Index: head/sys/kern/posix4_mib.c
===================================================================
--- head/sys/kern/posix4_mib.c	(revision 322257)
+++ head/sys/kern/posix4_mib.c	(revision 322258)
@@ -1,176 +1,175 @@
 /*-
  * Copyright (c) 1998
  *	HD Associates, Inc.  All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. All advertising materials mentioning features or use of this software
  *    must display the following acknowledgement:
  *	This product includes software developed by HD Associates, Inc
  * 4. Neither the name of the author nor the names of any co-contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY HD ASSOCIATES AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL HD ASSOCIATES OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/kernel.h>
 #include <sys/queue.h>
 #include <sys/sysctl.h>
 #include <sys/vnode.h>
 #include <sys/proc.h>
 #include <sys/posix4.h>
 
 static int facility[CTL_P1003_1B_MAXID - 1];
 static int facility_initialized[CTL_P1003_1B_MAXID - 1];
 
 static int p31b_sysctl_proc(SYSCTL_HANDLER_ARGS);
 
 /* OID_AUTO isn't working with sysconf(3).  I guess I'd have to
  * modify it to do a lookup by name from the index.
  * For now I've left it a top-level sysctl.
  */
 
 #if 1
 
 SYSCTL_DECL(_p1003_1b);
 
 #define P1B_SYSCTL(num, name)  \
 	SYSCTL_INT(_p1003_1b, num, name, CTLFLAG_RD | CTLFLAG_CAPRD, \
 	facility + num - 1, 0, "");
 #define P1B_SYSCTL_RW(num, name)  \
 	SYSCTL_PROC(_p1003_1b, num, name, CTLTYPE_INT | CTLFLAG_RW, NULL, num, \
 	    p31b_sysctl_proc, "I", "");
 
 #else
 
 SYSCTL_DECL(_kern_p1003_1b);
 
 #define P1B_SYSCTL(num, name)  \
 	SYSCTL_INT(_kern_p1003_1b, OID_AUTO, name, CTLFLAG_RD | CTLFLAG_CAPRD, \
 	    facility + num - 1, 0, "");
 #define P1B_SYSCTL_RW(num, name)  \
 	SYSCTL_PROC(_p1003_1b, OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW, NULL, \
 	    num, p31b_sysctl_proc, "I", "");
 SYSCTL_NODE(_kern, OID_AUTO, p1003_1b, CTLFLAG_RW, 0, "P1003.1B");
 
 #endif
 
 P1B_SYSCTL(CTL_P1003_1B_ASYNCHRONOUS_IO, asynchronous_io);
 P1B_SYSCTL(CTL_P1003_1B_MAPPED_FILES, mapped_files);
 P1B_SYSCTL(CTL_P1003_1B_MEMLOCK, memlock);
 P1B_SYSCTL(CTL_P1003_1B_MEMLOCK_RANGE, memlock_range);
 P1B_SYSCTL(CTL_P1003_1B_MEMORY_PROTECTION, memory_protection);
 P1B_SYSCTL(CTL_P1003_1B_MESSAGE_PASSING, message_passing);
 P1B_SYSCTL(CTL_P1003_1B_PRIORITIZED_IO, prioritized_io);
 P1B_SYSCTL(CTL_P1003_1B_PRIORITY_SCHEDULING, priority_scheduling);
 P1B_SYSCTL(CTL_P1003_1B_REALTIME_SIGNALS, realtime_signals);
 P1B_SYSCTL(CTL_P1003_1B_SEMAPHORES, semaphores);
 P1B_SYSCTL(CTL_P1003_1B_FSYNC, fsync);
 P1B_SYSCTL(CTL_P1003_1B_SHARED_MEMORY_OBJECTS, shared_memory_objects);
 P1B_SYSCTL(CTL_P1003_1B_SYNCHRONIZED_IO, synchronized_io);
 P1B_SYSCTL(CTL_P1003_1B_TIMERS, timers);
-P1B_SYSCTL(CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max);
 P1B_SYSCTL(CTL_P1003_1B_AIO_MAX, aio_max);
 P1B_SYSCTL(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, aio_prio_delta_max);
 P1B_SYSCTL(CTL_P1003_1B_DELAYTIMER_MAX, delaytimer_max);
 P1B_SYSCTL(CTL_P1003_1B_MQ_OPEN_MAX, mq_open_max);
 P1B_SYSCTL(CTL_P1003_1B_PAGESIZE, pagesize);
 P1B_SYSCTL(CTL_P1003_1B_RTSIG_MAX, rtsig_max);
 P1B_SYSCTL_RW(CTL_P1003_1B_SEM_NSEMS_MAX, sem_nsems_max);
 P1B_SYSCTL(CTL_P1003_1B_SEM_VALUE_MAX, sem_value_max);
 P1B_SYSCTL(CTL_P1003_1B_SIGQUEUE_MAX, sigqueue_max);
 P1B_SYSCTL(CTL_P1003_1B_TIMER_MAX, timer_max);
 
 #define P31B_VALID(num)	((num) >= 1 && (num) < CTL_P1003_1B_MAXID)
 
 static int
 p31b_sysctl_proc(SYSCTL_HANDLER_ARGS)
 {
 	int error, num, val;
 
 	num = arg2;
 	if (!P31B_VALID(num))
 		return (EINVAL);
 	val = facility_initialized[num - 1] ? facility[num - 1] : 0;
 	error = sysctl_handle_int(oidp, &val, 0, req);
 	if (error == 0 && req->newptr != NULL && facility_initialized[num - 1])
 		facility[num - 1] = val;
 	return (error);
 }
 
 /* p31b_setcfg: Set the configuration
  */
 void
 p31b_setcfg(int num, int value)
 {
 
 	if (P31B_VALID(num)) {
 		facility[num - 1] = value;
 		facility_initialized[num - 1] = 1;
 	}
 }
 
 void
 p31b_unsetcfg(int num)
 {
 
 	facility[num - 1] = 0;
 	facility_initialized[num - 1] = 0;
 }
 
 int
 p31b_getcfg(int num)
 {
 
 	if (P31B_VALID(num))
 		return (facility[num - 1]);
 	return (0);
 }
 
 int
 p31b_iscfg(int num)
 {
 
 	if (P31B_VALID(num))
 		return (facility_initialized[num - 1]);
 	return (0);
 }
 
 /*
  * Turn on indications for standard (non-configurable) kernel features.
  */
 static void
 p31b_set_standard(void *dummy)
 {
 
 	p31b_setcfg(CTL_P1003_1B_FSYNC, 200112L);
 	p31b_setcfg(CTL_P1003_1B_MAPPED_FILES, 200112L);
 	p31b_setcfg(CTL_P1003_1B_SHARED_MEMORY_OBJECTS, 200112L);
 	p31b_setcfg(CTL_P1003_1B_PAGESIZE, PAGE_SIZE);
 }
 
 SYSINIT(p31b_set_standard, SI_SUB_P1003_1B, SI_ORDER_ANY, p31b_set_standard, 
 	0);
 
Index: head/sys/kern/vfs_aio.c
===================================================================
--- head/sys/kern/vfs_aio.c	(revision 322257)
+++ head/sys/kern/vfs_aio.c	(revision 322258)
@@ -1,2996 +1,3006 @@
 /*-
  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. John S. Dyson's name may not be used to endorse or promote products
  *    derived from this software without specific prior written permission.
  *
  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
  * bad that happens because of using this software isn't the responsibility
  * of the author.  This software is distributed AS-IS.
  */
 
 /*
  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_compat.h"
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/malloc.h>
 #include <sys/bio.h>
 #include <sys/buf.h>
 #include <sys/capsicum.h>
 #include <sys/eventhandler.h>
 #include <sys/sysproto.h>
 #include <sys/filedesc.h>
 #include <sys/kernel.h>
 #include <sys/module.h>
 #include <sys/kthread.h>
 #include <sys/fcntl.h>
 #include <sys/file.h>
 #include <sys/limits.h>
 #include <sys/lock.h>
 #include <sys/mutex.h>
 #include <sys/unistd.h>
 #include <sys/posix4.h>
 #include <sys/proc.h>
 #include <sys/resourcevar.h>
 #include <sys/signalvar.h>
 #include <sys/syscallsubr.h>
 #include <sys/protosw.h>
 #include <sys/rwlock.h>
 #include <sys/sema.h>
 #include <sys/socket.h>
 #include <sys/socketvar.h>
 #include <sys/syscall.h>
 #include <sys/sysent.h>
 #include <sys/sysctl.h>
 #include <sys/syslog.h>
 #include <sys/sx.h>
 #include <sys/taskqueue.h>
 #include <sys/vnode.h>
 #include <sys/conf.h>
 #include <sys/event.h>
 #include <sys/mount.h>
 #include <geom/geom.h>
 
 #include <machine/atomic.h>
 
 #include <vm/vm.h>
 #include <vm/vm_page.h>
 #include <vm/vm_extern.h>
 #include <vm/pmap.h>
 #include <vm/vm_map.h>
 #include <vm/vm_object.h>
 #include <vm/uma.h>
 #include <sys/aio.h>
 
 /*
  * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
  * overflow. (XXX will be removed soon.)
  */
 static u_long jobrefid;
 
 /*
  * Counter for aio_fsync.
  */
 static uint64_t jobseqno;
 
 #ifndef MAX_AIO_PER_PROC
 #define MAX_AIO_PER_PROC	32
 #endif
 
 #ifndef MAX_AIO_QUEUE_PER_PROC
 #define MAX_AIO_QUEUE_PER_PROC	256 /* Bigger than AIO_LISTIO_MAX */
 #endif
 
 #ifndef MAX_AIO_QUEUE
 #define	MAX_AIO_QUEUE		1024 /* Bigger than AIO_LISTIO_MAX */
 #endif
 
 #ifndef MAX_BUF_AIO
 #define MAX_BUF_AIO		16
 #endif
 
 FEATURE(aio, "Asynchronous I/O");
+SYSCTL_DECL(_p1003_1b);
 
 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
 
 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0,
     "Async IO management");
 
 static int enable_aio_unsafe = 0;
 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0,
     "Permit asynchronous IO on all file types, not just known-safe types");
 
 static unsigned int unsafe_warningcnt = 1;
 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW,
     &unsafe_warningcnt, 0,
     "Warnings that will be triggered upon failed IO requests on unsafe files");
 
 static int max_aio_procs = MAX_AIO_PROCS;
 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0,
     "Maximum number of kernel processes to use for handling async IO ");
 
 static int num_aio_procs = 0;
 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0,
     "Number of presently active kernel processes for async IO");
 
 /*
  * The code will adjust the actual number of AIO processes towards this
  * number when it gets a chance.
  */
 static int target_aio_procs = TARGET_AIO_PROCS;
 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
     0,
     "Preferred number of ready kernel processes for async IO");
 
 static int max_queue_count = MAX_AIO_QUEUE;
 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
     "Maximum number of aio requests to queue, globally");
 
 static int num_queue_count = 0;
 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
     "Number of queued aio requests");
 
 static int num_buf_aio = 0;
 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
     "Number of aio requests presently handled by the buf subsystem");
 
 /* Number of async I/O processes in the process of being started */
 /* XXX This should be local to aio_aqueue() */
 static int num_aio_resv_start = 0;
 
 static int aiod_lifetime;
 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
     "Maximum lifetime for idle aiod");
 
 static int max_aio_per_proc = MAX_AIO_PER_PROC;
 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
     0,
     "Maximum active aio requests per process (stored in the process)");
 
 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
     &max_aio_queue_per_proc, 0,
     "Maximum queued aio requests per process (stored in the process)");
 
 static int max_buf_aio = MAX_BUF_AIO;
 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
     "Maximum buf aio requests per process (stored in the process)");
 
