Index: head/sys/amd64/amd64/vm_machdep.c =================================================================== --- head/sys/amd64/amd64/vm_machdep.c (revision 325231) +++ head/sys/amd64/amd64/vm_machdep.c (revision 325232) @@ -1,717 +1,723 @@ /*- * Copyright (c) 1982, 1986 The Regents of the University of California. * Copyright (c) 1989, 1990 William Jolitz * Copyright (c) 1994 John Dyson * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department, and William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91 * Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$ */ #include __FBSDID("$FreeBSD$"); #include "opt_isa.h" #include "opt_cpu.h" #include "opt_compat.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void cpu_reset_real(void); #ifdef SMP static void cpu_reset_proxy(void); static u_int cpu_reset_proxyid; static volatile u_int cpu_reset_proxy_active; #endif _Static_assert(OFFSETOF_CURTHREAD == offsetof(struct pcpu, pc_curthread), "OFFSETOF_CURTHREAD does not correspond with offset of pc_curthread."); _Static_assert(OFFSETOF_CURPCB == offsetof(struct pcpu, pc_curpcb), "OFFSETOF_CURPCB does not correspond with offset of pc_curpcb."); _Static_assert(OFFSETOF_MONITORBUF == offsetof(struct pcpu, pc_monitorbuf), "OFFSETOF_MONINORBUF does not correspond with offset of pc_monitorbuf."); struct savefpu * get_pcb_user_save_td(struct thread *td) { vm_offset_t p; p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE - roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN); KASSERT((p % XSAVE_AREA_ALIGN) == 0, ("Unaligned pcb_user_save area")); return ((struct savefpu *)p); } struct savefpu * get_pcb_user_save_pcb(struct pcb *pcb) { vm_offset_t p; p = (vm_offset_t)(pcb + 1); return ((struct savefpu *)p); } struct pcb * get_pcb_td(struct thread *td) { vm_offset_t p; p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE - roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN) - sizeof(struct pcb); return ((struct pcb *)p); } void * alloc_fpusave(int flags) { void *res; struct savefpu_ymm *sf; res = malloc(cpu_max_ext_state_size, M_DEVBUF, flags); if (use_xsave) { sf = (struct savefpu_ymm *)res; bzero(&sf->sv_xstate.sx_hd, sizeof(sf->sv_xstate.sx_hd)); sf->sv_xstate.sx_hd.xstate_bv = xsave_mask; } return (res); } /* * Finish a fork operation, with process p2 nearly set up. * Copy and update the pcb, set up the stack so that the child * ready to run and return to user mode. */ void cpu_fork(struct thread *td1, struct proc *p2, struct thread *td2, int flags) { struct proc *p1; struct pcb *pcb2; struct mdproc *mdp1, *mdp2; struct proc_ldt *pldt; p1 = td1->td_proc; if ((flags & RFPROC) == 0) { if ((flags & RFMEM) == 0) { /* unshare user LDT */ mdp1 = &p1->p_md; mtx_lock(&dt_lock); if ((pldt = mdp1->md_ldt) != NULL && pldt->ldt_refcnt > 1 && user_ldt_alloc(p1, 1) == NULL) panic("could not copy LDT"); mtx_unlock(&dt_lock); } return; } /* Ensure that td1's pcb is up to date. */ fpuexit(td1); update_pcb_bases(td1->td_pcb); /* Point the pcb to the top of the stack */ pcb2 = get_pcb_td(td2); td2->td_pcb = pcb2; /* Copy td1's pcb */ bcopy(td1->td_pcb, pcb2, sizeof(*pcb2)); /* Properly initialize pcb_save */ pcb2->pcb_save = get_pcb_user_save_pcb(pcb2); bcopy(get_pcb_user_save_td(td1), get_pcb_user_save_pcb(pcb2), cpu_max_ext_state_size); /* Point mdproc and then copy over td1's contents */ mdp2 = &p2->p_md; bcopy(&p1->p_md, mdp2, sizeof(*mdp2)); /* * Create a new fresh stack for the new process. * Copy the trap frame for the return to user mode as if from a * syscall. This copies most of the user mode register values. */ td2->td_frame = (struct trapframe *)td2->td_pcb - 1; bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe)); td2->td_frame->tf_rax = 0; /* Child returns zero */ td2->td_frame->tf_rflags &= ~PSL_C; /* success */ td2->td_frame->tf_rdx = 1; /* * If the parent process has the trap bit set (i.e. a debugger had * single stepped the process to the system call), we need to clear * the trap flag from the new frame unless the debugger had set PF_FORK * on the parent. Otherwise, the child will receive a (likely * unexpected) SIGTRAP when it executes the first instruction after * returning to userland. */ if ((p1->p_pfsflags & PF_FORK) == 0) td2->td_frame->tf_rflags &= ~PSL_T; /* * Set registers for trampoline to user mode. Leave space for the * return address on stack. These are the kernel