Index: projects/clang500-import/contrib/llvm/tools/lld/ELF/Writer.cpp =================================================================== --- projects/clang500-import/contrib/llvm/tools/lld/ELF/Writer.cpp (revision 320070) +++ projects/clang500-import/contrib/llvm/tools/lld/ELF/Writer.cpp (revision 320071) @@ -1,1892 +1,1897 @@ //===- Writer.cpp ---------------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "Writer.h" #include "Config.h" #include "Filesystem.h" #include "LinkerScript.h" #include "MapFile.h" #include "Memory.h" #include "OutputSections.h" #include "Relocations.h" #include "Strings.h" #include "SymbolTable.h" #include "SyntheticSections.h" #include "Target.h" #include "Threads.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/FileOutputBuffer.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; using namespace llvm::support; using namespace llvm::support::endian; using namespace lld; using namespace lld::elf; namespace { // The writer writes a SymbolTable result to a file. template class Writer { public: typedef typename ELFT::Shdr Elf_Shdr; typedef typename ELFT::Ehdr Elf_Ehdr; typedef typename ELFT::Phdr Elf_Phdr; void run(); private: void clearOutputSections(); void createSyntheticSections(); void copyLocalSymbols(); void addSectionSymbols(); void addReservedSymbols(); void createSections(); void forEachRelSec(std::function Fn); void sortSections(); void finalizeSections(); void addPredefinedSections(); std::vector createPhdrs(); void removeEmptyPTLoad(); void addPtArmExid(std::vector &Phdrs); void assignFileOffsets(); void assignFileOffsetsBinary(); void setPhdrs(); void fixSectionAlignments(); void fixPredefinedSymbols(); void openFile(); void writeHeader(); void writeSections(); void writeSectionsBinary(); void writeBuildId(); std::unique_ptr Buffer; OutputSectionFactory Factory{OutputSections}; void addRelIpltSymbols(); void addStartEndSymbols(); void addStartStopSymbols(OutputSection *Sec); uint64_t getEntryAddr(); OutputSection *findSection(StringRef Name); OutputSection *findSectionInScript(StringRef Name); OutputSectionCommand *findSectionCommand(StringRef Name); std::vector Phdrs; uint64_t FileSize; uint64_t SectionHeaderOff; }; } // anonymous namespace StringRef elf::getOutputSectionName(StringRef Name) { // ".zdebug_" is a prefix for ZLIB-compressed sections. // Because we decompressed input sections, we want to remove 'z'. if (Name.startswith(".zdebug_")) return Saver.save("." + Name.substr(2)); if (Config->Relocatable) return Name; for (StringRef V : {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", ".gcc_except_table.", ".tdata.", ".ARM.exidx."}) { StringRef Prefix = V.drop_back(); if (Name.startswith(V) || Name == Prefix) return Prefix; } // CommonSection is identified as "COMMON" in linker scripts. // By default, it should go to .bss section. if (Name == "COMMON") return ".bss"; return Name; } template static bool needsInterpSection() { return !Symtab::X->getSharedFiles().empty() && !Config->DynamicLinker.empty() && !Script->ignoreInterpSection(); } template void elf::writeResult() { Writer().run(); } template void Writer::removeEmptyPTLoad() { auto I = std::remove_if(Phdrs.begin(), Phdrs.end(), [&](const PhdrEntry &P) { if (P.p_type != PT_LOAD) return false; if (!P.First) return true; uint64_t Size = P.Last->Addr + P.Last->Size - P.First->Addr; return Size == 0; }); Phdrs.erase(I, Phdrs.end()); } template static void combineEhFrameSections() { for (InputSectionBase *&S : InputSections) { EhInputSection *ES = dyn_cast(S); if (!ES || !ES->Live) continue; In::EhFrame->addSection(ES); S = nullptr; } std::vector &V = InputSections; V.erase(std::remove(V.begin(), V.end(), nullptr), V.end()); } template void Writer::clearOutputSections() { if (Script->Opt.HasSections) Script->createOrphanCommands(); else Script->fabricateDefaultCommands(); // Clear the OutputSections to make sure it is not used anymore. Any // code from this point on should be using the linker script // commands. for (OutputSection *Sec : OutputSections) Sec->Sections.clear(); OutputSections.clear(); } // The main function of the writer. template void Writer::run() { // Create linker-synthesized sections such as .got or .plt. // Such sections are of type input section. createSyntheticSections(); if (!Config->Relocatable) combineEhFrameSections(); // We need to create some reserved symbols such as _end. Create them. if (!Config->Relocatable) addReservedSymbols(); // Create output sections. if (Script->Opt.HasSections) { // If linker script contains SECTIONS commands, let it create sections. Script->processCommands(Factory); // Linker scripts may have left some input sections unassigned. // Assign such sections using the default rule. Script->addOrphanSections(Factory); } else { // If linker script does not contain SECTIONS commands, create // output sections by default rules. We still need to give the // linker script a chance to run, because it might contain // non-SECTIONS commands such as ASSERT. createSections(); Script->processCommands(Factory); } if (Config->Discard != DiscardPolicy::All) copyLocalSymbols(); if (Config->CopyRelocs) addSectionSymbols(); // Now that we have a complete set of output sections. This function // completes section contents. For example, we need to add strings // to the string table, and add entries to .got and .plt. // finalizeSections does that. finalizeSections(); if (ErrorCount) return; if (!Script->Opt.HasSections && !Config->Relocatable) fixSectionAlignments(); // If -compressed-debug-sections is specified, we need to compress // .debug_* sections. Do it right now because it changes the size of // output sections. parallelForEach( OutputSectionCommands.begin(), OutputSectionCommands.end(), [](OutputSectionCommand *Cmd) { Cmd->maybeCompress(); }); Script->assignAddresses(Phdrs); // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a // 0 sized region. This has to be done late since only after assignAddresses // we know the size of the sections. removeEmptyPTLoad(); if (!Config->OFormatBinary) assignFileOffsets(); else assignFileOffsetsBinary(); setPhdrs(); if (Config->Relocatable) { for (OutputSectionCommand *Cmd : OutputSectionCommands) Cmd->Sec->Addr = 0; } else { fixPredefinedSymbols(); } // It does not make sense try to open the file if we have error already. if (ErrorCount) return; // Write the result down to a file. openFile(); if (ErrorCount) return; if (!Config->OFormatBinary) { writeHeader(); writeSections(); } else { writeSectionsBinary(); } // Backfill .note.gnu.build-id section content. This is done at last // because the content is usually a hash value of the entire output file. writeBuildId(); if (ErrorCount) return; // Handle -Map option. writeMapFile(OutputSectionCommands); if (ErrorCount) return; if (auto EC = Buffer->commit()) error("failed to write to the output file: " + EC.message()); // Flush the output streams and exit immediately. A full shutdown // is a good test that we are keeping track of all allocated memory, // but actually freeing it is a waste of time in a regular linker run. if (Config->ExitEarly) exitLld(0); } // Initialize Out members. template void Writer::createSyntheticSections() { // Initialize all pointers with NULL. This is needed because // you can call lld::elf::main more than once as a library. memset(&Out::First, 0, sizeof(Out)); auto Add = [](InputSectionBase *Sec) { InputSections.push_back(Sec); }; InX::DynStrTab = make(".dynstr", true); InX::Dynamic = make>(); In::RelaDyn = make>( Config->IsRela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc); InX::ShStrTab = make(".shstrtab", false); Out::ElfHeader = make("", 0, SHF_ALLOC); Out::ElfHeader->Size = sizeof(Elf_Ehdr); Out::ProgramHeaders = make("", 0, SHF_ALLOC); Out::ProgramHeaders->updateAlignment(Config->Wordsize); if (needsInterpSection()) { InX::Interp = createInterpSection(); Add(InX::Interp); } else { InX::Interp = nullptr; } if (Config->Strip != StripPolicy::All) { InX::StrTab = make(".strtab", false); InX::SymTab = make>(*InX::StrTab); } if (Config->BuildId != BuildIdKind::None) { InX::BuildId = make(); Add(InX::BuildId); } InX::Common = createCommonSection(); if (InX::Common) Add(InX::Common); InX::Bss = make(".bss"); Add(InX::Bss); InX::BssRelRo = make(".bss.rel.ro"); Add(InX::BssRelRo); // Add MIPS-specific sections. bool HasDynSymTab = !Symtab::X->getSharedFiles().empty() || Config->Pic || Config->ExportDynamic; if (Config->EMachine == EM_MIPS) { if (!Config->Shared && HasDynSymTab) { InX::MipsRldMap = make(); Add(InX::MipsRldMap); } if (auto *Sec = MipsAbiFlagsSection::create()) Add(Sec); if (auto *Sec = MipsOptionsSection::create()) Add(Sec); if (auto *Sec = MipsReginfoSection::create()) Add(Sec); } if (HasDynSymTab) { InX::DynSymTab = make>(*InX::DynStrTab); Add(InX::DynSymTab); In::VerSym = make>(); Add(In::VerSym); if (!Config->VersionDefinitions.empty()) { In::VerDef = make>(); Add(In::VerDef); } In::VerNeed = make>(); Add(In::VerNeed); if (Config->GnuHash) { InX::GnuHashTab = make(); Add(InX::GnuHashTab); } if (Config->SysvHash) { In::HashTab = make>(); Add(In::HashTab); } Add(InX::Dynamic); Add(InX::DynStrTab); Add(In::RelaDyn); } // Add .got. MIPS' .got is so different from the other archs, // it has its own class. if (Config->EMachine == EM_MIPS) { InX::MipsGot = make(); Add(InX::MipsGot); } else { InX::Got = make(); Add(InX::Got); } InX::GotPlt = make(); Add(InX::GotPlt); InX::IgotPlt = make(); Add(InX::IgotPlt); if (Config->GdbIndex) { InX::GdbIndex = make(); Add(InX::GdbIndex); } // We always need to add rel[a].plt to output if it has entries. // Even for static linking it can contain R_[*]_IRELATIVE relocations. In::RelaPlt = make>( Config->IsRela ? ".rela.plt" : ".rel.plt", false /*Sort*/); Add(In::RelaPlt); // The RelaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure // that the IRelative relocations are processed last by the dynamic loader In::RelaIplt = make>( (Config->EMachine == EM_ARM) ? ".rel.dyn" : In::RelaPlt->Name, false /*Sort*/); Add(In::RelaIplt); InX::Plt = make(Target->PltHeaderSize); Add(InX::Plt); InX::Iplt = make(0); Add(InX::Iplt); if (!Config->Relocatable) { if (Config->EhFrameHdr) { In::EhFrameHdr = make>(); Add(In::EhFrameHdr); } In::EhFrame = make>(); Add(In::EhFrame); } if (InX::SymTab) Add(InX::SymTab); Add(InX::ShStrTab); if (InX::StrTab) Add(InX::StrTab); } static bool shouldKeepInSymtab(SectionBase *Sec, StringRef SymName, const SymbolBody &B) { if (B.isFile() || B.isSection()) return false; // If sym references a section in a discarded group, don't keep it. if (Sec == &InputSection::Discarded) return false; if (Config->Discard == DiscardPolicy::None) return true; // In ELF assembly .L symbols are normally discarded by the assembler. // If the assembler fails to do so, the linker discards them if // * --discard-locals is used. // * The symbol is in a SHF_MERGE section, which is normally the reason for // the assembler keeping the .L symbol. if (!SymName.startswith(".L") && !SymName.empty()) return true; if (Config->Discard == DiscardPolicy::Locals) return false; return !Sec || !(Sec->Flags & SHF_MERGE); } static bool includeInSymtab(const SymbolBody &B) { if (!B.isLocal() && !B.symbol()->IsUsedInRegularObj) return false; if (auto *D = dyn_cast(&B)) { // Always include absolute symbols. SectionBase *Sec = D->Section; if (!Sec) return true; if (auto *IS = dyn_cast(Sec)) { Sec = IS->Repl; IS = cast(Sec); // Exclude symbols pointing to garbage-collected sections. if (!IS->Live) return false; } if (auto *S = dyn_cast(Sec)) if (!S->getSectionPiece(D->Value)->Live) return false; } return true; } // Local symbols are not in the linker's symbol table. This function scans // each object file's symbol table to copy local symbols to the output. template void Writer::copyLocalSymbols() { if (!InX::SymTab) return; for (elf::ObjectFile *F : Symtab::X->getObjectFiles()) { for (SymbolBody *B : F->getLocalSymbols()) { if (!B->IsLocal) fatal(toString(F) + ": broken object: getLocalSymbols returns a non-local symbol"); auto *DR = dyn_cast(B); // No reason to keep local undefined symbol in symtab. if (!DR) continue; if (!includeInSymtab(*B)) continue; SectionBase *Sec = DR->Section; if (!shouldKeepInSymtab(Sec, B->getName(), *B)) continue; InX::SymTab->addSymbol(B); } } } template void Writer::addSectionSymbols() { // Create one STT_SECTION symbol for each output section we might // have a relocation with. for (OutputSection *Sec : OutputSections) { if (Sec->Sections.empty()) continue; InputSection *IS = Sec->Sections[0]; if (isa(IS) || IS->Type == SHT_REL || IS->Type == SHT_RELA) continue; auto *Sym = make("", /*IsLocal=*/true, /*StOther=*/0, STT_SECTION, /*Value=*/0, /*Size=*/0, IS, nullptr); InX::SymTab->addSymbol(Sym); } } // Today's loaders have a feature to make segments read-only after // processing dynamic relocations to enhance security. PT_GNU_RELRO // is defined for that. // // This function returns true if a section needs to be put into a // PT_GNU_RELRO segment. bool elf::isRelroSection(const OutputSection *Sec) { if (!Config->ZRelro) return false; uint64_t Flags = Sec->Flags; // Non-allocatable or non-writable sections don't need RELRO because // they are not writable or not even mapped to memory in the first place. // RELRO is for sections that are essentially read-only but need to // be writable only at process startup to allow dynamic linker to // apply relocations. if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) return false; // Once initialized, TLS data segments are used as data templates // for a thread-local storage. For each new thread, runtime // allocates memory for a TLS and copy templates there. No thread // are supposed to use templates directly. Thus, it can be in RELRO. if (Flags & SHF_TLS) return true; // .init_array, .preinit_array and .fini_array contain pointers to // functions that are executed on process startup or exit. These // pointers are set by the static linker, and they are not expected // to change at runtime. But if you are an attacker, you could do // interesting things by manipulating pointers in .fini_array, for // example. So they are put into RELRO. uint32_t Type = Sec->Type; if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || Type == SHT_PREINIT_ARRAY) return true; // .got contains pointers to external symbols. They are resolved by // the dynamic linker when a module is loaded into memory, and after // that they are not expected to change. So, it can be in RELRO. if (InX::Got && Sec == InX::Got->getParent()) return true; // .got.plt contains pointers to external function symbols. They are // by default resolved lazily, so we usually cannot put it into RELRO. // However, if "-z now" is given, the lazy symbol