Index: stable/10/sys/dev/qlxgbe/ql_def.h
===================================================================
--- stable/10/sys/dev/qlxgbe/ql_def.h	(revision 324030)
+++ stable/10/sys/dev/qlxgbe/ql_def.h	(revision 324031)
@@ -1,276 +1,277 @@
 /*
  * Copyright (c) 2013-2016 Qlogic Corporation
  * All rights reserved.
  *
  *  Redistribution and use in source and binary forms, with or without
  *  modification, are permitted provided that the following conditions
  *  are met:
  *
  *  1. Redistributions of source code must retain the above copyright
  *     notice, this list of conditions and the following disclaimer.
  *  2. Redistributions in binary form must reproduce the above copyright
  *     notice, this list of conditions and the following disclaimer in the
  *     documentation and/or other materials provided with the distribution.
  *
  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  *  POSSIBILITY OF SUCH DAMAGE.
  *
  * $FreeBSD$
  */
 
 /*
  * File: ql_def.h
  * Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656.
  */
 
 #ifndef _QL_DEF_H_
 #define _QL_DEF_H_
 
 #define BIT_0                   (0x1 << 0)
 #define BIT_1                   (0x1 << 1)
 #define BIT_2                   (0x1 << 2)
 #define BIT_3                   (0x1 << 3)
 #define BIT_4                   (0x1 << 4)
 #define BIT_5                   (0x1 << 5)
 #define BIT_6                   (0x1 << 6)
 #define BIT_7                   (0x1 << 7)
 #define BIT_8                   (0x1 << 8)
 #define BIT_9                   (0x1 << 9)
 #define BIT_10                  (0x1 << 10)
 #define BIT_11                  (0x1 << 11)
 #define BIT_12                  (0x1 << 12)
 #define BIT_13                  (0x1 << 13)
 #define BIT_14                  (0x1 << 14)
 #define BIT_15                  (0x1 << 15)
 #define BIT_16                  (0x1 << 16)
 #define BIT_17                  (0x1 << 17)
 #define BIT_18                  (0x1 << 18)
 #define BIT_19                  (0x1 << 19)
 #define BIT_20                  (0x1 << 20)
 #define BIT_21                  (0x1 << 21)
 #define BIT_22                  (0x1 << 22)
 #define BIT_23                  (0x1 << 23)
 #define BIT_24                  (0x1 << 24)
 #define BIT_25                  (0x1 << 25)
 #define BIT_26                  (0x1 << 26)
 #define BIT_27                  (0x1 << 27)
 #define BIT_28                  (0x1 << 28)
 #define BIT_29                  (0x1 << 29)
 #define BIT_30                  (0x1 << 30)
 #define BIT_31                  (0x1 << 31)
 
 struct qla_rx_buf {
 	struct mbuf	*m_head;
 	bus_dmamap_t	map;
 	bus_addr_t      paddr;
 	uint32_t	handle;
 	void		*next;
 };
 typedef struct qla_rx_buf qla_rx_buf_t;
 
 struct qla_rx_ring {
 	qla_rx_buf_t	rx_buf[NUM_RX_DESCRIPTORS];
 };
 typedef struct qla_rx_ring qla_rx_ring_t;
 
 struct qla_tx_buf {
 	struct mbuf	*m_head;
 	bus_dmamap_t	map;
 };
 typedef struct qla_tx_buf qla_tx_buf_t;
 
 #define QLA_MAX_SEGMENTS	62	/* maximum # of segs in a sg list */
 #define QLA_MAX_MTU		9000
 #define QLA_STD_FRAME_SIZE	1514
 #define QLA_MAX_TSO_FRAME_SIZE	((64 * 1024 - 1) + 22)
 
 /* Number of MSIX/MSI Vectors required */
 
 struct qla_ivec {
 	uint32_t		sds_idx;
 	void			*ha;
 	struct resource		*irq;
 	void			*handle;
 	int			irq_rid;
 };
 
 typedef struct qla_ivec qla_ivec_t;
 
 #define QLA_WATCHDOG_CALLOUT_TICKS	2
 
 typedef struct _qla_tx_ring {
 	qla_tx_buf_t	tx_buf[NUM_TX_DESCRIPTORS];
 	uint64_t	count;
 	uint64_t	iscsi_pkt_count;
 } qla_tx_ring_t;
 
 typedef struct _qla_tx_fp {
 	struct mtx		tx_mtx;
 	char			tx_mtx_name[32];
 	struct buf_ring		*tx_br;
 	struct task		fp_task;
 	struct taskqueue	*fp_taskqueue;
 	void			*ha;
 	uint32_t		txr_idx;
 } qla_tx_fp_t;
 
 /*
  * Adapter structure contains the hardware independant information of the
  * pci function.
  */
 struct qla_host {
         volatile struct {
                 volatile uint32_t
 			qla_callout_init	:1,
 			qla_watchdog_active	:1,
 			parent_tag		:1,
 			lock_init		:1;
         } flags;
 
 	volatile uint32_t	qla_interface_up;
 	volatile uint32_t	stop_rcv;
 	volatile uint32_t	qla_watchdog_exit;
 	volatile uint32_t	qla_watchdog_exited;
 	volatile uint32_t	qla_watchdog_pause;
 	volatile uint32_t	qla_watchdog_paused;
 	volatile uint32_t	qla_initiate_recovery;
 	volatile uint32_t	qla_detach_active;
 
 	device_t		pci_dev;
 
 	uint16_t		watchdog_ticks;
 	uint8_t			pci_func;
 	uint8_t			resvd;
 
         /* ioctl related */
         struct cdev             *ioctl_dev;
 
 	/* register mapping */
 	struct resource		*pci_reg;
 	int			reg_rid;
 	struct resource		*pci_reg1;
 	int			reg_rid1;
 
 	/* interrupts */
 	struct resource         *mbx_irq;
 	void			*mbx_handle;
 	int			mbx_irq_rid;
 
 	int			msix_count;
 
 	qla_ivec_t		irq_vec[MAX_SDS_RINGS];
 	
 	/* parent dma tag */
 	bus_dma_tag_t           parent_tag;
 
 	/* interface to o.s */
 	struct ifnet		*ifp;
 
 	struct ifmedia		media;
 	uint16_t		max_frame_size;
 	uint16_t		rsrvd0;
 	int			if_flags;
 
 	/* hardware access lock */
 
 	struct mtx		hw_lock;
 	volatile uint32_t	hw_lock_held;
 	uint64_t		hw_lock_failed;
 
 	/* transmit and receive buffers */
 	uint32_t		txr_idx; /* index of the current tx ring */
 	qla_tx_ring_t		tx_ring[NUM_TX_RINGS];
 						
 	bus_dma_tag_t		tx_tag;
 	struct callout		tx_callout;
 
 	qla_tx_fp_t		tx_fp[MAX_SDS_RINGS];
 
 	qla_rx_ring_t		rx_ring[MAX_RDS_RINGS];
 	bus_dma_tag_t		rx_tag;
 	uint32_t		std_replenish;
 
 	qla_rx_buf_t		*rxb_free;
 	uint32_t		rxb_free_count;
 	volatile uint32_t	posting;
 
 	/* stats */
 	uint32_t		err_m_getcl;
 	uint32_t		err_m_getjcl;
 	uint32_t		err_tx_dmamap_create;
 	uint32_t		err_tx_dmamap_load;
 	uint32_t		err_tx_defrag;
 
 	uint64_t		rx_frames;
 	uint64_t		rx_bytes;
 
 	uint64_t		lro_pkt_count;
 	uint64_t		lro_bytes;
 
 	uint64_t		ipv4_lro;
 	uint64_t		ipv6_lro;
 
 	uint64_t		tx_frames;
 	uint64_t		tx_bytes;
 	uint64_t		tx_tso_frames;
 	uint64_t		hw_vlan_tx_frames;
 
 	struct task             stats_task;
 	struct taskqueue	*stats_tq;
 	
         uint32_t                fw_ver_major;
         uint32_t                fw_ver_minor;
         uint32_t                fw_ver_sub;
         uint32_t                fw_ver_build;
 
 	/* hardware specific */
 	qla_hw_t		hw;
 
 	/* debug stuff */
 	volatile const char 	*qla_lock;
 	volatile const char	*qla_unlock;
 	uint32_t		dbg_level;
+	uint32_t		enable_minidump;
 
 	uint8_t			fw_ver_str[32];
 
 	/* Error Injection Related */
 	uint32_t		err_inject;
 	struct task		err_task;
 	struct taskqueue	*err_tq;
 
 	/* Async Event Related */
 	uint32_t                async_event;
 	struct task             async_event_task;
 	struct taskqueue        *async_event_tq;
 
 	/* Peer Device */
 	device_t		peer_dev;
 
 	volatile uint32_t	msg_from_peer;
 #define QL_PEER_MSG_RESET	0x01
 #define QL_PEER_MSG_ACK		0x02
 
 };
 typedef struct qla_host qla_host_t;
 
 /* note that align has to be a power of 2 */
 #define QL_ALIGN(size, align) (size + (align - 1)) & ~(align - 1);
 #define QL_MIN(x, y) ((x < y) ? x : y)
 
 #define QL_RUNNING(ifp) (ifp->if_drv_flags & IFF_DRV_RUNNING)
 
 /* Return 0, if identical, else 1 */
 #define QL_MAC_CMP(mac1, mac2)    \
 	((((*(uint32_t *) mac1) == (*(uint32_t *) mac2) && \
 	(*(uint16_t *)(mac1 + 4)) == (*(uint16_t *)(mac2 + 4)))) ? 0 : 1)
 
 #endif /* #ifndef _QL_DEF_H_ */
Index: stable/10/sys/dev/qlxgbe/ql_os.c
===================================================================
--- stable/10/sys/dev/qlxgbe/ql_os.c	(revision 324030)
+++ stable/10/sys/dev/qlxgbe/ql_os.c	(revision 324031)
@@ -1,2128 +1,2136 @@
 /*
  * Copyright (c) 2013-2016 Qlogic Corporation
  * All rights reserved.
  *
  *  Redistribution and use in source and binary forms, with or without
  *  modification, are permitted provided that the following conditions
  *  are met:
  *
  *  1. Redistributions of source code must retain the above copyright
  *     notice, this list of conditions and the following disclaimer.
  *  2. Redistributions in binary form must reproduce the above copyright
  *     notice, this list of conditions and the following disclaimer in the
  *     documentation and/or other materials provided with the distribution.
  *
  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  *  and ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  *  POSSIBILITY OF SUCH DAMAGE.
  */
 
