Index: projects/clang600-import/contrib/llvm/tools/lldb/include/lldb/Symbol/ClangASTContext.h =================================================================== --- projects/clang600-import/contrib/llvm/tools/lldb/include/lldb/Symbol/ClangASTContext.h (revision 327150) +++ projects/clang600-import/contrib/llvm/tools/lldb/include/lldb/Symbol/ClangASTContext.h (revision 327151) @@ -1,1059 +1,1065 @@ //===-- ClangASTContext.h ---------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef liblldb_ClangASTContext_h_ #define liblldb_ClangASTContext_h_ // C Includes #include // C++ Includes #include #include #include #include #include #include #include #include // Other libraries and framework includes #include "clang/AST/ASTContext.h" #include "clang/AST/ExternalASTMerger.h" #include "clang/AST/TemplateBase.h" #include "llvm/ADT/SmallVector.h" // Project includes #include "Plugins/ExpressionParser/Clang/ClangPersistentVariables.h" #include "lldb/Core/ClangForward.h" #include "lldb/Symbol/CompilerType.h" #include "lldb/Symbol/TypeSystem.h" #include "lldb/Utility/ConstString.h" #include "lldb/lldb-enumerations.h" class DWARFASTParserClang; -//class PDBASTParser; +#ifdef LLDB_ENABLE_ALL +class PDBASTParser; +#endif // LLDB_ENABLE_ALL namespace lldb_private { class Declaration; class ClangASTContext : public TypeSystem { public: typedef void (*CompleteTagDeclCallback)(void *baton, clang::TagDecl *); typedef void (*CompleteObjCInterfaceDeclCallback)(void *baton, clang::ObjCInterfaceDecl *); //------------------------------------------------------------------ // llvm casting support //------------------------------------------------------------------ static bool classof(const TypeSystem *ts) { return ts->getKind() == TypeSystem::eKindClang; } //------------------------------------------------------------------ // Constructors and Destructors //------------------------------------------------------------------ ClangASTContext(const char *triple = nullptr); ~ClangASTContext() override; void Finalize() override; //------------------------------------------------------------------ // PluginInterface functions //------------------------------------------------------------------ ConstString GetPluginName() override; uint32_t GetPluginVersion() override; static ConstString GetPluginNameStatic(); static lldb::TypeSystemSP CreateInstance(lldb::LanguageType language, Module *module, Target *target); static void EnumerateSupportedLanguages( std::set &languages_for_types, std::set &languages_for_expressions); static void Initialize(); static void Terminate(); static ClangASTContext *GetASTContext(clang::ASTContext *ast_ctx); clang::ASTContext *getASTContext(); void setASTContext(clang::ASTContext *ast_ctx); clang::Builtin::Context *getBuiltinContext(); clang::IdentifierTable *getIdentifierTable(); clang::LangOptions *getLanguageOptions(); clang::SelectorTable *getSelectorTable(); clang::FileManager *getFileManager(); clang::SourceManager *getSourceManager(); clang::DiagnosticsEngine *getDiagnosticsEngine(); clang::DiagnosticConsumer *getDiagnosticConsumer(); clang::MangleContext *getMangleContext(); std::shared_ptr &getTargetOptions(); clang::TargetInfo *getTargetInfo(); void Clear(); const char *GetTargetTriple(); void SetTargetTriple(const char *target_triple); void SetArchitecture(const ArchSpec &arch); bool HasExternalSource(); void SetExternalSource( llvm::IntrusiveRefCntPtr &ast_source_ap); void RemoveExternalSource(); bool GetCompleteDecl(clang::Decl *decl) { return ClangASTContext::GetCompleteDecl(getASTContext(), decl); } static void DumpDeclHiearchy(clang::Decl *decl); static void DumpDeclContextHiearchy(clang::DeclContext *decl_ctx); static bool DeclsAreEquivalent(clang::Decl *lhs_decl, clang::Decl *rhs_decl); static bool GetCompleteDecl(clang::ASTContext *ast, clang::Decl *decl); void SetMetadataAsUserID(const void *object, lldb::user_id_t user_id); void SetMetadata(const void *object, ClangASTMetadata &meta_data) { SetMetadata(getASTContext(), object, meta_data); } static void SetMetadata(clang::ASTContext *ast, const void *object, ClangASTMetadata &meta_data); ClangASTMetadata *GetMetadata(const void *object) { return GetMetadata(getASTContext(), object); } static ClangASTMetadata *GetMetadata(clang::ASTContext *ast, const void *object); //------------------------------------------------------------------ // Basic Types //------------------------------------------------------------------ CompilerType GetBuiltinTypeForEncodingAndBitSize(lldb::Encoding encoding, size_t bit_size) override; static CompilerType GetBuiltinTypeForEncodingAndBitSize( clang::ASTContext *ast, lldb::Encoding encoding, uint32_t bit_size); CompilerType GetBasicType(lldb::BasicType type); static CompilerType GetBasicType(clang::ASTContext *ast, lldb::BasicType type); static CompilerType GetBasicType(clang::ASTContext *ast, const ConstString &name); static lldb::BasicType GetBasicTypeEnumeration(const ConstString &name); CompilerType GetBuiltinTypeForDWARFEncodingAndBitSize(const char *type_name, uint32_t dw_ate, uint32_t bit_size); CompilerType GetCStringType(bool is_const); static CompilerType GetUnknownAnyType(clang::ASTContext *ast); CompilerType GetUnknownAnyType() { return ClangASTContext::GetUnknownAnyType(getASTContext()); } static clang::DeclContext *GetDeclContextForType(clang::QualType type); static clang::DeclContext *GetDeclContextForType(const CompilerType &type); uint32_t GetPointerByteSize() override; static clang::DeclContext *GetTranslationUnitDecl(clang::ASTContext *ast); clang::DeclContext *GetTranslationUnitDecl() { return GetTranslationUnitDecl(getASTContext()); } static clang::Decl *CopyDecl(clang::ASTContext *dest_context, clang::ASTContext *source_context, clang::Decl *source_decl); static bool AreTypesSame(CompilerType type1, CompilerType type2, bool ignore_qualifiers = false); static CompilerType GetTypeForDecl(clang::NamedDecl *decl); static CompilerType GetTypeForDecl(clang::TagDecl *decl); static CompilerType GetTypeForDecl(clang::ObjCInterfaceDecl *objc_decl); template CompilerType GetTypeForIdentifier(const ConstString &type_name) { CompilerType compiler_type; if (type_name.GetLength()) { clang::ASTContext *ast = getASTContext(); if (ast) { clang::IdentifierInfo &myIdent = ast->Idents.get(type_name.GetCString()); clang::DeclarationName myName = ast->DeclarationNames.getIdentifier(&myIdent); clang::DeclContext::lookup_result result = ast->getTranslationUnitDecl()->lookup(myName); if (!result.empty()) { clang::NamedDecl *named_decl = result[0]; if (const RecordDeclType *record_decl = llvm::dyn_cast(named_decl)) compiler_type.SetCompilerType( ast, clang::QualType(record_decl->getTypeForDecl(), 0)); } } } return compiler_type; } CompilerType CreateStructForIdentifier( const ConstString &type_name, const std::initializer_list> &type_fields, bool packed = false); CompilerType GetOrCreateStructForIdentifier( const ConstString &type_name, const std::initializer_list> &type_fields, bool packed = false); //------------------------------------------------------------------ // Structure, Unions, Classes //------------------------------------------------------------------ static clang::AccessSpecifier ConvertAccessTypeToAccessSpecifier(lldb::AccessType access); static clang::AccessSpecifier UnifyAccessSpecifiers(clang::AccessSpecifier lhs, clang::AccessSpecifier rhs); static uint32_t GetNumBaseClasses(const clang::CXXRecordDecl *cxx_record_decl, bool omit_empty_base_classes); CompilerType CreateRecordType(clang::DeclContext *decl_ctx, lldb::AccessType access_type, const char *name, int kind, lldb::LanguageType language, ClangASTMetadata *metadata = nullptr); class TemplateParameterInfos { public: bool IsValid() const { if (args.empty()) return false; return args.size() == names.size() && ((bool)pack_name == (bool)packed_args) && (!packed_args || !packed_args->packed_args); } llvm::SmallVector names; llvm::SmallVector args; const char * pack_name = nullptr; std::unique_ptr packed_args; }; clang::FunctionTemplateDecl * CreateFunctionTemplateDecl(clang::DeclContext *decl_ctx, clang::FunctionDecl *func_decl, const char *name, const TemplateParameterInfos &infos); void CreateFunctionTemplateSpecializationInfo( clang::FunctionDecl *func_decl, clang::FunctionTemplateDecl *Template, const TemplateParameterInfos &infos); clang::ClassTemplateDecl * CreateClassTemplateDecl(clang::DeclContext *decl_ctx, lldb::AccessType access_type, const char *class_name, int kind, const TemplateParameterInfos &infos); clang::ClassTemplateSpecializationDecl *CreateClassTemplateSpecializationDecl( clang::DeclContext *decl_ctx, clang::ClassTemplateDecl *class_template_decl, int kind, const TemplateParameterInfos &infos); CompilerType CreateClassTemplateSpecializationType(clang::ClassTemplateSpecializationDecl * class_template_specialization_decl); static clang::DeclContext * GetAsDeclContext(clang::CXXMethodDecl *cxx_method_decl); static clang::DeclContext * GetAsDeclContext(clang::ObjCMethodDecl *objc_method_decl); static bool CheckOverloadedOperatorKindParameterCount( bool is_method, clang::OverloadedOperatorKind op_kind, uint32_t num_params); bool FieldIsBitfield(clang::FieldDecl *field, uint32_t &bitfield_bit_size); static bool FieldIsBitfield(clang::ASTContext *ast, clang::FieldDecl *field, uint32_t &bitfield_bit_size); static bool RecordHasFields(const clang::RecordDecl *record_decl); CompilerType CreateObjCClass(const char *name, clang::DeclContext *decl_ctx, bool isForwardDecl, bool isInternal, ClangASTMetadata *metadata = nullptr); bool SetTagTypeKind(clang::QualType type, int kind) const; bool SetDefaultAccessForRecordFields(clang::RecordDecl *record_decl, int default_accessibility, int *assigned_accessibilities, size_t num_assigned_accessibilities); // Returns a mask containing bits from the ClangASTContext::eTypeXXX // enumerations //------------------------------------------------------------------ // Namespace Declarations //------------------------------------------------------------------ clang::NamespaceDecl * GetUniqueNamespaceDeclaration(const char *name, clang::DeclContext *decl_ctx); static clang::NamespaceDecl * GetUniqueNamespaceDeclaration(clang::ASTContext *ast, const char *name, clang::DeclContext *decl_ctx); //------------------------------------------------------------------ // Function Types //------------------------------------------------------------------ clang::FunctionDecl * CreateFunctionDeclaration(clang::DeclContext *decl_ctx, const char *name, const CompilerType &function_Type, int storage, bool is_inline); static CompilerType CreateFunctionType(clang::ASTContext *ast, const CompilerType &result_type, const CompilerType *args, unsigned num_args, bool is_variadic, unsigned type_quals); CompilerType CreateFunctionType(const CompilerType &result_type, const CompilerType *args, unsigned num_args, bool is_variadic, unsigned type_quals) { return ClangASTContext::CreateFunctionType( getASTContext(), result_type, args, num_args, is_variadic, type_quals); } clang::ParmVarDecl *CreateParameterDeclaration(const char *name, const CompilerType ¶m_type, int storage); void SetFunctionParameters(clang::FunctionDecl *function_decl, clang::ParmVarDecl **params, unsigned num_params); CompilerType CreateBlockPointerType(const CompilerType &function_type); //------------------------------------------------------------------ // Array Types //------------------------------------------------------------------ CompilerType CreateArrayType(const CompilerType &element_type, size_t element_count, bool is_vector); //------------------------------------------------------------------ // Enumeration Types //------------------------------------------------------------------ CompilerType CreateEnumerationType(const char *name, clang::DeclContext *decl_ctx, const Declaration &decl, const CompilerType &integer_qual_type, bool is_scoped); //------------------------------------------------------------------ // Integer type functions //------------------------------------------------------------------ static CompilerType GetIntTypeFromBitSize(clang::ASTContext *ast, size_t bit_size, bool is_signed); CompilerType GetPointerSizedIntType(bool is_signed) { return GetPointerSizedIntType(getASTContext(), is_signed); } static CompilerType GetPointerSizedIntType(clang::ASTContext *ast, bool is_signed); //------------------------------------------------------------------ // Floating point functions //------------------------------------------------------------------ static CompilerType GetFloatTypeFromBitSize(clang::ASTContext *ast, size_t bit_size); //------------------------------------------------------------------ // TypeSystem methods //------------------------------------------------------------------ DWARFASTParser *GetDWARFParser() override; - //PDBASTParser *GetPDBParser(); +#ifdef LLDB_ENABLE_ALL + PDBASTParser *GetPDBParser(); +#endif // LLDB_ENABLE_ALL //------------------------------------------------------------------ // ClangASTContext callbacks for external source lookups. //------------------------------------------------------------------ static void CompleteTagDecl(void *baton, clang::TagDecl *); static void CompleteObjCInterfaceDecl(void *baton, clang::ObjCInterfaceDecl *); static bool LayoutRecordType( void *baton, const clang::RecordDecl *record_decl, uint64_t &size, uint64_t &alignment, llvm::DenseMap &field_offsets, llvm::DenseMap &base_offsets, llvm::DenseMap &vbase_offsets); //---------------------------------------------------------------------- // CompilerDecl override functions //---------------------------------------------------------------------- ConstString DeclGetName(void *opaque_decl) override; ConstString DeclGetMangledName(void *opaque_decl) override; CompilerDeclContext DeclGetDeclContext(void *opaque_decl) override; CompilerType DeclGetFunctionReturnType(void *opaque_decl) override; size_t DeclGetFunctionNumArguments(void *opaque_decl) override; CompilerType DeclGetFunctionArgumentType(void *opaque_decl, size_t arg_idx) override; //---------------------------------------------------------------------- // CompilerDeclContext override functions //---------------------------------------------------------------------- std::vector DeclContextFindDeclByName(void *opaque_decl_ctx, ConstString name, const bool ignore_using_decls) override; bool DeclContextIsStructUnionOrClass(void *opaque_decl_ctx) override; ConstString DeclContextGetName(void *opaque_decl_ctx) override; ConstString DeclContextGetScopeQualifiedName(void *opaque_decl_ctx) override; bool DeclContextIsClassMethod(void *opaque_decl_ctx, lldb::LanguageType *language_ptr, bool *is_instance_method_ptr, ConstString *language_object_name_ptr) override; //---------------------------------------------------------------------- // Clang specific clang::DeclContext functions //---------------------------------------------------------------------- static clang::DeclContext * DeclContextGetAsDeclContext(const CompilerDeclContext &dc); static clang::ObjCMethodDecl * DeclContextGetAsObjCMethodDecl(const CompilerDeclContext &dc); static clang::CXXMethodDecl * DeclContextGetAsCXXMethodDecl(const CompilerDeclContext &dc); static clang::FunctionDecl * DeclContextGetAsFunctionDecl(const CompilerDeclContext &dc); static clang::NamespaceDecl * DeclContextGetAsNamespaceDecl(const CompilerDeclContext &dc); static ClangASTMetadata *DeclContextGetMetaData(const CompilerDeclContext &dc, const void *object); static clang::ASTContext * DeclContextGetClangASTContext(const CompilerDeclContext &dc); //---------------------------------------------------------------------- // Tests //---------------------------------------------------------------------- bool IsArrayType(lldb::opaque_compiler_type_t type, CompilerType *element_type, uint64_t *size, bool *is_incomplete) override; bool IsVectorType(lldb::opaque_compiler_type_t type, CompilerType *element_type, uint64_t *size) override; bool IsAggregateType(lldb::opaque_compiler_type_t type) override; bool IsAnonymousType(lldb::opaque_compiler_type_t type) override; bool IsBeingDefined(lldb::opaque_compiler_type_t type) override; bool IsCharType(lldb::opaque_compiler_type_t type) override; bool IsCompleteType(lldb::opaque_compiler_type_t type) override; bool IsConst(lldb::opaque_compiler_type_t type) override; bool IsCStringType(lldb::opaque_compiler_type_t type, uint32_t &length) override; static bool IsCXXClassType(const CompilerType &type); bool IsDefined(lldb::opaque_compiler_type_t type) override; bool IsFloatingPointType(lldb::opaque_compiler_type_t type, uint32_t &count, bool &is_complex) override; bool IsFunctionType(lldb::opaque_compiler_type_t type, bool *is_variadic_ptr) override; uint32_t IsHomogeneousAggregate(lldb::opaque_compiler_type_t type, CompilerType *base_type_ptr) override; size_t GetNumberOfFunctionArguments(lldb::opaque_compiler_type_t type) override; CompilerType GetFunctionArgumentAtIndex(lldb::opaque_compiler_type_t type, const size_t index) override; bool IsFunctionPointerType(lldb::opaque_compiler_type_t type) override; bool IsBlockPointerType(lldb::opaque_compiler_type_t type, CompilerType *function_pointer_type_ptr) override; bool IsIntegerType(lldb::opaque_compiler_type_t type, bool &is_signed) override; bool IsEnumerationType(lldb::opaque_compiler_type_t type, bool &is_signed) override; static bool IsObjCClassType(const CompilerType &type); static bool IsObjCClassTypeAndHasIVars(const CompilerType &type, bool check_superclass); static bool IsObjCObjectOrInterfaceType(const CompilerType &type); static bool IsObjCObjectPointerType(const CompilerType &type, CompilerType *target_type = nullptr); bool IsPolymorphicClass(lldb::opaque_compiler_type_t type) override; static bool IsClassType(lldb::opaque_compiler_type_t type); static bool IsEnumType(lldb::opaque_compiler_type_t type); bool IsPossibleDynamicType(lldb::opaque_compiler_type_t type, CompilerType *target_type, // Can pass nullptr bool check_cplusplus, bool check_objc) override; bool IsRuntimeGeneratedType(lldb::opaque_compiler_type_t type) override; bool IsPointerType(lldb::opaque_compiler_type_t type, CompilerType *pointee_type) override; bool IsPointerOrReferenceType(lldb::opaque_compiler_type_t type, CompilerType *pointee_type) override; bool IsReferenceType(lldb::opaque_compiler_type_t type, CompilerType *pointee_type, bool *is_rvalue) override; bool IsScalarType(lldb::opaque_compiler_type_t type) override; bool IsTypedefType(lldb::opaque_compiler_type_t type) override; bool IsVoidType(lldb::opaque_compiler_type_t type) override; bool SupportsLanguage(lldb::LanguageType language) override; static bool GetCXXClassName(const CompilerType &type, std::string &class_name); static bool GetObjCClassName(const CompilerType &type, std::string &class_name); //---------------------------------------------------------------------- // Type Completion //---------------------------------------------------------------------- bool GetCompleteType(lldb::opaque_compiler_type_t type) override; //---------------------------------------------------------------------- // Accessors //---------------------------------------------------------------------- ConstString GetTypeName(lldb::opaque_compiler_type_t type) override; uint32_t GetTypeInfo(lldb::opaque_compiler_type_t type, CompilerType *pointee_or_element_compiler_type) override; lldb::LanguageType GetMinimumLanguage(lldb::opaque_compiler_type_t type) override; lldb::TypeClass GetTypeClass(lldb::opaque_compiler_type_t type) override; unsigned GetTypeQualifiers(lldb::opaque_compiler_type_t type) override; //---------------------------------------------------------------------- // Creating related types //---------------------------------------------------------------------- // Using the current type, create a new typedef to that type using // "typedef_name" // as the name and "decl_ctx" as the decl context. static CompilerType CreateTypedefType(const CompilerType &type, const char *typedef_name, const CompilerDeclContext &compiler_decl_ctx); CompilerType GetArrayElementType(lldb::opaque_compiler_type_t type, uint64_t *stride) override; CompilerType GetArrayType(lldb::opaque_compiler_type_t type, uint64_t size) override; CompilerType GetCanonicalType(lldb::opaque_compiler_type_t type) override; CompilerType GetFullyUnqualifiedType(lldb::opaque_compiler_type_t type) override; // Returns -1 if this isn't a function of if the function doesn't have a // prototype // Returns a value >= 0 if there is a prototype. int GetFunctionArgumentCount(lldb::opaque_compiler_type_t type) override; CompilerType GetFunctionArgumentTypeAtIndex(lldb::opaque_compiler_type_t type, size_t idx) override; CompilerType GetFunctionReturnType(lldb::opaque_compiler_type_t type) override; size_t GetNumMemberFunctions(lldb::opaque_compiler_type_t type) override; TypeMemberFunctionImpl GetMemberFunctionAtIndex(lldb::opaque_compiler_type_t type, size_t idx) override; CompilerType GetNonReferenceType(lldb::opaque_compiler_type_t type) override; CompilerType GetPointeeType(lldb::opaque_compiler_type_t type) override; CompilerType GetPointerType(lldb::opaque_compiler_type_t type) override; CompilerType GetLValueReferenceType(lldb::opaque_compiler_type_t type) override; CompilerType GetRValueReferenceType(lldb::opaque_compiler_type_t type) override; CompilerType AddConstModifier(lldb::opaque_compiler_type_t type) override; CompilerType AddVolatileModifier(lldb::opaque_compiler_type_t type) override; CompilerType AddRestrictModifier(lldb::opaque_compiler_type_t type) override; CompilerType CreateTypedef(lldb::opaque_compiler_type_t type, const char *name, const CompilerDeclContext &decl_ctx) override; // If the current object represents a typedef type, get the underlying type CompilerType GetTypedefedType(lldb::opaque_compiler_type_t type) override; //---------------------------------------------------------------------- // Create related types using the current type's AST //---------------------------------------------------------------------- CompilerType GetBasicTypeFromAST(lldb::BasicType basic_type) override; //---------------------------------------------------------------------- // Exploring the type //---------------------------------------------------------------------- uint64_t GetByteSize(lldb::opaque_compiler_type_t type, ExecutionContextScope *exe_scope) { return (GetBitSize(type, exe_scope) + 7) / 8; } uint64_t GetBitSize(lldb::opaque_compiler_type_t type, ExecutionContextScope *exe_scope) override; lldb::Encoding GetEncoding(lldb::opaque_compiler_type_t type, uint64_t &count) override; lldb::Format GetFormat(lldb::opaque_compiler_type_t type) override; size_t GetTypeBitAlign(lldb::opaque_compiler_type_t type) override; uint32_t GetNumChildren(lldb::opaque_compiler_type_t type, bool omit_empty_base_classes) override; CompilerType GetBuiltinTypeByName(const ConstString &name) override; lldb::BasicType GetBasicTypeEnumeration(lldb::opaque_compiler_type_t type) override; static lldb::BasicType GetBasicTypeEnumeration(lldb::opaque_compiler_type_t type, const ConstString &name); void ForEachEnumerator( lldb::opaque_compiler_type_t type, std::function const &callback) override; uint32_t GetNumFields(lldb::opaque_compiler_type_t type) override; CompilerType GetFieldAtIndex(lldb::opaque_compiler_type_t type, size_t idx, std::string &name, uint64_t *bit_offset_ptr, uint32_t *bitfield_bit_size_ptr, bool *is_bitfield_ptr) override; uint32_t GetNumDirectBaseClasses(lldb::opaque_compiler_type_t type) override; uint32_t GetNumVirtualBaseClasses(lldb::opaque_compiler_type_t type) override; CompilerType GetDirectBaseClassAtIndex(lldb::opaque_compiler_type_t type, size_t idx, uint32_t *bit_offset_ptr) override; CompilerType GetVirtualBaseClassAtIndex(lldb::opaque_compiler_type_t type, size_t idx, uint32_t *bit_offset_ptr) override; static uint32_t GetNumPointeeChildren(clang::QualType type); CompilerType GetChildCompilerTypeAtIndex( lldb::opaque_compiler_type_t type, ExecutionContext *exe_ctx, size_t idx, bool transparent_pointers, bool omit_empty_base_classes, bool ignore_array_bounds, std::string &child_name, uint32_t &child_byte_size, int32_t &child_byte_offset, uint32_t &child_bitfield_bit_size, uint32_t &child_bitfield_bit_offset, bool &child_is_base_class, bool &child_is_deref_of_parent, ValueObject *valobj, uint64_t &language_flags) override; // Lookup a child given a name. This function will match base class names // and member member names in "clang_type" only, not descendants. uint32_t GetIndexOfChildWithName(lldb::opaque_compiler_type_t type, const char *name, bool omit_empty_base_classes) override; // Lookup a child member given a name. This function will match member names // only and will descend into "clang_type" children in search for the first // member in this class, or any base class that matches "name". // TODO: Return all matches for a given name by returning a // vector> // so we catch all names that match a given child name, not just the first. size_t GetIndexOfChildMemberWithName(lldb::opaque_compiler_type_t type, const char *name, bool omit_empty_base_classes, std::vector &child_indexes) override; size_t GetNumTemplateArguments(lldb::opaque_compiler_type_t type) override; lldb::TemplateArgumentKind GetTemplateArgumentKind(lldb::opaque_compiler_type_t type, size_t idx) override; CompilerType GetTypeTemplateArgument(lldb::opaque_compiler_type_t type, size_t idx) override; llvm::Optional GetIntegralTemplateArgument(lldb::opaque_compiler_type_t type, size_t idx) override; CompilerType GetTypeForFormatters(void *type) override; #define LLDB_INVALID_DECL_LEVEL UINT32_MAX // LLDB_INVALID_DECL_LEVEL is returned by CountDeclLevels if // child_decl_ctx could not be found in decl_ctx. uint32_t CountDeclLevels(clang::DeclContext *frame_decl_ctx, clang::DeclContext *child_decl_ctx, ConstString *child_name = nullptr, CompilerType *child_type = nullptr); //---------------------------------------------------------------------- // Modifying RecordType //---------------------------------------------------------------------- static clang::FieldDecl *AddFieldToRecordType(const CompilerType &type, const char *name, const CompilerType &field_type, lldb::AccessType access, uint32_t bitfield_bit_size); static void BuildIndirectFields(const CompilerType &type); static void SetIsPacked(const CompilerType &type); static clang::VarDecl *AddVariableToRecordType(const CompilerType &type, const char *name, const CompilerType &var_type, lldb::AccessType access); clang::CXXMethodDecl * AddMethodToCXXRecordType(lldb::opaque_compiler_type_t type, const char *name, const CompilerType &method_type, lldb::AccessType access, bool is_virtual, bool is_static, bool is_inline, bool is_explicit, bool is_attr_used, bool is_artificial); // C++ Base Classes clang::CXXBaseSpecifier * CreateBaseClassSpecifier(lldb::opaque_compiler_type_t type, lldb::AccessType access, bool is_virtual, bool base_of_class); static void DeleteBaseClassSpecifiers(clang::CXXBaseSpecifier **base_classes, unsigned num_base_classes); bool SetBaseClassesForClassType(lldb::opaque_compiler_type_t type, clang::CXXBaseSpecifier const *const *base_classes, unsigned num_base_classes); static bool SetObjCSuperClass(const CompilerType &type, const CompilerType &superclass_compiler_type); static bool AddObjCClassProperty(const CompilerType &type, const char *property_name, const CompilerType &property_compiler_type, clang::ObjCIvarDecl *ivar_decl, const char *property_setter_name, const char *property_getter_name, uint32_t property_attributes, ClangASTMetadata *metadata); static clang::ObjCMethodDecl *AddMethodToObjCObjectType( const CompilerType &type, const char *name, // the full symbol name as seen in the symbol table // (lldb::opaque_compiler_type_t type, "-[NString // stringWithCString:]") const CompilerType &method_compiler_type, lldb::AccessType access, bool is_artificial, bool is_variadic); static bool SetHasExternalStorage(lldb::opaque_compiler_type_t type, bool has_extern); static bool GetHasExternalStorage(const CompilerType &type); //------------------------------------------------------------------ // Tag Declarations //------------------------------------------------------------------ static bool StartTagDeclarationDefinition(const CompilerType &type); static bool CompleteTagDeclarationDefinition(const CompilerType &type); //---------------------------------------------------------------------- // Modifying Enumeration types //---------------------------------------------------------------------- bool AddEnumerationValueToEnumerationType( lldb::opaque_compiler_type_t type, const CompilerType &enumerator_qual_type, const Declaration &decl, const char *name, int64_t enum_value, uint32_t enum_value_bit_size); CompilerType GetEnumerationIntegerType(lldb::opaque_compiler_type_t type); //------------------------------------------------------------------ // Pointers & References //------------------------------------------------------------------ // Call this function using the class type when you want to make a // member pointer type to pointee_type. static CompilerType CreateMemberPointerType(const CompilerType &type, const CompilerType &pointee_type); // Converts "s" to a floating point value and place resulting floating // point bytes in the "dst" buffer. size_t ConvertStringToFloatValue(lldb::opaque_compiler_type_t type, const char *s, uint8_t *dst, size_t dst_size) override; //---------------------------------------------------------------------- // Dumping types //---------------------------------------------------------------------- void DumpValue(lldb::opaque_compiler_type_t type, ExecutionContext *exe_ctx, Stream *s, lldb::Format format, const DataExtractor &data, lldb::offset_t data_offset, size_t data_byte_size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset, bool show_types, bool show_summary, bool verbose, uint32_t depth) override; bool DumpTypeValue(lldb::opaque_compiler_type_t type, Stream *s, lldb::Format format, const DataExtractor &data, lldb::offset_t data_offset, size_t data_byte_size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset, ExecutionContextScope *exe_scope) override; void DumpSummary(lldb::opaque_compiler_type_t type, ExecutionContext *exe_ctx, Stream *s, const DataExtractor &data, lldb::offset_t data_offset, size_t data_byte_size) override; void DumpTypeDescription( lldb::opaque_compiler_type_t type) override; // Dump to stdout void DumpTypeDescription(lldb::opaque_compiler_type_t type, Stream *s) override; static void DumpTypeName(const CompilerType &type); static clang::EnumDecl *GetAsEnumDecl(const CompilerType &type); static clang::RecordDecl *GetAsRecordDecl(const CompilerType &type); static clang::TagDecl *GetAsTagDecl(const CompilerType &type); clang::CXXRecordDecl *GetAsCXXRecordDecl(lldb::opaque_compiler_type_t type); static clang::ObjCInterfaceDecl * GetAsObjCInterfaceDecl(const CompilerType &type); clang::ClassTemplateDecl *ParseClassTemplateDecl( clang::DeclContext *decl_ctx, lldb::AccessType access_type, const char *parent_name, int tag_decl_kind, const ClangASTContext::TemplateParameterInfos &template_param_infos); clang::BlockDecl *CreateBlockDeclaration(clang::DeclContext *ctx); clang::UsingDirectiveDecl * CreateUsingDirectiveDeclaration(clang::DeclContext *decl_ctx, clang::NamespaceDecl *ns_decl); clang::UsingDecl *CreateUsingDeclaration(clang::DeclContext *current_decl_ctx, clang::NamedDecl *target); clang::VarDecl *CreateVariableDeclaration(clang::DeclContext *decl_context, const char *name, clang::QualType type); static lldb::opaque_compiler_type_t GetOpaqueCompilerType(clang::ASTContext *ast, lldb::BasicType basic_type); static clang::QualType GetQualType(lldb::opaque_compiler_type_t type) { if (type) return clang::QualType::getFromOpaquePtr(type); return clang::QualType(); } static clang::QualType GetCanonicalQualType(lldb::opaque_compiler_type_t type) { if (type) return clang::QualType::getFromOpaquePtr(type).getCanonicalType(); return clang::QualType(); } clang::DeclarationName GetDeclarationName(const char *name, const CompilerType &function_clang_type); virtual const clang::ExternalASTMerger::OriginMap &GetOriginMap() { return m_origins; } protected: const clang::ClassTemplateSpecializationDecl * GetAsTemplateSpecialization(lldb::opaque_compiler_type_t type); //------------------------------------------------------------------ // Classes that inherit from ClangASTContext can see and modify these //------------------------------------------------------------------ // clang-format off std::string m_target_triple; std::unique_ptr m_ast_ap; std::unique_ptr m_language_options_ap; std::unique_ptr m_file_manager_ap; std::unique_ptr m_file_system_options_ap; std::unique_ptr m_source_manager_ap; std::unique_ptr m_diagnostics_engine_ap; std::unique_ptr m_diagnostic_consumer_ap; std::shared_ptr m_target_options_rp; std::unique_ptr m_target_info_ap; std::unique_ptr m_identifier_table_ap; std::unique_ptr m_selector_table_ap; std::unique_ptr m_builtins_ap; std::unique_ptr m_dwarf_ast_parser_ap; -// std::unique_ptr m_pdb_ast_parser_ap; +#ifdef LLDB_ENABLE_ALL + std::unique_ptr m_pdb_ast_parser_ap; +#endif // LLDB_ENABLE_ALL std::unique_ptr m_scratch_ast_source_ap; std::unique_ptr m_mangle_ctx_ap; CompleteTagDeclCallback m_callback_tag_decl; CompleteObjCInterfaceDeclCallback m_callback_objc_decl; void * m_callback_baton; clang::ExternalASTMerger::OriginMap m_origins; uint32_t m_pointer_byte_size; bool m_ast_owned; bool m_can_evaluate_expressions; // clang-format on private: //------------------------------------------------------------------ // For ClangASTContext only //------------------------------------------------------------------ ClangASTContext(const ClangASTContext &); const ClangASTContext &operator=(const ClangASTContext &); }; class ClangASTContextForExpressions : public ClangASTContext { public: ClangASTContextForExpressions(Target &target); ~ClangASTContextForExpressions() override = default; UserExpression * GetUserExpression(llvm::StringRef expr, llvm::StringRef prefix, lldb::LanguageType language, Expression::ResultType desired_type, const EvaluateExpressionOptions &options) override; FunctionCaller *GetFunctionCaller(const CompilerType &return_type, const Address &function_address, const ValueList &arg_value_list, const char *name) override; UtilityFunction *GetUtilityFunction(const char *text, const char *name) override; PersistentExpressionState *GetPersistentExpressionState() override; clang::ExternalASTMerger &GetMergerUnchecked(); const clang::ExternalASTMerger::OriginMap &GetOriginMap() override { return GetMergerUnchecked().GetOrigins(); } private: lldb::TargetWP m_target_wp; lldb::ClangPersistentVariablesUP m_persistent_variables; ///< These are the ///persistent ///variables ///associated with ///this process for ///the expression ///parser. }; } // namespace lldb_private #endif // liblldb_ClangASTContext_h_ Index: projects/clang600-import/contrib/llvm/tools/lldb/source/Initialization/SystemInitializerCommon.cpp =================================================================== --- projects/clang600-import/contrib/llvm/tools/lldb/source/Initialization/SystemInitializerCommon.cpp (revision 327150) +++ projects/clang600-import/contrib/llvm/tools/lldb/source/Initialization/SystemInitializerCommon.cpp (revision 327151) @@ -1,129 +1,141 @@ //===-- SystemInitializerCommon.cpp -----------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/Initialization/SystemInitializerCommon.h" #include "Plugins/Instruction/ARM/EmulateInstructionARM.h" #include "Plugins/Instruction/MIPS/EmulateInstructionMIPS.h" #include "Plugins/Instruction/MIPS64/EmulateInstructionMIPS64.h" #include "Plugins/ObjectContainer/BSD-Archive/ObjectContainerBSDArchive.h" -//#include "Plugins/ObjectContainer/Universal-Mach-O/ObjectContainerUniversalMachO.h" +#ifdef LLDB_ENABLE_ALL +#include "Plugins/ObjectContainer/Universal-Mach-O/ObjectContainerUniversalMachO.h" +#endif // LLDB_ENABLE_ALL #include "Plugins/ObjectFile/ELF/ObjectFileELF.h" -//#include "Plugins/ObjectFile/PECOFF/ObjectFilePECOFF.h" +#ifdef LLDB_ENABLE_ALL +#include "Plugins/ObjectFile/PECOFF/ObjectFilePECOFF.h" +#endif // LLDB_ENABLE_ALL #include "Plugins/Process/gdb-remote/ProcessGDBRemoteLog.h" #include "lldb/Host/Host.h" #include "lldb/Host/HostInfo.h" #include "lldb/Utility/Log.h" #include "lldb/Utility/Timer.h" #if defined(__APPLE__) #include "Plugins/ObjectFile/Mach-O/ObjectFileMachO.h" #endif #if defined(__linux__) || defined(__FreeBSD__) || defined(__NetBSD__) #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" #endif #if defined(_MSC_VER) #include "Plugins/Process/Windows/Common/ProcessWindowsLog.h" #include "lldb/Host/windows/windows.h" #endif #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/TargetSelect.h" #include using namespace lldb_private; SystemInitializerCommon::SystemInitializerCommon() {} SystemInitializerCommon::~SystemInitializerCommon() {} void SystemInitializerCommon::Initialize() { #if defined(_MSC_VER) const char *disable_crash_dialog_var = getenv("LLDB_DISABLE_CRASH_DIALOG"); if (disable_crash_dialog_var && llvm::StringRef(disable_crash_dialog_var).equals_lower("true")) { // This will prevent Windows from displaying a dialog box requiring user // interaction when // LLDB crashes. This is mostly useful when automating LLDB, for example // via the test // suite, so that a crash in LLDB does not prevent completion of the test // suite. ::SetErrorMode(GetErrorMode() | SEM_FAILCRITICALERRORS | SEM_NOGPFAULTERRORBOX); _CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE | _CRTDBG_MODE_DEBUG); _CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE | _CRTDBG_MODE_DEBUG); _CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE | _CRTDBG_MODE_DEBUG); _CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDERR); _CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDERR); _CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDERR); } #endif #if not defined(__APPLE__) llvm::EnablePrettyStackTrace(); #endif Log::Initialize(); HostInfo::Initialize(); static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); Timer scoped_timer(func_cat, LLVM_PRETTY_FUNCTION); process_gdb_remote::ProcessGDBRemoteLog::Initialize(); // Initialize plug-ins ObjectContainerBSDArchive::Initialize(); ObjectFileELF::Initialize(); -//ObjectFilePECOFF::Initialize(); +#ifdef LLDB_ENABLE_ALL + ObjectFilePECOFF::Initialize(); +#endif // LLDB_ENABLE_ALL EmulateInstructionARM::Initialize(); EmulateInstructionMIPS::Initialize(); EmulateInstructionMIPS64::Initialize(); //---------------------------------------------------------------------- // Apple/Darwin hosted plugins //---------------------------------------------------------------------- -//ObjectContainerUniversalMachO::Initialize(); +#ifdef LLDB_ENABLE_ALL + ObjectContainerUniversalMachO::Initialize(); +#endif // LLDB_ENABLE_ALL #if defined(__APPLE__) ObjectFileMachO::Initialize(); #endif #if defined(__linux__) || defined(__FreeBSD__) || defined(__NetBSD__) ProcessPOSIXLog::Initialize(); #endif #if defined(_MSC_VER) ProcessWindowsLog::Initialize(); #endif } void SystemInitializerCommon::Terminate() { static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); Timer scoped_timer(func_cat, LLVM_PRETTY_FUNCTION); ObjectContainerBSDArchive::Terminate(); ObjectFileELF::Terminate(); -//ObjectFilePECOFF::Terminate(); +#ifdef LLDB_ENABLE_ALL + ObjectFilePECOFF::Terminate(); +#endif // LLDB_ENABLE_ALL EmulateInstructionARM::Terminate(); EmulateInstructionMIPS::Terminate(); EmulateInstructionMIPS64::Terminate(); -//ObjectContainerUniversalMachO::Terminate(); +#ifdef LLDB_ENABLE_ALL + ObjectContainerUniversalMachO::Terminate(); +#endif // LLDB_ENABLE_ALL #if defined(__APPLE__) ObjectFileMachO::Terminate(); #endif #if defined(_MSC_VER) ProcessWindowsLog::Terminate(); #endif HostInfo::Terminate(); Log::DisableAllLogChannels(); } Index: projects/clang600-import/contrib/llvm/tools/lldb/source/Plugins/Process/gdb-remote/ProcessGDBRemote.cpp =================================================================== --- projects/clang600-import/contrib/llvm/tools/lldb/source/Plugins/Process/gdb-remote/ProcessGDBRemote.cpp (revision 327150) +++ projects/clang600-import/contrib/llvm/tools/lldb/source/Plugins/Process/gdb-remote/ProcessGDBRemote.cpp (revision 327151) @@ -1,5225 +1,5227 @@ //===-- ProcessGDBRemote.cpp ------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/Host/Config.h" // C Includes #include #include #ifndef LLDB_DISABLE_POSIX #include #include // for mmap #include #include #endif #include #include #include // C++ Includes #include #include #include #include #include "lldb/Breakpoint/Watchpoint.h" #include "lldb/Core/Debugger.h" #include "lldb/Core/Module.h" #include "lldb/Core/ModuleSpec.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/State.h" #include "lldb/Core/StreamFile.h" #include "lldb/Core/Value.h" #include "lldb/DataFormatters/FormatManager.h" #include "lldb/Host/ConnectionFileDescriptor.h" #include "lldb/Host/FileSystem.h" #include "lldb/Host/HostThread.h" #include "lldb/Host/PosixApi.h" #include "lldb/Host/PseudoTerminal.h" #include "lldb/Host/StringConvert.h" #include "lldb/Host/Symbols.h" #include "lldb/Host/ThreadLauncher.h" #include "lldb/Host/XML.h" #include "lldb/Interpreter/Args.h" #include "lldb/Interpreter/CommandInterpreter.h" #include "lldb/Interpreter/CommandObject.h" #include "lldb/Interpreter/CommandObjectMultiword.h" #include "lldb/Interpreter/CommandReturnObject.h" #include "lldb/Interpreter/OptionGroupBoolean.h" #include "lldb/Interpreter/OptionGroupUInt64.h" #include "lldb/Interpreter/OptionValueProperties.h" #include "lldb/Interpreter/Options.h" #include "lldb/Interpreter/Property.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Target/ABI.h" #include "lldb/Target/DynamicLoader.h" #include "lldb/Target/SystemRuntime.h" #include "lldb/Target/Target.h" #include "lldb/Target/TargetList.h" #include "lldb/Target/ThreadPlanCallFunction.h" #include "lldb/Utility/CleanUp.h" #include "lldb/Utility/FileSpec.h" #include "lldb/Utility/StreamString.h" #include "lldb/Utility/Timer.h" // Project includes #include "GDBRemoteRegisterContext.h" -//#include "Plugins/Platform/MacOSX/PlatformRemoteiOS.h" +#ifdef LLDB_ENABLE_ALL +#include "Plugins/Platform/MacOSX/PlatformRemoteiOS.h" +#endif // LLDB_ENABLE_ALL #include "Plugins/Process/Utility/GDBRemoteSignals.h" #include "Plugins/Process/Utility/InferiorCallPOSIX.h" #include "Plugins/Process/Utility/StopInfoMachException.h" #include "ProcessGDBRemote.h" #include "ProcessGDBRemoteLog.h" #include "ThreadGDBRemote.h" #include "Utility/StringExtractorGDBRemote.h" #include "lldb/Host/Host.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/Threading.h" #include "llvm/Support/raw_ostream.h" #define DEBUGSERVER_BASENAME "debugserver" using namespace lldb; using namespace lldb_private; using namespace lldb_private::process_gdb_remote; namespace lldb { // Provide a function that can easily dump the packet history if we know a // ProcessGDBRemote * value (which we can get from logs or from debugging). // We need the function in the lldb namespace so it makes it into the final // executable since the LLDB shared library only exports stuff in the lldb // namespace. This allows you to attach with a debugger and call this // function and get the packet history dumped to a file. void DumpProcessGDBRemotePacketHistory(void *p, const char *path) { StreamFile strm; Status error(strm.GetFile().Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate)); if (error.Success()) ((ProcessGDBRemote *)p)->GetGDBRemote().DumpHistory(strm); } } namespace { static PropertyDefinition g_properties[] = { {"packet-timeout", OptionValue::eTypeUInt64, true, 1, NULL, NULL, "Specify the default packet timeout in seconds."}, {"target-definition-file", OptionValue::eTypeFileSpec, true, 0, NULL, NULL, "The file that provides the description for remote target registers."}, {NULL, OptionValue::eTypeInvalid, false, 0, NULL, NULL, NULL}}; enum { ePropertyPacketTimeout, ePropertyTargetDefinitionFile }; class PluginProperties : public Properties { public: static ConstString GetSettingName() { return ProcessGDBRemote::GetPluginNameStatic(); } PluginProperties() : Properties() { m_collection_sp.reset(new OptionValueProperties(GetSettingName())); m_collection_sp->Initialize(g_properties); } virtual ~PluginProperties() {} uint64_t GetPacketTimeout() { const uint32_t idx = ePropertyPacketTimeout; return m_collection_sp->GetPropertyAtIndexAsUInt64( NULL, idx, g_properties[idx].default_uint_value); } bool SetPacketTimeout(uint64_t timeout) { const uint32_t idx = ePropertyPacketTimeout; return m_collection_sp->SetPropertyAtIndexAsUInt64(NULL, idx, timeout); } FileSpec GetTargetDefinitionFile() const { const uint32_t idx = ePropertyTargetDefinitionFile; return m_collection_sp->GetPropertyAtIndexAsFileSpec(NULL, idx); } }; typedef std::shared_ptr ProcessKDPPropertiesSP; static const ProcessKDPPropertiesSP &GetGlobalPluginProperties() { static ProcessKDPPropertiesSP g_settings_sp; if (!g_settings_sp) g_settings_sp.reset(new PluginProperties()); return g_settings_sp; } } // anonymous namespace end // TODO Randomly assigning a port is unsafe. We should get an unused // ephemeral port from the kernel and make sure we reserve it before passing // it to debugserver. #if defined(__APPLE__) #define LOW_PORT (IPPORT_RESERVED) #define HIGH_PORT (IPPORT_HIFIRSTAUTO) #else #define LOW_PORT (1024u) #define HIGH_PORT (49151u) #endif #if defined(__APPLE__) && \ (defined(__arm__) || defined(__arm64__) || defined(__aarch64__)) static bool rand_initialized = false; static inline uint16_t get_random_port() { if (!rand_initialized) { time_t seed = time(NULL); rand_initialized = true; srand(seed); } return (rand() % (HIGH_PORT - LOW_PORT)) + LOW_PORT; } #endif ConstString ProcessGDBRemote::GetPluginNameStatic() { static ConstString g_name("gdb-remote"); return g_name; } const char *ProcessGDBRemote::GetPluginDescriptionStatic() { return "GDB Remote protocol based debugging plug-in."; } void ProcessGDBRemote::Terminate() { PluginManager::UnregisterPlugin(ProcessGDBRemote::CreateInstance); } lldb::ProcessSP ProcessGDBRemote::CreateInstance(lldb::TargetSP target_sp, ListenerSP listener_sp, const FileSpec *crash_file_path) { lldb::ProcessSP process_sp; if (crash_file_path == NULL) process_sp.reset(new ProcessGDBRemote(target_sp, listener_sp)); return process_sp; } bool ProcessGDBRemote::CanDebug(lldb::TargetSP target_sp, bool plugin_specified_by_name) { if (plugin_specified_by_name) return true; // For now we are just making sure the file exists for a given module Module *exe_module = target_sp->GetExecutableModulePointer(); if (exe_module) { ObjectFile *exe_objfile = exe_module->GetObjectFile(); // We can't debug core files... switch (exe_objfile->GetType()) { case ObjectFile::eTypeInvalid: case ObjectFile::eTypeCoreFile: case ObjectFile::eTypeDebugInfo: case ObjectFile::eTypeObjectFile: case ObjectFile::eTypeSharedLibrary: case ObjectFile::eTypeStubLibrary: case ObjectFile::eTypeJIT: return false; case ObjectFile::eTypeExecutable: case ObjectFile::eTypeDynamicLinker: case ObjectFile::eTypeUnknown: break; } return exe_module->GetFileSpec().Exists(); } // However, if there is no executable module, we return true since we might be // preparing to attach. return true; } //---------------------------------------------------------------------- // ProcessGDBRemote constructor //---------------------------------------------------------------------- ProcessGDBRemote::ProcessGDBRemote(lldb::TargetSP target_sp, ListenerSP listener_sp) : Process(target_sp, listener_sp), m_debugserver_pid(LLDB_INVALID_PROCESS_ID), m_last_stop_packet_mutex(), m_register_info(), m_async_broadcaster(NULL, "lldb.process.gdb-remote.async-broadcaster"), m_async_listener_sp( Listener::MakeListener("lldb.process.gdb-remote.async-listener")), m_async_thread_state_mutex(), m_thread_ids(), m_thread_pcs(), m_jstopinfo_sp(), m_jthreadsinfo_sp(), m_continue_c_tids(), m_continue_C_tids(), m_continue_s_tids(), m_continue_S_tids(), m_max_memory_size(0), m_remote_stub_max_memory_size(0), m_addr_to_mmap_size(), m_thread_create_bp_sp(), m_waiting_for_attach(false), m_destroy_tried_resuming(false), m_command_sp(), m_breakpoint_pc_offset(0), m_initial_tid(LLDB_INVALID_THREAD_ID) { m_async_broadcaster.SetEventName(eBroadcastBitAsyncThreadShouldExit, "async thread should exit"); m_async_broadcaster.SetEventName(eBroadcastBitAsyncContinue, "async thread continue"); m_async_broadcaster.SetEventName(eBroadcastBitAsyncThreadDidExit, "async thread did exit"); Log *log(ProcessGDBRemoteLog::GetLogIfAllCategoriesSet(GDBR_LOG_ASYNC)); const uint32_t async_event_mask = eBroadcastBitAsyncContinue | eBroadcastBitAsyncThreadShouldExit; if (m_async_listener_sp->StartListeningForEvents( &m_async_broadcaster, async_event_mask) != async_event_mask) { if (log) log->Printf("ProcessGDBRemote::%s failed to listen for " "m_async_broadcaster events", __FUNCTION__); } const uint32_t gdb_event_mask = Communication::eBroadcastBitReadThreadDidExit | GDBRemoteCommunication::eBroadcastBitGdbReadThreadGotNotify; if (m_async_listener_sp->StartListeningForEvents( &m_gdb_comm, gdb_event_mask) != gdb_event_mask) { if (log) log->Printf("ProcessGDBRemote::%s failed to listen for m_gdb_comm events", __FUNCTION__); } const uint64_t timeout_seconds = GetGlobalPluginProperties()->GetPacketTimeout(); if (timeout_seconds > 0) m_gdb_comm.SetPacketTimeout(std::chrono::seconds(timeout_seconds)); } //---------------------------------------------------------------------- // Destructor //---------------------------------------------------------------------- ProcessGDBRemote::~ProcessGDBRemote() { // m_mach_process.UnregisterNotificationCallbacks (this); Clear(); // We need to call finalize on the process before destroying ourselves // to make sure all of the broadcaster cleanup goes as planned. If we // destruct this class, then Process::~Process() might have problems // trying to fully destroy the broadcaster. Finalize(); // The general Finalize is going to try to destroy the process and that SHOULD // shut down the async thread. However, if we don't kill it it will get // stranded and // its connection will go away so when it wakes up it will crash. So kill it // for sure here. StopAsyncThread(); KillDebugserverProcess(); } //---------------------------------------------------------------------- // PluginInterface //---------------------------------------------------------------------- ConstString ProcessGDBRemote::GetPluginName() { return GetPluginNameStatic(); } uint32_t ProcessGDBRemote::GetPluginVersion() { return 1; } bool ProcessGDBRemote::ParsePythonTargetDefinition( const FileSpec &target_definition_fspec) { ScriptInterpreter *interpreter = GetTarget().GetDebugger().GetCommandInterpreter().GetScriptInterpreter(); Status error; StructuredData::ObjectSP module_object_sp( interpreter->LoadPluginModule(target_definition_fspec, error)); if (module_object_sp) { StructuredData::DictionarySP target_definition_sp( interpreter->GetDynamicSettings(module_object_sp, &GetTarget(), "gdb-server-target-definition", error)); if (target_definition_sp) { StructuredData::ObjectSP target_object( target_definition_sp->GetValueForKey("host-info")); if (target_object) { if (auto host_info_dict = target_object->GetAsDictionary()) { StructuredData::ObjectSP triple_value = host_info_dict->GetValueForKey("triple"); if (auto triple_string_value = triple_value->GetAsString()) { std::string triple_string = triple_string_value->GetValue(); ArchSpec host_arch(triple_string.c_str()); if (!host_arch.IsCompatibleMatch(GetTarget().GetArchitecture())) { GetTarget().SetArchitecture(host_arch); } } } } m_breakpoint_pc_offset = 0; StructuredData::ObjectSP breakpoint_pc_offset_value = target_definition_sp->GetValueForKey("breakpoint-pc-offset"); if (breakpoint_pc_offset_value) { if (auto breakpoint_pc_int_value = breakpoint_pc_offset_value->GetAsInteger()) m_breakpoint_pc_offset = breakpoint_pc_int_value->GetValue(); } if (m_register_info.SetRegisterInfo(*target_definition_sp, GetTarget().GetArchitecture()) > 0) { return true; } } } return false; } // If the remote stub didn't give us eh_frame or DWARF register numbers for a // register, // see if the ABI can provide them. // DWARF and eh_frame register numbers are defined as a part of the ABI. static void AugmentRegisterInfoViaABI(RegisterInfo ®_info, ConstString reg_name, ABISP abi_sp) { if (reg_info.kinds[eRegisterKindEHFrame] == LLDB_INVALID_REGNUM || reg_info.kinds[eRegisterKindDWARF] == LLDB_INVALID_REGNUM) { if (abi_sp) { RegisterInfo abi_reg_info; if (abi_sp->GetRegisterInfoByName(reg_name, abi_reg_info)) { if (reg_info.kinds[eRegisterKindEHFrame] == LLDB_INVALID_REGNUM && abi_reg_info.kinds[eRegisterKindEHFrame] != LLDB_INVALID_REGNUM) { reg_info.kinds[eRegisterKindEHFrame] = abi_reg_info.kinds[eRegisterKindEHFrame]; } if (reg_info.kinds[eRegisterKindDWARF] == LLDB_INVALID_REGNUM && abi_reg_info.kinds[eRegisterKindDWARF] != LLDB_INVALID_REGNUM) { reg_info.kinds[eRegisterKindDWARF] = abi_reg_info.kinds[eRegisterKindDWARF]; } if (reg_info.kinds[eRegisterKindGeneric] == LLDB_INVALID_REGNUM && abi_reg_info.kinds[eRegisterKindGeneric] != LLDB_INVALID_REGNUM) { reg_info.kinds[eRegisterKindGeneric] = abi_reg_info.kinds[eRegisterKindGeneric]; } } } } } static size_t SplitCommaSeparatedRegisterNumberString( const llvm::StringRef &comma_separated_regiter_numbers, std::vector ®nums, int base) { regnums.clear(); std::pair value_pair; value_pair.second = comma_separated_regiter_numbers; do { value_pair = value_pair.second.split(','); if (!value_pair.first.empty()) { uint32_t reg = StringConvert::ToUInt32(value_pair.first.str().c_str(), LLDB_INVALID_REGNUM, base); if (reg != LLDB_INVALID_REGNUM) regnums.push_back(reg); } } while (!value_pair.second.empty()); return regnums.size(); } void ProcessGDBRemote::BuildDynamicRegisterInfo(bool force) { if (!force && m_register_info.GetNumRegisters() > 0) return; m_register_info.Clear(); // Check if qHostInfo specified a specific packet timeout for this connection. // If so then lets update our setting so the user knows what the timeout is // and can see it. const auto host_packet_timeout = m_gdb_comm.GetHostDefaultPacketTimeout(); if (host_packet_timeout > std::chrono::seconds(0)) { GetGlobalPluginProperties()->SetPacketTimeout(host_packet_timeout.count()); } // Register info search order: // 1 - Use the target definition python file if one is specified. // 2 - If the target definition doesn't have any of the info from the // target.xml (registers) then proceed to read the target.xml. // 3 - Fall back on the qRegisterInfo packets. FileSpec target_definition_fspec = GetGlobalPluginProperties()->GetTargetDefinitionFile(); if (!target_definition_fspec.Exists()) { // If the filename doesn't exist, it may be a ~ not having been expanded - // try to resolve it. target_definition_fspec.ResolvePath(); } if (target_definition_fspec) { // See if we can get register definitions from a python file if (ParsePythonTargetDefinition(target_definition_fspec)) { return; } else { StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); stream_sp->Printf("ERROR: target description file %s failed to parse.