Index: head/sys/dev/e1000/e1000_82575.h =================================================================== --- head/sys/dev/e1000/e1000_82575.h (revision 327864) +++ head/sys/dev/e1000/e1000_82575.h (revision 327865) @@ -1,524 +1,524 @@ /****************************************************************************** SPDX-License-Identifier: BSD-3-Clause Copyright (c) 2001-2015, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************/ /*$FreeBSD$*/ #ifndef _E1000_82575_H_ #define _E1000_82575_H_ #define ID_LED_DEFAULT_82575_SERDES ((ID_LED_DEF1_DEF2 << 12) | \ (ID_LED_DEF1_DEF2 << 8) | \ (ID_LED_DEF1_DEF2 << 4) | \ (ID_LED_OFF1_ON2)) /* * Receive Address Register Count * Number of high/low register pairs in the RAR. The RAR (Receive Address * Registers) holds the directed and multicast addresses that we monitor. * These entries are also used for MAC-based filtering. */ /* * For 82576, there are an additional set of RARs that begin at an offset * separate from the first set of RARs. */ #define E1000_RAR_ENTRIES_82575 16 #define E1000_RAR_ENTRIES_82576 24 #define E1000_RAR_ENTRIES_82580 24 #define E1000_RAR_ENTRIES_I350 32 #define E1000_SW_SYNCH_MB 0x00000100 #define E1000_STAT_DEV_RST_SET 0x00100000 #define E1000_CTRL_DEV_RST 0x20000000 #ifdef E1000_BIT_FIELDS struct e1000_adv_data_desc { __le64 buffer_addr; /* Address of the descriptor's data buffer */ union { u32 data; struct { u32 datalen:16; /* Data buffer length */ u32 rsvd:4; u32 dtyp:4; /* Descriptor type */ u32 dcmd:8; /* Descriptor command */ } config; } lower; union { u32 data; struct { u32 status:4; /* Descriptor status */ u32 idx:4; u32 popts:6; /* Packet Options */ u32 paylen:18; /* Payload length */ } options; } upper; }; #define E1000_TXD_DTYP_ADV_C 0x2 /* Advanced Context Descriptor */ #define E1000_TXD_DTYP_ADV_D 0x3 /* Advanced Data Descriptor */ #define E1000_ADV_TXD_CMD_DEXT 0x20 /* Descriptor extension (0 = legacy) */ #define E1000_ADV_TUCMD_IPV4 0x2 /* IP Packet Type: 1=IPv4 */ #define E1000_ADV_TUCMD_IPV6 0x0 /* IP Packet Type: 0=IPv6 */ #define E1000_ADV_TUCMD_L4T_UDP 0x0 /* L4 Packet TYPE of UDP */ #define E1000_ADV_TUCMD_L4T_TCP 0x4 /* L4 Packet TYPE of TCP */ #define E1000_ADV_TUCMD_MKRREQ 0x10 /* Indicates markers are required */ #define E1000_ADV_DCMD_EOP 0x1 /* End of Packet */ #define E1000_ADV_DCMD_IFCS 0x2 /* Insert FCS (Ethernet CRC) */ #define E1000_ADV_DCMD_RS 0x8 /* Report Status */ #define E1000_ADV_DCMD_VLE 0x40 /* Add VLAN tag */ #define E1000_ADV_DCMD_TSE 0x80 /* TCP Seg enable */ /* Extended Device Control */ #define E1000_CTRL_EXT_NSICR 0x00000001 /* Disable Intr Clear all on read */ struct e1000_adv_context_desc { union { u32 ip_config; struct { u32 iplen:9; u32 maclen:7; u32 vlan_tag:16; } fields; } ip_setup; u32 seq_num; union { u64 l4_config; struct { u32 mkrloc:9; u32 tucmd:11; u32 dtyp:4; u32 adv:8; u32 rsvd:4; u32 idx:4; u32 l4len:8; u32 mss:16; } fields; } l4_setup; }; #endif /* SRRCTL bit definitions */ #define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */ #define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00 #define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */ #define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000 #define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000 #define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000 #define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000 #define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000 #define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000 #define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000 #define E1000_SRRCTL_TIMESTAMP 0x40000000 #define E1000_SRRCTL_DROP_EN 0x80000000 #define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F #define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00 #define E1000_TX_HEAD_WB_ENABLE 0x1 #define E1000_TX_SEQNUM_WB_ENABLE 0x2 #define E1000_MRQC_ENABLE_RSS_4Q 0x00000002 #define E1000_MRQC_ENABLE_VMDQ 0x00000003 #define E1000_MRQC_ENABLE_VMDQ_RSS_2Q 0x00000005 #define E1000_MRQC_RSS_FIELD_IPV4_UDP 0x00400000 #define E1000_MRQC_RSS_FIELD_IPV6_UDP 0x00800000 #define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX 0x01000000 #define E1000_MRQC_ENABLE_RSS_8Q 0x00000002 #define E1000_VMRCTL_MIRROR_PORT_SHIFT 8 #define E1000_VMRCTL_MIRROR_DSTPORT_MASK (7 << \ E1000_VMRCTL_MIRROR_PORT_SHIFT) #define E1000_VMRCTL_POOL_MIRROR_ENABLE (1 << 0) #define E1000_VMRCTL_UPLINK_MIRROR_ENABLE (1 << 1) #define E1000_VMRCTL_DOWNLINK_MIRROR_ENABLE (1 << 2) #define E1000_EICR_TX_QUEUE ( \ E1000_EICR_TX_QUEUE0 | \ E1000_EICR_TX_QUEUE1 | \ E1000_EICR_TX_QUEUE2 | \ E1000_EICR_TX_QUEUE3) #define E1000_EICR_RX_QUEUE ( \ E1000_EICR_RX_QUEUE0 | \ E1000_EICR_RX_QUEUE1 | \ E1000_EICR_RX_QUEUE2 | \ E1000_EICR_RX_QUEUE3) #define E1000_EIMS_RX_QUEUE E1000_EICR_RX_QUEUE #define E1000_EIMS_TX_QUEUE E1000_EICR_TX_QUEUE #define EIMS_ENABLE_MASK ( \ E1000_EIMS_RX_QUEUE | \ E1000_EIMS_TX_QUEUE | \ E1000_EIMS_TCP_TIMER | \ E1000_EIMS_OTHER) /* Immediate Interrupt Rx (A.K.A. Low Latency Interrupt) */ #define E1000_IMIR_PORT_IM_EN 0x00010000 /* TCP port enable */ #define E1000_IMIR_PORT_BP 0x00020000 /* TCP port check bypass */ #define E1000_IMIREXT_SIZE_BP 0x00001000 /* Packet size bypass */ #define E1000_IMIREXT_CTRL_URG 0x00002000 /* Check URG bit in header */ #define E1000_IMIREXT_CTRL_ACK 0x00004000 /* Check ACK bit in header */ #define E1000_IMIREXT_CTRL_PSH 0x00008000 /* Check PSH bit in header */ #define E1000_IMIREXT_CTRL_RST 0x00010000 /* Check RST bit in header */ #define E1000_IMIREXT_CTRL_SYN 0x00020000 /* Check SYN bit in header */ #define E1000_IMIREXT_CTRL_FIN 0x00040000 /* Check FIN bit in header */ #define E1000_IMIREXT_CTRL_BP 0x00080000 /* Bypass check of ctrl bits */ /* Receive Descriptor - Advanced */ union e1000_adv_rx_desc { struct { __le64 pkt_addr; /* Packet buffer address */ __le64 hdr_addr; /* Header buffer address */ } read; struct { struct { union { __le32 data; struct { __le16 pkt_info; /*RSS type, Pkt type*/ /* Split Header, header buffer len */ __le16 hdr_info; } hs_rss; } lo_dword; union { __le32 rss; /* RSS Hash */ struct { __le16 ip_id; /* IP id */ __le16 csum; /* Packet Checksum */ } csum_ip; } hi_dword; } lower; struct { __le32 status_error; /* ext status/error */ __le16 length; /* Packet length */ __le16 vlan; /* VLAN tag */ } upper; } wb; /* writeback */ }; #define E1000_RXDADV_RSSTYPE_MASK 0x0000000F #define E1000_RXDADV_RSSTYPE_SHIFT 12 #define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0 #define E1000_RXDADV_HDRBUFLEN_SHIFT 5 #define E1000_RXDADV_SPLITHEADER_EN 0x00001000 #define E1000_RXDADV_SPH 0x8000 #define E1000_RXDADV_STAT_TS 0x10000 /* Pkt was time stamped */ #define E1000_RXDADV_STAT_TSIP 0x08000 /* timestamp in packet */ #define E1000_RXDADV_ERR_HBO 0x00800000 /* RSS Hash results */ #define E1000_RXDADV_RSSTYPE_NONE 0x00000000 #define E1000_RXDADV_RSSTYPE_IPV4_TCP 0x00000001 #define E1000_RXDADV_RSSTYPE_IPV4 0x00000002 #define E1000_RXDADV_RSSTYPE_IPV6_TCP 0x00000003 #define E1000_RXDADV_RSSTYPE_IPV6_EX 0x00000004 #define E1000_RXDADV_RSSTYPE_IPV6 0x00000005 #define E1000_RXDADV_RSSTYPE_IPV6_TCP_EX 0x00000006 #define E1000_RXDADV_RSSTYPE_IPV4_UDP 0x00000007 #define E1000_RXDADV_RSSTYPE_IPV6_UDP 0x00000008 #define E1000_RXDADV_RSSTYPE_IPV6_UDP_EX 0x00000009 /* RSS Packet Types as indicated in the receive descriptor */ #define E1000_RXDADV_PKTTYPE_ILMASK 0x000000F0 #define E1000_RXDADV_PKTTYPE_TLMASK 0x00000F00 #define E1000_RXDADV_PKTTYPE_NONE 0x00000000 #define E1000_RXDADV_PKTTYPE_IPV4 0x00000010 /* IPV4 hdr present */ #define E1000_RXDADV_PKTTYPE_IPV4_EX 0x00000020 /* IPV4 hdr + extensions */ #define E1000_RXDADV_PKTTYPE_IPV6 0x00000040 /* IPV6 hdr present */ #define E1000_RXDADV_PKTTYPE_IPV6_EX 0x00000080 /* IPV6 hdr + extensions */ #define E1000_RXDADV_PKTTYPE_TCP 0x00000100 /* TCP hdr present */ #define E1000_RXDADV_PKTTYPE_UDP 0x00000200 /* UDP hdr present */ #define E1000_RXDADV_PKTTYPE_SCTP 0x00000400 /* SCTP hdr present */ #define E1000_RXDADV_PKTTYPE_NFS 0x00000800 /* NFS hdr present */ #define E1000_RXDADV_PKTTYPE_IPSEC_ESP 0x00001000 /* IPSec ESP */ #define E1000_RXDADV_PKTTYPE_IPSEC_AH 0x00002000 /* IPSec AH */ #define E1000_RXDADV_PKTTYPE_LINKSEC 0x00004000 /* LinkSec Encap */ #define E1000_RXDADV_PKTTYPE_ETQF 0x00008000 /* PKTTYPE is ETQF index */ #define E1000_RXDADV_PKTTYPE_ETQF_MASK 0x00000070 /* ETQF has 8 indices */ #define E1000_RXDADV_PKTTYPE_ETQF_SHIFT 4 /* Right-shift 4 bits */ /* LinkSec results */ /* Security Processing bit Indication */ #define E1000_RXDADV_LNKSEC_STATUS_SECP 0x00020000 #define E1000_RXDADV_LNKSEC_ERROR_BIT_MASK 0x18000000 #define E1000_RXDADV_LNKSEC_ERROR_NO_SA_MATCH 0x08000000 #define E1000_RXDADV_LNKSEC_ERROR_REPLAY_ERROR 0x10000000 #define E1000_RXDADV_LNKSEC_ERROR_BAD_SIG 0x18000000 #define E1000_RXDADV_IPSEC_STATUS_SECP 0x00020000 #define E1000_RXDADV_IPSEC_ERROR_BIT_MASK 0x18000000 #define E1000_RXDADV_IPSEC_ERROR_INVALID_PROTOCOL 0x08000000 #define E1000_RXDADV_IPSEC_ERROR_INVALID_LENGTH 0x10000000 #define E1000_RXDADV_IPSEC_ERROR_AUTHENTICATION_FAILED 0x18000000 /* Transmit Descriptor - Advanced */ union e1000_adv_tx_desc { struct { __le64 buffer_addr; /* Address of descriptor's data buf */ __le32 cmd_type_len; __le32 olinfo_status; } read; struct { __le64 rsvd; /* Reserved */ __le32 nxtseq_seed; __le32 status; } wb; }; /* Adv Transmit Descriptor Config Masks */ #define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */ #define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */ #define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */ #define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ #define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */ #define E1000_ADVTXD_DCMD_DDTYP_ISCSI 0x10000000 /* DDP hdr type or iSCSI */ #define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */ #define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */ #define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */ #define E1000_ADVTXD_MAC_LINKSEC 0x00040000 /* Apply LinkSec on pkt */ #define E1000_ADVTXD_MAC_TSTAMP 0x00080000 /* IEEE1588 Timestamp pkt */ #define E1000_ADVTXD_STAT_SN_CRC 0x00000002 /* NXTSEQ/SEED prsnt in WB */ #define E1000_ADVTXD_IDX_SHIFT 4 /* Adv desc Index shift */ #define E1000_ADVTXD_POPTS_ISCO_1ST 0x00000000 /* 1st TSO of iSCSI PDU */ #define E1000_ADVTXD_POPTS_ISCO_MDL 0x00000800 /* Middle TSO of iSCSI PDU */ #define E1000_ADVTXD_POPTS_ISCO_LAST 0x00001000 /* Last TSO of iSCSI PDU */ /* 1st & Last TSO-full iSCSI PDU*/ #define E1000_ADVTXD_POPTS_ISCO_FULL 0x00001800 #define E1000_ADVTXD_POPTS_IPSEC 0x00000400 /* IPSec offload request */ #define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */ /* Context descriptors */ struct e1000_adv_tx_context_desc { __le32 vlan_macip_lens; __le32 seqnum_seed; __le32 type_tucmd_mlhl; __le32 mss_l4len_idx; }; #define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */ #define E1000_ADVTXD_VLAN_SHIFT 16 /* Adv ctxt vlan tag shift */ #define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */ #define E1000_ADVTXD_TUCMD_IPV6 0x00000000 /* IP Packet Type: 0=IPv6 */ #define E1000_ADVTXD_TUCMD_L4T_UDP 0x00000000 /* L4 Packet TYPE of UDP */ #define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */ #define E1000_ADVTXD_TUCMD_L4T_SCTP 0x00001000 /* L4 Packet TYPE of SCTP */ #define E1000_ADVTXD_TUCMD_IPSEC_TYPE_ESP 0x00002000 /* IPSec Type ESP */ /* IPSec Encrypt Enable for ESP */ #define E1000_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN 0x00004000 /* Req requires Markers and CRC */ #define E1000_ADVTXD_TUCMD_MKRREQ 0x00002000 #define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */ #define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */ /* Adv ctxt IPSec SA IDX mask */ #define E1000_ADVTXD_IPSEC_SA_INDEX_MASK 0x000000FF /* Adv ctxt IPSec ESP len mask */ #define E1000_ADVTXD_IPSEC_ESP_LEN_MASK 0x000000FF /* Additional Transmit Descriptor Control definitions */ #define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Tx Queue */ #define E1000_TXDCTL_SWFLSH 0x04000000 /* Tx Desc. wbk flushing */ /* Tx Queue Arbitration Priority 0=low, 1=high */ #define E1000_TXDCTL_PRIORITY 0x08000000 /* Additional Receive Descriptor Control definitions */ #define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Rx Queue */ #define E1000_RXDCTL_SWFLSH 0x04000000 /* Rx Desc. wbk flushing */ /* Direct Cache Access (DCA) definitions */ #define E1000_DCA_CTRL_DCA_ENABLE 0x00000000 /* DCA Enable */ #define E1000_DCA_CTRL_DCA_DISABLE 0x00000001 /* DCA Disable */ #define E1000_DCA_CTRL_DCA_MODE_CB1 0x00 /* DCA Mode CB1 */ #define E1000_DCA_CTRL_DCA_MODE_CB2 0x02 /* DCA Mode CB2 */ #define E1000_DCA_RXCTRL_CPUID_MASK 0x0000001F /* Rx CPUID Mask */ #define E1000_DCA_RXCTRL_DESC_DCA_EN (1 << 5) /* DCA Rx Desc enable */ #define E1000_DCA_RXCTRL_HEAD_DCA_EN (1 << 6) /* DCA Rx Desc header ena */ #define E1000_DCA_RXCTRL_DATA_DCA_EN (1 << 7) /* DCA Rx Desc payload ena */ #define E1000_DCA_RXCTRL_DESC_RRO_EN (1 << 9) /* DCA Rx Desc Relax Order */ #define E1000_DCA_TXCTRL_CPUID_MASK 0x0000001F /* Tx CPUID Mask */ #define E1000_DCA_TXCTRL_DESC_DCA_EN (1 << 5) /* DCA Tx Desc enable */ #define E1000_DCA_TXCTRL_DESC_RRO_EN (1 << 9) /* Tx rd Desc Relax Order */ #define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* Tx Desc writeback RO bit */ #define E1000_DCA_TXCTRL_DATA_RRO_EN (1 << 13) /* Tx rd data Relax Order */ #define E1000_DCA_TXCTRL_CPUID_MASK_82576 0xFF000000 /* Tx CPUID Mask */ #define E1000_DCA_RXCTRL_CPUID_MASK_82576 0xFF000000 /* Rx CPUID Mask */ #define E1000_DCA_TXCTRL_CPUID_SHIFT_82576 24 /* Tx CPUID */ #define E1000_DCA_RXCTRL_CPUID_SHIFT_82576 24 /* Rx CPUID */ /* Additional interrupt register bit definitions */ #define E1000_ICR_LSECPNS 0x00000020 /* PN threshold - server */ #define E1000_IMS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */ #define E1000_ICS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */ /* ETQF register bit definitions */ #define E1000_ETQF_FILTER_ENABLE (1 << 26) #define E1000_ETQF_IMM_INT (1 << 29) #define E1000_ETQF_1588 (1 << 30) -#define E1000_ETQF_QUEUE_ENABLE (1 << 31) +#define E1000_ETQF_QUEUE_ENABLE (1U << 31) /* * ETQF filter list: one static filter per filter consumer. This is * to avoid filter collisions later. Add new filters * here!! * * Current filters: * EAPOL 802.1x (0x888e): Filter 0 */ #define E1000_ETQF_FILTER_EAPOL 0 #define E1000_FTQF_VF_BP 0x00008000 #define E1000_FTQF_1588_TIME_STAMP 0x08000000 #define E1000_FTQF_MASK 0xF0000000 #define E1000_FTQF_MASK_PROTO_BP 0x10000000 #define E1000_FTQF_MASK_SOURCE_ADDR_BP 0x20000000 #define E1000_FTQF_MASK_DEST_ADDR_BP 0x40000000 #define E1000_FTQF_MASK_SOURCE_PORT_BP 0x80000000 #define E1000_NVM_APME_82575 0x0400 #define MAX_NUM_VFS 7 #define E1000_DTXSWC_MAC_SPOOF_MASK 0x000000FF /* Per VF MAC spoof cntrl */ #define E1000_DTXSWC_VLAN_SPOOF_MASK 0x0000FF00 /* Per VF VLAN spoof cntrl */ #define E1000_DTXSWC_LLE_MASK 0x00FF0000 /* Per VF Local LB enables */ #define E1000_DTXSWC_VLAN_SPOOF_SHIFT 8 #define E1000_DTXSWC_LLE_SHIFT 16 -#define E1000_DTXSWC_VMDQ_LOOPBACK_EN (1 << 31) /* global VF LB enable */ +#define E1000_DTXSWC_VMDQ_LOOPBACK_EN (1U << 31) /* global VF LB enable */ /* Easy defines for setting default pool, would normally be left a zero */ #define E1000_VT_CTL_DEFAULT_POOL_SHIFT 7 #define E1000_VT_CTL_DEFAULT_POOL_MASK (0x7 << E1000_VT_CTL_DEFAULT_POOL_SHIFT) /* Other useful VMD_CTL register defines */ #define E1000_VT_CTL_IGNORE_MAC (1 << 28) #define E1000_VT_CTL_DISABLE_DEF_POOL (1 << 29) #define E1000_VT_CTL_VM_REPL_EN (1 << 30) /* Per VM Offload register setup */ #define E1000_VMOLR_RLPML_MASK 0x00003FFF /* Long Packet Maximum Length mask */ #define E1000_VMOLR_LPE 0x00010000 /* Accept Long packet */ #define E1000_VMOLR_RSSE 0x00020000 /* Enable RSS */ #define E1000_VMOLR_AUPE 0x01000000 /* Accept untagged packets */ #define E1000_VMOLR_ROMPE 0x02000000 /* Accept overflow multicast */ #define E1000_VMOLR_ROPE 0x04000000 /* Accept overflow unicast */ #define E1000_VMOLR_BAM 0x08000000 /* Accept Broadcast packets */ #define E1000_VMOLR_MPME 0x10000000 /* Multicast promiscuous mode */ #define E1000_VMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */ #define E1000_VMOLR_STRCRC 0x80000000 /* CRC stripping enable */ #define E1000_VMOLR_VPE 0x00800000 /* VLAN promiscuous enable */ #define E1000_VMOLR_UPE 0x20000000 /* Unicast promisuous enable */ #define E1000_DVMOLR_HIDVLAN 0x20000000 /* Vlan hiding enable */ #define E1000_DVMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */ #define E1000_DVMOLR_STRCRC 0x80000000 /* CRC stripping enable */ #define E1000_PBRWAC_WALPB 0x00000007 /* Wrap around event on LAN Rx PB */ #define E1000_PBRWAC_PBE 0x00000008 /* Rx packet buffer empty */ #define E1000_VLVF_ARRAY_SIZE 32 #define E1000_VLVF_VLANID_MASK 0x00000FFF #define E1000_VLVF_POOLSEL_SHIFT 12 #define E1000_VLVF_POOLSEL_MASK (0xFF << E1000_VLVF_POOLSEL_SHIFT) #define E1000_VLVF_LVLAN 0x00100000 #define E1000_VLVF_VLANID_ENABLE 0x80000000 #define E1000_VMVIR_VLANA_DEFAULT 0x40000000 /* Always use default VLAN */ #define E1000_VMVIR_VLANA_NEVER 0x80000000 /* Never insert VLAN tag */ #define E1000_VF_INIT_TIMEOUT 200 /* Number of retries to clear RSTI */ #define E1000_IOVCTL 0x05BBC #define E1000_IOVCTL_REUSE_VFQ 0x00000001 #define E1000_RPLOLR_STRVLAN 0x40000000 #define E1000_RPLOLR_STRCRC 0x80000000 #define E1000_TCTL_EXT_COLD 0x000FFC00 #define E1000_TCTL_EXT_COLD_SHIFT 10 #define E1000_DTXCTL_8023LL 0x0004 #define E1000_DTXCTL_VLAN_ADDED 0x0008 #define E1000_DTXCTL_OOS_ENABLE 0x0010 #define E1000_DTXCTL_MDP_EN 0x0020 #define E1000_DTXCTL_SPOOF_INT 0x0040 #define E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT (1 << 14) #define ALL_QUEUES 0xFFFF /* Rx packet buffer size defines */ #define E1000_RXPBS_SIZE_MASK_82576 0x0000007F void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable); void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf); void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable); s32 e1000_init_nvm_params_82575(struct e1000_hw *hw); s32 e1000_init_hw_82575(struct e1000_hw *hw); enum e1000_promisc_type { e1000_promisc_disabled = 0, /* all promisc modes disabled */ e1000_promisc_unicast = 1, /* unicast promiscuous enabled */ e1000_promisc_multicast = 2, /* multicast promiscuous enabled */ e1000_promisc_enabled = 3, /* both uni and multicast promisc */ e1000_num_promisc_types }; void e1000_vfta_set_vf(struct e1000_hw *, u16, bool); void e1000_rlpml_set_vf(struct e1000_hw *, u16); s32 e1000_promisc_set_vf(struct e1000_hw *, enum e1000_promisc_type type); void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value); u16 e1000_rxpbs_adjust_82580(u32 data); s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data); s32 e1000_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M); s32 e1000_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M); s32 e1000_get_eee_status_i354(struct e1000_hw *, bool *); s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw); s32 e1000_initialize_M88E1543_phy(struct e1000_hw *hw); /* I2C SDA and SCL timing parameters for standard mode */ #define E1000_I2C_T_HD_STA 4 #define E1000_I2C_T_LOW 5 #define E1000_I2C_T_HIGH 4 #define E1000_I2C_T_SU_STA 5 #define E1000_I2C_T_HD_DATA 5 #define E1000_I2C_T_SU_DATA 1 #define E1000_I2C_T_RISE 1 #define E1000_I2C_T_FALL 1 #define E1000_I2C_T_SU_STO 4 #define E1000_I2C_T_BUF 5 s32 e1000_set_i2c_bb(struct e1000_hw *hw); s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, u8 dev_addr, u8 *data); s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, u8 dev_addr, u8 data); void e1000_i2c_bus_clear(struct e1000_hw *hw); #endif /* _E1000_82575_H_ */ Index: head/sys/dev/e1000/e1000_ich8lan.c =================================================================== --- head/sys/dev/e1000/e1000_ich8lan.c (revision 327864) +++ head/sys/dev/e1000/e1000_ich8lan.c (revision 327865) @@ -1,6120 +1,6120 @@ /****************************************************************************** SPDX-License-Identifier: BSD-3-Clause Copyright (c) 2001-2015, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************/ /*$FreeBSD$*/ /* 82562G 10/100 Network Connection * 82562G-2 10/100 Network Connection * 82562GT 10/100 Network Connection * 82562GT-2 10/100 Network Connection * 82562V 10/100 Network Connection * 82562V-2 10/100 Network Connection * 82566DC-2 Gigabit Network Connection * 82566DC Gigabit Network Connection * 82566DM-2 Gigabit Network Connection * 82566DM Gigabit Network Connection * 82566MC Gigabit Network Connection * 82566MM Gigabit Network Connection * 82567LM Gigabit Network Connection * 82567LF Gigabit Network Connection * 82567V Gigabit Network Connection * 82567LM-2 Gigabit Network Connection * 82567LF-2 Gigabit Network Connection * 82567V-2 Gigabit Network Connection * 82567LF-3 Gigabit Network Connection * 82567LM-3 Gigabit Network Connection * 82567LM-4 Gigabit Network Connection * 82577LM Gigabit Network Connection * 82577LC Gigabit Network Connection * 82578DM Gigabit Network Connection * 82578DC Gigabit Network Connection * 82579LM Gigabit Network Connection * 82579V Gigabit Network Connection * Ethernet Connection I217-LM * Ethernet Connection I217-V * Ethernet Connection I218-V * Ethernet Connection I218-LM * Ethernet Connection (2) I218-LM * Ethernet Connection (2) I218-V * Ethernet Connection (3) I218-LM * Ethernet Connection (3) I218-V */ #include "e1000_api.h" static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw); static void e1000_release_swflag_ich8lan(struct e1000_hw *hw); static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw); static void e1000_release_nvm_ich8lan(struct e1000_hw *hw); static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index); static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index); static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw); static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw, u8 *mc_addr_list, u32 mc_addr_count); static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw); static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw); static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active); static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active); static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw); static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw); static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw); static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data); static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw); static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw); static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw); static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw); static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw); static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw); static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, u16 *duplex); static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); static s32 e1000_led_on_pchlan(struct e1000_hw *hw); static s32 e1000_led_off_pchlan(struct e1000_hw *hw); static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, u8 *data); static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, u8 size, u16 *data); static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, u32 *data); static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, u32 *data); static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, u32 data); static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, u32 dword); static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, u16 *data); static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, u8 byte); static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw); static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw); static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr); /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ /* Offset 04h HSFSTS */ union ich8_hws_flash_status { struct ich8_hsfsts { u16 flcdone:1; /* bit 0 Flash Cycle Done */ u16 flcerr:1; /* bit 1 Flash Cycle Error */ u16 dael:1; /* bit 2 Direct Access error Log */ u16 berasesz:2; /* bit 4:3 Sector Erase Size */ u16 flcinprog:1; /* bit 5 flash cycle in Progress */ u16 reserved1:2; /* bit 13:6 Reserved */ u16 reserved2:6; /* bit 13:6 Reserved */ u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */ u16 flockdn:1; /* bit 15 Flash Config Lock-Down */ } hsf_status; u16 regval; }; /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ /* Offset 06h FLCTL */ union ich8_hws_flash_ctrl { struct ich8_hsflctl { u16 flcgo:1; /* 0 Flash Cycle Go */ u16 flcycle:2; /* 2:1 Flash Cycle */ u16 reserved:5; /* 7:3 Reserved */ u16 fldbcount:2; /* 9:8 Flash Data Byte Count */ u16 flockdn:6; /* 15:10 Reserved */ } hsf_ctrl; u16 regval; }; /* ICH Flash Region Access Permissions */ union ich8_hws_flash_regacc { struct ich8_flracc { u32 grra:8; /* 0:7 GbE region Read Access */ u32 grwa:8; /* 8:15 GbE region Write Access */ u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */ u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */ } hsf_flregacc; u16 regval; }; /** * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers * @hw: pointer to the HW structure * * Test access to the PHY registers by reading the PHY ID registers. If * the PHY ID is already known (e.g. resume path) compare it with known ID, * otherwise assume the read PHY ID is correct if it is valid. * * Assumes the sw/fw/hw semaphore is already acquired. **/ static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw) { u16 phy_reg = 0; u32 phy_id = 0; s32 ret_val = 0; u16 retry_count; u32 mac_reg = 0; for (retry_count = 0; retry_count < 2; retry_count++) { ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg); if (ret_val || (phy_reg == 0xFFFF)) continue; phy_id = (u32)(phy_reg << 16); ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg); if (ret_val || (phy_reg == 0xFFFF)) { phy_id = 0; continue; } phy_id |= (u32)(phy_reg & PHY_REVISION_MASK); break; } if (hw->phy.id) { if (hw->phy.id == phy_id) goto out; } else if (phy_id) { hw->phy.id = phy_id; hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK); goto out; } /* In case the PHY needs to be in mdio slow mode, * set slow mode and try to get the PHY id again. */ if (hw->mac.type < e1000_pch_lpt) { hw->phy.ops.release(hw); ret_val = e1000_set_mdio_slow_mode_hv(hw); if (!ret_val) ret_val = e1000_get_phy_id(hw); hw->phy.ops.acquire(hw); } if (ret_val) return FALSE; out: if (hw->mac.type >= e1000_pch_lpt) { /* Only unforce SMBus if ME is not active */ if (!