+static int aio_listio_max = AIO_LISTIO_MAX;
+SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max,
+    CTLFLAG_RDTUN | CTLFLAG_CAPRD, &aio_listio_max, 0,
+    "Maximum aio requests for a single lio_listio call");
+
 #ifdef COMPAT_FREEBSD6
 typedef struct oaiocb {
 	int	aio_fildes;		/* File descriptor */
 	off_t	aio_offset;		/* File offset for I/O */
 	volatile void *aio_buf;         /* I/O buffer in process space */
 	size_t	aio_nbytes;		/* Number of bytes for I/O */
 	struct	osigevent aio_sigevent;	/* Signal to deliver */
 	int	aio_lio_opcode;		/* LIO opcode */
 	int	aio_reqprio;		/* Request priority -- ignored */
 	struct	__aiocb_private	_aiocb_private;
 } oaiocb_t;
 #endif
 
 /*
  * Below is a key of locks used to protect each member of struct kaiocb
  * aioliojob and kaioinfo and any backends.
  *
  * * - need not protected
  * a - locked by kaioinfo lock
  * b - locked by backend lock, the backend lock can be null in some cases,
  *     for example, BIO belongs to this type, in this case, proc lock is
  *     reused.
  * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
  */
 
 /*
  * If the routine that services an AIO request blocks while running in an
  * AIO kernel process it can starve other I/O requests.  BIO requests
  * queued via aio_qphysio() complete in GEOM and do not use AIO kernel
  * processes at all.  Socket I/O requests use a separate pool of
  * kprocs and also force non-blocking I/O.  Other file I/O requests
  * use the generic fo_read/fo_write operations which can block.  The
  * fsync and mlock operations can also block while executing.  Ideally
  * none of these requests would block while executing.
  *
  * Note that the service routines cannot toggle O_NONBLOCK in the file
  * structure directly while handling a request due to races with
  * userland threads.
  */
 
 /* jobflags */
 #define	KAIOCB_QUEUEING		0x01
 #define	KAIOCB_CANCELLED	0x02
 #define	KAIOCB_CANCELLING	0x04
 #define	KAIOCB_CHECKSYNC	0x08
 #define	KAIOCB_CLEARED		0x10
 #define	KAIOCB_FINISHED		0x20
 
 /*
  * AIO process info
  */
 #define AIOP_FREE	0x1			/* proc on free queue */
 
 struct aioproc {
 	int	aioprocflags;			/* (c) AIO proc flags */
 	TAILQ_ENTRY(aioproc) list;		/* (c) list of processes */
 	struct	proc *aioproc;			/* (*) the AIO proc */
 };
 
 /*
  * data-structure for lio signal management
  */
 struct aioliojob {
 	int	lioj_flags;			/* (a) listio flags */
 	int	lioj_count;			/* (a) listio flags */
 	int	lioj_finished_count;		/* (a) listio flags */
 	struct	sigevent lioj_signal;		/* (a) signal on all I/O done */
 	TAILQ_ENTRY(aioliojob) lioj_list;	/* (a) lio list */
 	struct	knlist klist;			/* (a) list of knotes */
 	ksiginfo_t lioj_ksi;			/* (a) Realtime signal info */
 };
 
 #define	LIOJ_SIGNAL		0x1	/* signal on all done (lio) */
 #define	LIOJ_SIGNAL_POSTED	0x2	/* signal has been posted */
 #define LIOJ_KEVENT_POSTED	0x4	/* kevent triggered */
 
 /*
  * per process aio data structure
  */
 struct kaioinfo {
 	struct	mtx kaio_mtx;		/* the lock to protect this struct */
 	int	kaio_flags;		/* (a) per process kaio flags */
 	int	kaio_maxactive_count;	/* (*) maximum number of AIOs */
 	int	kaio_active_count;	/* (c) number of currently used AIOs */
 	int	kaio_qallowed_count;	/* (*) maxiumu size of AIO queue */
 	int	kaio_count;		/* (a) size of AIO queue */
 	int	kaio_ballowed_count;	/* (*) maximum number of buffers */
 	int	kaio_buffer_count;	/* (a) number of physio buffers */
 	TAILQ_HEAD(,kaiocb) kaio_all;	/* (a) all AIOs in a process */
 	TAILQ_HEAD(,kaiocb) kaio_done;	/* (a) done queue for process */
 	TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
 	TAILQ_HEAD(,kaiocb) kaio_jobqueue;	/* (a) job queue for process */
 	TAILQ_HEAD(,kaiocb) kaio_syncqueue;	/* (a) queue for aio_fsync */
 	TAILQ_HEAD(,kaiocb) kaio_syncready;  /* (a) second q for aio_fsync */
 	struct	task kaio_task;		/* (*) task to kick aio processes */
 	struct	task kaio_sync_task;	/* (*) task to schedule fsync jobs */
 };
 
 #define AIO_LOCK(ki)		mtx_lock(&(ki)->kaio_mtx)
 #define AIO_UNLOCK(ki)		mtx_unlock(&(ki)->kaio_mtx)
 #define AIO_LOCK_ASSERT(ki, f)	mtx_assert(&(ki)->kaio_mtx, (f))
 #define AIO_MTX(ki)		(&(ki)->kaio_mtx)
 
 #define KAIO_RUNDOWN	0x1	/* process is being run down */
 #define KAIO_WAKEUP	0x2	/* wakeup process when AIO completes */
 
 /*
  * Operations used to interact with userland aio control blocks.
  * Different ABIs provide their own operations.
  */
 struct aiocb_ops {
 	int	(*copyin)(struct aiocb *ujob, struct aiocb *kjob);
 	long	(*fetch_status)(struct aiocb *ujob);
 	long	(*fetch_error)(struct aiocb *ujob);
 	int	(*store_status)(struct aiocb *ujob, long status);
 	int	(*store_error)(struct aiocb *ujob, long error);
 	int	(*store_kernelinfo)(struct aiocb *ujob, long jobref);
 	int	(*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
 };
 
 static TAILQ_HEAD(,aioproc) aio_freeproc;		/* (c) Idle daemons */
 static struct sema aio_newproc_sem;
 static struct mtx aio_job_mtx;
 static TAILQ_HEAD(,kaiocb) aio_jobs;			/* (c) Async job list */
 static struct unrhdr *aiod_unr;
 
 void		aio_init_aioinfo(struct proc *p);
 static int	aio_onceonly(void);
 static int	aio_free_entry(struct kaiocb *job);
 static void	aio_process_rw(struct kaiocb *job);
 static void	aio_process_sync(struct kaiocb *job);
 static void	aio_process_mlock(struct kaiocb *job);
 static void	aio_schedule_fsync(void *context, int pending);
 static int	aio_newproc(int *);
 int		aio_aqueue(struct thread *td, struct aiocb *ujob,
 		    struct aioliojob *lio, int type, struct aiocb_ops *ops);
 static int	aio_queue_file(struct file *fp, struct kaiocb *job);
 static void	aio_physwakeup(struct bio *bp);
 static void	aio_proc_rundown(void *arg, struct proc *p);
 static void	aio_proc_rundown_exec(void *arg, struct proc *p,
 		    struct image_params *imgp);
 static int	aio_qphysio(struct proc *p, struct kaiocb *job);
 static void	aio_daemon(void *param);
 static void	aio_bio_done_notify(struct proc *userp, struct kaiocb *job);
 static bool	aio_clear_cancel_function_locked(struct kaiocb *job);
 static int	aio_kick(struct proc *userp);
 static void	aio_kick_nowait(struct proc *userp);
 static void	aio_kick_helper(void *context, int pending);
 static int	filt_aioattach(struct knote *kn);
 static void	filt_aiodetach(struct knote *kn);
 static int	filt_aio(struct knote *kn, long hint);
 static int	filt_lioattach(struct knote *kn);
 static void	filt_liodetach(struct knote *kn);
 static int	filt_lio(struct knote *kn, long hint);
 
 /*
  * Zones for:
  * 	kaio	Per process async io info
  *	aiop	async io process data
  *	aiocb	async io jobs
  *	aiol	list io job pointer - internal to aio_suspend XXX
  *	aiolio	list io jobs
  */
 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone;
 
 /* kqueue filters for aio */
 static struct filterops aio_filtops = {
 	.f_isfd = 0,
 	.f_attach = filt_aioattach,
 	.f_detach = filt_aiodetach,
 	.f_event = filt_aio,
 };
 static struct filterops lio_filtops = {
 	.f_isfd = 0,
 	.f_attach = filt_lioattach,
 	.f_detach = filt_liodetach,
 	.f_event = filt_lio
 };
 
 static eventhandler_tag exit_tag, exec_tag;
 
 TASKQUEUE_DEFINE_THREAD(aiod_kick);
 
 /*
  * Main operations function for use as a kernel module.
  */
 static int
 aio_modload(struct module *module, int cmd, void *arg)
 {
 	int error = 0;
 
 	switch (cmd) {
 	case MOD_LOAD:
 		aio_onceonly();
 		break;
 	case MOD_SHUTDOWN:
 		break;
 	default:
 		error = EOPNOTSUPP;
 		break;
 	}
 	return (error);
 }
 
 static moduledata_t aio_mod = {
 	"aio",
 	&aio_modload,
 	NULL
 };
 
 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY);
 MODULE_VERSION(aio, 1);
 
 /*
  * Startup initialization
  */
 static int
 aio_onceonly(void)
 {
 
+	if (aio_listio_max < AIO_LISTIO_MAX)
+		aio_listio_max = AIO_LISTIO_MAX;
+	if (aio_listio_max > MIN(MAX_AIO_QUEUE_PER_PROC, max_queue_count))
+		aio_listio_max = MIN(MAX_AIO_QUEUE_PER_PROC, max_queue_count);
+
 	exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
 	    EVENTHANDLER_PRI_ANY);
 	exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec,
 	    NULL, EVENTHANDLER_PRI_ANY);
 	kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
 	kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
 	TAILQ_INIT(&aio_freeproc);
 	sema_init(&aio_newproc_sem, 0, "aio_new_proc");
 	mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
 	TAILQ_INIT(&aio_jobs);
 	aiod_unr = new_unrhdr(1, INT_MAX, NULL);
 	kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
 	aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL,
 	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
 	aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL,
 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
-	aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL,
-	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
+	aiol_zone = uma_zcreate("AIOL", aio_listio_max * sizeof(intptr_t) ,
+	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
 	aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
 	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
 	aiod_lifetime = AIOD_LIFETIME_DEFAULT;
 	jobrefid = 1;
 	p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO);
-	p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX);
 	p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
 	p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
 
 	return (0);
 }
 
 /*
  * Init the per-process aioinfo structure.  The aioinfo limits are set
  * per-process for user limit (resource) management.
  */
 void
 aio_init_aioinfo(struct proc *p)
 {
 	struct kaioinfo *ki;
 
 	ki = uma_zalloc(kaio_zone, M_WAITOK);
 	mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW);
 	ki->kaio_flags = 0;
 	ki->kaio_maxactive_count = max_aio_per_proc;
 	ki->kaio_active_count = 0;
 	ki->kaio_qallowed_count = max_aio_queue_per_proc;
 	ki->kaio_count = 0;
 	ki->kaio_ballowed_count = max_buf_aio;
 	ki->kaio_buffer_count = 0;
 	TAILQ_INIT(&ki->kaio_all);
 	TAILQ_INIT(&ki->kaio_done);
 	TAILQ_INIT(&ki->kaio_jobqueue);
 	TAILQ_INIT(&ki->kaio_liojoblist);
 	TAILQ_INIT(&ki->kaio_syncqueue);
 	TAILQ_INIT(&ki->kaio_syncready);
 	TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
 	TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki);
 	PROC_LOCK(p);
 	if (p->p_aioinfo == NULL) {
 		p->p_aioinfo = ki;
 		PROC_UNLOCK(p);
 	} else {
 		PROC_UNLOCK(p);
 		mtx_destroy(&ki->kaio_mtx);
 		uma_zfree(kaio_zone, ki);
 	}
 
 	while (num_aio_procs < MIN(target_aio_procs, max_aio_procs))
 		aio_newproc(NULL);
 }
 
 static int
 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
 {
 	struct thread *td;
 	int error;
 
 	error = sigev_findtd(p, sigev, &td);
 	if (error)
 		return (error);
 	if (!KSI_ONQ(ksi)) {
 		ksiginfo_set_sigev(ksi, sigev);
 		ksi->ksi_code = SI_ASYNCIO;
 		ksi->ksi_flags |= KSI_EXT | KSI_INS;
 		tdsendsignal(p, td, ksi->ksi_signo, ksi);
 	}
 	PROC_UNLOCK(p);
 	return (error);
 }
 