\n", target_definition_fspec.GetPath().c_str()); } } const ArchSpec &target_arch = GetTarget().GetArchitecture(); const ArchSpec &remote_host_arch = m_gdb_comm.GetHostArchitecture(); const ArchSpec &remote_process_arch = m_gdb_comm.GetProcessArchitecture(); // Use the process' architecture instead of the host arch, if available ArchSpec arch_to_use; if (remote_process_arch.IsValid()) arch_to_use = remote_process_arch; else arch_to_use = remote_host_arch; if (!arch_to_use.IsValid()) arch_to_use = target_arch; if (GetGDBServerRegisterInfo(arch_to_use)) return; char packet[128]; uint32_t reg_offset = 0; uint32_t reg_num = 0; for (StringExtractorGDBRemote::ResponseType response_type = StringExtractorGDBRemote::eResponse; response_type == StringExtractorGDBRemote::eResponse; ++reg_num) { const int packet_len = ::snprintf(packet, sizeof(packet), "qRegisterInfo%x", reg_num); assert(packet_len < (int)sizeof(packet)); UNUSED_IF_ASSERT_DISABLED(packet_len); StringExtractorGDBRemote response; if (m_gdb_comm.SendPacketAndWaitForResponse(packet, response, false) == GDBRemoteCommunication::PacketResult::Success) { response_type = response.GetResponseType(); if (response_type == StringExtractorGDBRemote::eResponse) { llvm::StringRef name; llvm::StringRef value; ConstString reg_name; ConstString alt_name; ConstString set_name; std::vector value_regs; std::vector invalidate_regs; std::vector dwarf_opcode_bytes; RegisterInfo reg_info = { NULL, // Name NULL, // Alt name 0, // byte size reg_offset, // offset eEncodingUint, // encoding eFormatHex, // format { LLDB_INVALID_REGNUM, // eh_frame reg num LLDB_INVALID_REGNUM, // DWARF reg num LLDB_INVALID_REGNUM, // generic reg num reg_num, // process plugin reg num reg_num // native register number }, NULL, NULL, NULL, // Dwarf expression opcode bytes pointer 0 // Dwarf expression opcode bytes length }; while (response.GetNameColonValue(name, value)) { if (name.equals("name")) { reg_name.SetString(value); } else if (name.equals("alt-name")) { alt_name.SetString(value); } else if (name.equals("bitsize")) { value.getAsInteger(0, reg_info.byte_size); reg_info.byte_size /= CHAR_BIT; } else if (name.equals("offset")) { if (value.getAsInteger(0, reg_offset)) reg_offset = UINT32_MAX; } else if (name.equals("encoding")) { const Encoding encoding = Args::StringToEncoding(value); if (encoding != eEncodingInvalid) reg_info.encoding = encoding; } else if (name.equals("format")) { Format format = eFormatInvalid; if (Args::StringToFormat(value.str().c_str(), format, NULL) .Success()) reg_info.format = format; else { reg_info.format = llvm::StringSwitch(value) .Case("binary", eFormatBinary) .Case("decimal", eFormatDecimal) .Case("hex", eFormatHex) .Case("float", eFormatFloat) .Case("vector-sint8", eFormatVectorOfSInt8) .Case("vector-uint8", eFormatVectorOfUInt8) .Case("vector-sint16", eFormatVectorOfSInt16) .Case("vector-uint16", eFormatVectorOfUInt16) .Case("vector-sint32", eFormatVectorOfSInt32) .Case("vector-uint32", eFormatVectorOfUInt32) .Case("vector-float32", eFormatVectorOfFloat32) .Case("vector-uint64", eFormatVectorOfUInt64) .Case("vector-uint128", eFormatVectorOfUInt128) .Default(eFormatInvalid); } } else if (name.equals("set")) { set_name.SetString(value); } else if (name.equals("gcc") || name.equals("ehframe")) { if (value.getAsInteger(0, reg_info.kinds[eRegisterKindEHFrame])) reg_info.kinds[eRegisterKindEHFrame] = LLDB_INVALID_REGNUM; } else if (name.equals("dwarf")) { if (value.getAsInteger(0, reg_info.kinds[eRegisterKindDWARF])) reg_info.kinds[eRegisterKindDWARF] = LLDB_INVALID_REGNUM; } else if (name.equals("generic")) { reg_info.kinds[eRegisterKindGeneric] = Args::StringToGenericRegister(value); } else if (name.equals("container-regs")) { SplitCommaSeparatedRegisterNumberString(value, value_regs, 16); } else if (name.equals("invalidate-regs")) { SplitCommaSeparatedRegisterNumberString(value, invalidate_regs, 16); } else if (name.equals("dynamic_size_dwarf_expr_bytes")) { size_t dwarf_opcode_len = value.size() / 2; assert(dwarf_opcode_len > 0); dwarf_opcode_bytes.resize(dwarf_opcode_len); reg_info.dynamic_size_dwarf_len = dwarf_opcode_len; StringExtractor opcode_extractor(value); uint32_t ret_val = opcode_extractor.GetHexBytesAvail(dwarf_opcode_bytes); assert(dwarf_opcode_len == ret_val); UNUSED_IF_ASSERT_DISABLED(ret_val); reg_info.dynamic_size_dwarf_expr_bytes = dwarf_opcode_bytes.data(); } } reg_info.byte_offset = reg_offset; assert(reg_info.byte_size != 0); reg_offset += reg_info.byte_size; if (!value_regs.empty()) { value_regs.push_back(LLDB_INVALID_REGNUM); reg_info.value_regs = value_regs.data(); } if (!invalidate_regs.empty()) { invalidate_regs.push_back(LLDB_INVALID_REGNUM); reg_info.invalidate_regs = invalidate_regs.data(); } // We have to make a temporary ABI here, and not use the GetABI because // this code // gets called in DidAttach, when the target architecture (and // consequently the ABI we'll get from // the process) may be wrong. ABISP abi_to_use = ABI::FindPlugin(shared_from_this(), arch_to_use); AugmentRegisterInfoViaABI(reg_info, reg_name, abi_to_use); m_register_info.AddRegister(reg_info, reg_name, alt_name, set_name); } else { break; // ensure exit before reg_num is incremented } } else { break; } } if (m_register_info.GetNumRegisters() > 0) { m_register_info.Finalize(GetTarget().GetArchitecture()); return; } // We didn't get anything if the accumulated reg_num is zero. See if we are // debugging ARM and fill with a hard coded register set until we can get an // updated debugserver down on the devices. // On the other hand, if the accumulated reg_num is positive, see if we can // add composite registers to the existing primordial ones. bool from_scratch = (m_register_info.GetNumRegisters() == 0); if (!target_arch.IsValid()) { if (arch_to_use.IsValid() && (arch_to_use.GetMachine() == llvm::Triple::arm || arch_to_use.GetMachine() == llvm::Triple::thumb) && arch_to_use.GetTriple().getVendor() == llvm::Triple::Apple) m_register_info.HardcodeARMRegisters(from_scratch); } else if (target_arch.GetMachine() == llvm::Triple::arm || target_arch.GetMachine() == llvm::Triple::thumb) { m_register_info.HardcodeARMRegisters(from_scratch); } // At this point, we can finalize our register info. m_register_info.Finalize(GetTarget().GetArchitecture()); } Status ProcessGDBRemote::WillLaunch(Module *module) { return WillLaunchOrAttach(); } Status ProcessGDBRemote::WillAttachToProcessWithID(lldb::pid_t pid) { return WillLaunchOrAttach(); } Status ProcessGDBRemote::WillAttachToProcessWithName(const char *process_name, bool wait_for_launch) { return WillLaunchOrAttach(); } Status ProcessGDBRemote::DoConnectRemote(Stream *strm, llvm::StringRef remote_url) { Log *log(ProcessGDBRemoteLog::GetLogIfAllCategoriesSet(GDBR_LOG_PROCESS)); Status error(WillLaunchOrAttach()); if (error.Fail()) return error; error = ConnectToDebugserver(remote_url); if (error.Fail()) return error; StartAsyncThread(); lldb::pid_t pid = m_gdb_comm.GetCurrentProcessID(); if (pid == LLDB_INVALID_PROCESS_ID) { // We don't have a valid process ID, so note that we are connected // and could now request to launch or attach, or get remote process // listings... SetPrivateState(eStateConnected); } else { // We have a valid process SetID(pid); GetThreadList(); StringExtractorGDBRemote response; if (m_gdb_comm.GetStopReply(response)) { SetLastStopPacket(response); // '?' Packets must be handled differently in non-stop mode if (GetTarget().GetNonStopModeEnabled()) HandleStopReplySequence(); Target &target = GetTarget(); if (!target.GetArchitecture().IsValid()) { if (m_gdb_comm.GetProcessArchitecture().IsValid()) { target.SetArchitecture(m_gdb_comm.GetProcessArchitecture()); } else { target.SetArchitecture(m_gdb_comm.GetHostArchitecture()); } } const StateType state = SetThreadStopInfo(response); if (state != eStateInvalid) { SetPrivateState(state); } else error.SetErrorStringWithFormat( "Process %" PRIu64 " was reported after connecting to " "'%s', but state was not stopped: %s", pid, remote_url.str().c_str(), StateAsCString(state)); } else error.SetErrorStringWithFormat("Process %" PRIu64 " was reported after connecting to '%s', " "but no stop reply packet was received", pid, remote_url.str().c_str()); } if (log) log->Printf("ProcessGDBRemote::%s pid %" PRIu64 ": normalizing target architecture initial triple: %s " "(GetTarget().GetArchitecture().IsValid() %s, " "m_gdb_comm.GetHostArchitecture().IsValid(): %s)", __FUNCTION__, GetID(), GetTarget().GetArchitecture().GetTriple().getTriple().c_str(), GetTarget().GetArchitecture().IsValid() ? "true" : "false", m_gdb_comm.GetHostArchitecture().IsValid() ? "true" : "false"); if (error.Success() && !GetTarget().GetArchitecture().IsValid() && m_gdb_comm.GetHostArchitecture().IsValid()) { // Prefer the *process'* architecture over that of the *host*, if available. if (m_gdb_comm.GetProcessArchitecture().IsValid()) GetTarget().SetArchitecture(m_gdb_comm.GetProcessArchitecture()); else GetTarget().SetArchitecture(m_gdb_comm.GetHostArchitecture()); } if (log) log->Printf("ProcessGDBRemote::%s pid %" PRIu64 ": normalized target architecture triple: %s", __FUNCTION__, GetID(), GetTarget().GetArchitecture().GetTriple().getTriple().c_str()); if (error.Success()) { PlatformSP platform_sp = GetTarget().GetPlatform(); if (platform_sp && platform_sp->IsConnected()) SetUnixSignals(platform_sp->GetUnixSignals()); else SetUnixSignals(UnixSignals::Create(GetTarget().GetArchitecture())); } return error; } Status ProcessGDBRemote::WillLaunchOrAttach() { Status error; m_stdio_communication.Clear(); return error; } //---------------------------------------------------------------------- // Process Control //---------------------------------------------------------------------- Status ProcessGDBRemote::DoLaunch(Module *exe_module, ProcessLaunchInfo &launch_info) { Log *log(ProcessGDBRemoteLog::GetLogIfAllCategoriesSet(GDBR_LOG_PROCESS)); Status error; if (log) log->Printf("ProcessGDBRemote::%s() entered", __FUNCTION__); uint32_t launch_flags = launch_info.GetFlags().Get(); FileSpec stdin_file_spec{}; FileSpec stdout_file_spec{}; FileSpec stderr_file_spec{}; FileSpec working_dir = launch_info.GetWorkingDirectory(); const FileAction *file_action; file_action = launch_info.GetFileActionForFD(STDIN_FILENO); if (file_action) { if (file_action->GetAction() == FileAction::eFileActionOpen) stdin_file_spec = file_action->GetFileSpec(); } file_action = launch_info.GetFileActionForFD(STDOUT_FILENO); if (file_action) { if (file_action->GetAction() == FileAction::eFileActionOpen) stdout_file_spec = file_action->GetFileSpec(); } file_action = launch_info.GetFileActionForFD(STDERR_FILENO); if (file_action) { if (file_action->GetAction() == FileAction::eFileActionOpen) stderr_file_spec = file_action->GetFileSpec(); } if (log) { if (stdin_file_spec || stdout_file_spec || stderr_file_spec) log->Printf("ProcessGDBRemote::%s provided with STDIO paths via " "launch_info: stdin=%s, stdout=%s, stderr=%s", __FUNCTION__, stdin_file_spec ? stdin_file_spec.GetCString() : "", stdout_file_spec ? stdout_file_spec.GetCString() : "", stderr_file_spec ? stderr_file_spec.GetCString() : ""); else log->Printf("ProcessGDBRemote::%s no STDIO paths given via launch_info", __FUNCTION__); } const bool disable_stdio = (launch_flags & eLaunchFlagDisableSTDIO) != 0; if (stdin_file_spec || disable_stdio) { // the inferior will be reading stdin from the specified file // or stdio is completely disabled m_stdin_forward = false; } else { m_stdin_forward = true; } // ::LogSetBitMask (GDBR_LOG_DEFAULT); // ::LogSetOptions (LLDB_LOG_OPTION_THREADSAFE | // LLDB_LOG_OPTION_PREPEND_TIMESTAMP | // LLDB_LOG_OPTION_PREPEND_PROC_AND_THREAD); // ::LogSetLogFile ("/dev/stdout"); ObjectFile *object_file = exe_module->GetObjectFile(); if (object_file) { error = EstablishConnectionIfNeeded(launch_info); if (error.Success()) { PseudoTerminal pty; const bool disable_stdio = (launch_flags & eLaunchFlagDisableSTDIO) != 0; PlatformSP platform_sp(GetTarget().GetPlatform()); if (disable_stdio) { // set to /dev/null unless redirected to a file above if (!stdin_file_spec) stdin_file_spec.SetFile(FileSystem::DEV_NULL, false); if (!stdout_file_spec) stdout_file_spec.SetFile(FileSystem::DEV_NULL, false); if (!stderr_file_spec) stderr_file_spec.SetFile(FileSystem::DEV_NULL, false); } else if (platform_sp && platform_sp->IsHost()) { // If the debugserver is local and we aren't disabling STDIO, lets use // a pseudo terminal to instead of relying on the 'O' packets for stdio // since 'O' packets can really slow down debugging if the inferior // does a lot of output. if ((!stdin_file_spec || !stdout_file_spec || !stderr_file_spec) && pty.OpenFirstAvailableMaster(O_RDWR | O_NOCTTY, NULL, 0)) { FileSpec slave_name{pty.GetSlaveName(NULL, 0), false}; if (!stdin_file_spec) stdin_file_spec = slave_name; if (!stdout_file_spec) stdout_file_spec = slave_name; if (!stderr_file_spec) stderr_file_spec = slave_name; } if (log) log->Printf( "ProcessGDBRemote::%s adjusted STDIO paths for local platform " "(IsHost() is true) using slave: stdin=%s, stdout=%s, stderr=%s", __FUNCTION__, stdin_file_spec ? stdin_file_spec.GetCString() : "", stdout_file_spec ? stdout_file_spec.GetCString() : "", stderr_file_spec ? stderr_file_spec.GetCString() : ""); } if (log) log->Printf("ProcessGDBRemote::%s final STDIO paths after all " "adjustments: stdin=%s, stdout=%s, stderr=%s", __FUNCTION__, stdin_file_spec ? stdin_file_spec.GetCString() : "", stdout_file_spec ? stdout_file_spec.GetCString() : "", stderr_file_spec ? stderr_file_spec.GetCString() : ""); if (stdin_file_spec) m_gdb_comm.SetSTDIN(stdin_file_spec); if (stdout_file_spec) m_gdb_comm.SetSTDOUT(stdout_file_spec); if (stderr_file_spec) m_gdb_comm.SetSTDERR(stderr_file_spec); m_gdb_comm.SetDisableASLR(launch_flags & eLaunchFlagDisableASLR); m_gdb_comm.SetDetachOnError(launch_flags & eLaunchFlagDetachOnError); m_gdb_comm.SendLaunchArchPacket( GetTarget().GetArchitecture().GetArchitectureName()); const char *launch_event_data = launch_info.GetLaunchEventData(); if (launch_event_data != NULL && *launch_event_data != '\0') m_gdb_comm.SendLaunchEventDataPacket(launch_event_data); if (working_dir) { m_gdb_comm.SetWorkingDir(working_dir); } // Send the environment and the program + arguments after we connect const Args &environment = launch_info.GetEnvironmentEntries(); if (environment.GetArgumentCount()) { size_t num_environment_entries = environment.GetArgumentCount(); for (size_t i = 0; i < num_environment_entries; ++i) { const char *env_entry = environment.GetArgumentAtIndex(i); if (env_entry == NULL || m_gdb_comm.SendEnvironmentPacket(env_entry) != 0) break; } } { // Scope for the scoped timeout object GDBRemoteCommunication::ScopedTimeout timeout(m_gdb_comm, std::chrono::seconds(10)); int arg_packet_err = m_gdb_comm.SendArgumentsPacket(launch_info); if (arg_packet_err == 0) { std::string error_str; if (m_gdb_comm.GetLaunchSuccess(error_str)) { SetID(m_gdb_comm.GetCurrentProcessID()); } else { error.SetErrorString(error_str.c_str()); } } else { error.SetErrorStringWithFormat("'A' packet returned an error: %i", arg_packet_err); } } if (GetID() == LLDB_INVALID_PROCESS_ID) { if (log) log->Printf("failed to connect to debugserver: %s", error.AsCString()); KillDebugserverProcess(); return error; } StringExtractorGDBRemote response; if (m_gdb_comm.GetStopReply(response)) { SetLastStopPacket(response); // '?' Packets must be handled differently in non-stop mode if (GetTarget().GetNonStopModeEnabled()) HandleStopReplySequence(); const ArchSpec &process_arch = m_gdb_comm.GetProcessArchitecture(); if (process_arch.IsValid()) { GetTarget().MergeArchitecture(process_arch); } else { const ArchSpec &host_arch = m_gdb_comm.GetHostArchitecture(); if (host_arch.IsValid()) GetTarget().MergeArchitecture(host_arch); } SetPrivateState(SetThreadStopInfo(response)); if (!disable_stdio) { if (pty.GetMasterFileDescriptor() != PseudoTerminal::invalid_fd) SetSTDIOFileDescriptor(pty.ReleaseMasterFileDescriptor()); } } } else { if (log) log->Printf("failed to connect to debugserver: %s", error.AsCString()); } } else { // Set our user ID to an invalid process ID. SetID(LLDB_INVALID_PROCESS_ID); error.SetErrorStringWithFormat( "failed to get object file from '%s' for arch %s", exe_module->GetFileSpec().GetFilename().AsCString(), exe_module->GetArchitecture().GetArchitectureName()); } return error; } Status ProcessGDBRemote::ConnectToDebugserver(llvm::StringRef connect_url) { Status error; // Only connect if we have a valid connect URL Log *log(ProcessGDBRemoteLog::GetLogIfAllCategoriesSet(GDBR_LOG_PROCESS)); if (!connect_url.empty()) { if (log) log->Printf("ProcessGDBRemote::%s Connecting to %s", __FUNCTION__, connect_url.str().c_str()); std::unique_ptr conn_ap( new ConnectionFileDescriptor()); if (conn_ap.get()) { const uint32_t max_retry_count = 50; uint32_t retry_count = 0; while (!m_gdb_comm.IsConnected()) { if (conn_ap->Connect(connect_url, &error) == eConnectionStatusSuccess) { m_gdb_comm.SetConnection(conn_ap.release()); break; } else if (error.WasInterrupted()) { // If we were interrupted, don't keep retrying. break; } retry_count++; if (retry_count >= max_retry_count) break; usleep(100000); } } } if (!m_gdb_comm.IsConnected()) { if (error.Success()) error.SetErrorString("not connected to remote gdb server"); return error; } // Start the communications read thread so all incoming data can be // parsed into packets and queued as they arrive. if (GetTarget().GetNonStopModeEnabled()) m_gdb_comm.StartReadThread(); // We always seem to be able to open a connection to a local port // so we need to make sure we can then send data to it. If we can't // then we aren't actually connected to anything, so try and do the // handshake with the remote GDB server and make sure that goes // alright. if (!m_gdb_comm.HandshakeWithServer(&error)) { m_gdb_comm.Disconnect(); if (error.Success()) error.SetErrorString("not connected to remote gdb server"); return error; } // Send $QNonStop:1 packet on startup if required if (GetTarget().GetNonStopModeEnabled()) GetTarget().SetNonStopModeEnabled(m_gdb_comm.SetNonStopMode(true)); m_gdb_comm.GetEchoSupported(); m_gdb_comm.GetThreadSuffixSupported(); m_gdb_comm.GetListThreadsInStopReplySupported(); m_gdb_comm.GetHostInfo(); m_gdb_comm.GetVContSupported('c'); m_gdb_comm.GetVAttachOrWaitSupported(); m_gdb_comm.EnableErrorStringInPacket(); // Ask the remote server for the default thread id if (GetTarget().GetNonStopModeEnabled()) m_gdb_comm.GetDefaultThreadId(m_initial_tid); size_t num_cmds = GetExtraStartupCommands().GetArgumentCount(); for (size_t idx = 0; idx < num_cmds; idx++) { StringExtractorGDBRemote response; m_gdb_comm.SendPacketAndWaitForResponse( GetExtraStartupCommands().GetArgumentAtIndex(idx), response, false); } return error; } void ProcessGDBRemote::DidLaunchOrAttach(ArchSpec &process_arch) { Log *log(ProcessGDBRemoteLog::GetLogIfAllCategoriesSet(GDBR_LOG_PROCESS)); if (log) log->Printf("ProcessGDBRemote::%s()", __FUNCTION__); if (GetID() != LLDB_INVALID_PROCESS_ID) { BuildDynamicRegisterInfo(false); // See if the GDB server supports the qHostInfo information // See if the GDB server supports the qProcessInfo packet, if so // prefer that over the Host information as it will be more specific // to our process. const ArchSpec &remote_process_arch = m_gdb_comm.GetProcessArchitecture(); if (remote_process_arch.IsValid()) { process_arch = remote_process_arch; if (log) log->Printf("ProcessGDBRemote::%s gdb-remote had process architecture, " "using %s %s", __FUNCTION__, process_arch.GetArchitectureName() ? process_arch.GetArchitectureName() : "", process_arch.GetTriple().getTriple().c_str() ? process_arch.GetTriple().getTriple().c_str() : ""); } else { process_arch = m_gdb_comm.GetHostArchitecture(); if (log) log->Printf("ProcessGDBRemote::%s gdb-remote did not have process " "architecture, using gdb-remote host architecture %s %s", __FUNCTION__, process_arch.GetArchitectureName() ? process_arch.GetArchitectureName() : "", process_arch.GetTriple().getTriple().c_str() ? process_arch.GetTriple().getTriple().c_str() : ""); } if (process_arch.IsValid()) { const ArchSpec &target_arch = GetTarget().GetArchitecture(); if (target_arch.IsValid()) { if (log) log->Printf( "ProcessGDBRemote::%s analyzing target arch, currently %s %s", __FUNCTION__, target_arch.GetArchitectureName() ? target_arch.GetArchitectureName() : "", target_arch.GetTriple().getTriple().c_str() ? target_arch.GetTriple().getTriple().c_str() : ""); // If the remote host is ARM and we have apple as the vendor, then // ARM executables and shared libraries can have mixed ARM // architectures. // You can have an armv6 executable, and if the host is armv7, then the // system will load the best possible architecture for all shared // libraries // it has, so we really need to take the remote host architecture as our // defacto architecture in this case. if ((process_arch.GetMachine() == llvm::Triple::arm || process_arch.GetMachine() == llvm::Triple::thumb) && process_arch.GetTriple().getVendor() == llvm::Triple::Apple) { GetTarget().SetArchitecture(process_arch); if (log) log->Printf("ProcessGDBRemote::%s remote process is ARM/Apple, " "setting target arch to %s %s", __FUNCTION__, process_arch.GetArchitectureName() ? process_arch.GetArchitectureName() : "", process_arch.GetTriple().getTriple().c_str() ? process_arch.GetTriple().getTriple().c_str() : ""); } else { // Fill in what is missing in the triple const llvm::Triple &remote_triple = process_arch.GetTriple(); llvm::Triple new_target_triple = target_arch.GetTriple(); if (new_target_triple.getVendorName().size() == 0) { new_target_triple.setVendor(remote_triple.getVendor()); if (new_target_triple.getOSName().size() == 0) { new_target_triple.setOS(remote_triple.getOS()); if (new_target_triple.getEnvironmentName().size() == 0) new_target_triple.setEnvironment( remote_triple.getEnvironment()); } ArchSpec new_target_arch = target_arch; new_target_arch.SetTriple(new_target_triple); GetTarget().SetArchitecture(new_target_arch); } } if (log) log->Printf("ProcessGDBRemote::%s final target arch after " "adjustments for remote architecture: %s %s", __FUNCTION__, target_arch.GetArchitectureName() ? target_arch.GetArchitectureName() : "", target_arch.GetTriple().getTriple().c_str() ? target_arch.GetTriple().getTriple().c_str() : ""); } else { // The target doesn't have a valid architecture yet, set it from // the architecture we got from the remote GDB server GetTarget().SetArchitecture(process_arch); } } // Find out which StructuredDataPlugins are supported by the // debug monitor. These plugins transmit data over async $J packets. auto supported_packets_array = m_gdb_comm.GetSupportedStructuredDataPlugins(); if (supported_packets_array) MapSupportedStructuredDataPlugins(*supported_packets_array); } } void ProcessGDBRemote::DidLaunch() { ArchSpec process_arch; DidLaunchOrAttach(process_arch); } Status ProcessGDBRemote::DoAttachToProcessWithID( lldb::pid_t attach_pid, const ProcessAttachInfo &attach_info) { Log *log(ProcessGDBRemoteLog::GetLogIfAllCategoriesSet(GDBR_LOG_PROCESS)); Status error; if (log) log->Printf("ProcessGDBRemote::%s()", __FUNCTION__); // Clear out and clean up from any current state Clear(); if (attach_pid != LLDB_INVALID_PROCESS_ID) { error = EstablishConnectionIfNeeded(attach_info); if (error.Success()) { m_gdb_comm.SetDetachOnError(attach_info.GetDetachOnError()); char packet[64]; const int packet_len = ::snprintf(packet, sizeof(packet), "vAttach;%" PRIx64, attach_pid); SetID(attach_pid); m_async_broadcaster.BroadcastEvent( eBroadcastBitAsyncContinue, new EventDataBytes(packet, packet_len)); } else SetExitStatus(-1, error.AsCString()); } return error; } Status ProcessGDBRemote::DoAttachToProcessWithName( const char *process_name, const ProcessAttachInfo &attach_info) { Status error; // Clear out and clean up from any current state Clear(); if (process_name && process_name[0]) { error = EstablishConnectionIfNeeded(attach_info); if (error.Success()) { StreamString packet; m_gdb_comm.SetDetachOnError(attach_info.GetDetachOnError()); if (attach_info.GetWaitForLaunch()) { if (!m_gdb_comm.GetVAttachOrWaitSupported()) { packet.PutCString("vAttachWait"); } else { if (attach_info.GetIgnoreExisting()) packet.PutCString("vAttachWait"); else packet.PutCString("vAttachOrWait"); } } else packet.PutCString("vAttachName"); packet.PutChar(';'); packet.PutBytesAsRawHex8(process_name, strlen(process_name), endian::InlHostByteOrder(), endian::InlHostByteOrder()); m_async_broadcaster.BroadcastEvent( eBroadcastBitAsyncContinue, new EventDataBytes(packet.GetString().data(), packet.GetSize())); } else SetExitStatus(-1, error.AsCString()); } return error; } lldb::user_id_t ProcessGDBRemote::StartTrace(const TraceOptions &options, Status &error) { return m_gdb_comm.SendStartTracePacket(options, error); } Status ProcessGDBRemote::StopTrace(lldb::user_id_t uid, lldb::tid_t thread_id) { return m_gdb_comm.SendStopTracePacket(uid, thread_id); } Status ProcessGDBRemote::GetData(lldb::user_id_t uid, lldb::tid_t thread_id, llvm::MutableArrayRef &buffer, size_t offset) { return m_gdb_comm.SendGetDataPacket(uid, thread_id, buffer, offset); } Status ProcessGDBRemote::GetMetaData(lldb::user_id_t uid, lldb::tid_t thread_id, llvm::MutableArrayRef &buffer, size_t offset) { return m_gdb_comm.SendGetMetaDataPacket(uid, thread_id, buffer, offset); } Status ProcessGDBRemote::GetTraceConfig(lldb::user_id_t uid, TraceOptions &options) { return m_gdb_comm.SendGetTraceConfigPacket(uid, options); } void ProcessGDBRemote::DidExit() { // When we exit, disconnect from the GDB server communications m_gdb_comm.Disconnect(); } void ProcessGDBRemote::DidAttach(ArchSpec &process_arch) { // If you can figure out what the architecture is, fill it in here. process_arch.Clear(); DidLaunchOrAttach(process_arch); } Status ProcessGDBRemote::WillResume() { m_continue_c_tids.clear(); m_continue_C_tids.clear(); m_continue_s_tids.clear(); m_continue_S_tids.clear(); m_jstopinfo_sp.reset(); m_jthreadsinfo_sp.reset(); return Status(); } Status ProcessGDBRemote::DoResume() { Status error; Log *log(ProcessGDBRemoteLog::GetLogIfAllCategoriesSet(GDBR_LOG_PROCESS)); if (log) log->Printf("ProcessGDBRemote::Resume()"); ListenerSP listener_sp( Listener::MakeListener("gdb-remote.resume-packet-sent")); if (listener_sp->StartListeningForEvents( &m_gdb_comm, GDBRemoteCommunication::eBroadcastBitRunPacketSent)) { listener_sp->StartListeningForEvents( &m_async_broadcaster, ProcessGDBRemote::eBroadcastBitAsyncThreadDidExit); const size_t num_threads = GetThreadList().GetSize(); StreamString continue_packet; bool continue_packet_error = false; if (m_gdb_comm.HasAnyVContSupport()) { if (!GetTarget().GetNonStopModeEnabled() && (m_continue_c_tids.size() == num_threads || (m_continue_c_tids.empty() && m_continue_C_tids.empty() && m_continue_s_tids.empty() && m_continue_S_tids.empty()))) { // All threads are continuing, just send a "c" packet continue_packet.PutCString("c"); } else { continue_packet.PutCString("vCont"); if (!m_continue_c_tids.empty()) { if (m_gdb_comm.GetVContSupported('c')) { for (tid_collection::const_iterator t_pos = m_continue_c_tids.begin(), t_end = m_continue_c_tids.end(); t_pos != t_end; ++t_pos) continue_packet.Printf(";c:%4.4" PRIx64, *t_pos); } else continue_packet_error = true; } if (!continue_packet_error && !m_continue_C_tids.empty()) { if (m_gdb_comm.GetVContSupported('C')) { for (tid_sig_collection::const_iterator s_pos = m_continue_C_tids.begin(), s_end = m_continue_C_tids.end(); s_pos != s_end; ++s_pos) continue_packet.Printf(";C%2.2x:%4.4" PRIx64, s_pos->second, s_pos->first); } else continue_packet_error = true; } if (!continue_packet_error && !m_continue_s_tids.empty()) { if (m_gdb_comm.GetVContSupported('s')) { for (tid_collection::const_iterator t_pos = m_continue_s_tids.begin(), t_end = m_continue_s_tids.end(); t_pos != t_end; ++t_pos) continue_packet.Printf(";s:%4.4" PRIx64, *t_pos); } else continue_packet_error = true; } if (!continue_packet_error && !m_continue_S_tids.empty()) { if (m_gdb_comm.GetVContSupported('S')) { for (tid_sig_collection::const_iterator s_pos = m_continue_S_tids.begin(), s_end = m_continue_S_tids.end(); s_pos != s_end; ++s_pos) continue_packet.Printf(";S%2.2x:%4.4" PRIx64, s_pos->second, s_pos->first); } else continue_packet_error = true; } if (continue_packet_error) continue_packet.Clear(); } } else continue_packet_error = true; if (continue_packet_error) { // Either no vCont support, or we tried to use part of the vCont // packet that wasn't supported by the remote GDB server. // We need to try and make a simple packet that can do our continue const size_t num_continue_c_tids = m_continue_c_tids.size(); const size_t num_continue_C_tids = m_continue_C_tids.size(); const size_t num_continue_s_tids = m_continue_s_tids.size(); const size_t num_continue_S_tids = m_continue_S_tids.size(); if (num_continue_c_tids > 0) { if (num_continue_c_tids == num_threads) { // All threads are resuming... m_gdb_comm.SetCurrentThreadForRun(-1); continue_packet.PutChar('c'); continue_packet_error = false; } else if (num_continue_c_tids == 1 && num_continue_C_tids == 0 && num_continue_s_tids == 0 && num_continue_S_tids == 0) { // Only one thread is continuing m_gdb_comm.SetCurrentThreadForRun(m_continue_c_tids.front()); continue_packet.PutChar('c'); continue_packet_error = false; } } if (continue_packet_error && num_continue_C_tids > 0) { if ((num_continue_C_tids + num_continue_c_tids) == num_threads && num_continue_C_tids > 0 && num_continue_s_tids == 0 && num_continue_S_tids == 0) { const int continue_signo = m_continue_C_tids.front().second; // Only one thread is continuing if (num_continue_C_tids > 1) { // More that one thread with a signal, yet we don't have // vCont support and we are being asked to resume each // thread with a signal, we need to make sure they are // all the same signal, or we can't issue the continue // accurately with the current support... if (num_continue_C_tids > 1) { continue_packet_error = false; for (size_t i = 1; i < m_continue_C_tids.size(); ++i) { if (m_continue_C_tids[i].second != continue_signo) continue_packet_error = true; } } if (!continue_packet_error) m_gdb_comm.SetCurrentThreadForRun(-1); } else { // Set the continue thread ID continue_packet_error = false; m_gdb_comm.SetCurrentThreadForRun(m_continue_C_tids.front().first); } if (!continue_packet_error) { // Add threads continuing with the same signo... continue_packet.Printf("C%2.2x", continue_signo); } } } if (continue_packet_error && num_continue_s_tids > 0) { if (num_continue_s_tids == num_threads) { // All threads are resuming... m_gdb_comm.SetCurrentThreadForRun(-1); // If in Non-Stop-Mode use vCont when stepping if (GetTarget().GetNonStopModeEnabled()) { if (m_gdb_comm.GetVContSupported('s')) continue_packet.PutCString("vCont;s"); else continue_packet.PutChar('s'); } else continue_packet.PutChar('s'); continue_packet_error = false; } else if (num_continue_c_tids == 0 && num_continue_C_tids == 0 && num_continue_s_tids == 1 && num_continue_S_tids == 0) { // Only one thread is stepping m_gdb_comm.SetCurrentThreadForRun(m_continue_s_tids.front()); continue_packet.PutChar('s'); continue_packet_error = false; } } if (!continue_packet_error && num_continue_S_tids > 0) { if (num_continue_S_tids == num_threads) { const int step_signo = m_continue_S_tids.front().second; // Are all threads trying to step with the same signal? continue_packet_error = false; if (num_continue_S_tids > 1) { for (size_t i = 1; i < num_threads; ++i) { if (m_continue_S_tids[i].second != step_signo) continue_packet_error = true; } } if (!continue_packet_error) { // Add threads stepping with the same signo... m_gdb_comm.SetCurrentThreadForRun(-1); continue_packet.Printf("S%2.2x", step_signo); } } else if (num_continue_c_tids == 0 && num_continue_C_tids == 0 && num_continue_s_tids == 0 && num_continue_S_tids == 1) { // Only one thread is stepping with signal m_gdb_comm.SetCurrentThreadForRun(m_continue_S_tids.front().first); continue_packet.Printf("S%2.2x", m_continue_S_tids.front().second); continue_packet_error = false; } } } if (continue_packet_error) { error.SetErrorString("can't make continue packet for this resume"); } else { EventSP event_sp; if (!m_async_thread.IsJoinable()) { error.SetErrorString("Trying to resume but the async thread is dead."); if (log) log->Printf("ProcessGDBRemote::DoResume: Trying to resume but the " "async thread is dead."); return error; } m_async_broadcaster.BroadcastEvent( eBroadcastBitAsyncContinue, new EventDataBytes(continue_packet.GetString().data(), continue_packet.GetSize())); if (listener_sp->GetEvent(event_sp, std::chrono::seconds(5)) == false) { error.SetErrorString("Resume timed out."); if (log) log->Printf("ProcessGDBRemote::DoResume: Resume timed out."); } else if (event_sp->BroadcasterIs(&m_async_broadcaster)) { error.SetErrorString("Broadcast continue, but the async thread was " "killed before we got an ack back."); if (log) log->Printf("ProcessGDBRemote::DoResume: Broadcast continue, but the " "async thread was killed before we got an ack back."); return error; } } } return error; } void ProcessGDBRemote::HandleStopReplySequence() { while (true) { // Send vStopped StringExtractorGDBRemote response; m_gdb_comm.SendPacketAndWaitForResponse("vStopped", response, false); // OK represents end of signal list if (response.IsOKResponse()) break; // If not OK or a normal packet we have a problem if (!response.IsNormalResponse()) break; SetLastStopPacket(response); } } void ProcessGDBRemote::ClearThreadIDList() { std::lock_guard guard(m_thread_list_real.GetMutex()); m_thread_ids.clear(); m_thread_pcs.clear(); } size_t ProcessGDBRemote::UpdateThreadIDsFromStopReplyThreadsValue(std::string &value) { m_thread_ids.clear(); m_thread_pcs.clear(); size_t comma_pos; lldb::tid_t tid; while ((comma_pos = value.find(',')) != std::string::npos) { value[comma_pos] = '\0'; // thread in big endian hex tid = StringConvert::ToUInt64(value.c_str(), LLDB_INVALID_THREAD_ID, 16); if (tid != LLDB_INVALID_THREAD_ID) m_thread_ids.push_back(tid); value.erase(0, comma_pos + 1); } tid = StringConvert::ToUInt64(value.c_str(), LLDB_INVALID_THREAD_ID, 16); if (tid != LLDB_INVALID_THREAD_ID) m_thread_ids.push_back(tid); return m_thread_ids.size(); } size_t ProcessGDBRemote::UpdateThreadPCsFromStopReplyThreadsValue(std::string &value) { m_thread_pcs.clear(); size_t comma_pos; lldb::addr_t pc; while ((comma_pos = value.find(',')) != std::string::npos) { value[comma_pos] = '\0'; pc = StringConvert::ToUInt64(value.c_str(), LLDB_INVALID_ADDRESS, 16); if (pc != LLDB_INVALID_ADDRESS) m_thread_pcs.push_back(pc); value.erase(0, comma_pos + 1); } pc = StringConvert::ToUInt64(value.c_str(), LLDB_INVALID_ADDRESS, 16); if (pc != LLDB_INVALID_THREAD_ID) m_thread_pcs.push_back(pc); return m_thread_pcs.size(); } bool ProcessGDBRemote::UpdateThreadIDList() { std::lock_guard guard(m_thread_list_real.GetMutex()); if (m_jthreadsinfo_sp) { // If we have the JSON threads info, we can get the thread list from that StructuredData::Array *thread_infos = m_jthreadsinfo_sp->GetAsArray(); if (thread_infos && thread_infos->GetSize() > 0) { m_thread_ids.clear(); m_thread_pcs.clear(); thread_infos->ForEach([this](StructuredData::Object *object) -> bool { StructuredData::Dictionary *thread_dict = object->GetAsDictionary(); if (thread_dict) { // Set the thread stop info from the JSON dictionary SetThreadStopInfo(thread_dict); lldb::tid_t tid = LLDB_INVALID_THREAD_ID; if (thread_dict->GetValueForKeyAsInteger("tid", tid)) m_thread_ids.push_back(tid); } return true; // Keep iterating through all thread_info objects }); } if (!m_thread_ids.empty()) return true; } else { // See if we can get the thread IDs from the current stop reply packets // that might contain a "threads" key/value pair // Lock the thread stack while we access it // Mutex::Locker stop_stack_lock(m_last_stop_packet_mutex); std::unique_lock stop_stack_lock( m_last_stop_packet_mutex, std::defer_lock); if (stop_stack_lock.try_lock()) { // Get the number of stop packets on the stack int nItems = m_stop_packet_stack.size(); // Iterate over them for (int i = 0; i < nItems; i++) { // Get the thread stop info StringExtractorGDBRemote &stop_info = m_stop_packet_stack[i]; const std::string &stop_info_str = stop_info.GetStringRef(); m_thread_pcs.clear(); const size_t thread_pcs_pos = stop_info_str.find(";thread-pcs:"); if (thread_pcs_pos != std::string::npos) { const size_t start = thread_pcs_pos + strlen(";thread-pcs:"); const size_t end = stop_info_str.find(';', start); if (end != std::string::npos) { std::string value = stop_info_str.substr(start, end - start); UpdateThreadPCsFromStopReplyThreadsValue(value); } } const size_t threads_pos = stop_info_str.find(";threads:"); if (threads_pos != std::string::npos) { const size_t start = threads_pos + strlen(";threads:"); const size_t end = stop_info_str.find(';', start); if (end != std::string::npos) { std::string value = stop_info_str.substr(start, end - start); if (UpdateThreadIDsFromStopReplyThreadsValue(value)) return true; } } } } } bool sequence_mutex_unavailable = false; m_gdb_comm.GetCurrentThreadIDs(m_thread_ids, sequence_mutex_unavailable); if (sequence_mutex_unavailable) { return false; // We just didn't get the list } return true; } bool ProcessGDBRemote::UpdateThreadList(ThreadList &old_thread_list, ThreadList &new_thread_list) { // locker will keep a mutex locked until it goes out of scope Log *log(ProcessGDBRemoteLog::GetLogIfAllCategoriesSet(GDBR_LOG_THREAD)); LLDB_LOGV(log, "pid = {0}", GetID()); size_t num_thread_ids = m_thread_ids.size(); // The "m_thread_ids" thread ID list should always be updated after each stop // reply packet, but in case it isn't, update it here. if (num_thread_ids == 0) { if (!UpdateThreadIDList()) return false; num_thread_ids = m_thread_ids.size(); } ThreadList old_thread_list_copy(old_thread_list); if (num_thread_ids > 0) { for (size_t i = 0; i < num_thread_ids; ++i) { tid_t tid = m_thread_ids[i]; ThreadSP thread_sp( old_thread_list_copy.RemoveThreadByProtocolID(tid, false)); if (!thread_sp) { thread_sp.reset(new ThreadGDBRemote(*this, tid)); LLDB_LOGV(log, "Making new thread: {0} for thread ID: {1:x}.", thread_sp.get(), thread_sp->GetID()); } else { LLDB_LOGV(log, "Found old thread: {0} for thread ID: {1:x}.", thread_sp.get(), thread_sp->GetID()); } SetThreadPc(thread_sp, i); new_thread_list.AddThreadSortedByIndexID(thread_sp); } } // Whatever that is left in old_thread_list_copy are not // present in new_thread_list. Remove non-existent threads from internal id // table. size_t old_num_thread_ids = old_thread_list_copy.GetSize(false); for (size_t i = 0; i < old_num_thread_ids; i++) { ThreadSP old_thread_sp(old_thread_list_copy.GetThreadAtIndex(i, false)); if (old_thread_sp) { lldb::tid_t old_thread_id = old_thread_sp->GetProtocolID(); m_thread_id_to_index_id_map.erase(old_thread_id); } } return true; } void ProcessGDBRemote::SetThreadPc(const ThreadSP &thread_sp, uint64_t index) { if (m_thread_ids.size() == m_thread_pcs.size() && thread_sp.get() && GetByteOrder() != eByteOrderInvalid) { ThreadGDBRemote *gdb_thread = static_cast(thread_sp.get()); RegisterContextSP reg_ctx_sp(thread_sp->GetRegisterContext()); if (reg_ctx_sp) { uint32_t pc_regnum = reg_ctx_sp->ConvertRegisterKindToRegisterNumber( eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); if (pc_regnum != LLDB_INVALID_REGNUM) { gdb_thread->PrivateSetRegisterValue(pc_regnum, m_thread_pcs[index]); } } } } bool ProcessGDBRemote::GetThreadStopInfoFromJSON( ThreadGDBRemote *thread, const StructuredData::ObjectSP &thread_infos_sp) { // See if we got thread stop infos for all threads via the "jThreadsInfo" // packet if (thread_infos_sp) { StructuredData::Array *thread_infos = thread_infos_sp->GetAsArray(); if (thread_infos) { lldb::tid_t tid; const size_t n = thread_infos->GetSize(); for (size_t i = 0; i < n; ++i) { StructuredData::Dictionary *thread_dict = thread_infos->GetItemAtIndex(i)->GetAsDictionary(); if (thread_dict) { if (thread_dict->GetValueForKeyAsInteger( "tid", tid, LLDB_INVALID_THREAD_ID)) { if (tid == thread->GetID()) return (bool)SetThreadStopInfo(thread_dict); } } } } } return false; } bool ProcessGDBRemote::CalculateThreadStopInfo(ThreadGDBRemote *thread) { // See if we got thread stop infos for all threads via the "jThreadsInfo" // packet if (GetThreadStopInfoFromJSON(thread, m_jthreadsinfo_sp)) return true; // See if we got thread stop info for any threads valid stop info reasons // threads // via the "jstopinfo" packet stop reply packet key/value pair? if (m_jstopinfo_sp) { // If we have "jstopinfo" then we have stop descriptions for all threads // that have stop reasons, and if there is no entry for a thread, then // it has no stop reason. thread->GetRegisterContext()->InvalidateIfNeeded(true); if (!GetThreadStopInfoFromJSON(thread, m_jstopinfo_sp)) { thread->SetStopInfo(StopInfoSP()); } return true; } // Fall back to using the qThreadStopInfo packet StringExtractorGDBRemote stop_packet; if (GetGDBRemote().GetThreadStopInfo(thread->GetProtocolID(), stop_packet)) return SetThreadStopInfo(stop_packet) == eStateStopped; return false; } ThreadSP ProcessGDBRemote::SetThreadStopInfo( lldb::tid_t tid, ExpeditedRegisterMap &expedited_register_map, uint8_t signo, const std::string &thread_name, const std::string &reason, const std::string &description, uint32_t exc_type, const std::vector &exc_data, addr_t thread_dispatch_qaddr, bool queue_vars_valid, // Set to true if queue_name, queue_kind and // queue_serial are valid LazyBool associated_with_dispatch_queue, addr_t dispatch_queue_t, std::string &queue_name, QueueKind queue_kind, uint64_t queue_serial) { ThreadSP thread_sp; if (tid != LLDB_INVALID_THREAD_ID) { // Scope for "locker" below { // m_thread_list_real does have its own mutex, but we need to // hold onto the mutex between the call to // m_thread_list_real.FindThreadByID(...) // and the m_thread_list_real.AddThread(...) so it doesn't change on us std::lock_guard guard( m_thread_list_real.GetMutex()); thread_sp = m_thread_list_real.FindThreadByProtocolID(tid, false); if (!thread_sp) { // Create the thread if we need to thread_sp.reset(new ThreadGDBRemote(*this, tid)); m_thread_list_real.AddThread(thread_sp); } } if (thread_sp) { ThreadGDBRemote *gdb_thread = static_cast(thread_sp.get()); gdb_thread->GetRegisterContext()->InvalidateIfNeeded(true); auto iter = std::find(m_thread_ids.begin(), m_thread_ids.end(), tid); if (iter != m_thread_ids.end()) { SetThreadPc(thread_sp, iter - m_thread_ids.begin()); } for (const auto &pair : expedited_register_map) { StringExtractor reg_value_extractor; reg_value_extractor.GetStringRef() = pair.second; DataBufferSP buffer_sp(new DataBufferHeap( reg_value_extractor.GetStringRef().size() / 2, 0)); reg_value_extractor.GetHexBytes(buffer_sp->GetData(), '\xcc'); gdb_thread->PrivateSetRegisterValue(pair.first, buffer_sp->GetData()); } thread_sp->SetName(thread_name.empty() ? NULL : thread_name.c_str()); gdb_thread->SetThreadDispatchQAddr(thread_dispatch_qaddr); // Check if the GDB server was able to provide the queue name, kind and // serial number if (queue_vars_valid) gdb_thread->SetQueueInfo(std::move(queue_name), queue_kind, queue_serial, dispatch_queue_t, associated_with_dispatch_queue); else gdb_thread->ClearQueueInfo(); gdb_thread->SetAssociatedWithLibdispatchQueue( associated_with_dispatch_queue); if (dispatch_queue_t != LLDB_INVALID_ADDRESS) gdb_thread->SetQueueLibdispatchQueueAddress(dispatch_queue_t); // Make sure we update our thread stop reason just once if (!thread_sp->StopInfoIsUpToDate()) { thread_sp->SetStopInfo(StopInfoSP()); // If there's a memory thread backed by this thread, we need to use it // to calcualte StopInfo. ThreadSP memory_thread_sp = m_thread_list.FindThreadByProtocolID(thread_sp->GetProtocolID()); if (memory_thread_sp) thread_sp = memory_thread_sp; if (exc_type != 0) { const size_t exc_data_size = exc_data.size(); thread_sp->SetStopInfo( StopInfoMachException::CreateStopReasonWithMachException( *thread_sp, exc_type, exc_data_size, exc_data_size >= 1 ? exc_data[0] : 0, exc_data_size >= 2 ? exc_data[1] : 0, exc_data_size >= 3 ? exc_data[2] : 0)); } else { bool handled = false; bool did_exec = false; if (!reason.empty()) { if (reason.compare("trace") == 0) { addr_t pc = thread_sp->GetRegisterContext()->GetPC(); lldb::BreakpointSiteSP bp_site_sp = thread_sp->GetProcess() ->GetBreakpointSiteList() .FindByAddress(pc); // If the current pc is a breakpoint site then the StopInfo should // be set to Breakpoint // Otherwise, it will be set to Trace. if (bp_site_sp && bp_site_sp->ValidForThisThread(thread_sp.get())) { thread_sp->SetStopInfo( StopInfo::CreateStopReasonWithBreakpointSiteID( *thread_sp, bp_site_sp->GetID())); } else thread_sp->SetStopInfo( StopInfo::CreateStopReasonToTrace(*thread_sp)); handled = true; } else if (reason.compare("breakpoint") == 0) { addr_t pc = thread_sp->GetRegisterContext()->GetPC(); lldb::BreakpointSiteSP bp_site_sp = thread_sp->GetProcess() ->GetBreakpointSiteList() .FindByAddress(pc); if (bp_site_sp) { // If the breakpoint is for this thread, then we'll report the // hit, but if it is for another thread, // we can just report no reason. We don't need to worry about // stepping over the breakpoint here, that // will be taken care of when the thread resumes and notices // that there's a breakpoint under the pc. handled = true; if (bp_site_sp->ValidForThisThread(thread_sp.get())) { thread_sp->SetStopInfo( StopInfo::CreateStopReasonWithBreakpointSiteID( *thread_sp, bp_site_sp->GetID())); } else { StopInfoSP invalid_stop_info_sp; thread_sp->SetStopInfo(invalid_stop_info_sp); } } } else if (reason.compare("trap") == 0) { // Let the trap just use the standard signal stop reason below... } else if (reason.compare("watchpoint") == 0) { StringExtractor desc_extractor(description.c_str()); addr_t wp_addr = desc_extractor.GetU64(LLDB_INVALID_ADDRESS); uint32_t wp_index = desc_extractor.GetU32(LLDB_INVALID_INDEX32); addr_t wp_hit_addr = desc_extractor.GetU64(LLDB_INVALID_ADDRESS); watch_id_t watch_id = LLDB_INVALID_WATCH_ID; if (wp_addr != LLDB_INVALID_ADDRESS) { WatchpointSP wp_sp; ArchSpec::Core core = GetTarget().GetArchitecture().GetCore(); if ((core >= ArchSpec::kCore_mips_first && core <= ArchSpec::kCore_mips_last) || (core >= ArchSpec::eCore_arm_generic && core <= ArchSpec::eCore_arm_aarch64)) wp_sp = GetTarget().GetWatchpointList().FindByAddress( wp_hit_addr); if (!wp_sp) wp_sp = GetTarget().GetWatchpointList().FindByAddress(wp_addr); if (wp_sp) { wp_sp->SetHardwareIndex(wp_index); watch_id = wp_sp->GetID(); } } if (watch_id == LLDB_INVALID_WATCH_ID) { Log *log(ProcessGDBRemoteLog::GetLogIfAllCategoriesSet( GDBR_LOG_WATCHPOINTS)); if (log) log->Printf("failed to find watchpoint"); } thread_sp->SetStopInfo(StopInfo::CreateStopReasonWithWatchpointID( *thread_sp, watch_id, wp_hit_addr)); handled = true; } else if (reason.compare("exception") == 0) { thread_sp->SetStopInfo(StopInfo::CreateStopReasonWithException( *thread_sp, description.c_str())); handled = true; } else if (reason.compare("exec") == 0) { did_exec = true; thread_sp->SetStopInfo( StopInfo::CreateStopReasonWithExec(*thread_sp)); handled = true; } } else if (!signo) { addr_t pc = thread_sp->GetRegisterContext()->GetPC(); lldb::BreakpointSiteSP bp_site_sp = thread_sp->GetProcess()->GetBreakpointSiteList().FindByAddress( pc); // If the current pc is a breakpoint site then the StopInfo should // be set to Breakpoint // even though the remote stub did not set it as such. This can // happen when // the thread is involuntarily interrupted (e.g. due to stops on // other // threads) just as it is about to execute the breakpoint // instruction. if (bp_site_sp && bp_site_sp->ValidForThisThread(thread_sp.get())) { thread_sp->SetStopInfo( StopInfo::CreateStopReasonWithBreakpointSiteID( *thread_sp, bp_site_sp->GetID())); handled = true; } } if (!handled && signo && did_exec == false) { if (signo == SIGTRAP) { // Currently we are going to assume SIGTRAP means we are either // hitting a breakpoint or hardware single stepping. handled = true; addr_t pc = thread_sp->GetRegisterContext()->GetPC() + m_breakpoint_pc_offset; lldb::BreakpointSiteSP bp_site_sp = thread_sp->GetProcess() ->GetBreakpointSiteList() .FindByAddress(pc); if (bp_site_sp) { // If the breakpoint is for this thread, then we'll report the // hit, but if it is for another thread, // we can just report no reason. We don't need to worry about // stepping over the breakpoint here, that // will be taken care of when the thread resumes and notices // that there's a breakpoint under the pc. if (bp_site_sp->ValidForThisThread(thread_sp.get())) { if (m_breakpoint_pc_offset != 0) thread_sp->GetRegisterContext()->SetPC(pc); thread_sp->SetStopInfo( StopInfo::CreateStopReasonWithBreakpointSiteID( *thread_sp, bp_site_sp->GetID())); } else { StopInfoSP invalid_stop_info_sp; thread_sp->SetStopInfo(invalid_stop_info_sp); } } else { // If we were stepping then assume the stop was the result of // the trace. If we were // not stepping then report the SIGTRAP. // FIXME: We are still missing the case where we single step // over a trap instruction. if (thread_sp->GetTemporaryResumeState() == eStateStepping) thread_sp->SetStopInfo( StopInfo::CreateStopReasonToTrace(*thread_sp)); else thread_sp->SetStopInfo(StopInfo::CreateStopReasonWithSignal( *thread_sp, signo, description.c_str())); } } if (!handled) thread_sp->SetStopInfo(StopInfo::CreateStopReasonWithSignal( *thread_sp, signo, description.c_str())); } if (!description.empty()) { lldb::StopInfoSP stop_info_sp(thread_sp->GetStopInfo()); if (stop_info_sp) { const char *stop_info_desc = stop_info_sp->GetDescription(); if (!stop_info_desc || !stop_info_desc[0]) stop_info_sp->SetDescription(description.c_str()); } else { thread_sp->SetStopInfo(StopInfo::CreateStopReasonWithException( *thread_sp, description.c_str())); } } } } } } return thread_sp; } lldb::ThreadSP ProcessGDBRemote::SetThreadStopInfo(StructuredData::Dictionary *thread_dict) { static ConstString g_key_tid("tid"); static ConstString g_key_name("name"); static ConstString g_key_reason("reason"); static ConstString g_key_metype("metype"); static ConstString g_key_medata("medata"); static ConstString g_key_qaddr("qaddr"); static ConstString g_key_dispatch_queue_t("dispatch_queue_t"); static ConstString g_key_associated_with_dispatch_queue( "associated_with_dispatch_queue"); static ConstString g_key_queue_name("qname"); static ConstString g_key_queue_kind("qkind"); static ConstString g_key_queue_serial_number("qserialnum"); static ConstString g_key_registers("registers"); static ConstString g_key_memory("memory"); static ConstString g_key_address("address"); static ConstString g_key_bytes("bytes"); static ConstString g_key_description("description"); static ConstString g_key_signal("signal"); // Stop with signal and thread info lldb::tid_t tid = LLDB_INVALID_THREAD_ID; uint8_t signo = 0; std::string value; std::string thread_name; std::string reason; std::string description; uint32_t exc_type = 0; std::vector exc_data; addr_t thread_dispatch_qaddr = LLDB_INVALID_ADDRESS; ExpeditedRegisterMap expedited_register_map; bool queue_vars_valid = false; addr_t dispatch_queue_t = LLDB_INVALID_ADDRESS; LazyBool associated_with_dispatch_queue = eLazyBoolCalculate; std::string queue_name; QueueKind queue_kind = eQueueKindUnknown; uint64_t queue_serial_number = 0; // Iterate through all of the thread dictionary key/value pairs from the // structured data dictionary thread_dict->ForEach([this, &tid, &expedited_register_map, &thread_name, &signo, &reason, &description, &exc_type, &exc_data, &thread_dispatch_qaddr, &queue_vars_valid, &associated_with_dispatch_queue, &dispatch_queue_t, &queue_name, &queue_kind, &queue_serial_number]( ConstString key, StructuredData::Object *object) -> bool { if (key == g_key_tid) { // thread in big endian hex tid = object->GetIntegerValue(LLDB_INVALID_THREAD_ID); } else if (key == g_key_metype) { // exception type in big endian hex exc_type = object->GetIntegerValue(0); } else if (key == g_key_medata) { // exception data in big endian hex StructuredData::Array *array = object->GetAsArray(); if (array) { array->ForEach([&exc_data](StructuredData::Object *object) -> bool { exc_data.push_back(object->GetIntegerValue()); return true; // Keep iterating through all array items }); } } else if (key == g_key_name) { thread_name = object->GetStringValue(); } else if (key == g_key_qaddr) { thread_dispatch_qaddr = object->GetIntegerValue(LLDB_INVALID_ADDRESS); } else if (key == g_key_queue_name) { queue_vars_valid = true; queue_name = object->GetStringValue(); } else if (key == g_key_queue_kind) { std::string queue_kind_str = object->GetStringValue(); if (queue_kind_str == "serial") { queue_vars_valid = true; queue_kind = eQueueKindSerial; } else if (queue_kind_str == "concurrent") { queue_vars_valid = true; queue_kind = eQueueKindConcurrent; } } else if (key == g_key_queue_serial_number) { queue_serial_number = object->GetIntegerValue(0); if (queue_serial_number != 0) queue_vars_valid = true; } else if (key == g_key_dispatch_queue_t) { dispatch_queue_t = object->GetIntegerValue(0); if (dispatch_queue_t != 0 && dispatch_queue_t != LLDB_INVALID_ADDRESS) queue_vars_valid = true; } else if (key == g_key_associated_with_dispatch_queue) { queue_vars_valid = true; bool associated = object->GetBooleanValue(); if (associated) associated_with_dispatch_queue = eLazyBoolYes; else associated_with_dispatch_queue = eLazyBoolNo; } else if (key == g_key_reason) { reason = object->GetStringValue(); } else if (key == g_key_description) { description = object->GetStringValue(); } else if (key == g_key_registers) { StructuredData::Dictionary *registers_dict = object->GetAsDictionary(); if (registers_dict) { registers_dict->ForEach( [&expedited_register_map](ConstString key, StructuredData::Object *object) -> bool { const uint32_t reg = StringConvert::ToUInt32(key.GetCString(), UINT32_MAX, 10); if (reg != UINT32_MAX) expedited_register_map[reg] = object->GetStringValue(); return true; // Keep iterating through all array items }); } } else if (key == g_key_memory) { StructuredData::Array *array = object->GetAsArray(); if (array) { array->ForEach([this](StructuredData::Object *object) -> bool { StructuredData::Dictionary *mem_cache_dict = object->GetAsDictionary(); if (mem_cache_dict) { lldb::addr_t mem_cache_addr = LLDB_INVALID_ADDRESS; if (mem_cache_dict->GetValueForKeyAsInteger( "address", mem_cache_addr)) { if (mem_cache_addr != LLDB_INVALID_ADDRESS) { llvm::StringRef str; if (mem_cache_dict->GetValueForKeyAsString("bytes", str)) { StringExtractor bytes(str); bytes.SetFilePos(0); const size_t byte_size = bytes.GetStringRef().size() / 2; DataBufferSP data_buffer_sp(new DataBufferHeap(byte_size, 0)); const size_t bytes_copied = bytes.GetHexBytes(data_buffer_sp->GetData(), 0); if (bytes_copied == byte_size) m_memory_cache.AddL1CacheData(mem_cache_addr, data_buffer_sp); } } } } return true; // Keep iterating through all array items }); } } else if (key == g_key_signal) signo = object->GetIntegerValue(LLDB_INVALID_SIGNAL_NUMBER); return true; // Keep iterating through all dictionary key/value pairs }); return SetThreadStopInfo(tid, expedited_register_map, signo, thread_name, reason, description, exc_type, exc_data, thread_dispatch_qaddr, queue_vars_valid, associated_with_dispatch_queue, dispatch_queue_t, queue_name, queue_kind, queue_serial_number); } StateType ProcessGDBRemote::SetThreadStopInfo(StringExtractor &stop_packet) { stop_packet.SetFilePos(0); const char stop_type = stop_packet.GetChar(); switch (stop_type) { case 'T': case 'S': { // This is a bit of a hack, but is is required. If we did exec, we // need to clear our thread lists and also know to rebuild our dynamic // register info before we lookup and threads and populate the expedited // register values so we need to know this right away so we can cleanup // and update our registers. const uint32_t stop_id = GetStopID(); if (stop_id == 0) { // Our first stop, make sure we have a process ID, and also make // sure we know about our registers if (GetID() == LLDB_INVALID_PROCESS_ID) { lldb::pid_t pid = m_gdb_comm.GetCurrentProcessID(); if (pid != LLDB_INVALID_PROCESS_ID) SetID(pid); } BuildDynamicRegisterInfo(true); } // Stop with signal and thread info lldb::tid_t tid = LLDB_INVALID_THREAD_ID; const uint8_t signo = stop_packet.GetHexU8(); llvm::StringRef key; llvm::StringRef value; std::string thread_name; std::string reason; std::string description; uint32_t exc_type = 0; std::vector exc_data; addr_t thread_dispatch_qaddr = LLDB_INVALID_ADDRESS; bool queue_vars_valid = false; // says if locals below that start with "queue_" are valid addr_t dispatch_queue_t = LLDB_INVALID_ADDRESS; LazyBool associated_with_dispatch_queue = eLazyBoolCalculate; std::string queue_name; QueueKind queue_kind = eQueueKindUnknown; uint64_t queue_serial_number = 0; ExpeditedRegisterMap expedited_register_map; while (stop_packet.GetNameColonValue(key, value)) { if (key.compare("metype") == 0) { // exception type in big endian hex value.getAsInteger(16, exc_type); } else if (key.compare("medata") == 0) { // exception data in big endian hex uint64_t x; value.getAsInteger(16, x); exc_data.push_back(x); } else if (key.compare("thread") == 0) { // thread in big endian hex if (value.getAsInteger(16, tid)) tid = LLDB_INVALID_THREAD_ID; } else if (key.compare("threads") == 0) { std::lock_guard guard( m_thread_list_real.GetMutex()); m_thread_ids.clear(); // A comma separated list of all threads in the current // process that includes the thread for this stop reply // packet lldb::tid_t tid; while (!value.empty()) { llvm::StringRef tid_str; std::tie(tid_str, value) = value.split(','); if (tid_str.getAsInteger(16, tid)) tid = LLDB_INVALID_THREAD_ID; m_thread_ids.push_back(tid); } } else if (key.compare("thread-pcs") == 0) { m_thread_pcs.clear(); // A comma separated list of all threads in the current // process that includes the thread for this stop reply // packet lldb::addr_t pc; while (!value.empty()) { llvm::StringRef pc_str; std::tie(pc_str, value) = value.split(','); if (pc_str.getAsInteger(16, pc)) pc = LLDB_INVALID_ADDRESS; m_thread_pcs.push_back(pc); } } else if (key.compare("jstopinfo") == 0) { StringExtractor json_extractor(value); std::string json; // Now convert the HEX bytes into a string value json_extractor.GetHexByteString(json); // This JSON contains thread IDs and thread stop info for all threads. // It doesn't contain expedited registers, memory or queue info. m_jstopinfo_sp = StructuredData::ParseJSON(json); } else if (key.compare("hexname") == 0) { StringExtractor name_extractor(value); std::string name; // Now convert the HEX bytes into a string value name_extractor.GetHexByteString(thread_name); } else if (key.compare("name") == 0) { thread_name = value; } else if (key.compare("qaddr") == 0) { value.getAsInteger(16, thread_dispatch_qaddr); } else if (key.compare("dispatch_queue_t") == 0) { queue_vars_valid = true; value.getAsInteger(16, dispatch_queue_t); } else if (key.compare("qname") == 0) { queue_vars_valid = true; StringExtractor name_extractor(value); // Now convert the HEX bytes into a string value name_extractor.GetHexByteString(queue_name); } else if (key.compare("qkind") == 0) { queue_kind = llvm::StringSwitch(value) .Case("serial", eQueueKindSerial) .Case("concurrent", eQueueKindConcurrent) .Default(eQueueKindUnknown); queue_vars_valid = queue_kind != eQueueKindUnknown; } else if (key.compare("qserialnum") == 0) { if (!value.getAsInteger(0, queue_serial_number)) queue_vars_valid = true; } else if (key.compare("reason") == 0) { reason = value; } else if (key.compare("description") == 0) { StringExtractor desc_extractor(value); // Now convert the HEX bytes into a string value desc_extractor.GetHexByteString(description); } else if (key.compare("memory") == 0) { // Expedited memory. GDB servers can choose to send back expedited // memory // that can populate the L1 memory cache in the process so that things // like // the frame pointer backchain can be expedited. This will help stack // backtracing be more efficient by not having to send as many memory // read // requests down the remote GDB server. // Key/value pair format: memory:=; // is a number whose base will be interpreted by the prefix: // "0x[0-9a-fA-F]+" for hex // "0[0-7]+" for octal // "[1-9]+" for decimal // is native endian ASCII hex bytes just like the register // values llvm::StringRef addr_str, bytes_str; std::tie(addr_str, bytes_str) = value.split('='); if (!addr_str.empty() && !bytes_str.empty()) { lldb::addr_t mem_cache_addr = LLDB_INVALID_ADDRESS; if (!addr_str.getAsInteger(0, mem_cache_addr)) { StringExtractor bytes(bytes_str); const size_t byte_size = bytes.GetBytesLeft() / 2; DataBufferSP data_buffer_sp(new DataBufferHeap(byte_size, 0)); const size_t bytes_copied = bytes.GetHexBytes(data_buffer_sp->GetData(), 0); if (bytes_copied == byte_size) m_memory_cache.AddL1CacheData(mem_cache_addr, data_buffer_sp); } } } else if (key.compare("watch") == 0 || key.compare("rwatch") == 0 || key.compare("awatch") == 0) { // Support standard GDB remote stop reply packet 'TAAwatch:addr' lldb::addr_t wp_addr = LLDB_INVALID_ADDRESS; value.getAsInteger(16, wp_addr); WatchpointSP wp_sp = GetTarget().GetWatchpointList().FindByAddress(wp_addr); uint32_t wp_index = LLDB_INVALID_INDEX32; if (wp_sp) wp_index = wp_sp->GetHardwareIndex(); reason = "watchpoint"; StreamString ostr; ostr.Printf("%" PRIu64 " %" PRIu32, wp_addr, wp_index); description = ostr.GetString(); } else if (key.compare("library") == 0) { LoadModules(); } else if (key.size() == 2 && ::isxdigit(key[0]) && ::isxdigit(key[1])) { uint32_t reg = UINT32_MAX; if (!key.getAsInteger(16, reg)) expedited_register_map[reg] = std::move(value); } } if (tid == LLDB_INVALID_THREAD_ID) { // A thread id may be invalid if the response is old style 'S' packet // which does not provide the // thread information. So update the thread list and choose the first one. UpdateThreadIDList(); if (!m_thread_ids.empty()) { tid = m_thread_ids.front(); } } ThreadSP thread_sp = SetThreadStopInfo( tid, expedited_register_map, signo, thread_name, reason, description, exc_type, exc_data, thread_dispatch_qaddr, queue_vars_valid, associated_with_dispatch_queue, dispatch_queue_t, queue_name, queue_kind, queue_serial_number); return eStateStopped; } break; case 'W': case 'X': // process exited return eStateExited; default: break; } return eStateInvalid; } void ProcessGDBRemote::RefreshStateAfterStop() { std::lock_guard guard(m_thread_list_real.GetMutex()); m_thread_ids.clear(); m_thread_pcs.clear(); // Set the thread stop info. It might have a "threads" key whose value is // a list of all thread IDs in the current process, so m_thread_ids might // get set. // Scope for the lock { // Lock the thread stack while we access it std::lock_guard guard(m_last_stop_packet_mutex); // Get the number of stop packets on the stack int nItems = m_stop_packet_stack.size(); // Iterate over them for (int i = 0; i < nItems; i++) { // Get the thread stop info StringExtractorGDBRemote stop_info = m_stop_packet_stack[i]; // Process thread stop info SetThreadStopInfo(stop_info); } // Clear the thread stop stack m_stop_packet_stack.clear(); } // Check to see if SetThreadStopInfo() filled in m_thread_ids? if (m_thread_ids.empty()) { // No, we need to fetch the thread list manually UpdateThreadIDList(); } // If we have queried for a default thread id if (m_initial_tid != LLDB_INVALID_THREAD_ID) { m_thread_list.SetSelectedThreadByID(m_initial_tid); m_initial_tid = LLDB_INVALID_THREAD_ID; } // Let all threads recover from stopping and do any clean up based // on the previous thread state (if any). m_thread_list_real.RefreshStateAfterStop(); } Status ProcessGDBRemote::DoHalt(bool &caused_stop) { Status error; if (m_public_state.GetValue() == eStateAttaching) { // We are being asked to halt during an attach. We need to just close // our file handle and debugserver will go away, and we can be done... m_gdb_comm.Disconnect(); } else caused_stop = m_gdb_comm.Interrupt(); return error; } Status ProcessGDBRemote::DoDetach(bool keep_stopped) { Status error; Log *log(ProcessGDBRemoteLog::GetLogIfAllCategoriesSet(GDBR_LOG_PROCESS)); if (log) log->Printf("ProcessGDBRemote::DoDetach(keep_stopped: %i)", keep_stopped); error = m_gdb_comm.Detach(keep_stopped); if (log) { if (error.Success()) log->PutCString( "ProcessGDBRemote::DoDetach() detach packet sent successfully"); else log->Printf("ProcessGDBRemote::DoDetach() detach packet send failed: %s", error.AsCString() ? error.AsCString() : ""); } if (!error.Success()) return error; // Sleep for one second to let the process get all detached... StopAsyncThread(); SetPrivateState(eStateDetached); ResumePrivateStateThread(); // KillDebugserverProcess (); return error; } Status ProcessGDBRemote::DoDestroy() { Status error; Log *log(ProcessGDBRemoteLog::GetLogIfAllCategoriesSet(GDBR_LOG_PROCESS)); if (log) log->Printf("ProcessGDBRemote::DoDestroy()"); -#if 0 // XXX Currently no iOS target support on FreeBSD +#ifdef LLDB_ENABLE_ALL // XXX Currently no iOS target support on FreeBSD // There is a bug in older iOS debugservers where they don't shut down the // process // they are debugging properly. If the process is sitting at a breakpoint or // an exception, // this can cause problems with restarting. So we check to see if any of our // threads are stopped // at a breakpoint, and if so we remove all the breakpoints, resume the // process, and THEN // destroy it again. // // Note, we don't have a good way to test the version of debugserver, but I // happen to know that // the set of all the iOS debugservers which don't support // GetThreadSuffixSupported() and that of // the debugservers with this bug are equal. There really should be a better // way to test this! // // We also use m_destroy_tried_resuming to make sure we only do this once, if // we resume and then halt and // get called here to destroy again and we're still at a breakpoint or // exception, then we should // just do the straight-forward kill. // // And of course, if we weren't able to stop the process by the time we get // here, it isn't // necessary (or helpful) to do any of this. if (!m_gdb_comm.GetThreadSuffixSupported() && m_public_state.GetValue() != eStateRunning) { PlatformSP platform_sp = GetTarget().GetPlatform(); // FIXME: These should be ConstStrings so we aren't doing strcmp'ing. if (platform_sp && platform_sp->GetName() && platform_sp->GetName() == PlatformRemoteiOS::GetPluginNameStatic()) { if (m_destroy_tried_resuming) { if (log) log->PutCString("ProcessGDBRemote::DoDestroy() - Tried resuming to " "destroy once already, not doing it again."); } else { // At present, the plans are discarded and the breakpoints disabled // Process::Destroy, // but we really need it to happen here and it doesn't matter if we do // it twice. m_thread_list.DiscardThreadPlans(); DisableAllBreakpointSites(); bool stop_looks_like_crash = false; ThreadList &threads = GetThreadList(); { std::lock_guard guard(threads.GetMutex()); size_t num_threads = threads.GetSize(); for (size_t i = 0; i < num_threads; i++) { ThreadSP thread_sp = threads.GetThreadAtIndex(i); StopInfoSP stop_info_sp = thread_sp->GetPrivateStopInfo(); StopReason reason = eStopReasonInvalid; if (stop_info_sp) reason = stop_info_sp->GetStopReason(); if (reason == eStopReasonBreakpoint || reason == eStopReasonException) { if (log) log->Printf( "ProcessGDBRemote::DoDestroy() - thread: 0x%4.4" PRIx64 " stopped with reason: %s.", thread_sp->GetProtocolID(), stop_info_sp->GetDescription()); stop_looks_like_crash = true; break; } } } if (stop_looks_like_crash) { if (log) log->PutCString("ProcessGDBRemote::DoDestroy() - Stopped at a " "breakpoint, continue and then kill."); m_destroy_tried_resuming = true; // If we are going to run again before killing, it would be good to // suspend all the threads // before resuming so they won't get into more trouble. Sadly, for // the threads stopped with // the breakpoint or exception, the exception doesn't get cleared if // it is suspended, so we do // have to run the risk of letting those threads proceed a bit. { std::lock_guard guard(threads.GetMutex()); size_t num_threads = threads.GetSize(); for (size_t i = 0; i < num_threads; i++) { ThreadSP thread_sp = threads.GetThreadAtIndex(i); StopInfoSP stop_info_sp = thread_sp->GetPrivateStopInfo(); StopReason reason = eStopReasonInvalid; if (stop_info_sp) reason = stop_info_sp->GetStopReason(); if (reason != eStopReasonBreakpoint && reason != eStopReasonException) { if (log) log->Printf("ProcessGDBRemote::DoDestroy() - Suspending " "thread: 0x%4.4" PRIx64 " before running.", thread_sp->GetProtocolID()); thread_sp->SetResumeState(eStateSuspended); } } } Resume(); return Destroy(false); } } } } -#endif +#endif // LLDB_ENABLE_ALL // Interrupt if our inferior is running... int exit_status = SIGABRT; std::string exit_string; if (m_gdb_comm.IsConnected()) { if (m_public_state.GetValue() != eStateAttaching) { StringExtractorGDBRemote response; bool send_async = true; GDBRemoteCommunication::ScopedTimeout(m_gdb_comm, std::chrono::seconds(3)); if (m_gdb_comm.SendPacketAndWaitForResponse("k", response, send_async) == GDBRemoteCommunication::PacketResult::Success) { char packet_cmd = response.GetChar(0); if (packet_cmd == 'W' || packet_cmd == 'X') { #if defined(__APPLE__) // For Native processes on Mac OS X, we launch through the Host // Platform, then hand the process off // to debugserver, which becomes the parent process through // "PT_ATTACH". Then when we go to kill // the process on Mac OS X we call ptrace(PT_KILL) to kill it, then we // call waitpid which returns // with no error and the correct status. But amusingly enough that // doesn't seem to actually reap // the process, but instead it is left around as a Zombie. Probably // the kernel is in the process of // switching ownership back to lldb which was the original parent, and // gets confused in the handoff. // Anyway, so call waitpid here to finally reap it. PlatformSP platform_sp(GetTarget().GetPlatform()); if (platform_sp && platform_sp->IsHost()) { int status; ::pid_t reap_pid; reap_pid = waitpid(GetID(), &status, WNOHANG); if (log) log->Printf("Reaped pid: %d, status: %d.