mode register values. */ pcb2->pcb_r12 = (register_t)fork_return; /* fork_trampoline argument */ pcb2->pcb_rbp = 0; pcb2->pcb_rsp = (register_t)td2->td_frame - sizeof(void *); pcb2->pcb_rbx = (register_t)td2; /* fork_trampoline argument */ pcb2->pcb_rip = (register_t)fork_trampoline; /*- * pcb2->pcb_dr*: cloned above. * pcb2->pcb_savefpu: cloned above. * pcb2->pcb_flags: cloned above. * pcb2->pcb_onfault: cloned above (always NULL here?). * pcb2->pcb_[fg]sbase: cloned above */ /* Setup to release spin count in fork_exit(). */ td2->td_md.md_spinlock_count = 1; td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I; td2->td_md.md_invl_gen.gen = 0; /* As an i386, do not copy io permission bitmap. */ pcb2->pcb_tssp = NULL; /* New segment registers. */ set_pcb_flags_raw(pcb2, PCB_FULL_IRET); /* Copy the LDT, if necessary. */ mdp1 = &td1->td_proc->p_md; mdp2 = &p2->p_md; if (mdp1->md_ldt == NULL) { mdp2->md_ldt = NULL; return; } mtx_lock(&dt_lock); if (mdp1->md_ldt != NULL) { if (flags & RFMEM) { mdp1->md_ldt->ldt_refcnt++; mdp2->md_ldt = mdp1->md_ldt; bcopy(&mdp1->md_ldt_sd, &mdp2->md_ldt_sd, sizeof(struct system_segment_descriptor)); } else { mdp2->md_ldt = NULL; mdp2->md_ldt = user_ldt_alloc(p2, 0); if (mdp2->md_ldt == NULL) panic("could not copy LDT"); amd64_set_ldt_data(td2, 0, max_ldt_segment, (struct user_segment_descriptor *) mdp1->md_ldt->ldt_base); } } else mdp2->md_ldt = NULL; mtx_unlock(&dt_lock); /* * Now, cpu_switch() can schedule the new process. * pcb_rsp is loaded pointing to the cpu_switch() stack frame * containing the return address when exiting cpu_switch. * This will normally be to fork_trampoline(), which will have * %ebx loaded with the new proc's pointer. fork_trampoline() * will set up a stack to call fork_return(p, frame); to complete * the return to user-mode. */ } /* * Intercept the return address from a freshly forked process that has NOT * been scheduled yet. * * This is needed to make kernel threads stay in kernel mode. */ void cpu_fork_kthread_handler(struct thread *td, void (*func)(void *), void *arg) { /* * Note that the trap frame follows the args, so the function * is really called like this: func(arg, frame); */ td->td_pcb->pcb_r12 = (long) func; /* function */ td->td_pcb->pcb_rbx = (long) arg; /* first arg */ } void cpu_exit(struct thread *td) { /* * If this process has a custom LDT, release it. */ if (td->td_proc->p_md.md_ldt != NULL) user_ldt_free(td); } void cpu_thread_exit(struct thread *td) { struct pcb *pcb; critical_enter(); if (td == PCPU_GET(fpcurthread)) fpudrop(); critical_exit(); pcb = td->td_pcb; /* Disable any hardware breakpoints. */ if (pcb->pcb_flags & PCB_DBREGS) { reset_dbregs(); clear_pcb_flags(pcb, PCB_DBREGS); } } void cpu_thread_clean(struct thread *td) { struct pcb *pcb; pcb = td->td_pcb; /* * Clean TSS/iomap */ if (pcb->pcb_tssp != NULL) { kmem_free(kernel_arena, (vm_offset_t)pcb->pcb_tssp, ctob(IOPAGES + 1)); pcb->pcb_tssp = NULL; } } void cpu_thread_swapin(struct thread *td) { } void cpu_thread_swapout(struct thread *td) { } void cpu_thread_alloc(struct thread *td) { struct pcb *pcb; struct xstate_hdr *xhdr; td->td_pcb = pcb = get_pcb_td(td); td->td_frame = (struct trapframe *)pcb - 1; pcb->pcb_save = get_pcb_user_save_pcb(pcb); if (use_xsave) { xhdr = (struct xstate_hdr *)(pcb->pcb_save + 1); bzero(xhdr, sizeof(*xhdr)); xhdr->xstate_bv = xsave_mask; } } void cpu_thread_free(struct thread *td) { cpu_thread_clean(td); } void cpu_set_syscall_retval(struct thread *td, int error) { switch (error) { case 0: td->td_frame->tf_rax = td->td_retval[0]; td->td_frame->tf_rdx = td->td_retval[1]; td->td_frame->tf_rflags &= ~PSL_C; break; case ERESTART: /* * Reconstruct pc, we know that 'syscall' is 2 bytes, * lcall $X,y is 7 bytes, int 0x80 is 2 bytes. * We saved this in tf_err. * %r10 (which was holding the value of %rcx) is restored * for the next iteration. * %r10 restore is only required for freebsd/amd64 processes, * but shall be innocent for any ia32 ABI. * * Require full context restore to get the arguments * in the registers reloaded at return to usermode. */ td->td_frame->tf_rip -= td->td_frame->tf_err; td->td_frame->tf_r10 = td->td_frame->tf_rcx; set_pcb_flags(td->td_pcb, PCB_FULL_IRET); break; case EJUSTRETURN: break; default: td->td_frame->tf_rax = SV_ABI_ERRNO(td->td_proc, error); td->td_frame->tf_rflags |= PSL_C; break; } } /* * Initialize