(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) { /* Unforce SMBus mode in PHY */ hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg); phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg); /* Unforce SMBus mode in MAC */ mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); } } return TRUE; } /** * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value * @hw: pointer to the HW structure * * Toggling the LANPHYPC pin value fully power-cycles the PHY and is * used to reset the PHY to a quiescent state when necessary. **/ static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw) { u32 mac_reg; DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt"); /* Set Phy Config Counter to 50msec */ mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3); mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg); /* Toggle LANPHYPC Value bit */ mac_reg = E1000_READ_REG(hw, E1000_CTRL); mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE; mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE; E1000_WRITE_REG(hw, E1000_CTRL, mac_reg); E1000_WRITE_FLUSH(hw); msec_delay(1); mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE; E1000_WRITE_REG(hw, E1000_CTRL, mac_reg); E1000_WRITE_FLUSH(hw); if (hw->mac.type < e1000_pch_lpt) { msec_delay(50); } else { u16 count = 20; do { msec_delay(5); } while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--); msec_delay(30); } } /** * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds * @hw: pointer to the HW structure * * Workarounds/flow necessary for PHY initialization during driver load * and resume paths. **/ static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw) { u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM); s32 ret_val; DEBUGFUNC("e1000_init_phy_workarounds_pchlan"); /* Gate automatic PHY configuration by hardware on managed and * non-managed 82579 and newer adapters. */ e1000_gate_hw_phy_config_ich8lan(hw, TRUE); /* It is not possible to be certain of the current state of ULP * so forcibly disable it. */ hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown; e1000_disable_ulp_lpt_lp(hw, TRUE); ret_val = hw->phy.ops.acquire(hw); if (ret_val) { DEBUGOUT("Failed to initialize PHY flow\n"); goto out; } /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is * inaccessible and resetting the PHY is not blocked, toggle the * LANPHYPC Value bit to force the interconnect to PCIe mode. */ switch (hw->mac.type) { case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: if (e1000_phy_is_accessible_pchlan(hw)) break; /* Before toggling LANPHYPC, see if PHY is accessible by * forcing MAC to SMBus mode first. */ mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); /* Wait 50 milliseconds for MAC to finish any retries * that it might be trying to perform from previous * attempts to acknowledge any phy read requests. */ msec_delay(50); /* fall-through */ case e1000_pch2lan: if (e1000_phy_is_accessible_pchlan(hw)) break; /* fall-through */ case e1000_pchlan: if ((hw->mac.type == e1000_pchlan) && (fwsm & E1000_ICH_FWSM_FW_VALID)) break; if (hw->phy.ops.check_reset_block(hw)) { DEBUGOUT("Required LANPHYPC toggle blocked by ME\n"); ret_val = -E1000_ERR_PHY; break; } /* Toggle LANPHYPC Value bit */ e1000_toggle_lanphypc_pch_lpt(hw); if (hw->mac.type >= e1000_pch_lpt) { if (e1000_phy_is_accessible_pchlan(hw)) break; /* Toggling LANPHYPC brings the PHY out of SMBus mode * so ensure that the MAC is also out of SMBus mode */ mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); if (e1000_phy_is_accessible_pchlan(hw)) break; ret_val = -E1000_ERR_PHY; } break; default: break; } hw->phy.ops.release(hw); if (!ret_val) { /* Check to see if able to reset PHY. Print error if not */ if (hw->phy.ops.check_reset_block(hw)) { ERROR_REPORT("Reset blocked by ME\n"); goto out; } /* Reset the PHY before any access to it. Doing so, ensures * that the PHY is in a known good state before we read/write * PHY registers. The generic reset is sufficient here, * because we haven't determined the PHY type yet. */ ret_val = e1000_phy_hw_reset_generic(hw); if (ret_val) goto out; /* On a successful reset, possibly need to wait for the PHY * to quiesce to an accessible state before returning control * to the calling function. If the PHY does not quiesce, then * return E1000E_BLK_PHY_RESET, as this is the condition that * the PHY is in. */ ret_val = hw->phy.ops.check_reset_block(hw); if (ret_val) ERROR_REPORT("ME blocked access to PHY after reset\n"); } out: /* Ungate automatic PHY configuration on non-managed 82579 */ if ((hw->mac.type == e1000_pch2lan) && !(fwsm & E1000_ICH_FWSM_FW_VALID)) { msec_delay(10); e1000_gate_hw_phy_config_ich8lan(hw, FALSE); } return ret_val; } /** * e1000_init_phy_params_pchlan - Initialize PHY function pointers * @hw: pointer to the HW structure * * Initialize family-specific PHY parameters and function pointers. **/ static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; DEBUGFUNC("e1000_init_phy_params_pchlan"); phy->addr = 1; phy->reset_delay_us = 100; phy->ops.acquire = e1000_acquire_swflag_ich8lan; phy->ops.check_reset_block = e1000_check_reset_block_ich8lan; phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan; phy->ops.set_page = e1000_set_page_igp; phy->ops.read_reg = e1000_read_phy_reg_hv; phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; phy->ops.release = e1000_release_swflag_ich8lan; phy->ops.reset = e1000_phy_hw_reset_ich8lan; phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; phy->ops.write_reg = e1000_write_phy_reg_hv; phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; phy->ops.power_up = e1000_power_up_phy_copper; phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; phy->id = e1000_phy_unknown; ret_val = e1000_init_phy_workarounds_pchlan(hw); if (ret_val) return ret_val; if (phy->id == e1000_phy_unknown) switch (hw->mac.type) { default: ret_val = e1000_get_phy_id(hw); if (ret_val) return ret_val; if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) break; /* fall-through */ case e1000_pch2lan: case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: /* In case the PHY needs to be in mdio slow mode, * set slow mode and try to get the PHY id again. */ ret_val = e1000_set_mdio_slow_mode_hv(hw); if (ret_val) return ret_val; ret_val = e1000_get_phy_id(hw); if (ret_val) return ret_val; break; } phy->type = e1000_get_phy_type_from_id(phy->id); switch (phy->type) { case e1000_phy_82577: case e1000_phy_82579: case e1000_phy_i217: phy->ops.check_polarity = e1000_check_polarity_82577; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82577; phy->ops.get_cable_length = e1000_get_cable_length_82577; phy->ops.get_info = e1000_get_phy_info_82577; phy->ops.commit = e1000_phy_sw_reset_generic; break; case e1000_phy_82578: phy->ops.check_polarity = e1000_check_polarity_m88; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; phy->ops.get_cable_length = e1000_get_cable_length_m88; phy->ops.get_info = e1000_get_phy_info_m88; break; default: ret_val = -E1000_ERR_PHY; break; } return ret_val; } /** * e1000_init_phy_params_ich8lan - Initialize PHY function pointers * @hw: pointer to the HW structure * * Initialize family-specific PHY parameters and function pointers. **/ static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 i = 0; DEBUGFUNC("e1000_init_phy_params_ich8lan"); phy->addr = 1; phy->reset_delay_us = 100; phy->ops.acquire = e1000_acquire_swflag_ich8lan; phy->ops.check_reset_block = e1000_check_reset_block_ich8lan; phy->ops.get_cable_length = e1000_get_cable_length_igp_2; phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan; phy->ops.read_reg = e1000_read_phy_reg_igp; phy->ops.release = e1000_release_swflag_ich8lan; phy->ops.reset = e1000_phy_hw_reset_ich8lan; phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan; phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan; phy->ops.write_reg = e1000_write_phy_reg_igp; phy->ops.power_up = e1000_power_up_phy_copper; phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; /* We may need to do this twice - once for IGP and if that fails, * we'll set BM func pointers and try again */ ret_val = e1000_determine_phy_address(hw); if (ret_val) { phy->ops.write_reg = e1000_write_phy_reg_bm; phy->ops.read_reg = e1000_read_phy_reg_bm; ret_val = e1000_determine_phy_address(hw); if (ret_val) { DEBUGOUT("Cannot determine PHY addr. Erroring out\n"); return ret_val; } } phy->id = 0; while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) && (i++ < 100)) { msec_delay(1); ret_val = e1000_get_phy_id(hw); if (ret_val) return ret_val; } /* Verify phy id */ switch (phy->id) { case IGP03E1000_E_PHY_ID: phy->type = e1000_phy_igp_3; phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked; phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked; phy->ops.get_info = e1000_get_phy_info_igp; phy->ops.check_polarity = e1000_check_polarity_igp; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; break; case IFE_E_PHY_ID: case IFE_PLUS_E_PHY_ID: case IFE_C_E_PHY_ID: phy->type = e1000_phy_ife; phy->autoneg_mask = E1000_ALL_NOT_GIG; phy->ops.get_info = e1000_get_phy_info_ife; phy->ops.check_polarity = e1000_check_polarity_ife; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; break; case BME1000_E_PHY_ID: phy->type = e1000_phy_bm; phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; phy->ops.read_reg = e1000_read_phy_reg_bm; phy->ops.write_reg = e1000_write_phy_reg_bm; phy->ops.commit = e1000_phy_sw_reset_generic; phy->ops.get_info = e1000_get_phy_info_m88; phy->ops.check_polarity = e1000_check_polarity_m88; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; break; default: return -E1000_ERR_PHY; break; } return E1000_SUCCESS; } /** * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers * @hw: pointer to the HW structure * * Initialize family-specific NVM parameters and function * pointers. **/ static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u32 gfpreg, sector_base_addr, sector_end_addr; u16 i; u32 nvm_size; DEBUGFUNC("e1000_init_nvm_params_ich8lan"); nvm->type = e1000_nvm_flash_sw; if (hw->mac.type >= e1000_pch_spt) { /* in SPT, gfpreg doesn't exist. NVM size is taken from the * STRAP register. This is because in SPT the GbE Flash region * is no longer accessed through the flash registers. Instead, * the mechanism has changed, and the Flash region access * registers are now implemented in GbE memory space. */ nvm->flash_base_addr = 0; nvm_size = (((E1000_READ_REG(hw, E1000_STRAP) >> 1) & 0x1F) + 1) * NVM_SIZE_MULTIPLIER; nvm->flash_bank_size = nvm_size / 2; /* Adjust to word count */ nvm->flash_bank_size /= sizeof(u16); /* Set the base address for flash register access */ hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR; } else { /* Can't read flash registers if register set isn't mapped. */ if (!hw->flash_address) { DEBUGOUT("ERROR: Flash registers not mapped\n"); return -E1000_ERR_CONFIG; } gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG); /* sector_X_addr is a "sector"-aligned address (4096 bytes) * Add 1 to sector_end_addr since this sector is included in * the overall size. */ sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; /* flash_base_addr is byte-aligned */ nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT; /* find total size of the NVM, then cut in half since the total * size represents two separate NVM banks. */ nvm->flash_bank_size = ((sector_end_addr - sector_base_addr) << FLASH_SECTOR_ADDR_SHIFT); nvm->flash_bank_size /= 2; /* Adjust to word count */ nvm->flash_bank_size /= sizeof(u16); } nvm->word_size = E1000_SHADOW_RAM_WORDS; /* Clear shadow ram */ for (i = 0; i < nvm->word_size; i++) { dev_spec->shadow_ram[i].modified = FALSE; dev_spec->shadow_ram[i].value = 0xFFFF; } E1000_MUTEX_INIT(&dev_spec->nvm_mutex); E1000_MUTEX_INIT(&dev_spec->swflag_mutex); /* Function Pointers */ nvm->ops.acquire = e1000_acquire_nvm_ich8lan; nvm->ops.release = e1000_release_nvm_ich8lan; if (hw->mac.type >= e1000_pch_spt) { nvm->ops.read = e1000_read_nvm_spt; nvm->ops.update = e1000_update_nvm_checksum_spt; } else { nvm->ops.read = e1000_read_nvm_ich8lan; nvm->ops.update = e1000_update_nvm_checksum_ich8lan; } nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan; nvm->ops.validate = e1000_validate_nvm_checksum_ich8lan; nvm->ops.write = e1000_write_nvm_ich8lan; return E1000_SUCCESS; } /** * e1000_init_mac_params_ich8lan - Initialize MAC function pointers * @hw: pointer to the HW structure * * Initialize family-specific MAC parameters and function * pointers. **/ static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; DEBUGFUNC("e1000_init_mac_params_ich8lan"); /* Set media type function pointer */ hw->phy.media_type = e1000_media_type_copper; /* Set mta register count */ mac->mta_reg_count = 32; /* Set rar entry count */ mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; if (mac->type == e1000_ich8lan) mac->rar_entry_count--; /* Set if part includes ASF firmware */ mac->asf_firmware_present = TRUE; /* FWSM register */ mac->has_fwsm = TRUE; /* ARC subsystem not supported */ mac->arc_subsystem_valid = FALSE; /* Adaptive IFS supported */ mac->adaptive_ifs = TRUE; /* Function pointers */ /* bus type/speed/width */ mac->ops.get_bus_info = e1000_get_bus_info_ich8lan; /* function id */ mac->ops.set_lan_id = e1000_set_lan_id_single_port; /* reset */ mac->ops.reset_hw = e1000_reset_hw_ich8lan; /* hw initialization */ mac->ops.init_hw = e1000_init_hw_ich8lan; /* link setup */ mac->ops.setup_link = e1000_setup_link_ich8lan; /* physical interface setup */ mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan; /* check for link */ mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan; /* link info */ mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan; /* multicast address update */ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; /* clear hardware counters */ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan; /* LED and other operations */ switch (mac->type) { case e1000_ich8lan: case e1000_ich9lan: case e1000_ich10lan: /* check management mode */ mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; /* ID LED init */ mac->ops.id_led_init = e1000_id_led_init_generic; /* blink LED */ mac->ops.blink_led = e1000_blink_led_generic; /* setup LED */ mac->ops.setup_led = e1000_setup_led_generic; /* cleanup LED */ mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; /* turn on/off LED */ mac->ops.led_on = e1000_led_on_ich8lan; mac->ops.led_off = e1000_led_off_ich8lan; break; case e1000_pch2lan: mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES; mac->ops.rar_set = e1000_rar_set_pch2lan; /* fall-through */ case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: /* multicast address update for pch2 */ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_pch2lan; /* fall-through */ case e1000_pchlan: /* check management mode */ mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; /* ID LED init */ mac->ops.id_led_init = e1000_id_led_init_pchlan; /* setup LED */ mac->ops.setup_led = e1000_setup_led_pchlan; /* cleanup LED */ mac->ops.cleanup_led = e1000_cleanup_led_pchlan; /* turn on/off LED */ mac->ops.led_on = e1000_led_on_pchlan; mac->ops.led_off = e1000_led_off_pchlan; break; default: break; } if (mac->type >= e1000_pch_lpt) { mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES; mac->ops.rar_set = e1000_rar_set_pch_lpt; mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt; mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt; } /* Enable PCS Lock-loss workaround for ICH8 */ if (mac->type == e1000_ich8lan) e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE); return E1000_SUCCESS; } /** * __e1000_access_emi_reg_locked - Read/write EMI register * @hw: pointer to the HW structure * @addr: EMI address to program * @data: pointer to value to read/write from/to the EMI address * @read: boolean flag to indicate read or write * * This helper function assumes the SW/FW/HW Semaphore is already acquired. **/ static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address, u16 *data, bool read) { s32 ret_val; DEBUGFUNC("__e1000_access_emi_reg_locked"); ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address); if (ret_val) return ret_val; if (read) ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA, data); else ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, *data); return ret_val; } /** * e1000_read_emi_reg_locked - Read Extended Management Interface register * @hw: pointer to the HW structure * @addr: EMI address to program * @data: value to be read from the EMI address * * Assumes the SW/FW/HW Semaphore is already acquired. **/ s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data) { DEBUGFUNC("e1000_read_emi_reg_locked"); return __e1000_access_emi_reg_locked(hw, addr, data, TRUE); } /** * e1000_write_emi_reg_locked - Write Extended Management Interface register * @hw: pointer to the HW structure * @addr: EMI address to program * @data: value to be written to the EMI address * * Assumes the SW/FW/HW Semaphore is already acquired. **/ s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data) { DEBUGFUNC("e1000_read_emi_reg_locked"); return __e1000_access_emi_reg_locked(hw, addr, &data, FALSE); } /** * e1000_set_eee_pchlan - Enable/disable EEE support * @hw: pointer to the HW structure * * Enable/disable EEE based on setting in dev_spec structure, the duplex of * the link and the EEE capabilities of the link partner. The LPI Control * register bits will remain set only if/when link is up. * * EEE LPI must not be asserted earlier than one second after link is up. * On 82579, EEE LPI should not be enabled until such time otherwise there * can be link issues with some switches. Other devices can have EEE LPI * enabled immediately upon link up since they have a timer in hardware which * prevents LPI from being asserted too early. **/ s32 e1000_set_eee_pchlan(struct e1000_hw *hw) { struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; s32 ret_val; u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data; DEBUGFUNC("e1000_set_eee_pchlan"); switch (hw->phy.type) { case e1000_phy_82579: lpa = I82579_EEE_LP_ABILITY; pcs_status = I82579_EEE_PCS_STATUS; adv_addr = I82579_EEE_ADVERTISEMENT; break; case e1000_phy_i217: lpa = I217_EEE_LP_ABILITY; pcs_status = I217_EEE_PCS_STATUS; adv_addr = I217_EEE_ADVERTISEMENT; break; default: return E1000_SUCCESS; } ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl); if (ret_val) goto release; /* Clear bits that enable EEE in various speeds */ lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK; /* Enable EEE if not disabled by user */ if (!dev_spec->eee_disable) { /* Save off link partner's EEE ability */ ret_val = e1000_read_emi_reg_locked(hw, lpa, &dev_spec->eee_lp_ability); if (ret_val) goto release; /* Read EEE advertisement */ ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv); if (ret_val) goto release; /* Enable EEE only for speeds in which the link partner is * EEE capable and for which we advertise EEE. */ if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED) lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) { hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data); if (data & NWAY_LPAR_100TX_FD_CAPS) lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; else /* EEE is not supported in 100Half, so ignore * partner's EEE in 100 ability if full-duplex * is not advertised. */ dev_spec->eee_lp_ability &= ~I82579_EEE_100_SUPPORTED; } } if (hw->phy.type == e1000_phy_82579) { ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, &data); if (ret_val) goto release; data &= ~I82579_LPI_100_PLL_SHUT; ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, data); } /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */ ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data); if (ret_val) goto release; ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl); release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP * @hw: pointer to the HW structure * @link: link up bool flag * * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications * preventing further DMA write requests. Workaround the issue by disabling * the de-assertion of the clock request when in 1Gpbs mode. * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link * speeds in order to avoid Tx hangs. **/ static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link) { u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6); u32 status = E1000_READ_REG(hw, E1000_STATUS); s32 ret_val = E1000_SUCCESS; u16 reg; if (link && (status & E1000_STATUS_SPEED_1000)) { ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, ®); if (ret_val) goto release; ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, reg & ~E1000_KMRNCTRLSTA_K1_ENABLE); if (ret_val) goto release; usec_delay(10); E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK); ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, reg); release: hw->phy.ops.release(hw); } else { /* clear FEXTNVM6 bit 8 on link down or 10/100 */ fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK; if ((hw->phy.revision > 5) || !link || ((status & E1000_STATUS_SPEED_100) && (status & E1000_STATUS_FD))) goto update_fextnvm6; ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, ®); if (ret_val) return ret_val; /* Clear link status transmit timeout */ reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK; if (status & E1000_STATUS_SPEED_100) { /* Set inband Tx timeout to 5x10us for 100Half */ reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; /* Do not extend the K1 entry latency for 100Half */ fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; } else { /* Set inband Tx timeout to 50x10us for 10Full/Half */ reg |= 50 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; /* Extend the K1 entry latency for 10 Mbps */ fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; } ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg); if (ret_val) return ret_val; update_fextnvm6: E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6); } return ret_val; } static u64 e1000_ltr2ns(u16 ltr) { u32 value, scale; /* Determine the latency in nsec based on the LTR value & scale */ value = ltr & E1000_LTRV_VALUE_MASK; scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT; return value * (1 << (scale * E1000_LTRV_SCALE_FACTOR)); } /** * e1000_platform_pm_pch_lpt - Set platform power management values * @hw: pointer to the HW structure * @link: bool indicating link status * * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like" * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed * when link is up (which must not exceed the maximum latency supported * by the platform), otherwise specify there is no LTR requirement. * Unlike TRUE-PCIe devices which set the LTR maximum snoop/no-snoop * latencies in the LTR Extended Capability Structure in the PCIe Extended * Capability register set, on this device LTR is set by writing the * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB) * message to the PMC. * * Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF) * high-water mark. **/ static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link) { u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) | link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND; u16 lat_enc = 0; /* latency encoded */ s32 obff_hwm = 0; DEBUGFUNC("e1000_platform_pm_pch_lpt"); if (link) { u16 speed, duplex, scale = 0; u16 max_snoop, max_nosnoop; u16 max_ltr_enc; /* max LTR latency encoded */ s64 lat_ns; s64 value; u32 rxa; if (!hw->mac.max_frame_size) { DEBUGOUT("max_frame_size not set.\n"); return -E1000_ERR_CONFIG; } hw->mac.ops.get_link_up_info(hw, &speed, &duplex); if (!speed) { DEBUGOUT("Speed not set.