Index: head/sys/cam/cam_ccb.h =================================================================== --- head/sys/cam/cam_ccb.h (revision 320983) +++ head/sys/cam/cam_ccb.h (revision 320984) @@ -1,1520 +1,1538 @@ /*- * Data structures and definitions for CAM Control Blocks (CCBs). * * Copyright (c) 1997, 1998 Justin T. Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _CAM_CAM_CCB_H #define _CAM_CAM_CCB_H 1 #include #include #include #include #ifndef _KERNEL #include #endif #include #include #include #include #include /* General allocation length definitions for CCB structures */ #define IOCDBLEN CAM_MAX_CDBLEN /* Space for CDB bytes/pointer */ #define VUHBALEN 14 /* Vendor Unique HBA length */ #define SIM_IDLEN 16 /* ASCII string len for SIM ID */ #define HBA_IDLEN 16 /* ASCII string len for HBA ID */ #define DEV_IDLEN 16 /* ASCII string len for device names */ #define CCB_PERIPH_PRIV_SIZE 2 /* size of peripheral private area */ #define CCB_SIM_PRIV_SIZE 2 /* size of sim private area */ /* Struct definitions for CAM control blocks */ /* Common CCB header */ /* CAM CCB flags */ typedef enum { CAM_CDB_POINTER = 0x00000001,/* The CDB field is a pointer */ CAM_QUEUE_ENABLE = 0x00000002,/* SIM queue actions are enabled */ CAM_CDB_LINKED = 0x00000004,/* CCB contains a linked CDB */ CAM_NEGOTIATE = 0x00000008,/* * Perform transport negotiation * with this command. */ CAM_DATA_ISPHYS = 0x00000010,/* Data type with physical addrs */ CAM_DIS_AUTOSENSE = 0x00000020,/* Disable autosense feature */ CAM_DIR_BOTH = 0x00000000,/* Data direction (00:IN/OUT) */ CAM_DIR_IN = 0x00000040,/* Data direction (01:DATA IN) */ CAM_DIR_OUT = 0x00000080,/* Data direction (10:DATA OUT) */ CAM_DIR_NONE = 0x000000C0,/* Data direction (11:no data) */ CAM_DIR_MASK = 0x000000C0,/* Data direction Mask */ CAM_DATA_VADDR = 0x00000000,/* Data type (000:Virtual) */ CAM_DATA_PADDR = 0x00000010,/* Data type (001:Physical) */ CAM_DATA_SG = 0x00040000,/* Data type (010:sglist) */ CAM_DATA_SG_PADDR = 0x00040010,/* Data type (011:sglist phys) */ CAM_DATA_BIO = 0x00200000,/* Data type (100:bio) */ CAM_DATA_MASK = 0x00240010,/* Data type mask */ CAM_SOFT_RST_OP = 0x00000100,/* Use Soft reset alternative */ CAM_ENG_SYNC = 0x00000200,/* Flush resid bytes on complete */ CAM_DEV_QFRZDIS = 0x00000400,/* Disable DEV Q freezing */ CAM_DEV_QFREEZE = 0x00000800,/* Freeze DEV Q on execution */ CAM_HIGH_POWER = 0x00001000,/* Command takes a lot of power */ CAM_SENSE_PTR = 0x00002000,/* Sense data is a pointer */ CAM_SENSE_PHYS = 0x00004000,/* Sense pointer is physical addr*/ CAM_TAG_ACTION_VALID = 0x00008000,/* Use the tag action in this ccb*/ CAM_PASS_ERR_RECOVER = 0x00010000,/* Pass driver does err. recovery*/ CAM_DIS_DISCONNECT = 0x00020000,/* Disable disconnect */ CAM_MSG_BUF_PHYS = 0x00080000,/* Message buffer ptr is physical*/ CAM_SNS_BUF_PHYS = 0x00100000,/* Autosense data ptr is physical*/ CAM_CDB_PHYS = 0x00400000,/* CDB poiner is physical */ CAM_ENG_SGLIST = 0x00800000,/* SG list is for the HBA engine */ /* Phase cognizant mode flags */ CAM_DIS_AUTOSRP = 0x01000000,/* Disable autosave/restore ptrs */ CAM_DIS_AUTODISC = 0x02000000,/* Disable auto disconnect */ CAM_TGT_CCB_AVAIL = 0x04000000,/* Target CCB available */ CAM_TGT_PHASE_MODE = 0x08000000,/* The SIM runs in phase mode */ CAM_MSGB_VALID = 0x10000000,/* Message buffer valid */ CAM_STATUS_VALID = 0x20000000,/* Status buffer valid */ CAM_DATAB_VALID = 0x40000000,/* Data buffer valid */ /* Host target Mode flags */ CAM_SEND_SENSE = 0x08000000,/* Send sense data with status */ CAM_TERM_IO = 0x10000000,/* Terminate I/O Message sup. */ CAM_DISCONNECT = 0x20000000,/* Disconnects are mandatory */ CAM_SEND_STATUS = 0x40000000,/* Send status after data phase */ CAM_UNLOCKED = 0x80000000 /* Call callback without lock. */ } ccb_flags; typedef enum { CAM_USER_DATA_ADDR = 0x00000002,/* Userspace data pointers */ CAM_SG_FORMAT_IOVEC = 0x00000004,/* iovec instead of busdma S/G*/ CAM_UNMAPPED_BUF = 0x00000008 /* use unmapped I/O */ } ccb_xflags; /* XPT Opcodes for xpt_action */ typedef enum { /* Function code flags are bits greater than 0xff */ XPT_FC_QUEUED = 0x100, /* Non-immediate function code */ XPT_FC_USER_CCB = 0x200, XPT_FC_XPT_ONLY = 0x400, /* Only for the transport layer device */ XPT_FC_DEV_QUEUED = 0x800 | XPT_FC_QUEUED, /* Passes through the device queues */ /* Common function commands: 0x00->0x0F */ XPT_NOOP = 0x00, /* Execute Nothing */ XPT_SCSI_IO = 0x01 | XPT_FC_DEV_QUEUED, /* Execute the requested I/O operation */ XPT_GDEV_TYPE = 0x02, /* Get type information for specified device */ XPT_GDEVLIST = 0x03, /* Get a list of peripheral devices */ XPT_PATH_INQ = 0x04, /* Path routing inquiry */ XPT_REL_SIMQ = 0x05, /* Release a frozen device queue */ XPT_SASYNC_CB = 0x06, /* Set Asynchronous Callback Parameters */ XPT_SDEV_TYPE = 0x07, /* Set device type information */ XPT_SCAN_BUS = 0x08 | XPT_FC_QUEUED | XPT_FC_USER_CCB | XPT_FC_XPT_ONLY, /* (Re)Scan the SCSI Bus */ XPT_DEV_MATCH = 0x09 | XPT_FC_XPT_ONLY, /* Get EDT entries matching the given pattern */ XPT_DEBUG = 0x0a, /* Turn on debugging for a bus, target or lun */ XPT_PATH_STATS = 0x0b, /* Path statistics (error counts, etc.) */ XPT_GDEV_STATS = 0x0c, /* Device statistics (error counts, etc.) */ XPT_DEV_ADVINFO = 0x0e, /* Get/Set Device advanced information */ XPT_ASYNC = 0x0f | XPT_FC_QUEUED | XPT_FC_USER_CCB | XPT_FC_XPT_ONLY, /* Asynchronous event */ /* SCSI Control Functions: 0x10->0x1F */ XPT_ABORT = 0x10, /* Abort the specified CCB */ XPT_RESET_BUS = 0x11 | XPT_FC_XPT_ONLY, /* Reset the specified SCSI bus */ XPT_RESET_DEV = 0x12 | XPT_FC_DEV_QUEUED, /* Bus Device Reset the specified SCSI device */ XPT_TERM_IO = 0x13, /* Terminate the I/O process */ XPT_SCAN_LUN = 0x14 | XPT_FC_QUEUED | XPT_FC_USER_CCB | XPT_FC_XPT_ONLY, /* Scan Logical Unit */ XPT_GET_TRAN_SETTINGS = 0x15, /* * Get default/user transfer settings * for the target */ XPT_SET_TRAN_SETTINGS = 0x16, /* * Set transfer rate/width * negotiation settings */ XPT_CALC_GEOMETRY = 0x17, /* * Calculate the geometry parameters for * a device give the sector size and * volume size. */ XPT_ATA_IO = 0x18 | XPT_FC_DEV_QUEUED, /* Execute the requested ATA I/O operation */ XPT_GET_SIM_KNOB_OLD = 0x18, /* Compat only */ XPT_SET_SIM_KNOB = 0x19, /* * Set SIM specific knob values. */ XPT_GET_SIM_KNOB = 0x1a, /* * Get SIM specific knob values. */ XPT_SMP_IO = 0x1b | XPT_FC_DEV_QUEUED, /* Serial Management Protocol */ XPT_NVME_IO = 0x1c | XPT_FC_DEV_QUEUED, - /* Execiute the requestred NVMe I/O operation */ + /* Execute the requested NVMe I/O operation */ XPT_MMC_IO = 0x1d | XPT_FC_DEV_QUEUED, /* Placeholder for MMC / SD / SDIO I/O stuff */ XPT_SCAN_TGT = 0x1e | XPT_FC_QUEUED | XPT_FC_USER_CCB | XPT_FC_XPT_ONLY, /* Scan Target */ + XPT_NVME_ADMIN = 0x1f | XPT_FC_DEV_QUEUED, + /* Execute the requested NVMe Admin operation */ + /* HBA engine commands 0x20->0x2F */ XPT_ENG_INQ = 0x20 | XPT_FC_XPT_ONLY, /* HBA engine feature inquiry */ XPT_ENG_EXEC = 0x21 | XPT_FC_DEV_QUEUED, /* HBA execute engine request */ /* Target mode commands: 0x30->0x3F */ XPT_EN_LUN = 0x30, /* Enable LUN as a target */ XPT_TARGET_IO = 0x31 | XPT_FC_DEV_QUEUED, /* Execute target I/O request */ XPT_ACCEPT_TARGET_IO = 0x32 | XPT_FC_QUEUED | XPT_FC_USER_CCB, /* Accept Host Target Mode CDB */ XPT_CONT_TARGET_IO = 0x33 | XPT_FC_DEV_QUEUED, /* Continue Host Target I/O Connection */ XPT_IMMED_NOTIFY = 0x34 | XPT_FC_QUEUED | XPT_FC_USER_CCB, /* Notify Host Target driver of event (obsolete) */ XPT_NOTIFY_ACK = 0x35, /* Acknowledgement of event (obsolete) */ XPT_IMMEDIATE_NOTIFY = 0x36 | XPT_FC_QUEUED | XPT_FC_USER_CCB, /* Notify Host Target driver of event */ XPT_NOTIFY_ACKNOWLEDGE = 0x37 | XPT_FC_QUEUED | XPT_FC_USER_CCB, /* Acknowledgement of event */ XPT_REPROBE_LUN = 0x38 | XPT_FC_QUEUED | XPT_FC_USER_CCB, /* Query device capacity and notify GEOM */ /* Vendor Unique codes: 0x80->0x8F */ XPT_VUNIQUE = 0x80 } xpt_opcode; #define XPT_FC_GROUP_MASK 0xF0 #define XPT_FC_GROUP(op) ((op) & XPT_FC_GROUP_MASK) #define XPT_FC_GROUP_COMMON 0x00 #define XPT_FC_GROUP_SCSI_CONTROL 0x10 #define XPT_FC_GROUP_HBA_ENGINE 0x20 #define XPT_FC_GROUP_TMODE 0x30 #define XPT_FC_GROUP_VENDOR_UNIQUE 0x80 #define XPT_FC_IS_DEV_QUEUED(ccb) \ (((ccb)->ccb_h.func_code & XPT_FC_DEV_QUEUED) == XPT_FC_DEV_QUEUED) #define XPT_FC_IS_QUEUED(ccb) \ (((ccb)->ccb_h.func_code & XPT_FC_QUEUED) != 0) typedef enum { PROTO_UNKNOWN, PROTO_UNSPECIFIED, PROTO_SCSI, /* Small Computer System Interface */ PROTO_ATA, /* AT Attachment */ PROTO_ATAPI, /* AT Attachment Packetized Interface */ PROTO_SATAPM, /* SATA Port Multiplier */ PROTO_SEMB, /* SATA Enclosure Management Bridge */ PROTO_NVME, /* NVME */ PROTO_MMCSD, /* MMC, SD, SDIO */ } cam_proto; typedef enum { XPORT_UNKNOWN, XPORT_UNSPECIFIED, XPORT_SPI, /* SCSI Parallel Interface */ XPORT_FC, /* Fiber Channel */ XPORT_SSA, /* Serial Storage Architecture */ XPORT_USB, /* Universal Serial Bus */ XPORT_PPB, /* Parallel Port Bus */ XPORT_ATA, /* AT Attachment */ XPORT_SAS, /* Serial Attached SCSI */ XPORT_SATA, /* Serial AT Attachment */ XPORT_ISCSI, /* iSCSI */ XPORT_SRP, /* SCSI RDMA Protocol */ XPORT_NVME, /* NVMe over PCIe */ XPORT_MMCSD, /* MMC, SD, SDIO card */ } cam_xport; #define XPORT_IS_NVME(t) ((t) == XPORT_NVME) #define XPORT_IS_ATA(t) ((t) == XPORT_ATA || (t) == XPORT_SATA) #define XPORT_IS_SCSI(t) ((t) != XPORT_UNKNOWN && \ (t) != XPORT_UNSPECIFIED && \ !XPORT_IS_ATA(t) && !XPORT_IS_NVME(t)) #define XPORT_DEVSTAT_TYPE(t) (XPORT_IS_ATA(t) ? DEVSTAT_TYPE_IF_IDE : \ XPORT_IS_SCSI(t) ? DEVSTAT_TYPE_IF_SCSI : \ DEVSTAT_TYPE_IF_OTHER) #define PROTO_VERSION_UNKNOWN (UINT_MAX - 1) #define PROTO_VERSION_UNSPECIFIED UINT_MAX #define XPORT_VERSION_UNKNOWN (UINT_MAX - 1) #define XPORT_VERSION_UNSPECIFIED UINT_MAX typedef union { LIST_ENTRY(ccb_hdr) le; SLIST_ENTRY(ccb_hdr) sle; TAILQ_ENTRY(ccb_hdr) tqe; STAILQ_ENTRY(ccb_hdr) stqe; } camq_entry; typedef union { void *ptr; u_long field; u_int8_t bytes[sizeof(uintptr_t)]; } ccb_priv_entry; typedef union { ccb_priv_entry entries[CCB_PERIPH_PRIV_SIZE]; u_int8_t bytes[CCB_PERIPH_PRIV_SIZE * sizeof(ccb_priv_entry)]; } ccb_ppriv_area; typedef union { ccb_priv_entry entries[CCB_SIM_PRIV_SIZE]; u_int8_t bytes[CCB_SIM_PRIV_SIZE * sizeof(ccb_priv_entry)]; } ccb_spriv_area; typedef struct { struct timeval *etime; uintptr_t sim_data; uintptr_t periph_data; } ccb_qos_area; struct ccb_hdr { cam_pinfo pinfo; /* Info for priority scheduling */ camq_entry xpt_links; /* For chaining in the XPT layer */ camq_entry sim_links; /* For chaining in the SIM layer */ camq_entry periph_links; /* For chaining in the type driver */ u_int32_t retry_count; void (*cbfcnp)(struct cam_periph *, union ccb *); /* Callback on completion function */ xpt_opcode func_code; /* XPT function code */ u_int32_t status; /* Status returned by CAM subsystem */ struct cam_path *path; /* Compiled path for this ccb */ path_id_t path_id; /* Path ID for the request */ target_id_t target_id; /* Target device ID */ lun_id_t target_lun; /* Target LUN number */ u_int32_t flags; /* ccb_flags */ u_int32_t xflags; /* Extended flags */ ccb_ppriv_area periph_priv; ccb_spriv_area sim_priv; ccb_qos_area qos; u_int32_t timeout; /* Hard timeout value in mseconds */ struct timeval softtimeout; /* Soft timeout value in sec + usec */ }; /* Get Device Information CCB */ struct ccb_getdev { struct ccb_hdr ccb_h; cam_proto protocol; struct scsi_inquiry_data inq_data; struct ata_params ident_data; u_int8_t serial_num[252]; u_int8_t inq_flags; u_int8_t serial_num_len; const struct nvme_controller_data *nvme_cdata; const struct nvme_namespace_data *nvme_data; }; /* Device Statistics CCB */ struct ccb_getdevstats { struct ccb_hdr ccb_h; int dev_openings; /* Space left for more work on device*/ int dev_active; /* Transactions running on the device */ int allocated; /* CCBs allocated for the device */ int queued; /* CCBs queued to be sent to the device */ int held; /* * CCBs held by peripheral drivers * for this device */ int maxtags; /* * Boundary conditions for number of * tagged operations */ int mintags; struct timeval last_reset; /* Time of last bus reset/loop init */ }; typedef enum { CAM_GDEVLIST_LAST_DEVICE, CAM_GDEVLIST_LIST_CHANGED, CAM_GDEVLIST_MORE_DEVS, CAM_GDEVLIST_ERROR } ccb_getdevlist_status_e; struct ccb_getdevlist { struct ccb_hdr ccb_h; char periph_name[DEV_IDLEN]; u_int32_t unit_number; unsigned int generation; u_int32_t index; ccb_getdevlist_status_e status; }; typedef enum { PERIPH_MATCH_NONE = 0x000, PERIPH_MATCH_PATH = 0x001, PERIPH_MATCH_TARGET = 0x002, PERIPH_MATCH_LUN = 0x004, PERIPH_MATCH_NAME = 0x008, PERIPH_MATCH_UNIT = 0x010, PERIPH_MATCH_ANY = 0x01f } periph_pattern_flags; struct periph_match_pattern { char periph_name[DEV_IDLEN]; u_int32_t unit_number; path_id_t path_id; target_id_t target_id; lun_id_t target_lun; periph_pattern_flags flags; }; typedef enum { DEV_MATCH_NONE = 0x000, DEV_MATCH_PATH = 0x001, DEV_MATCH_TARGET = 0x002, DEV_MATCH_LUN = 0x004, DEV_MATCH_INQUIRY = 0x008, DEV_MATCH_DEVID = 0x010, DEV_MATCH_ANY = 0x00f } dev_pattern_flags; struct device_id_match_pattern { uint8_t id_len; uint8_t id[256]; }; struct device_match_pattern { path_id_t path_id; target_id_t target_id; lun_id_t target_lun; dev_pattern_flags flags; union { struct scsi_static_inquiry_pattern inq_pat; struct device_id_match_pattern devid_pat; } data; }; typedef enum { BUS_MATCH_NONE = 0x000, BUS_MATCH_PATH = 0x001, BUS_MATCH_NAME = 0x002, BUS_MATCH_UNIT = 0x004, BUS_MATCH_BUS_ID = 0x008, BUS_MATCH_ANY = 0x00f } bus_pattern_flags; struct bus_match_pattern { path_id_t path_id; char dev_name[DEV_IDLEN]; u_int32_t unit_number; u_int32_t bus_id; bus_pattern_flags flags; }; union match_pattern { struct periph_match_pattern periph_pattern; struct device_match_pattern device_pattern; struct bus_match_pattern bus_pattern; }; typedef enum { DEV_MATCH_PERIPH, DEV_MATCH_DEVICE, DEV_MATCH_BUS } dev_match_type; struct dev_match_pattern { dev_match_type type; union match_pattern pattern; }; struct periph_match_result { char periph_name[DEV_IDLEN]; u_int32_t unit_number; path_id_t path_id; target_id_t target_id; lun_id_t target_lun; }; typedef enum { DEV_RESULT_NOFLAG = 0x00, DEV_RESULT_UNCONFIGURED = 0x01 } dev_result_flags; struct device_match_result { path_id_t path_id; target_id_t target_id; lun_id_t target_lun; cam_proto protocol; struct scsi_inquiry_data inq_data; struct ata_params ident_data; dev_result_flags flags; struct mmc_params mmc_ident_data; }; struct bus_match_result { path_id_t path_id; char dev_name[DEV_IDLEN]; u_int32_t unit_number; u_int32_t bus_id; }; union match_result { struct periph_match_result periph_result; struct device_match_result device_result; struct bus_match_result bus_result; }; struct dev_match_result { dev_match_type type; union match_result result; }; typedef enum { CAM_DEV_MATCH_LAST, CAM_DEV_MATCH_MORE, CAM_DEV_MATCH_LIST_CHANGED, CAM_DEV_MATCH_SIZE_ERROR, CAM_DEV_MATCH_ERROR } ccb_dev_match_status; typedef enum { CAM_DEV_POS_NONE = 0x000, CAM_DEV_POS_BUS = 0x001, CAM_DEV_POS_TARGET = 0x002, CAM_DEV_POS_DEVICE = 0x004, CAM_DEV_POS_PERIPH = 0x008, CAM_DEV_POS_PDPTR = 0x010, CAM_DEV_POS_TYPEMASK = 0xf00, CAM_DEV_POS_EDT = 0x100, CAM_DEV_POS_PDRV = 0x200 } dev_pos_type; struct ccb_dm_cookie { void *bus; void *target; void *device; void *periph; void *pdrv; }; struct ccb_dev_position { u_int generations[4]; #define CAM_BUS_GENERATION 0x00 #define CAM_TARGET_GENERATION 0x01 #define CAM_DEV_GENERATION 0x02 #define CAM_PERIPH_GENERATION 0x03 dev_pos_type position_type; struct ccb_dm_cookie cookie; }; struct ccb_dev_match { struct ccb_hdr ccb_h; ccb_dev_match_status status; u_int32_t num_patterns; u_int32_t pattern_buf_len; struct dev_match_pattern *patterns; u_int32_t num_matches; u_int32_t match_buf_len; struct dev_match_result *matches; struct ccb_dev_position pos; }; /* * Definitions for the path inquiry CCB fields. */ #define CAM_VERSION 0x19 /* Hex value for current version */ typedef enum { PI_MDP_ABLE = 0x80, /* Supports MDP message */ PI_WIDE_32 = 0x40, /* Supports 32 bit wide SCSI */ PI_WIDE_16 = 0x20, /* Supports 16 bit wide SCSI */ PI_SDTR_ABLE = 0x10, /* Supports SDTR message */ PI_LINKED_CDB = 0x08, /* Supports linked CDBs */ PI_SATAPM = 0x04, /* Supports SATA PM */ PI_TAG_ABLE = 0x02, /* Supports tag queue messages */ PI_SOFT_RST = 0x01 /* Supports soft reset alternative */ } pi_inqflag; typedef enum { PIT_PROCESSOR = 0x80, /* Target mode processor mode */ PIT_PHASE = 0x40, /* Target mode phase cog. mode */ PIT_DISCONNECT = 0x20, /* Disconnects supported in target mode */ PIT_TERM_IO = 0x10, /* Terminate I/O message supported in TM */ PIT_GRP_6 = 0x08, /* Group 6 commands supported */ PIT_GRP_7 = 0x04 /* Group 7 commands supported */ } pi_tmflag; typedef enum { PIM_ATA_EXT = 0x200,/* ATA requests can understand ata_ext requests */ PIM_EXTLUNS = 0x100,/* 64bit extended LUNs supported */ PIM_SCANHILO = 0x80, /* Bus scans from high ID to low ID */ PIM_NOREMOVE = 0x40, /* Removeable devices not included in scan */ PIM_NOINITIATOR = 0x20, /* Initiator role not supported. */ PIM_NOBUSRESET = 0x10, /* User has disabled initial BUS RESET */ PIM_NO_6_BYTE = 0x08, /* Do not send 6-byte commands */ PIM_SEQSCAN = 0x04, /* Do bus scans sequentially, not in parallel */ PIM_UNMAPPED = 0x02, PIM_NOSCAN = 0x01 /* SIM does its own scanning */ } pi_miscflag; /* Path Inquiry CCB */ struct ccb_pathinq_settings_spi { u_int8_t ppr_options; }; struct ccb_pathinq_settings_fc { u_int64_t wwnn; /* world wide node name */ u_int64_t wwpn; /* world wide port name */ u_int32_t port; /* 24 bit port id, if known */ u_int32_t bitrate; /* Mbps */ }; struct ccb_pathinq_settings_sas { u_int32_t bitrate; /* Mbps */ }; struct ccb_pathinq_settings_nvme { uint16_t nsid; /* Namespace ID for this path */ }; #define PATHINQ_SETTINGS_SIZE 128 struct ccb_pathinq { struct ccb_hdr ccb_h; u_int8_t version_num; /* Version number for the SIM/HBA */ u_int8_t hba_inquiry; /* Mimic of INQ byte 7 for the HBA */ u_int16_t target_sprt; /* Flags for target mode support */ u_int32_t hba_misc; /* Misc HBA features */ u_int16_t hba_eng_cnt; /* HBA engine count */ /* Vendor Unique capabilities */ u_int8_t vuhba_flags[VUHBALEN]; u_int32_t max_target; /* Maximum supported Target */ u_int32_t max_lun; /* Maximum supported Lun */ u_int32_t async_flags; /* Installed Async handlers */ path_id_t hpath_id; /* Highest Path ID in the subsystem */ target_id_t initiator_id; /* ID of the HBA on the SCSI bus */ char sim_vid[SIM_IDLEN]; /* Vendor ID of the SIM */ char hba_vid[HBA_IDLEN]; /* Vendor ID of the HBA */ char dev_name[DEV_IDLEN];/* Device name for SIM */ u_int32_t unit_number; /* Unit number for SIM */ u_int32_t bus_id; /* Bus ID for SIM */ u_int32_t base_transfer_speed;/* Base bus speed in KB/sec */ cam_proto protocol; u_int protocol_version; cam_xport transport; u_int transport_version; union { struct ccb_pathinq_settings_spi spi; struct ccb_pathinq_settings_fc fc; struct ccb_pathinq_settings_sas sas; struct ccb_pathinq_settings_nvme nvme; char ccb_pathinq_settings_opaque[PATHINQ_SETTINGS_SIZE]; } xport_specific; u_int maxio; /* Max supported I/O size, in bytes. */ u_int16_t hba_vendor; /* HBA vendor ID */ u_int16_t hba_device; /* HBA device ID */ u_int16_t hba_subvendor; /* HBA subvendor ID */ u_int16_t hba_subdevice; /* HBA subdevice ID */ }; /* Path Statistics CCB */ struct ccb_pathstats { struct ccb_hdr ccb_h; struct timeval last_reset; /* Time of last bus reset/loop init */ }; typedef enum { SMP_FLAG_NONE = 0x00, SMP_FLAG_REQ_SG = 0x01, SMP_FLAG_RSP_SG = 0x02 } ccb_smp_pass_flags; /* * Serial Management Protocol CCB * XXX Currently the semantics for this CCB are that it is executed either * by the addressed device, or that device's parent (i.e. an expander for * any device on an expander) if the addressed device doesn't support SMP. * Later, once we have the ability to probe SMP-only devices and put them * in CAM's topology, the CCB will only be executed by the addressed device * if possible. */ struct ccb_smpio { struct ccb_hdr ccb_h; uint8_t *smp_request; int smp_request_len; uint16_t smp_request_sglist_cnt; uint8_t *smp_response; int smp_response_len; uint16_t smp_response_sglist_cnt; ccb_smp_pass_flags flags; }; typedef union { u_int8_t *sense_ptr; /* * Pointer to storage * for sense information */ /* Storage Area for sense information */ struct scsi_sense_data sense_buf; } sense_t; typedef union { u_int8_t *cdb_ptr; /* Pointer to the CDB bytes to send */ /* Area for the CDB send */ u_int8_t cdb_bytes[IOCDBLEN]; } cdb_t; /* * SCSI I/O Request CCB used for the XPT_SCSI_IO and XPT_CONT_TARGET_IO * function codes. */ struct ccb_scsiio { struct ccb_hdr ccb_h; union ccb *next_ccb; /* Ptr for next CCB for action */ u_int8_t *req_map; /* Ptr to mapping info */ u_int8_t *data_ptr; /* Ptr to the data buf/SG list */ u_int32_t dxfer_len; /* Data transfer length */ /* Autosense storage */ struct scsi_sense_data sense_data; u_int8_t sense_len; /* Number of bytes to autosense */ u_int8_t cdb_len; /* Number of bytes for the CDB */ u_int16_t sglist_cnt; /* Number of SG list entries */ u_int8_t scsi_status; /* Returned SCSI status */ u_int8_t sense_resid; /* Autosense resid length: 2's comp */ u_int32_t resid; /* Transfer residual length: 2's comp */ cdb_t cdb_io; /* Union for CDB bytes/pointer */ u_int8_t *msg_ptr; /* Pointer to the message buffer */ u_int16_t msg_len; /* Number of bytes for the Message */ u_int8_t tag_action; /* What to do for tag queueing */ /* * The tag action should be either the define below (to send a * non-tagged transaction) or one of the defined scsi tag messages * from scsi_message.h. */ #define CAM_TAG_ACTION_NONE 0x00 u_int tag_id; /* tag id from initator (target mode) */ u_int init_id; /* initiator id of who selected */ #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) struct bio *bio; /* Associated bio */ #endif }; static __inline uint8_t * scsiio_cdb_ptr(struct ccb_scsiio *ccb) { return ((ccb->ccb_h.flags & CAM_CDB_POINTER) ? ccb->cdb_io.cdb_ptr : ccb->cdb_io.cdb_bytes); } /* * ATA I/O Request CCB used for the XPT_ATA_IO function code. */ struct ccb_ataio { struct ccb_hdr ccb_h; union ccb *next_ccb; /* Ptr for next CCB for action */ struct ata_cmd cmd; /* ATA command register set */ struct ata_res res; /* ATA result register set */ u_int8_t *data_ptr; /* Ptr to the data buf/SG list */ u_int32_t dxfer_len; /* Data transfer length */ u_int32_t resid; /* Transfer residual length: 2's comp */ u_int8_t ata_flags; /* Flags for the rest of the buffer */ #define ATA_FLAG_AUX 0x1 uint32_t aux; uint32_t unused; }; /* * MMC I/O Request CCB used for the XPT_MMC_IO function code. */ struct ccb_mmcio { struct ccb_hdr ccb_h; union ccb *next_ccb; /* Ptr for next CCB for action */ struct mmc_command cmd; struct mmc_command stop; }; struct ccb_accept_tio { struct ccb_hdr ccb_h; cdb_t cdb_io; /* Union for CDB bytes/pointer */ u_int8_t cdb_len; /* Number of bytes for the CDB */ u_int8_t tag_action; /* What to do for tag queueing */ u_int8_t sense_len; /* Number of bytes of Sense Data */ u_int tag_id; /* tag id from initator (target mode) */ u_int init_id; /* initiator id of who selected */ struct scsi_sense_data sense_data; }; static __inline uint8_t * atio_cdb_ptr(struct ccb_accept_tio *ccb) { return ((ccb->ccb_h.flags & CAM_CDB_POINTER) ? ccb->cdb_io.cdb_ptr : ccb->cdb_io.cdb_bytes); } /* Release SIM Queue */ struct ccb_relsim { struct ccb_hdr ccb_h; u_int32_t release_flags; #define RELSIM_ADJUST_OPENINGS 0x01 #define RELSIM_RELEASE_AFTER_TIMEOUT 0x02 #define RELSIM_RELEASE_AFTER_CMDCMPLT 0x04 #define RELSIM_RELEASE_AFTER_QEMPTY 0x08 u_int32_t openings; u_int32_t release_timeout; /* Abstract argument. */ u_int32_t qfrozen_cnt; }; /* - * NVMe I/O Request CCB used for the XPT_NVME_IO function code. + * NVMe I/O Request CCB used for the XPT_NVME_IO and XPT_NVME_ADMIN function codes. */ struct ccb_nvmeio { struct ccb_hdr ccb_h; union ccb *next_ccb; /* Ptr for next CCB for action */ struct nvme_command cmd; /* NVME command, per NVME standard */ struct nvme_completion cpl; /* NVME completion, per NVME standard */ uint8_t *data_ptr; /* Ptr to the data buf/SG list */ uint32_t dxfer_len; /* Data transfer length */ uint32_t resid; /* Transfer residual length: 2's comp unused ?*/ }; /* * Definitions for the asynchronous callback CCB fields. */ typedef enum { AC_UNIT_ATTENTION = 0x4000,/* Device reported UNIT ATTENTION */ AC_ADVINFO_CHANGED = 0x2000,/* Advance info might have changes */ AC_CONTRACT = 0x1000,/* A contractual callback */ AC_GETDEV_CHANGED = 0x800,/* Getdev info might have changed */ AC_INQ_CHANGED = 0x400,/* Inquiry info might have changed */ AC_TRANSFER_NEG = 0x200,/* New transfer settings in effect */ AC_LOST_DEVICE = 0x100,/* A device went away */ AC_FOUND_DEVICE = 0x080,/* A new device was found */ AC_PATH_DEREGISTERED = 0x040,/* A path has de-registered */ AC_PATH_REGISTERED = 0x020,/* A new path has been registered */ AC_SENT_BDR = 0x010,/* A BDR message was sent to target */ AC_SCSI_AEN = 0x008,/* A SCSI AEN has been received */ AC_UNSOL_RESEL = 0x002,/* Unsolicited reselection occurred */ AC_BUS_RESET = 0x001 /* A SCSI bus reset occurred */ } ac_code; typedef void ac_callback_t (void *softc, u_int32_t code, struct cam_path *path, void *args); /* * Generic Asynchronous callbacks. * * Generic arguments passed bac which are then interpreted between a per-system * contract number. */ #define AC_CONTRACT_DATA_MAX (128 - sizeof (u_int64_t)) struct ac_contract { u_int64_t contract_number; u_int8_t contract_data[AC_CONTRACT_DATA_MAX]; }; #define AC_CONTRACT_DEV_CHG 1 struct ac_device_changed { u_int64_t wwpn; u_int32_t port; target_id_t target; u_int8_t arrived; }; /* Set Asynchronous Callback CCB */ struct ccb_setasync { struct ccb_hdr ccb_h; u_int32_t event_enable; /* Async Event enables */ ac_callback_t *callback; void *callback_arg; }; /* Set Device Type CCB */ struct ccb_setdev { struct ccb_hdr ccb_h; u_int8_t dev_type; /* Value for dev type field in EDT */ }; /* SCSI Control Functions */ /* Abort XPT request CCB */ struct ccb_abort { struct ccb_hdr ccb_h; union ccb *abort_ccb; /* Pointer to CCB to abort */ }; /* Reset SCSI Bus CCB */ struct ccb_resetbus { struct ccb_hdr ccb_h; }; /* Reset SCSI Device CCB */ struct ccb_resetdev { struct ccb_hdr ccb_h; }; /* Terminate I/O Process Request CCB */ struct ccb_termio { struct ccb_hdr ccb_h; union ccb *termio_ccb; /* Pointer to CCB to terminate */ }; typedef enum { CTS_TYPE_CURRENT_SETTINGS, CTS_TYPE_USER_SETTINGS } cts_type; struct ccb_trans_settings_scsi { u_int valid; /* Which fields to honor */ #define CTS_SCSI_VALID_TQ 0x01 u_int flags; #define CTS_SCSI_FLAGS_TAG_ENB 0x01 }; struct ccb_trans_settings_ata { u_int valid; /* Which fields to honor */ #define CTS_ATA_VALID_TQ 0x01 u_int flags; #define CTS_ATA_FLAGS_TAG_ENB 0x01 }; struct ccb_trans_settings_spi { u_int valid; /* Which fields to honor */ #define CTS_SPI_VALID_SYNC_RATE 0x01 #define CTS_SPI_VALID_SYNC_OFFSET 0x02 #define CTS_SPI_VALID_BUS_WIDTH 0x04 #define CTS_SPI_VALID_DISC 0x08 #define CTS_SPI_VALID_PPR_OPTIONS 0x10 u_int flags; #define CTS_SPI_FLAGS_DISC_ENB 0x01 u_int sync_period; u_int sync_offset; u_int bus_width; u_int ppr_options; }; struct ccb_trans_settings_fc { u_int valid; /* Which fields to honor */ #define CTS_FC_VALID_WWNN 0x8000 #define CTS_FC_VALID_WWPN 0x4000 #define CTS_FC_VALID_PORT 0x2000 #define CTS_FC_VALID_SPEED 0x1000 u_int64_t wwnn; /* world wide node name */ u_int64_t wwpn; /* world wide port name */ u_int32_t port; /* 24 bit port id, if known */ u_int32_t bitrate; /* Mbps */ }; struct ccb_trans_settings_sas { u_int valid; /* Which fields to honor */ #define CTS_SAS_VALID_SPEED 0x1000 u_int32_t bitrate; /* Mbps */ }; struct ccb_trans_settings_pata { u_int valid; /* Which fields to honor */ #define CTS_ATA_VALID_MODE 0x01 #define CTS_ATA_VALID_BYTECOUNT 0x02 #define CTS_ATA_VALID_ATAPI 0x20 #define CTS_ATA_VALID_CAPS 0x40 int mode; /* Mode */ u_int bytecount; /* Length of PIO transaction */ u_int atapi; /* Length of ATAPI CDB */ u_int caps; /* Device and host SATA caps. */ #define CTS_ATA_CAPS_H 0x0000ffff #define CTS_ATA_CAPS_H_DMA48 0x00000001 /* 48-bit DMA */ #define CTS_ATA_CAPS_D 0xffff0000 }; struct ccb_trans_settings_sata { u_int valid; /* Which fields to honor */ #define CTS_SATA_VALID_MODE 0x01 #define CTS_SATA_VALID_BYTECOUNT 0x02 #define CTS_SATA_VALID_REVISION 0x04 #define CTS_SATA_VALID_PM 0x08 #define CTS_SATA_VALID_TAGS 0x10 #define CTS_SATA_VALID_ATAPI 0x20 #define CTS_SATA_VALID_CAPS 0x40 int mode; /* Legacy PATA mode */ u_int bytecount; /* Length of PIO transaction */ int revision; /* SATA revision */ u_int pm_present; /* PM is present (XPT->SIM) */ u_int tags; /* Number of allowed tags */ u_int atapi; /* Length of ATAPI CDB */ u_int caps; /* Device and host SATA caps. */ #define CTS_SATA_CAPS_H 0x0000ffff #define CTS_SATA_CAPS_H_PMREQ 0x00000001 #define CTS_SATA_CAPS_H_APST 0x00000002 #define CTS_SATA_CAPS_H_DMAAA 0x00000010 /* Auto-activation */ #define CTS_SATA_CAPS_H_AN 0x00000020 /* Async. notification */ #define CTS_SATA_CAPS_D 0xffff0000 #define CTS_SATA_CAPS_D_PMREQ 0x00010000 #define CTS_SATA_CAPS_D_APST 0x00020000 }; struct ccb_trans_settings_nvme { u_int valid; /* Which fields to honor */ #define CTS_NVME_VALID_SPEC 0x01 #define CTS_NVME_VALID_CAPS 0x02 u_int spec_major; /* Major version of spec supported */ u_int spec_minor; /* Minor verison of spec supported */ u_int spec_tiny; /* Tiny version of spec supported */ u_int max_xfer; /* Max transfer size (0 -> unlimited */ u_int caps; }; #include struct ccb_trans_settings_mmc { struct mmc_ios ios; #define MMC_CLK (1 << 1) #define MMC_VDD (1 << 2) #define MMC_CS (1 << 3) #define MMC_BW (1 << 4) #define MMC_PM (1 << 5) #define MMC_BT (1 << 6) #define MMC_BM (1 << 7) uint32_t ios_valid; /* The folowing is used only for GET_TRAN_SETTINGS */ uint32_t host_ocr; int host_f_min; int host_f_max; #define MMC_CAP_4_BIT_DATA (1 << 0) /* Can do 4-bit data transfers */ #define MMC_CAP_8_BIT_DATA (1 << 1) /* Can do 8-bit data transfers */ #define MMC_CAP_HSPEED (1 << 2) /* Can do High Speed transfers */ uint32_t host_caps; }; /* Get/Set transfer rate/width/disconnection/tag queueing settings */ struct ccb_trans_settings { struct ccb_hdr ccb_h; cts_type type; /* Current or User settings */ cam_proto protocol; u_int protocol_version; cam_xport transport; u_int transport_version; union { u_int valid; /* Which fields to honor */ struct ccb_trans_settings_ata ata; struct ccb_trans_settings_scsi scsi; struct ccb_trans_settings_nvme nvme; struct ccb_trans_settings_mmc mmc; } proto_specific; union { u_int valid; /* Which fields to honor */ struct ccb_trans_settings_spi spi; struct ccb_trans_settings_fc fc; struct ccb_trans_settings_sas sas; struct ccb_trans_settings_pata ata; struct ccb_trans_settings_sata sata; struct ccb_trans_settings_nvme nvme; } xport_specific; }; /* * Calculate the geometry parameters for a device * give the block size and volume size in blocks. */ struct ccb_calc_geometry { struct ccb_hdr ccb_h; u_int32_t block_size; u_int64_t volume_size; u_int32_t cylinders; u_int8_t heads; u_int8_t secs_per_track; }; /* * Set or get SIM (and transport) specific knobs */ #define KNOB_VALID_ADDRESS 0x1 #define KNOB_VALID_ROLE 0x2 #define KNOB_ROLE_NONE 0x0 #define KNOB_ROLE_INITIATOR 0x1 #define KNOB_ROLE_TARGET 0x2 #define KNOB_ROLE_BOTH 0x3 struct ccb_sim_knob_settings_spi { u_int valid; u_int initiator_id; u_int role; }; struct ccb_sim_knob_settings_fc { u_int valid; u_int64_t wwnn; /* world wide node name */ u_int64_t wwpn; /* world wide port name */ u_int role; }; struct ccb_sim_knob_settings_sas { u_int valid; u_int64_t wwnn; /* world wide node name */ u_int role; }; #define KNOB_SETTINGS_SIZE 128 struct ccb_sim_knob { struct ccb_hdr ccb_h; union { u_int valid; /* Which fields to honor */ struct ccb_sim_knob_settings_spi spi; struct ccb_sim_knob_settings_fc fc; struct ccb_sim_knob_settings_sas sas; char pad[KNOB_SETTINGS_SIZE]; } xport_specific; }; /* * Rescan the given bus, or bus/target/lun */ struct ccb_rescan { struct ccb_hdr ccb_h; cam_flags flags; }; /* * Turn on debugging for the given bus, bus/target, or bus/target/lun. */ struct ccb_debug { struct ccb_hdr ccb_h; cam_debug_flags flags; }; /* Target mode structures. */ struct ccb_en_lun { struct ccb_hdr ccb_h; u_int16_t grp6_len; /* Group 6 VU CDB length */ u_int16_t grp7_len; /* Group 7 VU CDB length */ u_int8_t enable; }; /* old, barely used immediate notify, binary compatibility */ struct ccb_immed_notify { struct ccb_hdr ccb_h; struct scsi_sense_data sense_data; u_int8_t sense_len; /* Number of bytes in sense buffer */ u_int8_t initiator_id; /* Id of initiator that selected */ u_int8_t message_args[7]; /* Message Arguments */ }; struct ccb_notify_ack { struct ccb_hdr ccb_h; u_int16_t seq_id; /* Sequence identifier */ u_int8_t event; /* Event flags */ }; struct ccb_immediate_notify { struct ccb_hdr ccb_h; u_int tag_id; /* Tag for immediate notify */ u_int seq_id; /* Tag for target of notify */ u_int initiator_id; /* Initiator Identifier */ u_int arg; /* Function specific */ }; struct ccb_notify_acknowledge { struct ccb_hdr ccb_h; u_int tag_id; /* Tag for immediate notify */ u_int seq_id; /* Tar for target of notify */ u_int initiator_id; /* Initiator Identifier */ u_int arg; /* Response information */ /* * Lower byte of arg is one of RESPONSE CODE values defined below * (subset of response codes from SPL-4 and FCP-4 specifications), * upper 3 bytes is code-specific ADDITIONAL RESPONSE INFORMATION. */ #define CAM_RSP_TMF_COMPLETE 0x00 #define CAM_RSP_TMF_REJECTED 0x04 #define CAM_RSP_TMF_FAILED 0x05 #define CAM_RSP_TMF_SUCCEEDED 0x08 #define CAM_RSP_TMF_INCORRECT_LUN 0x09 }; /* HBA engine structures. */ typedef enum { EIT_BUFFER, /* Engine type: buffer memory */ EIT_LOSSLESS, /* Engine type: lossless compression */ EIT_LOSSY, /* Engine type: lossy compression */ EIT_ENCRYPT /* Engine type: encryption */ } ei_type; typedef enum { EAD_VUNIQUE, /* Engine algorithm ID: vendor unique */ EAD_LZ1V1, /* Engine algorithm ID: LZ1 var.1 */ EAD_LZ2V1, /* Engine algorithm ID: LZ2 var.1 */ EAD_LZ2V2 /* Engine algorithm ID: LZ2 var.2 */ } ei_algo; struct ccb_eng_inq { struct ccb_hdr ccb_h; u_int16_t eng_num; /* The engine number for this inquiry */ ei_type eng_type; /* Returned engine type */ ei_algo eng_algo; /* Returned engine algorithm type */ u_int32_t eng_memeory; /* Returned engine memory size */ }; struct ccb_eng_exec { /* This structure must match SCSIIO size */ struct ccb_hdr ccb_h; u_int8_t *pdrv_ptr; /* Ptr used by the peripheral driver */ u_int8_t *req_map; /* Ptr for mapping info on the req. */ u_int8_t *data_ptr; /* Pointer to the data buf/SG list */ u_int32_t dxfer_len; /* Data transfer length */ u_int8_t *engdata_ptr; /* Pointer to the engine buffer data */ u_int16_t sglist_cnt; /* Num of scatter gather list entries */ u_int32_t dmax_len; /* Destination data maximum length */ u_int32_t dest_len; /* Destination data length */ int32_t src_resid; /* Source residual length: 2's comp */ u_int32_t timeout; /* Timeout value */ u_int16_t eng_num; /* Engine number for this request */ u_int16_t vu_flags; /* Vendor Unique flags */ }; /* * Definitions for the timeout field in the SCSI I/O CCB. */ #define CAM_TIME_DEFAULT 0x00000000 /* Use SIM default value */ #define CAM_TIME_INFINITY 0xFFFFFFFF /* Infinite timeout */ #define CAM_SUCCESS 0 /* For signaling general success */ #define CAM_FAILURE 1 /* For signaling general failure */ #define CAM_FALSE 0 #define CAM_TRUE 1 #define XPT_CCB_INVALID -1 /* for signaling a bad CCB to free */ /* * CCB for working with advanced device information. This operates in a fashion * similar to XPT_GDEV_TYPE. Specify the target in ccb_h, the buffer * type requested, and provide a buffer size/buffer to write to. If the * buffer is too small, provsiz will be larger than bufsiz. */ struct ccb_dev_advinfo { struct ccb_hdr ccb_h; uint32_t flags; #define CDAI_FLAG_NONE 0x0 /* No flags set */ #define CDAI_FLAG_STORE 0x1 /* If set, action becomes store */ uint32_t buftype; /* IN: Type of data being requested */ /* NB: buftype is interpreted on a per-transport basis */ #define CDAI_TYPE_SCSI_DEVID 1 #define CDAI_TYPE_SERIAL_NUM 2 #define CDAI_TYPE_PHYS_PATH 3 #define CDAI_TYPE_RCAPLONG 4 #define CDAI_TYPE_EXT_INQ 5 off_t bufsiz; /* IN: Size of external buffer */ #define CAM_SCSI_DEVID_MAXLEN 65536 /* length in buffer is an uint16_t */ off_t provsiz; /* OUT: Size required/used */ uint8_t *buf; /* IN/OUT: Buffer for requested data */ }; /* * CCB for sending async events */ struct ccb_async { struct ccb_hdr ccb_h; uint32_t async_code; off_t async_arg_size; void *async_arg_ptr; }; /* * Union of all CCB types for kernel space allocation. This union should * never be used for manipulating CCBs - its only use is for the allocation * and deallocation of raw CCB space and is the return type of xpt_ccb_alloc * and the argument to xpt_ccb_free. */ union ccb { struct ccb_hdr ccb_h; /* For convenience */ struct ccb_scsiio csio; struct ccb_getdev cgd; struct ccb_getdevlist cgdl; struct