 /*
  * File: ql_os.c
  * Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 
 #include "ql_os.h"
 #include "ql_hw.h"
 #include "ql_def.h"
 #include "ql_inline.h"
 #include "ql_ver.h"
 #include "ql_glbl.h"
 #include "ql_dbg.h"
 #include <sys/smp.h>
 
 /*
  * Some PCI Configuration Space Related Defines
  */
 
 #ifndef PCI_VENDOR_QLOGIC
 #define PCI_VENDOR_QLOGIC	0x1077
 #endif
 
 #ifndef PCI_PRODUCT_QLOGIC_ISP8030
 #define PCI_PRODUCT_QLOGIC_ISP8030	0x8030
 #endif
 
 #define PCI_QLOGIC_ISP8030 \
 	((PCI_PRODUCT_QLOGIC_ISP8030 << 16) | PCI_VENDOR_QLOGIC)
 
 /*
  * static functions
  */
 static int qla_alloc_parent_dma_tag(qla_host_t *ha);
 static void qla_free_parent_dma_tag(qla_host_t *ha);
 static int qla_alloc_xmt_bufs(qla_host_t *ha);
 static void qla_free_xmt_bufs(qla_host_t *ha);
 static int qla_alloc_rcv_bufs(qla_host_t *ha);
 static void qla_free_rcv_bufs(qla_host_t *ha);
 static void qla_clear_tx_buf(qla_host_t *ha, qla_tx_buf_t *txb);
 
 static void qla_init_ifnet(device_t dev, qla_host_t *ha);
 static int qla_sysctl_get_link_status(SYSCTL_HANDLER_ARGS);
 static void qla_release(qla_host_t *ha);
 static void qla_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs,
 		int error);
 static void qla_stop(qla_host_t *ha);
 static void qla_get_peer(qla_host_t *ha);
 static void qla_error_recovery(void *context, int pending);
 static void qla_async_event(void *context, int pending);
 static void qla_stats(void *context, int pending);
 static int qla_send(qla_host_t *ha, struct mbuf **m_headp, uint32_t txr_idx,
 		uint32_t iscsi_pdu);
 
 /*
  * Hooks to the Operating Systems
  */
 static int qla_pci_probe (device_t);
 static int qla_pci_attach (device_t);
 static int qla_pci_detach (device_t);
 
 static void qla_init(void *arg);
 static int qla_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
 static int qla_media_change(struct ifnet *ifp);
 static void qla_media_status(struct ifnet *ifp, struct ifmediareq *ifmr);
 
 static int qla_transmit(struct ifnet *ifp, struct mbuf  *mp);
 static void qla_qflush(struct ifnet *ifp);
 static int qla_alloc_tx_br(qla_host_t *ha, qla_tx_fp_t *tx_fp);
 static void qla_free_tx_br(qla_host_t *ha, qla_tx_fp_t *tx_fp);
 static int qla_create_fp_taskqueues(qla_host_t *ha);
 static void qla_destroy_fp_taskqueues(qla_host_t *ha);
 static void qla_drain_fp_taskqueues(qla_host_t *ha);
 
 static device_method_t qla_pci_methods[] = {
 	/* Device interface */
 	DEVMETHOD(device_probe, qla_pci_probe),
 	DEVMETHOD(device_attach, qla_pci_attach),
 	DEVMETHOD(device_detach, qla_pci_detach),
 	{ 0, 0 }
 };
 
 static driver_t qla_pci_driver = {
 	"ql", qla_pci_methods, sizeof (qla_host_t),
 };
 
 static devclass_t qla83xx_devclass;
 
 DRIVER_MODULE(qla83xx, pci, qla_pci_driver, qla83xx_devclass, 0, 0);
 
 MODULE_DEPEND(qla83xx, pci, 1, 1, 1);
 MODULE_DEPEND(qla83xx, ether, 1, 1, 1);
 
 MALLOC_DEFINE(M_QLA83XXBUF, "qla83xxbuf", "Buffers for qla83xx driver");
 
 #define QL_STD_REPLENISH_THRES		0
 #define QL_JUMBO_REPLENISH_THRES	32
 
 
 static char dev_str[64];
 static char ver_str[64];
 
 /*
  * Name:	qla_pci_probe
  * Function:	Validate the PCI device to be a QLA80XX device
  */
 static int
 qla_pci_probe(device_t dev)
 {
         switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) {
         case PCI_QLOGIC_ISP8030:
 		snprintf(dev_str, sizeof(dev_str), "%s v%d.%d.%d",
 			"Qlogic ISP 83xx PCI CNA Adapter-Ethernet Function",
 			QLA_VERSION_MAJOR, QLA_VERSION_MINOR,
 			QLA_VERSION_BUILD);
 		snprintf(ver_str, sizeof(ver_str), "v%d.%d.%d",
 			QLA_VERSION_MAJOR, QLA_VERSION_MINOR,
 			QLA_VERSION_BUILD);
                 device_set_desc(dev, dev_str);
                 break;
         default:
                 return (ENXIO);
         }
 
         if (bootverbose)
                 printf("%s: %s\n ", __func__, dev_str);
 
         return (BUS_PROBE_DEFAULT);
 }
 
 static void
 qla_add_sysctls(qla_host_t *ha)
 {
         device_t dev = ha->pci_dev;
 
 	SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev),
 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
 		OID_AUTO, "version", CTLFLAG_RD,
 		ver_str, 0, "Driver Version");
 
         SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev),
                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
                 OID_AUTO, "fw_version", CTLFLAG_RD,
                 ha->fw_ver_str, 0, "firmware version");
 
         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
                 OID_AUTO, "link_status", CTLTYPE_INT | CTLFLAG_RW,
                 (void *)ha, 0,
                 qla_sysctl_get_link_status, "I", "Link Status");
 
 	ha->dbg_level = 0;
         SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
                 OID_AUTO, "debug", CTLFLAG_RW,
                 &ha->dbg_level, ha->dbg_level, "Debug Level");
 
+	ha->enable_minidump = 1;
+	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
+		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
+		OID_AUTO, "enable_minidump", CTLFLAG_RW,
+		&ha->enable_minidump, ha->enable_minidump,
+		"Minidump retrival is enabled only when this is set");
+
 	ha->std_replenish = QL_STD_REPLENISH_THRES;
         SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
                 OID_AUTO, "std_replenish", CTLFLAG_RW,
                 &ha->std_replenish, ha->std_replenish,
                 "Threshold for Replenishing Standard Frames");
 
         SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
                 OID_AUTO, "ipv4_lro",
                 CTLFLAG_RD, &ha->ipv4_lro,
                 "number of ipv4 lro completions");
 
         SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
                 OID_AUTO, "ipv6_lro",
                 CTLFLAG_RD, &ha->ipv6_lro,
                 "number of ipv6 lro completions");
 
 	SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
 		OID_AUTO, "tx_tso_frames",
 		CTLFLAG_RD, &ha->tx_tso_frames,
 		"number of Tx TSO Frames");
 
 	SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
 		OID_AUTO, "hw_vlan_tx_frames",
 		CTLFLAG_RD, &ha->hw_vlan_tx_frames,
 		"number of Tx VLAN Frames");
 
 	SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
 		OID_AUTO, "hw_lock_failed",
 		CTLFLAG_RD, &ha->hw_lock_failed,
 		"number of hw_lock failures");
 
         return;
 }
 
 static void
 qla_watchdog(void *arg)
 {
 	qla_host_t *ha = arg;
 	qla_hw_t *hw;
 	struct ifnet *ifp;
 
 	hw = &ha->hw;
 	ifp = ha->ifp;
 
         if (ha->qla_watchdog_exit) {
 		ha->qla_watchdog_exited = 1;
 		return;
 	}
 	ha->qla_watchdog_exited = 0;
 
 	if (!ha->qla_watchdog_pause) {
 		if (ql_hw_check_health(ha) || ha->qla_initiate_recovery ||
 			(ha->msg_from_peer == QL_PEER_MSG_RESET)) {
 
 			if (!(ha->dbg_level & 0x8000)) {
 				ha->qla_watchdog_paused = 1;
 				ha->qla_watchdog_pause = 1;
 				ha->qla_initiate_recovery = 0;
 				ha->err_inject = 0;
 				device_printf(ha->pci_dev,
 					"%s: taskqueue_enqueue(err_task) \n",
 					__func__);
 				taskqueue_enqueue(ha->err_tq, &ha->err_task);
 				return;
 			}
 
 		} else if (ha->qla_interface_up) {
 
 			ha->watchdog_ticks++;
 
 			if (ha->watchdog_ticks > 1000)
 				ha->watchdog_ticks = 0;
 
                         if (!ha->watchdog_ticks && QL_RUNNING(ifp)) {
                                 taskqueue_enqueue(ha->stats_tq, &ha->stats_task);
                         }
 
                         if (ha->async_event) {
                                 taskqueue_enqueue(ha->async_event_tq,
                                         &ha->async_event_task);
                         }
 
 #if 0
 			for (i = 0; ((i < ha->hw.num_sds_rings) &&
 					!ha->watchdog_ticks); i++) {
 				qla_tx_fp_t *fp = &ha->tx_fp[i];
 
 				if (fp->fp_taskqueue != NULL)
 					taskqueue_enqueue(fp->fp_taskqueue,
 						&fp->fp_task);
 			}
 #endif
 			ha->qla_watchdog_paused = 0;
 		} else {
 			ha->qla_watchdog_paused = 0;
 		}
 	} else {
 		ha->qla_watchdog_paused = 1;
 	}
 
 	callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
 		qla_watchdog, ha);
 }
 