 /*
  * Free a job entry.  Wait for completion if it is currently active, but don't
  * delay forever.  If we delay, we return a flag that says that we have to
  * restart the queue scan.
  */
 static int
 aio_free_entry(struct kaiocb *job)
 {
 	struct kaioinfo *ki;
 	struct aioliojob *lj;
 	struct proc *p;
 
 	p = job->userproc;
 	MPASS(curproc == p);
 	ki = p->p_aioinfo;
 	MPASS(ki != NULL);
 
 	AIO_LOCK_ASSERT(ki, MA_OWNED);
 	MPASS(job->jobflags & KAIOCB_FINISHED);
 
 	atomic_subtract_int(&num_queue_count, 1);
 
 	ki->kaio_count--;
 	MPASS(ki->kaio_count >= 0);
 
 	TAILQ_REMOVE(&ki->kaio_done, job, plist);
 	TAILQ_REMOVE(&ki->kaio_all, job, allist);
 
 	lj = job->lio;
 	if (lj) {
 		lj->lioj_count--;
 		lj->lioj_finished_count--;
 
 		if (lj->lioj_count == 0) {
 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
 			/* lio is going away, we need to destroy any knotes */
 			knlist_delete(&lj->klist, curthread, 1);
 			PROC_LOCK(p);
 			sigqueue_take(&lj->lioj_ksi);
 			PROC_UNLOCK(p);
 			uma_zfree(aiolio_zone, lj);
 		}
 	}
 
 	/* job is going away, we need to destroy any knotes */
 	knlist_delete(&job->klist, curthread, 1);
 	PROC_LOCK(p);
 	sigqueue_take(&job->ksi);
 	PROC_UNLOCK(p);
 
 	AIO_UNLOCK(ki);
 
 	/*
 	 * The thread argument here is used to find the owning process
 	 * and is also passed to fo_close() which may pass it to various
 	 * places such as devsw close() routines.  Because of that, we
 	 * need a thread pointer from the process owning the job that is
 	 * persistent and won't disappear out from under us or move to
 	 * another process.
 	 *
 	 * Currently, all the callers of this function call it to remove
 	 * a kaiocb from the current process' job list either via a
 	 * syscall or due to the current process calling exit() or
 	 * execve().  Thus, we know that p == curproc.  We also know that
 	 * curthread can't exit since we are curthread.
 	 *
 	 * Therefore, we use curthread as the thread to pass to
 	 * knlist_delete().  This does mean that it is possible for the
 	 * thread pointer at close time to differ from the thread pointer
 	 * at open time, but this is already true of file descriptors in
 	 * a multithreaded process.
 	 */
 	if (job->fd_file)
 		fdrop(job->fd_file, curthread);
 	crfree(job->cred);
 	uma_zfree(aiocb_zone, job);
 	AIO_LOCK(ki);
 
 	return (0);
 }
 
 static void
 aio_proc_rundown_exec(void *arg, struct proc *p,
     struct image_params *imgp __unused)
 {
    	aio_proc_rundown(arg, p);
 }
 
 static int
 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job)
 {
 	aio_cancel_fn_t *func;
 	int cancelled;
 
 	AIO_LOCK_ASSERT(ki, MA_OWNED);
 	if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED))
 		return (0);
 	MPASS((job->jobflags & KAIOCB_CANCELLING) == 0);
 	job->jobflags |= KAIOCB_CANCELLED;
 
 	func = job->cancel_fn;
 
 	/*
 	 * If there is no cancel routine, just leave the job marked as
 	 * cancelled.  The job should be in active use by a caller who
 	 * should complete it normally or when it fails to install a
 	 * cancel routine.
 	 */
 	if (func == NULL)
 		return (0);
 
 	/*
 	 * Set the CANCELLING flag so that aio_complete() will defer
 	 * completions of this job.  This prevents the job from being
 	 * freed out from under the cancel callback.  After the
 	 * callback any deferred completion (whether from the callback
 	 * or any other source) will be completed.
 	 */
 	job->jobflags |= KAIOCB_CANCELLING;
 	AIO_UNLOCK(ki);
 	func(job);
 	AIO_LOCK(ki);
 	job->jobflags &= ~KAIOCB_CANCELLING;
 	if (job->jobflags & KAIOCB_FINISHED) {
 		cancelled = job->uaiocb._aiocb_private.error == ECANCELED;
 		TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
 		aio_bio_done_notify(p, job);
 	} else {
 		/*
 		 * The cancel callback might have scheduled an
 		 * operation to cancel this request, but it is
 		 * only counted as cancelled if the request is
 		 * cancelled when the callback returns.
 		 */
 		cancelled = 0;
 	}
 	return (cancelled);
 }
 
 /*
  * Rundown the jobs for a given process.
  */
 static void
 aio_proc_rundown(void *arg, struct proc *p)
 {
 	struct kaioinfo *ki;
 	struct aioliojob *lj;
 	struct kaiocb *job, *jobn;
 
 	KASSERT(curthread->td_proc == p,
 	    ("%s: called on non-curproc", __func__));
 	ki = p->p_aioinfo;
 	if (ki == NULL)
 		return;
 
 	AIO_LOCK(ki);
 	ki->kaio_flags |= KAIO_RUNDOWN;
 
 restart:
 
 	/*
 	 * Try to cancel all pending requests. This code simulates
 	 * aio_cancel on all pending I/O requests.
 	 */
 	TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
 		aio_cancel_job(p, ki, job);
 	}
 
 	/* Wait for all running I/O to be finished */
 	if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) {
 		ki->kaio_flags |= KAIO_WAKEUP;
 		msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
 		goto restart;
 	}
 
 	/* Free all completed I/O requests. */
 	while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL)
 		aio_free_entry(job);
 
 	while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
 		if (lj->lioj_count == 0) {
 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
 			knlist_delete(&lj->klist, curthread, 1);
 			PROC_LOCK(p);
 			sigqueue_take(&lj->lioj_ksi);
 			PROC_UNLOCK(p);
 			uma_zfree(aiolio_zone, lj);
 		} else {
 			panic("LIO job not cleaned up: C:%d, FC:%d\n",
 			    lj->lioj_count, lj->lioj_finished_count);
 		}
 	}
 	AIO_UNLOCK(ki);
 	taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task);
 	taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task);
 	mtx_destroy(&ki->kaio_mtx);
 	uma_zfree(kaio_zone, ki);
 	p->p_aioinfo = NULL;
 }
 
 /*
  * Select a job to run (called by an AIO daemon).
  */
 static struct kaiocb *
 aio_selectjob(struct aioproc *aiop)
 {
 	struct kaiocb *job;
 	struct kaioinfo *ki;
 	struct proc *userp;
 
 	mtx_assert(&aio_job_mtx, MA_OWNED);
 restart:
 	TAILQ_FOREACH(job, &aio_jobs, list) {
 		userp = job->userproc;
 		ki = userp->p_aioinfo;
 
 		if (ki->kaio_active_count < ki->kaio_maxactive_count) {
 			TAILQ_REMOVE(&aio_jobs, job, list);
 			if (!aio_clear_cancel_function(job))
 				goto restart;
 
 			/* Account for currently active jobs. */
 			ki->kaio_active_count++;
 			break;
 		}
 	}
 	return (job);
 }
 
 /*
  * Move all data to a permanent storage device.  This code
  * simulates the fsync syscall.
  */
 static int
 aio_fsync_vnode(struct thread *td, struct vnode *vp)
 {
 	struct mount *mp;
 	int error;
 
 	if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
 		goto drop;
 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 	if (vp->v_object != NULL) {
 		VM_OBJECT_WLOCK(vp->v_object);
 		vm_object_page_clean(vp->v_object, 0, 0, 0);
 		VM_OBJECT_WUNLOCK(vp->v_object);
 	}
 	error = VOP_FSYNC(vp, MNT_WAIT, td);
 
 	VOP_UNLOCK(vp, 0);
 	vn_finished_write(mp);
 drop:
 	return (error);
 }
 
 /*
  * The AIO processing activity for LIO_READ/LIO_WRITE.  This is the code that
  * does the I/O request for the non-physio version of the operations.  The
  * normal vn operations are used, and this code should work in all instances
  * for every type of file, including pipes, sockets, fifos, and regular files.
  *
  * XXX I don't think it works well for socket, pipe, and fifo.
  */
 static void
 aio_process_rw(struct kaiocb *job)
 {
 	struct ucred *td_savedcred;
 	struct thread *td;
 	struct aiocb *cb;
 	struct file *fp;
 	struct uio auio;
 	struct iovec aiov;
 	ssize_t cnt;
 	long msgsnd_st, msgsnd_end;
 	long msgrcv_st, msgrcv_end;
 	long oublock_st, oublock_end;
 	long inblock_st, inblock_end;
 	int error;
 
 	KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ ||
 	    job->uaiocb.aio_lio_opcode == LIO_WRITE,
 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
 
 	aio_switch_vmspace(job);
 	td = curthread;
 	td_savedcred = td->td_ucred;
 	td->td_ucred = job->cred;
 	cb = &job->uaiocb;
 	fp = job->fd_file;
 
 	aiov.iov_base = (void *)(uintptr_t)cb->aio_buf;
 	aiov.iov_len = cb->aio_nbytes;
 
 	auio.uio_iov = &aiov;
 	auio.uio_iovcnt = 1;
 	auio.uio_offset = cb->aio_offset;
 	auio.uio_resid = cb->aio_nbytes;
 	cnt = cb->aio_nbytes;
 	auio.uio_segflg = UIO_USERSPACE;
 	auio.uio_td = td;
 
 	msgrcv_st = td->td_ru.ru_msgrcv;
 	msgsnd_st = td->td_ru.ru_msgsnd;
 	inblock_st = td->td_ru.ru_inblock;
 	oublock_st = td->td_ru.ru_oublock;
 
 	/*
 	 * aio_aqueue() acquires a reference to the file that is
 	 * released in aio_free_entry().
 	 */
 	if (cb->aio_lio_opcode == LIO_READ) {
 		auio.uio_rw = UIO_READ;
 		if (auio.uio_resid == 0)
 			error = 0;
 		else
 			error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td);
 	} else {
 		if (fp->f_type == DTYPE_VNODE)
 			bwillwrite();
 		auio.uio_rw = UIO_WRITE;
 		error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td);
 	}
 	msgrcv_end = td->td_ru.ru_msgrcv;
 	msgsnd_end = td->td_ru.ru_msgsnd;
 	inblock_end = td->td_ru.ru_inblock;
 	oublock_end = td->td_ru.ru_oublock;
 
 	job->msgrcv = msgrcv_end - msgrcv_st;
 	job->msgsnd = msgsnd_end - msgsnd_st;
 	job->inblock = inblock_end - inblock_st;
 	job->outblock = oublock_end - oublock_st;
 
 	if ((error) && (auio.uio_resid != cnt)) {
 		if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
 			error = 0;
 		if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) {
 			PROC_LOCK(job->userproc);
 			kern_psignal(job->userproc, SIGPIPE);
 			PROC_UNLOCK(job->userproc);
 		}
 	}
 
 	cnt -= auio.uio_resid;
 	td->td_ucred = td_savedcred;
 	if (error)
 		aio_complete(job, -1, error);
 	else
 		aio_complete(job, cnt, 0);
 }
 
 static void
 aio_process_sync(struct kaiocb *job)
 {
 	struct thread *td = curthread;
 	struct ucred *td_savedcred = td->td_ucred;
 	struct file *fp = job->fd_file;
 	int error = 0;
 
