of the + * Common Development and Distribution License ("CDDL"), version 1.0. + * You may only use this file in accordance with the terms version + * 1.0 of the CDDL. + * + * A full copy of the text of the CDDL should have accompanied this + * source. A copy of the CDDL is also available via the Internet at + * http://www.illumos.org/license/CDDL. + */ + +/* + * Copyright 2018 Domagoj Stolfa . + * + * This software was developed by BAE Systems, the University of Cambridge + * Computer Laboratory, and Memorial University under DARPA/AFRL contract + * FA8650-15-C-7558 ("CADETS"), as part of the DARPA Transparent Computing + * (TC) research program. + * + */ + +#pragma ident "%Z%%M% %I% %E% SMI" + +/* + * ASSERTION: + * collect jailname at every fbt probe and at every firing of a + * high-frequency profile probe + */ + +fbt::: +{ + @a[jailname] = count(); +} + +profile-4999hz +{ + @a[jailname] = count(); +} + +tick-1sec +/n++ == 10/ +{ + exit(0); +} Index: head/cddl/contrib/opensolaris/cmd/dtrace/test/tst/common/safety/tst.jid.d =================================================================== --- head/cddl/contrib/opensolaris/cmd/dtrace/test/tst/common/safety/tst.jid.d (nonexistent) +++ head/cddl/contrib/opensolaris/cmd/dtrace/test/tst/common/safety/tst.jid.d (revision 327888) @@ -0,0 +1,44 @@ +/* + * This file and its contents are supplied under the terms of the + * Common Development and Distribution License ("CDDL"), version 1.0. + * You may only use this file in accordance with the terms version + * 1.0 of the CDDL. + * + * A full copy of the text of the CDDL should have accompanied this + * source. A copy of the CDDL is also available via the Internet at + * http://www.illumos.org/license/CDDL. + */ + +/* + * Copyright 2018 Domagoj Stolfa . + * + * This software was developed by BAE Systems, the University of Cambridge + * Computer Laboratory, and Memorial University under DARPA/AFRL contract + * FA8650-15-C-7558 ("CADETS"), as part of the DARPA Transparent Computing + * (TC) research program. + * + */ + +#pragma ident "%Z%%M% %I% %E% SMI" + +/* + * ASSERTION: + * collect jid at every fbt probe and at every firing of a + * high-frequency profile probe + */ + +fbt::: +{ + @a[jid] = count(); +} + +profile-4999hz +{ + @a[jid] = count(); +} + +tick-1sec +/n++ == 10/ +{ + exit(0); +} Index: head/cddl/contrib/opensolaris/lib/libdtrace/common/dt_open.c =================================================================== --- head/cddl/contrib/opensolaris/lib/libdtrace/common/dt_open.c (revision 327887) +++ head/cddl/contrib/opensolaris/lib/libdtrace/common/dt_open.c (revision 327888) @@ -1,1742 +1,1746 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. * Copyright (c) 2012, 2016 by Delphix. All rights reserved. */ #include #ifdef illumos #include #include #else #include #include #include #endif #include #include #include #ifdef illumos #include #endif #include #include #include #include #include #include #include #define _POSIX_PTHREAD_SEMANTICS #include #undef _POSIX_PTHREAD_SEMANTICS #include #include #include #include #include #include #ifndef illumos #include #include #endif #if defined(__i386__) #include #endif /* * Stability and versioning definitions. These #defines are used in the tables * of identifiers below to fill in the attribute and version fields associated * with each identifier. The DT_ATTR_* macros are a convenience to permit more * concise declarations of common attributes such as Stable/Stable/Common. The * DT_VERS_* macros declare the encoded integer values of all versions used so * far. DT_VERS_LATEST must correspond to the latest version value among all * versions exported by the D compiler. DT_VERS_STRING must be an ASCII string * that contains DT_VERS_LATEST within it along with any suffixes (e.g. Beta). * You must update DT_VERS_LATEST and DT_VERS_STRING when adding a new version, * and then add the new version to the _dtrace_versions[] array declared below. * Refer to the Solaris Dynamic Tracing Guide Stability and Versioning chapters * respectively for an explanation of these DTrace features and their values. * * NOTE: Although the DTrace versioning scheme supports the labeling and * introduction of incompatible changes (e.g. dropping an interface in a * major release), the libdtrace code does not currently support this. * All versions are assumed to strictly inherit from one another. If * we ever need to provide divergent interfaces, this will need work. */ #define DT_ATTR_STABCMN { DTRACE_STABILITY_STABLE, \ DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON } #define DT_ATTR_EVOLCMN { DTRACE_STABILITY_EVOLVING, \ DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON \ } /* * The version number should be increased for every customer visible release * of DTrace. The major number should be incremented when a fundamental * change has been made that would affect all consumers, and would reflect * sweeping changes to DTrace or the D language. The minor number should be * incremented when a change is introduced that could break scripts that had * previously worked; for example, adding a new built-in variable could break * a script which was already using that identifier. The micro number should * be changed when introducing functionality changes or major bug fixes that * do not affect backward compatibility -- this is merely to make capabilities * easily determined from the version number. Minor bugs do not require any * modification to the version number. */ #define DT_VERS_1_0 DT_VERSION_NUMBER(1, 0, 0) #define DT_VERS_1_1 DT_VERSION_NUMBER(1, 1, 0) #define DT_VERS_1_2 DT_VERSION_NUMBER(1, 2, 0) #define DT_VERS_1_2_1 DT_VERSION_NUMBER(1, 2, 1) #define DT_VERS_1_2_2 DT_VERSION_NUMBER(1, 2, 2) #define DT_VERS_1_3 DT_VERSION_NUMBER(1, 3, 0) #define DT_VERS_1_4 DT_VERSION_NUMBER(1, 4, 0) #define DT_VERS_1_4_1 DT_VERSION_NUMBER(1, 4, 1) #define DT_VERS_1_5 DT_VERSION_NUMBER(1, 5, 0) #define DT_VERS_1_6 DT_VERSION_NUMBER(1, 6, 0) #define DT_VERS_1_6_1 DT_VERSION_NUMBER(1, 6, 1) #define DT_VERS_1_6_2 DT_VERSION_NUMBER(1, 6, 2) #define DT_VERS_1_6_3 DT_VERSION_NUMBER(1, 6, 3) #define DT_VERS_1_7 DT_VERSION_NUMBER(1, 7, 0) #define DT_VERS_1_7_1 DT_VERSION_NUMBER(1, 7, 1) #define DT_VERS_1_8 DT_VERSION_NUMBER(1, 8, 0) #define DT_VERS_1_8_1 DT_VERSION_NUMBER(1, 8, 1) #define DT_VERS_1_9 DT_VERSION_NUMBER(1, 9, 0) #define DT_VERS_1_9_1 DT_VERSION_NUMBER(1, 9, 1) #define DT_VERS_1_10 DT_VERSION_NUMBER(1, 10, 0) #define DT_VERS_1_11 DT_VERSION_NUMBER(1, 11, 0) #define DT_VERS_1_12 DT_VERSION_NUMBER(1, 12, 0) #define DT_VERS_1_12_1 DT_VERSION_NUMBER(1, 12, 1) #define DT_VERS_1_13 DT_VERSION_NUMBER(1, 13, 0) #define DT_VERS_LATEST DT_VERS_1_13 #define DT_VERS_STRING "Sun D 1.13" const dt_version_t _dtrace_versions[] = { DT_VERS_1_0, /* D API 1.0.0 (PSARC 2001/466) Solaris 10 FCS */ DT_VERS_1_1, /* D API 1.1.0 Solaris Express 6/05 */ DT_VERS_1_2, /* D API 1.2.0 Solaris 10 Update 1 */ DT_VERS_1_2_1, /* D API 1.2.1 Solaris Express 4/06 */ DT_VERS_1_2_2, /* D API 1.2.2 Solaris Express 6/06 */ DT_VERS_1_3, /* D API 1.3 Solaris Express 10/06 */ DT_VERS_1_4, /* D API 1.4 Solaris Express 2/07 */ DT_VERS_1_4_1, /* D API 1.4.1 Solaris Express 4/07 */ DT_VERS_1_5, /* D API 1.5 Solaris Express 7/07 */ DT_VERS_1_6, /* D API 1.6 */ DT_VERS_1_6_1, /* D API 1.6.1 */ DT_VERS_1_6_2, /* D API 1.6.2 */ DT_VERS_1_6_3, /* D API 1.6.3 */ DT_VERS_1_7, /* D API 1.7 */ DT_VERS_1_7_1, /* D API 1.7.1 */ DT_VERS_1_8, /* D API 1.8 */ DT_VERS_1_8_1, /* D API 1.8.1 */ DT_VERS_1_9, /* D API 1.9 */ DT_VERS_1_9_1, /* D API 1.9.1 */ DT_VERS_1_10, /* D API 1.10 */ DT_VERS_1_11, /* D API 1.11 */ DT_VERS_1_12, /* D API 1.12 */ DT_VERS_1_12_1, /* D API 1.12.1 */ DT_VERS_1_13, /* D API 1.13 */ 0 }; /* * Global variables that are formatted on FreeBSD based on the kernel file name. */ #ifndef illumos static char curthread_str[MAXPATHLEN]; static char intmtx_str[MAXPATHLEN]; static char threadmtx_str[MAXPATHLEN]; static char rwlock_str[MAXPATHLEN]; static char sxlock_str[MAXPATHLEN]; #endif /* * Table of global identifiers. This is used to populate the global identifier * hash when a new dtrace client open occurs. For more info see dt_ident.h. * The global identifiers that represent functions use the dt_idops_func ops * and specify the private data pointer as a prototype string which is parsed * when the identifier is first encountered. These prototypes look like ANSI * C function prototypes except that the special symbol "@" can be used as a * wildcard to represent a single parameter of any type (i.e. any dt_node_t). * The standard "..." notation can also be used to represent varargs. An empty * parameter list is taken to mean void (that is, no arguments are permitted). * A parameter enclosed in square brackets (e.g. "[int]") denotes an optional * argument. */ static const dt_ident_t _dtrace_globals[] = { { "alloca", DT_IDENT_FUNC, 0, DIF_SUBR_ALLOCA, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void *(size_t)" }, { "arg0", DT_IDENT_SCALAR, 0, DIF_VAR_ARG0, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "int64_t" }, { "arg1", DT_IDENT_SCALAR, 0, DIF_VAR_ARG1, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "int64_t" }, { "arg2", DT_IDENT_SCALAR, 0, DIF_VAR_ARG2, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "int64_t" }, { "arg3", DT_IDENT_SCALAR, 0, DIF_VAR_ARG3, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "int64_t" }, { "arg4", DT_IDENT_SCALAR, 0, DIF_VAR_ARG4, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "int64_t" }, { "arg5", DT_IDENT_SCALAR, 0, DIF_VAR_ARG5, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "int64_t" }, { "arg6", DT_IDENT_SCALAR, 0, DIF_VAR_ARG6, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "int64_t" }, { "arg7", DT_IDENT_SCALAR, 0, DIF_VAR_ARG7, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "int64_t" }, { "arg8", DT_IDENT_SCALAR, 0, DIF_VAR_ARG8, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "int64_t" }, { "arg9", DT_IDENT_SCALAR, 0, DIF_VAR_ARG9, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "int64_t" }, { "args", DT_IDENT_ARRAY, 0, DIF_VAR_ARGS, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_args, NULL }, { "avg", DT_IDENT_AGGFUNC, 0, DTRACEAGG_AVG, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(@)" }, { "basename", DT_IDENT_FUNC, 0, DIF_SUBR_BASENAME, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "string(const char *)" }, { "bcopy", DT_IDENT_FUNC, 0, DIF_SUBR_BCOPY, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(void *, void *, size_t)" }, { "breakpoint", DT_IDENT_ACTFUNC, 0, DT_ACT_BREAKPOINT, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void()" }, { "caller", DT_IDENT_SCALAR, 0, DIF_VAR_CALLER, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "uintptr_t" }, { "chill", DT_IDENT_ACTFUNC, 0, DT_ACT_CHILL, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(int)" }, { "cleanpath", DT_IDENT_FUNC, 0, DIF_SUBR_CLEANPATH, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "string(const char *)" }, { "clear", DT_IDENT_ACTFUNC, 0, DT_ACT_CLEAR, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(...)" }, { "commit", DT_IDENT_ACTFUNC, 0, DT_ACT_COMMIT, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(int)" }, { "copyin", DT_IDENT_FUNC, 0, DIF_SUBR_COPYIN, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void *(uintptr_t, size_t)" }, { "copyinstr", DT_IDENT_FUNC, 0, DIF_SUBR_COPYINSTR, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "string(uintptr_t, [size_t])" }, { "copyinto", DT_IDENT_FUNC, 0, DIF_SUBR_COPYINTO, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(uintptr_t, size_t, void *)" }, { "copyout", DT_IDENT_FUNC, 0, DIF_SUBR_COPYOUT, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(void *, uintptr_t, size_t)" }, { "copyoutstr", DT_IDENT_FUNC, 0, DIF_SUBR_COPYOUTSTR, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(char *, uintptr_t, size_t)" }, { "count", DT_IDENT_AGGFUNC, 0, DTRACEAGG_COUNT, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void()" }, { "curthread", DT_IDENT_SCALAR, 0, DIF_VAR_CURTHREAD, { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_COMMON }, DT_VERS_1_0, #ifdef illumos &dt_idops_type, "genunix`kthread_t *" }, #else &dt_idops_type, curthread_str }, #endif { "ddi_pathname", DT_IDENT_FUNC, 0, DIF_SUBR_DDI_PATHNAME, DT_ATTR_EVOLCMN, DT_VERS_1_0, &dt_idops_func, "string(void *, int64_t)" }, { "denormalize", DT_IDENT_ACTFUNC, 0, DT_ACT_DENORMALIZE, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(...)" }, { "dirname", DT_IDENT_FUNC, 0, DIF_SUBR_DIRNAME, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "string(const char *)" }, { "discard", DT_IDENT_ACTFUNC, 0, DT_ACT_DISCARD, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(int)" }, { "epid", DT_IDENT_SCALAR, 0, DIF_VAR_EPID, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "uint_t" }, { "errno", DT_IDENT_SCALAR, 0, DIF_VAR_ERRNO, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "int" }, { "execargs", DT_IDENT_SCALAR, 0, DIF_VAR_EXECARGS, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" }, { "execname", DT_IDENT_SCALAR, 0, DIF_VAR_EXECNAME, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" }, { "exit", DT_IDENT_ACTFUNC, 0, DT_ACT_EXIT, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(int)" }, { "freopen", DT_IDENT_ACTFUNC, 0, DT_ACT_FREOPEN, DT_ATTR_STABCMN, DT_VERS_1_1, &dt_idops_func, "void(@, ...)" }, { "ftruncate", DT_IDENT_ACTFUNC, 0, DT_ACT_FTRUNCATE, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void()" }, { "func", DT_IDENT_ACTFUNC, 0, DT_ACT_SYM, DT_ATTR_STABCMN, DT_VERS_1_2, &dt_idops_func, "_symaddr(uintptr_t)" }, { "getmajor", DT_IDENT_FUNC, 0, DIF_SUBR_GETMAJOR, DT_ATTR_EVOLCMN, DT_VERS_1_0, &dt_idops_func, "genunix`major_t(genunix`dev_t)" }, { "getminor", DT_IDENT_FUNC, 0, DIF_SUBR_GETMINOR, DT_ATTR_EVOLCMN, DT_VERS_1_0, &dt_idops_func, "genunix`minor_t(genunix`dev_t)" }, { "htonl", DT_IDENT_FUNC, 0, DIF_SUBR_HTONL, DT_ATTR_EVOLCMN, DT_VERS_1_3, &dt_idops_func, "uint32_t(uint32_t)" }, { "htonll", DT_IDENT_FUNC, 0, DIF_SUBR_HTONLL, DT_ATTR_EVOLCMN, DT_VERS_1_3, &dt_idops_func, "uint64_t(uint64_t)" }, { "htons", DT_IDENT_FUNC, 0, DIF_SUBR_HTONS, DT_ATTR_EVOLCMN, DT_VERS_1_3, &dt_idops_func, "uint16_t(uint16_t)" }, { "getf", DT_IDENT_FUNC, 0, DIF_SUBR_GETF, DT_ATTR_STABCMN, DT_VERS_1_10, &dt_idops_func, "file_t *(int)" }, { "gid", DT_IDENT_SCALAR, 0, DIF_VAR_GID, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "gid_t" }, { "id", DT_IDENT_SCALAR, 0, DIF_VAR_ID, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "uint_t" }, { "index", DT_IDENT_FUNC, 0, DIF_SUBR_INDEX, DT_ATTR_STABCMN, DT_VERS_1_1, &dt_idops_func, "int(const char *, const char *, [int])" }, { "inet_ntoa", DT_IDENT_FUNC, 0, DIF_SUBR_INET_NTOA, DT_ATTR_STABCMN, #ifdef illumos DT_VERS_1_5, &dt_idops_func, "string(ipaddr_t *)" }, #else DT_VERS_1_5, &dt_idops_func, "string(in_addr_t *)" }, #endif { "inet_ntoa6", DT_IDENT_FUNC, 0, DIF_SUBR_INET_NTOA6, DT_ATTR_STABCMN, #ifdef illumos DT_VERS_1_5, &dt_idops_func, "string(in6_addr_t *)" }, #else DT_VERS_1_5, &dt_idops_func, "string(struct in6_addr *)" }, #endif { "inet_ntop", DT_IDENT_FUNC, 0, DIF_SUBR_INET_NTOP, DT_ATTR_STABCMN, DT_VERS_1_5, &dt_idops_func, "string(int, void *)" }, { "ipl", DT_IDENT_SCALAR, 0, DIF_VAR_IPL, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "uint_t" }, +#ifdef __FreeBSD__ +{ "jailname", DT_IDENT_SCALAR, 0, DIF_VAR_JAILNAME, + DT_ATTR_STABCMN, DT_VERS_1_13, &dt_idops_type, "string" }, +{ "jid", DT_IDENT_SCALAR, 0, DIF_VAR_JID, DT_ATTR_STABCMN, DT_VERS_1_13, + &dt_idops_type, "int" }, +#endif { "json", DT_IDENT_FUNC, 0, DIF_SUBR_JSON, DT_ATTR_STABCMN, DT_VERS_1_11, &dt_idops_func, "string(const char *, const char *)" }, { "jstack", DT_IDENT_ACTFUNC, 0, DT_ACT_JSTACK, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "stack(...)" }, { "lltostr", DT_IDENT_FUNC, 0, DIF_SUBR_LLTOSTR, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "string(int64_t, [int])" }, { "llquantize", DT_IDENT_AGGFUNC, 0, DTRACEAGG_LLQUANTIZE, DT_ATTR_STABCMN, DT_VERS_1_7, &dt_idops_func, "void(@, int32_t, int32_t, int32_t, int32_t, ...)" }, { "lquantize", DT_IDENT_AGGFUNC, 0, DTRACEAGG_LQUANTIZE, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(@, int32_t, int32_t, ...)" }, { "max", DT_IDENT_AGGFUNC, 0, DTRACEAGG_MAX, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(@)" }, { "memref", DT_IDENT_FUNC, 0, DIF_SUBR_MEMREF, DT_ATTR_STABCMN, DT_VERS_1_1, &dt_idops_func, "uintptr_t *(void *, size_t)" }, #ifndef illumos { "memstr", DT_IDENT_FUNC, 0, DIF_SUBR_MEMSTR, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "string(void *, char, size_t)" }, #endif { "min", DT_IDENT_AGGFUNC, 0, DTRACEAGG_MIN, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(@)" }, { "mod", DT_IDENT_ACTFUNC, 0, DT_ACT_MOD, DT_ATTR_STABCMN, DT_VERS_1_2, &dt_idops_func, "_symaddr(uintptr_t)" }, { "msgdsize", DT_IDENT_FUNC, 0, DIF_SUBR_MSGDSIZE, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "size_t(mblk_t *)" }, { "msgsize", DT_IDENT_FUNC, 0, DIF_SUBR_MSGSIZE, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "size_t(mblk_t *)" }, #ifdef illumos { "mutex_owned", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_OWNED, DT_ATTR_EVOLCMN, DT_VERS_1_0, &dt_idops_func, "int(genunix`kmutex_t *)" }, { "mutex_owner", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_OWNER, DT_ATTR_EVOLCMN, DT_VERS_1_0, &dt_idops_func, "genunix`kthread_t *(genunix`kmutex_t *)" }, { "mutex_type_adaptive", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_TYPE_ADAPTIVE, DT_ATTR_EVOLCMN, DT_VERS_1_0, &dt_idops_func, "int(genunix`kmutex_t *)" }, { "mutex_type_spin", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_TYPE_SPIN, DT_ATTR_EVOLCMN, DT_VERS_1_0, &dt_idops_func, "int(genunix`kmutex_t *)" }, #else { "mutex_owned", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_OWNED, DT_ATTR_EVOLCMN, DT_VERS_1_0, &dt_idops_func, intmtx_str }, { "mutex_owner", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_OWNER, DT_ATTR_EVOLCMN, DT_VERS_1_0, &dt_idops_func, threadmtx_str }, { "mutex_type_adaptive", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_TYPE_ADAPTIVE, DT_ATTR_EVOLCMN, DT_VERS_1_0, &dt_idops_func, intmtx_str }, { "mutex_type_spin", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_TYPE_SPIN, DT_ATTR_EVOLCMN, DT_VERS_1_0, &dt_idops_func, intmtx_str }, #endif { "ntohl", DT_IDENT_FUNC, 0, DIF_SUBR_NTOHL, DT_ATTR_EVOLCMN, DT_VERS_1_3, &dt_idops_func, "uint32_t(uint32_t)" }, { "ntohll", DT_IDENT_FUNC, 0, DIF_SUBR_NTOHLL, DT_ATTR_EVOLCMN, DT_VERS_1_3, &dt_idops_func, "uint64_t(uint64_t)" }, { "ntohs", DT_IDENT_FUNC, 0, DIF_SUBR_NTOHS, DT_ATTR_EVOLCMN, DT_VERS_1_3, &dt_idops_func, "uint16_t(uint16_t)" }, { "normalize", DT_IDENT_ACTFUNC, 0, DT_ACT_NORMALIZE, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(...)" }, { "panic", DT_IDENT_ACTFUNC, 0, DT_ACT_PANIC, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void()" }, { "pid", DT_IDENT_SCALAR, 0, DIF_VAR_PID, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "pid_t" }, { "ppid", DT_IDENT_SCALAR, 0, DIF_VAR_PPID, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "pid_t" }, { "print", DT_IDENT_ACTFUNC, 0, DT_ACT_PRINT, DT_ATTR_STABCMN, DT_VERS_1_9, &dt_idops_func, "void(@)" }, { "printa", DT_IDENT_ACTFUNC, 0, DT_ACT_PRINTA, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(@, ...)" }, { "printf", DT_IDENT_ACTFUNC, 0, DT_ACT_PRINTF, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(@, ...)" }, { "printm", DT_IDENT_ACTFUNC, 0, DT_ACT_PRINTM, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(size_t, uintptr_t *)" }, { "probefunc", DT_IDENT_SCALAR, 0, DIF_VAR_PROBEFUNC, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" }, { "probemod", DT_IDENT_SCALAR, 0, DIF_VAR_PROBEMOD, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" }, { "probename", DT_IDENT_SCALAR, 0, DIF_VAR_PROBENAME, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" }, { "probeprov", DT_IDENT_SCALAR, 0, DIF_VAR_PROBEPROV, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" }, { "progenyof", DT_IDENT_FUNC, 0, DIF_SUBR_PROGENYOF, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "int(pid_t)" }, { "quantize", DT_IDENT_AGGFUNC, 0, DTRACEAGG_QUANTIZE, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(@, ...)" }, { "raise", DT_IDENT_ACTFUNC, 0, DT_ACT_RAISE, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(int)" }, { "rand", DT_IDENT_FUNC, 0, DIF_SUBR_RAND, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "int()" }, { "rindex", DT_IDENT_FUNC, 0, DIF_SUBR_RINDEX, DT_ATTR_STABCMN, DT_VERS_1_1, &dt_idops_func, "int(const char *, const char *, [int])" }, #ifdef illumos { "rw_iswriter", DT_IDENT_FUNC, 0, DIF_SUBR_RW_ISWRITER, DT_ATTR_EVOLCMN, DT_VERS_1_0, &dt_idops_func, "int(genunix`krwlock_t *)" }, { "rw_read_held", DT_IDENT_FUNC, 0, DIF_SUBR_RW_READ_HELD, DT_ATTR_EVOLCMN, DT_VERS_1_0, &dt_idops_func, "int(genunix`krwlock_t *)" }, { "rw_write_held", DT_IDENT_FUNC, 0, DIF_SUBR_RW_WRITE_HELD, DT_ATTR_EVOLCMN, DT_VERS_1_0, &dt_idops_func, "int(genunix`krwlock_t *)" }, #else { "rw_iswriter", DT_IDENT_FUNC, 0, DIF_SUBR_RW_ISWRITER, DT_ATTR_EVOLCMN, DT_VERS_1_0, &dt_idops_func, rwlock_str }, { "rw_read_held", DT_IDENT_FUNC, 0, DIF_SUBR_RW_READ_HELD, DT_ATTR_EVOLCMN, DT_VERS_1_0, &dt_idops_func, rwlock_str }, { "rw_write_held", DT_IDENT_FUNC, 0, DIF_SUBR_RW_WRITE_HELD, DT_ATTR_EVOLCMN, DT_VERS_1_0, &dt_idops_func, rwlock_str }, #endif { "self", DT_IDENT_PTR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "void" }, { "setopt", DT_IDENT_ACTFUNC, 0, DT_ACT_SETOPT, DT_ATTR_STABCMN, DT_VERS_1_2, &dt_idops_func, "void(const char *, [const char *])" }, { "speculate", DT_IDENT_ACTFUNC, 0, DT_ACT_SPECULATE, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(int)" }, { "speculation", DT_IDENT_FUNC, 0, DIF_SUBR_SPECULATION, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "int()" }, { "stack", DT_IDENT_ACTFUNC, 0, DT_ACT_STACK, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "stack(...)" }, { "stackdepth", DT_IDENT_SCALAR, 0, DIF_VAR_STACKDEPTH, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "uint32_t" }, { "stddev", DT_IDENT_AGGFUNC, 0, DTRACEAGG_STDDEV, DT_ATTR_STABCMN, DT_VERS_1_6, &dt_idops_func, "void(@)" }, { "stop", DT_IDENT_ACTFUNC, 0, DT_ACT_STOP, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void()" }, { "strchr", DT_IDENT_FUNC, 0, DIF_SUBR_STRCHR, DT_ATTR_STABCMN, DT_VERS_1_1, &dt_idops_func, "string(const char *, char)" }, { "strlen", DT_IDENT_FUNC, 0, DIF_SUBR_STRLEN, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "size_t(const char *)" }, { "strjoin", DT_IDENT_FUNC, 0, DIF_SUBR_STRJOIN, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "string(const char *, const char *)" }, { "strrchr", DT_IDENT_FUNC, 0, DIF_SUBR_STRRCHR, DT_ATTR_STABCMN, DT_VERS_1_1, &dt_idops_func, "string(const char *, char)" }, { "strstr", DT_IDENT_FUNC, 0, DIF_SUBR_STRSTR, DT_ATTR_STABCMN, DT_VERS_1_1, &dt_idops_func, "string(const char *, const char *)" }, { "strtok", DT_IDENT_FUNC, 0, DIF_SUBR_STRTOK, DT_ATTR_STABCMN, DT_VERS_1_1, &dt_idops_func, "string(const char *, const char *)" }, { "strtoll", DT_IDENT_FUNC, 0, DIF_SUBR_STRTOLL, DT_ATTR_STABCMN, DT_VERS_1_11, &dt_idops_func, "int64_t(const char *, [int])" }, { "substr", DT_IDENT_FUNC, 0, DIF_SUBR_SUBSTR, DT_ATTR_STABCMN, DT_VERS_1_1, &dt_idops_func, "string(const char *, int, [int])" }, { "sum", DT_IDENT_AGGFUNC, 0, DTRACEAGG_SUM, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(@)" }, #ifndef illumos { "sx_isexclusive", DT_IDENT_FUNC, 0, DIF_SUBR_SX_ISEXCLUSIVE, DT_ATTR_EVOLCMN, DT_VERS_1_0, &dt_idops_func, sxlock_str }, { "sx_shared_held", DT_IDENT_FUNC, 0, DIF_SUBR_SX_SHARED_HELD, DT_ATTR_EVOLCMN, DT_VERS_1_0, &dt_idops_func, sxlock_str }, { "sx_exclusive_held", DT_IDENT_FUNC, 0, DIF_SUBR_SX_EXCLUSIVE_HELD, DT_ATTR_EVOLCMN, DT_VERS_1_0, &dt_idops_func, sxlock_str }, #endif { "sym", DT_IDENT_ACTFUNC, 0, DT_ACT_SYM, DT_ATTR_STABCMN, DT_VERS_1_2, &dt_idops_func, "_symaddr(uintptr_t)" }, { "system", DT_IDENT_ACTFUNC, 0, DT_ACT_SYSTEM, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(@, ...)" }, { "this", DT_IDENT_PTR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "void" }, { "tid", DT_IDENT_SCALAR, 0, DIF_VAR_TID, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "id_t" }, { "timestamp", DT_IDENT_SCALAR, 0, DIF_VAR_TIMESTAMP, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "uint64_t" }, { "tolower", DT_IDENT_FUNC, 0, DIF_SUBR_TOLOWER, DT_ATTR_STABCMN, DT_VERS_1_8, &dt_idops_func, "string(const char *)" }, { "toupper", DT_IDENT_FUNC, 0, DIF_SUBR_TOUPPER, DT_ATTR_STABCMN, DT_VERS_1_8, &dt_idops_func, "string(const char *)" }, { "trace", DT_IDENT_ACTFUNC, 0, DT_ACT_TRACE, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(@)" }, { "tracemem", DT_IDENT_ACTFUNC, 0, DT_ACT_TRACEMEM, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(@, size_t, ...)" }, { "trunc", DT_IDENT_ACTFUNC, 0, DT_ACT_TRUNC, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "void(...)" }, { "uaddr", DT_IDENT_ACTFUNC, 0, DT_ACT_UADDR, DT_ATTR_STABCMN, DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" }, { "ucaller", DT_IDENT_SCALAR, 0, DIF_VAR_UCALLER, DT_ATTR_STABCMN, DT_VERS_1_2, &dt_idops_type, "uint64_t" }, { "ufunc", DT_IDENT_ACTFUNC, 0, DT_ACT_USYM, DT_ATTR_STABCMN, DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" }, { "uid", DT_IDENT_SCALAR, 0, DIF_VAR_UID, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "uid_t" }, { "umod", DT_IDENT_ACTFUNC, 0, DT_ACT_UMOD, DT_ATTR_STABCMN, DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" }, { "uregs", DT_IDENT_ARRAY, 0, DIF_VAR_UREGS, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_regs, NULL }, { "ustack", DT_IDENT_ACTFUNC, 0, DT_ACT_USTACK, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_func, "stack(...)" }, { "ustackdepth", DT_IDENT_SCALAR, 0, DIF_VAR_USTACKDEPTH, DT_ATTR_STABCMN, DT_VERS_1_2, &dt_idops_type, "uint32_t" }, { "usym", DT_IDENT_ACTFUNC, 0, DT_ACT_USYM, DT_ATTR_STABCMN, DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" }, { "vtimestamp", DT_IDENT_SCALAR, 0, DIF_VAR_VTIMESTAMP, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "uint64_t" }, { "walltimestamp", DT_IDENT_SCALAR, 0, DIF_VAR_WALLTIMESTAMP, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "int64_t" }, -#ifdef illumos { "zonename", DT_IDENT_SCALAR, 0, DIF_VAR_ZONENAME, DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" }, -#endif #ifndef illumos { "cpu", DT_IDENT_SCALAR, 0, DIF_VAR_CPU, DT_ATTR_STABCMN, DT_VERS_1_6_3, &dt_idops_type, "int" }, #endif { NULL, 0, 0, 0, { 0, 0, 0 }, 0, NULL, NULL } }; /* * Tables of ILP32 intrinsic integer and floating-point type templates to use * to populate the dynamic "C" CTF type container. */ static const dt_intrinsic_t _dtrace_intrinsics_32[] = { { "void", { CTF_INT_SIGNED, 0, 0 }, CTF_K_INTEGER }, { "signed", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER }, { "unsigned", { 0, 0, 32 }, CTF_K_INTEGER }, { "char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER }, { "short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER }, { "int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER }, { "long", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER }, { "long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER }, { "signed char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER }, { "signed short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER }, { "signed int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER }, { "signed long", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER }, { "signed long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER }, { "unsigned char", { CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER }, { "unsigned short", { 0, 0, 16 }, CTF_K_INTEGER }, { "unsigned int", { 0, 0, 32 }, CTF_K_INTEGER }, { "unsigned long", { 0, 0, 32 }, CTF_K_INTEGER }, { "unsigned long long", { 0, 0, 64 }, CTF_K_INTEGER }, { "_Bool", { CTF_INT_BOOL, 0, 8 }, CTF_K_INTEGER }, { "float", { CTF_FP_SINGLE, 0, 32 }, CTF_K_FLOAT }, { "double", { CTF_FP_DOUBLE, 0, 64 }, CTF_K_FLOAT }, { "long double", { CTF_FP_LDOUBLE, 0, 128 }, CTF_K_FLOAT }, { "float imaginary", { CTF_FP_IMAGRY, 0, 32 }, CTF_K_FLOAT }, { "double imaginary", { CTF_FP_DIMAGRY, 0, 64 }, CTF_K_FLOAT }, { "long double imaginary", { CTF_FP_LDIMAGRY, 0, 128 }, CTF_K_FLOAT }, { "float complex", { CTF_FP_CPLX, 0, 64 }, CTF_K_FLOAT }, { "double complex", { CTF_FP_DCPLX, 0, 128 }, CTF_K_FLOAT }, { "long double complex", { CTF_FP_LDCPLX, 0, 256 }, CTF_K_FLOAT }, { NULL, { 0, 0, 0 }, 0 } }; /* * Tables of LP64 intrinsic integer and floating-point type templates to use * to populate the dynamic "C" CTF type container. */ static const dt_intrinsic_t _dtrace_intrinsics_64[] = { { "void", { CTF_INT_SIGNED, 0, 0 }, CTF_K_INTEGER }, { "signed", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER }, { "unsigned", { 0, 0, 32 }, CTF_K_INTEGER }, { "char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER }, { "short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER }, { "int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER }, { "long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER }, { "long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER }, { "signed char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER }, { "signed short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER }, { "signed int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER }, { "signed long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER }, { "signed long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER }, { "unsigned char", { CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER }, { "unsigned short", { 0, 0, 16 }, CTF_K_INTEGER }, { "unsigned int", { 0, 0, 32 }, CTF_K_INTEGER }, { "unsigned long", { 0, 0, 64 }, CTF_K_INTEGER }, { "unsigned long long", { 0, 0, 64 }, CTF_K_INTEGER }, { "_Bool", { CTF_INT_BOOL, 0, 8 }, CTF_K_INTEGER }, { "float", { CTF_FP_SINGLE, 0, 32 }, CTF_K_FLOAT }, { "double", { CTF_FP_DOUBLE, 0, 64 }, CTF_K_FLOAT }, { "long double", { CTF_FP_LDOUBLE, 0, 128 }, CTF_K_FLOAT }, { "float imaginary", { CTF_FP_IMAGRY, 0, 32 }, CTF_K_FLOAT }, { "double imaginary", { CTF_FP_DIMAGRY, 0, 64 }, CTF_K_FLOAT }, { "long double imaginary", { CTF_FP_LDIMAGRY, 0, 128 }, CTF_K_FLOAT }, { "float complex", { CTF_FP_CPLX, 0, 64 }, CTF_K_FLOAT }, { "double complex", { CTF_FP_DCPLX, 0, 128 }, CTF_K_FLOAT }, { "long double complex", { CTF_FP_LDCPLX, 0, 256 }, CTF_K_FLOAT }, { NULL, { 0, 0, 0 }, 0 } }; /* * Tables of ILP32 typedefs to use to populate the dynamic "D" CTF container. * These aliases ensure that D definitions can use typical names. */ static const dt_typedef_t _dtrace_typedefs_32[] = { { "char", "int8_t" }, { "short", "int16_t" }, { "int", "int32_t" }, { "long long", "int64_t" }, { "int", "intptr_t" }, { "int", "ssize_t" }, { "unsigned char", "uint8_t" }, { "unsigned short", "uint16_t" }, { "unsigned", "uint32_t" }, { "unsigned long long", "uint64_t" }, { "unsigned char", "uchar_t" }, { "unsigned short", "ushort_t" }, { "unsigned", "uint_t" }, { "unsigned long", "ulong_t" }, { "unsigned long long", "u_longlong_t" }, { "int", "ptrdiff_t" }, { "unsigned", "uintptr_t" }, { "unsigned", "size_t" }, { "long", "id_t" }, { "long", "pid_t" }, { NULL, NULL } }; /* * Tables of LP64 typedefs to use to populate the dynamic "D" CTF container. * These aliases ensure that D definitions can use typical names. */ static const dt_typedef_t _dtrace_typedefs_64[] = { { "char", "int8_t" }, { "short", "int16_t" }, { "int", "int32_t" }, { "long", "int64_t" }, { "long", "intptr_t" }, { "long", "ssize_t" }, { "unsigned char", "uint8_t" }, { "unsigned short", "uint16_t" }, { "unsigned", "uint32_t" }, { "unsigned long", "uint64_t" }, { "unsigned char", "uchar_t" }, { "unsigned short", "ushort_t" }, { "unsigned", "uint_t" }, { "unsigned long", "ulong_t" }, { "unsigned long long", "u_longlong_t" }, { "long", "ptrdiff_t" }, { "unsigned long", "uintptr_t" }, { "unsigned long", "size_t" }, { "int", "id_t" }, { "int", "pid_t" }, { NULL, NULL } }; /* * Tables of ILP32 integer type templates used to populate the dtp->dt_ints[] * cache when a new dtrace client open occurs. Values are set by dtrace_open(). */ static const dt_intdesc_t _dtrace_ints_32[] = { { "int", NULL, CTF_ERR, 0x7fffffffULL }, { "unsigned int", NULL, CTF_ERR, 0xffffffffULL }, { "long", NULL, CTF_ERR, 0x7fffffffULL }, { "unsigned long", NULL, CTF_ERR, 0xffffffffULL }, { "long long", NULL, CTF_ERR, 0x7fffffffffffffffULL }, { "unsigned long long", NULL, CTF_ERR, 0xffffffffffffffffULL } }; /* * Tables of LP64 integer type templates used to populate the dtp->dt_ints[] * cache when a new dtrace client open occurs. Values are set by dtrace_open(). */ static const dt_intdesc_t _dtrace_ints_64[] = { { "int", NULL, CTF_ERR, 0x7fffffffULL }, { "unsigned int", NULL, CTF_ERR, 0xffffffffULL }, { "long", NULL, CTF_ERR, 0x7fffffffffffffffULL }, { "unsigned long", NULL, CTF_ERR, 0xffffffffffffffffULL }, { "long long", NULL, CTF_ERR, 0x7fffffffffffffffULL }, { "unsigned long long", NULL, CTF_ERR, 0xffffffffffffffffULL } }; /* * Table of macro variable templates used to populate the macro identifier hash * when a new dtrace client open occurs. Values are set by dtrace_update(). */ static const dt_ident_t _dtrace_macros[] = { { "egid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 }, { "euid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 }, { "gid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 }, { "pid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 }, { "pgid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 }, { "ppid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 }, { "projid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 }, { "sid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 }, { "taskid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 }, { "target", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 }, { "uid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 }, { NULL, 0, 0, 0, { 0, 0, 0 }, 0 } }; /* * Hard-wired definition string to be compiled and cached every time a new * DTrace library handle is initialized. This string should only be used to * contain definitions that should be present regardless of DTRACE_O_NOLIBS. */ static const char _dtrace_hardwire[] = "\ inline long NULL = 0; \n\ #pragma D binding \"1.0\" NULL\n\ "; /* * Default DTrace configuration to use when opening libdtrace DTRACE_O_NODEV. * If DTRACE_O_NODEV is not set, we load the configuration from the kernel. * The use of CTF_MODEL_NATIVE is more subtle than it might appear: we are * relying on the fact that when running dtrace(1M), isaexec will invoke the * binary with the same bitness as the kernel, which is what we want by default * when generating our DIF. The user can override the choice using oflags. */ static const dtrace_conf_t _dtrace_conf = { DIF_VERSION, /* dtc_difversion */ DIF_DIR_NREGS, /* dtc_difintregs */ DIF_DTR_NREGS, /* dtc_diftupregs */ CTF_MODEL_NATIVE /* dtc_ctfmodel */ }; const dtrace_attribute_t _dtrace_maxattr = { DTRACE_STABILITY_MAX, DTRACE_STABILITY_MAX, DTRACE_CLASS_MAX }; const dtrace_attribute_t _dtrace_defattr = { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }; const dtrace_attribute_t _dtrace_symattr = { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }; const dtrace_attribute_t _dtrace_typattr = { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }; const dtrace_attribute_t _dtrace_prvattr = { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }; const dtrace_pattr_t _dtrace_prvdesc = { { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON }, { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON }, { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON }, { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON }, { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON }, }; #ifdef illumos const char *_dtrace_defcpp = "/usr/ccs/lib/cpp"; /* default cpp(1) to invoke */ const char *_dtrace_defld = "/usr/ccs/bin/ld"; /* default ld(1) to invoke */ #else const char *_dtrace_defcpp = "cpp"; /* default cpp(1) to invoke */ const char *_dtrace_defld = "ld"; /* default ld(1) to invoke */ const char *_dtrace_defobjcopy = "objcopy"; /* default objcopy(1) to invoke */ #endif const char *_dtrace_libdir = "/usr/lib/dtrace"; /* default library directory */ #ifdef illumos const char *_dtrace_provdir = "/dev/dtrace/provider"; /* provider directory */ #else const char *_dtrace_libdir32 = "/usr/lib32/dtrace"; const char *_dtrace_provdir = "/dev/dtrace"; /* provider directory */ #endif int _dtrace_strbuckets = 211; /* default number of hash buckets (prime) */ int _dtrace_intbuckets = 256; /* default number of integer buckets (Pof2) */ uint_t _dtrace_strsize = 256; /* default size of string intrinsic type */ uint_t _dtrace_stkindent = 14; /* default whitespace indent for stack/ustack */ uint_t _dtrace_pidbuckets = 64; /* default number of pid hash buckets */ uint_t _dtrace_pidlrulim = 8; /* default number of pid handles to cache */ size_t _dtrace_bufsize = 512; /* default dt_buf_create() size */ int _dtrace_argmax = 32; /* default maximum number of probe arguments */ int _dtrace_debug = 0; /* debug messages enabled (off) */ const char *const _dtrace_version = DT_VERS_STRING; /* API version string */ int _dtrace_rdvers = RD_VERSION; /* rtld_db feature version */ typedef struct dt_fdlist { int *df_fds; /* array of provider driver file descriptors */ uint_t df_ents; /* number of valid elements in df_fds[] */ uint_t df_size; /* size of df_fds[] */ } dt_fdlist_t; #ifdef illumos #pragma init(_dtrace_init) #else void _dtrace_init(void) __attribute__ ((constructor)); #endif void _dtrace_init(void) { _dtrace_debug = getenv("DTRACE_DEBUG") != NULL; for (; _dtrace_rdvers > 0; _dtrace_rdvers--) { if (rd_init(_dtrace_rdvers) == RD_OK) break; } #if defined(__i386__) /* make long doubles 64 bits -sson */ (void) fpsetprec(FP_PE); #endif } static dtrace_hdl_t * set_open_errno(dtrace_hdl_t *dtp, int *errp, int err) { if (dtp != NULL) dtrace_close(dtp); if (errp != NULL) *errp = err; return (NULL); } static void dt_provmod_open(dt_provmod_t **provmod, dt_fdlist_t *dfp) { dt_provmod_t *prov; char path[PATH_MAX]; int fd; #ifdef illumos struct dirent *dp, *ep; DIR *dirp; if ((dirp = opendir(_dtrace_provdir)) == NULL) return; /* failed to open directory; just skip it */ ep = alloca(sizeof (struct dirent) + PATH_MAX + 1); bzero(ep, sizeof (struct dirent) + PATH_MAX + 1); while (readdir_r(dirp, ep, &dp) == 0 && dp != NULL) { if (dp->d_name[0] == '.') continue; /* skip "." and ".." */ if (dfp->df_ents == dfp->df_size) { uint_t size = dfp->df_size ? dfp->df_size * 2 : 16; int *fds = realloc(dfp->df_fds, size * sizeof (int)); if (fds == NULL) break; /* skip the rest of this directory */ dfp->df_fds = fds; dfp->df_size = size; } (void) snprintf(path, sizeof (path), "%s/%s", _dtrace_provdir, dp->d_name); if ((fd = open(path, O_RDONLY)) == -1) continue; /* failed to open driver; just skip it */ if (((prov = malloc(sizeof (dt_provmod_t))) == NULL) || (prov->dp_name = malloc(strlen(dp->d_name) + 1)) == NULL) { free(prov); (void) close(fd); break; } (void) strcpy(prov->dp_name, dp->d_name); prov->dp_next = *provmod; *provmod = prov; dt_dprintf("opened provider %s\n", dp->d_name); dfp->df_fds[dfp->df_ents++] = fd; } (void) closedir(dirp); #else /* !illumos */ char *p; char *p1; char *p_providers = NULL; int error; size_t len = 0; /* * Loop to allocate/reallocate memory for the string of provider * names and retry: */ while(1) { /* * The first time around, get the string length. The next time, * hopefully we've allocated enough memory. */ error = sysctlbyname("debug.dtrace.providers",p_providers,&len,NULL,0); if (len == 0) /* No providers? That's strange. Where's dtrace? */ break; else if (error == 0 && p_providers == NULL) { /* * Allocate the initial memory which should be enough * unless another provider loads before we have * time to go back and get the string. */ if ((p_providers = malloc(len)) == NULL) /* How do we report errors here? */ return; } else if (error == -1 && errno == ENOMEM) { /* * The current buffer isn't large enough, so * reallocate it. We normally won't need to do this * because providers aren't being loaded all the time. */ if ((p = realloc(p_providers,len)) == NULL) { free(p_providers); /* How do we report errors here? */ return; } p_providers = p; } else break; } /* Check if we got a string of provider names: */ if (error == 0 && len > 0 && p_providers != NULL) { p = p_providers; /* * Parse the string containing the space separated * provider names. */ while ((p1 = strsep(&p," ")) != NULL) { if (dfp->df_ents == dfp->df_size) { uint_t size = dfp->df_size ? dfp->df_size * 2 : 16; int *fds = realloc(dfp->df_fds, size * sizeof (int)); if (fds == NULL) break; dfp->df_fds = fds; dfp->df_size = size; } (void) snprintf(path, sizeof (path), "/dev/dtrace/%s", p1); if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) continue; /* failed to open driver; just skip it */ if (((prov = malloc(sizeof (dt_provmod_t))) == NULL) || (prov->dp_name = malloc(strlen(p1) + 1)) == NULL) { free(prov); (void) close(fd); break; } (void) strcpy(prov->dp_name, p1); prov->dp_next = *provmod; *provmod = prov; dt_dprintf("opened provider %s\n", p1); dfp->df_fds[dfp->df_ents++] = fd; } } if (p_providers != NULL) free(p_providers); #endif /* illumos */ } static void dt_provmod_destroy(dt_provmod_t **provmod) { dt_provmod_t *next, *current; for (current = *provmod; current != NULL; current = next) { next = current->dp_next; free(current->dp_name); free(current); } *provmod = NULL; } #ifdef illumos static const char * dt_get_sysinfo(int cmd, char *buf, size_t len) { ssize_t rv = sysinfo(cmd, buf, len); char *p = buf; if (rv < 0 || rv > len) (void) snprintf(buf, len, "%s", "Unknown"); while ((p = strchr(p, '.')) != NULL) *p++ = '_'; return (buf); } #endif static dtrace_hdl_t * dt_vopen(int version, int flags, int *errp, const dtrace_vector_t *vector, void *arg) { dtrace_hdl_t *dtp = NULL; int dtfd = -1, ftfd = -1, fterr = 0; dtrace_prog_t *pgp; dt_module_t *dmp; dt_provmod_t *provmod = NULL; int i, err; struct rlimit rl; const dt_intrinsic_t *dinp; const dt_typedef_t *dtyp; const dt_ident_t *idp; dtrace_typeinfo_t dtt; ctf_funcinfo_t ctc; ctf_arinfo_t ctr; dt_fdlist_t df = { NULL, 0, 0 }; char isadef[32], utsdef[32]; char s1[64], s2[64]; if (version <= 0) return (set_open_errno(dtp, errp, EINVAL)); if (version > DTRACE_VERSION) return (set_open_errno(dtp, errp, EDT_VERSION)); if (version < DTRACE_VERSION) { /* * Currently, increasing the library version number is used to * denote a binary incompatible change. That is, a consumer * of the library cannot run on a version of the library with * a higher DTRACE_VERSION number than the consumer compiled * against. Once the library API has been committed to, * backwards binary compatibility will be required; at that * time, this check should change to return EDT_OVERSION only * if the specified version number is less than the version * number at the time of interface commitment. */ return (set_open_errno(dtp, errp, EDT_OVERSION)); } if (flags & ~DTRACE_O_MASK) return (set_open_errno(dtp, errp, EINVAL)); if ((flags & DTRACE_O_LP64) && (flags & DTRACE_O_ILP32)) return (set_open_errno(dtp, errp, EINVAL)); if (vector == NULL && arg != NULL) return (set_open_errno(dtp, errp, EINVAL)); if (elf_version(EV_CURRENT) == EV_NONE) return (set_open_errno(dtp, errp, EDT_ELFVERSION)); if (vector != NULL || (flags & DTRACE_O_NODEV)) goto alloc; /* do not attempt to open dtrace device */ /* * Before we get going, crank our limit on file descriptors up to the * hard limit. This is to allow for the fact that libproc keeps file * descriptors to objects open for the lifetime of the proc handle; * without raising our hard limit, we would have an acceptably small * bound on the number of processes that we could concurrently * instrument with the pid provider. */ if (getrlimit(RLIMIT_NOFILE, &rl) == 0) { rl.rlim_cur = rl.rlim_max; (void) setrlimit(RLIMIT_NOFILE, &rl); } /* * Get the device path of each of the providers. We hold them open * in the df.df_fds list until we open the DTrace driver itself, * allowing us to see all of the probes provided on this system. Once * we have the DTrace driver open, we can safely close all the providers * now that they have registered with the framework. */ dt_provmod_open(&provmod, &df); dtfd = open("/dev/dtrace/dtrace", O_RDWR | O_CLOEXEC); err = errno; /* save errno from opening dtfd */ #if defined(__FreeBSD__) /* * Automatically load the 'dtraceall' module if we couldn't open the * char device. */ if (err == ENOENT && modfind("dtraceall") < 0) { kldload("dtraceall"); /* ignore the error */ dtfd = open("/dev/dtrace/dtrace", O_RDWR | O_CLOEXEC); err = errno; } #endif #ifdef illumos ftfd = open("/dev/dtrace/provider/fasttrap", O_RDWR); #else ftfd = open("/dev/dtrace/fasttrap", O_RDWR | O_CLOEXEC); #endif fterr = ftfd == -1 ? errno : 0; /* save errno from open ftfd */ while (df.df_ents-- != 0) (void) close(df.df_fds[df.df_ents]); free(df.df_fds); /* * If we failed to open the dtrace device, fail dtrace_open(). * We convert some kernel errnos to custom libdtrace errnos to * improve the resulting message from the usual strerror(). */ if (dtfd == -1) { dt_provmod_destroy(&provmod); switch (err) { case ENOENT: err = EDT_NOENT; break; case EBUSY: err = EDT_BUSY; break; case EACCES: err = EDT_ACCESS; break; } return (set_open_errno(dtp, errp, err)); } alloc: if ((dtp = malloc(sizeof (dtrace_hdl_t))) == NULL) { dt_provmod_destroy(&provmod); return (set_open_errno(dtp, errp, EDT_NOMEM)); } bzero(dtp, sizeof (dtrace_hdl_t)); dtp->dt_oflags = flags; #ifdef illumos dtp->dt_prcmode = DT_PROC_STOP_PREINIT; #else dtp->dt_prcmode = DT_PROC_STOP_POSTINIT; #endif dtp->dt_linkmode = DT_LINK_KERNEL; dtp->dt_linktype = DT_LTYP_ELF; dtp->dt_xlatemode = DT_XL_STATIC; dtp->dt_stdcmode = DT_STDC_XA; dtp->dt_encoding = DT_ENCODING_UNSET; dtp->dt_version = version; dtp->dt_fd = dtfd; dtp->dt_ftfd = ftfd; dtp->dt_fterr = fterr; dtp->dt_cdefs_fd = -1; dtp->dt_ddefs_fd = -1; #ifdef illumos dtp->dt_stdout_fd = -1; #else dtp->dt_freopen_fp = NULL; #endif dtp->dt_modbuckets = _dtrace_strbuckets; dtp->dt_mods = calloc(dtp->dt_modbuckets, sizeof (dt_module_t *)); #ifdef __FreeBSD__ dtp->dt_kmods = calloc(dtp->dt_modbuckets, sizeof (dt_module_t *)); #endif dtp->dt_provbuckets = _dtrace_strbuckets; dtp->dt_provs = calloc(dtp->dt_provbuckets, sizeof (dt_provider_t *)); dt_proc_init(dtp); dtp->dt_vmax = DT_VERS_LATEST; dtp->dt_cpp_path = strdup(_dtrace_defcpp); dtp->dt_cpp_argv = malloc(sizeof (char *)); dtp->dt_cpp_argc = 1; dtp->dt_cpp_args = 1; dtp->dt_ld_path = strdup(_dtrace_defld); #ifdef __FreeBSD__ dtp->dt_objcopy_path = strdup(_dtrace_defobjcopy); #endif dtp->dt_provmod = provmod; dtp->dt_vector = vector; dtp->dt_varg = arg; dt_dof_init(dtp); (void) uname(&dtp->dt_uts); if (dtp->dt_mods == NULL || dtp->dt_provs == NULL || dtp->dt_procs == NULL || dtp->dt_proc_env == NULL || dtp->dt_ld_path == NULL || dtp->dt_cpp_path == NULL || #ifdef __FreeBSD__ dtp->dt_kmods == NULL || dtp->dt_objcopy_path == NULL || #endif dtp->dt_cpp_argv == NULL) return (set_open_errno(dtp, errp, EDT_NOMEM)); for (i = 0; i < DTRACEOPT_MAX; i++) dtp->dt_options[i] = DTRACEOPT_UNSET; dtp->dt_cpp_argv[0] = (char *)strbasename(dtp->dt_cpp_path); #ifdef illumos (void) snprintf(isadef, sizeof (isadef), "-D__SUNW_D_%u", (uint_t)(sizeof (void *) * NBBY)); (void) snprintf(utsdef, sizeof (utsdef), "-D__%s_%s", dt_get_sysinfo(SI_SYSNAME, s1, sizeof (s1)), dt_get_sysinfo(SI_RELEASE, s2, sizeof (s2))); if (dt_cpp_add_arg(dtp, "-D__sun") == NULL || dt_cpp_add_arg(dtp, "-D__unix") == NULL || dt_cpp_add_arg(dtp, "-D__SVR4") == NULL || dt_cpp_add_arg(dtp, "-D__SUNW_D=1") == NULL || dt_cpp_add_arg(dtp, isadef) == NULL || dt_cpp_add_arg(dtp, utsdef) == NULL) return (set_open_errno(dtp, errp, EDT_NOMEM)); #endif if (flags & DTRACE_O_NODEV) bcopy(&_dtrace_conf, &dtp->dt_conf, sizeof (_dtrace_conf)); else if (dt_ioctl(dtp, DTRACEIOC_CONF, &dtp->dt_conf) != 0) return (set_open_errno(dtp, errp, errno)); if (flags & DTRACE_O_LP64) dtp->dt_conf.dtc_ctfmodel = CTF_MODEL_LP64; else if (flags & DTRACE_O_ILP32) dtp->dt_conf.dtc_ctfmodel = CTF_MODEL_ILP32; #ifdef __sparc /* * On SPARC systems, __sparc is always defined for * and __sparcv9 is defined if we are doing a 64-bit compile. */ if (dt_cpp_add_arg(dtp, "-D__sparc") == NULL) return (set_open_errno(dtp, errp, EDT_NOMEM)); if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_LP64 && dt_cpp_add_arg(dtp, "-D__sparcv9") == NULL) return (set_open_errno(dtp, errp, EDT_NOMEM)); #endif #ifdef illumos #ifdef __x86 /* * On x86 systems, __i386 is defined for for 32-bit * compiles and __amd64 is defined for 64-bit compiles. Unlike SPARC, * they are defined exclusive of one another (see PSARC 2004/619). */ if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_LP64) { if (dt_cpp_add_arg(dtp, "-D__amd64") == NULL) return (set_open_errno(dtp, errp, EDT_NOMEM)); } else { if (dt_cpp_add_arg(dtp, "-D__i386") == NULL) return (set_open_errno(dtp, errp, EDT_NOMEM)); } #endif #else #if defined(__amd64__) || defined(__i386__) if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_LP64) { if (dt_cpp_add_arg(dtp, "-m64") == NULL) return (set_open_errno(dtp, errp, EDT_NOMEM)); } else { if (dt_cpp_add_arg(dtp, "-m32") == NULL) return (set_open_errno(dtp, errp, EDT_NOMEM)); } #endif #endif if (dtp->dt_conf.dtc_difversion < DIF_VERSION) return (set_open_errno(dtp, errp, EDT_DIFVERS)); if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_ILP32) bcopy(_dtrace_ints_32, dtp->dt_ints, sizeof (_dtrace_ints_32)); else bcopy(_dtrace_ints_64, dtp->dt_ints, sizeof (_dtrace_ints_64)); /* * On FreeBSD the kernel module name can't be hard-coded. The * 'kern.bootfile' sysctl value tells us exactly which file is being * used as the kernel. */ #ifndef illumos { char bootfile[MAXPATHLEN]; char *p; int i; size_t len = sizeof(bootfile); /* This call shouldn't fail, but use a default just in case. */ if (sysctlbyname("kern.bootfile", bootfile, &len, NULL, 0) != 0) strlcpy(bootfile, "kernel", sizeof(bootfile)); if ((p = strrchr(bootfile, '/')) != NULL) p++; else p = bootfile; /* * Format the global variables based on the kernel module name. */ snprintf(curthread_str, sizeof(curthread_str), "%s`struct thread *",p); snprintf(intmtx_str, sizeof(intmtx_str), "int(%s`struct mtx *)",p); snprintf(threadmtx_str, sizeof(threadmtx_str), "struct thread *(%s`struct mtx *)",p); snprintf(rwlock_str, sizeof(rwlock_str), "int(%s`struct rwlock *)",p); snprintf(sxlock_str, sizeof(sxlock_str), "int(%s`struct sx *)",p); } #endif dtp->dt_macros = dt_idhash_create("macro", NULL, 0, UINT_MAX); dtp->dt_aggs = dt_idhash_create("aggregation", NULL, DTRACE_AGGVARIDNONE + 1, UINT_MAX); dtp->dt_globals = dt_idhash_create("global", _dtrace_globals, DIF_VAR_OTHER_UBASE, DIF_VAR_OTHER_MAX); dtp->dt_tls = dt_idhash_create("thread local", NULL, DIF_VAR_OTHER_UBASE, DIF_VAR_OTHER_MAX); if (dtp->dt_macros == NULL || dtp->dt_aggs == NULL || dtp->dt_globals == NULL || dtp->dt_tls == NULL) return (set_open_errno(dtp, errp, EDT_NOMEM)); /* * Populate the dt_macros identifier hash table by hand: we can't use * the dt_idhash_populate() mechanism because we're not yet compiling * and dtrace_update() needs to immediately reference these idents. */ for (idp = _dtrace_macros; idp->di_name != NULL; idp++) { if (dt_idhash_insert(dtp->dt_macros, idp->di_name, idp->di_kind, idp->di_flags, idp->di_id, idp->di_attr, idp->di_vers, idp->di_ops ? idp->di_ops : &dt_idops_thaw, idp->di_iarg, 0) == NULL) return (set_open_errno(dtp, errp, EDT_NOMEM)); } /* * Update the module list using /system/object and load the values for * the macro variable definitions according to the current process. */ dtrace_update(dtp); /* * Select the intrinsics and typedefs we want based on the data model. * The intrinsics are under "C". The typedefs are added under "D". */ if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_ILP32) { dinp = _dtrace_intrinsics_32; dtyp = _dtrace_typedefs_32; } else { dinp = _dtrace_intrinsics_64; dtyp = _dtrace_typedefs_64; } /* * Create a dynamic CTF container under the "C" scope for intrinsic * types and types defined in ANSI-C header files that are included. */ if ((dmp = dtp->dt_cdefs = dt_module_create(dtp, "C")) == NULL) return (set_open_errno(dtp, errp, EDT_NOMEM)); if ((dmp->dm_ctfp = ctf_create(&dtp->dt_ctferr)) == NULL) return (set_open_errno(dtp, errp, EDT_CTF)); dt_dprintf("created CTF container for %s (%p)\n", dmp->dm_name, (void *)dmp->dm_ctfp); (void) ctf_setmodel(dmp->dm_ctfp, dtp->dt_conf.dtc_ctfmodel); ctf_setspecific(dmp->dm_ctfp, dmp); dmp->dm_flags = DT_DM_LOADED; /* fake up loaded bit */ dmp->dm_modid = -1; /* no module ID */ /* * Fill the dynamic "C" CTF container with all of the intrinsic * integer and floating-point types appropriate for this data model. */ for (; dinp->din_name != NULL; dinp++) { if (dinp->din_kind == CTF_K_INTEGER) { err = ctf_add_integer(dmp->dm_ctfp, CTF_ADD_ROOT, dinp->din_name, &dinp->din_data); } else { err = ctf_add_float(dmp->dm_ctfp, CTF_ADD_ROOT, dinp->din_name, &dinp->din_data); } if (err == CTF_ERR) { dt_dprintf("failed to add %s to C container: %s\n", dinp->din_name, ctf_errmsg( ctf_errno(dmp->dm_ctfp))); return (set_open_errno(dtp, errp, EDT_CTF)); } } if (ctf_update(dmp->dm_ctfp) != 0) { dt_dprintf("failed to update C container: %s\n", ctf_errmsg(ctf_errno(dmp->dm_ctfp))); return (set_open_errno(dtp, errp, EDT_CTF)); } /* * Add intrinsic pointer types that are needed to initialize printf * format dictionary types (see table in dt_printf.c). */ (void) ctf_add_pointer(dmp->dm_ctfp, CTF_ADD_ROOT, ctf_lookup_by_name(dmp->dm_ctfp, "void")); (void) ctf_add_pointer(dmp->dm_ctfp, CTF_ADD_ROOT, ctf_lookup_by_name(dmp->dm_ctfp, "char")); (void) ctf_add_pointer(dmp->dm_ctfp, CTF_ADD_ROOT, ctf_lookup_by_name(dmp->dm_ctfp, "int")); if (ctf_update(dmp->dm_ctfp) != 0) { dt_dprintf("failed to update C container: %s\n", ctf_errmsg(ctf_errno(dmp->dm_ctfp))); return (set_open_errno(dtp, errp, EDT_CTF)); } /* * Create a dynamic CTF container under the "D" scope for types that * are defined by the D program itself or on-the-fly by the D compiler. * The "D" CTF container is a child of the "C" CTF container. */ if ((dmp = dtp->dt_ddefs = dt_module_create(dtp, "D")) == NULL) return (set_open_errno(dtp, errp, EDT_NOMEM)); if ((dmp->dm_ctfp = ctf_create(&dtp->dt_ctferr)) == NULL) return (set_open_errno(dtp, errp, EDT_CTF)); dt_dprintf("created CTF container for %s (%p)\n", dmp->dm_name, (void *)dmp->dm_ctfp); (void) ctf_setmodel(dmp->dm_ctfp, dtp->dt_conf.dtc_ctfmodel); ctf_setspecific(dmp->dm_ctfp, dmp); dmp->dm_flags = DT_DM_LOADED; /* fake up loaded bit */ dmp->dm_modid = -1; /* no module ID */ if (ctf_import(dmp->dm_ctfp, dtp->dt_cdefs->dm_ctfp) == CTF_ERR) { dt_dprintf("failed to import D parent container: %s\n", ctf_errmsg(ctf_errno(dmp->dm_ctfp))); return (set_open_errno(dtp, errp, EDT_CTF)); } /* * Fill the dynamic "D" CTF container with all of the built-in typedefs * that we need to use for our D variable and function definitions. * This ensures that basic inttypes.h names are always available to us. */ for (; dtyp->dty_src != NULL; dtyp++) { if (ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT, dtyp->dty_dst, ctf_lookup_by_name(dmp->dm_ctfp, dtyp->dty_src)) == CTF_ERR) { dt_dprintf("failed to add typedef %s %s to D " "container: %s", dtyp->dty_src, dtyp->dty_dst, ctf_errmsg(ctf_errno(dmp->dm_ctfp))); return (set_open_errno(dtp, errp, EDT_CTF)); } } /* * Insert a CTF ID corresponding to a pointer to a type of kind * CTF_K_FUNCTION we can use in the compiler for function pointers. * CTF treats all function pointers as "int (*)()" so we only need one. */ ctc.ctc_return = ctf_lookup_by_name(dmp->dm_ctfp, "int"); ctc.ctc_argc = 0; ctc.ctc_flags = 0; dtp->dt_type_func = ctf_add_function(dmp->dm_ctfp, CTF_ADD_ROOT, &ctc, NULL); dtp->dt_type_fptr = ctf_add_pointer(dmp->dm_ctfp, CTF_ADD_ROOT, dtp->dt_type_func); /* * We also insert CTF definitions for the special D intrinsic types * string and into the D container. The string type is added * as a typedef of char[n]. The type is an alias for void. * We compare types to these special CTF ids throughout the compiler. */ ctr.ctr_contents = ctf_lookup_by_name(dmp->dm_ctfp, "char"); ctr.ctr_index = ctf_lookup_by_name(dmp->dm_ctfp, "long"); ctr.ctr_nelems = _dtrace_strsize; dtp->dt_type_str = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT, "string", ctf_add_array(dmp->dm_ctfp, CTF_ADD_ROOT, &ctr)); dtp->dt_type_dyn = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT, "", ctf_lookup_by_name(dmp->dm_ctfp, "void")); dtp->dt_type_stack = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT, "stack", ctf_lookup_by_name(dmp->dm_ctfp, "void")); dtp->dt_type_symaddr = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT, "_symaddr", ctf_lookup_by_name(dmp->dm_ctfp, "void")); dtp->dt_type_usymaddr = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT, "_usymaddr", ctf_lookup_by_name(dmp->dm_ctfp, "void")); if (dtp->dt_type_func == CTF_ERR || dtp->dt_type_fptr == CTF_ERR || dtp->dt_type_str == CTF_ERR || dtp->dt_type_dyn == CTF_ERR || dtp->dt_type_stack == CTF_ERR || dtp->dt_type_symaddr == CTF_ERR || dtp->dt_type_usymaddr == CTF_ERR) { dt_dprintf("failed to add intrinsic to D container: %s\n", ctf_errmsg(ctf_errno(dmp->dm_ctfp))); return (set_open_errno(dtp, errp, EDT_CTF)); } if (ctf_update(dmp->dm_ctfp) != 0) { dt_dprintf("failed update D container: %s\n", ctf_errmsg(ctf_errno(dmp->dm_ctfp))); return (set_open_errno(dtp, errp, EDT_CTF)); } /* * Initialize the integer description table used to convert integer * constants to the appropriate types. Refer to the comments above * dt_node_int() for a complete description of how this table is used. */ for (i = 0; i < sizeof (dtp->dt_ints) / sizeof (dtp->dt_ints[0]); i++) { if (dtrace_lookup_by_type(dtp, DTRACE_OBJ_EVERY, dtp->dt_ints[i].did_name, &dtt) != 0) { dt_dprintf("failed to lookup integer type %s: %s\n", dtp->dt_ints[i].did_name, dtrace_errmsg(dtp, dtrace_errno(dtp))); return (set_open_errno(dtp, errp, dtp->dt_errno)); } dtp->dt_ints[i].did_ctfp = dtt.dtt_ctfp; dtp->dt_ints[i].did_type = dtt.dtt_type; } /* * Now that we've created the "C" and "D" containers, move them to the * start of the module list so that these types and symbols are found * first (for stability) when iterating through the module list. */ dt_list_delete(&dtp->dt_modlist, dtp->dt_ddefs); dt_list_prepend(&dtp->dt_modlist, dtp->dt_ddefs); dt_list_delete(&dtp->dt_modlist, dtp->dt_cdefs); dt_list_prepend(&dtp->dt_modlist, dtp->dt_cdefs); if (dt_pfdict_create(dtp) == -1) return (set_open_errno(dtp, errp, dtp->dt_errno)); /* * If we are opening libdtrace DTRACE_O_NODEV enable C_ZDEFS by default * because without /dev/dtrace open, we will not be able to load the * names and attributes of any providers or probes from the kernel. */ if (flags & DTRACE_O_NODEV) dtp->dt_cflags |= DTRACE_C_ZDEFS; /* * Load hard-wired inlines into the definition cache by calling the * compiler on the raw definition string defined above. */ if ((pgp = dtrace_program_strcompile(dtp, _dtrace_hardwire, DTRACE_PROBESPEC_NONE, DTRACE_C_EMPTY, 0, NULL)) == NULL) { dt_dprintf("failed to load hard-wired definitions: %s\n", dtrace_errmsg(dtp, dtrace_errno(dtp))); return (set_open_errno(dtp, errp, EDT_HARDWIRE)); } dt_program_destroy(dtp, pgp); /* * Set up the default DTrace library path. Once set, the next call to * dt_compile() will compile all the libraries. We intentionally defer * library processing to improve overhead for clients that don't ever * compile, and to provide better error reporting (because the full * reporting of compiler errors requires dtrace_open() to succeed). */ #ifdef __FreeBSD__ #ifdef __LP64__ if ((dtp->dt_oflags & DTRACE_O_ILP32) != 0) { if (dtrace_setopt(dtp, "libdir", _dtrace_libdir32) != 0) return (set_open_errno(dtp, errp, dtp->dt_errno)); } #endif if (dtrace_setopt(dtp, "libdir", _dtrace_libdir) != 0) return (set_open_errno(dtp, errp, dtp->dt_errno)); #else if (dtrace_setopt(dtp, "libdir", _dtrace_libdir) != 0) return (set_open_errno(dtp, errp, dtp->dt_errno)); #endif return (dtp); } dtrace_hdl_t * dtrace_open(int version, int flags, int *errp) { return (dt_vopen(version, flags, errp, NULL, NULL)); } dtrace_hdl_t * dtrace_vopen(int version, int flags, int *errp, const dtrace_vector_t *vector, void *arg) { return (dt_vopen(version, flags, errp, vector, arg)); } void dtrace_close(dtrace_hdl_t *dtp) { dt_ident_t *idp, *ndp; dt_module_t *dmp; dt_provider_t *pvp; dtrace_prog_t *pgp; dt_xlator_t *dxp; dt_dirpath_t *dirp; #ifdef __FreeBSD__ dt_kmodule_t *dkm; uint_t h; #endif int i; if (dtp->dt_procs != NULL) dt_proc_fini(dtp); while ((pgp = dt_list_next(&dtp->dt_programs)) != NULL) dt_program_destroy(dtp, pgp); while ((dxp = dt_list_next(&dtp->dt_xlators)) != NULL) dt_xlator_destroy(dtp, dxp); dt_free(dtp, dtp->dt_xlatormap); for (idp = dtp->dt_externs; idp != NULL; idp = ndp) { ndp = idp->di_next; dt_ident_destroy(idp); } if (dtp->dt_macros != NULL) dt_idhash_destroy(dtp->dt_macros); if (dtp->dt_aggs != NULL) dt_idhash_destroy(dtp->dt_aggs); if (dtp->dt_globals != NULL) dt_idhash_destroy(dtp->dt_globals); if (dtp->dt_tls != NULL) dt_idhash_destroy(dtp->dt_tls); #ifdef __FreeBSD__ for (h = 0; h < dtp->dt_modbuckets; h++) while ((dkm = dtp->dt_kmods[h]) != NULL) { dtp->dt_kmods[h] = dkm->dkm_next; free(dkm->dkm_name); free(dkm); } #endif while ((dmp = dt_list_next(&dtp->dt_modlist)) != NULL) dt_module_destroy(dtp, dmp); while ((pvp = dt_list_next(&dtp->dt_provlist)) != NULL) dt_provider_destroy(dtp, pvp); if (dtp->dt_fd != -1) (void) close(dtp->dt_fd); if (dtp->dt_ftfd != -1) (void) close(dtp->dt_ftfd); if (dtp->dt_cdefs_fd != -1) (void) close(dtp->dt_cdefs_fd); if (dtp->dt_ddefs_fd != -1) (void) close(dtp->dt_ddefs_fd); #ifdef illumos if (dtp->dt_stdout_fd != -1) (void) close(dtp->dt_stdout_fd); #else if (dtp->dt_freopen_fp != NULL) (void) fclose(dtp->dt_freopen_fp); #endif dt_epid_destroy(dtp); dt_aggid_destroy(dtp); dt_format_destroy(dtp); dt_strdata_destroy(dtp); dt_buffered_destroy(dtp); dt_aggregate_destroy(dtp); dt_pfdict_destroy(dtp); dt_provmod_destroy(&dtp->dt_provmod); dt_dof_fini(dtp); for (i = 1; i < dtp->dt_cpp_argc; i++) free(dtp->dt_cpp_argv[i]); while ((dirp = dt_list_next(&dtp->dt_lib_path)) != NULL) { dt_list_delete(&dtp->dt_lib_path, dirp); free(dirp->dir_path); free(dirp); } free(dtp->dt_cpp_argv); free(dtp->dt_cpp_path); free(dtp->dt_ld_path); #ifdef __FreeBSD__ free(dtp->dt_objcopy_path); #endif free(dtp->dt_mods); #ifdef __FreeBSD__ free(dtp->dt_kmods); #endif free(dtp->dt_provs); free(dtp); } int dtrace_provider_modules(dtrace_hdl_t *dtp, const char **mods, int nmods) { dt_provmod_t *prov; int i = 0; for (prov = dtp->dt_provmod; prov != NULL; prov = prov->dp_next, i++) { if (i < nmods) mods[i] = prov->dp_name; } return (i); } int dtrace_ctlfd(dtrace_hdl_t *dtp) { return (dtp->dt_fd); } Index: head/cddl/usr.sbin/dtrace/tests/common/safety/Makefile =================================================================== --- head/cddl/usr.sbin/dtrace/tests/common/safety/Makefile (revision 327887) +++ head/cddl/usr.sbin/dtrace/tests/common/safety/Makefile (revision 327888) @@ -1,58 +1,60 @@ # $FreeBSD$ # # This Makefile was generated by $srcdir/cddl/usr.sbin/dtrace/tests/tools/genmakefiles.sh. # PACKAGE= tests ${PACKAGE}FILES= \ tst.basename.d \ tst.caller.d \ tst.cleanpath.d \ tst.copyin.d \ tst.copyin2.d \ tst.ddi_pathname.d \ tst.dirname.d \ tst.errno.d \ tst.execname.d \ tst.gid.d \ tst.hton.d \ tst.index.d \ + tst.jailname.d \ + tst.jid.d \ tst.msgdsize.d \ tst.msgsize.d \ tst.null.d \ tst.pid.d \ tst.ppid.d \ tst.progenyof.d \ tst.random.d \ tst.rw.d \ tst.shortstr.d \ tst.stack.d \ tst.stackdepth.d \ tst.stddev.d \ tst.strchr.d \ tst.strjoin.d \ tst.strstr.d \ tst.strtok.d \ tst.substr.d \ tst.ucaller.d \ tst.uid.d \ tst.unalign.d \ tst.uregs.d \ tst.ustack.d \ tst.ustackdepth.d \ tst.vahole.d \ tst.violentdeath.ksh \ tst.zonename.d \ TESTEXES= \ CFILES= \ TEST_METADATA.t_dtrace_contrib+= required_memory="4g" .include "../../dtrace.test.mk" Index: head/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c (revision 327887) +++ head/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c (revision 327888) @@ -1,18368 +1,18386 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END * * $FreeBSD$ */ /* * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2016, Joyent, Inc. All rights reserved. * Copyright (c) 2012, 2014 by Delphix. All rights reserved. */ /* * DTrace - Dynamic Tracing for Solaris * * This is the implementation of the Solaris Dynamic Tracing framework * (DTrace). The user-visible interface to DTrace is described at length in * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace * library, the in-kernel DTrace framework, and the DTrace providers are * described in the block comments in the header file. The * internal architecture of DTrace is described in the block comments in the * header file. The comments contained within the DTrace * implementation very much assume mastery of all of these sources; if one has * an unanswered question about the implementation, one should consult them * first. * * The functions here are ordered roughly as follows: * * - Probe context functions * - Probe hashing functions * - Non-probe context utility functions * - Matching functions * - Provider-to-Framework API functions * - Probe management functions * - DIF object functions * - Format functions * - Predicate functions * - ECB functions * - Buffer functions * - Enabling functions * - DOF functions * - Anonymous enabling functions * - Consumer state functions * - Helper functions * - Hook functions * - Driver cookbook functions * * Each group of functions begins with a block comment labelled the "DTrace * [Group] Functions", allowing one to find each block by searching forward * on capital-f functions. */ #include #ifndef illumos #include #endif #include #include #include #include #ifdef illumos #include #include #endif #include #include #ifdef illumos #include #endif #include #include #include #include #ifdef illumos #include #include #endif #include #ifdef illumos #include #include #endif #include #ifdef illumos #include #include #endif #include #ifdef illumos #include #include #endif #include #include #include #include "strtolctype.h" /* FreeBSD includes: */ #ifndef illumos #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dtrace_cddl.h" #include "dtrace_debug.c" #endif #include "dtrace_xoroshiro128_plus.h" /* * DTrace Tunable Variables * * The following variables may be tuned by adding a line to /etc/system that * includes both the name of the DTrace module ("dtrace") and the name of the * variable. For example: * * set dtrace:dtrace_destructive_disallow = 1 * * In general, the only variables that one should be tuning this way are those * that affect system-wide DTrace behavior, and for which the default behavior * is undesirable. Most of these variables are tunable on a per-consumer * basis using DTrace options, and need not be tuned on a system-wide basis. * When tuning these variables, avoid pathological values; while some attempt * is made to verify the integrity of these variables, they are not considered * part of the supported interface to DTrace, and they are therefore not * checked comprehensively. Further, these variables should not be tuned * dynamically via "mdb -kw" or other means; they should only be tuned via * /etc/system. */ int dtrace_destructive_disallow = 0; #ifndef illumos /* Positive logic version of dtrace_destructive_disallow for loader tunable */ int dtrace_allow_destructive = 1; #endif dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); size_t dtrace_difo_maxsize = (256 * 1024); dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); size_t dtrace_statvar_maxsize = (16 * 1024); size_t dtrace_actions_max = (16 * 1024); size_t dtrace_retain_max = 1024; dtrace_optval_t dtrace_helper_actions_max = 128; dtrace_optval_t dtrace_helper_providers_max = 32; dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); size_t dtrace_strsize_default = 256; dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ dtrace_optval_t dtrace_nspec_default = 1; dtrace_optval_t dtrace_specsize_default = 32 * 1024; dtrace_optval_t dtrace_stackframes_default = 20; dtrace_optval_t dtrace_ustackframes_default = 20; dtrace_optval_t dtrace_jstackframes_default = 50; dtrace_optval_t dtrace_jstackstrsize_default = 512; int dtrace_msgdsize_max = 128; hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */ hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ int dtrace_devdepth_max = 32; int dtrace_err_verbose; hrtime_t dtrace_deadman_interval = NANOSEC; hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; #ifndef illumos int dtrace_memstr_max = 4096; #endif /* * DTrace External Variables * * As dtrace(7D) is a kernel module, any DTrace variables are obviously * available to DTrace consumers via the backtick (`) syntax. One of these, * dtrace_zero, is made deliberately so: it is provided as a source of * well-known, zero-filled memory. While this variable is not documented, * it is used by some translators as an implementation detail. */ const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ /* * DTrace Internal Variables */ #ifdef illumos static dev_info_t *dtrace_devi; /* device info */ #endif #ifdef illumos static vmem_t *dtrace_arena; /* probe ID arena */ static vmem_t *dtrace_minor; /* minor number arena */ #else static taskq_t *dtrace_taskq; /* task queue */ static struct unrhdr *dtrace_arena; /* Probe ID number. */ #endif static dtrace_probe_t **dtrace_probes; /* array of all probes */ static int dtrace_nprobes; /* number of probes */ static dtrace_provider_t *dtrace_provider; /* provider list */ static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ static int dtrace_opens; /* number of opens */ static int dtrace_helpers; /* number of helpers */ static int dtrace_getf; /* number of unpriv getf()s */ #ifdef illumos static void *dtrace_softstate; /* softstate pointer */ #endif static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ static int dtrace_toxranges; /* number of toxic ranges */ static int dtrace_toxranges_max; /* size of toxic range array */ static dtrace_anon_t dtrace_anon; /* anonymous enabling */ static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ static kthread_t *dtrace_panicked; /* panicking thread */ static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ static dtrace_genid_t dtrace_probegen; /* current probe generation */ static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ static int dtrace_dynvar_failclean; /* dynvars failed to clean */ #ifndef illumos static struct mtx dtrace_unr_mtx; MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF); static eventhandler_tag dtrace_kld_load_tag; static eventhandler_tag dtrace_kld_unload_try_tag; #endif /* * DTrace Locking * DTrace is protected by three (relatively coarse-grained) locks: * * (1) dtrace_lock is required to manipulate essentially any DTrace state, * including enabling state, probes, ECBs, consumer state, helper state, * etc. Importantly, dtrace_lock is _not_ required when in probe context; * probe context is lock-free -- synchronization is handled via the * dtrace_sync() cross call mechanism. * * (2) dtrace_provider_lock is required when manipulating provider state, or * when provider state must be held constant. * * (3) dtrace_meta_lock is required when manipulating meta provider state, or * when meta provider state must be held constant. * * The lock ordering between these three locks is dtrace_meta_lock before * dtrace_provider_lock before dtrace_lock. (In particular, there are * several places where dtrace_provider_lock is held by the framework as it * calls into the providers -- which then call back into the framework, * grabbing dtrace_lock.) * * There are two other locks in the mix: mod_lock and cpu_lock. With respect * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical * role as a coarse-grained lock; it is acquired before both of these locks. * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must * be acquired _between_ dtrace_meta_lock and any other DTrace locks. * mod_lock is similar with respect