 /*
  * Name:	qla_pci_attach
  * Function:	attaches the device to the operating system
  */
 static int
 qla_pci_attach(device_t dev)
 {
 	qla_host_t *ha = NULL;
 	uint32_t rsrc_len;
 	int i;
 	uint32_t num_rcvq = 0;
 
         if ((ha = device_get_softc(dev)) == NULL) {
                 device_printf(dev, "cannot get softc\n");
                 return (ENOMEM);
         }
 
         memset(ha, 0, sizeof (qla_host_t));
 
         if (pci_get_device(dev) != PCI_PRODUCT_QLOGIC_ISP8030) {
                 device_printf(dev, "device is not ISP8030\n");
                 return (ENXIO);
 	}
 
         ha->pci_func = pci_get_function(dev) & 0x1;
 
         ha->pci_dev = dev;
 
 	pci_enable_busmaster(dev);
 
 	ha->reg_rid = PCIR_BAR(0);
 	ha->pci_reg = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &ha->reg_rid,
 				RF_ACTIVE);
 
         if (ha->pci_reg == NULL) {
                 device_printf(dev, "unable to map any ports\n");
                 goto qla_pci_attach_err;
         }
 
 	rsrc_len = (uint32_t) bus_get_resource_count(dev, SYS_RES_MEMORY,
 					ha->reg_rid);
 
 	mtx_init(&ha->hw_lock, "qla83xx_hw_lock", MTX_NETWORK_LOCK, MTX_DEF);
 	ha->flags.lock_init = 1;
 
 	qla_add_sysctls(ha);
 
 	ha->hw.num_sds_rings = MAX_SDS_RINGS;
 	ha->hw.num_rds_rings = MAX_RDS_RINGS;
 	ha->hw.num_tx_rings = NUM_TX_RINGS;
 
 	ha->reg_rid1 = PCIR_BAR(2);
 	ha->pci_reg1 = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
 			&ha->reg_rid1, RF_ACTIVE);
 
 	ha->msix_count = pci_msix_count(dev);
 
 	if (ha->msix_count < 1 ) {
 		device_printf(dev, "%s: msix_count[%d] not enough\n", __func__,
 			ha->msix_count);
 		goto qla_pci_attach_err;
 	}
 
 	if (ha->msix_count < (ha->hw.num_sds_rings + 1)) {
 		ha->hw.num_sds_rings = ha->msix_count - 1;
 	}
 
 	QL_DPRINT2(ha, (dev, "%s: ha %p pci_func 0x%x rsrc_count 0x%08x"
 		" msix_count 0x%x pci_reg %p pci_reg1 %p\n", __func__, ha,
 		ha->pci_func, rsrc_len, ha->msix_count, ha->pci_reg,
 		ha->pci_reg1));
 
         /* initialize hardware */
         if (ql_init_hw(ha)) {
                 device_printf(dev, "%s: ql_init_hw failed\n", __func__);
                 goto qla_pci_attach_err;
         }
 
         device_printf(dev, "%s: firmware[%d.%d.%d.%d]\n", __func__,
                 ha->fw_ver_major, ha->fw_ver_minor, ha->fw_ver_sub,
                 ha->fw_ver_build);
         snprintf(ha->fw_ver_str, sizeof(ha->fw_ver_str), "%d.%d.%d.%d",
                         ha->fw_ver_major, ha->fw_ver_minor, ha->fw_ver_sub,
                         ha->fw_ver_build);
 
         if (qla_get_nic_partition(ha, NULL, &num_rcvq)) {
                 device_printf(dev, "%s: qla_get_nic_partition failed\n",
                         __func__);
                 goto qla_pci_attach_err;
         }
         device_printf(dev, "%s: ha %p pci_func 0x%x rsrc_count 0x%08x"
                 " msix_count 0x%x pci_reg %p pci_reg1 %p num_rcvq = %d\n",
 		__func__, ha, ha->pci_func, rsrc_len, ha->msix_count,
 		ha->pci_reg, ha->pci_reg1, num_rcvq);
 
         if ((ha->msix_count  < 64) || (num_rcvq != 32)) {
 		if (ha->hw.num_sds_rings > 15) {
                 	ha->hw.num_sds_rings = 15;
 		}
         }
 
 	ha->hw.num_rds_rings = ha->hw.num_sds_rings;
 	ha->hw.num_tx_rings = ha->hw.num_sds_rings;
 
 #ifdef QL_ENABLE_ISCSI_TLV
 	ha->hw.num_tx_rings = ha->hw.num_sds_rings * 2;
 #endif /* #ifdef QL_ENABLE_ISCSI_TLV */
 
 	ql_hw_add_sysctls(ha);
 
 	ha->msix_count = ha->hw.num_sds_rings + 1;
 
 	if (pci_alloc_msix(dev, &ha->msix_count)) {
 		device_printf(dev, "%s: pci_alloc_msi[%d] failed\n", __func__,
 			ha->msix_count);
 		ha->msix_count = 0;
 		goto qla_pci_attach_err;
 	}
 
 	ha->mbx_irq_rid = 1;
 	ha->mbx_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
 				&ha->mbx_irq_rid,
 				(RF_ACTIVE | RF_SHAREABLE));
 	if (ha->mbx_irq == NULL) {
 		device_printf(dev, "could not allocate mbx interrupt\n");
 		goto qla_pci_attach_err;
 	}
 	if (bus_setup_intr(dev, ha->mbx_irq, (INTR_TYPE_NET | INTR_MPSAFE),
 		NULL, ql_mbx_isr, ha, &ha->mbx_handle)) {
 		device_printf(dev, "could not setup mbx interrupt\n");
 		goto qla_pci_attach_err;
 	}
 
 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
 		ha->irq_vec[i].sds_idx = i;
                 ha->irq_vec[i].ha = ha;
                 ha->irq_vec[i].irq_rid = 2 + i;
 
 		ha->irq_vec[i].irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
 				&ha->irq_vec[i].irq_rid,
 				(RF_ACTIVE | RF_SHAREABLE));
 
 		if (ha->irq_vec[i].irq == NULL) {
 			device_printf(dev, "could not allocate interrupt\n");
 			goto qla_pci_attach_err;
 		}
 		if (bus_setup_intr(dev, ha->irq_vec[i].irq,
 			(INTR_TYPE_NET | INTR_MPSAFE),
 			NULL, ql_isr, &ha->irq_vec[i],
 			&ha->irq_vec[i].handle)) {
 			device_printf(dev, "could not setup interrupt\n");
 			goto qla_pci_attach_err;
 		}
 
 		ha->tx_fp[i].ha = ha;
 		ha->tx_fp[i].txr_idx = i;
 
 		if (qla_alloc_tx_br(ha, &ha->tx_fp[i])) {
 			device_printf(dev, "%s: could not allocate tx_br[%d]\n",
 				__func__, i);
 			goto qla_pci_attach_err;
 		}
 	}
 
 	if (qla_create_fp_taskqueues(ha) != 0)
 		goto qla_pci_attach_err;
 
 	printf("%s: mp__ncpus %d sds %d rds %d msi-x %d\n", __func__, mp_ncpus,
 		ha->hw.num_sds_rings, ha->hw.num_rds_rings, ha->msix_count);
 
 	ql_read_mac_addr(ha);
 
 	/* allocate parent dma tag */
 	if (qla_alloc_parent_dma_tag(ha)) {
 		device_printf(dev, "%s: qla_alloc_parent_dma_tag failed\n",
 			__func__);
 		goto qla_pci_attach_err;
 	}
 
 	/* alloc all dma buffers */
 	if (ql_alloc_dma(ha)) {
 		device_printf(dev, "%s: ql_alloc_dma failed\n", __func__);
 		goto qla_pci_attach_err;
 	}
 	qla_get_peer(ha);
 
 	if (ql_minidump_init(ha) != 0) {
 		device_printf(dev, "%s: ql_minidump_init failed\n", __func__);
 		goto qla_pci_attach_err;
 	}
 	/* create the o.s ethernet interface */
 	qla_init_ifnet(dev, ha);
 
 	ha->flags.qla_watchdog_active = 1;
 	ha->qla_watchdog_pause = 0;
 
 	callout_init(&ha->tx_callout, TRUE);
 	ha->flags.qla_callout_init = 1;
 
 	/* create ioctl device interface */
 	if (ql_make_cdev(ha)) {
 		device_printf(dev, "%s: ql_make_cdev failed\n", __func__);
 		goto qla_pci_attach_err;
 	}
 
 	callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
 		qla_watchdog, ha);
 
 	TASK_INIT(&ha->err_task, 0, qla_error_recovery, ha);
 	ha->err_tq = taskqueue_create("qla_errq", M_NOWAIT,
 			taskqueue_thread_enqueue, &ha->err_tq);
 	taskqueue_start_threads(&ha->err_tq, 1, PI_NET, "%s errq",
 		device_get_nameunit(ha->pci_dev));
 
         TASK_INIT(&ha->async_event_task, 0, qla_async_event, ha);
         ha->async_event_tq = taskqueue_create("qla_asyncq", M_NOWAIT,
                         taskqueue_thread_enqueue, &ha->async_event_tq);
         taskqueue_start_threads(&ha->async_event_tq, 1, PI_NET, "%s asyncq",
                 device_get_nameunit(ha->pci_dev));
 
         TASK_INIT(&ha->stats_task, 0, qla_stats, ha);
         ha->stats_tq = taskqueue_create("qla_statsq", M_NOWAIT,
                         taskqueue_thread_enqueue, &ha->stats_tq);
         taskqueue_start_threads(&ha->stats_tq, 1, PI_NET, "%s taskq",
                 device_get_nameunit(ha->pci_dev));
 
 	QL_DPRINT2(ha, (dev, "%s: exit 0\n", __func__));
         return (0);
 
 qla_pci_attach_err:
 
 	qla_release(ha);
 
 	if (ha->flags.lock_init) {
 		mtx_destroy(&ha->hw_lock);
 	}
 
 	QL_DPRINT2(ha, (dev, "%s: exit ENXIO\n", __func__));
         return (ENXIO);
 }
 
 /*
  * Name:	qla_pci_detach
  * Function:	Unhooks the device from the operating system
  */
 static int
 qla_pci_detach(device_t dev)
 {
 	qla_host_t *ha = NULL;
 	struct ifnet *ifp;
 
 
         if ((ha = device_get_softc(dev)) == NULL) {
                 device_printf(dev, "cannot get softc\n");
                 return (ENOMEM);
         }
 
