Index: head/contrib/llvm/tools/lld/ELF/InputSection.cpp =================================================================== --- head/contrib/llvm/tools/lld/ELF/InputSection.cpp (revision 319954) +++ head/contrib/llvm/tools/lld/ELF/InputSection.cpp (revision 319955) @@ -1,802 +1,803 @@ //===- InputSection.cpp ---------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "InputSection.h" #include "Config.h" #include "EhFrame.h" #include "Error.h" #include "InputFiles.h" #include "LinkerScript.h" #include "Memory.h" #include "OutputSections.h" #include "Relocations.h" #include "SyntheticSections.h" #include "Target.h" #include "Thunks.h" #include "llvm/Object/Decompressor.h" #include "llvm/Support/Compression.h" #include "llvm/Support/Endian.h" #include using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; using namespace llvm::support; using namespace llvm::support::endian; using namespace lld; using namespace lld::elf; // Returns a string to construct an error message. template std::string lld::toString(const InputSectionBase *Sec) { // File can be absent if section is synthetic. std::string FileName = Sec->getFile() ? Sec->getFile()->getName() : ""; return (FileName + ":(" + Sec->Name + ")").str(); } template static ArrayRef getSectionContents(elf::ObjectFile *File, const typename ELFT::Shdr *Hdr) { if (!File || Hdr->sh_type == SHT_NOBITS) return makeArrayRef(nullptr, Hdr->sh_size); return check(File->getObj().getSectionContents(Hdr)); } template InputSectionBase::InputSectionBase(elf::ObjectFile *File, uintX_t Flags, uint32_t Type, uintX_t Entsize, uint32_t Link, uint32_t Info, uintX_t Addralign, ArrayRef Data, StringRef Name, Kind SectionKind) : InputSectionData(SectionKind, Name, Data, !Config->GcSections || !(Flags & SHF_ALLOC)), File(File), Flags(Flags), Entsize(Entsize), Type(Type), Link(Link), Info(Info), Repl(this) { NumRelocations = 0; AreRelocsRela = false; // The ELF spec states that a value of 0 means the section has // no alignment constraits. uint64_t V = std::max(Addralign, 1); if (!isPowerOf2_64(V)) fatal(toString(File) + ": section sh_addralign is not a power of 2"); // We reject object files having insanely large alignments even though // they are allowed by the spec. I think 4GB is a reasonable limitation. // We might want to relax this in the future. if (V > UINT32_MAX) fatal(toString(File) + ": section sh_addralign is too large"); Alignment = V; // If it is not a mergeable section, overwrite the flag so that the flag // is consistent with the class. This inconsistency could occur when // string merging is disabled using -O0 flag. if (!Config->Relocatable && !isa>(this)) this->Flags &= ~(SHF_MERGE | SHF_STRINGS); } template InputSectionBase::InputSectionBase(elf::ObjectFile *File, const Elf_Shdr *Hdr, StringRef Name, Kind SectionKind) : InputSectionBase(File, Hdr->sh_flags & ~SHF_INFO_LINK, Hdr->sh_type, Hdr->sh_entsize, Hdr->sh_link, Hdr->sh_info, Hdr->sh_addralign, getSectionContents(File, Hdr), Name, SectionKind) { this->Offset = Hdr->sh_offset; } template size_t InputSectionBase::getSize() const { if (auto *S = dyn_cast>(this)) return S->getSize(); if (auto *D = dyn_cast>(this)) if (D->getThunksSize() > 0) return D->getThunkOff() + D->getThunksSize(); return Data.size(); } template typename ELFT::uint InputSectionBase::getOffset(uintX_t Offset) const { switch (kind()) { case Regular: return cast>(this)->OutSecOff + Offset; case Synthetic: // For synthetic sections we treat offset -1 as the end of the section. // The same approach is used for synthetic symbols (DefinedSynthetic). return cast>(this)->OutSecOff + (Offset == uintX_t(-1) ? getSize() : Offset); case EHFrame: // The file crtbeginT.o has relocations pointing to the start of an