Index: stable/10/sys/dev/cxgbe/common/common.h =================================================================== --- stable/10/sys/dev/cxgbe/common/common.h (revision 318839) +++ stable/10/sys/dev/cxgbe/common/common.h (revision 318840) @@ -1,811 +1,811 @@ /*- * Copyright (c) 2011 Chelsio Communications, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ * */ #ifndef __CHELSIO_COMMON_H #define __CHELSIO_COMMON_H #include "t4_hw.h" #define GLBL_INTR_MASK (F_CIM | F_MPS | F_PL | F_PCIE | F_MC0 | F_EDC0 | \ F_EDC1 | F_LE | F_TP | F_MA | F_PM_TX | F_PM_RX | F_ULP_RX | \ F_CPL_SWITCH | F_SGE | F_ULP_TX) enum { MAX_NPORTS = 4, /* max # of ports */ SERNUM_LEN = 24, /* Serial # length */ EC_LEN = 16, /* E/C length */ ID_LEN = 16, /* ID length */ PN_LEN = 16, /* Part Number length */ MACADDR_LEN = 12, /* MAC Address length */ }; enum { T4_REGMAP_SIZE = (160 * 1024), T5_REGMAP_SIZE = (332 * 1024), }; enum { MEM_EDC0, MEM_EDC1, MEM_MC, MEM_MC0 = MEM_MC, MEM_MC1 }; enum dev_master { MASTER_CANT, MASTER_MAY, MASTER_MUST }; enum dev_state { DEV_STATE_UNINIT, DEV_STATE_INIT, DEV_STATE_ERR }; enum { PAUSE_RX = 1 << 0, PAUSE_TX = 1 << 1, PAUSE_AUTONEG = 1 << 2 }; enum { FEC_RS = 1 << 0, FEC_BASER_RS = 1 << 1, FEC_RESERVED = 1 << 2, }; struct port_stats { u64 tx_octets; /* total # of octets in good frames */ u64 tx_frames; /* all good frames */ u64 tx_bcast_frames; /* all broadcast frames */ u64 tx_mcast_frames; /* all multicast frames */ u64 tx_ucast_frames; /* all unicast frames */ u64 tx_error_frames; /* all error frames */ u64 tx_frames_64; /* # of Tx frames in a particular range */ u64 tx_frames_65_127; u64 tx_frames_128_255; u64 tx_frames_256_511; u64 tx_frames_512_1023; u64 tx_frames_1024_1518; u64 tx_frames_1519_max; u64 tx_drop; /* # of dropped Tx frames */ u64 tx_pause; /* # of transmitted pause frames */ u64 tx_ppp0; /* # of transmitted PPP prio 0 frames */ u64 tx_ppp1; /* # of transmitted PPP prio 1 frames */ u64 tx_ppp2; /* # of transmitted PPP prio 2 frames */ u64 tx_ppp3; /* # of transmitted PPP prio 3 frames */ u64 tx_ppp4; /* # of transmitted PPP prio 4 frames */ u64 tx_ppp5; /* # of transmitted PPP prio 5 frames */ u64 tx_ppp6; /* # of transmitted PPP prio 6 frames */ u64 tx_ppp7; /* # of transmitted PPP prio 7 frames */ u64 rx_octets; /* total # of octets in good frames */ u64 rx_frames; /* all good frames */ u64 rx_bcast_frames; /* all broadcast frames */ u64 rx_mcast_frames; /* all multicast frames */ u64 rx_ucast_frames; /* all unicast frames */ u64 rx_too_long; /* # of frames exceeding MTU */ u64 rx_jabber; /* # of jabber frames */ u64 rx_fcs_err; /* # of received frames with bad FCS */ u64 rx_len_err; /* # of received frames with length error */ u64 rx_symbol_err; /* symbol errors */ u64 rx_runt; /* # of short frames */ u64 rx_frames_64; /* # of Rx frames in a particular range */ u64 rx_frames_65_127; u64 rx_frames_128_255; u64 rx_frames_256_511; u64 rx_frames_512_1023; u64 rx_frames_1024_1518; u64 rx_frames_1519_max; u64 rx_pause; /* # of received pause frames */ u64 rx_ppp0; /* # of received PPP prio 0 frames */ u64 rx_ppp1; /* # of received PPP prio 1 frames */ u64 rx_ppp2; /* # of received PPP prio 2 frames */ u64 rx_ppp3; /* # of received PPP prio 3 frames */ u64 rx_ppp4; /* # of received PPP prio 4 frames */ u64 rx_ppp5; /* # of received PPP prio 5 frames */ u64 rx_ppp6; /* # of received PPP prio 6 frames */ u64 rx_ppp7; /* # of received PPP prio 7 frames */ u64 rx_ovflow0; /* drops due to buffer-group 0 overflows */ u64 rx_ovflow1; /* drops due to buffer-group 1 overflows */ u64 rx_ovflow2; /* drops due to buffer-group 2 overflows */ u64 rx_ovflow3; /* drops due to buffer-group 3 overflows */ u64 rx_trunc0; /* buffer-group 0 truncated packets */ u64 rx_trunc1; /* buffer-group 1 truncated packets */ u64 rx_trunc2; /* buffer-group 2 truncated packets */ u64 rx_trunc3; /* buffer-group 3 truncated packets */ }; struct lb_port_stats { u64 octets; u64 frames; u64 bcast_frames; u64 mcast_frames; u64 ucast_frames; u64 error_frames; u64 frames_64; u64 frames_65_127; u64 frames_128_255; u64 frames_256_511; u64 frames_512_1023; u64 frames_1024_1518; u64 frames_1519_max; u64 drop; u64 ovflow0; u64 ovflow1; u64 ovflow2; u64 ovflow3; u64 trunc0; u64 trunc1; u64 trunc2; u64 trunc3; }; struct tp_tcp_stats { u32 tcp_out_rsts; u64 tcp_in_segs; u64 tcp_out_segs; u64 tcp_retrans_segs; }; struct tp_usm_stats { u32 frames; u32 drops; u64 octets; }; struct tp_fcoe_stats { u32 frames_ddp; u32 frames_drop; u64 octets_ddp; }; struct tp_err_stats { u32 mac_in_errs[MAX_NCHAN]; u32 hdr_in_errs[MAX_NCHAN]; u32 tcp_in_errs[MAX_NCHAN]; u32 tnl_cong_drops[MAX_NCHAN]; u32 ofld_chan_drops[MAX_NCHAN]; u32 tnl_tx_drops[MAX_NCHAN]; u32 ofld_vlan_drops[MAX_NCHAN]; u32 tcp6_in_errs[MAX_NCHAN]; u32 ofld_no_neigh; u32 ofld_cong_defer; }; struct tp_proxy_stats { u32 proxy[MAX_NCHAN]; }; struct tp_cpl_stats { u32 req[MAX_NCHAN]; u32 rsp[MAX_NCHAN]; }; struct tp_rdma_stats { u32 rqe_dfr_pkt; u32 rqe_dfr_mod; }; struct sge_params { - int timer_val[SGE_NTIMERS]; + int timer_val[SGE_NTIMERS]; /* final, scaled values */ int counter_val[SGE_NCOUNTERS]; int fl_starve_threshold; int fl_starve_threshold2; int page_shift; int eq_s_qpp; int iq_s_qpp; int