Index: stable/10/sys/vm/vm_map.c
===================================================================
--- stable/10/sys/vm/vm_map.c	(revision 320564)
+++ stable/10/sys/vm/vm_map.c	(revision 320565)
@@ -1,4321 +1,4321 @@
 /*-
  * Copyright (c) 1991, 1993
  *	The Regents of the University of California.  All rights reserved.
  *
  * This code is derived from software contributed to Berkeley by
  * The Mach Operating System project at Carnegie-Mellon University.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 4. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
  *
  *
  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
  * All rights reserved.
  *
  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
  *
  * Permission to use, copy, modify and distribute this software and
  * its documentation is hereby granted, provided that both the copyright
  * notice and this permission notice appear in all copies of the
  * software, derivative works or modified versions, and any portions
  * thereof, and that both notices appear in supporting documentation.
  *
  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
  *
  * Carnegie Mellon requests users of this software to return to
  *
  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
  *  School of Computer Science
  *  Carnegie Mellon University
  *  Pittsburgh PA 15213-3890
  *
  * any improvements or extensions that they make and grant Carnegie the
  * rights to redistribute these changes.
  */
 
 /*
  *	Virtual memory mapping module.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/kernel.h>
 #include <sys/ktr.h>
 #include <sys/lock.h>
 #include <sys/mutex.h>
 #include <sys/proc.h>
 #include <sys/vmmeter.h>
 #include <sys/mman.h>
 #include <sys/vnode.h>
 #include <sys/racct.h>
 #include <sys/resourcevar.h>
 #include <sys/rwlock.h>
 #include <sys/file.h>
 #include <sys/sysctl.h>
 #include <sys/sysent.h>
 #include <sys/shm.h>
 
 #include <vm/vm.h>
 #include <vm/vm_param.h>
 #include <vm/pmap.h>
 #include <vm/vm_map.h>
 #include <vm/vm_page.h>
 #include <vm/vm_object.h>
 #include <vm/vm_pager.h>
 #include <vm/vm_kern.h>
 #include <vm/vm_extern.h>
 #include <vm/vnode_pager.h>
 #include <vm/swap_pager.h>
 #include <vm/uma.h>
 
 /*
  *	Virtual memory maps provide for the mapping, protection,
  *	and sharing of virtual memory objects.  In addition,
  *	this module provides for an efficient virtual copy of
  *	memory from one map to another.
  *
  *	Synchronization is required prior to most operations.
  *
  *	Maps consist of an ordered doubly-linked list of simple
  *	entries; a self-adjusting binary search tree of these
  *	entries is used to speed up lookups.
  *
  *	Since portions of maps are specified by start/end addresses,
  *	which may not align with existing map entries, all
  *	routines merely "clip" entries to these start/end values.
  *	[That is, an entry is split into two, bordering at a
  *	start or end value.]  Note that these clippings may not
  *	always be necessary (as the two resulting entries are then
  *	not changed); however, the clipping is done for convenience.
  *
  *	As mentioned above, virtual copy operations are performed
  *	by copying VM object references from one map to
  *	another, and then marking both regions as copy-on-write.
  */
 
 static struct mtx map_sleep_mtx;
 static uma_zone_t mapentzone;
 static uma_zone_t kmapentzone;
 static uma_zone_t mapzone;
 static uma_zone_t vmspace_zone;
 static int vmspace_zinit(void *mem, int size, int flags);
 static int vm_map_zinit(void *mem, int ize, int flags);
 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
     vm_offset_t max);
 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
 #ifdef INVARIANTS
 static void vm_map_zdtor(void *mem, int size, void *arg);
 static void vmspace_zdtor(void *mem, int size, void *arg);
 #endif
 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
     int cow);
 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
     vm_offset_t failed_addr);
 
 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
 
 /* 
  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
  * stable.
  */
 #define PROC_VMSPACE_LOCK(p) do { } while (0)
 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
 
 /*
  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
  *
  *	Asserts that the starting and ending region
  *	addresses fall within the valid range of the map.
  */
 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
 		{					\
 		if (start < vm_map_min(map))		\
 			start = vm_map_min(map);	\
 		if (end > vm_map_max(map))		\
 			end = vm_map_max(map);		\
 		if (start > end)			\
 			start = end;			\
 		}
 
 /*
  *	vm_map_startup:
  *
  *	Initialize the vm_map module.  Must be called before
  *	any other vm_map routines.
  *
  *	Map and entry structures are allocated from the general
  *	purpose memory pool with some exceptions:
  *
  *	- The kernel map and kmem submap are allocated statically.
  *	- Kernel map entries are allocated out of a static pool.
  *
  *	These restrictions are necessary since malloc() uses the
  *	maps and requires map entries.
  */
 
 void
 vm_map_startup(void)
 {
 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
 #ifdef INVARIANTS
 	    vm_map_zdtor,
 #else
 	    NULL,
 #endif
 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
 	uma_prealloc(mapzone, MAX_KMAP);
 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
 #ifdef INVARIANTS
 	    vmspace_zdtor,
 #else
 	    NULL,
 #endif
 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
 }
 
 static int
 vmspace_zinit(void *mem, int size, int flags)
 {
 	struct vmspace *vm;
 
 	vm = (struct vmspace *)mem;
 
 	vm->vm_map.pmap = NULL;
 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
 	PMAP_LOCK_INIT(vmspace_pmap(vm));
 	return (0);
 }
 
 static int
 vm_map_zinit(void *mem, int size, int flags)
 {
 	vm_map_t map;
 
 	map = (vm_map_t)mem;
 	memset(map, 0, sizeof(*map));
 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
 	sx_init(&map->lock, "vm map (user)");
 	return (0);
 }
 
 #ifdef INVARIANTS
 static void
 vmspace_zdtor(void *mem, int size, void *arg)
 {
 	struct vmspace *vm;
 
 	vm = (struct vmspace *)mem;
 
 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
 }
 static void
 vm_map_zdtor(void *mem, int size, void *arg)
 {
 	vm_map_t map;
 
 	map = (vm_map_t)mem;
 	KASSERT(map->nentries == 0,
 	    ("map %p nentries == %d on free.",
 	    map, map->nentries));
 	KASSERT(map->size == 0,
 	    ("map %p size == %lu on free.",
 	    map, (unsigned long)map->size));
 }
 #endif	/* INVARIANTS */
 
 /*
  * Allocate a vmspace structure, including a vm_map and pmap,
  * and initialize those structures.  The refcnt is set to 1.
  *
  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
  */
 struct vmspace *
 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
 {
 	struct vmspace *vm;
 
 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
 
 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
 
 	if (pinit == NULL)
 		pinit = &pmap_pinit;
 
 	if (!pinit(vmspace_pmap(vm))) {
 		uma_zfree(vmspace_zone, vm);
 		return (NULL);
 	}
 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
 	vm->vm_refcnt = 1;
 	vm->vm_shm = NULL;
 	vm->vm_swrss = 0;
 	vm->vm_tsize = 0;
 	vm->vm_dsize = 0;
 	vm->vm_ssize = 0;
 	vm->vm_taddr = 0;
 	vm->vm_daddr = 0;
 	vm->vm_maxsaddr = 0;
 	return (vm);
 }
 
 #ifdef RACCT
 static void
 vmspace_container_reset(struct proc *p)
 {
 
 	PROC_LOCK(p);
 	racct_set(p, RACCT_DATA, 0);
 	racct_set(p, RACCT_STACK, 0);
 	racct_set(p, RACCT_RSS, 0);
 	racct_set(p, RACCT_MEMLOCK, 0);
 	racct_set(p, RACCT_VMEM, 0);
 	PROC_UNLOCK(p);
 }
 #endif
 
 static inline void
 vmspace_dofree(struct vmspace *vm)
 {
 
 	CTR1(KTR_VM, "vmspace_free: %p", vm);
 
 	/*
 	 * Make sure any SysV shm is freed, it might not have been in
 	 * exit1().
 	 */
 	shmexit(vm);
 
 	/*
 	 * Lock the map, to wait out all other references to it.
 	 * Delete all of the mappings and pages they hold, then call
 	 * the pmap module to reclaim anything left.
 	 */
 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
 	    vm->vm_map.max_offset);
 
 	pmap_release(vmspace_pmap(vm));
 	vm->vm_map.pmap = NULL;
 	uma_zfree(vmspace_zone, vm);
 }
 
 void
 vmspace_free(struct vmspace *vm)
 {
 
 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
 	    "vmspace_free() called with non-sleepable lock held");
 
 	if (vm->vm_refcnt == 0)
 		panic("vmspace_free: attempt to free already freed vmspace");
 
 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
 		vmspace_dofree(vm);
 }
 
 void
 vmspace_exitfree(struct proc *p)
 {
 	struct vmspace *vm;
 
 	PROC_VMSPACE_LOCK(p);
 	vm = p->p_vmspace;
 	p->p_vmspace = NULL;
 	PROC_VMSPACE_UNLOCK(p);
 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
 	vmspace_free(vm);
 }
 
 void
 vmspace_exit(struct thread *td)
 {
 	int refcnt;
 	struct vmspace *vm;
 	struct proc *p;
 
 	/*
 	 * Release user portion of address space.
 	 * This releases references to vnodes,
 	 * which could cause I/O if the file has been unlinked.
 	 * Need to do this early enough that we can still sleep.
 	 *
 	 * The last exiting process to reach this point releases as
 	 * much of the environment as it can. vmspace_dofree() is the
 	 * slower fallback in case another process had a temporary
 	 * reference to the vmspace.
 	 */
 
 	p = td->td_proc;
 	vm = p->p_vmspace;
 	atomic_add_int(&vmspace0.vm_refcnt, 1);
 	do {
 		refcnt = vm->vm_refcnt;
 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
 			/* Switch now since other proc might free vmspace */
 			PROC_VMSPACE_LOCK(p);
 			p->p_vmspace = &vmspace0;
 			PROC_VMSPACE_UNLOCK(p);
 			pmap_activate(td);
 		}
 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
 	if (refcnt == 1) {
 		if (p->p_vmspace != vm) {
 			/* vmspace not yet freed, switch back */
 			PROC_VMSPACE_LOCK(p);
 			p->p_vmspace = vm;
 			PROC_VMSPACE_UNLOCK(p);
 			pmap_activate(td);
 		}
 		pmap_remove_pages(vmspace_pmap(vm));
 		/* Switch now since this proc will free vmspace */
 		PROC_VMSPACE_LOCK(p);
 		p->p_vmspace = &vmspace0;
 		PROC_VMSPACE_UNLOCK(p);
 		pmap_activate(td);
 		vmspace_dofree(vm);
 	}
 #ifdef RACCT
 	if (racct_enable)
 		vmspace_container_reset(p);
 #endif
 }
 
 /* Acquire reference to vmspace owned by another process. */
 
 struct vmspace *
 vmspace_acquire_ref(struct proc *p)
 {
 	struct vmspace *vm;
 	int refcnt;
 
 	PROC_VMSPACE_LOCK(p);
 	vm = p->p_vmspace;
 	if (vm == NULL) {
 		PROC_VMSPACE_UNLOCK(p);
 		return (NULL);
 	}
 	do {
 		refcnt = vm->vm_refcnt;
 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
 			PROC_VMSPACE_UNLOCK(p);
 			return (NULL);
 		}
 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
 	if (vm != p->p_vmspace) {
 		PROC_VMSPACE_UNLOCK(p);
 		vmspace_free(vm);
 		return (NULL);
 	}
 	PROC_VMSPACE_UNLOCK(p);
 	return (vm);
 }
 
 void
 _vm_map_lock(vm_map_t map, const char *file, int line)
 {
 
 	if (map->system_map)
 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
 	else
 		sx_xlock_(&map->lock, file, line);
 	map->timestamp++;
 }
 
 static void
 vm_map_process_deferred(void)
 {
 	struct thread *td;
 	vm_map_entry_t entry, next;
 	vm_object_t object;
 
 	td = curthread;
 	entry = td->td_map_def_user;
 	td->td_map_def_user = NULL;
 	while (entry != NULL) {
 		next = entry->next;
 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
 			/*
 			 * Decrement the object's writemappings and
 			 * possibly the vnode's v_writecount.
 			 */
 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
 			    ("Submap with writecount"));
 			object = entry->object.vm_object;
 			KASSERT(object != NULL, ("No object for writecount"));
 			vnode_pager_release_writecount(object, entry->start,
 			    entry->end);
 		}
 		vm_map_entry_deallocate(entry, FALSE);
 		entry = next;
 	}
 }
 
 void
 _vm_map_unlock(vm_map_t map, const char *file, int line)
 {
 
 	if (map->system_map)
 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
 	else {
 		sx_xunlock_(&map->lock, file, line);
 		vm_map_process_deferred();
 	}
 }
 
 void
 _vm_map_lock_read(vm_map_t map, const char *file, int line)
 {
 
 	if (map->system_map)
 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
 	else
 		sx_slock_(&map->lock, file, line);
 }
 
 void
 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
 {
 
 	if (map->system_map)
 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
 	else {
 		sx_sunlock_(&map->lock, file, line);
 		vm_map_process_deferred();
 	}
 }
 
 int
 _vm_map_trylock(vm_map_t map, const char *file, int line)
 {
 	int error;
 
 	error = map->system_map ?
 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
 	    !sx_try_xlock_(&map->lock, file, line);
 	if (error == 0)
 		map->timestamp++;
 	return (error == 0);
 }
 
 int
 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
 {
 	int error;
 
 	error = map->system_map ?
 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
 	    !sx_try_slock_(&map->lock, file, line);
 	return (error == 0);
 }
 
 /*
  *	_vm_map_lock_upgrade:	[ internal use only ]
  *
  *	Tries to upgrade a read (shared) lock on the specified map to a write
  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
  *	returned without a read or write lock held.
  *
  *	Requires that the map be read locked.
  */
 int
 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
 {
 	unsigned int last_timestamp;
 
 	if (map->system_map) {
 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
 	} else {
 		if (!sx_try_upgrade_(&map->lock, file, line)) {
 			last_timestamp = map->timestamp;
 			sx_sunlock_(&map->lock, file, line);
 			vm_map_process_deferred();
 			/*
 			 * If the map's timestamp does not change while the
 			 * map is unlocked, then the upgrade succeeds.
 			 */
 			sx_xlock_(&map->lock, file, line);
 			if (last_timestamp != map->timestamp) {
 				sx_xunlock_(&map->lock, file, line);
 				return (1);
 			}
 		}
 	}
 	map->timestamp++;
 	return (0);
 }
 
 void
 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
 {
 
 	if (map->system_map) {
 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
 	} else
 		sx_downgrade_(&map->lock, file, line);
 }
 
 /*
  *	vm_map_locked:
  *
  *	Returns a non-zero value if the caller holds a write (exclusive) lock
  *	on the specified map and the value "0" otherwise.
  */
 int
 vm_map_locked(vm_map_t map)
 {
 
 	if (map->system_map)
 		return (mtx_owned(&map->system_mtx));
 	else
 		return (sx_xlocked(&map->lock));
 }
 
 #ifdef INVARIANTS
 static void
 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
 {
 
 	if (map->system_map)
 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
 	else
 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
 }
 
 #define	VM_MAP_ASSERT_LOCKED(map) \
     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
 #else
 #define	VM_MAP_ASSERT_LOCKED(map)
 #endif
 