\n"); return -E1000_ERR_CONFIG; } /* Rx Packet Buffer Allocation size (KB) */ rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK; /* Determine the maximum latency tolerated by the device. * * Per the PCIe spec, the tolerated latencies are encoded as * a 3-bit encoded scale (only 0-5 are valid) multiplied by * a 10-bit value (0-1023) to provide a range from 1 ns to * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns, * 1=2^5ns, 2=2^10ns,...5=2^25ns. */ lat_ns = ((s64)rxa * 1024 - (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000; if (lat_ns < 0) lat_ns = 0; else lat_ns /= speed; value = lat_ns; while (value > E1000_LTRV_VALUE_MASK) { scale++; value = E1000_DIVIDE_ROUND_UP(value, (1 << 5)); } if (scale > E1000_LTRV_SCALE_MAX) { DEBUGOUT1("Invalid LTR latency scale %d\n", scale); return -E1000_ERR_CONFIG; } lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value); /* Determine the maximum latency tolerated by the platform */ e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop); e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop); max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop); if (lat_enc > max_ltr_enc) { lat_enc = max_ltr_enc; lat_ns = e1000_ltr2ns(max_ltr_enc); } if (lat_ns) { lat_ns *= speed * 1000; lat_ns /= 8; lat_ns /= 1000000000; obff_hwm = (s32)(rxa - lat_ns); } if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) { DEBUGOUT1("Invalid high water mark %d\n", obff_hwm); return -E1000_ERR_CONFIG; } } /* Set Snoop and No-Snoop latencies the same */ reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT); E1000_WRITE_REG(hw, E1000_LTRV, reg); /* Set OBFF high water mark */ reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK; reg |= obff_hwm; E1000_WRITE_REG(hw, E1000_SVT, reg); /* Enable OBFF */ reg = E1000_READ_REG(hw, E1000_SVCR); reg |= E1000_SVCR_OFF_EN; /* Always unblock interrupts to the CPU even when the system is * in OBFF mode. This ensures that small round-robin traffic * (like ping) does not get dropped or experience long latency. */ reg |= E1000_SVCR_OFF_MASKINT; E1000_WRITE_REG(hw, E1000_SVCR, reg); return E1000_SUCCESS; } /** * e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer * @hw: pointer to the HW structure * @itr: interrupt throttling rate * * Configure OBFF with the updated interrupt rate. **/ static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr) { u32 svcr; s32 timer; DEBUGFUNC("e1000_set_obff_timer_pch_lpt"); /* Convert ITR value into microseconds for OBFF timer */ timer = itr & E1000_ITR_MASK; timer = (timer * E1000_ITR_MULT) / 1000; if ((timer < 0) || (timer > E1000_ITR_MASK)) { DEBUGOUT1("Invalid OBFF timer %d\n", timer); return -E1000_ERR_CONFIG; } svcr = E1000_READ_REG(hw, E1000_SVCR); svcr &= ~E1000_SVCR_OFF_TIMER_MASK; svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT; E1000_WRITE_REG(hw, E1000_SVCR, svcr); return E1000_SUCCESS; } /** * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP * @hw: pointer to the HW structure * @to_sx: boolean indicating a system power state transition to Sx * * When link is down, configure ULP mode to significantly reduce the power * to the PHY. If on a Manageability Engine (ME) enabled system, tell the * ME firmware to start the ULP configuration. If not on an ME enabled * system, configure the ULP mode by software. */ s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx) { u32 mac_reg; s32 ret_val = E1000_SUCCESS; u16 phy_reg; u16 oem_reg = 0; if ((hw->mac.type < e1000_pch_lpt) || (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) || (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) || (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) || (hw->device_id == E1000_DEV_ID_PCH_I218_V2) || (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on)) return 0; if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) { /* Request ME configure ULP mode in the PHY */ mac_reg = E1000_READ_REG(hw, E1000_H2ME); mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS; E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); goto out; } if (!to_sx) { int i = 0; /* Poll up to 5 seconds for Cable Disconnected indication */ while (!(E1000_READ_REG(hw, E1000_FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) { /* Bail if link is re-acquired */ if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) return -E1000_ERR_PHY; if (i++ == 100) break; msec_delay(50); } DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n", (E1000_READ_REG(hw, E1000_FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50); } ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; /* Force SMBus mode in PHY */ ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); if (ret_val) goto release; phy_reg |= CV_SMB_CTRL_FORCE_SMBUS; e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); /* Force SMBus mode in MAC */ mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable * LPLU and disable Gig speed when entering ULP */ if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) { ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS, &oem_reg); if (ret_val) goto release; phy_reg = oem_reg; phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS; ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, phy_reg); if (ret_val) goto release; } /* Set Inband ULP Exit, Reset to SMBus mode and * Disable SMBus Release on PERST# in PHY */ ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); if (ret_val) goto release; phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS | I218_ULP_CONFIG1_DISABLE_SMB_PERST); if (to_sx) { if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC) phy_reg |= I218_ULP_CONFIG1_WOL_HOST; else phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; phy_reg |= I218_ULP_CONFIG1_STICKY_ULP; phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT; } else { phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT; phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP; phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; } e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); /* Set Disable SMBus Release on PERST# in MAC */ mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7); mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST; E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg); /* Commit ULP changes in PHY by starting auto ULP configuration */ phy_reg |= I218_ULP_CONFIG1_START; e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) && to_sx && (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, oem_reg); if (ret_val) goto release; } release: hw->phy.ops.release(hw); out: if (ret_val) DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val); else hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on; return ret_val; } /** * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP * @hw: pointer to the HW structure * @force: boolean indicating whether or not to force disabling ULP * * Un-configure ULP mode when link is up, the system is transitioned from * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled * system, poll for an indication from ME that ULP has been un-configured. * If not on an ME enabled system, un-configure the ULP mode by software. * * During nominal operation, this function is called when link is acquired * to disable ULP mode (force=FALSE); otherwise, for example when unloading * the driver or during Sx->S0 transitions, this is called with force=TRUE * to forcibly disable ULP. */ s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force) { s32 ret_val = E1000_SUCCESS; u32 mac_reg; u16 phy_reg; int i = 0; if ((hw->mac.type < e1000_pch_lpt) || (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) || (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) || (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) || (hw->device_id == E1000_DEV_ID_PCH_I218_V2) || (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off)) return 0; if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) { if (force) { /* Request ME un-configure ULP mode in the PHY */ mac_reg = E1000_READ_REG(hw, E1000_H2ME); mac_reg &= ~E1000_H2ME_ULP; mac_reg |= E1000_H2ME_ENFORCE_SETTINGS; E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); } /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */ while (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_ULP_CFG_DONE) { if (i++ == 30) { ret_val = -E1000_ERR_PHY; goto out; } msec_delay(10); } DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10); if (force) { mac_reg = E1000_READ_REG(hw, E1000_H2ME); mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS; E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); } else { /* Clear H2ME.ULP after ME ULP configuration */ mac_reg = E1000_READ_REG(hw, E1000_H2ME); mac_reg &= ~E1000_H2ME_ULP; E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); } goto out; } ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; if (force) /* Toggle LANPHYPC Value bit */ e1000_toggle_lanphypc_pch_lpt(hw); /* Unforce SMBus mode in PHY */ ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); if (ret_val) { /* The MAC might be in PCIe mode, so temporarily force to * SMBus mode in order to access the PHY. */ mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); msec_delay(50); ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); if (ret_val) goto release; } phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); /* Unforce SMBus mode in MAC */ mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); /* When ULP mode was previously entered, K1 was disabled by the * hardware. Re-Enable K1 in the PHY when exiting ULP. */ ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg); if (ret_val) goto release; phy_reg |= HV_PM_CTRL_K1_ENABLE; e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg); /* Clear ULP enabled configuration */ ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); if (ret_val) goto release; phy_reg &= ~(I218_ULP_CONFIG1_IND | I218_ULP_CONFIG1_STICKY_ULP | I218_ULP_CONFIG1_RESET_TO_SMBUS | I218_ULP_CONFIG1_WOL_HOST | I218_ULP_CONFIG1_INBAND_EXIT | I218_ULP_CONFIG1_EN_ULP_LANPHYPC | I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST | I218_ULP_CONFIG1_DISABLE_SMB_PERST); e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); /* Commit ULP changes by starting auto ULP configuration */ phy_reg |= I218_ULP_CONFIG1_START; e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); /* Clear Disable SMBus Release on PERST# in MAC */ mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7); mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST; E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg); release: hw->phy.ops.release(hw); if (force) { hw->phy.ops.reset(hw); msec_delay(50); } out: if (ret_val) DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val); else hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off; return ret_val; } /** * e1000_check_for_copper_link_ich8lan - Check for link (Copper) * @hw: pointer to the HW structure * * Checks to see of the link status of the hardware has changed. If a * change in link status has been detected, then we read the PHY registers * to get the current speed/duplex if link exists. **/ static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val, tipg_reg = 0; u16 emi_addr, emi_val = 0; bool link; u16 phy_reg; DEBUGFUNC("e1000_check_for_copper_link_ich8lan"); /* We only want to go out to the PHY registers to see if Auto-Neg * has completed and/or if our link status has changed. The * get_link_status flag is set upon receiving a Link Status * Change or Rx Sequence Error interrupt. */ if (!mac->get_link_status) return E1000_SUCCESS; /* First we want to see if the MII Status Register reports * link. If so, then we want to get the current speed/duplex * of the PHY. */ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); if (ret_val) return ret_val; if (hw->mac.type == e1000_pchlan) { ret_val = e1000_k1_gig_workaround_hv(hw, link); if (ret_val) return ret_val; } /* When connected at 10Mbps half-duplex, some parts are excessively * aggressive resulting in many collisions. To avoid this, increase * the IPG and reduce Rx latency in the PHY. */ if ((hw->mac.type >= e1000_pch2lan) && link) { u16 speed, duplex; e1000_get_speed_and_duplex_copper_generic(hw, &speed, &duplex); tipg_reg = E1000_READ_REG(hw, E1000_TIPG); tipg_reg &= ~E1000_TIPG_IPGT_MASK; if (duplex == HALF_DUPLEX && speed == SPEED_10) { tipg_reg |= 0xFF; /* Reduce Rx latency in analog PHY */ emi_val = 0; } else if (hw->mac.type >= e1000_pch_spt && duplex == FULL_DUPLEX && speed != SPEED_1000) { tipg_reg |= 0xC; emi_val = 1; } else { /* Roll back the default values */ tipg_reg |= 0x08; emi_val = 1; } E1000_WRITE_REG(hw, E1000_TIPG, tipg_reg); ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; if (hw->mac.type == e1000_pch2lan) emi_addr = I82579_RX_CONFIG; else emi_addr = I217_RX_CONFIG; ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val); if (hw->mac.type >= e1000_pch_lpt) { u16 phy_reg; hw->phy.ops.read_reg_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg); phy_reg &= ~I217_PLL_CLOCK_GATE_MASK; if (speed == SPEED_100 || speed == SPEED_10) phy_reg |= 0x3E8; else phy_reg |= 0xFA; hw->phy.ops.write_reg_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg); if (speed == SPEED_1000) { hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL, &phy_reg); phy_reg |= HV_PM_CTRL_K1_CLK_REQ; hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL, phy_reg); } } hw->phy.ops.release(hw); if (ret_val) return ret_val; if (hw->mac.type >= e1000_pch_spt) { u16 data; u16 ptr_gap; if (speed == SPEED_1000) { ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = hw->phy.ops.read_reg_locked(hw, PHY_REG(776, 20), &data); if (ret_val) { hw->phy.ops.release(hw); return ret_val; } ptr_gap = (data & (0x3FF << 2)) >> 2; if (ptr_gap < 0x18) { data &= ~(0x3FF << 2); data |= (0x18 << 2); ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(776, 20), data); } hw->phy.ops.release(hw); if (ret_val) return ret_val; } else { ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(776, 20), 0xC023); hw->phy.ops.release(hw); if (ret_val) return ret_val; } } } /* I217 Packet Loss issue: * ensure that FEXTNVM4 Beacon Duration is set correctly * on power up. * Set the Beacon Duration for I217 to 8 usec */ if (hw->mac.type >= e1000_pch_lpt) { u32 mac_reg; mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4); mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg); } /* Work-around I218 hang issue */ if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) || (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) { ret_val = e1000_k1_workaround_lpt_lp(hw, link); if (ret_val) return ret_val; } if (hw->mac.type >= e1000_pch_lpt) { /* Set platform power management values for * Latency Tolerance Reporting (LTR) * Optimized Buffer Flush/Fill (OBFF) */ ret_val = e1000_platform_pm_pch_lpt(hw, link); if (ret_val) return ret_val; } /* Clear link partner's EEE ability */ hw->dev_spec.ich8lan.eee_lp_ability = 0; if (hw->mac.type >= e1000_pch_lpt) { u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6); if (hw->mac.type == e1000_pch_spt) { /* FEXTNVM6 K1-off workaround - for SPT only */ u32 pcieanacfg = E1000_READ_REG(hw, E1000_PCIEANACFG); if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE) fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE; else fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE; } if (hw->dev_spec.ich8lan.disable_k1_off == TRUE) fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE; E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6); } if (!link) return E1000_SUCCESS; /* No link detected */ mac->get_link_status = FALSE; switch (hw->mac.type) { case e1000_pch2lan: ret_val = e1000_k1_workaround_lv(hw); if (ret_val) return ret_val; /* fall-thru */ case e1000_pchlan: if (hw->phy.type == e1000_phy_82578) { ret_val = e1000_link_stall_workaround_hv(hw); if (ret_val) return ret_val; } /* Workaround for PCHx parts in half-duplex: * Set the number of preambles removed from the packet * when it is passed from the PHY to the MAC to prevent * the MAC from misinterpreting the packet type. */ hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD) phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); break; default: break; } /* Check if there was DownShift, must be checked * immediately after link-up */ e1000_check_downshift_generic(hw); /* Enable/Disable EEE after link up */ if (hw->phy.type > e1000_phy_82579) { ret_val = e1000_set_eee_pchlan(hw); if (ret_val) return ret_val; } /* If we are forcing speed/duplex, then we simply return since * we have already determined whether we have link or not. */ if (!mac->autoneg) return -E1000_ERR_CONFIG; /* Auto-Neg is enabled. Auto Speed Detection takes care * of MAC speed/duplex configuration. So we only need to * configure Collision Distance in the MAC. */ mac->ops.config_collision_dist(hw); /* Configure Flow Control now that Auto-Neg has completed. * First, we need to restore the desired flow control * settings because we may have had to re-autoneg with a * different link partner. */ ret_val = e1000_config_fc_after_link_up_generic(hw); if (ret_val) DEBUGOUT("Error configuring flow control\n"); return ret_val; } /** * e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers * @hw: pointer to the HW structure * * Initialize family-specific function pointers for PHY, MAC, and NVM. **/ void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw) { DEBUGFUNC("e1000_init_function_pointers_ich8lan"); hw->mac.ops.init_params = e1000_init_mac_params_ich8lan; hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan; switch (hw->mac.type) { case e1000_ich8lan: case e1000_ich9lan: case e1000_ich10lan: hw->phy.ops.init_params = e1000_init_phy_params_ich8lan; break; case e1000_pchlan: case e1000_pch2lan: case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: hw->phy.ops.init_params = e1000_init_phy_params_pchlan; break; default: break; } } /** * e1000_acquire_nvm_ich8lan - Acquire NVM mutex * @hw: pointer to the HW structure * * Acquires the mutex for performing NVM operations. **/ static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw) { DEBUGFUNC("e1000_acquire_nvm_ich8lan"); E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex); return E1000_SUCCESS; } /** * e1000_release_nvm_ich8lan - Release NVM mutex * @hw: pointer to the HW structure * * Releases the mutex used while performing NVM operations. **/ static void e1000_release_nvm_ich8lan(struct e1000_hw *hw) { DEBUGFUNC("e1000_release_nvm_ich8lan"); E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex); return; } /** * e1000_acquire_swflag_ich8lan - Acquire software control flag * @hw: pointer to the HW structure * * Acquires the software control flag for performing PHY and select * MAC CSR accesses. **/ static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) { u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_acquire_swflag_ich8lan"); E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex); while (timeout) { extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) break; msec_delay_irq(1); timeout--; } if (!timeout) { DEBUGOUT("SW has already locked the resource.\n"); ret_val = -E1000_ERR_CONFIG; goto out; } timeout = SW_FLAG_TIMEOUT; extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); while (timeout) { extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) break; msec_delay_irq(1); timeout--; } if (!timeout) { DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl); extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); ret_val = -E1000_ERR_CONFIG; goto out; } out: if (ret_val) E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex); return ret_val; } /** * e1000_release_swflag_ich8lan - Release software control flag * @hw: pointer to the HW structure * * Releases the software control flag for performing PHY and select * MAC CSR accesses. **/ static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) { u32 extcnf_ctrl; DEBUGFUNC("e1000_release_swflag_ich8lan"); extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); } else { DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n"); } E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex); return; } /** * e1000_check_mng_mode_ich8lan - Checks management mode * @hw: pointer to the HW structure * * This checks if the adapter has any manageability enabled. * This is a function pointer entry point only called by read/write * routines for the PHY and NVM parts. **/ static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) { u32 fwsm; DEBUGFUNC("e1000_check_mng_mode_ich8lan"); fwsm = E1000_READ_REG(hw, E1000_FWSM); return (fwsm & E1000_ICH_FWSM_FW_VALID) && ((fwsm & E1000_FWSM_MODE_MASK) == (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); } /** * e1000_check_mng_mode_pchlan - Checks management mode * @hw: pointer to the HW structure * * This checks if the adapter has iAMT enabled. * This is a function pointer entry point only called by read/write * routines for the PHY and NVM parts. **/ static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) { u32 fwsm; DEBUGFUNC("e1000_check_mng_mode_pchlan"); fwsm = E1000_READ_REG(hw, E1000_FWSM); return (fwsm & E1000_ICH_FWSM_FW_VALID) && (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); } /** * e1000_rar_set_pch2lan - Set receive address register * @hw: pointer to the HW structure * @addr: pointer to the receive address * @index: receive address array register * * Sets the receive address array register at index to the address passed * in by addr. For 82579, RAR[0] is the base address register that is to * contain the MAC address but RAR[1-6] are reserved for manageability (ME). * Use SHRA[0-3] in place of those reserved for ME. **/ static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index) { u32 rar_low, rar_high; DEBUGFUNC("e1000_rar_set_pch2lan"); /* HW expects these in little endian so we reverse the byte order * from network order (big endian) to little endian */ rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); /* If MAC address zero, no need to set the AV bit */ if (rar_low || rar_high) rar_high |= E1000_RAH_AV; if (index == 0) { E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); E1000_WRITE_FLUSH(hw); E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); E1000_WRITE_FLUSH(hw); return E1000_SUCCESS; } /* RAR[1-6] are owned by manageability. Skip those and program the * next address into the SHRA register array. */ if (index < (u32) (hw->mac.rar_entry_count)) { s32 ret_val; ret_val = e1000_acquire_swflag_ich8lan(hw); if (ret_val) goto out; E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low); E1000_WRITE_FLUSH(hw); E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high); E1000_WRITE_FLUSH(hw); e1000_release_swflag_ich8lan(hw); /* verify the register updates */ if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) && (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high)) return E1000_SUCCESS; DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", (index - 1), E1000_READ_REG(hw, E1000_FWSM)); } out: DEBUGOUT1("Failed to write receive address at index %d\n", index); return -E1000_ERR_CONFIG; } /** * e1000_rar_set_pch_lpt - Set receive address registers * @hw: pointer to the HW structure * @addr: pointer to the receive address * @index: receive address array register * * Sets the receive address register array at index to the address passed * in by addr. For LPT, RAR[0] is the base address register that is to * contain the MAC address. SHRA[0-10] are the shared receive address * registers that are shared between the Host and manageability engine (ME). **/ static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index) { u32 rar_low, rar_high; u32 wlock_mac; DEBUGFUNC("e1000_rar_set_pch_lpt"); /* HW expects these in little endian so we reverse the byte order * from network order (big endian) to little endian */ rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); /* If MAC address zero, no need to set the AV bit */ if (rar_low || rar_high) rar_high |= E1000_RAH_AV; if (index == 0) { E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); E1000_WRITE_FLUSH(hw); E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); E1000_WRITE_FLUSH(hw); return E1000_SUCCESS; } /* The manageability engine (ME) can lock certain SHRAR registers that * it is using - those registers are unavailable for use. */ if (index < hw->mac.rar_entry_count) { wlock_mac = E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_WLOCK_MAC_MASK; wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; /* Check if all SHRAR registers are locked */ if (wlock_mac == 1) goto out; if ((wlock_mac == 0) || (index <= wlock_mac)) { s32 ret_val; ret_val = e1000_acquire_swflag_ich8lan(hw); if (ret_val) goto out; E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1), rar_low); E1000_WRITE_FLUSH(hw); E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1), rar_high); E1000_WRITE_FLUSH(hw); e1000_release_swflag_ich8lan(hw); /* verify the register updates */ if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) && (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high)) return E1000_SUCCESS; } } out: DEBUGOUT1("Failed to write receive address at index %d\n", index); return -E1000_ERR_CONFIG; } /** * e1000_update_mc_addr_list_pch2lan - Update Multicast addresses * @hw: pointer to the HW structure * @mc_addr_list: array of multicast addresses to program * @mc_addr_count: number of multicast addresses to program * * Updates entire Multicast Table Array of the PCH2 MAC and PHY. * The caller must have a packed mc_addr_list of multicast addresses. **/ static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw, u8 *mc_addr_list, u32 mc_addr_count) { u16 phy_reg = 0; int i; s32 ret_val; DEBUGFUNC("e1000_update_mc_addr_list_pch2lan"); e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count); ret_val = hw->phy.ops.acquire(hw); if (ret_val) return; ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); if (ret_val) goto release; for (i = 0; i < hw->mac.mta_reg_count; i++) { hw->phy.ops.write_reg_page(hw, BM_MTA(i), (u16)(hw->mac.mta_shadow[i] & 0xFFFF)); hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1), (u16)((hw->mac.mta_shadow[i] >> 16) & 0xFFFF)); } e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); release: hw->phy.ops.release(hw); } /** * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked * @hw: pointer to the HW structure * * Checks if firmware is blocking the reset of the PHY. * This is a function pointer entry point only called by * reset routines. **/ static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) { u32 fwsm; bool blocked = FALSE; int i = 0; DEBUGFUNC("e1000_check_reset_block_ich8lan"); do { fwsm = E1000_READ_REG(hw, E1000_FWSM); if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) { blocked = TRUE; msec_delay(10); continue; } blocked = FALSE; } while (blocked && (i++ < 30)); return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS; } /** * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states * @hw: pointer to the HW structure * * Assumes semaphore already acquired. * **/ static s32 e1000_write_smbus_addr(struct e1000_hw *hw) { u16 phy_data; u32 strap = E1000_READ_REG(hw, E1000_STRAP); u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >> E1000_STRAP_SMT_FREQ_SHIFT; s32 ret_val; strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); if (ret_val) return ret_val; phy_data &= ~HV_SMB_ADDR_MASK; phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; if (hw->phy.type == e1000_phy_i217) { /* Restore SMBus frequency */ if (freq--) { phy_data &= ~HV_SMB_ADDR_FREQ_MASK; phy_data |= (freq & (1 << 0)) << HV_SMB_ADDR_FREQ_LOW_SHIFT; phy_data |= (freq & (1 << 1)) << (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1); } else { DEBUGOUT("Unsupported SMB frequency in PHY\n"); } } return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); } /** * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration * @hw: pointer to the HW structure * * SW should configure the LCD from the NVM extended configuration region * as a workaround for certain parts. **/ static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; s32 ret_val = E1000_SUCCESS; u16 word_addr, reg_data, reg_addr, phy_page = 0; DEBUGFUNC("e1000_sw_lcd_config_ich8lan"); /* Initialize the PHY from the NVM on ICH platforms. This * is needed due to an issue where the NVM configuration is * not properly autoloaded after power transitions. * Therefore, after each PHY reset, we will load the * configuration data out of the NVM manually. */ switch (hw->mac.type) { case e1000_ich8lan: if (phy->type != e1000_phy_igp_3) return ret_val; if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) || (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) { sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; break; } /* Fall-thru */ case e1000_pchlan: case e1000_pch2lan: case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; break; default: return ret_val; } ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; data = E1000_READ_REG(hw, E1000_FEXTNVM); if (!