spg_len; int pad_boundary; int pack_boundary; int fl_pktshift; u32 sge_control; u32 sge_fl_buffer_size[SGE_FLBUF_SIZES]; }; struct tp_params { unsigned int tre; /* log2 of core clocks per TP tick */ unsigned int dack_re; /* DACK timer resolution */ unsigned int la_mask; /* what events are recorded by TP LA */ unsigned short tx_modq[MAX_NCHAN]; /* channel to modulation queue map */ uint32_t vlan_pri_map; uint32_t ingress_config; __be16 err_vec_mask; int8_t fcoe_shift; int8_t port_shift; int8_t vnic_shift; int8_t vlan_shift; int8_t tos_shift; int8_t protocol_shift; int8_t ethertype_shift; int8_t macmatch_shift; int8_t matchtype_shift; int8_t frag_shift; }; struct vpd_params { unsigned int cclk; u8 ec[EC_LEN + 1]; u8 sn[SERNUM_LEN + 1]; u8 id[ID_LEN + 1]; u8 pn[PN_LEN + 1]; u8 na[MACADDR_LEN + 1]; }; struct pci_params { unsigned int vpd_cap_addr; unsigned int mps; unsigned short speed; unsigned short width; }; /* * Firmware device log. */ struct devlog_params { u32 memtype; /* which memory (FW_MEMTYPE_* ) */ u32 start; /* start of log in firmware memory */ u32 size; /* size of log */ u32 addr; /* start address in flat addr space */ }; /* Stores chip specific parameters */ struct chip_params { u8 nchan; u8 pm_stats_cnt; u8 cng_ch_bits_log; /* congestion channel map bits width */ u8 nsched_cls; u8 cim_num_obq; u16 mps_rplc_size; u16 vfcount; u32 sge_fl_db; u16 mps_tcam_size; }; /* VF-only parameters. */ /* * Global Receive Side Scaling (RSS) parameters in host-native format. */ struct rss_params { unsigned int mode; /* RSS mode */ union { struct { u_int synmapen:1; /* SYN Map Enable */ u_int syn4tupenipv6:1; /* enable hashing 4-tuple IPv6 SYNs */ u_int syn2tupenipv6:1; /* enable hashing 2-tuple IPv6 SYNs */ u_int syn4tupenipv4:1; /* enable hashing 4-tuple IPv4 SYNs */ u_int syn2tupenipv4:1; /* enable hashing 2-tuple IPv4 SYNs */ u_int ofdmapen:1; /* Offload Map Enable */ u_int tnlmapen:1; /* Tunnel Map Enable */ u_int tnlalllookup:1; /* Tunnel All Lookup */ u_int hashtoeplitz:1; /* use Toeplitz hash */ } basicvirtual; } u; }; /* * Maximum resources provisioned for a PCI VF. */ struct vf_resources { unsigned int nvi; /* N virtual interfaces */ unsigned int neq; /* N egress Qs */ unsigned int nethctrl; /* N egress ETH or CTRL Qs */ unsigned int niqflint; /* N ingress Qs/w free list(s) & intr */ unsigned int niq; /* N ingress Qs */ unsigned int tc; /* PCI-E traffic class */ unsigned int pmask; /* port access rights mask */ unsigned int nexactf; /* N exact MPS filters */ unsigned int r_caps; /* read capabilities */ unsigned int wx_caps; /* write/execute capabilities */ }; struct adapter_params { struct sge_params sge; struct tp_params tp; /* PF-only */ struct vpd_params vpd; struct pci_params pci; struct devlog_params devlog; /* PF-only */ struct rss_params rss; /* VF-only */ struct vf_resources vfres; /* VF-only */ unsigned int sf_size; /* serial flash size in bytes */ unsigned int sf_nsec; /* # of flash sectors */ unsigned int fw_vers; /* firmware version */ unsigned int bs_vers; /* bootstrap version */ unsigned int tp_vers; /* TP microcode version */ unsigned int er_vers; /* expansion ROM version */ unsigned int scfg_vers; /* Serial Configuration version */ unsigned int vpd_vers; /* VPD version */ unsigned short mtus[NMTUS]; unsigned short a_wnd[NCCTRL_WIN]; unsigned short b_wnd[NCCTRL_WIN]; u_int ftid_min; u_int ftid_max; u_int etid_min; u_int netids; unsigned int cim_la_size; uint8_t nports; /* # of ethernet ports */ uint8_t portvec; unsigned int chipid:4; /* chip ID. T4 = 4, T5 = 5, ... */ unsigned int rev:4; /* chip revision */ unsigned int fpga:1; /* this is an FPGA */ unsigned int offload:1; /* hw is TOE capable, fw has divvied up card resources for TOE operation. */ unsigned int bypass:1; /* this is a bypass card */ unsigned int ethoffload:1; unsigned int ofldq_wr_cred; unsigned int eo_wr_cred; unsigned int max_ordird_qp; unsigned int max_ird_adapter; }; #define CHELSIO_T4 0x4 #define CHELSIO_T5 0x5 #define CHELSIO_T6 0x6 /* * State needed to monitor the forward progress of SGE Ingress DMA activities * and possible hangs. */ struct sge_idma_monitor_state { unsigned int idma_1s_thresh; /* 1s threshold in Core Clock ticks */ unsigned int idma_stalled[2]; /* synthesized stalled timers in HZ */ unsigned int idma_state[2]; /* IDMA Hang detect state */ unsigned int idma_qid[2]; /* IDMA Hung Ingress Queue ID */ unsigned int idma_warn[2]; /* time to warning in HZ */ }; struct trace_params { u32 data[TRACE_LEN / 4]; u32 mask[TRACE_LEN / 4]; unsigned short snap_len; unsigned short min_len; unsigned char skip_ofst; unsigned char skip_len; unsigned char invert; unsigned char port; }; struct link_config { unsigned short supported; /* link capabilities */ unsigned short advertising; /* advertised capabilities */ unsigned short lp_advertising; /* peer advertised capabilities */ unsigned int requested_speed; /* speed user has requested */ unsigned int speed; /* actual link speed */ unsigned char requested_fc; /* flow control user has requested */ unsigned char fc; /* actual link flow control */ unsigned char requested_fec; /* FEC user has requested */ unsigned char fec; /* actual FEC */ unsigned char autoneg; /* autonegotiating? */ unsigned