Index: head/sys/vm/vm_page.c =================================================================== --- head/sys/vm/vm_page.c (revision 327167) +++ head/sys/vm/vm_page.c (revision 327168) @@ -1,4006 +1,3995 @@ /*- * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) * * Copyright (c) 1991 Regents of the University of California. * All rights reserved. * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 */ /*- * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Authors: Avadis Tevanian, Jr., Michael Wayne Young * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * GENERAL RULES ON VM_PAGE MANIPULATION * * - A page queue lock is required when adding or removing a page from a * page queue regardless of other locks or the busy state of a page. * * * In general, no thread besides the page daemon can acquire or * hold more than one page queue lock at a time. * * * The page daemon can acquire and hold any pair of page queue * locks in any order. * * - The object lock is required when inserting or removing * pages from an object (vm_page_insert() or vm_page_remove()). * */ /* * Resident memory management module. */ #include __FBSDID("$FreeBSD$"); #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Associated with page of user-allocatable memory is a * page structure. */ struct vm_domain vm_dom[MAXMEMDOM]; struct mtx_padalign __exclusive_cache_line vm_page_queue_free_mtx; struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT]; /* * bogus page -- for I/O to/from partially complete buffers, * or for paging into sparsely invalid regions. */ vm_page_t bogus_page; vm_page_t vm_page_array; long vm_page_array_size; long first_page; static int boot_pages = UMA_BOOT_PAGES; SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &boot_pages, 0, "number of pages allocated for bootstrapping the VM system"); static int pa_tryrelock_restart; SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD, &pa_tryrelock_restart, 0, "Number of tryrelock restarts"); static TAILQ_HEAD(, vm_page) blacklist_head; static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS); SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages"); /* Is the page daemon waiting for free pages? */ static int vm_pageout_pages_needed; static uma_zone_t fakepg_zone; static void vm_page_alloc_check(vm_page_t m); static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); static void vm_page_enqueue(uint8_t queue, vm_page_t m); static void vm_page_free_phys(vm_page_t m); static void vm_page_free_wakeup(void); static void vm_page_init(void *dummy); static int vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, vm_page_t mpred); static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred); static int vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run, vm_paddr_t high); static int vm_page_alloc_fail(vm_object_t object, int req); SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL); static void vm_page_init(void *dummy) { fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL | VM_ALLOC_WIRED); } /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ #if PAGE_SIZE == 32768 #ifdef CTASSERT CTASSERT(sizeof(u_long) >= 8); #endif #endif /* * Try to acquire a physical address lock while a pmap is locked. If we * fail to trylock we unlock and lock the pmap directly and cache the * locked pa in *locked. The caller should then restart their loop in case * the virtual to physical mapping has changed. */ int vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked) { vm_paddr_t lockpa; lockpa = *locked; *locked = pa; if (lockpa) { PA_LOCK_ASSERT(lockpa, MA_OWNED); if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa)) return (0); PA_UNLOCK(lockpa); } if (PA_TRYLOCK(pa)) return (0); PMAP_UNLOCK(pmap); atomic_add_int(&pa_tryrelock_restart, 1); PA_LOCK(pa); PMAP_LOCK(pmap); return (EAGAIN); } /* * vm_set_page_size: * * Sets the page size, perhaps based upon the memory * size. Must be called before any use of page-size * dependent functions. */ void vm_set_page_size(void) { if (vm_cnt.v_page_size == 0) vm_cnt.v_page_size = PAGE_SIZE; if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) panic("vm_set_page_size: page size not a power of two"); } /* * vm_page_blacklist_next: * * Find the next entry in the provided string of blacklist * addresses. Entries are separated by space, comma, or newline. * If an invalid integer is encountered then the rest of the * string is skipped. Updates the list pointer to the next * character, or NULL if the string is exhausted or invalid. */ static vm_paddr_t vm_page_blacklist_next(char **list, char *end) { vm_paddr_t bad; char *cp, *pos; if (list == NULL || *list == NULL) return (0); if (**list =='\0') { *list = NULL; return (0); } /* * If there's no end pointer then the buffer is coming from * the kenv and we know it's null-terminated. */ if (end == NULL) end = *list + strlen(*list); /* Ensure that strtoq() won't walk off the end */ if (*end != '\0') { if (*end == '\n' || *end == ' ' || *end == ',') *end = '\0'; else { printf("Blacklist not terminated, skipping\n"); *list = NULL; return (0); } } for (pos = *list; *pos != '\0'; pos = cp) { bad = strtoq(pos, &cp, 0); if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') { if (bad == 0) { if (++cp < end) continue; else break; } } else break; if (*cp == '\0' || ++cp >= end) *list = NULL; else *list = cp; return (trunc_page(bad)); } printf("Garbage in RAM blacklist, skipping\n"); *list = NULL; return (0); } /* * vm_page_blacklist_check: * * Iterate through the provided string of blacklist addresses, pulling * each entry out of the physical allocator free list and putting it * onto a list for reporting via the vm.page_blacklist sysctl. */ static void vm_page_blacklist_check(char *list, char *end) { vm_paddr_t pa; vm_page_t m; char *next; int ret; next = list; while (next != NULL) { if ((pa = vm_page_blacklist_next(&next, end)) == 0) continue; m = vm_phys_paddr_to_vm_page(pa); if (m == NULL) continue; mtx_lock(&vm_page_queue_free_mtx); ret = vm_phys_unfree_page(m); mtx_unlock(&vm_page_queue_free_mtx); if (ret == TRUE) { TAILQ_INSERT_TAIL(&blacklist_head, m, listq); if (bootverbose) printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa); } } } /* * vm_page_blacklist_load: * * Search for a special module named "ram_blacklist". It'll be a * plain text file provided by the user via the loader directive * of the same name. */ static void vm_page_blacklist_load(char **list, char **end) { void *mod; u_char *ptr; u_int len; mod = NULL; ptr = NULL; mod = preload_search_by_type("ram_blacklist"); if (mod != NULL) { ptr = preload_fetch_addr(mod); len = preload_fetch_size(mod); } *list = ptr; if (ptr != NULL) *end = ptr + len; else *end = NULL; return; } static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS) { vm_page_t m; struct sbuf sbuf; int error, first; first = 1; error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); sbuf_new_for_sysctl(&sbuf, NULL, 128, req); TAILQ_FOREACH(m, &blacklist_head, listq) { sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",", (uintmax_t)m->phys_addr); first = 0; } error = sbuf_finish(&sbuf); sbuf_delete(&sbuf); return (error); } static void vm_page_domain_init(struct vm_domain *vmd) { struct vm_pagequeue *pq; int i; *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = "vm inactive pagequeue"; *__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) = &vm_cnt.v_inactive_count; *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = "vm active pagequeue"; *__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) = &vm_cnt.v_active_count; *__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) = "vm laundry pagequeue"; *__DECONST(int **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_vcnt) = &vm_cnt.v_laundry_count; *__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) = "vm unswappable pagequeue"; /* Unswappable dirty pages are counted as being in the laundry. */ *__DECONST(int **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_vcnt) = &vm_cnt.v_laundry_count; vmd->vmd_page_count = 0; vmd->vmd_free_count = 0; vmd->vmd_segs = 0; vmd->vmd_oom = FALSE; for (i = 0; i < PQ_COUNT; i++) { pq = &vmd->vmd_pagequeues[i]; TAILQ_INIT(&pq->pq_pl); mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", MTX_DEF | MTX_DUPOK); } } /* * Initialize a physical page in preparation for adding it to the free * lists. */ static void vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind) { m->object = NULL; m->wire_count = 0; m->busy_lock = VPB_UNBUSIED; m->hold_count = 0; m->flags = 0; m->phys_addr = pa; m->queue = PQ_NONE; m->psind = 0; m->segind = segind; m->order = VM_NFREEORDER; m->pool = VM_FREEPOOL_DEFAULT; m->valid = m->dirty = 0; pmap_page_init(m); } /* * vm_page_startup: * * Initializes the resident memory module. Allocates physical memory for * bootstrapping UMA and some data structures that are used to manage * physical pages. Initializes these structures, and populates the free * page queues. */ vm_offset_t vm_page_startup(vm_offset_t vaddr) { struct vm_domain *vmd; struct vm_phys_seg *seg; vm_page_t m; char *list, *listend; vm_offset_t mapped; vm_paddr_t end, high_avail, low_avail, new_end, page_range, size; vm_paddr_t biggestsize, last_pa, pa; u_long pagecount; int biggestone, i, pages_per_zone, segind; biggestsize = 0; biggestone = 0; vaddr = round_page(vaddr); for (i = 0; phys_avail[i + 1]; i += 2) { phys_avail[i] = round_page(phys_avail[i]); phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); } for (i = 0; phys_avail[i + 1]; i += 2) { size = phys_avail[i + 1] - phys_avail[i]; if (size > biggestsize) { biggestone = i; biggestsize = size; } } end = phys_avail[biggestone+1]; /* * Initialize the page and queue locks. */ mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF); for (i = 0; i < PA_LOCK_COUNT; i++) mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); for (i = 0; i < vm_ndomains; i++) vm_page_domain_init(&vm_dom[i]); /* * Almost all of the pages needed for bootstrapping UMA are used * for zone structures, so if the number of CPUs results in those * structures taking more than one page each, we set aside more pages * in proportion to the zone structure size. */ pages_per_zone = howmany(sizeof(struct uma_zone) + sizeof(struct uma_cache) * (mp_maxid + 1) + roundup2(sizeof(struct uma_slab), sizeof(void *)), UMA_SLAB_SIZE); if (pages_per_zone > 1) { /* Reserve more pages so that we don't run out. */ boot_pages = UMA_BOOT_PAGES_ZONES * pages_per_zone; } /* * Allocate memory for use when boot strapping the kernel memory * allocator. * * CTFLAG_RDTUN doesn't work during the early boot process, so we must * manually fetch the value. */ TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages); new_end = end - (boot_pages * UMA_SLAB_SIZE); new_end = trunc_page(new_end); mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE); bzero((void *)mapped, end - new_end); uma_startup((void *)mapped, boot_pages); #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ defined(__i386__) || defined(__mips__) /* * Allocate a bitmap to indicate that a random physical page * needs to be included in a minidump. * * The amd64 port needs this to indicate which direct map pages * need to be dumped, via calls to dump_add_page()/dump_drop_page(). * * However, i386 still needs this workspace internally within the * minidump code. In theory, they are not needed on i386, but are * included should the sf_buf code decide to use them. */ last_pa = 0; for (i = 0; dump_avail[i + 1] != 0; i += 2) if (dump_avail[i + 1] > last_pa) last_pa = dump_avail[i + 1]; page_range = last_pa / PAGE_SIZE; vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); new_end -= vm_page_dump_size; vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); bzero((void *)vm_page_dump, vm_page_dump_size); #else (void)last_pa; #endif #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) /* * Include the UMA bootstrap pages and vm_page_dump in a crash dump. * When pmap_map() uses the direct map, they are not automatically * included. */ for (pa = new_end; pa < end; pa += PAGE_SIZE) dump_add_page(pa); #endif phys_avail[biggestone + 1] = new_end; #ifdef __amd64__ /* * Request that the physical pages underlying the message buffer be * included in a crash dump. Since the message buffer is accessed * through the direct map, they are not automatically included. */ pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); last_pa = pa + round_page(msgbufsize); while (pa < last_pa) { dump_add_page(pa); pa += PAGE_SIZE; } #endif /* * Compute the number of pages of memory that will be available for * use, taking into account the overhead of a page structure per page. * In other words, solve * "available physical memory" - round_page(page_range * * sizeof(struct vm_page)) = page_range * PAGE_SIZE * for page_range. */ low_avail = phys_avail[0]; high_avail = phys_avail[1]; for (i = 0; i < vm_phys_nsegs; i++) { if (vm_phys_segs[i].start < low_avail) low_avail = vm_phys_segs[i].start; if (vm_phys_segs[i].end > high_avail) high_avail = vm_phys_segs[i].end; } /* Skip the first chunk. It is already accounted for. */ for (i = 2; phys_avail[i + 1] != 0; i += 2) { if (phys_avail[i] < low_avail) low_avail = phys_avail[i]; if (phys_avail[i + 1] > high_avail) high_avail = phys_avail[i + 1]; } first_page = low_avail / PAGE_SIZE; #ifdef VM_PHYSSEG_SPARSE size = 0; for (i = 0; i < vm_phys_nsegs; i++) size += vm_phys_segs[i].end - vm_phys_segs[i].start; for (i = 0; phys_avail[i + 1] != 0; i += 2) size += phys_avail[i + 1] - phys_avail[i]; #elif defined(VM_PHYSSEG_DENSE) size = high_avail - low_avail; #else #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." #endif #ifdef VM_PHYSSEG_DENSE /* * In the VM_PHYSSEG_DENSE case, the number of pages can account for * the overhead of a page structure per page only if vm_page_array is * allocated from the last physical memory chunk. Otherwise, we must * allocate page structures representing the physical memory * underlying vm_page_array, even though they will not be used. */ if (new_end != high_avail) page_range = size / PAGE_SIZE; else #endif { page_range = size / (PAGE_SIZE + sizeof(struct vm_page)); /* * If the partial bytes remaining are large enough for * a page (PAGE_SIZE) without a corresponding * 'struct vm_page', then new_end will contain an * extra page after subtracting the length of the VM * page array. Compensate by subtracting an extra * page from new_end. */ if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) { if (new_end == high_avail) high_avail -= PAGE_SIZE; new_end -= PAGE_SIZE; } } end = new_end; /* * Reserve an unmapped guard page to trap access to vm_page_array[-1]. * However, because this page is allocated from KVM, out-of-bounds * accesses using the direct map will not be trapped. */ vaddr += PAGE_SIZE; /* * Allocate physical memory for the page structures, and map it. */ new_end = trunc_page(end - page_range * sizeof(struct vm_page)); mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE); vm_page_array = (vm_page_t)mapped; vm_page_array_size = page_range; #if VM_NRESERVLEVEL > 0 /* * Allocate physical memory for the reservation management system's * data structures, and map it. */ if (high_avail == end) high_avail = new_end; new_end = vm_reserv_startup(&vaddr, new_end, high_avail); #endif #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) /* * Include vm_page_array and vm_reserv_array in a crash dump. */ for (pa = new_end; pa < end; pa += PAGE_SIZE) dump_add_page(pa); #endif phys_avail[biggestone + 1] = new_end; /* * Add physical memory segments corresponding to the available * physical pages. */ for (i = 0; phys_avail[i + 1] != 0; i += 2) vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]); /* * Initialize the physical memory allocator. */ vm_phys_init(); /* * Initialize the page structures and add every available page to the * physical memory allocator's free lists. */ vm_cnt.v_page_count = 0; vm_cnt.v_free_count = 0; for (segind = 0; segind < vm_phys_nsegs; segind++) { seg = &vm_phys_segs[segind]; for (m = seg->first_page, pa = seg->start; pa < seg->end; m++, pa += PAGE_SIZE) vm_page_init_page(m, pa, segind); /* * Add the segment to the free lists only if it is covered by * one of the ranges in phys_avail. Because we've added the * ranges to the vm_phys_segs array, we can assume that each * segment is either entirely contained in one of the ranges, * or doesn't overlap any of them. */ for (i = 0; phys_avail[i + 1] != 0; i += 2) { if (seg->start < phys_avail[i] || seg->end > phys_avail[i + 1]) continue; m = seg->first_page; pagecount = (u_long)atop(seg->end - seg->start); mtx_lock(&vm_page_queue_free_mtx); vm_phys_free_contig(m, pagecount); vm_phys_freecnt_adj(m, (int)pagecount); mtx_unlock(&vm_page_queue_free_mtx); vm_cnt.v_page_count += (u_int)pagecount; vmd = &vm_dom[seg->domain]; vmd->vmd_page_count += (u_int)pagecount; vmd->vmd_segs |= 1UL << m->segind; break; } } /* * Remove blacklisted pages from the physical memory allocator. */ TAILQ_INIT(&blacklist_head); vm_page_blacklist_load(&list, &listend); vm_page_blacklist_check(list, listend); list = kern_getenv("vm.blacklist"); vm_page_blacklist_check(list, NULL); freeenv(list); #if VM_NRESERVLEVEL > 0 /* * Initialize the reservation management system. */ vm_reserv_init(); #endif return (vaddr); } void vm_page_reference(vm_page_t m) { vm_page_aflag_set(m, PGA_REFERENCED); } /* * vm_page_busy_downgrade: * * Downgrade an exclusive busy page into a single shared busy page. */ void vm_page_busy_downgrade(vm_page_t m) { u_int x; bool locked; vm_page_assert_xbusied(m); locked = mtx_owned(vm_page_lockptr(m)); for (;;) { x = m->busy_lock; x &= VPB_BIT_WAITERS; if (x != 0 && !locked) vm_page_lock(m); if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1))) break; if (x != 0 && !locked) vm_page_unlock(m); } if (x != 0) { wakeup(m); if (!locked) vm_page_unlock(m); } } /* * vm_page_sbusied: * * Return a positive value if the page is shared busied, 0 otherwise. */ int vm_page_sbusied(vm_page_t m) { u_int x; x = m->busy_lock; return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); } /* * vm_page_sunbusy: * * Shared unbusy a page. */ void vm_page_sunbusy(vm_page_t m) { u_int x; vm_page_lock_assert(m, MA_NOTOWNED); vm_page_assert_sbusied(m); for (;;) { x = m->busy_lock; if (VPB_SHARERS(x) > 1) { if (atomic_cmpset_int(&m->busy_lock, x, x - VPB_ONE_SHARER)) break; continue; } if ((x & VPB_BIT_WAITERS) == 0) { KASSERT(x == VPB_SHARERS_WORD(1), ("vm_page_sunbusy: invalid lock state")); if (atomic_cmpset_int(&m->busy_lock, VPB_SHARERS_WORD(1), VPB_UNBUSIED)) break; continue; } KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS), ("vm_page_sunbusy: invalid lock state for waiters")); vm_page_lock(m); if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) { vm_page_unlock(m); continue; } wakeup(m); vm_page_unlock(m); break; } } /* * vm_page_busy_sleep: * * Sleep and release the page lock, using the page pointer as wchan. * This is used to implement the hard-path of busying mechanism. * * The given page must be locked. * * If nonshared is true, sleep only if the page is xbusy. */ void vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared) { u_int x; vm_page_assert_locked(m); x = m->busy_lock; if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) || ((x & VPB_BIT_WAITERS) == 0 && !