resolution is // disabled, which enables us to put it into RELRO. if (Sec == InX::GotPlt->getParent()) return Config->ZNow; // .dynamic section contains data for the dynamic linker, and // there's no need to write to it at runtime, so it's better to put // it into RELRO. if (Sec == InX::Dynamic->getParent()) return true; // .bss.rel.ro is used for copy relocations for read-only symbols. // Since the dynamic linker needs to process copy relocations, the // section cannot be read-only, but once initialized, they shouldn't // change. if (Sec == InX::BssRelRo->getParent()) return true; // Sections with some special names are put into RELRO. This is a // bit unfortunate because section names shouldn't be significant in // ELF in spirit. But in reality many linker features depend on // magic section names. StringRef S = Sec->Name; return S == ".data.rel.ro" || S == ".ctors" || S == ".dtors" || S == ".jcr" || S == ".eh_frame" || S == ".openbsd.randomdata"; } // We compute a rank for each section. The rank indicates where the // section should be placed in the file. Instead of using simple // numbers (0,1,2...), we use a series of flags. One for each decision // point when placing the section. // Using flags has two key properties: // * It is easy to check if a give branch was taken. // * It is easy two see how similar two ranks are (see getRankProximity). enum RankFlags { RF_NOT_ADDR_SET = 1 << 16, RF_NOT_INTERP = 1 << 15, RF_NOT_ALLOC = 1 << 14, RF_WRITE = 1 << 13, RF_EXEC_WRITE = 1 << 12, RF_EXEC = 1 << 11, RF_NON_TLS_BSS = 1 << 10, RF_NON_TLS_BSS_RO = 1 << 9, RF_NOT_TLS = 1 << 8, RF_BSS = 1 << 7, RF_PPC_NOT_TOCBSS = 1 << 6, RF_PPC_OPD = 1 << 5, RF_PPC_TOCL = 1 << 4, RF_PPC_TOC = 1 << 3, RF_PPC_BRANCH_LT = 1 << 2, RF_MIPS_GPREL = 1 << 1, RF_MIPS_NOT_GOT = 1 << 0 }; static unsigned getSectionRank(const OutputSection *Sec) { unsigned Rank = 0; // We want to put section specified by -T option first, so we // can start assigning VA starting from them later. if (Config->SectionStartMap.count(Sec->Name)) return Rank; Rank |= RF_NOT_ADDR_SET; // Put .interp first because some loaders want to see that section // on the first page of the executable file when loaded into memory. if (Sec->Name == ".interp") return Rank; Rank |= RF_NOT_INTERP; // Allocatable sections go first to reduce the total PT_LOAD size and // so debug info doesn't change addresses in actual code. if (!(Sec->Flags & SHF_ALLOC)) return Rank | RF_NOT_ALLOC; // Sort sections based on their access permission in the following // order: R, RX, RWX, RW. This order is based on the following // considerations: // * Read-only sections come first such that they go in the // PT_LOAD covering the program headers at the start of the file. // * Read-only, executable sections come next, unless the // -no-rosegment option is used. // * Writable, executable sections follow such that .plt on // architectures where it needs to be writable will be placed // between .text and .data. // * Writable sections come last, such that .bss lands at the very // end of the last PT_LOAD. bool IsExec = Sec->Flags & SHF_EXECINSTR; bool IsWrite = Sec->Flags & SHF_WRITE; if (IsExec) { if (IsWrite) Rank |= RF_EXEC_WRITE; else if (!Config->SingleRoRx) Rank |= RF_EXEC; } else { if (IsWrite) Rank |= RF_WRITE; } // If we got here we know that both A and B are in the same PT_LOAD. bool IsTls = Sec->Flags & SHF_TLS; bool IsNoBits = Sec->Type == SHT_NOBITS; // The first requirement we have is to put (non-TLS) nobits sections last. The // reason is that the only thing the dynamic linker will see about them is a // p_memsz that is larger than p_filesz. Seeing that it zeros the end of the // PT_LOAD, so that has to correspond to the nobits sections. bool IsNonTlsNoBits = IsNoBits && !IsTls; if (IsNonTlsNoBits) Rank |= RF_NON_TLS_BSS; // We place nobits RelRo sections before plain r/w ones, and non-nobits RelRo // sections after r/w ones, so that the RelRo sections are contiguous. bool IsRelRo = isRelroSection(Sec); if (IsNonTlsNoBits && !IsRelRo) Rank |= RF_NON_TLS_BSS_RO; if (!IsNonTlsNoBits && IsRelRo) Rank |= RF_NON_TLS_BSS_RO; // The TLS initialization block needs to be a single contiguous block in a R/W // PT_LOAD, so stick TLS sections directly before the other RelRo R/W // sections. The TLS NOBITS sections are placed here as they don't take up // virtual address space in the PT_LOAD. if (!IsTls) Rank |= RF_NOT_TLS; // Within the TLS initialization block, the non-nobits sections need to appear // first. if (IsNoBits) Rank |= RF_BSS; // // Some architectures have additional ordering restrictions for sections // // within the same PT_LOAD. if (Config->EMachine == EM_PPC64) { // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections // that we would like to make sure appear is a specific order to maximize // their coverage by a single signed 16-bit offset from the TOC base // pointer. Conversely, the special .tocbss section should be first among // all SHT_NOBITS sections. This will put it next to the loaded special // PPC64 sections (and, thus, within reach of the TOC base pointer). StringRef Name = Sec->Name; if (Name != ".tocbss") Rank |= RF_PPC_NOT_TOCBSS; if (Name == ".opd") Rank |= RF_PPC_OPD; if (Name == ".toc1") Rank |= RF_PPC_TOCL; if (Name == ".toc") Rank |= RF_PPC_TOC; if (Name == ".branch_lt") Rank |= RF_PPC_BRANCH_LT; } if (Config->EMachine == EM_MIPS) { // All sections with SHF_MIPS_GPREL flag should be grouped together // because data in these sections is addressable with a gp relative address. if (Sec->Flags & SHF_MIPS_GPREL) Rank |= RF_MIPS_GPREL; if (Sec->Name != ".got") Rank |= RF_MIPS_NOT_GOT; } return Rank; } static bool compareSections(const BaseCommand *ACmd, const BaseCommand *BCmd) { const OutputSection *A = cast(ACmd)->Sec; const OutputSection *B = cast(BCmd)->Sec; if (A->SortRank != B->SortRank) return A->SortRank < B->SortRank; if (!(A->SortRank & RF_NOT_ADDR_SET)) return Config->SectionStartMap.lookup(A->Name) < Config->SectionStartMap.lookup(B->Name); return false; } void PhdrEntry::add(OutputSection *Sec) { Last = Sec; if (!First) First = Sec; p_align = std::max(p_align, Sec->Alignment); if (p_type == PT_LOAD) Sec->FirstInPtLoad = First; } template static Symbol *addRegular(StringRef Name, SectionBase *Sec, uint64_t Value, uint8_t StOther = STV_HIDDEN, uint8_t Binding = STB_WEAK) { // The linker generated symbols are added as STB_WEAK to allow user defined // ones to override them. return Symtab::X->addRegular(Name, StOther, STT_NOTYPE, Value, /*Size=*/0, Binding, Sec, /*File=*/nullptr); } template static DefinedRegular * addOptionalRegular(StringRef Name, SectionBase *Sec, uint64_t Val, uint8_t StOther = STV_HIDDEN, uint8_t Binding = STB_GLOBAL) { SymbolBody *S = Symtab::X->find(Name); if (!S) return nullptr; if (S->isInCurrentDSO()) return nullptr; return cast( addRegular(Name, Sec, Val, StOther, Binding)->body()); } // The beginning and the ending of .rel[a].plt section are marked // with __rel[a]_iplt_{start,end} symbols if it is a statically linked // executable. The runtime needs these symbols in order to resolve // all IRELATIVE relocs on startup. For dynamic executables, we don't // need these symbols, since IRELATIVE relocs are resolved through GOT // and PLT. For details, see http://www.airs.com/blog/archives/403. template void Writer::addRelIpltSymbols() { if (InX::DynSymTab) return; StringRef