Index: head/sys/conf/files.arm64
===================================================================
--- head/sys/conf/files.arm64	(revision 323361)
+++ head/sys/conf/files.arm64	(revision 323362)
@@ -1,210 +1,212 @@
 # $FreeBSD$
 cloudabi64_vdso.o		optional	compat_cloudabi64	\
 	dependency	"$S/contrib/cloudabi/cloudabi_vdso_aarch64.S"	\
 	compile-with	"${CC} -x assembler-with-cpp -shared -nostdinc -nostdlib -Wl,-T$S/compat/cloudabi/cloudabi_vdso.lds $S/contrib/cloudabi/cloudabi_vdso_aarch64.S -o ${.TARGET}" \
 	no-obj no-implicit-rule						\
 	clean		"cloudabi64_vdso.o"
 #
 cloudabi64_vdso_blob.o		optional	compat_cloudabi64	\
 	dependency 	"cloudabi64_vdso.o"			\
 	compile-with	"${OBJCOPY} --input-target binary --output-target elf64-littleaarch64 --binary-architecture aarch64 cloudabi64_vdso.o ${.TARGET}" \
 	no-implicit-rule						\
 	clean		"cloudabi64_vdso_blob.o"
 #
 arm/allwinner/a10_ehci.c	optional	ehci aw_ehci fdt
 arm/allwinner/a10_gpio.c	optional	gpio aw_gpio fdt
 arm/allwinner/a10_mmc.c		optional	mmc aw_mmc fdt
 arm/allwinner/a64/a64_padconf.c	optional	soc_allwinner_a64 fdt
 arm/allwinner/a64/a64_r_padconf.c optional	soc_allwinner_a64 fdt
 arm/allwinner/aw_ccu.c		optional	aw_ccu fdt
 arm/allwinner/aw_nmi.c		optional	aw_nmi fdt \
 	compile-with "${NORMAL_C} -I$S/gnu/dts/include"
 arm/allwinner/aw_reset.c	optional	aw_ccu fdt
 arm/allwinner/aw_rsb.c		optional	aw_rsb fdt
 arm/allwinner/aw_rtc.c		optional	aw_rtc fdt
 arm/allwinner/aw_sid.c		optional	aw_sid fdt
 arm/allwinner/aw_thermal.c	optional	aw_thermal fdt
 arm/allwinner/aw_usbphy.c	optional	ehci aw_usbphy fdt
 arm/allwinner/aw_wdog.c		optional	aw_wdog fdt
 arm/allwinner/axp81x.c		optional	axp81x fdt
 arm/allwinner/clk/aw_ahbclk.c	optional	aw_ccu fdt
 arm/allwinner/clk/aw_apbclk.c	optional	aw_ccu fdt
 arm/allwinner/clk/aw_axiclk.c	optional	aw_ccu fdt
 arm/allwinner/clk/aw_cpuclk.c	optional	aw_ccu fdt
 arm/allwinner/clk/aw_gate.c	optional	aw_ccu fdt
 arm/allwinner/clk/aw_modclk.c	optional	aw_ccu fdt
 arm/allwinner/clk/aw_pll.c	optional	aw_ccu fdt \
 	compile-with "${NORMAL_C} -I$S/gnu/dts/include"
 arm/allwinner/clk/aw_thsclk.c	optional	aw_ccu fdt
 arm/allwinner/clk/aw_usbclk.c	optional	aw_ccu fdt
 arm/allwinner/clkng/aw_ccung.c	optional	aw_ccu fdt
 arm/allwinner/clkng/aw_clk_nkmp.c	optional	aw_ccu fdt
 arm/allwinner/clkng/aw_clk_nm.c	optional	aw_ccu fdt
 arm/allwinner/clkng/aw_clk_prediv_mux.c	optional	aw_ccu fdt
 arm/allwinner/clkng/ccu_a64.c	optional	aw_ccu fdt
 arm/allwinner/clkng/ccu_h3.c	optional	aw_ccu fdt
 
 arm/allwinner/if_awg.c		optional	awg fdt
 arm/annapurna/alpine/alpine_ccu.c		optional	al_ccu fdt
 arm/annapurna/alpine/alpine_nb_service.c	optional	al_nb_service fdt
 arm/annapurna/alpine/alpine_pci.c		optional	al_pci fdt
 arm/annapurna/alpine/alpine_pci_msix.c		optional	al_pci fdt
 arm/annapurna/alpine/alpine_serdes.c		optional al_serdes fdt		\
 	no-depend	\
 	compile-with "${CC} -c -o ${.TARGET} ${CFLAGS} -I$S/contrib/alpine-hal -I$S/contrib/alpine-hal/eth ${PROF} ${.IMPSRC}"
 arm/arm/generic_timer.c		standard
 arm/arm/gic.c			standard
 arm/arm/gic_fdt.c		optional	fdt
 arm/arm/pmu.c			standard
 arm/broadcom/bcm2835/bcm2835_audio.c		optional sound vchiq fdt \
 	compile-with "${NORMAL_C} -DUSE_VCHIQ_ARM -D__VCCOREVER__=0x04000000 -I$S/contrib/vchiq"
 arm/broadcom/bcm2835/bcm2835_bsc.c		optional bcm2835_bsc soc_brcm_bcm2837 fdt
 arm/broadcom/bcm2835/bcm2835_cpufreq.c		optional soc_brcm_bcm2837 fdt
 arm/broadcom/bcm2835/bcm2835_dma.c		optional soc_brcm_bcm2837 fdt
 arm/broadcom/bcm2835/bcm2835_fbd.c		optional vt soc_brcm_bcm2837 fdt
 arm/broadcom/bcm2835/bcm2835_ft5406.c		optional evdev bcm2835_ft5406 soc_brcm_bcm2837 fdt
 arm/broadcom/bcm2835/bcm2835_gpio.c		optional gpio soc_brcm_bcm2837 fdt
 arm/broadcom/bcm2835/bcm2835_intr.c		optional soc_brcm_bcm2837 fdt
 arm/broadcom/bcm2835/bcm2835_mbox.c		optional soc_brcm_bcm2837 fdt
 arm/broadcom/bcm2835/bcm2835_rng.c		optional random soc_brcm_bcm2837 fdt
 arm/broadcom/bcm2835/bcm2835_sdhci.c		optional sdhci soc_brcm_bcm2837 fdt
 arm/broadcom/bcm2835/bcm2835_spi.c		optional bcm2835_spi soc_brcm_bcm2837 fdt
 arm/broadcom/bcm2835/bcm2835_vcio.c		optional soc_brcm_bcm2837 fdt
 arm/broadcom/bcm2835/bcm2835_wdog.c		optional soc_brcm_bcm2837 fdt
 arm/broadcom/bcm2835/bcm2836.c			optional soc_brcm_bcm2837 fdt
 arm/broadcom/bcm2835/bcm283x_dwc_fdt.c		optional dwcotg fdt soc_brcm_bcm2837
 arm/mv/armada38x/armada38x_rtc.c		optional mv_rtc fdt
 arm64/acpica/acpi_machdep.c	optional	acpi
 arm64/acpica/OsdEnvironment.c	optional	acpi
 arm64/acpica/acpi_wakeup.c	optional	acpi
 arm64/acpica/pci_cfgreg.c	optional	acpi	pci
 arm64/arm64/autoconf.c		standard
 arm64/arm64/bus_machdep.c	standard
 arm64/arm64/bus_space_asm.S	standard
 arm64/arm64/busdma_bounce.c	standard
 arm64/arm64/busdma_machdep.c	standard
 arm64/arm64/bzero.S		standard
 arm64/arm64/clock.c		standard
 arm64/arm64/copyinout.S		standard
 arm64/arm64/copystr.c		standard
 arm64/arm64/cpufunc_asm.S	standard
 arm64/arm64/db_disasm.c		optional	ddb
 arm64/arm64/db_interface.c	optional	ddb
 arm64/arm64/db_trace.c		optional	ddb
 arm64/arm64/debug_monitor.c	optional	ddb
 arm64/arm64/disassem.c		optional	ddb
 arm64/arm64/dump_machdep.c	standard
 arm64/arm64/elf_machdep.c	standard
 arm64/arm64/exception.S		standard
 arm64/arm64/gicv3_its.c		optional	intrng fdt
 arm64/arm64/gic_v3.c		standard
 arm64/arm64/gic_v3_fdt.c	optional	fdt
 arm64/arm64/identcpu.c		standard
 arm64/arm64/in_cksum.c		optional	inet | inet6
 arm64/arm64/locore.S		standard	no-obj
 arm64/arm64/machdep.c		standard
 arm64/arm64/mem.c		standard
 arm64/arm64/memcpy.S		standard
 arm64/arm64/memmove.S		standard
 arm64/arm64/minidump_machdep.c	standard
 arm64/arm64/mp_machdep.c	optional	smp
 arm64/arm64/nexus.c		standard
 arm64/arm64/ofw_machdep.c	optional	fdt
 arm64/arm64/pmap.c		standard
 arm64/arm64/stack_machdep.c	optional	ddb | stack
 arm64/arm64/support.S		standard
 arm64/arm64/swtch.S		standard
 arm64/arm64/sys_machdep.c	standard
 arm64/arm64/trap.c		standard
 arm64/arm64/uio_machdep.c	standard
 arm64/arm64/uma_machdep.c	standard
 arm64/arm64/unwind.c		optional	ddb | kdtrace_hooks | stack
 arm64/arm64/vfp.c		standard
 arm64/arm64/vm_machdep.c	standard
 arm64/cavium/thunder_pcie_fdt.c		optional	soc_cavm_thunderx pci fdt
 arm64/cavium/thunder_pcie_pem.c		optional	soc_cavm_thunderx pci
 arm64/cavium/thunder_pcie_pem_fdt.c	optional	soc_cavm_thunderx pci fdt
 arm64/cavium/thunder_pcie_common.c	optional	soc_cavm_thunderx pci
 arm64/cloudabi64/cloudabi64_sysvec.c	optional compat_cloudabi64
 contrib/vchiq/interface/compat/vchi_bsd.c	optional vchiq soc_brcm_bcm2837 \
 	compile-with "${NORMAL_C} -DUSE_VCHIQ_ARM -D__VCCOREVER__=0x04000000 -I$S/contrib/vchiq"
 contrib/vchiq/interface/vchiq_arm/vchiq_2835_arm.c	optional vchiq soc_brcm_bcm2837 \
 	compile-with "${NORMAL_C} -Wno-unused -DUSE_VCHIQ_ARM -D__VCCOREVER__=0x04000000 -I$S/contrib/vchiq"
 contrib/vchiq/interface/vchiq_arm/vchiq_arm.c	optional vchiq soc_brcm_bcm2837 \
 	compile-with "${NORMAL_C} -Wno-unused -DUSE_VCHIQ_ARM -D__VCCOREVER__=0x04000000 -I$S/contrib/vchiq"
 contrib/vchiq/interface/vchiq_arm/vchiq_connected.c	optional vchiq soc_brcm_bcm2837 \
 	compile-with "${NORMAL_C} -DUSE_VCHIQ_ARM -D__VCCOREVER__=0x04000000 -I$S/contrib/vchiq"
 contrib/vchiq/interface/vchiq_arm/vchiq_core.c	optional vchiq soc_brcm_bcm2837 \
 	compile-with "${NORMAL_C} -DUSE_VCHIQ_ARM -D__VCCOREVER__=0x04000000 -I$S/contrib/vchiq"
 contrib/vchiq/interface/vchiq_arm/vchiq_kern_lib.c	optional vchiq soc_brcm_bcm2837 \
 	compile-with "${NORMAL_C} -DUSE_VCHIQ_ARM -D__VCCOREVER__=0x04000000 -I$S/contrib/vchiq"
 contrib/vchiq/interface/vchiq_arm/vchiq_kmod.c	optional vchiq soc_brcm_bcm2837 \
 	compile-with "${NORMAL_C} -DUSE_VCHIQ_ARM -D__VCCOREVER__=0x04000000 -I$S/contrib/vchiq"
 contrib/vchiq/interface/vchiq_arm/vchiq_shim.c	optional vchiq soc_brcm_bcm2837 \
 	compile-with "${NORMAL_C} -DUSE_VCHIQ_ARM -D__VCCOREVER__=0x04000000 -I$S/contrib/vchiq"
 contrib/vchiq/interface/vchiq_arm/vchiq_util.c	optional vchiq soc_brcm_bcm2837 \
 	compile-with "${NORMAL_C} -DUSE_VCHIQ_ARM -D__VCCOREVER__=0x04000000 -I$S/contrib/vchiq"
 crypto/armv8/armv8_crypto.c	optional	armv8crypto
 armv8_crypto_wrap.o		optional	armv8crypto		\
 	dependency	"$S/crypto/armv8/armv8_crypto_wrap.c"		\
 	compile-with	"${CC} -c ${CFLAGS:C/^-O2$/-O3/:N-nostdinc:N-mgeneral-regs-only} ${WERROR} ${NO_WCAST_QUAL} ${PROF} -march=armv8-a+crypto ${.IMPSRC}" \
 	no-implicit-rule						\
 	clean		"armv8_crypto_wrap.o"
 crypto/blowfish/bf_enc.c	optional	crypto | ipsec | ipsec_support
 crypto/des/des_enc.c		optional	crypto | ipsec | ipsec_support | netsmb
 dev/acpica/acpi_if.m		optional	acpi
 dev/ahci/ahci_generic.c		optional	ahci
 dev/axgbe/if_axgbe.c		optional	axgbe
 dev/axgbe/xgbe-desc.c		optional	axgbe
 dev/axgbe/xgbe-dev.c		optional	axgbe
 dev/axgbe/xgbe-drv.c		optional	axgbe
 dev/axgbe/xgbe-mdio.c		optional	axgbe
 dev/cpufreq/cpufreq_dt.c	optional	cpufreq fdt
 dev/iicbus/twsi/a10_twsi.c	optional	twsi fdt
 dev/iicbus/twsi/twsi.c		optional	twsi fdt
 dev/hwpmc/hwpmc_arm64.c		optional	hwpmc
 dev/hwpmc/hwpmc_arm64_md.c	optional	hwpmc
 dev/mbox/mbox_if.m		optional	soc_brcm_bcm2837
 dev/mmc/host/dwmmc.c		optional	dwmmc fdt
 dev/mmc/host/dwmmc_hisi.c	optional	dwmmc fdt soc_hisi_hi6220
+dev/neta/if_mvneta_fdt.c	optional	neta fdt
+dev/neta/if_mvneta.c		optional	neta mdio mii
 dev/ofw/ofw_cpu.c		optional	fdt
 dev/ofw/ofwpci.c		optional 	fdt pci
 dev/pci/pci_host_generic.c	optional	pci
 dev/pci/pci_host_generic_fdt.c	optional	pci fdt
 dev/psci/psci.c			optional	psci
 dev/psci/psci_arm64.S		optional	psci
 dev/uart/uart_cpu_arm64.c	optional	uart
 dev/uart/uart_dev_pl011.c	optional	uart pl011
 dev/usb/controller/dwc_otg_hisi.c optional	dwcotg fdt soc_hisi_hi6220
 dev/usb/controller/ehci_mv.c	optional	ehci_mv fdt
 dev/usb/controller/generic_ehci.c optional	ehci acpi
 dev/usb/controller/generic_ohci.c optional	ohci fdt
 dev/usb/controller/generic_usb_if.m optional	ohci fdt
 dev/usb/controller/xhci_mv.c	optional	xhci_mv fdt
 dev/vnic/mrml_bridge.c		optional	vnic fdt
 dev/vnic/nic_main.c		optional	vnic pci
 dev/vnic/nicvf_main.c		optional	vnic pci pci_iov
 dev/vnic/nicvf_queues.c		optional	vnic pci pci_iov
 dev/vnic/thunder_bgx_fdt.c	optional	vnic fdt
 dev/vnic/thunder_bgx.c		optional	vnic pci
 dev/vnic/thunder_mdio_fdt.c	optional	vnic fdt
 dev/vnic/thunder_mdio.c		optional	vnic
 dev/vnic/lmac_if.m		optional	inet | inet6 | vnic
 kern/kern_clocksource.c		standard
 kern/msi_if.m			optional	intrng
 kern/pic_if.m			optional	intrng
 kern/subr_devmap.c		standard
 kern/subr_intr.c		optional	intrng
 libkern/bcmp.c			standard
 libkern/ffs.c			standard
 libkern/ffsl.c			standard
 libkern/ffsll.c			standard
 libkern/fls.c			standard
 libkern/flsl.c			standard
 libkern/flsll.c			standard
 libkern/memset.c		standard
 libkern/arm64/crc32c_armv8.S	standard
 cddl/contrib/opensolaris/common/atomic/aarch64/opensolaris_atomic.S	optional zfs | dtrace compile-with "${CDDL_C}"
 cddl/dev/dtrace/aarch64/dtrace_asm.S			optional dtrace compile-with "${DTRACE_S}"
 cddl/dev/dtrace/aarch64/dtrace_subr.c			optional dtrace compile-with "${DTRACE_C}"
 cddl/dev/fbt/aarch64/fbt_isa.c				optional dtrace_fbt | dtraceall compile-with "${FBT_C}"
Index: head/sys/dev/neta/if_mvneta.c
===================================================================
--- head/sys/dev/neta/if_mvneta.c	(revision 323361)
+++ head/sys/dev/neta/if_mvneta.c	(revision 323362)
@@ -1,3571 +1,3590 @@
 /*
  * Copyright (c) 2017 Stormshield.
  * Copyright (c) 2017 Semihalf.
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  * POSSIBILITY OF SUCH DAMAGE.
  */
 
 #include "opt_platform.h"
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/endian.h>
 #include <sys/mbuf.h>
 #include <sys/lock.h>
 #include <sys/mutex.h>
 #include <sys/kernel.h>
 #include <sys/module.h>
 #include <sys/socket.h>
 #include <sys/sysctl.h>
 #include <sys/smp.h>
 #include <sys/taskqueue.h>
 #ifdef MVNETA_KTR
 #include <sys/ktr.h>
 #endif
 
 #include <net/ethernet.h>
 #include <net/bpf.h>
 #include <net/if.h>
 #include <net/if_arp.h>
 #include <net/if_dl.h>
 #include <net/if_media.h>
 #include <net/if_types.h>
 #include <net/if_vlan_var.h>
 
 #include <netinet/in_systm.h>
 #include <netinet/in.h>
 #include <netinet/ip.h>
 #include <netinet/tcp_lro.h>
 
 #include <sys/sockio.h>
 #include <sys/bus.h>
 #include <machine/bus.h>
 #include <sys/rman.h>
 #include <machine/resource.h>
 
 #include <dev/mii/mii.h>
 #include <dev/mii/miivar.h>
 
 #include <dev/ofw/openfirm.h>
 #include <dev/ofw/ofw_bus.h>
 #include <dev/ofw/ofw_bus_subr.h>
 
 #include <dev/mdio/mdio.h>
 
-#include <arm/mv/mvreg.h>
 #include <arm/mv/mvvar.h>
+
+#if !defined(__aarch64__)
+#include <arm/mv/mvreg.h>
 #include <arm/mv/mvwin.h>
+#endif
 
 #include "if_mvnetareg.h"
 #include "if_mvnetavar.h"
 
 #include "miibus_if.h"
 #include "mdio_if.h"
 
 #ifdef MVNETA_DEBUG
 #define	STATIC /* nothing */
 #else
 #define	STATIC static
 #endif
 
 #define	DASSERT(x) KASSERT((x), (#x))
 