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) { vm_page_unlock(m); return; } msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0); } /* * vm_page_trysbusy: * * Try to shared busy a page. * If the operation succeeds 1 is returned otherwise 0. * The operation never sleeps. */ int vm_page_trysbusy(vm_page_t m) { u_int x; for (;;) { x = m->busy_lock; if ((x & VPB_BIT_SHARED) == 0) return (0); if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER)) return (1); } } static void vm_page_xunbusy_locked(vm_page_t m) { vm_page_assert_xbusied(m); vm_page_assert_locked(m); atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); /* There is a waiter, do wakeup() instead of vm_page_flash(). */ wakeup(m); } void vm_page_xunbusy_maybelocked(vm_page_t m) { bool lockacq; vm_page_assert_xbusied(m); /* * Fast path for unbusy. If it succeeds, we know that there * are no waiters, so we do not need a wakeup. */ if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER, VPB_UNBUSIED)) return; lockacq = !mtx_owned(vm_page_lockptr(m)); if (lockacq) vm_page_lock(m); vm_page_xunbusy_locked(m); if (lockacq) vm_page_unlock(m); } /* * vm_page_xunbusy_hard: * * Called after the first try the exclusive unbusy of a page failed. * It is assumed that the waiters bit is on. */ void vm_page_xunbusy_hard(vm_page_t m) { vm_page_assert_xbusied(m); vm_page_lock(m); vm_page_xunbusy_locked(m); vm_page_unlock(m); } /* * vm_page_flash: * * Wakeup anyone waiting for the page. * The ownership bits do not change. * * The given page must be locked. */ void vm_page_flash(vm_page_t m) { u_int x; vm_page_lock_assert(m, MA_OWNED); for (;;) { x = m->busy_lock; if ((x & VPB_BIT_WAITERS) == 0) return; if (atomic_cmpset_int(&m->busy_lock, x, x & (~VPB_BIT_WAITERS))) break; } wakeup(m); } /* * Avoid releasing and reacquiring the same page lock. */ void vm_page_change_lock(vm_page_t m, struct mtx **mtx) { struct mtx *mtx1; mtx1 = vm_page_lockptr(m); if (*mtx == mtx1) return; if (*mtx != NULL) mtx_unlock(*mtx); *mtx = mtx1; mtx_lock(mtx1); } /* * Keep page from being freed by the page daemon * much of the same effect as wiring, except much lower * overhead and should be used only for *very* temporary * holding ("wiring"). */ void vm_page_hold(vm_page_t mem) { vm_page_lock_assert(mem, MA_OWNED); mem->hold_count++; } void vm_page_unhold(vm_page_t mem) { vm_page_lock_assert(mem, MA_OWNED); KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!")); --mem->hold_count; if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0) vm_page_free_toq(mem); } /* * vm_page_unhold_pages: * * Unhold each of the pages that is referenced by the given array. */ void vm_page_unhold_pages(vm_page_t *ma, int count) { struct mtx *mtx; mtx = NULL; for (; count != 0; count--) { vm_page_change_lock(*ma, &mtx); vm_page_unhold(*ma); ma++; } if (mtx != NULL) mtx_unlock(mtx); } vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa) { vm_page_t m; #ifdef VM_PHYSSEG_SPARSE m = vm_phys_paddr_to_vm_page(pa); if (m == NULL) m = vm_phys_fictitious_to_vm_page(pa); return (m); #elif defined(VM_PHYSSEG_DENSE) long pi; pi = atop(pa); if (pi >= first_page && (pi - first_page) < vm_page_array_size) { m = &vm_page_array[pi - first_page]; return (m); } return (vm_phys_fictitious_to_vm_page(pa)); #else #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." #endif } /* * vm_page_getfake: * * Create a fictitious page with the specified physical address and * memory attribute. The memory attribute is the only the machine- * dependent aspect of a fictitious page that must be initialized. */ vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) { vm_page_t m; m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); vm_page_initfake(m, paddr, memattr); return (m); } void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) { if ((m->flags & PG_FICTITIOUS) != 0) { /* * The page's memattr might have changed since the * previous initialization. Update the pmap to the * new memattr. */ goto memattr; } m->phys_addr = paddr; m->queue = PQ_NONE; /* Fictitious pages don't use "segind". */ m->flags = PG_FICTITIOUS; /* Fictitious pages don't use "order" or "pool". */ m->oflags = VPO_UNMANAGED; m->busy_lock = VPB_SINGLE_EXCLUSIVER; m->wire_count = 1; pmap_page_init(m); memattr: pmap_page_set_memattr(m, memattr); } /* * vm_page_putfake: * * Release a fictitious page. */ void vm_page_putfake(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); KASSERT((m->flags & PG_FICTITIOUS) != 0, ("vm_page_putfake: bad page %p", m)); uma_zfree(fakepg_zone, m); } /* * vm_page_updatefake: * * Update the given fictitious page to the specified physical address and * memory attribute. */ void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) { KASSERT((m->flags & PG_FICTITIOUS) != 0, ("vm_page_updatefake: bad page %p", m)); m->phys_addr = paddr; pmap_page_set_memattr(m, memattr); } /* * vm_page_free: * * Free a page. */ void vm_page_free(vm_page_t m) { m->flags &= ~PG_ZERO; vm_page_free_toq(m); } /* * vm_page_free_zero: * * Free a page to the zerod-pages queue */ void vm_page_free_zero(vm_page_t m) { m->flags |= PG_ZERO; vm_page_free_toq(m); } /* * Unbusy and handle the page queueing for a page from a getpages request that * was optionally read ahead or behind. */ void vm_page_readahead_finish(vm_page_t m) { /* We shouldn't put invalid pages on queues. */ KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m)); /* * Since the page is not the actually needed one, whether it should * be activated or deactivated is not obvious. Empirical results * have shown that deactivating the page is usually the best choice, * unless the page is wanted by another thread. */ vm_page_lock(m); if ((m->busy_lock & VPB_BIT_WAITERS) != 0) vm_page_activate(m); else vm_page_deactivate(m); vm_page_unlock(m); vm_page_xunbusy(m); } /* * vm_page_sleep_if_busy: * * Sleep and release the page queues lock if the page is busied. * Returns TRUE if the thread slept. * * The given page must be unlocked and object containing it must * be locked. */ int vm_page_sleep_if_busy(vm_page_t m, const char *msg) { vm_object_t obj; vm_page_lock_assert(m, MA_NOTOWNED); VM_OBJECT_ASSERT_WLOCKED(m->object); if (vm_page_busied(m)) { /* * The page-specific object must be cached because page * identity can change during the sleep, causing the * re-lock of a different object. * It is assumed that a reference to the object is already * held by the callers. */ obj = m->object; vm_page_lock(m); VM_OBJECT_WUNLOCK(obj); vm_page_busy_sleep(m, msg, false); VM_OBJECT_WLOCK(obj); return (TRUE); } return (FALSE); } /* * vm_page_dirty_KBI: [ internal use only ] * * Set all bits in the page's dirty field. * * The object containing the specified page must be locked if the * call is made from the machine-independent layer. * * See vm_page_clear_dirty_mask(). * * This function should only be called by vm_page_dirty(). */ void vm_page_dirty_KBI(vm_page_t m) { /* Refer to this operation by its public name. */ KASSERT(m->valid == VM_PAGE_BITS_ALL, ("vm_page_dirty: page is invalid!")); m->dirty = VM_PAGE_BITS_ALL; } /* * vm_page_insert: [ internal use only ] * * Inserts the given mem entry into the object and object list. * * The object must be locked. */ int vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) { vm_page_t mpred; VM_OBJECT_ASSERT_WLOCKED(object); mpred = vm_radix_lookup_le(&object->rtree, pindex); return (vm_page_insert_after(m, object, pindex, mpred)); } /* * vm_page_insert_after: * * Inserts the page "m" into the specified object at offset "pindex". * * The page "mpred" must immediately precede the offset "pindex" within * the specified object. * * The object must be locked. */ static int vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, vm_page_t mpred) { vm_page_t msucc; VM_OBJECT_ASSERT_WLOCKED(object); KASSERT(m->object == NULL, ("vm_page_insert_after: page already inserted")); if (mpred != NULL) { KASSERT(mpred->object == object, ("vm_page_insert_after: object doesn't contain mpred")); KASSERT(mpred->pindex < pindex, ("vm_page_insert_after: mpred doesn't precede pindex")); msucc = TAILQ_NEXT(mpred, listq); } else msucc = TAILQ_FIRST(&object->memq); if (msucc != NULL) KASSERT(msucc->pindex > pindex, ("vm_page_insert_after: msucc doesn't succeed pindex")); /* * Record the object/offset pair in this page */ m->object = object; m->pindex = pindex; /* * Now link into the object's ordered list of backed pages. */ if (vm_radix_insert(&object->rtree, m)) { m->object = NULL; m->pindex = 0; return (1); } vm_page_insert_radixdone(m, object, mpred); return (0); } /* * vm_page_insert_radixdone: * * Complete page "m" insertion into the specified object after the * radix trie hooking. * * The page "mpred" must precede the offset "m->pindex" within the * specified object. * * The object must be locked. */ static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) { VM_OBJECT_ASSERT_WLOCKED(object); KASSERT(object != NULL && m->object == object, ("vm_page_insert_radixdone: page %p has inconsistent object", m)); if (mpred != NULL) { KASSERT(mpred->object == object, ("vm_page_insert_after: object doesn't contain mpred")); KASSERT(mpred->pindex < m->pindex, ("vm_page_insert_after: mpred doesn't precede pindex")); } if (mpred != NULL) TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); else TAILQ_INSERT_HEAD(&object->memq, m, listq); /* * Show that the object has one more resident page. */ object->resident_page_count++; /* * Hold the vnode until the last page is released. */ if (object->resident_page_count == 1 && object->type == OBJT_VNODE) vhold(object->handle); /* * Since we are inserting a new and possibly dirty page, * update the object's OBJ_MIGHTBEDIRTY flag. */ if (pmap_page_is_write_mapped(m)) vm_object_set_writeable_dirty(object); } /* * vm_page_remove: * * Removes the specified page from its containing object, but does not * invalidate any backing storage. * * The object must be locked. The page must be locked if it is managed. */ void vm_page_remove(vm_page_t m) { vm_object_t object; vm_page_t mrem; if ((m->oflags & VPO_UNMANAGED) == 0) vm_page_assert_locked(m); if ((object = m->object) == NULL) return; VM_OBJECT_ASSERT_WLOCKED(object); if (vm_page_xbusied(m)) vm_page_xunbusy_maybelocked(m); mrem = vm_radix_remove(&object->rtree, m->pindex); KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m)); /* * Now remove from the object's list of backed pages. */ TAILQ_REMOVE(&object->memq, m, listq); /* * And show that the object has one fewer resident page. */ object->resident_page_count--; /* * The vnode may now be recycled. */ if (object->resident_page_count == 0 && object->type == OBJT_VNODE) vdrop(object->handle); m->object = NULL; } /* * vm_page_lookup: * * Returns the page associated with the object/offset * pair specified; if none is found, NULL is returned. * * The object must be locked. */ vm_page_t vm_page_lookup(vm_object_t object, vm_pindex_t pindex) { VM_OBJECT_ASSERT_LOCKED(object); return (vm_radix_lookup(&object->rtree, pindex)); } /* * vm_page_find_least: * * Returns the page associated with the object with least pindex * greater than or equal to the parameter pindex, or NULL. * * The object must be locked. */ vm_page_t vm_page_find_least(vm_object_t object, vm_pindex_t pindex) { vm_page_t m; VM_OBJECT_ASSERT_LOCKED(object); if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) m = vm_radix_lookup_ge(&object->rtree, pindex); return (m); } /* * Returns the given page's successor (by pindex) within the object if it is * resident; if none is found, NULL is returned. * * The object must be locked. */ vm_page_t vm_page_next(vm_page_t m) { vm_page_t next; VM_OBJECT_ASSERT_LOCKED(m->object); if ((next = TAILQ_NEXT(m, listq)) != NULL) { MPASS(next->object == m->object); if (next->pindex != m->pindex + 1) next = NULL; } return (next); } /* * Returns the given page's predecessor (by pindex) within the object if it is * resident; if none is found, NULL is returned. * * The object must be locked. */ vm_page_t vm_page_prev(vm_page_t m) { vm_page_t prev; VM_OBJECT_ASSERT_LOCKED(m->object); if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) { MPASS(prev->object == m->object); if (prev->pindex != m->pindex - 1) prev = NULL; } return (prev); } /* * Uses the page mnew as a replacement for an existing page at index * pindex which must be already present in the object. * * The existing page must not be on a paging queue. */ vm_page_t vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex) { vm_page_t mold; VM_OBJECT_ASSERT_WLOCKED(object); KASSERT(mnew->object == NULL, ("vm_page_replace: page already in object")); /* * This function mostly follows vm_page_insert() and * vm_page_remove() without the radix, object count and vnode * dance. Double check such functions for more comments. */ mnew->object = object; mnew->pindex = pindex; mold = vm_radix_replace(&object->rtree, mnew); KASSERT(mold->queue == PQ_NONE, ("vm_page_replace: mold is on a paging queue")); /* Keep the resident page list in sorted order. */ TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq); TAILQ_REMOVE(&object->memq, mold, listq); mold->object = NULL; vm_page_xunbusy_maybelocked(mold); /* * The object's resident_page_count does not change because we have * swapped one page for another, but OBJ_MIGHTBEDIRTY. */ if (pmap_page_is_write_mapped(mnew)) vm_object_set_writeable_dirty(object); return (mold); } /* * vm_page_rename: * * Move the given memory entry from its * current object to the specified target object/offset. * * Note: swap associated with the page must be invalidated by the move. We * have to do this for several reasons: (1) we aren't freeing the * page, (2) we are dirtying the page, (3) the VM system is probably * moving the page from object A to B, and will then later move * the backing store from A to B and we can't have a conflict. * * Note: we *always* dirty the page. It is necessary both for the * fact that we moved it, and because we may be invalidating * swap. * * The objects must be locked. */ int vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) { vm_page_t mpred; vm_pindex_t opidx; VM_OBJECT_ASSERT_WLOCKED(new_object); mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex); KASSERT(mpred == NULL || mpred->pindex != new_pindex, ("vm_page_rename: pindex already renamed")); /* * Create a custom version of vm_page_insert() which does not depend * by m_prev and can cheat on the implementation aspects of the * function. */ opidx = m->pindex; m->pindex = new_pindex; if (vm_radix_insert(&new_object->rtree, m)) { m->pindex = opidx; return (1); } /* * The operation cannot fail anymore. The removal must happen before * the listq iterator is tainted. */ m->pindex = opidx; vm_page_lock(m); vm_page_remove(m); /* Return back to the new pindex to complete vm_page_insert(). */ m->pindex = new_pindex; m->object = new_object; vm_page_unlock(m); vm_page_insert_radixdone(m, new_object, mpred); vm_page_dirty(m); return (0); } /* * vm_page_alloc: * * Allocate and return a page that is associated with the specified * object and offset pair. By default, this page is exclusive busied. * * The caller must always specify an allocation class. * * allocation classes: * VM_ALLOC_NORMAL normal process request * VM_ALLOC_SYSTEM system *really* needs a page * VM_ALLOC_INTERRUPT interrupt time request * * optional allocation flags: * VM_ALLOC_COUNT(number) the number of additional pages that the caller * intends to allocate * VM_ALLOC_NOBUSY do not exclusive busy the page * VM_ALLOC_NODUMP do not include the page in a kernel core dump * VM_ALLOC_NOOBJ page is not associated with an object and * should not be exclusive busy * VM_ALLOC_SBUSY shared busy the allocated page * VM_ALLOC_WIRED wire the allocated page * VM_ALLOC_ZERO prefer a zeroed page */ vm_page_t vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) { return (vm_page_alloc_after(object, pindex, req, object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) : NULL)); } vm_page_t vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain, int req) { return (vm_page_alloc_domain_after(object, pindex, domain, req, object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) : NULL)); } /* * Allocate a page in the specified object with the given page index. To * optimize insertion of the page into the object, the caller must also specifiy * the resident page in the object with largest index smaller than the given * page index, or NULL if no such page exists. */ vm_page_t vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, int req, vm_page_t mpred) { struct vm_domain_iterator vi; vm_page_t m; int domain, wait; m = NULL; vm_policy_iterator_init(&vi); wait = req & (VM_ALLOC_WAITFAIL | VM_ALLOC_WAITOK); req &= ~wait; while (vm_domain_iterator_run(&vi, &domain) == 0) { if (vm_domain_iterator_isdone(&vi)) req |= wait; m = vm_page_alloc_domain_after(object, pindex, domain, req, mpred); if (m != NULL) break; } vm_policy_iterator_finish(&vi); return (m); } vm_page_t vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain, int req, vm_page_t mpred) { vm_page_t m; int flags, req_class; u_int free_count; KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), ("inconsistent object(%p)/req(%x)", object, req)); KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0, ("Can't sleep and retry object insertion.")); KASSERT(mpred == NULL || mpred->pindex < pindex, ("mpred %p doesn't precede pindex 0x%jx", mpred, (uintmax_t)pindex)); if (object != NULL) VM_OBJECT_ASSERT_WLOCKED(object); req_class = req & VM_ALLOC_CLASS_MASK; /* * The page daemon is allowed to dig deeper into the free page list. */ if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) req_class = VM_ALLOC_SYSTEM; /* * Allocate a page if the number