empty // .eh_frame that is known to be the first in the link. It does that to // identify the start of the output .eh_frame. return Offset; case Merge: return cast>(this)->getOffset(Offset); } llvm_unreachable("invalid section kind"); } // Uncompress section contents. Note that this function is called // from parallel_for_each, so it must be thread-safe. template void InputSectionBase::uncompress() { Decompressor Decompressor = check(Decompressor::create( Name, toStringRef(Data), ELFT::TargetEndianness == llvm::support::little, ELFT::Is64Bits)); size_t Size = Decompressor.getDecompressedSize(); char *OutputBuf; { static std::mutex Mu; std::lock_guard Lock(Mu); OutputBuf = BAlloc.Allocate(Size); } if (Error E = Decompressor.decompress({OutputBuf, Size})) fatal(E, toString(this)); Data = ArrayRef((uint8_t *)OutputBuf, Size); } template typename ELFT::uint InputSectionBase::getOffset(const DefinedRegular &Sym) const { return getOffset(Sym.Value); } template InputSectionBase *InputSectionBase::getLinkOrderDep() const { if ((Flags & SHF_LINK_ORDER) && Link != 0) return getFile()->getSections()[Link]; return nullptr; } // Returns a source location string. Used to construct an error message. template std::string InputSectionBase::getLocation(typename ELFT::uint Offset) { // First check if we can get desired values from debugging information. std::string LineInfo = File->getLineInfo(this, Offset); if (!LineInfo.empty()) return LineInfo; // File->SourceFile contains STT_FILE symbol that contains a // source file name. If it's missing, we use an object file name. std::string SrcFile = File->SourceFile; if (SrcFile.empty()) SrcFile = toString(File); // Find a function symbol that encloses a given location. for (SymbolBody *B : File->getSymbols()) if (auto *D = dyn_cast>(B)) if (D->Section == this && D->Type == STT_FUNC) if (D->Value <= Offset && Offset < D->Value + D->Size) return SrcFile + ":(function " + toString(*D) + ")"; // If there's no symbol, print out the offset in the section. return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str(); } template InputSection::InputSection() : InputSectionBase() {} template InputSection::InputSection(uintX_t Flags, uint32_t Type, uintX_t Addralign, ArrayRef Data, StringRef Name, Kind K) : InputSectionBase(nullptr, Flags, Type, /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Addralign, Data, Name, K) {} template InputSection::InputSection(elf::ObjectFile *F, const Elf_Shdr *Header, StringRef Name) : InputSectionBase(F, Header, Name, Base::Regular) {} template bool InputSection::classof(const InputSectionData *S) { return S->kind() == Base::Regular || S->kind() == Base::Synthetic; } template InputSectionBase *InputSection::getRelocatedSection() { assert(this->Type == SHT_RELA || this->Type == SHT_REL); ArrayRef *> Sections = this->File->getSections(); return Sections[this->Info]; } template void InputSection::addThunk(const Thunk *T) { Thunks.push_back(T); } template uint64_t InputSection::getThunkOff() const { return this->Data.size(); } template uint64_t InputSection::getThunksSize() const { uint64_t Total = 0; for (const Thunk *T : Thunks) Total += T->size(); return Total; } // This is used for -r. We can't use memcpy to copy relocations because we need // to update symbol table offset and section index for each relocation. So we // copy relocations one by one. template template void InputSection::copyRelocations(uint8_t *Buf, ArrayRef Rels) { InputSectionBase *RelocatedSection = getRelocatedSection(); for (const RelTy &Rel : Rels) { uint32_t Type = Rel.getType(Config->Mips64EL); SymbolBody &Body = this->File->getRelocTargetSym(Rel); Elf_Rela *P = reinterpret_cast(Buf); Buf += sizeof(RelTy); if (Config->Rela) P->r_addend = getAddend(Rel); P->r_offset = RelocatedSection->getOffset(Rel.r_offset); P->setSymbolAndType(In::SymTab->getSymbolIndex(&Body), Type, Config->Mips64EL); } } static uint32_t getARMUndefinedRelativeWeakVA(uint32_t Type, uint32_t A, uint32_t P) { switch (Type) { case R_ARM_THM_JUMP11: return P + 2; case R_ARM_CALL: case R_ARM_JUMP24: case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_PREL31: case R_ARM_THM_JUMP19: case R_ARM_THM_JUMP24: return P + 4; case R_ARM_THM_CALL: // We don't want an interworking BLX to ARM return P + 5; default: return A; } } static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, uint64_t P) { switch (Type) { case R_AARCH64_CALL26: case R_AARCH64_CONDBR19: case R_AARCH64_JUMP26: case R_AARCH64_TSTBR14: return P + 4; default: return A; } } template static typename ELFT::uint getRelocTargetVA(uint32_t Type, typename ELFT::uint A, typename ELFT::uint P, const SymbolBody &Body, RelExpr Expr) { switch (Expr) { - case R_HINT: - case R_TLSDESC_CALL: - llvm_unreachable("cannot relocate hint relocs"); - case R_TLSLD: - return In::Got->getTlsIndexOff() + A - In::Got->getSize(); - case R_TLSLD_PC: - return In::Got->getTlsIndexVA() + A - P; - case R_THUNK_ABS: - return Body.getThunkVA() + A; - case R_THUNK_PC: - case R_THUNK_PLT_PC: - return Body.getThunkVA() + A - P; - case R_PPC_TOC: - return getPPC64TocBase() + A; - case R_TLSGD: - return In::Got->getGlobalDynOffset(Body) + A - - In::Got->getSize(); - case R_TLSGD_PC: - return In::Got->getGlobalDynAddr(Body) + A - P; - case R_TLSDESC: - return In::Got->getGlobalDynAddr(Body) + A; - case R_TLSDESC_PAGE: - return getAArch64Page(In::Got->getGlobalDynAddr(Body) + A) - - getAArch64Page(P); - case R_PLT: - return Body.getPltVA() + A; - case R_PLT_PC: - case R_PPC_PLT_OPD: - return Body.getPltVA() + A - P; - case R_SIZE: - return Body.getSize() + A; + case R_ABS: + case R_RELAX_GOT_PC_NOPIC: + return Body.getVA(A); + case R_GOT: + case R_RELAX_TLS_GD_TO_IE_ABS: + return Body.getGotVA() + A; + case R_GOTONLY_PC: + return In::Got->getVA() + A - P; + case R_GOTONLY_PC_FROM_END: + return In::Got->getVA() + A - P + In::Got->getSize(); case R_GOTREL: return Body.getVA(A) - In::Got->getVA(); case R_GOTREL_FROM_END: return Body.getVA(A) - In::Got->getVA() - In::Got->getSize(); - case R_RELAX_TLS_GD_TO_IE_END: case R_GOT_FROM_END: + case R_RELAX_TLS_GD_TO_IE_END: return Body.getGotOffset() + A - In::Got->getSize(); - case R_RELAX_TLS_GD_TO_IE_ABS: - case R_GOT: - return Body.getGotVA() + A; - case R_RELAX_TLS_GD_TO_IE_PAGE_PC: + case R_GOT_OFF: + return Body.getGotOffset() + A; case R_GOT_PAGE_PC: + case R_RELAX_TLS_GD_TO_IE_PAGE_PC: return getAArch64Page(Body.getGotVA() + A) - getAArch64Page(P); - case R_RELAX_TLS_GD_TO_IE: case R_GOT_PC: + case R_RELAX_TLS_GD_TO_IE: return Body.getGotVA() + A - P; - case R_GOTONLY_PC: - return In::Got->getVA() + A - P; - case R_GOTONLY_PC_FROM_END: - return In::Got->getVA() + A - P + In::Got->getSize(); - case R_RELAX_TLS_LD_TO_LE: - case R_RELAX_TLS_IE_TO_LE: - case R_RELAX_TLS_GD_TO_LE: - case R_TLS: - // A weak undefined TLS symbol resolves to the base of the TLS - // block, i.e. gets a value of zero. If we pass --gc-sections to - // lld and .tbss is not referenced, it gets reclaimed and we don't - // create a TLS program header. Therefore, we resolve this - // statically to zero. - if (Body.isTls() && (Body.isLazy() || Body.isUndefined()) && - Body.symbol()->isWeak()) - return 0; - if (Target->TcbSize) - return Body.getVA(A) + - alignTo(Target->TcbSize, Out::TlsPhdr->p_align); - return Body.getVA(A) - Out::TlsPhdr->p_memsz; - case R_RELAX_TLS_GD_TO_LE_NEG: - case R_NEG_TLS: - return Out::TlsPhdr->p_memsz - Body.getVA(A); - case R_ABS: - case R_RELAX_GOT_PC_NOPIC: - return Body.getVA(A); - case R_GOT_OFF: - return Body.getGotOffset() + A; + case R_HINT: + case R_TLSDESC_CALL: + llvm_unreachable("cannot relocate hint relocs"); + case R_MIPS_GOTREL: + return Body.getVA(A) - In::MipsGot->getGp(); case R_MIPS_GOT_LOCAL_PAGE: // If relocation against MIPS local symbol requires GOT entry, this entry // should be initialized by 'page address'. This address is high 16-bits // of sum the symbol's value and the addend. return In::MipsGot->getVA() + In::MipsGot->getPageEntryOffset(Body, A) - In::MipsGot->getGp(); case R_MIPS_GOT_OFF: case R_MIPS_GOT_OFF32: // In case of MIPS if a GOT relocation has non-zero addend this addend // should be applied to the GOT entry content not to the GOT entry offset. // That is why we use separate expression type. return In::MipsGot->getVA() + In::MipsGot->getBodyEntryOffset(Body, A) - In::MipsGot->getGp(); - case R_MIPS_GOTREL: - return Body.getVA(A) - In::MipsGot->getGp(); case R_MIPS_TLSGD: return In::MipsGot->getVA() + In::MipsGot->getTlsOffset() + In::MipsGot->getGlobalDynOffset(Body) - In::MipsGot->getGp(); case R_MIPS_TLSLD: return In::MipsGot->getVA() + In::MipsGot->getTlsOffset() + In::MipsGot->getTlsIndexOff() - In::MipsGot->getGp(); + case R_PAGE_PC: + case R_PLT_PAGE_PC: + if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) + return getAArch64Page(A); + return getAArch64Page(Body.getVA(A)) - getAArch64Page(P); + case R_PC: + if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) { + // On ARM and AArch64 a branch to an undefined weak resolves to the + // next instruction, otherwise the place. + if (Config->EMachine == EM_ARM) + return getARMUndefinedRelativeWeakVA(Type, A, P); + if (Config->EMachine == EM_AARCH64) + return getAArch64UndefinedRelativeWeakVA(Type, A, P); + } + return Body.getVA(A) - P; + case R_PLT: + return Body.getPltVA() + A; + case R_PLT_PC: + case R_PPC_PLT_OPD: + return Body.getPltVA() + A - P; case R_PPC_OPD: { uint64_t SymVA = Body.getVA(A); // If we have an undefined weak symbol, we might get here with a symbol // address of zero. That could overflow, but the code must be unreachable, // so don't bother doing anything at all. if (!SymVA) return 0; if (Out::Opd) { // If this is a local call, and we currently have the address of a // function-descriptor, get the underlying code address instead. uint64_t OpdStart = Out::Opd->Addr; uint64_t OpdEnd = OpdStart + Out::Opd->Size; bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd; if (InOpd) SymVA = read64be(&Out::OpdBuf[SymVA - OpdStart]); } return SymVA - P; } - case R_PC: - if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) { - // On ARM and AArch64 a branch to an undefined weak resolves to the - // next instruction, otherwise the place. - if (Config->EMachine == EM_ARM) - return getARMUndefinedRelativeWeakVA(Type, A, P); - if (Config->EMachine == EM_AARCH64) - return getAArch64UndefinedRelativeWeakVA(Type, A, P); - } + case R_PPC_TOC: + return getPPC64TocBase() + A; case R_RELAX_GOT_PC: return Body.getVA(A) - P; - case R_PLT_PAGE_PC: - case R_PAGE_PC: - if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) - return getAArch64Page(A); - return getAArch64Page(Body.getVA(A)) - getAArch64Page(P); + case R_RELAX_TLS_GD_TO_LE: + case R_RELAX_TLS_IE_TO_LE: + case R_RELAX_TLS_LD_TO_LE: + case R_TLS: + // A weak undefined TLS symbol resolves to the base of the TLS + // block, i.e. gets a value of zero. If we pass --gc-sections to + // lld and .tbss is not referenced, it gets reclaimed and we don't + // create a TLS program header. Therefore, we resolve this + // statically to zero. + if (Body.isTls() && (Body.isLazy() || Body.isUndefined()) && + Body.symbol()->isWeak()) + return 0; + if (Target->TcbSize) + return