Index: head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zfs_vnops.c =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zfs_vnops.c (revision 327003) +++ head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zfs_vnops.c (revision 327004) @@ -1,6070 +1,6056 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2015 by Delphix. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2017 Nexenta Systems, Inc. */ /* Portions Copyright 2007 Jeremy Teo */ /* Portions Copyright 2010 Robert Milkowski */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Programming rules. * * Each vnode op performs some logical unit of work. To do this, the ZPL must * properly lock its in-core state, create a DMU transaction, do the work, * record this work in the intent log (ZIL), commit the DMU transaction, * and wait for the intent log to commit if it is a synchronous operation. * Moreover, the vnode ops must work in both normal and log replay context. * The ordering of events is important to avoid deadlocks and references * to freed memory. The example below illustrates the following Big Rules: * * (1) A check must be made in each zfs thread for a mounted file system. * This is done avoiding races using ZFS_ENTER(zfsvfs). * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros * can return EIO from the calling function. * * (2) VN_RELE() should always be the last thing except for zil_commit() * (if necessary) and ZFS_EXIT(). This is for 3 reasons: * First, if it's the last reference, the vnode/znode * can be freed, so the zp may point to freed memory. Second, the last * reference will call zfs_zinactive(), which may induce a lot of work -- * pushing cached pages (which acquires range locks) and syncing out * cached atime changes. Third, zfs_zinactive() may require a new tx, * which could deadlock the system if you were already holding one. * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). * * (3) All range locks must be grabbed before calling dmu_tx_assign(), * as they can span dmu_tx_assign() calls. * * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to * dmu_tx_assign(). This is critical because we don't want to block * while holding locks. * * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This * reduces lock contention and CPU usage when we must wait (note that if * throughput is constrained by the storage, nearly every transaction * must wait). * * Note, in particular, that if a lock is sometimes acquired before * the tx assigns, and sometimes after (e.g. z_lock), then failing * to use a non-blocking assign can deadlock the system. The scenario: * * Thread A has grabbed a lock before calling dmu_tx_assign(). * Thread B is in an already-assigned tx, and blocks for this lock. * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() * forever, because the previous txg can't quiesce until B's tx commits. * * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, * then drop all locks, call dmu_tx_wait(), and try again. On subsequent * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT, * to indicate that this operation has already called dmu_tx_wait(). * This will ensure that we don't retry forever, waiting a short bit * each time. * * (5) If the operation succeeded, generate the intent log entry for it * before dropping locks. This ensures that the ordering of events * in the intent log matches the order in which they actually occurred. * During ZIL replay the zfs_log_* functions will update the sequence * number to indicate the zil transaction has replayed. * * (6) At the end of each vnode op, the DMU tx must always commit, * regardless of whether there were any errors. * * (7) After dropping all locks, invoke zil_commit(zilog, foid) * to ensure that synchronous semantics are provided when necessary. * * In general, this is how things should be ordered in each vnode op: * * ZFS_ENTER(zfsvfs); // exit if unmounted * top: * zfs_dirent_lookup(&dl, ...) // lock directory entry (may VN_HOLD()) * rw_enter(...); // grab any other locks you need * tx = dmu_tx_create(...); // get DMU tx * dmu_tx_hold_*(); // hold each object you might modify * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); * if (error) { * rw_exit(...); // drop locks * zfs_dirent_unlock(dl); // unlock directory entry * VN_RELE(...); // release held vnodes * if (error == ERESTART) { * waited = B_TRUE; * dmu_tx_wait(tx); * dmu_tx_abort(tx); * goto top; * } * dmu_tx_abort(tx); // abort DMU tx * ZFS_EXIT(zfsvfs); // finished in zfs * return (error); // really out of space * } * error = do_real_work(); // do whatever this VOP does * if (error == 0) * zfs_log_*(...); // on success, make ZIL entry * dmu_tx_commit(tx); // commit DMU tx -- error or not * rw_exit(...); // drop locks * zfs_dirent_unlock(dl); // unlock directory entry * VN_RELE(...); // release held vnodes * zil_commit(zilog, foid); // synchronous when necessary * ZFS_EXIT(zfsvfs); // finished in zfs * return (error); // done, report error */ /* ARGSUSED */ static int zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(*vpp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && ((flag & FAPPEND) == 0)) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EPERM)); } if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && ZTOV(zp)->v_type == VREG && !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { if (fs_vscan(*vpp, cr, 0) != 0) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EACCES)); } } /* Keep a count of the synchronous opens in the znode */ if (flag & (FSYNC | FDSYNC)) atomic_inc_32(&zp->z_sync_cnt); ZFS_EXIT(zfsvfs); return (0); } /* ARGSUSED */ static int zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; /* * Clean up any locks held by this process on the vp. */ cleanlocks(vp, ddi_get_pid(), 0); cleanshares(vp, ddi_get_pid()); ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); /* Decrement the synchronous opens in the znode */ if ((flag & (FSYNC | FDSYNC)) && (count == 1)) atomic_dec_32(&zp->z_sync_cnt); if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && ZTOV(zp)->v_type == VREG && !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) VERIFY(fs_vscan(vp, cr, 1) == 0); ZFS_EXIT(zfsvfs); return (0); } /* * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. */ static int zfs_holey(vnode_t *vp, u_long cmd, offset_t *off) { znode_t *zp = VTOZ(vp); uint64_t noff = (uint64_t)*off; /* new offset */ uint64_t file_sz; int error; boolean_t hole; file_sz = zp->z_size; if (noff >= file_sz) { return (SET_ERROR(ENXIO)); } if (cmd == _FIO_SEEK_HOLE) hole = B_TRUE; else hole = B_FALSE; error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); if (error == ESRCH) return (SET_ERROR(ENXIO)); /* * We could find a hole that begins after the logical end-of-file, * because dmu_offset_next() only works on whole blocks. If the * EOF falls mid-block, then indicate that the "virtual hole" * at the end of the file begins at the logical EOF, rather than * at the end of the last block. */ if (noff > file_sz) { ASSERT(hole); noff = file_sz; } if (noff < *off) return (error); *off = noff; return (error); } /* ARGSUSED */ static int zfs_ioctl(vnode_t *vp, u_long com, intptr_t data, int flag, cred_t *cred, int *rvalp, caller_context_t *ct) { offset_t off; offset_t ndata; dmu_object_info_t doi; int error; zfsvfs_t *zfsvfs; znode_t *zp; switch (com) { case _FIOFFS: { return (0); /* * The following two ioctls are used by bfu. Faking out, * necessary to avoid bfu errors. */ } case _FIOGDIO: case _FIOSDIO: { return (0); } case _FIO_SEEK_DATA: case _FIO_SEEK_HOLE: { #ifdef illumos if (ddi_copyin((void *)data, &off, sizeof (off), flag)) return (SET_ERROR(EFAULT)); #else off = *(offset_t *)data; #endif zp = VTOZ(vp); zfsvfs = zp->z_zfsvfs; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); /* offset parameter is in/out */ error = zfs_holey(vp, com, &off); ZFS_EXIT(zfsvfs); if (error) return (error); #ifdef illumos if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) return (SET_ERROR(EFAULT)); #else *(offset_t *)data = off; #endif return (0); } #ifdef illumos case _FIO_COUNT_FILLED: { /* * _FIO_COUNT_FILLED adds a new ioctl command which * exposes the number of filled blocks in a * ZFS object. */ zp = VTOZ(vp); zfsvfs = zp->z_zfsvfs; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); /* * Wait for all dirty blocks for this object * to get synced out to disk, and the DMU info * updated. */ error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id); if (error) { ZFS_EXIT(zfsvfs); return (error); } /* * Retrieve fill count from DMU object. */ error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi); if (error) { ZFS_EXIT(zfsvfs); return (error); } ndata = doi.doi_fill_count; ZFS_EXIT(zfsvfs); if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag)) return (SET_ERROR(EFAULT)); return (0); } #endif } return (SET_ERROR(ENOTTY)); } static vm_page_t page_busy(vnode_t *vp, int64_t start, int64_t off, int64_t nbytes) { vm_object_t obj; vm_page_t pp; int64_t end; /* * At present vm_page_clear_dirty extends the cleared range to DEV_BSIZE * aligned boundaries, if the range is not aligned. As a result a * DEV_BSIZE subrange with partially dirty data may get marked as clean. * It may happen that all DEV_BSIZE subranges are marked clean and thus * the whole page would be considred clean despite have some dirty data. * For this reason we should shrink the range to DEV_BSIZE aligned * boundaries before calling vm_page_clear_dirty. */ end = rounddown2(off + nbytes, DEV_BSIZE); off = roundup2(off, DEV_BSIZE); nbytes = end - off; obj = vp->v_object; zfs_vmobject_assert_wlocked(obj); for (;;) { if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL && pp->valid) { if (vm_page_xbusied(pp)) { /* * Reference the page before unlocking and * sleeping so that the page daemon is less * likely to reclaim it. */ vm_page_reference(pp); vm_page_lock(pp); zfs_vmobject_wunlock(obj); vm_page_busy_sleep(pp, "zfsmwb", true); zfs_vmobject_wlock(obj); continue; } vm_page_sbusy(pp); } else if (pp != NULL) { ASSERT(!pp->valid); pp = NULL; } if (pp != NULL) { ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL); vm_object_pip_add(obj, 1); pmap_remove_write(pp); if (nbytes != 0) vm_page_clear_dirty(pp, off, nbytes); } break; } return (pp); } static void page_unbusy(vm_page_t pp) { vm_page_sunbusy(pp); vm_object_pip_subtract(pp->object, 1); } static vm_page_t page_hold(vnode_t *vp, int64_t start) { vm_object_t obj; vm_page_t pp; obj = vp->v_object; zfs_vmobject_assert_wlocked(obj); for (;;) { if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL && pp->valid) { if (vm_page_xbusied(pp)) { /* * Reference the page before unlocking and * sleeping so that the page daemon is less * likely to reclaim it. */ vm_page_reference(pp); vm_page_lock(pp); zfs_vmobject_wunlock(obj); vm_page_busy_sleep(pp, "zfsmwb", true); zfs_vmobject_wlock(obj); continue; } ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL); vm_page_lock(pp); vm_page_hold(pp); vm_page_unlock(pp); } else pp = NULL; break; } return (pp); } static void page_unhold(vm_page_t pp) { vm_page_lock(pp); vm_page_unhold(pp); vm_page_unlock(pp); } /* * When a file is memory mapped, we must keep the IO data synchronized * between the DMU cache and the memory mapped pages. What this means: * * On Write: If we find a memory mapped page, we write to *both* * the page and the dmu buffer. */ static void update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid, int segflg, dmu_tx_t *tx) { vm_object_t obj; struct sf_buf *sf; caddr_t va; int off; ASSERT(segflg != UIO_NOCOPY); ASSERT(vp->v_mount != NULL); obj = vp->v_object; ASSERT(obj != NULL); off = start & PAGEOFFSET; zfs_vmobject_wlock(obj); for (start &= PAGEMASK; len > 0; start += PAGESIZE) { vm_page_t pp; int nbytes = imin(PAGESIZE - off, len); if ((pp = page_busy(vp, start, off, nbytes)) != NULL) { zfs_vmobject_wunlock(obj); va = zfs_map_page(pp, &sf); (void) dmu_read(os, oid, start+off, nbytes, va+off, DMU_READ_PREFETCH);; zfs_unmap_page(sf); zfs_vmobject_wlock(obj); page_unbusy(pp); } len -= nbytes; off = 0; } vm_object_pip_wakeupn(obj, 0); zfs_vmobject_wunlock(obj); } /* * Read with UIO_NOCOPY flag means that sendfile(2) requests * ZFS to populate a range of page cache pages with data. * * NOTE: this function could be optimized to pre-allocate * all pages in advance, drain exclusive busy on all of them, * map them into contiguous KVA region and populate them * in one single dmu_read() call. */ static int mappedread_sf(vnode_t *vp, int nbytes, uio_t *uio) { znode_t *zp = VTOZ(vp); objset_t *os = zp->z_zfsvfs->z_os; struct sf_buf *sf; vm_object_t obj; vm_page_t pp; int64_t start; caddr_t va; int len = nbytes; int off; int error = 0; ASSERT(uio->uio_segflg == UIO_NOCOPY); ASSERT(vp->v_mount != NULL); obj = vp->v_object; ASSERT(obj != NULL); ASSERT((uio->uio_loffset & PAGEOFFSET) == 0); zfs_vmobject_wlock(obj); for (start = uio->uio_loffset; len > 0; start += PAGESIZE) { int bytes = MIN(PAGESIZE, len); pp = vm_page_grab(obj, OFF_TO_IDX(start), VM_ALLOC_SBUSY | VM_ALLOC_NORMAL | VM_ALLOC_IGN_SBUSY); if (pp->valid == 0) { zfs_vmobject_wunlock(obj); va = zfs_map_page(pp, &sf); error = dmu_read(os, zp->z_id, start, bytes, va, DMU_READ_PREFETCH); if (bytes != PAGESIZE && error == 0) bzero(va + bytes, PAGESIZE - bytes); zfs_unmap_page(sf); zfs_vmobject_wlock(obj); vm_page_sunbusy(pp); vm_page_lock(pp); if (error) { if (pp->wire_count == 0 && pp->valid == 0 && !vm_page_busied(pp)) vm_page_free(pp); } else { pp->valid = VM_PAGE_BITS_ALL; vm_page_activate(pp); } vm_page_unlock(pp); } else { ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL); vm_page_sunbusy(pp); } if (error) break; uio->uio_resid -= bytes; uio->uio_offset += bytes; len -= bytes; } zfs_vmobject_wunlock(obj); return (error); } /* * When a file is memory mapped, we must keep the IO data synchronized * between the DMU cache and the memory mapped pages. What this means: * * On Read: We "read" preferentially from memory mapped pages, * else we default from the dmu buffer. * * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when * the file is memory mapped. */ static int mappedread(vnode_t *vp, int nbytes, uio_t *uio) { znode_t *zp = VTOZ(vp); vm_object_t obj; int64_t start; caddr_t va; int len = nbytes; int off; int error = 0; ASSERT(vp->v_mount != NULL); obj = vp->v_object; ASSERT(obj != NULL); start = uio->uio_loffset; off = start & PAGEOFFSET; zfs_vmobject_wlock(obj); for (start &= PAGEMASK; len > 0; start += PAGESIZE) { vm_page_t pp; uint64_t bytes = MIN(PAGESIZE - off, len); if (pp = page_hold(vp, start)) { struct sf_buf *sf; caddr_t va; zfs_vmobject_wunlock(obj); va = zfs_map_page(pp, &sf); #ifdef illumos error = uiomove(va + off, bytes, UIO_READ, uio); #else error = vn_io_fault_uiomove(va + off, bytes, uio); #endif zfs_unmap_page(sf); zfs_vmobject_wlock(obj); page_unhold(pp); } else { zfs_vmobject_wunlock(obj); error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), uio, bytes); zfs_vmobject_wlock(obj); } len -= bytes; off = 0; if (error) break; } zfs_vmobject_wunlock(obj); return (error); } offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ /* * Read bytes from specified file into supplied buffer. * * IN: vp - vnode of file to be read from. * uio - structure supplying read location, range info, * and return buffer. * ioflag - SYNC flags; used to provide FRSYNC semantics. * cr - credentials of caller. * ct - caller context * * OUT: uio - updated offset and range, buffer filled. * * RETURN: 0 on success, error code on failure. * * Side Effects: * vp - atime updated if byte count > 0 */ /* ARGSUSED */ static int zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; ssize_t n, nbytes; int error = 0; rl_t *rl; xuio_t *xuio = NULL; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); if (zp->z_pflags & ZFS_AV_QUARANTINED) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EACCES)); } /* * Validate file offset */ if (uio->uio_loffset < (offset_t)0) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EINVAL)); } /* * Fasttrack empty reads */ if (uio->uio_resid == 0) { ZFS_EXIT(zfsvfs); return (0); } /* * Check for mandatory locks */ if (MANDMODE(zp->z_mode)) { if (error = chklock(vp, FREAD, uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { ZFS_EXIT(zfsvfs); return (error); } } /* * If we're in FRSYNC mode, sync out this znode before reading it. */ if (zfsvfs->z_log && (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)) zil_commit(zfsvfs->z_log, zp->z_id); /* * Lock the range against changes. */ rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); /* * If we are reading past end-of-file we can skip * to the end; but we might still need to set atime. */ if (uio->uio_loffset >= zp->z_size) { error = 0; goto out; } ASSERT(uio->uio_loffset < zp->z_size); n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); #ifdef illumos if ((uio->uio_extflg == UIO_XUIO) && (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { int nblk; int blksz = zp->z_blksz; uint64_t offset = uio->uio_loffset; xuio = (xuio_t *)uio; if ((ISP2(blksz))) { nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, blksz)) / blksz; } else { ASSERT(offset + n <= blksz); nblk = 1; } (void) dmu_xuio_init(xuio, nblk); if (vn_has_cached_data(vp)) { /* * For simplicity, we always allocate a full buffer * even if we only expect to read a portion of a block. */ while (--nblk >= 0) { (void) dmu_xuio_add(xuio, dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), blksz), 0, blksz); } } } #endif /* illumos */ while (n > 0) { nbytes = MIN(n, zfs_read_chunk_size - P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); #ifdef __FreeBSD__ if (uio->uio_segflg == UIO_NOCOPY) error = mappedread_sf(vp, nbytes, uio); else #endif /* __FreeBSD__ */ if (vn_has_cached_data(vp)) { error = mappedread(vp, nbytes, uio); } else { error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), uio, nbytes); } if (error) { /* convert checksum errors into IO errors */ if (error == ECKSUM) error = SET_ERROR(EIO); break; } n -= nbytes; } out: zfs_range_unlock(rl); ZFS_ACCESSTIME_STAMP(zfsvfs, zp); ZFS_EXIT(zfsvfs); return (error); } /* * Write the bytes to a file. * * IN: vp - vnode of file to be written to. * uio - structure supplying write location, range info, * and data buffer. * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is * set if in append mode. * cr - credentials of caller. * ct - caller context (NFS/CIFS fem monitor only) * * OUT: uio - updated offset and range. * * RETURN: 0 on success, error code on failure. * * Timestamps: * vp - ctime|mtime updated if byte count > 0 */ /* ARGSUSED */ static int zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); rlim64_t limit = MAXOFFSET_T; ssize_t start_resid = uio->uio_resid; ssize_t tx_bytes; uint64_t end_size; dmu_tx_t *tx; zfsvfs_t *zfsvfs = zp->z_zfsvfs; zilog_t *zilog; offset_t woff; ssize_t n, nbytes; rl_t *rl; int max_blksz = zfsvfs->z_max_blksz; int error = 0; arc_buf_t *abuf; iovec_t *aiov = NULL; xuio_t *xuio = NULL; int i_iov = 0; int iovcnt = uio->uio_iovcnt; iovec_t *iovp = uio->uio_iov; int write_eof; int count = 0; sa_bulk_attr_t bulk[4]; uint64_t mtime[2], ctime[2]; /* * Fasttrack empty write */ n = start_resid; if (n == 0) return (0); if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) limit = MAXOFFSET_T; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, &zp->z_size, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 8); /* * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our * callers might not be able to detect properly that we are read-only, * so check it explicitly here. */ if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EROFS)); } /* * If immutable or not appending then return EPERM. * Intentionally allow ZFS_READONLY through here. * See zfs_zaccess_common() */ if ((zp->z_pflags & ZFS_IMMUTABLE) || ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && (uio->uio_loffset < zp->z_size))) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EPERM)); } zilog = zfsvfs->z_log; /* * Validate file offset */ woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; if (woff < 0) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EINVAL)); } /* * Check for mandatory locks before calling zfs_range_lock() * in order to prevent a deadlock with locks set via fcntl(). */ if (MANDMODE((mode_t)zp->z_mode) && (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { ZFS_EXIT(zfsvfs); return (error); } #ifdef illumos /* * Pre-fault the pages to ensure slow (eg NFS) pages * don't hold up txg. * Skip this if uio contains loaned arc_buf. */ if ((uio->uio_extflg == UIO_XUIO) && (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) xuio = (xuio_t *)uio; else uio_prefaultpages(MIN(n, max_blksz), uio); #endif /* * If in append mode, set the io offset pointer to eof. */ if (ioflag & FAPPEND) { /* * Obtain an appending range lock to guarantee file append * semantics. We reset the write offset once we have the lock. */ rl = zfs_range_lock(zp, 0, n, RL_APPEND); woff = rl->r_off; if (rl->r_len == UINT64_MAX) { /* * We overlocked the file because this write will cause * the file block size to increase. * Note that zp_size cannot change with this lock held. */ woff = zp->z_size; } uio->uio_loffset = woff; } else { /* * Note that if the file block size will change as a result of * this write, then this range lock will lock the entire file * so that we can re-write the block safely. */ rl = zfs_range_lock(zp, woff, n, RL_WRITER); } if (vn_rlimit_fsize(vp, uio, uio->uio_td)) { zfs_range_unlock(rl); ZFS_EXIT(zfsvfs); return (EFBIG); } if (woff >= limit) { zfs_range_unlock(rl); ZFS_EXIT(zfsvfs); return (SET_ERROR(EFBIG)); } if ((woff + n) > limit || woff > (limit - n)) n = limit - woff; /* Will this write extend the file length? */ write_eof = (woff + n > zp->z_size); end_size = MAX(zp->z_size, woff + n); /* * Write the file in reasonable size chunks. Each chunk is written * in a separate transaction; this keeps the intent log records small * and allows us to do more fine-grained space accounting. */ while (n > 0) { abuf = NULL; woff = uio->uio_loffset; if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { if (abuf != NULL) dmu_return_arcbuf(abuf); error = SET_ERROR(EDQUOT); break; } if (xuio && abuf == NULL) { ASSERT(i_iov < iovcnt); aiov = &iovp[i_iov]; abuf = dmu_xuio_arcbuf(xuio, i_iov); dmu_xuio_clear(xuio, i_iov); DTRACE_PROBE3(zfs_cp_write, int, i_iov, iovec_t *, aiov, arc_buf_t *, abuf); ASSERT((aiov->iov_base == abuf->b_data) || ((char *)aiov->iov_base - (char *)abuf->b_data + aiov->iov_len == arc_buf_size(abuf))); i_iov++; } else if (abuf == NULL && n >= max_blksz && woff >= zp->z_size && P2PHASE(woff, max_blksz) == 0 && zp->z_blksz == max_blksz) { /* * This write covers a full block. "Borrow" a buffer * from the dmu so that we can fill it before we enter * a transaction. This avoids the possibility of * holding up the transaction if the data copy hangs * up on a pagefault (e.g., from an NFS server mapping). */ size_t cbytes; abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), max_blksz); ASSERT(abuf != NULL); ASSERT(arc_buf_size(abuf) == max_blksz); if (error = uiocopy(abuf->b_data, max_blksz, UIO_WRITE, uio, &cbytes)) { dmu_return_arcbuf(abuf); break; } ASSERT(cbytes == max_blksz); } /* * Start a transaction. */ tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); zfs_sa_upgrade_txholds(tx, zp); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); if (abuf != NULL) dmu_return_arcbuf(abuf); break; } /* * If zfs_range_lock() over-locked we grow the blocksize * and then reduce the lock range. This will only happen * on the first iteration since zfs_range_reduce() will * shrink down r_len to the appropriate size. */ if (rl->r_len == UINT64_MAX) { uint64_t new_blksz; if (zp->z_blksz > max_blksz) { /* * File's blocksize is already larger than the * "recordsize" property. Only let it grow to * the next power of 2. */ ASSERT(!ISP2(zp->z_blksz)); new_blksz = MIN(end_size, 1 << highbit64(zp->z_blksz)); } else { new_blksz = MIN(end_size, max_blksz); } zfs_grow_blocksize(zp, new_blksz, tx); zfs_range_reduce(rl, woff, n); } /* * XXX - should we really limit each write to z_max_blksz? * Perhaps we should use SPA_MAXBLOCKSIZE chunks? */ nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); if (woff + nbytes > zp->z_size) vnode_pager_setsize(vp, woff + nbytes); if (abuf == NULL) { tx_bytes = uio->uio_resid; error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), uio, nbytes, tx); tx_bytes -= uio->uio_resid; } else { tx_bytes = nbytes; ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); /* * If this is not a full block write, but we are * extending the file past EOF and this data starts * block-aligned, use assign_arcbuf(). Otherwise, * write via dmu_write(). */ if (tx_bytes < max_blksz && (!write_eof || aiov->iov_base != abuf->b_data)) { ASSERT(xuio); dmu_write(zfsvfs->z_os, zp->z_id, woff, aiov->iov_len, aiov->iov_base, tx); dmu_return_arcbuf(abuf); xuio_stat_wbuf_copied(); } else { ASSERT(xuio || tx_bytes == max_blksz); dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), woff, abuf, tx); } ASSERT(tx_bytes <= uio->uio_resid); uioskip(uio, tx_bytes); } if (tx_bytes && vn_has_cached_data(vp)) { update_pages(vp, woff, tx_bytes, zfsvfs->z_os, zp->z_id, uio->uio_segflg, tx); } /* * If we made no progress, we're done. If we made even * partial progress, update the znode and ZIL accordingly. */ if (tx_bytes == 0) { (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), (void *)&zp->z_size, sizeof (uint64_t), tx); dmu_tx_commit(tx); ASSERT(error != 0); break; } /* * Clear Set-UID/Set-GID bits on successful write if not * privileged and at least one of the excute bits is set. * * It would be nice to to this after all writes have * been done, but that would still expose the ISUID/ISGID * to another app after the partial write is committed. * * Note: we don't call zfs_fuid_map_id() here because * user 0 is not an ephemeral uid. */ mutex_enter(&zp->z_acl_lock); if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 && (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && secpolicy_vnode_setid_retain(vp, cr, (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { uint64_t newmode; zp->z_mode &= ~(S_ISUID | S_ISGID); newmode = zp->z_mode; (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), (void *)&newmode, sizeof (uint64_t), tx); } mutex_exit(&zp->z_acl_lock); zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); /* * Update the file size (zp_size) if it has changed; * account for possible concurrent updates. */ while ((end_size = zp->z_size) < uio->uio_loffset) { (void) atomic_cas_64(&zp->z_size, end_size, uio->uio_loffset); #ifdef illumos ASSERT(error == 0); #else ASSERT(error == 0 || error == EFAULT); #endif } /* * If we are replaying and eof is non zero then force * the file size to the specified eof. Note, there's no * concurrency during replay. */ if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) zp->z_size = zfsvfs->z_replay_eof; if (error == 0) error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); else (void) sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); dmu_tx_commit(tx); if (error != 0) break; ASSERT(tx_bytes == nbytes); n -= nbytes; #ifdef illumos if (!xuio && n > 0) uio_prefaultpages(MIN(n, max_blksz), uio); #endif } zfs_range_unlock(rl); /* * If we're in replay mode, or we made no progress, return error. * Otherwise, it's at least a partial write, so it's successful. */ if (zfsvfs->z_replay || uio->uio_resid == start_resid) { ZFS_EXIT(zfsvfs); return (error); } #ifdef __FreeBSD__ /* * EFAULT means that at least one page of the source buffer was not * available. VFS will re-try remaining I/O upon this error. */ if (error == EFAULT) { ZFS_EXIT(zfsvfs); return (error); } #endif if (ioflag & (FSYNC | FDSYNC) || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, zp->z_id); ZFS_EXIT(zfsvfs); return (0); } void zfs_get_done(zgd_t *zgd, int error) { znode_t *zp = zgd->zgd_private; objset_t *os = zp->z_zfsvfs->z_os; if (zgd->zgd_db) dmu_buf_rele(zgd->zgd_db, zgd); zfs_range_unlock(zgd->zgd_rl); /* * Release the vnode asynchronously as we currently have the * txg stopped from syncing. */ VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); if (error == 0 && zgd->zgd_bp) zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); kmem_free(zgd, sizeof (zgd_t)); } #ifdef DEBUG static int zil_fault_io = 0; #endif /* * Get data to generate a TX_WRITE intent log record. */ int zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio) { zfsvfs_t *zfsvfs = arg; objset_t *os = zfsvfs->z_os; znode_t *zp; uint64_t object = lr->lr_foid; uint64_t offset = lr->lr_offset; uint64_t size = lr->lr_length; dmu_buf_t *db; zgd_t *zgd; int error = 0; ASSERT3P(lwb, !=, NULL); ASSERT3P(zio, !=, NULL); ASSERT3U(size, !=, 0); /* * Nothing to do if the file has been removed */ if (zfs_zget(zfsvfs, object, &zp) != 0) return (SET_ERROR(ENOENT)); if (zp->z_unlinked) { /* * Release the vnode asynchronously as we currently have the * txg stopped from syncing. */ VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); return (SET_ERROR(ENOENT)); } zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); zgd->zgd_lwb = lwb; zgd->zgd_private = zp; /* * Write records come in two flavors: immediate and indirect. * For small writes it's cheaper to store the data with the * log record (immediate); for large writes it's cheaper to * sync the data and get a pointer to it (indirect) so that * we don't have to write the data twice. */ if (buf != NULL) { /* immediate write */ zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); /* test for truncation needs to be done while range locked */ if (offset >= zp->z_size) { error = SET_ERROR(ENOENT); } else { error = dmu_read(os, object, offset, size, buf, DMU_READ_NO_PREFETCH); } ASSERT(error == 0 || error == ENOENT); } else { /* indirect write */ /* * Have to lock the whole block to ensure when it's * written out and its checksum is being calculated * that no one can change the data. We need to re-check * blocksize after we get the lock in case it's changed! */ for (;;) { uint64_t blkoff; size = zp->z_blksz; blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; offset -= blkoff; zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); if (zp->z_blksz == size) break; offset += blkoff; zfs_range_unlock(zgd->zgd_rl); } /* test for truncation needs to be done while range locked */ if (lr->lr_offset >= zp->z_size) error = SET_ERROR(ENOENT); #ifdef DEBUG if (zil_fault_io) { error = SET_ERROR(EIO); zil_fault_io = 0; } #endif if (error == 0) error = dmu_buf_hold(os, object, offset, zgd, &db, DMU_READ_NO_PREFETCH); if (error == 0) { blkptr_t *bp = &lr->lr_blkptr; zgd->zgd_db = db; zgd->zgd_bp = bp; ASSERT(db->db_offset == offset); ASSERT(db->db_size == size); error = dmu_sync(zio, lr->lr_common.lrc_txg, zfs_get_done, zgd); ASSERT(error || lr->lr_length <= size); /* * On success, we need to wait for the write I/O * initiated by dmu_sync() to complete before we can * release this dbuf. We will finish everything up * in the zfs_get_done() callback. */ if (error == 0) return (0); if (error == EALREADY) { lr->lr_common.lrc_txtype = TX_WRITE2; error = 0; } } } zfs_get_done(zgd, error); return (error); } /*ARGSUSED*/ static int zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; int error; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); if (flag & V_ACE_MASK) error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); else error = zfs_zaccess_rwx(zp, mode, flag, cr); ZFS_EXIT(zfsvfs); return (error); } static int zfs_dd_callback(struct mount *mp, void *arg, int lkflags, struct vnode **vpp) { int error; *vpp = arg; error = vn_lock(*vpp, lkflags); if (error != 0) vrele(*vpp); return (error); } static int zfs_lookup_lock(vnode_t *dvp, vnode_t *vp, const char *name, int lkflags) { znode_t *zdp = VTOZ(dvp); zfsvfs_t *zfsvfs = zdp->z_zfsvfs; int error; int ltype; ASSERT_VOP_LOCKED(dvp, __func__); #ifdef DIAGNOSTIC if ((zdp->z_pflags & ZFS_XATTR) == 0) VERIFY(!RRM_LOCK_HELD(&zfsvfs->z_teardown_lock)); #endif if (name[0] == 0 || (name[0] == '.' && name[1] == 0)) { ASSERT3P(dvp, ==, vp); vref(dvp); ltype = lkflags & LK_TYPE_MASK; if (ltype != VOP_ISLOCKED(dvp)) { if (ltype == LK_EXCLUSIVE) vn_lock(dvp, LK_UPGRADE | LK_RETRY); else /* if (ltype == LK_SHARED) */ vn_lock(dvp, LK_DOWNGRADE | LK_RETRY); /* * Relock for the "." case could leave us with * reclaimed vnode. */ if (dvp->v_iflag & VI_DOOMED) { vrele(dvp); return (SET_ERROR(ENOENT)); } } return (0); } else if (name[0] == '.' && name[1] == '.' && name[2] == 0) { /* * Note that in this case, dvp is the child vnode, and we * are looking up the parent vnode - exactly reverse from * normal operation. Unlocking dvp requires some rather * tricky unlock/relock dance to prevent mp from being freed; * use vn_vget_ino_gen() which takes care of all that. * * XXX Note that there is a time window when both vnodes are * unlocked. It is possible, although highly unlikely, that * during that window the parent-child relationship between * the vnodes may change, for example, get reversed. * In that case we would have a wrong lock order for the vnodes. * All other filesystems seem to ignore this problem, so we * do the same here. * A potential solution could be implemented as follows: * - using LK_NOWAIT when locking the second vnode and retrying * if necessary * - checking that the parent-child relationship still holds * after locking both vnodes and retrying if it doesn't */ error = vn_vget_ino_gen(dvp, zfs_dd_callback, vp, lkflags, &vp); return (error); } else { error = vn_lock(vp, lkflags); if (error != 0) vrele(vp); return (error); } } /* * Lookup an entry in a directory, or an extended attribute directory. * If it exists, return a held vnode reference for it. * * IN: dvp - vnode of directory to search. * nm - name of entry to lookup. * pnp - full pathname to lookup [UNUSED]. * flags - LOOKUP_XATTR set if looking for an attribute. * rdir - root directory vnode [UNUSED]. * cr - credentials of caller. * ct - caller context * * OUT: vpp - vnode of located entry, NULL if not found. * * RETURN: 0 on success, error code on failure. * * Timestamps: * NA */ /* ARGSUSED */ static int zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct componentname *cnp, int nameiop, cred_t *cr, kthread_t *td, int flags) { znode_t *zdp = VTOZ(dvp); znode_t *zp; zfsvfs_t *zfsvfs = zdp->z_zfsvfs; int error = 0; /* * Fast path lookup, however we must skip DNLC lookup * for case folding or normalizing lookups because the * DNLC code only stores the passed in name. This means * creating 'a' and removing 'A' on a case insensitive * file system would work, but DNLC still thinks 'a' * exists and won't let you create it again on the next * pass through fast path. */ if (!(flags & LOOKUP_XATTR)) { if (dvp->v_type != VDIR) { return (SET_ERROR(ENOTDIR)); } else if (zdp->z_sa_hdl == NULL) { return (SET_ERROR(EIO)); } } DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zdp); *vpp = NULL; if (flags & LOOKUP_XATTR) { #ifdef TODO /* * If the xattr property is off, refuse the lookup request. */ if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EINVAL)); } #endif /* * We don't allow recursive attributes.. * Maybe someday we will. */ if (zdp->z_pflags & ZFS_XATTR) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EINVAL)); } if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { ZFS_EXIT(zfsvfs); return (error); } /* * Do we have permission to get into attribute directory? */ if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, B_FALSE, cr)) { vrele(*vpp); *vpp = NULL; } ZFS_EXIT(zfsvfs); return (error); } /* * Check accessibility of directory. */ if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { ZFS_EXIT(zfsvfs); return (error); } if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EILSEQ)); } /* * First handle the special cases. */ if ((cnp->cn_flags & ISDOTDOT) != 0) { /* * If we are a snapshot mounted under .zfs, return * the vp for the snapshot directory. */ if (zdp->z_id == zfsvfs->z_root && zfsvfs->z_parent != zfsvfs) { struct componentname cn; vnode_t *zfsctl_vp; int ltype; ZFS_EXIT(zfsvfs); ltype = VOP_ISLOCKED(dvp); VOP_UNLOCK(dvp, 0); error = zfsctl_root(zfsvfs->z_parent, LK_SHARED, &zfsctl_vp); if (error == 0) { cn.cn_nameptr = "snapshot"; cn.cn_namelen = strlen(cn.cn_nameptr); cn.cn_nameiop = cnp->cn_nameiop; cn.cn_flags = cnp->cn_flags & ~ISDOTDOT; cn.cn_lkflags = cnp->cn_lkflags; error = VOP_LOOKUP(zfsctl_vp, vpp, &cn); vput(zfsctl_vp); } vn_lock(dvp, ltype | LK_RETRY); return (error); } } if (zfs_has_ctldir(zdp) && strcmp(nm, ZFS_CTLDIR_NAME) == 0) { ZFS_EXIT(zfsvfs); if ((cnp->cn_flags & ISLASTCN) != 0 && nameiop != LOOKUP) return (SET_ERROR(ENOTSUP)); error = zfsctl_root(zfsvfs, cnp->cn_lkflags, vpp); return (error); } /* * The loop is retry the lookup if the parent-child relationship * changes during the dot-dot locking complexities. */ for (;;) { uint64_t parent; error = zfs_dirlook(zdp, nm, &zp); if (error == 0) *vpp = ZTOV(zp); ZFS_EXIT(zfsvfs); if (error != 0) break; error = zfs_lookup_lock(dvp, *vpp, nm, cnp->cn_lkflags); if (error != 0) { /* * If we've got a locking error, then the vnode * got reclaimed because of a force unmount. * We never enter doomed vnodes into the name cache. */ *vpp = NULL; return (error); } if ((cnp->cn_flags & ISDOTDOT) == 0) break; ZFS_ENTER(zfsvfs); if (zdp->z_sa_hdl == NULL) { error = SET_ERROR(EIO); } else { error = sa_lookup(zdp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), &parent, sizeof (parent)); } if (error != 0) { ZFS_EXIT(zfsvfs); vput(ZTOV(zp)); break; } if (zp->z_id == parent) { ZFS_EXIT(zfsvfs); break; } vput(ZTOV(zp)); } out: if (error != 0) *vpp = NULL; /* Translate errors and add SAVENAME when needed. */ if (cnp->cn_flags & ISLASTCN) { switch (nameiop) { case CREATE: case RENAME: if (error == ENOENT) { error = EJUSTRETURN; cnp->cn_flags |= SAVENAME; break; } /* FALLTHROUGH */ case DELETE: if (error == 0) cnp->cn_flags |= SAVENAME; break; } } /* Insert name into cache (as non-existent) if appropriate. */ if (zfsvfs->z_use_namecache && error == ENOENT && (cnp->cn_flags & MAKEENTRY) != 0) cache_enter(dvp, NULL, cnp); /* Insert name into cache if appropriate. */ if (zfsvfs->z_use_namecache && error == 0 && (cnp->cn_flags & MAKEENTRY)) { if (!(cnp->cn_flags & ISLASTCN) || (nameiop != DELETE && nameiop != RENAME)) { cache_enter(dvp, *vpp, cnp); } } return (error); } /* * Attempt to create a new entry in a directory. If the entry * already exists, truncate the file if permissible, else return * an error. Return the vp of the created or trunc'd file. * * IN: dvp - vnode of directory to put new file entry in. * name - name of new file entry. * vap - attributes of new file. * excl - flag indicating exclusive or non-exclusive mode. * mode - mode to open file with. * cr - credentials of caller. * flag - large file flag [UNUSED]. * ct - caller context * vsecp - ACL to be set * * OUT: vpp - vnode of created or trunc'd entry. * * RETURN: 0 on success, error code on failure. * * Timestamps: * dvp - ctime|mtime updated if new entry created * vp - ctime|mtime always, atime if new */ /* ARGSUSED */ static int zfs_create(vnode_t *dvp, char *name, vattr_t *vap, int excl, int mode, vnode_t **vpp, cred_t *cr, kthread_t *td) { znode_t *zp, *dzp = VTOZ(dvp); zfsvfs_t *zfsvfs = dzp->z_zfsvfs; zilog_t *zilog; objset_t *os; dmu_tx_t *tx; int error; ksid_t *ksid; uid_t uid; gid_t gid = crgetgid(cr); zfs_acl_ids_t acl_ids; boolean_t fuid_dirtied; void *vsecp = NULL; int flag = 0; uint64_t txtype; /* * If we have an ephemeral id, ACL, or XVATTR then * make sure file system is at proper version */ ksid = crgetsid(cr, KSID_OWNER); if (ksid) uid = ksid_getid(ksid); else uid = crgetuid(cr); if (zfsvfs->z_use_fuids == B_FALSE && (vsecp || (vap->va_mask & AT_XVATTR) || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) return (SET_ERROR(EINVAL)); ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(dzp); os = zfsvfs->z_os; zilog = zfsvfs->z_log; if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EILSEQ)); } if (vap->va_mask & AT_XVATTR) { if ((error = secpolicy_xvattr(dvp, (xvattr_t *)vap, crgetuid(cr), cr, vap->va_type)) != 0) { ZFS_EXIT(zfsvfs); return (error); } } *vpp = NULL; if ((vap->va_mode & S_ISVTX) && secpolicy_vnode_stky_modify(cr)) vap->va_mode &= ~S_ISVTX; error = zfs_dirent_lookup(dzp, name, &zp, ZNEW); if (error) { ZFS_EXIT(zfsvfs); return (error); } ASSERT3P(zp, ==, NULL); /* * Create a new file object and update the directory * to reference it. */ if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { goto out; } /* * We only support the creation of regular files in * extended attribute directories. */ if ((dzp->z_pflags & ZFS_XATTR) && (vap->va_type != VREG)) { error = SET_ERROR(EINVAL); goto out; } if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, &acl_ids)) != 0) goto out; if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { zfs_acl_ids_free(&acl_ids); error = SET_ERROR(EDQUOT); goto out; } getnewvnode_reserve(1); tx = dmu_tx_create(os); dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + ZFS_SA_BASE_ATTR_SIZE); fuid_dirtied = zfsvfs->z_fuid_dirty; if (fuid_dirtied) zfs_fuid_txhold(zfsvfs, tx); dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, acl_ids.z_aclp->z_acl_bytes); } error = dmu_tx_assign(tx, TXG_WAIT); if (error) { zfs_acl_ids_free(&acl_ids); dmu_tx_abort(tx); getnewvnode_drop_reserve(); ZFS_EXIT(zfsvfs); return (error); } zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); if (fuid_dirtied) zfs_fuid_sync(zfsvfs, tx); (void) zfs_link_create(dzp, name, zp, tx, ZNEW); txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); zfs_log_create(zilog, tx, txtype, dzp, zp, name, vsecp, acl_ids.z_fuidp, vap); zfs_acl_ids_free(&acl_ids); dmu_tx_commit(tx); getnewvnode_drop_reserve(); out: if (error == 0) { *vpp = ZTOV(zp); } if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); ZFS_EXIT(zfsvfs); return (error); } /* * Remove an entry from a directory. * * IN: dvp - vnode of directory to remove entry from. * name - name of entry to remove. * cr - credentials of caller. * ct - caller context * flags - case flags * * RETURN: 0 on success, error code on failure. * * Timestamps: * dvp - ctime|mtime * vp - ctime (if nlink > 0) */ /*ARGSUSED*/ static int zfs_remove(vnode_t *dvp, vnode_t *vp, char *name, cred_t *cr) { znode_t *dzp = VTOZ(dvp); znode_t *zp = VTOZ(vp); znode_t *xzp; zfsvfs_t *zfsvfs = dzp->z_zfsvfs; zilog_t *zilog; uint64_t acl_obj, xattr_obj; uint64_t obj = 0; dmu_tx_t *tx; boolean_t unlinked, toobig = FALSE; uint64_t txtype; int error; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(dzp); ZFS_VERIFY_ZP(zp); zilog = zfsvfs->z_log; zp = VTOZ(vp); xattr_obj = 0; xzp = NULL; if (error = zfs_zaccess_delete(dzp, zp, cr)) { goto out; } /* * Need to use rmdir for removing directories. */ if (vp->v_type == VDIR) { error = SET_ERROR(EPERM); goto out; } vnevent_remove(vp, dvp, name, ct); obj = zp->z_id; /* are there any extended attributes? */ error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xattr_obj, sizeof (xattr_obj)); if (error == 0 && xattr_obj) { error = zfs_zget(zfsvfs, xattr_obj, &xzp); ASSERT0(error); } /* * We may delete the znode now, or we may put it in the unlinked set; * it depends on whether we're the last link, and on whether there are * other holds on the vnode. So we dmu_tx_hold() the right things to * allow for either case. */ tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); zfs_sa_upgrade_txholds(tx, dzp); if (xzp) { dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); } /* charge as an update -- would be nice not to charge at all */ dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); /* * Mark this transaction as typically resulting in a net free of space */ dmu_tx_mark_netfree(tx); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); ZFS_EXIT(zfsvfs); return (error); } /* * Remove the directory entry. */ error = zfs_link_destroy(dzp, name, zp, tx, ZEXISTS, &unlinked); if (error) { dmu_tx_commit(tx); goto out; } if (unlinked) { zfs_unlinked_add(zp, tx); vp->v_vflag |= VV_NOSYNC; } txtype = TX_REMOVE; zfs_log_remove(zilog, tx, txtype, dzp, name, obj); dmu_tx_commit(tx); out: if (xzp) vrele(ZTOV(xzp)); if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); ZFS_EXIT(zfsvfs); return (error); } /* * Create a new directory and insert it into dvp using the name * provided. Return a pointer to the inserted directory. * * IN: dvp - vnode of directory to add subdir to. * dirname - name of new directory. * vap - attributes of new directory. * cr - credentials of caller. * ct - caller context * flags - case flags * vsecp - ACL to be set * * OUT: vpp - vnode of created directory. * * RETURN: 0 on success, error code on failure. * * Timestamps: * dvp - ctime|mtime updated * vp - ctime|mtime|atime updated */ /*ARGSUSED*/ static int zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr) { znode_t *zp, *dzp = VTOZ(dvp); zfsvfs_t *zfsvfs = dzp->z_zfsvfs; zilog_t *zilog; uint64_t txtype; dmu_tx_t *tx; int error; ksid_t *ksid; uid_t uid; gid_t gid = crgetgid(cr); zfs_acl_ids_t acl_ids; boolean_t fuid_dirtied; ASSERT(vap->va_type == VDIR); /* * If we have an ephemeral id, ACL, or XVATTR then * make sure file system is at proper version */ ksid = crgetsid(cr, KSID_OWNER); if (ksid) uid = ksid_getid(ksid); else uid = crgetuid(cr); if (zfsvfs->z_use_fuids == B_FALSE && ((vap->va_mask & AT_XVATTR) || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) return (SET_ERROR(EINVAL)); ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(dzp); zilog = zfsvfs->z_log; if (dzp->z_pflags & ZFS_XATTR) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EINVAL)); } if (zfsvfs->z_utf8 && u8_validate(dirname, strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EILSEQ)); } if (vap->va_mask & AT_XVATTR) { if ((error = secpolicy_xvattr(dvp, (xvattr_t *)vap, crgetuid(cr), cr, vap->va_type)) != 0) { ZFS_EXIT(zfsvfs); return (error); } } if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, NULL, &acl_ids)) != 0) { ZFS_EXIT(zfsvfs); return (error); } /* * First make sure the new directory doesn't exist. * * Existence is checked first to make sure we don't return * EACCES instead of EEXIST which can cause some applications * to fail. */ *vpp = NULL; if (error = zfs_dirent_lookup(dzp, dirname, &zp, ZNEW)) { zfs_acl_ids_free(&acl_ids); ZFS_EXIT(zfsvfs); return (error); } ASSERT3P(zp, ==, NULL); if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { zfs_acl_ids_free(&acl_ids); ZFS_EXIT(zfsvfs); return (error); } if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { zfs_acl_ids_free(&acl_ids); ZFS_EXIT(zfsvfs); return (SET_ERROR(EDQUOT)); } /* * Add a new entry to the directory. */ getnewvnode_reserve(1); tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); fuid_dirtied = zfsvfs->z_fuid_dirty; if (fuid_dirtied) zfs_fuid_txhold(zfsvfs, tx); if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, acl_ids.z_aclp->z_acl_bytes); } dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + ZFS_SA_BASE_ATTR_SIZE); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { zfs_acl_ids_free(&acl_ids); dmu_tx_abort(tx); getnewvnode_drop_reserve(); ZFS_EXIT(zfsvfs); return (error); } /* * Create new node. */ zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); if (fuid_dirtied) zfs_fuid_sync(zfsvfs, tx); /* * Now put new name in parent dir. */ (void) zfs_link_create(dzp, dirname, zp, tx, ZNEW); *vpp = ZTOV(zp); txtype = zfs_log_create_txtype(Z_DIR, NULL, vap); zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, NULL, acl_ids.z_fuidp, vap); zfs_acl_ids_free(&acl_ids); dmu_tx_commit(tx); getnewvnode_drop_reserve(); if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); ZFS_EXIT(zfsvfs); return (0); } /* * Remove a directory subdir entry. If the current working * directory is the same as the subdir to be removed, the * remove will fail. * * IN: dvp - vnode of directory to remove from. * name - name of directory to be removed. * cwd - vnode of current working directory. * cr - credentials of caller. * ct - caller context * flags - case flags * * RETURN: 0 on success, error code on failure. * * Timestamps: * dvp - ctime|mtime updated */ /*ARGSUSED*/ static int zfs_rmdir(vnode_t *dvp, vnode_t *vp, char *name, cred_t *cr) { znode_t *dzp = VTOZ(dvp); znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = dzp->z_zfsvfs; zilog_t *zilog; dmu_tx_t *tx; int error; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(dzp); ZFS_VERIFY_ZP(zp); zilog = zfsvfs->z_log; if (error = zfs_zaccess_delete(dzp, zp, cr)) { goto out; } if (vp->v_type != VDIR) { error = SET_ERROR(ENOTDIR); goto out; } vnevent_rmdir(vp, dvp, name, ct); tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); zfs_sa_upgrade_txholds(tx, zp); zfs_sa_upgrade_txholds(tx, dzp); dmu_tx_mark_netfree(tx); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); ZFS_EXIT(zfsvfs); return (error); } cache_purge(dvp); error = zfs_link_destroy(dzp, name, zp, tx, ZEXISTS, NULL); if (error == 0) { uint64_t txtype = TX_RMDIR; zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); } dmu_tx_commit(tx); cache_purge(vp); out: if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); ZFS_EXIT(zfsvfs); return (error); } /* * Read as many directory entries as will fit into the provided * buffer from the given directory cursor position (specified in * the uio structure). * * IN: vp - vnode of directory to read. * uio - structure supplying read location, range info, * and return buffer. * cr - credentials of caller. * ct - caller context * flags - case flags * * OUT: uio - updated offset and range, buffer filled. * eofp - set to true if end-of-file detected. * * RETURN: 0 on success, error code on failure. * * Timestamps: * vp - atime updated * * Note that the low 4 bits of the cookie returned by zap is always zero. * This allows us to use the low range for "special" directory entries: * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, * we use the offset 2 for the '.zfs' directory. */ /* ARGSUSED */ static int zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, int *ncookies, u_long **cookies) { znode_t *zp = VTOZ(vp); iovec_t *iovp; edirent_t *eodp; dirent64_t *odp; zfsvfs_t *zfsvfs = zp->z_zfsvfs; objset_t *os; caddr_t outbuf; size_t bufsize; zap_cursor_t zc; zap_attribute_t zap; uint_t bytes_wanted; uint64_t offset; /* must be unsigned; checks for < 1 */ uint64_t parent; int local_eof; int outcount; int error; uint8_t prefetch; boolean_t check_sysattrs; uint8_t type; int ncooks; u_long *cooks = NULL; int flags = 0; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), &parent, sizeof (parent))) != 0) { ZFS_EXIT(zfsvfs); return (error); } /* * If we are not given an eof variable, * use a local one. */ if (eofp == NULL) eofp = &local_eof; /* * Check for valid iov_len. */ if (uio->uio_iov->iov_len <= 0) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EINVAL)); } /* * Quit if directory has been removed (posix) */ if ((*eofp = zp->z_unlinked) != 0) { ZFS_EXIT(zfsvfs); return (0); } error = 0; os = zfsvfs->z_os; offset = uio->uio_loffset; prefetch = zp->z_zn_prefetch; /* * Initialize the iterator cursor. */ if (offset <= 3) { /* * Start iteration from the beginning of the directory. */ zap_cursor_init(&zc, os, zp->z_id); } else { /* * The offset is a serialized cursor. */ zap_cursor_init_serialized(&zc, os, zp->z_id, offset); } /* * Get space to change directory entries into fs independent format. */ iovp = uio->uio_iov; bytes_wanted = iovp->iov_len; if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { bufsize = bytes_wanted; outbuf = kmem_alloc(bufsize, KM_SLEEP); odp = (struct dirent64 *)outbuf; } else { bufsize = bytes_wanted; outbuf = NULL; odp = (struct dirent64 *)iovp->iov_base; } eodp = (struct edirent *)odp; if (ncookies != NULL) { /* * Minimum entry size is dirent size and 1 byte for a file name. */ ncooks = uio->uio_resid / (sizeof(struct dirent) - sizeof(((struct dirent *)NULL)->d_name) + 1); cooks = malloc(ncooks * sizeof(u_long), M_TEMP, M_WAITOK); *cookies = cooks; *ncookies = ncooks; } /* * If this VFS supports the system attribute view interface; and * we're looking at an extended attribute directory; and we care * about normalization conflicts on this vfs; then we must check * for normalization conflicts with the sysattr name space. */ #ifdef TODO check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && (flags & V_RDDIR_ENTFLAGS); #else check_sysattrs = 0; #endif /* * Transform to file-system independent format */ outcount = 0; while (outcount < bytes_wanted) { ino64_t objnum; ushort_t reclen; off64_t *next = NULL; /* * Special case `.', `..', and `.zfs'. */ if (offset == 0) { (void) strcpy(zap.za_name, "."); zap.za_normalization_conflict = 0; objnum = zp->z_id; type = DT_DIR; } else if (offset == 1) { (void) strcpy(zap.za_name, ".."); zap.za_normalization_conflict = 0; objnum = parent; type = DT_DIR; } else if (offset == 2 && zfs_show_ctldir(zp)) { (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); zap.za_normalization_conflict = 0; objnum = ZFSCTL_INO_ROOT; type = DT_DIR; } else { /* * Grab next entry. */ if (error = zap_cursor_retrieve(&zc, &zap)) { if ((*eofp = (error == ENOENT)) != 0) break; else goto update; } if (zap.za_integer_length != 8 || zap.za_num_integers != 1) { cmn_err(CE_WARN, "zap_readdir: bad directory " "entry, obj = %lld, offset = %lld\n", (u_longlong_t)zp->z_id, (u_longlong_t)offset); error = SET_ERROR(ENXIO); goto update; } objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); /* * MacOS X can extract the object type here such as: * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); */ type = ZFS_DIRENT_TYPE(zap.za_first_integer); if (check_sysattrs && !zap.za_normalization_conflict) { #ifdef TODO zap.za_normalization_conflict = xattr_sysattr_casechk(zap.za_name); #else panic("%s:%u: TODO", __func__, __LINE__); #endif } } if (flags & V_RDDIR_ACCFILTER) { /* * If we have no access at all, don't include * this entry in the returned information */ znode_t *ezp; if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) goto skip_entry; if (!zfs_has_access(ezp, cr)) { vrele(ZTOV(ezp)); goto skip_entry; } vrele(ZTOV(ezp)); } if (flags & V_RDDIR_ENTFLAGS) reclen = EDIRENT_RECLEN(strlen(zap.za_name)); else reclen = DIRENT64_RECLEN(strlen(zap.za_name)); /* * Will this entry fit in the buffer? */ if (outcount + reclen > bufsize) { /* * Did we manage to fit anything in the buffer? */ if (!outcount) { error = SET_ERROR(EINVAL); goto update; } break; } if (flags & V_RDDIR_ENTFLAGS) { /* * Add extended flag entry: */ eodp->ed_ino = objnum; eodp->ed_reclen = reclen; /* NOTE: ed_off is the offset for the *next* entry */ next = &(eodp->ed_off); eodp->ed_eflags = zap.za_normalization_conflict ? ED_CASE_CONFLICT : 0; (void) strncpy(eodp->ed_name, zap.za_name, EDIRENT_NAMELEN(reclen)); eodp = (edirent_t *)((intptr_t)eodp + reclen); } else { /* * Add normal entry: */ odp->d_ino = objnum; odp->d_reclen = reclen; odp->d_namlen = strlen(zap.za_name); (void) strlcpy(odp->d_name, zap.za_name, odp->d_namlen + 1); odp->d_type = type; odp = (dirent64_t *)((intptr_t)odp + reclen); } outcount += reclen; ASSERT(outcount <= bufsize); /* Prefetch znode */ if (prefetch) dmu_prefetch(os, objnum, 0, 0, 0, ZIO_PRIORITY_SYNC_READ); skip_entry: /* * Move to the next entry, fill in the previous offset. */ if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { zap_cursor_advance(&zc); offset = zap_cursor_serialize(&zc); } else { offset += 1; } if (cooks != NULL) { *cooks++ = offset; ncooks--; KASSERT(ncooks >= 0, ("ncookies=%d", ncooks)); } } zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ /* Subtract unused cookies */ if (ncookies != NULL) *ncookies -= ncooks; if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { iovp->iov_base += outcount; iovp->iov_len -= outcount; uio->uio_resid -= outcount; } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { /* * Reset the pointer. */ offset = uio->uio_loffset; } update: zap_cursor_fini(&zc); if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) kmem_free(outbuf, bufsize); if (error == ENOENT) error = 0; ZFS_ACCESSTIME_STAMP(zfsvfs, zp); uio->uio_loffset = offset; ZFS_EXIT(zfsvfs); if (error != 0 && cookies != NULL) { free(*cookies, M_TEMP); *cookies = NULL; *ncookies = 0; } return (error); } ulong_t zfs_fsync_sync_cnt = 4; static int zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); zil_commit(zfsvfs->z_log, zp->z_id); ZFS_EXIT(zfsvfs); } return (0); } /* * Get the requested file attributes and place them in the provided * vattr structure. * * IN: vp - vnode of file. * vap - va_mask identifies requested attributes. * If AT_XVATTR set, then optional attrs are requested * flags - ATTR_NOACLCHECK (CIFS server context) * cr - credentials of caller. * ct - caller context * * OUT: vap - attribute values. * * RETURN: 0 (always succeeds). */ /* ARGSUSED */ static int zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; int error = 0; uint32_t blksize; u_longlong_t nblocks; uint64_t mtime[2], ctime[2], crtime[2], rdev; xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ xoptattr_t *xoap = NULL; boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; sa_bulk_attr_t bulk[4]; int count = 0; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &crtime, 16); if (vp->v_type == VBLK || vp->v_type == VCHR) SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_RDEV(zfsvfs), NULL, &rdev, 8); if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { ZFS_EXIT(zfsvfs); return (error); } /* * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. * Also, if we are the owner don't bother, since owner should * always be allowed to read basic attributes of file. */ if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && (vap->va_uid != crgetuid(cr))) { if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, skipaclchk, cr)) { ZFS_EXIT(zfsvfs); return (error); } } /* * Return all attributes. It's cheaper to provide the answer * than to determine whether we were asked the question. */ vap->va_type = IFTOVT(zp->z_mode); vap->va_mode = zp->z_mode & ~S_IFMT; #ifdef illumos vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; #else vn_fsid(vp, vap); #endif vap->va_nodeid = zp->z_id; vap->va_nlink = zp->z_links; if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp) && zp->z_links < ZFS_LINK_MAX) vap->va_nlink++; vap->va_size = zp->z_size; #ifdef illumos vap->va_rdev = vp->v_rdev; #else if (vp->v_type == VBLK || vp->v_type == VCHR) vap->va_rdev = zfs_cmpldev(rdev); #endif vap->va_seq = zp->z_seq; vap->va_flags = 0; /* FreeBSD: Reset chflags(2) flags. */ vap->va_filerev = zp->z_seq; /* * Add in any requested optional attributes and the create time. * Also set the corresponding bits in the returned attribute bitmap. */ if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { xoap->xoa_archive = ((zp->z_pflags & ZFS_ARCHIVE) != 0); XVA_SET_RTN(xvap, XAT_ARCHIVE); } if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { xoap->xoa_readonly = ((zp->z_pflags & ZFS_READONLY) != 0); XVA_SET_RTN(xvap, XAT_READONLY); } if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { xoap->xoa_system = ((zp->z_pflags & ZFS_SYSTEM) != 0); XVA_SET_RTN(xvap, XAT_SYSTEM); } if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { xoap->xoa_hidden = ((zp->z_pflags & ZFS_HIDDEN) != 0); XVA_SET_RTN(xvap, XAT_HIDDEN); } if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { xoap->xoa_nounlink = ((zp->z_pflags & ZFS_NOUNLINK) != 0); XVA_SET_RTN(xvap, XAT_NOUNLINK); } if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { xoap->xoa_immutable = ((zp->z_pflags & ZFS_IMMUTABLE) != 0); XVA_SET_RTN(xvap, XAT_IMMUTABLE); } if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { xoap->xoa_appendonly = ((zp->z_pflags & ZFS_APPENDONLY) != 0); XVA_SET_RTN(xvap, XAT_APPENDONLY); } if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { xoap->xoa_nodump = ((zp->z_pflags & ZFS_NODUMP) != 0); XVA_SET_RTN(xvap, XAT_NODUMP); } if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { xoap->xoa_opaque = ((zp->z_pflags & ZFS_OPAQUE) != 0); XVA_SET_RTN(xvap, XAT_OPAQUE); } if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { xoap->xoa_av_quarantined = ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); } if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { xoap->xoa_av_modified = ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); XVA_SET_RTN(xvap, XAT_AV_MODIFIED); } if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && vp->v_type == VREG) { zfs_sa_get_scanstamp(zp, xvap); } if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); XVA_SET_RTN(xvap, XAT_REPARSE); } if (XVA_ISSET_REQ(xvap, XAT_GEN)) { xoap->xoa_generation = zp->z_gen; XVA_SET_RTN(xvap, XAT_GEN); } if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { xoap->xoa_offline = ((zp->z_pflags & ZFS_OFFLINE) != 0); XVA_SET_RTN(xvap, XAT_OFFLINE); } if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { xoap->xoa_sparse = ((zp->z_pflags & ZFS_SPARSE) != 0); XVA_SET_RTN(xvap, XAT_SPARSE); } } ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); ZFS_TIME_DECODE(&vap->va_mtime, mtime); ZFS_TIME_DECODE(&vap->va_ctime, ctime); ZFS_TIME_DECODE(&vap->va_birthtime, crtime); sa_object_size(zp->z_sa_hdl, &blksize, &nblocks); vap->va_blksize = blksize; vap->va_bytes = nblocks << 9; /* nblocks * 512 */ if (zp->z_blksz == 0) { /* * Block size hasn't been set; suggest maximal I/O transfers. */ vap->va_blksize = zfsvfs->z_max_blksz; } ZFS_EXIT(zfsvfs); return (0); } /* * Set the file attributes to the values contained in the * vattr structure. * * IN: vp - vnode of file to be modified. * vap - new attribute values. * If AT_XVATTR set, then optional attrs are being set * flags - ATTR_UTIME set if non-default time values provided. * - ATTR_NOACLCHECK (CIFS context only). * cr - credentials of caller. * ct - caller context * * RETURN: 0 on success, error code on failure. * * Timestamps: * vp - ctime updated, mtime updated if size changed. */ /* ARGSUSED */ static int zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; zilog_t *zilog; dmu_tx_t *tx; vattr_t oldva; xvattr_t tmpxvattr; uint_t mask = vap->va_mask; uint_t saved_mask = 0; uint64_t saved_mode; int trim_mask = 0; uint64_t new_mode; uint64_t new_uid, new_gid; uint64_t xattr_obj; uint64_t mtime[2], ctime[2]; znode_t *attrzp; int need_policy = FALSE; int err, err2; zfs_fuid_info_t *fuidp = NULL; xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ xoptattr_t *xoap; zfs_acl_t *aclp; boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; boolean_t fuid_dirtied = B_FALSE; sa_bulk_attr_t bulk[7], xattr_bulk[7]; int count = 0, xattr_count = 0; if (mask == 0) return (0); if (mask & AT_NOSET) return (SET_ERROR(EINVAL)); ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); zilog = zfsvfs->z_log; /* * Make sure that if we have ephemeral uid/gid or xvattr specified * that file system is at proper version level */ if (zfsvfs->z_use_fuids == B_FALSE && (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || (mask & AT_XVATTR))) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EINVAL)); } if (mask & AT_SIZE && vp->v_type == VDIR) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EISDIR)); } if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EINVAL)); } /* * If this is an xvattr_t, then get a pointer to the structure of * optional attributes. If this is NULL, then we have a vattr_t. */ xoap = xva_getxoptattr(xvap); xva_init(&tmpxvattr); /* * Immutable files can only alter immutable bit and atime */ if ((zp->z_pflags & ZFS_IMMUTABLE) && ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EPERM)); } /* * Note: ZFS_READONLY is handled in zfs_zaccess_common. */ /* * Verify timestamps doesn't overflow 32 bits. * ZFS can handle large timestamps, but 32bit syscalls can't * handle times greater than 2039. This check should be removed * once large timestamps are fully supported. */ if (mask & (AT_ATIME | AT_MTIME)) { if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EOVERFLOW)); } } if (xoap && (mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME) && TIMESPEC_OVERFLOW(&vap->va_birthtime)) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EOVERFLOW)); } attrzp = NULL; aclp = NULL; /* Can this be moved to before the top label? */ if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EROFS)); } /* * First validate permissions */ if (mask & AT_SIZE) { /* * XXX - Note, we are not providing any open * mode flags here (like FNDELAY), so we may * block if there are locks present... this * should be addressed in openat(). */ /* XXX - would it be OK to generate a log record here? */ err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); if (err) { ZFS_EXIT(zfsvfs); return (err); } } if (mask & (AT_ATIME|AT_MTIME) || ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || XVA_ISSET_REQ(xvap, XAT_READONLY) || XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || XVA_ISSET_REQ(xvap, XAT_OFFLINE) || XVA_ISSET_REQ(xvap, XAT_SPARSE) || XVA_ISSET_REQ(xvap, XAT_CREATETIME) || XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, skipaclchk, cr); } if (mask & (AT_UID|AT_GID)) { int idmask = (mask & (AT_UID|AT_GID)); int take_owner; int take_group; /* * NOTE: even if a new mode is being set, * we may clear S_ISUID/S_ISGID bits. */ if (!