of free pages exceeds the minimum * for the request class. */ again: m = NULL; mtx_lock(&vm_page_queue_free_mtx); if (vm_cnt.v_free_count > vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM && vm_cnt.v_free_count > vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT && vm_cnt.v_free_count > 0)) { /* * Can we allocate the page from a reservation? */ #if VM_NRESERVLEVEL > 0 if (object == NULL || (object->flags & (OBJ_COLORED | OBJ_FICTITIOUS)) != OBJ_COLORED || (m = vm_reserv_alloc_page(object, pindex, domain, mpred)) == NULL) #endif { /* * If not, allocate it from the free page queues. */ m = vm_phys_alloc_pages(domain, object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); #if VM_NRESERVLEVEL > 0 if (m == NULL && vm_reserv_reclaim_inactive(domain)) { m = vm_phys_alloc_pages(domain, object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); } #endif } } if (m == NULL) { /* * Not allocatable, give up. */ if (vm_page_alloc_fail(object, req)) goto again; return (NULL); } /* * At this point we had better have found a good page. */ KASSERT(m != NULL, ("missing page")); free_count = vm_phys_freecnt_adj(m, -1); mtx_unlock(&vm_page_queue_free_mtx); vm_page_alloc_check(m); /* * Initialize the page. Only the PG_ZERO flag is inherited. */ flags = 0; if ((req & VM_ALLOC_ZERO) != 0) flags = PG_ZERO; flags &= m->flags; if ((req & VM_ALLOC_NODUMP) != 0) flags |= PG_NODUMP; m->flags = flags; m->aflags = 0; m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0; m->busy_lock = VPB_UNBUSIED; if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) m->busy_lock = VPB_SINGLE_EXCLUSIVER; if ((req & VM_ALLOC_SBUSY) != 0) m->busy_lock = VPB_SHARERS_WORD(1); if (req & VM_ALLOC_WIRED) { /* * The page lock is not required for wiring a page until that * page is inserted into the object. */ atomic_add_int(&vm_cnt.v_wire_count, 1); m->wire_count = 1; } m->act_count = 0; if (object != NULL) { if (vm_page_insert_after(m, object, pindex, mpred)) { pagedaemon_wakeup(); if (req & VM_ALLOC_WIRED) { atomic_subtract_int(&vm_cnt.v_wire_count, 1); m->wire_count = 0; } KASSERT(m->object == NULL, ("page %p has object", m)); m->oflags = VPO_UNMANAGED; m->busy_lock = VPB_UNBUSIED; /* Don't change PG_ZERO. */ vm_page_free_toq(m); if (req & VM_ALLOC_WAITFAIL) { VM_OBJECT_WUNLOCK(object); vm_radix_wait(); VM_OBJECT_WLOCK(object); } return (NULL); } /* Ignore device objects; the pager sets "memattr" for them. */ if (object->memattr != VM_MEMATTR_DEFAULT && (object->flags & OBJ_FICTITIOUS) == 0) pmap_page_set_memattr(m, object->memattr); } else m->pindex = pindex; /* * Don't wakeup too often - wakeup the pageout daemon when * we would be nearly out of memory. */ if (vm_paging_needed(free_count)) pagedaemon_wakeup(); return (m); } /* * vm_page_alloc_contig: * * Allocate a contiguous set of physical pages of the given size "npages" * from the free lists. All of the physical pages must be at or above * the given physical address "low" and below the given physical address * "high". The given value "alignment" determines the alignment of the * first physical page in the set. If the given value "boundary" is * non-zero, then the set of physical pages cannot cross any physical * address boundary that is a multiple of that value. Both "alignment" * and "boundary" must be a power of two. * * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, * then the memory attribute setting for the physical pages is configured * to the object's memory attribute setting. Otherwise, the memory * attribute setting for the physical pages is configured to "memattr", * overriding the object's memory attribute setting. However, if the * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the * memory attribute setting for the physical pages cannot be configured * to VM_MEMATTR_DEFAULT. * * The specified object may not contain fictitious pages. * * The caller must always specify an allocation class. * * allocation classes: * VM_ALLOC_NORMAL normal process request * VM_ALLOC_SYSTEM system *really* needs a page * VM_ALLOC_INTERRUPT interrupt time request * * optional allocation flags: * VM_ALLOC_NOBUSY do not exclusive busy the page * VM_ALLOC_NODUMP do not include the page in a kernel core dump * VM_ALLOC_NOOBJ page is not associated with an object and * should not be exclusive busy * VM_ALLOC_SBUSY shared busy the allocated page * VM_ALLOC_WIRED wire the allocated page * VM_ALLOC_ZERO prefer a zeroed page */ vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr) { struct vm_domain_iterator vi; vm_page_t m; int domain, wait; m = NULL; vm_policy_iterator_init(&vi); wait = req & (VM_ALLOC_WAITFAIL | VM_ALLOC_WAITOK); req &= ~wait; while (vm_domain_iterator_run(&vi, &domain) == 0) { if (vm_domain_iterator_isdone(&vi)) req |= wait; m = vm_page_alloc_contig_domain(object, pindex, domain, req, npages, low, high, alignment, boundary, memattr); if (m != NULL) break; } vm_policy_iterator_finish(&vi); return (m); } vm_page_t vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain, int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr) { vm_page_t m, m_ret, mpred; u_int busy_lock, flags, oflags; int req_class; mpred = NULL; /* XXX: pacify gcc */ KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object, req)); KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0, ("Can't sleep and retry object insertion.")); if (object != NULL) { VM_OBJECT_ASSERT_WLOCKED(object); KASSERT((object->flags & OBJ_FICTITIOUS) == 0, ("vm_page_alloc_contig: object %p has fictitious pages", object)); } KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); req_class = req & VM_ALLOC_CLASS_MASK; /* * The page daemon is allowed to dig deeper into the free page list. */ if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) req_class = VM_ALLOC_SYSTEM; if (object != NULL) { mpred = vm_radix_lookup_le(&object->rtree, pindex); KASSERT(mpred == NULL || mpred->pindex != pindex, ("vm_page_alloc_contig: pindex already allocated")); } /* * Can we allocate the pages without the number of free pages falling * below the lower bound for the allocation class? */ again: m_ret = NULL; mtx_lock(&vm_page_queue_free_mtx); if (vm_cnt.v_free_count >= npages + vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM && vm_cnt.v_free_count >= npages + vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT && vm_cnt.v_free_count >= npages)) { /* * Can we allocate the pages from a reservation? */ #if VM_NRESERVLEVEL > 0 retry: if (object == NULL || (object->flags & OBJ_COLORED) == 0 || (m_ret = vm_reserv_alloc_contig(object, pindex, domain, npages, low, high, alignment, boundary, mpred)) == NULL) #endif /* * If not, allocate them from the free page queues. */ m_ret = vm_phys_alloc_contig(domain, npages, low, high, alignment, boundary); #if VM_NRESERVLEVEL > 0 if (m_ret == NULL && vm_reserv_reclaim_contig( domain, npages, low, high, alignment, boundary)) goto retry; #endif } if (m_ret == NULL) { if (vm_page_alloc_fail(object, req)) goto again; return (NULL); } vm_phys_freecnt_adj(m_ret, -npages); mtx_unlock(&vm_page_queue_free_mtx); for (m = m_ret; m < &m_ret[npages]; m++) vm_page_alloc_check(m); /* * Initialize the pages. Only the PG_ZERO flag is inherited. */ flags = 0; if ((req & VM_ALLOC_ZERO) != 0) flags = PG_ZERO; if ((req & VM_ALLOC_NODUMP) != 0) flags |= PG_NODUMP; oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0; busy_lock = VPB_UNBUSIED; if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) busy_lock = VPB_SINGLE_EXCLUSIVER; if ((req & VM_ALLOC_SBUSY) != 0) busy_lock = VPB_SHARERS_WORD(1); if ((req & VM_ALLOC_WIRED) != 0) atomic_add_int(&vm_cnt.v_wire_count, npages); if (object != NULL) { if (object->memattr != VM_MEMATTR_DEFAULT && memattr == VM_MEMATTR_DEFAULT) memattr = object->memattr; } for (m = m_ret; m < &m_ret[npages]; m++) { m->aflags = 0; m->flags = (m->flags | PG_NODUMP) & flags; m->busy_lock = busy_lock; if ((req & VM_ALLOC_WIRED) != 0) m->wire_count = 1; m->act_count = 0; m->oflags = oflags; if (object != NULL) { if (vm_page_insert_after(m, object, pindex, mpred)) { pagedaemon_wakeup(); if ((req & VM_ALLOC_WIRED) != 0) atomic_subtract_int( &vm_cnt.v_wire_count, npages); KASSERT(m->object == NULL, ("page %p has object", m)); mpred = m; for (m = m_ret; m < &m_ret[npages]; m++) { if (m <= mpred && (req & VM_ALLOC_WIRED) != 0) m->wire_count = 0; m->oflags = VPO_UNMANAGED; m->busy_lock = VPB_UNBUSIED; /* Don't change PG_ZERO. */ vm_page_free_toq(m); } if (req & VM_ALLOC_WAITFAIL) { VM_OBJECT_WUNLOCK(object); vm_radix_wait(); VM_OBJECT_WLOCK(object); } return (NULL); } mpred = m; } else m->pindex = pindex; if (memattr != VM_MEMATTR_DEFAULT) pmap_page_set_memattr(m, memattr); pindex++; } if (vm_paging_needed(vm_cnt.v_free_count)) pagedaemon_wakeup(); return (m_ret); } /* * Check a page that has been freshly dequeued from a freelist. */ static void vm_page_alloc_check(vm_page_t m) { KASSERT(m->object == NULL, ("page %p has object", m)); KASSERT(m->queue == PQ_NONE, ("page %p has unexpected queue %d", m, m->queue)); KASSERT(m->wire_count == 0, ("page %p is wired", m)); KASSERT(m->hold_count == 0, ("page %p is held", m)); KASSERT(!vm_page_busied(m), ("page %p is busy", m)); KASSERT(m->dirty == 0, ("page %p is dirty", m)); KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, ("page %p has unexpected memattr %d", m, pmap_page_get_memattr(m))); KASSERT(m->valid == 0, ("free page %p is valid", m)); } /* * vm_page_alloc_freelist: * * Allocate a physical page from the specified free page list. * * The caller must always specify an allocation class. * * allocation classes: * VM_ALLOC_NORMAL normal process request * VM_ALLOC_SYSTEM system *really* needs a page * VM_ALLOC_INTERRUPT interrupt time request * * optional allocation flags: * VM_ALLOC_COUNT(number) the number of additional pages that the caller * intends to allocate * VM_ALLOC_WIRED wire the allocated page * VM_ALLOC_ZERO prefer a zeroed page */ vm_page_t vm_page_alloc_freelist(int freelist, int req) { struct vm_domain_iterator vi; vm_page_t m; int domain, wait; m = NULL; vm_policy_iterator_init(&vi); wait = req & (VM_ALLOC_WAITFAIL | VM_ALLOC_WAITOK); req &= ~wait; while (vm_domain_iterator_run(&vi, &domain) == 0) { if (vm_domain_iterator_isdone(&vi)) req |= wait; m = vm_page_alloc_freelist_domain(domain, freelist, req); if (m != NULL) break; } vm_policy_iterator_finish(&vi); return (m); } vm_page_t vm_page_alloc_freelist_domain(int domain, int freelist, int req) { vm_page_t m; u_int flags, free_count; int req_class; req_class = req & VM_ALLOC_CLASS_MASK; /* * The page daemon is allowed to dig deeper into the free page list. */ if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) req_class = VM_ALLOC_SYSTEM; /* * Do not allocate reserved pages unless the req has asked for it. */ again: mtx_lock(&vm_page_queue_free_mtx); if (vm_cnt.v_free_count > vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM && vm_cnt.v_free_count > vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT && vm_cnt.v_free_count > 0)) m = vm_phys_alloc_freelist_pages(domain, freelist, VM_FREEPOOL_DIRECT, 0); if (m == NULL) { if (vm_page_alloc_fail(NULL, req)) goto again; return (NULL); } free_count = vm_phys_freecnt_adj(m, -1); mtx_unlock(&vm_page_queue_free_mtx); vm_page_alloc_check(m); /* * Initialize the page. Only the PG_ZERO flag is inherited. */ m->aflags = 0; flags = 0; if ((req & VM_ALLOC_ZERO) != 0) flags = PG_ZERO; m->flags &= flags; if ((req & VM_ALLOC_WIRED) != 0) { /* * The page lock is not required for wiring a page that does * not belong to an object. */ atomic_add_int(&vm_cnt.v_wire_count, 1); m->wire_count = 1; } /* Unmanaged pages don't use "act_count". */ m->oflags = VPO_UNMANAGED; if (vm_paging_needed(free_count)) pagedaemon_wakeup(); return (m); } #define VPSC_ANY 0 /* No restrictions. */ #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */ #define VPSC_NOSUPER 2 /* Skip superpages. */ /* * vm_page_scan_contig: * * Scan vm_page_array[] between the specified entries "m_start" and * "m_end" for a run of contiguous physical pages that satisfy the * specified conditions, and return the lowest page in the run. The * specified "alignment" determines the alignment of the lowest physical * page in the run. If the specified "boundary" is non-zero, then the * run of physical pages cannot span a physical address that is a * multiple of "boundary". * * "m_end" is never dereferenced, so it need not point to a vm_page * structure within vm_page_array[]. * * "npages" must be greater than zero. "m_start" and "m_end" must not * span a hole (or discontiguity) in the physical address space. Both * "alignment" and "boundary" must be a power of two. */ vm_page_t vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end, u_long alignment, vm_paddr_t boundary, int options) { struct mtx *m_mtx; vm_object_t object; vm_paddr_t pa; vm_page_t m, m_run; #if VM_NRESERVLEVEL > 0 int level; #endif int m_inc, order, run_ext, run_len; KASSERT(npages > 0, ("npages is 0")); KASSERT(powerof2(alignment), ("alignment is not a power of 2")); KASSERT(powerof2(boundary), ("boundary is not a power of 2")); m_run = NULL; run_len = 0; m_mtx = NULL; for (m = m_start; m < m_end && run_len < npages; m += m_inc) { KASSERT((m->flags & PG_MARKER) == 0, ("page %p is PG_MARKER", m)); KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->wire_count == 1, ("fictitious page %p has invalid wire count", m)); /* * If the current page would be the start of a run, check its * physical address against the end, alignment, and boundary * conditions. If it doesn't satisfy these conditions, either * terminate the scan or advance to the next page that * satisfies the failed condition. */ if (run_len == 0) { KASSERT(m_run == NULL, ("m_run != NULL")); if (m + npages > m_end) break; pa = VM_PAGE_TO_PHYS(m); if ((pa & (alignment - 1)) != 0) { m_inc = atop(roundup2(pa, alignment) - pa); continue; } if (rounddown2(pa ^ (pa + ptoa(npages) - 1), boundary) != 0) { m_inc = atop(roundup2(pa, boundary) - pa); continue; } } else KASSERT(m_run != NULL, ("m_run == NULL")); vm_page_change_lock(m, &m_mtx); m_inc = 1; retry: if (m->wire_count != 0 || m->hold_count != 0) run_ext = 0; #if VM_NRESERVLEVEL > 0 else if ((level = vm_reserv_level(m)) >= 0 && (options & VPSC_NORESERV) != 0) { run_ext = 0; /* Advance to the end of the reservation. */ pa = VM_PAGE_TO_PHYS(m); m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) - pa); } #endif else if ((object = m->object) != NULL) { /* * The page is considered eligible for relocation if * and only if it could be laundered or reclaimed by * the page daemon. */ if (!VM_OBJECT_TRYRLOCK(object)) { mtx_unlock(m_mtx); VM_OBJECT_RLOCK(object); mtx_lock(m_mtx); if (m->object != object) { /* * The page may have been freed. */ VM_OBJECT_RUNLOCK(object); goto retry; } else if (m->wire_count != 0 || m->hold_count != 0) { run_ext = 0; goto unlock; } } KASSERT((m->flags & PG_UNHOLDFREE) == 0, ("page %p is PG_UNHOLDFREE", m)); /* Don't care: PG_NODUMP, PG_ZERO. */ if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP && object->type != OBJT_VNODE) { run_ext = 0; #if VM_NRESERVLEVEL > 0 } else if ((options & VPSC_NOSUPER) != 0 && (level = vm_reserv_level_iffullpop(m)) >= 0) { run_ext = 0; /* Advance to the end of the superpage. */ pa = VM_PAGE_TO_PHYS(m); m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) - pa); #endif } else if (object->memattr == VM_MEMATTR_DEFAULT && m->queue != PQ_NONE && !vm_page_busied(m)) { /* * The page is allocated but eligible for * relocation. Extend the current run by one * page. */ KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, ("page %p has an unexpected memattr", m)); KASSERT((m->oflags & (VPO_SWAPINPROG | VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, ("page %p has unexpected oflags", m)); /* Don't care: VPO_NOSYNC. */ run_ext = 1; } else run_ext = 0; unlock: VM_OBJECT_RUNLOCK(object); #if VM_NRESERVLEVEL > 0 } else if (level >= 0) { /* * The page is reserved but not yet allocated. In * other words, it is still free. Extend the current * run by one page. */ run_ext = 1; #endif } else if ((order = m->order) < VM_NFREEORDER) { /* * The page is enqueued in the physical memory * allocator's free page queues. Moreover, it is the * first page in a power-of-two-sized run of * contiguous free pages. Add these pages to the end * of the current run, and jump ahead. */ run_ext = 1 << order; m_inc = 1 << order; } else { /* * Skip the page for one of the following reasons: (1) * It is enqueued in the physical memory allocator's * free page queues. However, it is not the first * page in a run of contiguous free pages. (This case * rarely occurs because the scan is performed in * ascending order.) (2) It is not reserved, and it is * transitioning from free to allocated. (Conversely, * the transition from allocated to free for managed * pages is blocked by the page lock.) (3) It is * allocated but not contained by an object and not * wired, e.g., allocated by Xen's balloon driver. */ run_ext = 0; } /* * Extend or reset the current run of pages. */ if (run_ext > 0) { if (run_len == 0) m_run = m; run_len += run_ext; } else { if (run_len > 0) { m_run = NULL; run_len = 0; } } } if (m_mtx != NULL) mtx_unlock(m_mtx); if (run_len >= npages) return (m_run); return (NULL); } /* * vm_page_reclaim_run: * * Try to relocate each of the allocated virtual pages within the * specified run of physical pages to a new physical address. Free the * physical pages underlying the relocated virtual pages. A virtual page * is relocatable if and only if it could be laundered or reclaimed by * the page daemon. Whenever possible, a virtual page is relocated to a * physical address above "high". * * Returns 0 if every physical page within the run was already free or * just freed by a successful relocation. Otherwise, returns a non-zero * value indicating why the last attempt to relocate a virtual page was * unsuccessful. * * "req_class" must be an allocation class. */ static int vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run, vm_paddr_t high) { struct mtx *m_mtx; struct spglist free; vm_object_t object; vm_paddr_t pa; vm_page_t m, m_end, m_new; int error, order, req; KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class, ("req_class is not an allocation class")); SLIST_INIT(&free); error = 0; m = m_run; m_end = m_run + npages; m_mtx = NULL; for (; error == 0 && m < m_end; m++) { KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0, ("page %p is PG_FICTITIOUS or PG_MARKER", m)); /* * Avoid releasing and reacquiring