to dtrace_provider_lock in that it must be * acquired _between_ dtrace_provider_lock and dtrace_lock. */ static kmutex_t dtrace_lock; /* probe state lock */ static kmutex_t dtrace_provider_lock; /* provider state lock */ static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ #ifndef illumos /* XXX FreeBSD hacks. */ #define cr_suid cr_svuid #define cr_sgid cr_svgid #define ipaddr_t in_addr_t #define mod_modname pathname #define vuprintf vprintf #define ttoproc(_a) ((_a)->td_proc) #define crgetzoneid(_a) 0 #define SNOCD 0 #define CPU_ON_INTR(_a) 0 #define PRIV_EFFECTIVE (1 << 0) #define PRIV_DTRACE_KERNEL (1 << 1) #define PRIV_DTRACE_PROC (1 << 2) #define PRIV_DTRACE_USER (1 << 3) #define PRIV_PROC_OWNER (1 << 4) #define PRIV_PROC_ZONE (1 << 5) #define PRIV_ALL ~0 SYSCTL_DECL(_debug_dtrace); SYSCTL_DECL(_kern_dtrace); #endif #ifdef illumos #define curcpu CPU->cpu_id #endif /* * DTrace Provider Variables * * These are the variables relating to DTrace as a provider (that is, the * provider of the BEGIN, END, and ERROR probes). */ static dtrace_pattr_t dtrace_provider_attr = { { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, }; static void dtrace_nullop(void) {} static dtrace_pops_t dtrace_provider_ops = { .dtps_provide = (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop, .dtps_provide_module = (void (*)(void *, modctl_t *))dtrace_nullop, .dtps_enable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, .dtps_disable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, .dtps_suspend = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, .dtps_resume = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, .dtps_getargdesc = NULL, .dtps_getargval = NULL, .dtps_usermode = NULL, .dtps_destroy = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, }; static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ static dtrace_id_t dtrace_probeid_end; /* special END probe */ dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ /* * DTrace Helper Tracing Variables * * These variables should be set dynamically to enable helper tracing. The * only variables that should be set are dtrace_helptrace_enable (which should * be set to a non-zero value to allocate helper tracing buffers on the next * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a * non-zero value to deallocate helper tracing buffers on the next close of * /dev/dtrace). When (and only when) helper tracing is disabled, the * buffer size may also be set via dtrace_helptrace_bufsize. */ int dtrace_helptrace_enable = 0; int dtrace_helptrace_disable = 0; int dtrace_helptrace_bufsize = 16 * 1024 * 1024; uint32_t dtrace_helptrace_nlocals; static dtrace_helptrace_t *dtrace_helptrace_buffer; static uint32_t dtrace_helptrace_next = 0; static int dtrace_helptrace_wrapped = 0; /* * DTrace Error Hashing * * On DEBUG kernels, DTrace will track the errors that has seen in a hash * table. This is very useful for checking coverage of tests that are * expected to induce DIF or DOF processing errors, and may be useful for * debugging problems in the DIF code generator or in DOF generation . The * error hash may be examined with the ::dtrace_errhash MDB dcmd. */ #ifdef DEBUG static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; static const char *dtrace_errlast; static kthread_t *dtrace_errthread; static kmutex_t dtrace_errlock; #endif /* * DTrace Macros and Constants * * These are various macros that are useful in various spots in the * implementation, along with a few random constants that have no meaning * outside of the implementation. There is no real structure to this cpp * mishmash -- but is there ever? */ #define DTRACE_HASHSTR(hash, probe) \ dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) #define DTRACE_HASHNEXT(hash, probe) \ (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) #define DTRACE_HASHPREV(hash, probe) \ (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) #define DTRACE_HASHEQ(hash, lhs, rhs) \ (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) #define DTRACE_AGGHASHSIZE_SLEW 17 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) /* * The key for a thread-local variable consists of the lower 61 bits of the * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never * equal to a variable identifier. This is necessary (but not sufficient) to * assure that global associative arrays never collide with thread-local * variables. To guarantee that they cannot collide, we must also define the * order for keying dynamic variables. That order is: * * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] * * Because the variable-key and the tls-key are in orthogonal spaces, there is * no way for a global variable key signature to match a thread-local key * signature. */ #ifdef illumos #define DTRACE_TLS_THRKEY(where) { \ uint_t intr = 0; \ uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ for (; actv; actv >>= 1) \ intr++; \ ASSERT(intr < (1 << 3)); \ (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ } #else #define DTRACE_TLS_THRKEY(where) { \ solaris_cpu_t *_c = &solaris_cpu[curcpu]; \ uint_t intr = 0; \ uint_t actv = _c->cpu_intr_actv; \ for (; actv; actv >>= 1) \ intr++; \ ASSERT(intr < (1 << 3)); \ (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \ (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ } #endif #define DT_BSWAP_8(x) ((x) & 0xff) #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) #define DT_MASK_LO 0x00000000FFFFFFFFULL #define DTRACE_STORE(type, tomax, offset, what) \ *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); #ifndef __x86 #define DTRACE_ALIGNCHECK(addr, size, flags) \ if (addr & (size - 1)) { \ *flags |= CPU_DTRACE_BADALIGN; \ cpu_core[curcpu].cpuc_dtrace_illval = addr; \ return (0); \ } #else #define DTRACE_ALIGNCHECK(addr, size, flags) #endif /* * Test whether a range of memory starting at testaddr of size testsz falls * within the range of memory described by addr, sz. We take care to avoid * problems with overflow and underflow of the unsigned quantities, and * disallow all negative sizes. Ranges of size 0 are allowed. */ #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ (testaddr) + (testsz) >= (testaddr)) #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \ do { \ if ((remp) != NULL) { \ *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \ } \ _NOTE(CONSTCOND) } while (0) /* * Test whether alloc_sz bytes will fit in the scratch region. We isolate * alloc_sz on the righthand side of the comparison in order to avoid overflow * or underflow in the comparison with it. This is simpler than the INRANGE * check above, because we know that the dtms_scratch_ptr is valid in the * range. Allocations of size zero are allowed. */ #define DTRACE_INSCRATCH(mstate, alloc_sz) \ ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ (mstate)->dtms_scratch_ptr >= (alloc_sz)) #define DTRACE_LOADFUNC(bits) \ /*CSTYLED*/ \ uint##bits##_t \ dtrace_load##bits(uintptr_t addr) \ { \ size_t size = bits / NBBY; \ /*CSTYLED*/ \ uint##bits##_t rval; \ int i; \ volatile uint16_t *flags = (volatile uint16_t *) \ &cpu_core[curcpu].cpuc_dtrace_flags; \ \ DTRACE_ALIGNCHECK(addr, size, flags); \ \ for (i = 0; i < dtrace_toxranges; i++) { \ if (addr >= dtrace_toxrange[i].dtt_limit) \ continue; \ \ if (addr + size <= dtrace_toxrange[i].dtt_base) \ continue; \ \ /* \ * This address falls within a toxic region; return 0. \ */ \ *flags |= CPU_DTRACE_BADADDR; \ cpu_core[curcpu].cpuc_dtrace_illval = addr; \ return (0); \ } \ \ *flags |= CPU_DTRACE_NOFAULT; \ /*CSTYLED*/ \ rval = *((volatile uint##bits##_t *)addr); \ *flags &= ~CPU_DTRACE_NOFAULT; \ \ return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ } #ifdef _LP64 #define dtrace_loadptr dtrace_load64 #else #define dtrace_loadptr dtrace_load32 #endif #define DTRACE_DYNHASH_FREE 0 #define DTRACE_DYNHASH_SINK 1 #define DTRACE_DYNHASH_VALID 2 #define DTRACE_MATCH_NEXT 0 #define DTRACE_MATCH_DONE 1 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') #define DTRACE_STATE_ALIGN 64 #define DTRACE_FLAGS2FLT(flags) \ (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ DTRACEFLT_UNKNOWN) #define DTRACEACT_ISSTRING(act) \ ((act)->dta_kind == DTRACEACT_DIFEXPR && \ (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) /* Function prototype definitions: */ static size_t dtrace_strlen(const char *, size_t); static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); static void dtrace_enabling_provide(dtrace_provider_t *); static int dtrace_enabling_match(dtrace_enabling_t *, int *); static void dtrace_enabling_matchall(void); static void dtrace_enabling_reap(void); static dtrace_state_t *dtrace_anon_grab(void); static uint64_t dtrace_helper(int, dtrace_mstate_t *, dtrace_state_t *, uint64_t, uint64_t); static dtrace_helpers_t *dtrace_helpers_create(proc_t *); static void dtrace_buffer_drop(dtrace_buffer_t *); static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, dtrace_state_t *, dtrace_mstate_t *); static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, dtrace_optval_t); static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); uint16_t dtrace_load16(uintptr_t); uint32_t dtrace_load32(uintptr_t); uint64_t dtrace_load64(uintptr_t); uint8_t dtrace_load8(uintptr_t); void dtrace_dynvar_clean(dtrace_dstate_t *); dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *, size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *); uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *); static int dtrace_priv_proc(dtrace_state_t *); static void dtrace_getf_barrier(void); static int dtrace_canload_remains(uint64_t, size_t, size_t *, dtrace_mstate_t *, dtrace_vstate_t *); static int dtrace_canstore_remains(uint64_t, size_t, size_t *, dtrace_mstate_t *, dtrace_vstate_t *); /* * DTrace Probe Context Functions * * These functions are called from probe context. Because probe context is * any context in which C may be called, arbitrarily locks may be held, * interrupts may be disabled, we may be in arbitrary dispatched state, etc. * As a result, functions called from probe context may only call other DTrace * support functions -- they may not interact at all with the system at large. * (Note that the ASSERT macro is made probe-context safe by redefining it in * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary * loads are to be performed from probe context, they _must_ be in terms of * the safe dtrace_load*() variants. * * Some functions in this block are not actually called from probe context; * for these functions, there will be a comment above the function reading * "Note: not called from probe context." */ void dtrace_panic(const char *format, ...) { va_list alist; va_start(alist, format); #ifdef __FreeBSD__ vpanic(format, alist); #else dtrace_vpanic(format, alist); #endif va_end(alist); } int dtrace_assfail(const char *a, const char *f, int l) { dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); /* * We just need something here that even the most clever compiler * cannot optimize away. */ return (a[(uintptr_t)f]); } /* * Atomically increment a specified error counter from probe context. */ static void dtrace_error(uint32_t *counter) { /* * Most counters stored to in probe context are per-CPU counters. * However, there are some error conditions that are sufficiently * arcane that they don't merit per-CPU storage. If these counters * are incremented concurrently on different CPUs, scalability will be * adversely affected -- but we don't expect them to be white-hot in a * correctly constructed enabling... */ uint32_t oval, nval; do { oval = *counter; if ((nval = oval + 1) == 0) { /* * If the counter would wrap, set it to 1 -- assuring * that the counter is never zero when we have seen * errors. (The counter must be 32-bits because we * aren't guaranteed a 64-bit compare&swap operation.) * To save this code both the infamy of being fingered * by a priggish news story and the indignity of being * the target of a neo-puritan witch trial, we're * carefully avoiding any colorful description of the * likelihood of this condition -- but suffice it to * say that it is only slightly more likely than the * overflow of predicate cache IDs, as discussed in * dtrace_predicate_create(). */ nval = 1; } } while (dtrace_cas32(counter, oval, nval) != oval); } /* * Use the DTRACE_LOADFUNC macro to define functions for each of loading a * uint8_t, a uint16_t, a uint32_t and a uint64_t. */ /* BEGIN CSTYLED */ DTRACE_LOADFUNC(8) DTRACE_LOADFUNC(16) DTRACE_LOADFUNC(32) DTRACE_LOADFUNC(64) /* END CSTYLED */ static int dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) { if (dest < mstate->dtms_scratch_base) return (0); if (dest + size < dest) return (0); if (dest + size > mstate->dtms_scratch_ptr) return (0); return (1); } static int dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain, dtrace_statvar_t **svars, int nsvars) { int i; size_t maxglobalsize, maxlocalsize; if (nsvars == 0) return (0); maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t); maxlocalsize = maxglobalsize * NCPU; for (i = 0; i < nsvars; i++) { dtrace_statvar_t *svar = svars[i]; uint8_t scope; size_t size; if (svar == NULL || (size = svar->dtsv_size) == 0) continue; scope = svar->dtsv_var.dtdv_scope; /* * We verify that our size is valid in the spirit of providing * defense in depth: we want to prevent attackers from using * DTrace to escalate an orthogonal kernel heap corruption bug * into the ability to store to arbitrary locations in memory. */ VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) || (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize)); if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) { DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data, svar->dtsv_size); return (1); } } return (0); } /* * Check to see if the address is within a memory region to which a store may * be issued. This includes the DTrace scratch areas, and any DTrace variable * region. The caller of dtrace_canstore() is responsible for performing any * alignment checks that are needed before stores are actually executed. */ static int dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) { return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate)); } /* * Implementation of dtrace_canstore which communicates the upper bound of the * allowed memory region. */ static int dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain, dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) { /* * First, check to see if the address is in scratch space... */ if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, mstate->dtms_scratch_size)) { DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base, mstate->dtms_scratch_size); return (1); } /* * Now check to see if it's a dynamic variable. This check will pick * up both thread-local variables and any global dynamically-allocated * variables. */ if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, vstate->dtvs_dynvars.dtds_size)) { dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; uintptr_t base = (uintptr_t)dstate->dtds_base + (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); uintptr_t chunkoffs; dtrace_dynvar_t *dvar; /* * Before we assume that we can store here, we need to make * sure that it isn't in our metadata -- storing to our * dynamic variable metadata would corrupt our state. For * the range to not include any dynamic variable metadata, * it must: * * (1) Start above the hash table that is at the base of * the dynamic variable space * * (2) Have a starting chunk offset that is beyond the * dtrace_dynvar_t that is at the base of every chunk * * (3) Not span a chunk boundary * * (4) Not be in the tuple space of a dynamic variable * */ if (addr < base) return (0); chunkoffs = (addr - base) % dstate->dtds_chunksize; if (chunkoffs < sizeof (dtrace_dynvar_t)) return (0); if (chunkoffs + sz > dstate->dtds_chunksize) return (0); dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs); if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) return (0); if (chunkoffs < sizeof (dtrace_dynvar_t) + ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t))) return (0); DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize); return (1); } /* * Finally, check the static local and global variables. These checks * take the longest, so we perform them last. */ if (dtrace_canstore_statvar(addr, sz, remain, vstate->dtvs_locals, vstate->dtvs_nlocals)) return (1); if (dtrace_canstore_statvar(addr, sz, remain, vstate->dtvs_globals, vstate->dtvs_nglobals)) return (1); return (0); } /* * Convenience routine to check to see if the address is within a memory * region in which a load may be issued given the user's privilege level; * if not, it sets the appropriate error flags and loads 'addr' into the * illegal value slot. * * DTrace subroutines (DIF_SUBR_*) should use this helper to implement * appropriate memory access protection. */ static int dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) { return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate)); } /* * Implementation of dtrace_canload which communicates the uppoer bound of the * allowed memory region. */ static int dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain, dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) { volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; file_t *fp; /* * If we hold the privilege to read from kernel memory, then * everything is readable. */ if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { DTRACE_RANGE_REMAIN(remain, addr, addr, sz); return (1); } /* * You can obviously read that which you can store. */ if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate)) return (1); /* * We're allowed to read from our own string table. */ if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, mstate->dtms_difo->dtdo_strlen)) { DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_difo->dtdo_strtab, mstate->dtms_difo->dtdo_strlen); return (1); } if (vstate->dtvs_state != NULL && dtrace_priv_proc(vstate->dtvs_state)) { proc_t *p; /* * When we have privileges to the current process, there are * several context-related kernel structures that are safe to * read, even absent the privilege to read from kernel memory. * These reads are safe because these structures contain only * state that (1) we're permitted to read, (2) is harmless or * (3) contains pointers to additional kernel state that we're * not permitted to read (and as such, do not present an * opportunity for privilege escalation). Finally (and * critically), because of the nature of their relation with * the current thread context, the memory associated with these * structures cannot change over the duration of probe context, * and it is therefore impossible for this memory to be * deallocated and reallocated as something else while it's * being operated upon. */ if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) { DTRACE_RANGE_REMAIN(remain, addr, curthread, sizeof (kthread_t)); return (1); } if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, sz, curthread->t_procp, sizeof (proc_t))) { DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp, sizeof (proc_t)); return (1); } if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, curthread->t_cred, sizeof (cred_t))) { DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred, sizeof (cred_t)); return (1); } #ifdef illumos if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, &(p->p_pidp->pid_id), sizeof (pid_t))) { DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id), sizeof (pid_t)); return (1); } if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread)); return (1); } #endif } if ((fp = mstate->dtms_getf) != NULL) { uintptr_t psz = sizeof (void *); vnode_t *vp; vnodeops_t *op; /* * When getf() returns a file_t, the enabling is implicitly * granted the (transient) right to read the returned file_t * as well as the v_path and v_op->vnop_name of the underlying * vnode. These accesses are allowed after a successful * getf() because the members that they refer to cannot change * once set -- and the barrier logic in the kernel's closef() * path assures that the file_t and its referenced vode_t * cannot themselves be stale (that is, it impossible for * either dtms_getf itself or its f_vnode member to reference * freed memory). */ if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) { DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t)); return (1); } if ((vp = fp->f_vnode) != NULL) { size_t slen; #ifdef illumos if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) { DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path, psz); return (1); } slen = strlen(vp->v_path) + 1; if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) { DTRACE_RANGE_REMAIN(remain, addr, vp->v_path, slen); return (1); } #endif if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) { DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op, psz); return (1); } #ifdef illumos if ((op = vp->v_op) != NULL && DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { DTRACE_RANGE_REMAIN(remain, addr, &op->vnop_name, psz); return (1); } if (op != NULL && op->vnop_name != NULL && DTRACE_INRANGE(addr, sz, op->vnop_name, (slen = strlen(op->vnop_name) + 1))) { DTRACE_RANGE_REMAIN(remain, addr, op->vnop_name, slen); return (1); } #endif } } DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); *illval = addr; return (0); } /* * Convenience routine to check to see if a given string is within a memory * region in which a load may be issued given the user's privilege level; * this exists so that we don't need to issue unnecessary dtrace_strlen() * calls in the event that the user has all privileges. */ static int dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain, dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) { size_t rsize; /* * If we hold the privilege to read from kernel memory, then * everything is readable. */ if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { DTRACE_RANGE_REMAIN(remain, addr, addr, sz); return (1); } /* * Even if the caller is uninterested in querying the remaining valid * range, it is required to ensure that the access is allowed. */ if (remain == NULL) { remain = &rsize; } if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) { size_t strsz; /* * Perform the strlen after determining the length of the * memory region which is accessible. This prevents timing * information from being used to find NULs in memory which is * not accessible to the caller. */ strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, MIN(sz, *remain)); if (strsz <= *remain) { return (1); } } return (0); } /* * Convenience routine to check to see if a given variable is within a memory * region in which a load may be issued given the user's privilege level. */ static int dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain, dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) { size_t sz; ASSERT(type->dtdt_flags & DIF_TF_BYREF); /* * Calculate the max size before performing any checks since even * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function * return the max length via 'remain'. */ if (type->dtdt_kind == DIF_TYPE_STRING) { dtrace_state_t *state = vstate->dtvs_state; if (state != NULL) { sz = state->dts_options[DTRACEOPT_STRSIZE]; } else { /* * In helper context, we have a NULL state; fall back * to using the system-wide default for the string size * in this case. */ sz = dtrace_strsize_default; } } else { sz = type->dtdt_size; } /* * If we hold the privilege to read from kernel memory, then * everything is readable. */ if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz); return (1); } if (type->dtdt_kind == DIF_TYPE_STRING) { return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate, vstate)); } return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate, vstate)); } /* * Convert a string to a signed integer using safe loads. * * NOTE: This function uses various macros from strtolctype.h to manipulate * digit values, etc -- these have all been checked to ensure they make * no additional function calls. */ static int64_t dtrace_strtoll(char *input, int base, size_t limit) { uintptr_t pos = (uintptr_t)input; int64_t val = 0; int x; boolean_t neg = B_FALSE; char c, cc, ccc; uintptr_t end = pos + limit; /* * Consume any whitespace preceding digits. */ while ((c = dtrace_load8(pos)) == ' ' || c == '\t') pos++; /* * Handle an explicit sign if one is present. */ if (c == '-' || c == '+') { if (c == '-') neg = B_TRUE; c = dtrace_load8(++pos); } /* * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it * if present. */ if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { pos += 2; c = ccc; } /* * Read in contiguous digits until the first non-digit character. */ for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; c = dtrace_load8(++pos)) val = val * base + x; return (neg ? -val : val); } /* * Compare two strings using safe loads. */ static int dtrace_strncmp(char *s1, char *s2, size_t limit) { uint8_t c1, c2; volatile uint16_t *flags; if (s1 == s2 || limit == 0) return (0); flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; do { if (s1 == NULL) { c1 = '\0'; } else { c1 = dtrace_load8((uintptr_t)s1++); } if (s2 == NULL) { c2 = '\0'; } else { c2 = dtrace_load8((uintptr_t)s2++); } if (c1 != c2) return (c1 - c2); } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); return (0); } /* * Compute strlen(s) for a string using safe memory accesses. The additional * len parameter is used to specify a maximum length to ensure completion. */ static size_t dtrace_strlen(const char *s, size_t lim) { uint_t len; for (len = 0; len != lim; len++) { if (dtrace_load8((uintptr_t)s++) == '\0') break; } return (len); } /* * Check if an address falls within a toxic region. */ static int dtrace_istoxic(uintptr_t kaddr, size_t size) { uintptr_t taddr, tsize; int i; for (i = 0; i < dtrace_toxranges; i++) { taddr = dtrace_toxrange[i].dtt_base; tsize = dtrace_toxrange[i].dtt_limit - taddr; if (kaddr - taddr < tsize) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = kaddr; return (1); } if (taddr - kaddr < size) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = taddr; return (1); } } return (0); } /* * Copy src to dst using safe memory accesses. The src is assumed to be unsafe * memory specified by the DIF program. The dst is assumed to be safe memory * that we can store to directly because it is managed by DTrace. As with * standard bcopy, overlapping copies are handled properly. */ static void dtrace_bcopy(const void *src, void *dst, size_t len) { if (len != 0) { uint8_t *s1 = dst; const uint8_t *s2 = src; if (s1 <= s2) { do { *s1++ = dtrace_load8((uintptr_t)s2++); } while (--len != 0); } else { s2 += len; s1 += len; do { *--s1 = dtrace_load8((uintptr_t)--s2); } while (--len != 0); } } } /* * Copy src to dst using safe memory accesses, up to either the specified * length, or the point that a nul byte is encountered. The src is assumed to * be unsafe memory specified by the DIF program. The dst is assumed to be * safe memory that we can store to directly because it is managed by DTrace. * Unlike dtrace_bcopy(), overlapping regions are not handled. */ static void dtrace_strcpy(const void *src, void *dst, size_t len) { if (len != 0) { uint8_t *s1 = dst, c; const uint8_t *s2 = src; do { *s1++ = c = dtrace_load8((uintptr_t)s2++); } while (--len != 0 && c != '\0'); } } /* * Copy src to dst, deriving the size and type from the specified (BYREF) * variable type. The src is assumed to be unsafe memory specified by the DIF * program. The dst is assumed to be DTrace variable memory that is of the * specified type; we assume that we can store to directly. */ static void dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit) { ASSERT(type->dtdt_flags & DIF_TF_BYREF); if (type->dtdt_kind == DIF_TYPE_STRING) { dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit)); } else { dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit)); } } /* * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be * unsafe memory specified by the DIF program. The s2 data is assumed to be * safe memory that we can access directly because it is managed by DTrace. */ static int dtrace_bcmp(const void *s1, const void *s2, size_t len) { volatile uint16_t *flags; flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; if (s1 == s2) return (0); if (s1 == NULL || s2 == NULL) return (1); if (s1 != s2 && len != 0) { const uint8_t *ps1 = s1; const uint8_t *ps2 = s2; do { if (dtrace_load8((uintptr_t)ps1++) != *ps2++) return (1); } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); } return (0); } /* * Zero the specified region using a simple byte-by-byte loop. Note that this * is for safe DTrace-managed memory only. */ static void dtrace_bzero(void *dst, size_t len) { uchar_t *cp; for (cp = dst; len != 0; len--) *cp++ = 0; } static void dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) { uint64_t result[2]; result[0] = addend1[0] + addend2[0]; result[1] = addend1[1] + addend2[1] + (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); sum[0] = result[0]; sum[1] = result[1]; } /* * Shift the 128-bit value in a by b. If b is positive, shift left. * If b is negative, shift right. */ static void dtrace_shift_128(uint64_t *a, int b) { uint64_t mask; if (b == 0) return; if (b < 0) { b = -b; if (b >= 64) { a[0] = a[1] >> (b - 64); a[1] = 0; } else { a[0] >>= b; mask = 1LL << (64 - b); mask -= 1; a[0] |= ((a[1] & mask) << (64 - b)); a[1] >>= b; } } else { if (b >= 64) { a[1] = a[0] << (b - 64); a[0] = 0; } else { a[1] <<= b; mask = a[0] >> (64 - b); a[1] |= mask; a[0] <<= b; } } } /* * The basic idea is to break the 2 64-bit values into 4 32-bit values, * use native multiplication on those, and then re-combine into the * resulting 128-bit value. * * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = * hi1 * hi2 << 64 + * hi1 * lo2 << 32 + * hi2 * lo1 << 32 + * lo1 * lo2 */ static void dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) { uint64_t hi1, hi2, lo1, lo2; uint64_t tmp[2]; hi1 = factor1 >> 32; hi2 = factor2 >> 32; lo1 = factor1 & DT_MASK_LO; lo2 = factor2 & DT_MASK_LO; product[0] = lo1 * lo2; product[1] = hi1 * hi2; tmp[0] = hi1 * lo2; tmp[1] = 0; dtrace_shift_128(tmp, 32); dtrace_add_128(product, tmp, product); tmp[0] = hi2 * lo1; tmp[1] = 0; dtrace_shift_128(tmp, 32); dtrace_add_128(product, tmp, product); } /* * This privilege check should be used by actions and subroutines to * verify that the user credentials of the process that enabled the * invoking ECB match the target credentials */ static int dtrace_priv_proc_common_user(dtrace_state_t *state) { cred_t *cr, *s_cr = state->dts_cred.dcr_cred; /* * We should always have a non-NULL state cred here, since if cred * is null (anonymous tracing), we fast-path bypass this routine. */ ASSERT(s_cr != NULL); if ((cr = CRED()) != NULL && s_cr->cr_uid == cr->cr_uid && s_cr->cr_uid == cr->cr_ruid && s_cr->cr_uid == cr->cr_suid && s_cr->cr_gid == cr->cr_gid && s_cr->cr_gid == cr->cr_rgid && s_cr->cr_gid == cr->cr_sgid) return (1); return (0); } /* * This privilege check should be used by actions and subroutines to * verify that the zone of the process that enabled the invoking ECB * matches the target credentials */ static int dtrace_priv_proc_common_zone(dtrace_state_t *state) { #ifdef illumos cred_t *cr, *s_cr = state->dts_cred.dcr_cred; /* * We should always have a non-NULL state cred here, since if cred * is null (anonymous tracing), we fast-path bypass this routine. */ ASSERT(s_cr != NULL); if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) return (1); return (0); #else return (1); #endif } /* * This privilege check should be used by actions and subroutines to * verify that the process has not setuid or changed credentials. */ static int dtrace_priv_proc_common_nocd(void) { proc_t *proc; if ((proc = ttoproc(curthread)) != NULL && !(proc->p_flag & SNOCD)) return (1); return (0); } static int dtrace_priv_proc_destructive(dtrace_state_t *state) { int action = state->dts_cred.dcr_action; if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && dtrace_priv_proc_common_zone(state) == 0) goto bad; if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && dtrace_priv_proc_common_user(state) == 0) goto bad; if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && dtrace_priv_proc_common_nocd() == 0) goto bad; return (1); bad: cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; return (0); } static int dtrace_priv_proc_control(dtrace_state_t *state) { if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) return (1); if (dtrace_priv_proc_common_zone(state) && dtrace_priv_proc_common_user(state) && dtrace_priv_proc_common_nocd()) return (1); cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; return (0); } static int dtrace_priv_proc(dtrace_state_t *state) { if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) return (1); cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; return (0); } static int dtrace_priv_kernel(dtrace_state_t *state) { if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) return (1); cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; return (0); } static int dtrace_priv_kernel_destructive(dtrace_state_t *state) { if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) return (1); cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; return (0); } /* * Determine if the dte_cond of the specified ECB allows for processing of * the current probe to continue. Note that this routine may allow continued * processing, but with access(es) stripped from the mstate's dtms_access * field. */ static int dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, dtrace_ecb_t *ecb) { dtrace_probe_t *probe = ecb->dte_probe; dtrace_provider_t *prov = probe->dtpr_provider; dtrace_pops_t *pops = &prov->dtpv_pops; int mode = DTRACE_MODE_NOPRIV_DROP; ASSERT(ecb->dte_cond); #ifdef illumos if (pops->dtps_mode != NULL) { mode = pops->dtps_mode(prov->dtpv_arg, probe->dtpr_id, probe->dtpr_arg); ASSERT((mode & DTRACE_MODE_USER) || (mode & DTRACE_MODE_KERNEL)); ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) || (mode & DTRACE_MODE_NOPRIV_DROP)); } /* * If the dte_cond bits indicate that this consumer is only allowed to * see user-mode firings of this probe, call the provider's dtps_mode() * entry point to check that the probe was fired while in a user * context. If that's not the case, use the policy specified by the * provider to determine if we drop the probe or merely restrict * operation. */ if (ecb->dte_cond & DTRACE_COND_USERMODE) { ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); if (!(mode & DTRACE_MODE_USER)) { if (mode & DTRACE_MODE_NOPRIV_DROP) return (0); mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; } } #endif /* * This is more subtle than it looks. We have to be absolutely certain * that CRED() isn't going to change out from under us so it's only * legit to examine that structure if we're in constrained situations. * Currently, the only times we'll this check is if a non-super-user * has enabled the profile or syscall providers -- providers that * allow visibility of all processes. For the profile case, the check * above will ensure that we're examining a user context. */ if (ecb->dte_cond & DTRACE_COND_OWNER) { cred_t *cr; cred_t *s_cr = state->dts_cred.dcr_cred; proc_t *proc; ASSERT(s_cr != NULL); if ((cr = CRED()) == NULL || s_cr->cr_uid != cr->cr_uid || s_cr->cr_uid != cr->cr_ruid || s_cr->cr_uid != cr->cr_suid || s_cr->cr_gid != cr->cr_gid || s_cr->cr_gid != cr->cr_rgid || s_cr->cr_gid != cr->cr_sgid || (proc = ttoproc(curthread)) == NULL || (proc->p_flag & SNOCD)) { if (mode & DTRACE_MODE_NOPRIV_DROP) return (0); #ifdef illumos mstate->dtms_access &= ~DTRACE_ACCESS_PROC; #endif } } #ifdef illumos /* * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not * in our zone, check to see if our mode policy is to restrict rather * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC * and DTRACE_ACCESS_ARGS */ if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { cred_t *cr; cred_t *s_cr = state->dts_cred.dcr_cred; ASSERT(s_cr != NULL); if ((cr = CRED()) == NULL || s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { if (mode & DTRACE_MODE_NOPRIV_DROP) return (0); mstate->dtms_access &= ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); } } #endif return (1); } /* * Note: not called from probe context. This function is called * asynchronously (and at a regular interval) from outside of probe context to * clean the dirty dynamic variable lists on all CPUs. Dynamic variable * cleaning is explained in detail in . */ void dtrace_dynvar_clean(dtrace_dstate_t *dstate) { dtrace_dynvar_t *dirty; dtrace_dstate_percpu_t *dcpu; dtrace_dynvar_t **rinsep; int i, j, work = 0; for (i = 0; i < NCPU; i++) { dcpu = &dstate->dtds_percpu[i]; rinsep = &dcpu->dtdsc_rinsing; /* * If the dirty list is NULL, there is no dirty work to do. */ if (dcpu->dtdsc_dirty == NULL) continue; if (dcpu->dtdsc_rinsing != NULL) { /* * If the rinsing list is non-NULL, then it is because * this CPU was selected to accept another CPU's * dirty list -- and since that time, dirty buffers * have accumulated. This is a highly unlikely * condition, but we choose to ignore the dirty * buffers -- they'll be picked up a future cleanse. */ continue; } if (dcpu->dtdsc_clean != NULL) { /* * If the clean list is non-NULL, then we're in a * situation where a CPU has done deallocations (we * have a non-NULL dirty list) but no allocations (we * also have a non-NULL clean list). We can't simply * move the dirty list into the clean list on this * CPU, yet we also don't want to allow this condition * to persist, lest a short clean list prevent a * massive dirty list from being cleaned (which in * turn could lead to otherwise avoidable dynamic * drops). To deal with this, we look for some CPU * with a NULL clean list, NULL dirty list, and NULL * rinsing list -- and then we borrow this CPU to * rinse our dirty list. */ for (j = 0; j < NCPU; j++) { dtrace_dstate_percpu_t *rinser; rinser = &dstate->dtds_percpu[j]; if (rinser->dtdsc_rinsing != NULL) continue; if (rinser->dtdsc_dirty != NULL) continue; if (rinser->dtdsc_clean != NULL) continue; rinsep = &rinser->dtdsc_rinsing; break; } if (j == NCPU) { /* * We were unable to find another CPU that * could accept this dirty list -- we are * therefore unable to clean it now. */ dtrace_dynvar_failclean++; continue; } } work = 1; /* * Atomically move the dirty list aside. */ do { dirty = dcpu->dtdsc_dirty; /* * Before we zap the dirty list, set the rinsing list. * (This allows for a potential assertion in * dtrace_dynvar(): if a free dynamic variable appears * on a hash chain, either the dirty list or the * rinsing list for some CPU must be non-NULL.) */ *rinsep = dirty; dtrace_membar_producer(); } while (dtrace_casptr(&dcpu->dtdsc_dirty, dirty, NULL) != dirty); } if (!work) { /* * We have no work to do; we can simply return. */ return; } dtrace_sync(); for (i = 0; i < NCPU; i++) { dcpu = &dstate->dtds_percpu[i]; if (dcpu->dtdsc_rinsing == NULL) continue; /* * We are now guaranteed that no hash chain contains a pointer * into this dirty list; we can make it clean. */ ASSERT(dcpu->dtdsc_clean == NULL); dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; dcpu->dtdsc_rinsing = NULL; } /* * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make * sure that all CPUs have seen all of the dtdsc_clean pointers. * This prevents a race whereby a CPU incorrectly decides that * the state should be something other than DTRACE_DSTATE_CLEAN * after dtrace_dynvar_clean() has completed. */ dtrace_sync(); dstate->dtds_state = DTRACE_DSTATE_CLEAN; } /* * Depending on the value of the op parameter, this function looks-up, * allocates or deallocates an arbitrarily-keyed dynamic variable. If an * allocation is requested, this function will return a pointer to a * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no * variable can be allocated. If NULL is returned, the appropriate counter * will be incremented. */ dtrace_dynvar_t * dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) { uint64_t hashval = DTRACE_DYNHASH_VALID; dtrace_dynhash_t *hash = dstate->dtds_hash; dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; processorid_t me = curcpu, cpu = me; dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; size_t bucket, ksize; size_t chunksize = dstate->dtds_chunksize; uintptr_t kdata, lock, nstate; uint_t i; ASSERT(nkeys != 0); /* * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" * algorithm. For the by-value portions, we perform the algorithm in * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a * bit, and seems to have only a minute effect on distribution. For * the by-reference data, we perform "One-at-a-time" iterating (safely) * over each referenced byte. It's painful to do this, but it's much * better than pathological hash distribution. The efficacy of the * hashing algorithm (and a comparison with other algorithms) may be * found by running the ::dtrace_dynstat MDB dcmd. */ for (i = 0; i < nkeys; i++) { if (key[i].dttk_size == 0) { uint64_t val = key[i].dttk_value; hashval += (val >> 48) & 0xffff; hashval += (hashval << 10); hashval ^= (hashval >> 6); hashval += (val >> 32) & 0xffff; hashval += (hashval << 10); hashval ^= (hashval >> 6); hashval += (val >> 16) & 0xffff; hashval += (hashval << 10); hashval ^= (hashval >> 6); hashval += val & 0xffff; hashval += (hashval << 10); hashval ^= (hashval >> 6); } else { /* * This is incredibly painful, but it beats the hell * out of the alternative. */ uint64_t j, size = key[i].dttk_size; uintptr_t base = (uintptr_t)key[i].dttk_value; if (!dtrace_canload(base, size, mstate, vstate)) break; for (j = 0; j < size; j++) { hashval += dtrace_load8(base + j); hashval += (hashval << 10); hashval ^= (hashval >> 6); } } } if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) return (NULL); hashval += (hashval << 3); hashval ^= (hashval >> 11); hashval += (hashval << 15); /* * There is a remote chance (ideally, 1 in 2^31) that our hashval * comes out to be one of our two sentinel hash values. If this * actually happens, we set the hashval to be a value known to be a * non-sentinel value. */ if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) hashval = DTRACE_DYNHASH_VALID; /* * Yes, it's painful to do a divide here. If the cycle count becomes * important here, tricks can be pulled to reduce it. (However, it's * critical that hash collisions be kept to an absolute minimum; * they're much more painful than a divide.) It's better to have a * solution that generates few collisions and still keeps things * relatively simple. */ bucket = hashval % dstate->dtds_hashsize; if (op == DTRACE_DYNVAR_DEALLOC) { volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; for (;;) { while ((lock = *lockp) & 1) continue; if (dtrace_casptr((volatile void *)lockp, (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock) break; } dtrace_membar_producer(); } top: prev = NULL; lock = hash[bucket].dtdh_lock; dtrace_membar_consumer(); start = hash[bucket].dtdh_chain; ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || start->dtdv_hashval != DTRACE_DYNHASH_FREE || op != DTRACE_DYNVAR_DEALLOC)); for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; dtrace_key_t *dkey = &dtuple->dtt_key[0]; if (dvar->dtdv_hashval != hashval) { if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { /* * We've reached the sink, and therefore the * end of the hash chain; we can kick out of * the loop knowing that we have seen a valid * snapshot of state. */ ASSERT(dvar->dtdv_next == NULL); ASSERT(dvar == &dtrace_dynhash_sink); break; } if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { /* * We've gone off the rails: somewhere along * the line, one of the members of this hash * chain was deleted. Note that we could also * detect this by simply letting this loop run * to completion, as we would eventually hit * the end of the dirty list. However, we * want to avoid running the length of the * dirty list unnecessarily (it might be quite * long), so we catch this as early as * possible by detecting the hash marker. In * this case, we simply set dvar to NULL and * break; the conditional after the loop will * send us back to top. */ dvar = NULL; break; } goto next; } if (dtuple->dtt_nkeys != nkeys) goto next; for (i = 0; i < nkeys; i++, dkey++) { if (dkey->dttk_size != key[i].dttk_size) goto next; /* size or type mismatch */ if (dkey->dttk_size != 0) { if (dtrace_bcmp( (void *)(uintptr_t)key[i].dttk_value, (void *)(uintptr_t)dkey->dttk_value, dkey->dttk_size)) goto next; } else { if (dkey->dttk_value != key[i].dttk_value) goto next; } } if (op != DTRACE_DYNVAR_DEALLOC) return (dvar); ASSERT(dvar->dtdv_next == NULL || dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); if (prev != NULL) { ASSERT(hash[bucket].dtdh_chain != dvar); ASSERT(start != dvar); ASSERT(prev->dtdv_next == dvar); prev->dtdv_next = dvar->dtdv_next; } else { if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar->dtdv_next) != start) { /* * We have failed to atomically swing the * hash table head pointer, presumably because * of a conflicting allocation on another CPU. * We need to reread the hash chain and try * again. */ goto top; } } dtrace_membar_producer(); /* * Now set the hash value to indicate that it's free. */ ASSERT(hash[bucket].dtdh_chain != dvar); dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; dtrace_membar_producer(); /* * Set the next pointer to point at the dirty list, and * atomically swing the dirty pointer to the newly freed dvar. */ do { next = dcpu->dtdsc_dirty; dvar->dtdv_next = next; } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); /* * Finally, unlock this hash bucket. */ ASSERT(hash[bucket].dtdh_lock == lock); ASSERT(lock & 1); hash[bucket].dtdh_lock++; return (NULL); next: prev = dvar; continue; } if (dvar == NULL) { /* * If dvar is NULL, it is because we went off the rails: * one of the elements that we traversed in the hash chain * was deleted while we were traversing it. In this case, * we assert that we aren't doing a dealloc (deallocs lock * the hash bucket to prevent themselves from racing with * one another), and retry the hash chain traversal. */ ASSERT(op != DTRACE_DYNVAR_DEALLOC); goto top; } if (op != DTRACE_DYNVAR_ALLOC) { /* * If we are not to allocate a new variable, we want to * return NULL now. Before we return, check that the value * of the lock word hasn't changed. If it has, we may have * seen an inconsistent snapshot. */ if (op == DTRACE_DYNVAR_NOALLOC) { if (hash[bucket].dtdh_lock != lock) goto top; } else { ASSERT(op == DTRACE_DYNVAR_DEALLOC); ASSERT(hash[bucket].dtdh_lock == lock); ASSERT(lock & 1); hash[bucket].dtdh_lock++; } return (NULL); } /* * We need to allocate a new dynamic variable. The size we need is the * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the * size of any auxiliary key data (rounded up to 8-byte alignment) plus * the size of any referred-to data (dsize). We then round the final * size up to the chunksize for allocation. */ for (ksize = 0, i = 0; i < nkeys; i++) ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); /* * This should be pretty much impossible, but could happen if, say, * strange DIF specified the tuple. Ideally, this should be an * assertion and not an error condition -- but that requires that the * chunksize calculation in dtrace_difo_chunksize() be absolutely * bullet-proof. (That is, it must not be able to be fooled by * malicious DIF.) Given the lack of backwards branches in DIF, * solving this would presumably not amount to solving the Halting * Problem -- but it still seems awfully hard. */ if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + ksize + dsize > chunksize) { dcpu->dtdsc_drops++; return (NULL); } nstate = DTRACE_DSTATE_EMPTY; do { retry: free = dcpu->dtdsc_free; if (free == NULL) { dtrace_dynvar_t *clean = dcpu->dtdsc_clean; void *rval; if (clean == NULL) { /* * We're out of dynamic variable space on * this CPU. Unless we have tried all CPUs, * we'll try to allocate from a different * CPU. */ switch (dstate->dtds_state) { case DTRACE_DSTATE_CLEAN: { void *sp = &dstate->dtds_state; if (++cpu >= NCPU) cpu = 0; if (dcpu->dtdsc_dirty != NULL && nstate == DTRACE_DSTATE_EMPTY) nstate = DTRACE_DSTATE_DIRTY; if (dcpu->dtdsc_rinsing != NULL) nstate = DTRACE_DSTATE_RINSING; dcpu = &dstate->dtds_percpu[cpu]; if (cpu != me) goto retry; (void) dtrace_cas32(sp, DTRACE_DSTATE_CLEAN, nstate); /* * To increment the correct bean * counter, take another lap. */ goto retry; } case DTRACE_DSTATE_DIRTY: dcpu->dtdsc_dirty_drops++; break; case DTRACE_DSTATE_RINSING: dcpu->dtdsc_rinsing_drops++; break; case DTRACE_DSTATE_EMPTY: dcpu->dtdsc_drops++; break; } DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); return (NULL); } /* * The clean list appears to be non-empty. We want to * move the clean list to the free list; we start by * moving the clean pointer aside. */ if (dtrace_casptr(&dcpu->dtdsc_clean, clean, NULL) != clean) { /* * We are in one of two situations: * * (a) The clean list was switched to the * free list by another CPU. * * (b) The clean list was added to by the * cleansing cyclic. * * In either of these situations, we can * just reattempt the free list allocation. */ goto retry; } ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); /* * Now we'll move the clean list to our free list. * It's impossible for this to fail: the only way * the free list can be updated is through this * code path, and only one CPU can own the clean list. * Thus, it would only be possible for this to fail if * this code were racing with dtrace_dynvar_clean(). * (That is, if dtrace_dynvar_clean() updated the clean * list, and we ended up racing to update the free * list.) This race is prevented by the dtrace_sync() * in dtrace_dynvar_clean() -- which flushes the * owners of the clean lists out before resetting * the clean lists. */ dcpu = &dstate->dtds_percpu[me]; rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); ASSERT(rval == NULL); goto retry; } dvar = free; new_free = dvar->dtdv_next; } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); /* * We have now allocated a new chunk. We copy the tuple keys into the * tuple array and copy any referenced key data into the data space * following the tuple array. As we do this, we relocate dttk_value * in the final tuple to point to the key data address in the chunk. */ kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; dvar->dtdv_data = (void *)(kdata + ksize); dvar->dtdv_tuple.dtt_nkeys = nkeys; for (i = 0; i < nkeys; i++) { dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; size_t kesize = key[i].dttk_size; if (kesize != 0) { dtrace_bcopy( (const void *)(uintptr_t)key[i].dttk_value, (void *)kdata, kesize); dkey->dttk_value = kdata; kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); } else { dkey->dttk_value = key[i].dttk_value; } dkey->dttk_size = kesize; } ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); dvar->dtdv_hashval = hashval; dvar->dtdv_next = start; if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) return (dvar); /* * The cas has failed. Either another CPU is adding an element to * this hash chain, or another CPU is deleting an element from this * hash chain. The simplest way to deal with both of these cases * (though not necessarily the most efficient) is to free our * allocated block and re-attempt it all. Note that the free is * to the dirty list and _not_ to the free list. This is to prevent * races with allocators, above. */ dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; dtrace_membar_producer(); do { free = dcpu->dtdsc_dirty; dvar->dtdv_next = free; } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); goto top; } /*ARGSUSED*/ static void dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) { if ((int64_t)nval < (int64_t)*oval) *oval = nval; } /*ARGSUSED*/ static void dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) { if ((int64_t)nval > (int64_t)*oval) *oval = nval; } static void dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) { int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; int64_t val = (int64_t)nval; if (val < 0) { for (i = 0; i < zero; i++) { if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { quanta[i] += incr; return; } } } else { for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { quanta[i - 1] += incr; return; } } quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; return; } ASSERT(0); } static void dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) { uint64_t arg = *lquanta++; int32_t base = DTRACE_LQUANTIZE_BASE(arg); uint16_t step = DTRACE_LQUANTIZE_STEP(arg); uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); int32_t val = (int32_t)nval, level; ASSERT(step != 0); ASSERT(levels != 0); if (val < base) { /* * This is an underflow. */ lquanta[0] += incr; return; } level = (val - base) / step; if (level < levels) { lquanta[level + 1] += incr; return; } /* * This is an overflow. */ lquanta[levels + 1] += incr; } static int dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, uint16_t high, uint16_t nsteps, int64_t value) { int64_t this = 1, last, next; int base = 1, order; ASSERT(factor <= nsteps); ASSERT(nsteps % factor == 0); for (order = 0; order < low; order++) this *= factor; /* * If our value is less than our factor taken to the power of the * low order of magnitude, it goes into the zeroth bucket. */ if (value < (last = this)) return (0); for (this *= factor; order <= high; order++) { int nbuckets = this > nsteps ? nsteps : this; if ((next = this * factor) < this) { /* * We should not generally get log/linear quantizations * with a high magnitude that allows 64-bits to * overflow, but we nonetheless protect against this * by explicitly checking for overflow, and clamping * our value accordingly. */ value = this - 1; } if (value < this) { /* * If our value lies within this order of magnitude, * determine its position by taking the offset within * the order of magnitude, dividing by the bucket * width, and adding to our (accumulated) base. */ return (base + (value - last) / (this / nbuckets)); } base += nbuckets - (nbuckets / factor); last = this; this = next; } /* * Our value is greater than or equal to our factor taken to the * power of one plus the high magnitude -- return the top bucket. */ return (base); } static void dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) { uint64_t arg = *llquanta++; uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); llquanta[dtrace_aggregate_llquantize_bucket(factor, low, high, nsteps, nval)] += incr; } /*ARGSUSED*/ static void dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) { data[0]++; data[1] += nval; } /*ARGSUSED*/ static void dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) { int64_t snval = (int64_t)nval; uint64_t tmp[2]; data[0]++; data[1] += nval; /* * What we want to say here is: * * data[2] += nval * nval; * * But given that nval is 64-bit, we could easily overflow, so * we do this as 128-bit arithmetic. */ if (snval < 0) snval = -snval; dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); dtrace_add_128(data + 2, tmp, data + 2); } /*ARGSUSED*/ static void dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) { *oval = *oval + 1; } /*ARGSUSED*/ static void dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) { *oval += nval; } /* * Aggregate given the tuple in the principal data buffer, and the aggregating * action denoted by the specified dtrace_aggregation_t. The aggregation * buffer is specified as the buf parameter. This routine does not return * failure; if there is no space in the aggregation buffer, the data will be * dropped, and a corresponding counter incremented. */ static void dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) { dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; uint32_t i, ndx, size, fsize; uint32_t align = sizeof (uint64_t) - 1; dtrace_aggbuffer_t *agb; dtrace_aggkey_t *key; uint32_t hashval = 0, limit, isstr; caddr_t tomax, data, kdata; dtrace_actkind_t action; dtrace_action_t *act; uintptr_t offs; if (buf == NULL) return; if (!agg->dtag_hasarg) { /* * Currently, only quantize() and lquantize() take additional * arguments, and they have the same semantics: an increment * value that defaults to 1 when not present. If additional * aggregating actions take arguments, the setting of the * default argument value will presumably have to become more * sophisticated... */ arg = 1; } action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; size = rec->dtrd_offset - agg->dtag_base; fsize = size + rec->dtrd_size; ASSERT(dbuf->dtb_tomax != NULL); data = dbuf->dtb_tomax + offset + agg->dtag_base; if ((tomax = buf->dtb_tomax) == NULL) { dtrace_buffer_drop(buf); return; } /* * The metastructure is always at the bottom of the buffer. */ agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - sizeof (dtrace_aggbuffer_t)); if (buf->dtb_offset == 0) { /* * We just kludge up approximately 1/8th of the size to be * buckets. If this guess ends up being routinely * off-the-mark, we may need to dynamically readjust this * based on past performance. */ uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < (uintptr_t)tomax || hashsize == 0) { /* * We've been given a ludicrously small buffer; * increment our drop count and leave. */ dtrace_buffer_drop(buf); return; } /* * And now, a pathetic attempt to try to get a an odd (or * perchance, a prime) hash size for better hash distribution. */ if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) hashsize -= DTRACE_AGGHASHSIZE_SLEW; agb->dtagb_hashsize = hashsize; agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); agb->dtagb_free = (uintptr_t)agb->dtagb_hash; for (i = 0; i < agb->dtagb_hashsize; i++) agb->dtagb_hash[i] = NULL; } ASSERT(agg->dtag_first != NULL); ASSERT(agg->dtag_first->dta_intuple); /* * Calculate the hash value based on the key. Note that we _don't_ * include the aggid in the hashing (but we will store it as part of * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" * algorithm: a simple, quick algorithm that has no known funnels, and * gets good distribution in practice. The efficacy of the hashing * algorithm (and a comparison with other algorithms) may be found by * running the ::dtrace_aggstat MDB dcmd. */ for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { i = act->dta_rec.dtrd_offset - agg->dtag_base; limit = i + act->dta_rec.dtrd_size; ASSERT(limit <= size); isstr = DTRACEACT_ISSTRING(act); for (; i < limit; i++) { hashval += data[i]; hashval += (hashval << 10); hashval ^= (hashval >> 6); if (isstr && data[i] == '\0') break; } } hashval += (hashval << 3); hashval ^= (hashval >> 11); hashval += (hashval << 15); /* * Yes, the divide here is expensive -- but it's generally the least * of the performance issues given the amount of data that we iterate * over to compute hash values, compare data, etc. */ ndx = hashval % agb->dtagb_hashsize; for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { ASSERT((caddr_t)key >= tomax); ASSERT((caddr_t)key < tomax + buf->dtb_size); if (hashval != key->dtak_hashval || key->dtak_size != size) continue; kdata = key->dtak_data; ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { i = act->dta_rec.dtrd_offset - agg->dtag_base; limit = i + act->dta_rec.dtrd_size; ASSERT(limit <= size); isstr = DTRACEACT_ISSTRING(act); for (; i < limit; i++) { if (kdata[i] != data[i]) goto next; if (isstr && data[i] == '\0') break; } } if (action != key->dtak_action) { /* * We are aggregating on the same value in the same * aggregation with two different aggregating actions. * (This should have been picked up in the compiler, * so we may be dealing with errant or devious DIF.) * This is an error condition; we indicate as much, * and return. */ DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); return; } /* * This is a hit: we need to apply the aggregator to * the value at this key. */ agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); return; next: continue; } /* * We didn't find it. We need to allocate some zero-filled space, * link it into the hash table appropriately, and apply the aggregator * to the (zero-filled) value. */ offs = buf->dtb_offset; while (offs & (align - 1)) offs += sizeof (uint32_t); /* * If we don't have enough room to both allocate a new key _and_ * its associated data, increment the drop count and return. */ if ((uintptr_t)tomax + offs + fsize > agb->dtagb_free - sizeof (dtrace_aggkey_t)) { dtrace_buffer_drop(buf); return; } /*CONSTCOND*/ ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); agb->dtagb_free -= sizeof (dtrace_aggkey_t); key->dtak_data = kdata = tomax + offs; buf->dtb_offset = offs + fsize; /* * Now copy the data across. */ *((dtrace_aggid_t *)kdata) = agg->dtag_id; for (i = sizeof (dtrace_aggid_t); i < size; i++) kdata[i] = data[i]; /* * Because strings are not zeroed out by default, we need to iterate * looking for actions that store strings, and we need to explicitly * pad these strings out with zeroes. */ for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { int nul; if (!DTRACEACT_ISSTRING(act)) continue; i = act->dta_rec.dtrd_offset - agg->dtag_base; limit = i + act->dta_rec.dtrd_size; ASSERT(limit <= size); for (nul = 0; i < limit; i++) { if (nul) { kdata[i] = '\0'; continue; } if (data[i] != '\0') continue; nul = 1; } } for (i = size; i < fsize; i++) kdata[i] = 0; key->dtak_hashval = hashval; key->dtak_size = size; key->dtak_action = action; key->dtak_next = agb->dtagb_hash[ndx]; agb->dtagb_hash[ndx] = key; /* * Finally, apply the aggregator. */ *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); } /* * Given consumer state, this routine finds a speculation in the INACTIVE * state and transitions it into the ACTIVE state. If there is no speculation * in the INACTIVE state, 0 is returned. In this case, no error counter is * incremented -- it is up to the caller to take appropriate action. */ static int dtrace_speculation(dtrace_state_t *state) { int i = 0; dtrace_speculation_state_t current; uint32_t *stat = &state->dts_speculations_unavail, count; while (i < state->dts_nspeculations) { dtrace_speculation_t *spec = &state->dts_speculations[i]; current = spec->dtsp_state; if (current != DTRACESPEC_INACTIVE) { if (current == DTRACESPEC_COMMITTINGMANY || current == DTRACESPEC_COMMITTING || current == DTRACESPEC_DISCARDING) stat = &state->dts_speculations_busy; i++; continue; } if (dtrace_cas32((uint32_t *)&spec->dtsp_state, current, DTRACESPEC_ACTIVE) == current) return (i + 1); } /* * We couldn't find a speculation. If we found as much as a single * busy speculation buffer, we'll attribute this failure as "busy" * instead of "unavail". */ do { count = *stat; } while (dtrace_cas32(stat, count, count + 1) != count); return (0); } /* * This routine commits an active speculation. If the specified speculation * is not in a valid state to perform a commit(), this routine will silently do * nothing. The state of the specified speculation is transitioned according * to the state transition diagram outlined in */ static void dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, dtrace_specid_t which) { dtrace_speculation_t *spec; dtrace_buffer_t *src, *dest; uintptr_t daddr, saddr, dlimit, slimit; dtrace_speculation_state_t current, new = 0; intptr_t offs; uint64_t timestamp; if (which == 0) return; if (which > state->dts_nspeculations) { cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; return; } spec = &state->dts_speculations[which - 1]; src = &spec->dtsp_buffer[cpu]; dest = &state->dts_buffer[cpu]; do { current = spec->dtsp_state; if (current == DTRACESPEC_COMMITTINGMANY) break; switch (current) { case DTRACESPEC_INACTIVE: case DTRACESPEC_DISCARDING: return; case DTRACESPEC_COMMITTING: /* * This is only possible if we are (a) commit()'ing * without having done a prior speculate() on this CPU * and (b) racing with another commit() on a different * CPU. There's nothing to do -- we just assert that * our offset is 0. */ ASSERT(src->dtb_offset == 0); return; case DTRACESPEC_ACTIVE: new = DTRACESPEC_COMMITTING; break; case DTRACESPEC_ACTIVEONE: /* * This speculation is active on one CPU. If our * buffer offset is non-zero, we know that the one CPU * must be us. Otherwise, we are committing on a * different CPU from the speculate(), and we must * rely on being asynchronously cleaned. */ if (src->dtb_offset != 0) { new = DTRACESPEC_COMMITTING; break; } /*FALLTHROUGH*/ case DTRACESPEC_ACTIVEMANY: new = DTRACESPEC_COMMITTINGMANY; break; default: ASSERT(0); } } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new) != current); /* * We have set the state to indicate that we are committing this * speculation. Now reserve the necessary space in the destination * buffer. */ if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, sizeof (uint64_t), state, NULL)) < 0) { dtrace_buffer_drop(dest); goto out; } /* * We have sufficient space to copy the speculative buffer into the * primary buffer. First, modify the speculative buffer, filling * in the timestamp of all entries with the current time. The data * must have the commit() time rather than the time it was traced, * so that all entries in the primary buffer are in timestamp order. */ timestamp = dtrace_gethrtime(); saddr = (uintptr_t)src->dtb_tomax; slimit = saddr + src->dtb_offset; while (saddr < slimit) { size_t size; dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { saddr += sizeof (dtrace_epid_t); continue; } ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; ASSERT3U(saddr + size, <=, slimit); ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); saddr += size; } /* * Copy the buffer across. (Note that this is a * highly subobtimal bcopy(); in the unlikely event that this becomes * a serious performance issue, a high-performance DTrace-specific * bcopy() should obviously be invented.) */ daddr = (uintptr_t)dest->dtb_tomax + offs; dlimit = daddr + src->dtb_offset; saddr = (uintptr_t)src->dtb_tomax; /* * First, the aligned portion. */ while (dlimit - daddr >= sizeof (uint64_t)) { *((uint64_t *)daddr) = *((uint64_t *)saddr); daddr += sizeof (uint64_t); saddr += sizeof (uint64_t); } /* * Now any left-over bit... */ while (dlimit - daddr) *((uint8_t *)daddr++) = *((uint8_t *)saddr++); /* * Finally, commit the reserved space in the destination buffer. */ dest->dtb_offset = offs + src->dtb_offset; out: /* * If we're lucky enough to be the only active CPU on this speculation * buffer, we can just set the state back to DTRACESPEC_INACTIVE. */ if (current == DTRACESPEC_ACTIVE || (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); ASSERT(rval == DTRACESPEC_COMMITTING); } src->dtb_offset = 0; src->dtb_xamot_drops += src->dtb_drops; src->dtb_drops = 0; } /* * This routine discards an active speculation. If the specified speculation * is not in a valid state to perform a discard(), this routine will silently * do nothing. The state of the specified speculation is transitioned * according to the state transition diagram outlined in */ static void dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, dtrace_specid_t which) { dtrace_speculation_t *spec; dtrace_speculation_state_t current, new = 0; dtrace_buffer_t *buf; if (which == 0) return; if (which > state->dts_nspeculations) { cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; return; } spec = &state->dts_speculations[which - 1]; buf = &spec->dtsp_buffer[cpu]; do { current = spec->dtsp_state; switch (current) { case DTRACESPEC_INACTIVE: case DTRACESPEC_COMMITTINGMANY: case DTRACESPEC_COMMITTING: case DTRACESPEC_DISCARDING: return; case DTRACESPEC_ACTIVE: case DTRACESPEC_ACTIVEMANY: new = DTRACESPEC_DISCARDING; break; case DTRACESPEC_ACTIVEONE: if (buf->dtb_offset != 0) { new = DTRACESPEC_INACTIVE; } else { new = DTRACESPEC_DISCARDING; } break; default: ASSERT(0); } } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new) != current); buf->dtb_offset = 0; buf->dtb_drops = 0; } /* * Note: not called from probe context. This function is called * asynchronously from cross call context to clean any speculations that are * in the COMMITTINGMANY or DISCARDING states. These speculations may not be * transitioned back to the INACTIVE state until all CPUs have cleaned the * speculation. */ static void dtrace_speculation_clean_here(dtrace_state_t *state) { dtrace_icookie_t cookie; processorid_t cpu = curcpu; dtrace_buffer_t *dest = &state->dts_buffer[cpu]; dtrace_specid_t i; cookie = dtrace_interrupt_disable(); if (dest->dtb_tomax == NULL) { dtrace_interrupt_enable(cookie); return; } for (i = 0; i < state->dts_nspeculations; i++) { dtrace_speculation_t *spec = &state->dts_speculations[i]; dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; if (src->dtb_tomax == NULL) continue; if (spec->dtsp_state == DTRACESPEC_DISCARDING) { src->dtb_offset = 0; continue; } if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) continue; if (src->dtb_offset == 0) continue; dtrace_speculation_commit(state, cpu, i + 1); } dtrace_interrupt_enable(cookie); } /* * Note: not called from probe context. This function is called * asynchronously (and at a regular interval) to clean any speculations that * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there * is work to be done, it cross calls all CPUs to perform that work; * COMMITMANY and DISCARDING speculations may not be transitioned back to the * INACTIVE state until they have been cleaned by all CPUs. */ static void dtrace_speculation_clean(dtrace_state_t *state) { int work = 0, rv; dtrace_specid_t i; for (i = 0; i < state->dts_nspeculations; i++) { dtrace_speculation_t *spec = &state->dts_speculations[i]; ASSERT(!spec->dtsp_cleaning); if (spec->dtsp_state != DTRACESPEC_DISCARDING && spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) continue; work++; spec->dtsp_cleaning = 1; } if (!work) return; dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_speculation_clean_here, state); /* * We now know that all CPUs have committed or discarded their * speculation buffers, as appropriate. We can now set the state * to inactive. */ for (i = 0; i < state->dts_nspeculations; i++) { dtrace_speculation_t *spec = &state->dts_speculations[i]; dtrace_speculation_state_t current, new; if (!spec->dtsp_cleaning) continue; current = spec->dtsp_state; ASSERT(current == DTRACESPEC_DISCARDING || current == DTRACESPEC_COMMITTINGMANY); new = DTRACESPEC_INACTIVE; rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); ASSERT(rv == current); spec->dtsp_cleaning = 0; } } /* * Called as part of a speculate() to get the speculative buffer associated * with a given speculation. Returns NULL if the specified speculation is not * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and * the active CPU is not the specified CPU -- the speculation will be * atomically transitioned into the ACTIVEMANY state. */ static dtrace_buffer_t * dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, dtrace_specid_t which) { dtrace_speculation_t *spec; dtrace_speculation_state_t current, new = 0; dtrace_buffer_t *buf; if (which == 0) return (NULL); if (which > state->dts_nspeculations) { cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; return (NULL); } spec = &state->dts_speculations[which - 1]; buf = &spec->dtsp_buffer[cpuid]; do { current = spec->dtsp_state; switch (current) { case DTRACESPEC_INACTIVE: case DTRACESPEC_COMMITTINGMANY: case DTRACESPEC_DISCARDING: return (NULL); case DTRACESPEC_COMMITTING: ASSERT(buf->dtb_offset == 0); return (NULL); case DTRACESPEC_ACTIVEONE: /* * This speculation is currently active on one CPU. * Check the offset in the buffer; if it's non-zero, * that CPU must be us (and we leave the state alone). * If it's zero, assume that we're starting on a new * CPU -- and change the state to indicate that the * speculation is active on more than one CPU. */ if (buf->dtb_offset != 0) return (buf); new = DTRACESPEC_ACTIVEMANY; break; case DTRACESPEC_ACTIVEMANY: return (buf); case DTRACESPEC_ACTIVE: new = DTRACESPEC_ACTIVEONE; break; default: ASSERT(0); } } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new) != current); ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); return (buf); } /* * Return a string. In the event that the user lacks the privilege to access * arbitrary kernel memory, we copy the string out to scratch memory so that we * don't fail access checking. * * dtrace_dif_variable() uses