 	KASSERT(job->uaiocb.aio_lio_opcode == LIO_SYNC,
 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
 
 	td->td_ucred = job->cred;
 	if (fp->f_vnode != NULL)
 		error = aio_fsync_vnode(td, fp->f_vnode);
 	td->td_ucred = td_savedcred;
 	if (error)
 		aio_complete(job, -1, error);
 	else
 		aio_complete(job, 0, 0);
 }
 
 static void
 aio_process_mlock(struct kaiocb *job)
 {
 	struct aiocb *cb = &job->uaiocb;
 	int error;
 
 	KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK,
 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
 
 	aio_switch_vmspace(job);
 	error = kern_mlock(job->userproc, job->cred,
 	    __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes);
 	aio_complete(job, error != 0 ? -1 : 0, error);
 }
 
 static void
 aio_bio_done_notify(struct proc *userp, struct kaiocb *job)
 {
 	struct aioliojob *lj;
 	struct kaioinfo *ki;
 	struct kaiocb *sjob, *sjobn;
 	int lj_done;
 	bool schedule_fsync;
 
 	ki = userp->p_aioinfo;
 	AIO_LOCK_ASSERT(ki, MA_OWNED);
 	lj = job->lio;
 	lj_done = 0;
 	if (lj) {
 		lj->lioj_finished_count++;
 		if (lj->lioj_count == lj->lioj_finished_count)
 			lj_done = 1;
 	}
 	TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist);
 	MPASS(job->jobflags & KAIOCB_FINISHED);
 
 	if (ki->kaio_flags & KAIO_RUNDOWN)
 		goto notification_done;
 
 	if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
 	    job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
 		aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi);
 
 	KNOTE_LOCKED(&job->klist, 1);
 
 	if (lj_done) {
 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 			lj->lioj_flags |= LIOJ_KEVENT_POSTED;
 			KNOTE_LOCKED(&lj->klist, 1);
 		}
 		if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
 		    == LIOJ_SIGNAL
 		    && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 		        lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
 			aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi);
 			lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
 		}
 	}
 
 notification_done:
 	if (job->jobflags & KAIOCB_CHECKSYNC) {
 		schedule_fsync = false;
 		TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) {
 			if (job->fd_file != sjob->fd_file ||
 			    job->seqno >= sjob->seqno)
 				continue;
 			if (--sjob->pending > 0)
 				continue;
 			TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list);
 			if (!aio_clear_cancel_function_locked(sjob))
 				continue;
 			TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list);
 			schedule_fsync = true;
 		}
 		if (schedule_fsync)
 			taskqueue_enqueue(taskqueue_aiod_kick,
 			    &ki->kaio_sync_task);
 	}
 	if (ki->kaio_flags & KAIO_WAKEUP) {
 		ki->kaio_flags &= ~KAIO_WAKEUP;
 		wakeup(&userp->p_aioinfo);
 	}
 }
 
 static void
 aio_schedule_fsync(void *context, int pending)
 {
 	struct kaioinfo *ki;
 	struct kaiocb *job;
 
 	ki = context;
 	AIO_LOCK(ki);
 	while (!TAILQ_EMPTY(&ki->kaio_syncready)) {
 		job = TAILQ_FIRST(&ki->kaio_syncready);
 		TAILQ_REMOVE(&ki->kaio_syncready, job, list);
 		AIO_UNLOCK(ki);
 		aio_schedule(job, aio_process_sync);
 		AIO_LOCK(ki);
 	}
 	AIO_UNLOCK(ki);
 }
 
 bool
 aio_cancel_cleared(struct kaiocb *job)
 {
 	struct kaioinfo *ki;
 
 	/*
 	 * The caller should hold the same queue lock held when
 	 * aio_clear_cancel_function() was called and set this flag
 	 * ensuring this check sees an up-to-date value.  However,
 	 * there is no way to assert that.
 	 */
 	ki = job->userproc->p_aioinfo;
 	return ((job->jobflags & KAIOCB_CLEARED) != 0);
 }
 
 static bool
 aio_clear_cancel_function_locked(struct kaiocb *job)
 {
 
 	AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
 	MPASS(job->cancel_fn != NULL);
 	if (job->jobflags & KAIOCB_CANCELLING) {
 		job->jobflags |= KAIOCB_CLEARED;
 		return (false);
 	}
 	job->cancel_fn = NULL;
 	return (true);
 }
 
 bool
 aio_clear_cancel_function(struct kaiocb *job)
 {
 	struct kaioinfo *ki;
 	bool ret;
 
 	ki = job->userproc->p_aioinfo;
 	AIO_LOCK(ki);
 	ret = aio_clear_cancel_function_locked(job);
 	AIO_UNLOCK(ki);
 	return (ret);
 }
 
 static bool
 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func)
 {
 
 	AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
 	if (job->jobflags & KAIOCB_CANCELLED)
 		return (false);
 	job->cancel_fn = func;
 	return (true);
 }
 
 bool
 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func)
 {
 	struct kaioinfo *ki;
 	bool ret;
 
 	ki = job->userproc->p_aioinfo;
 	AIO_LOCK(ki);
 	ret = aio_set_cancel_function_locked(job, func);
 	AIO_UNLOCK(ki);
 	return (ret);
 }
 
 void
 aio_complete(struct kaiocb *job, long status, int error)
 {
 	struct kaioinfo *ki;
 	struct proc *userp;
 
 	job->uaiocb._aiocb_private.error = error;
 	job->uaiocb._aiocb_private.status = status;
 
 	userp = job->userproc;
 	ki = userp->p_aioinfo;
 
 	AIO_LOCK(ki);
 	KASSERT(!(job->jobflags & KAIOCB_FINISHED),
 	    ("duplicate aio_complete"));
 	job->jobflags |= KAIOCB_FINISHED;
 	if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) {
 		TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
 		aio_bio_done_notify(userp, job);
 	}
 	AIO_UNLOCK(ki);
 }
 
 void
 aio_cancel(struct kaiocb *job)
 {
 
 	aio_complete(job, -1, ECANCELED);
 }
 
 void
 aio_switch_vmspace(struct kaiocb *job)
 {
 
 	vmspace_switch_aio(job->userproc->p_vmspace);
 }
 
 /*
  * The AIO daemon, most of the actual work is done in aio_process_*,
  * but the setup (and address space mgmt) is done in this routine.
  */
 static void
 aio_daemon(void *_id)
 {
 	struct kaiocb *job;
 	struct aioproc *aiop;
 	struct kaioinfo *ki;
 	struct proc *p;
 	struct vmspace *myvm;
 	struct thread *td = curthread;
 	int id = (intptr_t)_id;
 
 	/*
 	 * Grab an extra reference on the daemon's vmspace so that it
 	 * doesn't get freed by jobs that switch to a different
 	 * vmspace.
 	 */
 	p = td->td_proc;
 	myvm = vmspace_acquire_ref(p);
 
 	KASSERT(p->p_textvp == NULL, ("kthread has a textvp"));
 
 	/*
 	 * Allocate and ready the aio control info.  There is one aiop structure
 	 * per daemon.
 	 */
 	aiop = uma_zalloc(aiop_zone, M_WAITOK);
 	aiop->aioproc = p;
 	aiop->aioprocflags = 0;
 
 	/*
 	 * Wakeup parent process.  (Parent sleeps to keep from blasting away
 	 * and creating too many daemons.)
 	 */
 	sema_post(&aio_newproc_sem);
 
 	mtx_lock(&aio_job_mtx);
 	for (;;) {
 		/*
 		 * Take daemon off of free queue
 		 */
 		if (aiop->aioprocflags & AIOP_FREE) {
 			TAILQ_REMOVE(&aio_freeproc, aiop, list);
 			aiop->aioprocflags &= ~AIOP_FREE;
 		}
 
 		/*
 		 * Check for jobs.
 		 */
 		while ((job = aio_selectjob(aiop)) != NULL) {
 			mtx_unlock(&aio_job_mtx);
 
 			ki = job->userproc->p_aioinfo;
 			job->handle_fn(job);
 
 			mtx_lock(&aio_job_mtx);
 			/* Decrement the active job count. */
 			ki->kaio_active_count--;
 		}
 
 		/*
 		 * Disconnect from user address space.
 		 */
 		if (p->p_vmspace != myvm) {
 			mtx_unlock(&aio_job_mtx);
 			vmspace_switch_aio(myvm);
 			mtx_lock(&aio_job_mtx);
 			/*
 			 * We have to restart to avoid race, we only sleep if
 			 * no job can be selected.
 			 */
 			continue;
 		}
 
 		mtx_assert(&aio_job_mtx, MA_OWNED);
 
 		TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
 		aiop->aioprocflags |= AIOP_FREE;
 
 		/*
 		 * If daemon is inactive for a long time, allow it to exit,
 		 * thereby freeing resources.
 		 */
 		if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy",
 		    aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) &&
 		    (aiop->aioprocflags & AIOP_FREE) &&
 		    num_aio_procs > target_aio_procs)
 			break;
 	}
 	TAILQ_REMOVE(&aio_freeproc, aiop, list);
 	num_aio_procs--;
 	mtx_unlock(&aio_job_mtx);
 	uma_zfree(aiop_zone, aiop);
 	free_unr(aiod_unr, id);
 	vmspace_free(myvm);
 
 	KASSERT(p->p_vmspace == myvm,
 	    ("AIOD: bad vmspace for exiting daemon"));
 	KASSERT(myvm->vm_refcnt > 1,
 	    ("AIOD: bad vm refcnt for exiting daemon: %d", myvm->vm_refcnt));
 	kproc_exit(0);
 }
 
 /*
  * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
  * AIO daemon modifies its environment itself.
  */
 static int
 aio_newproc(int *start)
 {
 	int error;
 	struct proc *p;
 	int id;
 
 	id = alloc_unr(aiod_unr);
 	error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
 		RFNOWAIT, 0, "aiod%d", id);
 	if (error == 0) {
 		/*
 		 * Wait until daemon is started.
 		 */
 		sema_wait(&aio_newproc_sem);
 		mtx_lock(&aio_job_mtx);
 		num_aio_procs++;
 		if (start != NULL)
 			(*start)--;
 		mtx_unlock(&aio_job_mtx);
 	} else {
 		free_unr(aiod_unr, id);
 	}
 	return (error);
 }
 
 /*
  * Try the high-performance, low-overhead physio method for eligible
  * VCHR devices.  This method doesn't use an aio helper thread, and
  * thus has very low overhead.
  *
  * Assumes that the caller, aio_aqueue(), has incremented the file
  * structure's reference count, preventing its deallocation for the
  * duration of this call.
  */
 static int
 aio_qphysio(struct proc *p, struct kaiocb *job)
 {
 	struct aiocb *cb;
 	struct file *fp;
 	struct bio *bp;
 	struct buf *pbuf;
 	struct vnode *vp;
 	struct cdevsw *csw;
 	struct cdev *dev;
 	struct kaioinfo *ki;
 	int error, ref, poff;
 	vm_prot_t prot;
 
 	cb = &job->uaiocb;
 	fp = job->fd_file;
 
 	if (fp == NULL || fp->f_type != DTYPE_VNODE)
 		return (-1);
 
 	vp = fp->f_vnode;
 	if (vp->v_type != VCHR)
 		return (-1);
 	if (vp->v_bufobj.bo_bsize == 0)
 		return (-1);
 	if (cb->aio_nbytes % vp->v_bufobj.bo_bsize)
 		return (-1);
 
 	ref = 0;
 	csw = devvn_refthread(vp, &dev, &ref);
 	if (csw == NULL)
 		return (ENXIO);
 
 	if ((csw->d_flags & D_DISK) == 0) {
 		error = -1;
 		goto unref;
 	}
 	if (cb->aio_nbytes > dev->si_iosize_max) {
 		error = -1;
 		goto unref;
 	}
 
 	ki = p->p_aioinfo;
 	poff = (vm_offset_t)cb->aio_buf & PAGE_MASK;
 	if ((dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed) {
 		if (cb->aio_nbytes > MAXPHYS) {
 			error = -1;
 			goto unref;
 		}
 
 		pbuf = NULL;
 	} else {
 		if (cb->aio_nbytes > MAXPHYS - poff) {
 			error = -1;
 			goto unref;
 		}
 		if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) {
 			error = -1;
 			goto unref;
 		}
 
 		job->pbuf = pbuf = (struct buf *)getpbuf(NULL);
 		BUF_KERNPROC(pbuf);
 		AIO_LOCK(ki);
 		ki->kaio_buffer_count++;
 		AIO_UNLOCK(ki);
 	}
 	job->bp = bp = g_alloc_bio();
 
 	bp->bio_length = cb->aio_nbytes;
 	bp->bio_bcount = cb->aio_nbytes;
 	bp->bio_done = aio_physwakeup;
 	bp->bio_data = (void *)(uintptr_t)cb->aio_buf;
 	bp->bio_offset = cb->aio_offset;
 	bp->bio_cmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ;
 	bp->bio_dev = dev;
 	bp->bio_caller1 = (void *)job;
 
 	prot = VM_PROT_READ;
 	if (cb->aio_lio_opcode == LIO_READ)
 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
 	job->npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
 	    (vm_offset_t)bp->bio_data, bp->bio_length, prot, job->pages,
 	    nitems(job->pages));
 	if (job->npages < 0) {
 		error = EFAULT;
 		goto doerror;
 	}
 	if (pbuf != NULL) {
 		pmap_qenter((vm_offset_t)pbuf->b_data,
 		    job->pages, job->npages);
 		bp->bio_data = pbuf->b_data + poff;
 		atomic_add_int(&num_buf_aio, 1);
 	} else {
 		bp->bio_ma = job->pages;
 		bp->bio_ma_n = job->npages;
 		bp->bio_ma_offset = poff;
 		bp->bio_data = unmapped_buf;
 		bp->bio_flags |= BIO_UNMAPPED;
 	}
 