the same page lock. */ vm_page_change_lock(m, &m_mtx); retry: if (m->wire_count != 0 || m->hold_count != 0) error = EBUSY; else if ((object = m->object) != NULL) { /* * The page is relocated if and only if it could be * laundered or reclaimed by the page daemon. */ if (!VM_OBJECT_TRYWLOCK(object)) { mtx_unlock(m_mtx); VM_OBJECT_WLOCK(object); mtx_lock(m_mtx); if (m->object != object) { /* * The page may have been freed. */ VM_OBJECT_WUNLOCK(object); goto retry; } else if (m->wire_count != 0 || m->hold_count != 0) { error = EBUSY; goto unlock; } } KASSERT((m->flags & PG_UNHOLDFREE) == 0, ("page %p is PG_UNHOLDFREE", m)); /* Don't care: PG_NODUMP, PG_ZERO. */ if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP && object->type != OBJT_VNODE) error = EINVAL; else if (object->memattr != VM_MEMATTR_DEFAULT) error = EINVAL; else if (m->queue != PQ_NONE && !vm_page_busied(m)) { KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, ("page %p has an unexpected memattr", m)); KASSERT((m->oflags & (VPO_SWAPINPROG | VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, ("page %p has unexpected oflags", m)); /* Don't care: VPO_NOSYNC. */ if (m->valid != 0) { /* * First, try to allocate a new page * that is above "high". Failing * that, try to allocate a new page * that is below "m_run". Allocate * the new page between the end of * "m_run" and "high" only as a last * resort. */ req = req_class | VM_ALLOC_NOOBJ; if ((m->flags & PG_NODUMP) != 0) req |= VM_ALLOC_NODUMP; if (trunc_page(high) != ~(vm_paddr_t)PAGE_MASK) { m_new = vm_page_alloc_contig( NULL, 0, req, 1, round_page(high), ~(vm_paddr_t)0, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT); } else m_new = NULL; if (m_new == NULL) { pa = VM_PAGE_TO_PHYS(m_run); m_new = vm_page_alloc_contig( NULL, 0, req, 1, 0, pa - 1, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT); } if (m_new == NULL) { pa += ptoa(npages); m_new = vm_page_alloc_contig( NULL, 0, req, 1, pa, high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT); } if (m_new == NULL) { error = ENOMEM; goto unlock; } KASSERT(m_new->wire_count == 0, ("page %p is wired", m)); /* * Replace "m" with the new page. For * vm_page_replace(), "m" must be busy * and dequeued. Finally, change "m" * as if vm_page_free() was called. */ if (object->ref_count != 0) pmap_remove_all(m); m_new->aflags = m->aflags; KASSERT(m_new->oflags == VPO_UNMANAGED, ("page %p is managed", m)); m_new->oflags = m->oflags & VPO_NOSYNC; pmap_copy_page(m, m_new); m_new->valid = m->valid; m_new->dirty = m->dirty; m->flags &= ~PG_ZERO; vm_page_xbusy(m); vm_page_remque(m); vm_page_replace_checked(m_new, object, m->pindex, m); m->valid = 0; vm_page_undirty(m); /* * The new page must be deactivated * before the object is unlocked. */ vm_page_change_lock(m_new, &m_mtx); vm_page_deactivate(m_new); } else { m->flags &= ~PG_ZERO; vm_page_remque(m); vm_page_remove(m); KASSERT(m->dirty == 0, ("page %p is dirty", m)); } SLIST_INSERT_HEAD(&free, m, plinks.s.ss); } else error = EBUSY; unlock: VM_OBJECT_WUNLOCK(object); } else { mtx_lock(&vm_page_queue_free_mtx); order = m->order; if (order < VM_NFREEORDER) { /* * The page is enqueued in the physical memory * allocator's free page queues. Moreover, it * is the first page in a power-of-two-sized * run of contiguous free pages. Jump ahead * to the last page within that run, and * continue from there. */ m += (1 << order) - 1; } #if VM_NRESERVLEVEL > 0 else if (vm_reserv_is_page_free(m)) order = 0; #endif mtx_unlock(&vm_page_queue_free_mtx); if (order == VM_NFREEORDER) error = EINVAL; } } if (m_mtx != NULL) mtx_unlock(m_mtx); if ((m = SLIST_FIRST(&free)) != NULL) { mtx_lock(&vm_page_queue_free_mtx); do { SLIST_REMOVE_HEAD(&free, plinks.s.ss); vm_page_free_phys(m); } while ((m = SLIST_FIRST(&free)) != NULL); vm_page_free_wakeup(); mtx_unlock(&vm_page_queue_free_mtx); } return (error); } #define NRUNS 16 CTASSERT(powerof2(NRUNS)); #define RUN_INDEX(count) ((count) & (NRUNS - 1)) #define MIN_RECLAIM 8 /* * vm_page_reclaim_contig: * * Reclaim allocated, contiguous physical memory satisfying the specified * conditions by relocating the virtual pages using that physical memory. * Returns true if reclamation is successful and false otherwise. Since * relocation requires the allocation of physical pages, reclamation may * fail due to a shortage of free pages. When reclamation fails, callers * are expected to perform VM_WAIT before retrying a failed allocation * operation, e.g., vm_page_alloc_contig(). * * The caller must always specify an allocation class through "req". * * allocation classes: * VM_ALLOC_NORMAL normal process request * VM_ALLOC_SYSTEM system *really* needs a page * VM_ALLOC_INTERRUPT interrupt time request * * The optional allocation flags are ignored. * * "npages" must be greater than zero. Both "alignment" and "boundary" * must be a power of two. */ bool vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) { vm_paddr_t curr_low; vm_page_t m_run, m_runs[NRUNS]; u_long count, reclaimed; int error, i, options, req_class; KASSERT(npages > 0, ("npages is 0")); KASSERT(powerof2(alignment), ("alignment is not a power of 2")); KASSERT(powerof2(boundary), ("boundary is not a power of 2")); req_class = req & VM_ALLOC_CLASS_MASK; /* * The page daemon is allowed to dig deeper into the free page list. */ if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) req_class = VM_ALLOC_SYSTEM; /* * Return if the number of free pages cannot satisfy the requested * allocation. */ count = vm_cnt.v_free_count; if (count < npages + vm_cnt.v_free_reserved || (count < npages + vm_cnt.v_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) || (count < npages && req_class == VM_ALLOC_INTERRUPT)) return (false); /* * Scan up to three times, relaxing the restrictions ("options") on * the reclamation of reservations and superpages each time. */ for (options = VPSC_NORESERV;;) { /* * Find the highest runs that satisfy the given constraints * and restrictions, and record them in "m_runs". */ curr_low = low; count = 0; for (;;) { m_run = vm_phys_scan_contig(npages, curr_low, high, alignment, boundary, options); if (m_run == NULL) break; curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages); m_runs[RUN_INDEX(count)] = m_run; count++; } /* * Reclaim the highest runs in LIFO (descending) order until * the number of reclaimed pages, "reclaimed", is at least * MIN_RECLAIM. Reset "reclaimed" each time because each * reclamation is idempotent, and runs will (likely) recur * from one scan to the next as restrictions are relaxed. */ reclaimed = 0; for (i = 0; count > 0 && i < NRUNS; i++) { count--; m_run = m_runs[RUN_INDEX(count)]; error = vm_page_reclaim_run(req_class, npages, m_run, high); if (error == 0) { reclaimed += npages; if (reclaimed >= MIN_RECLAIM) return (true); } } /* * Either relax the restrictions on the next scan or return if * the last scan had no restrictions. */ if (options == VPSC_NORESERV) options = VPSC_NOSUPER; else if (options == VPSC_NOSUPER) options = VPSC_ANY; else if (options == VPSC_ANY) return (reclaimed != 0); } } /* * vm_wait: (also see VM_WAIT macro) * * Sleep until free pages are available for allocation. * - Called in various places before memory allocations. */ static void _vm_wait(void) { mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); if (curproc == pageproc) { vm_pageout_pages_needed = 1; msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx, PDROP | PSWP, "VMWait", 0); } else { - if (__predict_false(pageproc == NULL)) + if (pageproc == NULL) panic("vm_wait in early boot"); - if (!vm_pageout_wanted) { - vm_pageout_wanted = true; - wakeup(&vm_pageout_wanted); - } - vm_pages_needed = true; - msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM, - "vmwait", 0); + pagedaemon_wait(PVM, "vmwait"); } } void vm_wait(void) { mtx_lock(&vm_page_queue_free_mtx); _vm_wait(); } /* * vm_page_alloc_fail: * * Called when a page allocation function fails. Informs the * pagedaemon and performs the requested wait. Requires the * page_queue_free and object lock on entry. Returns with the * object lock held and free lock released. Returns an error when * retry is necessary. * */ static int vm_page_alloc_fail(vm_object_t object, int req) { mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); atomic_add_int(&vm_pageout_deficit, max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); - pagedaemon_wakeup(); if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) { if (object != NULL) VM_OBJECT_WUNLOCK(object); _vm_wait(); if (object != NULL) VM_OBJECT_WLOCK(object); if (req & VM_ALLOC_WAITOK) return (EAGAIN); - } else + } else { mtx_unlock(&vm_page_queue_free_mtx); + pagedaemon_wakeup(); + } return (0); } /* * vm_waitpfault: (also see VM_WAITPFAULT macro) * * Sleep until free pages are available for allocation. * - Called only in vm_fault so that processes page faulting * can be easily tracked. * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing * processes will be able to grab memory first. Do not change * this balance without careful testing first. */ void vm_waitpfault(void) { mtx_lock(&vm_page_queue_free_mtx); - if (!vm_pageout_wanted) { - vm_pageout_wanted = true; - wakeup(&vm_pageout_wanted); - } - vm_pages_needed = true; - msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER, - "pfault", 0); + pagedaemon_wait(PUSER, "pfault"); } struct vm_pagequeue * vm_page_pagequeue(vm_page_t m) { if (vm_page_in_laundry(m)) return (&vm_dom[0].vmd_pagequeues[m->queue]); else return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]); } /* * vm_page_dequeue: * * Remove the given page from its current page queue. * * The page must be locked. */ void vm_page_dequeue(vm_page_t m) { struct vm_pagequeue *pq; vm_page_assert_locked(m); KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued", m)); pq = vm_page_pagequeue(m); vm_pagequeue_lock(pq); m->queue = PQ_NONE; TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); vm_pagequeue_cnt_dec(pq); vm_pagequeue_unlock(pq); } /* * vm_page_dequeue_locked: * * Remove the given page from its current page queue. * * The page and page queue must be locked. */ void vm_page_dequeue_locked(vm_page_t m) { struct vm_pagequeue *pq; vm_page_lock_assert(m, MA_OWNED); pq = vm_page_pagequeue(m); vm_pagequeue_assert_locked(pq); m->queue = PQ_NONE; TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); vm_pagequeue_cnt_dec(pq); } /* * vm_page_enqueue: * * Add the given page to the specified page queue. * * The page must be locked. */ static void vm_page_enqueue(uint8_t queue, vm_page_t m) { struct vm_pagequeue *pq; vm_page_lock_assert(m, MA_OWNED); KASSERT(queue < PQ_COUNT, ("vm_page_enqueue: invalid queue %u request for page %p", queue, m)); if (queue == PQ_LAUNDRY || queue == PQ_UNSWAPPABLE) pq = &vm_dom[0].vmd_pagequeues[queue]; else pq = &vm_phys_domain(m)->vmd_pagequeues[queue]; vm_pagequeue_lock(pq); m->queue = queue; TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); vm_pagequeue_cnt_inc(pq); vm_pagequeue_unlock(pq); } /* * vm_page_requeue: * * Move the given page to the tail of its current page queue. * * The page must be locked. */ void vm_page_requeue(vm_page_t m) { struct vm_pagequeue *pq; vm_page_lock_assert(m, MA_OWNED); KASSERT(m->queue != PQ_NONE, ("vm_page_requeue: page %p is not queued", m)); pq = vm_page_pagequeue(m); vm_pagequeue_lock(pq); TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); vm_pagequeue_unlock(pq); } /* * vm_page_requeue_locked: * * Move the given page to the tail of its current page queue. * * The page queue must be locked. */ void vm_page_requeue_locked(vm_page_t m) { struct vm_pagequeue *pq; KASSERT(m->queue != PQ_NONE, ("vm_page_requeue_locked: page %p is not queued", m)); pq = vm_page_pagequeue(m); vm_pagequeue_assert_locked(pq); TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); } /* * vm_page_activate: * * Put the specified page on the active list (if appropriate). * Ensure that act_count is at least ACT_INIT but do not otherwise * mess with it. * * The page must be locked. */ void vm_page_activate(vm_page_t m) { int queue; vm_page_lock_assert(m, MA_OWNED); if ((queue = m->queue) != PQ_ACTIVE) { if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { if (m->act_count < ACT_INIT) m->act_count = ACT_INIT; if (queue != PQ_NONE) vm_page_dequeue(m); vm_page_enqueue(PQ_ACTIVE, m); } else KASSERT(queue == PQ_NONE, ("vm_page_activate: wired page %p is queued", m)); } else { if (m->act_count < ACT_INIT) m->act_count = ACT_INIT; } } /* * vm_page_free_wakeup: * * Helper routine for vm_page_free_toq(). This routine is called * when a page is added to the free queues. * * The page queues must be locked. */ static void vm_page_free_wakeup(void) { mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); /* * if pageout daemon needs pages, then tell it that there are * some free. */ if (vm_pageout_pages_needed && vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) { wakeup(&vm_pageout_pages_needed); vm_pageout_pages_needed = 0; } /* * wakeup processes that are waiting on memory if we hit a * high water mark. And wakeup scheduler process if we have * lots of memory. this process will swapin processes. */ if (vm_pages_needed && !vm_page_count_min()) { vm_pages_needed = false; wakeup(&vm_cnt.v_free_count); } } /* * vm_page_free_prep: * * Prepares the given page to be put on the free list, * disassociating it from any VM object. The caller may return * the page to the free list only if this function returns true. * * The object must be locked. The page must be locked if it is * managed. For a queued managed page, the pagequeue_locked * argument specifies whether the page queue is already locked. */ bool vm_page_free_prep(vm_page_t m, bool pagequeue_locked) { #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP) if ((m->flags & PG_ZERO) != 0) { uint64_t *p; int i; p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++) KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx", m, i, (uintmax_t)*p)); } #endif if ((m->oflags & VPO_UNMANAGED) == 0) { vm_page_lock_assert(m, MA_OWNED); KASSERT(!pmap_page_is_mapped(m), ("vm_page_free_toq: freeing mapped page %p", m)); } else KASSERT(m->queue == PQ_NONE, ("vm_page_free_toq: unmanaged page %p is queued", m)); VM_CNT_INC(v_tfree); if (vm_page_sbusied(m)) panic("vm_page_free: freeing busy page %p", m); vm_page_remove(m); /* * If fictitious remove object association and * return. */ if ((m->flags & PG_FICTITIOUS) != 0) { KASSERT(m->wire_count == 1, ("fictitious page %p is not wired", m)); KASSERT(m->queue == PQ_NONE, ("fictitious page %p is queued", m)); return (false); } if (m->queue != PQ_NONE) { if (pagequeue_locked) vm_page_dequeue_locked(m); else vm_page_dequeue(m); } m->valid = 0; vm_page_undirty(m); if (m->wire_count != 0) panic("vm_page_free: freeing wired page %p", m); if (m->hold_count != 0) { m->flags &= ~PG_ZERO; KASSERT((m->flags & PG_UNHOLDFREE) == 0, ("vm_page_free: freeing PG_UNHOLDFREE page %p", m)); m->flags |= PG_UNHOLDFREE; return (false); } /* * Restore the default memory attribute to the page. */ if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); return (true); } /* * Insert the page into the physical memory allocator's free page * queues. This is the last step to free a page. */ static void vm_page_free_phys(vm_page_t m) { mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); vm_phys_freecnt_adj(m, 1); #if VM_NRESERVLEVEL > 0 if (!vm_reserv_free_page(m)) #endif vm_phys_free_pages(m, 0); } void vm_page_free_phys_pglist(struct pglist *tq) { vm_page_t m; if (TAILQ_EMPTY(tq)) return; mtx_lock(&vm_page_queue_free_mtx); TAILQ_FOREACH(m, tq, listq) vm_page_free_phys(m); vm_page_free_wakeup(); mtx_unlock(&vm_page_queue_free_mtx); } /* * vm_page_free_toq: * * Returns the given page to the free list, disassociating it * from any VM object. * * The object must be locked. The page must be locked if it is * managed. */ void vm_page_free_toq(vm_page_t m) { if (!vm_page_free_prep(m, false)) return; mtx_lock(&vm_page_queue_free_mtx); vm_page_free_phys(m); vm_page_free_wakeup(); mtx_unlock(&vm_page_queue_free_mtx); } /* * vm_page_wire: * * Mark this page as wired down by yet * another map, removing it from paging queues * as necessary. * * If the page is fictitious, then its wire count must remain one. * * The page must be locked. */ void vm_page_wire(vm_page_t m) { /* * Only bump the wire statistics if the page is not already wired, * and only unqueue the page if it is on some queue (if it is unmanaged * it is already off the queues). */ vm_page_lock_assert(m, MA_OWNED); if ((m->flags & PG_FICTITIOUS) != 0) { KASSERT(m->wire_count == 1, ("vm_page_wire: fictitious page %p's wire count isn't one", m)); return; } if (m->wire_count == 0) { KASSERT((m->oflags & VPO_UNMANAGED) == 0 || m->queue == PQ_NONE, ("vm_page_wire: unmanaged page %p is queued", m)); vm_page_remque(m); atomic_add_int(&vm_cnt.v_wire_count, 1); } m->wire_count++; KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); } /* * vm_page_unwire: * * Release one wiring of the specified page, potentially allowing it to be * paged out. Returns TRUE if the number of wirings transitions to zero and * FALSE otherwise. * * Only managed pages belonging to an object can be paged out. If the number * of wirings transitions to zero and the page is eligible for page out, then * the page is added to the specified paging queue (unless PQ_NONE is * specified). * * If a page is fictitious, then its wire count must always be one. * * A managed page must be locked. */ boolean_t vm_page_unwire(vm_page_t m, uint8_t queue) { KASSERT(queue < PQ_COUNT || queue == PQ_NONE, ("vm_page_unwire: invalid queue %u request for page %p", queue, m)); if ((m->oflags & VPO_UNMANAGED) == 0) vm_page_assert_locked(m); if ((m->flags & PG_FICTITIOUS) != 0) { KASSERT(m->wire_count == 1, ("vm_page_unwire: fictitious page %p's wire count isn't one", m)); return (FALSE); } if (m->wire_count > 0) { m->wire_count--; if (m->wire_count == 0) { atomic_subtract_int(&vm_cnt.v_wire_count, 1); if ((m->oflags & VPO_UNMANAGED) == 0 && m->object != NULL && queue != PQ_NONE) vm_page_enqueue(queue, m); return (TRUE); } else return (FALSE); } else panic("vm_page_unwire: page %p's wire count is zero", m); } /* * Move the specified page to the inactive queue. * * Normally, "noreuse" is FALSE, resulting in LRU ordering of the inactive * queue. However, setting "noreuse" to TRUE will accelerate the specified * page's reclamation, but it will not unmap the page from any address space. * This is implemented by