S = Config->IsRela ? "__rela_iplt_start" : "__rel_iplt_start"; addOptionalRegular(S, In::RelaIplt, 0, STV_HIDDEN, STB_WEAK); S = Config->IsRela ? "__rela_iplt_end" : "__rel_iplt_end"; addOptionalRegular(S, In::RelaIplt, -1, STV_HIDDEN, STB_WEAK); } // The linker is expected to define some symbols depending on // the linking result. This function defines such symbols. template void Writer::addReservedSymbols() { if (Config->EMachine == EM_MIPS) { // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer // so that it points to an absolute address which by default is relative // to GOT. Default offset is 0x7ff0. // See "Global Data Symbols" in Chapter 6 in the following document: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf ElfSym::MipsGp = Symtab::X->addAbsolute("_gp", STV_HIDDEN, STB_LOCAL); // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between // start of function and 'gp' pointer into GOT. if (Symtab::X->find("_gp_disp")) ElfSym::MipsGpDisp = Symtab::X->addAbsolute("_gp_disp", STV_HIDDEN, STB_LOCAL); // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' // pointer. This symbol is used in the code generated by .cpload pseudo-op // in case of using -mno-shared option. // https://sourceware.org/ml/binutils/2004-12/msg00094.html if (Symtab::X->find("__gnu_local_gp")) ElfSym::MipsLocalGp = Symtab::X->addAbsolute("__gnu_local_gp", STV_HIDDEN, STB_LOCAL); } // In the assembly for 32 bit x86 the _GLOBAL_OFFSET_TABLE_ symbol // is magical and is used to produce a R_386_GOTPC relocation. // The R_386_GOTPC relocation value doesn't actually depend on the // symbol value, so it could use an index of STN_UNDEF which, according // to the spec, means the symbol value is 0. // Unfortunately both gas and MC keep the _GLOBAL_OFFSET_TABLE_ symbol in // the object file. // The situation is even stranger on x86_64 where the assembly doesn't // need the magical symbol, but gas still puts _GLOBAL_OFFSET_TABLE_ as // an undefined symbol in the .o files. // Given that the symbol is effectively unused, we just create a dummy // hidden one to avoid the undefined symbol error. Symtab::X->addIgnored("_GLOBAL_OFFSET_TABLE_"); // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For // static linking the linker is required to optimize away any references to // __tls_get_addr, so it's not defined anywhere. Create a hidden definition // to avoid the undefined symbol error. if (!InX::DynSymTab) Symtab::X->addIgnored("__tls_get_addr"); // __ehdr_start is the location of ELF file headers. Note that we define // this symbol unconditionally even when using a linker script, which // differs from the behavior implemented by GNU linker which only define // this symbol if ELF headers are in the memory mapped segment. // __executable_start is not documented, but the expectation of at // least the android libc is that it points to the elf header too. // __dso_handle symbol is passed to cxa_finalize as a marker to identify // each DSO. The address of the symbol doesn't matter as long as they are // different in different DSOs, so we chose the start address of the DSO. for (const char *Name : {"__ehdr_start", "__executable_start", "__dso_handle"}) addOptionalRegular(Name, Out::ElfHeader, 0, STV_HIDDEN); // If linker script do layout we do not need to create any standart symbols. if (Script->Opt.HasSections) return; auto Add = [](StringRef S) { return addOptionalRegular(S, Out::ElfHeader, 0, STV_DEFAULT); }; ElfSym::Bss = Add("__bss_start"); ElfSym::End1 = Add("end"); ElfSym::End2 = Add("_end"); ElfSym::Etext1 = Add("etext"); ElfSym::Etext2 = Add("_etext"); ElfSym::Edata1 = Add("edata"); ElfSym::Edata2 = Add("_edata"); } // Sort input sections by section name suffixes for // __attribute__((init_priority(N))). static void sortInitFini(OutputSection *S) { if (S) reinterpret_cast(S)->sortInitFini(); } // Sort input sections by the special rule for .ctors and .dtors. static void sortCtorsDtors(OutputSection *S) { if (S) reinterpret_cast(S)->sortCtorsDtors(); } // Sort input sections using the list provided by --symbol-ordering-file. template static void sortBySymbolsOrder(ArrayRef OutputSections) { if (Config->SymbolOrderingFile.empty()) return; // Build a map from symbols to their priorities. Symbols that didn't // appear in the symbol ordering file have the lowest priority 0. // All explicitly mentioned symbols have negative (higher) priorities. DenseMap SymbolOrder; int Priority = -Config->SymbolOrderingFile.size(); for (StringRef S : Config->SymbolOrderingFile) SymbolOrder.insert({S, Priority++}); // Build a map from sections to their priorities. DenseMap SectionOrder; for (elf::ObjectFile *File : Symtab::X->getObjectFiles()) { for (SymbolBody *Body : File->getSymbols()) { auto *D = dyn_cast(Body); if (!D || !D->Section) continue; int &Priority = SectionOrder[D->Section]; Priority = std::min(Priority, SymbolOrder.lookup(D->getName())); } } // Sort sections by priority. for (OutputSection *Base : OutputSections) if (auto *Sec = dyn_cast(Base)) Sec->sort([&](InputSectionBase *S) { return SectionOrder.lookup(S); }); } template void Writer::forEachRelSec(std::function Fn) { for (InputSectionBase *IS : InputSections) { if (!IS->Live) continue; // Scan all relocations. Each relocation goes through a series // of tests to determine if it needs special treatment, such as // creating GOT, PLT, copy relocations, etc. // Note that relocations for non-alloc sections are directly // processed by InputSection::relocateNonAlloc. if (!(IS->Flags & SHF_ALLOC)) continue; if (isa(IS) || isa(IS)) Fn(*IS); } if (!Config->Relocatable) { for (EhInputSection *ES : In::EhFrame->Sections) Fn(*ES); } } template void Writer::createSections() { for (InputSectionBase *IS : InputSections) if (IS) Factory.addInputSec(IS, getOutputSectionName(IS->Name)); sortBySymbolsOrder(OutputSections); sortInitFini(findSection(".init_array")); sortInitFini(findSection(".fini_array")); sortCtorsDtors(findSection(".ctors")); sortCtorsDtors(findSection(".dtors")); } // We want to find how similar two ranks are. // The more branches in getSectionRank that match, the more similar they are. // Since each branch corresponds to a bit flag, we can just use // countLeadingZeros. static int getRankProximity(OutputSection *A, OutputSection *B) { return countLeadingZeros(A->SortRank ^ B->SortRank); } static int getRankProximity(OutputSection *A, BaseCommand *B) { if (auto *Cmd = dyn_cast(B)) if (Cmd->Sec) return getRankProximity(A, Cmd->Sec); return -1; } // When placing orphan sections, we want to place them after symbol assignments // so that an orphan after // begin_foo = .; // foo : { *(foo) } // end_foo = .; // doesn't break the intended meaning of the begin/end symbols. // We don't want to go over sections since findOrphanPos is the // one in charge of deciding the order of the sections. // We don't want to go over changes to '.', since doing so in // rx_sec : { *(rx_sec) } // . = ALIGN(0x1000); // /* The RW PT_LOAD starts here*/ // rw_sec : { *(rw_sec) } // would mean that the RW PT_LOAD would become unaligned. static bool shouldSkip(BaseCommand *Cmd) { if (isa(Cmd)) return false; if (auto *Assign = dyn_cast(Cmd)) return Assign->Name != "."; return true; } // We want to place orphan sections so that they share as much // characteristics with their neighbors as possible. For example, if // both