 /*
  *	_vm_map_unlock_and_wait:
  *
  *	Atomically releases the lock on the specified map and puts the calling
  *	thread to sleep.  The calling thread will remain asleep until either
  *	vm_map_wakeup() is performed on the map or the specified timeout is
  *	exceeded.
  *
  *	WARNING!  This function does not perform deferred deallocations of
  *	objects and map	entries.  Therefore, the calling thread is expected to
  *	reacquire the map lock after reawakening and later perform an ordinary
  *	unlock operation, such as vm_map_unlock(), before completing its
  *	operation on the map.
  */
 int
 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
 {
 
 	mtx_lock(&map_sleep_mtx);
 	if (map->system_map)
 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
 	else
 		sx_xunlock_(&map->lock, file, line);
 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
 	    timo));
 }
 
 /*
  *	vm_map_wakeup:
  *
  *	Awaken any threads that have slept on the map using
  *	vm_map_unlock_and_wait().
  */
 void
 vm_map_wakeup(vm_map_t map)
 {
 
 	/*
 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
 	 * from being performed (and lost) between the map unlock
 	 * and the msleep() in _vm_map_unlock_and_wait().
 	 */
 	mtx_lock(&map_sleep_mtx);
 	mtx_unlock(&map_sleep_mtx);
 	wakeup(&map->root);
 }
 
 void
 vm_map_busy(vm_map_t map)
 {
 
 	VM_MAP_ASSERT_LOCKED(map);
 	map->busy++;
 }
 
 void
 vm_map_unbusy(vm_map_t map)
 {
 
 	VM_MAP_ASSERT_LOCKED(map);
 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
 		wakeup(&map->busy);
 	}
 }
 
 void 
 vm_map_wait_busy(vm_map_t map)
 {
 
 	VM_MAP_ASSERT_LOCKED(map);
 	while (map->busy) {
 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
 		if (map->system_map)
 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
 		else
 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
 	}
 	map->timestamp++;
 }
 
 long
 vmspace_resident_count(struct vmspace *vmspace)
 {
 	return pmap_resident_count(vmspace_pmap(vmspace));
 }
 
 /*
  *	vm_map_create:
  *
  *	Creates and returns a new empty VM map with
  *	the given physical map structure, and having
  *	the given lower and upper address bounds.
  */
 vm_map_t
 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
 {
 	vm_map_t result;
 
 	result = uma_zalloc(mapzone, M_WAITOK);
 	CTR1(KTR_VM, "vm_map_create: %p", result);
 	_vm_map_init(result, pmap, min, max);
 	return (result);
 }
 
 /*
  * Initialize an existing vm_map structure
  * such as that in the vmspace structure.
  */
 static void
 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
 {
 
 	map->header.next = map->header.prev = &map->header;
 	map->needs_wakeup = FALSE;
 	map->system_map = 0;
 	map->pmap = pmap;
 	map->min_offset = min;
 	map->max_offset = max;
 	map->flags = 0;
 	map->root = NULL;
 	map->timestamp = 0;
 	map->busy = 0;
 }
 
 void
 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
 {
 
 	_vm_map_init(map, pmap, min, max);
 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
 	sx_init(&map->lock, "user map");
 }
 
 /*
  *	vm_map_entry_dispose:	[ internal use only ]
  *
  *	Inverse of vm_map_entry_create.
  */
 static void
 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
 {
 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
 }
 
 /*
  *	vm_map_entry_create:	[ internal use only ]
  *
  *	Allocates a VM map entry for insertion.
  *	No entry fields are filled in.
  */
 static vm_map_entry_t
 vm_map_entry_create(vm_map_t map)
 {
 	vm_map_entry_t new_entry;
 
 	if (map->system_map)
 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
 	else
 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
 	if (new_entry == NULL)
 		panic("vm_map_entry_create: kernel resources exhausted");
 	return (new_entry);
 }
 
 /*
  *	vm_map_entry_set_behavior:
  *
  *	Set the expected access behavior, either normal, random, or
  *	sequential.
  */
 static inline void
 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
 {
 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
 	    (behavior & MAP_ENTRY_BEHAV_MASK);
 }
 
 /*
  *	vm_map_entry_set_max_free:
  *
  *	Set the max_free field in a vm_map_entry.
  */
 static inline void
 vm_map_entry_set_max_free(vm_map_entry_t entry)
 {
 
 	entry->max_free = entry->adj_free;
 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
 		entry->max_free = entry->left->max_free;
 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
 		entry->max_free = entry->right->max_free;
 }
 
 /*
  *	vm_map_entry_splay:
  *
  *	The Sleator and Tarjan top-down splay algorithm with the
  *	following variation.  Max_free must be computed bottom-up, so
  *	on the downward pass, maintain the left and right spines in
  *	reverse order.  Then, make a second pass up each side to fix
  *	the pointers and compute max_free.  The time bound is O(log n)
  *	amortized.
  *
  *	The new root is the vm_map_entry containing "addr", or else an
  *	adjacent entry (lower or higher) if addr is not in the tree.
  *
  *	The map must be locked, and leaves it so.
  *
  *	Returns: the new root.
  */
 static vm_map_entry_t
 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
 {
 	vm_map_entry_t llist, rlist;
 	vm_map_entry_t ltree, rtree;
 	vm_map_entry_t y;
 
 	/* Special case of empty tree. */
 	if (root == NULL)
 		return (root);
 
 	/*
 	 * Pass One: Splay down the tree until we find addr or a NULL
 	 * pointer where addr would go.  llist and rlist are the two
 	 * sides in reverse order (bottom-up), with llist linked by
 	 * the right pointer and rlist linked by the left pointer in
 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
 	 * the two spines.
 	 */
 	llist = NULL;
 	rlist = NULL;
 	for (;;) {
 		/* root is never NULL in here. */
 		if (addr < root->start) {
 			y = root->left;
 			if (y == NULL)
 				break;
 			if (addr < y->start && y->left != NULL) {
 				/* Rotate right and put y on rlist. */
 				root->left = y->right;
 				y->right = root;
 				vm_map_entry_set_max_free(root);
 				root = y->left;
 				y->left = rlist;
 				rlist = y;
 			} else {
 				/* Put root on rlist. */
 				root->left = rlist;
 				rlist = root;
 				root = y;
 			}
 		} else if (addr >= root->end) {
 			y = root->right;
 			if (y == NULL)
 				break;
 			if (addr >= y->end && y->right != NULL) {
 				/* Rotate left and put y on llist. */
 				root->right = y->left;
 				y->left = root;
 				vm_map_entry_set_max_free(root);
 				root = y->right;
 				y->right = llist;
 				llist = y;
 			} else {
 				/* Put root on llist. */
 				root->right = llist;
 				llist = root;
 				root = y;
 			}
 		} else
 			break;
 	}
 
 	/*
 	 * Pass Two: Walk back up the two spines, flip the pointers
 	 * and set max_free.  The subtrees of the root go at the
 	 * bottom of llist and rlist.
 	 */
 	ltree = root->left;
 	while (llist != NULL) {
 		y = llist->right;
 		llist->right = ltree;
 		vm_map_entry_set_max_free(llist);
 		ltree = llist;
 		llist = y;
 	}
 	rtree = root->right;
 	while (rlist != NULL) {
 		y = rlist->left;
 		rlist->left = rtree;
 		vm_map_entry_set_max_free(rlist);
 		rtree = rlist;
 		rlist = y;
 	}
 
 	/*
 	 * Final assembly: add ltree and rtree as subtrees of root.
 	 */
 	root->left = ltree;
 	root->right = rtree;
 	vm_map_entry_set_max_free(root);
 
 	return (root);
 }
 
 /*
  *	vm_map_entry_{un,}link:
  *
  *	Insert/remove entries from maps.
  */
 static void
 vm_map_entry_link(vm_map_t map,
 		  vm_map_entry_t after_where,
 		  vm_map_entry_t entry)
 {
 
 	CTR4(KTR_VM,
 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
 	    map->nentries, entry, after_where);
 	VM_MAP_ASSERT_LOCKED(map);
 	KASSERT(after_where == &map->header ||
 	    after_where->end <= entry->start,
 	    ("vm_map_entry_link: prev end %jx new start %jx overlap",
 	    (uintmax_t)after_where->end, (uintmax_t)entry->start));
 	KASSERT(after_where->next == &map->header ||
 	    entry->end <= after_where->next->start,
 	    ("vm_map_entry_link: new end %jx next start %jx overlap",
 	    (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
 
 	map->nentries++;
 	entry->prev = after_where;
 	entry->next = after_where->next;
 	entry->next->prev = entry;
 	after_where->next = entry;
 
 	if (after_where != &map->header) {
 		if (after_where != map->root)
 			vm_map_entry_splay(after_where->start, map->root);
 		entry->right = after_where->right;
 		entry->left = after_where;
 		after_where->right = NULL;
 		after_where->adj_free = entry->start - after_where->end;
 		vm_map_entry_set_max_free(after_where);
 	} else {
 		entry->right = map->root;
 		entry->left = NULL;
 	}
 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
 	    entry->next->start) - entry->end;
 	vm_map_entry_set_max_free(entry);
 	map->root = entry;
 }
 
 static void
 vm_map_entry_unlink(vm_map_t map,
 		    vm_map_entry_t entry)
 {
 	vm_map_entry_t next, prev, root;
 
 	VM_MAP_ASSERT_LOCKED(map);
 	if (entry != map->root)
 		vm_map_entry_splay(entry->start, map->root);
 	if (entry->left == NULL)
 		root = entry->right;
 	else {
 		root = vm_map_entry_splay(entry->start, entry->left);
 		root->right = entry->right;
 		root->adj_free = (entry->next == &map->header ? map->max_offset :
 		    entry->next->start) - root->end;
 		vm_map_entry_set_max_free(root);
 	}
 	map->root = root;
 
 	prev = entry->prev;
 	next = entry->next;
 	next->prev = prev;
 	prev->next = next;
 	map->nentries--;
 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
 	    map->nentries, entry);
 }
 
 /*
  *	vm_map_entry_resize_free:
  *
  *	Recompute the amount of free space following a vm_map_entry
  *	and propagate that value up the tree.  Call this function after
  *	resizing a map entry in-place, that is, without a call to
  *	vm_map_entry_link() or _unlink().
  *
  *	The map must be locked, and leaves it so.
  */
 static void
 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
 {
 
 	/*
 	 * Using splay trees without parent pointers, propagating
 	 * max_free up the tree is done by moving the entry to the
 	 * root and making the change there.
 	 */
 	if (entry != map->root)
 		map->root = vm_map_entry_splay(entry->start, map->root);
 
 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
 	    entry->next->start) - entry->end;
 	vm_map_entry_set_max_free(entry);
 }
 
 /*
  *	vm_map_lookup_entry:	[ internal use only ]
  *
  *	Finds the map entry containing (or
  *	immediately preceding) the specified address
  *	in the given map; the entry is returned
  *	in the "entry" parameter.  The boolean
  *	result indicates whether the address is
  *	actually contained in the map.
  */
 boolean_t
 vm_map_lookup_entry(
 	vm_map_t map,
 	vm_offset_t address,
 	vm_map_entry_t *entry)	/* OUT */
 {
 	vm_map_entry_t cur;
 	boolean_t locked;
 
 	/*
 	 * If the map is empty, then the map entry immediately preceding
 	 * "address" is the map's header.
 	 */
 	cur = map->root;
 	if (cur == NULL)
 		*entry = &map->header;
 	else if (address >= cur->start && cur->end > address) {
 		*entry = cur;
 		return (TRUE);
 	} else if ((locked = vm_map_locked(map)) ||
 	    sx_try_upgrade(&map->lock)) {
 		/*
 		 * Splay requires a write lock on the map.  However, it only
 		 * restructures the binary search tree; it does not otherwise
 		 * change the map.  Thus, the map's timestamp need not change
 		 * on a temporary upgrade.
 		 */
 		map->root = cur = vm_map_entry_splay(address, cur);
 		if (!locked)
 			sx_downgrade(&map->lock);
 
 		/*
 		 * If "address" is contained within a map entry, the new root
 		 * is that map entry.  Otherwise, the new root is a map entry
 		 * immediately before or after "address".
 		 */
 		if (address >= cur->start) {
 			*entry = cur;
 			if (cur->end > address)
 				return (TRUE);
 		} else
 			*entry = cur->prev;
 	} else
 		/*
 		 * Since the map is only locked for read access, perform a
 		 * standard binary search tree lookup for "address".
 		 */
 		for (;;) {
 			if (address < cur->start) {
 				if (cur->left == NULL) {
 					*entry = cur->prev;
 					break;
 				}
 				cur = cur->left;
 			} else if (cur->end > address) {
 				*entry = cur;
 				return (TRUE);
 			} else {
 				if (cur->right == NULL) {
 					*entry = cur;
 					break;
 				}
 				cur = cur->right;
 			}
 		}
 	return (FALSE);
 }
 
 /*
  *	vm_map_insert:
  *
  *	Inserts the given whole VM object into the target
  *	map at the specified address range.  The object's
  *	size should match that of the address range.
  *
  *	Requires that the map be locked, and leaves it so.
  *
  *	If object is non-NULL, ref count must be bumped by caller
  *	prior to making call to account for the new entry.
  */
 int
 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
 {
 	vm_map_entry_t new_entry, prev_entry, temp_entry;
 	struct ucred *cred;
 	vm_eflags_t protoeflags;
 	vm_inherit_t inheritance;
 
 	VM_MAP_ASSERT_LOCKED(map);
 	KASSERT((object != kmem_object && object != kernel_object) ||
 	    (cow & MAP_COPY_ON_WRITE) == 0,
 	    ("vm_map_insert: kmem or kernel object and COW"));
 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
 	KASSERT((prot & ~max) == 0,
 	    ("prot %#x is not subset of max_prot %#x", prot, max));
 
 	/*
 	 * Check that the start and end points are not bogus.
 	 */
 	if (start < map->min_offset || end > map->max_offset || start >= end)
 		return (KERN_INVALID_ADDRESS);
 
 	/*
 	 * Find the entry prior to the proposed starting address; if it's part
 	 * of an existing entry, this range is bogus.
 	 */
 	if (vm_map_lookup_entry(map, start, &temp_entry))
 		return (KERN_NO_SPACE);
 
 	prev_entry = temp_entry;
 