inserting the page near the head of the inactive * queue, using a marker page to guide FIFO insertion ordering. * * The page must be locked. */ static inline void _vm_page_deactivate(vm_page_t m, boolean_t noreuse) { struct vm_pagequeue *pq; int queue; vm_page_assert_locked(m); /* * Ignore if the page is already inactive, unless it is unlikely to be * reactivated. */ if ((queue = m->queue) == PQ_INACTIVE && !noreuse) return; if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE]; /* Avoid multiple acquisitions of the inactive queue lock. */ if (queue == PQ_INACTIVE) { vm_pagequeue_lock(pq); vm_page_dequeue_locked(m); } else { if (queue != PQ_NONE) vm_page_dequeue(m); vm_pagequeue_lock(pq); } m->queue = PQ_INACTIVE; if (noreuse) TAILQ_INSERT_BEFORE(&vm_phys_domain(m)->vmd_inacthead, m, plinks.q); else TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); vm_pagequeue_cnt_inc(pq); vm_pagequeue_unlock(pq); } } /* * Move the specified page to the inactive queue. * * The page must be locked. */ void vm_page_deactivate(vm_page_t m) { _vm_page_deactivate(m, FALSE); } /* * Move the specified page to the inactive queue with the expectation * that it is unlikely to be reused. * * The page must be locked. */ void vm_page_deactivate_noreuse(vm_page_t m) { _vm_page_deactivate(m, TRUE); } /* * vm_page_launder * * Put a page in the laundry. */ void vm_page_launder(vm_page_t m) { int queue; vm_page_assert_locked(m); if ((queue = m->queue) != PQ_LAUNDRY) { if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { if (queue != PQ_NONE) vm_page_dequeue(m); vm_page_enqueue(PQ_LAUNDRY, m); } else KASSERT(queue == PQ_NONE, ("wired page %p is queued", m)); } } /* * vm_page_unswappable * * Put a page in the PQ_UNSWAPPABLE holding queue. */ void vm_page_unswappable(vm_page_t m) { vm_page_assert_locked(m); KASSERT(m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0, ("page %p already unswappable", m)); if (m->queue != PQ_NONE) vm_page_dequeue(m); vm_page_enqueue(PQ_UNSWAPPABLE, m); } /* * Attempt to free the page. If it cannot be freed, do nothing. Returns true * if the page is freed and false otherwise. * * The page must be managed. The page and its containing object must be * locked. */ bool vm_page_try_to_free(vm_page_t m) { vm_page_assert_locked(m); VM_OBJECT_ASSERT_WLOCKED(m->object); KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("page %p is unmanaged", m)); if (m->dirty != 0 || m->hold_count != 0 || m->wire_count != 0 || vm_page_busied(m)) return (false); if (m->object->ref_count != 0) { pmap_remove_all(m); if (m->dirty != 0) return (false); } vm_page_free(m); return (true); } /* * vm_page_advise * * Apply the specified advice to the given page. * * The object and page must be locked. */ void vm_page_advise(vm_page_t m, int advice) { vm_page_assert_locked(m); VM_OBJECT_ASSERT_WLOCKED(m->object); if (advice == MADV_FREE) /* * Mark the page clean. This will allow the page to be freed * without first paging it out. MADV_FREE pages are often * quickly reused by malloc(3), so we do not do anything that * would result in a page fault on a later access. */ vm_page_undirty(m); else if (advice != MADV_DONTNEED) { if (advice == MADV_WILLNEED) vm_page_activate(m); return; } /* * Clear any references to the page. Otherwise, the page daemon will * immediately reactivate the page. */ vm_page_aflag_clear(m, PGA_REFERENCED); if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) vm_page_dirty(m); /* * Place clean pages near the head of the inactive queue rather than * the tail, thus defeating the queue's LRU operation and ensuring that * the page will be reused quickly. Dirty pages not already in the * laundry are moved there. */ if (m->dirty == 0) vm_page_deactivate_noreuse(m); else vm_page_launder(m); } /* * Grab a page, waiting until we are waken up due to the page * changing state. We keep on waiting, if the page continues * to be in the object. If the page doesn't exist, first allocate it * and then conditionally zero it. * * This routine may sleep. * * The object must be locked on entry. The lock will, however, be released * and reacquired if the routine sleeps. */ vm_page_t vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) { vm_page_t m; int sleep; int pflags; VM_OBJECT_ASSERT_WLOCKED(object); KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || (allocflags & VM_ALLOC_IGN_SBUSY) != 0, ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); pflags = allocflags & ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL); if ((allocflags & VM_ALLOC_NOWAIT) == 0) pflags |= VM_ALLOC_WAITFAIL; retrylookup: if ((m = vm_page_lookup(object, pindex)) != NULL) { sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ? vm_page_xbusied(m) : vm_page_busied(m); if (sleep) { if ((allocflags & VM_ALLOC_NOWAIT) != 0) return (NULL); /* * Reference the page before unlocking and * sleeping so that the page daemon is less * likely to reclaim it. */ vm_page_aflag_set(m, PGA_REFERENCED); vm_page_lock(m); VM_OBJECT_WUNLOCK(object); vm_page_busy_sleep(m, "pgrbwt", (allocflags & VM_ALLOC_IGN_SBUSY) != 0); VM_OBJECT_WLOCK(object); goto retrylookup; } else { if ((allocflags & VM_ALLOC_WIRED) != 0) { vm_page_lock(m); vm_page_wire(m); vm_page_unlock(m); } if ((allocflags & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) vm_page_xbusy(m); if ((allocflags & VM_ALLOC_SBUSY) != 0) vm_page_sbusy(m); return (m); } } m = vm_page_alloc(object, pindex, pflags); if (m == NULL) { if ((allocflags & VM_ALLOC_NOWAIT) != 0) return (NULL); goto retrylookup; } if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) pmap_zero_page(m); return (m); } /* * Return the specified range of pages from the given object. For each * page offset within the range, if a page already exists within the object * at that offset and it is busy, then wait for it to change state. If, * instead, the page doesn't exist, then allocate it. * * The caller must always specify an allocation class. * * allocation classes: * VM_ALLOC_NORMAL normal process request * VM_ALLOC_SYSTEM system *really* needs the pages * * The caller must always specify that the pages are to be busied and/or * wired. * * optional allocation flags: * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages * VM_ALLOC_NOBUSY do not exclusive busy the page * VM_ALLOC_NOWAIT do not sleep * VM_ALLOC_SBUSY set page to sbusy state * VM_ALLOC_WIRED wire the pages * VM_ALLOC_ZERO zero and validate any invalid pages * * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it * may return a partial prefix of the requested range. */ int vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags, vm_page_t *ma, int count) { vm_page_t m, mpred; int pflags; int i; bool sleep; VM_OBJECT_ASSERT_WLOCKED(object); KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0, ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed")); KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 || (allocflags & VM_ALLOC_WIRED) != 0, ("vm_page_grab_pages: the pages must be busied or wired")); KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || (allocflags & VM_ALLOC_IGN_SBUSY) != 0, ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch")); if (count == 0) return (0); pflags = allocflags & ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL | VM_ALLOC_IGN_SBUSY); if ((allocflags & VM_ALLOC_NOWAIT) == 0) pflags |= VM_ALLOC_WAITFAIL; i = 0; retrylookup: m = vm_radix_lookup_le(&object->rtree, pindex + i); if (m == NULL || m->pindex != pindex + i) { mpred = m; m = NULL; } else mpred = TAILQ_PREV(m, pglist, listq); for (; i < count; i++) { if (m != NULL) { sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ? vm_page_xbusied(m) : vm_page_busied(m); if (sleep) { if ((allocflags & VM_ALLOC_NOWAIT) != 0) break; /* * Reference the page before unlocking and * sleeping so that the page daemon is less * likely to reclaim it. */ vm_page_aflag_set(m, PGA_REFERENCED); vm_page_lock(m); VM_OBJECT_WUNLOCK(object); vm_page_busy_sleep(m, "grbmaw", (allocflags & VM_ALLOC_IGN_SBUSY) != 0); VM_OBJECT_WLOCK(object); goto retrylookup; } if ((allocflags & VM_ALLOC_WIRED) != 0) { vm_page_lock(m); vm_page_wire(m); vm_page_unlock(m); } if ((allocflags & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) vm_page_xbusy(m); if ((allocflags & VM_ALLOC_SBUSY) != 0) vm_page_sbusy(m); } else { m = vm_page_alloc_after(object, pindex + i, pflags | VM_ALLOC_COUNT(count - i), mpred); if (m == NULL) { if ((allocflags & VM_ALLOC_NOWAIT) != 0) break; goto retrylookup; } } if (m->valid == 0 && (allocflags & VM_ALLOC_ZERO) != 0) { if ((m->flags & PG_ZERO) == 0) pmap_zero_page(m); m->valid = VM_PAGE_BITS_ALL; } ma[i] = mpred = m; m = vm_page_next(m); } return (i); } /* * Mapping function for valid or dirty bits in a page. * * Inputs are required to range within a page. */ vm_page_bits_t vm_page_bits(int base, int size) { int first_bit; int last_bit; KASSERT( base + size <= PAGE_SIZE, ("vm_page_bits: illegal base/size %d/%d", base, size) ); if (size == 0) /* handle degenerate case */ return (0); first_bit = base >> DEV_BSHIFT; last_bit = (base + size - 1) >> DEV_BSHIFT; return (((vm_page_bits_t)2 << last_bit) - ((vm_page_bits_t)1 << first_bit)); } /* * vm_page_set_valid_range: * * Sets portions of a page valid. The arguments are expected * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive * of any partial chunks touched by the range. The invalid portion of * such chunks will be zeroed. * * (base + size) must be less then or equal to PAGE_SIZE. */ void vm_page_set_valid_range(vm_page_t m, int base, int size) { int endoff, frag; VM_OBJECT_ASSERT_WLOCKED(m->object); if (size == 0) /* handle degenerate case */ return; /* * If the base is not DEV_BSIZE aligned and the valid * bit is clear, we have to zero out a portion of the * first block. */ if ((frag = rounddown2(base, DEV_BSIZE)) != base && (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) pmap_zero_page_area(m, frag, base - frag); /* * If the ending offset is not DEV_BSIZE aligned and the * valid bit is clear, we have to zero out a portion of * the last block. */ endoff = base + size; if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) pmap_zero_page_area(m, endoff, DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); /* * Assert that no previously invalid block that is now being validated * is already dirty. */ KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, ("vm_page_set_valid_range: page %p is dirty", m)); /* * Set valid bits inclusive of any overlap. */ m->valid |= vm_page_bits(base, size); } /* * Clear the given bits from the specified page's dirty field. */ static __inline void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) { uintptr_t addr; #if PAGE_SIZE < 16384 int shift; #endif /* * If the object is locked and the page is neither exclusive busy nor * write mapped, then the page's dirty field cannot possibly be * set by a concurrent pmap operation. */ VM_OBJECT_ASSERT_WLOCKED(m->object); if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) m->dirty &= ~pagebits; else { /* * The pmap layer can call vm_page_dirty() without * holding a distinguished lock. The combination of * the object's lock and an atomic operation suffice * to guarantee consistency of the page dirty field. * * For PAGE_SIZE == 32768 case, compiler already * properly aligns the dirty field, so no forcible * alignment is needed. Only require existence of * atomic_clear_64 when page size is 32768. */ addr = (uintptr_t)&m->dirty; #if PAGE_SIZE == 32768 atomic_clear_64((uint64_t *)addr, pagebits); #elif PAGE_SIZE == 16384 atomic_clear_32((uint32_t *)addr, pagebits); #else /* PAGE_SIZE <= 8192 */ /* * Use a trick to perform a 32-bit atomic on the * containing aligned word, to not depend on the existence * of atomic_clear_{8, 16}. */ shift = addr & (sizeof(uint32_t) - 1); #if BYTE_ORDER == BIG_ENDIAN shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY; #else shift *= NBBY; #endif addr &= ~(sizeof(uint32_t) - 1); atomic_clear_32((uint32_t *)addr, pagebits << shift); #endif /* PAGE_SIZE */ } } /* * vm_page_set_validclean: * * Sets portions of a page valid and clean. The arguments are expected * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive * of any partial chunks touched by the range. The invalid portion of * such chunks will be zero'd. * * (base + size) must be less then or equal to PAGE_SIZE. */ void vm_page_set_validclean(vm_page_t m, int base, int size) { vm_page_bits_t oldvalid, pagebits; int endoff, frag; VM_OBJECT_ASSERT_WLOCKED(m->object); if (size == 0) /* handle degenerate case */ return; /* * If the base is not DEV_BSIZE aligned and the valid * bit is clear, we have to zero out a portion of the * first block. */ if ((frag = rounddown2(base, DEV_BSIZE)) != base && (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) pmap_zero_page_area(m, frag, base - frag); /* * If the ending offset is not DEV_BSIZE aligned and the * valid bit is clear, we have to zero out a portion of * the last block. */ endoff = base + size; if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) pmap_zero_page_area(m, endoff, DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); /* * Set valid, clear dirty bits. If validating the entire * page we can safely clear the pmap modify bit. We also * use this opportunity to clear the VPO_NOSYNC flag. If a process * takes a write fault on a MAP_NOSYNC memory area the flag will * be set again. * * We set valid bits inclusive of any overlap, but we can only * clear dirty bits for DEV_BSIZE chunks that are fully within * the range. */ oldvalid = m->valid; pagebits = vm_page_bits(base, size); m->valid |= pagebits; #if 0 /* NOT YET */ if ((frag = base & (DEV_BSIZE - 1)) != 0) { frag = DEV_BSIZE - frag; base += frag; size -= frag; if (size < 0) size = 0; } pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); #endif if (base == 0 && size == PAGE_SIZE) { /* * The page can only be modified within the pmap if it is * mapped, and it can only be mapped if it was previously * fully valid. */ if (oldvalid == VM_PAGE_BITS_ALL) /* * Perform the pmap_clear_modify() first. Otherwise, * a concurrent pmap operation, such as * pmap_protect(), could clear a modification in the * pmap and set the dirty field on the page before * pmap_clear_modify() had begun and after the dirty * field was cleared here. */ pmap_clear_modify(m); m->dirty = 0; m->oflags &= ~VPO_NOSYNC; } else if (oldvalid != VM_PAGE_BITS_ALL) m->dirty &= ~pagebits; else vm_page_clear_dirty_mask(m, pagebits); } void vm_page_clear_dirty(vm_page_t m, int base, int size) { vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); } /* * vm_page_set_invalid: * * Invalidates DEV_BSIZE'd chunks within a page. Both the * valid and dirty bits for the effected areas are cleared. */ void vm_page_set_invalid(vm_page_t m, int base, int size) { vm_page_bits_t bits; vm_object_t object; object = m->object; VM_OBJECT_ASSERT_WLOCKED(object); if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + size >= object->un_pager.vnp.vnp_size) bits = VM_PAGE_BITS_ALL; else bits = vm_page_bits(base, size); if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL && bits != 0) pmap_remove_all(m); KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) || !pmap_page_is_mapped(m), ("vm_page_set_invalid: page %p is mapped", m)); m->valid &= ~bits; m->dirty &= ~bits; } /* * vm_page_zero_invalid() * * The kernel assumes that the invalid portions of a page contain * garbage, but such pages can be mapped into memory by user code. * When this occurs, we must zero out the non-valid portions of the * page so user code sees what it expects. * * Pages are most often semi-valid when the end of a file is mapped * into memory and the file's size is not page aligned. */ void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) { int b; int i; VM_OBJECT_ASSERT_WLOCKED(m->object); /* * Scan the valid bits looking for invalid sections that * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the * valid bit may be set ) have already been zeroed by * vm_page_set_validclean(). */ for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { if (i == (PAGE_SIZE / DEV_BSIZE) || (m->valid & ((vm_page_bits_t)1 << i))) { if (i > b) { pmap_zero_page_area(m, b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); } b = i + 1; } } /* * setvalid is TRUE when we can safely set the zero'd areas * as being valid. We can do this if there are no cache consistancy * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. */ if (setvalid) m->valid = VM_PAGE_BITS_ALL; } /* * vm_page_is_valid: * * Is (partial) page valid? Note that the case where size == 0 * will return FALSE in the degenerate case where the page is * entirely invalid, and TRUE otherwise. */ int vm_page_is_valid(vm_page_t m, int base, int size) { vm_page_bits_t bits; VM_OBJECT_ASSERT_LOCKED(m->object); bits = vm_page_bits(base, size); return (m->valid != 0 && (m->valid & bits) == bits); } /* * Returns true if all of the specified predicates are true for the entire * (super)page and false otherwise. */ bool vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m) { vm_object_t object; int i, npages; object = m->object; VM_OBJECT_ASSERT_LOCKED(object); npages = atop(pagesizes[m->psind]); /* * The physically contiguous pages that make up a superpage, i.e., a * page with a page size index ("psind") greater than zero, will * occupy adjacent entries in vm_page_array[]. */ for (i = 0; i < npages; i++) { /* Always test object consistency, including "skip_m". */ if (m[i].object != object) return (false); if (&m[i] == skip_m) continue; if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i])) return (false); if ((flags & PS_ALL_DIRTY) != 0) { /* * Calling vm_page_test_dirty() or pmap_is_modified() * might stop this case from spuriously returning * "false". However, that would require a write lock * on the object containing "m[i]". */ if (m[i].dirty != VM_PAGE_BITS_ALL) return (false); } if ((flags & PS_ALL_VALID) != 0 && m[i].valid != VM_PAGE_BITS_ALL) return (false); } return (true); } /* * Set the page's dirty bits if the page is modified. */ void vm_page_test_dirty(vm_page_t m) { VM_OBJECT_ASSERT_WLOCKED(m->object); if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) vm_page_dirty(m); } void vm_page_lock_KBI(vm_page_t m, const char *file, int line) { mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); } void vm_page_unlock_KBI(vm_page_t m, const char *file, int line) { mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); } int vm_page_trylock_KBI(vm_page_t m, const char *file, int