are rw, or both are tls. template static std::vector::iterator findOrphanPos(std::vector::iterator B, std::vector::iterator E) { OutputSection *Sec = cast(*E)->Sec; // Find the first element that has as close a rank as possible. auto I = std::max_element(B, E, [=](BaseCommand *A, BaseCommand *B) { return getRankProximity(Sec, A) < getRankProximity(Sec, B); }); if (I == E) return E; // Consider all existing sections with the same proximity. int Proximity = getRankProximity(Sec, *I); for (; I != E; ++I) { auto *Cmd = dyn_cast(*I); if (!Cmd || !Cmd->Sec) continue; if (getRankProximity(Sec, Cmd->Sec) != Proximity || Sec->SortRank < Cmd->Sec->SortRank) break; } auto J = std::find_if( llvm::make_reverse_iterator(I), llvm::make_reverse_iterator(B), [](BaseCommand *Cmd) { return isa(Cmd); }); I = J.base(); while (I != E && shouldSkip(*I)) ++I; return I; } template void Writer::sortSections() { // Don't sort if using -r. It is not necessary and we want to preserve the // relative order for SHF_LINK_ORDER sections. if (Config->Relocatable) return; if (Script->Opt.HasSections) Script->adjustSectionsBeforeSorting(); for (BaseCommand *Base : Script->Opt.Commands) if (auto *Cmd = dyn_cast(Base)) if (OutputSection *Sec = Cmd->Sec) Sec->SortRank = getSectionRank(Sec); if (!Script->Opt.HasSections) { // We know that all the OutputSectionCommands are contiguous in // this case. auto E = Script->Opt.Commands.end(); auto I = Script->Opt.Commands.begin(); auto IsSection = [](BaseCommand *Base) { return isa(Base); }; I = std::find_if(I, E, IsSection); E = std::find_if(llvm::make_reverse_iterator(E), llvm::make_reverse_iterator(I), IsSection) .base(); std::stable_sort(I, E, compareSections); return; } // Orphan sections are sections present in the input files which are // not explicitly placed into the output file by the linker script. // // The sections in the linker script are already in the correct // order. We have to figuere out where to insert the orphan // sections. // // The order of the sections in the script is arbitrary and may not agree with // compareSections. This means that we cannot easily define a strict weak // ordering. To see why, consider a comparison of a section in the script and // one not in the script. We have a two simple options: // * Make them equivalent (a is not less than b, and b is not less than a). // The problem is then that equivalence has to be transitive and we can // have sections a, b and c with only b in a script and a less than c // which breaks this property. // * Use compareSectionsNonScript. Given that the script order doesn't have // to match, we can end up with sections a, b, c, d where b and c are in the // script and c is compareSectionsNonScript less than b. In which case d // can be equivalent to c, a to b and d < a. As a concrete example: // .a (rx) # not in script // .b (rx) # in script // .c (ro) # in script // .d (ro) # not in script // // The way we define an order then is: // * Sort only the orphan sections. They are in the end right now. // * Move each orphan section to its preferred position. We try // to put each section in the last position where it it can share // a PT_LOAD. // // There is some ambiguity as to where exactly a new entry should be // inserted, because Opt.Commands contains not only output section // commands but also other types of commands such as symbol assignment // expressions. There's no correct answer here due to the lack of the // formal specification of the linker script. We use heuristics to // determine whether a new output command should be added before or // after another commands. For the details, look at shouldSkip // function. auto I = Script->Opt.Commands.begin(); auto E = Script->Opt.Commands.end(); auto NonScriptI = std::find_if(I, E, [](BaseCommand *Base) { if (auto *Cmd = dyn_cast(Base)) return Cmd->Sec && Cmd->Sec->SectionIndex == INT_MAX; return false; }); // Sort the orphan sections. std::stable_sort(NonScriptI, E, compareSections); // As a horrible special case, skip the first . assignment if it is before any // section. We do this because it is common to set a load address by starting // the script with ". = 0xabcd" and the expectation is that every section is // after that. auto FirstSectionOrDotAssignment = std::find_if(I, E, [](BaseCommand *Cmd) { return !shouldSkip(Cmd); }); if (FirstSectionOrDotAssignment != E && isa(**FirstSectionOrDotAssignment)) ++FirstSectionOrDotAssignment; I = FirstSectionOrDotAssignment; while (NonScriptI != E) { auto Pos = findOrphanPos(I, NonScriptI); OutputSection *Orphan = cast(*NonScriptI)->Sec; // As an optimization, find all sections with the same sort rank // and insert them with one rotate. unsigned Rank = Orphan->SortRank; auto End = std::find_if(NonScriptI + 1, E, [=](BaseCommand *Cmd) { return cast(Cmd)->Sec->SortRank != Rank; }); std::rotate(Pos, NonScriptI, End); NonScriptI = End; } Script->adjustSectionsAfterSorting(); } static void applySynthetic(const std::vector &Sections, std::function Fn) { for (SyntheticSection *SS : Sections) if (SS && SS->getParent() && !SS->empty()) Fn(SS); } // We need to add input synthetic sections early in createSyntheticSections() // to make them visible from linkescript side. But not all sections are always // required to be in output. For example we don't need dynamic section content // sometimes. This function filters out such unused sections from the output. static void removeUnusedSyntheticSections(std::vector &V) { // All input synthetic sections that can be empty are placed after // all regular ones. We iterate over them all and exit at first // non-synthetic. for (InputSectionBase *S : llvm::reverse(InputSections)) { SyntheticSection *SS = dyn_cast(S); if (!SS) return; OutputSection *OS = SS->getParent(); if (!SS->empty() || !OS) continue; OS->Sections.erase(std::find(OS->Sections.begin(), OS->Sections.end(), SS)); SS->Live = false; // If there are no other sections in the output section, remove it from the // output. if (OS->Sections.empty()) V.erase(std::find(V.begin(), V.end(), OS)); } } // Create output section objects and add them to OutputSections. template void Writer::finalizeSections() { Out::DebugInfo = findSection(".debug_info"); Out::PreinitArray = findSection(".preinit_array"); Out::InitArray = findSection(".init_array"); Out::FiniArray = findSection(".fini_array"); // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop // symbols for sections, so that the runtime can get the start and end // addresses of each section by section name. Add such symbols. if (!Config->Relocatable) { addStartEndSymbols(); for (OutputSection *Sec : OutputSections) addStartStopSymbols(Sec); } // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. // It should be okay as no one seems to care about the type. // Even the author of gold doesn't remember why gold behaves that way. // https://sourceware.org/ml/binutils/2002-03/msg00360.html if (InX::DynSymTab) addRegular("_DYNAMIC", InX::Dynamic, 0); // Define __rel[a]_iplt_{start,end} symbols if needed. addRelIpltSymbols(); // This responsible for splitting up .eh_frame section into // pieces. The relocation scan uses those pieces, so this has to be // earlier. applySynthetic({In::EhFrame}, [](SyntheticSection *SS) { SS->finalizeContents(); }); // Scan relocations. This must be done after every symbol is declared so that // we can