ccb_pathinq cpi; struct ccb_relsim crs; struct ccb_setasync csa; struct ccb_setdev csd; struct ccb_pathstats cpis; struct ccb_getdevstats cgds; struct ccb_dev_match cdm; struct ccb_trans_settings cts; struct ccb_calc_geometry ccg; struct ccb_sim_knob knob; struct ccb_abort cab; struct ccb_resetbus crb; struct ccb_resetdev crd; struct ccb_termio tio; struct ccb_accept_tio atio; struct ccb_scsiio ctio; struct ccb_en_lun cel; struct ccb_immed_notify cin; struct ccb_notify_ack cna; struct ccb_immediate_notify cin1; struct ccb_notify_acknowledge cna2; struct ccb_eng_inq cei; struct ccb_eng_exec cee; struct ccb_smpio smpio; struct ccb_rescan crcn; struct ccb_debug cdbg; struct ccb_ataio ataio; struct ccb_dev_advinfo cdai; struct ccb_async casync; struct ccb_nvmeio nvmeio; struct ccb_mmcio mmcio; }; #define CCB_CLEAR_ALL_EXCEPT_HDR(ccbp) \ bzero((char *)(ccbp) + sizeof((ccbp)->ccb_h), \ sizeof(*(ccbp)) - sizeof((ccbp)->ccb_h)) __BEGIN_DECLS static __inline void cam_fill_csio(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int32_t flags, u_int8_t tag_action, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, u_int8_t cdb_len, u_int32_t timeout); static __inline void cam_fill_nvmeio(struct ccb_nvmeio *nvmeio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int32_t flags, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int32_t timeout); static __inline void cam_fill_ctio(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int32_t flags, u_int tag_action, u_int tag_id, u_int init_id, u_int scsi_status, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int32_t timeout); static __inline void cam_fill_ataio(struct ccb_ataio *ataio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int32_t flags, u_int tag_action, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int32_t timeout); static __inline void cam_fill_smpio(struct ccb_smpio *smpio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint32_t flags, uint8_t *smp_request, int smp_request_len, uint8_t *smp_response, int smp_response_len, uint32_t timeout); static __inline void cam_fill_mmcio(struct ccb_mmcio *mmcio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint32_t flags, uint32_t mmc_opcode, uint32_t mmc_arg, uint32_t mmc_flags, struct mmc_data *mmc_d, uint32_t timeout); static __inline void cam_fill_csio(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int32_t flags, u_int8_t tag_action, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, u_int8_t cdb_len, u_int32_t timeout) { csio->ccb_h.func_code = XPT_SCSI_IO; csio->ccb_h.flags = flags; csio->ccb_h.xflags = 0; csio->ccb_h.retry_count = retries; csio->ccb_h.cbfcnp = cbfcnp; csio->ccb_h.timeout = timeout; csio->data_ptr = data_ptr; csio->dxfer_len = dxfer_len; csio->sense_len = sense_len; csio->cdb_len = cdb_len; csio->tag_action = tag_action; #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) csio->bio = NULL; #endif } static __inline void cam_fill_ctio(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int32_t flags, u_int tag_action, u_int tag_id, u_int init_id, u_int scsi_status, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int32_t timeout) { csio->ccb_h.func_code = XPT_CONT_TARGET_IO; csio->ccb_h.flags = flags; csio->ccb_h.xflags = 0; csio->ccb_h.retry_count = retries; csio->ccb_h.cbfcnp = cbfcnp; csio->ccb_h.timeout = timeout; csio->data_ptr = data_ptr; csio->dxfer_len = dxfer_len; csio->scsi_status = scsi_status; csio->tag_action = tag_action; csio->tag_id = tag_id; csio->init_id = init_id; } static __inline void cam_fill_ataio(struct ccb_ataio *ataio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int32_t flags, u_int tag_action __unused, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int32_t timeout) { ataio->ccb_h.func_code = XPT_ATA_IO; ataio->ccb_h.flags = flags; ataio->ccb_h.retry_count = retries; ataio->ccb_h.cbfcnp = cbfcnp; ataio->ccb_h.timeout = timeout; ataio->data_ptr = data_ptr; ataio->dxfer_len = dxfer_len; ataio->ata_flags = 0; } static __inline void cam_fill_smpio(struct ccb_smpio *smpio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint32_t flags, uint8_t *smp_request, int smp_request_len, uint8_t *smp_response, int smp_response_len, uint32_t timeout) { #ifdef _KERNEL KASSERT((flags & CAM_DIR_MASK) == CAM_DIR_BOTH, ("direction != CAM_DIR_BOTH")); KASSERT((smp_request != NULL) && (smp_response != NULL), ("need valid request and response buffers")); KASSERT((smp_request_len != 0) && (smp_response_len != 0), ("need non-zero request and response lengths")); #endif /*_KERNEL*/ smpio->ccb_h.func_code = XPT_SMP_IO; smpio->ccb_h.flags = flags; smpio->ccb_h.retry_count = retries; smpio->ccb_h.cbfcnp = cbfcnp; smpio->ccb_h.timeout = timeout; smpio->smp_request = smp_request; smpio->smp_request_len = smp_request_len; smpio->smp_response = smp_response; smpio->smp_response_len = smp_response_len; } static __inline void cam_fill_mmcio(struct ccb_mmcio *mmcio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint32_t flags, uint32_t mmc_opcode, uint32_t mmc_arg, uint32_t mmc_flags, struct mmc_data *mmc_d, uint32_t timeout) { mmcio->ccb_h.func_code = XPT_MMC_IO; mmcio->ccb_h.flags = flags; mmcio->ccb_h.retry_count = retries; mmcio->ccb_h.cbfcnp = cbfcnp; mmcio->ccb_h.timeout = timeout; mmcio->cmd.opcode = mmc_opcode; mmcio->cmd.arg = mmc_arg; mmcio->cmd.flags = mmc_flags; mmcio->stop.opcode = 0; mmcio->stop.arg = 0; mmcio->stop.flags = 0; if (mmc_d != NULL) { mmcio->cmd.data = mmc_d; } else mmcio->cmd.data = NULL; mmcio->cmd.resp[0] = 0; mmcio->cmd.resp[1] = 0; mmcio->cmd.resp[2] = 0; mmcio->cmd.resp[3] = 0; } static __inline void cam_set_ccbstatus(union ccb *ccb, cam_status status) { ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= status; } static __inline cam_status cam_ccb_status(union ccb *ccb) { return ((cam_status)(ccb->ccb_h.status & CAM_STATUS_MASK)); } void cam_calc_geometry(struct ccb_calc_geometry *ccg, int extended); static __inline void cam_fill_nvmeio(struct ccb_nvmeio *nvmeio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int32_t flags, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int32_t timeout) { nvmeio->ccb_h.func_code = XPT_NVME_IO; + nvmeio->ccb_h.flags = flags; + nvmeio->ccb_h.retry_count = retries; + nvmeio->ccb_h.cbfcnp = cbfcnp; + nvmeio->ccb_h.timeout = timeout; + nvmeio->data_ptr = data_ptr; + nvmeio->dxfer_len = dxfer_len; +} + +static __inline void +cam_fill_nvmeadmin(struct ccb_nvmeio *nvmeio, u_int32_t retries, + void (*cbfcnp)(struct cam_periph *, union ccb *), + u_int32_t flags, u_int8_t *data_ptr, u_int32_t dxfer_len, + u_int32_t timeout) +{ + nvmeio->ccb_h.func_code = XPT_NVME_ADMIN; nvmeio->ccb_h.flags = flags; nvmeio->ccb_h.retry_count = retries; nvmeio->ccb_h.cbfcnp = cbfcnp; nvmeio->ccb_h.timeout = timeout; nvmeio->data_ptr = data_ptr; nvmeio->dxfer_len = dxfer_len; } __END_DECLS #endif /* _CAM_CAM_CCB_H */ Index: head/sys/cam/cam_periph.c =================================================================== --- head/sys/cam/cam_periph.c (revision 320983) +++ head/sys/cam/cam_periph.c (revision 320984) @@ -1,2007 +1,2023 @@ /*- * Common functions for CAM "type" (peripheral) drivers. * * Copyright (c) 1997, 1998 Justin T. Gibbs. * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static u_int camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, path_id_t pathid, target_id_t target, lun_id_t lun); static u_int camperiphunit(struct periph_driver *p_drv, path_id_t pathid, target_id_t target, lun_id_t lun); static void camperiphdone(struct cam_periph *periph, union ccb *done_ccb); static void camperiphfree(struct cam_periph *periph); static int camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, cam_flags camflags, u_int32_t sense_flags, int *openings, u_int32_t *relsim_flags, u_int32_t *timeout, u_int32_t *action, const char **action_string); static int camperiphscsisenseerror(union ccb *ccb, union ccb **orig_ccb, cam_flags camflags, u_int32_t sense_flags, int *openings, u_int32_t *relsim_flags, u_int32_t *timeout, u_int32_t *action, const char **action_string); static void cam_periph_devctl_notify(union ccb *ccb); static int nperiph_drivers; static int initialized = 0; struct periph_driver **periph_drivers; static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers"); static int periph_selto_delay = 1000; TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay); static int periph_noresrc_delay = 500; TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay); static int periph_busy_delay = 500; TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay); void periphdriver_register(void *data) { struct periph_driver *drv = (struct periph_driver *)data; struct periph_driver **newdrivers, **old; int ndrivers; again: ndrivers = nperiph_drivers + 2; newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH, M_WAITOK); xpt_lock_buses(); if (ndrivers != nperiph_drivers + 2) { /* * Lost race against itself; go around. */ xpt_unlock_buses(); free(newdrivers, M_CAMPERIPH); goto again; } if (periph_drivers) bcopy(periph_drivers, newdrivers, sizeof(*newdrivers) * nperiph_drivers); newdrivers[nperiph_drivers] = drv; newdrivers[nperiph_drivers + 1] = NULL; old = periph_drivers; periph_drivers = newdrivers; nperiph_drivers++; xpt_unlock_buses(); if (old) free(old, M_CAMPERIPH); /* If driver marked as early or it is late now, initialize it. */ if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || initialized > 1) (*drv->init)(); } int periphdriver_unregister(void *data) { struct periph_driver *drv = (struct periph_driver *)data; int error, n; /* If driver marked as early or it is late now, deinitialize it. */ if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) || initialized > 1) { if (drv->deinit == NULL) { printf("CAM periph driver '%s' doesn't have deinit.\n", drv->driver_name); return (EOPNOTSUPP); } error = drv->deinit(); if (error != 0) return (error); } xpt_lock_buses(); for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++) ; KASSERT(n < nperiph_drivers, ("Periph driver '%s' was not registered", drv->driver_name)); for (; n + 1 < nperiph_drivers; n++) periph_drivers[n] = periph_drivers[n + 1]; periph_drivers[n + 1] = NULL; nperiph_drivers--; xpt_unlock_buses(); return (0); } void periphdriver_init(int level) { int i, early; initialized = max(initialized, level); for (i = 0; periph_drivers[i] != NULL; i++) { early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2; if (early == initialized) (*periph_drivers[i]->init)(); } } cam_status cam_periph_alloc(periph_ctor_t *periph_ctor, periph_oninv_t *periph_oninvalidate, periph_dtor_t *periph_dtor, periph_start_t *periph_start, char *name, cam_periph_type type, struct cam_path *path, ac_callback_t *ac_callback, ac_code code, void *arg) { struct periph_driver **p_drv; struct cam_sim *sim; struct cam_periph *periph; struct cam_periph *cur_periph; path_id_t path_id; target_id_t target_id; lun_id_t lun_id; cam_status status; u_int init_level; init_level = 0; /* * Handle Hot-Plug scenarios. If there is already a peripheral * of our type assigned to this path, we are likely waiting for * final close on an old, invalidated, peripheral. If this is * the case, queue up a deferred call to the peripheral's async * handler. If it looks like a mistaken re-allocation, complain. */ if ((periph = cam_periph_find(path, name)) != NULL) { if ((periph->flags & CAM_PERIPH_INVALID) != 0 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) { periph->flags |= CAM_PERIPH_NEW_DEV_FOUND; periph->deferred_callback = ac_callback; periph->deferred_ac = code; return (CAM_REQ_INPROG); } else { printf("cam_periph_alloc: attempt to re-allocate " "valid device %s%d rejected flags %#x " "refcount %d\n", periph->periph_name, periph->unit_number, periph->flags, periph->refcount); } return (CAM_REQ_INVALID); } periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH, M_NOWAIT|M_ZERO); if (periph == NULL) return (CAM_RESRC_UNAVAIL); init_level++; sim = xpt_path_sim(path); path_id = xpt_path_path_id(path); target_id = xpt_path_target_id(path); lun_id = xpt_path_lun_id(path); periph->periph_start = periph_start; periph->periph_dtor = periph_dtor; periph->periph_oninval = periph_oninvalidate; periph->type = type; periph->periph_name = name; periph->scheduled_priority = CAM_PRIORITY_NONE; periph->immediate_priority = CAM_PRIORITY_NONE; periph->refcount = 1; /* Dropped by invalidation. */ periph->sim = sim; SLIST_INIT(&periph->ccb_list); status = xpt_create_path(&path, periph, path_id, target_id, lun_id); if (status != CAM_REQ_CMP) goto failure; periph->path = path; xpt_lock_buses(); for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { if (strcmp((*p_drv)->driver_name, name) == 0) break; } if (*p_drv == NULL) { printf("cam_periph_alloc: invalid periph name '%s'\n", name); xpt_unlock_buses(); xpt_free_path(periph->path); free(periph, M_CAMPERIPH); return (CAM_REQ_INVALID); } periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id); cur_periph = TAILQ_FIRST(&(*p_drv)->units); while (cur_periph != NULL && cur_periph->unit_number < periph->unit_number) cur_periph = TAILQ_NEXT(cur_periph, unit_links); if (cur_periph != NULL) { KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list")); TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links); } else { TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links); (*p_drv)->generation++; } xpt_unlock_buses(); init_level++; status = xpt_add_periph(periph); if (status != CAM_REQ_CMP) goto failure; init_level++; CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n")); status = periph_ctor(periph, arg); if (status == CAM_REQ_CMP) init_level++; failure: switch (init_level) { case 4: /* Initialized successfully */ break; case 3: CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); xpt_remove_periph(periph); /* FALLTHROUGH */ case 2: xpt_lock_buses(); TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links); xpt_unlock_buses(); xpt_free_path(periph->path); /* FALLTHROUGH */ case 1: free(periph, M_CAMPERIPH); /* FALLTHROUGH */ case 0: /* No cleanup to perform. */ break; default: panic("%s: Unknown init level", __func__); } return(status); } /* * Find a peripheral structure with the specified path, target, lun, * and (optionally) type. If the name is NULL, this function will return * the first peripheral driver that matches the specified path. */ struct cam_periph * cam_periph_find(struct cam_path *path, char *name) { struct periph_driver **p_drv; struct cam_periph *periph; xpt_lock_buses(); for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0)) continue; TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { if (xpt_path_comp(periph->path, path) == 0) { xpt_unlock_buses(); cam_periph_assert(periph, MA_OWNED); return(periph); } } if (name != NULL) { xpt_unlock_buses(); return(NULL); } } xpt_unlock_buses(); return(NULL); } /* * Find peripheral driver instances attached to the specified path. */ int cam_periph_list(struct cam_path *path, struct sbuf *sb) { struct sbuf local_sb; struct periph_driver **p_drv; struct cam_periph *periph; int count; int sbuf_alloc_len; sbuf_alloc_len = 16; retry: sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN); count = 0; xpt_lock_buses(); for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { if (xpt_path_comp(periph->path, path) != 0) continue; if (sbuf_len(&local_sb) != 0) sbuf_cat(&local_sb, ","); sbuf_printf(&local_sb, "%s%d", periph->periph_name, periph->unit_number); if (sbuf_error(&local_sb) == ENOMEM) { sbuf_alloc_len *= 2; xpt_unlock_buses(); sbuf_delete(&local_sb); goto retry; } count++; } } xpt_unlock_buses(); sbuf_finish(&local_sb); sbuf_cpy(sb, sbuf_data(&local_sb)); sbuf_delete(&local_sb); return (count); } cam_status cam_periph_acquire(struct cam_periph *periph) { cam_status status; status = CAM_REQ_CMP_ERR; if (periph == NULL) return (status); xpt_lock_buses(); if ((periph->flags & CAM_PERIPH_INVALID) == 0) { periph->refcount++; status = CAM_REQ_CMP; } xpt_unlock_buses(); return (status); } void cam_periph_doacquire(struct cam_periph *periph) { xpt_lock_buses(); KASSERT(periph->refcount >= 1, ("cam_periph_doacquire() with refcount == %d", periph->refcount)); periph->refcount++; xpt_unlock_buses(); } void cam_periph_release_locked_buses(struct cam_periph *periph) { cam_periph_assert(periph, MA_OWNED); KASSERT(periph->refcount >= 1, ("periph->refcount >= 1")); if (--periph->refcount == 0) camperiphfree(periph); } void cam_periph_release_locked(struct cam_periph *periph) { if (periph == NULL) return; xpt_lock_buses(); cam_periph_release_locked_buses(periph); xpt_unlock_buses(); } void cam_periph_release(struct cam_periph *periph) { struct mtx *mtx; if (periph == NULL) return; cam_periph_assert(periph, MA_NOTOWNED); mtx = cam_periph_mtx(periph); mtx_lock(mtx); cam_periph_release_locked(periph); mtx_unlock(mtx); } int cam_periph_hold(struct cam_periph *periph, int priority) { int error; /* * Increment the reference count on the peripheral * while we wait for our lock attempt to succeed * to ensure the peripheral doesn't disappear out * from user us while we sleep. */ if (cam_periph_acquire(periph) != CAM_REQ_CMP) return (ENXIO); cam_periph_assert(periph, MA_OWNED); while ((periph->flags & CAM_PERIPH_LOCKED) != 0) { periph->flags |= CAM_PERIPH_LOCK_WANTED; if ((error = cam_periph_sleep(periph, periph, priority, "caplck", 0)) != 0) { cam_periph_release_locked(periph); return (error); } if (periph->flags & CAM_PERIPH_INVALID) { cam_periph_release_locked(periph); return (ENXIO); } } periph->flags |= CAM_PERIPH_LOCKED; return (0); } void cam_periph_unhold(struct cam_periph *periph) { cam_periph_assert(periph, MA_OWNED); periph->flags &= ~CAM_PERIPH_LOCKED; if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) { periph->flags &= ~CAM_PERIPH_LOCK_WANTED; wakeup(periph); } cam_periph_release_locked(periph); } /* * Look for the next unit number that is not currently in use for this * peripheral type starting at "newunit". Also exclude unit numbers that * are reserved by for future "hardwiring" unless we already know that this * is a potential wired device. Only assume that the device is "wired" the * first time through the loop since after that we'll be looking at unit * numbers that did not match a wiring entry. */ static u_int camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired, path_id_t pathid, target_id_t target, lun_id_t lun) { struct cam_periph *periph; char *periph_name; int i, val, dunit, r; const char *dname, *strval; periph_name = p_drv->driver_name; for (;;newunit++) { for (periph = TAILQ_FIRST(&p_drv->units); periph != NULL && periph->unit_number != newunit; periph = TAILQ_NEXT(periph, unit_links)) ; if (periph != NULL && periph->unit_number == newunit) { if (wired != 0) { xpt_print(periph->path, "Duplicate Wired " "Device entry!\n"); xpt_print(periph->path, "Second device (%s " "device at scbus%d target %d lun %d) will " "not be wired\n", periph_name, pathid, target, lun); wired = 0; } continue; } if (wired) break; /* * Don't match entries like "da 4" as a wired down * device, but do match entries like "da 4 target 5" * or even "da 4 scbus 1". */ i = 0; dname = periph_name; for (;;) { r = resource_find_dev(&i, dname, &dunit, NULL, NULL); if (r != 0) break; /* if no "target" and no specific scbus, skip */ if (resource_int_value(dname, dunit, "target", &val) && (resource_string_value(dname, dunit, "at",&strval)|| strcmp(strval, "scbus") == 0)) continue; if (newunit == dunit) break; } if (r != 0) break; } return (newunit); } static u_int camperiphunit(struct periph_driver *p_drv, path_id_t pathid, target_id_t target, lun_id_t lun) { u_int unit; int wired, i, val, dunit; const char *dname, *strval; char pathbuf[32], *periph_name; periph_name = p_drv->driver_name; snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid); unit = 0; i = 0; dname = periph_name; for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0; wired = 0) { if (resource_string_value(dname, dunit, "at", &strval) == 0) { if (strcmp(strval, pathbuf) != 0) continue; wired++; } if (resource_int_value(dname, dunit, "target", &val) == 0) { if (val != target) continue; wired++; } if (resource_int_value(dname, dunit, "lun", &val) == 0) { if (val != lun) continue; wired++; } if (wired != 0) { unit = dunit; break; } } /* * Either start from 0 looking for the next unit or from * the unit number given in the resource config. This way, * if we have wildcard matches, we don't return the same * unit number twice. */ unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun); return (unit); } void cam_periph_invalidate(struct cam_periph *periph) { cam_periph_assert(periph, MA_OWNED); /* * We only call this routine the first time a peripheral is * invalidated. */ if ((periph->flags & CAM_PERIPH_INVALID) != 0) return; CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n")); if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) { struct sbuf sb; char buffer[160]; sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN); xpt_denounce_periph_sbuf(periph, &sb); sbuf_finish(&sb); sbuf_putbuf(&sb); } periph->flags |= CAM_PERIPH_INVALID; periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND; if (periph->periph_oninval != NULL) periph->periph_oninval(periph); cam_periph_release_locked(periph); } static void camperiphfree(struct cam_periph *periph) { struct periph_driver **p_drv; struct periph_driver *drv; cam_periph_assert(periph, MA_OWNED); KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating", periph->periph_name, periph->unit_number)); for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0) break; } if (*p_drv == NULL) { printf("camperiphfree: attempt to free non-existant periph\n"); return; } /* * Cache a pointer to the periph_driver structure. If a * periph_driver is added or removed from the array (see * periphdriver_register()) while we drop the toplogy lock * below, p_drv may change. This doesn't protect against this * particular periph_driver going away. That will require full * reference counting in the periph_driver infrastructure. */ drv = *p_drv; /* * We need to set this flag before dropping the topology lock, to * let anyone who is traversing the list that this peripheral is * about to be freed, and there will be no more reference count * checks. */ periph->flags |= CAM_PERIPH_FREE; /* * The peripheral destructor semantics dictate calling with only the * SIM mutex held. Since it might sleep, it should not be called * with the topology lock held. */ xpt_unlock_buses(); /* * We need to call the peripheral destructor prior to removing the * peripheral from the list. Otherwise, we risk running into a * scenario where the peripheral unit number may get reused * (because it has been removed from the list), but some resources * used by the peripheral are still hanging around. In particular, * the devfs nodes used by some peripherals like the pass(4) driver * aren't fully cleaned up until the destructor is run. If the * unit number is reused before the devfs instance is fully gone, * devfs will panic. */ if (periph->periph_dtor != NULL) periph->periph_dtor(periph); /* * The peripheral list is protected by the topology lock. */ xpt_lock_buses(); TAILQ_REMOVE(&drv->units, periph, unit_links); drv->generation++; xpt_remove_periph(periph); xpt_unlock_buses(); if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) xpt_print(periph->path, "Periph destroyed\n"); else CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n")); if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) { union ccb ccb; void *arg; switch (periph->deferred_ac) { case AC_FOUND_DEVICE: ccb.ccb_h.func_code = XPT_GDEV_TYPE; xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); xpt_action(&ccb); arg = &ccb; break; case AC_PATH_REGISTERED: ccb.ccb_h.func_code = XPT_PATH_INQ; xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); xpt_action(&ccb); arg = &ccb; break; default: arg = NULL; break; } periph->deferred_callback(NULL, periph->deferred_ac, periph->path, arg); } xpt_free_path(periph->path); free(periph, M_CAMPERIPH); xpt_lock_buses(); } /* * Map user virtual pointers into kernel virtual address space, so we can * access the memory. This is now a generic function that centralizes most * of the sanity checks on the data flags, if any. * This also only works for up to MAXPHYS memory. Since we use * buffers to map stuff in and out, we're limited to the buffer size. */ int cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo, u_int maxmap) { int numbufs, i, j; int flags[CAM_PERIPH_MAXMAPS]; u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; u_int32_t lengths[CAM_PERIPH_MAXMAPS]; u_int32_t dirs[CAM_PERIPH_MAXMAPS]; if (maxmap == 0) maxmap = DFLTPHYS; /* traditional default */ else if (maxmap > MAXPHYS) maxmap = MAXPHYS; /* for safety */ switch(ccb->ccb_h.func_code) { case XPT_DEV_MATCH: if (ccb->cdm.match_buf_len == 0) { printf("cam_periph_mapmem: invalid match buffer " "length 0\n"); return(EINVAL); } if (ccb->cdm.pattern_buf_len > 0) { data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; lengths[0] = ccb->cdm.pattern_buf_len; dirs[0] = CAM_DIR_OUT; data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; lengths[1] = ccb->cdm.match_buf_len; dirs[1] = CAM_DIR_IN; numbufs = 2; } else { data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; lengths[0] = ccb->cdm.match_buf_len; dirs[0] = CAM_DIR_IN; numbufs = 1; } /* * This request will not go to the hardware, no reason * to be so strict. vmapbuf() is able to map up to MAXPHYS. */ maxmap = MAXPHYS; break; case XPT_SCSI_IO: case XPT_CONT_TARGET_IO: if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) return(0); if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) return (EINVAL); data_ptrs[0] = &ccb->csio.data_ptr; lengths[0] = ccb->csio.dxfer_len; dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; numbufs = 1; break; case XPT_ATA_IO: if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) return(0); if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) return (EINVAL); data_ptrs[0] = &ccb->ataio.data_ptr; lengths[0] = ccb->ataio.dxfer_len; dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; numbufs = 1; break; case XPT_MMC_IO: if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) return(0); /* Two mappings: one for cmd->data and one for cmd->data->data */ data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data; lengths[0] = sizeof(struct mmc_data *); dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data; lengths[1] = ccb->mmcio.cmd.data->len; dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK; numbufs = 2; break; case XPT_SMP_IO: data_ptrs[0] = &ccb->smpio.smp_request; lengths[0] = ccb->smpio.smp_request_len; dirs[0] = CAM_DIR_OUT; data_ptrs[1] = &ccb->smpio.smp_response; lengths[1] = ccb->smpio.smp_response_len; dirs[1] = CAM_DIR_IN; numbufs = 2; break; + case XPT_NVME_IO: + case XPT_NVME_ADMIN: + if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) + return (0); + if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) + return (EINVAL); + data_ptrs[0] = &ccb->nvmeio.data_ptr; + lengths[0] = ccb->nvmeio.dxfer_len; + dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; + numbufs = 1; + break; case XPT_DEV_ADVINFO: if (ccb->cdai.bufsiz == 0) return (0); data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; lengths[0] = ccb->cdai.bufsiz; dirs[0] = CAM_DIR_IN; numbufs = 1; /* * This request will not go to the hardware, no reason * to be so strict. vmapbuf() is able to map up to MAXPHYS. */ maxmap = MAXPHYS; break; default: return(EINVAL); break; /* NOTREACHED */ } /* * Check the transfer length and permissions first, so we don't * have to unmap any previously mapped buffers. */ for (i = 0; i < numbufs; i++) { flags[i] = 0; /* * The userland data pointer passed in may not be page * aligned. vmapbuf() truncates the address to a page * boundary, so if the address isn't page aligned, we'll * need enough space for the given transfer length, plus * whatever extra space is necessary to make it to the page * boundary. */ if ((lengths[i] + (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){ printf("cam_periph_mapmem: attempt to map %lu bytes, " "which is greater than %lu\n", (long)(lengths[i] + (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)), (u_long)maxmap); return(E2BIG); } if (dirs[i] & CAM_DIR_OUT) { flags[i] = BIO_WRITE; } if (dirs[i] & CAM_DIR_IN) { flags[i] = BIO_READ; } } /* * This keeps the kernel stack of current thread from getting * swapped. In low-memory situations where the kernel stack might * otherwise get swapped out, this holds it and allows the thread * to make progress and release the kernel mapped pages sooner. * * XXX KDM should I use P_NOSWAP instead? */ PHOLD(curproc); for (i = 0; i < numbufs; i++) { /* * Get the buffer. */ mapinfo->bp[i] = getpbuf(NULL); /* put our pointer in the data slot */ mapinfo->bp[i]->b_data = *data_ptrs[i]; /* save the user's data address */ mapinfo->bp[i]->b_caller1 = *data_ptrs[i]; /* set the transfer length, we know it's < MAXPHYS */ mapinfo->bp[i]->b_bufsize = lengths[i]; /* set the direction */ mapinfo->bp[i]->b_iocmd = flags[i]; /* * Map the buffer into kernel memory. * * Note that useracc() alone is not a sufficient test. * vmapbuf() can still fail due to a smaller file mapped * into a larger area of VM, or if userland races against * vmapbuf() after the useracc() check. */ if (vmapbuf(mapinfo->bp[i], 1) < 0) { for (j = 0; j < i; ++j) { *data_ptrs[j] = mapinfo->bp[j]->b_caller1; vunmapbuf(mapinfo->bp[j]); relpbuf(mapinfo->bp[j], NULL); } relpbuf(mapinfo->bp[i], NULL); PRELE(curproc); return(EACCES); } /* set our pointer to the new mapped area */ *data_ptrs[i] = mapinfo->bp[i]->b_data; mapinfo->num_bufs_used++; } /* * Now that we've gotten this far, change ownership to the kernel * of the buffers so that we don't run afoul of returning to user * space with locks (on the buffer) held. */ for (i = 0; i < numbufs; i++) { BUF_KERNPROC(mapinfo->bp[i]); } return(0); } /* * Unmap memory segments mapped into kernel virtual address space by * cam_periph_mapmem(). */ void cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo) { int numbufs, i; u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; if (mapinfo->num_bufs_used <= 0) { /* nothing to free and the process wasn't held. */ return; } switch (ccb->ccb_h.func_code) { case XPT_DEV_MATCH: numbufs = min(mapinfo->num_bufs_used, 2); if (numbufs == 1) { data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; } else { data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; } break; case XPT_SCSI_IO: case XPT_CONT_TARGET_IO: data_ptrs[0] = &ccb->csio.data_ptr; numbufs = min(mapinfo->num_bufs_used, 1); break; case XPT_ATA_IO: data_ptrs[0] = &ccb->ataio.data_ptr; numbufs = min(mapinfo->num_bufs_used, 1); break; case XPT_SMP_IO: numbufs = min(mapinfo->num_bufs_used, 2); data_ptrs[0] = &ccb->smpio.smp_request; data_ptrs[1] = &ccb->smpio.smp_response; break; case XPT_DEV_ADVINFO: numbufs = min(mapinfo->num_bufs_used, 1); data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; + break; + case XPT_NVME_IO: + case XPT_NVME_ADMIN: + data_ptrs[0] = &ccb->nvmeio.data_ptr; + numbufs = min(mapinfo->num_bufs_used, 1); break; default: /* allow ourselves to be swapped once again */ PRELE(curproc); return; break; /* NOTREACHED */ } for (i = 0; i < numbufs; i++) { /* Set the user's pointer back to the original value */ *data_ptrs[i] = mapinfo->bp[i]->b_caller1; /* unmap the buffer */ vunmapbuf(mapinfo->bp[i]); /* release the buffer */ relpbuf(mapinfo->bp[i], NULL); } /* allow ourselves to be swapped once again */ PRELE(curproc); } int cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr, int (*error_routine)(union ccb *ccb, cam_flags camflags, u_int32_t sense_flags)) { union ccb *ccb; int error; int found; error = found = 0; switch(cmd){ case CAMGETPASSTHRU: ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); ccb->ccb_h.func_code = XPT_GDEVLIST; /* * Basically, the point of this is that we go through * getting the list of devices, until we find a passthrough * device. In the current version of the CAM code, the * only way to determine what type of device we're dealing * with is by its name. */ while (found == 0) { ccb->cgdl.index = 0; ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { /* we want the next device in the list */ xpt_action(ccb); if (strncmp(ccb->cgdl.periph_name, "pass", 4) == 0){ found = 1; break; } } if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) && (found == 0)) { ccb->cgdl.periph_name[0] = '\0'; ccb->cgdl.unit_number = 0; break; } } /* copy the result back out */ bcopy(ccb, addr, sizeof(union ccb)); /* and release the ccb */ xpt_release_ccb(ccb); break; default: error = ENOTTY; break; } return(error); } static void cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb) { panic("%s: already done with ccb %p", __func__, done_ccb); } static void cam_periph_done(struct cam_periph *periph, union ccb *done_ccb) { /* Caller will release the CCB */ xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED); done_ccb->ccb_h.cbfcnp = cam_periph_done_panic; wakeup(&done_ccb->ccb_h.cbfcnp); } static void cam_periph_ccbwait(union ccb *ccb) { if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { while (ccb->ccb_h.cbfcnp != cam_periph_done_panic) xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp, PRIBIO, "cbwait", 0); } KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG, ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, " "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code, ccb->ccb_h.status, ccb->ccb_h.pinfo.index)); } int cam_periph_runccb(union ccb *ccb, int (*error_routine)(union ccb *ccb, cam_flags camflags, u_int32_t sense_flags), cam_flags camflags, u_int32_t sense_flags, struct devstat *ds) { struct bintime *starttime; struct bintime ltime; int error; starttime = NULL; xpt_path_assert(ccb->ccb_h.path, MA_OWNED); KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0, ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb, ccb->ccb_h.func_code, ccb->ccb_h.flags)); /* * If the user has supplied a stats structure, and if we understand * this particular type of ccb, record the transaction start. */ if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO || ccb->ccb_h.func_code == XPT_ATA_IO)) { starttime = <ime; binuptime(starttime); devstat_start_transaction(ds, starttime); } ccb->ccb_h.cbfcnp = cam_periph_done; xpt_action(ccb); do { cam_periph_ccbwait(ccb); if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) error = 0; else if (error_routine != NULL) { ccb->ccb_h.cbfcnp = cam_periph_done; error = (*error_routine)(ccb, camflags, sense_flags); } else error = 0; } while (error == ERESTART); if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { cam_release_devq(ccb->ccb_h.path, /* relsim_flags */0, /* openings */0, /* timeout */0, /* getcount_only */ FALSE); ccb->ccb_h.status &= ~CAM_DEV_QFRZN; } if (ds != NULL) { if (ccb->ccb_h.func_code == XPT_SCSI_IO) { devstat_end_transaction(ds, ccb->csio.dxfer_len - ccb->csio.resid, ccb->csio.tag_action & 0x3, ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ? DEVSTAT_WRITE : DEVSTAT_READ, NULL, starttime); } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { devstat_end_transaction(ds, ccb->ataio.dxfer_len - ccb->ataio.resid, 0, /* Not used in ATA */ ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ? DEVSTAT_WRITE : DEVSTAT_READ, NULL, starttime); } } return(error); } void cam_freeze_devq(struct cam_path *path) { struct ccb_hdr ccb_h; CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n")); xpt_setup_ccb(&ccb_h, path, /*priority*/1); ccb_h.func_code = XPT_NOOP; ccb_h.flags = CAM_DEV_QFREEZE; xpt_action((union ccb *)&ccb_h); } u_int32_t cam_release_devq(struct cam_path *path, u_int32_t relsim_flags, u_int32_t openings, u_int32_t arg, int getcount_only) { struct ccb_relsim crs; CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n", relsim_flags, openings, arg, getcount_only)); xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); crs.ccb_h.func_code = XPT_REL_SIMQ; crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0; crs.release_flags = relsim_flags; crs.openings = openings; crs.release_timeout = arg; xpt_action((union ccb *)&crs); return (crs.qfrozen_cnt); } #define saved_ccb_ptr ppriv_ptr0 static void camperiphdone(struct cam_periph *periph, union ccb *done_ccb) { union ccb *saved_ccb; cam_status status; struct scsi_start_stop_unit *scsi_cmd; int error_code, sense_key, asc, ascq; scsi_cmd = (struct scsi_start_stop_unit *) &done_ccb->csio.cdb_io.cdb_bytes; status = done_ccb->ccb_h.status; if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { if (scsi_extract_sense_ccb(done_ccb, &error_code, &sense_key, &asc, &ascq)) { /* * If the error is "invalid field in CDB", * and the load/eject flag is set, turn the * flag off and try again. This is just in * case the drive in question barfs on the * load eject flag. The CAM code should set * the load/eject flag by default for * removable media. */ if ((scsi_cmd->opcode == START_STOP_UNIT) && ((scsi_cmd->how & SSS_LOEJ) != 0) && (asc == 0x24) && (ascq == 0x00)) { scsi_cmd->how &= ~SSS_LOEJ; if (status & CAM_DEV_QFRZN) { cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; } xpt_action(done_ccb); goto out; } } if (cam_periph_error(done_ccb, 0, SF_RETRY_UA | SF_NO_PRINT, NULL) == ERESTART) goto out; if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) { cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; } } else { /* * If we have successfully taken a device from the not * ready to ready state, re-scan the device and re-get * the inquiry information. Many devices (mostly disks) * don't properly report their inquiry information unless * they are spun up. */ if (scsi_cmd->opcode == START_STOP_UNIT) xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL); } /* * Perform the final retry with the original CCB so that final * error processing is performed by the owner of the CCB. */ saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr; bcopy(saved_ccb, done_ccb, sizeof(*done_ccb)); xpt_free_ccb(saved_ccb); if (done_ccb->ccb_h.cbfcnp != camperiphdone) periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG; xpt_action(done_ccb); out: /* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */ cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); } /* * Generic Async Event handler. Peripheral drivers usually * filter out the events that require personal attention, * and leave the rest to this function. */ void cam_periph_async(struct cam_periph *periph, u_int32_t code, struct cam_path *path, void *arg) { switch (code) { case AC_LOST_DEVICE: cam_periph_invalidate(periph); break; default: break; } } void cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle) { struct ccb_getdevstats cgds; xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL); cgds.ccb_h.func_code = XPT_GDEV_STATS; xpt_action((union ccb *)&cgds); cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle); } void cam_periph_freeze_after_event(struct cam_periph *periph, struct timeval* event_time, u_int duration_ms) { struct timeval delta; struct timeval duration_tv; if (!timevalisset(event_time)) return; microtime(&delta); timevalsub(&delta, event_time); duration_tv.tv_sec = duration_ms / 1000; duration_tv.tv_usec = (duration_ms % 1000) * 1000; if (timevalcmp(&delta, &duration_tv, <)) { timevalsub(&duration_tv, &delta); duration_ms = duration_tv.tv_sec * 1000; duration_ms += duration_tv.tv_usec / 1000; cam_freeze_devq(periph->path); cam_release_devq(periph->path, RELSIM_RELEASE_AFTER_TIMEOUT, /*reduction*/0, /*timeout*/duration_ms, /*getcount_only*/0); } } static int camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb, cam_flags camflags, u_int32_t sense_flags, int *openings, u_int32_t *relsim_flags, u_int32_t *timeout, u_int32_t *action, const char **action_string) { int error; switch (ccb->csio.scsi_status) { case SCSI_STATUS_OK: case SCSI_STATUS_COND_MET: case SCSI_STATUS_INTERMED: case SCSI_STATUS_INTERMED_COND_MET: error = 0; break; case SCSI_STATUS_CMD_TERMINATED: case SCSI_STATUS_CHECK_COND: error = camperiphscsisenseerror(ccb, orig_ccb, camflags, sense_flags, openings, relsim_flags, timeout, action, action_string); break; case SCSI_STATUS_QUEUE_FULL: { /* no decrement */ struct ccb_getdevstats cgds; /* * First off, find out what the current * transaction counts are. */ xpt_setup_ccb(&cgds.