\n", reap_pid, status); } #endif SetLastStopPacket(response); ClearThreadIDList(); exit_status = response.GetHexU8(); } else { if (log) log->Printf("ProcessGDBRemote::DoDestroy - got unexpected response " "to k packet: %s", response.GetStringRef().c_str()); exit_string.assign("got unexpected response to k packet: "); exit_string.append(response.GetStringRef()); } } else { if (log) log->Printf("ProcessGDBRemote::DoDestroy - failed to send k packet"); exit_string.assign("failed to send the k packet"); } } else { if (log) log->Printf("ProcessGDBRemote::DoDestroy - killed or interrupted while " "attaching"); exit_string.assign("killed or interrupted while attaching."); } } else { // If we missed setting the exit status on the way out, do it here. // NB set exit status can be called multiple times, the first one sets the // status. exit_string.assign("destroying when not connected to debugserver"); } SetExitStatus(exit_status, exit_string.c_str()); StopAsyncThread(); KillDebugserverProcess(); return error; } void ProcessGDBRemote::SetLastStopPacket( const StringExtractorGDBRemote &response) { const bool did_exec = response.GetStringRef().find(";reason:exec;") != std::string::npos; if (did_exec) { Log *log(ProcessGDBRemoteLog::GetLogIfAllCategoriesSet(GDBR_LOG_PROCESS)); if (log) log->Printf("ProcessGDBRemote::SetLastStopPacket () - detected exec"); m_thread_list_real.Clear(); m_thread_list.Clear(); BuildDynamicRegisterInfo(true); m_gdb_comm.ResetDiscoverableSettings(did_exec); } // Scope the lock { // Lock the thread stack while we access it std::lock_guard guard(m_last_stop_packet_mutex); // We are are not using non-stop mode, there can only be one last stop // reply packet, so clear the list. if (GetTarget().GetNonStopModeEnabled() == false) m_stop_packet_stack.clear(); // Add this stop packet to the stop packet stack // This stack will get popped and examined when we switch to the // Stopped state m_stop_packet_stack.push_back(response); } } void ProcessGDBRemote::SetUnixSignals(const UnixSignalsSP &signals_sp) { Process::SetUnixSignals(std::make_shared(signals_sp)); } //------------------------------------------------------------------ // Process Queries //------------------------------------------------------------------ bool ProcessGDBRemote::IsAlive() { return m_gdb_comm.IsConnected() && Process::IsAlive(); } addr_t ProcessGDBRemote::GetImageInfoAddress() { // request the link map address via the $qShlibInfoAddr packet lldb::addr_t addr = m_gdb_comm.GetShlibInfoAddr(); // the loaded module list can also provides a link map address if (addr == LLDB_INVALID_ADDRESS) { LoadedModuleInfoList list; if (GetLoadedModuleList(list).Success()) addr = list.m_link_map; } return addr; } void ProcessGDBRemote::WillPublicStop() { // See if the GDB remote client supports the JSON threads info. // If so, we gather stop info for all threads, expedited registers, // expedited memory, runtime queue information (iOS and MacOSX only), // and more. Expediting memory will help stack backtracing be much // faster. Expediting registers will make sure we don't have to read // the thread registers for GPRs. m_jthreadsinfo_sp = m_gdb_comm.GetThreadsInfo(); if (m_jthreadsinfo_sp) { // Now set the stop info for each thread and also expedite any registers // and memory that was in the jThreadsInfo response. StructuredData::Array *thread_infos = m_jthreadsinfo_sp->GetAsArray(); if (thread_infos) { const size_t n = thread_infos->GetSize(); for (size_t i = 0; i < n; ++i) { StructuredData::Dictionary *thread_dict = thread_infos->GetItemAtIndex(i)->GetAsDictionary(); if (thread_dict) SetThreadStopInfo(thread_dict); } } } } //------------------------------------------------------------------ // Process Memory //------------------------------------------------------------------ size_t ProcessGDBRemote::DoReadMemory(addr_t addr, void *buf, size_t size, Status &error) { GetMaxMemorySize(); bool binary_memory_read = m_gdb_comm.GetxPacketSupported(); // M and m packets take 2 bytes for 1 byte of memory size_t max_memory_size = binary_memory_read ? m_max_memory_size : m_max_memory_size / 2; if (size > max_memory_size) { // Keep memory read sizes down to a sane limit. This function will be // called multiple times in order to complete the task by // lldb_private::Process so it is ok to do this. size = max_memory_size; } char packet[64]; int packet_len; packet_len = ::snprintf(packet, sizeof(packet), "%c%" PRIx64 ",%" PRIx64, binary_memory_read ? 'x' : 'm', (uint64_t)addr, (uint64_t)size); assert(packet_len + 1 < (int)sizeof(packet)); UNUSED_IF_ASSERT_DISABLED(packet_len); StringExtractorGDBRemote response; if (m_gdb_comm.SendPacketAndWaitForResponse(packet, response, true) == GDBRemoteCommunication::PacketResult::Success) { if (response.IsNormalResponse()) { error.Clear(); if (binary_memory_read) { // The lower level GDBRemoteCommunication packet receive layer has // already de-quoted any // 0x7d character escaping that was present in the packet size_t data_received_size = response.GetBytesLeft(); if (data_received_size > size) { // Don't write past the end of BUF if the remote debug server gave us // too // much data for some reason. data_received_size = size; } memcpy(buf, response.GetStringRef().data(), data_received_size); return data_received_size; } else { return response.GetHexBytes( llvm::MutableArrayRef((uint8_t *)buf, size), '\xdd'); } } else if (response.IsErrorResponse()) error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64, addr); else if (response.IsUnsupportedResponse()) error.SetErrorStringWithFormat( "GDB server does not support reading memory"); else error.SetErrorStringWithFormat( "unexpected response to GDB server memory read packet '%s': '%s'", packet, response.GetStringRef().c_str()); } else { error.SetErrorStringWithFormat("failed to send packet: '%s'", packet); } return 0; } size_t ProcessGDBRemote::DoWriteMemory(addr_t addr, const void *buf, size_t size, Status &error) { GetMaxMemorySize(); // M and m packets take 2 bytes for 1 byte of memory size_t max_memory_size = m_max_memory_size / 2; if (size > max_memory_size) { // Keep memory read sizes down to a sane limit. This function will be // called multiple times in order to complete the task by // lldb_private::Process so it is ok to do this. size = max_memory_size; } StreamString packet; packet.Printf("M%" PRIx64 ",%" PRIx64 ":", addr, (uint64_t)size); packet.PutBytesAsRawHex8(buf, size, endian::InlHostByteOrder(), endian::InlHostByteOrder()); StringExtractorGDBRemote response; if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response, true) == GDBRemoteCommunication::PacketResult::Success) { if (response.IsOKResponse()) { error.Clear(); return size; } else if (response.IsErrorResponse()) error.SetErrorStringWithFormat("memory write failed for 0x%" PRIx64, addr); else if (response.IsUnsupportedResponse()) error.SetErrorStringWithFormat( "GDB server does not support writing memory"); else error.SetErrorStringWithFormat( "unexpected response to GDB server memory write packet '%s': '%s'", packet.GetData(), response.GetStringRef().c_str()); } else { error.SetErrorStringWithFormat("failed to send packet: '%s'", packet.GetData()); } return 0; } lldb::addr_t ProcessGDBRemote::DoAllocateMemory(size_t size, uint32_t permissions, Status &error) { Log *log( GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_EXPRESSIONS)); addr_t allocated_addr = LLDB_INVALID_ADDRESS; if (m_gdb_comm.SupportsAllocDeallocMemory() != eLazyBoolNo) { allocated_addr = m_gdb_comm.AllocateMemory(size, permissions); if (allocated_addr != LLDB_INVALID_ADDRESS || m_gdb_comm.SupportsAllocDeallocMemory() == eLazyBoolYes) return allocated_addr; } if (m_gdb_comm.SupportsAllocDeallocMemory() == eLazyBoolNo) { // Call mmap() to create memory in the inferior.. unsigned prot = 0; if (permissions & lldb::ePermissionsReadable) prot |= eMmapProtRead; if (permissions & lldb::ePermissionsWritable) prot |= eMmapProtWrite; if (permissions & lldb::ePermissionsExecutable) prot |= eMmapProtExec; if (InferiorCallMmap(this, allocated_addr, 0, size, prot, eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) m_addr_to_mmap_size[allocated_addr] = size; else { allocated_addr = LLDB_INVALID_ADDRESS; if (log) log->Printf("ProcessGDBRemote::%s no direct stub support for memory " "allocation, and InferiorCallMmap also failed - is stub " "missing register context save/restore capability?", __FUNCTION__); } } if (allocated_addr == LLDB_INVALID_ADDRESS) error.SetErrorStringWithFormat( "unable to allocate %" PRIu64 " bytes of memory with permissions %s", (uint64_t)size, GetPermissionsAsCString(permissions)); else error.Clear(); return allocated_addr; } Status ProcessGDBRemote::GetMemoryRegionInfo(addr_t load_addr, MemoryRegionInfo ®ion_info) { Status error(m_gdb_comm.GetMemoryRegionInfo(load_addr, region_info)); return error; } Status ProcessGDBRemote::GetWatchpointSupportInfo(uint32_t &num) { Status error(m_gdb_comm.GetWatchpointSupportInfo(num)); return error; } Status ProcessGDBRemote::GetWatchpointSupportInfo(uint32_t &num, bool &after) { Status error(m_gdb_comm.GetWatchpointSupportInfo( num, after, GetTarget().GetArchitecture())); return error; } Status ProcessGDBRemote::DoDeallocateMemory(lldb::addr_t addr) { Status error; LazyBool supported = m_gdb_comm.SupportsAllocDeallocMemory(); switch (supported) { case eLazyBoolCalculate: // We should never be deallocating memory without allocating memory // first so we should never get eLazyBoolCalculate error.SetErrorString( "tried to deallocate memory without ever allocating memory"); break; case eLazyBoolYes: if (!m_gdb_comm.DeallocateMemory(addr)) error.SetErrorStringWithFormat( "unable to deallocate memory at 0x%" PRIx64, addr); break; case eLazyBoolNo: // Call munmap() to deallocate memory in the inferior.. { MMapMap::iterator pos = m_addr_to_mmap_size.find(addr); if (pos != m_addr_to_mmap_size.end() && InferiorCallMunmap(this, addr, pos->second)) m_addr_to_mmap_size.erase(pos); else error.SetErrorStringWithFormat( "unable to deallocate memory at 0x%" PRIx64, addr); } break; } return error; } //------------------------------------------------------------------ // Process STDIO //------------------------------------------------------------------ size_t ProcessGDBRemote::PutSTDIN(const char *src, size_t src_len, Status &error) { if (m_stdio_communication.IsConnected()) { ConnectionStatus status; m_stdio_communication.Write(src, src_len, status, NULL); } else if (m_stdin_forward) { m_gdb_comm.SendStdinNotification(src, src_len); } return 0; } Status ProcessGDBRemote::EnableBreakpointSite(BreakpointSite *bp_site) { Status error; assert(bp_site != NULL); // Get logging info Log *log(ProcessGDBRemoteLog::GetLogIfAllCategoriesSet(GDBR_LOG_BREAKPOINTS)); user_id_t site_id = bp_site->GetID(); // Get the breakpoint address const addr_t addr = bp_site->GetLoadAddress(); // Log that a breakpoint was requested if (log) log->Printf("ProcessGDBRemote::EnableBreakpointSite (size_id = %" PRIu64 ") address = 0x%" PRIx64, site_id, (uint64_t)addr); // Breakpoint already exists and is enabled if (bp_site->IsEnabled()) { if (log) log->Printf("ProcessGDBRemote::EnableBreakpointSite (size_id = %" PRIu64 ") address = 0x%" PRIx64 " -- SUCCESS (already enabled)", site_id, (uint64_t)addr); return error; } // Get the software breakpoint trap opcode size const size_t bp_op_size = GetSoftwareBreakpointTrapOpcode(bp_site); // SupportsGDBStoppointPacket() simply checks a boolean, indicating if this // breakpoint type // is supported by the remote stub. These are set to true by default, and // later set to false // only after we receive an unimplemented response when sending a breakpoint // packet. This means // initially that unless we were specifically instructed to use a hardware // breakpoint, LLDB will // attempt to set a software breakpoint. HardwareRequired() also queries a // boolean variable which // indicates if the user specifically asked for hardware breakpoints. If true // then we will // skip over software breakpoints. if (m_gdb_comm.SupportsGDBStoppointPacket(eBreakpointSoftware) && (!bp_site->HardwareRequired())) { // Try to send off a software breakpoint packet ($Z0) uint8_t error_no = m_gdb_comm.SendGDBStoppointTypePacket( eBreakpointSoftware, true, addr, bp_op_size); if (error_no == 0) { // The breakpoint was placed successfully bp_site->SetEnabled(true); bp_site->SetType(BreakpointSite::eExternal); return error; } // SendGDBStoppointTypePacket() will return an error if it was unable to set // this // breakpoint. We need to differentiate between a error specific to placing // this breakpoint // or if we have learned that this breakpoint type is unsupported. To do // this, we // must test the support boolean for this breakpoint type to see if it now // indicates that // this breakpoint type is unsupported. If they are still supported then we // should return // with the error code. If they are now unsupported, then we would like to // fall through // and try another form of breakpoint. if (m_gdb_comm.SupportsGDBStoppointPacket(eBreakpointSoftware)) { if (error_no != UINT8_MAX) error.SetErrorStringWithFormat( "error: %d sending the breakpoint request", errno); else error.SetErrorString("error sending the breakpoint request"); return error; } // We reach here when software breakpoints have been found to be // unsupported. For future // calls to set a breakpoint, we will not attempt to set a breakpoint with a // type that is // known not to be supported. if (log) log->Printf("Software breakpoints are unsupported"); // So we will fall through and try a hardware breakpoint } // The process of setting a hardware breakpoint is much the same as above. We // check the // supported boolean for this breakpoint type, and if it is thought to be // supported then we // will try to set this breakpoint with a hardware breakpoint. if (m_gdb_comm.SupportsGDBStoppointPacket(eBreakpointHardware)) { // Try to send off a hardware breakpoint packet ($Z1) uint8_t error_no = m_gdb_comm.SendGDBStoppointTypePacket( eBreakpointHardware, true, addr, bp_op_size); if (error_no == 0) { // The breakpoint was placed successfully bp_site->SetEnabled(true); bp_site->SetType(BreakpointSite::eHardware); return error; } // Check if the error was something other then an unsupported breakpoint // type if (m_gdb_comm.SupportsGDBStoppointPacket(eBreakpointHardware)) { // Unable to set this hardware breakpoint if (error_no != UINT8_MAX) error.SetErrorStringWithFormat( "error: %d sending the hardware breakpoint request " "(hardware breakpoint resources might be exhausted or unavailable)", error_no); else error.SetErrorString("error sending the hardware breakpoint request " "(hardware breakpoint resources " "might be exhausted or unavailable)"); return error; } // We will reach here when the stub gives an unsupported response to a // hardware breakpoint if (log) log->Printf("Hardware breakpoints are unsupported"); // Finally we will falling through to a #trap style breakpoint } // Don't fall through when hardware breakpoints were specifically requested if (bp_site->HardwareRequired()) { error.SetErrorString("hardware breakpoints are not supported"); return error; } // As a last resort we want to place a manual breakpoint. An instruction // is placed into the process memory using memory write packets. return EnableSoftwareBreakpoint(bp_site); } Status ProcessGDBRemote::DisableBreakpointSite(BreakpointSite *bp_site) { Status error; assert(bp_site != NULL); addr_t addr = bp_site->GetLoadAddress(); user_id_t site_id = bp_site->GetID(); Log *log(ProcessGDBRemoteLog::GetLogIfAllCategoriesSet(GDBR_LOG_BREAKPOINTS)); if (log) log->Printf("ProcessGDBRemote::DisableBreakpointSite (site_id = %" PRIu64 ") addr = 0x%8.8" PRIx64, site_id, (uint64_t)addr); if (bp_site->IsEnabled()) { const size_t bp_op_size = GetSoftwareBreakpointTrapOpcode(bp_site); BreakpointSite::Type bp_type = bp_site->GetType(); switch (bp_type) { case BreakpointSite::eSoftware: error = DisableSoftwareBreakpoint(bp_site); break; case BreakpointSite::eHardware: if (m_gdb_comm.SendGDBStoppointTypePacket(eBreakpointHardware, false, addr, bp_op_size)) error.SetErrorToGenericError(); break; case BreakpointSite::eExternal: { GDBStoppointType stoppoint_type; if (bp_site->IsHardware()) stoppoint_type = eBreakpointHardware; else stoppoint_type = eBreakpointSoftware; if (m_gdb_comm.SendGDBStoppointTypePacket(stoppoint_type, false, addr, bp_op_size)) error.SetErrorToGenericError(); } break; } if (error.Success()) bp_site->SetEnabled(false); } else { if (log) log->Printf("ProcessGDBRemote::DisableBreakpointSite (site_id = %" PRIu64 ") addr = 0x%8.8" PRIx64 " -- SUCCESS (already disabled)", site_id, (uint64_t)addr); return error; } if (error.Success()) error.SetErrorToGenericError(); return error; } // Pre-requisite: wp != NULL. static GDBStoppointType GetGDBStoppointType(Watchpoint *wp) { assert(wp); bool watch_read = wp->WatchpointRead(); bool watch_write = wp->WatchpointWrite(); // watch_read and watch_write cannot both be false. assert(watch_read || watch_write); if (watch_read && watch_write) return eWatchpointReadWrite; else if (watch_read) return eWatchpointRead; else // Must be watch_write, then. return eWatchpointWrite; } Status ProcessGDBRemote::EnableWatchpoint(Watchpoint *wp, bool notify) { Status error; if (wp) { user_id_t watchID = wp->GetID(); addr_t addr = wp->GetLoadAddress(); Log *log( ProcessGDBRemoteLog::GetLogIfAllCategoriesSet(GDBR_LOG_WATCHPOINTS)); if (log) log->Printf("ProcessGDBRemote::EnableWatchpoint(watchID = %" PRIu64 ")", watchID); if (wp->IsEnabled()) { if (log) log->Printf("ProcessGDBRemote::EnableWatchpoint(watchID = %" PRIu64 ") addr = 0x%8.8" PRIx64 ": watchpoint already enabled.", watchID, (uint64_t)addr); return error; } GDBStoppointType type = GetGDBStoppointType(wp); // Pass down an appropriate z/Z packet... if (m_gdb_comm.SupportsGDBStoppointPacket(type)) { if (m_gdb_comm.SendGDBStoppointTypePacket(type, true, addr, wp->GetByteSize()) == 0) { wp->SetEnabled(true, notify); return error; } else error.SetErrorString("sending gdb watchpoint packet failed"); } else error.SetErrorString("watchpoints not supported"); } else { error.SetErrorString("Watchpoint argument was NULL."); } if (error.Success()) error.SetErrorToGenericError(); return error; } Status ProcessGDBRemote::DisableWatchpoint(Watchpoint *wp, bool notify) { Status error; if (wp) { user_id_t watchID = wp->GetID(); Log *log( ProcessGDBRemoteLog::GetLogIfAllCategoriesSet(GDBR_LOG_WATCHPOINTS)); addr_t addr = wp->GetLoadAddress(); if (log) log->Printf("ProcessGDBRemote::DisableWatchpoint (watchID = %" PRIu64 ") addr = 0x%8.8" PRIx64, watchID, (uint64_t)addr); if (!wp->IsEnabled()) { if (log) log->Printf("ProcessGDBRemote::DisableWatchpoint (watchID = %" PRIu64 ") addr = 0x%8.8" PRIx64 " -- SUCCESS (already disabled)", watchID, (uint64_t)addr); // See also 'class WatchpointSentry' within StopInfo.cpp. // This disabling attempt might come from the user-supplied actions, we'll // route it in order for // the watchpoint object to intelligently process this action. wp->SetEnabled(false, notify); return error; } if (wp->IsHardware()) { GDBStoppointType type = GetGDBStoppointType(wp); // Pass down an appropriate z/Z packet... if (m_gdb_comm.SendGDBStoppointTypePacket(type, false, addr, wp->GetByteSize()) == 0) { wp->SetEnabled(false, notify); return error; } else error.SetErrorString("sending gdb watchpoint packet failed"); } // TODO: clear software watchpoints if we implement them } else { error.SetErrorString("Watchpoint argument was NULL."); } if (error.Success()) error.SetErrorToGenericError(); return error; } void ProcessGDBRemote::Clear() { m_thread_list_real.Clear(); m_thread_list.Clear(); } Status ProcessGDBRemote::DoSignal(int signo) { Status error; Log *log(ProcessGDBRemoteLog::GetLogIfAllCategoriesSet(GDBR_LOG_PROCESS)); if (log) log->Printf("ProcessGDBRemote::DoSignal (signal = %d)", signo); if (!m_gdb_comm.SendAsyncSignal(signo)) error.SetErrorStringWithFormat("failed to send signal %i", signo); return error; } Status ProcessGDBRemote::EstablishConnectionIfNeeded(const ProcessInfo &process_info) { // Make sure we aren't already connected? if (m_gdb_comm.IsConnected()) return Status(); PlatformSP platform_sp(GetTarget().GetPlatform()); if (platform_sp && !platform_sp->IsHost()) return Status("Lost debug server connection"); auto error = LaunchAndConnectToDebugserver(process_info); if (error.Fail()) { const char *error_string = error.AsCString(); if (error_string == nullptr) error_string = "unable to launch " DEBUGSERVER_BASENAME; } return error; } #if !defined(_WIN32) #define USE_SOCKETPAIR_FOR_LOCAL_CONNECTION 1 #endif #ifdef USE_SOCKETPAIR_FOR_LOCAL_CONNECTION static bool SetCloexecFlag(int fd) { #if defined(FD_CLOEXEC) int flags = ::fcntl(fd, F_GETFD); if (flags == -1) return false; return (::fcntl(fd, F_SETFD, flags | FD_CLOEXEC) == 0); #else return false; #endif } #endif Status ProcessGDBRemote::LaunchAndConnectToDebugserver( const ProcessInfo &process_info) { using namespace std::placeholders; // For _1, _2, etc. Status error; if (m_debugserver_pid == LLDB_INVALID_PROCESS_ID) { // If we locate debugserver, keep that located version around static FileSpec g_debugserver_file_spec; ProcessLaunchInfo debugserver_launch_info; // Make debugserver run in its own session so signals generated by // special terminal key sequences (^C) don't affect debugserver. debugserver_launch_info.SetLaunchInSeparateProcessGroup(true); const std::weak_ptr this_wp = std::static_pointer_cast(shared_from_this()); debugserver_launch_info.SetMonitorProcessCallback( std::bind(MonitorDebugserverProcess, this_wp, _1, _2, _3, _4), false); debugserver_launch_info.SetUserID(process_info.GetUserID()); int communication_fd = -1; #ifdef USE_SOCKETPAIR_FOR_LOCAL_CONNECTION // Auto close the sockets we might open up unless everything goes OK. This // helps us not leak file descriptors when things go wrong. lldb_utility::CleanUp our_socket(-1, -1, close); lldb_utility::CleanUp gdb_socket(-1, -1, close); // Use a socketpair on non-Windows systems for security and performance // reasons. { int sockets[2]; /* the pair of socket descriptors */ if (socketpair(AF_UNIX, SOCK_STREAM, 0, sockets) == -1) { error.SetErrorToErrno(); return error; } our_socket.set(sockets[0]); gdb_socket.set(sockets[1]); } // Don't let any child processes inherit our communication socket SetCloexecFlag(our_socket.get()); communication_fd = gdb_socket.get(); #endif error = m_gdb_comm.StartDebugserverProcess( nullptr, GetTarget().GetPlatform().get(), debugserver_launch_info, nullptr, nullptr, communication_fd); if (error.Success()) m_debugserver_pid = debugserver_launch_info.GetProcessID(); else m_debugserver_pid = LLDB_INVALID_PROCESS_ID; if (m_debugserver_pid != LLDB_INVALID_PROCESS_ID) { #ifdef USE_SOCKETPAIR_FOR_LOCAL_CONNECTION // Our process spawned correctly, we can now set our connection to use our // end of the socket pair m_gdb_comm.SetConnection( new ConnectionFileDescriptor(our_socket.release(), true)); #endif StartAsyncThread(); } if (error.Fail()) { Log *log(ProcessGDBRemoteLog::GetLogIfAllCategoriesSet(GDBR_LOG_PROCESS)); if (log) log->Printf("failed to start debugserver process: %s", error.AsCString()); return error; } if (m_gdb_comm.IsConnected()) { // Finish the connection process by doing the handshake without connecting // (send NULL URL) ConnectToDebugserver(""); } else { error.SetErrorString("connection failed"); } } return error; } bool ProcessGDBRemote::MonitorDebugserverProcess( std::weak_ptr process_wp, lldb::pid_t debugserver_pid, bool exited, // True if the process did exit int signo, // Zero for no signal int exit_status // Exit value of process if signal is zero ) { // "debugserver_pid" argument passed in is the process ID for // debugserver that we are tracking... Log *log(ProcessGDBRemoteLog::GetLogIfAllCategoriesSet(GDBR_LOG_PROCESS)); const bool handled = true; if (log) log->Printf("ProcessGDBRemote::%s(process_wp, pid=%" PRIu64 ", signo=%i (0x%x), exit_status=%i)", __FUNCTION__, debugserver_pid, signo, signo, exit_status); std::shared_ptr process_sp = process_wp.lock(); if (log) log->Printf("ProcessGDBRemote::%s(process = %p)", __FUNCTION__, static_cast(process_sp.get())); if (!process_sp || process_sp->m_debugserver_pid != debugserver_pid) return handled; // Sleep for a half a second to make sure our inferior process has // time to set its exit status before we set it incorrectly when // both the debugserver and the inferior process shut down. usleep(500000); // If our process hasn't yet exited, debugserver might have died. // If the process did exit, then we are reaping it. const StateType state = process_sp->GetState(); if (state != eStateInvalid && state != eStateUnloaded && state != eStateExited && state != eStateDetached) { char error_str[1024]; if (signo) { const char *signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); if (signal_cstr) ::snprintf(error_str, sizeof(error_str), DEBUGSERVER_BASENAME " died with signal %s", signal_cstr); else ::snprintf(error_str, sizeof(error_str), DEBUGSERVER_BASENAME " died with signal %i", signo); } else { ::snprintf(error_str, sizeof(error_str), DEBUGSERVER_BASENAME " died with an exit status of 0x%8.8x", exit_status); } process_sp->SetExitStatus(-1, error_str); } // Debugserver has exited we need to let our ProcessGDBRemote // know that it no longer has a debugserver instance process_sp->m_debugserver_pid = LLDB_INVALID_PROCESS_ID; return handled; } void ProcessGDBRemote::KillDebugserverProcess() { m_gdb_comm.Disconnect(); if (m_debugserver_pid != LLDB_INVALID_PROCESS_ID) { Host::Kill(m_debugserver_pid, SIGINT); m_debugserver_pid = LLDB_INVALID_PROCESS_ID; } } void ProcessGDBRemote::Initialize() { static llvm::once_flag g_once_flag; llvm::call_once(g_once_flag, []() { PluginManager::RegisterPlugin(GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance, DebuggerInitialize); }); } void ProcessGDBRemote::DebuggerInitialize(Debugger &debugger) { if (!PluginManager::GetSettingForProcessPlugin( debugger, PluginProperties::GetSettingName())) { const bool is_global_setting = true; PluginManager::CreateSettingForProcessPlugin( debugger, GetGlobalPluginProperties()->GetValueProperties(), ConstString("Properties for the gdb-remote process plug-in."), is_global_setting); } } bool ProcessGDBRemote::StartAsyncThread() { Log *log(ProcessGDBRemoteLog::GetLogIfAllCategoriesSet(GDBR_LOG_PROCESS)); if (log) log->Printf("ProcessGDBRemote::%s ()", __FUNCTION__); std::lock_guard guard(m_async_thread_state_mutex); if (!m_async_thread.IsJoinable()) { // Create a thread that watches our internal state and controls which // events make it to clients (into the DCProcess event queue). m_async_thread = ThreadLauncher::LaunchThread("", ProcessGDBRemote::AsyncThread, this, NULL); } else if (log) log->Printf("ProcessGDBRemote::%s () - Called when Async thread was " "already running.", __FUNCTION__); return m_async_thread.IsJoinable(); } void ProcessGDBRemote::StopAsyncThread() { Log *log(ProcessGDBRemoteLog::GetLogIfAllCategoriesSet(GDBR_LOG_PROCESS)); if (log) log->Printf("ProcessGDBRemote::%s ()", __FUNCTION__); std::lock_guard guard(m_async_thread_state_mutex); if (m_async_thread.IsJoinable()) { m_async_broadcaster.BroadcastEvent(eBroadcastBitAsyncThreadShouldExit); // This will shut down the async thread. m_gdb_comm.Disconnect(); // Disconnect from the debug server. // Stop the stdio thread m_async_thread.Join(nullptr); m_async_thread.Reset(); } else if (log) log->Printf( "ProcessGDBRemote::%s () - Called when Async thread was not running.", __FUNCTION__); } bool ProcessGDBRemote::HandleNotifyPacket(StringExtractorGDBRemote &packet) { // get the packet at a string const std::string &pkt = packet.GetStringRef(); // skip %stop: StringExtractorGDBRemote stop_info(pkt.c_str() + 5); // pass as a thread stop info packet SetLastStopPacket(stop_info); // check for more stop reasons HandleStopReplySequence(); // if the process is stopped then we need to fake a resume // so that we can stop properly with the new break. This // is possible due to SetPrivateState() broadcasting the // state change as a side effect. if (GetPrivateState() == lldb::StateType::eStateStopped) { SetPrivateState(lldb::StateType::eStateRunning); } // since we have some stopped packets we can halt the process SetPrivateState(lldb::StateType::eStateStopped); return true; } thread_result_t ProcessGDBRemote::AsyncThread(void *arg) { ProcessGDBRemote *process = (ProcessGDBRemote *)arg; Log *log(ProcessGDBRemoteLog::GetLogIfAllCategoriesSet(GDBR_LOG_PROCESS)); if (log) log->Printf("ProcessGDBRemote::%s (arg = %p, pid = %" PRIu64 ") thread starting...", __FUNCTION__, arg, process->GetID()); EventSP event_sp; bool done = false; while (!done) { if (log) log->Printf("ProcessGDBRemote::%s (arg = %p, pid = %" PRIu64 ") listener.WaitForEvent (NULL, event_sp)...", __FUNCTION__, arg, process->GetID()); if (process->m_async_listener_sp->GetEvent(event_sp, llvm::None)) { const uint32_t event_type = event_sp->GetType(); if (event_sp->BroadcasterIs(&process->m_async_broadcaster)) { if (log) log->Printf("ProcessGDBRemote::%s (arg = %p, pid = %" PRIu64 ") Got an event of type: %d...", __FUNCTION__, arg, process->GetID(), event_type); switch (event_type) { case eBroadcastBitAsyncContinue: { const EventDataBytes *continue_packet = EventDataBytes::GetEventDataFromEvent(event_sp.get()); if (continue_packet) { const char *continue_cstr = (const char *)continue_packet->GetBytes(); const size_t continue_cstr_len = continue_packet->GetByteSize(); if (log) log->Printf("ProcessGDBRemote::%s (arg = %p, pid = %" PRIu64 ") got eBroadcastBitAsyncContinue: %s", __FUNCTION__, arg, process->GetID(), continue_cstr); if (::strstr(continue_cstr, "vAttach") == NULL) process->SetPrivateState(eStateRunning); StringExtractorGDBRemote response; // If in Non-Stop-Mode if (process->GetTarget().GetNonStopModeEnabled()) { // send the vCont packet if (!process->GetGDBRemote().SendvContPacket( llvm::StringRef(continue_cstr, continue_cstr_len), response)) { // Something went wrong done = true; break; } } // If in All-Stop-Mode else { StateType stop_state = process->GetGDBRemote().SendContinuePacketAndWaitForResponse( *process, *process->GetUnixSignals(), llvm::StringRef(continue_cstr, continue_cstr_len), response); // We need to immediately clear the thread ID list so we are sure // to get a valid list of threads. // The thread ID list might be contained within the "response", or // the stop reply packet that // caused the stop. So clear it now before we give the stop reply // packet to the process // using the process->SetLastStopPacket()... process->ClearThreadIDList(); switch (stop_state) { case eStateStopped: case eStateCrashed: case eStateSuspended: process->SetLastStopPacket(response); process->SetPrivateState(stop_state); break; case eStateExited: { process->SetLastStopPacket(response); process->ClearThreadIDList(); response.SetFilePos(1); int exit_status = response.GetHexU8(); std::string desc_string; if (response.GetBytesLeft() > 0 && response.GetChar('-') == ';') { llvm::StringRef desc_str; llvm::StringRef desc_token; while (response.GetNameColonValue(desc_token, desc_str)) { if (desc_token != "description") continue; StringExtractor extractor(desc_str); extractor.GetHexByteString(desc_string); } } process->SetExitStatus(exit_status, desc_string.c_str()); done = true; break; } case eStateInvalid: { // Check to see if we were trying to attach and if we got back // the "E87" error code from debugserver -- this indicates that // the process is not debuggable. Return a slightly more // helpful // error message about why the attach failed. if (::strstr(continue_cstr, "vAttach") != NULL && response.GetError() == 0x87) { process->SetExitStatus(-1, "cannot attach to process due to " "System Integrity Protection"); } // E01 code from vAttach means that the attach failed if (::strstr(continue_cstr, "vAttach") != NULL && response.GetError() == 0x1) { process->SetExitStatus(-1, "unable to attach"); } else { process->SetExitStatus(-1, "lost connection"); } break; } default: process->SetPrivateState(stop_state); break; } // switch(stop_state) } // else // if in All-stop-mode } // if (continue_packet) } // case eBroadcastBitAysncContinue break; case eBroadcastBitAsyncThreadShouldExit: if (log) log->Printf("ProcessGDBRemote::%s (arg = %p, pid = %" PRIu64 ") got eBroadcastBitAsyncThreadShouldExit...", __FUNCTION__, arg, process->GetID()); done = true; break; default: if (log) log->Printf("ProcessGDBRemote::%s (arg = %p, pid = %" PRIu64 ") got unknown event 0x%8.8x", __FUNCTION__, arg, process->GetID(), event_type); done = true; break; } } else if (event_sp->BroadcasterIs(&process->m_gdb_comm)) { switch (event_type) { case Communication::eBroadcastBitReadThreadDidExit: process->SetExitStatus(-1, "lost connection"); done = true; break; case GDBRemoteCommunication::eBroadcastBitGdbReadThreadGotNotify: { lldb_private::Event *event = event_sp.get(); const EventDataBytes *continue_packet = EventDataBytes::GetEventDataFromEvent(event); StringExtractorGDBRemote notify( (const char *)continue_packet->GetBytes()); // Hand this over to the process to handle process->HandleNotifyPacket(notify); break; } default: if (log) log->Printf("ProcessGDBRemote::%s (arg = %p, pid = %" PRIu64 ") got unknown event 0x%8.8x", __FUNCTION__, arg, process->GetID(), event_type); done = true; break; } } } else { if (log) log->Printf("ProcessGDBRemote::%s (arg = %p, pid = %" PRIu64 ") listener.WaitForEvent (NULL, event_sp) => false", __FUNCTION__, arg, process->GetID()); done = true; } } if (log) log->Printf("ProcessGDBRemote::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", __FUNCTION__, arg, process->GetID()); return NULL; } // uint32_t // ProcessGDBRemote::ListProcessesMatchingName (const char *name, StringList // &matches, std::vector &pids) //{ // // If we are planning to launch the debugserver remotely, then we need to // fire up a debugserver // // process and ask it for the list of processes. But if we are local, we // can let the Host do it. // if (m_local_debugserver) // { // return Host::ListProcessesMatchingName (name, matches, pids); // } // else // { // // FIXME: Implement talking to the remote debugserver. // return 0; // } // //} // bool ProcessGDBRemote::NewThreadNotifyBreakpointHit( void *baton, StoppointCallbackContext *context, lldb::user_id_t break_id, lldb::user_id_t break_loc_id) { // I don't think I have to do anything here, just make sure I notice the new // thread when it starts to // run so I can stop it if that's what I want to do. Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_STEP)); if (log) log->Printf("Hit New Thread Notification breakpoint."); return false; } Status ProcessGDBRemote::UpdateAutomaticSignalFiltering() { Log *log(ProcessGDBRemoteLog::GetLogIfAllCategoriesSet(GDBR_LOG_PROCESS)); LLDB_LOG(log, "Check if need to update ignored signals"); // QPassSignals package is not supported by the server, // there is no way we can ignore any signals on server side. if (!m_gdb_comm.GetQPassSignalsSupported()) return Status(); // No signals, nothing to send. if (m_unix_signals_sp == nullptr) return Status(); // Signals' version hasn't changed, no need to send anything. uint64_t new_signals_version = m_unix_signals_sp->GetVersion(); if (new_signals_version == m_last_signals_version) { LLDB_LOG(log, "Signals' version hasn't changed. version={0}", m_last_signals_version); return Status(); } auto signals_to_ignore = m_unix_signals_sp->GetFilteredSignals(false, false, false); Status error = m_gdb_comm.SendSignalsToIgnore(signals_to_ignore); LLDB_LOG(log, "Signals' version changed. old version={0}, new version={1}, " "signals ignored={2}, update result={3}", m_last_signals_version, new_signals_version, signals_to_ignore.size(), error); if (error.Success()) m_last_signals_version = new_signals_version; return error; } bool ProcessGDBRemote::StartNoticingNewThreads() { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_STEP)); if (m_thread_create_bp_sp) { if (log && log->GetVerbose()) log->Printf("Enabled noticing new thread breakpoint."); m_thread_create_bp_sp->SetEnabled(true); } else { PlatformSP platform_sp(GetTarget().GetPlatform()); if (platform_sp) { m_thread_create_bp_sp = platform_sp->SetThreadCreationBreakpoint(GetTarget()); if (m_thread_create_bp_sp) { if (log && log->GetVerbose()) log->Printf( "Successfully created new thread notification breakpoint %i", m_thread_create_bp_sp->GetID()); m_thread_create_bp_sp->SetCallback( ProcessGDBRemote::NewThreadNotifyBreakpointHit, this, true); } else { if (log) log->Printf("Failed to create new thread notification breakpoint."); } } } return m_thread_create_bp_sp.get() != NULL; } bool ProcessGDBRemote::StopNoticingNewThreads() { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_STEP)); if (log && log->GetVerbose()) log->Printf("Disabling new thread notification breakpoint."); if (m_thread_create_bp_sp) m_thread_create_bp_sp->SetEnabled(false); return true; } DynamicLoader *ProcessGDBRemote::GetDynamicLoader() { if (m_dyld_ap.get() == NULL) m_dyld_ap.reset(DynamicLoader::FindPlugin(this, NULL)); return m_dyld_ap.get(); } Status ProcessGDBRemote::SendEventData(const char *data) { int return_value; bool was_supported; Status error; return_value = m_gdb_comm.SendLaunchEventDataPacket(data, &was_supported); if (return_value != 0) { if (!was_supported) error.SetErrorString("Sending events is not supported for this process."); else error.SetErrorStringWithFormat("Error sending event data: %d.", return_value); } return error; } const DataBufferSP ProcessGDBRemote::GetAuxvData() { DataBufferSP buf; if (m_gdb_comm.GetQXferAuxvReadSupported()) { std::string response_string; if (m_gdb_comm.SendPacketsAndConcatenateResponses("qXfer:auxv:read::", response_string) == GDBRemoteCommunication::PacketResult::Success) buf.reset(new DataBufferHeap(response_string.c_str(), response_string.length())); } return buf; } StructuredData::ObjectSP ProcessGDBRemote::GetExtendedInfoForThread(lldb::tid_t tid) { StructuredData::ObjectSP object_sp; if (m_gdb_comm.GetThreadExtendedInfoSupported()) { StructuredData::ObjectSP args_dict(new StructuredData::Dictionary()); SystemRuntime *runtime = GetSystemRuntime(); if (runtime) { runtime->AddThreadExtendedInfoPacketHints(args_dict); } args_dict->GetAsDictionary()->AddIntegerItem("thread", tid); StreamString packet; packet << "jThreadExtendedInfo:"; args_dict->Dump(packet, false); // FIXME the final character of a JSON dictionary, '}', is the escape // character in gdb-remote binary mode. lldb currently doesn't escape // these characters in its packet output -- so we add the quoted version // of the } character here manually in case we talk to a debugserver which // un-escapes the characters at packet read time. packet << (char)(0x7d ^ 0x20); StringExtractorGDBRemote response; response.SetResponseValidatorToJSON(); if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response, false) == GDBRemoteCommunication::PacketResult::Success) { StringExtractorGDBRemote::ResponseType response_type = response.GetResponseType(); if (response_type == StringExtractorGDBRemote::eResponse) { if (!response.Empty()) { object_sp = StructuredData::ParseJSON(response.GetStringRef()); } } } } return object_sp; } StructuredData::ObjectSP ProcessGDBRemote::GetLoadedDynamicLibrariesInfos( lldb::addr_t image_list_address, lldb::addr_t image_count) { StructuredData::ObjectSP args_dict(new StructuredData::Dictionary()); args_dict->GetAsDictionary()->AddIntegerItem("image_list_address", image_list_address); args_dict->GetAsDictionary()->AddIntegerItem("image_count", image_count); return GetLoadedDynamicLibrariesInfos_sender(args_dict); } StructuredData::ObjectSP ProcessGDBRemote::GetLoadedDynamicLibrariesInfos() { StructuredData::ObjectSP args_dict(new StructuredData::Dictionary()); args_dict->GetAsDictionary()->AddBooleanItem("fetch_all_solibs", true); return GetLoadedDynamicLibrariesInfos_sender(args_dict); } StructuredData::ObjectSP ProcessGDBRemote::GetLoadedDynamicLibrariesInfos( const std::vector &load_addresses) { StructuredData::ObjectSP args_dict(new StructuredData::Dictionary()); StructuredData::ArraySP addresses(new StructuredData::Array); for (auto addr : load_addresses) { StructuredData::ObjectSP addr_sp(new StructuredData::Integer(addr)); addresses->AddItem(addr_sp); } args_dict->GetAsDictionary()->AddItem("solib_addresses", addresses); return GetLoadedDynamicLibrariesInfos_sender(args_dict); } StructuredData::ObjectSP ProcessGDBRemote::GetLoadedDynamicLibrariesInfos_sender( StructuredData::ObjectSP args_dict) { StructuredData::ObjectSP object_sp; if (m_gdb_comm.GetLoadedDynamicLibrariesInfosSupported()) { // Scope for the scoped timeout object GDBRemoteCommunication::ScopedTimeout timeout(m_gdb_comm, std::chrono::seconds(10)); StreamString packet; packet << "jGetLoadedDynamicLibrariesInfos:"; args_dict->Dump(packet, false); // FIXME the final character of a JSON dictionary, '}', is the escape // character in gdb-remote binary mode. lldb currently doesn't escape // these characters in its packet output -- so we add the quoted version // of the } character here manually in case we talk to a debugserver which // un-escapes the characters at packet read time. packet << (char)(0x7d ^ 0x20); StringExtractorGDBRemote response; response.SetResponseValidatorToJSON(); if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response, false) == GDBRemoteCommunication::PacketResult::Success) { StringExtractorGDBRemote::ResponseType response_type = response.GetResponseType(); if (response_type == StringExtractorGDBRemote::eResponse) { if (!response.Empty()) { object_sp = StructuredData::ParseJSON(response.GetStringRef()); } } } } return object_sp; } StructuredData::ObjectSP ProcessGDBRemote::GetSharedCacheInfo() { StructuredData::ObjectSP object_sp; StructuredData::ObjectSP args_dict(new StructuredData::Dictionary()); if (m_gdb_comm.GetSharedCacheInfoSupported()) { StreamString packet; packet << "jGetSharedCacheInfo:"; args_dict->Dump(packet, false); // FIXME the final character of a JSON dictionary, '}', is the escape // character in gdb-remote binary mode. lldb currently doesn't escape // these characters in its packet output -- so we add the quoted version // of the } character here manually in case we talk to a debugserver which // un-escapes the characters at packet read time. packet << (char)(0x7d ^ 0x20); StringExtractorGDBRemote response; response.SetResponseValidatorToJSON(); if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response, false) == GDBRemoteCommunication::PacketResult::Success) { StringExtractorGDBRemote::ResponseType response_type = response.GetResponseType(); if (response_type == StringExtractorGDBRemote::eResponse) { if (!response.Empty()) { object_sp = StructuredData::ParseJSON(response.GetStringRef()); } } } } return object_sp; } Status ProcessGDBRemote::ConfigureStructuredData( const ConstString &type_name, const StructuredData::ObjectSP &config_sp) { return m_gdb_comm.ConfigureRemoteStructuredData(type_name, config_sp); } // Establish the largest memory read/write payloads we should use. // If the remote stub has a max packet size, stay under that size. // // If the remote stub's max packet size is crazy large, use a // reasonable largeish default. // // If the remote stub doesn't advertise a max packet size, use a // conservative default. void ProcessGDBRemote::GetMaxMemorySize() { const uint64_t reasonable_largeish_default = 128 * 1024; const uint64_t conservative_default = 512; if (m_max_memory_size == 0) { uint64_t stub_max_size = m_gdb_comm.GetRemoteMaxPacketSize(); if (stub_max_size != UINT64_MAX && stub_max_size != 0) { // Save the stub's claimed maximum packet size m_remote_stub_max_memory_size = stub_max_size; // Even if the stub says it can support ginormous packets, // don't exceed our reasonable largeish default packet size. if (stub_max_size > reasonable_largeish_default) { stub_max_size = reasonable_largeish_default; } // Memory packet have other overheads too like Maddr,size:#NN // Instead of calculating the bytes taken by size and addr every // time, we take a maximum guess here. if (stub_max_size > 70) stub_max_size -= 32 + 32 + 6; else { // In unlikely scenario that max packet size is less then 70, we will // hope that data being written is small enough to fit. Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet( GDBR_LOG_COMM | GDBR_LOG_MEMORY)); if (log) log->Warning("Packet size is too small. " "LLDB may face problems while writing memory"); } m_max_memory_size = stub_max_size; } else { m_max_memory_size = conservative_default; } } } void ProcessGDBRemote::SetUserSpecifiedMaxMemoryTransferSize( uint64_t user_specified_max) { if (user_specified_max != 0) { GetMaxMemorySize(); if (m_remote_stub_max_memory_size != 0) { if (m_remote_stub_max_memory_size < user_specified_max) { m_max_memory_size = m_remote_stub_max_memory_size; // user specified a // packet size too // big, go as big // as the remote stub says we can go. } else { m_max_memory_size = user_specified_max; // user's packet size is good } } else { m_max_memory_size = user_specified_max; // user's packet size is probably fine } } } bool ProcessGDBRemote::GetModuleSpec(const FileSpec &module_file_spec, const ArchSpec &arch, ModuleSpec &module_spec) { Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PLATFORM); const ModuleCacheKey key(module_file_spec.GetPath(), arch.GetTriple().getTriple()); auto cached = m_cached_module_specs.find(key); if (cached != m_cached_module_specs.end()) { module_spec = cached->second; return bool(module_spec); } if (!m_gdb_comm.GetModuleInfo(module_file_spec, arch, module_spec)) { if (log) log->Printf("ProcessGDBRemote::%s - failed to get module info for %s:%s", __FUNCTION__, module_file_spec.GetPath().c_str(), arch.GetTriple().getTriple().c_str()); return false; } if (log) { StreamString stream; module_spec.Dump(stream); log->Printf("ProcessGDBRemote::%s - got module info for (%s:%s) : %s", __FUNCTION__, module_file_spec.GetPath().c_str(), arch.GetTriple().getTriple().c_str(), stream.GetData()); } m_cached_module_specs[key] = module_spec; return true; } void ProcessGDBRemote::PrefetchModuleSpecs( llvm::ArrayRef module_file_specs, const llvm::Triple &triple) { auto module_specs = m_gdb_comm.GetModulesInfo(module_file_specs, triple); if (module_specs) { for (const FileSpec &spec : module_file_specs) m_cached_module_specs[ModuleCacheKey(spec.GetPath(), triple.getTriple())] = ModuleSpec(); for (const ModuleSpec &spec : *module_specs) m_cached_module_specs[ModuleCacheKey(spec.GetFileSpec().GetPath(), triple.getTriple())] = spec; } } bool ProcessGDBRemote::GetHostOSVersion(uint32_t &major, uint32_t &minor, uint32_t &update) { if (m_gdb_comm.GetOSVersion(major, minor, update)) return true; // We failed to get the host OS version, defer to the base // implementation to correctly invalidate the arguments. return Process::GetHostOSVersion(major, minor, update); } namespace { typedef std::vector stringVec; typedef std::vector GDBServerRegisterVec; struct RegisterSetInfo { ConstString name; }; typedef std::map RegisterSetMap; struct GdbServerTargetInfo { std::string arch; std::string osabi; stringVec includes; RegisterSetMap reg_set_map; }; bool ParseRegisters(XMLNode feature_node, GdbServerTargetInfo &target_info, GDBRemoteDynamicRegisterInfo &dyn_reg_info, ABISP abi_sp, uint32_t &cur_reg_num, uint32_t ®_offset) { if (!feature_node) return false; feature_node.ForEachChildElementWithName( "reg", [&target_info, &dyn_reg_info, &cur_reg_num, ®_offset, &abi_sp](const XMLNode ®_node) -> bool { std::string gdb_group; std::string gdb_type; ConstString reg_name; ConstString alt_name; ConstString set_name; std::vector value_regs; std::vector invalidate_regs; std::vector dwarf_opcode_bytes; bool encoding_set = false; bool format_set = false; RegisterInfo reg_info = { NULL, // Name NULL, // Alt name 0, // byte size reg_offset, // offset eEncodingUint, // encoding eFormatHex, // format { LLDB_INVALID_REGNUM, // eh_frame reg num LLDB_INVALID_REGNUM, // DWARF reg num LLDB_INVALID_REGNUM, // generic reg num cur_reg_num, // process plugin reg num cur_reg_num // native register number }, NULL, NULL, NULL, // Dwarf Expression opcode bytes pointer 0 // Dwarf Expression opcode bytes length }; reg_node.ForEachAttribute([&target_info, &gdb_group, &gdb_type, ®_name, &alt_name, &set_name, &value_regs, &invalidate_regs, &encoding_set, &format_set, ®_info, ®_offset, &dwarf_opcode_bytes]( const llvm::StringRef &name, const llvm::StringRef &value) -> bool { if (name == "name") { reg_name.SetString(value); } else if (name == "bitsize") { reg_info.byte_size = StringConvert::ToUInt32(value.data(), 0, 0) / CHAR_BIT; } else if (name == "type") { gdb_type = value.str(); } else if (name == "group") { gdb_group = value.str(); } else if (name == "regnum") { const uint32_t regnum = StringConvert::ToUInt32(value.data(), LLDB_INVALID_REGNUM, 0); if (regnum != LLDB_INVALID_REGNUM) { reg_info.kinds[eRegisterKindProcessPlugin] = regnum; } } else if (name == "offset") { reg_offset = StringConvert::ToUInt32(value.data(), UINT32_MAX, 0); } else if (name == "altname") { alt_name.SetString(value); } else if (name == "encoding") { encoding_set = true; reg_info.encoding = Args::StringToEncoding(value, eEncodingUint); } else if (name == "format") { format_set = true; Format format = eFormatInvalid; if (Args::StringToFormat(value.data(), format, NULL).Success()) reg_info.format = format; else if (value == "vector-sint8") reg_info.format = eFormatVectorOfSInt8; else if (value == "vector-uint8") reg_info.format = eFormatVectorOfUInt8; else if (value == "vector-sint16") reg_info.format = eFormatVectorOfSInt16; else if (value == "vector-uint16") reg_info.format = eFormatVectorOfUInt16; else if (value == "vector-sint32") reg_info.format = eFormatVectorOfSInt32; else if (value == "vector-uint32") reg_info.format = eFormatVectorOfUInt32; else if (value == "vector-float32") reg_info.format = eFormatVectorOfFloat32; else if (value == "vector-uint64") reg_info.format = eFormatVectorOfUInt64; else if (value == "vector-uint128") reg_info.format = eFormatVectorOfUInt128; } else if (name == "group_id") { const uint32_t set_id = StringConvert::ToUInt32(value.data(), UINT32_MAX, 0); RegisterSetMap::const_iterator pos = target_info.reg_set_map.find(set_id); if (pos != target_info.reg_set_map.end()) set_name = pos->second.name; } else if (name == "gcc_regnum" || name == "ehframe_regnum") { reg_info.kinds[eRegisterKindEHFrame] = StringConvert::ToUInt32(value.data(), LLDB_INVALID_REGNUM, 0); } else if (name == "dwarf_regnum") { reg_info.kinds[eRegisterKindDWARF] = StringConvert::ToUInt32(value.data(), LLDB_INVALID_REGNUM, 0); } else if (name == "generic") { reg_info.kinds[eRegisterKindGeneric] = Args::StringToGenericRegister(value); } else if (name == "value_regnums") { SplitCommaSeparatedRegisterNumberString(value, value_regs, 0); } else if (name == "invalidate_regnums") { SplitCommaSeparatedRegisterNumberString(value, invalidate_regs, 0); } else if (name == "dynamic_size_dwarf_expr_bytes") { StringExtractor opcode_extractor; std::string opcode_string = value.str(); size_t dwarf_opcode_len = opcode_string.length() / 2; assert(dwarf_opcode_len > 0); dwarf_opcode_bytes.resize(dwarf_opcode_len); reg_info.dynamic_size_dwarf_len = dwarf_opcode_len; opcode_extractor.GetStringRef().swap(opcode_string); uint32_t ret_val = opcode_extractor.GetHexBytesAvail(dwarf_opcode_bytes); assert(dwarf_opcode_len == ret_val); UNUSED_IF_ASSERT_DISABLED(ret_val); reg_info.dynamic_size_dwarf_expr_bytes = dwarf_opcode_bytes.data(); } else { printf("unhandled attribute %s = %s\n", name.data(), value.data()); } return true; // Keep iterating through all attributes }); if (!gdb_type.empty() && !