Index: head/sys/amd64/amd64/efirt.c =================================================================== --- head/sys/amd64/amd64/efirt.c (revision 320900) +++ head/sys/amd64/amd64/efirt.c (revision 320901) @@ -1,609 +1,610 @@ /*- * Copyright (c) 2004 Marcel Moolenaar * Copyright (c) 2001 Doug Rabson * Copyright (c) 2016 The FreeBSD Foundation * All rights reserved. * * Portions of this software were developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include #include #include #include #include #include #include #include #include #include static struct efi_systbl *efi_systbl; static struct efi_cfgtbl *efi_cfgtbl; static struct efi_rt *efi_runtime; static int efi_status2err[25] = { 0, /* EFI_SUCCESS */ ENOEXEC, /* EFI_LOAD_ERROR */ EINVAL, /* EFI_INVALID_PARAMETER */ ENOSYS, /* EFI_UNSUPPORTED */ EMSGSIZE, /* EFI_BAD_BUFFER_SIZE */ EOVERFLOW, /* EFI_BUFFER_TOO_SMALL */ EBUSY, /* EFI_NOT_READY */ EIO, /* EFI_DEVICE_ERROR */ EROFS, /* EFI_WRITE_PROTECTED */ EAGAIN, /* EFI_OUT_OF_RESOURCES */ EIO, /* EFI_VOLUME_CORRUPTED */ ENOSPC, /* EFI_VOLUME_FULL */ ENXIO, /* EFI_NO_MEDIA */ ESTALE, /* EFI_MEDIA_CHANGED */ ENOENT, /* EFI_NOT_FOUND */ EACCES, /* EFI_ACCESS_DENIED */ ETIMEDOUT, /* EFI_NO_RESPONSE */ EADDRNOTAVAIL, /* EFI_NO_MAPPING */ ETIMEDOUT, /* EFI_TIMEOUT */ EDOOFUS, /* EFI_NOT_STARTED */ EALREADY, /* EFI_ALREADY_STARTED */ ECANCELED, /* EFI_ABORTED */ EPROTO, /* EFI_ICMP_ERROR */ EPROTO, /* EFI_TFTP_ERROR */ EPROTO /* EFI_PROTOCOL_ERROR */ }; static int efi_status_to_errno(efi_status status) { u_long code; code = status & 0x3ffffffffffffffful; return (code < nitems(efi_status2err) ? efi_status2err[code] : EDOOFUS); } static struct mtx efi_lock; static pml4_entry_t *efi_pml4; static vm_object_t obj_1t1_pt; static vm_page_t efi_pml4_page; static void efi_destroy_1t1_map(void) { vm_page_t m; if (obj_1t1_pt != NULL) { VM_OBJECT_RLOCK(obj_1t1_pt); TAILQ_FOREACH(m, &obj_1t1_pt->memq, listq) m->wire_count = 0; atomic_subtract_int(&vm_cnt.v_wire_count, obj_1t1_pt->resident_page_count); VM_OBJECT_RUNLOCK(obj_1t1_pt); vm_object_deallocate(obj_1t1_pt); } obj_1t1_pt = NULL; efi_pml4 = NULL; efi_pml4_page = NULL; } static vm_page_t efi_1t1_page(vm_pindex_t idx) { return (vm_page_grab(obj_1t1_pt, idx, VM_ALLOC_NOBUSY | VM_ALLOC_WIRED | VM_ALLOC_ZERO)); } static pt_entry_t * efi_1t1_pte(vm_offset_t va) { pml4_entry_t *pml4e; pdp_entry_t *pdpe; pd_entry_t *pde; pt_entry_t *pte; vm_page_t m; vm_pindex_t pml4_idx, pdp_idx, pd_idx; vm_paddr_t mphys; pml4_idx = pmap_pml4e_index(va); pml4e = &efi_pml4[pml4_idx]; if (*pml4e == 0) { m = efi_1t1_page(1 + pml4_idx); mphys = VM_PAGE_TO_PHYS(m); *pml4e = mphys | X86_PG_RW | X86_PG_V; } else { mphys = *pml4e & ~PAGE_MASK; } pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys); pdp_idx = pmap_pdpe_index(va); pdpe += pdp_idx; if (*pdpe == 0) { m = efi_1t1_page(1 + NPML4EPG + (pml4_idx + 1) * (pdp_idx + 1)); mphys = VM_PAGE_TO_PHYS(m); *pdpe = mphys | X86_PG_RW | X86_PG_V; } else { mphys = *pdpe & ~PAGE_MASK; } pde = (pd_entry_t *)PHYS_TO_DMAP(mphys); pd_idx = pmap_pde_index(va); pde += pd_idx; if (*pde == 0) { m = efi_1t1_page(1 + NPML4EPG + NPML4EPG * NPDPEPG + (pml4_idx + 1) * (pdp_idx + 1) * (pd_idx + 1)); mphys = VM_PAGE_TO_PHYS(m); *pde = mphys | X86_PG_RW | X86_PG_V; } else { mphys = *pde & ~PAGE_MASK; } pte = (pt_entry_t *)PHYS_TO_DMAP(mphys); pte += pmap_pte_index(va); KASSERT(*pte == 0, ("va %#jx *pt %#jx", va, *pte)); return (pte); } static bool efi_create_1t1_map(struct efi_md *map, int ndesc, int descsz) { struct efi_md *p; pt_entry_t *pte; vm_offset_t va; uint64_t idx; int bits, i, mode; obj_1t1_pt = vm_pager_allocate(OBJT_PHYS, NULL, 1 + NPML4EPG + NPML4EPG * NPDPEPG + NPML4EPG * NPDPEPG * NPDEPG, VM_PROT_ALL, 0, NULL); VM_OBJECT_WLOCK(obj_1t1_pt); efi_pml4_page = efi_1t1_page(0); VM_OBJECT_WUNLOCK(obj_1t1_pt); efi_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(efi_pml4_page)); pmap_pinit_pml4(efi_pml4_page); for (i = 0, p = map; i < ndesc; i++, p = efi_next_descriptor(p, descsz)) { if ((p->md_attr & EFI_MD_ATTR_RT) == 0) continue; if (p->md_virt != NULL) { if (bootverbose) printf("EFI Runtime entry %d is mapped\n", i); goto fail; } if ((p->md_phys & EFI_PAGE_MASK) != 0) { if (bootverbose) printf("EFI Runtime entry %d is not aligned\n", i); goto fail; } if (p->md_phys + p->md_pages * EFI_PAGE_SIZE < p->md_phys || p->md_phys + p->md_pages * EFI_PAGE_SIZE >= VM_MAXUSER_ADDRESS) { printf("EFI Runtime entry %d is not in mappable for RT:" "base %#016jx %#jx pages\n", i, (uintmax_t)p->md_phys, (uintmax_t)p->md_pages); goto fail; } if ((p->md_attr & EFI_MD_ATTR_WB) != 0) mode = VM_MEMATTR_WRITE_BACK; else if ((p->md_attr & EFI_MD_ATTR_WT) != 0) mode = VM_MEMATTR_WRITE_THROUGH; else if ((p->md_attr & EFI_MD_ATTR_WC) != 0) mode = VM_MEMATTR_WRITE_COMBINING; else if ((p->md_attr & EFI_MD_ATTR_WP) != 0) mode = VM_MEMATTR_WRITE_PROTECTED; else if ((p->md_attr & EFI_MD_ATTR_UC) != 0) mode = VM_MEMATTR_UNCACHEABLE; else { if (bootverbose) printf("EFI Runtime entry %d mapping " "attributes unsupported\n", i); mode = VM_MEMATTR_UNCACHEABLE; } bits = pmap_cache_bits(kernel_pmap, mode, FALSE) | X86_PG_RW | X86_PG_V; VM_OBJECT_WLOCK(obj_1t1_pt); for (va = p->md_phys, idx = 0; idx < p->md_pages; idx++, va += PAGE_SIZE) { pte = efi_1t1_pte(va); pte_store(pte, va | bits); } VM_OBJECT_WUNLOCK(obj_1t1_pt); } return (true); fail: efi_destroy_1t1_map(); return (false); } /* * Create an environment for the EFI runtime code call. The most * important part is creating the required 1:1 physical->virtual * mappings for the runtime segments. To do that, we manually create * page table which unmap userspace but gives correct kernel mapping. * The 1:1 mappings for runtime segments usually occupy low 4G of the * physical address map. * * The 1:1 mappings were chosen over the SetVirtualAddressMap() EFI RT * service, because there are some BIOSes which fail to correctly * relocate itself on the call, requiring both 1:1 and virtual * mapping. As result, we must provide 1:1 mapping anyway, so no * reason to bother with the virtual map, and no need to add a * complexity into loader. * * The fpu_kern_enter() call allows firmware to use FPU, as mandated * by the specification. In particular, CR0.TS bit is cleared. Also * it enters critical section, giving us neccessary protection against * context switch. * * There is no need to disable interrupts around the change of %cr3, * the kernel mappings are correct, while we only grabbed the * userspace portion of VA. Interrupts handlers must