machine state, mostly pcb and trap frame for a new * thread, about to return to userspace. Put enough state in the new * thread's PCB to get it to go back to the fork_return(), which * finalizes the thread state and handles peculiarities of the first * return to userspace for the new thread. */ void cpu_copy_thread(struct thread *td, struct thread *td0) { struct pcb *pcb2; /* Point the pcb to the top of the stack. */ pcb2 = td->td_pcb; /* * Copy the upcall pcb. This loads kernel regs. * Those not loaded individually below get their default * values here. */ update_pcb_bases(td0->td_pcb); bcopy(td0->td_pcb, pcb2, sizeof(*pcb2)); clear_pcb_flags(pcb2, PCB_FPUINITDONE | PCB_USERFPUINITDONE | PCB_KERNFPU); pcb2->pcb_save = get_pcb_user_save_pcb(pcb2); bcopy(get_pcb_user_save_td(td0), pcb2->pcb_save, cpu_max_ext_state_size); set_pcb_flags_raw(pcb2, PCB_FULL_IRET); /* * Create a new fresh stack for the new thread. */ bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe)); /* If the current thread has the trap bit set (i.e. a debugger had * single stepped the process to the system call), we need to clear * the trap flag from the new frame. Otherwise, the new thread will * receive a (likely unexpected) SIGTRAP when it executes the first * instruction after returning to userland. */ td->td_frame->tf_rflags &= ~PSL_T; /* * Set registers for trampoline to user mode. Leave space for the * return address on stack. These are the kernel mode register values. */ pcb2->pcb_r12 = (register_t)fork_return; /* trampoline arg */ pcb2->pcb_rbp = 0; pcb2->pcb_rsp = (register_t)td->td_frame - sizeof(void *); /* trampoline arg */ pcb2->pcb_rbx = (register_t)td; /* trampoline arg */ pcb2->pcb_rip = (register_t)fork_trampoline; /* * If we didn't copy the pcb, we'd need to do the following registers: * pcb2->pcb_dr*: cloned above. * pcb2->pcb_savefpu: cloned above. * pcb2->pcb_onfault: cloned above (always NULL here?). * pcb2->pcb_[fg]sbase: cloned above */ /* Setup to release spin count in fork_exit(). */ td->td_md.md_spinlock_count = 1; td->td_md.md_saved_flags = PSL_KERNEL | PSL_I; } /* * Set that machine state for performing an upcall that starts * the entry function with the given argument. */ void cpu_set_upcall(struct thread *td, void (*entry)(void *), void *arg, stack_t *stack) { /* * Do any extra cleaning that needs to be done. * The thread may have optional components * that are not present in a fresh thread. * This may be a recycled thread so make it look * as though it's newly allocated. */ cpu_thread_clean(td); #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { /* * Set the trap frame to point at the beginning of the entry * function. */ td->td_frame->tf_rbp = 0; td->td_frame->tf_rsp = (((uintptr_t)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4; td->td_frame->tf_rip = (uintptr_t)entry; + /* Return address sentinel value to stop stack unwinding. */ + suword32((void *)td->td_frame->tf_rsp, 0); + /* Pass the argument to the entry point. */ suword32((void *)(td->td_frame->tf_rsp + sizeof(int32_t)), (uint32_t)(uintptr_t)arg); return; } #endif /* * Set the trap frame to point at the beginning of the uts * function. */ td->td_frame->tf_rbp = 0; td->td_frame->tf_rsp = ((register_t)stack->ss_sp + stack->ss_size) & ~0x0f; td->td_frame->tf_rsp -= 8; td->td_frame->tf_rip = (register_t)entry; td->td_frame->tf_ds = _udatasel; td->td_frame->tf_es = _udatasel; td->td_frame->tf_fs = _ufssel; td->td_frame->tf_gs = _ugssel; td->td_frame->tf_flags = TF_HASSEGS; + + /* Return address sentinel value to stop stack unwinding. */ + suword((void *)td->td_frame->tf_rsp, 0); /* Pass the argument to the entry point. */ td->td_frame->tf_rdi = (register_t)arg; } int cpu_set_user_tls(struct thread *td, void *tls_base) { struct pcb *pcb; if ((u_int64_t)tls_base >= VM_MAXUSER_ADDRESS) return (EINVAL); pcb = td->td_pcb; set_pcb_flags(pcb, PCB_FULL_IRET); #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { pcb->pcb_gsbase = (register_t)tls_base; return (0); } #endif pcb->pcb_fsbase = (register_t)tls_base; return (0); } #ifdef SMP static void cpu_reset_proxy() { cpuset_t tcrp; cpu_reset_proxy_active = 1; while (cpu_reset_proxy_active == 1) ia32_pause(); /* Wait for other cpu to see that we've started */ CPU_SETOF(cpu_reset_proxyid, &tcrp); stop_cpus(tcrp); printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid); DELAY(1000000); cpu_reset_real(); } #endif