(mask & AT_MODE)) vap->va_mode = zp->z_mode; /* * Take ownership or chgrp to group we are a member of */ take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); take_group = (mask & AT_GID) && zfs_groupmember(zfsvfs, vap->va_gid, cr); /* * If both AT_UID and AT_GID are set then take_owner and * take_group must both be set in order to allow taking * ownership. * * Otherwise, send the check through secpolicy_vnode_setattr() * */ if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || ((idmask == AT_UID) && take_owner) || ((idmask == AT_GID) && take_group)) { if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, skipaclchk, cr) == 0) { /* * Remove setuid/setgid for non-privileged users */ secpolicy_setid_clear(vap, vp, cr); trim_mask = (mask & (AT_UID|AT_GID)); } else { need_policy = TRUE; } } else { need_policy = TRUE; } } oldva.va_mode = zp->z_mode; zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); if (mask & AT_XVATTR) { /* * Update xvattr mask to include only those attributes * that are actually changing. * * the bits will be restored prior to actually setting * the attributes so the caller thinks they were set. */ if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { if (xoap->xoa_appendonly != ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_APPENDONLY); XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); } } if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { if (xoap->xoa_nounlink != ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_NOUNLINK); XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); } } if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { if (xoap->xoa_immutable != ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_IMMUTABLE); XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); } } if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { if (xoap->xoa_nodump != ((zp->z_pflags & ZFS_NODUMP) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_NODUMP); XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); } } if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { if (xoap->xoa_av_modified != ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); } } if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { if ((vp->v_type != VREG && xoap->xoa_av_quarantined) || xoap->xoa_av_quarantined != ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); } } if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EPERM)); } if (need_policy == FALSE && (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { need_policy = TRUE; } } if (mask & AT_MODE) { if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { err = secpolicy_setid_setsticky_clear(vp, vap, &oldva, cr); if (err) { ZFS_EXIT(zfsvfs); return (err); } trim_mask |= AT_MODE; } else { need_policy = TRUE; } } if (need_policy) { /* * If trim_mask is set then take ownership * has been granted or write_acl is present and user * has the ability to modify mode. In that case remove * UID|GID and or MODE from mask so that * secpolicy_vnode_setattr() doesn't revoke it. */ if (trim_mask) { saved_mask = vap->va_mask; vap->va_mask &= ~trim_mask; if (trim_mask & AT_MODE) { /* * Save the mode, as secpolicy_vnode_setattr() * will overwrite it with ova.va_mode. */ saved_mode = vap->va_mode; } } err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); if (err) { ZFS_EXIT(zfsvfs); return (err); } if (trim_mask) { vap->va_mask |= saved_mask; if (trim_mask & AT_MODE) { /* * Recover the mode after * secpolicy_vnode_setattr(). */ vap->va_mode = saved_mode; } } } /* * secpolicy_vnode_setattr, or take ownership may have * changed va_mask */ mask = vap->va_mask; if ((mask & (AT_UID | AT_GID))) { err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xattr_obj, sizeof (xattr_obj)); if (err == 0 && xattr_obj) { err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); if (err == 0) { err = vn_lock(ZTOV(attrzp), LK_EXCLUSIVE); if (err != 0) vrele(ZTOV(attrzp)); } if (err) goto out2; } if (mask & AT_UID) { new_uid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); if (new_uid != zp->z_uid && zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { if (attrzp) vput(ZTOV(attrzp)); err = SET_ERROR(EDQUOT); goto out2; } } if (mask & AT_GID) { new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp); if (new_gid != zp->z_gid && zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { if (attrzp) vput(ZTOV(attrzp)); err = SET_ERROR(EDQUOT); goto out2; } } } tx = dmu_tx_create(zfsvfs->z_os); if (mask & AT_MODE) { uint64_t pmode = zp->z_mode; uint64_t acl_obj; new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { err = SET_ERROR(EPERM); goto out; } if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) goto out; if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { /* * Are we upgrading ACL from old V0 format * to V1 format? */ if (zfsvfs->z_version >= ZPL_VERSION_FUID && zfs_znode_acl_version(zp) == ZFS_ACL_VERSION_INITIAL) { dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes); } else { dmu_tx_hold_write(tx, acl_obj, 0, aclp->z_acl_bytes); } } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes); } dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); } else { if ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); else dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); } if (attrzp) { dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); } fuid_dirtied = zfsvfs->z_fuid_dirty; if (fuid_dirtied) zfs_fuid_txhold(zfsvfs, tx); zfs_sa_upgrade_txholds(tx, zp); err = dmu_tx_assign(tx, TXG_WAIT); if (err) goto out; count = 0; /* * Set each attribute requested. * We group settings according to the locks they need to acquire. * * Note: you cannot set ctime directly, although it will be * updated as a side-effect of calling this function. */ if (mask & (AT_UID|AT_GID|AT_MODE)) mutex_enter(&zp->z_acl_lock); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, sizeof (zp->z_pflags)); if (attrzp) { if (mask & (AT_UID|AT_GID|AT_MODE)) mutex_enter(&attrzp->z_acl_lock); SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, sizeof (attrzp->z_pflags)); } if (mask & (AT_UID|AT_GID)) { if (mask & AT_UID) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &new_uid, sizeof (new_uid)); zp->z_uid = new_uid; if (attrzp) { SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, SA_ZPL_UID(zfsvfs), NULL, &new_uid, sizeof (new_uid)); attrzp->z_uid = new_uid; } } if (mask & AT_GID) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &new_gid, sizeof (new_gid)); zp->z_gid = new_gid; if (attrzp) { SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, SA_ZPL_GID(zfsvfs), NULL, &new_gid, sizeof (new_gid)); attrzp->z_gid = new_gid; } } if (!(mask & AT_MODE)) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &new_mode, sizeof (new_mode)); new_mode = zp->z_mode; } err = zfs_acl_chown_setattr(zp); ASSERT(err == 0); if (attrzp) { err = zfs_acl_chown_setattr(attrzp); ASSERT(err == 0); } } if (mask & AT_MODE) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &new_mode, sizeof (new_mode)); zp->z_mode = new_mode; ASSERT3U((uintptr_t)aclp, !=, 0); err = zfs_aclset_common(zp, aclp, cr, tx); ASSERT0(err); if (zp->z_acl_cached) zfs_acl_free(zp->z_acl_cached); zp->z_acl_cached = aclp; aclp = NULL; } if (mask & AT_ATIME) { ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &zp->z_atime, sizeof (zp->z_atime)); } if (mask & AT_MTIME) { ZFS_TIME_ENCODE(&vap->va_mtime, mtime); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, sizeof (mtime)); } /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ if (mask & AT_SIZE && !(mask & AT_MTIME)) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, sizeof (mtime)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, sizeof (ctime)); zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); } else if (mask != 0) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, sizeof (ctime)); zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, B_TRUE); if (attrzp) { SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, sizeof (ctime)); zfs_tstamp_update_setup(attrzp, STATE_CHANGED, mtime, ctime, B_TRUE); } } /* * Do this after setting timestamps to prevent timestamp * update from toggling bit */ if (xoap && (mask & AT_XVATTR)) { if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) xoap->xoa_createtime = vap->va_birthtime; /* * restore trimmed off masks * so that return masks can be set for caller. */ if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { XVA_SET_REQ(xvap, XAT_APPENDONLY); } if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { XVA_SET_REQ(xvap, XAT_NOUNLINK); } if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { XVA_SET_REQ(xvap, XAT_IMMUTABLE); } if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { XVA_SET_REQ(xvap, XAT_NODUMP); } if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { XVA_SET_REQ(xvap, XAT_AV_MODIFIED); } if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); } if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ASSERT(vp->v_type == VREG); zfs_xvattr_set(zp, xvap, tx); } if (fuid_dirtied) zfs_fuid_sync(zfsvfs, tx); if (mask != 0) zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); if (mask & (AT_UID|AT_GID|AT_MODE)) mutex_exit(&zp->z_acl_lock); if (attrzp) { if (mask & (AT_UID|AT_GID|AT_MODE)) mutex_exit(&attrzp->z_acl_lock); } out: if (err == 0 && attrzp) { err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, xattr_count, tx); ASSERT(err2 == 0); } if (attrzp) vput(ZTOV(attrzp)); if (aclp) zfs_acl_free(aclp); if (fuidp) { zfs_fuid_info_free(fuidp); fuidp = NULL; } if (err) { dmu_tx_abort(tx); } else { err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); dmu_tx_commit(tx); } out2: if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); ZFS_EXIT(zfsvfs); return (err); } /* * We acquire all but fdvp locks using non-blocking acquisitions. If we * fail to acquire any lock in the path we will drop all held locks, * acquire the new lock in a blocking fashion, and then release it and * restart the rename. This acquire/release step ensures that we do not * spin on a lock waiting for release. On error release all vnode locks * and decrement references the way tmpfs_rename() would do. */ static int zfs_rename_relock(struct vnode *sdvp, struct vnode **svpp, struct vnode *tdvp, struct vnode **tvpp, const struct componentname *scnp, const struct componentname *tcnp) { zfsvfs_t *zfsvfs; struct vnode *nvp, *svp, *tvp; znode_t *sdzp, *tdzp, *szp, *tzp; const char *snm = scnp->cn_nameptr; const char *tnm = tcnp->cn_nameptr; int error; VOP_UNLOCK(tdvp, 0); if (*tvpp != NULL && *tvpp != tdvp) VOP_UNLOCK(*tvpp, 0); relock: error = vn_lock(sdvp, LK_EXCLUSIVE); if (error) goto out; sdzp = VTOZ(sdvp); error = vn_lock(tdvp, LK_EXCLUSIVE | LK_NOWAIT); if (error != 0) { VOP_UNLOCK(sdvp, 0); if (error != EBUSY) goto out; error = vn_lock(tdvp, LK_EXCLUSIVE); if (error) goto out; VOP_UNLOCK(tdvp, 0); goto relock; } tdzp = VTOZ(tdvp); /* * Before using sdzp and tdzp we must ensure that they are live. * As a porting legacy from illumos we have two things to worry * about. One is typical for FreeBSD and it is that the vnode is * not reclaimed (doomed). The other is that the znode is live. * The current code can invalidate the znode without acquiring the * corresponding vnode lock if the object represented by the znode * and vnode is no longer valid after a rollback or receive operation. * z_teardown_lock hidden behind ZFS_ENTER and ZFS_EXIT is the lock * that protects the znodes from the invalidation. */ zfsvfs = sdzp->z_zfsvfs; ASSERT3P(zfsvfs, ==, tdzp->z_zfsvfs); ZFS_ENTER(zfsvfs); /* * We can not use ZFS_VERIFY_ZP() here because it could directly return * bypassing the cleanup code in the case of an error. */ if (tdzp->z_sa_hdl == NULL || sdzp->z_sa_hdl == NULL) { ZFS_EXIT(zfsvfs); VOP_UNLOCK(sdvp, 0); VOP_UNLOCK(tdvp, 0); error = SET_ERROR(EIO); goto out; } /* * Re-resolve svp to be certain it still exists and fetch the * correct vnode. */ error = zfs_dirent_lookup(sdzp, snm, &szp, ZEXISTS); if (error != 0) { /* Source entry invalid or not there. */ ZFS_EXIT(zfsvfs); VOP_UNLOCK(sdvp, 0); VOP_UNLOCK(tdvp, 0); if ((scnp->cn_flags & ISDOTDOT) != 0 || (scnp->cn_namelen == 1 && scnp->cn_nameptr[0] == '.')) error = SET_ERROR(EINVAL); goto out; } svp = ZTOV(szp); /* * Re-resolve tvp, if it disappeared we just carry on. */ error = zfs_dirent_lookup(tdzp, tnm, &tzp, 0); if (error != 0) { ZFS_EXIT(zfsvfs); VOP_UNLOCK(sdvp, 0); VOP_UNLOCK(tdvp, 0); vrele(svp); if ((tcnp->cn_flags & ISDOTDOT) != 0) error = SET_ERROR(EINVAL); goto out; } if (tzp != NULL) tvp = ZTOV(tzp); else tvp = NULL; /* * At present the vnode locks must be acquired before z_teardown_lock, * although it would be more logical to use the opposite order. */ ZFS_EXIT(zfsvfs); /* * Now try acquire locks on svp and tvp. */ nvp = svp; error = vn_lock(nvp, LK_EXCLUSIVE | LK_NOWAIT); if (error != 0) { VOP_UNLOCK(sdvp, 0); VOP_UNLOCK(tdvp, 0); if (tvp != NULL) vrele(tvp); if (error != EBUSY) { vrele(nvp); goto out; } error = vn_lock(nvp, LK_EXCLUSIVE); if (error != 0) { vrele(nvp); goto out; } VOP_UNLOCK(nvp, 0); /* * Concurrent rename race. * XXX ? */ if (nvp == tdvp) { vrele(nvp); error = SET_ERROR(EINVAL); goto out; } vrele(*svpp); *svpp = nvp; goto relock; } vrele(*svpp); *svpp = nvp; if (*tvpp != NULL) vrele(*tvpp); *tvpp = NULL; if (tvp != NULL) { nvp = tvp; error = vn_lock(nvp, LK_EXCLUSIVE | LK_NOWAIT); if (error != 0) { VOP_UNLOCK(sdvp, 0); VOP_UNLOCK(tdvp, 0); VOP_UNLOCK(*svpp, 0); if (error != EBUSY) { vrele(nvp); goto out; } error = vn_lock(nvp, LK_EXCLUSIVE); if (error != 0) { vrele(nvp); goto out; } vput(nvp); goto relock; } *tvpp = nvp; } return (0); out: return (error); } /* * Note that we must use VRELE_ASYNC in this function as it walks * up the directory tree and vrele may need to acquire an exclusive * lock if a last reference to a vnode is dropped. */ static int zfs_rename_check(znode_t *szp, znode_t *sdzp, znode_t *tdzp) { zfsvfs_t *zfsvfs; znode_t *zp, *zp1; uint64_t parent; int error; zfsvfs = tdzp->z_zfsvfs; if (tdzp == szp) return (SET_ERROR(EINVAL)); if (tdzp == sdzp) return (0); if (tdzp->z_id == zfsvfs->z_root) return (0); zp = tdzp; for (;;) { ASSERT(!zp->z_unlinked); if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), &parent, sizeof (parent))) != 0) break; if (parent == szp->z_id) { error = SET_ERROR(EINVAL); break; } if (parent == zfsvfs->z_root) break; if (parent == sdzp->z_id) break; error = zfs_zget(zfsvfs, parent, &zp1); if (error != 0) break; if (zp != tdzp) VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(zfsvfs->z_os))); zp = zp1; } if (error == ENOTDIR) panic("checkpath: .. not a directory\n"); if (zp != tdzp) VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(zfsvfs->z_os))); return (error); } /* * Move an entry from the provided source directory to the target * directory. Change the entry name as indicated. * * IN: sdvp - Source directory containing the "old entry". * snm - Old entry name. * tdvp - Target directory to contain the "new entry". * tnm - New entry name. * cr - credentials of caller. * ct - caller context * flags - case flags * * RETURN: 0 on success, error code on failure. * * Timestamps: * sdvp,tdvp - ctime|mtime updated */ /*ARGSUSED*/ static int zfs_rename(vnode_t *sdvp, vnode_t **svpp, struct componentname *scnp, vnode_t *tdvp, vnode_t **tvpp, struct componentname *tcnp, cred_t *cr) { zfsvfs_t *zfsvfs; znode_t *sdzp, *tdzp, *szp, *tzp; zilog_t *zilog = NULL; dmu_tx_t *tx; char *snm = scnp->cn_nameptr; char *tnm = tcnp->cn_nameptr; int error = 0; /* Reject renames across filesystems. */ if ((*svpp)->v_mount != tdvp->v_mount || ((*tvpp) != NULL && (*svpp)->v_mount != (*tvpp)->v_mount)) { error = SET_ERROR(EXDEV); goto out; } if (zfsctl_is_node(tdvp)) { error = SET_ERROR(EXDEV); goto out; } /* * Lock all four vnodes to ensure safety and semantics of renaming. */ error = zfs_rename_relock(sdvp, svpp, tdvp, tvpp, scnp, tcnp); if (error != 0) { /* no vnodes are locked in the case of error here */ return (error); } tdzp = VTOZ(tdvp); sdzp = VTOZ(sdvp); zfsvfs = tdzp->z_zfsvfs; zilog = zfsvfs->z_log; /* * After we re-enter ZFS_ENTER() we will have to revalidate all * znodes involved. */ ZFS_ENTER(zfsvfs); if (zfsvfs->z_utf8 && u8_validate(tnm, strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { error = SET_ERROR(EILSEQ); goto unlockout; } /* If source and target are the same file, there is nothing to do. */ if ((*svpp) == (*tvpp)) { error = 0; goto unlockout; } if (((*svpp)->v_type == VDIR && (*svpp)->v_mountedhere != NULL) || ((*tvpp) != NULL && (*tvpp)->v_type == VDIR && (*tvpp)->v_mountedhere != NULL)) { error = SET_ERROR(EXDEV); goto unlockout; } /* * We can not use ZFS_VERIFY_ZP() here because it could directly return * bypassing the cleanup code in the case of an error. */ if (tdzp->z_sa_hdl == NULL || sdzp->z_sa_hdl == NULL) { error = SET_ERROR(EIO); goto unlockout; } szp = VTOZ(*svpp); tzp = *tvpp == NULL ? NULL : VTOZ(*tvpp); if (szp->z_sa_hdl == NULL || (tzp != NULL && tzp->z_sa_hdl == NULL)) { error = SET_ERROR(EIO); goto unlockout; } /* * This is to prevent the creation of links into attribute space * by renaming a linked file into/outof an attribute directory. * See the comment in zfs_link() for why this is considered bad. */ if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { error = SET_ERROR(EINVAL); goto unlockout; } /* * Must have write access at the source to remove the old entry * and write access at the target to create the new entry. * Note that if target and source are the same, this can be * done in a single check. */ if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) goto unlockout; if ((*svpp)->v_type == VDIR) { /* * Avoid ".", "..", and aliases of "." for obvious reasons. */ if ((scnp->cn_namelen == 1 && scnp->cn_nameptr[0] == '.') || sdzp == szp || (scnp->cn_flags | tcnp->cn_flags) & ISDOTDOT) { error = EINVAL; goto unlockout; } /* * Check to make sure rename is valid. * Can't do a move like this: /usr/a/b to /usr/a/b/c/d */ if (error = zfs_rename_check(szp, sdzp, tdzp)) goto unlockout; } /* * Does target exist? */ if (tzp) { /* * Source and target must be the same type. */ if ((*svpp)->v_type == VDIR) { if ((*tvpp)->v_type != VDIR) { error = SET_ERROR(ENOTDIR); goto unlockout; } else { cache_purge(tdvp); if (sdvp != tdvp) cache_purge(sdvp); } } else { if ((*tvpp)->v_type == VDIR) { error = SET_ERROR(EISDIR); goto unlockout; } } } vnevent_rename_src(*svpp, sdvp, scnp->cn_nameptr, ct); if (tzp) vnevent_rename_dest(*tvpp, tdvp, tnm, ct); /* * notify the target directory if it is not the same * as source directory. */ if (tdvp != sdvp) { vnevent_rename_dest_dir(tdvp, ct); } tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); if (sdzp != tdzp) { dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, tdzp); } if (tzp) { dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, tzp); } zfs_sa_upgrade_txholds(tx, szp); dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); goto unlockout; } if (tzp) /* Attempt to remove the existing target */ error = zfs_link_destroy(tdzp, tnm, tzp, tx, 0, NULL); if (error == 0) { error = zfs_link_create(tdzp, tnm, szp, tx, ZRENAMING); if (error == 0) { szp->z_pflags |= ZFS_AV_MODIFIED; error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), (void *)&szp->z_pflags, sizeof (uint64_t), tx); ASSERT0(error); error = zfs_link_destroy(sdzp, snm, szp, tx, ZRENAMING, NULL); if (error == 0) { zfs_log_rename(zilog, tx, TX_RENAME, sdzp, snm, tdzp, tnm, szp); /* * Update path information for the target vnode */ vn_renamepath(tdvp, *svpp, tnm, strlen(tnm)); } else { /* * At this point, we have successfully created * the target name, but have failed to remove * the source name. Since the create was done * with the ZRENAMING flag, there are * complications; for one, the link count is * wrong. The easiest way to deal with this * is to remove the newly created target, and * return the original error. This must * succeed; fortunately, it is very unlikely to * fail, since we just created it. */ VERIFY3U(zfs_link_destroy(tdzp, tnm, szp, tx, ZRENAMING, NULL), ==, 0); } } if (error == 0) { cache_purge(*svpp); if (*tvpp != NULL) cache_purge(*tvpp); cache_purge_negative(tdvp); } } dmu_tx_commit(tx); unlockout: /* all 4 vnodes are locked, ZFS_ENTER called */ ZFS_EXIT(zfsvfs); VOP_UNLOCK(*svpp, 0); VOP_UNLOCK(sdvp, 0); out: /* original two vnodes are locked */ if (error == 0 && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); if (*tvpp != NULL) VOP_UNLOCK(*tvpp, 0); if (tdvp != *tvpp) VOP_UNLOCK(tdvp, 0); return (error); } /* * Insert the indicated symbolic reference entry into the directory. * * IN: dvp - Directory to contain new symbolic link. * link - Name for new symlink entry. * vap - Attributes of new entry. * cr - credentials of caller. * ct - caller context * flags - case flags * * RETURN: 0 on success, error code on failure. * * Timestamps: * dvp - ctime|mtime updated */ /*ARGSUSED*/ static int zfs_symlink(vnode_t *dvp, vnode_t **vpp, char *name, vattr_t *vap, char *link, cred_t *cr, kthread_t *td) { znode_t *zp, *dzp = VTOZ(dvp); dmu_tx_t *tx; zfsvfs_t *zfsvfs = dzp->z_zfsvfs; zilog_t *zilog; uint64_t len = strlen(link); int error; zfs_acl_ids_t acl_ids; boolean_t fuid_dirtied; uint64_t txtype = TX_SYMLINK; int flags = 0; ASSERT(vap->va_type == VLNK); ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(dzp); zilog = zfsvfs->z_log; if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EILSEQ)); } if (len > MAXPATHLEN) { ZFS_EXIT(zfsvfs); return (SET_ERROR(ENAMETOOLONG)); } if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, NULL, &acl_ids)) != 0) { ZFS_EXIT(zfsvfs); return (error); } /* * Attempt to lock directory; fail if entry already exists. */ error = zfs_dirent_lookup(dzp, name, &zp, ZNEW); if (error) { zfs_acl_ids_free(&acl_ids); ZFS_EXIT(zfsvfs); return (error); } if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { zfs_acl_ids_free(&acl_ids); ZFS_EXIT(zfsvfs); return (error); } if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { zfs_acl_ids_free(&acl_ids); ZFS_EXIT(zfsvfs); return (SET_ERROR(EDQUOT)); } getnewvnode_reserve(1); tx = dmu_tx_create(zfsvfs->z_os); fuid_dirtied = zfsvfs->z_fuid_dirty; dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + ZFS_SA_BASE_ATTR_SIZE + len); dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, acl_ids.z_aclp->z_acl_bytes); } if (fuid_dirtied) zfs_fuid_txhold(zfsvfs, tx); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { zfs_acl_ids_free(&acl_ids); dmu_tx_abort(tx); getnewvnode_drop_reserve(); ZFS_EXIT(zfsvfs); return (error); } /* * Create a new object for the symlink. * for version 4 ZPL datsets the symlink will be an SA attribute */ zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); if (fuid_dirtied) zfs_fuid_sync(zfsvfs, tx); if (zp->z_is_sa) error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), link, len, tx); else zfs_sa_symlink(zp, link, len, tx); zp->z_size = len; (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), &zp->z_size, sizeof (zp->z_size), tx); /* * Insert the new object into the directory. */ (void) zfs_link_create(dzp, name, zp, tx, ZNEW); zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); *vpp = ZTOV(zp); zfs_acl_ids_free(&acl_ids); dmu_tx_commit(tx); getnewvnode_drop_reserve(); if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); ZFS_EXIT(zfsvfs); return (error); } /* * Return, in the buffer contained in the provided uio structure, * the symbolic path referred to by vp. * * IN: vp - vnode of symbolic link. * uio - structure to contain the link path. * cr - credentials of caller. * ct - caller context * * OUT: uio - structure containing the link path. * * RETURN: 0 on success, error code on failure. * * Timestamps: * vp - atime updated */ /* ARGSUSED */ static int zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; int error; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); if (zp->z_is_sa) error = sa_lookup_uio(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), uio); else error = zfs_sa_readlink(zp, uio); ZFS_ACCESSTIME_STAMP(zfsvfs, zp); ZFS_EXIT(zfsvfs); return (error); } /* * Insert a new entry into directory tdvp referencing svp. * * IN: tdvp - Directory to contain new entry. * svp - vnode of new entry. * name - name of new entry. * cr - credentials of caller. * ct - caller context * * RETURN: 0 on success, error code on failure. * * Timestamps: * tdvp - ctime|mtime updated * svp - ctime updated */ /* ARGSUSED */ static int zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, caller_context_t *ct, int flags) { znode_t *dzp = VTOZ(tdvp); znode_t *tzp, *szp; zfsvfs_t *zfsvfs = dzp->z_zfsvfs; zilog_t *zilog; dmu_tx_t *tx; int error; uint64_t parent; uid_t owner; ASSERT(tdvp->v_type == VDIR); ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(dzp); zilog = zfsvfs->z_log; /* * POSIX dictates that we return EPERM here. * Better choices include ENOTSUP or EISDIR. */ if (svp->v_type == VDIR) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EPERM)); } szp = VTOZ(svp); ZFS_VERIFY_ZP(szp); if (szp->z_pflags & (ZFS_APPENDONLY | ZFS_IMMUTABLE | ZFS_READONLY)) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EPERM)); } /* Prevent links to .zfs/shares files */ if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), &parent, sizeof (uint64_t))) != 0) { ZFS_EXIT(zfsvfs); return (error); } if (parent == zfsvfs->z_shares_dir) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EPERM)); } if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EILSEQ)); } /* * We do not support links between attributes and non-attributes * because of the potential security risk of creating links * into "normal" file space in order to circumvent restrictions * imposed in attribute space. */ if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EINVAL)); } owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); if (owner != crgetuid(cr) && secpolicy_basic_link(svp, cr) != 0) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EPERM)); } if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { ZFS_EXIT(zfsvfs); return (error); } /* * Attempt to lock directory; fail if entry already exists. */ error = zfs_dirent_lookup(dzp, name, &tzp, ZNEW); if (error) { ZFS_EXIT(zfsvfs); return (error); } tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); zfs_sa_upgrade_txholds(tx, szp); zfs_sa_upgrade_txholds(tx, dzp); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); ZFS_EXIT(zfsvfs); return (error); } error = zfs_link_create(dzp, name, szp, tx, 0); if (error == 0) { uint64_t txtype = TX_LINK; zfs_log_link(zilog, tx, txtype, dzp, szp, name); } dmu_tx_commit(tx); if (error == 0) { vnevent_link(svp, ct); } if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); ZFS_EXIT(zfsvfs); return (error); } /*ARGSUSED*/ void zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; int error; rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); if (zp->z_sa_hdl == NULL) { /* * The fs has been unmounted, or we did a * suspend/resume and this file no longer exists. */ rw_exit(&zfsvfs->z_teardown_inactive_lock); vrecycle(vp); return; } if (zp->z_unlinked) { /* * Fast path to recycle a vnode of a removed file. */ rw_exit(&zfsvfs->z_teardown_inactive_lock); vrecycle(vp); return; } if (zp->z_atime_dirty && zp->z_unlinked == 0) { dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); } else { (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), (void *)&zp->z_atime, sizeof (zp->z_atime), tx); zp->z_atime_dirty = 0; dmu_tx_commit(tx); } } rw_exit(&zfsvfs->z_teardown_inactive_lock); } CTASSERT(sizeof(struct zfid_short) <= sizeof(struct fid)); CTASSERT(sizeof(struct zfid_long) <= sizeof(struct fid)); /*ARGSUSED*/ static int zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; uint32_t gen; uint64_t gen64; uint64_t object = zp->z_id; zfid_short_t *zfid; int size, i, error; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &gen64, sizeof (uint64_t))) != 0) { ZFS_EXIT(zfsvfs); return (error); } gen = (uint32_t)gen64; size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; #ifdef illumos if (fidp->fid_len < size) { fidp->fid_len = size; ZFS_EXIT(zfsvfs); return (SET_ERROR(ENOSPC)); } #else fidp->fid_len = size; #endif zfid = (zfid_short_t *)fidp; zfid->zf_len = size; for (i = 0; i < sizeof (zfid->zf_object); i++) zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); /* Must have a non-zero generation number to distinguish from .zfs */ if (gen == 0) gen = 1; for (i = 0; i < sizeof (zfid->zf_gen); i++) zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); if (size == LONG_FID_LEN) { uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); zfid_long_t *zlfid; zlfid = (zfid_long_t *)fidp; for (i = 0; i < sizeof (zlfid->zf_setid); i++) zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); /* XXX - this should be the generation number for the objset */ for (i = 0; i < sizeof (zlfid->zf_setgen); i++) zlfid->zf_setgen[i] = 0; } ZFS_EXIT(zfsvfs); return (0); } static int zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, caller_context_t *ct) { znode_t *zp, *xzp; zfsvfs_t *zfsvfs; int error; switch (cmd) { case _PC_LINK_MAX: *valp = MIN(LONG_MAX, ZFS_LINK_MAX); return (0); case _PC_FILESIZEBITS: *valp = 64; return (0); #ifdef illumos case _PC_XATTR_EXISTS: zp = VTOZ(vp); zfsvfs = zp->z_zfsvfs; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); *valp = 0; error = zfs_dirent_lookup(zp, "", &xzp, ZXATTR | ZEXISTS | ZSHARED); if (error == 0) { if (!zfs_dirempty(xzp)) *valp = 1; vrele(ZTOV(xzp)); } else if (error == ENOENT) { /* * If there aren't extended attributes, it's the * same as having zero of them. */ error = 0; } ZFS_EXIT(zfsvfs); return (error); case _PC_SATTR_ENABLED: case _PC_SATTR_EXISTS: *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && (vp->v_type == VREG || vp->v_type == VDIR); return (0); case _PC_ACCESS_FILTERING: *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && vp->v_type == VDIR; return (0); case _PC_ACL_ENABLED: *valp = _ACL_ACE_ENABLED; return (0); #endif /* illumos */ case _PC_MIN_HOLE_SIZE: *valp = (int)SPA_MINBLOCKSIZE; return (0); #ifdef illumos case _PC_TIMESTAMP_RESOLUTION: /* nanosecond timestamp resolution */ *valp = 1L; return (0); #endif case _PC_ACL_EXTENDED: *valp = 0; return (0); case _PC_ACL_NFS4: *valp = 1; return (0); case _PC_ACL_PATH_MAX: *valp = ACL_MAX_ENTRIES; return (0); default: return (EOPNOTSUPP); } } /*ARGSUSED*/ static int zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; int error; boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); error = zfs_getacl(zp, vsecp, skipaclchk, cr); ZFS_EXIT(zfsvfs); return (error); } /*ARGSUSED*/ int zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; int error; boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; zilog_t *zilog = zfsvfs->z_log; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); error = zfs_setacl(zp, vsecp, skipaclchk, cr); if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); ZFS_EXIT(zfsvfs); return (error); } static int ioflags(int ioflags) { int flags = 0; if (ioflags & IO_APPEND) flags |= FAPPEND; if (ioflags & IO_NDELAY) flags |= FNONBLOCK; if (ioflags & IO_SYNC) flags |= (FSYNC | FDSYNC | FRSYNC); return (flags); } static int zfs_getpages(struct vnode *vp, vm_page_t *m, int count, int *rbehind, int *rahead) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; objset_t *os = zp->z_zfsvfs->z_os; vm_page_t mlast; vm_object_t object; caddr_t va; struct sf_buf *sf; off_t startoff, endoff; int i, error; vm_pindex_t reqstart, reqend; int lsize, size; object = m[0]->object; error = 0; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); zfs_vmobject_wlock(object); if (m[count - 1]->valid != 0 && --count == 0) { zfs_vmobject_wunlock(object); goto out; } mlast = m[count - 1]; if (IDX_TO_OFF(mlast->pindex) >= object->un_pager.vnp.vnp_size) { zfs_vmobject_wunlock(object); ZFS_EXIT(zfsvfs); return (zfs_vm_pagerret_bad); } VM_CNT_INC(v_vnodein); VM_CNT_ADD(v_vnodepgsin, count); lsize = PAGE_SIZE; if (IDX_TO_OFF(mlast->pindex) + lsize > object->un_pager.vnp.vnp_size) lsize = object->un_pager.vnp.vnp_size - IDX_TO_OFF(mlast->pindex); zfs_vmobject_wunlock(object); for (i = 0; i < count; i++) { size = PAGE_SIZE; if (i == count - 1) size = lsize; va = zfs_map_page(m[i], &sf); error = dmu_read(os, zp->z_id, IDX_TO_OFF(m[i]->pindex), size, va, DMU_READ_PREFETCH); if (size != PAGE_SIZE) bzero(va + size, PAGE_SIZE - size); zfs_unmap_page(sf); if (error != 0) goto out; } zfs_vmobject_wlock(object); for (i = 0; i < count; i++) m[i]->valid = VM_PAGE_BITS_ALL; zfs_vmobject_wunlock(object); out: ZFS_ACCESSTIME_STAMP(zfsvfs, zp); ZFS_EXIT(zfsvfs); if (error == 0) { if (rbehind) *rbehind = 0; if (rahead) *rahead = 0; return (zfs_vm_pagerret_ok); } else return (zfs_vm_pagerret_error); } static int zfs_freebsd_getpages(ap) struct vop_getpages_args /* { struct vnode *a_vp; vm_page_t *a_m; int a_count; int *a_rbehind; int *a_rahead; } */ *ap; { return (zfs_getpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_rbehind, ap->a_rahead)); } static int zfs_putpages(struct vnode *vp, vm_page_t *ma, size_t len, int flags, int *rtvals) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; rl_t *rl; dmu_tx_t *tx; struct sf_buf *sf; vm_object_t object; vm_page_t m; caddr_t va; size_t tocopy; size_t lo_len; vm_ooffset_t lo_off; vm_ooffset_t off; uint_t blksz; int ncount; int pcount; int err; int i; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); object = vp->v_object; pcount = btoc(len); ncount = pcount; KASSERT(ma[0]->object == object, ("mismatching object")); KASSERT(len > 0 && (len & PAGE_MASK) == 0, ("unexpected length")); for (i = 0; i < pcount; i++) rtvals[i] = zfs_vm_pagerret_error; off = IDX_TO_OFF(ma[0]->pindex); blksz = zp->z_blksz; lo_off = rounddown(off, blksz); lo_len = roundup(len + (off - lo_off), blksz); rl = zfs_range_lock(zp, lo_off, lo_len, RL_WRITER); zfs_vmobject_wlock(object); if (len + off > object->un_pager.vnp.vnp_size) { if (object->un_pager.vnp.vnp_size > off) { int pgoff; len = object->un_pager.vnp.vnp_size - off; ncount = btoc(len); if ((pgoff = (int)len & PAGE_MASK) != 0) { /* * If the object is locked and the following * conditions hold, then the page's dirty * field cannot be concurrently changed by a * pmap operation. */ m = ma[ncount - 1]; vm_page_assert_sbusied(m); KASSERT(!pmap_page_is_write_mapped(m), ("zfs_putpages: page %p is not read-only", m)); vm_page_clear_dirty(m, pgoff, PAGE_SIZE - pgoff); } } else { len = 0; ncount = 0; } if (ncount < pcount) { for (i = ncount; i < pcount; i++) { rtvals[i] = zfs_vm_pagerret_bad; } } } zfs_vmobject_wunlock(object); if (ncount == 0) goto out; if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { goto out; } tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_write(tx, zp->z_id, off, len); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_tx_abort(tx); goto out; } if (zp->z_blksz < PAGE_SIZE) { i = 0; for (i = 0; len > 0; off += tocopy, len -= tocopy, i++) { tocopy = len > PAGE_SIZE ? PAGE_SIZE : len; va = zfs_map_page(ma[i], &sf); dmu_write(zfsvfs->z_os, zp->z_id, off, tocopy, va, tx); zfs_unmap_page(sf); } } else { err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, ma, tx); } if (err == 0) { uint64_t mtime[2], ctime[2]; sa_bulk_attr_t bulk[3]; int count = 0; SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 8); zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); ASSERT0(err); zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); zfs_vmobject_wlock(object); for (i = 0; i < ncount; i++) { rtvals[i] = zfs_vm_pagerret_ok; vm_page_undirty(ma[i]); } zfs_vmobject_wunlock(object); VM_CNT_INC(v_vnodeout); VM_CNT_ADD(v_vnodepgsout, ncount); } dmu_tx_commit(tx); out: zfs_range_unlock(rl); if ((flags & (zfs_vm_pagerput_sync | zfs_vm_pagerput_inval)) != 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zfsvfs->z_log, zp->z_id); ZFS_EXIT(zfsvfs); return (rtvals[0]); } int zfs_freebsd_putpages(ap) struct vop_putpages_args /* { struct vnode *a_vp; vm_page_t *a_m; int a_count; int a_sync; int *a_rtvals; } */ *ap; { return (zfs_putpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_sync, ap->a_rtvals)); } static int zfs_freebsd_bmap(ap) struct vop_bmap_args /* { struct vnode *a_vp; daddr_t a_bn; struct bufobj **a_bop; daddr_t *a_bnp; int *a_runp; int *a_runb; } */ *ap; { if (ap->a_bop != NULL) *ap->a_bop = &ap->a_vp->v_bufobj; if (ap->a_bnp != NULL) *ap->a_bnp = ap->a_bn; if (ap->a_runp != NULL) *ap->a_runp = 0; if (ap->a_runb != NULL) *ap->a_runb = 0; return (0); } static int zfs_freebsd_open(ap) struct vop_open_args /* { struct vnode *a_vp; int a_mode; struct ucred *a_cred; struct thread *a_td; } */ *ap; { vnode_t *vp = ap->a_vp; znode_t *zp = VTOZ(vp); int error; error = zfs_open(&vp, ap->a_mode, ap->a_cred, NULL); if (error == 0) vnode_create_vobject(vp, zp->z_size, ap->a_td); return (error); } static int zfs_freebsd_close(ap) struct vop_close_args /* { struct vnode *a_vp; int a_fflag; struct ucred *a_cred; struct thread *a_td; } */ *ap; { return (zfs_close(ap->a_vp, ap->a_fflag, 1, 0, ap->a_cred, NULL)); } static int zfs_freebsd_ioctl(ap) struct vop_ioctl_args /* { struct vnode *a_vp; u_long a_command; caddr_t a_data; int a_fflag; struct ucred *cred; struct thread *td; } */ *ap; { return (zfs_ioctl(ap->a_vp, ap->a_command, (intptr_t)ap->a_data, ap->a_fflag, ap->a_cred, NULL, NULL)); } static int zfs_freebsd_read(ap) struct vop_read_args /* { struct vnode *a_vp; struct uio *a_uio; int a_ioflag; struct ucred *a_cred; } */ *ap; { return (zfs_read(ap->a_vp, ap->a_uio, ioflags(ap->a_ioflag), ap->a_cred, NULL)); } static int zfs_freebsd_write(ap) struct vop_write_args /* { struct vnode *a_vp; struct uio *a_uio; int a_ioflag; struct ucred *a_cred; } */ *ap; { return (zfs_write(ap->a_vp, ap->a_uio, ioflags(ap->a_ioflag), ap->a_cred, NULL)); } static int zfs_freebsd_access(ap) struct vop_access_args /* { struct vnode *a_vp; accmode_t a_accmode; struct ucred *a_cred; struct thread *a_td; } */ *ap; { vnode_t *vp = ap->a_vp; znode_t *zp = VTOZ(vp); accmode_t accmode; int error = 0; /* * ZFS itself only knowns about VREAD, VWRITE, VEXEC and VAPPEND, */ accmode = ap->a_accmode & (VREAD|VWRITE|VEXEC|VAPPEND); if (accmode != 0) error = zfs_access(ap->a_vp, accmode, 0, ap->a_cred, NULL); /* * VADMIN has to be handled by vaccess(). */ if (error == 0) { accmode = ap->a_accmode & ~(VREAD|VWRITE|VEXEC|VAPPEND); if (accmode != 0) { error = vaccess(vp->v_type, zp->z_mode, zp->z_uid, zp->z_gid, accmode, ap->a_cred, NULL); } } /* * For VEXEC, ensure that at least one execute bit is set for * non-directories. */ if (error == 0 && (ap->a_accmode & VEXEC) != 0 && vp->v_type != VDIR && (zp->z_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0) { error = EACCES; } return (error); } static int zfs_freebsd_lookup(ap) struct vop_lookup_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; } */ *ap; { struct componentname *cnp = ap->a_cnp; char nm[NAME_MAX + 1]; ASSERT(cnp->cn_namelen < sizeof(nm)); strlcpy(nm, cnp->cn_nameptr, MIN(cnp->cn_namelen + 1, sizeof(nm))); return (zfs_lookup(ap->a_dvp, nm, ap->a_vpp, cnp, cnp->cn_nameiop, cnp->cn_cred, cnp->cn_thread, 0)); } static int zfs_cache_lookup(ap) struct vop_lookup_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; } */ *ap; { zfsvfs_t *zfsvfs; zfsvfs = ap->a_dvp->v_mount->mnt_data; if (zfsvfs->z_use_namecache) return (vfs_cache_lookup(ap)); else return (zfs_freebsd_lookup(ap)); } static int zfs_freebsd_create(ap) struct vop_create_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; } */ *ap; { zfsvfs_t *zfsvfs; struct componentname *cnp = ap->a_cnp; vattr_t *vap = ap->a_vap; int error, mode; ASSERT(cnp->cn_flags & SAVENAME); vattr_init_mask(vap); mode = vap->va_mode & ALLPERMS; zfsvfs = ap->a_dvp->v_mount->mnt_data; error = zfs_create(ap->a_dvp, cnp->cn_nameptr, vap, !EXCL, mode, ap->a_vpp, cnp->cn_cred, cnp->cn_thread); if (zfsvfs->z_use_namecache && error == 0 && (cnp->cn_flags & MAKEENTRY) != 0) cache_enter(ap->a_dvp, *ap->a_vpp, cnp); return (error); } static int zfs_freebsd_remove(ap) struct vop_remove_args /* { struct vnode *a_dvp; struct vnode *a_vp; struct componentname *a_cnp; } */ *ap; { ASSERT(ap->a_cnp->cn_flags & SAVENAME); return (zfs_remove(ap->a_dvp, ap->a_vp, ap->a_cnp->cn_nameptr, ap->a_cnp->cn_cred)); } static int zfs_freebsd_mkdir(ap) struct vop_mkdir_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; } */ *ap; { vattr_t *vap = ap->a_vap; ASSERT(ap->a_cnp->cn_flags & SAVENAME); vattr_init_mask(vap); return (zfs_mkdir(ap->a_dvp, ap->a_cnp->cn_nameptr, vap, ap->a_vpp, ap->a_cnp->cn_cred)); } static int zfs_freebsd_rmdir(ap) struct vop_rmdir_args /* { struct vnode *a_dvp; struct vnode *a_vp; struct componentname *a_cnp; } */ *ap; { struct componentname *cnp = ap->a_cnp; ASSERT(cnp->cn_flags & SAVENAME); return (zfs_rmdir(ap->a_dvp, ap->a_vp, cnp->cn_nameptr, cnp->cn_cred)); } static int zfs_freebsd_readdir(ap) struct vop_readdir_args /* { struct vnode *a_vp; struct uio *a_uio; struct ucred *a_cred; int *a_eofflag; int *a_ncookies; u_long **a_cookies; } */ *ap; { return (zfs_readdir(ap->a_vp, ap->a_uio, ap->a_cred, ap->a_eofflag, ap->a_ncookies, ap->a_cookies)); } static int zfs_freebsd_fsync(ap) struct vop_fsync_args /* { struct vnode *a_vp; int a_waitfor; struct thread *a_td; } */ *ap; { vop_stdfsync(ap); return (zfs_fsync(ap->a_vp, 0, ap->a_td->td_ucred, NULL)); } static int zfs_freebsd_getattr(ap) struct vop_getattr_args /* { struct vnode *a_vp; struct vattr *a_vap; struct ucred *a_cred; } */ *ap; { vattr_t *vap = ap->a_vap; xvattr_t xvap; u_long fflags = 0; int error; xva_init(&xvap); xvap.xva_vattr = *vap; xvap.xva_vattr.va_mask |= AT_XVATTR; /* Convert chflags into ZFS-type flags. */ /* XXX: what about SF_SETTABLE?. */ XVA_SET_REQ(&xvap, XAT_IMMUTABLE); XVA_SET_REQ(&xvap, XAT_APPENDONLY); XVA_SET_REQ(&xvap, XAT_NOUNLINK); XVA_SET_REQ(&xvap, XAT_NODUMP); XVA_SET_REQ(&xvap, XAT_READONLY); XVA_SET_REQ(&xvap, XAT_ARCHIVE); XVA_SET_REQ(&xvap, XAT_SYSTEM); XVA_SET_REQ(&xvap, XAT_HIDDEN); XVA_SET_REQ(&xvap, XAT_REPARSE); XVA_SET_REQ(&xvap, XAT_OFFLINE); XVA_SET_REQ(&xvap, XAT_SPARSE); error = zfs_getattr(ap->a_vp, (vattr_t *)&xvap, 0, ap->a_cred, NULL); if (error != 0) return (error); /* Convert ZFS xattr into chflags. */ #define FLAG_CHECK(fflag, xflag, xfield) do { \ if (XVA_ISSET_RTN(&xvap, (xflag)) && (xfield) != 0) \ fflags |= (fflag); \ } while (0) FLAG_CHECK(SF_IMMUTABLE, XAT_IMMUTABLE, xvap.xva_xoptattrs.xoa_immutable); FLAG_CHECK(SF_APPEND, XAT_APPENDONLY, xvap.xva_xoptattrs.xoa_appendonly); FLAG_CHECK(SF_NOUNLINK, XAT_NOUNLINK, xvap.xva_xoptattrs.xoa_nounlink); FLAG_CHECK(UF_ARCHIVE, XAT_ARCHIVE, xvap.xva_xoptattrs.xoa_archive); FLAG_CHECK(UF_NODUMP, XAT_NODUMP, xvap.xva_xoptattrs.xoa_nodump); FLAG_CHECK(UF_READONLY, XAT_READONLY, xvap.xva_xoptattrs.xoa_readonly); FLAG_CHECK(UF_SYSTEM, XAT_SYSTEM, xvap.xva_xoptattrs.xoa_system); FLAG_CHECK(UF_HIDDEN, XAT_HIDDEN, xvap.xva_xoptattrs.xoa_hidden); FLAG_CHECK(UF_REPARSE, XAT_REPARSE, xvap.xva_xoptattrs.xoa_reparse); FLAG_CHECK(UF_OFFLINE, XAT_OFFLINE, xvap.xva_xoptattrs.xoa_offline); FLAG_CHECK(UF_SPARSE, XAT_SPARSE, xvap.xva_xoptattrs.xoa_sparse); #undef FLAG_CHECK *vap = xvap.xva_vattr; vap->va_flags = fflags; return (0); } static int zfs_freebsd_setattr(ap) struct vop_setattr_args /* { struct vnode *a_vp; struct vattr *a_vap; struct ucred *a_cred; } */ *ap; { vnode_t *vp = ap->a_vp; vattr_t *vap = ap->a_vap; cred_t *cred = ap->a_cred; xvattr_t xvap; u_long fflags; uint64_t zflags; vattr_init_mask(vap); vap->va_mask &= ~AT_NOSET; xva_init(&xvap); xvap.xva_vattr = *vap; zflags = VTOZ(vp)->z_pflags; if (vap->va_flags != VNOVAL) { zfsvfs_t *zfsvfs = VTOZ(vp)->z_zfsvfs; int error; if (zfsvfs->z_use_fuids == B_FALSE) return (EOPNOTSUPP); fflags = vap->va_flags; /* * XXX KDM * We need to figure out whether it makes sense to allow * UF_REPARSE through, since we don't really have other * facilities to handle reparse points and zfs_setattr() * doesn't currently allow setting that attribute anyway. */ if ((fflags & ~(SF_IMMUTABLE|SF_APPEND|SF_NOUNLINK|UF_ARCHIVE| UF_NODUMP|UF_SYSTEM|UF_HIDDEN|UF_READONLY|UF_REPARSE| UF_OFFLINE|UF_SPARSE)) != 0) return (EOPNOTSUPP); /* * Unprivileged processes are not permitted to unset system * flags, or modify flags if any system flags are set. * Privileged non-jail processes may not modify system flags * if securelevel > 0 and any existing system flags are set. * Privileged jail processes behave like privileged non-jail * processes if the security.jail.chflags_allowed sysctl is * is non-zero; otherwise, they behave like unprivileged * processes. */ if (secpolicy_fs_owner(vp->v_mount, cred) == 0 || priv_check_cred(cred, PRIV_VFS_SYSFLAGS, 0) == 0) { if (zflags & (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) { error = securelevel_gt(cred, 0); if (error != 0) return (error); } } else { /* * Callers may only modify the file flags on objects they * have VADMIN rights for. */ if ((error = VOP_ACCESS(vp, VADMIN, cred, curthread)) != 0) return (error); if (zflags & (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) { return (EPERM); } if (fflags & (SF_IMMUTABLE | SF_APPEND | SF_NOUNLINK)) { return (EPERM); } } #define FLAG_CHANGE(fflag, zflag, xflag, xfield) do { \ if (((fflags & (fflag)) && !(zflags & (zflag))) || \ ((zflags & (zflag)) && !(fflags & (fflag)))) { \ XVA_SET_REQ(&xvap, (xflag)); \ (xfield) = ((fflags & (fflag)) != 0); \ } \ } while (0) /* Convert chflags into ZFS-type flags. */ /* XXX: what about SF_SETTABLE?. */ FLAG_CHANGE(SF_IMMUTABLE, ZFS_IMMUTABLE, XAT_IMMUTABLE, xvap.xva_xoptattrs.xoa_immutable); FLAG_CHANGE(SF_APPEND, ZFS_APPENDONLY, XAT_APPENDONLY, xvap.xva_xoptattrs.xoa_appendonly); FLAG_CHANGE(SF_NOUNLINK, ZFS_NOUNLINK, XAT_NOUNLINK, xvap.xva_xoptattrs.xoa_nounlink); FLAG_CHANGE(UF_ARCHIVE, ZFS_ARCHIVE, XAT_ARCHIVE, xvap.xva_xoptattrs.xoa_archive); FLAG_CHANGE(UF_NODUMP, ZFS_NODUMP, XAT_NODUMP, xvap.xva_xoptattrs.xoa_nodump); FLAG_CHANGE(UF_READONLY, ZFS_READONLY, XAT_READONLY, xvap.xva_xoptattrs.xoa_readonly); FLAG_CHANGE(UF_SYSTEM, ZFS_SYSTEM, XAT_SYSTEM, xvap.xva_xoptattrs.xoa_system); FLAG_CHANGE(UF_HIDDEN, ZFS_HIDDEN, XAT_HIDDEN, xvap.xva_xoptattrs.xoa_hidden); FLAG_CHANGE(UF_REPARSE, ZFS_REPARSE, XAT_REPARSE, xvap.xva_xoptattrs.xoa_hidden); FLAG_CHANGE(UF_OFFLINE, ZFS_OFFLINE, XAT_OFFLINE, xvap.xva_xoptattrs.xoa_offline); FLAG_CHANGE(UF_SPARSE, ZFS_SPARSE, XAT_SPARSE, xvap.xva_xoptattrs.xoa_sparse); #undef FLAG_CHANGE } if (vap->va_birthtime.tv_sec != VNOVAL) { xvap.xva_vattr.va_mask |= AT_XVATTR; XVA_SET_REQ(&xvap, XAT_CREATETIME); } return (zfs_setattr(vp, (vattr_t *)&xvap, 0, cred, NULL)); } static int zfs_freebsd_rename(ap) struct vop_rename_args /* { struct vnode *a_fdvp; struct vnode *a_fvp; struct componentname *a_fcnp; struct vnode *a_tdvp; struct vnode *a_tvp; struct componentname *a_tcnp; } */ *ap; { vnode_t *fdvp = ap->a_fdvp; vnode_t *fvp = ap->a_fvp; vnode_t *tdvp = ap->a_tdvp; vnode_t *tvp = ap->a_tvp; int error; ASSERT(ap->a_fcnp->cn_flags & (SAVENAME|SAVESTART)); ASSERT(ap->a_tcnp->cn_flags & (SAVENAME|SAVESTART)); error = zfs_rename(fdvp, &fvp, ap->a_fcnp, tdvp, &tvp, ap->a_tcnp, ap->a_fcnp->cn_cred); vrele(fdvp); vrele(fvp); vrele(tdvp); if (tvp != NULL) vrele(tvp); return (error); } static int zfs_freebsd_symlink(ap) struct vop_symlink_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; char *a_target; } */ *ap; { struct componentname *cnp = ap->a_cnp; vattr_t *vap = ap->a_vap; ASSERT(cnp->cn_flags & SAVENAME); vap->va_type = VLNK; /* FreeBSD: Syscall only sets va_mode. */ vattr_init_mask(vap); return (zfs_symlink(ap->a_dvp, ap->a_vpp, cnp->cn_nameptr, vap, ap->a_target, cnp->cn_cred, cnp->cn_thread)); } static int zfs_freebsd_readlink(ap) struct vop_readlink_args /* { struct vnode *a_vp; struct uio *a_uio; struct ucred *a_cred; } */ *ap; { return (zfs_readlink(ap->a_vp, ap->a_uio, ap->a_cred, NULL)); } static int zfs_freebsd_link(ap) struct vop_link_args /* { struct vnode *a_tdvp; struct vnode *a_vp; struct componentname *a_cnp; } */ *ap; { struct componentname *cnp = ap->a_cnp; vnode_t *vp = ap->a_vp; vnode_t *tdvp = ap->a_tdvp; if (tdvp->v_mount != vp->v_mount) return (EXDEV); ASSERT(cnp->cn_flags & SAVENAME); return (zfs_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_cred, NULL, 0)); } static int zfs_freebsd_inactive(ap) struct vop_inactive_args /* { struct vnode *a_vp; struct thread *a_td; } */ *ap; { vnode_t *vp = ap->a_vp; zfs_inactive(vp, ap->a_td->td_ucred, NULL); return (0); } static int zfs_freebsd_reclaim(ap) struct vop_reclaim_args /* { struct vnode *a_vp; struct thread *a_td; } */ *ap; { vnode_t *vp = ap->a_vp; znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; ASSERT(zp != NULL); /* Destroy the vm object and flush associated pages. */ vnode_destroy_vobject(vp); /* * z_teardown_inactive_lock protects from a race with * zfs_znode_dmu_fini in zfsvfs_teardown during * force unmount. */ rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); if (zp->z_sa_hdl == NULL) zfs_znode_free(zp); else zfs_zinactive(zp); rw_exit(&zfsvfs->z_teardown_inactive_lock); vp->v_data = NULL; return (0); } static int zfs_freebsd_fid(ap) struct vop_fid_args /* { struct vnode *a_vp; struct fid *a_fid; } */ *ap; { return (zfs_fid(ap->a_vp, (void *)ap->a_fid, NULL)); } static int zfs_freebsd_pathconf(ap) struct vop_pathconf_args /* { struct vnode *a_vp; int a_name; register_t *a_retval; } */ *ap; { ulong_t val; int error; error = zfs_pathconf(ap->a_vp, ap->a_name, &val, curthread->td_ucred, NULL); if (error == 0) { *ap->a_retval = val; return (error); } if (error != EOPNOTSUPP) return (error); switch (ap->a_name) { case _PC_NAME_MAX: *ap->a_retval = NAME_MAX; return (0); + case _PC_PIPE_BUF: + if (ap->a_vp->v_type == VDIR || ap->a_vp->v_type == VFIFO) { + *ap->a_retval = PIPE_BUF; + return (0); + } + return (EINVAL); default: return (vop_stdpathconf(ap)); } } -static int -zfs_freebsd_fifo_pathconf(ap) - struct vop_pathconf_args /* { - struct vnode *a_vp; - int a_name; - register_t *a_retval; - } */ *ap; -{ - - switch (ap->a_name) { - case _PC_ACL_EXTENDED: - case _PC_ACL_NFS4: - case _PC_ACL_PATH_MAX: - case _PC_MAC_PRESENT: - return (zfs_freebsd_pathconf(ap)); - default: - return (fifo_specops.vop_pathconf(ap)); - } -} - /* * FreeBSD's extended attributes namespace defines file name prefix for ZFS' * extended attribute name: * * NAMESPACE PREFIX * system freebsd:system: * user (none, can be used to access ZFS fsattr(5) attributes * created on Solaris) */ static int zfs_create_attrname(int attrnamespace, const char *name, char *attrname, size_t size) { const char *namespace, *prefix, *suffix; /* We don't allow '/' character in attribute name. */ if (strchr(name, '/') != NULL) return (EINVAL); /* We don't allow attribute names that start with "freebsd:" string. */ if (strncmp(name, "freebsd:", 8) == 0) return (EINVAL); bzero(attrname, size); switch (attrnamespace) { case EXTATTR_NAMESPACE_USER: #if 0 prefix = "freebsd:"; namespace = EXTATTR_NAMESPACE_USER_STRING; suffix = ":"; #else /* * This is the default namespace by which we can access all * attributes created on Solaris. */ prefix = namespace = suffix = ""; #endif break; case EXTATTR_NAMESPACE_SYSTEM: prefix = "freebsd:"; namespace = EXTATTR_NAMESPACE_SYSTEM_STRING; suffix = ":"; break; case EXTATTR_NAMESPACE_EMPTY: default: return (EINVAL); } if (snprintf(attrname, size, "%s%s%s%s", prefix, namespace, suffix, name) >= size) { return (ENAMETOOLONG); } return (0); } /* * Vnode operating to retrieve a named extended attribute. */ static int zfs_getextattr(struct vop_getextattr_args *ap) /* vop_getextattr { IN struct vnode *a_vp; IN int a_attrnamespace; IN const char *a_name; INOUT struct uio *a_uio; OUT size_t *a_size; IN struct ucred *a_cred; IN struct thread *a_td; }; */ { zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs; struct thread *td = ap->a_td; struct nameidata nd; char attrname[255]; struct vattr va; vnode_t *xvp = NULL, *vp; int error, flags; error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VREAD); if (error != 0) return (error); error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname, sizeof(attrname)); if (error != 0) return (error); ZFS_ENTER(zfsvfs); error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td, LOOKUP_XATTR); if (error != 0) { ZFS_EXIT(zfsvfs); return (error); } flags = FREAD; NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname, xvp, td); error = vn_open_cred(&nd, &flags, 0, 0, ap->a_cred, NULL); vp = nd.ni_vp; NDFREE(&nd, NDF_ONLY_PNBUF); if (error != 0) { ZFS_EXIT(zfsvfs); if (error == ENOENT) error = ENOATTR; return (error); } if (ap->a_size != NULL) { error = VOP_GETATTR(vp, &va, ap->a_cred); if (error == 0) *ap->a_size = (size_t)va.va_size; } else if (ap->a_uio != NULL) error = VOP_READ(vp, ap->a_uio, IO_UNIT, ap->a_cred); VOP_UNLOCK(vp, 0); vn_close(vp, flags, ap->a_cred, td); ZFS_EXIT(zfsvfs); return (error); } /* * Vnode operation to remove a named attribute. */ int zfs_deleteextattr(struct vop_deleteextattr_args *ap) /* vop_deleteextattr { IN struct vnode *a_vp; IN int a_attrnamespace; IN const char *a_name; IN struct ucred *a_cred; IN struct thread *a_td; }; */ { zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs; struct thread *td = ap->a_td; struct nameidata nd; char attrname[255]; struct vattr va; vnode_t *xvp = NULL, *vp; int error, flags; error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VWRITE); if (error != 0) return (error); error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname, sizeof(attrname)); if (error != 0) return (error); ZFS_ENTER(zfsvfs); error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td, LOOKUP_XATTR); if (error != 0) { ZFS_EXIT(zfsvfs); return (error); } NDINIT_ATVP(&nd, DELETE, NOFOLLOW | LOCKPARENT | LOCKLEAF, UIO_SYSSPACE, attrname, xvp, td); error = namei(&nd); vp = nd.ni_vp; if (error != 0) { ZFS_EXIT(zfsvfs); NDFREE(&nd, NDF_ONLY_PNBUF); if (error == ENOENT) error = ENOATTR; return (error); } error = VOP_REMOVE(nd.ni_dvp, vp, &nd.ni_cnd); NDFREE(&nd, NDF_ONLY_PNBUF); vput(nd.ni_dvp); if (vp == nd.ni_dvp) vrele(vp); else vput(vp); ZFS_EXIT(zfsvfs); return (error); } /* * Vnode operation to set a named attribute. */ static int zfs_setextattr(struct vop_setextattr_args *ap) /* vop_setextattr { IN struct vnode *a_vp; IN int a_attrnamespace; IN const char *a_name; INOUT struct uio *a_uio; IN struct ucred *a_cred; IN struct thread *a_td; }; */ { zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs; struct thread *td = ap->a_td; struct nameidata nd; char attrname[255]; struct vattr va; vnode_t *xvp = NULL, *vp; int error, flags; error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VWRITE); if (error != 0) return (error); error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname, sizeof(attrname)); if (error != 0) return (error); ZFS_ENTER(zfsvfs); error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td, LOOKUP_XATTR | CREATE_XATTR_DIR); if (error != 0) { ZFS_EXIT(zfsvfs); return (error); } flags = FFLAGS(O_WRONLY | O_CREAT); NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname, xvp, td); error = vn_open_cred(&nd, &flags, 0600, 0, ap->a_cred, NULL); vp = nd.ni_vp; NDFREE(&nd, NDF_ONLY_PNBUF); if (error != 0) { ZFS_EXIT(zfsvfs); return (error); } VATTR_NULL(&va); va.va_size = 0; error = VOP_SETATTR(vp, &va, ap->a_cred); if (error == 0) VOP_WRITE(vp, ap->a_uio, IO_UNIT, ap->a_cred); VOP_UNLOCK(vp, 0); vn_close(vp, flags, ap->a_cred, td); ZFS_EXIT(zfsvfs); return (error); } /* * Vnode operation to retrieve extended attributes on a vnode. */ static int zfs_listextattr(struct vop_listextattr_args *ap) /* vop_listextattr { IN struct vnode *a_vp; IN int a_attrnamespace; INOUT struct uio *a_uio; OUT size_t *a_size; IN struct ucred *a_cred; IN struct thread *a_td; }; */ { zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs; struct thread *td = ap->a_td; struct nameidata nd; char attrprefix[16]; u_char dirbuf[sizeof(struct dirent)]; struct dirent *dp; struct iovec aiov; struct uio auio, *uio = ap->a_uio; size_t *sizep = ap->a_size; size_t plen; vnode_t *xvp = NULL, *vp; int done, error, eof, pos; error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VREAD); if (error != 0) return (error); error = zfs_create_attrname(ap->a_attrnamespace, "", attrprefix, sizeof(attrprefix)); if (error != 0) return (error); plen = strlen(attrprefix); ZFS_ENTER(zfsvfs); if (sizep != NULL) *sizep = 0; error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td, LOOKUP_XATTR); if (error != 0) { ZFS_EXIT(zfsvfs); /* * ENOATTR means that the EA directory does not yet exist, * i.e. there are no extended attributes there. */ if (error == ENOATTR) error = 0; return (error); } NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW | LOCKLEAF | LOCKSHARED, UIO_SYSSPACE, ".", xvp, td); error = namei(&nd); vp = nd.ni_vp; NDFREE(&nd, NDF_ONLY_PNBUF); if (error != 0) { ZFS_EXIT(zfsvfs); return (error); } auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_segflg = UIO_SYSSPACE; auio.uio_td = td; auio.uio_rw = UIO_READ; auio.uio_offset = 0; do { u_char nlen; aiov.iov_base = (void *)dirbuf; aiov.iov_len = sizeof(dirbuf); auio.uio_resid = sizeof(dirbuf); error = VOP_READDIR(vp, &auio, ap->a_cred, &eof, NULL, NULL); done = sizeof(dirbuf) - auio.uio_resid; if (error != 0) break; for (pos = 0; pos < done;) { dp = (struct dirent *)(dirbuf + pos); pos += dp->d_reclen; /* * XXX: Temporarily we also accept DT_UNKNOWN, as this * is what we get when attribute was created on Solaris. */ if (dp->d_type != DT_REG && dp->d_type != DT_UNKNOWN) continue; if (plen == 0 && strncmp(dp->d_name, "freebsd:", 8) == 0) continue; else if (strncmp(dp->d_name, attrprefix, plen) != 0) continue; nlen = dp->d_namlen - plen; if (sizep != NULL) *sizep += 1 + nlen; else if (uio != NULL) { /* * Format of extattr name entry is one byte for * length and the rest for name. */ error = uiomove(&nlen, 1, uio->uio_rw, uio); if (error == 0) { error = uiomove(dp->d_name + plen, nlen, uio->uio_rw, uio); } if (error != 0) break; } } } while (!eof && error == 0); vput(vp); ZFS_EXIT(zfsvfs); return (error); } int zfs_freebsd_getacl(ap) struct vop_getacl_args /* { struct vnode *vp; acl_type_t type; struct acl *aclp; struct ucred *cred; struct thread *td; } */ *ap; { int error; vsecattr_t vsecattr; if (ap->a_type != ACL_TYPE_NFS4) return (EINVAL); vsecattr.vsa_mask = VSA_ACE | VSA_ACECNT; if (error = zfs_getsecattr(ap->a_vp, &vsecattr, 0, ap->a_cred, NULL)) return (error); error = acl_from_aces(ap->a_aclp, vsecattr.vsa_aclentp, vsecattr.vsa_aclcnt); if (vsecattr.vsa_aclentp != NULL) kmem_free(vsecattr.vsa_aclentp, vsecattr.vsa_aclentsz); return (error); } int zfs_freebsd_setacl(ap) struct vop_setacl_args /* { struct vnode *vp; acl_type_t type; struct acl *aclp; struct ucred *cred; struct thread *td; } */ *ap; { int error; vsecattr_t vsecattr; int aclbsize; /* size of acl list in bytes */ aclent_t *aaclp; if (ap->a_type != ACL_TYPE_NFS4) return (EINVAL); if (ap->a_aclp == NULL) return (EINVAL); if (ap->a_aclp->acl_cnt < 1 || ap->a_aclp->acl_cnt > MAX_ACL_ENTRIES) return (EINVAL); /* * With NFSv4 ACLs, chmod(2) may need to add additional entries, * splitting every entry into two and appending "canonical six" * entries at the end. Don't allow for setting an ACL that would * cause chmod(2) to run out of ACL entries. */ if (ap->a_aclp->acl_cnt * 2 + 6 > ACL_MAX_ENTRIES) return (ENOSPC); error = acl_nfs4_check(ap->a_aclp, ap->a_vp->v_type == VDIR); if (error != 0) return (error); vsecattr.vsa_mask = VSA_ACE; aclbsize = ap->a_aclp->acl_cnt * sizeof(ace_t); vsecattr.vsa_aclentp = kmem_alloc(aclbsize, KM_SLEEP); aaclp = vsecattr.vsa_aclentp; vsecattr.vsa_aclentsz = aclbsize; aces_from_acl(vsecattr.vsa_aclentp, &vsecattr.vsa_aclcnt, ap->a_aclp); error = zfs_setsecattr(ap->a_vp, &vsecattr, 0, ap->a_cred, NULL); kmem_free(aaclp, aclbsize); return (error); } int zfs_freebsd_aclcheck(ap) struct vop_aclcheck_args /* { struct vnode *vp; acl_type_t type; struct acl *aclp; struct ucred *cred; struct thread *td; } */ *ap; { return (EOPNOTSUPP); } static int zfs_vptocnp(struct vop_vptocnp_args *ap) { vnode_t *covered_vp; vnode_t *vp = ap->a_vp;; zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; znode_t *zp = VTOZ(vp); int ltype; int error; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); /* * If we are a snapshot mounted under .zfs, run the operation * on the covered vnode. */ if (zp->z_id != zfsvfs->z_root || zfsvfs->z_parent == zfsvfs) { char name[MAXNAMLEN + 1]; znode_t *dzp; size_t len; error = zfs_znode_parent_and_name(zp, &dzp, name); if (error == 0) { len = strlen(name); if (*ap->a_buflen < len) error = SET_ERROR(ENOMEM); } if (error == 0) { *ap->a_buflen -= len; bcopy(name, ap->a_buf + *ap->a_buflen, len); *ap->a_vpp = ZTOV(dzp); } ZFS_EXIT(zfsvfs); return (error); } ZFS_EXIT(zfsvfs); covered_vp = vp->v_mount->mnt_vnodecovered; vhold(covered_vp); ltype = VOP_ISLOCKED(vp); VOP_UNLOCK(vp, 0); error = vget(covered_vp, LK_SHARED | LK_VNHELD, curthread); if (error == 0) { error = VOP_VPTOCNP(covered_vp, ap->a_vpp, ap->a_cred, ap->a_buf, ap->a_buflen); vput(covered_vp); } vn_lock(vp, ltype | LK_RETRY); if ((vp->v_iflag & VI_DOOMED) != 0) error = SET_ERROR(ENOENT); return (error); } #ifdef DIAGNOSTIC static int zfs_lock(ap) struct vop_lock1_args /* { struct vnode *a_vp; int a_flags; char *file; int line; } */ *ap; { vnode_t *vp; znode_t *zp; int err; err = vop_stdlock(ap); if (err == 0 && (ap->a_flags & LK_NOWAIT) == 0) { vp = ap->a_vp; zp = vp->v_data; if (vp->v_mount != NULL && (vp->v_iflag & VI_DOOMED) == 0 && zp != NULL && (zp->z_pflags & ZFS_XATTR) == 0) VERIFY(!RRM_LOCK_HELD(&zp->z_zfsvfs->z_teardown_lock)); } return (err); } #endif struct vop_vector zfs_vnodeops; struct vop_vector zfs_fifoops; struct vop_vector zfs_shareops; struct vop_vector zfs_vnodeops = { .vop_default = &default_vnodeops, .vop_inactive = zfs_freebsd_inactive, .vop_reclaim = zfs_freebsd_reclaim, .vop_access = zfs_freebsd_access, .vop_allocate = VOP_EINVAL, .vop_lookup = zfs_cache_lookup, .vop_cachedlookup = zfs_freebsd_lookup, .vop_getattr = zfs_freebsd_getattr, .vop_setattr = zfs_freebsd_setattr, .vop_create = zfs_freebsd_create, .vop_mknod = zfs_freebsd_create, .vop_mkdir = zfs_freebsd_mkdir, .vop_readdir = zfs_freebsd_readdir, .vop_fsync = zfs_freebsd_fsync, .vop_open = zfs_freebsd_open, .vop_close = zfs_freebsd_close, .vop_rmdir = zfs_freebsd_rmdir, .vop_ioctl = zfs_freebsd_ioctl, .vop_link = zfs_freebsd_link, .vop_symlink = zfs_freebsd_symlink, .vop_readlink = zfs_freebsd_readlink, .vop_read = zfs_freebsd_read, .vop_write = zfs_freebsd_write, .vop_remove = zfs_freebsd_remove, .vop_rename = zfs_freebsd_rename, .vop_pathconf = zfs_freebsd_pathconf, .vop_bmap = zfs_freebsd_bmap, .vop_fid = zfs_freebsd_fid, .vop_getextattr = zfs_getextattr, .vop_deleteextattr = zfs_deleteextattr, .vop_setextattr = zfs_setextattr, .vop_listextattr = zfs_listextattr, .vop_getacl = zfs_freebsd_getacl, .vop_setacl = zfs_freebsd_setacl, .vop_aclcheck = zfs_freebsd_aclcheck, .vop_getpages = zfs_freebsd_getpages, .vop_putpages = zfs_freebsd_putpages, .vop_vptocnp = zfs_vptocnp, #ifdef DIAGNOSTIC .vop_lock1 = zfs_lock, #endif }; struct vop_vector zfs_fifoops = { .vop_default = &fifo_specops, .vop_fsync = zfs_freebsd_fsync, .vop_access = zfs_freebsd_access, .vop_getattr = zfs_freebsd_getattr, .vop_inactive = zfs_freebsd_inactive, .vop_read = VOP_PANIC, .vop_reclaim = zfs_freebsd_reclaim, .vop_setattr = zfs_freebsd_setattr, .vop_write = VOP_PANIC, - .vop_pathconf = zfs_freebsd_fifo_pathconf, + .vop_pathconf = zfs_freebsd_pathconf, .vop_fid = zfs_freebsd_fid, .vop_getacl = zfs_freebsd_getacl, .vop_setacl = zfs_freebsd_setacl, .vop_aclcheck = zfs_freebsd_aclcheck, }; /* * special share hidden files vnode operations template */ struct vop_vector zfs_shareops = { .vop_default = &default_vnodeops, .vop_access = zfs_freebsd_access, .vop_inactive = zfs_freebsd_inactive, .vop_reclaim = zfs_freebsd_reclaim, .vop_fid = zfs_freebsd_fid, .vop_pathconf = zfs_freebsd_pathconf, }; Index: head/sys/fs/ext2fs/ext2_vnops.c =================================================================== --- head/sys/fs/ext2fs/ext2_vnops.c (revision 327003) +++ head/sys/fs/ext2fs/ext2_vnops.c (revision 327004) @@ -1,2301 +1,2308 @@ /*- * modified for EXT2FS support in Lites 1.1 * * Aug 1995, Godmar Back (gback@cs.utah.edu) * University of Utah, Department of Computer Science */ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ufs_vnops.c 8.7 (Berkeley) 2/3/94 * @(#)ufs_vnops.c 8.27 (Berkeley) 5/27/95 * $FreeBSD$ */ #include "opt_suiddir.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "opt_directio.h" #include #include #include #include #include #include #include #include #include #include static int ext2_makeinode(int mode, struct vnode *, struct vnode **, struct componentname *); static void ext2_itimes_locked(struct vnode *); static vop_access_t ext2_access; static int ext2_chmod(struct vnode *, int, struct ucred *, struct thread *); static int ext2_chown(struct vnode *, uid_t, gid_t, struct ucred *, struct thread *); static vop_close_t ext2_close; static vop_create_t ext2_create; static vop_fsync_t ext2_fsync; static vop_getattr_t ext2_getattr; static vop_ioctl_t ext2_ioctl; static vop_link_t ext2_link; static vop_mkdir_t ext2_mkdir; static vop_mknod_t ext2_mknod; static vop_open_t ext2_open; static vop_pathconf_t ext2_pathconf; static vop_print_t ext2_print; static vop_read_t ext2_read; static vop_readlink_t ext2_readlink; static vop_remove_t ext2_remove; static vop_rename_t ext2_rename; static vop_rmdir_t ext2_rmdir; static vop_setattr_t ext2_setattr; static vop_strategy_t ext2_strategy; static vop_symlink_t ext2_symlink; static vop_write_t ext2_write; static vop_deleteextattr_t ext2_deleteextattr; static vop_getextattr_t ext2_getextattr; static vop_listextattr_t ext2_listextattr; static vop_setextattr_t ext2_setextattr; static vop_vptofh_t ext2_vptofh; static vop_close_t ext2fifo_close; static vop_kqfilter_t ext2fifo_kqfilter; /* Global vfs data structures for ext2. */ struct vop_vector ext2_vnodeops = { .vop_default = &default_vnodeops, .vop_access = ext2_access, .vop_bmap = ext2_bmap, .vop_cachedlookup = ext2_lookup, .vop_close = ext2_close, .vop_create = ext2_create, .vop_fsync = ext2_fsync, .vop_getpages = vnode_pager_local_getpages, .vop_getpages_async = vnode_pager_local_getpages_async, .vop_getattr = ext2_getattr, .vop_inactive = ext2_inactive, .vop_ioctl = ext2_ioctl, .vop_link = ext2_link, .vop_lookup = vfs_cache_lookup, .vop_mkdir = ext2_mkdir, .vop_mknod = ext2_mknod, .vop_open = ext2_open, .vop_pathconf = ext2_pathconf, .vop_poll = vop_stdpoll, .vop_print = ext2_print, .vop_read = ext2_read, .vop_readdir = ext2_readdir, .vop_readlink = ext2_readlink, .vop_reallocblks = ext2_reallocblks, .vop_reclaim = ext2_reclaim, .vop_remove = ext2_remove, .vop_rename = ext2_rename, .vop_rmdir = ext2_rmdir, .vop_setattr = ext2_setattr, .vop_strategy = ext2_strategy, .vop_symlink = ext2_symlink, .vop_write = ext2_write, .vop_deleteextattr = ext2_deleteextattr, .vop_getextattr = ext2_getextattr, .vop_listextattr = ext2_listextattr, .vop_setextattr = ext2_setextattr, #ifdef UFS_ACL .vop_getacl = ext2_getacl, .vop_setacl = ext2_setacl, .vop_aclcheck = ext2_aclcheck, #endif /* UFS_ACL */ .vop_vptofh = ext2_vptofh, }; struct vop_vector ext2_fifoops = { .vop_default = &fifo_specops, .vop_access = ext2_access, .vop_close = ext2fifo_close, .vop_fsync = ext2_fsync, .vop_getattr = ext2_getattr, .vop_inactive = ext2_inactive, .vop_kqfilter = ext2fifo_kqfilter, + .vop_pathconf = ext2_pathconf, .vop_print = ext2_print, .vop_read = VOP_PANIC, .vop_reclaim = ext2_reclaim, .vop_setattr = ext2_setattr, .vop_write = VOP_PANIC, .vop_vptofh = ext2_vptofh, }; /* * A virgin directory (no blushing please). * Note that the type and namlen fields are reversed relative to ext2. * Also, we don't use `struct odirtemplate', since it would just cause * endianness problems. */ static struct dirtemplate mastertemplate = { 0, 12, 1, EXT2_FT_DIR, ".", 0, DIRBLKSIZ - 12, 2, EXT2_FT_DIR, ".." }; static struct dirtemplate omastertemplate = { 0, 12, 1, EXT2_FT_UNKNOWN, ".", 0, DIRBLKSIZ - 12, 2, EXT2_FT_UNKNOWN, ".." }; static void ext2_itimes_locked(struct vnode *vp) { struct inode *ip; struct timespec ts; ASSERT_VI_LOCKED(vp, __func__); ip = VTOI(vp); if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE)) == 0) return; if ((vp->v_type == VBLK || vp->v_type == VCHR)) ip->i_flag |= IN_LAZYMOD; else ip->i_flag |= IN_MODIFIED; if ((vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { vfs_timestamp(&ts); if (ip->i_flag & IN_ACCESS) { ip->i_atime = ts.tv_sec; ip->i_atimensec = ts.tv_nsec; } if (ip->i_flag & IN_UPDATE) { ip->i_mtime = ts.tv_sec; ip->i_mtimensec = ts.tv_nsec; ip->i_modrev++; } if (ip->i_flag & IN_CHANGE) { ip->i_ctime = ts.tv_sec; ip->i_ctimensec = ts.tv_nsec; } } ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE); } void ext2_itimes(struct vnode *vp) { VI_LOCK(vp); ext2_itimes_locked(vp); VI_UNLOCK(vp); } /* * Create a regular file */ static int ext2_create(struct vop_create_args *ap) { int error; error = ext2_makeinode(MAKEIMODE(ap->a_vap->va_type, ap->a_vap->va_mode), ap->a_dvp, ap->a_vpp, ap->a_cnp); if (error != 0) return (error); if ((ap->a_cnp->cn_flags & MAKEENTRY) != 0) cache_enter(ap->a_dvp, *ap->a_vpp, ap->a_cnp); return (0); } static int ext2_open(struct vop_open_args *ap) { if (ap->a_vp->v_type == VBLK || ap->a_vp->v_type == VCHR) return (EOPNOTSUPP); /* * Files marked append-only must be opened for appending. */ if ((VTOI(ap->a_vp)->i_flags & APPEND) && (ap->a_mode & (FWRITE | O_APPEND)) == FWRITE) return (EPERM); vnode_create_vobject(ap->a_vp, VTOI(ap->a_vp)->i_size, ap->a_td); return (0); } /* * Close called. * * Update the times on the inode. */ static int ext2_close(struct vop_close_args *ap) { struct vnode *vp = ap->a_vp; VI_LOCK(vp); if (vp->v_usecount > 1) ext2_itimes_locked(vp); VI_UNLOCK(vp); return (0); } static int ext2_access(struct vop_access_args *ap) { struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); accmode_t accmode = ap->a_accmode; int error; if (vp->v_type == VBLK || vp->v_type == VCHR) return (EOPNOTSUPP); /* * Disallow write attempts on read-only file systems; * unless the file is a socket, fifo, or a block or * character device resident on the file system. */ if (accmode & VWRITE) { switch (vp->v_type) { case VDIR: case VLNK: case VREG: if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); break; default: break; } } /* If immutable bit set, nobody gets to write it. */ if ((accmode & VWRITE) && (ip->i_flags & (SF_IMMUTABLE | SF_SNAPSHOT))) return (EPERM); error = vaccess(vp->v_type, ip->i_mode, ip->i_uid, ip->i_gid, ap->a_accmode, ap->a_cred, NULL); return (error); } static int ext2_getattr(struct vop_getattr_args *ap) { struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); struct vattr *vap = ap->a_vap; ext2_itimes(vp); /* * Copy from inode table */ vap->va_fsid = dev2udev(ip->i_devvp->v_rdev); vap->va_fileid = ip->i_number; vap->va_mode = ip->i_mode & ~IFMT; vap->va_nlink = ip->i_nlink; vap->va_uid = ip->i_uid; vap->va_gid = ip->i_gid; vap->va_rdev = ip->i_rdev; vap->va_size = ip->i_size; vap->va_atime.tv_sec = ip->i_atime; vap->va_atime.tv_nsec = E2DI_HAS_XTIME(ip) ? ip->i_atimensec : 0; vap->va_mtime.tv_sec = ip->i_mtime; vap->va_mtime.tv_nsec = E2DI_HAS_XTIME(ip) ? ip->i_mtimensec : 0; vap->va_ctime.tv_sec = ip->i_ctime; vap->va_ctime.tv_nsec = E2DI_HAS_XTIME(ip) ? ip->i_ctimensec : 0; if E2DI_HAS_XTIME(ip) { vap->va_birthtime.tv_sec = ip->i_birthtime; vap->va_birthtime.tv_nsec = ip->i_birthnsec; } vap->va_flags = ip->i_flags; vap->va_gen = ip->i_gen; vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize; vap->va_bytes = dbtob((u_quad_t)ip->i_blocks); vap->va_type = IFTOVT(ip->i_mode); vap->va_filerev = ip->i_modrev; return (0); } /* * Set attribute vnode op. called from several syscalls */ static int ext2_setattr(struct vop_setattr_args *ap) { struct vattr *vap = ap->a_vap; struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); struct ucred *cred = ap->a_cred; struct thread *td = curthread; int error; /* * Check for unsettable attributes. */ if ((vap->va_type != VNON) || (vap->va_nlink != VNOVAL) || (vap->va_fsid != VNOVAL) || (vap->va_fileid != VNOVAL) || (vap->va_blocksize != VNOVAL) || (vap->va_rdev != VNOVAL) || ((int)vap->va_bytes != VNOVAL) || (vap->va_gen != VNOVAL)) { return (EINVAL); } if (vap->va_flags != VNOVAL) { /* Disallow flags not supported by ext2fs. */ if (vap->va_flags & ~(SF_APPEND | SF_IMMUTABLE | UF_NODUMP)) return (EOPNOTSUPP); if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); /* * Callers may only modify the file flags on objects they * have VADMIN rights for. */ if ((error = VOP_ACCESS(vp, VADMIN, cred, td))) return (error); /* * Unprivileged processes and privileged processes in * jail() are not permitted to unset system flags, or * modify flags if any system flags are set. * Privileged non-jail processes may not modify system flags * if securelevel > 0 and any existing system flags are set. */ if (!priv_check_cred(cred, PRIV_VFS_SYSFLAGS, 0)) { if (ip->i_flags & (SF_IMMUTABLE | SF_APPEND)) { error = securelevel_gt(cred, 0); if (error) return (error); } } else { if (ip->i_flags & (SF_IMMUTABLE | SF_APPEND) || ((vap->va_flags ^ ip->i_flags) & SF_SETTABLE)) return (EPERM); } ip->i_flags = vap->va_flags; ip->i_flag |= IN_CHANGE; if (ip->i_flags & (IMMUTABLE | APPEND)) return (0); } if (ip->i_flags & (IMMUTABLE | APPEND)) return (EPERM); /* * Go through the fields and update iff not VNOVAL. */ if (vap->va_uid != (uid_t)VNOVAL || vap->va_gid != (gid_t)VNOVAL) { if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); if ((error = ext2_chown(vp, vap->va_uid, vap->va_gid, cred, td)) != 0) return (error); } if (vap->va_size != VNOVAL) { /* * Disallow write attempts on read-only file systems; * unless the file is a socket, fifo, or a block or * character device resident on the file system. */ switch (vp->v_type) { case VDIR: return (EISDIR); case VLNK: case VREG: if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); break; default: break; } if ((error = ext2_truncate(vp, vap->va_size, 0, cred, td)) != 0) return (error); } if (vap->va_atime.tv_sec != VNOVAL || vap->va_mtime.tv_sec != VNOVAL) { if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); /* * From utimes(2): * If times is NULL, ... The caller must be the owner of * the file, have permission to write the file, or be the * super-user. * If times is non-NULL, ... The caller must be the owner of * the file or be the super-user. */ if ((error = VOP_ACCESS(vp, VADMIN, cred, td)) && ((vap->va_vaflags & VA_UTIMES_NULL) == 0 || (error = VOP_ACCESS(vp, VWRITE, cred, td)))) return (error); ip->i_flag |= IN_CHANGE | IN_MODIFIED; if (vap->va_atime.tv_sec != VNOVAL) { ip->i_flag &= ~IN_ACCESS; ip->i_atime = vap->va_atime.tv_sec; ip->i_atimensec = vap->va_atime.tv_nsec; } if (vap->va_mtime.tv_sec != VNOVAL) { ip->i_flag &= ~IN_UPDATE; ip->i_mtime = vap->va_mtime.tv_sec; ip->i_mtimensec = vap->va_mtime.tv_nsec; } ip->i_birthtime = vap->va_birthtime.tv_sec; ip->i_birthnsec = vap->va_birthtime.tv_nsec; error = ext2_update(vp, 0); if (error) return (error); } error = 0; if (vap->va_mode != (mode_t)VNOVAL) { if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); error = ext2_chmod(vp, (int)vap->va_mode, cred, td); } return (error); } /* * Change the mode on a file. * Inode must be locked before calling. */ static int ext2_chmod(struct vnode *vp, int mode, struct ucred *cred, struct thread *td) { struct inode *ip = VTOI(vp); int error; /* * To modify the permissions on a file, must possess VADMIN * for that file. */ if ((error = VOP_ACCESS(vp, VADMIN, cred, td))) return (error); /* * Privileged processes may set the sticky bit on non-directories, * as well as set the setgid bit on a file with a group that the * process is not a member of. */ if (vp->v_type != VDIR && (mode & S_ISTXT)) { error = priv_check_cred(cred, PRIV_VFS_STICKYFILE, 0); if (error) return (EFTYPE); } if (!groupmember(ip->i_gid, cred) && (mode & ISGID)) { error = priv_check_cred(cred, PRIV_VFS_SETGID, 0); if (error) return (error); } ip->i_mode &= ~ALLPERMS; ip->i_mode |= (mode & ALLPERMS); ip->i_flag |= IN_CHANGE; return (0); } /* * Perform chown operation on inode ip; * inode must be locked prior to call. */ static int ext2_chown(struct vnode *vp, uid_t uid, gid_t gid, struct ucred *cred, struct thread *td) { struct inode *ip = VTOI(vp); uid_t ouid; gid_t ogid; int error = 0; if (uid == (uid_t)VNOVAL) uid = ip->i_uid; if (gid == (gid_t)VNOVAL) gid = ip->i_gid; /* * To modify the ownership of a file, must possess VADMIN * for that file. */ if ((error = VOP_ACCESS(vp, VADMIN, cred, td))) return (error); /* * To change the owner of a file, or change the group of a file * to a group of which we are not a member, the caller must * have privilege. */ if (uid != ip->i_uid || (gid != ip->i_gid && !groupmember(gid, cred))) { error = priv_check_cred(cred, PRIV_VFS_CHOWN, 0); if (error) return (error); } ogid = ip->i_gid; ouid = ip->i_uid; ip->i_gid = gid; ip->i_uid = uid; ip->i_flag |= IN_CHANGE; if ((ip->i_mode & (ISUID | ISGID)) && (ouid != uid || ogid != gid)) { if (priv_check_cred(cred, PRIV_VFS_RETAINSUGID, 0) != 0) ip->i_mode &= ~(ISUID | ISGID); } return (0); } /* * Synch an open file. */ /* ARGSUSED */ static int ext2_fsync(struct vop_fsync_args *ap) { /* * Flush all dirty buffers associated with a vnode. */ vop_stdfsync(ap); return (ext2_update(ap->a_vp, ap->a_waitfor == MNT_WAIT)); } /* * Mknod vnode call */ /* ARGSUSED */ static int ext2_mknod(struct vop_mknod_args *ap) { struct vattr *vap = ap->a_vap; struct vnode **vpp = ap->a_vpp; struct inode *ip; ino_t ino; int error; error = ext2_makeinode(MAKEIMODE(vap->va_type, vap->va_mode), ap->a_dvp, vpp, ap->a_cnp); if (error) return (error); ip = VTOI(*vpp); ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE; if (vap->va_rdev != VNOVAL) { /* * Want to be able to use this to make badblock * inodes, so don't truncate the dev number. */ if (!(ip->i_flag & IN_E4EXTENTS)) ip->i_rdev = vap->va_rdev; } /* * Remove inode, then reload it through VFS_VGET so it is * checked to see if it is an alias of an existing entry in * the inode cache. XXX I don't believe this is necessary now. */ (*vpp)->v_type = VNON; ino = ip->i_number; /* Save this before vgone() invalidates ip. */ vgone(*vpp); vput(*vpp); error = VFS_VGET(ap->a_dvp->v_mount, ino, LK_EXCLUSIVE, vpp); if (error) { *vpp = NULL; return (error); } return (0); } static int ext2_remove(struct vop_remove_args *ap) { struct inode *ip; struct vnode *vp = ap->a_vp; struct vnode *dvp = ap->a_dvp; int error; ip = VTOI(vp); if ((ip->i_flags & (NOUNLINK | IMMUTABLE | APPEND)) || (VTOI(dvp)->i_flags & APPEND)) { error = EPERM; goto out; } error = ext2_dirremove(dvp, ap->a_cnp); if (error == 0) { ip->i_nlink--; ip->i_flag |= IN_CHANGE; } out: return (error); } static unsigned short ext2_max_nlink(struct inode *ip) { struct m_ext2fs *fs; fs = ip->i_e2fs; if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_DIR_NLINK)) return (EXT4_LINK_MAX); else return (EXT2_LINK_MAX); } /* * link vnode call */ static int ext2_link(struct vop_link_args *ap) { struct vnode *vp = ap->a_vp; struct vnode *tdvp = ap->a_tdvp; struct componentname *cnp = ap->a_cnp; struct inode *ip; int error; #ifdef INVARIANTS if ((cnp->cn_flags & HASBUF) == 0) panic("ext2_link: no name"); #endif ip = VTOI(vp); if ((nlink_t)ip->i_nlink >= ext2_max_nlink(ip)) { error = EMLINK; goto out; } if (ip->i_flags & (IMMUTABLE | APPEND)) { error = EPERM; goto out; } ip->i_nlink++; ip->i_flag |= IN_CHANGE; error = ext2_update(vp, !DOINGASYNC(vp)); if (!error) error = ext2_direnter(ip, tdvp, cnp); if (error) { ip->i_nlink--; ip->i_flag |= IN_CHANGE; } out: return (error); } static int ext2_inc_nlink(struct inode *ip) { ip->i_nlink++; if (ext2_htree_has_idx(ip) && ip->i_nlink > 1) { if (ip->i_nlink >= ext2_max_nlink(ip) || ip->i_nlink == 2) ip->i_nlink = 1; } else if (ip->i_nlink > ext2_max_nlink(ip)) { ip->i_nlink--; return (EMLINK); } return (0); } static void ext2_dec_nlink(struct inode *ip) { if (!S_ISDIR(ip->i_mode) || ip->i_nlink > 2) ip->i_nlink--; } /* * Rename system call. * rename("foo", "bar"); * is essentially * unlink("bar"); * link("foo", "bar"); * unlink("foo"); * but ``atomically''. Can't do full commit without saving state in the * inode on disk which isn't feasible at this time. Best we can do is * always guarantee the target exists. * * Basic algorithm is: * * 1) Bump link count on source while we're linking it to the * target. This also ensure the inode won't be deleted out * from underneath us while we work (it may be truncated by * a concurrent `trunc' or `open' for creation). * 2) Link source to destination. If destination already exists, * delete it first. * 3) Unlink source reference to inode if still around. If a * directory was moved and the parent of the destination * is different from the source, patch the ".." entry in the * directory. */ static int ext2_rename(struct vop_rename_args *ap) { struct vnode *tvp = ap->a_tvp; struct vnode *tdvp = ap->a_tdvp; struct vnode *fvp = ap->a_fvp; struct vnode *fdvp = ap->a_fdvp; struct componentname *tcnp = ap->a_tcnp; struct componentname *fcnp = ap->a_fcnp; struct inode *ip, *xp, *dp; struct dirtemplate dirbuf; int doingdirectory = 0, oldparent = 0, newparent = 0; int error = 0; u_char namlen; #ifdef INVARIANTS if ((tcnp->cn_flags & HASBUF) == 0 || (fcnp->cn_flags & HASBUF) == 0) panic("ext2_rename: no name"); #endif /* * Check for cross-device rename. */ if ((fvp->v_mount != tdvp->v_mount) || (tvp && (fvp->v_mount != tvp->v_mount))) { error = EXDEV; abortit: if (tdvp == tvp) vrele(tdvp); else vput(tdvp); if (tvp) vput(tvp); vrele(fdvp); vrele(fvp); return (error); } if (tvp && ((VTOI(tvp)->i_flags & (NOUNLINK | IMMUTABLE | APPEND)) || (VTOI(tdvp)->i_flags & APPEND))) { error = EPERM; goto abortit; } /* * Renaming a file to itself has no effect. The upper layers should * not call us in that case. Temporarily just warn if they do. */ if (fvp == tvp) { printf("ext2_rename: fvp == tvp (can't happen)\n"); error = 0; goto abortit; } if ((error = vn_lock(fvp, LK_EXCLUSIVE)) != 0) goto abortit; dp = VTOI(fdvp); ip = VTOI(fvp); if (ip->i_nlink >= ext2_max_nlink(ip) && !ext2_htree_has_idx(ip)) { VOP_UNLOCK(fvp, 0); error = EMLINK; goto abortit; } if ((ip->i_flags & (NOUNLINK | IMMUTABLE | APPEND)) || (dp->i_flags & APPEND)) { VOP_UNLOCK(fvp, 0); error = EPERM; goto abortit; } if ((ip->i_mode & IFMT) == IFDIR) { /* * Avoid ".", "..", and aliases of "." for obvious reasons. */ if ((fcnp->cn_namelen == 1 && fcnp->cn_nameptr[0] == '.') || dp == ip || (fcnp->cn_flags | tcnp->cn_flags) & ISDOTDOT || (ip->i_flag & IN_RENAME)) { VOP_UNLOCK(fvp, 0); error = EINVAL; goto abortit; } ip->i_flag |= IN_RENAME; oldparent = dp->i_number; doingdirectory++; } vrele(fdvp); /* * When the target exists, both the directory * and target vnodes are returned locked. */ dp = VTOI(tdvp); xp = NULL; if (tvp) xp = VTOI(tvp); /* * 1) Bump link count while we're moving stuff * around. If we crash somewhere before * completing our work, the link count * may be wrong, but correctable. */ ext2_inc_nlink(ip); ip->i_flag |= IN_CHANGE; if ((error = ext2_update(fvp, !DOINGASYNC(fvp))) != 0) { VOP_UNLOCK(fvp, 0); goto bad; } /* * If ".." must be changed (ie the directory gets a new * parent) then the source directory must not be in the * directory hierarchy above the target, as this would * orphan everything below the source directory. Also * the user must have write permission in the source so * as to be able to change "..". We must repeat the call * to namei, as the parent directory is unlocked by the * call to checkpath(). */ error = VOP_ACCESS(fvp, VWRITE, tcnp->cn_cred, tcnp->cn_thread); VOP_UNLOCK(fvp, 0); if (oldparent != dp->i_number) newparent = dp->i_number; if (doingdirectory && newparent) { if (error) /* write access check above */ goto bad; if (xp != NULL) vput(tvp); error = ext2_checkpath(ip, dp, tcnp->cn_cred); if (error) goto out; VREF(tdvp); error = relookup(tdvp, &tvp, tcnp); if (error) goto out; vrele(tdvp); dp = VTOI(tdvp); xp = NULL; if (tvp) xp = VTOI(tvp); } /* * 2) If target doesn't exist, link the target * to the source and unlink the source. * Otherwise, rewrite the target directory * entry to reference the source inode and * expunge the original entry's existence. */ if (xp == NULL) { if (dp->i_devvp != ip->i_devvp) panic("ext2_rename: EXDEV"); /* * Account for ".." in new directory. * When source and destination have the same * parent we don't fool with the link count. */ if (doingdirectory && newparent) { error = ext2_inc_nlink(dp); if (error) goto bad; dp->i_flag |= IN_CHANGE; error = ext2_update(tdvp, !DOINGASYNC(tdvp)); if (error) goto bad; } error = ext2_direnter(ip, tdvp, tcnp); if (error) { if (doingdirectory && newparent) { ext2_dec_nlink(dp); dp->i_flag |= IN_CHANGE; (void)ext2_update(tdvp, 1); } goto bad; } vput(tdvp); } else { if (xp->i_devvp != dp->i_devvp || xp->i_devvp != ip->i_devvp) panic("ext2_rename: EXDEV"); /* * Short circuit rename(foo, foo). */ if (xp->i_number == ip->i_number) panic("ext2_rename: same file"); /* * If the parent directory is "sticky", then the user must * own the parent directory, or the destination of the rename, * otherwise the destination may not be changed (except by * root). This implements append-only directories. */ if ((dp->i_mode & S_ISTXT) && tcnp->cn_cred->cr_uid != 0 && tcnp->cn_cred->cr_uid != dp->i_uid && xp->i_uid != tcnp->cn_cred->cr_uid) { error = EPERM; goto bad; } /* * Target must be empty if a directory and have no links * to it. Also, ensure source and target are compatible * (both directories, or both not directories). */ if ((xp->i_mode & IFMT) == IFDIR) { if (!ext2_dirempty(xp, dp->i_number, tcnp->cn_cred)) { error = ENOTEMPTY; goto bad; } if (!doingdirectory) { error = ENOTDIR; goto bad; } cache_purge(tdvp); } else if (doingdirectory) { error = EISDIR; goto bad; } error = ext2_dirrewrite(dp, ip, tcnp); if (error) goto bad; /* * If the target directory is in the same * directory as the source directory, * decrement the link count on the parent * of the target directory. */ if (doingdirectory && !newparent) { ext2_dec_nlink(dp); dp->i_flag |= IN_CHANGE; } vput(tdvp); /* * Adjust the link count of the target to * reflect the dirrewrite above. If this is * a directory it is empty and there are * no links to it, so we can squash the inode and * any space associated with it. We disallowed * renaming over top of a directory with links to * it above, as the remaining link would point to * a directory without "." or ".." entries. */ ext2_dec_nlink(xp); if (doingdirectory) { if (--xp->i_nlink != 0) panic("ext2_rename: linked directory"); error = ext2_truncate(tvp, (off_t)0, IO_SYNC, tcnp->cn_cred, tcnp->cn_thread); } xp->i_flag |= IN_CHANGE; vput(tvp); xp = NULL; } /* * 3) Unlink the source. */ fcnp->cn_flags &= ~MODMASK; fcnp->cn_flags |= LOCKPARENT | LOCKLEAF; VREF(fdvp); error = relookup(fdvp, &fvp, fcnp); if (error == 0) vrele(fdvp); if (fvp != NULL) { xp = VTOI(fvp); dp = VTOI(fdvp); } else { /* * From name has disappeared. IN_RENAME is not sufficient * to protect against directory races due to timing windows, * so we can't panic here. */ vrele(ap->a_fvp); return (0); } /* * Ensure that the directory entry still exists and has not * changed while the new name has been entered. If the source is * a file then the entry may have been unlinked or renamed. In * either case there is no further work to be done. If the source * is a directory then it cannot have been rmdir'ed; its link * count of three would cause a rmdir to fail with ENOTEMPTY. * The IN_RENAME flag ensures that it cannot be moved by another * rename. */ if (xp != ip) { /* * From name resolves to a different inode. IN_RENAME is * not sufficient protection against timing window races * so we can't panic here. */ } else { /* * If the source is a directory with a * new parent, the link count of the old * parent directory must be decremented * and ".." set to point to the new parent. */ if (doingdirectory && newparent) { ext2_dec_nlink(dp); dp->i_flag |= IN_CHANGE; error = vn_rdwr(UIO_READ, fvp, (caddr_t)&dirbuf, sizeof(struct dirtemplate), (off_t)0, UIO_SYSSPACE, IO_NODELOCKED | IO_NOMACCHECK, tcnp->cn_cred, NOCRED, NULL, NULL); if (error == 0) { /* Like ufs little-endian: */ namlen = dirbuf.dotdot_type; if (namlen != 2 || dirbuf.dotdot_name[0] != '.' || dirbuf.dotdot_name[1] != '.') { ext2_dirbad(xp, (doff_t)12, "rename: mangled dir"); } else { dirbuf.dotdot_ino = newparent; (void)vn_rdwr(UIO_WRITE, fvp, (caddr_t)&dirbuf, sizeof(struct dirtemplate), (off_t)0, UIO_SYSSPACE, IO_NODELOCKED | IO_SYNC | IO_NOMACCHECK, tcnp->cn_cred, NOCRED, NULL, NULL); cache_purge(fdvp); } } } error = ext2_dirremove(fdvp, fcnp); if (!error) { ext2_dec_nlink(xp); xp->i_flag |= IN_CHANGE; } xp->i_flag &= ~IN_RENAME; } if (dp) vput(fdvp); if (xp) vput(fvp); vrele(ap->a_fvp); return (error); bad: if (xp) vput(ITOV(xp)); vput(ITOV(dp)); out: if (doingdirectory) ip->i_flag &= ~IN_RENAME; if (vn_lock(fvp, LK_EXCLUSIVE) == 0) { ext2_dec_nlink(ip); ip->i_flag |= IN_CHANGE; ip->i_flag &= ~IN_RENAME; vput(fvp); } else vrele(fvp); return (error); } #ifdef UFS_ACL static int ext2_do_posix1e_acl_inheritance_dir(struct vnode *dvp, struct vnode *tvp, mode_t dmode, struct ucred *cred, struct thread *td) { int error; struct inode *ip = VTOI(tvp); struct acl *dacl, *acl; acl = acl_alloc(M_WAITOK); dacl = acl_alloc(M_WAITOK); /* * Retrieve default ACL from parent, if any. */ error = VOP_GETACL(dvp, ACL_TYPE_DEFAULT, acl, cred, td); switch (error) { case 0: /* * Retrieved a default ACL, so merge mode and ACL if * necessary. If the ACL is empty, fall through to * the "not defined or available" case. */ if (acl->acl_cnt != 0) { dmode = acl_posix1e_newfilemode(dmode, acl); ip->i_mode = dmode; *dacl = *acl; ext2_sync_acl_from_inode(ip, acl); break; } /* FALLTHROUGH */ case EOPNOTSUPP: /* * Just use the mode as-is. */ ip->i_mode = dmode; error = 0; goto out; default: goto out; } error = VOP_SETACL(tvp, ACL_TYPE_ACCESS, acl, cred, td); if (error == 0) error = VOP_SETACL(tvp, ACL_TYPE_DEFAULT, dacl, cred, td); switch (error) { case 0: break; case EOPNOTSUPP: /* * XXX: This should not happen, as EOPNOTSUPP above * was supposed to free acl. */ #ifdef DEBUG printf("ext2_mkdir: VOP_GETACL() but no VOP_SETACL()\n"); #endif /* DEBUG */ break; default: goto out; } out: acl_free(acl); acl_free(dacl); return (error); } static int ext2_do_posix1e_acl_inheritance_file(struct vnode *dvp, struct vnode *tvp, mode_t mode, struct ucred *cred, struct thread *td) { int error; struct inode *ip = VTOI(tvp); struct acl *acl; acl = acl_alloc(M_WAITOK); /* * Retrieve default ACL for parent, if any. */ error = VOP_GETACL(dvp, ACL_TYPE_DEFAULT, acl, cred, td); switch (error) { case 0: /* * Retrieved a default ACL, so merge mode and ACL if * necessary. */ if (acl->acl_cnt != 0) { /* * Two possible ways for default ACL to not * be present. First, the EA can be * undefined, or second, the default ACL can * be blank. If it's blank, fall through to * the it's not defined case. */ mode = acl_posix1e_newfilemode(mode, acl); ip->i_mode = mode; ext2_sync_acl_from_inode(ip, acl); break; } /* FALLTHROUGH */ case EOPNOTSUPP: /* * Just use the mode as-is. */ ip->i_mode = mode; error = 0; goto out; default: goto out; } error = VOP_SETACL(tvp, ACL_TYPE_ACCESS, acl, cred, td); switch (error) { case 0: break; case EOPNOTSUPP: /* * XXX: This should not happen, as EOPNOTSUPP above was * supposed to free acl. */ printf("ufs_do_posix1e_acl_inheritance_file: VOP_GETACL() " "but no VOP_SETACL()\n"); /* panic("ufs_do_posix1e_acl_inheritance_file: VOP_GETACL() " "but no VOP_SETACL()"); */ break; default: goto out; } out: acl_free(acl); return (error); } #endif /* UFS_ACL */ /* * Mkdir system call */ static int ext2_mkdir(struct vop_mkdir_args *ap) { struct vnode *dvp = ap->a_dvp; struct vattr *vap = ap->a_vap; struct componentname *cnp = ap->a_cnp; struct inode *ip, *dp; struct vnode *tvp; struct dirtemplate dirtemplate, *dtp; int error, dmode; #ifdef INVARIANTS if ((cnp->cn_flags & HASBUF) == 0) panic("ext2_mkdir: no name"); #endif dp = VTOI(dvp); if ((nlink_t)dp->i_nlink >= ext2_max_nlink(dp) && !ext2_htree_has_idx(dp)) { error = EMLINK; goto out; } dmode = vap->va_mode & 0777; dmode |= IFDIR; /* * Must simulate part of ext2_makeinode here to acquire the inode, * but not have it entered in the parent directory. The entry is * made later after writing "." and ".." entries. */ error = ext2_valloc(dvp, dmode, cnp->cn_cred, &tvp); if (error) goto out; ip = VTOI(tvp); ip->i_gid = dp->i_gid; #ifdef SUIDDIR { /* * if we are hacking owners here, (only do this where told to) * and we are not giving it TOO root, (would subvert quotas) * then go ahead and give it to the other user. * The new directory also inherits the SUID bit. * If user's UID and dir UID are the same, * 'give it away' so that the SUID is still forced on. */ if ((dvp->v_mount->mnt_flag & MNT_SUIDDIR) && (dp->i_mode & ISUID) && dp->i_uid) { dmode |= ISUID; ip->i_uid = dp->i_uid; } else { ip->i_uid = cnp->cn_cred->cr_uid; } } #else ip->i_uid = cnp->cn_cred->cr_uid; #endif ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE; ip->i_mode = dmode; tvp->v_type = VDIR; /* Rest init'd in getnewvnode(). */ ip->i_nlink = 2; if (cnp->cn_flags & ISWHITEOUT) ip->i_flags |= UF_OPAQUE; error = ext2_update(tvp, 1); /* * Bump link count in parent directory * to reflect work done below. Should * be done before reference is created * so reparation is possible if we crash. */ ext2_inc_nlink(dp); dp->i_flag |= IN_CHANGE; error = ext2_update(dvp, !DOINGASYNC(dvp)); if (error) goto bad; /* Initialize directory with "." and ".." from static template. */ if (EXT2_HAS_INCOMPAT_FEATURE(ip->i_e2fs, EXT2F_INCOMPAT_FTYPE)) dtp = &mastertemplate; else dtp = &omastertemplate; dirtemplate = *dtp; dirtemplate.dot_ino = ip->i_number; dirtemplate.dotdot_ino = dp->i_number; /* * note that in ext2 DIRBLKSIZ == blocksize, not DEV_BSIZE so let's * just redefine it - for this function only */ #undef DIRBLKSIZ #define DIRBLKSIZ VTOI(dvp)->i_e2fs->e2fs_bsize dirtemplate.dotdot_reclen = DIRBLKSIZ - 12; error = vn_rdwr(UIO_WRITE, tvp, (caddr_t)&dirtemplate, sizeof(dirtemplate), (off_t)0, UIO_SYSSPACE, IO_NODELOCKED | IO_SYNC | IO_NOMACCHECK, cnp->cn_cred, NOCRED, NULL, NULL); if (error) { ext2_dec_nlink(dp); dp->i_flag |= IN_CHANGE; goto bad; } if (DIRBLKSIZ > VFSTOEXT2(dvp->v_mount)->um_mountp->mnt_stat.f_bsize) /* XXX should grow with balloc() */ panic("ext2_mkdir: blksize"); else { ip->i_size = DIRBLKSIZ; ip->i_flag |= IN_CHANGE; } #ifdef UFS_ACL if (dvp->v_mount->mnt_flag & MNT_ACLS) { error = ext2_do_posix1e_acl_inheritance_dir(dvp, tvp, dmode, cnp->cn_cred, cnp->cn_thread); if (error) goto bad; } #endif /* UFS_ACL */ /* Directory set up, now install its entry in the parent directory. */ error = ext2_direnter(ip, dvp, cnp); if (error) { ext2_dec_nlink(dp); dp->i_flag |= IN_CHANGE; } bad: /* * No need to do an explicit VOP_TRUNCATE here, vrele will do this * for us because we set the link count to 0. */ if (error) { ip->i_nlink = 0; ip->i_flag |= IN_CHANGE; vput(tvp); } else *ap->a_vpp = tvp; out: return (error); #undef DIRBLKSIZ #define DIRBLKSIZ DEV_BSIZE } /* * Rmdir system call. */ static int ext2_rmdir(struct vop_rmdir_args *ap) { struct vnode *vp = ap->a_vp; struct vnode *dvp = ap->a_dvp; struct componentname *cnp = ap->a_cnp; struct inode *ip, *dp; int error; ip = VTOI(vp); dp = VTOI(dvp); /* * Verify the directory is empty (and valid). * (Rmdir ".." won't be valid since * ".." will contain a reference to * the current directory and thus be * non-empty.) */ if (!ext2_dirempty(ip, dp->i_number, cnp->cn_cred)) { error = ENOTEMPTY; goto out; } if ((dp->i_flags & APPEND) || (ip->i_flags & (NOUNLINK | IMMUTABLE | APPEND))) { error = EPERM; goto out; } /* * Delete reference to directory before purging * inode. If we crash in between, the directory * will be reattached to lost+found, */ error = ext2_dirremove(dvp, cnp); if (error) goto out; ext2_dec_nlink(dp); dp->i_flag |= IN_CHANGE; cache_purge(dvp); VOP_UNLOCK(dvp, 0); /* * Truncate inode. The only stuff left * in the directory is "." and "..". */ ip->i_nlink = 0; error = ext2_truncate(vp, (off_t)0, IO_SYNC, cnp->cn_cred, cnp->cn_thread); cache_purge(ITOV(ip)); if (vn_lock(dvp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { VOP_UNLOCK(vp, 0); vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); } out: return (error); } /* * symlink -- make a symbolic link */ static int ext2_symlink(struct vop_symlink_args *ap) { struct vnode *vp, **vpp = ap->a_vpp; struct inode *ip; int len, error; error = ext2_makeinode(IFLNK | ap->a_vap->va_mode, ap->a_dvp, vpp, ap->a_cnp); if (error) return (error); vp = *vpp; len = strlen(ap->a_target); if (len < vp->v_mount->mnt_maxsymlinklen) { ip = VTOI(vp); bcopy(ap->a_target, (char *)ip->i_shortlink, len); ip->i_size = len; ip->i_flag |= IN_CHANGE | IN_UPDATE; } else error = vn_rdwr(UIO_WRITE, vp, ap->a_target, len, (off_t)0, UIO_SYSSPACE, IO_NODELOCKED | IO_NOMACCHECK, ap->a_cnp->cn_cred, NOCRED, NULL, NULL); if (error) vput(vp); return (error); } /* * Return target name of a symbolic link */ static int ext2_readlink(struct vop_readlink_args *ap) { struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); int isize; isize = ip->i_size; if (isize < vp->v_mount->mnt_maxsymlinklen) { uiomove((char *)ip->i_shortlink, isize, ap->a_uio); return (0); } return (VOP_READ(vp, ap->a_uio, 0, ap->a_cred)); } /* * Calculate the logical to physical mapping if not done already, * then call the device strategy routine. * * In order to be able to swap to a file, the ext2_bmaparray() operation may not * deadlock on memory. See ext2_bmap() for details. */ static int ext2_strategy(struct vop_strategy_args *ap) { struct buf *bp = ap->a_bp; struct vnode *vp = ap->a_vp; struct bufobj *bo; daddr_t blkno; int error; if (vp->v_type == VBLK || vp->v_type == VCHR) panic("ext2_strategy: spec"); if (bp->b_blkno == bp->b_lblkno) { if (VTOI(ap->a_vp)->i_flag & IN_E4EXTENTS) error = ext4_bmapext(vp, bp->b_lblkno, &blkno, NULL, NULL); else error = ext2_bmaparray(vp, bp->b_lblkno, &blkno, NULL, NULL); bp->b_blkno = blkno; if (error) { bp->b_error = error; bp->b_ioflags |= BIO_ERROR; bufdone(bp); return (0); } if ((long)bp->b_blkno == -1) vfs_bio_clrbuf(bp); } if ((long)bp->b_blkno == -1) { bufdone(bp); return (0); } bp->b_iooffset = dbtob(bp->b_blkno); bo = VFSTOEXT2(vp->v_mount)->um_bo; BO_STRATEGY(bo, bp); return (0); } /* * Print out the contents of an inode. */ static int ext2_print(struct vop_print_args *ap) { struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); vn_printf(ip->i_devvp, "\tino %ju", (uintmax_t)ip->i_number); if (vp->v_type == VFIFO) fifo_printinfo(vp); printf("\n"); return (0); } /* * Close wrapper for fifos. * * Update the times on the inode then do device close. */ static int ext2fifo_close(struct vop_close_args *ap) { struct vnode *vp = ap->a_vp; VI_LOCK(vp); if (vp->v_usecount > 1) ext2_itimes_locked(vp); VI_UNLOCK(vp); return (fifo_specops.vop_close(ap)); } /* * Kqfilter wrapper for fifos. * * Fall through to ext2 kqfilter routines if needed */ static int ext2fifo_kqfilter(struct vop_kqfilter_args *ap) { int error; error = fifo_specops.vop_kqfilter(ap); if (error) error = vfs_kqfilter(ap); return (error); } /* * Return POSIX pathconf information applicable to ext2 filesystems. */ static int ext2_pathconf(struct vop_pathconf_args *ap) { int error = 0; switch (ap->a_name) { case _PC_LINK_MAX: if (ext2_htree_has_idx(VTOI(ap->a_vp))) *ap->a_retval = INT_MAX; else *ap->a_retval = ext2_max_nlink(VTOI(ap->a_vp)); break; case _PC_NAME_MAX: *ap->a_retval = NAME_MAX; + break; + case _PC_PIPE_BUF: + if (ap->a_vp->v_type == VDIR || ap->a_vp->v_type == VFIFO) + *ap->a_retval = PIPE_BUF; + else + error = EINVAL; break; case _PC_CHOWN_RESTRICTED: *ap->a_retval = 1; break; case _PC_NO_TRUNC: *ap->a_retval = 1; break; #ifdef UFS_ACL case _PC_ACL_EXTENDED: if (ap->a_vp->v_mount->mnt_flag & MNT_ACLS) *ap->a_retval = 1; else *ap->a_retval = 0; break; case _PC_ACL_PATH_MAX: if (ap->a_vp->v_mount->mnt_flag & MNT_ACLS) *ap->a_retval = ACL_MAX_ENTRIES; else *ap->a_retval = 3; break; #endif /* UFS_ACL */ case _PC_MIN_HOLE_SIZE: *ap->a_retval = ap->a_vp->v_mount->mnt_stat.f_iosize; break; case _PC_PRIO_IO: *ap->a_retval = 0; break; case _PC_SYNC_IO: *ap->a_retval = 0; break; case _PC_ALLOC_SIZE_MIN: *ap->a_retval = ap->a_vp->v_mount->mnt_stat.f_bsize; break; case _PC_FILESIZEBITS: *ap->a_retval = 64; break; case _PC_REC_INCR_XFER_SIZE: *ap->a_retval = ap->a_vp->v_mount->mnt_stat.f_iosize; break; case _PC_REC_MAX_XFER_SIZE: *ap->a_retval = -1; /* means ``unlimited'' */ break; case _PC_REC_MIN_XFER_SIZE: *ap->a_retval = ap->a_vp->v_mount->mnt_stat.f_iosize; break; case _PC_REC_XFER_ALIGN: *ap->a_retval = PAGE_SIZE; break; case _PC_SYMLINK_MAX: *ap->a_retval = MAXPATHLEN; break; default: error = vop_stdpathconf(ap); break; } return (error); } /* * Vnode operation to remove a named attribute. */ static int ext2_deleteextattr(struct vop_deleteextattr_args *ap) { struct inode *ip; struct m_ext2fs *fs; int error; ip = VTOI(ap->a_vp); fs = ip->i_e2fs; if (!EXT2_HAS_COMPAT_FEATURE(ip->i_e2fs, EXT2F_COMPAT_EXT_ATTR)) return (EOPNOTSUPP); if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) return (EOPNOTSUPP); error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VWRITE); if (error) return (error); error = ENOATTR; if (EXT2_INODE_SIZE(fs) != E2FS_REV0_INODE_SIZE) { error = ext2_extattr_inode_delete(ip, ap->a_attrnamespace, ap->a_name); if (error != ENOATTR) return (error); } if (ip->i_facl) error = ext2_extattr_block_delete(ip, ap->a_attrnamespace, ap->a_name); return (error); } /* * Vnode operation to retrieve a named extended attribute. */ static int ext2_getextattr(struct vop_getextattr_args *ap) { struct inode *ip; struct m_ext2fs *fs; int error; ip = VTOI(ap->a_vp); fs = ip->i_e2fs; if (!EXT2_HAS_COMPAT_FEATURE(ip->i_e2fs, EXT2F_COMPAT_EXT_ATTR)) return (EOPNOTSUPP); if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) return (EOPNOTSUPP); error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VREAD); if (error) return (error); if (ap->a_size != NULL) *ap->a_size = 0; error = ENOATTR; if (EXT2_INODE_SIZE(fs) != E2FS_REV0_INODE_SIZE) { error = ext2_extattr_inode_get(ip, ap->a_attrnamespace, ap->a_name, ap->a_uio, ap->a_size); if (error != ENOATTR) return (error); } if (ip->i_facl) error = ext2_extattr_block_get(ip, ap->a_attrnamespace, ap->a_name, ap->a_uio, ap->a_size); return (error); } /* * Vnode operation to retrieve extended attributes on a vnode. */ static int ext2_listextattr(struct vop_listextattr_args *ap) { struct inode *ip; struct m_ext2fs *fs; int error; ip = VTOI(ap->a_vp); fs = ip->i_e2fs; if (!EXT2_HAS_COMPAT_FEATURE(ip->i_e2fs, EXT2F_COMPAT_EXT_ATTR)) return (EOPNOTSUPP); if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) return (EOPNOTSUPP); error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VREAD); if (error) return (error); if (ap->a_size != NULL) *ap->a_size = 0; if (EXT2_INODE_SIZE(fs) != E2FS_REV0_INODE_SIZE) { error = ext2_extattr_inode_list(ip, ap->a_attrnamespace, ap->a_uio, ap->a_size); if (error) return (error); } if (ip->i_facl) error = ext2_extattr_block_list(ip, ap->a_attrnamespace, ap->a_uio, ap->a_size); return (error); } /* * Vnode operation to set a named attribute. */ static int ext2_setextattr(struct vop_setextattr_args *ap) { struct inode *ip; struct m_ext2fs *fs; int error; ip = VTOI(ap->a_vp); fs = ip->i_e2fs; if (!EXT2_HAS_COMPAT_FEATURE(ip->i_e2fs, EXT2F_COMPAT_EXT_ATTR)) return (EOPNOTSUPP); if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) return (EOPNOTSUPP); error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VWRITE); if (error) return (error); error = ext2_extattr_valid_attrname(ap->a_attrnamespace, ap->a_name); if (error) return (error); if (EXT2_INODE_SIZE(fs) != E2FS_REV0_INODE_SIZE) { error = ext2_extattr_inode_set(ip, ap->a_attrnamespace, ap->a_name, ap->a_uio); if (error != ENOSPC) return (error); } error = ext2_extattr_block_set(ip, ap->a_attrnamespace, ap->a_name, ap->a_uio); return (error); } /* * Vnode pointer to File handle */ /* ARGSUSED */ static int ext2_vptofh(struct vop_vptofh_args *ap) { struct inode *ip; struct ufid *ufhp; ip = VTOI(ap->a_vp); ufhp = (struct ufid *)ap->a_fhp; ufhp->ufid_len = sizeof(struct ufid); ufhp->ufid_ino = ip->i_number; ufhp->ufid_gen = ip->i_gen; return (0); } /* * Initialize the vnode associated with a new inode, handle aliased * vnodes. */ int ext2_vinit(struct mount *mntp, struct vop_vector *fifoops, struct vnode **vpp) { struct inode *ip; struct vnode *vp; vp = *vpp; ip = VTOI(vp); vp->v_type = IFTOVT(ip->i_mode); if (vp->v_type == VFIFO) vp->v_op = fifoops; if (ip->i_number == EXT2_ROOTINO) vp->v_vflag |= VV_ROOT; ip->i_modrev = init_va_filerev(); *vpp = vp; return (0); } /* * Allocate a new inode. */ static int ext2_makeinode(int mode, struct vnode *dvp, struct vnode **vpp, struct componentname *cnp) { struct inode *ip, *pdir; struct vnode *tvp; int error; pdir = VTOI(dvp); #ifdef INVARIANTS if ((cnp->cn_flags & HASBUF) == 0) panic("ext2_makeinode: no name"); #endif *vpp = NULL; if ((mode & IFMT) == 0) mode |= IFREG; error = ext2_valloc(dvp, mode, cnp->cn_cred, &tvp); if (error) { return (error); } ip = VTOI(tvp); ip->i_gid = pdir->i_gid; #ifdef SUIDDIR { /* * if we are * not the owner of the directory, * and we are hacking owners here, (only do this where told to) * and we are not giving it TOO root, (would subvert quotas) * then go ahead and give it to the other user. * Note that this drops off the execute bits for security. */ if ((dvp->v_mount->mnt_flag & MNT_SUIDDIR) && (pdir->i_mode & ISUID) && (pdir->i_uid != cnp->cn_cred->cr_uid) && pdir->i_uid) { ip->i_uid = pdir->i_uid; mode &= ~07111; } else { ip->i_uid = cnp->cn_cred->cr_uid; } } #else ip->i_uid = cnp->cn_cred->cr_uid; #endif ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE; ip->i_mode = mode; tvp->v_type = IFTOVT(mode); /* Rest init'd in getnewvnode(). */ ip->i_nlink = 1; if ((ip->i_mode & ISGID) && !groupmember(ip->i_gid, cnp->cn_cred)) { if (priv_check_cred(cnp->cn_cred, PRIV_VFS_RETAINSUGID, 0)) ip->i_mode &= ~ISGID; } if (cnp->cn_flags & ISWHITEOUT) ip->i_flags |= UF_OPAQUE; /* * Make sure inode goes to disk before directory entry. */ error = ext2_update(tvp, !DOINGASYNC(tvp)); if (error) goto bad; #ifdef UFS_ACL if (dvp->v_mount->mnt_flag & MNT_ACLS) { error = ext2_do_posix1e_acl_inheritance_file(dvp, tvp, mode, cnp->cn_cred, cnp->cn_thread); if (error) goto bad; } #endif /* UFS_ACL */ error = ext2_direnter(ip, dvp, cnp); if (error) goto bad; *vpp = tvp; return (0); bad: /* * Write error occurred trying to update the inode * or the directory so must deallocate the inode. */ ip->i_nlink = 0; ip->i_flag |= IN_CHANGE; vput(tvp); return (error); } /* * Vnode op for reading. */ static int ext2_read(struct vop_read_args *ap) { struct vnode *vp; struct inode *ip; struct uio *uio; struct m_ext2fs *fs; struct buf *bp; daddr_t lbn, nextlbn; off_t bytesinfile; long size, xfersize, blkoffset; int error, orig_resid, seqcount; int ioflag; vp = ap->a_vp; uio = ap->a_uio; ioflag = ap->a_ioflag; seqcount = ap->a_ioflag >> IO_SEQSHIFT; ip = VTOI(vp); #ifdef INVARIANTS if (uio->uio_rw != UIO_READ) panic("%s: mode", "ext2_read"); if (vp->v_type == VLNK) { if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen) panic("%s: short symlink", "ext2_read"); } else if (vp->v_type != VREG && vp->v_type != VDIR) panic("%s: type %d", "ext2_read", vp->v_type); #endif orig_resid = uio->uio_resid; KASSERT(orig_resid >= 0, ("ext2_read: uio->uio_resid < 0")); if (orig_resid == 0) return (0); KASSERT(uio->uio_offset >= 0, ("ext2_read: uio->uio_offset < 0")); fs = ip->i_e2fs; if (uio->uio_offset < ip->i_size && uio->uio_offset >= fs->e2fs_maxfilesize) return (EOVERFLOW); for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0) break; lbn = lblkno(fs, uio->uio_offset); nextlbn = lbn + 1; size = blksize(fs, ip, lbn); blkoffset = blkoff(fs, uio->uio_offset); xfersize = fs->e2fs_fsize - blkoffset; if (uio->uio_resid < xfersize) xfersize = uio->uio_resid; if (bytesinfile < xfersize) xfersize = bytesinfile; if (lblktosize(fs, nextlbn) >= ip->i_size) error = bread(vp, lbn, size, NOCRED, &bp); else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) { error = cluster_read(vp, ip->i_size, lbn, size, NOCRED, blkoffset + uio->uio_resid, seqcount, 0, &bp); } else if (seqcount > 1) { u_int nextsize = blksize(fs, ip, nextlbn); error = breadn(vp, lbn, size, &nextlbn, &nextsize, 1, NOCRED, &bp); } else error = bread(vp, lbn, size, NOCRED, &bp); if (error) { brelse(bp); bp = NULL; break; } /* * We should only get non-zero b_resid when an I/O error * has occurred, which should cause us to break above. * However, if the short read did not cause an error, * then we want to ensure that we do not uiomove bad * or uninitialized data. */ size -= bp->b_resid; if (size < xfersize) { if (size == 0) break; xfersize = size; } error = uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); if (error) break; vfs_bio_brelse(bp, ioflag); } /* * This can only happen in the case of an error because the loop * above resets bp to NULL on each iteration and on normal * completion has not set a new value into it. so it must have come * from a 'break' statement */ if (bp != NULL) vfs_bio_brelse(bp, ioflag); if ((error == 0 || uio->uio_resid != orig_resid) && (vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) ip->i_flag |= IN_ACCESS; return (error); } static int ext2_ioctl(struct vop_ioctl_args *ap) { switch (ap->a_command) { case FIOSEEKDATA: case FIOSEEKHOLE: return (vn_bmap_seekhole(ap->a_vp, ap->a_command, (off_t *)ap->a_data, ap->a_cred)); default: return (ENOTTY); } } /* * Vnode op for writing. */ static int ext2_write(struct vop_write_args *ap) { struct vnode *vp; struct uio *uio; struct inode *ip; struct m_ext2fs *fs; struct buf *bp; daddr_t lbn; off_t osize; int blkoffset, error, flags, ioflag, resid, size, seqcount, xfersize; ioflag = ap->a_ioflag; uio = ap->a_uio; vp = ap->a_vp; seqcount = ioflag >> IO_SEQSHIFT; ip = VTOI(vp); #ifdef INVARIANTS if (uio->uio_rw != UIO_WRITE) panic("%s: mode", "ext2_write"); #endif switch (vp->v_type) { case VREG: if (ioflag & IO_APPEND) uio->uio_offset = ip->i_size; if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) return (EPERM); /* FALLTHROUGH */ case VLNK: break; case VDIR: /* XXX differs from ffs -- this is called from ext2_mkdir(). */ if ((ioflag & IO_SYNC) == 0) panic("ext2_write: nonsync dir write"); break; default: panic("ext2_write: type %p %d (%jd,%jd)", (void *)vp, vp->v_type, (intmax_t)uio->uio_offset, (intmax_t)uio->uio_resid); } KASSERT(uio->uio_resid >= 0, ("ext2_write: uio->uio_resid < 0")); KASSERT(uio->uio_offset >= 0, ("ext2_write: uio->uio_offset < 0")); fs = ip->i_e2fs; if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->e2fs_maxfilesize) return (EFBIG); /* * Maybe this should be above the vnode op call, but so long as * file servers have no limits, I don't think it matters. */ if (vn_rlimit_fsize(vp, uio, uio->uio_td)) return (EFBIG); resid = uio->uio_resid; osize = ip->i_size; if (seqcount > BA_SEQMAX) flags = BA_SEQMAX << BA_SEQSHIFT; else flags = seqcount << BA_SEQSHIFT; if ((ioflag & IO_SYNC) && !DOINGASYNC(vp)) flags |= IO_SYNC; for (error = 0; uio->uio_resid > 0;) { lbn = lblkno(fs, uio->uio_offset); blkoffset = blkoff(fs, uio->uio_offset); xfersize = fs->e2fs_fsize - blkoffset; if (uio->uio_resid < xfersize) xfersize = uio->uio_resid; if (uio->uio_offset + xfersize > ip->i_size) vnode_pager_setsize(vp, uio->uio_offset + xfersize); /* * We must perform a read-before-write if the transfer size * does not cover the entire buffer. */ if (fs->e2fs_bsize > xfersize) flags |= BA_CLRBUF; else flags &= ~BA_CLRBUF; error = ext2_balloc(ip, lbn, blkoffset + xfersize, ap->a_cred, &bp, flags); if (error != 0) break; if ((ioflag & (IO_SYNC | IO_INVAL)) == (IO_SYNC | IO_INVAL)) bp->b_flags |= B_NOCACHE; if (uio->uio_offset + xfersize > ip->i_size) ip->i_size = uio->uio_offset + xfersize; size = blksize(fs, ip, lbn) - bp->b_resid; if (size < xfersize) xfersize = size; error = uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); /* * If the buffer is not already filled and we encounter an * error while trying to fill it, we have to clear out any * garbage data from the pages instantiated for the buffer. * If we do not, a failed uiomove() during a write can leave * the prior contents of the pages exposed to a userland mmap. * * Note that we need only clear buffers with a transfer size * equal to the block size because buffers with a shorter * transfer size were cleared above by the call to ext2_balloc() * with the BA_CLRBUF flag set. * * If the source region for uiomove identically mmaps the * buffer, uiomove() performed the NOP copy, and the buffer * content remains valid because the page fault handler * validated the pages. */ if (error != 0 && (bp->b_flags & B_CACHE) == 0 && fs->e2fs_bsize == xfersize) vfs_bio_clrbuf(bp); vfs_bio_set_flags(bp, ioflag); /* * If IO_SYNC each buffer is written synchronously. Otherwise * if we have a severe page deficiency write the buffer * asynchronously. Otherwise try to cluster, and if that * doesn't do it then either do an async write (if O_DIRECT), * or a delayed write (if not). */ if (ioflag & IO_SYNC) { (void)bwrite(bp); } else if (vm_page_count_severe() || buf_dirty_count_severe() || (ioflag & IO_ASYNC)) { bp->b_flags |= B_CLUSTEROK; bawrite(bp); } else if (xfersize + blkoffset == fs->e2fs_fsize) { if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) { bp->b_flags |= B_CLUSTEROK; cluster_write(vp, bp, ip->i_size, seqcount, 0); } else { bawrite(bp); } } else if (ioflag & IO_DIRECT) { bp->b_flags |= B_CLUSTEROK; bawrite(bp); } else { bp->b_flags |= B_CLUSTEROK; bdwrite(bp); } if (error || xfersize == 0) break; } /* * If we successfully wrote any data, and we are not the superuser * we clear the setuid and setgid bits as a precaution against * tampering. */ if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ap->a_cred) { if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID, 0)) ip->i_mode &= ~(ISUID | ISGID); } if (error) { if (ioflag & IO_UNIT) { (void)ext2_truncate(vp, osize, ioflag & IO_SYNC, ap->a_cred, uio->uio_td); uio->uio_offset -= resid - uio->uio_resid; uio->uio_resid = resid; } } if (uio->uio_resid != resid) { ip->i_flag |= IN_CHANGE | IN_UPDATE; if (ioflag & IO_SYNC) error = ext2_update(vp, 1); } return (error); } Index: head/sys/fs/fifofs/fifo_vnops.c =================================================================== --- head/sys/fs/fifofs/fifo_vnops.c (revision 327003) +++ head/sys/fs/fifofs/fifo_vnops.c (revision 327004) @@ -1,360 +1,360 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1990, 1993, 1995 * The Regents of the University of California. * Copyright (c) 2005 Robert N. M. Watson * Copyright (c) 2012 Giovanni Trematerra * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)fifo_vnops.c 8.10 (Berkeley) 5/27/95 * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * This structure is associated with the FIFO vnode and stores * the state associated with the FIFO. * Notes about locking: * - fi_pipe is invariant since init time. * - fi_readers and fi_writers are protected by the vnode lock. */ struct fifoinfo { struct pipe *fi_pipe; long fi_readers; long fi_writers; u_int fi_rgen; u_int fi_wgen; }; static vop_print_t fifo_print; static vop_open_t fifo_open; static vop_close_t fifo_close; static vop_advlock_t fifo_advlock; struct vop_vector fifo_specops = { .vop_default = &default_vnodeops, .vop_advlock = fifo_advlock, .vop_close = fifo_close, .vop_create = VOP_PANIC, .vop_getattr = VOP_EBADF, .vop_ioctl = VOP_PANIC, .vop_kqfilter = VOP_PANIC, .vop_link = VOP_PANIC, .vop_mkdir = VOP_PANIC, .vop_mknod = VOP_PANIC, .vop_open = fifo_open, - .vop_pathconf = vop_stdpathconf, + .vop_pathconf = VOP_PANIC, .vop_print = fifo_print, .vop_read = VOP_PANIC, .vop_readdir = VOP_PANIC, .vop_readlink = VOP_PANIC, .vop_reallocblks = VOP_PANIC, .vop_reclaim = VOP_NULL, .vop_remove = VOP_PANIC, .vop_rename = VOP_PANIC, .vop_rmdir = VOP_PANIC, .vop_setattr = VOP_EBADF, .vop_symlink = VOP_PANIC, .vop_write = VOP_PANIC, }; /* * Dispose of fifo resources. */ static void fifo_cleanup(struct vnode *vp) { struct fifoinfo *fip; ASSERT_VOP_ELOCKED(vp, "fifo_cleanup"); fip = vp->v_fifoinfo; if (fip->fi_readers == 0 && fip->fi_writers == 0) { vp->v_fifoinfo = NULL; pipe_dtor(fip->fi_pipe); free(fip, M_VNODE); } } /* * Open called to set up a new instance of a fifo or * to find an active instance of a fifo. */ /* ARGSUSED */ static int fifo_open(ap) struct vop_open_args /* { struct vnode *a_vp; int a_mode; struct ucred *a_cred; struct thread *a_td; struct file *a_fp; } */ *ap; { struct vnode *vp; struct file *fp; struct thread *td; struct fifoinfo *fip; struct pipe *fpipe; u_int gen; int error, stops_deferred; vp = ap->a_vp; fp = ap->a_fp; td = ap->a_td; ASSERT_VOP_ELOCKED(vp, "fifo_open"); if (fp == NULL || (ap->a_mode & FEXEC) != 0) return (EINVAL); if ((fip = vp->v_fifoinfo) == NULL) { pipe_named_ctor(&fpipe, td); fip = malloc(sizeof(*fip), M_VNODE, M_WAITOK); fip->fi_pipe = fpipe; fpipe->pipe_wgen = fip->fi_readers = fip->fi_writers = 0; KASSERT(vp->v_fifoinfo == NULL, ("fifo_open: v_fifoinfo race")); vp->v_fifoinfo = fip; } fpipe = fip->fi_pipe; KASSERT(fpipe != NULL, ("fifo_open: pipe is NULL")); /* * Use the pipe mutex here, in addition to the vnode lock, * in order to allow vnode lock dropping before msleep() calls * and still avoiding missed wakeups. */ PIPE_LOCK(fpipe); if (ap->a_mode & FREAD) { fip->fi_readers++; fip->fi_rgen++; if (fip->fi_readers == 1) { fpipe->pipe_state &= ~PIPE_EOF; if (fip->fi_writers > 0) wakeup(&fip->fi_writers); } fp->f_seqcount = fpipe->pipe_wgen - fip->fi_writers; } if (ap->a_mode & FWRITE) { if ((ap->a_mode & O_NONBLOCK) && fip->fi_readers == 0) { PIPE_UNLOCK(fpipe); if (fip->fi_writers == 0) fifo_cleanup(vp); return (ENXIO); } fip->fi_writers++; fip->fi_wgen++; if (fip->fi_writers == 1) { fpipe->pipe_state &= ~PIPE_EOF; if (fip->fi_readers > 0) wakeup(&fip->fi_readers); } } if ((ap->a_mode & O_NONBLOCK) == 0) { if ((ap->a_mode & FREAD) && fip->fi_writers == 0) { gen = fip->fi_wgen; VOP_UNLOCK(vp, 0); stops_deferred = sigdeferstop(SIGDEFERSTOP_OFF); error = msleep(&fip->fi_readers, PIPE_MTX(fpipe), PDROP | PCATCH | PSOCK, "fifoor", 0); sigallowstop(stops_deferred); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); if (error != 0 && gen == fip->fi_wgen) { fip->fi_readers--; if (fip->fi_readers == 0) { PIPE_LOCK(fpipe); fpipe->pipe_state |= PIPE_EOF; if (fpipe->pipe_state & PIPE_WANTW) wakeup(fpipe); PIPE_UNLOCK(fpipe); fifo_cleanup(vp); } return (error); } PIPE_LOCK(fpipe); /* * We must have got woken up because we had a writer. * That (and not still having one) is the condition * that we must wait for. */ } if ((ap->a_mode & FWRITE) && fip->fi_readers == 0) { gen = fip->fi_rgen; VOP_UNLOCK(vp, 0); stops_deferred = sigdeferstop(SIGDEFERSTOP_OFF); error = msleep(&fip->fi_writers, PIPE_MTX(fpipe), PDROP | PCATCH | PSOCK, "fifoow", 0); sigallowstop(stops_deferred); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); if (error != 0 && gen == fip->fi_rgen) { fip->fi_writers--; if (fip->fi_writers == 0) { PIPE_LOCK(fpipe); fpipe->pipe_state |= PIPE_EOF; if (fpipe->pipe_state & PIPE_WANTR) wakeup(fpipe); fpipe->pipe_wgen++; PIPE_UNLOCK(fpipe); fifo_cleanup(vp); } return (error); } /* * We must have got woken up because we had * a reader. That (and not still having one) * is the condition that we must wait for. */ PIPE_LOCK(fpipe); } } PIPE_UNLOCK(fpipe); KASSERT(fp != NULL, ("can't fifo/vnode bypass")); KASSERT(fp->f_ops == &badfileops, ("not badfileops in fifo_open")); finit(fp, fp->f_flag, DTYPE_FIFO, fpipe, &pipeops); return (0); } /* * Device close routine */ /* ARGSUSED */ static int fifo_close(ap) struct vop_close_args /* { struct vnode *a_vp; int a_fflag; struct ucred *a_cred; struct thread *a_td; } */ *ap; { struct vnode *vp; struct fifoinfo *fip; struct pipe *cpipe; vp = ap->a_vp; fip = vp->v_fifoinfo; cpipe = fip->fi_pipe; ASSERT_VOP_ELOCKED(vp, "fifo_close"); if (ap->a_fflag & FREAD) { fip->fi_readers--; if (fip->fi_readers == 0) { PIPE_LOCK(cpipe); cpipe->pipe_state |= PIPE_EOF; if ((cpipe->pipe_state & PIPE_WANTW)) { cpipe->pipe_state &= ~PIPE_WANTW; wakeup(cpipe); } pipeselwakeup(cpipe); PIPE_UNLOCK(cpipe); } } if (ap->a_fflag & FWRITE) { fip->fi_writers--; if (fip->fi_writers == 0) { PIPE_LOCK(cpipe); cpipe->pipe_state |= PIPE_EOF; if ((cpipe->pipe_state & PIPE_WANTR)) { cpipe->pipe_state &= ~PIPE_WANTR; wakeup(cpipe); } cpipe->pipe_wgen++; pipeselwakeup(cpipe); PIPE_UNLOCK(cpipe); } } fifo_cleanup(vp); return (0); } /* * Print out internal contents of a fifo vnode. */ int fifo_printinfo(vp) struct vnode *vp; { struct fifoinfo *fip = vp->v_fifoinfo; if (fip == NULL){ printf(", NULL v_fifoinfo"); return (0); } printf(", fifo with %ld readers and %ld writers", fip->fi_readers, fip->fi_writers); return (0); } /* * Print out the contents of a fifo vnode. */ static int fifo_print(ap) struct vop_print_args /* { struct vnode *a_vp; } */ *ap; { printf(" "); fifo_printinfo(ap->a_vp); printf("\n"); return (0); } /* * Fifo advisory byte-level locks. */ /* ARGSUSED */ static int fifo_advlock(ap) struct vop_advlock_args /* { struct vnode *a_vp; caddr_t a_id; int a_op; struct flock *a_fl; int a_flags; } */ *ap; { return (ap->a_flags & F_FLOCK ? EOPNOTSUPP : EINVAL); } Index: head/sys/fs/nandfs/nandfs_vnops.c =================================================================== --- head/sys/fs/nandfs/nandfs_vnops.c (revision 327003) +++ head/sys/fs/nandfs/nandfs_vnops.c (revision 327004) @@ -1,2448 +1,2455 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2010-2012 Semihalf * Copyright (c) 2008, 2009 Reinoud Zandijk * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * From: NetBSD: nilfs_vnops.c,v 1.2 2009/08/26 03:40:48 elad */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern uma_zone_t nandfs_node_zone; static void nandfs_read_filebuf(struct nandfs_node *, struct buf *); static void nandfs_itimes_locked(struct vnode *); static int nandfs_truncate(struct vnode *, uint64_t); static vop_pathconf_t nandfs_pathconf; #define UPDATE_CLOSE 0 #define UPDATE_WAIT 0 static int nandfs_inactive(struct vop_inactive_args *ap) { struct vnode *vp = ap->a_vp; struct nandfs_node *node = VTON(vp); int error = 0; DPRINTF(VNCALL, ("%s: vp:%p node:%p\n", __func__, vp, node)); if (node == NULL) { DPRINTF(NODE, ("%s: inactive NULL node\n", __func__)); return (0); } if (node->nn_inode.i_mode != 0 && !