Index: head/lib/libprocstat/Symbol.map =================================================================== --- head/lib/libprocstat/Symbol.map (revision 318968) +++ head/lib/libprocstat/Symbol.map (revision 318969) @@ -1,43 +1,43 @@ /* * $FreeBSD$ */ FBSD_1.2 { procstat_close; procstat_freefiles; procstat_freeprocs; procstat_get_pipe_info; - procstat_get_socket_info; procstat_getfiles; procstat_getprocs; procstat_open_kvm; procstat_open_sysctl; }; FBSD_1.3 { procstat_freeargv; procstat_freeauxv; procstat_freeenvv; procstat_freegroups; procstat_freekstack; procstat_freevmmap; procstat_getargv; procstat_getauxv; procstat_getenvv; procstat_getgroups; procstat_getkstack; procstat_getosrel; procstat_getpathname; procstat_getrlimit; procstat_getumask; procstat_getvmmap; procstat_open_core; }; FBSD_1.5 { procstat_freeptlwpinfo; procstat_getptlwpinfo; procstat_get_pts_info; procstat_get_sem_info; procstat_get_shm_info; + procstat_get_socket_info; procstat_get_vnode_info; }; Index: head/lib/libprocstat/libprocstat.c =================================================================== --- head/lib/libprocstat/libprocstat.c (revision 318968) +++ head/lib/libprocstat/libprocstat.c (revision 318969) @@ -1,2584 +1,2593 @@ /*- * Copyright (c) 2017 Dell EMC * Copyright (c) 2009 Stanislav Sedov * Copyright (c) 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #define _WANT_UCRED #include #undef _WANT_UCRED #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define _WANT_FILE #include #include #include #include #include #include #define _KERNEL #include #include #include #include #include #include #undef _KERNEL #include #include #include #include #include #include #include #include #include #include #define _WANT_INPCB #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "libprocstat_internal.h" #include "common_kvm.h" #include "core.h" int statfs(const char *, struct statfs *); /* XXX */ #define PROCSTAT_KVM 1 #define PROCSTAT_SYSCTL 2 #define PROCSTAT_CORE 3 static char **getargv(struct procstat *procstat, struct kinfo_proc *kp, size_t nchr, int env); static char *getmnton(kvm_t *kd, struct mount *m); static struct kinfo_vmentry * kinfo_getvmmap_core(struct procstat_core *core, int *cntp); static Elf_Auxinfo *procstat_getauxv_core(struct procstat_core *core, unsigned int *cntp); static Elf_Auxinfo *procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp); static struct filestat_list *procstat_getfiles_kvm( struct procstat *procstat, struct kinfo_proc *kp, int mmapped); static struct filestat_list *procstat_getfiles_sysctl( struct procstat *procstat, struct kinfo_proc *kp, int mmapped); static int procstat_get_pipe_info_sysctl(struct filestat *fst, struct pipestat *pipe, char *errbuf); static int procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst, struct pipestat *pipe, char *errbuf); static int procstat_get_pts_info_sysctl(struct filestat *fst, struct ptsstat *pts, char *errbuf); static int procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst, struct ptsstat *pts, char *errbuf); static int procstat_get_sem_info_sysctl(struct filestat *fst, struct semstat *sem, char *errbuf); static int procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst, struct semstat *sem, char *errbuf); static int procstat_get_shm_info_sysctl(struct filestat *fst, struct shmstat *shm, char *errbuf); static int procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst, struct shmstat *shm, char *errbuf); static int procstat_get_socket_info_sysctl(struct filestat *fst, struct sockstat *sock, char *errbuf); static int procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst, struct sockstat *sock, char *errbuf); static int to_filestat_flags(int flags); static int procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst, struct vnstat *vn, char *errbuf); static int procstat_get_vnode_info_sysctl(struct filestat *fst, struct vnstat *vn, char *errbuf); static gid_t *procstat_getgroups_core(struct procstat_core *core, unsigned int *count); static gid_t * procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned int *count); static gid_t *procstat_getgroups_sysctl(pid_t pid, unsigned int *count); static struct kinfo_kstack *procstat_getkstack_sysctl(pid_t pid, int *cntp); static int procstat_getosrel_core(struct procstat_core *core, int *osrelp); static int procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, int *osrelp); static int procstat_getosrel_sysctl(pid_t pid, int *osrelp); static int procstat_getpathname_core(struct procstat_core *core, char *pathname, size_t maxlen); static int procstat_getpathname_sysctl(pid_t pid, char *pathname, size_t maxlen); static int procstat_getrlimit_core(struct procstat_core *core, int which, struct rlimit* rlimit); static int procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, int which, struct rlimit* rlimit); static int procstat_getrlimit_sysctl(pid_t pid, int which, struct rlimit* rlimit); static int procstat_getumask_core(struct procstat_core *core, unsigned short *maskp); static int procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned short *maskp); static int procstat_getumask_sysctl(pid_t pid, unsigned short *maskp); static int vntype2psfsttype(int type); void procstat_close(struct procstat *procstat) { assert(procstat); if (procstat->type == PROCSTAT_KVM) kvm_close(procstat->kd); else if (procstat->type == PROCSTAT_CORE) procstat_core_close(procstat->core); procstat_freeargv(procstat); procstat_freeenvv(procstat); free(procstat); } struct procstat * procstat_open_sysctl(void) { struct procstat *procstat; procstat = calloc(1, sizeof(*procstat)); if (procstat == NULL) { warn("malloc()"); return (NULL); } procstat->type = PROCSTAT_SYSCTL; return (procstat); } struct procstat * procstat_open_kvm(const char *nlistf, const char *memf) { struct procstat *procstat; kvm_t *kd; char buf[_POSIX2_LINE_MAX]; procstat = calloc(1, sizeof(*procstat)); if (procstat == NULL) { warn("malloc()"); return (NULL); } kd = kvm_openfiles(nlistf, memf, NULL, O_RDONLY, buf); if (kd == NULL) { warnx("kvm_openfiles(): %s", buf); free(procstat); return (NULL); } procstat->type = PROCSTAT_KVM; procstat->kd = kd; return (procstat); } struct procstat * procstat_open_core(const char *filename) { struct procstat *procstat; struct procstat_core *core; procstat = calloc(1, sizeof(*procstat)); if (procstat == NULL) { warn("malloc()"); return (NULL); } core = procstat_core_open(filename); if (core == NULL) { free(procstat); return (NULL); } procstat->type = PROCSTAT_CORE; procstat->core = core; return (procstat); } struct kinfo_proc * procstat_getprocs(struct procstat *procstat, int what, int arg, unsigned int *count) { struct kinfo_proc *p0, *p; size_t len, olen; int name[4]; int cnt; int error; assert(procstat); assert(count); p = NULL; if (procstat->type == PROCSTAT_KVM) { *count = 0; p0 = kvm_getprocs(procstat->kd, what, arg, &cnt); if (p0 == NULL || cnt <= 0) return (NULL); *count = cnt; len = *count * sizeof(*p); p = malloc(len); if (p == NULL) { warnx("malloc(%zu)", len); goto fail; } bcopy(p0, p, len); return (p); } else if (procstat->type == PROCSTAT_SYSCTL) { len = 0; name[0] = CTL_KERN; name[1] = KERN_PROC; name[2] = what; name[3] = arg; error = sysctl(name, nitems(name), NULL, &len, NULL, 0); if (error < 0 && errno != EPERM) { warn("sysctl(kern.proc)"); goto fail; } if (len == 0) { warnx("no processes?"); goto fail; } do { len += len / 10; p = reallocf(p, len); if (p == NULL) { warnx("reallocf(%zu)", len); goto fail; } olen = len; error = sysctl(name, nitems(name), p, &len, NULL, 0); } while (error < 0 && errno == ENOMEM && olen == len); if (error < 0 && errno != EPERM) { warn("sysctl(kern.proc)"); goto fail; } /* Perform simple consistency checks. */ if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) { warnx("kinfo_proc structure size mismatch (len = %zu)", len); goto fail; } *count = len / sizeof(*p); return (p); } else if (procstat->type == PROCSTAT_CORE) { p = procstat_core_get(procstat->core, PSC_TYPE_PROC, NULL, &len); if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) { warnx("kinfo_proc structure size mismatch"); goto fail; } *count = len / sizeof(*p); return (p); } else { warnx("unknown access method: %d", procstat->type); return (NULL); } fail: if (p) free(p); return (NULL); } void procstat_freeprocs(struct procstat *procstat __unused, struct kinfo_proc *p) { if (p != NULL) free(p); p = NULL; } struct filestat_list * procstat_getfiles(struct procstat *procstat, struct kinfo_proc *kp, int mmapped) { switch(procstat->type) { case PROCSTAT_KVM: return (procstat_getfiles_kvm(procstat, kp, mmapped)); case PROCSTAT_SYSCTL: case PROCSTAT_CORE: return (procstat_getfiles_sysctl(procstat, kp, mmapped)); default: warnx("unknown access method: %d", procstat->type); return (NULL); } } void procstat_freefiles(struct procstat *procstat, struct filestat_list *head) { struct filestat *fst, *tmp; STAILQ_FOREACH_SAFE(fst, head, next, tmp) { if (fst->fs_path != NULL) free(fst->fs_path); free(fst); } free(head); if (procstat->vmentries != NULL) { free(procstat->vmentries); procstat->vmentries = NULL; } if (procstat->files != NULL) { free(procstat->files); procstat->files = NULL; } } static struct filestat * filestat_new_entry(void *typedep, int type, int fd, int fflags, int uflags, int refcount, off_t offset, char *path, cap_rights_t *cap_rightsp) { struct filestat *entry; entry = calloc(1, sizeof(*entry)); if (entry == NULL) { warn("malloc()"); return (NULL); } entry->fs_typedep = typedep; entry->fs_fflags = fflags; entry->fs_uflags = uflags; entry->fs_fd = fd; entry->fs_type = type; entry->fs_ref_count = refcount; entry->fs_offset = offset; entry->fs_path = path; if (cap_rightsp != NULL) entry->fs_cap_rights = *cap_rightsp; else cap_rights_init(&entry->fs_cap_rights); return (entry); } static struct vnode * getctty(kvm_t *kd, struct kinfo_proc *kp) { struct pgrp pgrp; struct proc proc; struct session sess; int error; assert(kp); error = kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, sizeof(proc)); if (error == 0) { warnx("can't read proc struct at %p for pid %d", kp->ki_paddr, kp->ki_pid); return (NULL); } if (proc.p_pgrp == NULL) return (NULL); error = kvm_read_all(kd, (unsigned long)proc.p_pgrp, &pgrp, sizeof(pgrp)); if (error == 0) { warnx("can't read pgrp struct at %p for pid %d", proc.p_pgrp, kp->ki_pid); return (NULL); } error = kvm_read_all(kd, (unsigned long)pgrp.pg_session, &sess, sizeof(sess)); if (error == 0) { warnx("can't read session struct at %p for pid %d", pgrp.pg_session, kp->ki_pid); return (NULL); } return (sess.s_ttyvp); } static struct filestat_list * procstat_getfiles_kvm(struct procstat *procstat, struct kinfo_proc *kp, int mmapped) { struct file file; struct filedesc filed; struct vm_map_entry vmentry; struct vm_object object; struct vmspace vmspace; vm_map_entry_t entryp; vm_map_t map; vm_object_t objp; struct vnode *vp; struct file **ofiles; struct filestat *entry; struct filestat_list *head; kvm_t *kd; void *data; int i, fflags; int prot, type; unsigned int nfiles; assert(procstat); kd = procstat->kd; if (kd == NULL) return (NULL); if (kp->ki_fd == NULL) return (NULL); if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &filed, sizeof(filed))) { warnx("can't read filedesc at %p", (void *)kp->ki_fd); return (NULL); } /* * Allocate list head. */ head = malloc(sizeof(*head)); if (head == NULL) return (NULL); STAILQ_INIT(head); /* root directory vnode, if one. */ if (filed.fd_rdir) { entry = filestat_new_entry(filed.fd_rdir, PS_FST_TYPE_VNODE, -1, PS_FST_FFLAG_READ, PS_FST_UFLAG_RDIR, 0, 0, NULL, NULL); if (entry != NULL) STAILQ_INSERT_TAIL(head, entry, next); } /* current working directory vnode. */ if (filed.fd_cdir) { entry = filestat_new_entry(filed.fd_cdir, PS_FST_TYPE_VNODE, -1, PS_FST_FFLAG_READ, PS_FST_UFLAG_CDIR, 0, 0, NULL, NULL); if (entry != NULL) STAILQ_INSERT_TAIL(head, entry, next); } /* jail root, if any. */ if (filed.fd_jdir) { entry = filestat_new_entry(filed.fd_jdir, PS_FST_TYPE_VNODE, -1, PS_FST_FFLAG_READ, PS_FST_UFLAG_JAIL, 0, 0, NULL, NULL); if (entry != NULL) STAILQ_INSERT_TAIL(head, entry, next); } /* ktrace vnode, if one */ if (kp->ki_tracep) { entry = filestat_new_entry(kp->ki_tracep, PS_FST_TYPE_VNODE, -1, PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE, PS_FST_UFLAG_TRACE, 0, 0, NULL, NULL); if (entry != NULL) STAILQ_INSERT_TAIL(head, entry, next); } /* text vnode, if one */ if (kp->ki_textvp) { entry = filestat_new_entry(kp->ki_textvp, PS_FST_TYPE_VNODE, -1, PS_FST_FFLAG_READ, PS_FST_UFLAG_TEXT, 0, 0, NULL, NULL); if (entry != NULL) STAILQ_INSERT_TAIL(head, entry, next); } /* Controlling terminal. */ if ((vp = getctty(kd, kp)) != NULL) { entry = filestat_new_entry(vp, PS_FST_TYPE_VNODE, -1, PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE, PS_FST_UFLAG_CTTY, 0, 0, NULL, NULL); if (entry != NULL) STAILQ_INSERT_TAIL(head, entry, next); } nfiles = filed.fd_lastfile + 1; ofiles = malloc(nfiles * sizeof(struct file *)); if (ofiles == NULL) { warn("malloc(%zu)", nfiles * sizeof(struct file *)); goto do_mmapped; } if (!kvm_read_all(kd, (unsigned long)filed.fd_ofiles, ofiles, nfiles * sizeof(struct file *))) { warnx("cannot read file structures at %p", (void *)filed.fd_ofiles); free(ofiles); goto do_mmapped; } for (i = 0; i <= filed.fd_lastfile; i++) { if (ofiles[i] == NULL) continue; if (!kvm_read_all(kd, (unsigned long)ofiles[i], &file, sizeof(struct file))) { warnx("can't read file %d at %p", i, (void *)ofiles[i]); continue; } switch (file.f_type) { case DTYPE_VNODE: type = PS_FST_TYPE_VNODE; data = file.f_vnode; break; case DTYPE_SOCKET: type = PS_FST_TYPE_SOCKET; data = file.f_data; break; case DTYPE_PIPE: type = PS_FST_TYPE_PIPE; data = file.f_data; break; case DTYPE_FIFO: type = PS_FST_TYPE_FIFO; data = file.f_vnode; break; #ifdef DTYPE_PTS case DTYPE_PTS: type = PS_FST_TYPE_PTS; data = file.f_data; break; #endif case DTYPE_SEM: type = PS_FST_TYPE_SEM; data = file.f_data; break; case DTYPE_SHM: type = PS_FST_TYPE_SHM; data = file.f_data; break; default: continue; } /* XXXRW: No capability rights support for kvm yet. */ entry = filestat_new_entry(data, type, i, to_filestat_flags(file.f_flag), 0, 0, 0, NULL, NULL); if (entry != NULL) STAILQ_INSERT_TAIL(head, entry, next); } free(ofiles); do_mmapped: /* * Process mmapped files if requested. */ if (mmapped) { if (!kvm_read_all(kd, (unsigned long)kp->ki_vmspace, &vmspace, sizeof(vmspace))) { warnx("can't read vmspace at %p", (void *)kp->ki_vmspace); goto exit; } map = &vmspace.vm_map; for (entryp = map->header.next; entryp != &kp->ki_vmspace->vm_map.header; entryp = vmentry.next) { if (!kvm_read_all(kd, (unsigned long)entryp, &vmentry, sizeof(vmentry))) { warnx("can't read vm_map_entry at %p", (void *)entryp); continue; } if (vmentry.eflags & MAP_ENTRY_IS_SUB_MAP) continue; if ((objp = vmentry.object.vm_object) == NULL) continue; for (; objp; objp = object.backing_object) { if (!kvm_read_all(kd, (unsigned long)objp, &object, sizeof(object))) { warnx("can't read vm_object at %p", (void *)objp); break; } } /* We want only vnode objects. */ if (object.type != OBJT_VNODE) continue; prot = vmentry.protection; fflags = 0; if (prot & VM_PROT_READ) fflags = PS_FST_FFLAG_READ; if ((vmentry.eflags & MAP_ENTRY_COW) == 0 && prot & VM_PROT_WRITE) fflags |= PS_FST_FFLAG_WRITE; /* * Create filestat entry. */ entry = filestat_new_entry(object.handle, PS_FST_TYPE_VNODE, -1, fflags, PS_FST_UFLAG_MMAP, 0, 0, NULL, NULL); if (entry != NULL) STAILQ_INSERT_TAIL(head, entry, next); } } exit: return (head); } /* * kinfo types to filestat translation. */ static int kinfo_type2fst(int kftype) { static struct { int kf_type; int fst_type; } kftypes2fst[] = { { KF_TYPE_CRYPTO, PS_FST_TYPE_CRYPTO }, { KF_TYPE_FIFO, PS_FST_TYPE_FIFO }, { KF_TYPE_KQUEUE, PS_FST_TYPE_KQUEUE }, { KF_TYPE_MQUEUE, PS_FST_TYPE_MQUEUE }, { KF_TYPE_NONE, PS_FST_TYPE_NONE }, { KF_TYPE_PIPE, PS_FST_TYPE_PIPE }, { KF_TYPE_PTS, PS_FST_TYPE_PTS }, { KF_TYPE_SEM, PS_FST_TYPE_SEM }, { KF_TYPE_SHM, PS_FST_TYPE_SHM }, { KF_TYPE_SOCKET, PS_FST_TYPE_SOCKET }, { KF_TYPE_VNODE, PS_FST_TYPE_VNODE }, { KF_TYPE_UNKNOWN, PS_FST_TYPE_UNKNOWN } }; #define NKFTYPES (sizeof(kftypes2fst) / sizeof(*kftypes2fst)) unsigned int i; for (i = 0; i < NKFTYPES; i++) if (kftypes2fst[i].kf_type == kftype) break; if (i == NKFTYPES) return (PS_FST_TYPE_UNKNOWN); return (kftypes2fst[i].fst_type); } /* * kinfo flags to filestat translation. */ static int kinfo_fflags2fst(int kfflags) { static struct { int kf_flag; int fst_flag; } kfflags2fst[] = { { KF_FLAG_APPEND, PS_FST_FFLAG_APPEND }, { KF_FLAG_ASYNC, PS_FST_FFLAG_ASYNC }, { KF_FLAG_CREAT, PS_FST_FFLAG_CREAT }, { KF_FLAG_DIRECT, PS_FST_FFLAG_DIRECT }, { KF_FLAG_EXCL, PS_FST_FFLAG_EXCL }, { KF_FLAG_EXEC, PS_FST_FFLAG_EXEC }, { KF_FLAG_EXLOCK, PS_FST_FFLAG_EXLOCK }, { KF_FLAG_FSYNC, PS_FST_FFLAG_SYNC }, { KF_FLAG_HASLOCK, PS_FST_FFLAG_HASLOCK }, { KF_FLAG_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW }, { KF_FLAG_NONBLOCK, PS_FST_FFLAG_NONBLOCK }, { KF_FLAG_READ, PS_FST_FFLAG_READ }, { KF_FLAG_SHLOCK, PS_FST_FFLAG_SHLOCK }, { KF_FLAG_TRUNC, PS_FST_FFLAG_TRUNC }, { KF_FLAG_WRITE, PS_FST_FFLAG_WRITE } }; #define NKFFLAGS (sizeof(kfflags2fst) / sizeof(*kfflags2fst)) unsigned int i; int flags; flags = 0; for (i = 0; i < NKFFLAGS; i++) if ((kfflags & kfflags2fst[i].kf_flag) != 0) flags |= kfflags2fst[i].fst_flag; return (flags); } static int kinfo_uflags2fst(int fd) { switch (fd) { case KF_FD_TYPE_CTTY: return (PS_FST_UFLAG_CTTY); case KF_FD_TYPE_CWD: return (PS_FST_UFLAG_CDIR); case KF_FD_TYPE_JAIL: return (PS_FST_UFLAG_JAIL); case KF_FD_TYPE_TEXT: return (PS_FST_UFLAG_TEXT); case KF_FD_TYPE_TRACE: return (PS_FST_UFLAG_TRACE); case KF_FD_TYPE_ROOT: return (PS_FST_UFLAG_RDIR); } return (0); } static struct kinfo_file * kinfo_getfile_core(struct procstat_core *core, int *cntp) { int cnt; size_t len; char *buf, *bp, *eb; struct kinfo_file *kif, *kp, *kf; buf = procstat_core_get(core, PSC_TYPE_FILES, NULL, &len); if (buf == NULL) return (NULL); /* * XXXMG: The code below is just copy&past from libutil. * The code duplication can be avoided if libutil * is extended to provide something like: * struct kinfo_file *kinfo_getfile_from_buf(const char *buf, * size_t len, int *cntp); */ /* Pass 1: count items */ cnt = 0; bp = buf; eb = buf + len; while (bp < eb) { kf = (struct kinfo_file *)(uintptr_t)bp; if (kf->kf_structsize == 0) break; bp += kf->kf_structsize; cnt++; } kif = calloc(cnt, sizeof(*kif)); if (kif == NULL) { free(buf); return (NULL); } bp = buf; eb = buf + len; kp = kif; /* Pass 2: unpack */ while (bp < eb) { kf = (struct kinfo_file *)(uintptr_t)bp; if (kf->kf_structsize == 0) break; /* Copy/expand into pre-zeroed buffer */ memcpy(kp, kf, kf->kf_structsize); /* Advance to next packed record */ bp += kf->kf_structsize; /* Set field size to fixed length, advance */ kp->kf_structsize = sizeof(*kp); kp++; } free(buf); *cntp = cnt; return (kif); /* Caller must free() return value */ } static struct filestat_list * procstat_getfiles_sysctl(struct procstat *procstat, struct kinfo_proc *kp, int mmapped) { struct kinfo_file *kif, *files; struct kinfo_vmentry *kve, *vmentries; struct filestat_list *head; struct filestat *entry; char *path; off_t offset; int cnt, fd, fflags; int i, type, uflags; int refcount; cap_rights_t cap_rights; assert(kp); if (kp->ki_fd == NULL) return (NULL); switch(procstat->type) { case PROCSTAT_SYSCTL: files = kinfo_getfile(kp->ki_pid, &cnt); break; case PROCSTAT_CORE: files = kinfo_getfile_core(procstat->core, &cnt); break; default: assert(!"invalid type"); } if (files == NULL && errno != EPERM) { warn("kinfo_getfile()"); return (NULL); } procstat->files = files; /* * Allocate list head. */ head = malloc(sizeof(*head)); if (head == NULL) return (NULL); STAILQ_INIT(head); for (i = 0; i < cnt; i++) { kif = &files[i]; type = kinfo_type2fst(kif->kf_type); fd = kif->kf_fd >= 0 ? kif->kf_fd : -1; fflags = kinfo_fflags2fst(kif->kf_flags); uflags = kinfo_uflags2fst(kif->kf_fd); refcount = kif->kf_ref_count; offset = kif->kf_offset; if (*kif->kf_path != '\0') path = strdup(kif->kf_path); else path = NULL; cap_rights = kif->kf_cap_rights; /* * Create filestat entry. */ entry = filestat_new_entry(kif, type, fd, fflags, uflags, refcount, offset, path, &cap_rights); if (entry != NULL) STAILQ_INSERT_TAIL(head, entry, next); } if (mmapped != 0) { vmentries = procstat_getvmmap(procstat, kp, &cnt); procstat->vmentries = vmentries; if (vmentries == NULL || cnt == 0) goto fail; for (i = 0; i < cnt; i++) { kve = &vmentries[i]; if (kve->kve_type != KVME_TYPE_VNODE) continue; fflags = 0; if (kve->kve_protection & KVME_PROT_READ) fflags = PS_FST_FFLAG_READ; if ((kve->kve_flags & KVME_FLAG_COW) == 0 && kve->kve_protection & KVME_PROT_WRITE) fflags |= PS_FST_FFLAG_WRITE; offset = kve->kve_offset; refcount = kve->kve_ref_count; if (*kve->kve_path != '\0') path = strdup(kve->kve_path); else path = NULL; entry = filestat_new_entry(kve, PS_FST_TYPE_VNODE, -1, fflags, PS_FST_UFLAG_MMAP, refcount, offset, path, NULL); if (entry != NULL) STAILQ_INSERT_TAIL(head, entry, next); } } fail: return (head); } int procstat_get_pipe_info(struct procstat *procstat, struct filestat *fst, struct pipestat *ps, char *errbuf) { assert(ps); if (procstat->type == PROCSTAT_KVM) { return (procstat_get_pipe_info_kvm(procstat->kd, fst, ps, errbuf)); } else if (procstat->type == PROCSTAT_SYSCTL || procstat->type == PROCSTAT_CORE) { return (procstat_get_pipe_info_sysctl(fst, ps, errbuf)); } else { warnx("unknown access method: %d", procstat->type); if (errbuf != NULL) snprintf(errbuf, _POSIX2_LINE_MAX, "error"); return (1); } } static int procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst, struct pipestat *ps, char *errbuf) { struct pipe pi; void *pipep; assert(kd); assert(ps); assert(fst); bzero(ps, sizeof(*ps)); pipep = fst->fs_typedep; if (pipep == NULL) goto fail; if (!kvm_read_all(kd, (unsigned long)pipep, &pi, sizeof(struct pipe))) { warnx("can't read pipe at %p", (void *)pipep); goto fail; } ps->addr = (uintptr_t)pipep; ps->peer = (uintptr_t)pi.pipe_peer; ps->buffer_cnt = pi.pipe_buffer.cnt; return (0); fail: if (errbuf != NULL) snprintf(errbuf, _POSIX2_LINE_MAX, "error"); return (1); } static int procstat_get_pipe_info_sysctl(struct filestat *fst, struct pipestat *ps, char *errbuf __unused) { struct kinfo_file *kif; assert(ps); assert(fst); bzero(ps, sizeof(*ps)); kif = fst->fs_typedep; if (kif == NULL) return (1); ps->addr = kif->kf_un.kf_pipe.kf_pipe_addr; ps->peer = kif->kf_un.kf_pipe.kf_pipe_peer; ps->buffer_cnt = kif->kf_un.kf_pipe.kf_pipe_buffer_cnt; return (0); } int procstat_get_pts_info(struct procstat *procstat, struct filestat *fst, struct ptsstat *pts, char *errbuf) { assert(pts); if (procstat->type == PROCSTAT_KVM) { return (procstat_get_pts_info_kvm(procstat->kd, fst, pts, errbuf)); } else if (procstat->type == PROCSTAT_SYSCTL || procstat->type == PROCSTAT_CORE) { return (procstat_get_pts_info_sysctl(fst, pts, errbuf)); } else { warnx("unknown access method: %d", procstat->type); if (errbuf != NULL) snprintf(errbuf, _POSIX2_LINE_MAX, "error"); return (1); } } static int procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst, struct ptsstat *pts, char *errbuf) { struct tty tty; void *ttyp; assert(kd); assert(pts); assert(fst); bzero(pts, sizeof(*pts)); ttyp = fst->fs_typedep; if (ttyp == NULL) goto fail; if (!kvm_read_all(kd, (unsigned long)ttyp, &tty, sizeof(struct tty))) { warnx("can't read tty at %p", (void *)ttyp); goto fail; } pts->dev = dev2udev(kd, tty.t_dev); (void)kdevtoname(kd, tty.t_dev, pts->devname); return (0); fail: if (errbuf != NULL) snprintf(errbuf, _POSIX2_LINE_MAX, "error"); return (1); } static int procstat_get_pts_info_sysctl(struct filestat *fst, struct ptsstat *pts, char *errbuf __unused) { struct kinfo_file *kif; assert(pts); assert(fst); bzero(pts, sizeof(*pts)); kif = fst->fs_typedep; if (kif == NULL) return (0); pts->dev = kif->kf_un.kf_pts.kf_pts_dev; strlcpy(pts->devname, kif->kf_path, sizeof(pts->devname)); return (0); } int procstat_get_sem_info(struct procstat *procstat, struct filestat *fst, struct semstat *sem, char *errbuf) { assert(sem); if (procstat->type == PROCSTAT_KVM) { return (procstat_get_sem_info_kvm(procstat->kd, fst, sem, errbuf)); } else if (procstat->type == PROCSTAT_SYSCTL || procstat->type == PROCSTAT_CORE) { return (procstat_get_sem_info_sysctl(fst, sem, errbuf)); } else { warnx("unknown access method: %d", procstat->type); if (errbuf != NULL) snprintf(errbuf, _POSIX2_LINE_MAX, "error"); return (1); } } static int procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst, struct semstat *sem, char *errbuf) { struct ksem ksem; void *ksemp; char *path; int i; assert(kd); assert(sem); assert(fst); bzero(sem, sizeof(*sem)); ksemp = fst->fs_typedep; if (ksemp == NULL) goto fail; if (!kvm_read_all(kd, (unsigned long)ksemp, &ksem, sizeof(struct ksem))) { warnx("can't read ksem at %p", (void *)ksemp); goto fail; } sem->mode = S_IFREG | ksem.ks_mode; sem->value = ksem.ks_value; if (fst->fs_path == NULL && ksem.ks_path != NULL) { path = malloc(MAXPATHLEN); for (i = 0; i < MAXPATHLEN - 1; i++) { if (!kvm_read_all(kd, (unsigned long)ksem.ks_path + i, path + i, 1)) break; if (path[i] == '\0') break; } path[i] = '\0'; if (i == 0) free(path); else fst->fs_path = path; } return (0); fail: if (errbuf != NULL) snprintf(errbuf, _POSIX2_LINE_MAX, "error"); return (1); } static int procstat_get_sem_info_sysctl(struct filestat *fst, struct semstat *sem, char *errbuf __unused) { struct kinfo_file *kif; assert(sem); assert(fst); bzero(sem, sizeof(*sem)); kif = fst->fs_typedep; if (kif == NULL) return (0); sem->value = kif->kf_un.kf_sem.kf_sem_value; sem->mode = kif->kf_un.kf_sem.kf_sem_mode; return (0); } int procstat_get_shm_info(struct procstat *procstat, struct filestat *fst, struct shmstat *shm, char *errbuf) { assert(shm); if (procstat->type == PROCSTAT_KVM) { return (procstat_get_shm_info_kvm(procstat->kd, fst, shm, errbuf)); } else if (procstat->type == PROCSTAT_SYSCTL || procstat->type == PROCSTAT_CORE) { return (procstat_get_shm_info_sysctl(fst, shm, errbuf)); } else { warnx("unknown access method: %d", procstat->type); if (errbuf != NULL) snprintf(errbuf, _POSIX2_LINE_MAX, "error"); return (1); } } static int procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst, struct shmstat *shm, char *errbuf) { struct shmfd shmfd; void *shmfdp; char *path; int i; assert(kd); assert(shm); assert(fst); bzero(shm, sizeof(*shm)); shmfdp = fst->fs_typedep; if (shmfdp == NULL) goto fail; if (!kvm_read_all(kd, (unsigned long)shmfdp, &shmfd, sizeof(struct shmfd))) { warnx("can't read shmfd at %p", (void *)shmfdp); goto fail; } shm->mode = S_IFREG | shmfd.shm_mode; shm->size = shmfd.shm_size; if (fst->fs_path == NULL && shmfd.shm_path != NULL) { path = malloc(MAXPATHLEN); for (i = 0; i < MAXPATHLEN - 1; i++) { if (!kvm_read_all(kd, (unsigned long)shmfd.shm_path + i, path + i, 1)) break; if (path[i] == '\0') break; } path[i] = '\0'; if (i == 0) free(path); else fst->fs_path = path; } return (0); fail: if (errbuf != NULL) snprintf(errbuf, _POSIX2_LINE_MAX, "error"); return (1); } static int procstat_get_shm_info_sysctl(struct filestat *fst, struct shmstat *shm, char *errbuf __unused) { struct kinfo_file *kif; assert(shm); assert(fst); bzero(shm, sizeof(*shm)); kif = fst->fs_typedep; if (kif == NULL) return (0); shm->size = kif->kf_un.kf_file.kf_file_size; shm->mode = kif->kf_un.kf_file.kf_file_mode; return (0); } int procstat_get_vnode_info(struct procstat *procstat, struct filestat *fst, struct vnstat *vn, char *errbuf) { assert(vn); if (procstat->type == PROCSTAT_KVM) { return (procstat_get_vnode_info_kvm(procstat->kd, fst, vn, errbuf)); } else if (procstat->type == PROCSTAT_SYSCTL || procstat->type == PROCSTAT_CORE) { return (procstat_get_vnode_info_sysctl(fst, vn, errbuf)); } else { warnx("unknown access method: %d", procstat->type); if (errbuf != NULL) snprintf(errbuf, _POSIX2_LINE_MAX, "error"); return (1); } } static int procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst, struct vnstat *vn, char *errbuf) { /* Filesystem specific handlers. */ #define FSTYPE(fst) {#fst, fst##_filestat} struct { const char *tag; int (*handler)(kvm_t *kd, struct vnode *vp, struct vnstat *vn); } fstypes[] = { FSTYPE(devfs), FSTYPE(isofs), FSTYPE(msdosfs), FSTYPE(nfs), FSTYPE(smbfs), FSTYPE(udf), FSTYPE(ufs), #ifdef LIBPROCSTAT_ZFS FSTYPE(zfs), #endif }; #define NTYPES (sizeof(fstypes) / sizeof(*fstypes)) struct vnode vnode; char tagstr[12]; void *vp; int error; unsigned int i; assert(kd); assert(vn); assert(fst); vp = fst->fs_typedep; if (vp == NULL) goto fail; error = kvm_read_all(kd, (unsigned long)vp, &vnode, sizeof(vnode)); if (error == 0) { warnx("can't read vnode at %p", (void *)vp); goto fail; } bzero(vn, sizeof(*vn)); vn->vn_type = vntype2psfsttype(vnode.v_type); if (vnode.v_type == VNON || vnode.v_type == VBAD) return (0); error = kvm_read_all(kd, (unsigned long)vnode.v_tag, tagstr, sizeof(tagstr)); if (error == 0) { warnx("can't read v_tag at %p", (void *)vp); goto fail; } tagstr[sizeof(tagstr) - 1] = '\0'; /* * Find appropriate handler. */ for (i = 0; i < NTYPES; i++) if (!strcmp(fstypes[i].tag, tagstr)) { if (fstypes[i].handler(kd, &vnode, vn) != 0) { goto fail; } break; } if (i == NTYPES) { if (errbuf != NULL) snprintf(errbuf, _POSIX2_LINE_MAX, "?