(data & sw_cfg_mask)) goto release; /* Make sure HW does not configure LCD from PHY * extended configuration before SW configuration */ data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); if ((hw->mac.type < e1000_pch2lan) && (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)) goto release; cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE); cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; if (!cnf_size) goto release; cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; if (((hw->mac.type == e1000_pchlan) && !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) || (hw->mac.type > e1000_pchlan)) { /* HW configures the SMBus address and LEDs when the * OEM and LCD Write Enable bits are set in the NVM. * When both NVM bits are cleared, SW will configure * them instead. */ ret_val = e1000_write_smbus_addr(hw); if (ret_val) goto release; data = E1000_READ_REG(hw, E1000_LEDCTL); ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, (u16)data); if (ret_val) goto release; } /* Configure LCD from extended configuration region. */ /* cnf_base_addr is in DWORD */ word_addr = (u16)(cnf_base_addr << 1); for (i = 0; i < cnf_size; i++) { ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1, ®_data); if (ret_val) goto release; ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1), 1, ®_addr); if (ret_val) goto release; /* Save off the PHY page for future writes. */ if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { phy_page = reg_data; continue; } reg_addr &= PHY_REG_MASK; reg_addr |= phy_page; ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr, reg_data); if (ret_val) goto release; } release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_k1_gig_workaround_hv - K1 Si workaround * @hw: pointer to the HW structure * @link: link up bool flag * * If K1 is enabled for 1Gbps, the MAC might stall when transitioning * from a lower speed. This workaround disables K1 whenever link is at 1Gig * If link is down, the function will restore the default K1 setting located * in the NVM. **/ static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) { s32 ret_val = E1000_SUCCESS; u16 status_reg = 0; bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; DEBUGFUNC("e1000_k1_gig_workaround_hv"); if (hw->mac.type != e1000_pchlan) return E1000_SUCCESS; /* Wrap the whole flow with the sw flag */ ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ if (link) { if (hw->phy.type == e1000_phy_82578) { ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS, &status_reg); if (ret_val) goto release; status_reg &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | BM_CS_STATUS_SPEED_MASK); if (status_reg == (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | BM_CS_STATUS_SPEED_1000)) k1_enable = FALSE; } if (hw->phy.type == e1000_phy_82577) { ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS, &status_reg); if (ret_val) goto release; status_reg &= (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE | HV_M_STATUS_SPEED_MASK); if (status_reg == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE | HV_M_STATUS_SPEED_1000)) k1_enable = FALSE; } /* Link stall fix for link up */ ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), 0x0100); if (ret_val) goto release; } else { /* Link stall fix for link down */ ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), 0x4100); if (ret_val) goto release; } ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_configure_k1_ich8lan - Configure K1 power state * @hw: pointer to the HW structure * @enable: K1 state to configure * * Configure the K1 power state based on the provided parameter. * Assumes semaphore already acquired. * * Success returns 0, Failure returns -E1000_ERR_PHY (-2) **/ s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) { s32 ret_val; u32 ctrl_reg = 0; u32 ctrl_ext = 0; u32 reg = 0; u16 kmrn_reg = 0; DEBUGFUNC("e1000_configure_k1_ich8lan"); ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, &kmrn_reg); if (ret_val) return ret_val; if (k1_enable) kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; else kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, kmrn_reg); if (ret_val) return ret_val; usec_delay(20); ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); ctrl_reg = E1000_READ_REG(hw, E1000_CTRL); reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); reg |= E1000_CTRL_FRCSPD; E1000_WRITE_REG(hw, E1000_CTRL, reg); E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); E1000_WRITE_FLUSH(hw); usec_delay(20); E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg); E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(hw); usec_delay(20); return E1000_SUCCESS; } /** * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration * @hw: pointer to the HW structure * @d0_state: boolean if entering d0 or d3 device state * * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are * collectively called OEM bits. The OEM Write Enable bit and SW Config bit * in NVM determines whether HW should configure LPLU and Gbe Disable. **/ static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) { s32 ret_val = 0; u32 mac_reg; u16 oem_reg; DEBUGFUNC("e1000_oem_bits_config_ich8lan"); if (hw->mac.type < e1000_pchlan) return ret_val; ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; if (hw->mac.type == e1000_pchlan) { mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) goto release; } mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM); if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) goto release; mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL); ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg); if (ret_val) goto release; oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); if (d0_state) { if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) oem_reg |= HV_OEM_BITS_GBE_DIS; if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) oem_reg |= HV_OEM_BITS_LPLU; } else { if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) oem_reg |= HV_OEM_BITS_GBE_DIS; if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_NOND0A_LPLU)) oem_reg |= HV_OEM_BITS_LPLU; } /* Set Restart auto-neg to activate the bits */ if ((d0_state || (hw->mac.type != e1000_pchlan)) && !hw->phy.ops.check_reset_block(hw)) oem_reg |= HV_OEM_BITS_RESTART_AN; ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg); release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode * @hw: pointer to the HW structure **/ static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) { s32 ret_val; u16 data; DEBUGFUNC("e1000_set_mdio_slow_mode_hv"); ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data); if (ret_val) return ret_val; data |= HV_KMRN_MDIO_SLOW; ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data); return ret_val; } /** * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be * done after every PHY reset. **/ static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u16 phy_data; DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan"); if (hw->mac.type != e1000_pchlan) return E1000_SUCCESS; /* Set MDIO slow mode before any other MDIO access */ if (hw->phy.type == e1000_phy_82577) { ret_val = e1000_set_mdio_slow_mode_hv(hw); if (ret_val) return ret_val; } if (((hw->phy.type == e1000_phy_82577) && ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { /* Disable generation of early preamble */ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431); if (ret_val) return ret_val; /* Preamble tuning for SSC */ ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204); if (ret_val) return ret_val; } if (hw->phy.type == e1000_phy_82578) { /* Return registers to default by doing a soft reset then * writing 0x3140 to the control register. */ if (hw->phy.revision < 2) { e1000_phy_sw_reset_generic(hw); ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, 0x3140); if (ret_val) return ret_val; } } /* Select page 0 */ ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; hw->phy.addr = 1; ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); hw->phy.ops.release(hw); if (ret_val) return ret_val; /* Configure the K1 Si workaround during phy reset assuming there is * link so that it disables K1 if link is in 1Gbps. */ ret_val = e1000_k1_gig_workaround_hv(hw, TRUE); if (ret_val) return ret_val; /* Workaround for link disconnects on a busy hub in half duplex */ ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data); if (ret_val) goto release; ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF); if (ret_val) goto release; /* set MSE higher to enable link to stay up when noise is high */ ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034); release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY * @hw: pointer to the HW structure **/ void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) { u32 mac_reg; u16 i, phy_reg = 0; s32 ret_val; DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan"); ret_val = hw->phy.ops.acquire(hw); if (ret_val) return; ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); if (ret_val) goto release; /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */ for (i = 0; i < (hw->mac.rar_entry_count); i++) { mac_reg = E1000_READ_REG(hw, E1000_RAL(i)); hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF)); hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF)); mac_reg = E1000_READ_REG(hw, E1000_RAH(i)); hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF)); hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), (u16)((mac_reg & E1000_RAH_AV) >> 16)); } e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); release: hw->phy.ops.release(hw); } static u32 e1000_calc_rx_da_crc(u8 mac[]) { u32 poly = 0xEDB88320; /* Polynomial for 802.3 CRC calculation */ u32 i, j, mask, crc; DEBUGFUNC("e1000_calc_rx_da_crc"); crc = 0xffffffff; for (i = 0; i < 6; i++) { crc = crc ^ mac[i]; for (j = 8; j > 0; j--) { mask = (crc & 1) * (-1); crc = (crc >> 1) ^ (poly & mask); } } return ~crc; } /** * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation * with 82579 PHY * @hw: pointer to the HW structure * @enable: flag to enable/disable workaround when enabling/disabling jumbos **/ s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) { s32 ret_val = E1000_SUCCESS; u16 phy_reg, data; u32 mac_reg; u16 i; DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan"); if (hw->mac.type < e1000_pch2lan) return E1000_SUCCESS; /* disable Rx path while enabling/disabling workaround */ hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg); ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg | (1 << 14)); if (ret_val) return ret_val; if (enable) { /* Write Rx addresses (rar_entry_count for RAL/H, and * SHRAL/H) and initial CRC values to the MAC */ for (i = 0; i < hw->mac.rar_entry_count; i++) { u8 mac_addr[ETH_ADDR_LEN] = {0}; u32 addr_high, addr_low; addr_high = E1000_READ_REG(hw, E1000_RAH(i)); if (!(addr_high & E1000_RAH_AV)) continue; addr_low = E1000_READ_REG(hw, E1000_RAL(i)); mac_addr[0] = (addr_low & 0xFF); mac_addr[1] = ((addr_low >> 8) & 0xFF); mac_addr[2] = ((addr_low >> 16) & 0xFF); mac_addr[3] = ((addr_low >> 24) & 0xFF); mac_addr[4] = (addr_high & 0xFF); mac_addr[5] = ((addr_high >> 8) & 0xFF); E1000_WRITE_REG(hw, E1000_PCH_RAICC(i), e1000_calc_rx_da_crc(mac_addr)); } /* Write Rx addresses to the PHY */ e1000_copy_rx_addrs_to_phy_ich8lan(hw); /* Enable jumbo frame workaround in the MAC */ mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG); mac_reg &= ~(1 << 14); mac_reg |= (7 << 15); E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg); mac_reg = E1000_READ_REG(hw, E1000_RCTL); mac_reg |= E1000_RCTL_SECRC; E1000_WRITE_REG(hw, E1000_RCTL, mac_reg); ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_CTRL_OFFSET, &data); if (ret_val) return ret_val; ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_CTRL_OFFSET, data | (1 << 0)); if (ret_val) return ret_val; ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_HD_CTRL, &data); if (ret_val) return ret_val; data &= ~(0xF << 8); data |= (0xB << 8); ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_HD_CTRL, data); if (ret_val) return ret_val; /* Enable jumbo frame workaround in the PHY */ hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data); data &= ~(0x7F << 5); data |= (0x37 << 5); ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data); if (ret_val) return ret_val; hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data); data &= ~(1 << 13); ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data); if (ret_val) return ret_val; hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data); data &= ~(0x3FF << 2); data |= (E1000_TX_PTR_GAP << 2); ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data); if (ret_val) return ret_val; ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100); if (ret_val) return ret_val; hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data); ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data | (1 << 10)); if (ret_val) return ret_val; } else { /* Write MAC register values back to h/w defaults */ mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG); mac_reg &= ~(0xF << 14); E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg); mac_reg = E1000_READ_REG(hw, E1000_RCTL); mac_reg &= ~E1000_RCTL_SECRC; E1000_WRITE_REG(hw, E1000_RCTL, mac_reg); ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_CTRL_OFFSET, &data); if (ret_val) return ret_val; ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_CTRL_OFFSET, data & ~(1 << 0)); if (ret_val) return ret_val; ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_HD_CTRL, &data); if (ret_val) return ret_val; data &= ~(0xF << 8); data |= (0xB << 8); ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_HD_CTRL, data); if (ret_val) return ret_val; /* Write PHY register values back to h/w defaults */ hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data); data &= ~(0x7F << 5); ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data); if (ret_val) return ret_val; hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data); data |= (1 << 13); ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data); if (ret_val) return ret_val; hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data); data &= ~(0x3FF << 2); data |= (0x8 << 2); ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data); if (ret_val) return ret_val; ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00); if (ret_val) return ret_val; hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data); ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data & ~(1 << 10)); if (ret_val) return ret_val; } /* re-enable Rx path after enabling/disabling workaround */ return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14)); } /** * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be * done after every PHY reset. **/ static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan"); if (hw->mac.type != e1000_pch2lan) return E1000_SUCCESS; /* Set MDIO slow mode before any other MDIO access */ ret_val = e1000_set_mdio_slow_mode_hv(hw); if (ret_val) return ret_val; ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; /* set MSE higher to enable link to stay up when noise is high */ ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034); if (ret_val) goto release; /* drop link after 5 times MSE threshold was reached */ ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005); release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_k1_gig_workaround_lv - K1 Si workaround * @hw: pointer to the HW structure * * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps * Disable K1 for 1000 and 100 speeds **/ static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u16 status_reg = 0; DEBUGFUNC("e1000_k1_workaround_lv"); if (hw->mac.type != e1000_pch2lan) return E1000_SUCCESS; /* Set K1 beacon duration based on 10Mbs speed */ ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg); if (ret_val) return ret_val; if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { if (status_reg & (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) { u16 pm_phy_reg; /* LV 1G/100 Packet drop issue wa */ ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL, &pm_phy_reg); if (ret_val) return ret_val; pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE; ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, pm_phy_reg); if (ret_val) return ret_val; } else { u32 mac_reg; mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4); mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg); } } return ret_val; } /** * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware * @hw: pointer to the HW structure * @gate: boolean set to TRUE to gate, FALSE to ungate * * Gate/ungate the automatic PHY configuration via hardware; perform * the configuration via software instead. **/ static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) { u32 extcnf_ctrl; DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan"); if (hw->mac.type < e1000_pch2lan) return; extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); if (gate) extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; else extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); } /** * e1000_lan_init_done_ich8lan - Check for PHY config completion * @hw: pointer to the HW structure * * Check the appropriate indication the MAC has finished configuring the * PHY after a software reset. **/ static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) { u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; DEBUGFUNC("e1000_lan_init_done_ich8lan"); /* Wait for basic configuration completes before proceeding */ do { data = E1000_READ_REG(hw, E1000_STATUS); data &= E1000_STATUS_LAN_INIT_DONE; usec_delay(100); } while ((!data) && --loop); /* If basic configuration is incomplete before the above loop * count reaches 0, loading the configuration from NVM will * leave the PHY in a bad state possibly resulting in no link. */ if (loop == 0) DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n"); /* Clear the Init Done bit for the next init event */ data = E1000_READ_REG(hw, E1000_STATUS); data &= ~E1000_STATUS_LAN_INIT_DONE; E1000_WRITE_REG(hw, E1000_STATUS, data); } /** * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset * @hw: pointer to the HW structure **/ static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u16 reg; DEBUGFUNC("e1000_post_phy_reset_ich8lan"); if (hw->phy.ops.check_reset_block(hw)) return E1000_SUCCESS; /* Allow time for h/w to get to quiescent state after reset */ msec_delay(10); /* Perform any necessary post-reset workarounds */ switch (hw->mac.type) { case e1000_pchlan: ret_val = e1000_hv_phy_workarounds_ich8lan(hw); if (ret_val) return ret_val; break; case e1000_pch2lan: ret_val = e1000_lv_phy_workarounds_ich8lan(hw); if (ret_val) return ret_val; break; default: break; } /* Clear the host wakeup bit after lcd reset */ if (hw->mac.type >= e1000_pchlan) { hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, ®); reg &= ~BM_WUC_HOST_WU_BIT; hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg); } /* Configure the LCD with the extended configuration region in NVM */ ret_val = e1000_sw_lcd_config_ich8lan(hw); if (ret_val) return ret_val; /* Configure the LCD with the OEM bits in NVM */ ret_val = e1000_oem_bits_config_ich8lan(hw, TRUE); if (hw->mac.type == e1000_pch2lan) { /* Ungate automatic PHY configuration on non-managed 82579 */ if (!(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) { msec_delay(10); e1000_gate_hw_phy_config_ich8lan(hw, FALSE); } /* Set EEE LPI Update Timer to 200usec */ ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_UPDATE_TIMER, 0x1387); hw->phy.ops.release(hw); } return ret_val; } /** * e1000_phy_hw_reset_ich8lan - Performs a PHY reset * @hw: pointer to the HW structure * * Resets the PHY * This is a function pointer entry point called by drivers * or other shared routines. **/ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_phy_hw_reset_ich8lan"); /* Gate automatic PHY configuration by hardware on non-managed 82579 */ if ((hw->mac.type == e1000_pch2lan) && !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) e1000_gate_hw_phy_config_ich8lan(hw, TRUE); ret_val = e1000_phy_hw_reset_generic(hw); if (ret_val) return ret_val; return e1000_post_phy_reset_ich8lan(hw); } /** * e1000_set_lplu_state_pchlan - Set Low Power Link Up state * @hw: pointer to the HW structure * @active: TRUE to enable LPLU, FALSE to disable * * Sets the LPLU state according to the active flag. For PCH, if OEM write * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set * the phy speed. This function will manually set the LPLU bit and restart * auto-neg as hw would do. D3 and D0 LPLU will call the same function * since it configures the same bit. **/ static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) { s32 ret_val; u16 oem_reg; DEBUGFUNC("e1000_set_lplu_state_pchlan"); ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg); if (ret_val) return ret_val; if (active) oem_reg |= HV_OEM_BITS_LPLU; else oem_reg &= ~HV_OEM_BITS_LPLU; if (!hw->phy.ops.check_reset_block(hw)) oem_reg |= HV_OEM_BITS_RESTART_AN; return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg); } /** * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state * @hw: pointer to the HW structure * @active: TRUE to enable LPLU, FALSE to disable * * Sets the LPLU D0 state according to the active flag. When * activating LPLU this function also disables smart speed * and vice versa. LPLU will not be activated unless the * device autonegotiation advertisement meets standards of * either 10 or 10/100 or 10/100/1000 at all duplexes. * This is a function pointer entry point only called by * PHY setup routines. **/ static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) { struct e1000_phy_info *phy = &hw->phy; u32 phy_ctrl; s32 ret_val = E1000_SUCCESS; u16 data; DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan"); if (phy->type == e1000_phy_ife) return E1000_SUCCESS; phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); if (active) { phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); if (phy->type != e1000_phy_igp_3) return E1000_SUCCESS; /* Call gig speed drop workaround on LPLU before accessing * any PHY registers */ if (hw->mac.type == e1000_ich8lan) e1000_gig_downshift_workaround_ich8lan(hw); /* When LPLU is enabled, we should disable SmartSpeed */ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; } else { phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); if (phy->type != e1000_phy_igp_3) return E1000_SUCCESS; /* LPLU and SmartSpeed are mutually exclusive. LPLU is used * during Dx states where the power conservation is most * important. During driver activity we should enable * SmartSpeed, so performance is maintained. */ if (phy->smart_speed == e1000_smart_speed_on) { ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; } else if (phy->smart_speed == e1000_smart_speed_off) { ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; } } return E1000_SUCCESS; } /** * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state * @hw: pointer to the HW structure * @active: TRUE to enable LPLU, FALSE to disable * * Sets the LPLU D3 state according to the active flag. When * activating LPLU this function also disables smart speed * and vice versa. LPLU will not be activated unless the * device autonegotiation advertisement meets standards of * either 10 or 10/100 or 10/100/1000 at all duplexes. * This is a function pointer entry point only called by * PHY setup routines. **/ static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) { struct e1000_phy_info *phy = &hw->phy; u32 phy_ctrl; s32 ret_val = E1000_SUCCESS; u16 data; DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan"); phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); if (!active) { phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); if (phy->type != e1000_phy_igp_3) return E1000_SUCCESS; /* LPLU and SmartSpeed are mutually exclusive. LPLU is used * during Dx states where the power conservation is most * important. During driver activity we should enable * SmartSpeed, so performance is maintained. */ if (phy->smart_speed == e1000_smart_speed_on) { ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; } else if (phy->smart_speed == e1000_smart_speed_off) { ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; } } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); if (phy->type != e1000_phy_igp_3) return E1000_SUCCESS; /* Call gig speed drop workaround on LPLU before accessing * any PHY registers */ if (hw->mac.type == e1000_ich8lan) e1000_gig_downshift_workaround_ich8lan(hw); /* When LPLU is enabled, we should disable SmartSpeed */ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); } return ret_val; } /** * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 * @hw: pointer to the HW structure * @bank: pointer to the variable that returns the active bank * * Reads signature byte from the NVM using the flash access registers. * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. **/ static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) { u32 eecd; struct e1000_nvm_info *nvm = &hw->nvm; u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; u32 nvm_dword = 0; u8 sig_byte = 0; s32 ret_val; DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan"); switch (hw->mac.type) { case e1000_pch_spt: case e1000_pch_cnp: bank1_offset = nvm->flash_bank_size; act_offset = E1000_ICH_NVM_SIG_WORD; /* set bank to 0 in case flash read fails */ *bank = 0; /* Check bank 0 */ ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &nvm_dword); if (ret_val) return ret_val; sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == E1000_ICH_NVM_SIG_VALUE) { *bank = 0; return E1000_SUCCESS; } /* Check bank 1 */ ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset + bank1_offset, &nvm_dword); if (ret_val) return ret_val; sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == E1000_ICH_NVM_SIG_VALUE) { *bank = 1; return E1000_SUCCESS; } DEBUGOUT("ERROR: No valid NVM bank present\n"); return -E1000_ERR_NVM; case e1000_ich8lan: case e1000_ich9lan: eecd = E1000_READ_REG(hw, E1000_EECD); if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == E1000_EECD_SEC1VAL_VALID_MASK) { if (eecd & E1000_EECD_SEC1VAL) *bank = 1; else *bank = 0; return E1000_SUCCESS; } DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n"); /* fall-thru */ default: /* set bank to 0 in case flash read fails */ *bank = 0; /* Check bank 0 */ ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, &sig_byte); if (ret_val) return ret_val; if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == E1000_ICH_NVM_SIG_VALUE) { *bank = 0; return E1000_SUCCESS; } /* Check bank 1 */ ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + bank1_offset, &sig_byte); if (ret_val) return ret_val; if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == E1000_ICH_NVM_SIG_VALUE) { *bank = 1; return E1000_SUCCESS; } DEBUGOUT("ERROR: No valid NVM bank present\n"); return -E1000_ERR_NVM; } } /** * e1000_read_nvm_spt - NVM access for SPT * @hw: pointer to the HW structure * @offset: The offset (in bytes) of the word(s) to read. * @words: Size of data to read in words. * @data: pointer to the word(s) to read at offset. * * Reads a word(s) from the NVM **/ static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u32 act_offset; s32 ret_val = E1000_SUCCESS; u32 bank = 0; u32 dword = 0; u16 offset_to_read; u16 i; DEBUGFUNC("e1000_read_nvm_spt"); if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || (words == 0)) { DEBUGOUT("nvm parameter(s) out of bounds\n"); ret_val = -E1000_ERR_NVM; goto out; } nvm->ops.acquire(hw); ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); if (ret_val != E1000_SUCCESS) { DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); bank = 0; } act_offset = (bank) ? nvm->flash_bank_size : 0; act_offset += offset; ret_val = E1000_SUCCESS; for (i = 0; i < words; i += 2) { if (words - i == 1) { if (dev_spec->shadow_ram[offset+i].modified) { data[i] = dev_spec->shadow_ram[offset+i].value; } else { offset_to_read = act_offset + i - ((act_offset + i) % 2); ret_val = e1000_read_flash_dword_ich8lan(hw, offset_to_read, &dword); if (ret_val) break; if ((act_offset + i) % 2 == 0) data[i] = (u16)(dword & 0xFFFF); else data[i] = (u16)((dword >> 16) & 0xFFFF); } } else { offset_to_read = act_offset + i; if (!