(node->nn_inode.i_links_count)) { nandfs_truncate(vp, 0); error = nandfs_node_destroy(node); if (error) nandfs_error("%s: destroy node: %p\n", __func__, node); node->nn_flags = 0; vrecycle(vp); } return (error); } static int nandfs_reclaim(struct vop_reclaim_args *ap) { struct vnode *vp = ap->a_vp; struct nandfs_node *nandfs_node = VTON(vp); struct nandfs_device *fsdev = nandfs_node->nn_nandfsdev; uint64_t ino = nandfs_node->nn_ino; DPRINTF(VNCALL, ("%s: vp:%p node:%p\n", __func__, vp, nandfs_node)); /* Invalidate all entries to a particular vnode. */ cache_purge(vp); /* Destroy the vm object and flush associated pages. */ vnode_destroy_vobject(vp); /* Remove from vfs hash if not system vnode */ if (!NANDFS_SYS_NODE(nandfs_node->nn_ino)) vfs_hash_remove(vp); /* Dispose all node knowledge */ nandfs_dispose_node(&nandfs_node); if (!NANDFS_SYS_NODE(ino)) NANDFS_WRITEUNLOCK(fsdev); return (0); } static int nandfs_read(struct vop_read_args *ap) { struct vnode *vp = ap->a_vp; struct nandfs_node *node = VTON(vp); struct nandfs_device *nandfsdev = node->nn_nandfsdev; struct uio *uio = ap->a_uio; struct buf *bp; uint64_t size; uint32_t blocksize; off_t bytesinfile; ssize_t toread, off; daddr_t lbn; ssize_t resid; int error = 0; if (uio->uio_resid == 0) return (0); size = node->nn_inode.i_size; if (uio->uio_offset >= size) return (0); blocksize = nandfsdev->nd_blocksize; bytesinfile = size - uio->uio_offset; resid = omin(uio->uio_resid, bytesinfile); while (resid) { lbn = uio->uio_offset / blocksize; off = uio->uio_offset & (blocksize - 1); toread = omin(resid, blocksize - off); DPRINTF(READ, ("nandfs_read bn: 0x%jx toread: 0x%zx (0x%x)\n", (uintmax_t)lbn, toread, blocksize)); error = nandfs_bread(node, lbn, NOCRED, 0, &bp); if (error) { brelse(bp); break; } error = uiomove(bp->b_data + off, toread, uio); if (error) { brelse(bp); break; } brelse(bp); resid -= toread; } return (error); } static int nandfs_write(struct vop_write_args *ap) { struct nandfs_device *fsdev; struct nandfs_node *node; struct vnode *vp; struct uio *uio; struct buf *bp; uint64_t file_size, vblk; uint32_t blocksize; ssize_t towrite, off; daddr_t lbn; ssize_t resid; int error, ioflag, modified; vp = ap->a_vp; uio = ap->a_uio; ioflag = ap->a_ioflag; node = VTON(vp); fsdev = node->nn_nandfsdev; if (nandfs_fs_full(fsdev)) return (ENOSPC); DPRINTF(WRITE, ("nandfs_write called %#zx at %#jx\n", uio->uio_resid, (uintmax_t)uio->uio_offset)); if (uio->uio_offset < 0) return (EINVAL); if (uio->uio_resid == 0) return (0); blocksize = fsdev->nd_blocksize; file_size = node->nn_inode.i_size; switch (vp->v_type) { case VREG: if (ioflag & IO_APPEND) uio->uio_offset = file_size; break; case VDIR: return (EISDIR); case VLNK: break; default: panic("%s: bad file type vp: %p", __func__, vp); } /* If explicitly asked to append, uio_offset can be wrong? */ if (ioflag & IO_APPEND) uio->uio_offset = file_size; resid = uio->uio_resid; modified = error = 0; while (uio->uio_resid) { lbn = uio->uio_offset / blocksize; off = uio->uio_offset & (blocksize - 1); towrite = omin(uio->uio_resid, blocksize - off); DPRINTF(WRITE, ("%s: lbn: 0x%jd toread: 0x%zx (0x%x)\n", __func__, (uintmax_t)lbn, towrite, blocksize)); error = nandfs_bmap_lookup(node, lbn, &vblk); if (error) break; DPRINTF(WRITE, ("%s: lbn: 0x%jd toread: 0x%zx (0x%x) " "vblk=%jx\n", __func__, (uintmax_t)lbn, towrite, blocksize, vblk)); if (vblk != 0) error = nandfs_bread(node, lbn, NOCRED, 0, &bp); else error = nandfs_bcreate(node, lbn, NOCRED, 0, &bp); DPRINTF(WRITE, ("%s: vp %p bread bp %p lbn %#jx\n", __func__, vp, bp, (uintmax_t)lbn)); if (error) { if (bp) brelse(bp); break; } error = uiomove((char *)bp->b_data + off, (int)towrite, uio); if (error) break; error = nandfs_dirty_buf(bp, 0); if (error) break; modified++; } /* XXX proper handling when only part of file was properly written */ if (modified) { if (resid > uio->uio_resid && ap->a_cred && ap->a_cred->cr_uid != 0) node->nn_inode.i_mode &= ~(ISUID | ISGID); if (file_size < uio->uio_offset + uio->uio_resid) { node->nn_inode.i_size = uio->uio_offset + uio->uio_resid; node->nn_flags |= IN_CHANGE | IN_UPDATE; vnode_pager_setsize(vp, uio->uio_offset + uio->uio_resid); nandfs_itimes(vp); } } DPRINTF(WRITE, ("%s: return:%d\n", __func__, error)); return (error); } static int nandfs_lookup(struct vop_cachedlookup_args *ap) { struct vnode *dvp, **vpp; struct componentname *cnp; struct ucred *cred; struct thread *td; struct nandfs_node *dir_node, *node; struct nandfsmount *nmp; uint64_t ino, off; const char *name; int namelen, nameiop, islastcn, mounted_ro; int error, found; DPRINTF(VNCALL, ("%s\n", __func__)); dvp = ap->a_dvp; vpp = ap->a_vpp; *vpp = NULL; cnp = ap->a_cnp; cred = cnp->cn_cred; td = cnp->cn_thread; dir_node = VTON(dvp); nmp = dir_node->nn_nmp; /* Simplify/clarification flags */ nameiop = cnp->cn_nameiop; islastcn = cnp->cn_flags & ISLASTCN; mounted_ro = dvp->v_mount->mnt_flag & MNT_RDONLY; /* * If requesting a modify on the last path element on a read-only * filingsystem, reject lookup; */ if (islastcn && mounted_ro && (nameiop == DELETE || nameiop == RENAME)) return (EROFS); if (dir_node->nn_inode.i_links_count == 0) return (ENOENT); /* * Obviously, the file is not (anymore) in the namecache, we have to * search for it. There are three basic cases: '.', '..' and others. * * Following the guidelines of VOP_LOOKUP manpage and tmpfs. */ error = 0; if ((cnp->cn_namelen == 1) && (cnp->cn_nameptr[0] == '.')) { DPRINTF(LOOKUP, ("\tlookup '.'\n")); /* Special case 1 '.' */ VREF(dvp); *vpp = dvp; /* Done */ } else if (cnp->cn_flags & ISDOTDOT) { /* Special case 2 '..' */ DPRINTF(LOOKUP, ("\tlookup '..'\n")); /* Get our node */ name = ".."; namelen = 2; error = nandfs_lookup_name_in_dir(dvp, name, namelen, &ino, &found, &off); if (error) goto out; if (!found) error = ENOENT; /* First unlock parent */ VOP_UNLOCK(dvp, 0); if (error == 0) { DPRINTF(LOOKUP, ("\tfound '..'\n")); /* Try to create/reuse the node */ error = nandfs_get_node(nmp, ino, &node); if (!error) { DPRINTF(LOOKUP, ("\tnode retrieved/created OK\n")); *vpp = NTOV(node); } } /* Try to relock parent */ vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY); } else { DPRINTF(LOOKUP, ("\tlookup file\n")); /* All other files */ /* Look up filename in the directory returning its inode */ name = cnp->cn_nameptr; namelen = cnp->cn_namelen; error = nandfs_lookup_name_in_dir(dvp, name, namelen, &ino, &found, &off); if (error) goto out; if (!found) { DPRINTF(LOOKUP, ("\tNOT found\n")); /* * UGH, didn't find name. If we're creating or * renaming on the last name this is OK and we ought * to return EJUSTRETURN if its allowed to be created. */ error = ENOENT; if ((nameiop == CREATE || nameiop == RENAME) && islastcn) { error = VOP_ACCESS(dvp, VWRITE, cred, td); if (!error) { /* keep the component name */ cnp->cn_flags |= SAVENAME; error = EJUSTRETURN; } } /* Done */ } else { if (ino == NANDFS_WHT_INO) cnp->cn_flags |= ISWHITEOUT; if ((cnp->cn_flags & ISWHITEOUT) && (nameiop == LOOKUP)) return (ENOENT); if ((nameiop == DELETE) && islastcn) { if ((cnp->cn_flags & ISWHITEOUT) && (cnp->cn_flags & DOWHITEOUT)) { cnp->cn_flags |= SAVENAME; dir_node->nn_diroff = off; return (EJUSTRETURN); } error = VOP_ACCESS(dvp, VWRITE, cred, cnp->cn_thread); if (error) return (error); /* Try to create/reuse the node */ error = nandfs_get_node(nmp, ino, &node); if (!error) { *vpp = NTOV(node); node->nn_diroff = off; } if ((dir_node->nn_inode.i_mode & ISVTX) && cred->cr_uid != 0 && cred->cr_uid != dir_node->nn_inode.i_uid && node->nn_inode.i_uid != cred->cr_uid) { vput(*vpp); *vpp = NULL; return (EPERM); } } else if ((nameiop == RENAME) && islastcn) { error = VOP_ACCESS(dvp, VWRITE, cred, cnp->cn_thread); if (error) return (error); /* Try to create/reuse the node */ error = nandfs_get_node(nmp, ino, &node); if (!error) { *vpp = NTOV(node); node->nn_diroff = off; } } else { /* Try to create/reuse the node */ error = nandfs_get_node(nmp, ino, &node); if (!error) { *vpp = NTOV(node); node->nn_diroff = off; } } } } out: /* * Store result in the cache if requested. If we are creating a file, * the file might not be found and thus putting it into the namecache * might be seen as negative caching. */ if ((cnp->cn_flags & MAKEENTRY) != 0) cache_enter(dvp, *vpp, cnp); return (error); } static int nandfs_getattr(struct vop_getattr_args *ap) { struct vnode *vp = ap->a_vp; struct vattr *vap = ap->a_vap; struct nandfs_node *node = VTON(vp); struct nandfs_inode *inode = &node->nn_inode; DPRINTF(VNCALL, ("%s: vp: %p\n", __func__, vp)); nandfs_itimes(vp); /* Basic info */ VATTR_NULL(vap); vap->va_atime.tv_sec = inode->i_mtime; vap->va_atime.tv_nsec = inode->i_mtime_nsec; vap->va_mtime.tv_sec = inode->i_mtime; vap->va_mtime.tv_nsec = inode->i_mtime_nsec; vap->va_ctime.tv_sec = inode->i_ctime; vap->va_ctime.tv_nsec = inode->i_ctime_nsec; vap->va_type = IFTOVT(inode->i_mode); vap->va_mode = inode->i_mode & ~S_IFMT; vap->va_nlink = inode->i_links_count; vap->va_uid = inode->i_uid; vap->va_gid = inode->i_gid; vap->va_rdev = inode->i_special; vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0]; vap->va_fileid = node->nn_ino; vap->va_size = inode->i_size; vap->va_blocksize = node->nn_nandfsdev->nd_blocksize; vap->va_gen = 0; vap->va_flags = inode->i_flags; vap->va_bytes = inode->i_blocks * vap->va_blocksize; vap->va_filerev = 0; vap->va_vaflags = 0; return (0); } static int nandfs_vtruncbuf(struct vnode *vp, uint64_t nblks) { struct nandfs_device *nffsdev; struct bufobj *bo; struct buf *bp, *nbp; bo = &vp->v_bufobj; nffsdev = VTON(vp)->nn_nandfsdev; ASSERT_VOP_LOCKED(vp, "nandfs_truncate"); restart: BO_LOCK(bo); restart_locked: TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) { if (bp->b_lblkno < nblks) continue; if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) goto restart_locked; bremfree(bp); bp->b_flags |= (B_INVAL | B_RELBUF); bp->b_flags &= ~(B_ASYNC | B_MANAGED); BO_UNLOCK(bo); brelse(bp); BO_LOCK(bo); } TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { if (bp->b_lblkno < nblks) continue; if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo)) == ENOLCK) goto restart; bp->b_flags |= (B_INVAL | B_RELBUF); bp->b_flags &= ~(B_ASYNC | B_MANAGED); brelse(bp); nandfs_dirty_bufs_decrement(nffsdev); BO_LOCK(bo); } BO_UNLOCK(bo); return (0); } static int nandfs_truncate(struct vnode *vp, uint64_t newsize) { struct nandfs_device *nffsdev; struct nandfs_node *node; struct nandfs_inode *inode; struct buf *bp = NULL; uint64_t oblks, nblks, vblk, size, rest; int error; node = VTON(vp); nffsdev = node->nn_nandfsdev; inode = &node->nn_inode; /* Calculate end of file */ size = inode->i_size; if (newsize == size) { node->nn_flags |= IN_CHANGE | IN_UPDATE; nandfs_itimes(vp); return (0); } if (newsize > size) { inode->i_size = newsize; vnode_pager_setsize(vp, newsize); node->nn_flags |= IN_CHANGE | IN_UPDATE; nandfs_itimes(vp); return (0); } nblks = howmany(newsize, nffsdev->nd_blocksize); oblks = howmany(size, nffsdev->nd_blocksize); rest = newsize % nffsdev->nd_blocksize; if (rest) { error = nandfs_bmap_lookup(node, nblks - 1, &vblk); if (error) return (error); if (vblk != 0) error = nandfs_bread(node, nblks - 1, NOCRED, 0, &bp); else error = nandfs_bcreate(node, nblks - 1, NOCRED, 0, &bp); if (error) { if (bp) brelse(bp); return (error); } bzero((char *)bp->b_data + rest, (u_int)(nffsdev->nd_blocksize - rest)); error = nandfs_dirty_buf(bp, 0); if (error) return (error); } DPRINTF(VNCALL, ("%s: vp %p oblks %jx nblks %jx\n", __func__, vp, oblks, nblks)); error = nandfs_bmap_truncate_mapping(node, oblks - 1, nblks - 1); if (error) { if (bp) nandfs_undirty_buf(bp); return (error); } error = nandfs_vtruncbuf(vp, nblks); if (error) { if (bp) nandfs_undirty_buf(bp); return (error); } inode->i_size = newsize; vnode_pager_setsize(vp, newsize); node->nn_flags |= IN_CHANGE | IN_UPDATE; nandfs_itimes(vp); return (error); } static void nandfs_itimes_locked(struct vnode *vp) { struct nandfs_node *node; struct nandfs_inode *inode; struct timespec ts; ASSERT_VI_LOCKED(vp, __func__); node = VTON(vp); inode = &node->nn_inode; if ((node->nn_flags & (IN_ACCESS | IN_CHANGE | IN_UPDATE)) == 0) return; if (((vp->v_mount->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND)) == 0) || (node->nn_flags & (IN_CHANGE | IN_UPDATE))) node->nn_flags |= IN_MODIFIED; vfs_timestamp(&ts); if (node->nn_flags & IN_UPDATE) { inode->i_mtime = ts.tv_sec; inode->i_mtime_nsec = ts.tv_nsec; } if (node->nn_flags & IN_CHANGE) { inode->i_ctime = ts.tv_sec; inode->i_ctime_nsec = ts.tv_nsec; } node->nn_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE); } void nandfs_itimes(struct vnode *vp) { VI_LOCK(vp); nandfs_itimes_locked(vp); VI_UNLOCK(vp); } static int nandfs_chmod(struct vnode *vp, int mode, struct ucred *cred, struct thread *td) { struct nandfs_node *node = VTON(vp); struct nandfs_inode *inode = &node->nn_inode; uint16_t nmode; int error = 0; DPRINTF(VNCALL, ("%s: vp %p, mode %x, cred %p, td %p\n", __func__, vp, mode, cred, td)); /* * To modify the permissions on a file, must possess VADMIN * for that file. */ if ((error = VOP_ACCESS(vp, VADMIN, cred, td))) return (error); /* * Privileged processes may set the sticky bit on non-directories, * as well as set the setgid bit on a file with a group that the * process is not a member of. Both of these are allowed in * jail(8). */ if (vp->v_type != VDIR && (mode & S_ISTXT)) { if (priv_check_cred(cred, PRIV_VFS_STICKYFILE, 0)) return (EFTYPE); } if (!groupmember(inode->i_gid, cred) && (mode & ISGID)) { error = priv_check_cred(cred, PRIV_VFS_SETGID, 0); if (error) return (error); } /* * Deny setting setuid if we are not the file owner. */ if ((mode & ISUID) && inode->i_uid != cred->cr_uid) { error = priv_check_cred(cred, PRIV_VFS_ADMIN, 0); if (error) return (error); } nmode = inode->i_mode; nmode &= ~ALLPERMS; nmode |= (mode & ALLPERMS); inode->i_mode = nmode; node->nn_flags |= IN_CHANGE; DPRINTF(VNCALL, ("%s: to mode %x\n", __func__, nmode)); return (error); } static int nandfs_chown(struct vnode *vp, uid_t uid, gid_t gid, struct ucred *cred, struct thread *td) { struct nandfs_node *node = VTON(vp); struct nandfs_inode *inode = &node->nn_inode; uid_t ouid; gid_t ogid; int error = 0; if (uid == (uid_t)VNOVAL) uid = inode->i_uid; if (gid == (gid_t)VNOVAL) gid = inode->i_gid; /* * To modify the ownership of a file, must possess VADMIN for that * file. */ if ((error = VOP_ACCESSX(vp, VWRITE_OWNER, cred, td))) return (error); /* * To change the owner of a file, or change the group of a file to a * group of which we are not a member, the caller must have * privilege. */ if (((uid != inode->i_uid && uid != cred->cr_uid) || (gid != inode->i_gid && !groupmember(gid, cred))) && (error = priv_check_cred(cred, PRIV_VFS_CHOWN, 0))) return (error); ogid = inode->i_gid; ouid = inode->i_uid; inode->i_gid = gid; inode->i_uid = uid; node->nn_flags |= IN_CHANGE; if ((inode->i_mode & (ISUID | ISGID)) && (ouid != uid || ogid != gid)) { if (priv_check_cred(cred, PRIV_VFS_RETAINSUGID, 0)) inode->i_mode &= ~(ISUID | ISGID); } DPRINTF(VNCALL, ("%s: vp %p, cred %p, td %p - ret OK\n", __func__, vp, cred, td)); return (0); } static int nandfs_setattr(struct vop_setattr_args *ap) { struct vnode *vp = ap->a_vp; struct nandfs_node *node = VTON(vp); struct nandfs_inode *inode = &node->nn_inode; struct vattr *vap = ap->a_vap; struct ucred *cred = ap->a_cred; struct thread *td = curthread; uint32_t flags; int error = 0; if ((vap->va_type != VNON) || (vap->va_nlink != VNOVAL) || (vap->va_fsid != VNOVAL) || (vap->va_fileid != VNOVAL) || (vap->va_blocksize != VNOVAL) || (vap->va_rdev != VNOVAL) || (vap->va_bytes != VNOVAL) || (vap->va_gen != VNOVAL)) { DPRINTF(VNCALL, ("%s: unsettable attribute\n", __func__)); return (EINVAL); } if (vap->va_flags != VNOVAL) { DPRINTF(VNCALL, ("%s: vp:%p td:%p flags:%lx\n", __func__, vp, td, vap->va_flags)); if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); /* * Callers may only modify the file flags on objects they * have VADMIN rights for. */ if ((error = VOP_ACCESS(vp, VADMIN, cred, td))) return (error); /* * Unprivileged processes are not permitted to unset system * flags, or modify flags if any system flags are set. * Privileged non-jail processes may not modify system flags * if securelevel > 0 and any existing system flags are set. * Privileged jail processes behave like privileged non-jail * processes if the security.jail.chflags_allowed sysctl is * is non-zero; otherwise, they behave like unprivileged * processes. */ flags = inode->i_flags; if (!priv_check_cred(cred, PRIV_VFS_SYSFLAGS, 0)) { if (flags & (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND)) { error = securelevel_gt(cred, 0); if (error) return (error); } /* Snapshot flag cannot be set or cleared */ if (((vap->va_flags & SF_SNAPSHOT) != 0 && (flags & SF_SNAPSHOT) == 0) || ((vap->va_flags & SF_SNAPSHOT) == 0 && (flags & SF_SNAPSHOT) != 0)) return (EPERM); inode->i_flags = vap->va_flags; } else { if (flags & (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND) || (vap->va_flags & UF_SETTABLE) != vap->va_flags) return (EPERM); flags &= SF_SETTABLE; flags |= (vap->va_flags & UF_SETTABLE); inode->i_flags = flags; } node->nn_flags |= IN_CHANGE; if (vap->va_flags & (IMMUTABLE | APPEND)) return (0); } if (inode->i_flags & (IMMUTABLE | APPEND)) return (EPERM); if (vap->va_size != (u_quad_t)VNOVAL) { DPRINTF(VNCALL, ("%s: vp:%p td:%p size:%jx\n", __func__, vp, td, (uintmax_t)vap->va_size)); switch (vp->v_type) { case VDIR: return (EISDIR); case VLNK: case VREG: if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); if ((inode->i_flags & SF_SNAPSHOT) != 0) return (EPERM); break; default: return (0); } if (vap->va_size > node->nn_nandfsdev->nd_maxfilesize) return (EFBIG); KASSERT((vp->v_type == VREG), ("Set size %d", vp->v_type)); nandfs_truncate(vp, vap->va_size); node->nn_flags |= IN_CHANGE; return (0); } if (vap->va_uid != (uid_t)VNOVAL || vap->va_gid != (gid_t)VNOVAL) { if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); DPRINTF(VNCALL, ("%s: vp:%p td:%p uid/gid %x/%x\n", __func__, vp, td, vap->va_uid, vap->va_gid)); error = nandfs_chown(vp, vap->va_uid, vap->va_gid, cred, td); if (error) return (error); } if (vap->va_mode != (mode_t)VNOVAL) { if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); DPRINTF(VNCALL, ("%s: vp:%p td:%p mode %x\n", __func__, vp, td, vap->va_mode)); error = nandfs_chmod(vp, (int)vap->va_mode, cred, td); if (error) return (error); } if (vap->va_atime.tv_sec != VNOVAL || vap->va_mtime.tv_sec != VNOVAL || vap->va_birthtime.tv_sec != VNOVAL) { DPRINTF(VNCALL, ("%s: vp:%p td:%p time a/m/b %jx/%jx/%jx\n", __func__, vp, td, (uintmax_t)vap->va_atime.tv_sec, (uintmax_t)vap->va_mtime.tv_sec, (uintmax_t)vap->va_birthtime.tv_sec)); if (vap->va_atime.tv_sec != VNOVAL) node->nn_flags |= IN_ACCESS; if (vap->va_mtime.tv_sec != VNOVAL) node->nn_flags |= IN_CHANGE | IN_UPDATE; if (vap->va_birthtime.tv_sec != VNOVAL) node->nn_flags |= IN_MODIFIED; nandfs_itimes(vp); return (0); } return (0); } static int nandfs_open(struct vop_open_args *ap) { struct nandfs_node *node = VTON(ap->a_vp); uint64_t filesize; DPRINTF(VNCALL, ("nandfs_open called ap->a_mode %x\n", ap->a_mode)); if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) return (EOPNOTSUPP); if ((node->nn_inode.i_flags & APPEND) && (ap->a_mode & (FWRITE | O_APPEND)) == FWRITE) return (EPERM); filesize = node->nn_inode.i_size; vnode_create_vobject(ap->a_vp, filesize, ap->a_td); return (0); } static int nandfs_close(struct vop_close_args *ap) { struct vnode *vp = ap->a_vp; struct nandfs_node *node = VTON(vp); DPRINTF(VNCALL, ("%s: vp %p node %p\n", __func__, vp, node)); mtx_lock(&vp->v_interlock); if (vp->v_usecount > 1) nandfs_itimes_locked(vp); mtx_unlock(&vp->v_interlock); return (0); } static int nandfs_check_possible(struct vnode *vp, struct vattr *vap, mode_t mode) { /* Check if we are allowed to write */ switch (vap->va_type) { case VDIR: case VLNK: case VREG: /* * Normal nodes: check if we're on a read-only mounted * filingsystem and bomb out if we're trying to write. */ if ((mode & VMODIFY_PERMS) && (vp->v_mount->mnt_flag & MNT_RDONLY)) return (EROFS); break; case VBLK: case VCHR: case VSOCK: case VFIFO: /* * Special nodes: even on read-only mounted filingsystems * these are allowed to be written to if permissions allow. */ break; default: /* No idea what this is */ return (EINVAL); } /* No one may write immutable files */ if ((mode & VWRITE) && (VTON(vp)->nn_inode.i_flags & IMMUTABLE)) return (EPERM); return (0); } static int nandfs_check_permitted(struct vnode *vp, struct vattr *vap, mode_t mode, struct ucred *cred) { return (vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid, mode, cred, NULL)); } static int nandfs_advlock(struct vop_advlock_args *ap) { struct nandfs_node *nvp; quad_t size; nvp = VTON(ap->a_vp); size = nvp->nn_inode.i_size; return (lf_advlock(ap, &(nvp->nn_lockf), size)); } static int nandfs_access(struct vop_access_args *ap) { struct vnode *vp = ap->a_vp; accmode_t accmode = ap->a_accmode; struct ucred *cred = ap->a_cred; struct vattr vap; int error; DPRINTF(VNCALL, ("%s: vp:%p mode: %x\n", __func__, vp, accmode)); error = VOP_GETATTR(vp, &vap, NULL); if (error) return (error); error = nandfs_check_possible(vp, &vap, accmode); if (error) return (error); error = nandfs_check_permitted(vp, &vap, accmode, cred); return (error); } static int nandfs_print(struct vop_print_args *ap) { struct vnode *vp = ap->a_vp; struct nandfs_node *nvp = VTON(vp); printf("\tvp=%p, nandfs_node=%p\n", vp, nvp); printf("nandfs inode %#jx\n", (uintmax_t)nvp->nn_ino); printf("flags = 0x%b\n", (u_int)nvp->nn_flags, PRINT_NODE_FLAGS); return (0); } static void nandfs_read_filebuf(struct nandfs_node *node, struct buf *bp) { struct nandfs_device *nandfsdev = node->nn_nandfsdev; struct buf *nbp; nandfs_daddr_t vblk, pblk; nandfs_lbn_t from; uint32_t blocksize; int error = 0; int blk2dev = nandfsdev->nd_blocksize / DEV_BSIZE; /* * Translate all the block sectors into a series of buffers to read * asynchronously from the nandfs device. Note that this lookup may * induce readin's too. */ blocksize = nandfsdev->nd_blocksize; if (bp->b_bcount / blocksize != 1) panic("invalid b_count in bp %p\n", bp); from = bp->b_blkno; DPRINTF(READ, ("\tread in from inode %#jx blkno %#jx" " count %#lx\n", (uintmax_t)node->nn_ino, from, bp->b_bcount)); /* Get virtual block numbers for the vnode's buffer span */ error = nandfs_bmap_lookup(node, from, &vblk); if (error) { bp->b_error = EINVAL; bp->b_ioflags |= BIO_ERROR; bufdone(bp); return; } /* Translate virtual block numbers to physical block numbers */ error = nandfs_vtop(node, vblk, &pblk); if (error) { bp->b_error = EINVAL; bp->b_ioflags |= BIO_ERROR; bufdone(bp); return; } /* Issue translated blocks */ bp->b_resid = bp->b_bcount; /* Note virtual block 0 marks not mapped */ if (vblk == 0) { vfs_bio_clrbuf(bp); bufdone(bp); return; } nbp = bp; nbp->b_blkno = pblk * blk2dev; bp->b_iooffset = dbtob(nbp->b_blkno); MPASS(bp->b_iooffset >= 0); BO_STRATEGY(&nandfsdev->nd_devvp->v_bufobj, nbp); nandfs_vblk_set(bp, vblk); DPRINTF(READ, ("read_filebuf : ino %#jx blk %#jx -> " "%#jx -> %#jx [bp %p]\n", (uintmax_t)node->nn_ino, (uintmax_t)(from), (uintmax_t)vblk, (uintmax_t)pblk, nbp)); } static void nandfs_write_filebuf(struct nandfs_node *node, struct buf *bp) { struct nandfs_device *nandfsdev = node->nn_nandfsdev; bp->b_iooffset = dbtob(bp->b_blkno); MPASS(bp->b_iooffset >= 0); BO_STRATEGY(&nandfsdev->nd_devvp->v_bufobj, bp); } static int nandfs_strategy(struct vop_strategy_args *ap) { struct vnode *vp = ap->a_vp; struct buf *bp = ap->a_bp; struct nandfs_node *node = VTON(vp); /* check if we ought to be here */ KASSERT((vp->v_type != VBLK && vp->v_type != VCHR), ("nandfs_strategy on type %d", vp->v_type)); /* Translate if needed and pass on */ if (bp->b_iocmd == BIO_READ) { nandfs_read_filebuf(node, bp); return (0); } /* Send to segment collector */ nandfs_write_filebuf(node, bp); return (0); } static int nandfs_readdir(struct vop_readdir_args *ap) { struct uio *uio = ap->a_uio; struct vnode *vp = ap->a_vp; struct nandfs_node *node = VTON(vp); struct nandfs_dir_entry *ndirent; struct dirent dirent; struct buf *bp; uint64_t file_size, diroffset, transoffset, blkoff; uint64_t blocknr; uint32_t blocksize = node->nn_nandfsdev->nd_blocksize; uint8_t *pos, name_len; int error; DPRINTF(READDIR, ("nandfs_readdir called\n")); if (vp->v_type != VDIR) return (ENOTDIR); file_size = node->nn_inode.i_size; DPRINTF(READDIR, ("nandfs_readdir filesize %jd resid %zd\n", (uintmax_t)file_size, uio->uio_resid )); /* We are called just as long as we keep on pushing data in */ error = 0; if ((uio->uio_offset < file_size) && (uio->uio_resid >= sizeof(struct dirent))) { diroffset = uio->uio_offset; transoffset = diroffset; blocknr = diroffset / blocksize; blkoff = diroffset % blocksize; error = nandfs_bread(node, blocknr, NOCRED, 0, &bp); if (error) { brelse(bp); return (EIO); } while (diroffset < file_size) { DPRINTF(READDIR, ("readdir : offset = %"PRIu64"\n", diroffset)); if (blkoff >= blocksize) { blkoff = 0; blocknr++; brelse(bp); error = nandfs_bread(node, blocknr, NOCRED, 0, &bp); if (error) { brelse(bp); return (EIO); } } /* Read in one dirent */ pos = (uint8_t *)bp->b_data + blkoff; ndirent = (struct nandfs_dir_entry *)pos; name_len = ndirent->name_len; memset(&dirent, 0, sizeof(struct dirent)); dirent.d_fileno = ndirent->inode; if (dirent.d_fileno) { dirent.d_type = ndirent->file_type; dirent.d_namlen = name_len; strncpy(dirent.d_name, ndirent->name, name_len); dirent.d_reclen = GENERIC_DIRSIZ(&dirent); DPRINTF(READDIR, ("copying `%*.*s`\n", name_len, name_len, dirent.d_name)); } /* * If there isn't enough space in the uio to return a * whole dirent, break off read */ if (uio->uio_resid < GENERIC_DIRSIZ(&dirent)) break; /* Transfer */ if (dirent.d_fileno) uiomove(&dirent, GENERIC_DIRSIZ(&dirent), uio); /* Advance */ diroffset += ndirent->rec_len; blkoff += ndirent->rec_len; /* Remember the last entry we transferred */ transoffset = diroffset; } brelse(bp); /* Pass on last transferred offset */ uio->uio_offset = transoffset; } if (ap->a_eofflag) *ap->a_eofflag = (uio->uio_offset >= file_size); return (error); } static int nandfs_dirempty(struct vnode *dvp, uint64_t parentino, struct ucred *cred) { struct nandfs_node *dnode = VTON(dvp); struct nandfs_dir_entry *dirent; uint64_t file_size = dnode->nn_inode.i_size; uint64_t blockcount = dnode->nn_inode.i_blocks; uint64_t blocknr; uint32_t blocksize = dnode->nn_nandfsdev->nd_blocksize; uint32_t limit; uint32_t off; uint8_t *pos; struct buf *bp; int error; DPRINTF(LOOKUP, ("%s: dvp %p parentino %#jx cred %p\n", __func__, dvp, (uintmax_t)parentino, cred)); KASSERT((file_size != 0), ("nandfs_dirempty for NULL dir %p", dvp)); blocknr = 0; while (blocknr < blockcount) { error = nandfs_bread(dnode, blocknr, NOCRED, 0, &bp); if (error) { brelse(bp); return (0); } pos = (uint8_t *)bp->b_data; off = 0; if (blocknr == (blockcount - 1)) limit = file_size % blocksize; else limit = blocksize; while (off < limit) { dirent = (struct nandfs_dir_entry *)(pos + off); off += dirent->rec_len; if (dirent->inode == 0) continue; switch (dirent->name_len) { case 0: break; case 1: if (dirent->name[0] != '.') goto notempty; KASSERT(dirent->inode == dnode->nn_ino, (".'s inode does not match dir")); break; case 2: if (dirent->name[0] != '.' && dirent->name[1] != '.') goto notempty; KASSERT(dirent->inode == parentino, ("..'s inode does not match parent")); break; default: goto notempty; } } brelse(bp); blocknr++; } return (1); notempty: brelse(bp); return (0); } static int nandfs_link(struct vop_link_args *ap) { struct vnode *tdvp = ap->a_tdvp; struct vnode *vp = ap->a_vp; struct componentname *cnp = ap->a_cnp; struct nandfs_node *node = VTON(vp); struct nandfs_inode *inode = &node->nn_inode; int error; if (inode->i_links_count >= NANDFS_LINK_MAX) return (EMLINK); if (inode->i_flags & (IMMUTABLE | APPEND)) return (EPERM); /* Update link count */ inode->i_links_count++; /* Add dir entry */ error = nandfs_add_dirent(tdvp, node->nn_ino, cnp->cn_nameptr, cnp->cn_namelen, IFTODT(inode->i_mode)); if (error) { inode->i_links_count--; } node->nn_flags |= IN_CHANGE; nandfs_itimes(vp); DPRINTF(VNCALL, ("%s: tdvp %p vp %p cnp %p\n", __func__, tdvp, vp, cnp)); return (0); } static int nandfs_create(struct vop_create_args *ap) { struct vnode *dvp = ap->a_dvp; struct vnode **vpp = ap->a_vpp; struct componentname *cnp = ap->a_cnp; uint16_t mode = MAKEIMODE(ap->a_vap->va_type, ap->a_vap->va_mode); struct nandfs_node *dir_node = VTON(dvp); struct nandfsmount *nmp = dir_node->nn_nmp; struct nandfs_node *node; int error; DPRINTF(VNCALL, ("%s: dvp %p\n", __func__, dvp)); if (nandfs_fs_full(dir_node->nn_nandfsdev)) return (ENOSPC); /* Create new vnode/inode */ error = nandfs_node_create(nmp, &node, mode); if (error) return (error); node->nn_inode.i_gid = dir_node->nn_inode.i_gid; node->nn_inode.i_uid = cnp->cn_cred->cr_uid; /* Add new dir entry */ error = nandfs_add_dirent(dvp, node->nn_ino, cnp->cn_nameptr, cnp->cn_namelen, IFTODT(mode)); if (error) { if (nandfs_node_destroy(node)) { nandfs_error("%s: error destroying node %p\n", __func__, node); } return (error); } *vpp = NTOV(node); if ((cnp->cn_flags & MAKEENTRY) != 0) cache_enter(dvp, *vpp, cnp); DPRINTF(VNCALL, ("created file vp %p nandnode %p ino %jx\n", *vpp, node, (uintmax_t)node->nn_ino)); return (0); } static int nandfs_remove(struct vop_remove_args *ap) { struct vnode *vp = ap->a_vp; struct vnode *dvp = ap->a_dvp; struct nandfs_node *node = VTON(vp); struct nandfs_node *dnode = VTON(dvp); struct componentname *cnp = ap->a_cnp; DPRINTF(VNCALL, ("%s: dvp %p vp %p nandnode %p ino %#jx link %d\n", __func__, dvp, vp, node, (uintmax_t)node->nn_ino, node->nn_inode.i_links_count)); if (vp->v_type == VDIR) return (EISDIR); /* Files marked as immutable or append-only cannot be deleted. */ if ((node->nn_inode.i_flags & (IMMUTABLE | APPEND | NOUNLINK)) || (dnode->nn_inode.i_flags & APPEND)) return (EPERM); nandfs_remove_dirent(dvp, node, cnp); node->nn_inode.i_links_count--; node->nn_flags |= IN_CHANGE; return (0); } /* * Check if source directory is in the path of the target directory. * Target is supplied locked, source is unlocked. * The target is always vput before returning. */ static int nandfs_checkpath(struct nandfs_node *src, struct nandfs_node *dest, struct ucred *cred) { struct vnode *vp; int error, rootino; struct nandfs_dir_entry dirent; vp = NTOV(dest); if (src->nn_ino == dest->nn_ino) { error = EEXIST; goto out; } rootino = NANDFS_ROOT_INO; error = 0; if (dest->nn_ino == rootino) goto out; for (;;) { if (vp->v_type != VDIR) { error = ENOTDIR; break; } error = vn_rdwr(UIO_READ, vp, (caddr_t)&dirent, NANDFS_DIR_REC_LEN(2), (off_t)0, UIO_SYSSPACE, IO_NODELOCKED | IO_NOMACCHECK, cred, NOCRED, NULL, NULL); if (error != 0) break; if (dirent.name_len != 2 || dirent.name[0] != '.' || dirent.name[1] != '.') { error = ENOTDIR; break; } if (dirent.inode == src->nn_ino) { error = EINVAL; break; } if (dirent.inode == rootino) break; vput(vp); if ((error = VFS_VGET(vp->v_mount, dirent.inode, LK_EXCLUSIVE, &vp)) != 0) { vp = NULL; break; } } out: if (error == ENOTDIR) printf("checkpath: .. not a directory\n"); if (vp != NULL) vput(vp); return (error); } static int nandfs_rename(struct vop_rename_args *ap) { struct vnode *tvp = ap->a_tvp; struct vnode *tdvp = ap->a_tdvp; struct vnode *fvp = ap->a_fvp; struct vnode *fdvp = ap->a_fdvp; struct componentname *tcnp = ap->a_tcnp; struct componentname *fcnp = ap->a_fcnp; int doingdirectory = 0, oldparent = 0, newparent = 0; int error = 0; struct nandfs_node *fdnode, *fnode, *fnode1; struct nandfs_node *tdnode = VTON(tdvp); struct nandfs_node *tnode; uint32_t tdflags, fflags, fdflags; uint16_t mode; DPRINTF(VNCALL, ("%s: fdvp:%p fvp:%p tdvp:%p tdp:%p\n", __func__, fdvp, fvp, tdvp, tvp)); /* * Check for cross-device rename. */ if ((fvp->v_mount != tdvp->v_mount) || (tvp && (fvp->v_mount != tvp->v_mount))) { error = EXDEV; abortit: if (tdvp == tvp) vrele(tdvp); else vput(tdvp); if (tvp) vput(tvp); vrele(fdvp); vrele(fvp); return (error); } tdflags = tdnode->nn_inode.i_flags; if (tvp && ((VTON(tvp)->nn_inode.i_flags & (NOUNLINK | IMMUTABLE | APPEND)) || (tdflags & APPEND))) { error = EPERM; goto abortit; } /* * Renaming a file to itself has no effect. The upper layers should * not call us in that case. Temporarily just warn if they do. */ if (fvp == tvp) { printf("nandfs_rename: fvp == tvp (can't happen)\n"); error = 0; goto abortit; } if ((error = vn_lock(fvp, LK_EXCLUSIVE)) != 0) goto abortit; fdnode = VTON(fdvp); fnode = VTON(fvp); if (fnode->nn_inode.i_links_count >= NANDFS_LINK_MAX) { VOP_UNLOCK(fvp, 0); error = EMLINK; goto abortit; } fflags = fnode->nn_inode.i_flags; fdflags = fdnode->nn_inode.i_flags; if ((fflags & (NOUNLINK | IMMUTABLE | APPEND)) || (fdflags & APPEND)) { VOP_UNLOCK(fvp, 0); error = EPERM; goto abortit; } mode = fnode->nn_inode.i_mode; if ((mode & S_IFMT) == S_IFDIR) { /* * Avoid ".", "..", and aliases of "." for obvious reasons. */ if ((fcnp->cn_namelen == 1 && fcnp->cn_nameptr[0] == '.') || (fdvp == fvp) || ((fcnp->cn_flags | tcnp->cn_flags) & ISDOTDOT) || (fnode->nn_flags & IN_RENAME)) { VOP_UNLOCK(fvp, 0); error = EINVAL; goto abortit; } fnode->nn_flags |= IN_RENAME; doingdirectory = 1; DPRINTF(VNCALL, ("%s: doingdirectory dvp %p\n", __func__, tdvp)); oldparent = fdnode->nn_ino; } vrele(fdvp); tnode = NULL; if (tvp) tnode = VTON(tvp); /* * Bump link count on fvp while we are moving stuff around. If we * crash before completing the work, the link count may be wrong * but correctable. */ fnode->nn_inode.i_links_count++; /* Check for in path moving XXX */ error = VOP_ACCESS(fvp, VWRITE, tcnp->cn_cred, tcnp->cn_thread); VOP_UNLOCK(fvp, 0); if (oldparent != tdnode->nn_ino) newparent = tdnode->nn_ino; if (doingdirectory && newparent) { if (error) /* write access check above */ goto bad; if (tnode != NULL) vput(tvp); error = nandfs_checkpath(fnode, tdnode, tcnp->cn_cred); if (error) goto out; VREF(tdvp); error = relookup(tdvp, &tvp, tcnp); if (error) goto out; vrele(tdvp); tdnode = VTON(tdvp); tnode = NULL; if (tvp) tnode = VTON(tvp); } /* * If the target doesn't exist, link the target to the source and * unlink the source. Otherwise, rewrite the target directory to * reference the source and remove the original entry. */ if (tvp == NULL) { /* * Account for ".." in new directory. */ if (doingdirectory && fdvp != tdvp) tdnode->nn_inode.i_links_count++; DPRINTF(VNCALL, ("%s: new entry in dvp:%p\n", __func__, tdvp)); /* * Add name in new directory. */ error = nandfs_add_dirent(tdvp, fnode->nn_ino, tcnp->cn_nameptr, tcnp->cn_namelen, IFTODT(fnode->nn_inode.i_mode)); if (error) { if (doingdirectory && fdvp != tdvp) tdnode->nn_inode.i_links_count--; goto bad; } vput(tdvp); } else { /* * If the parent directory is "sticky", then the user must * own the parent directory, or the destination of the rename, * otherwise the destination may not be changed (except by * root). This implements append-only directories. */ if ((tdnode->nn_inode.i_mode & S_ISTXT) && tcnp->cn_cred->cr_uid != 0 && tcnp->cn_cred->cr_uid != tdnode->nn_inode.i_uid && tnode->nn_inode.i_uid != tcnp->cn_cred->cr_uid) { error = EPERM; goto bad; } /* * Target must be empty if a directory and have no links * to it. Also, ensure source and target are compatible * (both directories, or both not directories). */ mode = tnode->nn_inode.i_mode; if ((mode & S_IFMT) == S_IFDIR) { if (!nandfs_dirempty(tvp, tdnode->nn_ino, tcnp->cn_cred)) { error = ENOTEMPTY; goto bad; } if (!doingdirectory) { error = ENOTDIR; goto bad; } /* * Update name cache since directory is going away. */ cache_purge(tdvp); } else if (doingdirectory) { error = EISDIR; goto bad; } DPRINTF(VNCALL, ("%s: update entry dvp:%p\n", __func__, tdvp)); /* * Change name tcnp in tdvp to point at fvp. */ error = nandfs_update_dirent(tdvp, fnode, tnode); if (error) goto bad; if (doingdirectory && !newparent) tdnode->nn_inode.i_links_count--; vput(tdvp); tnode->nn_inode.i_links_count--; vput(tvp); tnode = NULL; } /* * Unlink the source. */ fcnp->cn_flags &= ~MODMASK; fcnp->cn_flags |= LOCKPARENT | LOCKLEAF; VREF(fdvp); error = relookup(fdvp, &fvp, fcnp); if (error == 0) vrele(fdvp); if (fvp != NULL) { fnode1 = VTON(fvp); fdnode = VTON(fdvp); } else { /* * From name has disappeared. */ if (doingdirectory) panic("nandfs_rename: lost dir entry"); vrele(ap->a_fvp); return (0); } DPRINTF(VNCALL, ("%s: unlink source fnode:%p\n", __func__, fnode)); /* * Ensure that the directory entry still exists and has not * changed while the new name has been entered. If the source is * a file then the entry may have been unlinked or renamed. In * either case there is no further work to be done. If the source * is a directory then it cannot have been rmdir'ed; its link * count of three would cause a rmdir to fail with ENOTEMPTY. * The IN_RENAME flag ensures that it cannot be moved by another * rename. */ if (fnode != fnode1) { if (doingdirectory) panic("nandfs: lost dir entry"); } else { /* * If the source is a directory with a * new parent, the link count of the old * parent directory must be decremented * and ".." set to point to the new parent. */ if (doingdirectory && newparent) { DPRINTF(VNCALL, ("%s: new parent %#jx -> %#jx\n", __func__, (uintmax_t) oldparent, (uintmax_t) newparent)); error = nandfs_update_parent_dir(fvp, newparent); if (!error) { fdnode->nn_inode.i_links_count--; fdnode->nn_flags |= IN_CHANGE; } } error = nandfs_remove_dirent(fdvp, fnode, fcnp); if (!error) { fnode->nn_inode.i_links_count--; fnode->nn_flags |= IN_CHANGE; } fnode->nn_flags &= ~IN_RENAME; } if (fdnode) vput(fdvp); if (fnode) vput(fvp); vrele(ap->a_fvp); return (error); bad: DPRINTF(VNCALL, ("%s: error:%d\n", __func__, error)); if (tnode) vput(NTOV(tnode)); vput(NTOV(tdnode)); out: if (doingdirectory) fnode->nn_flags &= ~IN_RENAME; if (vn_lock(fvp, LK_EXCLUSIVE) == 0) { fnode->nn_inode.i_links_count--; fnode->nn_flags |= IN_CHANGE; fnode->nn_flags &= ~IN_RENAME; vput(fvp); } else vrele(fvp); return (error); } static int nandfs_mkdir(struct vop_mkdir_args *ap) { struct vnode *dvp = ap->a_dvp; struct vnode **vpp = ap->a_vpp; struct componentname *cnp = ap->a_cnp; struct nandfs_node *dir_node = VTON(dvp); struct nandfs_inode *dir_inode = &dir_node->nn_inode; struct nandfs_node *node; struct nandfsmount *nmp = dir_node->nn_nmp; uint16_t mode = MAKEIMODE(ap->a_vap->va_type, ap->a_vap->va_mode); int error; DPRINTF(VNCALL, ("%s: dvp %p\n", __func__, dvp)); if (nandfs_fs_full(dir_node->nn_nandfsdev)) return (ENOSPC); if (dir_inode->i_links_count >= NANDFS_LINK_MAX) return (EMLINK); error = nandfs_node_create(nmp, &node, mode); if (error) return (error); node->nn_inode.i_gid = dir_node->nn_inode.i_gid; node->nn_inode.i_uid = cnp->cn_cred->cr_uid; *vpp = NTOV(node); error = nandfs_add_dirent(dvp, node->nn_ino, cnp->cn_nameptr, cnp->cn_namelen, IFTODT(mode)); if (error) { vput(*vpp); return (error); } dir_node->nn_inode.i_links_count++; dir_node->nn_flags |= IN_CHANGE; error = nandfs_init_dir(NTOV(node), node->nn_ino, dir_node->nn_ino); if (error) { vput(NTOV(node)); return (error); } DPRINTF(VNCALL, ("created dir vp %p nandnode %p ino %jx\n", *vpp, node, (uintmax_t)node->nn_ino)); return (0); } static int nandfs_mknod(struct vop_mknod_args *ap) { struct vnode *dvp = ap->a_dvp; struct vnode **vpp = ap->a_vpp; struct vattr *vap = ap->a_vap; uint16_t mode = MAKEIMODE(vap->va_type, vap->va_mode); struct componentname *cnp = ap->a_cnp; struct nandfs_node *dir_node = VTON(dvp); struct nandfsmount *nmp = dir_node->nn_nmp; struct nandfs_node *node; int error; if (nandfs_fs_full(dir_node->nn_nandfsdev)) return (ENOSPC); error = nandfs_node_create(nmp, &node, mode); if (error) return (error); node->nn_inode.i_gid = dir_node->nn_inode.i_gid; node->nn_inode.i_uid = cnp->cn_cred->cr_uid; if (vap->va_rdev != VNOVAL) node->nn_inode.i_special = vap->va_rdev; *vpp = NTOV(node); if (nandfs_add_dirent(dvp, node->nn_ino, cnp->cn_nameptr, cnp->cn_namelen, IFTODT(mode))) { vput(*vpp); return (ENOTDIR); } node->nn_flags |= IN_ACCESS | IN_CHANGE | IN_UPDATE; return (0); } static int nandfs_symlink(struct vop_symlink_args *ap) { struct vnode **vpp = ap->a_vpp; struct vnode *dvp = ap->a_dvp; uint16_t mode = MAKEIMODE(ap->a_vap->va_type, ap->a_vap->va_mode); struct componentname *cnp = ap->a_cnp; struct nandfs_node *dir_node = VTON(dvp); struct nandfsmount *nmp = dir_node->nn_nmp; struct nandfs_node *node; int len, error; if (nandfs_fs_full(dir_node->nn_nandfsdev)) return (ENOSPC); error = nandfs_node_create(nmp, &node, S_IFLNK | mode); if (error) return (error); node->nn_inode.i_gid = dir_node->nn_inode.i_gid; node->nn_inode.i_uid = cnp->cn_cred->cr_uid; *vpp = NTOV(node); if (nandfs_add_dirent(dvp, node->nn_ino, cnp->cn_nameptr, cnp->cn_namelen, IFTODT(mode))) { vput(*vpp); return (ENOTDIR); } len = strlen(ap->a_target); error = vn_rdwr(UIO_WRITE, *vpp, ap->a_target, len, (off_t)0, UIO_SYSSPACE, IO_NODELOCKED | IO_NOMACCHECK, cnp->cn_cred, NOCRED, NULL, NULL); if (error) vput(*vpp); return (error); } static int nandfs_readlink(struct vop_readlink_args *ap) { struct vnode *vp = ap->a_vp; return (VOP_READ(vp, ap->a_uio, 0, ap->a_cred)); } static int nandfs_rmdir(struct vop_rmdir_args *ap) { struct vnode *vp = ap->a_vp; struct vnode *dvp = ap->a_dvp; struct componentname *cnp = ap->a_cnp; struct nandfs_node *node, *dnode; uint32_t dflag, flag; int error = 0; node = VTON(vp); dnode = VTON(dvp); /* Files marked as immutable or append-only cannot be deleted. */ if ((node->nn_inode.i_flags & (IMMUTABLE | APPEND | NOUNLINK)) || (dnode->nn_inode.i_flags & APPEND)) return (EPERM); DPRINTF(VNCALL, ("%s: dvp %p vp %p nandnode %p ino %#jx\n", __func__, dvp, vp, node, (uintmax_t)node->nn_ino)); if (node->nn_inode.i_links_count < 2) return (EINVAL); if (!nandfs_dirempty(vp, dnode->nn_ino, cnp->cn_cred)) return (ENOTEMPTY); /* Files marked as immutable or append-only cannot be deleted. */ dflag = dnode->nn_inode.i_flags; flag = node->nn_inode.i_flags; if ((dflag & APPEND) || (flag & (NOUNLINK | IMMUTABLE | APPEND))) { return (EPERM); } if (vp->v_mountedhere != 0) return (EINVAL); nandfs_remove_dirent(dvp, node, cnp); dnode->nn_inode.i_links_count -= 1; dnode->nn_flags |= IN_CHANGE; cache_purge(dvp); error = nandfs_truncate(vp, (uint64_t)0); if (error) return (error); node->nn_inode.i_links_count -= 2; node->nn_flags |= IN_CHANGE; cache_purge(vp); return (error); } static int nandfs_fsync(struct vop_fsync_args *ap) { struct vnode *vp = ap->a_vp; struct nandfs_node *node = VTON(vp); int locked; DPRINTF(VNCALL, ("%s: vp %p nandnode %p ino %#jx\n", __func__, vp, node, (uintmax_t)node->nn_ino)); /* * Start syncing vnode only if inode was modified or * there are some dirty buffers */ if (VTON(vp)->nn_flags & IN_MODIFIED || vp->v_bufobj.bo_dirty.bv_cnt) { locked = VOP_ISLOCKED(vp); VOP_UNLOCK(vp, 0); nandfs_wakeup_wait_sync(node->nn_nandfsdev, SYNCER_FSYNC); VOP_LOCK(vp, locked | LK_RETRY); } return (0); } static int nandfs_bmap(struct vop_bmap_args *ap) { struct vnode *vp = ap->a_vp; struct nandfs_node *nnode = VTON(vp); struct nandfs_device *nandfsdev = nnode->nn_nandfsdev; nandfs_daddr_t l2vmap, v2pmap; int error; int blk2dev = nandfsdev->nd_blocksize / DEV_BSIZE; DPRINTF(VNCALL, ("%s: vp %p nandnode %p ino %#jx\n", __func__, vp, nnode, (uintmax_t)nnode->nn_ino)); if (ap->a_bop != NULL) *ap->a_bop = &nandfsdev->nd_devvp->v_bufobj; if (ap->a_bnp == NULL) return (0); if (ap->a_runp != NULL) *ap->a_runp = 0; if (ap->a_runb != NULL) *ap->a_runb = 0; /* * Translate all the block sectors into a series of buffers to read * asynchronously from the nandfs device. Note that this lookup may * induce readin's too. */ /* Get virtual block numbers for the vnode's buffer span */ error = nandfs_bmap_lookup(nnode, ap->a_bn, &l2vmap); if (error) return (-1); /* Translate virtual block numbers to physical block numbers */ error = nandfs_vtop(nnode, l2vmap, &v2pmap); if (error) return (-1); /* Note virtual block 0 marks not mapped */ if (l2vmap == 0) *ap->a_bnp = -1; else *ap->a_bnp = v2pmap * blk2dev; /* in DEV_BSIZE */ DPRINTF(VNCALL, ("%s: vp %p nandnode %p ino %#jx lblk %jx -> blk %jx\n", __func__, vp, nnode, (uintmax_t)nnode->nn_ino, (uintmax_t)ap->a_bn, (uintmax_t)*ap->a_bnp )); return (0); } static void nandfs_force_syncer(struct nandfsmount *nmp) { nmp->nm_flags |= NANDFS_FORCE_SYNCER; nandfs_wakeup_wait_sync(nmp->nm_nandfsdev, SYNCER_FFORCE); } static int nandfs_ioctl(struct vop_ioctl_args *ap) { struct vnode *vp = ap->a_vp; u_long command = ap->a_command; caddr_t data = ap->a_data; struct nandfs_node *node = VTON(vp); struct nandfs_device *nandfsdev = node->nn_nandfsdev; struct nandfsmount *nmp = node->nn_nmp; uint64_t *tab, *cno; struct nandfs_seg_stat *nss; struct nandfs_cpmode *ncpm; struct nandfs_argv *nargv; struct nandfs_cpstat *ncp; int error; DPRINTF(VNCALL, ("%s: %x\n", __func__, (uint32_t)command)); error = priv_check(ap->a_td, PRIV_VFS_MOUNT); if (error) return (error); if (nmp->nm_ronly) { switch (command) { case NANDFS_IOCTL_GET_FSINFO: case NANDFS_IOCTL_GET_SUSTAT: case NANDFS_IOCTL_GET_CPINFO: case NANDFS_IOCTL_GET_CPSTAT: case NANDFS_IOCTL_GET_SUINFO: case NANDFS_IOCTL_GET_VINFO: case NANDFS_IOCTL_GET_BDESCS: break; default: return (EROFS); } } switch (command) { case NANDFS_IOCTL_GET_FSINFO: error = nandfs_get_fsinfo(nmp, (struct nandfs_fsinfo *)data); break; case NANDFS_IOCTL_GET_SUSTAT: nss = (struct nandfs_seg_stat *)data; error = nandfs_get_seg_stat(nandfsdev, nss); break; case NANDFS_IOCTL_CHANGE_CPMODE: ncpm = (struct nandfs_cpmode *)data; error = nandfs_chng_cpmode(nandfsdev->nd_cp_node, ncpm); nandfs_force_syncer(nmp); break; case NANDFS_IOCTL_GET_CPINFO: nargv = (struct nandfs_argv *)data; error = nandfs_get_cpinfo_ioctl(nandfsdev->nd_cp_node, nargv); break; case NANDFS_IOCTL_DELETE_CP: tab = (uint64_t *)data; error = nandfs_delete_cp(nandfsdev->nd_cp_node, tab[0], tab[1]); nandfs_force_syncer(nmp); break; case NANDFS_IOCTL_GET_CPSTAT: ncp = (struct nandfs_cpstat *)data; error = nandfs_get_cpstat(nandfsdev->nd_cp_node, ncp); break; case NANDFS_IOCTL_GET_SUINFO: nargv = (struct nandfs_argv *)data; error = nandfs_get_segment_info_ioctl(nandfsdev, nargv); break; case NANDFS_IOCTL_GET_VINFO: nargv = (struct nandfs_argv *)data; error = nandfs_get_dat_vinfo_ioctl(nandfsdev, nargv); break; case NANDFS_IOCTL_GET_BDESCS: nargv = (struct nandfs_argv *)data; error = nandfs_get_dat_bdescs_ioctl(nandfsdev, nargv); break; case NANDFS_IOCTL_SYNC: cno = (uint64_t *)data; nandfs_force_syncer(nmp); *cno = nandfsdev->nd_last_cno; error = 0; break; case NANDFS_IOCTL_MAKE_SNAP: cno = (uint64_t *)data; error = nandfs_make_snap(nandfsdev, cno); nandfs_force_syncer(nmp); break; case NANDFS_IOCTL_DELETE_SNAP: cno = (uint64_t *)data; error = nandfs_delete_snap(nandfsdev, *cno); nandfs_force_syncer(nmp); break; default: error = ENOTTY; break; } return (error); } /* * Whiteout vnode call */ static int nandfs_whiteout(struct vop_whiteout_args *ap) { struct vnode *dvp = ap->a_dvp; struct componentname *cnp = ap->a_cnp; int error = 0; switch (ap->a_flags) { case LOOKUP: return (0); case CREATE: /* Create a new directory whiteout */ #ifdef INVARIANTS if ((cnp->cn_flags & SAVENAME) == 0) panic("nandfs_whiteout: missing name"); #endif error = nandfs_add_dirent(dvp, NANDFS_WHT_INO, cnp->cn_nameptr, cnp->cn_namelen, DT_WHT); break; case DELETE: /* Remove an existing directory whiteout */ cnp->cn_flags &= ~DOWHITEOUT; error = nandfs_remove_dirent(dvp, NULL, cnp); break; default: panic("nandf_whiteout: unknown op: %d", ap->a_flags); } return (error); } static int nandfs_pathconf(struct vop_pathconf_args *ap) { int error; error = 0; switch (ap->a_name) { case _PC_LINK_MAX: *ap->a_retval = NANDFS_LINK_MAX; break; case _PC_NAME_MAX: *ap->a_retval = NANDFS_NAME_LEN; break; + case _PC_PIPE_BUF: + if (ap->a_vp->v_type == VDIR || ap->a_vp->v_type == VFIFO) + *ap->a_retval = PIPE_BUF; + else + error = EINVAL; + break; case _PC_CHOWN_RESTRICTED: *ap->a_retval = 1; break; case _PC_NO_TRUNC: *ap->a_retval = 1; break; case _PC_ACL_EXTENDED: *ap->a_retval = 0; break; case _PC_ALLOC_SIZE_MIN: *ap->a_retval = ap->a_vp->v_mount->mnt_stat.f_bsize; break; case _PC_FILESIZEBITS: *ap->a_retval = 64; break; case _PC_REC_INCR_XFER_SIZE: *ap->a_retval = ap->a_vp->v_mount->mnt_stat.f_iosize; break; case _PC_REC_MAX_XFER_SIZE: *ap->a_retval = -1; /* means ``unlimited'' */ break; case _PC_REC_MIN_XFER_SIZE: *ap->a_retval = ap->a_vp->v_mount->mnt_stat.f_iosize; break; default: error = vop_stdpathconf(ap); break; } return (error); } static int nandfs_vnlock1(struct vop_lock1_args *ap) { struct vnode *vp = ap->a_vp; struct nandfs_node *node = VTON(vp); int error, vi_locked; /* * XXX can vnode go away while we are sleeping? */ vi_locked = mtx_owned(&vp->v_interlock); if (vi_locked) VI_UNLOCK(vp); error = NANDFS_WRITELOCKFLAGS(node->nn_nandfsdev, ap->a_flags & LK_NOWAIT); if (vi_locked && !error) VI_LOCK(vp); if (error) return (error); error = vop_stdlock(ap); if (error) { NANDFS_WRITEUNLOCK(node->nn_nandfsdev); return (error); } return (0); } static int nandfs_vnunlock(struct vop_unlock_args *ap) { struct vnode *vp = ap->a_vp; struct nandfs_node *node = VTON(vp); int error; error = vop_stdunlock(ap); if (error) return (error); NANDFS_WRITEUNLOCK(node->nn_nandfsdev); return (0); } /* * Global vfs data structures */ struct vop_vector nandfs_vnodeops = { .vop_default = &default_vnodeops, .vop_access = nandfs_access, .vop_advlock = nandfs_advlock, .vop_bmap = nandfs_bmap, .vop_close = nandfs_close, .vop_create = nandfs_create, .vop_fsync = nandfs_fsync, .vop_getattr = nandfs_getattr, .vop_inactive = nandfs_inactive, .vop_cachedlookup = nandfs_lookup, .vop_ioctl = nandfs_ioctl, .vop_link = nandfs_link, .vop_lookup = vfs_cache_lookup, .vop_mkdir = nandfs_mkdir, .vop_mknod = nandfs_mknod, .vop_open = nandfs_open, .vop_pathconf = nandfs_pathconf, .vop_print = nandfs_print, .vop_read = nandfs_read, .vop_readdir = nandfs_readdir, .vop_readlink = nandfs_readlink, .vop_reclaim = nandfs_reclaim, .vop_remove = nandfs_remove, .vop_rename = nandfs_rename, .vop_rmdir = nandfs_rmdir, .vop_whiteout = nandfs_whiteout, .vop_write = nandfs_write, .vop_setattr = nandfs_setattr, .vop_strategy = nandfs_strategy, .vop_symlink = nandfs_symlink, .vop_lock1 = nandfs_vnlock1, .vop_unlock = nandfs_vnunlock, }; struct vop_vector nandfs_system_vnodeops = { .vop_default = &default_vnodeops, .vop_close = nandfs_close, .vop_inactive = nandfs_inactive, .vop_reclaim = nandfs_reclaim, .vop_strategy = nandfs_strategy, .vop_fsync = nandfs_fsync, .vop_bmap = nandfs_bmap, .vop_access = VOP_PANIC, .vop_advlock = VOP_PANIC, .vop_create = VOP_PANIC, .vop_getattr = VOP_PANIC, .vop_cachedlookup = VOP_PANIC, .vop_ioctl = VOP_PANIC, .vop_link = VOP_PANIC, .vop_lookup = VOP_PANIC, .vop_mkdir = VOP_PANIC, .vop_mknod = VOP_PANIC, .vop_open = VOP_PANIC, .vop_pathconf = VOP_PANIC, .vop_print = VOP_PANIC, .vop_read = VOP_PANIC, .vop_readdir = VOP_PANIC, .vop_readlink = VOP_PANIC, .vop_remove = VOP_PANIC, .vop_rename = VOP_PANIC, .vop_rmdir = VOP_PANIC, .vop_whiteout = VOP_PANIC, .vop_write = VOP_PANIC, .vop_setattr = VOP_PANIC, .vop_symlink = VOP_PANIC, }; static int nandfsfifo_close(struct vop_close_args *ap) { struct vnode *vp = ap->a_vp; struct nandfs_node *node = VTON(vp); DPRINTF(VNCALL, ("%s: vp %p node %p\n", __func__, vp, node)); mtx_lock(&vp->v_interlock); if (vp->v_usecount > 1) nandfs_itimes_locked(vp); mtx_unlock(&vp->v_interlock); return (fifo_specops.vop_close(ap)); } struct vop_vector nandfs_fifoops = { .vop_default = &fifo_specops, .vop_fsync = VOP_PANIC, .vop_access = nandfs_access, .vop_close = nandfsfifo_close, .vop_getattr = nandfs_getattr, .vop_inactive = nandfs_inactive, + .vop_pathconf = nandfs_pathconf, .vop_print = nandfs_print, .vop_read = VOP_PANIC, .vop_reclaim = nandfs_reclaim, .vop_setattr = nandfs_setattr, .vop_write = VOP_PANIC, .vop_lock1 = nandfs_vnlock1, .vop_unlock = nandfs_vnunlock, }; int nandfs_vinit(struct vnode *vp, uint64_t ino) { struct nandfs_node *node; ASSERT_VOP_LOCKED(vp, __func__); node = VTON(vp); /* Check if we're fetching the root */ if (ino == NANDFS_ROOT_INO) vp->v_vflag |= VV_ROOT; if (ino != NANDFS_GC_INO) vp->v_type = IFTOVT(node->nn_inode.i_mode); else vp->v_type = VREG; if (vp->v_type == VFIFO) vp->v_op = &nandfs_fifoops; return (0); } Index: head/sys/fs/nfsclient/nfs_clvnops.c =================================================================== --- head/sys/fs/nfsclient/nfs_clvnops.c (revision 327003) +++ head/sys/fs/nfsclient/nfs_clvnops.c (revision 327004) @@ -1,3530 +1,3537 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Rick Macklem at The University of Guelph. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from nfs_vnops.c 8.16 (Berkeley) 5/27/95 */ #include __FBSDID("$FreeBSD$"); /* * vnode op calls for Sun NFS version 2, 3 and 4 */ #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KDTRACE_HOOKS #include dtrace_nfsclient_accesscache_flush_probe_func_t dtrace_nfscl_accesscache_flush_done_probe; uint32_t nfscl_accesscache_flush_done_id; dtrace_nfsclient_accesscache_get_probe_func_t dtrace_nfscl_accesscache_get_hit_probe, dtrace_nfscl_accesscache_get_miss_probe; uint32_t nfscl_accesscache_get_hit_id; uint32_t nfscl_accesscache_get_miss_id; dtrace_nfsclient_accesscache_load_probe_func_t dtrace_nfscl_accesscache_load_done_probe; uint32_t nfscl_accesscache_load_done_id; #endif /* !KDTRACE_HOOKS */ /* Defs */ #define TRUE 1 #define FALSE 0 extern struct nfsstatsv1 nfsstatsv1; extern int nfsrv_useacl; extern int nfscl_debuglevel; MALLOC_DECLARE(M_NEWNFSREQ); static vop_read_t nfsfifo_read; static vop_write_t nfsfifo_write; static vop_close_t nfsfifo_close; static int nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *, struct thread *); static vop_lookup_t nfs_lookup; static vop_create_t nfs_create; static vop_mknod_t nfs_mknod; static vop_open_t nfs_open; static vop_pathconf_t nfs_pathconf; static vop_close_t nfs_close; static vop_access_t nfs_access; static vop_getattr_t nfs_getattr; static vop_setattr_t nfs_setattr; static vop_read_t nfs_read; static vop_fsync_t nfs_fsync; static vop_remove_t nfs_remove; static vop_link_t nfs_link; static vop_rename_t nfs_rename; static vop_mkdir_t nfs_mkdir; static vop_rmdir_t nfs_rmdir; static vop_symlink_t nfs_symlink; static vop_readdir_t nfs_readdir; static vop_strategy_t nfs_strategy; static int nfs_lookitup(struct vnode *, char *, int, struct ucred *, struct thread *, struct nfsnode **); static int nfs_sillyrename(struct vnode *, struct vnode *, struct componentname *); static vop_access_t nfsspec_access; static vop_readlink_t nfs_readlink; static vop_print_t nfs_print; static vop_advlock_t nfs_advlock; static vop_advlockasync_t nfs_advlockasync; static vop_getacl_t nfs_getacl; static vop_setacl_t nfs_setacl; static vop_set_text_t nfs_set_text; /* * Global vfs data structures for nfs */ struct vop_vector newnfs_vnodeops = { .vop_default = &default_vnodeops, .vop_access = nfs_access, .vop_advlock = nfs_advlock, .vop_advlockasync = nfs_advlockasync, .vop_close = nfs_close, .vop_create = nfs_create, .vop_fsync = nfs_fsync, .vop_getattr = nfs_getattr, .vop_getpages = ncl_getpages, .vop_putpages = ncl_putpages, .vop_inactive = ncl_inactive, .vop_link = nfs_link, .vop_lookup = nfs_lookup, .vop_mkdir = nfs_mkdir, .vop_mknod = nfs_mknod, .vop_open = nfs_open, .vop_pathconf = nfs_pathconf, .vop_print = nfs_print, .vop_read = nfs_read, .vop_readdir = nfs_readdir, .vop_readlink = nfs_readlink, .vop_reclaim = ncl_reclaim, .vop_remove = nfs_remove, .vop_rename = nfs_rename, .vop_rmdir = nfs_rmdir, .vop_setattr = nfs_setattr, .vop_strategy = nfs_strategy, .vop_symlink = nfs_symlink, .vop_write = ncl_write, .vop_getacl = nfs_getacl, .vop_setacl = nfs_setacl, .vop_set_text = nfs_set_text, }; struct vop_vector newnfs_fifoops = { .vop_default = &fifo_specops, .vop_access = nfsspec_access, .vop_close = nfsfifo_close, .vop_fsync = nfs_fsync, .vop_getattr = nfs_getattr, .vop_inactive = ncl_inactive, + .vop_pathconf = nfs_pathconf, .vop_print = nfs_print, .vop_read = nfsfifo_read, .vop_reclaim = ncl_reclaim, .vop_setattr = nfs_setattr, .vop_write = nfsfifo_write, }; static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, struct vattr *vap); static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name, int namelen, struct ucred *cred, struct thread *td); static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td); static int nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp, struct sillyrename *sp); /* * Global variables */ SYSCTL_DECL(_vfs_nfs); static int nfsaccess_cache_timeout = NFS_MAXATTRTIMO; SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW, &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout"); static int nfs_prime_access_cache = 0; SYSCTL_INT(_vfs_nfs, OID_AUTO, prime_access_cache, CTLFLAG_RW, &nfs_prime_access_cache, 0, "Prime NFS ACCESS cache when fetching attributes"); static int newnfs_commit_on_close = 0; SYSCTL_INT(_vfs_nfs, OID_AUTO, commit_on_close, CTLFLAG_RW, &newnfs_commit_on_close, 0, "write+commit on close, else only write"); static int nfs_clean_pages_on_close = 1; SYSCTL_INT(_vfs_nfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW, &nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close"); int newnfs_directio_enable = 0; SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_enable, CTLFLAG_RW, &newnfs_directio_enable, 0, "Enable NFS directio"); int nfs_keep_dirty_on_error; SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_keep_dirty_on_error, CTLFLAG_RW, &nfs_keep_dirty_on_error, 0, "Retry pageout if error returned"); /* * This sysctl allows other processes to mmap a file that has been opened * O_DIRECT by a process. In general, having processes mmap the file while * Direct IO is in progress can lead to Data Inconsistencies. But, we allow * this by default to prevent DoS attacks - to prevent a malicious user from * opening up files O_DIRECT preventing other users from mmap'ing these * files. "Protected" environments where stricter consistency guarantees are * required can disable this knob. The process that opened the file O_DIRECT * cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not * meaningful. */ int newnfs_directio_allow_mmap = 1; SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_allow_mmap, CTLFLAG_RW, &newnfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens"); #define NFSACCESS_ALL (NFSACCESS_READ | NFSACCESS_MODIFY \ | NFSACCESS_EXTEND | NFSACCESS_EXECUTE \ | NFSACCESS_DELETE | NFSACCESS_LOOKUP) /* * SMP Locking Note : * The list of locks after the description of the lock is the ordering * of other locks acquired with the lock held. * np->n_mtx : Protects the fields in the nfsnode. VM Object Lock VI_MTX (acquired indirectly) * nmp->nm_mtx : Protects the fields in the nfsmount. rep->r_mtx * ncl_iod_mutex : Global lock, protects shared nfsiod state. * nfs_reqq_mtx : Global lock, protects the nfs_reqq list. nmp->nm_mtx rep->r_mtx * rep->r_mtx : Protects the fields in an nfsreq. */ static int nfs34_access_otw(struct vnode *vp, int wmode, struct thread *td, struct ucred *cred, u_int32_t *retmode) { int error = 0, attrflag, i, lrupos; u_int32_t rmode; struct nfsnode *np = VTONFS(vp); struct nfsvattr nfsva; error = nfsrpc_accessrpc(vp, wmode, cred, td, &nfsva, &attrflag, &rmode, NULL); if (attrflag) (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); if (!error) { lrupos = 0; mtx_lock(&np->n_mtx); for (i = 0; i < NFS_ACCESSCACHESIZE; i++) { if (np->n_accesscache[i].uid == cred->cr_uid) { np->n_accesscache[i].mode = rmode; np->n_accesscache[i].stamp = time_second; break; } if (i > 0 && np->n_accesscache[i].stamp < np->n_accesscache[lrupos].stamp) lrupos = i; } if (i == NFS_ACCESSCACHESIZE) { np->n_accesscache[lrupos].uid = cred->cr_uid; np->n_accesscache[lrupos].mode = rmode; np->n_accesscache[lrupos].stamp = time_second; } mtx_unlock(&np->n_mtx); if (retmode != NULL) *retmode = rmode; KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, rmode, 0); } else if (NFS_ISV4(vp)) { error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); } #ifdef KDTRACE_HOOKS if (error != 0) KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, 0, error); #endif return (error); } /* * nfs access vnode op. * For nfs version 2, just return ok. File accesses may fail later. * For nfs version 3, use the access rpc to check accessibility. If file modes * are changed on the server, accesses might still fail later. */ static int nfs_access(struct vop_access_args *ap) { struct vnode *vp = ap->a_vp; int error = 0, i, gotahit; u_int32_t mode, wmode, rmode; int v34 = NFS_ISV34(vp); struct nfsnode *np = VTONFS(vp); /* * Disallow write attempts on filesystems mounted read-only; * unless the file is a socket, fifo, or a block or character * device resident on the filesystem. */ if ((ap->a_accmode & (VWRITE | VAPPEND | VWRITE_NAMED_ATTRS | VDELETE_CHILD | VWRITE_ATTRIBUTES | VDELETE | VWRITE_ACL | VWRITE_OWNER)) != 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) { switch (vp->v_type) { case VREG: case VDIR: case VLNK: return (EROFS); default: break; } } /* * For nfs v3 or v4, check to see if we have done this recently, and if * so return our cached result instead of making an ACCESS call. * If not, do an access rpc, otherwise you are stuck emulating * ufs_access() locally using the vattr. This may not be correct, * since the server may apply other access criteria such as * client uid-->server uid mapping that we do not know about. */ if (v34) { if (ap->a_accmode & VREAD) mode = NFSACCESS_READ; else mode = 0; if (vp->v_type != VDIR) { if (ap->a_accmode & VWRITE) mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND); if (ap->a_accmode & VAPPEND) mode |= NFSACCESS_EXTEND; if (ap->a_accmode & VEXEC) mode |= NFSACCESS_EXECUTE; if (ap->a_accmode & VDELETE) mode |= NFSACCESS_DELETE; } else { if (ap->a_accmode & VWRITE) mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND); if (ap->a_accmode & VAPPEND) mode |= NFSACCESS_EXTEND; if (ap->a_accmode & VEXEC) mode |= NFSACCESS_LOOKUP; if (ap->a_accmode & VDELETE) mode |= NFSACCESS_DELETE; if (ap->a_accmode & VDELETE_CHILD) mode |= NFSACCESS_MODIFY; } /* XXX safety belt, only make blanket request if caching */ if (nfsaccess_cache_timeout > 0) { wmode = NFSACCESS_READ | NFSACCESS_MODIFY | NFSACCESS_EXTEND | NFSACCESS_EXECUTE | NFSACCESS_DELETE | NFSACCESS_LOOKUP; } else { wmode = mode; } /* * Does our cached result allow us to give a definite yes to * this request? */ gotahit = 0; mtx_lock(&np->n_mtx); for (i = 0; i < NFS_ACCESSCACHESIZE; i++) { if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) { if (time_second < (np->n_accesscache[i].stamp + nfsaccess_cache_timeout) && (np->n_accesscache[i].mode & mode) == mode) { NFSINCRGLOBAL(nfsstatsv1.accesscache_hits); gotahit = 1; } break; } } mtx_unlock(&np->n_mtx); #ifdef KDTRACE_HOOKS if (gotahit != 0) KDTRACE_NFS_ACCESSCACHE_GET_HIT(vp, ap->a_cred->cr_uid, mode); else KDTRACE_NFS_ACCESSCACHE_GET_MISS(vp, ap->a_cred->cr_uid, mode); #endif if (gotahit == 0) { /* * Either a no, or a don't know. Go to the wire. */ NFSINCRGLOBAL(nfsstatsv1.accesscache_misses); error = nfs34_access_otw(vp, wmode, ap->a_td, ap->a_cred, &rmode); if (!error && (rmode & mode) != mode) error = EACCES; } return (error); } else { if ((error = nfsspec_access(ap)) != 0) { return (error); } /* * Attempt to prevent a mapped root from accessing a file * which it shouldn't. We try to read a byte from the file * if the user is root and the file is not zero length. * After calling nfsspec_access, we should have the correct * file size cached. */ mtx_lock(&np->n_mtx); if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD) && VTONFS(vp)->n_size > 0) { struct iovec aiov; struct uio auio; char buf[1]; mtx_unlock(&np->n_mtx); aiov.iov_base = buf; aiov.iov_len = 1; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_offset = 0; auio.uio_resid = 1; auio.uio_segflg = UIO_SYSSPACE; auio.uio_rw = UIO_READ; auio.uio_td = ap->a_td; if (vp->v_type == VREG) error = ncl_readrpc(vp, &auio, ap->a_cred); else if (vp->v_type == VDIR) { char* bp; bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK); aiov.iov_base = bp; aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ; error = ncl_readdirrpc(vp, &auio, ap->a_cred, ap->a_td); free(bp, M_TEMP); } else if (vp->v_type == VLNK) error = ncl_readlinkrpc(vp, &auio, ap->a_cred); else error = EACCES; } else mtx_unlock(&np->n_mtx); return (error); } } /* * nfs open vnode op * Check to see if the type is ok * and that deletion is not in progress. * For paged in text files, you will need to flush the page cache * if consistency is lost. */ /* ARGSUSED */ static int nfs_open(struct vop_open_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct vattr vattr; int error; int fmode = ap->a_mode; struct ucred *cred; if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) return (EOPNOTSUPP); /* * For NFSv4, we need to do the Open Op before cache validation, * so that we conform to RFC3530 Sec. 9.3.1. */ if (NFS_ISV4(vp)) { error = nfsrpc_open(vp, fmode, ap->a_cred, ap->a_td); if (error) { error = nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0); return (error); } } /* * Now, if this Open will be doing reading, re-validate/flush the * cache, so that Close/Open coherency is maintained. */ mtx_lock(&np->n_mtx); if (np->n_flag & NMODIFIED) { mtx_unlock(&np->n_mtx); error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); if (error == EINTR || error == EIO) { if (NFS_ISV4(vp)) (void) nfsrpc_close(vp, 0, ap->a_td); return (error); } mtx_lock(&np->n_mtx); np->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); if (vp->v_type == VDIR) np->n_direofoffset = 0; mtx_unlock(&np->n_mtx); error = VOP_GETATTR(vp, &vattr, ap->a_cred); if (error) { if (NFS_ISV4(vp)) (void) nfsrpc_close(vp, 0, ap->a_td); return (error); } mtx_lock(&np->n_mtx); np->n_mtime = vattr.va_mtime; if (NFS_ISV4(vp)) np->n_change = vattr.va_filerev; } else { mtx_unlock(&np->n_mtx); error = VOP_GETATTR(vp, &vattr, ap->a_cred); if (error) { if (NFS_ISV4(vp)) (void) nfsrpc_close(vp, 0, ap->a_td); return (error); } mtx_lock(&np->n_mtx); if ((NFS_ISV4(vp) && np->n_change != vattr.va_filerev) || NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) { if (vp->v_type == VDIR) np->n_direofoffset = 0; mtx_unlock(&np->n_mtx); error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); if (error == EINTR || error == EIO) { if (NFS_ISV4(vp)) (void) nfsrpc_close(vp, 0, ap->a_td); return (error); } mtx_lock(&np->n_mtx); np->n_mtime = vattr.va_mtime; if (NFS_ISV4(vp)) np->n_change = vattr.va_filerev; } } /* * If the object has >= 1 O_DIRECT active opens, we disable caching. */ if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) { if (np->n_directio_opens == 0) { mtx_unlock(&np->n_mtx); error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); if (error) { if (NFS_ISV4(vp)) (void) nfsrpc_close(vp, 0, ap->a_td); return (error); } mtx_lock(&np->n_mtx); np->n_flag |= NNONCACHE; } np->n_directio_opens++; } /* If opened for writing via NFSv4.1 or later, mark that for pNFS. */ if (NFSHASPNFS(VFSTONFS(vp->v_mount)) && (fmode & FWRITE) != 0) np->n_flag |= NWRITEOPENED; /* * If this is an open for writing, capture a reference to the * credentials, so they can be used by ncl_putpages(). Using * these write credentials is preferable to the credentials of * whatever thread happens to be doing the VOP_PUTPAGES() since * the write RPCs are less likely to fail with EACCES. */ if ((fmode & FWRITE) != 0) { cred = np->n_writecred; np->n_writecred = crhold(ap->a_cred); } else cred = NULL; mtx_unlock(&np->n_mtx); if (cred != NULL) crfree(cred); vnode_create_vobject(vp, vattr.va_size, ap->a_td); return (0); } /* * nfs close vnode op * What an NFS client should do upon close after writing is a debatable issue. * Most NFS clients push delayed writes to the server upon close, basically for * two reasons: * 1 - So that any write errors may be reported back to the client process * doing the close system call. By far the two most likely errors are * NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure. * 2 - To put a worst case upper bound on cache inconsistency between * multiple clients for the file. * There is also a consistency problem for Version 2 of the protocol w.r.t. * not being able to tell if other clients are writing a file concurrently, * since there is no way of knowing if the changed modify time in the reply * is only due to the write for this client. * (NFS Version 3 provides weak cache consistency data in the reply that * should be sufficient to detect and handle this case.) * * The current code does the following: * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers * for NFS Version 3 - flush dirty buffers to the server but don't invalidate * or commit them (this satisfies 1 and 2 except for the * case where the server crashes after this close but * before the commit RPC, which is felt to be "good * enough". Changing the last argument to ncl_flush() to * a 1 would force a commit operation, if it is felt a * commit is necessary now. * for NFS Version 4 - flush the dirty buffers and commit them, if * nfscl_mustflush() says this is necessary. * It is necessary if there is no write delegation held, * in order to satisfy open/close coherency. * If the file isn't cached on local stable storage, * it may be necessary in order to detect "out of space" * errors from the server, if the write delegation * issued by the server doesn't allow the file to grow. */ /* ARGSUSED */ static int nfs_close(struct vop_close_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct nfsvattr nfsva; struct ucred *cred; int error = 0, ret, localcred = 0; int fmode = ap->a_fflag; if (NFSCL_FORCEDISM(vp->v_mount)) return (0); /* * During shutdown, a_cred isn't valid, so just use root. */ if (ap->a_cred == NOCRED) { cred = newnfs_getcred(); localcred = 1; } else { cred = ap->a_cred; } if (vp->v_type == VREG) { /* * Examine and clean dirty pages, regardless of NMODIFIED. * This closes a major hole in close-to-open consistency. * We want to push out all dirty pages (and buffers) on * close, regardless of whether they were dirtied by * mmap'ed writes or via write(). */ if (nfs_clean_pages_on_close && vp->v_object) { VM_OBJECT_WLOCK(vp->v_object); vm_object_page_clean(vp->v_object, 0, 0, 0); VM_OBJECT_WUNLOCK(vp->v_object); } mtx_lock(&np->n_mtx); if (np->n_flag & NMODIFIED) { mtx_unlock(&np->n_mtx); if (NFS_ISV3(vp)) { /* * Under NFSv3 we have dirty buffers to dispose of. We * must flush them to the NFS server. We have the option * of waiting all the way through the commit rpc or just * waiting for the initial write. The default is to only * wait through the initial write so the data is in the * server's cache, which is roughly similar to the state * a standard disk subsystem leaves the file in on close(). * * We cannot clear the NMODIFIED bit in np->n_flag due to * potential races with other processes, and certainly * cannot clear it if we don't commit. * These races occur when there is no longer the old * traditional vnode locking implemented for Vnode Ops. */ int cm = newnfs_commit_on_close ? 1 : 0; error = ncl_flush(vp, MNT_WAIT, ap->a_td, cm, 0); /* np->n_flag &= ~NMODIFIED; */ } else if (NFS_ISV4(vp)) { if (nfscl_mustflush(vp) != 0) { int cm = newnfs_commit_on_close ? 1 : 0; error = ncl_flush(vp, MNT_WAIT, ap->a_td, cm, 0); /* * as above w.r.t races when clearing * NMODIFIED. * np->n_flag &= ~NMODIFIED; */ } } else { error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); } mtx_lock(&np->n_mtx); } /* * Invalidate the attribute cache in all cases. * An open is going to fetch fresh attrs any way, other procs * on this node that have file open will be forced to do an * otw attr fetch, but this is safe. * --> A user found that their RPC count dropped by 20% when * this was commented out and I can't see any requirement * for it, so I've disabled it when negative lookups are * enabled. (What does this have to do with negative lookup * caching? Well nothing, except it was reported by the * same user that needed negative lookup caching and I wanted * there to be a way to disable it to see if it * is the cause of some caching/coherency issue that might * crop up.) */ if (VFSTONFS(vp->v_mount)->nm_negnametimeo == 0) { np->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); } if (np->n_flag & NWRITEERR) { np->n_flag &= ~NWRITEERR; error = np->n_error; } mtx_unlock(&np->n_mtx); } if (NFS_ISV4(vp)) { /* * Get attributes so "change" is up to date. */ if (error == 0 && nfscl_mustflush(vp) != 0 && vp->v_type == VREG && (VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOCTO) == 0) { ret = nfsrpc_getattr(vp, cred, ap->a_td, &nfsva, NULL); if (!ret) { np->n_change = nfsva.na_filerev; (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 0); } } /* * and do the close. */ ret = nfsrpc_close(vp, 0, ap->a_td); if (!error && ret) error = ret; if (error) error = nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0); } if (newnfs_directio_enable) KASSERT((np->n_directio_asyncwr == 0), ("nfs_close: dirty unflushed (%d) directio buffers\n", np->n_directio_asyncwr)); if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) { mtx_lock(&np->n_mtx); KASSERT((np->n_directio_opens > 0), ("nfs_close: unexpectedly value (0) of n_directio_opens\n")); np->n_directio_opens--; if (np->n_directio_opens == 0) np->n_flag &= ~NNONCACHE; mtx_unlock(&np->n_mtx); } if (localcred) NFSFREECRED(cred); return (error); } /* * nfs getattr call from vfs. */ static int nfs_getattr(struct vop_getattr_args *ap) { struct vnode *vp = ap->a_vp; struct thread *td = curthread; /* XXX */ struct nfsnode *np = VTONFS(vp); int error = 0; struct nfsvattr nfsva; struct vattr *vap = ap->a_vap; struct vattr vattr; /* * Update local times for special files. */ mtx_lock(&np->n_mtx); if (np->n_flag & (NACC | NUPD)) np->n_flag |= NCHG; mtx_unlock(&np->n_mtx); /* * First look in the cache. */ if (ncl_getattrcache(vp, &vattr) == 0) { vap->va_type = vattr.va_type; vap->va_mode = vattr.va_mode; vap->va_nlink = vattr.va_nlink; vap->va_uid = vattr.va_uid; vap->va_gid = vattr.va_gid; vap->va_fsid = vattr.va_fsid; vap->va_fileid = vattr.va_fileid; vap->va_size = vattr.va_size; vap->va_blocksize = vattr.va_blocksize; vap->va_atime = vattr.va_atime; vap->va_mtime = vattr.va_mtime; vap->va_ctime = vattr.va_ctime; vap->va_gen = vattr.va_gen; vap->va_flags = vattr.va_flags; vap->va_rdev = vattr.va_rdev; vap->va_bytes = vattr.va_bytes; vap->va_filerev = vattr.va_filerev; /* * Get the local modify time for the case of a write * delegation. */ nfscl_deleggetmodtime(vp, &vap->va_mtime); return (0); } if (NFS_ISV34(vp) && nfs_prime_access_cache && nfsaccess_cache_timeout > 0) { NFSINCRGLOBAL(nfsstatsv1.accesscache_misses); nfs34_access_otw(vp, NFSACCESS_ALL, td, ap->a_cred, NULL); if (ncl_getattrcache(vp, ap->a_vap) == 0) { nfscl_deleggetmodtime(vp, &ap->a_vap->va_mtime); return (0); } } error = nfsrpc_getattr(vp, ap->a_cred, td, &nfsva, NULL); if (!error) error = nfscl_loadattrcache(&vp, &nfsva, vap, NULL, 0, 0); if (!error) { /* * Get the local modify time for the case of a write * delegation. */ nfscl_deleggetmodtime(vp, &vap->va_mtime); } else if (NFS_ISV4(vp)) { error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); } return (error); } /* * nfs setattr call. */ static int nfs_setattr(struct vop_setattr_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct thread *td = curthread; /* XXX */ struct vattr *vap = ap->a_vap; int error = 0; u_quad_t tsize; #ifndef nolint tsize = (u_quad_t)0; #endif /* * Setting of flags and marking of atimes are not supported. */ if (vap->va_flags != VNOVAL) return (EOPNOTSUPP); /* * Disallow write attempts if the filesystem is mounted read-only. */ if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && (vp->v_mount->mnt_flag & MNT_RDONLY)) return (EROFS); if (vap->va_size != VNOVAL) { switch (vp->v_type) { case VDIR: return (EISDIR); case VCHR: case VBLK: case VSOCK: case VFIFO: if (vap->va_mtime.tv_sec == VNOVAL && vap->va_atime.tv_sec == VNOVAL && vap->va_mode == (mode_t)VNOVAL && vap->va_uid == (uid_t)VNOVAL && vap->va_gid == (gid_t)VNOVAL) return (0); vap->va_size = VNOVAL; break; default: /* * Disallow write attempts if the filesystem is * mounted read-only. */ if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); /* * We run vnode_pager_setsize() early (why?), * we must set np->n_size now to avoid vinvalbuf * V_SAVE races that might setsize a lower * value. */ mtx_lock(&np->n_mtx); tsize = np->n_size; mtx_unlock(&np->n_mtx); error = ncl_meta_setsize(vp, ap->a_cred, td, vap->va_size); mtx_lock(&np->n_mtx); if (np->n_flag & NMODIFIED) { tsize = np->n_size; mtx_unlock(&np->n_mtx); error = ncl_vinvalbuf(vp, vap->va_size == 0 ? 0 : V_SAVE, td, 1); if (error != 0) { vnode_pager_setsize(vp, tsize); return (error); } /* * Call nfscl_delegmodtime() to set the modify time * locally, as required. */ nfscl_delegmodtime(vp); } else mtx_unlock(&np->n_mtx); /* * np->n_size has already been set to vap->va_size * in ncl_meta_setsize(). We must set it again since * nfs_loadattrcache() could be called through * ncl_meta_setsize() and could modify np->n_size. */ mtx_lock(&np->n_mtx); np->n_vattr.na_size = np->n_size = vap->va_size; mtx_unlock(&np->n_mtx); } } else { mtx_lock(&np->n_mtx); if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) && (np->n_flag & NMODIFIED) && vp->v_type == VREG) { mtx_unlock(&np->n_mtx); error = ncl_vinvalbuf(vp, V_SAVE, td, 1); if (error == EINTR || error == EIO) return (error); } else mtx_unlock(&np->n_mtx); } error = nfs_setattrrpc(vp, vap, ap->a_cred, td); if (error && vap->va_size != VNOVAL) { mtx_lock(&np->n_mtx); np->n_size = np->n_vattr.na_size = tsize; vnode_pager_setsize(vp, tsize); mtx_unlock(&np->n_mtx); } return (error); } /* * Do an nfs setattr rpc. */ static int nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred, struct thread *td) { struct nfsnode *np = VTONFS(vp); int error, ret, attrflag, i; struct nfsvattr nfsva; if (NFS_ISV34(vp)) { mtx_lock(&np->n_mtx); for (i = 0; i < NFS_ACCESSCACHESIZE; i++) np->n_accesscache[i].stamp = 0; np->n_flag |= NDELEGMOD; mtx_unlock(&np->n_mtx); KDTRACE_NFS_ACCESSCACHE_FLUSH_DONE(vp); } error = nfsrpc_setattr(vp, vap, NULL, cred, td, &nfsva, &attrflag, NULL); if (attrflag) { ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); if (ret && !error) error = ret; } if (error && NFS_ISV4(vp)) error = nfscl_maperr(td, error, vap->va_uid, vap->va_gid); return (error); } /* * nfs lookup call, one step at a time... * First look in cache * If not found, unlock the directory nfsnode and do the rpc */ static int nfs_lookup(struct vop_lookup_args *ap) { struct componentname *cnp = ap->a_cnp; struct vnode *dvp = ap->a_dvp; struct vnode **vpp = ap->a_vpp; struct mount *mp = dvp->v_mount; int flags = cnp->cn_flags; struct vnode *newvp; struct nfsmount *nmp; struct nfsnode *np, *newnp; int error = 0, attrflag, dattrflag, ltype, ncticks; struct thread *td = cnp->cn_thread; struct nfsfh *nfhp; struct nfsvattr dnfsva, nfsva; struct vattr vattr; struct timespec nctime; *vpp = NULLVP; if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) && (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) return (EROFS); if (dvp->v_type != VDIR) return (ENOTDIR); nmp = VFSTONFS(mp); np = VTONFS(dvp); /* For NFSv4, wait until any remove is done. */ mtx_lock(&np->n_mtx); while (NFSHASNFSV4(nmp) && (np->n_flag & NREMOVEINPROG)) { np->n_flag |= NREMOVEWANT; (void) msleep((caddr_t)np, &np->n_mtx, PZERO, "nfslkup", 0); } mtx_unlock(&np->n_mtx); if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0) return (error); error = cache_lookup(dvp, vpp, cnp, &nctime, &ncticks); if (error > 0 && error != ENOENT) return (error); if (error == -1) { /* * Lookups of "." are special and always return the * current directory. cache_lookup() already handles * associated locking bookkeeping, etc. */ if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') { /* XXX: Is this really correct? */ if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN)) cnp->cn_flags |= SAVENAME; return (0); } /* * We only accept a positive hit in the cache if the * change time of the file matches our cached copy. * Otherwise, we discard the cache entry and fallback * to doing a lookup RPC. We also only trust cache * entries for less than nm_nametimeo seconds. * * To better handle stale file handles and attributes, * clear the attribute cache of this node if it is a * leaf component, part of an open() call, and not * locally modified before fetching the attributes. * This should allow stale file handles to be detected * here where we can fall back to a LOOKUP RPC to * recover rather than having nfs_open() detect the * stale file handle and failing open(2) with ESTALE. */ newvp = *vpp; newnp = VTONFS(newvp); if (!(nmp->nm_flag & NFSMNT_NOCTO) && (flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) && !(newnp->n_flag & NMODIFIED)) { mtx_lock(&newnp->n_mtx); newnp->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp); mtx_unlock(&newnp->n_mtx); } if (nfscl_nodeleg(newvp, 0) == 0 || ((u_int)(ticks - ncticks) < (nmp->nm_nametimeo * hz) && VOP_GETATTR(newvp, &vattr, cnp->cn_cred) == 0 && timespeccmp(&vattr.va_ctime, &nctime, ==))) { NFSINCRGLOBAL(nfsstatsv1.lookupcache_hits); if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN)) cnp->cn_flags |= SAVENAME; return (0); } cache_purge(newvp); if (dvp != newvp) vput(newvp); else vrele(newvp); *vpp = NULLVP; } else if (error == ENOENT) { if (dvp->v_iflag & VI_DOOMED) return (ENOENT); /* * We only accept a negative hit in the cache if the * modification time of the parent directory matches * the cached copy in the name cache entry. * Otherwise, we discard all of the negative cache * entries for this directory. We also only trust * negative cache entries for up to nm_negnametimeo * seconds. */ if ((u_int)(ticks - ncticks) < (nmp->nm_negnametimeo * hz) && VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 && timespeccmp(&vattr.va_mtime, &nctime, ==)) { NFSINCRGLOBAL(nfsstatsv1.lookupcache_hits); return (ENOENT); } cache_purge_negative(dvp); } error = 0; newvp = NULLVP; NFSINCRGLOBAL(nfsstatsv1.lookupcache_misses); error = nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, NULL); if (dattrflag) (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); if (error) { if (newvp != NULLVP) { vput(newvp); *vpp = NULLVP; } if (error != ENOENT) { if (NFS_ISV4(dvp)) error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); return (error); } /* The requested file was not found. */ if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) && (flags & ISLASTCN)) { /* * XXX: UFS does a full VOP_ACCESS(dvp, * VWRITE) here instead of just checking * MNT_RDONLY. */ if (mp->mnt_flag & MNT_RDONLY) return (EROFS); cnp->cn_flags |= SAVENAME; return (EJUSTRETURN); } if ((cnp->cn_flags & MAKEENTRY) != 0 && dattrflag) { /* * Cache the modification time of the parent * directory from the post-op attributes in * the name cache entry. The negative cache * entry will be ignored once the directory * has changed. Don't bother adding the entry * if the directory has already changed. */ mtx_lock(&np->n_mtx); if (timespeccmp(&np->n_vattr.na_mtime, &dnfsva.na_mtime, ==)) { mtx_unlock(&np->n_mtx); cache_enter_time(dvp, NULL, cnp, &dnfsva.na_mtime, NULL); } else mtx_unlock(&np->n_mtx); } return (ENOENT); } /* * Handle RENAME case... */ if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) { if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) { FREE((caddr_t)nfhp, M_NFSFH); return (EISDIR); } error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, LK_EXCLUSIVE); if (error) return (error); newvp = NFSTOV(np); if (attrflag) (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 0, 1); *vpp = newvp; cnp->cn_flags |= SAVENAME; return (0); } if (flags & ISDOTDOT) { ltype = NFSVOPISLOCKED(dvp); error = vfs_busy(mp, MBF_NOWAIT); if (error != 0) { vfs_ref(mp); NFSVOPUNLOCK(dvp, 0); error = vfs_busy(mp, 0); NFSVOPLOCK(dvp, ltype | LK_RETRY); vfs_rel(mp); if (error == 0 && (dvp->v_iflag & VI_DOOMED)) { vfs_unbusy(mp); error = ENOENT; } if (error != 0) return (error); } NFSVOPUNLOCK(dvp, 0); error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, cnp->cn_lkflags); if (error == 0) newvp = NFSTOV(np); vfs_unbusy(mp); if (newvp != dvp) NFSVOPLOCK(dvp, ltype | LK_RETRY); if (dvp->v_iflag & VI_DOOMED) { if (error == 0) { if (newvp == dvp) vrele(newvp); else vput(newvp); } error = ENOENT; } if (error != 0) return (error); if (attrflag) (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 0, 1); } else if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) { FREE((caddr_t)nfhp, M_NFSFH); VREF(dvp); newvp = dvp; if (attrflag) (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 0, 1); } else { error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, cnp->cn_lkflags); if (error) return (error); newvp = NFSTOV(np); if (attrflag) (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 0, 1); else if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) && !(np->n_flag & NMODIFIED)) { /* * Flush the attribute cache when opening a * leaf node to ensure that fresh attributes * are fetched in nfs_open() since we did not * fetch attributes from the LOOKUP reply. */ mtx_lock(&np->n_mtx); np->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp); mtx_unlock(&np->n_mtx); } } if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN)) cnp->cn_flags |= SAVENAME; if ((cnp->cn_flags & MAKEENTRY) && (cnp->cn_nameiop != DELETE || !(flags & ISLASTCN)) && attrflag != 0 && (newvp->v_type != VDIR || dattrflag != 0)) cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, newvp->v_type != VDIR ? NULL : &dnfsva.na_ctime); *vpp = newvp; return (0); } /* * nfs read call. * Just call ncl_bioread() to do the work. */ static int nfs_read(struct vop_read_args *ap) { struct vnode *vp = ap->a_vp; switch (vp->v_type) { case VREG: return (ncl_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred)); case VDIR: return (EISDIR); default: return (EOPNOTSUPP); } } /* * nfs readlink call */ static int nfs_readlink(struct vop_readlink_args *ap) { struct vnode *vp = ap->a_vp; if (vp->v_type != VLNK) return (EINVAL); return (ncl_bioread(vp, ap->a_uio, 0, ap->a_cred)); } /* * Do a readlink rpc. * Called by ncl_doio() from below the buffer cache. */ int ncl_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred) { int error, ret, attrflag; struct nfsvattr nfsva; error = nfsrpc_readlink(vp, uiop, cred, uiop->uio_td, &nfsva, &attrflag, NULL); if (attrflag) { ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); if (ret && !error) error = ret; } if (error && NFS_ISV4(vp)) error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); return (error); } /* * nfs read rpc call * Ditto above */ int ncl_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred) { int error, ret, attrflag; struct nfsvattr nfsva; struct nfsmount *nmp; nmp = VFSTONFS(vnode_mount(vp)); error = EIO; attrflag = 0; if (NFSHASPNFS(nmp)) error = nfscl_doiods(vp, uiop, NULL, NULL, NFSV4OPEN_ACCESSREAD, 0, cred, uiop->uio_td); NFSCL_DEBUG(4, "readrpc: aft doiods=%d\n", error); if (error != 0) error = nfsrpc_read(vp, uiop, cred, uiop->uio_td, &nfsva, &attrflag, NULL); if (attrflag) { ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); if (ret && !error) error = ret; } if (error && NFS_ISV4(vp)) error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); return (error); } /* * nfs write call */ int ncl_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, int *iomode, int *must_commit, int called_from_strategy) { struct nfsvattr nfsva; int error, attrflag, ret; struct nfsmount *nmp; nmp = VFSTONFS(vnode_mount(vp)); error = EIO; attrflag = 0; if (NFSHASPNFS(nmp)) error = nfscl_doiods(vp, uiop, iomode, must_commit, NFSV4OPEN_ACCESSWRITE, 0, cred, uiop->uio_td); NFSCL_DEBUG(4, "writerpc: aft doiods=%d\n", error); if (error != 0) error = nfsrpc_write(vp, uiop, iomode, must_commit, cred, uiop->uio_td, &nfsva, &attrflag, NULL, called_from_strategy); if (attrflag) { if (VTONFS(vp)->n_flag & ND_NFSV4) ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 1, 1); else ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); if (ret && !error) error = ret; } if (DOINGASYNC(vp)) *iomode = NFSWRITE_FILESYNC; if (error && NFS_ISV4(vp)) error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); return (error); } /* * nfs mknod rpc * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the * mode set to specify the file type and the size field for rdev. */ static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, struct vattr *vap) { struct nfsvattr nfsva, dnfsva; struct vnode *newvp = NULL; struct nfsnode *np = NULL, *dnp; struct nfsfh *nfhp; struct vattr vattr; int error = 0, attrflag, dattrflag; u_int32_t rdev; if (vap->va_type == VCHR || vap->va_type == VBLK) rdev = vap->va_rdev; else if (vap->va_type == VFIFO || vap->va_type == VSOCK) rdev = 0xffffffff; else return (EOPNOTSUPP); if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred))) return (error); error = nfsrpc_mknod(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap, rdev, vap->va_type, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, NULL); if (!error) { if (!nfhp) (void) nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, NULL); if (nfhp) error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread, &np, NULL, LK_EXCLUSIVE); } if (dattrflag) (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); if (!error) { newvp = NFSTOV(np); if (attrflag != 0) { error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 0, 1); if (error != 0) vput(newvp); } } if (!error) { *vpp = newvp; } else if (NFS_ISV4(dvp)) { error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid, vap->va_gid); } dnp = VTONFS(dvp); mtx_lock(&dnp->n_mtx); dnp->n_flag |= NMODIFIED; if (!dattrflag) { dnp->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); } mtx_unlock(&dnp->n_mtx); return (error); } /* * nfs mknod vop * just call nfs_mknodrpc() to do the work. */ /* ARGSUSED */ static int nfs_mknod(struct vop_mknod_args *ap) { return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap)); } static struct mtx nfs_cverf_mtx; MTX_SYSINIT(nfs_cverf_mtx, &nfs_cverf_mtx, "NFS create verifier mutex", MTX_DEF); static nfsquad_t nfs_get_cverf(void) { static nfsquad_t cverf; nfsquad_t ret; static int cverf_initialized = 0; mtx_lock(&nfs_cverf_mtx); if (cverf_initialized == 0) { cverf.lval[0] = arc4random(); cverf.lval[1] = arc4random(); cverf_initialized = 1; } else cverf.qval++; ret = cverf; mtx_unlock(&nfs_cverf_mtx); return (ret); } /* * nfs file create call */ static int nfs_create(struct vop_create_args *ap) { struct vnode *dvp = ap->a_dvp; struct vattr *vap = ap->a_vap; struct componentname *cnp = ap->a_cnp; struct nfsnode *np = NULL, *dnp; struct vnode *newvp = NULL; struct nfsmount *nmp; struct nfsvattr dnfsva, nfsva; struct nfsfh *nfhp; nfsquad_t cverf; int error = 0, attrflag, dattrflag, fmode = 0; struct vattr vattr; /* * Oops, not for me.. */ if (vap->va_type == VSOCK) return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap)); if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred))) return (error); if (vap->va_vaflags & VA_EXCLUSIVE) fmode |= O_EXCL; dnp = VTONFS(dvp); nmp = VFSTONFS(vnode_mount(dvp)); again: /* For NFSv4, wait until any remove is done. */ mtx_lock(&dnp->n_mtx); while (NFSHASNFSV4(nmp) && (dnp->n_flag & NREMOVEINPROG)) { dnp->n_flag |= NREMOVEWANT; (void) msleep((caddr_t)dnp, &dnp->n_mtx, PZERO, "nfscrt", 0); } mtx_unlock(&dnp->n_mtx); cverf = nfs_get_cverf(); error = nfsrpc_create(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap, cverf, fmode, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, NULL); if (!error) { if (nfhp == NULL) (void) nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, NULL); if (nfhp != NULL) error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread, &np, NULL, LK_EXCLUSIVE); } if (dattrflag) (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); if (!error) { newvp = NFSTOV(np); if (attrflag == 0) error = nfsrpc_getattr(newvp, cnp->cn_cred, cnp->cn_thread, &nfsva, NULL); if (error == 0) error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 0, 1); } if (error) { if (newvp != NULL) { vput(newvp); newvp = NULL; } if (NFS_ISV34(dvp) && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) { fmode &= ~O_EXCL; goto again; } } else if (NFS_ISV34(dvp) && (fmode & O_EXCL)) { if (nfscl_checksattr(vap, &nfsva)) { error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred, cnp->cn_thread, &nfsva, &attrflag, NULL); if (error && (vap->va_uid != (uid_t)VNOVAL || vap->va_gid != (gid_t)VNOVAL)) { /* try again without setting uid/gid */ vap->va_uid = (uid_t)VNOVAL; vap->va_gid = (uid_t)VNOVAL; error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred, cnp->cn_thread, &nfsva, &attrflag, NULL); } if (attrflag) (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 0, 1); if (error != 0) vput(newvp); } } if (!error) { if ((cnp->cn_flags & MAKEENTRY) && attrflag) cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, NULL); *ap->a_vpp = newvp; } else if (NFS_ISV4(dvp)) { error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid, vap->va_gid); } mtx_lock(&dnp->n_mtx); dnp->n_flag |= NMODIFIED; if (!dattrflag) { dnp->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); } mtx_unlock(&dnp->n_mtx); return (error); } /* * nfs file remove call * To try and make nfs semantics closer to ufs semantics, a file that has * other processes using the vnode is renamed instead of removed and then * removed later on the last close. * - If v_usecount > 1 * If a rename is not already in the works * call nfs_sillyrename() to set it up * else * do the remove rpc */ static int nfs_remove(struct vop_remove_args *ap) { struct vnode *vp = ap->a_vp; struct vnode *dvp = ap->a_dvp; struct componentname *cnp = ap->a_cnp; struct nfsnode *np = VTONFS(vp); int error = 0; struct vattr vattr; KASSERT((cnp->cn_flags & HASBUF) != 0, ("nfs_remove: no name")); KASSERT(vrefcnt(vp) > 0, ("nfs_remove: bad v_usecount")); if (vp->v_type == VDIR) error = EPERM; else if (vrefcnt(vp) == 1 || (np->n_sillyrename && VOP_GETATTR(vp, &vattr, cnp->cn_cred) == 0 && vattr.va_nlink > 1)) { /* * Purge the name cache so that the chance of a lookup for * the name succeeding while the remove is in progress is * minimized. Without node locking it can still happen, such * that an I/O op returns ESTALE, but since you get this if * another host removes the file.. */ cache_purge(vp); /* * throw away biocache buffers, mainly to avoid * unnecessary delayed writes later. */ error = ncl_vinvalbuf(vp, 0, cnp->cn_thread, 1); if (error != EINTR && error != EIO) /* Do the rpc */ error = nfs_removerpc(dvp, vp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread); /* * Kludge City: If the first reply to the remove rpc is lost.. * the reply to the retransmitted request will be ENOENT * since the file was in fact removed * Therefore, we cheat and return success. */ if (error == ENOENT) error = 0; } else if (!np->n_sillyrename) error = nfs_sillyrename(dvp, vp, cnp); mtx_lock(&np->n_mtx); np->n_attrstamp = 0; mtx_unlock(&np->n_mtx); KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); return (error); } /* * nfs file remove rpc called from nfs_inactive */ int ncl_removeit(struct sillyrename *sp, struct vnode *vp) { /* * Make sure that the directory vnode is still valid. * XXX we should lock sp->s_dvp here. */ if (sp->s_dvp->v_type == VBAD) return (0); return (nfs_removerpc(sp->s_dvp, vp, sp->s_name, sp->s_namlen, sp->s_cred, NULL)); } /* * Nfs remove rpc, called from nfs_remove() and ncl_removeit(). */ static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name, int namelen, struct ucred *cred, struct thread *td) { struct nfsvattr dnfsva; struct nfsnode *dnp = VTONFS(dvp); int error = 0, dattrflag; mtx_lock(&dnp->n_mtx); dnp->n_flag |= NREMOVEINPROG; mtx_unlock(&dnp->n_mtx); error = nfsrpc_remove(dvp, name, namelen, vp, cred, td, &dnfsva, &dattrflag, NULL); mtx_lock(&dnp->n_mtx); if ((dnp->n_flag & NREMOVEWANT)) { dnp->n_flag &= ~(NREMOVEWANT | NREMOVEINPROG); mtx_unlock(&dnp->n_mtx); wakeup((caddr_t)dnp); } else { dnp->n_flag &= ~NREMOVEINPROG; mtx_unlock(&dnp->n_mtx); } if (dattrflag) (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); mtx_lock(&dnp->n_mtx); dnp->n_flag |= NMODIFIED; if (!dattrflag) { dnp->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); } mtx_unlock(&dnp->n_mtx); if (error && NFS_ISV4(dvp)) error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); return (error); } /* * nfs file rename call */ static int nfs_rename(struct vop_rename_args *ap) { struct vnode *fvp = ap->a_fvp; struct vnode *tvp = ap->a_tvp; struct vnode *fdvp = ap->a_fdvp; struct vnode *tdvp = ap->a_tdvp; struct componentname *tcnp = ap->a_tcnp; struct componentname *fcnp = ap->a_fcnp; struct nfsnode *fnp = VTONFS(ap->a_fvp); struct nfsnode *tdnp = VTONFS(ap->a_tdvp); struct nfsv4node *newv4 = NULL; int error; KASSERT((tcnp->cn_flags & HASBUF) != 0 && (fcnp->cn_flags & HASBUF) != 0, ("nfs_rename: no name")); /* Check for cross-device rename */ if ((fvp->v_mount != tdvp->v_mount) || (tvp && (fvp->v_mount != tvp->v_mount))) { error = EXDEV; goto out; } if (fvp == tvp) { printf("nfs_rename: fvp == tvp (can't happen)\n"); error = 0; goto out; } if ((error = NFSVOPLOCK(fvp, LK_EXCLUSIVE)) != 0) goto out; /* * We have to flush B_DELWRI data prior to renaming * the file. If we don't, the delayed-write buffers * can be flushed out later after the file has gone stale * under NFSV3. NFSV2 does not have this problem because * ( as far as I can tell ) it flushes dirty buffers more * often. * * Skip the rename operation if the fsync fails, this can happen * due to the server's volume being full, when we pushed out data * that was written back to our cache earlier. Not checking for * this condition can result in potential (silent) data loss. */ error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread); NFSVOPUNLOCK(fvp, 0); if (!error && tvp) error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread); if (error) goto out; /* * If the tvp exists and is in use, sillyrename it before doing the * rename of the new file over it. * XXX Can't sillyrename a directory. */ if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename && tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) { vput(tvp); tvp = NULL; } error = nfs_renamerpc(fdvp, fvp, fcnp->cn_nameptr, fcnp->cn_namelen, tdvp, tvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred, tcnp->cn_thread); if (error == 0 && NFS_ISV4(tdvp)) { /* * For NFSv4, check to see if it is the same name and * replace the name, if it is different. */ MALLOC(newv4, struct nfsv4node *, sizeof (struct nfsv4node) + tdnp->n_fhp->nfh_len + tcnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK); mtx_lock(&tdnp->n_mtx); mtx_lock(&fnp->n_mtx); if (fnp->n_v4 != NULL && fvp->v_type == VREG && (fnp->n_v4->n4_namelen != tcnp->cn_namelen || NFSBCMP(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen) || tdnp->n_fhp->nfh_len != fnp->n_v4->n4_fhlen || NFSBCMP(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data, tdnp->n_fhp->nfh_len))) { #ifdef notdef { char nnn[100]; int nnnl; nnnl = (tcnp->cn_namelen < 100) ? tcnp->cn_namelen : 99; bcopy(tcnp->cn_nameptr, nnn, nnnl); nnn[nnnl] = '\0'; printf("ren replace=%s\n",nnn); } #endif FREE((caddr_t)fnp->n_v4, M_NFSV4NODE); fnp->n_v4 = newv4; newv4 = NULL; fnp->n_v4->n4_fhlen = tdnp->n_fhp->nfh_len; fnp->n_v4->n4_namelen = tcnp->cn_namelen; NFSBCOPY(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data, tdnp->n_fhp->nfh_len); NFSBCOPY(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen); } mtx_unlock(&tdnp->n_mtx); mtx_unlock(&fnp->n_mtx); if (newv4 != NULL) FREE((caddr_t)newv4, M_NFSV4NODE); } if (fvp->v_type == VDIR) { if (tvp != NULL && tvp->v_type == VDIR) cache_purge(tdvp); cache_purge(fdvp); } out: if (tdvp == tvp) vrele(tdvp); else vput(tdvp); if (tvp) vput(tvp); vrele(fdvp); vrele(fvp); /* * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry. */ if (error == ENOENT) error = 0; return (error); } /* * nfs file rename rpc called from nfs_remove() above */ static int nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp, struct sillyrename *sp) { return (nfs_renamerpc(sdvp, svp, scnp->cn_nameptr, scnp->cn_namelen, sdvp, NULL, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_thread)); } /* * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit(). */ static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td) { struct nfsvattr fnfsva, tnfsva; struct nfsnode *fdnp = VTONFS(fdvp); struct nfsnode *tdnp = VTONFS(tdvp); int error = 0, fattrflag, tattrflag; error = nfsrpc_rename(fdvp, fvp, fnameptr, fnamelen, tdvp, tvp, tnameptr, tnamelen, cred, td, &fnfsva, &tnfsva, &fattrflag, &tattrflag, NULL, NULL); mtx_lock(&fdnp->n_mtx); fdnp->n_flag |= NMODIFIED; if (fattrflag != 0) { mtx_unlock(&fdnp->n_mtx); (void) nfscl_loadattrcache(&fdvp, &fnfsva, NULL, NULL, 0, 1); } else { fdnp->n_attrstamp = 0; mtx_unlock(&fdnp->n_mtx); KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(fdvp); } mtx_lock(&tdnp->n_mtx); tdnp->n_flag |= NMODIFIED; if (tattrflag != 0) { mtx_unlock(&tdnp->n_mtx); (void) nfscl_loadattrcache(&tdvp, &tnfsva, NULL, NULL, 0, 1); } else { tdnp->n_attrstamp = 0; mtx_unlock(&tdnp->n_mtx); KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp); } if (error && NFS_ISV4(fdvp)) error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); return (error); } /* * nfs hard link create call */ static int nfs_link(struct vop_link_args *ap) { struct vnode *vp = ap->a_vp; struct vnode *tdvp = ap->a_tdvp; struct componentname *cnp = ap->a_cnp; struct nfsnode *np, *tdnp; struct nfsvattr nfsva, dnfsva; int error = 0, attrflag, dattrflag; /* * Push all writes to the server, so that the attribute cache * doesn't get "out of sync" with the server. * XXX There should be a better way! */ VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread); error = nfsrpc_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &attrflag, &dattrflag, NULL); tdnp = VTONFS(tdvp); mtx_lock(&tdnp->n_mtx); tdnp->n_flag |= NMODIFIED; if (dattrflag != 0) { mtx_unlock(&tdnp->n_mtx); (void) nfscl_loadattrcache(&tdvp, &dnfsva, NULL, NULL, 0, 1); } else { tdnp->n_attrstamp = 0; mtx_unlock(&tdnp->n_mtx); KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp); } if (attrflag) (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); else { np = VTONFS(vp); mtx_lock(&np->n_mtx); np->n_attrstamp = 0; mtx_unlock(&np->n_mtx); KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); } /* * If negative lookup caching is enabled, I might as well * add an entry for this node. Not necessary for correctness, * but if negative caching is enabled, then the system * must care about lookup caching hit rate, so... */ if (VFSTONFS(vp->v_mount)->nm_negnametimeo != 0 && (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) { cache_enter_time(tdvp, vp, cnp, &nfsva.na_ctime, NULL); } if (error && NFS_ISV4(vp)) error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0, (gid_t)0); return (error); } /* * nfs symbolic link create call */ static int nfs_symlink(struct vop_symlink_args *ap) { struct vnode *dvp = ap->a_dvp; struct vattr *vap = ap->a_vap; struct componentname *cnp = ap->a_cnp; struct nfsvattr nfsva, dnfsva; struct nfsfh *nfhp; struct nfsnode *np = NULL, *dnp; struct vnode *newvp = NULL; int error = 0, attrflag, dattrflag, ret; vap->va_type = VLNK; error = nfsrpc_symlink(dvp, cnp->cn_nameptr, cnp->cn_namelen, ap->a_target, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, NULL); if (nfhp) { ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread, &np, NULL, LK_EXCLUSIVE); if (!ret) newvp = NFSTOV(np); else if (!error) error = ret; } if (newvp != NULL) { if (attrflag) (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 0, 1); } else if (!error) { /* * If we do not have an error and we could not extract the * newvp from the response due to the request being NFSv2, we * have to do a lookup in order to obtain a newvp to return. */ error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, &np); if (!error) newvp = NFSTOV(np); } if (error) { if (newvp) vput(newvp); if (NFS_ISV4(dvp)) error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid, vap->va_gid); } else { *ap->a_vpp = newvp; } dnp = VTONFS(dvp); mtx_lock(&dnp->n_mtx); dnp->n_flag |= NMODIFIED; if (dattrflag != 0) { mtx_unlock(&dnp->n_mtx); (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); } else { dnp->n_attrstamp = 0; mtx_unlock(&dnp->n_mtx); KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); } /* * If negative lookup caching is enabled, I might as well * add an entry for this node. Not necessary for correctness, * but if negative caching is enabled, then the system * must care about lookup caching hit rate, so... */ if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 && (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) { cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, NULL); } return (error); } /* * nfs make dir call */ static int nfs_mkdir(struct vop_mkdir_args *ap) { struct vnode *dvp = ap->a_dvp; struct vattr *vap = ap->a_vap; struct componentname *cnp = ap->a_cnp; struct nfsnode *np = NULL, *dnp; struct vnode *newvp = NULL; struct vattr vattr; struct nfsfh *nfhp; struct nfsvattr nfsva, dnfsva; int error = 0, attrflag, dattrflag, ret; if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0) return (error); vap->va_type = VDIR; error = nfsrpc_mkdir(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, NULL); dnp = VTONFS(dvp); mtx_lock(&dnp->n_mtx); dnp->n_flag |= NMODIFIED; if (dattrflag != 0) { mtx_unlock(&dnp->n_mtx); (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); } else { dnp->n_attrstamp = 0; mtx_unlock(&dnp->n_mtx); KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); } if (nfhp) { ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread, &np, NULL, LK_EXCLUSIVE); if (!ret) { newvp = NFSTOV(np); if (attrflag) (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 0, 1); } else if (!error) error = ret; } if (!error && newvp == NULL) { error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, &np); if (!error) { newvp = NFSTOV(np); if (newvp->v_type != VDIR) error = EEXIST; } } if (error) { if (newvp) vput(newvp); if (NFS_ISV4(dvp)) error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid, vap->va_gid); } else { /* * If negative lookup caching is enabled, I might as well * add an entry for this node. Not necessary for correctness, * but if negative caching is enabled, then the system * must care about lookup caching hit rate, so... */ if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 && (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && dattrflag != 0) cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, &dnfsva.na_ctime); *ap->a_vpp = newvp; } return (error); } /* * nfs remove directory call */ static int nfs_rmdir(struct vop_rmdir_args *ap) { struct vnode *vp = ap->a_vp; struct vnode *dvp = ap->a_dvp; struct componentname *cnp = ap->a_cnp; struct nfsnode *dnp; struct nfsvattr dnfsva; int error, dattrflag; if (dvp == vp) return (EINVAL); error = nfsrpc_rmdir(dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, &dnfsva, &dattrflag, NULL); dnp = VTONFS(dvp); mtx_lock(&dnp->n_mtx); dnp->n_flag |= NMODIFIED; if (dattrflag != 0) { mtx_unlock(&dnp->n_mtx); (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); } else { dnp->n_attrstamp = 0; mtx_unlock(&dnp->n_mtx); KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); } cache_purge(dvp); cache_purge(vp); if (error && NFS_ISV4(dvp)) error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0, (gid_t)0); /* * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry. */ if (error == ENOENT) error = 0; return (error); } /* * nfs readdir call */ static int nfs_readdir(struct vop_readdir_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct uio *uio = ap->a_uio; ssize_t tresid, left; int error = 0; struct vattr vattr; if (ap->a_eofflag != NULL) *ap->a_eofflag = 0; if (vp->v_type != VDIR) return(EPERM); /* * First, check for hit on the EOF offset cache */ if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset && (np->n_flag & NMODIFIED) == 0) { if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) { mtx_lock(&np->n_mtx); if ((NFS_ISV4(vp) && np->n_change == vattr.va_filerev) || !NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) { mtx_unlock(&np->n_mtx); NFSINCRGLOBAL(nfsstatsv1.direofcache_hits); if (ap->a_eofflag != NULL) *ap->a_eofflag = 1; return (0); } else mtx_unlock(&np->n_mtx); } } /* * NFS always guarantees that directory entries don't straddle * DIRBLKSIZ boundaries. As such, we need to limit the size * to an exact multiple of DIRBLKSIZ, to avoid copying a partial * directory entry. */ left = uio->uio_resid % DIRBLKSIZ; if (left == uio->uio_resid) return (EINVAL); uio->uio_resid -= left; /* * Call ncl_bioread() to do the real work. */ tresid = uio->uio_resid; error = ncl_bioread(vp, uio, 0, ap->a_cred); if (!error && uio->uio_resid == tresid) { NFSINCRGLOBAL(nfsstatsv1.direofcache_misses); if (ap->a_eofflag != NULL) *ap->a_eofflag = 1; } /* Add the partial DIRBLKSIZ (left) back in. */ uio->uio_resid += left; return (error); } /* * Readdir rpc call. * Called from below the buffer cache by ncl_doio(). */ int ncl_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, struct thread *td) { struct nfsvattr nfsva; nfsuint64 *cookiep, cookie; struct nfsnode *dnp = VTONFS(vp); struct nfsmount *nmp = VFSTONFS(vp->v_mount); int error = 0, eof, attrflag; KASSERT(uiop->uio_iovcnt == 1 && (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 && (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0, ("nfs readdirrpc bad uio")); /* * If there is no cookie, assume directory was stale. */ ncl_dircookie_lock(dnp); cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0); if (cookiep) { cookie = *cookiep; ncl_dircookie_unlock(dnp); } else { ncl_dircookie_unlock(dnp); return (NFSERR_BAD_COOKIE); } if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp)) (void)ncl_fsinfo(nmp, vp, cred, td); error = nfsrpc_readdir(vp, uiop, &cookie, cred, td, &nfsva, &attrflag, &eof, NULL); if (attrflag) (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); if (!error) { /* * We are now either at the end of the directory or have filled * the block. */ if (eof) dnp->n_direofoffset = uiop->uio_offset; else { if (uiop->uio_resid > 0) printf("EEK! readdirrpc resid > 0\n"); ncl_dircookie_lock(dnp); cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1); *cookiep = cookie; ncl_dircookie_unlock(dnp); } } else if (NFS_ISV4(vp)) { error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); } return (error); } /* * NFS V3 readdir plus RPC. Used in place of ncl_readdirrpc(). */ int ncl_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, struct thread *td) { struct nfsvattr nfsva; nfsuint64 *cookiep, cookie; struct nfsnode *dnp = VTONFS(vp); struct nfsmount *nmp = VFSTONFS(vp->v_mount); int error = 0, attrflag, eof; KASSERT(uiop->uio_iovcnt == 1 && (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 && (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0, ("nfs readdirplusrpc bad uio")); /* * If there is no cookie, assume directory was stale. */ ncl_dircookie_lock(dnp); cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0); if (cookiep) { cookie = *cookiep; ncl_dircookie_unlock(dnp); } else { ncl_dircookie_unlock(dnp); return (NFSERR_BAD_COOKIE); } if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp)) (void)ncl_fsinfo(nmp, vp, cred, td); error = nfsrpc_readdirplus(vp, uiop, &cookie, cred, td, &nfsva, &attrflag, &eof, NULL); if (attrflag) (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); if (!error) { /* * We are now either at end of the directory or have filled the * the block. */ if (eof) dnp->n_direofoffset = uiop->uio_offset; else { if (uiop->uio_resid > 0) printf("EEK! readdirplusrpc resid > 0\n"); ncl_dircookie_lock(dnp); cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1); *cookiep = cookie; ncl_dircookie_unlock(dnp); } } else if (NFS_ISV4(vp)) { error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); } return (error); } /* * Silly rename. To make the NFS filesystem that is stateless look a little * more like the "ufs" a remove of an active vnode is translated to a rename * to a funny looking filename that is removed by nfs_inactive on the * nfsnode. There is the potential for another process on a different client * to create the same funny name between the nfs_lookitup() fails and the * nfs_rename() completes, but... */ static int nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp) { struct sillyrename *sp; struct nfsnode *np; int error; short pid; unsigned int lticks; cache_purge(dvp); np = VTONFS(vp); KASSERT(vp->v_type != VDIR, ("nfs: sillyrename dir")); MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename), M_NEWNFSREQ, M_WAITOK); sp->s_cred = crhold(cnp->cn_cred); sp->s_dvp = dvp; VREF(dvp); /* * Fudge together a funny name. * Changing the format of the funny name to accommodate more * sillynames per directory. * The name is now changed to .nfs...4, where ticks is * CPU ticks since boot. */ pid = cnp->cn_thread->td_proc->p_pid; lticks = (unsigned int)ticks; for ( ; ; ) { sp->s_namlen = sprintf(sp->s_name, ".nfs.