+#define	A3700_TCLK_250MHZ		250000000
+
+STATIC uint32_t
+mvneta_get_clk()
+{
+#if defined(__aarch64__)
+	return (A3700_TCLK_250MHZ);
+#else
+	return (get_tclk());
+#endif
+}
+
 /* Device Register Initialization */
 STATIC int mvneta_initreg(struct ifnet *);
 
 /* Descriptor Ring Control for each of queues */
 STATIC int mvneta_ring_alloc_rx_queue(struct mvneta_softc *, int);
 STATIC int mvneta_ring_alloc_tx_queue(struct mvneta_softc *, int);
 STATIC void mvneta_ring_dealloc_rx_queue(struct mvneta_softc *, int);
 STATIC void mvneta_ring_dealloc_tx_queue(struct mvneta_softc *, int);
 STATIC int mvneta_ring_init_rx_queue(struct mvneta_softc *, int);
 STATIC int mvneta_ring_init_tx_queue(struct mvneta_softc *, int);
 STATIC void mvneta_ring_flush_rx_queue(struct mvneta_softc *, int);
 STATIC void mvneta_ring_flush_tx_queue(struct mvneta_softc *, int);
 STATIC void mvneta_dmamap_cb(void *, bus_dma_segment_t *, int, int);
 STATIC int mvneta_dma_create(struct mvneta_softc *);
 
 /* Rx/Tx Queue Control */
 STATIC int mvneta_rx_queue_init(struct ifnet *, int);
 STATIC int mvneta_tx_queue_init(struct ifnet *, int);
 STATIC int mvneta_rx_queue_enable(struct ifnet *, int);
 STATIC int mvneta_tx_queue_enable(struct ifnet *, int);
 STATIC void mvneta_rx_lockq(struct mvneta_softc *, int);
 STATIC void mvneta_rx_unlockq(struct mvneta_softc *, int);
 STATIC void mvneta_tx_lockq(struct mvneta_softc *, int);
 STATIC void mvneta_tx_unlockq(struct mvneta_softc *, int);
 
 /* Interrupt Handlers */
 STATIC void mvneta_disable_intr(struct mvneta_softc *);
 STATIC void mvneta_enable_intr(struct mvneta_softc *);
 STATIC void mvneta_rxtxth_intr(void *);
 STATIC int mvneta_misc_intr(struct mvneta_softc *);
 STATIC void mvneta_tick(void *);
 /* struct ifnet and mii callbacks*/
 STATIC int mvneta_xmitfast_locked(struct mvneta_softc *, int, struct mbuf **);
 STATIC int mvneta_xmit_locked(struct mvneta_softc *, int);
 #ifdef MVNETA_MULTIQUEUE
 STATIC int mvneta_transmit(struct ifnet *, struct mbuf *);
 #else /* !MVNETA_MULTIQUEUE */
 STATIC void mvneta_start(struct ifnet *);
 #endif
 STATIC void mvneta_qflush(struct ifnet *);
 STATIC void mvneta_tx_task(void *, int);
 STATIC int mvneta_ioctl(struct ifnet *, u_long, caddr_t);
 STATIC void mvneta_init(void *);
 STATIC void mvneta_init_locked(void *);
 STATIC void mvneta_stop(struct mvneta_softc *);
 STATIC void mvneta_stop_locked(struct mvneta_softc *);
 STATIC int mvneta_mediachange(struct ifnet *);
 STATIC void mvneta_mediastatus(struct ifnet *, struct ifmediareq *);
 STATIC void mvneta_portup(struct mvneta_softc *);
 STATIC void mvneta_portdown(struct mvneta_softc *);
 
 /* Link State Notify */
 STATIC void mvneta_update_autoneg(struct mvneta_softc *, int);
 STATIC int mvneta_update_media(struct mvneta_softc *, int);
 STATIC void mvneta_adjust_link(struct mvneta_softc *);
 STATIC void mvneta_update_eee(struct mvneta_softc *);
 STATIC void mvneta_update_fc(struct mvneta_softc *);
 STATIC void mvneta_link_isr(struct mvneta_softc *);
 STATIC void mvneta_linkupdate(struct mvneta_softc *, boolean_t);
 STATIC void mvneta_linkup(struct mvneta_softc *);
 STATIC void mvneta_linkdown(struct mvneta_softc *);
 STATIC void mvneta_linkreset(struct mvneta_softc *);
 
 /* Tx Subroutines */
 STATIC int mvneta_tx_queue(struct mvneta_softc *, struct mbuf **, int);
 STATIC void mvneta_tx_set_csumflag(struct ifnet *,
     struct mvneta_tx_desc *, struct mbuf *);
 STATIC void mvneta_tx_queue_complete(struct mvneta_softc *, int);
 STATIC void mvneta_tx_drain(struct mvneta_softc *);
 
 /* Rx Subroutines */
 STATIC int mvneta_rx(struct mvneta_softc *, int, int);
 STATIC void mvneta_rx_queue(struct mvneta_softc *, int, int);
 STATIC void mvneta_rx_queue_refill(struct mvneta_softc *, int);
 STATIC void mvneta_rx_set_csumflag(struct ifnet *,
     struct mvneta_rx_desc *, struct mbuf *);
 STATIC void mvneta_rx_buf_free(struct mvneta_softc *, struct mvneta_buf *);
 
 /* MAC address filter */
 STATIC void mvneta_filter_setup(struct mvneta_softc *);
 
 /* sysctl(9) */
 STATIC int sysctl_read_mib(SYSCTL_HANDLER_ARGS);
 STATIC int sysctl_clear_mib(SYSCTL_HANDLER_ARGS);
 STATIC int sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS);
 STATIC void sysctl_mvneta_init(struct mvneta_softc *);
 
 /* MIB */
 STATIC void mvneta_clear_mib(struct mvneta_softc *);
 STATIC void mvneta_update_mib(struct mvneta_softc *);
 
 /* Switch */
 STATIC boolean_t mvneta_has_switch(device_t);
 
 #define	mvneta_sc_lock(sc) mtx_lock(&sc->mtx)
 #define	mvneta_sc_unlock(sc) mtx_unlock(&sc->mtx)
 
 STATIC struct mtx mii_mutex;
 STATIC int mii_init = 0;
 
 /* Device */
 STATIC int mvneta_detach(device_t);
 /* MII */
 STATIC int mvneta_miibus_readreg(device_t, int, int);
 STATIC int mvneta_miibus_writereg(device_t, int, int, int);
 
 static device_method_t mvneta_methods[] = {
 	/* Device interface */
 	DEVMETHOD(device_detach,	mvneta_detach),
 	/* MII interface */
 	DEVMETHOD(miibus_readreg,       mvneta_miibus_readreg),
 	DEVMETHOD(miibus_writereg,      mvneta_miibus_writereg),
 	/* MDIO interface */
 	DEVMETHOD(mdio_readreg,		mvneta_miibus_readreg),
 	DEVMETHOD(mdio_writereg,	mvneta_miibus_writereg),
 
 	/* End */
 	DEVMETHOD_END
 };
 
 DEFINE_CLASS_0(mvneta, mvneta_driver, mvneta_methods, sizeof(struct mvneta_softc));
 
 DRIVER_MODULE(miibus, mvneta, miibus_driver, miibus_devclass, 0, 0);
 DRIVER_MODULE(mdio, mvneta, mdio_driver, mdio_devclass, 0, 0);
 MODULE_DEPEND(mvneta, mdio, 1, 1, 1);
 MODULE_DEPEND(mvneta, ether, 1, 1, 1);
 MODULE_DEPEND(mvneta, miibus, 1, 1, 1);
 MODULE_DEPEND(mvneta, mvxpbm, 1, 1, 1);
 
 /*
  * List of MIB register and names
  */
 enum mvneta_mib_idx
 {
 	MVNETA_MIB_RX_GOOD_OCT_IDX,
 	MVNETA_MIB_RX_BAD_OCT_IDX,
 	MVNETA_MIB_TX_MAC_TRNS_ERR_IDX,
 	MVNETA_MIB_RX_GOOD_FRAME_IDX,
 	MVNETA_MIB_RX_BAD_FRAME_IDX,
 	MVNETA_MIB_RX_BCAST_FRAME_IDX,
 	MVNETA_MIB_RX_MCAST_FRAME_IDX,
 	MVNETA_MIB_RX_FRAME64_OCT_IDX,
 	MVNETA_MIB_RX_FRAME127_OCT_IDX,
 	MVNETA_MIB_RX_FRAME255_OCT_IDX,
 	MVNETA_MIB_RX_FRAME511_OCT_IDX,
 	MVNETA_MIB_RX_FRAME1023_OCT_IDX,
 	MVNETA_MIB_RX_FRAMEMAX_OCT_IDX,
 	MVNETA_MIB_TX_GOOD_OCT_IDX,
 	MVNETA_MIB_TX_GOOD_FRAME_IDX,
 	MVNETA_MIB_TX_EXCES_COL_IDX,
 	MVNETA_MIB_TX_MCAST_FRAME_IDX,
 	MVNETA_MIB_TX_BCAST_FRAME_IDX,
 	MVNETA_MIB_TX_MAC_CTL_ERR_IDX,
 	MVNETA_MIB_FC_SENT_IDX,
 	MVNETA_MIB_FC_GOOD_IDX,
 	MVNETA_MIB_FC_BAD_IDX,
 	MVNETA_MIB_PKT_UNDERSIZE_IDX,
 	MVNETA_MIB_PKT_FRAGMENT_IDX,
 	MVNETA_MIB_PKT_OVERSIZE_IDX,
 	MVNETA_MIB_PKT_JABBER_IDX,
 	MVNETA_MIB_MAC_RX_ERR_IDX,
 	MVNETA_MIB_MAC_CRC_ERR_IDX,
 	MVNETA_MIB_MAC_COL_IDX,
 	MVNETA_MIB_MAC_LATE_COL_IDX,
 };
 
 STATIC struct mvneta_mib_def {
 	uint32_t regnum;
 	int reg64;
 	const char *sysctl_name;
 	const char *desc;
 } mvneta_mib_list[] = {
 	[MVNETA_MIB_RX_GOOD_OCT_IDX] = {MVNETA_MIB_RX_GOOD_OCT, 1,
 	    "rx_good_oct", "Good Octets Rx"},
 	[MVNETA_MIB_RX_BAD_OCT_IDX] = {MVNETA_MIB_RX_BAD_OCT, 0,
 	    "rx_bad_oct", "Bad  Octets Rx"},
 	[MVNETA_MIB_TX_MAC_TRNS_ERR_IDX] = {MVNETA_MIB_TX_MAC_TRNS_ERR, 0,
 	    "tx_mac_err", "MAC Transmit Error"},
 	[MVNETA_MIB_RX_GOOD_FRAME_IDX] = {MVNETA_MIB_RX_GOOD_FRAME, 0,
 	    "rx_good_frame", "Good Frames Rx"},
 	[MVNETA_MIB_RX_BAD_FRAME_IDX] = {MVNETA_MIB_RX_BAD_FRAME, 0,
 	    "rx_bad_frame", "Bad Frames Rx"},
 	[MVNETA_MIB_RX_BCAST_FRAME_IDX] = {MVNETA_MIB_RX_BCAST_FRAME, 0,
 	    "rx_bcast_frame", "Broadcast Frames Rx"},
 	[MVNETA_MIB_RX_MCAST_FRAME_IDX] = {MVNETA_MIB_RX_MCAST_FRAME, 0,
 	    "rx_mcast_frame", "Multicast Frames Rx"},
 	[MVNETA_MIB_RX_FRAME64_OCT_IDX] = {MVNETA_MIB_RX_FRAME64_OCT, 0,
 	    "rx_frame_1_64", "Frame Size    1 -   64"},
 	[MVNETA_MIB_RX_FRAME127_OCT_IDX] = {MVNETA_MIB_RX_FRAME127_OCT, 0,
 	    "rx_frame_65_127", "Frame Size   65 -  127"},
 	[MVNETA_MIB_RX_FRAME255_OCT_IDX] = {MVNETA_MIB_RX_FRAME255_OCT, 0,
 	    "rx_frame_128_255", "Frame Size  128 -  255"},
 	[MVNETA_MIB_RX_FRAME511_OCT_IDX] = {MVNETA_MIB_RX_FRAME511_OCT, 0,
 	    "rx_frame_256_511", "Frame Size  256 -  511"},
 	[MVNETA_MIB_RX_FRAME1023_OCT_IDX] = {MVNETA_MIB_RX_FRAME1023_OCT, 0,
 	    "rx_frame_512_1023", "Frame Size  512 - 1023"},
 	[MVNETA_MIB_RX_FRAMEMAX_OCT_IDX] = {MVNETA_MIB_RX_FRAMEMAX_OCT, 0,
 	    "rx_fame_1024_max", "Frame Size 1024 -  Max"},
 	[MVNETA_MIB_TX_GOOD_OCT_IDX] = {MVNETA_MIB_TX_GOOD_OCT, 1,
 	    "tx_good_oct", "Good Octets Tx"},
 	[MVNETA_MIB_TX_GOOD_FRAME_IDX] = {MVNETA_MIB_TX_GOOD_FRAME, 0,
 	    "tx_good_frame", "Good Frames Tx"},
 	[MVNETA_MIB_TX_EXCES_COL_IDX] = {MVNETA_MIB_TX_EXCES_COL, 0,
 	    "tx_exces_collision", "Excessive Collision"},
 	[MVNETA_MIB_TX_MCAST_FRAME_IDX] = {MVNETA_MIB_TX_MCAST_FRAME, 0,
 	    "tx_mcast_frame", "Multicast Frames Tx"},
 	[MVNETA_MIB_TX_BCAST_FRAME_IDX] = {MVNETA_MIB_TX_BCAST_FRAME, 0,
 	    "tx_bcast_frame", "Broadcast Frames Tx"},
 	[MVNETA_MIB_TX_MAC_CTL_ERR_IDX] = {MVNETA_MIB_TX_MAC_CTL_ERR, 0,
 	    "tx_mac_ctl_err", "Unknown MAC Control"},
 	[MVNETA_MIB_FC_SENT_IDX] = {MVNETA_MIB_FC_SENT, 0,
 	    "fc_tx", "Flow Control Tx"},
 	[MVNETA_MIB_FC_GOOD_IDX] = {MVNETA_MIB_FC_GOOD, 0,
 	    "fc_rx_good", "Good Flow Control Rx"},
 	[MVNETA_MIB_FC_BAD_IDX] = {MVNETA_MIB_FC_BAD, 0,
 	    "fc_rx_bad", "Bad Flow Control Rx"},
 	[MVNETA_MIB_PKT_UNDERSIZE_IDX] = {MVNETA_MIB_PKT_UNDERSIZE, 0,
 	    "pkt_undersize", "Undersized Packets Rx"},
 	[MVNETA_MIB_PKT_FRAGMENT_IDX] = {MVNETA_MIB_PKT_FRAGMENT, 0,
 	    "pkt_fragment", "Fragmented Packets Rx"},
 	[MVNETA_MIB_PKT_OVERSIZE_IDX] = {MVNETA_MIB_PKT_OVERSIZE, 0,
 	    "pkt_oversize", "Oversized Packets Rx"},
 	[MVNETA_MIB_PKT_JABBER_IDX] = {MVNETA_MIB_PKT_JABBER, 0,
 	    "pkt_jabber", "Jabber Packets Rx"},
 	[MVNETA_MIB_MAC_RX_ERR_IDX] = {MVNETA_MIB_MAC_RX_ERR, 0,
 	    "mac_rx_err", "MAC Rx Errors"},
 	[MVNETA_MIB_MAC_CRC_ERR_IDX] = {MVNETA_MIB_MAC_CRC_ERR, 0,
 	    "mac_crc_err", "MAC CRC Errors"},
 	[MVNETA_MIB_MAC_COL_IDX] = {MVNETA_MIB_MAC_COL, 0,
 	    "mac_collision", "MAC Collision"},
 	[MVNETA_MIB_MAC_LATE_COL_IDX] = {MVNETA_MIB_MAC_LATE_COL, 0,
 	    "mac_late_collision", "MAC Late Collision"},
 };
 
 static struct resource_spec res_spec[] = {
 	{ SYS_RES_MEMORY, 0, RF_ACTIVE },
 	{ SYS_RES_IRQ, 0, RF_ACTIVE },
 	{ -1, 0}
 };
 
 static struct {
 	driver_intr_t *handler;
 	char * description;
 } mvneta_intrs[] = {
 	{ mvneta_rxtxth_intr, "MVNETA aggregated interrupt" },
 };
 
 static int
 mvneta_set_mac_address(struct mvneta_softc *sc, uint8_t *addr)
 {
 	unsigned int mac_h;
 	unsigned int mac_l;
 
 	mac_l = (addr[4] << 8) | (addr[5]);
 	mac_h = (addr[0] << 24) | (addr[1] << 16) |
 	    (addr[2] << 8) | (addr[3] << 0);
 
 	MVNETA_WRITE(sc, MVNETA_MACAL, mac_l);
 	MVNETA_WRITE(sc, MVNETA_MACAH, mac_h);
 	return (0);
 }
 
 static int
 mvneta_get_mac_address(struct mvneta_softc *sc, uint8_t *addr)
 {
 	uint32_t mac_l, mac_h;
 
 #ifdef FDT
 	if (mvneta_fdt_mac_address(sc, addr) == 0)
 		return (0);
 #endif
 	/*
 	 * Fall back -- use the currently programmed address.
 	 */
 	mac_l = MVNETA_READ(sc, MVNETA_MACAL);
 	mac_h = MVNETA_READ(sc, MVNETA_MACAH);
 	if (mac_l == 0 && mac_h == 0) {
 		/*
 		 * Generate pseudo-random MAC.
 		 * Set lower part to random number | unit number.
 		 */
 		mac_l = arc4random() & ~0xff;
 		mac_l |= device_get_unit(sc->dev) & 0xff;
 		mac_h = arc4random();
 		mac_h &= ~(3 << 24);	/* Clear multicast and LAA bits */
 		if (bootverbose) {
 			device_printf(sc->dev,
 			    "Could not acquire MAC address. "
 			    "Using randomized one.\n");
 		}
 	}
 
 	addr[0] = (mac_h & 0xff000000) >> 24;
 	addr[1] = (mac_h & 0x00ff0000) >> 16;
 	addr[2] = (mac_h & 0x0000ff00) >> 8;
 	addr[3] = (mac_h & 0x000000ff);
 	addr[4] = (mac_l & 0x0000ff00) >> 8;
 	addr[5] = (mac_l & 0x000000ff);
 	return (0);
 }
 
 STATIC boolean_t
 mvneta_has_switch(device_t self)
 {
 	phandle_t node, switch_node, switch_eth, switch_eth_handle;
 
 	node = ofw_bus_get_node(self);
 	switch_node =
 	    ofw_bus_find_compatible(OF_finddevice("/"), "marvell,dsa");
 	switch_eth = 0;
 
 	OF_getencprop(switch_node, "dsa,ethernet",
 	    (void*)&switch_eth_handle, sizeof(switch_eth_handle));
 
 	if (switch_eth_handle > 0)
 		switch_eth = OF_node_from_xref(switch_eth_handle);
 
 	/* Return true if dsa,ethernet cell points to us */
 	return (node == switch_eth);
 }
 
 STATIC int
 mvneta_dma_create(struct mvneta_softc *sc)
 {
 	size_t maxsize, maxsegsz;
 	size_t q;
 	int error;
 
