Index: projects/bsd_rdma_4_9/sys/ofed/drivers/infiniband/core/ib_addr.c =================================================================== --- projects/bsd_rdma_4_9/sys/ofed/drivers/infiniband/core/ib_addr.c (revision 323645) +++ projects/bsd_rdma_4_9/sys/ofed/drivers/infiniband/core/ib_addr.c (revision 323646) @@ -1,760 +1,819 @@ /* * Copyright (c) 2005 Voltaire Inc. All rights reserved. * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved. * Copyright (c) 2005 Intel Corporation. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "core_priv.h" struct addr_req { struct list_head list; struct sockaddr_storage src_addr; struct sockaddr_storage dst_addr; struct rdma_dev_addr *addr; struct rdma_addr_client *client; void *context; void (*callback)(int status, struct sockaddr *src_addr, struct rdma_dev_addr *addr, void *context); unsigned long timeout; int status; }; static void process_req(struct work_struct *work); static DEFINE_MUTEX(lock); static LIST_HEAD(req_list); static DECLARE_DELAYED_WORK(work, process_req); static struct workqueue_struct *addr_wq; int rdma_addr_size(struct sockaddr *addr) { switch (addr->sa_family) { case AF_INET: return sizeof(struct sockaddr_in); case AF_INET6: return sizeof(struct sockaddr_in6); case AF_IB: return sizeof(struct sockaddr_ib); default: return 0; } } EXPORT_SYMBOL(rdma_addr_size); static struct rdma_addr_client self; void rdma_addr_register_client(struct rdma_addr_client *client) { atomic_set(&client->refcount, 1); init_completion(&client->comp); } EXPORT_SYMBOL(rdma_addr_register_client); static inline void put_client(struct rdma_addr_client *client) { if (atomic_dec_and_test(&client->refcount)) complete(&client->comp); } void rdma_addr_unregister_client(struct rdma_addr_client *client) { put_client(client); wait_for_completion(&client->comp); } EXPORT_SYMBOL(rdma_addr_unregister_client); static inline void rdma_copy_addr_sub(u8 *dst, const u8 *src, unsigned min, unsigned max) { if (min > max) min = max; memcpy(dst, src, min); memset(dst + min, 0, max - min); } int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev, const unsigned char *dst_dev_addr) { if (dev->if_type == IFT_INFINIBAND) dev_addr->dev_type = ARPHRD_INFINIBAND; else if (dev->if_type == IFT_ETHER) dev_addr->dev_type = ARPHRD_ETHER; else dev_addr->dev_type = 0; rdma_copy_addr_sub(dev_addr->src_dev_addr, IF_LLADDR(dev), dev->if_addrlen, MAX_ADDR_LEN); rdma_copy_addr_sub(dev_addr->broadcast, dev->if_broadcastaddr, dev->if_addrlen, MAX_ADDR_LEN); if (dst_dev_addr != NULL) { rdma_copy_addr_sub(dev_addr->dst_dev_addr, dst_dev_addr, dev->if_addrlen, MAX_ADDR_LEN); } dev_addr->bound_dev_if = dev->if_index; return 0; } EXPORT_SYMBOL(rdma_copy_addr); int rdma_translate_ip(const struct sockaddr *addr, struct rdma_dev_addr *dev_addr, u16 *vlan_id) { struct net_device *dev = NULL; int ret = -EADDRNOTAVAIL; if (dev_addr->bound_dev_if) { dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); if (!dev) return -ENODEV; ret = rdma_copy_addr(dev_addr, dev, NULL); dev_put(dev); return ret; } switch (addr->sa_family) { #ifdef INET case AF_INET: dev = ip_dev_find(dev_addr->net, ((const struct sockaddr_in *)addr)->sin_addr.s_addr); break; #endif #ifdef INET6 - case AF_INET6: { - struct