 	/*
 	 * Assert that the next entry doesn't overlap the end point.
 	 */
 	if (prev_entry->next != &map->header && prev_entry->next->start < end)
 		return (KERN_NO_SPACE);
 
 	protoeflags = 0;
 	if (cow & MAP_COPY_ON_WRITE)
 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
 	if (cow & MAP_NOFAULT)
 		protoeflags |= MAP_ENTRY_NOFAULT;
 	if (cow & MAP_DISABLE_SYNCER)
 		protoeflags |= MAP_ENTRY_NOSYNC;
 	if (cow & MAP_DISABLE_COREDUMP)
 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
 	if (cow & MAP_STACK_GROWS_DOWN)
 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
 	if (cow & MAP_STACK_GROWS_UP)
 		protoeflags |= MAP_ENTRY_GROWS_UP;
 	if (cow & MAP_VN_WRITECOUNT)
 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
 	if (cow & MAP_INHERIT_SHARE)
 		inheritance = VM_INHERIT_SHARE;
 	else
 		inheritance = VM_INHERIT_DEFAULT;
 
 	cred = NULL;
 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
 		goto charged;
 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
 			return (KERN_RESOURCE_SHORTAGE);
 		KASSERT(object == NULL ||
 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
 		    object->cred == NULL,
 		    ("overcommit: vm_map_insert o %p", object));
 		cred = curthread->td_ucred;
 	}
 
 charged:
 	/* Expand the kernel pmap, if necessary. */
 	if (map == kernel_map && end > kernel_vm_end)
 		pmap_growkernel(end);
 	if (object != NULL) {
 		/*
 		 * OBJ_ONEMAPPING must be cleared unless this mapping
 		 * is trivially proven to be the only mapping for any
 		 * of the object's pages.  (Object granularity
 		 * reference counting is insufficient to recognize
 		 * aliases with precision.)
 		 */
 		VM_OBJECT_WLOCK(object);
 		if (object->ref_count > 1 || object->shadow_count != 0)
 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
 		VM_OBJECT_WUNLOCK(object);
 	} else if (prev_entry != &map->header &&
 	    prev_entry->eflags == protoeflags &&
 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
 	    prev_entry->end == start && prev_entry->wired_count == 0 &&
 	    (prev_entry->cred == cred ||
 	    (prev_entry->object.vm_object != NULL &&
 	    prev_entry->object.vm_object->cred == cred)) &&
 	    vm_object_coalesce(prev_entry->object.vm_object,
 	    prev_entry->offset,
 	    (vm_size_t)(prev_entry->end - prev_entry->start),
 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
 		/*
 		 * We were able to extend the object.  Determine if we
 		 * can extend the previous map entry to include the
 		 * new range as well.
 		 */
 		if (prev_entry->inheritance == inheritance &&
 		    prev_entry->protection == prot &&
 		    prev_entry->max_protection == max) {
 			map->size += end - prev_entry->end;
 			prev_entry->end = end;
 			vm_map_entry_resize_free(map, prev_entry);
 			vm_map_simplify_entry(map, prev_entry);
 			return (KERN_SUCCESS);
 		}
 
 		/*
 		 * If we can extend the object but cannot extend the
 		 * map entry, we have to create a new map entry.  We
 		 * must bump the ref count on the extended object to
 		 * account for it.  object may be NULL.
 		 */
 		object = prev_entry->object.vm_object;
 		offset = prev_entry->offset +
 		    (prev_entry->end - prev_entry->start);
 		vm_object_reference(object);
 		if (cred != NULL && object != NULL && object->cred != NULL &&
 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
 			/* Object already accounts for this uid. */
 			cred = NULL;
 		}
 	}
 	if (cred != NULL)
 		crhold(cred);
 
 	/*
 	 * Create a new entry
 	 */
 	new_entry = vm_map_entry_create(map);
 	new_entry->start = start;
 	new_entry->end = end;
 	new_entry->cred = NULL;
 
 	new_entry->eflags = protoeflags;
 	new_entry->object.vm_object = object;
 	new_entry->offset = offset;
 	new_entry->avail_ssize = 0;
 
 	new_entry->inheritance = inheritance;
 	new_entry->protection = prot;
 	new_entry->max_protection = max;
 	new_entry->wired_count = 0;
 	new_entry->wiring_thread = NULL;
 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
 	new_entry->next_read = OFF_TO_IDX(offset);
 
 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
 	new_entry->cred = cred;
 
 	/*
 	 * Insert the new entry into the list
 	 */
 	vm_map_entry_link(map, prev_entry, new_entry);
 	map->size += new_entry->end - new_entry->start;
 
 	/*
 	 * Try to coalesce the new entry with both the previous and next
 	 * entries in the list.  Previously, we only attempted to coalesce
 	 * with the previous entry when object is NULL.  Here, we handle the
 	 * other cases, which are less common.
 	 */
 	vm_map_simplify_entry(map, new_entry);
 
 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
 		    end - start, cow & MAP_PREFAULT_PARTIAL);
 	}
 
 	return (KERN_SUCCESS);
 }
 
 /*
  *	vm_map_findspace:
  *
  *	Find the first fit (lowest VM address) for "length" free bytes
  *	beginning at address >= start in the given map.
  *
  *	In a vm_map_entry, "adj_free" is the amount of free space
  *	adjacent (higher address) to this entry, and "max_free" is the
  *	maximum amount of contiguous free space in its subtree.  This
  *	allows finding a free region in one path down the tree, so
  *	O(log n) amortized with splay trees.
  *
  *	The map must be locked, and leaves it so.
  *
  *	Returns: 0 on success, and starting address in *addr,
  *		 1 if insufficient space.
  */
 int
 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
     vm_offset_t *addr)	/* OUT */
 {
 	vm_map_entry_t entry;
 	vm_offset_t st;
 
 	/*
 	 * Request must fit within min/max VM address and must avoid
 	 * address wrap.
 	 */
 	if (start < map->min_offset)
 		start = map->min_offset;
 	if (start + length > map->max_offset || start + length < start)
 		return (1);
 
 	/* Empty tree means wide open address space. */
 	if (map->root == NULL) {
 		*addr = start;
 		return (0);
 	}
 
 	/*
 	 * After splay, if start comes before root node, then there
 	 * must be a gap from start to the root.
 	 */
 	map->root = vm_map_entry_splay(start, map->root);
 	if (start + length <= map->root->start) {
 		*addr = start;
 		return (0);
 	}
 
 	/*
 	 * Root is the last node that might begin its gap before
 	 * start, and this is the last comparison where address
 	 * wrap might be a problem.
 	 */
 	st = (start > map->root->end) ? start : map->root->end;
 	if (length <= map->root->end + map->root->adj_free - st) {
 		*addr = st;
 		return (0);
 	}
 
 	/* With max_free, can immediately tell if no solution. */
 	entry = map->root->right;
 	if (entry == NULL || length > entry->max_free)
 		return (1);
 
 	/*
 	 * Search the right subtree in the order: left subtree, root,
 	 * right subtree (first fit).  The previous splay implies that
 	 * all regions in the right subtree have addresses > start.
 	 */
 	while (entry != NULL) {
 		if (entry->left != NULL && entry->left->max_free >= length)
 			entry = entry->left;
 		else if (entry->adj_free >= length) {
 			*addr = entry->end;
 			return (0);
 		} else
 			entry = entry->right;
 	}
 
 	/* Can't get here, so panic if we do. */
 	panic("vm_map_findspace: max_free corrupt");
 }
 
 int
 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
     vm_offset_t start, vm_size_t length, vm_prot_t prot,
     vm_prot_t max, int cow)
 {
 	vm_offset_t end;
 	int result;
 
 	end = start + length;
 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
 	    object == NULL,
 	    ("vm_map_fixed: non-NULL backing object for stack"));
 	vm_map_lock(map);
 	VM_MAP_RANGE_CHECK(map, start, end);
 	if ((cow & MAP_CHECK_EXCL) == 0)
 		vm_map_delete(map, start, end);
 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
 		    prot, max, cow);
 	} else {
 		result = vm_map_insert(map, object, offset, start, end,
 		    prot, max, cow);
 	}
 	vm_map_unlock(map);
 	return (result);
 }
 
 /*
  *	vm_map_find finds an unallocated region in the target address
  *	map with the given length.  The search is defined to be
  *	first-fit from the specified address; the region found is
  *	returned in the same parameter.
  *
  *	If object is non-NULL, ref count must be bumped by caller
  *	prior to making call to account for the new entry.
  */
 int
 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
 	    vm_offset_t *addr,	/* IN/OUT */
 	    vm_size_t length, vm_offset_t max_addr, int find_space,
 	    vm_prot_t prot, vm_prot_t max, int cow)
 {
 	vm_offset_t alignment, initial_addr, start;
 	int result;
 
 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
 	    object == NULL,
 	    ("vm_map_find: non-NULL backing object for stack"));
 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
 	    (object->flags & OBJ_COLORED) == 0))
 		find_space = VMFS_ANY_SPACE;
 	if (find_space >> 8 != 0) {
 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
 		alignment = (vm_offset_t)1 << (find_space >> 8);
 	} else
 		alignment = 0;
 	initial_addr = *addr;
 again:
 	start = initial_addr;
 	vm_map_lock(map);
 	do {
 		if (find_space != VMFS_NO_SPACE) {
 			if (vm_map_findspace(map, start, length, addr) ||
 			    (max_addr != 0 && *addr + length > max_addr)) {
 				vm_map_unlock(map);
 				if (find_space == VMFS_OPTIMAL_SPACE) {
 					find_space = VMFS_ANY_SPACE;
 					goto again;
 				}
 				return (KERN_NO_SPACE);
 			}
 			switch (find_space) {
 			case VMFS_SUPER_SPACE:
 			case VMFS_OPTIMAL_SPACE:
 				pmap_align_superpage(object, offset, addr,
 				    length);
 				break;
 			case VMFS_ANY_SPACE:
 				break;
 			default:
 				if ((*addr & (alignment - 1)) != 0) {
 					*addr &= ~(alignment - 1);
 					*addr += alignment;
 				}
 				break;
 			}
 
 			start = *addr;
 		}
 		if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
 			result = vm_map_stack_locked(map, start, length,
 			    sgrowsiz, prot, max, cow);
 		} else {
 			result = vm_map_insert(map, object, offset, start,
 			    start + length, prot, max, cow);
 		}
 	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
 	    find_space != VMFS_ANY_SPACE);
 	vm_map_unlock(map);
 	return (result);
 }
 
 /*
  *	vm_map_simplify_entry:
  *
  *	Simplify the given map entry by merging with either neighbor.  This
  *	routine also has the ability to merge with both neighbors.
  *
  *	The map must be locked.
  *
  *	This routine guarentees that the passed entry remains valid (though
  *	possibly extended).  When merging, this routine may delete one or
  *	both neighbors.
  */
 void
 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
 {
 	vm_map_entry_t next, prev;
 	vm_size_t prevsize, esize;
 
 	if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
 		return;
 
 	prev = entry->prev;
 	if (prev != &map->header) {
 		prevsize = prev->end - prev->start;
 		if ( (prev->end == entry->start) &&
 		     (prev->object.vm_object == entry->object.vm_object) &&
 		     (!prev->object.vm_object ||
 			(prev->offset + prevsize == entry->offset)) &&
 		     (prev->eflags == entry->eflags) &&
 		     (prev->protection == entry->protection) &&
 		     (prev->max_protection == entry->max_protection) &&
 		     (prev->inheritance == entry->inheritance) &&
 		     (prev->wired_count == entry->wired_count) &&
 		     (prev->cred == entry->cred)) {
 			vm_map_entry_unlink(map, prev);
 			entry->start = prev->start;
 			entry->offset = prev->offset;
 			if (entry->prev != &map->header)
 				vm_map_entry_resize_free(map, entry->prev);
 
 			/*
 			 * If the backing object is a vnode object,
 			 * vm_object_deallocate() calls vrele().
 			 * However, vrele() does not lock the vnode
 			 * because the vnode has additional
 			 * references.  Thus, the map lock can be kept
 			 * without causing a lock-order reversal with
 			 * the vnode lock.
 			 *
 			 * Since we count the number of virtual page
 			 * mappings in object->un_pager.vnp.writemappings,
 			 * the writemappings value should not be adjusted
 			 * when the entry is disposed of.
 			 */
 			if (prev->object.vm_object)
 				vm_object_deallocate(prev->object.vm_object);
 			if (prev->cred != NULL)
 				crfree(prev->cred);
 			vm_map_entry_dispose(map, prev);
 		}
 	}
 
 	next = entry->next;
 	if (next != &map->header) {
 		esize = entry->end - entry->start;
 		if ((entry->end == next->start) &&
 		    (next->object.vm_object == entry->object.vm_object) &&
 		     (!entry->object.vm_object ||
 			(entry->offset + esize == next->offset)) &&
 		    (next->eflags == entry->eflags) &&
 		    (next->protection == entry->protection) &&
 		    (next->max_protection == entry->max_protection) &&
 		    (next->inheritance == entry->inheritance) &&
 		    (next->wired_count == entry->wired_count) &&
 		    (next->cred == entry->cred)) {
 			vm_map_entry_unlink(map, next);
 			entry->end = next->end;
 			vm_map_entry_resize_free(map, entry);
 
 			/*
 			 * See comment above.
 			 */
 			if (next->object.vm_object)
 				vm_object_deallocate(next->object.vm_object);
 			if (next->cred != NULL)
 				crfree(next->cred);
 			vm_map_entry_dispose(map, next);
 		}
 	}
 }
 /*
  *	vm_map_clip_start:	[ internal use only ]
  *
  *	Asserts that the given entry begins at or after
  *	the specified address; if necessary,
  *	it splits the entry into two.
  */
 #define vm_map_clip_start(map, entry, startaddr) \
 { \
 	if (startaddr > entry->start) \
 		_vm_map_clip_start(map, entry, startaddr); \
 }
 
 /*
  *	This routine is called only when it is known that
  *	the entry must be split.
  */
 static void
 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
 {
 	vm_map_entry_t new_entry;
 
 	VM_MAP_ASSERT_LOCKED(map);
 
 	/*
 	 * Split off the front portion -- note that we must insert the new
 	 * entry BEFORE this one, so that this entry has the specified
 	 * starting address.
 	 */
 	vm_map_simplify_entry(map, entry);
 
 	/*
 	 * If there is no object backing this entry, we might as well create
 	 * one now.  If we defer it, an object can get created after the map
 	 * is clipped, and individual objects will be created for the split-up
 	 * map.  This is a bit of a hack, but is also about the best place to
 	 * put this improvement.
 	 */
 	if (entry->object.vm_object == NULL && !map->system_map) {
 		vm_object_t object;
 		object = vm_object_allocate(OBJT_DEFAULT,
 				atop(entry->end - entry->start));
 		entry->object.vm_object = object;
 		entry->offset = 0;
 		if (entry->cred != NULL) {
 			object->cred = entry->cred;
 			object->charge = entry->end - entry->start;
 			entry->cred = NULL;
 		}
 	} else if (entry->object.vm_object != NULL &&
 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
 		   entry->cred != NULL) {
 		VM_OBJECT_WLOCK(entry->object.vm_object);
 		KASSERT(entry->object.vm_object->cred == NULL,
 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
 		entry->object.vm_object->cred = entry->cred;
 		entry->object.vm_object->charge = entry->end - entry->start;
 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
 		entry->cred = NULL;
 	}
 
 	new_entry = vm_map_entry_create(map);
 	*new_entry = *entry;
 
 	new_entry->end = start;
 	entry->offset += (start - entry->start);
 	entry->start = start;
 	if (new_entry->cred != NULL)
 		crhold(entry->cred);
 
 	vm_map_entry_link(map, entry->prev, new_entry);
 
 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
 		vm_object_reference(new_entry->object.vm_object);
 		/*
 		 * The object->un_pager.vnp.writemappings for the
 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
 		 * kept as is here.  The virtual pages are
 		 * re-distributed among the clipped entries, so the sum is
 		 * left the same.
 		 */
 	}
 }
 
 /*
  *	vm_map_clip_end:	[ internal use only ]
  *
  *	Asserts that the given entry ends at or before
  *	the specified address; if necessary,
  *	it splits the entry into two.
  */
 #define vm_map_clip_end(map, entry, endaddr) \
 { \
 	if ((endaddr) < (entry->end)) \
 		_vm_map_clip_end((map), (entry), (endaddr)); \
 }
 