correctly decide if a dynamic relocation is needed. forEachRelSec(scanRelocations); if (InX::Plt && !InX::Plt->empty()) InX::Plt->addSymbols(); if (InX::Iplt && !InX::Iplt->empty()) InX::Iplt->addSymbols(); // Now that we have defined all possible global symbols including linker- // synthesized ones. Visit all symbols to give the finishing touches. for (Symbol *S : Symtab::X->getSymbols()) { SymbolBody *Body = S->body(); if (!includeInSymtab(*Body)) continue; if (InX::SymTab) InX::SymTab->addSymbol(Body); if (InX::DynSymTab && S->includeInDynsym()) { InX::DynSymTab->addSymbol(Body); if (auto *SS = dyn_cast(Body)) if (cast>(SS->File)->isNeeded()) In::VerNeed->addSymbol(SS); } } // Do not proceed if there was an undefined symbol. if (ErrorCount) return; addPredefinedSections(); removeUnusedSyntheticSections(OutputSections); clearOutputSections(); sortSections(); // Now that we have the final list, create a list of all the // OutputSectionCommands for convenience. for (BaseCommand *Base : Script->Opt.Commands) if (auto *Cmd = dyn_cast(Base)) OutputSectionCommands.push_back(Cmd); // This is a bit of a hack. A value of 0 means undef, so we set it // to 1 t make __ehdr_start defined. The section number is not // particularly relevant. Out::ElfHeader->SectionIndex = 1; unsigned I = 1; for (OutputSectionCommand *Cmd : OutputSectionCommands) { OutputSection *Sec = Cmd->Sec; Sec->SectionIndex = I++; Sec->ShName = InX::ShStrTab->addString(Sec->Name); } // Binary and relocatable output does not have PHDRS. // The headers have to be created before finalize as that can influence the // image base and the dynamic section on mips includes the image base. if (!Config->Relocatable && !Config->OFormatBinary) { Phdrs = Script->hasPhdrsCommands() ? Script->createPhdrs() : createPhdrs(); addPtArmExid(Phdrs); Out::ProgramHeaders->Size = sizeof(Elf_Phdr) * Phdrs.size(); } // Compute the size of .rela.dyn and .rela.plt early since we need // them to populate .dynamic. for (SyntheticSection *SS : {In::RelaDyn, In::RelaPlt}) if (SS->getParent() && !SS->empty()) SS->getParent()->assignOffsets(); // Dynamic section must be the last one in this list and dynamic // symbol table section (DynSymTab) must be the first one. applySynthetic({InX::DynSymTab, InX::Bss, InX::BssRelRo, InX::GnuHashTab, In::HashTab, InX::SymTab, InX::ShStrTab, InX::StrTab, In::VerDef, InX::DynStrTab, InX::GdbIndex, InX::Got, InX::MipsGot, InX::IgotPlt, InX::GotPlt, In::RelaDyn, In::RelaIplt, In::RelaPlt, InX::Plt, InX::Iplt, In::EhFrameHdr, In::VerSym, In::VerNeed, InX::Dynamic}, [](SyntheticSection *SS) { SS->finalizeContents(); }); // Some architectures use small displacements for jump instructions. // It is linker's responsibility to create thunks containing long // jump instructions if jump targets are too far. Create thunks. if (Target->NeedsThunks) { // FIXME: only ARM Interworking and Mips LA25 Thunks are implemented, // these // do not require address information. To support range extension Thunks // we need to assign addresses so that we can tell if jump instructions // are out of range. This will need to turn into a loop that converges // when no more Thunks are added ThunkCreator TC; if (TC.createThunks(OutputSectionCommands)) { applySynthetic({InX::MipsGot}, [](SyntheticSection *SS) { SS->updateAllocSize(); }); if (TC.createThunks(OutputSectionCommands)) fatal("All non-range thunks should be created in first call"); } } // Fill other section headers. The dynamic table is finalized // at the end because some tags like RELSZ depend on result // of finalizing other sections. for (OutputSectionCommand *Cmd : OutputSectionCommands) Cmd->finalize(); // createThunks may have added local symbols to the static symbol table applySynthetic({InX::SymTab, InX::ShStrTab, InX::StrTab}, [](SyntheticSection *SS) { SS->postThunkContents(); }); } template void Writer::addPredefinedSections() { // ARM ABI requires .ARM.exidx to be terminated by some piece of data. // We have the terminater synthetic section class. Add that at the end. auto *OS = dyn_cast_or_null(findSection(".ARM.exidx")); if (!OS || OS->Sections.empty() || Config->Relocatable) return; auto *Sentinel = make(); OS->addSection(Sentinel); // If there are linker script commands existing at this point then add the // sentinel to the last of these too. if (OutputSectionCommand *C = Script->getCmd(OS)) { auto ISD = std::find_if(C->Commands.rbegin(), C->Commands.rend(), [](const BaseCommand *Base) { return isa(Base); }); cast(*ISD)->Sections.push_back(Sentinel); } } // The linker is expected to define SECNAME_start and SECNAME_end // symbols for a few sections. This function defines them. template void Writer::addStartEndSymbols() { auto Define = [&](StringRef Start, StringRef End, OutputSection *OS) { // These symbols resolve to the image base if the section does not exist. // A special value -1 indicates end of the section. if (OS) { addOptionalRegular(Start, OS, 0); addOptionalRegular(End, OS, -1); } else { if (Config->Pic) OS = Out::ElfHeader; addOptionalRegular(Start, OS, 0); addOptionalRegular(End, OS, 0); } }; Define("__preinit_array_start", "__preinit_array_end", Out::PreinitArray); Define("__init_array_start", "__init_array_end", Out::InitArray); Define("__fini_array_start", "__fini_array_end", Out::FiniArray); if (OutputSection *Sec = findSection(".ARM.exidx")) Define("__exidx_start", "__exidx_end", Sec); } // If a section name is valid as a C identifier (which is rare because of // the leading '.'), linkers are expected to define __start_ and // __stop_ symbols. They are at beginning and end of the section, // respectively. This is not requested by the ELF standard, but GNU ld and // gold provide the feature, and used by many programs. template void Writer::addStartStopSymbols(OutputSection *Sec) { StringRef S = Sec->Name; if (!isValidCIdentifier(S)) return; addOptionalRegular(Saver.save("__start_" + S), Sec, 0, STV_DEFAULT); addOptionalRegular(Saver.save("__stop_" + S), Sec, -1, STV_DEFAULT); } template OutputSectionCommand *Writer::findSectionCommand(StringRef Name) { for (OutputSectionCommand *Cmd : OutputSectionCommands) if (Cmd->Name == Name) return Cmd; return nullptr; } template OutputSection *Writer::findSectionInScript(StringRef Name) { if (OutputSectionCommand *Cmd = findSectionCommand(Name)) return Cmd->Sec; return nullptr; } template OutputSection *Writer::findSection(StringRef Name) { for (OutputSection *Sec : OutputSections) if (Sec->Name == Name) return Sec; return nullptr; } static bool needsPtLoad(OutputSection *Sec) { if (!(Sec->Flags & SHF_ALLOC)) return false; // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is // responsible for allocating space for them, not the PT_LOAD that // contains the TLS initialization image. if (Sec->Flags & SHF_TLS && Sec->Type == SHT_NOBITS) return false; return true; } // Linker scripts are responsible for aligning addresses. Unfortunately, most // linker scripts are designed for creating two PT_LOADs only, one RX and one // RW. This means that there is no alignment in the RO to RX transition and we // cannot create a PT_LOAD there. static uint64_t computeFlags(uint64_t Flags) { if (Config->Omagic) return PF_R | PF_W | PF_X; if (Config->SingleRoRx && !