void cpu_reset() { #ifdef SMP cpuset_t map; u_int cnt; if (smp_started) { map = all_cpus; CPU_CLR(PCPU_GET(cpuid), &map); CPU_NAND(&map, &stopped_cpus); if (!CPU_EMPTY(&map)) { printf("cpu_reset: Stopping other CPUs\n"); stop_cpus(map); } if (PCPU_GET(cpuid) != 0) { cpu_reset_proxyid = PCPU_GET(cpuid); cpustop_restartfunc = cpu_reset_proxy; cpu_reset_proxy_active = 0; printf("cpu_reset: Restarting BSP\n"); /* Restart CPU #0. */ CPU_SETOF(0, &started_cpus); wmb(); cnt = 0; while (cpu_reset_proxy_active == 0 && cnt < 10000000) { ia32_pause(); cnt++; /* Wait for BSP to announce restart */ } if (cpu_reset_proxy_active == 0) printf("cpu_reset: Failed to restart BSP\n"); enable_intr(); cpu_reset_proxy_active = 2; while (1) ia32_pause(); /* NOTREACHED */ } DELAY(1000000); } #endif cpu_reset_real(); /* NOTREACHED */ } static void cpu_reset_real() { struct region_descriptor null_idt; int b; disable_intr(); /* * Attempt to do a CPU reset via the keyboard controller, * do not turn off GateA20, as any machine that fails * to do the reset here would then end up in no man's land. */ outb(IO_KBD + 4, 0xFE); DELAY(500000); /* wait 0.5 sec to see if that did it */ /* * Attempt to force a reset via the Reset Control register at * I/O port 0xcf9. Bit 2 forces a system reset when it * transitions from 0 to 1. Bit 1 selects the type of reset * to attempt: 0 selects a "soft" reset, and 1 selects a * "hard" reset. We try a "hard" reset. The first write sets * bit 1 to select a "hard" reset and clears bit 2. The * second write forces a 0 -> 1 transition in bit 2 to trigger * a reset. */ outb(0xcf9, 0x2); outb(0xcf9, 0x6); DELAY(500000); /* wait 0.5 sec to see if that did it */ /* * Attempt to force a reset via the Fast A20 and Init register * at I/O port 0x92. Bit 1 serves as an alternate A20 gate. * Bit 0 asserts INIT# when set to 1. We are careful to only * preserve bit 1 while setting bit 0. We also must clear bit * 0 before setting it if it isn't already clear. */ b = inb(0x92); if (b != 0xff) { if ((b & 0x1) != 0) outb(0x92, b & 0xfe); outb(0x92, b | 0x1); DELAY(500000); /* wait 0.5 sec to see if that did it */ } printf("No known reset method worked, attempting CPU shutdown\n"); DELAY(1000000); /* wait 1 sec for printf to complete */ /* Wipe the IDT. */ null_idt.rd_limit = 0; null_idt.rd_base = 0; lidt(&null_idt); /* "good night, sweet prince .... " */ breakpoint(); /* NOTREACHED */ while(1); } /* * Software interrupt handler for queued VM system processing. */ void swi_vm(void *dummy) { if (busdma_swi_pending != 0) busdma_swi(); } /* * Tell whether this address is in some physical memory region. * Currently used by the kernel coredump code in order to avoid * dumping the ``ISA memory hole'' which could cause indefinite hangs, * or other unpredictable behaviour. */ int is_physical_memory(vm_paddr_t addr) { #ifdef DEV_ISA /* The ISA ``memory hole''. */ if (addr >= 0xa0000 && addr < 0x100000) return 0; #endif /* * stuff other tests for known memory-mapped devices (PCI?) * here */ return 1; } Index: head/sys/i386/i386/vm_machdep.c =================================================================== --- head/sys/i386/i386/vm_machdep.c (revision 325231) +++ head/sys/i386/i386/vm_machdep.c (revision 325232) @@ -1,855 +1,858 @@ /*- * Copyright (c) 1982, 1986 The Regents of the University of California. * Copyright (c) 1989, 1990 William Jolitz * Copyright (c) 1994 John Dyson * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department, and William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91 * Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$ */ #include __FBSDID("$FreeBSD$"); #include "opt_isa.h" #include "opt_npx.h" #include "opt_reset.h" #include "opt_cpu.h" #include "opt_xbox.