 /*
  *	This routine is called only when it is known that
  *	the entry must be split.
  */
 static void
 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
 {
 	vm_map_entry_t new_entry;
 
 	VM_MAP_ASSERT_LOCKED(map);
 
 	/*
 	 * If there is no object backing this entry, we might as well create
 	 * one now.  If we defer it, an object can get created after the map
 	 * is clipped, and individual objects will be created for the split-up
 	 * map.  This is a bit of a hack, but is also about the best place to
 	 * put this improvement.
 	 */
 	if (entry->object.vm_object == NULL && !map->system_map) {
 		vm_object_t object;
 		object = vm_object_allocate(OBJT_DEFAULT,
 				atop(entry->end - entry->start));
 		entry->object.vm_object = object;
 		entry->offset = 0;
 		if (entry->cred != NULL) {
 			object->cred = entry->cred;
 			object->charge = entry->end - entry->start;
 			entry->cred = NULL;
 		}
 	} else if (entry->object.vm_object != NULL &&
 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
 		   entry->cred != NULL) {
 		VM_OBJECT_WLOCK(entry->object.vm_object);
 		KASSERT(entry->object.vm_object->cred == NULL,
 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
 		entry->object.vm_object->cred = entry->cred;
 		entry->object.vm_object->charge = entry->end - entry->start;
 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
 		entry->cred = NULL;
 	}
 
 	/*
 	 * Create a new entry and insert it AFTER the specified entry
 	 */
 	new_entry = vm_map_entry_create(map);
 	*new_entry = *entry;
 
 	new_entry->start = entry->end = end;
 	new_entry->offset += (end - entry->start);
 	if (new_entry->cred != NULL)
 		crhold(entry->cred);
 
 	vm_map_entry_link(map, entry, new_entry);
 
 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
 		vm_object_reference(new_entry->object.vm_object);
 	}
 }
 
 /*
  *	vm_map_submap:		[ kernel use only ]
  *
  *	Mark the given range as handled by a subordinate map.
  *
  *	This range must have been created with vm_map_find,
  *	and no other operations may have been performed on this
  *	range prior to calling vm_map_submap.
  *
  *	Only a limited number of operations can be performed
  *	within this rage after calling vm_map_submap:
  *		vm_fault
  *	[Don't try vm_map_copy!]
  *
  *	To remove a submapping, one must first remove the
  *	range from the superior map, and then destroy the
  *	submap (if desired).  [Better yet, don't try it.]
  */
 int
 vm_map_submap(
 	vm_map_t map,
 	vm_offset_t start,
 	vm_offset_t end,
 	vm_map_t submap)
 {
 	vm_map_entry_t entry;
 	int result = KERN_INVALID_ARGUMENT;
 
 	vm_map_lock(map);
 
 	VM_MAP_RANGE_CHECK(map, start, end);
 
 	if (vm_map_lookup_entry(map, start, &entry)) {
 		vm_map_clip_start(map, entry, start);
 	} else
 		entry = entry->next;
 
 	vm_map_clip_end(map, entry, end);
 
 	if ((entry->start == start) && (entry->end == end) &&
 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
 	    (entry->object.vm_object == NULL)) {
 		entry->object.sub_map = submap;
 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
 		result = KERN_SUCCESS;
 	}
 	vm_map_unlock(map);
 
 	return (result);
 }
 
 /*
  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
  */
 #define	MAX_INIT_PT	96
 
 /*
  *	vm_map_pmap_enter:
  *
  *	Preload the specified map's pmap with mappings to the specified
  *	object's memory-resident pages.  No further physical pages are
  *	allocated, and no further virtual pages are retrieved from secondary
  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
  *	limited number of page mappings are created at the low-end of the
  *	specified address range.  (For this purpose, a superpage mapping
  *	counts as one page mapping.)  Otherwise, all resident pages within
  *	the specified address range are mapped.  Because these mappings are
  *	being created speculatively, cached pages are not reactivated and
  *	mapped.
  */
 void
 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
 {
 	vm_offset_t start;
 	vm_page_t p, p_start;
 	vm_pindex_t mask, psize, threshold, tmpidx;
 
 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
 		return;
 	VM_OBJECT_RLOCK(object);
 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
 		VM_OBJECT_RUNLOCK(object);
 		VM_OBJECT_WLOCK(object);
 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
 			pmap_object_init_pt(map->pmap, addr, object, pindex,
 			    size);
 			VM_OBJECT_WUNLOCK(object);
 			return;
 		}
 		VM_OBJECT_LOCK_DOWNGRADE(object);
 	}
 
 	psize = atop(size);
 	if (psize + pindex > object->size) {
 		if (object->size < pindex) {
 			VM_OBJECT_RUNLOCK(object);
 			return;
 		}
 		psize = object->size - pindex;
 	}
 
 	start = 0;
 	p_start = NULL;
 	threshold = MAX_INIT_PT;
 
 	p = vm_page_find_least(object, pindex);
 	/*
 	 * Assert: the variable p is either (1) the page with the
 	 * least pindex greater than or equal to the parameter pindex
 	 * or (2) NULL.
 	 */
 	for (;
 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
 	     p = TAILQ_NEXT(p, listq)) {
 		/*
 		 * don't allow an madvise to blow away our really
 		 * free pages allocating pv entries.
 		 */
 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
 		    cnt.v_free_count < cnt.v_free_reserved) ||
 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
 		    tmpidx >= threshold)) {
 			psize = tmpidx;
 			break;
 		}
 		if (p->valid == VM_PAGE_BITS_ALL) {
 			if (p_start == NULL) {
 				start = addr + ptoa(tmpidx);
 				p_start = p;
 			}
 			/* Jump ahead if a superpage mapping is possible. */
 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
 			    (pagesizes[p->psind] - 1)) == 0) {
 				mask = atop(pagesizes[p->psind]) - 1;
 				if (tmpidx + mask < psize &&
 				    vm_page_ps_is_valid(p)) {
 					p += mask;
 					threshold += mask;
 				}
 			}
 		} else if (p_start != NULL) {
 			pmap_enter_object(map->pmap, start, addr +
 			    ptoa(tmpidx), p_start, prot);
 			p_start = NULL;
 		}
 	}
 	if (p_start != NULL)
 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
 		    p_start, prot);
 	VM_OBJECT_RUNLOCK(object);
 }
 
 /*
  *	vm_map_protect:
  *
  *	Sets the protection of the specified address
  *	region in the target map.  If "set_max" is
  *	specified, the maximum protection is to be set;
  *	otherwise, only the current protection is affected.
  */
 int
 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
 	       vm_prot_t new_prot, boolean_t set_max)
 {
 	vm_map_entry_t current, entry;
 	vm_object_t obj;
 	struct ucred *cred;
 	vm_prot_t old_prot;
 
 	if (start == end)
 		return (KERN_SUCCESS);
 
 	vm_map_lock(map);
 
 	VM_MAP_RANGE_CHECK(map, start, end);
 
 	if (vm_map_lookup_entry(map, start, &entry)) {
 		vm_map_clip_start(map, entry, start);
 	} else {
 		entry = entry->next;
 	}
 
 	/*
 	 * Make a first pass to check for protection violations.
 	 */
 	current = entry;
 	while ((current != &map->header) && (current->start < end)) {
 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
 			vm_map_unlock(map);
 			return (KERN_INVALID_ARGUMENT);
 		}
 		if ((new_prot & current->max_protection) != new_prot) {
 			vm_map_unlock(map);
 			return (KERN_PROTECTION_FAILURE);
 		}
 		current = current->next;
 	}
 
 
 	/*
 	 * Do an accounting pass for private read-only mappings that
 	 * now will do cow due to allowed write (e.g. debugger sets
 	 * breakpoint on text segment)
 	 */
 	for (current = entry; (current != &map->header) &&
 	     (current->start < end); current = current->next) {
 
 		vm_map_clip_end(map, current, end);
 
 		if (set_max ||
 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
 		    ENTRY_CHARGED(current)) {
 			continue;
 		}
 
 		cred = curthread->td_ucred;
 		obj = current->object.vm_object;
 
 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
 			if (!swap_reserve(current->end - current->start)) {
 				vm_map_unlock(map);
 				return (KERN_RESOURCE_SHORTAGE);
 			}
 			crhold(cred);
 			current->cred = cred;
 			continue;
 		}
 
 		VM_OBJECT_WLOCK(obj);
 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
 			VM_OBJECT_WUNLOCK(obj);
 			continue;
 		}
 
 		/*
 		 * Charge for the whole object allocation now, since
 		 * we cannot distinguish between non-charged and
 		 * charged clipped mapping of the same object later.
 		 */
 		KASSERT(obj->charge == 0,
 		    ("vm_map_protect: object %p overcharged (entry %p)",
 		    obj, current));
 		if (!swap_reserve(ptoa(obj->size))) {
 			VM_OBJECT_WUNLOCK(obj);
 			vm_map_unlock(map);
 			return (KERN_RESOURCE_SHORTAGE);
 		}
 
 		crhold(cred);
 		obj->cred = cred;
 		obj->charge = ptoa(obj->size);
 		VM_OBJECT_WUNLOCK(obj);
 	}
 
 	/*
 	 * Go back and fix up protections. [Note that clipping is not
 	 * necessary the second time.]
 	 */
 	current = entry;
 	while ((current != &map->header) && (current->start < end)) {
 		old_prot = current->protection;
 
 		if (set_max)
 			current->protection =
 			    (current->max_protection = new_prot) &
 			    old_prot;
 		else
 			current->protection = new_prot;
 
 		/*
 		 * For user wired map entries, the normal lazy evaluation of
 		 * write access upgrades through soft page faults is
 		 * undesirable.  Instead, immediately copy any pages that are
 		 * copy-on-write and enable write access in the physical map.
 		 */
 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
 		    (current->protection & VM_PROT_WRITE) != 0 &&
 		    (old_prot & VM_PROT_WRITE) == 0)
 			vm_fault_copy_entry(map, map, current, current, NULL);
 
 		/*
 		 * When restricting access, update the physical map.  Worry
 		 * about copy-on-write here.
 		 */
 		if ((old_prot & ~current->protection) != 0) {
 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
 							VM_PROT_ALL)
 			pmap_protect(map->pmap, current->start,
 			    current->end,
 			    current->protection & MASK(current));
 #undef	MASK
 		}
 		vm_map_simplify_entry(map, current);
 		current = current->next;
 	}
 	vm_map_unlock(map);
 	return (KERN_SUCCESS);
 }
 
 /*
  *	vm_map_madvise:
  *
  *	This routine traverses a processes map handling the madvise
  *	system call.  Advisories are classified as either those effecting
  *	the vm_map_entry structure, or those effecting the underlying
  *	objects.
  */
 int
 vm_map_madvise(
 	vm_map_t map,
 	vm_offset_t start,
 	vm_offset_t end,
 	int behav)
 {
 	vm_map_entry_t current, entry;
 	int modify_map = 0;
 
 	/*
 	 * Some madvise calls directly modify the vm_map_entry, in which case
 	 * we need to use an exclusive lock on the map and we need to perform
 	 * various clipping operations.  Otherwise we only need a read-lock
 	 * on the map.
 	 */
 	switch(behav) {
 	case MADV_NORMAL:
 	case MADV_SEQUENTIAL:
 	case MADV_RANDOM:
 	case MADV_NOSYNC:
 	case MADV_AUTOSYNC:
 	case MADV_NOCORE:
 	case MADV_CORE:
 		if (start == end)
 			return (KERN_SUCCESS);
 		modify_map = 1;
 		vm_map_lock(map);
 		break;
 	case MADV_WILLNEED:
 	case MADV_DONTNEED:
 	case MADV_FREE:
 		if (start == end)
 			return (KERN_SUCCESS);
 		vm_map_lock_read(map);
 		break;
 	default:
 		return (KERN_INVALID_ARGUMENT);
 	}
 
 	/*
 	 * Locate starting entry and clip if necessary.
 	 */
 	VM_MAP_RANGE_CHECK(map, start, end);
 
 	if (vm_map_lookup_entry(map, start, &entry)) {
 		if (modify_map)
 			vm_map_clip_start(map, entry, start);
 	} else {
 		entry = entry->next;
 	}
 
 	if (modify_map) {
 		/*
 		 * madvise behaviors that are implemented in the vm_map_entry.
 		 *
 		 * We clip the vm_map_entry so that behavioral changes are
 		 * limited to the specified address range.
 		 */
 		for (current = entry;
 		     (current != &map->header) && (current->start < end);
 		     current = current->next
 		) {
 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
 				continue;
 
 			vm_map_clip_end(map, current, end);
 
 			switch (behav) {
 			case MADV_NORMAL:
 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
 				break;
 			case MADV_SEQUENTIAL:
 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
 				break;
 			case MADV_RANDOM:
 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
 				break;
 			case MADV_NOSYNC:
 				current->eflags |= MAP_ENTRY_NOSYNC;
 				break;
 			case MADV_AUTOSYNC:
 				current->eflags &= ~MAP_ENTRY_NOSYNC;
 				break;
 			case MADV_NOCORE:
 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
 				break;
 			case MADV_CORE:
 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
 				break;
 			default:
 				break;
 			}
 			vm_map_simplify_entry(map, current);
 		}
 		vm_map_unlock(map);
 	} else {
 		vm_pindex_t pstart, pend;
 
 		/*
 		 * madvise behaviors that are implemented in the underlying
 		 * vm_object.
 		 *
 		 * Since we don't clip the vm_map_entry, we have to clip
 		 * the vm_object pindex and count.
 		 */
 		for (current = entry;
 		     (current != &map->header) && (current->start < end);
 		     current = current->next
 		) {
 			vm_offset_t useEnd, useStart;
 
 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
 				continue;
 
 			pstart = OFF_TO_IDX(current->offset);
 			pend = pstart + atop(current->end - current->start);
 			useStart = current->start;
 			useEnd = current->end;
 
 			if (current->start < start) {
 				pstart += atop(start - current->start);
 				useStart = start;
 			}
 			if (current->end > end) {
 				pend -= atop(current->end - end);
 				useEnd = end;
 			}
 
 			if (pstart >= pend)
 				continue;
 
 			/*
 			 * Perform the pmap_advise() before clearing
 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
 			 * concurrent pmap operation, such as pmap_remove(),
 			 * could clear a reference in the pmap and set
 			 * PGA_REFERENCED on the page before the pmap_advise()
 			 * had completed.  Consequently, the page would appear
 			 * referenced based upon an old reference that
 			 * occurred before this pmap_advise() ran.
 			 */
 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
 				pmap_advise(map->pmap, useStart, useEnd,
 				    behav);
 
 			vm_object_madvise(current->object.vm_object, pstart,
 			    pend, behav);
 
 			/*
 			 * Pre-populate paging structures in the
 			 * WILLNEED case.  For wired entries, the
 			 * paging structures are already populated.
 			 */
 			if (behav == MADV_WILLNEED &&
 			    current->wired_count == 0) {
 				vm_map_pmap_enter(map,
 				    useStart,
 				    current->protection,
 				    current->object.vm_object,
 				    pstart,
 				    ptoa(pend - pstart),
 				    MAP_PREFAULT_MADVISE
 				);
 			}
 		}
 		vm_map_unlock_read(map);
 	}
 	return (0);
 }
 