(dev_spec->shadow_ram[offset+i].modified) || !(dev_spec->shadow_ram[offset+i+1].modified)) { ret_val = e1000_read_flash_dword_ich8lan(hw, offset_to_read, &dword); if (ret_val) break; } if (dev_spec->shadow_ram[offset+i].modified) data[i] = dev_spec->shadow_ram[offset+i].value; else data[i] = (u16) (dword & 0xFFFF); if (dev_spec->shadow_ram[offset+i].modified) data[i+1] = dev_spec->shadow_ram[offset+i+1].value; else data[i+1] = (u16) (dword >> 16 & 0xFFFF); } } nvm->ops.release(hw); out: if (ret_val) DEBUGOUT1("NVM read error: %d\n", ret_val); return ret_val; } /** * e1000_read_nvm_ich8lan - Read word(s) from the NVM * @hw: pointer to the HW structure * @offset: The offset (in bytes) of the word(s) to read. * @words: Size of data to read in words * @data: Pointer to the word(s) to read at offset. * * Reads a word(s) from the NVM using the flash access registers. **/ static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u32 act_offset; s32 ret_val = E1000_SUCCESS; u32 bank = 0; u16 i, word; DEBUGFUNC("e1000_read_nvm_ich8lan"); if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || (words == 0)) { DEBUGOUT("nvm parameter(s) out of bounds\n"); ret_val = -E1000_ERR_NVM; goto out; } nvm->ops.acquire(hw); ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); if (ret_val != E1000_SUCCESS) { DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); bank = 0; } act_offset = (bank) ? nvm->flash_bank_size : 0; act_offset += offset; ret_val = E1000_SUCCESS; for (i = 0; i < words; i++) { if (dev_spec->shadow_ram[offset+i].modified) { data[i] = dev_spec->shadow_ram[offset+i].value; } else { ret_val = e1000_read_flash_word_ich8lan(hw, act_offset + i, &word); if (ret_val) break; data[i] = word; } } nvm->ops.release(hw); out: if (ret_val) DEBUGOUT1("NVM read error: %d\n", ret_val); return ret_val; } /** * e1000_flash_cycle_init_ich8lan - Initialize flash * @hw: pointer to the HW structure * * This function does initial flash setup so that a new read/write/erase cycle * can be started. **/ static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) { union ich8_hws_flash_status hsfsts; s32 ret_val = -E1000_ERR_NVM; DEBUGFUNC("e1000_flash_cycle_init_ich8lan"); hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); /* Check if the flash descriptor is valid */ if (!hsfsts.hsf_status.fldesvalid) { DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.\n"); return -E1000_ERR_NVM; } /* Clear FCERR and DAEL in hw status by writing 1 */ hsfsts.hsf_status.flcerr = 1; hsfsts.hsf_status.dael = 1; if (hw->mac.type >= e1000_pch_spt) E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); else E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); /* Either we should have a hardware SPI cycle in progress * bit to check against, in order to start a new cycle or * FDONE bit should be changed in the hardware so that it * is 1 after hardware reset, which can then be used as an * indication whether a cycle is in progress or has been * completed. */ if (!hsfsts.hsf_status.flcinprog) { /* There is no cycle running at present, * so we can start a cycle. * Begin by setting Flash Cycle Done. */ hsfsts.hsf_status.flcdone = 1; if (hw->mac.type >= e1000_pch_spt) E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); else E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); ret_val = E1000_SUCCESS; } else { s32 i; /* Otherwise poll for sometime so the current * cycle has a chance to end before giving up. */ for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); if (!hsfsts.hsf_status.flcinprog) { ret_val = E1000_SUCCESS; break; } usec_delay(1); } if (ret_val == E1000_SUCCESS) { /* Successful in waiting for previous cycle to timeout, * now set the Flash Cycle Done. */ hsfsts.hsf_status.flcdone = 1; if (hw->mac.type >= e1000_pch_spt) E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); else E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); } else { DEBUGOUT("Flash controller busy, cannot get access\n"); } } return ret_val; } /** * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) * @hw: pointer to the HW structure * @timeout: maximum time to wait for completion * * This function starts a flash cycle and waits for its completion. **/ static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) { union ich8_hws_flash_ctrl hsflctl; union ich8_hws_flash_status hsfsts; u32 i = 0; DEBUGFUNC("e1000_flash_cycle_ich8lan"); /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ if (hw->mac.type >= e1000_pch_spt) hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16; else hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); hsflctl.hsf_ctrl.flcgo = 1; if (hw->mac.type >= e1000_pch_spt) E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, hsflctl.regval << 16); else E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); /* wait till FDONE bit is set to 1 */ do { hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); if (hsfsts.hsf_status.flcdone) break; usec_delay(1); } while (i++ < timeout); if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr) return E1000_SUCCESS; return -E1000_ERR_NVM; } /** * e1000_read_flash_dword_ich8lan - Read dword from flash * @hw: pointer to the HW structure * @offset: offset to data location * @data: pointer to the location for storing the data * * Reads the flash dword at offset into data. Offset is converted * to bytes before read. **/ static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, u32 *data) { DEBUGFUNC("e1000_read_flash_dword_ich8lan"); if (!data) return -E1000_ERR_NVM; /* Must convert word offset into bytes. */ offset <<= 1; return e1000_read_flash_data32_ich8lan(hw, offset, data); } /** * e1000_read_flash_word_ich8lan - Read word from flash * @hw: pointer to the HW structure * @offset: offset to data location * @data: pointer to the location for storing the data * * Reads the flash word at offset into data. Offset is converted * to bytes before read. **/ static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, u16 *data) { DEBUGFUNC("e1000_read_flash_word_ich8lan"); if (!data) return -E1000_ERR_NVM; /* Must convert offset into bytes. */ offset <<= 1; return e1000_read_flash_data_ich8lan(hw, offset, 2, data); } /** * e1000_read_flash_byte_ich8lan - Read byte from flash * @hw: pointer to the HW structure * @offset: The offset of the byte to read. * @data: Pointer to a byte to store the value read. * * Reads a single byte from the NVM using the flash access registers. **/ static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, u8 *data) { s32 ret_val; u16 word = 0; /* In SPT, only 32 bits access is supported, * so this function should not be called. */ if (hw->mac.type >= e1000_pch_spt) return -E1000_ERR_NVM; else ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); if (ret_val) return ret_val; *data = (u8)word; return E1000_SUCCESS; } /** * e1000_read_flash_data_ich8lan - Read byte or word from NVM * @hw: pointer to the HW structure * @offset: The offset (in bytes) of the byte or word to read. * @size: Size of data to read, 1=byte 2=word * @data: Pointer to the word to store the value read. * * Reads a byte or word from the NVM using the flash access registers. **/ static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, u8 size, u16 *data) { union ich8_hws_flash_status hsfsts; union ich8_hws_flash_ctrl hsflctl; u32 flash_linear_addr; u32 flash_data = 0; s32 ret_val = -E1000_ERR_NVM; u8 count = 0; DEBUGFUNC("e1000_read_flash_data_ich8lan"); if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) return -E1000_ERR_NVM; flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + hw->nvm.flash_base_addr); do { usec_delay(1); /* Steps */ ret_val = e1000_flash_cycle_init_ich8lan(hw); if (ret_val != E1000_SUCCESS) break; hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ hsflctl.hsf_ctrl.fldbcount = size - 1; hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); ret_val = e1000_flash_cycle_ich8lan(hw, ICH_FLASH_READ_COMMAND_TIMEOUT); /* Check if FCERR is set to 1, if set to 1, clear it * and try the whole sequence a few more times, else * read in (shift in) the Flash Data0, the order is * least significant byte first msb to lsb */ if (ret_val == E1000_SUCCESS) { flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0); if (size == 1) *data = (u8)(flash_data & 0x000000FF); else if (size == 2) *data = (u16)(flash_data & 0x0000FFFF); break; } else { /* If we've gotten here, then things are probably * completely hosed, but if the error condition is * detected, it won't hurt to give it another try... * ICH_FLASH_CYCLE_REPEAT_COUNT times. */ hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); if (hsfsts.hsf_status.flcerr) { /* Repeat for some time before giving up. */ continue; } else if (!hsfsts.hsf_status.flcdone) { DEBUGOUT("Timeout error - flash cycle did not complete.\n"); break; } } } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); return ret_val; } /** * e1000_read_flash_data32_ich8lan - Read dword from NVM * @hw: pointer to the HW structure * @offset: The offset (in bytes) of the dword to read. * @data: Pointer to the dword to store the value read. * * Reads a byte or word from the NVM using the flash access registers. **/ static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, u32 *data) { union ich8_hws_flash_status hsfsts; union ich8_hws_flash_ctrl hsflctl; u32 flash_linear_addr; s32 ret_val = -E1000_ERR_NVM; u8 count = 0; DEBUGFUNC("e1000_read_flash_data_ich8lan"); if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt) return -E1000_ERR_NVM; flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + hw->nvm.flash_base_addr); do { usec_delay(1); /* Steps */ ret_val = e1000_flash_cycle_init_ich8lan(hw); if (ret_val != E1000_SUCCESS) break; /* In SPT, This register is in Lan memory space, not flash. * Therefore, only 32 bit access is supported */ hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16; /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; /* In SPT, This register is in Lan memory space, not flash. * Therefore, only 32 bit access is supported */ E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16); E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); ret_val = e1000_flash_cycle_ich8lan(hw, ICH_FLASH_READ_COMMAND_TIMEOUT); /* Check if FCERR is set to 1, if set to 1, clear it * and try the whole sequence a few more times, else * read in (shift in) the Flash Data0, the order is * least significant byte first msb to lsb */ if (ret_val == E1000_SUCCESS) { *data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0); break; } else { /* If we've gotten here, then things are probably * completely hosed, but if the error condition is * detected, it won't hurt to give it another try... * ICH_FLASH_CYCLE_REPEAT_COUNT times. */ hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); if (hsfsts.hsf_status.flcerr) { /* Repeat for some time before giving up. */ continue; } else if (!hsfsts.hsf_status.flcdone) { DEBUGOUT("Timeout error - flash cycle did not complete.\n"); break; } } } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); return ret_val; } /** * e1000_write_nvm_ich8lan - Write word(s) to the NVM * @hw: pointer to the HW structure * @offset: The offset (in bytes) of the word(s) to write. * @words: Size of data to write in words * @data: Pointer to the word(s) to write at offset. * * Writes a byte or word to the NVM using the flash access registers. **/ static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u16 i; DEBUGFUNC("e1000_write_nvm_ich8lan"); if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || (words == 0)) { DEBUGOUT("nvm parameter(s) out of bounds\n"); return -E1000_ERR_NVM; } nvm->ops.acquire(hw); for (i = 0; i < words; i++) { dev_spec->shadow_ram[offset+i].modified = TRUE; dev_spec->shadow_ram[offset+i].value = data[i]; } nvm->ops.release(hw); return E1000_SUCCESS; } /** * e1000_update_nvm_checksum_spt - Update the checksum for NVM * @hw: pointer to the HW structure * * The NVM checksum is updated by calling the generic update_nvm_checksum, * which writes the checksum to the shadow ram. The changes in the shadow * ram are then committed to the EEPROM by processing each bank at a time * checking for the modified bit and writing only the pending changes. * After a successful commit, the shadow ram is cleared and is ready for * future writes. **/ static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u32 i, act_offset, new_bank_offset, old_bank_offset, bank; s32 ret_val; u32 dword = 0; DEBUGFUNC("e1000_update_nvm_checksum_spt"); ret_val = e1000_update_nvm_checksum_generic(hw); if (ret_val) goto out; if (nvm->type != e1000_nvm_flash_sw) goto out; nvm->ops.acquire(hw); /* We're writing to the opposite bank so if we're on bank 1, * write to bank 0 etc. We also need to erase the segment that * is going to be written */ ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); if (ret_val != E1000_SUCCESS) { DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); bank = 0; } if (bank == 0) { new_bank_offset = nvm->flash_bank_size; old_bank_offset = 0; ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); if (ret_val) goto release; } else { old_bank_offset = nvm->flash_bank_size; new_bank_offset = 0; ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); if (ret_val) goto release; } for (i = 0; i < E1000_SHADOW_RAM_WORDS; i += 2) { /* Determine whether to write the value stored * in the other NVM bank or a modified value stored * in the shadow RAM */ ret_val = e1000_read_flash_dword_ich8lan(hw, i + old_bank_offset, &dword); if (dev_spec->shadow_ram[i].modified) { dword &= 0xffff0000; dword |= (dev_spec->shadow_ram[i].value & 0xffff); } if (dev_spec->shadow_ram[i + 1].modified) { dword &= 0x0000ffff; dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff) << 16); } if (ret_val) break; /* If the word is 0x13, then make sure the signature bits * (15:14) are 11b until the commit has completed. * This will allow us to write 10b which indicates the * signature is valid. We want to do this after the write * has completed so that we don't mark the segment valid * while the write is still in progress */ if (i == E1000_ICH_NVM_SIG_WORD - 1) dword |= E1000_ICH_NVM_SIG_MASK << 16; /* Convert offset to bytes. */ act_offset = (i + new_bank_offset) << 1; usec_delay(100); /* Write the data to the new bank. Offset in words*/ act_offset = i + new_bank_offset; ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); if (ret_val) break; } /* Don't bother writing the segment valid bits if sector * programming failed. */ if (ret_val) { DEBUGOUT("Flash commit failed.\n"); goto release; } /* Finally validate the new segment by setting bit 15:14 * to 10b in word 0x13 , this can be done without an * erase as well since these bits are 11 to start with * and we need to change bit 14 to 0b */ act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; /*offset in words but we read dword*/ --act_offset; ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); if (ret_val) goto release; dword &= 0xBFFFFFFF; ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); if (ret_val) goto release; /* And invalidate the previously valid segment by setting * its signature word (0x13) high_byte to 0b. This can be * done without an erase because flash erase sets all bits * to 1's. We can write 1's to 0's without an erase */ act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; /* offset in words but we read dword*/ act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1; ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); if (ret_val) goto release; dword &= 0x00FFFFFF; ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); if (ret_val) goto release; /* Great! Everything worked, we can now clear the cached entries. */ for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { dev_spec->shadow_ram[i].modified = FALSE; dev_spec->shadow_ram[i].value = 0xFFFF; } release: nvm->ops.release(hw); /* Reload the EEPROM, or else modifications will not appear * until after the next adapter reset. */ if (!ret_val) { nvm->ops.reload(hw); msec_delay(10); } out: if (ret_val) DEBUGOUT1("NVM update error: %d\n", ret_val); return ret_val; } /** * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM * @hw: pointer to the HW structure * * The NVM checksum is updated by calling the generic update_nvm_checksum, * which writes the checksum to the shadow ram. The changes in the shadow * ram are then committed to the EEPROM by processing each bank at a time * checking for the modified bit and writing only the pending changes. * After a successful commit, the shadow ram is cleared and is ready for * future writes. **/ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u32 i, act_offset, new_bank_offset, old_bank_offset, bank; s32 ret_val; u16 data = 0; DEBUGFUNC("e1000_update_nvm_checksum_ich8lan"); ret_val = e1000_update_nvm_checksum_generic(hw); if (ret_val) goto out; if (nvm->type != e1000_nvm_flash_sw) goto out; nvm->ops.acquire(hw); /* We're writing to the opposite bank so if we're on bank 1, * write to bank 0 etc. We also need to erase the segment that * is going to be written */ ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); if (ret_val != E1000_SUCCESS) { DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); bank = 0; } if (bank == 0) { new_bank_offset = nvm->flash_bank_size; old_bank_offset = 0; ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); if (ret_val) goto release; } else { old_bank_offset = nvm->flash_bank_size; new_bank_offset = 0; ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); if (ret_val) goto release; } for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { if (dev_spec->shadow_ram[i].modified) { data = dev_spec->shadow_ram[i].value; } else { ret_val = e1000_read_flash_word_ich8lan(hw, i + old_bank_offset, &data); if (ret_val) break; } /* If the word is 0x13, then make sure the signature bits * (15:14) are 11b until the commit has completed. * This will allow us to write 10b which indicates the * signature is valid. We want to do this after the write * has completed so that we don't mark the segment valid * while the write is still in progress */ if (i == E1000_ICH_NVM_SIG_WORD) data |= E1000_ICH_NVM_SIG_MASK; /* Convert offset to bytes. */ act_offset = (i + new_bank_offset) << 1; usec_delay(100); /* Write the bytes to the new bank. */ ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, (u8)data); if (ret_val) break; usec_delay(100); ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset + 1, (u8)(data >> 8)); if (ret_val) break; } /* Don't bother writing the segment valid bits if sector * programming failed. */ if (ret_val) { DEBUGOUT("Flash commit failed.\n"); goto release; } /* Finally validate the new segment by setting bit 15:14 * to 10b in word 0x13 , this can be done without an * erase as well since these bits are 11 to start with * and we need to change bit 14 to 0b */ act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); if (ret_val) goto release; data &= 0xBFFF; ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1, (u8)(data >> 8)); if (ret_val) goto release; /* And invalidate the previously valid segment by setting * its signature word (0x13) high_byte to 0b. This can be * done without an erase because flash erase sets all bits * to 1's. We can write 1's to 0's without an erase */ act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); if (ret_val) goto release; /* Great! Everything worked, we can now clear the cached entries. */ for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { dev_spec->shadow_ram[i].modified = FALSE; dev_spec->shadow_ram[i].value = 0xFFFF; } release: nvm->ops.release(hw); /* Reload the EEPROM, or else modifications will not appear * until after the next adapter reset. */ if (!ret_val) { nvm->ops.reload(hw); msec_delay(10); } out: if (ret_val) DEBUGOUT1("NVM update error: %d\n", ret_val); return ret_val; } /** * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum * @hw: pointer to the HW structure * * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. * If the bit is 0, that the EEPROM had been modified, but the checksum was not * calculated, in which case we need to calculate the checksum and set bit 6. **/ static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) { s32 ret_val; u16 data; u16 word; u16 valid_csum_mask; DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan"); /* Read NVM and check Invalid Image CSUM bit. If this bit is 0, * the checksum needs to be fixed. This bit is an indication that * the NVM was prepared by OEM software and did not calculate * the checksum...a likely scenario. */ switch (hw->mac.type) { case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: word = NVM_COMPAT; valid_csum_mask = NVM_COMPAT_VALID_CSUM; break; default: word = NVM_FUTURE_INIT_WORD1; valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM; break; } ret_val = hw->nvm.ops.read(hw, word, 1, &data); if (ret_val) return ret_val; if (!(data & valid_csum_mask)) { data |= valid_csum_mask; ret_val = hw->nvm.ops.write(hw, word, 1, &data); if (ret_val) return ret_val; ret_val = hw->nvm.ops.update(hw); if (ret_val) return ret_val; } return e1000_validate_nvm_checksum_generic(hw); } /** * e1000_write_flash_data_ich8lan - Writes bytes to the NVM * @hw: pointer to the HW structure * @offset: The offset (in bytes) of the byte/word to read. * @size: Size of data to read, 1=byte 2=word * @data: The byte(s) to write to the NVM. * * Writes one/two bytes to the NVM using the flash access registers. **/ static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, u8 size, u16 data) { union ich8_hws_flash_status hsfsts; union ich8_hws_flash_ctrl hsflctl; u32 flash_linear_addr; u32 flash_data = 0; s32 ret_val; u8 count = 0; DEBUGFUNC("e1000_write_ich8_data"); if (hw->mac.type >= e1000_pch_spt) { if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK) return -E1000_ERR_NVM; } else { if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) return -E1000_ERR_NVM; } flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + hw->nvm.flash_base_addr); do { usec_delay(1); /* Steps */ ret_val = e1000_flash_cycle_init_ich8lan(hw); if (ret_val != E1000_SUCCESS) break; /* In SPT, This register is in Lan memory space, not * flash. Therefore, only 32 bit access is supported */ if (hw->mac.type >= e1000_pch_spt) hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16; else hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ hsflctl.hsf_ctrl.fldbcount = size - 1; hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; /* In SPT, This register is in Lan memory space, * not flash. Therefore, only 32 bit access is * supported */ if (hw->mac.type >= e1000_pch_spt) E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, hsflctl.regval << 16); else E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); if (size == 1) flash_data = (u32)data & 0x00FF; else flash_data = (u32)data; E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data); /* check if FCERR is set to 1 , if set to 1, clear it * and try the whole sequence a few more times else done */ ret_val = e1000_flash_cycle_ich8lan(hw, ICH_FLASH_WRITE_COMMAND_TIMEOUT); if (ret_val == E1000_SUCCESS) break; /* If we're here, then things are most likely * completely hosed, but if the error condition * is detected, it won't hurt to give it another * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. */ hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); if (hsfsts.hsf_status.flcerr) /* Repeat for some time before giving up. */ continue; if (!hsfsts.hsf_status.flcdone) { DEBUGOUT("Timeout error - flash cycle did not complete.