 	QL_DPRINT2(ha, (dev, "%s: enter\n", __func__));
 
 	ifp = ha->ifp;
 
 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 	QLA_LOCK(ha, __func__, -1, 0);
 
 	ha->qla_detach_active = 1;
 	qla_stop(ha);
 
 	qla_release(ha);
 
 	QLA_UNLOCK(ha, __func__);
 
 	if (ha->flags.lock_init) {
 		mtx_destroy(&ha->hw_lock);
 	}
 
 	QL_DPRINT2(ha, (dev, "%s: exit\n", __func__));
 
         return (0);
 }
 
 /*
  * SYSCTL Related Callbacks
  */
 static int
 qla_sysctl_get_link_status(SYSCTL_HANDLER_ARGS)
 {
 	int err, ret = 0;
 	qla_host_t *ha;
 
 	err = sysctl_handle_int(oidp, &ret, 0, req);
 
 	if (err || !req->newptr)
 		return (err);
 
 	if (ret == 1) {
 		ha = (qla_host_t *)arg1;
 		ql_hw_link_status(ha);
 	}
 	return (err);
 }
 
 /*
  * Name:	qla_release
  * Function:	Releases the resources allocated for the device
  */
 static void
 qla_release(qla_host_t *ha)
 {
 	device_t dev;
 	int i;
 
 	dev = ha->pci_dev;
 
         if (ha->async_event_tq) {
                 taskqueue_drain(ha->async_event_tq, &ha->async_event_task);
                 taskqueue_free(ha->async_event_tq);
         }
 
 	if (ha->err_tq) {
 		taskqueue_drain(ha->err_tq, &ha->err_task);
 		taskqueue_free(ha->err_tq);
 	}
 
 	if (ha->stats_tq) {
 		taskqueue_drain(ha->stats_tq, &ha->stats_task);
 		taskqueue_free(ha->stats_tq);
 	}
 
 	ql_del_cdev(ha);
 
 	if (ha->flags.qla_watchdog_active) {
 		ha->qla_watchdog_exit = 1;
 
 		while (ha->qla_watchdog_exited == 0)
 			qla_mdelay(__func__, 1);
 	}
 
 	if (ha->flags.qla_callout_init)
 		callout_stop(&ha->tx_callout);
 
 	if (ha->ifp != NULL)
 		ether_ifdetach(ha->ifp);
 
 	ql_free_dma(ha); 
 	qla_free_parent_dma_tag(ha);
 
 	if (ha->mbx_handle)
 		(void)bus_teardown_intr(dev, ha->mbx_irq, ha->mbx_handle);
 
 	if (ha->mbx_irq)
 		(void) bus_release_resource(dev, SYS_RES_IRQ, ha->mbx_irq_rid,
 				ha->mbx_irq);
 
 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
 
 		if (ha->irq_vec[i].handle) {
 			(void)bus_teardown_intr(dev, ha->irq_vec[i].irq,
 					ha->irq_vec[i].handle);
 		}
 			
 		if (ha->irq_vec[i].irq) {
 			(void)bus_release_resource(dev, SYS_RES_IRQ,
 				ha->irq_vec[i].irq_rid,
 				ha->irq_vec[i].irq);
 		}
 
 		qla_free_tx_br(ha, &ha->tx_fp[i]);
 	}
 	qla_destroy_fp_taskqueues(ha);
 
 	if (ha->msix_count)
 		pci_release_msi(dev);
 
 //	if (ha->flags.lock_init) {
 //		mtx_destroy(&ha->hw_lock);
 //	}
 
         if (ha->pci_reg)
                 (void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid,
 				ha->pci_reg);
 
         if (ha->pci_reg1)
                 (void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid1,
 				ha->pci_reg1);
 
 	return;
 }
 
 /*
  * DMA Related Functions
  */
 
 static void
 qla_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
 {
         *((bus_addr_t *)arg) = 0;
 
         if (error) {
                 printf("%s: bus_dmamap_load failed (%d)\n", __func__, error);
                 return;
 	}
 
         *((bus_addr_t *)arg) = segs[0].ds_addr;
 
 	return;
 }
 
 int
 ql_alloc_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
 {
         int             ret = 0;
         device_t        dev;
         bus_addr_t      b_addr;
 
         dev = ha->pci_dev;
 
         QL_DPRINT2(ha, (dev, "%s: enter\n", __func__));
 
         ret = bus_dma_tag_create(
                         ha->parent_tag,/* parent */
                         dma_buf->alignment,
                         ((bus_size_t)(1ULL << 32)),/* boundary */
                         BUS_SPACE_MAXADDR,      /* lowaddr */
                         BUS_SPACE_MAXADDR,      /* highaddr */
                         NULL, NULL,             /* filter, filterarg */
                         dma_buf->size,          /* maxsize */
                         1,                      /* nsegments */
                         dma_buf->size,          /* maxsegsize */
                         0,                      /* flags */
                         NULL, NULL,             /* lockfunc, lockarg */
                         &dma_buf->dma_tag);
 
         if (ret) {
                 device_printf(dev, "%s: could not create dma tag\n", __func__);
                 goto ql_alloc_dmabuf_exit;
         }
         ret = bus_dmamem_alloc(dma_buf->dma_tag,
                         (void **)&dma_buf->dma_b,
                         (BUS_DMA_ZERO | BUS_DMA_COHERENT | BUS_DMA_NOWAIT),
                         &dma_buf->dma_map);
         if (ret) {
                 bus_dma_tag_destroy(dma_buf->dma_tag);
                 device_printf(dev, "%s: bus_dmamem_alloc failed\n", __func__);
                 goto ql_alloc_dmabuf_exit;
         }
 
         ret = bus_dmamap_load(dma_buf->dma_tag,
                         dma_buf->dma_map,
                         dma_buf->dma_b,
                         dma_buf->size,
                         qla_dmamap_callback,
                         &b_addr, BUS_DMA_NOWAIT);
 
         if (ret || !b_addr) {
                 bus_dma_tag_destroy(dma_buf->dma_tag);
                 bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b,
                         dma_buf->dma_map);
                 ret = -1;
                 goto ql_alloc_dmabuf_exit;
         }
 
         dma_buf->dma_addr = b_addr;
 
 ql_alloc_dmabuf_exit:
         QL_DPRINT2(ha, (dev, "%s: exit ret 0x%08x tag %p map %p b %p sz 0x%x\n",
                 __func__, ret, (void *)dma_buf->dma_tag,
                 (void *)dma_buf->dma_map, (void *)dma_buf->dma_b,
 		dma_buf->size));
 
         return ret;
 }
 
 void
 ql_free_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
 {
 	bus_dmamap_unload(dma_buf->dma_tag, dma_buf->dma_map); 
         bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b, dma_buf->dma_map);
         bus_dma_tag_destroy(dma_buf->dma_tag);
 }
 
 static int
 qla_alloc_parent_dma_tag(qla_host_t *ha)
 {
 	int		ret;
 	device_t	dev;
 
 	dev = ha->pci_dev;
 
         /*
          * Allocate parent DMA Tag
          */
         ret = bus_dma_tag_create(
                         bus_get_dma_tag(dev),   /* parent */
                         1,((bus_size_t)(1ULL << 32)),/* alignment, boundary */
                         BUS_SPACE_MAXADDR,      /* lowaddr */
                         BUS_SPACE_MAXADDR,      /* highaddr */
                         NULL, NULL,             /* filter, filterarg */
                         BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
                         0,                      /* nsegments */
                         BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
                         0,                      /* flags */
                         NULL, NULL,             /* lockfunc, lockarg */
                         &ha->parent_tag);
 
         if (ret) {
                 device_printf(dev, "%s: could not create parent dma tag\n",
                         __func__);
 		return (-1);
         }
 
         ha->flags.parent_tag = 1;
 	
 	return (0);
 }
 
 static void
 qla_free_parent_dma_tag(qla_host_t *ha)
 {
         if (ha->flags.parent_tag) {
                 bus_dma_tag_destroy(ha->parent_tag);
                 ha->flags.parent_tag = 0;
         }
 }
 
 /*
  * Name: qla_init_ifnet
  * Function: Creates the Network Device Interface and Registers it with the O.S
  */
 
 static void
 qla_init_ifnet(device_t dev, qla_host_t *ha)
 {
 	struct ifnet *ifp;
 
 	QL_DPRINT2(ha, (dev, "%s: enter\n", __func__));
 
 	ifp = ha->ifp = if_alloc(IFT_ETHER);
 
 	if (ifp == NULL)
 		panic("%s: cannot if_alloc()\n", device_get_nameunit(dev));
 
 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 
 #if __FreeBSD_version >= 1000000
 	if_initbaudrate(ifp, IF_Gbps(10));
 	ifp->if_capabilities = IFCAP_LINKSTATE;
 #else
 	ifp->if_mtu = ETHERMTU;
 	ifp->if_baudrate = (1 * 1000 * 1000 *1000);
 
 #endif /* #if __FreeBSD_version >= 1000000 */
 
 	ifp->if_init = qla_init;
 	ifp->if_softc = ha;
 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 	ifp->if_ioctl = qla_ioctl;
 
 	ifp->if_transmit = qla_transmit;
 	ifp->if_qflush = qla_qflush;
 
 	IFQ_SET_MAXLEN(&ifp->if_snd, qla_get_ifq_snd_maxlen(ha));
 	ifp->if_snd.ifq_drv_maxlen = qla_get_ifq_snd_maxlen(ha);
 	IFQ_SET_READY(&ifp->if_snd);
 
 	ha->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
 
 	ether_ifattach(ifp, qla_get_mac_addr(ha));
 
 	ifp->if_capabilities |= IFCAP_HWCSUM |
 				IFCAP_TSO4 |
 				IFCAP_JUMBO_MTU |
 				IFCAP_VLAN_HWTAGGING |
 				IFCAP_VLAN_MTU |
 				IFCAP_VLAN_HWTSO |
 				IFCAP_LRO;
 
 	ifp->if_capenable = ifp->if_capabilities;
 