 	/*
 	 * Create Tx DMA
 	 */
 	maxsize = maxsegsz = sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT;
 
 	error = bus_dma_tag_create(
 	    bus_get_dma_tag(sc->dev),		/* parent */
 	    16, 0,                              /* alignment, boundary */
 	    BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
 	    BUS_SPACE_MAXADDR,                  /* highaddr */
 	    NULL, NULL,                         /* filtfunc, filtfuncarg */
 	    maxsize,				/* maxsize */
 	    1,					/* nsegments */
 	    maxsegsz,				/* maxsegsz */
 	    0,					/* flags */
 	    NULL, NULL,				/* lockfunc, lockfuncarg */
 	    &sc->tx_dtag);			/* dmat */
 	if (error != 0) {
 		device_printf(sc->dev,
 		    "Failed to create DMA tag for Tx descriptors.\n");
 		goto fail;
 	}
 	error = bus_dma_tag_create(
 	    bus_get_dma_tag(sc->dev),		/* parent */
 	    1, 0,				/* alignment, boundary */
 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
 	    BUS_SPACE_MAXADDR,			/* highaddr */
 	    NULL, NULL,				/* filtfunc, filtfuncarg */
 	    MVNETA_PACKET_SIZE,			/* maxsize */
 	    MVNETA_TX_SEGLIMIT,			/* nsegments */
 	    MVNETA_PACKET_SIZE,			/* maxsegsz */
 	    BUS_DMA_ALLOCNOW,			/* flags */
 	    NULL, NULL,				/* lockfunc, lockfuncarg */
 	    &sc->txmbuf_dtag);
 	if (error != 0) {
 		device_printf(sc->dev,
 		    "Failed to create DMA tag for Tx mbufs.\n");
 		goto fail;
 	}
 
 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
 		error = mvneta_ring_alloc_tx_queue(sc, q);
 		if (error != 0) {
 			device_printf(sc->dev,
-			    "Failed to allocate DMA safe memory for TxQ: %d\n", q);
+			    "Failed to allocate DMA safe memory for TxQ: %zu\n", q);
 			goto fail;
 		}
 	}
 
 	/*
 	 * Create Rx DMA.
 	 */
 	/* Create tag for Rx descripors */
 	error = bus_dma_tag_create(
 	    bus_get_dma_tag(sc->dev),		/* parent */
 	    32, 0,                              /* alignment, boundary */
 	    BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
 	    BUS_SPACE_MAXADDR,                  /* highaddr */
 	    NULL, NULL,                         /* filtfunc, filtfuncarg */
 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsize */
 	    1,					/* nsegments */
 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsegsz */
 	    0,					/* flags */
 	    NULL, NULL,				/* lockfunc, lockfuncarg */
 	    &sc->rx_dtag);			/* dmat */
 	if (error != 0) {
 		device_printf(sc->dev,
 		    "Failed to create DMA tag for Rx descriptors.\n");
 		goto fail;
 	}
 
 	/* Create tag for Rx buffers */
 	error = bus_dma_tag_create(
 	    bus_get_dma_tag(sc->dev),		/* parent */
 	    32, 0,				/* alignment, boundary */
 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
 	    BUS_SPACE_MAXADDR,			/* highaddr */
 	    NULL, NULL,				/* filtfunc, filtfuncarg */
 	    MVNETA_PACKET_SIZE, 1,		/* maxsize, nsegments */
 	    MVNETA_PACKET_SIZE,			/* maxsegsz */
 	    0,					/* flags */
 	    NULL, NULL,				/* lockfunc, lockfuncarg */
 	    &sc->rxbuf_dtag);			/* dmat */
 	if (error != 0) {
 		device_printf(sc->dev,
 		    "Failed to create DMA tag for Rx buffers.\n");
 		goto fail;
 	}
 
 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
 		if (mvneta_ring_alloc_rx_queue(sc, q) != 0) {
 			device_printf(sc->dev,
-			    "Failed to allocate DMA safe memory for RxQ: %d\n", q);
+			    "Failed to allocate DMA safe memory for RxQ: %zu\n", q);
 			goto fail;
 		}
 	}
 
 	return (0);
 fail:
 	mvneta_detach(sc->dev);
 
 	return (error);
 }
 
 /* ARGSUSED */
 int
 mvneta_attach(device_t self)
 {
 	struct mvneta_softc *sc;
 	struct ifnet *ifp;
 	device_t child;
 	int ifm_target;
 	int q, error;
+#if !defined(__aarch64__)
 	uint32_t reg;
+#endif
 
 	sc = device_get_softc(self);
 	sc->dev = self;
 
 	mtx_init(&sc->mtx, "mvneta_sc", NULL, MTX_DEF);
 
 	error = bus_alloc_resources(self, res_spec, sc->res);
 	if (error) {
 		device_printf(self, "could not allocate resources\n");
 		return (ENXIO);
 	}
 
 	sc->version = MVNETA_READ(sc, MVNETA_PV);
 	device_printf(self, "version is %x\n", sc->version);
 	callout_init(&sc->tick_ch, 0);
 
 	/*
 	 * make sure DMA engines are in reset state
 	 */
 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
 
+#if !defined(__aarch64__)
 	/*
 	 * Disable port snoop for buffers and descriptors
 	 * to avoid L2 caching of both without DRAM copy.
 	 * Obtain coherency settings from the first MBUS
 	 * window attribute.
 	 */
 	if ((MVNETA_READ(sc, MV_WIN_NETA_BASE(0)) & IO_WIN_COH_ATTR_MASK) == 0) {
 		reg = MVNETA_READ(sc, MVNETA_PSNPCFG);
 		reg &= ~MVNETA_PSNPCFG_DESCSNP_MASK;
 		reg &= ~MVNETA_PSNPCFG_BUFSNP_MASK;
 		MVNETA_WRITE(sc, MVNETA_PSNPCFG, reg);
 	}
+#endif
 
 	/*
 	 * MAC address
 	 */
 	if (mvneta_get_mac_address(sc, sc->enaddr)) {
 		device_printf(self, "no mac address.\n");
 		return (ENXIO);
 	}
 	mvneta_set_mac_address(sc, sc->enaddr);
 
 	mvneta_disable_intr(sc);
 
 	/* Allocate network interface */
 	ifp = sc->ifp = if_alloc(IFT_ETHER);
 	if (ifp == NULL) {
 		device_printf(self, "if_alloc() failed\n");
 		mvneta_detach(self);
 		return (ENOMEM);
 	}
 	if_initname(ifp, device_get_name(self), device_get_unit(self));
 
 	/*
 	 * We can support 802.1Q VLAN-sized frames and jumbo
 	 * Ethernet frames.
 	 */
 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_JUMBO_MTU;
 
 	ifp->if_softc = sc;
 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 #ifdef MVNETA_MULTIQUEUE
 	ifp->if_transmit = mvneta_transmit;
 	ifp->if_qflush = mvneta_qflush;
 #else /* !MVNETA_MULTIQUEUE */
 	ifp->if_start = mvneta_start;
 	ifp->if_snd.ifq_drv_maxlen = MVNETA_TX_RING_CNT - 1;
 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
 	IFQ_SET_READY(&ifp->if_snd);
 #endif
 	ifp->if_init = mvneta_init;
 	ifp->if_ioctl = mvneta_ioctl;
 
 	/*
 	 * We can do IPv4/TCPv4/UDPv4/TCPv6/UDPv6 checksums in hardware.
 	 */
 	ifp->if_capabilities |= IFCAP_HWCSUM;
 
 	/*
 	 * As VLAN hardware tagging is not supported
 	 * but is necessary to perform VLAN hardware checksums,
 	 * it is done in the driver
 	 */
 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
 
 	/*
 	 * Currently IPv6 HW checksum is broken, so make sure it is disabled.
 	 */
 	ifp->if_capabilities &= ~IFCAP_HWCSUM_IPV6;
 	ifp->if_capenable = ifp->if_capabilities;
 
 	/*
 	 * Disabled option(s):
 	 * - Support for Large Receive Offload
 	 */
 	ifp->if_capabilities |= IFCAP_LRO;
 
 	ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
 
 	/*
 	 * Device DMA Buffer allocation.
 	 * Handles resource deallocation in case of failure.
 	 */
 	error = mvneta_dma_create(sc);
 	if (error != 0) {
 		mvneta_detach(self);
 		return (error);
 	}
 
 	/* Initialize queues */
 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
 		error = mvneta_ring_init_tx_queue(sc, q);
 		if (error != 0) {
 			mvneta_detach(self);
 			return (error);
 		}
 	}
 
 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
 		error = mvneta_ring_init_rx_queue(sc, q);
 		if (error != 0) {
 			mvneta_detach(self);
 			return (error);
 		}
 	}
 
 	ether_ifattach(ifp, sc->enaddr);
 
 	/*
 	 * Enable DMA engines and Initialize Device Registers.
 	 */
 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
 	MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
 	mvneta_sc_lock(sc);
 	mvneta_filter_setup(sc);
 	mvneta_sc_unlock(sc);
 	mvneta_initreg(ifp);
 
 	/*
 	 * Now MAC is working, setup MII.
 	 */
 	if (mii_init == 0) {
 		/*
 		 * MII bus is shared by all MACs and all PHYs in SoC.
 		 * serializing the bus access should be safe.
 		 */
 		mtx_init(&mii_mutex, "mvneta_mii", NULL, MTX_DEF);
 		mii_init = 1;
 	}
 
 	/* Attach PHY(s) */
 	if ((sc->phy_addr != MII_PHY_ANY) && (!sc->use_inband_status)) {
 		error = mii_attach(self, &sc->miibus, ifp, mvneta_mediachange,
 		    mvneta_mediastatus, BMSR_DEFCAPMASK, sc->phy_addr,
 		    MII_OFFSET_ANY, 0);
 		if (error != 0) {
 			if (bootverbose) {
 				device_printf(self,
 				    "MII attach failed, error: %d\n", error);
 			}
 			ether_ifdetach(sc->ifp);
 			mvneta_detach(self);
 			return (error);
 		}
 		sc->mii = device_get_softc(sc->miibus);
 		sc->phy_attached = 1;
 
 		/* Disable auto-negotiation in MAC - rely on PHY layer */
 		mvneta_update_autoneg(sc, FALSE);
 	} else if (sc->use_inband_status == TRUE) {
 		/* In-band link status */
 		ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
 		    mvneta_mediastatus);
 
 		/* Configure media */
 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
 		    0, NULL);
 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
 		    0, NULL);
 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
 		    0, NULL);
 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
 		ifmedia_set(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO);
 
 		/* Enable auto-negotiation */
 		mvneta_update_autoneg(sc, TRUE);
 
 		mvneta_sc_lock(sc);
 		if (MVNETA_IS_LINKUP(sc))
 			mvneta_linkup(sc);
 		else
 			mvneta_linkdown(sc);
 		mvneta_sc_unlock(sc);
 
 	} else {
 		/* Fixed-link, use predefined values */
 		ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
 		    mvneta_mediastatus);
 
 		ifm_target = IFM_ETHER;
 		switch (sc->phy_speed) {
 		case 2500:
 			if (sc->phy_mode != MVNETA_PHY_SGMII &&
 			    sc->phy_mode != MVNETA_PHY_QSGMII) {
 				device_printf(self,
 				    "2.5G speed can work only in (Q)SGMII mode\n");
 				ether_ifdetach(sc->ifp);
 				mvneta_detach(self);
 				return (ENXIO);
 			}
 			ifm_target |= IFM_2500_T;
 			break;
 		case 1000:
 			ifm_target |= IFM_1000_T;
 			break;
 		case 100:
 			ifm_target |= IFM_100_TX;
 			break;
 		case 10:
 			ifm_target |= IFM_10_T;
 			break;
 		default:
 			ether_ifdetach(sc->ifp);
 			mvneta_detach(self);
 			return (ENXIO);
 		}
 
 		if (sc->phy_fdx)
 			ifm_target |= IFM_FDX;
 		else
 			ifm_target |= IFM_HDX;
 
 		ifmedia_add(&sc->mvneta_ifmedia, ifm_target, 0, NULL);
 		ifmedia_set(&sc->mvneta_ifmedia, ifm_target);
 		if_link_state_change(sc->ifp, LINK_STATE_UP);
 
 		if (mvneta_has_switch(self)) {
 			child = device_add_child(sc->dev, "mdio", -1);
 			if (child == NULL) {
 				ether_ifdetach(sc->ifp);
 				mvneta_detach(self);
 				return (ENXIO);
 			}
 			bus_generic_attach(sc->dev);
 			bus_generic_attach(child);
 		}
 
 		/* Configure MAC media */
 		mvneta_update_media(sc, ifm_target);
 	}
 
 	sysctl_mvneta_init(sc);
 
 	callout_reset(&sc->tick_ch, 0, mvneta_tick, sc);
 
 	error = bus_setup_intr(self, sc->res[1],
 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, mvneta_intrs[0].handler, sc,
 	    &sc->ih_cookie[0]);
 	if (error) {
 		device_printf(self, "could not setup %s\n",
 		    mvneta_intrs[0].description);
 		ether_ifdetach(sc->ifp);
 		mvneta_detach(self);
 		return (error);
 	}
 
 	return (0);
 }
 
 STATIC int
 mvneta_detach(device_t dev)
 {
 	struct mvneta_softc *sc;
 	struct ifnet *ifp;
 	int q;
 
 	sc = device_get_softc(dev);
 	ifp = sc->ifp;
 
 	mvneta_stop(sc);
 	/* Detach network interface */
 	if (sc->ifp)
 		if_free(sc->ifp);
 
 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++)
 		mvneta_ring_dealloc_rx_queue(sc, q);
 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++)
 		mvneta_ring_dealloc_tx_queue(sc, q);
 
 	if (sc->tx_dtag != NULL)
 		bus_dma_tag_destroy(sc->tx_dtag);
 	if (sc->rx_dtag != NULL)
 		bus_dma_tag_destroy(sc->rx_dtag);
 	if (sc->txmbuf_dtag != NULL)
 		bus_dma_tag_destroy(sc->txmbuf_dtag);
 
 	bus_release_resources(dev, res_spec, sc->res);
 	return (0);
 }
 
 /*
  * MII
  */
 STATIC int
 mvneta_miibus_readreg(device_t dev, int phy, int reg)
 {
 	struct mvneta_softc *sc;
 	struct ifnet *ifp;
 	uint32_t smi, val;
 	int i;
 
 	sc = device_get_softc(dev);
 	ifp = sc->ifp;
 
 	mtx_lock(&mii_mutex);
 
 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
 			break;
 		DELAY(1);
 	}
 	if (i == MVNETA_PHY_TIMEOUT) {
 		if_printf(ifp, "SMI busy timeout\n");
 		mtx_unlock(&mii_mutex);
 		return (-1);
 	}
 
 	smi = MVNETA_SMI_PHYAD(phy) |
 	    MVNETA_SMI_REGAD(reg) | MVNETA_SMI_OPCODE_READ;
 	MVNETA_WRITE(sc, MVNETA_SMI, smi);
 
 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
 			break;
 		DELAY(1);
 	}
 
 	if (i == MVNETA_PHY_TIMEOUT) {
 		if_printf(ifp, "SMI busy timeout\n");
 		mtx_unlock(&mii_mutex);
 		return (-1);
 	}
 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
 		smi = MVNETA_READ(sc, MVNETA_SMI);
 		if (smi & MVNETA_SMI_READVALID)
 			break;
 		DELAY(1);
 	}
 
 	if (i == MVNETA_PHY_TIMEOUT) {
 		if_printf(ifp, "SMI busy timeout\n");
 		mtx_unlock(&mii_mutex);
 		return (-1);
 	}
 
 	mtx_unlock(&mii_mutex);
 
 #ifdef MVNETA_KTR
 	CTR3(KTR_SPARE2, "%s i=%d, timeout=%d\n", ifp->if_xname, i,
 	    MVNETA_PHY_TIMEOUT);
 #endif
 
 	val = smi & MVNETA_SMI_DATA_MASK;
 
 #ifdef MVNETA_KTR
 	CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", ifp->if_xname, phy,
 	    reg, val);
 #endif
 	return (val);
 }
 
 STATIC int
 mvneta_miibus_writereg(device_t dev, int phy, int reg, int val)
 {
 	struct mvneta_softc *sc;
 	struct ifnet *ifp;
 	uint32_t smi;
 	int i;
 
 	sc = device_get_softc(dev);
 	ifp = sc->ifp;
 #ifdef MVNETA_KTR
 	CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", ifp->if_xname,
 	    phy, reg, val);
 #endif
 
 	mtx_lock(&mii_mutex);
 
 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
 			break;
 		DELAY(1);
 	}
 	if (i == MVNETA_PHY_TIMEOUT) {
 		if_printf(ifp, "SMI busy timeout\n");
 		mtx_unlock(&mii_mutex);
 		return (0);
 	}
 
 	smi = MVNETA_SMI_PHYAD(phy) | MVNETA_SMI_REGAD(reg) |
 	    MVNETA_SMI_OPCODE_WRITE | (val & MVNETA_SMI_DATA_MASK);
 	MVNETA_WRITE(sc, MVNETA_SMI, smi);
 
 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
 			break;
 		DELAY(1);
 	}
 
 	mtx_unlock(&mii_mutex);
 
 	if (i == MVNETA_PHY_TIMEOUT)
 		if_printf(ifp, "phy write timed out\n");
 
 	return (0);
 }
 
 STATIC void
 mvneta_portup(struct mvneta_softc *sc)
 {
 	int q;
 
 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
 		mvneta_rx_lockq(sc, q);
 		mvneta_rx_queue_enable(sc->ifp, q);
 		mvneta_rx_unlockq(sc, q);
 	}
 
 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
 		mvneta_tx_lockq(sc, q);
 		mvneta_tx_queue_enable(sc->ifp, q);
 		mvneta_tx_unlockq(sc, q);
 	}
 
 }
 
 STATIC void
 mvneta_portdown(struct mvneta_softc *sc)
 {
 	struct mvneta_rx_ring *rx;
 	struct mvneta_tx_ring *tx;
 	int q, cnt;
 	uint32_t reg;
 
 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
 		rx = MVNETA_RX_RING(sc, q);
 		mvneta_rx_lockq(sc, q);
 		rx->queue_status = MVNETA_QUEUE_DISABLED;
 		mvneta_rx_unlockq(sc, q);
 	}
 
 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
 		tx = MVNETA_TX_RING(sc, q);
 		mvneta_tx_lockq(sc, q);
 		tx->queue_status = MVNETA_QUEUE_DISABLED;
 		mvneta_tx_unlockq(sc, q);
 	}
 
 	/* Wait for all Rx activity to terminate. */
 	reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
 	reg = MVNETA_RQC_DIS(reg);
 	MVNETA_WRITE(sc, MVNETA_RQC, reg);
 	cnt = 0;
 	do {
 		if (cnt >= RX_DISABLE_TIMEOUT) {
 			if_printf(sc->ifp,
 			    "timeout for RX stopped. rqc 0x%x\n", reg);
 			break;
 		}
 		cnt++;
 		reg = MVNETA_READ(sc, MVNETA_RQC);
 	} while ((reg & MVNETA_RQC_EN_MASK) != 0);
 