(encoding_set || format_set)) { if (gdb_type.find("int") == 0) { reg_info.format = eFormatHex; reg_info.encoding = eEncodingUint; } else if (gdb_type == "data_ptr" || gdb_type == "code_ptr") { reg_info.format = eFormatAddressInfo; reg_info.encoding = eEncodingUint; } else if (gdb_type == "i387_ext" || gdb_type == "float") { reg_info.format = eFormatFloat; reg_info.encoding = eEncodingIEEE754; } } // Only update the register set name if we didn't get a "reg_set" // attribute. // "set_name" will be empty if we didn't have a "reg_set" attribute. if (!set_name && !gdb_group.empty()) set_name.SetCString(gdb_group.c_str()); reg_info.byte_offset = reg_offset; assert(reg_info.byte_size != 0); reg_offset += reg_info.byte_size; if (!value_regs.empty()) { value_regs.push_back(LLDB_INVALID_REGNUM); reg_info.value_regs = value_regs.data(); } if (!invalidate_regs.empty()) { invalidate_regs.push_back(LLDB_INVALID_REGNUM); reg_info.invalidate_regs = invalidate_regs.data(); } ++cur_reg_num; AugmentRegisterInfoViaABI(reg_info, reg_name, abi_sp); dyn_reg_info.AddRegister(reg_info, reg_name, alt_name, set_name); return true; // Keep iterating through all "reg" elements }); return true; } } // namespace {} // query the target of gdb-remote for extended target information // return: 'true' on success // 'false' on failure bool ProcessGDBRemote::GetGDBServerRegisterInfo(ArchSpec &arch_to_use) { // Make sure LLDB has an XML parser it can use first if (!XMLDocument::XMLEnabled()) return false; // redirect libxml2's error handler since the default prints to stdout GDBRemoteCommunicationClient &comm = m_gdb_comm; // check that we have extended feature read support if (!comm.GetQXferFeaturesReadSupported()) return false; // request the target xml file std::string raw; lldb_private::Status lldberr; if (!comm.ReadExtFeature(ConstString("features"), ConstString("target.xml"), raw, lldberr)) { return false; } XMLDocument xml_document; if (xml_document.ParseMemory(raw.c_str(), raw.size(), "target.xml")) { GdbServerTargetInfo target_info; XMLNode target_node = xml_document.GetRootElement("target"); if (target_node) { std::vector feature_nodes; target_node.ForEachChildElement([&target_info, &feature_nodes]( const XMLNode &node) -> bool { llvm::StringRef name = node.GetName(); if (name == "architecture") { node.GetElementText(target_info.arch); } else if (name == "osabi") { node.GetElementText(target_info.osabi); } else if (name == "xi:include" || name == "include") { llvm::StringRef href = node.GetAttributeValue("href"); if (!href.empty()) target_info.includes.push_back(href.str()); } else if (name == "feature") { feature_nodes.push_back(node); } else if (name == "groups") { node.ForEachChildElementWithName( "group", [&target_info](const XMLNode &node) -> bool { uint32_t set_id = UINT32_MAX; RegisterSetInfo set_info; node.ForEachAttribute( [&set_id, &set_info](const llvm::StringRef &name, const llvm::StringRef &value) -> bool { if (name == "id") set_id = StringConvert::ToUInt32(value.data(), UINT32_MAX, 0); if (name == "name") set_info.name = ConstString(value); return true; // Keep iterating through all attributes }); if (set_id != UINT32_MAX) target_info.reg_set_map[set_id] = set_info; return true; // Keep iterating through all "group" elements }); } return true; // Keep iterating through all children of the target_node }); // Initialize these outside of ParseRegisters, since they should not be // reset inside each include feature uint32_t cur_reg_num = 0; uint32_t reg_offset = 0; // Don't use Process::GetABI, this code gets called from DidAttach, and in // that context we haven't // set the Target's architecture yet, so the ABI is also potentially // incorrect. ABISP abi_to_use_sp = ABI::FindPlugin(shared_from_this(), arch_to_use); for (auto &feature_node : feature_nodes) { ParseRegisters(feature_node, target_info, this->m_register_info, abi_to_use_sp, cur_reg_num, reg_offset); } for (const auto &include : target_info.includes) { // request register file std::string xml_data; if (!comm.ReadExtFeature(ConstString("features"), ConstString(include), xml_data, lldberr)) continue; XMLDocument include_xml_document; include_xml_document.ParseMemory(xml_data.data(), xml_data.size(), include.c_str()); XMLNode include_feature_node = include_xml_document.GetRootElement("feature"); if (include_feature_node) { ParseRegisters(include_feature_node, target_info, this->m_register_info, abi_to_use_sp, cur_reg_num, reg_offset); } } this->m_register_info.Finalize(arch_to_use); } } return m_register_info.GetNumRegisters() > 0; } Status ProcessGDBRemote::GetLoadedModuleList(LoadedModuleInfoList &list) { // Make sure LLDB has an XML parser it can use first if (!XMLDocument::XMLEnabled()) return Status(0, ErrorType::eErrorTypeGeneric); Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS); if (log) log->Printf("ProcessGDBRemote::%s", __FUNCTION__); GDBRemoteCommunicationClient &comm = m_gdb_comm; // check that we have extended feature read support if (comm.GetQXferLibrariesSVR4ReadSupported()) { list.clear(); // request the loaded library list std::string raw; lldb_private::Status lldberr; if (!comm.ReadExtFeature(ConstString("libraries-svr4"), ConstString(""), raw, lldberr)) return Status(0, ErrorType::eErrorTypeGeneric); // parse the xml file in memory if (log) log->Printf("parsing: %s", raw.c_str()); XMLDocument doc; if (!doc.ParseMemory(raw.c_str(), raw.size(), "noname.xml")) return Status(0, ErrorType::eErrorTypeGeneric); XMLNode root_element = doc.GetRootElement("library-list-svr4"); if (!root_element) return Status(); // main link map structure llvm::StringRef main_lm = root_element.GetAttributeValue("main-lm"); if (!main_lm.empty()) { list.m_link_map = StringConvert::ToUInt64(main_lm.data(), LLDB_INVALID_ADDRESS, 0); } root_element.ForEachChildElementWithName( "library", [log, &list](const XMLNode &library) -> bool { LoadedModuleInfoList::LoadedModuleInfo module; library.ForEachAttribute( [&module](const llvm::StringRef &name, const llvm::StringRef &value) -> bool { if (name == "name") module.set_name(value.str()); else if (name == "lm") { // the address of the link_map struct. module.set_link_map(StringConvert::ToUInt64( value.data(), LLDB_INVALID_ADDRESS, 0)); } else if (name == "l_addr") { // the displacement as read from the field 'l_addr' of the // link_map struct. module.set_base(StringConvert::ToUInt64( value.data(), LLDB_INVALID_ADDRESS, 0)); // base address is always a displacement, not an absolute // value. module.set_base_is_offset(true); } else if (name == "l_ld") { // the memory address of the libraries PT_DYAMIC section. module.set_dynamic(StringConvert::ToUInt64( value.data(), LLDB_INVALID_ADDRESS, 0)); } return true; // Keep iterating over all properties of "library" }); if (log) { std::string name; lldb::addr_t lm = 0, base = 0, ld = 0; bool base_is_offset; module.get_name(name); module.get_link_map(lm); module.get_base(base); module.get_base_is_offset(base_is_offset); module.get_dynamic(ld); log->Printf("found (link_map:0x%08" PRIx64 ", base:0x%08" PRIx64 "[%s], ld:0x%08" PRIx64 ", name:'%s')", lm, base, (base_is_offset ? "offset" : "absolute"), ld, name.c_str()); } list.add(module); return true; // Keep iterating over all "library" elements in the root // node }); if (log) log->Printf("found %" PRId32 " modules in total", (int)list.m_list.size()); } else if (comm.GetQXferLibrariesReadSupported()) { list.clear(); // request the loaded library list std::string raw; lldb_private::Status lldberr; if (!comm.ReadExtFeature(ConstString("libraries"), ConstString(""), raw, lldberr)) return Status(0, ErrorType::eErrorTypeGeneric); if (log) log->Printf("parsing: %s", raw.c_str()); XMLDocument doc; if (!doc.ParseMemory(raw.c_str(), raw.size(), "noname.xml")) return Status(0, ErrorType::eErrorTypeGeneric); XMLNode root_element = doc.GetRootElement("library-list"); if (!root_element) return Status(); root_element.ForEachChildElementWithName( "library", [log, &list](const XMLNode &library) -> bool { LoadedModuleInfoList::LoadedModuleInfo module; llvm::StringRef name = library.GetAttributeValue("name"); module.set_name(name.str()); // The base address of a given library will be the address of its // first section. Most remotes send only one section for Windows // targets for example. const XMLNode §ion = library.FindFirstChildElementWithName("section"); llvm::StringRef address = section.GetAttributeValue("address"); module.set_base( StringConvert::ToUInt64(address.data(), LLDB_INVALID_ADDRESS, 0)); // These addresses are absolute values. module.set_base_is_offset(false); if (log) { std::string name; lldb::addr_t base = 0; bool base_is_offset; module.get_name(name); module.get_base(base); module.get_base_is_offset(base_is_offset); log->Printf("found (base:0x%08" PRIx64 "[%s], name:'%s')", base, (base_is_offset ? "offset" : "absolute"), name.c_str()); } list.add(module); return true; // Keep iterating over all "library" elements in the root // node }); if (log) log->Printf("found %" PRId32 " modules in total", (int)list.m_list.size()); } else { return Status(0, ErrorType::eErrorTypeGeneric); } return Status(); } lldb::ModuleSP ProcessGDBRemote::LoadModuleAtAddress(const FileSpec &file, lldb::addr_t link_map, lldb::addr_t base_addr, bool value_is_offset) { DynamicLoader *loader = GetDynamicLoader(); if (!loader) return nullptr; return loader->LoadModuleAtAddress(file, link_map, base_addr, value_is_offset); } size_t ProcessGDBRemote::LoadModules(LoadedModuleInfoList &module_list) { using lldb_private::process_gdb_remote::ProcessGDBRemote; // request a list of loaded libraries from GDBServer if (GetLoadedModuleList(module_list).Fail()) return 0; // get a list of all the modules ModuleList new_modules; for (LoadedModuleInfoList::LoadedModuleInfo &modInfo : module_list.m_list) { std::string mod_name; lldb::addr_t mod_base; lldb::addr_t link_map; bool mod_base_is_offset; bool valid = true; valid &= modInfo.get_name(mod_name); valid &= modInfo.get_base(mod_base); valid &= modInfo.get_base_is_offset(mod_base_is_offset); if (!valid) continue; if (!modInfo.get_link_map(link_map)) link_map = LLDB_INVALID_ADDRESS; FileSpec file(mod_name, true); lldb::ModuleSP module_sp = LoadModuleAtAddress(file, link_map, mod_base, mod_base_is_offset); if (module_sp.get()) new_modules.Append(module_sp); } if (new_modules.GetSize() > 0) { ModuleList removed_modules; Target &target = GetTarget(); ModuleList &loaded_modules = m_process->GetTarget().GetImages(); for (size_t i = 0; i < loaded_modules.GetSize(); ++i) { const lldb::ModuleSP loaded_module = loaded_modules.GetModuleAtIndex(i); bool found = false; for (size_t j = 0; j < new_modules.GetSize(); ++j) { if (new_modules.GetModuleAtIndex(j).get() == loaded_module.get()) found = true; } // The main executable will never be included in libraries-svr4, don't // remove it if (!found && loaded_module.get() != target.GetExecutableModulePointer()) { removed_modules.Append(loaded_module); } } loaded_modules.Remove(removed_modules); m_process->GetTarget().ModulesDidUnload(removed_modules, false); new_modules.ForEach([&target](const lldb::ModuleSP module_sp) -> bool { lldb_private::ObjectFile *obj = module_sp->GetObjectFile(); if (!obj) return true; if (obj->GetType() != ObjectFile::Type::eTypeExecutable) return true; lldb::ModuleSP module_copy_sp = module_sp; target.SetExecutableModule(module_copy_sp, false); return false; }); loaded_modules.AppendIfNeeded(new_modules); m_process->GetTarget().ModulesDidLoad(new_modules); } return new_modules.GetSize(); } size_t ProcessGDBRemote::LoadModules() { LoadedModuleInfoList module_list; return LoadModules(module_list); } Status ProcessGDBRemote::GetFileLoadAddress(const FileSpec &file, bool &is_loaded, lldb::addr_t &load_addr) { is_loaded = false; load_addr = LLDB_INVALID_ADDRESS; std::string file_path = file.GetPath(false); if (file_path.empty()) return Status("Empty file name specified"); StreamString packet; packet.PutCString("qFileLoadAddress:"); packet.PutCStringAsRawHex8(file_path.c_str()); StringExtractorGDBRemote response; if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response, false) != GDBRemoteCommunication::PacketResult::Success) return Status("Sending qFileLoadAddress packet failed"); if (response.IsErrorResponse()) { if (response.GetError() == 1) { // The file is not loaded into the inferior is_loaded = false; load_addr = LLDB_INVALID_ADDRESS; return Status(); } return Status( "Fetching file load address from remote server returned an error"); } if (response.IsNormalResponse()) { is_loaded = true; load_addr = response.GetHexMaxU64(false, LLDB_INVALID_ADDRESS); return Status(); } return Status( "Unknown error happened during sending the load address packet"); } void ProcessGDBRemote::ModulesDidLoad(ModuleList &module_list) { // We must call the lldb_private::Process::ModulesDidLoad () first before we // do anything Process::ModulesDidLoad(module_list); // After loading shared libraries, we can ask our remote GDB server if // it needs any symbols. m_gdb_comm.ServeSymbolLookups(this); } void ProcessGDBRemote::HandleAsyncStdout(llvm::StringRef out) { AppendSTDOUT(out.data(), out.size()); } static const char *end_delimiter = "--end--;"; static const int end_delimiter_len = 8; void ProcessGDBRemote::HandleAsyncMisc(llvm::StringRef data) { std::string input = data.str(); // '1' to move beyond 'A' if (m_partial_profile_data.length() > 0) { m_partial_profile_data.append(input); input = m_partial_profile_data; m_partial_profile_data.clear(); } size_t found, pos = 0, len = input.length(); while ((found = input.find(end_delimiter, pos)) != std::string::npos) { StringExtractorGDBRemote profileDataExtractor( input.substr(pos, found).c_str()); std::string profile_data = HarmonizeThreadIdsForProfileData(profileDataExtractor); BroadcastAsyncProfileData(profile_data); pos = found + end_delimiter_len; } if (pos < len) { // Last incomplete chunk. m_partial_profile_data = input.substr(pos); } } std::string ProcessGDBRemote::HarmonizeThreadIdsForProfileData( StringExtractorGDBRemote &profileDataExtractor) { std::map new_thread_id_to_used_usec_map; std::string output; llvm::raw_string_ostream output_stream(output); llvm::StringRef name, value; // Going to assuming thread_used_usec comes first, else bail out. while (profileDataExtractor.GetNameColonValue(name, value)) { if (name.compare("thread_used_id") == 0) { StringExtractor threadIDHexExtractor(value); uint64_t thread_id = threadIDHexExtractor.GetHexMaxU64(false, 0); bool has_used_usec = false; uint32_t curr_used_usec = 0; llvm::StringRef usec_name, usec_value; uint32_t input_file_pos = profileDataExtractor.GetFilePos(); if (profileDataExtractor.GetNameColonValue(usec_name, usec_value)) { if (usec_name.equals("thread_used_usec")) { has_used_usec = true; usec_value.getAsInteger(0, curr_used_usec); } else { // We didn't find what we want, it is probably // an older version. Bail out. profileDataExtractor.SetFilePos(input_file_pos); } } if (has_used_usec) { uint32_t prev_used_usec = 0; std::map::iterator iterator = m_thread_id_to_used_usec_map.find(thread_id); if (iterator != m_thread_id_to_used_usec_map.end()) { prev_used_usec = m_thread_id_to_used_usec_map[thread_id]; } uint32_t real_used_usec = curr_used_usec - prev_used_usec; // A good first time record is one that runs for at least 0.25 sec bool good_first_time = (prev_used_usec == 0) && (real_used_usec > 250000); bool good_subsequent_time = (prev_used_usec > 0) && ((real_used_usec > 0) || (HasAssignedIndexIDToThread(thread_id))); if (good_first_time || good_subsequent_time) { // We try to avoid doing too many index id reservation, // resulting in fast increase of index ids. output_stream << name << ":"; int32_t index_id = AssignIndexIDToThread(thread_id); output_stream << index_id << ";"; output_stream << usec_name << ":" << usec_value << ";"; } else { // Skip past 'thread_used_name'. llvm::StringRef local_name, local_value; profileDataExtractor.GetNameColonValue(local_name, local_value); } // Store current time as previous time so that they can be compared // later. new_thread_id_to_used_usec_map[thread_id] = curr_used_usec; } else { // Bail out and use old string. output_stream << name << ":" << value << ";"; } } else { output_stream << name << ":" << value << ";"; } } output_stream << end_delimiter; m_thread_id_to_used_usec_map = new_thread_id_to_used_usec_map; return output_stream.str(); } void ProcessGDBRemote::HandleStopReply() { if (GetStopID() != 0) return; if (GetID() == LLDB_INVALID_PROCESS_ID) { lldb::pid_t pid = m_gdb_comm.GetCurrentProcessID(); if (pid != LLDB_INVALID_PROCESS_ID) SetID(pid); } BuildDynamicRegisterInfo(true); } static const char *const s_async_json_packet_prefix = "JSON-async:"; static StructuredData::ObjectSP ParseStructuredDataPacket(llvm::StringRef packet) { Log *log(ProcessGDBRemoteLog::GetLogIfAllCategoriesSet(GDBR_LOG_PROCESS)); if (!packet.consume_front(s_async_json_packet_prefix)) { if (log) { log->Printf( "GDBRemoteCommmunicationClientBase::%s() received $J packet " "but was not a StructuredData packet: packet starts with " "%s", __FUNCTION__, packet.slice(0, strlen(s_async_json_packet_prefix)).str().c_str()); } return StructuredData::ObjectSP(); } // This is an asynchronous JSON packet, destined for a // StructuredDataPlugin. StructuredData::ObjectSP json_sp = StructuredData::ParseJSON(packet); if (log) { if (json_sp) { StreamString json_str; json_sp->Dump(json_str); json_str.Flush(); log->Printf("ProcessGDBRemote::%s() " "received Async StructuredData packet: %s", __FUNCTION__, json_str.GetData()); } else { log->Printf("ProcessGDBRemote::%s" "() received StructuredData packet:" " parse failure", __FUNCTION__); } } return json_sp; } void ProcessGDBRemote::HandleAsyncStructuredDataPacket(llvm::StringRef data) { auto structured_data_sp = ParseStructuredDataPacket(data); if (structured_data_sp) RouteAsyncStructuredData(structured_data_sp); } class CommandObjectProcessGDBRemoteSpeedTest : public CommandObjectParsed { public: CommandObjectProcessGDBRemoteSpeedTest(CommandInterpreter &interpreter) : CommandObjectParsed(interpreter, "process plugin packet speed-test", "Tests packet speeds of various sizes to determine " "the performance characteristics of the GDB remote " "connection. ", NULL), m_option_group(), m_num_packets(LLDB_OPT_SET_1, false, "count", 'c', 0, eArgTypeCount, "The number of packets to send of each varying size " "(default is 1000).", 1000), m_max_send(LLDB_OPT_SET_1, false, "max-send", 's', 0, eArgTypeCount, "The maximum number of bytes to send in a packet. Sizes " "increase in powers of 2 while the size is less than or " "equal to this option value. (default 1024).", 1024), m_max_recv(LLDB_OPT_SET_1, false, "max-receive", 'r', 0, eArgTypeCount, "The maximum number of bytes to receive in a packet. Sizes " "increase in powers of 2 while the size is less than or " "equal to this option value. (default 1024).", 1024), m_json(LLDB_OPT_SET_1, false, "json", 'j', "Print the output as JSON data for easy parsing.", false, true) { m_option_group.Append(&m_num_packets, LLDB_OPT_SET_ALL, LLDB_OPT_SET_1); m_option_group.Append(&m_max_send, LLDB_OPT_SET_ALL, LLDB_OPT_SET_1); m_option_group.Append(&m_max_recv, LLDB_OPT_SET_ALL, LLDB_OPT_SET_1); m_option_group.Append(&m_json, LLDB_OPT_SET_ALL, LLDB_OPT_SET_1); m_option_group.Finalize(); } ~CommandObjectProcessGDBRemoteSpeedTest() {} Options *GetOptions() override { return &m_option_group; } bool DoExecute(Args &command, CommandReturnObject &result) override { const size_t argc = command.GetArgumentCount(); if (argc == 0) { ProcessGDBRemote *process = (ProcessGDBRemote *)m_interpreter.GetExecutionContext() .GetProcessPtr(); if (process) { StreamSP output_stream_sp( m_interpreter.GetDebugger().GetAsyncOutputStream()); result.SetImmediateOutputStream(output_stream_sp); const uint32_t num_packets = (uint32_t)m_num_packets.GetOptionValue().GetCurrentValue(); const uint64_t max_send = m_max_send.GetOptionValue().GetCurrentValue(); const uint64_t max_recv = m_max_recv.GetOptionValue().GetCurrentValue(); const bool json = m_json.GetOptionValue().GetCurrentValue(); const uint64_t k_recv_amount = 4 * 1024 * 1024; // Receive amount in bytes process->GetGDBRemote().TestPacketSpeed( num_packets, max_send, max_recv, k_recv_amount, json, output_stream_sp ? *output_stream_sp : result.GetOutputStream()); result.SetStatus(eReturnStatusSuccessFinishResult); return true; } } else { result.AppendErrorWithFormat("'%s' takes no arguments", m_cmd_name.c_str()); } result.SetStatus(eReturnStatusFailed); return false; } protected: OptionGroupOptions m_option_group; OptionGroupUInt64 m_num_packets; OptionGroupUInt64 m_max_send; OptionGroupUInt64 m_max_recv; OptionGroupBoolean m_json; }; class CommandObjectProcessGDBRemotePacketHistory : public CommandObjectParsed { private: public: CommandObjectProcessGDBRemotePacketHistory(CommandInterpreter &interpreter) : CommandObjectParsed(interpreter, "process plugin packet history", "Dumps the packet history buffer. ", NULL) {} ~CommandObjectProcessGDBRemotePacketHistory() {} bool DoExecute(Args &command, CommandReturnObject &result) override { const size_t argc = command.GetArgumentCount(); if (argc == 0) { ProcessGDBRemote *process = (ProcessGDBRemote *)m_interpreter.GetExecutionContext() .GetProcessPtr(); if (process) { process->GetGDBRemote().DumpHistory(result.GetOutputStream()); result.SetStatus(eReturnStatusSuccessFinishResult); return true; } } else { result.AppendErrorWithFormat("'%s' takes no arguments", m_cmd_name.c_str()); } result.SetStatus(eReturnStatusFailed); return false; } }; class CommandObjectProcessGDBRemotePacketXferSize : public CommandObjectParsed { private: public: CommandObjectProcessGDBRemotePacketXferSize(CommandInterpreter &interpreter) : CommandObjectParsed( interpreter, "process plugin packet xfer-size", "Maximum size that lldb will try to read/write one one chunk.", NULL) {} ~CommandObjectProcessGDBRemotePacketXferSize() {} bool DoExecute(Args &command, CommandReturnObject &result) override { const size_t argc = command.GetArgumentCount(); if (argc == 0) { result.AppendErrorWithFormat("'%s' takes an argument to specify the max " "amount to be transferred when " "reading/writing", m_cmd_name.c_str()); result.SetStatus(eReturnStatusFailed); return false; } ProcessGDBRemote *process = (ProcessGDBRemote *)m_interpreter.GetExecutionContext().GetProcessPtr(); if (process) { const char *packet_size = command.GetArgumentAtIndex(0); errno = 0; uint64_t user_specified_max = strtoul(packet_size, NULL, 10); if (errno == 0 && user_specified_max != 0) { process->SetUserSpecifiedMaxMemoryTransferSize(user_specified_max); result.SetStatus(eReturnStatusSuccessFinishResult); return true; } } result.SetStatus(eReturnStatusFailed); return false; } }; class CommandObjectProcessGDBRemotePacketSend : public CommandObjectParsed { private: public: CommandObjectProcessGDBRemotePacketSend(CommandInterpreter &interpreter) : CommandObjectParsed(interpreter, "process plugin packet send", "Send a custom packet through the GDB remote " "protocol and print the answer. " "The packet header and footer will automatically " "be added to the packet prior to sending and " "stripped from the result.", NULL) {} ~CommandObjectProcessGDBRemotePacketSend() {} bool DoExecute(Args &command, CommandReturnObject &result) override { const size_t argc = command.GetArgumentCount(); if (argc == 0) { result.AppendErrorWithFormat( "'%s' takes a one or more packet content arguments", m_cmd_name.c_str()); result.SetStatus(eReturnStatusFailed); return false; } ProcessGDBRemote *process = (ProcessGDBRemote *)m_interpreter.GetExecutionContext().GetProcessPtr(); if (process) { for (size_t i = 0; i < argc; ++i) { const char *packet_cstr = command.GetArgumentAtIndex(0); bool send_async = true; StringExtractorGDBRemote response; process->GetGDBRemote().SendPacketAndWaitForResponse( packet_cstr, response, send_async); result.SetStatus(eReturnStatusSuccessFinishResult); Stream &output_strm = result.GetOutputStream(); output_strm.Printf(" packet: %s\n", packet_cstr); std::string &response_str = response.GetStringRef(); if (strstr(packet_cstr, "qGetProfileData") != NULL) { response_str = process->HarmonizeThreadIdsForProfileData(response); } if (response_str.empty()) output_strm.PutCString("response: \nerror: UNIMPLEMENTED\n"); else output_strm.Printf("response: %s\n", response.GetStringRef().c_str()); } } return true; } }; class CommandObjectProcessGDBRemotePacketMonitor : public CommandObjectRaw { private: public: CommandObjectProcessGDBRemotePacketMonitor(CommandInterpreter &interpreter) : CommandObjectRaw(interpreter, "process plugin packet monitor", "Send a qRcmd packet through the GDB remote protocol " "and print the response." "The argument passed to this command will be hex " "encoded into a valid 'qRcmd' packet, sent and the " "response will be printed.") {} ~CommandObjectProcessGDBRemotePacketMonitor() {} bool DoExecute(const char *command, CommandReturnObject &result) override { if (command == NULL || command[0] == '\0') { result.AppendErrorWithFormat("'%s' takes a command string argument", m_cmd_name.c_str()); result.SetStatus(eReturnStatusFailed); return false; } ProcessGDBRemote *process = (ProcessGDBRemote *)m_interpreter.GetExecutionContext().GetProcessPtr(); if (process) { StreamString packet; packet.PutCString("qRcmd,"); packet.PutBytesAsRawHex8(command, strlen(command)); bool send_async = true; StringExtractorGDBRemote response; process->GetGDBRemote().SendPacketAndWaitForResponse( packet.GetString(), response, send_async); result.SetStatus(eReturnStatusSuccessFinishResult); Stream &output_strm = result.GetOutputStream(); output_strm.Printf(" packet: %s\n", packet.GetData()); const std::string &response_str = response.GetStringRef(); if (response_str.empty()) output_strm.PutCString("response: \nerror: UNIMPLEMENTED\n"); else output_strm.Printf("response: %s\n", response.GetStringRef().c_str()); } return true; } }; class CommandObjectProcessGDBRemotePacket : public CommandObjectMultiword { private: public: CommandObjectProcessGDBRemotePacket(CommandInterpreter &interpreter) : CommandObjectMultiword(interpreter, "process plugin packet", "Commands that deal with GDB remote packets.", NULL) { LoadSubCommand( "history", CommandObjectSP( new CommandObjectProcessGDBRemotePacketHistory(interpreter))); LoadSubCommand( "send", CommandObjectSP( new CommandObjectProcessGDBRemotePacketSend(interpreter))); LoadSubCommand( "monitor", CommandObjectSP( new CommandObjectProcessGDBRemotePacketMonitor(interpreter))); LoadSubCommand( "xfer-size", CommandObjectSP( new CommandObjectProcessGDBRemotePacketXferSize(interpreter))); LoadSubCommand("speed-test", CommandObjectSP(new CommandObjectProcessGDBRemoteSpeedTest( interpreter))); } ~CommandObjectProcessGDBRemotePacket() {} }; class CommandObjectMultiwordProcessGDBRemote : public CommandObjectMultiword { public: CommandObjectMultiwordProcessGDBRemote(CommandInterpreter &interpreter) : CommandObjectMultiword( interpreter, "process plugin", "Commands for operating on a ProcessGDBRemote process.", "process plugin []") { LoadSubCommand( "packet", CommandObjectSP(new CommandObjectProcessGDBRemotePacket(interpreter))); } ~CommandObjectMultiwordProcessGDBRemote() {} }; CommandObject *ProcessGDBRemote::GetPluginCommandObject() { if (!m_command_sp) m_command_sp.reset(new CommandObjectMultiwordProcessGDBRemote( GetTarget().GetDebugger().GetCommandInterpreter())); return m_command_sp.get(); } Index: projects/clang600-import/contrib/llvm/tools/lldb/source/Symbol/ClangASTContext.cpp =================================================================== --- projects/clang600-import/contrib/llvm/tools/lldb/source/Symbol/ClangASTContext.cpp (revision 327150) +++ projects/clang600-import/contrib/llvm/tools/lldb/source/Symbol/ClangASTContext.cpp (revision 327151) @@ -1,10091 +1,10093 @@ //===-- ClangASTContext.cpp -------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/Symbol/ClangASTContext.h" #include "llvm/Support/FormatAdapters.h" #include "llvm/Support/FormatVariadic.h" // C Includes // C++ Includes #include #include #include // Other libraries and framework includes // Clang headers like to use NDEBUG inside of them to enable/disable debug // related features using "#ifndef NDEBUG" preprocessor blocks to do one thing // or another. This is bad because it means that if clang was built in release // mode, it assumes that you are building in release mode which is not always // the case. You can end up with functions that are defined as empty in header // files when NDEBUG is not defined, and this can cause link errors with the // clang .a files that you have since you might be missing functions in the .a // file. So we have to define NDEBUG when including clang headers to avoid any // mismatches. This is covered by rdar://problem/8691220 #if !defined(NDEBUG) && !defined(LLVM_NDEBUG_OFF) #define LLDB_DEFINED_NDEBUG_FOR_CLANG #define NDEBUG // Need to include assert.h so it is as clang would expect it to be (disabled) #include #endif #include "clang/AST/ASTContext.h" #include "clang/AST/ASTImporter.h" #include "clang/AST/Attr.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Mangle.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/Type.h" #include "clang/AST/VTableBuilder.h" #include "clang/Basic/Builtins.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/FileSystemOptions.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/TargetOptions.h" #include "clang/Frontend/FrontendOptions.h" #include "clang/Frontend/LangStandard.h" #ifdef LLDB_DEFINED_NDEBUG_FOR_CLANG #undef NDEBUG #undef LLDB_DEFINED_NDEBUG_FOR_CLANG // Need to re-include assert.h so it is as _we_ would expect it to be (enabled) #include #endif #include "llvm/Support/Signals.h" #include "llvm/Support/Threading.h" #include "Plugins/ExpressionParser/Clang/ClangFunctionCaller.h" #include "Plugins/ExpressionParser/Clang/ClangUserExpression.h" #include "Plugins/ExpressionParser/Clang/ClangUtilityFunction.h" #include "lldb/Utility/ArchSpec.h" #include "lldb/Utility/Flags.h" #include "lldb/Core/DumpDataExtractor.h" #include "lldb/Core/Module.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/Scalar.h" #include "lldb/Core/StreamFile.h" #include "lldb/Core/ThreadSafeDenseMap.h" #include "lldb/Core/UniqueCStringMap.h" #include "lldb/Symbol/ClangASTContext.h" #include "lldb/Symbol/ClangASTImporter.h" #include "lldb/Symbol/ClangExternalASTSourceCallbacks.h" #include "lldb/Symbol/ClangExternalASTSourceCommon.h" #include "lldb/Symbol/ClangUtil.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Symbol/SymbolFile.h" #include "lldb/Symbol/VerifyDecl.h" #include "lldb/Target/ExecutionContext.h" #include "lldb/Target/Language.h" #include "lldb/Target/ObjCLanguageRuntime.h" #include "lldb/Target/Process.h" #include "lldb/Target/Target.h" #include "lldb/Utility/DataExtractor.h" #include "lldb/Utility/LLDBAssert.h" #include "lldb/Utility/Log.h" #include "lldb/Utility/RegularExpression.h" #include "Plugins/SymbolFile/DWARF/DWARFASTParserClang.h" -//#include "Plugins/SymbolFile/PDB/PDBASTParser.h" +#ifdef LLDB_ENABLE_ALL +#include "Plugins/SymbolFile/PDB/PDBASTParser.h" +#endif // LLDB_ENABLE_ALL #include #include using namespace lldb; using namespace lldb_private; using namespace llvm; using namespace clang; namespace { static inline bool ClangASTContextSupportsLanguage(lldb::LanguageType language) { return language == eLanguageTypeUnknown || // Clang is the default type system Language::LanguageIsC(language) || Language::LanguageIsCPlusPlus(language) || Language::LanguageIsObjC(language) || Language::LanguageIsPascal(language) || // Use Clang for Rust until there is a proper language plugin for it language == eLanguageTypeRust || language == eLanguageTypeExtRenderScript || // Use Clang for D until there is a proper language plugin for it language == eLanguageTypeD; } } typedef lldb_private::ThreadSafeDenseMap ClangASTMap; static ClangASTMap &GetASTMap() { static ClangASTMap *g_map_ptr = nullptr; static llvm::once_flag g_once_flag; llvm::call_once(g_once_flag, []() { g_map_ptr = new ClangASTMap(); // leaked on purpose to avoid spins }); return *g_map_ptr; } static bool IsOperator(const char *name, clang::OverloadedOperatorKind &op_kind) { if (name == nullptr || name[0] == '\0') return false; #define OPERATOR_PREFIX "operator" #define OPERATOR_PREFIX_LENGTH (sizeof(OPERATOR_PREFIX) - 1) const char *post_op_name = nullptr; bool no_space = true; if (::strncmp(name, OPERATOR_PREFIX, OPERATOR_PREFIX_LENGTH)) return false; post_op_name = name + OPERATOR_PREFIX_LENGTH; if (post_op_name[0] == ' ') { post_op_name++; no_space = false; } #undef OPERATOR_PREFIX #undef OPERATOR_PREFIX_LENGTH // This is an operator, set the overloaded operator kind to invalid // in case this is a conversion operator... op_kind = clang::NUM_OVERLOADED_OPERATORS; switch (post_op_name[0]) { default: if (no_space) return false; break; case 'n': if (no_space) return false; if (strcmp(post_op_name, "new") == 0) op_kind = clang::OO_New; else if (strcmp(post_op_name, "new[]") == 0) op_kind = clang::OO_Array_New; break; case 'd': if (no_space) return false; if (strcmp(post_op_name, "delete") == 0) op_kind = clang::OO_Delete; else if (strcmp(post_op_name, "delete[]") == 0) op_kind = clang::OO_Array_Delete; break; case '+': if (post_op_name[1] == '\0') op_kind = clang::OO_Plus; else if (post_op_name[2] == '\0') { if (post_op_name[1] == '=') op_kind = clang::OO_PlusEqual; else if (post_op_name[1] == '+') op_kind = clang::OO_PlusPlus; } break; case '-': if (post_op_name[1] == '\0') op_kind = clang::OO_Minus; else if (post_op_name[2] == '\0') { switch (post_op_name[1]) { case '=': op_kind = clang::OO_MinusEqual; break; case '-': op_kind = clang::OO_MinusMinus; break; case '>': op_kind = clang::OO_Arrow; break; } } else if (post_op_name[3] == '\0') { if (post_op_name[2] == '*') op_kind = clang::OO_ArrowStar; break; } break; case '*': if (post_op_name[1] == '\0') op_kind = clang::OO_Star; else if (post_op_name[1] == '=' && post_op_name[2] == '\0') op_kind = clang::OO_StarEqual; break; case '/': if (post_op_name[1] == '\0') op_kind = clang::OO_Slash; else if (post_op_name[1] == '=' && post_op_name[2] == '\0') op_kind = clang::OO_SlashEqual; break; case '%': if (post_op_name[1] == '\0') op_kind = clang::OO_Percent; else if (post_op_name[1] == '=' && post_op_name[2] == '\0') op_kind = clang::OO_PercentEqual; break; case '^': if (post_op_name[1] == '\0') op_kind = clang::OO_Caret; else if (post_op_name[1] == '=' && post_op_name[2] == '\0') op_kind = clang::OO_CaretEqual; break; case '&': if (post_op_name[1] == '\0') op_kind = clang::OO_Amp; else if (post_op_name[2] == '\0') { switch (post_op_name[1]) { case '=': op_kind = clang::OO_AmpEqual; break; case '&': op_kind = clang::OO_AmpAmp; break; } } break; case '|': if (post_op_name[1] == '\0') op_kind = clang::OO_Pipe; else if (post_op_name[2] == '\0') { switch (post_op_name[1]) { case '=': op_kind = clang::OO_PipeEqual; break; case '|': op_kind = clang::OO_PipePipe; break; } } break; case '~': if (post_op_name[1] == '\0') op_kind = clang::OO_Tilde; break; case '!': if (post_op_name[1] == '\0') op_kind = clang::OO_Exclaim; else if (post_op_name[1] == '=' && post_op_name[2] == '\0') op_kind = clang::OO_ExclaimEqual; break; case '=': if (post_op_name[1] == '\0') op_kind = clang::OO_Equal; else if (post_op_name[1] == '=' && post_op_name[2] == '\0') op_kind = clang::OO_EqualEqual; break; case '<': if (post_op_name[1] == '\0') op_kind = clang::OO_Less; else if (post_op_name[2] == '\0') { switch (post_op_name[1]) { case '<': op_kind = clang::OO_LessLess; break; case '=': op_kind = clang::OO_LessEqual; break; } } else if (post_op_name[3] == '\0') { if (post_op_name[2] == '=') op_kind = clang::OO_LessLessEqual; } break; case '>': if (post_op_name[1] == '\0') op_kind = clang::OO_Greater; else if (post_op_name[2] == '\0') { switch (post_op_name[1]) { case '>': op_kind = clang::OO_GreaterGreater; break; case '=': op_kind = clang::OO_GreaterEqual; break; } } else if (post_op_name[1] == '>' && post_op_name[2] == '=' && post_op_name[3] == '\0') { op_kind = clang::OO_GreaterGreaterEqual; } break; case ',': if (post_op_name[1] == '\0') op_kind = clang::OO_Comma; break; case '(': if (post_op_name[1] == ')' && post_op_name[2] == '\0') op_kind = clang::OO_Call; break; case '[': if (post_op_name[1] == ']' && post_op_name[2] == '\0') op_kind = clang::OO_Subscript; break; } return true; } clang::AccessSpecifier ClangASTContext::ConvertAccessTypeToAccessSpecifier(AccessType access) { switch (access) { default: break; case eAccessNone: return AS_none; case eAccessPublic: return AS_public; case eAccessPrivate: return AS_private; case eAccessProtected: return AS_protected; } return AS_none; } static void ParseLangArgs(LangOptions &Opts, InputKind IK, const char *triple) { // FIXME: Cleanup per-file based stuff. // Set some properties which depend solely on the input kind; it would be nice // to move these to the language standard, and have the driver resolve the // input kind + language standard. if (IK.getLanguage() == InputKind::Asm) { Opts.AsmPreprocessor = 1; } else if (IK.isObjectiveC()) { Opts.ObjC1 = Opts.ObjC2 = 1; } LangStandard::Kind LangStd = LangStandard::lang_unspecified; if (LangStd == LangStandard::lang_unspecified) { // Based on the base language, pick one. switch (IK.getLanguage()) { case InputKind::Unknown: case InputKind::LLVM_IR: case InputKind::RenderScript: llvm_unreachable("Invalid input kind!"); case InputKind::OpenCL: LangStd = LangStandard::lang_opencl10; break; case InputKind::CUDA: LangStd = LangStandard::lang_cuda; break; case InputKind::Asm: case InputKind::C: case InputKind::ObjC: LangStd = LangStandard::lang_gnu99; break; case InputKind::CXX: case InputKind::ObjCXX: LangStd = LangStandard::lang_gnucxx98; break; } } const LangStandard &Std = LangStandard::getLangStandardForKind(LangStd); Opts.LineComment = Std.hasLineComments(); Opts.C99 = Std.isC99(); Opts.CPlusPlus = Std.isCPlusPlus(); Opts.CPlusPlus11 = Std.isCPlusPlus11(); Opts.Digraphs = Std.hasDigraphs(); Opts.GNUMode = Std.isGNUMode(); Opts.GNUInline = !Std.isC99(); Opts.HexFloats = Std.hasHexFloats(); Opts.ImplicitInt = Std.hasImplicitInt(); Opts.WChar = true; // OpenCL has some additional defaults. if (LangStd == LangStandard::lang_opencl10) { Opts.OpenCL = 1; Opts.AltiVec = 1; Opts.CXXOperatorNames = 1; Opts.LaxVectorConversions = 1; } // OpenCL and C++ both have bool, true, false keywords. Opts.Bool = Opts.OpenCL || Opts.CPlusPlus; Opts.setValueVisibilityMode(DefaultVisibility); // Mimicing gcc's behavior, trigraphs are only enabled if -trigraphs // is specified, or -std is set to a conforming mode. Opts.Trigraphs = !Opts.GNUMode; Opts.CharIsSigned = ArchSpec(triple).CharIsSignedByDefault(); Opts.OptimizeSize = 0; // FIXME: Eliminate this dependency. // unsigned Opt = // Args.hasArg(OPT_Os) ? 2 : getLastArgIntValue(Args, OPT_O, 0, Diags); // Opts.Optimize = Opt != 0; unsigned Opt = 0; // This is the __NO_INLINE__ define, which just depends on things like the // optimization level and -fno-inline, not actually whether the backend has // inlining enabled. // // FIXME: This is affected by other options (-fno-inline). Opts.NoInlineDefine = !Opt; } ClangASTContext::ClangASTContext(const char *target_triple) : TypeSystem(TypeSystem::eKindClang), m_target_triple(), m_ast_ap(), m_language_options_ap(), m_source_manager_ap(), m_diagnostics_engine_ap(), m_target_options_rp(), m_target_info_ap(), m_identifier_table_ap(), m_selector_table_ap(), m_builtins_ap(), m_callback_tag_decl(nullptr), m_callback_objc_decl(nullptr), m_callback_baton(nullptr), m_pointer_byte_size(0), m_ast_owned(false) { if (target_triple && target_triple[0]) SetTargetTriple(target_triple); } //---------------------------------------------------------------------- // Destructor //---------------------------------------------------------------------- ClangASTContext::~ClangASTContext() { Finalize(); } ConstString ClangASTContext::GetPluginNameStatic() { return ConstString("clang"); } ConstString ClangASTContext::GetPluginName() { return ClangASTContext::GetPluginNameStatic(); } uint32_t ClangASTContext::GetPluginVersion() { return 1; } lldb::TypeSystemSP ClangASTContext::CreateInstance(lldb::LanguageType language, lldb_private::Module *module, Target *target) { if (ClangASTContextSupportsLanguage(language)) { ArchSpec arch; if (module) arch = module->GetArchitecture(); else if (target) arch = target->GetArchitecture(); if (arch.IsValid()) { ArchSpec fixed_arch = arch; // LLVM wants this to be set to iOS or MacOSX; if we're working on // a bare-boards type image, change the triple for llvm's benefit. if (fixed_arch.GetTriple().getVendor() == llvm::Triple::Apple && fixed_arch.GetTriple().getOS() == llvm::Triple::UnknownOS) { if (fixed_arch.GetTriple().getArch() == llvm::Triple::arm || fixed_arch.GetTriple().getArch() == llvm::Triple::aarch64 || fixed_arch.GetTriple().getArch() == llvm::Triple::thumb) { fixed_arch.GetTriple().setOS(llvm::Triple::IOS); } else { fixed_arch.GetTriple().setOS(llvm::Triple::MacOSX); } } if (module) { std::shared_ptr ast_sp(new ClangASTContext); if (ast_sp) { ast_sp->SetArchitecture(fixed_arch); } return ast_sp; } else if (target && target->IsValid()) { std::shared_ptr ast_sp( new ClangASTContextForExpressions(*target)); if (ast_sp) { ast_sp->SetArchitecture(fixed_arch); ast_sp->m_scratch_ast_source_ap.reset( new ClangASTSource(target->shared_from_this())); lldbassert(ast_sp->getFileManager()); ast_sp->m_scratch_ast_source_ap->InstallASTContext( *ast_sp->getASTContext(), *ast_sp->getFileManager(), true); llvm::IntrusiveRefCntPtr proxy_ast_source( ast_sp->m_scratch_ast_source_ap->CreateProxy()); ast_sp->SetExternalSource(proxy_ast_source); return ast_sp; } } } } return lldb::TypeSystemSP(); } void ClangASTContext::EnumerateSupportedLanguages( std::set &languages_for_types, std::set &languages_for_expressions) { static std::vector s_supported_languages_for_types( {lldb::eLanguageTypeC89, lldb::eLanguageTypeC, lldb::eLanguageTypeC11, lldb::eLanguageTypeC_plus_plus, lldb::eLanguageTypeC99, lldb::eLanguageTypeObjC, lldb::eLanguageTypeObjC_plus_plus, lldb::eLanguageTypeC_plus_plus_03, lldb::eLanguageTypeC_plus_plus_11, lldb::eLanguageTypeC11, lldb::eLanguageTypeC_plus_plus_14}); static std::vector s_supported_languages_for_expressions( {lldb::eLanguageTypeC_plus_plus, lldb::eLanguageTypeObjC_plus_plus, lldb::eLanguageTypeC_plus_plus_03, lldb::eLanguageTypeC_plus_plus_11, lldb::eLanguageTypeC_plus_plus_14}); languages_for_types.insert(s_supported_languages_for_types.begin(), s_supported_languages_for_types.end()); languages_for_expressions.insert( s_supported_languages_for_expressions.begin(), s_supported_languages_for_expressions.end()); } void ClangASTContext::Initialize() { PluginManager::RegisterPlugin(GetPluginNameStatic(), "clang base AST context plug-in", CreateInstance, EnumerateSupportedLanguages); } void ClangASTContext::Terminate() { PluginManager::UnregisterPlugin(CreateInstance); } void ClangASTContext::Finalize() { if (m_ast_ap.get()) { GetASTMap().Erase(m_ast_ap.get()); if (!m_ast_owned) m_ast_ap.release(); } m_builtins_ap.reset(); m_selector_table_ap.reset(); m_identifier_table_ap.reset(); m_target_info_ap.reset(); m_target_options_rp.reset(); m_diagnostics_engine_ap.reset(); m_source_manager_ap.reset(); m_language_options_ap.reset(); m_ast_ap.reset(); m_scratch_ast_source_ap.reset(); } void ClangASTContext::Clear() { m_ast_ap.reset(); m_language_options_ap.reset(); m_source_manager_ap.reset(); m_diagnostics_engine_ap.reset(); m_target_options_rp.reset(); m_target_info_ap.reset(); m_identifier_table_ap.reset(); m_selector_table_ap.reset(); m_builtins_ap.reset(); m_pointer_byte_size = 0; } const char *ClangASTContext::GetTargetTriple() { return m_target_triple.c_str(); } void ClangASTContext::SetTargetTriple(const char *target_triple) { Clear(); m_target_triple.assign(target_triple); } void ClangASTContext::SetArchitecture(const ArchSpec &arch) { SetTargetTriple(arch.GetTriple().str().c_str()); } bool ClangASTContext::HasExternalSource() { ASTContext *ast = getASTContext(); if (ast) return ast->getExternalSource() != nullptr; return false; } void ClangASTContext::SetExternalSource( llvm::IntrusiveRefCntPtr &ast_source_ap) { ASTContext *ast = getASTContext(); if (ast) { ast->setExternalSource(ast_source_ap); ast->getTranslationUnitDecl()->setHasExternalLexicalStorage(true); // ast->getTranslationUnitDecl()->setHasExternalVisibleStorage(true); } } void ClangASTContext::RemoveExternalSource() { ASTContext *ast = getASTContext(); if (ast) { llvm::IntrusiveRefCntPtr empty_ast_source_ap; ast->setExternalSource(empty_ast_source_ap); ast->getTranslationUnitDecl()->setHasExternalLexicalStorage(false); // ast->getTranslationUnitDecl()->setHasExternalVisibleStorage(false); } } void ClangASTContext::setASTContext(clang::ASTContext *ast_ctx) { if (!m_ast_owned) { m_ast_ap.release(); } m_ast_owned = false; m_ast_ap.reset(ast_ctx); GetASTMap().Insert(ast_ctx, this); } ASTContext *ClangASTContext::getASTContext() { if (m_ast_ap.get() == nullptr) { m_ast_owned = true; m_ast_ap.reset(new ASTContext(*getLanguageOptions(), *getSourceManager(), *getIdentifierTable(), *getSelectorTable(), *getBuiltinContext())); m_ast_ap->getDiagnostics().setClient(getDiagnosticConsumer(), false); // This can be NULL if we don't know anything about the architecture or if // the // target for an architecture isn't enabled in the llvm/clang that we built TargetInfo *target_info = getTargetInfo(); if (target_info) m_ast_ap->InitBuiltinTypes(*target_info); if ((m_callback_tag_decl || m_callback_objc_decl) && m_callback_baton) { m_ast_ap->getTranslationUnitDecl()->setHasExternalLexicalStorage(); // m_ast_ap->getTranslationUnitDecl()->setHasExternalVisibleStorage(); } GetASTMap().Insert(m_ast_ap.get(), this); llvm::IntrusiveRefCntPtr ast_source_ap( new ClangExternalASTSourceCallbacks( ClangASTContext::CompleteTagDecl, ClangASTContext::CompleteObjCInterfaceDecl, nullptr, ClangASTContext::LayoutRecordType, this)); SetExternalSource(ast_source_ap); } return m_ast_ap.get(); } ClangASTContext *ClangASTContext::GetASTContext(clang::ASTContext *ast) { ClangASTContext *clang_ast = GetASTMap().Lookup(ast); return clang_ast; } Builtin::Context *ClangASTContext::getBuiltinContext() { if (m_builtins_ap.get() == nullptr) m_builtins_ap.reset(new Builtin::Context()); return m_builtins_ap.get(); } IdentifierTable *ClangASTContext::getIdentifierTable() { if (m_identifier_table_ap.get() == nullptr) m_identifier_table_ap.reset( new IdentifierTable(*ClangASTContext::getLanguageOptions(), nullptr)); return m_identifier_table_ap.get(); } LangOptions *ClangASTContext::getLanguageOptions() { if (m_language_options_ap.get() == nullptr) { m_language_options_ap.reset(new LangOptions()); ParseLangArgs(*m_language_options_ap, InputKind::ObjCXX, GetTargetTriple()); // InitializeLangOptions(*m_language_options_ap, InputKind::ObjCXX); } return m_language_options_ap.get(); } SelectorTable *ClangASTContext::getSelectorTable() { if (m_selector_table_ap.get() == nullptr) m_selector_table_ap.reset(new SelectorTable()); return m_selector_table_ap.get(); } clang::FileManager *ClangASTContext::getFileManager() { if (m_file_manager_ap.get() == nullptr) { clang::FileSystemOptions file_system_options; m_file_manager_ap.reset(new clang::FileManager(file_system_options)); } return m_file_manager_ap.get(); } clang::SourceManager *ClangASTContext::getSourceManager() { if (m_source_manager_ap.get() == nullptr) m_source_manager_ap.reset( new clang::SourceManager(*getDiagnosticsEngine(), *getFileManager())); return m_source_manager_ap.get(); } clang::DiagnosticsEngine *ClangASTContext::getDiagnosticsEngine() { if (m_diagnostics_engine_ap.get() == nullptr) { llvm::IntrusiveRefCntPtr diag_id_sp(new DiagnosticIDs()); m_diagnostics_engine_ap.reset( new DiagnosticsEngine(diag_id_sp, new DiagnosticOptions())); } return m_diagnostics_engine_ap.get(); } clang::MangleContext *ClangASTContext::getMangleContext() { if (m_mangle_ctx_ap.get() == nullptr) m_mangle_ctx_ap.reset(getASTContext()->createMangleContext()); return m_mangle_ctx_ap.get(); } class NullDiagnosticConsumer : public DiagnosticConsumer { public: NullDiagnosticConsumer() { m_log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS); } void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, const clang::Diagnostic &info) { if (m_log) { llvm::SmallVector diag_str(10); info.FormatDiagnostic(diag_str); diag_str.push_back('\0'); m_log->Printf("Compiler diagnostic: %s\n", diag_str.data()); } } DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const { return new NullDiagnosticConsumer(); } private: Log *m_log; }; DiagnosticConsumer *ClangASTContext::getDiagnosticConsumer() { if (m_diagnostic_consumer_ap.get() == nullptr) m_diagnostic_consumer_ap.reset(new NullDiagnosticConsumer); return m_diagnostic_consumer_ap.get(); } std::shared_ptr &ClangASTContext::getTargetOptions() { if (m_target_options_rp.get() == nullptr && !m_target_triple.empty()) { m_target_options_rp = std::make_shared(); if (m_target_options_rp.get() != nullptr) m_target_options_rp->Triple = m_target_triple; } return m_target_options_rp; } TargetInfo *ClangASTContext::getTargetInfo() { // target_triple should be something like "x86_64-apple-macosx" if (m_target_info_ap.get() == nullptr && !m_target_triple.empty()) m_target_info_ap.reset(TargetInfo::CreateTargetInfo(*getDiagnosticsEngine(), getTargetOptions())); return m_target_info_ap.get(); } #pragma mark Basic Types static inline bool QualTypeMatchesBitSize(const uint64_t bit_size, ASTContext *ast, QualType qual_type) { uint64_t qual_type_bit_size = ast->getTypeSize(qual_type); if (qual_type_bit_size == bit_size) return true; return false; } CompilerType ClangASTContext::GetBuiltinTypeForEncodingAndBitSize(Encoding encoding, size_t bit_size) { return ClangASTContext::GetBuiltinTypeForEncodingAndBitSize( getASTContext(), encoding, bit_size); } CompilerType ClangASTContext::GetBuiltinTypeForEncodingAndBitSize( ASTContext *ast, Encoding encoding, uint32_t bit_size) { if (!ast) return CompilerType(); switch (encoding) { case eEncodingInvalid: if (QualTypeMatchesBitSize(bit_size, ast, ast->VoidPtrTy)) return CompilerType(ast, ast->VoidPtrTy); break; case eEncodingUint: if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedCharTy)) return CompilerType(ast, ast->UnsignedCharTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedShortTy)) return CompilerType(ast, ast->UnsignedShortTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedIntTy)) return CompilerType(ast, ast->UnsignedIntTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedLongTy)) return CompilerType(ast, ast->UnsignedLongTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedLongLongTy)) return CompilerType(ast, ast->UnsignedLongLongTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedInt128Ty)) return CompilerType(ast, ast->UnsignedInt128Ty); break; case eEncodingSint: if (QualTypeMatchesBitSize(bit_size, ast, ast->SignedCharTy)) return CompilerType(ast, ast->SignedCharTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->ShortTy)) return CompilerType(ast, ast->ShortTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->IntTy)) return CompilerType(ast, ast->IntTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->LongTy)) return CompilerType(ast, ast->LongTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->LongLongTy)) return CompilerType(ast, ast->LongLongTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->Int128Ty)) return CompilerType(ast, ast->Int128Ty); break; case eEncodingIEEE754: if (QualTypeMatchesBitSize(bit_size, ast, ast->FloatTy)) return CompilerType(ast, ast->FloatTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->DoubleTy)) return CompilerType(ast, ast->DoubleTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->LongDoubleTy)) return CompilerType(ast, ast->LongDoubleTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->HalfTy)) return CompilerType(ast, ast->HalfTy); break; case eEncodingVector: // Sanity check that bit_size is a multiple of 8's. if (bit_size && !(bit_size & 0x7u)) return CompilerType( ast, ast->getExtVectorType(ast->UnsignedCharTy, bit_size / 8)); break; } return CompilerType(); } lldb::BasicType ClangASTContext::GetBasicTypeEnumeration(const ConstString &name) { if (name) { typedef UniqueCStringMap TypeNameToBasicTypeMap; static TypeNameToBasicTypeMap g_type_map; static llvm::once_flag g_once_flag; llvm::call_once(g_once_flag, []() { // "void" g_type_map.Append(ConstString("void"), eBasicTypeVoid); // "char" g_type_map.Append(ConstString("char"), eBasicTypeChar); g_type_map.Append(ConstString("signed char"), eBasicTypeSignedChar); g_type_map.Append(ConstString("unsigned char"), eBasicTypeUnsignedChar); g_type_map.Append(ConstString("wchar_t"), eBasicTypeWChar); g_type_map.Append(ConstString("signed wchar_t"), eBasicTypeSignedWChar); g_type_map.Append(ConstString("unsigned wchar_t"), eBasicTypeUnsignedWChar); // "short" g_type_map.Append(ConstString("short"), eBasicTypeShort); g_type_map.Append(ConstString("short int"), eBasicTypeShort); g_type_map.Append(ConstString("unsigned short"), eBasicTypeUnsignedShort); g_type_map.Append(ConstString("unsigned short int"), eBasicTypeUnsignedShort); // "int" g_type_map.Append(ConstString("int"), eBasicTypeInt); g_type_map.Append(ConstString("signed int"), eBasicTypeInt); g_type_map.Append(ConstString("unsigned int"), eBasicTypeUnsignedInt); g_type_map.Append(ConstString("unsigned"), eBasicTypeUnsignedInt); // "long" g_type_map.Append(ConstString("long"), eBasicTypeLong); g_type_map.Append(ConstString("long int"), eBasicTypeLong); g_type_map.Append(ConstString("unsigned long"), eBasicTypeUnsignedLong); g_type_map.Append(ConstString("unsigned long int"), eBasicTypeUnsignedLong); // "long long" g_type_map.Append(ConstString("long long"), eBasicTypeLongLong); g_type_map.Append(ConstString("long long int"), eBasicTypeLongLong); g_type_map.Append(ConstString("unsigned long long"), eBasicTypeUnsignedLongLong); g_type_map.Append(ConstString("unsigned long long int"), eBasicTypeUnsignedLongLong); // "int128" g_type_map.Append(ConstString("__int128_t"), eBasicTypeInt128); g_type_map.Append(ConstString("__uint128_t"), eBasicTypeUnsignedInt128); // Miscellaneous g_type_map.Append(ConstString("bool"), eBasicTypeBool); g_type_map.Append(ConstString("float"), eBasicTypeFloat); g_type_map.Append(ConstString("double"), eBasicTypeDouble); g_type_map.Append(ConstString("long double"), eBasicTypeLongDouble); g_type_map.Append(ConstString("id"), eBasicTypeObjCID); g_type_map.Append(ConstString("SEL"), eBasicTypeObjCSel); g_type_map.Append(ConstString("nullptr"), eBasicTypeNullPtr); g_type_map.Sort(); }); return g_type_map.Find(name, eBasicTypeInvalid); } return eBasicTypeInvalid; } CompilerType ClangASTContext::GetBasicType(ASTContext *ast, const ConstString &name) { if (ast) { lldb::BasicType basic_type = ClangASTContext::GetBasicTypeEnumeration(name); return ClangASTContext::GetBasicType(ast, basic_type); } return CompilerType(); } uint32_t ClangASTContext::GetPointerByteSize() { if (m_pointer_byte_size == 0) m_pointer_byte_size = GetBasicType(lldb::eBasicTypeVoid) .GetPointerType() .GetByteSize(nullptr); return m_pointer_byte_size; } CompilerType ClangASTContext::GetBasicType(lldb::BasicType basic_type) { return GetBasicType(getASTContext(), basic_type); } CompilerType ClangASTContext::GetBasicType(ASTContext *ast, lldb::BasicType basic_type) { if (!ast) return CompilerType(); lldb::opaque_compiler_type_t clang_type = GetOpaqueCompilerType(ast, basic_type); if (clang_type) return CompilerType(GetASTContext(ast), clang_type); return CompilerType(); } CompilerType ClangASTContext::GetBuiltinTypeForDWARFEncodingAndBitSize( const char *type_name, uint32_t dw_ate, uint32_t bit_size) { ASTContext *ast = getASTContext(); #define streq(a, b) strcmp(a, b) == 0 assert(ast != nullptr); if (ast) { switch (dw_ate) { default: break; case DW_ATE_address: if (QualTypeMatchesBitSize(bit_size, ast, ast->VoidPtrTy)) return CompilerType(ast, ast->VoidPtrTy); break; case DW_ATE_boolean: if (QualTypeMatchesBitSize(bit_size, ast, ast->BoolTy)) return CompilerType(ast, ast->BoolTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedCharTy)) return CompilerType(ast, ast->UnsignedCharTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedShortTy)) return CompilerType(ast, ast->UnsignedShortTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedIntTy)) return CompilerType(ast, ast->UnsignedIntTy); break; case DW_ATE_lo_user: // This has been seen to mean DW_AT_complex_integer if (type_name) { if (::strstr(type_name, "complex")) { CompilerType complex_int_clang_type = GetBuiltinTypeForDWARFEncodingAndBitSize("int", DW_ATE_signed, bit_size / 2); return CompilerType(ast, ast->getComplexType(ClangUtil::GetQualType( complex_int_clang_type))); } } break; case DW_ATE_complex_float: if (QualTypeMatchesBitSize(bit_size, ast, ast->FloatComplexTy)) return CompilerType(ast, ast->FloatComplexTy); else if (QualTypeMatchesBitSize(bit_size, ast, ast->DoubleComplexTy)) return CompilerType(ast, ast->DoubleComplexTy); else if (QualTypeMatchesBitSize(bit_size, ast, ast->LongDoubleComplexTy)) return CompilerType(ast, ast->LongDoubleComplexTy); else { CompilerType complex_float_clang_type = GetBuiltinTypeForDWARFEncodingAndBitSize("float", DW_ATE_float, bit_size / 2); return CompilerType(ast, ast->getComplexType(ClangUtil::GetQualType( complex_float_clang_type))); } break; case DW_ATE_float: if (streq(type_name, "float") && QualTypeMatchesBitSize(bit_size, ast, ast->FloatTy)) return CompilerType(ast, ast->FloatTy); if (streq(type_name, "double") && QualTypeMatchesBitSize(bit_size, ast, ast->DoubleTy)) return CompilerType(ast, ast->DoubleTy); if (streq(type_name, "long double") && QualTypeMatchesBitSize(bit_size, ast, ast->LongDoubleTy)) return CompilerType(ast, ast->LongDoubleTy); // Fall back to not requiring a name match if (QualTypeMatchesBitSize(bit_size, ast, ast->FloatTy)) return CompilerType(ast, ast->FloatTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->DoubleTy)) return CompilerType(ast, ast->DoubleTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->LongDoubleTy)) return CompilerType(ast, ast->LongDoubleTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->HalfTy)) return CompilerType(ast, ast->HalfTy); break; case DW_ATE_signed: if (type_name) { if (streq(type_name, "wchar_t") && QualTypeMatchesBitSize(bit_size, ast, ast->WCharTy) && (getTargetInfo() && TargetInfo::isTypeSigned(getTargetInfo()->getWCharType()))) return CompilerType(ast, ast->WCharTy); if (streq(type_name, "void") && QualTypeMatchesBitSize(bit_size, ast, ast->VoidTy)) return CompilerType(ast, ast->VoidTy); if (strstr(type_name, "long long") && QualTypeMatchesBitSize(bit_size, ast, ast->LongLongTy)) return CompilerType(ast, ast->LongLongTy); if (strstr(type_name, "long") && QualTypeMatchesBitSize(bit_size, ast, ast->LongTy)) return CompilerType(ast, ast->LongTy); if (strstr(type_name, "short") && QualTypeMatchesBitSize(bit_size, ast, ast->ShortTy)) return CompilerType(ast, ast->ShortTy); if (strstr(type_name, "char")) { if (QualTypeMatchesBitSize(bit_size, ast, ast->CharTy)) return CompilerType(ast, ast->CharTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->SignedCharTy)) return CompilerType(ast, ast->SignedCharTy); } if (strstr(type_name, "int")) { if (QualTypeMatchesBitSize(bit_size, ast, ast->IntTy)) return CompilerType(ast, ast->IntTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->Int128Ty)) return CompilerType(ast, ast->Int128Ty); } } // We weren't able to match up a type name, just search by size if (QualTypeMatchesBitSize(bit_size, ast, ast->CharTy)) return CompilerType(ast, ast->CharTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->ShortTy)) return CompilerType(ast, ast->ShortTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->IntTy)) return CompilerType(ast, ast->IntTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->LongTy)) return CompilerType(ast, ast->LongTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->LongLongTy)) return CompilerType(ast, ast->LongLongTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->Int128Ty)) return CompilerType(ast, ast->Int128Ty); break; case DW_ATE_signed_char: if (ast->getLangOpts().CharIsSigned && type_name && streq(type_name, "char")) { if (QualTypeMatchesBitSize(bit_size, ast, ast->CharTy)) return CompilerType(ast, ast->CharTy); } if (QualTypeMatchesBitSize(bit_size, ast, ast->SignedCharTy)) return CompilerType(ast, ast->SignedCharTy); break; case DW_ATE_unsigned: if (type_name) { if (streq(type_name, "wchar_t")) { if (QualTypeMatchesBitSize(bit_size, ast, ast->WCharTy)) { if (!