 
 /*
  *	vm_map_inherit:
  *
  *	Sets the inheritance of the specified address
  *	range in the target map.  Inheritance
  *	affects how the map will be shared with
  *	child maps at the time of vmspace_fork.
  */
 int
 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
 	       vm_inherit_t new_inheritance)
 {
 	vm_map_entry_t entry;
 	vm_map_entry_t temp_entry;
 
 	switch (new_inheritance) {
 	case VM_INHERIT_NONE:
 	case VM_INHERIT_COPY:
 	case VM_INHERIT_SHARE:
 	case VM_INHERIT_ZERO:
 		break;
 	default:
 		return (KERN_INVALID_ARGUMENT);
 	}
 	if (start == end)
 		return (KERN_SUCCESS);
 	vm_map_lock(map);
 	VM_MAP_RANGE_CHECK(map, start, end);
 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
 		entry = temp_entry;
 		vm_map_clip_start(map, entry, start);
 	} else
 		entry = temp_entry->next;
 	while ((entry != &map->header) && (entry->start < end)) {
 		vm_map_clip_end(map, entry, end);
 		entry->inheritance = new_inheritance;
 		vm_map_simplify_entry(map, entry);
 		entry = entry->next;
 	}
 	vm_map_unlock(map);
 	return (KERN_SUCCESS);
 }
 
 /*
  *	vm_map_unwire:
  *
  *	Implements both kernel and user unwiring.
  */
 int
 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
     int flags)
 {
 	vm_map_entry_t entry, first_entry, tmp_entry;
 	vm_offset_t saved_start;
 	unsigned int last_timestamp;
 	int rv;
 	boolean_t need_wakeup, result, user_unwire;
 
 	if (start == end)
 		return (KERN_SUCCESS);
 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
 	vm_map_lock(map);
 	VM_MAP_RANGE_CHECK(map, start, end);
 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
 		if (flags & VM_MAP_WIRE_HOLESOK)
 			first_entry = first_entry->next;
 		else {
 			vm_map_unlock(map);
 			return (KERN_INVALID_ADDRESS);
 		}
 	}
 	last_timestamp = map->timestamp;
 	entry = first_entry;
 	while (entry != &map->header && entry->start < end) {
 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
 			/*
 			 * We have not yet clipped the entry.
 			 */
 			saved_start = (start >= entry->start) ? start :
 			    entry->start;
 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
 			if (vm_map_unlock_and_wait(map, 0)) {
 				/*
 				 * Allow interruption of user unwiring?
 				 */
 			}
 			vm_map_lock(map);
 			if (last_timestamp+1 != map->timestamp) {
 				/*
 				 * Look again for the entry because the map was
 				 * modified while it was unlocked.
 				 * Specifically, the entry may have been
 				 * clipped, merged, or deleted.
 				 */
 				if (!vm_map_lookup_entry(map, saved_start,
 				    &tmp_entry)) {
 					if (flags & VM_MAP_WIRE_HOLESOK)
 						tmp_entry = tmp_entry->next;
 					else {
 						if (saved_start == start) {
 							/*
 							 * First_entry has been deleted.
 							 */
 							vm_map_unlock(map);
 							return (KERN_INVALID_ADDRESS);
 						}
 						end = saved_start;
 						rv = KERN_INVALID_ADDRESS;
 						goto done;
 					}
 				}
 				if (entry == first_entry)
 					first_entry = tmp_entry;
 				else
 					first_entry = NULL;
 				entry = tmp_entry;
 			}
 			last_timestamp = map->timestamp;
 			continue;
 		}
 		vm_map_clip_start(map, entry, start);
 		vm_map_clip_end(map, entry, end);
 		/*
 		 * Mark the entry in case the map lock is released.  (See
 		 * above.)
 		 */
 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
 		    entry->wiring_thread == NULL,
 		    ("owned map entry %p", entry));
 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
 		entry->wiring_thread = curthread;
 		/*
 		 * Check the map for holes in the specified region.
 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
 		 */
 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
 		    (entry->end < end && (entry->next == &map->header ||
 		    entry->next->start > entry->end))) {
 			end = entry->end;
 			rv = KERN_INVALID_ADDRESS;
 			goto done;
 		}
 		/*
 		 * If system unwiring, require that the entry is system wired.
 		 */
 		if (!user_unwire &&
 		    vm_map_entry_system_wired_count(entry) == 0) {
 			end = entry->end;
 			rv = KERN_INVALID_ARGUMENT;
 			goto done;
 		}
 		entry = entry->next;
 	}
 	rv = KERN_SUCCESS;
 done:
 	need_wakeup = FALSE;
 	if (first_entry == NULL) {
 		result = vm_map_lookup_entry(map, start, &first_entry);
 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
 			first_entry = first_entry->next;
 		else
 			KASSERT(result, ("vm_map_unwire: lookup failed"));
 	}
 	for (entry = first_entry; entry != &map->header && entry->start < end;
 	    entry = entry->next) {
 		/*
 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
 		 * space in the unwired region could have been mapped
 		 * while the map lock was dropped for draining
 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
 		 * could be simultaneously wiring this new mapping
 		 * entry.  Detect these cases and skip any entries
 		 * marked as in transition by us.
 		 */
 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
 		    entry->wiring_thread != curthread) {
 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
 			continue;
 		}
 
 		if (rv == KERN_SUCCESS && (!user_unwire ||
 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
 			if (user_unwire)
 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
 			if (entry->wired_count == 1)
 				vm_map_entry_unwire(map, entry);
 			else
 				entry->wired_count--;
 		}
 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
 		    ("vm_map_unwire: in-transition flag missing %p", entry));
 		KASSERT(entry->wiring_thread == curthread,
 		    ("vm_map_unwire: alien wire %p", entry));
 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
 		entry->wiring_thread = NULL;
 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
 			need_wakeup = TRUE;
 		}
 		vm_map_simplify_entry(map, entry);
 	}
 	vm_map_unlock(map);
 	if (need_wakeup)
 		vm_map_wakeup(map);
 	return (rv);
 }
 
 /*
  *	vm_map_wire_entry_failure:
  *
  *	Handle a wiring failure on the given entry.
  *
  *	The map should be locked.
  */
 static void
 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
     vm_offset_t failed_addr)
 {
 
 	VM_MAP_ASSERT_LOCKED(map);
 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
 	    entry->wired_count == 1,
 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
 	KASSERT(failed_addr < entry->end,
 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
 
 	/*
 	 * If any pages at the start of this entry were successfully wired,
 	 * then unwire them.
 	 */
 	if (failed_addr > entry->start) {
 		pmap_unwire(map->pmap, entry->start, failed_addr);
 		vm_object_unwire(entry->object.vm_object, entry->offset,
 		    failed_addr - entry->start, PQ_ACTIVE);
 	}
 
 	/*
 	 * Assign an out-of-range value to represent the failure to wire this
 	 * entry.
 	 */
 	entry->wired_count = -1;
 }
 
 /*
  *	vm_map_wire:
  *
  *	Implements both kernel and user wiring.
  */
 int
 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
     int flags)
 {
 	vm_map_entry_t entry, first_entry, tmp_entry;
 	vm_offset_t faddr, saved_end, saved_start;
 	unsigned int last_timestamp;
 	int rv;
 	boolean_t need_wakeup, result, user_wire;
 	vm_prot_t prot;
 
 	if (start == end)
 		return (KERN_SUCCESS);
 	prot = 0;
 	if (flags & VM_MAP_WIRE_WRITE)
 		prot |= VM_PROT_WRITE;
 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
 	vm_map_lock(map);
 	VM_MAP_RANGE_CHECK(map, start, end);
 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
 		if (flags & VM_MAP_WIRE_HOLESOK)
 			first_entry = first_entry->next;
 		else {
 			vm_map_unlock(map);
 			return (KERN_INVALID_ADDRESS);
 		}
 	}
 	last_timestamp = map->timestamp;
 	entry = first_entry;
 	while (entry != &map->header && entry->start < end) {
 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
 			/*
 			 * We have not yet clipped the entry.
 			 */
 			saved_start = (start >= entry->start) ? start :
 			    entry->start;
 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
 			if (vm_map_unlock_and_wait(map, 0)) {
 				/*
 				 * Allow interruption of user wiring?
 				 */
 			}
 			vm_map_lock(map);
 			if (last_timestamp + 1 != map->timestamp) {
 				/*
 				 * Look again for the entry because the map was
 				 * modified while it was unlocked.
 				 * Specifically, the entry may have been
 				 * clipped, merged, or deleted.
 				 */
 				if (!vm_map_lookup_entry(map, saved_start,
 				    &tmp_entry)) {
 					if (flags & VM_MAP_WIRE_HOLESOK)
 						tmp_entry = tmp_entry->next;
 					else {
 						if (saved_start == start) {
 							/*
 							 * first_entry has been deleted.
 							 */
 							vm_map_unlock(map);
 							return (KERN_INVALID_ADDRESS);
 						}
 						end = saved_start;
 						rv = KERN_INVALID_ADDRESS;
 						goto done;
 					}
 				}
 				if (entry == first_entry)
 					first_entry = tmp_entry;
 				else
 					first_entry = NULL;
 				entry = tmp_entry;
 			}
 			last_timestamp = map->timestamp;
 			continue;
 		}
 		vm_map_clip_start(map, entry, start);
 		vm_map_clip_end(map, entry, end);
 		/*
 		 * Mark the entry in case the map lock is released.  (See
 		 * above.)
 		 */
 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
 		    entry->wiring_thread == NULL,
 		    ("owned map entry %p", entry));
 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
 		entry->wiring_thread = curthread;
 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
 		    || (entry->protection & prot) != prot) {
 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
 				end = entry->end;
 				rv = KERN_INVALID_ADDRESS;
 				goto done;
 			}
 			goto next_entry;
 		}
 		if (entry->wired_count == 0) {
 			entry->wired_count++;
 			saved_start = entry->start;
 			saved_end = entry->end;
 
 			/*
 			 * Release the map lock, relying on the in-transition
 			 * mark.  Mark the map busy for fork.
 			 */
 			vm_map_busy(map);
 			vm_map_unlock(map);
 
 			faddr = saved_start;
 			do {
 				/*
 				 * Simulate a fault to get the page and enter
 				 * it into the physical map.
 				 */
 				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
 				    VM_FAULT_WIRE)) != KERN_SUCCESS)
 					break;
 			} while ((faddr += PAGE_SIZE) < saved_end);
 			vm_map_lock(map);
 			vm_map_unbusy(map);
 			if (last_timestamp + 1 != map->timestamp) {
 				/*
 				 * Look again for the entry because the map was
 				 * modified while it was unlocked.  The entry
 				 * may have been clipped, but NOT merged or
 				 * deleted.
 				 */
 				result = vm_map_lookup_entry(map, saved_start,
 				    &tmp_entry);
 				KASSERT(result, ("vm_map_wire: lookup failed"));
 				if (entry == first_entry)
 					first_entry = tmp_entry;
 				else
 					first_entry = NULL;
 				entry = tmp_entry;
 				while (entry->end < saved_end) {
 					/*
 					 * In case of failure, handle entries
 					 * that were not fully wired here;
 					 * fully wired entries are handled
 					 * later.
 					 */
 					if (rv != KERN_SUCCESS &&
 					    faddr < entry->end)
 						vm_map_wire_entry_failure(map,
 						    entry, faddr);
 					entry = entry->next;
 				}
 			}
 			last_timestamp = map->timestamp;
 			if (rv != KERN_SUCCESS) {
 				vm_map_wire_entry_failure(map, entry, faddr);
 				end = entry->end;
 				goto done;
 			}
 		} else if (!user_wire ||
 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
 			entry->wired_count++;
 		}
 		/*
 		 * Check the map for holes in the specified region.
 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
 		 */
 	next_entry:
-		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
-		    (entry->end < end && (entry->next == &map->header ||
-		    entry->next->start > entry->end))) {
+		if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
+		    entry->end < end && (entry->next == &map->header ||
+		    entry->next->start > entry->end)) {
 			end = entry->end;
 			rv = KERN_INVALID_ADDRESS;
 			goto done;
 		}
 		entry = entry->next;
 	}
 	rv = KERN_SUCCESS;
 done:
 	need_wakeup = FALSE;
 	if (first_entry == NULL) {
 		result = vm_map_lookup_entry(map, start, &first_entry);
 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
 			first_entry = first_entry->next;
 		else
 			KASSERT(result, ("vm_map_wire: lookup failed"));
 	}
 	for (entry = first_entry; entry != &map->header && entry->start < end;
 	    entry = entry->next) {
 		/*
 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
 		 * space in the unwired region could have been mapped
 		 * while the map lock was dropped for faulting in the
 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
 		 * Moreover, another thread could be simultaneously
 		 * wiring this new mapping entry.  Detect these cases
 		 * and skip any entries marked as in transition not by us.
 		 */
 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
 		    entry->wiring_thread != curthread) {
 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
 			continue;
 		}
 
 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
 			goto next_entry_done;
 
 		if (rv == KERN_SUCCESS) {
 			if (user_wire)
 				entry->eflags |= MAP_ENTRY_USER_WIRED;
 		} else if (entry->wired_count == -1) {
 			/*
 			 * Wiring failed on this entry.  Thus, unwiring is
 			 * unnecessary.
 			 */
 			entry->wired_count = 0;
 		} else if (!user_wire ||
 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
 			/*
 			 * Undo the wiring.  Wiring succeeded on this entry
 			 * but failed on a later entry.  
 			 */
 			if (entry->wired_count == 1)
 				vm_map_entry_unwire(map, entry);
 			else
 				entry->wired_count--;
 		}
 	next_entry_done:
 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
 		    ("vm_map_wire: in-transition flag missing %p", entry));
 		KASSERT(entry->wiring_thread == curthread,
 		    ("vm_map_wire: alien wire %p", entry));
 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
 		    MAP_ENTRY_WIRE_SKIPPED);
 		entry->wiring_thread = NULL;
 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
 			need_wakeup = TRUE;
 		}
 		vm_map_simplify_entry(map, entry);
 	}
 	vm_map_unlock(map);
 	if (need_wakeup)
 		vm_map_wakeup(map);
 	return (rv);
 }
 
 /*
  * vm_map_sync
  *
  * Push any dirty cached pages in the address range to their pager.
  * If syncio is TRUE, dirty pages are written synchronously.
  * If invalidate is TRUE, any cached pages are freed as well.
  *
  * If the size of the region from start to end is zero, we are
  * supposed to flush all modified pages within the region containing
  * start.  Unfortunately, a region can be split or coalesced with
  * neighboring regions, making it difficult to determine what the
  * original region was.  Therefore, we approximate this requirement by
  * flushing the current region containing start.
  *
  * Returns an error if any part of the specified range is not mapped.
  */
 int
 vm_map_sync(
 	vm_map_t map,
 	vm_offset_t start,
 	vm_offset_t end,
 	boolean_t syncio,
 	boolean_t invalidate)
 {
 	vm_map_entry_t current;
 	vm_map_entry_t entry;
 	vm_size_t size;
 	vm_object_t object;
 	vm_ooffset_t offset;
 	unsigned int last_timestamp;
 	boolean_t failed;
 
 	vm_map_lock_read(map);
 	VM_MAP_RANGE_CHECK(map, start, end);
 	if (!vm_map_lookup_entry(map, start, &entry)) {
 		vm_map_unlock_read(map);
 		return (KERN_INVALID_ADDRESS);
 	} else if (start == end) {
 		start = entry->start;
 		end = entry->end;
 	}
 	/*
 	 * Make a first pass to check for user-wired memory and holes.
 	 */
 	for (current = entry; current != &map->header && current->start < end;
 	    current = current->next) {
 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
 			vm_map_unlock_read(map);
 			return (KERN_INVALID_ARGUMENT);
 		}
 		if (end > current->end &&
 		    (current->next == &map->header ||
 			current->end != current->next->start)) {
 			vm_map_unlock_read(map);
 			return (KERN_INVALID_ADDRESS);
 		}
 	}
 
 	if (invalidate)
 		pmap_remove(map->pmap, start, end);
 	failed = FALSE;
 