Body.getVA(A) + + alignTo(Target->TcbSize, Out::TlsPhdr->p_align); + return Body.getVA(A) - Out::TlsPhdr->p_memsz; + case R_RELAX_TLS_GD_TO_LE_NEG: + case R_NEG_TLS: + return Out::TlsPhdr->p_memsz - Body.getVA(A); + case R_SIZE: + return Body.getSize() + A; + case R_THUNK_ABS: + return Body.getThunkVA() + A; + case R_THUNK_PC: + case R_THUNK_PLT_PC: + return Body.getThunkVA() + A - P; + case R_TLSDESC: + return In::Got->getGlobalDynAddr(Body) + A; + case R_TLSDESC_PAGE: + return getAArch64Page(In::Got->getGlobalDynAddr(Body) + A) - + getAArch64Page(P); + case R_TLSGD: + return In::Got->getGlobalDynOffset(Body) + A - + In::Got->getSize(); + case R_TLSGD_PC: + return In::Got->getGlobalDynAddr(Body) + A - P; + case R_TLSLD: + return In::Got->getTlsIndexOff() + A - In::Got->getSize(); + case R_TLSLD_PC: + return In::Got->getTlsIndexVA() + A - P; } llvm_unreachable("Invalid expression"); } // This function applies relocations to sections without SHF_ALLOC bit. // Such sections are never mapped to memory at runtime. Debug sections are // an example. Relocations in non-alloc sections are much easier to // handle than in allocated sections because it will never need complex // treatement such as GOT or PLT (because at runtime no one refers them). // So, we handle relocations for non-alloc sections directly in this // function as a performance optimization. template template void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef Rels) { for (const RelTy &Rel : Rels) { uint32_t Type = Rel.getType(Config->Mips64EL); uintX_t Offset = this->getOffset(Rel.r_offset); uint8_t *BufLoc = Buf + Offset; uintX_t Addend = getAddend(Rel); if (!RelTy::IsRela) Addend += Target->getImplicitAddend(BufLoc, Type); SymbolBody &Sym = this->File->getRelocTargetSym(Rel); if (Target->getRelExpr(Type, Sym) != R_ABS) { error(this->getLocation(Offset) + ": has non-ABS reloc"); return; } uintX_t AddrLoc = this->OutSec->Addr + Offset; uint64_t SymVA = 0; if (!Sym.isTls() || Out::TlsPhdr) SymVA = SignExtend64( getRelocTargetVA(Type, Addend, AddrLoc, Sym, R_ABS)); Target->relocateOne(BufLoc, Type, SymVA); } } template void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) { // scanReloc function in Writer.cpp constructs Relocations // vector only for SHF_ALLOC'ed sections. For other sections, // we handle relocations directly here. auto *IS = dyn_cast>(this); if (IS && !(IS->Flags & SHF_ALLOC)) { if (IS->AreRelocsRela) IS->relocateNonAlloc(Buf, IS->relas()); else IS->relocateNonAlloc(Buf, IS->rels()); return; } const unsigned Bits = sizeof(uintX_t) * 8; for (const Relocation &Rel : Relocations) { uintX_t Offset = getOffset(Rel.Offset); uint8_t *BufLoc = Buf + Offset; uint32_t Type = Rel.Type; uintX_t A = Rel.Addend; uintX_t AddrLoc = OutSec->Addr + Offset; RelExpr Expr = Rel.Expr; uint64_t TargetVA = SignExtend64( getRelocTargetVA(Type, A, AddrLoc, *Rel.Sym, Expr)); switch (Expr) { case R_RELAX_GOT_PC: case R_RELAX_GOT_PC_NOPIC: Target->relaxGot(BufLoc, TargetVA); break; case R_RELAX_TLS_IE_TO_LE: Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); break; case R_RELAX_TLS_LD_TO_LE: Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); break; case R_RELAX_TLS_GD_TO_LE: case R_RELAX_TLS_GD_TO_LE_NEG: Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); break; case R_RELAX_TLS_GD_TO_IE: case R_RELAX_TLS_GD_TO_IE_ABS: case R_RELAX_TLS_GD_TO_IE_PAGE_PC: case R_RELAX_TLS_GD_TO_IE_END: Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); break; case R_PPC_PLT_OPD: // Patch a nop (0x60000000) to a ld. if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000) write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1) // fallthrough default: Target->relocateOne(BufLoc, Type, TargetVA); break; } } } template