 	/* Perform transfer. */
 	csw->d_strategy(bp);
 	dev_relthread(dev, ref);
 	return (0);
 
 doerror:
 	if (pbuf != NULL) {
 		AIO_LOCK(ki);
 		ki->kaio_buffer_count--;
 		AIO_UNLOCK(ki);
 		relpbuf(pbuf, NULL);
 		job->pbuf = NULL;
 	}
 	g_destroy_bio(bp);
 	job->bp = NULL;
 unref:
 	dev_relthread(dev, ref);
 	return (error);
 }
 
 #ifdef COMPAT_FREEBSD6
 static int
 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
 {
 
 	/*
 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
 	 * supported by AIO with the old sigevent structure.
 	 */
 	nsig->sigev_notify = osig->sigev_notify;
 	switch (nsig->sigev_notify) {
 	case SIGEV_NONE:
 		break;
 	case SIGEV_SIGNAL:
 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
 		break;
 	case SIGEV_KEVENT:
 		nsig->sigev_notify_kqueue =
 		    osig->__sigev_u.__sigev_notify_kqueue;
 		nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
 		break;
 	default:
 		return (EINVAL);
 	}
 	return (0);
 }
 
 static int
 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
 {
 	struct oaiocb *ojob;
 	int error;
 
 	bzero(kjob, sizeof(struct aiocb));
 	error = copyin(ujob, kjob, sizeof(struct oaiocb));
 	if (error)
 		return (error);
 	ojob = (struct oaiocb *)kjob;
 	return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent));
 }
 #endif
 
 static int
 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob)
 {
 
 	return (copyin(ujob, kjob, sizeof(struct aiocb)));
 }
 
 static long
 aiocb_fetch_status(struct aiocb *ujob)
 {
 
 	return (fuword(&ujob->_aiocb_private.status));
 }
 
 static long
 aiocb_fetch_error(struct aiocb *ujob)
 {
 
 	return (fuword(&ujob->_aiocb_private.error));
 }
 
 static int
 aiocb_store_status(struct aiocb *ujob, long status)
 {
 
 	return (suword(&ujob->_aiocb_private.status, status));
 }
 
 static int
 aiocb_store_error(struct aiocb *ujob, long error)
 {
 
 	return (suword(&ujob->_aiocb_private.error, error));
 }
 
 static int
 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref)
 {
 
 	return (suword(&ujob->_aiocb_private.kernelinfo, jobref));
 }
 
 static int
 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
 {
 
 	return (suword(ujobp, (long)ujob));
 }
 
 static struct aiocb_ops aiocb_ops = {
 	.copyin = aiocb_copyin,
 	.fetch_status = aiocb_fetch_status,
 	.fetch_error = aiocb_fetch_error,
 	.store_status = aiocb_store_status,
 	.store_error = aiocb_store_error,
 	.store_kernelinfo = aiocb_store_kernelinfo,
 	.store_aiocb = aiocb_store_aiocb,
 };
 
 #ifdef COMPAT_FREEBSD6
 static struct aiocb_ops aiocb_ops_osigevent = {
 	.copyin = aiocb_copyin_old_sigevent,
 	.fetch_status = aiocb_fetch_status,
 	.fetch_error = aiocb_fetch_error,
 	.store_status = aiocb_store_status,
 	.store_error = aiocb_store_error,
 	.store_kernelinfo = aiocb_store_kernelinfo,
 	.store_aiocb = aiocb_store_aiocb,
 };
 #endif
 
 /*
  * Queue a new AIO request.  Choosing either the threaded or direct physio VCHR
  * technique is done in this code.
  */
 int
 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj,
     int type, struct aiocb_ops *ops)
 {
 	struct proc *p = td->td_proc;
 	cap_rights_t rights;
 	struct file *fp;
 	struct kaiocb *job;
 	struct kaioinfo *ki;
 	struct kevent kev;
 	int opcode;
 	int error;
 	int fd, kqfd;
 	int jid;
 	u_short evflags;
 
 	if (p->p_aioinfo == NULL)
 		aio_init_aioinfo(p);
 
 	ki = p->p_aioinfo;
 
 	ops->store_status(ujob, -1);
 	ops->store_error(ujob, 0);
 	ops->store_kernelinfo(ujob, -1);
 
 	if (num_queue_count >= max_queue_count ||
 	    ki->kaio_count >= ki->kaio_qallowed_count) {
 		ops->store_error(ujob, EAGAIN);
 		return (EAGAIN);
 	}
 
 	job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
 	knlist_init_mtx(&job->klist, AIO_MTX(ki));
 
 	error = ops->copyin(ujob, &job->uaiocb);
 	if (error) {
 		ops->store_error(ujob, error);
 		uma_zfree(aiocb_zone, job);
 		return (error);
 	}
 
 	if (job->uaiocb.aio_nbytes > IOSIZE_MAX) {
 		uma_zfree(aiocb_zone, job);
 		return (EINVAL);
 	}
 
 	if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
 		ops->store_error(ujob, EINVAL);
 		uma_zfree(aiocb_zone, job);
 		return (EINVAL);
 	}
 
 	if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
 	     job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
 		!_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) {
 		uma_zfree(aiocb_zone, job);
 		return (EINVAL);
 	}
 
 	ksiginfo_init(&job->ksi);
 
 	/* Save userspace address of the job info. */
 	job->ujob = ujob;
 
 	/* Get the opcode. */
 	if (type != LIO_NOP)
 		job->uaiocb.aio_lio_opcode = type;
 	opcode = job->uaiocb.aio_lio_opcode;
 
 	/*
 	 * Validate the opcode and fetch the file object for the specified
 	 * file descriptor.
 	 *
 	 * XXXRW: Moved the opcode validation up here so that we don't
 	 * retrieve a file descriptor without knowing what the capabiltity
 	 * should be.
 	 */
 	fd = job->uaiocb.aio_fildes;
 	switch (opcode) {
 	case LIO_WRITE:
 		error = fget_write(td, fd,
 		    cap_rights_init(&rights, CAP_PWRITE), &fp);
 		break;
 	case LIO_READ:
 		error = fget_read(td, fd,
 		    cap_rights_init(&rights, CAP_PREAD), &fp);
 		break;
 	case LIO_SYNC:
 		error = fget(td, fd, cap_rights_init(&rights, CAP_FSYNC), &fp);
 		break;
 	case LIO_MLOCK:
 		fp = NULL;
 		break;
 	case LIO_NOP:
 		error = fget(td, fd, cap_rights_init(&rights), &fp);
 		break;
 	default:
 		error = EINVAL;
 	}
 	if (error) {
 		uma_zfree(aiocb_zone, job);
 		ops->store_error(ujob, error);
 		return (error);
 	}
 
 	if (opcode == LIO_SYNC && fp->f_vnode == NULL) {
 		error = EINVAL;
 		goto aqueue_fail;
 	}
 
 	if ((opcode == LIO_READ || opcode == LIO_WRITE) &&
 	    job->uaiocb.aio_offset < 0 &&
 	    (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) {
 		error = EINVAL;
 		goto aqueue_fail;
 	}
 
 	job->fd_file = fp;
 
 	mtx_lock(&aio_job_mtx);
 	jid = jobrefid++;
 	job->seqno = jobseqno++;
 	mtx_unlock(&aio_job_mtx);
 	error = ops->store_kernelinfo(ujob, jid);
 	if (error) {
 		error = EINVAL;
 		goto aqueue_fail;
 	}
 	job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid;
 
 	if (opcode == LIO_NOP) {
 		fdrop(fp, td);
 		uma_zfree(aiocb_zone, job);
 		return (0);
 	}
 
 	if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
 		goto no_kqueue;
 	evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
 	if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
 		error = EINVAL;
 		goto aqueue_fail;
 	}
 	kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue;
 	kev.ident = (uintptr_t)job->ujob;
 	kev.filter = EVFILT_AIO;
 	kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
 	kev.data = (intptr_t)job;
 	kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr;
 	error = kqfd_register(kqfd, &kev, td, 1);
 	if (error)
 		goto aqueue_fail;
 
 no_kqueue:
 
 	ops->store_error(ujob, EINPROGRESS);
 	job->uaiocb._aiocb_private.error = EINPROGRESS;
 	job->userproc = p;
 	job->cred = crhold(td->td_ucred);
 	job->jobflags = KAIOCB_QUEUEING;
 	job->lio = lj;
 
 	if (opcode == LIO_MLOCK) {
 		aio_schedule(job, aio_process_mlock);
 		error = 0;
 	} else if (fp->f_ops->fo_aio_queue == NULL)
 		error = aio_queue_file(fp, job);
 	else
 		error = fo_aio_queue(fp, job);
 	if (error)
 		goto aqueue_fail;
 