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CPU_ELAN #include #endif #include #include #include #include #include #include #include #ifdef XBOX #include #endif #ifndef NSFBUFS #define NSFBUFS (512 + maxusers * 16) #endif _Static_assert(OFFSETOF_CURTHREAD == offsetof(struct pcpu, pc_curthread), "OFFSETOF_CURTHREAD does not correspond with offset of pc_curthread."); _Static_assert(OFFSETOF_CURPCB == offsetof(struct pcpu, pc_curpcb), "OFFSETOF_CURPCB does not correspond with offset of pc_curpcb."); _Static_assert(__OFFSETOF_MONITORBUF == offsetof(struct pcpu, pc_monitorbuf), "__OFFSETOF_MONINORBUF does not correspond with offset of pc_monitorbuf."); static void cpu_reset_real(void); #ifdef SMP static void cpu_reset_proxy(void); static u_int cpu_reset_proxyid; static volatile u_int cpu_reset_proxy_active; #endif union savefpu * get_pcb_user_save_td(struct thread *td) { vm_offset_t p; p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE - roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN); KASSERT((p % XSAVE_AREA_ALIGN) == 0, ("Unaligned pcb_user_save area")); return ((union savefpu *)p); } union savefpu * get_pcb_user_save_pcb(struct pcb *pcb) { vm_offset_t p; p = (vm_offset_t)(pcb + 1); return ((union savefpu *)p); } struct pcb * get_pcb_td(struct thread *td) { vm_offset_t p; p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE - roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN) - sizeof(struct pcb); return ((struct pcb *)p); } void * alloc_fpusave(int flags) { void *res; struct savefpu_ymm *sf; res = malloc(cpu_max_ext_state_size, M_DEVBUF, flags); if (use_xsave) { sf = (struct savefpu_ymm *)res; bzero(&sf->sv_xstate.sx_hd, sizeof(sf->sv_xstate.sx_hd)); sf->sv_xstate.sx_hd.xstate_bv = xsave_mask; } return (res); } /* * Finish a fork operation, with process p2 nearly set up. * Copy and update the pcb, set up the stack so that the child * ready to run and return to user mode. */ void cpu_fork(struct thread *td1, struct proc *p2, struct thread *td2, int flags) { struct proc *p1; struct pcb *pcb2; struct mdproc *mdp2; p1 = td1->td_proc; if ((flags & RFPROC) == 0) { if ((flags & RFMEM) == 0) { /* unshare user LDT */ struct mdproc *mdp1 = &p1->p_md; struct proc_ldt *pldt, *pldt1; mtx_lock_spin(&dt_lock); if ((pldt1 = mdp1->md_ldt) != NULL && pldt1->ldt_refcnt > 1) { pldt = user_ldt_alloc(mdp1, pldt1->ldt_len); if (pldt == NULL) panic("could not copy LDT"); mdp1->md_ldt = pldt; set_user_ldt(mdp1); user_ldt_deref(pldt1); } else mtx_unlock_spin(&dt_lock); } return; } /* Ensure that td1's pcb is up to date. */ if (td1 == curthread) td1->td_pcb->pcb_gs = rgs(); critical_enter(); if (PCPU_GET(fpcurthread) == td1) npxsave(td1->td_pcb->pcb_save); critical_exit(); /* Point the pcb to the top of the stack */ pcb2 = get_pcb_td(td2); td2->td_pcb = pcb2; /* Copy td1's pcb */ bcopy(td1->td_pcb, pcb2, sizeof(*pcb2)); /* Properly initialize pcb_save */ pcb2->pcb_save = get_pcb_user_save_pcb(pcb2); bcopy(get_pcb_user_save_td(td1), get_pcb_user_save_pcb(pcb2), cpu_max_ext_state_size); /* Point mdproc and then copy over td1's contents */ mdp2 = &p2->p_md; bcopy(&p1->p_md, mdp2, sizeof(*mdp2)); /* * Create a new fresh stack for the new process. * Copy the trap frame for the return to user mode as if from a * syscall. This copies most of the user mode register values. * The -16 is so we can expand the trapframe if we go to vm86. */ td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb - 16) - 1; bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe)); td2->td_frame->tf_eax = 0; /* Child returns zero */ td2->td_frame->tf_eflags &= ~PSL_C; /* success */ td2->td_frame->tf_edx = 1; /* * If the parent process has the trap bit set (i.e. a debugger had * single stepped the process to the system call), we need to clear * the trap flag from the new frame unless the debugger had set PF_FORK * on the parent. Otherwise, the child will receive a (likely * unexpected) SIGTRAP when it executes the first instruction after * returning to userland. */ if ((p1->p_pfsflags & PF_FORK) == 0) td2->td_frame->tf_eflags &= ~PSL_T; /* * Set registers for trampoline to user mode. Leave space for the * return address on stack. These are the kernel mode register values. */ #if defined(PAE) || defined(PAE_TABLES) pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdpt); #else pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir); #endif pcb2->pcb_edi = 0; pcb2->pcb_esi = (int)fork_return; /* fork_trampoline argument */ pcb2->pcb_ebp = 0; pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *); pcb2->pcb_ebx = (int)td2; /* fork_trampoline argument */ pcb2->pcb_eip = (int)fork_trampoline; /*- * pcb2->pcb_dr*: cloned above. * pcb2->pcb_savefpu: cloned above. * pcb2->pcb_flags: cloned above. * pcb2->pcb_onfault: cloned above (always NULL here?). * pcb2->pcb_gs: cloned above. * pcb2->pcb_ext: cleared below. */ /* * XXX don't copy the i/o pages. this should probably be fixed. */ pcb2->pcb_ext = 0; /* Copy the LDT, if necessary. */ mtx_lock_spin(&dt_lock); if (mdp2->md_ldt != NULL) { if (flags & RFMEM) { mdp2->md_ldt->ldt_refcnt++; } else { mdp2->md_ldt = user_ldt_alloc(mdp2, mdp2->md_ldt->ldt_len); if (mdp2->md_ldt == NULL) panic("could not copy LDT"); } } mtx_unlock_spin(&dt_lock); /* Setup to release spin count in fork_exit(). */ td2->td_md.md_spinlock_count = 1; td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I; /* * Now, cpu_switch() can schedule the new process. * pcb_esp is loaded pointing to the cpu_switch() stack frame * containing the return address when exiting cpu_switch. * This will normally be to fork_trampoline(), which will have * %ebx loaded with the new proc's pointer. fork_trampoline() * will set up a stack to call fork_return(p, frame); to complete * the return to user-mode. */ } /* * Intercept the return address from a freshly forked process that has NOT * been scheduled yet. * * This is needed to make kernel threads stay in kernel mode. */ void cpu_fork_kthread_handler(struct thread *td, void (*func)(void *), void *arg) { /* * Note that the trap frame follows the args, so the function * is really called like this: func(arg, frame); */ td->td_pcb->pcb_esi = (int) func; /* function */ td->td_pcb->pcb_ebx = (int) arg; /* first arg */ } void cpu_exit(struct thread *td) { /* * If this process has a custom LDT, release it. Reset pc->pcb_gs * and %gs before we free it in case they refer to an LDT entry. */ mtx_lock_spin(&dt_lock); if (td->td_proc->p_md.md_ldt) { td->td_pcb->pcb_gs = _udatasel; load_gs(_udatasel); user_ldt_free(td); } else mtx_unlock_spin(&dt_lock); } void cpu_thread_exit(struct thread *td) { critical_enter(); if (td == PCPU_GET(fpcurthread)) npxdrop(); critical_exit(); /* Disable any hardware breakpoints. */ if (td->td_pcb->pcb_flags & PCB_DBREGS) { reset_dbregs(); td->td_pcb->pcb_flags &= ~PCB_DBREGS; } } void cpu_thread_clean(struct thread *td) { struct pcb *pcb; pcb = td->td_pcb; if (pcb->pcb_ext != NULL) { /* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */ /* * XXX do we need to move the TSS off the allocated pages * before freeing them? (not done here) */ kmem_free(kernel_arena, (vm_offset_t)pcb->pcb_ext, ctob(IOPAGES + 1)); pcb->pcb_ext = NULL; } } void cpu_thread_swapin(struct thread *td) { } void cpu_thread_swapout(struct thread *td) { } void cpu_thread_alloc(struct thread *td) { struct pcb *pcb; struct xstate_hdr *xhdr; td->td_pcb = pcb = get_pcb_td(td); td->td_frame = (struct trapframe *)((caddr_t)pcb - 16) - 1; pcb->pcb_ext = NULL; pcb->pcb_save = get_pcb_user_save_pcb(pcb); if (use_xsave) { xhdr = (struct xstate_hdr *)(pcb->pcb_save + 1); bzero(xhdr, sizeof(*xhdr)); xhdr->xstate_bv = xsave_mask; } } void cpu_thread_free(struct thread *td) { cpu_thread_clean(td); } void cpu_set_syscall_retval(struct thread *td, int error) { switch (error) { case 0: td->td_frame->tf_eax = td->td_retval[0]; td->td_frame->tf_edx = td->td_retval[1]; td->td_frame->tf_eflags &= ~PSL_C; break; case ERESTART: /* * Reconstruct pc, assuming lcall $X,y is 7 bytes, int * 0x80 is 2 bytes. We saved this in tf_err. */ td->td_frame->tf_eip -= td->td_frame->tf_err; break; case EJUSTRETURN: break; default: td->td_frame->tf_eax = SV_ABI_ERRNO(td->td_proc, error); td->td_frame->tf_eflags |= PSL_C; break; } } /* * Initialize machine state, mostly pcb and trap frame for a new * thread, about to return to userspace. Put enough state in the new * thread's PCB to get it to go back to the fork_return(), which * finalizes the thread state and handles peculiarities of the first * return to userspace for the new thread. */ void cpu_copy_thread(struct thread *td, struct thread *td0) { struct pcb *pcb2; /* Point the pcb to the top of the stack. */ pcb2 = td->td_pcb; /* * Copy the upcall pcb. This loads kernel regs. * Those not loaded individually below get their default * values here. */ bcopy(td0->td_pcb, pcb2, sizeof(*pcb2)); pcb2->pcb_flags &= ~(PCB_NPXINITDONE | PCB_NPXUSERINITDONE | PCB_KERNNPX); pcb2->pcb_save = get_pcb_user_save_pcb(pcb2); bcopy(get_pcb_user_save_td(td0), pcb2->pcb_save, cpu_max_ext_state_size); /* * Create a new fresh stack for the new thread. */ bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe)); /* If the current thread has the trap bit set (i.e. a debugger had * single stepped the process to the system call), we need to clear * the trap flag from the new frame. Otherwise, the new thread