 	/*
 	 * Make a second pass, cleaning/uncaching pages from the indicated
 	 * objects as we go.
 	 */
 	for (current = entry; current != &map->header && current->start < end;) {
 		offset = current->offset + (start - current->start);
 		size = (end <= current->end ? end : current->end) - start;
 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
 			vm_map_t smap;
 			vm_map_entry_t tentry;
 			vm_size_t tsize;
 
 			smap = current->object.sub_map;
 			vm_map_lock_read(smap);
 			(void) vm_map_lookup_entry(smap, offset, &tentry);
 			tsize = tentry->end - offset;
 			if (tsize < size)
 				size = tsize;
 			object = tentry->object.vm_object;
 			offset = tentry->offset + (offset - tentry->start);
 			vm_map_unlock_read(smap);
 		} else {
 			object = current->object.vm_object;
 		}
 		vm_object_reference(object);
 		last_timestamp = map->timestamp;
 		vm_map_unlock_read(map);
 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
 			failed = TRUE;
 		start += size;
 		vm_object_deallocate(object);
 		vm_map_lock_read(map);
 		if (last_timestamp == map->timestamp ||
 		    !vm_map_lookup_entry(map, start, &current))
 			current = current->next;
 	}
 
 	vm_map_unlock_read(map);
 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
 }
 
 /*
  *	vm_map_entry_unwire:	[ internal use only ]
  *
  *	Make the region specified by this entry pageable.
  *
  *	The map in question should be locked.
  *	[This is the reason for this routine's existence.]
  */
 static void
 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
 {
 
 	VM_MAP_ASSERT_LOCKED(map);
 	KASSERT(entry->wired_count > 0,
 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
 	pmap_unwire(map->pmap, entry->start, entry->end);
 	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
 	    entry->start, PQ_ACTIVE);
 	entry->wired_count = 0;
 }
 
 static void
 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
 {
 
 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
 		vm_object_deallocate(entry->object.vm_object);
 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
 }
 
 /*
  *	vm_map_entry_delete:	[ internal use only ]
  *
  *	Deallocate the given entry from the target map.
  */
 static void
 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
 {
 	vm_object_t object;
 	vm_pindex_t offidxstart, offidxend, count, size1;
 	vm_ooffset_t size;
 
 	vm_map_entry_unlink(map, entry);
 	object = entry->object.vm_object;
 	size = entry->end - entry->start;
 	map->size -= size;
 
 	if (entry->cred != NULL) {
 		swap_release_by_cred(size, entry->cred);
 		crfree(entry->cred);
 	}
 
 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
 	    (object != NULL)) {
 		KASSERT(entry->cred == NULL || object->cred == NULL ||
 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
 		count = OFF_TO_IDX(size);
 		offidxstart = OFF_TO_IDX(entry->offset);
 		offidxend = offidxstart + count;
 		VM_OBJECT_WLOCK(object);
 		if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
 		    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
 		    object == kernel_object || object == kmem_object)) {
 			vm_object_collapse(object);
 
 			/*
 			 * The option OBJPR_NOTMAPPED can be passed here
 			 * because vm_map_delete() already performed
 			 * pmap_remove() on the only mapping to this range
 			 * of pages. 
 			 */
 			vm_object_page_remove(object, offidxstart, offidxend,
 			    OBJPR_NOTMAPPED);
 			if (object->type == OBJT_SWAP)
 				swap_pager_freespace(object, offidxstart,
 				    count);
 			if (offidxend >= object->size &&
 			    offidxstart < object->size) {
 				size1 = object->size;
 				object->size = offidxstart;
 				if (object->cred != NULL) {
 					size1 -= object->size;
 					KASSERT(object->charge >= ptoa(size1),
 					    ("object %p charge < 0", object));
 					swap_release_by_cred(ptoa(size1),
 					    object->cred);
 					object->charge -= ptoa(size1);
 				}
 			}
 		}
 		VM_OBJECT_WUNLOCK(object);
 	} else
 		entry->object.vm_object = NULL;
 	if (map->system_map)
 		vm_map_entry_deallocate(entry, TRUE);
 	else {
 		entry->next = curthread->td_map_def_user;
 		curthread->td_map_def_user = entry;
 	}
 }
 
 /*
  *	vm_map_delete:	[ internal use only ]
  *
  *	Deallocates the given address range from the target
  *	map.
  */
 int
 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
 {
 	vm_map_entry_t entry;
 	vm_map_entry_t first_entry;
 
 	VM_MAP_ASSERT_LOCKED(map);
 	if (start == end)
 		return (KERN_SUCCESS);
 
 	/*
 	 * Find the start of the region, and clip it
 	 */
 	if (!vm_map_lookup_entry(map, start, &first_entry))
 		entry = first_entry->next;
 	else {
 		entry = first_entry;
 		vm_map_clip_start(map, entry, start);
 	}
 
 	/*
 	 * Step through all entries in this region
 	 */
 	while ((entry != &map->header) && (entry->start < end)) {
 		vm_map_entry_t next;
 
 		/*
 		 * Wait for wiring or unwiring of an entry to complete.
 		 * Also wait for any system wirings to disappear on
 		 * user maps.
 		 */
 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
 		    (vm_map_pmap(map) != kernel_pmap &&
 		    vm_map_entry_system_wired_count(entry) != 0)) {
 			unsigned int last_timestamp;
 			vm_offset_t saved_start;
 			vm_map_entry_t tmp_entry;
 
 			saved_start = entry->start;
 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
 			last_timestamp = map->timestamp;
 			(void) vm_map_unlock_and_wait(map, 0);
 			vm_map_lock(map);
 			if (last_timestamp + 1 != map->timestamp) {
 				/*
 				 * Look again for the entry because the map was
 				 * modified while it was unlocked.
 				 * Specifically, the entry may have been
 				 * clipped, merged, or deleted.
 				 */
 				if (!vm_map_lookup_entry(map, saved_start,
 							 &tmp_entry))
 					entry = tmp_entry->next;
 				else {
 					entry = tmp_entry;
 					vm_map_clip_start(map, entry,
 							  saved_start);
 				}
 			}
 			continue;
 		}
 		vm_map_clip_end(map, entry, end);
 
 		next = entry->next;
 
 		/*
 		 * Unwire before removing addresses from the pmap; otherwise,
 		 * unwiring will put the entries back in the pmap.
 		 */
 		if (entry->wired_count != 0) {
 			vm_map_entry_unwire(map, entry);
 		}
 
 		pmap_remove(map->pmap, entry->start, entry->end);
 
 		/*
 		 * Delete the entry only after removing all pmap
 		 * entries pointing to its pages.  (Otherwise, its
 		 * page frames may be reallocated, and any modify bits
 		 * will be set in the wrong object!)
 		 */
 		vm_map_entry_delete(map, entry);
 		entry = next;
 	}
 	return (KERN_SUCCESS);
 }
 
 /*
  *	vm_map_remove:
  *
  *	Remove the given address range from the target map.
  *	This is the exported form of vm_map_delete.
  */
 int
 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
 {
 	int result;
 
 	vm_map_lock(map);
 	VM_MAP_RANGE_CHECK(map, start, end);
 	result = vm_map_delete(map, start, end);
 	vm_map_unlock(map);
 	return (result);
 }
 
 /*
  *	vm_map_check_protection:
  *
  *	Assert that the target map allows the specified privilege on the
  *	entire address region given.  The entire region must be allocated.
  *
  *	WARNING!  This code does not and should not check whether the
  *	contents of the region is accessible.  For example a smaller file
  *	might be mapped into a larger address space.
  *
  *	NOTE!  This code is also called by munmap().
  *
  *	The map must be locked.  A read lock is sufficient.
  */
 boolean_t
 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
 			vm_prot_t protection)
 {
 	vm_map_entry_t entry;
 	vm_map_entry_t tmp_entry;
 
 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
 		return (FALSE);
 	entry = tmp_entry;
 
 	while (start < end) {
 		if (entry == &map->header)
 			return (FALSE);
 		/*
 		 * No holes allowed!
 		 */
 		if (start < entry->start)
 			return (FALSE);
 		/*
 		 * Check protection associated with entry.
 		 */
 		if ((entry->protection & protection) != protection)
 			return (FALSE);
 		/* go to next entry */
 		start = entry->end;
 		entry = entry->next;
 	}
 	return (TRUE);
 }
 
 /*
  *	vm_map_copy_entry:
  *
  *	Copies the contents of the source entry to the destination
  *	entry.  The entries *must* be aligned properly.
  */
 static void
 vm_map_copy_entry(
 	vm_map_t src_map,
 	vm_map_t dst_map,
 	vm_map_entry_t src_entry,
 	vm_map_entry_t dst_entry,
 	vm_ooffset_t *fork_charge)
 {
 	vm_object_t src_object;
 	vm_map_entry_t fake_entry;
 	vm_offset_t size;
 	struct ucred *cred;
 	int charged;
 
 	VM_MAP_ASSERT_LOCKED(dst_map);
 
 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
 		return;
 
 	if (src_entry->wired_count == 0 ||
 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
 		/*
 		 * If the source entry is marked needs_copy, it is already
 		 * write-protected.
 		 */
 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
 			pmap_protect(src_map->pmap,
 			    src_entry->start,
 			    src_entry->end,
 			    src_entry->protection & ~VM_PROT_WRITE);
 		}
 
 		/*
 		 * Make a copy of the object.
 		 */
 		size = src_entry->end - src_entry->start;
 		if ((src_object = src_entry->object.vm_object) != NULL) {
 			VM_OBJECT_WLOCK(src_object);
 			charged = ENTRY_CHARGED(src_entry);
 			if (src_object->handle == NULL &&
 			    (src_object->type == OBJT_DEFAULT ||
 			    src_object->type == OBJT_SWAP)) {
 				vm_object_collapse(src_object);
 				if ((src_object->flags & (OBJ_NOSPLIT |
 				    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
 					vm_object_split(src_entry);
 					src_object =
 					    src_entry->object.vm_object;
 				}
 			}
 			vm_object_reference_locked(src_object);
 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
 			if (src_entry->cred != NULL &&
 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
 				KASSERT(src_object->cred == NULL,
 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
 				     src_object));
 				src_object->cred = src_entry->cred;
 				src_object->charge = size;
 			}
 			VM_OBJECT_WUNLOCK(src_object);
 			dst_entry->object.vm_object = src_object;
 			if (charged) {
 				cred = curthread->td_ucred;
 				crhold(cred);
 				dst_entry->cred = cred;
 				*fork_charge += size;
 				if (!(src_entry->eflags &
 				      MAP_ENTRY_NEEDS_COPY)) {
 					crhold(cred);
 					src_entry->cred = cred;
 					*fork_charge += size;
 				}
 			}
 			src_entry->eflags |= MAP_ENTRY_COW |
 			    MAP_ENTRY_NEEDS_COPY;
 			dst_entry->eflags |= MAP_ENTRY_COW |
 			    MAP_ENTRY_NEEDS_COPY;
 			dst_entry->offset = src_entry->offset;
 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
 				/*
 				 * MAP_ENTRY_VN_WRITECNT cannot
 				 * indicate write reference from
 				 * src_entry, since the entry is
 				 * marked as needs copy.  Allocate a
 				 * fake entry that is used to
 				 * decrement object->un_pager.vnp.writecount
 				 * at the appropriate time.  Attach
 				 * fake_entry to the deferred list.
 				 */
 				fake_entry = vm_map_entry_create(dst_map);
 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
 				vm_object_reference(src_object);
 				fake_entry->object.vm_object = src_object;
 				fake_entry->start = src_entry->start;
 				fake_entry->end = src_entry->end;
 				fake_entry->next = curthread->td_map_def_user;
 				curthread->td_map_def_user = fake_entry;
 			}
 
 			pmap_copy(dst_map->pmap, src_map->pmap,
 			    dst_entry->start, dst_entry->end - dst_entry->start,
 			    src_entry->start);
 		} else {
 			dst_entry->object.vm_object = NULL;
 			dst_entry->offset = 0;
 			if (src_entry->cred != NULL) {
 				dst_entry->cred = curthread->td_ucred;
 				crhold(dst_entry->cred);
 				*fork_charge += size;
 			}
 		}
 	} else {
 		/*
 		 * We don't want to make writeable wired pages copy-on-write.
 		 * Immediately copy these pages into the new map by simulating
 		 * page faults.  The new pages are pageable.
 		 */
 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
 		    fork_charge);
 	}
 }
 
 /*
  * vmspace_map_entry_forked:
  * Update the newly-forked vmspace each time a map entry is inherited
  * or copied.  The values for vm_dsize and vm_tsize are approximate
  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
  */
 static void
 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
     vm_map_entry_t entry)
 {
 	vm_size_t entrysize;
 	vm_offset_t newend;
 
 	entrysize = entry->end - entry->start;
 	vm2->vm_map.size += entrysize;
 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
 		vm2->vm_ssize += btoc(entrysize);
 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
 		newend = MIN(entry->end,
 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
 		vm2->vm_dsize += btoc(newend - entry->start);
 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
 		newend = MIN(entry->end,
 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
 		vm2->vm_tsize += btoc(newend - entry->start);
 	}
 }
 
 /*
  * vmspace_fork:
  * Create a new process vmspace structure and vm_map
  * based on those of an existing process.  The new map
  * is based on the old map, according to the inheritance
  * values on the regions in that map.
  *
  * XXX It might be worth coalescing the entries added to the new vmspace.
  *
  * The source map must not be locked.
  */
 struct vmspace *
 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
 {
 	struct vmspace *vm2;
 	vm_map_t new_map, old_map;
 	vm_map_entry_t new_entry, old_entry;
 	vm_object_t object;
 	int locked;
 
 	old_map = &vm1->vm_map;
 	/* Copy immutable fields of vm1 to vm2. */
 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
 	if (vm2 == NULL)
 		return (NULL);
 	vm2->vm_taddr = vm1->vm_taddr;
 	vm2->vm_daddr = vm1->vm_daddr;
 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
 	vm_map_lock(old_map);
 	if (old_map->busy)
 		vm_map_wait_busy(old_map);
 	new_map = &vm2->vm_map;
 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
 	KASSERT(locked, ("vmspace_fork: lock failed"));
 
 	old_entry = old_map->header.next;
 
 	while (old_entry != &old_map->header) {
 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 			panic("vm_map_fork: encountered a submap");
 
 		switch (old_entry->inheritance) {
 		case VM_INHERIT_NONE:
 			break;
 
 		case VM_INHERIT_SHARE:
 			/*
 			 * Clone the entry, creating the shared object if necessary.
 			 */
 			object = old_entry->object.vm_object;
 			if (object == NULL) {
 				object = vm_object_allocate(OBJT_DEFAULT,
 					atop(old_entry->end - old_entry->start));
 				old_entry->object.vm_object = object;
 				old_entry->offset = 0;
 				if (old_entry->cred != NULL) {
 					object->cred = old_entry->cred;
 					object->charge = old_entry->end -
 					    old_entry->start;
 					old_entry->cred = NULL;
 				}
 			}
 