(%s)", tagstr); return (1); } vn->vn_mntdir = getmnton(kd, vnode.v_mount); if ((vnode.v_type == VBLK || vnode.v_type == VCHR) && vnode.v_rdev != NULL){ vn->vn_dev = dev2udev(kd, vnode.v_rdev); (void)kdevtoname(kd, vnode.v_rdev, vn->vn_devname); } else { vn->vn_dev = -1; } return (0); fail: if (errbuf != NULL) snprintf(errbuf, _POSIX2_LINE_MAX, "error"); return (1); } /* * kinfo vnode type to filestat translation. */ static int kinfo_vtype2fst(int kfvtype) { static struct { int kf_vtype; int fst_vtype; } kfvtypes2fst[] = { { KF_VTYPE_VBAD, PS_FST_VTYPE_VBAD }, { KF_VTYPE_VBLK, PS_FST_VTYPE_VBLK }, { KF_VTYPE_VCHR, PS_FST_VTYPE_VCHR }, { KF_VTYPE_VDIR, PS_FST_VTYPE_VDIR }, { KF_VTYPE_VFIFO, PS_FST_VTYPE_VFIFO }, { KF_VTYPE_VLNK, PS_FST_VTYPE_VLNK }, { KF_VTYPE_VNON, PS_FST_VTYPE_VNON }, { KF_VTYPE_VREG, PS_FST_VTYPE_VREG }, { KF_VTYPE_VSOCK, PS_FST_VTYPE_VSOCK } }; #define NKFVTYPES (sizeof(kfvtypes2fst) / sizeof(*kfvtypes2fst)) unsigned int i; for (i = 0; i < NKFVTYPES; i++) if (kfvtypes2fst[i].kf_vtype == kfvtype) break; if (i == NKFVTYPES) return (PS_FST_VTYPE_UNKNOWN); return (kfvtypes2fst[i].fst_vtype); } static int procstat_get_vnode_info_sysctl(struct filestat *fst, struct vnstat *vn, char *errbuf) { struct statfs stbuf; struct kinfo_file *kif; struct kinfo_vmentry *kve; char *name, *path; uint64_t fileid; uint64_t size; uint64_t fsid; uint64_t rdev; uint16_t mode; int vntype; int status; assert(fst); assert(vn); bzero(vn, sizeof(*vn)); if (fst->fs_typedep == NULL) return (1); if (fst->fs_uflags & PS_FST_UFLAG_MMAP) { kve = fst->fs_typedep; fileid = kve->kve_vn_fileid; fsid = kve->kve_vn_fsid; mode = kve->kve_vn_mode; path = kve->kve_path; rdev = kve->kve_vn_rdev; size = kve->kve_vn_size; vntype = kinfo_vtype2fst(kve->kve_vn_type); status = kve->kve_status; } else { kif = fst->fs_typedep; fileid = kif->kf_un.kf_file.kf_file_fileid; fsid = kif->kf_un.kf_file.kf_file_fsid; mode = kif->kf_un.kf_file.kf_file_mode; path = kif->kf_path; rdev = kif->kf_un.kf_file.kf_file_rdev; size = kif->kf_un.kf_file.kf_file_size; vntype = kinfo_vtype2fst(kif->kf_vnode_type); status = kif->kf_status; } vn->vn_type = vntype; if (vntype == PS_FST_VTYPE_VNON || vntype == PS_FST_VTYPE_VBAD) return (0); if ((status & KF_ATTR_VALID) == 0) { if (errbuf != NULL) { snprintf(errbuf, _POSIX2_LINE_MAX, "? (no info available)"); } return (1); } if (path && *path) { statfs(path, &stbuf); vn->vn_mntdir = strdup(stbuf.f_mntonname); } else vn->vn_mntdir = strdup("-"); vn->vn_dev = rdev; if (vntype == PS_FST_VTYPE_VBLK) { name = devname(rdev, S_IFBLK); if (name != NULL) strlcpy(vn->vn_devname, name, sizeof(vn->vn_devname)); } else if (vntype == PS_FST_VTYPE_VCHR) { name = devname(vn->vn_dev, S_IFCHR); if (name != NULL) strlcpy(vn->vn_devname, name, sizeof(vn->vn_devname)); } vn->vn_fsid = fsid; vn->vn_fileid = fileid; vn->vn_size = size; vn->vn_mode = mode; return (0); } int procstat_get_socket_info(struct procstat *procstat, struct filestat *fst, struct sockstat *sock, char *errbuf) { assert(sock); if (procstat->type == PROCSTAT_KVM) { return (procstat_get_socket_info_kvm(procstat->kd, fst, sock, errbuf)); } else if (procstat->type == PROCSTAT_SYSCTL || procstat->type == PROCSTAT_CORE) { return (procstat_get_socket_info_sysctl(fst, sock, errbuf)); } else { warnx("unknown access method: %d", procstat->type); if (errbuf != NULL) snprintf(errbuf, _POSIX2_LINE_MAX, "error"); return (1); } } static int procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst, struct sockstat *sock, char *errbuf) { struct domain dom; struct inpcb inpcb; struct protosw proto; struct socket s; struct unpcb unpcb; ssize_t len; void *so; assert(kd); assert(sock); assert(fst); bzero(sock, sizeof(*sock)); so = fst->fs_typedep; if (so == NULL) goto fail; sock->so_addr = (uintptr_t)so; /* fill in socket */ if (!kvm_read_all(kd, (unsigned long)so, &s, sizeof(struct socket))) { warnx("can't read sock at %p", (void *)so); goto fail; } /* fill in protosw entry */ if (!kvm_read_all(kd, (unsigned long)s.so_proto, &proto, sizeof(struct protosw))) { warnx("can't read protosw at %p", (void *)s.so_proto); goto fail; } /* fill in domain */ if (!kvm_read_all(kd, (unsigned long)proto.pr_domain, &dom, sizeof(struct domain))) { warnx("can't read domain at %p", (void *)proto.pr_domain); goto fail; } if ((len = kvm_read(kd, (unsigned long)dom.dom_name, sock->dname, sizeof(sock->dname) - 1)) < 0) { warnx("can't read domain name at %p", (void *)dom.dom_name); sock->dname[0] = '\0'; } else sock->dname[len] = '\0'; /* * Fill in known data. */ sock->type = s.so_type; sock->proto = proto.pr_protocol; sock->dom_family = dom.dom_family; sock->so_pcb = (uintptr_t)s.so_pcb; /* * Protocol specific data. */ switch(dom.dom_family) { case AF_INET: case AF_INET6: if (proto.pr_protocol == IPPROTO_TCP) { if (s.so_pcb) { if (kvm_read(kd, (u_long)s.so_pcb, (char *)&inpcb, sizeof(struct inpcb)) != sizeof(struct inpcb)) { warnx("can't read inpcb at %p", (void *)s.so_pcb); } else sock->inp_ppcb = (uintptr_t)inpcb.inp_ppcb; + sock->sendq = s.so_snd.sb_ccc; + sock->recvq = s.so_rcv.sb_ccc; } } break; case AF_UNIX: if (s.so_pcb) { if (kvm_read(kd, (u_long)s.so_pcb, (char *)&unpcb, sizeof(struct unpcb)) != sizeof(struct unpcb)){ warnx("can't read unpcb at %p", (void *)s.so_pcb); } else if (unpcb.unp_conn) { sock->so_rcv_sb_state = s.so_rcv.sb_state; sock->so_snd_sb_state = s.so_snd.sb_state; sock->unp_conn = (uintptr_t)unpcb.unp_conn; + sock->sendq = s.so_snd.sb_ccc; + sock->recvq = s.so_rcv.sb_ccc; } } break; default: break; } return (0); fail: if (errbuf != NULL) snprintf(errbuf, _POSIX2_LINE_MAX, "error"); return (1); } static int procstat_get_socket_info_sysctl(struct filestat *fst, struct sockstat *sock, char *errbuf __unused) { struct kinfo_file *kif; assert(sock); assert(fst); bzero(sock, sizeof(*sock)); kif = fst->fs_typedep; if (kif == NULL) return (0); /* * Fill in known data. */ sock->type = kif->kf_sock_type; sock->proto = kif->kf_sock_protocol; sock->dom_family = kif->kf_sock_domain; sock->so_pcb = kif->kf_un.kf_sock.kf_sock_pcb; strlcpy(sock->dname, kif->kf_path, sizeof(sock->dname)); bcopy(&kif->kf_un.kf_sock.kf_sa_local, &sock->sa_local, kif->kf_un.kf_sock.kf_sa_local.ss_len); bcopy(&kif->kf_un.kf_sock.kf_sa_peer, &sock->sa_peer, kif->kf_un.kf_sock.kf_sa_peer.ss_len); /* * Protocol specific data. */ switch(sock->dom_family) { case AF_INET: case AF_INET6: - if (sock->proto == IPPROTO_TCP) + if (sock->proto == IPPROTO_TCP) { sock->inp_ppcb = kif->kf_un.kf_sock.kf_sock_inpcb; + sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq; + sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq; + } break; case AF_UNIX: if (kif->kf_un.kf_sock.kf_sock_unpconn != 0) { - sock->so_rcv_sb_state = - kif->kf_un.kf_sock.kf_sock_rcv_sb_state; - sock->so_snd_sb_state = - kif->kf_un.kf_sock.kf_sock_snd_sb_state; - sock->unp_conn = - kif->kf_un.kf_sock.kf_sock_unpconn; + sock->so_rcv_sb_state = + kif->kf_un.kf_sock.kf_sock_rcv_sb_state; + sock->so_snd_sb_state = + kif->kf_un.kf_sock.kf_sock_snd_sb_state; + sock->unp_conn = + kif->kf_un.kf_sock.kf_sock_unpconn; + sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq; + sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq; } break; default: break; } return (0); } /* * Descriptor flags to filestat translation. */ static int to_filestat_flags(int flags) { static struct { int flag; int fst_flag; } fstflags[] = { { FREAD, PS_FST_FFLAG_READ }, { FWRITE, PS_FST_FFLAG_WRITE }, { O_APPEND, PS_FST_FFLAG_APPEND }, { O_ASYNC, PS_FST_FFLAG_ASYNC }, { O_CREAT, PS_FST_FFLAG_CREAT }, { O_DIRECT, PS_FST_FFLAG_DIRECT }, { O_EXCL, PS_FST_FFLAG_EXCL }, { O_EXEC, PS_FST_FFLAG_EXEC }, { O_EXLOCK, PS_FST_FFLAG_EXLOCK }, { O_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW }, { O_NONBLOCK, PS_FST_FFLAG_NONBLOCK }, { O_SHLOCK, PS_FST_FFLAG_SHLOCK }, { O_SYNC, PS_FST_FFLAG_SYNC }, { O_TRUNC, PS_FST_FFLAG_TRUNC } }; #define NFSTFLAGS (sizeof(fstflags) / sizeof(*fstflags)) int fst_flags; unsigned int i; fst_flags = 0; for (i = 0; i < NFSTFLAGS; i++) if (flags & fstflags[i].flag) fst_flags |= fstflags[i].fst_flag; return (fst_flags); } /* * Vnode type to filestate translation. */ static int vntype2psfsttype(int type) { static struct { int vtype; int fst_vtype; } vt2fst[] = { { VBAD, PS_FST_VTYPE_VBAD }, { VBLK, PS_FST_VTYPE_VBLK }, { VCHR, PS_FST_VTYPE_VCHR }, { VDIR, PS_FST_VTYPE_VDIR }, { VFIFO, PS_FST_VTYPE_VFIFO }, { VLNK, PS_FST_VTYPE_VLNK }, { VNON, PS_FST_VTYPE_VNON }, { VREG, PS_FST_VTYPE_VREG }, { VSOCK, PS_FST_VTYPE_VSOCK } }; #define NVFTYPES (sizeof(vt2fst) / sizeof(*vt2fst)) unsigned int i, fst_type; fst_type = PS_FST_VTYPE_UNKNOWN; for (i = 0; i < NVFTYPES; i++) { if (type == vt2fst[i].vtype) { fst_type = vt2fst[i].fst_vtype; break; } } return (fst_type); } static char * getmnton(kvm_t *kd, struct mount *m) { struct mount mnt; static struct mtab { struct mtab *next; struct mount *m; char mntonname[MNAMELEN + 1]; } *mhead = NULL; struct mtab *mt; for (mt = mhead; mt != NULL; mt = mt->next) if (m == mt->m) return (mt->mntonname); if (!kvm_read_all(kd, (unsigned long)m, &mnt, sizeof(struct mount))) { warnx("can't read mount table at %p", (void *)m); return (NULL); } if ((mt = malloc(sizeof (struct mtab))) == NULL) err(1, NULL); mt->m = m; bcopy(&mnt.mnt_stat.f_mntonname[0], &mt->mntonname[0], MNAMELEN); mt->mntonname[MNAMELEN] = '\0'; mt->next = mhead; mhead = mt; return (mt->mntonname); } /* * Auxiliary structures and functions to get process environment or * command line arguments. */ struct argvec { char *buf; size_t bufsize; char **argv; size_t argc; }; static struct argvec * argvec_alloc(size_t bufsize) { struct argvec *av; av = malloc(sizeof(*av)); if (av == NULL) return (NULL); av->bufsize = bufsize; av->buf = malloc(av->bufsize); if (av->buf == NULL) { free(av); return (NULL); } av->argc = 32; av->argv = malloc(sizeof(char *) * av->argc); if (av->argv == NULL) { free(av->buf); free(av); return (NULL); } return av; } static void argvec_free(struct argvec * av) { free(av->argv); free(av->buf); free(av); } static char ** getargv(struct procstat *procstat, struct kinfo_proc *kp, size_t nchr, int env) { int error, name[4], argc, i; struct argvec *av, **avp; enum psc_type type; size_t len; char *p, **argv; assert(procstat); assert(kp); if (procstat->type == PROCSTAT_KVM) { warnx("can't use kvm access method"); return (NULL); } if (procstat->type != PROCSTAT_SYSCTL && procstat->type != PROCSTAT_CORE) { warnx("unknown access method: %d", procstat->type); return (NULL); } if (nchr == 0 || nchr > ARG_MAX) nchr = ARG_MAX; avp = (struct argvec **)(env ? &procstat->argv : &procstat->envv); av = *avp; if (av == NULL) { av = argvec_alloc(nchr); if (av == NULL) { warn("malloc(%zu)", nchr); return (NULL); } *avp = av; } else if (av->bufsize < nchr) { av->buf = reallocf(av->buf, nchr); if (av->buf == NULL) { warn("malloc(%zu)", nchr); return (NULL); } } if (procstat->type == PROCSTAT_SYSCTL) { name[0] = CTL_KERN; name[1] = KERN_PROC; name[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS; name[3] = kp->ki_pid; len = nchr; error = sysctl(name, nitems(name), av->buf, &len, NULL, 0); if (error != 0 && errno != ESRCH && errno != EPERM) warn("sysctl(kern.proc.%s)", env ? "env" : "args"); if (error != 0 || len == 0) return (NULL); } else /* procstat->type == PROCSTAT_CORE */ { type = env ? PSC_TYPE_ENVV : PSC_TYPE_ARGV; len = nchr; if (procstat_core_get(procstat->core, type, av->buf, &len) == NULL) { return (NULL); } } argv = av->argv; argc = av->argc; i = 0; for (p = av->buf; p < av->buf + len; p += strlen(p) + 1) { argv[i++] = p; if (i < argc) continue; /* Grow argv. */ argc += argc; argv = realloc(argv, sizeof(char *) * argc); if (argv == NULL) { warn("malloc(%zu)", sizeof(char *) * argc); return (NULL); } av->argv = argv; av->argc = argc; } argv[i] = NULL; return (argv); } /* * Return process command line arguments. */ char ** procstat_getargv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr) { return (getargv(procstat, p, nchr, 0)); } /* * Free the buffer allocated by procstat_getargv(). */ void procstat_freeargv(struct procstat *procstat) { if (procstat->argv != NULL) { argvec_free(procstat->argv); procstat->argv = NULL; } } /* * Return process environment. */ char ** procstat_getenvv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr) { return (getargv(procstat, p, nchr, 1)); } /* * Free the buffer allocated by procstat_getenvv(). */ void procstat_freeenvv(struct procstat *procstat) { if (procstat->envv != NULL) { argvec_free(procstat->envv); procstat->envv = NULL; } } static struct kinfo_vmentry * kinfo_getvmmap_core(struct procstat_core *core, int *cntp) { int cnt; size_t len; char *buf, *bp, *eb; struct kinfo_vmentry *kiv, *kp, *kv; buf = procstat_core_get(core, PSC_TYPE_VMMAP, NULL, &len); if (buf == NULL) return (NULL); /* * XXXMG: The code below is just copy&past from libutil. * The code duplication can be avoided if libutil * is extended to provide something like: * struct kinfo_vmentry *kinfo_getvmmap_from_buf(const char *buf, * size_t len, int *cntp); */ /* Pass 1: count items */ cnt = 0; bp = buf; eb = buf + len; while (bp < eb) { kv = (struct kinfo_vmentry *)(uintptr_t)bp; if (kv->kve_structsize == 0) break; bp += kv->kve_structsize; cnt++; } kiv = calloc(cnt, sizeof(*kiv)); if (kiv == NULL) { free(buf); return (NULL); } bp = buf; eb = buf + len; kp = kiv; /* Pass 2: unpack */ while (bp < eb) { kv = (struct kinfo_vmentry *)(uintptr_t)bp; if (kv->kve_structsize == 0) break; /* Copy/expand into pre-zeroed buffer */ memcpy(kp, kv, kv->kve_structsize); /* Advance to next packed record */ bp += kv->kve_structsize; /* Set field size to fixed length, advance */ kp->kve_structsize = sizeof(*kp); kp++; } free(buf); *cntp = cnt; return (kiv); /* Caller must free() return value */ } struct kinfo_vmentry * procstat_getvmmap(struct procstat *procstat, struct kinfo_proc *kp, unsigned int *cntp) { switch(procstat->type) { case PROCSTAT_KVM: warnx("kvm method is not supported"); return (NULL); case PROCSTAT_SYSCTL: return (kinfo_getvmmap(kp->ki_pid, cntp)); case PROCSTAT_CORE: return (kinfo_getvmmap_core(procstat->core, cntp)); default: warnx("unknown access method: %d", procstat->type); return (NULL); } } void procstat_freevmmap(struct procstat *procstat __unused, struct kinfo_vmentry *vmmap) { free(vmmap); } static gid_t * procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned int *cntp) { struct proc proc; struct ucred ucred; gid_t *groups; size_t len; assert(kd != NULL); assert(kp != NULL); if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, sizeof(proc))) { warnx("can't read proc struct at %p for pid %d", kp->ki_paddr, kp->ki_pid); return (NULL); } if (proc.p_ucred == NOCRED) return (NULL); if (!kvm_read_all(kd, (unsigned long)proc.p_ucred, &ucred, sizeof(ucred))) { warnx("can't read ucred struct at %p for pid %d", proc.p_ucred, kp->ki_pid); return (NULL); } len = ucred.cr_ngroups * sizeof(gid_t); groups = malloc(len); if (groups == NULL) { warn("malloc(%zu)", len); return (NULL); } if (!kvm_read_all(kd, (unsigned long)ucred.cr_groups, groups, len)) { warnx("can't read groups at %p for pid %d", ucred.cr_groups, kp->ki_pid); free(groups); return (NULL); } *cntp = ucred.cr_ngroups; return (groups); } static gid_t * procstat_getgroups_sysctl(pid_t pid, unsigned int *cntp) { int mib[4]; size_t len; gid_t *groups; mib[0] = CTL_KERN; mib[1] = KERN_PROC; mib[2] = KERN_PROC_GROUPS; mib[3] = pid; len = (sysconf(_SC_NGROUPS_MAX) + 1) * sizeof(gid_t); groups = malloc(len); if (groups == NULL) { warn("malloc(%zu)", len); return (NULL); } if (sysctl(mib, nitems(mib), groups, &len, NULL, 0) == -1) { warn("sysctl: kern.proc.groups: %d", pid); free(groups); return (NULL); } *cntp = len / sizeof(gid_t); return (groups); } static gid_t * procstat_getgroups_core(struct procstat_core *core, unsigned int *cntp) { size_t len; gid_t *groups; groups = procstat_core_get(core, PSC_TYPE_GROUPS, NULL, &len); if (groups == NULL) return (NULL); *cntp = len / sizeof(gid_t); return (groups); } gid_t * procstat_getgroups(struct procstat *procstat, struct kinfo_proc *kp, unsigned int *cntp) { switch(procstat->type) { case PROCSTAT_KVM: return (procstat_getgroups_kvm(procstat->kd, kp, cntp)); case PROCSTAT_SYSCTL: return (procstat_getgroups_sysctl(kp->ki_pid, cntp)); case PROCSTAT_CORE: return (procstat_getgroups_core(procstat->core, cntp)); default: warnx("unknown access method: %d", procstat->type); return (NULL); } } void procstat_freegroups(struct procstat *procstat __unused, gid_t *groups) { free(groups); } static int procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned short *maskp) { struct filedesc fd; assert(kd != NULL); assert(kp != NULL); if (kp->ki_fd == NULL) return (-1); if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &fd, sizeof(fd))) { warnx("can't read filedesc at %p for pid %d", kp->ki_fd, kp->ki_pid); return (-1); } *maskp = fd.fd_cmask; return (0); } static int procstat_getumask_sysctl(pid_t pid, unsigned short *maskp) { int error; int mib[4]; size_t len; mib[0] = CTL_KERN; mib[1] = KERN_PROC; mib[2] = KERN_PROC_UMASK; mib[3] = pid; len = sizeof(*maskp); error = sysctl(mib, nitems(mib), maskp, &len, NULL, 0); if (error != 0 && errno != ESRCH && errno != EPERM) warn("sysctl: kern.proc.umask: %d", pid); return (error); } static int procstat_getumask_core(struct procstat_core *core, unsigned short *maskp) { size_t len; unsigned short *buf; buf = procstat_core_get(core, PSC_TYPE_UMASK, NULL, &len); if (buf == NULL) return (-1); if (len < sizeof(*maskp)) { free(buf); return (-1); } *maskp = *buf; free(buf); return (0); } int procstat_getumask(struct procstat *procstat, struct kinfo_proc *kp, unsigned short *maskp) { switch(procstat->type) { case PROCSTAT_KVM: return (procstat_getumask_kvm(procstat->kd, kp, maskp)); case PROCSTAT_SYSCTL: return (procstat_getumask_sysctl(kp->ki_pid, maskp)); case PROCSTAT_CORE: return (procstat_getumask_core(procstat->core, maskp)); default: warnx("unknown access method: %d", procstat->type); return (-1); } } static int procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, int which, struct rlimit* rlimit) { struct proc proc; unsigned long offset; assert(kd != NULL); assert(kp != NULL); assert(which >= 0 && which < RLIM_NLIMITS); if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, sizeof(proc))) { warnx("can't read proc struct at %p for pid %d", kp->ki_paddr, kp->ki_pid); return (-1); } if (proc.p_limit == NULL) return (-1); offset = (unsigned long)proc.p_limit + sizeof(struct rlimit) * which; if (!kvm_read_all(kd, offset, rlimit, sizeof(*rlimit))) { warnx("can't read rlimit struct at %p for pid %d", (void *)offset, kp->ki_pid); return (-1); } return (0); } static int procstat_getrlimit_sysctl(pid_t pid, int which, struct rlimit* rlimit) { int error, name[5]; size_t len; name[0] = CTL_KERN; name[1] = KERN_PROC; name[2] = KERN_PROC_RLIMIT; name[3] = pid; name[4] = which; len = sizeof(struct rlimit); error = sysctl(name, nitems(name), rlimit, &len, NULL, 0); if (error < 0 && errno != ESRCH) { warn("sysctl: kern.proc.rlimit: %d", pid); return (-1); } if (error < 0 || len != sizeof(struct rlimit)) return (-1); return (0); } static int procstat_getrlimit_core(struct procstat_core *core, int which, struct rlimit* rlimit) { size_t len; struct rlimit* rlimits; if (which < 0 || which >= RLIM_NLIMITS) { errno = EINVAL; warn("getrlimit: which"); return (-1); } rlimits = procstat_core_get(core, PSC_TYPE_RLIMIT, NULL, &len); if (rlimits == NULL) return (-1); if (len < sizeof(struct rlimit) * RLIM_NLIMITS) { free(rlimits); return (-1); } *rlimit = rlimits[which]; return (0); } int procstat_getrlimit(struct procstat *procstat, struct kinfo_proc *kp, int which, struct rlimit* rlimit) { switch(procstat->type) { case PROCSTAT_KVM: return (procstat_getrlimit_kvm(procstat->kd, kp, which, rlimit)); case PROCSTAT_SYSCTL: return (procstat_getrlimit_sysctl(kp->ki_pid, which, rlimit)); case PROCSTAT_CORE: return (procstat_getrlimit_core(procstat->core, which, rlimit)); default: warnx("unknown access method: %d", procstat->type); return (-1); } } static int procstat_getpathname_sysctl(pid_t pid, char *pathname, size_t maxlen) { int error, name[4]; size_t len; name[0] = CTL_KERN; name[1] = KERN_PROC; name[2] = KERN_PROC_PATHNAME; name[3] = pid; len = maxlen; error = sysctl(name, nitems(name), pathname, &len, NULL, 0); if (error != 0 && errno != ESRCH) warn("sysctl: kern.proc.pathname: %d", pid); if (len == 0) pathname[0] = '\0'; return (error); } static int procstat_getpathname_core(struct procstat_core *core, char *pathname, size_t maxlen) { struct kinfo_file *files; int cnt, i, result; files = kinfo_getfile_core(core, &cnt); if (files == NULL) return (-1); result = -1; for (i = 0; i < cnt; i++) { if (files[i].kf_fd != KF_FD_TYPE_TEXT) continue; strncpy(pathname, files[i].kf_path, maxlen); result = 0; break; } free(files); return (result); } int procstat_getpathname(struct procstat *procstat, struct kinfo_proc *kp, char *pathname, size_t maxlen) { switch(procstat->type) { case PROCSTAT_KVM: /* XXX: Return empty string. */ if (maxlen > 0) pathname[0] = '\0'; return (0); case PROCSTAT_SYSCTL: return (procstat_getpathname_sysctl(kp->ki_pid, pathname, maxlen)); case PROCSTAT_CORE: return (procstat_getpathname_core(procstat->core, pathname, maxlen)); default: warnx("unknown access method: %d", procstat->type); return (-1); } } static int procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, int *osrelp) { struct proc proc; assert(kd != NULL); assert(kp != NULL); if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, sizeof(proc))) { warnx("can't read proc struct at %p for pid %d", kp->ki_paddr, kp->ki_pid); return (-1); } *osrelp = proc.p_osrel; return (0); } static int procstat_getosrel_sysctl(pid_t pid, int *osrelp) { int error, name[4]; size_t len; name[0] = CTL_KERN; name[1] = KERN_PROC; name[2] = KERN_PROC_OSREL; name[3] = pid; len = sizeof(*osrelp); error = sysctl(name, nitems(name), osrelp, &len, NULL, 0); if (error != 0 && errno != ESRCH) warn("sysctl: kern.proc.osrel: %d", pid); return (error); } static int procstat_getosrel_core(struct procstat_core *core, int *osrelp) { size_t len; int *buf; buf = procstat_core_get(core, PSC_TYPE_OSREL, NULL, &len); if (buf == NULL) return (-1); if (len < sizeof(*osrelp)) { free(buf); return (-1); } *osrelp = *buf; free(buf); return (0); } int procstat_getosrel(struct procstat *procstat, struct kinfo_proc *kp, int *osrelp) { switch(procstat->type) { case PROCSTAT_KVM: return (procstat_getosrel_kvm(procstat->kd, kp, osrelp)); case PROCSTAT_SYSCTL: return (procstat_getosrel_sysctl(kp->ki_pid, osrelp)); case PROCSTAT_CORE: return (procstat_getosrel_core(procstat->core, osrelp)); default: warnx("unknown access method: %d", procstat->type); return (-1); } } #define PROC_AUXV_MAX 256 #if __ELF_WORD_SIZE == 64 static const char *elf32_sv_names[] = { "Linux ELF32", "FreeBSD ELF32", }; static int is_elf32_sysctl(pid_t pid) { int error, name[4]; size_t len, i; static char sv_name[256]; name[0] = CTL_KERN; name[1] = KERN_PROC; name[2] = KERN_PROC_SV_NAME; name[3] = pid; len = sizeof(sv_name); error = sysctl(name, nitems(name), sv_name, &len, NULL, 0); if (error != 0 || len == 0) return (0); for (i = 0; i < sizeof(elf32_sv_names) / sizeof(*elf32_sv_names); i++) { if (strncmp(sv_name, elf32_sv_names[i], sizeof(sv_name)) == 0) return (1); } return (0); } static Elf_Auxinfo * procstat_getauxv32_sysctl(pid_t pid, unsigned int *cntp) { Elf_Auxinfo *auxv; Elf32_Auxinfo *auxv32; void *ptr; size_t len; unsigned int i, count; int name[4]; name[0] = CTL_KERN; name[1] = KERN_PROC; name[2] = KERN_PROC_AUXV; name[3] = pid; len = PROC_AUXV_MAX * sizeof(Elf32_Auxinfo); auxv = NULL; auxv32 = malloc(len); if (auxv32 == NULL) { warn("malloc(%zu)", len); goto out; } if (sysctl(name, nitems(name), auxv32, &len, NULL, 0) == -1) { if (errno != ESRCH && errno != EPERM) warn("sysctl: kern.proc.auxv: %d: %d", pid, errno); goto out; } count = len / sizeof(Elf_Auxinfo); auxv = malloc(count * sizeof(Elf_Auxinfo)); if (auxv == NULL) { warn("malloc(%zu)", count * sizeof(Elf_Auxinfo)); goto out; } for (i = 0; i < count; i++) { /* * XXX: We expect that values for a_type on a 32-bit platform * are directly mapped to values on 64-bit one, which is not * necessarily true. */ auxv[i].a_type = auxv32[i].a_type; ptr = &auxv32[i].a_un; auxv[i].a_un.a_val = *((uint32_t *)ptr); } *cntp = count; out: free(auxv32); return (auxv); } #endif /* __ELF_WORD_SIZE == 64 */ static Elf_Auxinfo * procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp) { Elf_Auxinfo *auxv; int name[4]; size_t len; #if __ELF_WORD_SIZE == 64 if (is_elf32_sysctl(pid)) return (procstat_getauxv32_sysctl(pid, cntp)); #endif name[0] = CTL_KERN; name[1] = KERN_PROC; name[2] = KERN_PROC_AUXV; name[3] = pid; len = PROC_AUXV_MAX * sizeof(Elf_Auxinfo); auxv = malloc(len); if (auxv == NULL) { warn("malloc(%zu)", len); return (NULL); } if (sysctl(name, nitems(name), auxv, &len, NULL, 0) == -1) { if (errno != ESRCH && errno != EPERM) warn("sysctl: kern.proc.auxv: %d: %d", pid, errno); free(auxv); return (NULL); } *cntp = len / sizeof(Elf_Auxinfo); return (auxv); } static Elf_Auxinfo * procstat_getauxv_core(struct procstat_core *core, unsigned int *cntp) { Elf_Auxinfo *auxv; size_t len; auxv = procstat_core_get(core, PSC_TYPE_AUXV, NULL, &len); if (auxv == NULL) return (NULL); *cntp = len / sizeof(Elf_Auxinfo); return (auxv); } Elf_Auxinfo * procstat_getauxv(struct procstat *procstat, struct kinfo_proc *kp, unsigned int *cntp) { switch(procstat->type) { case PROCSTAT_KVM: warnx("kvm method is not supported"); return (NULL); case PROCSTAT_SYSCTL: return (procstat_getauxv_sysctl(kp->ki_pid, cntp)); case PROCSTAT_CORE: return (procstat_getauxv_core(procstat->core, cntp)); default: warnx("unknown access method: %d", procstat->type); return (NULL); } } void procstat_freeauxv(struct procstat *procstat __unused, Elf_Auxinfo *auxv) { free(auxv); } static struct ptrace_lwpinfo * procstat_getptlwpinfo_core(struct procstat_core *core, unsigned int *cntp) { void *buf; struct ptrace_lwpinfo *pl; unsigned int cnt; size_t len; cnt = procstat_core_note_count(core, PSC_TYPE_PTLWPINFO); if (cnt == 0) return (NULL); len = cnt * sizeof(*pl); buf = calloc(1, len); pl = procstat_core_get(core, PSC_TYPE_PTLWPINFO, buf, &len); if (pl == NULL) { free(buf); return (NULL); } *cntp = len / sizeof(*pl); return (pl); } struct ptrace_lwpinfo * procstat_getptlwpinfo(struct procstat *procstat, unsigned int *cntp) { switch (procstat->type) { case PROCSTAT_CORE: return (procstat_getptlwpinfo_core(procstat->core, cntp)); default: warnx("unknown access method: %d", procstat->type); return (NULL); } } void procstat_freeptlwpinfo(struct procstat *procstat __unused, struct ptrace_lwpinfo *pl) { free(pl); } static struct kinfo_kstack * procstat_getkstack_sysctl(pid_t pid, int *cntp) { struct kinfo_kstack *kkstp; int error, name[4]; size_t len; name[0] = CTL_KERN; name[1] = KERN_PROC; name[2] = KERN_PROC_KSTACK; name[3] = pid; len = 0; error = sysctl(name, nitems(name), NULL, &len, NULL, 0); if (error < 0 && errno != ESRCH && errno != EPERM && errno != ENOENT) { warn("sysctl: kern.proc.kstack: %d", pid); return (NULL); } if (error == -1 && errno == ENOENT) { warnx("sysctl: kern.proc.kstack unavailable" " (options DDB or options STACK required in kernel)"); return (NULL); } if (error == -1) return (NULL); kkstp = malloc(len); if (kkstp == NULL) { warn("malloc(%zu)", len); return (NULL); } if (sysctl(name, nitems(name), kkstp, &len, NULL, 0) == -1) { warn("sysctl: kern.proc.pid: %d", pid); free(kkstp); return (NULL); } *cntp = len / sizeof(*kkstp); return (kkstp); } struct kinfo_kstack * procstat_getkstack(struct procstat *procstat, struct kinfo_proc *kp, unsigned int *cntp) { switch(procstat->type) { case PROCSTAT_KVM: warnx("kvm method is not supported"); return (NULL); case PROCSTAT_SYSCTL: return (procstat_getkstack_sysctl(kp->ki_pid, cntp)); case PROCSTAT_CORE: warnx("core method is not supported"); return (NULL); default: warnx("unknown access method: %d", procstat->type); return (NULL); } } void procstat_freekstack(struct procstat *procstat __unused, struct kinfo_kstack *kkstp) { free(kkstp); } Index: head/lib/libprocstat/libprocstat.h =================================================================== --- head/lib/libprocstat/libprocstat.h (revision 318968) +++ head/lib/libprocstat/libprocstat.h (revision 318969) @@ -1,226 +1,228 @@ /*- * Copyright (c) 2009 Stanislav Sedov * Copyright (c) 2017 Dell EMC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _LIBPROCSTAT_H_ #define _LIBPROCSTAT_H_ /* * XXX: sys/elf.h conflicts with zfs_context.h. Workaround this by not * including conflicting parts when building zfs code. */ #ifndef ZFS #include #endif #include /* * Vnode types. */ #define PS_FST_VTYPE_VNON 1 #define PS_FST_VTYPE_VREG 2 #define PS_FST_VTYPE_VDIR 3 #define PS_FST_VTYPE_VBLK 4 #define PS_FST_VTYPE_VCHR 5 #define PS_FST_VTYPE_VLNK 6 #define PS_FST_VTYPE_VSOCK 7 #define PS_FST_VTYPE_VFIFO 8 #define PS_FST_VTYPE_VBAD 9 #define PS_FST_VTYPE_UNKNOWN 255 /* * Descriptor types. */ #define PS_FST_TYPE_VNODE 1 #define PS_FST_TYPE_FIFO 2 #define PS_FST_TYPE_SOCKET 3 #define PS_FST_TYPE_PIPE 4 #define PS_FST_TYPE_PTS 5 #define PS_FST_TYPE_KQUEUE 6 #define PS_FST_TYPE_CRYPTO 7 #define PS_FST_TYPE_MQUEUE 8 #define PS_FST_TYPE_SHM 9 #define PS_FST_TYPE_SEM 10 #define PS_FST_TYPE_UNKNOWN 11 #define PS_FST_TYPE_NONE 12 /* * Special descriptor numbers. */ #define PS_FST_UFLAG_RDIR 0x0001 #define PS_FST_UFLAG_CDIR 0x0002 #define PS_FST_UFLAG_JAIL 0x0004 #define PS_FST_UFLAG_TRACE 0x0008 #define PS_FST_UFLAG_TEXT 0x0010 #define PS_FST_UFLAG_MMAP 0x0020 #define PS_FST_UFLAG_CTTY 0x0040 /* * Descriptor flags. */ #define PS_FST_FFLAG_READ 0x0001 #define PS_FST_FFLAG_WRITE 0x0002 #define PS_FST_FFLAG_NONBLOCK 0x0004 #define PS_FST_FFLAG_APPEND 0x0008 #define PS_FST_FFLAG_SHLOCK 0x0010 #define PS_FST_FFLAG_EXLOCK 0x0020 #define PS_FST_FFLAG_ASYNC 0x0040 #define PS_FST_FFLAG_SYNC 0x0080 #define PS_FST_FFLAG_NOFOLLOW 0x0100 #define PS_FST_FFLAG_CREAT 0x0200 #define PS_FST_FFLAG_TRUNC 0x0400 #define PS_FST_FFLAG_EXCL 0x0800 #define PS_FST_FFLAG_DIRECT 0x1000 #define PS_FST_FFLAG_EXEC 0x2000 #define PS_FST_FFLAG_HASLOCK 0x4000 struct kinfo_kstack; struct kinfo_vmentry; struct procstat; struct ptrace_lwpinfo; struct rlimit; struct filestat { int fs_type; /* Descriptor type. */ int fs_flags; /* filestat specific flags. */ int fs_fflags; /* Descriptor access flags. */ int fs_uflags; /* How this file is used. */ int fs_fd; /* File descriptor number. */ int fs_ref_count; /* Reference count. */ off_t fs_offset; /* Seek location. */ void *fs_typedep; /* Type dependent data. */ char *fs_path; STAILQ_ENTRY(filestat) next; cap_rights_t fs_cap_rights; /* Capability rights, if flag set. */ }; struct vnstat { uint64_t vn_fileid; uint64_t vn_size; uint64_t vn_dev; uint64_t vn_fsid; char *vn_mntdir; int vn_type; uint16_t vn_mode; char vn_devname[SPECNAMELEN + 1]; }; struct ptsstat { uint64_t dev; char devname[SPECNAMELEN + 1]; }; struct pipestat { size_t buffer_cnt; uint64_t addr; uint64_t peer; }; struct semstat { uint32_t value; uint16_t mode; }; struct shmstat { uint64_t size; uint16_t mode; }; struct sockstat { uint64_t inp_ppcb; uint64_t so_addr; uint64_t so_pcb; uint64_t unp_conn; int dom_family; int proto; int so_rcv_sb_state; int so_snd_sb_state; struct sockaddr_storage sa_local; /* Socket address. */ struct sockaddr_storage sa_peer; /* Peer address. */ int type; char dname[32]; + unsigned int sendq; + unsigned int recvq; }; STAILQ_HEAD(filestat_list, filestat); __BEGIN_DECLS void procstat_close(struct procstat *procstat); void procstat_freeargv(struct procstat *procstat); #ifndef ZFS void procstat_freeauxv(struct procstat *procstat, Elf_Auxinfo *auxv); #endif void procstat_freeenvv(struct procstat *procstat); void procstat_freegroups(struct procstat *procstat, gid_t *groups); void procstat_freekstack(struct procstat *procstat, struct kinfo_kstack *kkstp); void procstat_freeprocs(struct procstat *procstat, struct kinfo_proc *p); void procstat_freefiles(struct procstat *procstat, struct filestat_list *head); void procstat_freeptlwpinfo(struct procstat *procstat, struct ptrace_lwpinfo *pl); void procstat_freevmmap(struct procstat *procstat, struct kinfo_vmentry *vmmap); struct filestat_list *procstat_getfiles(struct procstat *procstat, struct kinfo_proc *kp, int mmapped); struct kinfo_proc *procstat_getprocs(struct procstat *procstat, int what, int arg, unsigned int *count); int procstat_get_pipe_info(struct procstat *procstat, struct filestat *fst, struct pipestat *pipe, char *errbuf); int procstat_get_pts_info(struct procstat *procstat, struct filestat *fst, struct ptsstat *pts, char *errbuf); int procstat_get_sem_info(struct procstat *procstat, struct filestat *fst, struct semstat *sem, char *errbuf); int procstat_get_shm_info(struct procstat *procstat, struct filestat *fst, struct shmstat *shm, char *errbuf); int procstat_get_socket_info(struct procstat *procstat, struct filestat *fst, struct sockstat *sock, char *errbuf); int procstat_get_vnode_info(struct procstat *procstat, struct filestat *fst, struct vnstat *vn, char *errbuf); char **procstat_getargv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr); #ifndef ZFS Elf_Auxinfo *procstat_getauxv(struct procstat *procstat, struct kinfo_proc *kp, unsigned int *cntp); #endif struct ptrace_lwpinfo *procstat_getptlwpinfo(struct procstat *procstat, unsigned int *cntp); char **procstat_getenvv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr); gid_t *procstat_getgroups(struct procstat *procstat, struct kinfo_proc *kp, unsigned int *count); struct kinfo_kstack *procstat_getkstack(struct procstat *procstat, struct kinfo_proc *kp, unsigned int *count); int procstat_getosrel(struct procstat *procstat, struct kinfo_proc *kp, int *osrelp); int procstat_getpathname(struct procstat *procstat, struct kinfo_proc *kp, char *pathname, size_t maxlen); int procstat_getrlimit(struct procstat *procstat, struct kinfo_proc *kp, int which, struct rlimit* rlimit); int procstat_getumask(struct procstat *procstat, struct kinfo_proc *kp, unsigned short* umask); struct kinfo_vmentry *procstat_getvmmap(struct procstat *procstat, struct kinfo_proc *kp, unsigned int *count); struct procstat *procstat_open_core(const char *filename); struct procstat *procstat_open_sysctl(void); struct procstat *procstat_open_kvm(const char *nlistf, const char *memf); __END_DECLS #endif /* !_LIBPROCSTAT_H_ */ Index: head/lib/libprocstat/libprocstat_compat.c =================================================================== --- head/lib/libprocstat/libprocstat_compat.c (revision 318968) +++ head/lib/libprocstat/libprocstat_compat.c (revision 318969) @@ -1,144 +1,188 @@ /*- * Copyright (c) 2014 Gleb Kurtsou * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include "libprocstat.h" struct freebsd11_ptsstat { uint32_t dev; char devname[SPECNAMELEN + 1]; }; struct freebsd11_vnstat { uint64_t vn_fileid; uint64_t vn_size; char *vn_mntdir; uint32_t vn_dev; uint32_t vn_fsid; int vn_type; uint16_t vn_mode; char vn_devname[SPECNAMELEN + 1]; }; struct freebsd11_semstat { uint32_t value; uint16_t mode; }; struct freebsd11_shmstat { uint64_t size; uint16_t mode; }; +struct freebsd11_sockstat { + uint64_t inp_ppcb; + uint64_t so_addr; + uint64_t so_pcb; + uint64_t unp_conn; + int dom_family; + int proto; + int so_rcv_sb_state; + int so_snd_sb_state; + struct sockaddr_storage sa_local; /* Socket address. */ + struct sockaddr_storage sa_peer; /* Peer address. */ + int type; + char dname[32]; +}; + int freebsd11_procstat_get_pts_info(struct procstat *procstat, struct filestat *fst, struct freebsd11_ptsstat *pts, char *errbuf); int freebsd11_procstat_get_sem_info(struct procstat *procstat, struct filestat *fst, struct freebsd11_semstat *sem, char *errbuf); int freebsd11_procstat_get_shm_info(struct procstat *procstat, struct filestat *fst, struct freebsd11_shmstat *shm, char *errbuf); +int freebsd11_procstat_get_socket_info(struct procstat *procstat, + struct filestat *fst, struct freebsd11_sockstat *sock, char *errbuf); int freebsd11_procstat_get_vnode_info(struct procstat *procstat, struct filestat *fst, struct freebsd11_vnstat *vn, char *errbuf); int freebsd11_procstat_get_pts_info(struct procstat *procstat, struct filestat *fst, struct freebsd11_ptsstat *pts_compat, char *errbuf) { struct ptsstat pts; int r; r = procstat_get_pts_info(procstat, fst, &pts, errbuf); if (r != 0) return (r); pts_compat->dev = pts.dev; memcpy(pts_compat->devname, pts.devname, sizeof(pts_compat->devname)); return (0); } int freebsd11_procstat_get_sem_info(struct procstat *procstat, struct filestat *fst, struct freebsd11_semstat *sem_compat, char *errbuf) { struct semstat sem; int r; r = procstat_get_sem_info(procstat, fst, &sem, errbuf); if (r != 0) return (r); sem_compat->value = sem.value; sem_compat->mode = sem.mode; return (0); } int freebsd11_procstat_get_shm_info(struct procstat *procstat, struct filestat *fst, struct freebsd11_shmstat *shm_compat, char *errbuf) { struct shmstat shm; int r; r = procstat_get_shm_info(procstat, fst, &shm, errbuf); if (r != 0) return (r); shm_compat->size = shm.size; shm_compat->mode = shm.mode; return (0); } int +freebsd11_procstat_get_socket_info(struct procstat *procstat, struct filestat *fst, + struct freebsd11_sockstat *sock_compat, char *errbuf) +{ + struct sockstat sock; + int r; + + r = procstat_get_socket_info(procstat, fst, &sock, errbuf); + if (r != 0) + return (r); + sock_compat->inp_ppcb = sock.inp_ppcb; + sock_compat->so_addr = sock.so_addr; + sock_compat->so_pcb = sock.so_pcb; + sock_compat->unp_conn = sock.unp_conn; + sock_compat->dom_family = sock.dom_family; + sock_compat->proto = sock.proto; + sock_compat->so_rcv_sb_state = sock.so_rcv_sb_state; + sock_compat->so_snd_sb_state = sock.so_snd_sb_state; + sock_compat->sa_local = sock.sa_local; + sock_compat->sa_peer = sock.sa_peer; + sock_compat->type = sock.type; + memcpy(sock_compat->dname, sock.dname, sizeof(sock.dname)); + return (0); +} + +int freebsd11_procstat_get_vnode_info(struct procstat *procstat, struct filestat *fst, struct freebsd11_vnstat *vn_compat, char *errbuf) { struct vnstat vn; int r; r = procstat_get_vnode_info(procstat, fst, &vn, errbuf); if (r != 0) return (r); vn_compat->vn_fileid = vn.vn_fileid; vn_compat->vn_size = vn.vn_size; vn_compat->vn_mntdir = vn.vn_mntdir; vn_compat->vn_dev = vn.vn_dev; vn_compat->vn_fsid = vn.vn_fsid; vn_compat->vn_type = vn.vn_type; vn_compat->vn_mode = vn.vn_mode; memcpy(vn_compat->vn_devname, vn.vn_devname, sizeof(vn_compat->vn_devname)); return (0); } __sym_compat(procstat_get_pts_info, freebsd11_procstat_get_pts_info, FBSD_1.2); +__sym_compat(procstat_get_socket_info, freebsd11_procstat_get_socket_info, + FBSD_1.2); __sym_compat(procstat_get_vnode_info, freebsd11_procstat_get_vnode_info, FBSD_1.2); __sym_compat(procstat_get_sem_info, freebsd11_procstat_get_sem_info, FBSD_1.3); __sym_compat(procstat_get_shm_info, freebsd11_procstat_get_shm_info, FBSD_1.3); Index: head/sys/kern/sys_socket.c =================================================================== --- head/sys/kern/sys_socket.c (revision 318968) +++ head/sys/kern/sys_socket.c (revision 318969) @@ -1,807 +1,815 @@ /*- * Copyright (c) 1982, 1986, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)sys_socket.c 8.1 (Berkeley) 6/10/93 */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* XXX */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static SYSCTL_NODE(_kern_ipc, OID_AUTO, aio, CTLFLAG_RD, NULL, "socket AIO stats"); static int empty_results; SYSCTL_INT(_kern_ipc_aio, OID_AUTO, empty_results, CTLFLAG_RD, &empty_results, 0, "socket operation returned EAGAIN"); static int empty_retries; SYSCTL_INT(_kern_ipc_aio, OID_AUTO, empty_retries, CTLFLAG_RD, &empty_retries, 0, "socket operation retries"); static fo_rdwr_t soo_read; static fo_rdwr_t soo_write; static fo_ioctl_t soo_ioctl; static fo_poll_t soo_poll; extern fo_kqfilter_t soo_kqfilter; static fo_stat_t soo_stat; static fo_close_t soo_close; static fo_fill_kinfo_t soo_fill_kinfo; static fo_aio_queue_t soo_aio_queue; static void soo_aio_cancel(struct kaiocb *job); struct fileops socketops = { .fo_read = soo_read, .fo_write = soo_write, .fo_truncate = invfo_truncate, .fo_ioctl = soo_ioctl, .fo_poll = soo_poll, .fo_kqfilter = soo_kqfilter, .fo_stat = soo_stat, .fo_close = soo_close, .fo_chmod = invfo_chmod, .fo_chown = invfo_chown, .fo_sendfile = invfo_sendfile, .fo_fill_kinfo = soo_fill_kinfo, .fo_aio_queue = soo_aio_queue, .fo_flags = DFLAG_PASSABLE }; static int soo_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags, struct thread *td) { struct socket *so = fp->f_data; int error; #ifdef MAC error = mac_socket_check_receive(active_cred, so); if (error) return (error); #endif error = soreceive(so, 0, uio, 0, 0, 0); return (error); } static int soo_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags, struct thread *td) { struct socket *so = fp->f_data; int error; #ifdef MAC error = mac_socket_check_send(active_cred, so); if (error) return (error); #endif error = sosend(so, 0, uio, 0, 0, 0, uio->uio_td); if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0) { PROC_LOCK(uio->uio_td->td_proc); tdsignal(uio->uio_td, SIGPIPE); PROC_UNLOCK(uio->uio_td->td_proc); } return (error); } static int soo_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred, struct thread *td) { struct socket *so = fp->f_data; int error = 0; switch (cmd) { case FIONBIO: SOCK_LOCK(so); if (*(int *)data) so->so_state |= SS_NBIO; else so->so_state &= ~SS_NBIO; SOCK_UNLOCK(so); break; case FIOASYNC: /* * XXXRW: This code separately acquires SOCK_LOCK(so) and * SOCKBUF_LOCK(&so->so_rcv) even though they are the same * mutex to avoid introducing the assumption that they are * the same. */ if (*(int *)data) { SOCK_LOCK(so); so->so_state |= SS_ASYNC; SOCK_UNLOCK(so); SOCKBUF_LOCK(&so->so_rcv); so->so_rcv.sb_flags |= SB_ASYNC; SOCKBUF_UNLOCK(&so->so_rcv); SOCKBUF_LOCK(&so->so_snd); so->so_snd.sb_flags |= SB_ASYNC; SOCKBUF_UNLOCK(&so->so_snd); } else { SOCK_LOCK(so); so->so_state &= ~SS_ASYNC; SOCK_UNLOCK(so); SOCKBUF_LOCK(&so->so_rcv); so->so_rcv.sb_flags &= ~SB_ASYNC; SOCKBUF_UNLOCK(&so->so_rcv); SOCKBUF_LOCK(&so->so_snd); so->so_snd.sb_flags &= ~SB_ASYNC; SOCKBUF_UNLOCK(&so->so_snd); } break; case FIONREAD: /* Unlocked read. */ *(int *)data = sbavail(&so->so_rcv); break; case FIONWRITE: /* Unlocked read. */ *(int *)data = sbavail(&so->so_snd); break; case FIONSPACE: /* Unlocked read. */ if ((so->so_snd.sb_hiwat < sbused(&so->so_snd)) || (so->so_snd.sb_mbmax < so->so_snd.sb_mbcnt)) *(int *)data = 0; else *(int *)data = sbspace(&so->so_snd); break; case FIOSETOWN: error = fsetown(*(int *)data, &so->so_sigio); break; case FIOGETOWN: *(int *)data = fgetown(&so->so_sigio); break; case SIOCSPGRP: error = fsetown(-(*(int *)data), &so->so_sigio); break; case SIOCGPGRP: *(int *)data = -fgetown(&so->so_sigio); break; case SIOCATMARK: /* Unlocked read. */ *(int *)data = (so->so_rcv.sb_state & SBS_RCVATMARK) != 0; break; default: /* * Interface/routing/protocol specific ioctls: interface and * routing ioctls should have a different entry since a * socket is unnecessary. */ if (IOCGROUP(cmd) == 'i') error = ifioctl(so, cmd, data, td); else if (IOCGROUP(cmd) == 'r') { CURVNET_SET(so->so_vnet); error = rtioctl_fib(cmd, data, so->so_fibnum); CURVNET_RESTORE(); } else { CURVNET_SET(so->so_vnet); error = ((*so->so_proto->pr_usrreqs->pru_control) (so, cmd, data, 0, td)); CURVNET_RESTORE(); } break; } return (error); } static int soo_poll(struct file *fp, int events, struct ucred *active_cred, struct thread *td) { struct socket *so = fp->f_data; #ifdef MAC int error; error = mac_socket_check_poll(active_cred, so); if (error) return (error); #endif return (sopoll(so, events, fp->f_cred, td)); } static int soo_stat(struct file *fp, struct stat *ub, struct ucred *active_cred, struct thread *td) { struct socket *so = fp->f_data; struct sockbuf *sb; #ifdef MAC int error; #endif bzero((caddr_t)ub, sizeof (*ub)); ub->st_mode = S_IFSOCK; #ifdef MAC error = mac_socket_check_stat(active_cred, so); if (error) return (error); #endif /* * If SBS_CANTRCVMORE is set, but there's still data left in the * receive buffer, the socket is still readable. */ sb = &so->so_rcv; SOCKBUF_LOCK(sb); if ((sb->sb_state & SBS_CANTRCVMORE) == 0 || sbavail(sb)) ub->st_mode |= S_IRUSR | S_IRGRP | S_IROTH; ub->st_size = sbavail(sb) - sb->sb_ctl; SOCKBUF_UNLOCK(sb); sb = &so->so_snd; SOCKBUF_LOCK(sb); if ((sb->sb_state & SBS_CANTSENDMORE) == 0) ub->st_mode |= S_IWUSR | S_IWGRP | S_IWOTH; SOCKBUF_UNLOCK(sb); ub->st_uid = so->so_cred->cr_uid; ub->st_gid = so->so_cred->cr_gid; return (*so->so_proto->pr_usrreqs->pru_sense)(so, ub); } /* * API socket close on file pointer. We call soclose() to close the socket * (including initiating closing protocols). soclose() will sorele() the * file reference but the actual socket will not go away until the socket's * ref count hits 0. */ static int soo_close(struct file *fp, struct thread *td) { int error = 0; struct socket *so; so = fp->f_data; fp->f_ops = &badfileops; fp->f_data = NULL; if (so) error = soclose(so); return (error); } static int soo_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp) { struct sockaddr *sa; struct inpcb *inpcb; struct unpcb *unpcb; struct socket *so; int error; kif->kf_type = KF_TYPE_SOCKET; so = fp->f_data; kif->kf_un.kf_sock.kf_sock_domain0 = so->so_proto->pr_domain->dom_family; kif->kf_un.kf_sock.kf_sock_type0 = so->so_type; kif->kf_un.kf_sock.kf_sock_protocol0 = so->so_proto->pr_protocol; kif->kf_un.kf_sock.kf_sock_pcb = (uintptr_t)so->so_pcb; switch (kif->kf_un.kf_sock.kf_sock_domain0) { case AF_INET: case AF_INET6: if (kif->kf_un.kf_sock.kf_sock_protocol0 == IPPROTO_TCP) { if (so->so_pcb != NULL) { inpcb = (struct inpcb *)(so->so_pcb); kif->kf_un.kf_sock.kf_sock_inpcb = (uintptr_t)inpcb->inp_ppcb; + kif->kf_un.kf_sock.kf_sock_sendq = + sbused(&so->so_snd); + kif->kf_un.kf_sock.kf_sock_recvq = + sbused(&so->so_rcv); } } break; case AF_UNIX: if (so->so_pcb != NULL) { unpcb = (struct unpcb *)(so->so_pcb); if (unpcb->unp_conn) { kif->kf_un.kf_sock.kf_sock_unpconn = (uintptr_t)unpcb->unp_conn; kif->kf_un.kf_sock.kf_sock_rcv_sb_state = so->so_rcv.sb_state; kif->kf_un.kf_sock.kf_sock_snd_sb_state = so->so_snd.sb_state; + kif->kf_un.kf_sock.kf_sock_sendq = + sbused(&so->so_snd); + kif->kf_un.kf_sock.kf_sock_recvq = + sbused(&so->so_rcv); } } break; } error = so->so_proto->pr_usrreqs->pru_sockaddr(so, &sa); if (error == 0 && sa->sa_len <= sizeof(kif->kf_un.kf_sock.kf_sa_local)) { bcopy(sa, &kif->kf_un.kf_sock.kf_sa_local, sa->sa_len); free(sa, M_SONAME); } error = so->so_proto->pr_usrreqs->pru_peeraddr(so, &sa); if (error == 0 && sa->sa_len <= sizeof(kif->kf_un.kf_sock.kf_sa_peer)) { bcopy(sa, &kif->kf_un.kf_sock.kf_sa_peer, sa->sa_len); free(sa, M_SONAME); } strncpy(kif->kf_path, so->so_proto->pr_domain->dom_name, sizeof(kif->kf_path)); return (0); } /* * Use the 'backend3' field in AIO jobs to store the amount of data * completed by the AIO job so far. */ #define aio_done backend3 static STAILQ_HEAD(, task) soaio_jobs; static struct mtx soaio_jobs_lock; static struct task soaio_kproc_task; static int soaio_starting, soaio_idle, soaio_queued; static struct unrhdr *soaio_kproc_unr; static int soaio_max_procs = MAX_AIO_PROCS; SYSCTL_INT(_kern_ipc_aio, OID_AUTO, max_procs, CTLFLAG_RW, &soaio_max_procs, 0, "Maximum number of kernel processes to use for async socket IO"); static int soaio_num_procs; SYSCTL_INT(_kern_ipc_aio, OID_AUTO, num_procs, CTLFLAG_RD, &soaio_num_procs, 0, "Number of active kernel processes for async socket IO"); static int soaio_target_procs = TARGET_AIO_PROCS; SYSCTL_INT(_kern_ipc_aio, OID_AUTO, target_procs, CTLFLAG_RD, &soaio_target_procs, 0, "Preferred number of ready kernel processes for async socket IO"); static int soaio_lifetime; SYSCTL_INT(_kern_ipc_aio, OID_AUTO, lifetime, CTLFLAG_RW, &soaio_lifetime, 0, "Maximum lifetime for idle aiod"); static void soaio_kproc_loop(void *arg) { struct proc *p; struct vmspace *myvm; struct task *task; int error, id, pending; id = (intptr_t)arg; /* * Grab an extra reference on the daemon's vmspace so that it * doesn't get freed by jobs that switch to a different * vmspace. */ p = curproc; myvm = vmspace_acquire_ref(p); mtx_lock(&soaio_jobs_lock); MPASS(soaio_starting > 0); soaio_starting--; for (;;) { while (!STAILQ_EMPTY(&soaio_jobs)) { task = STAILQ_FIRST(&soaio_jobs); STAILQ_REMOVE_HEAD(&soaio_jobs, ta_link); soaio_queued--; pending = task->ta_pending; task->ta_pending = 0; mtx_unlock(&soaio_jobs_lock); task->ta_func(task->ta_context, pending); mtx_lock(&soaio_jobs_lock); } MPASS(soaio_queued == 0); if (p->p_vmspace != myvm) { mtx_unlock(&soaio_jobs_lock); vmspace_switch_aio(myvm); mtx_lock(&soaio_jobs_lock); continue; } soaio_idle++; error = mtx_sleep(&soaio_idle, &soaio_jobs_lock, 0, "-", soaio_lifetime); soaio_idle--; if (error == EWOULDBLOCK && STAILQ_EMPTY(&soaio_jobs) && soaio_num_procs > soaio_target_procs) break; } soaio_num_procs--; mtx_unlock(&soaio_jobs_lock); free_unr(soaio_kproc_unr, id); kproc_exit(0); } static void soaio_kproc_create(void *context, int pending) { struct proc *p; int error, id; mtx_lock(&soaio_jobs_lock); for (;;) { if (soaio_num_procs < soaio_target_procs) { /* Must create */ } else if (soaio_num_procs >= soaio_max_procs) { /* * Hit the limit on kernel processes, don't * create another one. */ break; } else if (soaio_queued <= soaio_idle + soaio_starting) { /* * No more AIO jobs waiting for a process to be * created, so stop. */ break; } soaio_starting++; mtx_unlock(&soaio_jobs_lock); id = alloc_unr(soaio_kproc_unr); error = kproc_create(soaio_kproc_loop, (void *)(intptr_t)id, &p, 0, 0, "soaiod%d", id); if (error != 0) { free_unr(soaio_kproc_unr, id); mtx_lock(&soaio_jobs_lock); soaio_starting--; break; } mtx_lock(&soaio_jobs_lock); soaio_num_procs++; } mtx_unlock(&soaio_jobs_lock); } void soaio_enqueue(struct task *task) { mtx_lock(&soaio_jobs_lock); MPASS(task->ta_pending == 0); task->ta_pending++; STAILQ_INSERT_TAIL(&soaio_jobs, task, ta_link); soaio_queued++; if (soaio_queued <= soaio_idle) wakeup_one(&soaio_idle); else if (soaio_num_procs < soaio_max_procs) taskqueue_enqueue(taskqueue_thread, &soaio_kproc_task); mtx_unlock(&soaio_jobs_lock); } static void soaio_init(void) { soaio_lifetime = AIOD_LIFETIME_DEFAULT; STAILQ_INIT(&soaio_jobs); mtx_init(&soaio_jobs_lock, "soaio jobs", NULL, MTX_DEF); soaio_kproc_unr = new_unrhdr(1, INT_MAX, NULL); TASK_INIT(&soaio_kproc_task, 0, soaio_kproc_create, NULL); if (soaio_target_procs > 0) taskqueue_enqueue(taskqueue_thread, &soaio_kproc_task); } SYSINIT(soaio, SI_SUB_VFS, SI_ORDER_ANY, soaio_init, NULL); static __inline int soaio_ready(struct socket *so, struct sockbuf *sb) { return (sb == &so->so_rcv ? soreadable(so) : sowriteable(so)); } static void soaio_process_job(struct socket *so, struct sockbuf *sb, struct kaiocb *job) { struct ucred *td_savedcred; struct thread *td; struct file *fp; struct uio uio; struct iovec iov; size_t cnt, done; long ru_before; int error, flags; SOCKBUF_UNLOCK(sb); aio_switch_vmspace(job); td = curthread; fp = job->fd_file; retry: td_savedcred = td->td_ucred; td->td_ucred = job->cred; done = job->aio_done; cnt = job->uaiocb.aio_nbytes - done; iov.iov_base = (void *)((uintptr_t)job->uaiocb.aio_buf + done); iov.iov_len = cnt; uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = 0; uio.uio_resid = cnt; uio.uio_segflg = UIO_USERSPACE; uio.uio_td = td; flags = MSG_NBIO; /* * For resource usage accounting, only count a completed request * as a single message to avoid counting multiple calls to * sosend/soreceive on a blocking socket. */ if (sb == &so->so_rcv) { uio.uio_rw = UIO_READ; ru_before = td->td_ru.ru_msgrcv; #ifdef MAC error = mac_socket_check_receive(fp->f_cred, so); if (error == 0) #endif error = soreceive(so, NULL, &uio, NULL, NULL, &flags); if (td->td_ru.ru_msgrcv != ru_before) job->msgrcv = 1; } else { if (!TAILQ_EMPTY(&sb->sb_aiojobq)) flags |= MSG_MORETOCOME; uio.uio_rw = UIO_WRITE; ru_before = td->td_ru.ru_msgsnd; #ifdef MAC error = mac_socket_check_send(fp->f_cred, so); if (error == 0) #endif error = sosend(so, NULL, &uio, NULL, NULL, flags, td); if (td->td_ru.ru_msgsnd != ru_before) job->msgsnd = 1; if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0) { PROC_LOCK(job->userproc); kern_psignal(job->userproc, SIGPIPE); PROC_UNLOCK(job->userproc); } } done += cnt - uio.uio_resid; job->aio_done = done; td->td_ucred = td_savedcred; if (error == EWOULDBLOCK) { /* * The request was either partially completed or not * completed at all due to racing with a read() or * write() on the socket. If the socket is * non-blocking, return with any partial completion. * If the socket is blocking or if no progress has * been made, requeue this request at the head of the * queue to try again when the socket is ready. */ MPASS(done != job->uaiocb.aio_nbytes); SOCKBUF_LOCK(sb); if (done == 0 || !(so->so_state & SS_NBIO)) { empty_results++; if (soaio_ready(so, sb)) { empty_retries++; SOCKBUF_UNLOCK(sb); goto retry; } if (!aio_set_cancel_function(job, soo_aio_cancel)) { SOCKBUF_UNLOCK(sb); if (done != 0) aio_complete(job, done, 0); else aio_cancel(job); SOCKBUF_LOCK(sb); } else { TAILQ_INSERT_HEAD(&sb->sb_aiojobq, job, list); } return; } SOCKBUF_UNLOCK(sb); } if (done != 0 && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; if (error) aio_complete(job, -1, error); else aio_complete(job, done, 0); SOCKBUF_LOCK(sb); } static void soaio_process_sb(struct socket *so, struct sockbuf *sb) { struct kaiocb *job; SOCKBUF_LOCK(sb); while (!TAILQ_EMPTY(&sb->sb_aiojobq) && soaio_ready(so, sb)) { job = TAILQ_FIRST(&sb->sb_aiojobq); TAILQ_REMOVE(&sb->sb_aiojobq, job, list); if (!aio_clear_cancel_function(job)) continue; soaio_process_job(so, sb, job); } /* * If there are still pending requests, the socket must not be * ready so set SB_AIO to request a wakeup when the socket * becomes ready. */ if (!TAILQ_EMPTY(&sb->sb_aiojobq)) sb->sb_flags |= SB_AIO; sb->sb_flags &= ~SB_AIO_RUNNING; SOCKBUF_UNLOCK(sb); ACCEPT_LOCK(); SOCK_LOCK(so); sorele(so); } void soaio_rcv(void *context, int pending) { struct socket *so; so = context; soaio_process_sb(so, &so->so_rcv); } void soaio_snd(void *context, int pending) { struct socket *so; so = context; soaio_process_sb(so, &so->so_snd); } void sowakeup_aio(struct socket *so, struct sockbuf *sb) { SOCKBUF_LOCK_ASSERT(sb); sb->sb_flags &= ~SB_AIO; if (sb->sb_flags & SB_AIO_RUNNING) return; sb->sb_flags |= SB_AIO_RUNNING; if (sb == &so->so_snd) SOCK_LOCK(so); soref(so); if (sb == &so->so_snd) SOCK_UNLOCK(so); soaio_enqueue(&sb->sb_aiotask); } static void soo_aio_cancel(struct kaiocb *job) { struct socket *so; struct sockbuf *sb; long done; int opcode; so = job->fd_file->f_data; opcode = job->uaiocb.aio_lio_opcode; if (opcode == LIO_READ) sb = &so->so_rcv; else { MPASS(opcode == LIO_WRITE); sb = &so->so_snd; } SOCKBUF_LOCK(sb); if (!aio_cancel_cleared(job)) TAILQ_REMOVE(&sb->sb_aiojobq, job, list); if (TAILQ_EMPTY(&sb->sb_aiojobq)) sb->sb_flags &= ~SB_AIO; SOCKBUF_UNLOCK(sb); done = job->aio_done; if (done != 0) aio_complete(job, done, 0); else aio_cancel(job); } static int soo_aio_queue(struct file *fp, struct kaiocb *job) { struct socket *so; struct sockbuf *sb; int error; so = fp->f_data; error = (*so->so_proto->pr_usrreqs->pru_aio_queue)(so, job); if (error == 0) return (0); switch (job->uaiocb.aio_lio_opcode) { case LIO_READ: sb = &so->so_rcv; break; case LIO_WRITE: sb = &so->so_snd; break; default: return (EINVAL); } SOCKBUF_LOCK(sb); if (!aio_set_cancel_function(job, soo_aio_cancel)) panic("new job was cancelled"); TAILQ_INSERT_TAIL(&sb->sb_aiojobq, job, list); if (!(sb->sb_flags & SB_AIO_RUNNING)) { if (soaio_ready(so, sb)) sowakeup_aio(so, sb); else sb->sb_flags |= SB_AIO; } SOCKBUF_UNLOCK(sb); return (0); } Index: head/sys/sys/user.h =================================================================== --- head/sys/sys/user.h (revision 318968) +++ head/sys/sys/user.h (revision 318969) @@ -1,603 +1,604 @@ /*- * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. * Copyright (c) 2007 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)user.h 8.2 (Berkeley) 9/23/93 * $FreeBSD$ */ #ifndef _SYS_USER_H_ #define _SYS_USER_H_ #include #ifndef _KERNEL /* stuff that *used* to be included by user.h, or is now needed */ #include #include #include #include #include #include #include #include #include #include /* XXX */ #include /* XXX */ #include /* XXX */ #include /* XXX */ #endif /* !_KERNEL */ #ifndef _SYS_RESOURCEVAR_H_ #include #endif #ifndef _SYS_SIGNALVAR_H_ #include #endif #ifndef _SYS_SOCKET_VAR_H_ #include #endif #include /* * KERN_PROC subtype ops return arrays of selected proc structure entries: * * This struct includes several arrays of spare space, with different arrays * for different standard C-types. When adding new variables to this struct, * the space for byte-aligned data should be taken from the ki_sparestring, * pointers from ki_spareptrs, word-aligned data from ki_spareints, and * doubleword-aligned data from ki_sparelongs. Make sure the space for new * variables come from the array which matches the size and alignment of * those variables on ALL hardware platforms, and then adjust the appropriate * KI_NSPARE_* value(s) to match. * * Always verify that sizeof(struct kinfo_proc) == KINFO_PROC_SIZE on all * platforms after you have added new variables. Note that if you change * the value of KINFO_PROC_SIZE, then many userland programs will stop * working until they are recompiled! * * Once you have added the new field, you will need to add code to initialize * it in two places: function fill_kinfo_proc in sys/kern/kern_proc.c and * function kvm_proclist in lib/libkvm/kvm_proc.c . */ #define KI_NSPARE_INT 2 #define KI_NSPARE_LONG 12 #define KI_NSPARE_PTR 6 #ifndef _KERNEL #ifndef KINFO_PROC_SIZE #error "Unknown architecture" #endif #endif /* !