this routine as a helper for various * builtin values such as 'execname' and 'probefunc.' */ uintptr_t dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, dtrace_mstate_t *mstate) { uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; uintptr_t ret; size_t strsz; /* * The easy case: this probe is allowed to read all of memory, so * we can just return this as a vanilla pointer. */ if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) return (addr); /* * This is the tougher case: we copy the string in question from * kernel memory into scratch memory and return it that way: this * ensures that we won't trip up when access checking tests the * BYREF return value. */ strsz = dtrace_strlen((char *)addr, size) + 1; if (mstate->dtms_scratch_ptr + strsz > mstate->dtms_scratch_base + mstate->dtms_scratch_size) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); return (0); } dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, strsz); ret = mstate->dtms_scratch_ptr; mstate->dtms_scratch_ptr += strsz; return (ret); } /* * Return a string from a memoy address which is known to have one or * more concatenated, individually zero terminated, sub-strings. * In the event that the user lacks the privilege to access * arbitrary kernel memory, we copy the string out to scratch memory so that we * don't fail access checking. * * dtrace_dif_variable() uses this routine as a helper for various * builtin values such as 'execargs'. */ static uintptr_t dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state, dtrace_mstate_t *mstate) { char *p; size_t i; uintptr_t ret; if (mstate->dtms_scratch_ptr + strsz > mstate->dtms_scratch_base + mstate->dtms_scratch_size) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); return (0); } dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr, strsz); /* Replace sub-string termination characters with a space. */ for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1; p++, i++) if (*p == '\0') *p = ' '; ret = mstate->dtms_scratch_ptr; mstate->dtms_scratch_ptr += strsz; return (ret); } /* * This function implements the DIF emulator's variable lookups. The emulator * passes a reserved variable identifier and optional built-in array index. */ static uint64_t dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, uint64_t ndx) { /* * If we're accessing one of the uncached arguments, we'll turn this * into a reference in the args array. */ if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { ndx = v - DIF_VAR_ARG0; v = DIF_VAR_ARGS; } switch (v) { case DIF_VAR_ARGS: ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); if (ndx >= sizeof (mstate->dtms_arg) / sizeof (mstate->dtms_arg[0])) { int aframes = mstate->dtms_probe->dtpr_aframes + 2; dtrace_provider_t *pv; uint64_t val; pv = mstate->dtms_probe->dtpr_provider; if (pv->dtpv_pops.dtps_getargval != NULL) val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, mstate->dtms_probe->dtpr_id, mstate->dtms_probe->dtpr_arg, ndx, aframes); else val = dtrace_getarg(ndx, aframes); /* * This is regrettably required to keep the compiler * from tail-optimizing the call to dtrace_getarg(). * The condition always evaluates to true, but the * compiler has no way of figuring that out a priori. * (None of this would be necessary if the compiler * could be relied upon to _always_ tail-optimize * the call to dtrace_getarg() -- but it can't.) */ if (mstate->dtms_probe != NULL) return (val); ASSERT(0); } return (mstate->dtms_arg[ndx]); #ifdef illumos case DIF_VAR_UREGS: { klwp_t *lwp; if (!dtrace_priv_proc(state)) return (0); if ((lwp = curthread->t_lwp) == NULL) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = NULL; return (0); } return (dtrace_getreg(lwp->lwp_regs, ndx)); return (0); } #else case DIF_VAR_UREGS: { struct trapframe *tframe; if (!dtrace_priv_proc(state)) return (0); if ((tframe = curthread->td_frame) == NULL) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = 0; return (0); } return (dtrace_getreg(tframe, ndx)); } #endif case DIF_VAR_CURTHREAD: if (!dtrace_priv_proc(state)) return (0); return ((uint64_t)(uintptr_t)curthread); case DIF_VAR_TIMESTAMP: if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { mstate->dtms_timestamp = dtrace_gethrtime(); mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; } return (mstate->dtms_timestamp); case DIF_VAR_VTIMESTAMP: ASSERT(dtrace_vtime_references != 0); return (curthread->t_dtrace_vtime); case DIF_VAR_WALLTIMESTAMP: if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { mstate->dtms_walltimestamp = dtrace_gethrestime(); mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; } return (mstate->dtms_walltimestamp); #ifdef illumos case DIF_VAR_IPL: if (!dtrace_priv_kernel(state)) return (0); if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { mstate->dtms_ipl = dtrace_getipl(); mstate->dtms_present |= DTRACE_MSTATE_IPL; } return (mstate->dtms_ipl); #endif case DIF_VAR_EPID: ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); return (mstate->dtms_epid); case DIF_VAR_ID: ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); return (mstate->dtms_probe->dtpr_id); case DIF_VAR_STACKDEPTH: if (!dtrace_priv_kernel(state)) return (0); if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { int aframes = mstate->dtms_probe->dtpr_aframes + 2; mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; } return (mstate->dtms_stackdepth); case DIF_VAR_USTACKDEPTH: if (!dtrace_priv_proc(state)) return (0); if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { /* * See comment in DIF_VAR_PID. */ if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) { mstate->dtms_ustackdepth = 0; } else { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); mstate->dtms_ustackdepth = dtrace_getustackdepth(); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); } mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; } return (mstate->dtms_ustackdepth); case DIF_VAR_CALLER: if (!dtrace_priv_kernel(state)) return (0); if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { int aframes = mstate->dtms_probe->dtpr_aframes + 2; if (!DTRACE_ANCHORED(mstate->dtms_probe)) { /* * If this is an unanchored probe, we are * required to go through the slow path: * dtrace_caller() only guarantees correct * results for anchored probes. */ pc_t caller[2] = {0, 0}; dtrace_getpcstack(caller, 2, aframes, (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); mstate->dtms_caller = caller[1]; } else if ((mstate->dtms_caller = dtrace_caller(aframes)) == -1) { /* * We have failed to do this the quick way; * we must resort to the slower approach of * calling dtrace_getpcstack(). */ pc_t caller = 0; dtrace_getpcstack(&caller, 1, aframes, NULL); mstate->dtms_caller = caller; } mstate->dtms_present |= DTRACE_MSTATE_CALLER; } return (mstate->dtms_caller); case DIF_VAR_UCALLER: if (!dtrace_priv_proc(state)) return (0); if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { uint64_t ustack[3]; /* * dtrace_getupcstack() fills in the first uint64_t * with the current PID. The second uint64_t will * be the program counter at user-level. The third * uint64_t will contain the caller, which is what * we're after. */ ustack[2] = 0; DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); dtrace_getupcstack(ustack, 3); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); mstate->dtms_ucaller = ustack[2]; mstate->dtms_present |= DTRACE_MSTATE_UCALLER; } return (mstate->dtms_ucaller); case DIF_VAR_PROBEPROV: ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); return (dtrace_dif_varstr( (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, state, mstate)); case DIF_VAR_PROBEMOD: ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); return (dtrace_dif_varstr( (uintptr_t)mstate->dtms_probe->dtpr_mod, state, mstate)); case DIF_VAR_PROBEFUNC: ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); return (dtrace_dif_varstr( (uintptr_t)mstate->dtms_probe->dtpr_func, state, mstate)); case DIF_VAR_PROBENAME: ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); return (dtrace_dif_varstr( (uintptr_t)mstate->dtms_probe->dtpr_name, state, mstate)); case DIF_VAR_PID: if (!dtrace_priv_proc(state)) return (0); #ifdef illumos /* * Note that we are assuming that an unanchored probe is * always due to a high-level interrupt. (And we're assuming * that there is only a single high level interrupt.) */ if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) return (pid0.pid_id); /* * It is always safe to dereference one's own t_procp pointer: * it always points to a valid, allocated proc structure. * Further, it is always safe to dereference the p_pidp member * of one's own proc structure. (These are truisms becuase * threads and processes don't clean up their own state -- * they leave that task to whomever reaps them.) */ return ((uint64_t)curthread->t_procp->p_pidp->pid_id); #else return ((uint64_t)curproc->p_pid); #endif case DIF_VAR_PPID: if (!dtrace_priv_proc(state)) return (0); #ifdef illumos /* * See comment in DIF_VAR_PID. */ if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) return (pid0.pid_id); /* * It is always safe to dereference one's own t_procp pointer: * it always points to a valid, allocated proc structure. * (This is true because threads don't clean up their own * state -- they leave that task to whomever reaps them.) */ return ((uint64_t)curthread->t_procp->p_ppid); #else if (curproc->p_pid == proc0.p_pid) return (curproc->p_pid); else return (curproc->p_pptr->p_pid); #endif case DIF_VAR_TID: #ifdef illumos /* * See comment in DIF_VAR_PID. */ if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) return (0); #endif return ((uint64_t)curthread->t_tid); case DIF_VAR_EXECARGS: { struct pargs *p_args = curthread->td_proc->p_args; if (p_args == NULL) return(0); return (dtrace_dif_varstrz( (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate)); } case DIF_VAR_EXECNAME: #ifdef illumos if (!dtrace_priv_proc(state)) return (0); /* * See comment in DIF_VAR_PID. */ if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) return ((uint64_t)(uintptr_t)p0.p_user.u_comm); /* * It is always safe to dereference one's own t_procp pointer: * it always points to a valid, allocated proc structure. * (This is true because threads don't clean up their own * state -- they leave that task to whomever reaps them.) */ return (dtrace_dif_varstr( (uintptr_t)curthread->t_procp->p_user.u_comm, state, mstate)); #else return (dtrace_dif_varstr( (uintptr_t) curthread->td_proc->p_comm, state, mstate)); #endif case DIF_VAR_ZONENAME: #ifdef illumos if (!dtrace_priv_proc(state)) return (0); /* * See comment in DIF_VAR_PID. */ if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); /* * It is always safe to dereference one's own t_procp pointer: * it always points to a valid, allocated proc structure. * (This is true because threads don't clean up their own * state -- they leave that task to whomever reaps them.) */ return (dtrace_dif_varstr( (uintptr_t)curthread->t_procp->p_zone->zone_name, state, mstate)); +#elif defined(__FreeBSD__) + /* + * On FreeBSD, we introduce compatibility to zonename by falling through + * into jailname. + */ + case DIF_VAR_JAILNAME: + if (!dtrace_priv_kernel(state)) + return (0); + + return (dtrace_dif_varstr( + (uintptr_t)curthread->t_procp->p_ucred->cr_prison->pr_name, + state, mstate)); + + case DIF_VAR_JID: + if (!dtrace_priv_kernel(state)) + return (0); + + return ((uint64_t)curthread->t_procp->p_ucred->cr_prison->pr_id); #else return (0); #endif case DIF_VAR_UID: if (!dtrace_priv_proc(state)) return (0); #ifdef illumos /* * See comment in DIF_VAR_PID. */ if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) return ((uint64_t)p0.p_cred->cr_uid); /* * It is always safe to dereference one's own t_procp pointer: * it always points to a valid, allocated proc structure. * (This is true because threads don't clean up their own * state -- they leave that task to whomever reaps them.) * * Additionally, it is safe to dereference one's own process * credential, since this is never NULL after process birth. */ return ((uint64_t)curthread->t_procp->p_cred->cr_uid); #else return ((uint64_t)curthread->td_ucred->cr_uid); #endif case DIF_VAR_GID: if (!dtrace_priv_proc(state)) return (0); #ifdef illumos /* * See comment in DIF_VAR_PID. */ if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) return ((uint64_t)p0.p_cred->cr_gid); /* * It is always safe to dereference one's own t_procp pointer: * it always points to a valid, allocated proc structure. * (This is true because threads don't clean up their own * state -- they leave that task to whomever reaps them.) * * Additionally, it is safe to dereference one's own process * credential, since this is never NULL after process birth. */ return ((uint64_t)curthread->t_procp->p_cred->cr_gid); #else return ((uint64_t)curthread->td_ucred->cr_gid); #endif case DIF_VAR_ERRNO: { #ifdef illumos klwp_t *lwp; if (!dtrace_priv_proc(state)) return (0); /* * See comment in DIF_VAR_PID. */ if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) return (0); /* * It is always safe to dereference one's own t_lwp pointer in * the event that this pointer is non-NULL. (This is true * because threads and lwps don't clean up their own state -- * they leave that task to whomever reaps them.) */ if ((lwp = curthread->t_lwp) == NULL) return (0); return ((uint64_t)lwp->lwp_errno); #else return (curthread->td_errno); #endif } #ifndef illumos case DIF_VAR_CPU: { return curcpu; } #endif default: DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); return (0); } } typedef enum dtrace_json_state { DTRACE_JSON_REST = 1, DTRACE_JSON_OBJECT, DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, DTRACE_JSON_STRING_ESCAPE_UNICODE, DTRACE_JSON_COLON, DTRACE_JSON_COMMA, DTRACE_JSON_VALUE, DTRACE_JSON_IDENTIFIER, DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP, DTRACE_JSON_COLLECT_OBJECT } dtrace_json_state_t; /* * This function possesses just enough knowledge about JSON to extract a single * value from a JSON string and store it in the scratch buffer. It is able * to extract nested object values, and members of arrays by index. * * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to * be looked up as we descend into the object tree. e.g. * * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL * with nelems = 5. * * The run time of this function must be bounded above by strsize to limit the * amount of work done in probe context. As such, it is implemented as a * simple state machine, reading one character at a time using safe loads * until we find the requested element, hit a parsing error or run off the * end of the object or string. * * As there is no way for a subroutine to return an error without interrupting * clause execution, we simply return NULL in the event of a missing key or any * other error condition. Each NULL return in this function is commented with * the error condition it represents -- parsing or otherwise. * * The set of states for the state machine closely matches the JSON * specification (http://json.org/). Briefly: * * DTRACE_JSON_REST: * Skip whitespace until we find either a top-level Object, moving * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. * * DTRACE_JSON_OBJECT: * Locate the next key String in an Object. Sets a flag to denote * the next String as a key string and moves to DTRACE_JSON_STRING. * * DTRACE_JSON_COLON: * Skip whitespace until we find the colon that separates key Strings * from their values. Once found, move to DTRACE_JSON_VALUE. * * DTRACE_JSON_VALUE: * Detects the type of the next value (String, Number, Identifier, Object * or Array) and routes to the states that process that type. Here we also * deal with the element selector list if we are requested to traverse down * into the object tree. * * DTRACE_JSON_COMMA: * Skip whitespace until we find the comma that separates key-value pairs * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays * (similarly DTRACE_JSON_VALUE). All following literal value processing * states return to this state at the end of their value, unless otherwise * noted. * * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: * Processes a Number literal from the JSON, including any exponent * component that may be present. Numbers are returned as strings, which * may be passed to strtoll() if an integer is required. * * DTRACE_JSON_IDENTIFIER: * Processes a "true", "false" or "null" literal in the JSON. * * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, * DTRACE_JSON_STRING_ESCAPE_UNICODE: * Processes a String literal from the JSON, whether the String denotes * a key, a value or part of a larger Object. Handles all escape sequences * present in the specification, including four-digit unicode characters, * but merely includes the escape sequence without converting it to the * actual escaped character. If the String is flagged as a key, we * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. * * DTRACE_JSON_COLLECT_OBJECT: * This state collects an entire Object (or Array), correctly handling * embedded strings. If the full element selector list matches this nested * object, we return the Object in full as a string. If not, we use this * state to skip to the next value at this level and continue processing. * * NOTE: This function uses various macros from strtolctype.h to manipulate * digit values, etc -- these have all been checked to ensure they make * no additional function calls. */ static char * dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, char *dest) { dtrace_json_state_t state = DTRACE_JSON_REST; int64_t array_elem = INT64_MIN; int64_t array_pos = 0; uint8_t escape_unicount = 0; boolean_t string_is_key = B_FALSE; boolean_t collect_object = B_FALSE; boolean_t found_key = B_FALSE; boolean_t in_array = B_FALSE; uint32_t braces = 0, brackets = 0; char *elem = elemlist; char *dd = dest; uintptr_t cur; for (cur = json; cur < json + size; cur++) { char cc = dtrace_load8(cur); if (cc == '\0') return (NULL); switch (state) { case DTRACE_JSON_REST: if (isspace(cc)) break; if (cc == '{') { state = DTRACE_JSON_OBJECT; break; } if (cc == '[') { in_array = B_TRUE; array_pos = 0; array_elem = dtrace_strtoll(elem, 10, size); found_key = array_elem == 0 ? B_TRUE : B_FALSE; state = DTRACE_JSON_VALUE; break; } /* * ERROR: expected to find a top-level object or array. */ return (NULL); case DTRACE_JSON_OBJECT: if (isspace(cc)) break; if (cc == '"') { state = DTRACE_JSON_STRING; string_is_key = B_TRUE; break; } /* * ERROR: either the object did not start with a key * string, or we've run off the end of the object * without finding the requested key. */ return (NULL); case DTRACE_JSON_STRING: if (cc == '\\') { *dd++ = '\\'; state = DTRACE_JSON_STRING_ESCAPE; break; } if (cc == '"') { if (collect_object) { /* * We don't reset the dest here, as * the string is part of a larger * object being collected. */ *dd++ = cc; collect_object = B_FALSE; state = DTRACE_JSON_COLLECT_OBJECT; break; } *dd = '\0'; dd = dest; /* reset string buffer */ if (string_is_key) { if (dtrace_strncmp(dest, elem, size) == 0) found_key = B_TRUE; } else if (found_key) { if (nelems > 1) { /* * We expected an object, not * this string. */ return (NULL); } return (dest); } state = string_is_key ? DTRACE_JSON_COLON : DTRACE_JSON_COMMA; string_is_key = B_FALSE; break; } *dd++ = cc; break; case DTRACE_JSON_STRING_ESCAPE: *dd++ = cc; if (cc == 'u') { escape_unicount = 0; state = DTRACE_JSON_STRING_ESCAPE_UNICODE; } else { state = DTRACE_JSON_STRING; } break; case DTRACE_JSON_STRING_ESCAPE_UNICODE: if (!isxdigit(cc)) { /* * ERROR: invalid unicode escape, expected * four valid hexidecimal digits. */ return (NULL); } *dd++ = cc; if (++escape_unicount == 4) state = DTRACE_JSON_STRING; break; case DTRACE_JSON_COLON: if (isspace(cc)) break; if (cc == ':') { state = DTRACE_JSON_VALUE; break; } /* * ERROR: expected a colon. */ return (NULL); case DTRACE_JSON_COMMA: if (isspace(cc)) break; if (cc == ',') { if (in_array) { state = DTRACE_JSON_VALUE; if (++array_pos == array_elem) found_key = B_TRUE; } else { state = DTRACE_JSON_OBJECT; } break; } /* * ERROR: either we hit an unexpected character, or * we reached the end of the object or array without * finding the requested key. */ return (NULL); case DTRACE_JSON_IDENTIFIER: if (islower(cc)) { *dd++ = cc; break; } *dd = '\0'; dd = dest; /* reset string buffer */ if (dtrace_strncmp(dest, "true", 5) == 0 || dtrace_strncmp(dest, "false", 6) == 0 || dtrace_strncmp(dest, "null", 5) == 0) { if (found_key) { if (nelems > 1) { /* * ERROR: We expected an object, * not this identifier. */ return (NULL); } return (dest); } else { cur--; state = DTRACE_JSON_COMMA; break; } } /* * ERROR: we did not recognise the identifier as one * of those in the JSON specification. */ return (NULL); case DTRACE_JSON_NUMBER: if (cc == '.') { *dd++ = cc; state = DTRACE_JSON_NUMBER_FRAC; break; } if (cc == 'x' || cc == 'X') { /* * ERROR: specification explicitly excludes * hexidecimal or octal numbers. */ return (NULL); } /* FALLTHRU */ case DTRACE_JSON_NUMBER_FRAC: if (cc == 'e' || cc == 'E') { *dd++ = cc; state = DTRACE_JSON_NUMBER_EXP; break; } if (cc == '+' || cc == '-') { /* * ERROR: expect sign as part of exponent only. */ return (NULL); } /* FALLTHRU */ case DTRACE_JSON_NUMBER_EXP: if (isdigit(cc) || cc == '+' || cc == '-') { *dd++ = cc; break; } *dd = '\0'; dd = dest; /* reset string buffer */ if (found_key) { if (nelems > 1) { /* * ERROR: We expected an object, not * this number. */ return (NULL); } return (dest); } cur--; state = DTRACE_JSON_COMMA; break; case DTRACE_JSON_VALUE: if (isspace(cc)) break; if (cc == '{' || cc == '[') { if (nelems > 1 && found_key) { in_array = cc == '[' ? B_TRUE : B_FALSE; /* * If our element selector directs us * to descend into this nested object, * then move to the next selector * element in the list and restart the * state machine. */ while (*elem != '\0') elem++; elem++; /* skip the inter-element NUL */ nelems--; dd = dest; if (in_array) { state = DTRACE_JSON_VALUE; array_pos = 0; array_elem = dtrace_strtoll( elem, 10, size); found_key = array_elem == 0 ? B_TRUE : B_FALSE; } else { found_key = B_FALSE; state = DTRACE_JSON_OBJECT; } break; } /* * Otherwise, we wish to either skip this * nested object or return it in full. */ if (cc == '[') brackets = 1; else braces = 1; *dd++ = cc; state = DTRACE_JSON_COLLECT_OBJECT; break; } if (cc == '"') { state = DTRACE_JSON_STRING; break; } if (islower(cc)) { /* * Here we deal with true, false and null. */ *dd++ = cc; state = DTRACE_JSON_IDENTIFIER; break; } if (cc == '-' || isdigit(cc)) { *dd++ = cc; state = DTRACE_JSON_NUMBER; break; } /* * ERROR: unexpected character at start of value. */ return (NULL); case DTRACE_JSON_COLLECT_OBJECT: if (cc == '\0') /* * ERROR: unexpected end of input. */ return (NULL); *dd++ = cc; if (cc == '"') { collect_object = B_TRUE; state = DTRACE_JSON_STRING; break; } if (cc == ']') { if (brackets-- == 0) { /* * ERROR: unbalanced brackets. */ return (NULL); } } else if (cc == '}') { if (braces-- == 0) { /* * ERROR: unbalanced braces. */ return (NULL); } } else if (cc == '{') { braces++; } else if (cc == '[') { brackets++; } if (brackets == 0 && braces == 0) { if (found_key) { *dd = '\0'; return (dest); } dd = dest; /* reset string buffer */ state = DTRACE_JSON_COMMA; } break; } } return (NULL); } /* * Emulate the execution of DTrace ID subroutines invoked by the call opcode. * Notice that we don't bother validating the proper number of arguments or * their types in the tuple stack. This isn't needed because all argument * interpretation is safe because of our load safety -- the worst that can * happen is that a bogus program can obtain bogus results. */ static void dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, dtrace_key_t *tupregs, int nargs, dtrace_mstate_t *mstate, dtrace_state_t *state) { volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; dtrace_vstate_t *vstate = &state->dts_vstate; #ifdef illumos union { mutex_impl_t mi; uint64_t mx; } m; union { krwlock_t ri; uintptr_t rw; } r; #else struct thread *lowner; union { struct lock_object *li; uintptr_t lx; } l; #endif switch (subr) { case DIF_SUBR_RAND: regs[rd] = dtrace_xoroshiro128_plus_next( state->dts_rstate[curcpu]); break; #ifdef illumos case DIF_SUBR_MUTEX_OWNED: if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), mstate, vstate)) { regs[rd] = 0; break; } m.mx = dtrace_load64(tupregs[0].dttk_value); if (MUTEX_TYPE_ADAPTIVE(&m.mi)) regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; else regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); break; case DIF_SUBR_MUTEX_OWNER: if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), mstate, vstate)) { regs[rd] = 0; break; } m.mx = dtrace_load64(tupregs[0].dttk_value); if (MUTEX_TYPE_ADAPTIVE(&m.mi) && MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); else regs[rd] = 0; break; case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), mstate, vstate)) { regs[rd] = 0; break; } m.mx = dtrace_load64(tupregs[0].dttk_value); regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); break; case DIF_SUBR_MUTEX_TYPE_SPIN: if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), mstate, vstate)) { regs[rd] = 0; break; } m.mx = dtrace_load64(tupregs[0].dttk_value); regs[rd] = MUTEX_TYPE_SPIN(&m.mi); break; case DIF_SUBR_RW_READ_HELD: { uintptr_t tmp; if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), mstate, vstate)) { regs[rd] = 0; break; } r.rw = dtrace_loadptr(tupregs[0].dttk_value); regs[rd] = _RW_READ_HELD(&r.ri, tmp); break; } case DIF_SUBR_RW_WRITE_HELD: if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), mstate, vstate)) { regs[rd] = 0; break; } r.rw = dtrace_loadptr(tupregs[0].dttk_value); regs[rd] = _RW_WRITE_HELD(&r.ri); break; case DIF_SUBR_RW_ISWRITER: if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), mstate, vstate)) { regs[rd] = 0; break; } r.rw = dtrace_loadptr(tupregs[0].dttk_value); regs[rd] = _RW_ISWRITER(&r.ri); break; #else /* !illumos */ case DIF_SUBR_MUTEX_OWNED: if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct lock_object), mstate, vstate)) { regs[rd] = 0; break; } l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); break; case DIF_SUBR_MUTEX_OWNER: if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct lock_object), mstate, vstate)) { regs[rd] = 0; break; } l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); regs[rd] = (uintptr_t)lowner; break; case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), mstate, vstate)) { regs[rd] = 0; break; } l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SLEEPLOCK) != 0; DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); break; case DIF_SUBR_MUTEX_TYPE_SPIN: if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), mstate, vstate)) { regs[rd] = 0; break; } l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0; DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); break; case DIF_SUBR_RW_READ_HELD: case DIF_SUBR_SX_SHARED_HELD: if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), mstate, vstate)) { regs[rd] = 0; break; } l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && lowner == NULL; DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); break; case DIF_SUBR_RW_WRITE_HELD: case DIF_SUBR_SX_EXCLUSIVE_HELD: if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), mstate, vstate)) { regs[rd] = 0; break; } l.lx = dtrace_loadptr(tupregs[0].dttk_value); DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && lowner != NULL; DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); break; case DIF_SUBR_RW_ISWRITER: case DIF_SUBR_SX_ISEXCLUSIVE: if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), mstate, vstate)) { regs[rd] = 0; break; } l.lx = dtrace_loadptr(tupregs[0].dttk_value); DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); regs[rd] = (lowner == curthread); break; #endif /* illumos */ case DIF_SUBR_BCOPY: { /* * We need to be sure that the destination is in the scratch * region -- no other region is allowed. */ uintptr_t src = tupregs[0].dttk_value; uintptr_t dest = tupregs[1].dttk_value; size_t size = tupregs[2].dttk_value; if (!dtrace_inscratch(dest, size, mstate)) { *flags |= CPU_DTRACE_BADADDR; *illval = regs[rd]; break; } if (!dtrace_canload(src, size, mstate, vstate)) { regs[rd] = 0; break; } dtrace_bcopy((void *)src, (void *)dest, size); break; } case DIF_SUBR_ALLOCA: case DIF_SUBR_COPYIN: { uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); uint64_t size = tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; /* * This action doesn't require any credential checks since * probes will not activate in user contexts to which the * enabling user does not have permissions. */ /* * Rounding up the user allocation size could have overflowed * a large, bogus allocation (like -1ULL) to 0. */ if (scratch_size < size || !DTRACE_INSCRATCH(mstate, scratch_size)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); regs[rd] = 0; break; } if (subr == DIF_SUBR_COPYIN) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); } mstate->dtms_scratch_ptr += scratch_size; regs[rd] = dest; break; } case DIF_SUBR_COPYINTO: { uint64_t size = tupregs[1].dttk_value; uintptr_t dest = tupregs[2].dttk_value; /* * This action doesn't require any credential checks since * probes will not activate in user contexts to which the * enabling user does not have permissions. */ if (!dtrace_inscratch(dest, size, mstate)) { *flags |= CPU_DTRACE_BADADDR; *illval = regs[rd]; break; } DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); break; } case DIF_SUBR_COPYINSTR: { uintptr_t dest = mstate->dtms_scratch_ptr; uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; if (nargs > 1 && tupregs[1].dttk_value < size) size = tupregs[1].dttk_value + 1; /* * This action doesn't require any credential checks since * probes will not activate in user contexts to which the * enabling user does not have permissions. */ if (!DTRACE_INSCRATCH(mstate, size)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); regs[rd] = 0; break; } DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); ((char *)dest)[size - 1] = '\0'; mstate->dtms_scratch_ptr += size; regs[rd] = dest; break; } #ifdef illumos case DIF_SUBR_MSGSIZE: case DIF_SUBR_MSGDSIZE: { uintptr_t baddr = tupregs[0].dttk_value, daddr; uintptr_t wptr, rptr; size_t count = 0; int cont = 0; while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, vstate)) { regs[rd] = 0; break; } wptr = dtrace_loadptr(baddr + offsetof(mblk_t, b_wptr)); rptr = dtrace_loadptr(baddr + offsetof(mblk_t, b_rptr)); if (wptr < rptr) { *flags |= CPU_DTRACE_BADADDR; *illval = tupregs[0].dttk_value; break; } daddr = dtrace_loadptr(baddr + offsetof(mblk_t, b_datap)); baddr = dtrace_loadptr(baddr + offsetof(mblk_t, b_cont)); /* * We want to prevent against denial-of-service here, * so we're only going to search the list for * dtrace_msgdsize_max mblks. */ if (cont++ > dtrace_msgdsize_max) { *flags |= CPU_DTRACE_ILLOP; break; } if (subr == DIF_SUBR_MSGDSIZE) { if (dtrace_load8(daddr + offsetof(dblk_t, db_type)) != M_DATA) continue; } count += wptr - rptr; } if (!(*flags & CPU_DTRACE_FAULT)) regs[rd] = count; break; } #endif case DIF_SUBR_PROGENYOF: { pid_t pid = tupregs[0].dttk_value; proc_t *p; int rval = 0; DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); for (p = curthread->t_procp; p != NULL; p = p->p_parent) { #ifdef illumos if (p->p_pidp->pid_id == pid) { #else if (p->p_pid == pid) { #endif rval = 1; break; } } DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); regs[rd] = rval; break; } case DIF_SUBR_SPECULATION: regs[rd] = dtrace_speculation(state); break; case DIF_SUBR_COPYOUT: { uintptr_t kaddr = tupregs[0].dttk_value; uintptr_t uaddr = tupregs[1].dttk_value; uint64_t size = tupregs[2].dttk_value; if (!dtrace_destructive_disallow && dtrace_priv_proc_control(state) && !dtrace_istoxic(kaddr, size) && dtrace_canload(kaddr, size, mstate, vstate)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); dtrace_copyout(kaddr, uaddr, size, flags); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); } break; } case DIF_SUBR_COPYOUTSTR: { uintptr_t kaddr = tupregs[0].dttk_value; uintptr_t uaddr = tupregs[1].dttk_value; uint64_t size = tupregs[2].dttk_value; size_t lim; if (!dtrace_destructive_disallow && dtrace_priv_proc_control(state) && !dtrace_istoxic(kaddr, size) && dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); dtrace_copyoutstr(kaddr, uaddr, lim, flags); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); } break; } case DIF_SUBR_STRLEN: { size_t size = state->dts_options[DTRACEOPT_STRSIZE]; uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; size_t lim; if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { regs[rd] = 0; break; } regs[rd] = dtrace_strlen((char *)addr, lim); break; } case DIF_SUBR_STRCHR: case DIF_SUBR_STRRCHR: { /* * We're going to iterate over the string looking for the * specified character. We will iterate until we have reached * the string length or we have found the character. If this * is DIF_SUBR_STRRCHR, we will look for the last occurrence * of the specified character instead of the first. */ uintptr_t addr = tupregs[0].dttk_value; uintptr_t addr_limit; uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; size_t lim; char c, target = (char)tupregs[1].dttk_value; if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { regs[rd] = 0; break; } addr_limit = addr + lim; for (regs[rd] = 0; addr < addr_limit; addr++) { if ((c = dtrace_load8(addr)) == target) { regs[rd] = addr; if (subr == DIF_SUBR_STRCHR) break; } if (c == '\0') break; } break; } case DIF_SUBR_STRSTR: case DIF_SUBR_INDEX: case DIF_SUBR_RINDEX: { /* * We're going to iterate over the string looking for the * specified string. We will iterate until we have reached * the string length or we have found the string. (Yes, this * is done in the most naive way possible -- but considering * that the string we're searching for is likely to be * relatively short, the complexity of Rabin-Karp or similar * hardly seems merited.) */ char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; size_t len = dtrace_strlen(addr, size); size_t sublen = dtrace_strlen(substr, size); char *limit = addr + len, *orig = addr; int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; int inc = 1; regs[rd] = notfound; if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { regs[rd] = 0; break; } if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, vstate)) { regs[rd] = 0; break; } /* * strstr() and index()/rindex() have similar semantics if * both strings are the empty string: strstr() returns a * pointer to the (empty) string, and index() and rindex() * both return index 0 (regardless of any position argument). */ if (sublen == 0 && len == 0) { if (subr == DIF_SUBR_STRSTR) regs[rd] = (uintptr_t)addr; else regs[rd] = 0; break; } if (subr != DIF_SUBR_STRSTR) { if (subr == DIF_SUBR_RINDEX) { limit = orig - 1; addr += len; inc = -1; } /* * Both index() and rindex() take an optional position * argument that denotes the starting position. */ if (nargs == 3) { int64_t pos = (int64_t)tupregs[2].dttk_value; /* * If the position argument to index() is * negative, Perl implicitly clamps it at * zero. This semantic is a little surprising * given the special meaning of negative * positions to similar Perl functions like * substr(), but it appears to reflect a * notion that index() can start from a * negative index and increment its way up to * the string. Given this notion, Perl's * rindex() is at least self-consistent in * that it implicitly clamps positions greater * than the string length to be the string * length. Where Perl completely loses * coherence, however, is when the specified * substring is the empty string (""). In * this case, even if the position is * negative, rindex() returns 0 -- and even if * the position is greater than the length, * index() returns the string length. These * semantics violate the notion that index() * should never return a value less than the * specified position and that rindex() should * never return a value greater than the * specified position. (One assumes that * these semantics are artifacts of Perl's * implementation and not the results of * deliberate design -- it beggars belief that * even Larry Wall could desire such oddness.) * While in the abstract one would wish for * consistent position semantics across * substr(), index() and rindex() -- or at the * very least self-consistent position * semantics for index() and rindex() -- we * instead opt to keep with the extant Perl * semantics, in all their broken glory. (Do * we have more desire to maintain Perl's * semantics than Perl does? Probably.) */ if (subr == DIF_SUBR_RINDEX) { if (pos < 0) { if (sublen == 0) regs[rd] = 0; break; } if (pos > len) pos = len; } else { if (pos < 0) pos = 0; if (pos >= len) { if (sublen == 0) regs[rd] = len; break; } } addr = orig + pos; } } for (regs[rd] = notfound; addr != limit; addr += inc) { if (dtrace_strncmp(addr, substr, sublen) == 0) { if (subr != DIF_SUBR_STRSTR) { /* * As D index() and rindex() are * modeled on Perl (and not on awk), * we return a zero-based (and not a * one-based) index. (For you Perl * weenies: no, we're not going to add * $[ -- and shouldn't you be at a con * or something?) */ regs[rd] = (uintptr_t)(addr - orig); break; } ASSERT(subr == DIF_SUBR_STRSTR); regs[rd] = (uintptr_t)addr; break; } } break; } case DIF_SUBR_STRTOK: { uintptr_t addr = tupregs[0].dttk_value; uintptr_t tokaddr = tupregs[1].dttk_value; uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; uintptr_t limit, toklimit; size_t clim; uint8_t c = 0, tokmap[32]; /* 256 / 8 */ char *dest = (char *)mstate->dtms_scratch_ptr; int i; /* * Check both the token buffer and (later) the input buffer, * since both could be non-scratch addresses. */ if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) { regs[rd] = 0; break; } toklimit = tokaddr + clim; if (!DTRACE_INSCRATCH(mstate, size)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); regs[rd] = 0; break; } if (addr == 0) { /* * If the address specified is NULL, we use our saved * strtok pointer from the mstate. Note that this * means that the saved strtok pointer is _only_ * valid within multiple enablings of the same probe -- * it behaves like an implicit clause-local variable. */ addr = mstate->dtms_strtok; limit = mstate->dtms_strtok_limit; } else { /* * If the user-specified address is non-NULL we must * access check it. This is the only time we have * a chance to do so, since this address may reside * in the string table of this clause-- future calls * (when we fetch addr from mstate->dtms_strtok) * would fail this access check. */ if (!dtrace_strcanload(addr, size, &clim, mstate, vstate)) { regs[rd] = 0; break; } limit = addr + clim; } /* * First, zero the token map, and then process the token * string -- setting a bit in the map for every character * found in the token string. */ for (i = 0; i < sizeof (tokmap); i++) tokmap[i] = 0; for (; tokaddr < toklimit; tokaddr++) { if ((c = dtrace_load8(tokaddr)) == '\0') break; ASSERT((c >> 3) < sizeof (tokmap)); tokmap[c >> 3] |= (1 << (c & 0x7)); } for (; addr < limit; addr++) { /* * We're looking for a character that is _not_ * contained in the token string. */ if ((c = dtrace_load8(addr)) == '\0') break; if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) break; } if (c == '\0') { /* * We reached the end of the string without finding * any character that was not in the token string. * We return NULL in this case, and we set the saved * address to NULL as well. */ regs[rd] = 0; mstate->dtms_strtok = 0; mstate->dtms_strtok_limit = 0; break; } /* * From here on, we're copying into the destination string. */ for (i = 0; addr < limit && i < size - 1; addr++) { if ((c = dtrace_load8(addr)) == '\0') break; if (tokmap[c >> 3] & (1 << (c & 0x7))) break; ASSERT(i < size); dest[i++] = c; } ASSERT(i < size); dest[i] = '\0'; regs[rd] = (uintptr_t)dest; mstate->dtms_scratch_ptr += size; mstate->dtms_strtok = addr; mstate->dtms_strtok_limit = limit; break; } case DIF_SUBR_SUBSTR: { uintptr_t s = tupregs[0].dttk_value; uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; char *d = (char *)mstate->dtms_scratch_ptr; int64_t index = (int64_t)tupregs[1].dttk_value; int64_t remaining = (int64_t)tupregs[2].dttk_value; size_t len = dtrace_strlen((char *)s, size); int64_t i; if (!dtrace_canload(s, len + 1, mstate, vstate)) { regs[rd] = 0; break; } if (!DTRACE_INSCRATCH(mstate, size)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); regs[rd] = 0; break; } if (nargs <= 2) remaining = (int64_t)size; if (index < 0) { index += len; if (index < 0 && index + remaining > 0) { remaining += index; index = 0; } } if (index >= len || index < 0) { remaining = 0; } else if (remaining < 0) { remaining += len - index; } else if (index + remaining > size) { remaining = size - index; } for (i = 0; i < remaining; i++) { if ((d[i] = dtrace_load8(s + index + i)) == '\0') break; } d[i] = '\0'; mstate->dtms_scratch_ptr += size; regs[rd] = (uintptr_t)d; break; } case DIF_SUBR_JSON: { uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; uintptr_t json = tupregs[0].dttk_value; size_t jsonlen = dtrace_strlen((char *)json, size); uintptr_t elem = tupregs[1].dttk_value; size_t elemlen = dtrace_strlen((char *)elem, size); char *dest = (char *)mstate->dtms_scratch_ptr; char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; char *ee = elemlist; int nelems = 1; uintptr_t cur; if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { regs[rd] = 0; break; } if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); regs[rd] = 0; break; } /* * Read the element selector and split it up into a packed list * of strings. */ for (cur = elem; cur < elem + elemlen; cur++) { char cc = dtrace_load8(cur); if (cur == elem && cc == '[') { /* * If the first element selector key is * actually an array index then ignore the * bracket. */ continue; } if (cc == ']') continue; if (cc == '.' || cc == '[') { nelems++; cc = '\0'; } *ee++ = cc; } *ee++ = '\0'; if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, nelems, dest)) != 0) mstate->dtms_scratch_ptr += jsonlen + 1; break; } case DIF_SUBR_TOUPPER: case DIF_SUBR_TOLOWER: { uintptr_t s = tupregs[0].dttk_value; uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; char *dest = (char *)mstate->dtms_scratch_ptr, c; size_t len = dtrace_strlen((char *)s, size); char lower, upper, convert; int64_t i; if (subr == DIF_SUBR_TOUPPER) { lower = 'a'; upper = 'z'; convert = 'A'; } else { lower = 'A'; upper = 'Z'; convert = 'a'; } if (!dtrace_canload(s, len + 1, mstate, vstate)) { regs[rd] = 0; break; } if (!DTRACE_INSCRATCH(mstate, size)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); regs[rd] = 0; break; } for (i = 0; i < size - 1; i++) { if ((c = dtrace_load8(s + i)) == '\0') break; if (c >= lower && c <= upper) c = convert + (c - lower); dest[i] = c; } ASSERT(i < size); dest[i] = '\0'; regs[rd] = (uintptr_t)dest; mstate->dtms_scratch_ptr += size; break; } #ifdef illumos case DIF_SUBR_GETMAJOR: #ifdef _LP64 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; #else regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; #endif break; case DIF_SUBR_GETMINOR: #ifdef _LP64 regs[rd] = tupregs[0].dttk_value & MAXMIN64; #else regs[rd] = tupregs[0].dttk_value & MAXMIN; #endif break; case DIF_SUBR_DDI_PATHNAME: { /* * This one is a galactic mess. We are going to roughly * emulate ddi_pathname(), but it's made more complicated * by the fact that we (a) want to include the minor name and * (b) must proceed iteratively instead of recursively. */ uintptr_t dest = mstate->dtms_scratch_ptr; uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; char *start = (char *)dest, *end = start + size - 1; uintptr_t daddr = tupregs[0].dttk_value; int64_t minor = (int64_t)tupregs[1].dttk_value; char *s; int i, len, depth = 0; /* * Due to all the pointer jumping we do and context we must * rely upon, we just mandate that the user must have kernel * read privileges to use this routine. */ if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { *flags |= CPU_DTRACE_KPRIV; *illval = daddr; regs[rd] = 0; } if (!DTRACE_INSCRATCH(mstate, size)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); regs[rd] = 0; break; } *end = '\0'; /* * We want to have a name for the minor. In order to do this, * we need to walk the minor list from the devinfo. We want * to be sure that we don't infinitely walk a circular list, * so we check for circularity by sending a scout pointer * ahead two elements for every element that we iterate over; * if the list is circular, these will ultimately point to the * same element. You may recognize this little trick as the * answer to a stupid interview question -- one that always * seems to be asked by those who had to have it laboriously * explained to them, and who can't even concisely describe * the conditions under which one would be forced to resort to * this technique. Needless to say, those conditions are * found here -- and probably only here. Is this the only use * of this infamous trick in shipping, production code? If it * isn't, it probably should be... */ if (minor != -1) { uintptr_t maddr = dtrace_loadptr(daddr + offsetof(struct dev_info, devi_minor)); uintptr_t next = offsetof(struct ddi_minor_data, next); uintptr_t name = offsetof(struct ddi_minor_data, d_minor) + offsetof(struct ddi_minor, name); uintptr_t dev = offsetof(struct ddi_minor_data, d_minor) + offsetof(struct ddi_minor, dev); uintptr_t scout; if (maddr != NULL) scout = dtrace_loadptr(maddr + next); while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { uint64_t m; #ifdef _LP64 m = dtrace_load64(maddr + dev) & MAXMIN64; #else m = dtrace_load32(maddr + dev) & MAXMIN; #endif if (m != minor) { maddr = dtrace_loadptr(maddr + next); if (scout == NULL) continue; scout = dtrace_loadptr(scout + next); if (scout == NULL) continue; scout = dtrace_loadptr(scout + next); if (scout == NULL) continue; if (scout == maddr) { *flags |= CPU_DTRACE_ILLOP; break; } continue; } /* * We have the minor data. Now we need to * copy the minor's name into the end of the * pathname. */ s = (char *)dtrace_loadptr(maddr + name); len = dtrace_strlen(s, size); if (*flags & CPU_DTRACE_FAULT) break; if (len != 0) { if ((end -= (len + 1)) < start) break; *end = ':'; } for (i = 1; i <= len; i++) end[i] = dtrace_load8((uintptr_t)s++); break; } } while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { ddi_node_state_t devi_state; devi_state = dtrace_load32(daddr + offsetof(struct dev_info, devi_node_state)); if (*flags & CPU_DTRACE_FAULT) break; if (devi_state >= DS_INITIALIZED) { s = (char *)dtrace_loadptr(daddr + offsetof(struct dev_info, devi_addr)); len = dtrace_strlen(s, size); if (*flags & CPU_DTRACE_FAULT) break; if (len != 0) { if ((end -= (len + 1)) < start) break; *end = '@'; } for (i = 1; i <= len; i++) end[i] = dtrace_load8((uintptr_t)s++); } /* * Now for the node name... */ s = (char *)dtrace_loadptr(daddr + offsetof(struct dev_info, devi_node_name)); daddr = dtrace_loadptr(daddr + offsetof(struct dev_info, devi_parent)); /* * If our parent is NULL (that is, if we're the root * node), we're going to use the special path * "devices". */ if (daddr == 0) s = "devices"; len = dtrace_strlen(s, size); if (*flags & CPU_DTRACE_FAULT) break; if ((end -= (len + 1)) < start) break; for (i = 1; i <= len; i++) end[i] = dtrace_load8((uintptr_t)s++); *end = '/'; if (depth++ > dtrace_devdepth_max) { *flags |= CPU_DTRACE_ILLOP; break; } } if (end < start) DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); if (daddr == 0) { regs[rd] = (uintptr_t)end; mstate->dtms_scratch_ptr += size; } break; } #endif case DIF_SUBR_STRJOIN: { char *d = (char *)mstate->dtms_scratch_ptr; uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; uintptr_t s1 = tupregs[0].dttk_value; uintptr_t s2 = tupregs[1].dttk_value; int i = 0, j = 0; size_t lim1, lim2; char c; if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) || !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) { regs[rd] = 0; break; } if (!DTRACE_INSCRATCH(mstate, size)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); regs[rd] = 0; break; } for (;;) { if (i >= size) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); regs[rd] = 0; break; } c = (i >= lim1) ? '\0' : dtrace_load8(s1++); if ((d[i++] = c) == '\0') { i--; break; } } for (;;) { if (i >= size) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); regs[rd] = 0; break; } c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++); if ((d[i++] = c) == '\0') break; } if (i < size) { mstate->dtms_scratch_ptr += i; regs[rd] = (uintptr_t)d; } break; } case DIF_SUBR_STRTOLL: { uintptr_t s = tupregs[0].dttk_value; uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; size_t lim; int base = 10; if (nargs > 1) { if ((base = tupregs[1].dttk_value) <= 1 || base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { *flags |= CPU_DTRACE_ILLOP; break; } } if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) { regs[rd] = INT64_MIN; break; } regs[rd] = dtrace_strtoll((char *)s, base, lim); break; } case DIF_SUBR_LLTOSTR: { int64_t i = (int64_t)tupregs[0].dttk_value; uint64_t val, digit; uint64_t size = 65; /* enough room for 2^64 in binary */ char *end = (char *)mstate->dtms_scratch_ptr + size - 1; int base = 10; if (nargs > 1) { if ((base = tupregs[1].dttk_value) <= 1 || base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { *flags |= CPU_DTRACE_ILLOP; break; } } val = (base == 10 && i < 0) ? i * -1 : i; if (!DTRACE_INSCRATCH(mstate, size)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); regs[rd] = 0; break; } for (*end-- = '\0'; val; val /= base) { if ((digit = val % base) <= '9' - '0') { *end-- = '0' + digit; } else { *end-- = 'a' + (digit - ('9' - '0') - 1); } } if (i == 0 && base == 16) *end-- = '0'; if (base == 16) *end-- = 'x'; if (i == 0 || base == 8 || base == 16) *end-- = '0'; if (i < 0 && base == 10) *end-- = '-'; regs[rd] = (uintptr_t)end + 1; mstate->dtms_scratch_ptr += size; break; } case DIF_SUBR_HTONS: case DIF_SUBR_NTOHS: #if BYTE_ORDER == BIG_ENDIAN regs[rd] = (uint16_t)tupregs[0].dttk_value; #else regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); #endif break; case DIF_SUBR_HTONL: case DIF_SUBR_NTOHL: #if BYTE_ORDER == BIG_ENDIAN regs[rd] = (uint32_t)tupregs[0].dttk_value; #else regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); #endif break; case DIF_SUBR_HTONLL: case DIF_SUBR_NTOHLL: #if BYTE_ORDER == BIG_ENDIAN regs[rd] = (uint64_t)tupregs[0].dttk_value; #else regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); #endif break; case DIF_SUBR_DIRNAME: case DIF_SUBR_BASENAME: { char *dest = (char *)mstate->dtms_scratch_ptr; uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; uintptr_t src = tupregs[0].dttk_value; int i, j, len = dtrace_strlen((char *)src, size); int lastbase = -1, firstbase = -1, lastdir = -1; int start, end; if (!dtrace_canload(src, len + 1, mstate, vstate)) { regs[rd] = 0; break; } if (!DTRACE_INSCRATCH(mstate, size)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); regs[rd] = 0; break; } /* * The basename and dirname for a zero-length string is * defined to be "." */ if (len == 0) { len = 1; src = (uintptr_t)"."; } /* * Start from the back of the string, moving back toward the * front until we see a character that isn't a slash. That * character is the last character in the basename. */ for (i = len - 1; i >= 0; i--) { if (dtrace_load8(src + i) != '/') break; } if (i >= 0) lastbase = i; /* * Starting from the last character in the basename, move * towards the front until we find a slash. The character * that we processed immediately before that is the first * character in the basename. */ for (; i >= 0; i--) { if (dtrace_load8(src + i) == '/') break; } if (i >= 0) firstbase = i + 1; /* * Now keep going until we find a non-slash character. That * character is the last character in the dirname. */ for (; i >= 0; i--) { if (dtrace_load8(src + i) != '/') break; } if (i >= 0) lastdir = i; ASSERT(!(lastbase == -1 && firstbase != -1)); ASSERT(!(firstbase == -1 && lastdir != -1)); if (lastbase == -1) { /* * We didn't find a non-slash character. We know that * the length is non-zero, so the whole string must be * slashes. In either the dirname or the basename * case, we return '/'. */ ASSERT(firstbase == -1); firstbase = lastbase = lastdir = 0; } if (firstbase == -1) { /* * The entire string consists only of a basename * component. If we're looking for dirname, we need * to change our string to be just "."; if we're * looking for a basename, we'll just set the first * character of the basename to be 0. */ if (subr == DIF_SUBR_DIRNAME) { ASSERT(lastdir == -1); src = (uintptr_t)"."; lastdir = 0; } else { firstbase = 0; } } if (subr == DIF_SUBR_DIRNAME) { if (lastdir == -1) { /* * We know that we have a slash in the name -- * or lastdir would be set to 0, above. And * because lastdir is -1, we know that this * slash must be the first character. (That * is, the full string must be of the form * "/basename".) In this case, the last * character of the directory name is 0. */ lastdir = 0; } start = 0; end = lastdir; } else { ASSERT(subr == DIF_SUBR_BASENAME); ASSERT(firstbase != -1 && lastbase != -1); start = firstbase; end = lastbase; } for (i = start, j = 0; i <= end && j < size - 1; i++, j++) dest[j] = dtrace_load8(src + i); dest[j] = '\0'; regs[rd] = (uintptr_t)dest; mstate->dtms_scratch_ptr += size; break; } case DIF_SUBR_GETF: { uintptr_t fd = tupregs[0].dttk_value; struct filedesc *fdp; file_t *fp; if (!dtrace_priv_proc(state)) { regs[rd] = 0; break; } fdp = curproc->p_fd; FILEDESC_SLOCK(fdp); fp = fget_locked(fdp, fd); mstate->dtms_getf = fp; regs[rd] = (uintptr_t)fp; FILEDESC_SUNLOCK(fdp); break; } case DIF_SUBR_CLEANPATH: { char *dest = (char *)mstate->dtms_scratch_ptr, c; uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; uintptr_t src = tupregs[0].dttk_value; size_t lim; int i = 0, j = 0; #ifdef illumos zone_t *z; #endif if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) { regs[rd] = 0; break; } if (!DTRACE_INSCRATCH(mstate, size)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); regs[rd] = 0; break; } /* * Move forward, loading each character. */ do { c = (i >= lim) ? '\0' : dtrace_load8(src + i++); next: if (j + 5 >= size) /* 5 = strlen("/..c\0") */ break; if (c != '/') { dest[j++] = c; continue; } c = (i >= lim) ? '\0' : dtrace_load8(src + i++); if (c == '/') { /* * We have two slashes -- we can just advance * to the next character. */ goto next; } if (c != '.') { /* * This is not "." and it's not ".." -- we can * just store the "/" and this character and * drive on. */ dest[j++] = '/'; dest[j++] = c; continue; } c = (i >= lim) ? '\0' : dtrace_load8(src + i++); if (c == '/') { /* * This is a "/./" component. We're not going * to store anything in the destination buffer; * we're just going to go to the next component. */ goto next; } if (c != '.') { /* * This is not ".." -- we can just store the * "/." and this character and continue * processing. */ dest[j++] = '/'; dest[j++] = '.'; dest[j++] = c; continue; } c = (i >= lim) ? '\0' : dtrace_load8(src + i++); if (c != '/' && c != '\0') { /* * This is not ".." -- it's "..[mumble]". * We'll store the "/.." and this character * and continue processing. */ dest[j++] = '/'; dest[j++] = '.'; dest[j++] = '.'; dest[j++] = c; continue; } /* * This is "/../" or "/..\0". We need to back up * our destination pointer until we find a "/". */ i--; while (j != 0 && dest[--j] != '/') continue; if (c == '\0') dest[++j] = '/'; } while (c != '\0'); dest[j] = '\0'; #ifdef illumos if (mstate->dtms_getf != NULL && !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { /* * If we've done a getf() as a part of this ECB and we * don't have kernel access (and we're not in the global * zone), check if the path we cleaned up begins with * the zone's root path, and trim it off if so. Note * that this is an output cleanliness issue, not a * security issue: knowing one's zone root path does * not enable privilege escalation. */ if (strstr(dest, z->zone_rootpath) == dest) dest += strlen(z->zone_rootpath) - 1; } #endif regs[rd] = (uintptr_t)dest; mstate->dtms_scratch_ptr += size; break; } case DIF_SUBR_INET_NTOA: case DIF_SUBR_INET_NTOA6: case DIF_SUBR_INET_NTOP: { size_t size; int af, argi, i; char *base, *end; if (subr == DIF_SUBR_INET_NTOP) { af = (int)tupregs[0].dttk_value; argi = 1; } else { af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; argi = 0; } if (af == AF_INET) { ipaddr_t ip4; uint8_t *ptr8, val; if (!dtrace_canload(tupregs[argi].dttk_value, sizeof (ipaddr_t), mstate, vstate)) { regs[rd] = 0; break; } /* * Safely load the IPv4 address. */ ip4 = dtrace_load32(tupregs[argi].dttk_value); /* * Check an IPv4 string will fit in scratch. */ size = INET_ADDRSTRLEN; if (!DTRACE_INSCRATCH(mstate, size)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); regs[rd] = 0; break; } base = (char *)mstate->dtms_scratch_ptr; end = (char *)mstate->dtms_scratch_ptr + size - 1; /* * Stringify as a dotted decimal quad. */ *end-- = '\0'; ptr8 = (uint8_t *)&ip4; for (i = 3; i >= 0; i--) { val = ptr8[i]; if (val == 0) { *end-- = '0'; } else { for (; val; val /= 10) { *end-- = '0' + (val % 10); } } if (i > 0) *end-- = '.'; } ASSERT(end + 1 >= base); } else if (af == AF_INET6) { struct in6_addr ip6; int firstzero, tryzero, numzero, v6end; uint16_t val; const char digits[] = "0123456789abcdef"; /* * Stringify using RFC 1884 convention 2 - 16 bit * hexadecimal values with a zero-run compression. * Lower case hexadecimal digits are used. * eg, fe80::214:4fff:fe0b:76c8. * The IPv4 embedded form is returned for inet_ntop, * just the IPv4 string is returned for inet_ntoa6. */ if (!dtrace_canload(tupregs[argi].dttk_value, sizeof (struct in6_addr), mstate, vstate)) { regs[rd] = 0; break; } /* * Safely load the IPv6 address. */ dtrace_bcopy( (void *)(uintptr_t)tupregs[argi].dttk_value, (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); /* * Check an IPv6 string will fit in scratch. */ size = INET6_ADDRSTRLEN; if (!DTRACE_INSCRATCH(mstate, size)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); regs[rd] = 0; break; } base = (char *)mstate->dtms_scratch_ptr; end = (char *)mstate->dtms_scratch_ptr + size - 1; *end-- = '\0'; /* * Find the longest run of 16 bit zero values * for the single allowed zero compression - "::". */ firstzero = -1; tryzero = -1; numzero = 1; for (i = 0; i < sizeof (struct in6_addr); i++) { #ifdef illumos if (ip6._S6_un._S6_u8[i] == 0 && #else if (ip6.__u6_addr.__u6_addr8[i] == 0 && #endif tryzero == -1 && i % 2 == 0) { tryzero = i; continue; } if (tryzero != -1 && #ifdef illumos (ip6._S6_un._S6_u8[i] != 0 || #else (ip6.__u6_addr.__u6_addr8[i] != 0 || #endif i == sizeof (struct in6_addr) - 1)) { if (i - tryzero <= numzero) { tryzero = -1; continue; } firstzero = tryzero; numzero = i - i % 2 - tryzero; tryzero = -1; #ifdef illumos if (ip6._S6_un._S6_u8[i] == 0 && #else if (ip6.__u6_addr.__u6_addr8[i] == 0 && #endif i == sizeof (struct in6_addr) - 1) numzero += 2; } } ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); /* * Check for an IPv4 embedded address. */ v6end = sizeof (struct in6_addr) - 2; if (IN6_IS_ADDR_V4MAPPED(&ip6) || IN6_IS_ADDR_V4COMPAT(&ip6)) { for (i = sizeof (struct in6_addr) - 1; i >= DTRACE_V4MAPPED_OFFSET; i--) { ASSERT(end >= base); #ifdef illumos val = ip6._S6_un._S6_u8[i]; #else val = ip6.__u6_addr.__u6_addr8[i]; #endif if (val == 0) { *end-- = '0'; } else { for (; val; val /= 10) { *end-- = '0' + val % 10; } } if (i > DTRACE_V4MAPPED_OFFSET) *end-- = '.'; } if (subr == DIF_SUBR_INET_NTOA6) goto inetout; /* * Set v6end to skip the IPv4 address that * we have already stringified. */ v6end = 10; } /* * Build the IPv6 string by working through the * address in reverse. */ for (i = v6end; i >= 0; i -= 2) { ASSERT(end >= base); if (i == firstzero + numzero - 2) { *end-- = ':'; *end-- = ':'; i -= numzero - 2; continue; } if (i < 14 && i != firstzero - 2) *end-- = ':'; #ifdef illumos val = (ip6._S6_un._S6_u8[i] << 8) + ip6._S6_un._S6_u8[i + 1]; #else val = (ip6.__u6_addr.__u6_addr8[i] << 8) + ip6.__u6_addr.__u6_addr8[i + 1]; #endif if (val == 0) { *end-- = '0'; } else { for (; val; val /= 16) { *end-- = digits[val % 16]; } } } ASSERT(end + 1 >= base); } else { /* * The user didn't use AH_INET or AH_INET6. */ DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); regs[rd] = 0; break; } inetout: regs[rd] = (uintptr_t)end + 1; mstate->dtms_scratch_ptr += size; break; } case DIF_SUBR_MEMREF: { uintptr_t size = 2 * sizeof(uintptr_t); uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t)); size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size; /* address and length */ memref[0] = tupregs[0].dttk_value; memref[1] = tupregs[1].dttk_value; regs[rd] = (uintptr_t) memref; mstate->dtms_scratch_ptr += scratch_size; break; } #ifndef illumos case DIF_SUBR_MEMSTR: { char *str = (char *)mstate->dtms_scratch_ptr; uintptr_t mem = tupregs[0].dttk_value; char c = tupregs[1].dttk_value; size_t size = tupregs[2].dttk_value; uint8_t n; int i; regs[rd] = 0; if (size == 0) break; if (!dtrace_canload(mem, size - 1, mstate, vstate)) break; if (!DTRACE_INSCRATCH(mstate, size)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); break; } if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) { *flags |= CPU_DTRACE_ILLOP; break; } for (i = 0; i < size - 1; i++) { n = dtrace_load8(mem++); str[i] = (n == 0) ? c : n; } str[size - 1] = 0; regs[rd] = (uintptr_t)str; mstate->dtms_scratch_ptr += size; break; } #endif } } /* * Emulate the execution of DTrace IR instructions specified by the given * DIF object. This function is deliberately void of assertions as all of * the necessary checks are handled by a call to dtrace_difo_validate(). */ static uint64_t dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, dtrace_state_t *state) { const dif_instr_t *text = difo->dtdo_buf; const uint_t textlen = difo->dtdo_len; const char *strtab = difo->dtdo_strtab; const uint64_t *inttab = difo->dtdo_inttab; uint64_t rval = 0; dtrace_statvar_t *svar; dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; dtrace_difv_t *v; volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ uint64_t regs[DIF_DIR_NREGS]; uint64_t *tmp; uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; int64_t cc_r; uint_t pc = 0, id, opc = 0; uint8_t ttop = 0; dif_instr_t instr; uint_t r1, r2, rd; /* * We stash the current DIF object into the machine state: we need it * for subsequent access checking. */ mstate->dtms_difo = difo; regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { opc = pc; instr = text[pc++]; r1 = DIF_INSTR_R1(instr); r2 = DIF_INSTR_R2(instr); rd = DIF_INSTR_RD(instr); switch (DIF_INSTR_OP(instr)) { case DIF_OP_OR: regs[rd] = regs[r1] | regs[r2]; break; case DIF_OP_XOR: regs[rd] = regs[r1] ^ regs[r2]; break; case DIF_OP_AND: regs[rd] = regs[r1] & regs[r2]; break; case DIF_OP_SLL: regs[rd] = regs[r1] << regs[r2]; break; case DIF_OP_SRL: regs[rd] = regs[r1] >> regs[r2]; break; case DIF_OP_SUB: regs[rd] = regs[r1] - regs[r2]; break; case DIF_OP_ADD: regs[rd] = regs[r1] + regs[r2]; break; case DIF_OP_MUL: regs[rd] = regs[r1] * regs[r2]; break; case DIF_OP_SDIV: if (regs[r2] == 0) { regs[rd] = 0; *flags |= CPU_DTRACE_DIVZERO; } else { regs[rd] = (int64_t)regs[r1] / (int64_t)regs[r2]; } break; case DIF_OP_UDIV: if (regs[r2] == 0) { regs[rd] = 0; *flags |= CPU_DTRACE_DIVZERO; } else { regs[rd] = regs[r1] / regs[r2]; } break; case DIF_OP_SREM: if (regs[r2] == 0) { regs[rd] = 0; *flags |= CPU_DTRACE_DIVZERO; } else { regs[rd] = (int64_t)regs[r1] % (int64_t)regs[r2]; } break; case DIF_OP_UREM: if (regs[r2] == 0) { regs[rd] = 0; *flags |= CPU_DTRACE_DIVZERO; } else { regs[rd] = regs[r1] % regs[r2]; } break; case DIF_OP_NOT: regs[rd] = ~regs[r1]; break; case DIF_OP_MOV: regs[rd] = regs[r1]; break; case DIF_OP_CMP: cc_r = regs[r1] - regs[r2]; cc_n = cc_r < 0; cc_z = cc_r == 0; cc_v = 0; cc_c = regs[r1] < regs[r2]; break; case DIF_OP_TST: cc_n = cc_v = cc_c = 0; cc_z = regs[r1] == 0; break; case DIF_OP_BA: pc = DIF_INSTR_LABEL(instr); break; case DIF_OP_BE: if (cc_z) pc = DIF_INSTR_LABEL(instr); break; case DIF_OP_BNE: if (cc_z == 0) pc = DIF_INSTR_LABEL(instr); break; case DIF_OP_BG: if ((cc_z | (cc_n ^ cc_v)) == 0) pc = DIF_INSTR_LABEL(instr); break; case DIF_OP_BGU: if ((cc_c | cc_z) == 0) pc = DIF_INSTR_LABEL(instr); break; case DIF_OP_BGE: if ((cc_n ^ cc_v) == 0) pc = DIF_INSTR_LABEL(instr); break; case DIF_OP_BGEU: if (cc_c == 0) pc = DIF_INSTR_LABEL(instr); break; case DIF_OP_BL: if (cc_n ^ cc_v) pc = DIF_INSTR_LABEL(instr); break; case DIF_OP_BLU: if (cc_c) pc = DIF_INSTR_LABEL(instr); break; case DIF_OP_BLE: if (cc_z | (cc_n ^ cc_v)) pc = DIF_INSTR_LABEL(instr); break; case DIF_OP_BLEU: if (cc_c | cc_z) pc = DIF_INSTR_LABEL(instr); break; case DIF_OP_RLDSB: if (!dtrace_canload(regs[r1], 1, mstate, vstate)) break; /*FALLTHROUGH*/ case DIF_OP_LDSB: regs[rd] = (int8_t)dtrace_load8(regs[r1]); break; case DIF_OP_RLDSH: if (!dtrace_canload(regs[r1], 2, mstate, vstate)) break; /*FALLTHROUGH*/ case DIF_OP_LDSH: regs[rd] = (int16_t)dtrace_load16(regs[r1]); break; case DIF_OP_RLDSW: if (!dtrace_canload(regs[r1], 4, mstate, vstate)) break; /*FALLTHROUGH*/ case DIF_OP_LDSW: regs[rd] = (int32_t)dtrace_load32(regs[r1]); break; case DIF_OP_RLDUB: if (!dtrace_canload(regs[r1], 1, mstate, vstate)) break; /*FALLTHROUGH*/ case DIF_OP_LDUB: regs[rd] = dtrace_load8(regs[r1]); break; case DIF_OP_RLDUH: if (!dtrace_canload(regs[r1], 2, mstate, vstate)) break; /*FALLTHROUGH*/ case DIF_OP_LDUH: regs[rd] = dtrace_load16(regs[r1]); break; case DIF_OP_RLDUW: if (!dtrace_canload(regs[r1], 4, mstate, vstate)) break; /*FALLTHROUGH*/ case DIF_OP_LDUW: regs[rd] = dtrace_load32(regs[r1]); break; case DIF_OP_RLDX: if (!dtrace_canload(regs[r1], 8, mstate, vstate)) break; /*FALLTHROUGH*/ case DIF_OP_LDX: regs[rd] = dtrace_load64(regs[r1]); break; case DIF_OP_ULDSB: DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); regs[rd] = (int8_t) dtrace_fuword8((void *)(uintptr_t)regs[r1]); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); break; case DIF_OP_ULDSH: DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); regs[rd] = (int16_t) dtrace_fuword16((void *)(uintptr_t)regs[r1]); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); break; case DIF_OP_ULDSW: DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); regs[rd] = (int32_t) dtrace_fuword32((void *)(uintptr_t)regs[r1]); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); break; case DIF_OP_ULDUB: DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); regs[rd] = dtrace_fuword8((void *)(uintptr_t)regs[r1]); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); break; case DIF_OP_ULDUH: DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); regs[rd] = dtrace_fuword16((void *)(uintptr_t)regs[r1]); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); break; case DIF_OP_ULDUW: DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); regs[rd] = dtrace_fuword32((void *)(uintptr_t)regs[r1]); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); break; case DIF_OP_ULDX: DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); regs[rd] = dtrace_fuword64((void *)(uintptr_t)regs[r1]); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); break; case DIF_OP_RET: rval = regs[rd]; pc = textlen; break; case DIF_OP_NOP: break; case DIF_OP_SETX: regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; break; case DIF_OP_SETS: regs[rd] = (uint64_t)(uintptr_t) (strtab + DIF_INSTR_STRING(instr)); break; case DIF_OP_SCMP: { size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; uintptr_t s1 = regs[r1]; uintptr_t s2 = regs[r2]; size_t lim1, lim2; if (s1 != 0 && !dtrace_strcanload(s1, sz, &lim1, mstate, vstate)) break; if (s2 != 0 && !dtrace_strcanload(s2, sz, &lim2, mstate, vstate)) break; cc_r = dtrace_strncmp((char *)s1, (char *)s2, MIN(lim1, lim2)); cc_n = cc_r < 0; cc_z = cc_r == 0; cc_v = cc_c = 0; break; } case DIF_OP_LDGA: regs[rd] = dtrace_dif_variable(mstate, state, r1, regs[r2]); break; case DIF_OP_LDGS: id = DIF_INSTR_VAR(instr); if (id >= DIF_VAR_OTHER_UBASE) { uintptr_t a; id -= DIF_VAR_OTHER_UBASE; svar = vstate->dtvs_globals[id]; ASSERT(svar != NULL); v = &svar->dtsv_var; if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { regs[rd] = svar->dtsv_data; break; } a = (uintptr_t)svar->dtsv_data; if (*(uint8_t *)a == UINT8_MAX) { /* * If the 0th byte is set to UINT8_MAX * then this is to be treated as a * reference to a NULL variable. */ regs[rd] = 0; } else { regs[rd] = a + sizeof (uint64_t); } break; } regs[rd] = dtrace_dif_variable(mstate, state, id, 0); break; case DIF_OP_STGS: id = DIF_INSTR_VAR(instr); ASSERT(id >= DIF_VAR_OTHER_UBASE); id -= DIF_VAR_OTHER_UBASE; VERIFY(id < vstate->dtvs_nglobals); svar = vstate->dtvs_globals[id]; ASSERT(svar != NULL); v = &svar->dtsv_var; if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { uintptr_t a = (uintptr_t)svar->dtsv_data; size_t lim; ASSERT(a != 0); ASSERT(svar->dtsv_size != 0); if (regs[rd] == 0) { *(uint8_t *)a = UINT8_MAX; break; } else { *(uint8_t *)a = 0; a += sizeof (uint64_t); } if (!dtrace_vcanload( (void *)(uintptr_t)regs[rd], &v->dtdv_type, &lim, mstate, vstate)) break; dtrace_vcopy((void *)(uintptr_t)regs[rd], (void *)a, &v->dtdv_type, lim); break; } svar->dtsv_data = regs[rd]; break; case DIF_OP_LDTA: /* * There are no DTrace built-in thread-local arrays at * present. This opcode is saved for future work. */ *flags |= CPU_DTRACE_ILLOP; regs[rd] = 0; break; case DIF_OP_LDLS: id = DIF_INSTR_VAR(instr); if (id < DIF_VAR_OTHER_UBASE) { /* * For now, this has no meaning. */ regs[rd] = 0; break; } id -= DIF_VAR_OTHER_UBASE; ASSERT(id < vstate->dtvs_nlocals); ASSERT(vstate->dtvs_locals != NULL); svar = vstate->dtvs_locals[id]; ASSERT(svar != NULL); v = &svar->dtsv_var; if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { uintptr_t a = (uintptr_t)svar->dtsv_data; size_t sz = v->dtdv_type.dtdt_size; size_t lim; sz += sizeof (uint64_t); ASSERT(svar->dtsv_size == NCPU * sz); a += curcpu * sz; if (*(uint8_t *)a == UINT8_MAX) { /* * If the 0th byte is set to UINT8_MAX * then this is to be treated as a * reference to a NULL variable. */ regs[rd] = 0; } else { regs[rd] = a + sizeof (uint64_t); } break; } ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; regs[rd] = tmp[curcpu]; break; case DIF_OP_STLS: id = DIF_INSTR_VAR(instr); ASSERT(id >= DIF_VAR_OTHER_UBASE); id -= DIF_VAR_OTHER_UBASE; VERIFY(id < vstate->dtvs_nlocals); ASSERT(vstate->dtvs_locals != NULL); svar = vstate->dtvs_locals[id]; ASSERT(svar != NULL); v = &svar->dtsv_var; if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { uintptr_t a = (uintptr_t)svar->dtsv_data; size_t sz = v->dtdv_type.dtdt_size; size_t lim; sz += sizeof (uint64_t); ASSERT(svar->dtsv_size == NCPU * sz); a += curcpu * sz; if (regs[rd] == 0) { *(uint8_t *)a = UINT8_MAX; break; } else { *(uint8_t *)a = 0; a += sizeof (uint64_t); } if (!dtrace_vcanload( (void *)(uintptr_t)regs[rd], &v->dtdv_type, &lim, mstate, vstate)) break; dtrace_vcopy((void *)(uintptr_t)regs[rd], (void *)a, &v->dtdv_type, lim); break; } ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; tmp[curcpu] = regs[rd]; break; case DIF_OP_LDTS: { dtrace_dynvar_t *dvar; dtrace_key_t *key; id = DIF_INSTR_VAR(instr); ASSERT(id >= DIF_VAR_OTHER_UBASE); id -= DIF_VAR_OTHER_UBASE; v = &vstate->dtvs_tlocals[id]; key = &tupregs[DIF_DTR_NREGS]; key[0].dttk_value = (uint64_t)id; key[0].dttk_size = 0; DTRACE_TLS_THRKEY(key[1].dttk_value); key[1].dttk_size = 0; dvar = dtrace_dynvar(dstate, 2, key, sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, mstate, vstate); if (dvar == NULL) { regs[rd] = 0; break; } if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; } else { regs[rd] = *((uint64_t *)dvar->dtdv_data); } break; } case DIF_OP_STTS: { dtrace_dynvar_t *dvar; dtrace_key_t *key; id = DIF_INSTR_VAR(instr); ASSERT(id >= DIF_VAR_OTHER_UBASE); id -= DIF_VAR_OTHER_UBASE; VERIFY(id < vstate->dtvs_ntlocals); key = &tupregs[DIF_DTR_NREGS]; key[0].dttk_value = (uint64_t)id; key[0].dttk_size = 0; DTRACE_TLS_THRKEY(key[1].dttk_value); key[1].dttk_size = 0; v = &vstate->dtvs_tlocals[id]; dvar = dtrace_dynvar(dstate, 2, key, v->dtdv_type.dtdt_size > sizeof (uint64_t) ? v->dtdv_type.dtdt_size : sizeof (uint64_t), regs[rd] ? DTRACE_DYNVAR_ALLOC : DTRACE_DYNVAR_DEALLOC, mstate, vstate); /* * Given that we're storing to thread-local data, * we need to flush our predicate cache. */ curthread->t_predcache = 0; if (dvar == NULL) break; if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { size_t lim; if (!dtrace_vcanload( (void *)(uintptr_t)regs[rd], &v->dtdv_type, &lim, mstate, vstate)) break; dtrace_vcopy((void *)(uintptr_t)regs[rd], dvar->dtdv_data, &v->dtdv_type, lim); } else { *((uint64_t *)dvar->dtdv_data) = regs[rd]; } break; } case DIF_OP_SRA: regs[rd] = (int64_t)regs[r1] >> regs[r2]; break; case DIF_OP_CALL: dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, regs, tupregs, ttop, mstate, state); break; case DIF_OP_PUSHTR: if (ttop == DIF_DTR_NREGS) { *flags |= CPU_DTRACE_TUPOFLOW; break; } if (r1 == DIF_TYPE_STRING) { /* * If this is a string type and the size is 0, * we'll use the system-wide default string * size. Note that we are _not_ looking at * the value of the DTRACEOPT_STRSIZE option; * had this been set, we would expect to have * a non-zero size value in the "pushtr". */ tupregs[ttop].dttk_size = dtrace_strlen((char *)(uintptr_t)regs[rd], regs[r2] ? regs[r2] : dtrace_strsize_default) + 1; } else { if (regs[r2] > LONG_MAX) { *flags |= CPU_DTRACE_ILLOP; break; } tupregs[ttop].dttk_size = regs[r2]; } tupregs[ttop++].dttk_value = regs[rd]; break; case DIF_OP_PUSHTV: if (ttop == DIF_DTR_NREGS) { *flags |= CPU_DTRACE_TUPOFLOW; break; } tupregs[ttop].dttk_value = regs[rd]; tupregs[ttop++].dttk_size = 0; break; case DIF_OP_POPTS: if (ttop != 0) ttop--; break; case DIF_OP_FLUSHTS: ttop = 0; break; case DIF_OP_LDGAA: case DIF_OP_LDTAA: { dtrace_dynvar_t *dvar; dtrace_key_t *key = tupregs; uint_t nkeys = ttop; id = DIF_INSTR_VAR(instr); ASSERT(id >= DIF_VAR_OTHER_UBASE); id -= DIF_VAR_OTHER_UBASE; key[nkeys].dttk_value = (uint64_t)id; key[nkeys++].dttk_size = 0; if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { DTRACE_TLS_THRKEY(key[nkeys].dttk_value); key[nkeys++].dttk_size = 0; VERIFY(id < vstate->dtvs_ntlocals); v = &vstate->dtvs_tlocals[id]; } else { VERIFY(id < vstate->dtvs_nglobals); v = &vstate->dtvs_globals[id]->dtsv_var; } dvar = dtrace_dynvar(dstate, nkeys, key, v->dtdv_type.dtdt_size > sizeof (uint64_t) ? v->dtdv_type.dtdt_size : sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, mstate, vstate); if (dvar == NULL) { regs[rd] = 0; break; } if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; } else { regs[rd] = *((uint64_t *)dvar->dtdv_data); } break; } case DIF_OP_STGAA: case DIF_OP_STTAA: { dtrace_dynvar_t *dvar; dtrace_key_t *key = tupregs; uint_t nkeys = ttop; id = DIF_INSTR_VAR(instr); ASSERT(id >= DIF_VAR_OTHER_UBASE); id -= DIF_VAR_OTHER_UBASE; key[nkeys].dttk_value = (uint64_t)id; key[nkeys++].dttk_size = 0; if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { DTRACE_TLS_THRKEY(key[nkeys].dttk_value); key[nkeys++].dttk_size = 0; VERIFY(id < vstate->dtvs_ntlocals); v = &vstate->dtvs_tlocals[id]; } else { VERIFY(id < vstate->dtvs_nglobals); v = &vstate->dtvs_globals[id]->dtsv_var; } dvar = dtrace_dynvar(dstate, nkeys, key, v->dtdv_type.dtdt_size > sizeof (uint64_t) ? v->dtdv_type.dtdt_size : sizeof (uint64_t), regs[rd] ? DTRACE_DYNVAR_ALLOC : DTRACE_DYNVAR_DEALLOC, mstate, vstate); if (dvar == NULL) break; if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { size_t lim; if (!dtrace_vcanload( (void *)(uintptr_t)regs[rd], &v->dtdv_type, &lim, mstate, vstate)) break; dtrace_vcopy((void *)(uintptr_t)regs[rd], dvar->dtdv_data, &v->dtdv_type, lim); } else { *((uint64_t *)dvar->dtdv_data) = regs[rd]; } break; } case DIF_OP_ALLOCS: { uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; /* * Rounding up the user allocation size could have * overflowed large, bogus allocations (like -1ULL) to * 0. */ if (size < regs[r1] || !DTRACE_INSCRATCH(mstate, size)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); regs[rd] = 0; break; } dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); mstate->dtms_scratch_ptr += size; regs[rd] = ptr; break; } case DIF_OP_COPYS: if (!dtrace_canstore(regs[rd], regs[r2], mstate, vstate)) { *flags |= CPU_DTRACE_BADADDR; *illval = regs[rd]; break; } if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) break; dtrace_bcopy((void *)(uintptr_t)regs[r1], (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); break; case DIF_OP_STB: if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { *flags |= CPU_DTRACE_BADADDR; *illval = regs[rd]; break; } *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; break; case DIF_OP_STH: if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { *flags |= CPU_DTRACE_BADADDR; *illval = regs[rd]; break; } if (regs[rd] & 1) { *flags |= CPU_DTRACE_BADALIGN; *illval = regs[rd]; break; } *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; break; case DIF_OP_STW: if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { *flags |= CPU_DTRACE_BADADDR; *illval = regs[rd]; break; } if (regs[rd] & 3) { *flags |= CPU_DTRACE_BADALIGN; *illval = regs[rd]; break; } *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; break; case DIF_OP_STX: if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { *flags |= CPU_DTRACE_BADADDR; *illval = regs[rd]; break; } if (regs[rd] & 7) { *flags |= CPU_DTRACE_BADALIGN; *illval = regs[rd]; break; } *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; break; } } if (!