 			/*
 			 * Add the reference before calling vm_object_shadow
 			 * to insure that a shadow object is created.
 			 */
 			vm_object_reference(object);
 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
 				vm_object_shadow(&old_entry->object.vm_object,
 				    &old_entry->offset,
 				    old_entry->end - old_entry->start);
 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
 				/* Transfer the second reference too. */
 				vm_object_reference(
 				    old_entry->object.vm_object);
 
 				/*
 				 * As in vm_map_simplify_entry(), the
 				 * vnode lock will not be acquired in
 				 * this call to vm_object_deallocate().
 				 */
 				vm_object_deallocate(object);
 				object = old_entry->object.vm_object;
 			}
 			VM_OBJECT_WLOCK(object);
 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
 			if (old_entry->cred != NULL) {
 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
 				object->cred = old_entry->cred;
 				object->charge = old_entry->end - old_entry->start;
 				old_entry->cred = NULL;
 			}
 
 			/*
 			 * Assert the correct state of the vnode
 			 * v_writecount while the object is locked, to
 			 * not relock it later for the assertion
 			 * correctness.
 			 */
 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
 			    object->type == OBJT_VNODE) {
 				KASSERT(((struct vnode *)object->handle)->
 				    v_writecount > 0,
 				    ("vmspace_fork: v_writecount %p", object));
 				KASSERT(object->un_pager.vnp.writemappings > 0,
 				    ("vmspace_fork: vnp.writecount %p",
 				    object));
 			}
 			VM_OBJECT_WUNLOCK(object);
 
 			/*
 			 * Clone the entry, referencing the shared object.
 			 */
 			new_entry = vm_map_entry_create(new_map);
 			*new_entry = *old_entry;
 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
 			    MAP_ENTRY_IN_TRANSITION);
 			new_entry->wiring_thread = NULL;
 			new_entry->wired_count = 0;
 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
 				vnode_pager_update_writecount(object,
 				    new_entry->start, new_entry->end);
 			}
 
 			/*
 			 * Insert the entry into the new map -- we know we're
 			 * inserting at the end of the new map.
 			 */
 			vm_map_entry_link(new_map, new_map->header.prev,
 			    new_entry);
 			vmspace_map_entry_forked(vm1, vm2, new_entry);
 
 			/*
 			 * Update the physical map
 			 */
 			pmap_copy(new_map->pmap, old_map->pmap,
 			    new_entry->start,
 			    (old_entry->end - old_entry->start),
 			    old_entry->start);
 			break;
 
 		case VM_INHERIT_COPY:
 			/*
 			 * Clone the entry and link into the map.
 			 */
 			new_entry = vm_map_entry_create(new_map);
 			*new_entry = *old_entry;
 			/*
 			 * Copied entry is COW over the old object.
 			 */
 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
 			new_entry->wiring_thread = NULL;
 			new_entry->wired_count = 0;
 			new_entry->object.vm_object = NULL;
 			new_entry->cred = NULL;
 			vm_map_entry_link(new_map, new_map->header.prev,
 			    new_entry);
 			vmspace_map_entry_forked(vm1, vm2, new_entry);
 			vm_map_copy_entry(old_map, new_map, old_entry,
 			    new_entry, fork_charge);
 			break;
 
 		case VM_INHERIT_ZERO:
 			/*
 			 * Create a new anonymous mapping entry modelled from
 			 * the old one.
 			 */
 			new_entry = vm_map_entry_create(new_map);
 			memset(new_entry, 0, sizeof(*new_entry));
 
 			new_entry->start = old_entry->start;
 			new_entry->end = old_entry->end;
 			new_entry->avail_ssize = old_entry->avail_ssize;
 			new_entry->eflags = old_entry->eflags &
 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
 			    MAP_ENTRY_VN_WRITECNT);
 			new_entry->protection = old_entry->protection;
 			new_entry->max_protection = old_entry->max_protection;
 			new_entry->inheritance = VM_INHERIT_ZERO;
 
 			vm_map_entry_link(new_map, new_map->header.prev,
 			    new_entry);
 			vmspace_map_entry_forked(vm1, vm2, new_entry);
 
 			new_entry->cred = curthread->td_ucred;
 			crhold(new_entry->cred);
 			*fork_charge += (new_entry->end - new_entry->start);
 
 			break;
 		}
 		old_entry = old_entry->next;
 	}
 	/*
 	 * Use inlined vm_map_unlock() to postpone handling the deferred
 	 * map entries, which cannot be done until both old_map and
 	 * new_map locks are released.
 	 */
 	sx_xunlock(&old_map->lock);
 	sx_xunlock(&new_map->lock);
 	vm_map_process_deferred();
 
 	return (vm2);
 }
 
 int
 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
     vm_prot_t prot, vm_prot_t max, int cow)
 {
 	vm_size_t growsize, init_ssize;
 	rlim_t lmemlim, vmemlim;
 	int rv;
 
 	growsize = sgrowsiz;
 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
 	vm_map_lock(map);
 	PROC_LOCK(curproc);
 	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
 	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
 	PROC_UNLOCK(curproc);
 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
 		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
 			rv = KERN_NO_SPACE;
 			goto out;
 		}
 	}
 	/* If we would blow our VMEM resource limit, no go */
 	if (map->size + init_ssize > vmemlim) {
 		rv = KERN_NO_SPACE;
 		goto out;
 	}
 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
 	    max, cow);
 out:
 	vm_map_unlock(map);
 	return (rv);
 }
 
 static int
 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
 {
 	vm_map_entry_t new_entry, prev_entry;
 	vm_offset_t bot, top;
 	vm_size_t init_ssize;
 	int orient, rv;
 
 	/*
 	 * The stack orientation is piggybacked with the cow argument.
 	 * Extract it into orient and mask the cow argument so that we
 	 * don't pass it around further.
 	 * NOTE: We explicitly allow bi-directional stacks.
 	 */
 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
 	KASSERT(orient != 0, ("No stack grow direction"));
 
 	if (addrbos < vm_map_min(map) ||
 	    addrbos > vm_map_max(map) ||
 	    addrbos + max_ssize < addrbos)
 		return (KERN_NO_SPACE);
 
 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
 
 	/* If addr is already mapped, no go */
 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
 		return (KERN_NO_SPACE);
 
 	/*
 	 * If we can't accomodate max_ssize in the current mapping, no go.
 	 * However, we need to be aware that subsequent user mappings might
 	 * map into the space we have reserved for stack, and currently this
 	 * space is not protected.
 	 *
 	 * Hopefully we will at least detect this condition when we try to
 	 * grow the stack.
 	 */
 	if ((prev_entry->next != &map->header) &&
 	    (prev_entry->next->start < addrbos + max_ssize))
 		return (KERN_NO_SPACE);
 
 	/*
 	 * We initially map a stack of only init_ssize.  We will grow as
 	 * needed later.  Depending on the orientation of the stack (i.e.
 	 * the grow direction) we either map at the top of the range, the
 	 * bottom of the range or in the middle.
 	 *
 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
 	 * and cow to be 0.  Possibly we should eliminate these as input
 	 * parameters, and just pass these values here in the insert call.
 	 */
 	if (orient == MAP_STACK_GROWS_DOWN)
 		bot = addrbos + max_ssize - init_ssize;
 	else if (orient == MAP_STACK_GROWS_UP)
 		bot = addrbos;
 	else
 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
 	top = bot + init_ssize;
 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
 
 	/* Now set the avail_ssize amount. */
 	if (rv == KERN_SUCCESS) {
 		new_entry = prev_entry->next;
 		if (new_entry->end != top || new_entry->start != bot)
 			panic("Bad entry start/end for new stack entry");
 
 		new_entry->avail_ssize = max_ssize - init_ssize;
 		KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
 		    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
 		    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
 		KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
 		    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
 		    ("new entry lacks MAP_ENTRY_GROWS_UP"));
 	}
 
 	return (rv);
 }
 
 static int stack_guard_page = 0;
 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
     &stack_guard_page, 0,
     "Insert stack guard page ahead of the growable segments.");
 
 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
  * desired address is already mapped, or if we successfully grow
  * the stack.  Also returns KERN_SUCCESS if addr is outside the
  * stack range (this is strange, but preserves compatibility with
  * the grow function in vm_machdep.c).
  */
 int
 vm_map_growstack(struct proc *p, vm_offset_t addr)
 {
 	vm_map_entry_t next_entry, prev_entry;
 	vm_map_entry_t new_entry, stack_entry;
 	struct vmspace *vm = p->p_vmspace;
 	vm_map_t map = &vm->vm_map;
 	vm_offset_t end;
 	vm_size_t growsize;
 	size_t grow_amount, max_grow;
 	rlim_t lmemlim, stacklim, vmemlim;
 	int is_procstack, rv;
 	struct ucred *cred;
 #ifdef notyet
 	uint64_t limit;
 #endif
 #ifdef RACCT
 	int error;
 #endif
 
 Retry:
 	PROC_LOCK(p);
 	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
 	stacklim = lim_cur(p, RLIMIT_STACK);
 	vmemlim = lim_cur(p, RLIMIT_VMEM);
 	PROC_UNLOCK(p);
 
 	vm_map_lock_read(map);
 
 	/* If addr is already in the entry range, no need to grow.*/
 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
 		vm_map_unlock_read(map);
 		return (KERN_SUCCESS);
 	}
 
 	next_entry = prev_entry->next;
 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
 		/*
 		 * This entry does not grow upwards. Since the address lies
 		 * beyond this entry, the next entry (if one exists) has to
 		 * be a downward growable entry. The entry list header is
 		 * never a growable entry, so it suffices to check the flags.
 		 */
 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
 			vm_map_unlock_read(map);
 			return (KERN_SUCCESS);
 		}
 		stack_entry = next_entry;
 	} else {
 		/*
 		 * This entry grows upward. If the next entry does not at
 		 * least grow downwards, this is the entry we need to grow.
 		 * otherwise we have two possible choices and we have to
 		 * select one.
 		 */
 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
 			/*
 			 * We have two choices; grow the entry closest to
 			 * the address to minimize the amount of growth.
 			 */
 			if (addr - prev_entry->end <= next_entry->start - addr)
 				stack_entry = prev_entry;
 			else
 				stack_entry = next_entry;
 		} else
 			stack_entry = prev_entry;
 	}
 
 	if (stack_entry == next_entry) {
 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
 		KASSERT(addr < stack_entry->start, ("foo"));
 		end = (prev_entry != &map->header) ? prev_entry->end :
 		    stack_entry->start - stack_entry->avail_ssize;
 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
 		max_grow = stack_entry->start - end;
 	} else {
 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
 		KASSERT(addr >= stack_entry->end, ("foo"));
 		end = (next_entry != &map->header) ? next_entry->start :
 		    stack_entry->end + stack_entry->avail_ssize;
 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
 		max_grow = end - stack_entry->end;
 	}
 
 	if (grow_amount > stack_entry->avail_ssize) {
 		vm_map_unlock_read(map);
 		return (KERN_NO_SPACE);
 	}
 
 	/*
 	 * If there is no longer enough space between the entries nogo, and
 	 * adjust the available space.  Note: this  should only happen if the
 	 * user has mapped into the stack area after the stack was created,
 	 * and is probably an error.
 	 *
 	 * This also effectively destroys any guard page the user might have
 	 * intended by limiting the stack size.
 	 */
 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
 		if (vm_map_lock_upgrade(map))
 			goto Retry;
 
 		stack_entry->avail_ssize = max_grow;
 
 		vm_map_unlock(map);
 		return (KERN_NO_SPACE);
 	}
 
 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr &&
 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack) ? 1 : 0;
 
 	/*
 	 * If this is the main process stack, see if we're over the stack
 	 * limit.
 	 */
 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
 		vm_map_unlock_read(map);
 		return (KERN_NO_SPACE);
 	}
 #ifdef RACCT
 	if (racct_enable) {
 		PROC_LOCK(p);
 		if (is_procstack && racct_set(p, RACCT_STACK,
 		    ctob(vm->vm_ssize) + grow_amount)) {
 			PROC_UNLOCK(p);
 			vm_map_unlock_read(map);
 			return (KERN_NO_SPACE);
 		}
 		PROC_UNLOCK(p);
 	}
 #endif
 
 	/* Round up the grow amount modulo sgrowsiz */
 	growsize = sgrowsiz;
 	grow_amount = roundup(grow_amount, growsize);
 	if (grow_amount > stack_entry->avail_ssize)
 		grow_amount = stack_entry->avail_ssize;
 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
 		grow_amount = trunc_page((vm_size_t)stacklim) -
 		    ctob(vm->vm_ssize);
 	}
 #ifdef notyet
 	PROC_LOCK(p);
 	limit = racct_get_available(p, RACCT_STACK);
 	PROC_UNLOCK(p);
 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
 		grow_amount = limit - ctob(vm->vm_ssize);
 #endif
 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
 			vm_map_unlock_read(map);
 			rv = KERN_NO_SPACE;
 			goto out;
 		}
 #ifdef RACCT
 		if (racct_enable) {
 			PROC_LOCK(p);
 			if (racct_set(p, RACCT_MEMLOCK,
 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
 				PROC_UNLOCK(p);
 				vm_map_unlock_read(map);
 				rv = KERN_NO_SPACE;
 				goto out;
 			}
 			PROC_UNLOCK(p);
 		}
 #endif
 	}
 	/* If we would blow our VMEM resource limit, no go */
 	if (map->size + grow_amount > vmemlim) {
 		vm_map_unlock_read(map);
 		rv = KERN_NO_SPACE;
 		goto out;
 	}
 #ifdef RACCT
 	if (racct_enable) {
 		PROC_LOCK(p);
 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
 			PROC_UNLOCK(p);
 			vm_map_unlock_read(map);
 			rv = KERN_NO_SPACE;
 			goto out;
 		}
 		PROC_UNLOCK(p);
 	}
 #endif
 
 	if (vm_map_lock_upgrade(map))
 		goto Retry;
 
 	if (stack_entry == next_entry) {
 		/*
 		 * Growing downward.
 		 */
 		/* Get the preliminary new entry start value */
 		addr = stack_entry->start - grow_amount;
 
 		/*
 		 * If this puts us into the previous entry, cut back our
 		 * growth to the available space. Also, see the note above.
 		 */
 		if (addr < end) {
 			stack_entry->avail_ssize = max_grow;
 			addr = end;
 			if (stack_guard_page)
 				addr += PAGE_SIZE;
 		}
 
 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
 		    next_entry->protection, next_entry->max_protection,
 		    MAP_STACK_GROWS_DOWN);
 
 		/* Adjust the available stack space by the amount we grew. */
 		if (rv == KERN_SUCCESS) {
 			new_entry = prev_entry->next;
 			KASSERT(new_entry == stack_entry->prev, ("foo"));
 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
 			KASSERT(new_entry->start == addr, ("foo"));
 			KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) !=
 			    0, ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
 			grow_amount = new_entry->end - new_entry->start;
 			new_entry->avail_ssize = stack_entry->avail_ssize -
 			    grow_amount;
 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
 		}
 	} else {
 		/*
 		 * Growing upward.
 		 */
 		addr = stack_entry->end + grow_amount;
 