 	/* Wait for all Tx activity to terminate. */
 	reg  = MVNETA_READ(sc, MVNETA_PIE);
 	reg &= ~MVNETA_PIE_TXPKTINTRPTENB_MASK;
 	MVNETA_WRITE(sc, MVNETA_PIE, reg);
 
 	reg  = MVNETA_READ(sc, MVNETA_PRXTXTIM);
 	reg &= ~MVNETA_PRXTXTI_TBTCQ_MASK;
 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
 
 	reg = MVNETA_READ(sc, MVNETA_TQC) & MVNETA_TQC_EN_MASK;
 	reg = MVNETA_TQC_DIS(reg);
 	MVNETA_WRITE(sc, MVNETA_TQC, reg);
 	cnt = 0;
 	do {
 		if (cnt >= TX_DISABLE_TIMEOUT) {
 			if_printf(sc->ifp,
 			    "timeout for TX stopped. tqc 0x%x\n", reg);
 			break;
 		}
 		cnt++;
 		reg = MVNETA_READ(sc, MVNETA_TQC);
 	} while ((reg & MVNETA_TQC_EN_MASK) != 0);
 
 	/* Wait for all Tx FIFO is empty */
 	cnt = 0;
 	do {
 		if (cnt >= TX_FIFO_EMPTY_TIMEOUT) {
 			if_printf(sc->ifp,
 			    "timeout for TX FIFO drained. ps0 0x%x\n", reg);
 			break;
 		}
 		cnt++;
 		reg = MVNETA_READ(sc, MVNETA_PS0);
 	} while (((reg & MVNETA_PS0_TXFIFOEMP) == 0) &&
 	    ((reg & MVNETA_PS0_TXINPROG) != 0));
 }
 
 /*
  * Device Register Initialization
  *  reset device registers to device driver default value.
  *  the device is not enabled here.
  */
 STATIC int
 mvneta_initreg(struct ifnet *ifp)
 {
 	struct mvneta_softc *sc;
 	int q, i;
 	uint32_t reg;
 
 	sc = ifp->if_softc;
 #ifdef MVNETA_KTR
 	CTR1(KTR_SPARE2, "%s initializing device register", ifp->if_xname);
 #endif
 
 	/* Disable Legacy WRR, Disable EJP, Release from reset. */
 	MVNETA_WRITE(sc, MVNETA_TQC_1, 0);
 	/* Enable mbus retry. */
 	MVNETA_WRITE(sc, MVNETA_MBUS_CONF, MVNETA_MBUS_RETRY_EN);
 
 	/* Init TX/RX Queue Registers */
 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
 		mvneta_rx_lockq(sc, q);
 		if (mvneta_rx_queue_init(ifp, q) != 0) {
 			device_printf(sc->dev,
 			    "initialization failed: cannot initialize queue\n");
 			mvneta_rx_unlockq(sc, q);
 			return (ENOBUFS);
 		}
 		mvneta_rx_unlockq(sc, q);
 	}
 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
 		mvneta_tx_lockq(sc, q);
 		if (mvneta_tx_queue_init(ifp, q) != 0) {
 			device_printf(sc->dev,
 			    "initialization failed: cannot initialize queue\n");
 			mvneta_tx_unlockq(sc, q);
 			return (ENOBUFS);
 		}
 		mvneta_tx_unlockq(sc, q);
 	}
 
 	/*
 	 * Ethernet Unit Control - disable automatic PHY management by HW.
 	 * In case the port uses SMI-controlled PHY, poll its status with
 	 * mii_tick() and update MAC settings accordingly.
 	 */
 	reg = MVNETA_READ(sc, MVNETA_EUC);
 	reg &= ~MVNETA_EUC_POLLING;
 	MVNETA_WRITE(sc, MVNETA_EUC, reg);
 
 	/* EEE: Low Power Idle */
 	reg  = MVNETA_LPIC0_LILIMIT(MVNETA_LPI_LI);
 	reg |= MVNETA_LPIC0_TSLIMIT(MVNETA_LPI_TS);
 	MVNETA_WRITE(sc, MVNETA_LPIC0, reg);
 
 	reg  = MVNETA_LPIC1_TWLIMIT(MVNETA_LPI_TW);
 	MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
 
 	reg = MVNETA_LPIC2_MUSTSET;
 	MVNETA_WRITE(sc, MVNETA_LPIC2, reg);
 
 	/* Port MAC Control set 0 */
 	reg  = MVNETA_PMACC0_MUSTSET;	/* must write 0x1 */
 	reg &= ~MVNETA_PMACC0_PORTEN;	/* port is still disabled */
 	reg |= MVNETA_PMACC0_FRAMESIZELIMIT(MVNETA_MAX_FRAME);
 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
 
 	/* Port MAC Control set 2 */
 	reg = MVNETA_READ(sc, MVNETA_PMACC2);
 	switch (sc->phy_mode) {
 	case MVNETA_PHY_QSGMII:
 		reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
 		MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_QSGMII);
 		break;
 	case MVNETA_PHY_SGMII:
 		reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
 		MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_SGMII);
 		break;
 	case MVNETA_PHY_RGMII:
 	case MVNETA_PHY_RGMII_ID:
 		reg |= MVNETA_PMACC2_RGMIIEN;
 		break;
 	}
 	reg |= MVNETA_PMACC2_MUSTSET;
 	reg &= ~MVNETA_PMACC2_PORTMACRESET;
 	MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
 
 	/* Port Configuration Extended: enable Tx CRC generation */
 	reg = MVNETA_READ(sc, MVNETA_PXCX);
 	reg &= ~MVNETA_PXCX_TXCRCDIS;
 	MVNETA_WRITE(sc, MVNETA_PXCX, reg);
 
 	/* clear MIB counter registers(clear by read) */
 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
 		if (mvneta_mib_list[i].reg64)
 			MVNETA_READ_MIB_8(sc, mvneta_mib_list[i].regnum);
 		else
 			MVNETA_READ_MIB_4(sc, mvneta_mib_list[i].regnum);
 	}
 	MVNETA_READ(sc, MVNETA_PDFC);
 	MVNETA_READ(sc, MVNETA_POFC);
 
 	/* Set SDC register except IPGINT bits */
 	reg  = MVNETA_SDC_RXBSZ_16_64BITWORDS;
 	reg |= MVNETA_SDC_TXBSZ_16_64BITWORDS;
 	reg |= MVNETA_SDC_BLMR;
 	reg |= MVNETA_SDC_BLMT;
 	MVNETA_WRITE(sc, MVNETA_SDC, reg);
 
 	return (0);
 }
 
 STATIC void
 mvneta_dmamap_cb(void *arg, bus_dma_segment_t * segs, int nseg, int error)
 {
 
 	if (error != 0)
 		return;
 	*(bus_addr_t *)arg = segs->ds_addr;
 }
 
 STATIC int
 mvneta_ring_alloc_rx_queue(struct mvneta_softc *sc, int q)
 {
 	struct mvneta_rx_ring *rx;
 	struct mvneta_buf *rxbuf;
 	bus_dmamap_t dmap;
 	int i, error;
 
 	if (q >= MVNETA_RX_QNUM_MAX)
 		return (EINVAL);
 
 	rx = MVNETA_RX_RING(sc, q);
 	mtx_init(&rx->ring_mtx, "mvneta_rx", NULL, MTX_DEF);
 	/* Allocate DMA memory for Rx descriptors */
 	error = bus_dmamem_alloc(sc->rx_dtag,
 	    (void**)&(rx->desc),
 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
 	    &rx->desc_map);
 	if (error != 0 || rx->desc == NULL)
 		goto fail;
 	error = bus_dmamap_load(sc->rx_dtag, rx->desc_map,
 	    rx->desc,
 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT,
 	    mvneta_dmamap_cb, &rx->desc_pa, BUS_DMA_NOWAIT);
 	if (error != 0)
 		goto fail;
 
 	for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
 		error = bus_dmamap_create(sc->rxbuf_dtag, 0, &dmap);
 		if (error != 0) {
 			device_printf(sc->dev,
 			    "Failed to create DMA map for Rx buffer num: %d\n", i);
 			goto fail;
 		}
 		rxbuf = &rx->rxbuf[i];
 		rxbuf->dmap = dmap;
 		rxbuf->m = NULL;
 	}
 
 	return (0);
 fail:
 	mvneta_ring_dealloc_rx_queue(sc, q);
 	device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
 	return (error);
 }
 
 STATIC int
 mvneta_ring_alloc_tx_queue(struct mvneta_softc *sc, int q)
 {
 	struct mvneta_tx_ring *tx;
 	int error;
 
 	if (q >= MVNETA_TX_QNUM_MAX)
 		return (EINVAL);
 	tx = MVNETA_TX_RING(sc, q);
 	mtx_init(&tx->ring_mtx, "mvneta_tx", NULL, MTX_DEF);
 	error = bus_dmamem_alloc(sc->tx_dtag,
 	    (void**)&(tx->desc),
 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
 	    &tx->desc_map);
 	if (error != 0 || tx->desc == NULL)
 		goto fail;
 	error = bus_dmamap_load(sc->tx_dtag, tx->desc_map,
 	    tx->desc,
 	    sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT,
 	    mvneta_dmamap_cb, &tx->desc_pa, BUS_DMA_NOWAIT);
 	if (error != 0)
 		goto fail;
 
 #ifdef MVNETA_MULTIQUEUE
 	tx->br = buf_ring_alloc(MVNETA_BUFRING_SIZE, M_DEVBUF, M_NOWAIT,
 	    &tx->ring_mtx);
 	if (tx->br == NULL) {
 		device_printf(sc->dev,
 		    "Could not setup buffer ring for TxQ(%d)\n", q);
 		error = ENOMEM;
 		goto fail;
 	}
 #endif
 
 	return (0);
 fail:
 	mvneta_ring_dealloc_tx_queue(sc, q);
 	device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
 	return (error);
 }
 
 STATIC void
 mvneta_ring_dealloc_tx_queue(struct mvneta_softc *sc, int q)
 {
 	struct mvneta_tx_ring *tx;
 	struct mvneta_buf *txbuf;
 	void *kva;
 	int error;
 	int i;
 
 	if (q >= MVNETA_TX_QNUM_MAX)
 		return;
 	tx = MVNETA_TX_RING(sc, q);
 
 	if (tx->taskq != NULL) {
 		/* Remove task */
 		while (taskqueue_cancel(tx->taskq, &tx->task, NULL) != 0)
 			taskqueue_drain(tx->taskq, &tx->task);
 	}
 #ifdef MVNETA_MULTIQUEUE
 	if (tx->br != NULL)
 		drbr_free(tx->br, M_DEVBUF);
 #endif
 
 	if (sc->txmbuf_dtag != NULL) {
 		if (mtx_name(&tx->ring_mtx) != NULL) {
 			/*
 			 * It is assumed that maps are being loaded after mutex
 			 * is initialized. Therefore we can skip unloading maps
 			 * when mutex is empty.
 			 */
 			mvneta_tx_lockq(sc, q);
 			mvneta_ring_flush_tx_queue(sc, q);
 			mvneta_tx_unlockq(sc, q);
 		}
 		for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
 			txbuf = &tx->txbuf[i];
 			if (txbuf->dmap != NULL) {
 				error = bus_dmamap_destroy(sc->txmbuf_dtag,
 				    txbuf->dmap);
 				if (error != 0) {
 					panic("%s: map busy for Tx descriptor (Q%d, %d)",
 					    __func__, q, i);
 				}
 			}
 		}
 	}
 
 	if (tx->desc_pa != 0)
 		bus_dmamap_unload(sc->tx_dtag, tx->desc_map);
 
 	kva = (void *)tx->desc;
 	if (kva != NULL)
 		bus_dmamem_free(sc->tx_dtag, tx->desc, tx->desc_map);
 
 	if (mtx_name(&tx->ring_mtx) != NULL)
 		mtx_destroy(&tx->ring_mtx);
 
 	memset(tx, 0, sizeof(*tx));
 }
 
 STATIC void
 mvneta_ring_dealloc_rx_queue(struct mvneta_softc *sc, int q)
 {
 	struct mvneta_rx_ring *rx;
 	struct lro_ctrl	*lro;
 	void *kva;
 
 	if (q >= MVNETA_RX_QNUM_MAX)
 		return;
 
 	rx = MVNETA_RX_RING(sc, q);
 
 	mvneta_ring_flush_rx_queue(sc, q);
 
 	if (rx->desc_pa != 0)
 		bus_dmamap_unload(sc->rx_dtag, rx->desc_map);
 
 	kva = (void *)rx->desc;
 	if (kva != NULL)
 		bus_dmamem_free(sc->rx_dtag, rx->desc, rx->desc_map);
 
 	lro = &rx->lro;
 	tcp_lro_free(lro);
 
 	if (mtx_name(&rx->ring_mtx) != NULL)
 		mtx_destroy(&rx->ring_mtx);
 
 	memset(rx, 0, sizeof(*rx));
 }
 
 STATIC int
 mvneta_ring_init_rx_queue(struct mvneta_softc *sc, int q)
 {
 	struct mvneta_rx_ring *rx;
 	struct lro_ctrl	*lro;
 	int error;
 
 	if (q >= MVNETA_RX_QNUM_MAX)
 		return (0);
 
 	rx = MVNETA_RX_RING(sc, q);
 	rx->dma = rx->cpu = 0;
 	rx->queue_th_received = MVNETA_RXTH_COUNT;
-	rx->queue_th_time = (get_tclk() / 1000) / 10; /* 0.1 [ms] */
+	rx->queue_th_time = (mvneta_get_clk() / 1000) / 10; /* 0.1 [ms] */
 
 	/* Initialize LRO */
 	rx->lro_enabled = FALSE;
 	if ((sc->ifp->if_capenable & IFCAP_LRO) != 0) {
 		lro = &rx->lro;
 		error = tcp_lro_init(lro);
 		if (error != 0)
 			device_printf(sc->dev, "LRO Initialization failed!\n");
 		else {
 			rx->lro_enabled = TRUE;
 			lro->ifp = sc->ifp;
 		}
 	}
 
 	return (0);
 }
 
 STATIC int
 mvneta_ring_init_tx_queue(struct mvneta_softc *sc, int q)
 {
 	struct mvneta_tx_ring *tx;
 	struct mvneta_buf *txbuf;
 	int i, error;
 
 	if (q >= MVNETA_TX_QNUM_MAX)
 		return (0);
 
 	tx = MVNETA_TX_RING(sc, q);
 
 	/* Tx handle */
 	for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
 		txbuf = &tx->txbuf[i];
 		txbuf->m = NULL;
 		/* Tx handle needs DMA map for busdma_load_mbuf() */
 		error = bus_dmamap_create(sc->txmbuf_dtag, 0,
 		    &txbuf->dmap);
 		if (error != 0) {
 			device_printf(sc->dev,
 			    "can't create dma map (tx ring %d)\n", i);
 			return (error);
 		}
 	}
 	tx->dma = tx->cpu = 0;
 	tx->used = 0;
 	tx->drv_error = 0;
 	tx->queue_status = MVNETA_QUEUE_DISABLED;
 	tx->queue_hung = FALSE;
 
 	tx->ifp = sc->ifp;
 	tx->qidx = q;
 	TASK_INIT(&tx->task, 0, mvneta_tx_task, tx);
 	tx->taskq = taskqueue_create_fast("mvneta_tx_taskq", M_WAITOK,
 	    taskqueue_thread_enqueue, &tx->taskq);
 	taskqueue_start_threads(&tx->taskq, 1, PI_NET, "%s: tx_taskq(%d)",
 	    device_get_nameunit(sc->dev), q);
 
 	return (0);
 }
 
 STATIC void
 mvneta_ring_flush_tx_queue(struct mvneta_softc *sc, int q)
 {
 	struct mvneta_tx_ring *tx;
 	struct mvneta_buf *txbuf;
 	int i;
 
 	tx = MVNETA_TX_RING(sc, q);
 	KASSERT_TX_MTX(sc, q);
 
 	/* Tx handle */
 	for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
 		txbuf = &tx->txbuf[i];
 		bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
 		if (txbuf->m != NULL) {
 			m_freem(txbuf->m);
 			txbuf->m = NULL;
 		}
 	}
 	tx->dma = tx->cpu = 0;
 	tx->used = 0;
 }
 
 STATIC void
 mvneta_ring_flush_rx_queue(struct mvneta_softc *sc, int q)
 {
 	struct mvneta_rx_ring *rx;
 	struct mvneta_buf *rxbuf;
 	int i;
 
 	rx = MVNETA_RX_RING(sc, q);
 	KASSERT_RX_MTX(sc, q);
 
 	/* Rx handle */
 	for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
 		rxbuf = &rx->rxbuf[i];
 		mvneta_rx_buf_free(sc, rxbuf);
 	}
 	rx->dma = rx->cpu = 0;
 }
 
 /*
  * Rx/Tx Queue Control
  */
 STATIC int
 mvneta_rx_queue_init(struct ifnet *ifp, int q)
 {
 	struct mvneta_softc *sc;
 	struct mvneta_rx_ring *rx;
 	uint32_t reg;
 
 	sc = ifp->if_softc;
 	KASSERT_RX_MTX(sc, q);
 	rx =  MVNETA_RX_RING(sc, q);
 	DASSERT(rx->desc_pa != 0);
 
 	/* descriptor address */
 	MVNETA_WRITE(sc, MVNETA_PRXDQA(q), rx->desc_pa);
 
 	/* Rx buffer size and descriptor ring size */
 	reg  = MVNETA_PRXDQS_BUFFERSIZE(MVNETA_PACKET_SIZE >> 3);
 	reg |= MVNETA_PRXDQS_DESCRIPTORSQUEUESIZE(MVNETA_RX_RING_CNT);
 	MVNETA_WRITE(sc, MVNETA_PRXDQS(q), reg);
 #ifdef MVNETA_KTR
 	CTR3(KTR_SPARE2, "%s PRXDQS(%d): %#x", ifp->if_xname, q,
 	    MVNETA_READ(sc, MVNETA_PRXDQS(q)));
 #endif
 	/* Rx packet offset address */
 	reg = MVNETA_PRXC_PACKETOFFSET(MVNETA_PACKET_OFFSET >> 3);
 	MVNETA_WRITE(sc, MVNETA_PRXC(q), reg);
 #ifdef MVNETA_KTR
 	CTR3(KTR_SPARE2, "%s PRXC(%d): %#x", ifp->if_xname, q,
 	    MVNETA_READ(sc, MVNETA_PRXC(q)));
 #endif
 
 	/* if DMA is not working, register is not updated */
 	DASSERT(MVNETA_READ(sc, MVNETA_PRXDQA(q)) == rx->desc_pa);
 	return (0);
 }
 
 STATIC int
 mvneta_tx_queue_init(struct ifnet *ifp, int q)
 {
 	struct mvneta_softc *sc;
 	struct mvneta_tx_ring *tx;
 	uint32_t reg;
 
 	sc = ifp->if_softc;
 	KASSERT_TX_MTX(sc, q);
 	tx = MVNETA_TX_RING(sc, q);
 	DASSERT(tx->desc_pa != 0);
 
 	/* descriptor address */
 	MVNETA_WRITE(sc, MVNETA_PTXDQA(q), tx->desc_pa);
 
 	/* descriptor ring size */
 	reg = MVNETA_PTXDQS_DQS(MVNETA_TX_RING_CNT);
 	MVNETA_WRITE(sc, MVNETA_PTXDQS(q), reg);
 
 	/* if DMA is not working, register is not updated */
 	DASSERT(MVNETA_READ(sc, MVNETA_PTXDQA(q)) == tx->desc_pa);
 	return (0);
 }
 
 STATIC int
 mvneta_rx_queue_enable(struct ifnet *ifp, int q)
 {
 	struct mvneta_softc *sc;
 	struct mvneta_rx_ring *rx;
 	uint32_t reg;
 
 	sc = ifp->if_softc;
 	rx = MVNETA_RX_RING(sc, q);
 	KASSERT_RX_MTX(sc, q);
 