void InputSection::writeTo(uint8_t *Buf) { if (this->Type == SHT_NOBITS) return; if (auto *S = dyn_cast>(this)) { S->writeTo(Buf + OutSecOff); return; } // If -r is given, then an InputSection may be a relocation section. if (this->Type == SHT_RELA) { copyRelocations(Buf + OutSecOff, this->template getDataAs()); return; } if (this->Type == SHT_REL) { copyRelocations(Buf + OutSecOff, this->template getDataAs()); return; } // Copy section contents from source object file to output file. ArrayRef Data = this->Data; memcpy(Buf + OutSecOff, Data.data(), Data.size()); // Iterate over all relocation sections that apply to this section. uint8_t *BufEnd = Buf + OutSecOff + Data.size(); this->relocate(Buf, BufEnd); // The section might have a data/code generated by the linker and need // to be written after the section. Usually these are thunks - small piece // of code used to jump between "incompatible" functions like PIC and non-PIC // or if the jump target too far and its address does not fit to the short // jump istruction. if (!Thunks.empty()) { Buf += OutSecOff + getThunkOff(); for (const Thunk *T : Thunks) { T->writeTo(Buf); Buf += T->size(); } } } template void InputSection::replace(InputSection *Other) { this->Alignment = std::max(this->Alignment, Other->Alignment); Other->Repl = this->Repl; Other->Live = false; } template EhInputSection::EhInputSection(elf::ObjectFile *F, const Elf_Shdr *Header, StringRef Name) : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) { // Mark .eh_frame sections as live by default because there are // usually no relocations that point to .eh_frames. Otherwise, // the garbage collector would drop all .eh_frame sections. this->Live = true; } template bool EhInputSection::classof(const InputSectionData *S) { return S->kind() == InputSectionBase::EHFrame; } // Returns the index of the first relocation that points to a region between // Begin and Begin+Size. template static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef &Rels, unsigned &RelocI) { // Start search from RelocI for fast access. That works because the // relocations are sorted in .eh_frame. for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { const RelTy &Rel = Rels[RelocI]; if (Rel.r_offset < Begin) continue; if (Rel.r_offset < Begin + Size) return RelocI; return -1; } return -1; } // .eh_frame is a sequence of CIE or FDE records. // This function splits an input section into records and returns them. template void EhInputSection::split() { // Early exit if already split. if (!this->Pieces.empty()) return; if (this->NumRelocations) { if (this->AreRelocsRela) split(this->relas()); else split(this->rels()); return; } split(makeArrayRef(nullptr, nullptr)); } template template void EhInputSection::split(ArrayRef Rels) { ArrayRef Data = this->Data; unsigned RelI = 0; for (size_t Off = 0, End = Data.size(); Off != End;) { size_t Size = readEhRecordSize(this, Off); this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); // The empty record is the end marker. if (Size == 4) break; Off += Size; } } static size_t findNull(ArrayRef A, size_t EntSize) { // Optimize the common case. StringRef S((const char *)A.data(), A.size()); if (EntSize == 1) return S.find(0); for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { const char *B = S.begin() + I; if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) return I; } return StringRef::npos; } // Split SHF_STRINGS section. Such section is a sequence of // null-terminated strings. template void MergeInputSection::splitStrings(ArrayRef Data, size_t EntSize) { size_t Off = 0; bool IsAlloc = this->Flags & SHF_ALLOC; while (!Data.empty()) { size_t End = findNull(Data, EntSize); if (End == StringRef::npos) fatal(toString(this) + ": string is not null terminated"); size_t Size = End + EntSize; Pieces.emplace_back(Off, !IsAlloc); Hashes.push_back(hash_value(toStringRef(Data.slice(0, Size)))); Data = Data.slice(Size); Off += Size; } } // Split non-SHF_STRINGS section. Such section is a sequence of // fixed size records. template void MergeInputSection::splitNonStrings(ArrayRef Data, size_t EntSize) { size_t Size = Data.size(); assert((Size % EntSize) == 0); bool IsAlloc = this->Flags & SHF_ALLOC; for (unsigned I = 0, N = Size; I != N; I += EntSize) { Hashes.push_back(hash_value(toStringRef(Data.slice(I, EntSize)))); Pieces.emplace_back(I, !IsAlloc); } } template MergeInputSection::MergeInputSection(elf::ObjectFile *F, const Elf_Shdr *Header, StringRef Name) : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {} // This function is called after we obtain a complete list of input sections // that need to be linked. This is responsible to split section contents // into small chunks for further processing. // // Note that this function is called from parallel_for_each. This must be // thread-safe (i.e. no memory allocation from the pools). template void MergeInputSection::splitIntoPieces() { ArrayRef Data = this->Data; uintX_t EntSize = this->Entsize; if (this->Flags & SHF_STRINGS) splitStrings(Data, EntSize); else splitNonStrings(Data, EntSize); if (Config->GcSections && (this->Flags & SHF_ALLOC)) for (uintX_t Off : LiveOffsets) this->getSectionPiece(Off)->Live = true; } template bool MergeInputSection::classof(const InputSectionData *S) { return S->kind() == InputSectionBase::Merge; } // Do binary search to get a section piece at a given input offset. template SectionPiece *MergeInputSection::getSectionPiece(uintX_t Offset) { auto *This = static_cast *>(this); return const_cast(This->getSectionPiece(Offset)); } template static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) { size_t Size = std::distance(First, Last); assert(Size != 0); while (Size != 1) { size_t H = Size / 2; const It MI = First + H; Size -= H; First = Comp(Value, *MI) ? First : First + H; } return Comp(Value, *First) ? First : First + 1; } template const SectionPiece * MergeInputSection::getSectionPiece(uintX_t Offset) const { uintX_t Size = this->Data.size(); if (Offset >= Size) fatal(toString(this) + ": entry is past the end of the section"); // Find the element this offset points to. auto I = fastUpperBound( Pieces.begin(), Pieces.end(), Offset, [](const uintX_t &A, const SectionPiece &B) { return A < B.InputOff; }); --I; return &*I; } // Returns the offset in an output section for a given input offset. // Because contents of a mergeable section is not contiguous in output, // it is not just an addition to a base output offset. template typename ELFT::uint MergeInputSection::getOffset(uintX_t Offset) const { // Initialize OffsetMap lazily. std::call_once(InitOffsetMap, [&] { OffsetMap.reserve(Pieces.size()); for (const SectionPiece &Piece : Pieces) OffsetMap[Piece.InputOff] = Piece.OutputOff; }); // Find a string starting at a given offset. auto It = OffsetMap.find(Offset); if (It != OffsetMap.end()) return It->second; if (!this->Live) return 0; // If Offset is not at beginning of a section piece, it is not in the map. // In that case we need to search from the original section piece vector. const SectionPiece &Piece = *this->getSectionPiece(Offset); if (!Piece.Live) return 0; uintX_t Addend = Offset - Piece.InputOff; return Piece.OutputOff + Addend; } template class elf::InputSectionBase; template class elf::InputSectionBase; template class elf::InputSectionBase; template class elf::InputSectionBase; template class elf::InputSection; template class elf::InputSection; template class