\n"); break; } } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); return ret_val; } /** * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM * @hw: pointer to the HW structure * @offset: The offset (in bytes) of the dwords to read. * @data: The 4 bytes to write to the NVM. * * Writes one/two/four bytes to the NVM using the flash access registers. **/ static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, u32 data) { union ich8_hws_flash_status hsfsts; union ich8_hws_flash_ctrl hsflctl; u32 flash_linear_addr; s32 ret_val; u8 count = 0; DEBUGFUNC("e1000_write_flash_data32_ich8lan"); if (hw->mac.type >= e1000_pch_spt) { if (offset > ICH_FLASH_LINEAR_ADDR_MASK) return -E1000_ERR_NVM; } flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + hw->nvm.flash_base_addr); do { usec_delay(1); /* Steps */ ret_val = e1000_flash_cycle_init_ich8lan(hw); if (ret_val != E1000_SUCCESS) break; /* In SPT, This register is in Lan memory space, not * flash. Therefore, only 32 bit access is supported */ if (hw->mac.type >= e1000_pch_spt) hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS) >> 16; else hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; /* In SPT, This register is in Lan memory space, * not flash. Therefore, only 32 bit access is * supported */ if (hw->mac.type >= e1000_pch_spt) E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, hsflctl.regval << 16); else E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, data); /* check if FCERR is set to 1 , if set to 1, clear it * and try the whole sequence a few more times else done */ ret_val = e1000_flash_cycle_ich8lan(hw, ICH_FLASH_WRITE_COMMAND_TIMEOUT); if (ret_val == E1000_SUCCESS) break; /* If we're here, then things are most likely * completely hosed, but if the error condition * is detected, it won't hurt to give it another * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. */ hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); if (hsfsts.hsf_status.flcerr) /* Repeat for some time before giving up. */ continue; if (!hsfsts.hsf_status.flcdone) { DEBUGOUT("Timeout error - flash cycle did not complete.\n"); break; } } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); return ret_val; } /** * e1000_write_flash_byte_ich8lan - Write a single byte to NVM * @hw: pointer to the HW structure * @offset: The index of the byte to read. * @data: The byte to write to the NVM. * * Writes a single byte to the NVM using the flash access registers. **/ static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, u8 data) { u16 word = (u16)data; DEBUGFUNC("e1000_write_flash_byte_ich8lan"); return e1000_write_flash_data_ich8lan(hw, offset, 1, word); } /** * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM * @hw: pointer to the HW structure * @offset: The offset of the word to write. * @dword: The dword to write to the NVM. * * Writes a single dword to the NVM using the flash access registers. * Goes through a retry algorithm before giving up. **/ static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, u32 dword) { s32 ret_val; u16 program_retries; DEBUGFUNC("e1000_retry_write_flash_dword_ich8lan"); /* Must convert word offset into bytes. */ offset <<= 1; ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); if (!ret_val) return ret_val; for (program_retries = 0; program_retries < 100; program_retries++) { DEBUGOUT2("Retrying Byte %8.8X at offset %u\n", dword, offset); usec_delay(100); ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); if (ret_val == E1000_SUCCESS) break; } if (program_retries == 100) return -E1000_ERR_NVM; return E1000_SUCCESS; } /** * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM * @hw: pointer to the HW structure * @offset: The offset of the byte to write. * @byte: The byte to write to the NVM. * * Writes a single byte to the NVM using the flash access registers. * Goes through a retry algorithm before giving up. **/ static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, u8 byte) { s32 ret_val; u16 program_retries; DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan"); ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); if (!ret_val) return ret_val; for (program_retries = 0; program_retries < 100; program_retries++) { DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset); usec_delay(100); ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); if (ret_val == E1000_SUCCESS) break; } if (program_retries == 100) return -E1000_ERR_NVM; return E1000_SUCCESS; } /** * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM * @hw: pointer to the HW structure * @bank: 0 for first bank, 1 for second bank, etc. * * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. * bank N is 4096 * N + flash_reg_addr. **/ static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) { struct e1000_nvm_info *nvm = &hw->nvm; union ich8_hws_flash_status hsfsts; union ich8_hws_flash_ctrl hsflctl; u32 flash_linear_addr; /* bank size is in 16bit words - adjust to bytes */ u32 flash_bank_size = nvm->flash_bank_size * 2; s32 ret_val; s32 count = 0; s32 j, iteration, sector_size; DEBUGFUNC("e1000_erase_flash_bank_ich8lan"); hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); /* Determine HW Sector size: Read BERASE bits of hw flash status * register * 00: The Hw sector is 256 bytes, hence we need to erase 16 * consecutive sectors. The start index for the nth Hw sector * can be calculated as = bank * 4096 + n * 256 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. * The start index for the nth Hw sector can be calculated * as = bank * 4096 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 * (ich9 only, otherwise error condition) * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 */ switch (hsfsts.hsf_status.berasesz) { case 0: /* Hw sector size 256 */ sector_size = ICH_FLASH_SEG_SIZE_256; iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; break; case 1: sector_size = ICH_FLASH_SEG_SIZE_4K; iteration = 1; break; case 2: sector_size = ICH_FLASH_SEG_SIZE_8K; iteration = 1; break; case 3: sector_size = ICH_FLASH_SEG_SIZE_64K; iteration = 1; break; default: return -E1000_ERR_NVM; } /* Start with the base address, then add the sector offset. */ flash_linear_addr = hw->nvm.flash_base_addr; flash_linear_addr += (bank) ? flash_bank_size : 0; for (j = 0; j < iteration; j++) { do { u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT; /* Steps */ ret_val = e1000_flash_cycle_init_ich8lan(hw); if (ret_val) return ret_val; /* Write a value 11 (block Erase) in Flash * Cycle field in hw flash control */ if (hw->mac.type >= e1000_pch_spt) hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16; else hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; if (hw->mac.type >= e1000_pch_spt) E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, hsflctl.regval << 16); else E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); /* Write the last 24 bits of an index within the * block into Flash Linear address field in Flash * Address. */ flash_linear_addr += (j * sector_size); E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); ret_val = e1000_flash_cycle_ich8lan(hw, timeout); if (ret_val == E1000_SUCCESS) break; /* Check if FCERR is set to 1. If 1, * clear it and try the whole sequence * a few more times else Done */ hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); if (hsfsts.hsf_status.flcerr) /* repeat for some time before giving up */ continue; else if (!hsfsts.hsf_status.flcdone) return ret_val; } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); } return E1000_SUCCESS; } /** * e1000_valid_led_default_ich8lan - Set the default LED settings * @hw: pointer to the HW structure * @data: Pointer to the LED settings * * Reads the LED default settings from the NVM to data. If the NVM LED * settings is all 0's or F's, set the LED default to a valid LED default * setting. **/ static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) { s32 ret_val; DEBUGFUNC("e1000_valid_led_default_ich8lan"); ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) *data = ID_LED_DEFAULT_ICH8LAN; return E1000_SUCCESS; } /** * e1000_id_led_init_pchlan - store LED configurations * @hw: pointer to the HW structure * * PCH does not control LEDs via the LEDCTL register, rather it uses * the PHY LED configuration register. * * PCH also does not have an "always on" or "always off" mode which * complicates the ID feature. Instead of using the "on" mode to indicate * in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()), * use "link_up" mode. The LEDs will still ID on request if there is no * link based on logic in e1000_led_[on|off]_pchlan(). **/ static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val; const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; u16 data, i, temp, shift; DEBUGFUNC("e1000_id_led_init_pchlan"); /* Get default ID LED modes */ ret_val = hw->nvm.ops.valid_led_default(hw, &data); if (ret_val) return ret_val; mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL); mac->ledctl_mode1 = mac->ledctl_default; mac->ledctl_mode2 = mac->ledctl_default; for (i = 0; i < 4; i++) { temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; shift = (i * 5); switch (temp) { case ID_LED_ON1_DEF2: case ID_LED_ON1_ON2: case ID_LED_ON1_OFF2: mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); mac->ledctl_mode1 |= (ledctl_on << shift); break; case ID_LED_OFF1_DEF2: case ID_LED_OFF1_ON2: case ID_LED_OFF1_OFF2: mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); mac->ledctl_mode1 |= (ledctl_off << shift); break; default: /* Do nothing */ break; } switch (temp) { case ID_LED_DEF1_ON2: case ID_LED_ON1_ON2: case ID_LED_OFF1_ON2: mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); mac->ledctl_mode2 |= (ledctl_on << shift); break; case ID_LED_DEF1_OFF2: case ID_LED_ON1_OFF2: case ID_LED_OFF1_OFF2: mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); mac->ledctl_mode2 |= (ledctl_off << shift); break; default: /* Do nothing */ break; } } return E1000_SUCCESS; } /** * e1000_get_bus_info_ich8lan - Get/Set the bus type and width * @hw: pointer to the HW structure * * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability * register, so the bus width is hard coded. **/ static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) { struct e1000_bus_info *bus = &hw->bus; s32 ret_val; DEBUGFUNC("e1000_get_bus_info_ich8lan"); ret_val = e1000_get_bus_info_pcie_generic(hw); /* ICH devices are "PCI Express"-ish. They have * a configuration space, but do not contain * PCI Express Capability registers, so bus width * must be hardcoded. */ if (bus->width == e1000_bus_width_unknown) bus->width = e1000_bus_width_pcie_x1; return ret_val; } /** * e1000_reset_hw_ich8lan - Reset the hardware * @hw: pointer to the HW structure * * Does a full reset of the hardware which includes a reset of the PHY and * MAC. **/ static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) { struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u16 kum_cfg; u32 ctrl, reg; s32 ret_val; DEBUGFUNC("e1000_reset_hw_ich8lan"); /* Prevent the PCI-E bus from sticking if there is no TLP connection * on the last TLP read/write transaction when MAC is reset. */ ret_val = e1000_disable_pcie_master_generic(hw); if (ret_val) DEBUGOUT("PCI-E Master disable polling has failed.\n"); DEBUGOUT("Masking off all interrupts\n"); E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); /* Disable the Transmit and Receive units. Then delay to allow * any pending transactions to complete before we hit the MAC * with the global reset. */ E1000_WRITE_REG(hw, E1000_RCTL, 0); E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); E1000_WRITE_FLUSH(hw); msec_delay(10); /* Workaround for ICH8 bit corruption issue in FIFO memory */ if (hw->mac.type == e1000_ich8lan) { /* Set Tx and Rx buffer allocation to 8k apiece. */ E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K); /* Set Packet Buffer Size to 16k. */ E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K); } if (hw->mac.type == e1000_pchlan) { /* Save the NVM K1 bit setting*/ ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg); if (ret_val) return ret_val; if (kum_cfg & E1000_NVM_K1_ENABLE) dev_spec->nvm_k1_enabled = TRUE; else dev_spec->nvm_k1_enabled = FALSE; } ctrl = E1000_READ_REG(hw, E1000_CTRL); if (!hw->phy.ops.check_reset_block(hw)) { /* Full-chip reset requires MAC and PHY reset at the same * time to make sure the interface between MAC and the * external PHY is reset. */ ctrl |= E1000_CTRL_PHY_RST; /* Gate automatic PHY configuration by hardware on * non-managed 82579 */ if ((hw->mac.type == e1000_pch2lan) && !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) e1000_gate_hw_phy_config_ich8lan(hw, TRUE); } ret_val = e1000_acquire_swflag_ich8lan(hw); DEBUGOUT("Issuing a global reset to ich8lan\n"); E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST)); /* cannot issue a flush here because it hangs the hardware */ msec_delay(20); /* Set Phy Config Counter to 50msec */ if (hw->mac.type == e1000_pch2lan) { reg = E1000_READ_REG(hw, E1000_FEXTNVM3); reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg); } if (!ret_val) E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex); if (ctrl & E1000_CTRL_PHY_RST) { ret_val = hw->phy.ops.get_cfg_done(hw); if (ret_val) return ret_val; ret_val = e1000_post_phy_reset_ich8lan(hw); if (ret_val) return ret_val; } /* For PCH, this write will make sure that any noise * will be detected as a CRC error and be dropped rather than show up * as a bad packet to the DMA engine. */ if (hw->mac.type == e1000_pchlan) E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565); E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); E1000_READ_REG(hw, E1000_ICR); reg = E1000_READ_REG(hw, E1000_KABGTXD); reg |= E1000_KABGTXD_BGSQLBIAS; E1000_WRITE_REG(hw, E1000_KABGTXD, reg); return E1000_SUCCESS; } /** * e1000_init_hw_ich8lan - Initialize the hardware * @hw: pointer to the HW structure * * Prepares the hardware for transmit and receive by doing the following: * - initialize hardware bits * - initialize LED identification * - setup receive address registers * - setup flow control * - setup transmit descriptors * - clear statistics **/ static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 ctrl_ext, txdctl, snoop; s32 ret_val; u16 i; DEBUGFUNC("e1000_init_hw_ich8lan"); e1000_initialize_hw_bits_ich8lan(hw); /* Initialize identification LED */ ret_val = mac->ops.id_led_init(hw); /* An error is not fatal and we should not stop init due to this */ if (ret_val) DEBUGOUT("Error initializing identification LED\n"); /* Setup the receive address. */ e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); /* Zero out the Multicast HASH table */ DEBUGOUT("Zeroing the MTA\n"); for (i = 0; i < mac->mta_reg_count; i++) E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); /* The 82578 Rx buffer will stall if wakeup is enabled in host and * the ME. Disable wakeup by clearing the host wakeup bit. * Reset the phy after disabling host wakeup to reset the Rx buffer. */ if (hw->phy.type == e1000_phy_82578) { hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i); i &= ~BM_WUC_HOST_WU_BIT; hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i); ret_val = e1000_phy_hw_reset_ich8lan(hw); if (ret_val) return ret_val; } /* Setup link and flow control */ ret_val = mac->ops.setup_link(hw); /* Set the transmit descriptor write-back policy for both queues */ txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0)); txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB); txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | E1000_TXDCTL_MAX_TX_DESC_PREFETCH); E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl); txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1)); txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB); txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | E1000_TXDCTL_MAX_TX_DESC_PREFETCH); E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl); /* ICH8 has opposite polarity of no_snoop bits. * By default, we should use snoop behavior. */ if (mac->type == e1000_ich8lan) snoop = PCIE_ICH8_SNOOP_ALL; else snoop = (u32) ~(PCIE_NO_SNOOP_ALL); e1000_set_pcie_no_snoop_generic(hw, snoop); ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_RO_DIS; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); /* Clear all of the statistics registers (clear on read). It is * important that we do this after we have tried to establish link * because the symbol error count will increment wildly if there * is no link. */ e1000_clear_hw_cntrs_ich8lan(hw); return ret_val; } /** * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits * @hw: pointer to the HW structure * * Sets/Clears required hardware bits necessary for correctly setting up the * hardware for transmit and receive. **/ static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) { u32 reg; DEBUGFUNC("e1000_initialize_hw_bits_ich8lan"); /* Extended Device Control */ reg = E1000_READ_REG(hw, E1000_CTRL_EXT); reg |= (1 << 22); /* Enable PHY low-power state when MAC is at D3 w/o WoL */ if (hw->mac.type >= e1000_pchlan) reg |= E1000_CTRL_EXT_PHYPDEN; E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); /* Transmit Descriptor Control 0 */ reg = E1000_READ_REG(hw, E1000_TXDCTL(0)); reg |= (1 << 22); E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg); /* Transmit Descriptor Control 1 */ reg = E1000_READ_REG(hw, E1000_TXDCTL(1)); reg |= (1 << 22); E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg); /* Transmit Arbitration Control 0 */ reg = E1000_READ_REG(hw, E1000_TARC(0)); if (hw->mac.type == e1000_ich8lan) reg |= (1 << 28) | (1 << 29); reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); E1000_WRITE_REG(hw, E1000_TARC(0), reg); /* Transmit Arbitration Control 1 */ reg = E1000_READ_REG(hw, E1000_TARC(1)); if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR) reg &= ~(1 << 28); else reg |= (1 << 28); reg |= (1 << 24) | (1 << 26) | (1 << 30); E1000_WRITE_REG(hw, E1000_TARC(1), reg); /* Device Status */ if (hw->mac.type == e1000_ich8lan) { reg = E1000_READ_REG(hw, E1000_STATUS); - reg &= ~(1 << 31); + reg &= ~(1U << 31); E1000_WRITE_REG(hw, E1000_STATUS, reg); } /* work-around descriptor data corruption issue during nfs v2 udp * traffic, just disable the nfs filtering capability */ reg = E1000_READ_REG(hw, E1000_RFCTL); reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); /* Disable IPv6 extension header parsing because some malformed * IPv6 headers can hang the Rx. */ if (hw->mac.type == e1000_ich8lan) reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); E1000_WRITE_REG(hw, E1000_RFCTL, reg); /* Enable ECC on Lynxpoint */ if (hw->mac.type >= e1000_pch_lpt) { reg = E1000_READ_REG(hw, E1000_PBECCSTS); reg |= E1000_PBECCSTS_ECC_ENABLE; E1000_WRITE_REG(hw, E1000_PBECCSTS, reg); reg = E1000_READ_REG(hw, E1000_CTRL); reg |= E1000_CTRL_MEHE; E1000_WRITE_REG(hw, E1000_CTRL, reg); } return; } /** * e1000_setup_link_ich8lan - Setup flow control and link settings * @hw: pointer to the HW structure * * Determines which flow control settings to use, then configures flow * control. Calls the appropriate media-specific link configuration * function. Assuming the adapter has a valid link partner, a valid link * should be established. Assumes the hardware has previously been reset * and the transmitter and receiver are not enabled. **/ static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) { s32 ret_val; DEBUGFUNC("e1000_setup_link_ich8lan"); if (hw->phy.ops.check_reset_block(hw)) return E1000_SUCCESS; /* ICH parts do not have a word in the NVM to determine * the default flow control setting, so we explicitly * set it to full. */ if (hw->fc.requested_mode == e1000_fc_default) hw->fc.requested_mode = e1000_fc_full; /* Save off the requested flow control mode for use later. Depending * on the link partner's capabilities, we may or may not use this mode. */ hw->fc.current_mode = hw->fc.requested_mode; DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); /* Continue to configure the copper link. */ ret_val = hw->mac.ops.setup_physical_interface(hw); if (ret_val) return ret_val; E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); if ((hw->phy.type == e1000_phy_82578) || (hw->phy.type == e1000_phy_82579) || (hw->phy.type == e1000_phy_i217) || (hw->phy.type == e1000_phy_82577)) { E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time); ret_val = hw->phy.ops.write_reg(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27), hw->fc.pause_time); if (ret_val) return ret_val; } return e1000_set_fc_watermarks_generic(hw); } /** * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface * @hw: pointer to the HW structure * * Configures the kumeran interface to the PHY to wait the appropriate time * when polling the PHY, then call the generic setup_copper_link to finish * configuring the copper link. **/ static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; u16 reg_data; DEBUGFUNC("e1000_setup_copper_link_ich8lan"); ctrl = E1000_READ_REG(hw, E1000_CTRL); ctrl |= E1000_CTRL_SLU; ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); E1000_WRITE_REG(hw, E1000_CTRL, ctrl); /* Set the mac to wait the maximum time between each iteration * and increase the max iterations when polling the phy; * this fixes erroneous timeouts at 10Mbps. */ ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); if (ret_val) return ret_val; ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, ®_data); if (ret_val) return ret_val; reg_data |= 0x3F; ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, reg_data); if (ret_val) return ret_val; switch (hw->phy.type) { case e1000_phy_igp_3: ret_val = e1000_copper_link_setup_igp(hw); if (ret_val) return ret_val; break; case e1000_phy_bm: case e1000_phy_82578: ret_val = e1000_copper_link_setup_m88(hw); if (ret_val) return ret_val; break; case e1000_phy_82577: case e1000_phy_82579: ret_val = e1000_copper_link_setup_82577(hw); if (ret_val) return ret_val; break; case e1000_phy_ife: ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, ®_data); if (ret_val) return ret_val; reg_data &= ~IFE_PMC_AUTO_MDIX; switch (hw->phy.mdix) { case 1: reg_data &= ~IFE_PMC_FORCE_MDIX; break; case 2: reg_data |= IFE_PMC_FORCE_MDIX; break; case 0: default: reg_data |= IFE_PMC_AUTO_MDIX; break; } ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, reg_data); if (ret_val) return ret_val; break; default: break; } return e1000_setup_copper_link_generic(hw); } /** * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface * @hw: pointer to the HW structure * * Calls the PHY specific link setup function and then calls the * generic setup_copper_link to finish configuring the link for * Lynxpoint PCH devices **/ static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; DEBUGFUNC("e1000_setup_copper_link_pch_lpt"); ctrl = E1000_READ_REG(hw, E1000_CTRL); ctrl |= E1000_CTRL_SLU; ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); E1000_WRITE_REG(hw, E1000_CTRL, ctrl); ret_val = e1000_copper_link_setup_82577(hw); if (ret_val) return ret_val; return e1000_setup_copper_link_generic(hw); } /** * e1000_get_link_up_info_ich8lan - Get current link speed and duplex * @hw: pointer to the HW structure * @speed: pointer to store current link speed * @duplex: pointer to store the current link duplex * * Calls the generic get_speed_and_duplex to retrieve the current link * information and then calls the Kumeran lock loss workaround for links at * gigabit speeds. **/ static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, u16 *duplex) { s32 ret_val; DEBUGFUNC("e1000_get_link_up_info_ich8lan"); ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex); if (ret_val) return ret_val; if ((hw->mac.type == e1000_ich8lan) && (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); } return ret_val; } /** * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround * @hw: pointer to the HW structure * * Work-around for 82566 Kumeran PCS lock loss: * On link status change (i.e. PCI reset, speed change) and link is up and * speed is gigabit- * 0) if workaround is optionally disabled do nothing * 1) wait 1ms for Kumeran link to come up * 2) check Kumeran Diagnostic register PCS lock loss bit * 3) if not set the link is locked (all is good), otherwise... * 4) reset the PHY * 5) repeat up to 10 times * Note: this is only called for IGP3 copper when speed is 1gb. **/ static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) { struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u32 phy_ctrl; s32 ret_val; u16 i, data; bool link; DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan"); if (!dev_spec->kmrn_lock_loss_workaround_enabled) return E1000_SUCCESS; /* Make sure link is up before proceeding. If not just return. * Attempting this while link is negotiating fouled up link * stability */ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); if (!link) return E1000_SUCCESS; for (i = 0; i < 10; i++) { /* read once to clear */ ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data); if (ret_val) return ret_val; /* and again to get new status */ ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data); if (ret_val) return ret_val; /* check for PCS lock */ if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) return E1000_SUCCESS; /* Issue PHY reset */ hw->phy.ops.reset(hw); msec_delay_irq(5); } /* Disable GigE link negotiation */ phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); /* Call gig speed drop workaround on Gig disable before accessing * any PHY registers */ e1000_gig_downshift_workaround_ich8lan(hw); /* unable to acquire PCS lock */ return -E1000_ERR_PHY; } /** * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state * @hw: pointer to the HW structure * @state: boolean value used to set the current Kumeran workaround state * * If ICH8, set the current Kumeran workaround state (enabled - TRUE * /disabled - FALSE). **/ void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, bool state) { struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan"); if (hw->mac.type != e1000_ich8lan) { DEBUGOUT("Workaround applies to ICH8 only.