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); cgds.ccb_h.func_code = XPT_GDEV_STATS; xpt_action((union ccb *)&cgds); /* * If we were the only transaction active, treat * the QUEUE FULL as if it were a BUSY condition. */ if (cgds.dev_active != 0) { int total_openings; /* * Reduce the number of openings to * be 1 less than the amount it took * to get a queue full bounded by the * minimum allowed tag count for this * device. */ total_openings = cgds.dev_active + cgds.dev_openings; *openings = cgds.dev_active; if (*openings < cgds.mintags) *openings = cgds.mintags; if (*openings < total_openings) *relsim_flags = RELSIM_ADJUST_OPENINGS; else { /* * Some devices report queue full for * temporary resource shortages. For * this reason, we allow a minimum * tag count to be entered via a * quirk entry to prevent the queue * count on these devices from falling * to a pessimisticly low value. We * still wait for the next successful * completion, however, before queueing * more transactions to the device. */ *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT; } *timeout = 0; error = ERESTART; *action &= ~SSQ_PRINT_SENSE; break; } /* FALLTHROUGH */ } case SCSI_STATUS_BUSY: /* * Restart the queue after either another * command completes or a 1 second timeout. */ if ((sense_flags & SF_RETRY_BUSY) != 0 || (ccb->ccb_h.retry_count--) > 0) { error = ERESTART; *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT | RELSIM_RELEASE_AFTER_CMDCMPLT; *timeout = 1000; } else { error = EIO; } break; case SCSI_STATUS_RESERV_CONFLICT: default: error = EIO; break; } return (error); } static int camperiphscsisenseerror(union ccb *ccb, union ccb **orig, cam_flags camflags, u_int32_t sense_flags, int *openings, u_int32_t *relsim_flags, u_int32_t *timeout, u_int32_t *action, const char **action_string) { struct cam_periph *periph; union ccb *orig_ccb = ccb; int error, recoveryccb; #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL) biotrack(ccb->csio.bio, __func__); #endif periph = xpt_path_periph(ccb->ccb_h.path); recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone); if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) { /* * If error recovery is already in progress, don't attempt * to process this error, but requeue it unconditionally * and attempt to process it once error recovery has * completed. This failed command is probably related to * the error that caused the currently active error recovery * action so our current recovery efforts should also * address this command. Be aware that the error recovery * code assumes that only one recovery action is in progress * on a particular peripheral instance at any given time * (e.g. only one saved CCB for error recovery) so it is * imperitive that we don't violate this assumption. */ error = ERESTART; *action &= ~SSQ_PRINT_SENSE; } else { scsi_sense_action err_action; struct ccb_getdev cgd; /* * Grab the inquiry data for this device. */ xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); cgd.ccb_h.func_code = XPT_GDEV_TYPE; xpt_action((union ccb *)&cgd); err_action = scsi_error_action(&ccb->csio, &cgd.inq_data, sense_flags); error = err_action & SS_ERRMASK; /* * Do not autostart sequential access devices * to avoid unexpected tape loading. */ if ((err_action & SS_MASK) == SS_START && SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) { *action_string = "Will not autostart a " "sequential access device"; goto sense_error_done; } /* * Avoid recovery recursion if recovery action is the same. */ if ((err_action & SS_MASK) >= SS_START && recoveryccb) { if (((err_action & SS_MASK) == SS_START && ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) || ((err_action & SS_MASK) == SS_TUR && (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) { err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO; *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; *timeout = 500; } } /* * If the recovery action will consume a retry, * make sure we actually have retries available. */ if ((err_action & SSQ_DECREMENT_COUNT) != 0) { if (ccb->ccb_h.retry_count > 0 && (periph->flags & CAM_PERIPH_INVALID) == 0) ccb->ccb_h.retry_count--; else { *action_string = "Retries exhausted"; goto sense_error_done; } } if ((err_action & SS_MASK) >= SS_START) { /* * Do common portions of commands that * use recovery CCBs. */ orig_ccb = xpt_alloc_ccb_nowait(); if (orig_ccb == NULL) { *action_string = "Can't allocate recovery CCB"; goto sense_error_done; } /* * Clear freeze flag for original request here, as * this freeze will be dropped as part of ERESTART. */ ccb->ccb_h.status &= ~CAM_DEV_QFRZN; bcopy(ccb, orig_ccb, sizeof(*orig_ccb)); } switch (err_action & SS_MASK) { case SS_NOP: *action_string = "No recovery action needed"; error = 0; break; case SS_RETRY: *action_string = "Retrying command (per sense data)"; error = ERESTART; break; case SS_FAIL: *action_string = "Unretryable error"; break; case SS_START: { int le; /* * Send a start unit command to the device, and * then retry the command. */ *action_string = "Attempting to start unit"; periph->flags |= CAM_PERIPH_RECOVERY_INPROG; /* * Check for removable media and set * load/eject flag appropriately. */ if (SID_IS_REMOVABLE(&cgd.inq_data)) le = TRUE; else le = FALSE; scsi_start_stop(&ccb->csio, /*retries*/1, camperiphdone, MSG_SIMPLE_Q_TAG, /*start*/TRUE, /*load/eject*/le, /*immediate*/FALSE, SSD_FULL_SIZE, /*timeout*/50000); break; } case SS_TUR: { /* * Send a Test Unit Ready to the device. * If the 'many' flag is set, we send 120 * test unit ready commands, one every half * second. Otherwise, we just send one TUR. * We only want to do this if the retry * count has not been exhausted. */ int retries; if ((err_action & SSQ_MANY) != 0) { *action_string = "Polling device for readiness"; retries = 120; } else { *action_string = "Testing device for readiness"; retries = 1; } periph->flags |= CAM_PERIPH_RECOVERY_INPROG; scsi_test_unit_ready(&ccb->csio, retries, camperiphdone, MSG_SIMPLE_Q_TAG, SSD_FULL_SIZE, /*timeout*/5000); /* * Accomplish our 500ms delay by deferring * the release of our device queue appropriately. */ *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; *timeout = 500; break; } default: panic("Unhandled error action %x", err_action); } if ((err_action & SS_MASK) >= SS_START) { /* * Drop the priority, so that the recovery * CCB is the first to execute. Freeze the queue * after this command is sent so that we can * restore the old csio and have it queued in * the proper order before we release normal * transactions to the device. */ ccb->ccb_h.pinfo.priority--; ccb->ccb_h.flags |= CAM_DEV_QFREEZE; ccb->ccb_h.saved_ccb_ptr = orig_ccb; error = ERESTART; *orig = orig_ccb; } sense_error_done: *action = err_action; } return (error); } /* * Generic error handler. Peripheral drivers usually filter * out the errors that they handle in a unique manner, then * call this function. */ int cam_periph_error(union ccb *ccb, cam_flags camflags, u_int32_t sense_flags, union ccb *save_ccb) { struct cam_path *newpath; union ccb *orig_ccb, *scan_ccb; struct cam_periph *periph; const char *action_string; cam_status status; int frozen, error, openings, devctl_err; u_int32_t action, relsim_flags, timeout; action = SSQ_PRINT_SENSE; periph = xpt_path_periph(ccb->ccb_h.path); action_string = NULL; status = ccb->ccb_h.status; frozen = (status & CAM_DEV_QFRZN) != 0; status &= CAM_STATUS_MASK; devctl_err = openings = relsim_flags = timeout = 0; orig_ccb = ccb; /* Filter the errors that should be reported via devctl */ switch (ccb->ccb_h.status & CAM_STATUS_MASK) { case CAM_CMD_TIMEOUT: case CAM_REQ_ABORTED: case CAM_REQ_CMP_ERR: case CAM_REQ_TERMIO: case CAM_UNREC_HBA_ERROR: case CAM_DATA_RUN_ERR: case CAM_SCSI_STATUS_ERROR: case CAM_ATA_STATUS_ERROR: case CAM_SMP_STATUS_ERROR: devctl_err++; break; default: break; } switch (status) { case CAM_REQ_CMP: error = 0; action &= ~SSQ_PRINT_SENSE; break; case CAM_SCSI_STATUS_ERROR: error = camperiphscsistatuserror(ccb, &orig_ccb, camflags, sense_flags, &openings, &relsim_flags, &timeout, &action, &action_string); break; case CAM_AUTOSENSE_FAIL: error = EIO; /* we have to kill the command */ break; case CAM_UA_ABORT: case CAM_UA_TERMIO: case CAM_MSG_REJECT_REC: /* XXX Don't know that these are correct */ error = EIO; break; case CAM_SEL_TIMEOUT: if ((camflags & CAM_RETRY_SELTO) != 0) { if (ccb->ccb_h.retry_count > 0 && (periph->flags & CAM_PERIPH_INVALID) == 0) { ccb->ccb_h.retry_count--; error = ERESTART; /* * Wait a bit to give the device * time to recover before we try again. */ relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; timeout = periph_selto_delay; break; } action_string = "Retries exhausted"; } /* FALLTHROUGH */ case CAM_DEV_NOT_THERE: error = ENXIO; action = SSQ_LOST; break; case CAM_REQ_INVALID: case CAM_PATH_INVALID: case CAM_NO_HBA: case CAM_PROVIDE_FAIL: case CAM_REQ_TOO_BIG: case CAM_LUN_INVALID: case CAM_TID_INVALID: case CAM_FUNC_NOTAVAIL: error = EINVAL; break; case CAM_SCSI_BUS_RESET: case CAM_BDR_SENT: /* * Commands that repeatedly timeout and cause these * kinds of error recovery actions, should return * CAM_CMD_TIMEOUT, which allows us to safely assume * that this command was an innocent bystander to * these events and should be unconditionally * retried. */ case CAM_REQUEUE_REQ: /* Unconditional requeue if device is still there */ if (periph->flags & CAM_PERIPH_INVALID) { action_string = "Periph was invalidated"; error = EIO; } else if (sense_flags & SF_NO_RETRY) { error = EIO; action_string = "Retry was blocked"; } else { error = ERESTART; action &= ~SSQ_PRINT_SENSE; } break; case CAM_RESRC_UNAVAIL: /* Wait a bit for the resource shortage to abate. */ timeout = periph_noresrc_delay; /* FALLTHROUGH */ case CAM_BUSY: if (timeout == 0) { /* Wait a bit for the busy condition to abate. */ timeout = periph_busy_delay; } relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT; /* FALLTHROUGH */ case CAM_ATA_STATUS_ERROR: case CAM_REQ_CMP_ERR: case CAM_CMD_TIMEOUT: case CAM_UNEXP_BUSFREE: case CAM_UNCOR_PARITY: case CAM_DATA_RUN_ERR: default: if (periph->flags & CAM_PERIPH_INVALID) { error = EIO; action_string = "Periph was invalidated"; } else if (ccb->ccb_h.retry_count == 0) { error = EIO; action_string = "Retries exhausted"; } else if (sense_flags & SF_NO_RETRY) { error = EIO; action_string = "Retry was blocked"; } else { ccb->ccb_h.retry_count--; error = ERESTART; } break; } if ((sense_flags & SF_PRINT_ALWAYS) || CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO)) action |= SSQ_PRINT_SENSE; else if (sense_flags & SF_NO_PRINT) action &= ~SSQ_PRINT_SENSE; if ((action & SSQ_PRINT_SENSE) != 0) cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL); if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) { if (error != ERESTART) { if (action_string == NULL) action_string = "Unretryable error"; xpt_print(ccb->ccb_h.path, "Error %d, %s\n", error, action_string); } else if (action_string != NULL) xpt_print(ccb->ccb_h.path, "%s\n", action_string); else xpt_print(ccb->ccb_h.path, "Retrying command\n"); } if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0)) cam_periph_devctl_notify(orig_ccb); if ((action & SSQ_LOST) != 0) { lun_id_t lun_id; /* * For a selection timeout, we consider all of the LUNs on * the target to be gone. If the status is CAM_DEV_NOT_THERE, * then we only get rid of the device(s) specified by the * path in the original CCB. */ if (status == CAM_SEL_TIMEOUT) lun_id = CAM_LUN_WILDCARD; else lun_id = xpt_path_lun_id(ccb->ccb_h.path); /* Should we do more if we can't create the path?? */ if (xpt_create_path(&newpath, periph, xpt_path_path_id(ccb->ccb_h.path), xpt_path_target_id(ccb->ccb_h.path), lun_id) == CAM_REQ_CMP) { /* * Let peripheral drivers know that this * device has gone away. */ xpt_async(AC_LOST_DEVICE, newpath, NULL); xpt_free_path(newpath); } } /* Broadcast UNIT ATTENTIONs to all periphs. */ if ((action & SSQ_UA) != 0) xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb); /* Rescan target on "Reported LUNs data has changed" */ if ((action & SSQ_RESCAN) != 0) { if (xpt_create_path(&newpath, NULL, xpt_path_path_id(ccb->ccb_h.path), xpt_path_target_id(ccb->ccb_h.path), CAM_LUN_WILDCARD) == CAM_REQ_CMP) { scan_ccb = xpt_alloc_ccb_nowait(); if (scan_ccb != NULL) { scan_ccb->ccb_h.path = newpath; scan_ccb->ccb_h.func_code = XPT_SCAN_TGT; scan_ccb->crcn.flags = 0; xpt_rescan(scan_ccb); } else { xpt_print(newpath, "Can't allocate CCB to rescan target\n"); xpt_free_path(newpath); } } } /* Attempt a retry */ if (error == ERESTART || error == 0) { if (frozen != 0) ccb->ccb_h.status &= ~CAM_DEV_QFRZN; if (error == ERESTART) xpt_action(ccb); if (frozen != 0) cam_release_devq(ccb->ccb_h.path, relsim_flags, openings, timeout, /*getcount_only*/0); } return (error); } #define CAM_PERIPH_DEVD_MSG_SIZE 256 static void cam_periph_devctl_notify(union ccb *ccb) { struct cam_periph *periph; struct ccb_getdev *cgd; struct sbuf sb; int serr, sk, asc, ascq; char *sbmsg, *type; sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT); if (sbmsg == NULL) return; sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN); periph = xpt_path_periph(ccb->ccb_h.path); sbuf_printf(&sb, "device=%s%d ", periph->periph_name, periph->unit_number); sbuf_printf(&sb, "serial=\""); if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) { xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL); cgd->ccb_h.func_code = XPT_GDEV_TYPE; xpt_action((union ccb *)cgd); if (cgd->ccb_h.status == CAM_REQ_CMP) sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len); xpt_free_ccb((union ccb *)cgd); } sbuf_printf(&sb, "\" "); sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status); switch (ccb->ccb_h.status & CAM_STATUS_MASK) { case CAM_CMD_TIMEOUT: sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout); type = "timeout"; break; case CAM_SCSI_STATUS_ERROR: sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status); if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq)) sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ", serr, sk, asc, ascq); type = "error"; break; case CAM_ATA_STATUS_ERROR: sbuf_printf(&sb, "RES=\""); ata_res_sbuf(&ccb->ataio.res, &sb); sbuf_printf(&sb, "\" "); type = "error"; break; default: type = "error"; break; } if (ccb->ccb_h.func_code == XPT_SCSI_IO) { sbuf_printf(&sb, "CDB=\""); scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb); sbuf_printf(&sb, "\" "); } else if (ccb->ccb_h.func_code == XPT_ATA_IO) { sbuf_printf(&sb, "ACB=\""); ata_cmd_sbuf(&ccb->ataio.cmd, &sb); sbuf_printf(&sb, "\" "); } if (sbuf_finish(&sb) == 0) devctl_notify("CAM", "periph", type, sbuf_data(&sb)); sbuf_delete(&sb); free(sbmsg, M_CAMPERIPH); } Index: head/sys/cam/cam_xpt.c =================================================================== --- head/sys/cam/cam_xpt.c (revision 320983) +++ head/sys/cam/cam_xpt.c (revision 320984) @@ -1,5578 +1,5579 @@ /*- * Implementation of the Common Access Method Transport (XPT) layer. * * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_printf.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* geometry translation */ #include /* for xpt_print below */ #include "opt_cam.h" /* Wild guess based on not wanting to grow the stack too much */ #define XPT_PRINT_MAXLEN 512 #ifdef PRINTF_BUFR_SIZE #define XPT_PRINT_LEN PRINTF_BUFR_SIZE #else #define XPT_PRINT_LEN 128 #endif _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large"); /* * This is the maximum number of high powered commands (e.g. start unit) * that can be outstanding at a particular time. */ #ifndef CAM_MAX_HIGHPOWER #define CAM_MAX_HIGHPOWER 4 #endif /* Datastructures internal to the xpt layer */ MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); /* Object for defering XPT actions to a taskqueue */ struct xpt_task { struct task task; void *data1; uintptr_t data2; }; struct xpt_softc { uint32_t xpt_generation; /* number of high powered commands that can go through right now */ struct mtx xpt_highpower_lock; STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; int num_highpower; /* queue for handling async rescan requests. */ TAILQ_HEAD(, ccb_hdr) ccb_scanq; int buses_to_config; int buses_config_done; int announce_nosbuf; /* * Registered buses * * N.B., "busses" is an archaic spelling of "buses". In new code * "buses" is preferred. */ TAILQ_HEAD(,cam_eb) xpt_busses; u_int bus_generation; struct intr_config_hook *xpt_config_hook; int boot_delay; struct callout boot_callout; struct mtx xpt_topo_lock; struct mtx xpt_lock; struct taskqueue *xpt_taskq; }; typedef enum { DM_RET_COPY = 0x01, DM_RET_FLAG_MASK = 0x0f, DM_RET_NONE = 0x00, DM_RET_STOP = 0x10, DM_RET_DESCEND = 0x20, DM_RET_ERROR = 0x30, DM_RET_ACTION_MASK = 0xf0 } dev_match_ret; typedef enum { XPT_DEPTH_BUS, XPT_DEPTH_TARGET, XPT_DEPTH_DEVICE, XPT_DEPTH_PERIPH } xpt_traverse_depth; struct xpt_traverse_config { xpt_traverse_depth depth; void *tr_func; void *tr_arg; }; typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); /* Transport layer configuration information */ static struct xpt_softc xsoftc; MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, &xsoftc.boot_delay, 0, "Bus registration wait time"); SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN, &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements"); struct cam_doneq { struct mtx_padalign cam_doneq_mtx; STAILQ_HEAD(, ccb_hdr) cam_doneq; int cam_doneq_sleep; }; static struct cam_doneq cam_doneqs[MAXCPU]; static int cam_num_doneqs; static struct proc *cam_proc; SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, &cam_num_doneqs, 0, "Number of completion queues/threads"); struct cam_periph *xpt_periph; static periph_init_t xpt_periph_init; static struct periph_driver xpt_driver = { xpt_periph_init, "xpt", TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, CAM_PERIPH_DRV_EARLY }; PERIPHDRIVER_DECLARE(xpt, xpt_driver); static d_open_t xptopen; static d_close_t xptclose; static d_ioctl_t xptioctl; static d_ioctl_t xptdoioctl; static struct cdevsw xpt_cdevsw = { .d_version = D_VERSION, .d_flags = 0, .d_open = xptopen, .d_close = xptclose, .d_ioctl = xptioctl, .d_name = "xpt", }; /* Storage for debugging datastructures */ struct cam_path *cam_dpath; u_int32_t cam_dflags = CAM_DEBUG_FLAGS; SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, &cam_dflags, 0, "Enabled debug flags"); u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, &cam_debug_delay, 0, "Delay in us after each debug message"); /* Our boot-time initialization hook */ static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); static moduledata_t cam_moduledata = { "cam", cam_module_event_handler, NULL }; static int xpt_init(void *); DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); MODULE_VERSION(cam, 1); static void xpt_async_bcast(struct async_list *async_head, u_int32_t async_code, struct cam_path *path, void *async_arg); static path_id_t xptnextfreepathid(void); static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); static union ccb *xpt_get_ccb(struct cam_periph *periph); static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); static void xpt_run_allocq(struct cam_periph *periph, int sleep); static void xpt_run_allocq_task(void *context, int pending); static void xpt_run_devq(struct cam_devq *devq); static timeout_t xpt_release_devq_timeout; static void xpt_release_simq_timeout(void *arg) __unused; static void xpt_acquire_bus(struct cam_eb *bus); static void xpt_release_bus(struct cam_eb *bus); static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); static int xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue); static struct cam_et* xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); static void xpt_acquire_target(struct cam_et *target); static void xpt_release_target(struct cam_et *target); static struct cam_eb* xpt_find_bus(path_id_t path_id); static struct cam_et* xpt_find_target(struct cam_eb *bus, target_id_t target_id); static struct cam_ed* xpt_find_device(struct cam_et *target, lun_id_t lun_id); static void xpt_config(void *arg); static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, u_int32_t new_priority); static xpt_devicefunc_t xptpassannouncefunc; static void xptaction(struct cam_sim *sim, union ccb *work_ccb); static void xptpoll(struct cam_sim *sim); static void camisr_runqueue(void); static void xpt_done_process(struct ccb_hdr *ccb_h); static void xpt_done_td(void *); static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_eb *bus); static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_ed *device); static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_periph *periph); static xpt_busfunc_t xptedtbusfunc; static xpt_targetfunc_t xptedttargetfunc; static xpt_devicefunc_t xptedtdevicefunc; static xpt_periphfunc_t xptedtperiphfunc; static xpt_pdrvfunc_t xptplistpdrvfunc; static xpt_periphfunc_t xptplistperiphfunc; static int xptedtmatch(struct ccb_dev_match *cdm); static int xptperiphlistmatch(struct ccb_dev_match *cdm); static int xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg); static int xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, xpt_targetfunc_t *tr_func, void *arg); static int xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, xpt_devicefunc_t *tr_func, void *arg); static int xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, xpt_periphfunc_t *tr_func, void *arg); static int xptpdrvtraverse(struct periph_driver **start_pdrv, xpt_pdrvfunc_t *tr_func, void *arg); static int xptpdperiphtraverse(struct periph_driver **pdrv, struct cam_periph *start_periph, xpt_periphfunc_t *tr_func, void *arg); static xpt_busfunc_t xptdefbusfunc; static xpt_targetfunc_t xptdeftargetfunc; static xpt_devicefunc_t xptdefdevicefunc; static xpt_periphfunc_t xptdefperiphfunc; static void xpt_finishconfig_task(void *context, int pending); static void xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, struct cam_ed *device, void *async_arg); static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id); static xpt_devicefunc_t xptsetasyncfunc; static xpt_busfunc_t xptsetasyncbusfunc; static cam_status xptregister(struct cam_periph *periph, void *arg); static __inline int device_is_queued(struct cam_ed *device); static __inline int xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) { int retval; mtx_assert(&devq->send_mtx, MA_OWNED); if ((dev->ccbq.queue.entries > 0) && (dev->ccbq.dev_openings > 0) && (dev->ccbq.queue.qfrozen_cnt == 0)) { /* * The priority of a device waiting for controller * resources is that of the highest priority CCB * enqueued. */ retval = xpt_schedule_dev(&devq->send_queue, &dev->devq_entry, CAMQ_GET_PRIO(&dev->ccbq.queue)); } else { retval = 0; } return (retval); } static __inline int device_is_queued(struct cam_ed *device) { return (device->devq_entry.index != CAM_UNQUEUED_INDEX); } static void xpt_periph_init() { make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); } static int xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) { /* * Only allow read-write access. */ if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) return(EPERM); /* * We don't allow nonblocking access. */ if ((flags & O_NONBLOCK) != 0) { printf("%s: can't do nonblocking access\n", devtoname(dev)); return(ENODEV); } return(0); } static int xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) { return(0); } /* * Don't automatically grab the xpt softc lock here even though this is going * through the xpt device. The xpt device is really just a back door for * accessing other devices and SIMs, so the right thing to do is to grab * the appropriate SIM lock once the bus/SIM is located. */ static int xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) { int error; if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); } return (error); } static int xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) { int error; error = 0; switch(cmd) { /* * For the transport layer CAMIOCOMMAND ioctl, we really only want * to accept CCB types that don't quite make sense to send through a * passthrough driver. XPT_PATH_INQ is an exception to this, as stated * in the CAM spec. */ case CAMIOCOMMAND: { union ccb *ccb; union ccb *inccb; struct cam_eb *bus; inccb = (union ccb *)addr; #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) if (inccb->ccb_h.func_code == XPT_SCSI_IO) inccb->csio.bio = NULL; #endif if (inccb->ccb_h.flags & CAM_UNLOCKED) return (EINVAL); bus = xpt_find_bus(inccb->ccb_h.path_id); if (bus == NULL) return (EINVAL); switch (inccb->ccb_h.func_code) { case XPT_SCAN_BUS: case XPT_RESET_BUS: if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { xpt_release_bus(bus); return (EINVAL); } break; case XPT_SCAN_TGT: if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { xpt_release_bus(bus); return (EINVAL); } break; default: break; } switch(inccb->ccb_h.func_code) { case XPT_SCAN_BUS: case XPT_RESET_BUS: case XPT_PATH_INQ: case XPT_ENG_INQ: case XPT_SCAN_LUN: case XPT_SCAN_TGT: ccb = xpt_alloc_ccb(); /* * Create a path using the bus, target, and lun the * user passed in. */ if (xpt_create_path(&ccb->ccb_h.path, NULL, inccb->ccb_h.path_id, inccb->ccb_h.target_id, inccb->ccb_h.target_lun) != CAM_REQ_CMP){ error = EINVAL; xpt_free_ccb(ccb); break; } /* Ensure all of our fields are correct */ xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, inccb->ccb_h.pinfo.priority); xpt_merge_ccb(ccb, inccb); xpt_path_lock(ccb->ccb_h.path); cam_periph_runccb(ccb, NULL, 0, 0, NULL); xpt_path_unlock(ccb->ccb_h.path); bcopy(ccb, inccb, sizeof(union ccb)); xpt_free_path(ccb->ccb_h.path); xpt_free_ccb(ccb); break; case XPT_DEBUG: { union ccb ccb; /* * This is an immediate CCB, so it's okay to * allocate it on the stack. */ /* * Create a path using the bus, target, and lun the * user passed in. */ if (xpt_create_path(&ccb.ccb_h.path, NULL, inccb->ccb_h.path_id, inccb->ccb_h.target_id, inccb->ccb_h.target_lun) != CAM_REQ_CMP){ error = EINVAL; break; } /* Ensure all of our fields are correct */ xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, inccb->ccb_h.pinfo.priority); xpt_merge_ccb(&ccb, inccb); xpt_action(&ccb); bcopy(&ccb, inccb, sizeof(union ccb)); xpt_free_path(ccb.ccb_h.path); break; } case XPT_DEV_MATCH: { struct cam_periph_map_info mapinfo; struct cam_path *old_path; /* * We can't deal with physical addresses for this * type of transaction. */ if ((inccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) { error = EINVAL; break; } /* * Save this in case the caller had it set to * something in particular. */ old_path = inccb->ccb_h.path; /* * We really don't need a path for the matching * code. The path is needed because of the * debugging statements in xpt_action(). They * assume that the CCB has a valid path. */ inccb->ccb_h.path = xpt_periph->path; bzero(&mapinfo, sizeof(mapinfo)); /* * Map the pattern and match buffers into kernel * virtual address space. */ error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS); if (error) { inccb->ccb_h.path = old_path; break; } /* * This is an immediate CCB, we can send it on directly. */ xpt_action(inccb); /* * Map the buffers back into user space. */ cam_periph_unmapmem(inccb, &mapinfo); inccb->ccb_h.path = old_path; error = 0; break; } default: error = ENOTSUP; break; } xpt_release_bus(bus); break; } /* * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, * with the periphal driver name and unit name filled in. The other * fields don't really matter as input. The passthrough driver name * ("pass"), and unit number are passed back in the ccb. The current * device generation number, and the index into the device peripheral * driver list, and the status are also passed back. Note that * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is * (or rather should be) impossible for the device peripheral driver * list to change since we look at the whole thing in one pass, and * we do it with lock protection. * */ case CAMGETPASSTHRU: { union ccb *ccb; struct cam_periph *periph; struct periph_driver **p_drv; char *name; u_int unit; int base_periph_found; ccb = (union ccb *)addr; unit = ccb->cgdl.unit_number; name = ccb->cgdl.periph_name; base_periph_found = 0; #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) if (ccb->ccb_h.func_code == XPT_SCSI_IO) ccb->csio.bio = NULL; #endif /* * Sanity check -- make sure we don't get a null peripheral * driver name. */ if (*ccb->cgdl.periph_name == '\0') { error = EINVAL; break; } /* Keep the list from changing while we traverse it */ xpt_lock_buses(); /* first find our driver in the list of drivers */ for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) if (strcmp((*p_drv)->driver_name, name) == 0) break; if (*p_drv == NULL) { xpt_unlock_buses(); ccb->ccb_h.status = CAM_REQ_CMP_ERR; ccb->cgdl.status = CAM_GDEVLIST_ERROR; *ccb->cgdl.periph_name = '\0'; ccb->cgdl.unit_number = 0; error = ENOENT; break; } /* * Run through every peripheral instance of this driver * and check to see whether it matches the unit passed * in by the user. If it does, get out of the loops and * find the passthrough driver associated with that * peripheral driver. */ for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; periph = TAILQ_NEXT(periph, unit_links)) { if (periph->unit_number == unit) break; } /* * If we found the peripheral driver that the user passed * in, go through all of the peripheral drivers for that * particular device and look for a passthrough driver. */ if (periph != NULL) { struct cam_ed *device; int i; base_periph_found = 1; device = periph->path->device; for (i = 0, periph = SLIST_FIRST(&device->periphs); periph != NULL; periph = SLIST_NEXT(periph, periph_links), i++) { /* * Check to see whether we have a * passthrough device or not. */ if (strcmp(periph->periph_name, "pass") == 0) { /* * Fill in the getdevlist fields. */ strcpy(ccb->cgdl.periph_name, periph->periph_name); ccb->cgdl.unit_number = periph->unit_number; if (SLIST_NEXT(periph, periph_links)) ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; else ccb->cgdl.status = CAM_GDEVLIST_LAST_DEVICE; ccb->cgdl.generation = device->generation; ccb->cgdl.index = i; /* * Fill in some CCB header fields * that the user may want. */ ccb->ccb_h.path_id = periph->path->bus->path_id; ccb->ccb_h.target_id = periph->path->target->target_id; ccb->ccb_h.target_lun = periph->path->device->lun_id; ccb->ccb_h.status = CAM_REQ_CMP; break; } } } /* * If the periph is null here, one of two things has * happened. The first possibility is that we couldn't * find the unit number of the particular peripheral driver * that the user is asking about. e.g. the user asks for * the passthrough driver for "da11". We find the list of * "da" peripherals all right, but there is no unit 11. * The other possibility is that we went through the list * of peripheral drivers attached to the device structure, * but didn't find one with the name "pass". Either way, * we return ENOENT, since we couldn't find something. */ if (periph == NULL) { ccb->ccb_h.status = CAM_REQ_CMP_ERR; ccb->cgdl.status = CAM_GDEVLIST_ERROR; *ccb->cgdl.periph_name = '\0'; ccb->cgdl.unit_number = 0; error = ENOENT; /* * It is unfortunate that this is even necessary, * but there are many, many clueless users out there. * If this is true, the user is looking for the * passthrough driver, but doesn't have one in his * kernel. */ if (base_periph_found == 1) { printf("xptioctl: pass driver is not in the " "kernel\n"); printf("xptioctl: put \"device pass\" in " "your kernel config file\n"); } } xpt_unlock_buses(); break; } default: error = ENOTTY; break; } return(error); } static int cam_module_event_handler(module_t mod, int what, void *arg) { int error; switch (what) { case MOD_LOAD: if ((error = xpt_init(NULL)) != 0) return (error); break; case MOD_UNLOAD: return EBUSY; default: return EOPNOTSUPP; } return 0; } static struct xpt_proto * xpt_proto_find(cam_proto proto) { struct xpt_proto **pp; SET_FOREACH(pp, cam_xpt_proto_set) { if ((*pp)->proto == proto) return *pp; } return NULL; } static void xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) { if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { xpt_free_path(done_ccb->ccb_h.path); xpt_free_ccb(done_ccb); } else { done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); } xpt_release_boot(); } /* thread to handle bus rescans */ static void xpt_scanner_thread(void *dummy) { union ccb *ccb; struct cam_path path; xpt_lock_buses(); for (;;) { if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, "-", 0); if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); xpt_unlock_buses(); /* * Since lock can be dropped inside and path freed * by completion callback even before return here, * take our own path copy for reference. */ xpt_copy_path(&path, ccb->ccb_h.path); xpt_path_lock(&path); xpt_action(ccb); xpt_path_unlock(&path); xpt_release_path(&path); xpt_lock_buses(); } } } void xpt_rescan(union ccb *ccb) { struct ccb_hdr *hdr; /* Prepare request */ if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) ccb->ccb_h.func_code = XPT_SCAN_BUS; else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) ccb->ccb_h.func_code = XPT_SCAN_TGT; else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) ccb->ccb_h.func_code = XPT_SCAN_LUN; else { xpt_print(ccb->ccb_h.path, "illegal scan path\n"); xpt_free_path(ccb->ccb_h.path); xpt_free_ccb(ccb); return; } CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code, xpt_action_name(ccb->ccb_h.func_code))); ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; ccb->ccb_h.cbfcnp = xpt_rescan_done; xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); /* Don't make duplicate entries for the same paths. */ xpt_lock_buses(); if (ccb->ccb_h.ppriv_ptr1 == NULL) { TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { wakeup(&xsoftc.ccb_scanq); xpt_unlock_buses(); xpt_print(ccb->ccb_h.path, "rescan already queued\n"); xpt_free_path(ccb->ccb_h.path); xpt_free_ccb(ccb); return; } } } TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); xsoftc.buses_to_config++; wakeup(&xsoftc.ccb_scanq); xpt_unlock_buses(); } /* Functions accessed by the peripheral drivers */ static int xpt_init(void *dummy) { struct cam_sim *xpt_sim; struct cam_path *path; struct cam_devq *devq; cam_status status; int error, i; TAILQ_INIT(&xsoftc.xpt_busses); TAILQ_INIT(&xsoftc.ccb_scanq); STAILQ_INIT(&xsoftc.highpowerq); xsoftc.num_highpower = CAM_MAX_HIGHPOWER; mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); #ifdef CAM_BOOT_DELAY /* * Override this value at compile time to assist our users * who don't use loader to boot a kernel. */ xsoftc.boot_delay = CAM_BOOT_DELAY; #endif /* * The xpt layer is, itself, the equivalent of a SIM. * Allow 16 ccbs in the ccb pool for it. This should * give decent parallelism when we probe buses and * perform other XPT functions. */ devq = cam_simq_alloc(16); xpt_sim = cam_sim_alloc(xptaction, xptpoll, "xpt", /*softc*/NULL, /*unit*/0, /*mtx*/&xsoftc.xpt_lock, /*max_dev_transactions*/0, /*max_tagged_dev_transactions*/0, devq); if (xpt_sim == NULL) return (ENOMEM); mtx_lock(&xsoftc.xpt_lock); if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { mtx_unlock(&xsoftc.xpt_lock); printf("xpt_init: xpt_bus_register failed with status %#x," " failing attach\n", status); return (EINVAL); } mtx_unlock(&xsoftc.xpt_lock); /* * Looking at the XPT from the SIM layer, the XPT is * the equivalent of a peripheral driver. Allocate * a peripheral driver entry for us. */ if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { printf("xpt_init: xpt_create_path failed with status %#x," " failing attach\n", status); return (EINVAL); } xpt_path_lock(path); cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, path, NULL, 0, xpt_sim); xpt_path_unlock(path); xpt_free_path(path); if (cam_num_doneqs < 1) cam_num_doneqs = 1 + mp_ncpus / 6; else if (cam_num_doneqs > MAXCPU) cam_num_doneqs = MAXCPU; for (i = 0; i < cam_num_doneqs; i++) { mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, MTX_DEF); STAILQ_INIT(&cam_doneqs[i].cam_doneq); error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); if (error != 0) { cam_num_doneqs = i; break; } } if (cam_num_doneqs < 1) { printf("xpt_init: Cannot init completion queues " "- failing attach\n"); return (ENOMEM); } /* * Register a callback for when interrupts are enabled. */ xsoftc.xpt_config_hook = (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), M_CAMXPT, M_NOWAIT | M_ZERO); if (xsoftc.xpt_config_hook == NULL) { printf("xpt_init: Cannot malloc config hook " "- failing attach\n"); return (ENOMEM); } xsoftc.xpt_config_hook->ich_func = xpt_config; if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { free (xsoftc.xpt_config_hook, M_CAMXPT); printf("xpt_init: config_intrhook_establish failed " "- failing attach\n"); } return (0); } static cam_status xptregister(struct cam_periph *periph, void *arg) { struct cam_sim *xpt_sim; if (periph == NULL) { printf("xptregister: periph was NULL!!