not access * userspace. Having interrupts enabled fixes the issue with * firmware/SMM long operation, which would negatively affect IPIs, * esp. TLB shootdown requests. */ static int efi_enter(void) { pmap_t curpmap; int error; if (efi_runtime == NULL) return (ENXIO); curpmap = PCPU_GET(curpmap); PMAP_LOCK(curpmap); mtx_lock(&efi_lock); error = fpu_kern_enter(curthread, NULL, FPU_KERN_NOCTX); if (error != 0) { PMAP_UNLOCK(curpmap); return (error); } /* * IPI TLB shootdown handler invltlb_pcid_handler() reloads * %cr3 from the curpmap->pm_cr3, which would disable runtime * segments mappings. Block the handler's action by setting * curpmap to impossible value. See also comment in * pmap.c:pmap_activate_sw(). */ if (pmap_pcid_enabled && !invpcid_works) PCPU_SET(curpmap, NULL); load_cr3(VM_PAGE_TO_PHYS(efi_pml4_page) | (pmap_pcid_enabled ? curpmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid : 0)); /* * If PCID is enabled, the clear CR3_PCID_SAVE bit in the loaded %cr3 * causes TLB invalidation. */ if (!pmap_pcid_enabled) invltlb(); return (0); } static void efi_leave(void) { pmap_t curpmap; curpmap = &curproc->p_vmspace->vm_pmap; if (pmap_pcid_enabled && !invpcid_works) PCPU_SET(curpmap, curpmap); load_cr3(curpmap->pm_cr3 | (pmap_pcid_enabled ? curpmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid : 0)); if (!pmap_pcid_enabled) invltlb(); fpu_kern_leave(curthread, NULL); mtx_unlock(&efi_lock); PMAP_UNLOCK(curpmap); } static int efi_init(void) { struct efi_map_header *efihdr; struct efi_md *map; caddr_t kmdp; size_t efisz; mtx_init(&efi_lock, "efi", NULL, MTX_DEF); if (efi_systbl_phys == 0) { if (bootverbose) printf("EFI systbl not available\n"); return (0); } efi_systbl = (struct efi_systbl *)PHYS_TO_DMAP(efi_systbl_phys); if (efi_systbl->st_hdr.th_sig != EFI_SYSTBL_SIG) { efi_systbl = NULL; if (bootverbose) printf("EFI systbl signature invalid\n"); return (0); } efi_cfgtbl = (efi_systbl->st_cfgtbl == 0) ? NULL : (struct efi_cfgtbl *)efi_systbl->st_cfgtbl; if (efi_cfgtbl == NULL) { if (bootverbose) printf("EFI config table is not present\n"); } kmdp = preload_search_by_type("elf kernel"); if (kmdp == NULL) kmdp = preload_search_by_type("elf64 kernel"); efihdr = (struct efi_map_header *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_EFI_MAP); if (efihdr == NULL) { if (bootverbose) printf("EFI map is not present\n"); return (0); } efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf; map = (struct efi_md *)((uint8_t *)efihdr + efisz); if (efihdr->descriptor_size == 0) return (ENOMEM); if (!efi_create_1t1_map(map, efihdr->memory_size / efihdr->descriptor_size, efihdr->descriptor_size)) { if (bootverbose) printf("EFI cannot create runtime map\n"); return (ENOMEM); } efi_runtime = (efi_systbl->st_rt == 0) ? NULL : (struct efi_rt *)efi_systbl->st_rt; if (efi_runtime == NULL) { if (bootverbose) printf("EFI runtime services table is not present\n"); efi_destroy_1t1_map(); return (ENXIO); } return (0); } static void efi_uninit(void) { efi_destroy_1t1_map(); efi_systbl = NULL; efi_cfgtbl = NULL; efi_runtime = NULL; mtx_destroy(&efi_lock); } int efi_get_table(struct uuid *uuid, void **ptr) { struct efi_cfgtbl *ct; u_long count; if (efi_cfgtbl == NULL) return (ENXIO); count = efi_systbl->st_entries; ct = efi_cfgtbl; while (count--) { if (!bcmp(&ct->ct_uuid, uuid, sizeof(*uuid))) { *ptr = (void *)PHYS_TO_DMAP(ct->ct_data); return (0); } ct++; } return (ENOENT); } int efi_get_time_locked(struct efi_tm *tm) { efi_status status; int error; - mtx_assert(&resettodr_lock, MA_OWNED); + mtx_assert(&atrtc_time_lock, MA_OWNED); error = efi_enter(); if (error != 0) return (error); status = efi_runtime->rt_gettime(tm, NULL); efi_leave(); error = efi_status_to_errno(status); return (error); } int efi_get_time(struct efi_tm *tm) { int error; if (efi_runtime == NULL) return (ENXIO); - mtx_lock(&resettodr_lock); + mtx_lock(&atrtc_time_lock); error = efi_get_time_locked(tm); - mtx_unlock(&resettodr_lock); + mtx_unlock(&atrtc_time_lock); return (error); } int efi_reset_system(void) { int error; error = efi_enter(); if (error != 0) return (error); efi_runtime->rt_reset(EFI_RESET_WARM, 0, 0, NULL); efi_leave(); return (EIO); } int efi_set_time_locked(struct efi_tm *tm) { efi_status status; int error; - mtx_assert(&resettodr_lock, MA_OWNED); + mtx_assert(&atrtc_time_lock, MA_OWNED); error = efi_enter(); if (error != 0) return (error); status = efi_runtime->rt_settime(tm); efi_leave(); error = efi_status_to_errno(status); return (error); } int efi_set_time(struct efi_tm *tm) { int error; if (efi_runtime == NULL) return (ENXIO); - mtx_lock(&resettodr_lock); + mtx_lock(&atrtc_time_lock); error = efi_set_time_locked(tm); - mtx_unlock(&resettodr_lock); + mtx_unlock(&atrtc_time_lock); return (error); } int efi_var_get(efi_char *name, struct uuid *vendor, uint32_t *attrib, size_t *datasize, void *data) { efi_status status; int error; error = efi_enter(); if (error != 0) return (error); status = efi_runtime->rt_getvar(name, vendor, attrib, datasize, data); efi_leave(); error = efi_status_to_errno(status); return (error); } int efi_var_nextname(size_t *namesize, efi_char *name, struct uuid *vendor) { efi_status status; int error; error = efi_enter(); if (error != 0) return (error); status = efi_runtime->rt_scanvar(namesize, name, vendor); efi_leave(); error = efi_status_to_errno(status); return (error); } int efi_var_set(efi_char *name, struct uuid *vendor, uint32_t attrib, size_t datasize, void *data) { efi_status status; int error; error = efi_enter(); if (error != 0) return (error); status = efi_runtime->rt_setvar(name, vendor, attrib, datasize, data); efi_leave(); error = efi_status_to_errno(status); return (error); } static int efirt_modevents(module_t m, int event, void *arg __unused) { switch (event) { case MOD_LOAD: return (efi_init()); case MOD_UNLOAD: efi_uninit(); return (0); case MOD_SHUTDOWN: return (0); default: return (EOPNOTSUPP); } } static moduledata_t efirt_moddata = { .name = "efirt", .evhand = efirt_modevents, .priv = NULL, }; DECLARE_MODULE(efirt, efirt_moddata, SI_SUB_VM_CONF, SI_ORDER_ANY); MODULE_VERSION(efirt, 1); /* XXX debug stuff */ static int efi_time_sysctl_handler(SYSCTL_HANDLER_ARGS) { struct efi_tm tm; int error, val; val = 0; error = sysctl_handle_int(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); error = efi_get_time(&tm); if (error == 0) { uprintf("EFI reports: Year %d Month %d Day %d Hour %d Min %d " "Sec %d\n", tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec); } return (error); } SYSCTL_PROC(_debug, OID_AUTO, efi_time, CTLTYPE_INT | CTLFLAG_RW, NULL, 0, efi_time_sysctl_handler, "I", ""); Index: head/sys/isa/rtc.h =================================================================== --- head/sys/isa/rtc.h (revision 320900) +++ head/sys/isa/rtc.h (revision 320901) @@ -1,123 +1,124 @@ /*- * Copyright (c) 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)rtc.h 7.1 (Berkeley) 5/12/91 * $FreeBSD$ */ #ifndef _I386_ISA_RTC_H_ #define _I386_ISA_RTC_H_ 1 /* * MC146818 RTC Register locations */ #define RTC_SEC 0x00 /* seconds */ #define RTC_SECALRM 0x01 /* seconds alarm */ #define RTC_MIN 0x02 /* minutes */ #define RTC_MINALRM 0x03 /* minutes alarm */ #define RTC_HRS 0x04 /* hours */ #define RTC_HRSALRM 0x05 /* hours alarm */ #define RTC_WDAY 0x06 /* week day */ #define RTC_DAY 0x07 /* day of month */ #define RTC_MONTH 0x08 /* month of year */ #define RTC_YEAR 0x09 /* month of year */ #define RTC_STATUSA 0x0a /* status register A */ #define RTCSA_TUP 0x80 /* time update, don't look now */ #define RTCSA_RESET 0x70 /* reset divider */ #define RTCSA_DIVIDER 0x20 /* divider correct for 32768 Hz */ #define RTCSA_8192 0x03 /* 8192 Hz interrupt */ #define RTCSA_4096 0x04 #define RTCSA_2048 0x05 #define RTCSA_1024 0x06 /* default for profiling */ #define RTCSA_PROF RTCSA_1024 #define RTC_PROFRATE 1024 #define RTCSA_512 0x07 #define RTCSA_256 0x08 #define RTCSA_128 0x09 #define RTCSA_NOPROF RTCSA_128 #define RTC_NOPROFRATE 128 #define RTCSA_64 0x0a #define RTCSA_32 0x0b /* 32 Hz interrupt */ #define RTC_STATUSB 0x0b /* status register B */ #define RTCSB_DST 0x01 /* USA Daylight Savings Time enable */ #define RTCSB_24HR 0x02 /* 0 = 12 hours, 1 = 24 hours */ #define RTCSB_BCD 0x04 /* 0 = BCD, 1 = Binary coded time */ #define RTCSB_SQWE 0x08 /* 1 = output sqare wave at SQW pin */ #define RTCSB_UINTR 0x10 /* 1 = enable update-ended interrupt */ #define RTCSB_AINTR 0x20 /* 1 = enable alarm interrupt */ #define RTCSB_PINTR 0x40 /* 1 = enable periodic clock interrupt */ #define RTCSB_HALT 0x80 /* stop clock updates */ #define RTC_INTR 0x0c /* status register C (R) interrupt source */ #define RTCIR_UPDATE 0x10 /* update intr */ #define RTCIR_ALARM 0x20 /* alarm intr */ #define RTCIR_PERIOD 0x40 /* periodic intr */ #define RTCIR_INT 0x80 /* interrupt output signal */ #define RTC_STATUSD 0x0d /* status register D (R) Lost Power */ #define RTCSD_PWR 0x80 /* clock power OK */ #define RTC_DIAG 0x0e /* status register E - bios diagnostic */ #define RTCDG_BITS "\020\010clock_battery\007ROM_cksum\006config_unit\005memory_size\004fixed_disk\003invalid_time" #define RTC_RESET 0x0f /* status register F - reset code byte */ #define RTCRS_RST 0x00 /* normal reset */ #define RTCRS_LOAD 0x04 /* load system */ #define RTC_FDISKETTE 0x10 /* diskette drive type in upper/lower nibble */ #define RTCFDT_NONE 0 /* none present */ #define RTCFDT_360K 0x10 /* 360K */ #define RTCFDT_12M 0x20 /* 1.2M */ #define RTCFDT_720K 0x30 /* 720K */ #define RTCFDT_144M 0x40 /* 1.44M */ #define RTCFDT_288M_1 0x50 /* 2.88M, some BIOSes */ #define RTCFDT_288M 0x60 /* 2.88M */ #define RTC_BASELO 0x15 /* low byte of basemem size */ #define RTC_BASEHI 0x16 /* high byte of basemem size */ #define RTC_EXTLO 0x17 /* low byte of