in6_addr in6_addr = ((const struct sockaddr_in6 *)addr)->sin6_addr; - - /* embed scope ID */ - in6_addr.s6_addr[3] = ((const struct sockaddr_in6 *)addr)->sin6_scope_id; - - dev = ip6_dev_find(dev_addr->net, in6_addr); + case AF_INET6: + dev = ip6_dev_find(dev_addr->net, + ((const struct sockaddr_in6 *)addr)->sin6_addr); break; - } #endif default: break; } if (dev != NULL) { ret = rdma_copy_addr(dev_addr, dev, NULL); if (vlan_id) *vlan_id = rdma_vlan_dev_vlan_id(dev); dev_put(dev); } return ret; } EXPORT_SYMBOL(rdma_translate_ip); static void set_timeout(unsigned long time) { int delay; /* under FreeBSD ticks are 32-bit */ delay = time - jiffies; if (delay <= 0) delay = 1; mod_delayed_work(addr_wq, &work, delay); } static void queue_req(struct addr_req *req) { struct addr_req *temp_req; mutex_lock(&lock); list_for_each_entry_reverse(temp_req, &req_list, list) { if (time_after_eq(req->timeout, temp_req->timeout)) break; } list_add(&req->list, &temp_req->list); if (req_list.next == &req->list) set_timeout(req->timeout); mutex_unlock(&lock); } #if defined(INET) || defined(INET6) static int addr_resolve_multi(u8 *edst, struct ifnet *ifp, struct sockaddr *dst_in) { struct sockaddr *llsa; struct sockaddr_dl sdl; int error; sdl.sdl_len = sizeof(sdl); llsa = (struct sockaddr *)&sdl; if (ifp->if_resolvemulti == NULL) { error = EOPNOTSUPP; } else { error = ifp->if_resolvemulti(ifp, &llsa, dst_in); if (error == 0) { rdma_copy_addr_sub(edst, LLADDR((struct sockaddr_dl *)llsa), ifp->if_addrlen, MAX_ADDR_LEN); } } return (error); } #endif #ifdef INET static int addr4_resolve(struct sockaddr_in *src_in, const struct sockaddr_in *dst_in, struct rdma_dev_addr *addr, struct ifnet **ifpp) { struct sockaddr_in dst_tmp = *dst_in; u8 edst[MAX_ADDR_LEN]; + in_port_t src_port; + struct sockaddr *saddr; struct rtentry *rte; struct ifnet *ifp; int error; + int type; - /* - * Make sure the socket address length field - * is set, else rtalloc1() will fail. - */ - dst_tmp.sin_len = sizeof(dst_tmp); - + /* set VNET, if any */ CURVNET_SET(addr->net); + /* set default TTL limit */ addr->hoplimit = V_ip_defttl; - /* lookup route for destination */ - rte = rtalloc1((struct sockaddr *)&dst_tmp, 1, 0); - CURVNET_RESTORE(); + type = 0; + if (src_in->sin_addr.s_addr == INADDR_ANY) + type |= 1; + if (dst_tmp.sin_addr.s_addr == INADDR_ANY) + type |= 2; /* - * Make sure the route exists and has a valid link. + * Make sure the socket address length field + * is set, else rtalloc1() will fail. */ - if (rte == NULL) { - error = EHOSTUNREACH; - goto done; - } else if (rte->rt_ifp == NULL || RT_LINK_IS_UP(rte->rt_ifp) == 0) { - RTFREE_LOCKED(rte); - error = EHOSTUNREACH; - goto done; - } else if (src_in->sin_addr.s_addr != INADDR_ANY) { + dst_tmp.sin_len = sizeof(dst_tmp); + + /* Step 1 - lookup destination route if any */ + switch (type) { + case 0: + case 1: + /* regular destination route lookup */ + rte = rtalloc1((struct sockaddr *)&dst_tmp, 1, 0); + if (rte == NULL) { + error = EHOSTUNREACH; + goto done; + } else if (rte->rt_ifp == NULL || rte->rt_ifp == V_loif || + RT_LINK_IS_UP(rte->rt_ifp) == 0) { + RTFREE_LOCKED(rte); + error = EHOSTUNREACH; + goto done; + } RT_UNLOCK(rte); + break; + default: + error = ENETUNREACH; + goto