%08x.%04x4.4", lticks, pid); if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, cnp->cn_thread, NULL)) break; lticks++; } error = nfs_renameit(dvp, vp, cnp, sp); if (error) goto bad; error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, cnp->cn_thread, &np); np->n_sillyrename = sp; return (0); bad: vrele(sp->s_dvp); crfree(sp->s_cred); free((caddr_t)sp, M_NEWNFSREQ); return (error); } /* * Look up a file name and optionally either update the file handle or * allocate an nfsnode, depending on the value of npp. * npp == NULL --> just do the lookup * *npp == NULL --> allocate a new nfsnode and make sure attributes are * handled too * *npp != NULL --> update the file handle in the vnode */ static int nfs_lookitup(struct vnode *dvp, char *name, int len, struct ucred *cred, struct thread *td, struct nfsnode **npp) { struct vnode *newvp = NULL, *vp; struct nfsnode *np, *dnp = VTONFS(dvp); struct nfsfh *nfhp, *onfhp; struct nfsvattr nfsva, dnfsva; struct componentname cn; int error = 0, attrflag, dattrflag; u_int hash; error = nfsrpc_lookup(dvp, name, len, cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, NULL); if (dattrflag) (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); if (npp && !error) { if (*npp != NULL) { np = *npp; vp = NFSTOV(np); /* * For NFSv4, check to see if it is the same name and * replace the name, if it is different. */ if (np->n_v4 != NULL && nfsva.na_type == VREG && (np->n_v4->n4_namelen != len || NFSBCMP(name, NFS4NODENAME(np->n_v4), len) || dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, dnp->n_fhp->nfh_len))) { #ifdef notdef { char nnn[100]; int nnnl; nnnl = (len < 100) ? len : 99; bcopy(name, nnn, nnnl); nnn[nnnl] = '\0'; printf("replace=%s\n",nnn); } #endif FREE((caddr_t)np->n_v4, M_NFSV4NODE); MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len + len - 1, M_NFSV4NODE, M_WAITOK); np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; np->n_v4->n4_namelen = len; NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, dnp->n_fhp->nfh_len); NFSBCOPY(name, NFS4NODENAME(np->n_v4), len); } hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT); onfhp = np->n_fhp; /* * Rehash node for new file handle. */ vfs_hash_rehash(vp, hash); np->n_fhp = nfhp; if (onfhp != NULL) FREE((caddr_t)onfhp, M_NFSFH); newvp = NFSTOV(np); } else if (NFS_CMPFH(dnp, nfhp->nfh_fh, nfhp->nfh_len)) { FREE((caddr_t)nfhp, M_NFSFH); VREF(dvp); newvp = dvp; } else { cn.cn_nameptr = name; cn.cn_namelen = len; error = nfscl_nget(dvp->v_mount, dvp, nfhp, &cn, td, &np, NULL, LK_EXCLUSIVE); if (error) return (error); newvp = NFSTOV(np); } if (!attrflag && *npp == NULL) { if (newvp == dvp) vrele(newvp); else vput(newvp); return (ENOENT); } if (attrflag) (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 0, 1); } if (npp && *npp == NULL) { if (error) { if (newvp) { if (newvp == dvp) vrele(newvp); else vput(newvp); } } else *npp = np; } if (error && NFS_ISV4(dvp)) error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); return (error); } /* * Nfs Version 3 and 4 commit rpc */ int ncl_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred, struct thread *td) { struct nfsvattr nfsva; struct nfsmount *nmp = VFSTONFS(vp->v_mount); struct nfsnode *np; struct uio uio; int error, attrflag; np = VTONFS(vp); error = EIO; attrflag = 0; if (NFSHASPNFS(nmp) && (np->n_flag & NDSCOMMIT) != 0) { uio.uio_offset = offset; uio.uio_resid = cnt; error = nfscl_doiods(vp, &uio, NULL, NULL, NFSV4OPEN_ACCESSWRITE, 1, cred, td); if (error != 0) { mtx_lock(&np->n_mtx); np->n_flag &= ~NDSCOMMIT; mtx_unlock(&np->n_mtx); } } if (error != 0) { mtx_lock(&nmp->nm_mtx); if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) { mtx_unlock(&nmp->nm_mtx); return (0); } mtx_unlock(&nmp->nm_mtx); error = nfsrpc_commit(vp, offset, cnt, cred, td, &nfsva, &attrflag, NULL); } if (attrflag != 0) (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); if (error != 0 && NFS_ISV4(vp)) error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); return (error); } /* * Strategy routine. * For async requests when nfsiod(s) are running, queue the request by * calling ncl_asyncio(), otherwise just all ncl_doio() to do the * request. */ static int nfs_strategy(struct vop_strategy_args *ap) { struct buf *bp; struct vnode *vp; struct ucred *cr; bp = ap->a_bp; vp = ap->a_vp; KASSERT(bp->b_vp == vp, ("missing b_getvp")); KASSERT(!(bp->b_flags & B_DONE), ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp)); BUF_ASSERT_HELD(bp); if (vp->v_type == VREG && bp->b_blkno == bp->b_lblkno) bp->b_blkno = bp->b_lblkno * (vp->v_bufobj.bo_bsize / DEV_BSIZE); if (bp->b_iocmd == BIO_READ) cr = bp->b_rcred; else cr = bp->b_wcred; /* * If the op is asynchronous and an i/o daemon is waiting * queue the request, wake it up and wait for completion * otherwise just do it ourselves. */ if ((bp->b_flags & B_ASYNC) == 0 || ncl_asyncio(VFSTONFS(vp->v_mount), bp, NOCRED, curthread)) (void) ncl_doio(vp, bp, cr, curthread, 1); return (0); } /* * fsync vnode op. Just call ncl_flush() with commit == 1. */ /* ARGSUSED */ static int nfs_fsync(struct vop_fsync_args *ap) { if (ap->a_vp->v_type != VREG) { /* * For NFS, metadata is changed synchronously on the server, * so there is nothing to flush. Also, ncl_flush() clears * the NMODIFIED flag and that shouldn't be done here for * directories. */ return (0); } return (ncl_flush(ap->a_vp, ap->a_waitfor, ap->a_td, 1, 0)); } /* * Flush all the blocks associated with a vnode. * Walk through the buffer pool and push any dirty pages * associated with the vnode. * If the called_from_renewthread argument is TRUE, it has been called * from the NFSv4 renew thread and, as such, cannot block indefinitely * waiting for a buffer write to complete. */ int ncl_flush(struct vnode *vp, int waitfor, struct thread *td, int commit, int called_from_renewthread) { struct nfsnode *np = VTONFS(vp); struct buf *bp; int i; struct buf *nbp; struct nfsmount *nmp = VFSTONFS(vp->v_mount); int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos; int passone = 1, trycnt = 0; u_quad_t off, endoff, toff; struct ucred* wcred = NULL; struct buf **bvec = NULL; struct bufobj *bo; #ifndef NFS_COMMITBVECSIZ #define NFS_COMMITBVECSIZ 20 #endif struct buf *bvec_on_stack[NFS_COMMITBVECSIZ]; int bvecsize = 0, bveccount; if (called_from_renewthread != 0) slptimeo = hz; if (nmp->nm_flag & NFSMNT_INT) slpflag = PCATCH; if (!commit) passone = 0; bo = &vp->v_bufobj; /* * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the * server, but has not been committed to stable storage on the server * yet. On the first pass, the byte range is worked out and the commit * rpc is done. On the second pass, ncl_writebp() is called to do the * job. */ again: off = (u_quad_t)-1; endoff = 0; bvecpos = 0; if (NFS_ISV34(vp) && commit) { if (bvec != NULL && bvec != bvec_on_stack) free(bvec, M_TEMP); /* * Count up how many buffers waiting for a commit. */ bveccount = 0; BO_LOCK(bo); TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { if (!BUF_ISLOCKED(bp) && (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) == (B_DELWRI | B_NEEDCOMMIT)) bveccount++; } /* * Allocate space to remember the list of bufs to commit. It is * important to use M_NOWAIT here to avoid a race with nfs_write. * If we can't get memory (for whatever reason), we will end up * committing the buffers one-by-one in the loop below. */ if (bveccount > NFS_COMMITBVECSIZ) { /* * Release the vnode interlock to avoid a lock * order reversal. */ BO_UNLOCK(bo); bvec = (struct buf **) malloc(bveccount * sizeof(struct buf *), M_TEMP, M_NOWAIT); BO_LOCK(bo); if (bvec == NULL) { bvec = bvec_on_stack; bvecsize = NFS_COMMITBVECSIZ; } else bvecsize = bveccount; } else { bvec = bvec_on_stack; bvecsize = NFS_COMMITBVECSIZ; } TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { if (bvecpos >= bvecsize) break; if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) { nbp = TAILQ_NEXT(bp, b_bobufs); continue; } if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) != (B_DELWRI | B_NEEDCOMMIT)) { BUF_UNLOCK(bp); nbp = TAILQ_NEXT(bp, b_bobufs); continue; } BO_UNLOCK(bo); bremfree(bp); /* * Work out if all buffers are using the same cred * so we can deal with them all with one commit. * * NOTE: we are not clearing B_DONE here, so we have * to do it later on in this routine if we intend to * initiate I/O on the bp. * * Note: to avoid loopback deadlocks, we do not * assign b_runningbufspace. */ if (wcred == NULL) wcred = bp->b_wcred; else if (wcred != bp->b_wcred) wcred = NOCRED; vfs_busy_pages(bp, 1); BO_LOCK(bo); /* * bp is protected by being locked, but nbp is not * and vfs_busy_pages() may sleep. We have to * recalculate nbp. */ nbp = TAILQ_NEXT(bp, b_bobufs); /* * A list of these buffers is kept so that the * second loop knows which buffers have actually * been committed. This is necessary, since there * may be a race between the commit rpc and new * uncommitted writes on the file. */ bvec[bvecpos++] = bp; toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff; if (toff < off) off = toff; toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff); if (toff > endoff) endoff = toff; } BO_UNLOCK(bo); } if (bvecpos > 0) { /* * Commit data on the server, as required. * If all bufs are using the same wcred, then use that with * one call for all of them, otherwise commit each one * separately. */ if (wcred != NOCRED) retv = ncl_commit(vp, off, (int)(endoff - off), wcred, td); else { retv = 0; for (i = 0; i < bvecpos; i++) { off_t off, size; bp = bvec[i]; off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff; size = (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff); retv = ncl_commit(vp, off, (int)size, bp->b_wcred, td); if (retv) break; } } if (retv == NFSERR_STALEWRITEVERF) ncl_clearcommit(vp->v_mount); /* * Now, either mark the blocks I/O done or mark the * blocks dirty, depending on whether the commit * succeeded. */ for (i = 0; i < bvecpos; i++) { bp = bvec[i]; bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); if (retv) { /* * Error, leave B_DELWRI intact */ vfs_unbusy_pages(bp); brelse(bp); } else { /* * Success, remove B_DELWRI ( bundirty() ). * * b_dirtyoff/b_dirtyend seem to be NFS * specific. We should probably move that * into bundirty(). XXX */ bufobj_wref(bo); bp->b_flags |= B_ASYNC; bundirty(bp); bp->b_flags &= ~B_DONE; bp->b_ioflags &= ~BIO_ERROR; bp->b_dirtyoff = bp->b_dirtyend = 0; bufdone(bp); } } } /* * Start/do any write(s) that are required. */ loop: BO_LOCK(bo); TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) { if (waitfor != MNT_WAIT || passone) continue; error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo), "nfsfsync", slpflag, slptimeo); if (error == 0) { BUF_UNLOCK(bp); goto loop; } if (error == ENOLCK) { error = 0; goto loop; } if (called_from_renewthread != 0) { /* * Return EIO so the flush will be retried * later. */ error = EIO; goto done; } if (newnfs_sigintr(nmp, td)) { error = EINTR; goto done; } if (slpflag == PCATCH) { slpflag = 0; slptimeo = 2 * hz; } goto loop; } if ((bp->b_flags & B_DELWRI) == 0) panic("nfs_fsync: not dirty"); if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) { BUF_UNLOCK(bp); continue; } BO_UNLOCK(bo); bremfree(bp); if (passone || !commit) bp->b_flags |= B_ASYNC; else bp->b_flags |= B_ASYNC; bwrite(bp); if (newnfs_sigintr(nmp, td)) { error = EINTR; goto done; } goto loop; } if (passone) { passone = 0; BO_UNLOCK(bo); goto again; } if (waitfor == MNT_WAIT) { while (bo->bo_numoutput) { error = bufobj_wwait(bo, slpflag, slptimeo); if (error) { BO_UNLOCK(bo); if (called_from_renewthread != 0) { /* * Return EIO so that the flush will be * retried later. */ error = EIO; goto done; } error = newnfs_sigintr(nmp, td); if (error) goto done; if (slpflag == PCATCH) { slpflag = 0; slptimeo = 2 * hz; } BO_LOCK(bo); } } if (bo->bo_dirty.bv_cnt != 0 && commit) { BO_UNLOCK(bo); goto loop; } /* * Wait for all the async IO requests to drain */ BO_UNLOCK(bo); mtx_lock(&np->n_mtx); while (np->n_directio_asyncwr > 0) { np->n_flag |= NFSYNCWAIT; error = newnfs_msleep(td, &np->n_directio_asyncwr, &np->n_mtx, slpflag | (PRIBIO + 1), "nfsfsync", 0); if (error) { if (newnfs_sigintr(nmp, td)) { mtx_unlock(&np->n_mtx); error = EINTR; goto done; } } } mtx_unlock(&np->n_mtx); } else BO_UNLOCK(bo); if (NFSHASPNFS(nmp)) { nfscl_layoutcommit(vp, td); /* * Invalidate the attribute cache, since writes to a DS * won't update the size attribute. */ mtx_lock(&np->n_mtx); np->n_attrstamp = 0; } else mtx_lock(&np->n_mtx); if (np->n_flag & NWRITEERR) { error = np->n_error; np->n_flag &= ~NWRITEERR; } if (commit && bo->bo_dirty.bv_cnt == 0 && bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0) np->n_flag &= ~NMODIFIED; mtx_unlock(&np->n_mtx); done: if (bvec != NULL && bvec != bvec_on_stack) free(bvec, M_TEMP); if (error == 0 && commit != 0 && waitfor == MNT_WAIT && (bo->bo_dirty.bv_cnt != 0 || bo->bo_numoutput != 0 || np->n_directio_asyncwr != 0)) { if (trycnt++ < 5) { /* try, try again... */ passone = 1; wcred = NULL; bvec = NULL; bvecsize = 0; goto again; } vn_printf(vp, "ncl_flush failed"); error = called_from_renewthread != 0 ? EIO : EBUSY; } return (error); } /* * NFS advisory byte-level locks. */ static int nfs_advlock(struct vop_advlock_args *ap) { struct vnode *vp = ap->a_vp; struct ucred *cred; struct nfsnode *np = VTONFS(ap->a_vp); struct proc *p = (struct proc *)ap->a_id; struct thread *td = curthread; /* XXX */ struct vattr va; int ret, error = EOPNOTSUPP; u_quad_t size; if (NFS_ISV4(vp) && (ap->a_flags & (F_POSIX | F_FLOCK)) != 0) { if (vp->v_type != VREG) return (EINVAL); if ((ap->a_flags & F_POSIX) != 0) cred = p->p_ucred; else cred = td->td_ucred; NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY); if (vp->v_iflag & VI_DOOMED) { NFSVOPUNLOCK(vp, 0); return (EBADF); } /* * If this is unlocking a write locked region, flush and * commit them before unlocking. This is required by * RFC3530 Sec. 9.3.2. */ if (ap->a_op == F_UNLCK && nfscl_checkwritelocked(vp, ap->a_fl, cred, td, ap->a_id, ap->a_flags)) (void) ncl_flush(vp, MNT_WAIT, td, 1, 0); /* * Loop around doing the lock op, while a blocking lock * must wait for the lock op to succeed. */ do { ret = nfsrpc_advlock(vp, np->n_size, ap->a_op, ap->a_fl, 0, cred, td, ap->a_id, ap->a_flags); if (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) && ap->a_op == F_SETLK) { NFSVOPUNLOCK(vp, 0); error = nfs_catnap(PZERO | PCATCH, ret, "ncladvl"); if (error) return (EINTR); NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY); if (vp->v_iflag & VI_DOOMED) { NFSVOPUNLOCK(vp, 0); return (EBADF); } } } while (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) && ap->a_op == F_SETLK); if (ret == NFSERR_DENIED) { NFSVOPUNLOCK(vp, 0); return (EAGAIN); } else if (ret == EINVAL || ret == EBADF || ret == EINTR) { NFSVOPUNLOCK(vp, 0); return (ret); } else if (ret != 0) { NFSVOPUNLOCK(vp, 0); return (EACCES); } /* * Now, if we just got a lock, invalidate data in the buffer * cache, as required, so that the coherency conforms with * RFC3530 Sec. 9.3.2. */ if (ap->a_op == F_SETLK) { if ((np->n_flag & NMODIFIED) == 0) { np->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); ret = VOP_GETATTR(vp, &va, cred); } if ((np->n_flag & NMODIFIED) || ret || np->n_change != va.va_filerev) { (void) ncl_vinvalbuf(vp, V_SAVE, td, 1); np->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); ret = VOP_GETATTR(vp, &va, cred); if (!ret) { np->n_mtime = va.va_mtime; np->n_change = va.va_filerev; } } /* Mark that a file lock has been acquired. */ mtx_lock(&np->n_mtx); np->n_flag |= NHASBEENLOCKED; mtx_unlock(&np->n_mtx); } NFSVOPUNLOCK(vp, 0); return (0); } else if (!NFS_ISV4(vp)) { error = NFSVOPLOCK(vp, LK_SHARED); if (error) return (error); if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) { size = VTONFS(vp)->n_size; NFSVOPUNLOCK(vp, 0); error = lf_advlock(ap, &(vp->v_lockf), size); } else { if (nfs_advlock_p != NULL) error = nfs_advlock_p(ap); else { NFSVOPUNLOCK(vp, 0); error = ENOLCK; } } if (error == 0 && ap->a_op == F_SETLK) { error = NFSVOPLOCK(vp, LK_SHARED); if (error == 0) { /* Mark that a file lock has been acquired. */ mtx_lock(&np->n_mtx); np->n_flag |= NHASBEENLOCKED; mtx_unlock(&np->n_mtx); NFSVOPUNLOCK(vp, 0); } } } return (error); } /* * NFS advisory byte-level locks. */ static int nfs_advlockasync(struct vop_advlockasync_args *ap) { struct vnode *vp = ap->a_vp; u_quad_t size; int error; if (NFS_ISV4(vp)) return (EOPNOTSUPP); error = NFSVOPLOCK(vp, LK_SHARED); if (error) return (error); if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) { size = VTONFS(vp)->n_size; NFSVOPUNLOCK(vp, 0); error = lf_advlockasync(ap, &(vp->v_lockf), size); } else { NFSVOPUNLOCK(vp, 0); error = EOPNOTSUPP; } return (error); } /* * Print out the contents of an nfsnode. */ static int nfs_print(struct vop_print_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); printf("\tfileid %jd fsid 0x%jx", (uintmax_t)np->n_vattr.na_fileid, (uintmax_t)np->n_vattr.na_fsid); if (vp->v_type == VFIFO) fifo_printinfo(vp); printf("\n"); return (0); } /* * This is the "real" nfs::bwrite(struct buf*). * We set B_CACHE if this is a VMIO buffer. */ int ncl_writebp(struct buf *bp, int force __unused, struct thread *td) { int oldflags, rtval; BUF_ASSERT_HELD(bp); if (bp->b_flags & B_INVAL) { brelse(bp); return (0); } oldflags = bp->b_flags; bp->b_flags |= B_CACHE; /* * Undirty the bp. We will redirty it later if the I/O fails. */ bundirty(bp); bp->b_flags &= ~B_DONE; bp->b_ioflags &= ~BIO_ERROR; bp->b_iocmd = BIO_WRITE; bufobj_wref(bp->b_bufobj); curthread->td_ru.ru_oublock++; /* * Note: to avoid loopback deadlocks, we do not * assign b_runningbufspace. */ vfs_busy_pages(bp, 1); BUF_KERNPROC(bp); bp->b_iooffset = dbtob(bp->b_blkno); bstrategy(bp); if ((oldflags & B_ASYNC) != 0) return (0); rtval = bufwait(bp); if (oldflags & B_DELWRI) reassignbuf(bp); brelse(bp); return (rtval); } /* * nfs special file access vnode op. * Essentially just get vattr and then imitate iaccess() since the device is * local to the client. */ static int nfsspec_access(struct vop_access_args *ap) { struct vattr *vap; struct ucred *cred = ap->a_cred; struct vnode *vp = ap->a_vp; accmode_t accmode = ap->a_accmode; struct vattr vattr; int error; /* * Disallow write attempts on filesystems mounted read-only; * unless the file is a socket, fifo, or a block or character * device resident on the filesystem. */ if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) { switch (vp->v_type) { case VREG: case VDIR: case VLNK: return (EROFS); default: break; } } vap = &vattr; error = VOP_GETATTR(vp, vap, cred); if (error) goto out; error = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid, accmode, cred, NULL); out: return error; } /* * Read wrapper for fifos. */ static int nfsfifo_read(struct vop_read_args *ap) { struct nfsnode *np = VTONFS(ap->a_vp); int error; /* * Set access flag. */ mtx_lock(&np->n_mtx); np->n_flag |= NACC; vfs_timestamp(&np->n_atim); mtx_unlock(&np->n_mtx); error = fifo_specops.vop_read(ap); return error; } /* * Write wrapper for fifos. */ static int nfsfifo_write(struct vop_write_args *ap) { struct nfsnode *np = VTONFS(ap->a_vp); /* * Set update flag. */ mtx_lock(&np->n_mtx); np->n_flag |= NUPD; vfs_timestamp(&np->n_mtim); mtx_unlock(&np->n_mtx); return(fifo_specops.vop_write(ap)); } /* * Close wrapper for fifos. * * Update the times on the nfsnode then do fifo close. */ static int nfsfifo_close(struct vop_close_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct vattr vattr; struct timespec ts; mtx_lock(&np->n_mtx); if (np->n_flag & (NACC | NUPD)) { vfs_timestamp(&ts); if (np->n_flag & NACC) np->n_atim = ts; if (np->n_flag & NUPD) np->n_mtim = ts; np->n_flag |= NCHG; if (vrefcnt(vp) == 1 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { VATTR_NULL(&vattr); if (np->n_flag & NACC) vattr.va_atime = np->n_atim; if (np->n_flag & NUPD) vattr.va_mtime = np->n_mtim; mtx_unlock(&np->n_mtx); (void)VOP_SETATTR(vp, &vattr, ap->a_cred); goto out; } } mtx_unlock(&np->n_mtx); out: return (fifo_specops.vop_close(ap)); } /* * Just call ncl_writebp() with the force argument set to 1. * * NOTE: B_DONE may or may not be set in a_bp on call. */ static int nfs_bwrite(struct buf *bp) { return (ncl_writebp(bp, 1, curthread)); } struct buf_ops buf_ops_newnfs = { .bop_name = "buf_ops_nfs", .bop_write = nfs_bwrite, .bop_strategy = bufstrategy, .bop_sync = bufsync, .bop_bdflush = bufbdflush, }; static int nfs_getacl(struct vop_getacl_args *ap) { int error; if (ap->a_type != ACL_TYPE_NFS4) return (EOPNOTSUPP); error = nfsrpc_getacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp, NULL); if (error > NFSERR_STALE) { (void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0); error = EPERM; } return (error); } static int nfs_setacl(struct vop_setacl_args *ap) { int error; if (ap->a_type != ACL_TYPE_NFS4) return (EOPNOTSUPP); error = nfsrpc_setacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp, NULL); if (error > NFSERR_STALE) { (void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0); error = EPERM; } return (error); } static int nfs_set_text(struct vop_set_text_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np; /* * If the text file has been mmap'd, flush any dirty pages to the * buffer cache and then... * Make sure all writes are pushed to the NFS server. If this is not * done, the modify time of the file can change while the text * file is being executed. This will cause the process that is * executing the text file to be terminated. */ if (vp->v_object != NULL) { VM_OBJECT_WLOCK(vp->v_object); vm_object_page_clean(vp->v_object, 0, 0, OBJPC_SYNC); VM_OBJECT_WUNLOCK(vp->v_object); } /* Now, flush the buffer cache. */ ncl_flush(vp, MNT_WAIT, curthread, 0, 0); /* And, finally, make sure that n_mtime is up to date. */ np = VTONFS(vp); mtx_lock(&np->n_mtx); np->n_mtime = np->n_vattr.na_mtime; mtx_unlock(&np->n_mtx); vp->v_vflag |= VV_TEXT; return (0); } /* * Return POSIX pathconf information applicable to nfs filesystems. */ static int nfs_pathconf(struct vop_pathconf_args *ap) { struct nfsv3_pathconf pc; struct nfsvattr nfsva; struct vnode *vp = ap->a_vp; struct thread *td = curthread; int attrflag, error; if ((NFS_ISV34(vp) && (ap->a_name == _PC_LINK_MAX || ap->a_name == _PC_NAME_MAX || ap->a_name == _PC_CHOWN_RESTRICTED || ap->a_name == _PC_NO_TRUNC)) || (NFS_ISV4(vp) && ap->a_name == _PC_ACL_NFS4)) { /* * Since only the above 4 a_names are returned by the NFSv3 * Pathconf RPC, there is no point in doing it for others. * For NFSv4, the Pathconf RPC (actually a Getattr Op.) can * be used for _PC_NFS4_ACL as well. */ error = nfsrpc_pathconf(vp, &pc, td->td_ucred, td, &nfsva, &attrflag, NULL); if (attrflag != 0) (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); if (error != 0) return (error); } else { /* * For NFSv2 (or NFSv3 when not one of the above 4 a_names), * just fake them. */ pc.pc_linkmax = NFS_LINK_MAX; pc.pc_namemax = NFS_MAXNAMLEN; pc.pc_notrunc = 1; pc.pc_chownrestricted = 1; pc.pc_caseinsensitive = 0; pc.pc_casepreserving = 1; error = 0; } switch (ap->a_name) { case _PC_LINK_MAX: *ap->a_retval = MIN(LONG_MAX, pc.pc_linkmax); break; case _PC_NAME_MAX: *ap->a_retval = pc.pc_namemax; + break; + case _PC_PIPE_BUF: + if (ap->a_vp->v_type == VDIR || ap->a_vp->v_type == VFIFO) + *ap->a_retval = PIPE_BUF; + else + error = EINVAL; break; case _PC_CHOWN_RESTRICTED: *ap->a_retval = pc.pc_chownrestricted; break; case _PC_NO_TRUNC: *ap->a_retval = pc.pc_notrunc; break; case _PC_ACL_EXTENDED: *ap->a_retval = 0; break; case _PC_ACL_NFS4: if (NFS_ISV4(vp) && nfsrv_useacl != 0 && attrflag != 0 && NFSISSET_ATTRBIT(&nfsva.na_suppattr, NFSATTRBIT_ACL)) *ap->a_retval = 1; else *ap->a_retval = 0; break; case _PC_ACL_PATH_MAX: if (NFS_ISV4(vp)) *ap->a_retval = ACL_MAX_ENTRIES; else *ap->a_retval = 3; break; case _PC_MAC_PRESENT: *ap->a_retval = 0; break; case _PC_PRIO_IO: *ap->a_retval = 0; break; case _PC_SYNC_IO: *ap->a_retval = 0; break; case _PC_ALLOC_SIZE_MIN: *ap->a_retval = vp->v_mount->mnt_stat.f_bsize; break; case _PC_FILESIZEBITS: if (NFS_ISV34(vp)) *ap->a_retval = 64; else *ap->a_retval = 32; break; case _PC_REC_INCR_XFER_SIZE: *ap->a_retval = vp->v_mount->mnt_stat.f_iosize; break; case _PC_REC_MAX_XFER_SIZE: *ap->a_retval = -1; /* means ``unlimited'' */ break; case _PC_REC_MIN_XFER_SIZE: *ap->a_retval = vp->v_mount->mnt_stat.f_iosize; break; case _PC_REC_XFER_ALIGN: *ap->a_retval = PAGE_SIZE; break; case _PC_SYMLINK_MAX: *ap->a_retval = NFS_MAXPATHLEN; break; default: error = vop_stdpathconf(ap); break; } return (error); } Index: head/sys/fs/tmpfs/tmpfs_fifoops.c =================================================================== --- head/sys/fs/tmpfs/tmpfs_fifoops.c (revision 327003) +++ head/sys/fs/tmpfs/tmpfs_fifoops.c (revision 327004) @@ -1,75 +1,76 @@ /* $NetBSD: tmpfs_fifoops.c,v 1.5 2005/12/11 12:24:29 christos Exp $ */ /*- * SPDX-License-Identifier: BSD-2-Clause-NetBSD * * Copyright (c) 2005 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Julio M. Merino Vidal, developed as part of Google's Summer of Code * 2005 program. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * tmpfs vnode interface for named pipes. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include static int tmpfs_fifo_close(struct vop_close_args *v) { struct tmpfs_node *node; node = VP_TO_TMPFS_NODE(v->a_vp); tmpfs_set_status(node, TMPFS_NODE_ACCESSED); tmpfs_update(v->a_vp); return (fifo_specops.vop_close(v)); } /* * vnode operations vector used for fifos stored in a tmpfs file system. */ struct vop_vector tmpfs_fifoop_entries = { .vop_default = &fifo_specops, .vop_close = tmpfs_fifo_close, .vop_reclaim = tmpfs_reclaim, .vop_access = tmpfs_access, .vop_getattr = tmpfs_getattr, .vop_setattr = tmpfs_setattr, + .vop_pathconf = tmpfs_pathconf, .vop_print = tmpfs_print, }; Index: head/sys/fs/tmpfs/tmpfs_vnops.c =================================================================== --- head/sys/fs/tmpfs/tmpfs_vnops.c (revision 327003) +++ head/sys/fs/tmpfs/tmpfs_vnops.c (revision 327004) @@ -1,1589 +1,1597 @@ /* $NetBSD: tmpfs_vnops.c,v 1.39 2007/07/23 15:41:01 jmmv Exp $ */ /*- * SPDX-License-Identifier: BSD-2-Clause-NetBSD * * Copyright (c) 2005, 2006 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Julio M. Merino Vidal, developed as part of Google's Summer of Code * 2005 program. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * tmpfs vnode interface. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include SYSCTL_DECL(_vfs_tmpfs); static volatile int tmpfs_rename_restarts; SYSCTL_INT(_vfs_tmpfs, OID_AUTO, rename_restarts, CTLFLAG_RD, __DEVOLATILE(int *, &tmpfs_rename_restarts), 0, "Times rename had to restart due to lock contention"); static int tmpfs_vn_get_ino_alloc(struct mount *mp, void *arg, int lkflags, struct vnode **rvp) { return (tmpfs_alloc_vp(mp, arg, lkflags, rvp)); } static int tmpfs_lookup1(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp) { struct tmpfs_dirent *de; struct tmpfs_node *dnode, *pnode; struct tmpfs_mount *tm; int error; dnode = VP_TO_TMPFS_DIR(dvp); *vpp = NULLVP; /* Check accessibility of requested node as a first step. */ error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, cnp->cn_thread); if (error != 0) goto out; /* We cannot be requesting the parent directory of the root node. */ MPASS(IMPLIES(dnode->tn_type == VDIR && dnode->tn_dir.tn_parent == dnode, !(cnp->cn_flags & ISDOTDOT))); TMPFS_ASSERT_LOCKED(dnode); if (dnode->tn_dir.tn_parent == NULL) { error = ENOENT; goto out; } if (cnp->cn_flags & ISDOTDOT) { tm = VFS_TO_TMPFS(dvp->v_mount); pnode = dnode->tn_dir.tn_parent; tmpfs_ref_node(pnode); error = vn_vget_ino_gen(dvp, tmpfs_vn_get_ino_alloc, pnode, cnp->cn_lkflags, vpp); tmpfs_free_node(tm, pnode); if (error != 0) goto out; } else if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') { VREF(dvp); *vpp = dvp; error = 0; } else { de = tmpfs_dir_lookup(dnode, NULL, cnp); if (de != NULL && de->td_node == NULL) cnp->cn_flags |= ISWHITEOUT; if (de == NULL || de->td_node == NULL) { /* * The entry was not found in the directory. * This is OK if we are creating or renaming an * entry and are working on the last component of * the path name. */ if ((cnp->cn_flags & ISLASTCN) && (cnp->cn_nameiop == CREATE || \ cnp->cn_nameiop == RENAME || (cnp->cn_nameiop == DELETE && cnp->cn_flags & DOWHITEOUT && cnp->cn_flags & ISWHITEOUT))) { error = VOP_ACCESS(dvp, VWRITE, cnp->cn_cred, cnp->cn_thread); if (error != 0) goto out; /* * Keep the component name in the buffer for * future uses. */ cnp->cn_flags |= SAVENAME; error = EJUSTRETURN; } else error = ENOENT; } else { struct tmpfs_node *tnode; /* * The entry was found, so get its associated * tmpfs_node. */ tnode = de->td_node; /* * If we are not at the last path component and * found a non-directory or non-link entry (which * may itself be pointing to a directory), raise * an error. */ if ((tnode->tn_type != VDIR && tnode->tn_type != VLNK) && !(cnp->cn_flags & ISLASTCN)) { error = ENOTDIR; goto out; } /* * If we are deleting or renaming the entry, keep * track of its tmpfs_dirent so that it can be * easily deleted later. */ if ((cnp->cn_flags & ISLASTCN) && (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) { error = VOP_ACCESS(dvp, VWRITE, cnp->cn_cred, cnp->cn_thread); if (error != 0) goto out; /* Allocate a new vnode on the matching entry. */ error = tmpfs_alloc_vp(dvp->v_mount, tnode, cnp->cn_lkflags, vpp); if (error != 0) goto out; if ((dnode->tn_mode & S_ISTXT) && VOP_ACCESS(dvp, VADMIN, cnp->cn_cred, cnp->cn_thread) && VOP_ACCESS(*vpp, VADMIN, cnp->cn_cred, cnp->cn_thread)) { error = EPERM; vput(*vpp); *vpp = NULL; goto out; } cnp->cn_flags |= SAVENAME; } else { error = tmpfs_alloc_vp(dvp->v_mount, tnode, cnp->cn_lkflags, vpp); if (error != 0) goto out; } } } /* * Store the result of this lookup in the cache. Avoid this if the * request was for creation, as it does not improve timings on * emprical tests. */ if ((cnp->cn_flags & MAKEENTRY) != 0 && tmpfs_use_nc(dvp)) cache_enter(dvp, *vpp, cnp); out: /* * If there were no errors, *vpp cannot be null and it must be * locked. */ MPASS(IFF(error == 0, *vpp != NULLVP && VOP_ISLOCKED(*vpp))); return (error); } static int tmpfs_cached_lookup(struct vop_cachedlookup_args *v) { return (tmpfs_lookup1(v->a_dvp, v->a_vpp, v->a_cnp)); } static int tmpfs_lookup(struct vop_lookup_args *v) { return (tmpfs_lookup1(v->a_dvp, v->a_vpp, v->a_cnp)); } static int tmpfs_create(struct vop_create_args *v) { struct vnode *dvp = v->a_dvp; struct vnode **vpp = v->a_vpp; struct componentname *cnp = v->a_cnp; struct vattr *vap = v->a_vap; int error; MPASS(vap->va_type == VREG || vap->va_type == VSOCK); error = tmpfs_alloc_file(dvp, vpp, vap, cnp, NULL); if (error == 0 && (cnp->cn_flags & MAKEENTRY) != 0 && tmpfs_use_nc(dvp)) cache_enter(dvp, *vpp, cnp); return (error); } static int tmpfs_mknod(struct vop_mknod_args *v) { struct vnode *dvp = v->a_dvp; struct vnode **vpp = v->a_vpp; struct componentname *cnp = v->a_cnp; struct vattr *vap = v->a_vap; if (vap->va_type != VBLK && vap->va_type != VCHR && vap->va_type != VFIFO) return EINVAL; return tmpfs_alloc_file(dvp, vpp, vap, cnp, NULL); } static int tmpfs_open(struct vop_open_args *v) { struct vnode *vp = v->a_vp; int mode = v->a_mode; int error; struct tmpfs_node *node; MPASS(VOP_ISLOCKED(vp)); node = VP_TO_TMPFS_NODE(vp); /* The file is still active but all its names have been removed * (e.g. by a "rmdir $(pwd)"). It cannot be opened any more as * it is about to die. */ if (node->tn_links < 1) return (ENOENT); /* If the file is marked append-only, deny write requests. */ if (node->tn_flags & APPEND && (mode & (FWRITE | O_APPEND)) == FWRITE) error = EPERM; else { error = 0; /* For regular files, the call below is nop. */ KASSERT(vp->v_type != VREG || (node->tn_reg.tn_aobj->flags & OBJ_DEAD) == 0, ("dead object")); vnode_create_vobject(vp, node->tn_size, v->a_td); } MPASS(VOP_ISLOCKED(vp)); return error; } static int tmpfs_close(struct vop_close_args *v) { struct vnode *vp = v->a_vp; /* Update node times. */ tmpfs_update(vp); return (0); } int tmpfs_access(struct vop_access_args *v) { struct vnode *vp = v->a_vp; accmode_t accmode = v->a_accmode; struct ucred *cred = v->a_cred; int error; struct tmpfs_node *node; MPASS(VOP_ISLOCKED(vp)); node = VP_TO_TMPFS_NODE(vp); switch (vp->v_type) { case VDIR: /* FALLTHROUGH */ case VLNK: /* FALLTHROUGH */ case VREG: if (accmode & VWRITE && vp->v_mount->mnt_flag & MNT_RDONLY) { error = EROFS; goto out; } break; case VBLK: /* FALLTHROUGH */ case VCHR: /* FALLTHROUGH */ case VSOCK: /* FALLTHROUGH */ case VFIFO: break; default: error = EINVAL; goto out; } if (accmode & VWRITE && node->tn_flags & IMMUTABLE) { error = EPERM; goto out; } error = vaccess(vp->v_type, node->tn_mode, node->tn_uid, node->tn_gid, accmode, cred, NULL); out: MPASS(VOP_ISLOCKED(vp)); return error; } int tmpfs_getattr(struct vop_getattr_args *v) { struct vnode *vp = v->a_vp; struct vattr *vap = v->a_vap; vm_object_t obj; struct tmpfs_node *node; node = VP_TO_TMPFS_NODE(vp); tmpfs_update(vp); vap->va_type = vp->v_type; vap->va_mode = node->tn_mode; vap->va_nlink = node->tn_links; vap->va_uid = node->tn_uid; vap->va_gid = node->tn_gid; vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0]; vap->va_fileid = node->tn_id; vap->va_size = node->tn_size; vap->va_blocksize = PAGE_SIZE; vap->va_atime = node->tn_atime; vap->va_mtime = node->tn_mtime; vap->va_ctime = node->tn_ctime; vap->va_birthtime = node->tn_birthtime; vap->va_gen = node->tn_gen; vap->va_flags = node->tn_flags; vap->va_rdev = (vp->v_type == VBLK || vp->v_type == VCHR) ? node->tn_rdev : NODEV; if (vp->v_type == VREG) { obj = node->tn_reg.tn_aobj; vap->va_bytes = (u_quad_t)obj->resident_page_count * PAGE_SIZE; } else vap->va_bytes = node->tn_size; vap->va_filerev = 0; return 0; } int tmpfs_setattr(struct vop_setattr_args *v) { struct vnode *vp = v->a_vp; struct vattr *vap = v->a_vap; struct ucred *cred = v->a_cred; struct thread *td = curthread; int error; MPASS(VOP_ISLOCKED(vp)); error = 0; /* Abort if any unsettable attribute is given. */ if (vap->va_type != VNON || vap->va_nlink != VNOVAL || vap->va_fsid != VNOVAL || vap->va_fileid != VNOVAL || vap->va_blocksize != VNOVAL || vap->va_gen != VNOVAL || vap->va_rdev != VNOVAL || vap->va_bytes != VNOVAL) error = EINVAL; if (error == 0 && (vap->va_flags != VNOVAL)) error = tmpfs_chflags(vp, vap->va_flags, cred, td); if (error == 0 && (vap->va_size != VNOVAL)) error = tmpfs_chsize(vp, vap->va_size, cred, td); if (error == 0 && (vap->va_uid != VNOVAL || vap->va_gid != VNOVAL)) error = tmpfs_chown(vp, vap->va_uid, vap->va_gid, cred, td); if (error == 0 && (vap->va_mode != (mode_t)VNOVAL)) error = tmpfs_chmod(vp, vap->va_mode, cred, td); if (error == 0 && ((vap->va_atime.tv_sec != VNOVAL && vap->va_atime.tv_nsec != VNOVAL) || (vap->va_mtime.tv_sec != VNOVAL && vap->va_mtime.tv_nsec != VNOVAL) || (vap->va_birthtime.tv_sec != VNOVAL && vap->va_birthtime.tv_nsec != VNOVAL))) error = tmpfs_chtimes(vp, vap, cred, td); /* Update the node times. We give preference to the error codes * generated by this function rather than the ones that may arise * from tmpfs_update. */ tmpfs_update(vp); MPASS(VOP_ISLOCKED(vp)); return error; } static int tmpfs_read(struct vop_read_args *v) { struct vnode *vp; struct uio *uio; struct tmpfs_node *node; vp = v->a_vp; if (vp->v_type != VREG) return (EISDIR); uio = v->a_uio; if (uio->uio_offset < 0) return (EINVAL); node = VP_TO_TMPFS_NODE(vp); tmpfs_set_status(node, TMPFS_NODE_ACCESSED); return (uiomove_object(node->tn_reg.tn_aobj, node->tn_size, uio)); } static int tmpfs_write(struct vop_write_args *v) { struct vnode *vp; struct uio *uio; struct tmpfs_node *node; off_t oldsize; int error, ioflag; vp = v->a_vp; uio = v->a_uio; ioflag = v->a_ioflag; error = 0; node = VP_TO_TMPFS_NODE(vp); oldsize = node->tn_size; if (uio->uio_offset < 0 || vp->v_type != VREG) return (EINVAL); if (uio->uio_resid == 0) return (0); if (ioflag & IO_APPEND) uio->uio_offset = node->tn_size; if (uio->uio_offset + uio->uio_resid > VFS_TO_TMPFS(vp->v_mount)->tm_maxfilesize) return (EFBIG); if (vn_rlimit_fsize(vp, uio, uio->uio_td)) return (EFBIG); if (uio->uio_offset + uio->uio_resid > node->tn_size) { error = tmpfs_reg_resize(vp, uio->uio_offset + uio->uio_resid, FALSE); if (error != 0) goto out; } error = uiomove_object(node->tn_reg.tn_aobj, node->tn_size, uio); node->tn_status |= TMPFS_NODE_ACCESSED | TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED; if (node->tn_mode & (S_ISUID | S_ISGID)) { if (priv_check_cred(v->a_cred, PRIV_VFS_RETAINSUGID, 0)) node->tn_mode &= ~(S_ISUID | S_ISGID); } if (error != 0) (void)tmpfs_reg_resize(vp, oldsize, TRUE); out: MPASS(IMPLIES(error == 0, uio->uio_resid == 0)); MPASS(IMPLIES(error != 0, oldsize == node->tn_size)); return (error); } static int tmpfs_fsync(struct vop_fsync_args *v) { struct vnode *vp = v->a_vp; MPASS(VOP_ISLOCKED(vp)); tmpfs_check_mtime(vp); tmpfs_update(vp); return 0; } static int tmpfs_remove(struct vop_remove_args *v) { struct vnode *dvp = v->a_dvp; struct vnode *vp = v->a_vp; int error; struct tmpfs_dirent *de; struct tmpfs_mount *tmp; struct tmpfs_node *dnode; struct tmpfs_node *node; MPASS(VOP_ISLOCKED(dvp)); MPASS(VOP_ISLOCKED(vp)); if (vp->v_type == VDIR) { error = EISDIR; goto out; } dnode = VP_TO_TMPFS_DIR(dvp); node = VP_TO_TMPFS_NODE(vp); tmp = VFS_TO_TMPFS(vp->v_mount); de = tmpfs_dir_lookup(dnode, node, v->a_cnp); MPASS(de != NULL); /* Files marked as immutable or append-only cannot be deleted. */ if ((node->tn_flags & (IMMUTABLE | APPEND | NOUNLINK)) || (dnode->tn_flags & APPEND)) { error = EPERM; goto out; } /* Remove the entry from the directory; as it is a file, we do not * have to change the number of hard links of the directory. */ tmpfs_dir_detach(dvp, de); if (v->a_cnp->cn_flags & DOWHITEOUT) tmpfs_dir_whiteout_add(dvp, v->a_cnp); /* Free the directory entry we just deleted. Note that the node * referred by it will not be removed until the vnode is really * reclaimed. */ tmpfs_free_dirent(tmp, de); node->tn_status |= TMPFS_NODE_ACCESSED | TMPFS_NODE_CHANGED; error = 0; out: return error; } static int tmpfs_link(struct vop_link_args *v) { struct vnode *dvp = v->a_tdvp; struct vnode *vp = v->a_vp; struct componentname *cnp = v->a_cnp; int error; struct tmpfs_dirent *de; struct tmpfs_node *node; MPASS(VOP_ISLOCKED(dvp)); MPASS(cnp->cn_flags & HASBUF); MPASS(dvp != vp); /* XXX When can this be false? */ node = VP_TO_TMPFS_NODE(vp); /* Ensure that we do not overflow the maximum number of links imposed * by the system. */ MPASS(node->tn_links <= TMPFS_LINK_MAX); if (node->tn_links == TMPFS_LINK_MAX) { error = EMLINK; goto out; } /* We cannot create links of files marked immutable or append-only. */ if (node->tn_flags & (IMMUTABLE | APPEND)) { error = EPERM; goto out; } /* Allocate a new directory entry to represent the node. */ error = tmpfs_alloc_dirent(VFS_TO_TMPFS(vp->v_mount), node, cnp->cn_nameptr, cnp->cn_namelen, &de); if (error != 0) goto out; /* Insert the new directory entry into the appropriate directory. */ if (cnp->cn_flags & ISWHITEOUT) tmpfs_dir_whiteout_remove(dvp, cnp); tmpfs_dir_attach(dvp, de); /* vp link count has changed, so update node times. */ node->tn_status |= TMPFS_NODE_CHANGED; tmpfs_update(vp); error = 0; out: return error; } /* * We acquire all but fdvp locks using non-blocking acquisitions. If we * fail to acquire any lock in the path we will drop all held locks, * acquire the new lock in a blocking fashion, and then release it and * restart the rename. This acquire/release step ensures that we do not * spin on a lock waiting for release. On error release all vnode locks * and decrement references the way tmpfs_rename() would do. */ static int tmpfs_rename_relock(struct vnode *fdvp, struct vnode **fvpp, struct vnode *tdvp, struct vnode **tvpp, struct componentname *fcnp, struct componentname *tcnp) { struct vnode *nvp; struct mount *mp; struct tmpfs_dirent *de; int error, restarts = 0; VOP_UNLOCK(tdvp, 0); if (*tvpp != NULL && *tvpp != tdvp) VOP_UNLOCK(*tvpp, 0); mp = fdvp->v_mount; relock: restarts += 1; error = vn_lock(fdvp, LK_EXCLUSIVE); if (error) goto releout; if (vn_lock(tdvp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { VOP_UNLOCK(fdvp, 0); error = vn_lock(tdvp, LK_EXCLUSIVE); if (error) goto releout; VOP_UNLOCK(tdvp, 0); goto relock; } /* * Re-resolve fvp to be certain it still exists and fetch the * correct vnode. */ de = tmpfs_dir_lookup(VP_TO_TMPFS_DIR(fdvp), NULL, fcnp); if (de == NULL) { VOP_UNLOCK(fdvp, 0); VOP_UNLOCK(tdvp, 0); if ((fcnp->cn_flags & ISDOTDOT) != 0 || (fcnp->cn_namelen == 1 && fcnp->cn_nameptr[0] == '.')) error = EINVAL; else error = ENOENT; goto releout; } error = tmpfs_alloc_vp(mp, de->td_node, LK_EXCLUSIVE | LK_NOWAIT, &nvp); if (error != 0) { VOP_UNLOCK(fdvp, 0); VOP_UNLOCK(tdvp, 0); if (error != EBUSY) goto releout; error = tmpfs_alloc_vp(mp, de->td_node, LK_EXCLUSIVE, &nvp); if (error != 0) goto releout; VOP_UNLOCK(nvp, 0); /* * Concurrent rename race. */ if (nvp == tdvp) { vrele(nvp); error = EINVAL; goto releout; } vrele(*fvpp); *fvpp = nvp; goto relock; } vrele(*fvpp); *fvpp = nvp; VOP_UNLOCK(*fvpp, 0); /* * Re-resolve tvp and acquire the vnode lock if present. */ de = tmpfs_dir_lookup(VP_TO_TMPFS_DIR(tdvp), NULL, tcnp); /* * If tvp disappeared we just carry on. */ if (de == NULL && *tvpp != NULL) { vrele(*tvpp); *tvpp = NULL; } /* * Get the tvp ino if the lookup succeeded. We may have to restart * if the non-blocking acquire fails. */ if (de != NULL) { nvp = NULL; error = tmpfs_alloc_vp(mp, de->td_node, LK_EXCLUSIVE | LK_NOWAIT, &nvp); if (*tvpp != NULL) vrele(*tvpp); *tvpp = nvp; if (error != 0) { VOP_UNLOCK(fdvp, 0); VOP_UNLOCK(tdvp, 0); if (error != EBUSY) goto releout; error = tmpfs_alloc_vp(mp, de->td_node, LK_EXCLUSIVE, &nvp); if (error != 0) goto releout; VOP_UNLOCK(nvp, 0); /* * fdvp contains fvp, thus tvp (=fdvp) is not empty. */ if (nvp == fdvp) { error = ENOTEMPTY; goto releout; } goto relock; } } tmpfs_rename_restarts += restarts; return (0); releout: vrele(fdvp); vrele(*fvpp); vrele(tdvp); if (*tvpp != NULL) vrele(*tvpp); tmpfs_rename_restarts += restarts; return (error); } static int tmpfs_rename(struct vop_rename_args *v) { struct vnode *fdvp = v->a_fdvp; struct vnode *fvp = v->a_fvp; struct componentname *fcnp = v->a_fcnp; struct vnode *tdvp = v->a_tdvp; struct vnode *tvp = v->a_tvp; struct componentname *tcnp = v->a_tcnp; struct mount *mp = NULL; char *newname; int error; struct tmpfs_dirent *de; struct tmpfs_mount *tmp; struct tmpfs_node *fdnode; struct tmpfs_node *fnode; struct tmpfs_node *tnode; struct tmpfs_node *tdnode; MPASS(VOP_ISLOCKED(tdvp)); MPASS(IMPLIES(tvp != NULL, VOP_ISLOCKED(tvp))); MPASS(fcnp->cn_flags & HASBUF); MPASS(tcnp->cn_flags & HASBUF); /* Disallow cross-device renames. * XXX Why isn't this done by the caller? */ if (fvp->v_mount != tdvp->v_mount || (tvp != NULL && fvp->v_mount != tvp->v_mount)) { error = EXDEV; goto out; } /* If source and target are the same file, there is nothing to do. */ if (fvp == tvp) { error = 0; goto out; } /* If we need to move the directory between entries, lock the * source so that we can safely operate on it. */ if (fdvp != tdvp && fdvp != tvp) { if (vn_lock(fdvp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { mp = tdvp->v_mount; error = vfs_busy(mp, 0); if (error != 0) { mp = NULL; goto out; } error = tmpfs_rename_relock(fdvp, &fvp, tdvp, &tvp, fcnp, tcnp); if (error != 0) { vfs_unbusy(mp); return (error); } ASSERT_VOP_ELOCKED(fdvp, "tmpfs_rename: fdvp not locked"); ASSERT_VOP_ELOCKED(tdvp, "tmpfs_rename: tdvp not locked"); if (tvp != NULL) ASSERT_VOP_ELOCKED(tvp, "tmpfs_rename: tvp not locked"); if (fvp == tvp) { error = 0; goto out_locked; } } } tmp = VFS_TO_TMPFS(tdvp->v_mount); tdnode = VP_TO_TMPFS_DIR(tdvp); tnode = (tvp == NULL) ? NULL : VP_TO_TMPFS_NODE(tvp); fdnode = VP_TO_TMPFS_DIR(fdvp); fnode = VP_TO_TMPFS_NODE(fvp); de = tmpfs_dir_lookup(fdnode, fnode, fcnp); /* Entry can disappear before we lock fdvp, * also avoid manipulating '.' and '..' entries. */ if (de == NULL) { if ((fcnp->cn_flags & ISDOTDOT) != 0 || (fcnp->cn_namelen == 1 && fcnp->cn_nameptr[0] == '.')) error = EINVAL; else error = ENOENT; goto out_locked; } MPASS(de->td_node == fnode); /* If re-naming a directory to another preexisting directory * ensure that the target directory is empty so that its * removal causes no side effects. * Kern_rename guarantees the destination to be a directory * if the source is one. */ if (tvp != NULL) { MPASS(tnode != NULL); if ((tnode->tn_flags & (NOUNLINK | IMMUTABLE | APPEND)) || (tdnode->tn_flags & (APPEND | IMMUTABLE))) { error = EPERM; goto out_locked; } if (fnode->tn_type == VDIR && tnode->tn_type == VDIR) { if (tnode->tn_size > 0) { error = ENOTEMPTY; goto out_locked; } } else if (fnode->tn_type == VDIR && tnode->tn_type != VDIR) { error = ENOTDIR; goto out_locked; } else if (fnode->tn_type != VDIR && tnode->tn_type == VDIR) { error = EISDIR; goto out_locked; } else { MPASS(fnode->tn_type != VDIR && tnode->tn_type != VDIR); } } if ((fnode->tn_flags & (NOUNLINK | IMMUTABLE | APPEND)) || (fdnode->tn_flags & (APPEND | IMMUTABLE))) { error = EPERM; goto out_locked; } /* Ensure that we have enough memory to hold the new name, if it * has to be changed. */ if (fcnp->cn_namelen != tcnp->cn_namelen || bcmp(fcnp->cn_nameptr, tcnp->cn_nameptr, fcnp->cn_namelen) != 0) { newname = malloc(tcnp->cn_namelen, M_TMPFSNAME, M_WAITOK); } else newname = NULL; /* If the node is being moved to another directory, we have to do * the move. */ if (fdnode != tdnode) { /* In case we are moving a directory, we have to adjust its * parent to point to the new parent. */ if (de->td_node->tn_type == VDIR) { struct tmpfs_node *n; /* Ensure the target directory is not a child of the * directory being moved. Otherwise, we'd end up * with stale nodes. */ n = tdnode; /* TMPFS_LOCK garanties that no nodes are freed while * traversing the list. Nodes can only be marked as * removed: tn_parent == NULL. */ TMPFS_LOCK(tmp); TMPFS_NODE_LOCK(n); while (n != n->tn_dir.tn_parent) { struct tmpfs_node *parent; if (n == fnode) { TMPFS_NODE_UNLOCK(n); TMPFS_UNLOCK(tmp); error = EINVAL; if (newname != NULL) free(newname, M_TMPFSNAME); goto out_locked; } parent = n->tn_dir.tn_parent; TMPFS_NODE_UNLOCK(n); if (parent == NULL) { n = NULL; break; } TMPFS_NODE_LOCK(parent); if (parent->tn_dir.tn_parent == NULL) { TMPFS_NODE_UNLOCK(parent); n = NULL; break; } n = parent; } TMPFS_UNLOCK(tmp); if (n == NULL) { error = EINVAL; if (newname != NULL) free(newname, M_TMPFSNAME); goto out_locked; } TMPFS_NODE_UNLOCK(n); /* Adjust the parent pointer. */ TMPFS_VALIDATE_DIR(fnode); TMPFS_NODE_LOCK(de->td_node); de->td_node->tn_dir.tn_parent = tdnode; TMPFS_NODE_UNLOCK(de->td_node); /* As a result of changing the target of the '..' * entry, the link count of the source and target * directories has to be adjusted. */ TMPFS_NODE_LOCK(tdnode); TMPFS_ASSERT_LOCKED(tdnode); tdnode->tn_links++; TMPFS_NODE_UNLOCK(tdnode); TMPFS_NODE_LOCK(fdnode); TMPFS_ASSERT_LOCKED(fdnode); fdnode->tn_links--; TMPFS_NODE_UNLOCK(fdnode); } } /* Do the move: just remove the entry from the source directory * and insert it into the target one. */ tmpfs_dir_detach(fdvp, de); if (fcnp->cn_flags & DOWHITEOUT) tmpfs_dir_whiteout_add(fdvp, fcnp); if (tcnp->cn_flags & ISWHITEOUT) tmpfs_dir_whiteout_remove(tdvp, tcnp); /* If the name has changed, we need to make it effective by changing * it in the directory entry. */ if (newname != NULL) { MPASS(tcnp->cn_namelen <= MAXNAMLEN); free(de->ud.td_name, M_TMPFSNAME); de->ud.td_name = newname; tmpfs_dirent_init(de, tcnp->cn_nameptr, tcnp->cn_namelen); fnode->tn_status |= TMPFS_NODE_CHANGED; tdnode->tn_status |= TMPFS_NODE_MODIFIED; } /* If we are overwriting an entry, we have to remove the old one * from the target directory. */ if (tvp != NULL) { struct tmpfs_dirent *tde; /* Remove the old entry from the target directory. */ tde = tmpfs_dir_lookup(tdnode, tnode, tcnp); tmpfs_dir_detach(tdvp, tde); /* Free the directory entry we just deleted. Note that the * node referred by it will not be removed until the vnode is * really reclaimed. */ tmpfs_free_dirent(VFS_TO_TMPFS(tvp->v_mount), tde); } tmpfs_dir_attach(tdvp, de); if (tmpfs_use_nc(fvp)) { cache_purge(fvp); if (tvp != NULL) cache_purge(tvp); cache_purge_negative(tdvp); } error = 0; out_locked: if (fdvp != tdvp && fdvp != tvp) VOP_UNLOCK(fdvp, 0); out: /* Release target nodes. */ /* XXX: I don't understand when tdvp can be the same as tvp, but * other code takes care of this... */ if (tdvp == tvp) vrele(tdvp); else vput(tdvp); if (tvp != NULL) vput(tvp); /* Release source nodes. */ vrele(fdvp); vrele(fvp); if (mp != NULL) vfs_unbusy(mp); return error; } static int tmpfs_mkdir(struct vop_mkdir_args *v) { struct vnode *dvp = v->a_dvp; struct vnode **vpp = v->a_vpp; struct componentname *cnp = v->a_cnp; struct vattr *vap = v->a_vap; MPASS(vap->va_type == VDIR); return tmpfs_alloc_file(dvp, vpp, vap, cnp, NULL); } static int tmpfs_rmdir(struct vop_rmdir_args *v) { struct vnode *dvp = v->a_dvp; struct vnode *vp = v->a_vp; int error; struct tmpfs_dirent *de; struct tmpfs_mount *tmp; struct tmpfs_node *dnode; struct tmpfs_node *node; MPASS(VOP_ISLOCKED(dvp)); MPASS(VOP_ISLOCKED(vp)); tmp = VFS_TO_TMPFS(dvp->v_mount); dnode = VP_TO_TMPFS_DIR(dvp); node = VP_TO_TMPFS_DIR(vp); /* Directories with more than two entries ('.' and '..') cannot be * removed. */ if (node->tn_size > 0) { error = ENOTEMPTY; goto out; } if ((dnode->tn_flags & APPEND) || (node->tn_flags & (NOUNLINK | IMMUTABLE | APPEND))) { error = EPERM; goto out; } /* This invariant holds only if we are not trying to remove "..". * We checked for that above so this is safe now. */ MPASS(node->tn_dir.tn_parent == dnode); /* Get the directory entry associated with node (vp). This was * filled by tmpfs_lookup while looking up the entry. */ de = tmpfs_dir_lookup(dnode, node, v->a_cnp); MPASS(TMPFS_DIRENT_MATCHES(de, v->a_cnp->cn_nameptr, v->a_cnp->cn_namelen)); /* Check flags to see if we are allowed to remove the directory. */ if ((dnode->tn_flags & APPEND) != 0 || (node->tn_flags & (NOUNLINK | IMMUTABLE | APPEND)) != 0) { error = EPERM; goto out; } /* Detach the directory entry from the directory (dnode). */ tmpfs_dir_detach(dvp, de); if (v->a_cnp->cn_flags & DOWHITEOUT) tmpfs_dir_whiteout_add(dvp, v->a_cnp); /* No vnode should be allocated for this entry from this point */ TMPFS_NODE_LOCK(node); node->tn_links--; node->tn_dir.tn_parent = NULL; node->tn_status |= TMPFS_NODE_ACCESSED | TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED; TMPFS_NODE_UNLOCK(node); TMPFS_NODE_LOCK(dnode); dnode->tn_links--; dnode->tn_status |= TMPFS_NODE_ACCESSED | TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED; TMPFS_NODE_UNLOCK(dnode); if (tmpfs_use_nc(dvp)) { cache_purge(dvp); cache_purge(vp); } /* Free the directory entry we just deleted. Note that the node * referred by it will not be removed until the vnode is really * reclaimed. */ tmpfs_free_dirent(tmp, de); /* Release the deleted vnode (will destroy the node, notify * interested parties and clean it from the cache). */ dnode->tn_status |= TMPFS_NODE_CHANGED; tmpfs_update(dvp); error = 0; out: return error; } static int tmpfs_symlink(struct vop_symlink_args *v) { struct vnode *dvp = v->a_dvp; struct vnode **vpp = v->a_vpp; struct componentname *cnp = v->a_cnp; struct vattr *vap = v->a_vap; char *target = v->a_target; #ifdef notyet /* XXX FreeBSD BUG: kern_symlink is not setting VLNK */ MPASS(vap->va_type == VLNK); #else vap->va_type = VLNK; #endif return tmpfs_alloc_file(dvp, vpp, vap, cnp, target); } static int tmpfs_readdir(struct vop_readdir_args *v) { struct vnode *vp = v->a_vp; struct uio *uio = v->a_uio; int *eofflag = v->a_eofflag; u_long **cookies = v->a_cookies; int *ncookies = v->a_ncookies; int error; ssize_t startresid; int maxcookies; struct tmpfs_node *node; /* This operation only makes sense on directory nodes. */ if (vp->v_type != VDIR) return ENOTDIR; maxcookies = 0; node = VP_TO_TMPFS_DIR(vp); startresid = uio->uio_resid; /* Allocate cookies for NFS and compat modules. */ if (cookies != NULL && ncookies != NULL) { maxcookies = howmany(node->tn_size, sizeof(struct tmpfs_dirent)) + 2; *cookies = malloc(maxcookies * sizeof(**cookies), M_TEMP, M_WAITOK); *ncookies = 0; } if (cookies == NULL) error = tmpfs_dir_getdents(node, uio, 0, NULL, NULL); else error = tmpfs_dir_getdents(node, uio, maxcookies, *cookies, ncookies); /* Buffer was filled without hitting EOF. */ if (error == EJUSTRETURN) error = (uio->uio_resid != startresid) ? 0 : EINVAL; if (error != 0 && cookies != NULL && ncookies != NULL) { free(*cookies, M_TEMP); *cookies = NULL; *ncookies = 0; } if (eofflag != NULL) *eofflag = (error == 0 && uio->uio_offset == TMPFS_DIRCOOKIE_EOF); return error; } static int tmpfs_readlink(struct vop_readlink_args *v) { struct vnode *vp = v->a_vp; struct uio *uio = v->a_uio; int error; struct tmpfs_node *node; MPASS(uio->uio_offset == 0); MPASS(vp->v_type == VLNK); node = VP_TO_TMPFS_NODE(vp); error = uiomove(node->tn_link, MIN(node->tn_size, uio->uio_resid), uio); tmpfs_set_status(node, TMPFS_NODE_ACCESSED); return (error); } static int tmpfs_inactive(struct vop_inactive_args *v) { struct vnode *vp; struct tmpfs_node *node; vp = v->a_vp; node = VP_TO_TMPFS_NODE(vp); if (node->tn_links == 0) vrecycle(vp); else tmpfs_check_mtime(vp); return (0); } int tmpfs_reclaim(struct vop_reclaim_args *v) { struct vnode *vp = v->a_vp; struct tmpfs_mount *tmp; struct tmpfs_node *node; node = VP_TO_TMPFS_NODE(vp); tmp = VFS_TO_TMPFS(vp->v_mount); if (vp->v_type == VREG) tmpfs_destroy_vobject(vp, node->tn_reg.tn_aobj); else vnode_destroy_vobject(vp); vp->v_object = NULL; if (tmpfs_use_nc(vp)) cache_purge(vp); TMPFS_NODE_LOCK(node); tmpfs_free_vp(vp); /* If the node referenced by this vnode was deleted by the user, * we must free its associated data structures (now that the vnode * is being reclaimed). */ if (node->tn_links == 0 && (node->tn_vpstate & TMPFS_VNODE_ALLOCATING) == 0) { node->tn_vpstate = TMPFS_VNODE_DOOMED; TMPFS_NODE_UNLOCK(node); tmpfs_free_node(tmp, node); } else TMPFS_NODE_UNLOCK(node); MPASS(vp->v_data == NULL); return 0; } int tmpfs_print(struct vop_print_args *v) { struct vnode *vp = v->a_vp; struct tmpfs_node *node; node = VP_TO_TMPFS_NODE(vp); printf("tag VT_TMPFS, tmpfs_node %p, flags 0x%lx, links %jd\n", node, node->tn_flags, (uintmax_t)node->tn_links); printf("\tmode 0%o, owner %d, group %d, size %jd, status 0x%x\n", node->tn_mode, node->tn_uid, node->tn_gid, (intmax_t)node->tn_size, node->tn_status); if (vp->v_type == VFIFO) fifo_printinfo(vp); printf("\n"); return 0; } -static int +int tmpfs_pathconf(struct vop_pathconf_args *v) { + struct vnode *vp = v->a_vp; int name = v->a_name; register_t *retval = v->a_retval; int error; error = 0; switch (name) { case _PC_LINK_MAX: *retval = TMPFS_LINK_MAX; break; case _PC_NAME_MAX: *retval = NAME_MAX; + break; + + case _PC_PIPE_BUF: + if (vp->v_type == VDIR || vp->v_type == VFIFO) + *retval = PIPE_BUF; + else + error = EINVAL; break; case _PC_CHOWN_RESTRICTED: *retval = 1; break; case _PC_NO_TRUNC: *retval = 1; break; case _PC_SYNC_IO: *retval = 1; break; case _PC_FILESIZEBITS: *retval = 64; break; default: error = vop_stdpathconf(v); } return error; } static int tmpfs_vptofh(struct vop_vptofh_args *ap) { struct tmpfs_fid *tfhp; struct tmpfs_node *node; tfhp = (struct tmpfs_fid *)ap->a_fhp; node = VP_TO_TMPFS_NODE(ap->a_vp); tfhp->tf_len = sizeof(struct tmpfs_fid); tfhp->tf_id = node->tn_id; tfhp->tf_gen = node->tn_gen; return (0); } static int tmpfs_whiteout(struct vop_whiteout_args *ap) { struct vnode *dvp = ap->a_dvp; struct componentname *cnp = ap->a_cnp; struct tmpfs_dirent *de; switch (ap->a_flags) { case LOOKUP: return (0); case CREATE: de = tmpfs_dir_lookup(VP_TO_TMPFS_DIR(dvp), NULL, cnp); if (de != NULL) return (de->td_node == NULL ? 0 : EEXIST); return (tmpfs_dir_whiteout_add(dvp, cnp)); case DELETE: tmpfs_dir_whiteout_remove(dvp, cnp); return (0); default: panic("tmpfs_whiteout: unknown op"); } } static int tmpfs_vptocnp_dir(struct tmpfs_node *tn, struct tmpfs_node *tnp, struct tmpfs_dirent **pde) { struct tmpfs_dir_cursor dc; struct tmpfs_dirent *de; for (de = tmpfs_dir_first(tnp, &dc); de != NULL; de = tmpfs_dir_next(tnp, &dc)) { if (de->td_node == tn) { *pde = de; return (0); } } return (ENOENT); } static int tmpfs_vptocnp_fill(struct vnode *vp, struct tmpfs_node *tn, struct tmpfs_node *tnp, char *buf, int *buflen, struct vnode **dvp) { struct tmpfs_dirent *de; int error, i; error = vn_vget_ino_gen(vp, tmpfs_vn_get_ino_alloc, tnp, LK_SHARED, dvp); if (error != 0) return (error); error = tmpfs_vptocnp_dir(tn, tnp, &de); if (error == 0) { i = *buflen; i -= de->td_namelen; if (i < 0) { error = ENOMEM; } else { bcopy(de->ud.td_name, buf + i, de->td_namelen); *buflen = i; } } if (error == 0) { if (vp != *dvp) VOP_UNLOCK(*dvp, 0); } else { if (vp != *dvp) vput(*dvp); else vrele(vp); } return (error); } static int tmpfs_vptocnp(struct vop_vptocnp_args *ap) { struct vnode *vp, **dvp; struct tmpfs_node *tn, *tnp, *tnp1; struct tmpfs_dirent *de; struct tmpfs_mount *tm; char *buf; int *buflen; int error; vp = ap->a_vp; dvp = ap->a_vpp; buf = ap->a_buf; buflen = ap->a_buflen; tm = VFS_TO_TMPFS(vp->v_mount); tn = VP_TO_TMPFS_NODE(vp); if (tn->tn_type == VDIR) { tnp = tn->tn_dir.tn_parent; if (tnp == NULL) return (ENOENT); tmpfs_ref_node(tnp); error = tmpfs_vptocnp_fill(vp, tn, tn->tn_dir.tn_parent, buf, buflen, dvp); tmpfs_free_node(tm, tnp); return (error); } restart: TMPFS_LOCK(tm); LIST_FOREACH_SAFE(tnp, &tm->tm_nodes_used, tn_entries, tnp1) { if (tnp->tn_type != VDIR) continue; TMPFS_NODE_LOCK(tnp); tmpfs_ref_node_locked(tnp); /* * tn_vnode cannot be instantiated while we hold the * node lock, so the directory cannot be changed while * we iterate over it. Do this to avoid instantiating * vnode for directories which cannot point to our * node. */ error = tnp->tn_vnode == NULL ? tmpfs_vptocnp_dir(tn, tnp, &de) : 0; if (error == 0) { TMPFS_NODE_UNLOCK(tnp); TMPFS_UNLOCK(tm); error = tmpfs_vptocnp_fill(vp, tn, tnp, buf, buflen, dvp); if (error == 0) { tmpfs_free_node(tm, tnp); return (0); } if ((vp->v_iflag & VI_DOOMED) != 0) { tmpfs_free_node(tm, tnp); return (ENOENT); } TMPFS_LOCK(tm); TMPFS_NODE_LOCK(tnp); } if (tmpfs_free_node_locked(tm, tnp, false)) { goto restart; } else { KASSERT(tnp->tn_refcount > 0, ("node %p refcount zero", tnp)); tnp1 = LIST_NEXT(tnp, tn_entries); TMPFS_NODE_UNLOCK(tnp); } } TMPFS_UNLOCK(tm); return (ENOENT); } /* * Vnode operations vector used for files stored in a tmpfs file system. */ struct vop_vector tmpfs_vnodeop_entries = { .vop_default = &default_vnodeops, .vop_lookup = vfs_cache_lookup, .vop_cachedlookup = tmpfs_cached_lookup, .vop_create = tmpfs_create, .vop_mknod = tmpfs_mknod, .vop_open = tmpfs_open, .vop_close = tmpfs_close, .vop_access = tmpfs_access, .vop_getattr = tmpfs_getattr, .vop_setattr = tmpfs_setattr, .vop_read = tmpfs_read, .vop_write = tmpfs_write, .vop_fsync = tmpfs_fsync, .vop_remove = tmpfs_remove, .vop_link = tmpfs_link, .vop_rename = tmpfs_rename, .vop_mkdir = tmpfs_mkdir, .vop_rmdir = tmpfs_rmdir, .vop_symlink = tmpfs_symlink, .vop_readdir = tmpfs_readdir, .vop_readlink = tmpfs_readlink, .vop_inactive = tmpfs_inactive, .vop_reclaim = tmpfs_reclaim, .vop_print = tmpfs_print, .vop_pathconf = tmpfs_pathconf, .vop_vptofh = tmpfs_vptofh, .vop_whiteout = tmpfs_whiteout, .vop_bmap = VOP_EOPNOTSUPP, .vop_vptocnp = tmpfs_vptocnp, }; /* * Same vector for mounts which do not use namecache. */ struct vop_vector tmpfs_vnodeop_nonc_entries = { .vop_default = &tmpfs_vnodeop_entries, .vop_lookup = tmpfs_lookup, }; Index: head/sys/fs/tmpfs/tmpfs_vnops.h =================================================================== --- head/sys/fs/tmpfs/tmpfs_vnops.h (revision 327003) +++ head/sys/fs/tmpfs/tmpfs_vnops.h (revision 327004) @@ -1,57 +1,58 @@ /* $NetBSD: tmpfs_vnops.h,v 1.7 2005/12/03 17:34:44 christos Exp $ */ /*- * SPDX-License-Identifier: BSD-2-Clause-NetBSD * * Copyright (c) 2005 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Julio M. Merino Vidal, developed as part of Google's Summer of Code * 2005 program. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _FS_TMPFS_TMPFS_VNOPS_H_ #define _FS_TMPFS_TMPFS_VNOPS_H_ #if !defined(_KERNEL) #error not supposed to be exposed to userland. #endif /* * Declarations for tmpfs_vnops.c. */ extern struct vop_vector tmpfs_vnodeop_entries; extern struct vop_vector tmpfs_vnodeop_nonc_entries; vop_access_t tmpfs_access; vop_getattr_t tmpfs_getattr; vop_setattr_t tmpfs_setattr; +vop_pathconf_t tmpfs_pathconf; vop_print_t tmpfs_print; vop_reclaim_t tmpfs_reclaim; #endif /* _FS_TMPFS_TMPFS_VNOPS_H_ */ Index: head/sys/fs/udf/udf_vnops.c =================================================================== --- head/sys/fs/udf/udf_vnops.c (revision 327003) +++ head/sys/fs/udf/udf_vnops.c (revision 327004) @@ -1,1485 +1,1492 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2001, 2002 Scott Long * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /* udf_vnops.c */ /* Take care of the vnode side of things */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern struct iconv_functions *udf_iconv; static vop_access_t udf_access; static vop_getattr_t udf_getattr; static vop_open_t udf_open; static vop_ioctl_t udf_ioctl; static vop_pathconf_t udf_pathconf; static vop_print_t udf_print; static vop_read_t udf_read; static vop_readdir_t udf_readdir; static vop_readlink_t udf_readlink; static vop_setattr_t udf_setattr; static vop_strategy_t udf_strategy; static vop_bmap_t udf_bmap; static vop_cachedlookup_t udf_lookup; static vop_reclaim_t udf_reclaim; static vop_vptofh_t udf_vptofh; static int udf_readatoffset(struct udf_node *node, int *size, off_t offset, struct buf **bp, uint8_t **data); static int udf_bmap_internal(struct udf_node *node, off_t offset, daddr_t *sector, uint32_t *max_size); static struct vop_vector udf_vnodeops = { .vop_default = &default_vnodeops, .vop_access = udf_access, .vop_bmap = udf_bmap, .vop_cachedlookup = udf_lookup, .vop_getattr = udf_getattr, .vop_ioctl = udf_ioctl, .vop_lookup = vfs_cache_lookup, .vop_open = udf_open, .vop_pathconf = udf_pathconf, .vop_print = udf_print, .vop_read = udf_read, .vop_readdir = udf_readdir, .vop_readlink = udf_readlink, .vop_reclaim = udf_reclaim, .vop_setattr = udf_setattr, .vop_strategy = udf_strategy, .vop_vptofh = udf_vptofh, }; struct vop_vector udf_fifoops = { .vop_default = &fifo_specops, .vop_access = udf_access, .vop_getattr = udf_getattr, + .vop_pathconf = udf_pathconf, .vop_print = udf_print, .vop_reclaim = udf_reclaim, .vop_setattr = udf_setattr, .vop_vptofh = udf_vptofh, }; static MALLOC_DEFINE(M_UDFFID, "udf_fid", "UDF FileId structure"); static MALLOC_DEFINE(M_UDFDS, "udf_ds", "UDF Dirstream structure"); #define UDF_INVALID_BMAP -1 int udf_allocv(struct mount *mp, struct vnode **vpp, struct thread *td) { int error; struct vnode *vp; error = getnewvnode("udf", mp, &udf_vnodeops, &vp); if (error) { printf("udf_allocv: failed to allocate new vnode\n"); return (error); } *vpp = vp; return (0); } /* Convert file entry permission (5 bits per owner/group/user) to a mode_t */ static mode_t udf_permtomode(struct udf_node *node) { uint32_t perm; uint16_t flags; mode_t mode; perm = le32toh(node->fentry->perm); flags = le16toh(node->fentry->icbtag.flags); mode = perm & UDF_FENTRY_PERM_USER_MASK; mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK) >> 2); mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4); mode |= ((flags & UDF_ICB_TAG_FLAGS_STICKY) << 4); mode |= ((flags & UDF_ICB_TAG_FLAGS_SETGID) << 6); mode |= ((flags & UDF_ICB_TAG_FLAGS_SETUID) << 8); return (mode); } static int udf_access(struct vop_access_args *a) { struct vnode *vp; struct udf_node *node; accmode_t accmode; mode_t mode; vp = a->a_vp; node = VTON(vp); accmode = a->a_accmode; if (accmode & VWRITE) { switch (vp->v_type) { case VDIR: case VLNK: case VREG: return (EROFS); /* NOT REACHED */ default: break; } } mode = udf_permtomode(node); return (vaccess(vp->v_type, mode, node->fentry->uid, node->fentry->gid, accmode, a->a_cred, NULL)); } static int udf_open(struct vop_open_args *ap) { struct udf_node *np = VTON(ap->a_vp); off_t fsize; fsize = le64toh(np->fentry->inf_len); vnode_create_vobject(ap->a_vp, fsize, ap->a_td); return 0; } static const int mon_lens[2][12] = { {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}, {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335} }; static int udf_isaleapyear(int year) { int i; i = (year % 4) ? 0 : 1; i &= (year % 100) ? 1 : 0; i |= (year % 400) ? 0 : 1; return i; } /* * Timezone calculation compliments of Julian Elischer . */ static void udf_timetotimespec(struct timestamp *time, struct timespec *t) { int i, lpyear, daysinyear, year, startyear; union { uint16_t u_tz_offset; int16_t s_tz_offset; } tz; /* * DirectCD seems to like using bogus year values. * Don't trust time->month as it will be used for an array index. */ year = le16toh(time->year); if (year < 1970 || time->month < 1 || time->month > 12) { t->tv_sec = 0; t->tv_nsec = 0; return; } /* Calculate the time and day */ t->tv_sec = time->second; t->tv_sec += time->minute * 60; t->tv_sec += time->hour * 3600; t->tv_sec += (time->day - 1) * 3600 * 24; /* Calculate the month */ lpyear = udf_isaleapyear(year); t->tv_sec += mon_lens[lpyear][time->month - 1] * 3600 * 24; /* Speed up the calculation */ startyear = 1970; if (year > 2009) { t->tv_sec += 1262304000; startyear += 40; } else if (year > 1999) { t->tv_sec += 946684800; startyear += 30; } else if (year > 1989) { t->tv_sec += 631152000; startyear += 20; } else if (year > 1979) { t->tv_sec += 315532800; startyear += 10; } daysinyear = (year - startyear) * 365; for (i = startyear; i < year; i++) daysinyear += udf_isaleapyear(i); t->tv_sec += daysinyear * 3600 * 24; /* Calculate microseconds */ t->tv_nsec = time->centisec * 10000 + time->hund_usec * 100 + time->usec; /* * Calculate the time zone. The timezone is 12 bit signed 2's * complement, so we gotta do some extra magic to handle it right. */ tz.u_tz_offset = le16toh(time->type_tz); tz.u_tz_offset &= 0x0fff; if (tz.u_tz_offset & 0x0800) tz.u_tz_offset |= 0xf000; /* extend the sign to 16 bits */ if ((le16toh(time->type_tz) & 0x1000) && (tz.s_tz_offset != -2047)) t->tv_sec -= tz.s_tz_offset * 60; return; } static int udf_getattr(struct vop_getattr_args *a) { struct vnode *vp; struct udf_node *node; struct vattr *vap; struct file_entry *fentry; struct timespec ts; ts.tv_sec = 0; vp = a->a_vp; vap = a->a_vap; node = VTON(vp); fentry = node->fentry; vap->va_fsid = dev2udev(node->udfmp->im_dev); vap->va_fileid = node->hash_id; vap->va_mode = udf_permtomode(node); vap->va_nlink = le16toh(fentry->link_cnt); /* * XXX The spec says that -1 is valid for uid/gid and indicates an * invalid uid/gid. How should this be represented? */ vap->va_uid = (le32toh(fentry->uid) == -1) ? 0 : le32toh(fentry->uid); vap->va_gid = (le32toh(fentry->gid) == -1) ? 0 : le32toh(fentry->gid); udf_timetotimespec(&fentry->atime, &vap->va_atime); udf_timetotimespec(&fentry->mtime, &vap->va_mtime); vap->va_ctime = vap->va_mtime; /* XXX Stored as an Extended Attribute */ vap->va_rdev = NODEV; if (vp->v_type & VDIR) { /* * Directories that are recorded within their ICB will show * as having 0 blocks recorded. Since tradition dictates * that directories consume at least one logical block, * make it appear so. */ if (fentry->logblks_rec != 0) { vap->va_size = le64toh(fentry->logblks_rec) * node->udfmp->bsize; } else { vap->va_size = node->udfmp->bsize; } } else { vap->va_size = le64toh(fentry->inf_len); } vap->va_flags = 0; vap->va_gen = 1; vap->va_blocksize = node->udfmp->bsize; vap->va_bytes = le64toh(fentry->inf_len); vap->va_type = vp->v_type; vap->va_filerev = 0; /* XXX */ return (0); } static int udf_setattr(struct vop_setattr_args *a) { struct vnode *vp; struct vattr *vap; vp = a->a_vp; vap = a->a_vap; if (vap->va_flags != (u_long)VNOVAL || vap->va_uid != (uid_t)VNOVAL || vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) return (EROFS); if (vap->va_size != (u_quad_t)VNOVAL) { switch (vp->v_type) { case VDIR: return (EISDIR); case VLNK: case VREG: return (EROFS); case VCHR: case VBLK: case VSOCK: case VFIFO: case VNON: case VBAD: case VMARKER: return (0); } } return (0); } /* * File specific ioctls. */ static int udf_ioctl(struct vop_ioctl_args *a) { printf("%s called\n", __func__); return (ENOTTY); } /* * I'm not sure that this has much value in a read-only filesystem, but * cd9660 has it too. */ static int udf_pathconf(struct vop_pathconf_args *a) { switch (a->a_name) { case _PC_FILESIZEBITS: *a->a_retval = 64; return (0); case _PC_LINK_MAX: *a->a_retval = 65535; return (0); case _PC_NAME_MAX: *a->a_retval = NAME_MAX; return (0); case _PC_SYMLINK_MAX: *a->a_retval = MAXPATHLEN; return (0); case _PC_NO_TRUNC: *a->a_retval = 1; return (0); + case _PC_PIPE_BUF: + if (a->a_vp->v_type == VDIR || a->a_vp->v_type == VFIFO) { + *a->a_retval = PIPE_BUF; + return (0); + } + return (EINVAL); default: return (vop_stdpathconf(a)); } } static int udf_print(struct vop_print_args *ap) { struct vnode *vp = ap->a_vp; struct udf_node *node = VTON(vp); printf(" ino %lu, on dev %s", (u_long)node->hash_id, devtoname(node->udfmp->im_dev)); if (vp->v_type == VFIFO) fifo_printinfo(vp); printf("\n"); return (0); } #define lblkno(udfmp, loc) ((loc) >> (udfmp)->bshift) #define blkoff(udfmp, loc) ((loc) & (udfmp)->bmask) #define lblktosize(udfmp, blk) ((blk) << (udfmp)->bshift) static inline int is_data_in_fentry(const struct udf_node *node) { const struct file_entry *fentry = node->fentry; return ((le16toh(fentry->icbtag.flags) & 0x7) == 3); } static int udf_read(struct vop_read_args *ap) { struct vnode *vp = ap->a_vp; struct uio *uio = ap->a_uio; struct udf_node *node = VTON(vp); struct udf_mnt *udfmp; struct file_entry *fentry; struct buf *bp; uint8_t *data; daddr_t lbn, rablock; off_t diff, fsize; ssize_t n; int error = 0; long size, on; if (uio->uio_resid == 0) return (0); if (uio->uio_offset < 0) return (EINVAL); if (is_data_in_fentry(node)) { fentry = node->fentry; data = &fentry->data[le32toh(fentry->l_ea)]; fsize = le32toh(fentry->l_ad); n = uio->uio_resid; diff = fsize - uio->uio_offset; if (diff <= 0) return (0); if (diff < n) n = diff; error = uiomove(data + uio->uio_offset, (int)n, uio); return (error); } fsize = le64toh(node->fentry->inf_len); udfmp = node->udfmp; do { lbn = lblkno(udfmp, uio->uio_offset); on = blkoff(udfmp, uio->uio_offset); n = min((u_int)(udfmp->bsize - on), uio->uio_resid); diff = fsize - uio->uio_offset; if (diff <= 0) return (0); if (diff < n) n = diff; size = udfmp->bsize; rablock = lbn + 1; if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) { if (lblktosize(udfmp, rablock) < fsize) { error = cluster_read(vp, fsize, lbn, size, NOCRED, uio->uio_resid, (ap->a_ioflag >> 16), 0, &bp); } else { error = bread(vp, lbn, size, NOCRED, &bp); } } else { error = bread(vp, lbn, size, NOCRED, &bp); } if (error != 0) { brelse(bp); return (error); } n = min(n, size - bp->b_resid); error = uiomove(bp->b_data + on, (int)n, uio); brelse(bp); } while (error == 0 && uio->uio_resid > 0 && n != 0); return (error); } /* * Call the OSTA routines to translate the name from a CS0 dstring to a * 16-bit Unicode String. Hooks need to be placed in here to translate from * Unicode to the encoding that the kernel/user expects. Return the length * of the translated string. */ static int udf_transname(char *cs0string, char *destname, int len, struct udf_mnt *udfmp) { unicode_t *transname; char *unibuf, *unip; int i, destlen; ssize_t unilen = 0; size_t destleft = MAXNAMLEN; /* Convert 16-bit Unicode to destname */ if (udfmp->im_flags & UDFMNT_KICONV && udf_iconv) { /* allocate a buffer big enough to hold an 8->16 bit expansion */ unibuf = uma_zalloc(udf_zone_trans, M_WAITOK); unip = unibuf; if ((unilen = (ssize_t)udf_UncompressUnicodeByte(len, cs0string, unibuf)) == -1) { printf("udf: Unicode translation failed\n"); uma_zfree(udf_zone_trans, unibuf); return 0; } while (unilen > 0 && destleft > 0) { udf_iconv->conv(udfmp->im_d2l, __DECONST(const char **, &unibuf), (size_t *)&unilen, (char **)&destname, &destleft); /* Unconverted character found */ if (unilen > 0 && destleft > 0) { *destname++ = '?'; destleft--; unibuf += 2; unilen -= 2; } } uma_zfree(udf_zone_trans, unip); *destname = '\0'; destlen = MAXNAMLEN - (int)destleft; } else { /* allocate a buffer big enough to hold an 8->16 bit expansion */ transname = uma_zalloc(udf_zone_trans, M_WAITOK); if ((unilen = (ssize_t)udf_UncompressUnicode(len, cs0string, transname)) == -1) { printf("udf: Unicode translation failed\n"); uma_zfree(udf_zone_trans, transname); return 0; } for (i = 0; i < unilen ; i++) { if (transname[i] & 0xff00) { destname[i] = '.'; /* Fudge the 16bit chars */ } else { destname[i] = transname[i] & 0xff; } } uma_zfree(udf_zone_trans, transname); destname[unilen] = 0; destlen = (int)unilen; } return (destlen); } /* * Compare a CS0 dstring with a name passed in from the VFS layer. Return * 0 on a successful match, nonzero otherwise. Unicode work may need to be done * here also. */ static int udf_cmpname(char *cs0string, char *cmpname, int cs0len, int cmplen, struct udf_mnt *udfmp) { char *transname; int error = 0; /* This is overkill, but not worth creating a new zone */ transname = uma_zalloc(udf_zone_trans, M_WAITOK); cs0len = udf_transname(cs0string, transname, cs0len, udfmp); /* Easy check. If they aren't the same length, they aren't equal */ if ((cs0len == 0) || (cs0len != cmplen)) error = -1; else error = bcmp(transname, cmpname, cmplen); uma_zfree(udf_zone_trans, transname); return (error); } struct udf_uiodir { struct dirent *dirent; u_long *cookies; int ncookies; int acookies; int eofflag; }; static int udf_uiodir(struct udf_uiodir *uiodir, int de_size, struct uio *uio, long cookie) { if (uiodir->cookies != NULL) { if (++uiodir->acookies > uiodir->ncookies) { uiodir->eofflag = 0; return (-1); } *uiodir->cookies++ = cookie; } if (uio->uio_resid < de_size) { uiodir->eofflag = 0; return (-1); } return (uiomove(uiodir->dirent, de_size, uio)); } static struct udf_dirstream * udf_opendir(struct udf_node *node, int offset, int fsize, struct udf_mnt *udfmp) { struct udf_dirstream *ds; ds = uma_zalloc(udf_zone_ds, M_WAITOK | M_ZERO); ds->node = node; ds->offset = offset; ds->udfmp = udfmp; ds->fsize = fsize; return (ds); } static struct fileid_desc * udf_getfid(struct udf_dirstream *ds) { struct fileid_desc *fid; int error, frag_size = 0, total_fid_size; /* End of directory? */ if (ds->offset + ds->off >= ds->fsize) { ds->error = 0; return (NULL); } /* Grab the first extent of the directory */ if (ds->off == 0) { ds->size = 0; error = udf_readatoffset(ds->node, &ds->size, ds->offset, &ds->bp, &ds->data); if (error) { ds->error = error; if (ds->bp != NULL) brelse(ds->bp); return (NULL); } } /* * Clean up from a previous fragmented FID. * XXX Is this the right place for this? */ if (ds->fid_fragment && ds->buf != NULL) { ds->fid_fragment = 0; free(ds->buf, M_UDFFID); } fid = (struct fileid_desc*)&ds->data[ds->off]; /* * Check to see if the fid is fragmented. The first test * ensures that we don't wander off the end of the buffer * looking for the l_iu and l_fi fields. */ if (ds->off + UDF_FID_SIZE > ds->size || ds->off + le16toh(fid->l_iu) + fid->l_fi + UDF_FID_SIZE > ds->size){ /* Copy what we have of the fid into a buffer */ frag_size = ds->size - ds->off; if (frag_size >= ds->udfmp->bsize) { printf("udf: invalid FID fragment\n"); ds->error = EINVAL; return (NULL); } /* * File ID descriptors can only be at most one * logical sector in size. */ ds->buf = malloc(ds->udfmp->bsize, M_UDFFID, M_WAITOK | M_ZERO); bcopy(fid, ds->buf, frag_size); /* Reduce all of the casting magic */ fid = (struct fileid_desc*)ds->buf; if (ds->bp != NULL) brelse(ds->bp); /* Fetch the next allocation */ ds->offset += ds->size; ds->size = 0; error = udf_readatoffset(ds->node, &ds->size, ds->offset, &ds->bp, &ds->data); if (error) { ds->error = error; return (NULL); } /* * If the fragment was so small that we didn't get * the l_iu and l_fi fields, copy those in. */ if (frag_size < UDF_FID_SIZE) bcopy(ds->data, &ds->buf[frag_size], UDF_FID_SIZE - frag_size); /* * Now that we have enough of the fid to work with, * copy in the rest of the fid from the new * allocation. */ total_fid_size = UDF_FID_SIZE + le16toh(fid->l_iu) + fid->l_fi; if (total_fid_size > ds->udfmp->bsize) { printf("udf: invalid FID\n"); ds->error = EIO; return (NULL); } bcopy(ds->data, &ds->buf[frag_size], total_fid_size - frag_size); ds->fid_fragment = 1; } else { total_fid_size = le16toh(fid->l_iu) + fid->l_fi + UDF_FID_SIZE; } /* * Update the offset. Align on a 4 byte boundary because the * UDF spec says so. */ ds->this_off = ds->offset + ds->off; if (!ds->fid_fragment) { ds->off += (total_fid_size + 3) & ~0x03; } else { ds->off = (total_fid_size - frag_size + 3) & ~0x03; } return (fid); } static void udf_closedir(struct udf_dirstream *ds) { if (ds->bp != NULL) brelse(ds->bp); if (ds->fid_fragment && ds->buf != NULL) free(ds->buf, M_UDFFID); uma_zfree(udf_zone_ds, ds); } static int udf_readdir(struct vop_readdir_args *a) { struct vnode *vp; struct uio *uio; struct dirent dir; struct udf_node *node; struct udf_mnt *udfmp; struct fileid_desc *fid; struct udf_uiodir uiodir; struct udf_dirstream *ds; u_long *cookies = NULL; int ncookies; int error = 0; vp = a->a_vp; uio = a->a_uio; node = VTON(vp); udfmp = node->udfmp; uiodir.eofflag = 1; if (a->a_ncookies != NULL) { /* * Guess how many entries are needed. If we run out, this * function will be called again and thing will pick up were * it left off. */ ncookies = uio->uio_resid / 8; cookies = malloc(sizeof(u_long) * ncookies, M_TEMP, M_WAITOK); if (cookies == NULL) return (ENOMEM); uiodir.ncookies = ncookies; uiodir.cookies = cookies; uiodir.acookies = 0; } else { uiodir.cookies = NULL; } /* * Iterate through the file id descriptors. Give the parent dir * entry special attention. */ ds = udf_opendir(node, uio->uio_offset, le64toh(node->fentry->inf_len), node->udfmp); while ((fid = udf_getfid(ds)) != NULL) { /* XXX Should we return an error on a bad fid? */ if (udf_checktag(&fid->tag, TAGID_FID)) { printf("Invalid FID tag\n"); hexdump(fid, UDF_FID_SIZE, NULL, 0); error = EIO; break; } /* Is this a deleted file? */ if (fid->file_char & UDF_FILE_CHAR_DEL) continue; if ((fid->l_fi == 0) && (fid->file_char & UDF_FILE_CHAR_PAR)) { /* Do up the '.' and '..' entries. Dummy values are * used for the cookies since the offset here is * usually zero, and NFS doesn't like that value */ dir.d_fileno = node->hash_id; dir.d_type = DT_DIR; dir.d_name[0] = '.'; dir.d_name[1] = '\0'; dir.d_namlen = 1; dir.d_reclen = GENERIC_DIRSIZ(&dir); uiodir.dirent = &dir; error = udf_uiodir(&uiodir, dir.d_reclen, uio, 1); if (error) break; dir.d_fileno = udf_getid(&fid->icb); dir.d_type = DT_DIR; dir.d_name[0] = '.'; dir.d_name[1] = '.'; dir.d_name[2] = '\0'; dir.d_namlen = 2; dir.d_reclen = GENERIC_DIRSIZ(&dir); uiodir.dirent = &dir; error = udf_uiodir(&uiodir, dir.d_reclen, uio, 2); } else { dir.d_namlen = udf_transname(&fid->data[fid->l_iu], &dir.d_name[0], fid->l_fi, udfmp); dir.d_fileno = udf_getid(&fid->icb); dir.d_type = (fid->file_char & UDF_FILE_CHAR_DIR) ? DT_DIR : DT_UNKNOWN; dir.d_reclen = GENERIC_DIRSIZ(&dir); uiodir.dirent = &dir; error = udf_uiodir(&uiodir, dir.d_reclen, uio, ds->this_off); } if (error) break; uio->uio_offset = ds->offset + ds->off; } /* tell the calling layer whether we need to be called again */ *a->a_eofflag = uiodir.eofflag; if (error < 0) error = 0; if (!error) error = ds->error; udf_closedir(ds); if (a->a_ncookies != NULL) { if (error) free(cookies, M_TEMP); else { *a->a_ncookies = uiodir.acookies; *a->a_cookies = cookies; } } return (error); } static int udf_readlink(struct vop_readlink_args *ap) { struct path_component *pc, *end; struct vnode *vp; struct uio uio; struct iovec iov[1]; struct udf_node *node; void *buf; char *cp; int error, len, root; /* * A symbolic link in UDF is a list of variable-length path * component structures. We build a pathname in the caller's * uio by traversing this list. */ vp = ap->a_vp; node = VTON(vp); len = le64toh(node->fentry->inf_len); buf = malloc(len, M_DEVBUF, M_WAITOK); iov[0].iov_len = len; iov[0].iov_base = buf; uio.uio_iov = iov; uio.uio_iovcnt = 1; uio.uio_offset = 0; uio.uio_resid = iov[0].iov_len; uio.uio_segflg = UIO_SYSSPACE; uio.uio_rw = UIO_READ; uio.uio_td = curthread; error = VOP_READ(vp, &uio, 0, ap->a_cred); if (error) goto error; pc = buf; end = (void *)((char *)buf + len); root = 0; while (pc < end) { switch (pc->type) { case UDF_PATH_ROOT: /* Only allow this at the beginning of a path. */ if ((void *)pc != buf) { error = EINVAL; goto error; } cp = "/"; len = 1; root = 1; break; case UDF_PATH_DOT: cp = "."; len = 1; break; case UDF_PATH_DOTDOT: cp = ".."; len = 2; break; case UDF_PATH_PATH: if (pc->length == 0) { error = EINVAL; goto error; } /* * XXX: We only support CS8 which appears to map * to ASCII directly. */ switch (pc->identifier[0]) { case 8: cp = pc->identifier + 1; len = pc->length - 1; break; default: error = EOPNOTSUPP; goto error; } break; default: error = EINVAL; goto error; } /* * If this is not the first component, insert a path * separator. */ if (pc != buf) { /* If we started with root we already have a "/". */ if (root) goto skipslash; root = 0; if (ap->a_uio->uio_resid < 1) { error = ENAMETOOLONG; goto error; } error = uiomove("/", 1, ap->a_uio); if (error) break; } skipslash: /* Append string at 'cp' of length 'len' to our path. */ if (len > ap->a_uio->uio_resid) { error = ENAMETOOLONG; goto error; } error = uiomove(cp, len, ap->a_uio); if (error) break; /* Advance to next component. */ pc = (void *)((char *)pc + 4 + pc->length); } error: free(buf, M_DEVBUF); return (error); } static int udf_strategy(struct vop_strategy_args *a) { struct buf *bp; struct vnode *vp; struct udf_node *node; struct bufobj *bo; off_t offset; uint32_t maxsize; daddr_t sector; int error; bp = a->a_bp; vp = a->a_vp; node = VTON(vp); if (bp->b_blkno == bp->b_lblkno) { offset = lblktosize(node->udfmp, bp->b_lblkno); error = udf_bmap_internal(node, offset, §or, &maxsize); if (error) { clrbuf(bp); bp->b_blkno = -1; bufdone(bp); return (0); } /* bmap gives sector numbers, bio works with device blocks */ bp->b_blkno = sector << (node->udfmp->bshift - DEV_BSHIFT); } bo = node->udfmp->im_bo; bp->b_iooffset = dbtob(bp->b_blkno); BO_STRATEGY(bo, bp); return (0); } static int udf_bmap(struct vop_bmap_args *a) { struct udf_node *node; uint32_t max_size; daddr_t lsector; int nblk; int error; node = VTON(a->a_vp); if (a->a_bop != NULL) *a->a_bop = &node->udfmp->im_devvp->v_bufobj; if (a->a_bnp == NULL) return (0); if (a->a_runb) *a->a_runb = 0; /* * UDF_INVALID_BMAP means data embedded into fentry, this is an internal * error that should not be propagated to calling code. * Most obvious mapping for this error is EOPNOTSUPP as we can not truly * translate block numbers in this case. * Incidentally, this return code will make vnode pager to use VOP_READ * to get data for mmap-ed pages and udf_read knows how to do the right * thing for this kind of files. */ error = udf_bmap_internal(node, a->a_bn << node->udfmp->bshift, &lsector, &max_size); if (error == UDF_INVALID_BMAP) return (EOPNOTSUPP); if (error) return (error); /* Translate logical to physical sector number */ *a->a_bnp = lsector << (node->udfmp->bshift - DEV_BSHIFT); /* * Determine maximum number of readahead blocks following the * requested block. */ if (a->a_runp) { nblk = (max_size >> node->udfmp->bshift) - 1; if (nblk <= 0) *a->a_runp = 0; else if (nblk >= (MAXBSIZE >> node->udfmp->bshift)) *a->a_runp = (MAXBSIZE >> node->udfmp->bshift) - 1; else *a->a_runp = nblk; } if (a->a_runb) { *a->a_runb = 0; } return (0); } /* * The all powerful VOP_LOOKUP(). */ static int udf_lookup(struct vop_cachedlookup_args *a) { struct vnode *dvp; struct vnode *tdp = NULL; struct vnode **vpp = a->a_vpp; struct udf_node *node; struct udf_mnt *udfmp; struct fileid_desc *fid = NULL; struct udf_dirstream *ds; u_long nameiop; u_long flags; char *nameptr; long namelen; ino_t id = 0; int offset, error = 0; int fsize, lkflags, ltype, numdirpasses; dvp = a->a_dvp; node = VTON(dvp); udfmp = node->udfmp; nameiop = a->a_cnp->cn_nameiop; flags = a->a_cnp->cn_flags; lkflags = a->a_cnp->cn_lkflags; nameptr = a->a_cnp->cn_nameptr; namelen = a->a_cnp->cn_namelen; fsize = le64toh(node->fentry->inf_len); /* * If this is a LOOKUP and we've already partially searched through * the directory, pick up where we left off and flag that the * directory may need to be searched twice. For a full description, * see /sys/fs/cd9660/cd9660_lookup.c:cd9660_lookup() */ if (nameiop != LOOKUP || node->diroff == 0 || node->diroff > fsize) { offset = 0; numdirpasses = 1; } else { offset = node->diroff; numdirpasses = 2; nchstats.ncs_2passes++; } lookloop: ds = udf_opendir(node, offset, fsize, udfmp); while ((fid = udf_getfid(ds)) != NULL) { /* XXX Should we return an error on a bad fid? */ if (udf_checktag(&fid->tag, TAGID_FID)) { printf("udf_lookup: Invalid tag\n"); error = EIO; break; } /* Is this a deleted file? */ if (fid->file_char & UDF_FILE_CHAR_DEL) continue; if ((fid->l_fi == 0) && (fid->file_char & UDF_FILE_CHAR_PAR)) { if (flags & ISDOTDOT) { id = udf_getid(&fid->icb); break; } } else { if (!(udf_cmpname(&fid->data[fid->l_iu], nameptr, fid->l_fi, namelen, udfmp))) { id = udf_getid(&fid->icb); break; } } } if (!error) error = ds->error; /* XXX Bail out here? */ if (error) { udf_closedir(ds); return (error); } /* Did we have a match? */ if (id) { /* * Remember where this entry was if it's the final * component. */ if ((flags & ISLASTCN) && nameiop == LOOKUP) node->diroff = ds->offset + ds->off; if (numdirpasses == 2) nchstats.ncs_pass2++; udf_closedir(ds); if (flags & ISDOTDOT) { error = vn_vget_ino(dvp, id, lkflags, &tdp); } else if (node->hash_id == id) { VREF(dvp); /* we want ourself, ie "." */ /* * When we lookup "." we still can be asked to lock it * differently. */ ltype = lkflags & LK_TYPE_MASK; if (ltype != VOP_ISLOCKED(dvp)) { if (ltype == LK_EXCLUSIVE) vn_lock(dvp, LK_UPGRADE | LK_RETRY); else /* if (ltype == LK_SHARED) */ vn_lock(dvp, LK_DOWNGRADE | LK_RETRY); } tdp = dvp; } else error = udf_vget(udfmp->im_mountp, id, lkflags, &tdp); if (!error) { *vpp = tdp; /* Put this entry in the cache */ if (flags & MAKEENTRY) cache_enter(dvp, *vpp, a->a_cnp); } } else { /* Name wasn't found on this pass. Do another pass? */ if (numdirpasses == 2) { numdirpasses--; offset = 0; udf_closedir(ds); goto lookloop; } udf_closedir(ds); /* Enter name into cache as non-existant */ if (flags & MAKEENTRY) cache_enter(dvp, *vpp, a->a_cnp); if ((flags & ISLASTCN) && (nameiop == CREATE || nameiop == RENAME)) { error = EROFS; } else { error = ENOENT; } } return (error); } static int udf_reclaim(struct vop_reclaim_args *a) { struct vnode *vp; struct udf_node *unode; vp = a->a_vp; unode = VTON(vp); /* * Destroy the vm object and flush associated pages. */ vnode_destroy_vobject(vp); if (unode != NULL) { vfs_hash_remove(vp); if (unode->fentry != NULL) free(unode->fentry, M_UDFFENTRY); uma_zfree(udf_zone_node, unode); vp->v_data = NULL; } return (0); } static int udf_vptofh(struct vop_vptofh_args *a) { struct udf_node *node; struct ifid *ifhp; node = VTON(a->a_vp); ifhp = (struct ifid *)a->a_fhp; ifhp->ifid_len = sizeof(struct ifid); ifhp->ifid_ino = node->hash_id; return (0); } /* * Read the block and then set the data pointer to correspond with the * offset passed in. Only read in at most 'size' bytes, and then set 'size' * to the number of bytes pointed to. If 'size' is zero, try to read in a * whole extent. * * Note that *bp may be assigned error or not. * */ static int udf_readatoffset(struct udf_node *node, int *size, off_t offset, struct buf **bp, uint8_t **data) { struct udf_mnt *udfmp = node->udfmp; struct vnode *vp = node->i_vnode; struct file_entry *fentry; struct buf *bp1; uint32_t max_size; daddr_t sector; off_t off; int adj_size; int error; /* * This call is made *not* only to detect UDF_INVALID_BMAP case, * max_size is used as an ad-hoc read-ahead hint for "normal" case. */ error = udf_bmap_internal(node, offset, §or, &max_size); if (error == UDF_INVALID_BMAP) { /* * This error means that the file *data* is stored in the * allocation descriptor field of the file entry. */ fentry = node->fentry; *data = &fentry->data[le32toh(fentry->l_ea)]; *size = le32toh(fentry->l_ad); if (offset >= *size) *size = 0; else { *data += offset; *size -= offset; } return (0); } else if (error != 0) { return (error); } /* Adjust the size so that it is within range */ if (*size == 0 || *size > max_size) *size = max_size; /* * Because we will read starting at block boundary, we need to adjust * how much we need to read so that all promised data is in. * Also, we can't promise to read more than MAXBSIZE bytes starting * from block boundary, so adjust what we promise too. */ off = blkoff(udfmp, offset); *size = min(*size, MAXBSIZE - off); adj_size = (*size + off + udfmp->bmask) & ~udfmp->bmask; *bp = NULL; if ((error = bread(vp, lblkno(udfmp, offset), adj_size, NOCRED, bp))) { printf("warning: udf_readlblks returned error %d\n", error); /* note: *bp may be non-NULL */ return (error); } bp1 = *bp; *data = (uint8_t *)&bp1->b_data[offset & udfmp->bmask]; return (0); } /* * Translate a file offset into a logical block and then into a physical * block. * max_size - maximum number of bytes that can be read starting from given * offset, rather than beginning of calculated sector number */ static int udf_bmap_internal(struct udf_node *node, off_t offset, daddr_t *sector, uint32_t *max_size) { struct udf_mnt *udfmp; struct file_entry *fentry; void *icb; struct icb_tag *tag; uint32_t icblen = 0; daddr_t lsector; int ad_offset, ad_num = 0; int i, p_offset; udfmp = node->udfmp; fentry = node->fentry; tag = &fentry->icbtag; switch (le16toh(tag->strat_type)) { case 4: break; case 4096: printf("Cannot deal with strategy4096 yet!\n"); return (ENODEV); default: printf("Unknown strategy type %d\n", tag->strat_type); return (ENODEV); } switch (le16toh(tag->flags) & 0x7) { case 0: /* * The allocation descriptor field is filled with short_ad's. * If the offset is beyond the current extent, look for the * next extent. */ do { offset -= icblen; ad_offset = sizeof(struct short_ad) * ad_num; if (ad_offset > le32toh(fentry->l_ad)) { printf("File offset out of bounds\n"); return (EINVAL); } icb = GETICB(short_ad, fentry, le32toh(fentry->l_ea) + ad_offset); icblen = GETICBLEN(short_ad, icb); ad_num++; } while(offset >= icblen); lsector = (offset >> udfmp->bshift) + le32toh(((struct short_ad *)(icb))->pos); *max_size = icblen - offset; break; case 1: /* * The allocation descriptor field is filled with long_ad's * If the offset is beyond the current extent, look for the * next extent. */ do { offset -= icblen; ad_offset = sizeof(struct long_ad) * ad_num; if (ad_offset > le32toh(fentry->l_ad)) { printf("File offset out of bounds\n"); return (EINVAL); } icb = GETICB(long_ad, fentry, le32toh(fentry->l_ea) + ad_offset); icblen = GETICBLEN(long_ad, icb); ad_num++; } while(offset >= icblen); lsector = (offset >> udfmp->bshift) + le32toh(((struct long_ad *)(icb))->loc.lb_num); *max_size = icblen - offset; break; case 3: /* * This type means that the file *data* is stored in the * allocation descriptor field of the file entry. */ *max_size = 0; *sector = node->hash_id + udfmp->part_start; return (UDF_INVALID_BMAP); case 2: /* DirectCD does not use extended_ad's */ default: printf("Unsupported allocation descriptor %d\n", tag->flags & 0x7); return (ENODEV); } *sector = lsector + udfmp->part_start; /* * Check the sparing table. Each entry represents the beginning of * a packet. */ if (udfmp->s_table != NULL) { for (i = 0; i< udfmp->s_table_entries; i++) { p_offset = lsector - le32toh(udfmp->s_table->entries[i].org); if ((p_offset < udfmp->p_sectors) && (p_offset >= 0)) { *sector = le32toh(udfmp->s_table->entries[i].map) + p_offset; break; } } } return (0); } Index: head/sys/kern/vfs_default.c =================================================================== --- head/sys/kern/vfs_default.c (revision 327003) +++ head/sys/kern/vfs_default.c (revision 327004) @@ -1,1316 +1,1313 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed * to Berkeley by John Heidemann of the UCLA Ficus project. * * Source: * @(#)i405_init.c 2.10 92/04/27 UCLA Ficus project * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int vop_nolookup(struct vop_lookup_args *); static int vop_norename(struct vop_rename_args *); static int vop_nostrategy(struct vop_strategy_args *); static int get_next_dirent(struct vnode *vp, struct dirent **dpp, char *dirbuf, int dirbuflen, off_t *off, char **cpos, int *len, int *eofflag, struct thread *td); static int dirent_exists(struct vnode *vp, const char *dirname, struct thread *td); #define DIRENT_MINSIZE (sizeof(struct dirent) - (MAXNAMLEN+1) + 4) static int vop_stdis_text(struct vop_is_text_args *ap); static int vop_stdset_text(struct vop_set_text_args *ap); static int vop_stdunset_text(struct vop_unset_text_args *ap); static int vop_stdget_writecount(struct vop_get_writecount_args *ap); static int vop_stdadd_writecount(struct vop_add_writecount_args *ap); static int vop_stdfdatasync(struct vop_fdatasync_args *ap); static int vop_stdgetpages_async(struct vop_getpages_async_args *ap); /* * This vnode table stores what we want to do if the filesystem doesn't * implement a particular VOP. * * If there is no specific entry here, we will return EOPNOTSUPP. * * Note that every filesystem has to implement either vop_access * or vop_accessx; failing to do so will result in immediate crash * due to stack overflow, as vop_stdaccess() calls vop_stdaccessx(), * which calls vop_stdaccess() etc. */ struct vop_vector default_vnodeops = { .vop_default = NULL, .vop_bypass = VOP_EOPNOTSUPP, .vop_access = vop_stdaccess, .vop_accessx = vop_stdaccessx, .vop_advise = vop_stdadvise, .vop_advlock = vop_stdadvlock, .vop_advlockasync = vop_stdadvlockasync, .vop_advlockpurge = vop_stdadvlockpurge, .vop_allocate = vop_stdallocate, .vop_bmap = vop_stdbmap, .vop_close = VOP_NULL, .vop_fsync = VOP_NULL, .vop_fdatasync = vop_stdfdatasync, .vop_getpages = vop_stdgetpages, .vop_getpages_async = vop_stdgetpages_async, .vop_getwritemount = vop_stdgetwritemount, .vop_inactive = VOP_NULL, .vop_ioctl = VOP_ENOTTY, .vop_kqfilter = vop_stdkqfilter, .vop_islocked = vop_stdislocked, .vop_lock1 = vop_stdlock, .vop_lookup = vop_nolookup, .vop_open = VOP_NULL, .vop_pathconf = VOP_EINVAL, .vop_poll = vop_nopoll, .vop_putpages = vop_stdputpages, .vop_readlink = VOP_EINVAL, .vop_rename = vop_norename, .vop_revoke = VOP_PANIC, .vop_strategy = vop_nostrategy, .vop_unlock = vop_stdunlock, .vop_vptocnp = vop_stdvptocnp, .vop_vptofh = vop_stdvptofh, .vop_unp_bind = vop_stdunp_bind, .vop_unp_connect = vop_stdunp_connect, .vop_unp_detach = vop_stdunp_detach, .vop_is_text = vop_stdis_text, .vop_set_text = vop_stdset_text, .vop_unset_text = vop_stdunset_text, .vop_get_writecount = vop_stdget_writecount, .vop_add_writecount = vop_stdadd_writecount, }; /* * Series of placeholder functions for various error returns for * VOPs. */ int vop_eopnotsupp(struct vop_generic_args *ap) { /* printf("vop_notsupp[%s]\n", ap->a_desc->vdesc_name); */ return (EOPNOTSUPP); } int vop_ebadf(struct vop_generic_args *ap) { return (EBADF); } int vop_enotty(struct vop_generic_args *ap) { return (ENOTTY); } int vop_einval(struct vop_generic_args *ap) { return (EINVAL); } int vop_enoent(struct vop_generic_args *ap) { return (ENOENT); } int vop_null(struct vop_generic_args *ap) { return (0); } /* * Helper function to panic on some bad VOPs in some filesystems. */ int vop_panic(struct vop_generic_args *ap) { panic("filesystem goof: vop_panic[%s]", ap->a_desc->vdesc_name); } /* * vop_std and vop_no are default functions for use by * filesystems that need the "default reasonable" implementation for a * particular operation. * * The documentation for the operations they implement exists (if it exists) * in the VOP_(9) manpage (all uppercase). */ /* * Default vop for filesystems that do not support name lookup */ static int vop_nolookup(ap) struct vop_lookup_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; } */ *ap; { *ap->a_vpp = NULL; return (ENOTDIR); } /* * vop_norename: * * Handle unlock and reference counting for arguments of vop_rename * for filesystems that do not implement rename operation. */ static int vop_norename(struct vop_rename_args *ap) { vop_rename_fail(ap); return (EOPNOTSUPP); } /* * vop_nostrategy: * * Strategy routine for VFS devices that have none. * * BIO_ERROR and B_INVAL must be cleared prior to calling any strategy * routine. Typically this is done for a BIO_READ strategy call. * Typically B_INVAL is assumed to already be clear prior to a write * and should not be cleared manually unless you just made the buffer * invalid. BIO_ERROR should be cleared either way. */ static int vop_nostrategy (struct vop_strategy_args *ap) { printf("No strategy for buffer at %p\n", ap->a_bp); vn_printf(ap->a_vp, "vnode "); ap->a_bp->b_ioflags |= BIO_ERROR; ap->a_bp->b_error = EOPNOTSUPP; bufdone(ap->a_bp); return (EOPNOTSUPP); } static int get_next_dirent(struct vnode *vp, struct dirent **dpp, char *dirbuf, int dirbuflen, off_t *off, char **cpos, int *len, int *eofflag, struct thread *td) { int error, reclen; struct uio uio; struct iovec iov; struct dirent *dp; KASSERT(VOP_ISLOCKED(vp), ("vp %p is not locked", vp)); KASSERT(vp->v_type == VDIR, ("vp %p is not a directory", vp)); if (*len == 0) { iov.iov_base = dirbuf; iov.iov_len = dirbuflen; uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = *off; uio.uio_resid = dirbuflen; uio.uio_segflg = UIO_SYSSPACE; uio.uio_rw = UIO_READ; uio.uio_td = td; *eofflag = 0; #ifdef MAC error = mac_vnode_check_readdir(td->td_ucred, vp); if (error == 0) #endif error = VOP_READDIR(vp, &uio, td->td_ucred, eofflag, NULL, NULL); if (error) return (error); *off = uio.uio_offset; *cpos = dirbuf; *len = (dirbuflen - uio.uio_resid); if (*len == 0) return (ENOENT); } dp = (struct dirent *)(*cpos); reclen = dp->d_reclen; *dpp = dp; /* check for malformed directory.. */ if (reclen < DIRENT_MINSIZE) return (EINVAL); *cpos += reclen; *len -= reclen; return (0); } /* * Check if a named file exists in a given directory vnode. */ static int dirent_exists(struct vnode *vp, const char *dirname, struct thread *td) { char *dirbuf, *cpos; int error, eofflag, dirbuflen, len, found; off_t off; struct dirent *dp; struct vattr va; KASSERT(VOP_ISLOCKED(vp), ("vp %p is not locked", vp)); KASSERT(vp->v_type == VDIR, ("vp %p is not a directory", vp)); found = 0; error = VOP_GETATTR(vp, &va, td->td_ucred); if (error) return (found); dirbuflen = DEV_BSIZE; if (dirbuflen < va.va_blocksize) dirbuflen = va.va_blocksize; dirbuf = (char *)malloc(dirbuflen, M_TEMP, M_WAITOK); off = 0; len = 0; do { error = get_next_dirent(vp, &dp, dirbuf, dirbuflen, &off, &cpos, &len, &eofflag, td); if (error) goto out; if (dp->d_type != DT_WHT && dp->d_fileno != 0 && strcmp(dp->d_name, dirname) == 0) { found = 1; goto out; } } while (len > 0 || !eofflag); out: free(dirbuf, M_TEMP); return (found); } int vop_stdaccess(struct vop_access_args *ap) { KASSERT((ap->a_accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0, ("invalid bit in accmode")); return (VOP_ACCESSX(ap->a_vp, ap->a_accmode, ap->a_cred, ap->a_td)); } int vop_stdaccessx(struct vop_accessx_args *ap) { int error; accmode_t accmode = ap->a_accmode; error = vfs_unixify_accmode(&accmode); if (error != 0) return (error); if (accmode == 0) return (0); return (VOP_ACCESS(ap->a_vp, accmode, ap->a_cred, ap->a_td)); } /* * Advisory record locking support */ int vop_stdadvlock(struct vop_advlock_args *ap) { struct vnode *vp; struct vattr vattr; int error; vp = ap->a_vp; if (ap->a_fl->l_whence == SEEK_END) { /* * The NFSv4 server must avoid doing a vn_lock() here, since it * can deadlock the nfsd threads, due to a LOR. Fortunately * the NFSv4 server always uses SEEK_SET and this code is * only required for the SEEK_END case. */ vn_lock(vp, LK_SHARED | LK_RETRY); error = VOP_GETATTR(vp, &vattr, curthread->td_ucred); VOP_UNLOCK(vp, 0); if (error) return (error); } else vattr.va_size = 0; return (lf_advlock(ap, &(vp->v_lockf), vattr.va_size)); } int vop_stdadvlockasync(struct vop_advlockasync_args *ap) { struct vnode *vp; struct vattr vattr; int error; vp = ap->a_vp; if (ap->a_fl->l_whence == SEEK_END) { /* The size argument is only needed for SEEK_END. */ vn_lock(vp, LK_SHARED | LK_RETRY); error = VOP_GETATTR(vp, &vattr, curthread->td_ucred); VOP_UNLOCK(vp, 0); if (error) return (error); } else vattr.va_size = 0; return (lf_advlockasync(ap, &(vp->v_lockf), vattr.va_size)); } int vop_stdadvlockpurge(struct vop_advlockpurge_args *ap) { struct vnode *vp; vp = ap->a_vp; lf_purgelocks(vp, &vp->v_lockf); return (0); } /* * vop_stdpathconf: * * Standard implementation of POSIX pathconf, to get information about limits * for a filesystem. * Override per filesystem for the case where the filesystem has smaller * limits. */ int vop_stdpathconf(ap) struct vop_pathconf_args /* { struct vnode *a_vp; int a_name; int *a_retval; } */ *ap; { switch (ap->a_name) { case _PC_ASYNC_IO: *ap->a_retval = _POSIX_ASYNCHRONOUS_IO; return (0); case _PC_PATH_MAX: *ap->a_retval = PATH_MAX; return (0); - case _PC_PIPE_BUF: - *ap->a_retval = PIPE_BUF; - return (0); default: return (EINVAL); } /* NOTREACHED */ } /* * Standard lock, unlock and islocked functions. */ int vop_stdlock(ap) struct vop_lock1_args /* { struct vnode *a_vp; int a_flags; char *file; int line; } */ *ap; { struct vnode *vp = ap->a_vp; struct mtx *ilk; ilk = VI_MTX(vp); return (lockmgr_lock_fast_path(vp->v_vnlock, ap->a_flags, (ilk != NULL) ? &ilk->lock_object : NULL, ap->a_file, ap->a_line)); } /* See above. */ int vop_stdunlock(ap) struct vop_unlock_args /* { struct vnode *a_vp; int a_flags; } */ *ap; { struct vnode *vp = ap->a_vp; struct mtx *ilk; ilk = VI_MTX(vp); return (lockmgr_unlock_fast_path(vp->v_vnlock, ap->a_flags, (ilk != NULL) ? &ilk->lock_object : NULL)); } /* See above. */ int vop_stdislocked(ap) struct vop_islocked_args /* { struct vnode *a_vp; } */ *ap; { return (lockstatus(ap->a_vp->v_vnlock)); } /* * Return true for select/poll. */ int vop_nopoll(ap) struct vop_poll_args /* { struct vnode *a_vp; int a_events; struct ucred *a_cred; struct thread *a_td; } */ *ap; { return (poll_no_poll(ap->a_events)); } /* * Implement poll for local filesystems that support it. */ int vop_stdpoll(ap) struct vop_poll_args /* { struct vnode *a_vp; int a_events; struct ucred *a_cred; struct thread *a_td; } */ *ap; { if (ap->a_events & ~POLLSTANDARD) return (vn_pollrecord(ap->a_vp, ap->a_td, ap->a_events)); return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)); } /* * Return our mount point, as we will take charge of the writes. */ int vop_stdgetwritemount(ap) struct vop_getwritemount_args /* { struct vnode *a_vp; struct mount **a_mpp; } */ *ap; { struct mount *mp; /* * XXX Since this is called unlocked we may be recycled while * attempting to ref the mount. If this is the case or mountpoint * will be set to NULL. We only have to prevent this call from * returning with a ref to an incorrect mountpoint. It is not * harmful to return with a ref to our previous mountpoint. */ mp = ap->a_vp->v_mount; if (mp != NULL) { vfs_ref(mp); if (mp != ap->a_vp->v_mount) { vfs_rel(mp); mp = NULL; } } *(ap->a_mpp) = mp; return (0); } /* XXX Needs good comment and VOP_BMAP(9) manpage */ int vop_stdbmap(ap) struct vop_bmap_args /* { struct vnode *a_vp; daddr_t a_bn; struct bufobj **a_bop; daddr_t *a_bnp; int *a_runp; int *a_runb; } */ *ap; { if (ap->a_bop != NULL) *ap->a_bop = &ap->a_vp->v_bufobj; if (ap->a_bnp != NULL) *ap->a_bnp = ap->a_bn * btodb(ap->a_vp->v_mount->mnt_stat.f_iosize); if (ap->a_runp != NULL) *ap->a_runp = 0; if (ap->a_runb != NULL) *ap->a_runb = 0; return (0); } int vop_stdfsync(ap) struct vop_fsync_args /* { struct vnode *a_vp; int a_waitfor; struct thread *a_td; } */ *ap; { struct vnode *vp = ap->a_vp; struct buf *bp; struct bufobj *bo; struct buf *nbp; int error = 0; int maxretry = 1000; /* large, arbitrarily chosen */ bo = &vp->v_bufobj; BO_LOCK(bo); loop1: /* * MARK/SCAN initialization to avoid infinite loops. */ TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { bp->b_vflags &= ~BV_SCANNED; bp->b_error = 0; } /* * Flush all dirty buffers associated with a vnode. */ loop2: TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { if ((bp->b_vflags & BV_SCANNED) != 0) continue; bp->b_vflags |= BV_SCANNED; if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) { if (ap->a_waitfor != MNT_WAIT) continue; if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL, BO_LOCKPTR(bo)) != 0) { BO_LOCK(bo); goto loop1; } BO_LOCK(bo); } BO_UNLOCK(bo); KASSERT(bp->b_bufobj == bo, ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); if ((bp->b_flags & B_DELWRI) == 0) panic("fsync: not dirty"); if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) { vfs_bio_awrite(bp); } else { bremfree(bp); bawrite(bp); } BO_LOCK(bo); goto loop2; } /* * If synchronous the caller expects us to completely resolve all * dirty buffers in the system. Wait for in-progress I/O to * complete (which could include background bitmap writes), then * retry if dirty blocks still exist. */ if (ap->a_waitfor == MNT_WAIT) { bufobj_wwait(bo, 0, 0); if (bo->bo_dirty.bv_cnt > 0) { /* * If we are unable to write any of these buffers * then we fail now rather than trying endlessly * to write them out. */ TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) if ((error = bp->b_error) != 0) break; if (error == 0 && --maxretry >= 0) goto loop1; error = EAGAIN; } } BO_UNLOCK(bo); if (error == EAGAIN) vn_printf(vp, "fsync: giving up on dirty "); return (error); } static int vop_stdfdatasync(struct vop_fdatasync_args *ap) { return (VOP_FSYNC(ap->a_vp, MNT_WAIT, ap->a_td)); } int vop_stdfdatasync_buf(struct vop_fdatasync_args *ap) { struct vop_fsync_args apf; apf.a_vp = ap->a_vp; apf.a_waitfor = MNT_WAIT; apf.a_td = ap->a_td; return (vop_stdfsync(&apf)); } /* XXX Needs good comment and more info in the manpage (VOP_GETPAGES(9)). */ int vop_stdgetpages(ap) struct vop_getpages_args /* { struct vnode *a_vp; vm_page_t *a_m; int a_count; int *a_rbehind; int *a_rahead; } */ *ap; { return vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_rbehind, ap->a_rahead, NULL, NULL); } static int vop_stdgetpages_async(struct vop_getpages_async_args *ap) { int error; error = VOP_GETPAGES(ap->a_vp, ap->a_m, ap->a_count, ap->a_rbehind, ap->a_rahead); ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error); return (error); } int vop_stdkqfilter(struct vop_kqfilter_args *ap) { return vfs_kqfilter(ap); } /* XXX Needs good comment and more info in the manpage (VOP_PUTPAGES(9)). */ int vop_stdputpages(ap) struct vop_putpages_args /* { struct vnode *a_vp; vm_page_t *a_m; int a_count; int a_sync; int *a_rtvals; } */ *ap; { return vnode_pager_generic_putpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_sync, ap->a_rtvals); } int vop_stdvptofh(struct vop_vptofh_args *ap) { return (EOPNOTSUPP); } int vop_stdvptocnp(struct vop_vptocnp_args *ap) { struct vnode *vp = ap->a_vp; struct vnode **dvp = ap->a_vpp; struct ucred *cred = ap->a_cred; char *buf = ap->a_buf; int *buflen = ap->a_buflen; char *dirbuf, *cpos; int i, error, eofflag, dirbuflen, flags, locked, len, covered; off_t off; ino_t fileno; struct vattr va; struct nameidata nd; struct thread *td; struct dirent *dp; struct vnode *mvp; i = *buflen; error = 0; covered = 0; td = curthread; if (vp->v_type != VDIR) return (ENOENT); error = VOP_GETATTR(vp, &va, cred); if (error) return (error); VREF(vp); locked = VOP_ISLOCKED(vp); VOP_UNLOCK(vp, 0); NDINIT_ATVP(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF, UIO_SYSSPACE, "..", vp, td); flags = FREAD; error = vn_open_cred(&nd, &flags, 0, VN_OPEN_NOAUDIT, cred, NULL); if (error) { vn_lock(vp, locked | LK_RETRY); return (error); } NDFREE(&nd, NDF_ONLY_PNBUF); mvp = *dvp = nd.ni_vp; if (vp->v_mount != (*dvp)->v_mount && ((*dvp)->v_vflag & VV_ROOT) && ((*dvp)->v_mount->mnt_flag & MNT_UNION)) { *dvp = (*dvp)->v_mount->mnt_vnodecovered; VREF(mvp); VOP_UNLOCK(mvp, 0); vn_close(mvp, FREAD, cred, td); VREF(*dvp); vn_lock(*dvp, LK_SHARED | LK_RETRY); covered = 1; } fileno = va.va_fileid; dirbuflen = DEV_BSIZE; if (dirbuflen < va.va_blocksize) dirbuflen = va.va_blocksize; dirbuf = (char *)malloc(dirbuflen, M_TEMP, M_WAITOK); if ((*dvp)->v_type != VDIR) { error = ENOENT; goto out; } off = 0; len = 0; do { /* call VOP_READDIR of parent */ error = get_next_dirent(*dvp, &dp, dirbuf, dirbuflen, &off, &cpos, &len, &eofflag, td); if (error) goto out; if ((dp->d_type != DT_WHT) && (dp->d_fileno == fileno)) { if (covered) { VOP_UNLOCK(*dvp, 0); vn_lock(mvp, LK_SHARED | LK_RETRY); if (dirent_exists(mvp, dp->d_name, td)) { error = ENOENT; VOP_UNLOCK(mvp, 0); vn_lock(*dvp, LK_SHARED | LK_RETRY); goto out; } VOP_UNLOCK(mvp, 0); vn_lock(*dvp, LK_SHARED | LK_RETRY); } i -= dp->d_namlen; if (i < 0) { error = ENOMEM; goto out; } if (dp->d_namlen == 1 && dp->d_name[0] == '.') { error = ENOENT; } else { bcopy(dp->d_name, buf + i, dp->d_namlen); error = 0; } goto out; } } while (len > 0 || !eofflag); error = ENOENT; out: free(dirbuf, M_TEMP); if (!error) { *buflen = i; vref(*dvp); } if (covered) { vput(*dvp); vrele(mvp); } else { VOP_UNLOCK(mvp, 0); vn_close(mvp, FREAD, cred, td); } vn_lock(vp, locked | LK_RETRY); return (error); } int vop_stdallocate(struct vop_allocate_args *ap) { #ifdef __notyet__ struct statfs *sfs; off_t maxfilesize = 0; #endif struct iovec aiov; struct vattr vattr, *vap; struct uio auio; off_t fsize, len, cur, offset; uint8_t *buf; struct thread *td; struct vnode *vp; size_t iosize; int error; buf = NULL; error = 0; td = curthread; vap = &vattr; vp = ap->a_vp; len = *ap->a_len; offset = *ap->a_offset; error = VOP_GETATTR(vp, vap, td->td_ucred); if (error != 0) goto out; fsize = vap->va_size; iosize = vap->va_blocksize; if (iosize == 0) iosize = BLKDEV_IOSIZE; if (iosize > MAXPHYS) iosize = MAXPHYS; buf = malloc(iosize, M_TEMP, M_WAITOK); #ifdef __notyet__ /* * Check if the filesystem sets f_maxfilesize; if not use * VOP_SETATTR to perform the check. */ sfs = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); error = VFS_STATFS(vp->v_mount, sfs, td); if (error == 0) maxfilesize = sfs->f_maxfilesize; free(sfs, M_STATFS); if (error != 0) goto out; if (maxfilesize) { if (offset > maxfilesize || len > maxfilesize || offset + len > maxfilesize) { error = EFBIG; goto out; } } else #endif if (offset + len > vap->va_size) { /* * Test offset + len against the filesystem's maxfilesize. */ VATTR_NULL(vap); vap->va_size = offset + len; error = VOP_SETATTR(vp, vap, td->td_ucred); if (error != 0) goto out; VATTR_NULL(vap); vap->va_size = fsize; error = VOP_SETATTR(vp, vap, td->td_ucred); if (error != 0) goto out; } for (;;) { /* * Read and write back anything below the nominal file * size. There's currently no way outside the filesystem * to know whether this area is sparse or not. */ cur = iosize; if ((offset % iosize) != 0) cur -= (offset % iosize); if (cur > len) cur = len; if (offset < fsize) { aiov.iov_base = buf; aiov.iov_len = cur; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_offset = offset; auio.uio_resid = cur; auio.uio_segflg = UIO_SYSSPACE; auio.uio_rw = UIO_READ; auio.uio_td = td; error = VOP_READ(vp, &auio, 0, td->td_ucred); if (error != 0) break; if (auio.uio_resid > 0) { bzero(buf + cur - auio.uio_resid, auio.uio_resid); } } else { bzero(buf, cur); } aiov.iov_base = buf; aiov.iov_len = cur; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_offset = offset; auio.uio_resid = cur; auio.uio_segflg = UIO_SYSSPACE; auio.uio_rw = UIO_WRITE; auio.uio_td = td; error = VOP_WRITE(vp, &auio, 0, td->td_ucred); if (error != 0) break; len -= cur; offset += cur; if (len == 0) break; if (should_yield()) break; } out: *ap->a_len = len; *ap->a_offset = offset; free(buf, M_TEMP); return (error); } int vop_stdadvise(struct vop_advise_args *ap) { struct vnode *vp; struct bufobj *bo; daddr_t startn, endn; off_t start, end; int bsize, error; vp = ap->a_vp; switch (ap->a_advice) { case POSIX_FADV_WILLNEED: /* * Do nothing for now. Filesystems should provide a * custom method which starts an asynchronous read of * the requested region. */ error = 0; break; case POSIX_FADV_DONTNEED: error = 0; vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); if (vp->v_iflag & VI_DOOMED) { VOP_UNLOCK(vp, 0); break; } /* * Deactivate pages in the specified range from the backing VM * object. Pages that are resident in the buffer cache will * remain wired until their corresponding buffers are released * below. */ if (vp->v_object != NULL) { start = trunc_page(ap->a_start); end = round_page(ap->a_end); VM_OBJECT_RLOCK(vp->v_object); vm_object_page_noreuse(vp->v_object, OFF_TO_IDX(start), OFF_TO_IDX(end)); VM_OBJECT_RUNLOCK(vp->v_object); } bo = &vp->v_bufobj; BO_RLOCK(bo); bsize = vp->v_bufobj.bo_bsize; startn = ap->a_start / bsize; endn = ap->a_end / bsize; error = bnoreuselist(&bo->bo_clean, bo, startn, endn); if (error == 0) error = bnoreuselist(&bo->bo_dirty, bo, startn, endn); BO_RUNLOCK(bo); VOP_UNLOCK(vp, 0); break; default: error = EINVAL; break; } return (error); } int vop_stdunp_bind(struct vop_unp_bind_args *ap) { ap->a_vp->v_unpcb = ap->a_unpcb; return (0); } int vop_stdunp_connect(struct vop_unp_connect_args *ap) { *ap->a_unpcb = ap->a_vp->v_unpcb; return (0); } int vop_stdunp_detach(struct vop_unp_detach_args *ap) { ap->a_vp->v_unpcb = NULL; return (0); } static int vop_stdis_text(struct vop_is_text_args *ap) { return ((ap->a_vp->v_vflag & VV_TEXT) != 0); } static int vop_stdset_text(struct vop_set_text_args *ap) { ap->a_vp->v_vflag |= VV_TEXT; return (0); } static int vop_stdunset_text(struct vop_unset_text_args *ap) { ap->a_vp->v_vflag &= ~VV_TEXT; return (0); } static int vop_stdget_writecount(struct vop_get_writecount_args *ap) { *ap->a_writecount = ap->a_vp->v_writecount; return (0); } static int vop_stdadd_writecount(struct vop_add_writecount_args *ap) { ap->a_vp->v_writecount += ap->a_inc; return (0); } /* * vfs default ops * used to fill the vfs function table to get reasonable default return values. */ int vfs_stdroot (mp, flags, vpp) struct mount *mp; int flags; struct vnode **vpp; { return (EOPNOTSUPP); } int vfs_stdstatfs (mp, sbp) struct mount *mp; struct statfs *sbp; { return (EOPNOTSUPP); } int vfs_stdquotactl (mp, cmds, uid, arg) struct mount *mp; int cmds; uid_t uid; void *arg; { return (EOPNOTSUPP); } int vfs_stdsync(mp, waitfor) struct mount *mp; int waitfor; { struct vnode *vp, *mvp; struct thread *td; int error, lockreq, allerror = 0; td = curthread; lockreq = LK_EXCLUSIVE | LK_INTERLOCK; if (waitfor != MNT_WAIT) lockreq |= LK_NOWAIT; /* * Force stale buffer cache information to be flushed. */ loop: MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { if (vp->v_bufobj.bo_dirty.bv_cnt == 0) { VI_UNLOCK(vp); continue; } if ((error = vget(vp, lockreq, td)) != 0) { if (error == ENOENT) { MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); goto loop; } continue; } error = VOP_FSYNC(vp, waitfor, td); if (error) allerror = error; vput(vp); } return (allerror); } int vfs_stdnosync (mp, waitfor) struct mount *mp; int waitfor; { return (0); } int vfs_stdvget (mp, ino, flags, vpp) struct mount *mp; ino_t ino; int flags; struct vnode **vpp; { return (EOPNOTSUPP); } int vfs_stdfhtovp (mp, fhp, flags, vpp) struct mount *mp; struct fid *fhp; int flags; struct vnode **vpp; { return (EOPNOTSUPP); } int vfs_stdinit (vfsp) struct vfsconf *vfsp; { return (0); } int vfs_stduninit (vfsp) struct vfsconf *vfsp; { return(0); } int vfs_stdextattrctl(mp, cmd, filename_vp, attrnamespace, attrname) struct mount *mp; int cmd; struct vnode *filename_vp; int attrnamespace; const char *attrname; { if (filename_vp != NULL) VOP_UNLOCK(filename_vp, 0); return (EOPNOTSUPP); } int vfs_stdsysctl(mp, op, req) struct mount *mp; fsctlop_t op; struct sysctl_req *req; { return (EOPNOTSUPP); } /* end of vfs default ops */ Index: head/sys/ufs/ufs/ufs_vnops.c =================================================================== --- head/sys/ufs/ufs/ufs_vnops.c (revision 327003) +++ head/sys/ufs/ufs/ufs_vnops.c (revision 327004) @@ -1,2825 +1,2806 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1989, 1993, 1995 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ufs_vnops.c 8.27 (Berkeley) 5/27/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_quota.h" #include "opt_suiddir.h" #include "opt_ufs.h" #include "opt_ffs.