\n"); return(CAM_REQ_CMP_ERR); } xpt_sim = (struct cam_sim *)arg; xpt_sim->softc = periph; xpt_periph = periph; periph->softc = NULL; return(CAM_REQ_CMP); } int32_t xpt_add_periph(struct cam_periph *periph) { struct cam_ed *device; int32_t status; TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); device = periph->path->device; status = CAM_REQ_CMP; if (device != NULL) { mtx_lock(&device->target->bus->eb_mtx); device->generation++; SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); mtx_unlock(&device->target->bus->eb_mtx); atomic_add_32(&xsoftc.xpt_generation, 1); } return (status); } void xpt_remove_periph(struct cam_periph *periph) { struct cam_ed *device; device = periph->path->device; if (device != NULL) { mtx_lock(&device->target->bus->eb_mtx); device->generation++; SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); mtx_unlock(&device->target->bus->eb_mtx); atomic_add_32(&xsoftc.xpt_generation, 1); } } void xpt_announce_periph(struct cam_periph *periph, char *announce_string) { struct cam_path *path = periph->path; struct xpt_proto *proto; cam_periph_assert(periph, MA_OWNED); periph->flags |= CAM_PERIPH_ANNOUNCED; printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", periph->periph_name, periph->unit_number, path->bus->sim->sim_name, path->bus->sim->unit_number, path->bus->sim->bus_id, path->bus->path_id, path->target->target_id, (uintmax_t)path->device->lun_id); printf("%s%d: ", periph->periph_name, periph->unit_number); proto = xpt_proto_find(path->device->protocol); if (proto) proto->ops->announce(path->device); else printf("%s%d: Unknown protocol device %d\n", periph->periph_name, periph->unit_number, path->device->protocol); if (path->device->serial_num_len > 0) { /* Don't wrap the screen - print only the first 60 chars */ printf("%s%d: Serial Number %.60s\n", periph->periph_name, periph->unit_number, path->device->serial_num); } /* Announce transport details. */ path->bus->xport->ops->announce(periph); /* Announce command queueing. */ if (path->device->inq_flags & SID_CmdQue || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { printf("%s%d: Command Queueing enabled\n", periph->periph_name, periph->unit_number); } /* Announce caller's details if they've passed in. */ if (announce_string != NULL) printf("%s%d: %s\n", periph->periph_name, periph->unit_number, announce_string); } void xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb, char *announce_string) { struct cam_path *path = periph->path; struct xpt_proto *proto; cam_periph_assert(periph, MA_OWNED); periph->flags |= CAM_PERIPH_ANNOUNCED; /* Fall back to the non-sbuf method if necessary */ if (xsoftc.announce_nosbuf != 0) { xpt_announce_periph(periph, announce_string); return; } proto = xpt_proto_find(path->device->protocol); if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) || (path->bus->xport->ops->announce_sbuf == NULL)) { xpt_announce_periph(periph, announce_string); return; } sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", periph->periph_name, periph->unit_number, path->bus->sim->sim_name, path->bus->sim->unit_number, path->bus->sim->bus_id, path->bus->path_id, path->target->target_id, (uintmax_t)path->device->lun_id); sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); if (proto) proto->ops->announce_sbuf(path->device, sb); else sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", periph->periph_name, periph->unit_number, path->device->protocol); if (path->device->serial_num_len > 0) { /* Don't wrap the screen - print only the first 60 chars */ sbuf_printf(sb, "%s%d: Serial Number %.60s\n", periph->periph_name, periph->unit_number, path->device->serial_num); } /* Announce transport details. */ path->bus->xport->ops->announce_sbuf(periph, sb); /* Announce command queueing. */ if (path->device->inq_flags & SID_CmdQue || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { sbuf_printf(sb, "%s%d: Command Queueing enabled\n", periph->periph_name, periph->unit_number); } /* Announce caller's details if they've passed in. */ if (announce_string != NULL) sbuf_printf(sb, "%s%d: %s\n", periph->periph_name, periph->unit_number, announce_string); } void xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) { if (quirks != 0) { printf("%s%d: quirks=0x%b\n", periph->periph_name, periph->unit_number, quirks, bit_string); } } void xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb, int quirks, char *bit_string) { if (xsoftc.announce_nosbuf != 0) { xpt_announce_quirks(periph, quirks, bit_string); return; } if (quirks != 0) { sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name, periph->unit_number, quirks, bit_string); } } void xpt_denounce_periph(struct cam_periph *periph) { struct cam_path *path = periph->path; struct xpt_proto *proto; cam_periph_assert(periph, MA_OWNED); printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", periph->periph_name, periph->unit_number, path->bus->sim->sim_name, path->bus->sim->unit_number, path->bus->sim->bus_id, path->bus->path_id, path->target->target_id, (uintmax_t)path->device->lun_id); printf("%s%d: ", periph->periph_name, periph->unit_number); proto = xpt_proto_find(path->device->protocol); if (proto) proto->ops->denounce(path->device); else printf("%s%d: Unknown protocol device %d\n", periph->periph_name, periph->unit_number, path->device->protocol); if (path->device->serial_num_len > 0) printf(" s/n %.60s", path->device->serial_num); printf(" detached\n"); } void xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb) { struct cam_path *path = periph->path; struct xpt_proto *proto; cam_periph_assert(periph, MA_OWNED); /* Fall back to the non-sbuf method if necessary */ if (xsoftc.announce_nosbuf != 0) { xpt_denounce_periph(periph); return; } proto = xpt_proto_find(path->device->protocol); if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) { xpt_denounce_periph(periph); return; } sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", periph->periph_name, periph->unit_number, path->bus->sim->sim_name, path->bus->sim->unit_number, path->bus->sim->bus_id, path->bus->path_id, path->target->target_id, (uintmax_t)path->device->lun_id); sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); if (proto) proto->ops->denounce_sbuf(path->device, sb); else sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", periph->periph_name, periph->unit_number, path->device->protocol); if (path->device->serial_num_len > 0) sbuf_printf(sb, " s/n %.60s", path->device->serial_num); sbuf_printf(sb, " detached\n"); } int xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) { int ret = -1, l, o; struct ccb_dev_advinfo cdai; struct scsi_vpd_id_descriptor *idd; xpt_path_assert(path, MA_OWNED); memset(&cdai, 0, sizeof(cdai)); xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); cdai.ccb_h.func_code = XPT_DEV_ADVINFO; cdai.flags = CDAI_FLAG_NONE; cdai.bufsiz = len; if (!strcmp(attr, "GEOM::ident")) cdai.buftype = CDAI_TYPE_SERIAL_NUM; else if (!strcmp(attr, "GEOM::physpath")) cdai.buftype = CDAI_TYPE_PHYS_PATH; else if (strcmp(attr, "GEOM::lunid") == 0 || strcmp(attr, "GEOM::lunname") == 0) { cdai.buftype = CDAI_TYPE_SCSI_DEVID; cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; } else goto out; cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); if (cdai.buf == NULL) { ret = ENOMEM; goto out; } xpt_action((union ccb *)&cdai); /* can only be synchronous */ if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); if (cdai.provsiz == 0) goto out; if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { if (strcmp(attr, "GEOM::lunid") == 0) { idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, cdai.provsiz, scsi_devid_is_lun_naa); if (idd == NULL) idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, cdai.provsiz, scsi_devid_is_lun_eui64); if (idd == NULL) idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, cdai.provsiz, scsi_devid_is_lun_uuid); if (idd == NULL) idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, cdai.provsiz, scsi_devid_is_lun_md5); } else idd = NULL; if (idd == NULL) idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, cdai.provsiz, scsi_devid_is_lun_t10); if (idd == NULL) idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, cdai.provsiz, scsi_devid_is_lun_name); if (idd == NULL) goto out; ret = 0; if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) { if (idd->length < len) { for (l = 0; l < idd->length; l++) buf[l] = idd->identifier[l] ? idd->identifier[l] : ' '; buf[l] = 0; } else ret = EFAULT; } else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { l = strnlen(idd->identifier, idd->length); if (l < len) { bcopy(idd->identifier, buf, l); buf[l] = 0; } else ret = EFAULT; } else if ((idd->id_type & SVPD_ID_TYPE_MASK) == SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) { if ((idd->length - 2) * 2 + 4 < len) { for (l = 2, o = 0; l < idd->length; l++) { if (l == 6 || l == 8 || l == 10 || l == 12) o += sprintf(buf + o, "-"); o += sprintf(buf + o, "%02x", idd->identifier[l]); } } else ret = EFAULT; } else { if (idd->length * 2 < len) { for (l = 0; l < idd->length; l++) sprintf(buf + l * 2, "%02x", idd->identifier[l]); } else ret = EFAULT; } } else { ret = 0; if (strlcpy(buf, cdai.buf, len) >= len) ret = EFAULT; } out: if (cdai.buf != NULL) free(cdai.buf, M_CAMXPT); return ret; } static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_eb *bus) { dev_match_ret retval; u_int i; retval = DM_RET_NONE; /* * If we aren't given something to match against, that's an error. */ if (bus == NULL) return(DM_RET_ERROR); /* * If there are no match entries, then this bus matches no * matter what. */ if ((patterns == NULL) || (num_patterns == 0)) return(DM_RET_DESCEND | DM_RET_COPY); for (i = 0; i < num_patterns; i++) { struct bus_match_pattern *cur_pattern; /* * If the pattern in question isn't for a bus node, we * aren't interested. However, we do indicate to the * calling routine that we should continue descending the * tree, since the user wants to match against lower-level * EDT elements. */ if (patterns[i].type != DEV_MATCH_BUS) { if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) retval |= DM_RET_DESCEND; continue; } cur_pattern = &patterns[i].pattern.bus_pattern; /* * If they want to match any bus node, we give them any * device node. */ if (cur_pattern->flags == BUS_MATCH_ANY) { /* set the copy flag */ retval |= DM_RET_COPY; /* * If we've already decided on an action, go ahead * and return. */ if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) return(retval); } /* * Not sure why someone would do this... */ if (cur_pattern->flags == BUS_MATCH_NONE) continue; if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) && (cur_pattern->path_id != bus->path_id)) continue; if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) && (cur_pattern->bus_id != bus->sim->bus_id)) continue; if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) && (cur_pattern->unit_number != bus->sim->unit_number)) continue; if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, DEV_IDLEN) != 0)) continue; /* * If we get to this point, the user definitely wants * information on this bus. So tell the caller to copy the * data out. */ retval |= DM_RET_COPY; /* * If the return action has been set to descend, then we * know that we've already seen a non-bus matching * expression, therefore we need to further descend the tree. * This won't change by continuing around the loop, so we * go ahead and return. If we haven't seen a non-bus * matching expression, we keep going around the loop until * we exhaust the matching expressions. We'll set the stop * flag once we fall out of the loop. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) return(retval); } /* * If the return action hasn't been set to descend yet, that means * we haven't seen anything other than bus matching patterns. So * tell the caller to stop descending the tree -- the user doesn't * want to match against lower level tree elements. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) retval |= DM_RET_STOP; return(retval); } static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_ed *device) { dev_match_ret retval; u_int i; retval = DM_RET_NONE; /* * If we aren't given something to match against, that's an error. */ if (device == NULL) return(DM_RET_ERROR); /* * If there are no match entries, then this device matches no * matter what. */ if ((patterns == NULL) || (num_patterns == 0)) return(DM_RET_DESCEND | DM_RET_COPY); for (i = 0; i < num_patterns; i++) { struct device_match_pattern *cur_pattern; struct scsi_vpd_device_id *device_id_page; /* * If the pattern in question isn't for a device node, we * aren't interested. */ if (patterns[i].type != DEV_MATCH_DEVICE) { if ((patterns[i].type == DEV_MATCH_PERIPH) && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) retval |= DM_RET_DESCEND; continue; } cur_pattern = &patterns[i].pattern.device_pattern; /* Error out if mutually exclusive options are specified. */ if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) return(DM_RET_ERROR); /* * If they want to match any device node, we give them any * device node. */ if (cur_pattern->flags == DEV_MATCH_ANY) goto copy_dev_node; /* * Not sure why someone would do this... */ if (cur_pattern->flags == DEV_MATCH_NONE) continue; if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) && (cur_pattern->path_id != device->target->bus->path_id)) continue; if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) && (cur_pattern->target_id != device->target->target_id)) continue; if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) && (cur_pattern->target_lun != device->lun_id)) continue; if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) && (cam_quirkmatch((caddr_t)&device->inq_data, (caddr_t)&cur_pattern->data.inq_pat, 1, sizeof(cur_pattern->data.inq_pat), scsi_static_inquiry_match) == NULL)) continue; device_id_page = (struct scsi_vpd_device_id *)device->device_id; if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN || scsi_devid_match((uint8_t *)device_id_page->desc_list, device->device_id_len - SVPD_DEVICE_ID_HDR_LEN, cur_pattern->data.devid_pat.id, cur_pattern->data.devid_pat.id_len) != 0)) continue; copy_dev_node: /* * If we get to this point, the user definitely wants * information on this device. So tell the caller to copy * the data out. */ retval |= DM_RET_COPY; /* * If the return action has been set to descend, then we * know that we've already seen a peripheral matching * expression, therefore we need to further descend the tree. * This won't change by continuing around the loop, so we * go ahead and return. If we haven't seen a peripheral * matching expression, we keep going around the loop until * we exhaust the matching expressions. We'll set the stop * flag once we fall out of the loop. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) return(retval); } /* * If the return action hasn't been set to descend yet, that means * we haven't seen any peripheral matching patterns. So tell the * caller to stop descending the tree -- the user doesn't want to * match against lower level tree elements. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) retval |= DM_RET_STOP; return(retval); } /* * Match a single peripheral against any number of match patterns. */ static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_periph *periph) { dev_match_ret retval; u_int i; /* * If we aren't given something to match against, that's an error. */ if (periph == NULL) return(DM_RET_ERROR); /* * If there are no match entries, then this peripheral matches no * matter what. */ if ((patterns == NULL) || (num_patterns == 0)) return(DM_RET_STOP | DM_RET_COPY); /* * There aren't any nodes below a peripheral node, so there's no * reason to descend the tree any further. */ retval = DM_RET_STOP; for (i = 0; i < num_patterns; i++) { struct periph_match_pattern *cur_pattern; /* * If the pattern in question isn't for a peripheral, we * aren't interested. */ if (patterns[i].type != DEV_MATCH_PERIPH) continue; cur_pattern = &patterns[i].pattern.periph_pattern; /* * If they want to match on anything, then we will do so. */ if (cur_pattern->flags == PERIPH_MATCH_ANY) { /* set the copy flag */ retval |= DM_RET_COPY; /* * We've already set the return action to stop, * since there are no nodes below peripherals in * the tree. */ return(retval); } /* * Not sure why someone would do this... */ if (cur_pattern->flags == PERIPH_MATCH_NONE) continue; if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) && (cur_pattern->path_id != periph->path->bus->path_id)) continue; /* * For the target and lun id's, we have to make sure the * target and lun pointers aren't NULL. The xpt peripheral * has a wildcard target and device. */ if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) && ((periph->path->target == NULL) ||(cur_pattern->target_id != periph->path->target->target_id))) continue; if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) && ((periph->path->device == NULL) || (cur_pattern->target_lun != periph->path->device->lun_id))) continue; if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) && (cur_pattern->unit_number != periph->unit_number)) continue; if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) && (strncmp(cur_pattern->periph_name, periph->periph_name, DEV_IDLEN) != 0)) continue; /* * If we get to this point, the user definitely wants * information on this peripheral. So tell the caller to * copy the data out. */ retval |= DM_RET_COPY; /* * The return action has already been set to stop, since * peripherals don't have any nodes below them in the EDT. */ return(retval); } /* * If we get to this point, the peripheral that was passed in * doesn't match any of the patterns. */ return(retval); } static int xptedtbusfunc(struct cam_eb *bus, void *arg) { struct ccb_dev_match *cdm; struct cam_et *target; dev_match_ret retval; cdm = (struct ccb_dev_match *)arg; /* * If our position is for something deeper in the tree, that means * that we've already seen this node. So, we keep going down. */ if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus == bus) && (cdm->pos.position_type & CAM_DEV_POS_TARGET) && (cdm->pos.cookie.target != NULL)) retval = DM_RET_DESCEND; else retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); /* * If we got an error, bail out of the search. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } /* * If the copy flag is set, copy this bus out. */ if (retval & DM_RET_COPY) { int spaceleft, j; spaceleft = cdm->match_buf_len - (cdm->num_matches * sizeof(struct dev_match_result)); /* * If we don't have enough space to put in another * match result, save our position and tell the * user there are more devices to check. */ if (spaceleft < sizeof(struct dev_match_result)) { bzero(&cdm->pos, sizeof(cdm->pos)); cdm->pos.position_type = CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; cdm->pos.cookie.bus = bus; cdm->pos.generations[CAM_BUS_GENERATION]= xsoftc.bus_generation; cdm->status = CAM_DEV_MATCH_MORE; return(0); } j = cdm->num_matches; cdm->num_matches++; cdm->matches[j].type = DEV_MATCH_BUS; cdm->matches[j].result.bus_result.path_id = bus->path_id; cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; cdm->matches[j].result.bus_result.unit_number = bus->sim->unit_number; strncpy(cdm->matches[j].result.bus_result.dev_name, bus->sim->sim_name, DEV_IDLEN); } /* * If the user is only interested in buses, there's no * reason to descend to the next level in the tree. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) return(1); /* * If there is a target generation recorded, check it to * make sure the target list hasn't changed. */ mtx_lock(&bus->eb_mtx); if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus == bus) && (cdm->pos.position_type & CAM_DEV_POS_TARGET) && (cdm->pos.cookie.target != NULL)) { if ((cdm->pos.generations[CAM_TARGET_GENERATION] != bus->generation)) { mtx_unlock(&bus->eb_mtx); cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return (0); } target = (struct cam_et *)cdm->pos.cookie.target; target->refcount++; } else target = NULL; mtx_unlock(&bus->eb_mtx); return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); } static int xptedttargetfunc(struct cam_et *target, void *arg) { struct ccb_dev_match *cdm; struct cam_eb *bus; struct cam_ed *device; cdm = (struct ccb_dev_match *)arg; bus = target->bus; /* * If there is a device list generation recorded, check it to * make sure the device list hasn't changed. */ mtx_lock(&bus->eb_mtx); if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus == bus) && (cdm->pos.position_type & CAM_DEV_POS_TARGET) && (cdm->pos.cookie.target == target) && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) && (cdm->pos.cookie.device != NULL)) { if (cdm->pos.generations[CAM_DEV_GENERATION] != target->generation) { mtx_unlock(&bus->eb_mtx); cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return(0); } device = (struct cam_ed *)cdm->pos.cookie.device; device->refcount++; } else device = NULL; mtx_unlock(&bus->eb_mtx); return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); } static int xptedtdevicefunc(struct cam_ed *device, void *arg) { struct cam_eb *bus; struct cam_periph *periph; struct ccb_dev_match *cdm; dev_match_ret retval; cdm = (struct ccb_dev_match *)arg; bus = device->target->bus; /* * If our position is for something deeper in the tree, that means * that we've already seen this node. So, we keep going down. */ if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) && (cdm->pos.cookie.device == device) && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) && (cdm->pos.cookie.periph != NULL)) retval = DM_RET_DESCEND; else retval = xptdevicematch(cdm->patterns, cdm->num_patterns, device); if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } /* * If the copy flag is set, copy this device out. */ if (retval & DM_RET_COPY) { int spaceleft, j; spaceleft = cdm->match_buf_len - (cdm->num_matches * sizeof(struct dev_match_result)); /* * If we don't have enough space to put in another * match result, save our position and tell the * user there are more devices to check. */ if (spaceleft < sizeof(struct dev_match_result)) { bzero(&cdm->pos, sizeof(cdm->pos)); cdm->pos.position_type = CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; cdm->pos.cookie.bus = device->target->bus; cdm->pos.generations[CAM_BUS_GENERATION]= xsoftc.bus_generation; cdm->pos.cookie.target = device->target; cdm->pos.generations[CAM_TARGET_GENERATION] = device->target->bus->generation; cdm->pos.cookie.device = device; cdm->pos.generations[CAM_DEV_GENERATION] = device->target->generation; cdm->status = CAM_DEV_MATCH_MORE; return(0); } j = cdm->num_matches; cdm->num_matches++; cdm->matches[j].type = DEV_MATCH_DEVICE; cdm->matches[j].result.device_result.path_id = device->target->bus->path_id; cdm->matches[j].result.device_result.target_id = device->target->target_id; cdm->matches[j].result.device_result.target_lun = device->lun_id; cdm->matches[j].result.device_result.protocol = device->protocol; bcopy(&device->inq_data, &cdm->matches[j].result.device_result.inq_data, sizeof(struct scsi_inquiry_data)); bcopy(&device->ident_data, &cdm->matches[j].result.device_result.ident_data, sizeof(struct ata_params)); bcopy(&device->mmc_ident_data, &cdm->matches[j].result.device_result.mmc_ident_data, sizeof(struct mmc_params)); /* Let the user know whether this device is unconfigured */ if (device->flags & CAM_DEV_UNCONFIGURED) cdm->matches[j].result.device_result.flags = DEV_RESULT_UNCONFIGURED; else cdm->matches[j].result.device_result.flags = DEV_RESULT_NOFLAG; } /* * If the user isn't interested in peripherals, don't descend * the tree any further. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) return(1); /* * If there is a peripheral list generation recorded, make sure * it hasn't changed. */ xpt_lock_buses(); mtx_lock(&bus->eb_mtx); if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus == bus) && (cdm->pos.position_type & CAM_DEV_POS_TARGET) && (cdm->pos.cookie.target == device->target) && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) && (cdm->pos.cookie.device == device) && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) && (cdm->pos.cookie.periph != NULL)) { if (cdm->pos.generations[CAM_PERIPH_GENERATION] != device->generation) { mtx_unlock(&bus->eb_mtx); xpt_unlock_buses(); cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return(0); } periph = (struct cam_periph *)cdm->pos.cookie.periph; periph->refcount++; } else periph = NULL; mtx_unlock(&bus->eb_mtx); xpt_unlock_buses(); return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); } static int xptedtperiphfunc(struct cam_periph *periph, void *arg) { struct ccb_dev_match *cdm; dev_match_ret retval; cdm = (struct ccb_dev_match *)arg; retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } /* * If the copy flag is set, copy this peripheral out. */ if (retval & DM_RET_COPY) { int spaceleft, j; spaceleft = cdm->match_buf_len - (cdm->num_matches * sizeof(struct dev_match_result)); /* * If we don't have enough space to put in another * match result, save our position and tell the * user there are more devices to check. */ if (spaceleft < sizeof(struct dev_match_result)) { bzero(&cdm->pos, sizeof(cdm->pos)); cdm->pos.position_type = CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | CAM_DEV_POS_PERIPH; cdm->pos.cookie.bus = periph->path->bus; cdm->pos.generations[CAM_BUS_GENERATION]= xsoftc.bus_generation; cdm->pos.cookie.target = periph->path->target; cdm->pos.generations[CAM_TARGET_GENERATION] = periph->path->bus->generation; cdm->pos.cookie.device = periph->path->device; cdm->pos.generations[CAM_DEV_GENERATION] = periph->path->target->generation; cdm->pos.cookie.periph = periph; cdm->pos.generations[CAM_PERIPH_GENERATION] = periph->path->device->generation; cdm->status = CAM_DEV_MATCH_MORE; return(0); } j = cdm->num_matches; cdm->num_matches++; cdm->matches[j].type = DEV_MATCH_PERIPH; cdm->matches[j].result.periph_result.path_id = periph->path->bus->path_id; cdm->matches[j].result.periph_result.target_id = periph->path->target->target_id; cdm->matches[j].result.periph_result.target_lun = periph->path->device->lun_id; cdm->matches[j].result.periph_result.unit_number = periph->unit_number; strncpy(cdm->matches[j].result.periph_result.periph_name, periph->periph_name, DEV_IDLEN); } return(1); } static int xptedtmatch(struct ccb_dev_match *cdm) { struct cam_eb *bus; int ret; cdm->num_matches = 0; /* * Check the bus list generation. If it has changed, the user * needs to reset everything and start over. */ xpt_lock_buses(); if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus != NULL)) { if (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation) { xpt_unlock_buses(); cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return(0); } bus = (struct cam_eb *)cdm->pos.cookie.bus; bus->refcount++; } else bus = NULL; xpt_unlock_buses(); ret = xptbustraverse(bus, xptedtbusfunc, cdm); /* * If we get back 0, that means that we had to stop before fully * traversing the EDT. It also means that one of the subroutines * has set the status field to the proper value. If we get back 1, * we've fully traversed the EDT and copied out any matching entries. */ if (ret == 1) cdm->status = CAM_DEV_MATCH_LAST; return(ret); } static int xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) { struct cam_periph *periph; struct ccb_dev_match *cdm; cdm = (struct ccb_dev_match *)arg; xpt_lock_buses(); if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) && (cdm->pos.cookie.pdrv == pdrv) && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) && (cdm->pos.cookie.periph != NULL)) { if (cdm->pos.generations[CAM_PERIPH_GENERATION] != (*pdrv)->generation) { xpt_unlock_buses(); cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return(0); } periph = (struct cam_periph *)cdm->pos.cookie.periph; periph->refcount++; } else periph = NULL; xpt_unlock_buses(); return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); } static int xptplistperiphfunc(struct cam_periph *periph, void *arg) { struct ccb_dev_match *cdm; dev_match_ret retval; cdm = (struct ccb_dev_match *)arg; retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } /* * If the copy flag is set, copy this peripheral out. */ if (retval & DM_RET_COPY) { int spaceleft, j; spaceleft = cdm->match_buf_len - (cdm->num_matches * sizeof(struct dev_match_result)); /* * If we don't have enough space to put in another * match result, save our position and tell the * user there are more devices to check. */ if (spaceleft < sizeof(struct dev_match_result)) { struct periph_driver **pdrv; pdrv = NULL; bzero(&cdm->pos, sizeof(cdm->pos)); cdm->pos.position_type = CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | CAM_DEV_POS_PERIPH; /* * This may look a bit non-sensical, but it is * actually quite logical. There are very few * peripheral drivers, and bloating every peripheral * structure with a pointer back to its parent * peripheral driver linker set entry would cost * more in the long run than doing this quick lookup. */ for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { if (strcmp((*pdrv)->driver_name, periph->periph_name) == 0) break; } if (*pdrv == NULL) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } cdm->pos.cookie.pdrv = pdrv; /* * The periph generation slot does double duty, as * does the periph pointer slot. They are used for * both edt and pdrv lookups and positioning. */ cdm->pos.cookie.periph = periph; cdm->pos.generations[CAM_PERIPH_GENERATION] = (*pdrv)->generation; cdm->status = CAM_DEV_MATCH_MORE; return(0); } j = cdm->num_matches; cdm->num_matches++; cdm->matches[j].type = DEV_MATCH_PERIPH; cdm->matches[j].result.periph_result.path_id = periph->path->bus->path_id; /* * The transport layer peripheral doesn't have a target or * lun. */ if (periph->path->target) cdm->matches[j].result.periph_result.target_id = periph->path->target->target_id; else cdm->matches[j].result.periph_result.target_id = CAM_TARGET_WILDCARD; if (periph->path->device) cdm->matches[j].result.periph_result.target_lun = periph->path->device->lun_id; else cdm->matches[j].result.periph_result.target_lun = CAM_LUN_WILDCARD; cdm->matches[j].result.periph_result.unit_number = periph->unit_number; strncpy(cdm->matches[j].result.periph_result.periph_name, periph->periph_name, DEV_IDLEN); } return(1); } static int xptperiphlistmatch(struct ccb_dev_match *cdm) { int ret; cdm->num_matches = 0; /* * At this point in the edt traversal function, we check the bus * list generation to make sure that no buses have been added or * removed since the user last sent a XPT_DEV_MATCH ccb through. * For the peripheral driver list traversal function, however, we * don't have to worry about new peripheral driver types coming or * going; they're in a linker set, and therefore can't change * without a recompile. */ if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) && (cdm->pos.cookie.pdrv != NULL)) ret = xptpdrvtraverse( (struct periph_driver **)cdm->pos.cookie.pdrv, xptplistpdrvfunc, cdm); else ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); /* * If we get back 0, that means that we had to stop before fully * traversing the peripheral driver tree. It also means that one of * the subroutines has set the status field to the proper value. If * we get back 1, we've fully traversed the EDT and copied out any * matching entries. */ if (ret == 1) cdm->status = CAM_DEV_MATCH_LAST; return(ret); } static int xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) { struct cam_eb *bus, *next_bus; int retval; retval = 1; if (start_bus) bus = start_bus; else { xpt_lock_buses(); bus = TAILQ_FIRST(&xsoftc.xpt_busses); if (bus == NULL) { xpt_unlock_buses(); return (retval); } bus->refcount++; xpt_unlock_buses(); } for (; bus != NULL; bus = next_bus) { retval = tr_func(bus, arg); if (retval == 0) { xpt_release_bus(bus); break; } xpt_lock_buses(); next_bus = TAILQ_NEXT(bus, links); if (next_bus) next_bus->refcount++; xpt_unlock_buses(); xpt_release_bus(bus); } return(retval); } static int xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, xpt_targetfunc_t *tr_func, void *arg) { struct cam_et *target, *next_target; int retval; retval = 1; if (start_target) target = start_target; else { mtx_lock(&bus->eb_mtx); target = TAILQ_FIRST(&bus->et_entries); if (target == NULL) { mtx_unlock(&bus->eb_mtx); return (retval); } target->refcount++; mtx_unlock(&bus->eb_mtx); } for (; target != NULL; target = next_target) { retval = tr_func(target, arg); if (retval == 0) { xpt_release_target(target); break; } mtx_lock(&bus->eb_mtx); next_target = TAILQ_NEXT(target, links); if (next_target) next_target->refcount++; mtx_unlock(&bus->eb_mtx); xpt_release_target(target); } return(retval); } static int xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, xpt_devicefunc_t *tr_func, void *arg) { struct cam_eb *bus; struct cam_ed *device, *next_device; int retval; retval = 1; bus = target->bus; if (start_device) device = start_device; else { mtx_lock(&bus->eb_mtx); device = TAILQ_FIRST(&target->ed_entries); if (device == NULL) { mtx_unlock(&bus->eb_mtx); return (retval); } device->refcount++; mtx_unlock(&bus->eb_mtx); } for (; device != NULL; device = next_device) { mtx_lock(&device->device_mtx); retval = tr_func(device, arg); mtx_unlock(&device->device_mtx); if (retval == 0) { xpt_release_device(device); break; } mtx_lock(&bus->eb_mtx); next_device = TAILQ_NEXT(device, links); if (next_device) next_device->refcount++; mtx_unlock(&bus->eb_mtx); xpt_release_device(device); } return(retval); } static int xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, xpt_periphfunc_t *tr_func, void *arg) { struct cam_eb *bus; struct cam_periph *periph, *next_periph; int retval; retval = 1; bus = device->target->bus; if (start_periph) periph = start_periph; else { xpt_lock_buses(); mtx_lock(&bus->eb_mtx); periph = SLIST_FIRST(&device->periphs); while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) periph = SLIST_NEXT(periph, periph_links); if (periph == NULL) { mtx_unlock(&bus->eb_mtx); xpt_unlock_buses(); return (retval); } periph->refcount++; mtx_unlock(&bus->eb_mtx); xpt_unlock_buses(); } for (; periph != NULL; periph = next_periph) { retval = tr_func(periph, arg); if (retval == 0) { cam_periph_release_locked(periph); break; } xpt_lock_buses(); mtx_lock(&bus->eb_mtx); next_periph = SLIST_NEXT(periph, periph_links); while (next_periph != NULL && (next_periph->flags & CAM_PERIPH_FREE) != 0) next_periph = SLIST_NEXT(next_periph, periph_links); if (next_periph) next_periph->refcount++; mtx_unlock(&bus->eb_mtx); xpt_unlock_buses(); cam_periph_release_locked(periph); } return(retval); } static int xptpdrvtraverse(struct periph_driver **start_pdrv, xpt_pdrvfunc_t *tr_func, void *arg) { struct periph_driver **pdrv; int retval; retval = 1; /* * We don't traverse the peripheral driver list like we do the * other lists, because it is a linker set, and therefore cannot be * changed during runtime. If the peripheral driver list is ever * re-done to be something other than a linker set (i.e. it can * change while the system is running), the list traversal should * be modified to work like the other traversal functions. */ for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); *pdrv != NULL; pdrv++) { retval = tr_func(pdrv, arg); if (retval == 0) return(retval); } return(retval); } static int xptpdperiphtraverse(struct periph_driver **pdrv, struct cam_periph *start_periph, xpt_periphfunc_t *tr_func, void *arg) { struct cam_periph *periph, *next_periph; int retval; retval = 1; if (start_periph) periph = start_periph; else { xpt_lock_buses(); periph = TAILQ_FIRST(&(*pdrv)->units); while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) periph = TAILQ_NEXT(periph, unit_links); if (periph == NULL) { xpt_unlock_buses(); return (retval); } periph->refcount++; xpt_unlock_buses(); } for (; periph != NULL; periph = next_periph) { cam_periph_lock(periph); retval = tr_func(periph, arg); cam_periph_unlock(periph); if (retval == 0) { cam_periph_release(periph); break; } xpt_lock_buses(); next_periph = TAILQ_NEXT(periph, unit_links); while (next_periph != NULL && (next_periph->flags & CAM_PERIPH_FREE) != 0) next_periph = TAILQ_NEXT(next_periph, unit_links); if (next_periph) next_periph->refcount++; xpt_unlock_buses(); cam_periph_release(periph); } return(retval); } static int xptdefbusfunc(struct cam_eb *bus, void *arg) { struct xpt_traverse_config *tr_config; tr_config = (struct xpt_traverse_config *)arg; if (tr_config->depth == XPT_DEPTH_BUS) { xpt_busfunc_t *tr_func; tr_func = (xpt_busfunc_t *)tr_config->tr_func; return(tr_func(bus, tr_config->tr_arg)); } else return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); } static int xptdeftargetfunc(struct cam_et *target, void *arg) { struct xpt_traverse_config *tr_config; tr_config = (struct xpt_traverse_config *)arg; if (tr_config->depth == XPT_DEPTH_TARGET) { xpt_targetfunc_t *tr_func; tr_func = (xpt_targetfunc_t *)tr_config->tr_func; return(tr_func(target, tr_config->tr_arg)); } else return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); } static int xptdefdevicefunc(struct cam_ed *device, void *arg) { struct xpt_traverse_config *tr_config; tr_config = (struct xpt_traverse_config *)arg; if (tr_config->depth == XPT_DEPTH_DEVICE) { xpt_devicefunc_t *tr_func; tr_func = (xpt_devicefunc_t *)tr_config->tr_func; return(tr_func(device, tr_config->tr_arg)); } else return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); } static int xptdefperiphfunc(struct cam_periph *periph, void *arg) { struct xpt_traverse_config *tr_config; xpt_periphfunc_t *tr_func; tr_config = (struct xpt_traverse_config *)arg; tr_func = (xpt_periphfunc_t *)tr_config->tr_func; /* * Unlike the other default functions, we don't check for depth * here. The peripheral driver level is the last level in the EDT, * so if we're here, we should execute the function in question. */ return(tr_func(periph, tr_config->tr_arg)); } /* * Execute the given function for every bus in the EDT. */ static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) { struct xpt_traverse_config tr_config; tr_config.depth = XPT_DEPTH_BUS; tr_config.tr_func = tr_func; tr_config.tr_arg = arg; return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); } /* * Execute the given function for every device in the EDT. */ static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) { struct xpt_traverse_config tr_config; tr_config.depth = XPT_DEPTH_DEVICE; tr_config.tr_func = tr_func; tr_config.tr_arg = arg; return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); } static int xptsetasyncfunc(struct cam_ed *device, void *arg) { struct cam_path path; struct ccb_getdev cgd; struct ccb_setasync *csa = (struct ccb_setasync *)arg; /* * Don't report unconfigured devices (Wildcard devs, * devices only for target mode, device instances * that have been invalidated but are waiting for * their last reference count to be released). */ if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) return (1); xpt_compile_path(&path, NULL, device->target->bus->path_id, device->target->target_id, device->lun_id); xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); cgd.ccb_h.func_code = XPT_GDEV_TYPE; xpt_action((union ccb *)&cgd); csa->callback(csa->callback_arg, AC_FOUND_DEVICE, &path, &cgd); xpt_release_path(&path); return(1); } static int xptsetasyncbusfunc(struct cam_eb *bus, void *arg) { struct cam_path path; struct ccb_pathinq cpi; struct ccb_setasync *csa = (struct ccb_setasync *)arg; xpt_compile_path(&path, /*periph*/NULL, bus->path_id, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); xpt_path_lock(&path); xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); cpi.ccb_h.func_code = XPT_PATH_INQ; xpt_action((union ccb *)&cpi); csa->callback(csa->callback_arg, AC_PATH_REGISTERED, &path, &cpi); xpt_path_unlock(&path); xpt_release_path(&path); return(1); } void xpt_action(union ccb *start_ccb) { CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code, xpt_action_name(start_ccb->ccb_h.func_code))); start_ccb->ccb_h.status = CAM_REQ_INPROG; (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb); } void xpt_action_default(union ccb *start_ccb) { struct cam_path *path; struct cam_sim *sim; struct mtx *mtx; path = start_ccb->ccb_h.path; CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code, xpt_action_name(start_ccb->ccb_h.func_code))); switch (start_ccb->ccb_h.func_code) { case XPT_SCSI_IO: { struct cam_ed *device; /* * For the sake of compatibility with SCSI-1 * devices that may not understand the identify * message, we include lun information in the * second byte of all commands. SCSI-1 specifies * that luns are a 3 bit value and reserves only 3 * bits for lun information in the CDB. Later * revisions of the SCSI spec allow for more than 8 * luns, but have deprecated lun information in the * CDB. So, if the lun won't fit, we must omit. * * Also be aware that during initial probing for devices, * the inquiry information is unknown but initialized to 0. * This means that this code will be exercised while probing * devices with an ANSI revision greater than 2. */ device = path->device; if (device->protocol_version <= SCSI_REV_2 && start_ccb->ccb_h.target_lun < 8 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { start_ccb->csio.cdb_io.cdb_bytes[1] |= start_ccb->ccb_h.target_lun << 5; } start_ccb->csio.scsi_status = SCSI_STATUS_OK; } /* FALLTHROUGH */ case XPT_TARGET_IO: case XPT_CONT_TARGET_IO: start_ccb->csio.sense_resid = 0; start_ccb->csio.resid = 0; /* FALLTHROUGH */ case XPT_ATA_IO: if (start_ccb->ccb_h.func_code == XPT_ATA_IO) start_ccb->ataio.resid = 0; /* FALLTHROUGH */ case XPT_NVME_IO: - if (start_ccb->ccb_h.func_code == XPT_NVME_IO) - start_ccb->nvmeio.resid = 0; /* FALLTHROUGH */ + case XPT_NVME_ADMIN: + /* FALLTHROUGH */ case XPT_MMC_IO: /* XXX just like nmve_io? */ case XPT_RESET_DEV: case XPT_ENG_EXEC: case XPT_SMP_IO: { struct cam_devq *devq; devq = path->bus->sim->devq; mtx_lock(&devq->send_mtx); cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); if (xpt_schedule_devq(devq, path->device) != 0) xpt_run_devq(devq); mtx_unlock(&devq->send_mtx); break; } case XPT_CALC_GEOMETRY: /* Filter out garbage */ if (start_ccb->ccg.block_size == 0 || start_ccb->ccg.volume_size == 0) { start_ccb->ccg.cylinders = 0; start_ccb->ccg.heads = 0; start_ccb->ccg.secs_per_track = 0; start_ccb->ccb_h.status = CAM_REQ_CMP; break; } #if defined(__sparc64__) /* * For sparc64, we may need adjust the geometry of large * disks in order to fit the limitations of the 16-bit * fields of the VTOC8 disk label. */ if (scsi_da_bios_params(&start_ccb->ccg) != 0) { start_ccb->ccb_h.status = CAM_REQ_CMP; break; } #endif goto call_sim; case XPT_ABORT: { union ccb* abort_ccb; abort_ccb = start_ccb->cab.abort_ccb; if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { struct cam_ed *device; struct cam_devq *devq; device = abort_ccb->ccb_h.path->device; devq = device->sim->devq; mtx_lock(&devq->send_mtx); if (abort_ccb->ccb_h.pinfo.index > 0) { cam_ccbq_remove_ccb(&device->ccbq, abort_ccb); abort_ccb->ccb_h.status = CAM_REQ_ABORTED|CAM_DEV_QFRZN; xpt_freeze_devq_device(device, 1); mtx_unlock(&devq->send_mtx); xpt_done(abort_ccb); start_ccb->ccb_h.status = CAM_REQ_CMP; break; } mtx_unlock(&devq->send_mtx); if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { /* * We've caught this ccb en route to * the SIM. Flag it for abort and the * SIM will do so just before starting * real work on the CCB. */ abort_ccb->ccb_h.status = CAM_REQ_ABORTED|CAM_DEV_QFRZN; xpt_freeze_devq(abort_ccb->ccb_h.path, 1); start_ccb->ccb_h.status = CAM_REQ_CMP; break; } } if (XPT_FC_IS_QUEUED(abort_ccb) && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { /* * It's already completed but waiting * for our SWI to get to it. */ start_ccb->ccb_h.status = CAM_UA_ABORT; break; } /* * If we weren't able to take care of the abort request * in the XPT, pass the request down to the SIM for processing. */ } /* FALLTHROUGH */ case XPT_ACCEPT_TARGET_IO: case XPT_EN_LUN: case XPT_IMMED_NOTIFY: case XPT_NOTIFY_ACK: case XPT_RESET_BUS: case XPT_IMMEDIATE_NOTIFY: case XPT_NOTIFY_ACKNOWLEDGE: case XPT_GET_SIM_KNOB_OLD: case XPT_GET_SIM_KNOB: case XPT_SET_SIM_KNOB: case XPT_GET_TRAN_SETTINGS: case XPT_SET_TRAN_SETTINGS: case XPT_PATH_INQ: call_sim: sim = path->bus->sim; mtx = sim->mtx; if (mtx && !mtx_owned(mtx)) mtx_lock(mtx); else mtx = NULL; CAM_DEBUG(path, CAM_DEBUG_TRACE, ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code)); (*(sim->sim_action))(sim, start_ccb); CAM_DEBUG(path, CAM_DEBUG_TRACE, ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status)); if (mtx) mtx_unlock(mtx); break; case XPT_PATH_STATS: start_ccb->cpis.last_reset = path->bus->last_reset; start_ccb->ccb_h.status = CAM_REQ_CMP; break; case XPT_GDEV_TYPE: { struct cam_ed *dev; dev = path->device; if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; } else { struct ccb_getdev *cgd; cgd = &start_ccb->cgd; cgd->protocol = dev->protocol; cgd->inq_data = dev->inq_data; cgd->ident_data = dev->ident_data; cgd->inq_flags = dev->inq_flags; cgd->nvme_data = dev->nvme_data; cgd->nvme_cdata = dev->nvme_cdata; cgd->ccb_h.status = CAM_REQ_CMP; cgd->serial_num_len = dev->serial_num_len; if ((dev->serial_num_len > 0) && (dev->serial_num != NULL)) bcopy(dev->serial_num, cgd->serial_num, dev->serial_num_len); } break; } case XPT_GDEV_STATS: { struct ccb_getdevstats *cgds = &start_ccb->cgds; struct cam_ed *dev = path->device; struct cam_eb *bus = path->bus; struct cam_et *tar = path->target; struct cam_devq *devq = bus->sim->devq; mtx_lock(&devq->send_mtx); cgds->dev_openings = dev->ccbq.dev_openings; cgds->dev_active = dev->ccbq.dev_active; cgds->allocated = dev->ccbq.allocated; cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); cgds->held = cgds->allocated - cgds->dev_active - cgds->queued; cgds->last_reset = tar->last_reset; cgds->maxtags = dev->maxtags; cgds->mintags = dev->mintags; if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) cgds->last_reset = bus->last_reset; mtx_unlock(&devq->send_mtx); cgds->ccb_h.status = CAM_REQ_CMP; break; } case XPT_GDEVLIST: { struct cam_periph *nperiph; struct periph_list *periph_head; struct ccb_getdevlist *cgdl; u_int i; struct cam_ed *device; int found; found = 0; /* * Don't want anyone mucking with our data. */ device = path->device; periph_head = &device->periphs; cgdl = &start_ccb->cgdl; /* * Check and see if the list has changed since the user * last requested a list member. If so, tell them that the * list has changed, and therefore they need to start over * from the beginning. */ if ((cgdl->index != 0) && (cgdl->generation != device->generation)) { cgdl->status = CAM_GDEVLIST_LIST_CHANGED; break; } /* * Traverse the list of peripherals and attempt to find * the requested peripheral. */ for (nperiph = SLIST_FIRST(periph_head), i = 0; (nperiph != NULL) && (i <= cgdl->index); nperiph = SLIST_NEXT(nperiph, periph_links), i++) { if (i == cgdl->index) { strncpy(cgdl->periph_name, nperiph->periph_name, DEV_IDLEN); cgdl->unit_number = nperiph->unit_number; found = 1; } } if (found == 0) { cgdl->status = CAM_GDEVLIST_ERROR; break; } if (nperiph == NULL) cgdl->status = CAM_GDEVLIST_LAST_DEVICE; else cgdl->status = CAM_GDEVLIST_MORE_DEVS; cgdl->index++; cgdl->generation = device->generation; cgdl->ccb_h.status = CAM_REQ_CMP; break; } case XPT_DEV_MATCH: { dev_pos_type position_type; struct ccb_dev_match *cdm; cdm = &start_ccb->cdm; /* * There are two ways of getting at information in the EDT. * The first way is via the primary EDT tree. It starts * with a list of buses, then a list of targets on a bus, * then devices/luns on a target, and then peripherals on a * device/lun. The "other" way is by the peripheral driver * lists. The peripheral driver lists are organized by * peripheral driver. (obviously) So it makes sense to * use the peripheral driver list if the user is looking * for something like "da1", or all "da" devices. If the * user is looking for something on a particular bus/target * or lun, it's generally better to go through the EDT tree. */ if (cdm->pos.position_type != CAM_DEV_POS_NONE) position_type = cdm->pos.position_type; else { u_int i; position_type = CAM_DEV_POS_NONE; for (i = 0; i < cdm->num_patterns; i++) { if ((cdm->patterns[i].type == DEV_MATCH_BUS) ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ position_type = CAM_DEV_POS_EDT; break; } } if (cdm->num_patterns == 0) position_type = CAM_DEV_POS_EDT; else if (position_type == CAM_DEV_POS_NONE) position_type = CAM_DEV_POS_PDRV; } switch(position_type & CAM_DEV_POS_TYPEMASK) { case CAM_DEV_POS_EDT: xptedtmatch(cdm); break; case CAM_DEV_POS_PDRV: xptperiphlistmatch(cdm); break; default: cdm->status = CAM_DEV_MATCH_ERROR; break; } if (cdm->status == CAM_DEV_MATCH_ERROR) start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; else start_ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_SASYNC_CB: { struct ccb_setasync *csa; struct async_node *cur_entry; struct async_list *async_head; u_int32_t added; csa = &start_ccb->csa; added = csa->event_enable; async_head = &path->device->asyncs; /* * If there is already an entry for us, simply * update it. */ cur_entry = SLIST_FIRST(async_head); while (cur_entry != NULL) { if ((cur_entry->callback_arg == csa->callback_arg) && (cur_entry->callback == csa->callback)) break; cur_entry = SLIST_NEXT(cur_entry, links); } if (cur_entry != NULL) { /* * If the request has no flags set, * remove the entry. */ added &= ~cur_entry->event_enable; if (csa->event_enable == 0) { SLIST_REMOVE(async_head, cur_entry, async_node, links); xpt_release_device(path->device); free(cur_entry, M_CAMXPT); } else { cur_entry->event_enable = csa->event_enable; } csa->event_enable = added; } else { cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, M_NOWAIT); if (cur_entry == NULL) { csa->ccb_h.status = CAM_RESRC_UNAVAIL; break; } cur_entry->event_enable = csa->event_enable; cur_entry->event_lock = (path->bus->sim->mtx && mtx_owned(path->bus->sim->mtx)) ? 1 : 0; cur_entry->callback_arg = csa->callback_arg; cur_entry->callback = csa->callback; SLIST_INSERT_HEAD(async_head, cur_entry, links); xpt_acquire_device(path->device); } start_ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_REL_SIMQ: { struct ccb_relsim *crs; struct cam_ed *dev; crs = &start_ccb->crs; dev = path->device; if (dev == NULL) { crs->ccb_h.status = CAM_DEV_NOT_THERE; break; } if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { /* Don't ever go below one opening */ if (crs->openings > 0) { xpt_dev_ccbq_resize(path, crs->openings); if (bootverbose) { xpt_print(path, "number of openings is now %d\n", crs->openings); } } } mtx_lock(&dev->sim->devq->send_mtx); if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { /* * Just extend the old timeout and decrement * the freeze count so that a single timeout * is sufficient for releasing the queue. */ start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; callout_stop(&dev->callout); } else { start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; } callout_reset_sbt(&dev->callout, SBT_1MS * crs->release_timeout, 0, xpt_release_devq_timeout, dev, 0); dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; } if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { /* * Decrement the freeze count so that a single * completion is still sufficient to unfreeze * the queue. */ start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; } else { dev->flags |= CAM_DEV_REL_ON_COMPLETE; start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; } } if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 || (dev->ccbq.dev_active == 0)) { start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; } else { dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; } } mtx_unlock(&dev->sim->devq->send_mtx); if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; start_ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_DEBUG: { struct cam_path *oldpath; /* Check that all request bits are supported. */ if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; break; } cam_dflags = CAM_DEBUG_NONE; if (cam_dpath != NULL) { oldpath = cam_dpath; cam_dpath = NULL; xpt_free_path(oldpath); } if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { if (xpt_create_path(&cam_dpath, NULL, start_ccb->ccb_h.path_id, start_ccb->ccb_h.target_id, start_ccb->ccb_h.target_lun) != CAM_REQ_CMP) { start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; } else { cam_dflags = start_ccb->cdbg.flags; start_ccb->ccb_h.status = CAM_REQ_CMP; xpt_print(cam_dpath, "debugging flags now %x\n", cam_dflags); } } else start_ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_NOOP: if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) xpt_freeze_devq(path, 1); start_ccb->ccb_h.status = CAM_REQ_CMP; break; case XPT_REPROBE_LUN: xpt_async(AC_INQ_CHANGED, path, NULL); start_ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(start_ccb); break; default: case XPT_SDEV_TYPE: case XPT_TERM_IO: case XPT_ENG_INQ: /* XXX Implement */ xpt_print(start_ccb->ccb_h.path, "%s: CCB type %#x %s not supported\n", __func__, start_ccb->ccb_h.func_code, xpt_action_name(start_ccb->ccb_h.func_code)); start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { xpt_done(start_ccb); } break; } CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default: func= %#x %s status %#x\n", start_ccb->ccb_h.func_code, xpt_action_name(start_ccb->ccb_h.func_code), start_ccb->ccb_h.status)); } void xpt_polled_action(union ccb *start_ccb) { u_int32_t timeout; struct cam_sim *sim; struct cam_devq *devq; struct cam_ed *dev; struct mtx *mtx; timeout = start_ccb->ccb_h.timeout * 10; sim = start_ccb->ccb_h.path->bus->sim; devq = sim->devq; mtx = sim->mtx; dev = start_ccb->ccb_h.path->device; mtx_unlock(&dev->device_mtx); /* * Steal an opening so that no other queued requests * can get it before us while we simulate interrupts. */ mtx_lock(&devq->send_mtx); dev->ccbq.dev_openings--; while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && (--timeout > 0)) { mtx_unlock(&devq->send_mtx); DELAY(100); if (mtx) mtx_lock(mtx); (*(sim->sim_poll))(sim); if (mtx) mtx_unlock(mtx); camisr_runqueue(); mtx_lock(&devq->send_mtx); } dev->ccbq.dev_openings++; mtx_unlock(&devq->send_mtx); if (timeout != 0) { xpt_action(start_ccb); while(--timeout > 0) { if (mtx) mtx_lock(mtx); (*(sim->sim_poll))(sim); if (mtx) mtx_unlock(mtx); camisr_runqueue(); if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) break; DELAY(100); } if (timeout == 0) { /* * XXX Is it worth adding a sim_timeout entry * point so we can attempt recovery? If * this is only used for dumps, I don't think * it is. */ start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; } } else { start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; } mtx_lock(&dev->device_mtx); } /* * Schedule a peripheral driver to receive a ccb when its * target device has space for more transactions. */ void xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) { CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); cam_periph_assert(periph, MA_OWNED); if (new_priority < periph->scheduled_priority) { periph->scheduled_priority = new_priority; xpt_run_allocq(periph, 0); } } /* * Schedule a device to run on a given queue. * If the device was inserted as a new entry on the queue, * return 1 meaning the device queue should be run. If we * were already queued, implying someone else has already * started the queue, return 0 so the caller doesn't attempt * to run the queue. */ static int xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, u_int32_t new_priority) { int retval; u_int32_t old_priority; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); old_priority = pinfo->priority; /* * Are we already queued? */ if (pinfo->index != CAM_UNQUEUED_INDEX) { /* Simply reorder based on new priority */ if (new_priority < old_priority) { camq_change_priority(queue, pinfo->index, new_priority); CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("changed priority to %d\n", new_priority)); retval = 1; } else retval = 0; } else { /* New entry on the queue */ if (new_priority < old_priority) pinfo->priority = new_priority; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("Inserting onto queue\n")); pinfo->generation = ++queue->generation; camq_insert(queue, pinfo); retval = 1; } return (retval); } static void xpt_run_allocq_task(void *context, int pending) { struct cam_periph *periph = context; cam_periph_lock(periph); periph->flags &= ~CAM_PERIPH_RUN_TASK; xpt_run_allocq(periph, 1); cam_periph_unlock(periph); cam_periph_release(periph); } static void xpt_run_allocq(struct cam_periph *periph, int sleep) { struct cam_ed *device; union ccb *ccb; uint32_t prio; cam_periph_assert(periph, MA_OWNED); if (periph->periph_allocating) return; periph->periph_allocating = 1; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); device = periph->path->device; ccb = NULL; restart: while ((prio = min(periph->scheduled_priority, periph->immediate_priority)) != CAM_PRIORITY_NONE && (periph->periph_allocated - (ccb != NULL ? 1 : 0) < device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { if (ccb == NULL && (ccb = xpt_get_ccb_nowait(periph)) == NULL) { if (sleep) { ccb = xpt_get_ccb(periph); goto restart; } if (periph->flags & CAM_PERIPH_RUN_TASK) break; cam_periph_doacquire(periph); periph->flags |= CAM_PERIPH_RUN_TASK; taskqueue_enqueue(xsoftc.xpt_taskq, &periph->periph_run_task); break; } xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); if (prio == periph->immediate_priority) { periph->immediate_priority = CAM_PRIORITY_NONE; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("waking cam_periph_getccb()\n")); SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, periph_links.sle); wakeup(&periph->ccb_list); } else { periph->scheduled_priority = CAM_PRIORITY_NONE; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("calling periph_start()\n")); periph->periph_start(periph, ccb); } ccb = NULL; } if (ccb != NULL) xpt_release_ccb(ccb); periph->periph_allocating = 0; } static void xpt_run_devq(struct cam_devq *devq) { struct mtx *mtx; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); devq->send_queue.qfrozen_cnt++; while ((devq->send_queue.entries > 0) && (devq->send_openings > 0) && (devq->send_queue.qfrozen_cnt <= 1)) { struct cam_ed *device; union ccb *work_ccb; struct cam_sim *sim; struct xpt_proto *proto; device = (struct cam_ed *)camq_remove(&devq->send_queue, CAMQ_HEAD); CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("running device %p\n", device)); work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); if (work_ccb == NULL) { printf("device on run queue with no ccbs???\n"); continue; } if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { mtx_lock(&xsoftc.xpt_highpower_lock); if (xsoftc.num_highpower <= 0) { /* * We got a high power command, but we * don't have any available slots. Freeze * the device queue until we have a slot * available. */ xpt_freeze_devq_device(device, 1); STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, highpowerq_entry); mtx_unlock(&xsoftc.xpt_highpower_lock); continue; } else { /* * Consume a high power slot while * this ccb runs. */ xsoftc.num_highpower--; } mtx_unlock(&xsoftc.xpt_highpower_lock); } cam_ccbq_remove_ccb(&device->ccbq, work_ccb); cam_ccbq_send_ccb(&device->ccbq, work_ccb); devq->send_openings--; devq->send_active++; xpt_schedule_devq(devq, device); mtx_unlock(&devq->send_mtx); if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { /* * The client wants to freeze the queue * after this CCB is sent. */ xpt_freeze_devq(work_ccb->ccb_h.path, 1); } /* In Target mode, the peripheral driver knows best... */ if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { if ((device->inq_flags & SID_CmdQue) != 0 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; else /* * Clear this in case of a retried CCB that * failed due to a rejected tag. */ work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; } KASSERT(device == work_ccb->ccb_h.path->device, ("device (%p) / path->device (%p) mismatch", device, work_ccb->ccb_h.path->device)); proto = xpt_proto_find(device->protocol); if (proto && proto->ops->debug_out) proto->ops->debug_out(work_ccb); /* * Device queues can be shared among multiple SIM instances * that reside on different buses. Use the SIM from the * queued device, rather than the one from the calling bus. */ sim = device->sim; mtx = sim->mtx; if (mtx && !mtx_owned(mtx)) mtx_lock(mtx); else mtx = NULL; work_ccb->ccb_h.qos.sim_data = sbinuptime(); // xxx uintprt_t too small 32bit platforms (*(sim->sim_action))(sim, work_ccb); if (mtx) mtx_unlock(mtx); mtx_lock(&devq->send_mtx); } devq->send_queue.qfrozen_cnt--; } /* * This function merges stuff from the slave ccb into the master ccb, while * keeping important fields in the master ccb constant. */ void xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) { /* * Pull fields that are valid for peripheral drivers to set * into the master CCB along with the CCB "payload". */ master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], sizeof(union ccb) - sizeof(struct ccb_hdr)); } void xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority, u_int32_t flags) { CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); ccb_h->pinfo.priority = priority; ccb_h->path = path; ccb_h->path_id = path->bus->path_id; if (path->target) ccb_h->target_id = path->target->target_id; else ccb_h->target_id = CAM_TARGET_WILDCARD; if (path->device) { ccb_h->target_lun = path->device->lun_id; ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; } else { ccb_h->target_lun = CAM_TARGET_WILDCARD; } ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; ccb_h->flags = flags; ccb_h->xflags = 0; } void xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) { xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); } /* Path manipulation functions */ cam_status xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, path_id_t path_id, target_id_t target_id, lun_id_t lun_id) { struct cam_path *path; cam_status status; path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); if (path == NULL) { status = CAM_RESRC_UNAVAIL; return(status); } status = xpt_compile_path(path, perph, path_id, target_id, lun_id); if (status != CAM_REQ_CMP) { free(path, M_CAMPATH); path = NULL; } *new_path_ptr = path; return (status); } cam_status xpt_create_path_unlocked(struct cam_path **new_path_ptr, struct cam_periph *periph, path_id_t path_id, target_id_t target_id, lun_id_t lun_id) { return (xpt_create_path(new_path_ptr, periph, path_id, target_id, lun_id)); } cam_status xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, path_id_t path_id, target_id_t target_id, lun_id_t lun_id) { struct cam_eb *bus; struct cam_et *target; struct cam_ed *device; cam_status status; status = CAM_REQ_CMP; /* Completed without error */ target = NULL; /* Wildcarded */ device = NULL; /* Wildcarded */ /* * We will potentially modify the EDT, so block interrupts * that may attempt to create cam paths. */ bus = xpt_find_bus(path_id); if (bus == NULL) { status = CAM_PATH_INVALID; } else { xpt_lock_buses(); mtx_lock(&bus->eb_mtx); target = xpt_find_target(bus, target_id); if (target == NULL) { /* Create one */ struct cam_et *new_target; new_target = xpt_alloc_target(bus, target_id); if (new_target == NULL) { status = CAM_RESRC_UNAVAIL; } else { target = new_target; } } xpt_unlock_buses(); if (target != NULL) { device = xpt_find_device(target, lun_id); if (device == NULL) { /* Create one */ struct cam_ed *new_device; new_device = (*(bus->xport->ops->alloc_device))(bus, target, lun_id); if (new_device == NULL) { status = CAM_RESRC_UNAVAIL; } else { device = new_device; } } } mtx_unlock(&bus->eb_mtx); } /* * Only touch the user's data if we are successful. */ if (status == CAM_REQ_CMP) { new_path->periph = perph; new_path->bus = bus; new_path->target = target; new_path->device = device; CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); } else { if (device != NULL) xpt_release_device(device); if (target != NULL) xpt_release_target(target); if (bus != NULL) xpt_release_bus(bus); } return (status); } cam_status xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) { struct cam_path *new_path; new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); if (new_path == NULL) return(CAM_RESRC_UNAVAIL); xpt_copy_path(new_path, path); *new_path_ptr = new_path; return (CAM_REQ_CMP); } void xpt_copy_path(struct cam_path *new_path, struct cam_path *path) { *new_path = *path; if (path->bus != NULL) xpt_acquire_bus(path->bus); if (path->target != NULL) xpt_acquire_target(path->target); if (path->device != NULL) xpt_acquire_device(path->device); } void xpt_release_path(struct cam_path *path) { CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); if (path->device != NULL) { xpt_release_device(path->device); path->device = NULL; } if (path->target != NULL) { xpt_release_target(path->target); path->target = NULL; } if (path->bus != NULL) { xpt_release_bus(path->bus); path->bus = NULL; } } void xpt_free_path(struct cam_path *path) { CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); xpt_release_path(path); free(path, M_CAMPATH); } void xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) { xpt_lock_buses(); if (bus_ref) { if (path->bus) *bus_ref = path->bus->refcount; else *bus_ref = 0; } if (periph_ref) { if (path->periph) *periph_ref = path->periph->refcount; else *periph_ref = 0; } xpt_unlock_buses(); if (target_ref) { if (path->target) *target_ref = path->target->refcount; else *target_ref = 0; } if (device_ref) { if (path->device) *device_ref = path->device->refcount; else *device_ref = 0; } } /* * Return -1 for failure, 0 for exact match, 1 for match with wildcards * in path1, 2 for match with wildcards in path2. */ int xpt_path_comp(struct cam_path *path1, struct cam_path *path2) { int retval = 0; if (path1->bus != path2->bus) { if (path1->bus->path_id == CAM_BUS_WILDCARD) retval = 1; else if (path2->bus->path_id == CAM_BUS_WILDCARD) retval = 2; else return (-1); } if (path1->target != path2->target) { if (path1->target->target_id == CAM_TARGET_WILDCARD) { if (retval == 0) retval = 1; } else if (path2->target->target_id == CAM_TARGET_WILDCARD) retval = 2; else return (-1); } if (path1->device != path2->device) { if (path1->device->lun_id == CAM_LUN_WILDCARD) { if (retval == 0) retval = 1; } else if (path2->device->lun_id == CAM_LUN_WILDCARD) retval = 2; else return (-1); } return (retval); } int xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) { int retval = 0; if (path->bus != dev->target->bus) { if (path->bus->path_id == CAM_BUS_WILDCARD) retval = 1; else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) retval = 2; else return (-1); } if (path->target != dev->target) { if (path->target->target_id == CAM_TARGET_WILDCARD) { if (retval == 0) retval = 1; } else if (dev->target->target_id == CAM_TARGET_WILDCARD) retval = 2; else return (-1); } if (path->device != dev) { if (path->device->lun_id == CAM_LUN_WILDCARD) { if (retval == 0) retval = 1; } else if (dev->lun_id == CAM_LUN_WILDCARD) retval = 2; else return (-1); } return (retval); } void xpt_print_path(struct cam_path *path) { struct sbuf sb; char buffer[XPT_PRINT_LEN]; sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); xpt_path_sbuf(path, &sb); sbuf_finish(&sb); printf("%s", sbuf_data(&sb)); sbuf_delete(&sb); } void xpt_print_device(struct cam_ed *device) { if (device == NULL) printf("(nopath): "); else { printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, device->sim->unit_number, device->sim->bus_id, device->target->target_id, (uintmax_t)device->lun_id); } } void xpt_print(struct cam_path *path, const char *fmt, ...) { va_list ap; struct sbuf sb; char buffer[XPT_PRINT_LEN]; sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); xpt_path_sbuf(path, &sb); va_start(ap, fmt); sbuf_vprintf(&sb, fmt, ap); va_end(ap); sbuf_finish(&sb); printf("%s", sbuf_data(&sb)); sbuf_delete(&sb); } int xpt_path_string(struct cam_path *path, char *str, size_t str_len) { struct sbuf sb; int len; sbuf_new(&sb, str, str_len, 0); len = xpt_path_sbuf(path, &sb); sbuf_finish(&sb); return (len); } int xpt_path_sbuf(struct cam_path *path, struct sbuf *sb) { if (path == NULL) sbuf_printf(sb, "(nopath): "); else { if (path->periph != NULL) sbuf_printf(sb, "(%s%d:", path->periph->periph_name, path->periph->unit_number); else sbuf_printf(sb, "(noperiph:"); if (path->bus != NULL) sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name, path->bus->sim->unit_number, path->bus->sim->bus_id); else sbuf_printf(sb, "nobus:"); if (path->target != NULL) sbuf_printf(sb, "%d:", path->target->target_id); else sbuf_printf(sb, "X:"); if (path->device != NULL) sbuf_printf(sb, "%jx): ", (uintmax_t)path->device->lun_id); else sbuf_printf(sb, "X): "); } return(sbuf_len(sb)); } path_id_t xpt_path_path_id(struct cam_path *path) { return(path->bus->path_id); } target_id_t xpt_path_target_id(struct cam_path *path) { if (path->target != NULL) return (path->target->target_id); else return (CAM_TARGET_WILDCARD); } lun_id_t xpt_path_lun_id(struct cam_path *path) { if (path->device != NULL) return (path->device->lun_id); else return (CAM_LUN_WILDCARD); } struct cam_sim * xpt_path_sim(struct cam_path *path) { return (path->bus->sim); } struct cam_periph* xpt_path_periph(struct cam_path *path) { return (path->periph); } /* * Release a CAM control block for the caller. Remit the cost of the structure * to the device referenced by the path. If the this device had no 'credits' * and peripheral drivers have registered async callbacks for this notification * call them now. */ void xpt_release_ccb(union ccb *free_ccb) { struct cam_ed *device; struct cam_periph *periph; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); device = free_ccb->ccb_h.path->device; periph = free_ccb->ccb_h.path->periph; xpt_free_ccb(free_ccb); periph->periph_allocated--; cam_ccbq_release_opening(&device->ccbq); xpt_run_allocq(periph, 0); } /* Functions accessed by SIM drivers */ static struct xpt_xport_ops xport_default_ops = { .alloc_device = xpt_alloc_device_default, .action = xpt_action_default, .async = xpt_dev_async_default, }; static struct xpt_xport xport_default = { .xport = XPORT_UNKNOWN, .name = "unknown", .ops = &xport_default_ops, }; CAM_XPT_XPORT(xport_default); /* * A sim structure, listing the SIM entry points and instance * identification info is passed to xpt_bus_register to hook the SIM * into the CAM framework. xpt_bus_register creates a cam_eb entry * for this new bus and places it in the array of buses and assigns * it a path_id. The path_id may be influenced by "hard wiring" * information specified by the user. Once interrupt services are * available, the bus will be probed. */ int32_t xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) { struct cam_eb *new_bus; struct cam_eb *old_bus; struct ccb_pathinq cpi; struct cam_path *path; cam_status status; sim->bus_id = bus; new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), M_CAMXPT, M_NOWAIT|M_ZERO); if (new_bus == NULL) { /* Couldn't satisfy request */ return (CAM_RESRC_UNAVAIL); } mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); TAILQ_INIT(&new_bus->et_entries); cam_sim_hold(sim); new_bus->sim = sim; timevalclear(&new_bus->last_reset); new_bus->flags = 0; new_bus->refcount = 1; /* Held until a bus_deregister event */ new_bus->generation = 0; xpt_lock_buses(); sim->path_id = new_bus->path_id = xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); while (old_bus != NULL && old_bus->path_id < new_bus->path_id) old_bus = TAILQ_NEXT(old_bus, links); if (old_bus != NULL) TAILQ_INSERT_BEFORE(old_bus, new_bus, links); else TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); xsoftc.bus_generation++; xpt_unlock_buses(); /* * Set a default transport so that a PATH_INQ can be issued to * the SIM. This will then allow for probing and attaching of * a more appropriate transport. */ new_bus->xport = &xport_default; status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); if (status != CAM_REQ_CMP) { xpt_release_bus(new_bus); free(path, M_CAMXPT); return (CAM_RESRC_UNAVAIL); } xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); cpi.ccb_h.func_code = XPT_PATH_INQ; xpt_action((union ccb *)&cpi); if (cpi.ccb_h.status == CAM_REQ_CMP) { struct xpt_xport **xpt; SET_FOREACH(xpt, cam_xpt_xport_set) { if ((*xpt)->xport == cpi.transport) { new_bus->xport = *xpt; break; } } if (new_bus->xport == NULL) { xpt_print(path, "No transport found for %d\n", cpi.transport); xpt_release_bus(new_bus); free(path, M_CAMXPT); return (CAM_RESRC_UNAVAIL); } } /* Notify interested parties */ if (sim->path_id != CAM_XPT_PATH_ID) { xpt_async(AC_PATH_REGISTERED, path, &cpi); if ((cpi.hba_misc & PIM_NOSCAN) == 0) { union ccb *scan_ccb; /* Initiate bus rescan. */ scan_ccb = xpt_alloc_ccb_nowait(); if (scan_ccb != NULL) { scan_ccb->ccb_h.path = path; scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; scan_ccb->crcn.flags = 0; xpt_rescan(scan_ccb); } else { xpt_print(path, "Can't allocate CCB to scan bus\n"); xpt_free_path(path); } } else xpt_free_path(path); } else xpt_free_path(path); return (CAM_SUCCESS); } int32_t xpt_bus_deregister(path_id_t pathid) { struct cam_path bus_path; cam_status status; status = xpt_compile_path(&bus_path, NULL, pathid, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); if (status != CAM_REQ_CMP) return (status); xpt_async(AC_LOST_DEVICE, &bus_path, NULL); xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); /* Release the reference count held while registered. */ xpt_release_bus(bus_path.bus); xpt_release_path(&bus_path); return (CAM_REQ_CMP); } static path_id_t xptnextfreepathid(void) { struct cam_eb *bus; path_id_t pathid; const char *strval; mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); pathid = 0; bus = TAILQ_FIRST(&xsoftc.xpt_busses); retry: /* Find an unoccupied pathid */ while (bus != NULL && bus->path_id <= pathid) { if (bus->path_id == pathid) pathid++; bus = TAILQ_NEXT(bus, links); } /* * Ensure that this pathid is not reserved for * a bus that may be registered in the future. */ if (resource_string_value("scbus", pathid, "at", &strval) == 0) { ++pathid; /* Start the search over */ goto retry; } return (pathid); } static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus) { path_id_t pathid; int i, dunit, val; char buf[32]; const char *dname; pathid = CAM_XPT_PATH_ID; snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) return (pathid); i = 0; while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { if (strcmp(dname, "scbus")) { /* Avoid a bit of foot shooting. */ continue; } if (dunit < 0) /* unwired?! */ continue; if (resource_int_value("scbus", dunit, "bus", &val) == 0) { if (sim_bus == val) { pathid = dunit; break; } } else if (sim_bus == 0) { /* Unspecified matches bus 0 */ pathid = dunit; break; } else { printf("Ambiguous scbus configuration for %s%d " "bus %d, cannot wire down. The kernel " "config entry for scbus%d should " "specify a controller bus.