(getTargetInfo() && TargetInfo::isTypeSigned(getTargetInfo()->getWCharType()))) return CompilerType(ast, ast->WCharTy); } } if (strstr(type_name, "long long")) { if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedLongLongTy)) return CompilerType(ast, ast->UnsignedLongLongTy); } else if (strstr(type_name, "long")) { if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedLongTy)) return CompilerType(ast, ast->UnsignedLongTy); } else if (strstr(type_name, "short")) { if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedShortTy)) return CompilerType(ast, ast->UnsignedShortTy); } else if (strstr(type_name, "char")) { if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedCharTy)) return CompilerType(ast, ast->UnsignedCharTy); } else if (strstr(type_name, "int")) { if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedIntTy)) return CompilerType(ast, ast->UnsignedIntTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedInt128Ty)) return CompilerType(ast, ast->UnsignedInt128Ty); } } // We weren't able to match up a type name, just search by size if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedCharTy)) return CompilerType(ast, ast->UnsignedCharTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedShortTy)) return CompilerType(ast, ast->UnsignedShortTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedIntTy)) return CompilerType(ast, ast->UnsignedIntTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedLongTy)) return CompilerType(ast, ast->UnsignedLongTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedLongLongTy)) return CompilerType(ast, ast->UnsignedLongLongTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedInt128Ty)) return CompilerType(ast, ast->UnsignedInt128Ty); break; case DW_ATE_unsigned_char: if (!ast->getLangOpts().CharIsSigned && type_name && streq(type_name, "char")) { if (QualTypeMatchesBitSize(bit_size, ast, ast->CharTy)) return CompilerType(ast, ast->CharTy); } if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedCharTy)) return CompilerType(ast, ast->UnsignedCharTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedShortTy)) return CompilerType(ast, ast->UnsignedShortTy); break; case DW_ATE_imaginary_float: break; case DW_ATE_UTF: if (type_name) { if (streq(type_name, "char16_t")) { return CompilerType(ast, ast->Char16Ty); } else if (streq(type_name, "char32_t")) { return CompilerType(ast, ast->Char32Ty); } } break; } } // This assert should fire for anything that we don't catch above so we know // to fix any issues we run into. if (type_name) { Host::SystemLog(Host::eSystemLogError, "error: need to add support for " "DW_TAG_base_type '%s' encoded with " "DW_ATE = 0x%x, bit_size = %u\n", type_name, dw_ate, bit_size); } else { Host::SystemLog(Host::eSystemLogError, "error: need to add support for " "DW_TAG_base_type encoded with " "DW_ATE = 0x%x, bit_size = %u\n", dw_ate, bit_size); } return CompilerType(); } CompilerType ClangASTContext::GetUnknownAnyType(clang::ASTContext *ast) { if (ast) return CompilerType(ast, ast->UnknownAnyTy); return CompilerType(); } CompilerType ClangASTContext::GetCStringType(bool is_const) { ASTContext *ast = getASTContext(); QualType char_type(ast->CharTy); if (is_const) char_type.addConst(); return CompilerType(ast, ast->getPointerType(char_type)); } clang::DeclContext * ClangASTContext::GetTranslationUnitDecl(clang::ASTContext *ast) { return ast->getTranslationUnitDecl(); } clang::Decl *ClangASTContext::CopyDecl(ASTContext *dst_ast, ASTContext *src_ast, clang::Decl *source_decl) { FileSystemOptions file_system_options; FileManager file_manager(file_system_options); ASTImporter importer(*dst_ast, file_manager, *src_ast, file_manager, false); return importer.Import(source_decl); } bool ClangASTContext::AreTypesSame(CompilerType type1, CompilerType type2, bool ignore_qualifiers) { ClangASTContext *ast = llvm::dyn_cast_or_null(type1.GetTypeSystem()); if (!ast || ast != type2.GetTypeSystem()) return false; if (type1.GetOpaqueQualType() == type2.GetOpaqueQualType()) return true; QualType type1_qual = ClangUtil::GetQualType(type1); QualType type2_qual = ClangUtil::GetQualType(type2); if (ignore_qualifiers) { type1_qual = type1_qual.getUnqualifiedType(); type2_qual = type2_qual.getUnqualifiedType(); } return ast->getASTContext()->hasSameType(type1_qual, type2_qual); } CompilerType ClangASTContext::GetTypeForDecl(clang::NamedDecl *decl) { if (clang::ObjCInterfaceDecl *interface_decl = llvm::dyn_cast(decl)) return GetTypeForDecl(interface_decl); if (clang::TagDecl *tag_decl = llvm::dyn_cast(decl)) return GetTypeForDecl(tag_decl); return CompilerType(); } CompilerType ClangASTContext::GetTypeForDecl(TagDecl *decl) { // No need to call the getASTContext() accessor (which can create the AST // if it isn't created yet, because we can't have created a decl in this // AST if our AST didn't already exist... ASTContext *ast = &decl->getASTContext(); if (ast) return CompilerType(ast, ast->getTagDeclType(decl)); return CompilerType(); } CompilerType ClangASTContext::GetTypeForDecl(ObjCInterfaceDecl *decl) { // No need to call the getASTContext() accessor (which can create the AST // if it isn't created yet, because we can't have created a decl in this // AST if our AST didn't already exist... ASTContext *ast = &decl->getASTContext(); if (ast) return CompilerType(ast, ast->getObjCInterfaceType(decl)); return CompilerType(); } #pragma mark Structure, Unions, Classes CompilerType ClangASTContext::CreateRecordType(DeclContext *decl_ctx, AccessType access_type, const char *name, int kind, LanguageType language, ClangASTMetadata *metadata) { ASTContext *ast = getASTContext(); assert(ast != nullptr); if (decl_ctx == nullptr) decl_ctx = ast->getTranslationUnitDecl(); if (language == eLanguageTypeObjC || language == eLanguageTypeObjC_plus_plus) { bool isForwardDecl = true; bool isInternal = false; return CreateObjCClass(name, decl_ctx, isForwardDecl, isInternal, metadata); } // NOTE: Eventually CXXRecordDecl will be merged back into RecordDecl and // we will need to update this code. I was told to currently always use // the CXXRecordDecl class since we often don't know from debug information // if something is struct or a class, so we default to always use the more // complete definition just in case. bool is_anonymous = (!name) || (!name[0]); CXXRecordDecl *decl = CXXRecordDecl::Create( *ast, (TagDecl::TagKind)kind, decl_ctx, SourceLocation(), SourceLocation(), is_anonymous ? nullptr : &ast->Idents.get(name)); if (is_anonymous) decl->setAnonymousStructOrUnion(true); if (decl) { if (metadata) SetMetadata(ast, decl, *metadata); if (access_type != eAccessNone) decl->setAccess(ConvertAccessTypeToAccessSpecifier(access_type)); if (decl_ctx) decl_ctx->addDecl(decl); return CompilerType(ast, ast->getTagDeclType(decl)); } return CompilerType(); } namespace { bool IsValueParam(const clang::TemplateArgument &argument) { return argument.getKind() == TemplateArgument::Integral; } } static TemplateParameterList *CreateTemplateParameterList( ASTContext *ast, const ClangASTContext::TemplateParameterInfos &template_param_infos, llvm::SmallVector &template_param_decls) { const bool parameter_pack = false; const bool is_typename = false; const unsigned depth = 0; const size_t num_template_params = template_param_infos.args.size(); DeclContext *const decl_context = ast->getTranslationUnitDecl(); // Is this the right decl context?, for (size_t i = 0; i < num_template_params; ++i) { const char *name = template_param_infos.names[i]; IdentifierInfo *identifier_info = nullptr; if (name && name[0]) identifier_info = &ast->Idents.get(name); if (IsValueParam(template_param_infos.args[i])) { template_param_decls.push_back(NonTypeTemplateParmDecl::Create( *ast, decl_context, SourceLocation(), SourceLocation(), depth, i, identifier_info, template_param_infos.args[i].getIntegralType(), parameter_pack, nullptr)); } else { template_param_decls.push_back(TemplateTypeParmDecl::Create( *ast, decl_context, SourceLocation(), SourceLocation(), depth, i, identifier_info, is_typename, parameter_pack)); } } if (template_param_infos.packed_args && template_param_infos.packed_args->args.size()) { IdentifierInfo *identifier_info = nullptr; if (template_param_infos.pack_name && template_param_infos.pack_name[0]) identifier_info = &ast->Idents.get(template_param_infos.pack_name); const bool parameter_pack_true = true; if (IsValueParam(template_param_infos.packed_args->args[0])) { template_param_decls.push_back(NonTypeTemplateParmDecl::Create( *ast, decl_context, SourceLocation(), SourceLocation(), depth, num_template_params, identifier_info, template_param_infos.packed_args->args[0].getIntegralType(), parameter_pack_true, nullptr)); } else { template_param_decls.push_back(TemplateTypeParmDecl::Create( *ast, decl_context, SourceLocation(), SourceLocation(), depth, num_template_params, identifier_info, is_typename, parameter_pack_true)); } } clang::Expr *const requires_clause = nullptr; // TODO: Concepts TemplateParameterList *template_param_list = TemplateParameterList::Create( *ast, SourceLocation(), SourceLocation(), template_param_decls, SourceLocation(), requires_clause); return template_param_list; } clang::FunctionTemplateDecl *ClangASTContext::CreateFunctionTemplateDecl( clang::DeclContext *decl_ctx, clang::FunctionDecl *func_decl, const char *name, const TemplateParameterInfos &template_param_infos) { // /// \brief Create a function template node. ASTContext *ast = getASTContext(); llvm::SmallVector template_param_decls; TemplateParameterList *template_param_list = CreateTemplateParameterList( ast, template_param_infos, template_param_decls); FunctionTemplateDecl *func_tmpl_decl = FunctionTemplateDecl::Create( *ast, decl_ctx, func_decl->getLocation(), func_decl->getDeclName(), template_param_list, func_decl); for (size_t i = 0, template_param_decl_count = template_param_decls.size(); i < template_param_decl_count; ++i) { // TODO: verify which decl context we should put template_param_decls into.. template_param_decls[i]->setDeclContext(func_decl); } return func_tmpl_decl; } void ClangASTContext::CreateFunctionTemplateSpecializationInfo( FunctionDecl *func_decl, clang::FunctionTemplateDecl *func_tmpl_decl, const TemplateParameterInfos &infos) { TemplateArgumentList template_args(TemplateArgumentList::OnStack, infos.args); func_decl->setFunctionTemplateSpecialization(func_tmpl_decl, &template_args, nullptr); } ClassTemplateDecl *ClangASTContext::CreateClassTemplateDecl( DeclContext *decl_ctx, lldb::AccessType access_type, const char *class_name, int kind, const TemplateParameterInfos &template_param_infos) { ASTContext *ast = getASTContext(); ClassTemplateDecl *class_template_decl = nullptr; if (decl_ctx == nullptr) decl_ctx = ast->getTranslationUnitDecl(); IdentifierInfo &identifier_info = ast->Idents.get(class_name); DeclarationName decl_name(&identifier_info); clang::DeclContext::lookup_result result = decl_ctx->lookup(decl_name); for (NamedDecl *decl : result) { class_template_decl = dyn_cast(decl); if (class_template_decl) return class_template_decl; } llvm::SmallVector template_param_decls; TemplateParameterList *template_param_list = CreateTemplateParameterList( ast, template_param_infos, template_param_decls); CXXRecordDecl *template_cxx_decl = CXXRecordDecl::Create( *ast, (TagDecl::TagKind)kind, decl_ctx, // What decl context do we use here? TU? The actual decl // context? SourceLocation(), SourceLocation(), &identifier_info); for (size_t i = 0, template_param_decl_count = template_param_decls.size(); i < template_param_decl_count; ++i) { template_param_decls[i]->setDeclContext(template_cxx_decl); } // With templated classes, we say that a class is templated with // specializations, but that the bare class has no functions. // template_cxx_decl->startDefinition(); // template_cxx_decl->completeDefinition(); class_template_decl = ClassTemplateDecl::Create( *ast, decl_ctx, // What decl context do we use here? TU? The actual decl // context? SourceLocation(), decl_name, template_param_list, template_cxx_decl); if (class_template_decl) { if (access_type != eAccessNone) class_template_decl->setAccess( ConvertAccessTypeToAccessSpecifier(access_type)); // if (TagDecl *ctx_tag_decl = dyn_cast(decl_ctx)) // CompleteTagDeclarationDefinition(GetTypeForDecl(ctx_tag_decl)); decl_ctx->addDecl(class_template_decl); #ifdef LLDB_CONFIGURATION_DEBUG VerifyDecl(class_template_decl); #endif } return class_template_decl; } ClassTemplateSpecializationDecl * ClangASTContext::CreateClassTemplateSpecializationDecl( DeclContext *decl_ctx, ClassTemplateDecl *class_template_decl, int kind, const TemplateParameterInfos &template_param_infos) { ASTContext *ast = getASTContext(); llvm::SmallVector args( template_param_infos.args.size() + (template_param_infos.packed_args ? 1 : 0)); std::copy(template_param_infos.args.begin(), template_param_infos.args.end(), args.begin()); if (template_param_infos.packed_args) { args[args.size() - 1] = TemplateArgument::CreatePackCopy( *ast, template_param_infos.packed_args->args); } ClassTemplateSpecializationDecl *class_template_specialization_decl = ClassTemplateSpecializationDecl::Create( *ast, (TagDecl::TagKind)kind, decl_ctx, SourceLocation(), SourceLocation(), class_template_decl, args, nullptr); class_template_specialization_decl->setSpecializationKind( TSK_ExplicitSpecialization); return class_template_specialization_decl; } CompilerType ClangASTContext::CreateClassTemplateSpecializationType( ClassTemplateSpecializationDecl *class_template_specialization_decl) { if (class_template_specialization_decl) { ASTContext *ast = getASTContext(); if (ast) return CompilerType( ast, ast->getTagDeclType(class_template_specialization_decl)); } return CompilerType(); } static inline bool check_op_param(bool is_method, clang::OverloadedOperatorKind op_kind, bool unary, bool binary, uint32_t num_params) { // Special-case call since it can take any number of operands if (op_kind == OO_Call) return true; // The parameter count doesn't include "this" if (is_method) ++num_params; if (num_params == 1) return unary; if (num_params == 2) return binary; else return false; } bool ClangASTContext::CheckOverloadedOperatorKindParameterCount( bool is_method, clang::OverloadedOperatorKind op_kind, uint32_t num_params) { switch (op_kind) { default: break; // C++ standard allows any number of arguments to new/delete case OO_New: case OO_Array_New: case OO_Delete: case OO_Array_Delete: return true; } #define OVERLOADED_OPERATOR(Name, Spelling, Token, Unary, Binary, MemberOnly) \ case OO_##Name: \ return check_op_param(is_method, op_kind, Unary, Binary, num_params); switch (op_kind) { #include "clang/Basic/OperatorKinds.def" default: break; } return false; } clang::AccessSpecifier ClangASTContext::UnifyAccessSpecifiers(clang::AccessSpecifier lhs, clang::AccessSpecifier rhs) { // Make the access equal to the stricter of the field and the nested field's // access if (lhs == AS_none || rhs == AS_none) return AS_none; if (lhs == AS_private || rhs == AS_private) return AS_private; if (lhs == AS_protected || rhs == AS_protected) return AS_protected; return AS_public; } bool ClangASTContext::FieldIsBitfield(FieldDecl *field, uint32_t &bitfield_bit_size) { return FieldIsBitfield(getASTContext(), field, bitfield_bit_size); } bool ClangASTContext::FieldIsBitfield(ASTContext *ast, FieldDecl *field, uint32_t &bitfield_bit_size) { if (ast == nullptr || field == nullptr) return false; if (field->isBitField()) { Expr *bit_width_expr = field->getBitWidth(); if (bit_width_expr) { llvm::APSInt bit_width_apsint; if (bit_width_expr->isIntegerConstantExpr(bit_width_apsint, *ast)) { bitfield_bit_size = bit_width_apsint.getLimitedValue(UINT32_MAX); return true; } } } return false; } bool ClangASTContext::RecordHasFields(const RecordDecl *record_decl) { if (record_decl == nullptr) return false; if (!record_decl->field_empty()) return true; // No fields, lets check this is a CXX record and check the base classes const CXXRecordDecl *cxx_record_decl = dyn_cast(record_decl); if (cxx_record_decl) { CXXRecordDecl::base_class_const_iterator base_class, base_class_end; for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end(); base_class != base_class_end; ++base_class) { const CXXRecordDecl *base_class_decl = cast( base_class->getType()->getAs()->getDecl()); if (RecordHasFields(base_class_decl)) return true; } } return false; } #pragma mark Objective C Classes CompilerType ClangASTContext::CreateObjCClass(const char *name, DeclContext *decl_ctx, bool isForwardDecl, bool isInternal, ClangASTMetadata *metadata) { ASTContext *ast = getASTContext(); assert(ast != nullptr); assert(name && name[0]); if (decl_ctx == nullptr) decl_ctx = ast->getTranslationUnitDecl(); ObjCInterfaceDecl *decl = ObjCInterfaceDecl::Create( *ast, decl_ctx, SourceLocation(), &ast->Idents.get(name), nullptr, nullptr, SourceLocation(), /*isForwardDecl,*/ isInternal); if (decl && metadata) SetMetadata(ast, decl, *metadata); return CompilerType(ast, ast->getObjCInterfaceType(decl)); } static inline bool BaseSpecifierIsEmpty(const CXXBaseSpecifier *b) { return ClangASTContext::RecordHasFields(b->getType()->getAsCXXRecordDecl()) == false; } uint32_t ClangASTContext::GetNumBaseClasses(const CXXRecordDecl *cxx_record_decl, bool omit_empty_base_classes) { uint32_t num_bases = 0; if (cxx_record_decl) { if (omit_empty_base_classes) { CXXRecordDecl::base_class_const_iterator base_class, base_class_end; for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end(); base_class != base_class_end; ++base_class) { // Skip empty base classes if (omit_empty_base_classes) { if (BaseSpecifierIsEmpty(base_class)) continue; } ++num_bases; } } else num_bases = cxx_record_decl->getNumBases(); } return num_bases; } #pragma mark Namespace Declarations NamespaceDecl * ClangASTContext::GetUniqueNamespaceDeclaration(const char *name, DeclContext *decl_ctx) { NamespaceDecl *namespace_decl = nullptr; ASTContext *ast = getASTContext(); TranslationUnitDecl *translation_unit_decl = ast->getTranslationUnitDecl(); if (decl_ctx == nullptr) decl_ctx = translation_unit_decl; if (name) { IdentifierInfo &identifier_info = ast->Idents.get(name); DeclarationName decl_name(&identifier_info); clang::DeclContext::lookup_result result = decl_ctx->lookup(decl_name); for (NamedDecl *decl : result) { namespace_decl = dyn_cast(decl); if (namespace_decl) return namespace_decl; } namespace_decl = NamespaceDecl::Create(*ast, decl_ctx, false, SourceLocation(), SourceLocation(), &identifier_info, nullptr); decl_ctx->addDecl(namespace_decl); } else { if (decl_ctx == translation_unit_decl) { namespace_decl = translation_unit_decl->getAnonymousNamespace(); if (namespace_decl) return namespace_decl; namespace_decl = NamespaceDecl::Create(*ast, decl_ctx, false, SourceLocation(), SourceLocation(), nullptr, nullptr); translation_unit_decl->setAnonymousNamespace(namespace_decl); translation_unit_decl->addDecl(namespace_decl); assert(namespace_decl == translation_unit_decl->getAnonymousNamespace()); } else { NamespaceDecl *parent_namespace_decl = cast(decl_ctx); if (parent_namespace_decl) { namespace_decl = parent_namespace_decl->getAnonymousNamespace(); if (namespace_decl) return namespace_decl; namespace_decl = NamespaceDecl::Create(*ast, decl_ctx, false, SourceLocation(), SourceLocation(), nullptr, nullptr); parent_namespace_decl->setAnonymousNamespace(namespace_decl); parent_namespace_decl->addDecl(namespace_decl); assert(namespace_decl == parent_namespace_decl->getAnonymousNamespace()); } else { // BAD!!! } } } #ifdef LLDB_CONFIGURATION_DEBUG VerifyDecl(namespace_decl); #endif return namespace_decl; } NamespaceDecl *ClangASTContext::GetUniqueNamespaceDeclaration( clang::ASTContext *ast, const char *name, clang::DeclContext *decl_ctx) { ClangASTContext *ast_ctx = ClangASTContext::GetASTContext(ast); if (ast_ctx == nullptr) return nullptr; return ast_ctx->GetUniqueNamespaceDeclaration(name, decl_ctx); } clang::BlockDecl * ClangASTContext::CreateBlockDeclaration(clang::DeclContext *ctx) { if (ctx != nullptr) { clang::BlockDecl *decl = clang::BlockDecl::Create(*getASTContext(), ctx, clang::SourceLocation()); ctx->addDecl(decl); return decl; } return nullptr; } clang::DeclContext *FindLCABetweenDecls(clang::DeclContext *left, clang::DeclContext *right, clang::DeclContext *root) { if (root == nullptr) return nullptr; std::set path_left; for (clang::DeclContext *d = left; d != nullptr; d = d->getParent()) path_left.insert(d); for (clang::DeclContext *d = right; d != nullptr; d = d->getParent()) if (path_left.find(d) != path_left.end()) return d; return nullptr; } clang::UsingDirectiveDecl *ClangASTContext::CreateUsingDirectiveDeclaration( clang::DeclContext *decl_ctx, clang::NamespaceDecl *ns_decl) { if (decl_ctx != nullptr && ns_decl != nullptr) { clang::TranslationUnitDecl *translation_unit = (clang::TranslationUnitDecl *)GetTranslationUnitDecl(getASTContext()); clang::UsingDirectiveDecl *using_decl = clang::UsingDirectiveDecl::Create( *getASTContext(), decl_ctx, clang::SourceLocation(), clang::SourceLocation(), clang::NestedNameSpecifierLoc(), clang::SourceLocation(), ns_decl, FindLCABetweenDecls(decl_ctx, ns_decl, translation_unit)); decl_ctx->addDecl(using_decl); return using_decl; } return nullptr; } clang::UsingDecl * ClangASTContext::CreateUsingDeclaration(clang::DeclContext *current_decl_ctx, clang::NamedDecl *target) { if (current_decl_ctx != nullptr && target != nullptr) { clang::UsingDecl *using_decl = clang::UsingDecl::Create( *getASTContext(), current_decl_ctx, clang::SourceLocation(), clang::NestedNameSpecifierLoc(), clang::DeclarationNameInfo(), false); clang::UsingShadowDecl *shadow_decl = clang::UsingShadowDecl::Create( *getASTContext(), current_decl_ctx, clang::SourceLocation(), using_decl, target); using_decl->addShadowDecl(shadow_decl); current_decl_ctx->addDecl(using_decl); return using_decl; } return nullptr; } clang::VarDecl *ClangASTContext::CreateVariableDeclaration( clang::DeclContext *decl_context, const char *name, clang::QualType type) { if (decl_context != nullptr) { clang::VarDecl *var_decl = clang::VarDecl::Create( *getASTContext(), decl_context, clang::SourceLocation(), clang::SourceLocation(), name && name[0] ? &getASTContext()->Idents.getOwn(name) : nullptr, type, nullptr, clang::SC_None); var_decl->setAccess(clang::AS_public); decl_context->addDecl(var_decl); return var_decl; } return nullptr; } lldb::opaque_compiler_type_t ClangASTContext::GetOpaqueCompilerType(clang::ASTContext *ast, lldb::BasicType basic_type) { switch (basic_type) { case eBasicTypeVoid: return ast->VoidTy.getAsOpaquePtr(); case eBasicTypeChar: return ast->CharTy.getAsOpaquePtr(); case eBasicTypeSignedChar: return ast->SignedCharTy.getAsOpaquePtr(); case eBasicTypeUnsignedChar: return ast->UnsignedCharTy.getAsOpaquePtr(); case eBasicTypeWChar: return ast->getWCharType().getAsOpaquePtr(); case eBasicTypeSignedWChar: return ast->getSignedWCharType().getAsOpaquePtr(); case eBasicTypeUnsignedWChar: return ast->getUnsignedWCharType().getAsOpaquePtr(); case eBasicTypeChar16: return ast->Char16Ty.getAsOpaquePtr(); case eBasicTypeChar32: return ast->Char32Ty.getAsOpaquePtr(); case eBasicTypeShort: return ast->ShortTy.getAsOpaquePtr(); case eBasicTypeUnsignedShort: return ast->UnsignedShortTy.getAsOpaquePtr(); case eBasicTypeInt: return ast->IntTy.getAsOpaquePtr(); case eBasicTypeUnsignedInt: return ast->UnsignedIntTy.getAsOpaquePtr(); case eBasicTypeLong: return ast->LongTy.getAsOpaquePtr(); case eBasicTypeUnsignedLong: return ast->UnsignedLongTy.getAsOpaquePtr(); case eBasicTypeLongLong: return ast->LongLongTy.getAsOpaquePtr(); case eBasicTypeUnsignedLongLong: return ast->UnsignedLongLongTy.getAsOpaquePtr(); case eBasicTypeInt128: return ast->Int128Ty.getAsOpaquePtr(); case eBasicTypeUnsignedInt128: return ast->UnsignedInt128Ty.getAsOpaquePtr(); case eBasicTypeBool: return ast->BoolTy.getAsOpaquePtr(); case eBasicTypeHalf: return ast->HalfTy.getAsOpaquePtr(); case eBasicTypeFloat: return ast->FloatTy.getAsOpaquePtr(); case eBasicTypeDouble: return ast->DoubleTy.getAsOpaquePtr(); case eBasicTypeLongDouble: return ast->LongDoubleTy.getAsOpaquePtr(); case eBasicTypeFloatComplex: return ast->FloatComplexTy.getAsOpaquePtr(); case eBasicTypeDoubleComplex: return ast->DoubleComplexTy.getAsOpaquePtr(); case eBasicTypeLongDoubleComplex: return ast->LongDoubleComplexTy.getAsOpaquePtr(); case eBasicTypeObjCID: return ast->getObjCIdType().getAsOpaquePtr(); case eBasicTypeObjCClass: return ast->getObjCClassType().getAsOpaquePtr(); case eBasicTypeObjCSel: return ast->getObjCSelType().getAsOpaquePtr(); case eBasicTypeNullPtr: return ast->NullPtrTy.getAsOpaquePtr(); default: return nullptr; } } #pragma mark Function Types clang::DeclarationName ClangASTContext::GetDeclarationName(const char *name, const CompilerType &function_clang_type) { if (!name || !name[0]) return clang::DeclarationName(); clang::OverloadedOperatorKind op_kind = clang::NUM_OVERLOADED_OPERATORS; if (!IsOperator(name, op_kind) || op_kind == clang::NUM_OVERLOADED_OPERATORS) return DeclarationName(&getASTContext()->Idents.get( name)); // Not operator, but a regular function. // Check the number of operator parameters. Sometimes we have // seen bad DWARF that doesn't correctly describe operators and // if we try to create a method and add it to the class, clang // will assert and crash, so we need to make sure things are // acceptable. clang::QualType method_qual_type(ClangUtil::GetQualType(function_clang_type)); const clang::FunctionProtoType *function_type = llvm::dyn_cast(method_qual_type.getTypePtr()); if (function_type == nullptr) return clang::DeclarationName(); const bool is_method = false; const unsigned int num_params = function_type->getNumParams(); if (!ClangASTContext::CheckOverloadedOperatorKindParameterCount( is_method, op_kind, num_params)) return clang::DeclarationName(); return getASTContext()->DeclarationNames.getCXXOperatorName(op_kind); } FunctionDecl *ClangASTContext::CreateFunctionDeclaration( DeclContext *decl_ctx, const char *name, const CompilerType &function_clang_type, int storage, bool is_inline) { FunctionDecl *func_decl = nullptr; ASTContext *ast = getASTContext(); if (decl_ctx == nullptr) decl_ctx = ast->getTranslationUnitDecl(); const bool hasWrittenPrototype = true; const bool isConstexprSpecified = false; clang::DeclarationName declarationName = GetDeclarationName(name, function_clang_type); func_decl = FunctionDecl::Create( *ast, decl_ctx, SourceLocation(), SourceLocation(), declarationName, ClangUtil::GetQualType(function_clang_type), nullptr, (clang::StorageClass)storage, is_inline, hasWrittenPrototype, isConstexprSpecified); if (func_decl) decl_ctx->addDecl(func_decl); #ifdef LLDB_CONFIGURATION_DEBUG VerifyDecl(func_decl); #endif return func_decl; } CompilerType ClangASTContext::CreateFunctionType( ASTContext *ast, const CompilerType &result_type, const CompilerType *args, unsigned num_args, bool is_variadic, unsigned type_quals) { if (ast == nullptr) return CompilerType(); // invalid AST if (!result_type || !ClangUtil::IsClangType(result_type)) return CompilerType(); // invalid return type std::vector qual_type_args; if (num_args > 0 && args == nullptr) return CompilerType(); // invalid argument array passed in // Verify that all arguments are valid and the right type for (unsigned i = 0; i < num_args; ++i) { if (args[i]) { // Make sure we have a clang type in args[i] and not a type from another // language whose name might match const bool is_clang_type = ClangUtil::IsClangType(args[i]); lldbassert(is_clang_type); if (is_clang_type) qual_type_args.push_back(ClangUtil::GetQualType(args[i])); else return CompilerType(); // invalid argument type (must be a clang type) } else return CompilerType(); // invalid argument type (empty) } // TODO: Detect calling convention in DWARF? FunctionProtoType::ExtProtoInfo proto_info; proto_info.Variadic = is_variadic; proto_info.ExceptionSpec = EST_None; proto_info.TypeQuals = type_quals; proto_info.RefQualifier = RQ_None; return CompilerType(ast, ast->getFunctionType(ClangUtil::GetQualType(result_type), qual_type_args, proto_info)); } ParmVarDecl *ClangASTContext::CreateParameterDeclaration( const char *name, const CompilerType ¶m_type, int storage) { ASTContext *ast = getASTContext(); assert(ast != nullptr); return ParmVarDecl::Create(*ast, ast->getTranslationUnitDecl(), SourceLocation(), SourceLocation(), name && name[0] ? &ast->Idents.get(name) : nullptr, ClangUtil::GetQualType(param_type), nullptr, (clang::StorageClass)storage, nullptr); } void ClangASTContext::SetFunctionParameters(FunctionDecl *function_decl, ParmVarDecl **params, unsigned num_params) { if (function_decl) function_decl->setParams(ArrayRef(params, num_params)); } CompilerType ClangASTContext::CreateBlockPointerType(const CompilerType &function_type) { QualType block_type = m_ast_ap->getBlockPointerType( clang::QualType::getFromOpaquePtr(function_type.GetOpaqueQualType())); return CompilerType(this, block_type.getAsOpaquePtr()); } #pragma mark Array Types CompilerType ClangASTContext::CreateArrayType(const CompilerType &element_type, size_t element_count, bool is_vector) { if (element_type.IsValid()) { ASTContext *ast = getASTContext(); assert(ast != nullptr); if (is_vector) { return CompilerType( ast, ast->getExtVectorType(ClangUtil::GetQualType(element_type), element_count)); } else { llvm::APInt ap_element_count(64, element_count); if (element_count == 0) { return CompilerType(ast, ast->getIncompleteArrayType( ClangUtil::GetQualType(element_type), clang::ArrayType::Normal, 0)); } else { return CompilerType( ast, ast->getConstantArrayType(ClangUtil::GetQualType(element_type), ap_element_count, clang::ArrayType::Normal, 0)); } } } return CompilerType(); } CompilerType ClangASTContext::CreateStructForIdentifier( const ConstString &type_name, const std::initializer_list> &type_fields, bool packed) { CompilerType type; if (!type_name.IsEmpty() && (type = GetTypeForIdentifier(type_name)) .IsValid()) { lldbassert(0 && "Trying to create a type for an existing name"); return type; } type = CreateRecordType(nullptr, lldb::eAccessPublic, type_name.GetCString(), clang::TTK_Struct, lldb::eLanguageTypeC); StartTagDeclarationDefinition(type); for (const auto &field : type_fields) AddFieldToRecordType(type, field.first, field.second, lldb::eAccessPublic, 0); if (packed) SetIsPacked(type); CompleteTagDeclarationDefinition(type); return type; } CompilerType ClangASTContext::GetOrCreateStructForIdentifier( const ConstString &type_name, const std::initializer_list> &type_fields, bool packed) { CompilerType type; if ((type = GetTypeForIdentifier(type_name)).IsValid()) return type; return CreateStructForIdentifier(type_name, type_fields, packed); } #pragma mark Enumeration Types CompilerType ClangASTContext::CreateEnumerationType(const char *name, DeclContext *decl_ctx, const Declaration &decl, const CompilerType &integer_clang_type, bool is_scoped) { // TODO: Do something intelligent with the Declaration object passed in // like maybe filling in the SourceLocation with it... ASTContext *ast = getASTContext(); // TODO: ask about these... // const bool IsFixed = false; EnumDecl *enum_decl = EnumDecl::Create( *ast, decl_ctx, SourceLocation(), SourceLocation(), name && name[0] ? &ast->Idents.get(name) : nullptr, nullptr, is_scoped, // IsScoped is_scoped, // IsScopedUsingClassTag false); // IsFixed if (enum_decl) { // TODO: check if we should be setting the promotion type too? enum_decl->setIntegerType(ClangUtil::GetQualType(integer_clang_type)); enum_decl->setAccess(AS_public); // TODO respect what's in the debug info return CompilerType(ast, ast->getTagDeclType(enum_decl)); } return CompilerType(); } // Disable this for now since I can't seem to get a nicely formatted float // out of the APFloat class without just getting the float, double or quad // and then using a formatted print on it which defeats the purpose. We ideally // would like to get perfect string values for any kind of float semantics // so we can support remote targets. The code below also requires a patch to // llvm::APInt. // bool // ClangASTContext::ConvertFloatValueToString (ASTContext *ast, // lldb::opaque_compiler_type_t clang_type, const uint8_t* bytes, size_t // byte_size, int apint_byte_order, std::string &float_str) //{ // uint32_t count = 0; // bool is_complex = false; // if (ClangASTContext::IsFloatingPointType (clang_type, count, is_complex)) // { // unsigned num_bytes_per_float = byte_size / count; // unsigned num_bits_per_float = num_bytes_per_float * 8; // // float_str.clear(); // uint32_t i; // for (i=0; i 0) // { // if (i > 0) // float_str.append(", "); // float_str.append(s); // if (i == 1 && is_complex) // float_str.append(1, 'i'); // } // } // return !float_str.empty(); // } // return false; //} CompilerType ClangASTContext::GetIntTypeFromBitSize(clang::ASTContext *ast, size_t bit_size, bool is_signed) { if (ast) { if (is_signed) { if (bit_size == ast->getTypeSize(ast->SignedCharTy)) return CompilerType(ast, ast->SignedCharTy); if (bit_size == ast->getTypeSize(ast->ShortTy)) return CompilerType(ast, ast->ShortTy); if (bit_size == ast->getTypeSize(ast->IntTy)) return CompilerType(ast, ast->IntTy); if (bit_size == ast->getTypeSize(ast->LongTy)) return CompilerType(ast, ast->LongTy); if (bit_size == ast->getTypeSize(ast->LongLongTy)) return CompilerType(ast, ast->LongLongTy); if (bit_size == ast->getTypeSize(ast->Int128Ty)) return CompilerType(ast, ast->Int128Ty); } else { if (bit_size == ast->getTypeSize(ast->UnsignedCharTy)) return CompilerType(ast, ast->UnsignedCharTy); if (bit_size == ast->getTypeSize(ast->UnsignedShortTy)) return CompilerType(ast, ast->UnsignedShortTy); if (bit_size == ast->getTypeSize(ast->UnsignedIntTy)) return CompilerType(ast, ast->UnsignedIntTy); if (bit_size == ast->getTypeSize(ast->UnsignedLongTy)) return CompilerType(ast, ast->UnsignedLongTy); if (bit_size == ast->getTypeSize(ast->UnsignedLongLongTy)) return CompilerType(ast, ast->UnsignedLongLongTy); if (bit_size == ast->getTypeSize(ast->UnsignedInt128Ty)) return CompilerType(ast, ast->UnsignedInt128Ty); } } return CompilerType(); } CompilerType ClangASTContext::GetPointerSizedIntType(clang::ASTContext *ast, bool is_signed) { if (ast) return GetIntTypeFromBitSize(ast, ast->getTypeSize(ast->VoidPtrTy), is_signed); return CompilerType(); } void ClangASTContext::DumpDeclContextHiearchy(clang::DeclContext *decl_ctx) { if (decl_ctx) { DumpDeclContextHiearchy(decl_ctx->getParent()); clang::NamedDecl *named_decl = llvm::dyn_cast(decl_ctx); if (named_decl) { printf("%20s: %s\n", decl_ctx->getDeclKindName(), named_decl->getDeclName().getAsString().c_str()); } else { printf("%20s\n", decl_ctx->getDeclKindName()); } } } void ClangASTContext::DumpDeclHiearchy(clang::Decl *decl) { if (decl == nullptr) return; DumpDeclContextHiearchy(decl->getDeclContext()); clang::RecordDecl *record_decl = llvm::dyn_cast(decl); if (record_decl) { printf("%20s: %s%s\n", decl->getDeclKindName(), record_decl->getDeclName().getAsString().c_str(), record_decl->isInjectedClassName() ? " (injected class name)" : ""); } else { clang::NamedDecl *named_decl = llvm::dyn_cast(decl); if (named_decl) { printf("%20s: %s\n", decl->getDeclKindName(), named_decl->getDeclName().getAsString().c_str()); } else { printf("%20s\n", decl->getDeclKindName()); } } } bool ClangASTContext::DeclsAreEquivalent(clang::Decl *lhs_decl, clang::Decl *rhs_decl) { if (lhs_decl && rhs_decl) { //---------------------------------------------------------------------- // Make sure the decl kinds match first //---------------------------------------------------------------------- const clang::Decl::Kind lhs_decl_kind = lhs_decl->getKind(); const clang::Decl::Kind rhs_decl_kind = rhs_decl->getKind(); if (lhs_decl_kind == rhs_decl_kind) { //------------------------------------------------------------------ // Now check that the decl contexts kinds are all equivalent // before we have to check any names of the decl contexts... //------------------------------------------------------------------ clang::DeclContext *lhs_decl_ctx = lhs_decl->getDeclContext(); clang::DeclContext *rhs_decl_ctx = rhs_decl->getDeclContext(); if (lhs_decl_ctx && rhs_decl_ctx) { while (1) { if (lhs_decl_ctx && rhs_decl_ctx) { const clang::Decl::Kind lhs_decl_ctx_kind = lhs_decl_ctx->getDeclKind(); const clang::Decl::Kind rhs_decl_ctx_kind = rhs_decl_ctx->getDeclKind(); if (lhs_decl_ctx_kind == rhs_decl_ctx_kind) { lhs_decl_ctx = lhs_decl_ctx->getParent(); rhs_decl_ctx = rhs_decl_ctx->getParent(); if (lhs_decl_ctx == nullptr && rhs_decl_ctx == nullptr) break; } else return false; } else return false; } //-------------------------------------------------------------- // Now make sure the name of the decls match //-------------------------------------------------------------- clang::NamedDecl *lhs_named_decl = llvm::dyn_cast(lhs_decl); clang::NamedDecl *rhs_named_decl = llvm::dyn_cast(rhs_decl); if (lhs_named_decl && rhs_named_decl) { clang::DeclarationName lhs_decl_name = lhs_named_decl->getDeclName(); clang::DeclarationName rhs_decl_name = rhs_named_decl->getDeclName(); if (lhs_decl_name.getNameKind() == rhs_decl_name.getNameKind()) { if (lhs_decl_name.getAsString() != rhs_decl_name.getAsString()) return false; } else return false; } else return false; //-------------------------------------------------------------- // We know that the decl context kinds all match, so now we need // to make sure the names match as well //-------------------------------------------------------------- lhs_decl_ctx = lhs_decl->getDeclContext(); rhs_decl_ctx = rhs_decl->getDeclContext(); while (1) { switch (lhs_decl_ctx->getDeclKind()) { case clang::Decl::TranslationUnit: // We don't care about the translation unit names return true; default: { clang::NamedDecl *lhs_named_decl = llvm::dyn_cast(lhs_decl_ctx); clang::NamedDecl *rhs_named_decl = llvm::dyn_cast(rhs_decl_ctx); if (lhs_named_decl && rhs_named_decl) { clang::DeclarationName lhs_decl_name = lhs_named_decl->getDeclName(); clang::DeclarationName rhs_decl_name = rhs_named_decl->getDeclName(); if (lhs_decl_name.getNameKind() == rhs_decl_name.getNameKind()) { if (lhs_decl_name.getAsString() != rhs_decl_name.getAsString()) return false; } else return false; } else return false; } break; } lhs_decl_ctx = lhs_decl_ctx->getParent(); rhs_decl_ctx = rhs_decl_ctx->getParent(); } } } } return false; } bool ClangASTContext::GetCompleteDecl(clang::ASTContext *ast, clang::Decl *decl) { if (!decl) return false; ExternalASTSource *ast_source = ast->getExternalSource(); if (!ast_source) return false; if (clang::TagDecl *tag_decl = llvm::dyn_cast(decl)) { if (tag_decl->isCompleteDefinition()) return true; if (!tag_decl->hasExternalLexicalStorage()) return false; ast_source->CompleteType(tag_decl); return !tag_decl->getTypeForDecl()->isIncompleteType(); } else if (clang::ObjCInterfaceDecl *objc_interface_decl = llvm::dyn_cast(decl)) { if (objc_interface_decl->getDefinition()) return true; if (!objc_interface_decl->hasExternalLexicalStorage()) return false; ast_source->CompleteType(objc_interface_decl); return !objc_interface_decl->getTypeForDecl()->isIncompleteType(); } else { return false; } } void ClangASTContext::SetMetadataAsUserID(const void *object, user_id_t user_id) { ClangASTMetadata meta_data; meta_data.SetUserID(user_id); SetMetadata(object, meta_data); } void ClangASTContext::SetMetadata(clang::ASTContext *ast, const void *object, ClangASTMetadata &metadata) { ClangExternalASTSourceCommon *external_source = ClangExternalASTSourceCommon::Lookup(ast->getExternalSource()); if (external_source) external_source->SetMetadata(object, metadata); } ClangASTMetadata *ClangASTContext::GetMetadata(clang::ASTContext *ast, const void *object) { ClangExternalASTSourceCommon *external_source = ClangExternalASTSourceCommon::Lookup(ast->getExternalSource()); if (external_source && external_source->HasMetadata(object)) return external_source->GetMetadata(object); else return nullptr; } clang::DeclContext * ClangASTContext::GetAsDeclContext(clang::CXXMethodDecl *cxx_method_decl) { return llvm::dyn_cast(cxx_method_decl); } clang::DeclContext * ClangASTContext::GetAsDeclContext(clang::ObjCMethodDecl *objc_method_decl) { return llvm::dyn_cast(objc_method_decl); } bool ClangASTContext::SetTagTypeKind(clang::QualType tag_qual_type, int kind) const { const clang::Type *clang_type = tag_qual_type.getTypePtr(); if (clang_type) { const clang::TagType *tag_type = llvm::dyn_cast(clang_type); if (tag_type) { clang::TagDecl *tag_decl = llvm::dyn_cast(tag_type->getDecl()); if (tag_decl) { tag_decl->setTagKind((clang::TagDecl::TagKind)kind); return true; } } } return false; } bool ClangASTContext::SetDefaultAccessForRecordFields( clang::RecordDecl *record_decl, int default_accessibility, int *assigned_accessibilities, size_t num_assigned_accessibilities) { if (record_decl) { uint32_t field_idx; clang::RecordDecl::field_iterator field, field_end; for (field = record_decl->field_begin(), field_end = record_decl->field_end(), field_idx = 0; field != field_end; ++field, ++field_idx) { // If no accessibility was assigned, assign the correct one if (field_idx < num_assigned_accessibilities && assigned_accessibilities[field_idx] == clang::AS_none) field->setAccess((clang::AccessSpecifier)default_accessibility); } return true; } return false; } clang::DeclContext * ClangASTContext::GetDeclContextForType(const CompilerType &type) { return GetDeclContextForType(ClangUtil::GetQualType(type)); } clang::DeclContext * ClangASTContext::GetDeclContextForType(clang::QualType type) { if (type.isNull()) return nullptr; clang::QualType qual_type = type.getCanonicalType(); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::ObjCInterface: return llvm::cast(qual_type.getTypePtr()) ->getInterface(); case clang::Type::ObjCObjectPointer: return GetDeclContextForType( llvm::cast(qual_type.getTypePtr()) ->getPointeeType()); case clang::Type::Record: return llvm::cast(qual_type)->getDecl(); case clang::Type::Enum: return llvm::cast(qual_type)->getDecl(); case clang::Type::Typedef: return GetDeclContextForType(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()); case clang::Type::Auto: return GetDeclContextForType( llvm::cast(qual_type)->getDeducedType()); case clang::Type::Elaborated: return GetDeclContextForType( llvm::cast(qual_type)->getNamedType()); case clang::Type::Paren: return GetDeclContextForType( llvm::cast(qual_type)->desugar()); default: break; } // No DeclContext in this type... return nullptr; } static bool GetCompleteQualType(clang::ASTContext *ast, clang::QualType qual_type, bool allow_completion = true) { const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::ConstantArray: case clang::Type::IncompleteArray: case clang::Type::VariableArray: { const clang::ArrayType *array_type = llvm::dyn_cast(qual_type.getTypePtr()); if (array_type) return GetCompleteQualType(ast, array_type->getElementType(), allow_completion); } break; case clang::Type::Record: { clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) { if (cxx_record_decl->hasExternalLexicalStorage()) { const bool is_complete = cxx_record_decl->isCompleteDefinition(); const bool fields_loaded = cxx_record_decl->hasLoadedFieldsFromExternalStorage(); if (is_complete && fields_loaded) return true; if (!allow_completion) return false; // Call the field_begin() accessor to for it to use the external source // to load the fields... clang::ExternalASTSource *external_ast_source = ast->getExternalSource(); if (external_ast_source) { external_ast_source->CompleteType(cxx_record_decl); if (cxx_record_decl->isCompleteDefinition()) { cxx_record_decl->field_begin(); cxx_record_decl->setHasLoadedFieldsFromExternalStorage(true); } } } } const clang::TagType *tag_type = llvm::cast(qual_type.getTypePtr()); return !tag_type->isIncompleteType(); } break; case clang::Type::Enum: { const clang::TagType *tag_type = llvm::dyn_cast(qual_type.getTypePtr()); if (tag_type) { clang::TagDecl *tag_decl = tag_type->getDecl(); if (tag_decl) { if (tag_decl->getDefinition()) return true; if (!allow_completion) return false; if (tag_decl->hasExternalLexicalStorage()) { if (ast) { clang::ExternalASTSource *external_ast_source = ast->getExternalSource(); if (external_ast_source) { external_ast_source->CompleteType(tag_decl); return !tag_type->isIncompleteType(); } } } return false; } } } break; case clang::Type::ObjCObject: case clang::Type::ObjCInterface: { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); // We currently can't complete objective C types through the newly added // ASTContext // because it only supports TagDecl objects right now... if (class_interface_decl) { if (class_interface_decl->getDefinition()) return true; if (!allow_completion) return false; if (class_interface_decl->hasExternalLexicalStorage()) { if (ast) { clang::ExternalASTSource *external_ast_source = ast->getExternalSource(); if (external_ast_source) { external_ast_source->CompleteType(class_interface_decl); return !objc_class_type->isIncompleteType(); } } } return false; } } } break; case clang::Type::Typedef: return GetCompleteQualType(ast, llvm::cast(qual_type) ->getDecl() ->getUnderlyingType(), allow_completion); case clang::Type::Auto: return GetCompleteQualType( ast, llvm::cast(qual_type)->getDeducedType(), allow_completion); case clang::Type::Elaborated: return GetCompleteQualType( ast, llvm::cast(qual_type)->getNamedType(), allow_completion); case clang::Type::Paren: return GetCompleteQualType( ast, llvm::cast(qual_type)->desugar(), allow_completion); case clang::Type::Attributed: return GetCompleteQualType( ast, llvm::cast(qual_type)->getModifiedType(), allow_completion); default: break; } return true; } static clang::ObjCIvarDecl::AccessControl ConvertAccessTypeToObjCIvarAccessControl(AccessType access) { switch (access) { case eAccessNone: return clang::ObjCIvarDecl::None; case eAccessPublic: return clang::ObjCIvarDecl::Public; case eAccessPrivate: return clang::ObjCIvarDecl::Private; case eAccessProtected: return clang::ObjCIvarDecl::Protected; case eAccessPackage: return clang::ObjCIvarDecl::Package; } return clang::ObjCIvarDecl::None; } //---------------------------------------------------------------------- // Tests //---------------------------------------------------------------------- bool ClangASTContext::IsAggregateType(lldb::opaque_compiler_type_t type) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::IncompleteArray: case clang::Type::VariableArray: case clang::Type::ConstantArray: case clang::Type::ExtVector: case clang::Type::Vector: case clang::Type::Record: case clang::Type::ObjCObject: case clang::Type::ObjCInterface: return true; case clang::Type::Auto: return IsAggregateType(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr()); case clang::Type::Elaborated: return IsAggregateType(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr()); case clang::Type::Typedef: return IsAggregateType(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr()); case clang::Type::Paren: return IsAggregateType( llvm::cast(qual_type)->desugar().getAsOpaquePtr()); default: break; } // The clang type does have a value return false; } bool ClangASTContext::IsAnonymousType(lldb::opaque_compiler_type_t type) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: { if (const clang::RecordType *record_type = llvm::dyn_cast_or_null( qual_type.getTypePtrOrNull())) { if (const clang::RecordDecl *record_decl = record_type->getDecl()) { return record_decl->isAnonymousStructOrUnion(); } } break; } case clang::Type::Auto: return IsAnonymousType(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr()); case clang::Type::Elaborated: return IsAnonymousType(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr()); case clang::Type::Typedef: return IsAnonymousType(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr()); case clang::Type::Paren: return IsAnonymousType( llvm::cast(qual_type)->desugar().getAsOpaquePtr()); default: break; } // The clang type does have a value return false; } bool ClangASTContext::IsArrayType(lldb::opaque_compiler_type_t type, CompilerType *element_type_ptr, uint64_t *size, bool *is_incomplete) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { default: break; case clang::Type::ConstantArray: if (element_type_ptr) element_type_ptr->SetCompilerType( getASTContext(), llvm::cast(qual_type)->getElementType()); if (size) *size = llvm::cast(qual_type) ->getSize() .getLimitedValue(ULLONG_MAX); if (is_incomplete) *is_incomplete = false; return true; case clang::Type::IncompleteArray: if (element_type_ptr) element_type_ptr->SetCompilerType( getASTContext(), llvm::cast(qual_type)->getElementType()); if (size) *size = 0; if (is_incomplete) *is_incomplete = true; return true; case clang::Type::VariableArray: if (element_type_ptr) element_type_ptr->SetCompilerType( getASTContext(), llvm::cast(qual_type)->getElementType()); if (size) *size = 0; if (is_incomplete) *is_incomplete = false; return true; case clang::Type::DependentSizedArray: if (element_type_ptr) element_type_ptr->SetCompilerType( getASTContext(), llvm::cast(qual_type) ->getElementType()); if (size) *size = 0; if (is_incomplete) *is_incomplete = false; return true; case clang::Type::Typedef: return IsArrayType(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), element_type_ptr, size, is_incomplete); case clang::Type::Auto: return IsArrayType(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), element_type_ptr, size, is_incomplete); case clang::Type::Elaborated: return IsArrayType(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), element_type_ptr, size, is_incomplete); case clang::Type::Paren: return IsArrayType( llvm::cast(qual_type)->desugar().getAsOpaquePtr(), element_type_ptr, size, is_incomplete); } if (element_type_ptr) element_type_ptr->Clear(); if (size) *size = 0; if (is_incomplete) *is_incomplete = false; return false; } bool ClangASTContext::IsVectorType(lldb::opaque_compiler_type_t type, CompilerType *element_type, uint64_t *size) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Vector: { const clang::VectorType *vector_type = qual_type->getAs(); if (vector_type) { if (size) *size = vector_type->getNumElements(); if (element_type) *element_type = CompilerType(getASTContext(), vector_type->getElementType()); } return true; } break; case clang::Type::ExtVector: { const clang::ExtVectorType *ext_vector_type = qual_type->getAs(); if (ext_vector_type) { if (size) *size = ext_vector_type->getNumElements(); if (element_type) *element_type = CompilerType(getASTContext(), ext_vector_type->getElementType()); } return true; } default: break; } return false; } bool ClangASTContext::IsRuntimeGeneratedType( lldb::opaque_compiler_type_t type) { clang::DeclContext *decl_ctx = ClangASTContext::GetASTContext(getASTContext()) ->GetDeclContextForType(GetQualType(type)); if (!decl_ctx) return false; if (!llvm::isa(decl_ctx)) return false; clang::ObjCInterfaceDecl *result_iface_decl = llvm::dyn_cast(decl_ctx); ClangASTMetadata *ast_metadata = ClangASTContext::GetMetadata(getASTContext(), result_iface_decl); if (!ast_metadata) return false; return (ast_metadata->GetISAPtr() != 0); } bool ClangASTContext::IsCharType(lldb::opaque_compiler_type_t type) { return GetQualType(type).getUnqualifiedType()->isCharType(); } bool ClangASTContext::IsCompleteType(lldb::opaque_compiler_type_t type) { const bool allow_completion = false; return GetCompleteQualType(getASTContext(), GetQualType(type), allow_completion); } bool ClangASTContext::IsConst(lldb::opaque_compiler_type_t type) { return GetQualType(type).isConstQualified(); } bool ClangASTContext::IsCStringType(lldb::opaque_compiler_type_t type, uint32_t &length) { CompilerType pointee_or_element_clang_type; length = 0; Flags type_flags(GetTypeInfo(type, &pointee_or_element_clang_type)); if (!pointee_or_element_clang_type.IsValid()) return false; if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer)) { if (pointee_or_element_clang_type.IsCharType()) { if (type_flags.Test(eTypeIsArray)) { // We know the size of the array and it could be a C string // since it is an array of characters length = llvm::cast( GetCanonicalQualType(type).getTypePtr()) ->getSize() .getLimitedValue(); } return true; } } return false; } bool ClangASTContext::IsFunctionType(lldb::opaque_compiler_type_t type, bool *is_variadic_ptr) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); if (qual_type->isFunctionType()) { if (is_variadic_ptr) { const clang::FunctionProtoType *function_proto_type = llvm::dyn_cast(qual_type.getTypePtr()); if (function_proto_type) *is_variadic_ptr = function_proto_type->isVariadic(); else *is_variadic_ptr = false; } return true; } const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { default: break; case clang::Type::Typedef: return IsFunctionType(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), nullptr); case clang::Type::Auto: return IsFunctionType(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), nullptr); case clang::Type::Elaborated: return IsFunctionType(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), nullptr); case clang::Type::Paren: return IsFunctionType( llvm::cast(qual_type)->desugar().getAsOpaquePtr(), nullptr); case clang::Type::LValueReference: case clang::Type::RValueReference: { const clang::ReferenceType *reference_type = llvm::cast(qual_type.getTypePtr()); if (reference_type) return IsFunctionType(reference_type->getPointeeType().getAsOpaquePtr(), nullptr); } break; } } return false; } // Used to detect "Homogeneous Floating-point Aggregates" uint32_t ClangASTContext::IsHomogeneousAggregate(lldb::opaque_compiler_type_t type, CompilerType *base_type_ptr) { if (!type) return 0; clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) { if (cxx_record_decl->getNumBases() || cxx_record_decl->isDynamicClass()) return 0; } const clang::RecordType *record_type = llvm::cast(qual_type.getTypePtr()); if (record_type) { const clang::RecordDecl *record_decl = record_type->getDecl(); if (record_decl) { // We are looking for a structure that contains only floating point // types clang::RecordDecl::field_iterator field_pos, field_end = record_decl->field_end(); uint32_t num_fields = 0; bool is_hva = false; bool is_hfa = false; clang::QualType base_qual_type; uint64_t base_bitwidth = 0; for (field_pos = record_decl->field_begin(); field_pos != field_end; ++field_pos) { clang::QualType field_qual_type = field_pos->getType(); uint64_t field_bitwidth = getASTContext()->getTypeSize(qual_type); if (field_qual_type->isFloatingType()) { if (field_qual_type->isComplexType()) return 0; else { if (num_fields == 0) base_qual_type = field_qual_type; else { if (is_hva) return 0; is_hfa = true; if (field_qual_type.getTypePtr() != base_qual_type.getTypePtr()) return 0; } } } else if (field_qual_type->isVectorType() || field_qual_type->isExtVectorType()) { if (num_fields == 0) { base_qual_type = field_qual_type; base_bitwidth = field_bitwidth; } else { if (is_hfa) return 0; is_hva = true; if (base_bitwidth != field_bitwidth) return 0; if (field_qual_type.getTypePtr() != base_qual_type.getTypePtr()) return 0; } } else return 0; ++num_fields; } if (base_type_ptr) *base_type_ptr = CompilerType(getASTContext(), base_qual_type); return num_fields; } } } break; case clang::Type::Typedef: return IsHomogeneousAggregate(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), base_type_ptr); case clang::Type::Auto: return IsHomogeneousAggregate(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), base_type_ptr); case clang::Type::Elaborated: return IsHomogeneousAggregate(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), base_type_ptr); default: break; } return 0; } size_t ClangASTContext::GetNumberOfFunctionArguments( lldb::opaque_compiler_type_t type) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::FunctionProtoType *func = llvm::dyn_cast(qual_type.getTypePtr()); if (func) return func->getNumParams(); } return 0; } CompilerType ClangASTContext::GetFunctionArgumentAtIndex(lldb::opaque_compiler_type_t type, const size_t index) { if (type) { clang::QualType qual_type(GetQualType(type)); const clang::FunctionProtoType *func = llvm::dyn_cast(qual_type.getTypePtr()); if (func) { if (index < func->getNumParams()) return CompilerType(getASTContext(), func->getParamType(index)); } } return CompilerType(); } bool ClangASTContext::IsFunctionPointerType(lldb::opaque_compiler_type_t type) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); if (qual_type->isFunctionPointerType()) return true; const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { default: break; case clang::Type::Typedef: return IsFunctionPointerType(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr()); case clang::Type::Auto: return IsFunctionPointerType(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr()); case clang::Type::Elaborated: return IsFunctionPointerType(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr()); case clang::Type::Paren: return IsFunctionPointerType( llvm::cast(qual_type)->desugar().getAsOpaquePtr()); case clang::Type::LValueReference: case clang::Type::RValueReference: { const clang::ReferenceType *reference_type = llvm::cast(qual_type.getTypePtr()); if (reference_type) return IsFunctionPointerType( reference_type->getPointeeType().getAsOpaquePtr()); } break; } } return false; } bool ClangASTContext::IsBlockPointerType( lldb::opaque_compiler_type_t type, CompilerType *function_pointer_type_ptr) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); if (qual_type->isBlockPointerType()) { if (function_pointer_type_ptr) { const clang::BlockPointerType *block_pointer_type = qual_type->getAs(); QualType pointee_type = block_pointer_type->getPointeeType(); QualType function_pointer_type = m_ast_ap->getPointerType(pointee_type); *function_pointer_type_ptr = CompilerType(getASTContext(), function_pointer_type); } return true; } const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { default: break; case clang::Type::Typedef: return IsBlockPointerType(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), function_pointer_type_ptr); case clang::Type::Auto: return IsBlockPointerType(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), function_pointer_type_ptr); case clang::Type::Elaborated: return IsBlockPointerType(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), function_pointer_type_ptr); case clang::Type::Paren: return IsBlockPointerType( llvm::cast(qual_type)->desugar().getAsOpaquePtr(), function_pointer_type_ptr); case clang::Type::LValueReference: case clang::Type::RValueReference: { const clang::ReferenceType *reference_type = llvm::cast(qual_type.getTypePtr()); if (reference_type) return IsBlockPointerType( reference_type->getPointeeType().getAsOpaquePtr(), function_pointer_type_ptr); } break; } } return false; } bool ClangASTContext::IsIntegerType(lldb::opaque_compiler_type_t type, bool &is_signed) { if (!type) return false; clang::QualType qual_type(GetCanonicalQualType(type)); const clang::BuiltinType *builtin_type = llvm::dyn_cast(qual_type->getCanonicalTypeInternal()); if (builtin_type) { if (builtin_type->isInteger()) { is_signed = builtin_type->isSignedInteger(); return true; } } return false; } bool ClangASTContext::IsEnumerationType(lldb::opaque_compiler_type_t type, bool &is_signed) { if (type) { const clang::EnumType *enum_type = llvm::dyn_cast( GetCanonicalQualType(type)->getCanonicalTypeInternal()); if (enum_type) { IsIntegerType(enum_type->getDecl()->getIntegerType().getAsOpaquePtr(), is_signed); return true; } } return false; } bool ClangASTContext::IsPointerType(lldb::opaque_compiler_type_t type, CompilerType *pointee_type) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Builtin: switch (llvm::cast(qual_type)->getKind()) { default: break; case clang::BuiltinType::ObjCId: case clang::BuiltinType::ObjCClass: return true; } return false; case clang::Type::ObjCObjectPointer: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type) ->getPointeeType()); return true; case clang::Type::BlockPointer: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type)->getPointeeType()); return true; case clang::Type::Pointer: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type)->getPointeeType()); return true; case clang::Type::MemberPointer: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type)->getPointeeType()); return true; case clang::Type::Typedef: return IsPointerType(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), pointee_type); case clang::Type::Auto: return IsPointerType(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), pointee_type); case clang::Type::Elaborated: return IsPointerType(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), pointee_type); case clang::Type::Paren: return IsPointerType( llvm::cast(qual_type)->desugar().getAsOpaquePtr(), pointee_type); default: break; } } if (pointee_type) pointee_type->Clear(); return false; } bool ClangASTContext::IsPointerOrReferenceType( lldb::opaque_compiler_type_t type, CompilerType *pointee_type) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Builtin: switch (llvm::cast(qual_type)->getKind()) { default: break; case clang::BuiltinType::ObjCId: case clang::BuiltinType::ObjCClass: return true; } return false; case clang::Type::ObjCObjectPointer: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type) ->getPointeeType()); return true; case clang::Type::BlockPointer: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type)->getPointeeType()); return true; case clang::Type::Pointer: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type)->getPointeeType()); return true; case clang::Type::MemberPointer: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type)->getPointeeType()); return true; case clang::Type::LValueReference: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type)->desugar()); return true; case clang::Type::RValueReference: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type)->desugar()); return true; case clang::Type::Typedef: return IsPointerOrReferenceType(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), pointee_type); case clang::Type::Auto: return IsPointerOrReferenceType(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), pointee_type); case clang::Type::Elaborated: return IsPointerOrReferenceType( llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), pointee_type); case clang::Type::Paren: return IsPointerOrReferenceType( llvm::cast(qual_type)->desugar().getAsOpaquePtr(), pointee_type); default: break; } } if (pointee_type) pointee_type->Clear(); return false; } bool ClangASTContext::IsReferenceType(lldb::opaque_compiler_type_t type, CompilerType *pointee_type, bool *is_rvalue) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::LValueReference: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type)->desugar()); if (is_rvalue) *is_rvalue = false; return true; case clang::Type::RValueReference: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type)->desugar()); if (is_rvalue) *is_rvalue = true; return true; case clang::Type::Typedef: return IsReferenceType(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), pointee_type, is_rvalue); case clang::Type::Auto: return IsReferenceType(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), pointee_type, is_rvalue); case clang::Type::Elaborated: return IsReferenceType(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), pointee_type, is_rvalue); case clang::Type::Paren: return IsReferenceType( llvm::cast(qual_type)->desugar().getAsOpaquePtr(), pointee_type, is_rvalue); default: break; } } if (pointee_type) pointee_type->Clear(); return false; } bool ClangASTContext::IsFloatingPointType(lldb::opaque_compiler_type_t type, uint32_t &count, bool &is_complex) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); if (const clang::BuiltinType *BT = llvm::dyn_cast( qual_type->getCanonicalTypeInternal())) { clang::BuiltinType::Kind kind = BT->getKind(); if (kind >= clang::BuiltinType::Float && kind <= clang::BuiltinType::LongDouble) { count = 1; is_complex = false; return true; } } else if (const clang::ComplexType *CT = llvm::dyn_cast( qual_type->getCanonicalTypeInternal())) { if (IsFloatingPointType(CT->getElementType().getAsOpaquePtr(), count, is_complex)) { count = 2; is_complex = true; return true; } } else if (const clang::VectorType *VT = llvm::dyn_cast( qual_type->getCanonicalTypeInternal())) { if (IsFloatingPointType(VT->getElementType().getAsOpaquePtr(), count, is_complex)) { count = VT->getNumElements(); is_complex = false; return true; } } } count = 0; is_complex = false; return false; } bool