char link_ok; /* link up? */ unsigned char link_down_rc; /* link down reason */ }; #include "adapter.h" #ifndef PCI_VENDOR_ID_CHELSIO # define PCI_VENDOR_ID_CHELSIO 0x1425 #endif #define for_each_port(adapter, iter) \ for (iter = 0; iter < (adapter)->params.nports; ++iter) static inline int is_ftid(const struct adapter *sc, u_int tid) { return (tid >= sc->params.ftid_min && tid <= sc->params.ftid_max); } static inline int is_etid(const struct adapter *sc, u_int tid) { return (tid >= sc->params.etid_min); } static inline int is_offload(const struct adapter *adap) { return adap->params.offload; } static inline int is_ethoffload(const struct adapter *adap) { return adap->params.ethoffload; } static inline int chip_id(struct adapter *adap) { return adap->params.chipid; } static inline int chip_rev(struct adapter *adap) { return adap->params.rev; } static inline int is_t4(struct adapter *adap) { return adap->params.chipid == CHELSIO_T4; } static inline int is_t5(struct adapter *adap) { return adap->params.chipid == CHELSIO_T5; } static inline int is_t6(struct adapter *adap) { return adap->params.chipid == CHELSIO_T6; } static inline int is_fpga(struct adapter *adap) { return adap->params.fpga; } static inline unsigned int core_ticks_per_usec(const struct adapter *adap) { return adap->params.vpd.cclk / 1000; } static inline unsigned int us_to_core_ticks(const struct adapter *adap, unsigned int us) { return (us * adap->params.vpd.cclk) / 1000; } static inline unsigned int core_ticks_to_us(const struct adapter *adapter, unsigned int ticks) { /* add Core Clock / 2 to round ticks to nearest uS */ return ((ticks * 1000 + adapter->params.vpd.cclk/2) / adapter->params.vpd.cclk); } static inline unsigned int dack_ticks_to_usec(const struct adapter *adap, unsigned int ticks) { return (ticks << adap->params.tp.dack_re) / core_ticks_per_usec(adap); } void t4_set_reg_field(struct adapter *adap, unsigned int addr, u32 mask, u32 val); int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, int size, void *rpl, bool sleep_ok, int timeout); int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, void *rpl, bool sleep_ok); static inline int t4_wr_mbox_timeout(struct adapter *adap, int mbox, const void *cmd, int size, void *rpl, int timeout) { return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, true, timeout); } static inline int t4_wr_mbox(struct adapter *adap, int mbox, const void *cmd, int size, void *rpl) { return t4_wr_mbox_meat(adap, mbox, cmd, size, rpl, true); } static inline int t4_wr_mbox_ns(struct adapter *adap, int mbox, const void *cmd, int size, void *rpl) { return t4_wr_mbox_meat(adap, mbox, cmd, size, rpl, false); } void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, unsigned int data_reg, u32 *vals, unsigned int nregs, unsigned int start_idx); void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, unsigned int data_reg, const u32 *vals, unsigned int nregs, unsigned int start_idx); u32 t4_hw_pci_read_cfg4(adapter_t *adapter, int reg); struct fw_filter_wr; void t4_intr_enable(struct adapter *adapter); void t4_intr_disable(struct adapter *adapter); void t4_intr_clear(struct adapter *adapter); int t4_slow_intr_handler(struct adapter *adapter); int t4_hash_mac_addr(const u8 *addr); int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port, struct link_config *lc); int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port); int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data); int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data); int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz); int t4_seeprom_wp(struct adapter *adapter, int enable); int t4_read_flash(struct adapter *adapter, unsigned int addr, unsigned int nwords, u32 *data, int byte_oriented); int t4_write_flash(struct adapter *adapter, unsigned int addr, unsigned int n, const u8 *data, int byte_oriented); int t4_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size); int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op); int t5_fw_init_extern_mem(struct adapter *adap); int t4_load_bootcfg(struct adapter *adapter, const u8 *cfg_data, unsigned int size); int t4_load_boot(struct adapter *adap, u8 *boot_data, unsigned int boot_addr, unsigned int size); int t4_flash_erase_sectors(struct adapter *adapter, int start, int end); int t4_flash_cfg_addr(struct adapter *adapter); int t4_load_cfg(struct adapter *adapter, const u8 *cfg_data, unsigned int size); int t4_get_fw_version(struct adapter *adapter, u32 *vers); int t4_get_bs_version(struct adapter *adapter, u32 *vers); int t4_get_tp_version(struct adapter *adapter, u32 *vers); int t4_get_exprom_version(struct adapter *adapter, u32 *vers); int t4_get_scfg_version(struct adapter *adapter, u32 *vers); int t4_get_vpd_version(struct adapter *adapter, u32 *vers); int t4_get_version_info(struct adapter *adapter); int t4_init_hw(struct adapter *adapter, u32 fw_params); const struct chip_params *t4_get_chip_params(int chipid); int t4_prep_adapter(struct adapter *adapter, u8 *buf); int t4_shutdown_adapter(struct adapter *adapter); int t4_init_devlog_params(struct adapter *adapter, int fw_attach); int t4_init_sge_params(struct adapter *adapter); int t4_init_tp_params(struct adapter *adap); int t4_filter_field_shift(const struct adapter *adap, int filter_sel); int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id); void t4_fatal_err(struct adapter *adapter); void t4_db_full(struct adapter *adapter); void t4_db_dropped(struct adapter *adapter); int t4_set_trace_filter(struct adapter *adapter, const struct trace_params *tp, int filter_index, int enable); void t4_get_trace_filter(struct adapter *adapter, struct trace_params *tp, int filter_index, int *enabled); int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, int start, int n, const u16 *rspq, unsigned int nrspq); int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, unsigned int flags); int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, unsigned int flags, unsigned int defq, unsigned int skeyidx, unsigned int skey); int t4_read_rss(struct adapter *adapter, u16 *entries); void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs, unsigned int start_index, unsigned int rw); void t4_read_rss_key(struct adapter *adapter, u32 *key); void t4_write_rss_key(struct adapter *adap, u32 *key, int idx); void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, u32 *valp); void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index, u32 val); void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, u32 *vfl, u32 *vfh); void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index, u32 vfl, u32 vfh); u32 t4_read_rss_pf_map(struct adapter *adapter); void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap); u32 t4_read_rss_pf_mask(struct adapter *adapter); void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask); int t4_mps_set_active_ports(struct adapter *adap, unsigned int port_mask); void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]); void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]); void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres); int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n); int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n); int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, unsigned int *valp); int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, const unsigned int *valp); int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n, unsigned int *valp); int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr); void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, unsigned int *pif_req_wrptr, unsigned int *pif_rsp_wrptr); void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp); int t4_get_flash_params(struct adapter *adapter); u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach); int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *parity); int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *parity); int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 size, __be32 *data); void t4_idma_monitor_init(struct adapter *adapter, struct sge_idma_monitor_state *idma); void t4_idma_monitor(struct adapter *adapter, struct sge_idma_monitor_state *idma, int hz, int ticks); unsigned int t4_get_regs_len(struct adapter *adapter); void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size); const char *t4_get_port_type_description(enum fw_port_type port_type); void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p); void t4_get_port_stats_offset(struct adapter *adap, int idx, struct port_stats *stats, struct port_stats *offset); void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p); void t4_clr_port_stats(struct adapter *adap, int idx); void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log); void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]); void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]); void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps, unsigned int *ipg); void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, unsigned int mask, unsigned int val); void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr); void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st); void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st); void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st); void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st); void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st); void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, struct tp_tcp_stats *v6); void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, struct tp_fcoe_stats *st); void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, const unsigned short *alpha, const unsigned short *beta); void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf); int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps); int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg); int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals, unsigned int start, unsigned int n); void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate); int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map); void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid); void t4_wol_magic_enable(struct adapter *adap, unsigned int port, const u8 *addr); int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map, u64 mask0, u64 mask1, unsigned int crc, bool enable); int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, enum