\n" "Scbus will be assigned dynamically.\n", sim_name, sim_unit, sim_bus, dunit); break; } } if (pathid == CAM_XPT_PATH_ID) pathid = xptnextfreepathid(); return (pathid); } static const char * xpt_async_string(u_int32_t async_code) { switch (async_code) { case AC_BUS_RESET: return ("AC_BUS_RESET"); case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); case AC_SCSI_AEN: return ("AC_SCSI_AEN"); case AC_SENT_BDR: return ("AC_SENT_BDR"); case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); case AC_CONTRACT: return ("AC_CONTRACT"); case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); } return ("AC_UNKNOWN"); } static int xpt_async_size(u_int32_t async_code) { switch (async_code) { case AC_BUS_RESET: return (0); case AC_UNSOL_RESEL: return (0); case AC_SCSI_AEN: return (0); case AC_SENT_BDR: return (0); case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); case AC_PATH_DEREGISTERED: return (0); case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); case AC_LOST_DEVICE: return (0); case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); case AC_INQ_CHANGED: return (0); case AC_GETDEV_CHANGED: return (0); case AC_CONTRACT: return (sizeof(struct ac_contract)); case AC_ADVINFO_CHANGED: return (-1); case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); } return (0); } static int xpt_async_process_dev(struct cam_ed *device, void *arg) { union ccb *ccb = arg; struct cam_path *path = ccb->ccb_h.path; void *async_arg = ccb->casync.async_arg_ptr; u_int32_t async_code = ccb->casync.async_code; int relock; if (path->device != device && path->device->lun_id != CAM_LUN_WILDCARD && device->lun_id != CAM_LUN_WILDCARD) return (1); /* * The async callback could free the device. * If it is a broadcast async, it doesn't hold * device reference, so take our own reference. */ xpt_acquire_device(device); /* * If async for specific device is to be delivered to * the wildcard client, take the specific device lock. * XXX: We may need a way for client to specify it. */ if ((device->lun_id == CAM_LUN_WILDCARD && path->device->lun_id != CAM_LUN_WILDCARD) || (device->target->target_id == CAM_TARGET_WILDCARD && path->target->target_id != CAM_TARGET_WILDCARD) || (device->target->bus->path_id == CAM_BUS_WILDCARD && path->target->bus->path_id != CAM_BUS_WILDCARD)) { mtx_unlock(&device->device_mtx); xpt_path_lock(path); relock = 1; } else relock = 0; (*(device->target->bus->xport->ops->async))(async_code, device->target->bus, device->target, device, async_arg); xpt_async_bcast(&device->asyncs, async_code, path, async_arg); if (relock) { xpt_path_unlock(path); mtx_lock(&device->device_mtx); } xpt_release_device(device); return (1); } static int xpt_async_process_tgt(struct cam_et *target, void *arg) { union ccb *ccb = arg; struct cam_path *path = ccb->ccb_h.path; if (path->target != target && path->target->target_id != CAM_TARGET_WILDCARD && target->target_id != CAM_TARGET_WILDCARD) return (1); if (ccb->casync.async_code == AC_SENT_BDR) { /* Update our notion of when the last reset occurred */ microtime(&target->last_reset); } return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); } static void xpt_async_process(struct cam_periph *periph, union ccb *ccb) { struct cam_eb *bus; struct cam_path *path; void *async_arg; u_int32_t async_code; path = ccb->ccb_h.path; async_code = ccb->casync.async_code; async_arg = ccb->casync.async_arg_ptr; CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, ("xpt_async(%s)\n", xpt_async_string(async_code))); bus = path->bus; if (async_code == AC_BUS_RESET) { /* Update our notion of when the last reset occurred */ microtime(&bus->last_reset); } xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); /* * If this wasn't a fully wildcarded async, tell all * clients that want all async events. */ if (bus != xpt_periph->path->bus) { xpt_path_lock(xpt_periph->path); xpt_async_process_dev(xpt_periph->path->device, ccb); xpt_path_unlock(xpt_periph->path); } if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) xpt_release_devq(path, 1, TRUE); else xpt_release_simq(path->bus->sim, TRUE); if (ccb->casync.async_arg_size > 0) free(async_arg, M_CAMXPT); xpt_free_path(path); xpt_free_ccb(ccb); } static void xpt_async_bcast(struct async_list *async_head, u_int32_t async_code, struct cam_path *path, void *async_arg) { struct async_node *cur_entry; struct mtx *mtx; cur_entry = SLIST_FIRST(async_head); while (cur_entry != NULL) { struct async_node *next_entry; /* * Grab the next list entry before we call the current * entry's callback. This is because the callback function * can delete its async callback entry. */ next_entry = SLIST_NEXT(cur_entry, links); if ((cur_entry->event_enable & async_code) != 0) { mtx = cur_entry->event_lock ? path->device->sim->mtx : NULL; if (mtx) mtx_lock(mtx); cur_entry->callback(cur_entry->callback_arg, async_code, path, async_arg); if (mtx) mtx_unlock(mtx); } cur_entry = next_entry; } } void xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) { union ccb *ccb; int size; ccb = xpt_alloc_ccb_nowait(); if (ccb == NULL) { xpt_print(path, "Can't allocate CCB to send %s\n", xpt_async_string(async_code)); return; } if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { xpt_print(path, "Can't allocate path to send %s\n", xpt_async_string(async_code)); xpt_free_ccb(ccb); return; } ccb->ccb_h.path->periph = NULL; ccb->ccb_h.func_code = XPT_ASYNC; ccb->ccb_h.cbfcnp = xpt_async_process; ccb->ccb_h.flags |= CAM_UNLOCKED; ccb->casync.async_code = async_code; ccb->casync.async_arg_size = 0; size = xpt_async_size(async_code); CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_async: func %#x %s aync_code %d %s\n", ccb->ccb_h.func_code, xpt_action_name(ccb->ccb_h.func_code), async_code, xpt_async_string(async_code))); if (size > 0 && async_arg != NULL) { ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); if (ccb->casync.async_arg_ptr == NULL) { xpt_print(path, "Can't allocate argument to send %s\n", xpt_async_string(async_code)); xpt_free_path(ccb->ccb_h.path); xpt_free_ccb(ccb); return; } memcpy(ccb->casync.async_arg_ptr, async_arg, size); ccb->casync.async_arg_size = size; } else if (size < 0) { ccb->casync.async_arg_ptr = async_arg; ccb->casync.async_arg_size = size; } if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) xpt_freeze_devq(path, 1); else xpt_freeze_simq(path->bus->sim, 1); xpt_done(ccb); } static void xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, struct cam_ed *device, void *async_arg) { /* * We only need to handle events for real devices. */ if (target->target_id == CAM_TARGET_WILDCARD || device->lun_id == CAM_LUN_WILDCARD) return; printf("%s called\n", __func__); } static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count) { struct cam_devq *devq; uint32_t freeze; devq = dev->sim->devq; mtx_assert(&devq->send_mtx, MA_OWNED); CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_freeze_devq_device(%d) %u->%u\n", count, dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); freeze = (dev->ccbq.queue.qfrozen_cnt += count); /* Remove frozen device from sendq. */ if (device_is_queued(dev)) camq_remove(&devq->send_queue, dev->devq_entry.index); return (freeze); } u_int32_t xpt_freeze_devq(struct cam_path *path, u_int count) { struct cam_ed *dev = path->device; struct cam_devq *devq; uint32_t freeze; devq = dev->sim->devq; mtx_lock(&devq->send_mtx); CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); freeze = xpt_freeze_devq_device(dev, count); mtx_unlock(&devq->send_mtx); return (freeze); } u_int32_t xpt_freeze_simq(struct cam_sim *sim, u_int count) { struct cam_devq *devq; uint32_t freeze; devq = sim->devq; mtx_lock(&devq->send_mtx); freeze = (devq->send_queue.qfrozen_cnt += count); mtx_unlock(&devq->send_mtx); return (freeze); } static void xpt_release_devq_timeout(void *arg) { struct cam_ed *dev; struct cam_devq *devq; dev = (struct cam_ed *)arg; CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); devq = dev->sim->devq; mtx_assert(&devq->send_mtx, MA_OWNED); if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) xpt_run_devq(devq); } void xpt_release_devq(struct cam_path *path, u_int count, int run_queue) { struct cam_ed *dev; struct cam_devq *devq; CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", count, run_queue)); dev = path->device; devq = dev->sim->devq; mtx_lock(&devq->send_mtx); if (xpt_release_devq_device(dev, count, run_queue)) xpt_run_devq(dev->sim->devq); mtx_unlock(&devq->send_mtx); } static int xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) { mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); if (count > dev->ccbq.queue.qfrozen_cnt) { #ifdef INVARIANTS printf("xpt_release_devq(): requested %u > present %u\n", count, dev->ccbq.queue.qfrozen_cnt); #endif count = dev->ccbq.queue.qfrozen_cnt; } dev->ccbq.queue.qfrozen_cnt -= count; if (dev->ccbq.queue.qfrozen_cnt == 0) { /* * No longer need to wait for a successful * command completion. */ dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; /* * Remove any timeouts that might be scheduled * to release this queue. */ if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { callout_stop(&dev->callout); dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; } /* * Now that we are unfrozen schedule the * device so any pending transactions are * run. */ xpt_schedule_devq(dev->sim->devq, dev); } else run_queue = 0; return (run_queue); } void xpt_release_simq(struct cam_sim *sim, int run_queue) { struct cam_devq *devq; devq = sim->devq; mtx_lock(&devq->send_mtx); if (devq->send_queue.qfrozen_cnt <= 0) { #ifdef INVARIANTS printf("xpt_release_simq: requested 1 > present %u\n", devq->send_queue.qfrozen_cnt); #endif } else devq->send_queue.qfrozen_cnt--; if (devq->send_queue.qfrozen_cnt == 0) { /* * If there is a timeout scheduled to release this * sim queue, remove it. The queue frozen count is * already at 0. */ if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ callout_stop(&sim->callout); sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; } if (run_queue) { /* * Now that we are unfrozen run the send queue. */ xpt_run_devq(sim->devq); } } mtx_unlock(&devq->send_mtx); } /* * XXX Appears to be unused. */ static void xpt_release_simq_timeout(void *arg) { struct cam_sim *sim; sim = (struct cam_sim *)arg; xpt_release_simq(sim, /* run_queue */ TRUE); } void xpt_done(union ccb *done_ccb) { struct cam_doneq *queue; int run, hash; #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) if (done_ccb->ccb_h.func_code == XPT_SCSI_IO && done_ccb->csio.bio != NULL) biotrack(done_ccb->csio.bio, __func__); #endif CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done: func= %#x %s status %#x\n", done_ccb->ccb_h.func_code, xpt_action_name(done_ccb->ccb_h.func_code), done_ccb->ccb_h.status)); if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) return; /* Store the time the ccb was in the sim */ done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data; hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + done_ccb->ccb_h.target_lun) % cam_num_doneqs; queue = &cam_doneqs[hash]; mtx_lock(&queue->cam_doneq_mtx); run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; mtx_unlock(&queue->cam_doneq_mtx); if (run) wakeup(&queue->cam_doneq); } void xpt_done_direct(union ccb *done_ccb) { CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status)); if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) return; /* Store the time the ccb was in the sim */ done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data; xpt_done_process(&done_ccb->ccb_h); } union ccb * xpt_alloc_ccb() { union ccb *new_ccb; new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); return (new_ccb); } union ccb * xpt_alloc_ccb_nowait() { union ccb *new_ccb; new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); return (new_ccb); } void xpt_free_ccb(union ccb *free_ccb) { free(free_ccb, M_CAMCCB); } /* Private XPT functions */ /* * Get a CAM control block for the caller. Charge the structure to the device * referenced by the path. If we don't have sufficient resources to allocate * more ccbs, we return NULL. */ static union ccb * xpt_get_ccb_nowait(struct cam_periph *periph) { union ccb *new_ccb; new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); if (new_ccb == NULL) return (NULL); periph->periph_allocated++; cam_ccbq_take_opening(&periph->path->device->ccbq); return (new_ccb); } static union ccb * xpt_get_ccb(struct cam_periph *periph) { union ccb *new_ccb; cam_periph_unlock(periph); new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); cam_periph_lock(periph); periph->periph_allocated++; cam_ccbq_take_opening(&periph->path->device->ccbq); return (new_ccb); } union ccb * cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) { struct ccb_hdr *ccb_h; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); cam_periph_assert(periph, MA_OWNED); while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || ccb_h->pinfo.priority != priority) { if (priority < periph->immediate_priority) { periph->immediate_priority = priority; xpt_run_allocq(periph, 0); } else cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, "cgticb", 0); } SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); return ((union ccb *)ccb_h); } static void xpt_acquire_bus(struct cam_eb *bus) { xpt_lock_buses(); bus->refcount++; xpt_unlock_buses(); } static void xpt_release_bus(struct cam_eb *bus) { xpt_lock_buses(); KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); if (--bus->refcount > 0) { xpt_unlock_buses(); return; } TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); xsoftc.bus_generation++; xpt_unlock_buses(); KASSERT(TAILQ_EMPTY(&bus->et_entries), ("destroying bus, but target list is not empty")); cam_sim_release(bus->sim); mtx_destroy(&bus->eb_mtx); free(bus, M_CAMXPT); } static struct cam_et * xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) { struct cam_et *cur_target, *target; mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); mtx_assert(&bus->eb_mtx, MA_OWNED); target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT|M_ZERO); if (target == NULL) return (NULL); TAILQ_INIT(&target->ed_entries); target->bus = bus; target->target_id = target_id; target->refcount = 1; target->generation = 0; target->luns = NULL; mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); timevalclear(&target->last_reset); /* * Hold a reference to our parent bus so it * will not go away before we do. */ bus->refcount++; /* Insertion sort into our bus's target list */ cur_target = TAILQ_FIRST(&bus->et_entries); while (cur_target != NULL && cur_target->target_id < target_id) cur_target = TAILQ_NEXT(cur_target, links); if (cur_target != NULL) { TAILQ_INSERT_BEFORE(cur_target, target, links); } else { TAILQ_INSERT_TAIL(&bus->et_entries, target, links); } bus->generation++; return (target); } static void xpt_acquire_target(struct cam_et *target) { struct cam_eb *bus = target->bus; mtx_lock(&bus->eb_mtx); target->refcount++; mtx_unlock(&bus->eb_mtx); } static void xpt_release_target(struct cam_et *target) { struct cam_eb *bus = target->bus; mtx_lock(&bus->eb_mtx); if (--target->refcount > 0) { mtx_unlock(&bus->eb_mtx); return; } TAILQ_REMOVE(&bus->et_entries, target, links); bus->generation++; mtx_unlock(&bus->eb_mtx); KASSERT(TAILQ_EMPTY(&target->ed_entries), ("destroying target, but device list is not empty")); xpt_release_bus(bus); mtx_destroy(&target->luns_mtx); if (target->luns) free(target->luns, M_CAMXPT); free(target, M_CAMXPT); } static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) { struct cam_ed *device; device = xpt_alloc_device(bus, target, lun_id); if (device == NULL) return (NULL); device->mintags = 1; device->maxtags = 1; return (device); } static void xpt_destroy_device(void *context, int pending) { struct cam_ed *device = context; mtx_lock(&device->device_mtx); mtx_destroy(&device->device_mtx); free(device, M_CAMDEV); } struct cam_ed * xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) { struct cam_ed *cur_device, *device; struct cam_devq *devq; cam_status status; mtx_assert(&bus->eb_mtx, MA_OWNED); /* Make space for us in the device queue on our bus */ devq = bus->sim->devq; mtx_lock(&devq->send_mtx); status = cam_devq_resize(devq, devq->send_queue.array_size + 1); mtx_unlock(&devq->send_mtx); if (status != CAM_REQ_CMP) return (NULL); device = (struct cam_ed *)malloc(sizeof(*device), M_CAMDEV, M_NOWAIT|M_ZERO); if (device == NULL) return (NULL); cam_init_pinfo(&device->devq_entry); device->target = target; device->lun_id = lun_id; device->sim = bus->sim; if (cam_ccbq_init(&device->ccbq, bus->sim->max_dev_openings) != 0) { free(device, M_CAMDEV); return (NULL); } SLIST_INIT(&device->asyncs); SLIST_INIT(&device->periphs); device->generation = 0; device->flags = CAM_DEV_UNCONFIGURED; device->tag_delay_count = 0; device->tag_saved_openings = 0; device->refcount = 1; mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); callout_init_mtx(&device->callout, &devq->send_mtx, 0); TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); /* * Hold a reference to our parent bus so it * will not go away before we do. */ target->refcount++; cur_device = TAILQ_FIRST(&target->ed_entries); while (cur_device != NULL && cur_device->lun_id < lun_id) cur_device = TAILQ_NEXT(cur_device, links); if (cur_device != NULL) TAILQ_INSERT_BEFORE(cur_device, device, links); else TAILQ_INSERT_TAIL(&target->ed_entries, device, links); target->generation++; return (device); } void xpt_acquire_device(struct cam_ed *device) { struct cam_eb *bus = device->target->bus; mtx_lock(&bus->eb_mtx); device->refcount++; mtx_unlock(&bus->eb_mtx); } void xpt_release_device(struct cam_ed *device) { struct cam_eb *bus = device->target->bus; struct cam_devq *devq; mtx_lock(&bus->eb_mtx); if (--device->refcount > 0) { mtx_unlock(&bus->eb_mtx); return; } TAILQ_REMOVE(&device->target->ed_entries, device,links); device->target->generation++; mtx_unlock(&bus->eb_mtx); /* Release our slot in the devq */ devq = bus->sim->devq; mtx_lock(&devq->send_mtx); cam_devq_resize(devq, devq->send_queue.array_size - 1); mtx_unlock(&devq->send_mtx); KASSERT(SLIST_EMPTY(&device->periphs), ("destroying device, but periphs list is not empty")); KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, ("destroying device while still queued for ccbs")); if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) callout_stop(&device->callout); xpt_release_target(device->target); cam_ccbq_fini(&device->ccbq); /* * Free allocated memory. free(9) does nothing if the * supplied pointer is NULL, so it is safe to call without * checking. */ free(device->supported_vpds, M_CAMXPT); free(device->device_id, M_CAMXPT); free(device->ext_inq, M_CAMXPT); free(device->physpath, M_CAMXPT); free(device->rcap_buf, M_CAMXPT); free(device->serial_num, M_CAMXPT); taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); } u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) { int result; struct cam_ed *dev; dev = path->device; mtx_lock(&dev->sim->devq->send_mtx); result = cam_ccbq_resize(&dev->ccbq, newopenings); mtx_unlock(&dev->sim->devq->send_mtx); if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 || (dev->inq_flags & SID_CmdQue) != 0) dev->tag_saved_openings = newopenings; return (result); } static struct cam_eb * xpt_find_bus(path_id_t path_id) { struct cam_eb *bus; xpt_lock_buses(); for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); bus != NULL; bus = TAILQ_NEXT(bus, links)) { if (bus->path_id == path_id) { bus->refcount++; break; } } xpt_unlock_buses(); return (bus); } static struct cam_et * xpt_find_target(struct cam_eb *bus, target_id_t target_id) { struct cam_et *target; mtx_assert(&bus->eb_mtx, MA_OWNED); for (target = TAILQ_FIRST(&bus->et_entries); target != NULL; target = TAILQ_NEXT(target, links)) { if (target->target_id == target_id) { target->refcount++; break; } } return (target); } static struct cam_ed * xpt_find_device(struct cam_et *target, lun_id_t lun_id) { struct cam_ed *device; mtx_assert(&target->bus->eb_mtx, MA_OWNED); for (device = TAILQ_FIRST(&target->ed_entries); device != NULL; device = TAILQ_NEXT(device, links)) { if (device->lun_id == lun_id) { device->refcount++; break; } } return (device); } void xpt_start_tags(struct cam_path *path) { struct ccb_relsim crs; struct cam_ed *device; struct cam_sim *sim; int newopenings; device = path->device; sim = path->bus->sim; device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; xpt_freeze_devq(path, /*count*/1); device->inq_flags |= SID_CmdQue; if (device->tag_saved_openings != 0) newopenings = device->tag_saved_openings; else newopenings = min(device->maxtags, sim->max_tagged_dev_openings); xpt_dev_ccbq_resize(path, newopenings); xpt_async(AC_GETDEV_CHANGED, path, NULL); xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); crs.ccb_h.func_code = XPT_REL_SIMQ; crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; crs.openings = crs.release_timeout = crs.qfrozen_cnt = 0; xpt_action((union ccb *)&crs); } void xpt_stop_tags(struct cam_path *path) { struct ccb_relsim crs; struct cam_ed *device; struct cam_sim *sim; device = path->device; sim = path->bus->sim; device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; device->tag_delay_count = 0; xpt_freeze_devq(path, /*count*/1); device->inq_flags &= ~SID_CmdQue; xpt_dev_ccbq_resize(path, sim->max_dev_openings); xpt_async(AC_GETDEV_CHANGED, path, NULL); xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); crs.ccb_h.func_code = XPT_REL_SIMQ; crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; crs.openings = crs.release_timeout = crs.qfrozen_cnt = 0; xpt_action((union ccb *)&crs); } static void xpt_boot_delay(void *arg) { xpt_release_boot(); } static void xpt_config(void *arg) { /* * Now that interrupts are enabled, go find our devices */ if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) printf("xpt_config: failed to create taskqueue thread.\n"); /* Setup debugging path */ if (cam_dflags != CAM_DEBUG_NONE) { if (xpt_create_path(&cam_dpath, NULL, CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN) != CAM_REQ_CMP) { printf("xpt_config: xpt_create_path() failed for debug" " target %d:%d:%d, debugging disabled\n", CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); cam_dflags = CAM_DEBUG_NONE; } } else cam_dpath = NULL; periphdriver_init(1); xpt_hold_boot(); callout_init(&xsoftc.boot_callout, 1); callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, xpt_boot_delay, NULL, 0); /* Fire up rescan thread. */ if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, "cam", "scanner")) { printf("xpt_config: failed to create rescan thread.\n"); } } void xpt_hold_boot(void) { xpt_lock_buses(); xsoftc.buses_to_config++; xpt_unlock_buses(); } void xpt_release_boot(void) { xpt_lock_buses(); xsoftc.buses_to_config--; if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { struct xpt_task *task; xsoftc.buses_config_done = 1; xpt_unlock_buses(); /* Call manually because we don't have any buses */ task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); if (task != NULL) { TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); taskqueue_enqueue(taskqueue_thread, &task->task); } } else xpt_unlock_buses(); } /* * If the given device only has one peripheral attached to it, and if that * peripheral is the passthrough driver, announce it. This insures that the * user sees some sort of announcement for every peripheral in their system. */ static int xptpassannouncefunc(struct cam_ed *device, void *arg) { struct cam_periph *periph; int i; for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; periph = SLIST_NEXT(periph, periph_links), i++); periph = SLIST_FIRST(&device->periphs); if ((i == 1) && (strncmp(periph->periph_name, "pass", 4) == 0)) xpt_announce_periph(periph, NULL); return(1); } static void xpt_finishconfig_task(void *context, int pending) { periphdriver_init(2); /* * Check for devices with no "standard" peripheral driver * attached. For any devices like that, announce the * passthrough driver so the user will see something. */ if (!bootverbose) xpt_for_all_devices(xptpassannouncefunc, NULL); /* Release our hook so that the boot can continue. */ config_intrhook_disestablish(xsoftc.xpt_config_hook); free(xsoftc.xpt_config_hook, M_CAMXPT); xsoftc.xpt_config_hook = NULL; free(context, M_CAMXPT); } cam_status xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, struct cam_path *path) { struct ccb_setasync csa; cam_status status; int xptpath = 0; if (path == NULL) { status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); if (status != CAM_REQ_CMP) return (status); xpt_path_lock(path); xptpath = 1; } xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); csa.ccb_h.func_code = XPT_SASYNC_CB; csa.event_enable = event; csa.callback = cbfunc; csa.callback_arg = cbarg; xpt_action((union ccb *)&csa); status = csa.ccb_h.status; CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE, ("xpt_register_async: func %p\n", cbfunc)); if (xptpath) { xpt_path_unlock(path); xpt_free_path(path); } if ((status == CAM_REQ_CMP) && (csa.event_enable & AC_FOUND_DEVICE)) { /* * Get this peripheral up to date with all * the currently existing devices. */ xpt_for_all_devices(xptsetasyncfunc, &csa); } if ((status == CAM_REQ_CMP) && (csa.event_enable & AC_PATH_REGISTERED)) { /* * Get this peripheral up to date with all * the currently existing buses. */ xpt_for_all_busses(xptsetasyncbusfunc, &csa); } return (status); } static void xptaction(struct cam_sim *sim, union ccb *work_ccb) { CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); switch (work_ccb->ccb_h.func_code) { /* Common cases first */ case XPT_PATH_INQ: /* Path routing inquiry */ { struct ccb_pathinq *cpi; cpi = &work_ccb->cpi; cpi->version_num = 1; /* XXX??? */ cpi->hba_inquiry = 0; cpi->target_sprt = 0; cpi->hba_misc = 0; cpi->hba_eng_cnt = 0; cpi->max_target = 0; cpi->max_lun = 0; cpi->initiator_id = 0; strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strlcpy(cpi->hba_vid, "", HBA_IDLEN); strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); cpi->unit_number = sim->unit_number; cpi->bus_id = sim->bus_id; cpi->base_transfer_speed = 0; cpi->protocol = PROTO_UNSPECIFIED; cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; cpi->transport = XPORT_UNSPECIFIED; cpi->transport_version = XPORT_VERSION_UNSPECIFIED; cpi->ccb_h.status = CAM_REQ_CMP; xpt_done(work_ccb); break; } default: work_ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(work_ccb); break; } } /* * The xpt as a "controller" has no interrupt sources, so polling * is a no-op. */ static void xptpoll(struct cam_sim *sim) { } void xpt_lock_buses(void) { mtx_lock(&xsoftc.xpt_topo_lock); } void xpt_unlock_buses(void) { mtx_unlock(&xsoftc.xpt_topo_lock); } struct mtx * xpt_path_mtx(struct cam_path *path) { return (&path->device->device_mtx); } static void xpt_done_process(struct ccb_hdr *ccb_h) { struct cam_sim *sim; struct cam_devq *devq; struct mtx *mtx = NULL; #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) struct ccb_scsiio *csio; if (ccb_h->func_code == XPT_SCSI_IO) { csio = &((union ccb *)ccb_h)->csio; if (csio->bio != NULL) biotrack(csio->bio, __func__); } #endif if (ccb_h->flags & CAM_HIGH_POWER) { struct highpowerlist *hphead; struct cam_ed *device; mtx_lock(&xsoftc.xpt_highpower_lock); hphead = &xsoftc.highpowerq; device = STAILQ_FIRST(hphead); /* * Increment the count since this command is done. */ xsoftc.num_highpower++; /* * Any high powered commands queued up? */ if (device != NULL) { STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); mtx_unlock(&xsoftc.xpt_highpower_lock); mtx_lock(&device->sim->devq->send_mtx); xpt_release_devq_device(device, /*count*/1, /*runqueue*/TRUE); mtx_unlock(&device->sim->devq->send_mtx); } else mtx_unlock(&xsoftc.xpt_highpower_lock); } sim = ccb_h->path->bus->sim; if (ccb_h->status & CAM_RELEASE_SIMQ) { xpt_release_simq(sim, /*run_queue*/FALSE); ccb_h->status &= ~CAM_RELEASE_SIMQ; } if ((ccb_h->flags & CAM_DEV_QFRZDIS) && (ccb_h->status & CAM_DEV_QFRZN)) { xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); ccb_h->status &= ~CAM_DEV_QFRZN; } devq = sim->devq; if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { struct cam_ed *dev = ccb_h->path->device; mtx_lock(&devq->send_mtx); devq->send_active--; devq->send_openings++; cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 && (dev->ccbq.dev_active == 0))) { dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; xpt_release_devq_device(dev, /*count*/1, /*run_queue*/FALSE); } if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; xpt_release_devq_device(dev, /*count*/1, /*run_queue*/FALSE); } if (!device_is_queued(dev)) (void)xpt_schedule_devq(devq, dev); xpt_run_devq(devq); mtx_unlock(&devq->send_mtx); if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { mtx = xpt_path_mtx(ccb_h->path); mtx_lock(mtx); if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 && (--dev->tag_delay_count == 0)) xpt_start_tags(ccb_h->path); } } if ((ccb_h->flags & CAM_UNLOCKED) == 0) { if (mtx == NULL) { mtx = xpt_path_mtx(ccb_h->path); mtx_lock(mtx); } } else { if (mtx != NULL) { mtx_unlock(mtx); mtx = NULL; } } /* Call the peripheral driver's callback */ ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); if (mtx != NULL) mtx_unlock(mtx); } void xpt_done_td(void *arg) { struct cam_doneq *queue = arg; struct ccb_hdr *ccb_h; STAILQ_HEAD(, ccb_hdr) doneq; STAILQ_INIT(&doneq); mtx_lock(&queue->cam_doneq_mtx); while (1) { while (STAILQ_EMPTY(&queue->cam_doneq)) { queue->cam_doneq_sleep = 1; msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, PRIBIO, "-", 0); queue->cam_doneq_sleep = 0; } STAILQ_CONCAT(&doneq, &queue->cam_doneq); mtx_unlock(&queue->cam_doneq_mtx); THREAD_NO_SLEEPING(); while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); xpt_done_process(ccb_h); } THREAD_SLEEPING_OK(); mtx_lock(&queue->cam_doneq_mtx); } } static void camisr_runqueue(void) { struct ccb_hdr *ccb_h; struct cam_doneq *queue; int i; /* Process global queues. */ for (i = 0; i < cam_num_doneqs; i++) { queue = &cam_doneqs[i]; mtx_lock(&queue->cam_doneq_mtx); while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); mtx_unlock(&queue->cam_doneq_mtx); xpt_done_process(ccb_h); mtx_lock(&queue->cam_doneq_mtx); } mtx_unlock(&queue->cam_doneq_mtx); } } struct kv { uint32_t v; const char *name; }; static struct kv map[] = { { XPT_NOOP, "XPT_NOOP" }, { XPT_SCSI_IO, "XPT_SCSI_IO" }, { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" }, { XPT_GDEVLIST, "XPT_GDEVLIST" }, { XPT_PATH_INQ, "XPT_PATH_INQ" }, { XPT_REL_SIMQ, "XPT_REL_SIMQ" }, { XPT_SASYNC_CB, "XPT_SASYNC_CB" }, { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" }, { XPT_SCAN_BUS, "XPT_SCAN_BUS" }, { XPT_DEV_MATCH, "XPT_DEV_MATCH" }, { XPT_DEBUG, "XPT_DEBUG" }, { XPT_PATH_STATS, "XPT_PATH_STATS" }, { XPT_GDEV_STATS, "XPT_GDEV_STATS" }, { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" }, { XPT_ASYNC, "XPT_ASYNC" }, { XPT_ABORT, "XPT_ABORT" }, { XPT_RESET_BUS, "XPT_RESET_BUS" }, { XPT_RESET_DEV, "XPT_RESET_DEV" }, { XPT_TERM_IO, "XPT_TERM_IO" }, { XPT_SCAN_LUN, "XPT_SCAN_LUN" }, { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" }, { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" }, { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" }, { XPT_ATA_IO, "XPT_ATA_IO" }, { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" }, { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" }, { XPT_NVME_IO, "XPT_NVME_IO" }, { XPT_MMC_IO, "XPT_MMC_IO" }, { XPT_SMP_IO, "XPT_SMP_IO" }, { XPT_SCAN_TGT, "XPT_SCAN_TGT" }, + { XPT_NVME_ADMIN, "XPT_NVME_ADMIN" }, { XPT_ENG_INQ, "XPT_ENG_INQ" }, { XPT_ENG_EXEC, "XPT_ENG_EXEC" }, { XPT_EN_LUN, "XPT_EN_LUN" }, { XPT_TARGET_IO, "XPT_TARGET_IO" }, { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" }, { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" }, { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" }, { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" }, { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" }, { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" }, { 0, 0 } }; const char * xpt_action_name(uint32_t action) { static char buffer[32]; /* Only for unknown messages -- racy */ struct kv *walker = map; while (walker->name != NULL) { if (walker->v == action) return (walker->name); walker++; } snprintf(buffer, sizeof(buffer), "%#x", action); return (buffer); } Index: head/sys/cam/scsi/scsi_pass.c =================================================================== --- head/sys/cam/scsi/scsi_pass.c (revision 320983) +++ head/sys/cam/scsi/scsi_pass.c (revision 320984) @@ -1,2257 +1,2282 @@ /*- * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs. * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef enum { PASS_FLAG_OPEN = 0x01, PASS_FLAG_LOCKED = 0x02, PASS_FLAG_INVALID = 0x04, PASS_FLAG_INITIAL_PHYSPATH = 0x08, PASS_FLAG_ZONE_INPROG = 0x10, PASS_FLAG_ZONE_VALID = 0x20, PASS_FLAG_UNMAPPED_CAPABLE = 0x40, PASS_FLAG_ABANDONED_REF_SET = 0x80 } pass_flags; typedef enum { PASS_STATE_NORMAL } pass_state; typedef enum { PASS_CCB_BUFFER_IO, PASS_CCB_QUEUED_IO } pass_ccb_types; #define ccb_type ppriv_field0 #define ccb_ioreq ppriv_ptr1 /* * The maximum number of memory segments we preallocate. */ #define PASS_MAX_SEGS 16 typedef enum { PASS_IO_NONE = 0x00, PASS_IO_USER_SEG_MALLOC = 0x01, PASS_IO_KERN_SEG_MALLOC = 0x02, PASS_IO_ABANDONED = 0x04 } pass_io_flags; struct pass_io_req { union ccb ccb; union ccb *alloced_ccb; union ccb *user_ccb_ptr; camq_entry user_periph_links; ccb_ppriv_area user_periph_priv; struct cam_periph_map_info mapinfo; pass_io_flags flags; ccb_flags data_flags; int num_user_segs; bus_dma_segment_t user_segs[PASS_MAX_SEGS]; int num_kern_segs; bus_dma_segment_t kern_segs[PASS_MAX_SEGS]; bus_dma_segment_t *user_segptr; bus_dma_segment_t *kern_segptr; int num_bufs; uint32_t dirs[CAM_PERIPH_MAXMAPS]; uint32_t lengths[CAM_PERIPH_MAXMAPS]; uint8_t *user_bufs[CAM_PERIPH_MAXMAPS]; uint8_t *kern_bufs[CAM_PERIPH_MAXMAPS]; struct bintime start_time; TAILQ_ENTRY(pass_io_req) links; }; struct pass_softc { pass_state state; pass_flags flags; u_int8_t pd_type; union ccb saved_ccb; int open_count; u_int maxio; struct devstat *device_stats; struct cdev *dev; struct cdev *alias_dev; struct task add_physpath_task; struct task shutdown_kqueue_task; struct selinfo read_select; TAILQ_HEAD(, pass_io_req) incoming_queue; TAILQ_HEAD(, pass_io_req) active_queue; TAILQ_HEAD(, pass_io_req) abandoned_queue; TAILQ_HEAD(, pass_io_req) done_queue; struct cam_periph *periph; char zone_name[12]; char io_zone_name[12]; uma_zone_t pass_zone; uma_zone_t pass_io_zone; size_t io_zone_size; }; static d_open_t passopen; static d_close_t passclose; static d_ioctl_t passioctl; static d_ioctl_t passdoioctl; static d_poll_t passpoll; static d_kqfilter_t passkqfilter; static void passreadfiltdetach(struct knote *kn); static int passreadfilt(struct knote *kn, long hint); static periph_init_t passinit; static periph_ctor_t passregister; static periph_oninv_t passoninvalidate; static periph_dtor_t passcleanup; static periph_start_t passstart; static void pass_shutdown_kqueue(void *context, int pending); static void pass_add_physpath(void *context, int pending); static void passasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg); static void passdone(struct cam_periph *periph, union ccb *done_ccb); static int passcreatezone(struct cam_periph *periph); static void passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req); static int passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req, ccb_flags direction); static int passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req); static int passmemdone(struct cam_periph *periph, struct pass_io_req *io_req); static int passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags); static int passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb); static struct periph_driver passdriver = { passinit, "pass", TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0 }; PERIPHDRIVER_DECLARE(pass, passdriver); static struct cdevsw pass_cdevsw = { .d_version = D_VERSION, .d_flags = D_TRACKCLOSE, .d_open = passopen, .d_close = passclose, .d_ioctl = passioctl, .d_poll = passpoll, .d_kqfilter = passkqfilter, .d_name = "pass", }; static struct filterops passread_filtops = { .f_isfd = 1, .f_detach = passreadfiltdetach, .f_event = passreadfilt }; static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers"); static void passinit(void) { cam_status status; /* * Install a global async callback. This callback will * receive async callbacks like "new device found". */ status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL); if (status != CAM_REQ_CMP) { printf("pass: Failed to attach master async callback " "due to status 0x%x!