ClangASTContext::IsDefined(lldb::opaque_compiler_type_t type) { if (!type) return false; clang::QualType qual_type(GetQualType(type)); const clang::TagType *tag_type = llvm::dyn_cast(qual_type.getTypePtr()); if (tag_type) { clang::TagDecl *tag_decl = tag_type->getDecl(); if (tag_decl) return tag_decl->isCompleteDefinition(); return false; } else { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) return class_interface_decl->getDefinition() != nullptr; return false; } } return true; } bool ClangASTContext::IsObjCClassType(const CompilerType &type) { if (type) { clang::QualType qual_type(ClangUtil::GetCanonicalQualType(type)); const clang::ObjCObjectPointerType *obj_pointer_type = llvm::dyn_cast(qual_type); if (obj_pointer_type) return obj_pointer_type->isObjCClassType(); } return false; } bool ClangASTContext::IsObjCObjectOrInterfaceType(const CompilerType &type) { if (ClangUtil::IsClangType(type)) return ClangUtil::GetCanonicalQualType(type)->isObjCObjectOrInterfaceType(); return false; } bool ClangASTContext::IsClassType(lldb::opaque_compiler_type_t type) { if (!type) return false; clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); return (type_class == clang::Type::Record); } bool ClangASTContext::IsEnumType(lldb::opaque_compiler_type_t type) { if (!type) return false; clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); return (type_class == clang::Type::Enum); } bool ClangASTContext::IsPolymorphicClass(lldb::opaque_compiler_type_t type) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::RecordType *record_type = llvm::cast(qual_type.getTypePtr()); const clang::RecordDecl *record_decl = record_type->getDecl(); if (record_decl) { const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast(record_decl); if (cxx_record_decl) return cxx_record_decl->isPolymorphic(); } } break; default: break; } } return false; } bool ClangASTContext::IsPossibleDynamicType(lldb::opaque_compiler_type_t type, CompilerType *dynamic_pointee_type, bool check_cplusplus, bool check_objc) { clang::QualType pointee_qual_type; if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); bool success = false; const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Builtin: if (check_objc && llvm::cast(qual_type)->getKind() == clang::BuiltinType::ObjCId) { if (dynamic_pointee_type) dynamic_pointee_type->SetCompilerType(this, type); return true; } break; case clang::Type::ObjCObjectPointer: if (check_objc) { if (auto objc_pointee_type = qual_type->getPointeeType().getTypePtrOrNull()) { if (auto objc_object_type = llvm::dyn_cast_or_null( objc_pointee_type)) { if (objc_object_type->isObjCClass()) return false; } } if (dynamic_pointee_type) dynamic_pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type) ->getPointeeType()); return true; } break; case clang::Type::Pointer: pointee_qual_type = llvm::cast(qual_type)->getPointeeType(); success = true; break; case clang::Type::LValueReference: case clang::Type::RValueReference: pointee_qual_type = llvm::cast(qual_type)->getPointeeType(); success = true; break; case clang::Type::Typedef: return IsPossibleDynamicType(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), dynamic_pointee_type, check_cplusplus, check_objc); case clang::Type::Auto: return IsPossibleDynamicType(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), dynamic_pointee_type, check_cplusplus, check_objc); case clang::Type::Elaborated: return IsPossibleDynamicType(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), dynamic_pointee_type, check_cplusplus, check_objc); case clang::Type::Paren: return IsPossibleDynamicType( llvm::cast(qual_type)->desugar().getAsOpaquePtr(), dynamic_pointee_type, check_cplusplus, check_objc); default: break; } if (success) { // Check to make sure what we are pointing too is a possible dynamic C++ // type // We currently accept any "void *" (in case we have a class that has been // watered down to an opaque pointer) and virtual C++ classes. const clang::Type::TypeClass pointee_type_class = pointee_qual_type.getCanonicalType()->getTypeClass(); switch (pointee_type_class) { case clang::Type::Builtin: switch (llvm::cast(pointee_qual_type)->getKind()) { case clang::BuiltinType::UnknownAny: case clang::BuiltinType::Void: if (dynamic_pointee_type) dynamic_pointee_type->SetCompilerType(getASTContext(), pointee_qual_type); return true; default: break; } break; case clang::Type::Record: if (check_cplusplus) { clang::CXXRecordDecl *cxx_record_decl = pointee_qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) { bool is_complete = cxx_record_decl->isCompleteDefinition(); if (is_complete) success = cxx_record_decl->isDynamicClass(); else { ClangASTMetadata *metadata = ClangASTContext::GetMetadata( getASTContext(), cxx_record_decl); if (metadata) success = metadata->GetIsDynamicCXXType(); else { is_complete = CompilerType(getASTContext(), pointee_qual_type) .GetCompleteType(); if (is_complete) success = cxx_record_decl->isDynamicClass(); else success = false; } } if (success) { if (dynamic_pointee_type) dynamic_pointee_type->SetCompilerType(getASTContext(), pointee_qual_type); return true; } } } break; case clang::Type::ObjCObject: case clang::Type::ObjCInterface: if (check_objc) { if (dynamic_pointee_type) dynamic_pointee_type->SetCompilerType(getASTContext(), pointee_qual_type); return true; } break; default: break; } } } if (dynamic_pointee_type) dynamic_pointee_type->Clear(); return false; } bool ClangASTContext::IsScalarType(lldb::opaque_compiler_type_t type) { if (!type) return false; return (GetTypeInfo(type, nullptr) & eTypeIsScalar) != 0; } bool ClangASTContext::IsTypedefType(lldb::opaque_compiler_type_t type) { if (!type) return false; return GetQualType(type)->getTypeClass() == clang::Type::Typedef; } bool ClangASTContext::IsVoidType(lldb::opaque_compiler_type_t type) { if (!type) return false; return GetCanonicalQualType(type)->isVoidType(); } bool ClangASTContext::SupportsLanguage(lldb::LanguageType language) { return ClangASTContextSupportsLanguage(language); } bool ClangASTContext::GetCXXClassName(const CompilerType &type, std::string &class_name) { if (type) { clang::QualType qual_type(ClangUtil::GetCanonicalQualType(type)); if (!qual_type.isNull()) { clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) { class_name.assign(cxx_record_decl->getIdentifier()->getNameStart()); return true; } } } class_name.clear(); return false; } bool ClangASTContext::IsCXXClassType(const CompilerType &type) { if (!type) return false; clang::QualType qual_type(ClangUtil::GetCanonicalQualType(type)); if (!qual_type.isNull() && qual_type->getAsCXXRecordDecl() != nullptr) return true; return false; } bool ClangASTContext::IsBeingDefined(lldb::opaque_compiler_type_t type) { if (!type) return false; clang::QualType qual_type(GetCanonicalQualType(type)); const clang::TagType *tag_type = llvm::dyn_cast(qual_type); if (tag_type) return tag_type->isBeingDefined(); return false; } bool ClangASTContext::IsObjCObjectPointerType(const CompilerType &type, CompilerType *class_type_ptr) { if (!type) return false; clang::QualType qual_type(ClangUtil::GetCanonicalQualType(type)); if (!qual_type.isNull() && qual_type->isObjCObjectPointerType()) { if (class_type_ptr) { if (!qual_type->isObjCClassType() && !qual_type->isObjCIdType()) { const clang::ObjCObjectPointerType *obj_pointer_type = llvm::dyn_cast(qual_type); if (obj_pointer_type == nullptr) class_type_ptr->Clear(); else class_type_ptr->SetCompilerType( type.GetTypeSystem(), clang::QualType(obj_pointer_type->getInterfaceType(), 0) .getAsOpaquePtr()); } } return true; } if (class_type_ptr) class_type_ptr->Clear(); return false; } bool ClangASTContext::GetObjCClassName(const CompilerType &type, std::string &class_name) { if (!type) return false; clang::QualType qual_type(ClangUtil::GetCanonicalQualType(type)); const clang::ObjCObjectType *object_type = llvm::dyn_cast(qual_type); if (object_type) { const clang::ObjCInterfaceDecl *interface = object_type->getInterface(); if (interface) { class_name = interface->getNameAsString(); return true; } } return false; } //---------------------------------------------------------------------- // Type Completion //---------------------------------------------------------------------- bool ClangASTContext::GetCompleteType(lldb::opaque_compiler_type_t type) { if (!type) return false; const bool allow_completion = true; return GetCompleteQualType(getASTContext(), GetQualType(type), allow_completion); } ConstString ClangASTContext::GetTypeName(lldb::opaque_compiler_type_t type) { std::string type_name; if (type) { clang::PrintingPolicy printing_policy(getASTContext()->getPrintingPolicy()); clang::QualType qual_type(GetQualType(type)); printing_policy.SuppressTagKeyword = true; const clang::TypedefType *typedef_type = qual_type->getAs(); if (typedef_type) { const clang::TypedefNameDecl *typedef_decl = typedef_type->getDecl(); type_name = typedef_decl->getQualifiedNameAsString(); } else { type_name = qual_type.getAsString(printing_policy); } } return ConstString(type_name); } uint32_t ClangASTContext::GetTypeInfo(lldb::opaque_compiler_type_t type, CompilerType *pointee_or_element_clang_type) { if (!type) return 0; if (pointee_or_element_clang_type) pointee_or_element_clang_type->Clear(); clang::QualType qual_type(GetQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Attributed: return GetTypeInfo( qual_type->getAs() ->getModifiedType().getAsOpaquePtr(), pointee_or_element_clang_type); case clang::Type::Builtin: { const clang::BuiltinType *builtin_type = llvm::dyn_cast( qual_type->getCanonicalTypeInternal()); uint32_t builtin_type_flags = eTypeIsBuiltIn | eTypeHasValue; switch (builtin_type->getKind()) { case clang::BuiltinType::ObjCId: case clang::BuiltinType::ObjCClass: if (pointee_or_element_clang_type) pointee_or_element_clang_type->SetCompilerType( getASTContext(), getASTContext()->ObjCBuiltinClassTy); builtin_type_flags |= eTypeIsPointer | eTypeIsObjC; break; case clang::BuiltinType::ObjCSel: if (pointee_or_element_clang_type) pointee_or_element_clang_type->SetCompilerType(getASTContext(), getASTContext()->CharTy); builtin_type_flags |= eTypeIsPointer | eTypeIsObjC; break; case clang::BuiltinType::Bool: case clang::BuiltinType::Char_U: case clang::BuiltinType::UChar: case clang::BuiltinType::WChar_U: case clang::BuiltinType::Char16: case clang::BuiltinType::Char32: case clang::BuiltinType::UShort: case clang::BuiltinType::UInt: case clang::BuiltinType::ULong: case clang::BuiltinType::ULongLong: case clang::BuiltinType::UInt128: case clang::BuiltinType::Char_S: case clang::BuiltinType::SChar: case clang::BuiltinType::WChar_S: case clang::BuiltinType::Short: case clang::BuiltinType::Int: case clang::BuiltinType::Long: case clang::BuiltinType::LongLong: case clang::BuiltinType::Int128: case clang::BuiltinType::Float: case clang::BuiltinType::Double: case clang::BuiltinType::LongDouble: builtin_type_flags |= eTypeIsScalar; if (builtin_type->isInteger()) { builtin_type_flags |= eTypeIsInteger; if (builtin_type->isSignedInteger()) builtin_type_flags |= eTypeIsSigned; } else if (builtin_type->isFloatingPoint()) builtin_type_flags |= eTypeIsFloat; break; default: break; } return builtin_type_flags; } case clang::Type::BlockPointer: if (pointee_or_element_clang_type) pointee_or_element_clang_type->SetCompilerType( getASTContext(), qual_type->getPointeeType()); return eTypeIsPointer | eTypeHasChildren | eTypeIsBlock; case clang::Type::Complex: { uint32_t complex_type_flags = eTypeIsBuiltIn | eTypeHasValue | eTypeIsComplex; const clang::ComplexType *complex_type = llvm::dyn_cast( qual_type->getCanonicalTypeInternal()); if (complex_type) { clang::QualType complex_element_type(complex_type->getElementType()); if (complex_element_type->isIntegerType()) complex_type_flags |= eTypeIsFloat; else if (complex_element_type->isFloatingType()) complex_type_flags |= eTypeIsInteger; } return complex_type_flags; } break; case clang::Type::ConstantArray: case clang::Type::DependentSizedArray: case clang::Type::IncompleteArray: case clang::Type::VariableArray: if (pointee_or_element_clang_type) pointee_or_element_clang_type->SetCompilerType( getASTContext(), llvm::cast(qual_type.getTypePtr()) ->getElementType()); return eTypeHasChildren | eTypeIsArray; case clang::Type::DependentName: return 0; case clang::Type::DependentSizedExtVector: return eTypeHasChildren | eTypeIsVector; case clang::Type::DependentTemplateSpecialization: return eTypeIsTemplate; case clang::Type::Decltype: return 0; case clang::Type::Enum: if (pointee_or_element_clang_type) pointee_or_element_clang_type->SetCompilerType( getASTContext(), llvm::cast(qual_type)->getDecl()->getIntegerType()); return eTypeIsEnumeration | eTypeHasValue; case clang::Type::Auto: return CompilerType( getASTContext(), llvm::cast(qual_type)->getDeducedType()) .GetTypeInfo(pointee_or_element_clang_type); case clang::Type::Elaborated: return CompilerType( getASTContext(), llvm::cast(qual_type)->getNamedType()) .GetTypeInfo(pointee_or_element_clang_type); case clang::Type::Paren: return CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .GetTypeInfo(pointee_or_element_clang_type); case clang::Type::FunctionProto: return eTypeIsFuncPrototype | eTypeHasValue; case clang::Type::FunctionNoProto: return eTypeIsFuncPrototype | eTypeHasValue; case clang::Type::InjectedClassName: return 0; case clang::Type::LValueReference: case clang::Type::RValueReference: if (pointee_or_element_clang_type) pointee_or_element_clang_type->SetCompilerType( getASTContext(), llvm::cast(qual_type.getTypePtr()) ->getPointeeType()); return eTypeHasChildren | eTypeIsReference | eTypeHasValue; case clang::Type::MemberPointer: return eTypeIsPointer | eTypeIsMember | eTypeHasValue; case clang::Type::ObjCObjectPointer: if (pointee_or_element_clang_type) pointee_or_element_clang_type->SetCompilerType( getASTContext(), qual_type->getPointeeType()); return eTypeHasChildren | eTypeIsObjC | eTypeIsClass | eTypeIsPointer | eTypeHasValue; case clang::Type::ObjCObject: return eTypeHasChildren | eTypeIsObjC | eTypeIsClass; case clang::Type::ObjCInterface: return eTypeHasChildren | eTypeIsObjC | eTypeIsClass; case clang::Type::Pointer: if (pointee_or_element_clang_type) pointee_or_element_clang_type->SetCompilerType( getASTContext(), qual_type->getPointeeType()); return eTypeHasChildren | eTypeIsPointer | eTypeHasValue; case clang::Type::Record: if (qual_type->getAsCXXRecordDecl()) return eTypeHasChildren | eTypeIsClass | eTypeIsCPlusPlus; else return eTypeHasChildren | eTypeIsStructUnion; break; case clang::Type::SubstTemplateTypeParm: return eTypeIsTemplate; case clang::Type::TemplateTypeParm: return eTypeIsTemplate; case clang::Type::TemplateSpecialization: return eTypeIsTemplate; case clang::Type::Typedef: return eTypeIsTypedef | CompilerType(getASTContext(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()) .GetTypeInfo(pointee_or_element_clang_type); case clang::Type::TypeOfExpr: return 0; case clang::Type::TypeOf: return 0; case clang::Type::UnresolvedUsing: return 0; case clang::Type::ExtVector: case clang::Type::Vector: { uint32_t vector_type_flags = eTypeHasChildren | eTypeIsVector; const clang::VectorType *vector_type = llvm::dyn_cast( qual_type->getCanonicalTypeInternal()); if (vector_type) { if (vector_type->isIntegerType()) vector_type_flags |= eTypeIsFloat; else if (vector_type->isFloatingType()) vector_type_flags |= eTypeIsInteger; } return vector_type_flags; } default: return 0; } return 0; } lldb::LanguageType ClangASTContext::GetMinimumLanguage(lldb::opaque_compiler_type_t type) { if (!type) return lldb::eLanguageTypeC; // If the type is a reference, then resolve it to what it refers to first: clang::QualType qual_type(GetCanonicalQualType(type).getNonReferenceType()); if (qual_type->isAnyPointerType()) { if (qual_type->isObjCObjectPointerType()) return lldb::eLanguageTypeObjC; clang::QualType pointee_type(qual_type->getPointeeType()); if (pointee_type->getPointeeCXXRecordDecl() != nullptr) return lldb::eLanguageTypeC_plus_plus; if (pointee_type->isObjCObjectOrInterfaceType()) return lldb::eLanguageTypeObjC; if (pointee_type->isObjCClassType()) return lldb::eLanguageTypeObjC; if (pointee_type.getTypePtr() == getASTContext()->ObjCBuiltinIdTy.getTypePtr()) return lldb::eLanguageTypeObjC; } else { if (qual_type->isObjCObjectOrInterfaceType()) return lldb::eLanguageTypeObjC; if (qual_type->getAsCXXRecordDecl()) return lldb::eLanguageTypeC_plus_plus; switch (qual_type->getTypeClass()) { default: break; case clang::Type::Builtin: switch (llvm::cast(qual_type)->getKind()) { default: case clang::BuiltinType::Void: case clang::BuiltinType::Bool: case clang::BuiltinType::Char_U: case clang::BuiltinType::UChar: case clang::BuiltinType::WChar_U: case clang::BuiltinType::Char16: case clang::BuiltinType::Char32: case clang::BuiltinType::UShort: case clang::BuiltinType::UInt: case clang::BuiltinType::ULong: case clang::BuiltinType::ULongLong: case clang::BuiltinType::UInt128: case clang::BuiltinType::Char_S: case clang::BuiltinType::SChar: case clang::BuiltinType::WChar_S: case clang::BuiltinType::Short: case clang::BuiltinType::Int: case clang::BuiltinType::Long: case clang::BuiltinType::LongLong: case clang::BuiltinType::Int128: case clang::BuiltinType::Float: case clang::BuiltinType::Double: case clang::BuiltinType::LongDouble: break; case clang::BuiltinType::NullPtr: return eLanguageTypeC_plus_plus; case clang::BuiltinType::ObjCId: case clang::BuiltinType::ObjCClass: case clang::BuiltinType::ObjCSel: return eLanguageTypeObjC; case clang::BuiltinType::Dependent: case clang::BuiltinType::Overload: case clang::BuiltinType::BoundMember: case clang::BuiltinType::UnknownAny: break; } break; case clang::Type::Typedef: return CompilerType(getASTContext(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()) .GetMinimumLanguage(); } } return lldb::eLanguageTypeC; } lldb::TypeClass ClangASTContext::GetTypeClass(lldb::opaque_compiler_type_t type) { if (!type) return lldb::eTypeClassInvalid; clang::QualType qual_type(GetQualType(type)); switch (qual_type->getTypeClass()) { case clang::Type::UnaryTransform: break; case clang::Type::FunctionNoProto: return lldb::eTypeClassFunction; case clang::Type::FunctionProto: return lldb::eTypeClassFunction; case clang::Type::IncompleteArray: return lldb::eTypeClassArray; case clang::Type::VariableArray: return lldb::eTypeClassArray; case clang::Type::ConstantArray: return lldb::eTypeClassArray; case clang::Type::DependentSizedArray: return lldb::eTypeClassArray; case clang::Type::DependentSizedExtVector: return lldb::eTypeClassVector; case clang::Type::ExtVector: return lldb::eTypeClassVector; case clang::Type::Vector: return lldb::eTypeClassVector; case clang::Type::Builtin: return lldb::eTypeClassBuiltin; case clang::Type::ObjCObjectPointer: return lldb::eTypeClassObjCObjectPointer; case clang::Type::BlockPointer: return lldb::eTypeClassBlockPointer; case clang::Type::Pointer: return lldb::eTypeClassPointer; case clang::Type::LValueReference: return lldb::eTypeClassReference; case clang::Type::RValueReference: return lldb::eTypeClassReference; case clang::Type::MemberPointer: return lldb::eTypeClassMemberPointer; case clang::Type::Complex: if (qual_type->isComplexType()) return lldb::eTypeClassComplexFloat; else return lldb::eTypeClassComplexInteger; case clang::Type::ObjCObject: return lldb::eTypeClassObjCObject; case clang::Type::ObjCInterface: return lldb::eTypeClassObjCInterface; case clang::Type::Record: { const clang::RecordType *record_type = llvm::cast(qual_type.getTypePtr()); const clang::RecordDecl *record_decl = record_type->getDecl(); if (record_decl->isUnion()) return lldb::eTypeClassUnion; else if (record_decl->isStruct()) return lldb::eTypeClassStruct; else return lldb::eTypeClassClass; } break; case clang::Type::Enum: return lldb::eTypeClassEnumeration; case clang::Type::Typedef: return lldb::eTypeClassTypedef; case clang::Type::UnresolvedUsing: break; case clang::Type::Paren: return CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .GetTypeClass(); case clang::Type::Auto: return CompilerType( getASTContext(), llvm::cast(qual_type)->getDeducedType()) .GetTypeClass(); case clang::Type::Elaborated: return CompilerType( getASTContext(), llvm::cast(qual_type)->getNamedType()) .GetTypeClass(); case clang::Type::Attributed: break; case clang::Type::TemplateTypeParm: break; case clang::Type::SubstTemplateTypeParm: break; case clang::Type::SubstTemplateTypeParmPack: break; case clang::Type::InjectedClassName: break; case clang::Type::DependentName: break; case clang::Type::DependentTemplateSpecialization: break; case clang::Type::PackExpansion: break; case clang::Type::TypeOfExpr: break; case clang::Type::TypeOf: break; case clang::Type::Decltype: break; case clang::Type::TemplateSpecialization: break; case clang::Type::DeducedTemplateSpecialization: break; case clang::Type::Atomic: break; case clang::Type::Pipe: break; // pointer type decayed from an array or function type. case clang::Type::Decayed: break; case clang::Type::Adjusted: break; case clang::Type::ObjCTypeParam: break; case clang::Type::DependentAddressSpace: break; } // We don't know hot to display this type... return lldb::eTypeClassOther; } unsigned ClangASTContext::GetTypeQualifiers(lldb::opaque_compiler_type_t type) { if (type) return GetQualType(type).getQualifiers().getCVRQualifiers(); return 0; } //---------------------------------------------------------------------- // Creating related types //---------------------------------------------------------------------- CompilerType ClangASTContext::GetArrayElementType(lldb::opaque_compiler_type_t type, uint64_t *stride) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type *array_eletype = qual_type.getTypePtr()->getArrayElementTypeNoTypeQual(); if (!array_eletype) return CompilerType(); CompilerType element_type(getASTContext(), array_eletype->getCanonicalTypeUnqualified()); // TODO: the real stride will be >= this value.. find the real one! if (stride) *stride = element_type.GetByteSize(nullptr); return element_type; } return CompilerType(); } CompilerType ClangASTContext::GetArrayType(lldb::opaque_compiler_type_t type, uint64_t size) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); if (clang::ASTContext *ast_ctx = getASTContext()) { if (size != 0) return CompilerType( ast_ctx, ast_ctx->getConstantArrayType( qual_type, llvm::APInt(64, size), clang::ArrayType::ArraySizeModifier::Normal, 0)); else return CompilerType( ast_ctx, ast_ctx->getIncompleteArrayType( qual_type, clang::ArrayType::ArraySizeModifier::Normal, 0)); } } return CompilerType(); } CompilerType ClangASTContext::GetCanonicalType(lldb::opaque_compiler_type_t type) { if (type) return CompilerType(getASTContext(), GetCanonicalQualType(type)); return CompilerType(); } static clang::QualType GetFullyUnqualifiedType_Impl(clang::ASTContext *ast, clang::QualType qual_type) { if (qual_type->isPointerType()) qual_type = ast->getPointerType( GetFullyUnqualifiedType_Impl(ast, qual_type->getPointeeType())); else qual_type = qual_type.getUnqualifiedType(); qual_type.removeLocalConst(); qual_type.removeLocalRestrict(); qual_type.removeLocalVolatile(); return qual_type; } CompilerType ClangASTContext::GetFullyUnqualifiedType(lldb::opaque_compiler_type_t type) { if (type) return CompilerType( getASTContext(), GetFullyUnqualifiedType_Impl(getASTContext(), GetQualType(type))); return CompilerType(); } int ClangASTContext::GetFunctionArgumentCount( lldb::opaque_compiler_type_t type) { if (type) { const clang::FunctionProtoType *func = llvm::dyn_cast(GetCanonicalQualType(type)); if (func) return func->getNumParams(); } return -1; } CompilerType ClangASTContext::GetFunctionArgumentTypeAtIndex( lldb::opaque_compiler_type_t type, size_t idx) { if (type) { const clang::FunctionProtoType *func = llvm::dyn_cast(GetQualType(type)); if (func) { const uint32_t num_args = func->getNumParams(); if (idx < num_args) return CompilerType(getASTContext(), func->getParamType(idx)); } } return CompilerType(); } CompilerType ClangASTContext::GetFunctionReturnType(lldb::opaque_compiler_type_t type) { if (type) { clang::QualType qual_type(GetQualType(type)); const clang::FunctionProtoType *func = llvm::dyn_cast(qual_type.getTypePtr()); if (func) return CompilerType(getASTContext(), func->getReturnType()); } return CompilerType(); } size_t ClangASTContext::GetNumMemberFunctions(lldb::opaque_compiler_type_t type) { size_t num_functions = 0; if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); switch (qual_type->getTypeClass()) { case clang::Type::Record: if (GetCompleteQualType(getASTContext(), qual_type)) { const clang::RecordType *record_type = llvm::cast(qual_type.getTypePtr()); const clang::RecordDecl *record_decl = record_type->getDecl(); assert(record_decl); const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast(record_decl); if (cxx_record_decl) num_functions = std::distance(cxx_record_decl->method_begin(), cxx_record_decl->method_end()); } break; case clang::Type::ObjCObjectPointer: { const clang::ObjCObjectPointerType *objc_class_type = qual_type->getAs(); const clang::ObjCInterfaceType *objc_interface_type = objc_class_type->getInterfaceType(); if (objc_interface_type && GetCompleteType(static_cast( const_cast(objc_interface_type)))) { clang::ObjCInterfaceDecl *class_interface_decl = objc_interface_type->getDecl(); if (class_interface_decl) { num_functions = std::distance(class_interface_decl->meth_begin(), class_interface_decl->meth_end()); } } break; } case clang::Type::ObjCObject: case clang::Type::ObjCInterface: if (GetCompleteType(type)) { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type.getTypePtr()); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) num_functions = std::distance(class_interface_decl->meth_begin(), class_interface_decl->meth_end()); } } break; case clang::Type::Typedef: return CompilerType(getASTContext(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()) .GetNumMemberFunctions(); case clang::Type::Auto: return CompilerType( getASTContext(), llvm::cast(qual_type)->getDeducedType()) .GetNumMemberFunctions(); case clang::Type::Elaborated: return CompilerType( getASTContext(), llvm::cast(qual_type)->getNamedType()) .GetNumMemberFunctions(); case clang::Type::Paren: return CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .GetNumMemberFunctions(); default: break; } } return num_functions; } TypeMemberFunctionImpl ClangASTContext::GetMemberFunctionAtIndex(lldb::opaque_compiler_type_t type, size_t idx) { std::string name; MemberFunctionKind kind(MemberFunctionKind::eMemberFunctionKindUnknown); CompilerType clang_type; CompilerDecl clang_decl; if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); switch (qual_type->getTypeClass()) { case clang::Type::Record: if (GetCompleteQualType(getASTContext(), qual_type)) { const clang::RecordType *record_type = llvm::cast(qual_type.getTypePtr()); const clang::RecordDecl *record_decl = record_type->getDecl(); assert(record_decl); const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast(record_decl); if (cxx_record_decl) { auto method_iter = cxx_record_decl->method_begin(); auto method_end = cxx_record_decl->method_end(); if (idx < static_cast(std::distance(method_iter, method_end))) { std::advance(method_iter, idx); clang::CXXMethodDecl *cxx_method_decl = method_iter->getCanonicalDecl(); if (cxx_method_decl) { name = cxx_method_decl->getDeclName().getAsString(); if (cxx_method_decl->isStatic()) kind = lldb::eMemberFunctionKindStaticMethod; else if (llvm::isa(cxx_method_decl)) kind = lldb::eMemberFunctionKindConstructor; else if (llvm::isa(cxx_method_decl)) kind = lldb::eMemberFunctionKindDestructor; else kind = lldb::eMemberFunctionKindInstanceMethod; clang_type = CompilerType( this, cxx_method_decl->getType().getAsOpaquePtr()); clang_decl = CompilerDecl(this, cxx_method_decl); } } } } break; case clang::Type::ObjCObjectPointer: { const clang::ObjCObjectPointerType *objc_class_type = qual_type->getAs(); const clang::ObjCInterfaceType *objc_interface_type = objc_class_type->getInterfaceType(); if (objc_interface_type && GetCompleteType(static_cast( const_cast(objc_interface_type)))) { clang::ObjCInterfaceDecl *class_interface_decl = objc_interface_type->getDecl(); if (class_interface_decl) { auto method_iter = class_interface_decl->meth_begin(); auto method_end = class_interface_decl->meth_end(); if (idx < static_cast(std::distance(method_iter, method_end))) { std::advance(method_iter, idx); clang::ObjCMethodDecl *objc_method_decl = method_iter->getCanonicalDecl(); if (objc_method_decl) { clang_decl = CompilerDecl(this, objc_method_decl); name = objc_method_decl->getSelector().getAsString(); if (objc_method_decl->isClassMethod()) kind = lldb::eMemberFunctionKindStaticMethod; else kind = lldb::eMemberFunctionKindInstanceMethod; } } } } break; } case clang::Type::ObjCObject: case clang::Type::ObjCInterface: if (GetCompleteType(type)) { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type.getTypePtr()); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) { auto method_iter = class_interface_decl->meth_begin(); auto method_end = class_interface_decl->meth_end(); if (idx < static_cast(std::distance(method_iter, method_end))) { std::advance(method_iter, idx); clang::ObjCMethodDecl *objc_method_decl = method_iter->getCanonicalDecl(); if (objc_method_decl) { clang_decl = CompilerDecl(this, objc_method_decl); name = objc_method_decl->getSelector().getAsString(); if (objc_method_decl->isClassMethod()) kind = lldb::eMemberFunctionKindStaticMethod; else kind = lldb::eMemberFunctionKindInstanceMethod; } } } } } break; case clang::Type::Typedef: return GetMemberFunctionAtIndex(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), idx); case clang::Type::Auto: return GetMemberFunctionAtIndex(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), idx); case clang::Type::Elaborated: return GetMemberFunctionAtIndex( llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), idx); case clang::Type::Paren: return GetMemberFunctionAtIndex( llvm::cast(qual_type)->desugar().getAsOpaquePtr(), idx); default: break; } } if (kind == eMemberFunctionKindUnknown) return TypeMemberFunctionImpl(); else return TypeMemberFunctionImpl(clang_type, clang_decl, name, kind); } CompilerType ClangASTContext::GetNonReferenceType(lldb::opaque_compiler_type_t type) { if (type) return CompilerType(getASTContext(), GetQualType(type).getNonReferenceType()); return CompilerType(); } CompilerType ClangASTContext::CreateTypedefType( const CompilerType &type, const char *typedef_name, const CompilerDeclContext &compiler_decl_ctx) { if (type && typedef_name && typedef_name[0]) { ClangASTContext *ast = llvm::dyn_cast(type.GetTypeSystem()); if (!ast) return CompilerType(); clang::ASTContext *clang_ast = ast->getASTContext(); clang::QualType qual_type(ClangUtil::GetQualType(type)); clang::DeclContext *decl_ctx = ClangASTContext::DeclContextGetAsDeclContext(compiler_decl_ctx); if (decl_ctx == nullptr) decl_ctx = ast->getASTContext()->getTranslationUnitDecl(); clang::TypedefDecl *decl = clang::TypedefDecl::Create( *clang_ast, decl_ctx, clang::SourceLocation(), clang::SourceLocation(), &clang_ast->Idents.get(typedef_name), clang_ast->getTrivialTypeSourceInfo(qual_type)); decl->setAccess(clang::AS_public); // TODO respect proper access specifier // Get a uniqued clang::QualType for the typedef decl type return CompilerType(clang_ast, clang_ast->getTypedefType(decl)); } return CompilerType(); } CompilerType ClangASTContext::GetPointeeType(lldb::opaque_compiler_type_t type) { if (type) { clang::QualType qual_type(GetQualType(type)); return CompilerType(getASTContext(), qual_type.getTypePtr()->getPointeeType()); } return CompilerType(); } CompilerType ClangASTContext::GetPointerType(lldb::opaque_compiler_type_t type) { if (type) { clang::QualType qual_type(GetQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::ObjCObject: case clang::Type::ObjCInterface: return CompilerType(getASTContext(), getASTContext()->getObjCObjectPointerType(qual_type)); default: return CompilerType(getASTContext(), getASTContext()->getPointerType(qual_type)); } } return CompilerType(); } CompilerType ClangASTContext::GetLValueReferenceType(lldb::opaque_compiler_type_t type) { if (type) return CompilerType(this, getASTContext() ->getLValueReferenceType(GetQualType(type)) .getAsOpaquePtr()); else return CompilerType(); } CompilerType ClangASTContext::GetRValueReferenceType(lldb::opaque_compiler_type_t type) { if (type) return CompilerType(this, getASTContext() ->getRValueReferenceType(GetQualType(type)) .getAsOpaquePtr()); else return CompilerType(); } CompilerType ClangASTContext::AddConstModifier(lldb::opaque_compiler_type_t type) { if (type) { clang::QualType result(GetQualType(type)); result.addConst(); return CompilerType(this, result.getAsOpaquePtr()); } return CompilerType(); } CompilerType ClangASTContext::AddVolatileModifier(lldb::opaque_compiler_type_t type) { if (type) { clang::QualType result(GetQualType(type)); result.addVolatile(); return CompilerType(this, result.getAsOpaquePtr()); } return CompilerType(); } CompilerType ClangASTContext::AddRestrictModifier(lldb::opaque_compiler_type_t type) { if (type) { clang::QualType result(GetQualType(type)); result.addRestrict(); return CompilerType(this, result.getAsOpaquePtr()); } return CompilerType(); } CompilerType ClangASTContext::CreateTypedef(lldb::opaque_compiler_type_t type, const char *typedef_name, const CompilerDeclContext &compiler_decl_ctx) { if (type) { clang::ASTContext *clang_ast = getASTContext(); clang::QualType qual_type(GetQualType(type)); clang::DeclContext *decl_ctx = ClangASTContext::DeclContextGetAsDeclContext(compiler_decl_ctx); if (decl_ctx == nullptr) decl_ctx = getASTContext()->getTranslationUnitDecl(); clang::TypedefDecl *decl = clang::TypedefDecl::Create( *clang_ast, decl_ctx, clang::SourceLocation(), clang::SourceLocation(), &clang_ast->Idents.get(typedef_name), clang_ast->getTrivialTypeSourceInfo(qual_type)); clang::TagDecl *tdecl = nullptr; if (!qual_type.isNull()) { if (const clang::RecordType *rt = qual_type->getAs()) tdecl = rt->getDecl(); if (const clang::EnumType *et = qual_type->getAs()) tdecl = et->getDecl(); } // Check whether this declaration is an anonymous struct, union, or enum, // hidden behind a typedef. If so, we // try to check whether we have a typedef tag to attach to the original // record declaration if (tdecl && !tdecl->getIdentifier() && !tdecl->getTypedefNameForAnonDecl()) tdecl->setTypedefNameForAnonDecl(decl); decl->setAccess(clang::AS_public); // TODO respect proper access specifier // Get a uniqued clang::QualType for the typedef decl type return CompilerType(this, clang_ast->getTypedefType(decl).getAsOpaquePtr()); } return CompilerType(); } CompilerType ClangASTContext::GetTypedefedType(lldb::opaque_compiler_type_t type) { if (type) { const clang::TypedefType *typedef_type = llvm::dyn_cast(GetQualType(type)); if (typedef_type) return CompilerType(getASTContext(), typedef_type->getDecl()->getUnderlyingType()); } return CompilerType(); } //---------------------------------------------------------------------- // Create related types using the current type's AST //---------------------------------------------------------------------- CompilerType ClangASTContext::GetBasicTypeFromAST(lldb::BasicType basic_type) { return ClangASTContext::GetBasicType(getASTContext(), basic_type); } //---------------------------------------------------------------------- // Exploring the type //---------------------------------------------------------------------- uint64_t ClangASTContext::GetBitSize(lldb::opaque_compiler_type_t type, ExecutionContextScope *exe_scope) { if (GetCompleteType(type)) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) return getASTContext()->getTypeSize(qual_type); else return 0; break; case clang::Type::ObjCInterface: case clang::Type::ObjCObject: { ExecutionContext exe_ctx(exe_scope); Process *process = exe_ctx.GetProcessPtr(); if (process) { ObjCLanguageRuntime *objc_runtime = process->GetObjCLanguageRuntime(); if (objc_runtime) { uint64_t bit_size = 0; if (objc_runtime->GetTypeBitSize( CompilerType(getASTContext(), qual_type), bit_size)) return bit_size; } } else { static bool g_printed = false; if (!g_printed) { StreamString s; DumpTypeDescription(type, &s); llvm::outs() << "warning: trying to determine the size of type "; llvm::outs() << s.GetString() << "\n"; llvm::outs() << "without a valid ExecutionContext. this is not " "reliable. please file a bug against LLDB.\n"; llvm::outs() << "backtrace:\n"; llvm::sys::PrintStackTrace(llvm::outs()); llvm::outs() << "\n"; g_printed = true; } } } LLVM_FALLTHROUGH; default: const uint32_t bit_size = getASTContext()->getTypeSize(qual_type); if (bit_size == 0) { if (qual_type->isIncompleteArrayType()) return getASTContext()->getTypeSize( qual_type->getArrayElementTypeNoTypeQual() ->getCanonicalTypeUnqualified()); } if (qual_type->isObjCObjectOrInterfaceType()) return bit_size + getASTContext()->getTypeSize( getASTContext()->ObjCBuiltinClassTy); return bit_size; } } return 0; } size_t ClangASTContext::GetTypeBitAlign(lldb::opaque_compiler_type_t type) { if (GetCompleteType(type)) return getASTContext()->getTypeAlign(GetQualType(type)); return 0; } lldb::Encoding ClangASTContext::GetEncoding(lldb::opaque_compiler_type_t type, uint64_t &count) { if (!type) return lldb::eEncodingInvalid; count = 1; clang::QualType qual_type(GetCanonicalQualType(type)); switch (qual_type->getTypeClass()) { case clang::Type::UnaryTransform: break; case clang::Type::FunctionNoProto: case clang::Type::FunctionProto: break; case clang::Type::IncompleteArray: case clang::Type::VariableArray: break; case clang::Type::ConstantArray: break; case clang::Type::ExtVector: case clang::Type::Vector: // TODO: Set this to more than one??? break; case clang::Type::Builtin: switch (llvm::cast(qual_type)->getKind()) { case clang::BuiltinType::Void: break; case clang::BuiltinType::Bool: case clang::BuiltinType::Char_S: case clang::BuiltinType::SChar: case clang::BuiltinType::WChar_S: case clang::BuiltinType::Char16: case clang::BuiltinType::Char32: case clang::BuiltinType::Short: case clang::BuiltinType::Int: case clang::BuiltinType::Long: case clang::BuiltinType::LongLong: case clang::BuiltinType::Int128: return lldb::eEncodingSint; case clang::BuiltinType::Char_U: case clang::BuiltinType::UChar: case clang::BuiltinType::WChar_U: case clang::BuiltinType::UShort: case clang::BuiltinType::UInt: case clang::BuiltinType::ULong: case clang::BuiltinType::ULongLong: case clang::BuiltinType::UInt128: return lldb::eEncodingUint; case clang::BuiltinType::Half: case clang::BuiltinType::Float: case clang::BuiltinType::Float16: case clang::BuiltinType::Float128: case clang::BuiltinType::Double: case clang::BuiltinType::LongDouble: return lldb::eEncodingIEEE754; case clang::BuiltinType::ObjCClass: case clang::BuiltinType::ObjCId: case clang::BuiltinType::ObjCSel: return lldb::eEncodingUint; case clang::BuiltinType::NullPtr: return lldb::eEncodingUint; case clang::BuiltinType::Kind::ARCUnbridgedCast: case clang::BuiltinType::Kind::BoundMember: case clang::BuiltinType::Kind::BuiltinFn: case clang::BuiltinType::Kind::Dependent: case clang::BuiltinType::Kind::OCLClkEvent: case clang::BuiltinType::Kind::OCLEvent: case clang::BuiltinType::Kind::OCLImage1dRO: case clang::BuiltinType::Kind::OCLImage1dWO: case clang::BuiltinType::Kind::OCLImage1dRW: case clang::BuiltinType::Kind::OCLImage1dArrayRO: case clang::BuiltinType::Kind::OCLImage1dArrayWO: case clang::BuiltinType::Kind::OCLImage1dArrayRW: case clang::BuiltinType::Kind::OCLImage1dBufferRO: case clang::BuiltinType::Kind::OCLImage1dBufferWO: case clang::BuiltinType::Kind::OCLImage1dBufferRW: case clang::BuiltinType::Kind::OCLImage2dRO: case clang::BuiltinType::Kind::OCLImage2dWO: case clang::BuiltinType::Kind::OCLImage2dRW: case clang::BuiltinType::Kind::OCLImage2dArrayRO: case clang::BuiltinType::Kind::OCLImage2dArrayWO: case clang::BuiltinType::Kind::OCLImage2dArrayRW: case clang::BuiltinType::Kind::OCLImage2dArrayDepthRO: case clang::BuiltinType::Kind::OCLImage2dArrayDepthWO: case clang::BuiltinType::Kind::OCLImage2dArrayDepthRW: case clang::BuiltinType::Kind::OCLImage2dArrayMSAARO: case clang::BuiltinType::Kind::OCLImage2dArrayMSAAWO: case clang::BuiltinType::Kind::OCLImage2dArrayMSAARW: case clang::BuiltinType::Kind::OCLImage2dArrayMSAADepthRO: case clang::BuiltinType::Kind::OCLImage2dArrayMSAADepthWO: case clang::BuiltinType::Kind::OCLImage2dArrayMSAADepthRW: case clang::BuiltinType::Kind::OCLImage2dDepthRO: case clang::BuiltinType::Kind::OCLImage2dDepthWO: case clang::BuiltinType::Kind::OCLImage2dDepthRW: case clang::BuiltinType::Kind::OCLImage2dMSAARO: case clang::BuiltinType::Kind::OCLImage2dMSAAWO: case clang::BuiltinType::Kind::OCLImage2dMSAARW: case clang::BuiltinType::Kind::OCLImage2dMSAADepthRO: case clang::BuiltinType::Kind::OCLImage2dMSAADepthWO: case clang::BuiltinType::Kind::OCLImage2dMSAADepthRW: case clang::BuiltinType::Kind::OCLImage3dRO: case clang::BuiltinType::Kind::OCLImage3dWO: case clang::BuiltinType::Kind::OCLImage3dRW: case clang::BuiltinType::Kind::OCLQueue: case clang::BuiltinType::Kind::OCLReserveID: case clang::BuiltinType::Kind::OCLSampler: case clang::BuiltinType::Kind::OMPArraySection: case clang::BuiltinType::Kind::Overload: case clang::BuiltinType::Kind::PseudoObject: case clang::BuiltinType::Kind::UnknownAny: break; } break; // All pointer types are represented as unsigned integer encodings. // We may nee to add a eEncodingPointer if we ever need to know the // difference case clang::Type::ObjCObjectPointer: case clang::Type::BlockPointer: case clang::Type::Pointer: case clang::Type::LValueReference: case clang::Type::RValueReference: case clang::Type::MemberPointer: return lldb::eEncodingUint; case clang::Type::Complex: { lldb::Encoding encoding = lldb::eEncodingIEEE754; if (qual_type->isComplexType()) encoding = lldb::eEncodingIEEE754; else { const clang::ComplexType *complex_type = qual_type->getAsComplexIntegerType(); if (complex_type) encoding = CompilerType(getASTContext(), complex_type->getElementType()) .GetEncoding(count); else encoding = lldb::eEncodingSint; } count = 2; return encoding; } case clang::Type::ObjCInterface: break; case clang::Type::Record: break; case clang::Type::Enum: return lldb::eEncodingSint; case clang::Type::Typedef: return CompilerType(getASTContext(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()) .GetEncoding(count); case clang::Type::Auto: return CompilerType( getASTContext(), llvm::cast(qual_type)->getDeducedType()) .GetEncoding(count); case clang::Type::Elaborated: return CompilerType( getASTContext(), llvm::cast(qual_type)->getNamedType()) .GetEncoding(count); case clang::Type::Paren: return CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .GetEncoding(count); case clang::Type::DependentSizedArray: case clang::Type::DependentSizedExtVector: case clang::Type::UnresolvedUsing: case clang::Type::Attributed: case clang::Type::TemplateTypeParm: case clang::Type::SubstTemplateTypeParm: case clang::Type::SubstTemplateTypeParmPack: case clang::Type::InjectedClassName: case clang::Type::DependentName: case clang::Type::DependentTemplateSpecialization: case clang::Type::PackExpansion: case clang::Type::ObjCObject: case clang::Type::TypeOfExpr: case clang::Type::TypeOf: case clang::Type::Decltype: case clang::Type::TemplateSpecialization: case clang::Type::DeducedTemplateSpecialization: case clang::Type::Atomic: case clang::Type::Adjusted: case clang::Type::Pipe: break; // pointer type decayed from an array or function type. case clang::Type::Decayed: break; case clang::Type::ObjCTypeParam: break; case clang::Type::DependentAddressSpace: break; } count = 0; return lldb::eEncodingInvalid; } lldb::Format ClangASTContext::GetFormat(lldb::opaque_compiler_type_t type) { if (!type) return lldb::eFormatDefault; clang::QualType qual_type(GetCanonicalQualType(type)); switch (qual_type->getTypeClass()) { case clang::Type::UnaryTransform: break; case clang::Type::FunctionNoProto: case clang::Type::FunctionProto: break; case clang::Type::IncompleteArray: case clang::Type::VariableArray: break; case clang::Type::ConstantArray: return lldb::eFormatVoid; // no value case clang::Type::ExtVector: case clang::Type::Vector: break; case clang::Type::Builtin: switch (llvm::cast(qual_type)->getKind()) { // default: assert(0 && "Unknown builtin type!"); case clang::BuiltinType::UnknownAny: case clang::BuiltinType::Void: case clang::BuiltinType::BoundMember: break; case clang::BuiltinType::Bool: return lldb::eFormatBoolean; case clang::BuiltinType::Char_S: case clang::BuiltinType::SChar: case clang::BuiltinType::WChar_S: case clang::BuiltinType::Char_U: case clang::BuiltinType::UChar: case clang::BuiltinType::WChar_U: return lldb::eFormatChar; case clang::BuiltinType::Char16: return lldb::eFormatUnicode16; case clang::BuiltinType::Char32: return lldb::eFormatUnicode32; case clang::BuiltinType::UShort: return lldb::eFormatUnsigned; case clang::BuiltinType::Short: return lldb::eFormatDecimal; case clang::BuiltinType::UInt: return lldb::eFormatUnsigned; case clang::BuiltinType::Int: return lldb::eFormatDecimal; case clang::BuiltinType::ULong: return lldb::eFormatUnsigned; case clang::BuiltinType::Long: return lldb::eFormatDecimal; case clang::BuiltinType::ULongLong: return lldb::eFormatUnsigned; case clang::BuiltinType::LongLong: return lldb::eFormatDecimal; case clang::BuiltinType::UInt128: return lldb::eFormatUnsigned; case clang::BuiltinType::Int128: return lldb::eFormatDecimal; case clang::BuiltinType::Half: case clang::BuiltinType::Float: case clang::BuiltinType::Double: case clang::BuiltinType::LongDouble: return lldb::eFormatFloat; default: return lldb::eFormatHex; } break; case clang::Type::ObjCObjectPointer: return lldb::eFormatHex; case clang::Type::BlockPointer: return lldb::eFormatHex; case clang::Type::Pointer: return lldb::eFormatHex; case clang::Type::LValueReference: case clang::Type::RValueReference: return lldb::eFormatHex; case clang::Type::MemberPointer: break; case clang::Type::Complex: { if (qual_type->isComplexType()) return lldb::eFormatComplex; else return lldb::eFormatComplexInteger; } case clang::Type::ObjCInterface: break; case clang::Type::Record: break; case clang::Type::Enum: return lldb::eFormatEnum; case clang::Type::Typedef: return CompilerType(getASTContext(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()) .GetFormat(); case clang::Type::Auto: return CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .GetFormat(); case clang::Type::Paren: return CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .GetFormat(); case clang::Type::Elaborated: return CompilerType( getASTContext(), llvm::cast(qual_type)->getNamedType()) .GetFormat(); case clang::Type::DependentSizedArray: case clang::Type::DependentSizedExtVector: case clang::Type::UnresolvedUsing: case clang::Type::Attributed: case clang::Type::TemplateTypeParm: case clang::Type::SubstTemplateTypeParm: case clang::Type::SubstTemplateTypeParmPack: case clang::Type::InjectedClassName: case clang::Type::DependentName: case clang::Type::DependentTemplateSpecialization: case clang::Type::PackExpansion: case clang::Type::ObjCObject: case clang::Type::TypeOfExpr: case clang::Type::TypeOf: case clang::Type::Decltype: case clang::Type::TemplateSpecialization: case clang::Type::DeducedTemplateSpecialization: case clang::Type::Atomic: case clang::Type::Adjusted: case clang::Type::Pipe: break; // pointer type decayed from an array or function type. case clang::Type::Decayed: break; case clang::Type::ObjCTypeParam: break; case clang::Type::DependentAddressSpace: break; } // We don't know hot to display this type... return lldb::eFormatBytes; } static bool ObjCDeclHasIVars(clang::ObjCInterfaceDecl *class_interface_decl, bool check_superclass) { while (class_interface_decl) { if (class_interface_decl->ivar_size() > 0) return true; if (check_superclass) class_interface_decl = class_interface_decl->getSuperClass(); else break; } return false; } uint32_t ClangASTContext::GetNumChildren(lldb::opaque_compiler_type_t type, bool omit_empty_base_classes) { if (!type) return 0; uint32_t num_children = 0; clang::QualType qual_type(GetQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Builtin: switch (llvm::cast(qual_type)->getKind()) { case clang::BuiltinType::ObjCId: // child is Class case clang::BuiltinType::ObjCClass: // child is Class num_children = 1; break; default: break; } break; case clang::Type::Complex: return 0; case clang::Type::Record: if (GetCompleteQualType(getASTContext(), qual_type)) { const clang::RecordType *record_type = llvm::cast(qual_type.getTypePtr()); const clang::RecordDecl *record_decl = record_type->getDecl(); assert(record_decl); const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast(record_decl); if (cxx_record_decl) { if (omit_empty_base_classes) { // Check each base classes to see if it or any of its // base classes contain any fields. This can help // limit the noise in variable views by not having to // show base classes that contain no members. clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end; for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end(); base_class != base_class_end; ++base_class) { const clang::CXXRecordDecl *base_class_decl = llvm::cast( base_class->getType() ->getAs() ->getDecl()); // Skip empty base classes if (ClangASTContext::RecordHasFields(base_class_decl) == false) continue; num_children++; } } else { // Include all base classes num_children += cxx_record_decl->getNumBases(); } } clang::RecordDecl::field_iterator field, field_end; for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field) ++num_children; } break; case clang::Type::ObjCObject: case clang::Type::ObjCInterface: if (GetCompleteQualType(getASTContext(), qual_type)) { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type.getTypePtr()); assert(objc_class_type); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) { clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass(); if (superclass_interface_decl) { if (omit_empty_base_classes) { if (ObjCDeclHasIVars(superclass_interface_decl, true)) ++num_children; } else ++num_children; } num_children += class_interface_decl->ivar_size(); } } } break; case clang::Type::ObjCObjectPointer: { const clang::ObjCObjectPointerType *pointer_type = llvm::cast(qual_type.getTypePtr()); clang::QualType pointee_type = pointer_type->getPointeeType(); uint32_t num_pointee_children = CompilerType(getASTContext(), pointee_type) .GetNumChildren(omit_empty_base_classes); // If this type points to a simple type, then it has 1 child if (num_pointee_children == 0) num_children = 1; else num_children = num_pointee_children; } break; case clang::Type::Vector: case clang::Type::ExtVector: num_children = llvm::cast(qual_type.getTypePtr())->getNumElements(); break; case clang::Type::ConstantArray: num_children = llvm::cast(qual_type.getTypePtr()) ->getSize() .getLimitedValue(); break; case clang::Type::Pointer: { const clang::PointerType *pointer_type = llvm::cast(qual_type.getTypePtr()); clang::QualType pointee_type(pointer_type->getPointeeType()); uint32_t num_pointee_children = CompilerType(getASTContext(), pointee_type) .GetNumChildren(omit_empty_base_classes); if (num_pointee_children == 0) { // We have a pointer to a pointee type that claims it has no children. // We will want to look at num_children = GetNumPointeeChildren(pointee_type); } else num_children = num_pointee_children; } break; case clang::Type::LValueReference: case clang::Type::RValueReference: { const clang::ReferenceType *reference_type = llvm::cast(qual_type.getTypePtr()); clang::QualType pointee_type = reference_type->getPointeeType(); uint32_t num_pointee_children = CompilerType(getASTContext(), pointee_type) .GetNumChildren(omit_empty_base_classes); // If this type points to a simple type, then it has 1 child if (num_pointee_children == 0) num_children = 1; else num_children = num_pointee_children; } break; case clang::Type::Typedef: num_children = CompilerType(getASTContext(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()) .GetNumChildren(omit_empty_base_classes); break; case clang::Type::Auto: num_children = CompilerType(getASTContext(), llvm::cast(qual_type)->getDeducedType()) .GetNumChildren(omit_empty_base_classes); break; case clang::Type::Elaborated: num_children = CompilerType( getASTContext(), llvm::cast(qual_type)->getNamedType()) .GetNumChildren(omit_empty_base_classes); break; case clang::Type::Paren: num_children = CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .GetNumChildren(omit_empty_base_classes); break; default: break; } return num_children; } CompilerType ClangASTContext::GetBuiltinTypeByName(const ConstString &name) { return GetBasicType(GetBasicTypeEnumeration(name)); } lldb::BasicType ClangASTContext::GetBasicTypeEnumeration(lldb::opaque_compiler_type_t type) { if (type) { clang::QualType qual_type(GetQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); if (type_class == clang::Type::Builtin) { switch (llvm::cast(qual_type)->getKind()) { case clang::BuiltinType::Void: return eBasicTypeVoid; case clang::BuiltinType::Bool: return eBasicTypeBool; case clang::BuiltinType::Char_S: return eBasicTypeSignedChar; case clang::BuiltinType::Char_U: return eBasicTypeUnsignedChar; case clang::BuiltinType::Char16: return eBasicTypeChar16; case clang::BuiltinType::Char32: return eBasicTypeChar32; case clang::BuiltinType::UChar: return eBasicTypeUnsignedChar; case clang::BuiltinType::SChar: return eBasicTypeSignedChar; case clang::BuiltinType::WChar_S: return eBasicTypeSignedWChar; case clang::BuiltinType::WChar_U: return eBasicTypeUnsignedWChar; case clang::BuiltinType::Short: return eBasicTypeShort; case clang::BuiltinType::UShort: return eBasicTypeUnsignedShort; case clang::BuiltinType::Int: return eBasicTypeInt; case clang::BuiltinType::UInt: return eBasicTypeUnsignedInt; case clang::BuiltinType::Long: return eBasicTypeLong; case clang::BuiltinType::ULong: return eBasicTypeUnsignedLong; case clang::BuiltinType::LongLong: return eBasicTypeLongLong; case clang::BuiltinType::ULongLong: return eBasicTypeUnsignedLongLong; case clang::BuiltinType::Int128: return eBasicTypeInt128; case clang::BuiltinType::UInt128: return eBasicTypeUnsignedInt128; case clang::BuiltinType::Half: return eBasicTypeHalf; case clang::BuiltinType::Float: return eBasicTypeFloat; case clang::BuiltinType::Double: return eBasicTypeDouble; case clang::BuiltinType::LongDouble: return eBasicTypeLongDouble; case clang::BuiltinType::NullPtr: return eBasicTypeNullPtr; case clang::BuiltinType::ObjCId: return eBasicTypeObjCID; case clang::BuiltinType::ObjCClass: return eBasicTypeObjCClass; case clang::BuiltinType::ObjCSel: return eBasicTypeObjCSel; default: return eBasicTypeOther; } } } return eBasicTypeInvalid; } void ClangASTContext::ForEachEnumerator( lldb::opaque_compiler_type_t type, std::function const &callback) { const clang::EnumType *enum_type = llvm::dyn_cast(GetCanonicalQualType(type)); if (enum_type) { const clang::EnumDecl *enum_decl = enum_type->getDecl(); if (enum_decl) { CompilerType integer_type(this, enum_decl->getIntegerType().getAsOpaquePtr()); clang::EnumDecl::enumerator_iterator enum_pos, enum_end_pos; for (enum_pos = enum_decl->enumerator_begin(), enum_end_pos = enum_decl->enumerator_end(); enum_pos != enum_end_pos; ++enum_pos) { ConstString name(enum_pos->getNameAsString().c_str()); if (!callback(integer_type, name, enum_pos->getInitVal())) break; } } } } #pragma mark Aggregate Types uint32_t ClangASTContext::GetNumFields(lldb::opaque_compiler_type_t type) { if (!type) return 0; uint32_t count = 0; clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::RecordType *record_type = llvm::dyn_cast(qual_type.getTypePtr()); if (record_type) { clang::RecordDecl *record_decl = record_type->getDecl(); if (record_decl) { uint32_t field_idx = 0; clang::RecordDecl::field_iterator field, field_end; for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field) ++field_idx; count = field_idx; } } } break; case clang::Type::Typedef: count = CompilerType(getASTContext(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()) .GetNumFields(); break; case clang::Type::Auto: count = CompilerType(getASTContext(), llvm::cast(qual_type)->getDeducedType()) .GetNumFields(); break; case clang::Type::Elaborated: count = CompilerType( getASTContext(), llvm::cast(qual_type)->getNamedType()) .GetNumFields(); break; case clang::Type::Paren: count = CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .GetNumFields(); break; case clang::Type::ObjCObjectPointer: { const clang::ObjCObjectPointerType *objc_class_type = qual_type->getAs(); const clang::ObjCInterfaceType *objc_interface_type = objc_class_type->getInterfaceType(); if (objc_interface_type && GetCompleteType(static_cast( const_cast(objc_interface_type)))) { clang::ObjCInterfaceDecl *class_interface_decl = objc_interface_type->getDecl(); if (class_interface_decl) { count = class_interface_decl->ivar_size(); } } break; } case clang::Type::ObjCObject: case clang::Type::ObjCInterface: if (GetCompleteType(type)) { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type.getTypePtr()); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) count = class_interface_decl->ivar_size(); } } break; default: break; } return count; } static lldb::opaque_compiler_type_t GetObjCFieldAtIndex(clang::ASTContext *ast, clang::ObjCInterfaceDecl *class_interface_decl, size_t idx, std::string &name, uint64_t *bit_offset_ptr, uint32_t *bitfield_bit_size_ptr, bool *is_bitfield_ptr) { if (class_interface_decl) { if (idx < (class_interface_decl->ivar_size())) { clang::ObjCInterfaceDecl::ivar_iterator ivar_pos, ivar_end = class_interface_decl->ivar_end(); uint32_t ivar_idx = 0; for (ivar_pos = class_interface_decl->ivar_begin(); ivar_pos != ivar_end; ++ivar_pos, ++ivar_idx) { if (ivar_idx == idx) { const clang::ObjCIvarDecl *ivar_decl = *ivar_pos; clang::QualType ivar_qual_type(ivar_decl->getType()); name.assign(ivar_decl->getNameAsString()); if (bit_offset_ptr) { const clang::ASTRecordLayout &interface_layout = ast->getASTObjCInterfaceLayout(class_interface_decl); *bit_offset_ptr = interface_layout.getFieldOffset(ivar_idx); } const bool is_bitfield = ivar_pos->isBitField(); if (bitfield_bit_size_ptr) { *bitfield_bit_size_ptr = 0; if (is_bitfield && ast) { clang::Expr *bitfield_bit_size_expr = ivar_pos->getBitWidth(); llvm::APSInt bitfield_apsint; if (bitfield_bit_size_expr && bitfield_bit_size_expr->EvaluateAsInt(bitfield_apsint, *ast)) { *bitfield_bit_size_ptr = bitfield_apsint.getLimitedValue(); } } } if (is_bitfield_ptr) *is_bitfield_ptr = is_bitfield; return ivar_qual_type.getAsOpaquePtr(); } } } } return nullptr; } CompilerType ClangASTContext::GetFieldAtIndex(lldb::opaque_compiler_type_t type, size_t idx, std::string &name, uint64_t *bit_offset_ptr, uint32_t *bitfield_bit_size_ptr, bool *is_bitfield_ptr) { if (!type) return CompilerType(); clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::RecordType *record_type = llvm::cast(qual_type.getTypePtr()); const clang::RecordDecl *record_decl = record_type->getDecl(); uint32_t field_idx = 0; clang::RecordDecl::field_iterator field, field_end; for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field, ++field_idx) { if (idx == field_idx) { // Print the member type if requested // Print the member name and equal sign name.assign(field->getNameAsString()); // Figure out the type byte size (field_type_info.first) and // alignment (field_type_info.second) from the AST context. if (bit_offset_ptr) { const clang::ASTRecordLayout &record_layout = getASTContext()->getASTRecordLayout(record_decl); *bit_offset_ptr = record_layout.getFieldOffset(field_idx); } const bool is_bitfield = field->isBitField(); if (bitfield_bit_size_ptr) { *bitfield_bit_size_ptr = 0; if (is_bitfield) { clang::Expr *bitfield_bit_size_expr = field->getBitWidth(); llvm::APSInt bitfield_apsint; if (bitfield_bit_size_expr && bitfield_bit_size_expr->EvaluateAsInt(bitfield_apsint, *getASTContext())) { *bitfield_bit_size_ptr = bitfield_apsint.getLimitedValue(); } } } if (is_bitfield_ptr) *is_bitfield_ptr = is_bitfield; return CompilerType(getASTContext(), field->getType()); } } } break; case clang::Type::ObjCObjectPointer: { const clang::ObjCObjectPointerType *objc_class_type = qual_type->getAs(); const clang::ObjCInterfaceType *objc_interface_type = objc_class_type->getInterfaceType(); if (objc_interface_type && GetCompleteType(static_cast( const_cast(objc_interface_type)))) { clang::ObjCInterfaceDecl *class_interface_decl = objc_interface_type->getDecl(); if (class_interface_decl) { return CompilerType( this, GetObjCFieldAtIndex(getASTContext(), class_interface_decl, idx, name, bit_offset_ptr, bitfield_bit_size_ptr, is_bitfield_ptr)); } } break; } case clang::Type::ObjCObject: case clang::Type::ObjCInterface: if (GetCompleteType(type)) { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type.getTypePtr()); assert(objc_class_type); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); return CompilerType( this, GetObjCFieldAtIndex(getASTContext(), class_interface_decl, idx, name, bit_offset_ptr, bitfield_bit_size_ptr, is_bitfield_ptr)); } } break; case clang::Type::Typedef: return CompilerType(getASTContext(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()) .GetFieldAtIndex(idx, name, bit_offset_ptr, bitfield_bit_size_ptr, is_bitfield_ptr); case clang::Type::Auto: return CompilerType( getASTContext(), llvm::cast(qual_type)->getDeducedType()) .GetFieldAtIndex(idx, name, bit_offset_ptr, bitfield_bit_size_ptr, is_bitfield_ptr); case clang::Type::Elaborated: return CompilerType( getASTContext(), llvm::cast(qual_type)->getNamedType()) .GetFieldAtIndex(idx, name, bit_offset_ptr, bitfield_bit_size_ptr, is_bitfield_ptr); case clang::Type::Paren: return CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .GetFieldAtIndex(idx, name, bit_offset_ptr, bitfield_bit_size_ptr, is_bitfield_ptr); default: break; } return CompilerType(); } uint32_t ClangASTContext::GetNumDirectBaseClasses(lldb::opaque_compiler_type_t type) { uint32_t count = 0; clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) count = cxx_record_decl->getNumBases(); } break; case clang::Type::ObjCObjectPointer: count = GetPointeeType(type).GetNumDirectBaseClasses(); break; case clang::Type::ObjCObject: if (GetCompleteType(type)) { const clang::ObjCObjectType *objc_class_type = qual_type->getAsObjCQualifiedInterfaceType(); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl && class_interface_decl->getSuperClass()) count = 1; } } break; case clang::Type::ObjCInterface: if (GetCompleteType(type)) { const clang::ObjCInterfaceType *objc_interface_type = qual_type->getAs(); if (objc_interface_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_interface_type->getInterface(); if (class_interface_decl && class_interface_decl->getSuperClass()) count = 1; } } break; case clang::Type::Typedef: count = GetNumDirectBaseClasses(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr()); break; case clang::Type::Auto: count = GetNumDirectBaseClasses(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr()); break; case clang::Type::Elaborated: count = GetNumDirectBaseClasses(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr()); break; case clang::Type::Paren: return GetNumDirectBaseClasses( llvm::cast(qual_type)->desugar().getAsOpaquePtr()); default: break; } return count; } uint32_t ClangASTContext::GetNumVirtualBaseClasses(lldb::opaque_compiler_type_t type) { uint32_t count = 0; clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) count = cxx_record_decl->getNumVBases(); } break; case clang::Type::Typedef: count = GetNumVirtualBaseClasses(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr()); break; case clang::Type::Auto: count = GetNumVirtualBaseClasses(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr()); break; case clang::Type::Elaborated: count = GetNumVirtualBaseClasses(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr()); break; case clang::Type::Paren: count = GetNumVirtualBaseClasses( llvm::cast(qual_type)->desugar().getAsOpaquePtr()); break; default: break; } return count; } CompilerType ClangASTContext::GetDirectBaseClassAtIndex( lldb::opaque_compiler_type_t type, size_t idx, uint32_t *bit_offset_ptr) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) { uint32_t curr_idx = 0; clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end; for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end(); base_class != base_class_end; ++base_class, ++curr_idx) { if (curr_idx == idx) { if (bit_offset_ptr) { const clang::ASTRecordLayout &record_layout = getASTContext()->getASTRecordLayout(cxx_record_decl); const clang::CXXRecordDecl *base_class_decl = llvm::cast( base_class->getType() ->getAs() ->getDecl()); if (base_class->isVirtual()) *bit_offset_ptr = record_layout.getVBaseClassOffset(base_class_decl) .getQuantity() * 8; else *bit_offset_ptr = record_layout.getBaseClassOffset(base_class_decl) .getQuantity() * 8; } return CompilerType(this, base_class->getType().getAsOpaquePtr()); } } } } break; case clang::Type::ObjCObjectPointer: return GetPointeeType(type).GetDirectBaseClassAtIndex(idx, bit_offset_ptr); case clang::Type::ObjCObject: if (idx == 0 && GetCompleteType(type)) { const clang::ObjCObjectType *objc_class_type = qual_type->getAsObjCQualifiedInterfaceType(); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) { clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass(); if (superclass_interface_decl) { if (bit_offset_ptr) *bit_offset_ptr = 0; return CompilerType(getASTContext(), getASTContext()->getObjCInterfaceType( superclass_interface_decl)); } } } } break; case clang::Type::ObjCInterface: if (idx == 0 && GetCompleteType(type)) { const clang::ObjCObjectType *objc_interface_type = qual_type->getAs(); if (objc_interface_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_interface_type->getInterface(); if (class_interface_decl) { clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass(); if (superclass_interface_decl) { if (bit_offset_ptr) *bit_offset_ptr = 0; return CompilerType(getASTContext(), getASTContext()->getObjCInterfaceType( superclass_interface_decl)); } } } } break; case clang::Type::Typedef: return GetDirectBaseClassAtIndex(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), idx, bit_offset_ptr); case clang::Type::Auto: return GetDirectBaseClassAtIndex(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), idx, bit_offset_ptr); case clang::Type::Elaborated: return GetDirectBaseClassAtIndex( llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), idx, bit_offset_ptr); case clang::Type::Paren: return GetDirectBaseClassAtIndex( llvm::cast(qual_type)->desugar().getAsOpaquePtr(), idx, bit_offset_ptr); default: break; } return CompilerType(); } CompilerType ClangASTContext::GetVirtualBaseClassAtIndex( lldb::opaque_compiler_type_t type, size_t idx, uint32_t *bit_offset_ptr) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) { uint32_t curr_idx = 0; clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end; for (base_class = cxx_record_decl->vbases_begin(), base_class_end = cxx_record_decl->vbases_end(); base_class != base_class_end; ++base_class, ++curr_idx) { if (curr_idx == idx) { if (bit_offset_ptr) { const clang::ASTRecordLayout &record_layout = getASTContext()->getASTRecordLayout(cxx_record_decl); const clang::CXXRecordDecl *base_class_decl = llvm::cast( base_class->getType() ->getAs() ->getDecl()); *bit_offset_ptr = record_layout.getVBaseClassOffset(base_class_decl) .getQuantity() * 8; } return CompilerType(this, base_class->getType().getAsOpaquePtr()); } } } } break; case clang::Type::Typedef: return GetVirtualBaseClassAtIndex(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), idx, bit_offset_ptr); case clang::Type::Auto: return GetVirtualBaseClassAtIndex(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), idx, bit_offset_ptr); case clang::Type::Elaborated: return GetVirtualBaseClassAtIndex( llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), idx, bit_offset_ptr); case clang::Type::Paren: return GetVirtualBaseClassAtIndex( llvm::cast(qual_type)->desugar().getAsOpaquePtr(), idx, bit_offset_ptr); default: break; } return CompilerType(); } // If a pointer to a pointee type (the clang_type arg) says that it has no // children, then we either need to trust it, or override it and return a // different result. For example, an "int *" has one child that is an integer, // but a function pointer doesn't have any children. Likewise if a Record type // claims it has no children, then there really is nothing to show. uint32_t ClangASTContext::GetNumPointeeChildren(clang::QualType type) { if (type.isNull()) return 0; clang::QualType qual_type(type.getCanonicalType()); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Builtin: switch (llvm::cast(qual_type)->getKind()) { case clang::BuiltinType::UnknownAny: case clang::BuiltinType::Void: case clang::BuiltinType::NullPtr: case clang::BuiltinType::OCLEvent: case clang::BuiltinType::OCLImage1dRO: case clang::BuiltinType::OCLImage1dWO: case clang::BuiltinType::OCLImage1dRW: case clang::BuiltinType::OCLImage1dArrayRO: case clang::BuiltinType::OCLImage1dArrayWO: case clang::BuiltinType::OCLImage1dArrayRW: case clang::BuiltinType::OCLImage1dBufferRO: case clang::BuiltinType::OCLImage1dBufferWO: case clang::BuiltinType::OCLImage1dBufferRW: case clang::BuiltinType::OCLImage2dRO: case clang::BuiltinType::OCLImage2dWO: case clang::BuiltinType::OCLImage2dRW: case clang::BuiltinType::OCLImage2dArrayRO: case clang::BuiltinType::OCLImage2dArrayWO: case clang::BuiltinType::OCLImage2dArrayRW: case clang::BuiltinType::OCLImage3dRO: case clang::BuiltinType::OCLImage3dWO: case clang::BuiltinType::OCLImage3dRW: case clang::BuiltinType::OCLSampler: return 0; case clang::BuiltinType::Bool: case clang::BuiltinType::Char_U: case clang::BuiltinType::UChar: case clang::BuiltinType::WChar_U: case clang::BuiltinType::Char16: case clang::BuiltinType::Char32: case clang::BuiltinType::UShort: case clang::BuiltinType::UInt: case clang::BuiltinType::ULong: case clang::BuiltinType::ULongLong: case clang::BuiltinType::UInt128: case clang::BuiltinType::Char_S: case clang::BuiltinType::SChar: case clang::BuiltinType::WChar_S: case clang::BuiltinType::Short: case clang::BuiltinType::Int: case clang::BuiltinType::Long: case clang::BuiltinType::LongLong: case clang::BuiltinType::Int128: case clang::BuiltinType::Float: case clang::BuiltinType::Double: case clang::BuiltinType::LongDouble: case clang::BuiltinType::Dependent: case clang::BuiltinType::Overload: case clang::BuiltinType::ObjCId: case clang::BuiltinType::ObjCClass: case clang::BuiltinType::ObjCSel: case clang::BuiltinType::BoundMember: case clang::BuiltinType::Half: case clang::BuiltinType::ARCUnbridgedCast: case clang::BuiltinType::PseudoObject: case clang::BuiltinType::BuiltinFn: case clang::BuiltinType::OMPArraySection: return 1; default: return 0; } break; case clang::Type::Complex: return 1; case clang::Type::Pointer: return 1; case clang::Type::BlockPointer: return 0; // If block pointers don't have debug info, then no children for // them case clang::Type::LValueReference: return 1; case clang::Type::RValueReference: return 1; case clang::Type::MemberPointer: return 0; case clang::Type::ConstantArray: return 0; case clang::Type::IncompleteArray: return 0; case clang::Type::VariableArray: return 0; case clang::Type::DependentSizedArray: return 0; case clang::Type::DependentSizedExtVector: return 0; case clang::Type::Vector: return 0; case clang::Type::ExtVector: return 0; case clang::Type::FunctionProto: return 0; // When we function pointers, they have no children... case clang::Type::FunctionNoProto: return 0; // When we function pointers, they have no children... case clang::Type::UnresolvedUsing: return 0; case clang::Type::Paren: return GetNumPointeeChildren( llvm::cast(qual_type)->desugar()); case clang::Type::Typedef: return GetNumPointeeChildren(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()); case clang::Type::Auto: return GetNumPointeeChildren( llvm::cast(qual_type)->getDeducedType()); case clang::Type::Elaborated: return GetNumPointeeChildren( llvm::cast(qual_type)->getNamedType()); case clang::Type::TypeOfExpr: return 0; case clang::Type::TypeOf: return 0; case clang::Type::Decltype: return 0; case clang::Type::Record: return 0; case clang::Type::Enum: return 1; case clang::Type::TemplateTypeParm: return 1; case clang::Type::SubstTemplateTypeParm: return 1; case clang::Type::TemplateSpecialization: return 1; case clang::Type::InjectedClassName: return 0; case clang::Type::DependentName: return 1; case clang::Type::DependentTemplateSpecialization: return 1; case clang::Type::ObjCObject: return 0; case clang::Type::ObjCInterface: return 0; case clang::Type::ObjCObjectPointer: return 1; default: break; } return 0; } CompilerType ClangASTContext::GetChildCompilerTypeAtIndex( lldb::opaque_compiler_type_t type, ExecutionContext *exe_ctx, size_t idx, bool transparent_pointers, bool omit_empty_base_classes, bool ignore_array_bounds, std::string &child_name, uint32_t &child_byte_size, int32_t &child_byte_offset, uint32_t &child_bitfield_bit_size, uint32_t &child_bitfield_bit_offset, bool &child_is_base_class, bool &child_is_deref_of_parent, ValueObject *valobj, uint64_t &language_flags) { if (!type) return CompilerType(); clang::QualType parent_qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass parent_type_class = parent_qual_type->getTypeClass(); child_bitfield_bit_size = 0; child_bitfield_bit_offset = 0; child_is_base_class = false; language_flags = 0; const bool idx_is_valid = idx < GetNumChildren(type, omit_empty_base_classes); uint32_t bit_offset; switch (parent_type_class) { case clang::Type::Builtin: if (idx_is_valid) { switch (llvm::cast(parent_qual_type)->getKind()) { case clang::BuiltinType::ObjCId: case clang::BuiltinType::ObjCClass: child_name = "isa"; child_byte_size = getASTContext()->getTypeSize(getASTContext()->ObjCBuiltinClassTy) / CHAR_BIT; return CompilerType(getASTContext(), getASTContext()->ObjCBuiltinClassTy); default: break; } } break; case clang::Type::Record: if (idx_is_valid && GetCompleteType(type)) { const clang::RecordType *record_type = llvm::cast(parent_qual_type.getTypePtr()); const clang::RecordDecl *record_decl = record_type->getDecl(); assert(record_decl); const clang::ASTRecordLayout &record_layout = getASTContext()->getASTRecordLayout(record_decl); uint32_t child_idx = 0; const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast(record_decl); if (cxx_record_decl) { // We might have base classes to print out first clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end; for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end(); base_class != base_class_end; ++base_class) { const clang::CXXRecordDecl *base_class_decl = nullptr; // Skip empty base classes if (omit_empty_base_classes) { base_class_decl = llvm::cast( base_class->getType()->getAs()->getDecl()); if (ClangASTContext::RecordHasFields(base_class_decl) == false) continue; } if (idx == child_idx) { if (base_class_decl == nullptr) base_class_decl = llvm::cast( base_class->getType()->getAs()->getDecl()); if (base_class->isVirtual()) { bool handled = false; if (valobj) { Status err; AddressType addr_type = eAddressTypeInvalid; lldb::addr_t vtable_ptr_addr = valobj->GetCPPVTableAddress(addr_type); if (vtable_ptr_addr != LLDB_INVALID_ADDRESS && addr_type == eAddressTypeLoad) { ExecutionContext exe_ctx(valobj->GetExecutionContextRef()); Process *process = exe_ctx.GetProcessPtr(); if (process) { clang::VTableContextBase *vtable_ctx = getASTContext()->getVTableContext(); if (vtable_ctx) { if (vtable_ctx->isMicrosoft()) { clang::MicrosoftVTableContext *msoft_vtable_ctx = static_cast( vtable_ctx); if (vtable_ptr_addr) { const lldb::addr_t vbtable_ptr_addr = vtable_ptr_addr + record_layout.getVBPtrOffset().getQuantity(); const lldb::addr_t vbtable_ptr = process->ReadPointerFromMemory(vbtable_ptr_addr, err); if (vbtable_ptr != LLDB_INVALID_ADDRESS) { // Get the index into the virtual base table. The // index is the index in uint32_t from vbtable_ptr const unsigned vbtable_index = msoft_vtable_ctx->getVBTableIndex( cxx_record_decl, base_class_decl); const lldb::addr_t base_offset_addr = vbtable_ptr + vbtable_index * 4; const uint32_t base_offset = process->ReadUnsignedIntegerFromMemory( base_offset_addr, 4, UINT32_MAX, err); if (base_offset != UINT32_MAX) { handled = true; bit_offset = base_offset * 8; } } } } else { clang::ItaniumVTableContext *itanium_vtable_ctx = static_cast( vtable_ctx); if (vtable_ptr_addr) { const lldb::addr_t vtable_ptr = process->ReadPointerFromMemory(vtable_ptr_addr, err); if (vtable_ptr != LLDB_INVALID_ADDRESS) { clang::CharUnits base_offset_offset = itanium_vtable_ctx->getVirtualBaseOffsetOffset( cxx_record_decl, base_class_decl); const lldb::addr_t base_offset_addr = vtable_ptr + base_offset_offset.getQuantity(); const uint32_t base_offset_size = process->GetAddressByteSize(); const uint64_t base_offset = process->ReadUnsignedIntegerFromMemory( base_offset_addr, base_offset_size, UINT32_MAX, err); if (base_offset < UINT32_MAX) { handled = true; bit_offset = base_offset * 8; } } } } } } } } if (!handled) bit_offset = record_layout.getVBaseClassOffset(base_class_decl) .getQuantity() * 8; } else bit_offset = record_layout.getBaseClassOffset(base_class_decl) .getQuantity() * 8; // Base classes should be a multiple of 8 bits in size child_byte_offset = bit_offset / 8; CompilerType base_class_clang_type(getASTContext(), base_class->getType()); child_name = base_class_clang_type.GetTypeName().AsCString(""); uint64_t base_class_clang_type_bit_size = base_class_clang_type.GetBitSize( exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL); // Base classes bit sizes should be a multiple of 8 bits in size assert(base_class_clang_type_bit_size % 8 == 0); child_byte_size = base_class_clang_type_bit_size / 8; child_is_base_class = true; return base_class_clang_type; } // We don't increment the child index in the for loop since we might // be skipping empty base classes ++child_idx; } } // Make sure index is in range... uint32_t field_idx = 0; clang::RecordDecl::field_iterator field, field_end; for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field, ++field_idx, ++child_idx) { if (idx == child_idx) { // Print the member type if requested // Print the member name and equal sign child_name.assign(field->getNameAsString()); // Figure out the type byte size (field_type_info.first) and // alignment (field_type_info.second) from the AST context. CompilerType field_clang_type(getASTContext(), field->getType()); assert(field_idx < record_layout.getFieldCount()); child_byte_size = field_clang_type.GetByteSize( exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL); const uint32_t child_bit_size = child_byte_size * 8; // Figure out the field offset within the current struct/union/class // type bit_offset = record_layout.getFieldOffset(field_idx); if (ClangASTContext::FieldIsBitfield(getASTContext(), *field, child_bitfield_bit_size)) { child_bitfield_bit_offset = bit_offset % child_bit_size; const uint32_t child_bit_offset = bit_offset - child_bitfield_bit_offset; child_byte_offset = child_bit_offset / 8; } else { child_byte_offset = bit_offset / 8; } return field_clang_type; } } } break; case clang::Type::ObjCObject: case clang::Type::ObjCInterface: if (idx_is_valid && GetCompleteType(type)) { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(parent_qual_type.getTypePtr()); assert(objc_class_type); if (objc_class_type) { uint32_t child_idx = 0; clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) { const clang::ASTRecordLayout &interface_layout = getASTContext()->getASTObjCInterfaceLayout(class_interface_decl); clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass(); if (superclass_interface_decl) { if (omit_empty_base_classes) { CompilerType base_class_clang_type( getASTContext(), getASTContext()->getObjCInterfaceType( superclass_interface_decl)); if (base_class_clang_type.GetNumChildren( omit_empty_base_classes) > 0) { if (idx == 0) { clang::QualType ivar_qual_type( getASTContext()->getObjCInterfaceType( superclass_interface_decl)); child_name.assign( superclass_interface_decl->getNameAsString()); clang::TypeInfo ivar_type_info = getASTContext()->getTypeInfo(ivar_qual_type.getTypePtr()); child_byte_size = ivar_type_info.Width / 8; child_byte_offset = 0; child_is_base_class = true; return CompilerType(getASTContext(), ivar_qual_type); } ++child_idx; } } else ++child_idx; } const uint32_t superclass_idx = child_idx; if (idx < (child_idx + class_interface_decl->ivar_size())) { clang::ObjCInterfaceDecl::ivar_iterator ivar_pos, ivar_end = class_interface_decl->ivar_end(); for (ivar_pos = class_interface_decl->ivar_begin(); ivar_pos != ivar_end; ++ivar_pos) { if (child_idx == idx) { clang::ObjCIvarDecl *ivar_decl = *ivar_pos; clang::QualType ivar_qual_type(ivar_decl->getType()); child_name.assign(ivar_decl->getNameAsString()); clang::TypeInfo ivar_type_info = getASTContext()->getTypeInfo(ivar_qual_type.getTypePtr()); child_byte_size = ivar_type_info.Width / 8; // Figure out the field offset within the current // struct/union/class type // For ObjC objects, we can't trust the bit offset we get from // the Clang AST, since // that doesn't account for the space taken up by unbacked // properties, or from // the changing size of base classes that are newer than this // class. // So if we have a process around that we can ask about this // object, do so. child_byte_offset = LLDB_INVALID_IVAR_OFFSET; Process *process = nullptr; if (exe_ctx) process = exe_ctx->GetProcessPtr(); if (process) { ObjCLanguageRuntime *objc_runtime = process->GetObjCLanguageRuntime(); if (objc_runtime != nullptr) { CompilerType parent_ast_type(getASTContext(), parent_qual_type); child_byte_offset = objc_runtime->GetByteOffsetForIvar( parent_ast_type, ivar_decl->getNameAsString().c_str()); } } // Setting this to UINT32_MAX to make sure we don't compute it // twice... bit_offset = UINT32_MAX; if (child_byte_offset == static_cast(LLDB_INVALID_IVAR_OFFSET)) { bit_offset = interface_layout.getFieldOffset(child_idx - superclass_idx); child_byte_offset = bit_offset / 8; } // Note, the ObjC Ivar Byte offset is just that, it doesn't // account for the bit offset // of a bitfield within its containing object. So regardless of // where we get the byte // offset from, we still need to get the bit offset for // bitfields from the layout. if (ClangASTContext::FieldIsBitfield(getASTContext(), ivar_decl, child_bitfield_bit_size)) { if (bit_offset == UINT32_MAX) bit_offset = interface_layout.getFieldOffset( child_idx - superclass_idx); child_bitfield_bit_offset = bit_offset % 8; } return CompilerType(getASTContext(), ivar_qual_type); } ++child_idx; } } } } } break; case clang::Type::ObjCObjectPointer: if (idx_is_valid) { CompilerType pointee_clang_type(GetPointeeType(type)); if (transparent_pointers && pointee_clang_type.IsAggregateType()) { child_is_deref_of_parent = false; bool tmp_child_is_deref_of_parent = false; return pointee_clang_type.GetChildCompilerTypeAtIndex( exe_ctx, idx, transparent_pointers, omit_empty_base_classes, ignore_array_bounds, child_name, child_byte_size, child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, tmp_child_is_deref_of_parent, valobj, language_flags); } else { child_is_deref_of_parent = true; const char *parent_name = valobj ? valobj->GetName().GetCString() : NULL; if (parent_name) { child_name.assign(1, '*'); child_name += parent_name; } // We have a pointer to an simple type if (idx == 0 && pointee_clang_type.GetCompleteType()) { child_byte_size = pointee_clang_type.GetByteSize( exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL); child_byte_offset = 0; return pointee_clang_type; } } } break; case clang::Type::Vector: case clang::Type::ExtVector: if (idx_is_valid) { const clang::VectorType *array = llvm::cast(parent_qual_type.getTypePtr()); if (array) { CompilerType element_type(getASTContext(), array->getElementType()); if (element_type.GetCompleteType()) { char element_name[64]; ::snprintf(element_name, sizeof(element_name), "[%" PRIu64 "]", static_cast(idx)); child_name.assign(element_name); child_byte_size = element_type.GetByteSize( exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL); child_byte_offset = (int32_t)idx * (int32_t)child_byte_size; return element_type; } } } break; case clang::Type::ConstantArray: case clang::Type::IncompleteArray: if (ignore_array_bounds || idx_is_valid) { const clang::ArrayType *array = GetQualType(type)->getAsArrayTypeUnsafe(); if (array) { CompilerType element_type(getASTContext(), array->getElementType()); if (element_type.GetCompleteType()) { child_name = llvm::formatv("[{0}]", idx); child_byte_size = element_type.GetByteSize( exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL); child_byte_offset = (int32_t)idx * (int32_t)child_byte_size; return element_type; } } } break; case clang::Type::Pointer: { CompilerType pointee_clang_type(GetPointeeType(type)); // Don't dereference "void *" pointers if (pointee_clang_type.IsVoidType()) return CompilerType(); if (transparent_pointers && pointee_clang_type.IsAggregateType()) { child_is_deref_of_parent = false; bool tmp_child_is_deref_of_parent = false; return pointee_clang_type.GetChildCompilerTypeAtIndex( exe_ctx, idx, transparent_pointers, omit_empty_base_classes, ignore_array_bounds, child_name, child_byte_size, child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, tmp_child_is_deref_of_parent, valobj, language_flags); } else { child_is_deref_of_parent = true; const char *parent_name = valobj ? valobj->GetName().GetCString() : NULL; if (parent_name) { child_name.assign(1, '*'); child_name += parent_name; } // We have a pointer to an simple type if (idx == 0) { child_byte_size = pointee_clang_type.GetByteSize( exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL); child_byte_offset = 0; return pointee_clang_type; } } break; } case clang::Type::LValueReference: case clang::Type::RValueReference: if (idx_is_valid) { const clang::ReferenceType *reference_type = llvm::cast(parent_qual_type.getTypePtr()); CompilerType pointee_clang_type(getASTContext(), reference_type->getPointeeType()); if (transparent_pointers && pointee_clang_type.IsAggregateType()) { child_is_deref_of_parent = false; bool tmp_child_is_deref_of_parent = false; return pointee_clang_type.GetChildCompilerTypeAtIndex( exe_ctx, idx, transparent_pointers, omit_empty_base_classes, ignore_array_bounds, child_name, child_byte_size, child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, tmp_child_is_deref_of_parent, valobj, language_flags); } else { const char *parent_name = valobj ? valobj->GetName().GetCString() : NULL; if (parent_name) { child_name.assign(1, '&'); child_name += parent_name; } // We have a pointer to an simple type if (idx == 0) { child_byte_size = pointee_clang_type.GetByteSize( exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL); child_byte_offset = 0; return pointee_clang_type; } } } break; case clang::Type::Typedef: { CompilerType typedefed_clang_type( getASTContext(), llvm::cast(parent_qual_type) ->getDecl() ->getUnderlyingType()); return typedefed_clang_type.GetChildCompilerTypeAtIndex( exe_ctx, idx, transparent_pointers, omit_empty_base_classes, ignore_array_bounds, child_name, child_byte_size, child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, child_is_deref_of_parent, valobj, language_flags); } break; case clang::Type::Auto: { CompilerType elaborated_clang_type( getASTContext(), llvm::cast(parent_qual_type)->getDeducedType()); return elaborated_clang_type.GetChildCompilerTypeAtIndex( exe_ctx, idx, transparent_pointers, omit_empty_base_classes, ignore_array_bounds, child_name, child_byte_size, child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, child_is_deref_of_parent, valobj, language_flags); } case clang::Type::Elaborated: { CompilerType elaborated_clang_type( getASTContext(), llvm::cast(parent_qual_type)->getNamedType()); return elaborated_clang_type.GetChildCompilerTypeAtIndex( exe_ctx, idx, transparent_pointers, omit_empty_base_classes, ignore_array_bounds, child_name, child_byte_size, child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, child_is_deref_of_parent, valobj, language_flags); } case clang::Type::Paren: { CompilerType paren_clang_type( getASTContext(), llvm::cast(parent_qual_type)->desugar()); return paren_clang_type.GetChildCompilerTypeAtIndex( exe_ctx, idx, transparent_pointers, omit_empty_base_classes, ignore_array_bounds, child_name, child_byte_size, child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, child_is_deref_of_parent, valobj, language_flags); } default: break; } return CompilerType(); } static uint32_t GetIndexForRecordBase(const clang::RecordDecl *record_decl, const clang::CXXBaseSpecifier *base_spec, bool omit_empty_base_classes) { uint32_t child_idx = 0; const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast(record_decl); // const char *super_name = record_decl->getNameAsCString(); // const char *base_name = // base_spec->getType()->getAs()->getDecl()->getNameAsCString(); // printf ("GetIndexForRecordChild (%s, %s)\n", super_name, base_name); // if (cxx_record_decl) { clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end; for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end(); base_class != base_class_end; ++base_class) { if (omit_empty_base_classes) { if (BaseSpecifierIsEmpty(base_class)) continue; } // printf ("GetIndexForRecordChild (%s, %s) base[%u] = %s\n", // super_name, base_name, // child_idx, // base_class->getType()->getAs()->getDecl()->getNameAsCString()); // // if (base_class == base_spec) return child_idx; ++child_idx; } } return UINT32_MAX; } static uint32_t GetIndexForRecordChild(const clang::RecordDecl *record_decl, clang::NamedDecl *canonical_decl, bool omit_empty_base_classes) { uint32_t child_idx = ClangASTContext::GetNumBaseClasses( llvm::dyn_cast(record_decl), omit_empty_base_classes); clang::RecordDecl::field_iterator field, field_end; for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field, ++child_idx) { if (field->getCanonicalDecl() == canonical_decl) return child_idx; } return UINT32_MAX; } // Look for a child member (doesn't include base classes, but it does include // their members) in the type hierarchy. Returns an index path into "clang_type" // on how to reach the appropriate member. // // class A // { // public: // int m_a; // int m_b; // }; // // class B // { // }; // // class C : // public B, // public A // { // }; // // If we have a clang type that describes "class C", and we wanted to looked // "m_b" in it: // // With omit_empty_base_classes == false we would get an integer array back // with: // { 1, 1 } // The first index 1 is the child index for "class A" within class C // The second index 1 is the child index for "m_b" within class A // // With omit_empty_base_classes == true we would get an integer array back with: // { 0, 1 } // The first index 0 is the child index for "class A" within class C (since // class B doesn't have any members it doesn't count) // The second index 1 is the child index for "m_b" within class A size_t ClangASTContext::GetIndexOfChildMemberWithName( lldb::opaque_compiler_type_t type, const char *name, bool omit_empty_base_classes, std::vector &child_indexes) { if (type && name && name[0]) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::RecordType *record_type = llvm::cast(qual_type.getTypePtr()); const clang::RecordDecl *record_decl = record_type->getDecl(); assert(record_decl); uint32_t child_idx = 0; const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast(record_decl); // Try and find a field that matches NAME clang::RecordDecl::field_iterator field, field_end; llvm::StringRef name_sref(name); for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field, ++child_idx) { llvm::StringRef field_name = field->getName(); if (field_name.empty()) { CompilerType field_type(getASTContext(), field->getType()); child_indexes.push_back(child_idx); if (field_type.GetIndexOfChildMemberWithName( name, omit_empty_base_classes, child_indexes)) return child_indexes.size(); child_indexes.pop_back(); } else if (field_name.equals(name_sref)) { // We have to add on the number of base classes to this index! child_indexes.push_back( child_idx + ClangASTContext::GetNumBaseClasses( cxx_record_decl, omit_empty_base_classes)); return child_indexes.size(); } } if (cxx_record_decl) { const clang::RecordDecl *parent_record_decl = cxx_record_decl; // printf ("parent = %s\n", parent_record_decl->getNameAsCString()); // const Decl *root_cdecl = cxx_record_decl->getCanonicalDecl(); // Didn't find things easily, lets let clang do its thang... clang::IdentifierInfo &ident_ref = getASTContext()->Idents.get(name_sref); clang::DeclarationName decl_name(&ident_ref); clang::CXXBasePaths paths; if (cxx_record_decl->lookupInBases( [decl_name](const clang::CXXBaseSpecifier *specifier, clang::CXXBasePath &path) { return clang::CXXRecordDecl::FindOrdinaryMember( specifier, path, decl_name); }, paths)) { clang::CXXBasePaths::const_paths_iterator path, path_end = paths.end(); for (path = paths.begin(); path != path_end; ++path) { const size_t num_path_elements = path->size(); for (size_t e = 0; e < num_path_elements; ++e) { clang::CXXBasePathElement elem = (*path)[e]; child_idx = GetIndexForRecordBase(parent_record_decl, elem.Base, omit_empty_base_classes); if (child_idx == UINT32_MAX) { child_indexes.clear(); return 0; } else { child_indexes.push_back(child_idx); parent_record_decl = llvm::cast( elem.Base->getType() ->getAs() ->getDecl()); } } for (clang::NamedDecl *path_decl : path->Decls) { child_idx = GetIndexForRecordChild( parent_record_decl, path_decl, omit_empty_base_classes); if (child_idx == UINT32_MAX) { child_indexes.clear(); return 0; } else { child_indexes.push_back(child_idx); } } } return child_indexes.size(); } } } break; case clang::Type::ObjCObject: case clang::Type::ObjCInterface: if (GetCompleteType(type)) { llvm::StringRef name_sref(name); const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type.getTypePtr()); assert(objc_class_type); if (objc_class_type) { uint32_t child_idx = 0; clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) { clang::ObjCInterfaceDecl::ivar_iterator ivar_pos, ivar_end = class_interface_decl->ivar_end(); clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass(); for (ivar_pos = class_interface_decl->ivar_begin(); ivar_pos != ivar_end; ++ivar_pos, ++child_idx) { const clang::ObjCIvarDecl *ivar_decl = *ivar_pos; if (ivar_decl->getName().equals(name_sref)) { if ((!omit_empty_base_classes && superclass_interface_decl) || (omit_empty_base_classes && ObjCDeclHasIVars(superclass_interface_decl, true))) ++child_idx; child_indexes.push_back(child_idx); return child_indexes.size(); } } if (superclass_interface_decl) { // The super class index is always zero for ObjC classes, // so we push it onto the child indexes in case we find // an ivar in our superclass... child_indexes.push_back(0); CompilerType superclass_clang_type( getASTContext(), getASTContext()->getObjCInterfaceType( superclass_interface_decl)); if (superclass_clang_type.GetIndexOfChildMemberWithName( name, omit_empty_base_classes, child_indexes)) { // We did find an ivar in a superclass so just // return the results! return child_indexes.size(); } // We didn't find an ivar matching "name" in our // superclass, pop the superclass zero index that // we pushed on above. child_indexes.pop_back(); } } } } break; case clang::Type::ObjCObjectPointer: { CompilerType objc_object_clang_type( getASTContext(), llvm::cast(qual_type.getTypePtr()) ->getPointeeType()); return objc_object_clang_type.GetIndexOfChildMemberWithName( name, omit_empty_base_classes, child_indexes); } break; case clang::Type::ConstantArray: { // const clang::ConstantArrayType *array = // llvm::cast(parent_qual_type.getTypePtr()); // const uint64_t element_count = // array->getSize().getLimitedValue(); // // if (idx < element_count) // { // std::pair field_type_info = // ast->getTypeInfo(array->getElementType()); // // char element_name[32]; // ::snprintf (element_name, sizeof (element_name), // "%s[%u]", parent_name ? parent_name : "", idx); // // child_name.assign(element_name); // assert(field_type_info.first % 8 == 0); // child_byte_size = field_type_info.first / 8; // child_byte_offset = idx * child_byte_size; // return array->getElementType().getAsOpaquePtr(); // } } break; // case clang::Type::MemberPointerType: // { // MemberPointerType *mem_ptr_type = // llvm::cast(qual_type.getTypePtr()); // clang::QualType pointee_type = // mem_ptr_type->getPointeeType(); // // if (ClangASTContext::IsAggregateType // (pointee_type.getAsOpaquePtr())) // { // return GetIndexOfChildWithName (ast, // mem_ptr_type->getPointeeType().getAsOpaquePtr(), // name); // } // } // break; // case clang::Type::LValueReference: case clang::Type::RValueReference: { const clang::ReferenceType *reference_type = llvm::cast(qual_type.getTypePtr()); clang::QualType pointee_type(reference_type->getPointeeType()); CompilerType pointee_clang_type(getASTContext(), pointee_type); if (pointee_clang_type.IsAggregateType()) { return pointee_clang_type.GetIndexOfChildMemberWithName( name, omit_empty_base_classes, child_indexes); } } break; case clang::Type::Pointer: { CompilerType pointee_clang_type(GetPointeeType(type)); if (pointee_clang_type.IsAggregateType()) { return pointee_clang_type.GetIndexOfChildMemberWithName( name, omit_empty_base_classes, child_indexes); } } break; case clang::Type::Typedef: return CompilerType(getASTContext(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()) .GetIndexOfChildMemberWithName(name, omit_empty_base_classes, child_indexes); case clang::Type::Auto: return CompilerType( getASTContext(), llvm::cast(qual_type)->getDeducedType()) .GetIndexOfChildMemberWithName(name, omit_empty_base_classes, child_indexes); case clang::Type::Elaborated: return CompilerType( getASTContext(), llvm::cast(qual_type)->getNamedType()) .GetIndexOfChildMemberWithName(name, omit_empty_base_classes, child_indexes); case clang::Type::Paren: return CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .GetIndexOfChildMemberWithName(name, omit_empty_base_classes, child_indexes); default: break; } } return 0; } // Get the index of the child of "clang_type" whose name matches. This function // doesn't descend into the children, but only looks one level deep and name // matches can include base class names. uint32_t ClangASTContext::GetIndexOfChildWithName(lldb::opaque_compiler_type_t type, const char *name, bool omit_empty_base_classes) { if (type && name && name[0]) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::RecordType *record_type = llvm::cast(qual_type.getTypePtr()); const clang::RecordDecl *record_decl = record_type->getDecl(); assert(record_decl); uint32_t child_idx = 0; const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast(record_decl); if (cxx_record_decl) { clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end; for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end(); base_class != base_class_end; ++base_class) { // Skip empty base classes clang::CXXRecordDecl *base_class_decl = llvm::cast( base_class->getType() ->getAs() ->getDecl()); if (omit_empty_base_classes && ClangASTContext::RecordHasFields(base_class_decl) == false) continue; CompilerType base_class_clang_type(getASTContext(), base_class->getType()); std::string base_class_type_name( base_class_clang_type.GetTypeName().AsCString("")); if (base_class_type_name.compare(name) == 0) return child_idx; ++child_idx; } } // Try and find a field that matches NAME clang::RecordDecl::field_iterator field, field_end; llvm::StringRef name_sref(name); for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field, ++child_idx) { if (field->getName().equals(name_sref)) return child_idx; } } break; case clang::Type::ObjCObject: case clang::Type::ObjCInterface: if (GetCompleteType(type)) { llvm::StringRef name_sref(name); const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type.getTypePtr()); assert(objc_class_type); if (objc_class_type) { uint32_t child_idx = 0; clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) { clang::ObjCInterfaceDecl::ivar_iterator ivar_pos, ivar_end = class_interface_decl->ivar_end(); clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass(); for (ivar_pos = class_interface_decl->ivar_begin(); ivar_pos != ivar_end; ++ivar_pos, ++child_idx) { const clang::ObjCIvarDecl *ivar_decl = *ivar_pos; if (ivar_decl->getName().equals(name_sref)) { if ((!omit_empty_base_classes && superclass_interface_decl) || (omit_empty_base_classes && ObjCDeclHasIVars(superclass_interface_decl, true))) ++child_idx; return child_idx; } } if (superclass_interface_decl) { if (superclass_interface_decl->getName().equals(name_sref)) return 0; } } } } break; case clang::Type::ObjCObjectPointer: { CompilerType pointee_clang_type( getASTContext(), llvm::cast(qual_type.getTypePtr()) ->getPointeeType()); return pointee_clang_type.GetIndexOfChildWithName( name, omit_empty_base_classes); } break; case clang::Type::ConstantArray: { // const clang::ConstantArrayType *array = // llvm::cast(parent_qual_type.getTypePtr()); // const uint64_t element_count = // array->getSize().getLimitedValue(); // // if (idx < element_count) // { // std::pair field_type_info = // ast->getTypeInfo(array->getElementType()); // // char element_name[32]; // ::snprintf (element_name, sizeof (element_name), // "%s[%u]", parent_name ? parent_name : "", idx); // // child_name.assign(element_name); // assert(field_type_info.first % 8 == 0); // child_byte_size = field_type_info.first / 8; // child_byte_offset = idx * child_byte_size; // return array->getElementType().getAsOpaquePtr(); // } } break; // case clang::Type::MemberPointerType: // { // MemberPointerType *mem_ptr_type = // llvm::cast(qual_type.getTypePtr()); // clang::QualType pointee_type = // mem_ptr_type->getPointeeType(); // // if (ClangASTContext::IsAggregateType // (pointee_type.getAsOpaquePtr())) // { // return GetIndexOfChildWithName (ast, // mem_ptr_type->getPointeeType().getAsOpaquePtr(), // name); // } // } // break; // case clang::Type::LValueReference: case clang::Type::RValueReference: { const clang::ReferenceType *reference_type = llvm::cast(qual_type.getTypePtr()); CompilerType pointee_type(getASTContext(), reference_type->getPointeeType()); if (pointee_type.IsAggregateType()) { return pointee_type.GetIndexOfChildWithName(name, omit_empty_base_classes); } } break; case clang::Type::Pointer: { const clang::PointerType *pointer_type = llvm::cast(qual_type.getTypePtr()); CompilerType pointee_type(getASTContext(), pointer_type->getPointeeType()); if (pointee_type.IsAggregateType()) { return pointee_type.GetIndexOfChildWithName(name, omit_empty_base_classes); } else { // if (parent_name) // { // child_name.assign(1, '*'); // child_name += parent_name; // } // // // We have a pointer to an simple type // if (idx == 0) // { // std::pair clang_type_info // = ast->getTypeInfo(pointee_type); // assert(clang_type_info.first % 8 == 0); // child_byte_size = clang_type_info.first / 8; // child_byte_offset = 0; // return pointee_type.getAsOpaquePtr(); // } } } break; case clang::Type::Auto: return CompilerType( getASTContext(), llvm::cast(qual_type)->getDeducedType()) .GetIndexOfChildWithName(name, omit_empty_base_classes); case clang::Type::Elaborated: return CompilerType( getASTContext(), llvm::cast(qual_type)->getNamedType()) .GetIndexOfChildWithName(name, omit_empty_base_classes); case clang::Type::Paren: return CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .GetIndexOfChildWithName(name, omit_empty_base_classes); case clang::Type::Typedef: return CompilerType(getASTContext(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()) .GetIndexOfChildWithName(name, omit_empty_base_classes); default: break; } } return UINT32_MAX; } size_t ClangASTContext::GetNumTemplateArguments(lldb::opaque_compiler_type_t type) { if (!type) return 0; clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) { const clang::ClassTemplateSpecializationDecl *template_decl = llvm::dyn_cast( cxx_record_decl); if (template_decl) return template_decl->getTemplateArgs().size(); } } break; case clang::Type::Typedef: return (CompilerType(getASTContext(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType())) .GetNumTemplateArguments(); case clang::Type::Auto: return (CompilerType( getASTContext(), llvm::cast(qual_type)->getDeducedType())) .GetNumTemplateArguments(); case clang::Type::Elaborated: return (CompilerType( getASTContext(), llvm::cast(qual_type)->getNamedType())) .GetNumTemplateArguments(); case clang::Type::Paren: return (CompilerType(getASTContext(), llvm::cast(qual_type)->desugar())) .GetNumTemplateArguments(); default: break; } return 0; } const clang::ClassTemplateSpecializationDecl * ClangASTContext::GetAsTemplateSpecialization( lldb::opaque_compiler_type_t type) { if (!type) return nullptr; clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: { if (! GetCompleteType(type)) return nullptr; const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (!cxx_record_decl) return nullptr; return llvm::dyn_cast( cxx_record_decl); } case clang::Type::Typedef: return GetAsTemplateSpecialization(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr()); case clang::Type::Auto: return GetAsTemplateSpecialization(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr()); case clang::Type::Elaborated: return GetAsTemplateSpecialization( llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr()); case clang::Type::Paren: return GetAsTemplateSpecialization( llvm::cast(qual_type)->desugar().getAsOpaquePtr()); default: return nullptr; } } lldb::TemplateArgumentKind ClangASTContext::GetTemplateArgumentKind(lldb::opaque_compiler_type_t type, size_t arg_idx) { const clang::ClassTemplateSpecializationDecl *template_decl = GetAsTemplateSpecialization(type); if (! template_decl || arg_idx >= template_decl->getTemplateArgs().size()) return eTemplateArgumentKindNull; switch (template_decl->getTemplateArgs()[arg_idx].getKind()) { case clang::TemplateArgument::Null: return eTemplateArgumentKindNull; case clang::TemplateArgument::NullPtr: return eTemplateArgumentKindNullPtr; case clang::TemplateArgument::Type: return eTemplateArgumentKindType; case clang::TemplateArgument::Declaration: return eTemplateArgumentKindDeclaration; case clang::TemplateArgument::Integral: return eTemplateArgumentKindIntegral; case clang::TemplateArgument::Template: return eTemplateArgumentKindTemplate; case clang::TemplateArgument::TemplateExpansion: return eTemplateArgumentKindTemplateExpansion; case clang::TemplateArgument::Expression: return eTemplateArgumentKindExpression; case clang::TemplateArgument::Pack: return eTemplateArgumentKindPack; } llvm_unreachable("Unhandled clang::TemplateArgument::ArgKind"); } CompilerType ClangASTContext::GetTypeTemplateArgument(lldb::opaque_compiler_type_t type, size_t idx) { const clang::ClassTemplateSpecializationDecl *template_decl = GetAsTemplateSpecialization(type); if (!template_decl || idx >= template_decl->getTemplateArgs().size()) return CompilerType(); const clang::TemplateArgument &template_arg = template_decl->getTemplateArgs()[idx]; if (template_arg.getKind() != clang::TemplateArgument::Type) return CompilerType(); return CompilerType(getASTContext(), template_arg.getAsType()); } llvm::Optional ClangASTContext::GetIntegralTemplateArgument(lldb::opaque_compiler_type_t type, size_t idx) { const clang::ClassTemplateSpecializationDecl *template_decl = GetAsTemplateSpecialization(type); if (! template_decl || idx >= template_decl->getTemplateArgs().size()) return llvm::None; const clang::TemplateArgument &template_arg = template_decl->getTemplateArgs()[idx]; if (template_arg.getKind() != clang::TemplateArgument::Integral) return llvm::None; return {{template_arg.getAsIntegral(), CompilerType(getASTContext(), template_arg.getIntegralType())}}; } CompilerType ClangASTContext::GetTypeForFormatters(void *type) { if (type) return ClangUtil::RemoveFastQualifiers(CompilerType(this, type)); return CompilerType(); } clang::EnumDecl *ClangASTContext::GetAsEnumDecl(const CompilerType &type) { const clang::EnumType *enutype = llvm::dyn_cast(ClangUtil::GetCanonicalQualType(type)); if (enutype) return enutype->getDecl(); return NULL; } clang::RecordDecl *ClangASTContext::GetAsRecordDecl(const CompilerType &type) { const clang::RecordType *record_type = llvm::dyn_cast(ClangUtil::GetCanonicalQualType(type)); if (record_type) return record_type->getDecl(); return nullptr; } clang::TagDecl *ClangASTContext::GetAsTagDecl(const CompilerType &type) { clang::QualType qual_type = ClangUtil::GetCanonicalQualType(type); if (qual_type.isNull()) return nullptr; else return qual_type->getAsTagDecl(); } clang::CXXRecordDecl * ClangASTContext::GetAsCXXRecordDecl(lldb::opaque_compiler_type_t type) { return GetCanonicalQualType(type)->getAsCXXRecordDecl(); } clang::ObjCInterfaceDecl * ClangASTContext::GetAsObjCInterfaceDecl(const CompilerType &type) { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast( ClangUtil::GetCanonicalQualType(type)); if (objc_class_type) return objc_class_type->getInterface(); return nullptr; } clang::FieldDecl *ClangASTContext::AddFieldToRecordType( const CompilerType &type, const char *name, const CompilerType &field_clang_type, AccessType access, uint32_t bitfield_bit_size) { if (!type.IsValid() || !field_clang_type.IsValid()) return nullptr; ClangASTContext *ast = llvm::dyn_cast_or_null(type.GetTypeSystem()); if (!ast) return nullptr; clang::ASTContext *clang_ast = ast->getASTContext(); clang::FieldDecl *field = nullptr; clang::Expr *bit_width = nullptr; if (bitfield_bit_size != 0) { llvm::APInt bitfield_bit_size_apint( clang_ast->getTypeSize(clang_ast->IntTy), bitfield_bit_size); bit_width = new (*clang_ast) clang::IntegerLiteral(*clang_ast, bitfield_bit_size_apint, clang_ast->IntTy, clang::SourceLocation()); } clang::RecordDecl *record_decl = ast->GetAsRecordDecl(type); if (record_decl) { field = clang::FieldDecl::Create( *clang_ast, record_decl, clang::SourceLocation(), clang::SourceLocation(), name ? &clang_ast->Idents.get(name) : nullptr, // Identifier ClangUtil::GetQualType(field_clang_type), // Field type nullptr, // TInfo * bit_width, // BitWidth false, // Mutable clang::ICIS_NoInit); // HasInit if (!name) { // Determine whether this field corresponds to an anonymous // struct or union. if (const clang::TagType *TagT = field->getType()->getAs()) { if (clang::RecordDecl *Rec = llvm::dyn_cast(TagT->getDecl())) if (!Rec->getDeclName()) { Rec->setAnonymousStructOrUnion(true); field->setImplicit(); } } } if (field) { field->setAccess( ClangASTContext::ConvertAccessTypeToAccessSpecifier(access)); record_decl->addDecl(field); #ifdef LLDB_CONFIGURATION_DEBUG VerifyDecl(field); #endif } } else { clang::ObjCInterfaceDecl *class_interface_decl = ast->GetAsObjCInterfaceDecl(type); if (class_interface_decl) { const bool is_synthesized = false; field_clang_type.GetCompleteType(); field = clang::ObjCIvarDecl::Create( *clang_ast, class_interface_decl, clang::SourceLocation(), clang::SourceLocation(), name ? &clang_ast->Idents.get(name) : nullptr, // Identifier ClangUtil::GetQualType(field_clang_type), // Field type nullptr, // TypeSourceInfo * ConvertAccessTypeToObjCIvarAccessControl(access), bit_width, is_synthesized); if (field) { class_interface_decl->addDecl(field); #ifdef LLDB_CONFIGURATION_DEBUG VerifyDecl(field); #endif } } } return field; } void ClangASTContext::BuildIndirectFields(const CompilerType &type) { if (!type) return; ClangASTContext *ast = llvm::dyn_cast(type.GetTypeSystem()); if (!ast) return; clang::RecordDecl *record_decl = ast->GetAsRecordDecl(type); if (!record_decl) return; typedef llvm::SmallVector IndirectFieldVector; IndirectFieldVector indirect_fields; clang::RecordDecl::field_iterator field_pos; clang::RecordDecl::field_iterator field_end_pos = record_decl->field_end(); clang::RecordDecl::field_iterator last_field_pos = field_end_pos; for (field_pos = record_decl->field_begin(); field_pos != field_end_pos; last_field_pos = field_pos++) { if (field_pos->isAnonymousStructOrUnion()) { clang::QualType field_qual_type = field_pos->getType(); const clang::RecordType *field_record_type = field_qual_type->getAs(); if (!field_record_type) continue; clang::RecordDecl *field_record_decl = field_record_type->getDecl(); if (!field_record_decl) continue; for (clang::RecordDecl::decl_iterator di = field_record_decl->decls_begin(), de = field_record_decl->decls_end(); di != de; ++di) { if (clang::FieldDecl *nested_field_decl = llvm::dyn_cast(*di)) { clang::NamedDecl **chain = new (*ast->getASTContext()) clang::NamedDecl *[2]; chain[0] = *field_pos; chain[1] = nested_field_decl; clang::IndirectFieldDecl *indirect_field = clang::IndirectFieldDecl::Create( *ast->getASTContext(), record_decl, clang::SourceLocation(), nested_field_decl->getIdentifier(), nested_field_decl->getType(), {chain, 2}); indirect_field->setImplicit(); indirect_field->setAccess(ClangASTContext::UnifyAccessSpecifiers( field_pos->getAccess(), nested_field_decl->getAccess())); indirect_fields.push_back(indirect_field); } else if (clang::IndirectFieldDecl *nested_indirect_field_decl = llvm::dyn_cast(*di)) { size_t nested_chain_size = nested_indirect_field_decl->getChainingSize(); clang::NamedDecl **chain = new (*ast->getASTContext()) clang::NamedDecl *[nested_chain_size + 1]; chain[0] = *field_pos; int chain_index = 1; for (clang::IndirectFieldDecl::chain_iterator nci = nested_indirect_field_decl->chain_begin(), nce = nested_indirect_field_decl->chain_end(); nci < nce; ++nci) { chain[chain_index] = *nci; chain_index++; } clang::IndirectFieldDecl *indirect_field = clang::IndirectFieldDecl::Create( *ast->getASTContext(), record_decl, clang::SourceLocation(), nested_indirect_field_decl->getIdentifier(), nested_indirect_field_decl->getType(), {chain, nested_chain_size + 1}); indirect_field->setImplicit(); indirect_field->setAccess(ClangASTContext::UnifyAccessSpecifiers( field_pos->getAccess(), nested_indirect_field_decl->getAccess())); indirect_fields.push_back(indirect_field); } } } } // Check the last field to see if it has an incomplete array type as its // last member and if it does, the tell the record decl about it if (last_field_pos != field_end_pos) { if (last_field_pos->getType()->isIncompleteArrayType()) record_decl->hasFlexibleArrayMember(); } for (IndirectFieldVector::iterator ifi = indirect_fields.begin(), ife = indirect_fields.end(); ifi < ife; ++ifi) { record_decl->addDecl(*ifi); } } void ClangASTContext::SetIsPacked(const CompilerType &type) { if (type) { ClangASTContext *ast = llvm::dyn_cast(type.GetTypeSystem()); if (ast) { clang::RecordDecl *record_decl = GetAsRecordDecl(type); if (!record_decl) return; record_decl->addAttr( clang::PackedAttr::CreateImplicit(*ast->getASTContext())); } } } clang::VarDecl *ClangASTContext::AddVariableToRecordType( const CompilerType &type, const char *name, const CompilerType &var_type, AccessType access) { clang::VarDecl *var_decl = nullptr; if (!type.IsValid() || !var_type.IsValid()) return nullptr; ClangASTContext *ast = llvm::dyn_cast(type.GetTypeSystem()); if (!ast) return nullptr; clang::RecordDecl *record_decl = ast->GetAsRecordDecl(type); if (record_decl) { var_decl = clang::VarDecl::Create( *ast->getASTContext(), // ASTContext & record_decl, // DeclContext * clang::SourceLocation(), // clang::SourceLocation StartLoc clang::SourceLocation(), // clang::SourceLocation IdLoc name ? &ast->getASTContext()->Idents.get(name) : nullptr, // clang::IdentifierInfo * ClangUtil::GetQualType(var_type), // Variable clang::QualType nullptr, // TypeSourceInfo * clang::SC_Static); // StorageClass if (var_decl) { var_decl->setAccess( ClangASTContext::ConvertAccessTypeToAccessSpecifier(access)); record_decl->addDecl(var_decl); #ifdef LLDB_CONFIGURATION_DEBUG VerifyDecl(var_decl); #endif } } return var_decl; } clang::CXXMethodDecl *ClangASTContext::AddMethodToCXXRecordType( lldb::opaque_compiler_type_t type, const char *name, const CompilerType &method_clang_type, lldb::AccessType access, bool is_virtual, bool is_static, bool is_inline, bool is_explicit, bool is_attr_used, bool is_artificial) { if (!type || !method_clang_type.IsValid() || name == nullptr || name[0] == '\0') return nullptr; clang::QualType record_qual_type(GetCanonicalQualType(type)); clang::CXXRecordDecl *cxx_record_decl = record_qual_type->getAsCXXRecordDecl(); if (cxx_record_decl == nullptr) return nullptr; clang::QualType method_qual_type(ClangUtil::GetQualType(method_clang_type)); clang::CXXMethodDecl *cxx_method_decl = nullptr; clang::DeclarationName decl_name(&getASTContext()->Idents.get(name)); const clang::FunctionType *function_type = llvm::dyn_cast(method_qual_type.getTypePtr()); if (function_type == nullptr) return nullptr; const clang::FunctionProtoType *method_function_prototype( llvm::dyn_cast(function_type)); if (!method_function_prototype) return nullptr; unsigned int num_params = method_function_prototype->getNumParams(); clang::CXXDestructorDecl *cxx_dtor_decl(nullptr); clang::CXXConstructorDecl *cxx_ctor_decl(nullptr); if (is_artificial) return nullptr; // skip everything artificial if (name[0] == '~') { cxx_dtor_decl = clang::CXXDestructorDecl::Create( *getASTContext(), cxx_record_decl, clang::SourceLocation(), clang::DeclarationNameInfo( getASTContext()->DeclarationNames.getCXXDestructorName( getASTContext()->getCanonicalType(record_qual_type)), clang::SourceLocation()), method_qual_type, nullptr, is_inline, is_artificial); cxx_method_decl = cxx_dtor_decl; } else if (decl_name == cxx_record_decl->getDeclName()) { cxx_ctor_decl = clang::CXXConstructorDecl::Create( *getASTContext(), cxx_record_decl, clang::SourceLocation(), clang::DeclarationNameInfo( getASTContext()->DeclarationNames.getCXXConstructorName( getASTContext()->getCanonicalType(record_qual_type)), clang::SourceLocation()), method_qual_type, nullptr, // TypeSourceInfo * is_explicit, is_inline, is_artificial, false /*is_constexpr*/); cxx_method_decl = cxx_ctor_decl; } else { clang::StorageClass SC = is_static ? clang::SC_Static : clang::SC_None; clang::OverloadedOperatorKind op_kind = clang::NUM_OVERLOADED_OPERATORS; if (IsOperator(name, op_kind)) { if (op_kind != clang::NUM_OVERLOADED_OPERATORS) { // Check the number of operator parameters. Sometimes we have // seen bad DWARF that doesn't correctly describe operators and // if we try to create a method and add it to the class, clang // will assert and crash, so we need to make sure things are // acceptable. const bool is_method = true; if (!ClangASTContext::CheckOverloadedOperatorKindParameterCount( is_method, op_kind, num_params)) return nullptr; cxx_method_decl = clang::CXXMethodDecl::Create( *getASTContext(), cxx_record_decl, clang::SourceLocation(), clang::DeclarationNameInfo( getASTContext()->DeclarationNames.getCXXOperatorName(op_kind), clang::SourceLocation()), method_qual_type, nullptr, // TypeSourceInfo * SC, is_inline, false /*is_constexpr*/, clang::SourceLocation()); } else if (num_params == 0) { // Conversion operators don't take params... cxx_method_decl = clang::CXXConversionDecl::Create( *getASTContext(), cxx_record_decl, clang::SourceLocation(), clang::DeclarationNameInfo( getASTContext()->DeclarationNames.getCXXConversionFunctionName( getASTContext()->getCanonicalType( function_type->getReturnType())), clang::SourceLocation()), method_qual_type, nullptr, // TypeSourceInfo * is_inline, is_explicit, false /*is_constexpr*/, clang::SourceLocation()); } } if (cxx_method_decl == nullptr) { cxx_method_decl = clang::CXXMethodDecl::Create( *getASTContext(), cxx_record_decl, clang::SourceLocation(), clang::DeclarationNameInfo(decl_name, clang::SourceLocation()), method_qual_type, nullptr, // TypeSourceInfo * SC, is_inline, false /*is_constexpr*/, clang::SourceLocation()); } } clang::AccessSpecifier access_specifier = ClangASTContext::ConvertAccessTypeToAccessSpecifier(access); cxx_method_decl->setAccess(access_specifier); cxx_method_decl->setVirtualAsWritten(is_virtual); if (is_attr_used) cxx_method_decl->addAttr(clang::UsedAttr::CreateImplicit(*getASTContext())); // Populate the method decl with parameter decls llvm::SmallVector params; for (unsigned param_index = 0; param_index < num_params; ++param_index) { params.push_back(clang::ParmVarDecl::Create( *getASTContext(), cxx_method_decl, clang::SourceLocation(), clang::SourceLocation(), nullptr, // anonymous method_function_prototype->getParamType(param_index), nullptr, clang::SC_None, nullptr)); } cxx_method_decl->setParams(llvm::ArrayRef(params)); cxx_record_decl->addDecl(cxx_method_decl); // Sometimes the debug info will mention a constructor (default/copy/move), // destructor, or assignment operator (copy/move) but there won't be any // version of this in the code. So we check if the function was artificially // generated and if it is trivial and this lets the compiler/backend know // that it can inline the IR for these when it needs to and we can avoid a // "missing function" error when running expressions. if (is_artificial) { if (cxx_ctor_decl && ((cxx_ctor_decl->isDefaultConstructor() && cxx_record_decl->hasTrivialDefaultConstructor()) || (cxx_ctor_decl->isCopyConstructor() && cxx_record_decl->hasTrivialCopyConstructor()) || (cxx_ctor_decl->isMoveConstructor() && cxx_record_decl->hasTrivialMoveConstructor()))) { cxx_ctor_decl->setDefaulted(); cxx_ctor_decl->setTrivial(true); } else if (cxx_dtor_decl) { if (cxx_record_decl->hasTrivialDestructor()) { cxx_dtor_decl->setDefaulted(); cxx_dtor_decl->setTrivial(true); } } else if ((cxx_method_decl->isCopyAssignmentOperator() && cxx_record_decl->hasTrivialCopyAssignment()) || (cxx_method_decl->isMoveAssignmentOperator() && cxx_record_decl->hasTrivialMoveAssignment())) { cxx_method_decl->setDefaulted(); cxx_method_decl->setTrivial(true); } } #ifdef LLDB_CONFIGURATION_DEBUG VerifyDecl(cxx_method_decl); #endif // printf ("decl->isPolymorphic() = %i\n", // cxx_record_decl->isPolymorphic()); // printf ("decl->isAggregate() = %i\n", // cxx_record_decl->isAggregate()); // printf ("decl->isPOD() = %i\n", // cxx_record_decl->isPOD()); // printf ("decl->isEmpty() = %i\n", // cxx_record_decl->isEmpty()); // printf ("decl->isAbstract() = %i\n", // cxx_record_decl->isAbstract()); // printf ("decl->hasTrivialConstructor() = %i\n", // cxx_record_decl->hasTrivialConstructor()); // printf ("decl->hasTrivialCopyConstructor() = %i\n", // cxx_record_decl->hasTrivialCopyConstructor()); // printf ("decl->hasTrivialCopyAssignment() = %i\n", // cxx_record_decl->hasTrivialCopyAssignment()); // printf ("decl->hasTrivialDestructor() = %i\n", // cxx_record_decl->hasTrivialDestructor()); return cxx_method_decl; } #pragma mark C++ Base Classes clang::CXXBaseSpecifier * ClangASTContext::CreateBaseClassSpecifier(lldb::opaque_compiler_type_t type, AccessType access, bool is_virtual, bool base_of_class) { if (type) return new clang::CXXBaseSpecifier( clang::SourceRange(), is_virtual, base_of_class, ClangASTContext::ConvertAccessTypeToAccessSpecifier(access), getASTContext()->getTrivialTypeSourceInfo(GetQualType(type)), clang::SourceLocation()); return nullptr; } void ClangASTContext::DeleteBaseClassSpecifiers( clang::CXXBaseSpecifier **base_classes, unsigned num_base_classes) { for (unsigned i = 0; i < num_base_classes; ++i) { delete base_classes[i]; base_classes[i] = nullptr; } } bool ClangASTContext::SetBaseClassesForClassType( lldb::opaque_compiler_type_t type, clang::CXXBaseSpecifier const *const *base_classes, unsigned num_base_classes) { if (type) { clang::CXXRecordDecl *cxx_record_decl = GetAsCXXRecordDecl(type); if (cxx_record_decl) { cxx_record_decl->setBases(base_classes, num_base_classes); return true; } } return false; } bool ClangASTContext::SetObjCSuperClass( const CompilerType &type, const CompilerType &superclass_clang_type) { ClangASTContext *ast = llvm::dyn_cast_or_null(type.GetTypeSystem()); if (!ast) return false; clang::ASTContext *clang_ast = ast->getASTContext(); if (type && superclass_clang_type.IsValid() && superclass_clang_type.GetTypeSystem() == type.GetTypeSystem()) { clang::ObjCInterfaceDecl *class_interface_decl = GetAsObjCInterfaceDecl(type); clang::ObjCInterfaceDecl *super_interface_decl = GetAsObjCInterfaceDecl(superclass_clang_type); if (class_interface_decl && super_interface_decl) { class_interface_decl->setSuperClass(clang_ast->getTrivialTypeSourceInfo( clang_ast->getObjCInterfaceType(super_interface_decl))); return true; } } return false; } bool ClangASTContext::AddObjCClassProperty( const CompilerType &type, const char *property_name, const CompilerType &property_clang_type, clang::ObjCIvarDecl *ivar_decl, const char *property_setter_name, const char *property_getter_name, uint32_t property_attributes, ClangASTMetadata *metadata) { if (!type || !property_clang_type.IsValid() || property_name == nullptr || property_name[0] == '\0') return false; ClangASTContext *ast = llvm::dyn_cast(type.GetTypeSystem()); if (!ast) return false; clang::ASTContext *clang_ast = ast->getASTContext(); clang::ObjCInterfaceDecl *class_interface_decl = GetAsObjCInterfaceDecl(type); if (class_interface_decl) { CompilerType property_clang_type_to_access; if (property_clang_type.IsValid()) property_clang_type_to_access = property_clang_type; else if (ivar_decl) property_clang_type_to_access = CompilerType(clang_ast, ivar_decl->getType()); if (class_interface_decl && property_clang_type_to_access.IsValid()) { clang::TypeSourceInfo *prop_type_source; if (ivar_decl) prop_type_source = clang_ast->getTrivialTypeSourceInfo(ivar_decl->getType()); else prop_type_source = clang_ast->getTrivialTypeSourceInfo( ClangUtil::GetQualType(property_clang_type)); clang::ObjCPropertyDecl *property_decl = clang::ObjCPropertyDecl::Create( *clang_ast, class_interface_decl, clang::SourceLocation(), // Source Location &clang_ast->Idents.get(property_name), clang::SourceLocation(), // Source Location for AT clang::SourceLocation(), // Source location for ( ivar_decl ? ivar_decl->getType() : ClangUtil::GetQualType(property_clang_type), prop_type_source); if (property_decl) { if (metadata) ClangASTContext::SetMetadata(clang_ast, property_decl, *metadata); class_interface_decl->addDecl(property_decl); clang::Selector setter_sel, getter_sel; if (property_setter_name != nullptr) { std::string property_setter_no_colon( property_setter_name, strlen(property_setter_name) - 1); clang::IdentifierInfo *setter_ident = &clang_ast->Idents.get(property_setter_no_colon); setter_sel = clang_ast->Selectors.getSelector(1, &setter_ident); } else if (!