 	AIO_LOCK(ki);
 	job->jobflags &= ~KAIOCB_QUEUEING;
 	TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist);
 	ki->kaio_count++;
 	if (lj)
 		lj->lioj_count++;
 	atomic_add_int(&num_queue_count, 1);
 	if (job->jobflags & KAIOCB_FINISHED) {
 		/*
 		 * The queue callback completed the request synchronously.
 		 * The bulk of the completion is deferred in that case
 		 * until this point.
 		 */
 		aio_bio_done_notify(p, job);
 	} else
 		TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist);
 	AIO_UNLOCK(ki);
 	return (0);
 
 aqueue_fail:
 	knlist_delete(&job->klist, curthread, 0);
 	if (fp)
 		fdrop(fp, td);
 	uma_zfree(aiocb_zone, job);
 	ops->store_error(ujob, error);
 	return (error);
 }
 
 static void
 aio_cancel_daemon_job(struct kaiocb *job)
 {
 
 	mtx_lock(&aio_job_mtx);
 	if (!aio_cancel_cleared(job))
 		TAILQ_REMOVE(&aio_jobs, job, list);
 	mtx_unlock(&aio_job_mtx);
 	aio_cancel(job);
 }
 
 void
 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func)
 {
 
 	mtx_lock(&aio_job_mtx);
 	if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) {
 		mtx_unlock(&aio_job_mtx);
 		aio_cancel(job);
 		return;
 	}
 	job->handle_fn = func;
 	TAILQ_INSERT_TAIL(&aio_jobs, job, list);
 	aio_kick_nowait(job->userproc);
 	mtx_unlock(&aio_job_mtx);
 }
 
 static void
 aio_cancel_sync(struct kaiocb *job)
 {
 	struct kaioinfo *ki;
 
 	ki = job->userproc->p_aioinfo;
 	AIO_LOCK(ki);
 	if (!aio_cancel_cleared(job))
 		TAILQ_REMOVE(&ki->kaio_syncqueue, job, list);
 	AIO_UNLOCK(ki);
 	aio_cancel(job);
 }
 
 int
 aio_queue_file(struct file *fp, struct kaiocb *job)
 {
 	struct aioliojob *lj;
 	struct kaioinfo *ki;
 	struct kaiocb *job2;
 	struct vnode *vp;
 	struct mount *mp;
 	int error, opcode;
 	bool safe;
 
 	lj = job->lio;
 	ki = job->userproc->p_aioinfo;
 	opcode = job->uaiocb.aio_lio_opcode;
 	if (opcode == LIO_SYNC)
 		goto queueit;
 
 	if ((error = aio_qphysio(job->userproc, job)) == 0)
 		goto done;
 #if 0
 	/*
 	 * XXX: This means qphysio() failed with EFAULT.  The current
 	 * behavior is to retry the operation via fo_read/fo_write.
 	 * Wouldn't it be better to just complete the request with an
 	 * error here?
 	 */
 	if (error > 0)
 		goto done;
 #endif
 queueit:
 	safe = false;
 	if (fp->f_type == DTYPE_VNODE) {
 		vp = fp->f_vnode;
 		if (vp->v_type == VREG || vp->v_type == VDIR) {
 			mp = fp->f_vnode->v_mount;
 			if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0)
 				safe = true;
 		}
 	}
 	if (!(safe || enable_aio_unsafe)) {
 		counted_warning(&unsafe_warningcnt,
 		    "is attempting to use unsafe AIO requests");
 		return (EOPNOTSUPP);
 	}
 
 	if (opcode == LIO_SYNC) {
 		AIO_LOCK(ki);
 		TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) {
 			if (job2->fd_file == job->fd_file &&
 			    job2->uaiocb.aio_lio_opcode != LIO_SYNC &&
 			    job2->seqno < job->seqno) {
 				job2->jobflags |= KAIOCB_CHECKSYNC;
 				job->pending++;
 			}
 		}
 		if (job->pending != 0) {
 			if (!aio_set_cancel_function_locked(job,
 				aio_cancel_sync)) {
 				AIO_UNLOCK(ki);
 				aio_cancel(job);
 				return (0);
 			}
 			TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list);
 			AIO_UNLOCK(ki);
 			return (0);
 		}
 		AIO_UNLOCK(ki);
 	}
 
 	switch (opcode) {
 	case LIO_READ:
 	case LIO_WRITE:
 		aio_schedule(job, aio_process_rw);
 		error = 0;
 		break;
 	case LIO_SYNC:
 		aio_schedule(job, aio_process_sync);
 		error = 0;
 		break;
 	default:
 		error = EINVAL;
 	}
 done:
 	return (error);
 }
 
 static void
 aio_kick_nowait(struct proc *userp)
 {
 	struct kaioinfo *ki = userp->p_aioinfo;
 	struct aioproc *aiop;
 
 	mtx_assert(&aio_job_mtx, MA_OWNED);
 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
 		aiop->aioprocflags &= ~AIOP_FREE;
 		wakeup(aiop->aioproc);
 	} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
 	    ki->kaio_active_count + num_aio_resv_start <
 	    ki->kaio_maxactive_count) {
 		taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task);
 	}
 }
 
 static int
 aio_kick(struct proc *userp)
 {
 	struct kaioinfo *ki = userp->p_aioinfo;
 	struct aioproc *aiop;
 	int error, ret = 0;
 
 	mtx_assert(&aio_job_mtx, MA_OWNED);
 retryproc:
 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
 		aiop->aioprocflags &= ~AIOP_FREE;
 		wakeup(aiop->aioproc);
 	} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
 	    ki->kaio_active_count + num_aio_resv_start <
 	    ki->kaio_maxactive_count) {
 		num_aio_resv_start++;
 		mtx_unlock(&aio_job_mtx);
 		error = aio_newproc(&num_aio_resv_start);
 		mtx_lock(&aio_job_mtx);
 		if (error) {
 			num_aio_resv_start--;
 			goto retryproc;
 		}
 	} else {
 		ret = -1;
 	}
 	return (ret);
 }
 
 static void
 aio_kick_helper(void *context, int pending)
 {
 	struct proc *userp = context;
 
 	mtx_lock(&aio_job_mtx);
 	while (--pending >= 0) {
 		if (aio_kick(userp))
 			break;
 	}
 	mtx_unlock(&aio_job_mtx);
 }
 
 /*
  * Support the aio_return system call, as a side-effect, kernel resources are
  * released.
  */
 static int
 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
 {
 	struct proc *p = td->td_proc;
 	struct kaiocb *job;
 	struct kaioinfo *ki;
 	long status, error;
 
 	ki = p->p_aioinfo;
 	if (ki == NULL)
 		return (EINVAL);
 	AIO_LOCK(ki);
 	TAILQ_FOREACH(job, &ki->kaio_done, plist) {
 		if (job->ujob == ujob)
 			break;
 	}
 	if (job != NULL) {
 		MPASS(job->jobflags & KAIOCB_FINISHED);
 		status = job->uaiocb._aiocb_private.status;
 		error = job->uaiocb._aiocb_private.error;
 		td->td_retval[0] = status;
 		td->td_ru.ru_oublock += job->outblock;
 		td->td_ru.ru_inblock += job->inblock;
 		td->td_ru.ru_msgsnd += job->msgsnd;
 		td->td_ru.ru_msgrcv += job->msgrcv;
 		aio_free_entry(job);
 		AIO_UNLOCK(ki);
 		ops->store_error(ujob, error);
 		ops->store_status(ujob, status);
 	} else {
 		error = EINVAL;
 		AIO_UNLOCK(ki);
 	}
 	return (error);
 }
 
 int
 sys_aio_return(struct thread *td, struct aio_return_args *uap)
 {
 
 	return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
 }
 
 /*
  * Allow a process to wakeup when any of the I/O requests are completed.
  */
 static int
 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
     struct timespec *ts)
 {
 	struct proc *p = td->td_proc;
 	struct timeval atv;
 	struct kaioinfo *ki;
 	struct kaiocb *firstjob, *job;
 	int error, i, timo;
 
 	timo = 0;
 	if (ts) {
 		if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
 			return (EINVAL);
 
 		TIMESPEC_TO_TIMEVAL(&atv, ts);
 		if (itimerfix(&atv))
 			return (EINVAL);
 		timo = tvtohz(&atv);
 	}
 
 	ki = p->p_aioinfo;
 	if (ki == NULL)
 		return (EAGAIN);
 
 	if (njoblist == 0)
 		return (0);
 
 	AIO_LOCK(ki);
 	for (;;) {
 		firstjob = NULL;
 		error = 0;
 		TAILQ_FOREACH(job, &ki->kaio_all, allist) {
 			for (i = 0; i < njoblist; i++) {
 				if (job->ujob == ujoblist[i]) {
 					if (firstjob == NULL)
 						firstjob = job;
 					if (job->jobflags & KAIOCB_FINISHED)
 						goto RETURN;
 				}
 			}
 		}
 		/* All tasks were finished. */
 		if (firstjob == NULL)
 			break;
 
 		ki->kaio_flags |= KAIO_WAKEUP;
 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 		    "aiospn", timo);
 		if (error == ERESTART)
 			error = EINTR;
 		if (error)
 			break;
 	}
 RETURN:
 	AIO_UNLOCK(ki);
 	return (error);
 }
 
 int
 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
 {
 	struct timespec ts, *tsp;
 	struct aiocb **ujoblist;
 	int error;
 
-	if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX)
+	if (uap->nent < 0 || uap->nent > aio_listio_max)
 		return (EINVAL);
 
 	if (uap->timeout) {
 		/* Get timespec struct. */
 		if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
 			return (error);
 		tsp = &ts;
 	} else
 		tsp = NULL;
 
 	ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
 	error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
 	if (error == 0)
 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
 	uma_zfree(aiol_zone, ujoblist);
 	return (error);
 }
 
 /*
  * aio_cancel cancels any non-physio aio operations not currently in
  * progress.
  */
 int
 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
 {
 	struct proc *p = td->td_proc;
 	struct kaioinfo *ki;
 	struct kaiocb *job, *jobn;
 	struct file *fp;
 	cap_rights_t rights;
 	int error;
 	int cancelled = 0;
 	int notcancelled = 0;
 	struct vnode *vp;
 
 	/* Lookup file object. */
 	error = fget(td, uap->fd, cap_rights_init(&rights), &fp);
 	if (error)
 		return (error);
 
 	ki = p->p_aioinfo;
 	if (ki == NULL)
 		goto done;
 
 	if (fp->f_type == DTYPE_VNODE) {
 		vp = fp->f_vnode;
 		if (vn_isdisk(vp, &error)) {
 			fdrop(fp, td);
 			td->td_retval[0] = AIO_NOTCANCELED;
 			return (0);
 		}
 	}
 
 	AIO_LOCK(ki);
 	TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
 		if ((uap->fd == job->uaiocb.aio_fildes) &&
 		    ((uap->aiocbp == NULL) ||
 		     (uap->aiocbp == job->ujob))) {
 			if (aio_cancel_job(p, ki, job)) {
 				cancelled++;
 			} else {
 				notcancelled++;
 			}
 			if (uap->aiocbp != NULL)
 				break;
 		}
 	}
 	AIO_UNLOCK(ki);
 
 done:
 	fdrop(fp, td);
 
 	if (uap->aiocbp != NULL) {
 		if (cancelled) {
 			td->td_retval[0] = AIO_CANCELED;
 			return (0);
 		}
 	}
 
 	if (notcancelled) {
 		td->td_retval[0] = AIO_NOTCANCELED;
 		return (0);
 	}
 
 	if (cancelled) {
 		td->td_retval[0] = AIO_CANCELED;
 		return (0);
 	}
 
 	td->td_retval[0] = AIO_ALLDONE;
 
 	return (0);
 }
 
 /*
  * aio_error is implemented in the kernel level for compatibility purposes
  * only.  For a user mode async implementation, it would be best to do it in
  * a userland subroutine.
  */
 static int
 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
 {
 	struct proc *p = td->td_proc;
 	struct kaiocb *job;
 	struct kaioinfo *ki;
 	int status;
 
 	ki = p->p_aioinfo;
 	if (ki == NULL) {
 		td->td_retval[0] = EINVAL;
 		return (0);
 	}
 
 	AIO_LOCK(ki);
 	TAILQ_FOREACH(job, &ki->kaio_all, allist) {
 		if (job->ujob == ujob) {
 			if (job->jobflags & KAIOCB_FINISHED)
 				td->td_retval[0] =
 					job->uaiocb._aiocb_private.error;
 			else
 				td->td_retval[0] = EINPROGRESS;
 			AIO_UNLOCK(ki);
 			return (0);
 		}
 	}
 	AIO_UNLOCK(ki);
 
 	/*
 	 * Hack for failure of aio_aqueue.
 	 */
 	status = ops->fetch_status(ujob);
 	if (status == -1) {
 		td->td_retval[0] = ops->fetch_error(ujob);
 		return (0);
 	}
 
 	td->td_retval[0] = EINVAL;
 	return (0);
 }
 
 int
 sys_aio_error(struct thread *td, struct aio_error_args *uap)
 {
 
 	return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
 }
 
 /* syscall - asynchronous read from a file (REALTIME) */
 #ifdef COMPAT_FREEBSD6
 int
 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap)
 {
 
 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 	    &aiocb_ops_osigevent));
 }
 #endif
 
 int
 sys_aio_read(struct thread *td, struct aio_read_args *uap)
 {
 
 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
 }
 
 /* syscall - asynchronous write to a file (REALTIME) */
 #ifdef COMPAT_FREEBSD6
 int
 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap)
 {
 