 	/* Set Rx interrupt threshold */
 	reg  = MVNETA_PRXDQTH_ODT(rx->queue_th_received);
 	MVNETA_WRITE(sc, MVNETA_PRXDQTH(q), reg);
 
 	reg  = MVNETA_PRXITTH_RITT(rx->queue_th_time);
 	MVNETA_WRITE(sc, MVNETA_PRXITTH(q), reg);
 
 	/* Unmask RXTX_TH Intr. */
 	reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
 	reg |= MVNETA_PRXTXTI_RBICTAPQ(q); /* Rx Buffer Interrupt Coalese */
 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
 
 	/* Enable Rx queue */
 	reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
 	reg |= MVNETA_RQC_ENQ(q);
 	MVNETA_WRITE(sc, MVNETA_RQC, reg);
 
 	rx->queue_status = MVNETA_QUEUE_WORKING;
 	return (0);
 }
 
 STATIC int
 mvneta_tx_queue_enable(struct ifnet *ifp, int q)
 {
 	struct mvneta_softc *sc;
 	struct mvneta_tx_ring *tx;
 
 	sc = ifp->if_softc;
 	tx = MVNETA_TX_RING(sc, q);
 	KASSERT_TX_MTX(sc, q);
 
 	/* Enable Tx queue */
 	MVNETA_WRITE(sc, MVNETA_TQC, MVNETA_TQC_ENQ(q));
 
 	tx->queue_status = MVNETA_QUEUE_IDLE;
 	tx->queue_hung = FALSE;
 	return (0);
 }
 
 STATIC __inline void
 mvneta_rx_lockq(struct mvneta_softc *sc, int q)
 {
 
 	DASSERT(q >= 0);
 	DASSERT(q < MVNETA_RX_QNUM_MAX);
 	mtx_lock(&sc->rx_ring[q].ring_mtx);
 }
 
 STATIC __inline void
 mvneta_rx_unlockq(struct mvneta_softc *sc, int q)
 {
 
 	DASSERT(q >= 0);
 	DASSERT(q < MVNETA_RX_QNUM_MAX);
 	mtx_unlock(&sc->rx_ring[q].ring_mtx);
 }
 
 STATIC __inline int __unused
 mvneta_tx_trylockq(struct mvneta_softc *sc, int q)
 {
 
 	DASSERT(q >= 0);
 	DASSERT(q < MVNETA_TX_QNUM_MAX);
 	return (mtx_trylock(&sc->tx_ring[q].ring_mtx));
 }
 
 STATIC __inline void
 mvneta_tx_lockq(struct mvneta_softc *sc, int q)
 {
 
 	DASSERT(q >= 0);
 	DASSERT(q < MVNETA_TX_QNUM_MAX);
 	mtx_lock(&sc->tx_ring[q].ring_mtx);
 }
 
 STATIC __inline void
 mvneta_tx_unlockq(struct mvneta_softc *sc, int q)
 {
 
 	DASSERT(q >= 0);
 	DASSERT(q < MVNETA_TX_QNUM_MAX);
 	mtx_unlock(&sc->tx_ring[q].ring_mtx);
 }
 
 /*
  * Interrupt Handlers
  */
 STATIC void
 mvneta_disable_intr(struct mvneta_softc *sc)
 {
 
 	MVNETA_WRITE(sc, MVNETA_EUIM, 0);
 	MVNETA_WRITE(sc, MVNETA_EUIC, 0);
 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, 0);
 	MVNETA_WRITE(sc, MVNETA_PRXTXTIC, 0);
 	MVNETA_WRITE(sc, MVNETA_PRXTXIM, 0);
 	MVNETA_WRITE(sc, MVNETA_PRXTXIC, 0);
 	MVNETA_WRITE(sc, MVNETA_PMIM, 0);
 	MVNETA_WRITE(sc, MVNETA_PMIC, 0);
 	MVNETA_WRITE(sc, MVNETA_PIE, 0);
 }
 
 STATIC void
 mvneta_enable_intr(struct mvneta_softc *sc)
 {
 	uint32_t reg;
 
 	/* Enable Summary Bit to check all interrupt cause. */
 	reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
 	reg |= MVNETA_PRXTXTI_PMISCICSUMMARY;
 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
 
 	if (sc->use_inband_status) {
 		/* Enable Port MISC Intr. (via RXTX_TH_Summary bit) */
 		MVNETA_WRITE(sc, MVNETA_PMIM, MVNETA_PMI_PHYSTATUSCHNG |
 		    MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE);
 	}
 
 	/* Enable All Queue Interrupt */
 	reg  = MVNETA_READ(sc, MVNETA_PIE);
 	reg |= MVNETA_PIE_RXPKTINTRPTENB_MASK;
 	reg |= MVNETA_PIE_TXPKTINTRPTENB_MASK;
 	MVNETA_WRITE(sc, MVNETA_PIE, reg);
 }
 
 STATIC void
 mvneta_rxtxth_intr(void *arg)
 {
 	struct mvneta_softc *sc;
 	struct ifnet *ifp;
 	uint32_t ic, queues;
 
 	sc = arg;
 	ifp = sc->ifp;
 #ifdef MVNETA_KTR
 	CTR1(KTR_SPARE2, "%s got RXTX_TH_Intr", ifp->if_xname);
 #endif
 	ic = MVNETA_READ(sc, MVNETA_PRXTXTIC);
 	if (ic == 0)
 		return;
 	MVNETA_WRITE(sc, MVNETA_PRXTXTIC, ~ic);
 
 	/* Ack maintance interrupt first */
 	if (__predict_false((ic & MVNETA_PRXTXTI_PMISCICSUMMARY) &&
 	    sc->use_inband_status)) {
 		mvneta_sc_lock(sc);
 		mvneta_misc_intr(sc);
 		mvneta_sc_unlock(sc);
 	}
 	if (__predict_false(!(ifp->if_drv_flags & IFF_DRV_RUNNING)))
 		return;
 	/* RxTxTH interrupt */
 	queues = MVNETA_PRXTXTI_GET_RBICTAPQ(ic);
 	if (__predict_true(queues)) {
 #ifdef MVNETA_KTR
 		CTR1(KTR_SPARE2, "%s got PRXTXTIC: +RXEOF", ifp->if_xname);
 #endif
 		/* At the moment the driver support only one RX queue. */
 		DASSERT(MVNETA_IS_QUEUE_SET(queues, 0));
 		mvneta_rx(sc, 0, 0);
 	}
 }
 
 STATIC int
 mvneta_misc_intr(struct mvneta_softc *sc)
 {
 	uint32_t ic;
 	int claimed = 0;
 
 #ifdef MVNETA_KTR
 	CTR1(KTR_SPARE2, "%s got MISC_INTR", sc->ifp->if_xname);
 #endif
 	KASSERT_SC_MTX(sc);
 
 	for (;;) {
 		ic = MVNETA_READ(sc, MVNETA_PMIC);
 		ic &= MVNETA_READ(sc, MVNETA_PMIM);
 		if (ic == 0)
 			break;
 		MVNETA_WRITE(sc, MVNETA_PMIC, ~ic);
 		claimed = 1;
 
 		if (ic & (MVNETA_PMI_PHYSTATUSCHNG |
 		    MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE))
 			mvneta_link_isr(sc);
 	}
 	return (claimed);
 }
 
 STATIC void
 mvneta_tick(void *arg)
 {
 	struct mvneta_softc *sc;
 	struct mvneta_tx_ring *tx;
 	struct mvneta_rx_ring *rx;
 	int q;
 	uint32_t fc_prev, fc_curr;
 
 	sc = arg;
 
 	/*
 	 * This is done before mib update to get the right stats
 	 * for this tick.
 	 */
 	mvneta_tx_drain(sc);
 
 	/* Extract previous flow-control frame received counter. */
 	fc_prev = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
 	/* Read mib registers (clear by read). */
 	mvneta_update_mib(sc);
 	/* Extract current flow-control frame received counter. */
 	fc_curr = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
 
 
 	if (sc->phy_attached && sc->ifp->if_flags & IFF_UP) {
 		mvneta_sc_lock(sc);
 		mii_tick(sc->mii);
 
 		/* Adjust MAC settings */
 		mvneta_adjust_link(sc);
 		mvneta_sc_unlock(sc);
 	}
 
 	/*
 	 * We were unable to refill the rx queue and left the rx func, leaving
 	 * the ring without mbuf and no way to call the refill func.
 	 */
 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
 		rx = MVNETA_RX_RING(sc, q);
 		if (rx->needs_refill == TRUE) {
 			mvneta_rx_lockq(sc, q);
 			mvneta_rx_queue_refill(sc, q);
 			mvneta_rx_unlockq(sc, q);
 		}
 	}
 
 	/*
 	 * Watchdog:
 	 * - check if queue is mark as hung.
 	 * - ignore hung status if we received some pause frame
 	 *   as hardware may have paused packet transmit.
 	 */
 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
 		/*
 		 * We should take queue lock, but as we only read
 		 * queue status we can do it without lock, we may
 		 * only missdetect queue status for one tick.
 		 */
 		tx = MVNETA_TX_RING(sc, q);
 
 		if (tx->queue_hung && (fc_curr - fc_prev) == 0)
 			goto timeout;
 	}
 
 	callout_schedule(&sc->tick_ch, hz);
 	return;
 
 timeout:
 	if_printf(sc->ifp, "watchdog timeout\n");
 
 	mvneta_sc_lock(sc);
 	sc->counter_watchdog++;
 	sc->counter_watchdog_mib++;
 	/* Trigger reinitialize sequence. */
 	mvneta_stop_locked(sc);
 	mvneta_init_locked(sc);
 	mvneta_sc_unlock(sc);
 }
 
 STATIC void
 mvneta_qflush(struct ifnet *ifp)
 {
 #ifdef MVNETA_MULTIQUEUE
 	struct mvneta_softc *sc;
 	struct mvneta_tx_ring *tx;
 	struct mbuf *m;
 	size_t q;
 
 	sc = ifp->if_softc;
 
 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
 		tx = MVNETA_TX_RING(sc, q);
 		mvneta_tx_lockq(sc, q);
 		while ((m = buf_ring_dequeue_sc(tx->br)) != NULL)
 			m_freem(m);
 		mvneta_tx_unlockq(sc, q);
 	}
 #endif
 	if_qflush(ifp);
 }
 
 STATIC void
 mvneta_tx_task(void *arg, int pending)
 {
 	struct mvneta_softc *sc;
 	struct mvneta_tx_ring *tx;
 	struct ifnet *ifp;
 	int error;
 
 	tx = arg;
 	ifp = tx->ifp;
 	sc = ifp->if_softc;
 
 	mvneta_tx_lockq(sc, tx->qidx);
 	error = mvneta_xmit_locked(sc, tx->qidx);
 	mvneta_tx_unlockq(sc, tx->qidx);
 
 	/* Try again */
 	if (__predict_false(error != 0 && error != ENETDOWN)) {
 		pause("mvneta_tx_task_sleep", 1);
 		taskqueue_enqueue(tx->taskq, &tx->task);
 	}
 }
 
 STATIC int
 mvneta_xmitfast_locked(struct mvneta_softc *sc, int q, struct mbuf **m)
 {
 	struct mvneta_tx_ring *tx;
 	struct ifnet *ifp;
 	int error;
 
 	KASSERT_TX_MTX(sc, q);
 	tx = MVNETA_TX_RING(sc, q);
 	error = 0;
 
 	ifp = sc->ifp;
 
 	/* Dont enqueue packet if the queue is disabled. */
 	if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED)) {
 		m_freem(*m);
 		*m = NULL;
 		return (ENETDOWN);
 	}
 
 	/* Reclaim mbuf if above threshold. */
 	if (__predict_true(tx->used > MVNETA_TX_RECLAIM_COUNT))
 		mvneta_tx_queue_complete(sc, q);
 
 	/* Do not call transmit path if queue is already too full. */
 	if (__predict_false(tx->used >
 	    MVNETA_TX_RING_CNT - MVNETA_TX_SEGLIMIT))
 		return (ENOBUFS);
 
 	error = mvneta_tx_queue(sc, m, q);
 	if (__predict_false(error != 0))
 		return (error);
 
 	/* Send a copy of the frame to the BPF listener */
 	ETHER_BPF_MTAP(ifp, *m);
 
 	/* Set watchdog on */
 	tx->watchdog_time = ticks;
 	tx->queue_status = MVNETA_QUEUE_WORKING;
 
 	return (error);
 }
 
 #ifdef MVNETA_MULTIQUEUE
 STATIC int
 mvneta_transmit(struct ifnet *ifp, struct mbuf *m)
 {
 	struct mvneta_softc *sc;
 	struct mvneta_tx_ring *tx;
 	int error;
 	int q;
 
 	sc = ifp->if_softc;
 
 	/* Use default queue if there is no flow id as thread can migrate. */
 	if (__predict_true(M_HASHTYPE_GET(m) != M_HASHTYPE_NONE))
 		q = m->m_pkthdr.flowid % MVNETA_TX_QNUM_MAX;
 	else
 		q = 0;
 
 	tx = MVNETA_TX_RING(sc, q);
 
 	/* If buf_ring is full start transmit immediatly. */
 	if (buf_ring_full(tx->br)) {
 		mvneta_tx_lockq(sc, q);
 		mvneta_xmit_locked(sc, q);
 		mvneta_tx_unlockq(sc, q);
 	}
 
 	/*
 	 * If the buf_ring is empty we will not reorder packets.
 	 * If the lock is available transmit without using buf_ring.
 	 */
 	if (buf_ring_empty(tx->br) && mvneta_tx_trylockq(sc, q) != 0) {
 		error = mvneta_xmitfast_locked(sc, q, &m);
 		mvneta_tx_unlockq(sc, q);
 		if (__predict_true(error == 0))
 			return (0);
 
 		/* Transmit can fail in fastpath. */
 		if (__predict_false(m == NULL))
 			return (error);
 	}
 
 	/* Enqueue then schedule taskqueue. */
 	error = drbr_enqueue(ifp, tx->br, m);
 	if (__predict_false(error != 0))
 		return (error);
 
 	taskqueue_enqueue(tx->taskq, &tx->task);
 	return (0);
 }
 
 STATIC int
 mvneta_xmit_locked(struct mvneta_softc *sc, int q)
 {
 	struct ifnet *ifp;
 	struct mvneta_tx_ring *tx;
 	struct mbuf *m;
 	int error;
 
 	KASSERT_TX_MTX(sc, q);
 	ifp = sc->ifp;
 	tx = MVNETA_TX_RING(sc, q);
 	error = 0;
 
 	while ((m = drbr_peek(ifp, tx->br)) != NULL) {
 		error = mvneta_xmitfast_locked(sc, q, &m);
 		if (__predict_false(error != 0)) {
 			if (m != NULL)
 				drbr_putback(ifp, tx->br, m);
 			else
 				drbr_advance(ifp, tx->br);
 			break;
 		}
 		drbr_advance(ifp, tx->br);
 	}
 
 	return (error);
 }
 #else /* !MVNETA_MULTIQUEUE */
 STATIC void
 mvneta_start(struct ifnet *ifp)
 {
 	struct mvneta_softc *sc;
 	struct mvneta_tx_ring *tx;
 	int error;
 
 	sc = ifp->if_softc;
 	tx = MVNETA_TX_RING(sc, 0);
 
 	mvneta_tx_lockq(sc, 0);
 	error = mvneta_xmit_locked(sc, 0);
 	mvneta_tx_unlockq(sc, 0);
 	/* Handle retransmit in the background taskq. */
 	if (__predict_false(error != 0 && error != ENETDOWN))
 		taskqueue_enqueue(tx->taskq, &tx->task);
 }
 
 STATIC int
 mvneta_xmit_locked(struct mvneta_softc *sc, int q)
 {
 	struct ifnet *ifp;
 	struct mvneta_tx_ring *tx;
 	struct mbuf *m;
 	int error;
 
 	KASSERT_TX_MTX(sc, q);
 	ifp = sc->ifp;
 	tx = MVNETA_TX_RING(sc, 0);
 	error = 0;
 
 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
 		if (m == NULL)
 			break;
 
 		error = mvneta_xmitfast_locked(sc, q, &m);
 		if (__predict_false(error != 0)) {
 			if (m != NULL)
 				IFQ_DRV_PREPEND(&ifp->if_snd, m);
 			break;
 		}
 	}
 
 	return (error);
 }
 #endif
 
 STATIC int
 mvneta_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 {
 	struct mvneta_softc *sc;
 	struct mvneta_rx_ring *rx;
 	struct ifreq *ifr;
 	int error, mask;
 	uint32_t flags;
 	int q;
 
 	error = 0;
 	sc = ifp->if_softc;
 	ifr = (struct ifreq *)data;
 	switch (cmd) {
 	case SIOCSIFFLAGS:
 		mvneta_sc_lock(sc);
 		if (ifp->if_flags & IFF_UP) {
 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 				flags = ifp->if_flags ^ sc->mvneta_if_flags;
 
 				if (flags != 0)
 					sc->mvneta_if_flags = ifp->if_flags;
 
 				if ((flags & IFF_PROMISC) != 0)
 					mvneta_filter_setup(sc);
 			} else {
 				mvneta_init_locked(sc);
 				sc->mvneta_if_flags = ifp->if_flags;
 				if (sc->phy_attached)
 					mii_mediachg(sc->mii);
 				mvneta_sc_unlock(sc);
 				break;
 			}
 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 			mvneta_stop_locked(sc);
 
 		sc->mvneta_if_flags = ifp->if_flags;
 		mvneta_sc_unlock(sc);
 		break;
 	case SIOCSIFCAP:
 		if (ifp->if_mtu > MVNETA_MAX_CSUM_MTU &&
 		    ifr->ifr_reqcap & IFCAP_TXCSUM)
 			ifr->ifr_reqcap &= ~IFCAP_TXCSUM;
 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
 		if (mask & IFCAP_HWCSUM) {
 			ifp->if_capenable &= ~IFCAP_HWCSUM;
 			ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
 			if (ifp->if_capenable & IFCAP_TXCSUM)
 				ifp->if_hwassist = CSUM_IP | CSUM_TCP |
 				    CSUM_UDP;
 			else
 				ifp->if_hwassist = 0;
 		}
 		if (mask & IFCAP_LRO) {
 			mvneta_sc_lock(sc);
 			ifp->if_capenable ^= IFCAP_LRO;
 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 				for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
 					rx = MVNETA_RX_RING(sc, q);
 					rx->lro_enabled = !rx->lro_enabled;
 				}
 			}
 			mvneta_sc_unlock(sc);
 		}
 		VLAN_CAPABILITIES(ifp);
 		break;
 	case SIOCSIFMEDIA:
 		if ((IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ||
 		    IFM_SUBTYPE(ifr->ifr_media) == IFM_2500_T) &&
 		    (ifr->ifr_media & IFM_FDX) == 0) {
 			device_printf(sc->dev,
 			    "%s half-duplex unsupported\n",
 			    IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ?
 			    "1000Base-T" :
 			    "2500Base-T");
 			error = EINVAL;
 			break;
 		}
 	case SIOCGIFMEDIA: /* FALLTHROUGH */
 	case SIOCGIFXMEDIA:
 		if (!sc->phy_attached)
 			error = ifmedia_ioctl(ifp, ifr, &sc->mvneta_ifmedia,
 			    cmd);
 		else
 			error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media,
 			    cmd);
 		break;
 	case SIOCSIFMTU:
 		if (ifr->ifr_mtu < 68 || ifr->ifr_mtu > MVNETA_MAX_FRAME -
 		    MVNETA_ETHER_SIZE) {
 			error = EINVAL;
 		} else {
 			ifp->if_mtu = ifr->ifr_mtu;
 			mvneta_sc_lock(sc);
 			if (ifp->if_mtu > MVNETA_MAX_CSUM_MTU) {
 				ifp->if_capenable &= ~IFCAP_TXCSUM;
 				ifp->if_hwassist = 0;
 			} else {
 				ifp->if_capenable |= IFCAP_TXCSUM;
 				ifp->if_hwassist = CSUM_IP | CSUM_TCP |
 					CSUM_UDP;
 			}
 