will * receive a (likely unexpected) SIGTRAP when it executes the first * instruction after returning to userland. */ td->td_frame->tf_eflags &= ~PSL_T; /* * Set registers for trampoline to user mode. Leave space for the * return address on stack. These are the kernel mode register values. */ pcb2->pcb_edi = 0; pcb2->pcb_esi = (int)fork_return; /* trampoline arg */ pcb2->pcb_ebp = 0; pcb2->pcb_esp = (int)td->td_frame - sizeof(void *); /* trampoline arg */ pcb2->pcb_ebx = (int)td; /* trampoline arg */ pcb2->pcb_eip = (int)fork_trampoline; pcb2->pcb_gs = rgs(); /* * If we didn't copy the pcb, we'd need to do the following registers: * pcb2->pcb_cr3: cloned above. * pcb2->pcb_dr*: cloned above. * pcb2->pcb_savefpu: cloned above. * pcb2->pcb_flags: cloned above. * pcb2->pcb_onfault: cloned above (always NULL here?). * pcb2->pcb_gs: cloned above. * pcb2->pcb_ext: cleared below. */ pcb2->pcb_ext = NULL; /* Setup to release spin count in fork_exit(). */ td->td_md.md_spinlock_count = 1; td->td_md.md_saved_flags = PSL_KERNEL | PSL_I; } /* * Set that machine state for performing an upcall that starts * the entry function with the given argument. */ void cpu_set_upcall(struct thread *td, void (*entry)(void *), void *arg, stack_t *stack) { /* * Do any extra cleaning that needs to be done. * The thread may have optional components * that are not present in a fresh thread. * This may be a recycled thread so make it look * as though it's newly allocated. */ cpu_thread_clean(td); /* * Set the trap frame to point at the beginning of the entry * function. */ td->td_frame->tf_ebp = 0; td->td_frame->tf_esp = (((int)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4; td->td_frame->tf_eip = (int)entry; + /* Return address sentinel value to stop stack unwinding. */ + suword((void *)td->td_frame->tf_esp, 0); + /* Pass the argument to the entry point. */ suword((void *)(td->td_frame->tf_esp + sizeof(void *)), (int)arg); } int cpu_set_user_tls(struct thread *td, void *tls_base) { struct segment_descriptor sd; uint32_t base; /* * Construct a descriptor and store it in the pcb for * the next context switch. Also store it in the gdt * so that the load of tf_fs into %fs will activate it * at return to userland. */ base = (uint32_t)tls_base; sd.sd_lobase = base & 0xffffff; sd.sd_hibase = (base >> 24) & 0xff; sd.sd_lolimit = 0xffff; /* 4GB limit, wraps around */ sd.sd_hilimit = 0xf; sd.sd_type = SDT_MEMRWA; sd.sd_dpl = SEL_UPL; sd.sd_p = 1; sd.sd_xx = 0; sd.sd_def32 = 1; sd.sd_gran = 1; critical_enter(); /* set %gs */ td->td_pcb->pcb_gsd = sd; if (td == curthread) { PCPU_GET(fsgs_gdt)[1] = sd; load_gs(GSEL(GUGS_SEL, SEL_UPL)); } critical_exit(); return (0); } /* * Convert kernel VA to physical address */ vm_paddr_t kvtop(void *addr) { vm_paddr_t pa; pa = pmap_kextract((vm_offset_t)addr); if (pa == 0) panic("kvtop: zero page frame"); return (pa); } #ifdef SMP static void cpu_reset_proxy() { cpuset_t tcrp; cpu_reset_proxy_active = 1; while (cpu_reset_proxy_active == 1) ; /* Wait for other cpu to see that we've started */ CPU_SETOF(cpu_reset_proxyid, &tcrp); stop_cpus(tcrp); printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid); DELAY(1000000); cpu_reset_real(); } #endif void cpu_reset() { #ifdef XBOX if (arch_i386_is_xbox) { /* Kick the PIC16L, it can reboot the box */ pic16l_reboot(); for (;;); } #endif #ifdef SMP cpuset_t map; u_int cnt; if (smp_started) { map = all_cpus; CPU_CLR(PCPU_GET(cpuid), &map); CPU_NAND(&map, &stopped_cpus); if (!CPU_EMPTY(&map)) { printf("cpu_reset: Stopping other CPUs\n"); stop_cpus(map); } if (PCPU_GET(cpuid) != 0) { cpu_reset_proxyid = PCPU_GET(cpuid); cpustop_restartfunc = cpu_reset_proxy; cpu_reset_proxy_active = 0; printf("cpu_reset: Restarting BSP\n"); /* Restart CPU #0. */ /* XXX: restart_cpus(1 << 0); */ CPU_SETOF(0, &started_cpus); wmb(); cnt = 0; while (cpu_reset_proxy_active == 0 && cnt < 10000000) cnt++; /* Wait for BSP to announce restart */ if (cpu_reset_proxy_active == 0) printf("cpu_reset: Failed to restart BSP\n"); enable_intr(); cpu_reset_proxy_active = 2; while (1); /* NOTREACHED */ } DELAY(1000000); } #endif cpu_reset_real(); /* NOTREACHED */ } static void cpu_reset_real() { struct region_descriptor null_idt; int b; disable_intr(); #ifdef CPU_ELAN if (elan_mmcr != NULL) elan_mmcr->RESCFG = 1; #endif if (cpu == CPU_GEODE1100) { /* Attempt Geode's own reset */ outl(0xcf8, 