 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 	    &aiocb_ops_osigevent));
 }
 #endif
 
 int
 sys_aio_write(struct thread *td, struct aio_write_args *uap)
 {
 
 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
 }
 
 int
 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
 {
 
 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
 }
 
 static int
 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
     struct aiocb **acb_list, int nent, struct sigevent *sig,
     struct aiocb_ops *ops)
 {
 	struct proc *p = td->td_proc;
 	struct aiocb *job;
 	struct kaioinfo *ki;
 	struct aioliojob *lj;
 	struct kevent kev;
 	int error;
 	int nerror;
 	int i;
 
 	if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
 		return (EINVAL);
 
-	if (nent < 0 || nent > AIO_LISTIO_MAX)
+	if (nent < 0 || nent > aio_listio_max)
 		return (EINVAL);
 
 	if (p->p_aioinfo == NULL)
 		aio_init_aioinfo(p);
 
 	ki = p->p_aioinfo;
 
 	lj = uma_zalloc(aiolio_zone, M_WAITOK);
 	lj->lioj_flags = 0;
 	lj->lioj_count = 0;
 	lj->lioj_finished_count = 0;
 	knlist_init_mtx(&lj->klist, AIO_MTX(ki));
 	ksiginfo_init(&lj->lioj_ksi);
 
 	/*
 	 * Setup signal.
 	 */
 	if (sig && (mode == LIO_NOWAIT)) {
 		bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 			/* Assume only new style KEVENT */
 			kev.filter = EVFILT_LIO;
 			kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
 			kev.ident = (uintptr_t)uacb_list; /* something unique */
 			kev.data = (intptr_t)lj;
 			/* pass user defined sigval data */
 			kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
 			error = kqfd_register(
 			    lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1);
 			if (error) {
 				uma_zfree(aiolio_zone, lj);
 				return (error);
 			}
 		} else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
 			;
 		} else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 			   lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
 				if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
 					uma_zfree(aiolio_zone, lj);
 					return EINVAL;
 				}
 				lj->lioj_flags |= LIOJ_SIGNAL;
 		} else {
 			uma_zfree(aiolio_zone, lj);
 			return EINVAL;
 		}
 	}
 
 	AIO_LOCK(ki);
 	TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
 	/*
 	 * Add extra aiocb count to avoid the lio to be freed
 	 * by other threads doing aio_waitcomplete or aio_return,
 	 * and prevent event from being sent until we have queued
 	 * all tasks.
 	 */
 	lj->lioj_count = 1;
 	AIO_UNLOCK(ki);
 
 	/*
 	 * Get pointers to the list of I/O requests.
 	 */
 	nerror = 0;
 	for (i = 0; i < nent; i++) {
 		job = acb_list[i];
 		if (job != NULL) {
 			error = aio_aqueue(td, job, lj, LIO_NOP, ops);
 			if (error != 0)
 				nerror++;
 		}
 	}
 
 	error = 0;
 	AIO_LOCK(ki);
 	if (mode == LIO_WAIT) {
 		while (lj->lioj_count - 1 != lj->lioj_finished_count) {
 			ki->kaio_flags |= KAIO_WAKEUP;
 			error = msleep(&p->p_aioinfo, AIO_MTX(ki),
 			    PRIBIO | PCATCH, "aiospn", 0);
 			if (error == ERESTART)
 				error = EINTR;
 			if (error)
 				break;
 		}
 	} else {
 		if (lj->lioj_count - 1 == lj->lioj_finished_count) {
 			if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 				lj->lioj_flags |= LIOJ_KEVENT_POSTED;
 				KNOTE_LOCKED(&lj->klist, 1);
 			}
 			if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
 			    == LIOJ_SIGNAL
 			    && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 			    lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
 				aio_sendsig(p, &lj->lioj_signal,
 					    &lj->lioj_ksi);
 				lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
 			}
 		}
 	}
 	lj->lioj_count--;
 	if (lj->lioj_count == 0) {
 		TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
 		knlist_delete(&lj->klist, curthread, 1);
 		PROC_LOCK(p);
 		sigqueue_take(&lj->lioj_ksi);
 		PROC_UNLOCK(p);
 		AIO_UNLOCK(ki);
 		uma_zfree(aiolio_zone, lj);
 	} else
 		AIO_UNLOCK(ki);
 
 	if (nerror)
 		return (EIO);
 	return (error);
 }
 
 /* syscall - list directed I/O (REALTIME) */
 #ifdef COMPAT_FREEBSD6
 int
 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap)
 {
 	struct aiocb **acb_list;
 	struct sigevent *sigp, sig;
 	struct osigevent osig;
 	int error, nent;
 
 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 		return (EINVAL);
 
 	nent = uap->nent;
-	if (nent < 0 || nent > AIO_LISTIO_MAX)
+	if (nent < 0 || nent > aio_listio_max)
 		return (EINVAL);
 
 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 		error = copyin(uap->sig, &osig, sizeof(osig));
 		if (error)
 			return (error);
 		error = convert_old_sigevent(&osig, &sig);
 		if (error)
 			return (error);
 		sigp = &sig;
 	} else
 		sigp = NULL;
 
 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
 	if (error == 0)
 		error = kern_lio_listio(td, uap->mode,
 		    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 		    &aiocb_ops_osigevent);
 	free(acb_list, M_LIO);
 	return (error);
 }
 #endif
 
 /* syscall - list directed I/O (REALTIME) */
 int
 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
 {
 	struct aiocb **acb_list;
 	struct sigevent *sigp, sig;
 	int error, nent;
 
 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 		return (EINVAL);
 
 	nent = uap->nent;
-	if (nent < 0 || nent > AIO_LISTIO_MAX)
+	if (nent < 0 || nent > aio_listio_max)
 		return (EINVAL);
 
 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 		error = copyin(uap->sig, &sig, sizeof(sig));
 		if (error)
 			return (error);
 		sigp = &sig;
 	} else
 		sigp = NULL;
 
 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
 	if (error == 0)
 		error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
 		    nent, sigp, &aiocb_ops);
 	free(acb_list, M_LIO);
 	return (error);
 }
 
 static void
 aio_physwakeup(struct bio *bp)
 {
 	struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
 	struct proc *userp;
 	struct kaioinfo *ki;
 	size_t nbytes;
 	int error, nblks;
 
 	/* Release mapping into kernel space. */
 	userp = job->userproc;
 	ki = userp->p_aioinfo;
 	if (job->pbuf) {
 		pmap_qremove((vm_offset_t)job->pbuf->b_data, job->npages);
 		relpbuf(job->pbuf, NULL);
 		job->pbuf = NULL;
 		atomic_subtract_int(&num_buf_aio, 1);
 		AIO_LOCK(ki);
 		ki->kaio_buffer_count--;
 		AIO_UNLOCK(ki);
 	}
 	vm_page_unhold_pages(job->pages, job->npages);
 
 	bp = job->bp;
 	job->bp = NULL;
 	nbytes = job->uaiocb.aio_nbytes - bp->bio_resid;
 	error = 0;
 	if (bp->bio_flags & BIO_ERROR)
 		error = bp->bio_error;
 	nblks = btodb(nbytes);
 	if (job->uaiocb.aio_lio_opcode == LIO_WRITE)
 		job->outblock += nblks;
 	else
 		job->inblock += nblks;
 
 	if (error)
 		aio_complete(job, -1, error);
 	else
 		aio_complete(job, nbytes, 0);
 
 	g_destroy_bio(bp);
 }
 
 /* syscall - wait for the next completion of an aio request */
 static int
 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp,
     struct timespec *ts, struct aiocb_ops *ops)
 {
 	struct proc *p = td->td_proc;
 	struct timeval atv;
 	struct kaioinfo *ki;
 	struct kaiocb *job;
 	struct aiocb *ujob;
 	long error, status;
 	int timo;
 
 	ops->store_aiocb(ujobp, NULL);
 
 	if (ts == NULL) {
 		timo = 0;
 	} else if (ts->tv_sec == 0 && ts->tv_nsec == 0) {
 		timo = -1;
 	} else {
 		if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
 			return (EINVAL);
 
 		TIMESPEC_TO_TIMEVAL(&atv, ts);
 		if (itimerfix(&atv))
 			return (EINVAL);
 		timo = tvtohz(&atv);
 	}
 
 	if (p->p_aioinfo == NULL)
 		aio_init_aioinfo(p);
 	ki = p->p_aioinfo;
 
 	error = 0;
 	job = NULL;
 	AIO_LOCK(ki);
 	while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
 		if (timo == -1) {
 			error = EWOULDBLOCK;
 			break;
 		}
 		ki->kaio_flags |= KAIO_WAKEUP;
 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 		    "aiowc", timo);
 		if (timo && error == ERESTART)
 			error = EINTR;
 		if (error)
 			break;
 	}
 
 	if (job != NULL) {
 		MPASS(job->jobflags & KAIOCB_FINISHED);
 		ujob = job->ujob;
 		status = job->uaiocb._aiocb_private.status;
 		error = job->uaiocb._aiocb_private.error;
 		td->td_retval[0] = status;
 		td->td_ru.ru_oublock += job->outblock;
 		td->td_ru.ru_inblock += job->inblock;
 		td->td_ru.ru_msgsnd += job->msgsnd;
 		td->td_ru.ru_msgrcv += job->msgrcv;
 		aio_free_entry(job);
 		AIO_UNLOCK(ki);
 		ops->store_aiocb(ujobp, ujob);
 		ops->store_error(ujob, error);
 		ops->store_status(ujob, status);
 	} else
 		AIO_UNLOCK(ki);
 
 	return (error);
 }
 
 int
 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
 {
 	struct timespec ts, *tsp;
 	int error;
 
 	if (uap->timeout) {
 		/* Get timespec struct. */
 		error = copyin(uap->timeout, &ts, sizeof(ts));
 		if (error)
 			return (error);
 		tsp = &ts;
 	} else
 		tsp = NULL;
 
 	return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
 }
 
 static int
 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob,
     struct aiocb_ops *ops)
 {
 
 	if (op != O_SYNC) /* XXX lack of O_DSYNC */
 		return (EINVAL);
 	return (aio_aqueue(td, ujob, NULL, LIO_SYNC, ops));
 }
 
 int
 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
 {
 
 	return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
 }
 
 /* kqueue attach function */
 static int
 filt_aioattach(struct knote *kn)
 {
 	struct kaiocb *job;
 
 	job = (struct kaiocb *)(uintptr_t)kn->kn_sdata;
 
 	/*
 	 * The job pointer must be validated before using it, so
 	 * registration is restricted to the kernel; the user cannot
 	 * set EV_FLAG1.
 	 */
 	if ((kn->kn_flags & EV_FLAG1) == 0)
 		return (EPERM);
 	kn->kn_ptr.p_aio = job;
 	kn->kn_flags &= ~EV_FLAG1;
 
 	knlist_add(&job->klist, kn, 0);
 
 	return (0);
 }
 
 /* kqueue detach function */
 static void
 filt_aiodetach(struct knote *kn)
 {
 	struct knlist *knl;
 
 	knl = &kn->kn_ptr.p_aio->klist;
 	knl->kl_lock(knl->kl_lockarg);
 	if (!knlist_empty(knl))
 		knlist_remove(knl, kn, 1);
 	knl->kl_unlock(knl->kl_lockarg);
 }
 
 /* kqueue filter function */
 /*ARGSUSED*/
 static int
 filt_aio(struct knote *kn, long hint)
 {
 	struct kaiocb *job = kn->kn_ptr.p_aio;
 
 	kn->kn_data = job->uaiocb._aiocb_private.error;
 	if (!(job->jobflags & KAIOCB_FINISHED))
 		return (0);
 	kn->kn_flags |= EV_EOF;
 	return (1);
 }
 
 /* kqueue attach function */
 static int
 filt_lioattach(struct knote *kn)
 {
 	struct aioliojob *lj;
 
 	lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata;
 