 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
 
 	ifmedia_init(&ha->media, IFM_IMASK, qla_media_change, qla_media_status);
 
 	ifmedia_add(&ha->media, (IFM_ETHER | qla_get_optics(ha) | IFM_FDX), 0,
 		NULL);
 	ifmedia_add(&ha->media, (IFM_ETHER | IFM_AUTO), 0, NULL);
 
 	ifmedia_set(&ha->media, (IFM_ETHER | IFM_AUTO));
 
 	QL_DPRINT2(ha, (dev, "%s: exit\n", __func__));
 
 	return;
 }
 
 static void
 qla_init_locked(qla_host_t *ha)
 {
 	struct ifnet *ifp = ha->ifp;
 
 	qla_stop(ha);
 
 	if (qla_alloc_xmt_bufs(ha) != 0) 
 		return;
 
 	qla_confirm_9kb_enable(ha);
 
 	if (qla_alloc_rcv_bufs(ha) != 0)
 		return;
 
 	bcopy(IF_LLADDR(ha->ifp), ha->hw.mac_addr, ETHER_ADDR_LEN);
 
 	ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_TSO;
 	ifp->if_hwassist |= CSUM_TCP_IPV6 | CSUM_UDP_IPV6;
 
 	ha->stop_rcv = 0;
  	if (ql_init_hw_if(ha) == 0) {
 		ifp = ha->ifp;
 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
 		ha->qla_watchdog_pause = 0;
 		ha->hw_vlan_tx_frames = 0;
 		ha->tx_tso_frames = 0;
 		ha->qla_interface_up = 1;
 		ql_update_link_state(ha);
 	}
 
 	return;
 }
 
 static void
 qla_init(void *arg)
 {
 	qla_host_t *ha;
 
 	ha = (qla_host_t *)arg;
 
 	QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
 
 	if (QLA_LOCK(ha, __func__, -1, 0) != 0)
 		return;
 
 	qla_init_locked(ha);
 
 	QLA_UNLOCK(ha, __func__);
 
 	QL_DPRINT2(ha, (ha->pci_dev, "%s: exit\n", __func__));
 }
 
 static int
 qla_set_multi(qla_host_t *ha, uint32_t add_multi)
 {
 	uint8_t mta[Q8_MAX_NUM_MULTICAST_ADDRS * Q8_MAC_ADDR_LEN];
 	struct ifmultiaddr *ifma;
 	int mcnt = 0;
 	struct ifnet *ifp = ha->ifp;
 	int ret = 0;
 
 	if_maddr_rlock(ifp);
 
 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 
 		if (ifma->ifma_addr->sa_family != AF_LINK)
 			continue;
 
 		if (mcnt == Q8_MAX_NUM_MULTICAST_ADDRS)
 			break;
 
 		bcopy(LLADDR((struct sockaddr_dl *) ifma->ifma_addr),
 			&mta[mcnt * Q8_MAC_ADDR_LEN], Q8_MAC_ADDR_LEN);
 
 		mcnt++;
 	}
 
 	if_maddr_runlock(ifp);
 
 	if (QLA_LOCK(ha, __func__, QLA_LOCK_DEFAULT_MS_TIMEOUT,
 		QLA_LOCK_NO_SLEEP) != 0)
 		return (-1);
 
 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 		ret = ql_hw_set_multi(ha, mta, mcnt, add_multi);
 	}
 
 	QLA_UNLOCK(ha, __func__);
 
 	return (ret);
 }
 
 static int
 qla_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 {
 	int ret = 0;
 	struct ifreq *ifr = (struct ifreq *)data;
 	struct ifaddr *ifa = (struct ifaddr *)data;
 	qla_host_t *ha;
 
 	ha = (qla_host_t *)ifp->if_softc;
 
 	switch (cmd) {
 	case SIOCSIFADDR:
 		QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFADDR (0x%lx)\n",
 			__func__, cmd));
 
 		if (ifa->ifa_addr->sa_family == AF_INET) {
 
 			ret = QLA_LOCK(ha, __func__,
 					QLA_LOCK_DEFAULT_MS_TIMEOUT,
 					QLA_LOCK_NO_SLEEP);
 			if (ret)
 				break;
 
 			ifp->if_flags |= IFF_UP;
 
 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 				qla_init_locked(ha);
 			}
 
 			QLA_UNLOCK(ha, __func__);
 			QL_DPRINT4(ha, (ha->pci_dev,
 				"%s: SIOCSIFADDR (0x%lx) ipv4 [0x%08x]\n",
 				__func__, cmd,
 				ntohl(IA_SIN(ifa)->sin_addr.s_addr)));
 
 			arp_ifinit(ifp, ifa);
 		} else {
 			ether_ioctl(ifp, cmd, data);
 		}
 		break;
 
 	case SIOCSIFMTU:
 		QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFMTU (0x%lx)\n",
 			__func__, cmd));
 
 		if (ifr->ifr_mtu > QLA_MAX_MTU) {
 			ret = EINVAL;
 		} else {
 			ret = QLA_LOCK(ha, __func__, QLA_LOCK_DEFAULT_MS_TIMEOUT,
 					QLA_LOCK_NO_SLEEP);
 
 			if (ret)
 				break;
 
 			ifp->if_mtu = ifr->ifr_mtu;
 			ha->max_frame_size =
 				ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
 
 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 				qla_init_locked(ha);
 			}
 
 			if (ifp->if_mtu > ETHERMTU)
 				ha->std_replenish = QL_JUMBO_REPLENISH_THRES;
 			else
 				ha->std_replenish = QL_STD_REPLENISH_THRES;
 				
 
 			QLA_UNLOCK(ha, __func__);
 		}
 
 		break;
 
 	case SIOCSIFFLAGS:
 		QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFFLAGS (0x%lx)\n",
 			__func__, cmd));
 
 		ret = QLA_LOCK(ha, __func__, QLA_LOCK_DEFAULT_MS_TIMEOUT,
 				QLA_LOCK_NO_SLEEP);
 
 		if (ret)
 			break;
 
 		if (ifp->if_flags & IFF_UP) {
 
 			ha->max_frame_size = ifp->if_mtu +
 					ETHER_HDR_LEN + ETHER_CRC_LEN;
 			qla_init_locked(ha);
 						
 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 				if ((ifp->if_flags ^ ha->if_flags) &
 					IFF_PROMISC) {
 					ret = ql_set_promisc(ha);
 				} else if ((ifp->if_flags ^ ha->if_flags) &
 					IFF_ALLMULTI) {
 					ret = ql_set_allmulti(ha);
 				}
 			}
 		} else {
 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 				qla_stop(ha);
 			ha->if_flags = ifp->if_flags;
 		}
 
 		QLA_UNLOCK(ha, __func__);
 		break;
 
 	case SIOCADDMULTI:
 		QL_DPRINT4(ha, (ha->pci_dev,
 			"%s: %s (0x%lx)\n", __func__, "SIOCADDMULTI", cmd));
 
 		if (qla_set_multi(ha, 1))
 			ret = EINVAL;
 		break;
 
 	case SIOCDELMULTI:
 		QL_DPRINT4(ha, (ha->pci_dev,
 			"%s: %s (0x%lx)\n", __func__, "SIOCDELMULTI", cmd));
 
 		if (qla_set_multi(ha, 0))
 			ret = EINVAL;
 		break;
 
 	case SIOCSIFMEDIA:
 	case SIOCGIFMEDIA:
 		QL_DPRINT4(ha, (ha->pci_dev,
 			"%s: SIOCSIFMEDIA/SIOCGIFMEDIA (0x%lx)\n",
 			__func__, cmd));
 		ret = ifmedia_ioctl(ifp, ifr, &ha->media, cmd);
 		break;
 
 	case SIOCSIFCAP:
 	{
 		int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 
 		QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFCAP (0x%lx)\n",
 			__func__, cmd));
 
 		if (mask & IFCAP_HWCSUM)
 			ifp->if_capenable ^= IFCAP_HWCSUM;
 		if (mask & IFCAP_TSO4)
 			ifp->if_capenable ^= IFCAP_TSO4;
 		if (mask & IFCAP_TSO6)
 			ifp->if_capenable ^= IFCAP_TSO6;
 		if (mask & IFCAP_VLAN_HWTAGGING)
 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
 		if (mask & IFCAP_VLAN_HWTSO)
 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
 		if (mask & IFCAP_LRO)
 			ifp->if_capenable ^= IFCAP_LRO;
 
 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 			ret = QLA_LOCK(ha, __func__, QLA_LOCK_DEFAULT_MS_TIMEOUT,
 				QLA_LOCK_NO_SLEEP);
 
 			if (ret)
 				break;
 
 			qla_init_locked(ha);
 
 			QLA_UNLOCK(ha, __func__);
 
 		}
 		VLAN_CAPABILITIES(ifp);
 		break;
 	}
 
 	default:
 		QL_DPRINT4(ha, (ha->pci_dev, "%s: default (0x%lx)\n",
 			__func__, cmd));
 		ret = ether_ioctl(ifp, cmd, data);
 		break;
 	}
 
 	return (ret);
 }
 
 static int
 qla_media_change(struct ifnet *ifp)
 {
 	qla_host_t *ha;
 	struct ifmedia *ifm;
 	int ret = 0;
 
 	ha = (qla_host_t *)ifp->if_softc;
 
 	QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
 
 	ifm = &ha->media;
 
 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
 		ret = EINVAL;
 
 	QL_DPRINT2(ha, (ha->pci_dev, "%s: exit\n", __func__));
 
 	return (ret);
 }
 
 static void
 qla_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
 {
 	qla_host_t *ha;
 
 	ha = (qla_host_t *)ifp->if_softc;
 