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* XXX */ #include #include #include #include #include #include #include #include #include #ifdef UFS_DIRHASH #include #endif #ifdef UFS_GJOURNAL #include FEATURE(ufs_gjournal, "Journaling support through GEOM for UFS"); #endif #ifdef QUOTA FEATURE(ufs_quota, "UFS disk quotas support"); FEATURE(ufs_quota64, "64bit UFS disk quotas support"); #endif #ifdef SUIDDIR FEATURE(suiddir, "Give all new files in directory the same ownership as the directory"); #endif #include static vop_accessx_t ufs_accessx; static int ufs_chmod(struct vnode *, int, struct ucred *, struct thread *); static int ufs_chown(struct vnode *, uid_t, gid_t, struct ucred *, struct thread *); static vop_close_t ufs_close; static vop_create_t ufs_create; static vop_getattr_t ufs_getattr; static vop_ioctl_t ufs_ioctl; static vop_link_t ufs_link; static int ufs_makeinode(int mode, struct vnode *, struct vnode **, struct componentname *, const char *); static vop_markatime_t ufs_markatime; static vop_mkdir_t ufs_mkdir; static vop_mknod_t ufs_mknod; static vop_open_t ufs_open; static vop_pathconf_t ufs_pathconf; static vop_print_t ufs_print; static vop_readlink_t ufs_readlink; static vop_remove_t ufs_remove; static vop_rename_t ufs_rename; static vop_rmdir_t ufs_rmdir; static vop_setattr_t ufs_setattr; static vop_strategy_t ufs_strategy; static vop_symlink_t ufs_symlink; static vop_whiteout_t ufs_whiteout; static vop_close_t ufsfifo_close; static vop_kqfilter_t ufsfifo_kqfilter; -static vop_pathconf_t ufsfifo_pathconf; SYSCTL_NODE(_vfs, OID_AUTO, ufs, CTLFLAG_RD, 0, "UFS filesystem"); /* * A virgin directory (no blushing please). */ static struct dirtemplate mastertemplate = { 0, 12, DT_DIR, 1, ".", 0, DIRBLKSIZ - 12, DT_DIR, 2, ".." }; static struct odirtemplate omastertemplate = { 0, 12, 1, ".", 0, DIRBLKSIZ - 12, 2, ".." }; static void ufs_itimes_locked(struct vnode *vp) { struct inode *ip; struct timespec ts; ASSERT_VI_LOCKED(vp, __func__); ip = VTOI(vp); if (UFS_RDONLY(ip)) goto out; if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE)) == 0) return; if ((vp->v_type == VBLK || vp->v_type == VCHR) && !DOINGSOFTDEP(vp)) ip->i_flag |= IN_LAZYMOD; else if (((vp->v_mount->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND)) == 0) || (ip->i_flag & (IN_CHANGE | IN_UPDATE))) ip->i_flag |= IN_MODIFIED; else if (ip->i_flag & IN_ACCESS) ip->i_flag |= IN_LAZYACCESS; vfs_timestamp(&ts); if (ip->i_flag & IN_ACCESS) { DIP_SET(ip, i_atime, ts.tv_sec); DIP_SET(ip, i_atimensec, ts.tv_nsec); } if (ip->i_flag & IN_UPDATE) { DIP_SET(ip, i_mtime, ts.tv_sec); DIP_SET(ip, i_mtimensec, ts.tv_nsec); } if (ip->i_flag & IN_CHANGE) { DIP_SET(ip, i_ctime, ts.tv_sec); DIP_SET(ip, i_ctimensec, ts.tv_nsec); DIP_SET(ip, i_modrev, DIP(ip, i_modrev) + 1); } out: ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE); } void ufs_itimes(struct vnode *vp) { VI_LOCK(vp); ufs_itimes_locked(vp); VI_UNLOCK(vp); } /* * Create a regular file */ static int ufs_create(ap) struct vop_create_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; } */ *ap; { int error; error = ufs_makeinode(MAKEIMODE(ap->a_vap->va_type, ap->a_vap->va_mode), ap->a_dvp, ap->a_vpp, ap->a_cnp, "ufs_create"); if (error != 0) return (error); if ((ap->a_cnp->cn_flags & MAKEENTRY) != 0) cache_enter(ap->a_dvp, *ap->a_vpp, ap->a_cnp); return (0); } /* * Mknod vnode call */ /* ARGSUSED */ static int ufs_mknod(ap) struct vop_mknod_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; } */ *ap; { struct vattr *vap = ap->a_vap; struct vnode **vpp = ap->a_vpp; struct inode *ip; ino_t ino; int error; error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode), ap->a_dvp, vpp, ap->a_cnp, "ufs_mknod"); if (error) return (error); ip = VTOI(*vpp); ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE; if (vap->va_rdev != VNOVAL) { /* * Want to be able to use this to make badblock * inodes, so don't truncate the dev number. */ DIP_SET(ip, i_rdev, vap->va_rdev); } /* * Remove inode, then reload it through VFS_VGET so it is * checked to see if it is an alias of an existing entry in * the inode cache. XXX I don't believe this is necessary now. */ (*vpp)->v_type = VNON; ino = ip->i_number; /* Save this before vgone() invalidates ip. */ vgone(*vpp); vput(*vpp); error = VFS_VGET(ap->a_dvp->v_mount, ino, LK_EXCLUSIVE, vpp); if (error) { *vpp = NULL; return (error); } return (0); } /* * Open called. */ /* ARGSUSED */ static int ufs_open(struct vop_open_args *ap) { struct vnode *vp = ap->a_vp; struct inode *ip; if (vp->v_type == VCHR || vp->v_type == VBLK) return (EOPNOTSUPP); ip = VTOI(vp); /* * Files marked append-only must be opened for appending. */ if ((ip->i_flags & APPEND) && (ap->a_mode & (FWRITE | O_APPEND)) == FWRITE) return (EPERM); vnode_create_vobject(vp, DIP(ip, i_size), ap->a_td); return (0); } /* * Close called. * * Update the times on the inode. */ /* ARGSUSED */ static int ufs_close(ap) struct vop_close_args /* { struct vnode *a_vp; int a_fflag; struct ucred *a_cred; struct thread *a_td; } */ *ap; { struct vnode *vp = ap->a_vp; int usecount; VI_LOCK(vp); usecount = vp->v_usecount; if (usecount > 1) ufs_itimes_locked(vp); VI_UNLOCK(vp); return (0); } static int ufs_accessx(ap) struct vop_accessx_args /* { struct vnode *a_vp; accmode_t a_accmode; struct ucred *a_cred; struct thread *a_td; } */ *ap; { struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); accmode_t accmode = ap->a_accmode; int error; #ifdef QUOTA int relocked; #endif #ifdef UFS_ACL struct acl *acl; acl_type_t type; #endif /* * Disallow write attempts on read-only filesystems; * unless the file is a socket, fifo, or a block or * character device resident on the filesystem. */ if (accmode & VMODIFY_PERMS) { switch (vp->v_type) { case VDIR: case VLNK: case VREG: if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); #ifdef QUOTA /* * Inode is accounted in the quotas only if struct * dquot is attached to it. VOP_ACCESS() is called * from vn_open_cred() and provides a convenient * point to call getinoquota(). */ if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { /* * Upgrade vnode lock, since getinoquota() * requires exclusive lock to modify inode. */ relocked = 1; vhold(vp); vn_lock(vp, LK_UPGRADE | LK_RETRY); VI_LOCK(vp); if (vp->v_iflag & VI_DOOMED) { vdropl(vp); error = ENOENT; goto relock; } vdropl(vp); } else relocked = 0; error = getinoquota(ip); relock: if (relocked) vn_lock(vp, LK_DOWNGRADE | LK_RETRY); if (error != 0) return (error); #endif break; default: break; } } /* * If immutable bit set, nobody gets to write it. "& ~VADMIN_PERMS" * permits the owner of the file to remove the IMMUTABLE flag. */ if ((accmode & (VMODIFY_PERMS & ~VADMIN_PERMS)) && (ip->i_flags & (IMMUTABLE | SF_SNAPSHOT))) return (EPERM); #ifdef UFS_ACL if ((vp->v_mount->mnt_flag & (MNT_ACLS | MNT_NFS4ACLS)) != 0) { if (vp->v_mount->mnt_flag & MNT_NFS4ACLS) type = ACL_TYPE_NFS4; else type = ACL_TYPE_ACCESS; acl = acl_alloc(M_WAITOK); if (type == ACL_TYPE_NFS4) error = ufs_getacl_nfs4_internal(vp, acl, ap->a_td); else error = VOP_GETACL(vp, type, acl, ap->a_cred, ap->a_td); switch (error) { case 0: if (type == ACL_TYPE_NFS4) { error = vaccess_acl_nfs4(vp->v_type, ip->i_uid, ip->i_gid, acl, accmode, ap->a_cred, NULL); } else { error = vfs_unixify_accmode(&accmode); if (error == 0) error = vaccess_acl_posix1e(vp->v_type, ip->i_uid, ip->i_gid, acl, accmode, ap->a_cred, NULL); } break; default: if (error != EOPNOTSUPP) printf( "ufs_accessx(): Error retrieving ACL on object (%d).\n", error); /* * XXX: Fall back until debugged. Should * eventually possibly log an error, and return * EPERM for safety. */ error = vfs_unixify_accmode(&accmode); if (error == 0) error = vaccess(vp->v_type, ip->i_mode, ip->i_uid, ip->i_gid, accmode, ap->a_cred, NULL); } acl_free(acl); return (error); } #endif /* !UFS_ACL */ error = vfs_unixify_accmode(&accmode); if (error == 0) error = vaccess(vp->v_type, ip->i_mode, ip->i_uid, ip->i_gid, accmode, ap->a_cred, NULL); return (error); } /* ARGSUSED */ static int ufs_getattr(ap) struct vop_getattr_args /* { struct vnode *a_vp; struct vattr *a_vap; struct ucred *a_cred; } */ *ap; { struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); struct vattr *vap = ap->a_vap; VI_LOCK(vp); ufs_itimes_locked(vp); if (I_IS_UFS1(ip)) { vap->va_atime.tv_sec = ip->i_din1->di_atime; vap->va_atime.tv_nsec = ip->i_din1->di_atimensec; } else { vap->va_atime.tv_sec = ip->i_din2->di_atime; vap->va_atime.tv_nsec = ip->i_din2->di_atimensec; } VI_UNLOCK(vp); /* * Copy from inode table */ vap->va_fsid = dev2udev(ITOUMP(ip)->um_dev); vap->va_fileid = ip->i_number; vap->va_mode = ip->i_mode & ~IFMT; vap->va_nlink = ip->i_effnlink; vap->va_uid = ip->i_uid; vap->va_gid = ip->i_gid; if (I_IS_UFS1(ip)) { vap->va_rdev = ip->i_din1->di_rdev; vap->va_size = ip->i_din1->di_size; vap->va_mtime.tv_sec = ip->i_din1->di_mtime; vap->va_mtime.tv_nsec = ip->i_din1->di_mtimensec; vap->va_ctime.tv_sec = ip->i_din1->di_ctime; vap->va_ctime.tv_nsec = ip->i_din1->di_ctimensec; vap->va_bytes = dbtob((u_quad_t)ip->i_din1->di_blocks); vap->va_filerev = ip->i_din1->di_modrev; } else { vap->va_rdev = ip->i_din2->di_rdev; vap->va_size = ip->i_din2->di_size; vap->va_mtime.tv_sec = ip->i_din2->di_mtime; vap->va_mtime.tv_nsec = ip->i_din2->di_mtimensec; vap->va_ctime.tv_sec = ip->i_din2->di_ctime; vap->va_ctime.tv_nsec = ip->i_din2->di_ctimensec; vap->va_birthtime.tv_sec = ip->i_din2->di_birthtime; vap->va_birthtime.tv_nsec = ip->i_din2->di_birthnsec; vap->va_bytes = dbtob((u_quad_t)ip->i_din2->di_blocks); vap->va_filerev = ip->i_din2->di_modrev; } vap->va_flags = ip->i_flags; vap->va_gen = ip->i_gen; vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize; vap->va_type = IFTOVT(ip->i_mode); return (0); } /* * Set attribute vnode op. called from several syscalls */ static int ufs_setattr(ap) struct vop_setattr_args /* { struct vnode *a_vp; struct vattr *a_vap; struct ucred *a_cred; } */ *ap; { struct vattr *vap = ap->a_vap; struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); struct ucred *cred = ap->a_cred; struct thread *td = curthread; int error; /* * Check for unsettable attributes. */ if ((vap->va_type != VNON) || (vap->va_nlink != VNOVAL) || (vap->va_fsid != VNOVAL) || (vap->va_fileid != VNOVAL) || (vap->va_blocksize != VNOVAL) || (vap->va_rdev != VNOVAL) || ((int)vap->va_bytes != VNOVAL) || (vap->va_gen != VNOVAL)) { return (EINVAL); } if (vap->va_flags != VNOVAL) { if ((vap->va_flags & ~(SF_APPEND | SF_ARCHIVED | SF_IMMUTABLE | SF_NOUNLINK | SF_SNAPSHOT | UF_APPEND | UF_ARCHIVE | UF_HIDDEN | UF_IMMUTABLE | UF_NODUMP | UF_NOUNLINK | UF_OFFLINE | UF_OPAQUE | UF_READONLY | UF_REPARSE | UF_SPARSE | UF_SYSTEM)) != 0) return (EOPNOTSUPP); if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); /* * Callers may only modify the file flags on objects they * have VADMIN rights for. */ if ((error = VOP_ACCESS(vp, VADMIN, cred, td))) return (error); /* * Unprivileged processes are not permitted to unset system * flags, or modify flags if any system flags are set. * Privileged non-jail processes may not modify system flags * if securelevel > 0 and any existing system flags are set. * Privileged jail processes behave like privileged non-jail * processes if the security.jail.chflags_allowed sysctl is * is non-zero; otherwise, they behave like unprivileged * processes. */ if (!priv_check_cred(cred, PRIV_VFS_SYSFLAGS, 0)) { if (ip->i_flags & (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND)) { error = securelevel_gt(cred, 0); if (error) return (error); } /* The snapshot flag cannot be toggled. */ if ((vap->va_flags ^ ip->i_flags) & SF_SNAPSHOT) return (EPERM); } else { if (ip->i_flags & (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND) || ((vap->va_flags ^ ip->i_flags) & SF_SETTABLE)) return (EPERM); } ip->i_flags = vap->va_flags; DIP_SET(ip, i_flags, vap->va_flags); ip->i_flag |= IN_CHANGE; error = UFS_UPDATE(vp, 0); if (ip->i_flags & (IMMUTABLE | APPEND)) return (error); } /* * If immutable or append, no one can change any of its attributes * except the ones already handled (in some cases, file flags * including the immutability flags themselves for the superuser). */ if (ip->i_flags & (IMMUTABLE | APPEND)) return (EPERM); /* * Go through the fields and update iff not VNOVAL. */ if (vap->va_uid != (uid_t)VNOVAL || vap->va_gid != (gid_t)VNOVAL) { if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); if ((error = ufs_chown(vp, vap->va_uid, vap->va_gid, cred, td)) != 0) return (error); } if (vap->va_size != VNOVAL) { /* * XXX most of the following special cases should be in * callers instead of in N filesystems. The VDIR check * mostly already is. */ switch (vp->v_type) { case VDIR: return (EISDIR); case VLNK: case VREG: /* * Truncation should have an effect in these cases. * Disallow it if the filesystem is read-only or * the file is being snapshotted. */ if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); if ((ip->i_flags & SF_SNAPSHOT) != 0) return (EPERM); break; default: /* * According to POSIX, the result is unspecified * for file types other than regular files, * directories and shared memory objects. We * don't support shared memory objects in the file * system, and have dubious support for truncating * symlinks. Just ignore the request in other cases. */ return (0); } if ((error = UFS_TRUNCATE(vp, vap->va_size, IO_NORMAL | ((vap->va_vaflags & VA_SYNC) != 0 ? IO_SYNC : 0), cred)) != 0) return (error); } if (vap->va_atime.tv_sec != VNOVAL || vap->va_mtime.tv_sec != VNOVAL || vap->va_birthtime.tv_sec != VNOVAL) { if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); if ((ip->i_flags & SF_SNAPSHOT) != 0) return (EPERM); error = vn_utimes_perm(vp, vap, cred, td); if (error != 0) return (error); ip->i_flag |= IN_CHANGE | IN_MODIFIED; if (vap->va_atime.tv_sec != VNOVAL) { ip->i_flag &= ~IN_ACCESS; DIP_SET(ip, i_atime, vap->va_atime.tv_sec); DIP_SET(ip, i_atimensec, vap->va_atime.tv_nsec); } if (vap->va_mtime.tv_sec != VNOVAL) { ip->i_flag &= ~IN_UPDATE; DIP_SET(ip, i_mtime, vap->va_mtime.tv_sec); DIP_SET(ip, i_mtimensec, vap->va_mtime.tv_nsec); } if (vap->va_birthtime.tv_sec != VNOVAL && I_IS_UFS2(ip)) { ip->i_din2->di_birthtime = vap->va_birthtime.tv_sec; ip->i_din2->di_birthnsec = vap->va_birthtime.tv_nsec; } error = UFS_UPDATE(vp, 0); if (error) return (error); } error = 0; if (vap->va_mode != (mode_t)VNOVAL) { if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); if ((ip->i_flags & SF_SNAPSHOT) != 0 && (vap->va_mode & (S_IXUSR | S_IWUSR | S_IXGRP | S_IWGRP | S_IXOTH | S_IWOTH))) return (EPERM); error = ufs_chmod(vp, (int)vap->va_mode, cred, td); } return (error); } #ifdef UFS_ACL static int ufs_update_nfs4_acl_after_mode_change(struct vnode *vp, int mode, int file_owner_id, struct ucred *cred, struct thread *td) { int error; struct acl *aclp; aclp = acl_alloc(M_WAITOK); error = ufs_getacl_nfs4_internal(vp, aclp, td); /* * We don't have to handle EOPNOTSUPP here, as the filesystem claims * it supports ACLs. */ if (error) goto out; acl_nfs4_sync_acl_from_mode(aclp, mode, file_owner_id); error = ufs_setacl_nfs4_internal(vp, aclp, td); out: acl_free(aclp); return (error); } #endif /* UFS_ACL */ /* * Mark this file's access time for update for vfs_mark_atime(). This * is called from execve() and mmap(). */ static int ufs_markatime(ap) struct vop_markatime_args /* { struct vnode *a_vp; } */ *ap; { struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); VI_LOCK(vp); ip->i_flag |= IN_ACCESS; VI_UNLOCK(vp); /* * XXXKIB No UFS_UPDATE(ap->a_vp, 0) there. */ return (0); } /* * Change the mode on a file. * Inode must be locked before calling. */ static int ufs_chmod(vp, mode, cred, td) struct vnode *vp; int mode; struct ucred *cred; struct thread *td; { struct inode *ip = VTOI(vp); int error; /* * To modify the permissions on a file, must possess VADMIN * for that file. */ if ((error = VOP_ACCESSX(vp, VWRITE_ACL, cred, td))) return (error); /* * Privileged processes may set the sticky bit on non-directories, * as well as set the setgid bit on a file with a group that the * process is not a member of. Both of these are allowed in * jail(8). */ if (vp->v_type != VDIR && (mode & S_ISTXT)) { if (priv_check_cred(cred, PRIV_VFS_STICKYFILE, 0)) return (EFTYPE); } if (!groupmember(ip->i_gid, cred) && (mode & ISGID)) { error = priv_check_cred(cred, PRIV_VFS_SETGID, 0); if (error) return (error); } /* * Deny setting setuid if we are not the file owner. */ if ((mode & ISUID) && ip->i_uid != cred->cr_uid) { error = priv_check_cred(cred, PRIV_VFS_ADMIN, 0); if (error) return (error); } ip->i_mode &= ~ALLPERMS; ip->i_mode |= (mode & ALLPERMS); DIP_SET(ip, i_mode, ip->i_mode); ip->i_flag |= IN_CHANGE; #ifdef UFS_ACL if ((vp->v_mount->mnt_flag & MNT_NFS4ACLS) != 0) error = ufs_update_nfs4_acl_after_mode_change(vp, mode, ip->i_uid, cred, td); #endif if (error == 0 && (ip->i_flag & IN_CHANGE) != 0) error = UFS_UPDATE(vp, 0); return (error); } /* * Perform chown operation on inode ip; * inode must be locked prior to call. */ static int ufs_chown(vp, uid, gid, cred, td) struct vnode *vp; uid_t uid; gid_t gid; struct ucred *cred; struct thread *td; { struct inode *ip = VTOI(vp); uid_t ouid; gid_t ogid; int error = 0; #ifdef QUOTA int i; ufs2_daddr_t change; #endif if (uid == (uid_t)VNOVAL) uid = ip->i_uid; if (gid == (gid_t)VNOVAL) gid = ip->i_gid; /* * To modify the ownership of a file, must possess VADMIN for that * file. */ if ((error = VOP_ACCESSX(vp, VWRITE_OWNER, cred, td))) return (error); /* * To change the owner of a file, or change the group of a file to a * group of which we are not a member, the caller must have * privilege. */ if (((uid != ip->i_uid && uid != cred->cr_uid) || (gid != ip->i_gid && !groupmember(gid, cred))) && (error = priv_check_cred(cred, PRIV_VFS_CHOWN, 0))) return (error); ogid = ip->i_gid; ouid = ip->i_uid; #ifdef QUOTA if ((error = getinoquota(ip)) != 0) return (error); if (ouid == uid) { dqrele(vp, ip->i_dquot[USRQUOTA]); ip->i_dquot[USRQUOTA] = NODQUOT; } if (ogid == gid) { dqrele(vp, ip->i_dquot[GRPQUOTA]); ip->i_dquot[GRPQUOTA] = NODQUOT; } change = DIP(ip, i_blocks); (void) chkdq(ip, -change, cred, CHOWN); (void) chkiq(ip, -1, cred, CHOWN); for (i = 0; i < MAXQUOTAS; i++) { dqrele(vp, ip->i_dquot[i]); ip->i_dquot[i] = NODQUOT; } #endif ip->i_gid = gid; DIP_SET(ip, i_gid, gid); ip->i_uid = uid; DIP_SET(ip, i_uid, uid); #ifdef QUOTA if ((error = getinoquota(ip)) == 0) { if (ouid == uid) { dqrele(vp, ip->i_dquot[USRQUOTA]); ip->i_dquot[USRQUOTA] = NODQUOT; } if (ogid == gid) { dqrele(vp, ip->i_dquot[GRPQUOTA]); ip->i_dquot[GRPQUOTA] = NODQUOT; } if ((error = chkdq(ip, change, cred, CHOWN)) == 0) { if ((error = chkiq(ip, 1, cred, CHOWN)) == 0) goto good; else (void) chkdq(ip, -change, cred, CHOWN|FORCE); } for (i = 0; i < MAXQUOTAS; i++) { dqrele(vp, ip->i_dquot[i]); ip->i_dquot[i] = NODQUOT; } } ip->i_gid = ogid; DIP_SET(ip, i_gid, ogid); ip->i_uid = ouid; DIP_SET(ip, i_uid, ouid); if (getinoquota(ip) == 0) { if (ouid == uid) { dqrele(vp, ip->i_dquot[USRQUOTA]); ip->i_dquot[USRQUOTA] = NODQUOT; } if (ogid == gid) { dqrele(vp, ip->i_dquot[GRPQUOTA]); ip->i_dquot[GRPQUOTA] = NODQUOT; } (void) chkdq(ip, change, cred, FORCE|CHOWN); (void) chkiq(ip, 1, cred, FORCE|CHOWN); (void) getinoquota(ip); } return (error); good: if (getinoquota(ip)) panic("ufs_chown: lost quota"); #endif /* QUOTA */ ip->i_flag |= IN_CHANGE; if ((ip->i_mode & (ISUID | ISGID)) && (ouid != uid || ogid != gid)) { if (priv_check_cred(cred, PRIV_VFS_RETAINSUGID, 0)) { ip->i_mode &= ~(ISUID | ISGID); DIP_SET(ip, i_mode, ip->i_mode); } } error = UFS_UPDATE(vp, 0); return (error); } static int ufs_remove(ap) struct vop_remove_args /* { struct vnode *a_dvp; struct vnode *a_vp; struct componentname *a_cnp; } */ *ap; { struct inode *ip; struct vnode *vp = ap->a_vp; struct vnode *dvp = ap->a_dvp; int error; struct thread *td; td = curthread; ip = VTOI(vp); if ((ip->i_flags & (NOUNLINK | IMMUTABLE | APPEND)) || (VTOI(dvp)->i_flags & APPEND)) { error = EPERM; goto out; } #ifdef UFS_GJOURNAL ufs_gjournal_orphan(vp); #endif error = ufs_dirremove(dvp, ip, ap->a_cnp->cn_flags, 0); if (ip->i_nlink <= 0) vp->v_vflag |= VV_NOSYNC; if ((ip->i_flags & SF_SNAPSHOT) != 0) { /* * Avoid deadlock where another thread is trying to * update the inodeblock for dvp and is waiting on * snaplk. Temporary unlock the vnode lock for the * unlinked file and sync the directory. This should * allow vput() of the directory to not block later on * while holding the snapshot vnode locked, assuming * that the directory hasn't been unlinked too. */ VOP_UNLOCK(vp, 0); (void) VOP_FSYNC(dvp, MNT_WAIT, td); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); } out: return (error); } static void print_bad_link_count(const char *funcname, struct vnode *dvp) { struct inode *dip; dip = VTOI(dvp); uprintf("%s: Bad link count %d on parent inode %jd in file system %s\n", funcname, dip->i_effnlink, (intmax_t)dip->i_number, dvp->v_mount->mnt_stat.f_mntonname); } /* * link vnode call */ static int ufs_link(ap) struct vop_link_args /* { struct vnode *a_tdvp; struct vnode *a_vp; struct componentname *a_cnp; } */ *ap; { struct vnode *vp = ap->a_vp; struct vnode *tdvp = ap->a_tdvp; struct componentname *cnp = ap->a_cnp; struct inode *ip; struct direct newdir; int error; #ifdef INVARIANTS if ((cnp->cn_flags & HASBUF) == 0) panic("ufs_link: no name"); #endif if (VTOI(tdvp)->i_effnlink < 2) { print_bad_link_count("ufs_link", tdvp); error = EINVAL; goto out; } ip = VTOI(vp); if (ip->i_nlink >= UFS_LINK_MAX) { error = EMLINK; goto out; } /* * The file may have been removed after namei droped the original * lock. */ if (ip->i_effnlink == 0) { error = ENOENT; goto out; } if (ip->i_flags & (IMMUTABLE | APPEND)) { error = EPERM; goto out; } ip->i_effnlink++; ip->i_nlink++; DIP_SET(ip, i_nlink, ip->i_nlink); ip->i_flag |= IN_CHANGE; if (DOINGSOFTDEP(vp)) softdep_setup_link(VTOI(tdvp), ip); error = UFS_UPDATE(vp, !DOINGSOFTDEP(vp) && !DOINGASYNC(vp)); if (!error) { ufs_makedirentry(ip, cnp, &newdir); error = ufs_direnter(tdvp, vp, &newdir, cnp, NULL, 0); } if (error) { ip->i_effnlink--; ip->i_nlink--; DIP_SET(ip, i_nlink, ip->i_nlink); ip->i_flag |= IN_CHANGE; if (DOINGSOFTDEP(vp)) softdep_revert_link(VTOI(tdvp), ip); } out: return (error); } /* * whiteout vnode call */ static int ufs_whiteout(ap) struct vop_whiteout_args /* { struct vnode *a_dvp; struct componentname *a_cnp; int a_flags; } */ *ap; { struct vnode *dvp = ap->a_dvp; struct componentname *cnp = ap->a_cnp; struct direct newdir; int error = 0; switch (ap->a_flags) { case LOOKUP: /* 4.4 format directories support whiteout operations */ if (dvp->v_mount->mnt_maxsymlinklen > 0) return (0); return (EOPNOTSUPP); case CREATE: /* create a new directory whiteout */ #ifdef INVARIANTS if ((cnp->cn_flags & SAVENAME) == 0) panic("ufs_whiteout: missing name"); if (dvp->v_mount->mnt_maxsymlinklen <= 0) panic("ufs_whiteout: old format filesystem"); #endif newdir.d_ino = UFS_WINO; newdir.d_namlen = cnp->cn_namelen; bcopy(cnp->cn_nameptr, newdir.d_name, (unsigned)cnp->cn_namelen + 1); newdir.d_type = DT_WHT; error = ufs_direnter(dvp, NULL, &newdir, cnp, NULL, 0); break; case DELETE: /* remove an existing directory whiteout */ #ifdef INVARIANTS if (dvp->v_mount->mnt_maxsymlinklen <= 0) panic("ufs_whiteout: old format filesystem"); #endif cnp->cn_flags &= ~DOWHITEOUT; error = ufs_dirremove(dvp, NULL, cnp->cn_flags, 0); break; default: panic("ufs_whiteout: unknown op"); } return (error); } static volatile int rename_restarts; SYSCTL_INT(_vfs_ufs, OID_AUTO, rename_restarts, CTLFLAG_RD, __DEVOLATILE(int *, &rename_restarts), 0, "Times rename had to restart due to lock contention"); /* * Rename system call. * rename("foo", "bar"); * is essentially * unlink("bar"); * link("foo", "bar"); * unlink("foo"); * but ``atomically''. Can't do full commit without saving state in the * inode on disk which isn't feasible at this time. Best we can do is * always guarantee the target exists. * * Basic algorithm is: * * 1) Bump link count on source while we're linking it to the * target. This also ensure the inode won't be deleted out * from underneath us while we work (it may be truncated by * a concurrent `trunc' or `open' for creation). * 2) Link source to destination. If destination already exists, * delete it first. * 3) Unlink source reference to inode if still around. If a * directory was moved and the parent of the destination * is different from the source, patch the ".." entry in the * directory. */ static int ufs_rename(ap) struct vop_rename_args /* { struct vnode *a_fdvp; struct vnode *a_fvp; struct componentname *a_fcnp; struct vnode *a_tdvp; struct vnode *a_tvp; struct componentname *a_tcnp; } */ *ap; { struct vnode *tvp = ap->a_tvp; struct vnode *tdvp = ap->a_tdvp; struct vnode *fvp = ap->a_fvp; struct vnode *fdvp = ap->a_fdvp; struct vnode *nvp; struct componentname *tcnp = ap->a_tcnp; struct componentname *fcnp = ap->a_fcnp; struct thread *td = fcnp->cn_thread; struct inode *fip, *tip, *tdp, *fdp; struct direct newdir; off_t endoff; int doingdirectory, newparent; int error = 0; struct mount *mp; ino_t ino; #ifdef INVARIANTS if ((tcnp->cn_flags & HASBUF) == 0 || (fcnp->cn_flags & HASBUF) == 0) panic("ufs_rename: no name"); #endif endoff = 0; mp = tdvp->v_mount; VOP_UNLOCK(tdvp, 0); if (tvp && tvp != tdvp) VOP_UNLOCK(tvp, 0); /* * Check for cross-device rename. */ if ((fvp->v_mount != tdvp->v_mount) || (tvp && (fvp->v_mount != tvp->v_mount))) { error = EXDEV; mp = NULL; goto releout; } relock: /* * We need to acquire 2 to 4 locks depending on whether tvp is NULL * and fdvp and tdvp are the same directory. Subsequently we need * to double-check all paths and in the directory rename case we * need to verify that we are not creating a directory loop. To * handle this we acquire all but fdvp using non-blocking * acquisitions. If we fail to acquire any lock in the path we will * drop all held locks, acquire the new lock in a blocking fashion, * and then release it and restart the rename. This acquire/release * step ensures that we do not spin on a lock waiting for release. */ error = vn_lock(fdvp, LK_EXCLUSIVE); if (error) goto releout; if (vn_lock(tdvp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { VOP_UNLOCK(fdvp, 0); error = vn_lock(tdvp, LK_EXCLUSIVE); if (error) goto releout; VOP_UNLOCK(tdvp, 0); atomic_add_int(&rename_restarts, 1); goto relock; } /* * Re-resolve fvp to be certain it still exists and fetch the * correct vnode. */ error = ufs_lookup_ino(fdvp, NULL, fcnp, &ino); if (error) { VOP_UNLOCK(fdvp, 0); VOP_UNLOCK(tdvp, 0); goto releout; } error = VFS_VGET(mp, ino, LK_EXCLUSIVE | LK_NOWAIT, &nvp); if (error) { VOP_UNLOCK(fdvp, 0); VOP_UNLOCK(tdvp, 0); if (error != EBUSY) goto releout; error = VFS_VGET(mp, ino, LK_EXCLUSIVE, &nvp); if (error != 0) goto releout; VOP_UNLOCK(nvp, 0); vrele(fvp); fvp = nvp; atomic_add_int(&rename_restarts, 1); goto relock; } vrele(fvp); fvp = nvp; /* * Re-resolve tvp and acquire the vnode lock if present. */ error = ufs_lookup_ino(tdvp, NULL, tcnp, &ino); if (error != 0 && error != EJUSTRETURN) { VOP_UNLOCK(fdvp, 0); VOP_UNLOCK(tdvp, 0); VOP_UNLOCK(fvp, 0); goto releout; } /* * If tvp disappeared we just carry on. */ if (error == EJUSTRETURN && tvp != NULL) { vrele(tvp); tvp = NULL; } /* * Get the tvp ino if the lookup succeeded. We may have to restart * if the non-blocking acquire fails. */ if (error == 0) { nvp = NULL; error = VFS_VGET(mp, ino, LK_EXCLUSIVE | LK_NOWAIT, &nvp); if (tvp) vrele(tvp); tvp = nvp; if (error) { VOP_UNLOCK(fdvp, 0); VOP_UNLOCK(tdvp, 0); VOP_UNLOCK(fvp, 0); if (error != EBUSY) goto releout; error = VFS_VGET(mp, ino, LK_EXCLUSIVE, &nvp); if (error != 0) goto releout; vput(nvp); atomic_add_int(&rename_restarts, 1); goto relock; } } fdp = VTOI(fdvp); fip = VTOI(fvp); tdp = VTOI(tdvp); tip = NULL; if (tvp) tip = VTOI(tvp); if (tvp && ((VTOI(tvp)->i_flags & (NOUNLINK | IMMUTABLE | APPEND)) || (VTOI(tdvp)->i_flags & APPEND))) { error = EPERM; goto unlockout; } /* * Renaming a file to itself has no effect. The upper layers should * not call us in that case. However, things could change after * we drop the locks above. */ if (fvp == tvp) { error = 0; goto unlockout; } doingdirectory = 0; newparent = 0; ino = fip->i_number; if (fip->i_nlink >= UFS_LINK_MAX) { error = EMLINK; goto unlockout; } if ((fip->i_flags & (NOUNLINK | IMMUTABLE | APPEND)) || (fdp->i_flags & APPEND)) { error = EPERM; goto unlockout; } if ((fip->i_mode & IFMT) == IFDIR) { /* * Avoid ".", "..", and aliases of "." for obvious reasons. */ if ((fcnp->cn_namelen == 1 && fcnp->cn_nameptr[0] == '.') || fdp == fip || (fcnp->cn_flags | tcnp->cn_flags) & ISDOTDOT) { error = EINVAL; goto unlockout; } if (fdp->i_number != tdp->i_number) newparent = tdp->i_number; doingdirectory = 1; } if ((fvp->v_type == VDIR && fvp->v_mountedhere != NULL) || (tvp != NULL && tvp->v_type == VDIR && tvp->v_mountedhere != NULL)) { error = EXDEV; goto unlockout; } /* * If ".." must be changed (ie the directory gets a new * parent) then the source directory must not be in the * directory hierarchy above the target, as this would * orphan everything below the source directory. Also * the user must have write permission in the source so * as to be able to change "..". */ if (doingdirectory && newparent) { error = VOP_ACCESS(fvp, VWRITE, tcnp->cn_cred, tcnp->cn_thread); if (error) goto unlockout; error = ufs_checkpath(ino, fdp->i_number, tdp, tcnp->cn_cred, &ino); /* * We encountered a lock that we have to wait for. Unlock * everything else and VGET before restarting. */ if (ino) { VOP_UNLOCK(fdvp, 0); VOP_UNLOCK(fvp, 0); VOP_UNLOCK(tdvp, 0); if (tvp) VOP_UNLOCK(tvp, 0); error = VFS_VGET(mp, ino, LK_SHARED, &nvp); if (error == 0) vput(nvp); atomic_add_int(&rename_restarts, 1); goto relock; } if (error) goto unlockout; if ((tcnp->cn_flags & SAVESTART) == 0) panic("ufs_rename: lost to startdir"); } if (fip->i_effnlink == 0 || fdp->i_effnlink == 0 || tdp->i_effnlink == 0) panic("Bad effnlink fip %p, fdp %p, tdp %p", fip, fdp, tdp); /* * 1) Bump link count while we're moving stuff * around. If we crash somewhere before * completing our work, the link count * may be wrong, but correctable. */ fip->i_effnlink++; fip->i_nlink++; DIP_SET(fip, i_nlink, fip->i_nlink); fip->i_flag |= IN_CHANGE; if (DOINGSOFTDEP(fvp)) softdep_setup_link(tdp, fip); error = UFS_UPDATE(fvp, !DOINGSOFTDEP(fvp) && !DOINGASYNC(fvp)); if (error) goto bad; /* * 2) If target doesn't exist, link the target * to the source and unlink the source. * Otherwise, rewrite the target directory * entry to reference the source inode and * expunge the original entry's existence. */ if (tip == NULL) { if (ITODEV(tdp) != ITODEV(fip)) panic("ufs_rename: EXDEV"); if (doingdirectory && newparent) { /* * Account for ".." in new directory. * When source and destination have the same * parent we don't adjust the link count. The * actual link modification is completed when * .. is rewritten below. */ if (tdp->i_nlink >= UFS_LINK_MAX) { error = EMLINK; goto bad; } } ufs_makedirentry(fip, tcnp, &newdir); error = ufs_direnter(tdvp, NULL, &newdir, tcnp, NULL, 1); if (error) goto bad; /* Setup tdvp for directory compaction if needed. */ if (tdp->i_count && tdp->i_endoff && tdp->i_endoff < tdp->i_size) endoff = tdp->i_endoff; } else { if (ITODEV(tip) != ITODEV(tdp) || ITODEV(tip) != ITODEV(fip)) panic("ufs_rename: EXDEV"); /* * Short circuit rename(foo, foo). */ if (tip->i_number == fip->i_number) panic("ufs_rename: same file"); /* * If the parent directory is "sticky", then the caller * must possess VADMIN for the parent directory, or the * destination of the rename. This implements append-only * directories. */ if ((tdp->i_mode & S_ISTXT) && VOP_ACCESS(tdvp, VADMIN, tcnp->cn_cred, td) && VOP_ACCESS(tvp, VADMIN, tcnp->cn_cred, td)) { error = EPERM; goto bad; } /* * Target must be empty if a directory and have no links * to it. Also, ensure source and target are compatible * (both directories, or both not directories). */ if ((tip->i_mode & IFMT) == IFDIR) { if ((tip->i_effnlink > 2) || !ufs_dirempty(tip, tdp->i_number, tcnp->cn_cred)) { error = ENOTEMPTY; goto bad; } if (!doingdirectory) { error = ENOTDIR; goto bad; } cache_purge(tdvp); } else if (doingdirectory) { error = EISDIR; goto bad; } if (doingdirectory) { if (!newparent) { tdp->i_effnlink--; if (DOINGSOFTDEP(tdvp)) softdep_change_linkcnt(tdp); } tip->i_effnlink--; if (DOINGSOFTDEP(tvp)) softdep_change_linkcnt(tip); } error = ufs_dirrewrite(tdp, tip, fip->i_number, IFTODT(fip->i_mode), (doingdirectory && newparent) ? newparent : doingdirectory); if (error) { if (doingdirectory) { if (!newparent) { tdp->i_effnlink++; if (DOINGSOFTDEP(tdvp)) softdep_change_linkcnt(tdp); } tip->i_effnlink++; if (DOINGSOFTDEP(tvp)) softdep_change_linkcnt(tip); } } if (doingdirectory && !DOINGSOFTDEP(tvp)) { /* * The only stuff left in the directory is "." * and "..". The "." reference is inconsequential * since we are quashing it. We have removed the "." * reference and the reference in the parent directory, * but there may be other hard links. The soft * dependency code will arrange to do these operations * after the parent directory entry has been deleted on * disk, so when running with that code we avoid doing * them now. */ if (!newparent) { tdp->i_nlink--; DIP_SET(tdp, i_nlink, tdp->i_nlink); tdp->i_flag |= IN_CHANGE; } tip->i_nlink--; DIP_SET(tip, i_nlink, tip->i_nlink); tip->i_flag |= IN_CHANGE; } } /* * 3) Unlink the source. We have to resolve the path again to * fixup the directory offset and count for ufs_dirremove. */ if (fdvp == tdvp) { error = ufs_lookup_ino(fdvp, NULL, fcnp, &ino); if (error) panic("ufs_rename: from entry went away!"); if (ino != fip->i_number) panic("ufs_rename: ino mismatch %ju != %ju\n", (uintmax_t)ino, (uintmax_t)fip->i_number); } /* * If the source is a directory with a * new parent, the link count of the old * parent directory must be decremented * and ".." set to point to the new parent. */ if (doingdirectory && newparent) { /* * If tip exists we simply use its link, otherwise we must * add a new one. */ if (tip == NULL) { tdp->i_effnlink++; tdp->i_nlink++; DIP_SET(tdp, i_nlink, tdp->i_nlink); tdp->i_flag |= IN_CHANGE; if (DOINGSOFTDEP(tdvp)) softdep_setup_dotdot_link(tdp, fip); error = UFS_UPDATE(tdvp, !DOINGSOFTDEP(tdvp) && !DOINGASYNC(tdvp)); /* Don't go to bad here as the new link exists. */ if (error) goto unlockout; } else if (DOINGSUJ(tdvp)) /* Journal must account for each new link. */ softdep_setup_dotdot_link(tdp, fip); fip->i_offset = mastertemplate.dot_reclen; ufs_dirrewrite(fip, fdp, newparent, DT_DIR, 0); cache_purge(fdvp); } error = ufs_dirremove(fdvp, fip, fcnp->cn_flags, 0); /* * The kern_renameat() looks up the fvp using the DELETE flag, which * causes the removal of the name cache entry for fvp. * As the relookup of the fvp is done in two steps: * ufs_lookup_ino() and then VFS_VGET(), another thread might do a * normal lookup of the from name just before the VFS_VGET() call, * causing the cache entry to be re-instantiated. * * The same issue also applies to tvp if it exists as * otherwise we may have a stale name cache entry for the new * name that references the old i-node if it has other links * or open file descriptors. */ cache_purge(fvp); if (tvp) cache_purge(tvp); cache_purge_negative(tdvp); unlockout: vput(fdvp); vput(fvp); if (tvp) vput(tvp); /* * If compaction or fsync was requested do it now that other locks * are no longer needed. */ if (error == 0 && endoff != 0) { error = UFS_TRUNCATE(tdvp, endoff, IO_NORMAL | (DOINGASYNC(tdvp) ? 0 : IO_SYNC), tcnp->cn_cred); if (error != 0) vn_printf(tdvp, "ufs_rename: failed to truncate " "err %d", error); #ifdef UFS_DIRHASH else if (tdp->i_dirhash != NULL) ufsdirhash_dirtrunc(tdp, endoff); #endif /* * Even if the directory compaction failed, rename was * succesful. Do not propagate a UFS_TRUNCATE() error * to the caller. */ error = 0; } if (error == 0 && tdp->i_flag & IN_NEEDSYNC) error = VOP_FSYNC(tdvp, MNT_WAIT, td); vput(tdvp); return (error); bad: fip->i_effnlink--; fip->i_nlink--; DIP_SET(fip, i_nlink, fip->i_nlink); fip->i_flag |= IN_CHANGE; if (DOINGSOFTDEP(fvp)) softdep_revert_link(tdp, fip); goto unlockout; releout: vrele(fdvp); vrele(fvp); vrele(tdvp); if (tvp) vrele(tvp); return (error); } #ifdef UFS_ACL static int ufs_do_posix1e_acl_inheritance_dir(struct vnode *dvp, struct vnode *tvp, mode_t dmode, struct ucred *cred, struct thread *td) { int error; struct inode *ip = VTOI(tvp); struct acl *dacl, *acl; acl = acl_alloc(M_WAITOK); dacl = acl_alloc(M_WAITOK); /* * Retrieve default ACL from parent, if any. */ error = VOP_GETACL(dvp, ACL_TYPE_DEFAULT, acl, cred, td); switch (error) { case 0: /* * Retrieved a default ACL, so merge mode and ACL if * necessary. If the ACL is empty, fall through to * the "not defined or available" case. */ if (acl->acl_cnt != 0) { dmode = acl_posix1e_newfilemode(dmode, acl); ip->i_mode = dmode; DIP_SET(ip, i_mode, dmode); *dacl = *acl; ufs_sync_acl_from_inode(ip, acl); break; } /* FALLTHROUGH */ case EOPNOTSUPP: /* * Just use the mode as-is. */ ip->i_mode = dmode; DIP_SET(ip, i_mode, dmode); error = 0; goto out; default: goto out; } /* * XXX: If we abort now, will Soft Updates notify the extattr * code that the EAs for the file need to be released? */ error = VOP_SETACL(tvp, ACL_TYPE_ACCESS, acl, cred, td); if (error == 0) error = VOP_SETACL(tvp, ACL_TYPE_DEFAULT, dacl, cred, td); switch (error) { case 0: break; case EOPNOTSUPP: /* * XXX: This should not happen, as EOPNOTSUPP above * was supposed to free acl. */ printf("ufs_mkdir: VOP_GETACL() but no VOP_SETACL()\n"); /* panic("ufs_mkdir: VOP_GETACL() but no VOP_SETACL()"); */ break; default: goto out; } out: acl_free(acl); acl_free(dacl); return (error); } static int ufs_do_posix1e_acl_inheritance_file(struct vnode *dvp, struct vnode *tvp, mode_t mode, struct ucred *cred, struct thread *td) { int error; struct inode *ip = VTOI(tvp); struct acl *acl; acl = acl_alloc(M_WAITOK); /* * Retrieve default ACL for parent, if any. */ error = VOP_GETACL(dvp, ACL_TYPE_DEFAULT, acl, cred, td); switch (error) { case 0: /* * Retrieved a default ACL, so merge mode and ACL if * necessary. */ if (acl->acl_cnt != 0) { /* * Two possible ways for default ACL to not * be present. First, the EA can be * undefined, or second, the default ACL can * be blank. If it's blank, fall through to * the it's not defined case. */ mode = acl_posix1e_newfilemode(mode, acl); ip->i_mode = mode; DIP_SET(ip, i_mode, mode); ufs_sync_acl_from_inode(ip, acl); break; } /* FALLTHROUGH */ case EOPNOTSUPP: /* * Just use the mode as-is. */ ip->i_mode = mode; DIP_SET(ip, i_mode, mode); error = 0; goto out; default: goto out; } /* * XXX: If we abort now, will Soft Updates notify the extattr * code that the EAs for the file need to be released? */ error = VOP_SETACL(tvp, ACL_TYPE_ACCESS, acl, cred, td); switch (error) { case 0: break; case EOPNOTSUPP: /* * XXX: This should not happen, as EOPNOTSUPP above was * supposed to free acl. */ printf("ufs_do_posix1e_acl_inheritance_file: VOP_GETACL() " "but no VOP_SETACL()\n"); /* panic("ufs_do_posix1e_acl_inheritance_file: VOP_GETACL() " "but no VOP_SETACL()"); */ break; default: goto out; } out: acl_free(acl); return (error); } static int ufs_do_nfs4_acl_inheritance(struct vnode *dvp, struct vnode *tvp, mode_t child_mode, struct ucred *cred, struct thread *td) { int error; struct acl *parent_aclp, *child_aclp; parent_aclp = acl_alloc(M_WAITOK); child_aclp = acl_alloc(M_WAITOK | M_ZERO); error = ufs_getacl_nfs4_internal(dvp, parent_aclp, td); if (error) goto out; acl_nfs4_compute_inherited_acl(parent_aclp, child_aclp, child_mode, VTOI(tvp)->i_uid, tvp->v_type == VDIR); error = ufs_setacl_nfs4_internal(tvp, child_aclp, td); if (error) goto out; out: acl_free(parent_aclp); acl_free(child_aclp); return (error); } #endif /* * Mkdir system call */ static int ufs_mkdir(ap) struct vop_mkdir_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; } */ *ap; { struct vnode *dvp = ap->a_dvp; struct vattr *vap = ap->a_vap; struct componentname *cnp = ap->a_cnp; struct inode *ip, *dp; struct vnode *tvp; struct buf *bp; struct dirtemplate dirtemplate, *dtp; struct direct newdir; int error, dmode; long blkoff; #ifdef INVARIANTS if ((cnp->cn_flags & HASBUF) == 0) panic("ufs_mkdir: no name"); #endif dp = VTOI(dvp); if (dp->i_nlink >= UFS_LINK_MAX) { error = EMLINK; goto out; } dmode = vap->va_mode & 0777; dmode |= IFDIR; /* * Must simulate part of ufs_makeinode here to acquire the inode, * but not have it entered in the parent directory. The entry is * made later after writing "." and ".." entries. */ if (dp->i_effnlink < 2) { print_bad_link_count("ufs_mkdir", dvp); error = EINVAL; goto out; } error = UFS_VALLOC(dvp, dmode, cnp->cn_cred, &tvp); if (error) goto out; ip = VTOI(tvp); ip->i_gid = dp->i_gid; DIP_SET(ip, i_gid, dp->i_gid); #ifdef SUIDDIR { #ifdef QUOTA struct ucred ucred, *ucp; gid_t ucred_group; ucp = cnp->cn_cred; #endif /* * If we are hacking owners here, (only do this where told to) * and we are not giving it TO root, (would subvert quotas) * then go ahead and give it to the other user. * The new directory also inherits the SUID bit. * If user's UID and dir UID are the same, * 'give it away' so that the SUID is still forced on. */ if ((dvp->v_mount->mnt_flag & MNT_SUIDDIR) && (dp->i_mode & ISUID) && dp->i_uid) { dmode |= ISUID; ip->i_uid = dp->i_uid; DIP_SET(ip, i_uid, dp->i_uid); #ifdef QUOTA if (dp->i_uid != cnp->cn_cred->cr_uid) { /* * Make sure the correct user gets charged * for the space. * Make a dummy credential for the victim. * XXX This seems to never be accessed out of * our context so a stack variable is ok. */ refcount_init(&ucred.cr_ref, 1); ucred.cr_uid = ip->i_uid; ucred.cr_ngroups = 1; ucred.cr_groups = &ucred_group; ucred.cr_groups[0] = dp->i_gid; ucp = &ucred; } #endif } else { ip->i_uid = cnp->cn_cred->cr_uid; DIP_SET(ip, i_uid, ip->i_uid); } #ifdef QUOTA if ((error = getinoquota(ip)) || (error = chkiq(ip, 1, ucp, 0))) { if (DOINGSOFTDEP(tvp)) softdep_revert_link(dp, ip); UFS_VFREE(tvp, ip->i_number, dmode); vput(tvp); return (error); } #endif } #else /* !SUIDDIR */ ip->i_uid = cnp->cn_cred->cr_uid; DIP_SET(ip, i_uid, ip->i_uid); #ifdef QUOTA if ((error = getinoquota(ip)) || (error = chkiq(ip, 1, cnp->cn_cred, 0))) { if (DOINGSOFTDEP(tvp)) softdep_revert_link(dp, ip); UFS_VFREE(tvp, ip->i_number, dmode); vput(tvp); return (error); } #endif #endif /* !SUIDDIR */ ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE; ip->i_mode = dmode; DIP_SET(ip, i_mode, dmode); tvp->v_type = VDIR; /* Rest init'd in getnewvnode(). */ ip->i_effnlink = 2; ip->i_nlink = 2; DIP_SET(ip, i_nlink, 2); if (cnp->cn_flags & ISWHITEOUT) { ip->i_flags |= UF_OPAQUE; DIP_SET(ip, i_flags, ip->i_flags); } /* * Bump link count in parent directory to reflect work done below. * Should be done before reference is created so cleanup is * possible if we crash. */ dp->i_effnlink++; dp->i_nlink++; DIP_SET(dp, i_nlink, dp->i_nlink); dp->i_flag |= IN_CHANGE; if (DOINGSOFTDEP(dvp)) softdep_setup_mkdir(dp, ip); error = UFS_UPDATE(dvp, !DOINGSOFTDEP(dvp) && !DOINGASYNC(dvp)); if (error) goto bad; #ifdef MAC if (dvp->v_mount->mnt_flag & MNT_MULTILABEL) { error = mac_vnode_create_extattr(cnp->cn_cred, dvp->v_mount, dvp, tvp, cnp); if (error) goto bad; } #endif #ifdef UFS_ACL if (dvp->v_mount->mnt_flag & MNT_ACLS) { error = ufs_do_posix1e_acl_inheritance_dir(dvp, tvp, dmode, cnp->cn_cred, cnp->cn_thread); if (error) goto bad; } else if (dvp->v_mount->mnt_flag & MNT_NFS4ACLS) { error = ufs_do_nfs4_acl_inheritance(dvp, tvp, dmode, cnp->cn_cred, cnp->cn_thread); if (error) goto bad; } #endif /* !UFS_ACL */ /* * Initialize directory with "." and ".." from static template. */ if (dvp->v_mount->mnt_maxsymlinklen > 0) dtp = &mastertemplate; else dtp = (struct dirtemplate *)&omastertemplate; dirtemplate = *dtp; dirtemplate.dot_ino = ip->i_number; dirtemplate.dotdot_ino = dp->i_number; vnode_pager_setsize(tvp, DIRBLKSIZ); if ((error = UFS_BALLOC(tvp, (off_t)0, DIRBLKSIZ, cnp->cn_cred, BA_CLRBUF, &bp)) != 0) goto bad; ip->i_size = DIRBLKSIZ; DIP_SET(ip, i_size, DIRBLKSIZ); ip->i_flag |= IN_CHANGE | IN_UPDATE; bcopy((caddr_t)&dirtemplate, (caddr_t)bp->b_data, sizeof dirtemplate); if (DOINGSOFTDEP(tvp)) { /* * Ensure that the entire newly allocated block is a * valid directory so that future growth within the * block does not have to ensure that the block is * written before the inode. */ blkoff = DIRBLKSIZ; while (blkoff < bp->b_bcount) { ((struct direct *) (bp->b_data + blkoff))->d_reclen = DIRBLKSIZ; blkoff += DIRBLKSIZ; } } if ((error = UFS_UPDATE(tvp, !DOINGSOFTDEP(tvp) && !DOINGASYNC(tvp))) != 0) { (void)bwrite(bp); goto bad; } /* * Directory set up, now install its entry in the parent directory. * * If we are not doing soft dependencies, then we must write out the * buffer containing the new directory body before entering the new * name in the parent. If we are doing soft dependencies, then the * buffer containing the new directory body will be passed to and * released in the soft dependency code after the code has attached * an appropriate ordering dependency to the buffer which ensures that * the buffer is written before the new name is written in the parent. */ if (DOINGASYNC(dvp)) bdwrite(bp); else if (!DOINGSOFTDEP(dvp) && ((error = bwrite(bp)))) goto bad; ufs_makedirentry(ip, cnp, &newdir); error = ufs_direnter(dvp, tvp, &newdir, cnp, bp, 0); bad: if (error == 0) { *ap->a_vpp = tvp; } else { dp->i_effnlink--; dp->i_nlink--; DIP_SET(dp, i_nlink, dp->i_nlink); dp->i_flag |= IN_CHANGE; /* * No need to do an explicit VOP_TRUNCATE here, vrele will * do this for us because we set the link count to 0. */ ip->i_effnlink = 0; ip->i_nlink = 0; DIP_SET(ip, i_nlink, 0); ip->i_flag |= IN_CHANGE; if (DOINGSOFTDEP(tvp)) softdep_revert_mkdir(dp, ip); vput(tvp); } out: return (error); } /* * Rmdir system call. */ static int ufs_rmdir(ap) struct vop_rmdir_args /* { struct vnode *a_dvp; struct vnode *a_vp; struct componentname *a_cnp; } */ *ap; { struct vnode *vp = ap->a_vp; struct vnode *dvp = ap->a_dvp; struct componentname *cnp = ap->a_cnp; struct inode *ip, *dp; int error; ip = VTOI(vp); dp = VTOI(dvp); /* * Do not remove a directory that is in the process of being renamed. * Verify the directory is empty (and valid). Rmdir ".." will not be * valid since ".." will contain a reference to the current directory * and thus be non-empty. Do not allow the removal of mounted on * directories (this can happen when an NFS exported filesystem * tries to remove a locally mounted on directory). */ error = 0; if (dp->i_effnlink <= 2) { if (dp->i_effnlink == 2) print_bad_link_count("ufs_rmdir", dvp); error = EINVAL; goto out; } if (!ufs_dirempty(ip, dp->i_number, cnp->cn_cred)) { error = ENOTEMPTY; goto out; } if ((dp->i_flags & APPEND) || (ip->i_flags & (NOUNLINK | IMMUTABLE | APPEND))) { error = EPERM; goto out; } if (vp->v_mountedhere != 0) { error = EINVAL; goto out; } #ifdef UFS_GJOURNAL ufs_gjournal_orphan(vp); #endif /* * Delete reference to directory before purging * inode. If we crash in between, the directory * will be reattached to lost+found, */ dp->i_effnlink--; ip->i_effnlink--; if (DOINGSOFTDEP(vp)) softdep_setup_rmdir(dp, ip); error = ufs_dirremove(dvp, ip, cnp->cn_flags, 1); if (error) { dp->i_effnlink++; ip->i_effnlink++; if (DOINGSOFTDEP(vp)) softdep_revert_rmdir(dp, ip); goto out; } cache_purge(dvp); /* * The only stuff left in the directory is "." and "..". The "." * reference is inconsequential since we are quashing it. The soft * dependency code will arrange to do these operations after * the parent directory entry has been deleted on disk, so * when running with that code we avoid doing them now. */ if (!DOINGSOFTDEP(vp)) { dp->i_nlink--; DIP_SET(dp, i_nlink, dp->i_nlink); dp->i_flag |= IN_CHANGE; error = UFS_UPDATE(dvp, 0); ip->i_nlink--; DIP_SET(ip, i_nlink, ip->i_nlink); ip->i_flag |= IN_CHANGE; } cache_purge(vp); #ifdef UFS_DIRHASH /* Kill any active hash; i_effnlink == 0, so it will not come back. */ if (ip->i_dirhash != NULL) ufsdirhash_free(ip); #endif out: return (error); } /* * symlink -- make a symbolic link */ static int ufs_symlink(ap) struct vop_symlink_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; char *a_target; } */ *ap; { struct vnode *vp, **vpp = ap->a_vpp; struct inode *ip; int len, error; error = ufs_makeinode(IFLNK | ap->a_vap->va_mode, ap->a_dvp, vpp, ap->a_cnp, "ufs_symlink"); if (error) return (error); vp = *vpp; len = strlen(ap->a_target); if (len < vp->v_mount->mnt_maxsymlinklen) { ip = VTOI(vp); bcopy(ap->a_target, SHORTLINK(ip), len); ip->i_size = len; DIP_SET(ip, i_size, len); ip->i_flag |= IN_CHANGE | IN_UPDATE; error = UFS_UPDATE(vp, 0); } else error = vn_rdwr(UIO_WRITE, vp, ap->a_target, len, (off_t)0, UIO_SYSSPACE, IO_NODELOCKED | IO_NOMACCHECK, ap->a_cnp->cn_cred, NOCRED, NULL, NULL); if (error) vput(vp); return (error); } /* * Vnode op for reading directories. */ int ufs_readdir(ap) struct vop_readdir_args /* { struct vnode *a_vp; struct uio *a_uio; struct ucred *a_cred; int *a_eofflag; int *a_ncookies; u_long **a_cookies; } */ *ap; { struct vnode *vp = ap->a_vp; struct uio *uio = ap->a_uio; struct buf *bp; struct inode *ip; struct direct *dp, *edp; u_long *cookies; struct dirent dstdp; off_t offset, startoffset; size_t readcnt, skipcnt; ssize_t startresid; int ncookies; int error; if (uio->uio_offset < 0) return (EINVAL); ip = VTOI(vp); if (ip->i_effnlink == 0) return (0); if (ap->a_ncookies != NULL) { ncookies = uio->uio_resid; if (uio->uio_offset >= ip->i_size) ncookies = 0; else if (ip->i_size - uio->uio_offset < ncookies) ncookies = ip->i_size - uio->uio_offset; ncookies = ncookies / (offsetof(struct direct, d_name) + 4) + 1; cookies = malloc(ncookies * sizeof(*cookies), M_TEMP, M_WAITOK); *ap->a_ncookies = ncookies; *ap->a_cookies = cookies; } else { ncookies = 0; cookies = NULL; } offset = startoffset = uio->uio_offset; startresid = uio->uio_resid; error = 0; while (error == 0 && uio->uio_resid > 0 && uio->uio_offset < ip->i_size) { error = ffs_blkatoff(vp, uio->uio_offset, NULL, &bp); if (error) break; if (bp->b_offset + bp->b_bcount > ip->i_size) readcnt = ip->i_size - bp->b_offset; else readcnt = bp->b_bcount; skipcnt = (size_t)(uio->uio_offset - bp->b_offset) & ~(size_t)(DIRBLKSIZ - 1); offset = bp->b_offset + skipcnt; dp = (struct direct *)&bp->b_data[skipcnt]; edp = (struct direct *)&bp->b_data[readcnt]; while (error == 0 && uio->uio_resid > 0 && dp < edp) { if (dp->d_reclen <= offsetof(struct direct, d_name) || (caddr_t)dp + dp->d_reclen > (caddr_t)edp) { error = EIO; break; } #if BYTE_ORDER == LITTLE_ENDIAN /* Old filesystem format. */ if (vp->v_mount->mnt_maxsymlinklen <= 0) { dstdp.d_namlen = dp->d_type; dstdp.d_type = dp->d_namlen; } else #endif { dstdp.d_namlen = dp->d_namlen; dstdp.d_type = dp->d_type; } if (offsetof(struct direct, d_name) + dstdp.d_namlen > dp->d_reclen) { error = EIO; break; } if (offset < startoffset || dp->d_ino == 0) goto nextentry; dstdp.d_fileno = dp->d_ino; dstdp.d_reclen = GENERIC_DIRSIZ(&dstdp); bcopy(dp->d_name, dstdp.d_name, dstdp.d_namlen); dstdp.d_name[dstdp.d_namlen] = '\0'; if (dstdp.d_reclen > uio->uio_resid) { if (uio->uio_resid == startresid) error = EINVAL; else error = EJUSTRETURN; break; } /* Advance dp. */ error = uiomove((caddr_t)&dstdp, dstdp.d_reclen, uio); if (error) break; if (cookies != NULL) { KASSERT(ncookies > 0, ("ufs_readdir: cookies buffer too small")); *cookies = offset + dp->d_reclen; cookies++; ncookies--; } nextentry: offset += dp->d_reclen; dp = (struct direct *)((caddr_t)dp + dp->d_reclen); } bqrelse(bp); uio->uio_offset = offset; } /* We need to correct uio_offset. */ uio->uio_offset = offset; if (error == EJUSTRETURN) error = 0; if (ap->a_ncookies != NULL) { if (error == 0) { ap->a_ncookies -= ncookies; } else { free(*ap->a_cookies, M_TEMP); *ap->a_ncookies = 0; *ap->a_cookies = NULL; } } if (error == 0 && ap->a_eofflag) *ap->a_eofflag = ip->i_size <= uio->uio_offset; return (error); } /* * Return target name of a symbolic link */ static int ufs_readlink(ap) struct vop_readlink_args /* { struct vnode *a_vp; struct uio *a_uio; struct ucred *a_cred; } */ *ap; { struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); doff_t isize; isize = ip->i_size; if ((isize < vp->v_mount->mnt_maxsymlinklen) || DIP(ip, i_blocks) == 0) { /* XXX - for old fastlink support */ return (uiomove(SHORTLINK(ip), isize, ap->a_uio)); } return (VOP_READ(vp, ap->a_uio, 0, ap->a_cred)); } /* * Calculate the logical to physical mapping if not done already, * then call the device strategy routine. * * In order to be able to swap to a file, the ufs_bmaparray() operation may not * deadlock on memory. See ufs_bmap() for details. */ static int ufs_strategy(ap) struct vop_strategy_args /* { struct vnode *a_vp; struct buf *a_bp; } */ *ap; { struct buf *bp = ap->a_bp; struct vnode *vp = ap->a_vp; ufs2_daddr_t blkno; int error; if (bp->b_blkno == bp->b_lblkno) { error = ufs_bmaparray(vp, bp->b_lblkno, &blkno, bp, NULL, NULL); bp->b_blkno = blkno; if (error) { bp->b_error = error; bp->b_ioflags |= BIO_ERROR; bufdone(bp); return (0); } if ((long)bp->b_blkno == -1) vfs_bio_clrbuf(bp); } if ((long)bp->b_blkno == -1) { bufdone(bp); return (0); } bp->b_iooffset = dbtob(bp->b_blkno); BO_STRATEGY(VFSTOUFS(vp->v_mount)->um_bo, bp); return (0); } /* * Print out the contents of an inode. */ static int ufs_print(ap) struct vop_print_args /* { struct vnode *a_vp; } */ *ap; { struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); printf("\tino %lu, on dev %s", (u_long)ip->i_number, devtoname(ITODEV(ip))); if (vp->v_type == VFIFO) fifo_printinfo(vp); printf("\n"); return (0); } /* * Close wrapper for fifos. * * Update the times on the inode then do device close. */ static int ufsfifo_close(ap) struct vop_close_args /* { struct vnode *a_vp; int a_fflag; struct ucred *a_cred; struct thread *a_td; } */ *ap; { struct vnode *vp = ap->a_vp; int usecount; VI_LOCK(vp); usecount = vp->v_usecount; if (usecount > 1) ufs_itimes_locked(vp); VI_UNLOCK(vp); return (fifo_specops.vop_close(ap)); } /* * Kqfilter wrapper for fifos. * * Fall through to ufs kqfilter routines if needed */ static int ufsfifo_kqfilter(ap) struct vop_kqfilter_args *ap; { int error; error = fifo_specops.vop_kqfilter(ap); if (error) error = vfs_kqfilter(ap); return (error); } /* - * Return POSIX pathconf information applicable to fifos. - */ -static int -ufsfifo_pathconf(ap) - struct vop_pathconf_args /* { - struct vnode *a_vp; - int a_name; - int *a_retval; - } */ *ap; -{ - - switch (ap->a_name) { - case _PC_ACL_EXTENDED: - case _PC_ACL_NFS4: - case _PC_ACL_PATH_MAX: - case _PC_MAC_PRESENT: - return (ufs_pathconf(ap)); - default: - return (fifo_specops.vop_pathconf(ap)); - } - /* NOTREACHED */ -} - -/* * Return POSIX pathconf information applicable to ufs filesystems. */ static int ufs_pathconf(ap) struct vop_pathconf_args /* { struct vnode *a_vp; int a_name; int *a_retval; } */ *ap; { int error; error = 0; switch (ap->a_name) { case _PC_LINK_MAX: *ap->a_retval = UFS_LINK_MAX; break; case _PC_NAME_MAX: *ap->a_retval = UFS_MAXNAMLEN; break; + case _PC_PIPE_BUF: + if (ap->a_vp->v_type == VDIR || ap->a_vp->v_type == VFIFO) + *ap->a_retval = PIPE_BUF; + else + error = EINVAL; + break; case _PC_CHOWN_RESTRICTED: *ap->a_retval = 1; break; case _PC_NO_TRUNC: *ap->a_retval = 1; break; case _PC_ACL_EXTENDED: #ifdef UFS_ACL if (ap->a_vp->v_mount->mnt_flag & MNT_ACLS) *ap->a_retval = 1; else *ap->a_retval = 0; #else *ap->a_retval = 0; #endif break; case _PC_ACL_NFS4: #ifdef UFS_ACL if (ap->a_vp->v_mount->mnt_flag & MNT_NFS4ACLS) *ap->a_retval = 1; else *ap->a_retval = 0; #else *ap->a_retval = 0; #endif break; case _PC_ACL_PATH_MAX: #ifdef UFS_ACL if (ap->a_vp->v_mount->mnt_flag & (MNT_ACLS | MNT_NFS4ACLS)) *ap->a_retval = ACL_MAX_ENTRIES; else *ap->a_retval = 3; #else *ap->a_retval = 3; #endif break; case _PC_MAC_PRESENT: #ifdef MAC if (ap->a_vp->v_mount->mnt_flag & MNT_MULTILABEL) *ap->a_retval = 1; else *ap->a_retval = 0; #else *ap->a_retval = 0; #endif break; case _PC_MIN_HOLE_SIZE: *ap->a_retval = ap->a_vp->v_mount->mnt_stat.f_iosize; break; case _PC_PRIO_IO: *ap->a_retval = 0; break; case _PC_SYNC_IO: *ap->a_retval = 0; break; case _PC_ALLOC_SIZE_MIN: *ap->a_retval = ap->a_vp->v_mount->mnt_stat.f_bsize; break; case _PC_FILESIZEBITS: *ap->a_retval = 64; break; case _PC_REC_INCR_XFER_SIZE: *ap->a_retval = ap->a_vp->v_mount->mnt_stat.f_iosize; break; case _PC_REC_MAX_XFER_SIZE: *ap->a_retval = -1; /* means ``unlimited'' */ break; case _PC_REC_MIN_XFER_SIZE: *ap->a_retval = ap->a_vp->v_mount->mnt_stat.f_iosize; break; case _PC_REC_XFER_ALIGN: *ap->a_retval = PAGE_SIZE; break; case _PC_SYMLINK_MAX: *ap->a_retval = MAXPATHLEN; break; default: error = vop_stdpathconf(ap); break; } return (error); } /* * Initialize the vnode associated with a new inode, handle aliased * vnodes. */ int ufs_vinit(mntp, fifoops, vpp) struct mount *mntp; struct vop_vector *fifoops; struct vnode **vpp; { struct inode *ip; struct vnode *vp; vp = *vpp; ip = VTOI(vp); vp->v_type = IFTOVT(ip->i_mode); if (vp->v_type == VFIFO) vp->v_op = fifoops; ASSERT_VOP_LOCKED(vp, "ufs_vinit"); if (ip->i_number == UFS_ROOTINO) vp->v_vflag |= VV_ROOT; *vpp = vp; return (0); } /* * Allocate a new inode. * Vnode dvp must be locked. */ static int ufs_makeinode(mode, dvp, vpp, cnp, callfunc) int mode; struct vnode *dvp; struct vnode **vpp; struct componentname *cnp; const char *callfunc; { struct inode *ip, *pdir; struct direct newdir; struct vnode *tvp; int error; pdir = VTOI(dvp); #ifdef INVARIANTS if ((cnp->cn_flags & HASBUF) == 0) panic("%s: no name", callfunc); #endif *vpp = NULL; if ((mode & IFMT) == 0) mode |= IFREG; if (pdir->i_effnlink < 2) { print_bad_link_count(callfunc, dvp); return (EINVAL); } error = UFS_VALLOC(dvp, mode, cnp->cn_cred, &tvp); if (error) return (error); ip = VTOI(tvp); ip->i_gid = pdir->i_gid; DIP_SET(ip, i_gid, pdir->i_gid); #ifdef SUIDDIR { #ifdef QUOTA struct ucred ucred, *ucp; gid_t ucred_group; ucp = cnp->cn_cred; #endif /* * If we are not the owner of the directory, * and we are hacking owners here, (only do this where told to) * and we are not giving it TO root, (would subvert quotas) * then go ahead and give it to the other user. * Note that this drops off the execute bits for security. */ if ((dvp->v_mount->mnt_flag & MNT_SUIDDIR) && (pdir->i_mode & ISUID) && (pdir->i_uid != cnp->cn_cred->cr_uid) && pdir->i_uid) { ip->i_uid = pdir->i_uid; DIP_SET(ip, i_uid, ip->i_uid); mode &= ~07111; #ifdef QUOTA /* * Make sure the correct user gets charged * for the space. * Quickly knock up a dummy credential for the victim. * XXX This seems to never be accessed out of our * context so a stack variable is ok. */ refcount_init(&ucred.cr_ref, 1); ucred.cr_uid = ip->i_uid; ucred.cr_ngroups = 1; ucred.cr_groups = &ucred_group; ucred.cr_groups[0] = pdir->i_gid; ucp = &ucred; #endif } else { ip->i_uid = cnp->cn_cred->cr_uid; DIP_SET(ip, i_uid, ip->i_uid); } #ifdef QUOTA if ((error = getinoquota(ip)) || (error = chkiq(ip, 1, ucp, 0))) { if (DOINGSOFTDEP(tvp)) softdep_revert_link(pdir, ip); UFS_VFREE(tvp, ip->i_number, mode); vput(tvp); return (error); } #endif } #else /* !SUIDDIR */ ip->i_uid = cnp->cn_cred->cr_uid; DIP_SET(ip, i_uid, ip->i_uid); #ifdef QUOTA if ((error = getinoquota(ip)) || (error = chkiq(ip, 1, cnp->cn_cred, 0))) { if (DOINGSOFTDEP(tvp)) softdep_revert_link(pdir, ip); UFS_VFREE(tvp, ip->i_number, mode); vput(tvp); return (error); } #endif #endif /* !SUIDDIR */ ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE; ip->i_mode = mode; DIP_SET(ip, i_mode, mode); tvp->v_type = IFTOVT(mode); /* Rest init'd in getnewvnode(). */ ip->i_effnlink = 1; ip->i_nlink = 1; DIP_SET(ip, i_nlink, 1); if (DOINGSOFTDEP(tvp)) softdep_setup_create(VTOI(dvp), ip); if ((ip->i_mode & ISGID) && !groupmember(ip->i_gid, cnp->cn_cred) && priv_check_cred(cnp->cn_cred, PRIV_VFS_SETGID, 0)) { ip->i_mode &= ~ISGID; DIP_SET(ip, i_mode, ip->i_mode); } if (cnp->cn_flags & ISWHITEOUT) { ip->i_flags |= UF_OPAQUE; DIP_SET(ip, i_flags, ip->i_flags); } /* * Make sure inode goes to disk before directory entry. */ error = UFS_UPDATE(tvp, !DOINGSOFTDEP(tvp) && !DOINGASYNC(tvp)); if (error) goto bad; #ifdef MAC if (dvp->v_mount->mnt_flag & MNT_MULTILABEL) { error = mac_vnode_create_extattr(cnp->cn_cred, dvp->v_mount, dvp, tvp, cnp); if (error) goto bad; } #endif #ifdef UFS_ACL if (dvp->v_mount->mnt_flag & MNT_ACLS) { error = ufs_do_posix1e_acl_inheritance_file(dvp, tvp, mode, cnp->cn_cred, cnp->cn_thread); if (error) goto bad; } else if (dvp->v_mount->mnt_flag & MNT_NFS4ACLS) { error = ufs_do_nfs4_acl_inheritance(dvp, tvp, mode, cnp->cn_cred, cnp->cn_thread); if (error) goto bad; } #endif /* !UFS_ACL */ ufs_makedirentry(ip, cnp, &newdir); error = ufs_direnter(dvp, tvp, &newdir, cnp, NULL, 0); if (error) goto bad; *vpp = tvp; return (0); bad: /* * Write error occurred trying to update the inode * or the directory so must deallocate the inode. */ ip->i_effnlink = 0; ip->i_nlink = 0; DIP_SET(ip, i_nlink, 0); ip->i_flag |= IN_CHANGE; if (DOINGSOFTDEP(tvp)) softdep_revert_create(VTOI(dvp), ip); vput(tvp); return (error); } static int ufs_ioctl(struct vop_ioctl_args *ap) { switch (ap->a_command) { case FIOSEEKDATA: case FIOSEEKHOLE: return (vn_bmap_seekhole(ap->a_vp, ap->a_command, (off_t *)ap->a_data, ap->a_cred)); default: return (ENOTTY); } } /* Global vfs data structures for ufs. */ struct vop_vector ufs_vnodeops = { .vop_default = &default_vnodeops, .vop_fsync = VOP_PANIC, .vop_read = VOP_PANIC, .vop_reallocblks = VOP_PANIC, .vop_write = VOP_PANIC, .vop_accessx = ufs_accessx, .vop_bmap = ufs_bmap, .vop_cachedlookup = ufs_lookup, .vop_close = ufs_close, .vop_create = ufs_create, .vop_getattr = ufs_getattr, .vop_inactive = ufs_inactive, .vop_ioctl = ufs_ioctl, .vop_link = ufs_link, .vop_lookup = vfs_cache_lookup, .vop_markatime = ufs_markatime, .vop_mkdir = ufs_mkdir, .vop_mknod = ufs_mknod, .vop_open = ufs_open, .vop_pathconf = ufs_pathconf, .vop_poll = vop_stdpoll, .vop_print = ufs_print, .vop_readdir = ufs_readdir, .vop_readlink = ufs_readlink, .vop_reclaim = ufs_reclaim, .vop_remove = ufs_remove, .vop_rename = ufs_rename, .vop_rmdir = ufs_rmdir, .vop_setattr = ufs_setattr, #ifdef MAC .vop_setlabel = vop_stdsetlabel_ea, #endif .vop_strategy = ufs_strategy, .vop_symlink = ufs_symlink, .vop_whiteout = ufs_whiteout, #ifdef UFS_EXTATTR .vop_getextattr = ufs_getextattr, .vop_deleteextattr = ufs_deleteextattr, .vop_setextattr = ufs_setextattr, #endif #ifdef UFS_ACL .vop_getacl = ufs_getacl, .vop_setacl = ufs_setacl, .vop_aclcheck = ufs_aclcheck, #endif }; struct vop_vector ufs_fifoops = { .vop_default = &fifo_specops, .vop_fsync = VOP_PANIC, .vop_accessx = ufs_accessx, .vop_close = ufsfifo_close, .vop_getattr = ufs_getattr, .vop_inactive = ufs_inactive, .vop_kqfilter = ufsfifo_kqfilter, .vop_markatime = ufs_markatime, - .vop_pathconf = ufsfifo_pathconf, + .vop_pathconf = ufs_pathconf, .vop_print = ufs_print, .vop_read = VOP_PANIC, .vop_reclaim = ufs_reclaim, .vop_setattr = ufs_setattr, #ifdef MAC .vop_setlabel = vop_stdsetlabel_ea, #endif .vop_write = VOP_PANIC, #ifdef UFS_EXTATTR .vop_getextattr = ufs_getextattr, .vop_deleteextattr = ufs_deleteextattr, .vop_setextattr = ufs_setextattr, #endif #ifdef UFS_ACL .vop_getacl = ufs_getacl, .vop_setacl = ufs_setacl, .vop_aclcheck = ufs_aclcheck, #endif };