 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 				/* Trigger reinitialize sequence */
 				mvneta_stop_locked(sc);
 				mvneta_init_locked(sc);
 			}
 			mvneta_sc_unlock(sc);
                 }
                 break;
 
 	default:
 		error = ether_ioctl(ifp, cmd, data);
 		break;
 	}
 
 	return (error);
 }
 
 STATIC void
 mvneta_init_locked(void *arg)
 {
 	struct mvneta_softc *sc;
 	struct ifnet *ifp;
 	uint32_t reg;
 	int q, cpu;
 
 	sc = arg;
 	ifp = sc->ifp;
 
 	if (!device_is_attached(sc->dev) ||
 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 		return;
 
 	mvneta_disable_intr(sc);
 	callout_stop(&sc->tick_ch);
 
 	/* Get the latest mac address */
 	bcopy(IF_LLADDR(ifp), sc->enaddr, ETHER_ADDR_LEN);
 	mvneta_set_mac_address(sc, sc->enaddr);
 	mvneta_filter_setup(sc);
 
 	/* Start DMA Engine */
 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
 	MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
 
 	/* Enable port */
 	reg  = MVNETA_READ(sc, MVNETA_PMACC0);
 	reg |= MVNETA_PMACC0_PORTEN;
 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
 
 	/* Allow access to each TXQ/RXQ from both CPU's */
 	for (cpu = 0; cpu < mp_ncpus; ++cpu)
 		MVNETA_WRITE(sc, MVNETA_PCP2Q(cpu),
 		    MVNETA_PCP2Q_TXQEN_MASK | MVNETA_PCP2Q_RXQEN_MASK);
 
 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
 		mvneta_rx_lockq(sc, q);
 		mvneta_rx_queue_refill(sc, q);
 		mvneta_rx_unlockq(sc, q);
 	}
 
 	if (!sc->phy_attached)
 		mvneta_linkup(sc);
 
 	/* Enable interrupt */
 	mvneta_enable_intr(sc);
 
 	/* Set Counter */
 	callout_schedule(&sc->tick_ch, hz);
 
 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
 }
 
 STATIC void
 mvneta_init(void *arg)
 {
 	struct mvneta_softc *sc;
 
 	sc = arg;
 	mvneta_sc_lock(sc);
 	mvneta_init_locked(sc);
 	if (sc->phy_attached)
 		mii_mediachg(sc->mii);
 	mvneta_sc_unlock(sc);
 }
 
 /* ARGSUSED */
 STATIC void
 mvneta_stop_locked(struct mvneta_softc *sc)
 {
 	struct ifnet *ifp;
 	struct mvneta_rx_ring *rx;
 	struct mvneta_tx_ring *tx;
 	uint32_t reg;
 	int q;
 
 	ifp = sc->ifp;
 	if (ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
 		return;
 
 	mvneta_disable_intr(sc);
 
 	callout_stop(&sc->tick_ch);
 
 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 
 	/* Link down */
 	if (sc->linkup == TRUE)
 		mvneta_linkdown(sc);
 
 	/* Reset the MAC Port Enable bit */
 	reg = MVNETA_READ(sc, MVNETA_PMACC0);
 	reg &= ~MVNETA_PMACC0_PORTEN;
 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
 
 	/* Disable each of queue */
 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
 		rx = MVNETA_RX_RING(sc, q);
 
 		mvneta_rx_lockq(sc, q);
 		mvneta_ring_flush_rx_queue(sc, q);
 		mvneta_rx_unlockq(sc, q);
 	}
 
 	/*
 	 * Hold Reset state of DMA Engine
 	 * (must write 0x0 to restart it)
 	 */
 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
 
 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
 		tx = MVNETA_TX_RING(sc, q);
 
 		mvneta_tx_lockq(sc, q);
 		mvneta_ring_flush_tx_queue(sc, q);
 		mvneta_tx_unlockq(sc, q);
 	}
 }
 
 STATIC void
 mvneta_stop(struct mvneta_softc *sc)
 {
 
 	mvneta_sc_lock(sc);
 	mvneta_stop_locked(sc);
 	mvneta_sc_unlock(sc);
 }
 
 STATIC int
 mvneta_mediachange(struct ifnet *ifp)
 {
 	struct mvneta_softc *sc;
 
 	sc = ifp->if_softc;
 
 	if (!sc->phy_attached && !sc->use_inband_status) {
 		/* We shouldn't be here */
 		if_printf(ifp, "Cannot change media in fixed-link mode!\n");
 		return (0);
 	}
 
 	if (sc->use_inband_status) {
 		mvneta_update_media(sc, sc->mvneta_ifmedia.ifm_media);
 		return (0);
 	}
 
 	mvneta_sc_lock(sc);
 
 	/* Update PHY */
 	mii_mediachg(sc->mii);
 
 	mvneta_sc_unlock(sc);
 
 	return (0);
 }
 
 STATIC void
 mvneta_get_media(struct mvneta_softc *sc, struct ifmediareq *ifmr)
 {
 	uint32_t psr;
 
 	psr = MVNETA_READ(sc, MVNETA_PSR);
 
 	/* Speed */
 	if (psr & MVNETA_PSR_GMIISPEED)
 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_1000_T);
 	else if (psr & MVNETA_PSR_MIISPEED)
 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_100_TX);
 	else if (psr & MVNETA_PSR_LINKUP)
 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_10_T);
 
 	/* Duplex */
 	if (psr & MVNETA_PSR_FULLDX)
 		ifmr->ifm_active |= IFM_FDX;
 
 	/* Link */
 	ifmr->ifm_status = IFM_AVALID;
 	if (psr & MVNETA_PSR_LINKUP)
 		ifmr->ifm_status |= IFM_ACTIVE;
 }
 
 STATIC void
 mvneta_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
 {
 	struct mvneta_softc *sc;
 	struct mii_data *mii;
 
 	sc = ifp->if_softc;
 
 	if (!sc->phy_attached && !sc->use_inband_status) {
 		ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
 		return;
 	}
 
 	mvneta_sc_lock(sc);
 
 	if (sc->use_inband_status) {
 		mvneta_get_media(sc, ifmr);
 		mvneta_sc_unlock(sc);
 		return;
 	}
 
 	mii = sc->mii;
 	mii_pollstat(mii);
 
 	ifmr->ifm_active = mii->mii_media_active;
 	ifmr->ifm_status = mii->mii_media_status;
 
 	mvneta_sc_unlock(sc);
 }
 
 /*
  * Link State Notify
  */
 STATIC void
 mvneta_update_autoneg(struct mvneta_softc *sc, int enable)
 {
 	int reg;
 
 	if (enable) {
 		reg = MVNETA_READ(sc, MVNETA_PANC);
 		reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
 		    MVNETA_PANC_ANFCEN);
 		reg |= MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
 		    MVNETA_PANC_INBANDANEN;
 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
 
 		reg = MVNETA_READ(sc, MVNETA_PMACC2);
 		reg |= MVNETA_PMACC2_INBANDANMODE;
 		MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
 
 		reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
 		reg |= MVNETA_PSOMSCD_ENABLE;
 		MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
 	} else {
 		reg = MVNETA_READ(sc, MVNETA_PANC);
 		reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
 		    MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
 		    MVNETA_PANC_INBANDANEN);
 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
 
 		reg = MVNETA_READ(sc, MVNETA_PMACC2);
 		reg &= ~MVNETA_PMACC2_INBANDANMODE;
 		MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
 
 		reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
 		reg &= ~MVNETA_PSOMSCD_ENABLE;
 		MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
 	}
 }
 
 STATIC int
 mvneta_update_media(struct mvneta_softc *sc, int media)
 {
 	int reg, err;
 	boolean_t running;
 
 	err = 0;
 
 	mvneta_sc_lock(sc);
 
 	mvneta_linkreset(sc);
 
 	running = (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
 	if (running)
 		mvneta_stop_locked(sc);
 
 	sc->autoneg = (IFM_SUBTYPE(media) == IFM_AUTO);
 
 	if (sc->use_inband_status)
 		mvneta_update_autoneg(sc, IFM_SUBTYPE(media) == IFM_AUTO);
 
 	mvneta_update_eee(sc);
 	mvneta_update_fc(sc);
 
 	if (IFM_SUBTYPE(media) != IFM_AUTO) {
 		reg = MVNETA_READ(sc, MVNETA_PANC);
 		reg &= ~(MVNETA_PANC_SETGMIISPEED |
 		    MVNETA_PANC_SETMIISPEED |
 		    MVNETA_PANC_SETFULLDX);
 		if (IFM_SUBTYPE(media) == IFM_1000_T ||
 		    IFM_SUBTYPE(media) == IFM_2500_T) {
 			if ((media & IFM_FDX) == 0) {
 				device_printf(sc->dev,
 				    "%s half-duplex unsupported\n",
 				    IFM_SUBTYPE(media) == IFM_1000_T ?
 				    "1000Base-T" :
 				    "2500Base-T");
 				err = EINVAL;
 				goto out;
 			}
 			reg |= MVNETA_PANC_SETGMIISPEED;
 		} else if (IFM_SUBTYPE(media) == IFM_100_TX)
 			reg |= MVNETA_PANC_SETMIISPEED;
 
 		if (media & IFM_FDX)
 			reg |= MVNETA_PANC_SETFULLDX;
 
 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
 	}
 out:
 	if (running)
 		mvneta_init_locked(sc);
 	mvneta_sc_unlock(sc);
 	return (err);
 }
 
 STATIC void
 mvneta_adjust_link(struct mvneta_softc *sc)
 {
 	boolean_t phy_linkup;
 	int reg;
 
 	/* Update eee/fc */
 	mvneta_update_eee(sc);
 	mvneta_update_fc(sc);
 
 	/* Check for link change */
 	phy_linkup = (sc->mii->mii_media_status &
 	    (IFM_AVALID | IFM_ACTIVE)) == (IFM_AVALID | IFM_ACTIVE);
 
 	if (sc->linkup != phy_linkup)
 		mvneta_linkupdate(sc, phy_linkup);
 
 	/* Don't update media on disabled link */
 	if (!phy_linkup)
 		return;
 
 	/* Check for media type change */
 	if (sc->mvneta_media != sc->mii->mii_media_active) {
 		sc->mvneta_media = sc->mii->mii_media_active;
 
 		reg = MVNETA_READ(sc, MVNETA_PANC);
 		reg &= ~(MVNETA_PANC_SETGMIISPEED |
 		    MVNETA_PANC_SETMIISPEED |
 		    MVNETA_PANC_SETFULLDX);
 		if (IFM_SUBTYPE(sc->mvneta_media) == IFM_1000_T ||
 		    IFM_SUBTYPE(sc->mvneta_media) == IFM_2500_T) {
 			reg |= MVNETA_PANC_SETGMIISPEED;
 		} else if (IFM_SUBTYPE(sc->mvneta_media) == IFM_100_TX)
 			reg |= MVNETA_PANC_SETMIISPEED;
 
 		if (sc->mvneta_media & IFM_FDX)
 			reg |= MVNETA_PANC_SETFULLDX;
 
 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
 	}
 }
 
 STATIC void
 mvneta_link_isr(struct mvneta_softc *sc)
 {
 	int linkup;
 
 	KASSERT_SC_MTX(sc);
 
 	linkup = MVNETA_IS_LINKUP(sc) ? TRUE : FALSE;
 	if (sc->linkup == linkup)
 		return;
 
 	if (linkup == TRUE)
 		mvneta_linkup(sc);
 	else
 		mvneta_linkdown(sc);
 
 #ifdef DEBUG
 	log(LOG_DEBUG,
 	    "%s: link %s\n", device_xname(sc->dev), linkup ? "up" : "down");
 #endif
 }
 
 STATIC void
 mvneta_linkupdate(struct mvneta_softc *sc, boolean_t linkup)
 {
 
 	KASSERT_SC_MTX(sc);
 
 	if (linkup == TRUE)
 		mvneta_linkup(sc);
 	else
 		mvneta_linkdown(sc);
 
 #ifdef DEBUG
 	log(LOG_DEBUG,
 	    "%s: link %s\n", device_xname(sc->dev), linkup ? "up" : "down");
 #endif
 }
 
 STATIC void
 mvneta_update_eee(struct mvneta_softc *sc)
 {
 	uint32_t reg;
 
 	KASSERT_SC_MTX(sc);
 
 	/* set EEE parameters */
 	reg = MVNETA_READ(sc, MVNETA_LPIC1);
 	if (sc->cf_lpi)
 		reg |= MVNETA_LPIC1_LPIRE;
 	else
 		reg &= ~MVNETA_LPIC1_LPIRE;
 	MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
 }
 
 STATIC void
 mvneta_update_fc(struct mvneta_softc *sc)
 {
 	uint32_t reg;
 
 	KASSERT_SC_MTX(sc);
 
 	reg  = MVNETA_READ(sc, MVNETA_PANC);
 	if (sc->cf_fc) {
 		/* Flow control negotiation */
 		reg |= MVNETA_PANC_PAUSEADV;
 		reg |= MVNETA_PANC_ANFCEN;
 	} else {
 		/* Disable flow control negotiation */
 		reg &= ~MVNETA_PANC_PAUSEADV;
 		reg &= ~MVNETA_PANC_ANFCEN;
 	}
 
 	MVNETA_WRITE(sc, MVNETA_PANC, reg);
 }
 
 STATIC void
 mvneta_linkup(struct mvneta_softc *sc)
 {
 	uint32_t reg;
 
 	KASSERT_SC_MTX(sc);
 
 	if (!sc->use_inband_status) {
 		reg  = MVNETA_READ(sc, MVNETA_PANC);
 		reg |= MVNETA_PANC_FORCELINKPASS;
 		reg &= ~MVNETA_PANC_FORCELINKFAIL;
 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
 	}
 
 	mvneta_qflush(sc->ifp);
 	mvneta_portup(sc);
 	sc->linkup = TRUE;
 	if_link_state_change(sc->ifp, LINK_STATE_UP);
 }
 
 STATIC void
 mvneta_linkdown(struct mvneta_softc *sc)
 {
 	uint32_t reg;
 
 	KASSERT_SC_MTX(sc);
 
 	if (!sc->use_inband_status) {
 		reg  = MVNETA_READ(sc, MVNETA_PANC);
 		reg &= ~MVNETA_PANC_FORCELINKPASS;
 		reg |= MVNETA_PANC_FORCELINKFAIL;
 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
 	}
 
 	mvneta_portdown(sc);
 	mvneta_qflush(sc->ifp);
 	sc->linkup = FALSE;
 	if_link_state_change(sc->ifp, LINK_STATE_DOWN);
 }
 
 STATIC void
 mvneta_linkreset(struct mvneta_softc *sc)
 {
 	struct mii_softc *mii;
 
 	if (sc->phy_attached) {
 		/* Force reset PHY */
 		mii = LIST_FIRST(&sc->mii->mii_phys);
 		if (mii)
 			mii_phy_reset(mii);
 	}
 }
 
 /*
  * Tx Subroutines
  */
 STATIC int
 mvneta_tx_queue(struct mvneta_softc *sc, struct mbuf **mbufp, int q)
 {
 	struct ifnet *ifp;
 	bus_dma_segment_t txsegs[MVNETA_TX_SEGLIMIT];
 	struct mbuf *mtmp, *mbuf;
 	struct mvneta_tx_ring *tx;
 	struct mvneta_buf *txbuf;
 	struct mvneta_tx_desc *t;
 	uint32_t ptxsu;
 	int start, used, error, i, txnsegs;
 
 	mbuf = *mbufp;
 	tx = MVNETA_TX_RING(sc, q);
 	DASSERT(tx->used >= 0);
 	DASSERT(tx->used <= MVNETA_TX_RING_CNT);
 	t = NULL;
 	ifp = sc->ifp;
 
 	if (__predict_false(mbuf->m_flags & M_VLANTAG)) {
 		mbuf = ether_vlanencap(mbuf, mbuf->m_pkthdr.ether_vtag);
 		if (mbuf == NULL) {
 			tx->drv_error++;
 			*mbufp = NULL;
 			return (ENOBUFS);
 		}
 		mbuf->m_flags &= ~M_VLANTAG;
 		*mbufp = mbuf;
 	}
 
 	if (__predict_false(mbuf->m_next != NULL &&
 	    (mbuf->m_pkthdr.csum_flags &
 	    (CSUM_IP | CSUM_TCP | CSUM_UDP)) != 0)) {
 		if (M_WRITABLE(mbuf) == 0) {
 			mtmp = m_dup(mbuf, M_NOWAIT);
 			m_freem(mbuf);
 			if (mtmp == NULL) {
 				tx->drv_error++;
 				*mbufp = NULL;
 				return (ENOBUFS);
 			}
 			*mbufp = mbuf = mtmp;
 		}
 	}
 
 	/* load mbuf using dmamap of 1st descriptor */
 	txbuf = &tx->txbuf[tx->cpu];
 	error = bus_dmamap_load_mbuf_sg(sc->txmbuf_dtag,
 	    txbuf->dmap, mbuf, txsegs, &txnsegs,
 	    BUS_DMA_NOWAIT);
 	if (__predict_false(error != 0)) {
 #ifdef MVNETA_KTR
 		CTR3(KTR_SPARE2, "%s:%u bus_dmamap_load_mbuf_sg error=%d", ifp->if_xname, q, error);
 #endif
 		/* This is the only recoverable error (except EFBIG). */
 		if (error != ENOMEM) {
 			tx->drv_error++;
 			m_freem(mbuf);
 			*mbufp = NULL;
 			return (ENOBUFS);
 		}
 		return (error);
 	}
 
 	if (__predict_false(txnsegs <= 0
 	    || (txnsegs + tx->used) > MVNETA_TX_RING_CNT)) {
 		/* we have no enough descriptors or mbuf is broken */
 #ifdef MVNETA_KTR
 		CTR3(KTR_SPARE2, "%s:%u not enough descriptors txnsegs=%d",
 		    ifp->if_xname, q, txnsegs);
 #endif
 		bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
 		return (ENOBUFS);
 	}
 	DASSERT(txbuf->m == NULL);
 
 	/* remember mbuf using 1st descriptor */
 	txbuf->m = mbuf;
 	bus_dmamap_sync(sc->txmbuf_dtag, txbuf->dmap,
 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
 
 	/* load to tx descriptors */
 	start = tx->cpu;
 	used = 0;
 	for (i = 0; i < txnsegs; i++) {
 		t = &tx->desc[tx->cpu];
 		t->command = 0;
 		t->l4ichk = 0;
 		t->flags = 0;
 		if (__predict_true(i == 0)) {
 			/* 1st descriptor */
 			t->command |= MVNETA_TX_CMD_W_PACKET_OFFSET(0);
 			t->command |= MVNETA_TX_CMD_F;
 			mvneta_tx_set_csumflag(ifp, t, mbuf);
 		}
 		t->bufptr_pa = txsegs[i].ds_addr;
 		t->bytecnt = txsegs[i].ds_len;
 		tx->cpu = tx_counter_adv(tx->cpu, 1);
 
 		tx->used++;
 		used++;
 	}
 	/* t is last descriptor here */
 	DASSERT(t != NULL);
 	t->command |= MVNETA_TX_CMD_L|MVNETA_TX_CMD_PADDING;
 
 	bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
 
 	while (__predict_false(used > 255)) {
 		ptxsu = MVNETA_PTXSU_NOWD(255);
 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
 		used -= 255;
 	}
 	if (__predict_true(used > 0)) {
 		ptxsu = MVNETA_PTXSU_NOWD(used);
 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
 	}
 	return (0);
 }
 