 	QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
 
 	ifmr->ifm_status = IFM_AVALID;
 	ifmr->ifm_active = IFM_ETHER;
 	
 	ql_update_link_state(ha);
 	if (ha->hw.link_up) {
 		ifmr->ifm_status |= IFM_ACTIVE;
 		ifmr->ifm_active |= (IFM_FDX | qla_get_optics(ha));
 	}
 
 	QL_DPRINT2(ha, (ha->pci_dev, "%s: exit (%s)\n", __func__,\
 		(ha->hw.link_up ? "link_up" : "link_down")));
 
 	return;
 }
 
 
 static int
 qla_send(qla_host_t *ha, struct mbuf **m_headp, uint32_t txr_idx,
 	uint32_t iscsi_pdu)
 {
 	bus_dma_segment_t	segs[QLA_MAX_SEGMENTS];
 	bus_dmamap_t		map;
 	int			nsegs;
 	int			ret = -1;
 	uint32_t		tx_idx;
 	struct mbuf		*m_head = *m_headp;
 
 	QL_DPRINT8(ha, (ha->pci_dev, "%s: enter\n", __func__));
 
 	tx_idx = ha->hw.tx_cntxt[txr_idx].txr_next;
 	map = ha->tx_ring[txr_idx].tx_buf[tx_idx].map;
 
 	ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head, segs, &nsegs,
 			BUS_DMA_NOWAIT);
 
 	if (ret == EFBIG) {
 
 		struct mbuf *m;
 
 		QL_DPRINT8(ha, (ha->pci_dev, "%s: EFBIG [%d]\n", __func__,
 			m_head->m_pkthdr.len));
 
 		m = m_defrag(m_head, M_NOWAIT);
 		if (m == NULL) {
 			ha->err_tx_defrag++;
 			m_freem(m_head);
 			*m_headp = NULL;
 			device_printf(ha->pci_dev,
 				"%s: m_defrag() = NULL [%d]\n",
 				__func__, ret);
 			return (ENOBUFS);
 		}
 		m_head = m;
 		*m_headp = m_head;
 
 		if ((ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head,
 					segs, &nsegs, BUS_DMA_NOWAIT))) {
 
 			ha->err_tx_dmamap_load++;
 
 			device_printf(ha->pci_dev,
 				"%s: bus_dmamap_load_mbuf_sg failed0[%d, %d]\n",
 				__func__, ret, m_head->m_pkthdr.len);
 
 			if (ret != ENOMEM) {
 				m_freem(m_head);
 				*m_headp = NULL;
 			}
 			return (ret);
 		}
 
 	} else if (ret) {
 
 		ha->err_tx_dmamap_load++;
 
 		device_printf(ha->pci_dev,
 			"%s: bus_dmamap_load_mbuf_sg failed1[%d, %d]\n",
 			__func__, ret, m_head->m_pkthdr.len);
 
 		if (ret != ENOMEM) {
 			m_freem(m_head);
 			*m_headp = NULL;
 		}
 		return (ret);
 	}
 
 	QL_ASSERT(ha, (nsegs != 0), ("qla_send: empty packet"));
 
 	bus_dmamap_sync(ha->tx_tag, map, BUS_DMASYNC_PREWRITE);
 
         if (!(ret = ql_hw_send(ha, segs, nsegs, tx_idx, m_head, txr_idx,
 				iscsi_pdu))) {
 		ha->tx_ring[txr_idx].count++;
 		if (iscsi_pdu)
 			ha->tx_ring[txr_idx].iscsi_pkt_count++;
 		ha->tx_ring[txr_idx].tx_buf[tx_idx].m_head = m_head;
 	} else {
 		if (ret == EINVAL) {
 			if (m_head)
 				m_freem(m_head);
 			*m_headp = NULL;
 		}
 	}
 
 	QL_DPRINT8(ha, (ha->pci_dev, "%s: exit\n", __func__));
 	return (ret);
 }
 
 static int
 qla_alloc_tx_br(qla_host_t *ha, qla_tx_fp_t *fp)
 {
         snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
                 "qla%d_fp%d_tx_mq_lock", ha->pci_func, fp->txr_idx);
 
         mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
 
         fp->tx_br = buf_ring_alloc(NUM_TX_DESCRIPTORS, M_DEVBUF,
                                    M_NOWAIT, &fp->tx_mtx);
         if (fp->tx_br == NULL) {
             QL_DPRINT1(ha, (ha->pci_dev, "buf_ring_alloc failed for "
                 " fp[%d, %d]\n", ha->pci_func, fp->txr_idx));
             return (-ENOMEM);
         }
         return 0;
 }
 
 static void
 qla_free_tx_br(qla_host_t *ha, qla_tx_fp_t *fp)
 {
         struct mbuf *mp;
         struct ifnet *ifp = ha->ifp;
 
         if (mtx_initialized(&fp->tx_mtx)) {
 
                 if (fp->tx_br != NULL) {
 
                         mtx_lock(&fp->tx_mtx);
 
                         while ((mp = drbr_dequeue(ifp, fp->tx_br)) != NULL) {
                                 m_freem(mp);
                         }
 
                         mtx_unlock(&fp->tx_mtx);
 
                         buf_ring_free(fp->tx_br, M_DEVBUF);
                         fp->tx_br = NULL;
                 }
                 mtx_destroy(&fp->tx_mtx);
         }
         return;
 }
 
 static void
 qla_fp_taskqueue(void *context, int pending)
 {
         qla_tx_fp_t *fp;
         qla_host_t *ha;
         struct ifnet *ifp;
         struct mbuf  *mp;
         int ret;
 	uint32_t txr_idx;
 	uint32_t iscsi_pdu = 0;
 	uint32_t rx_pkts_left = -1;
 
         fp = context;
 
         if (fp == NULL)
                 return;
 
         ha = (qla_host_t *)fp->ha;
 
         ifp = ha->ifp;
 
 	txr_idx = fp->txr_idx;
 
         mtx_lock(&fp->tx_mtx);
 
         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING) || (!ha->hw.link_up)) {
                 mtx_unlock(&fp->tx_mtx);
                 goto qla_fp_taskqueue_exit;
         }
 
 	while (rx_pkts_left && !ha->stop_rcv) {
 		rx_pkts_left = ql_rcv_isr(ha, fp->txr_idx, 64);
 
 #ifdef QL_ENABLE_ISCSI_TLV
 		ql_hw_tx_done_locked(ha, fp->txr_idx);
 		ql_hw_tx_done_locked(ha, (fp->txr_idx + (ha->hw.num_tx_rings >> 1)));
 #else
 		ql_hw_tx_done_locked(ha, fp->txr_idx);
 #endif /* #ifdef QL_ENABLE_ISCSI_TLV */
 
 		mp = drbr_peek(ifp, fp->tx_br);
 
         	while (mp != NULL) {
 
 			if (M_HASHTYPE_GET(mp) != M_HASHTYPE_NONE) {
 #ifdef QL_ENABLE_ISCSI_TLV
 				if (ql_iscsi_pdu(ha, mp) == 0) {
 					txr_idx = txr_idx +
 						(ha->hw.num_tx_rings >> 1);
 					iscsi_pdu = 1;
 				} else {
 					iscsi_pdu = 0;
 					txr_idx = fp->txr_idx;
 				}
 #endif /* #ifdef QL_ENABLE_ISCSI_TLV */
 			}
 
 			ret = qla_send(ha, &mp, txr_idx, iscsi_pdu);
 
 			if (ret) {
 				if (mp != NULL)
 					drbr_putback(ifp, fp->tx_br, mp);
 				else {
 					drbr_advance(ifp, fp->tx_br);
 				}
 
 				mtx_unlock(&fp->tx_mtx);
 
 				goto qla_fp_taskqueue_exit0;
 			} else {
 				drbr_advance(ifp, fp->tx_br);
 			}
 
 			mp = drbr_peek(ifp, fp->tx_br);
 		}
 	}
         mtx_unlock(&fp->tx_mtx);
 
 qla_fp_taskqueue_exit0:
 
 	if (rx_pkts_left || ((mp != NULL) && ret)) {
 		taskqueue_enqueue(fp->fp_taskqueue, &fp->fp_task);
 	} else {
 		if (!ha->stop_rcv) {
 			QL_ENABLE_INTERRUPTS(ha, fp->txr_idx);
 		}
 	}
 
 qla_fp_taskqueue_exit:
 
         QL_DPRINT2(ha, (ha->pci_dev, "%s: exit ret = %d\n", __func__, ret));
         return;
 }
 
 static int
 qla_create_fp_taskqueues(qla_host_t *ha)
 {
         int     i;
         uint8_t tq_name[32];
 
         for (i = 0; i < ha->hw.num_sds_rings; i++) {
 
                 qla_tx_fp_t *fp = &ha->tx_fp[i];
 
                 bzero(tq_name, sizeof (tq_name));
                 snprintf(tq_name, sizeof (tq_name), "ql_fp_tq_%d", i);
 
                 TASK_INIT(&fp->fp_task, 0, qla_fp_taskqueue, fp);
 
                 fp->fp_taskqueue = taskqueue_create_fast(tq_name, M_NOWAIT,
                                         taskqueue_thread_enqueue,
                                         &fp->fp_taskqueue);
 
                 if (fp->fp_taskqueue == NULL)
                         return (-1);
 
                 taskqueue_start_threads(&fp->fp_taskqueue, 1, PI_NET, "%s",
                         tq_name);
 
                 QL_DPRINT1(ha, (ha->pci_dev, "%s: %p\n", __func__,
                         fp->fp_taskqueue));
         }
 
         return (0);
 }
 
 static void
 qla_destroy_fp_taskqueues(qla_host_t *ha)
 {
         int     i;
 
         for (i = 0; i < ha->hw.num_sds_rings; i++) {
 
                 qla_tx_fp_t *fp = &ha->tx_fp[i];
 
                 if (fp->fp_taskqueue != NULL) {
                         taskqueue_drain(fp->fp_taskqueue, &fp->fp_task);
                         taskqueue_free(fp->fp_taskqueue);
                         fp->fp_taskqueue = NULL;
                 }
         }
         return;
 }
 
 static void
 qla_drain_fp_taskqueues(qla_host_t *ha)
 {
         int     i;
 
         for (i = 0; i < ha->hw.num_sds_rings; i++) {
                 qla_tx_fp_t *fp = &ha->tx_fp[i];
 
                 if (fp->fp_taskqueue != NULL) {
                         taskqueue_drain(fp->fp_taskqueue, &fp->fp_task);
                 }
         }
         return;
 }
 
 static int
 qla_transmit(struct ifnet *ifp, struct mbuf  *mp)
 {
 	qla_host_t *ha = (qla_host_t *)ifp->if_softc;
         qla_tx_fp_t *fp;
         int rss_id = 0;
         int ret = 0;
 
         QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
 
 #if __FreeBSD_version >= 1100000
         if (M_HASHTYPE_GET(mp) != M_HASHTYPE_NONE)
 #else
         if (mp->m_flags & M_FLOWID)
 #endif
                 rss_id = (mp->m_pkthdr.flowid & Q8_RSS_IND_TBL_MAX_IDX) %
                                         ha->hw.num_sds_rings;
         fp = &ha->tx_fp[rss_id];
 
         if (fp->tx_br == NULL) {
                 ret = EINVAL;
                 goto qla_transmit_exit;
         }
 
         if (mp != NULL) {
                 ret = drbr_enqueue(ifp, fp->tx_br, mp);
         }
 
         if (fp->fp_taskqueue != NULL)
                 taskqueue_enqueue(fp->fp_taskqueue, &fp->fp_task);
 
         ret = 0;
 
 qla_transmit_exit:
 
         QL_DPRINT2(ha, (ha->pci_dev, "%s: exit ret = %d\n", __func__, ret));
         return ret;
 }
 
 static void
 qla_qflush(struct ifnet *ifp)
 {
         int                     i;
         qla_tx_fp_t		*fp;
         struct mbuf             *mp;
         qla_host_t              *ha;
 
         ha = (qla_host_t *)ifp->if_softc;
 
         QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
 
         for (i = 0; i < ha->hw.num_sds_rings; i++) {
 
                 fp = &ha->tx_fp[i];
 
                 if (fp == NULL)
                         continue;
 
                 if (fp->tx_br) {
                         mtx_lock(&fp->tx_mtx);
 
                         while ((mp = drbr_dequeue(ifp, fp->tx_br)) != NULL) {
                                 m_freem(mp);
                         }
                         mtx_unlock(&fp->tx_mtx);
                 }
         }
         QL_DPRINT2(ha, (ha->pci_dev, "%s: exit\n", __func__));
 
         return;
 }
 
 static void
 qla_stop(qla_host_t *ha)
 {
 	struct ifnet *ifp = ha->ifp;
 	device_t	dev;
 	int i = 0;
 
 	dev = ha->pci_dev;
 
 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 	ha->qla_watchdog_pause = 1;
 
         for (i = 0; i < ha->hw.num_sds_rings; i++) {
         	qla_tx_fp_t *fp;
 
 		fp = &ha->tx_fp[i];
 
                 if (fp == NULL)
                         continue;
 
 		if (fp->tx_br != NULL) {
                         mtx_lock(&fp->tx_mtx);
                         mtx_unlock(&fp->tx_mtx);
 		}
 	}
 
 	while (!ha->qla_watchdog_paused)
 		qla_mdelay(__func__, 1);
 
 	ha->qla_interface_up = 0;
 
 	qla_drain_fp_taskqueues(ha);
 
 	ql_del_hw_if(ha);
 
 	qla_free_xmt_bufs(ha);
 	qla_free_rcv_bufs(ha);
 
 	return;
 }
 
 /*
  * Buffer Management Functions for Transmit and Receive Rings
  */
 static int
 qla_alloc_xmt_bufs(qla_host_t *ha)
 {
 	int ret = 0;
 	uint32_t i, j;
 	qla_tx_buf_t *txb;
 
 	if (bus_dma_tag_create(NULL,    /* parent */
 		1, 0,    /* alignment, bounds */
 		BUS_SPACE_MAXADDR,       /* lowaddr */
 		BUS_SPACE_MAXADDR,       /* highaddr */
 		NULL, NULL,      /* filter, filterarg */
 		QLA_MAX_TSO_FRAME_SIZE,     /* maxsize */
 		QLA_MAX_SEGMENTS,        /* nsegments */
 		PAGE_SIZE,        /* maxsegsize */
 		BUS_DMA_ALLOCNOW,        /* flags */
 		NULL,    /* lockfunc */
 		NULL,    /* lockfuncarg */
 		&ha->tx_tag)) {
 		device_printf(ha->pci_dev, "%s: tx_tag alloc failed\n",
 			__func__);
 		return (ENOMEM);
 	}
 
 	for (i = 0; i < ha->hw.num_tx_rings; i++) {
 		bzero((void *)ha->tx_ring[i].tx_buf,
 			(sizeof(qla_tx_buf_t) * NUM_TX_DESCRIPTORS));
 	}
 
 	for (j = 0; j < ha->hw.num_tx_rings; j++) {
 		for (i = 0; i < NUM_TX_DESCRIPTORS; i++) {
 
 			txb = &ha->tx_ring[j].tx_buf[i];
 
 			if ((ret = bus_dmamap_create(ha->tx_tag,
 					BUS_DMA_NOWAIT, &txb->map))) {
 
 				ha->err_tx_dmamap_create++;
 				device_printf(ha->pci_dev,
 					"%s: bus_dmamap_create failed[%d]\n",
 					__func__, ret);
 
 				qla_free_xmt_bufs(ha);
 
 				return (ret);
 			}
 		}
 	}
 
 	return 0;
 }
 
 /*
  * Release mbuf after it sent on the wire
  */
 static void
 qla_clear_tx_buf(qla_host_t *ha, qla_tx_buf_t *txb)
 {
 	QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
 
 	if (txb->m_head && txb->map) {
 
 		bus_dmamap_unload(ha->tx_tag, txb->map);
 
 		m_freem(txb->m_head);
 		txb->m_head = NULL;
 	}
 
 	if (txb->map)
 		bus_dmamap_destroy(ha->tx_tag, txb->map);
 
 	QL_DPRINT2(ha, (ha->pci_dev, "%s: exit\n", __func__));
 }
 
 static void
 qla_free_xmt_bufs(qla_host_t *ha)
 {
 	int		i, j;
 
 	for (j = 0; j < ha->hw.num_tx_rings; j++) {
 		for (i = 0; i < NUM_TX_DESCRIPTORS; i++)
 			qla_clear_tx_buf(ha, &ha->tx_ring[j].tx_buf[i]);
 	}
 
 	if (ha->tx_tag != NULL) {
 		bus_dma_tag_destroy(ha->tx_tag);
 		ha->tx_tag = NULL;
 	}
 
 	for (i = 0; i < ha->hw.num_tx_rings; i++) {
 		bzero((void *)ha->tx_ring[i].tx_buf,
 			(sizeof(qla_tx_buf_t) * NUM_TX_DESCRIPTORS));
 	}
 	return;
 }
 
 
 static int
 qla_alloc_rcv_std(qla_host_t *ha)
 {
 	int		i, j, k, r, ret = 0;
 	qla_rx_buf_t	*rxb;
 	qla_rx_ring_t	*rx_ring;
 
 	for (r = 0; r < ha->hw.num_rds_rings; r++) {
 
 		rx_ring = &ha->rx_ring[r];
 
 		for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
 
 			rxb = &rx_ring->rx_buf[i];
 
 			ret = bus_dmamap_create(ha->rx_tag, BUS_DMA_NOWAIT,
 					&rxb->map);
 
 			if (ret) {
 				device_printf(ha->pci_dev,
 					"%s: dmamap[%d, %d] failed\n",
 					__func__, r, i);
 
 				for (k = 0; k < r; k++) {
 					for (j = 0; j < NUM_RX_DESCRIPTORS;
 						j++) {
 						rxb = &ha->rx_ring[k].rx_buf[j];
 						bus_dmamap_destroy(ha->rx_tag,
 							rxb->map);
 					}
 				}
 
 				for (j = 0; j < i; j++) {
 					bus_dmamap_destroy(ha->rx_tag,
 						rx_ring->rx_buf[j].map);
 				}
 				goto qla_alloc_rcv_std_err;
 			}
 		}
 	}
 
 	qla_init_hw_rcv_descriptors(ha);
 
 	
 	for (r = 0; r < ha->hw.num_rds_rings; r++) {
 
 		rx_ring = &ha->rx_ring[r];
 
 		for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
 			rxb = &rx_ring->rx_buf[i];
 			rxb->handle = i;
 			if (!(ret = ql_get_mbuf(ha, rxb, NULL))) {
 				/*
 			 	 * set the physical address in the
 				 * corresponding descriptor entry in the
 				 * receive ring/queue for the hba 
 				 */
 				qla_set_hw_rcv_desc(ha, r, i, rxb->handle,
 					rxb->paddr,
 					(rxb->m_head)->m_pkthdr.len);
 			} else {
 				device_printf(ha->pci_dev,
 					"%s: ql_get_mbuf [%d, %d] failed\n",
 					__func__, r, i);
 				bus_dmamap_destroy(ha->rx_tag, rxb->map);
 				goto qla_alloc_rcv_std_err;
 			}
 		}
 	}
 	return 0;
 
 qla_alloc_rcv_std_err:
 	return (-1);
 }
 
 static void
 qla_free_rcv_std(qla_host_t *ha)
 {
 	int		i, r;
 	qla_rx_buf_t	*rxb;
 
 	for (r = 0; r < ha->hw.num_rds_rings; r++) {
 		for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
 			rxb = &ha->rx_ring[r].rx_buf[i];
 			if (rxb->m_head != NULL) {
 				bus_dmamap_unload(ha->rx_tag, rxb->map);
 				bus_dmamap_destroy(ha->rx_tag, rxb->map);
 				m_freem(rxb->m_head);
 				rxb->m_head = NULL;
 			}
 		}
 	}
 	return;
 }
 
 static int
 qla_alloc_rcv_bufs(qla_host_t *ha)
 {
 	int		i, ret = 0;
 
 	if (bus_dma_tag_create(NULL,    /* parent */
 			1, 0,    /* alignment, bounds */
 			BUS_SPACE_MAXADDR,       /* lowaddr */
 			BUS_SPACE_MAXADDR,       /* highaddr */
 			NULL, NULL,      /* filter, filterarg */
 			MJUM9BYTES,     /* maxsize */
 			1,        /* nsegments */
 			MJUM9BYTES,        /* maxsegsize */
 			BUS_DMA_ALLOCNOW,        /* flags */
 			NULL,    /* lockfunc */
 			NULL,    /* lockfuncarg */
 			&ha->rx_tag)) {
 
 		device_printf(ha->pci_dev, "%s: rx_tag alloc failed\n",
 			__func__);
 
 		return (ENOMEM);
 	}
 
 	bzero((void *)ha->rx_ring, (sizeof(qla_rx_ring_t) * MAX_RDS_RINGS));
 