\n"); return; } dev_spec->kmrn_lock_loss_workaround_enabled = state; return; } /** * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 * @hw: pointer to the HW structure * * Workaround for 82566 power-down on D3 entry: * 1) disable gigabit link * 2) write VR power-down enable * 3) read it back * Continue if successful, else issue LCD reset and repeat **/ void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) { u32 reg; u16 data; u8 retry = 0; DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan"); if (hw->phy.type != e1000_phy_igp_3) return; /* Try the workaround twice (if needed) */ do { /* Disable link */ reg = E1000_READ_REG(hw, E1000_PHY_CTRL); reg |= (E1000_PHY_CTRL_GBE_DISABLE | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg); /* Call gig speed drop workaround on Gig disable before * accessing any PHY registers */ if (hw->mac.type == e1000_ich8lan) e1000_gig_downshift_workaround_ich8lan(hw); /* Write VR power-down enable */ hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data); data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; hw->phy.ops.write_reg(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); /* Read it back and test */ hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data); data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) break; /* Issue PHY reset and repeat at most one more time */ reg = E1000_READ_REG(hw, E1000_CTRL); E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST); retry++; } while (retry); } /** * e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working * @hw: pointer to the HW structure * * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), * LPLU, Gig disable, MDIC PHY reset): * 1) Set Kumeran Near-end loopback * 2) Clear Kumeran Near-end loopback * Should only be called for ICH8[m] devices with any 1G Phy. **/ void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) { s32 ret_val; u16 reg_data; DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan"); if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife)) return; ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, ®_data); if (ret_val) return; reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data); if (ret_val) return; reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data); } /** * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx * @hw: pointer to the HW structure * * During S0 to Sx transition, it is possible the link remains at gig * instead of negotiating to a lower speed. Before going to Sx, set * 'Gig Disable' to force link speed negotiation to a lower speed based on * the LPLU setting in the NVM or custom setting. For PCH and newer parts, * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also * needs to be written. * Parts that support (and are linked to a partner which support) EEE in * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power * than 10Mbps w/o EEE. **/ void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) { struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u32 phy_ctrl; s32 ret_val; DEBUGFUNC("e1000_suspend_workarounds_ich8lan"); phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; if (hw->phy.type == e1000_phy_i217) { u16 phy_reg, device_id = hw->device_id; if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || (device_id == E1000_DEV_ID_PCH_I218_LM3) || (device_id == E1000_DEV_ID_PCH_I218_V3) || (hw->mac.type >= e1000_pch_spt)) { u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6); E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK); } ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; if (!dev_spec->eee_disable) { u16 eee_advert; ret_val = e1000_read_emi_reg_locked(hw, I217_EEE_ADVERTISEMENT, &eee_advert); if (ret_val) goto release; /* Disable LPLU if both link partners support 100BaseT * EEE and 100Full is advertised on both ends of the * link, and enable Auto Enable LPI since there will * be no driver to enable LPI while in Sx. */ if ((eee_advert & I82579_EEE_100_SUPPORTED) && (dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) && (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) { phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_NOND0A_LPLU); /* Set Auto Enable LPI after link up */ hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg); phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI; hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg); } } /* For i217 Intel Rapid Start Technology support, * when the system is going into Sx and no manageability engine * is present, the driver must configure proxy to reset only on * power good. LPI (Low Power Idle) state must also reset only * on power good, as well as the MTA (Multicast table array). * The SMBus release must also be disabled on LCD reset. */ if (!(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) { /* Enable proxy to reset only on power good. */ hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL, &phy_reg); phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE; hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, phy_reg); /* Set bit enable LPI (EEE) to reset only on * power good. */ hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg); phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET; hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg); /* Disable the SMB release on LCD reset. */ hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg); phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE; hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg); } /* Enable MTA to reset for Intel Rapid Start Technology * Support */ hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg); phy_reg |= I217_CGFREG_ENABLE_MTA_RESET; hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg); release: hw->phy.ops.release(hw); } out: E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); if (hw->mac.type == e1000_ich8lan) e1000_gig_downshift_workaround_ich8lan(hw); if (hw->mac.type >= e1000_pchlan) { e1000_oem_bits_config_ich8lan(hw, FALSE); /* Reset PHY to activate OEM bits on 82577/8 */ if (hw->mac.type == e1000_pchlan) e1000_phy_hw_reset_generic(hw); ret_val = hw->phy.ops.acquire(hw); if (ret_val) return; e1000_write_smbus_addr(hw); hw->phy.ops.release(hw); } return; } /** * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 * @hw: pointer to the HW structure * * During Sx to S0 transitions on non-managed devices or managed devices * on which PHY resets are not blocked, if the PHY registers cannot be * accessed properly by the s/w toggle the LANPHYPC value to power cycle * the PHY. * On i217, setup Intel Rapid Start Technology. **/ u32 e1000_resume_workarounds_pchlan(struct e1000_hw *hw) { s32 ret_val; DEBUGFUNC("e1000_resume_workarounds_pchlan"); if (hw->mac.type < e1000_pch2lan) return E1000_SUCCESS; ret_val = e1000_init_phy_workarounds_pchlan(hw); if (ret_val) { DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val); return ret_val; } /* For i217 Intel Rapid Start Technology support when the system * is transitioning from Sx and no manageability engine is present * configure SMBus to restore on reset, disable proxy, and enable * the reset on MTA (Multicast table array). */ if (hw->phy.type == e1000_phy_i217) { u16 phy_reg; ret_val = hw->phy.ops.acquire(hw); if (ret_val) { DEBUGOUT("Failed to setup iRST\n"); return ret_val; } /* Clear Auto Enable LPI after link up */ hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg); phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI; hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg); if (!(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) { /* Restore clear on SMB if no manageability engine * is present */ ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg); if (ret_val) goto release; phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE; hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg); /* Disable Proxy */ hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0); } /* Enable reset on MTA */ ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg); if (ret_val) goto release; phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET; hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg); release: if (ret_val) DEBUGOUT1("Error %d in resume workarounds\n", ret_val); hw->phy.ops.release(hw); return ret_val; } return E1000_SUCCESS; } /** * e1000_cleanup_led_ich8lan - Restore the default LED operation * @hw: pointer to the HW structure * * Return the LED back to the default configuration. **/ static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) { DEBUGFUNC("e1000_cleanup_led_ich8lan"); if (hw->phy.type == e1000_phy_ife) return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); return E1000_SUCCESS; } /** * e1000_led_on_ich8lan - Turn LEDs on * @hw: pointer to the HW structure * * Turn on the LEDs. **/ static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) { DEBUGFUNC("e1000_led_on_ich8lan"); if (hw->phy.type == e1000_phy_ife) return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2); return E1000_SUCCESS; } /** * e1000_led_off_ich8lan - Turn LEDs off * @hw: pointer to the HW structure * * Turn off the LEDs. **/ static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) { DEBUGFUNC("e1000_led_off_ich8lan"); if (hw->phy.type == e1000_phy_ife) return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); return E1000_SUCCESS; } /** * e1000_setup_led_pchlan - Configures SW controllable LED * @hw: pointer to the HW structure * * This prepares the SW controllable LED for use. **/ static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) { DEBUGFUNC("e1000_setup_led_pchlan"); return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1); } /** * e1000_cleanup_led_pchlan - Restore the default LED operation * @hw: pointer to the HW structure * * Return the LED back to the default configuration. **/ static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) { DEBUGFUNC("e1000_cleanup_led_pchlan"); return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default); } /** * e1000_led_on_pchlan - Turn LEDs on * @hw: pointer to the HW structure * * Turn on the LEDs. **/ static s32 e1000_led_on_pchlan(struct e1000_hw *hw) { u16 data = (u16)hw->mac.ledctl_mode2; u32 i, led; DEBUGFUNC("e1000_led_on_pchlan"); /* If no link, then turn LED on by setting the invert bit * for each LED that's mode is "link_up" in ledctl_mode2. */ if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { for (i = 0; i < 3; i++) { led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; if ((led & E1000_PHY_LED0_MODE_MASK) != E1000_LEDCTL_MODE_LINK_UP) continue; if (led & E1000_PHY_LED0_IVRT) data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); else data |= (E1000_PHY_LED0_IVRT << (i * 5)); } } return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data); } /** * e1000_led_off_pchlan - Turn LEDs off * @hw: pointer to the HW structure * * Turn off the LEDs. **/ static s32 e1000_led_off_pchlan(struct e1000_hw *hw) { u16 data = (u16)hw->mac.ledctl_mode1; u32 i, led; DEBUGFUNC("e1000_led_off_pchlan"); /* If no link, then turn LED off by clearing the invert bit * for each LED that's mode is "link_up" in ledctl_mode1. */ if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { for (i = 0; i < 3; i++) { led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; if ((led & E1000_PHY_LED0_MODE_MASK) != E1000_LEDCTL_MODE_LINK_UP) continue; if (led & E1000_PHY_LED0_IVRT) data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); else data |= (E1000_PHY_LED0_IVRT << (i * 5)); } } return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data); } /** * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset * @hw: pointer to the HW structure * * Read appropriate register for the config done bit for completion status * and configure the PHY through s/w for EEPROM-less parts. * * NOTE: some silicon which is EEPROM-less will fail trying to read the * config done bit, so only an error is logged and continues. If we were * to return with error, EEPROM-less silicon would not be able to be reset * or change link. **/ static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u32 bank = 0; u32 status; DEBUGFUNC("e1000_get_cfg_done_ich8lan"); e1000_get_cfg_done_generic(hw); /* Wait for indication from h/w that it has completed basic config */ if (hw->mac.type >= e1000_ich10lan) { e1000_lan_init_done_ich8lan(hw); } else { ret_val = e1000_get_auto_rd_done_generic(hw); if (ret_val) { /* When auto config read does not complete, do not * return with an error. This can happen in situations * where there is no eeprom and prevents getting link. */ DEBUGOUT("Auto Read Done did not complete\n"); ret_val = E1000_SUCCESS; } } /* Clear PHY Reset Asserted bit */ status = E1000_READ_REG(hw, E1000_STATUS); if (status & E1000_STATUS_PHYRA) E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA); else DEBUGOUT("PHY Reset Asserted not set - needs delay\n"); /* If EEPROM is not marked present, init the IGP 3 PHY manually */ if (hw->mac.type <= e1000_ich9lan) { if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) && (hw->phy.type == e1000_phy_igp_3)) { e1000_phy_init_script_igp3(hw); } } else { if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { /* Maybe we should do a basic PHY config */ DEBUGOUT("EEPROM not present\n"); ret_val = -E1000_ERR_CONFIG; } } return ret_val; } /** * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down * @hw: pointer to the HW structure * * In the case of a PHY power down to save power, or to turn off link during a * driver unload, or wake on lan is not enabled, remove the link. **/ static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) { /* If the management interface is not enabled, then power down */ if (!(hw->mac.ops.check_mng_mode(hw) || hw->phy.ops.check_reset_block(hw))) e1000_power_down_phy_copper(hw); return; } /** * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters * @hw: pointer to the HW structure * * Clears hardware counters specific to the silicon family and calls * clear_hw_cntrs_generic to clear all general purpose counters. **/ static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) { u16 phy_data; s32 ret_val; DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan"); e1000_clear_hw_cntrs_base_generic(hw); E1000_READ_REG(hw, E1000_ALGNERRC); E1000_READ_REG(hw, E1000_RXERRC); E1000_READ_REG(hw, E1000_TNCRS); E1000_READ_REG(hw, E1000_CEXTERR); E1000_READ_REG(hw, E1000_TSCTC); E1000_READ_REG(hw, E1000_TSCTFC); E1000_READ_REG(hw, E1000_MGTPRC); E1000_READ_REG(hw, E1000_MGTPDC); E1000_READ_REG(hw, E1000_MGTPTC); E1000_READ_REG(hw, E1000_IAC); E1000_READ_REG(hw, E1000_ICRXOC); /* Clear PHY statistics registers */ if ((hw->phy.type == e1000_phy_82578) || (hw->phy.type == e1000_phy_82579) || (hw->phy.type == e1000_phy_i217) || (hw->phy.type == e1000_phy_82577)) { ret_val = hw->phy.ops.acquire(hw); if (ret_val) return; ret_val = hw->phy.ops.set_page(hw, HV_STATS_PAGE << IGP_PAGE_SHIFT); if (ret_val) goto release; hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); release: hw->phy.ops.release(hw); } } Index: head/sys/dev/e1000/e1000_regs.h =================================================================== --- head/sys/dev/e1000/e1000_regs.h (revision 327864) +++ head/sys/dev/e1000/e1000_regs.h (revision 327865) @@ -1,696 +1,696 @@ /****************************************************************************** SPDX-License-Identifier: BSD-3-Clause Copyright (c) 2001-2015, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************/ /*$FreeBSD$*/ #ifndef _E1000_REGS_H_ #define _E1000_REGS_H_ #define E1000_CTRL 0x00000 /* Device Control - RW */ #define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */ #define E1000_STATUS 0x00008 /* Device Status - RO */ #define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */ #define E1000_EERD 0x00014 /* EEPROM Read - RW */ #define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */ #define E1000_FLA 0x0001C /* Flash Access - RW */ #define E1000_MDIC 0x00020 /* MDI Control - RW */ #define E1000_MDICNFG 0x00E04 /* MDI Config - RW */ #define E1000_REGISTER_SET_SIZE 0x20000 /* CSR Size */ #define E1000_EEPROM_INIT_CTRL_WORD_2 0x0F /* EEPROM Init Ctrl Word 2 */ #define E1000_EEPROM_PCIE_CTRL_WORD_2 0x28 /* EEPROM PCIe Ctrl Word 2 */ #define E1000_BARCTRL 0x5BBC /* BAR ctrl reg */ #define E1000_BARCTRL_FLSIZE 0x0700 /* BAR ctrl Flsize */ #define E1000_BARCTRL_CSRSIZE 0x2000 /* BAR ctrl CSR size */ #define E1000_MPHY_ADDR_CTRL 0x0024 /* GbE MPHY Address Control */ #define E1000_MPHY_DATA 0x0E10 /* GBE MPHY Data */ #define E1000_MPHY_STAT 0x0E0C /* GBE MPHY Statistics */ #define E1000_PPHY_CTRL 0x5b48 /* PCIe PHY Control */ #define E1000_I350_BARCTRL 0x5BFC /* BAR ctrl reg */ #define E1000_I350_DTXMXPKTSZ 0x355C /* Maximum sent packet size reg*/ #define E1000_SCTL 0x00024 /* SerDes Control - RW */ #define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ #define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ #define E1000_FEXT 0x0002C /* Future Extended - RW */ #define E1000_FEXTNVM 0x00028 /* Future Extended NVM - RW */ #define E1000_FEXTNVM3 0x0003C /* Future Extended NVM 3 - RW */ #define E1000_FEXTNVM4 0x00024 /* Future Extended NVM 4 - RW */ #define E1000_FEXTNVM6 0x00010 /* Future Extended NVM 6 - RW */ #define E1000_FEXTNVM7 0x000E4 /* Future Extended NVM 7 - RW */ #define E1000_FEXTNVM9 0x5BB4 /* Future Extended NVM 9 - RW */ #define E1000_FEXTNVM11 0x5BBC /* Future Extended NVM 11 - RW */ #define E1000_PCIEANACFG 0x00F18 /* PCIE Analog Config */ #define E1000_FCT 0x00030 /* Flow Control Type - RW */ #define E1000_CONNSW 0x00034 /* Copper/Fiber switch control - RW */ #define E1000_VET 0x00038 /* VLAN Ether Type - RW */ #define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */ #define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */ #define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ #define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ #define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ #define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */ #define E1000_IVAR 0x000E4 /* Interrupt Vector Allocation Register - RW */ #define E1000_SVCR 0x000F0 #define E1000_SVT 0x000F4 #define E1000_LPIC 0x000FC /* Low Power IDLE control */ #define E1000_RCTL 0x00100 /* Rx Control - RW */ #define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ #define E1000_TXCW 0x00178 /* Tx Configuration Word - RW */ #define E1000_RXCW 0x00180 /* Rx Configuration Word - RO */ #define E1000_PBA_ECC 0x01100 /* PBA ECC Register */ #define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */ #define E1000_EITR(_n) (0x01680 + (0x4 * (_n))) #define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */ #define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */ #define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */ #define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */ #define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */ #define E1000_GPIE 0x01514 /* General Purpose Interrupt Enable - RW */ #define E1000_IVAR0 0x01700 /* Interrupt Vector Allocation (array) - RW */ #define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes - RW */ #define E1000_TCTL 0x00400 /* Tx Control - RW */ #define E1000_TCTL_EXT 0x00404 /* Extended Tx Control - RW */ #define E1000_TIPG 0x00410 /* Tx Inter-packet gap -RW */ #define E1000_TBT 0x00448 /* Tx Burst Timer - RW */ #define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ #define E1000_LEDCTL 0x00E00 /* LED Control - RW */ #define E1000_LEDMUX 0x08130 /* LED MUX Control */ #define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ #define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ #define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */ #define E1000_POEMB E1000_PHY_CTRL /* PHY OEM Bits */ #define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ #define E1000_PBS 0x01008 /* Packet Buffer Size */ #define E1000_PBECCSTS 0x0100C /* Packet Buffer ECC Status - RW */ #define E1000_IOSFPC 0x00F28 /* TX corrupted data */ #define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ #define E1000_EEMNGCTL_I210 0x01010 /* i210 MNG EEprom Mode Control */ #define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */ #define E1000_EEARBC_I210 0x12024 /* EEPROM Auto Read Bus Control */ #define E1000_FLASHT 0x01028 /* FLASH Timer Register */ #define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */ #define E1000_FLSWCTL 0x01030 /* FLASH control register */ #define E1000_FLSWDATA 0x01034 /* FLASH data register */ #define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */ #define E1000_FLOP 0x0103C /* FLASH Opcode Register */ #define E1000_I2CCMD 0x01028 /* SFPI2C Command Register - RW */ #define E1000_I2CPARAMS 0x0102C /* SFPI2C Parameters Register - RW */ #define E1000_I2CBB_EN 0x00000100 /* I2C - Bit Bang Enable */ #define E1000_I2C_CLK_OUT 0x00000200 /* I2C- Clock */ #define E1000_I2C_DATA_OUT 0x00000400 /* I2C- Data Out */ #define E1000_I2C_DATA_OE_N 0x00000800 /* I2C- Data Output Enable */ #define E1000_I2C_DATA_IN 0x00001000 /* I2C- Data In */ #define E1000_I2C_CLK_OE_N 0x00002000 /* I2C- Clock Output Enable */ #define E1000_I2C_CLK_IN 0x00004000 /* I2C- Clock In */ #define E1000_I2C_CLK_STRETCH_DIS 0x00008000 /* I2C- Dis Clk Stretching */ #define E1000_WDSTP 0x01040 /* Watchdog Setup - RW */ #define E1000_SWDSTS 0x01044 /* SW Device Status - RW */ #define E1000_FRTIMER 0x01048 /* Free Running Timer - RW */ #define E1000_TCPTIMER 0x0104C /* TCP Timer - RW */ #define E1000_VPDDIAG 0x01060 /* VPD Diagnostic - RO */ #define E1000_ICR_V2 0x01500 /* Intr Cause - new location - RC */ #define E1000_ICS_V2 0x01504 /* Intr Cause Set - new location - WO */ #define E1000_IMS_V2 0x01508 /* Intr Mask Set/Read - new location - RW */ #define E1000_IMC_V2 0x0150C /* Intr Mask Clear - new location - WO */ #define E1000_IAM_V2 0x01510 /* Intr Ack Auto Mask - new location - RW */ #define E1000_ERT 0x02008 /* Early Rx Threshold - RW */ #define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ #define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ #define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */ #define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */ #define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */ #define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */ #define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */ #define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */ #define E1000_PBRTH 0x02458 /* PB Rx Arbitration Threshold - RW */ #define E1000_FCRTV 0x02460 /* Flow Control Refresh Timer Value - RW */ /* Split and Replication Rx Control - RW */ #define E1000_RDPUMB 0x025CC /* DMA Rx Descriptor uC Mailbox - RW */ #define E1000_RDPUAD 0x025D0 /* DMA Rx Descriptor uC Addr Command - RW */ #define E1000_RDPUWD 0x025D4 /* DMA Rx Descriptor uC Data Write - RW */ #define E1000_RDPURD 0x025D8 /* DMA Rx Descriptor uC Data Read - RW */ #define E1000_RDPUCTL 0x025DC /* DMA Rx Descriptor uC Control - RW */ #define E1000_PBDIAG 0x02458 /* Packet Buffer Diagnostic - RW */ #define E1000_RXPBS 0x02404 /* Rx Packet Buffer Size - RW */ #define E1000_IRPBS 0x02404 /* Same as RXPBS, renamed for newer Si - RW */ #define E1000_PBRWAC 0x024E8 /* Rx packet buffer wrap around counter - RO */ #define E1000_RDTR 0x02820 /* Rx Delay Timer - RW */ #define E1000_RADV 0x0282C /* Rx Interrupt Absolute Delay Timer - RW */ #define E1000_EMIADD 0x10 /* Extended Memory Indirect Address */ #define E1000_EMIDATA 0x11 /* Extended Memory Indirect Data */ #define E1000_SRWR 0x12018 /* Shadow Ram Write Register - RW */ #define E1000_I210_FLMNGCTL 0x12038 #define E1000_I210_FLMNGDATA 0x1203C #define E1000_I210_FLMNGCNT 0x12040 #define E1000_I210_FLSWCTL 0x12048 #define E1000_I210_FLSWDATA 0x1204C #define E1000_I210_FLSWCNT 0x12050 #define E1000_I210_FLA 0x1201C #define E1000_INVM_DATA_REG(_n) (0x12120 + 4*(_n)) #define E1000_INVM_SIZE 64 /* Number of INVM Data Registers */ /* QAV Tx mode control register */ #define E1000_I210_TQAVCTRL 0x3570 /* QAV Tx mode control register bitfields masks */ /* QAV enable */ #define E1000_TQAVCTRL_MODE (1 << 0) /* Fetching arbitration type */ #define E1000_TQAVCTRL_FETCH_ARB (1 << 4) /* Fetching timer enable */ #define E1000_TQAVCTRL_FETCH_TIMER_ENABLE (1 << 5) /* Launch arbitration type */ #define E1000_TQAVCTRL_LAUNCH_ARB (1 << 8) /* Launch timer enable */ #define E1000_TQAVCTRL_LAUNCH_TIMER_ENABLE (1 << 9) /* SP waits for SR enable */ #define E1000_TQAVCTRL_SP_WAIT_SR (1 << 10) /* Fetching timer correction */ #define E1000_TQAVCTRL_FETCH_TIMER_DELTA_OFFSET 16 #define E1000_TQAVCTRL_FETCH_TIMER_DELTA \ (0xFFFF << E1000_TQAVCTRL_FETCH_TIMER_DELTA_OFFSET) /* High credit registers where _n can be 0 or 1. */ #define E1000_I210_TQAVHC(_n) (0x300C + 0x40 * (_n)) /* Queues fetch arbitration priority control register */ #define E1000_I210_TQAVARBCTRL 0x3574 /* Queues priority masks where _n and _p can be 0-3. */ #define E1000_TQAVARBCTRL_QUEUE_PRI(_n, _p) ((_p) << (2 * (_n))) /* QAV Tx mode control registers where _n can be 0 or 1. */ #define E1000_I210_TQAVCC(_n) (0x3004 + 0x40 * (_n)) /* QAV Tx mode control register bitfields masks */ #define E1000_TQAVCC_IDLE_SLOPE 0xFFFF /* Idle slope */ #define E1000_TQAVCC_KEEP_CREDITS (1 << 30) /* Keep credits opt enable */ -#define E1000_TQAVCC_QUEUE_MODE (1 << 31) /* SP vs. SR Tx mode */ +#define E1000_TQAVCC_QUEUE_MODE (1U << 31) /* SP vs. SR Tx mode */ /* Good transmitted packets counter registers */ #define