dev_master master, enum dev_state *state); int t4_fw_bye(struct adapter *adap, unsigned int mbox); int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset); int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force); int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset); int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, const u8 *fw_data, unsigned int size, int force); int t4_fw_initialize(struct adapter *adap, unsigned int mbox); int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int nparams, const u32 *params, u32 *val); int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int nparams, const u32 *params, u32 *val, int rw); int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int nparams, const u32 *params, const u32 *val, int timeout); int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int nparams, const u32 *params, const u32 *val); int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, unsigned int rxqi, unsigned int rxq, unsigned int tc, unsigned int vi, unsigned int cmask, unsigned int pmask, unsigned int exactf, unsigned int rcaps, unsigned int wxcaps); int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox, unsigned int port, unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, u16 *rss_size, unsigned int portfunc, unsigned int idstype); int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, u16 *rss_size); int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int viid); int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, int mtu, int promisc, int all_multi, int bcast, int vlanex, bool sleep_ok); int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, unsigned int viid, bool free, unsigned int naddr, const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok); int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, int idx, const u8 *addr, bool persist, bool add_smt); int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, bool ucast, u64 vec, bool sleep_ok); int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, unsigned int viid, bool rx_en, bool tx_en, bool dcb_en); int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, bool rx_en, bool tx_en); int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, unsigned int nblinks); int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, unsigned int mmd, unsigned int reg, unsigned int *valp); int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, unsigned int mmd, unsigned int reg, unsigned int val); int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port, unsigned int devid, unsigned int offset, unsigned int len, u8 *buf); int t4_i2c_wr(struct adapter *adap, unsigned int mbox, int port, unsigned int devid, unsigned int offset, unsigned int len, u8 *buf); int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int iqtype, unsigned int iqid, unsigned int fl0id, unsigned int fl1id); int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int iqtype, unsigned int iqid, unsigned int fl0id, unsigned int fl1id); int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int eqid); int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int eqid); int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int eqid); int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, enum ctxt_type ctype, u32 *data); int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype, u32 *data); int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox); const char *t4_link_down_rc_str(unsigned char link_down_rc); int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl); int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, u32 addr, u32 val); int t4_sched_config(struct adapter *adapter, int type, int minmaxen, int sleep_ok); int t4_sched_params(struct adapter *adapter, int type, int level, int mode, int rateunit, int ratemode, int channel, int cl, int minrate, int maxrate, int weight, int pktsize, int sleep_ok); int t4_config_watchdog(struct adapter *adapter, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int timeout, unsigned int action); int t4_get_devlog_level(struct adapter *adapter, unsigned int *level); int t4_set_devlog_level(struct adapter *adapter, unsigned int level); void t4_sge_decode_idma_state(struct adapter *adapter, int state); static inline int t4vf_query_params(struct adapter *adapter, unsigned int nparams, const u32 *params, u32 *vals) { return t4_query_params(adapter, 0, 0, 0, nparams, params, vals); } static inline int t4vf_set_params(struct adapter *adapter, unsigned int nparams, const u32 *params, const u32 *vals) { return t4_set_params(adapter, 0, 0, 0, nparams, params, vals); } static inline int t4vf_wr_mbox(struct adapter *adap, const void *cmd, int size, void *rpl) { return t4_wr_mbox(adap, adap->mbox, cmd, size, rpl); } int t4vf_wait_dev_ready(struct adapter *adapter); int t4vf_fw_reset(struct adapter *adapter); int t4vf_get_sge_params(struct adapter *adapter); int t4vf_get_rss_glb_config(struct adapter *adapter); int t4vf_get_vfres(struct adapter *adapter); int t4vf_prep_adapter(struct adapter *adapter); #endif /* __CHELSIO_COMMON_H */ Index: stable/10/sys/dev/cxgbe/common/t4_hw.c =================================================================== --- stable/10/sys/dev/cxgbe/common/t4_hw.c (revision 318839) +++ stable/10/sys/dev/cxgbe/common/t4_hw.c (revision 318840) @@ -1,9460 +1,9469 @@ /*- * Copyright (c) 2012, 2016 Chelsio Communications, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "common.h" #include "t4_regs.h" #include "t4_regs_values.h" #include "firmware/t4fw_interface.h" #undef msleep #define msleep(x) do { \ if (cold) \ DELAY((x) * 1000); \ else \ pause("t4hw", (x) * hz / 1000); \ } while (0) /** * t4_wait_op_done_val - wait until an operation is completed * @adapter: the adapter performing the operation * @reg: the register to check for completion * @mask: a single-bit field within @reg that indicates completion * @polarity: the value of the field when the operation is completed * @attempts: number of check iterations * @delay: delay in usecs between iterations * @valp: where to store the value of the register at completion time * * Wait until an operation is completed by checking a bit in a register * up to @attempts times. If @valp is not NULL the value of the register * at the time it indicated completion is stored there. Returns 0 if the * operation completes and -EAGAIN otherwise. */ static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, int polarity, int attempts, int delay, u32 *valp) { while (1) { u32 val = t4_read_reg(adapter, reg); if (!!(val & mask) == polarity) { if (valp) *valp = val; return 0; } if (--attempts == 0) return -EAGAIN; if (delay) udelay(delay); } } static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, int polarity, int attempts, int delay) { return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, delay, NULL); } /** * t4_set_reg_field - set a register field to a value * @adapter: the adapter to program * @addr: the register address * @mask: specifies the portion of the register to modify * @val: the new value for the register field * * Sets a register field specified by the supplied mask to the * given value. */ void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, u32 val) { u32 v = t4_read_reg(adapter, addr) & ~mask; t4_write_reg(adapter, addr, v | val); (void) t4_read_reg(adapter, addr); /* flush */ } /** * t4_read_indirect - read indirectly addressed registers * @adap: the adapter * @addr_reg: register holding the indirect address * @data_reg: register holding the value of the indirect register * @vals: where the read register values are stored * @nregs: how many indirect registers to read * @start_idx: index of first indirect register to read * * Reads registers that are accessed indirectly through an address/data * register pair. */ void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, unsigned int data_reg, u32 *vals, unsigned int nregs, unsigned int start_idx) { while (nregs--) { t4_write_reg(adap, addr_reg, start_idx); *vals++ = t4_read_reg(adap, data_reg); start_idx++; } } /** * t4_write_indirect - write indirectly addressed registers * @adap: the adapter * @addr_reg: register holding the indirect addresses * @data_reg: register holding the value for the indirect registers * @vals: values to write * @nregs: how many indirect registers to write * @start_idx: address of first indirect register to write * * Writes a sequential block of registers that are accessed indirectly * through an address/data register pair. */ void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, unsigned int data_reg, const u32 *vals, unsigned int nregs, unsigned int start_idx) { while (nregs--) { t4_write_reg(adap, addr_reg, start_idx++); t4_write_reg(adap, data_reg, *vals++); } } /* * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor * mechanism. This guarantees that we get the real value even if we're * operating within a Virtual Machine and the Hypervisor is trapping our * Configuration Space accesses. * * N.B. This routine should only be used as a last resort: the firmware uses * the backdoor registers on a regular basis and we can end up * conflicting with it's uses! */ u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg) { u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg); u32 val; if (chip_id(adap) <= CHELSIO_T5) req |= F_ENABLE; else req |= F_T6_ENABLE; if (is_t4(adap)) req |= F_LOCALCFG; t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req); val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA); /* * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a * Configuration Space read. (None of the other fields matter when * F_ENABLE is 0 so a simple register write is easier than a * read-modify-write via t4_set_reg_field().) */ t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0); return val; } /* * t4_report_fw_error - report firmware error * @adap: the adapter * * The adapter firmware can indicate error conditions to the host. * If the firmware has indicated an error, print out the reason for * the firmware error. */ static void t4_report_fw_error(struct adapter *adap) { static const char *const reason[] = { "Crash", /* PCIE_FW_EVAL_CRASH */ "During Device Preparation", /* PCIE_FW_EVAL_PREP */ "During Device Configuration", /* PCIE_FW_EVAL_CONF */ "During Device Initialization", /* PCIE_FW_EVAL_INIT */ "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ "Reserved", /* reserved */ }; u32 pcie_fw; pcie_fw = t4_read_reg(adap, A_PCIE_FW); if (pcie_fw & F_PCIE_FW_ERR) CH_ERR(adap, "Firmware reports adapter error: %s\n", reason[G_PCIE_FW_EVAL(pcie_fw)]); } /* * Get the reply to a mailbox command and store it in @rpl in big-endian order. */ static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, u32 mbox_addr) { for ( ; nflit; nflit--, mbox_addr += 8) *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); } /* * Handle a FW assertion reported in a mailbox. */ static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt) { CH_ALERT(adap, "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", asrt->u.assert.filename_0_7, be32_to_cpu(asrt->u.assert.line), be32_to_cpu(asrt->u.assert.x), be32_to_cpu(asrt->u.assert.y)); } #define X_CIM_PF_NOACCESS 0xeeeeeeee /** * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox * @adap: the adapter * @mbox: index of the mailbox to use * @cmd: the command to write * @size: command length in bytes * @rpl: where to optionally store the reply * @sleep_ok: if true we may sleep while awaiting command completion * @timeout: time to wait for command to finish before timing out * (negative implies @sleep_ok=false) * * Sends the given command to FW through the selected mailbox and waits * for the FW to execute the command. If @rpl is not %NULL it is used to * store the FW's reply to the command. The command and its optional * reply are of the same length. Some FW commands like RESET and * INITIALIZE can take a considerable amount of time to execute. * @sleep_ok determines whether we may sleep while awaiting the response. * If sleeping is allowed we use progressive backoff otherwise we spin. * Note that passing in a negative @timeout is an alternate mechanism * for specifying @sleep_ok=false. This is useful when a higher level * interface allows for specification of @timeout but not @sleep_ok ... * * The return value is 0 on success or a negative errno on failure. A * failure can happen either because we are not able to execute the * command or FW executes it but signals an error. In the latter case * the return value is the error code indicated by FW (negated). */ int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, int size, void *rpl, bool sleep_ok, int timeout) { /* * We delay in small increments at first in an effort to maintain * responsiveness for simple, fast executing commands but then back * off to larger delays to a maximum retry delay. */ static const int delay[] = { 1, 1, 3, 5, 10, 10, 20, 50, 100 }; u32 v; u64 res; int i, ms, delay_idx, ret; const __be64 *p = cmd; u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA); u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL); u32 ctl; __be64 cmd_rpl[MBOX_LEN/8]; u32 pcie_fw; if ((size & 15) || size > MBOX_LEN) return -EINVAL; if (adap->flags & IS_VF) { if (is_t6(adap)) data_reg = FW_T6VF_MBDATA_BASE_ADDR; else data_reg = FW_T4VF_MBDATA_BASE_ADDR; ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL); } /* * If we have a negative timeout, that implies that we can't sleep. */ if (timeout < 0) { sleep_ok = false; timeout = -timeout; } /* * Attempt to gain access to the mailbox. */ for (i = 0; i < 4; i++) { ctl = t4_read_reg(adap, ctl_reg); v = G_MBOWNER(ctl); if (v != X_MBOWNER_NONE) break; } /* * If we were unable to gain access, dequeue ourselves from the * mailbox atomic access list and report the error to our caller. */ if (v != X_MBOWNER_PL) { t4_report_fw_error(adap); ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT; return ret; } /* * If we gain ownership of the mailbox and there's a "valid" message * in it, this is likely an asynchronous error message from the * firmware. So we'll report that and then proceed on with attempting * to issue our own command ... which may well fail if the error * presaged the firmware crashing ... */ if (ctl & F_MBMSGVALID) { CH_ERR(adap, "found VALID command in mbox %u: " "%llx %llx %llx %llx %llx %llx %llx %llx\n", mbox, (unsigned long long)t4_read_reg64(adap, data_reg), (unsigned long long)t4_read_reg64(adap, data_reg + 8), (unsigned long long)t4_read_reg64(adap, data_reg + 16), (unsigned long long)t4_read_reg64(adap, data_reg + 24), (unsigned long long)t4_read_reg64(adap, data_reg + 32), (unsigned long long)t4_read_reg64(adap, data_reg + 40), (unsigned long long)t4_read_reg64(adap, data_reg + 48), (unsigned long long)t4_read_reg64(adap, data_reg + 56)); } /* * Copy in the new mailbox command and send it on its way ... */ for (i = 0; i < size; i += 8, p++) t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p)); if (adap->flags & IS_VF) { /* * For the VFs, the Mailbox Data "registers" are * actually backed by T4's "MA" interface rather than * PL Registers (as is the case for the PFs). Because * these are in different coherency domains, the write * to the VF's PL-register-backed Mailbox Control can * race in front of the writes to the MA-backed VF * Mailbox Data "registers". So we need to do a * read-back on at least one byte of the VF Mailbox * Data registers before doing the write to the VF * Mailbox Control register. */ t4_read_reg(adap, data_reg); } CH_DUMP_MBOX(adap, mbox, data_reg); t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW)); t4_read_reg(adap, ctl_reg); /* flush write */ delay_idx = 0; ms = delay[0]; /* * Loop waiting for the reply; bail out if we time out or the firmware * reports an error. */ pcie_fw = 0; for (i = 0; i < timeout; i += ms) { if (!