 		/*
 		 * If this puts us into the next entry, cut back our growth
 		 * to the available space. Also, see the note above.
 		 */
 		if (addr > end) {
 			stack_entry->avail_ssize = end - stack_entry->end;
 			addr = end;
 			if (stack_guard_page)
 				addr -= PAGE_SIZE;
 		}
 
 		grow_amount = addr - stack_entry->end;
 		cred = stack_entry->cred;
 		if (cred == NULL && stack_entry->object.vm_object != NULL)
 			cred = stack_entry->object.vm_object->cred;
 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
 			rv = KERN_NO_SPACE;
 		/* Grow the underlying object if applicable. */
 		else if (stack_entry->object.vm_object == NULL ||
 		    vm_object_coalesce(stack_entry->object.vm_object,
 		    stack_entry->offset,
 		    (vm_size_t)(stack_entry->end - stack_entry->start),
 		    (vm_size_t)grow_amount, cred != NULL)) {
 			map->size += (addr - stack_entry->end);
 			/* Update the current entry. */
 			stack_entry->end = addr;
 			stack_entry->avail_ssize -= grow_amount;
 			vm_map_entry_resize_free(map, stack_entry);
 			rv = KERN_SUCCESS;
 
 			if (next_entry != &map->header)
 				vm_map_clip_start(map, next_entry, addr);
 		} else
 			rv = KERN_FAILURE;
 	}
 
 	if (rv == KERN_SUCCESS && is_procstack)
 		vm->vm_ssize += btoc(grow_amount);
 
 	vm_map_unlock(map);
 
 	/*
 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
 	 */
 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
 		vm_map_wire(map,
 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
 		    (stack_entry == next_entry) ? stack_entry->start : addr,
 		    (p->p_flag & P_SYSTEM)
 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
 	}
 
 out:
 #ifdef RACCT
 	if (racct_enable && rv != KERN_SUCCESS) {
 		PROC_LOCK(p);
 		error = racct_set(p, RACCT_VMEM, map->size);
 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
 		if (!old_mlock) {
 			error = racct_set(p, RACCT_MEMLOCK,
 			    ptoa(pmap_wired_count(map->pmap)));
 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
 		}
 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
 		PROC_UNLOCK(p);
 	}
 #endif
 
 	return (rv);
 }
 
 /*
  * Unshare the specified VM space for exec.  If other processes are
  * mapped to it, then create a new one.  The new vmspace is null.
  */
 int
 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
 {
 	struct vmspace *oldvmspace = p->p_vmspace;
 	struct vmspace *newvmspace;
 
 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
 	    ("vmspace_exec recursed"));
 	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
 	if (newvmspace == NULL)
 		return (ENOMEM);
 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
 	/*
 	 * This code is written like this for prototype purposes.  The
 	 * goal is to avoid running down the vmspace here, but let the
 	 * other process's that are still using the vmspace to finally
 	 * run it down.  Even though there is little or no chance of blocking
 	 * here, it is a good idea to keep this form for future mods.
 	 */
 	PROC_VMSPACE_LOCK(p);
 	p->p_vmspace = newvmspace;
 	PROC_VMSPACE_UNLOCK(p);
 	if (p == curthread->td_proc)
 		pmap_activate(curthread);
 	curthread->td_pflags |= TDP_EXECVMSPC;
 	return (0);
 }
 
 /*
  * Unshare the specified VM space for forcing COW.  This
  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
  */
 int
 vmspace_unshare(struct proc *p)
 {
 	struct vmspace *oldvmspace = p->p_vmspace;
 	struct vmspace *newvmspace;
 	vm_ooffset_t fork_charge;
 
 	if (oldvmspace->vm_refcnt == 1)
 		return (0);
 	fork_charge = 0;
 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
 	if (newvmspace == NULL)
 		return (ENOMEM);
 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
 		vmspace_free(newvmspace);
 		return (ENOMEM);
 	}
 	PROC_VMSPACE_LOCK(p);
 	p->p_vmspace = newvmspace;
 	PROC_VMSPACE_UNLOCK(p);
 	if (p == curthread->td_proc)
 		pmap_activate(curthread);
 	vmspace_free(oldvmspace);
 	return (0);
 }
 
 /*
  *	vm_map_lookup:
  *
  *	Finds the VM object, offset, and
  *	protection for a given virtual address in the
  *	specified map, assuming a page fault of the
  *	type specified.
  *
  *	Leaves the map in question locked for read; return
  *	values are guaranteed until a vm_map_lookup_done
  *	call is performed.  Note that the map argument
  *	is in/out; the returned map must be used in
  *	the call to vm_map_lookup_done.
  *
  *	A handle (out_entry) is returned for use in
  *	vm_map_lookup_done, to make that fast.
  *
  *	If a lookup is requested with "write protection"
  *	specified, the map may be changed to perform virtual
  *	copying operations, although the data referenced will
  *	remain the same.
  */
 int
 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
 	      vm_offset_t vaddr,
 	      vm_prot_t fault_typea,
 	      vm_map_entry_t *out_entry,	/* OUT */
 	      vm_object_t *object,		/* OUT */
 	      vm_pindex_t *pindex,		/* OUT */
 	      vm_prot_t *out_prot,		/* OUT */
 	      boolean_t *wired)			/* OUT */
 {
 	vm_map_entry_t entry;
 	vm_map_t map = *var_map;
 	vm_prot_t prot;
 	vm_prot_t fault_type = fault_typea;
 	vm_object_t eobject;
 	vm_size_t size;
 	struct ucred *cred;
 
 RetryLookup:;
 
 	vm_map_lock_read(map);
 
 	/*
 	 * Lookup the faulting address.
 	 */
 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
 		vm_map_unlock_read(map);
 		return (KERN_INVALID_ADDRESS);
 	}
 
 	entry = *out_entry;
 
 	/*
 	 * Handle submaps.
 	 */
 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 		vm_map_t old_map = map;
 
 		*var_map = map = entry->object.sub_map;
 		vm_map_unlock_read(old_map);
 		goto RetryLookup;
 	}
 
 	/*
 	 * Check whether this task is allowed to have this page.
 	 */
 	prot = entry->protection;
 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
 		vm_map_unlock_read(map);
 		return (KERN_PROTECTION_FAILURE);
 	}
 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
 	    ("entry %p flags %x", entry, entry->eflags));
 	if ((fault_typea & VM_PROT_COPY) != 0 &&
 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
 		vm_map_unlock_read(map);
 		return (KERN_PROTECTION_FAILURE);
 	}
 
 	/*
 	 * If this page is not pageable, we have to get it for all possible
 	 * accesses.
 	 */
 	*wired = (entry->wired_count != 0);
 	if (*wired)
 		fault_type = entry->protection;
 	size = entry->end - entry->start;
 	/*
 	 * If the entry was copy-on-write, we either ...
 	 */
 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
 		/*
 		 * If we want to write the page, we may as well handle that
 		 * now since we've got the map locked.
 		 *
 		 * If we don't need to write the page, we just demote the
 		 * permissions allowed.
 		 */
 		if ((fault_type & VM_PROT_WRITE) != 0 ||
 		    (fault_typea & VM_PROT_COPY) != 0) {
 			/*
 			 * Make a new object, and place it in the object
 			 * chain.  Note that no new references have appeared
 			 * -- one just moved from the map to the new
 			 * object.
 			 */
 			if (vm_map_lock_upgrade(map))
 				goto RetryLookup;
 
 			if (entry->cred == NULL) {
 				/*
 				 * The debugger owner is charged for
 				 * the memory.
 				 */
 				cred = curthread->td_ucred;
 				crhold(cred);
 				if (!swap_reserve_by_cred(size, cred)) {
 					crfree(cred);
 					vm_map_unlock(map);
 					return (KERN_RESOURCE_SHORTAGE);
 				}
 				entry->cred = cred;
 			}
 			vm_object_shadow(&entry->object.vm_object,
 			    &entry->offset, size);
 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
 			eobject = entry->object.vm_object;
 			if (eobject->cred != NULL) {
 				/*
 				 * The object was not shadowed.
 				 */
 				swap_release_by_cred(size, entry->cred);
 				crfree(entry->cred);
 				entry->cred = NULL;
 			} else if (entry->cred != NULL) {
 				VM_OBJECT_WLOCK(eobject);
 				eobject->cred = entry->cred;
 				eobject->charge = size;
 				VM_OBJECT_WUNLOCK(eobject);
 				entry->cred = NULL;
 			}
 
 			vm_map_lock_downgrade(map);
 		} else {
 			/*
 			 * We're attempting to read a copy-on-write page --
 			 * don't allow writes.
 			 */
 			prot &= ~VM_PROT_WRITE;
 		}
 	}
 
 	/*
 	 * Create an object if necessary.
 	 */
 	if (entry->object.vm_object == NULL &&
 	    !map->system_map) {
 		if (vm_map_lock_upgrade(map))
 			goto RetryLookup;
 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
 		    atop(size));
 		entry->offset = 0;
 		if (entry->cred != NULL) {
 			VM_OBJECT_WLOCK(entry->object.vm_object);
 			entry->object.vm_object->cred = entry->cred;
 			entry->object.vm_object->charge = size;
 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
 			entry->cred = NULL;
 		}
 		vm_map_lock_downgrade(map);
 	}
 
 	/*
 	 * Return the object/offset from this entry.  If the entry was
 	 * copy-on-write or empty, it has been fixed up.
 	 */
 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
 	*object = entry->object.vm_object;
 
 	*out_prot = prot;
 	return (KERN_SUCCESS);
 }
 
 /*
  *	vm_map_lookup_locked:
  *
  *	Lookup the faulting address.  A version of vm_map_lookup that returns 
  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
  */
 int
 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
 		     vm_offset_t vaddr,
 		     vm_prot_t fault_typea,
 		     vm_map_entry_t *out_entry,	/* OUT */
 		     vm_object_t *object,	/* OUT */
 		     vm_pindex_t *pindex,	/* OUT */
 		     vm_prot_t *out_prot,	/* OUT */
 		     boolean_t *wired)		/* OUT */
 {
 	vm_map_entry_t entry;
 	vm_map_t map = *var_map;
 	vm_prot_t prot;
 	vm_prot_t fault_type = fault_typea;
 
 	/*
 	 * Lookup the faulting address.
 	 */
 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
 		return (KERN_INVALID_ADDRESS);
 
 	entry = *out_entry;
 
 	/*
 	 * Fail if the entry refers to a submap.
 	 */
 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 		return (KERN_FAILURE);
 
 	/*
 	 * Check whether this task is allowed to have this page.
 	 */
 	prot = entry->protection;
 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
 	if ((fault_type & prot) != fault_type)
 		return (KERN_PROTECTION_FAILURE);
 
 	/*
 	 * If this page is not pageable, we have to get it for all possible
 	 * accesses.
 	 */
 	*wired = (entry->wired_count != 0);
 	if (*wired)
 		fault_type = entry->protection;
 
 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
 		/*
 		 * Fail if the entry was copy-on-write for a write fault.
 		 */
 		if (fault_type & VM_PROT_WRITE)
 			return (KERN_FAILURE);
 		/*
 		 * We're attempting to read a copy-on-write page --
 		 * don't allow writes.
 		 */
 		prot &= ~VM_PROT_WRITE;
 	}
 
 	/*
 	 * Fail if an object should be created.
 	 */
 	if (entry->object.vm_object == NULL && !map->system_map)
 		return (KERN_FAILURE);
 
 	/*
 	 * Return the object/offset from this entry.  If the entry was
 	 * copy-on-write or empty, it has been fixed up.
 	 */
 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
 	*object = entry->object.vm_object;
 
 	*out_prot = prot;
 	return (KERN_SUCCESS);
 }
 
 /*
  *	vm_map_lookup_done:
  *
  *	Releases locks acquired by a vm_map_lookup
  *	(according to the handle returned by that lookup).
  */
 void
 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
 {
 	/*
 	 * Unlock the main-level map
 	 */
 	vm_map_unlock_read(map);
 }
 
 #include "opt_ddb.h"
 #ifdef DDB
 #include <sys/kernel.h>
 
 #include <ddb/ddb.h>
 
 static void
 vm_map_print(vm_map_t map)
 {
 	vm_map_entry_t entry;
 
 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
 	    (void *)map,
 	    (void *)map->pmap, map->nentries, map->timestamp);
 
 	db_indent += 2;
 	for (entry = map->header.next; entry != &map->header;
 	    entry = entry->next) {
 		db_iprintf("map entry %p: start=%p, end=%p\n",
 		    (void *)entry, (void *)entry->start, (void *)entry->end);
 		{
 			static char *inheritance_name[4] =
 			{"share", "copy", "none", "donate_copy"};
 
 			db_iprintf(" prot=%x/%x/%s",
 			    entry->protection,
 			    entry->max_protection,
 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
 			if (entry->wired_count != 0)
 				db_printf(", wired");
 		}
 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
 			db_printf(", share=%p, offset=0x%jx\n",
 			    (void *)entry->object.sub_map,
 			    (uintmax_t)entry->offset);
 			if ((entry->prev == &map->header) ||
 			    (entry->prev->object.sub_map !=
 				entry->object.sub_map)) {
 				db_indent += 2;
 				vm_map_print((vm_map_t)entry->object.sub_map);
 				db_indent -= 2;
 			}
 		} else {
 			if (entry->cred != NULL)
 				db_printf(", ruid %d", entry->cred->cr_ruid);
 			db_printf(", object=%p, offset=0x%jx",
 			    (void *)entry->object.vm_object,
 			    (uintmax_t)entry->offset);
 			if (entry->object.vm_object && entry->object.vm_object->cred)
 				db_printf(", obj ruid %d charge %jx",
 				    entry->object.vm_object->cred->cr_ruid,
 				    (uintmax_t)entry->object.vm_object->charge);
 			if (entry->eflags & MAP_ENTRY_COW)
 				db_printf(", copy (%s)",
 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
 			db_printf("\n");
 
 			if ((entry->prev == &map->header) ||
 			    (entry->prev->object.vm_object !=
 				entry->object.vm_object)) {
 				db_indent += 2;
 				vm_object_print((db_expr_t)(intptr_t)
 						entry->object.vm_object,
 						0, 0, (char *)0);
 				db_indent -= 2;
 			}
 		}
 	}
 	db_indent -= 2;
 }
 
 DB_SHOW_COMMAND(map, map)
 {
 
 	if (!have_addr) {
 		db_printf("usage: show map <addr>\n");
 		return;
 	}
 	vm_map_print((vm_map_t)addr);
 }
 
 DB_SHOW_COMMAND(procvm, procvm)
 {
 	struct proc *p;
 
 	if (have_addr) {
 		p = db_lookup_proc(addr);
 	} else {
 		p = curproc;
 	}
 
 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
 	    (void *)vmspace_pmap(p->p_vmspace));
 
 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
 }
 
 #endif /* DDB */
Index: stable/10
===================================================================
--- stable/10	(revision 320564)
+++ stable/10	(revision 320565)

Property changes on: stable/10
___________________________________________________________________
Modified: svn:mergeinfo
## -0,0 +0,1 ##
   Merged /head:r320332