 STATIC void
 mvneta_tx_set_csumflag(struct ifnet *ifp,
     struct mvneta_tx_desc *t, struct mbuf *m)
 {
 	struct ether_header *eh;
 	int csum_flags;
 	uint32_t iphl, ipoff;
 	struct ip *ip;
 
 	iphl = ipoff = 0;
 	csum_flags = ifp->if_hwassist & m->m_pkthdr.csum_flags;
 	eh = mtod(m, struct ether_header *);
 	switch (ntohs(eh->ether_type)) {
 	case ETHERTYPE_IP:
 		ipoff = ETHER_HDR_LEN;
 		break;
 	case ETHERTYPE_IPV6:
 		return;
 	case ETHERTYPE_VLAN:
 		ipoff = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
 		break;
 	}
 
 	if (__predict_true(csum_flags & (CSUM_IP|CSUM_IP_TCP|CSUM_IP_UDP))) {
 		ip = (struct ip *)(m->m_data + ipoff);
 		iphl = ip->ip_hl<<2;
 		t->command |= MVNETA_TX_CMD_L3_IP4;
 	} else {
 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
 		return;
 	}
 
 
 	/* L3 */
 	if (csum_flags & CSUM_IP) {
 		t->command |= MVNETA_TX_CMD_IP4_CHECKSUM;
 	}
 
 	/* L4 */
 	if (csum_flags & CSUM_IP_TCP) {
 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
 		t->command |= MVNETA_TX_CMD_L4_TCP;
 	} else if (csum_flags & CSUM_IP_UDP) {
 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
 		t->command |= MVNETA_TX_CMD_L4_UDP;
 	} else
 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
 
 	t->l4ichk = 0;
 	t->command |= MVNETA_TX_CMD_IP_HEADER_LEN(iphl >> 2);
 	t->command |= MVNETA_TX_CMD_L3_OFFSET(ipoff);
 }
 
 STATIC void
 mvneta_tx_queue_complete(struct mvneta_softc *sc, int q)
 {
 	struct mvneta_tx_ring *tx;
 	struct mvneta_buf *txbuf;
 	struct mvneta_tx_desc *t;
 	uint32_t ptxs, ptxsu, ndesc;
 	int i;
 
 	KASSERT_TX_MTX(sc, q);
 
 	tx = MVNETA_TX_RING(sc, q);
 	if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED))
 		return;
 
 	ptxs = MVNETA_READ(sc, MVNETA_PTXS(q));
 	ndesc = MVNETA_PTXS_GET_TBC(ptxs);
 
 	if (__predict_false(ndesc == 0)) {
 		if (tx->used == 0)
 			tx->queue_status = MVNETA_QUEUE_IDLE;
 		else if (tx->queue_status == MVNETA_QUEUE_WORKING &&
 		    ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG))
 			tx->queue_hung = TRUE;
 		return;
 	}
 
 #ifdef MVNETA_KTR
 	CTR3(KTR_SPARE2, "%s:%u tx_complete begin ndesc=%u",
 	    sc->ifp->if_xname, q, ndesc);
 #endif
 
 	bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
 
 	for (i = 0; i < ndesc; i++) {
 		t = &tx->desc[tx->dma];
 #ifdef MVNETA_KTR
 		if (t->flags & MVNETA_TX_F_ES)
 			CTR3(KTR_SPARE2, "%s tx error queue %d desc %d",
 			    sc->ifp->if_xname, q, tx->dma);
 #endif
 		txbuf = &tx->txbuf[tx->dma];
 		if (__predict_true(txbuf->m != NULL)) {
 			DASSERT((t->command & MVNETA_TX_CMD_F) != 0);
 			bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
 			m_freem(txbuf->m);
 			txbuf->m = NULL;
 		}
 		else
 			DASSERT((t->flags & MVNETA_TX_CMD_F) == 0);
 		tx->dma = tx_counter_adv(tx->dma, 1);
 		tx->used--;
 	}
 	DASSERT(tx->used >= 0);
 	DASSERT(tx->used <= MVNETA_TX_RING_CNT);
 	while (__predict_false(ndesc > 255)) {
 		ptxsu = MVNETA_PTXSU_NORB(255);
 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
 		ndesc -= 255;
 	}
 	if (__predict_true(ndesc > 0)) {
 		ptxsu = MVNETA_PTXSU_NORB(ndesc);
 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
 	}
 #ifdef MVNETA_KTR
 	CTR5(KTR_SPARE2, "%s:%u tx_complete tx_cpu=%d tx_dma=%d tx_used=%d",
 	    sc->ifp->if_xname, q, tx->cpu, tx->dma, tx->used);
 #endif
 
 	tx->watchdog_time = ticks;
 
 	if (tx->used == 0)
 		tx->queue_status = MVNETA_QUEUE_IDLE;
 }
 
 /*
  * Do a final TX complete when TX is idle.
  */
 STATIC void
 mvneta_tx_drain(struct mvneta_softc *sc)
 {
 	struct mvneta_tx_ring *tx;
 	int q;
 
 	/*
 	 * Handle trailing mbuf on TX queue.
 	 * Check is done lockess to avoid TX path contention.
 	 */
 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
 		tx = MVNETA_TX_RING(sc, q);
 		if ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG_TXCOMP &&
 		    tx->used > 0) {
 			mvneta_tx_lockq(sc, q);
 			mvneta_tx_queue_complete(sc, q);
 			mvneta_tx_unlockq(sc, q);
 		}
 	}
 }
 
 /*
  * Rx Subroutines
  */
 STATIC int
 mvneta_rx(struct mvneta_softc *sc, int q, int count)
 {
 	uint32_t prxs, npkt;
 	int more;
 
 	more = 0;
 	mvneta_rx_lockq(sc, q);
 	prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
 	npkt = MVNETA_PRXS_GET_ODC(prxs);
 	if (__predict_false(npkt == 0))
 		goto out;
 
 	if (count > 0 && npkt > count) {
 		more = 1;
 		npkt = count;
 	}
 	mvneta_rx_queue(sc, q, npkt);
 out:
 	mvneta_rx_unlockq(sc, q);
 	return more;
 }
 
 /*
  * Helper routine for updating PRXSU register of a given queue.
  * Handles number of processed descriptors bigger than maximum acceptable value.
  */
 STATIC __inline void
 mvneta_prxsu_update(struct mvneta_softc *sc, int q, int processed)
 {
 	uint32_t prxsu;
 
 	while (__predict_false(processed > 255)) {
 		prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(255);
 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
 		processed -= 255;
 	}
 	prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(processed);
 	MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
 }
 
 static __inline void
 mvneta_prefetch(void *p)
 {
 
 	__builtin_prefetch(p);
 }
 
 STATIC void
 mvneta_rx_queue(struct mvneta_softc *sc, int q, int npkt)
 {
 	struct ifnet *ifp;
 	struct mvneta_rx_ring *rx;
 	struct mvneta_rx_desc *r;
 	struct mvneta_buf *rxbuf;
 	struct mbuf *m;
 	struct lro_ctrl *lro;
 	struct lro_entry *queued;
 	void *pktbuf;
 	int i, pktlen, processed, ndma;
 
 	KASSERT_RX_MTX(sc, q);
 
 	ifp = sc->ifp;
 	rx = MVNETA_RX_RING(sc, q);
 	processed = 0;
 
 	if (__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
 		return;
 
 	bus_dmamap_sync(sc->rx_dtag, rx->desc_map,
 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
 
 	for (i = 0; i < npkt; i++) {
 		/* Prefetch next desc, rxbuf. */
 		ndma = rx_counter_adv(rx->dma, 1);
 		mvneta_prefetch(&rx->desc[ndma]);
 		mvneta_prefetch(&rx->rxbuf[ndma]);
 
 		/* get descriptor and packet */
 		r = &rx->desc[rx->dma];
 		rxbuf = &rx->rxbuf[rx->dma];
 		m = rxbuf->m;
 		rxbuf->m = NULL;
 		DASSERT(m != NULL);
 		bus_dmamap_sync(sc->rxbuf_dtag, rxbuf->dmap,
 		    BUS_DMASYNC_POSTREAD);
 		bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
 		/* Prefetch mbuf header. */
 		mvneta_prefetch(m);
 
 		processed++;
 		/* Drop desc with error status or not in a single buffer. */
 		DASSERT((r->status & (MVNETA_RX_F|MVNETA_RX_L)) ==
 		    (MVNETA_RX_F|MVNETA_RX_L));
 		if (__predict_false((r->status & MVNETA_RX_ES) ||
 		    (r->status & (MVNETA_RX_F|MVNETA_RX_L)) !=
 		    (MVNETA_RX_F|MVNETA_RX_L)))
 			goto rx_error;
 
 		/*
 		 * [ OFF | MH | PKT | CRC ]
 		 * bytecnt cover MH, PKT, CRC
 		 */
 		pktlen = r->bytecnt - ETHER_CRC_LEN - MVNETA_HWHEADER_SIZE;
 		pktbuf = (uint8_t *)rx->rxbuf_virt_addr[rx->dma] + MVNETA_PACKET_OFFSET +
                     MVNETA_HWHEADER_SIZE;
 
 		/* Prefetch mbuf data. */
 		mvneta_prefetch(pktbuf);
 
 		/* Write value to mbuf (avoid read). */
 		m->m_data = pktbuf;
 		m->m_len = m->m_pkthdr.len = pktlen;
 		m->m_pkthdr.rcvif = ifp;
 		mvneta_rx_set_csumflag(ifp, r, m);
 
 		/* Increase rx_dma before releasing the lock. */
 		rx->dma = ndma;
 
 		if (__predict_false(rx->lro_enabled &&
 		    ((r->status & MVNETA_RX_L3_IP) != 0) &&
 		    ((r->status & MVNETA_RX_L4_MASK) == MVNETA_RX_L4_TCP) &&
 		    (m->m_pkthdr.csum_flags &
 		    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
 		    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) {
 			if (rx->lro.lro_cnt != 0) {
 				if (tcp_lro_rx(&rx->lro, m, 0) == 0)
 					goto rx_done;
 			}
 		}
 
 		mvneta_rx_unlockq(sc, q);
 		(*ifp->if_input)(ifp, m);
 		mvneta_rx_lockq(sc, q);
 		/*
 		 * Check whether this queue has been disabled in the
 		 * meantime. If yes, then clear LRO and exit.
 		 */
 		if(__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
 			goto rx_lro;
 rx_done:
 		/* Refresh receive ring to avoid stall and minimize jitter. */
 		if (processed >= MVNETA_RX_REFILL_COUNT) {
 			mvneta_prxsu_update(sc, q, processed);
 			mvneta_rx_queue_refill(sc, q);
 			processed = 0;
 		}
 		continue;
 rx_error:
 		m_freem(m);
 		rx->dma = ndma;
 		/* Refresh receive ring to avoid stall and minimize jitter. */
 		if (processed >= MVNETA_RX_REFILL_COUNT) {
 			mvneta_prxsu_update(sc, q, processed);
 			mvneta_rx_queue_refill(sc, q);
 			processed = 0;
 		}
 	}
 #ifdef MVNETA_KTR
 	CTR3(KTR_SPARE2, "%s:%u %u packets received", ifp->if_xname, q, npkt);
 #endif
 	/* DMA status update */
 	mvneta_prxsu_update(sc, q, processed);
 	/* Refill the rest of buffers if there are any to refill */
 	mvneta_rx_queue_refill(sc, q);
 
 rx_lro:
 	/*
 	 * Flush any outstanding LRO work
 	 */
 	lro = &rx->lro;
 	while (__predict_false((queued = LIST_FIRST(&lro->lro_active)) != NULL)) {
 		LIST_REMOVE(LIST_FIRST((&lro->lro_active)), next);
 		tcp_lro_flush(lro, queued);
 	}
 }
 
 STATIC void
 mvneta_rx_buf_free(struct mvneta_softc *sc, struct mvneta_buf *rxbuf)
 {
 
 	bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
 	/* This will remove all data at once */
 	m_freem(rxbuf->m);
 }
 
 STATIC void
 mvneta_rx_queue_refill(struct mvneta_softc *sc, int q)
 {
 	struct mvneta_rx_ring *rx;
 	struct mvneta_rx_desc *r;
 	struct mvneta_buf *rxbuf;
 	bus_dma_segment_t segs;
 	struct mbuf *m;
 	uint32_t prxs, prxsu, ndesc;
 	int npkt, refill, nsegs, error;
 
 	KASSERT_RX_MTX(sc, q);
 
 	rx = MVNETA_RX_RING(sc, q);
 	prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
 	ndesc = MVNETA_PRXS_GET_NODC(prxs) + MVNETA_PRXS_GET_ODC(prxs);
 	refill = MVNETA_RX_RING_CNT - ndesc;
 #ifdef MVNETA_KTR
 	CTR3(KTR_SPARE2, "%s:%u refill %u packets", sc->ifp->if_xname, q,
 	    refill);
 #endif
 	if (__predict_false(refill <= 0))
 		return;
 
 	for (npkt = 0; npkt < refill; npkt++) {
 		rxbuf = &rx->rxbuf[rx->cpu];
 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 		if (__predict_false(m == NULL)) {
 			error = ENOBUFS;
 			break;
 		}
 		m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
 
 		error = bus_dmamap_load_mbuf_sg(sc->rxbuf_dtag, rxbuf->dmap,
 		    m, &segs, &nsegs, BUS_DMA_NOWAIT);
 		if (__predict_false(error != 0 || nsegs != 1)) {
 			KASSERT(1, ("Failed to load Rx mbuf DMA map"));
 			m_freem(m);
 			break;
 		}
 
 		/* Add the packet to the ring */
 		rxbuf->m = m;
 		r = &rx->desc[rx->cpu];
 		r->bufptr_pa = segs.ds_addr;
 		rx->rxbuf_virt_addr[rx->cpu] = m->m_data;
 
 		rx->cpu = rx_counter_adv(rx->cpu, 1);
 	}
 	if (npkt == 0) {
 		if (refill == MVNETA_RX_RING_CNT)
 			rx->needs_refill = TRUE;
 		return;
 	}
 
 	rx->needs_refill = FALSE;
 	bus_dmamap_sync(sc->rx_dtag, rx->desc_map, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
 
 	while (__predict_false(npkt > 255)) {
 		prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(255);
 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
 		npkt -= 255;
 	}
 	if (__predict_true(npkt > 0)) {
 		prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(npkt);
 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
 	}
 }
 
 STATIC __inline void
 mvneta_rx_set_csumflag(struct ifnet *ifp,
     struct mvneta_rx_desc *r, struct mbuf *m)
 {
 	uint32_t csum_flags;
 
 	csum_flags = 0;
 	if (__predict_false((r->status &
 	    (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) == 0))
 		return; /* not a IP packet */
 
 	/* L3 */
 	if (__predict_true((r->status & MVNETA_RX_IP_HEADER_OK) ==
 	    MVNETA_RX_IP_HEADER_OK))
 		csum_flags |= CSUM_L3_CALC|CSUM_L3_VALID;
 
 	if (__predict_true((r->status & (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) ==
 	    (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP))) {
 		/* L4 */
 		switch (r->status & MVNETA_RX_L4_MASK) {
 		case MVNETA_RX_L4_TCP:
 		case MVNETA_RX_L4_UDP:
 			csum_flags |= CSUM_L4_CALC;
 			if (__predict_true((r->status &
 			    MVNETA_RX_L4_CHECKSUM_OK) == MVNETA_RX_L4_CHECKSUM_OK)) {
 				csum_flags |= CSUM_L4_VALID;
 				m->m_pkthdr.csum_data = htons(0xffff);
 			}
 			break;
 		case MVNETA_RX_L4_OTH:
 		default:
 			break;
 		}
 	}
 	m->m_pkthdr.csum_flags = csum_flags;
 }
 
 /*
  * MAC address filter
  */
 STATIC void
 mvneta_filter_setup(struct mvneta_softc *sc)
 {
 	struct ifnet *ifp;
 	uint32_t dfut[MVNETA_NDFUT], dfsmt[MVNETA_NDFSMT], dfomt[MVNETA_NDFOMT];
 	uint32_t pxc;
 	int i;
 
 	KASSERT_SC_MTX(sc);
 
 	memset(dfut, 0, sizeof(dfut));
 	memset(dfsmt, 0, sizeof(dfsmt));
 	memset(dfomt, 0, sizeof(dfomt));
 
 	ifp = sc->ifp;
 	ifp->if_flags |= IFF_ALLMULTI;
 	if (ifp->if_flags & (IFF_ALLMULTI|IFF_PROMISC)) {
 		for (i = 0; i < MVNETA_NDFSMT; i++) {
 			dfsmt[i] = dfomt[i] =
 			    MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
 			    MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
 			    MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
 			    MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
 		}
 	}
 
 	pxc = MVNETA_READ(sc, MVNETA_PXC);
 	pxc &= ~(MVNETA_PXC_UPM | MVNETA_PXC_RXQ_MASK | MVNETA_PXC_RXQARP_MASK |
 	    MVNETA_PXC_TCPQ_MASK | MVNETA_PXC_UDPQ_MASK | MVNETA_PXC_BPDUQ_MASK);
 	pxc |= MVNETA_PXC_RXQ(MVNETA_RX_QNUM_MAX-1);
 	pxc |= MVNETA_PXC_RXQARP(MVNETA_RX_QNUM_MAX-1);
 	pxc |= MVNETA_PXC_TCPQ(MVNETA_RX_QNUM_MAX-1);
 	pxc |= MVNETA_PXC_UDPQ(MVNETA_RX_QNUM_MAX-1);
 	pxc |= MVNETA_PXC_BPDUQ(MVNETA_RX_QNUM_MAX-1);
 	pxc |= MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP;
 	if (ifp->if_flags & IFF_BROADCAST) {
 		pxc &= ~(MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP);
 	}
 	if (ifp->if_flags & IFF_PROMISC) {
 		pxc |= MVNETA_PXC_UPM;
 	}
 	MVNETA_WRITE(sc, MVNETA_PXC, pxc);
 
 	/* Set Destination Address Filter Unicast Table */
 	if (ifp->if_flags & IFF_PROMISC) {
 		/* pass all unicast addresses */
 		for (i = 0; i < MVNETA_NDFUT; i++) {
 			dfut[i] =
 			    MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
 			    MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
 			    MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
 			    MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
 		}
 	} else {
 		i = sc->enaddr[5] & 0xf;		/* last nibble */
 		dfut[i>>2] = MVNETA_DF(i&3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
 	}
 	MVNETA_WRITE_REGION(sc, MVNETA_DFUT(0), dfut, MVNETA_NDFUT);
 
 	/* Set Destination Address Filter Multicast Tables */
 	MVNETA_WRITE_REGION(sc, MVNETA_DFSMT(0), dfsmt, MVNETA_NDFSMT);
 	MVNETA_WRITE_REGION(sc, MVNETA_DFOMT(0), dfomt, MVNETA_NDFOMT);
 }
 