(Flags & PF_W)) return Flags | PF_X; return Flags; } // Decide which program headers to create and which sections to include in each // one. template std::vector Writer::createPhdrs() { std::vector Ret; auto AddHdr = [&](unsigned Type, unsigned Flags) -> PhdrEntry * { Ret.emplace_back(Type, Flags); return &Ret.back(); }; // The first phdr entry is PT_PHDR which describes the program header itself. AddHdr(PT_PHDR, PF_R)->add(Out::ProgramHeaders); // PT_INTERP must be the second entry if exists. if (OutputSection *Sec = findSectionInScript(".interp")) AddHdr(PT_INTERP, Sec->getPhdrFlags())->add(Sec); // Add the first PT_LOAD segment for regular output sections. uint64_t Flags = computeFlags(PF_R); PhdrEntry *Load = AddHdr(PT_LOAD, Flags); // Add the headers. We will remove them if they don't fit. Load->add(Out::ElfHeader); Load->add(Out::ProgramHeaders); for (OutputSectionCommand *Cmd : OutputSectionCommands) { OutputSection *Sec = Cmd->Sec; if (!(Sec->Flags & SHF_ALLOC)) break; if (!needsPtLoad(Sec)) continue; // Segments are contiguous memory regions that has the same attributes // (e.g. executable or writable). There is one phdr for each segment. // Therefore, we need to create a new phdr when the next section has // different flags or is loaded at a discontiguous address using AT linker // script command. uint64_t NewFlags = computeFlags(Sec->getPhdrFlags()); if (Script->hasLMA(Sec) || Flags != NewFlags) { Load = AddHdr(PT_LOAD, NewFlags); Flags = NewFlags; } Load->add(Sec); } // Add a TLS segment if any. PhdrEntry TlsHdr(PT_TLS, PF_R); for (OutputSectionCommand *Cmd : OutputSectionCommands) { OutputSection *Sec = Cmd->Sec; if (Sec->Flags & SHF_TLS) TlsHdr.add(Sec); } if (TlsHdr.First) Ret.push_back(std::move(TlsHdr)); // Add an entry for .dynamic. if (InX::DynSymTab) AddHdr(PT_DYNAMIC, InX::Dynamic->getParent()->getPhdrFlags()) ->add(InX::Dynamic->getParent()); // PT_GNU_RELRO includes all sections that should be marked as // read-only by dynamic linker after proccessing relocations. PhdrEntry RelRo(PT_GNU_RELRO, PF_R); for (OutputSectionCommand *Cmd : OutputSectionCommands) { OutputSection *Sec = Cmd->Sec; if (needsPtLoad(Sec) && isRelroSection(Sec)) RelRo.add(Sec); } if (RelRo.First) Ret.push_back(std::move(RelRo)); // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. if (!In::EhFrame->empty() && In::EhFrameHdr && In::EhFrame->getParent() && In::EhFrameHdr->getParent()) AddHdr(PT_GNU_EH_FRAME, In::EhFrameHdr->getParent()->getPhdrFlags()) ->add(In::EhFrameHdr->getParent()); // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes // the dynamic linker fill the segment with random data. if (OutputSection *Sec = findSectionInScript(".openbsd.randomdata")) AddHdr(PT_OPENBSD_RANDOMIZE, Sec->getPhdrFlags())->add(Sec); // PT_GNU_STACK is a special section to tell the loader to make the // pages for the stack non-executable. If you really want an executable // stack, you can pass -z execstack, but that's not recommended for // security reasons. unsigned Perm; if (Config->ZExecstack) Perm = PF_R | PF_W | PF_X; else Perm = PF_R | PF_W; AddHdr(PT_GNU_STACK, Perm)->p_memsz = Config->ZStackSize; // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable // is expected to perform W^X violations, such as calling mprotect(2) or // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on // OpenBSD. if (Config->ZWxneeded) AddHdr(PT_OPENBSD_WXNEEDED, PF_X); // Create one PT_NOTE per a group of contiguous .note sections. PhdrEntry *Note = nullptr; for (OutputSectionCommand *Cmd : OutputSectionCommands) { OutputSection *Sec = Cmd->Sec; if (Sec->Type == SHT_NOTE) { if (!Note || Script->hasLMA(Sec)) Note = AddHdr(PT_NOTE, PF_R); Note->add(Sec); } else { Note = nullptr; } } return Ret; } template void Writer::addPtArmExid(std::vector &Phdrs) { if (Config->EMachine != EM_ARM) return; auto I = std::find_if(OutputSectionCommands.begin(), OutputSectionCommands.end(), [](OutputSectionCommand *Cmd) { return Cmd->Sec->Type == SHT_ARM_EXIDX; }); if (I == OutputSectionCommands.end()) return; // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME PhdrEntry ARMExidx(PT_ARM_EXIDX, PF_R); ARMExidx.add((*I)->Sec); Phdrs.push_back(ARMExidx); } // The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the // first section after PT_GNU_RELRO have to be page aligned so that the dynamic // linker can set the permissions. template void Writer::fixSectionAlignments() { auto PageAlign = [](OutputSection *Sec) { OutputSectionCommand *Cmd = Script->getCmd(Sec); if (Cmd && !Cmd->AddrExpr) Cmd->AddrExpr = [=] { return alignTo(Script->getDot(), Config->MaxPageSize); }; }; for (const PhdrEntry &P : Phdrs) if (P.p_type == PT_LOAD && P.First) PageAlign(P.First); for (const PhdrEntry &P : Phdrs) { if (P.p_type != PT_GNU_RELRO) continue; if (P.First) PageAlign(P.First); // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we // have to align it to a page. auto End = OutputSectionCommands.end(); auto I = std::find(OutputSectionCommands.begin(), End, Script->getCmd(P.Last)); if (I == End || (I + 1) == End) continue; OutputSection *Sec = (*(I + 1))->Sec; if (needsPtLoad(Sec)) PageAlign(Sec); } } // Adjusts the file alignment for a given output section and returns // its new file offset. The file offset must be the same with its // virtual address (modulo the page size) so that the loader can load // executables without any address adjustment. static uint64_t getFileAlignment(uint64_t Off, OutputSection *Sec) { OutputSection *First = Sec->FirstInPtLoad; // If the section is not in a PT_LOAD, we just have to align it. if (!First) return alignTo(Off, Sec->Alignment); // The first section in a PT_LOAD has to have congruent offset and address // module the page size. if (Sec == First) return alignTo(Off, Config->MaxPageSize, Sec->Addr); // If two sections share the same PT_LOAD the file offset is calculated // using this formula: Off2 = Off1 + (VA2 - VA1). return First->Offset + Sec->Addr - First->Addr; } static uint64_t setOffset(OutputSection *Sec, uint64_t Off) { if (Sec->Type == SHT_NOBITS) { Sec->Offset = Off; return Off; } Off = getFileAlignment(Off, Sec); Sec->Offset = Off; return Off + Sec->Size; } template void Writer::assignFileOffsetsBinary() { uint64_t Off = 0; for (OutputSectionCommand *Cmd : OutputSectionCommands) { OutputSection *Sec = Cmd->Sec; if (Sec->Flags & SHF_ALLOC) Off = setOffset(Sec, Off); } FileSize = alignTo(Off, Config->Wordsize); } // Assign file offsets to output sections. template void Writer::assignFileOffsets() { uint64_t Off = 0; Off = setOffset(Out::ElfHeader, Off); Off = setOffset(Out::ProgramHeaders, Off); for (OutputSectionCommand *Cmd : OutputSectionCommands) Off = setOffset(Cmd->Sec, Off); SectionHeaderOff = alignTo(Off, Config->Wordsize); FileSize = SectionHeaderOff + (OutputSectionCommands.size() + 1) * sizeof(Elf_Shdr); } // Finalize the program headers. We call this function after we assign // file offsets and VAs to all sections. template void Writer::setPhdrs() { for (PhdrEntry &P : Phdrs) { OutputSection *First = P.First; OutputSection *Last = P.Last; if (First) { P.p_filesz = Last->Offset - First->Offset; if (Last->Type != SHT_NOBITS) P.p_filesz += Last->Size; P.p_memsz = Last->Addr + Last->Size - First->Addr; P.p_offset = First->Offset; P.p_vaddr = First->Addr; if (!P.HasLMA) P.p_paddr = First->getLMA(); } if (P.p_type == PT_LOAD) P.p_align = Config->MaxPageSize; - else if (P.p_type == PT_GNU_RELRO) + else if (P.p_type == PT_GNU_RELRO) { P.p_align = 1; + // The