(property_attributes & DW_APPLE_PROPERTY_readonly)) { std::string setter_sel_string("set"); setter_sel_string.push_back(::toupper(property_name[0])); setter_sel_string.append(&property_name[1]); clang::IdentifierInfo *setter_ident = &clang_ast->Idents.get(setter_sel_string); setter_sel = clang_ast->Selectors.getSelector(1, &setter_ident); } property_decl->setSetterName(setter_sel); property_decl->setPropertyAttributes( clang::ObjCPropertyDecl::OBJC_PR_setter); if (property_getter_name != nullptr) { clang::IdentifierInfo *getter_ident = &clang_ast->Idents.get(property_getter_name); getter_sel = clang_ast->Selectors.getSelector(0, &getter_ident); } else { clang::IdentifierInfo *getter_ident = &clang_ast->Idents.get(property_name); getter_sel = clang_ast->Selectors.getSelector(0, &getter_ident); } property_decl->setGetterName(getter_sel); property_decl->setPropertyAttributes( clang::ObjCPropertyDecl::OBJC_PR_getter); if (ivar_decl) property_decl->setPropertyIvarDecl(ivar_decl); if (property_attributes & DW_APPLE_PROPERTY_readonly) property_decl->setPropertyAttributes( clang::ObjCPropertyDecl::OBJC_PR_readonly); if (property_attributes & DW_APPLE_PROPERTY_readwrite) property_decl->setPropertyAttributes( clang::ObjCPropertyDecl::OBJC_PR_readwrite); if (property_attributes & DW_APPLE_PROPERTY_assign) property_decl->setPropertyAttributes( clang::ObjCPropertyDecl::OBJC_PR_assign); if (property_attributes & DW_APPLE_PROPERTY_retain) property_decl->setPropertyAttributes( clang::ObjCPropertyDecl::OBJC_PR_retain); if (property_attributes & DW_APPLE_PROPERTY_copy) property_decl->setPropertyAttributes( clang::ObjCPropertyDecl::OBJC_PR_copy); if (property_attributes & DW_APPLE_PROPERTY_nonatomic) property_decl->setPropertyAttributes( clang::ObjCPropertyDecl::OBJC_PR_nonatomic); if (property_attributes & clang::ObjCPropertyDecl::OBJC_PR_nullability) property_decl->setPropertyAttributes( clang::ObjCPropertyDecl::OBJC_PR_nullability); if (property_attributes & clang::ObjCPropertyDecl::OBJC_PR_null_resettable) property_decl->setPropertyAttributes( clang::ObjCPropertyDecl::OBJC_PR_null_resettable); if (property_attributes & clang::ObjCPropertyDecl::OBJC_PR_class) property_decl->setPropertyAttributes( clang::ObjCPropertyDecl::OBJC_PR_class); const bool isInstance = (property_attributes & clang::ObjCPropertyDecl::OBJC_PR_class) == 0; if (!getter_sel.isNull() && !(isInstance ? class_interface_decl->lookupInstanceMethod(getter_sel) : class_interface_decl->lookupClassMethod(getter_sel))) { const bool isVariadic = false; const bool isSynthesized = false; const bool isImplicitlyDeclared = true; const bool isDefined = false; const clang::ObjCMethodDecl::ImplementationControl impControl = clang::ObjCMethodDecl::None; const bool HasRelatedResultType = false; clang::ObjCMethodDecl *getter = clang::ObjCMethodDecl::Create( *clang_ast, clang::SourceLocation(), clang::SourceLocation(), getter_sel, ClangUtil::GetQualType(property_clang_type_to_access), nullptr, class_interface_decl, isInstance, isVariadic, isSynthesized, isImplicitlyDeclared, isDefined, impControl, HasRelatedResultType); if (getter && metadata) ClangASTContext::SetMetadata(clang_ast, getter, *metadata); if (getter) { getter->setMethodParams(*clang_ast, llvm::ArrayRef(), llvm::ArrayRef()); class_interface_decl->addDecl(getter); } } if (!setter_sel.isNull() && !(isInstance ? class_interface_decl->lookupInstanceMethod(setter_sel) : class_interface_decl->lookupClassMethod(setter_sel))) { clang::QualType result_type = clang_ast->VoidTy; const bool isVariadic = false; const bool isSynthesized = false; const bool isImplicitlyDeclared = true; const bool isDefined = false; const clang::ObjCMethodDecl::ImplementationControl impControl = clang::ObjCMethodDecl::None; const bool HasRelatedResultType = false; clang::ObjCMethodDecl *setter = clang::ObjCMethodDecl::Create( *clang_ast, clang::SourceLocation(), clang::SourceLocation(), setter_sel, result_type, nullptr, class_interface_decl, isInstance, isVariadic, isSynthesized, isImplicitlyDeclared, isDefined, impControl, HasRelatedResultType); if (setter && metadata) ClangASTContext::SetMetadata(clang_ast, setter, *metadata); llvm::SmallVector params; params.push_back(clang::ParmVarDecl::Create( *clang_ast, setter, clang::SourceLocation(), clang::SourceLocation(), nullptr, // anonymous ClangUtil::GetQualType(property_clang_type_to_access), nullptr, clang::SC_Auto, nullptr)); if (setter) { setter->setMethodParams( *clang_ast, llvm::ArrayRef(params), llvm::ArrayRef()); class_interface_decl->addDecl(setter); } } return true; } } } return false; } bool ClangASTContext::IsObjCClassTypeAndHasIVars(const CompilerType &type, bool check_superclass) { clang::ObjCInterfaceDecl *class_interface_decl = GetAsObjCInterfaceDecl(type); if (class_interface_decl) return ObjCDeclHasIVars(class_interface_decl, check_superclass); return false; } clang::ObjCMethodDecl *ClangASTContext::AddMethodToObjCObjectType( const CompilerType &type, const char *name, // the full symbol name as seen in the symbol table // (lldb::opaque_compiler_type_t type, "-[NString // stringWithCString:]") const CompilerType &method_clang_type, lldb::AccessType access, bool is_artificial, bool is_variadic) { if (!type || !method_clang_type.IsValid()) return nullptr; clang::ObjCInterfaceDecl *class_interface_decl = GetAsObjCInterfaceDecl(type); if (class_interface_decl == nullptr) return nullptr; ClangASTContext *lldb_ast = llvm::dyn_cast(type.GetTypeSystem()); if (lldb_ast == nullptr) return nullptr; clang::ASTContext *ast = lldb_ast->getASTContext(); const char *selector_start = ::strchr(name, ' '); if (selector_start == nullptr) return nullptr; selector_start++; llvm::SmallVector selector_idents; size_t len = 0; const char *start; // printf ("name = '%s'\n", name); unsigned num_selectors_with_args = 0; for (start = selector_start; start && *start != '\0' && *start != ']'; start += len) { len = ::strcspn(start, ":]"); bool has_arg = (start[len] == ':'); if (has_arg) ++num_selectors_with_args; selector_idents.push_back(&ast->Idents.get(llvm::StringRef(start, len))); if (has_arg) len += 1; } if (selector_idents.size() == 0) return nullptr; clang::Selector method_selector = ast->Selectors.getSelector( num_selectors_with_args ? selector_idents.size() : 0, selector_idents.data()); clang::QualType method_qual_type(ClangUtil::GetQualType(method_clang_type)); // Populate the method decl with parameter decls const clang::Type *method_type(method_qual_type.getTypePtr()); if (method_type == nullptr) return nullptr; const clang::FunctionProtoType *method_function_prototype( llvm::dyn_cast(method_type)); if (!method_function_prototype) return nullptr; bool is_synthesized = false; bool is_defined = false; clang::ObjCMethodDecl::ImplementationControl imp_control = clang::ObjCMethodDecl::None; const unsigned num_args = method_function_prototype->getNumParams(); if (num_args != num_selectors_with_args) return nullptr; // some debug information is corrupt. We are not going to // deal with it. clang::ObjCMethodDecl *objc_method_decl = clang::ObjCMethodDecl::Create( *ast, clang::SourceLocation(), // beginLoc, clang::SourceLocation(), // endLoc, method_selector, method_function_prototype->getReturnType(), nullptr, // TypeSourceInfo *ResultTInfo, ClangASTContext::GetASTContext(ast)->GetDeclContextForType( ClangUtil::GetQualType(type)), name[0] == '-', is_variadic, is_synthesized, true, // is_implicitly_declared; we force this to true because we don't // have source locations is_defined, imp_control, false /*has_related_result_type*/); if (objc_method_decl == nullptr) return nullptr; if (num_args > 0) { llvm::SmallVector params; for (unsigned param_index = 0; param_index < num_args; ++param_index) { params.push_back(clang::ParmVarDecl::Create( *ast, objc_method_decl, clang::SourceLocation(), clang::SourceLocation(), nullptr, // anonymous method_function_prototype->getParamType(param_index), nullptr, clang::SC_Auto, nullptr)); } objc_method_decl->setMethodParams( *ast, llvm::ArrayRef(params), llvm::ArrayRef()); } class_interface_decl->addDecl(objc_method_decl); #ifdef LLDB_CONFIGURATION_DEBUG VerifyDecl(objc_method_decl); #endif return objc_method_decl; } bool ClangASTContext::GetHasExternalStorage(const CompilerType &type) { if (ClangUtil::IsClangType(type)) return false; clang::QualType qual_type(ClangUtil::GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: { clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) return cxx_record_decl->hasExternalLexicalStorage() || cxx_record_decl->hasExternalVisibleStorage(); } break; case clang::Type::Enum: { clang::EnumDecl *enum_decl = llvm::cast(qual_type)->getDecl(); if (enum_decl) return enum_decl->hasExternalLexicalStorage() || enum_decl->hasExternalVisibleStorage(); } break; case clang::Type::ObjCObject: case clang::Type::ObjCInterface: { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type.getTypePtr()); assert(objc_class_type); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) return class_interface_decl->hasExternalLexicalStorage() || class_interface_decl->hasExternalVisibleStorage(); } } break; case clang::Type::Typedef: return GetHasExternalStorage(CompilerType( type.GetTypeSystem(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr())); case clang::Type::Auto: return GetHasExternalStorage(CompilerType( type.GetTypeSystem(), llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr())); case clang::Type::Elaborated: return GetHasExternalStorage(CompilerType( type.GetTypeSystem(), llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr())); case clang::Type::Paren: return GetHasExternalStorage(CompilerType( type.GetTypeSystem(), llvm::cast(qual_type)->desugar().getAsOpaquePtr())); default: break; } return false; } bool ClangASTContext::SetHasExternalStorage(lldb::opaque_compiler_type_t type, bool has_extern) { if (!type) return false; clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: { clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) { cxx_record_decl->setHasExternalLexicalStorage(has_extern); cxx_record_decl->setHasExternalVisibleStorage(has_extern); return true; } } break; case clang::Type::Enum: { clang::EnumDecl *enum_decl = llvm::cast(qual_type)->getDecl(); if (enum_decl) { enum_decl->setHasExternalLexicalStorage(has_extern); enum_decl->setHasExternalVisibleStorage(has_extern); return true; } } break; case clang::Type::ObjCObject: case clang::Type::ObjCInterface: { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type.getTypePtr()); assert(objc_class_type); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) { class_interface_decl->setHasExternalLexicalStorage(has_extern); class_interface_decl->setHasExternalVisibleStorage(has_extern); return true; } } } break; case clang::Type::Typedef: return SetHasExternalStorage(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), has_extern); case clang::Type::Auto: return SetHasExternalStorage(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), has_extern); case clang::Type::Elaborated: return SetHasExternalStorage(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), has_extern); case clang::Type::Paren: return SetHasExternalStorage( llvm::cast(qual_type)->desugar().getAsOpaquePtr(), has_extern); default: break; } return false; } #pragma mark TagDecl bool ClangASTContext::StartTagDeclarationDefinition(const CompilerType &type) { clang::QualType qual_type(ClangUtil::GetQualType(type)); if (!qual_type.isNull()) { const clang::TagType *tag_type = qual_type->getAs(); if (tag_type) { clang::TagDecl *tag_decl = tag_type->getDecl(); if (tag_decl) { tag_decl->startDefinition(); return true; } } const clang::ObjCObjectType *object_type = qual_type->getAs(); if (object_type) { clang::ObjCInterfaceDecl *interface_decl = object_type->getInterface(); if (interface_decl) { interface_decl->startDefinition(); return true; } } } return false; } bool ClangASTContext::CompleteTagDeclarationDefinition( const CompilerType &type) { clang::QualType qual_type(ClangUtil::GetQualType(type)); if (!qual_type.isNull()) { // Make sure we use the same methodology as // ClangASTContext::StartTagDeclarationDefinition() // as to how we start/end the definition. Previously we were calling const clang::TagType *tag_type = qual_type->getAs(); if (tag_type) { clang::TagDecl *tag_decl = tag_type->getDecl(); if (tag_decl) { clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast_or_null(tag_decl); if (cxx_record_decl) { if (!cxx_record_decl->isCompleteDefinition()) cxx_record_decl->completeDefinition(); cxx_record_decl->setHasLoadedFieldsFromExternalStorage(true); cxx_record_decl->setHasExternalLexicalStorage(false); cxx_record_decl->setHasExternalVisibleStorage(false); return true; } } } const clang::EnumType *enutype = qual_type->getAs(); if (enutype) { clang::EnumDecl *enum_decl = enutype->getDecl(); if (enum_decl) { if (!enum_decl->isCompleteDefinition()) { ClangASTContext *lldb_ast = llvm::dyn_cast(type.GetTypeSystem()); if (lldb_ast == nullptr) return false; clang::ASTContext *ast = lldb_ast->getASTContext(); /// TODO This really needs to be fixed. QualType integer_type(enum_decl->getIntegerType()); if (!integer_type.isNull()) { unsigned NumPositiveBits = 1; unsigned NumNegativeBits = 0; clang::QualType promotion_qual_type; // If the enum integer type is less than an integer in bit width, // then we must promote it to an integer size. if (ast->getTypeSize(enum_decl->getIntegerType()) < ast->getTypeSize(ast->IntTy)) { if (enum_decl->getIntegerType()->isSignedIntegerType()) promotion_qual_type = ast->IntTy; else promotion_qual_type = ast->UnsignedIntTy; } else promotion_qual_type = enum_decl->getIntegerType(); enum_decl->completeDefinition(enum_decl->getIntegerType(), promotion_qual_type, NumPositiveBits, NumNegativeBits); } } return true; } } } return false; } bool ClangASTContext::AddEnumerationValueToEnumerationType( lldb::opaque_compiler_type_t type, const CompilerType &enumerator_clang_type, const Declaration &decl, const char *name, int64_t enum_value, uint32_t enum_value_bit_size) { if (type && enumerator_clang_type.IsValid() && name && name[0]) { clang::QualType enum_qual_type(GetCanonicalQualType(type)); bool is_signed = false; enumerator_clang_type.IsIntegerType(is_signed); const clang::Type *clang_type = enum_qual_type.getTypePtr(); if (clang_type) { const clang::EnumType *enutype = llvm::dyn_cast(clang_type); if (enutype) { llvm::APSInt enum_llvm_apsint(enum_value_bit_size, is_signed); enum_llvm_apsint = enum_value; clang::EnumConstantDecl *enumerator_decl = clang::EnumConstantDecl::Create( *getASTContext(), enutype->getDecl(), clang::SourceLocation(), name ? &getASTContext()->Idents.get(name) : nullptr, // Identifier ClangUtil::GetQualType(enumerator_clang_type), nullptr, enum_llvm_apsint); if (enumerator_decl) { enutype->getDecl()->addDecl(enumerator_decl); #ifdef LLDB_CONFIGURATION_DEBUG VerifyDecl(enumerator_decl); #endif return true; } } } } return false; } CompilerType ClangASTContext::GetEnumerationIntegerType(lldb::opaque_compiler_type_t type) { clang::QualType enum_qual_type(GetCanonicalQualType(type)); const clang::Type *clang_type = enum_qual_type.getTypePtr(); if (clang_type) { const clang::EnumType *enutype = llvm::dyn_cast(clang_type); if (enutype) { clang::EnumDecl *enum_decl = enutype->getDecl(); if (enum_decl) return CompilerType(getASTContext(), enum_decl->getIntegerType()); } } return CompilerType(); } CompilerType ClangASTContext::CreateMemberPointerType(const CompilerType &type, const CompilerType &pointee_type) { if (type && pointee_type.IsValid() && type.GetTypeSystem() == pointee_type.GetTypeSystem()) { ClangASTContext *ast = llvm::dyn_cast(type.GetTypeSystem()); if (!ast) return CompilerType(); return CompilerType(ast->getASTContext(), ast->getASTContext()->getMemberPointerType( ClangUtil::GetQualType(pointee_type), ClangUtil::GetQualType(type).getTypePtr())); } return CompilerType(); } size_t ClangASTContext::ConvertStringToFloatValue(lldb::opaque_compiler_type_t type, const char *s, uint8_t *dst, size_t dst_size) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); uint32_t count = 0; bool is_complex = false; if (IsFloatingPointType(type, count, is_complex)) { // TODO: handle complex and vector types if (count != 1) return false; llvm::StringRef s_sref(s); llvm::APFloat ap_float(getASTContext()->getFloatTypeSemantics(qual_type), s_sref); const uint64_t bit_size = getASTContext()->getTypeSize(qual_type); const uint64_t byte_size = bit_size / 8; if (dst_size >= byte_size) { Scalar scalar = ap_float.bitcastToAPInt().zextOrTrunc( llvm::NextPowerOf2(byte_size) * 8); lldb_private::Status get_data_error; if (scalar.GetAsMemoryData(dst, byte_size, lldb_private::endian::InlHostByteOrder(), get_data_error)) return byte_size; } } } return 0; } //---------------------------------------------------------------------- // Dumping types //---------------------------------------------------------------------- #define DEPTH_INCREMENT 2 void ClangASTContext::DumpValue( lldb::opaque_compiler_type_t type, ExecutionContext *exe_ctx, Stream *s, lldb::Format format, const DataExtractor &data, lldb::offset_t data_byte_offset, size_t data_byte_size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset, bool show_types, bool show_summary, bool verbose, uint32_t depth) { if (!type) return; clang::QualType qual_type(GetQualType(type)); switch (qual_type->getTypeClass()) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::RecordType *record_type = llvm::cast(qual_type.getTypePtr()); const clang::RecordDecl *record_decl = record_type->getDecl(); assert(record_decl); uint32_t field_bit_offset = 0; uint32_t field_byte_offset = 0; const clang::ASTRecordLayout &record_layout = getASTContext()->getASTRecordLayout(record_decl); uint32_t child_idx = 0; const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast(record_decl); if (cxx_record_decl) { // We might have base classes to print out first clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end; for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end(); base_class != base_class_end; ++base_class) { const clang::CXXRecordDecl *base_class_decl = llvm::cast( base_class->getType()->getAs()->getDecl()); // Skip empty base classes if (verbose == false && ClangASTContext::RecordHasFields(base_class_decl) == false) continue; if (base_class->isVirtual()) field_bit_offset = record_layout.getVBaseClassOffset(base_class_decl) .getQuantity() * 8; else field_bit_offset = record_layout.getBaseClassOffset(base_class_decl) .getQuantity() * 8; field_byte_offset = field_bit_offset / 8; assert(field_bit_offset % 8 == 0); if (child_idx == 0) s->PutChar('{'); else s->PutChar(','); clang::QualType base_class_qual_type = base_class->getType(); std::string base_class_type_name(base_class_qual_type.getAsString()); // Indent and print the base class type name s->Format("\n{0}{1}", llvm::fmt_repeat(" ", depth + DEPTH_INCREMENT), base_class_type_name); clang::TypeInfo base_class_type_info = getASTContext()->getTypeInfo(base_class_qual_type); // Dump the value of the member CompilerType base_clang_type(getASTContext(), base_class_qual_type); base_clang_type.DumpValue( exe_ctx, s, // Stream to dump to base_clang_type .GetFormat(), // The format with which to display the member data, // Data buffer containing all bytes for this type data_byte_offset + field_byte_offset, // Offset into "data" where // to grab value from base_class_type_info.Width / 8, // Size of this type in bytes 0, // Bitfield bit size 0, // Bitfield bit offset show_types, // Boolean indicating if we should show the variable // types show_summary, // Boolean indicating if we should show a summary // for the current type verbose, // Verbose output? depth + DEPTH_INCREMENT); // Scope depth for any types that have // children ++child_idx; } } uint32_t field_idx = 0; clang::RecordDecl::field_iterator field, field_end; for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field, ++field_idx, ++child_idx) { // Print the starting squiggly bracket (if this is the // first member) or comma (for member 2 and beyond) for // the struct/union/class member. if (child_idx == 0) s->PutChar('{'); else s->PutChar(','); // Indent s->Printf("\n%*s", depth + DEPTH_INCREMENT, ""); clang::QualType field_type = field->getType(); // Print the member type if requested // Figure out the type byte size (field_type_info.first) and // alignment (field_type_info.second) from the AST context. clang::TypeInfo field_type_info = getASTContext()->getTypeInfo(field_type); assert(field_idx < record_layout.getFieldCount()); // Figure out the field offset within the current struct/union/class // type field_bit_offset = record_layout.getFieldOffset(field_idx); field_byte_offset = field_bit_offset / 8; uint32_t field_bitfield_bit_size = 0; uint32_t field_bitfield_bit_offset = 0; if (ClangASTContext::FieldIsBitfield(getASTContext(), *field, field_bitfield_bit_size)) field_bitfield_bit_offset = field_bit_offset % 8; if (show_types) { std::string field_type_name(field_type.getAsString()); if (field_bitfield_bit_size > 0) s->Printf("(%s:%u) ", field_type_name.c_str(), field_bitfield_bit_size); else s->Printf("(%s) ", field_type_name.c_str()); } // Print the member name and equal sign s->Printf("%s = ", field->getNameAsString().c_str()); // Dump the value of the member CompilerType field_clang_type(getASTContext(), field_type); field_clang_type.DumpValue( exe_ctx, s, // Stream to dump to field_clang_type .GetFormat(), // The format with which to display the member data, // Data buffer containing all bytes for this type data_byte_offset + field_byte_offset, // Offset into "data" where to // grab value from field_type_info.Width / 8, // Size of this type in bytes field_bitfield_bit_size, // Bitfield bit size field_bitfield_bit_offset, // Bitfield bit offset show_types, // Boolean indicating if we should show the variable // types show_summary, // Boolean indicating if we should show a summary for // the current type verbose, // Verbose output? depth + DEPTH_INCREMENT); // Scope depth for any types that have // children } // Indent the trailing squiggly bracket if (child_idx > 0) s->Printf("\n%*s}", depth, ""); } return; case clang::Type::Enum: if (GetCompleteType(type)) { const clang::EnumType *enutype = llvm::cast(qual_type.getTypePtr()); const clang::EnumDecl *enum_decl = enutype->getDecl(); assert(enum_decl); clang::EnumDecl::enumerator_iterator enum_pos, enum_end_pos; lldb::offset_t offset = data_byte_offset; const int64_t enum_value = data.GetMaxU64Bitfield( &offset, data_byte_size, bitfield_bit_size, bitfield_bit_offset); for (enum_pos = enum_decl->enumerator_begin(), enum_end_pos = enum_decl->enumerator_end(); enum_pos != enum_end_pos; ++enum_pos) { if (enum_pos->getInitVal() == enum_value) { s->Printf("%s", enum_pos->getNameAsString().c_str()); return; } } // If we have gotten here we didn't get find the enumerator in the // enum decl, so just print the integer. s->Printf("%" PRIi64, enum_value); } return; case clang::Type::ConstantArray: { const clang::ConstantArrayType *array = llvm::cast(qual_type.getTypePtr()); bool is_array_of_characters = false; clang::QualType element_qual_type = array->getElementType(); const clang::Type *canonical_type = element_qual_type->getCanonicalTypeInternal().getTypePtr(); if (canonical_type) is_array_of_characters = canonical_type->isCharType(); const uint64_t element_count = array->getSize().getLimitedValue(); clang::TypeInfo field_type_info = getASTContext()->getTypeInfo(element_qual_type); uint32_t element_idx = 0; uint32_t element_offset = 0; uint64_t element_byte_size = field_type_info.Width / 8; uint32_t element_stride = element_byte_size; if (is_array_of_characters) { s->PutChar('"'); DumpDataExtractor(data, s, data_byte_offset, lldb::eFormatChar, element_byte_size, element_count, UINT32_MAX, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('"'); return; } else { CompilerType element_clang_type(getASTContext(), element_qual_type); lldb::Format element_format = element_clang_type.GetFormat(); for (element_idx = 0; element_idx < element_count; ++element_idx) { // Print the starting squiggly bracket (if this is the // first member) or comman (for member 2 and beyong) for // the struct/union/class member. if (element_idx == 0) s->PutChar('{'); else s->PutChar(','); // Indent and print the index s->Printf("\n%*s[%u] ", depth + DEPTH_INCREMENT, "", element_idx); // Figure out the field offset within the current struct/union/class // type element_offset = element_idx * element_stride; // Dump the value of the member element_clang_type.DumpValue( exe_ctx, s, // Stream to dump to element_format, // The format with which to display the element data, // Data buffer containing all bytes for this type data_byte_offset + element_offset, // Offset into "data" where to grab value from element_byte_size, // Size of this type in bytes 0, // Bitfield bit size 0, // Bitfield bit offset show_types, // Boolean indicating if we should show the variable // types show_summary, // Boolean indicating if we should show a summary for // the current type verbose, // Verbose output? depth + DEPTH_INCREMENT); // Scope depth for any types that have // children } // Indent the trailing squiggly bracket if (element_idx > 0) s->Printf("\n%*s}", depth, ""); } } return; case clang::Type::Typedef: { clang::QualType typedef_qual_type = llvm::cast(qual_type) ->getDecl() ->getUnderlyingType(); CompilerType typedef_clang_type(getASTContext(), typedef_qual_type); lldb::Format typedef_format = typedef_clang_type.GetFormat(); clang::TypeInfo typedef_type_info = getASTContext()->getTypeInfo(typedef_qual_type); uint64_t typedef_byte_size = typedef_type_info.Width / 8; return typedef_clang_type.DumpValue( exe_ctx, s, // Stream to dump to typedef_format, // The format with which to display the element data, // Data buffer containing all bytes for this type data_byte_offset, // Offset into "data" where to grab value from typedef_byte_size, // Size of this type in bytes bitfield_bit_size, // Bitfield bit size bitfield_bit_offset, // Bitfield bit offset show_types, // Boolean indicating if we should show the variable types show_summary, // Boolean indicating if we should show a summary for the // current type verbose, // Verbose output? depth); // Scope depth for any types that have children } break; case clang::Type::Auto: { clang::QualType elaborated_qual_type = llvm::cast(qual_type)->getDeducedType(); CompilerType elaborated_clang_type(getASTContext(), elaborated_qual_type); lldb::Format elaborated_format = elaborated_clang_type.GetFormat(); clang::TypeInfo elaborated_type_info = getASTContext()->getTypeInfo(elaborated_qual_type); uint64_t elaborated_byte_size = elaborated_type_info.Width / 8; return elaborated_clang_type.DumpValue( exe_ctx, s, // Stream to dump to elaborated_format, // The format with which to display the element data, // Data buffer containing all bytes for this type data_byte_offset, // Offset into "data" where to grab value from elaborated_byte_size, // Size of this type in bytes bitfield_bit_size, // Bitfield bit size bitfield_bit_offset, // Bitfield bit offset show_types, // Boolean indicating if we should show the variable types show_summary, // Boolean indicating if we should show a summary for the // current type verbose, // Verbose output? depth); // Scope depth for any types that have children } break; case clang::Type::Elaborated: { clang::QualType elaborated_qual_type = llvm::cast(qual_type)->getNamedType(); CompilerType elaborated_clang_type(getASTContext(), elaborated_qual_type); lldb::Format elaborated_format = elaborated_clang_type.GetFormat(); clang::TypeInfo elaborated_type_info = getASTContext()->getTypeInfo(elaborated_qual_type); uint64_t elaborated_byte_size = elaborated_type_info.Width / 8; return elaborated_clang_type.DumpValue( exe_ctx, s, // Stream to dump to elaborated_format, // The format with which to display the element data, // Data buffer containing all bytes for this type data_byte_offset, // Offset into "data" where to grab value from elaborated_byte_size, // Size of this type in bytes bitfield_bit_size, // Bitfield bit size bitfield_bit_offset, // Bitfield bit offset show_types, // Boolean indicating if we should show the variable types show_summary, // Boolean indicating if we should show a summary for the // current type verbose, // Verbose output? depth); // Scope depth for any types that have children } break; case clang::Type::Paren: { clang::QualType desugar_qual_type = llvm::cast(qual_type)->desugar(); CompilerType desugar_clang_type(getASTContext(), desugar_qual_type); lldb::Format desugar_format = desugar_clang_type.GetFormat(); clang::TypeInfo desugar_type_info = getASTContext()->getTypeInfo(desugar_qual_type); uint64_t desugar_byte_size = desugar_type_info.Width / 8; return desugar_clang_type.DumpValue( exe_ctx, s, // Stream to dump to desugar_format, // The format with which to display the element data, // Data buffer containing all bytes for this type data_byte_offset, // Offset into "data" where to grab value from desugar_byte_size, // Size of this type in bytes bitfield_bit_size, // Bitfield bit size bitfield_bit_offset, // Bitfield bit offset show_types, // Boolean indicating if we should show the variable types show_summary, // Boolean indicating if we should show a summary for the // current type verbose, // Verbose output? depth); // Scope depth for any types that have children } break; default: // We are down to a scalar type that we just need to display. DumpDataExtractor(data, s, data_byte_offset, format, data_byte_size, 1, UINT32_MAX, LLDB_INVALID_ADDRESS, bitfield_bit_size, bitfield_bit_offset); if (show_summary) DumpSummary(type, exe_ctx, s, data, data_byte_offset, data_byte_size); break; } } bool ClangASTContext::DumpTypeValue( lldb::opaque_compiler_type_t type, Stream *s, lldb::Format format, const DataExtractor &data, lldb::offset_t byte_offset, size_t byte_size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset, ExecutionContextScope *exe_scope) { if (!type) return false; if (IsAggregateType(type)) { return false; } else { clang::QualType qual_type(GetQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Typedef: { clang::QualType typedef_qual_type = llvm::cast(qual_type) ->getDecl() ->getUnderlyingType(); CompilerType typedef_clang_type(getASTContext(), typedef_qual_type); if (format == eFormatDefault) format = typedef_clang_type.GetFormat(); clang::TypeInfo typedef_type_info = getASTContext()->getTypeInfo(typedef_qual_type); uint64_t typedef_byte_size = typedef_type_info.Width / 8; return typedef_clang_type.DumpTypeValue( s, format, // The format with which to display the element data, // Data buffer containing all bytes for this type byte_offset, // Offset into "data" where to grab value from typedef_byte_size, // Size of this type in bytes bitfield_bit_size, // Size in bits of a bitfield value, if zero don't // treat as a bitfield bitfield_bit_offset, // Offset in bits of a bitfield value if // bitfield_bit_size != 0 exe_scope); } break; case clang::Type::Enum: // If our format is enum or default, show the enumeration value as // its enumeration string value, else just display it as requested. if ((format == eFormatEnum || format == eFormatDefault) && GetCompleteType(type)) { const clang::EnumType *enutype = llvm::cast(qual_type.getTypePtr()); const clang::EnumDecl *enum_decl = enutype->getDecl(); assert(enum_decl); clang::EnumDecl::enumerator_iterator enum_pos, enum_end_pos; const bool is_signed = qual_type->isSignedIntegerOrEnumerationType(); lldb::offset_t offset = byte_offset; if (is_signed) { const int64_t enum_svalue = data.GetMaxS64Bitfield( &offset, byte_size, bitfield_bit_size, bitfield_bit_offset); for (enum_pos = enum_decl->enumerator_begin(), enum_end_pos = enum_decl->enumerator_end(); enum_pos != enum_end_pos; ++enum_pos) { if (enum_pos->getInitVal().getSExtValue() == enum_svalue) { s->PutCString(enum_pos->getNameAsString()); return true; } } // If we have gotten here we didn't get find the enumerator in the // enum decl, so just print the integer. s->Printf("%" PRIi64, enum_svalue); } else { const uint64_t enum_uvalue = data.GetMaxU64Bitfield( &offset, byte_size, bitfield_bit_size, bitfield_bit_offset); for (enum_pos = enum_decl->enumerator_begin(), enum_end_pos = enum_decl->enumerator_end(); enum_pos != enum_end_pos; ++enum_pos) { if (enum_pos->getInitVal().getZExtValue() == enum_uvalue) { s->PutCString(enum_pos->getNameAsString()); return true; } } // If we have gotten here we didn't get find the enumerator in the // enum decl, so just print the integer. s->Printf("%" PRIu64, enum_uvalue); } return true; } // format was not enum, just fall through and dump the value as // requested.... LLVM_FALLTHROUGH; default: // We are down to a scalar type that we just need to display. { uint32_t item_count = 1; // A few formats, we might need to modify our size and count for // depending // on how we are trying to display the value... switch (format) { default: case eFormatBoolean: case eFormatBinary: case eFormatComplex: case eFormatCString: // NULL terminated C strings case eFormatDecimal: case eFormatEnum: case eFormatHex: case eFormatHexUppercase: case eFormatFloat: case eFormatOctal: case eFormatOSType: case eFormatUnsigned: case eFormatPointer: case eFormatVectorOfChar: case eFormatVectorOfSInt8: case eFormatVectorOfUInt8: case eFormatVectorOfSInt16: case eFormatVectorOfUInt16: case eFormatVectorOfSInt32: case eFormatVectorOfUInt32: case eFormatVectorOfSInt64: case eFormatVectorOfUInt64: case eFormatVectorOfFloat32: case eFormatVectorOfFloat64: case eFormatVectorOfUInt128: break; case eFormatChar: case eFormatCharPrintable: case eFormatCharArray: case eFormatBytes: case eFormatBytesWithASCII: item_count = byte_size; byte_size = 1; break; case eFormatUnicode16: item_count = byte_size / 2; byte_size = 2; break; case eFormatUnicode32: item_count = byte_size / 4; byte_size = 4; break; } return DumpDataExtractor(data, s, byte_offset, format, byte_size, item_count, UINT32_MAX, LLDB_INVALID_ADDRESS, bitfield_bit_size, bitfield_bit_offset, exe_scope); } break; } } return 0; } void ClangASTContext::DumpSummary(lldb::opaque_compiler_type_t type, ExecutionContext *exe_ctx, Stream *s, const lldb_private::DataExtractor &data, lldb::offset_t data_byte_offset, size_t data_byte_size) { uint32_t length = 0; if (IsCStringType(type, length)) { if (exe_ctx) { Process *process = exe_ctx->GetProcessPtr(); if (process) { lldb::offset_t offset = data_byte_offset; lldb::addr_t pointer_address = data.GetMaxU64(&offset, data_byte_size); std::vector buf; if (length > 0) buf.resize(length); else buf.resize(256); DataExtractor cstr_data(&buf.front(), buf.size(), process->GetByteOrder(), 4); buf.back() = '\0'; size_t bytes_read; size_t total_cstr_len = 0; Status error; while ((bytes_read = process->ReadMemory(pointer_address, &buf.front(), buf.size(), error)) > 0) { const size_t len = strlen((const char *)&buf.front()); if (len == 0) break; if (total_cstr_len == 0) s->PutCString(" \""); DumpDataExtractor(cstr_data, s, 0, lldb::eFormatChar, 1, len, UINT32_MAX, LLDB_INVALID_ADDRESS, 0, 0); total_cstr_len += len; if (len < buf.size()) break; pointer_address += total_cstr_len; } if (total_cstr_len > 0) s->PutChar('"'); } } } } void ClangASTContext::DumpTypeDescription(lldb::opaque_compiler_type_t type) { StreamFile s(stdout, false); DumpTypeDescription(type, &s); ClangASTMetadata *metadata = ClangASTContext::GetMetadata(getASTContext(), type); if (metadata) { metadata->Dump(&s); } } void ClangASTContext::DumpTypeDescription(lldb::opaque_compiler_type_t type, Stream *s) { if (type) { clang::QualType qual_type(GetQualType(type)); llvm::SmallVector buf; llvm::raw_svector_ostream llvm_ostrm(buf); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::ObjCObject: case clang::Type::ObjCInterface: { GetCompleteType(type); const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type.getTypePtr()); assert(objc_class_type); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) { clang::PrintingPolicy policy = getASTContext()->getPrintingPolicy(); class_interface_decl->print(llvm_ostrm, policy, s->GetIndentLevel()); } } } break; case clang::Type::Typedef: { const clang::TypedefType *typedef_type = qual_type->getAs(); if (typedef_type) { const clang::TypedefNameDecl *typedef_decl = typedef_type->getDecl(); std::string clang_typedef_name( typedef_decl->getQualifiedNameAsString()); if (!clang_typedef_name.empty()) { s->PutCString("typedef "); s->PutCString(clang_typedef_name); } } } break; case clang::Type::Auto: CompilerType(getASTContext(), llvm::cast(qual_type)->getDeducedType()) .DumpTypeDescription(s); return; case clang::Type::Elaborated: CompilerType(getASTContext(), llvm::cast(qual_type)->getNamedType()) .DumpTypeDescription(s); return; case clang::Type::Paren: CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .DumpTypeDescription(s); return; case clang::Type::Record: { GetCompleteType(type); const clang::RecordType *record_type = llvm::cast(qual_type.getTypePtr()); const clang::RecordDecl *record_decl = record_type->getDecl(); const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast(record_decl); if (cxx_record_decl) cxx_record_decl->print(llvm_ostrm, getASTContext()->getPrintingPolicy(), s->GetIndentLevel()); else record_decl->print(llvm_ostrm, getASTContext()->getPrintingPolicy(), s->GetIndentLevel()); } break; default: { const clang::TagType *tag_type = llvm::dyn_cast(qual_type.getTypePtr()); if (tag_type) { clang::TagDecl *tag_decl = tag_type->getDecl(); if (tag_decl) tag_decl->print(llvm_ostrm, 0); } else { std::string clang_type_name(qual_type.getAsString()); if (!clang_type_name.empty()) s->PutCString(clang_type_name); } } } if (buf.size() > 0) { s->Write(buf.data(), buf.size()); } } } void ClangASTContext::DumpTypeName(const CompilerType &type) { if (ClangUtil::IsClangType(type)) { clang::QualType qual_type( ClangUtil::GetCanonicalQualType(ClangUtil::RemoveFastQualifiers(type))); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: { const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) printf("class %s", cxx_record_decl->getName().str().c_str()); } break; case clang::Type::Enum: { clang::EnumDecl *enum_decl = llvm::cast(qual_type)->getDecl(); if (enum_decl) { printf("enum %s", enum_decl->getName().str().c_str()); } } break; case clang::Type::ObjCObject: case clang::Type::ObjCInterface: { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); // We currently can't complete objective C types through the newly added // ASTContext // because it only supports TagDecl objects right now... if (class_interface_decl) printf("@class %s", class_interface_decl->getName().str().c_str()); } } break; case clang::Type::Typedef: printf("typedef %s", llvm::cast(qual_type) ->getDecl() ->getName() .str() .c_str()); break; case clang::Type::Auto: printf("auto "); return DumpTypeName(CompilerType(type.GetTypeSystem(), llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr())); case clang::Type::Elaborated: printf("elaborated "); return DumpTypeName(CompilerType( type.GetTypeSystem(), llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr())); case clang::Type::Paren: printf("paren "); return DumpTypeName(CompilerType( type.GetTypeSystem(), llvm::cast(qual_type)->desugar().getAsOpaquePtr())); default: printf("ClangASTContext::DumpTypeName() type_class = %u", type_class); break; } } } clang::ClassTemplateDecl *ClangASTContext::ParseClassTemplateDecl( clang::DeclContext *decl_ctx, lldb::AccessType access_type, const char *parent_name, int tag_decl_kind, const ClangASTContext::TemplateParameterInfos &template_param_infos) { if (template_param_infos.IsValid()) { std::string template_basename(parent_name); template_basename.erase(template_basename.find('<')); return CreateClassTemplateDecl(decl_ctx, access_type, template_basename.c_str(), tag_decl_kind, template_param_infos); } return NULL; } void ClangASTContext::CompleteTagDecl(void *baton, clang::TagDecl *decl) { ClangASTContext *ast = (ClangASTContext *)baton; SymbolFile *sym_file = ast->GetSymbolFile(); if (sym_file) { CompilerType clang_type = GetTypeForDecl(decl); if (clang_type) sym_file->CompleteType(clang_type); } } void ClangASTContext::CompleteObjCInterfaceDecl( void *baton, clang::ObjCInterfaceDecl *decl) { ClangASTContext *ast = (ClangASTContext *)baton; SymbolFile *sym_file = ast->GetSymbolFile(); if (sym_file) { CompilerType clang_type = GetTypeForDecl(decl); if (clang_type) sym_file->CompleteType(clang_type); } } DWARFASTParser *ClangASTContext::GetDWARFParser() { if (!m_dwarf_ast_parser_ap) m_dwarf_ast_parser_ap.reset(new DWARFASTParserClang(*this)); return m_dwarf_ast_parser_ap.get(); } -#if 0 +#ifdef LLDB_ENABLE_ALL PDBASTParser *ClangASTContext::GetPDBParser() { if (!m_pdb_ast_parser_ap) m_pdb_ast_parser_ap.reset(new PDBASTParser(*this)); return m_pdb_ast_parser_ap.get(); } -#endif +#endif // LLDB_ENABLE_ALL bool ClangASTContext::LayoutRecordType( void *baton, const clang::RecordDecl *record_decl, uint64_t &bit_size, uint64_t &alignment, llvm::DenseMap &field_offsets, llvm::DenseMap &base_offsets, llvm::DenseMap &vbase_offsets) { ClangASTContext *ast = (ClangASTContext *)baton; DWARFASTParserClang *dwarf_ast_parser = (DWARFASTParserClang *)ast->GetDWARFParser(); return dwarf_ast_parser->GetClangASTImporter().LayoutRecordType( record_decl, bit_size, alignment, field_offsets, base_offsets, vbase_offsets); } //---------------------------------------------------------------------- // CompilerDecl override functions //---------------------------------------------------------------------- ConstString ClangASTContext::DeclGetName(void *opaque_decl) { if (opaque_decl) { clang::NamedDecl *nd = llvm::dyn_cast((clang::Decl *)opaque_decl); if (nd != nullptr) return ConstString(nd->getDeclName().getAsString()); } return ConstString(); } ConstString ClangASTContext::DeclGetMangledName(void *opaque_decl) { if (opaque_decl) { clang::NamedDecl *nd = llvm::dyn_cast((clang::Decl *)opaque_decl); if (nd != nullptr && !llvm::isa(nd)) { clang::MangleContext *mc = getMangleContext(); if (mc && mc->shouldMangleCXXName(nd)) { llvm::SmallVector buf; llvm::raw_svector_ostream llvm_ostrm(buf); if (llvm::isa(nd)) { mc->mangleCXXCtor(llvm::dyn_cast(nd), Ctor_Complete, llvm_ostrm); } else if (llvm::isa(nd)) { mc->mangleCXXDtor(llvm::dyn_cast(nd), Dtor_Complete, llvm_ostrm); } else { mc->mangleName(nd, llvm_ostrm); } if (buf.size() > 0) return ConstString(buf.data(), buf.size()); } } } return ConstString(); } CompilerDeclContext ClangASTContext::DeclGetDeclContext(void *opaque_decl) { if (opaque_decl) return CompilerDeclContext(this, ((clang::Decl *)opaque_decl)->getDeclContext()); else return CompilerDeclContext(); } CompilerType ClangASTContext::DeclGetFunctionReturnType(void *opaque_decl) { if (clang::FunctionDecl *func_decl = llvm::dyn_cast((clang::Decl *)opaque_decl)) return CompilerType(this, func_decl->getReturnType().getAsOpaquePtr()); if (clang::ObjCMethodDecl *objc_method = llvm::dyn_cast((clang::Decl *)opaque_decl)) return CompilerType(this, objc_method->getReturnType().getAsOpaquePtr()); else return CompilerType(); } size_t ClangASTContext::DeclGetFunctionNumArguments(void *opaque_decl) { if (clang::FunctionDecl *func_decl = llvm::dyn_cast((clang::Decl *)opaque_decl)) return func_decl->param_size(); if (clang::ObjCMethodDecl *objc_method = llvm::dyn_cast((clang::Decl *)opaque_decl)) return objc_method->param_size(); else return 0; } CompilerType ClangASTContext::DeclGetFunctionArgumentType(void *opaque_decl, size_t idx) { if (clang::FunctionDecl *func_decl = llvm::dyn_cast((clang::Decl *)opaque_decl)) { if (idx < func_decl->param_size()) { ParmVarDecl *var_decl = func_decl->getParamDecl(idx); if (var_decl) return CompilerType(this, var_decl->getOriginalType().getAsOpaquePtr()); } } else if (clang::ObjCMethodDecl *objc_method = llvm::dyn_cast( (clang::Decl *)opaque_decl)) { if (idx < objc_method->param_size()) return CompilerType( this, objc_method->parameters()[idx]->getOriginalType().getAsOpaquePtr()); } return CompilerType(); } //---------------------------------------------------------------------- // CompilerDeclContext functions //---------------------------------------------------------------------- std::vector ClangASTContext::DeclContextFindDeclByName( void *opaque_decl_ctx, ConstString name, const bool ignore_using_decls) { std::vector found_decls; if (opaque_decl_ctx) { DeclContext *root_decl_ctx = (DeclContext *)opaque_decl_ctx; std::set searched; std::multimap search_queue; SymbolFile *symbol_file = GetSymbolFile(); for (clang::DeclContext *decl_context = root_decl_ctx; decl_context != nullptr && found_decls.empty(); decl_context = decl_context->getParent()) { search_queue.insert(std::make_pair(decl_context, decl_context)); for (auto it = search_queue.find(decl_context); it != search_queue.end(); it++) { if (!searched.insert(it->second).second) continue; symbol_file->ParseDeclsForContext( CompilerDeclContext(this, it->second)); for (clang::Decl *child : it->second->decls()) { if (clang::UsingDirectiveDecl *ud = llvm::dyn_cast(child)) { if (ignore_using_decls) continue; clang::DeclContext *from = ud->getCommonAncestor(); if (searched.find(ud->getNominatedNamespace()) == searched.end()) search_queue.insert( std::make_pair(from, ud->getNominatedNamespace())); } else if (clang::UsingDecl *ud = llvm::dyn_cast(child)) { if (ignore_using_decls) continue; for (clang::UsingShadowDecl *usd : ud->shadows()) { clang::Decl *target = usd->getTargetDecl(); if (clang::NamedDecl *nd = llvm::dyn_cast(target)) { IdentifierInfo *ii = nd->getIdentifier(); if (ii != nullptr && ii->getName().equals(name.AsCString(nullptr))) found_decls.push_back(CompilerDecl(this, nd)); } } } else if (clang::NamedDecl *nd = llvm::dyn_cast(child)) { IdentifierInfo *ii = nd->getIdentifier(); if (ii != nullptr && ii->getName().equals(name.AsCString(nullptr))) found_decls.push_back(CompilerDecl(this, nd)); } } } } } return found_decls; } // Look for child_decl_ctx's lookup scope in frame_decl_ctx and its parents, // and return the number of levels it took to find it, or // LLDB_INVALID_DECL_LEVEL // if not found. If the decl was imported via a using declaration, its name // and/or // type, if set, will be used to check that the decl found in the scope is a // match. // // The optional name is required by languages (like C++) to handle using // declarations // like: // // void poo(); // namespace ns { // void foo(); // void goo(); // } // void bar() { // using ns::foo; // // CountDeclLevels returns 0 for 'foo', 1 for 'poo', and // // LLDB_INVALID_DECL_LEVEL for 'goo'. // } // // The optional type is useful in the case that there's a specific overload // that we're looking for that might otherwise be shadowed, like: // // void foo(int); // namespace ns { // void foo(); // } // void bar() { // using ns::foo; // // CountDeclLevels returns 0 for { 'foo', void() }, // // 1 for { 'foo', void(int) }, and // // LLDB_INVALID_DECL_LEVEL for { 'foo', void(int, int) }. // } // // NOTE: Because file statics are at the TranslationUnit along with globals, a // function at file scope will return the same level as a function at global // scope. // Ideally we'd like to treat the file scope as an additional scope just below // the // global scope. More work needs to be done to recognise that, if the decl // we're // trying to look up is static, we should compare its source file with that of // the // current scope and return a lower number for it. uint32_t ClangASTContext::CountDeclLevels(clang::DeclContext *frame_decl_ctx, clang::DeclContext *child_decl_ctx, ConstString *child_name, CompilerType *child_type) { if (frame_decl_ctx) { std::set searched; std::multimap search_queue; SymbolFile *symbol_file = GetSymbolFile(); // Get the lookup scope for the decl we're trying to find. clang::DeclContext *parent_decl_ctx = child_decl_ctx->getParent(); // Look for it in our scope's decl context and its parents. uint32_t level = 0; for (clang::DeclContext *decl_ctx = frame_decl_ctx; decl_ctx != nullptr; decl_ctx = decl_ctx->getParent()) { if (!decl_ctx->isLookupContext()) continue; if (decl_ctx == parent_decl_ctx) // Found it! return level; search_queue.insert(std::make_pair(decl_ctx, decl_ctx)); for (auto it = search_queue.find(decl_ctx); it != search_queue.end(); it++) { if (searched.find(it->second) != searched.end()) continue; // Currently DWARF has one shared translation unit for all Decls at top // level, so this // would erroneously find using statements anywhere. So don't look at // the top-level // translation unit. // TODO fix this and add a testcase that depends on it. if (llvm::isa(it->second)) continue; searched.insert(it->second); symbol_file->ParseDeclsForContext( CompilerDeclContext(this, it->second)); for (clang::Decl *child : it->second->decls()) { if (clang::UsingDirectiveDecl *ud = llvm::dyn_cast(child)) { clang::DeclContext *ns = ud->getNominatedNamespace(); if (ns == parent_decl_ctx) // Found it! return level; clang::DeclContext *from = ud->getCommonAncestor(); if (searched.find(ns) == searched.end()) search_queue.insert(std::make_pair(from, ns)); } else if (child_name) { if (clang::UsingDecl *ud = llvm::dyn_cast(child)) { for (clang::UsingShadowDecl *usd : ud->shadows()) { clang::Decl *target = usd->getTargetDecl(); clang::NamedDecl *nd = llvm::dyn_cast(target); if (!nd) continue; // Check names. IdentifierInfo *ii = nd->getIdentifier(); if (ii == nullptr || !ii->getName().equals(child_name->AsCString(nullptr))) continue; // Check types, if one was provided. if (child_type) { CompilerType clang_type = ClangASTContext::GetTypeForDecl(nd); if (!AreTypesSame(clang_type, *child_type, /*ignore_qualifiers=*/true)) continue; } // Found it! return level; } } } } } ++level; } } return LLDB_INVALID_DECL_LEVEL; } bool ClangASTContext::DeclContextIsStructUnionOrClass(void *opaque_decl_ctx) { if (opaque_decl_ctx) return ((clang::DeclContext *)opaque_decl_ctx)->isRecord(); else return false; } ConstString ClangASTContext::DeclContextGetName(void *opaque_decl_ctx) { if (opaque_decl_ctx) { clang::NamedDecl *named_decl = llvm::dyn_cast((clang::DeclContext *)opaque_decl_ctx); if (named_decl) return ConstString(named_decl->getName()); } return ConstString(); } ConstString ClangASTContext::DeclContextGetScopeQualifiedName(void *opaque_decl_ctx) { if (opaque_decl_ctx) { clang::NamedDecl *named_decl = llvm::dyn_cast((clang::DeclContext *)opaque_decl_ctx); if (named_decl) return ConstString( llvm::StringRef(named_decl->getQualifiedNameAsString())); } return ConstString(); } bool ClangASTContext::DeclContextIsClassMethod( void *opaque_decl_ctx, lldb::LanguageType *language_ptr, bool *is_instance_method_ptr, ConstString *language_object_name_ptr) { if (opaque_decl_ctx) { clang::DeclContext *decl_ctx = (clang::DeclContext *)opaque_decl_ctx; if (ObjCMethodDecl *objc_method = llvm::dyn_cast(decl_ctx)) { if (is_instance_method_ptr) *is_instance_method_ptr = objc_method->isInstanceMethod(); if (language_ptr) *language_ptr = eLanguageTypeObjC; if (language_object_name_ptr) language_object_name_ptr->SetCString("self"); return true; } else if (CXXMethodDecl *cxx_method = llvm::dyn_cast(decl_ctx)) { if (is_instance_method_ptr) *is_instance_method_ptr = cxx_method->isInstance(); if (language_ptr) *language_ptr = eLanguageTypeC_plus_plus; if (language_object_name_ptr) language_object_name_ptr->SetCString("this"); return true; } else if (clang::FunctionDecl *function_decl = llvm::dyn_cast(decl_ctx)) { ClangASTMetadata *metadata = GetMetadata(&decl_ctx->getParentASTContext(), function_decl); if (metadata && metadata->HasObjectPtr()) { if (is_instance_method_ptr) *is_instance_method_ptr = true; if (language_ptr) *language_ptr = eLanguageTypeObjC; if (language_object_name_ptr) language_object_name_ptr->SetCString(metadata->GetObjectPtrName()); return true; } } } return false; } clang::DeclContext * ClangASTContext::DeclContextGetAsDeclContext(const CompilerDeclContext &dc) { if (dc.IsClang()) return (clang::DeclContext *)dc.GetOpaqueDeclContext(); return nullptr; } ObjCMethodDecl * ClangASTContext::DeclContextGetAsObjCMethodDecl(const CompilerDeclContext &dc) { if (dc.IsClang()) return llvm::dyn_cast( (clang::DeclContext *)dc.GetOpaqueDeclContext()); return nullptr; } CXXMethodDecl * ClangASTContext::DeclContextGetAsCXXMethodDecl(const CompilerDeclContext &dc) { if (dc.IsClang()) return llvm::dyn_cast( (clang::DeclContext *)dc.GetOpaqueDeclContext()); return nullptr; } clang::FunctionDecl * ClangASTContext::DeclContextGetAsFunctionDecl(const CompilerDeclContext &dc) { if (dc.IsClang()) return llvm::dyn_cast( (clang::DeclContext *)dc.GetOpaqueDeclContext()); return nullptr; } clang::NamespaceDecl * ClangASTContext::DeclContextGetAsNamespaceDecl(const CompilerDeclContext &dc) { if (dc.IsClang()) return llvm::dyn_cast( (clang::DeclContext *)dc.GetOpaqueDeclContext()); return nullptr; } ClangASTMetadata * ClangASTContext::DeclContextGetMetaData(const CompilerDeclContext &dc, const void *object) { clang::ASTContext *ast = DeclContextGetClangASTContext(dc); if (ast) return ClangASTContext::GetMetadata(ast, object); return nullptr; } clang::ASTContext * ClangASTContext::DeclContextGetClangASTContext(const CompilerDeclContext &dc) { ClangASTContext *ast = llvm::dyn_cast_or_null(dc.GetTypeSystem()); if (ast) return ast->getASTContext(); return nullptr; } ClangASTContextForExpressions::ClangASTContextForExpressions(Target &target) : ClangASTContext(target.GetArchitecture().GetTriple().getTriple().c_str()), m_target_wp(target.shared_from_this()), m_persistent_variables(new ClangPersistentVariables) {} UserExpression *ClangASTContextForExpressions::GetUserExpression( llvm::StringRef expr, llvm::StringRef prefix, lldb::LanguageType language, Expression::ResultType desired_type, const EvaluateExpressionOptions &options) { TargetSP target_sp = m_target_wp.lock(); if (!target_sp) return nullptr; return new ClangUserExpression(*target_sp.get(), expr, prefix, language, desired_type, options); } FunctionCaller *ClangASTContextForExpressions::GetFunctionCaller( const CompilerType &return_type, const Address &function_address, const ValueList &arg_value_list, const char *name) { TargetSP target_sp = m_target_wp.lock(); if (!target_sp) return nullptr; Process *process = target_sp->GetProcessSP().get(); if (!process) return nullptr; return new ClangFunctionCaller(*process, return_type, function_address, arg_value_list, name); } UtilityFunction * ClangASTContextForExpressions::GetUtilityFunction(const char *text, const char *name) { TargetSP target_sp = m_target_wp.lock(); if (!target_sp) return nullptr; return new ClangUtilityFunction(*target_sp.get(), text, name); } PersistentExpressionState * ClangASTContextForExpressions::GetPersistentExpressionState() { return m_persistent_variables.get(); } clang::ExternalASTMerger & ClangASTContextForExpressions::GetMergerUnchecked() { lldbassert(m_scratch_ast_source_ap != nullptr); return m_scratch_ast_source_ap->GetMergerUnchecked(); }