extended mem size */ #define RTC_EXTHI 0x18 /* low byte of extended mem size */ #define RTC_CENTURY 0x32 /* current century */ #ifdef _KERNEL extern struct mtx clock_lock; +extern struct mtx atrtc_time_lock; extern int atrtcclock_disable; int rtcin(int reg); void atrtc_restore(void); void writertc(int reg, u_char val); void atrtc_set(struct timespec *ts); #endif #endif /* _I386_ISA_RTC_H_ */ Index: head/sys/x86/isa/atrtc.c =================================================================== --- head/sys/x86/isa/atrtc.c (revision 320900) +++ head/sys/x86/isa/atrtc.c (revision 320901) @@ -1,416 +1,430 @@ /*- * Copyright (c) 2008 Poul-Henning Kamp * Copyright (c) 2010 Alexander Motin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include __FBSDID("$FreeBSD$"); #include "opt_isa.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEV_ISA #include #include #endif #include #include "clock_if.h" +/* + * clock_lock protects low-level access to individual hardware registers. + * atrtc_time_lock protects the entire sequence of accessing multiple registers + * to read or write the date and time. + */ #define RTC_LOCK do { if (!kdb_active) mtx_lock_spin(&clock_lock); } while (0) #define RTC_UNLOCK do { if (!kdb_active) mtx_unlock_spin(&clock_lock); } while (0) +struct mtx atrtc_time_lock; +MTX_SYSINIT(atrtc_lock_init, &atrtc_time_lock, "atrtc", MTX_DEF); + int atrtcclock_disable = 0; static int rtc_reg = -1; static u_char rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF; static u_char rtc_statusb = RTCSB_24HR; /* * RTC support routines */ int rtcin(int reg) { u_char val; RTC_LOCK; if (rtc_reg != reg) { inb(0x84); outb(IO_RTC, reg); rtc_reg = reg; inb(0x84); } val = inb(IO_RTC + 1); RTC_UNLOCK; return (val); } void writertc(int reg, u_char val) { RTC_LOCK; if (rtc_reg != reg) { inb(0x84); outb(IO_RTC, reg); rtc_reg = reg; inb(0x84); } outb(IO_RTC + 1, val); inb(0x84); RTC_UNLOCK; } static __inline int readrtc(int port) { int readval; readval = rtcin(port); if (readval >= 0 && (readval & 0xf) < 0xa && (readval & 0xf0) < 0xa0) return (bcd2bin(readval)); return (0); } static void atrtc_start(void) { writertc(RTC_STATUSA, rtc_statusa); writertc(RTC_STATUSB, RTCSB_24HR); } static void atrtc_rate(unsigned rate) { rtc_statusa = RTCSA_DIVIDER | rate; writertc(RTC_STATUSA, rtc_statusa); } static void atrtc_enable_intr(void) { rtc_statusb |= RTCSB_PINTR; writertc(RTC_STATUSB, rtc_statusb); rtcin(RTC_INTR); } static void atrtc_disable_intr(void) { rtc_statusb &= ~RTCSB_PINTR; writertc(RTC_STATUSB, rtc_statusb); rtcin(RTC_INTR); } void atrtc_restore(void) { /* Restore all of the RTC's "status" (actually, control) registers. */ rtcin(RTC_STATUSA); /* dummy to get rtc_reg set */ writertc(RTC_STATUSB, RTCSB_24HR); writertc(RTC_STATUSA, rtc_statusa); writertc(RTC_STATUSB, rtc_statusb); rtcin(RTC_INTR); } void atrtc_set(struct timespec *ts) { struct clocktime ct; clock_ts_to_ct(ts, &ct); + mtx_lock(&atrtc_time_lock); + /* Disable RTC updates and interrupts. */ writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR); writertc(RTC_SEC, bin2bcd(ct.sec)); /* Write back Seconds */ writertc(RTC_MIN, bin2bcd(ct.min)); /* Write back Minutes */ writertc(RTC_HRS, bin2bcd(ct.hour)); /* Write back Hours */ writertc(RTC_WDAY, ct.dow + 1); /* Write back Weekday */ writertc(RTC_DAY, bin2bcd(ct.day)); /* Write back Day */ writertc(RTC_MONTH, bin2bcd(ct.mon)); /* Write back Month */ writertc(RTC_YEAR, bin2bcd(ct.year % 100)); /* Write back Year */ #ifdef USE_RTC_CENTURY writertc(RTC_CENTURY, bin2bcd(ct.year / 100)); /* ... and Century */ #endif /* Re-enable RTC updates and interrupts. */ writertc(RTC_STATUSB, rtc_statusb); rtcin(RTC_INTR); + + mtx_unlock(&atrtc_time_lock); } /********************************************************************** * RTC driver for subr_rtc */ struct atrtc_softc { int port_rid, intr_rid; struct resource *port_res; struct resource *intr_res; void *intr_handler; struct eventtimer et; }; static int rtc_start(struct eventtimer *et, sbintime_t first, sbintime_t period) { atrtc_rate(max(fls(period + (period >> 1)) - 17, 1)); atrtc_enable_intr(); return (0); } static int rtc_stop(struct eventtimer *et) { atrtc_disable_intr(); return (0); } /* * This routine receives statistical clock interrupts from the RTC. * As explained above, these occur at 128 interrupts per second. * When profiling, we receive interrupts at a rate of 1024 Hz. * * This does not actually add as much overhead as it sounds, because * when the statistical clock is active, the hardclock driver no longer * needs to keep (inaccurate) statistics on its own. This decouples * statistics gathering from scheduling interrupts. * * The RTC chip requires that we read status register C (RTC_INTR) * to acknowledge an interrupt, before it will generate the next one. * Under high interrupt load, rtcintr() can be indefinitely delayed and * the clock can tick immediately after the read from RTC_INTR. In this * case, the mc146818A interrupt signal will not drop for long enough * to register with the 8259 PIC. If an interrupt is missed, the stat * clock will halt, considerably degrading system performance. This is * why we use 'while' rather than a more straightforward 'if' below. * Stat clock ticks can still be lost, causing minor loss of accuracy * in the statistics, but the stat clock will no longer stop. */ static int rtc_intr(void *arg) { struct atrtc_softc *sc = (struct atrtc_softc *)arg; int flag = 0; while (rtcin(RTC_INTR) & RTCIR_PERIOD) { flag = 1; if (sc->et.et_active) sc->et.et_event_cb(&sc->et, sc->et.et_arg); } return(flag ? FILTER_HANDLED : FILTER_STRAY); } /* * Attach to the ISA PnP descriptors for the timer and realtime clock. */ static struct isa_pnp_id atrtc_ids[] = { { 0x000bd041 /* PNP0B00 */, "AT realtime clock" }, { 0 } }; static int atrtc_probe(device_t dev) { int result; result = ISA_PNP_PROBE(device_get_parent(dev), dev, atrtc_ids); /* ENOENT means no PnP-ID, device is hinted. */ if (result == ENOENT) { device_set_desc(dev, "AT realtime clock"); return (BUS_PROBE_LOW_PRIORITY); } return (result); } static int atrtc_attach(device_t dev) { struct atrtc_softc *sc; rman_res_t s; int i; sc = device_get_softc(dev); sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->port_rid, IO_RTC, IO_RTC + 1, 2, RF_ACTIVE); if (sc->port_res == NULL) device_printf(dev, "Warning: Couldn't map I/O.