0x80009044ul); outl(0xcfc, 0xf); } #if !defined(BROKEN_KEYBOARD_RESET) /* * Attempt to do a CPU reset via the keyboard controller, * do not turn off GateA20, as any machine that fails * to do the reset here would then end up in no man's land. */ outb(IO_KBD + 4, 0xFE); DELAY(500000); /* wait 0.5 sec to see if that did it */ #endif /* * Attempt to force a reset via the Reset Control register at * I/O port 0xcf9. Bit 2 forces a system reset when it * transitions from 0 to 1. Bit 1 selects the type of reset * to attempt: 0 selects a "soft" reset, and 1 selects a * "hard" reset. We try a "hard" reset. The first write sets * bit 1 to select a "hard" reset and clears bit 2. The * second write forces a 0 -> 1 transition in bit 2 to trigger * a reset. */ outb(0xcf9, 0x2); outb(0xcf9, 0x6); DELAY(500000); /* wait 0.5 sec to see if that did it */ /* * Attempt to force a reset via the Fast A20 and Init register * at I/O port 0x92. Bit 1 serves as an alternate A20 gate. * Bit 0 asserts INIT# when set to 1. We are careful to only * preserve bit 1 while setting bit 0. We also must clear bit * 0 before setting it if it isn't already clear. */ b = inb(0x92); if (b != 0xff) { if ((b & 0x1) != 0) outb(0x92, b & 0xfe); outb(0x92, b | 0x1); DELAY(500000); /* wait 0.5 sec to see if that did it */ } printf("No known reset method worked, attempting CPU shutdown\n"); DELAY(1000000); /* wait 1 sec for printf to complete */ /* Wipe the IDT. */ null_idt.rd_limit = 0; null_idt.rd_base = 0; lidt(&null_idt); /* "good night, sweet prince .... " */ breakpoint(); /* NOTREACHED */ while(1); } /* * Get an sf_buf from the freelist. May block if none are available. */ void sf_buf_map(struct sf_buf *sf, int flags) { pt_entry_t opte, *ptep; /* * Update the sf_buf's virtual-to-physical mapping, flushing the * virtual address from the TLB. Since the reference count for * the sf_buf's old mapping was zero, that mapping is not * currently in use. Consequently, there is no need to exchange * the old and new PTEs atomically, even under PAE. */ ptep = vtopte(sf->kva); opte = *ptep; *ptep = VM_PAGE_TO_PHYS(sf->m) | pgeflag | PG_RW | PG_V | pmap_cache_bits(sf->m->md.pat_mode, 0); /* * Avoid unnecessary TLB invalidations: If the sf_buf's old * virtual-to-physical mapping was not used, then any processor * that has invalidated the sf_buf's virtual address from its TLB * since the last used mapping need not invalidate again. */ #ifdef SMP if ((opte & (PG_V | PG_A)) == (PG_V | PG_A)) CPU_ZERO(&sf->cpumask); sf_buf_shootdown(sf, flags); #else if ((opte & (PG_V | PG_A)) == (PG_V | PG_A)) pmap_invalidate_page(kernel_pmap, sf->kva); #endif } #ifdef SMP void sf_buf_shootdown(struct sf_buf *sf, int flags) { cpuset_t other_cpus; u_int cpuid; sched_pin(); cpuid = PCPU_GET(cpuid); if (!CPU_ISSET(cpuid, &sf->cpumask)) { CPU_SET(cpuid, &sf->cpumask); invlpg(sf->kva); } if ((flags & SFB_CPUPRIVATE) == 0) { other_cpus = all_cpus; CPU_CLR(cpuid, &other_cpus); CPU_NAND(&other_cpus, &sf->cpumask); if (!CPU_EMPTY(&other_cpus)) { CPU_OR(&sf->cpumask, &other_cpus); smp_masked_invlpg(other_cpus, sf->kva); } } sched_unpin(); } #endif /* * MD part of sf_buf_free(). */ int sf_buf_unmap(struct sf_buf *sf) { return (0); } static void sf_buf_invalidate(struct sf_buf *sf) { vm_page_t m = sf->m; /* * Use pmap_qenter to update the pte for * existing mapping, in particular, the PAT * settings are recalculated. */ pmap_qenter(sf->kva, &m, 1); pmap_invalidate_cache_range(sf->kva, sf->kva + PAGE_SIZE, FALSE); } /* * Invalidate the cache lines that may belong to the page, if * (possibly old) mapping of the page by sf buffer exists. Returns * TRUE when mapping was found and cache invalidated. */ boolean_t sf_buf_invalidate_cache(vm_page_t m) { return (sf_buf_process_page(m, sf_buf_invalidate)); } /* * Software interrupt handler for queued VM system processing. */ void swi_vm(void *dummy) { if (busdma_swi_pending != 0) busdma_swi(); } /* * Tell whether this address is in some physical memory region. * Currently used by the kernel coredump code in order to avoid * dumping the ``ISA memory hole'' which could cause indefinite hangs, * or other unpredictable behaviour. */ int is_physical_memory(vm_paddr_t addr) { #ifdef DEV_ISA /* The ISA ``memory hole''. */ if (addr >= 0xa0000 && addr < 0x100000) return 0; #endif /* * stuff other tests for known memory-mapped devices (PCI?) * here */ return 1; }