done; + } + /* Step 2 - find outgoing network interface */ + switch (type) { + case 0: + /* source check */ ifp = ip_dev_find(addr->net, src_in->sin_addr.s_addr); if (ifp == NULL) { - RTFREE(rte); error = ENETUNREACH; - goto done; + goto error_rt_free; } else if (ifp != rte->rt_ifp) { error = ENETUNREACH; - goto failure; + goto error_put_ifp; } - } else { - struct sockaddr *saddr; - + break; + case 1: + /* get destination network interface from route */ ifp = rte->rt_ifp; dev_hold(ifp); - saddr = rte->rt_ifa->ifa_addr; + + src_port = src_in->sin_port; memcpy(src_in, saddr, rdma_addr_size(saddr)); - RT_UNLOCK(rte); + src_in->sin_port = src_port; /* preserve port number */ + break; + default: + break; } /* - * Resolve destination MAC address + * Step 3 - resolve destination MAC address */ if (dst_tmp.sin_addr.s_addr == INADDR_BROADCAST) { rdma_copy_addr_sub(edst, ifp->if_broadcastaddr, - ifp->if_addrlen, MAX_ADDR_LEN); + ifp->if_addrlen, MAX_ADDR_LEN); } else if (IN_MULTICAST(ntohl(dst_tmp.sin_addr.s_addr))) { error = addr_resolve_multi(edst, ifp, (struct sockaddr *)&dst_tmp); if (error != 0) - goto failure; + goto error_put_ifp; } else { bool is_gw = (rte->rt_flags & RTF_GATEWAY) != 0; memset(edst, 0, sizeof(edst)); error = arpresolve(ifp, is_gw, NULL, is_gw ? rte->rt_gateway : (const struct sockaddr *)&dst_tmp, edst, NULL, NULL); if (error != 0) - goto failure; + goto error_put_ifp; else if (is_gw != 0) addr->network = RDMA_NETWORK_IPV4; } /* - * Copy destination and source MAC addresses + * Step 4 - copy destination and source MAC addresses */ error = -rdma_copy_addr(addr, ifp, edst); - if (error != 0) { -failure: - dev_put(ifp); + if (error != 0) + goto error_put_ifp; - if (error == EWOULDBLOCK || error == EAGAIN) - error = ENODATA; - } else { - *ifpp = ifp; - } + if (rte != NULL) + RTFREE(rte); + + *ifpp = ifp; + + goto done; + +error_put_ifp: + dev_put(ifp); +error_rt_free: RTFREE(rte); done: + CURVNET_RESTORE(); + + if (error == EWOULDBLOCK || error == EAGAIN) + error = ENODATA; return (-error); } #else static int addr4_resolve(struct sockaddr_in *src_in, const struct sockaddr_in *dst_in, struct rdma_dev_addr *addr, struct ifnet **ifpp) { return -EADDRNOTAVAIL; } #endif #ifdef INET6 static int addr6_resolve(struct sockaddr_in6 *src_in, const struct sockaddr_in6 *dst_in, struct rdma_dev_addr *addr, struct ifnet **ifpp) { struct sockaddr_in6 dst_tmp = *dst_in; u8 edst[MAX_ADDR_LEN]; + in_port_t src_port; + struct sockaddr *saddr; struct rtentry *rte; struct ifnet *ifp; int error; + int type; - sa6_embedscope(&dst_tmp, 0); - sa6_embedscope(src_in, 0); - - /* - * Make sure the socket address length field - * is set, else rtalloc1() will fail. - */ - dst_tmp.sin6_len = sizeof(dst_tmp); - + /* set VNET, if any */ CURVNET_SET(addr->net); + /* set default TTL limit */ addr->hoplimit = V_ip_defttl; - /* lookup route for destination */ - rte = rtalloc1((struct sockaddr *)&dst_tmp, 1, 0); - CURVNET_RESTORE(); + type = 0; + if (ipv6_addr_any(&src_in->sin6_addr)) + type |= 1; + if (ipv6_addr_any(&dst_tmp.sin6_addr)) + type |= 2; /* - * Make sure the route exists and has a valid link. + * Make sure the socket address length field + * is set, else rtalloc1() will fail. */ - if (rte == NULL) { - error = EHOSTUNREACH; - goto done; - } else if (rte->rt_ifp == NULL || RT_LINK_IS_UP(rte->rt_ifp) == 0) { - RTFREE_LOCKED(rte); - error = EHOSTUNREACH; - goto done; - } else if (!IN6_IS_ADDR_UNSPECIFIED(&src_in->sin6_addr)) { + dst_tmp.sin6_len = sizeof(dst_tmp); + + /* Step 1 - lookup destination route if any */ + switch (type) { + case 0: + /* sanity check for IPv4 addresses */ + if (ipv6_addr_v4mapped(&src_in->sin6_addr) != + ipv6_addr_v4mapped(&dst_tmp.sin6_addr)) { + error = EAFNOSUPPORT; + goto done; + } + /* FALLTHROUGH */ + case 1: + /* regular destination route lookup */ + rte = rtalloc1((struct sockaddr *)&dst_tmp, 1, 0); + if (rte == NULL) { + error = EHOSTUNREACH; + goto done; + } else if (rte->rt_ifp == NULL || rte->rt_ifp == V_loif || + RT_LINK_IS_UP(rte->rt_ifp) == 0) { + RTFREE_LOCKED(rte); + error = EHOSTUNREACH; + goto done; + } RT_UNLOCK(rte); + break; + default: + error = ENETUNREACH; + goto done; + } + /* Step 2 - find outgoing network interface */ + switch (type) { + case 0: + /* source check */ ifp = ip6_dev_find(addr->net, src_in->sin6_addr); if (ifp == NULL) { - RTFREE(rte); error = ENETUNREACH; - goto done; + goto error_rt_free; } else if (ifp != rte->rt_ifp) { error = ENETUNREACH; - goto failure; + goto error_put_ifp; } - } else { - struct sockaddr *saddr; - + break; + case 1: + /* get destination network interface from route */ ifp = rte->rt_ifp; dev_hold(ifp); - saddr = rte->rt_ifa->ifa_addr; + + src_port = src_in->sin6_port; memcpy(src_in, saddr, rdma_addr_size(saddr)); - RT_UNLOCK(rte); + src_in->sin6_port = src_port; /* preserve port number */ + break; + default: + break; } /* - * Resolve destination MAC address + * Step 3 - resolve destination MAC address */ if (IN6_IS_ADDR_MULTICAST(&dst_tmp.sin6_addr)) { - error = addr_resolve_multi(edst, ifp, (struct sockaddr *)&dst_tmp); + error = addr_resolve_multi(edst, ifp, + (struct sockaddr *)&dst_tmp); if (error != 0) - goto failure; + goto error_put_ifp; } else { bool is_gw = (rte->rt_flags & RTF_GATEWAY) != 0; memset(edst, 0, sizeof(edst)); error = nd6_resolve(ifp, is_gw, NULL, is_gw ? rte->rt_gateway : (const struct sockaddr *)&dst_tmp, edst, NULL, NULL); if (error != 0) - goto failure; + goto error_put_ifp; else if (is_gw != 0) addr->network = RDMA_NETWORK_IPV6; } /* - * Copy destination and source MAC addresses + * Step 4 - copy destination and source MAC addresses */ error = -rdma_copy_addr(addr, ifp, edst); - if (error != 0) { -failure: - dev_put(ifp); + if (error != 0) + goto error_put_ifp; - if (error == EWOULDBLOCK || error == EAGAIN) - error = ENODATA; - } else { - *ifpp = ifp; - } + if (rte != NULL) + RTFREE(rte); + + *ifpp = ifp; + + goto done; + +error_put_ifp: + dev_put(ifp); +error_rt_free: RTFREE(rte); done: - sa6_recoverscope(&dst_tmp); - sa6_recoverscope(src_in); + CURVNET_RESTORE(); + if (error == EWOULDBLOCK || error == EAGAIN) + error = ENODATA; return (-error); } #else static int addr6_resolve(struct sockaddr_in6 *src_in, const struct sockaddr_in6 *dst_in, struct rdma_dev_addr *addr, struct ifnet **ifpp) { return -EADDRNOTAVAIL; } #endif static int addr_resolve_neigh(struct ifnet *dev, const struct sockaddr *dst_in, struct rdma_dev_addr *addr) { if (dev->if_flags & IFF_LOOPBACK) { int ret; ret = rdma_translate_ip(dst_in, addr, NULL); if (!ret) memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN); return ret; } /* If the device doesn't do ARP internally */ if (!