glibc dynamic loader rounds the size down, so we need to round up + // to protect the last page. This is a no-op on FreeBSD which always + // rounds up. + P.p_memsz = alignTo(P.p_memsz, Target->PageSize); + } // The TLS pointer goes after PT_TLS. At least glibc will align it, // so round up the size to make sure the offsets are correct. if (P.p_type == PT_TLS) { Out::TlsPhdr = &P; if (P.p_memsz) P.p_memsz = alignTo(P.p_memsz, P.p_align); } } } // The entry point address is chosen in the following ways. // // 1. the '-e' entry command-line option; // 2. the ENTRY(symbol) command in a linker control script; // 3. the value of the symbol start, if present; // 4. the address of the first byte of the .text section, if present; // 5. the address 0. template uint64_t Writer::getEntryAddr() { // Case 1, 2 or 3. As a special case, if the symbol is actually // a number, we'll use that number as an address. if (SymbolBody *B = Symtab::X->find(Config->Entry)) return B->getVA(); uint64_t Addr; if (to_integer(Config->Entry, Addr)) return Addr; // Case 4 if (OutputSection *Sec = findSectionInScript(".text")) { if (Config->WarnMissingEntry) warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" + utohexstr(Sec->Addr)); return Sec->Addr; } // Case 5 if (Config->WarnMissingEntry) warn("cannot find entry symbol " + Config->Entry + "; not setting start address"); return 0; } static uint16_t getELFType() { if (Config->Pic) return ET_DYN; if (Config->Relocatable) return ET_REL; return ET_EXEC; } // This function is called after we have assigned address and size // to each section. This function fixes some predefined // symbol values that depend on section address and size. template void Writer::fixPredefinedSymbols() { // _etext is the first location after the last read-only loadable segment. // _edata is the first location after the last read-write loadable segment. // _end is the first location after the uninitialized data region. PhdrEntry *Last = nullptr; PhdrEntry *LastRO = nullptr; PhdrEntry *LastRW = nullptr; for (PhdrEntry &P : Phdrs) { if (P.p_type != PT_LOAD) continue; Last = &P; if (P.p_flags & PF_W) LastRW = &P; else LastRO = &P; } auto Set = [](DefinedRegular *S, OutputSection *Sec, uint64_t Value) { if (S) { S->Section = Sec; S->Value = Value; } }; if (Last) { Set(ElfSym::End1, Last->First, Last->p_memsz); Set(ElfSym::End2, Last->First, Last->p_memsz); } if (LastRO) { Set(ElfSym::Etext1, LastRO->First, LastRO->p_filesz); Set(ElfSym::Etext2, LastRO->First, LastRO->p_filesz); } if (LastRW) { Set(ElfSym::Edata1, LastRW->First, LastRW->p_filesz); Set(ElfSym::Edata2, LastRW->First, LastRW->p_filesz); } if (ElfSym::Bss) ElfSym::Bss->Section = findSectionInScript(".bss"); // Setup MIPS _gp_disp/__gnu_local_gp symbols which should // be equal to the _gp symbol's value. if (Config->EMachine == EM_MIPS && !ElfSym::MipsGp->Value) { // Find GP-relative section with the lowest address // and use this address to calculate default _gp value. for (const OutputSectionCommand *Cmd : OutputSectionCommands) { OutputSection *OS = Cmd->Sec; if (OS->Flags & SHF_MIPS_GPREL) { ElfSym::MipsGp->Value = OS->Addr + 0x7ff0; break; } } } } template void Writer::writeHeader() { uint8_t *Buf = Buffer->getBufferStart(); memcpy(Buf, "\177ELF", 4); // Write the ELF header. auto *EHdr = reinterpret_cast(Buf); EHdr->e_ident[EI_CLASS] = Config->Is64 ? ELFCLASS64 : ELFCLASS32; EHdr->e_ident[EI_DATA] = Config->IsLE ? ELFDATA2LSB : ELFDATA2MSB; EHdr->e_ident[EI_VERSION] = EV_CURRENT; EHdr->e_ident[EI_OSABI] = Config->OSABI; EHdr->e_type = getELFType(); EHdr->e_machine = Config->EMachine; EHdr->e_version = EV_CURRENT; EHdr->e_entry = getEntryAddr(); EHdr->e_shoff = SectionHeaderOff; EHdr->e_ehsize = sizeof(Elf_Ehdr); EHdr->e_phnum = Phdrs.size(); EHdr->e_shentsize = sizeof(Elf_Shdr); EHdr->e_shnum = OutputSectionCommands.size() + 1; EHdr->e_shstrndx = InX::ShStrTab->getParent()->SectionIndex; if (Config->EMachine == EM_ARM) // We don't currently use any features incompatible with EF_ARM_EABI_VER5, // but we don't have any firm guarantees of conformance. Linux AArch64 // kernels (as of 2016) require an EABI version to be set. EHdr->e_flags = EF_ARM_EABI_VER5; else if (Config->EMachine == EM_MIPS) EHdr->e_flags = getMipsEFlags(); if (!Config->Relocatable) { EHdr->e_phoff = sizeof(Elf_Ehdr); EHdr->e_phentsize = sizeof(Elf_Phdr); } // Write the program header table. auto *HBuf = reinterpret_cast(Buf + EHdr->e_phoff); for (PhdrEntry &P : Phdrs) { HBuf->p_type = P.p_type; HBuf->p_flags = P.p_flags; HBuf->p_offset = P.p_offset; HBuf->p_vaddr = P.p_vaddr; HBuf->p_paddr = P.p_paddr; HBuf->p_filesz = P.p_filesz; HBuf->p_memsz = P.p_memsz; HBuf->p_align = P.p_align; ++HBuf; } // Write the section header table. Note that the first table entry is null. auto *SHdrs = reinterpret_cast(Buf + EHdr->e_shoff); for (OutputSectionCommand *Cmd : OutputSectionCommands) Cmd->Sec->writeHeaderTo(++SHdrs); } // Open a result file. template void Writer::openFile() { if (!Config->Is64 && FileSize > UINT32_MAX) { error("output file too large: " + Twine(FileSize) + " bytes"); return; } unlinkAsync(Config->OutputFile); ErrorOr> BufferOrErr = FileOutputBuffer::create(Config->OutputFile, FileSize, FileOutputBuffer::F_executable); if (auto EC = BufferOrErr.getError()) error("failed to open " + Config->OutputFile + ": " + EC.message()); else Buffer = std::move(*BufferOrErr); } template void Writer::writeSectionsBinary() { uint8_t *Buf = Buffer->getBufferStart(); for (OutputSectionCommand *Cmd : OutputSectionCommands) { OutputSection *Sec = Cmd->Sec; if (Sec->Flags & SHF_ALLOC) Cmd->writeTo(Buf + Sec->Offset); } } // Write section contents to a mmap'ed file. template void Writer::writeSections() { uint8_t *Buf = Buffer->getBufferStart(); // PPC64 needs to process relocations in the .opd section // before processing relocations in code-containing sections. if (auto *OpdCmd = findSectionCommand(".opd")) { Out::Opd = OpdCmd->Sec; Out::OpdBuf = Buf + Out::Opd->Offset; OpdCmd->template writeTo(Buf + Out::Opd->Offset); } OutputSection *EhFrameHdr = (In::EhFrameHdr && !In::EhFrameHdr->empty()) ? In::EhFrameHdr->getParent() : nullptr; // In -r or -emit-relocs mode, write the relocation sections first as in // ELf_Rel targets we might find out that we need to modify the relocated // section while doing it. for (OutputSectionCommand *Cmd : OutputSectionCommands) { OutputSection *Sec = Cmd->Sec; if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA) Cmd->writeTo(Buf + Sec->Offset); } for (OutputSectionCommand *Cmd : OutputSectionCommands) { OutputSection *Sec = Cmd->Sec; if (Sec != Out::Opd && Sec != EhFrameHdr && Sec->Type != SHT_REL && Sec->Type != SHT_RELA) Cmd->writeTo(Buf + Sec->Offset); } // The .eh_frame_hdr depends on .eh_frame section contents, therefore // it should be written after .eh_frame is written. if (EhFrameHdr) { OutputSectionCommand *Cmd = Script->getCmd(EhFrameHdr); Cmd->writeTo(Buf + EhFrameHdr->Offset); } } template void Writer::writeBuildId() { if (!InX::BuildId || !InX::BuildId->getParent()) return; // Compute a hash of all sections of the output file. uint8_t *Start = Buffer->getBufferStart(); uint8_t *End = Start + FileSize; InX::BuildId->writeBuildId({Start, End}); } template void elf::writeResult(); template void elf::writeResult(); template void elf::writeResult(); template void elf::writeResult();