elf::InputSection; template class elf::InputSection; template class elf::EhInputSection; template class elf::EhInputSection; template class elf::EhInputSection; template class elf::EhInputSection; template class elf::MergeInputSection; template class elf::MergeInputSection; template class elf::MergeInputSection; template class elf::MergeInputSection; template std::string lld::toString(const InputSectionBase *); template std::string lld::toString(const InputSectionBase *); template std::string lld::toString(const InputSectionBase *); template std::string lld::toString(const InputSectionBase *); Index: head/contrib/llvm/tools/lld/ELF/Relocations.h =================================================================== --- head/contrib/llvm/tools/lld/ELF/Relocations.h (revision 319954) +++ head/contrib/llvm/tools/lld/ELF/Relocations.h (revision 319955) @@ -1,130 +1,130 @@ //===- Relocations.h -------------------------------------------*- C++ -*-===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLD_ELF_RELOCATIONS_H #define LLD_ELF_RELOCATIONS_H #include "lld/Core/LLVM.h" namespace lld { namespace elf { class SymbolBody; class InputSectionData; template class InputSection; template class InputSectionBase; // List of target-independent relocation types. Relocations read // from files are converted to these types so that the main code // doesn't have to know about architecture-specific details. enum RelExpr { R_ABS, R_GOT, R_GOTONLY_PC, R_GOTONLY_PC_FROM_END, R_GOTREL, R_GOTREL_FROM_END, R_GOT_FROM_END, R_GOT_OFF, R_GOT_PAGE_PC, R_GOT_PC, R_HINT, + R_MIPS_GOTREL, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, - R_MIPS_GOTREL, R_MIPS_TLSGD, R_MIPS_TLSLD, R_NEG_TLS, R_PAGE_PC, R_PC, R_PLT, - R_PLT_PC, R_PLT_PAGE_PC, + R_PLT_PC, R_PPC_OPD, R_PPC_PLT_OPD, R_PPC_TOC, R_RELAX_GOT_PC, R_RELAX_GOT_PC_NOPIC, R_RELAX_TLS_GD_TO_IE, - R_RELAX_TLS_GD_TO_IE_END, R_RELAX_TLS_GD_TO_IE_ABS, + R_RELAX_TLS_GD_TO_IE_END, R_RELAX_TLS_GD_TO_IE_PAGE_PC, R_RELAX_TLS_GD_TO_LE, R_RELAX_TLS_GD_TO_LE_NEG, R_RELAX_TLS_IE_TO_LE, R_RELAX_TLS_LD_TO_LE, R_SIZE, R_THUNK_ABS, R_THUNK_PC, R_THUNK_PLT_PC, R_TLS, R_TLSDESC, - R_TLSDESC_PAGE, R_TLSDESC_CALL, + R_TLSDESC_PAGE, R_TLSGD, R_TLSGD_PC, R_TLSLD, R_TLSLD_PC, }; // Build a bitmask with one bit set for each RelExpr. // // Constexpr function arguments can't be used in static asserts, so we // use template arguments to build the mask. // But function template partial specializations don't exist (needed // for base case of the recursion), so we need a dummy struct. template struct RelExprMaskBuilder { static inline uint64_t build() { return 0; } }; // Specialization for recursive case. template struct RelExprMaskBuilder { static inline uint64_t build() { static_assert(0 <= Head && Head < 64, "RelExpr is too large for 64-bit mask!"); return (uint64_t(1) << Head) | RelExprMaskBuilder::build(); } }; // Return true if `Expr` is one of `Exprs`. // There are fewer than 64 RelExpr's, so we can represent any set of // RelExpr's as a constant bit mask and test for membership with a // couple cheap bitwise operations. template bool isRelExprOneOf(RelExpr Expr) { assert(0 <= Expr && (int)Expr < 64 && "RelExpr is too large for 64-bit mask!"); return (uint64_t(1) << Expr) & RelExprMaskBuilder::build(); } // Architecture-neutral representation of relocation. struct Relocation { RelExpr Expr; uint32_t Type; uint64_t Offset; uint64_t Addend; SymbolBody *Sym; }; template void scanRelocations(InputSectionBase &); template void createThunks(InputSectionBase &); template static inline typename ELFT::uint getAddend(const typename ELFT::Rel &Rel) { return 0; } template static inline typename ELFT::uint getAddend(const typename ELFT::Rela &Rel) { return Rel.r_addend; } } } #endif