_KERNEL */ #define WMESGLEN 8 /* size of returned wchan message */ #define LOCKNAMELEN 8 /* size of returned lock name */ #define TDNAMLEN 16 /* size of returned thread name */ #define COMMLEN 19 /* size of returned ki_comm name */ #define KI_EMULNAMELEN 16 /* size of returned ki_emul */ #define KI_NGROUPS 16 /* number of groups in ki_groups */ #define LOGNAMELEN 17 /* size of returned ki_login */ #define LOGINCLASSLEN 17 /* size of returned ki_loginclass */ #ifndef BURN_BRIDGES #define OCOMMLEN TDNAMLEN #define ki_ocomm ki_tdname #endif /* Flags for the process credential. */ #define KI_CRF_CAPABILITY_MODE 0x00000001 /* * Steal a bit from ki_cr_flags to indicate that the cred had more than * KI_NGROUPS groups. */ #define KI_CRF_GRP_OVERFLOW 0x80000000 struct kinfo_proc { int ki_structsize; /* size of this structure */ int ki_layout; /* reserved: layout identifier */ struct pargs *ki_args; /* address of command arguments */ struct proc *ki_paddr; /* address of proc */ struct user *ki_addr; /* kernel virtual addr of u-area */ struct vnode *ki_tracep; /* pointer to trace file */ struct vnode *ki_textvp; /* pointer to executable file */ struct filedesc *ki_fd; /* pointer to open file info */ struct vmspace *ki_vmspace; /* pointer to kernel vmspace struct */ void *ki_wchan; /* sleep address */ pid_t ki_pid; /* Process identifier */ pid_t ki_ppid; /* parent process id */ pid_t ki_pgid; /* process group id */ pid_t ki_tpgid; /* tty process group id */ pid_t ki_sid; /* Process session ID */ pid_t ki_tsid; /* Terminal session ID */ short ki_jobc; /* job control counter */ short ki_spare_short1; /* unused (just here for alignment) */ uint32_t ki_tdev_freebsd11; /* controlling tty dev */ sigset_t ki_siglist; /* Signals arrived but not delivered */ sigset_t ki_sigmask; /* Current signal mask */ sigset_t ki_sigignore; /* Signals being ignored */ sigset_t ki_sigcatch; /* Signals being caught by user */ uid_t ki_uid; /* effective user id */ uid_t ki_ruid; /* Real user id */ uid_t ki_svuid; /* Saved effective user id */ gid_t ki_rgid; /* Real group id */ gid_t ki_svgid; /* Saved effective group id */ short ki_ngroups; /* number of groups */ short ki_spare_short2; /* unused (just here for alignment) */ gid_t ki_groups[KI_NGROUPS]; /* groups */ vm_size_t ki_size; /* virtual size */ segsz_t ki_rssize; /* current resident set size in pages */ segsz_t ki_swrss; /* resident set size before last swap */ segsz_t ki_tsize; /* text size (pages) XXX */ segsz_t ki_dsize; /* data size (pages) XXX */ segsz_t ki_ssize; /* stack size (pages) */ u_short ki_xstat; /* Exit status for wait & stop signal */ u_short ki_acflag; /* Accounting flags */ fixpt_t ki_pctcpu; /* %cpu for process during ki_swtime */ u_int ki_estcpu; /* Time averaged value of ki_cpticks */ u_int ki_slptime; /* Time since last blocked */ u_int ki_swtime; /* Time swapped in or out */ u_int ki_cow; /* number of copy-on-write faults */ u_int64_t ki_runtime; /* Real time in microsec */ struct timeval ki_start; /* starting time */ struct timeval ki_childtime; /* time used by process children */ long ki_flag; /* P_* flags */ long ki_kiflag; /* KI_* flags (below) */ int ki_traceflag; /* Kernel trace points */ char ki_stat; /* S* process status */ signed char ki_nice; /* Process "nice" value */ char ki_lock; /* Process lock (prevent swap) count */ char ki_rqindex; /* Run queue index */ u_char ki_oncpu_old; /* Which cpu we are on (legacy) */ u_char ki_lastcpu_old; /* Last cpu we were on (legacy) */ char ki_tdname[TDNAMLEN+1]; /* thread name */ char ki_wmesg[WMESGLEN+1]; /* wchan message */ char ki_login[LOGNAMELEN+1]; /* setlogin name */ char ki_lockname[LOCKNAMELEN+1]; /* lock name */ char ki_comm[COMMLEN+1]; /* command name */ char ki_emul[KI_EMULNAMELEN+1]; /* emulation name */ char ki_loginclass[LOGINCLASSLEN+1]; /* login class */ char ki_moretdname[MAXCOMLEN-TDNAMLEN+1]; /* more thread name */ /* * When adding new variables, take space for char-strings from the * front of ki_sparestrings, and ints from the end of ki_spareints. * That way the spare room from both arrays will remain contiguous. */ char ki_sparestrings[46]; /* spare string space */ int ki_spareints[KI_NSPARE_INT]; /* spare room for growth */ uint64_t ki_tdev; /* controlling tty dev */ int ki_oncpu; /* Which cpu we are on */ int ki_lastcpu; /* Last cpu we were on */ int ki_tracer; /* Pid of tracing process */ int ki_flag2; /* P2_* flags */ int ki_fibnum; /* Default FIB number */ u_int ki_cr_flags; /* Credential flags */ int ki_jid; /* Process jail ID */ int ki_numthreads; /* XXXKSE number of threads in total */ lwpid_t ki_tid; /* XXXKSE thread id */ struct priority ki_pri; /* process priority */ struct rusage ki_rusage; /* process rusage statistics */ /* XXX - most fields in ki_rusage_ch are not (yet) filled in */ struct rusage ki_rusage_ch; /* rusage of children processes */ struct pcb *ki_pcb; /* kernel virtual addr of pcb */ void *ki_kstack; /* kernel virtual addr of stack */ void *ki_udata; /* User convenience pointer */ struct thread *ki_tdaddr; /* address of thread */ /* * When adding new variables, take space for pointers from the * front of ki_spareptrs, and longs from the end of ki_sparelongs. * That way the spare room from both arrays will remain contiguous. */ void *ki_spareptrs[KI_NSPARE_PTR]; /* spare room for growth */ long ki_sparelongs[KI_NSPARE_LONG]; /* spare room for growth */ long ki_sflag; /* PS_* flags */ long ki_tdflags; /* XXXKSE kthread flag */ }; void fill_kinfo_proc(struct proc *, struct kinfo_proc *); /* XXX - the following two defines are temporary */ #define ki_childstime ki_rusage_ch.ru_stime #define ki_childutime ki_rusage_ch.ru_utime /* * Legacy PS_ flag. This moved to p_flag but is maintained for * compatibility. */ #define PS_INMEM 0x00001 /* Loaded into memory. */ /* ki_sessflag values */ #define KI_CTTY 0x00000001 /* controlling tty vnode active */ #define KI_SLEADER 0x00000002 /* session leader */ #define KI_LOCKBLOCK 0x00000004 /* proc blocked on lock ki_lockname */ /* * This used to be the per-process structure containing data that * isn't needed in core when the process is swapped out, but now it * remains only for the benefit of a.out core dumps. */ struct user { struct pstats u_stats; /* *p_stats */ struct kinfo_proc u_kproc; /* eproc */ }; /* * The KERN_PROC_FILE sysctl allows a process to dump the file descriptor * array of another process. */ #define KF_ATTR_VALID 0x0001 #define KF_TYPE_NONE 0 #define KF_TYPE_VNODE 1 #define KF_TYPE_SOCKET 2 #define KF_TYPE_PIPE 3 #define KF_TYPE_FIFO 4 #define KF_TYPE_KQUEUE 5 #define KF_TYPE_CRYPTO 6 #define KF_TYPE_MQUEUE 7 #define KF_TYPE_SHM 8 #define KF_TYPE_SEM 9 #define KF_TYPE_PTS 10 #define KF_TYPE_PROCDESC 11 #define KF_TYPE_UNKNOWN 255 #define KF_VTYPE_VNON 0 #define KF_VTYPE_VREG 1 #define KF_VTYPE_VDIR 2 #define KF_VTYPE_VBLK 3 #define KF_VTYPE_VCHR 4 #define KF_VTYPE_VLNK 5 #define KF_VTYPE_VSOCK 6 #define KF_VTYPE_VFIFO 7 #define KF_VTYPE_VBAD 8 #define KF_VTYPE_UNKNOWN 255 #define KF_FD_TYPE_CWD -1 /* Current working directory */ #define KF_FD_TYPE_ROOT -2 /* Root directory */ #define KF_FD_TYPE_JAIL -3 /* Jail directory */ #define KF_FD_TYPE_TRACE -4 /* Ktrace vnode */ #define KF_FD_TYPE_TEXT -5 /* Text vnode */ #define KF_FD_TYPE_CTTY -6 /* Controlling terminal */ #define KF_FLAG_READ 0x00000001 #define KF_FLAG_WRITE 0x00000002 #define KF_FLAG_APPEND 0x00000004 #define KF_FLAG_ASYNC 0x00000008 #define KF_FLAG_FSYNC 0x00000010 #define KF_FLAG_NONBLOCK 0x00000020 #define KF_FLAG_DIRECT 0x00000040 #define KF_FLAG_HASLOCK 0x00000080 #define KF_FLAG_SHLOCK 0x00000100 #define KF_FLAG_EXLOCK 0x00000200 #define KF_FLAG_NOFOLLOW 0x00000400 #define KF_FLAG_CREAT 0x00000800 #define KF_FLAG_TRUNC 0x00001000 #define KF_FLAG_EXCL 0x00002000 #define KF_FLAG_EXEC 0x00004000 /* * Old format. Has variable hidden padding due to alignment. * This is a compatibility hack for pre-build 7.1 packages. */ #if defined(__amd64__) #define KINFO_OFILE_SIZE 1328 #endif #if defined(__i386__) #define KINFO_OFILE_SIZE 1324 #endif struct kinfo_ofile { int kf_structsize; /* Size of kinfo_file. */ int kf_type; /* Descriptor type. */ int kf_fd; /* Array index. */ int kf_ref_count; /* Reference count. */ int kf_flags; /* Flags. */ /* XXX Hidden alignment padding here on amd64 */ off_t kf_offset; /* Seek location. */ int kf_vnode_type; /* Vnode type. */ int kf_sock_domain; /* Socket domain. */ int kf_sock_type; /* Socket type. */ int kf_sock_protocol; /* Socket protocol. */ char kf_path[PATH_MAX]; /* Path to file, if any. */ struct sockaddr_storage kf_sa_local; /* Socket address. */ struct sockaddr_storage kf_sa_peer; /* Peer address. */ }; #if defined(__amd64__) || defined(__i386__) /* * This size should never be changed. If you really need to, you must provide * backward ABI compatibility by allocating a new sysctl MIB that will return * the new structure. The current structure has to be returned by the current * sysctl MIB. See how it is done for the kinfo_ofile structure. */ #define KINFO_FILE_SIZE 1392 #endif struct kinfo_file { int kf_structsize; /* Variable size of record. */ int kf_type; /* Descriptor type. */ int kf_fd; /* Array index. */ int kf_ref_count; /* Reference count. */ int kf_flags; /* Flags. */ int kf_pad0; /* Round to 64 bit alignment. */ int64_t kf_offset; /* Seek location. */ union { struct { - uint32_t kf_spareint; + /* Sendq size */ + uint32_t kf_sock_sendq; /* Socket domain. */ int kf_sock_domain0; /* Socket type. */ int kf_sock_type0; /* Socket protocol. */ int kf_sock_protocol0; /* Socket address. */ struct sockaddr_storage kf_sa_local; /* Peer address. */ struct sockaddr_storage kf_sa_peer; /* Address of so_pcb. */ uint64_t kf_sock_pcb; /* Address of inp_ppcb. */ uint64_t kf_sock_inpcb; /* Address of unp_conn. */ uint64_t kf_sock_unpconn; /* Send buffer state. */ uint16_t kf_sock_snd_sb_state; /* Receive buffer state. */ uint16_t kf_sock_rcv_sb_state; - /* Round to 64 bit alignment. */ - uint32_t kf_sock_pad0; + /* Recvq size. */ + uint32_t kf_sock_recvq; } kf_sock; struct { /* Vnode type. */ int kf_file_type; /* Space for future use */ int kf_spareint[3]; uint64_t kf_spareint64[30]; /* Vnode filesystem id. */ uint64_t kf_file_fsid; /* File device. */ uint64_t kf_file_rdev; /* Global file id. */ uint64_t kf_file_fileid; /* File size. */ uint64_t kf_file_size; /* Vnode filesystem id, FreeBSD 11 compat. */ uint32_t kf_file_fsid_freebsd11; /* File device, FreeBSD 11 compat. */ uint32_t kf_file_rdev_freebsd11; /* File mode. */ uint16_t kf_file_mode; /* Round to 64 bit alignment. */ uint16_t kf_file_pad0; uint32_t kf_file_pad1; } kf_file; struct { uint32_t kf_spareint[4]; uint64_t kf_spareint64[32]; uint32_t kf_sem_value; uint16_t kf_sem_mode; } kf_sem; struct { uint32_t kf_spareint[4]; uint64_t kf_spareint64[32]; uint64_t kf_pipe_addr; uint64_t kf_pipe_peer; uint32_t kf_pipe_buffer_cnt; /* Round to 64 bit alignment. */ uint32_t kf_pipe_pad0[3]; } kf_pipe; struct { uint32_t kf_spareint[4]; uint64_t kf_spareint64[32]; uint32_t kf_pts_dev_freebsd11; uint32_t kf_pts_pad0; uint64_t kf_pts_dev; /* Round to 64 bit alignment. */ uint32_t kf_pts_pad1[4]; } kf_pts; struct { uint32_t kf_spareint[4]; uint64_t kf_spareint64[32]; pid_t kf_pid; } kf_proc; } kf_un; uint16_t kf_status; /* Status flags. */ uint16_t kf_pad1; /* Round to 32 bit alignment. */ int _kf_ispare0; /* Space for more stuff. */ cap_rights_t kf_cap_rights; /* Capability rights. */ uint64_t _kf_cap_spare; /* Space for future cap_rights_t. */ /* Truncated before copyout in sysctl */ char kf_path[PATH_MAX]; /* Path to file, if any. */ }; #ifndef _KERNEL #define kf_vnode_type kf_un.kf_file.kf_file_type #define kf_sock_domain kf_un.kf_sock.kf_sock_domain0 #define kf_sock_type kf_un.kf_sock.kf_sock_type0 #define kf_sock_protocol kf_un.kf_sock.kf_sock_protocol0 #endif /* * The KERN_PROC_VMMAP sysctl allows a process to dump the VM layout of * another process as a series of entries. */ #define KVME_TYPE_NONE 0 #define KVME_TYPE_DEFAULT 1 #define KVME_TYPE_VNODE 2 #define KVME_TYPE_SWAP 3 #define KVME_TYPE_DEVICE 4 #define KVME_TYPE_PHYS 5 #define KVME_TYPE_DEAD 6 #define KVME_TYPE_SG 7 #define KVME_TYPE_MGTDEVICE 8 #define KVME_TYPE_UNKNOWN 255 #define KVME_PROT_READ 0x00000001 #define KVME_PROT_WRITE 0x00000002 #define KVME_PROT_EXEC 0x00000004 #define KVME_FLAG_COW 0x00000001 #define KVME_FLAG_NEEDS_COPY 0x00000002 #define KVME_FLAG_NOCOREDUMP 0x00000004 #define KVME_FLAG_SUPER 0x00000008 #define KVME_FLAG_GROWS_UP 0x00000010 #define KVME_FLAG_GROWS_DOWN 0x00000020 #if defined(__amd64__) #define KINFO_OVMENTRY_SIZE 1168 #endif #if defined(__i386__) #define KINFO_OVMENTRY_SIZE 1128 #endif struct kinfo_ovmentry { int kve_structsize; /* Size of kinfo_vmmapentry. */ int kve_type; /* Type of map entry. */ void *kve_start; /* Starting address. */ void *kve_end; /* Finishing address. */ int kve_flags; /* Flags on map entry. */ int kve_resident; /* Number of resident pages. */ int kve_private_resident; /* Number of private pages. */ int kve_protection; /* Protection bitmask. */ int kve_ref_count; /* VM obj ref count. */ int kve_shadow_count; /* VM obj shadow count. */ char kve_path[PATH_MAX]; /* Path to VM obj, if any. */ void *_kve_pspare[8]; /* Space for more stuff. */ off_t kve_offset; /* Mapping offset in object */ uint64_t kve_fileid; /* inode number if vnode */ uint32_t kve_fsid; /* dev_t of vnode location */ int _kve_ispare[3]; /* Space for more stuff. */ }; #if defined(__amd64__) || defined(__i386__) #define KINFO_VMENTRY_SIZE 1160 #endif struct kinfo_vmentry { int kve_structsize; /* Variable size of record. */ int kve_type; /* Type of map entry. */ uint64_t kve_start; /* Starting address. */ uint64_t kve_end; /* Finishing address. */ uint64_t kve_offset; /* Mapping offset in object */ uint64_t kve_vn_fileid; /* inode number if vnode */ uint32_t kve_vn_fsid_freebsd11; /* dev_t of vnode location */ int kve_flags; /* Flags on map entry. */ int kve_resident; /* Number of resident pages. */ int kve_private_resident; /* Number of private pages. */ int kve_protection; /* Protection bitmask. */ int kve_ref_count; /* VM obj ref count. */ int kve_shadow_count; /* VM obj shadow count. */ int kve_vn_type; /* Vnode type. */ uint64_t kve_vn_size; /* File size. */ uint32_t kve_vn_rdev_freebsd11; /* Device id if device. */ uint16_t kve_vn_mode; /* File mode. */ uint16_t kve_status; /* Status flags. */ uint64_t kve_vn_fsid; /* dev_t of vnode location */ uint64_t kve_vn_rdev; /* Device