(*flags & CPU_DTRACE_FAULT)) return (rval); mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; return (0); } static void dtrace_action_breakpoint(dtrace_ecb_t *ecb) { dtrace_probe_t *probe = ecb->dte_probe; dtrace_provider_t *prov = probe->dtpr_provider; char c[DTRACE_FULLNAMELEN + 80], *str; char *msg = "dtrace: breakpoint action at probe "; char *ecbmsg = " (ecb "; uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); uintptr_t val = (uintptr_t)ecb; int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; if (dtrace_destructive_disallow) return; /* * It's impossible to be taking action on the NULL probe. */ ASSERT(probe != NULL); /* * This is a poor man's (destitute man's?) sprintf(): we want to * print the provider name, module name, function name and name of * the probe, along with the hex address of the ECB with the breakpoint * action -- all of which we must place in the character buffer by * hand. */ while (*msg != '\0') c[i++] = *msg++; for (str = prov->dtpv_name; *str != '\0'; str++) c[i++] = *str; c[i++] = ':'; for (str = probe->dtpr_mod; *str != '\0'; str++) c[i++] = *str; c[i++] = ':'; for (str = probe->dtpr_func; *str != '\0'; str++) c[i++] = *str; c[i++] = ':'; for (str = probe->dtpr_name; *str != '\0'; str++) c[i++] = *str; while (*ecbmsg != '\0') c[i++] = *ecbmsg++; while (shift >= 0) { mask = (uintptr_t)0xf << shift; if (val >= ((uintptr_t)1 << shift)) c[i++] = "0123456789abcdef"[(val & mask) >> shift]; shift -= 4; } c[i++] = ')'; c[i] = '\0'; #ifdef illumos debug_enter(c); #else kdb_enter(KDB_WHY_DTRACE, "breakpoint action"); #endif } static void dtrace_action_panic(dtrace_ecb_t *ecb) { dtrace_probe_t *probe = ecb->dte_probe; /* * It's impossible to be taking action on the NULL probe. */ ASSERT(probe != NULL); if (dtrace_destructive_disallow) return; if (dtrace_panicked != NULL) return; if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) return; /* * We won the right to panic. (We want to be sure that only one * thread calls panic() from dtrace_probe(), and that panic() is * called exactly once.) */ dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", probe->dtpr_provider->dtpv_name, probe->dtpr_mod, probe->dtpr_func, probe->dtpr_name, (void *)ecb); } static void dtrace_action_raise(uint64_t sig) { if (dtrace_destructive_disallow) return; if (sig >= NSIG) { DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); return; } #ifdef illumos /* * raise() has a queue depth of 1 -- we ignore all subsequent * invocations of the raise() action. */ if (curthread->t_dtrace_sig == 0) curthread->t_dtrace_sig = (uint8_t)sig; curthread->t_sig_check = 1; aston(curthread); #else struct proc *p = curproc; PROC_LOCK(p); kern_psignal(p, sig); PROC_UNLOCK(p); #endif } static void dtrace_action_stop(void) { if (dtrace_destructive_disallow) return; #ifdef illumos if (!curthread->t_dtrace_stop) { curthread->t_dtrace_stop = 1; curthread->t_sig_check = 1; aston(curthread); } #else struct proc *p = curproc; PROC_LOCK(p); kern_psignal(p, SIGSTOP); PROC_UNLOCK(p); #endif } static void dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) { hrtime_t now; volatile uint16_t *flags; #ifdef illumos cpu_t *cpu = CPU; #else cpu_t *cpu = &solaris_cpu[curcpu]; #endif if (dtrace_destructive_disallow) return; flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; now = dtrace_gethrtime(); if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { /* * We need to advance the mark to the current time. */ cpu->cpu_dtrace_chillmark = now; cpu->cpu_dtrace_chilled = 0; } /* * Now check to see if the requested chill time would take us over * the maximum amount of time allowed in the chill interval. (Or * worse, if the calculation itself induces overflow.) */ if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { *flags |= CPU_DTRACE_ILLOP; return; } while (dtrace_gethrtime() - now < val) continue; /* * Normally, we assure that the value of the variable "timestamp" does * not change within an ECB. The presence of chill() represents an * exception to this rule, however. */ mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; cpu->cpu_dtrace_chilled += val; } static void dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t *buf, uint64_t arg) { int nframes = DTRACE_USTACK_NFRAMES(arg); int strsize = DTRACE_USTACK_STRSIZE(arg); uint64_t *pcs = &buf[1], *fps; char *str = (char *)&pcs[nframes]; int size, offs = 0, i, j; size_t rem; uintptr_t old = mstate->dtms_scratch_ptr, saved; uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; char *sym; /* * Should be taking a faster path if string space has not been * allocated. */ ASSERT(strsize != 0); /* * We will first allocate some temporary space for the frame pointers. */ fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); size = (uintptr_t)fps - mstate->dtms_scratch_ptr + (nframes * sizeof (uint64_t)); if (!DTRACE_INSCRATCH(mstate, size)) { /* * Not enough room for our frame pointers -- need to indicate * that we ran out of scratch space. */ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); return; } mstate->dtms_scratch_ptr += size; saved = mstate->dtms_scratch_ptr; /* * Now get a stack with both program counters and frame pointers. */ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); dtrace_getufpstack(buf, fps, nframes + 1); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); /* * If that faulted, we're cooked. */ if (*flags & CPU_DTRACE_FAULT) goto out; /* * Now we want to walk up the stack, calling the USTACK helper. For * each iteration, we restore the scratch pointer. */ for (i = 0; i < nframes; i++) { mstate->dtms_scratch_ptr = saved; if (offs >= strsize) break; sym = (char *)(uintptr_t)dtrace_helper( DTRACE_HELPER_ACTION_USTACK, mstate, state, pcs[i], fps[i]); /* * If we faulted while running the helper, we're going to * clear the fault and null out the corresponding string. */ if (*flags & CPU_DTRACE_FAULT) { *flags &= ~CPU_DTRACE_FAULT; str[offs++] = '\0'; continue; } if (sym == NULL) { str[offs++] = '\0'; continue; } if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate, &(state->dts_vstate))) { str[offs++] = '\0'; continue; } DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); /* * Now copy in the string that the helper returned to us. */ for (j = 0; offs + j < strsize && j < rem; j++) { if ((str[offs + j] = sym[j]) == '\0') break; } DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); offs += j + 1; } if (offs >= strsize) { /* * If we didn't have room for all of the strings, we don't * abort processing -- this needn't be a fatal error -- but we * still want to increment a counter (dts_stkstroverflows) to * allow this condition to be warned about. (If this is from * a jstack() action, it is easily tuned via jstackstrsize.) */ dtrace_error(&state->dts_stkstroverflows); } while (offs < strsize) str[offs++] = '\0'; out: mstate->dtms_scratch_ptr = old; } static void dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) { volatile uint16_t *flags; uint64_t val = *valp; size_t valoffs = *valoffsp; flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); /* * If this is a string, we're going to only load until we find the zero * byte -- after which we'll store zero bytes. */ if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { char c = '\0' + 1; size_t s; for (s = 0; s < size; s++) { if (c != '\0' && dtkind == DIF_TF_BYREF) { c = dtrace_load8(val++); } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); c = dtrace_fuword8((void *)(uintptr_t)val++); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); if (*flags & CPU_DTRACE_FAULT) break; } DTRACE_STORE(uint8_t, tomax, valoffs++, c); if (c == '\0' && intuple) break; } } else { uint8_t c; while (valoffs < end) { if (dtkind == DIF_TF_BYREF) { c = dtrace_load8(val++); } else if (dtkind == DIF_TF_BYUREF) { DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); c = dtrace_fuword8((void *)(uintptr_t)val++); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); if (*flags & CPU_DTRACE_FAULT) break; } DTRACE_STORE(uint8_t, tomax, valoffs++, c); } } *valp = val; *valoffsp = valoffs; } /* * If you're looking for the epicenter of DTrace, you just found it. This * is the function called by the provider to fire a probe -- from which all * subsequent probe-context DTrace activity emanates. */ void dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) { processorid_t cpuid; dtrace_icookie_t cookie; dtrace_probe_t *probe; dtrace_mstate_t mstate; dtrace_ecb_t *ecb; dtrace_action_t *act; intptr_t offs; size_t size; int vtime, onintr; volatile uint16_t *flags; hrtime_t now; if (panicstr != NULL) return; #ifdef illumos /* * Kick out immediately if this CPU is still being born (in which case * curthread will be set to -1) or the current thread can't allow * probes in its current context. */ if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) return; #endif cookie = dtrace_interrupt_disable(); probe = dtrace_probes[id - 1]; cpuid = curcpu; onintr = CPU_ON_INTR(CPU); if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && probe->dtpr_predcache == curthread->t_predcache) { /* * We have hit in the predicate cache; we know that * this predicate would evaluate to be false. */ dtrace_interrupt_enable(cookie); return; } #ifdef illumos if (panic_quiesce) { #else if (panicstr != NULL) { #endif /* * We don't trace anything if we're panicking. */ dtrace_interrupt_enable(cookie); return; } now = mstate.dtms_timestamp = dtrace_gethrtime(); mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; vtime = dtrace_vtime_references != 0; if (vtime && curthread->t_dtrace_start) curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; mstate.dtms_difo = NULL; mstate.dtms_probe = probe; mstate.dtms_strtok = 0; mstate.dtms_arg[0] = arg0; mstate.dtms_arg[1] = arg1; mstate.dtms_arg[2] = arg2; mstate.dtms_arg[3] = arg3; mstate.dtms_arg[4] = arg4; flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { dtrace_predicate_t *pred = ecb->dte_predicate; dtrace_state_t *state = ecb->dte_state; dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; dtrace_vstate_t *vstate = &state->dts_vstate; dtrace_provider_t *prov = probe->dtpr_provider; uint64_t tracememsize = 0; int committed = 0; caddr_t tomax; /* * A little subtlety with the following (seemingly innocuous) * declaration of the automatic 'val': by looking at the * code, you might think that it could be declared in the * action processing loop, below. (That is, it's only used in * the action processing loop.) However, it must be declared * out of that scope because in the case of DIF expression * arguments to aggregating actions, one iteration of the * action loop will use the last iteration's value. */ uint64_t val = 0; mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; mstate.dtms_getf = NULL; *flags &= ~CPU_DTRACE_ERROR; if (prov == dtrace_provider) { /* * If dtrace itself is the provider of this probe, * we're only going to continue processing the ECB if * arg0 (the dtrace_state_t) is equal to the ECB's * creating state. (This prevents disjoint consumers * from seeing one another's metaprobes.) */ if (arg0 != (uint64_t)(uintptr_t)state) continue; } if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { /* * We're not currently active. If our provider isn't * the dtrace pseudo provider, we're not interested. */ if (prov != dtrace_provider) continue; /* * Now we must further check if we are in the BEGIN * probe. If we are, we will only continue processing * if we're still in WARMUP -- if one BEGIN enabling * has invoked the exit() action, we don't want to * evaluate subsequent BEGIN enablings. */ if (probe->dtpr_id == dtrace_probeid_begin && state->dts_activity != DTRACE_ACTIVITY_WARMUP) { ASSERT(state->dts_activity == DTRACE_ACTIVITY_DRAINING); continue; } } if (ecb->dte_cond) { /* * If the dte_cond bits indicate that this * consumer is only allowed to see user-mode firings * of this probe, call the provider's dtps_usermode() * entry point to check that the probe was fired * while in a user context. Skip this ECB if that's * not the case. */ if ((ecb->dte_cond & DTRACE_COND_USERMODE) && prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, probe->dtpr_id, probe->dtpr_arg) == 0) continue; #ifdef illumos /* * This is more subtle than it looks. We have to be * absolutely certain that CRED() isn't going to * change out from under us so it's only legit to * examine that structure if we're in constrained * situations. Currently, the only times we'll this * check is if a non-super-user has enabled the * profile or syscall providers -- providers that * allow visibility of all processes. For the * profile case, the check above will ensure that * we're examining a user context. */ if (ecb->dte_cond & DTRACE_COND_OWNER) { cred_t *cr; cred_t *s_cr = ecb->dte_state->dts_cred.dcr_cred; proc_t *proc; ASSERT(s_cr != NULL); if ((cr = CRED()) == NULL || s_cr->cr_uid != cr->cr_uid || s_cr->cr_uid != cr->cr_ruid || s_cr->cr_uid != cr->cr_suid || s_cr->cr_gid != cr->cr_gid || s_cr->cr_gid != cr->cr_rgid || s_cr->cr_gid != cr->cr_sgid || (proc = ttoproc(curthread)) == NULL || (proc->p_flag & SNOCD)) continue; } if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { cred_t *cr; cred_t *s_cr = ecb->dte_state->dts_cred.dcr_cred; ASSERT(s_cr != NULL); if ((cr = CRED()) == NULL || s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) continue; } #endif } if (now - state->dts_alive > dtrace_deadman_timeout) { /* * We seem to be dead. Unless we (a) have kernel * destructive permissions (b) have explicitly enabled * destructive actions and (c) destructive actions have * not been disabled, we're going to transition into * the KILLED state, from which no further processing * on this state will be performed. */ if (!dtrace_priv_kernel_destructive(state) || !state->dts_cred.dcr_destructive || dtrace_destructive_disallow) { void *activity = &state->dts_activity; dtrace_activity_t current; do { current = state->dts_activity; } while (dtrace_cas32(activity, current, DTRACE_ACTIVITY_KILLED) != current); continue; } } if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, ecb->dte_alignment, state, &mstate)) < 0) continue; tomax = buf->dtb_tomax; ASSERT(tomax != NULL); if (ecb->dte_size != 0) { dtrace_rechdr_t dtrh; if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { mstate.dtms_timestamp = dtrace_gethrtime(); mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; } ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); dtrh.dtrh_epid = ecb->dte_epid; DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, mstate.dtms_timestamp); *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; } mstate.dtms_epid = ecb->dte_epid; mstate.dtms_present |= DTRACE_MSTATE_EPID; if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) mstate.dtms_access = DTRACE_ACCESS_KERNEL; else mstate.dtms_access = 0; if (pred != NULL) { dtrace_difo_t *dp = pred->dtp_difo; uint64_t rval; rval = dtrace_dif_emulate(dp, &mstate, vstate, state); if (!(*flags & CPU_DTRACE_ERROR) && !rval) { dtrace_cacheid_t cid = probe->dtpr_predcache; if (cid != DTRACE_CACHEIDNONE && !onintr) { /* * Update the predicate cache... */ ASSERT(cid == pred->dtp_cacheid); curthread->t_predcache = cid; } continue; } } for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && act != NULL; act = act->dta_next) { size_t valoffs; dtrace_difo_t *dp; dtrace_recdesc_t *rec = &act->dta_rec; size = rec->dtrd_size; valoffs = offs + rec->dtrd_offset; if (DTRACEACT_ISAGG(act->dta_kind)) { uint64_t v = 0xbad; dtrace_aggregation_t *agg; agg = (dtrace_aggregation_t *)act; if ((dp = act->dta_difo) != NULL) v = dtrace_dif_emulate(dp, &mstate, vstate, state); if (*flags & CPU_DTRACE_ERROR) continue; /* * Note that we always pass the expression * value from the previous iteration of the * action loop. This value will only be used * if there is an expression argument to the * aggregating action, denoted by the * dtag_hasarg field. */ dtrace_aggregate(agg, buf, offs, aggbuf, v, val); continue; } switch (act->dta_kind) { case DTRACEACT_STOP: if (dtrace_priv_proc_destructive(state)) dtrace_action_stop(); continue; case DTRACEACT_BREAKPOINT: if (dtrace_priv_kernel_destructive(state)) dtrace_action_breakpoint(ecb); continue; case DTRACEACT_PANIC: if (dtrace_priv_kernel_destructive(state)) dtrace_action_panic(ecb); continue; case DTRACEACT_STACK: if (!dtrace_priv_kernel(state)) continue; dtrace_getpcstack((pc_t *)(tomax + valoffs), size / sizeof (pc_t), probe->dtpr_aframes, DTRACE_ANCHORED(probe) ? NULL : (uint32_t *)arg0); continue; case DTRACEACT_JSTACK: case DTRACEACT_USTACK: if (!dtrace_priv_proc(state)) continue; /* * See comment in DIF_VAR_PID. */ if (DTRACE_ANCHORED(mstate.dtms_probe) && CPU_ON_INTR(CPU)) { int depth = DTRACE_USTACK_NFRAMES( rec->dtrd_arg) + 1; dtrace_bzero((void *)(tomax + valoffs), DTRACE_USTACK_STRSIZE(rec->dtrd_arg) + depth * sizeof (uint64_t)); continue; } if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && curproc->p_dtrace_helpers != NULL) { /* * This is the slow path -- we have * allocated string space, and we're * getting the stack of a process that * has helpers. Call into a separate * routine to perform this processing. */ dtrace_action_ustack(&mstate, state, (uint64_t *)(tomax + valoffs), rec->dtrd_arg); continue; } DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); dtrace_getupcstack((uint64_t *) (tomax + valoffs), DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); continue; default: break; } dp = act->dta_difo; ASSERT(dp != NULL); val = dtrace_dif_emulate(dp, &mstate, vstate, state); if (*flags & CPU_DTRACE_ERROR) continue; switch (act->dta_kind) { case DTRACEACT_SPECULATE: { dtrace_rechdr_t *dtrh; ASSERT(buf == &state->dts_buffer[cpuid]); buf = dtrace_speculation_buffer(state, cpuid, val); if (buf == NULL) { *flags |= CPU_DTRACE_DROP; continue; } offs = dtrace_buffer_reserve(buf, ecb->dte_needed, ecb->dte_alignment, state, NULL); if (offs < 0) { *flags |= CPU_DTRACE_DROP; continue; } tomax = buf->dtb_tomax; ASSERT(tomax != NULL); if (ecb->dte_size == 0) continue; ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); dtrh = ((void *)(tomax + offs)); dtrh->dtrh_epid = ecb->dte_epid; /* * When the speculation is committed, all of * the records in the speculative buffer will * have their timestamps set to the commit * time. Until then, it is set to a sentinel * value, for debugability. */ DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); continue; } case DTRACEACT_PRINTM: { /* The DIF returns a 'memref'. */ uintptr_t *memref = (uintptr_t *)(uintptr_t) val; /* Get the size from the memref. */ size = memref[1]; /* * Check if the size exceeds the allocated * buffer size. */ if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) { /* Flag a drop! */ *flags |= CPU_DTRACE_DROP; continue; } /* Store the size in the buffer first. */ DTRACE_STORE(uintptr_t, tomax, valoffs, size); /* * Offset the buffer address to the start * of the data. */ valoffs += sizeof(uintptr_t); /* * Reset to the memory address rather than * the memref array, then let the BYREF * code below do the work to store the * memory data in the buffer. */ val = memref[0]; break; } case DTRACEACT_CHILL: if (dtrace_priv_kernel_destructive(state)) dtrace_action_chill(&mstate, val); continue; case DTRACEACT_RAISE: if (dtrace_priv_proc_destructive(state)) dtrace_action_raise(val); continue; case DTRACEACT_COMMIT: ASSERT(!committed); /* * We need to commit our buffer state. */ if (ecb->dte_size) buf->dtb_offset = offs + ecb->dte_size; buf = &state->dts_buffer[cpuid]; dtrace_speculation_commit(state, cpuid, val); committed = 1; continue; case DTRACEACT_DISCARD: dtrace_speculation_discard(state, cpuid, val); continue; case DTRACEACT_DIFEXPR: case DTRACEACT_LIBACT: case DTRACEACT_PRINTF: case DTRACEACT_PRINTA: case DTRACEACT_SYSTEM: case DTRACEACT_FREOPEN: case DTRACEACT_TRACEMEM: break; case DTRACEACT_TRACEMEM_DYNSIZE: tracememsize = val; break; case DTRACEACT_SYM: case DTRACEACT_MOD: if (!dtrace_priv_kernel(state)) continue; break; case DTRACEACT_USYM: case DTRACEACT_UMOD: case DTRACEACT_UADDR: { #ifdef illumos struct pid *pid = curthread->t_procp->p_pidp; #endif if (!dtrace_priv_proc(state)) continue; DTRACE_STORE(uint64_t, tomax, #ifdef illumos valoffs, (uint64_t)pid->pid_id); #else valoffs, (uint64_t) curproc->p_pid); #endif DTRACE_STORE(uint64_t, tomax, valoffs + sizeof (uint64_t), val); continue; } case DTRACEACT_EXIT: { /* * For the exit action, we are going to attempt * to atomically set our activity to be * draining. If this fails (either because * another CPU has beat us to the exit action, * or because our current activity is something * other than ACTIVE or WARMUP), we will * continue. This assures that the exit action * can be successfully recorded at most once * when we're in the ACTIVE state. If we're * encountering the exit() action while in * COOLDOWN, however, we want to honor the new * status code. (We know that we're the only * thread in COOLDOWN, so there is no race.) */ void *activity = &state->dts_activity; dtrace_activity_t current = state->dts_activity; if (current == DTRACE_ACTIVITY_COOLDOWN) break; if (current != DTRACE_ACTIVITY_WARMUP) current = DTRACE_ACTIVITY_ACTIVE; if (dtrace_cas32(activity, current, DTRACE_ACTIVITY_DRAINING) != current) { *flags |= CPU_DTRACE_DROP; continue; } break; } default: ASSERT(0); } if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { uintptr_t end = valoffs + size; if (tracememsize != 0 && valoffs + tracememsize < end) { end = valoffs + tracememsize; tracememsize = 0; } if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && !dtrace_vcanload((void *)(uintptr_t)val, &dp->dtdo_rtype, NULL, &mstate, vstate)) continue; dtrace_store_by_ref(dp, tomax, size, &valoffs, &val, end, act->dta_intuple, dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? DIF_TF_BYREF: DIF_TF_BYUREF); continue; } switch (size) { case 0: break; case sizeof (uint8_t): DTRACE_STORE(uint8_t, tomax, valoffs, val); break; case sizeof (uint16_t): DTRACE_STORE(uint16_t, tomax, valoffs, val); break; case sizeof (uint32_t): DTRACE_STORE(uint32_t, tomax, valoffs, val); break; case sizeof (uint64_t): DTRACE_STORE(uint64_t, tomax, valoffs, val); break; default: /* * Any other size should have been returned by * reference, not by value. */ ASSERT(0); break; } } if (*flags & CPU_DTRACE_DROP) continue; if (*flags & CPU_DTRACE_FAULT) { int ndx; dtrace_action_t *err; buf->dtb_errors++; if (probe->dtpr_id == dtrace_probeid_error) { /* * There's nothing we can do -- we had an * error on the error probe. We bump an * error counter to at least indicate that * this condition happened. */ dtrace_error(&state->dts_dblerrors); continue; } if (vtime) { /* * Before recursing on dtrace_probe(), we * need to explicitly clear out our start * time to prevent it from being accumulated * into t_dtrace_vtime. */ curthread->t_dtrace_start = 0; } /* * Iterate over the actions to figure out which action * we were processing when we experienced the error. * Note that act points _past_ the faulting action; if * act is ecb->dte_action, the fault was in the * predicate, if it's ecb->dte_action->dta_next it's * in action #1, and so on. */ for (err = ecb->dte_action, ndx = 0; err != act; err = err->dta_next, ndx++) continue; dtrace_probe_error(state, ecb->dte_epid, ndx, (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), cpu_core[cpuid].cpuc_dtrace_illval); continue; } if (!committed) buf->dtb_offset = offs + ecb->dte_size; } if (vtime) curthread->t_dtrace_start = dtrace_gethrtime(); dtrace_interrupt_enable(cookie); } /* * DTrace Probe Hashing Functions * * The functions in this section (and indeed, the functions in remaining * sections) are not _called_ from probe context. (Any exceptions to this are * marked with a "Note:".) Rather, they are called from elsewhere in the * DTrace framework to look-up probes in, add probes to and remove probes from * the DTrace probe hashes. (Each probe is hashed by each element of the * probe tuple -- allowing for fast lookups, regardless of what was * specified.) */ static uint_t dtrace_hash_str(const char *p) { unsigned int g; uint_t hval = 0; while (*p) { hval = (hval << 4) + *p++; if ((g = (hval & 0xf0000000)) != 0) hval ^= g >> 24; hval &= ~g; } return (hval); } static dtrace_hash_t * dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) { dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); hash->dth_stroffs = stroffs; hash->dth_nextoffs = nextoffs; hash->dth_prevoffs = prevoffs; hash->dth_size = 1; hash->dth_mask = hash->dth_size - 1; hash->dth_tab = kmem_zalloc(hash->dth_size * sizeof (dtrace_hashbucket_t *), KM_SLEEP); return (hash); } static void dtrace_hash_destroy(dtrace_hash_t *hash) { #ifdef DEBUG int i; for (i = 0; i < hash->dth_size; i++) ASSERT(hash->dth_tab[i] == NULL); #endif kmem_free(hash->dth_tab, hash->dth_size * sizeof (dtrace_hashbucket_t *)); kmem_free(hash, sizeof (dtrace_hash_t)); } static void dtrace_hash_resize(dtrace_hash_t *hash) { int size = hash->dth_size, i, ndx; int new_size = hash->dth_size << 1; int new_mask = new_size - 1; dtrace_hashbucket_t **new_tab, *bucket, *next; ASSERT((new_size & new_mask) == 0); new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); for (i = 0; i < size; i++) { for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { dtrace_probe_t *probe = bucket->dthb_chain; ASSERT(probe != NULL); ndx = DTRACE_HASHSTR(hash, probe) & new_mask; next = bucket->dthb_next; bucket->dthb_next = new_tab[ndx]; new_tab[ndx] = bucket; } } kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); hash->dth_tab = new_tab; hash->dth_size = new_size; hash->dth_mask = new_mask; } static void dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) { int hashval = DTRACE_HASHSTR(hash, new); int ndx = hashval & hash->dth_mask; dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; dtrace_probe_t **nextp, **prevp; for (; bucket != NULL; bucket = bucket->dthb_next) { if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) goto add; } if ((hash->dth_nbuckets >> 1) > hash->dth_size) { dtrace_hash_resize(hash); dtrace_hash_add(hash, new); return; } bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); bucket->dthb_next = hash->dth_tab[ndx]; hash->dth_tab[ndx] = bucket; hash->dth_nbuckets++; add: nextp = DTRACE_HASHNEXT(hash, new); ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); *nextp = bucket->dthb_chain; if (bucket->dthb_chain != NULL) { prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); ASSERT(*prevp == NULL); *prevp = new; } bucket->dthb_chain = new; bucket->dthb_len++; } static dtrace_probe_t * dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) { int hashval = DTRACE_HASHSTR(hash, template); int ndx = hashval & hash->dth_mask; dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; for (; bucket != NULL; bucket = bucket->dthb_next) { if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) return (bucket->dthb_chain); } return (NULL); } static int dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) { int hashval = DTRACE_HASHSTR(hash, template); int ndx = hashval & hash->dth_mask; dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; for (; bucket != NULL; bucket = bucket->dthb_next) { if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) return (bucket->dthb_len); } return (0); } static void dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) { int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); /* * Find the bucket that we're removing this probe from. */ for (; bucket != NULL; bucket = bucket->dthb_next) { if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) break; } ASSERT(bucket != NULL); if (*prevp == NULL) { if (*nextp == NULL) { /* * The removed probe was the only probe on this * bucket; we need to remove the bucket. */ dtrace_hashbucket_t *b = hash->dth_tab[ndx]; ASSERT(bucket->dthb_chain == probe); ASSERT(b != NULL); if (b == bucket) { hash->dth_tab[ndx] = bucket->dthb_next; } else { while (b->dthb_next != bucket) b = b->dthb_next; b->dthb_next = bucket->dthb_next; } ASSERT(hash->dth_nbuckets > 0); hash->dth_nbuckets--; kmem_free(bucket, sizeof (dtrace_hashbucket_t)); return; } bucket->dthb_chain = *nextp; } else { *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; } if (*nextp != NULL) *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; } /* * DTrace Utility Functions * * These are random utility functions that are _not_ called from probe context. */ static int dtrace_badattr(const dtrace_attribute_t *a) { return (a->dtat_name > DTRACE_STABILITY_MAX || a->dtat_data > DTRACE_STABILITY_MAX || a->dtat_class > DTRACE_CLASS_MAX); } /* * Return a duplicate copy of a string. If the specified string is NULL, * this function returns a zero-length string. */ static char * dtrace_strdup(const char *str) { char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); if (str != NULL) (void) strcpy(new, str); return (new); } #define DTRACE_ISALPHA(c) \ (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) static int dtrace_badname(const char *s) { char c; if (s == NULL || (c = *s++) == '\0') return (0); if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') return (1); while ((c = *s++) != '\0') { if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && c != '-' && c != '_' && c != '.' && c != '`') return (1); } return (0); } static void dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) { uint32_t priv; #ifdef illumos if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { /* * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. */ priv = DTRACE_PRIV_ALL; } else { *uidp = crgetuid(cr); *zoneidp = crgetzoneid(cr); priv = 0; if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) priv |= DTRACE_PRIV_USER; if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) priv |= DTRACE_PRIV_PROC; if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) priv |= DTRACE_PRIV_OWNER; if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) priv |= DTRACE_PRIV_ZONEOWNER; } #else priv = DTRACE_PRIV_ALL; #endif *privp = priv; } #ifdef DTRACE_ERRDEBUG static void dtrace_errdebug(const char *str) { int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ; int occupied = 0; mutex_enter(&dtrace_errlock); dtrace_errlast = str; dtrace_errthread = curthread; while (occupied++ < DTRACE_ERRHASHSZ) { if (dtrace_errhash[hval].dter_msg == str) { dtrace_errhash[hval].dter_count++; goto out; } if (dtrace_errhash[hval].dter_msg != NULL) { hval = (hval + 1) % DTRACE_ERRHASHSZ; continue; } dtrace_errhash[hval].dter_msg = str; dtrace_errhash[hval].dter_count = 1; goto out; } panic("dtrace: undersized error hash"); out: mutex_exit(&dtrace_errlock); } #endif /* * DTrace Matching Functions * * These functions are used to match groups of probes, given some elements of * a probe tuple, or some globbed expressions for elements of a probe tuple. */ static int dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, zoneid_t zoneid) { if (priv != DTRACE_PRIV_ALL) { uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; uint32_t match = priv & ppriv; /* * No PRIV_DTRACE_* privileges... */ if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | DTRACE_PRIV_KERNEL)) == 0) return (0); /* * No matching bits, but there were bits to match... */ if (match == 0 && ppriv != 0) return (0); /* * Need to have permissions to the process, but don't... */ if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { return (0); } /* * Need to be in the same zone unless we possess the * privilege to examine all zones. */ if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { return (0); } } return (1); } /* * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which * consists of input pattern strings and an ops-vector to evaluate them. * This function returns >0 for match, 0 for no match, and <0 for error. */ static int dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, zoneid_t zoneid) { dtrace_provider_t *pvp = prp->dtpr_provider; int rv; if (pvp->dtpv_defunct) return (0); if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) return (rv); if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) return (rv); if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) return (rv); if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) return (rv); if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) return (0); return (rv); } /* * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) * interface for matching a glob pattern 'p' to an input string 's'. Unlike * libc's version, the kernel version only applies to 8-bit ASCII strings. * In addition, all of the recursion cases except for '*' matching have been * unwound. For '*', we still implement recursive evaluation, but a depth * counter is maintained and matching is aborted if we recurse too deep. * The function returns 0 if no match, >0 if match, and <0 if recursion error. */ static int dtrace_match_glob(const char *s, const char *p, int depth) { const char *olds; char s1, c; int gs; if (depth > DTRACE_PROBEKEY_MAXDEPTH) return (-1); if (s == NULL) s = ""; /* treat NULL as empty string */ top: olds = s; s1 = *s++; if (p == NULL) return (0); if ((c = *p++) == '\0') return (s1 == '\0'); switch (c) { case '[': { int ok = 0, notflag = 0; char lc = '\0'; if (s1 == '\0') return (0); if (*p == '!') { notflag = 1; p++; } if ((c = *p++) == '\0') return (0); do { if (c == '-' && lc != '\0' && *p != ']') { if ((c = *p++) == '\0') return (0); if (c == '\\' && (c = *p++) == '\0') return (0); if (notflag) { if (s1 < lc || s1 > c) ok++; else return (0); } else if (lc <= s1 && s1 <= c) ok++; } else if (c == '\\' && (c = *p++) == '\0') return (0); lc = c; /* save left-hand 'c' for next iteration */ if (notflag) { if (s1 != c) ok++; else return (0); } else if (s1 == c) ok++; if ((c = *p++) == '\0') return (0); } while (c != ']'); if (ok) goto top; return (0); } case '\\': if ((c = *p++) == '\0') return (0); /*FALLTHRU*/ default: if (c != s1) return (0); /*FALLTHRU*/ case '?': if (s1 != '\0') goto top; return (0); case '*': while (*p == '*') p++; /* consecutive *'s are identical to a single one */ if (*p == '\0') return (1); for (s = olds; *s != '\0'; s++) { if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) return (gs); } return (0); } } /*ARGSUSED*/ static int dtrace_match_string(const char *s, const char *p, int depth) { return (s != NULL && strcmp(s, p) == 0); } /*ARGSUSED*/ static int dtrace_match_nul(const char *s, const char *p, int depth) { return (1); /* always match the empty pattern */ } /*ARGSUSED*/ static int dtrace_match_nonzero(const char *s, const char *p, int depth) { return (s != NULL && s[0] != '\0'); } static int dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) { dtrace_probe_t template, *probe; dtrace_hash_t *hash = NULL; int len, best = INT_MAX, nmatched = 0; dtrace_id_t i; ASSERT(MUTEX_HELD(&dtrace_lock)); /* * If the probe ID is specified in the key, just lookup by ID and * invoke the match callback once if a matching probe is found. */ if (pkp->dtpk_id != DTRACE_IDNONE) { if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { (void) (*matched)(probe, arg); nmatched++; } return (nmatched); } template.dtpr_mod = (char *)pkp->dtpk_mod; template.dtpr_func = (char *)pkp->dtpk_func; template.dtpr_name = (char *)pkp->dtpk_name; /* * We want to find the most distinct of the module name, function * name, and name. So for each one that is not a glob pattern or * empty string, we perform a lookup in the corresponding hash and * use the hash table with the fewest collisions to do our search. */ if (pkp->dtpk_mmatch == &dtrace_match_string && (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { best = len; hash = dtrace_bymod; } if (pkp->dtpk_fmatch == &dtrace_match_string && (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { best = len; hash = dtrace_byfunc; } if (pkp->dtpk_nmatch == &dtrace_match_string && (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { best = len; hash = dtrace_byname; } /* * If we did not select a hash table, iterate over every probe and * invoke our callback for each one that matches our input probe key. */ if (hash == NULL) { for (i = 0; i < dtrace_nprobes; i++) { if ((probe = dtrace_probes[i]) == NULL || dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) continue; nmatched++; if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) break; } return (nmatched); } /* * If we selected a hash table, iterate over each probe of the same key * name and invoke the callback for every probe that matches the other * attributes of our input probe key. */ for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; probe = *(DTRACE_HASHNEXT(hash, probe))) { if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) continue; nmatched++; if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) break; } return (nmatched); } /* * Return the function pointer dtrace_probecmp() should use to compare the * specified pattern with a string. For NULL or empty patterns, we select * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). * For non-empty non-glob strings, we use dtrace_match_string(). */ static dtrace_probekey_f * dtrace_probekey_func(const char *p) { char c; if (p == NULL || *p == '\0') return (&dtrace_match_nul); while ((c = *p++) != '\0') { if (c == '[' || c == '?' || c == '*' || c == '\\') return (&dtrace_match_glob); } return (&dtrace_match_string); } /* * Build a probe comparison key for use with dtrace_match_probe() from the * given probe description. By convention, a null key only matches anchored * probes: if each field is the empty string, reset dtpk_fmatch to * dtrace_match_nonzero(). */ static void dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) { pkp->dtpk_prov = pdp->dtpd_provider; pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); pkp->dtpk_mod = pdp->dtpd_mod; pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); pkp->dtpk_func = pdp->dtpd_func; pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); pkp->dtpk_name = pdp->dtpd_name; pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); pkp->dtpk_id = pdp->dtpd_id; if (pkp->dtpk_id == DTRACE_IDNONE && pkp->dtpk_pmatch == &dtrace_match_nul && pkp->dtpk_mmatch == &dtrace_match_nul && pkp->dtpk_fmatch == &dtrace_match_nul && pkp->dtpk_nmatch == &dtrace_match_nul) pkp->dtpk_fmatch = &dtrace_match_nonzero; } /* * DTrace Provider-to-Framework API Functions * * These functions implement much of the Provider-to-Framework API, as * described in . The parts of the API not in this section are * the functions in the API for probe management (found below), and * dtrace_probe() itself (found above). */ /* * Register the calling provider with the DTrace framework. This should * generally be called by DTrace providers in their attach(9E) entry point. */ int dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) { dtrace_provider_t *provider; if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { cmn_err(CE_WARN, "failed to register provider '%s': invalid " "arguments", name ? name : ""); return (EINVAL); } if (name[0] == '\0' || dtrace_badname(name)) { cmn_err(CE_WARN, "failed to register provider '%s': invalid " "provider name", name); return (EINVAL); } if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || pops->dtps_enable == NULL || pops->dtps_disable == NULL || pops->dtps_destroy == NULL || ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { cmn_err(CE_WARN, "failed to register provider '%s': invalid " "provider ops", name); return (EINVAL); } if (dtrace_badattr(&pap->dtpa_provider) || dtrace_badattr(&pap->dtpa_mod) || dtrace_badattr(&pap->dtpa_func) || dtrace_badattr(&pap->dtpa_name) || dtrace_badattr(&pap->dtpa_args)) { cmn_err(CE_WARN, "failed to register provider '%s': invalid " "provider attributes", name); return (EINVAL); } if (priv & ~DTRACE_PRIV_ALL) { cmn_err(CE_WARN, "failed to register provider '%s': invalid " "privilege attributes", name); return (EINVAL); } if ((priv & DTRACE_PRIV_KERNEL) && (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && pops->dtps_usermode == NULL) { cmn_err(CE_WARN, "failed to register provider '%s': need " "dtps_usermode() op for given privilege attributes", name); return (EINVAL); } provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); (void) strcpy(provider->dtpv_name, name); provider->dtpv_attr = *pap; provider->dtpv_priv.dtpp_flags = priv; if (cr != NULL) { provider->dtpv_priv.dtpp_uid = crgetuid(cr); provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); } provider->dtpv_pops = *pops; if (pops->dtps_provide == NULL) { ASSERT(pops->dtps_provide_module != NULL); provider->dtpv_pops.dtps_provide = (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop; } if (pops->dtps_provide_module == NULL) { ASSERT(pops->dtps_provide != NULL); provider->dtpv_pops.dtps_provide_module = (void (*)(void *, modctl_t *))dtrace_nullop; } if (pops->dtps_suspend == NULL) { ASSERT(pops->dtps_resume == NULL); provider->dtpv_pops.dtps_suspend = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; provider->dtpv_pops.dtps_resume = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; } provider->dtpv_arg = arg; *idp = (dtrace_provider_id_t)provider; if (pops == &dtrace_provider_ops) { ASSERT(MUTEX_HELD(&dtrace_provider_lock)); ASSERT(MUTEX_HELD(&dtrace_lock)); ASSERT(dtrace_anon.dta_enabling == NULL); /* * We make sure that the DTrace provider is at the head of * the provider chain. */ provider->dtpv_next = dtrace_provider; dtrace_provider = provider; return (0); } mutex_enter(&dtrace_provider_lock); mutex_enter(&dtrace_lock); /* * If there is at least one provider registered, we'll add this * provider after the first provider. */ if (dtrace_provider != NULL) { provider->dtpv_next = dtrace_provider->dtpv_next; dtrace_provider->dtpv_next = provider; } else { dtrace_provider = provider; } if (dtrace_retained != NULL) { dtrace_enabling_provide(provider); /* * Now we need to call dtrace_enabling_matchall() -- which * will acquire cpu_lock and dtrace_lock. We therefore need * to drop all of our locks before calling into it... */ mutex_exit(&dtrace_lock); mutex_exit(&dtrace_provider_lock); dtrace_enabling_matchall(); return (0); } mutex_exit(&dtrace_lock); mutex_exit(&dtrace_provider_lock); return (0); } /* * Unregister the specified provider from the DTrace framework. This should * generally be called by DTrace providers in their detach(9E) entry point. */ int dtrace_unregister(dtrace_provider_id_t id) { dtrace_provider_t *old = (dtrace_provider_t *)id; dtrace_provider_t *prev = NULL; int i, self = 0, noreap = 0; dtrace_probe_t *probe, *first = NULL; if (old->dtpv_pops.dtps_enable == (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { /* * If DTrace itself is the provider, we're called with locks * already held. */ ASSERT(old == dtrace_provider); #ifdef illumos ASSERT(dtrace_devi != NULL); #endif ASSERT(MUTEX_HELD(&dtrace_provider_lock)); ASSERT(MUTEX_HELD(&dtrace_lock)); self = 1; if (dtrace_provider->dtpv_next != NULL) { /* * There's another provider here; return failure. */ return (EBUSY); } } else { mutex_enter(&dtrace_provider_lock); #ifdef illumos mutex_enter(&mod_lock); #endif mutex_enter(&dtrace_lock); } /* * If anyone has /dev/dtrace open, or if there are anonymous enabled * probes, we refuse to let providers slither away, unless this * provider has already been explicitly invalidated. */ if (!old->dtpv_defunct && (dtrace_opens || (dtrace_anon.dta_state != NULL && dtrace_anon.dta_state->dts_necbs > 0))) { if (!self) { mutex_exit(&dtrace_lock); #ifdef illumos mutex_exit(&mod_lock); #endif mutex_exit(&dtrace_provider_lock); } return (EBUSY); } /* * Attempt to destroy the probes associated with this provider. */ for (i = 0; i < dtrace_nprobes; i++) { if ((probe = dtrace_probes[i]) == NULL) continue; if (probe->dtpr_provider != old) continue; if (probe->dtpr_ecb == NULL) continue; /* * If we are trying to unregister a defunct provider, and the * provider was made defunct within the interval dictated by * dtrace_unregister_defunct_reap, we'll (asynchronously) * attempt to reap our enablings. To denote that the provider * should reattempt to unregister itself at some point in the * future, we will return a differentiable error code (EAGAIN * instead of EBUSY) in this case. */ if (dtrace_gethrtime() - old->dtpv_defunct > dtrace_unregister_defunct_reap) noreap = 1; if (!self) { mutex_exit(&dtrace_lock); #ifdef illumos mutex_exit(&mod_lock); #endif mutex_exit(&dtrace_provider_lock); } if (noreap) return (EBUSY); (void) taskq_dispatch(dtrace_taskq, (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); return (EAGAIN); } /* * All of the probes for this provider are disabled; we can safely * remove all of them from their hash chains and from the probe array. */ for (i = 0; i < dtrace_nprobes; i++) { if ((probe = dtrace_probes[i]) == NULL) continue; if (probe->dtpr_provider != old) continue; dtrace_probes[i] = NULL; dtrace_hash_remove(dtrace_bymod, probe); dtrace_hash_remove(dtrace_byfunc, probe); dtrace_hash_remove(dtrace_byname, probe); if (first == NULL) { first = probe; probe->dtpr_nextmod = NULL; } else { probe->dtpr_nextmod = first; first = probe; } } /* * The provider's probes have been removed from the hash chains and * from the probe array. Now issue a dtrace_sync() to be sure that * everyone has cleared out from any probe array processing. */ dtrace_sync(); for (probe = first; probe != NULL; probe = first) { first = probe->dtpr_nextmod; old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, probe->dtpr_arg); kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); #ifdef illumos vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); #else free_unr(dtrace_arena, probe->dtpr_id); #endif kmem_free(probe, sizeof (dtrace_probe_t)); } if ((prev = dtrace_provider) == old) { #ifdef illumos ASSERT(self || dtrace_devi == NULL); ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); #endif dtrace_provider = old->dtpv_next; } else { while (prev != NULL && prev->dtpv_next != old) prev = prev->dtpv_next; if (prev == NULL) { panic("attempt to unregister non-existent " "dtrace provider %p\n", (void *)id); } prev->dtpv_next = old->dtpv_next; } if (!self) { mutex_exit(&dtrace_lock); #ifdef illumos mutex_exit(&mod_lock); #endif mutex_exit(&dtrace_provider_lock); } kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); kmem_free(old, sizeof (dtrace_provider_t)); return (0); } /* * Invalidate the specified provider. All subsequent probe lookups for the * specified provider will fail, but its probes will not be removed. */ void dtrace_invalidate(dtrace_provider_id_t id) { dtrace_provider_t *pvp = (dtrace_provider_t *)id; ASSERT(pvp->dtpv_pops.dtps_enable != (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); mutex_enter(&dtrace_provider_lock); mutex_enter(&dtrace_lock); pvp->dtpv_defunct = dtrace_gethrtime(); mutex_exit(&dtrace_lock); mutex_exit(&dtrace_provider_lock); } /* * Indicate whether or not DTrace has attached. */ int dtrace_attached(void) { /* * dtrace_provider will be non-NULL iff the DTrace driver has * attached. (It's non-NULL because DTrace is always itself a * provider.) */ return (dtrace_provider != NULL); } /* * Remove all the unenabled probes for the given provider. This function is * not unlike dtrace_unregister(), except that it doesn't remove the provider * -- just as many of its associated probes as it can. */ int dtrace_condense(dtrace_provider_id_t id) { dtrace_provider_t *prov = (dtrace_provider_t *)id; int i; dtrace_probe_t *probe; /* * Make sure this isn't the dtrace provider itself. */ ASSERT(prov->dtpv_pops.dtps_enable != (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); mutex_enter(&dtrace_provider_lock); mutex_enter(&dtrace_lock); /* * Attempt to destroy the probes associated with this provider. */ for (i = 0; i < dtrace_nprobes; i++) { if ((probe = dtrace_probes[i]) == NULL) continue; if (probe->dtpr_provider != prov) continue; if (probe->dtpr_ecb != NULL) continue; dtrace_probes[i] = NULL; dtrace_hash_remove(dtrace_bymod, probe); dtrace_hash_remove(dtrace_byfunc, probe); dtrace_hash_remove(dtrace_byname, probe); prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, probe->dtpr_arg); kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); kmem_free(probe, sizeof (dtrace_probe_t)); #ifdef illumos vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); #else free_unr(dtrace_arena, i + 1); #endif } mutex_exit(&dtrace_lock); mutex_exit(&dtrace_provider_lock); return (0); } /* * DTrace Probe Management Functions * * The functions in this section perform the DTrace probe management, * including functions to create probes, look-up probes, and call into the * providers to request that probes be provided. Some of these functions are * in the Provider-to-Framework API; these functions can be identified by the * fact that they are not declared "static". */ /* * Create a probe with the specified module name, function name, and name. */ dtrace_id_t dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, const char *func, const char *name, int aframes, void *arg) { dtrace_probe_t *probe, **probes; dtrace_provider_t *provider = (dtrace_provider_t *)prov; dtrace_id_t id; if (provider == dtrace_provider) { ASSERT(MUTEX_HELD(&dtrace_lock)); } else { mutex_enter(&dtrace_lock); } #ifdef illumos id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, VM_BESTFIT | VM_SLEEP); #else id = alloc_unr(dtrace_arena); #endif probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); probe->dtpr_id = id; probe->dtpr_gen = dtrace_probegen++; probe->dtpr_mod = dtrace_strdup(mod); probe->dtpr_func = dtrace_strdup(func); probe->dtpr_name = dtrace_strdup(name); probe->dtpr_arg = arg; probe->dtpr_aframes = aframes; probe->dtpr_provider = provider; dtrace_hash_add(dtrace_bymod, probe); dtrace_hash_add(dtrace_byfunc, probe); dtrace_hash_add(dtrace_byname, probe); if (id - 1 >= dtrace_nprobes) { size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); size_t nsize = osize << 1; if (nsize == 0) { ASSERT(osize == 0); ASSERT(dtrace_probes == NULL); nsize = sizeof (dtrace_probe_t *); } probes = kmem_zalloc(nsize, KM_SLEEP); if (dtrace_probes == NULL) { ASSERT(osize == 0); dtrace_probes = probes; dtrace_nprobes = 1; } else { dtrace_probe_t **oprobes = dtrace_probes; bcopy(oprobes, probes, osize); dtrace_membar_producer(); dtrace_probes = probes; dtrace_sync(); /* * All CPUs are now seeing the new probes array; we can * safely free the old array. */ kmem_free(oprobes, osize); dtrace_nprobes <<= 1; } ASSERT(id - 1 < dtrace_nprobes); } ASSERT(dtrace_probes[id - 1] == NULL); dtrace_probes[id - 1] = probe; if (provider != dtrace_provider) mutex_exit(&dtrace_lock); return (id); } static dtrace_probe_t * dtrace_probe_lookup_id(dtrace_id_t id) { ASSERT(MUTEX_HELD(&dtrace_lock)); if (id == 0 || id > dtrace_nprobes) return (NULL); return (dtrace_probes[id - 1]); } static int dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) { *((dtrace_id_t *)arg) = probe->dtpr_id; return (DTRACE_MATCH_DONE); } /* * Look up a probe based on provider and one or more of module name, function * name and probe name. */ dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod, char *func, char *name) { dtrace_probekey_t pkey; dtrace_id_t id; int match; pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; pkey.dtpk_pmatch = &dtrace_match_string; pkey.dtpk_mod = mod; pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; pkey.dtpk_func = func; pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; pkey.dtpk_name = name; pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; pkey.dtpk_id = DTRACE_IDNONE; mutex_enter(&dtrace_lock); match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, dtrace_probe_lookup_match, &id); mutex_exit(&dtrace_lock); ASSERT(match == 1 || match == 0); return (match ? id : 0); } /* * Returns the probe argument associated with the specified probe. */ void * dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) { dtrace_probe_t *probe; void *rval = NULL; mutex_enter(&dtrace_lock); if ((probe = dtrace_probe_lookup_id(pid)) != NULL && probe->dtpr_provider == (dtrace_provider_t *)id) rval = probe->dtpr_arg; mutex_exit(&dtrace_lock); return (rval); } /* * Copy a probe into a probe description. */ static void dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) { bzero(pdp, sizeof (dtrace_probedesc_t)); pdp->dtpd_id = prp->dtpr_id; (void) strncpy(pdp->dtpd_provider, prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); } /* * Called to indicate that a probe -- or probes -- should be provided by a * specfied provider. If the specified description is NULL, the provider will * be told to provide all of its probes. (This is done whenever a new * consumer comes along, or whenever a retained enabling is to be matched.) If * the specified description is non-NULL, the provider is given the * opportunity to dynamically provide the specified probe, allowing providers * to support the creation of probes on-the-fly. (So-called _autocreated_ * probes.) If the provider is NULL, the operations will be applied to all * providers; if the provider is non-NULL the operations will only be applied * to the specified provider. The dtrace_provider_lock must be held, and the * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation * will need to grab the dtrace_lock when it reenters the framework through * dtrace_probe_lookup(), dtrace_probe_create(), etc. */ static void dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) { #ifdef illumos modctl_t *ctl; #endif int all = 0; ASSERT(MUTEX_HELD(&dtrace_provider_lock)); if (prv == NULL) { all = 1; prv = dtrace_provider; } do { /* * First, call the blanket provide operation. */ prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); #ifdef illumos /* * Now call the per-module provide operation. We will grab * mod_lock to prevent the list from being modified. Note * that this also prevents the mod_busy bits from changing. * (mod_busy can only be changed with mod_lock held.) */ mutex_enter(&mod_lock); ctl = &modules; do { if (ctl->mod_busy || ctl->mod_mp == NULL) continue; prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); } while ((ctl = ctl->mod_next) != &modules); mutex_exit(&mod_lock); #endif } while (all && (prv = prv->dtpv_next) != NULL); } #ifdef illumos /* * Iterate over each probe, and call the Framework-to-Provider API function * denoted by offs. */ static void dtrace_probe_foreach(uintptr_t offs) { dtrace_provider_t *prov; void (*func)(void *, dtrace_id_t, void *); dtrace_probe_t *probe; dtrace_icookie_t cookie; int i; /* * We disable interrupts to walk through the probe array. This is * safe -- the dtrace_sync() in dtrace_unregister() assures that we * won't see stale data. */ cookie = dtrace_interrupt_disable(); for (i = 0; i < dtrace_nprobes; i++) { if ((probe = dtrace_probes[i]) == NULL) continue; if (probe->dtpr_ecb == NULL) { /* * This probe isn't enabled -- don't call the function. */ continue; } prov = probe->dtpr_provider; func = *((void(**)(void *, dtrace_id_t, void *)) ((uintptr_t)&prov->dtpv_pops + offs)); func(prov->dtpv_arg, i + 1, probe->dtpr_arg); } dtrace_interrupt_enable(cookie); } #endif static int dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab) { dtrace_probekey_t pkey; uint32_t priv; uid_t uid; zoneid_t zoneid; ASSERT(MUTEX_HELD(&dtrace_lock)); dtrace_ecb_create_cache = NULL; if (desc == NULL) { /* * If we're passed a NULL description, we're being asked to * create an ECB with a NULL probe. */ (void) dtrace_ecb_create_enable(NULL, enab); return (0); } dtrace_probekey(desc, &pkey); dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, &priv, &uid, &zoneid); return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, enab)); } /* * DTrace Helper Provider Functions */ static void dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) { attr->dtat_name = DOF_ATTR_NAME(dofattr); attr->dtat_data = DOF_ATTR_DATA(dofattr); attr->dtat_class = DOF_ATTR_CLASS(dofattr); } static void dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, const dof_provider_t *dofprov, char *strtab) { hprov->dthpv_provname = strtab + dofprov->dofpv_name; dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, dofprov->dofpv_provattr); dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, dofprov->dofpv_modattr); dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, dofprov->dofpv_funcattr); dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, dofprov->dofpv_nameattr); dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, dofprov->dofpv_argsattr); } static void dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) { uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; dof_hdr_t *dof = (dof_hdr_t *)daddr; dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; dof_provider_t *provider; dof_probe_t *probe; uint32_t *off, *enoff; uint8_t *arg; char *strtab; uint_t i, nprobes; dtrace_helper_provdesc_t dhpv; dtrace_helper_probedesc_t dhpb; dtrace_meta_t *meta = dtrace_meta_pid; dtrace_mops_t *mops = &meta->dtm_mops; void *parg; provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + provider->dofpv_strtab * dof->dofh_secsize); prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + provider->dofpv_probes * dof->dofh_secsize); arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + provider->dofpv_prargs * dof->dofh_secsize); off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + provider->dofpv_proffs * dof->dofh_secsize); strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); enoff = NULL; /* * See dtrace_helper_provider_validate(). */ if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && provider->dofpv_prenoffs != DOF_SECT_NONE) { enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + provider->dofpv_prenoffs * dof->dofh_secsize); enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); } nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; /* * Create the provider. */ dtrace_dofprov2hprov(&dhpv, provider, strtab); if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) return; meta->dtm_count++; /* * Create the probes. */ for (i = 0; i < nprobes; i++) { probe = (dof_probe_t *)(uintptr_t)(daddr + prb_sec->dofs_offset + i * prb_sec->dofs_entsize); /* See the check in dtrace_helper_provider_validate(). */ if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) continue; dhpb.dthpb_mod = dhp->dofhp_mod; dhpb.dthpb_func = strtab + probe->dofpr_func; dhpb.dthpb_name = strtab + probe->dofpr_name; dhpb.dthpb_base = probe->dofpr_addr; dhpb.dthpb_offs = off + probe->dofpr_offidx; dhpb.dthpb_noffs = probe->dofpr_noffs; if (enoff != NULL) { dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; } else { dhpb.dthpb_enoffs = NULL; dhpb.dthpb_nenoffs = 0; } dhpb.dthpb_args = arg + probe->dofpr_argidx; dhpb.dthpb_nargc = probe->dofpr_nargc; dhpb.dthpb_xargc = probe->dofpr_xargc; dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); } } static void dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) { uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; dof_hdr_t *dof = (dof_hdr_t *)daddr; int i; ASSERT(MUTEX_HELD(&dtrace_meta_lock)); for (i = 0; i < dof->dofh_secnum; i++) { dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + i * dof->dofh_secsize); if (sec->dofs_type != DOF_SECT_PROVIDER) continue; dtrace_helper_provide_one(dhp, sec, pid); } /* * We may have just created probes, so we must now rematch against * any retained enablings. Note that this call will acquire both * cpu_lock and dtrace_lock; the fact that we are holding * dtrace_meta_lock now is what defines the ordering with respect to * these three locks. */ dtrace_enabling_matchall(); } static void dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) { uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; dof_hdr_t *dof = (dof_hdr_t *)daddr; dof_sec_t *str_sec; dof_provider_t *provider; char *strtab; dtrace_helper_provdesc_t dhpv; dtrace_meta_t *meta = dtrace_meta_pid; dtrace_mops_t *mops = &meta->dtm_mops; provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + provider->dofpv_strtab * dof->dofh_secsize); strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); /* * Create the provider. */ dtrace_dofprov2hprov(&dhpv, provider, strtab); mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); meta->dtm_count--; } static void dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) { uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; dof_hdr_t *dof = (dof_hdr_t *)daddr; int i; ASSERT(MUTEX_HELD(&dtrace_meta_lock)); for (i = 0; i < dof->dofh_secnum; i++) { dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + i * dof->dofh_secsize); if (sec->dofs_type != DOF_SECT_PROVIDER) continue; dtrace_helper_provider_remove_one(dhp, sec, pid); } } /* * DTrace Meta Provider-to-Framework API Functions * * These functions implement the Meta Provider-to-Framework API, as described * in . */ int dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, dtrace_meta_provider_id_t *idp) { dtrace_meta_t *meta; dtrace_helpers_t *help, *next; int i; *idp = DTRACE_METAPROVNONE; /* * We strictly don't need the name, but we hold onto it for * debuggability. All hail error queues! */ if (name == NULL) { cmn_err(CE_WARN, "failed to register meta-provider: " "invalid name"); return (EINVAL); } if (mops == NULL || mops->dtms_create_probe == NULL || mops->dtms_provide_pid == NULL || mops->dtms_remove_pid == NULL) { cmn_err(CE_WARN, "failed to register meta-register %s: " "invalid ops", name); return (EINVAL); } meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); meta->dtm_mops = *mops; meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); (void) strcpy(meta->dtm_name, name); meta->dtm_arg = arg; mutex_enter(&dtrace_meta_lock); mutex_enter(&dtrace_lock); if (dtrace_meta_pid != NULL) { mutex_exit(&dtrace_lock); mutex_exit(&dtrace_meta_lock); cmn_err(CE_WARN, "failed to register meta-register %s: " "user-land meta-provider exists", name); kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); kmem_free(meta, sizeof (dtrace_meta_t)); return (EINVAL); } dtrace_meta_pid = meta; *idp = (dtrace_meta_provider_id_t)meta; /* * If there are providers and probes ready to go, pass them * off to the new meta provider now. */ help = dtrace_deferred_pid; dtrace_deferred_pid = NULL; mutex_exit(&dtrace_lock); while (help != NULL) { for (i = 0; i < help->dthps_nprovs; i++) { dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, help->dthps_pid); } next = help->dthps_next; help->dthps_next = NULL; help->dthps_prev = NULL; help->dthps_deferred = 0; help = next; } mutex_exit(&dtrace_meta_lock); return (0); } int dtrace_meta_unregister(dtrace_meta_provider_id_t id) { dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; mutex_enter(&dtrace_meta_lock); mutex_enter(&dtrace_lock); if (old == dtrace_meta_pid) { pp = &dtrace_meta_pid; } else { panic("attempt to unregister non-existent " "dtrace meta-provider %p\n", (void *)old); } if (old->dtm_count != 0) { mutex_exit(&dtrace_lock); mutex_exit(&dtrace_meta_lock); return (EBUSY); } *pp = NULL; mutex_exit(&dtrace_lock); mutex_exit(&dtrace_meta_lock); kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); kmem_free(old, sizeof (dtrace_meta_t)); return (0); } /* * DTrace DIF Object Functions */ static int dtrace_difo_err(uint_t pc, const char *format, ...) { if (dtrace_err_verbose) { va_list alist; (void) uprintf("dtrace DIF object error: [%u]: ", pc); va_start(alist, format); (void) vuprintf(format, alist); va_end(alist); } #ifdef DTRACE_ERRDEBUG dtrace_errdebug(format); #endif return (1); } /* * Validate a DTrace DIF object by checking the IR instructions. The following * rules are currently enforced by dtrace_difo_validate(): * * 1. Each instruction must have a valid opcode * 2. Each register, string, variable, or subroutine reference must be valid * 3. No instruction can modify register %r0 (must be zero) * 4. All instruction reserved bits must be set to zero * 5. The last instruction must be a "ret" instruction * 6. All branch targets must reference a valid instruction _after_ the branch */ static int dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, cred_t *cr) { int err = 0, i; int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; int kcheckload; uint_t pc; int maxglobal = -1, maxlocal = -1, maxtlocal = -1; kcheckload = cr == NULL || (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; dp->dtdo_destructive = 0; for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { dif_instr_t instr = dp->dtdo_buf[pc]; uint_t r1 = DIF_INSTR_R1(instr); uint_t r2 = DIF_INSTR_R2(instr); uint_t rd = DIF_INSTR_RD(instr); uint_t rs = DIF_INSTR_RS(instr); uint_t label = DIF_INSTR_LABEL(instr); uint_t v = DIF_INSTR_VAR(instr); uint_t subr = DIF_INSTR_SUBR(instr); uint_t type = DIF_INSTR_TYPE(instr); uint_t op = DIF_INSTR_OP(instr); switch (op) { case DIF_OP_OR: case DIF_OP_XOR: case DIF_OP_AND: case DIF_OP_SLL: case DIF_OP_SRL: case DIF_OP_SRA: case DIF_OP_SUB: case DIF_OP_ADD: case DIF_OP_MUL: case DIF_OP_SDIV: case DIF_OP_UDIV: case DIF_OP_SREM: case DIF_OP_UREM: case DIF_OP_COPYS: if (r1 >= nregs) err += efunc(pc, "invalid register %u\n", r1); if (r2 >= nregs) err += efunc(pc, "invalid register %u\n", r2); if (rd >= nregs) err += efunc(pc, "invalid register %u\n", rd); if (rd == 0) err += efunc(pc, "cannot write to %r0\n"); break; case DIF_OP_NOT: case DIF_OP_MOV: case DIF_OP_ALLOCS: if (r1 >= nregs) err += efunc(pc, "invalid register %u\n", r1); if (r2 != 0) err += efunc(pc, "non-zero reserved bits\n"); if (rd >= nregs) err += efunc(pc, "invalid register %u\n", rd); if (rd == 0) err += efunc(pc, "cannot write to %r0\n"); break; case DIF_OP_LDSB: case DIF_OP_LDSH: case DIF_OP_LDSW: case DIF_OP_LDUB: case DIF_OP_LDUH: case DIF_OP_LDUW: case DIF_OP_LDX: if (r1 >= nregs) err += efunc(pc, "invalid register %u\n", r1); if (r2 != 0) err += efunc(pc, "non-zero reserved bits\n"); if (rd >= nregs) err += efunc(pc, "invalid register %u\n", rd); if (rd == 0) err += efunc(pc, "cannot write to %r0\n"); if (kcheckload) dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); break; case DIF_OP_RLDSB: case DIF_OP_RLDSH: case DIF_OP_RLDSW: case DIF_OP_RLDUB: case DIF_OP_RLDUH: case DIF_OP_RLDUW: case DIF_OP_RLDX: if (r1 >= nregs) err += efunc(pc, "invalid register %u\n", r1); if (r2 != 0) err += efunc(pc, "non-zero reserved bits\n"); if (rd >= nregs) err += efunc(pc, "invalid register %u\n", rd); if (rd == 0) err += efunc(pc, "cannot write to %r0\n"); break; case DIF_OP_ULDSB: case DIF_OP_ULDSH: case DIF_OP_ULDSW: case DIF_OP_ULDUB: case DIF_OP_ULDUH: case DIF_OP_ULDUW: case DIF_OP_ULDX: if (r1 >= nregs) err += efunc(pc, "invalid register %u\n", r1); if (r2 != 0) err += efunc(pc, "non-zero reserved bits\n"); if (rd >= nregs) err += efunc(pc, "invalid register %u\n", rd); if (rd == 0) err += efunc(pc, "cannot write to %r0\n"); break; case DIF_OP_STB: case DIF_OP_STH: case DIF_OP_STW: case DIF_OP_STX: if (r1 >= nregs) err += efunc(pc, "invalid register %u\n", r1); if (r2 != 0) err += efunc(pc, "non-zero reserved bits\n"); if (rd >= nregs) err += efunc(pc, "invalid register %u\n", rd); if (rd == 0) err += efunc(pc, "cannot write to 0 address\n"); break; case DIF_OP_CMP: case DIF_OP_SCMP: if (r1 >= nregs) err += efunc(pc, "invalid register %u\n", r1); if (r2 >= nregs) err += efunc(pc, "invalid register %u\n", r2); if (rd != 0) err += efunc(pc, "non-zero reserved bits\n"); break; case DIF_OP_TST: if (r1 >= nregs) err += efunc(pc, "invalid register %u\n", r1); if (r2 != 0 || rd != 0) err += efunc(pc, "non-zero reserved bits\n"); break; case DIF_OP_BA: case DIF_OP_BE: case DIF_OP_BNE: case DIF_OP_BG: case DIF_OP_BGU: case DIF_OP_BGE: case DIF_OP_BGEU: case DIF_OP_BL: case DIF_OP_BLU: case DIF_OP_BLE: case DIF_OP_BLEU: if (label >= dp->dtdo_len) { err += efunc(pc, "invalid branch target %u\n", label); } if (label <= pc) { err += efunc(pc, "backward branch to %u\n", label); } break; case DIF_OP_RET: if (r1 != 0 || r2 != 0) err += efunc(pc, "non-zero reserved bits\n"); if (rd >= nregs) err += efunc(pc, "invalid register %u\n", rd); break; case DIF_OP_NOP: case DIF_OP_POPTS: case DIF_OP_FLUSHTS: if (r1 != 0 || r2 != 0 || rd != 0) err += efunc(pc, "non-zero reserved bits\n"); break; case DIF_OP_SETX: if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { err += efunc(pc, "invalid integer ref %u\n", DIF_INSTR_INTEGER(instr)); } if (rd >= nregs) err += efunc(pc, "invalid register %u\n", rd); if (rd == 0) err += efunc(pc, "cannot write to %r0\n"); break; case DIF_OP_SETS: if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { err += efunc(pc, "invalid string ref %u\n", DIF_INSTR_STRING(instr)); } if (rd >= nregs) err += efunc(pc, "invalid register %u\n", rd); if (rd == 0) err += efunc(pc, "cannot write to %r0\n"); break; case DIF_OP_LDGA: case DIF_OP_LDTA: if (r1 > DIF_VAR_ARRAY_MAX) err += efunc(pc, "invalid array %u\n", r1); if (r2 >= nregs) err += efunc(pc, "invalid register %u\n", r2); if (rd >= nregs) err += efunc(pc, "invalid register %u\n", rd); if (rd == 0) err += efunc(pc, "cannot write to %r0\n"); break; case DIF_OP_LDGS: case DIF_OP_LDTS: case DIF_OP_LDLS: case DIF_OP_LDGAA: case DIF_OP_LDTAA: if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) err += efunc(pc, "invalid variable %u\n", v); if (rd >= nregs) err += efunc(pc, "invalid register %u\n", rd); if (rd == 0) err += efunc(pc, "cannot write to %r0\n"); break; case DIF_OP_STGS: case DIF_OP_STTS: case DIF_OP_STLS: case DIF_OP_STGAA: case DIF_OP_STTAA: if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) err += efunc(pc, "invalid variable %u\n", v); if (rs >= nregs) err += efunc(pc, "invalid register %u\n", rd); break; case DIF_OP_CALL: if (subr > DIF_SUBR_MAX) err += efunc(pc, "invalid subr %u\n", subr); if (rd >= nregs) err += efunc(pc, "invalid register %u\n", rd); if (rd == 0) err += efunc(pc, "cannot write to %r0\n"); if (subr == DIF_SUBR_COPYOUT || subr == DIF_SUBR_COPYOUTSTR) { dp->dtdo_destructive = 1; } if (subr == DIF_SUBR_GETF) { /* * If we have a getf() we need to record that * in our state. Note that our state can be * NULL if this is a helper -- but in that * case, the call to getf() is itself illegal, * and will be caught (slightly later) when * the helper is validated. */ if (vstate->dtvs_state != NULL) vstate->dtvs_state->dts_getf++; } break; case DIF_OP_PUSHTR: if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) err += efunc(pc, "invalid ref type %u\n", type); if (r2 >= nregs) err += efunc(pc, "invalid register %u\n", r2); if (rs >= nregs) err += efunc(pc, "invalid register %u\n", rs); break; case DIF_OP_PUSHTV: if (type != DIF_TYPE_CTF) err += efunc(pc, "invalid val type %u\n", type); if (r2 >= nregs) err += efunc(pc, "invalid register %u\n", r2); if (rs >= nregs) err += efunc(pc, "invalid register %u\n", rs); break; default: err += efunc(pc, "invalid opcode %u\n", DIF_INSTR_OP(instr)); } } if (dp->dtdo_len != 0 && DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { err += efunc(dp->dtdo_len - 1, "expected 'ret' as last DIF instruction\n"); } if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { /* * If we're not returning by reference, the size must be either * 0 or the size of one of the base types. */ switch (dp->dtdo_rtype.dtdt_size) { case 0: case sizeof (uint8_t): case sizeof (uint16_t): case sizeof (uint32_t): case sizeof (uint64_t): break; default: err += efunc(dp->dtdo_len - 1, "bad return size\n"); } } for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; dtrace_diftype_t *vt, *et; uint_t id, ndx; if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && v->dtdv_scope != DIFV_SCOPE_THREAD && v->dtdv_scope != DIFV_SCOPE_LOCAL) { err += efunc(i, "unrecognized variable scope %d\n", v->dtdv_scope); break; } if (v->dtdv_kind != DIFV_KIND_ARRAY && v->dtdv_kind != DIFV_KIND_SCALAR) { err += efunc(i, "unrecognized variable type %d\n", v->dtdv_kind); break; } if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { err += efunc(i, "%d exceeds variable id limit\n", id); break; } if (id < DIF_VAR_OTHER_UBASE) continue; /* * For user-defined variables, we need to check that this * definition is identical to any previous definition that we * encountered. */ ndx = id - DIF_VAR_OTHER_UBASE; switch (v->dtdv_scope) { case DIFV_SCOPE_GLOBAL: if (maxglobal == -1 || ndx > maxglobal) maxglobal = ndx; if (ndx < vstate->dtvs_nglobals) { dtrace_statvar_t *svar; if ((svar = vstate->dtvs_globals[ndx]) != NULL) existing = &svar->dtsv_var; } break; case DIFV_SCOPE_THREAD: if (maxtlocal == -1 || ndx > maxtlocal) maxtlocal = ndx; if (ndx < vstate->dtvs_ntlocals) existing = &vstate->dtvs_tlocals[ndx]; break; case DIFV_SCOPE_LOCAL: if (maxlocal == -1 || ndx > maxlocal) maxlocal = ndx; if (ndx < vstate->dtvs_nlocals) { dtrace_statvar_t *svar; if ((svar = vstate->dtvs_locals[ndx]) != NULL) existing = &svar->dtsv_var; } break; } vt = &v->dtdv_type; if (vt->dtdt_flags & DIF_TF_BYREF) { if (vt->dtdt_size == 0) { err += efunc(i, "zero-sized variable\n"); break; } if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL || v->dtdv_scope == DIFV_SCOPE_LOCAL) && vt->dtdt_size > dtrace_statvar_maxsize) { err += efunc(i, "oversized by-ref static\n"); break; } } if (existing == NULL || existing->dtdv_id == 0) continue; ASSERT(existing->dtdv_id == v->dtdv_id); ASSERT(existing->dtdv_scope == v->dtdv_scope); if (existing->dtdv_kind != v->dtdv_kind) err += efunc(i, "%d changed variable kind\n", id); et = &existing->dtdv_type; if (vt->dtdt_flags != et->dtdt_flags) { err += efunc(i, "%d changed variable type flags\n", id); break; } if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { err += efunc(i, "%d changed variable type size\n", id); break; } } for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { dif_instr_t instr = dp->dtdo_buf[pc]; uint_t v = DIF_INSTR_VAR(instr); uint_t op = DIF_INSTR_OP(instr); switch (op) { case DIF_OP_LDGS: case DIF_OP_LDGAA: case DIF_OP_STGS: case DIF_OP_STGAA: if (v > DIF_VAR_OTHER_UBASE + maxglobal) err += efunc(pc, "invalid variable %u\n", v); break; case DIF_OP_LDTS: case DIF_OP_LDTAA: case DIF_OP_STTS: case DIF_OP_STTAA: if (v > DIF_VAR_OTHER_UBASE + maxtlocal) err += efunc(pc, "invalid variable %u\n", v); break; case DIF_OP_LDLS: case DIF_OP_STLS: if (v > DIF_VAR_OTHER_UBASE + maxlocal) err += efunc(pc, "invalid variable %u\n", v); break; default: break; } } return (err); } /* * Validate a DTrace DIF object that it is to be used as a helper. Helpers * are much more constrained than normal DIFOs. Specifically, they may * not: * * 1. Make calls to subroutines other than copyin(), copyinstr() or * miscellaneous string routines * 2. Access DTrace variables other than the args[] array, and the * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. * 3. Have thread-local variables. * 4. Have dynamic variables. */ static int dtrace_difo_validate_helper(dtrace_difo_t *dp) { int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; int err = 0; uint_t pc; for (pc = 0; pc < dp->dtdo_len; pc++) { dif_instr_t instr = dp->dtdo_buf[pc]; uint_t v = DIF_INSTR_VAR(instr); uint_t subr = DIF_INSTR_SUBR(instr); uint_t op = DIF_INSTR_OP(instr); switch (op) { case DIF_OP_OR: case DIF_OP_XOR: case DIF_OP_AND: case DIF_OP_SLL: case DIF_OP_SRL: case DIF_OP_SRA: case DIF_OP_SUB: case DIF_OP_ADD: case DIF_OP_MUL: case DIF_OP_SDIV: case DIF_OP_UDIV: case DIF_OP_SREM: case DIF_OP_UREM: case DIF_OP_COPYS: case DIF_OP_NOT: case DIF_OP_MOV: case DIF_OP_RLDSB: case DIF_OP_RLDSH: case DIF_OP_RLDSW: case DIF_OP_RLDUB: case DIF_OP_RLDUH: case DIF_OP_RLDUW: case DIF_OP_RLDX: case DIF_OP_ULDSB: case DIF_OP_ULDSH: case DIF_OP_ULDSW: case DIF_OP_ULDUB: case DIF_OP_ULDUH: case DIF_OP_ULDUW: case DIF_OP_ULDX: case DIF_OP_STB: case DIF_OP_STH: case DIF_OP_STW: case DIF_OP_STX: case DIF_OP_ALLOCS: case DIF_OP_CMP: case DIF_OP_SCMP: case DIF_OP_TST: case DIF_OP_BA: case DIF_OP_BE: case DIF_OP_BNE: case DIF_OP_BG: case DIF_OP_BGU: case DIF_OP_BGE: case DIF_OP_BGEU: case DIF_OP_BL: case DIF_OP_BLU: case DIF_OP_BLE: case DIF_OP_BLEU: case DIF_OP_RET: case DIF_OP_NOP: case DIF_OP_POPTS: case DIF_OP_FLUSHTS: case DIF_OP_SETX: case DIF_OP_SETS: case DIF_OP_LDGA: case DIF_OP_LDLS: case DIF_OP_STGS: case DIF_OP_STLS: case DIF_OP_PUSHTR: case DIF_OP_PUSHTV: break; case DIF_OP_LDGS: if (v >= DIF_VAR_OTHER_UBASE) break; if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) break; if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || v == DIF_VAR_PPID || v == DIF_VAR_TID || v == DIF_VAR_EXECARGS || v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || v == DIF_VAR_UID || v == DIF_VAR_GID) break; err += efunc(pc, "illegal variable %u\n", v); break; case DIF_OP_LDTA: case DIF_OP_LDTS: case DIF_OP_LDGAA: case DIF_OP_LDTAA: err += efunc(pc, "illegal dynamic variable load\n"); break; case DIF_OP_STTS: case DIF_OP_STGAA: case DIF_OP_STTAA: err += efunc(pc, "illegal dynamic variable store\n"); break; case DIF_OP_CALL: if (subr == DIF_SUBR_ALLOCA || subr == DIF_SUBR_BCOPY || subr == DIF_SUBR_COPYIN || subr == DIF_SUBR_COPYINTO || subr == DIF_SUBR_COPYINSTR || subr == DIF_SUBR_INDEX || subr == DIF_SUBR_INET_NTOA || subr == DIF_SUBR_INET_NTOA6 || subr == DIF_SUBR_INET_NTOP || subr == DIF_SUBR_JSON || subr == DIF_SUBR_LLTOSTR || subr == DIF_SUBR_STRTOLL || subr == DIF_SUBR_RINDEX || subr == DIF_SUBR_STRCHR || subr == DIF_SUBR_STRJOIN || subr == DIF_SUBR_STRRCHR || subr == DIF_SUBR_STRSTR || subr == DIF_SUBR_HTONS || subr == DIF_SUBR_HTONL || subr == DIF_SUBR_HTONLL || subr == DIF_SUBR_NTOHS || subr == DIF_SUBR_NTOHL || subr == DIF_SUBR_NTOHLL || subr == DIF_SUBR_MEMREF) break; #ifdef __FreeBSD__ if (subr == DIF_SUBR_MEMSTR) break; #endif err += efunc(pc, "invalid subr %u\n", subr); break; default: err += efunc(pc, "invalid opcode %u\n", DIF_INSTR_OP(instr)); } } return (err); } /* * Returns 1 if the expression in the DIF object can be cached on a per-thread * basis; 0 if not. */ static int dtrace_difo_cacheable(dtrace_difo_t *dp) { int i; if (dp == NULL) return (0); for (i = 0; i < dp->dtdo_varlen; i++) { dtrace_difv_t *v = &dp->dtdo_vartab[i]; if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) continue; switch (v->dtdv_id) { case DIF_VAR_CURTHREAD: case DIF_VAR_PID: case DIF_VAR_TID: case DIF_VAR_EXECARGS: case DIF_VAR_EXECNAME: case DIF_VAR_ZONENAME: break; default: return (0); } } /* * This DIF object may be cacheable. Now we need to look for any * array loading instructions, any memory loading instructions, or * any stores to thread-local variables. */ for (i = 0; i < dp->dtdo_len; i++) { uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || op == DIF_OP_LDGA || op == DIF_OP_STTS) return (0); } return (1); } static void dtrace_difo_hold(dtrace_difo_t *dp) { int i; ASSERT(MUTEX_HELD(&dtrace_lock)); dp->dtdo_refcnt++; ASSERT(dp->dtdo_refcnt != 0); /* * We need to check this DIF object for references to the variable * DIF_VAR_VTIMESTAMP. */ for (i = 0; i < dp->dtdo_varlen; i++) { dtrace_difv_t *v = &dp->dtdo_vartab[i]; if (v->dtdv_id != DIF_VAR_VTIMESTAMP) continue; if (dtrace_vtime_references++ == 0) dtrace_vtime_enable(); } } /* * This routine calculates the dynamic variable chunksize for a given DIF * object. The calculation is not fool-proof, and can probably be tricked by * malicious DIF -- but it works for all compiler-generated DIF. Because this * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail * if a dynamic variable size exceeds the chunksize. */ static void dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) { uint64_t sval = 0; dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ const dif_instr_t *text = dp->dtdo_buf; uint_t pc, srd = 0; uint_t ttop = 0; size_t size, ksize; uint_t id, i; for (pc = 0; pc < dp->dtdo_len; pc++) { dif_instr_t instr = text[pc]; uint_t op = DIF_INSTR_OP(instr); uint_t rd = DIF_INSTR_RD(instr); uint_t r1 = DIF_INSTR_R1(instr); uint_t nkeys = 0; uchar_t scope = 0; dtrace_key_t *key = tupregs; switch (op) { case DIF_OP_SETX: sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; srd = rd; continue; case DIF_OP_STTS: key = &tupregs[DIF_DTR_NREGS]; key[0].dttk_size = 0; key[1].dttk_size = 0; nkeys = 2; scope = DIFV_SCOPE_THREAD; break; case DIF_OP_STGAA: case DIF_OP_STTAA: nkeys = ttop; if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) key[nkeys++].dttk_size = 0; key[nkeys++].dttk_size = 0; if (op == DIF_OP_STTAA) { scope = DIFV_SCOPE_THREAD; } else { scope = DIFV_SCOPE_GLOBAL; } break; case DIF_OP_PUSHTR: if (ttop == DIF_DTR_NREGS) return; if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { /* * If the register for the size of the "pushtr" * is %r0 (or the value is 0) and the type is * a string, we'll use the system-wide default * string size. */ tupregs[ttop++].dttk_size = dtrace_strsize_default; } else { if (srd == 0) return; if (sval > LONG_MAX) return; tupregs[ttop++].dttk_size = sval; } break; case DIF_OP_PUSHTV: if (ttop == DIF_DTR_NREGS) return; tupregs[ttop++].dttk_size = 0; break; case DIF_OP_FLUSHTS: ttop = 0; break; case DIF_OP_POPTS: if (ttop != 0) ttop--; break; } sval = 0; srd = 0; if (nkeys == 0) continue; /* * We have a dynamic variable allocation; calculate its size. */ for (ksize = 0, i = 0; i < nkeys; i++) ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); size = sizeof (dtrace_dynvar_t); size += sizeof (dtrace_key_t) * (nkeys - 1); size += ksize; /* * Now we need to determine the size of the stored data. */ id = DIF_INSTR_VAR(instr); for (i = 0; i < dp->dtdo_varlen; i++) { dtrace_difv_t *v = &dp->dtdo_vartab[i]; if (v->dtdv_id == id && v->dtdv_scope == scope) { size += v->dtdv_type.dtdt_size; break; } } if (i == dp->dtdo_varlen) return; /* * We have the size. If this is larger than the chunk size * for our dynamic variable state, reset the chunk size. */ size = P2ROUNDUP(size, sizeof (uint64_t)); /* * Before setting the chunk size, check that we're not going * to set it to a negative value... */ if (size > LONG_MAX) return; /* * ...and make certain that we didn't badly overflow. */ if (size < ksize || size < sizeof (dtrace_dynvar_t)) return; if (size > vstate->dtvs_dynvars.dtds_chunksize) vstate->dtvs_dynvars.dtds_chunksize = size; } } static void dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) { int i, oldsvars, osz, nsz, otlocals, ntlocals; uint_t id; ASSERT(MUTEX_HELD(&dtrace_lock)); ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); for (i = 0; i < dp->dtdo_varlen; i++) { dtrace_difv_t *v = &dp->dtdo_vartab[i]; dtrace_statvar_t *svar, ***svarp = NULL; size_t dsize = 0; uint8_t scope = v->dtdv_scope; int *np = NULL; if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) continue; id -= DIF_VAR_OTHER_UBASE; switch (scope) { case DIFV_SCOPE_THREAD: while (id >= (otlocals = vstate->dtvs_ntlocals)) { dtrace_difv_t *tlocals; if ((ntlocals = (otlocals << 1)) == 0) ntlocals = 1; osz = otlocals * sizeof (dtrace_difv_t); nsz = ntlocals * sizeof (dtrace_difv_t); tlocals = kmem_zalloc(nsz, KM_SLEEP); if (osz != 0) { bcopy(vstate->dtvs_tlocals, tlocals, osz); kmem_free(vstate->dtvs_tlocals, osz); } vstate->dtvs_tlocals = tlocals; vstate->dtvs_ntlocals = ntlocals; } vstate->dtvs_tlocals[id] = *v; continue; case DIFV_SCOPE_LOCAL: np = &vstate->dtvs_nlocals; svarp = &vstate->dtvs_locals; if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) dsize = NCPU * (v->dtdv_type.dtdt_size + sizeof (uint64_t)); else dsize = NCPU * sizeof (uint64_t); break; case DIFV_SCOPE_GLOBAL: np = &vstate->dtvs_nglobals; svarp = &vstate->dtvs_globals; if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) dsize = v->dtdv_type.dtdt_size + sizeof (uint64_t); break; default: ASSERT(0); } while (id >= (oldsvars = *np)) { dtrace_statvar_t **statics; int newsvars, oldsize, newsize; if ((newsvars = (oldsvars << 1)) == 0) newsvars = 1; oldsize = oldsvars * sizeof (dtrace_statvar_t *); newsize = newsvars * sizeof (dtrace_statvar_t *); statics = kmem_zalloc(newsize, KM_SLEEP); if (oldsize != 0) { bcopy(*svarp, statics, oldsize); kmem_free(*svarp, oldsize); } *svarp = statics; *np = newsvars; } if ((svar = (*svarp)[id]) == NULL) { svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); svar->dtsv_var = *v; if ((svar->dtsv_size = dsize) != 0) { svar->dtsv_data = (uint64_t)(uintptr_t) kmem_zalloc(dsize, KM_SLEEP); } (*svarp)[id] = svar; } svar->dtsv_refcnt++; } dtrace_difo_chunksize(dp, vstate); dtrace_difo_hold(dp); } static dtrace_difo_t * dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) { dtrace_difo_t *new; size_t sz; ASSERT(dp->dtdo_buf != NULL); ASSERT(dp->dtdo_refcnt != 0); new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); ASSERT(dp->dtdo_buf != NULL); sz = dp->dtdo_len * sizeof (dif_instr_t); new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); bcopy(dp->dtdo_buf, new->dtdo_buf, sz); new->dtdo_len = dp->dtdo_len; if (dp->dtdo_strtab != NULL) { ASSERT(dp->dtdo_strlen != 0); new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); new->dtdo_strlen = dp->dtdo_strlen; } if (dp->dtdo_inttab != NULL) { ASSERT(dp->dtdo_intlen != 0); sz = dp->dtdo_intlen * sizeof (uint64_t); new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); new->dtdo_intlen = dp->dtdo_intlen; } if (dp->dtdo_vartab != NULL) { ASSERT(dp->dtdo_varlen != 0); sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); new->dtdo_varlen = dp->dtdo_varlen; } dtrace_difo_init(new, vstate); return (new); } static void dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) { int i; ASSERT(dp->dtdo_refcnt == 0); for (i = 0; i < dp->dtdo_varlen; i++) { dtrace_difv_t *v = &dp->dtdo_vartab[i]; dtrace_statvar_t *svar, **svarp = NULL; uint_t id; uint8_t scope = v->dtdv_scope; int *np = NULL; switch (scope) { case DIFV_SCOPE_THREAD: continue; case DIFV_SCOPE_LOCAL: np = &vstate->dtvs_nlocals; svarp = vstate->dtvs_locals; break; case DIFV_SCOPE_GLOBAL: np = &vstate->dtvs_nglobals; svarp = vstate->dtvs_globals; break; default: ASSERT(0); } if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) continue; id -= DIF_VAR_OTHER_UBASE; ASSERT(id < *np); svar = svarp[id]; ASSERT(svar != NULL); ASSERT(svar->dtsv_refcnt > 0); if (--svar->dtsv_refcnt > 0) continue; if (svar->dtsv_size != 0) { ASSERT(svar->dtsv_data != 0); kmem_free((void *)(uintptr_t)svar->dtsv_data, svar->dtsv_size); } kmem_free(svar, sizeof (dtrace_statvar_t)); svarp[id] = NULL; } if (dp->dtdo_buf != NULL) kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); if (dp->dtdo_inttab != NULL) kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); if (dp->dtdo_strtab != NULL) kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); if (dp->dtdo_vartab != NULL) kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); kmem_free(dp, sizeof (dtrace_difo_t)); } static void dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) { int i; ASSERT(MUTEX_HELD(&dtrace_lock)); ASSERT(dp->dtdo_refcnt != 0); for (i = 0; i < dp->dtdo_varlen; i++) { dtrace_difv_t *v = &dp->dtdo_vartab[i]; if (v->dtdv_id != DIF_VAR_VTIMESTAMP) continue; ASSERT(dtrace_vtime_references > 0); if (--dtrace_vtime_references == 0) dtrace_vtime_disable(); } if (--dp->dtdo_refcnt == 0) dtrace_difo_destroy(dp, vstate); } /* * DTrace Format Functions */ static uint16_t dtrace_format_add(dtrace_state_t *state, char *str) { char *fmt, **new; uint16_t ndx, len = strlen(str) + 1; fmt = kmem_zalloc(len, KM_SLEEP); bcopy(str, fmt, len); for (ndx = 0; ndx < state->dts_nformats; ndx++) { if (state->dts_formats[ndx] == NULL) { state->dts_formats[ndx] = fmt; return (ndx + 1); } } if (state->dts_nformats == USHRT_MAX) { /* * This is only likely if a denial-of-service attack is being * attempted. As such, it's okay to fail silently here. */ kmem_free(fmt, len); return (0); } /* * For simplicity, we always resize the formats array to be exactly the * number of formats. */ ndx = state->dts_nformats++; new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); if (state->dts_formats != NULL) { ASSERT(ndx != 0); bcopy(state->dts_formats, new, ndx * sizeof (char *)); kmem_free(state->dts_formats, ndx * sizeof (char *)); } state->dts_formats = new; state->dts_formats[ndx] = fmt; return (ndx + 1); } static void dtrace_format_remove(dtrace_state_t *state, uint16_t format) { char *fmt; ASSERT(state->dts_formats != NULL); ASSERT(format <= state->dts_nformats); ASSERT(state->dts_formats[format - 1] != NULL); fmt = state->dts_formats[format - 1]; kmem_free(fmt, strlen(fmt) + 1); state->dts_formats[format - 1] = NULL; } static void dtrace_format_destroy(dtrace_state_t *state) { int i; if (state->dts_nformats == 0) { ASSERT(state->dts_formats == NULL); return; } ASSERT(state->dts_formats != NULL); for (i = 0; i < state->dts_nformats; i++) { char *fmt = state->dts_formats[i]; if (fmt == NULL) continue; kmem_free(fmt, strlen(fmt) + 1); } kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); state->dts_nformats = 0; state->dts_formats = NULL; } /* * DTrace Predicate Functions */ static dtrace_predicate_t * dtrace_predicate_create(dtrace_difo_t *dp) { dtrace_predicate_t *pred; ASSERT(MUTEX_HELD(&dtrace_lock)); ASSERT(dp->dtdo_refcnt != 0); pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); pred->dtp_difo = dp; pred->dtp_refcnt = 1; if (!dtrace_difo_cacheable(dp)) return (pred); if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { /* * This is only theoretically possible -- we have had 2^32 * cacheable predicates on this machine. We cannot allow any * more predicates to become cacheable: as unlikely as it is, * there may be a thread caching a (now stale) predicate cache * ID. (N.B.: the temptation is being successfully resisted to * have this cmn_err() "Holy shit -- we executed this code!") */ return (pred); } pred->dtp_cacheid = dtrace_predcache_id++; return (pred); } static void dtrace_predicate_hold(dtrace_predicate_t *pred) { ASSERT(MUTEX_HELD(&dtrace_lock)); ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); ASSERT(pred->dtp_refcnt > 0); pred->dtp_refcnt++; } static void dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) { dtrace_difo_t *dp = pred->dtp_difo; ASSERT(MUTEX_HELD(&dtrace_lock)); ASSERT(dp != NULL && dp->dtdo_refcnt != 0); ASSERT(pred->dtp_refcnt > 0); if (--pred->dtp_refcnt == 0) { dtrace_difo_release(pred->dtp_difo, vstate); kmem_free(pred, sizeof (dtrace_predicate_t)); } } /* * DTrace Action Description Functions */ static dtrace_actdesc_t * dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, uint64_t uarg, uint64_t arg) { dtrace_actdesc_t *act; #ifdef illumos ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); #endif act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); act->dtad_kind = kind; act->dtad_ntuple = ntuple; act->dtad_uarg = uarg; act->dtad_arg = arg; act->dtad_refcnt = 1; return (act); } static void dtrace_actdesc_hold(dtrace_actdesc_t *act) { ASSERT(act->dtad_refcnt >= 1); act->dtad_refcnt++; } static void dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) { dtrace_actkind_t kind = act->dtad_kind; dtrace_difo_t *dp; ASSERT(act->dtad_refcnt >= 1); if (--act->dtad_refcnt != 0) return; if ((dp = act->dtad_difo) != NULL) dtrace_difo_release(dp, vstate); if (DTRACEACT_ISPRINTFLIKE(kind)) { char *str = (char *)(uintptr_t)act->dtad_arg; #ifdef illumos ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); #endif if (str != NULL) kmem_free(str, strlen(str) + 1); } kmem_free(act, sizeof (dtrace_actdesc_t)); } /* * DTrace ECB Functions */ static dtrace_ecb_t * dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) { dtrace_ecb_t *ecb; dtrace_epid_t epid; ASSERT(MUTEX_HELD(&dtrace_lock)); ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); ecb->dte_predicate = NULL; ecb->dte_probe = probe; /* * The default size is the size of the default action: recording * the header. */ ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); ecb->dte_alignment = sizeof (dtrace_epid_t); epid = state->dts_epid++; if (epid - 1 >= state->dts_necbs) { dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; int necbs = state->dts_necbs << 1; ASSERT(epid == state->dts_necbs + 1); if (necbs == 0) { ASSERT(oecbs == NULL); necbs = 1; } ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); if (oecbs != NULL) bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); dtrace_membar_producer(); state->dts_ecbs = ecbs; if (oecbs != NULL) { /* * If this state is active, we must dtrace_sync() * before we can free the old dts_ecbs array: we're * coming in hot, and there may be active ring * buffer processing (which indexes into the dts_ecbs * array) on another CPU. */ if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) dtrace_sync(); kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); } dtrace_membar_producer(); state->dts_necbs = necbs; } ecb->dte_state = state; ASSERT(state->dts_ecbs[epid - 1] == NULL); dtrace_membar_producer(); state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; return (ecb); } static void dtrace_ecb_enable(dtrace_ecb_t *ecb) { dtrace_probe_t *probe = ecb->dte_probe; ASSERT(MUTEX_HELD(&cpu_lock)); ASSERT(MUTEX_HELD(&dtrace_lock)); ASSERT(ecb->dte_next == NULL); if (probe == NULL) { /* * This is the NULL probe -- there's nothing to do. */ return; } if (probe->dtpr_ecb == NULL) { dtrace_provider_t *prov = probe->dtpr_provider; /* * We're the first ECB on this probe. */ probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; if (ecb->dte_predicate != NULL) probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; prov->dtpv_pops.dtps_enable(prov->dtpv_arg, probe->dtpr_id, probe->dtpr_arg); } else { /* * This probe is already active. Swing the last pointer to * point to the new ECB, and issue a dtrace_sync() to assure * that all CPUs have seen the change. */ ASSERT(probe->dtpr_ecb_last != NULL); probe->dtpr_ecb_last->dte_next = ecb; probe->dtpr_ecb_last = ecb; probe->dtpr_predcache = 0; dtrace_sync(); } } static int dtrace_ecb_resize(dtrace_ecb_t *ecb) { dtrace_action_t *act; uint32_t curneeded = UINT32_MAX; uint32_t aggbase = UINT32_MAX; /* * If we record anything, we always record the dtrace_rechdr_t. (And * we always record it first.) */ ecb->dte_size = sizeof (dtrace_rechdr_t); ecb->dte_alignment = sizeof (dtrace_epid_t); for (act = ecb->dte_action; act != NULL; act = act->dta_next) { dtrace_recdesc_t *rec = &act->dta_rec; ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); ecb->dte_alignment = MAX(ecb->dte_alignment, rec->dtrd_alignment); if (DTRACEACT_ISAGG(act->dta_kind)) { dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; ASSERT(rec->dtrd_size != 0); ASSERT(agg->dtag_first != NULL); ASSERT(act->dta_prev->dta_intuple); ASSERT(aggbase != UINT32_MAX); ASSERT(curneeded != UINT32_MAX); agg->dtag_base = aggbase; curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); rec->dtrd_offset = curneeded; if (curneeded + rec->dtrd_size < curneeded) return (EINVAL); curneeded += rec->dtrd_size; ecb->dte_needed = MAX(ecb->dte_needed, curneeded); aggbase = UINT32_MAX; curneeded = UINT32_MAX; } else if (act->dta_intuple) { if (curneeded == UINT32_MAX) { /* * This is the first record in a tuple. Align * curneeded to be at offset 4 in an 8-byte * aligned block. */ ASSERT(act->dta_prev == NULL || !act->dta_prev->dta_intuple); ASSERT3U(aggbase, ==, UINT32_MAX); curneeded = P2PHASEUP(ecb->dte_size, sizeof (uint64_t), sizeof (dtrace_aggid_t)); aggbase = curneeded - sizeof (dtrace_aggid_t); ASSERT(IS_P2ALIGNED(aggbase, sizeof (uint64_t))); } curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); rec->dtrd_offset = curneeded; if (curneeded + rec->dtrd_size < curneeded) return (EINVAL); curneeded += rec->dtrd_size; } else { /* tuples must be followed by an aggregation */ ASSERT(act->dta_prev == NULL || !act->dta_prev->dta_intuple); ecb->dte_size = P2ROUNDUP(ecb->dte_size, rec->dtrd_alignment); rec->dtrd_offset = ecb->dte_size; if (ecb->dte_size + rec->dtrd_size < ecb->dte_size) return (EINVAL); ecb->dte_size += rec->dtrd_size; ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); } } if ((act = ecb->dte_action) != NULL && !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && ecb->dte_size == sizeof (dtrace_rechdr_t)) { /* * If the size is still sizeof (dtrace_rechdr_t), then all * actions store no data; set the size to 0. */ ecb->dte_size = 0; } ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, ecb->dte_needed); return (0); } static dtrace_action_t * dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) { dtrace_aggregation_t *agg; size_t size = sizeof (uint64_t); int ntuple = desc->dtad_ntuple; dtrace_action_t *act; dtrace_recdesc_t *frec; dtrace_aggid_t aggid; dtrace_state_t *state = ecb->dte_state; agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); agg->dtag_ecb = ecb; ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); switch (desc->dtad_kind) { case DTRACEAGG_MIN: agg->dtag_initial = INT64_MAX; agg->dtag_aggregate = dtrace_aggregate_min; break; case DTRACEAGG_MAX: agg->dtag_initial = INT64_MIN; agg->dtag_aggregate = dtrace_aggregate_max; break; case DTRACEAGG_COUNT: agg->dtag_aggregate = dtrace_aggregate_count; break; case DTRACEAGG_QUANTIZE: agg->dtag_aggregate = dtrace_aggregate_quantize; size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * sizeof (uint64_t); break; case DTRACEAGG_LQUANTIZE: { uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); agg->dtag_initial = desc->dtad_arg; agg->dtag_aggregate = dtrace_aggregate_lquantize; if (step == 0 || levels == 0) goto err; size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); break; } case DTRACEAGG_LLQUANTIZE: { uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); int64_t v; agg->dtag_initial = desc->dtad_arg; agg->dtag_aggregate = dtrace_aggregate_llquantize; if (factor < 2 || low >= high || nsteps < factor) goto err; /* * Now check that the number of steps evenly divides a power * of the factor. (This assures both integer bucket size and * linearity within each magnitude.) */ for (v = factor; v < nsteps; v *= factor) continue; if ((v % nsteps) || (nsteps % factor)) goto err; size = (dtrace_aggregate_llquantize_bucket(factor, low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); break; } case DTRACEAGG_AVG: agg->dtag_aggregate = dtrace_aggregate_avg; size = sizeof (uint64_t) * 2; break; case DTRACEAGG_STDDEV: agg->dtag_aggregate = dtrace_aggregate_stddev; size = sizeof (uint64_t) * 4; break; case DTRACEAGG_SUM: agg->dtag_aggregate = dtrace_aggregate_sum; break; default: goto err; } agg->dtag_action.dta_rec.dtrd_size = size; if (ntuple == 0) goto err; /* * We must make sure that we have enough actions for the n-tuple. */ for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { if (DTRACEACT_ISAGG(act->dta_kind)) break; if (--ntuple == 0) { /* * This is the action with which our n-tuple begins. */ agg->dtag_first = act; goto success; } } /* * This n-tuple is short by ntuple elements. Return failure. */ ASSERT(ntuple != 0); err: kmem_free(agg, sizeof (dtrace_aggregation_t)); return (NULL); success: /* * If the last action in the tuple has a size of zero, it's actually * an expression argument for the aggregating action. */ ASSERT(ecb->dte_action_last != NULL); act = ecb->dte_action_last; if (act->dta_kind == DTRACEACT_DIFEXPR) { ASSERT(act->dta_difo != NULL); if (act->dta_difo->dtdo_rtype.dtdt_size == 0) agg->dtag_hasarg = 1; } /* * We need to allocate an id for this aggregation. */ #ifdef illumos aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, VM_BESTFIT | VM_SLEEP); #else aggid = alloc_unr(state->dts_aggid_arena); #endif if (aggid - 1 >= state->dts_naggregations) { dtrace_aggregation_t **oaggs = state->dts_aggregations; dtrace_aggregation_t **aggs; int naggs = state->dts_naggregations << 1; int onaggs = state->dts_naggregations; ASSERT(aggid == state->dts_naggregations + 1); if (naggs == 0) { ASSERT(oaggs == NULL); naggs = 1; } aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); if (oaggs != NULL) { bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); kmem_free(oaggs, onaggs * sizeof (*aggs)); } state->dts_aggregations = aggs; state->dts_naggregations = naggs; } ASSERT(state->dts_aggregations[aggid - 1] == NULL); state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; frec = &agg->dtag_first->dta_rec; if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) frec->dtrd_alignment = sizeof (dtrace_aggid_t); for (act = agg->dtag_first; act != NULL; act = act->dta_next) { ASSERT(!act->dta_intuple); act->dta_intuple = 1; } return (&agg->dtag_action); } static void dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) { dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; dtrace_state_t *state = ecb->dte_state; dtrace_aggid_t aggid = agg->dtag_id; ASSERT(DTRACEACT_ISAGG(act->dta_kind)); #ifdef illumos vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); #else free_unr(state->dts_aggid_arena, aggid); #endif ASSERT(state->dts_aggregations[aggid - 1] == agg); state->dts_aggregations[aggid - 1] = NULL; kmem_free(agg, sizeof (dtrace_aggregation_t)); } static int dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) { dtrace_action_t *action, *last; dtrace_difo_t *dp = desc->dtad_difo; uint32_t size = 0, align = sizeof (uint8_t), mask; uint16_t format = 0; dtrace_recdesc_t *rec; dtrace_state_t *state = ecb->dte_state; dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize; uint64_t arg = desc->dtad_arg; ASSERT(MUTEX_HELD(&dtrace_lock)); ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); if (DTRACEACT_ISAGG(desc->dtad_kind)) { /* * If this is an aggregating action, there must be neither * a speculate nor a commit on the action chain. */ dtrace_action_t *act; for (act = ecb->dte_action; act != NULL; act = act->dta_next) { if (act->dta_kind == DTRACEACT_COMMIT) return (EINVAL); if (act->dta_kind == DTRACEACT_SPECULATE) return (EINVAL); } action = dtrace_ecb_aggregation_create(ecb, desc); if (action == NULL) return (EINVAL); } else { if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || (desc->dtad_kind == DTRACEACT_DIFEXPR && dp != NULL && dp->dtdo_destructive)) { state->dts_destructive = 1; } switch (desc->dtad_kind) { case DTRACEACT_PRINTF: case DTRACEACT_PRINTA: case DTRACEACT_SYSTEM: case DTRACEACT_FREOPEN: case DTRACEACT_DIFEXPR: /* * We know that our arg is a string -- turn it into a * format. */ if (arg == 0) { ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || desc->dtad_kind == DTRACEACT_DIFEXPR); format = 0; } else { ASSERT(arg != 0); #ifdef illumos ASSERT(arg > KERNELBASE); #endif format = dtrace_format_add(state, (char *)(uintptr_t)arg); } /*FALLTHROUGH*/ case DTRACEACT_LIBACT: case DTRACEACT_TRACEMEM: case DTRACEACT_TRACEMEM_DYNSIZE: if (dp == NULL) return (EINVAL); if ((size = dp->dtdo_rtype.dtdt_size) != 0) break; if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) return (EINVAL); size = opt[DTRACEOPT_STRSIZE]; } break; case DTRACEACT_STACK: if ((nframes = arg) == 0) { nframes = opt[DTRACEOPT_STACKFRAMES]; ASSERT(nframes > 0); arg = nframes; } size = nframes * sizeof (pc_t); break; case DTRACEACT_JSTACK: if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) nframes = opt[DTRACEOPT_JSTACKFRAMES]; arg = DTRACE_USTACK_ARG(nframes, strsize); /*FALLTHROUGH*/ case DTRACEACT_USTACK: if (desc->dtad_kind != DTRACEACT_JSTACK && (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { strsize = DTRACE_USTACK_STRSIZE(arg); nframes = opt[DTRACEOPT_USTACKFRAMES]; ASSERT(nframes > 0); arg = DTRACE_USTACK_ARG(nframes, strsize); } /* * Save a slot for the pid. */ size = (nframes + 1) * sizeof (uint64_t); size += DTRACE_USTACK_STRSIZE(arg); size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); break; case DTRACEACT_SYM: case DTRACEACT_MOD: if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != sizeof (uint64_t)) || (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) return (EINVAL); break; case DTRACEACT_USYM: case DTRACEACT_UMOD: case DTRACEACT_UADDR: if (dp == NULL || (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) return (EINVAL); /* * We have a slot for the pid, plus a slot for the * argument. To keep things simple (aligned with * bitness-neutral sizing), we store each as a 64-bit * quantity. */ size = 2 * sizeof (uint64_t); break; case DTRACEACT_STOP: case DTRACEACT_BREAKPOINT: case DTRACEACT_PANIC: break; case DTRACEACT_CHILL: case DTRACEACT_DISCARD: case DTRACEACT_RAISE: if (dp == NULL) return (EINVAL); break; case DTRACEACT_EXIT: if (dp == NULL || (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) return (EINVAL); break; case DTRACEACT_SPECULATE: if (ecb->dte_size > sizeof (dtrace_rechdr_t)) return (EINVAL); if (dp == NULL) return (EINVAL); state->dts_speculates = 1; break; case DTRACEACT_PRINTM: size = dp->dtdo_rtype.dtdt_size; break; case DTRACEACT_COMMIT: { dtrace_action_t *act = ecb->dte_action; for (; act != NULL; act = act->dta_next) { if (act->dta_kind == DTRACEACT_COMMIT) return (EINVAL); } if (dp == NULL) return (EINVAL); break; } default: return (EINVAL); } if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { /* * If this is a data-storing action or a speculate, * we must be sure that there isn't a commit on the * action chain. */ dtrace_action_t *act = ecb->dte_action; for (; act != NULL; act = act->dta_next) { if (act->dta_kind == DTRACEACT_COMMIT) return (EINVAL); } } action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); action->dta_rec.dtrd_size = size; } action->dta_refcnt = 1; rec = &action->dta_rec; size = rec->dtrd_size; for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { if (!(size & mask)) { align = mask + 1; break; } } action->dta_kind = desc->dtad_kind; if ((action->dta_difo = dp) != NULL) dtrace_difo_hold(dp); rec->dtrd_action = action->dta_kind; rec->dtrd_arg = arg; rec->dtrd_uarg = desc->dtad_uarg; rec->dtrd_alignment = (uint16_t)align; rec->dtrd_format = format; if ((last = ecb->dte_action_last) != NULL) { ASSERT(ecb->dte_action != NULL); action->dta_prev = last; last->dta_next = action; } else { ASSERT(ecb->dte_action == NULL); ecb->dte_action = action; } ecb->dte_action_last = action; return (0); } static void dtrace_ecb_action_remove(dtrace_ecb_t *ecb) { dtrace_action_t *act = ecb->dte_action, *next; dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; dtrace_difo_t *dp; uint16_t format; if (act != NULL && act->dta_refcnt > 1) { ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); act->dta_refcnt--; } else { for (; act != NULL; act = next) { next = act->dta_next; ASSERT(next != NULL || act == ecb->dte_action_last); ASSERT(act->dta_refcnt == 1); if ((format = act->dta_rec.dtrd_format) != 0) dtrace_format_remove(ecb->dte_state, format); if ((dp = act->dta_difo) != NULL) dtrace_difo_release(dp, vstate); if (DTRACEACT_ISAGG(act->dta_kind)) { dtrace_ecb_aggregation_destroy(ecb, act); } else { kmem_free(act, sizeof (dtrace_action_t)); } } } ecb->dte_action = NULL; ecb->dte_action_last = NULL; ecb->dte_size = 0; } static void dtrace_ecb_disable(dtrace_ecb_t *ecb) { /* * We disable the ECB by removing it from its probe. */ dtrace_ecb_t *pecb, *prev = NULL; dtrace_probe_t *probe = ecb->dte_probe; ASSERT(MUTEX_HELD(&dtrace_lock)); if (probe == NULL) { /* * This is the NULL probe; there is nothing to disable. */ return; } for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { if (pecb == ecb) break; prev = pecb; } ASSERT(pecb != NULL); if (prev == NULL) { probe->dtpr_ecb = ecb->dte_next; } else { prev->dte_next = ecb->dte_next; } if (ecb == probe->dtpr_ecb_last) { ASSERT(ecb->dte_next == NULL); probe->dtpr_ecb_last = prev; } /* * The ECB has been disconnected from the probe; now sync to assure * that all CPUs have seen the change before returning. */ dtrace_sync(); if (probe->dtpr_ecb == NULL) { /* * That was the last ECB on the probe; clear the predicate * cache ID for the probe, disable it and sync one more time * to assure that we'll never hit it again. */ dtrace_provider_t *prov = probe->dtpr_provider; ASSERT(ecb->dte_next == NULL); ASSERT(probe->dtpr_ecb_last == NULL); probe->dtpr_predcache = DTRACE_CACHEIDNONE; prov->dtpv_pops.dtps_disable(prov->dtpv_arg, probe->dtpr_id, probe->dtpr_arg); dtrace_sync(); } else { /* * There is at least one ECB remaining on the probe. If there * is _exactly_ one, set the probe's predicate cache ID to be * the predicate cache ID of the remaining ECB. */ ASSERT(probe->dtpr_ecb_last != NULL); ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); if (probe->dtpr_ecb == probe->dtpr_ecb_last) { dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; ASSERT(probe->dtpr_ecb->dte_next == NULL); if (p != NULL) probe->dtpr_predcache = p->dtp_cacheid; } ecb->dte_next = NULL; } } static void dtrace_ecb_destroy(dtrace_ecb_t *ecb) { dtrace_state_t *state = ecb->dte_state; dtrace_vstate_t *vstate = &state->dts_vstate; dtrace_predicate_t *pred; dtrace_epid_t epid = ecb->dte_epid; ASSERT(MUTEX_HELD(&dtrace_lock)); ASSERT(ecb->dte_next == NULL); ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); if ((pred = ecb->dte_predicate) != NULL) dtrace_predicate_release(pred, vstate); dtrace_ecb_action_remove(ecb); ASSERT(state->dts_ecbs[epid - 1] == ecb); state->dts_ecbs[epid - 1] = NULL; kmem_free(ecb, sizeof (dtrace_ecb_t)); } static dtrace_ecb_t * dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, dtrace_enabling_t *enab) { dtrace_ecb_t *ecb; dtrace_predicate_t *pred; dtrace_actdesc_t *act; dtrace_provider_t *prov; dtrace_ecbdesc_t *desc = enab->dten_current; ASSERT(MUTEX_HELD(&dtrace_lock)); ASSERT(state != NULL); ecb = dtrace_ecb_add(state, probe); ecb->dte_uarg = desc->dted_uarg; if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { dtrace_predicate_hold(pred); ecb->dte_predicate = pred; } if (probe != NULL) { /* * If the provider shows more leg than the consumer is old * enough to see, we need to enable the appropriate implicit * predicate bits to prevent the ecb from activating at * revealing times. * * Providers specifying DTRACE_PRIV_USER at register time * are stating that they need the /proc-style privilege * model to be enforced, and this is what DTRACE_COND_OWNER * and DTRACE_COND_ZONEOWNER will then do at probe time. */ prov = probe->dtpr_provider; if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) ecb->dte_cond |= DTRACE_COND_OWNER; if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) ecb->dte_cond |= DTRACE_COND_ZONEOWNER; /* * If the provider shows us kernel innards and the user * is lacking sufficient privilege, enable the * DTRACE_COND_USERMODE implicit predicate. */ if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) ecb->dte_cond |= DTRACE_COND_USERMODE; } if (dtrace_ecb_create_cache != NULL) { /* * If we have a cached ecb, we'll use its action list instead * of creating our own (saving both time and space). */ dtrace_ecb_t *cached = dtrace_ecb_create_cache; dtrace_action_t *act = cached->dte_action; if (act != NULL) { ASSERT(act->dta_refcnt > 0); act->dta_refcnt++; ecb->dte_action = act; ecb->dte_action_last = cached->dte_action_last; ecb->dte_needed = cached->dte_needed; ecb->dte_size = cached->dte_size; ecb->dte_alignment = cached->dte_alignment; } return (ecb); } for (act = desc->dted_action; act != NULL; act = act->dtad_next) { if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { dtrace_ecb_destroy(ecb); return (NULL); } } if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) { dtrace_ecb_destroy(ecb); return (NULL); } return (dtrace_ecb_create_cache = ecb); } static int dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) { dtrace_ecb_t *ecb; dtrace_enabling_t *enab = arg; dtrace_state_t *state = enab->dten_vstate->dtvs_state; ASSERT(state != NULL); if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { /* * This probe was created in a generation for which this * enabling has previously created ECBs; we don't want to * enable it again, so just kick out. */ return (DTRACE_MATCH_NEXT); } if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) return (DTRACE_MATCH_DONE); dtrace_ecb_enable(ecb); return (DTRACE_MATCH_NEXT); } static dtrace_ecb_t * dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) { dtrace_ecb_t *ecb; ASSERT(MUTEX_HELD(&dtrace_lock)); if (id == 0 || id > state->dts_necbs) return (NULL); ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); return (state->dts_ecbs[id - 1]); } static dtrace_aggregation_t * dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) { dtrace_aggregation_t *agg; ASSERT(MUTEX_HELD(&dtrace_lock)); if (id == 0 || id > state->dts_naggregations) return (NULL); ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || agg->dtag_id == id); return (state->dts_aggregations[id - 1]); } /* * DTrace Buffer Functions * * The following functions manipulate DTrace buffers. Most of these functions * are called in the context of establishing or processing consumer state; * exceptions are explicitly noted. */ /* * Note: called from cross call context. This function switches the two * buffers on a given CPU. The atomicity of this operation is assured by * disabling interrupts while the actual switch takes place; the disabling of * interrupts serializes the execution with any execution of dtrace_probe() on * the same CPU. */ static void dtrace_buffer_switch(dtrace_buffer_t *buf) { caddr_t tomax = buf->dtb_tomax; caddr_t xamot = buf->dtb_xamot; dtrace_icookie_t cookie; hrtime_t now; ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); cookie = dtrace_interrupt_disable(); now = dtrace_gethrtime(); buf->dtb_tomax = xamot; buf->dtb_xamot = tomax; buf->dtb_xamot_drops = buf->dtb_drops; buf->dtb_xamot_offset = buf->dtb_offset; buf->dtb_xamot_errors = buf->dtb_errors; buf->dtb_xamot_flags = buf->dtb_flags; buf->dtb_offset = 0; buf->dtb_drops = 0; buf->dtb_errors = 0; buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); buf->dtb_interval = now - buf->dtb_switched; buf->dtb_switched = now; dtrace_interrupt_enable(cookie); } /* * Note: called from cross call context. This function activates a buffer * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation * is guaranteed by the disabling of interrupts. */ static void dtrace_buffer_activate(dtrace_state_t *state) { dtrace_buffer_t *buf; dtrace_icookie_t cookie = dtrace_interrupt_disable(); buf = &state->dts_buffer[curcpu]; if (buf->dtb_tomax != NULL) { /* * We might like to assert that the buffer is marked inactive, * but this isn't necessarily true: the buffer for the CPU * that processes the BEGIN probe has its buffer activated * manually. In this case, we take the (harmless) action * re-clearing the bit INACTIVE bit. */ buf->dtb_flags &= ~DTRACEBUF_INACTIVE; } dtrace_interrupt_enable(cookie); } #ifdef __FreeBSD__ /* * Activate the specified per-CPU buffer. This is used instead of * dtrace_buffer_activate() when APs have not yet started, i.e. when * activating anonymous state. */ static void dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu) { if (state->dts_buffer[cpu].dtb_tomax != NULL) state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; } #endif static int dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, processorid_t cpu, int *factor) { #ifdef illumos cpu_t *cp; #endif dtrace_buffer_t *buf; int allocated = 0, desired = 0; #ifdef illumos ASSERT(MUTEX_HELD(&cpu_lock)); ASSERT(MUTEX_HELD(&dtrace_lock)); *factor = 1; if (size > dtrace_nonroot_maxsize && !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) return (EFBIG); cp = cpu_list; do { if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) continue; buf = &bufs[cp->cpu_id]; /* * If there is already a buffer allocated for this CPU, it * is only possible that this is a DR event. In this case, */ if (buf->dtb_tomax != NULL) { ASSERT(buf->dtb_size == size); continue; } ASSERT(buf->dtb_xamot == NULL); if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) goto err; buf->dtb_size = size; buf->dtb_flags = flags; buf->dtb_offset = 0; buf->dtb_drops = 0; if (flags & DTRACEBUF_NOSWITCH) continue; if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) goto err; } while ((cp = cp->cpu_next) != cpu_list); return (0); err: cp = cpu_list; do { if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) continue; buf = &bufs[cp->cpu_id]; desired += 2; if (buf->dtb_xamot != NULL) { ASSERT(buf->dtb_tomax != NULL); ASSERT(buf->dtb_size == size); kmem_free(buf->dtb_xamot, size); allocated++; } if (buf->dtb_tomax != NULL) { ASSERT(buf->dtb_size == size); kmem_free(buf->dtb_tomax, size); allocated++; } buf->dtb_tomax = NULL; buf->dtb_xamot = NULL; buf->dtb_size = 0; } while ((cp = cp->cpu_next) != cpu_list); #else int i; *factor = 1; #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ defined(__mips__) || defined(__powerpc__) || defined(__riscv) /* * FreeBSD isn't good at limiting the amount of memory we * ask to malloc, so let's place a limit here before trying * to do something that might well end in tears at bedtime. */ if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1))) return (ENOMEM); #endif ASSERT(MUTEX_HELD(&dtrace_lock)); CPU_FOREACH(i) { if (cpu != DTRACE_CPUALL && cpu != i) continue; buf = &bufs[i]; /* * If there is already a buffer allocated for this CPU, it * is only possible that this is a DR event. In this case, * the buffer size must match our specified size. */ if (buf->dtb_tomax != NULL) { ASSERT(buf->dtb_size == size); continue; } ASSERT(buf->dtb_xamot == NULL); if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) goto err; buf->dtb_size = size; buf->dtb_flags = flags; buf->dtb_offset = 0; buf->dtb_drops = 0; if (flags & DTRACEBUF_NOSWITCH) continue; if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) goto err; } return (0); err: /* * Error allocating memory, so free the buffers that were * allocated before the failed allocation. */ CPU_FOREACH(i) { if (cpu != DTRACE_CPUALL && cpu != i) continue; buf = &bufs[i]; desired += 2; if (buf->dtb_xamot != NULL) { ASSERT(buf->dtb_tomax != NULL); ASSERT(buf->dtb_size == size); kmem_free(buf->dtb_xamot, size); allocated++; } if (buf->dtb_tomax != NULL) { ASSERT(buf->dtb_size == size); kmem_free(buf->dtb_tomax, size); allocated++; } buf->dtb_tomax = NULL; buf->dtb_xamot = NULL; buf->dtb_size = 0; } #endif *factor = desired / (allocated > 0 ? allocated : 1); return (ENOMEM); } /* * Note: called from probe context. This function just increments the drop * count on a buffer. It has been made a function to allow for the * possibility of understanding the source of mysterious drop counts. (A * problem for which one may be particularly disappointed that DTrace cannot * be used to understand DTrace.) */ static void dtrace_buffer_drop(dtrace_buffer_t *buf) { buf->dtb_drops++; } /* * Note: called from probe context. This function is called to reserve space * in a buffer. If mstate is non-NULL, sets the scratch base and size in the * mstate. Returns the new offset in the buffer, or a negative value if an * error has occurred. */ static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, dtrace_state_t *state, dtrace_mstate_t *mstate) { intptr_t offs = buf->dtb_offset, soffs; intptr_t woffs; caddr_t tomax; size_t total; if (buf->dtb_flags & DTRACEBUF_INACTIVE) return (-1); if ((tomax = buf->dtb_tomax) == NULL) { dtrace_buffer_drop(buf); return (-1); } if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { while (offs & (align - 1)) { /* * Assert that our alignment is off by a number which * is itself sizeof (uint32_t) aligned. */ ASSERT(!((align - (offs & (align - 1))) & (sizeof (uint32_t) - 1))); DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); offs += sizeof (uint32_t); } if ((soffs = offs + needed) > buf->dtb_size) { dtrace_buffer_drop(buf); return (-1); } if (mstate == NULL) return (offs); mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; mstate->dtms_scratch_size = buf->dtb_size - soffs; mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; return (offs); } if (buf->dtb_flags & DTRACEBUF_FILL) { if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && (buf->dtb_flags & DTRACEBUF_FULL)) return (-1); goto out; } total = needed + (offs & (align - 1)); /* * For a ring buffer, life is quite a bit more complicated. Before * we can store any padding, we need to adjust our wrapping offset. * (If we've never before wrapped or we're not about to, no adjustment * is required.) */ if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || offs + total > buf->dtb_size) { woffs = buf->dtb_xamot_offset; if (offs + total > buf->dtb_size) { /* * We can't fit in the end of the buffer. First, a * sanity check that we can fit in the buffer at all. */ if (total > buf->dtb_size) { dtrace_buffer_drop(buf); return (-1); } /* * We're going to be storing at the top of the buffer, * so now we need to deal with the wrapped offset. We * only reset our wrapped offset to 0 if it is * currently greater than the current offset. If it * is less than the current offset, it is because a * previous allocation induced a wrap -- but the * allocation didn't subsequently take the space due * to an error or false predicate evaluation. In this * case, we'll just leave the wrapped offset alone: if * the wrapped offset hasn't been advanced far enough * for this allocation, it will be adjusted in the * lower loop. */ if (buf->dtb_flags & DTRACEBUF_WRAPPED) { if (woffs >= offs) woffs = 0; } else { woffs = 0; } /* * Now we know that we're going to be storing to the * top of the buffer and that there is room for us * there. We need to clear the buffer from the current * offset to the end (there may be old gunk there). */ while (offs < buf->dtb_size) tomax[offs++] = 0; /* * We need to set our offset to zero. And because we * are wrapping, we need to set the bit indicating as * much. We can also adjust our needed space back * down to the space required by the ECB -- we know * that the top of the buffer is aligned. */ offs = 0; total = needed; buf->dtb_flags |= DTRACEBUF_WRAPPED; } else { /* * There is room for us in the buffer, so we simply * need to check the wrapped offset. */ if (woffs < offs) { /* * The wrapped offset is less than the offset. * This can happen if we allocated buffer space * that induced a wrap, but then we didn't * subsequently take the space due to an error * or false predicate evaluation. This is * okay; we know that _this_ allocation isn't * going to induce a wrap. We still can't * reset the wrapped offset to be zero, * however: the space may have been trashed in * the previous failed probe attempt. But at * least the wrapped offset doesn't need to * be adjusted at all... */ goto out; } } while (offs + total > woffs) { dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); size_t size; if (epid == DTRACE_EPIDNONE) { size = sizeof (uint32_t); } else { ASSERT3U(epid, <=, state->dts_necbs); ASSERT(state->dts_ecbs[epid - 1] != NULL); size = state->dts_ecbs[epid - 1]->dte_size; } ASSERT(woffs + size <= buf->dtb_size); ASSERT(size != 0); if (woffs + size == buf->dtb_size) { /* * We've reached the end of the buffer; we want * to set the wrapped offset to 0 and break * out. However, if the offs is 0, then we're * in a strange edge-condition: the amount of * space that we want to reserve plus the size * of the record that we're overwriting is * greater than the size of the buffer. This * is problematic because if we reserve the * space but subsequently don't consume it (due * to a failed predicate or error) the wrapped * offset will be 0 -- yet the EPID at offset 0 * will not be committed. This situation is * relatively easy to deal with: if we're in * this case, the buffer is indistinguishable * from one that hasn't wrapped; we need only * finish the job by clearing the wrapped bit, * explicitly setting the offset to be 0, and * zero'ing out the old data in the buffer. */ if (offs == 0) { buf->dtb_flags &= ~DTRACEBUF_WRAPPED; buf->dtb_offset = 0; woffs = total; while (woffs < buf->dtb_size) tomax[woffs++] = 0; } woffs = 0; break; } woffs += size; } /* * We have a wrapped offset. It may be that the wrapped offset * has become zero -- that's okay. */ buf->dtb_xamot_offset = woffs; } out: /* * Now we can plow the buffer with any necessary padding. */ while (offs & (align - 1)) { /* * Assert that our alignment is off by a number which * is itself sizeof (uint32_t) aligned. */ ASSERT(!((align - (offs & (align - 1))) & (sizeof (uint32_t) - 1))); DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); offs += sizeof (uint32_t); } if (buf->dtb_flags & DTRACEBUF_FILL) { if (offs + needed > buf->dtb_size - state->dts_reserve) { buf->dtb_flags |= DTRACEBUF_FULL; return (-1); } } if (mstate == NULL) return (offs); /* * For ring buffers and fill buffers, the scratch space is always * the inactive buffer. */ mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; mstate->dtms_scratch_size = buf->dtb_size; mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; return (offs); } static void dtrace_buffer_polish(dtrace_buffer_t *buf) { ASSERT(buf->dtb_flags & DTRACEBUF_RING); ASSERT(MUTEX_HELD(&dtrace_lock)); if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) return; /* * We need to polish the ring buffer. There are three cases: * * - The first (and presumably most common) is that there is no gap * between the buffer offset and the wrapped offset. In this case, * there is nothing in the buffer that isn't valid data; we can * mark the buffer as polished and return. * * - The second (less common than the first but still more common * than the third) is that there is a gap between the buffer offset * and the wrapped offset, and the wrapped offset is larger than the * buffer offset. This can happen because of an alignment issue, or * can happen because of a call to dtrace_buffer_reserve() that * didn't subsequently consume the buffer space. In this case, * we need to zero the data from the buffer offset to the wrapped * offset. * * - The third (and least common) is that there is a gap between the * buffer offset and the wrapped offset, but the wrapped offset is * _less_ than the buffer offset. This can only happen because a * call to dtrace_buffer_reserve() induced a wrap, but the space * was not subsequently consumed. In this case, we need to zero the * space from the offset to the end of the buffer _and_ from the * top of the buffer to the wrapped offset. */ if (buf->dtb_offset < buf->dtb_xamot_offset) { bzero(buf->dtb_tomax + buf->dtb_offset, buf->dtb_xamot_offset - buf->dtb_offset); } if (buf->dtb_offset > buf->dtb_xamot_offset) { bzero(buf->dtb_tomax + buf->dtb_offset, buf->dtb_size - buf->dtb_offset); bzero(buf->dtb_tomax, buf->dtb_xamot_offset); } } /* * This routine determines if data generated at the specified time has likely * been entirely consumed at user-level. This routine is called to determine * if an ECB on a defunct probe (but for an active enabling) can be safely * disabled and destroyed. */ static int dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) { int i; for (i = 0; i < NCPU; i++) { dtrace_buffer_t *buf = &bufs[i]; if (buf->dtb_size == 0) continue; if (buf->dtb_flags & DTRACEBUF_RING) return (0); if (!buf->dtb_switched && buf->dtb_offset != 0) return (0); if (buf->dtb_switched - buf->dtb_interval < when) return (0); } return (1); } static void dtrace_buffer_free(dtrace_buffer_t *bufs) { int i; for (i = 0; i < NCPU; i++) { dtrace_buffer_t *buf = &bufs[i]; if (buf->dtb_tomax == NULL) { ASSERT(buf->dtb_xamot == NULL); ASSERT(buf->dtb_size == 0); continue; } if (buf->dtb_xamot != NULL) { ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); kmem_free(buf->dtb_xamot, buf->dtb_size); } kmem_free(buf->dtb_tomax, buf->dtb_size); buf->dtb_size = 0; buf->dtb_tomax = NULL; buf->dtb_xamot = NULL; } } /* * DTrace Enabling Functions */ static dtrace_enabling_t * dtrace_enabling_create(dtrace_vstate_t *vstate) { dtrace_enabling_t *enab; enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); enab->dten_vstate = vstate; return (enab); } static void dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) { dtrace_ecbdesc_t **ndesc; size_t osize, nsize; /* * We can't add to enablings after we've enabled them, or after we've * retained them. */ ASSERT(enab->dten_probegen == 0); ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); if (enab->dten_ndesc < enab->dten_maxdesc) { enab->dten_desc[enab->dten_ndesc++] = ecb; return; } osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); if (enab->dten_maxdesc == 0) { enab->dten_maxdesc = 1; } else { enab->dten_maxdesc <<= 1; } ASSERT(enab->dten_ndesc < enab->dten_maxdesc); nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); ndesc = kmem_zalloc(nsize, KM_SLEEP); bcopy(enab->dten_desc, ndesc, osize); if (enab->dten_desc != NULL) kmem_free(enab->dten_desc, osize); enab->dten_desc = ndesc; enab->dten_desc[enab->dten_ndesc++] = ecb; } static void dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, dtrace_probedesc_t *pd) { dtrace_ecbdesc_t *new; dtrace_predicate_t *pred; dtrace_actdesc_t *act; /* * We're going to create a new ECB description that matches the * specified ECB in every way, but has the specified probe description. */ new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) dtrace_predicate_hold(pred); for (act = ecb->dted_action; act != NULL; act = act->dtad_next) dtrace_actdesc_hold(act); new->dted_action = ecb->dted_action; new->dted_pred = ecb->dted_pred; new->dted_probe = *pd; new->dted_uarg = ecb->dted_uarg; dtrace_enabling_add(enab, new); } static void dtrace_enabling_dump(dtrace_enabling_t *enab) { int i; for (i = 0; i < enab->dten_ndesc; i++) { dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; #ifdef __FreeBSD__ printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i, desc->dtpd_provider, desc->dtpd_mod, desc->dtpd_func, desc->dtpd_name); #else cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, desc->dtpd_provider, desc->dtpd_mod, desc->dtpd_func, desc->dtpd_name); #endif } } static void dtrace_enabling_destroy(dtrace_enabling_t *enab) { int i; dtrace_ecbdesc_t *ep; dtrace_vstate_t *vstate = enab->dten_vstate; ASSERT(MUTEX_HELD(&dtrace_lock)); for (i = 0; i < enab->dten_ndesc; i++) { dtrace_actdesc_t *act, *next; dtrace_predicate_t *pred; ep = enab->dten_desc[i]; if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) dtrace_predicate_release(pred, vstate); for (act = ep->dted_action; act != NULL; act = next) { next = act->dtad_next; dtrace_actdesc_release(act, vstate); } kmem_free(ep, sizeof (dtrace_ecbdesc_t)); } if (enab->dten_desc != NULL) kmem_free(enab->dten_desc, enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); /* * If this was a retained enabling, decrement the dts_nretained count * and take it off of the dtrace_retained list. */ if (enab->dten_prev != NULL || enab->dten_next != NULL || dtrace_retained == enab) { ASSERT(enab->dten_vstate->dtvs_state != NULL); ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); enab->dten_vstate->dtvs_state->dts_nretained--; dtrace_retained_gen++; } if (enab->dten_prev == NULL) { if (dtrace_retained == enab) { dtrace_retained = enab->dten_next; if (dtrace_retained != NULL) dtrace_retained->dten_prev = NULL; } } else { ASSERT(enab != dtrace_retained); ASSERT(dtrace_retained != NULL); enab->dten_prev->dten_next = enab->dten_next; } if (enab->dten_next != NULL) { ASSERT(dtrace_retained != NULL); enab->dten_next->dten_prev = enab->dten_prev; } kmem_free(enab, sizeof (dtrace_enabling_t)); } static int dtrace_enabling_retain(dtrace_enabling_t *enab) { dtrace_state_t *state; ASSERT(MUTEX_HELD(&dtrace_lock)); ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); ASSERT(enab->dten_vstate != NULL); state = enab->dten_vstate->dtvs_state; ASSERT(state != NULL); /* * We only allow each state to retain dtrace_retain_max enablings. */ if (state->dts_nretained >= dtrace_retain_max) return (ENOSPC); state->dts_nretained++; dtrace_retained_gen++; if (dtrace_retained == NULL) { dtrace_retained = enab; return (0); } enab->dten_next = dtrace_retained; dtrace_retained->dten_prev = enab; dtrace_retained = enab; return (0); } static int dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, dtrace_probedesc_t *create) { dtrace_enabling_t *new, *enab; int found = 0, err = ENOENT; ASSERT(MUTEX_HELD(&dtrace_lock)); ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); new = dtrace_enabling_create(&state->dts_vstate); /* * Iterate over all retained enablings, looking for enablings that * match the specified state. */ for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { int i; /* * dtvs_state can only be NULL for helper enablings -- and * helper enablings can't be retained. */ ASSERT(enab->dten_vstate->dtvs_state != NULL); if (enab->dten_vstate->dtvs_state != state) continue; /* * Now iterate over each probe description; we're looking for * an exact match to the specified probe description. */ for (i = 0; i < enab->dten_ndesc; i++) { dtrace_ecbdesc_t *ep = enab->dten_desc[i]; dtrace_probedesc_t *pd = &ep->dted_probe; if (strcmp(pd->dtpd_provider, match->dtpd_provider)) continue; if (strcmp(pd->dtpd_mod, match->dtpd_mod)) continue; if (strcmp(pd->dtpd_func, match->dtpd_func)) continue; if (strcmp(pd->dtpd_name, match->dtpd_name)) continue; /* * We have a winning probe! Add it to our growing * enabling. */ found = 1; dtrace_enabling_addlike(new, ep, create); } } if (!found || (err = dtrace_enabling_retain(new)) != 0) { dtrace_enabling_destroy(new); return (err); } return (0); } static void dtrace_enabling_retract(dtrace_state_t *state) { dtrace_enabling_t *enab, *next; ASSERT(MUTEX_HELD(&dtrace_lock)); /* * Iterate over all retained enablings, destroy the enablings retained * for the specified state. */ for (enab = dtrace_retained; enab != NULL; enab = next) { next = enab->dten_next; /* * dtvs_state can only be NULL for helper enablings -- and * helper enablings can't be retained. */ ASSERT(enab->dten_vstate->dtvs_state != NULL); if (enab->dten_vstate->dtvs_state == state) { ASSERT(state->dts_nretained > 0); dtrace_enabling_destroy(enab); } } ASSERT(state->dts_nretained == 0); } static int dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) { int i = 0; int matched = 0; ASSERT(MUTEX_HELD(&cpu_lock)); ASSERT(MUTEX_HELD(&dtrace_lock)); for (i = 0; i < enab->dten_ndesc; i++) { dtrace_ecbdesc_t *ep = enab->dten_desc[i]; enab->dten_current = ep; enab->dten_error = 0; matched += dtrace_probe_enable(&ep->dted_probe, enab); if (enab->dten_error != 0) { /* * If we get an error half-way through enabling the * probes, we kick out -- perhaps with some number of * them enabled. Leaving enabled probes enabled may * be slightly confusing for user-level, but we expect * that no one will attempt to actually drive on in * the face of such errors. If this is an anonymous * enabling (indicated with a NULL nmatched pointer), * we cmn_err() a message. We aren't expecting to * get such an error -- such as it can exist at all, * it would be a result of corrupted DOF in the driver * properties. */ if (nmatched == NULL) { cmn_err(CE_WARN, "dtrace_enabling_match() " "error on %p: %d", (void *)ep, enab->dten_error); } return (enab->dten_error); } } enab->dten_probegen = dtrace_probegen; if (nmatched != NULL) *nmatched = matched; return (0); } static void dtrace_enabling_matchall(void) { dtrace_enabling_t *enab; mutex_enter(&cpu_lock); mutex_enter(&dtrace_lock); /* * Iterate over all retained enablings to see if any probes match * against them. We only perform this operation on enablings for which * we have sufficient permissions by virtue of being in the global zone * or in the same zone as the DTrace client. Because we can be called * after dtrace_detach() has been called, we cannot assert that there * are retained enablings. We can safely load from dtrace_retained, * however: the taskq_destroy() at the end of dtrace_detach() will * block pending our completion. */ for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { #ifdef illumos cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred; if (INGLOBALZONE(curproc) || cr != NULL && getzoneid() == crgetzoneid(cr)) #endif (void) dtrace_enabling_match(enab, NULL); } mutex_exit(&dtrace_lock); mutex_exit(&cpu_lock); } /* * If an enabling is to be enabled without having matched probes (that is, if * dtrace_state_go() is to be called on the underlying dtrace_state_t), the * enabling must be _primed_ by creating an ECB for every ECB description. * This must be done to assure that we know the number of speculations, the * number of aggregations, the minimum buffer size needed, etc. before we * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually * enabling any probes, we create ECBs for every ECB decription, but with a * NULL probe -- which is exactly what this function does. */ static void dtrace_enabling_prime(dtrace_state_t *state) { dtrace_enabling_t *enab; int i; for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { ASSERT(enab->dten_vstate->dtvs_state != NULL); if (enab->dten_vstate->dtvs_state != state) continue; /* * We don't want to prime an enabling more than once, lest * we allow a malicious user to induce resource exhaustion. * (The ECBs that result from priming an enabling aren't * leaked -- but they also aren't deallocated until the * consumer state is destroyed.) */ if (enab->dten_primed) continue; for (i = 0; i < enab->dten_ndesc; i++) { enab->dten_current = enab->dten_desc[i]; (void) dtrace_probe_enable(NULL, enab); } enab->dten_primed = 1; } } /* * Called to indicate that probes should be provided due to retained * enablings. This is implemented in terms of dtrace_probe_provide(), but it * must take an initial lap through the enabling calling the dtps_provide() * entry point explicitly to allow for autocreated probes. */ static void dtrace_enabling_provide(dtrace_provider_t *prv) { int i, all = 0; dtrace_probedesc_t desc; dtrace_genid_t gen; ASSERT(MUTEX_HELD(&dtrace_lock)); ASSERT(MUTEX_HELD(&dtrace_provider_lock)); if (prv == NULL) { all = 1; prv = dtrace_provider; } do { dtrace_enabling_t *enab; void *parg = prv->dtpv_arg; retry: gen = dtrace_retained_gen; for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { for (i = 0; i < enab->dten_ndesc; i++) { desc = enab->dten_desc[i]->dted_probe; mutex_exit(&dtrace_lock); prv->dtpv_pops.dtps_provide(parg, &desc); mutex_enter(&dtrace_lock); /* * Process the retained enablings again if * they have changed while we weren't holding * dtrace_lock. */ if (gen != dtrace_retained_gen) goto retry; } } } while (all && (prv = prv->dtpv_next) != NULL); mutex_exit(&dtrace_lock); dtrace_probe_provide(NULL, all ? NULL : prv); mutex_enter(&dtrace_lock); } /* * Called to reap ECBs that are attached to probes from defunct providers. */ static void dtrace_enabling_reap(void) { dtrace_provider_t *prov; dtrace_probe_t *probe; dtrace_ecb_t *ecb; hrtime_t when; int i; mutex_enter(&cpu_lock); mutex_enter(&dtrace_lock); for (i = 0; i < dtrace_nprobes; i++) { if ((probe = dtrace_probes[i]) == NULL) continue; if (probe->dtpr_ecb == NULL) continue; prov = probe->dtpr_provider; if ((when = prov->dtpv_defunct) == 0) continue; /* * We have ECBs on a defunct provider: we want to reap these * ECBs to allow the provider to unregister. The destruction * of these ECBs must be done carefully: if we destroy the ECB * and the consumer later wishes to consume an EPID that * corresponds to the destroyed ECB (and if the EPID metadata * has not been previously consumed), the consumer will abort * processing on the unknown EPID. To reduce (but not, sadly, * eliminate) the possibility of this, we will only destroy an * ECB for a defunct provider if, for the state that * corresponds to the ECB: * * (a) There is no speculative tracing (which can effectively * cache an EPID for an arbitrary amount of time). * * (b) The principal buffers have been switched twice since the * provider became defunct. * * (c) The aggregation buffers are of zero size or have been * switched twice since the provider became defunct. * * We use dts_speculates to determine (a) and call a function * (dtrace_buffer_consumed()) to determine (b) and (c). Note * that as soon as we've been unable to destroy one of the ECBs * associated with the probe, we quit trying -- reaping is only * fruitful in as much as we can destroy all ECBs associated * with the defunct provider's probes. */ while ((ecb = probe->dtpr_ecb) != NULL) { dtrace_state_t *state = ecb->dte_state; dtrace_buffer_t *buf = state->dts_buffer; dtrace_buffer_t *aggbuf = state->dts_aggbuffer; if (state->dts_speculates) break; if (!dtrace_buffer_consumed(buf, when)) break; if (!dtrace_buffer_consumed(aggbuf, when)) break; dtrace_ecb_disable(ecb); ASSERT(probe->dtpr_ecb != ecb); dtrace_ecb_destroy(ecb); } } mutex_exit(&dtrace_lock); mutex_exit(&cpu_lock); } /* * DTrace DOF Functions */ /*ARGSUSED*/ static void dtrace_dof_error(dof_hdr_t *dof, const char *str) { if (dtrace_err_verbose) cmn_err(CE_WARN, "failed to process DOF: %s", str); #ifdef DTRACE_ERRDEBUG dtrace_errdebug(str); #endif } /* * Create DOF out of a currently enabled state. Right now, we only create * DOF containing the run-time options -- but this could be expanded to create * complete DOF representing the enabled state. */ static dof_hdr_t * dtrace_dof_create(dtrace_state_t *state) { dof_hdr_t *dof; dof_sec_t *sec; dof_optdesc_t *opt; int i, len = sizeof (dof_hdr_t) + roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + sizeof (dof_optdesc_t) * DTRACEOPT_MAX; ASSERT(MUTEX_HELD(&dtrace_lock)); dof = kmem_zalloc(len, KM_SLEEP); dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; dof->dofh_flags = 0; dof->dofh_hdrsize = sizeof (dof_hdr_t); dof->dofh_secsize = sizeof (dof_sec_t); dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ dof->dofh_secoff = sizeof (dof_hdr_t); dof->dofh_loadsz = len; dof->dofh_filesz = len; dof->dofh_pad = 0; /* * Fill in the option section header... */ sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); sec->dofs_type = DOF_SECT_OPTDESC; sec->dofs_align = sizeof (uint64_t); sec->dofs_flags = DOF_SECF_LOAD; sec->dofs_entsize = sizeof (dof_optdesc_t); opt = (dof_optdesc_t *)((uintptr_t)sec + roundup(sizeof (dof_sec_t), sizeof (uint64_t))); sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; for (i = 0; i < DTRACEOPT_MAX; i++) { opt[i].dofo_option = i; opt[i].dofo_strtab = DOF_SECIDX_NONE; opt[i].dofo_value = state->dts_options[i]; } return (dof); } static dof_hdr_t * dtrace_dof_copyin(uintptr_t uarg, int *errp) { dof_hdr_t hdr, *dof; ASSERT(!MUTEX_HELD(&dtrace_lock)); /* * First, we're going to copyin() the sizeof (dof_hdr_t). */ if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { dtrace_dof_error(NULL, "failed to copyin DOF header"); *errp = EFAULT; return (NULL); } /* * Now we'll allocate the entire DOF and copy it in -- provided * that the length isn't outrageous. */ if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { dtrace_dof_error(&hdr, "load size exceeds maximum"); *errp = E2BIG; return (NULL); } if (hdr.dofh_loadsz < sizeof (hdr)) { dtrace_dof_error(&hdr, "invalid load size"); *errp = EINVAL; return (NULL); } dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || dof->dofh_loadsz != hdr.dofh_loadsz) { kmem_free(dof, hdr.dofh_loadsz); *errp = EFAULT; return (NULL); } return (dof); } #ifdef __FreeBSD__ static dof_hdr_t * dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp) { dof_hdr_t hdr, *dof; struct thread *td; size_t loadsz; ASSERT(!MUTEX_HELD(&dtrace_lock)); td = curthread; /* * First, we're going to copyin() the sizeof (dof_hdr_t). */ if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) { dtrace_dof_error(NULL, "failed to copyin DOF header"); *errp = EFAULT; return (NULL); } /* * Now we'll allocate the entire DOF and copy it in -- provided * that the length isn't outrageous. */ if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { dtrace_dof_error(&hdr, "load size exceeds maximum"); *errp = E2BIG; return (NULL); } loadsz = (size_t)hdr.dofh_loadsz; if (loadsz < sizeof (hdr)) { dtrace_dof_error(&hdr, "invalid load size"); *errp = EINVAL; return (NULL); } dof = kmem_alloc(loadsz, KM_SLEEP); if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz || dof->dofh_loadsz != loadsz) { kmem_free(dof, hdr.dofh_loadsz); *errp = EFAULT; return (NULL); } return (dof); } static __inline uchar_t dtrace_dof_char(char c) { switch (c) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': return (c - '0'); case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': return (c - 'A' + 10); case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': return (c - 'a' + 10); } /* Should not reach here. */ return (UCHAR_MAX); } #endif /* __FreeBSD__ */ static dof_hdr_t * dtrace_dof_property(const char *name) { #ifdef __FreeBSD__ uint8_t *dofbuf; u_char *data, *eol; caddr_t doffile; size_t bytes, len, i; dof_hdr_t *dof; u_char c1, c2; dof = NULL; doffile = preload_search_by_type("dtrace_dof"); if (doffile == NULL) return (NULL); data = preload_fetch_addr(doffile); len = preload_fetch_size(doffile); for (;;) { /* Look for the end of the line. All lines end in a newline. */ eol = memchr(data, '\n', len); if (eol == NULL) return (NULL); if (strncmp(name, data, strlen(name)) == 0) break; eol++; /* skip past the newline */ len -= eol - data; data = eol; } /* We've found the data corresponding to the specified key. */ data += strlen(name) + 1; /* skip past the '=' */ len = eol - data; if (len % 2 != 0) { dtrace_dof_error(NULL, "invalid DOF encoding length"); goto doferr; } bytes = len / 2; if (bytes < sizeof(dof_hdr_t)) { dtrace_dof_error(NULL, "truncated header"); goto doferr; } /* * Each byte is represented by the two ASCII characters in its hex * representation. */ dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK); for (i = 0; i < bytes; i++) { c1 = dtrace_dof_char(data[i * 2]); c2 = dtrace_dof_char(data[i * 2 + 1]); if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) { dtrace_dof_error(NULL, "invalid hex char in DOF"); goto doferr; } dofbuf[i] = c1 * 16 + c2; } dof = (dof_hdr_t *)dofbuf; if (bytes < dof->dofh_loadsz) { dtrace_dof_error(NULL, "truncated DOF"); goto doferr; } if (dof->dofh_loadsz >= dtrace_dof_maxsize) { dtrace_dof_error(NULL, "oversized DOF"); goto doferr; } return (dof); doferr: free(dof, M_SOLARIS); return (NULL); #else /* __FreeBSD__ */ uchar_t *buf; uint64_t loadsz; unsigned int len, i; dof_hdr_t *dof; /* * Unfortunately, array of values in .conf files are always (and * only) interpreted to be integer arrays. We must read our DOF * as an integer array, and then squeeze it into a byte array. */ if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) return (NULL); for (i = 0; i < len; i++) buf[i] = (uchar_t)(((int *)buf)[i]); if (len < sizeof (dof_hdr_t)) { ddi_prop_free(buf); dtrace_dof_error(NULL, "truncated header"); return (NULL); } if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { ddi_prop_free(buf); dtrace_dof_error(NULL, "truncated DOF"); return (NULL); } if (loadsz >= dtrace_dof_maxsize) { ddi_prop_free(buf); dtrace_dof_error(NULL, "oversized DOF"); return (NULL); } dof = kmem_alloc(loadsz, KM_SLEEP); bcopy(buf, dof, loadsz); ddi_prop_free(buf); return (dof); #endif /* !