(dev->if_flags & IFF_NOARP)) return 0; return rdma_copy_addr(addr, dev, NULL); } static int addr_resolve(struct sockaddr *src_in, const struct sockaddr *dst_in, struct rdma_dev_addr *addr, bool resolve_neigh) { struct net_device *ndev = NULL; int ret; if (dst_in->sa_family != src_in->sa_family) return -EINVAL; if (src_in->sa_family == AF_INET) { ret = addr4_resolve((struct sockaddr_in *)src_in, (const struct sockaddr_in *)dst_in, addr, &ndev); if (ret) return ret; if (resolve_neigh) ret = addr_resolve_neigh(ndev, dst_in, addr); } else { ret = addr6_resolve((struct sockaddr_in6 *)src_in, (const struct sockaddr_in6 *)dst_in, addr, &ndev); if (ret) return ret; if (resolve_neigh) ret = addr_resolve_neigh(ndev, dst_in, addr); } addr->bound_dev_if = ndev->if_index; addr->net = dev_net(ndev); dev_put(ndev); return ret; } static void process_req(struct work_struct *work) { struct addr_req *req, *temp_req; struct sockaddr *src_in, *dst_in; struct list_head done_list; INIT_LIST_HEAD(&done_list); mutex_lock(&lock); list_for_each_entry_safe(req, temp_req, &req_list, list) { if (req->status == -ENODATA) { src_in = (struct sockaddr *) &req->src_addr; dst_in = (struct sockaddr *) &req->dst_addr; req->status = addr_resolve(src_in, dst_in, req->addr, true); if (req->status && time_after_eq(jiffies, req->timeout)) req->status = -ETIMEDOUT; else if (req->status == -ENODATA) continue; } list_move_tail(&req->list, &done_list); } if (!list_empty(&req_list)) { req = list_entry(req_list.next, struct addr_req, list); set_timeout(req->timeout); } mutex_unlock(&lock); list_for_each_entry_safe(req, temp_req, &done_list, list) { list_del(&req->list); req->callback(req->status, (struct sockaddr *) &req->src_addr, req->addr, req->context); put_client(req->client); kfree(req); } } int rdma_resolve_ip(struct rdma_addr_client *client, struct sockaddr *src_addr, struct sockaddr *dst_addr, struct rdma_dev_addr *addr, int timeout_ms, void (*callback)(int status, struct sockaddr *src_addr, struct rdma_dev_addr *addr, void *context), void *context) { struct sockaddr *src_in, *dst_in; struct addr_req *req; int ret = 0; req = kzalloc(sizeof *req, GFP_KERNEL); if (!req) return -ENOMEM; src_in = (struct sockaddr *) &req->src_addr; dst_in = (struct sockaddr *) &req->dst_addr; if (src_addr) { if (src_addr->sa_family != dst_addr->sa_family) { ret = -EINVAL; goto err; } memcpy(src_in, src_addr, rdma_addr_size(src_addr)); } else { src_in->sa_family = dst_addr->sa_family; } memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr)); req->addr = addr; req->callback = callback; req->context = context; req->client = client; atomic_inc(&client->refcount); req->status = addr_resolve(src_in, dst_in, addr, true); switch (req->status) { case 0: req->timeout = jiffies; queue_req(req); break; case -ENODATA: req->timeout = msecs_to_jiffies(timeout_ms) + jiffies; queue_req(req); break; default: ret = req->status; atomic_dec(&client->refcount); goto err; } return ret; err: kfree(req); return ret; } EXPORT_SYMBOL(rdma_resolve_ip); int