E1000_PQGPTC(_n) (0x010014 + (0x100 * (_n))) /* Queues packet buffer size masks where _n can be 0-3 and _s 0-63 [kB] */ #define E1000_I210_TXPBS_SIZE(_n, _s) ((_s) << (6 * (_n))) #define E1000_MMDAC 13 /* MMD Access Control */ #define E1000_MMDAAD 14 /* MMD Access Address/Data */ /* Convenience macros * * Note: "_n" is the queue number of the register to be written to. * * Example usage: * E1000_RDBAL_REG(current_rx_queue) */ #define E1000_RDBAL(_n) ((_n) < 4 ? (0x02800 + ((_n) * 0x100)) : \ (0x0C000 + ((_n) * 0x40))) #define E1000_RDBAH(_n) ((_n) < 4 ? (0x02804 + ((_n) * 0x100)) : \ (0x0C004 + ((_n) * 0x40))) #define E1000_RDLEN(_n) ((_n) < 4 ? (0x02808 + ((_n) * 0x100)) : \ (0x0C008 + ((_n) * 0x40))) #define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \ (0x0C00C + ((_n) * 0x40))) #define E1000_RDH(_n) ((_n) < 4 ? (0x02810 + ((_n) * 0x100)) : \ (0x0C010 + ((_n) * 0x40))) #define E1000_RXCTL(_n) ((_n) < 4 ? (0x02814 + ((_n) * 0x100)) : \ (0x0C014 + ((_n) * 0x40))) #define E1000_DCA_RXCTRL(_n) E1000_RXCTL(_n) #define E1000_RDT(_n) ((_n) < 4 ? (0x02818 + ((_n) * 0x100)) : \ (0x0C018 + ((_n) * 0x40))) #define E1000_RXDCTL(_n) ((_n) < 4 ? (0x02828 + ((_n) * 0x100)) : \ (0x0C028 + ((_n) * 0x40))) #define E1000_RQDPC(_n) ((_n) < 4 ? (0x02830 + ((_n) * 0x100)) : \ (0x0C030 + ((_n) * 0x40))) #define E1000_TDBAL(_n) ((_n) < 4 ? (0x03800 + ((_n) * 0x100)) : \ (0x0E000 + ((_n) * 0x40))) #define E1000_TDBAH(_n) ((_n) < 4 ? (0x03804 + ((_n) * 0x100)) : \ (0x0E004 + ((_n) * 0x40))) #define E1000_TDLEN(_n) ((_n) < 4 ? (0x03808 + ((_n) * 0x100)) : \ (0x0E008 + ((_n) * 0x40))) #define E1000_TDH(_n) ((_n) < 4 ? (0x03810 + ((_n) * 0x100)) : \ (0x0E010 + ((_n) * 0x40))) #define E1000_TXCTL(_n) ((_n) < 4 ? (0x03814 + ((_n) * 0x100)) : \ (0x0E014 + ((_n) * 0x40))) #define E1000_DCA_TXCTRL(_n) E1000_TXCTL(_n) #define E1000_TDT(_n) ((_n) < 4 ? (0x03818 + ((_n) * 0x100)) : \ (0x0E018 + ((_n) * 0x40))) #define E1000_TXDCTL(_n) ((_n) < 4 ? (0x03828 + ((_n) * 0x100)) : \ (0x0E028 + ((_n) * 0x40))) #define E1000_TDWBAL(_n) ((_n) < 4 ? (0x03838 + ((_n) * 0x100)) : \ (0x0E038 + ((_n) * 0x40))) #define E1000_TDWBAH(_n) ((_n) < 4 ? (0x0383C + ((_n) * 0x100)) : \ (0x0E03C + ((_n) * 0x40))) #define E1000_TARC(_n) (0x03840 + ((_n) * 0x100)) #define E1000_RSRPD 0x02C00 /* Rx Small Packet Detect - RW */ #define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ #define E1000_TXDMAC 0x03000 /* Tx DMA Control - RW */ #define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */ #define E1000_PSRTYPE(_i) (0x05480 + ((_i) * 4)) #define E1000_RAL(_i) (((_i) <= 15) ? (0x05400 + ((_i) * 8)) : \ (0x054E0 + ((_i - 16) * 8))) #define E1000_RAH(_i) (((_i) <= 15) ? (0x05404 + ((_i) * 8)) : \ (0x054E4 + ((_i - 16) * 8))) #define E1000_SHRAL(_i) (0x05438 + ((_i) * 8)) #define E1000_SHRAH(_i) (0x0543C + ((_i) * 8)) #define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8)) #define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4)) #define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4)) #define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8)) #define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8)) #define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8)) #define E1000_PBSLAC 0x03100 /* Pkt Buffer Slave Access Control */ #define E1000_PBSLAD(_n) (0x03110 + (0x4 * (_n))) /* Pkt Buffer DWORD */ #define E1000_TXPBS 0x03404 /* Tx Packet Buffer Size - RW */ /* Same as TXPBS, renamed for newer Si - RW */ #define E1000_ITPBS 0x03404 #define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */ #define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */ #define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */ #define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */ #define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */ #define E1000_TDPUMB 0x0357C /* DMA Tx Desc uC Mail Box - RW */ #define E1000_TDPUAD 0x03580 /* DMA Tx Desc uC Addr Command - RW */ #define E1000_TDPUWD 0x03584 /* DMA Tx Desc uC Data Write - RW */ #define E1000_TDPURD 0x03588 /* DMA Tx Desc uC Data Read - RW */ #define E1000_TDPUCTL 0x0358C /* DMA Tx Desc uC Control - RW */ #define E1000_DTXCTL 0x03590 /* DMA Tx Control - RW */ #define E1000_DTXTCPFLGL 0x0359C /* DMA Tx Control flag low - RW */ #define E1000_DTXTCPFLGH 0x035A0 /* DMA Tx Control flag high - RW */ /* DMA Tx Max Total Allow Size Reqs - RW */ #define E1000_DTXMXSZRQ 0x03540 #define E1000_TIDV 0x03820 /* Tx Interrupt Delay Value - RW */ #define E1000_TADV 0x0382C /* Tx Interrupt Absolute Delay Val - RW */ #define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ #define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ #define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ #define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ #define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */ #define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */ #define E1000_SCC 0x04014 /* Single Collision Count - R/clr */ #define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */ #define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */ #define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */ #define E1000_COLC 0x04028 /* Collision Count - R/clr */ #define E1000_DC 0x04030 /* Defer Count - R/clr */ #define E1000_TNCRS 0x04034 /* Tx-No CRS - R/clr */ #define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */ #define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */ #define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */ #define E1000_XONRXC 0x04048 /* XON Rx Count - R/clr */ #define E1000_XONTXC 0x0404C /* XON Tx Count - R/clr */ #define E1000_XOFFRXC 0x04050 /* XOFF Rx Count - R/clr */ #define E1000_XOFFTXC 0x04054 /* XOFF Tx Count - R/clr */ #define E1000_FCRUC 0x04058 /* Flow Control Rx Unsupported Count- R/clr */ #define E1000_PRC64 0x0405C /* Packets Rx (64 bytes) - R/clr */ #define E1000_PRC127 0x04060 /* Packets Rx (65-127 bytes) - R/clr */ #define E1000_PRC255 0x04064 /* Packets Rx (128-255 bytes) - R/clr */ #define E1000_PRC511 0x04068 /* Packets Rx (255-511 bytes) - R/clr */ #define E1000_PRC1023 0x0406C /* Packets Rx (512-1023 bytes) - R/clr */ #define E1000_PRC1522 0x04070 /* Packets Rx (1024-1522 bytes) - R/clr */ #define E1000_GPRC 0x04074 /* Good Packets Rx Count - R/clr */ #define E1000_BPRC 0x04078 /* Broadcast Packets Rx Count - R/clr */ #define E1000_MPRC 0x0407C /* Multicast Packets Rx Count - R/clr */ #define E1000_GPTC 0x04080 /* Good Packets Tx Count - R/clr */ #define E1000_GORCL 0x04088 /* Good Octets Rx Count Low - R/clr */ #define E1000_GORCH 0x0408C /* Good Octets Rx Count High - R/clr */ #define E1000_GOTCL 0x04090 /* Good Octets Tx Count Low - R/clr */ #define E1000_GOTCH 0x04094 /* Good Octets Tx Count High - R/clr */ #define E1000_RNBC 0x040A0 /* Rx No Buffers Count - R/clr */ #define E1000_RUC 0x040A4 /* Rx Undersize Count - R/clr */ #define E1000_RFC 0x040A8 /* Rx Fragment Count - R/clr */ #define E1000_ROC 0x040AC /* Rx Oversize Count - R/clr */ #define E1000_RJC 0x040B0 /* Rx Jabber Count - R/clr */ #define E1000_MGTPRC 0x040B4 /* Management Packets Rx Count - R/clr */ #define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */ #define E1000_MGTPTC 0x040BC /* Management Packets Tx Count - R/clr */ #define E1000_TORL 0x040C0 /* Total Octets Rx Low - R/clr */ #define E1000_TORH 0x040C4 /* Total Octets Rx High - R/clr */ #define E1000_TOTL 0x040C8 /* Total Octets Tx Low - R/clr */ #define E1000_TOTH 0x040CC /* Total Octets Tx High - R/clr */ #define E1000_TPR 0x040D0 /* Total Packets Rx - R/clr */ #define E1000_TPT 0x040D4 /* Total Packets Tx - R/clr */ #define E1000_PTC64 0x040D8 /* Packets Tx (64 bytes) - R/clr */ #define E1000_PTC127 0x040DC /* Packets Tx (65-127 bytes) - R/clr */ #define E1000_PTC255 0x040E0 /* Packets Tx (128-255 bytes) - R/clr */ #define E1000_PTC511 0x040E4 /* Packets Tx (256-511 bytes) - R/clr */ #define E1000_PTC1023 0x040E8 /* Packets Tx (512-1023 bytes) - R/clr */ #define E1000_PTC1522 0x040EC /* Packets Tx (1024-1522 Bytes) - R/clr */ #define E1000_MPTC 0x040F0 /* Multicast Packets Tx Count - R/clr */ #define E1000_BPTC 0x040F4 /* Broadcast Packets Tx Count - R/clr */ #define E1000_TSCTC 0x040F8 /* TCP Segmentation Context Tx - R/clr */ #define E1000_TSCTFC 0x040FC /* TCP Segmentation Context Tx Fail - R/clr */ #define E1000_IAC 0x04100 /* Interrupt Assertion Count */ #define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Pkt Timer Expire Count */ #define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Abs Timer Expire Count */ #define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Pkt Timer Expire Count */ #define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Abs Timer Expire Count */ #define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */ #define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Min Thresh Count */ #define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Desc Min Thresh Count */ #define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */ #define E1000_CRC_OFFSET 0x05F50 /* CRC Offset register */ #define E1000_VFGPRC 0x00F10 #define E1000_VFGORC 0x00F18 #define E1000_VFMPRC 0x00F3C #define E1000_VFGPTC 0x00F14 #define E1000_VFGOTC 0x00F34 #define E1000_VFGOTLBC 0x00F50 #define E1000_VFGPTLBC 0x00F44 #define E1000_VFGORLBC 0x00F48 #define E1000_VFGPRLBC 0x00F40 /* Virtualization statistical counters */ #define E1000_PFVFGPRC(_n) (0x010010 + (0x100 * (_n))) #define E1000_PFVFGPTC(_n) (0x010014 + (0x100 * (_n))) #define E1000_PFVFGORC(_n) (0x010018 + (0x100 * (_n))) #define E1000_PFVFGOTC(_n) (0x010034 + (0x100 * (_n))) #define E1000_PFVFMPRC(_n) (0x010038 + (0x100 * (_n))) #define E1000_PFVFGPRLBC(_n) (0x010040 + (0x100 * (_n))) #define E1000_PFVFGPTLBC(_n) (0x010044 + (0x100 * (_n))) #define E1000_PFVFGORLBC(_n) (0x010048 + (0x100 * (_n))) #define E1000_PFVFGOTLBC(_n) (0x010050 + (0x100 * (_n))) /* LinkSec */ #define E1000_LSECTXUT 0x04300 /* Tx Untagged Pkt Cnt */ #define E1000_LSECTXPKTE 0x04304 /* Encrypted Tx Pkts Cnt */ #define E1000_LSECTXPKTP 0x04308 /* Protected Tx Pkt Cnt */ #define E1000_LSECTXOCTE 0x0430C /* Encrypted Tx Octets Cnt */ #define E1000_LSECTXOCTP 0x04310 /* Protected Tx Octets Cnt */ #define E1000_LSECRXUT 0x04314 /* Untagged non-Strict Rx Pkt Cnt */ #define E1000_LSECRXOCTD 0x0431C /* Rx Octets Decrypted Count */ #define E1000_LSECRXOCTV 0x04320 /* Rx Octets Validated */ #define E1000_LSECRXBAD 0x04324 /* Rx Bad Tag */ #define E1000_LSECRXNOSCI 0x04328 /* Rx Packet No SCI Count */ #define E1000_LSECRXUNSCI 0x0432C /* Rx Packet Unknown SCI Count */ #define E1000_LSECRXUNCH 0x04330 /* Rx Unchecked Packets Count */ #define E1000_LSECRXDELAY 0x04340 /* Rx Delayed Packet Count */ #define E1000_LSECRXLATE 0x04350 /* Rx Late Packets Count */ #define E1000_LSECRXOK(_n) (0x04360 + (0x04 * (_n))) /* Rx Pkt OK Cnt */ #define E1000_LSECRXINV(_n) (0x04380 + (0x04 * (_n))) /* Rx Invalid Cnt */ #define E1000_LSECRXNV(_n) (0x043A0 + (0x04 * (_n))) /* Rx Not Valid Cnt */ #define E1000_LSECRXUNSA 0x043C0 /* Rx Unused SA Count */ #define E1000_LSECRXNUSA 0x043D0 /* Rx Not Using SA Count */ #define E1000_LSECTXCAP 0x0B000 /* Tx Capabilities Register - RO */ #define E1000_LSECRXCAP 0x0B300 /* Rx Capabilities Register - RO */ #define E1000_LSECTXCTRL 0x0B004 /* Tx Control - RW */ #define E1000_LSECRXCTRL 0x0B304 /* Rx Control - RW */ #define E1000_LSECTXSCL 0x0B008 /* Tx SCI Low - RW */ #define E1000_LSECTXSCH 0x0B00C /* Tx SCI High - RW */ #define E1000_LSECTXSA 0x0B010 /* Tx SA0 - RW */ #define E1000_LSECTXPN0 0x0B018 /* Tx SA PN 0 - RW */ #define E1000_LSECTXPN1 0x0B01C /* Tx SA PN 1 - RW */ #define E1000_LSECRXSCL 0x0B3D0 /* Rx SCI Low - RW */ #define E1000_LSECRXSCH 0x0B3E0 /* Rx SCI High - RW */ /* LinkSec Tx 128-bit Key 0 - WO */ #define E1000_LSECTXKEY0(_n) (0x0B020 + (0x04 * (_n))) /* LinkSec Tx 128-bit Key 1 - WO */ #define E1000_LSECTXKEY1(_n) (0x0B030 + (0x04 * (_n))) #define E1000_LSECRXSA(_n) (0x0B310 + (0x04 * (_n))) /* Rx SAs - RW */ #define E1000_LSECRXPN(_n) (0x0B330 + (0x04 * (_n))) /* Rx SAs - RW */ /* LinkSec Rx Keys - where _n is the SA no. and _m the 4 dwords of the 128 bit * key - RW. */ #define E1000_LSECRXKEY(_n, _m) (0x0B350 + (0x10 * (_n)) + (0x04 * (_m))) #define E1000_SSVPC 0x041A0 /* Switch Security Violation Pkt Cnt */ #define E1000_IPSCTRL 0xB430 /* IpSec Control Register */ #define E1000_IPSRXCMD 0x0B408 /* IPSec Rx Command Register - RW */ #define E1000_IPSRXIDX 0x0B400 /* IPSec Rx Index - RW */ /* IPSec Rx IPv4/v6 Address - RW */ #define E1000_IPSRXIPADDR(_n) (0x0B420 + (0x04 * (_n))) /* IPSec Rx 128-bit Key - RW */ #define E1000_IPSRXKEY(_n) (0x0B410 + (0x04 * (_n))) #define E1000_IPSRXSALT 0x0B404 /* IPSec Rx Salt - RW */ #define E1000_IPSRXSPI 0x0B40C /* IPSec Rx SPI - RW */ /* IPSec Tx 128-bit Key - RW */ #define E1000_IPSTXKEY(_n) (0x0B460 + (0x04 * (_n))) #define E1000_IPSTXSALT 0x0B454 /* IPSec Tx Salt - RW */ #define E1000_IPSTXIDX 0x0B450 /* IPSec Tx SA IDX - RW */ #define E1000_PCS_CFG0 0x04200 /* PCS Configuration 0 - RW */ #define E1000_PCS_LCTL 0x04208 /* PCS Link Control - RW */ #define E1000_PCS_LSTAT 0x0420C /* PCS Link Status - RO */ #define E1000_CBTMPC 0x0402C /* Circuit Breaker Tx Packet Count */ #define E1000_HTDPMC 0x0403C /* Host Transmit Discarded Packets */ #define E1000_CBRDPC 0x04044 /* Circuit Breaker Rx Dropped Count */ #define E1000_CBRMPC 0x040FC /* Circuit Breaker Rx Packet Count */ #define E1000_RPTHC 0x04104 /* Rx Packets To Host */ #define E1000_HGPTC 0x04118 /* Host Good Packets Tx Count */ #define E1000_HTCBDPC 0x04124 /* Host Tx Circuit Breaker Dropped Count */ #define E1000_HGORCL 0x04128 /* Host Good Octets Received Count Low */ #define E1000_HGORCH 0x0412C /* Host Good Octets Received Count High */ #define E1000_HGOTCL 0x04130 /* Host Good Octets Transmit Count Low */ #define E1000_HGOTCH 0x04134 /* Host Good Octets Transmit Count High */ #define E1000_LENERRS 0x04138 /* Length Errors Count */ #define E1000_SCVPC 0x04228 /* SerDes/SGMII Code Violation Pkt Count */ #define E1000_HRMPC 0x0A018 /* Header Redirection Missed Packet Count */ #define E1000_PCS_ANADV 0x04218 /* AN advertisement - RW */ #define E1000_PCS_LPAB 0x0421C /* Link Partner Ability - RW */ #define E1000_PCS_NPTX 0x04220 /* AN Next Page Transmit - RW */ #define E1000_PCS_LPABNP 0x04224 /* Link Partner Ability Next Pg - RW */ #define E1000_RXCSUM 0x05000 /* Rx Checksum Control - RW */ #define E1000_RLPML 0x05004 /* Rx Long Packet Max Length */ #define E1000_RFCTL 0x05008 /* Receive Filter Control*/ #define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ #define E1000_RA 0x05400 /* Receive Address - RW Array */ #define E1000_RA2 0x054E0 /* 2nd half of Rx address array - RW Array */ #define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ #define E1000_VT_CTL 0x0581C /* VMDq Control - RW */ #define E1000_CIAA 0x05B88 /* Config Indirect Access Address - RW */ #define E1000_CIAD 0x05B8C /* Config Indirect Access Data - RW */ #define E1000_VFQA0 0x0B000 /* VLAN Filter Queue Array 0 - RW Array */ #define E1000_VFQA1 0x0B200 /* VLAN Filter Queue Array 1 - RW Array */ #define E1000_WUC 0x05800 /* Wakeup Control - RW */ #define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */ #define E1000_WUS 0x05810 /* Wakeup Status - RO */ #define E1000_MANC 0x05820 /* Management Control - RW */ #define E1000_IPAV 0x05838 /* IP Address Valid - RW */ #define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */ #define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */ #define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */ #define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */ #define E1000_PBACL 0x05B68 /* MSIx PBA Clear - Read/Write 1's to clear */ #define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */ #define E1000_HOST_IF 0x08800 /* Host Interface */ #define E1000_HIBBA 0x8F40 /* Host Interface Buffer Base Address */ /* Flexible Host Filter Table */ #define E1000_FHFT(_n) (0x09000 + ((_n) * 0x100)) /* Ext Flexible Host Filter Table */ #define E1000_FHFT_EXT(_n) (0x09A00 + ((_n) * 0x100)) #define E1000_KMRNCTRLSTA 0x00034 /* MAC-PHY interface - RW */ #define E1000_MANC2H 0x05860 /* Management Control To Host - RW */ /* Management Decision Filters */ #define E1000_MDEF(_n) (0x05890 + (4 * (_n))) #define E1000_SW_FW_SYNC 0x05B5C /* SW-FW Synchronization - RW */ #define E1000_CCMCTL 0x05B48 /* CCM Control Register */ #define E1000_GIOCTL 0x05B44 /* GIO Analog Control Register */ #define E1000_SCCTL 0x05B4C /* PCIc PLL Configuration Register */ #define E1000_GCR 0x05B00 /* PCI-Ex Control */ #define E1000_GCR2 0x05B64 /* PCI-Ex Control #2 */ #define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */ #define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */ #define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */ #define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */ #define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */ #define E1000_SWSM 0x05B50 /* SW Semaphore */ #define E1000_FWSM 0x05B54 /* FW Semaphore */ /* Driver-only SW semaphore (not used by BOOT agents) */ #define E1000_SWSM2 0x05B58 #define E1000_DCA_ID 0x05B70 /* DCA Requester ID Information - RO */ #define E1000_DCA_CTRL 0x05B74 /* DCA Control - RW */ #define E1000_UFUSE 0x05B78 /* UFUSE - RO */ #define E1000_FFLT_DBG 0x05F04 /* Debug Register */ #define E1000_HICR 0x08F00 /* Host Interface Control */ #define E1000_FWSTS 0x08F0C /* FW Status */ /* RSS registers */ #define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */ #define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */ #define E1000_IMIR(_i) (0x05A80 + ((_i) * 4)) /* Immediate Interrupt */ #define E1000_IMIREXT(_i) (0x05AA0 + ((_i) * 4)) /* Immediate INTR Ext*/ #define E1000_IMIRVP 0x05AC0 /* Immediate INT Rx VLAN Priority -RW */ #define E1000_MSIXBM(_i) (0x01600 + ((_i) * 4)) /* MSI-X Alloc Reg -RW */ #define E1000_RETA(_i) (0x05C00 + ((_i) * 4)) /* Redirection Table - RW */ #define E1000_RSSRK(_i) (0x05C80 + ((_i) * 4)) /* RSS Random Key - RW */ #define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */ #define E1000_RSSIR 0x05868 /* RSS Interrupt Request */ /* VT Registers */ #define E1000_SWPBS 0x03004 /* Switch Packet Buffer Size - RW */ #define E1000_MBVFICR 0x00C80 /* Mailbox VF Cause - RWC */ #define E1000_MBVFIMR 0x00C84 /* Mailbox VF int Mask - RW */ #define E1000_VFLRE 0x00C88 /* VF Register Events - RWC */ #define E1000_VFRE 0x00C8C /* VF Receive Enables */ #define E1000_VFTE 0x00C90 /* VF Transmit Enables */ #define E1000_QDE 0x02408 /* Queue Drop Enable - RW */ #define E1000_DTXSWC 0x03500 /* DMA Tx Switch Control - RW */ #define E1000_WVBR 0x03554 /* VM Wrong Behavior - RWS */ #define E1000_RPLOLR 0x05AF0 /* Replication Offload - RW */ #define E1000_UTA 0x0A000 /* Unicast Table Array - RW */ #define E1000_IOVCTL 0x05BBC /* IOV Control Register */ #define E1000_VMRCTL 0X05D80 /* Virtual Mirror Rule Control */ #define E1000_VMRVLAN 0x05D90 /* Virtual Mirror Rule VLAN */ #define E1000_VMRVM 0x05DA0 /* Virtual Mirror Rule VM */ #define E1000_MDFB 0x03558 /* Malicious Driver free block */ #define E1000_LVMMC 0x03548 /* Last VM Misbehavior cause */ #define E1000_TXSWC 0x05ACC /* Tx Switch Control */ #define E1000_SCCRL 0x05DB0 /* Storm Control Control */ #define E1000_BSCTRH 0x05DB8 /* Broadcast Storm Control Threshold */ #define E1000_MSCTRH 0x05DBC /* Multicast Storm Control Threshold */ /* These act per VF so an array friendly macro is used */ #define E1000_V2PMAILBOX(_n) (0x00C40 + (4 * (_n))) #define E1000_P2VMAILBOX(_n) (0x00C00 + (4 * (_n))) #define E1000_VMBMEM(_n) (0x00800 + (64 * (_n))) #define E1000_VFVMBMEM(_n) (0x00800 + (_n)) #define E1000_VMOLR(_n) (0x05AD0 + (4 * (_n))) /* VLAN Virtual Machine Filter - RW */ #define E1000_VLVF(_n) (0x05D00 + (4 * (_n))) #define E1000_VMVIR(_n) (0x03700 + (4 * (_n))) #define E1000_DVMOLR(_n) (0x0C038 + (0x40 * (_n))) /* DMA VM offload */ #define E1000_VTCTRL(_n) (0x10000 + (0x100 * (_n))) /* VT Control */ #define E1000_TSYNCRXCTL 0x0B620 /* Rx Time Sync Control register - RW */ #define E1000_TSYNCTXCTL 0x0B614 /* Tx Time Sync Control register - RW */ #define E1000_TSYNCRXCFG 0x05F50 /* Time Sync Rx Configuration - RW */ #define E1000_RXSTMPL 0x0B624 /* Rx timestamp Low - RO */ #define E1000_RXSTMPH 0x0B628 /* Rx timestamp High - RO */ #define E1000_RXSATRL 0x0B62C /* Rx timestamp attribute low - RO */ #define E1000_RXSATRH 0x0B630 /* Rx timestamp attribute high - RO */ #define E1000_TXSTMPL 0x0B618 /* Tx timestamp value Low - RO */ #define E1000_TXSTMPH 0x0B61C /* Tx timestamp value High - RO */ #define E1000_SYSTIML 0x0B600 /* System time register Low - RO */ #define E1000_SYSTIMH 0x0B604 /* System time register High - RO */ #define E1000_TIMINCA 0x0B608 /* Increment attributes register - RW */ #define E1000_TIMADJL 0x0B60C /* Time sync time adjustment offset Low - RW */ #define E1000_TIMADJH 0x0B610 /* Time sync time adjustment offset High - RW */ #define E1000_TSAUXC 0x0B640 /* Timesync Auxiliary Control register */ #define E1000_SYSSTMPL 0x0B648 /* HH Timesync system stamp low register */ #define E1000_SYSSTMPH 0x0B64C /* HH Timesync system stamp hi register */ #define E1000_PLTSTMPL 0x0B640 /* HH Timesync platform stamp low register */ #define E1000_PLTSTMPH 0x0B644 /* HH Timesync platform stamp hi register */ #define E1000_SYSTIMR 0x0B6F8 /* System time register Residue */ #define E1000_TSICR 0x0B66C /* Interrupt Cause Register */ #define E1000_TSIM 0x0B674 /* Interrupt Mask Register */ #define E1000_RXMTRL 0x0B634 /* Time sync Rx EtherType and Msg Type - RW */ #define E1000_RXUDP 0x0B638 /* Time Sync Rx UDP Port - RW */ /* Filtering Registers */ #define E1000_SAQF(_n) (0x05980 + (4 * (_n))) /* Source Address Queue Fltr */ #define E1000_DAQF(_n) (0x059A0 + (4 * (_n))) /* Dest Address Queue Fltr */ #define E1000_SPQF(_n) (0x059C0 + (4 * (_n))) /* Source Port Queue Fltr */ #define E1000_FTQF(_n) (0x059E0 + (4 * (_n))) /* 5-tuple Queue Fltr */ #define E1000_TTQF(_n) (0x059E0 + (4 * (_n))) /* 2-tuple Queue Fltr */ #define E1000_SYNQF(_n) (0x055FC + (4 * (_n))) /* SYN Packet Queue Fltr */ #define E1000_ETQF(_n) (0x05CB0 + (4 * (_n))) /* EType Queue Fltr */ #define E1000_RTTDCS 0x3600 /* Reedtown Tx Desc plane control and status */ #define E1000_RTTPCS 0x3474 /* Reedtown Tx Packet Plane control and status */ #define E1000_RTRPCS 0x2474 /* Rx packet plane control and status */ #define E1000_RTRUP2TC 0x05AC4 /* Rx User Priority to Traffic Class */ #define E1000_RTTUP2TC 0x0418 /* Transmit User Priority to Traffic Class */ /* Tx Desc plane TC Rate-scheduler config */ #define E1000_RTTDTCRC(_n) (0x3610 + ((_n) * 4)) /* Tx Packet plane TC Rate-Scheduler Config */ #define E1000_RTTPTCRC(_n) (0x3480 + ((_n) * 4)) /* Rx Packet plane TC Rate-Scheduler Config */ #define E1000_RTRPTCRC(_n) (0x2480 + ((_n) * 4)) /* Tx Desc Plane TC Rate-Scheduler Status */ #define E1000_RTTDTCRS(_n) (0x3630 + ((_n) * 4)) /* Tx Desc Plane TC Rate-Scheduler MMW */ #define E1000_RTTDTCRM(_n) (0x3650 + ((_n) * 4)) /* Tx Packet plane TC Rate-Scheduler Status */ #define E1000_RTTPTCRS(_n) (0x34A0 + ((_n) * 4)) /* Tx Packet plane TC Rate-scheduler MMW */ #define E1000_RTTPTCRM(_n) (0x34C0 + ((_n) * 4)) /* Rx Packet plane TC Rate-Scheduler Status */ #define E1000_RTRPTCRS(_n) (0x24A0 + ((_n) * 4)) /* Rx Packet plane TC Rate-Scheduler MMW */ #define E1000_RTRPTCRM(_n) (0x24C0 + ((_n) * 4)) /* Tx Desc plane VM Rate-Scheduler MMW*/ #define E1000_RTTDVMRM(_n) (0x3670 + ((_n) * 4)) /* Tx BCN Rate-Scheduler MMW */ #define E1000_RTTBCNRM(_n) (0x3690 + ((_n) * 4)) #define E1000_RTTDQSEL 0x3604 /* Tx Desc Plane Queue Select */ #define E1000_RTTDVMRC 0x3608 /* Tx Desc Plane VM Rate-Scheduler Config */ #define E1000_RTTDVMRS 0x360C /* Tx Desc Plane VM Rate-Scheduler Status */ #define E1000_RTTBCNRC 0x36B0 /* Tx BCN Rate-Scheduler Config */ #define E1000_RTTBCNRS 0x36B4 /* Tx BCN Rate-Scheduler Status */ #define E1000_RTTBCNCR 0xB200 /* Tx BCN Control Register */ #define E1000_RTTBCNTG 0x35A4 /* Tx BCN Tagging */ #define E1000_RTTBCNCP 0xB208 /* Tx BCN Congestion point */ #define E1000_RTRBCNCR 0xB20C /* Rx BCN Control Register */ #define E1000_RTTBCNRD 0x36B8 /* Tx BCN Rate Drift */ #define E1000_PFCTOP 0x1080 /* Priority Flow Control Type and Opcode */ #define E1000_RTTBCNIDX 0xB204 /* Tx BCN Congestion Point */ #define E1000_RTTBCNACH 0x0B214 /* Tx BCN Control High */ #define E1000_RTTBCNACL 0x0B210 /* Tx BCN Control Low */ /* DMA Coalescing registers */ #define E1000_DMACR 0x02508 /* Control Register */ #define E1000_DMCTXTH 0x03550 /* Transmit Threshold */ #define E1000_DMCTLX 0x02514 /* Time to Lx Request */ #define E1000_DMCRTRH 0x05DD0 /* Receive Packet Rate Threshold */ #define E1000_DMCCNT 0x05DD4 /* Current Rx Count */ #define E1000_FCRTC 0x02170 /* Flow Control Rx high watermark */ #define E1000_PCIEMISC 0x05BB8 /* PCIE misc config register */ /* PCIe Parity Status Register */ #define E1000_PCIEERRSTS 0x05BA8 #define E1000_PROXYS 0x5F64 /* Proxying Status */ #define E1000_PROXYFC 0x5F60 /* Proxying Filter Control */ /* Thermal sensor configuration and status registers */ #define E1000_THMJT 0x08100 /* Junction Temperature */ #define E1000_THLOWTC 0x08104 /* Low Threshold Control */ #define E1000_THMIDTC 0x08108 /* Mid Threshold Control */ #define E1000_THHIGHTC 0x0810C /* High Threshold Control */ #define E1000_THSTAT 0x08110 /* Thermal Sensor Status */ /* Energy Efficient Ethernet "EEE" registers */ #define E1000_IPCNFG 0x0E38 /* Internal PHY Configuration */ #define E1000_LTRC 0x01A0 /* Latency Tolerance Reporting Control */ #define E1000_EEER 0x0E30 /* Energy Efficient Ethernet "EEE"*/ #define E1000_EEE_SU 0x0E34 /* EEE Setup */ #define E1000_TLPIC 0x4148 /* EEE Tx LPI Count - TLPIC */ #define E1000_RLPIC 0x414C /* EEE Rx LPI Count - RLPIC */ /* OS2BMC Registers */ #define E1000_B2OSPC 0x08FE0 /* BMC2OS packets sent by BMC */ #define E1000_B2OGPRC 0x04158 /* BMC2OS packets received by host */ #define E1000_O2BGPTC 0x08FE4 /* OS2BMC packets received by BMC */ #define E1000_O2BSPC 0x0415C /* OS2BMC packets transmitted by host */ #define E1000_DOBFFCTL 0x3F24 /* DMA OBFF Control Register */ #endif