 	/*
 	 * The aioliojob pointer must be validated before using it, so
 	 * registration is restricted to the kernel; the user cannot
 	 * set EV_FLAG1.
 	 */
 	if ((kn->kn_flags & EV_FLAG1) == 0)
 		return (EPERM);
 	kn->kn_ptr.p_lio = lj;
 	kn->kn_flags &= ~EV_FLAG1;
 
 	knlist_add(&lj->klist, kn, 0);
 
 	return (0);
 }
 
 /* kqueue detach function */
 static void
 filt_liodetach(struct knote *kn)
 {
 	struct knlist *knl;
 
 	knl = &kn->kn_ptr.p_lio->klist;
 	knl->kl_lock(knl->kl_lockarg);
 	if (!knlist_empty(knl))
 		knlist_remove(knl, kn, 1);
 	knl->kl_unlock(knl->kl_lockarg);
 }
 
 /* kqueue filter function */
 /*ARGSUSED*/
 static int
 filt_lio(struct knote *kn, long hint)
 {
 	struct aioliojob * lj = kn->kn_ptr.p_lio;
 
 	return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
 }
 
 #ifdef COMPAT_FREEBSD32
 #include <sys/mount.h>
 #include <sys/socket.h>
 #include <compat/freebsd32/freebsd32.h>
 #include <compat/freebsd32/freebsd32_proto.h>
 #include <compat/freebsd32/freebsd32_signal.h>
 #include <compat/freebsd32/freebsd32_syscall.h>
 #include <compat/freebsd32/freebsd32_util.h>
 
 struct __aiocb_private32 {
 	int32_t	status;
 	int32_t	error;
 	uint32_t kernelinfo;
 };
 
 #ifdef COMPAT_FREEBSD6
 typedef struct oaiocb32 {
 	int	aio_fildes;		/* File descriptor */
 	uint64_t aio_offset __packed;	/* File offset for I/O */
 	uint32_t aio_buf;		/* I/O buffer in process space */
 	uint32_t aio_nbytes;		/* Number of bytes for I/O */
 	struct	osigevent32 aio_sigevent; /* Signal to deliver */
 	int	aio_lio_opcode;		/* LIO opcode */
 	int	aio_reqprio;		/* Request priority -- ignored */
 	struct	__aiocb_private32 _aiocb_private;
 } oaiocb32_t;
 #endif
 
 typedef struct aiocb32 {
 	int32_t	aio_fildes;		/* File descriptor */
 	uint64_t aio_offset __packed;	/* File offset for I/O */
 	uint32_t aio_buf;		/* I/O buffer in process space */
 	uint32_t aio_nbytes;		/* Number of bytes for I/O */
 	int	__spare__[2];
 	uint32_t __spare2__;
 	int	aio_lio_opcode;		/* LIO opcode */
 	int	aio_reqprio;		/* Request priority -- ignored */
 	struct	__aiocb_private32 _aiocb_private;
 	struct	sigevent32 aio_sigevent;	/* Signal to deliver */
 } aiocb32_t;
 
 #ifdef COMPAT_FREEBSD6
 static int
 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
 {
 
 	/*
 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
 	 * supported by AIO with the old sigevent structure.
 	 */
 	CP(*osig, *nsig, sigev_notify);
 	switch (nsig->sigev_notify) {
 	case SIGEV_NONE:
 		break;
 	case SIGEV_SIGNAL:
 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
 		break;
 	case SIGEV_KEVENT:
 		nsig->sigev_notify_kqueue =
 		    osig->__sigev_u.__sigev_notify_kqueue;
 		PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
 		break;
 	default:
 		return (EINVAL);
 	}
 	return (0);
 }
 
 static int
 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
 {
 	struct oaiocb32 job32;
 	int error;
 
 	bzero(kjob, sizeof(struct aiocb));
 	error = copyin(ujob, &job32, sizeof(job32));
 	if (error)
 		return (error);
 
 	CP(job32, *kjob, aio_fildes);
 	CP(job32, *kjob, aio_offset);
 	PTRIN_CP(job32, *kjob, aio_buf);
 	CP(job32, *kjob, aio_nbytes);
 	CP(job32, *kjob, aio_lio_opcode);
 	CP(job32, *kjob, aio_reqprio);
 	CP(job32, *kjob, _aiocb_private.status);
 	CP(job32, *kjob, _aiocb_private.error);
 	PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
 	return (convert_old_sigevent32(&job32.aio_sigevent,
 	    &kjob->aio_sigevent));
 }
 #endif
 
 static int
 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob)
 {
 	struct aiocb32 job32;
 	int error;
 
 	error = copyin(ujob, &job32, sizeof(job32));
 	if (error)
 		return (error);
 	CP(job32, *kjob, aio_fildes);
 	CP(job32, *kjob, aio_offset);
 	PTRIN_CP(job32, *kjob, aio_buf);
 	CP(job32, *kjob, aio_nbytes);
 	CP(job32, *kjob, aio_lio_opcode);
 	CP(job32, *kjob, aio_reqprio);
 	CP(job32, *kjob, _aiocb_private.status);
 	CP(job32, *kjob, _aiocb_private.error);
 	PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
 	return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent));
 }
 
 static long
 aiocb32_fetch_status(struct aiocb *ujob)
 {
 	struct aiocb32 *ujob32;
 
 	ujob32 = (struct aiocb32 *)ujob;
 	return (fuword32(&ujob32->_aiocb_private.status));
 }
 
 static long
 aiocb32_fetch_error(struct aiocb *ujob)
 {
 	struct aiocb32 *ujob32;
 
 	ujob32 = (struct aiocb32 *)ujob;
 	return (fuword32(&ujob32->_aiocb_private.error));
 }
 
 static int
 aiocb32_store_status(struct aiocb *ujob, long status)
 {
 	struct aiocb32 *ujob32;
 
 	ujob32 = (struct aiocb32 *)ujob;
 	return (suword32(&ujob32->_aiocb_private.status, status));
 }
 
 static int
 aiocb32_store_error(struct aiocb *ujob, long error)
 {
 	struct aiocb32 *ujob32;
 
 	ujob32 = (struct aiocb32 *)ujob;
 	return (suword32(&ujob32->_aiocb_private.error, error));
 }
 
 static int
 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref)
 {
 	struct aiocb32 *ujob32;
 
 	ujob32 = (struct aiocb32 *)ujob;
 	return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref));
 }
 
 static int
 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
 {
 
 	return (suword32(ujobp, (long)ujob));
 }
 
 static struct aiocb_ops aiocb32_ops = {
 	.copyin = aiocb32_copyin,
 	.fetch_status = aiocb32_fetch_status,
 	.fetch_error = aiocb32_fetch_error,
 	.store_status = aiocb32_store_status,
 	.store_error = aiocb32_store_error,
 	.store_kernelinfo = aiocb32_store_kernelinfo,
 	.store_aiocb = aiocb32_store_aiocb,
 };
 
 #ifdef COMPAT_FREEBSD6
 static struct aiocb_ops aiocb32_ops_osigevent = {
 	.copyin = aiocb32_copyin_old_sigevent,
 	.fetch_status = aiocb32_fetch_status,
 	.fetch_error = aiocb32_fetch_error,
 	.store_status = aiocb32_store_status,
 	.store_error = aiocb32_store_error,
 	.store_kernelinfo = aiocb32_store_kernelinfo,
 	.store_aiocb = aiocb32_store_aiocb,
 };
 #endif
 
 int
 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
 {
 
 	return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
 }
 
 int
 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
 {
 	struct timespec32 ts32;
 	struct timespec ts, *tsp;
 	struct aiocb **ujoblist;
 	uint32_t *ujoblist32;
 	int error, i;
 
-	if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX)
+	if (uap->nent < 0 || uap->nent > aio_listio_max)
 		return (EINVAL);
 
 	if (uap->timeout) {
 		/* Get timespec struct. */
 		if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
 			return (error);
 		CP(ts32, ts, tv_sec);
 		CP(ts32, ts, tv_nsec);
 		tsp = &ts;
 	} else
 		tsp = NULL;
 
 	ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
 	ujoblist32 = (uint32_t *)ujoblist;
 	error = copyin(uap->aiocbp, ujoblist32, uap->nent *
 	    sizeof(ujoblist32[0]));
 	if (error == 0) {
 		for (i = uap->nent; i > 0; i--)
 			ujoblist[i] = PTRIN(ujoblist32[i]);
 
 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
 	}
 	uma_zfree(aiol_zone, ujoblist);
 	return (error);
 }
 
 int
 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
 {
 
 	return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
 }
 
 #ifdef COMPAT_FREEBSD6
 int
 freebsd6_freebsd32_aio_read(struct thread *td,
     struct freebsd6_freebsd32_aio_read_args *uap)
 {
 
 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 	    &aiocb32_ops_osigevent));
 }
 #endif
 
 int
 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
 {
 
 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 	    &aiocb32_ops));
 }
 
 #ifdef COMPAT_FREEBSD6
 int
 freebsd6_freebsd32_aio_write(struct thread *td,
     struct freebsd6_freebsd32_aio_write_args *uap)
 {
 
 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 	    &aiocb32_ops_osigevent));
 }
 #endif
 
 int
 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
 {
 
 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 	    &aiocb32_ops));
 }
 
 int
 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
 {
 
 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
 	    &aiocb32_ops));
 }
 
 int
 freebsd32_aio_waitcomplete(struct thread *td,
     struct freebsd32_aio_waitcomplete_args *uap)
 {
 	struct timespec32 ts32;
 	struct timespec ts, *tsp;
 	int error;
 
 	if (uap->timeout) {
 		/* Get timespec struct. */
 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
 		if (error)
 			return (error);
 		CP(ts32, ts, tv_sec);
 		CP(ts32, ts, tv_nsec);
 		tsp = &ts;
 	} else
 		tsp = NULL;
 
 	return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
 	    &aiocb32_ops));
 }
 
 int
 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
 {
 
 	return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
 	    &aiocb32_ops));
 }
 
 #ifdef COMPAT_FREEBSD6
 int
 freebsd6_freebsd32_lio_listio(struct thread *td,
     struct freebsd6_freebsd32_lio_listio_args *uap)
 {
 	struct aiocb **acb_list;
 	struct sigevent *sigp, sig;
 	struct osigevent32 osig;
 	uint32_t *acb_list32;
 	int error, i, nent;
 
 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 		return (EINVAL);
 
 	nent = uap->nent;
-	if (nent < 0 || nent > AIO_LISTIO_MAX)
+	if (nent < 0 || nent > aio_listio_max)
 		return (EINVAL);
 
 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 		error = copyin(uap->sig, &osig, sizeof(osig));
 		if (error)
 			return (error);
 		error = convert_old_sigevent32(&osig, &sig);
 		if (error)
 			return (error);
 		sigp = &sig;
 	} else
 		sigp = NULL;
 
 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
 	if (error) {
 		free(acb_list32, M_LIO);
 		return (error);
 	}
 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 	for (i = 0; i < nent; i++)
 		acb_list[i] = PTRIN(acb_list32[i]);
 	free(acb_list32, M_LIO);
 
 	error = kern_lio_listio(td, uap->mode,
 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 	    &aiocb32_ops_osigevent);
 	free(acb_list, M_LIO);
 	return (error);
 }
 #endif
 
 int
 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
 {
 	struct aiocb **acb_list;
 	struct sigevent *sigp, sig;
 	struct sigevent32 sig32;
 	uint32_t *acb_list32;
 	int error, i, nent;
 
 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 		return (EINVAL);
 
 	nent = uap->nent;
-	if (nent < 0 || nent > AIO_LISTIO_MAX)
+	if (nent < 0 || nent > aio_listio_max)
 		return (EINVAL);
 
 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 		error = copyin(uap->sig, &sig32, sizeof(sig32));
 		if (error)
 			return (error);
 		error = convert_sigevent32(&sig32, &sig);
 		if (error)
 			return (error);
 		sigp = &sig;
 	} else
 		sigp = NULL;
 
 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
 	if (error) {
 		free(acb_list32, M_LIO);
 		return (error);
 	}
 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 	for (i = 0; i < nent; i++)
 		acb_list[i] = PTRIN(acb_list32[i]);
 	free(acb_list32, M_LIO);
 
 	error = kern_lio_listio(td, uap->mode,
 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 	    &aiocb32_ops);
 	free(acb_list, M_LIO);
 	return (error);
 }
 
 #endif