rdma_resolve_ip_route(struct sockaddr *src_addr, const struct sockaddr *dst_addr, struct rdma_dev_addr *addr) { struct sockaddr_storage ssrc_addr = {}; struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr; if (src_addr) { if (src_addr->sa_family != dst_addr->sa_family) return -EINVAL; memcpy(src_in, src_addr, rdma_addr_size(src_addr)); } else { src_in->sa_family = dst_addr->sa_family; } return addr_resolve(src_in, dst_addr, addr, false); } EXPORT_SYMBOL(rdma_resolve_ip_route); void rdma_addr_cancel(struct rdma_dev_addr *addr) { struct addr_req *req, *temp_req; mutex_lock(&lock); list_for_each_entry_safe(req, temp_req, &req_list, list) { if (req->addr == addr) { req->status = -ECANCELED; req->timeout = jiffies; list_move(&req->list, &req_list); set_timeout(req->timeout); break; } } mutex_unlock(&lock); } EXPORT_SYMBOL(rdma_addr_cancel); struct resolve_cb_context { struct rdma_dev_addr *addr; struct completion comp; int status; }; static void resolve_cb(int status, struct sockaddr *src_addr, struct rdma_dev_addr *addr, void *context) { if (!status) memcpy(((struct resolve_cb_context *)context)->addr, addr, sizeof(struct rdma_dev_addr)); ((struct resolve_cb_context *)context)->status = status; complete(&((struct resolve_cb_context *)context)->comp); } int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid, const union ib_gid *dgid, u8 *dmac, u16 *vlan_id, int *if_index, int *hoplimit) { int ret = 0; struct rdma_dev_addr dev_addr; struct resolve_cb_context ctx; struct net_device *dev; union { struct sockaddr _sockaddr; struct sockaddr_in _sockaddr_in; struct sockaddr_in6 _sockaddr_in6; } sgid_addr, dgid_addr; rdma_gid2ip(&sgid_addr._sockaddr, sgid); rdma_gid2ip(&dgid_addr._sockaddr, dgid); memset(&dev_addr, 0, sizeof(dev_addr)); if (if_index) dev_addr.bound_dev_if = *if_index; dev_addr.net = TD_TO_VNET(curthread); ctx.addr = &dev_addr; init_completion(&ctx.comp); ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr, &dev_addr, 1000, resolve_cb, &ctx); if (ret) return ret; wait_for_completion(&ctx.comp); ret = ctx.status; if (ret) return ret; memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN); dev = dev_get_by_index(dev_addr.net, dev_addr.bound_dev_if); if (!dev) return -ENODEV; if (if_index) *if_index = dev_addr.bound_dev_if; if (vlan_id) *vlan_id = rdma_vlan_dev_vlan_id(dev); if (hoplimit) *hoplimit = dev_addr.hoplimit; dev_put(dev); return ret; } EXPORT_SYMBOL(rdma_addr_find_l2_eth_by_grh); int rdma_addr_find_smac_by_sgid(union ib_gid *sgid, u8 *smac, u16 *vlan_id) { int ret = 0; struct rdma_dev_addr dev_addr; union { struct sockaddr _sockaddr; struct sockaddr_in _sockaddr_in; struct sockaddr_in6 _sockaddr_in6; } gid_addr; rdma_gid2ip(&gid_addr._sockaddr, sgid); memset(&dev_addr, 0, sizeof(dev_addr)); dev_addr.net = TD_TO_VNET(curthread); ret = rdma_translate_ip(&gid_addr._sockaddr, &dev_addr, vlan_id); if (ret) return ret; memcpy(smac, dev_addr.src_dev_addr, ETH_ALEN); return ret; } EXPORT_SYMBOL(rdma_addr_find_smac_by_sgid); int addr_init(void) { addr_wq = alloc_workqueue("ib_addr", WQ_MEM_RECLAIM, 0); if (!addr_wq) return -ENOMEM; rdma_addr_register_client(&self); return 0; } void addr_cleanup(void) { rdma_addr_unregister_client(&self); destroy_workqueue(addr_wq); }