id if device. */ int _kve_ispare[8]; /* Space for more stuff. */ /* Truncated before copyout in sysctl */ char kve_path[PATH_MAX]; /* Path to VM obj, if any. */ }; /* * The "vm.objects" sysctl provides a list of all VM objects in the system * via an array of these entries. */ struct kinfo_vmobject { int kvo_structsize; /* Variable size of record. */ int kvo_type; /* Object type: KVME_TYPE_*. */ uint64_t kvo_size; /* Object size in pages. */ uint64_t kvo_vn_fileid; /* inode number if vnode. */ uint32_t kvo_vn_fsid_freebsd11; /* dev_t of vnode location. */ int kvo_ref_count; /* Reference count. */ int kvo_shadow_count; /* Shadow count. */ int kvo_memattr; /* Memory attribute. */ uint64_t kvo_resident; /* Number of resident pages. */ uint64_t kvo_active; /* Number of active pages. */ uint64_t kvo_inactive; /* Number of inactive pages. */ uint64_t kvo_vn_fsid; uint64_t _kvo_qspare[7]; uint32_t _kvo_ispare[8]; char kvo_path[PATH_MAX]; /* Pathname, if any. */ }; /* * The KERN_PROC_KSTACK sysctl allows a process to dump the kernel stacks of * another process as a series of entries. Each stack is represented by a * series of symbol names and offsets as generated by stack_sbuf_print(9). */ #define KKST_MAXLEN 1024 #define KKST_STATE_STACKOK 0 /* Stack is valid. */ #define KKST_STATE_SWAPPED 1 /* Stack swapped out. */ #define KKST_STATE_RUNNING 2 /* Stack ephemeral. */ #if defined(__amd64__) || defined(__i386__) #define KINFO_KSTACK_SIZE 1096 #endif struct kinfo_kstack { lwpid_t kkst_tid; /* ID of thread. */ int kkst_state; /* Validity of stack. */ char kkst_trace[KKST_MAXLEN]; /* String representing stack. */ int _kkst_ispare[16]; /* Space for more stuff. */ }; struct kinfo_sigtramp { void *ksigtramp_start; void *ksigtramp_end; void *ksigtramp_spare[4]; }; #ifdef _KERNEL /* Flags for kern_proc_out function. */ #define KERN_PROC_NOTHREADS 0x1 #define KERN_PROC_MASK32 0x2 /* Flags for kern_proc_filedesc_out. */ #define KERN_FILEDESC_PACK_KINFO 0x00000001U /* Flags for kern_proc_vmmap_out. */ #define KERN_VMMAP_PACK_KINFO 0x00000001U struct sbuf; /* * The kern_proc out functions are helper functions to dump process * miscellaneous kinfo structures to sbuf. The main consumers are KERN_PROC * sysctls but they may also be used by other kernel subsystems. * * The functions manipulate the process locking state and expect the process * to be locked on enter. On return the process is unlocked. */ int kern_proc_filedesc_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags); int kern_proc_cwd_out(struct proc *p, struct sbuf *sb, ssize_t maxlen); int kern_proc_out(struct proc *p, struct sbuf *sb, int flags); int kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags); int vntype_to_kinfo(int vtype); #endif /* !_KERNEL */ #endif Index: head/usr.bin/procstat/procstat_files.c =================================================================== --- head/usr.bin/procstat/procstat_files.c (revision 318968) +++ head/usr.bin/procstat/procstat_files.c (revision 318969) @@ -1,575 +1,581 @@ /*- * Copyright (c) 2007-2011 Robert N. M. Watson * Copyright (c) 2015 Allan Jude * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "procstat.h" static const char * protocol_to_string(int domain, int type, int protocol) { switch (domain) { case AF_INET: case AF_INET6: switch (protocol) { case IPPROTO_TCP: return ("TCP"); case IPPROTO_UDP: return ("UDP"); case IPPROTO_ICMP: return ("ICM"); case IPPROTO_RAW: return ("RAW"); case IPPROTO_SCTP: return ("SCT"); case IPPROTO_DIVERT: return ("IPD"); default: return ("IP?"); } case AF_LOCAL: switch (type) { case SOCK_STREAM: return ("UDS"); case SOCK_DGRAM: return ("UDD"); default: return ("UD?"); } default: return ("?"); } } static void addr_to_string(struct sockaddr_storage *ss, char *buffer, int buflen) { char buffer2[INET6_ADDRSTRLEN]; struct sockaddr_in6 *sin6; struct sockaddr_in *sin; struct sockaddr_un *sun; switch (ss->ss_family) { case AF_LOCAL: sun = (struct sockaddr_un *)ss; if (strlen(sun->sun_path) == 0) strlcpy(buffer, "-", buflen); else strlcpy(buffer, sun->sun_path, buflen); break; case AF_INET: sin = (struct sockaddr_in *)ss; snprintf(buffer, buflen, "%s:%d", inet_ntoa(sin->sin_addr), ntohs(sin->sin_port)); break; case AF_INET6: sin6 = (struct sockaddr_in6 *)ss; if (inet_ntop(AF_INET6, &sin6->sin6_addr, buffer2, sizeof(buffer2)) != NULL) snprintf(buffer, buflen, "%s.%d", buffer2, ntohs(sin6->sin6_port)); else strlcpy(buffer, "-", buflen); break; default: strlcpy(buffer, "", buflen); break; } } static struct cap_desc { uint64_t cd_right; const char *cd_desc; } cap_desc[] = { /* General file I/O. */ { CAP_READ, "rd" }, { CAP_WRITE, "wr" }, { CAP_SEEK, "se" }, { CAP_MMAP, "mm" }, { CAP_CREATE, "cr" }, { CAP_FEXECVE, "fe" }, { CAP_FSYNC, "fy" }, { CAP_FTRUNCATE, "ft" }, /* VFS methods. */ { CAP_FCHDIR, "cd" }, { CAP_FCHFLAGS, "cf" }, { CAP_FCHMOD, "cm" }, { CAP_FCHOWN, "cn" }, { CAP_FCNTL, "fc" }, { CAP_FLOCK, "fl" }, { CAP_FPATHCONF, "fp" }, { CAP_FSCK, "fk" }, { CAP_FSTAT, "fs" }, { CAP_FSTATFS, "sf" }, { CAP_FUTIMES, "fu" }, { CAP_LINKAT_SOURCE, "ls" }, { CAP_LINKAT_TARGET, "lt" }, { CAP_MKDIRAT, "md" }, { CAP_MKFIFOAT, "mf" }, { CAP_MKNODAT, "mn" }, { CAP_RENAMEAT_SOURCE, "rs" }, { CAP_RENAMEAT_TARGET, "rt" }, { CAP_SYMLINKAT, "sl" }, { CAP_UNLINKAT, "un" }, /* Lookups - used to constrain *at() calls. */ { CAP_LOOKUP, "lo" }, /* Extended attributes. */ { CAP_EXTATTR_GET, "eg" }, { CAP_EXTATTR_SET, "es" }, { CAP_EXTATTR_DELETE, "ed" }, { CAP_EXTATTR_LIST, "el" }, /* Access Control Lists. */ { CAP_ACL_GET, "ag" }, { CAP_ACL_SET, "as" }, { CAP_ACL_DELETE, "ad" }, { CAP_ACL_CHECK, "ac" }, /* Socket operations. */ { CAP_ACCEPT, "at" }, { CAP_BIND, "bd" }, { CAP_CONNECT, "co" }, { CAP_GETPEERNAME, "pn" }, { CAP_GETSOCKNAME, "sn" }, { CAP_GETSOCKOPT, "gs" }, { CAP_LISTEN, "ln" }, { CAP_PEELOFF, "pf" }, { CAP_SETSOCKOPT, "ss" }, { CAP_SHUTDOWN, "sh" }, /* Mandatory Access Control. */ { CAP_MAC_GET, "mg" }, { CAP_MAC_SET, "ms" }, /* Methods on semaphores. */ { CAP_SEM_GETVALUE, "sg" }, { CAP_SEM_POST, "sp" }, { CAP_SEM_WAIT, "sw" }, /* Event monitoring and posting. */ { CAP_EVENT, "ev" }, { CAP_KQUEUE_EVENT, "ke" }, { CAP_KQUEUE_CHANGE, "kc" }, /* Strange and powerful rights that should not be given lightly. */ { CAP_IOCTL, "io" }, { CAP_TTYHOOK, "ty" }, /* Process management via process descriptors. */ { CAP_PDGETPID, "pg" }, { CAP_PDWAIT, "pw" }, { CAP_PDKILL, "pk" }, /* * Rights that allow to use bindat(2) and connectat(2) syscalls on a * directory descriptor. */ { CAP_BINDAT, "ba" }, { CAP_CONNECTAT, "ca" }, /* Aliases and defines that combine multiple rights. */ { CAP_PREAD, "prd" }, { CAP_PWRITE, "pwr" }, { CAP_MMAP_R, "mmr" }, { CAP_MMAP_W, "mmw" }, { CAP_MMAP_X, "mmx" }, { CAP_MMAP_RW, "mrw" }, { CAP_MMAP_RX, "mrx" }, { CAP_MMAP_WX, "mwx" }, { CAP_MMAP_RWX, "mma" }, { CAP_RECV, "re" }, { CAP_SEND, "sd" }, { CAP_SOCK_CLIENT, "scl" }, { CAP_SOCK_SERVER, "ssr" }, }; static const u_int cap_desc_count = nitems(cap_desc); static u_int width_capability(cap_rights_t *rightsp) { u_int count, i, width; count = 0; width = 0; for (i = 0; i < cap_desc_count; i++) { if (cap_rights_is_set(rightsp, cap_desc[i].cd_right)) { width += strlen(cap_desc[i].cd_desc); if (count) width++; count++; } } return (width); } static void print_capability(cap_rights_t *rightsp, u_int capwidth) { u_int count, i, width; count = 0; width = 0; for (i = width_capability(rightsp); i < capwidth; i++) { if (i != 0) xo_emit(" "); else xo_emit("-"); } xo_open_list("capabilities"); for (i = 0; i < cap_desc_count; i++) { if (cap_rights_is_set(rightsp, cap_desc[i].cd_right)) { xo_emit("{D:/%s}{l:capabilities/%s}", count ? "," : "", cap_desc[i].cd_desc); width += strlen(cap_desc[i].cd_desc); if (count) width++; count++; } } xo_close_list("capabilities"); } void procstat_files(struct procstat *procstat, struct kinfo_proc *kipp) { struct sockstat sock; struct filestat_list *head; struct filestat *fst; const char *str; struct vnstat vn; u_int capwidth, width; int error; char src_addr[PATH_MAX]; char dst_addr[PATH_MAX]; /* * To print the header in capability mode, we need to know the width * of the widest capability string. Even if we get no processes * back, we will print the header, so we defer aborting due to a lack * of processes until after the header logic. */ capwidth = 0; head = procstat_getfiles(procstat, kipp, 0); if (head != NULL && Cflag) { STAILQ_FOREACH(fst, head, next) { width = width_capability(&fst->fs_cap_rights); if (width > capwidth) capwidth = width; } if (capwidth < strlen("CAPABILITIES")) capwidth = strlen("CAPABILITIES"); } if (!hflag) { if (Cflag) xo_emit("{T:/%5s %-16s %5s %1s %-8s %-*s " "%-3s %-12s}\n", "PID", "COMM", "FD", "T", "FLAGS", capwidth, "CAPABILITIES", "PRO", "NAME"); else xo_emit("{T:/%5s %-16s %5s %1s %1s %-8s " "%3s %7s %-3s %-12s}\n", "PID", "COMM", "FD", "T", "V", "FLAGS", "REF", "OFFSET", "PRO", "NAME"); } if (head == NULL) return; xo_emit("{ek:process_id/%5d/%d}", kipp->ki_pid); xo_emit("{e:command/%-16s/%s}", kipp->ki_comm); xo_open_list("files"); STAILQ_FOREACH(fst, head, next) { xo_open_instance("files"); xo_emit("{dk:process_id/%5d/%d} ", kipp->ki_pid); xo_emit("{d:command/%-16s/%s} ", kipp->ki_comm); if (fst->fs_uflags & PS_FST_UFLAG_CTTY) xo_emit("{P: }{:fd/%s} ", "ctty"); else if (fst->fs_uflags & PS_FST_UFLAG_CDIR) xo_emit("{P: }{:fd/%s} ", "cwd"); else if (fst->fs_uflags & PS_FST_UFLAG_JAIL) xo_emit("{P: }{:fd/%s} ", "jail"); else if (fst->fs_uflags & PS_FST_UFLAG_RDIR) xo_emit("{P: }{:fd/%s} ", "root"); else if (fst->fs_uflags & PS_FST_UFLAG_TEXT) xo_emit("{P: }{:fd/%s} ", "text"); else if (fst->fs_uflags & PS_FST_UFLAG_TRACE) xo_emit("{:fd/%s} ", "trace"); else xo_emit("{:fd/%5d} ", fst->fs_fd); switch (fst->fs_type) { case PS_FST_TYPE_VNODE: str = "v"; xo_emit("{eq:fd_type/vnode}"); break; case PS_FST_TYPE_SOCKET: str = "s"; xo_emit("{eq:fd_type/socket}"); break; case PS_FST_TYPE_PIPE: str = "p"; xo_emit("{eq:fd_type/pipe}"); break; case PS_FST_TYPE_FIFO: str = "f"; xo_emit("{eq:fd_type/fifo}"); break; case PS_FST_TYPE_KQUEUE: str = "k"; xo_emit("{eq:fd_type/kqueue}"); break; case PS_FST_TYPE_CRYPTO: str = "c"; xo_emit("{eq:fd_type/crypto}"); break; case PS_FST_TYPE_MQUEUE: str = "m"; xo_emit("{eq:fd_type/mqueue}"); break; case PS_FST_TYPE_SHM: str = "h"; xo_emit("{eq:fd_type/shm}"); break; case PS_FST_TYPE_PTS: str = "t"; xo_emit("{eq:fd_type/pts}"); break; case PS_FST_TYPE_SEM: str = "e"; xo_emit("{eq:fd_type/sem}"); break; case PS_FST_TYPE_NONE: str = "?"; xo_emit("{eq:fd_type/none}"); break; case PS_FST_TYPE_UNKNOWN: default: str = "?"; xo_emit("{eq:fd_type/unknown}"); break; } xo_emit("{d:fd_type/%1s/%s} ", str); if (!Cflag) { str = "-"; if (fst->fs_type == PS_FST_TYPE_VNODE) { error = procstat_get_vnode_info(procstat, fst, &vn, NULL); switch (vn.vn_type) { case PS_FST_VTYPE_VREG: str = "r"; xo_emit("{eq:vode_type/regular}"); break; case PS_FST_VTYPE_VDIR: str = "d"; xo_emit("{eq:vode_type/directory}"); break; case PS_FST_VTYPE_VBLK: str = "b"; xo_emit("{eq:vode_type/block}"); break; case PS_FST_VTYPE_VCHR: str = "c"; xo_emit("{eq:vode_type/character}"); break; case PS_FST_VTYPE_VLNK: str = "l"; xo_emit("{eq:vode_type/link}"); break; case PS_FST_VTYPE_VSOCK: str = "s"; xo_emit("{eq:vode_type/socket}"); break; case PS_FST_VTYPE_VFIFO: str = "f"; xo_emit("{eq:vode_type/fifo}"); break; case PS_FST_VTYPE_VBAD: str = "x"; xo_emit("{eq:vode_type/revoked_device}"); break; case PS_FST_VTYPE_VNON: str = "?"; xo_emit("{eq:vode_type/non}"); break; case PS_FST_VTYPE_UNKNOWN: default: str = "?"; xo_emit("{eq:vode_type/unknown}"); break; } } xo_emit("{d:vnode_type/%1s/%s} ", str); } xo_emit("{d:/%s}", fst->fs_fflags & PS_FST_FFLAG_READ ? "r" : "-"); xo_emit("{d:/%s}", fst->fs_fflags & PS_FST_FFLAG_WRITE ? "w" : "-"); xo_emit("{d:/%s}", fst->fs_fflags & PS_FST_FFLAG_APPEND ? "a" : "-"); xo_emit("{d:/%s}", fst->fs_fflags & PS_FST_FFLAG_ASYNC ? "s" : "-"); xo_emit("{d:/%s}", fst->fs_fflags & PS_FST_FFLAG_SYNC ? "f" : "-"); xo_emit("{d:/%s}", fst->fs_fflags & PS_FST_FFLAG_NONBLOCK ? "n" : "-"); xo_emit("{d:/%s}", fst->fs_fflags & PS_FST_FFLAG_DIRECT ? "d" : "-"); xo_emit("{d:/%s}", fst->fs_fflags & PS_FST_FFLAG_HASLOCK ? "l" : "-"); xo_emit(" "); xo_open_list("fd_flags"); if (fst->fs_fflags & PS_FST_FFLAG_READ) xo_emit("{elq:fd_flags/read}"); if (fst->fs_fflags & PS_FST_FFLAG_WRITE) xo_emit("{elq:fd_flags/write}"); if (fst->fs_fflags & PS_FST_FFLAG_APPEND) xo_emit("{elq:fd_flags/append}"); if (fst->fs_fflags & PS_FST_FFLAG_ASYNC) xo_emit("{elq:fd_flags/async}"); if (fst->fs_fflags & PS_FST_FFLAG_SYNC) xo_emit("{elq:fd_flags/fsync}"); if (fst->fs_fflags & PS_FST_FFLAG_NONBLOCK) xo_emit("{elq:fd_flags/nonblocking}"); if (fst->fs_fflags & PS_FST_FFLAG_DIRECT) xo_emit("{elq:fd_flags/direct_io}"); if (fst->fs_fflags & PS_FST_FFLAG_HASLOCK) xo_emit("{elq:fd_flags/lock_held}"); xo_close_list("fd_flags"); if (!Cflag) { if (fst->fs_ref_count > -1) xo_emit("{:ref_count/%3d/%d} ", fst->fs_ref_count); else xo_emit("{q:ref_count/%3c/%c} ", '-'); if (fst->fs_offset > -1) xo_emit("{:offset/%7jd/%jd} ", (intmax_t)fst->fs_offset); else xo_emit("{q:offset/%7c/%c} ", '-'); } if (Cflag) { print_capability(&fst->fs_cap_rights, capwidth); xo_emit(" "); } switch (fst->fs_type) { case PS_FST_TYPE_SOCKET: error = procstat_get_socket_info(procstat, fst, &sock, NULL); if (error != 0) break; xo_emit("{:protocol/%-3s/%s} ", protocol_to_string(sock.dom_family, sock.type, sock.proto)); + if (sock.proto == IPPROTO_TCP || + sock.proto == IPPROTO_SCTP || + sock.type == SOCK_STREAM) { + xo_emit("{:sendq/%u} ", sock.sendq); + xo_emit("{:recvq/%u} ", sock.recvq); + } /* * While generally we like to print two addresses, * local and peer, for sockets, it turns out to be * more useful to print the first non-nul address for * local sockets, as typically they aren't bound and * connected, and the path strings can get long. */ if (sock.dom_family == AF_LOCAL) { struct sockaddr_un *sun = (struct sockaddr_un *)&sock.sa_local; if (sun->sun_path[0] != 0) addr_to_string(&sock.sa_local, src_addr, sizeof(src_addr)); else addr_to_string(&sock.sa_peer, src_addr, sizeof(src_addr)); xo_emit("{:path/%s}", src_addr); } else { addr_to_string(&sock.sa_local, src_addr, sizeof(src_addr)); addr_to_string(&sock.sa_peer, dst_addr, sizeof(dst_addr)); xo_emit("{:path/%s %s}", src_addr, dst_addr); } break; default: xo_emit("{:protocol/%-3s/%s} ", "-"); xo_emit("{:path/%-18s/%s}", fst->fs_path != NULL ? fst->fs_path : "-"); } xo_emit("\n"); xo_close_instance("files"); } xo_close_list("files"); procstat_freefiles(procstat, head); }