\n", status); } } static void passrejectios(struct cam_periph *periph) { struct pass_io_req *io_req, *io_req2; struct pass_softc *softc; softc = (struct pass_softc *)periph->softc; /* * The user can no longer get status for I/O on the done queue, so * clean up all outstanding I/O on the done queue. */ TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { TAILQ_REMOVE(&softc->done_queue, io_req, links); passiocleanup(softc, io_req); uma_zfree(softc->pass_zone, io_req); } /* * The underlying device is gone, so we can't issue these I/Os. * The devfs node has been shut down, so we can't return status to * the user. Free any I/O left on the incoming queue. */ TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) { TAILQ_REMOVE(&softc->incoming_queue, io_req, links); passiocleanup(softc, io_req); uma_zfree(softc->pass_zone, io_req); } /* * Normally we would put I/Os on the abandoned queue and acquire a * reference when we saw the final close. But, the device went * away and devfs may have moved everything off to deadfs by the * time the I/O done callback is called; as a result, we won't see * any more closes. So, if we have any active I/Os, we need to put * them on the abandoned queue. When the abandoned queue is empty, * we'll release the remaining reference (see below) to the peripheral. */ TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) { TAILQ_REMOVE(&softc->active_queue, io_req, links); io_req->flags |= PASS_IO_ABANDONED; TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links); } /* * If we put any I/O on the abandoned queue, acquire a reference. */ if ((!TAILQ_EMPTY(&softc->abandoned_queue)) && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) { cam_periph_doacquire(periph); softc->flags |= PASS_FLAG_ABANDONED_REF_SET; } } static void passdevgonecb(void *arg) { struct cam_periph *periph; struct mtx *mtx; struct pass_softc *softc; int i; periph = (struct cam_periph *)arg; mtx = cam_periph_mtx(periph); mtx_lock(mtx); softc = (struct pass_softc *)periph->softc; KASSERT(softc->open_count >= 0, ("Negative open count %d", softc->open_count)); /* * When we get this callback, we will get no more close calls from * devfs. So if we have any dangling opens, we need to release the * reference held for that particular context. */ for (i = 0; i < softc->open_count; i++) cam_periph_release_locked(periph); softc->open_count = 0; /* * Release the reference held for the device node, it is gone now. * Accordingly, inform all queued I/Os of their fate. */ cam_periph_release_locked(periph); passrejectios(periph); /* * We reference the SIM lock directly here, instead of using * cam_periph_unlock(). The reason is that the final call to * cam_periph_release_locked() above could result in the periph * getting freed. If that is the case, dereferencing the periph * with a cam_periph_unlock() call would cause a page fault. */ mtx_unlock(mtx); /* * We have to remove our kqueue context from a thread because it * may sleep. It would be nice if we could get a callback from * kqueue when it is done cleaning up resources. */ taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task); } static void passoninvalidate(struct cam_periph *periph) { struct pass_softc *softc; softc = (struct pass_softc *)periph->softc; /* * De-register any async callbacks. */ xpt_register_async(0, passasync, periph, periph->path); softc->flags |= PASS_FLAG_INVALID; /* * Tell devfs this device has gone away, and ask for a callback * when it has cleaned up its state. */ destroy_dev_sched_cb(softc->dev, passdevgonecb, periph); } static void passcleanup(struct cam_periph *periph) { struct pass_softc *softc; softc = (struct pass_softc *)periph->softc; cam_periph_assert(periph, MA_OWNED); KASSERT(TAILQ_EMPTY(&softc->active_queue), ("%s called when there are commands on the active queue!\n", __func__)); KASSERT(TAILQ_EMPTY(&softc->abandoned_queue), ("%s called when there are commands on the abandoned queue!\n", __func__)); KASSERT(TAILQ_EMPTY(&softc->incoming_queue), ("%s called when there are commands on the incoming queue!\n", __func__)); KASSERT(TAILQ_EMPTY(&softc->done_queue), ("%s called when there are commands on the done queue!\n", __func__)); devstat_remove_entry(softc->device_stats); cam_periph_unlock(periph); /* * We call taskqueue_drain() for the physpath task to make sure it * is complete. We drop the lock because this can potentially * sleep. XXX KDM that is bad. Need a way to get a callback when * a taskqueue is drained. * * Note that we don't drain the kqueue shutdown task queue. This * is because we hold a reference on the periph for kqueue, and * release that reference from the kqueue shutdown task queue. So * we cannot come into this routine unless we've released that * reference. Also, because that could be the last reference, we * could be called from the cam_periph_release() call in * pass_shutdown_kqueue(). In that case, the taskqueue_drain() * would deadlock. It would be preferable if we had a way to * get a callback when a taskqueue is done. */ taskqueue_drain(taskqueue_thread, &softc->add_physpath_task); cam_periph_lock(periph); free(softc, M_DEVBUF); } static void pass_shutdown_kqueue(void *context, int pending) { struct cam_periph *periph; struct pass_softc *softc; periph = context; softc = periph->softc; knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0); knlist_destroy(&softc->read_select.si_note); /* * Release the reference we held for kqueue. */ cam_periph_release(periph); } static void pass_add_physpath(void *context, int pending) { struct cam_periph *periph; struct pass_softc *softc; struct mtx *mtx; char *physpath; /* * If we have one, create a devfs alias for our * physical path. */ periph = context; softc = periph->softc; physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK); mtx = cam_periph_mtx(periph); mtx_lock(mtx); if (periph->flags & CAM_PERIPH_INVALID) goto out; if (xpt_getattr(physpath, MAXPATHLEN, "GEOM::physpath", periph->path) == 0 && strlen(physpath) != 0) { mtx_unlock(mtx); make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev, softc->dev, softc->alias_dev, physpath); mtx_lock(mtx); } out: /* * Now that we've made our alias, we no longer have to have a * reference to the device. */ if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0) softc->flags |= PASS_FLAG_INITIAL_PHYSPATH; /* * We always acquire a reference to the periph before queueing this * task queue function, so it won't go away before we run. */ while (pending-- > 0) cam_periph_release_locked(periph); mtx_unlock(mtx); free(physpath, M_DEVBUF); } static void passasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg) { struct cam_periph *periph; periph = (struct cam_periph *)callback_arg; switch (code) { case AC_FOUND_DEVICE: { struct ccb_getdev *cgd; cam_status status; cgd = (struct ccb_getdev *)arg; if (cgd == NULL) break; /* * Allocate a peripheral instance for * this device and start the probe * process. */ status = cam_periph_alloc(passregister, passoninvalidate, passcleanup, passstart, "pass", CAM_PERIPH_BIO, path, passasync, AC_FOUND_DEVICE, cgd); if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG) { const struct cam_status_entry *entry; entry = cam_fetch_status_entry(status); printf("passasync: Unable to attach new device " "due to status %#x: %s\n", status, entry ? entry->status_text : "Unknown"); } break; } case AC_ADVINFO_CHANGED: { uintptr_t buftype; buftype = (uintptr_t)arg; if (buftype == CDAI_TYPE_PHYS_PATH) { struct pass_softc *softc; cam_status status; softc = (struct pass_softc *)periph->softc; /* * Acquire a reference to the periph before we * start the taskqueue, so that we don't run into * a situation where the periph goes away before * the task queue has a chance to run. */ status = cam_periph_acquire(periph); if (status != CAM_REQ_CMP) break; taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task); } break; } default: cam_periph_async(periph, code, path, arg); break; } } static cam_status passregister(struct cam_periph *periph, void *arg) { struct pass_softc *softc; struct ccb_getdev *cgd; struct ccb_pathinq cpi; struct make_dev_args args; int error, no_tags; cgd = (struct ccb_getdev *)arg; if (cgd == NULL) { printf("%s: no getdev CCB, can't register device\n", __func__); return(CAM_REQ_CMP_ERR); } softc = (struct pass_softc *)malloc(sizeof(*softc), M_DEVBUF, M_NOWAIT); if (softc == NULL) { printf("%s: Unable to probe new device. " "Unable to allocate softc\n", __func__); return(CAM_REQ_CMP_ERR); } bzero(softc, sizeof(*softc)); softc->state = PASS_STATE_NORMAL; if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI) softc->pd_type = SID_TYPE(&cgd->inq_data); else if (cgd->protocol == PROTO_SATAPM) softc->pd_type = T_ENCLOSURE; else softc->pd_type = T_DIRECT; periph->softc = softc; softc->periph = periph; TAILQ_INIT(&softc->incoming_queue); TAILQ_INIT(&softc->active_queue); TAILQ_INIT(&softc->abandoned_queue); TAILQ_INIT(&softc->done_queue); snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d", periph->periph_name, periph->unit_number); snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO", periph->periph_name, periph->unit_number); softc->io_zone_size = MAXPHYS; knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph)); bzero(&cpi, sizeof(cpi)); xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NORMAL); cpi.ccb_h.func_code = XPT_PATH_INQ; xpt_action((union ccb *)&cpi); if (cpi.maxio == 0) softc->maxio = DFLTPHYS; /* traditional default */ else if (cpi.maxio > MAXPHYS) softc->maxio = MAXPHYS; /* for safety */ else softc->maxio = cpi.maxio; /* real value */ if (cpi.hba_misc & PIM_UNMAPPED) softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE; /* * We pass in 0 for a blocksize, since we don't * know what the blocksize of this device is, if * it even has a blocksize. */ cam_periph_unlock(periph); no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0; softc->device_stats = devstat_new_entry("pass", periph->unit_number, 0, DEVSTAT_NO_BLOCKSIZE | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0), softc->pd_type | XPORT_DEVSTAT_TYPE(cpi.transport) | DEVSTAT_TYPE_PASS, DEVSTAT_PRIORITY_PASS); /* * Initialize the taskqueue handler for shutting down kqueue. */ TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0, pass_shutdown_kqueue, periph); /* * Acquire a reference to the periph that we can release once we've * cleaned up the kqueue. */ if (cam_periph_acquire(periph) != CAM_REQ_CMP) { xpt_print(periph->path, "%s: lost periph during " "registration!\n", __func__); cam_periph_lock(periph); return (CAM_REQ_CMP_ERR); } /* * Acquire a reference to the periph before we create the devfs * instance for it. We'll release this reference once the devfs * instance has been freed. */ if (cam_periph_acquire(periph) != CAM_REQ_CMP) { xpt_print(periph->path, "%s: lost periph during " "registration!\n", __func__); cam_periph_lock(periph); return (CAM_REQ_CMP_ERR); } /* Register the device */ make_dev_args_init(&args); args.mda_devsw = &pass_cdevsw; args.mda_unit = periph->unit_number; args.mda_uid = UID_ROOT; args.mda_gid = GID_OPERATOR; args.mda_mode = 0600; args.mda_si_drv1 = periph; error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name, periph->unit_number); if (error != 0) { cam_periph_lock(periph); cam_periph_release_locked(periph); return (CAM_REQ_CMP_ERR); } /* * Hold a reference to the periph before we create the physical * path alias so it can't go away. */ if (cam_periph_acquire(periph) != CAM_REQ_CMP) { xpt_print(periph->path, "%s: lost periph during " "registration!\n", __func__); cam_periph_lock(periph); return (CAM_REQ_CMP_ERR); } cam_periph_lock(periph); TASK_INIT(&softc->add_physpath_task, /*priority*/0, pass_add_physpath, periph); /* * See if physical path information is already available. */ taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task); /* * Add an async callback so that we get notified if * this device goes away or its physical path * (stored in the advanced info data of the EDT) has * changed. */ xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED, passasync, periph, periph->path); if (bootverbose) xpt_announce_periph(periph, NULL); return(CAM_REQ_CMP); } static int passopen(struct cdev *dev, int flags, int fmt, struct thread *td) { struct cam_periph *periph; struct pass_softc *softc; int error; periph = (struct cam_periph *)dev->si_drv1; if (cam_periph_acquire(periph) != CAM_REQ_CMP) return (ENXIO); cam_periph_lock(periph); softc = (struct pass_softc *)periph->softc; if (softc->flags & PASS_FLAG_INVALID) { cam_periph_release_locked(periph); cam_periph_unlock(periph); return(ENXIO); } /* * Don't allow access when we're running at a high securelevel. */ error = securelevel_gt(td->td_ucred, 1); if (error) { cam_periph_release_locked(periph); cam_periph_unlock(periph); return(error); } /* * Only allow read-write access. */ if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) { cam_periph_release_locked(periph); cam_periph_unlock(periph); return(EPERM); } /* * We don't allow nonblocking access. */ if ((flags & O_NONBLOCK) != 0) { xpt_print(periph->path, "can't do nonblocking access\n"); cam_periph_release_locked(periph); cam_periph_unlock(periph); return(EINVAL); } softc->open_count++; cam_periph_unlock(periph); return (error); } static int passclose(struct cdev *dev, int flag, int fmt, struct thread *td) { struct cam_periph *periph; struct pass_softc *softc; struct mtx *mtx; periph = (struct cam_periph *)dev->si_drv1; mtx = cam_periph_mtx(periph); mtx_lock(mtx); softc = periph->softc; softc->open_count--; if (softc->open_count == 0) { struct pass_io_req *io_req, *io_req2; TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { TAILQ_REMOVE(&softc->done_queue, io_req, links); passiocleanup(softc, io_req); uma_zfree(softc->pass_zone, io_req); } TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) { TAILQ_REMOVE(&softc->incoming_queue, io_req, links); passiocleanup(softc, io_req); uma_zfree(softc->pass_zone, io_req); } /* * If there are any active I/Os, we need to forcibly acquire a * reference to the peripheral so that we don't go away * before they complete. We'll release the reference when * the abandoned queue is empty. */ io_req = TAILQ_FIRST(&softc->active_queue); if ((io_req != NULL) && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) { cam_periph_doacquire(periph); softc->flags |= PASS_FLAG_ABANDONED_REF_SET; } /* * Since the I/O in the active queue is not under our * control, just set a flag so that we can clean it up when * it completes and put it on the abandoned queue. This * will prevent our sending spurious completions in the * event that the device is opened again before these I/Os * complete. */ TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) { TAILQ_REMOVE(&softc->active_queue, io_req, links); io_req->flags |= PASS_IO_ABANDONED; TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links); } } cam_periph_release_locked(periph); /* * We reference the lock directly here, instead of using * cam_periph_unlock(). The reason is that the call to * cam_periph_release_locked() above could result in the periph * getting freed. If that is the case, dereferencing the periph * with a cam_periph_unlock() call would cause a page fault. * * cam_periph_release() avoids this problem using the same method, * but we're manually acquiring and dropping the lock here to * protect the open count and avoid another lock acquisition and * release. */ mtx_unlock(mtx); return (0); } static void passstart(struct cam_periph *periph, union ccb *start_ccb) { struct pass_softc *softc; softc = (struct pass_softc *)periph->softc; switch (softc->state) { case PASS_STATE_NORMAL: { struct pass_io_req *io_req; /* * Check for any queued I/O requests that require an * allocated slot. */ io_req = TAILQ_FIRST(&softc->incoming_queue); if (io_req == NULL) { xpt_release_ccb(start_ccb); break; } TAILQ_REMOVE(&softc->incoming_queue, io_req, links); TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); /* * Merge the user's CCB into the allocated CCB. */ xpt_merge_ccb(start_ccb, &io_req->ccb); start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO; start_ccb->ccb_h.ccb_ioreq = io_req; start_ccb->ccb_h.cbfcnp = passdone; io_req->alloced_ccb = start_ccb; binuptime(&io_req->start_time); devstat_start_transaction(softc->device_stats, &io_req->start_time); xpt_action(start_ccb); /* * If we have any more I/O waiting, schedule ourselves again. */ if (!TAILQ_EMPTY(&softc->incoming_queue)) xpt_schedule(periph, CAM_PRIORITY_NORMAL); break; } default: break; } } static void passdone(struct cam_periph *periph, union ccb *done_ccb) { struct pass_softc *softc; struct ccb_scsiio *csio; softc = (struct pass_softc *)periph->softc; cam_periph_assert(periph, MA_OWNED); csio = &done_ccb->csio; switch (csio->ccb_h.ccb_type) { case PASS_CCB_QUEUED_IO: { struct pass_io_req *io_req; io_req = done_ccb->ccb_h.ccb_ioreq; #if 0 xpt_print(periph->path, "%s: called for user CCB %p\n", __func__, io_req->user_ccb_ptr); #endif if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) && ((io_req->flags & PASS_IO_ABANDONED) == 0)) { int error; error = passerror(done_ccb, CAM_RETRY_SELTO, SF_RETRY_UA | SF_NO_PRINT); if (error == ERESTART) { /* * A retry was scheduled, so * just return. */ return; } } /* * Copy the allocated CCB contents back to the malloced CCB * so we can give status back to the user when he requests it. */ bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb)); /* * Log data/transaction completion with devstat(9). */ switch (done_ccb->ccb_h.func_code) { case XPT_SCSI_IO: devstat_end_transaction(softc->device_stats, done_ccb->csio.dxfer_len - done_ccb->csio.resid, done_ccb->csio.tag_action & 0x3, ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? DEVSTAT_NO_DATA : (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? DEVSTAT_WRITE : DEVSTAT_READ, NULL, &io_req->start_time); break; case XPT_ATA_IO: devstat_end_transaction(softc->device_stats, done_ccb->ataio.dxfer_len - done_ccb->ataio.resid, 0, /* Not used in ATA */ ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? DEVSTAT_NO_DATA : (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? DEVSTAT_WRITE : DEVSTAT_READ, NULL, &io_req->start_time); break; case XPT_SMP_IO: /* * XXX KDM this isn't quite right, but there isn't * currently an easy way to represent a bidirectional * transfer in devstat. The only way to do it * and have the byte counts come out right would * mean that we would have to record two * transactions, one for the request and one for the * response. For now, so that we report something, * just treat the entire thing as a read. */ devstat_end_transaction(softc->device_stats, done_ccb->smpio.smp_request_len + done_ccb->smpio.smp_response_len, DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL, &io_req->start_time); break; default: devstat_end_transaction(softc->device_stats, 0, DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL, &io_req->start_time); break; } /* * In the normal case, take the completed I/O off of the * active queue and put it on the done queue. Notitfy the * user that we have a completed I/O. */ if ((io_req->flags & PASS_IO_ABANDONED) == 0) { TAILQ_REMOVE(&softc->active_queue, io_req, links); TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); selwakeuppri(&softc->read_select, PRIBIO); KNOTE_LOCKED(&softc->read_select.si_note, 0); } else { /* * In the case of an abandoned I/O (final close * without fetching the I/O), take it off of the * abandoned queue and free it. */ TAILQ_REMOVE(&softc->abandoned_queue, io_req, links); passiocleanup(softc, io_req); uma_zfree(softc->pass_zone, io_req); /* * Release the done_ccb here, since we may wind up * freeing the peripheral when we decrement the * reference count below. */ xpt_release_ccb(done_ccb); /* * If the abandoned queue is empty, we can release * our reference to the periph since we won't have * any more completions coming. */ if ((TAILQ_EMPTY(&softc->abandoned_queue)) && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) { softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET; cam_periph_release_locked(periph); } /* * We have already released the CCB, so we can * return. */ return; } break; } } xpt_release_ccb(done_ccb); } static int passcreatezone(struct cam_periph *periph) { struct pass_softc *softc; int error; error = 0; softc = (struct pass_softc *)periph->softc; cam_periph_assert(periph, MA_OWNED); KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0), ("%s called when the pass(4) zone is valid!\n", __func__)); KASSERT((softc->pass_zone == NULL), ("%s called when the pass(4) zone is allocated!\n", __func__)); if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) { /* * We're the first context through, so we need to create * the pass(4) UMA zone for I/O requests. */ softc->flags |= PASS_FLAG_ZONE_INPROG; /* * uma_zcreate() does a blocking (M_WAITOK) allocation, * so we cannot hold a mutex while we call it. */ cam_periph_unlock(periph); softc->pass_zone = uma_zcreate(softc->zone_name, sizeof(struct pass_io_req), NULL, NULL, NULL, NULL, /*align*/ 0, /*flags*/ 0); softc->pass_io_zone = uma_zcreate(softc->io_zone_name, softc->io_zone_size, NULL, NULL, NULL, NULL, /*align*/ 0, /*flags*/ 0); cam_periph_lock(periph); if ((softc->pass_zone == NULL) || (softc->pass_io_zone == NULL)) { if (softc->pass_zone == NULL) xpt_print(periph->path, "unable to allocate " "IO Req UMA zone\n"); else xpt_print(periph->path, "unable to allocate " "IO UMA zone\n"); softc->flags &= ~PASS_FLAG_ZONE_INPROG; goto bailout; } /* * Set the flags appropriately and notify any other waiters. */ softc->flags &= PASS_FLAG_ZONE_INPROG; softc->flags |= PASS_FLAG_ZONE_VALID; wakeup(&softc->pass_zone); } else { /* * In this case, the UMA zone has not yet been created, but * another context is in the process of creating it. We * need to sleep until the creation is either done or has * failed. */ while ((softc->flags & PASS_FLAG_ZONE_INPROG) && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) { error = msleep(&softc->pass_zone, cam_periph_mtx(periph), PRIBIO, "paszon", 0); if (error != 0) goto bailout; } /* * If the zone creation failed, no luck for the user. */ if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){ error = ENOMEM; goto bailout; } } bailout: return (error); } static void passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req) { union ccb *ccb; u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; int i, numbufs; ccb = &io_req->ccb; switch (ccb->ccb_h.func_code) { case XPT_DEV_MATCH: numbufs = min(io_req->num_bufs, 2); if (numbufs == 1) { data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; } else { data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; } break; case XPT_SCSI_IO: case XPT_CONT_TARGET_IO: data_ptrs[0] = &ccb->csio.data_ptr; numbufs = min(io_req->num_bufs, 1); break; case XPT_ATA_IO: data_ptrs[0] = &ccb->ataio.data_ptr; numbufs = min(io_req->num_bufs, 1); break; case XPT_SMP_IO: numbufs = min(io_req->num_bufs, 2); data_ptrs[0] = &ccb->smpio.smp_request; data_ptrs[1] = &ccb->smpio.smp_response; break; case XPT_DEV_ADVINFO: numbufs = min(io_req->num_bufs, 1); data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; break; + case XPT_NVME_IO: + case XPT_NVME_ADMIN: + data_ptrs[0] = &ccb->nvmeio.data_ptr; + numbufs = min(io_req->num_bufs, 1); + break; default: /* allow ourselves to be swapped once again */ return; break; /* NOTREACHED */ } if (io_req->flags & PASS_IO_USER_SEG_MALLOC) { free(io_req->user_segptr, M_SCSIPASS); io_req->user_segptr = NULL; } /* * We only want to free memory we malloced. */ if (io_req->data_flags == CAM_DATA_VADDR) { for (i = 0; i < io_req->num_bufs; i++) { if (io_req->kern_bufs[i] == NULL) continue; free(io_req->kern_bufs[i], M_SCSIPASS); io_req->kern_bufs[i] = NULL; } } else if (io_req->data_flags == CAM_DATA_SG) { for (i = 0; i < io_req->num_kern_segs; i++) { if ((uint8_t *)(uintptr_t) io_req->kern_segptr[i].ds_addr == NULL) continue; uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t) io_req->kern_segptr[i].ds_addr); io_req->kern_segptr[i].ds_addr = 0; } } if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) { free(io_req->kern_segptr, M_SCSIPASS); io_req->kern_segptr = NULL; } if (io_req->data_flags != CAM_DATA_PADDR) { for (i = 0; i < numbufs; i++) { /* * Restore the user's buffer pointers to their * previous values. */ if (io_req->user_bufs[i] != NULL) *data_ptrs[i] = io_req->user_bufs[i]; } } } static int passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req, ccb_flags direction) { bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy; bus_dma_segment_t *user_sglist, *kern_sglist; int i, j, error; error = 0; kern_watermark = 0; user_watermark = 0; len_to_copy = 0; len_copied = 0; user_sglist = io_req->user_segptr; kern_sglist = io_req->kern_segptr; for (i = 0, j = 0; i < io_req->num_user_segs && j < io_req->num_kern_segs;) { uint8_t *user_ptr, *kern_ptr; len_to_copy = min(user_sglist[i].ds_len -user_watermark, kern_sglist[j].ds_len - kern_watermark); user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr; user_ptr = user_ptr + user_watermark; kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr; kern_ptr = kern_ptr + kern_watermark; user_watermark += len_to_copy; kern_watermark += len_to_copy; if (!useracc(user_ptr, len_to_copy, (direction == CAM_DIR_IN) ? VM_PROT_WRITE : VM_PROT_READ)) { xpt_print(periph->path, "%s: unable to access user " "S/G list element %p len %zu\n", __func__, user_ptr, len_to_copy); error = EFAULT; goto bailout; } if (direction == CAM_DIR_IN) { error = copyout(kern_ptr, user_ptr, len_to_copy); if (error != 0) { xpt_print(periph->path, "%s: copyout of %u " "bytes from %p to %p failed with " "error %d\n", __func__, len_to_copy, kern_ptr, user_ptr, error); goto bailout; } } else { error = copyin(user_ptr, kern_ptr, len_to_copy); if (error != 0) { xpt_print(periph->path, "%s: copyin of %u " "bytes from %p to %p failed with " "error %d\n", __func__, len_to_copy, user_ptr, kern_ptr, error); goto bailout; } } len_copied += len_to_copy; if (user_sglist[i].ds_len == user_watermark) { i++; user_watermark = 0; } if (kern_sglist[j].ds_len == kern_watermark) { j++; kern_watermark = 0; } } bailout: return (error); } static int passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req) { union ccb *ccb; struct pass_softc *softc; int numbufs, i; uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; uint32_t lengths[CAM_PERIPH_MAXMAPS]; uint32_t dirs[CAM_PERIPH_MAXMAPS]; uint32_t num_segs; uint16_t *seg_cnt_ptr; size_t maxmap; int error; cam_periph_assert(periph, MA_NOTOWNED); softc = periph->softc; error = 0; ccb = &io_req->ccb; maxmap = 0; num_segs = 0; seg_cnt_ptr = NULL; switch(ccb->ccb_h.func_code) { case XPT_DEV_MATCH: if (ccb->cdm.match_buf_len == 0) { printf("%s: invalid match buffer length 0\n", __func__); return(EINVAL); } if (ccb->cdm.pattern_buf_len > 0) { data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; lengths[0] = ccb->cdm.pattern_buf_len; dirs[0] = CAM_DIR_OUT; data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; lengths[1] = ccb->cdm.match_buf_len; dirs[1] = CAM_DIR_IN; numbufs = 2; } else { data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; lengths[0] = ccb->cdm.match_buf_len; dirs[0] = CAM_DIR_IN; numbufs = 1; } io_req->data_flags = CAM_DATA_VADDR; break; case XPT_SCSI_IO: case XPT_CONT_TARGET_IO: if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) return(0); /* * The user shouldn't be able to supply a bio. */ if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO) return (EINVAL); io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK; data_ptrs[0] = &ccb->csio.data_ptr; lengths[0] = ccb->csio.dxfer_len; dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; num_segs = ccb->csio.sglist_cnt; seg_cnt_ptr = &ccb->csio.sglist_cnt; numbufs = 1; maxmap = softc->maxio; break; case XPT_ATA_IO: if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) return(0); /* * We only support a single virtual address for ATA I/O. */ if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) return (EINVAL); io_req->data_flags = CAM_DATA_VADDR; data_ptrs[0] = &ccb->ataio.data_ptr; lengths[0] = ccb->ataio.dxfer_len; dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; numbufs = 1; maxmap = softc->maxio; break; case XPT_SMP_IO: io_req->data_flags = CAM_DATA_VADDR; data_ptrs[0] = &ccb->smpio.smp_request; lengths[0] = ccb->smpio.smp_request_len; dirs[0] = CAM_DIR_OUT; data_ptrs[1] = &ccb->smpio.smp_response; lengths[1] = ccb->smpio.smp_response_len; dirs[1] = CAM_DIR_IN; numbufs = 2; maxmap = softc->maxio; break; case XPT_DEV_ADVINFO: if (ccb->cdai.bufsiz == 0) return (0); io_req->data_flags = CAM_DATA_VADDR; data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; lengths[0] = ccb->cdai.bufsiz; dirs[0] = CAM_DIR_IN; numbufs = 1; break; + case XPT_NVME_ADMIN: + case XPT_NVME_IO: + if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) + return (0); + + io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK; + + /* + * We only support a single virtual address for NVMe + */ + if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) + return (EINVAL); + + data_ptrs[0] = &ccb->nvmeio.data_ptr; + lengths[0] = ccb->nvmeio.dxfer_len; + dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; + numbufs = 1; + maxmap = softc->maxio; + break; default: return(EINVAL); break; /* NOTREACHED */ } io_req->num_bufs = numbufs; /* * If there is a maximum, check to make sure that the user's * request fits within the limit. In general, we should only have * a maximum length for requests that go to hardware. Otherwise it * is whatever we're able to malloc. */ for (i = 0; i < numbufs; i++) { io_req->user_bufs[i] = *data_ptrs[i]; io_req->dirs[i] = dirs[i]; io_req->lengths[i] = lengths[i]; if (maxmap == 0) continue; if (lengths[i] <= maxmap) continue; xpt_print(periph->path, "%s: data length %u > max allowed %u " "bytes\n", __func__, lengths[i], maxmap); error = EINVAL; goto bailout; } switch (io_req->data_flags) { case CAM_DATA_VADDR: /* Map or copy the buffer into kernel address space */ for (i = 0; i < numbufs; i++) { uint8_t *tmp_buf; /* * If for some reason no length is specified, we * don't need to allocate anything. */ if (io_req->lengths[i] == 0) continue; /* * Make sure that the user's buffer is accessible * to that process. */ if (!useracc(io_req->user_bufs[i], io_req->lengths[i], (io_req->dirs[i] == CAM_DIR_IN) ? VM_PROT_WRITE : VM_PROT_READ)) { xpt_print(periph->path, "%s: user address %p " "length %u is not accessible\n", __func__, io_req->user_bufs[i], io_req->lengths[i]); error = EFAULT; goto bailout; } tmp_buf = malloc(lengths[i], M_SCSIPASS, M_WAITOK | M_ZERO); io_req->kern_bufs[i] = tmp_buf; *data_ptrs[i] = tmp_buf; #if 0 xpt_print(periph->path, "%s: malloced %p len %u, user " "buffer %p, operation: %s\n", __func__, tmp_buf, lengths[i], io_req->user_bufs[i], (dirs[i] == CAM_DIR_IN) ? "read" : "write"); #endif /* * We only need to copy in if the user is writing. */ if (dirs[i] != CAM_DIR_OUT) continue; error = copyin(io_req->user_bufs[i], io_req->kern_bufs[i], lengths[i]); if (error != 0) { xpt_print(periph->path, "%s: copy of user " "buffer from %p to %p failed with " "error %d\n", __func__, io_req->user_bufs[i], io_req->kern_bufs[i], error); goto bailout; } } break; case CAM_DATA_PADDR: /* Pass down the pointer as-is */ break; case CAM_DATA_SG: { size_t sg_length, size_to_go, alloc_size; uint32_t num_segs_needed; /* * Copy the user S/G list in, and then copy in the * individual segments. */ /* * We shouldn't see this, but check just in case. */ if (numbufs != 1) { xpt_print(periph->path, "%s: cannot currently handle " "more than one S/G list per CCB\n", __func__); error = EINVAL; goto bailout; } /* * We have to have at least one segment. */ if (num_segs == 0) { xpt_print(periph->path, "%s: CAM_DATA_SG flag set, " "but sglist_cnt=0!\n", __func__); error = EINVAL; goto bailout; } /* * Make sure the user specified the total length and didn't * just leave it to us to decode the S/G list. */ if (lengths[0] == 0) { xpt_print(periph->path, "%s: no dxfer_len specified, " "but CAM_DATA_SG flag is set!\n", __func__); error = EINVAL; goto bailout; } /* * We allocate buffers in io_zone_size increments for an * S/G list. This will generally be MAXPHYS. */ if (lengths[0] <= softc->io_zone_size) num_segs_needed = 1; else { num_segs_needed = lengths[0] / softc->io_zone_size; if ((lengths[0] % softc->io_zone_size) != 0) num_segs_needed++; } /* Figure out the size of the S/G list */ sg_length = num_segs * sizeof(bus_dma_segment_t); io_req->num_user_segs = num_segs; io_req->num_kern_segs = num_segs_needed; /* Save the user's S/G list pointer for later restoration */ io_req->user_bufs[0] = *data_ptrs[0]; /* * If we have enough segments allocated by default to handle * the length of the user's S/G list, */ if (num_segs > PASS_MAX_SEGS) { io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); io_req->flags |= PASS_IO_USER_SEG_MALLOC; } else io_req->user_segptr = io_req->user_segs; if (!useracc(*data_ptrs[0], sg_length, VM_PROT_READ)) { xpt_print(periph->path, "%s: unable to access user " "S/G list at %p\n", __func__, *data_ptrs[0]); error = EFAULT; goto bailout; } error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); if (error != 0) { xpt_print(periph->path, "%s: copy of user S/G list " "from %p to %p failed with error %d\n", __func__, *data_ptrs[0], io_req->user_segptr, error); goto bailout; } if (num_segs_needed > PASS_MAX_SEGS) { io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) * num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO); io_req->flags |= PASS_IO_KERN_SEG_MALLOC; } else { io_req->kern_segptr = io_req->kern_segs; } /* * Allocate the kernel S/G list. */ for (size_to_go = lengths[0], i = 0; size_to_go > 0 && i < num_segs_needed; i++, size_to_go -= alloc_size) { uint8_t *kern_ptr; alloc_size = min(size_to_go, softc->io_zone_size); kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK); io_req->kern_segptr[i].ds_addr = (bus_addr_t)(uintptr_t)kern_ptr; io_req->kern_segptr[i].ds_len = alloc_size; } if (size_to_go > 0) { printf("%s: size_to_go = %zu, software error!