 /*
  * sysctl(9)
  */
 STATIC int
 sysctl_read_mib(SYSCTL_HANDLER_ARGS)
 {
 	struct mvneta_sysctl_mib *arg;
 	struct mvneta_softc *sc;
 	uint64_t val;
 
 	arg = (struct mvneta_sysctl_mib *)arg1;
 	if (arg == NULL)
 		return (EINVAL);
 
 	sc = arg->sc;
 	if (sc == NULL)
 		return (EINVAL);
 	if (arg->index < 0 || arg->index > MVNETA_PORTMIB_NOCOUNTER)
 		return (EINVAL);
 
 	mvneta_sc_lock(sc);
 	val = arg->counter;
 	mvneta_sc_unlock(sc);
 	return sysctl_handle_64(oidp, &val, 0, req);
 }
 
 
 STATIC int
 sysctl_clear_mib(SYSCTL_HANDLER_ARGS)
 {
 	struct mvneta_softc *sc;
 	int err, val;
 
 	val = 0;
 	sc = (struct mvneta_softc *)arg1;
 	if (sc == NULL)
 		return (EINVAL);
 
 	err = sysctl_handle_int(oidp, &val, 0, req);
 	if (err != 0)
 		return (err);
 
 	if (val < 0 || val > 1)
 		return (EINVAL);
 
 	if (val == 1) {
 		mvneta_sc_lock(sc);
 		mvneta_clear_mib(sc);
 		mvneta_sc_unlock(sc);
 	}
 
 	return (0);
 }
 
 STATIC int
 sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS)
 {
 	struct mvneta_sysctl_queue *arg;
 	struct mvneta_rx_ring *rx;
 	struct mvneta_softc *sc;
 	uint32_t reg, time_mvtclk;
 	int err, time_us;
 
 	rx = NULL;
 	arg = (struct mvneta_sysctl_queue *)arg1;
 	if (arg == NULL)
 		return (EINVAL);
 	if (arg->queue < 0 || arg->queue > MVNETA_RX_RING_CNT)
 		return (EINVAL);
 	if (arg->rxtx != MVNETA_SYSCTL_RX)
 		return (EINVAL);
 
 	sc = arg->sc;
 	if (sc == NULL)
 		return (EINVAL);
 
 	/* read queue length */
 	mvneta_sc_lock(sc);
 	mvneta_rx_lockq(sc, arg->queue);
 	rx = MVNETA_RX_RING(sc, arg->queue);
 	time_mvtclk = rx->queue_th_time;
-	time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / get_tclk();
+	time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / mvneta_get_clk();
 	mvneta_rx_unlockq(sc, arg->queue);
 	mvneta_sc_unlock(sc);
 
 	err = sysctl_handle_int(oidp, &time_us, 0, req);
 	if (err != 0)
 		return (err);
 
 	mvneta_sc_lock(sc);
 	mvneta_rx_lockq(sc, arg->queue);
 
 	/* update queue length (0[sec] - 1[sec]) */
 	if (time_us < 0 || time_us > (1000 * 1000)) {
 		mvneta_rx_unlockq(sc, arg->queue);
 		mvneta_sc_unlock(sc);
 		return (EINVAL);
 	}
 	time_mvtclk =
-	    (uint64_t)get_tclk() * (uint64_t)time_us / (1000ULL * 1000ULL);
+	    (uint64_t)mvneta_get_clk() * (uint64_t)time_us / (1000ULL * 1000ULL);
 	rx->queue_th_time = time_mvtclk;
 	reg = MVNETA_PRXITTH_RITT(rx->queue_th_time);
 	MVNETA_WRITE(sc, MVNETA_PRXITTH(arg->queue), reg);
 	mvneta_rx_unlockq(sc, arg->queue);
 	mvneta_sc_unlock(sc);
 
 	return (0);
 }
 
 STATIC void
 sysctl_mvneta_init(struct mvneta_softc *sc)
 {
 	struct sysctl_ctx_list *ctx;
 	struct sysctl_oid_list *children;
 	struct sysctl_oid_list *rxchildren;
 	struct sysctl_oid_list *qchildren, *mchildren;
 	struct sysctl_oid *tree;
 	int i, q;
 	struct mvneta_sysctl_queue *rxarg;
 #define	MVNETA_SYSCTL_NAME(num) "queue" # num
 	static const char *sysctl_queue_names[] = {
 		MVNETA_SYSCTL_NAME(0), MVNETA_SYSCTL_NAME(1),
 		MVNETA_SYSCTL_NAME(2), MVNETA_SYSCTL_NAME(3),
 		MVNETA_SYSCTL_NAME(4), MVNETA_SYSCTL_NAME(5),
 		MVNETA_SYSCTL_NAME(6), MVNETA_SYSCTL_NAME(7),
 	};
 #undef MVNETA_SYSCTL_NAME
 
 #define	MVNETA_SYSCTL_DESCR(num) "configuration parameters for queue " # num
 	static const char *sysctl_queue_descrs[] = {
 		MVNETA_SYSCTL_DESCR(0), MVNETA_SYSCTL_DESCR(1),
 		MVNETA_SYSCTL_DESCR(2), MVNETA_SYSCTL_DESCR(3),
 		MVNETA_SYSCTL_DESCR(4), MVNETA_SYSCTL_DESCR(5),
 		MVNETA_SYSCTL_DESCR(6), MVNETA_SYSCTL_DESCR(7),
 	};
 #undef MVNETA_SYSCTL_DESCR
 
 
 	ctx = device_get_sysctl_ctx(sc->dev);
 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
 
 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rx",
 	    CTLFLAG_RD, 0, "NETA RX");
 	rxchildren = SYSCTL_CHILDREN(tree);
 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "mib",
 	    CTLFLAG_RD, 0, "NETA MIB");
 	mchildren = SYSCTL_CHILDREN(tree);
 
 
 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "flow_control",
 	    CTLFLAG_RW, &sc->cf_fc, 0, "flow control");
 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpi",
 	    CTLFLAG_RW, &sc->cf_lpi, 0, "Low Power Idle");
 
 	/*
 	 * MIB access
 	 */
 	/* dev.mvneta.[unit].mib.<mibs> */
 	for (i = 0; i < MVNETA_PORTMIB_NOCOUNTER; i++) {
 		const char *name = mvneta_mib_list[i].sysctl_name;
 		const char *desc = mvneta_mib_list[i].desc;
 		struct mvneta_sysctl_mib *mib_arg = &sc->sysctl_mib[i];
 
 		mib_arg->sc = sc;
 		mib_arg->index = i;
 		SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO, name,
 		    CTLTYPE_U64|CTLFLAG_RD, (void *)mib_arg, 0,
 		    sysctl_read_mib, "I", desc);
 	}
 	SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "rx_discard",
 	    CTLFLAG_RD, &sc->counter_pdfc, "Port Rx Discard Frame Counter");
 	SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "overrun",
 	    CTLFLAG_RD, &sc->counter_pofc, "Port Overrun Frame Counter");
 	SYSCTL_ADD_UINT(ctx, mchildren, OID_AUTO, "watchdog",
 	    CTLFLAG_RD, &sc->counter_watchdog, 0, "TX Watchdog Counter");
 
 	SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO, "reset",
 	    CTLTYPE_INT|CTLFLAG_RW, (void *)sc, 0,
 	    sysctl_clear_mib, "I", "Reset MIB counters");
 
 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
 		rxarg = &sc->sysctl_rx_queue[q];
 
 		rxarg->sc = sc;
 		rxarg->queue = q;
 		rxarg->rxtx = MVNETA_SYSCTL_RX;
 
 		/* hw.mvneta.mvneta[unit].rx.[queue] */
 		tree = SYSCTL_ADD_NODE(ctx, rxchildren, OID_AUTO,
 		    sysctl_queue_names[q], CTLFLAG_RD, 0,
 		    sysctl_queue_descrs[q]);
 		qchildren = SYSCTL_CHILDREN(tree);
 
 		/* hw.mvneta.mvneta[unit].rx.[queue].threshold_timer_us */
 		SYSCTL_ADD_PROC(ctx, qchildren, OID_AUTO, "threshold_timer_us",
 		    CTLTYPE_UINT | CTLFLAG_RW, rxarg, 0,
 		    sysctl_set_queue_rxthtime, "I",
 		    "interrupt coalescing threshold timer [us]");
 	}
 }
 
 /*
  * MIB
  */
 STATIC void
 mvneta_clear_mib(struct mvneta_softc *sc)
 {
 	int i;
 
 	KASSERT_SC_MTX(sc);
 
 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
 		if (mvneta_mib_list[i].reg64)
 			MVNETA_READ_MIB_8(sc, mvneta_mib_list[i].regnum);
 		else
 			MVNETA_READ_MIB_4(sc, mvneta_mib_list[i].regnum);
 		sc->sysctl_mib[i].counter = 0;
 	}
 	MVNETA_READ(sc, MVNETA_PDFC);
 	sc->counter_pdfc = 0;
 	MVNETA_READ(sc, MVNETA_POFC);
 	sc->counter_pofc = 0;
 	sc->counter_watchdog = 0;
 }
 
 STATIC void
 mvneta_update_mib(struct mvneta_softc *sc)
 {
 	struct mvneta_tx_ring *tx;
 	int i;
 	uint64_t val;
 	uint32_t reg;
 
 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
 
 		if (mvneta_mib_list[i].reg64)
 			val = MVNETA_READ_MIB_8(sc, mvneta_mib_list[i].regnum);
 		else
 			val = MVNETA_READ_MIB_4(sc, mvneta_mib_list[i].regnum);
 
 		if (val == 0)
 			continue;
 
 		sc->sysctl_mib[i].counter += val;
 		switch (mvneta_mib_list[i].regnum) {
 			case MVNETA_MIB_RX_GOOD_OCT:
 				if_inc_counter(sc->ifp, IFCOUNTER_IBYTES, val);
 				break;
 			case MVNETA_MIB_RX_BAD_FRAME:
 				if_inc_counter(sc->ifp, IFCOUNTER_IERRORS, val);
 				break;
 			case MVNETA_MIB_RX_GOOD_FRAME:
 				if_inc_counter(sc->ifp, IFCOUNTER_IPACKETS, val);
 				break;
 			case MVNETA_MIB_RX_MCAST_FRAME:
 				if_inc_counter(sc->ifp, IFCOUNTER_IMCASTS, val);
 				break;
 			case MVNETA_MIB_TX_GOOD_OCT:
 				if_inc_counter(sc->ifp, IFCOUNTER_OBYTES, val);
 				break;
 			case MVNETA_MIB_TX_GOOD_FRAME:
 				if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, val);
 				break;
 			case MVNETA_MIB_TX_MCAST_FRAME:
 				if_inc_counter(sc->ifp, IFCOUNTER_OMCASTS, val);
 				break;
 			case MVNETA_MIB_MAC_COL:
 				if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, val);
 				break;
 			case MVNETA_MIB_TX_MAC_TRNS_ERR:
 			case MVNETA_MIB_TX_EXCES_COL:
 			case MVNETA_MIB_MAC_LATE_COL:
 				if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, val);
 				break;
 		}
 	}
 
 	reg = MVNETA_READ(sc, MVNETA_PDFC);
 	sc->counter_pdfc += reg;
 	if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
 	reg = MVNETA_READ(sc, MVNETA_POFC);
 	sc->counter_pofc += reg;
 	if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
 
 	/* TX watchdog. */
 	if (sc->counter_watchdog_mib > 0) {
 		if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, sc->counter_watchdog_mib);
 		sc->counter_watchdog_mib = 0;
 	}
 	/*
 	 * TX driver errors:
 	 * We do not take queue locks to not disrupt TX path.
 	 * We may only miss one drv error which will be fixed at
 	 * next mib update. We may also clear counter when TX path
 	 * is incrementing it but we only do it if counter was not zero
 	 * thus we may only loose one error.
 	 */
 	for (i = 0; i < MVNETA_TX_QNUM_MAX; i++) {
 		tx = MVNETA_TX_RING(sc, i);
 
 		if (tx->drv_error > 0) {
 			if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, tx->drv_error);
 			tx->drv_error = 0;
 		}
 	}
 }
Index: head/sys/dev/neta/if_mvneta_fdt.c
===================================================================
--- head/sys/dev/neta/if_mvneta_fdt.c	(revision 323361)
+++ head/sys/dev/neta/if_mvneta_fdt.c	(revision 323362)
@@ -1,225 +1,231 @@
 /*
  * Copyright (c) 2017 Stormshield.
  * Copyright (c) 2017 Semihalf.
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  * POSSIBILITY OF SUCH DAMAGE.
  */
 
 #include "opt_platform.h"
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/kernel.h>
 #include <sys/module.h>
 #include <sys/bus.h>
 #include <sys/rman.h>
 #include <sys/socket.h>
 #include <sys/taskqueue.h>
 
 #include <net/ethernet.h>
 #include <net/if.h>
 #include <net/if_media.h>
 
 #include <netinet/in.h>
 #include <netinet/ip.h>
 #include <netinet/tcp_lro.h>
 
 #include <machine/bus.h>
 #include <machine/resource.h>
 
 #include <dev/ofw/ofw_bus.h>
 #include <dev/ofw/ofw_bus_subr.h>
 
 #include <dev/mii/mii.h>
 #include <dev/mii/miivar.h>
 
 #include "if_mvnetareg.h"
 #include "if_mvnetavar.h"
 
 #define	PHY_MODE_MAXLEN	10
 #define	INBAND_STATUS_MAXLEN 16
 
 static int mvneta_fdt_probe(device_t);
 static int mvneta_fdt_attach(device_t);
 
 static device_method_t mvneta_fdt_methods[] = {
 	/* Device interface */
 	DEVMETHOD(device_probe,		mvneta_fdt_probe),
 	DEVMETHOD(device_attach,	mvneta_fdt_attach),
 
 	/* End */
 	DEVMETHOD_END
 };
 
 DEFINE_CLASS_1(mvneta, mvneta_fdt_driver, mvneta_fdt_methods,
     sizeof(struct mvneta_softc), mvneta_driver);
 
 static devclass_t mvneta_fdt_devclass;
 
 DRIVER_MODULE(mvneta, ofwbus, mvneta_fdt_driver, mvneta_fdt_devclass, 0, 0);
 DRIVER_MODULE(mvneta, simplebus, mvneta_fdt_driver, mvneta_fdt_devclass, 0, 0);
 
 static int mvneta_fdt_phy_acquire(device_t);
 
+static struct ofw_compat_data compat_data[] = {
+	{"marvell,armada-370-neta",	true},
+	{"marvell,armada-3700-neta",	true},
+	{NULL,				false}
+};
+
 static int
 mvneta_fdt_probe(device_t dev)
 {
 
 	if (!ofw_bus_status_okay(dev))
 		return (ENXIO);
 
-	if (!ofw_bus_is_compatible(dev, "marvell,armada-370-neta"))
+	if (!ofw_bus_search_compatible(dev, compat_data)->ocd_data)
 		return (ENXIO);
 
 	device_set_desc(dev, "NETA controller");
 	return (BUS_PROBE_DEFAULT);
 }
 
 static int
 mvneta_fdt_attach(device_t dev)
 {
 	int err;
 
 	/* Try to fetch PHY information from FDT */
 	err = mvneta_fdt_phy_acquire(dev);
 	if (err != 0)
 		return (err);
 
 	return (mvneta_attach(dev));
 }
 
 static int
 mvneta_fdt_phy_acquire(device_t dev)
 {
 	struct mvneta_softc *sc;
 	phandle_t node, child, phy_handle;
 	char phymode[PHY_MODE_MAXLEN];
 	char managed[INBAND_STATUS_MAXLEN];
 	char *name;
 
 	sc = device_get_softc(dev);
 	node = ofw_bus_get_node(dev);
 
 	/* PHY mode is crucial */
 	if (OF_getprop(node, "phy-mode", phymode, sizeof(phymode)) <= 0) {
 		device_printf(dev, "Failed to acquire PHY mode from FDT.\n");
 		return (ENXIO);
 	}
 
 	if (strncmp(phymode, "rgmii-id", 8) == 0)
 		sc->phy_mode = MVNETA_PHY_RGMII_ID;
 	else if (strncmp(phymode, "rgmii", 5) == 0)
 		sc->phy_mode = MVNETA_PHY_RGMII;
 	else if (strncmp(phymode, "sgmii", 5) == 0)
 		sc->phy_mode = MVNETA_PHY_SGMII;
 	else if (strncmp(phymode, "qsgmii", 6) == 0)
 		sc->phy_mode = MVNETA_PHY_QSGMII;
 	else
 		sc->phy_mode = MVNETA_PHY_SGMII;
 
 	/* Check if in-band link status will be used */
 	if (OF_getprop(node, "managed", managed, sizeof(managed)) > 0) {
 		if (strncmp(managed, "in-band-status", 14) == 0) {
 			sc->use_inband_status = TRUE;
 			device_printf(dev, "Use in-band link status.\n");
 			return (0);
 		}
 	}
 
 	if (OF_getencprop(node, "phy", (void *)&phy_handle,
 	    sizeof(phy_handle)) <= 0) {
 		/* Test for fixed-link (present i.e. in 388-gp) */
 		for (child = OF_child(node); child != 0; child = OF_peer(child)) {
 			if (OF_getprop_alloc(child,
 			    "name", 1, (void **)&name) <= 0) {
 				continue;
 			}
 			if (strncmp(name, "fixed-link", 10) == 0) {
 				free(name, M_OFWPROP);
 				if (OF_getencprop(child, "speed",
 				    &sc->phy_speed, sizeof(sc->phy_speed)) <= 0) {
 					if (bootverbose) {
 						device_printf(dev,
 						    "No PHY information.\n");
 					}
 					return (ENXIO);
 				}
 				if (OF_hasprop(child, "full-duplex"))
 					sc->phy_fdx = TRUE;
 				else
 					sc->phy_fdx = FALSE;
 
 				/* Keep this flag just for the record */
 				sc->phy_addr = MII_PHY_ANY;
 
 				return (0);
 			}
 			free(name, M_OFWPROP);
 		}
 		if (bootverbose) {
 			device_printf(dev,
 			    "Could not find PHY information in FDT.\n");
 		}
 		return (ENXIO);
 	} else {
 		phy_handle = OF_instance_to_package(phy_handle);
 		if (OF_getencprop(phy_handle, "reg", &sc->phy_addr,
 		    sizeof(sc->phy_addr)) <= 0) {
 			device_printf(dev,
 			    "Could not find PHY address in FDT.\n");
 			return (ENXIO);
 		}
 	}
 
 	return (0);
 }
 
 int
 mvneta_fdt_mac_address(struct mvneta_softc *sc, uint8_t *addr)
 {
 	phandle_t node;
 	uint8_t lmac[ETHER_ADDR_LEN];
 	uint8_t zeromac[] = {[0 ... (ETHER_ADDR_LEN - 1)] = 0};
 	int len;
 
 	/*
 	 * Retrieve hw address from the device tree.
 	 */
 	node = ofw_bus_get_node(sc->dev);
 	if (node == 0)
 		return (ENXIO);
 
 	len = OF_getprop(node, "local-mac-address", (void *)lmac, sizeof(lmac));
 	if (len != ETHER_ADDR_LEN)
 		return (ENOENT);
 
 	if (memcmp(lmac, zeromac, ETHER_ADDR_LEN) == 0) {
 		/* Invalid MAC address (all zeros) */
 		return (EINVAL);
 	}
 	memcpy(addr, lmac, ETHER_ADDR_LEN);
 
 	return (0);
 }