line) { return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); } #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) void vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) { vm_page_lock_assert_KBI(m, MA_OWNED, file, line); } void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) { mtx_assert_(vm_page_lockptr(m), a, file, line); } #endif #ifdef INVARIANTS void vm_page_object_lock_assert(vm_page_t m) { /* * Certain of the page's fields may only be modified by the * holder of the containing object's lock or the exclusive busy. * holder. Unfortunately, the holder of the write busy is * not recorded, and thus cannot be checked here. */ if (m->object != NULL && !vm_page_xbusied(m)) VM_OBJECT_ASSERT_WLOCKED(m->object); } void vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits) { if ((bits & PGA_WRITEABLE) == 0) return; /* * The PGA_WRITEABLE flag can only be set if the page is * managed, is exclusively busied or the object is locked. * Currently, this flag is only set by pmap_enter(). */ KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("PGA_WRITEABLE on unmanaged page")); if (!vm_page_xbusied(m)) VM_OBJECT_ASSERT_LOCKED(m->object); } #endif #include "opt_ddb.h" #ifdef DDB #include #include DB_SHOW_COMMAND(page, vm_page_print_page_info) { db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count); db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count); db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count); db_printf("vm_cnt.v_laundry_count: %d\n", vm_cnt.v_laundry_count); db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count); db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); } DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) { int dom; db_printf("pq_free %d\n", vm_cnt.v_free_count); for (dom = 0; dom < vm_ndomains; dom++) { db_printf( "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n", dom, vm_dom[dom].vmd_page_count, vm_dom[dom].vmd_free_count, vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt, vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt); } } DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) { vm_page_t m; boolean_t phys; if (!have_addr) { db_printf("show pginfo addr\n"); return; } phys = strchr(modif, 'p') != NULL; if (phys) m = PHYS_TO_VM_PAGE(addr); else m = (vm_page_t)addr; db_printf( "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n" " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags, m->flags, m->act_count, m->busy_lock, m->valid, m->dirty); } #endif /* DDB */ Index: head/sys/vm/vm_pageout.c =================================================================== --- head/sys/vm/vm_pageout.c (revision 327167) +++ head/sys/vm/vm_pageout.c (revision 327168) @@ -1,1956 +1,1985 @@ /*- * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) * * Copyright (c) 1991 Regents of the University of California. * All rights reserved. * Copyright (c) 1994 John S. Dyson * All rights reserved. * Copyright (c) 1994 David Greenman * All rights reserved. * Copyright (c) 2005 Yahoo! Technologies Norway AS * All rights reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91 * * * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Authors: Avadis Tevanian, Jr., Michael Wayne Young * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * The proverbial page-out daemon. */ #include __FBSDID("$FreeBSD$"); #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * System initialization */ /* the kernel process "vm_pageout"*/ static void vm_pageout(void); static void vm_pageout_init(void); static int vm_pageout_clean(vm_page_t m, int *numpagedout); static int vm_pageout_cluster(vm_page_t m); static bool vm_pageout_scan(struct vm_domain *vmd, int pass); static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, int starting_page_shortage); SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init, NULL); struct proc *pageproc; static struct kproc_desc page_kp = { "pagedaemon", vm_pageout, &pageproc }; SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, &page_kp); SDT_PROVIDER_DEFINE(vm); SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan); /* Pagedaemon activity rates, in subdivisions of one second. */ #define VM_LAUNDER_RATE 10 #define VM_INACT_SCAN_RATE 2 int vm_pageout_deficit; /* Estimated number of pages deficit */ u_int vm_pageout_wakeup_thresh; static int vm_pageout_oom_seq = 12; bool vm_pageout_wanted; /* Event on which pageout daemon sleeps */ bool vm_pages_needed; /* Are threads waiting for free pages? */ /* Pending request for dirty page laundering. */ static enum { VM_LAUNDRY_IDLE, VM_LAUNDRY_BACKGROUND, VM_LAUNDRY_SHORTFALL } vm_laundry_request = VM_LAUNDRY_IDLE; static int vm_inactq_scans; static int vm_pageout_update_period; static int disable_swap_pageouts; static int lowmem_period = 10; static time_t lowmem_uptime; static int swapdev_enabled; static int vm_panic_on_oom = 0; SYSCTL_INT(_vm, OID_AUTO, panic_on_oom, CTLFLAG_RWTUN, &vm_panic_on_oom, 0, "panic on out of memory instead of killing the largest process"); SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh, CTLFLAG_RWTUN, &vm_pageout_wakeup_thresh, 0, "free page threshold for waking up the pageout daemon"); SYSCTL_INT(_vm, OID_AUTO, pageout_update_period, CTLFLAG_RWTUN, &vm_pageout_update_period, 0, "Maximum active LRU update period"); SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0, "Low memory callback period"); SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts, CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages"); static int pageout_lock_miss; SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss, CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout"); SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq, CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0, "back-to-back calls to oom detector to start OOM"); static int act_scan_laundry_weight = 3; SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN, &act_scan_laundry_weight, 0, "weight given to clean vs. dirty pages in active queue scans"); static u_int vm_background_launder_target; SYSCTL_UINT(_vm, OID_AUTO, background_launder_target, CTLFLAG_RWTUN, &vm_background_launder_target, 0, "background laundering target, in pages"); static u_int vm_background_launder_rate = 4096; SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN, &vm_background_launder_rate, 0, "background laundering rate, in kilobytes per second"); static u_int vm_background_launder_max = 20 * 1024; SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN, &vm_background_launder_max, 0, "background laundering cap, in kilobytes"); int vm_pageout_page_count = 32; int vm_page_max_wired; /* XXX max # of wired pages system-wide */ SYSCTL_INT(_vm, OID_AUTO, max_wired, CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count"); static u_int isqrt(u_int num); static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *); static int vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall); static void vm_pageout_laundry_worker(void *arg); static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *); /* * Initialize a dummy page for marking the caller's place in the specified * paging queue. In principle, this function only needs to set the flag * PG_MARKER. Nonetheless, it write busies and initializes the hold count * to one as safety precautions. */ static void vm_pageout_init_marker(vm_page_t marker, u_short queue) { bzero(marker, sizeof(*marker)); marker->flags = PG_MARKER; marker->busy_lock = VPB_SINGLE_EXCLUSIVER; marker->queue = queue; marker->hold_count = 1; } /* * vm_pageout_fallback_object_lock: * * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is * known to have failed and page queue must be either PQ_ACTIVE or * PQ_INACTIVE. To avoid lock order violation, unlock the page queue * while locking the vm object. Use marker page to detect page queue * changes and maintain notion of next page on page queue. Return * TRUE if no changes were detected, FALSE otherwise. vm object is * locked on return. * * This function depends on both the lock portion of struct vm_object * and normal struct vm_page being type stable. */ static boolean_t vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next) { struct vm_page marker; struct vm_pagequeue *pq; boolean_t unchanged; u_short queue; vm_object_t object; queue = m->queue; vm_pageout_init_marker(&marker, queue); pq = vm_page_pagequeue(m); object = m->object; TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q); vm_pagequeue_unlock(pq); vm_page_unlock(m); VM_OBJECT_WLOCK(object); vm_page_lock(m); vm_pagequeue_lock(pq); /* * The page's object might have changed, and/or the page might * have moved from its original position in the queue. If the * page's object has changed, then the caller should abandon * processing the page because the wrong object lock was * acquired. Use the marker's plinks.q, not the page's, to * determine if the page has been moved. The state of the * page's plinks.q can be indeterminate; whereas, the marker's * plinks.q must be valid. */ *next = TAILQ_NEXT(&marker, plinks.q); unchanged = m->object == object && m == TAILQ_PREV(&marker, pglist, plinks.q); KASSERT(!unchanged || m->queue == queue, ("page %p queue %d %d", m, queue, m->queue)); TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q); return (unchanged); } /* * Lock the page while holding the page queue lock. Use marker page * to detect page queue changes and maintain notion of next page on * page queue. Return TRUE if no changes were detected, FALSE * otherwise. The page is locked on return. The page queue lock might * be dropped and reacquired. * * This function depends on normal struct vm_page being type stable. */ static boolean_t vm_pageout_page_lock(vm_page_t m, vm_page_t *next) { struct vm_page marker; struct vm_pagequeue *pq; boolean_t unchanged; u_short queue; vm_page_lock_assert(m, MA_NOTOWNED); if (vm_page_trylock(m)) return (TRUE); queue = m->queue; vm_pageout_init_marker(&marker, queue); pq = vm_page_pagequeue(m); TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q); vm_pagequeue_unlock(pq); vm_page_lock(m); vm_pagequeue_lock(pq); /* Page queue might have changed. */ *next = TAILQ_NEXT(&marker, plinks.q); unchanged = m == TAILQ_PREV(&marker, pglist, plinks.q); KASSERT(!unchanged || m->queue == queue, ("page %p queue %d %d", m, queue, m->queue)); TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q); return (unchanged); } /* * Scan for pages at adjacent offsets within the given page's object that are * eligible for laundering, form a cluster of these pages and the given page, * and launder that cluster. */ static int vm_pageout_cluster(vm_page_t m) { vm_object_t object; vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps; vm_pindex_t pindex; int ib, is, page_base, pageout_count; vm_page_assert_locked(m); object = m->object; VM_OBJECT_ASSERT_WLOCKED(object); pindex = m->pindex; /* * We can't clean the page if it is busy or held. */ vm_page_assert_unbusied(m); KASSERT(m->hold_count == 0, ("page %p is held", m)); pmap_remove_write(m); vm_page_unlock(m); mc[vm_pageout_page_count] = pb = ps = m; pageout_count = 1; page_base = vm_pageout_page_count; ib = 1; is = 1; /* * We can cluster only if the page is not clean, busy, or held, and * the page is in the laundry queue. * * During heavy mmap/modification loads the pageout * daemon can really fragment the underlying file * due to flushing pages out of order and not trying to * align the clusters (which leaves sporadic out-of-order * holes). To solve this problem we do the reverse scan * first and attempt to align our cluster, then do a * forward scan if room remains. */ more: while (ib != 0 && pageout_count < vm_pageout_page_count) { if (ib > pindex) { ib = 0; break; } if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) { ib = 0; break; } vm_page_test_dirty(p); if (p->dirty == 0) { ib = 0; break; } vm_page_lock(p); if (!vm_page_in_laundry(p) || p->hold_count != 0) { /* may be undergoing I/O */ vm_page_unlock(p); ib = 0; break; } pmap_remove_write(p); vm_page_unlock(p); mc[--page_base] = pb = p; ++pageout_count; ++ib; /* * We are at an alignment boundary. Stop here, and switch * directions. Do not clear ib. */ if ((pindex - (ib - 1)) % vm_pageout_page_count == 0) break; } while (pageout_count < vm_pageout_page_count && pindex + is < object->size) { if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p)) break; vm_page_test_dirty(p); if (p->dirty == 0) break; vm_page_lock(p); if (!vm_page_in_laundry(p) || p->hold_count != 0) { /* may be undergoing I/O */ vm_page_unlock(p); break; } pmap_remove_write(p); vm_page_unlock(p); mc[page_base + pageout_count] = ps = p; ++pageout_count; ++is; } /* * If we exhausted our forward scan, continue with the reverse scan * when possible, even past an alignment boundary. This catches * boundary conditions. */ if (ib != 0 && pageout_count < vm_pageout_page_count) goto more; return (vm_pageout_flush(&mc[page_base], pageout_count, VM_PAGER_PUT_NOREUSE, 0, NULL, NULL)); } /* * vm_pageout_flush() - launder the given pages * * The given pages are laundered. Note that we setup for the start of * I/O ( i.e. busy the page ), mark it read-only, and bump the object * reference count all in here rather then in the parent. If we want * the parent to do more sophisticated things we may have to change * the ordering. * * Returned runlen is the count of pages between mreq and first * page after mreq with status VM_PAGER_AGAIN. * *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL * for any page in runlen set. */ int vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen, boolean_t *eio) { vm_object_t object = mc[0]->object; int pageout_status[count]; int numpagedout = 0; int i, runlen; VM_OBJECT_ASSERT_WLOCKED(object); /* * Initiate I/O. Mark the pages busy and verify that they're valid * and read-only. * * We do not have to fixup the clean/dirty bits here... we can * allow the pager to do it after the I/O completes. * * NOTE! mc[i]->dirty may be partial or fragmented due to an * edge case with file fragments. */ for (i = 0; i < count; i++) { KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush: partially invalid page %p index %d/%d", mc[i], i, count)); KASSERT((mc[i]->aflags & PGA_WRITEABLE) == 0, ("vm_pageout_flush: writeable page %p", mc[i])); vm_page_sbusy(mc[i]); } vm_object_pip_add(object, count); vm_pager_put_pages(object, mc, count, flags, pageout_status); runlen = count - mreq; if (eio != NULL) *eio = FALSE; for (i = 0; i < count; i++) { vm_page_t mt = mc[i]; KASSERT(pageout_status[i] == VM_PAGER_PEND || !pmap_page_is_write_mapped(mt), ("vm_pageout_flush: page %p is not write protected", mt)); switch (pageout_status[i]) { case VM_PAGER_OK: vm_page_lock(mt); if (vm_page_in_laundry(mt)) vm_page_deactivate_noreuse(mt); vm_page_unlock(mt); /* FALLTHROUGH */ case VM_PAGER_PEND: numpagedout++; break; case VM_PAGER_BAD: /* * The page is outside the object's range. We pretend * that the page out worked and clean the page, so the * changes will be lost if the page is reclaimed by * the page daemon. */ vm_page_undirty(mt); vm_page_lock(mt); if (vm_page_in_laundry(mt)) vm_page_deactivate_noreuse(mt); vm_page_unlock(mt); break; case VM_PAGER_ERROR: case VM_PAGER_FAIL: /* * If the page couldn't be paged out to swap because the * pager wasn't able to find space, place the page in * the PQ_UNSWAPPABLE holding queue. This is an * optimization that prevents the page daemon from * wasting CPU cycles on pages that cannot be reclaimed * becase no swap device is configured. * * Otherwise, reactivate the page so that it doesn't * clog the laundry and inactive queues. (We will try * paging it out again later.) */ vm_page_lock(mt); if (object->type == OBJT_SWAP && pageout_status[i] == VM_PAGER_FAIL) { vm_page_unswappable(mt); numpagedout++; } else vm_page_activate(mt); vm_page_unlock(mt); if (eio != NULL && i >= mreq && i - mreq < runlen) *eio = TRUE; break; case VM_PAGER_AGAIN: if (i >= mreq && i - mreq < runlen) runlen = i - mreq; break; } /* * If the operation is still going, leave the page busy to * block all other accesses. Also, leave the paging in * progress indicator set so that we don't attempt an object * collapse. */ if (pageout_status[i] != VM_PAGER_PEND) { vm_object_pip_wakeup(object); vm_page_sunbusy(mt); } } if (prunlen != NULL) *prunlen = runlen; return (numpagedout); } static void vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused) { atomic_store_rel_int(&swapdev_enabled, 1); } static void vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused) { if (swap_pager_nswapdev() == 1) atomic_store_rel_int(&swapdev_enabled, 0); } /* * Attempt to acquire all of the necessary locks to launder a page and * then call through the clustering layer to PUTPAGES. Wait a short * time for a vnode lock. * * Requires the page and object lock on entry, releases both before return. * Returns 0 on success and an errno otherwise. */ static int vm_pageout_clean(vm_page_t m, int *numpagedout) { struct vnode *vp; struct mount *mp; vm_object_t object; vm_pindex_t pindex; int error, lockmode; vm_page_assert_locked(m); object = m->object; VM_OBJECT_ASSERT_WLOCKED(object); error = 0; vp = NULL; mp = NULL; /* * The object is already known NOT to be dead. It * is possible for the vget() to block the whole * pageout daemon, but the new low-memory handling * code should prevent it. * * We can't wait forever for the vnode lock, we might * deadlock due to a vn_read() getting stuck in * vm_wait while holding this vnode. We skip the * vnode if we can't get it in a reasonable amount * of time. */ if (object->type == OBJT_VNODE) { vm_page_unlock(m); vp = object->handle; if (vp->v_type == VREG && vn_start_write(vp, &mp, V_NOWAIT) != 0) { mp = NULL; error = EDEADLK; goto unlock_all; } KASSERT(mp != NULL, ("vp %p with NULL v_mount", vp)); vm_object_reference_locked(object); pindex = m->pindex; VM_OBJECT_WUNLOCK(object); lockmode = MNT_SHARED_WRITES(vp->v_mount) ? LK_SHARED : LK_EXCLUSIVE; if (vget(vp, lockmode | LK_TIMELOCK, curthread)) { vp = NULL; error = EDEADLK; goto unlock_mp; } VM_OBJECT_WLOCK(object); /* * Ensure that the object and vnode were not disassociated * while locks were dropped. */ if (vp->v_object != object) { error = ENOENT; goto unlock_all; } vm_page_lock(m); /* * While the object and page were unlocked, the page * may have been: * (1) moved to a different queue, * (2) reallocated to a different object, * (3) reallocated to a different offset, or * (4) cleaned. */ if (!vm_page_in_laundry(m) || m->object != object || m->pindex != pindex || m->dirty == 0) { vm_page_unlock(m); error = ENXIO; goto unlock_all; } /* * The page may have been busied or held while the object * and page locks were released. */ if (vm_page_busied(m) || m->hold_count != 0) { vm_page_unlock(m); error = EBUSY; goto unlock_all; } } /* * If a page is dirty, then it is either being washed * (but not yet cleaned) or it is still in the * laundry. If it is still in the laundry, then we * start the cleaning operation. */ if ((*numpagedout = vm_pageout_cluster(m)) == 0) error = EIO; unlock_all: VM_OBJECT_WUNLOCK(object); unlock_mp: vm_page_lock_assert(m, MA_NOTOWNED); if (mp != NULL) { if (vp != NULL) vput(vp); vm_object_deallocate(object); vn_finished_write(mp); } return (error); } /* * Attempt to launder the specified number of pages. * * Returns the number of pages successfully laundered. */ static int vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall) { struct vm_pagequeue *pq; vm_object_t object; vm_page_t m, next; int act_delta, error, maxscan, numpagedout, starting_target; int vnodes_skipped; bool pageout_ok, queue_locked; starting_target = launder; vnodes_skipped = 0; /* * Scan the laundry queues for pages eligible to be laundered. We stop * once the target number of dirty pages have been laundered, or once * we've reached the end of the queue. A single iteration of this loop * may cause more than one page to be laundered because of clustering. * * maxscan ensures that we don't re-examine requeued pages. Any * additional pages written as part of a cluster are subtracted from * maxscan since they must be taken from the laundry queue. * * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no * swap devices are configured. */ if (atomic_load_acq_int(&swapdev_enabled)) pq = &vmd->vmd_pagequeues[PQ_UNSWAPPABLE]; else pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; scan: vm_pagequeue_lock(pq); maxscan = pq->pq_cnt; queue_locked = true; for (m = TAILQ_FIRST(&pq->pq_pl); m != NULL && maxscan-- > 0 && launder > 0; m = next) { vm_pagequeue_assert_locked(pq); KASSERT(queue_locked, ("unlocked laundry queue")); KASSERT(vm_page_in_laundry(m), ("page %p has an inconsistent queue", m)); next = TAILQ_NEXT(m, plinks.q); if ((m->flags & PG_MARKER) != 0) continue; KASSERT((m->flags & PG_FICTITIOUS) == 0, ("PG_FICTITIOUS page %p cannot be in laundry queue", m)); KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("VPO_UNMANAGED page %p cannot be in laundry queue", m)); if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) { vm_page_unlock(m); continue; } object = m->object; if ((!VM_OBJECT_TRYWLOCK(object) && (!vm_pageout_fallback_object_lock(m, &next) || m->hold_count != 0)) || vm_page_busied(m)) { VM_OBJECT_WUNLOCK(object); vm_page_unlock(m); continue; } /* * Unlock the laundry queue, invalidating the 'next' pointer. * Use a marker to remember our place in the laundry queue. */ TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_laundry_marker, plinks.q); vm_pagequeue_unlock(pq); queue_locked = false; /* * Invalid pages can be easily freed. They cannot be * mapped; vm_page_free() asserts this. */ if (m->valid == 0) goto free_page; /* * If the page has been referenced and the object is not dead, * reactivate or requeue the page depending on whether the * object is mapped. */ if ((m->aflags & PGA_REFERENCED) != 0) { vm_page_aflag_clear(m, PGA_REFERENCED); act_delta = 1; } else act_delta = 0; if (object->ref_count != 0) act_delta += pmap_ts_referenced(m); else { KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m)); } if (act_delta != 0) { if (object->ref_count != 0) { VM_CNT_INC(v_reactivated); vm_page_activate(m); /* * Increase the activation count if the page * was referenced while in the laundry queue. * This makes it less likely that the page will * be returned prematurely to the inactive * queue. */ m->act_count += act_delta + ACT_ADVANCE; /* * If this was a background laundering, count * activated pages towards our target. The * purpose of background laundering is to ensure * that pages are eventually cycled through the * laundry queue, and an activation is a valid * way out. */ if (!in_shortfall) launder--; goto drop_page; } else if ((object->flags & OBJ_DEAD) == 0) goto requeue_page; } /* * If the page appears to be clean at the machine-independent * layer, then remove all of its mappings from the pmap in * anticipation of freeing it. If, however, any of the page's * mappings allow write access, then the page may still be * modified until the last of those mappings are removed. */ if (object->ref_count != 0) { vm_page_test_dirty(m); if (m->dirty == 0) pmap_remove_all(m); } /* * Clean pages are freed, and dirty pages are paged out unless * they belong to a dead object. Requeueing dirty pages from * dead objects is pointless, as they are being paged out and * freed by the thread that destroyed the object. */ if (m->dirty == 0) { free_page: vm_page_free(m); VM_CNT_INC(v_dfree); } else if ((object->flags & OBJ_DEAD) == 0) { if (object->type != OBJT_SWAP && object->type != OBJT_DEFAULT) pageout_ok = true; else if (disable_swap_pageouts) pageout_ok = false; else pageout_ok = true; if (!pageout_ok) { requeue_page: vm_pagequeue_lock(pq); queue_locked = true; vm_page_requeue_locked(m); goto drop_page; } /* * Form a cluster with adjacent, dirty pages from the * same object, and page out that entire cluster. * * The adjacent, dirty pages must also be in the * laundry. However, their mappings are not checked * for new references. Consequently, a recently * referenced page may be paged out. However, that * page will not be prematurely reclaimed. After page * out, the page will be placed in the inactive queue, * where any new references will be detected and the * page reactivated. */ error = vm_pageout_clean(m, &numpagedout); if (error == 0) { launder -= numpagedout; maxscan -= numpagedout - 1; } else if (error == EDEADLK) { pageout_lock_miss++; vnodes_skipped++; } goto relock_queue; } drop_page: vm_page_unlock(m); VM_OBJECT_WUNLOCK(object); relock_queue: if (!queue_locked) { vm_pagequeue_lock(pq); queue_locked = true; } next = TAILQ_NEXT(&vmd->vmd_laundry_marker, plinks.q); TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_laundry_marker, plinks.q); } vm_pagequeue_unlock(pq); if (launder > 0 && pq == &vmd->vmd_pagequeues[PQ_UNSWAPPABLE]) { pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; goto scan; } /* * Wakeup the sync daemon if we skipped a vnode in a writeable object * and we didn't launder enough pages. */ if (vnodes_skipped > 0 && launder > 0) (void)speedup_syncer(); return (starting_target - launder); } /* * Compute the integer square root. */ static u_int isqrt(u_int num) { u_int bit, root, tmp; bit = 1u << ((NBBY * sizeof(u_int)) - 2); while (bit > num) bit >>= 2; root = 0; while (bit != 0) { tmp = root + bit; root >>= 1; if (num >= tmp) { num -= tmp; root += bit; } bit >>= 2; } return (root); } /* * Perform the work of the laundry thread: periodically wake up and determine * whether any pages need to be laundered. If so, determine the number of pages * that need to be laundered, and launder them. */ static void vm_pageout_laundry_worker(void *arg) { struct vm_domain *domain; struct vm_pagequeue *pq; uint64_t nclean, ndirty; u_int inactq_scans, last_launder; int domidx, last_target, launder, shortfall, shortfall_cycle, target; bool in_shortfall; domidx = (uintptr_t)arg; domain = &vm_dom[domidx]; pq = &domain->vmd_pagequeues[PQ_LAUNDRY]; KASSERT(domain->vmd_segs != 0, ("domain without segments")); vm_pageout_init_marker(&domain->vmd_laundry_marker, PQ_LAUNDRY); shortfall = 0; in_shortfall = false; shortfall_cycle = 0; target = 0; inactq_scans = 0; last_launder = 0; /* * Calls to these handlers are serialized by the swap syscall lock. */ (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, domain, EVENTHANDLER_PRI_ANY); (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, domain, EVENTHANDLER_PRI_ANY); /* * The pageout laundry worker is never done, so loop forever. */ for (;;) { KASSERT(target >= 0, ("negative target %d", target)); KASSERT(shortfall_cycle >= 0, ("negative cycle %d", shortfall_cycle)); launder = 0; /* * First determine whether we need to launder pages to meet a * shortage of free pages. */ if (shortfall > 0) { in_shortfall = true; shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE; target = shortfall; } else if (!in_shortfall) goto trybackground; else if (shortfall_cycle == 0 || vm_laundry_target() <= 0) { /* * We recently entered shortfall and began laundering * pages. If we have completed that laundering run * (and we are no longer in shortfall) or we have met * our laundry target through other activity, then we * can stop laundering pages. */ in_shortfall = false; target = 0; goto trybackground; } last_launder = inactq_scans; launder = target / shortfall_cycle--; goto dolaundry; /* * There's no immediate need to launder any pages; see if we * meet the conditions to perform background laundering: * * 1. The ratio of dirty to clean inactive pages exceeds the * background laundering threshold and the pagedaemon has * been woken up to reclaim pages since our last * laundering, or * 2. we haven't yet reached the target of the current * background laundering run. * * The background laundering threshold is not a constant. * Instead, it is a slowly growing function of the number of * page daemon scans since the last laundering. Thus, as the * ratio of dirty to clean inactive pages grows, the amount of * memory pressure required to trigger laundering decreases. */ trybackground: nclean = vm_cnt.v_inactive_count + vm_cnt.v_free_count; ndirty = vm_cnt.v_laundry_count; if (target == 0 && inactq_scans != last_launder && ndirty * isqrt(inactq_scans - last_launder) >= nclean) { target = vm_background_launder_target; } /* * We have a non-zero background laundering target. If we've * laundered up to our maximum without observing a page daemon * request, just stop. This is a safety belt that ensures we * don't launder an excessive amount if memory pressure is low * and the ratio of dirty to clean pages is large. Otherwise, * proceed at the background laundering rate. */ if (target > 0) { if (inactq_scans != last_launder) { last_launder = inactq_scans; last_target = target; } else if (last_target - target >= vm_background_launder_max * PAGE_SIZE / 1024) { target = 0; } launder = vm_background_launder_rate * PAGE_SIZE / 1024; launder /= VM_LAUNDER_RATE; if (launder > target) launder = target; } dolaundry: if (launder > 0) { /* * Because of I/O clustering, the number of laundered * pages could exceed "target" by the maximum size of * a cluster minus one. */ target -= min(vm_pageout_launder(domain, launder, in_shortfall), target); pause("laundp", hz / VM_LAUNDER_RATE); } /* * If we're not currently laundering pages and the page daemon * hasn't posted a new request, sleep until the page daemon * kicks us. */ vm_pagequeue_lock(pq); if (target == 0 && vm_laundry_request == VM_LAUNDRY_IDLE) (void)mtx_sleep(&vm_laundry_request, vm_pagequeue_lockptr(pq), PVM, "launds", 0); /* * If the pagedaemon has indicated that it's in shortfall, start * a shortfall laundering unless we're already in the middle of * one. This may preempt a background laundering. */ if (vm_laundry_request == VM_LAUNDRY_SHORTFALL && (!in_shortfall || shortfall_cycle == 0)) { shortfall = vm_laundry_target() + vm_pageout_deficit; target = 0; } else shortfall = 0; if (target == 0) vm_laundry_request = VM_LAUNDRY_IDLE; inactq_scans = vm_inactq_scans; vm_pagequeue_unlock(pq); } } /* * vm_pageout_scan does the dirty work for the pageout daemon. * * pass == 0: Update active LRU/deactivate pages * pass >= 1: Free inactive pages * * Returns true if pass was zero or enough pages were freed by the inactive * queue scan to meet the target. */ static bool vm_pageout_scan(struct vm_domain *vmd, int pass) { vm_page_t m, next; struct vm_pagequeue *pq; vm_object_t object; long min_scan; int act_delta, addl_page_shortage, deficit, inactq_shortage, maxscan; int page_shortage, scan_tick, scanned, starting_page_shortage; boolean_t queue_locked; /* * If we need to reclaim memory ask kernel caches to return * some. We rate limit to avoid thrashing. */ if (vmd == &vm_dom[0] && pass > 0 && (time_uptime - lowmem_uptime) >= lowmem_period) { /* * Decrease registered cache sizes. */ SDT_PROBE0(vm, , , vm__lowmem_scan); EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES); /* * We do this explicitly after the caches have been * drained above. */ uma_reclaim(); lowmem_uptime = time_uptime; } /* * The addl_page_shortage is the number of temporarily * stuck pages in the inactive queue. In other words, the * number of pages from the inactive count that should be * discounted in setting the target for the active queue scan. */ addl_page_shortage = 0; /* * Calculate the number of pages that we want to free. This number * can be negative if many pages are freed between the wakeup call to * the page daemon and this calculation. */ if (pass > 0) { deficit = atomic_readandclear_int(&vm_pageout_deficit); page_shortage = vm_paging_target() + deficit; } else page_shortage = deficit = 0; starting_page_shortage = page_shortage; /* * Start scanning the inactive queue for pages that we can free. The * scan will stop when we reach the target or we have scanned the * entire queue. (Note that m->act_count is not used to make * decisions for the inactive queue, only for the active queue.) */ pq = &vmd->vmd_pagequeues[PQ_INACTIVE]; maxscan = pq->pq_cnt; vm_pagequeue_lock(pq); queue_locked = TRUE; for (m = TAILQ_FIRST(&pq->pq_pl); m != NULL && maxscan-- > 0 && page_shortage > 0; m = next) { vm_pagequeue_assert_locked(pq); KASSERT(queue_locked, ("unlocked inactive queue")); KASSERT(vm_page_inactive(m), ("Inactive queue %p", m)); VM_CNT_INC(v_pdpages); next = TAILQ_NEXT(m, plinks.q); /* * skip marker pages */ if (m->flags & PG_MARKER) continue; KASSERT((m->flags & PG_FICTITIOUS) == 0, ("Fictitious page %p cannot be in inactive queue", m)); KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("Unmanaged page %p cannot be in inactive queue", m)); /* * The page or object lock acquisitions fail if the * page was removed from the queue or moved to a * different position within the queue. In either * case, addl_page_shortage should not be incremented. */ if (!vm_pageout_page_lock(m, &next)) goto unlock_page; else if (m->hold_count != 0) { /* * Held pages are essentially stuck in the * queue. So, they ought to be discounted * from the inactive count. See the * calculation of inactq_shortage before the * loop over the active queue below. */ addl_page_shortage++; goto unlock_page; } object = m->object; if (!VM_OBJECT_TRYWLOCK(object)) { if (!vm_pageout_fallback_object_lock(m, &next)) goto unlock_object; else if (m->hold_count != 0) { addl_page_shortage++; goto unlock_object; } } if (vm_page_busied(m)) { /* * Don't mess with busy pages. Leave them at * the front of the queue. Most likely, they * are being paged out and will leave the * queue shortly after the scan finishes. So, * they ought to be discounted from the * inactive count. */ addl_page_shortage++; unlock_object: VM_OBJECT_WUNLOCK(object); unlock_page: vm_page_unlock(m); continue; } KASSERT(m->hold_count == 0, ("Held page %p", m)); /* * Dequeue the inactive page and unlock the inactive page * queue, invalidating the 'next' pointer. Dequeueing the * page here avoids a later reacquisition (and release) of * the inactive page queue lock when vm_page_activate(), * vm_page_free(), or vm_page_launder() is called. Use a * marker to remember our place in the inactive queue. */ TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q); vm_page_dequeue_locked(m); vm_pagequeue_unlock(pq); queue_locked = FALSE; /* * Invalid pages can be easily freed. They cannot be * mapped, vm_page_free() asserts this. */ if (m->valid == 0) goto free_page; /* * If the page has been referenced and the object is not dead, * reactivate or requeue the page depending on whether the * object is mapped. */ if ((m->aflags & PGA_REFERENCED) != 0) { vm_page_aflag_clear(m, PGA_REFERENCED); act_delta = 1; } else act_delta = 0; if (object->ref_count != 0) { act_delta += pmap_ts_referenced(m); } else { KASSERT(!pmap_page_is_mapped(m), ("vm_pageout_scan: page %p is mapped", m)); } if (act_delta != 0) { if (object->ref_count != 0) { VM_CNT_INC(v_reactivated); vm_page_activate(m); /* * Increase the activation count if the page * was referenced while in the inactive queue. * This makes it less likely that the page will * be returned prematurely to the inactive * queue. */ m->act_count += act_delta + ACT_ADVANCE; goto drop_page; } else if ((object->flags & OBJ_DEAD) == 0) { vm_pagequeue_lock(pq); queue_locked = TRUE; m->queue = PQ_INACTIVE; TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); vm_pagequeue_cnt_inc(pq); goto drop_page; } } /* * If the page appears to be clean at the machine-independent * layer, then remove all of its mappings from the pmap in * anticipation of freeing it. If, however, any of the page's * mappings allow write access, then the page may still be * modified until the last of those mappings are removed. */ if (object->ref_count != 0) { vm_page_test_dirty(m); if (m->dirty == 0) pmap_remove_all(m); } /* * Clean pages can be freed, but dirty pages must be sent back * to the laundry, unless they belong to a dead object. * Requeueing dirty pages from dead objects is pointless, as * they are being paged out and freed by the thread that * destroyed the object. */ if (m->dirty == 0) { free_page: vm_page_free(m); VM_CNT_INC(v_dfree); --page_shortage; } else if ((object->flags & OBJ_DEAD) == 0) vm_page_launder(m); drop_page: vm_page_unlock(m); VM_OBJECT_WUNLOCK(object); if (!queue_locked) { vm_pagequeue_lock(pq); queue_locked = TRUE; } next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q); TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q); } vm_pagequeue_unlock(pq); /* * Wake up the laundry thread so that it can perform any needed * laundering. If we didn't meet our target, we're in shortfall and * need to launder more aggressively. If PQ_LAUNDRY is empty and no * swap devices are configured, the laundry thread has no work to do, so * don't bother waking it up. * * The laundry thread uses the number of inactive queue scans elapsed * since the last laundering to determine whether to launder again, so * keep count. */ if (starting_page_shortage > 0) { pq = &vm_dom[0].vmd_pagequeues[PQ_LAUNDRY]; vm_pagequeue_lock(pq); if (vm_laundry_request == VM_LAUNDRY_IDLE && (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) { if (page_shortage > 0) { vm_laundry_request = VM_LAUNDRY_SHORTFALL; VM_CNT_INC(v_pdshortfalls); } else if (vm_laundry_request != VM_LAUNDRY_SHORTFALL) vm_laundry_request = VM_LAUNDRY_BACKGROUND; wakeup(&vm_laundry_request); } vm_inactq_scans++; vm_pagequeue_unlock(pq); } /* * Wakeup the swapout daemon if we didn't free the targeted number of * pages. */ if (page_shortage > 0) vm_swapout_run(); /* * If the inactive queue scan fails repeatedly to meet its * target, kill the largest process. */ vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage); /* * Compute the number of pages we want to try to move from the * active queue to either the inactive or laundry queue. * * When scanning active pages, we make clean pages count more heavily * towards the page shortage than dirty pages. This is because dirty * pages must be laundered before they can be reused and thus have less * utility when attempting to quickly alleviate a shortage. However, * this weighting also causes the scan to deactivate dirty pages more * more aggressively, improving the effectiveness of clustering and * ensuring that they can eventually be reused. */ inactq_shortage = vm_cnt.v_inactive_target - (vm_cnt.v_inactive_count + vm_cnt.v_laundry_count / act_scan_laundry_weight) + vm_paging_target() + deficit + addl_page_shortage; inactq_shortage *= act_scan_laundry_weight; pq = &vmd->vmd_pagequeues[PQ_ACTIVE]; vm_pagequeue_lock(pq); maxscan = pq->pq_cnt; /* * If we're just idle polling attempt to visit every * active page within 'update_period' seconds. */ scan_tick = ticks; if (vm_pageout_update_period != 0) { min_scan = pq->pq_cnt; min_scan *= scan_tick - vmd->vmd_last_active_scan; min_scan /= hz * vm_pageout_update_period; } else min_scan = 0; if (min_scan > 0 || (inactq_shortage > 0 && maxscan > 0)) vmd->vmd_last_active_scan = scan_tick; /* * Scan the active queue for pages that can be deactivated. Update * the per-page activity counter and use it to identify deactivation * candidates. Held pages may be deactivated. */ for (m = TAILQ_FIRST(&pq->pq_pl), scanned = 0; m != NULL && (scanned < min_scan || (inactq_shortage > 0 && scanned < maxscan)); m = next, scanned++) { KASSERT(m->queue == PQ_ACTIVE, ("vm_pageout_scan: page %p isn't active", m)); next = TAILQ_NEXT(m, plinks.q); if ((m->flags & PG_MARKER) != 0) continue; KASSERT((m->flags & PG_FICTITIOUS) == 0, ("Fictitious page %p cannot be in active queue", m)); KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("Unmanaged page %p cannot be in active queue", m)); if (!vm_pageout_page_lock(m, &next)) { vm_page_unlock(m); continue; } /* * The count for page daemon pages is updated after checking * the page for eligibility. */ VM_CNT_INC(v_pdpages); /* * Check to see "how much" the page has been used. */ if ((m->aflags & PGA_REFERENCED) != 0) { vm_page_aflag_clear(m, PGA_REFERENCED); act_delta = 1; } else act_delta = 0; /* * Perform an unsynchronized object ref count check. While * the page lock ensures that the page is not reallocated to * another object, in particular, one with unmanaged mappings * that cannot support pmap_ts_referenced(), two races are, * nonetheless, possible: * 1) The count was transitioning to zero, but we saw a non- * zero value. pmap_ts_referenced() will return zero * because the page is not mapped. * 2) The count was transitioning to one, but we saw zero. * This race delays the detection of a new reference. At * worst, we will deactivate and reactivate the page. */ if (m->object->ref_count != 0) act_delta += pmap_ts_referenced(m); /* * Advance or decay the act_count based on recent usage. */ if (act_delta != 0) { m->act_count += ACT_ADVANCE + act_delta; if (m->act_count > ACT_MAX) m->act_count = ACT_MAX; } else m->act_count -= min(m->act_count, ACT_DECLINE); /* * Move this page to the tail of the active, inactive or laundry * queue depending on usage. */ if (m->act_count == 0) { /* Dequeue to avoid later lock recursion. */ vm_page_dequeue_locked(m); /* * When not short for inactive pages, let dirty pages go * through the inactive queue before moving to the * laundry queues. This gives them some extra time to * be reactivated, potentially avoiding an expensive * pageout. During a page shortage, the inactive queue * is necessarily small, so we may move dirty pages * directly to the laundry queue. */ if (inactq_shortage <= 0) vm_page_deactivate(m); else { /* * Calling vm_page_test_dirty() here would * require acquisition of the object's write * lock. However, during a page shortage, * directing dirty pages into the laundry * queue is only an optimization and not a * requirement. Therefore, we simply rely on * the opportunistic updates to the page's * dirty field by the pmap. */ if (m->dirty == 0) { vm_page_deactivate(m); inactq_shortage -= act_scan_laundry_weight; } else { vm_page_launder(m); inactq_shortage--; } } } else vm_page_requeue_locked(m); vm_page_unlock(m); } vm_pagequeue_unlock(pq); if (pass > 0) vm_swapout_run_idle(); return (page_shortage <= 0); } static int vm_pageout_oom_vote; /* * The pagedaemon threads randlomly select one to perform the * OOM. Trying to kill processes before all pagedaemons * failed to reach free target is premature. */ static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, int starting_page_shortage) { int old_vote; if (starting_page_shortage <= 0 || starting_page_shortage != page_shortage) vmd->vmd_oom_seq = 0; else vmd->vmd_oom_seq++; if (vmd->vmd_oom_seq < vm_pageout_oom_seq) { if (vmd->vmd_oom) { vmd->vmd_oom = FALSE; atomic_subtract_int(&vm_pageout_oom_vote, 1); } return; } /* * Do not follow the call sequence until OOM condition is * cleared. */ vmd->vmd_oom_seq = 0; if (vmd->vmd_oom) return; vmd->vmd_oom = TRUE; old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1); if (old_vote != vm_ndomains - 1) return; /* * The current pagedaemon thread is the last in the quorum to * start OOM. Initiate the selection and signaling of the * victim. */ vm_pageout_oom(VM_OOM_MEM); /* * After one round of OOM terror, recall our vote. On the * next pass, current pagedaemon would vote again if the low * memory condition is still there, due to vmd_oom being * false. */ vmd->vmd_oom = FALSE; atomic_subtract_int(&vm_pageout_oom_vote, 1); } /* * The OOM killer is the page daemon's action of last resort when * memory allocation requests have been stalled for a prolonged period * of time because it cannot reclaim memory. This function computes * the approximate number of physical pages that could be reclaimed if * the specified address space is destroyed. * * Private, anonymous memory owned by the address space is the * principal resource that we expect to recover after an OOM kill. * Since the physical pages mapped by the address space's COW entries * are typically shared pages, they are unlikely to be released and so * they are not counted. * * To get to the point where the page daemon runs the OOM killer, its * efforts to write-back vnode-backed pages may have stalled. This * could be caused by a memory allocation deadlock in the write path * that might be resolved by an OOM kill. Therefore, physical pages * belonging to vnode-backed objects are counted, because they might * be freed without being written out first if the address space holds * the last reference to an unlinked vnode. * * Similarly, physical pages belonging to OBJT_PHYS objects are * counted because the address space might hold the last reference to * the object. */ static long vm_pageout_oom_pagecount(struct vmspace *vmspace) { vm_map_t map; vm_map_entry_t entry; vm_object_t obj; long res; map = &vmspace->vm_map; KASSERT(!map->system_map, ("system map")); sx_assert(&map->lock, SA_LOCKED); res = 0; for (entry = map->header.next; entry != &map->header; entry = entry->next) { if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) continue; obj = entry->object.vm_object; if (obj == NULL) continue; if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 && obj->ref_count != 1) continue; switch (obj->type) { case OBJT_DEFAULT: case OBJT_SWAP: case OBJT_PHYS: case OBJT_VNODE: res += obj->resident_page_count; break; } } return (res); } void vm_pageout_oom(int shortage) { struct proc *p, *bigproc; vm_offset_t size, bigsize; struct thread *td; struct vmspace *vm; bool breakout; /* * We keep the process bigproc locked once we find it to keep anyone * from messing with it; however, there is a possibility of * deadlock if process B is bigproc and one of its child processes * attempts to propagate a signal to B while we are waiting for A's * lock while walking this list. To avoid this, we don't block on * the process lock but just skip a process if it is already locked. */ bigproc = NULL; bigsize = 0; sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { PROC_LOCK(p); /* * If this is a system, protected or killed process, skip it. */ if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 || p->p_pid == 1 || P_KILLED(p) || (p->p_pid < 48 && swap_pager_avail != 0)) { PROC_UNLOCK(p); continue; } /* * If the process is in a non-running type state, * don't touch it. Check all the threads individually. */ breakout = false; FOREACH_THREAD_IN_PROC(p, td) { thread_lock(td); if (!TD_ON_RUNQ(td) && !TD_IS_RUNNING(td) && !TD_IS_SLEEPING(td) && !TD_IS_SUSPENDED(td) && !TD_IS_SWAPPED(td)) { thread_unlock(td); breakout = true; break; } thread_unlock(td); } if (breakout) { PROC_UNLOCK(p); continue; } /* * get the process size */ vm = vmspace_acquire_ref(p); if (vm == NULL) { PROC_UNLOCK(p); continue; } _PHOLD_LITE(p); PROC_UNLOCK(p); sx_sunlock(&allproc_lock); if (!vm_map_trylock_read(&vm->vm_map)) { vmspace_free(vm); sx_slock(&allproc_lock); PRELE(p); continue; } size = vmspace_swap_count(vm); if (shortage == VM_OOM_MEM) size += vm_pageout_oom_pagecount(vm); vm_map_unlock_read(&vm->vm_map); vmspace_free(vm); sx_slock(&allproc_lock); /* * If this process is bigger than the biggest one, * remember it. */ if (size > bigsize) { if (bigproc != NULL) PRELE(bigproc); bigproc = p; bigsize = size; } else { PRELE(p); } } sx_sunlock(&allproc_lock); if (bigproc != NULL) { if (vm_panic_on_oom != 0) panic("out of swap space"); PROC_LOCK(bigproc); killproc(bigproc, "out of swap space"); sched_nice(bigproc, PRIO_MIN); _PRELE(bigproc); PROC_UNLOCK(bigproc); wakeup(&vm_cnt.v_free_count); } } static void vm_pageout_worker(void *arg) { struct vm_domain *domain; int domidx, pass; bool target_met; domidx = (uintptr_t)arg; domain = &vm_dom[domidx]; pass = 0; target_met = true; /* * XXXKIB It could be useful to bind pageout daemon threads to * the cores belonging to the domain, from which vm_page_array * is allocated. */ KASSERT(domain->vmd_segs != 0, ("domain without segments")); domain->vmd_last_active_scan = ticks; vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE); vm_pageout_init_marker(&domain->vmd_inacthead, PQ_INACTIVE); TAILQ_INSERT_HEAD(&domain->vmd_pagequeues[PQ_INACTIVE].pq_pl, &domain->vmd_inacthead, plinks.q); /* * The pageout daemon worker is never done, so loop forever. */ while (TRUE) { mtx_lock(&vm_page_queue_free_mtx); /* * Generally, after a level >= 1 scan, if there are enough * free pages to wakeup the waiters, then they are already * awake. A call to vm_page_free() during the scan awakened * them. However, in the following case, this wakeup serves * to bound the amount of time that a thread might wait. * Suppose a thread's call to vm_page_alloc() fails, but * before that thread calls VM_WAIT, enough pages are freed by * other threads to alleviate the free page shortage. The * thread will, nonetheless, wait until another page is freed * or this wakeup is performed. */ if (vm_pages_needed && !vm_page_count_min()) { vm_pages_needed = false; wakeup(&vm_cnt.v_free_count); } /* * Do not clear vm_pageout_wanted until we reach our free page * target. Otherwise, we may be awakened over and over again, * wasting CPU time. */ if (vm_pageout_wanted && target_met) vm_pageout_wanted = false; /* * Might the page daemon receive a wakeup call? */ if (vm_pageout_wanted) { /* * No. Either vm_pageout_wanted was set by another * thread during the previous scan, which must have * been a level 0 scan, or vm_pageout_wanted was * already set and the scan failed to free enough * pages. If we haven't yet performed a level >= 1 * (page reclamation) scan, then increase the level * and scan again now. Otherwise, sleep a bit and * try again later. */ mtx_unlock(&vm_page_queue_free_mtx); if (pass >= 1) pause("pwait", hz / VM_INACT_SCAN_RATE); pass++; } else { /* - * Yes. Sleep until pages need to be reclaimed or + * Yes. If threads are still sleeping in VM_WAIT + * then we immediately start a new scan. Otherwise, + * sleep until the next wakeup or until pages need to * have their reference stats updated. */ - if (mtx_sleep(&vm_pageout_wanted, + if (vm_pages_needed) { + mtx_unlock(&vm_page_queue_free_mtx); + } else if (mtx_sleep(&vm_pageout_wanted, &vm_page_queue_free_mtx, PDROP | PVM, "psleep", hz) == 0) { VM_CNT_INC(v_pdwakeups); pass = 1; } else pass = 0; } target_met = vm_pageout_scan(domain, pass); } } /* * vm_pageout_init initialises basic pageout daemon settings. */ static void vm_pageout_init(void) { /* * Initialize some paging parameters. */ vm_cnt.v_interrupt_free_min = 2; if (vm_cnt.v_page_count < 2000) vm_pageout_page_count = 8; /* * v_free_reserved needs to include enough for the largest * swap pager structures plus enough for any pv_entry structs * when paging. */ if (vm_cnt.v_page_count > 1024) vm_cnt.v_free_min = 4 + (vm_cnt.v_page_count - 1024) / 200; else vm_cnt.v_free_min = 4; vm_cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE + vm_cnt.v_interrupt_free_min; vm_cnt.v_free_reserved = vm_pageout_page_count + vm_cnt.v_pageout_free_min + (vm_cnt.v_page_count / 768); vm_cnt.v_free_severe = vm_cnt.v_free_min / 2; vm_cnt.v_free_target = 4 * vm_cnt.v_free_min + vm_cnt.v_free_reserved; vm_cnt.v_free_min += vm_cnt.v_free_reserved; vm_cnt.v_free_severe += vm_cnt.v_free_reserved; vm_cnt.v_inactive_target = (3 * vm_cnt.v_free_target) / 2; if (vm_cnt.v_inactive_target > vm_cnt.v_free_count / 3) vm_cnt.v_inactive_target = vm_cnt.v_free_count / 3; /* * Set the default wakeup threshold to be 10% above the minimum * page limit. This keeps the steady state out of shortfall. */ vm_pageout_wakeup_thresh = (vm_cnt.v_free_min / 10) * 11; /* * Set interval in seconds for active scan. We want to visit each * page at least once every ten minutes. This is to prevent worst * case paging behaviors with stale active LRU. */ if (vm_pageout_update_period == 0) vm_pageout_update_period = 600; /* XXX does not really belong here */ if (vm_page_max_wired == 0) vm_page_max_wired = vm_cnt.v_free_count / 3; /* * Target amount of memory to move out of the laundry queue during a * background laundering. This is proportional to the amount of system * memory. */ vm_background_launder_target = (vm_cnt.v_free_target - vm_cnt.v_free_min) / 10; } /* * vm_pageout is the high level pageout daemon. */ static void vm_pageout(void) { int error; #ifdef VM_NUMA_ALLOC int i; #endif swap_pager_swap_init(); error = kthread_add(vm_pageout_laundry_worker, NULL, curproc, NULL, 0, 0, "laundry: dom0"); if (error != 0) panic("starting laundry for domain 0, error %d", error); #ifdef VM_NUMA_ALLOC for (i = 1; i < vm_ndomains; i++) { error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i, curproc, NULL, 0, 0, "dom%d", i); if (error != 0) { panic("starting pageout for domain %d, error %d\n", i, error); } } #endif error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL, 0, 0, "uma"); if (error != 0) panic("starting uma_reclaim helper, error %d\n", error); vm_pageout_worker((void *)(uintptr_t)0); } /* - * Unless the free page queue lock is held by the caller, this function - * should be regarded as advisory. Specifically, the caller should - * not msleep() on &vm_cnt.v_free_count following this function unless - * the free page queue lock is held until the msleep() is performed. + * Perform an advisory wakeup of the page daemon. */ void pagedaemon_wakeup(void) { + mtx_assert(&vm_page_queue_free_mtx, MA_NOTOWNED); + if (!vm_pageout_wanted && curthread->td_proc != pageproc) { vm_pageout_wanted = true; wakeup(&vm_pageout_wanted); } +} + +/* + * Wake up the page daemon and wait for it to reclaim free pages. + * + * This function returns with the free queues mutex unlocked. + */ +void +pagedaemon_wait(int pri, const char *wmesg) +{ + + mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); + + /* + * vm_pageout_wanted may have been set by an advisory wakeup, but if the + * page daemon is running on a CPU, the wakeup will have been lost. + * Thus, deliver a potentially spurious wakeup to ensure that the page + * daemon has been notified of the shortage. + */ + if (!vm_pageout_wanted || !vm_pages_needed) { + vm_pageout_wanted = true; + wakeup(&vm_pageout_wanted); + } + vm_pages_needed = true; + msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | pri, + wmesg, 0); } Index: head/sys/vm/vm_pageout.h =================================================================== --- head/sys/vm/vm_pageout.h (revision 327167) +++ head/sys/vm/vm_pageout.h (revision 327168) @@ -1,112 +1,113 @@ /*- * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) * * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_pageout.h 8.2 (Berkeley) 1/12/94 * * * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Author: Avadis Tevanian, Jr. * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. * * $FreeBSD$ */ #ifndef _VM_VM_PAGEOUT_H_ #define _VM_VM_PAGEOUT_H_ /* * Header file for pageout daemon. */ /* * Exported data structures. */ extern int vm_page_max_wired; extern int vm_pageout_deficit; extern int vm_pageout_page_count; extern bool vm_pageout_wanted; extern bool vm_pages_needed; #define VM_OOM_MEM 1 #define VM_OOM_SWAPZ 2 /* * vm_lowmem flags. */ #define VM_LOW_KMEM 0x01 #define VM_LOW_PAGES 0x02 /* * Exported routines. */ /* * Signal pageout-daemon and wait for it. */ -extern void pagedaemon_wakeup(void); +void pagedaemon_wait(int pri, const char *wmesg); +void pagedaemon_wakeup(void); #define VM_WAIT vm_wait() #define VM_WAITPFAULT vm_waitpfault() -extern void vm_wait(void); -extern void vm_waitpfault(void); +void vm_wait(void); +void vm_waitpfault(void); #ifdef _KERNEL int vm_pageout_flush(vm_page_t *, int, int, int, int *, boolean_t *); void vm_pageout_oom(int shortage); void vm_swapout_run(void); void vm_swapout_run_idle(void); #endif #endif /* _VM_VM_PAGEOUT_H_ */