__FreeBSD__ */ } static void dtrace_dof_destroy(dof_hdr_t *dof) { kmem_free(dof, dof->dofh_loadsz); } /* * Return the dof_sec_t pointer corresponding to a given section index. If the * index is not valid, dtrace_dof_error() is called and NULL is returned. If * a type other than DOF_SECT_NONE is specified, the header is checked against * this type and NULL is returned if the types do not match. */ static dof_sec_t * dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) { dof_sec_t *sec = (dof_sec_t *)(uintptr_t) ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); if (i >= dof->dofh_secnum) { dtrace_dof_error(dof, "referenced section index is invalid"); return (NULL); } if (!(sec->dofs_flags & DOF_SECF_LOAD)) { dtrace_dof_error(dof, "referenced section is not loadable"); return (NULL); } if (type != DOF_SECT_NONE && type != sec->dofs_type) { dtrace_dof_error(dof, "referenced section is the wrong type"); return (NULL); } return (sec); } static dtrace_probedesc_t * dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) { dof_probedesc_t *probe; dof_sec_t *strtab; uintptr_t daddr = (uintptr_t)dof; uintptr_t str; size_t size; if (sec->dofs_type != DOF_SECT_PROBEDESC) { dtrace_dof_error(dof, "invalid probe section"); return (NULL); } if (sec->dofs_align != sizeof (dof_secidx_t)) { dtrace_dof_error(dof, "bad alignment in probe description"); return (NULL); } if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { dtrace_dof_error(dof, "truncated probe description"); return (NULL); } probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); if (strtab == NULL) return (NULL); str = daddr + strtab->dofs_offset; size = strtab->dofs_size; if (probe->dofp_provider >= strtab->dofs_size) { dtrace_dof_error(dof, "corrupt probe provider"); return (NULL); } (void) strncpy(desc->dtpd_provider, (char *)(str + probe->dofp_provider), MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); if (probe->dofp_mod >= strtab->dofs_size) { dtrace_dof_error(dof, "corrupt probe module"); return (NULL); } (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); if (probe->dofp_func >= strtab->dofs_size) { dtrace_dof_error(dof, "corrupt probe function"); return (NULL); } (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); if (probe->dofp_name >= strtab->dofs_size) { dtrace_dof_error(dof, "corrupt probe name"); return (NULL); } (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); return (desc); } static dtrace_difo_t * dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, cred_t *cr) { dtrace_difo_t *dp; size_t ttl = 0; dof_difohdr_t *dofd; uintptr_t daddr = (uintptr_t)dof; size_t max = dtrace_difo_maxsize; int i, l, n; static const struct { int section; int bufoffs; int lenoffs; int entsize; int align; const char *msg; } difo[] = { { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), sizeof (dif_instr_t), "multiple DIF sections" }, { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), sizeof (uint64_t), "multiple integer tables" }, { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), offsetof(dtrace_difo_t, dtdo_strlen), 0, sizeof (char), "multiple string tables" }, { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), sizeof (uint_t), "multiple variable tables" }, { DOF_SECT_NONE, 0, 0, 0, 0, NULL } }; if (sec->dofs_type != DOF_SECT_DIFOHDR) { dtrace_dof_error(dof, "invalid DIFO header section"); return (NULL); } if (sec->dofs_align != sizeof (dof_secidx_t)) { dtrace_dof_error(dof, "bad alignment in DIFO header"); return (NULL); } if (sec->dofs_size < sizeof (dof_difohdr_t) || sec->dofs_size % sizeof (dof_secidx_t)) { dtrace_dof_error(dof, "bad size in DIFO header"); return (NULL); } dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); dp->dtdo_rtype = dofd->dofd_rtype; for (l = 0; l < n; l++) { dof_sec_t *subsec; void **bufp; uint32_t *lenp; if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, dofd->dofd_links[l])) == NULL) goto err; /* invalid section link */ if (ttl + subsec->dofs_size > max) { dtrace_dof_error(dof, "exceeds maximum size"); goto err; } ttl += subsec->dofs_size; for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { if (subsec->dofs_type != difo[i].section) continue; if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { dtrace_dof_error(dof, "section not loaded"); goto err; } if (subsec->dofs_align != difo[i].align) { dtrace_dof_error(dof, "bad alignment"); goto err; } bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); if (*bufp != NULL) { dtrace_dof_error(dof, difo[i].msg); goto err; } if (difo[i].entsize != subsec->dofs_entsize) { dtrace_dof_error(dof, "entry size mismatch"); goto err; } if (subsec->dofs_entsize != 0 && (subsec->dofs_size % subsec->dofs_entsize) != 0) { dtrace_dof_error(dof, "corrupt entry size"); goto err; } *lenp = subsec->dofs_size; *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), *bufp, subsec->dofs_size); if (subsec->dofs_entsize != 0) *lenp /= subsec->dofs_entsize; break; } /* * If we encounter a loadable DIFO sub-section that is not * known to us, assume this is a broken program and fail. */ if (difo[i].section == DOF_SECT_NONE && (subsec->dofs_flags & DOF_SECF_LOAD)) { dtrace_dof_error(dof, "unrecognized DIFO subsection"); goto err; } } if (dp->dtdo_buf == NULL) { /* * We can't have a DIF object without DIF text. */ dtrace_dof_error(dof, "missing DIF text"); goto err; } /* * Before we validate the DIF object, run through the variable table * looking for the strings -- if any of their size are under, we'll set * their size to be the system-wide default string size. Note that * this should _not_ happen if the "strsize" option has been set -- * in this case, the compiler should have set the size to reflect the * setting of the option. */ for (i = 0; i < dp->dtdo_varlen; i++) { dtrace_difv_t *v = &dp->dtdo_vartab[i]; dtrace_diftype_t *t = &v->dtdv_type; if (v->dtdv_id < DIF_VAR_OTHER_UBASE) continue; if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) t->dtdt_size = dtrace_strsize_default; } if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) goto err; dtrace_difo_init(dp, vstate); return (dp); err: kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); kmem_free(dp, sizeof (dtrace_difo_t)); return (NULL); } static dtrace_predicate_t * dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, cred_t *cr) { dtrace_difo_t *dp; if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) return (NULL); return (dtrace_predicate_create(dp)); } static dtrace_actdesc_t * dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, cred_t *cr) { dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; dof_actdesc_t *desc; dof_sec_t *difosec; size_t offs; uintptr_t daddr = (uintptr_t)dof; uint64_t arg; dtrace_actkind_t kind; if (sec->dofs_type != DOF_SECT_ACTDESC) { dtrace_dof_error(dof, "invalid action section"); return (NULL); } if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { dtrace_dof_error(dof, "truncated action description"); return (NULL); } if (sec->dofs_align != sizeof (uint64_t)) { dtrace_dof_error(dof, "bad alignment in action description"); return (NULL); } if (sec->dofs_size < sec->dofs_entsize) { dtrace_dof_error(dof, "section entry size exceeds total size"); return (NULL); } if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { dtrace_dof_error(dof, "bad entry size in action description"); return (NULL); } if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); return (NULL); } for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { desc = (dof_actdesc_t *)(daddr + (uintptr_t)sec->dofs_offset + offs); kind = (dtrace_actkind_t)desc->dofa_kind; if ((DTRACEACT_ISPRINTFLIKE(kind) && (kind != DTRACEACT_PRINTA || desc->dofa_strtab != DOF_SECIDX_NONE)) || (kind == DTRACEACT_DIFEXPR && desc->dofa_strtab != DOF_SECIDX_NONE)) { dof_sec_t *strtab; char *str, *fmt; uint64_t i; /* * The argument to these actions is an index into the * DOF string table. For printf()-like actions, this * is the format string. For print(), this is the * CTF type of the expression result. */ if ((strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) goto err; str = (char *)((uintptr_t)dof + (uintptr_t)strtab->dofs_offset); for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { if (str[i] == '\0') break; } if (i >= strtab->dofs_size) { dtrace_dof_error(dof, "bogus format string"); goto err; } if (i == desc->dofa_arg) { dtrace_dof_error(dof, "empty format string"); goto err; } i -= desc->dofa_arg; fmt = kmem_alloc(i + 1, KM_SLEEP); bcopy(&str[desc->dofa_arg], fmt, i + 1); arg = (uint64_t)(uintptr_t)fmt; } else { if (kind == DTRACEACT_PRINTA) { ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); arg = 0; } else { arg = desc->dofa_arg; } } act = dtrace_actdesc_create(kind, desc->dofa_ntuple, desc->dofa_uarg, arg); if (last != NULL) { last->dtad_next = act; } else { first = act; } last = act; if (desc->dofa_difo == DOF_SECIDX_NONE) continue; if ((difosec = dtrace_dof_sect(dof, DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) goto err; act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); if (act->dtad_difo == NULL) goto err; } ASSERT(first != NULL); return (first); err: for (act = first; act != NULL; act = next) { next = act->dtad_next; dtrace_actdesc_release(act, vstate); } return (NULL); } static dtrace_ecbdesc_t * dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, cred_t *cr) { dtrace_ecbdesc_t *ep; dof_ecbdesc_t *ecb; dtrace_probedesc_t *desc; dtrace_predicate_t *pred = NULL; if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { dtrace_dof_error(dof, "truncated ECB description"); return (NULL); } if (sec->dofs_align != sizeof (uint64_t)) { dtrace_dof_error(dof, "bad alignment in ECB description"); return (NULL); } ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); if (sec == NULL) return (NULL); ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); ep->dted_uarg = ecb->dofe_uarg; desc = &ep->dted_probe; if (dtrace_dof_probedesc(dof, sec, desc) == NULL) goto err; if (ecb->dofe_pred != DOF_SECIDX_NONE) { if ((sec = dtrace_dof_sect(dof, DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) goto err; if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) goto err; ep->dted_pred.dtpdd_predicate = pred; } if (ecb->dofe_actions != DOF_SECIDX_NONE) { if ((sec = dtrace_dof_sect(dof, DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) goto err; ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); if (ep->dted_action == NULL) goto err; } return (ep); err: if (pred != NULL) dtrace_predicate_release(pred, vstate); kmem_free(ep, sizeof (dtrace_ecbdesc_t)); return (NULL); } /* * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the * specified DOF. SETX relocations are computed using 'ubase', the base load * address of the object containing the DOF, and DOFREL relocations are relative * to the relocation offset within the DOF. */ static int dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase, uint64_t udaddr) { uintptr_t daddr = (uintptr_t)dof; uintptr_t ts_end; dof_relohdr_t *dofr = (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); dof_sec_t *ss, *rs, *ts; dof_relodesc_t *r; uint_t i, n; if (sec->dofs_size < sizeof (dof_relohdr_t) || sec->dofs_align != sizeof (dof_secidx_t)) { dtrace_dof_error(dof, "invalid relocation header"); return (-1); } ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); ts_end = (uintptr_t)ts + sizeof (dof_sec_t); if (ss == NULL || rs == NULL || ts == NULL) return (-1); /* dtrace_dof_error() has been called already */ if (rs->dofs_entsize < sizeof (dof_relodesc_t) || rs->dofs_align != sizeof (uint64_t)) { dtrace_dof_error(dof, "invalid relocation section"); return (-1); } r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); n = rs->dofs_size / rs->dofs_entsize; for (i = 0; i < n; i++) { uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; switch (r->dofr_type) { case DOF_RELO_NONE: break; case DOF_RELO_SETX: case DOF_RELO_DOFREL: if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + sizeof (uint64_t) > ts->dofs_size) { dtrace_dof_error(dof, "bad relocation offset"); return (-1); } if (taddr >= (uintptr_t)ts && taddr < ts_end) { dtrace_dof_error(dof, "bad relocation offset"); return (-1); } if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { dtrace_dof_error(dof, "misaligned setx relo"); return (-1); } if (r->dofr_type == DOF_RELO_SETX) *(uint64_t *)taddr += ubase; else *(uint64_t *)taddr += udaddr + ts->dofs_offset + r->dofr_offset; break; default: dtrace_dof_error(dof, "invalid relocation type"); return (-1); } r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); } return (0); } /* * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated * header: it should be at the front of a memory region that is at least * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in * size. It need not be validated in any other way. */ static int dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, dtrace_enabling_t **enabp, uint64_t ubase, uint64_t udaddr, int noprobes) { uint64_t len = dof->dofh_loadsz, seclen; uintptr_t daddr = (uintptr_t)dof; dtrace_ecbdesc_t *ep; dtrace_enabling_t *enab; uint_t i; ASSERT(MUTEX_HELD(&dtrace_lock)); ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); /* * Check the DOF header identification bytes. In addition to checking * valid settings, we also verify that unused bits/bytes are zeroed so * we can use them later without fear of regressing existing binaries. */ if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { dtrace_dof_error(dof, "DOF magic string mismatch"); return (-1); } if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { dtrace_dof_error(dof, "DOF has invalid data model"); return (-1); } if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { dtrace_dof_error(dof, "DOF encoding mismatch"); return (-1); } if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { dtrace_dof_error(dof, "DOF version mismatch"); return (-1); } if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { dtrace_dof_error(dof, "DOF uses unsupported instruction set"); return (-1); } if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { dtrace_dof_error(dof, "DOF uses too many integer registers"); return (-1); } if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { dtrace_dof_error(dof, "DOF uses too many tuple registers"); return (-1); } for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { if (dof->dofh_ident[i] != 0) { dtrace_dof_error(dof, "DOF has invalid ident byte set"); return (-1); } } if (dof->dofh_flags & ~DOF_FL_VALID) { dtrace_dof_error(dof, "DOF has invalid flag bits set"); return (-1); } if (dof->dofh_secsize == 0) { dtrace_dof_error(dof, "zero section header size"); return (-1); } /* * Check that the section headers don't exceed the amount of DOF * data. Note that we cast the section size and number of sections * to uint64_t's to prevent possible overflow in the multiplication. */ seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; if (dof->dofh_secoff > len || seclen > len || dof->dofh_secoff + seclen > len) { dtrace_dof_error(dof, "truncated section headers"); return (-1); } if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { dtrace_dof_error(dof, "misaligned section headers"); return (-1); } if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { dtrace_dof_error(dof, "misaligned section size"); return (-1); } /* * Take an initial pass through the section headers to be sure that * the headers don't have stray offsets. If the 'noprobes' flag is * set, do not permit sections relating to providers, probes, or args. */ for (i = 0; i < dof->dofh_secnum; i++) { dof_sec_t *sec = (dof_sec_t *)(daddr + (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); if (noprobes) { switch (sec->dofs_type) { case DOF_SECT_PROVIDER: case DOF_SECT_PROBES: case DOF_SECT_PRARGS: case DOF_SECT_PROFFS: dtrace_dof_error(dof, "illegal sections " "for enabling"); return (-1); } } if (DOF_SEC_ISLOADABLE(sec->dofs_type) && !(sec->dofs_flags & DOF_SECF_LOAD)) { dtrace_dof_error(dof, "loadable section with load " "flag unset"); return (-1); } if (!(sec->dofs_flags & DOF_SECF_LOAD)) continue; /* just ignore non-loadable sections */ if (!ISP2(sec->dofs_align)) { dtrace_dof_error(dof, "bad section alignment"); return (-1); } if (sec->dofs_offset & (sec->dofs_align - 1)) { dtrace_dof_error(dof, "misaligned section"); return (-1); } if (sec->dofs_offset > len || sec->dofs_size > len || sec->dofs_offset + sec->dofs_size > len) { dtrace_dof_error(dof, "corrupt section header"); return (-1); } if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + sec->dofs_offset + sec->dofs_size - 1) != '\0') { dtrace_dof_error(dof, "non-terminating string table"); return (-1); } } /* * Take a second pass through the sections and locate and perform any * relocations that are present. We do this after the first pass to * be sure that all sections have had their headers validated. */ for (i = 0; i < dof->dofh_secnum; i++) { dof_sec_t *sec = (dof_sec_t *)(daddr + (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); if (!(sec->dofs_flags & DOF_SECF_LOAD)) continue; /* skip sections that are not loadable */ switch (sec->dofs_type) { case DOF_SECT_URELHDR: if (dtrace_dof_relocate(dof, sec, ubase, udaddr) != 0) return (-1); break; } } if ((enab = *enabp) == NULL) enab = *enabp = dtrace_enabling_create(vstate); for (i = 0; i < dof->dofh_secnum; i++) { dof_sec_t *sec = (dof_sec_t *)(daddr + (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); if (sec->dofs_type != DOF_SECT_ECBDESC) continue; if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { dtrace_enabling_destroy(enab); *enabp = NULL; return (-1); } dtrace_enabling_add(enab, ep); } return (0); } /* * Process DOF for any options. This routine assumes that the DOF has been * at least processed by dtrace_dof_slurp(). */ static int dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) { int i, rval; uint32_t entsize; size_t offs; dof_optdesc_t *desc; for (i = 0; i < dof->dofh_secnum; i++) { dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); if (sec->dofs_type != DOF_SECT_OPTDESC) continue; if (sec->dofs_align != sizeof (uint64_t)) { dtrace_dof_error(dof, "bad alignment in " "option description"); return (EINVAL); } if ((entsize = sec->dofs_entsize) == 0) { dtrace_dof_error(dof, "zeroed option entry size"); return (EINVAL); } if (entsize < sizeof (dof_optdesc_t)) { dtrace_dof_error(dof, "bad option entry size"); return (EINVAL); } for (offs = 0; offs < sec->dofs_size; offs += entsize) { desc = (dof_optdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset + offs); if (desc->dofo_strtab != DOF_SECIDX_NONE) { dtrace_dof_error(dof, "non-zero option string"); return (EINVAL); } if (desc->dofo_value == DTRACEOPT_UNSET) { dtrace_dof_error(dof, "unset option"); return (EINVAL); } if ((rval = dtrace_state_option(state, desc->dofo_option, desc->dofo_value)) != 0) { dtrace_dof_error(dof, "rejected option"); return (rval); } } } return (0); } /* * DTrace Consumer State Functions */ static int dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) { size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; void *base; uintptr_t limit; dtrace_dynvar_t *dvar, *next, *start; int i; ASSERT(MUTEX_HELD(&dtrace_lock)); ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); bzero(dstate, sizeof (dtrace_dstate_t)); if ((dstate->dtds_chunksize = chunksize) == 0) dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; VERIFY(dstate->dtds_chunksize < LONG_MAX); if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) size = min; if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) return (ENOMEM); dstate->dtds_size = size; dstate->dtds_base = base; dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); if (hashsize != 1 && (hashsize & 1)) hashsize--; dstate->dtds_hashsize = hashsize; dstate->dtds_hash = dstate->dtds_base; /* * Set all of our hash buckets to point to the single sink, and (if * it hasn't already been set), set the sink's hash value to be the * sink sentinel value. The sink is needed for dynamic variable * lookups to know that they have iterated over an entire, valid hash * chain. */ for (i = 0; i < hashsize; i++) dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; /* * Determine number of active CPUs. Divide free list evenly among * active CPUs. */ start = (dtrace_dynvar_t *) ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); limit = (uintptr_t)base + size; VERIFY((uintptr_t)start < limit); VERIFY((uintptr_t)start >= (uintptr_t)base); maxper = (limit - (uintptr_t)start) / NCPU; maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; #ifndef illumos CPU_FOREACH(i) { #else for (i = 0; i < NCPU; i++) { #endif dstate->dtds_percpu[i].dtdsc_free = dvar = start; /* * If we don't even have enough chunks to make it once through * NCPUs, we're just going to allocate everything to the first * CPU. And if we're on the last CPU, we're going to allocate * whatever is left over. In either case, we set the limit to * be the limit of the dynamic variable space. */ if (maxper == 0 || i == NCPU - 1) { limit = (uintptr_t)base + size; start = NULL; } else { limit = (uintptr_t)start + maxper; start = (dtrace_dynvar_t *)limit; } VERIFY(limit <= (uintptr_t)base + size); for (;;) { next = (dtrace_dynvar_t *)((uintptr_t)dvar + dstate->dtds_chunksize); if ((uintptr_t)next + dstate->dtds_chunksize >= limit) break; VERIFY((uintptr_t)dvar >= (uintptr_t)base && (uintptr_t)dvar <= (uintptr_t)base + size); dvar->dtdv_next = next; dvar = next; } if (maxper == 0) break; } return (0); } static void dtrace_dstate_fini(dtrace_dstate_t *dstate) { ASSERT(MUTEX_HELD(&cpu_lock)); if (dstate->dtds_base == NULL) return; kmem_free(dstate->dtds_base, dstate->dtds_size); kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); } static void dtrace_vstate_fini(dtrace_vstate_t *vstate) { /* * Logical XOR, where are you? */ ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); if (vstate->dtvs_nglobals > 0) { kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * sizeof (dtrace_statvar_t *)); } if (vstate->dtvs_ntlocals > 0) { kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * sizeof (dtrace_difv_t)); } ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); if (vstate->dtvs_nlocals > 0) { kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * sizeof (dtrace_statvar_t *)); } } #ifdef illumos static void dtrace_state_clean(dtrace_state_t *state) { if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) return; dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); dtrace_speculation_clean(state); } static void dtrace_state_deadman(dtrace_state_t *state) { hrtime_t now; dtrace_sync(); now = dtrace_gethrtime(); if (state != dtrace_anon.dta_state && now - state->dts_laststatus >= dtrace_deadman_user) return; /* * We must be sure that dts_alive never appears to be less than the * value upon entry to dtrace_state_deadman(), and because we lack a * dtrace_cas64(), we cannot store to it atomically. We thus instead * store INT64_MAX to it, followed by a memory barrier, followed by * the new value. This assures that dts_alive never appears to be * less than its true value, regardless of the order in which the * stores to the underlying storage are issued. */ state->dts_alive = INT64_MAX; dtrace_membar_producer(); state->dts_alive = now; } #else /* !illumos */ static void dtrace_state_clean(void *arg) { dtrace_state_t *state = arg; dtrace_optval_t *opt = state->dts_options; if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) return; dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); dtrace_speculation_clean(state); callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, dtrace_state_clean, state); } static void dtrace_state_deadman(void *arg) { dtrace_state_t *state = arg; hrtime_t now; dtrace_sync(); dtrace_debug_output(); now = dtrace_gethrtime(); if (state != dtrace_anon.dta_state && now - state->dts_laststatus >= dtrace_deadman_user) return; /* * We must be sure that dts_alive never appears to be less than the * value upon entry to dtrace_state_deadman(), and because we lack a * dtrace_cas64(), we cannot store to it atomically. We thus instead * store INT64_MAX to it, followed by a memory barrier, followed by * the new value. This assures that dts_alive never appears to be * less than its true value, regardless of the order in which the * stores to the underlying storage are issued. */ state->dts_alive = INT64_MAX; dtrace_membar_producer(); state->dts_alive = now; callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, dtrace_state_deadman, state); } #endif /* illumos */ static dtrace_state_t * #ifdef illumos dtrace_state_create(dev_t *devp, cred_t *cr) #else dtrace_state_create(struct cdev *dev, struct ucred *cred __unused) #endif { #ifdef illumos minor_t minor; major_t major; #else cred_t *cr = NULL; int m = 0; #endif char c[30]; dtrace_state_t *state; dtrace_optval_t *opt; int bufsize = NCPU * sizeof (dtrace_buffer_t), i; int cpu_it; ASSERT(MUTEX_HELD(&dtrace_lock)); ASSERT(MUTEX_HELD(&cpu_lock)); #ifdef illumos minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, VM_BESTFIT | VM_SLEEP); if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); return (NULL); } state = ddi_get_soft_state(dtrace_softstate, minor); #else if (dev != NULL) { cr = dev->si_cred; m = dev2unit(dev); } /* Allocate memory for the state. */ state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP); #endif state->dts_epid = DTRACE_EPIDNONE + 1; (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m); #ifdef illumos state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); if (devp != NULL) { major = getemajor(*devp); } else { major = ddi_driver_major(dtrace_devi); } state->dts_dev = makedevice(major, minor); if (devp != NULL) *devp = state->dts_dev; #else state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx); state->dts_dev = dev; #endif /* * We allocate NCPU buffers. On the one hand, this can be quite * a bit of memory per instance (nearly 36K on a Starcat). On the * other hand, it saves an additional memory reference in the probe * path. */ state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); /* * Allocate and initialise the per-process per-CPU random state. * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is * assumed to be seeded at this point (if from Fortuna seed file). */ (void) read_random(&state->dts_rstate[0], 2 * sizeof(uint64_t)); for (cpu_it = 1; cpu_it < NCPU; cpu_it++) { /* * Each CPU is assigned a 2^64 period, non-overlapping * subsequence. */ dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it-1], state->dts_rstate[cpu_it]); } #ifdef illumos state->dts_cleaner = CYCLIC_NONE; state->dts_deadman = CYCLIC_NONE; #else callout_init(&state->dts_cleaner, 1); callout_init(&state->dts_deadman, 1); #endif state->dts_vstate.dtvs_state = state; for (i = 0; i < DTRACEOPT_MAX; i++) state->dts_options[i] = DTRACEOPT_UNSET; /* * Set the default options. */ opt = state->dts_options; opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; state->dts_activity = DTRACE_ACTIVITY_INACTIVE; /* * Depending on the user credentials, we set flag bits which alter probe * visibility or the amount of destructiveness allowed. In the case of * actual anonymous tracing, or the possession of all privileges, all of * the normal checks are bypassed. */ if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { state->dts_cred.dcr_visible = DTRACE_CRV_ALL; state->dts_cred.dcr_action = DTRACE_CRA_ALL; } else { /* * Set up the credentials for this instantiation. We take a * hold on the credential to prevent it from disappearing on * us; this in turn prevents the zone_t referenced by this * credential from disappearing. This means that we can * examine the credential and the zone from probe context. */ crhold(cr); state->dts_cred.dcr_cred = cr; /* * CRA_PROC means "we have *some* privilege for dtrace" and * unlocks the use of variables like pid, zonename, etc. */ if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { state->dts_cred.dcr_action |= DTRACE_CRA_PROC; } /* * dtrace_user allows use of syscall and profile providers. * If the user also has proc_owner and/or proc_zone, we * extend the scope to include additional visibility and * destructive power. */ if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { state->dts_cred.dcr_visible |= DTRACE_CRV_ALLPROC; state->dts_cred.dcr_action |= DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; } if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { state->dts_cred.dcr_visible |= DTRACE_CRV_ALLZONE; state->dts_cred.dcr_action |= DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; } /* * If we have all privs in whatever zone this is, * we can do destructive things to processes which * have altered credentials. */ #ifdef illumos if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), cr->cr_zone->zone_privset)) { state->dts_cred.dcr_action |= DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; } #endif } /* * Holding the dtrace_kernel privilege also implies that * the user has the dtrace_user privilege from a visibility * perspective. But without further privileges, some * destructive actions are not available. */ if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { /* * Make all probes in all zones visible. However, * this doesn't mean that all actions become available * to all zones. */ state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | DTRACE_CRA_PROC; /* * Holding proc_owner means that destructive actions * for *this* zone are allowed. */ if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) state->dts_cred.dcr_action |= DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; /* * Holding proc_zone means that destructive actions * for this user/group ID in all zones is allowed. */ if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) state->dts_cred.dcr_action |= DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; #ifdef illumos /* * If we have all privs in whatever zone this is, * we can do destructive things to processes which * have altered credentials. */ if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), cr->cr_zone->zone_privset)) { state->dts_cred.dcr_action |= DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; } #endif } /* * Holding the dtrace_proc privilege gives control over fasttrap * and pid providers. We need to grant wider destructive * privileges in the event that the user has proc_owner and/or * proc_zone. */ if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) state->dts_cred.dcr_action |= DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) state->dts_cred.dcr_action |= DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; } } return (state); } static int dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) { dtrace_optval_t *opt = state->dts_options, size; processorid_t cpu = 0;; int flags = 0, rval, factor, divisor = 1; ASSERT(MUTEX_HELD(&dtrace_lock)); ASSERT(MUTEX_HELD(&cpu_lock)); ASSERT(which < DTRACEOPT_MAX); ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || (state == dtrace_anon.dta_state && state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) return (0); if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) cpu = opt[DTRACEOPT_CPU]; if (which == DTRACEOPT_SPECSIZE) flags |= DTRACEBUF_NOSWITCH; if (which == DTRACEOPT_BUFSIZE) { if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) flags |= DTRACEBUF_RING; if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) flags |= DTRACEBUF_FILL; if (state != dtrace_anon.dta_state || state->dts_activity != DTRACE_ACTIVITY_ACTIVE) flags |= DTRACEBUF_INACTIVE; } for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { /* * The size must be 8-byte aligned. If the size is not 8-byte * aligned, drop it down by the difference. */ if (size & (sizeof (uint64_t) - 1)) size -= size & (sizeof (uint64_t) - 1); if (size < state->dts_reserve) { /* * Buffers always must be large enough to accommodate * their prereserved space. We return E2BIG instead * of ENOMEM in this case to allow for user-level * software to differentiate the cases. */ return (E2BIG); } rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); if (rval != ENOMEM) { opt[which] = size; return (rval); } if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) return (rval); for (divisor = 2; divisor < factor; divisor <<= 1) continue; } return (ENOMEM); } static int dtrace_state_buffers(dtrace_state_t *state) { dtrace_speculation_t *spec = state->dts_speculations; int rval, i; if ((rval = dtrace_state_buffer(state, state->dts_buffer, DTRACEOPT_BUFSIZE)) != 0) return (rval); if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, DTRACEOPT_AGGSIZE)) != 0) return (rval); for (i = 0; i < state->dts_nspeculations; i++) { if ((rval = dtrace_state_buffer(state, spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) return (rval); } return (0); } static void dtrace_state_prereserve(dtrace_state_t *state) { dtrace_ecb_t *ecb; dtrace_probe_t *probe; state->dts_reserve = 0; if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) return; /* * If our buffer policy is a "fill" buffer policy, we need to set the * prereserved space to be the space required by the END probes. */ probe = dtrace_probes[dtrace_probeid_end - 1]; ASSERT(probe != NULL); for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { if (ecb->dte_state != state) continue; state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; } } static int dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) { dtrace_optval_t *opt = state->dts_options, sz, nspec; dtrace_speculation_t *spec; dtrace_buffer_t *buf; #ifdef illumos cyc_handler_t hdlr; cyc_time_t when; #endif int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); dtrace_icookie_t cookie; mutex_enter(&cpu_lock); mutex_enter(&dtrace_lock); if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { rval = EBUSY; goto out; } /* * Before we can perform any checks, we must prime all of the * retained enablings that correspond to this state. */ dtrace_enabling_prime(state); if (state->dts_destructive && !state->dts_cred.dcr_destructive) { rval = EACCES; goto out; } dtrace_state_prereserve(state); /* * Now we want to do is try to allocate our speculations. * We do not automatically resize the number of speculations; if * this fails, we will fail the operation. */ nspec = opt[DTRACEOPT_NSPEC]; ASSERT(nspec != DTRACEOPT_UNSET); if (nspec > INT_MAX) { rval = ENOMEM; goto out; } spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP | KM_NORMALPRI); if (spec == NULL) { rval = ENOMEM; goto out; } state->dts_speculations = spec; state->dts_nspeculations = (int)nspec; for (i = 0; i < nspec; i++) { if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP | KM_NORMALPRI)) == NULL) { rval = ENOMEM; goto err; } spec[i].dtsp_buffer = buf; } if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { if (dtrace_anon.dta_state == NULL) { rval = ENOENT; goto out; } if (state->dts_necbs != 0) { rval = EALREADY; goto out; } state->dts_anon = dtrace_anon_grab(); ASSERT(state->dts_anon != NULL); state = state->dts_anon; /* * We want "grabanon" to be set in the grabbed state, so we'll * copy that option value from the grabbing state into the * grabbed state. */ state->dts_options[DTRACEOPT_GRABANON] = opt[DTRACEOPT_GRABANON]; *cpu = dtrace_anon.dta_beganon; /* * If the anonymous state is active (as it almost certainly * is if the anonymous enabling ultimately matched anything), * we don't allow any further option processing -- but we * don't return failure. */ if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) goto out; } if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && opt[DTRACEOPT_AGGSIZE] != 0) { if (state->dts_aggregations == NULL) { /* * We're not going to create an aggregation buffer * because we don't have any ECBs that contain * aggregations -- set this option to 0. */ opt[DTRACEOPT_AGGSIZE] = 0; } else { /* * If we have an aggregation buffer, we must also have * a buffer to use as scratch. */ if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { opt[DTRACEOPT_BUFSIZE] = state->dts_needed; } } } if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && opt[DTRACEOPT_SPECSIZE] != 0) { if (!state->dts_speculates) { /* * We're not going to create speculation buffers * because we don't have any ECBs that actually * speculate -- set the speculation size to 0. */ opt[DTRACEOPT_SPECSIZE] = 0; } } /* * The bare minimum size for any buffer that we're actually going to * do anything to is sizeof (uint64_t). */ sz = sizeof (uint64_t); if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { /* * A buffer size has been explicitly set to 0 (or to a size * that will be adjusted to 0) and we need the space -- we * need to return failure. We return ENOSPC to differentiate * it from failing to allocate a buffer due to failure to meet * the reserve (for which we return E2BIG). */ rval = ENOSPC; goto out; } if ((rval = dtrace_state_buffers(state)) != 0) goto err; if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) sz = dtrace_dstate_defsize; do { rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); if (rval == 0) break; if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) goto err; } while (sz >>= 1); opt[DTRACEOPT_DYNVARSIZE] = sz; if (rval != 0) goto err; if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; if (opt[DTRACEOPT_CLEANRATE] == 0) opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); #ifdef illumos hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; hdlr.cyh_arg = state; hdlr.cyh_level = CY_LOW_LEVEL; when.cyt_when = 0; when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; state->dts_cleaner = cyclic_add(&hdlr, &when); hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; hdlr.cyh_arg = state; hdlr.cyh_level = CY_LOW_LEVEL; when.cyt_when = 0; when.cyt_interval = dtrace_deadman_interval; state->dts_deadman = cyclic_add(&hdlr, &when); #else callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, dtrace_state_clean, state); callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, dtrace_state_deadman, state); #endif state->dts_activity = DTRACE_ACTIVITY_WARMUP; #ifdef illumos if (state->dts_getf != 0 && !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { /* * We don't have kernel privs but we have at least one call * to getf(); we need to bump our zone's count, and (if * this is the first enabling to have an unprivileged call * to getf()) we need to hook into closef(). */ state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; if (dtrace_getf++ == 0) { ASSERT(dtrace_closef == NULL); dtrace_closef = dtrace_getf_barrier; } } #endif /* * Now it's time to actually fire the BEGIN probe. We need to disable * interrupts here both to record the CPU on which we fired the BEGIN * probe (the data from this CPU will be processed first at user * level) and to manually activate the buffer for this CPU. */ cookie = dtrace_interrupt_disable(); *cpu = curcpu; ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; dtrace_probe(dtrace_probeid_begin, (uint64_t)(uintptr_t)state, 0, 0, 0, 0); dtrace_interrupt_enable(cookie); /* * We may have had an exit action from a BEGIN probe; only change our * state to ACTIVE if we're still in WARMUP. */ ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || state->dts_activity == DTRACE_ACTIVITY_DRAINING); if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) state->dts_activity = DTRACE_ACTIVITY_ACTIVE; #ifdef __FreeBSD__ /* * We enable anonymous tracing before APs are started, so we must * activate buffers using the current CPU. */ if (state == dtrace_anon.dta_state) for (int i = 0; i < NCPU; i++) dtrace_buffer_activate_cpu(state, i); else dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_buffer_activate, state); #else /* * Regardless of whether or not now we're in ACTIVE or DRAINING, we * want each CPU to transition its principal buffer out of the * INACTIVE state. Doing this assures that no CPU will suddenly begin * processing an ECB halfway down a probe's ECB chain; all CPUs will * atomically transition from processing none of a state's ECBs to * processing all of them. */ dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_buffer_activate, state); #endif goto out; err: dtrace_buffer_free(state->dts_buffer); dtrace_buffer_free(state->dts_aggbuffer); if ((nspec = state->dts_nspeculations) == 0) { ASSERT(state->dts_speculations == NULL); goto out; } spec = state->dts_speculations; ASSERT(spec != NULL); for (i = 0; i < state->dts_nspeculations; i++) { if ((buf = spec[i].dtsp_buffer) == NULL) break; dtrace_buffer_free(buf); kmem_free(buf, bufsize); } kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); state->dts_nspeculations = 0; state->dts_speculations = NULL; out: mutex_exit(&dtrace_lock); mutex_exit(&cpu_lock); return (rval); } static int dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) { dtrace_icookie_t cookie; ASSERT(MUTEX_HELD(&dtrace_lock)); if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && state->dts_activity != DTRACE_ACTIVITY_DRAINING) return (EINVAL); /* * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync * to be sure that every CPU has seen it. See below for the details * on why this is done. */ state->dts_activity = DTRACE_ACTIVITY_DRAINING; dtrace_sync(); /* * By this point, it is impossible for any CPU to be still processing * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN * iff we're in the END probe. */ state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; dtrace_sync(); ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); /* * Finally, we can release the reserve and call the END probe. We * disable interrupts across calling the END probe to allow us to * return the CPU on which we actually called the END probe. This * allows user-land to be sure that this CPU's principal buffer is * processed last. */ state->dts_reserve = 0; cookie = dtrace_interrupt_disable(); *cpu = curcpu; dtrace_probe(dtrace_probeid_end, (uint64_t)(uintptr_t)state, 0, 0, 0, 0); dtrace_interrupt_enable(cookie); state->dts_activity = DTRACE_ACTIVITY_STOPPED; dtrace_sync(); #ifdef illumos if (state->dts_getf != 0 && !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { /* * We don't have kernel privs but we have at least one call * to getf(); we need to lower our zone's count, and (if * this is the last enabling to have an unprivileged call * to getf()) we need to clear the closef() hook. */ ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); ASSERT(dtrace_closef == dtrace_getf_barrier); ASSERT(dtrace_getf > 0); state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; if (--dtrace_getf == 0) dtrace_closef = NULL; } #endif return (0); } static int dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, dtrace_optval_t val) { ASSERT(MUTEX_HELD(&dtrace_lock)); if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) return (EBUSY); if (option >= DTRACEOPT_MAX) return (EINVAL); if (option != DTRACEOPT_CPU && val < 0) return (EINVAL); switch (option) { case DTRACEOPT_DESTRUCTIVE: if (dtrace_destructive_disallow) return (EACCES); state->dts_cred.dcr_destructive = 1; break; case DTRACEOPT_BUFSIZE: case DTRACEOPT_DYNVARSIZE: case DTRACEOPT_AGGSIZE: case DTRACEOPT_SPECSIZE: case DTRACEOPT_STRSIZE: if (val < 0) return (EINVAL); if (val >= LONG_MAX) { /* * If this is an otherwise negative value, set it to * the highest multiple of 128m less than LONG_MAX. * Technically, we're adjusting the size without * regard to the buffer resizing policy, but in fact, * this has no effect -- if we set the buffer size to * ~LONG_MAX and the buffer policy is ultimately set to * be "manual", the buffer allocation is guaranteed to * fail, if only because the allocation requires two * buffers. (We set the the size to the highest * multiple of 128m because it ensures that the size * will remain a multiple of a megabyte when * repeatedly halved -- all the way down to 15m.) */ val = LONG_MAX - (1 << 27) + 1; } } state->dts_options[option] = val; return (0); } static void dtrace_state_destroy(dtrace_state_t *state) { dtrace_ecb_t *ecb; dtrace_vstate_t *vstate = &state->dts_vstate; #ifdef illumos minor_t minor = getminor(state->dts_dev); #endif int i, bufsize = NCPU * sizeof (dtrace_buffer_t); dtrace_speculation_t *spec = state->dts_speculations; int nspec = state->dts_nspeculations; uint32_t match; ASSERT(MUTEX_HELD(&dtrace_lock)); ASSERT(MUTEX_HELD(&cpu_lock)); /* * First, retract any retained enablings for this state. */ dtrace_enabling_retract(state); ASSERT(state->dts_nretained == 0); if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || state->dts_activity == DTRACE_ACTIVITY_DRAINING) { /* * We have managed to come into dtrace_state_destroy() on a * hot enabling -- almost certainly because of a disorderly * shutdown of a consumer. (That is, a consumer that is * exiting without having called dtrace_stop().) In this case, * we're going to set our activity to be KILLED, and then * issue a sync to be sure that everyone is out of probe * context before we start blowing away ECBs. */ state->dts_activity = DTRACE_ACTIVITY_KILLED; dtrace_sync(); } /* * Release the credential hold we took in dtrace_state_create(). */ if (state->dts_cred.dcr_cred != NULL) crfree(state->dts_cred.dcr_cred); /* * Now we can safely disable and destroy any enabled probes. Because * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress * (especially if they're all enabled), we take two passes through the * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and * in the second we disable whatever is left over. */ for (match = DTRACE_PRIV_KERNEL; ; match = 0) { for (i = 0; i < state->dts_necbs; i++) { if ((ecb = state->dts_ecbs[i]) == NULL) continue; if (match && ecb->dte_probe != NULL) { dtrace_probe_t *probe = ecb->dte_probe; dtrace_provider_t *prov = probe->dtpr_provider; if (!(prov->dtpv_priv.dtpp_flags & match)) continue; } dtrace_ecb_disable(ecb); dtrace_ecb_destroy(ecb); } if (!match) break; } /* * Before we free the buffers, perform one more sync to assure that * every CPU is out of probe context. */ dtrace_sync(); dtrace_buffer_free(state->dts_buffer); dtrace_buffer_free(state->dts_aggbuffer); for (i = 0; i < nspec; i++) dtrace_buffer_free(spec[i].dtsp_buffer); #ifdef illumos if (state->dts_cleaner != CYCLIC_NONE) cyclic_remove(state->dts_cleaner); if (state->dts_deadman != CYCLIC_NONE) cyclic_remove(state->dts_deadman); #else callout_stop(&state->dts_cleaner); callout_drain(&state->dts_cleaner); callout_stop(&state->dts_deadman); callout_drain(&state->dts_deadman); #endif dtrace_dstate_fini(&vstate->dtvs_dynvars); dtrace_vstate_fini(vstate); if (state->dts_ecbs != NULL) kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); if (state->dts_aggregations != NULL) { #ifdef DEBUG for (i = 0; i < state->dts_naggregations; i++) ASSERT(state->dts_aggregations[i] == NULL); #endif ASSERT(state->dts_naggregations > 0); kmem_free(state->dts_aggregations, state->dts_naggregations * sizeof (dtrace_aggregation_t *)); } kmem_free(state->dts_buffer, bufsize); kmem_free(state->dts_aggbuffer, bufsize); for (i = 0; i < nspec; i++) kmem_free(spec[i].dtsp_buffer, bufsize); if (spec != NULL) kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); dtrace_format_destroy(state); if (state->dts_aggid_arena != NULL) { #ifdef illumos vmem_destroy(state->dts_aggid_arena); #else delete_unrhdr(state->dts_aggid_arena); #endif state->dts_aggid_arena = NULL; } #ifdef illumos ddi_soft_state_free(dtrace_softstate, minor); vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); #endif } /* * DTrace Anonymous Enabling Functions */ static dtrace_state_t * dtrace_anon_grab(void) { dtrace_state_t *state; ASSERT(MUTEX_HELD(&dtrace_lock)); if ((state = dtrace_anon.dta_state) == NULL) { ASSERT(dtrace_anon.dta_enabling == NULL); return (NULL); } ASSERT(dtrace_anon.dta_enabling != NULL); ASSERT(dtrace_retained != NULL); dtrace_enabling_destroy(dtrace_anon.dta_enabling); dtrace_anon.dta_enabling = NULL; dtrace_anon.dta_state = NULL; return (state); } static void dtrace_anon_property(void) { int i, rv; dtrace_state_t *state; dof_hdr_t *dof; char c[32]; /* enough for "dof-data-" + digits */ ASSERT(MUTEX_HELD(&dtrace_lock)); ASSERT(MUTEX_HELD(&cpu_lock)); for (i = 0; ; i++) { (void) snprintf(c, sizeof (c), "dof-data-%d", i); dtrace_err_verbose = 1; if ((dof = dtrace_dof_property(c)) == NULL) { dtrace_err_verbose = 0; break; } #ifdef illumos /* * We want to create anonymous state, so we need to transition * the kernel debugger to indicate that DTrace is active. If * this fails (e.g. because the debugger has modified text in * some way), we won't continue with the processing. */ if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { cmn_err(CE_NOTE, "kernel debugger active; anonymous " "enabling ignored."); dtrace_dof_destroy(dof); break; } #endif /* * If we haven't allocated an anonymous state, we'll do so now. */ if ((state = dtrace_anon.dta_state) == NULL) { state = dtrace_state_create(NULL, NULL); dtrace_anon.dta_state = state; if (state == NULL) { /* * This basically shouldn't happen: the only * failure mode from dtrace_state_create() is a * failure of ddi_soft_state_zalloc() that * itself should never happen. Still, the * interface allows for a failure mode, and * we want to fail as gracefully as possible: * we'll emit an error message and cease * processing anonymous state in this case. */ cmn_err(CE_WARN, "failed to create " "anonymous state"); dtrace_dof_destroy(dof); break; } } rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), &dtrace_anon.dta_enabling, 0, 0, B_TRUE); if (rv == 0) rv = dtrace_dof_options(dof, state); dtrace_err_verbose = 0; dtrace_dof_destroy(dof); if (rv != 0) { /* * This is malformed DOF; chuck any anonymous state * that we created. */ ASSERT(dtrace_anon.dta_enabling == NULL); dtrace_state_destroy(state); dtrace_anon.dta_state = NULL; break; } ASSERT(dtrace_anon.dta_enabling != NULL); } if (dtrace_anon.dta_enabling != NULL) { int rval; /* * dtrace_enabling_retain() can only fail because we are * trying to retain more enablings than are allowed -- but * we only have one anonymous enabling, and we are guaranteed * to be allowed at least one retained enabling; we assert * that dtrace_enabling_retain() returns success. */ rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); ASSERT(rval == 0); dtrace_enabling_dump(dtrace_anon.dta_enabling); } } /* * DTrace Helper Functions */ static void dtrace_helper_trace(dtrace_helper_action_t *helper, dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) { uint32_t size, next, nnext, i; dtrace_helptrace_t *ent, *buffer; uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags; if ((buffer = dtrace_helptrace_buffer) == NULL) return; ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); /* * What would a tracing framework be without its own tracing * framework? (Well, a hell of a lot simpler, for starters...) */ size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * sizeof (uint64_t) - sizeof (uint64_t); /* * Iterate until we can allocate a slot in the trace buffer. */ do { next = dtrace_helptrace_next; if (next + size < dtrace_helptrace_bufsize) { nnext = next + size; } else { nnext = size; } } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); /* * We have our slot; fill it in. */ if (nnext == size) { dtrace_helptrace_wrapped++; next = 0; } ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); ent->dtht_helper = helper; ent->dtht_where = where; ent->dtht_nlocals = vstate->dtvs_nlocals; ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? mstate->dtms_fltoffs : -1; ent->dtht_fault = DTRACE_FLAGS2FLT(flags); ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval; for (i = 0; i < vstate->dtvs_nlocals; i++) { dtrace_statvar_t *svar; if ((svar = vstate->dtvs_locals[i]) == NULL) continue; ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); ent->dtht_locals[i] = ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu]; } } static uint64_t dtrace_helper(int which, dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t arg0, uint64_t arg1) { uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; uint64_t sarg0 = mstate->dtms_arg[0]; uint64_t sarg1 = mstate->dtms_arg[1]; uint64_t rval = 0; dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; dtrace_helper_action_t *helper; dtrace_vstate_t *vstate; dtrace_difo_t *pred; int i, trace = dtrace_helptrace_buffer != NULL; ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); if (helpers == NULL) return (0); if ((helper = helpers->dthps_actions[which]) == NULL) return (0); vstate = &helpers->dthps_vstate; mstate->dtms_arg[0] = arg0; mstate->dtms_arg[1] = arg1; /* * Now iterate over each helper. If its predicate evaluates to 'true', * we'll call the corresponding actions. Note that the below calls * to dtrace_dif_emulate() may set faults in machine state. This is * okay: our caller (the outer dtrace_dif_emulate()) will simply plow * the stored DIF offset with its own (which is the desired behavior). * Also, note the calls to dtrace_dif_emulate() may allocate scratch * from machine state; this is okay, too. */ for (; helper != NULL; helper = helper->dtha_next) { if ((pred = helper->dtha_predicate) != NULL) { if (trace) dtrace_helper_trace(helper, mstate, vstate, 0); if (!dtrace_dif_emulate(pred, mstate, vstate, state)) goto next; if (*flags & CPU_DTRACE_FAULT) goto err; } for (i = 0; i < helper->dtha_nactions; i++) { if (trace) dtrace_helper_trace(helper, mstate, vstate, i + 1); rval = dtrace_dif_emulate(helper->dtha_actions[i], mstate, vstate, state); if (*flags & CPU_DTRACE_FAULT) goto err; } next: if (trace) dtrace_helper_trace(helper, mstate, vstate, DTRACE_HELPTRACE_NEXT); } if (trace) dtrace_helper_trace(helper, mstate, vstate, DTRACE_HELPTRACE_DONE); /* * Restore the arg0 that we saved upon entry. */ mstate->dtms_arg[0] = sarg0; mstate->dtms_arg[1] = sarg1; return (rval); err: if (trace) dtrace_helper_trace(helper, mstate, vstate, DTRACE_HELPTRACE_ERR); /* * Restore the arg0 that we saved upon entry. */ mstate->dtms_arg[0] = sarg0; mstate->dtms_arg[1] = sarg1; return (0); } static void dtrace_helper_action_destroy(dtrace_helper_action_t *helper, dtrace_vstate_t *vstate) { int i; if (helper->dtha_predicate != NULL) dtrace_difo_release(helper->dtha_predicate, vstate); for (i = 0; i < helper->dtha_nactions; i++) { ASSERT(helper->dtha_actions[i] != NULL); dtrace_difo_release(helper->dtha_actions[i], vstate); } kmem_free(helper->dtha_actions, helper->dtha_nactions * sizeof (dtrace_difo_t *)); kmem_free(helper, sizeof (dtrace_helper_action_t)); } static int dtrace_helper_destroygen(dtrace_helpers_t *help, int gen) { proc_t *p = curproc; dtrace_vstate_t *vstate; int i; if (help == NULL) help = p->p_dtrace_helpers; ASSERT(MUTEX_HELD(&dtrace_lock)); if (help == NULL || gen > help->dthps_generation) return (EINVAL); vstate = &help->dthps_vstate; for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { dtrace_helper_action_t *last = NULL, *h, *next; for (h = help->dthps_actions[i]; h != NULL; h = next) { next = h->dtha_next; if (h->dtha_generation == gen) { if (last != NULL) { last->dtha_next = next; } else { help->dthps_actions[i] = next; } dtrace_helper_action_destroy(h, vstate); } else { last = h; } } } /* * Interate until we've cleared out all helper providers with the * given generation number. */ for (;;) { dtrace_helper_provider_t *prov; /* * Look for a helper provider with the right generation. We * have to start back at the beginning of the list each time * because we drop dtrace_lock. It's unlikely that we'll make * more than two passes. */ for (i = 0; i < help->dthps_nprovs; i++) { prov = help->dthps_provs[i]; if (prov->dthp_generation == gen) break; } /* * If there were no matches, we're done. */ if (i == help->dthps_nprovs) break; /* * Move the last helper provider into this slot. */ help->dthps_nprovs--; help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; help->dthps_provs[help->dthps_nprovs] = NULL; mutex_exit(&dtrace_lock); /* * If we have a meta provider, remove this helper provider. */ mutex_enter(&dtrace_meta_lock); if (dtrace_meta_pid != NULL) { ASSERT(dtrace_deferred_pid == NULL); dtrace_helper_provider_remove(&prov->dthp_prov, p->p_pid); } mutex_exit(&dtrace_meta_lock); dtrace_helper_provider_destroy(prov); mutex_enter(&dtrace_lock); } return (0); } static int dtrace_helper_validate(dtrace_helper_action_t *helper) { int err = 0, i; dtrace_difo_t *dp; if ((dp = helper->dtha_predicate) != NULL) err += dtrace_difo_validate_helper(dp); for (i = 0; i < helper->dtha_nactions; i++) err += dtrace_difo_validate_helper(helper->dtha_actions[i]); return (err == 0); } static int dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep, dtrace_helpers_t *help) { dtrace_helper_action_t *helper, *last; dtrace_actdesc_t *act; dtrace_vstate_t *vstate; dtrace_predicate_t *pred; int count = 0, nactions = 0, i; if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) return (EINVAL); last = help->dthps_actions[which]; vstate = &help->dthps_vstate; for (count = 0; last != NULL; last = last->dtha_next) { count++; if (last->dtha_next == NULL) break; } /* * If we already have dtrace_helper_actions_max helper actions for this * helper action type, we'll refuse to add a new one. */ if (count >= dtrace_helper_actions_max) return (ENOSPC); helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); helper->dtha_generation = help->dthps_generation; if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { ASSERT(pred->dtp_difo != NULL); dtrace_difo_hold(pred->dtp_difo); helper->dtha_predicate = pred->dtp_difo; } for (act = ep->dted_action; act != NULL; act = act->dtad_next) { if (act->dtad_kind != DTRACEACT_DIFEXPR) goto err; if (act->dtad_difo == NULL) goto err; nactions++; } helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * (helper->dtha_nactions = nactions), KM_SLEEP); for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { dtrace_difo_hold(act->dtad_difo); helper->dtha_actions[i++] = act->dtad_difo; } if (!dtrace_helper_validate(helper)) goto err; if (last == NULL) { help->dthps_actions[which] = helper; } else { last->dtha_next = helper; } if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { dtrace_helptrace_nlocals = vstate->dtvs_nlocals; dtrace_helptrace_next = 0; } return (0); err: dtrace_helper_action_destroy(helper, vstate); return (EINVAL); } static void dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, dof_helper_t *dofhp) { ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); mutex_enter(&dtrace_meta_lock); mutex_enter(&dtrace_lock); if (!dtrace_attached() || dtrace_meta_pid == NULL) { /* * If the dtrace module is loaded but not attached, or if * there aren't isn't a meta provider registered to deal with * these provider descriptions, we need to postpone creating * the actual providers until later. */ if (help->dthps_next == NULL && help->dthps_prev == NULL && dtrace_deferred_pid != help) { help->dthps_deferred = 1; help->dthps_pid = p->p_pid; help->dthps_next = dtrace_deferred_pid; help->dthps_prev = NULL; if (dtrace_deferred_pid != NULL) dtrace_deferred_pid->dthps_prev = help; dtrace_deferred_pid = help; } mutex_exit(&dtrace_lock); } else if (dofhp != NULL) { /* * If the dtrace module is loaded and we have a particular * helper provider description, pass that off to the * meta provider. */ mutex_exit(&dtrace_lock); dtrace_helper_provide(dofhp, p->p_pid); } else { /* * Otherwise, just pass all the helper provider descriptions * off to the meta provider. */ int i; mutex_exit(&dtrace_lock); for (i = 0; i < help->dthps_nprovs; i++) { dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, p->p_pid); } } mutex_exit(&dtrace_meta_lock); } static int dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen) { dtrace_helper_provider_t *hprov, **tmp_provs; uint_t tmp_maxprovs, i; ASSERT(MUTEX_HELD(&dtrace_lock)); ASSERT(help != NULL); /* * If we already have dtrace_helper_providers_max helper providers, * we're refuse to add a new one. */ if (help->dthps_nprovs >= dtrace_helper_providers_max) return (ENOSPC); /* * Check to make sure this isn't a duplicate. */ for (i = 0; i < help->dthps_nprovs; i++) { if (dofhp->dofhp_addr == help->dthps_provs[i]->dthp_prov.dofhp_addr) return (EALREADY); } hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); hprov->dthp_prov = *dofhp; hprov->dthp_ref = 1; hprov->dthp_generation = gen; /* * Allocate a bigger table for helper providers if it's already full. */ if (help->dthps_maxprovs == help->dthps_nprovs) { tmp_maxprovs = help->dthps_maxprovs; tmp_provs = help->dthps_provs; if (help->dthps_maxprovs == 0) help->dthps_maxprovs = 2; else help->dthps_maxprovs *= 2; if (help->dthps_maxprovs > dtrace_helper_providers_max) help->dthps_maxprovs = dtrace_helper_providers_max; ASSERT(tmp_maxprovs < help->dthps_maxprovs); help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * sizeof (dtrace_helper_provider_t *), KM_SLEEP); if (tmp_provs != NULL) { bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * sizeof (dtrace_helper_provider_t *)); kmem_free(tmp_provs, tmp_maxprovs * sizeof (dtrace_helper_provider_t *)); } } help->dthps_provs[help->dthps_nprovs] = hprov; help->dthps_nprovs++; return (0); } static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) { mutex_enter(&dtrace_lock); if (--hprov->dthp_ref == 0) { dof_hdr_t *dof; mutex_exit(&dtrace_lock); dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; dtrace_dof_destroy(dof); kmem_free(hprov, sizeof (dtrace_helper_provider_t)); } else { mutex_exit(&dtrace_lock); } } static int dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) { uintptr_t daddr = (uintptr_t)dof; dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; dof_provider_t *provider; dof_probe_t *probe; uint8_t *arg; char *strtab, *typestr; dof_stridx_t typeidx; size_t typesz; uint_t nprobes, j, k; ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); if (sec->dofs_offset & (sizeof (uint_t) - 1)) { dtrace_dof_error(dof, "misaligned section offset"); return (-1); } /* * The section needs to be large enough to contain the DOF provider * structure appropriate for the given version. */ if (sec->dofs_size < ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? offsetof(dof_provider_t, dofpv_prenoffs) : sizeof (dof_provider_t))) { dtrace_dof_error(dof, "provider section too small"); return (-1); } provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); if (str_sec == NULL || prb_sec == NULL || arg_sec == NULL || off_sec == NULL) return (-1); enoff_sec = NULL; if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && provider->dofpv_prenoffs != DOF_SECT_NONE && (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, provider->dofpv_prenoffs)) == NULL) return (-1); strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); if (provider->dofpv_name >= str_sec->dofs_size || strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { dtrace_dof_error(dof, "invalid provider name"); return (-1); } if (prb_sec->dofs_entsize == 0 || prb_sec->dofs_entsize > prb_sec->dofs_size) { dtrace_dof_error(dof, "invalid entry size"); return (-1); } if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { dtrace_dof_error(dof, "misaligned entry size"); return (-1); } if (off_sec->dofs_entsize != sizeof (uint32_t)) { dtrace_dof_error(dof, "invalid entry size"); return (-1); } if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { dtrace_dof_error(dof, "misaligned section offset"); return (-1); } if (arg_sec->dofs_entsize != sizeof (uint8_t)) { dtrace_dof_error(dof, "invalid entry size"); return (-1); } arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; /* * Take a pass through the probes to check for errors. */ for (j = 0; j < nprobes; j++) { probe = (dof_probe_t *)(uintptr_t)(daddr + prb_sec->dofs_offset + j * prb_sec->dofs_entsize); if (probe->dofpr_func >= str_sec->dofs_size) { dtrace_dof_error(dof, "invalid function name"); return (-1); } if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { dtrace_dof_error(dof, "function name too long"); /* * Keep going if the function name is too long. * Unlike provider and probe names, we cannot reasonably * impose restrictions on function names, since they're * a property of the code being instrumented. We will * skip this probe in dtrace_helper_provide_one(). */ } if (probe->dofpr_name >= str_sec->dofs_size || strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { dtrace_dof_error(dof, "invalid probe name"); return (-1); } /* * The offset count must not wrap the index, and the offsets * must also not overflow the section's data. */ if (probe->dofpr_offidx + probe->dofpr_noffs < probe->dofpr_offidx || (probe->dofpr_offidx + probe->dofpr_noffs) * off_sec->dofs_entsize > off_sec->dofs_size) { dtrace_dof_error(dof, "invalid probe offset"); return (-1); } if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { /* * If there's no is-enabled offset section, make sure * there aren't any is-enabled offsets. Otherwise * perform the same checks as for probe offsets * (immediately above). */ if (enoff_sec == NULL) { if (probe->dofpr_enoffidx != 0 || probe->dofpr_nenoffs != 0) { dtrace_dof_error(dof, "is-enabled " "offsets with null section"); return (-1); } } else if (probe->dofpr_enoffidx + probe->dofpr_nenoffs < probe->dofpr_enoffidx || (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * enoff_sec->dofs_entsize > enoff_sec->dofs_size) { dtrace_dof_error(dof, "invalid is-enabled " "offset"); return (-1); } if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { dtrace_dof_error(dof, "zero probe and " "is-enabled offsets"); return (-1); } } else if (probe->dofpr_noffs == 0) { dtrace_dof_error(dof, "zero probe offsets"); return (-1); } if (probe->dofpr_argidx + probe->dofpr_xargc < probe->dofpr_argidx || (probe->dofpr_argidx + probe->dofpr_xargc) * arg_sec->dofs_entsize > arg_sec->dofs_size) { dtrace_dof_error(dof, "invalid args"); return (-1); } typeidx = probe->dofpr_nargv; typestr = strtab + probe->dofpr_nargv; for (k = 0; k < probe->dofpr_nargc; k++) { if (typeidx >= str_sec->dofs_size) { dtrace_dof_error(dof, "bad " "native argument type"); return (-1); } typesz = strlen(typestr) + 1; if (typesz > DTRACE_ARGTYPELEN) { dtrace_dof_error(dof, "native " "argument type too long"); return (-1); } typeidx += typesz; typestr += typesz; } typeidx = probe->dofpr_xargv; typestr = strtab + probe->dofpr_xargv; for (k = 0; k < probe->dofpr_xargc; k++) { if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { dtrace_dof_error(dof, "bad " "native argument index"); return (-1); } if (typeidx >= str_sec->dofs_size) { dtrace_dof_error(dof, "bad " "translated argument type"); return (-1); } typesz = strlen(typestr) + 1; if (typesz > DTRACE_ARGTYPELEN) { dtrace_dof_error(dof, "translated argument " "type too long"); return (-1); } typeidx += typesz; typestr += typesz; } } return (0); } static int dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p) { dtrace_helpers_t *help; dtrace_vstate_t *vstate; dtrace_enabling_t *enab = NULL; int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; uintptr_t daddr = (uintptr_t)dof; ASSERT(MUTEX_HELD(&dtrace_lock)); if ((help = p->p_dtrace_helpers) == NULL) help = dtrace_helpers_create(p); vstate = &help->dthps_vstate; if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, dhp->dofhp_addr, dhp->dofhp_dof, B_FALSE)) != 0) { dtrace_dof_destroy(dof); return (rv); } /* * Look for helper providers and validate their descriptions. */ for (i = 0; i < dof->dofh_secnum; i++) { dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + i * dof->dofh_secsize); if (sec->dofs_type != DOF_SECT_PROVIDER) continue; if (dtrace_helper_provider_validate(dof, sec) != 0) { dtrace_enabling_destroy(enab); dtrace_dof_destroy(dof); return (-1); } nprovs++; } /* * Now we need to walk through the ECB descriptions in the enabling. */ for (i = 0; i < enab->dten_ndesc; i++) { dtrace_ecbdesc_t *ep = enab->dten_desc[i]; dtrace_probedesc_t *desc = &ep->dted_probe; if (strcmp(desc->dtpd_provider, "dtrace") != 0) continue; if (strcmp(desc->dtpd_mod, "helper") != 0) continue; if (strcmp(desc->dtpd_func, "ustack") != 0) continue; if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, ep, help)) != 0) { /* * Adding this helper action failed -- we are now going * to rip out the entire generation and return failure. */ (void) dtrace_helper_destroygen(help, help->dthps_generation); dtrace_enabling_destroy(enab); dtrace_dof_destroy(dof); return (-1); } nhelpers++; } if (nhelpers < enab->dten_ndesc) dtrace_dof_error(dof, "unmatched helpers"); gen = help->dthps_generation++; dtrace_enabling_destroy(enab); if (nprovs > 0) { /* * Now that this is in-kernel, we change the sense of the * members: dofhp_dof denotes the in-kernel copy of the DOF * and dofhp_addr denotes the address at user-level. */ dhp->dofhp_addr = dhp->dofhp_dof; dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; if (dtrace_helper_provider_add(dhp, help, gen) == 0) { mutex_exit(&dtrace_lock); dtrace_helper_provider_register(p, help, dhp); mutex_enter(&dtrace_lock); destroy = 0; } } if (destroy) dtrace_dof_destroy(dof); return (gen); } static dtrace_helpers_t * dtrace_helpers_create(proc_t *p) { dtrace_helpers_t *help; ASSERT(MUTEX_HELD(&dtrace_lock)); ASSERT(p->p_dtrace_helpers == NULL); help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS, KM_SLEEP); p->p_dtrace_helpers = help; dtrace_helpers++; return (help); } #ifdef illumos static #endif void dtrace_helpers_destroy(proc_t *p) { dtrace_helpers_t *help; dtrace_vstate_t *vstate; #ifdef illumos proc_t *p = curproc; #endif int i; mutex_enter(&dtrace_lock); ASSERT(p->p_dtrace_helpers != NULL); ASSERT(dtrace_helpers > 0); help = p->p_dtrace_helpers; vstate = &help->dthps_vstate; /* * We're now going to lose the help from this process. */ p->p_dtrace_helpers = NULL; dtrace_sync(); /* * Destory the helper actions. */ for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { dtrace_helper_action_t *h, *next; for (h = help->dthps_actions[i]; h != NULL; h = next) { next = h->dtha_next; dtrace_helper_action_destroy(h, vstate); h = next; } } mutex_exit(&dtrace_lock); /* * Destroy the helper providers. */ if (help->dthps_maxprovs > 0) { mutex_enter(&dtrace_meta_lock); if (dtrace_meta_pid != NULL) { ASSERT(dtrace_deferred_pid == NULL); for (i = 0; i < help->dthps_nprovs; i++) { dtrace_helper_provider_remove( &help->dthps_provs[i]->dthp_prov, p->p_pid); } } else { mutex_enter(&dtrace_lock); ASSERT(help->dthps_deferred == 0 || help->dthps_next != NULL || help->dthps_prev != NULL || help == dtrace_deferred_pid); /* * Remove the helper from the deferred list. */ if (help->dthps_next != NULL) help->dthps_next->dthps_prev = help->dthps_prev; if (help->dthps_prev != NULL) help->dthps_prev->dthps_next = help->dthps_next; if (dtrace_deferred_pid == help) { dtrace_deferred_pid = help->dthps_next; ASSERT(help->dthps_prev == NULL); } mutex_exit(&dtrace_lock); } mutex_exit(&dtrace_meta_lock); for (i = 0; i < help->dthps_nprovs; i++) { dtrace_helper_provider_destroy(help->dthps_provs[i]); } kmem_free(help->dthps_provs, help->dthps_maxprovs * sizeof (dtrace_helper_provider_t *)); } mutex_enter(&dtrace_lock); dtrace_vstate_fini(&help->dthps_vstate); kmem_free(help->dthps_actions, sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); kmem_free(help, sizeof (dtrace_helpers_t)); --dtrace_helpers; mutex_exit(&dtrace_lock); } #ifdef illumos static #endif void dtrace_helpers_duplicate(proc_t *from, proc_t *to) { dtrace_helpers_t *help, *newhelp; dtrace_helper_action_t *helper, *new, *last; dtrace_difo_t *dp; dtrace_vstate_t *vstate; int i, j, sz, hasprovs = 0; mutex_enter(&dtrace_lock); ASSERT(from->p_dtrace_helpers != NULL); ASSERT(dtrace_helpers > 0); help = from->p_dtrace_helpers; newhelp = dtrace_helpers_create(to); ASSERT(to->p_dtrace_helpers != NULL); newhelp->dthps_generation = help->dthps_generation; vstate = &newhelp->dthps_vstate; /* * Duplicate the helper actions. */ for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { if ((helper = help->dthps_actions[i]) == NULL) continue; for (last = NULL; helper != NULL; helper = helper->dtha_next) { new = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); new->dtha_generation = helper->dtha_generation; if ((dp = helper->dtha_predicate) != NULL) { dp = dtrace_difo_duplicate(dp, vstate); new->dtha_predicate = dp; } new->dtha_nactions = helper->dtha_nactions; sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; new->dtha_actions = kmem_alloc(sz, KM_SLEEP); for (j = 0; j < new->dtha_nactions; j++) { dtrace_difo_t *dp = helper->dtha_actions[j]; ASSERT(dp != NULL); dp = dtrace_difo_duplicate(dp, vstate); new->dtha_actions[j] = dp; } if (last != NULL) { last->dtha_next = new; } else { newhelp->dthps_actions[i] = new; } last = new; } } /* * Duplicate the helper providers and register them with the * DTrace framework. */ if (help->dthps_nprovs > 0) { newhelp->dthps_nprovs = help->dthps_nprovs; newhelp->dthps_maxprovs = help->dthps_nprovs; newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * sizeof (dtrace_helper_provider_t *), KM_SLEEP); for (i = 0; i < newhelp->dthps_nprovs; i++) { newhelp->dthps_provs[i] = help->dthps_provs[i]; newhelp->dthps_provs[i]->dthp_ref++; } hasprovs = 1; } mutex_exit(&dtrace_lock); if (hasprovs) dtrace_helper_provider_register(to, newhelp, NULL); } /* * DTrace Hook Functions */ static void dtrace_module_loaded(modctl_t *ctl) { dtrace_provider_t *prv; mutex_enter(&dtrace_provider_lock); #ifdef illumos mutex_enter(&mod_lock); #endif #ifdef illumos ASSERT(ctl->mod_busy); #endif /* * We're going to call each providers per-module provide operation * specifying only this module. */ for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); #ifdef illumos mutex_exit(&mod_lock); #endif mutex_exit(&dtrace_provider_lock); /* * If we have any retained enablings, we need to match against them. * Enabling probes requires that cpu_lock be held, and we cannot hold * cpu_lock here -- it is legal for cpu_lock to be held when loading a * module. (In particular, this happens when loading scheduling * classes.) So if we have any retained enablings, we need to dispatch * our task queue to do the match for us. */ mutex_enter(&dtrace_lock); if (dtrace_retained == NULL) { mutex_exit(&dtrace_lock); return; } (void) taskq_dispatch(dtrace_taskq, (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); mutex_exit(&dtrace_lock); /* * And now, for a little heuristic sleaze: in general, we want to * match modules as soon as they load. However, we cannot guarantee * this, because it would lead us to the lock ordering violation * outlined above. The common case, of course, is that cpu_lock is * _not_ held -- so we delay here for a clock tick, hoping that that's * long enough for the task queue to do its work. If it's not, it's * not a serious problem -- it just means that the module that we * just loaded may not be immediately instrumentable. */ delay(1); } static void #ifdef illumos dtrace_module_unloaded(modctl_t *ctl) #else dtrace_module_unloaded(modctl_t *ctl, int *error) #endif { dtrace_probe_t template, *probe, *first, *next; dtrace_provider_t *prov; #ifndef illumos char modname[DTRACE_MODNAMELEN]; size_t len; #endif #ifdef illumos template.dtpr_mod = ctl->mod_modname; #else /* Handle the fact that ctl->filename may end in ".ko". */ strlcpy(modname, ctl->filename, sizeof(modname)); len = strlen(ctl->filename); if (len > 3 && strcmp(modname + len - 3, ".ko") == 0) modname[len - 3] = '\0'; template.dtpr_mod = modname; #endif mutex_enter(&dtrace_provider_lock); #ifdef illumos mutex_enter(&mod_lock); #endif mutex_enter(&dtrace_lock); #ifndef illumos if (ctl->nenabled > 0) { /* Don't allow unloads if a probe is enabled. */ mutex_exit(&dtrace_provider_lock); mutex_exit(&dtrace_lock); *error = -1; printf( "kldunload: attempt to unload module that has DTrace probes enabled\n"); return; } #endif if (dtrace_bymod == NULL) { /* * The DTrace module is loaded (obviously) but not attached; * we don't have any work to do. */ mutex_exit(&dtrace_provider_lock); #ifdef illumos mutex_exit(&mod_lock); #endif mutex_exit(&dtrace_lock); return; } for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); probe != NULL; probe = probe->dtpr_nextmod) { if (probe->dtpr_ecb != NULL) { mutex_exit(&dtrace_provider_lock); #ifdef illumos mutex_exit(&mod_lock); #endif mutex_exit(&dtrace_lock); /* * This shouldn't _actually_ be possible -- we're * unloading a module that has an enabled probe in it. * (It's normally up to the provider to make sure that * this can't happen.) However, because dtps_enable() * doesn't have a failure mode, there can be an * enable/unload race. Upshot: we don't want to * assert, but we're not going to disable the * probe, either. */ if (dtrace_err_verbose) { #ifdef illumos cmn_err(CE_WARN, "unloaded module '%s' had " "enabled probes", ctl->mod_modname); #else cmn_err(CE_WARN, "unloaded module '%s' had " "enabled probes", modname); #endif } return; } } probe = first; for (first = NULL; probe != NULL; probe = next) { ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); dtrace_probes[probe->dtpr_id - 1] = NULL; next = probe->dtpr_nextmod; dtrace_hash_remove(dtrace_bymod, probe); dtrace_hash_remove(dtrace_byfunc, probe); dtrace_hash_remove(dtrace_byname, probe); if (first == NULL) { first = probe; probe->dtpr_nextmod = NULL; } else { probe->dtpr_nextmod = first; first = probe; } } /* * We've removed all of the module's probes from the hash chains and * from the probe array. Now issue a dtrace_sync() to be sure that * everyone has cleared out from any probe array processing. */ dtrace_sync(); for (probe = first; probe != NULL; probe = first) { first = probe->dtpr_nextmod; prov = probe->dtpr_provider; prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, probe->dtpr_arg); kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); #ifdef illumos vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); #else free_unr(dtrace_arena, probe->dtpr_id); #endif kmem_free(probe, sizeof (dtrace_probe_t)); } mutex_exit(&dtrace_lock); #ifdef illumos mutex_exit(&mod_lock); #endif mutex_exit(&dtrace_provider_lock); } #ifndef illumos static void dtrace_kld_load(void *arg __unused, linker_file_t lf) { dtrace_module_loaded(lf); } static void dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error) { if (*error != 0) /* We already have an error, so don't do anything. */ return; dtrace_module_unloaded(lf, error); } #endif #ifdef illumos static void dtrace_suspend(void) { dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); } static void dtrace_resume(void) { dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); } #endif static int dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) { ASSERT(MUTEX_HELD(&cpu_lock)); mutex_enter(&dtrace_lock); switch (what) { case CPU_CONFIG: { dtrace_state_t *state; dtrace_optval_t *opt, rs, c; /* * For now, we only allocate a new buffer for anonymous state. */ if ((state = dtrace_anon.dta_state) == NULL) break; if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) break; opt = state->dts_options; c = opt[DTRACEOPT_CPU]; if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) break; /* * Regardless of what the actual policy is, we're going to * temporarily set our resize policy to be manual. We're * also going to temporarily set our CPU option to denote * the newly configured CPU. */ rs = opt[DTRACEOPT_BUFRESIZE]; opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; (void) dtrace_state_buffers(state); opt[DTRACEOPT_BUFRESIZE] = rs; opt[DTRACEOPT_CPU] = c; break; } case CPU_UNCONFIG: /* * We don't free the buffer in the CPU_UNCONFIG case. (The * buffer will be freed when the consumer exits.) */ break; default: break; } mutex_exit(&dtrace_lock); return (0); } #ifdef illumos static void dtrace_cpu_setup_initial(processorid_t cpu) { (void) dtrace_cpu_setup(CPU_CONFIG, cpu); } #endif static void dtrace_toxrange_add(uintptr_t base, uintptr_t limit) { if (dtrace_toxranges >= dtrace_toxranges_max) { int osize, nsize; dtrace_toxrange_t *range; osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); if (osize == 0) { ASSERT(dtrace_toxrange == NULL); ASSERT(dtrace_toxranges_max == 0); dtrace_toxranges_max = 1; } else { dtrace_toxranges_max <<= 1; } nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); range = kmem_zalloc(nsize, KM_SLEEP); if (dtrace_toxrange != NULL) { ASSERT(osize != 0); bcopy(dtrace_toxrange, range, osize); kmem_free(dtrace_toxrange, osize); } dtrace_toxrange = range; } ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0); ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0); dtrace_toxrange[dtrace_toxranges].dtt_base = base; dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; dtrace_toxranges++; } static void dtrace_getf_barrier() { #ifdef illumos /* * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings * that contain calls to getf(), this routine will be called on every * closef() before either the underlying vnode is released or the * file_t itself is freed. By the time we are here, it is essential * that the file_t can no longer be accessed from a call to getf() * in probe context -- that assures that a dtrace_sync() can be used * to clear out any enablings referring to the old structures. */ if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || kcred->cr_zone->zone_dtrace_getf != 0) dtrace_sync(); #endif } /* * DTrace Driver Cookbook Functions */ #ifdef illumos /*ARGSUSED*/ static int dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) { dtrace_provider_id_t id; dtrace_state_t *state = NULL; dtrace_enabling_t *enab; mutex_enter(&cpu_lock); mutex_enter(&dtrace_provider_lock); mutex_enter(&dtrace_lock); if (ddi_soft_state_init(&dtrace_softstate, sizeof (dtrace_state_t), 0) != 0) { cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); mutex_exit(&cpu_lock); mutex_exit(&dtrace_provider_lock); mutex_exit(&dtrace_lock); return (DDI_FAILURE); } if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); ddi_remove_minor_node(devi, NULL); ddi_soft_state_fini(&dtrace_softstate); mutex_exit(&cpu_lock); mutex_exit(&dtrace_provider_lock); mutex_exit(&dtrace_lock); return (DDI_FAILURE); } ddi_report_dev(devi); dtrace_devi = devi; dtrace_modload = dtrace_module_loaded; dtrace_modunload = dtrace_module_unloaded; dtrace_cpu_init = dtrace_cpu_setup_initial; dtrace_helpers_cleanup = dtrace_helpers_destroy; dtrace_helpers_fork = dtrace_helpers_duplicate; dtrace_cpustart_init = dtrace_suspend; dtrace_cpustart_fini = dtrace_resume; dtrace_debugger_init = dtrace_suspend; dtrace_debugger_fini = dtrace_resume; register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); ASSERT(MUTEX_HELD(&cpu_lock)); dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 1, INT_MAX, 0); dtrace_state_cache = kmem_cache_create("dtrace_state_cache", sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); ASSERT(MUTEX_HELD(&cpu_lock)); dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), offsetof(dtrace_probe_t, dtpr_nextmod), offsetof(dtrace_probe_t, dtpr_prevmod)); dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), offsetof(dtrace_probe_t, dtpr_nextfunc), offsetof(dtrace_probe_t, dtpr_prevfunc)); dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), offsetof(dtrace_probe_t, dtpr_nextname), offsetof(dtrace_probe_t, dtpr_prevname)); if (dtrace_retain_max < 1) { cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " "setting to 1", dtrace_retain_max); dtrace_retain_max = 1; } /* * Now discover our toxic ranges. */ dtrace_toxic_ranges(dtrace_toxrange_add); /* * Before we register ourselves as a provider to our own framework, * we would like to assert that dtrace_provider is NULL -- but that's * not true if we were loaded as a dependency of a DTrace provider. * Once we've registered, we can assert that dtrace_provider is our * pseudo provider. */ (void) dtrace_register("dtrace", &dtrace_provider_attr, DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); ASSERT(dtrace_provider != NULL); ASSERT((dtrace_provider_id_t)dtrace_provider == id); dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) dtrace_provider, NULL, NULL, "END", 0, NULL); dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) dtrace_provider, NULL, NULL, "ERROR", 1, NULL); dtrace_anon_property(); mutex_exit(&cpu_lock); /* * If there are already providers, we must ask them to provide their * probes, and then match any anonymous enabling against them. Note * that there should be no other retained enablings at this time: * the only retained enablings at this time should be the anonymous * enabling. */ if (dtrace_anon.dta_enabling != NULL) { ASSERT(dtrace_retained == dtrace_anon.dta_enabling); dtrace_enabling_provide(NULL); state = dtrace_anon.dta_state; /* * We couldn't hold cpu_lock across the above call to * dtrace_enabling_provide(), but we must hold it to actually * enable the probes. We have to drop all of our locks, pick * up cpu_lock, and regain our locks before matching the * retained anonymous enabling. */ mutex_exit(&dtrace_lock); mutex_exit(&dtrace_provider_lock); mutex_enter(&cpu_lock); mutex_enter(&dtrace_provider_lock); mutex_enter(&dtrace_lock); if ((enab = dtrace_anon.dta_enabling) != NULL) (void) dtrace_enabling_match(enab, NULL); mutex_exit(&cpu_lock); } mutex_exit(&dtrace_lock); mutex_exit(&dtrace_provider_lock); if (state != NULL) { /* * If we created any anonymous state, set it going now. */ (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); } return (DDI_SUCCESS); } #endif /* illumos */ #ifndef illumos static void dtrace_dtr(void *); #endif /*ARGSUSED*/ static int #ifdef illumos dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) #else dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td) #endif { dtrace_state_t *state; uint32_t priv; uid_t uid; zoneid_t zoneid; #ifdef illumos if (getminor(*devp) == DTRACEMNRN_HELPER) return (0); /* * If this wasn't an open with the "helper" minor, then it must be * the "dtrace" minor. */ if (getminor(*devp) == DTRACEMNRN_DTRACE) return (ENXIO); #else cred_t *cred_p = NULL; cred_p = dev->si_cred; /* * If no DTRACE_PRIV_* bits are set in the credential, then the * caller lacks sufficient permission to do anything with DTrace. */ dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); if (priv == DTRACE_PRIV_NONE) { #endif return (EACCES); } /* * Ask all providers to provide all their probes. */ mutex_enter(&dtrace_provider_lock); dtrace_probe_provide(NULL, NULL); mutex_exit(&dtrace_provider_lock); mutex_enter(&cpu_lock); mutex_enter(&dtrace_lock); dtrace_opens++; dtrace_membar_producer(); #ifdef illumos /* * If the kernel debugger is active (that is, if the kernel debugger * modified text in some way), we won't allow the open. */ if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { dtrace_opens--; mutex_exit(&cpu_lock); mutex_exit(&dtrace_lock); return (EBUSY); } if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { /* * If DTrace helper tracing is enabled, we need to allocate the * trace buffer and initialize the values. */ dtrace_helptrace_buffer = kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); dtrace_helptrace_next = 0; dtrace_helptrace_wrapped = 0; dtrace_helptrace_enable = 0; } state = dtrace_state_create(devp, cred_p); #else state = dtrace_state_create(dev, NULL); devfs_set_cdevpriv(state, dtrace_dtr); #endif mutex_exit(&cpu_lock); if (state == NULL) { #ifdef illumos if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); #else --dtrace_opens; #endif mutex_exit(&dtrace_lock); return (EAGAIN); } mutex_exit(&dtrace_lock); return (0); } /*ARGSUSED*/ #ifdef illumos static int dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) #else static void dtrace_dtr(void *data) #endif { #ifdef illumos minor_t minor = getminor(dev); dtrace_state_t *state; #endif dtrace_helptrace_t *buf = NULL; #ifdef illumos if (minor == DTRACEMNRN_HELPER) return (0); state = ddi_get_soft_state(dtrace_softstate, minor); #else dtrace_state_t *state = data; #endif mutex_enter(&cpu_lock); mutex_enter(&dtrace_lock); #ifdef illumos if (state->dts_anon) #else if (state != NULL && state->dts_anon) #endif { /* * There is anonymous state. Destroy that first. */ ASSERT(dtrace_anon.dta_state == NULL); dtrace_state_destroy(state->dts_anon); } if (dtrace_helptrace_disable) { /* * If we have been told to disable helper tracing, set the * buffer to NULL before calling into dtrace_state_destroy(); * we take advantage of its dtrace_sync() to know that no * CPU is in probe context with enabled helper tracing * after it returns. */ buf = dtrace_helptrace_buffer; dtrace_helptrace_buffer = NULL; } #ifdef illumos dtrace_state_destroy(state); #else if (state != NULL) { dtrace_state_destroy(state); kmem_free(state, 0); } #endif ASSERT(dtrace_opens > 0); #ifdef illumos /* * Only relinquish control of the kernel debugger interface when there * are no consumers and no anonymous enablings. */ if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); #else --dtrace_opens; #endif if (buf != NULL) { kmem_free(buf, dtrace_helptrace_bufsize); dtrace_helptrace_disable = 0; } mutex_exit(&dtrace_lock); mutex_exit(&cpu_lock); #ifdef illumos return (0); #endif } #ifdef illumos /*ARGSUSED*/ static int dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) { int rval; dof_helper_t help, *dhp = NULL; switch (cmd) { case DTRACEHIOC_ADDDOF: if (copyin((void *)arg, &help, sizeof (help)) != 0) { dtrace_dof_error(NULL, "failed to copyin DOF helper"); return (EFAULT); } dhp = &help; arg = (intptr_t)help.dofhp_dof; /*FALLTHROUGH*/ case DTRACEHIOC_ADD: { dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); if (dof == NULL) return (rval); mutex_enter(&dtrace_lock); /* * dtrace_helper_slurp() takes responsibility for the dof -- * it may free it now or it may save it and free it later. */ if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { *rv = rval; rval = 0; } else { rval = EINVAL; } mutex_exit(&dtrace_lock); return (rval); } case DTRACEHIOC_REMOVE: { mutex_enter(&dtrace_lock); rval = dtrace_helper_destroygen(NULL, arg); mutex_exit(&dtrace_lock); return (rval); } default: break; } return (ENOTTY); } /*ARGSUSED*/ static int dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) { minor_t minor = getminor(dev); dtrace_state_t *state; int rval; if (minor == DTRACEMNRN_HELPER) return (dtrace_ioctl_helper(cmd, arg, rv)); state = ddi_get_soft_state(dtrace_softstate, minor); if (state->dts_anon) { ASSERT(dtrace_anon.dta_state == NULL); state = state->dts_anon; } switch (cmd) { case DTRACEIOC_PROVIDER: { dtrace_providerdesc_t pvd; dtrace_provider_t *pvp; if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) return (EFAULT); pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; mutex_enter(&dtrace_provider_lock); for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) break; } mutex_exit(&dtrace_provider_lock); if (pvp == NULL) return (ESRCH); bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) return (EFAULT); return (0); } case DTRACEIOC_EPROBE: { dtrace_eprobedesc_t epdesc; dtrace_ecb_t *ecb; dtrace_action_t *act; void *buf; size_t size; uintptr_t dest; int nrecs; if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) return (EFAULT); mutex_enter(&dtrace_lock); if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { mutex_exit(&dtrace_lock); return (EINVAL); } if (ecb->dte_probe == NULL) { mutex_exit(&dtrace_lock); return (EINVAL); } epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; epdesc.dtepd_uarg = ecb->dte_uarg; epdesc.dtepd_size = ecb->dte_size; nrecs = epdesc.dtepd_nrecs; epdesc.dtepd_nrecs = 0; for (act = ecb->dte_action; act != NULL; act = act->dta_next) { if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) continue; epdesc.dtepd_nrecs++; } /* * Now that we have the size, we need to allocate a temporary * buffer in which to store the complete description. We need * the temporary buffer to be able to drop dtrace_lock() * across the copyout(), below. */ size = sizeof (dtrace_eprobedesc_t) + (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); buf = kmem_alloc(size, KM_SLEEP); dest = (uintptr_t)buf; bcopy(&epdesc, (void *)dest, sizeof (epdesc)); dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); for (act = ecb->dte_action; act != NULL; act = act->dta_next) { if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) continue; if (nrecs-- == 0) break; bcopy(&act->dta_rec, (void *)dest, sizeof (dtrace_recdesc_t)); dest += sizeof (dtrace_recdesc_t); } mutex_exit(&dtrace_lock); if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { kmem_free(buf, size); return (EFAULT); } kmem_free(buf, size); return (0); } case DTRACEIOC_AGGDESC: { dtrace_aggdesc_t aggdesc; dtrace_action_t *act; dtrace_aggregation_t *agg; int nrecs; uint32_t offs; dtrace_recdesc_t *lrec; void *buf; size_t size; uintptr_t dest; if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) return (EFAULT); mutex_enter(&dtrace_lock); if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { mutex_exit(&dtrace_lock); return (EINVAL); } aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; nrecs = aggdesc.dtagd_nrecs; aggdesc.dtagd_nrecs = 0; offs = agg->dtag_base; lrec = &agg->dtag_action.dta_rec; aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; for (act = agg->dtag_first; ; act = act->dta_next) { ASSERT(act->dta_intuple || DTRACEACT_ISAGG(act->dta_kind)); /* * If this action has a record size of zero, it * denotes an argument to the aggregating action. * Because the presence of this record doesn't (or * shouldn't) affect the way the data is interpreted, * we don't copy it out to save user-level the * confusion of dealing with a zero-length record. */ if (act->dta_rec.dtrd_size == 0) { ASSERT(agg->dtag_hasarg); continue; } aggdesc.dtagd_nrecs++; if (act == &agg->dtag_action) break; } /* * Now that we have the size, we need to allocate a temporary * buffer in which to store the complete description. We need * the temporary buffer to be able to drop dtrace_lock() * across the copyout(), below. */ size = sizeof (dtrace_aggdesc_t) + (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); buf = kmem_alloc(size, KM_SLEEP); dest = (uintptr_t)buf; bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); for (act = agg->dtag_first; ; act = act->dta_next) { dtrace_recdesc_t rec = act->dta_rec; /* * See the comment in the above loop for why we pass * over zero-length records. */ if (rec.dtrd_size == 0) { ASSERT(agg->dtag_hasarg); continue; } if (nrecs-- == 0) break; rec.dtrd_offset -= offs; bcopy(&rec, (void *)dest, sizeof (rec)); dest += sizeof (dtrace_recdesc_t); if (act == &agg->dtag_action) break; } mutex_exit(&dtrace_lock); if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { kmem_free(buf, size); return (EFAULT); } kmem_free(buf, size); return (0); } case DTRACEIOC_ENABLE: { dof_hdr_t *dof; dtrace_enabling_t *enab = NULL; dtrace_vstate_t *vstate; int err = 0; *rv = 0; /* * If a NULL argument has been passed, we take this as our * cue to reevaluate our enablings. */ if (arg == NULL) { dtrace_enabling_matchall(); return (0); } if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) return (rval); mutex_enter(&cpu_lock); mutex_enter(&dtrace_lock); vstate = &state->dts_vstate; if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { mutex_exit(&dtrace_lock); mutex_exit(&cpu_lock); dtrace_dof_destroy(dof); return (EBUSY); } if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { mutex_exit(&dtrace_lock); mutex_exit(&cpu_lock); dtrace_dof_destroy(dof); return (EINVAL); } if ((rval = dtrace_dof_options(dof, state)) != 0) { dtrace_enabling_destroy(enab); mutex_exit(&dtrace_lock); mutex_exit(&cpu_lock); dtrace_dof_destroy(dof); return (rval); } if ((err = dtrace_enabling_match(enab, rv)) == 0) { err = dtrace_enabling_retain(enab); } else { dtrace_enabling_destroy(enab); } mutex_exit(&cpu_lock); mutex_exit(&dtrace_lock); dtrace_dof_destroy(dof); return (err); } case DTRACEIOC_REPLICATE: { dtrace_repldesc_t desc; dtrace_probedesc_t *match = &desc.dtrpd_match; dtrace_probedesc_t *create = &desc.dtrpd_create; int err; if (copyin((void *)arg, &desc, sizeof (desc)) != 0) return (EFAULT); match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; mutex_enter(&dtrace_lock); err = dtrace_enabling_replicate(state, match, create); mutex_exit(&dtrace_lock); return (err); } case DTRACEIOC_PROBEMATCH: case DTRACEIOC_PROBES: { dtrace_probe_t *probe = NULL; dtrace_probedesc_t desc; dtrace_probekey_t pkey; dtrace_id_t i; int m = 0; uint32_t priv; uid_t uid; zoneid_t zoneid; if (copyin((void *)arg, &desc, sizeof (desc)) != 0) return (EFAULT); desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; /* * Before we attempt to match this probe, we want to give * all providers the opportunity to provide it. */ if (desc.dtpd_id == DTRACE_IDNONE) { mutex_enter(&dtrace_provider_lock); dtrace_probe_provide(&desc, NULL); mutex_exit(&dtrace_provider_lock); desc.dtpd_id++; } if (cmd == DTRACEIOC_PROBEMATCH) { dtrace_probekey(&desc, &pkey); pkey.dtpk_id = DTRACE_IDNONE; } dtrace_cred2priv(cr, &priv, &uid, &zoneid); mutex_enter(&dtrace_lock); if (cmd == DTRACEIOC_PROBEMATCH) { for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { if ((probe = dtrace_probes[i - 1]) != NULL && (m = dtrace_match_probe(probe, &pkey, priv, uid, zoneid)) != 0) break; } if (m < 0) { mutex_exit(&dtrace_lock); return (EINVAL); } } else { for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { if ((probe = dtrace_probes[i - 1]) != NULL && dtrace_match_priv(probe, priv, uid, zoneid)) break; } } if (probe == NULL) { mutex_exit(&dtrace_lock); return (ESRCH); } dtrace_probe_description(probe, &desc); mutex_exit(&dtrace_lock); if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) return (EFAULT); return (0); } case DTRACEIOC_PROBEARG: { dtrace_argdesc_t desc; dtrace_probe_t *probe; dtrace_provider_t *prov; if (copyin((void *)arg, &desc, sizeof (desc)) != 0) return (EFAULT); if (desc.dtargd_id == DTRACE_IDNONE) return (EINVAL); if (desc.dtargd_ndx == DTRACE_ARGNONE) return (EINVAL); mutex_enter(&dtrace_provider_lock); mutex_enter(&mod_lock); mutex_enter(&dtrace_lock); if (desc.dtargd_id > dtrace_nprobes) { mutex_exit(&dtrace_lock); mutex_exit(&mod_lock); mutex_exit(&dtrace_provider_lock); return (EINVAL); } if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { mutex_exit(&dtrace_lock); mutex_exit(&mod_lock); mutex_exit(&dtrace_provider_lock); return (EINVAL); } mutex_exit(&dtrace_lock); prov = probe->dtpr_provider; if (prov->dtpv_pops.dtps_getargdesc == NULL) { /* * There isn't any typed information for this probe. * Set the argument number to DTRACE_ARGNONE. */ desc.dtargd_ndx = DTRACE_ARGNONE; } else { desc.dtargd_native[0] = '\0'; desc.dtargd_xlate[0] = '\0'; desc.dtargd_mapping = desc.dtargd_ndx; prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, probe->dtpr_id, probe->dtpr_arg, &desc); } mutex_exit(&mod_lock); mutex_exit(&dtrace_provider_lock); if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) return (EFAULT); return (0); } case DTRACEIOC_GO: { processorid_t cpuid; rval = dtrace_state_go(state, &cpuid); if (rval != 0) return (rval); if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) return (EFAULT); return (0); } case DTRACEIOC_STOP: { processorid_t cpuid; mutex_enter(&dtrace_lock); rval = dtrace_state_stop(state, &cpuid); mutex_exit(&dtrace_lock); if (rval != 0) return (rval); if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) return (EFAULT); return (0); } case DTRACEIOC_DOFGET: { dof_hdr_t hdr, *dof; uint64_t len; if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) return (EFAULT); mutex_enter(&dtrace_lock); dof = dtrace_dof_create(state); mutex_exit(&dtrace_lock); len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); rval = copyout(dof, (void *)arg, len); dtrace_dof_destroy(dof); return (rval == 0 ? 0 : EFAULT); } case DTRACEIOC_AGGSNAP: case DTRACEIOC_BUFSNAP: { dtrace_bufdesc_t desc; caddr_t cached; dtrace_buffer_t *buf; if (copyin((void *)arg, &desc, sizeof (desc)) != 0) return (EFAULT); if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) return (EINVAL); mutex_enter(&dtrace_lock); if (cmd == DTRACEIOC_BUFSNAP) { buf = &state->dts_buffer[desc.dtbd_cpu]; } else { buf = &state->dts_aggbuffer[desc.dtbd_cpu]; } if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { size_t sz = buf->dtb_offset; if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { mutex_exit(&dtrace_lock); return (EBUSY); } /* * If this buffer has already been consumed, we're * going to indicate that there's nothing left here * to consume. */ if (buf->dtb_flags & DTRACEBUF_CONSUMED) { mutex_exit(&dtrace_lock); desc.dtbd_size = 0; desc.dtbd_drops = 0; desc.dtbd_errors = 0; desc.dtbd_oldest = 0; sz = sizeof (desc); if (copyout(&desc, (void *)arg, sz) != 0) return (EFAULT); return (0); } /* * If this is a ring buffer that has wrapped, we want * to copy the whole thing out. */ if (buf->dtb_flags & DTRACEBUF_WRAPPED) { dtrace_buffer_polish(buf); sz = buf->dtb_size; } if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { mutex_exit(&dtrace_lock); return (EFAULT); } desc.dtbd_size = sz; desc.dtbd_drops = buf->dtb_drops; desc.dtbd_errors = buf->dtb_errors; desc.dtbd_oldest = buf->dtb_xamot_offset; desc.dtbd_timestamp = dtrace_gethrtime(); mutex_exit(&dtrace_lock); if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) return (EFAULT); buf->dtb_flags |= DTRACEBUF_CONSUMED; return (0); } if (buf->dtb_tomax == NULL) { ASSERT(buf->dtb_xamot == NULL); mutex_exit(&dtrace_lock); return (ENOENT); } cached = buf->dtb_tomax; ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); dtrace_xcall(desc.dtbd_cpu, (dtrace_xcall_t)dtrace_buffer_switch, buf); state->dts_errors += buf->dtb_xamot_errors; /* * If the buffers did not actually switch, then the cross call * did not take place -- presumably because the given CPU is * not in the ready set. If this is the case, we'll return * ENOENT. */ if (buf->dtb_tomax == cached) { ASSERT(buf->dtb_xamot != cached); mutex_exit(&dtrace_lock); return (ENOENT); } ASSERT(cached == buf->dtb_xamot); /* * We have our snapshot; now copy it out. */ if (copyout(buf->dtb_xamot, desc.dtbd_data, buf->dtb_xamot_offset) != 0) { mutex_exit(&dtrace_lock); return (EFAULT); } desc.dtbd_size = buf->dtb_xamot_offset; desc.dtbd_drops = buf->dtb_xamot_drops; desc.dtbd_errors = buf->dtb_xamot_errors; desc.dtbd_oldest = 0; desc.dtbd_timestamp = buf->dtb_switched; mutex_exit(&dtrace_lock); /* * Finally, copy out the buffer description. */ if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) return (EFAULT); return (0); } case DTRACEIOC_CONF: { dtrace_conf_t conf; bzero(&conf, sizeof (conf)); conf.dtc_difversion = DIF_VERSION; conf.dtc_difintregs = DIF_DIR_NREGS; conf.dtc_diftupregs = DIF_DTR_NREGS; conf.dtc_ctfmodel = CTF_MODEL_NATIVE; if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) return (EFAULT); return (0); } case DTRACEIOC_STATUS: { dtrace_status_t stat; dtrace_dstate_t *dstate; int i, j; uint64_t nerrs; /* * See the comment in dtrace_state_deadman() for the reason * for setting dts_laststatus to INT64_MAX before setting * it to the correct value. */ state->dts_laststatus = INT64_MAX; dtrace_membar_producer(); state->dts_laststatus = dtrace_gethrtime(); bzero(&stat, sizeof (stat)); mutex_enter(&dtrace_lock); if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { mutex_exit(&dtrace_lock); return (ENOENT); } if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) stat.dtst_exiting = 1; nerrs = state->dts_errors; dstate = &state->dts_vstate.dtvs_dynvars; for (i = 0; i < NCPU; i++) { dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; stat.dtst_dyndrops += dcpu->dtdsc_drops; stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) stat.dtst_filled++; nerrs += state->dts_buffer[i].dtb_errors; for (j = 0; j < state->dts_nspeculations; j++) { dtrace_speculation_t *spec; dtrace_buffer_t *buf; spec = &state->dts_speculations[j]; buf = &spec->dtsp_buffer[i]; stat.dtst_specdrops += buf->dtb_xamot_drops; } } stat.dtst_specdrops_busy = state->dts_speculations_busy; stat.dtst_specdrops_unavail = state->dts_speculations_unavail; stat.dtst_stkstroverflows = state->dts_stkstroverflows; stat.dtst_dblerrors = state->dts_dblerrors; stat.dtst_killed = (state->dts_activity == DTRACE_ACTIVITY_KILLED); stat.dtst_errors = nerrs; mutex_exit(&dtrace_lock); if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) return (EFAULT); return (0); } case DTRACEIOC_FORMAT: { dtrace_fmtdesc_t fmt; char *str; int len; if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) return (EFAULT); mutex_enter(&dtrace_lock); if (fmt.dtfd_format == 0 || fmt.dtfd_format > state->dts_nformats) { mutex_exit(&dtrace_lock); return (EINVAL); } /* * Format strings are allocated contiguously and they are * never freed; if a format index is less than the number * of formats, we can assert that the format map is non-NULL * and that the format for the specified index is non-NULL. */ ASSERT(state->dts_formats != NULL); str = state->dts_formats[fmt.dtfd_format - 1]; ASSERT(str != NULL); len = strlen(str) + 1; if (len > fmt.dtfd_length) { fmt.dtfd_length = len; if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { mutex_exit(&dtrace_lock); return (EINVAL); } } else { if (copyout(str, fmt.dtfd_string, len) != 0) { mutex_exit(&dtrace_lock); return (EINVAL); } } mutex_exit(&dtrace_lock); return (0); } default: break; } return (ENOTTY); } /*ARGSUSED*/ static int dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) { dtrace_state_t *state; switch (cmd) { case DDI_DETACH: break; case DDI_SUSPEND: return (DDI_SUCCESS); default: return (DDI_FAILURE); } mutex_enter(&cpu_lock); mutex_enter(&dtrace_provider_lock); mutex_enter(&dtrace_lock); ASSERT(dtrace_opens == 0); if (dtrace_helpers > 0) { mutex_exit(&dtrace_provider_lock); mutex_exit(&dtrace_lock); mutex_exit(&cpu_lock); return (DDI_FAILURE); } if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { mutex_exit(&dtrace_provider_lock); mutex_exit(&dtrace_lock); mutex_exit(&cpu_lock); return (DDI_FAILURE); } dtrace_provider = NULL; if ((state = dtrace_anon_grab()) != NULL) { /* * If there were ECBs on this state, the provider should * have not been allowed to detach; assert that there is * none. */ ASSERT(state->dts_necbs == 0); dtrace_state_destroy(state); /* * If we're being detached with anonymous state, we need to * indicate to the kernel debugger that DTrace is now inactive. */ (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); } bzero(&dtrace_anon, sizeof (dtrace_anon_t)); unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); dtrace_cpu_init = NULL; dtrace_helpers_cleanup = NULL; dtrace_helpers_fork = NULL; dtrace_cpustart_init = NULL; dtrace_cpustart_fini = NULL; dtrace_debugger_init = NULL; dtrace_debugger_fini = NULL; dtrace_modload = NULL; dtrace_modunload = NULL; ASSERT(dtrace_getf == 0); ASSERT(dtrace_closef == NULL); mutex_exit(&cpu_lock); kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); dtrace_probes = NULL; dtrace_nprobes = 0; dtrace_hash_destroy(dtrace_bymod); dtrace_hash_destroy(dtrace_byfunc); dtrace_hash_destroy(dtrace_byname); dtrace_bymod = NULL; dtrace_byfunc = NULL; dtrace_byname = NULL; kmem_cache_destroy(dtrace_state_cache); vmem_destroy(dtrace_minor); vmem_destroy(dtrace_arena); if (dtrace_toxrange != NULL) { kmem_free(dtrace_toxrange, dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); dtrace_toxrange = NULL; dtrace_toxranges = 0; dtrace_toxranges_max = 0; } ddi_remove_minor_node(dtrace_devi, NULL); dtrace_devi = NULL; ddi_soft_state_fini(&dtrace_softstate); ASSERT(dtrace_vtime_references == 0); ASSERT(dtrace_opens == 0); ASSERT(dtrace_retained == NULL); mutex_exit(&dtrace_lock); mutex_exit(&dtrace_provider_lock); /* * We don't destroy the task queue until after we have dropped our * locks (taskq_destroy() may block on running tasks). To prevent * attempting to do work after we have effectively detached but before * the task queue has been destroyed, all tasks dispatched via the * task queue must check that DTrace is still attached before * performing any operation. */ taskq_destroy(dtrace_taskq); dtrace_taskq = NULL; return (DDI_SUCCESS); } #endif #ifdef illumos /*ARGSUSED*/ static int dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) { int error; switch (infocmd) { case DDI_INFO_DEVT2DEVINFO: *result = (void *)dtrace_devi; error = DDI_SUCCESS; break; case DDI_INFO_DEVT2INSTANCE: *result = (void *)0; error = DDI_SUCCESS; break; default: error = DDI_FAILURE; } return (error); } #endif #ifdef illumos static struct cb_ops dtrace_cb_ops = { dtrace_open, /* open */ dtrace_close, /* close */ nulldev, /* strategy */ nulldev, /* print */ nodev, /* dump */ nodev, /* read */ nodev, /* write */ dtrace_ioctl, /* ioctl */ nodev, /* devmap */ nodev, /* mmap */ nodev, /* segmap */ nochpoll, /* poll */ ddi_prop_op, /* cb_prop_op */ 0, /* streamtab */ D_NEW | D_MP /* Driver compatibility flag */ }; static struct dev_ops dtrace_ops = { DEVO_REV, /* devo_rev */ 0, /* refcnt */ dtrace_info, /* get_dev_info */ nulldev, /* identify */ nulldev, /* probe */ dtrace_attach, /* attach */ dtrace_detach, /* detach */ nodev, /* reset */ &dtrace_cb_ops, /* driver operations */ NULL, /* bus operations */ nodev /* dev power */ }; static struct modldrv modldrv = { &mod_driverops, /* module type (this is a pseudo driver) */ "Dynamic Tracing", /* name of module */ &dtrace_ops, /* driver ops */ }; static struct modlinkage modlinkage = { MODREV_1, (void *)&modldrv, NULL }; int _init(void) { return (mod_install(&modlinkage)); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } int _fini(void) { return (mod_remove(&modlinkage)); } #else static d_ioctl_t dtrace_ioctl; static d_ioctl_t dtrace_ioctl_helper; static void dtrace_load(void *); static int dtrace_unload(void); static struct cdev *dtrace_dev; static struct cdev *helper_dev; void dtrace_invop_init(void); void dtrace_invop_uninit(void); static struct cdevsw dtrace_cdevsw = { .d_version = D_VERSION, .d_ioctl = dtrace_ioctl, .d_open = dtrace_open, .d_name = "dtrace", }; static struct cdevsw helper_cdevsw = { .d_version = D_VERSION, .d_ioctl = dtrace_ioctl_helper, .d_name = "helper", }; #include #include #include #include #include #include #include #include #include SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL); SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL); SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL); DEV_MODULE(dtrace, dtrace_modevent, NULL); MODULE_VERSION(dtrace, 1); MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1); #endif Index: head/sys/cddl/contrib/opensolaris/uts/common/sys/dtrace.h =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/sys/dtrace.h (revision 327887) +++ head/sys/cddl/contrib/opensolaris/uts/common/sys/dtrace.h (revision 327888) @@ -1,2510 +1,2512 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2013, Joyent, Inc. All rights reserved. * Copyright (c) 2013 by Delphix. All rights reserved. */ #ifndef _SYS_DTRACE_H #define _SYS_DTRACE_H #ifdef __cplusplus extern "C" { #endif /* * DTrace Dynamic Tracing Software: Kernel Interfaces * * Note: The contents of this file are private to the implementation of the * Solaris system and DTrace subsystem and are subject to change at any time * without notice. Applications and drivers using these interfaces will fail * to run on future releases. These interfaces should not be used for any * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB). * Please refer to the "Solaris Dynamic Tracing Guide" for more information. */ #ifndef _ASM #include #include #include #ifdef illumos #include #else #include #include #include #include #include typedef int model_t; #endif #include #ifdef illumos #include #include #else #include #endif /* * DTrace Universal Constants and Typedefs */ #define DTRACE_CPUALL -1 /* all CPUs */ #define DTRACE_IDNONE 0 /* invalid probe identifier */ #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */ #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */ #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */ #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */ #define DTRACE_PROVNONE 0 /* invalid provider identifier */ #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */ #define DTRACE_ARGNONE -1 /* invalid argument index */ #define DTRACE_PROVNAMELEN 64 #define DTRACE_MODNAMELEN 64 #define DTRACE_FUNCNAMELEN 192 #define DTRACE_NAMELEN 64 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \ DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4) #define DTRACE_ARGTYPELEN 128 typedef uint32_t dtrace_id_t; /* probe identifier */ typedef uint32_t dtrace_epid_t; /* enabled probe identifier */ typedef uint32_t dtrace_aggid_t; /* aggregation identifier */ typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */ typedef uint16_t dtrace_actkind_t; /* action kind */ typedef int64_t dtrace_optval_t; /* option value */ typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */ typedef enum dtrace_probespec { DTRACE_PROBESPEC_NONE = -1, DTRACE_PROBESPEC_PROVIDER = 0, DTRACE_PROBESPEC_MOD, DTRACE_PROBESPEC_FUNC, DTRACE_PROBESPEC_NAME } dtrace_probespec_t; /* * DTrace Intermediate Format (DIF) * * The following definitions describe the DTrace Intermediate Format (DIF), a * a RISC-like instruction set and program encoding used to represent * predicates and actions that can be bound to DTrace probes. The constants * below defining the number of available registers are suggested minimums; the * compiler should use DTRACEIOC_CONF to dynamically obtain the number of * registers provided by the current DTrace implementation. */ #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */ #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */ #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */ #define DIF_DIR_NREGS 8 /* number of DIF integer registers */ #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */ #define DIF_OP_OR 1 /* or r1, r2, rd */ #define DIF_OP_XOR 2 /* xor r1, r2, rd */ #define DIF_OP_AND 3 /* and r1, r2, rd */ #define DIF_OP_SLL 4 /* sll r1, r2, rd */ #define DIF_OP_SRL 5 /* srl r1, r2, rd */ #define DIF_OP_SUB 6 /* sub r1, r2, rd */ #define DIF_OP_ADD 7 /* add r1, r2, rd */ #define DIF_OP_MUL 8 /* mul r1, r2, rd */ #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */ #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */ #define DIF_OP_SREM 11 /* srem r1, r2, rd */ #define DIF_OP_UREM 12 /* urem r1, r2, rd */ #define DIF_OP_NOT 13 /* not r1, rd */ #define DIF_OP_MOV 14 /* mov r1, rd */ #define DIF_OP_CMP 15 /* cmp r1, r2 */ #define DIF_OP_TST 16 /* tst r1 */ #define DIF_OP_BA 17 /* ba label */ #define DIF_OP_BE 18 /* be label */ #define DIF_OP_BNE 19 /* bne label */ #define DIF_OP_BG 20 /* bg label */ #define DIF_OP_BGU 21 /* bgu label */ #define DIF_OP_BGE 22 /* bge label */ #define DIF_OP_BGEU 23 /* bgeu label */ #define DIF_OP_BL 24 /* bl label */ #define DIF_OP_BLU 25 /* blu label */ #define DIF_OP_BLE 26 /* ble label */ #define DIF_OP_BLEU 27 /* bleu label */ #define DIF_OP_LDSB 28 /* ldsb [r1], rd */ #define DIF_OP_LDSH 29 /* ldsh [r1], rd */ #define DIF_OP_LDSW 30 /* ldsw [r1], rd */ #define DIF_OP_LDUB 31 /* ldub [r1], rd */ #define DIF_OP_LDUH 32 /* lduh [r1], rd */ #define DIF_OP_LDUW 33 /* lduw [r1], rd */ #define DIF_OP_LDX 34 /* ldx [r1], rd */ #define DIF_OP_RET 35 /* ret rd */ #define DIF_OP_NOP 36 /* nop */ #define DIF_OP_SETX 37 /* setx intindex, rd */ #define DIF_OP_SETS 38 /* sets strindex, rd */ #define DIF_OP_SCMP 39 /* scmp r1, r2 */ #define DIF_OP_LDGA 40 /* ldga var, ri, rd */ #define DIF_OP_LDGS 41 /* ldgs var, rd */ #define DIF_OP_STGS 42 /* stgs var, rs */ #define DIF_OP_LDTA 43 /* ldta var, ri, rd */ #define DIF_OP_LDTS 44 /* ldts var, rd */ #define DIF_OP_STTS 45 /* stts var, rs */ #define DIF_OP_SRA 46 /* sra r1, r2, rd */ #define DIF_OP_CALL 47 /* call subr, rd */ #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */ #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */ #define DIF_OP_POPTS 50 /* popts */ #define DIF_OP_FLUSHTS 51 /* flushts */ #define DIF_OP_LDGAA 52 /* ldgaa var, rd */ #define DIF_OP_LDTAA 53 /* ldtaa var, rd */ #define DIF_OP_STGAA 54 /* stgaa var, rs */ #define DIF_OP_STTAA 55 /* sttaa var, rs */ #define DIF_OP_LDLS 56 /* ldls var, rd */ #define DIF_OP_STLS 57 /* stls var, rs */ #define DIF_OP_ALLOCS 58 /* allocs r1, rd */ #define DIF_OP_COPYS 59 /* copys r1, r2, rd */ #define DIF_OP_STB 60 /* stb r1, [rd] */ #define DIF_OP_STH 61 /* sth r1, [rd] */ #define DIF_OP_STW 62 /* stw r1, [rd] */ #define DIF_OP_STX 63 /* stx r1, [rd] */ #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */ #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */ #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */ #define DIF_OP_ULDUB 67 /* uldub [r1], rd */ #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */ #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */ #define DIF_OP_ULDX 70 /* uldx [r1], rd */ #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */ #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */ #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */ #define DIF_OP_RLDUB 74 /* rldub [r1], rd */ #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */ #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */ #define DIF_OP_RLDX 77 /* rldx [r1], rd */ #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */ #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */ #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */ #define DIF_STROFF_MAX 0xffff /* highest string table offset */ #define DIF_REGISTER_MAX 0xff /* highest register number */ #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */ #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */ #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */ #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */ #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */ #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */ #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */ #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */ #define DIF_VAR_ARGS 0x0000 /* arguments array */ #define DIF_VAR_REGS 0x0001 /* registers array */ #define DIF_VAR_UREGS 0x0002 /* user registers array */ #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */ #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */ #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */ #define DIF_VAR_IPL 0x0103 /* interrupt priority level */ #define DIF_VAR_EPID 0x0104 /* enabled probe ID */ #define DIF_VAR_ID 0x0105 /* probe ID */ #define DIF_VAR_ARG0 0x0106 /* first argument */ #define DIF_VAR_ARG1 0x0107 /* second argument */ #define DIF_VAR_ARG2 0x0108 /* third argument */ #define DIF_VAR_ARG3 0x0109 /* fourth argument */ #define DIF_VAR_ARG4 0x010a /* fifth argument */ #define DIF_VAR_ARG5 0x010b /* sixth argument */ #define DIF_VAR_ARG6 0x010c /* seventh argument */ #define DIF_VAR_ARG7 0x010d /* eighth argument */ #define DIF_VAR_ARG8 0x010e /* ninth argument */ #define DIF_VAR_ARG9 0x010f /* tenth argument */ #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */ #define DIF_VAR_CALLER 0x0111 /* caller */ #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */ #define DIF_VAR_PROBEMOD 0x0113 /* probe module */ #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */ #define DIF_VAR_PROBENAME 0x0115 /* probe name */ #define DIF_VAR_PID 0x0116 /* process ID */ #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */ #define DIF_VAR_EXECNAME 0x0118 /* name of executable */ #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */ #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */ #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */ #define DIF_VAR_UCALLER 0x011c /* user-level caller */ #define DIF_VAR_PPID 0x011d /* parent process ID */ #define DIF_VAR_UID 0x011e /* process user ID */ #define DIF_VAR_GID 0x011f /* process group ID */ #define DIF_VAR_ERRNO 0x0120 /* thread errno */ #define DIF_VAR_EXECARGS 0x0121 /* process arguments */ +#define DIF_VAR_JID 0x0122 /* process jail id */ +#define DIF_VAR_JAILNAME 0x0123 /* process jail name */ #ifndef illumos #define DIF_VAR_CPU 0x0200 #endif #define DIF_SUBR_RAND 0 #define DIF_SUBR_MUTEX_OWNED 1 #define DIF_SUBR_MUTEX_OWNER 2 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3 #define DIF_SUBR_MUTEX_TYPE_SPIN 4 #define DIF_SUBR_RW_READ_HELD 5 #define DIF_SUBR_RW_WRITE_HELD 6 #define DIF_SUBR_RW_ISWRITER 7 #define DIF_SUBR_COPYIN 8 #define DIF_SUBR_COPYINSTR 9 #define DIF_SUBR_SPECULATION 10 #define DIF_SUBR_PROGENYOF 11 #define DIF_SUBR_STRLEN 12 #define DIF_SUBR_COPYOUT 13 #define DIF_SUBR_COPYOUTSTR 14 #define DIF_SUBR_ALLOCA 15 #define DIF_SUBR_BCOPY 16 #define DIF_SUBR_COPYINTO 17 #define DIF_SUBR_MSGDSIZE 18 #define DIF_SUBR_MSGSIZE 19 #define DIF_SUBR_GETMAJOR 20 #define DIF_SUBR_GETMINOR 21 #define DIF_SUBR_DDI_PATHNAME 22 #define DIF_SUBR_STRJOIN 23 #define DIF_SUBR_LLTOSTR 24 #define DIF_SUBR_BASENAME 25 #define DIF_SUBR_DIRNAME 26 #define DIF_SUBR_CLEANPATH 27 #define DIF_SUBR_STRCHR 28 #define DIF_SUBR_STRRCHR 29 #define DIF_SUBR_STRSTR 30 #define DIF_SUBR_STRTOK 31 #define DIF_SUBR_SUBSTR 32 #define DIF_SUBR_INDEX 33 #define DIF_SUBR_RINDEX 34 #define DIF_SUBR_HTONS 35 #define DIF_SUBR_HTONL 36 #define DIF_SUBR_HTONLL 37 #define DIF_SUBR_NTOHS 38 #define DIF_SUBR_NTOHL 39 #define DIF_SUBR_NTOHLL 40 #define DIF_SUBR_INET_NTOP 41 #define DIF_SUBR_INET_NTOA 42 #define DIF_SUBR_INET_NTOA6 43 #define DIF_SUBR_TOUPPER 44 #define DIF_SUBR_TOLOWER 45 #define DIF_SUBR_MEMREF 46 #define DIF_SUBR_SX_SHARED_HELD 47 #define DIF_SUBR_SX_EXCLUSIVE_HELD 48 #define DIF_SUBR_SX_ISEXCLUSIVE 49 #define DIF_SUBR_MEMSTR 50 #define DIF_SUBR_GETF 51 #define DIF_SUBR_JSON 52 #define DIF_SUBR_STRTOLL 53 #define DIF_SUBR_MAX 53 /* max subroutine value */ typedef uint32_t dif_instr_t; #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff) #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff) #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff) #define DIF_INSTR_RD(i) ((i) & 0xff) #define DIF_INSTR_RS(i) ((i) & 0xff) #define DIF_INSTR_LABEL(i) ((i) & 0xffffff) #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff) #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff) #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff) #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff) #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff) #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff) #define DIF_INSTR_FMT(op, r1, r2, d) \ (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d)) #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d)) #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d)) #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0)) #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0)) #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label)) #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d)) #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d)) #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d)) #define DIF_INSTR_NOP (DIF_OP_NOP << 24) #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d)) #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d)) #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs)) #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d)) #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs)) #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24) #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24) #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d)) #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d)) #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d)) #define DIF_REG_R0 0 /* %r0 is always set to zero */ /* * A DTrace Intermediate Format Type (DIF Type) is used to represent the types * of variables, function and associative array arguments, and the return type * for each DIF object (shown below). It contains a description of the type, * its size in bytes, and a module identifier. */ typedef struct dtrace_diftype { uint8_t dtdt_kind; /* type kind (see below) */ uint8_t dtdt_ckind; /* type kind in CTF */ uint8_t dtdt_flags; /* type flags (see below) */ uint8_t dtdt_pad; /* reserved for future use */ uint32_t dtdt_size; /* type size in bytes (unless string) */ } dtrace_diftype_t; #define DIF_TYPE_CTF 0 /* type is a CTF type */ #define DIF_TYPE_STRING 1 /* type is a D string */ #define DIF_TF_BYREF 0x1 /* type is passed by reference */ #define DIF_TF_BYUREF 0x2 /* user type is passed by reference */ /* * A DTrace Intermediate Format variable record is used to describe each of the * variables referenced by a given DIF object. It contains an integer variable * identifier along with variable scope and properties, as shown below. The * size of this structure must be sizeof (int) aligned. */ typedef struct dtrace_difv { uint32_t dtdv_name; /* variable name index in dtdo_strtab */ uint32_t dtdv_id; /* variable reference identifier */ uint8_t dtdv_kind; /* variable kind (see below) */ uint8_t dtdv_scope; /* variable scope (see below) */ uint16_t dtdv_flags; /* variable flags (see below) */ dtrace_diftype_t dtdv_type; /* variable type (see above) */ } dtrace_difv_t; #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */ #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */ #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */ #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */ #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */ #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */ #define DIFV_F_MOD 0x2 /* variable is written by DIFO */ /* * DTrace Actions * * The upper byte determines the class of the action; the low bytes determines * the specific action within that class. The classes of actions are as * follows: * * [ no class ] <= May record process- or kernel-related data * DTRACEACT_PROC <= Only records process-related data * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes * DTRACEACT_KERNEL <= Only records kernel-related data * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel * DTRACEACT_SPECULATIVE <= Speculation-related action * DTRACEACT_AGGREGATION <= Aggregating action */ #define DTRACEACT_NONE 0 /* no action */ #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */ #define DTRACEACT_EXIT 2 /* exit() action */ #define DTRACEACT_PRINTF 3 /* printf() action */ #define DTRACEACT_PRINTA 4 /* printa() action */ #define DTRACEACT_LIBACT 5 /* library-controlled action */ #define DTRACEACT_TRACEMEM 6 /* tracemem() action */ #define DTRACEACT_TRACEMEM_DYNSIZE 7 /* dynamic tracemem() size */ #define DTRACEACT_PRINTM 8 /* printm() action (BSD) */ #define DTRACEACT_PROC 0x0100 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1) #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2) #define DTRACEACT_USYM (DTRACEACT_PROC + 3) #define DTRACEACT_UMOD (DTRACEACT_PROC + 4) #define DTRACEACT_UADDR (DTRACEACT_PROC + 5) #define DTRACEACT_PROC_DESTRUCTIVE 0x0200 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1) #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2) #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3) #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4) #define DTRACEACT_PROC_CONTROL 0x0300 #define DTRACEACT_KERNEL 0x0400 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1) #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2) #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3) #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1) #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2) #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3) #define DTRACEACT_SPECULATIVE 0x0600 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1) #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2) #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3) #define DTRACEACT_CLASS(x) ((x) & 0xff00) #define DTRACEACT_ISDESTRUCTIVE(x) \ (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \ DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE) #define DTRACEACT_ISSPECULATIVE(x) \ (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE) #define DTRACEACT_ISPRINTFLIKE(x) \ ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \ (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN) /* * DTrace Aggregating Actions * * These are functions f(x) for which the following is true: * * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n) * * where x_n is a set of arbitrary data. Aggregating actions are in their own * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow * for easier processing of the aggregation argument and data payload for a few * aggregating actions (notably: quantize(), lquantize(), and ustack()). */ #define DTRACEACT_AGGREGATION 0x0700 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1) #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2) #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3) #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4) #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5) #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6) #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7) #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8) #define DTRACEAGG_LLQUANTIZE (DTRACEACT_AGGREGATION + 9) #define DTRACEACT_ISAGG(x) \ (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION) #define DTRACE_QUANTIZE_NBUCKETS \ (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1) #define DTRACE_QUANTIZE_BUCKETVAL(buck) \ (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \ -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \ (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \ 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1)) #define DTRACE_LQUANTIZE_STEPSHIFT 48 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48) #define DTRACE_LQUANTIZE_LEVELSHIFT 32 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32) #define DTRACE_LQUANTIZE_BASESHIFT 0 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX #define DTRACE_LQUANTIZE_STEP(x) \ (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \ DTRACE_LQUANTIZE_STEPSHIFT) #define DTRACE_LQUANTIZE_LEVELS(x) \ (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \ DTRACE_LQUANTIZE_LEVELSHIFT) #define DTRACE_LQUANTIZE_BASE(x) \ (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \ DTRACE_LQUANTIZE_BASESHIFT) #define DTRACE_LLQUANTIZE_FACTORSHIFT 48 #define DTRACE_LLQUANTIZE_FACTORMASK ((uint64_t)UINT16_MAX << 48) #define DTRACE_LLQUANTIZE_LOWSHIFT 32 #define DTRACE_LLQUANTIZE_LOWMASK ((uint64_t)UINT16_MAX << 32) #define DTRACE_LLQUANTIZE_HIGHSHIFT 16 #define DTRACE_LLQUANTIZE_HIGHMASK ((uint64_t)UINT16_MAX << 16) #define DTRACE_LLQUANTIZE_NSTEPSHIFT 0 #define DTRACE_LLQUANTIZE_NSTEPMASK UINT16_MAX #define DTRACE_LLQUANTIZE_FACTOR(x) \ (uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \ DTRACE_LLQUANTIZE_FACTORSHIFT) #define DTRACE_LLQUANTIZE_LOW(x) \ (uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \ DTRACE_LLQUANTIZE_LOWSHIFT) #define DTRACE_LLQUANTIZE_HIGH(x) \ (uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \ DTRACE_LLQUANTIZE_HIGHSHIFT) #define DTRACE_LLQUANTIZE_NSTEP(x) \ (uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \ DTRACE_LLQUANTIZE_NSTEPSHIFT) #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX) #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32) #define DTRACE_USTACK_ARG(x, y) \ ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX)) #ifndef _LP64 #if BYTE_ORDER == _BIG_ENDIAN #define DTRACE_PTR(type, name) uint32_t name##pad; type *name #else #define DTRACE_PTR(type, name) type *name; uint32_t name##pad #endif #else #define DTRACE_PTR(type, name) type *name #endif /* * DTrace Object Format (DOF) * * DTrace programs can be persistently encoded in the DOF format so that they * may be embedded in other programs (for example, in an ELF file) or in the * dtrace driver configuration file for use in anonymous tracing. The DOF * format is versioned and extensible so that it can be revised and so that * internal data structures can be modified or extended compatibly. All DOF * structures use fixed-size types, so the 32-bit and 64-bit representations * are identical and consumers can use either data model transparently. * * The file layout is structured as follows: * * +---------------+-------------------+----- ... ----+---- ... ------+ * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable | * | (file header) | (section headers) | section data | section data | * +---------------+-------------------+----- ... ----+---- ... ------+ * |<------------ dof_hdr.dofh_loadsz --------------->| | * |<------------ dof_hdr.dofh_filesz ------------------------------->| * * The file header stores meta-data including a magic number, data model for * the instrumentation, data encoding, and properties of the DIF code within. * The header describes its own size and the size of the section headers. By * convention, an array of section headers follows the file header, and then * the data for all loadable sections and unloadable sections. This permits * consumer code to easily download the headers and all loadable data into the * DTrace driver in one contiguous chunk, omitting other extraneous sections. * * The section headers describe the size, offset, alignment, and section type * for each section. Sections are described using a set of #defines that tell * the consumer what kind of data is expected. Sections can contain links to * other sections by storing a dof_secidx_t, an index into the section header * array, inside of the section data structures. The section header includes * an entry size so that sections with data arrays can grow their structures. * * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which * are represented themselves as a collection of related DOF sections. This * permits us to change the set of sections associated with a DIFO over time, * and also permits us to encode DIFOs that contain different sets of sections. * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a * section of type DOF_SECT_DIFOHDR. This section's data is then an array of * dof_secidx_t's which in turn denote the sections associated with this DIFO. * * This loose coupling of the file structure (header and sections) to the * structure of the DTrace program itself (ECB descriptions, action * descriptions, and DIFOs) permits activities such as relocation processing * to occur in a single pass without having to understand D program structure. * * Finally, strings are always stored in ELF-style string tables along with a * string table section index and string table offset. Therefore strings in * DOF are always arbitrary-length and not bound to the current implementation. */ #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */ typedef struct dof_hdr { uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */ uint32_t dofh_flags; /* file attribute flags (if any) */ uint32_t dofh_hdrsize; /* size of file header in bytes */ uint32_t dofh_secsize; /* size of section header in bytes */ uint32_t dofh_secnum; /* number of section headers */ uint64_t dofh_secoff; /* file offset of section headers */ uint64_t dofh_loadsz; /* file size of loadable portion */ uint64_t dofh_filesz; /* file size of entire DOF file */ uint64_t dofh_pad; /* reserved for future use */ } dof_hdr_t; #define DOF_ID_MAG0 0 /* first byte of magic number */ #define DOF_ID_MAG1 1 /* second byte of magic number */ #define DOF_ID_MAG2 2 /* third byte of magic number */ #define DOF_ID_MAG3 3 /* fourth byte of magic number */ #define DOF_ID_MODEL 4 /* DOF data model (see below) */ #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */ #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */ #define DOF_ID_DIFVERS 7 /* DIF instruction set version */ #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */ #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */ #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */ #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */ #define DOF_MAG_MAG1 'D' #define DOF_MAG_MAG2 'O' #define DOF_MAG_MAG3 'F' #define DOF_MAG_STRING "\177DOF" #define DOF_MAG_STRLEN 4 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */ #define DOF_MODEL_ILP32 1 #define DOF_MODEL_LP64 2 #ifdef _LP64 #define DOF_MODEL_NATIVE DOF_MODEL_LP64 #else #define DOF_MODEL_NATIVE DOF_MODEL_ILP32 #endif #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */ #define DOF_ENCODE_LSB 1 #define DOF_ENCODE_MSB 2 #if BYTE_ORDER == _BIG_ENDIAN #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB #else #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB #endif #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */ #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */ #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */ #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */ typedef uint32_t dof_secidx_t; /* section header table index type */ typedef uint32_t dof_stridx_t; /* string table index type */ #define DOF_SECIDX_NONE (-1U) /* null value for section indices */ #define DOF_STRIDX_NONE (-1U) /* null value for string indices */ typedef struct dof_sec { uint32_t dofs_type; /* section type (see below) */ uint32_t dofs_align; /* section data memory alignment */ uint32_t dofs_flags; /* section flags (if any) */ uint32_t dofs_entsize; /* size of section entry (if table) */ uint64_t dofs_offset; /* offset of section data within file */ uint64_t dofs_size; /* size of section data in bytes */ } dof_sec_t; #define DOF_SECT_NONE 0 /* null section */ #define DOF_SECT_COMMENTS 1 /* compiler comments */ #define DOF_SECT_SOURCE 2 /* D program source code */ #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */ #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */ #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */ #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */ #define DOF_SECT_DIF 7 /* uint32_t array of byte code */ #define DOF_SECT_STRTAB 8 /* string table */ #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */ #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */ #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */ #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */ #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */ #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */ #define DOF_SECT_PROVIDER 15 /* dof_provider_t */ #define DOF_SECT_PROBES 16 /* dof_probe_t array */ #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */ #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */ #define DOF_SECT_INTTAB 19 /* uint64_t array */ #define DOF_SECT_UTSNAME 20 /* struct utsname */ #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */ #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */ #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */ #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */ #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */ #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */ #define DOF_SECF_LOAD 1 /* section should be loaded */ #define DOF_SEC_ISLOADABLE(x) \ (((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) || \ ((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) || \ ((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) || \ ((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) || \ ((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) || \ ((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) || \ ((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) || \ ((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) || \ ((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) || \ ((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) || \ ((x) == DOF_SECT_XLEXPORT) || ((x) == DOF_SECT_PREXPORT) || \ ((x) == DOF_SECT_PRENOFFS)) typedef struct dof_ecbdesc { dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */ dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */ dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */ uint32_t dofe_pad; /* reserved for future use */ uint64_t dofe_uarg; /* user-supplied library argument */ } dof_ecbdesc_t; typedef struct dof_probedesc { dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */ dof_stridx_t dofp_provider; /* provider string */ dof_stridx_t dofp_mod; /* module string */ dof_stridx_t dofp_func; /* function string */ dof_stridx_t dofp_name; /* name string */ uint32_t dofp_id; /* probe identifier (or zero) */ } dof_probedesc_t; typedef struct dof_actdesc { dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */ dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */ uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */ uint32_t dofa_ntuple; /* number of subsequent tuple actions */ uint64_t dofa_arg; /* kind-specific argument */ uint64_t dofa_uarg; /* user-supplied argument */ } dof_actdesc_t; typedef struct dof_difohdr { dtrace_diftype_t dofd_rtype; /* return type for this fragment */ dof_secidx_t dofd_links[1]; /* variable length array of indices */ } dof_difohdr_t; typedef struct dof_relohdr { dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */ dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */ dof_secidx_t dofr_tgtsec; /* link to section we are relocating */ } dof_relohdr_t; typedef struct dof_relodesc { dof_stridx_t dofr_name; /* string name of relocation symbol */ uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */ uint64_t dofr_offset; /* byte offset for relocation */ uint64_t dofr_data; /* additional type-specific data */ } dof_relodesc_t; #define DOF_RELO_NONE 0 /* empty relocation entry */ #define DOF_RELO_SETX 1 /* relocate setx value */ #define DOF_RELO_DOFREL 2 /* relocate DOF-relative value */ typedef struct dof_optdesc { uint32_t dofo_option; /* option identifier */ dof_secidx_t dofo_strtab; /* string table, if string option */ uint64_t dofo_value; /* option value or string index */ } dof_optdesc_t; typedef uint32_t dof_attr_t; /* encoded stability attributes */ #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8)) #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff) #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff) #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff) typedef struct dof_provider { dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */ dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */ dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */ dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */ dof_stridx_t dofpv_name; /* provider name string */ dof_attr_t dofpv_provattr; /* provider attributes */ dof_attr_t dofpv_modattr; /* module attributes */ dof_attr_t dofpv_funcattr; /* function attributes */ dof_attr_t dofpv_nameattr; /* name attributes */ dof_attr_t dofpv_argsattr; /* args attributes */ dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */ } dof_provider_t; typedef struct dof_probe { uint64_t dofpr_addr; /* probe base address or offset */ dof_stridx_t dofpr_func; /* probe function string */ dof_stridx_t dofpr_name; /* probe name string */ dof_stridx_t dofpr_nargv; /* native argument type strings */ dof_stridx_t dofpr_xargv; /* translated argument type strings */ uint32_t dofpr_argidx; /* index of first argument mapping */ uint32_t dofpr_offidx; /* index of first offset entry */ uint8_t dofpr_nargc; /* native argument count */ uint8_t dofpr_xargc; /* translated argument count */ uint16_t dofpr_noffs; /* number of offset entries for probe */ uint32_t dofpr_enoffidx; /* index of first is-enabled offset */ uint16_t dofpr_nenoffs; /* number of is-enabled offsets */ uint16_t dofpr_pad1; /* reserved for future use */ uint32_t dofpr_pad2; /* reserved for future use */ } dof_probe_t; typedef struct dof_xlator { dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */ dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */ dof_stridx_t dofxl_argv; /* input parameter type strings */ uint32_t dofxl_argc; /* input parameter list length */ dof_stridx_t dofxl_type; /* output type string name */ dof_attr_t dofxl_attr; /* output stability attributes */ } dof_xlator_t; typedef struct dof_xlmember { dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */ dof_stridx_t dofxm_name; /* member name */ dtrace_diftype_t dofxm_type; /* member type */ } dof_xlmember_t; typedef struct dof_xlref { dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */ uint32_t dofxr_member; /* index of referenced dof_xlmember */ uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */ } dof_xlref_t; /* * DTrace Intermediate Format Object (DIFO) * * A DIFO is used to store the compiled DIF for a D expression, its return * type, and its string and variable tables. The string table is a single * buffer of character data into which sets instructions and variable * references can reference strings using a byte offset. The variable table * is an array of dtrace_difv_t structures that describe the name and type of * each variable and the id used in the DIF code. This structure is described * above in the DIF section of this header file. The DIFO is used at both * user-level (in the library) and in the kernel, but the structure is never * passed between the two: the DOF structures form the only interface. As a * result, the definition can change depending on the presence of _KERNEL. */ typedef struct dtrace_difo { dif_instr_t *dtdo_buf; /* instruction buffer */ uint64_t *dtdo_inttab; /* integer table (optional) */ char *dtdo_strtab; /* string table (optional) */ dtrace_difv_t *dtdo_vartab; /* variable table (optional) */ uint_t dtdo_len; /* length of instruction buffer */ uint_t dtdo_intlen; /* length of integer table */ uint_t dtdo_strlen; /* length of string table */ uint_t dtdo_varlen; /* length of variable table */ dtrace_diftype_t dtdo_rtype; /* return type */ uint_t dtdo_refcnt; /* owner reference count */ uint_t dtdo_destructive; /* invokes destructive subroutines */ #ifndef _KERNEL dof_relodesc_t *dtdo_kreltab; /* kernel relocations */ dof_relodesc_t *dtdo_ureltab; /* user relocations */ struct dt_node **dtdo_xlmtab; /* translator references */ uint_t dtdo_krelen; /* length of krelo table */ uint_t dtdo_urelen; /* length of urelo table */ uint_t dtdo_xlmlen; /* length of translator table */ #endif } dtrace_difo_t; /* * DTrace Enabling Description Structures * * When DTrace is tracking the description of a DTrace enabling entity (probe, * predicate, action, ECB, record, etc.), it does so in a description * structure. These structures all end in "desc", and are used at both * user-level and in the kernel -- but (with the exception of * dtrace_probedesc_t) they are never passed between them. Typically, * user-level will use the description structures when assembling an enabling. * It will then distill those description structures into a DOF object (see * above), and send it into the kernel. The kernel will again use the * description structures to create a description of the enabling as it reads * the DOF. When the description is complete, the enabling will be actually * created -- turning it into the structures that represent the enabling * instead of merely describing it. Not surprisingly, the description * structures bear a strong resemblance to the DOF structures that act as their * conduit. */ struct dtrace_predicate; typedef struct dtrace_probedesc { dtrace_id_t dtpd_id; /* probe identifier */ char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */ char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */ char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */ char dtpd_name[DTRACE_NAMELEN]; /* probe name */ } dtrace_probedesc_t; typedef struct dtrace_repldesc { dtrace_probedesc_t dtrpd_match; /* probe descr. to match */ dtrace_probedesc_t dtrpd_create; /* probe descr. to create */ } dtrace_repldesc_t; typedef struct dtrace_preddesc { dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */ struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */ } dtrace_preddesc_t; typedef struct dtrace_actdesc { dtrace_difo_t *dtad_difo; /* pointer to DIF object */ struct dtrace_actdesc *dtad_next; /* next action */ dtrace_actkind_t dtad_kind; /* kind of action */ uint32_t dtad_ntuple; /* number in tuple */ uint64_t dtad_arg; /* action argument */ uint64_t dtad_uarg; /* user argument */ int dtad_refcnt; /* reference count */ } dtrace_actdesc_t; typedef struct dtrace_ecbdesc { dtrace_actdesc_t *dted_action; /* action description(s) */ dtrace_preddesc_t dted_pred; /* predicate description */ dtrace_probedesc_t dted_probe; /* probe description */ uint64_t dted_uarg; /* library argument */ int dted_refcnt; /* reference count */ } dtrace_ecbdesc_t; /* * DTrace Metadata Description Structures * * DTrace separates the trace data stream from the metadata stream. The only * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID + * timestamp) or (in the case of aggregations) aggregation identifiers. To * determine the structure of the data, DTrace consumers pass the token to the * kernel, and receive in return a corresponding description of the enabled * probe (via the dtrace_eprobedesc structure) or the aggregation (via the * dtrace_aggdesc structure). Both of these structures are expressed in terms * of record descriptions (via the dtrace_recdesc structure) that describe the * exact structure of the data. Some record descriptions may also contain a * format identifier; this additional bit of metadata can be retrieved from the * kernel, for which a format description is returned via the dtrace_fmtdesc * structure. Note that all four of these structures must be bitness-neutral * to allow for a 32-bit DTrace consumer on a 64-bit kernel. */ typedef struct dtrace_recdesc { dtrace_actkind_t dtrd_action; /* kind of action */ uint32_t dtrd_size; /* size of record */ uint32_t dtrd_offset; /* offset in ECB's data */ uint16_t dtrd_alignment; /* required alignment */ uint16_t dtrd_format; /* format, if any */ uint64_t dtrd_arg; /* action argument */ uint64_t dtrd_uarg; /* user argument */ } dtrace_recdesc_t; typedef struct dtrace_eprobedesc { dtrace_epid_t dtepd_epid; /* enabled probe ID */ dtrace_id_t dtepd_probeid; /* probe ID */ uint64_t dtepd_uarg; /* library argument */ uint32_t dtepd_size; /* total size */ int dtepd_nrecs; /* number of records */ dtrace_recdesc_t dtepd_rec[1]; /* records themselves */ } dtrace_eprobedesc_t; typedef struct dtrace_aggdesc { DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */ dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */ int dtagd_flags; /* not filled in by kernel */ dtrace_aggid_t dtagd_id; /* aggregation ID */ dtrace_epid_t dtagd_epid; /* enabled probe ID */ uint32_t dtagd_size; /* size in bytes */ int dtagd_nrecs; /* number of records */ uint32_t dtagd_pad; /* explicit padding */ dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */ } dtrace_aggdesc_t; typedef struct dtrace_fmtdesc { DTRACE_PTR(char, dtfd_string); /* format string */ int dtfd_length; /* length of format string */ uint16_t dtfd_format; /* format identifier */ } dtrace_fmtdesc_t; #define DTRACE_SIZEOF_EPROBEDESC(desc) \ (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \ (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) #define DTRACE_SIZEOF_AGGDESC(desc) \ (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \ (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) /* * DTrace Option Interface * * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections * in a DOF image. The dof_optdesc structure contains an option identifier and * an option value. The valid option identifiers are found below; the mapping * between option identifiers and option identifying strings is maintained at * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the * following are potentially valid option values: all positive integers, zero * and negative one. Some options (notably "bufpolicy" and "bufresize") take * predefined tokens as their values; these are defined with * DTRACEOPT_{option}_{token}. */ #define DTRACEOPT_BUFSIZE 0 /* buffer size */ #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */ #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */ #define DTRACEOPT_AGGSIZE 3 /* aggregation size */ #define DTRACEOPT_SPECSIZE 4 /* speculation size */ #define DTRACEOPT_NSPEC 5 /* number of speculations */ #define DTRACEOPT_STRSIZE 6 /* string size */ #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */ #define DTRACEOPT_CPU 8 /* CPU to trace */ #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */ #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */ #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */ #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */ #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */ #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */ #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */ #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */ #define DTRACEOPT_STATUSRATE 17 /* status rate */ #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */ #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */ #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */ #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */ #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */ #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */ #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */ #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */ #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */ #define DTRACEOPT_TEMPORAL 27 /* temporally ordered output */ #define DTRACEOPT_AGGHIST 28 /* histogram aggregation output */ #define DTRACEOPT_AGGPACK 29 /* packed aggregation output */ #define DTRACEOPT_AGGZOOM 30 /* zoomed aggregation scaling */ #define DTRACEOPT_ZONE 31 /* zone in which to enable probes */ #define DTRACEOPT_MAX 32 /* number of options */ #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */ #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */ #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */ #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */ #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */ #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */ /* * DTrace Buffer Interface * * In order to get a snapshot of the principal or aggregation buffer, * user-level passes a buffer description to the kernel with the dtrace_bufdesc * structure. This describes which CPU user-level is interested in, and * where user-level wishes the kernel to snapshot the buffer to (the * dtbd_data field). The kernel uses the same structure to pass back some * information regarding the buffer: the size of data actually copied out, the * number of drops, the number of errors, the offset of the oldest record, * and the time of the snapshot. * * If the buffer policy is a "switch" policy, taking a snapshot of the * principal buffer has the additional effect of switching the active and * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has * the additional effect of switching the active and inactive buffers. */ typedef struct dtrace_bufdesc { uint64_t dtbd_size; /* size of buffer */ uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */ uint32_t dtbd_errors; /* number of errors */ uint64_t dtbd_drops; /* number of drops */ DTRACE_PTR(char, dtbd_data); /* data */ uint64_t dtbd_oldest; /* offset of oldest record */ uint64_t dtbd_timestamp; /* hrtime of snapshot */ } dtrace_bufdesc_t; /* * Each record in the buffer (dtbd_data) begins with a header that includes * the epid and a timestamp. The timestamp is split into two 4-byte parts * so that we do not require 8-byte alignment. */ typedef struct dtrace_rechdr { dtrace_epid_t dtrh_epid; /* enabled probe id */ uint32_t dtrh_timestamp_hi; /* high bits of hrtime_t */ uint32_t dtrh_timestamp_lo; /* low bits of hrtime_t */ } dtrace_rechdr_t; #define DTRACE_RECORD_LOAD_TIMESTAMP(dtrh) \ ((dtrh)->dtrh_timestamp_lo + \ ((uint64_t)(dtrh)->dtrh_timestamp_hi << 32)) #define DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) { \ (dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime; \ (dtrh)->dtrh_timestamp_hi = hrtime >> 32; \ } /* * DTrace Status * * The status of DTrace is relayed via the dtrace_status structure. This * structure contains members to count drops other than the capacity drops * available via the buffer interface (see above). This consists of dynamic * drops (including capacity dynamic drops, rinsing drops and dirty drops), and * speculative drops (including capacity speculative drops, drops due to busy * speculative buffers and drops due to unavailable speculative buffers). * Additionally, the status structure contains a field to indicate the number * of "fill"-policy buffers have been filled and a boolean field to indicate * that exit() has been called. If the dtst_exiting field is non-zero, no * further data will be generated until tracing is stopped (at which time any * enablings of the END action will be processed); if user-level sees that * this field is non-zero, tracing should be stopped as soon as possible. */ typedef struct dtrace_status { uint64_t dtst_dyndrops; /* dynamic drops */ uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */ uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */ uint64_t dtst_specdrops; /* speculative drops */ uint64_t dtst_specdrops_busy; /* spec drops due to busy */ uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */ uint64_t dtst_errors; /* total errors */ uint64_t dtst_filled; /* number of filled bufs */ uint64_t dtst_stkstroverflows; /* stack string tab overflows */ uint64_t dtst_dblerrors; /* errors in ERROR probes */ char dtst_killed; /* non-zero if killed */ char dtst_exiting; /* non-zero if exit() called */ char dtst_pad[6]; /* pad out to 64-bit align */ } dtrace_status_t; /* * DTrace Configuration * * User-level may need to understand some elements of the kernel DTrace * configuration in order to generate correct DIF. This information is * conveyed via the dtrace_conf structure. */ typedef struct dtrace_conf { uint_t dtc_difversion; /* supported DIF version */ uint_t dtc_difintregs; /* # of DIF integer registers */ uint_t dtc_diftupregs; /* # of DIF tuple registers */ uint_t dtc_ctfmodel; /* CTF data model */ uint_t dtc_pad[8]; /* reserved for future use */ } dtrace_conf_t; /* * DTrace Faults * * The constants below DTRACEFLT_LIBRARY indicate probe processing faults; * constants at or above DTRACEFLT_LIBRARY indicate faults in probe * postprocessing at user-level. Probe processing faults induce an ERROR * probe and are replicated in unistd.d to allow users' ERROR probes to decode * the error condition using thse symbolic labels. */ #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */ #define DTRACEFLT_BADADDR 1 /* Bad address */ #define DTRACEFLT_BADALIGN 2 /* Bad alignment */ #define DTRACEFLT_ILLOP 3 /* Illegal operation */ #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */ #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */ #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */ #define DTRACEFLT_UPRIV 7 /* Illegal user access */ #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */ #define DTRACEFLT_BADSTACK 9 /* Bad stack */ #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */ /* * DTrace Argument Types * * Because it would waste both space and time, argument types do not reside * with the probe. In order to determine argument types for args[X] * variables, the D compiler queries for argument types on a probe-by-probe * basis. (This optimizes for the common case that arguments are either not * used or used in an untyped fashion.) Typed arguments are specified with a * string of the type name in the dtragd_native member of the argument * description structure. Typed arguments may be further translated to types * of greater stability; the provider indicates such a translated argument by * filling in the dtargd_xlate member with the string of the translated type. * Finally, the provider may indicate which argument value a given argument * maps to by setting the dtargd_mapping member -- allowing a single argument * to map to multiple args[X] variables. */ typedef struct dtrace_argdesc { dtrace_id_t dtargd_id; /* probe identifier */ int dtargd_ndx; /* arg number (-1 iff none) */ int dtargd_mapping; /* value mapping */ char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */ char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */ } dtrace_argdesc_t; /* * DTrace Stability Attributes * * Each DTrace provider advertises the name and data stability of each of its * probe description components, as well as its architectural dependencies. * The D compiler can query the provider attributes (dtrace_pattr_t below) in * order to compute the properties of an input program and report them. */ typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */ typedef uint8_t dtrace_class_t; /* architectural dependency class */ #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */ #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */ #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */ #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */ #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */ #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */ #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */ #define DTRACE_STABILITY_STANDARD 7 /* industry standard */ #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */ #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */ #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */ #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */ #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */ #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */ #define DTRACE_CLASS_COMMON 5 /* common to all systems */ #define DTRACE_CLASS_MAX 5 /* maximum valid class */ #define DTRACE_PRIV_NONE 0x0000 #define DTRACE_PRIV_KERNEL 0x0001 #define DTRACE_PRIV_USER 0x0002 #define DTRACE_PRIV_PROC 0x0004 #define DTRACE_PRIV_OWNER 0x0008 #define DTRACE_PRIV_ZONEOWNER 0x0010 #define DTRACE_PRIV_ALL \ (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \ DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER) typedef struct dtrace_ppriv { uint32_t dtpp_flags; /* privilege flags */ uid_t dtpp_uid; /* user ID */ zoneid_t dtpp_zoneid; /* zone ID */ } dtrace_ppriv_t; typedef struct dtrace_attribute { dtrace_stability_t dtat_name; /* entity name stability */ dtrace_stability_t dtat_data; /* entity data stability */ dtrace_class_t dtat_class; /* entity data dependency */ } dtrace_attribute_t; typedef struct dtrace_pattr { dtrace_attribute_t dtpa_provider; /* provider attributes */ dtrace_attribute_t dtpa_mod; /* module attributes */ dtrace_attribute_t dtpa_func; /* function attributes */ dtrace_attribute_t dtpa_name; /* name attributes */ dtrace_attribute_t dtpa_args; /* args[] attributes */ } dtrace_pattr_t; typedef struct dtrace_providerdesc { char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */ dtrace_pattr_t dtvd_attr; /* stability attributes */ dtrace_ppriv_t dtvd_priv; /* privileges required */ } dtrace_providerdesc_t; /* * DTrace Pseudodevice Interface * * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace * pseudodevice driver. These ioctls comprise the user-kernel interface to * DTrace. */ #ifdef illumos #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8)) #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */ #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */ #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */ #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */ #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */ #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */ #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */ #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */ #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */ #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */ #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */ #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */ #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */ #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */ #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */ #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */ #else #define DTRACEIOC_PROVIDER _IOWR('x',1,dtrace_providerdesc_t) /* provider query */ #define DTRACEIOC_PROBES _IOWR('x',2,dtrace_probedesc_t) /* probe query */ #define DTRACEIOC_BUFSNAP _IOW('x',4,dtrace_bufdesc_t *) /* snapshot buffer */ #define DTRACEIOC_PROBEMATCH _IOWR('x',5,dtrace_probedesc_t) /* match probes */ typedef struct { void *dof; /* DOF userland address written to driver. */ int n_matched; /* # matches returned by driver. */ } dtrace_enable_io_t; #define DTRACEIOC_ENABLE _IOWR('x',6,dtrace_enable_io_t) /* enable probes */ #define DTRACEIOC_AGGSNAP _IOW('x',7,dtrace_bufdesc_t *) /* snapshot agg. */ #define DTRACEIOC_EPROBE _IOW('x',8,dtrace_eprobedesc_t) /* get eprobe desc. */ #define DTRACEIOC_PROBEARG _IOWR('x',9,dtrace_argdesc_t) /* get probe arg */ #define DTRACEIOC_CONF _IOR('x',10,dtrace_conf_t) /* get config. */ #define DTRACEIOC_STATUS _IOR('x',11,dtrace_status_t) /* get status */ #define DTRACEIOC_GO _IOR('x',12,processorid_t) /* start tracing */ #define DTRACEIOC_STOP _IOWR('x',13,processorid_t) /* stop tracing */ #define DTRACEIOC_AGGDESC _IOW('x',15,dtrace_aggdesc_t *) /* get agg. desc. */ #define DTRACEIOC_FORMAT _IOWR('x',16,dtrace_fmtdesc_t) /* get format str */ #define DTRACEIOC_DOFGET _IOW('x',17,dof_hdr_t *) /* get DOF */ #define DTRACEIOC_REPLICATE _IOW('x',18,dtrace_repldesc_t) /* replicate enab */ #endif /* * DTrace Helpers * * In general, DTrace establishes probes in processes and takes actions on * processes without knowing their specific user-level structures. Instead of * existing in the framework, process-specific knowledge is contained by the * enabling D program -- which can apply process-specific knowledge by making * appropriate use of DTrace primitives like copyin() and copyinstr() to * operate on user-level data. However, there may exist some specific probes * of particular semantic relevance that the application developer may wish to * explicitly export. For example, an application may wish to export a probe * at the point that it begins and ends certain well-defined transactions. In * addition to providing probes, programs may wish to offer assistance for * certain actions. For example, in highly dynamic environments (e.g., Java), * it may be difficult to obtain a stack trace in terms of meaningful symbol * names (the translation from instruction addresses to corresponding symbol * names may only be possible in situ); these environments may wish to define * a series of actions to be applied in situ to obtain a meaningful stack * trace. * * These two mechanisms -- user-level statically defined tracing and assisting * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified * via DOF, but unlike enabling DOF, helper DOF may contain definitions of * providers, probes and their arguments. If a helper wishes to provide * action assistance, probe descriptions and corresponding DIF actions may be * specified in the helper DOF. For such helper actions, however, the probe * description describes the specific helper: all DTrace helpers have the * provider name "dtrace" and the module name "helper", and the name of the * helper is contained in the function name (for example, the ustack() helper * is named "ustack"). Any helper-specific name may be contained in the name * (for example, if a helper were to have a constructor, it might be named * "dtrace:helper::init"). Helper actions are only called when the * action that they are helping is taken. Helper actions may only return DIF * expressions, and may only call the following subroutines: * * alloca() <= Allocates memory out of the consumer's scratch space * bcopy() <= Copies memory to scratch space * copyin() <= Copies memory from user-level into consumer's scratch * copyinto() <= Copies memory into a specific location in scratch * copyinstr() <= Copies a string into a specific location in scratch * * Helper actions may only access the following built-in variables: * * curthread <= Current kthread_t pointer * tid <= Current thread identifier * pid <= Current process identifier * ppid <= Parent process identifier * uid <= Current user ID * gid <= Current group ID * execname <= Current executable name * zonename <= Current zone name * * Helper actions may not manipulate or allocate dynamic variables, but they * may have clause-local and statically-allocated global variables. The * helper action variable state is specific to the helper action -- variables * used by the helper action may not be accessed outside of the helper * action, and the helper action may not access variables that like outside * of it. Helper actions may not load from kernel memory at-large; they are * restricting to loading current user state (via copyin() and variants) and * scratch space. As with probe enablings, helper actions are executed in * program order. The result of the helper action is the result of the last * executing helper expression. * * Helpers -- composed of either providers/probes or probes/actions (or both) * -- are added by opening the "helper" minor node, and issuing an ioctl(2) * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This * encapsulates the name and base address of the user-level library or * executable publishing the helpers and probes as well as the DOF that * contains the definitions of those helpers and probes. * * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy * helpers and should no longer be used. No other ioctls are valid on the * helper minor node. */ #ifdef illumos #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8)) #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */ #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */ #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */ #else #define DTRACEHIOC_REMOVE _IOW('z', 2, int) /* remove helper */ #define DTRACEHIOC_ADDDOF _IOWR('z', 3, dof_helper_t)/* add helper DOF */ #endif typedef struct dof_helper { char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */ uint64_t dofhp_addr; /* base address of object */ uint64_t dofhp_dof; /* address of helper DOF */ #ifdef __FreeBSD__ pid_t dofhp_pid; /* target process ID */ int dofhp_gen; #endif } dof_helper_t; #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */ #define DTRACEMNR_HELPER "helper" /* node for helpers */ #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */ #define DTRACEMNRN_HELPER 1 /* minor for helpers */ #define DTRACEMNRN_CLONE 2 /* first clone minor */ #ifdef _KERNEL /* * DTrace Provider API * * The following functions are implemented by the DTrace framework and are * used to implement separate in-kernel DTrace providers. Common functions * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are * defined in uts//dtrace/dtrace_asm.s or uts//dtrace/dtrace_isa.c. * * The provider API has two halves: the API that the providers consume from * DTrace, and the API that providers make available to DTrace. * * 1 Framework-to-Provider API * * 1.1 Overview * * The Framework-to-Provider API is represented by the dtrace_pops structure * that the provider passes to the framework when registering itself. This * structure consists of the following members: * * dtps_provide() <-- Provide all probes, all modules * dtps_provide_module() <-- Provide all probes in specified module * dtps_enable() <-- Enable specified probe * dtps_disable() <-- Disable specified probe * dtps_suspend() <-- Suspend specified probe * dtps_resume() <-- Resume specified probe * dtps_getargdesc() <-- Get the argument description for args[X] * dtps_getargval() <-- Get the value for an argX or args[X] variable * dtps_usermode() <-- Find out if the probe was fired in user mode * dtps_destroy() <-- Destroy all state associated with this probe * * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec) * * 1.2.1 Overview * * Called to indicate that the provider should provide all probes. If the * specified description is non-NULL, dtps_provide() is being called because * no probe matched a specified probe -- if the provider has the ability to * create custom probes, it may wish to create a probe that matches the * specified description. * * 1.2.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_register(). The * second argument is a pointer to a probe description that the provider may * wish to consider when creating custom probes. The provider is expected to * call back into the DTrace framework via dtrace_probe_create() to create * any necessary probes. dtps_provide() may be called even if the provider * has made available all probes; the provider should check the return value * of dtrace_probe_create() to handle this case. Note that the provider need * not implement both dtps_provide() and dtps_provide_module(); see * "Arguments and Notes" for dtrace_register(), below. * * 1.2.3 Return value * * None. * * 1.2.4 Caller's context * * dtps_provide() is typically called from open() or ioctl() context, but may * be called from other contexts as well. The DTrace framework is locked in * such a way that providers may not register or unregister. This means that * the provider may not call any DTrace API that affects its registration with * the framework, including dtrace_register(), dtrace_unregister(), * dtrace_invalidate(), and dtrace_condense(). However, the context is such * that the provider may (and indeed, is expected to) call probe-related * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(), * and dtrace_probe_arg(). * * 1.3 void dtps_provide_module(void *arg, modctl_t *mp) * * 1.3.1 Overview * * Called to indicate that the provider should provide all probes in the * specified module. * * 1.3.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_register(). The * second argument is a pointer to a modctl structure that indicates the * module for which probes should be created. * * 1.3.3 Return value * * None. * * 1.3.4 Caller's context * * dtps_provide_module() may be called from open() or ioctl() context, but * may also be called from a module loading context. mod_lock is held, and * the DTrace framework is locked in such a way that providers may not * register or unregister. This means that the provider may not call any * DTrace API that affects its registration with the framework, including * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and * dtrace_condense(). However, the context is such that the provider may (and * indeed, is expected to) call probe-related DTrace routines, including * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note * that the provider need not implement both dtps_provide() and * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(), * below. * * 1.4 void dtps_enable(void *arg, dtrace_id_t id, void *parg) * * 1.4.1 Overview * * Called to enable the specified probe. * * 1.4.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_register(). The * second argument is the identifier of the probe to be enabled. The third * argument is the probe argument as passed to dtrace_probe_create(). * dtps_enable() will be called when a probe transitions from not being * enabled at all to having one or more ECB. The number of ECBs associated * with the probe may change without subsequent calls into the provider. * When the number of ECBs drops to zero, the provider will be explicitly * told to disable the probe via dtps_disable(). dtrace_probe() should never * be called for a probe identifier that hasn't been explicitly enabled via * dtps_enable(). * * 1.4.3 Return value * * None. * * 1.4.4 Caller's context * * The DTrace framework is locked in such a way that it may not be called * back into at all. cpu_lock is held. mod_lock is not held and may not * be acquired. * * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg) * * 1.5.1 Overview * * Called to disable the specified probe. * * 1.5.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_register(). The * second argument is the identifier of the probe to be disabled. The third * argument is the probe argument as passed to dtrace_probe_create(). * dtps_disable() will be called when a probe transitions from being enabled * to having zero ECBs. dtrace_probe() should never be called for a probe * identifier that has been explicitly enabled via dtps_disable(). * * 1.5.3 Return value * * None. * * 1.5.4 Caller's context * * The DTrace framework is locked in such a way that it may not be called * back into at all. cpu_lock is held. mod_lock is not held and may not * be acquired. * * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg) * * 1.6.1 Overview * * Called to suspend the specified enabled probe. This entry point is for * providers that may need to suspend some or all of their probes when CPUs * are being powered on or when the boot monitor is being entered for a * prolonged period of time. * * 1.6.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_register(). The * second argument is the identifier of the probe to be suspended. The * third argument is the probe argument as passed to dtrace_probe_create(). * dtps_suspend will only be called on an enabled probe. Providers that * provide a dtps_suspend entry point will want to take roughly the action * that it takes for dtps_disable. * * 1.6.3 Return value * * None. * * 1.6.4 Caller's context * * Interrupts are disabled. The DTrace framework is in a state such that the * specified probe cannot be disabled or destroyed for the duration of * dtps_suspend(). As interrupts are disabled, the provider is afforded * little latitude; the provider is expected to do no more than a store to * memory. * * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg) * * 1.7.1 Overview * * Called to resume the specified enabled probe. This entry point is for * providers that may need to resume some or all of their probes after the * completion of an event that induced a call to dtps_suspend(). * * 1.7.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_register(). The * second argument is the identifier of the probe to be resumed. The * third argument is the probe argument as passed to dtrace_probe_create(). * dtps_resume will only be called on an enabled probe. Providers that * provide a dtps_resume entry point will want to take roughly the action * that it takes for dtps_enable. * * 1.7.3 Return value * * None. * * 1.7.4 Caller's context * * Interrupts are disabled. The DTrace framework is in a state such that the * specified probe cannot be disabled or destroyed for the duration of * dtps_resume(). As interrupts are disabled, the provider is afforded * little latitude; the provider is expected to do no more than a store to * memory. * * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg, * dtrace_argdesc_t *desc) * * 1.8.1 Overview * * Called to retrieve the argument description for an args[X] variable. * * 1.8.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_register(). The * second argument is the identifier of the current probe. The third * argument is the probe argument as passed to dtrace_probe_create(). The * fourth argument is a pointer to the argument description. This * description is both an input and output parameter: it contains the * index of the desired argument in the dtargd_ndx field, and expects * the other fields to be filled in upon return. If there is no argument * corresponding to the specified index, the dtargd_ndx field should be set * to DTRACE_ARGNONE. * * 1.8.3 Return value * * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping * members of the dtrace_argdesc_t structure are all output values. * * 1.8.4 Caller's context * * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and * the DTrace framework is locked in such a way that providers may not * register or unregister. This means that the provider may not call any * DTrace API that affects its registration with the framework, including * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and * dtrace_condense(). * * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg, * int argno, int aframes) * * 1.9.1 Overview * * Called to retrieve a value for an argX or args[X] variable. * * 1.9.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_register(). The * second argument is the identifier of the current probe. The third * argument is the probe argument as passed to dtrace_probe_create(). The * fourth argument is the number of the argument (the X in the example in * 1.9.1). The fifth argument is the number of stack frames that were used * to get from the actual place in the code that fired the probe to * dtrace_probe() itself, the so-called artificial frames. This argument may * be used to descend an appropriate number of frames to find the correct * values. If this entry point is left NULL, the dtrace_getarg() built-in * function is used. * * 1.9.3 Return value * * The value of the argument. * * 1.9.4 Caller's context * * This is called from within dtrace_probe() meaning that interrupts * are disabled. No locks should be taken within this entry point. * * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg) * * 1.10.1 Overview * * Called to determine if the probe was fired in a user context. * * 1.10.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_register(). The * second argument is the identifier of the current probe. The third * argument is the probe argument as passed to dtrace_probe_create(). This * entry point must not be left NULL for providers whose probes allow for * mixed mode tracing, that is to say those probes that can fire during * kernel- _or_ user-mode execution * * 1.10.3 Return value * * A bitwise OR that encapsulates both the mode (either DTRACE_MODE_KERNEL * or DTRACE_MODE_USER) and the policy when the privilege of the enabling * is insufficient for that mode (a combination of DTRACE_MODE_NOPRIV_DROP, * DTRACE_MODE_NOPRIV_RESTRICT, and DTRACE_MODE_LIMITEDPRIV_RESTRICT). If * DTRACE_MODE_NOPRIV_DROP bit is set, insufficient privilege will result * in the probe firing being silently ignored for the enabling; if the * DTRACE_NODE_NOPRIV_RESTRICT bit is set, insufficient privilege will not * prevent probe processing for the enabling, but restrictions will be in * place that induce a UPRIV fault upon attempt to examine probe arguments * or current process state. If the DTRACE_MODE_LIMITEDPRIV_RESTRICT bit * is set, similar restrictions will be placed upon operation if the * privilege is sufficient to process the enabling, but does not otherwise * entitle the enabling to all zones. The DTRACE_MODE_NOPRIV_DROP and * DTRACE_MODE_NOPRIV_RESTRICT are mutually exclusive (and one of these * two policies must be specified), but either may be combined (or not) * with DTRACE_MODE_LIMITEDPRIV_RESTRICT. * * 1.10.4 Caller's context * * This is called from within dtrace_probe() meaning that interrupts * are disabled. No locks should be taken within this entry point. * * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg) * * 1.11.1 Overview * * Called to destroy the specified probe. * * 1.11.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_register(). The * second argument is the identifier of the probe to be destroyed. The third * argument is the probe argument as passed to dtrace_probe_create(). The * provider should free all state associated with the probe. The framework * guarantees that dtps_destroy() is only called for probes that have either * been disabled via dtps_disable() or were never enabled via dtps_enable(). * Once dtps_disable() has been called for a probe, no further call will be * made specifying the probe. * * 1.11.3 Return value * * None. * * 1.11.4 Caller's context * * The DTrace framework is locked in such a way that it may not be called * back into at all. mod_lock is held. cpu_lock is not held, and may not be * acquired. * * * 2 Provider-to-Framework API * * 2.1 Overview * * The Provider-to-Framework API provides the mechanism for the provider to * register itself with the DTrace framework, to create probes, to lookup * probes and (most importantly) to fire probes. The Provider-to-Framework * consists of: * * dtrace_register() <-- Register a provider with the DTrace framework * dtrace_unregister() <-- Remove a provider's DTrace registration * dtrace_invalidate() <-- Invalidate the specified provider * dtrace_condense() <-- Remove a provider's unenabled probes * dtrace_attached() <-- Indicates whether or not DTrace has attached * dtrace_probe_create() <-- Create a DTrace probe * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name * dtrace_probe_arg() <-- Return the probe argument for a specific probe * dtrace_probe() <-- Fire the specified probe * * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap, * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg, * dtrace_provider_id_t *idp) * * 2.2.1 Overview * * dtrace_register() registers the calling provider with the DTrace * framework. It should generally be called by DTrace providers in their * attach(9E) entry point. * * 2.2.2 Arguments and Notes * * The first argument is the name of the provider. The second argument is a * pointer to the stability attributes for the provider. The third argument * is the privilege flags for the provider, and must be some combination of: * * DTRACE_PRIV_NONE <= All users may enable probes from this provider * * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may * enable probes from this provider * * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may * enable probes from this provider * * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL * may enable probes from this provider * * DTRACE_PRIV_OWNER <= This flag places an additional constraint on * the privilege requirements above. These probes * require either (a) a user ID matching the user * ID of the cred passed in the fourth argument * or (b) the PRIV_PROC_OWNER privilege. * * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on * the privilege requirements above. These probes * require either (a) a zone ID matching the zone * ID of the cred passed in the fourth argument * or (b) the PRIV_PROC_ZONE privilege. * * Note that these flags designate the _visibility_ of the probes, not * the conditions under which they may or may not fire. * * The fourth argument is the credential that is associated with the * provider. This argument should be NULL if the privilege flags don't * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the * framework stashes the uid and zoneid represented by this credential * for use at probe-time, in implicit predicates. These limit visibility * of the probes to users and/or zones which have sufficient privilege to * access them. * * The fifth argument is a DTrace provider operations vector, which provides * the implementation for the Framework-to-Provider API. (See Section 1, * above.) This must be non-NULL, and each member must be non-NULL. The * exceptions to this are (1) the dtps_provide() and dtps_provide_module() * members (if the provider so desires, _one_ of these members may be left * NULL -- denoting that the provider only implements the other) and (2) * the dtps_suspend() and dtps_resume() members, which must either both be * NULL or both be non-NULL. * * The sixth argument is a cookie to be specified as the first argument for * each function in the Framework-to-Provider API. This argument may have * any value. * * The final argument is a pointer to dtrace_provider_id_t. If * dtrace_register() successfully completes, the provider identifier will be * stored in the memory pointed to be this argument. This argument must be * non-NULL. * * 2.2.3 Return value * * On success, dtrace_register() returns 0 and stores the new provider's * identifier into the memory pointed to by the idp argument. On failure, * dtrace_register() returns an errno: * * EINVAL The arguments passed to dtrace_register() were somehow invalid. * This may because a parameter that must be non-NULL was NULL, * because the name was invalid (either empty or an illegal * provider name) or because the attributes were invalid. * * No other failure code is returned. * * 2.2.4 Caller's context * * dtrace_register() may induce calls to dtrace_provide(); the provider must * hold no locks across dtrace_register() that may also be acquired by * dtrace_provide(). cpu_lock and mod_lock must not be held. * * 2.3 int dtrace_unregister(dtrace_provider_t id) * * 2.3.1 Overview * * Unregisters the specified provider from the DTrace framework. It should * generally be called by DTrace providers in their detach(9E) entry point. * * 2.3.2 Arguments and Notes * * The only argument is the provider identifier, as returned from a * successful call to dtrace_register(). As a result of calling * dtrace_unregister(), the DTrace framework will call back into the provider * via the dtps_destroy() entry point. Once dtrace_unregister() successfully * completes, however, the DTrace framework will no longer make calls through * the Framework-to-Provider API. * * 2.3.3 Return value * * On success, dtrace_unregister returns 0. On failure, dtrace_unregister() * returns an errno: * * EBUSY There are currently processes that have the DTrace pseudodevice * open, or there exists an anonymous enabling that hasn't yet * been claimed. * * No other failure code is returned. * * 2.3.4 Caller's context * * Because a call to dtrace_unregister() may induce calls through the * Framework-to-Provider API, the caller may not hold any lock across * dtrace_register() that is also acquired in any of the Framework-to- * Provider API functions. Additionally, mod_lock may not be held. * * 2.4 void dtrace_invalidate(dtrace_provider_id_t id) * * 2.4.1 Overview * * Invalidates the specified provider. All subsequent probe lookups for the * specified provider will fail, but its probes will not be removed. * * 2.4.2 Arguments and note * * The only argument is the provider identifier, as returned from a * successful call to dtrace_register(). In general, a provider's probes * always remain valid; dtrace_invalidate() is a mechanism for invalidating * an entire provider, regardless of whether or not probes are enabled or * not. Note that dtrace_invalidate() will _not_ prevent already enabled * probes from firing -- it will merely prevent any new enablings of the * provider's probes. * * 2.5 int dtrace_condense(dtrace_provider_id_t id) * * 2.5.1 Overview * * Removes all the unenabled probes for the given provider. This function is * not unlike dtrace_unregister(), except that it doesn't remove the * provider just as many of its associated probes as it can. * * 2.5.2 Arguments and Notes * * As with dtrace_unregister(), the sole argument is the provider identifier * as returned from a successful call to dtrace_register(). As a result of * calling dtrace_condense(), the DTrace framework will call back into the * given provider's dtps_destroy() entry point for each of the provider's * unenabled probes. * * 2.5.3 Return value * * Currently, dtrace_condense() always returns 0. However, consumers of this * function should check the return value as appropriate; its behavior may * change in the future. * * 2.5.4 Caller's context * * As with dtrace_unregister(), the caller may not hold any lock across * dtrace_condense() that is also acquired in the provider's entry points. * Also, mod_lock may not be held. * * 2.6 int dtrace_attached() * * 2.6.1 Overview * * Indicates whether or not DTrace has attached. * * 2.6.2 Arguments and Notes * * For most providers, DTrace makes initial contact beyond registration. * That is, once a provider has registered with DTrace, it waits to hear * from DTrace to create probes. However, some providers may wish to * proactively create probes without first being told by DTrace to do so. * If providers wish to do this, they must first call dtrace_attached() to * determine if DTrace itself has attached. If dtrace_attached() returns 0, * the provider must not make any other Provider-to-Framework API call. * * 2.6.3 Return value * * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise. * * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod, * const char *func, const char *name, int aframes, void *arg) * * 2.7.1 Overview * * Creates a probe with specified module name, function name, and name. * * 2.7.2 Arguments and Notes * * The first argument is the provider identifier, as returned from a * successful call to dtrace_register(). The second, third, and fourth * arguments are the module name, function name, and probe name, * respectively. Of these, module name and function name may both be NULL * (in which case the probe is considered to be unanchored), or they may both * be non-NULL. The name must be non-NULL, and must point to a non-empty * string. * * The fifth argument is the number of artificial stack frames that will be * found on the stack when dtrace_probe() is called for the new probe. These * artificial frames will be automatically be pruned should the stack() or * stackdepth() functions be called as part of one of the probe's ECBs. If * the parameter doesn't add an artificial frame, this parameter should be * zero. * * The final argument is a probe argument that will be passed back to the * provider when a probe-specific operation is called. (e.g., via * dtps_enable(), dtps_disable(), etc.) * * Note that it is up to the provider to be sure that the probe that it * creates does not already exist -- if the provider is unsure of the probe's * existence, it should assure its absence with dtrace_probe_lookup() before * calling dtrace_probe_create(). * * 2.7.3 Return value * * dtrace_probe_create() always succeeds, and always returns the identifier * of the newly-created probe. * * 2.7.4 Caller's context * * While dtrace_probe_create() is generally expected to be called from * dtps_provide() and/or dtps_provide_module(), it may be called from other * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. * * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod, * const char *func, const char *name) * * 2.8.1 Overview * * Looks up a probe based on provdider and one or more of module name, * function name and probe name. * * 2.8.2 Arguments and Notes * * The first argument is the provider identifier, as returned from a * successful call to dtrace_register(). The second, third, and fourth * arguments are the module name, function name, and probe name, * respectively. Any of these may be NULL; dtrace_probe_lookup() will return * the identifier of the first probe that is provided by the specified * provider and matches all of the non-NULL matching criteria. * dtrace_probe_lookup() is generally used by a provider to be check the * existence of a probe before creating it with dtrace_probe_create(). * * 2.8.3 Return value * * If the probe exists, returns its identifier. If the probe does not exist, * return DTRACE_IDNONE. * * 2.8.4 Caller's context * * While dtrace_probe_lookup() is generally expected to be called from * dtps_provide() and/or dtps_provide_module(), it may also be called from * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. * * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe) * * 2.9.1 Overview * * Returns the probe argument associated with the specified probe. * * 2.9.2 Arguments and Notes * * The first argument is the provider identifier, as returned from a * successful call to dtrace_register(). The second argument is a probe * identifier, as returned from dtrace_probe_lookup() or * dtrace_probe_create(). This is useful if a probe has multiple * provider-specific components to it: the provider can create the probe * once with provider-specific state, and then add to the state by looking * up the probe based on probe identifier. * * 2.9.3 Return value * * Returns the argument associated with the specified probe. If the * specified probe does not exist, or if the specified probe is not provided * by the specified provider, NULL is returned. * * 2.9.4 Caller's context * * While dtrace_probe_arg() is generally expected to be called from * dtps_provide() and/or dtps_provide_module(), it may also be called from * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. * * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1, * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) * * 2.10.1 Overview * * The epicenter of DTrace: fires the specified probes with the specified * arguments. * * 2.10.2 Arguments and Notes * * The first argument is a probe identifier as returned by * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth * arguments are the values to which the D variables "arg0" through "arg4" * will be mapped. * * dtrace_probe() should be called whenever the specified probe has fired -- * however the provider defines it. * * 2.10.3 Return value * * None. * * 2.10.4 Caller's context * * dtrace_probe() may be called in virtually any context: kernel, user, * interrupt, high-level interrupt, with arbitrary adaptive locks held, with * dispatcher locks held, with interrupts disabled, etc. The only latitude * that must be afforded to DTrace is the ability to make calls within * itself (and to its in-kernel subroutines) and the ability to access * arbitrary (but mapped) memory. On some platforms, this constrains * context. For example, on UltraSPARC, dtrace_probe() cannot be called * from any context in which TL is greater than zero. dtrace_probe() may * also not be called from any routine which may be called by dtrace_probe() * -- which includes functions in the DTrace framework and some in-kernel * DTrace subroutines. All such functions "dtrace_"; providers that * instrument the kernel arbitrarily should be sure to not instrument these * routines. */ typedef struct dtrace_pops { void (*dtps_provide)(void *arg, dtrace_probedesc_t *spec); void (*dtps_provide_module)(void *arg, modctl_t *mp); void (*dtps_enable)(void *arg, dtrace_id_t id, void *parg); void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg); void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg); void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg); void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg, dtrace_argdesc_t *desc); uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg, int argno, int aframes); int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg); void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg); } dtrace_pops_t; #define DTRACE_MODE_KERNEL 0x01 #define DTRACE_MODE_USER 0x02 #define DTRACE_MODE_NOPRIV_DROP 0x10 #define DTRACE_MODE_NOPRIV_RESTRICT 0x20 #define DTRACE_MODE_LIMITEDPRIV_RESTRICT 0x40 typedef uintptr_t dtrace_provider_id_t; extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t, cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *); extern int dtrace_unregister(dtrace_provider_id_t); extern int dtrace_condense(dtrace_provider_id_t); extern void dtrace_invalidate(dtrace_provider_id_t); extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, char *, char *, char *); extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *, const char *, const char *, int, void *); extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t); extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1, uintptr_t arg2, uintptr_t arg3, uintptr_t arg4); /* * DTrace Meta Provider API * * The following functions are implemented by the DTrace framework and are * used to implement meta providers. Meta providers plug into the DTrace * framework and are used to instantiate new providers on the fly. At * present, there is only one type of meta provider and only one meta * provider may be registered with the DTrace framework at a time. The * sole meta provider type provides user-land static tracing facilities * by taking meta probe descriptions and adding a corresponding provider * into the DTrace framework. * * 1 Framework-to-Provider * * 1.1 Overview * * The Framework-to-Provider API is represented by the dtrace_mops structure * that the meta provider passes to the framework when registering itself as * a meta provider. This structure consists of the following members: * * dtms_create_probe() <-- Add a new probe to a created provider * dtms_provide_pid() <-- Create a new provider for a given process * dtms_remove_pid() <-- Remove a previously created provider * * 1.2 void dtms_create_probe(void *arg, void *parg, * dtrace_helper_probedesc_t *probedesc); * * 1.2.1 Overview * * Called by the DTrace framework to create a new probe in a provider * created by this meta provider. * * 1.2.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_meta_register(). * The second argument is the provider cookie for the associated provider; * this is obtained from the return value of dtms_provide_pid(). The third * argument is the helper probe description. * * 1.2.3 Return value * * None * * 1.2.4 Caller's context * * dtms_create_probe() is called from either ioctl() or module load context * in the context of a newly-created provider (that is, a provider that * is a result of a call to dtms_provide_pid()). The DTrace framework is * locked in such a way that meta providers may not register or unregister, * such that no other thread can call into a meta provider operation and that * atomicity is assured with respect to meta provider operations across * dtms_provide_pid() and subsequent calls to dtms_create_probe(). * The context is thus effectively single-threaded with respect to the meta * provider, and that the meta provider cannot call dtrace_meta_register() * or dtrace_meta_unregister(). However, the context is such that the * provider may (and is expected to) call provider-related DTrace provider * APIs including dtrace_probe_create(). * * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov, * pid_t pid) * * 1.3.1 Overview * * Called by the DTrace framework to instantiate a new provider given the * description of the provider and probes in the mprov argument. The * meta provider should call dtrace_register() to insert the new provider * into the DTrace framework. * * 1.3.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_meta_register(). * The second argument is a pointer to a structure describing the new * helper provider. The third argument is the process identifier for * process associated with this new provider. Note that the name of the * provider as passed to dtrace_register() should be the contatenation of * the dtmpb_provname member of the mprov argument and the processs * identifier as a string. * * 1.3.3 Return value * * The cookie for the provider that the meta provider creates. This is * the same value that it passed to dtrace_register(). * * 1.3.4 Caller's context * * dtms_provide_pid() is called from either ioctl() or module load context. * The DTrace framework is locked in such a way that meta providers may not * register or unregister. This means that the meta provider cannot call * dtrace_meta_register() or dtrace_meta_unregister(). However, the context * is such that the provider may -- and is expected to -- call * provider-related DTrace provider APIs including dtrace_register(). * * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov, * pid_t pid) * * 1.4.1 Overview * * Called by the DTrace framework to remove a provider that had previously * been instantiated via the dtms_provide_pid() entry point. The meta * provider need not remove the provider immediately, but this entry * point indicates that the provider should be removed as soon as possible * using the dtrace_unregister() API. * * 1.4.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_meta_register(). * The second argument is a pointer to a structure describing the helper * provider. The third argument is the process identifier for process * associated with this new provider. * * 1.4.3 Return value * * None * * 1.4.4 Caller's context * * dtms_remove_pid() is called from either ioctl() or exit() context. * The DTrace framework is locked in such a way that meta providers may not * register or unregister. This means that the meta provider cannot call * dtrace_meta_register() or dtrace_meta_unregister(). However, the context * is such that the provider may -- and is expected to -- call * provider-related DTrace provider APIs including dtrace_unregister(). */ typedef struct dtrace_helper_probedesc { char *dthpb_mod; /* probe module */ char *dthpb_func; /* probe function */ char *dthpb_name; /* probe name */ uint64_t dthpb_base; /* base address */ uint32_t *dthpb_offs; /* offsets array */ uint32_t *dthpb_enoffs; /* is-enabled offsets array */ uint32_t dthpb_noffs; /* offsets count */ uint32_t dthpb_nenoffs; /* is-enabled offsets count */ uint8_t *dthpb_args; /* argument mapping array */ uint8_t dthpb_xargc; /* translated argument count */ uint8_t dthpb_nargc; /* native argument count */ char *dthpb_xtypes; /* translated types strings */ char *dthpb_ntypes; /* native types strings */ } dtrace_helper_probedesc_t; typedef struct dtrace_helper_provdesc { char *dthpv_provname; /* provider name */ dtrace_pattr_t dthpv_pattr; /* stability attributes */ } dtrace_helper_provdesc_t; typedef struct dtrace_mops { void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *); void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t); void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t); } dtrace_mops_t; typedef uintptr_t dtrace_meta_provider_id_t; extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *, dtrace_meta_provider_id_t *); extern int dtrace_meta_unregister(dtrace_meta_provider_id_t); /* * DTrace Kernel Hooks * * The following functions are implemented by the base kernel and form a set of * hooks used by the DTrace framework. DTrace hooks are implemented in either * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a * uts//os/dtrace_subr.c corresponding to each hardware platform. */ typedef enum dtrace_vtime_state { DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */ DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */ DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */ DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */ } dtrace_vtime_state_t; #ifdef illumos extern dtrace_vtime_state_t dtrace_vtime_active; #endif extern void dtrace_vtime_switch(kthread_t *next); extern void dtrace_vtime_enable_tnf(void); extern void dtrace_vtime_disable_tnf(void); extern void dtrace_vtime_enable(void); extern void dtrace_vtime_disable(void); struct regs; struct reg; #ifdef illumos extern int (*dtrace_pid_probe_ptr)(struct reg *); extern int (*dtrace_return_probe_ptr)(struct reg *); extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *); extern void (*dtrace_fasttrap_exec_ptr)(proc_t *); extern void (*dtrace_fasttrap_exit_ptr)(proc_t *); extern void dtrace_fasttrap_fork(proc_t *, proc_t *); #endif typedef uintptr_t dtrace_icookie_t; typedef void (*dtrace_xcall_t)(void *); extern dtrace_icookie_t dtrace_interrupt_disable(void); extern void dtrace_interrupt_enable(dtrace_icookie_t); extern void dtrace_membar_producer(void); extern void dtrace_membar_consumer(void); extern void (*dtrace_cpu_init)(processorid_t); #ifdef illumos extern void (*dtrace_modload)(modctl_t *); extern void (*dtrace_modunload)(modctl_t *); #endif extern void (*dtrace_helpers_cleanup)(void); extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child); extern void (*dtrace_cpustart_init)(void); extern void (*dtrace_cpustart_fini)(void); extern void (*dtrace_closef)(void); extern void (*dtrace_debugger_init)(void); extern void (*dtrace_debugger_fini)(void); extern dtrace_cacheid_t dtrace_predcache_id; #ifdef illumos extern hrtime_t dtrace_gethrtime(void); #else void dtrace_debug_printf(const char *, ...) __printflike(1, 2); #endif extern void dtrace_sync(void); extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t)); extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *); extern void dtrace_vpanic(const char *, __va_list); extern void dtrace_panic(const char *, ...); extern int dtrace_safe_defer_signal(void); extern void dtrace_safe_synchronous_signal(void); extern int dtrace_mach_aframes(void); #if defined(__i386) || defined(__amd64) extern int dtrace_instr_size(uchar_t *instr); extern int dtrace_instr_size_isa(uchar_t *, model_t, int *); extern void dtrace_invop_callsite(void); #endif extern void dtrace_invop_add(int (*)(uintptr_t, struct trapframe *, uintptr_t)); extern void dtrace_invop_remove(int (*)(uintptr_t, struct trapframe *, uintptr_t)); #ifdef __sparc extern int dtrace_blksuword32(uintptr_t, uint32_t *, int); extern void dtrace_getfsr(uint64_t *); #endif #ifndef illumos extern void dtrace_helpers_duplicate(proc_t *, proc_t *); extern void dtrace_helpers_destroy(proc_t *); #endif #define DTRACE_CPUFLAG_ISSET(flag) \ (cpu_core[curcpu].cpuc_dtrace_flags & (flag)) #define DTRACE_CPUFLAG_SET(flag) \ (cpu_core[curcpu].cpuc_dtrace_flags |= (flag)) #define DTRACE_CPUFLAG_CLEAR(flag) \ (cpu_core[curcpu].cpuc_dtrace_flags &= ~(flag)) #endif /* _KERNEL */ #endif /* _ASM */ #if defined(__i386) || defined(__amd64) #define DTRACE_INVOP_PUSHL_EBP 1 #define DTRACE_INVOP_PUSHQ_RBP DTRACE_INVOP_PUSHL_EBP #define DTRACE_INVOP_POPL_EBP 2 #define DTRACE_INVOP_POPQ_RBP DTRACE_INVOP_POPL_EBP #define DTRACE_INVOP_LEAVE 3 #define DTRACE_INVOP_NOP 4 #define DTRACE_INVOP_RET 5 #elif defined(__powerpc__) #define DTRACE_INVOP_RET 1 #define DTRACE_INVOP_BCTR 2 #define DTRACE_INVOP_BLR 3 #define DTRACE_INVOP_JUMP 4 #define DTRACE_INVOP_MFLR_R0 5 #define DTRACE_INVOP_NOP 6 #elif defined(__arm__) #define DTRACE_INVOP_SHIFT 4 #define DTRACE_INVOP_MASK ((1 << DTRACE_INVOP_SHIFT) - 1) #define DTRACE_INVOP_DATA(x) ((x) >> DTRACE_INVOP_SHIFT) #define DTRACE_INVOP_PUSHM 1 #define DTRACE_INVOP_POPM 2 #define DTRACE_INVOP_B 3 #elif defined(__aarch64__) #define INSN_SIZE 4 #define B_MASK 0xff000000 #define B_DATA_MASK 0x00ffffff #define B_INSTR 0x14000000 #define RET_INSTR 0xd65f03c0 #define LDP_STP_MASK 0xffc00000 #define STP_32 0x29800000 #define STP_64 0xa9800000 #define LDP_32 0x28c00000 #define LDP_64 0xa8c00000 #define LDP_STP_PREIND (1 << 24) #define LDP_STP_DIR (1 << 22) /* Load instruction */ #define ARG1_SHIFT 0 #define ARG1_MASK 0x1f #define ARG2_SHIFT 10 #define ARG2_MASK 0x1f #define OFFSET_SHIFT 15 #define OFFSET_SIZE 7 #define OFFSET_MASK ((1 << OFFSET_SIZE) - 1) #define DTRACE_INVOP_PUSHM 1 #define DTRACE_INVOP_RET 2 #define DTRACE_INVOP_B 3 #elif defined(__mips__) #define INSN_SIZE 4 /* Load/Store double RA to/from SP */ #define LDSD_RA_SP_MASK 0xffff0000 #define LDSD_DATA_MASK 0x0000ffff #define SD_RA_SP 0xffbf0000 #define LD_RA_SP 0xdfbf0000 #define DTRACE_INVOP_SD 1 #define DTRACE_INVOP_LD 2 #elif defined(__riscv) #define SD_RA_SP_MASK 0x01fff07f #define SD_RA_SP 0x00113023 #define DTRACE_INVOP_SD 1 #define DTRACE_INVOP_RET 2 #define DTRACE_INVOP_NOP 3 #endif #ifdef __cplusplus } #endif #endif /* _SYS_DTRACE_H */