\n", __func__, size_to_go); error = EINVAL; goto bailout; } *data_ptrs[0] = (uint8_t *)io_req->kern_segptr; *seg_cnt_ptr = io_req->num_kern_segs; /* * We only need to copy data here if the user is writing. */ if (dirs[0] == CAM_DIR_OUT) error = passcopysglist(periph, io_req, dirs[0]); break; } case CAM_DATA_SG_PADDR: { size_t sg_length; /* * We shouldn't see this, but check just in case. */ if (numbufs != 1) { printf("%s: cannot currently handle more than one " "S/G list per CCB\n", __func__); error = EINVAL; goto bailout; } /* * We have to have at least one segment. */ if (num_segs == 0) { xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag " "set, but sglist_cnt=0!\n", __func__); error = EINVAL; goto bailout; } /* * Make sure the user specified the total length and didn't * just leave it to us to decode the S/G list. */ if (lengths[0] == 0) { xpt_print(periph->path, "%s: no dxfer_len specified, " "but CAM_DATA_SG flag is set!\n", __func__); error = EINVAL; goto bailout; } /* Figure out the size of the S/G list */ sg_length = num_segs * sizeof(bus_dma_segment_t); io_req->num_user_segs = num_segs; io_req->num_kern_segs = io_req->num_user_segs; /* Save the user's S/G list pointer for later restoration */ io_req->user_bufs[0] = *data_ptrs[0]; if (num_segs > PASS_MAX_SEGS) { io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); io_req->flags |= PASS_IO_USER_SEG_MALLOC; } else io_req->user_segptr = io_req->user_segs; io_req->kern_segptr = io_req->user_segptr; error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); if (error != 0) { xpt_print(periph->path, "%s: copy of user S/G list " "from %p to %p failed with error %d\n", __func__, *data_ptrs[0], io_req->user_segptr, error); goto bailout; } break; } default: case CAM_DATA_BIO: /* * A user shouldn't be attaching a bio to the CCB. It * isn't a user-accessible structure. */ error = EINVAL; break; } bailout: if (error != 0) passiocleanup(softc, io_req); return (error); } static int passmemdone(struct cam_periph *periph, struct pass_io_req *io_req) { struct pass_softc *softc; union ccb *ccb; int error; int i; error = 0; softc = (struct pass_softc *)periph->softc; ccb = &io_req->ccb; switch (io_req->data_flags) { case CAM_DATA_VADDR: /* * Copy back to the user buffer if this was a read. */ for (i = 0; i < io_req->num_bufs; i++) { if (io_req->dirs[i] != CAM_DIR_IN) continue; error = copyout(io_req->kern_bufs[i], io_req->user_bufs[i], io_req->lengths[i]); if (error != 0) { xpt_print(periph->path, "Unable to copy %u " "bytes from %p to user address %p\n", io_req->lengths[i], io_req->kern_bufs[i], io_req->user_bufs[i]); goto bailout; } } break; case CAM_DATA_PADDR: /* Do nothing. The pointer is a physical address already */ break; case CAM_DATA_SG: /* * Copy back to the user buffer if this was a read. * Restore the user's S/G list buffer pointer. */ if (io_req->dirs[0] == CAM_DIR_IN) error = passcopysglist(periph, io_req, io_req->dirs[0]); break; case CAM_DATA_SG_PADDR: /* * Restore the user's S/G list buffer pointer. No need to * copy. */ break; default: case CAM_DATA_BIO: error = EINVAL; break; } bailout: /* * Reset the user's pointers to their original values and free * allocated memory. */ passiocleanup(softc, io_req); return (error); } static int passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) { int error; if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl); } return (error); } static int passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) { struct cam_periph *periph; struct pass_softc *softc; int error; uint32_t priority; periph = (struct cam_periph *)dev->si_drv1; cam_periph_lock(periph); softc = (struct pass_softc *)periph->softc; error = 0; switch (cmd) { case CAMIOCOMMAND: { union ccb *inccb; union ccb *ccb; int ccb_malloced; inccb = (union ccb *)addr; #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) if (inccb->ccb_h.func_code == XPT_SCSI_IO) inccb->csio.bio = NULL; #endif if (inccb->ccb_h.flags & CAM_UNLOCKED) { error = EINVAL; break; } /* * Some CCB types, like scan bus and scan lun can only go * through the transport layer device. */ if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { xpt_print(periph->path, "CCB function code %#x is " "restricted to the XPT device\n", inccb->ccb_h.func_code); error = ENODEV; break; } /* Compatibility for RL/priority-unaware code. */ priority = inccb->ccb_h.pinfo.priority; if (priority <= CAM_PRIORITY_OOB) priority += CAM_PRIORITY_OOB + 1; /* * Non-immediate CCBs need a CCB from the per-device pool * of CCBs, which is scheduled by the transport layer. * Immediate CCBs and user-supplied CCBs should just be * malloced. */ if ((inccb->ccb_h.func_code & XPT_FC_QUEUED) && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) { ccb = cam_periph_getccb(periph, priority); ccb_malloced = 0; } else { ccb = xpt_alloc_ccb_nowait(); if (ccb != NULL) xpt_setup_ccb(&ccb->ccb_h, periph->path, priority); ccb_malloced = 1; } if (ccb == NULL) { xpt_print(periph->path, "unable to allocate CCB\n"); error = ENOMEM; break; } error = passsendccb(periph, ccb, inccb); if (ccb_malloced) xpt_free_ccb(ccb); else xpt_release_ccb(ccb); break; } case CAMIOQUEUE: { struct pass_io_req *io_req; union ccb **user_ccb, *ccb; xpt_opcode fc; if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) { error = passcreatezone(periph); if (error != 0) goto bailout; } /* * We're going to do a blocking allocation for this I/O * request, so we have to drop the lock. */ cam_periph_unlock(periph); io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO); ccb = &io_req->ccb; user_ccb = (union ccb **)addr; /* * Unlike the CAMIOCOMMAND ioctl above, we only have a * pointer to the user's CCB, so we have to copy the whole * thing in to a buffer we have allocated (above) instead * of allowing the ioctl code to malloc a buffer and copy * it in. * * This is an advantage for this asynchronous interface, * since we don't want the memory to get freed while the * CCB is outstanding. */ #if 0 xpt_print(periph->path, "Copying user CCB %p to " "kernel address %p\n", *user_ccb, ccb); #endif error = copyin(*user_ccb, ccb, sizeof(*ccb)); if (error != 0) { xpt_print(periph->path, "Copy of user CCB %p to " "kernel address %p failed with error %d\n", *user_ccb, ccb, error); goto camioqueue_error; } #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) if (ccb->ccb_h.func_code == XPT_SCSI_IO) ccb->csio.bio = NULL; #endif if (ccb->ccb_h.flags & CAM_UNLOCKED) { error = EINVAL; goto camioqueue_error; } if (ccb->ccb_h.flags & CAM_CDB_POINTER) { if (ccb->csio.cdb_len > IOCDBLEN) { error = EINVAL; goto camioqueue_error; } error = copyin(ccb->csio.cdb_io.cdb_ptr, ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len); if (error != 0) goto camioqueue_error; ccb->ccb_h.flags &= ~CAM_CDB_POINTER; } /* * Some CCB types, like scan bus and scan lun can only go * through the transport layer device. */ if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { xpt_print(periph->path, "CCB function code %#x is " "restricted to the XPT device\n", ccb->ccb_h.func_code); error = ENODEV; goto camioqueue_error; } /* * Save the user's CCB pointer as well as his linked list * pointers and peripheral private area so that we can * restore these later. */ io_req->user_ccb_ptr = *user_ccb; io_req->user_periph_links = ccb->ccb_h.periph_links; io_req->user_periph_priv = ccb->ccb_h.periph_priv; /* * Now that we've saved the user's values, we can set our * own peripheral private entry. */ ccb->ccb_h.ccb_ioreq = io_req; /* Compatibility for RL/priority-unaware code. */ priority = ccb->ccb_h.pinfo.priority; if (priority <= CAM_PRIORITY_OOB) priority += CAM_PRIORITY_OOB + 1; /* * Setup fields in the CCB like the path and the priority. * The path in particular cannot be done in userland, since * it is a pointer to a kernel data structure. */ xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority, ccb->ccb_h.flags); /* * Setup our done routine. There is no way for the user to * have a valid pointer here. */ ccb->ccb_h.cbfcnp = passdone; fc = ccb->ccb_h.func_code; /* * If this function code has memory that can be mapped in * or out, we need to call passmemsetup(). */ if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH) - || (fc == XPT_DEV_ADVINFO)) { + || (fc == XPT_DEV_ADVINFO) + || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) { error = passmemsetup(periph, io_req); if (error != 0) goto camioqueue_error; } else io_req->mapinfo.num_bufs_used = 0; cam_periph_lock(periph); /* * Everything goes on the incoming queue initially. */ TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links); /* * If the CCB is queued, and is not a user CCB, then * we need to allocate a slot for it. Call xpt_schedule() * so that our start routine will get called when a CCB is * available. */ if ((fc & XPT_FC_QUEUED) && ((fc & XPT_FC_USER_CCB) == 0)) { xpt_schedule(periph, priority); break; } /* * At this point, the CCB in question is either an * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB * and therefore should be malloced, not allocated via a slot. * Remove the CCB from the incoming queue and add it to the * active queue. */ TAILQ_REMOVE(&softc->incoming_queue, io_req, links); TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); xpt_action(ccb); /* * If this is not a queued CCB (i.e. it is an immediate CCB), * then it is already done. We need to put it on the done * queue for the user to fetch. */ if ((fc & XPT_FC_QUEUED) == 0) { TAILQ_REMOVE(&softc->active_queue, io_req, links); TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); } break; camioqueue_error: uma_zfree(softc->pass_zone, io_req); cam_periph_lock(periph); break; } case CAMIOGET: { union ccb **user_ccb; struct pass_io_req *io_req; int old_error; user_ccb = (union ccb **)addr; old_error = 0; io_req = TAILQ_FIRST(&softc->done_queue); if (io_req == NULL) { error = ENOENT; break; } /* * Remove the I/O from the done queue. */ TAILQ_REMOVE(&softc->done_queue, io_req, links); /* * We have to drop the lock during the copyout because the * copyout can result in VM faults that require sleeping. */ cam_periph_unlock(periph); /* * Do any needed copies (e.g. for reads) and revert the * pointers in the CCB back to the user's pointers. */ error = passmemdone(periph, io_req); old_error = error; io_req->ccb.ccb_h.periph_links = io_req->user_periph_links; io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv; #if 0 xpt_print(periph->path, "Copying to user CCB %p from " "kernel address %p\n", *user_ccb, &io_req->ccb); #endif error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb)); if (error != 0) { xpt_print(periph->path, "Copy to user CCB %p from " "kernel address %p failed with error %d\n", *user_ccb, &io_req->ccb, error); } /* * Prefer the first error we got back, and make sure we * don't overwrite bad status with good. */ if (old_error != 0) error = old_error; cam_periph_lock(periph); /* * At this point, if there was an error, we could potentially * re-queue the I/O and try again. But why? The error * would almost certainly happen again. We might as well * not leak memory. */ uma_zfree(softc->pass_zone, io_req); break; } default: error = cam_periph_ioctl(periph, cmd, addr, passerror); break; } bailout: cam_periph_unlock(periph); return(error); } static int passpoll(struct cdev *dev, int poll_events, struct thread *td) { struct cam_periph *periph; struct pass_softc *softc; int revents; periph = (struct cam_periph *)dev->si_drv1; softc = (struct pass_softc *)periph->softc; revents = poll_events & (POLLOUT | POLLWRNORM); if ((poll_events & (POLLIN | POLLRDNORM)) != 0) { cam_periph_lock(periph); if (!TAILQ_EMPTY(&softc->done_queue)) { revents |= poll_events & (POLLIN | POLLRDNORM); } cam_periph_unlock(periph); if (revents == 0) selrecord(td, &softc->read_select); } return (revents); } static int passkqfilter(struct cdev *dev, struct knote *kn) { struct cam_periph *periph; struct pass_softc *softc; periph = (struct cam_periph *)dev->si_drv1; softc = (struct pass_softc *)periph->softc; kn->kn_hook = (caddr_t)periph; kn->kn_fop = &passread_filtops; knlist_add(&softc->read_select.si_note, kn, 0); return (0); } static void passreadfiltdetach(struct knote *kn) { struct cam_periph *periph; struct pass_softc *softc; periph = (struct cam_periph *)kn->kn_hook; softc = (struct pass_softc *)periph->softc; knlist_remove(&softc->read_select.si_note, kn, 0); } static int passreadfilt(struct knote *kn, long hint) { struct cam_periph *periph; struct pass_softc *softc; int retval; periph = (struct cam_periph *)kn->kn_hook; softc = (struct pass_softc *)periph->softc; cam_periph_assert(periph, MA_OWNED); if (TAILQ_EMPTY(&softc->done_queue)) retval = 0; else retval = 1; return (retval); } /* * Generally, "ccb" should be the CCB supplied by the kernel. "inccb" * should be the CCB that is copied in from the user. */ static int passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb) { struct pass_softc *softc; struct cam_periph_map_info mapinfo; uint8_t *cmd; xpt_opcode fc; int error; softc = (struct pass_softc *)periph->softc; /* * There are some fields in the CCB header that need to be * preserved, the rest we get from the user. */ xpt_merge_ccb(ccb, inccb); if (ccb->ccb_h.flags & CAM_CDB_POINTER) { cmd = __builtin_alloca(ccb->csio.cdb_len); error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len); if (error) return (error); ccb->csio.cdb_io.cdb_ptr = cmd; } /* */ ccb->ccb_h.cbfcnp = passdone; /* * Let cam_periph_mapmem do a sanity check on the data pointer format. * Even if no data transfer is needed, it's a cheap check and it * simplifies the code. */ fc = ccb->ccb_h.func_code; if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO) || (fc == XPT_MMC_IO)) { bzero(&mapinfo, sizeof(mapinfo)); /* * cam_periph_mapmem calls into proc and vm functions that can * sleep as well as trigger I/O, so we can't hold the lock. * Dropping it here is reasonably safe. */ cam_periph_unlock(periph); error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio); cam_periph_lock(periph); /* * cam_periph_mapmem returned an error, we can't continue. * Return the error to the user. */ if (error) return(error); } else /* Ensure that the unmap call later on is a no-op. */ mapinfo.num_bufs_used = 0; /* * If the user wants us to perform any error recovery, then honor * that request. Otherwise, it's up to the user to perform any * error recovery. */ cam_periph_runccb(ccb, (ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ? passerror : NULL, /* cam_flags */ CAM_RETRY_SELTO, /* sense_flags */ SF_RETRY_UA | SF_NO_PRINT, softc->device_stats); cam_periph_unmapmem(ccb, &mapinfo); ccb->ccb_h.cbfcnp = NULL; ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv; bcopy(ccb, inccb, sizeof(union ccb)); return(0); } static int passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags) { struct cam_periph *periph; struct pass_softc *softc; periph = xpt_path_periph(ccb->ccb_h.path); softc = (struct pass_softc *)periph->softc; return(cam_periph_error(ccb, cam_flags, sense_flags, &softc->saved_ccb)); } Index: head/sys/dev/nvme/nvme_sim.c =================================================================== --- head/sys/dev/nvme/nvme_sim.c (revision 320983) +++ head/sys/dev/nvme/nvme_sim.c (revision 320984) @@ -1,387 +1,391 @@ /*- * Copyright (c) 2016 Netflix, Inc * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Yes, this is wrong. #include #include "nvme_private.h" #define ccb_accb_ptr spriv_ptr0 #define ccb_ctrlr_ptr spriv_ptr1 static void nvme_sim_action(struct cam_sim *sim, union ccb *ccb); static void nvme_sim_poll(struct cam_sim *sim); #define sim2softc(sim) ((struct nvme_sim_softc *)cam_sim_softc(sim)) #define sim2ns(sim) (sim2softc(sim)->s_ns) #define sim2ctrlr(sim) (sim2softc(sim)->s_ctrlr) struct nvme_sim_softc { struct nvme_controller *s_ctrlr; struct nvme_namespace *s_ns; struct cam_sim *s_sim; struct cam_path *s_path; }; static void nvme_sim_nvmeio_done(void *ccb_arg, const struct nvme_completion *cpl) { union ccb *ccb = (union ccb *)ccb_arg; /* * Let the periph know the completion, and let it sort out what * it means. Make our best guess, though for the status code. */ memcpy(&ccb->nvmeio.cpl, cpl, sizeof(*cpl)); if (nvme_completion_is_error(cpl)) ccb->ccb_h.status = CAM_REQ_CMP_ERR; else ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); } static void nvme_sim_nvmeio(struct cam_sim *sim, union ccb *ccb) { struct ccb_nvmeio *nvmeio = &ccb->nvmeio; struct nvme_request *req; void *payload; uint32_t size; struct nvme_controller *ctrlr; ctrlr = sim2ctrlr(sim); payload = nvmeio->data_ptr; size = nvmeio->dxfer_len; /* SG LIST ??? */ if ((nvmeio->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO) req = nvme_allocate_request_bio((struct bio *)payload, nvme_sim_nvmeio_done, ccb); else if (payload == NULL) req = nvme_allocate_request_null(nvme_sim_nvmeio_done, ccb); else req = nvme_allocate_request_vaddr(payload, size, nvme_sim_nvmeio_done, ccb); if (req == NULL) { nvmeio->ccb_h.status = CAM_RESRC_UNAVAIL; xpt_done(ccb); return; } memcpy(&req->cmd, &ccb->nvmeio.cmd, sizeof(ccb->nvmeio.cmd)); - nvme_ctrlr_submit_io_request(ctrlr, req); + if (ccb->ccb_h.func_code == XPT_NVME_IO) + nvme_ctrlr_submit_io_request(ctrlr, req); + else + nvme_ctrlr_submit_admin_request(ctrlr, req); ccb->ccb_h.status |= CAM_SIM_QUEUED; } static void nvme_sim_action(struct cam_sim *sim, union ccb *ccb) { struct nvme_controller *ctrlr; struct nvme_namespace *ns; CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("nvme_sim_action: func= %#x\n", ccb->ccb_h.func_code)); /* * XXX when we support multiple namespaces in the base driver we'll need * to revisit how all this gets stored and saved in the periph driver's * reserved areas. Right now we store all three in the softc of the sim. */ ns = sim2ns(sim); ctrlr = sim2ctrlr(sim); mtx_assert(&ctrlr->lock, MA_OWNED); switch (ccb->ccb_h.func_code) { case XPT_CALC_GEOMETRY: /* Calculate Geometry Totally nuts ? XXX */ /* * Only meaningful for old-school SCSI disks since only the SCSI * da driver generates them. Reject all these that slip through. */ /*FALLTHROUGH*/ case XPT_ABORT: /* Abort the specified CCB */ ccb->ccb_h.status = CAM_REQ_INVALID; break; case XPT_SET_TRAN_SETTINGS: /* * NVMe doesn't really have different transfer settings, but * other parts of CAM think failure here is a big deal. */ ccb->ccb_h.status = CAM_REQ_CMP; break; case XPT_PATH_INQ: /* Path routing inquiry */ { struct ccb_pathinq *cpi = &ccb->cpi; /* * NVMe may have multiple LUNs on the same path. Current generation * of NVMe devives support only a single name space. Multiple name * space drives are coming, but it's unclear how we should report * them up the stack. */ cpi->version_num = 1; cpi->hba_inquiry = 0; cpi->target_sprt = 0; cpi->hba_misc = PIM_UNMAPPED /* | PIM_NOSCAN */; cpi->hba_eng_cnt = 0; cpi->max_target = 0; cpi->max_lun = ctrlr->cdata.nn; cpi->maxio = nvme_ns_get_max_io_xfer_size(ns); cpi->initiator_id = 0; cpi->bus_id = cam_sim_bus(sim); cpi->base_transfer_speed = 4000000; /* 4 GB/s 4 lanes pcie 3 */ strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strlcpy(cpi->hba_vid, "NVMe", HBA_IDLEN); strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); cpi->unit_number = cam_sim_unit(sim); cpi->transport = XPORT_NVME; /* XXX XPORT_PCIE ? */ cpi->transport_version = 1; /* XXX Get PCIe spec ? */ cpi->protocol = PROTO_NVME; cpi->protocol_version = NVME_REV_1; /* Groks all 1.x NVMe cards */ cpi->xport_specific.nvme.nsid = ns->id; cpi->ccb_h.status = CAM_REQ_CMP; break; } case XPT_GET_TRAN_SETTINGS: /* Get transport settings */ { struct ccb_trans_settings *cts; struct ccb_trans_settings_nvme *nvmep; struct ccb_trans_settings_nvme *nvmex; cts = &ccb->cts; nvmex = &cts->xport_specific.nvme; nvmep = &cts->proto_specific.nvme; nvmex->valid = CTS_NVME_VALID_SPEC; nvmex->spec_major = 1; /* XXX read from card */ nvmex->spec_minor = 2; nvmex->spec_tiny = 0; nvmep->valid = CTS_NVME_VALID_SPEC; nvmep->spec_major = 1; /* XXX read from card */ nvmep->spec_minor = 2; nvmep->spec_tiny = 0; cts->transport = XPORT_NVME; cts->protocol = PROTO_NVME; cts->ccb_h.status = CAM_REQ_CMP; break; } case XPT_TERM_IO: /* Terminate the I/O process */ /* * every driver handles this, but nothing generates it. Assume * it's OK to just say 'that worked'. */ /*FALLTHROUGH*/ case XPT_RESET_DEV: /* Bus Device Reset the specified device */ case XPT_RESET_BUS: /* Reset the specified bus */ /* * NVMe doesn't really support physically resetting the bus. It's part * of the bus scanning dance, so return sucess to tell the process to * proceed. */ ccb->ccb_h.status = CAM_REQ_CMP; break; case XPT_NVME_IO: /* Execute the requested I/O operation */ + case XPT_NVME_ADMIN: /* or Admin operation */ nvme_sim_nvmeio(sim, ccb); return; /* no done */ default: ccb->ccb_h.status = CAM_REQ_INVALID; break; } xpt_done(ccb); } static void nvme_sim_poll(struct cam_sim *sim) { nvme_ctrlr_intx_handler(sim2ctrlr(sim)); } static void * nvme_sim_new_controller(struct nvme_controller *ctrlr) { struct cam_devq *devq; int max_trans; int unit; struct nvme_sim_softc *sc = NULL; max_trans = 256;/* XXX not so simple -- must match queues */ unit = device_get_unit(ctrlr->dev); devq = cam_simq_alloc(max_trans); if (devq == NULL) return NULL; sc = malloc(sizeof(*sc), M_NVME, M_ZERO | M_WAITOK); sc->s_ctrlr = ctrlr; sc->s_sim = cam_sim_alloc(nvme_sim_action, nvme_sim_poll, "nvme", sc, unit, &ctrlr->lock, max_trans, max_trans, devq); if (sc->s_sim == NULL) { printf("Failed to allocate a sim\n"); cam_simq_free(devq); free(sc, M_NVME); return NULL; } return sc; } static void nvme_sim_rescan_target(struct nvme_controller *ctrlr, struct cam_path *path) { union ccb *ccb; ccb = xpt_alloc_ccb_nowait(); if (ccb == NULL) { printf("unable to alloc CCB for rescan\n"); return; } if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { printf("unable to copy path for rescan\n"); xpt_free_ccb(ccb); return; } xpt_rescan(ccb); } static void * nvme_sim_new_ns(struct nvme_namespace *ns, void *sc_arg) { struct nvme_sim_softc *sc = sc_arg; struct nvme_controller *ctrlr = sc->s_ctrlr; int i; sc->s_ns = ns; /* * XXX this is creating one bus per ns, but it should be one * XXX target per controller, and one LUN per namespace. * XXX Current drives only support one NS, so there's time * XXX to fix it later when new drives arrive. * * XXX I'm pretty sure the xpt_bus_register() call below is * XXX like super lame and it really belongs in the sim_new_ctrlr * XXX callback. Then the create_path below would be pretty close * XXX to being right. Except we should be per-ns not per-ctrlr * XXX data. */ mtx_lock(&ctrlr->lock); /* Create bus */ /* * XXX do I need to lock ctrlr->lock ? * XXX do I need to lock the path? * ata and scsi seem to in their code, but their discovery is * somewhat more asynchronous. We're only every called one at a * time, and nothing is in parallel. */ i = 0; if (xpt_bus_register(sc->s_sim, ctrlr->dev, 0) != CAM_SUCCESS) goto error; i++; if (xpt_create_path(&sc->s_path, /*periph*/NULL, cam_sim_path(sc->s_sim), 1, ns->id) != CAM_REQ_CMP) goto error; i++; sc->s_path->device->nvme_data = nvme_ns_get_data(ns); sc->s_path->device->nvme_cdata = nvme_ctrlr_get_data(ns->ctrlr); /* Scan bus */ nvme_sim_rescan_target(ctrlr, sc->s_path); mtx_unlock(&ctrlr->lock); return ns; error: switch (i) { case 2: xpt_free_path(sc->s_path); case 1: xpt_bus_deregister(cam_sim_path(sc->s_sim)); case 0: cam_sim_free(sc->s_sim, /*free_devq*/TRUE); } mtx_unlock(&ctrlr->lock); return NULL; } static void nvme_sim_controller_fail(void *ctrlr_arg) { /* XXX cleanup XXX */ } struct nvme_consumer *consumer_cookie; static void nvme_sim_init(void) { consumer_cookie = nvme_register_consumer(nvme_sim_new_ns, nvme_sim_new_controller, NULL, nvme_sim_controller_fail); } SYSINIT(nvme_sim_register, SI_SUB_DRIVERS, SI_ORDER_ANY, nvme_sim_init, NULL); static void nvme_sim_uninit(void) { /* XXX Cleanup */ nvme_unregister_consumer(consumer_cookie); } SYSUNINIT(nvme_sim_unregister, SI_SUB_DRIVERS, SI_ORDER_ANY, nvme_sim_uninit, NULL); Index: head/sys/kern/subr_bus_dma.c =================================================================== --- head/sys/kern/subr_bus_dma.c (revision 320983) +++ head/sys/kern/subr_bus_dma.c (revision 320984) @@ -1,559 +1,569 @@ /*- * Copyright (c) 2012 EMC Corp. * All rights reserved. * * Copyright (c) 1997, 1998 Justin T. Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_bus.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Load up data starting at offset within a region specified by a * list of virtual address ranges until either length or the region * are exhausted. */ static int _bus_dmamap_load_vlist(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dma_segment_t *list, int sglist_cnt, struct pmap *pmap, int *nsegs, int flags, size_t offset, size_t length) { int error; error = 0; for (; sglist_cnt > 0 && length != 0; sglist_cnt--, list++) { char *addr; size_t ds_len; KASSERT((offset < list->ds_len), ("Invalid mid-segment offset")); addr = (char *)(uintptr_t)list->ds_addr + offset; ds_len = list->ds_len - offset; offset = 0; if (ds_len > length) ds_len = length; length -= ds_len; KASSERT((ds_len != 0), ("Segment length is zero")); error = _bus_dmamap_load_buffer(dmat, map, addr, ds_len, pmap, flags, NULL, nsegs); if (error) break; } return (error); } /* * Load a list of physical addresses. */ static int _bus_dmamap_load_plist(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dma_segment_t *list, int sglist_cnt, int *nsegs, int flags) { int error; error = 0; for (; sglist_cnt > 0; sglist_cnt--, list++) { error = _bus_dmamap_load_phys(dmat, map, (vm_paddr_t)list->ds_addr, list->ds_len, flags, NULL, nsegs); if (error) break; } return (error); } /* * Load an mbuf chain. */ static int _bus_dmamap_load_mbuf_sg(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf *m0, bus_dma_segment_t *segs, int *nsegs, int flags) { struct mbuf *m; int error; error = 0; for (m = m0; m != NULL && error == 0; m = m->m_next) { if (m->m_len > 0) { error = _bus_dmamap_load_buffer(dmat, map, m->m_data, m->m_len, kernel_pmap, flags | BUS_DMA_LOAD_MBUF, segs, nsegs); } } CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d", __func__, dmat, flags, error, *nsegs); return (error); } /* * Load from block io. */ static int _bus_dmamap_load_bio(bus_dma_tag_t dmat, bus_dmamap_t map, struct bio *bio, int *nsegs, int flags) { if ((bio->bio_flags & BIO_VLIST) != 0) { bus_dma_segment_t *segs = (bus_dma_segment_t *)bio->bio_data; return (_bus_dmamap_load_vlist(dmat, map, segs, bio->bio_ma_n, kernel_pmap, nsegs, flags, bio->bio_ma_offset, bio->bio_bcount)); } if ((bio->bio_flags & BIO_UNMAPPED) != 0) return (_bus_dmamap_load_ma(dmat, map, bio->bio_ma, bio->bio_bcount, bio->bio_ma_offset, flags, NULL, nsegs)); return (_bus_dmamap_load_buffer(dmat, map, bio->bio_data, bio->bio_bcount, kernel_pmap, flags, NULL, nsegs)); } int bus_dmamap_load_ma_triv(bus_dma_tag_t dmat, bus_dmamap_t map, struct vm_page **ma, bus_size_t tlen, int ma_offs, int flags, bus_dma_segment_t *segs, int *segp) { vm_paddr_t paddr; bus_size_t len; int error, i; error = 0; for (i = 0; tlen > 0; i++, tlen -= len) { len = min(PAGE_SIZE - ma_offs, tlen); paddr = VM_PAGE_TO_PHYS(ma[i]) + ma_offs; error = _bus_dmamap_load_phys(dmat, map, paddr, len, flags, segs, segp); if (error != 0) break; ma_offs = 0; } return (error); } /* * Load a cam control block. */ static int _bus_dmamap_load_ccb(bus_dma_tag_t dmat, bus_dmamap_t map, union ccb *ccb, int *nsegs, int flags) { struct ccb_hdr *ccb_h; void *data_ptr; int error; uint32_t dxfer_len; uint16_t sglist_cnt; error = 0; ccb_h = &ccb->ccb_h; switch (ccb_h->func_code) { case XPT_SCSI_IO: { struct ccb_scsiio *csio; csio = &ccb->csio; data_ptr = csio->data_ptr; dxfer_len = csio->dxfer_len; sglist_cnt = csio->sglist_cnt; break; } case XPT_CONT_TARGET_IO: { struct ccb_scsiio *ctio; ctio = &ccb->ctio; data_ptr = ctio->data_ptr; dxfer_len = ctio->dxfer_len; sglist_cnt = ctio->sglist_cnt; break; } case XPT_ATA_IO: { struct ccb_ataio *ataio; ataio = &ccb->ataio; data_ptr = ataio->data_ptr; dxfer_len = ataio->dxfer_len; sglist_cnt = 0; break; } + case XPT_NVME_IO: + case XPT_NVME_ADMIN: { + struct ccb_nvmeio *nvmeio; + + nvmeio = &ccb->nvmeio; + data_ptr = nvmeio->data_ptr; + dxfer_len = nvmeio->dxfer_len; + sglist_cnt = 0; + break; + } default: panic("_bus_dmamap_load_ccb: Unsupported func code %d", ccb_h->func_code); } switch ((ccb_h->flags & CAM_DATA_MASK)) { case CAM_DATA_VADDR: error = _bus_dmamap_load_buffer(dmat, map, data_ptr, dxfer_len, kernel_pmap, flags, NULL, nsegs); break; case CAM_DATA_PADDR: error = _bus_dmamap_load_phys(dmat, map, (vm_paddr_t)(uintptr_t)data_ptr, dxfer_len, flags, NULL, nsegs); break; case CAM_DATA_SG: error = _bus_dmamap_load_vlist(dmat, map, (bus_dma_segment_t *)data_ptr, sglist_cnt, kernel_pmap, nsegs, flags, 0, dxfer_len); break; case CAM_DATA_SG_PADDR: error = _bus_dmamap_load_plist(dmat, map, (bus_dma_segment_t *)data_ptr, sglist_cnt, nsegs, flags); break; case CAM_DATA_BIO: error = _bus_dmamap_load_bio(dmat, map, (struct bio *)data_ptr, nsegs, flags); break; default: panic("_bus_dmamap_load_ccb: flags 0x%X unimplemented", ccb_h->flags); } return (error); } /* * Load a uio. */ static int _bus_dmamap_load_uio(bus_dma_tag_t dmat, bus_dmamap_t map, struct uio *uio, int *nsegs, int flags) { bus_size_t resid; bus_size_t minlen; struct iovec *iov; pmap_t pmap; caddr_t addr; int error, i; if (uio->uio_segflg == UIO_USERSPACE) { KASSERT(uio->uio_td != NULL, ("bus_dmamap_load_uio: USERSPACE but no proc")); pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace); } else pmap = kernel_pmap; resid = uio->uio_resid; iov = uio->uio_iov; error = 0; for (i = 0; i < uio->uio_iovcnt && resid != 0 && !error; i++) { /* * Now at the first iovec to load. Load each iovec * until we have exhausted the residual count. */ addr = (caddr_t) iov[i].iov_base; minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len; if (minlen > 0) { error = _bus_dmamap_load_buffer(dmat, map, addr, minlen, pmap, flags, NULL, nsegs); resid -= minlen; } } return (error); } /* * Map the buffer buf into bus space using the dmamap map. */ int bus_dmamap_load(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf, bus_size_t buflen, bus_dmamap_callback_t *callback, void *callback_arg, int flags) { bus_dma_segment_t *segs; struct memdesc mem; int error; int nsegs; if ((flags & BUS_DMA_NOWAIT) == 0) { mem = memdesc_vaddr(buf, buflen); _bus_dmamap_waitok(dmat, map, &mem, callback, callback_arg); } nsegs = -1; error = _bus_dmamap_load_buffer(dmat, map, buf, buflen, kernel_pmap, flags, NULL, &nsegs); nsegs++; CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d", __func__, dmat, flags, error, nsegs); if (error == EINPROGRESS) return (error); segs = _bus_dmamap_complete(dmat, map, NULL, nsegs, error); if (error) (*callback)(callback_arg, segs, 0, error); else (*callback)(callback_arg, segs, nsegs, 0); /* * Return ENOMEM to the caller so that it can pass it up the stack. * This error only happens when NOWAIT is set, so deferral is disabled. */ if (error == ENOMEM) return (error); return (0); } int bus_dmamap_load_mbuf(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf *m0, bus_dmamap_callback2_t *callback, void *callback_arg, int flags) { bus_dma_segment_t *segs; int nsegs, error; M_ASSERTPKTHDR(m0); flags |= BUS_DMA_NOWAIT; nsegs = -1; error = _bus_dmamap_load_mbuf_sg(dmat, map, m0, NULL, &nsegs, flags); ++nsegs; segs = _bus_dmamap_complete(dmat, map, NULL, nsegs, error); if (error) (*callback)(callback_arg, segs, 0, 0, error); else (*callback)(callback_arg, segs, nsegs, m0->m_pkthdr.len, error); CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d", __func__, dmat, flags, error, nsegs); return (error); } int bus_dmamap_load_mbuf_sg(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf *m0, bus_dma_segment_t *segs, int *nsegs, int flags) { int error; flags |= BUS_DMA_NOWAIT; *nsegs = -1; error = _bus_dmamap_load_mbuf_sg(dmat, map, m0, segs, nsegs, flags); ++*nsegs; _bus_dmamap_complete(dmat, map, segs, *nsegs, error); return (error); } int bus_dmamap_load_uio(bus_dma_tag_t dmat, bus_dmamap_t map, struct uio *uio, bus_dmamap_callback2_t *callback, void *callback_arg, int flags) { bus_dma_segment_t *segs; int nsegs, error; flags |= BUS_DMA_NOWAIT; nsegs = -1; error = _bus_dmamap_load_uio(dmat, map, uio, &nsegs, flags); nsegs++; segs = _bus_dmamap_complete(dmat, map, NULL, nsegs, error); if (error) (*callback)(callback_arg, segs, 0, 0, error); else (*callback)(callback_arg, segs, nsegs, uio->uio_resid, error); CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d", __func__, dmat, flags, error, nsegs); return (error); } int bus_dmamap_load_ccb(bus_dma_tag_t dmat, bus_dmamap_t map, union ccb *ccb, bus_dmamap_callback_t *callback, void *callback_arg, int flags) { bus_dma_segment_t *segs; struct ccb_hdr *ccb_h; struct memdesc mem; int error; int nsegs; ccb_h = &ccb->ccb_h; if ((ccb_h->flags & CAM_DIR_MASK) == CAM_DIR_NONE) { callback(callback_arg, NULL, 0, 0); return (0); } if ((flags & BUS_DMA_NOWAIT) == 0) { mem = memdesc_ccb(ccb); _bus_dmamap_waitok(dmat, map, &mem, callback, callback_arg); } nsegs = -1; error = _bus_dmamap_load_ccb(dmat, map, ccb, &nsegs, flags); nsegs++; CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d", __func__, dmat, flags, error, nsegs); if (error == EINPROGRESS) return (error); segs = _bus_dmamap_complete(dmat, map, NULL, nsegs, error); if (error) (*callback)(callback_arg, segs, 0, error); else (*callback)(callback_arg, segs, nsegs, error); /* * Return ENOMEM to the caller so that it can pass it up the stack. * This error only happens when NOWAIT is set, so deferral is disabled. */ if (error == ENOMEM) return (error); return (0); } int bus_dmamap_load_bio(bus_dma_tag_t dmat, bus_dmamap_t map, struct bio *bio, bus_dmamap_callback_t *callback, void *callback_arg, int flags) { bus_dma_segment_t *segs; struct memdesc mem; int error; int nsegs; if ((flags & BUS_DMA_NOWAIT) == 0) { mem = memdesc_bio(bio); _bus_dmamap_waitok(dmat, map, &mem, callback, callback_arg); } nsegs = -1; error = _bus_dmamap_load_bio(dmat, map, bio, &nsegs, flags); nsegs++; CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d", __func__, dmat, flags, error, nsegs); if (error == EINPROGRESS) return (error); segs = _bus_dmamap_complete(dmat, map, NULL, nsegs, error); if (error) (*callback)(callback_arg, segs, 0, error); else (*callback)(callback_arg, segs, nsegs, error); /* * Return ENOMEM to the caller so that it can pass it up the stack. * This error only happens when NOWAIT is set, so deferral is disabled. */ if (error == ENOMEM) return (error); return (0); } int bus_dmamap_load_mem(bus_dma_tag_t dmat, bus_dmamap_t map, struct memdesc *mem, bus_dmamap_callback_t *callback, void *callback_arg, int flags) { bus_dma_segment_t *segs; int error; int nsegs; if ((flags & BUS_DMA_NOWAIT) == 0) _bus_dmamap_waitok(dmat, map, mem, callback, callback_arg); nsegs = -1; error = 0; switch (mem->md_type) { case MEMDESC_VADDR: error = _bus_dmamap_load_buffer(dmat, map, mem->u.md_vaddr, mem->md_opaque, kernel_pmap, flags, NULL, &nsegs); break; case MEMDESC_PADDR: error = _bus_dmamap_load_phys(dmat, map, mem->u.md_paddr, mem->md_opaque, flags, NULL, &nsegs); break; case MEMDESC_VLIST: error = _bus_dmamap_load_vlist(dmat, map, mem->u.md_list, mem->md_opaque, kernel_pmap, &nsegs, flags, 0, SIZE_T_MAX); break; case MEMDESC_PLIST: error = _bus_dmamap_load_plist(dmat, map, mem->u.md_list, mem->md_opaque, &nsegs, flags); break; case MEMDESC_BIO: error = _bus_dmamap_load_bio(dmat, map, mem->u.md_bio, &nsegs, flags); break; case MEMDESC_UIO: error = _bus_dmamap_load_uio(dmat, map, mem->u.md_uio, &nsegs, flags); break; case MEMDESC_MBUF: error = _bus_dmamap_load_mbuf_sg(dmat, map, mem->u.md_mbuf, NULL, &nsegs, flags); break; case MEMDESC_CCB: error = _bus_dmamap_load_ccb(dmat, map, mem->u.md_ccb, &nsegs, flags); break; } nsegs++; CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d", __func__, dmat, flags, error, nsegs); if (error == EINPROGRESS) return (error); segs = _bus_dmamap_complete(dmat, map, NULL, nsegs, error); if (error) (*callback)(callback_arg, segs, 0, error); else (*callback)(callback_arg, segs, nsegs, 0); /* * Return ENOMEM to the caller so that it can pass it up the stack. * This error only happens when NOWAIT is set, so deferral is disabled. */ if (error == ENOMEM) return (error); return (0); }