 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
 		ha->hw.sds[i].sdsr_next = 0;
 		ha->hw.sds[i].rxb_free = NULL;
 		ha->hw.sds[i].rx_free = 0;
 	}
 
 	ret = qla_alloc_rcv_std(ha);
 
 	return (ret);
 }
 
 static void
 qla_free_rcv_bufs(qla_host_t *ha)
 {
 	int		i;
 
 	qla_free_rcv_std(ha);
 
 	if (ha->rx_tag != NULL) {
 		bus_dma_tag_destroy(ha->rx_tag);
 		ha->rx_tag = NULL;
 	}
 
 	bzero((void *)ha->rx_ring, (sizeof(qla_rx_ring_t) * MAX_RDS_RINGS));
 
 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
 		ha->hw.sds[i].sdsr_next = 0;
 		ha->hw.sds[i].rxb_free = NULL;
 		ha->hw.sds[i].rx_free = 0;
 	}
 
 	return;
 }
 
 int
 ql_get_mbuf(qla_host_t *ha, qla_rx_buf_t *rxb, struct mbuf *nmp)
 {
 	register struct mbuf *mp = nmp;
 	struct ifnet   		*ifp;
 	int            		ret = 0;
 	uint32_t		offset;
 	bus_dma_segment_t	segs[1];
 	int			nsegs, mbuf_size;
 
 	QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
 
 	ifp = ha->ifp;
 
         if (ha->hw.enable_9kb)
                 mbuf_size = MJUM9BYTES;
         else
                 mbuf_size = MCLBYTES;
 
 	if (mp == NULL) {
 
 		if (QL_ERR_INJECT(ha, INJCT_M_GETCL_M_GETJCL_FAILURE))
 			return(-1);
 
                 if (ha->hw.enable_9kb)
                         mp = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, mbuf_size);
                 else
                         mp = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 
 		if (mp == NULL) {
 			ha->err_m_getcl++;
 			ret = ENOBUFS;
 			device_printf(ha->pci_dev,
 					"%s: m_getcl failed\n", __func__);
 			goto exit_ql_get_mbuf;
 		}
 		mp->m_len = mp->m_pkthdr.len = mbuf_size;
 	} else {
 		mp->m_len = mp->m_pkthdr.len = mbuf_size;
 		mp->m_data = mp->m_ext.ext_buf;
 		mp->m_next = NULL;
 	}
 
 	offset = (uint32_t)((unsigned long long)mp->m_data & 0x7ULL);
 	if (offset) {
 		offset = 8 - offset;
 		m_adj(mp, offset);
 	}
 
 	/*
 	 * Using memory from the mbuf cluster pool, invoke the bus_dma
 	 * machinery to arrange the memory mapping.
 	 */
 	ret = bus_dmamap_load_mbuf_sg(ha->rx_tag, rxb->map,
 			mp, segs, &nsegs, BUS_DMA_NOWAIT);
 	rxb->paddr = segs[0].ds_addr;
 
 	if (ret || !rxb->paddr || (nsegs != 1)) {
 		m_free(mp);
 		rxb->m_head = NULL;
 		device_printf(ha->pci_dev,
 			"%s: bus_dmamap_load failed[%d, 0x%016llx, %d]\n",
 			__func__, ret, (long long unsigned int)rxb->paddr,
 			nsegs);
                 ret = -1;
 		goto exit_ql_get_mbuf;
 	}
 	rxb->m_head = mp;
 	bus_dmamap_sync(ha->rx_tag, rxb->map, BUS_DMASYNC_PREREAD);
 
 exit_ql_get_mbuf:
 	QL_DPRINT2(ha, (ha->pci_dev, "%s: exit ret = 0x%08x\n", __func__, ret));
 	return (ret);
 }
 
 
 static void
 qla_get_peer(qla_host_t *ha)
 {
 	device_t *peers;
 	int count, i, slot;
 	int my_slot = pci_get_slot(ha->pci_dev);
 
 	if (device_get_children(device_get_parent(ha->pci_dev), &peers, &count))
 		return;
 
 	for (i = 0; i < count; i++) {
 		slot = pci_get_slot(peers[i]);
 
 		if ((slot >= 0) && (slot == my_slot) &&
 			(pci_get_device(peers[i]) ==
 				pci_get_device(ha->pci_dev))) {
 			if (ha->pci_dev != peers[i]) 
 				ha->peer_dev = peers[i];
 		}
 	}
 }
 
 static void
 qla_send_msg_to_peer(qla_host_t *ha, uint32_t msg_to_peer)
 {
 	qla_host_t *ha_peer;
 	
 	if (ha->peer_dev) {
         	if ((ha_peer = device_get_softc(ha->peer_dev)) != NULL) {
 
 			ha_peer->msg_from_peer = msg_to_peer;
 		}
 	}
 }
 
 static void
 qla_error_recovery(void *context, int pending)
 {
 	qla_host_t *ha = context;
 	uint32_t msecs_100 = 100;
 	struct ifnet *ifp = ha->ifp;
 	int i = 0;
 
 device_printf(ha->pci_dev, "%s: \n", __func__);
 	ha->hw.imd_compl = 1;
 
 	if (QLA_LOCK(ha, __func__, -1, 0) != 0)
 		return;
 
 device_printf(ha->pci_dev, "%s: enter\n", __func__);
 
 	if (ha->qla_interface_up) {
 
 		qla_mdelay(__func__, 300);
 
 	        ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 
 		for (i = 0; i < ha->hw.num_sds_rings; i++) {
 	        	qla_tx_fp_t *fp;
 
 			fp = &ha->tx_fp[i];
 
 			if (fp == NULL)
 				continue;
 
 			if (fp->tx_br != NULL) {
 				mtx_lock(&fp->tx_mtx);
 				mtx_unlock(&fp->tx_mtx);
 			}
 		}
 	}
 
 
 	qla_drain_fp_taskqueues(ha);
 
 	if ((ha->pci_func & 0x1) == 0) {
 
 		if (!ha->msg_from_peer) {
 			qla_send_msg_to_peer(ha, QL_PEER_MSG_RESET);
 
 			while ((ha->msg_from_peer != QL_PEER_MSG_ACK) &&
 				msecs_100--)
 				qla_mdelay(__func__, 100);
 		}
 
 		ha->msg_from_peer = 0;
 
-		ql_minidump(ha);
+		if (ha->enable_minidump)
+			ql_minidump(ha);
 
 		(void) ql_init_hw(ha);
 
 		if (ha->qla_interface_up) {
 			qla_free_xmt_bufs(ha);
 			qla_free_rcv_bufs(ha);
 		}
 
 		qla_send_msg_to_peer(ha, QL_PEER_MSG_ACK);
 
 	} else {
 		if (ha->msg_from_peer == QL_PEER_MSG_RESET) {
 
 			ha->msg_from_peer = 0;
 
 			qla_send_msg_to_peer(ha, QL_PEER_MSG_ACK);
 		} else {
 			qla_send_msg_to_peer(ha, QL_PEER_MSG_RESET);
 		}
 
 		while ((ha->msg_from_peer != QL_PEER_MSG_ACK)  && msecs_100--)
 			qla_mdelay(__func__, 100);
 		ha->msg_from_peer = 0;
 
 		(void) ql_init_hw(ha);
 
 		qla_mdelay(__func__, 1000);
 
 		if (ha->qla_interface_up) {
 			qla_free_xmt_bufs(ha);
 			qla_free_rcv_bufs(ha);
 		}
 	}
 
 	if (ha->qla_interface_up) {
 
 		if (qla_alloc_xmt_bufs(ha) != 0) {
 			goto qla_error_recovery_exit;
 		}
 		qla_confirm_9kb_enable(ha);
 
 		if (qla_alloc_rcv_bufs(ha) != 0) {
 			goto qla_error_recovery_exit;
 		}
 
 		ha->stop_rcv = 0;
 
 		if (ql_init_hw_if(ha) == 0) {
 			ifp = ha->ifp;
 			ifp->if_drv_flags |= IFF_DRV_RUNNING;
 			ha->qla_watchdog_pause = 0;
 		}
 	} else
 		ha->qla_watchdog_pause = 0;
 
 qla_error_recovery_exit:
 
 device_printf(ha->pci_dev, "%s: exit\n", __func__);
 
         QLA_UNLOCK(ha, __func__);
 
 	callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
 		qla_watchdog, ha);
 	return;
 }
 
 static void
 qla_async_event(void *context, int pending)
 {
         qla_host_t *ha = context;
 
 	if (QLA_LOCK(ha, __func__, -1, 0) != 0)
 		return;
 
 	if (ha->async_event) {
 		ha->async_event = 0;
         	qla_hw_async_event(ha);
 	}
 
 	QLA_UNLOCK(ha, __func__);
 
 	return;
 }
 
 static void
 qla_stats(void *context, int pending)
 {
         qla_host_t *ha;
 
         ha = context;
 
 	ql_get_stats(ha);
 	return;
 }
 
Index: stable/10
===================================================================
--- stable/10	(revision 324030)
+++ stable/10	(revision 324031)

Property changes on: stable/10
___________________________________________________________________
Modified: svn:mergeinfo
## -0,0 +0,1 ##
   Merged /head:r323782