\n"); atrtc_start(); clock_register(dev, 1000000); bzero(&sc->et, sizeof(struct eventtimer)); if (!atrtcclock_disable && (resource_int_value(device_get_name(dev), device_get_unit(dev), "clock", &i) != 0 || i != 0)) { sc->intr_rid = 0; while (bus_get_resource(dev, SYS_RES_IRQ, sc->intr_rid, &s, NULL) == 0 && s != 8) sc->intr_rid++; sc->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->intr_rid, 8, 8, 1, RF_ACTIVE); if (sc->intr_res == NULL) { device_printf(dev, "Can't map interrupt.\n"); return (0); } else if ((bus_setup_intr(dev, sc->intr_res, INTR_TYPE_CLK, rtc_intr, NULL, sc, &sc->intr_handler))) { device_printf(dev, "Can't setup interrupt.\n"); return (0); } else { /* Bind IRQ to BSP to avoid live migration. */ bus_bind_intr(dev, sc->intr_res, 0); } sc->et.et_name = "RTC"; sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_POW2DIV; sc->et.et_quality = 0; sc->et.et_frequency = 32768; sc->et.et_min_period = 0x00080000; sc->et.et_max_period = 0x80000000; sc->et.et_start = rtc_start; sc->et.et_stop = rtc_stop; sc->et.et_priv = dev; et_register(&sc->et); } return(0); } static int atrtc_resume(device_t dev) { atrtc_restore(); return(0); } static int atrtc_settime(device_t dev __unused, struct timespec *ts) { atrtc_set(ts); return (0); } static int atrtc_gettime(device_t dev, struct timespec *ts) { struct clocktime ct; /* Look if we have a RTC present and the time is valid */ if (!(rtcin(RTC_STATUSD) & RTCSD_PWR)) { device_printf(dev, "WARNING: Battery failure indication\n"); return (EINVAL); } /* * wait for time update to complete * If RTCSA_TUP is zero, we have at least 244us before next update. * This is fast enough on most hardware, but a refinement would be * to make sure that no more than 240us pass after we start reading, * and try again if so. */ + mtx_lock(&atrtc_time_lock); while (rtcin(RTC_STATUSA) & RTCSA_TUP) continue; critical_enter(); ct.nsec = 0; ct.sec = readrtc(RTC_SEC); ct.min = readrtc(RTC_MIN); ct.hour = readrtc(RTC_HRS); ct.day = readrtc(RTC_DAY); ct.dow = readrtc(RTC_WDAY) - 1; ct.mon = readrtc(RTC_MONTH); ct.year = readrtc(RTC_YEAR); #ifdef USE_RTC_CENTURY ct.year += readrtc(RTC_CENTURY) * 100; #else ct.year += (ct.year < 80 ? 2000 : 1900); #endif critical_exit(); + mtx_unlock(&atrtc_time_lock); /* Set dow = -1 because some clocks don't set it correctly. */ ct.dow = -1; return (clock_ct_to_ts(&ct, ts)); } static device_method_t atrtc_methods[] = { /* Device interface */ DEVMETHOD(device_probe, atrtc_probe), DEVMETHOD(device_attach, atrtc_attach), DEVMETHOD(device_detach, bus_generic_detach), DEVMETHOD(device_shutdown, bus_generic_shutdown), DEVMETHOD(device_suspend, bus_generic_suspend), /* XXX stop statclock? */ DEVMETHOD(device_resume, atrtc_resume), /* clock interface */ DEVMETHOD(clock_gettime, atrtc_gettime), DEVMETHOD(clock_settime, atrtc_settime), { 0, 0 } }; static driver_t atrtc_driver = { "atrtc", atrtc_methods, sizeof(struct atrtc_softc), }; static devclass_t atrtc_devclass; DRIVER_MODULE(atrtc, isa, atrtc_driver, atrtc_devclass, 0, 0); DRIVER_MODULE(atrtc, acpi, atrtc_driver, atrtc_devclass, 0, 0); #include "opt_ddb.h" #ifdef DDB #include DB_SHOW_COMMAND(rtc, rtc) { printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n", rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY), rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC), rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR)); } #endif /* DDB */