(adap->flags & IS_VF)) { pcie_fw = t4_read_reg(adap, A_PCIE_FW); if (pcie_fw & F_PCIE_FW_ERR) break; } if (sleep_ok) { ms = delay[delay_idx]; /* last element may repeat */ if (delay_idx < ARRAY_SIZE(delay) - 1) delay_idx++; msleep(ms); } else { mdelay(ms); } v = t4_read_reg(adap, ctl_reg); if (v == X_CIM_PF_NOACCESS) continue; if (G_MBOWNER(v) == X_MBOWNER_PL) { if (!(v & F_MBMSGVALID)) { t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE)); continue; } /* * Retrieve the command reply and release the mailbox. */ get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg); t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE)); CH_DUMP_MBOX(adap, mbox, data_reg); res = be64_to_cpu(cmd_rpl[0]); if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) { fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl); res = V_FW_CMD_RETVAL(EIO); } else if (rpl) memcpy(rpl, cmd_rpl, size); return -G_FW_CMD_RETVAL((int)res); } } /* * We timed out waiting for a reply to our mailbox command. Report * the error and also check to see if the firmware reported any * errors ... */ ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT; CH_ERR(adap, "command %#x in mailbox %d timed out\n", *(const u8 *)cmd, mbox); /* If DUMP_MBOX is set the mbox has already been dumped */ if ((adap->debug_flags & DF_DUMP_MBOX) == 0) { p = cmd; CH_ERR(adap, "mbox: %016llx %016llx %016llx %016llx " "%016llx %016llx %016llx %016llx\n", (unsigned long long)be64_to_cpu(p[0]), (unsigned long long)be64_to_cpu(p[1]), (unsigned long long)be64_to_cpu(p[2]), (unsigned long long)be64_to_cpu(p[3]), (unsigned long long)be64_to_cpu(p[4]), (unsigned long long)be64_to_cpu(p[5]), (unsigned long long)be64_to_cpu(p[6]), (unsigned long long)be64_to_cpu(p[7])); } t4_report_fw_error(adap); t4_fatal_err(adap); return ret; } int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, void *rpl, bool sleep_ok) { return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, FW_CMD_MAX_TIMEOUT); } static int t4_edc_err_read(struct adapter *adap, int idx) { u32 edc_ecc_err_addr_reg; u32 edc_bist_status_rdata_reg; if (is_t4(adap)) { CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); return 0; } if (idx != 0 && idx != 1) { CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); return 0; } edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx); edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx); CH_WARN(adap, "edc%d err addr 0x%x: 0x%x.\n", idx, edc_ecc_err_addr_reg, t4_read_reg(adap, edc_ecc_err_addr_reg)); CH_WARN(adap, "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", edc_bist_status_rdata_reg, (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg), (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8), (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16), (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24), (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32), (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40), (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48), (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56), (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64)); return 0; } /** * t4_mc_read - read from MC through backdoor accesses * @adap: the adapter * @idx: which MC to access * @addr: address of first byte requested * @data: 64 bytes of data containing the requested address * @ecc: where to store the corresponding 64-bit ECC word * * Read 64 bytes of data from MC starting at a 64-byte-aligned address * that covers the requested address @addr. If @parity is not %NULL it * is assigned the 64-bit ECC word for the read data. */ int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) { int i; u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg; u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg; if (is_t4(adap)) { mc_bist_cmd_reg = A_MC_BIST_CMD; mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR; mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN; mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA; mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN; } else { mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx); mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx); mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx); mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA, idx); mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN, idx); } if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST) return -EBUSY; t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU); t4_write_reg(adap, mc_bist_cmd_len_reg, 64); t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc); t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) | F_START_BIST | V_BIST_CMD_GAP(1)); i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1); if (i) return i; #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i) for (i = 15; i >= 0; i--) *data++ = ntohl(t4_read_reg(adap, MC_DATA(i))); if (ecc) *ecc = t4_read_reg64(adap, MC_DATA(16)); #undef MC_DATA return 0; } /** * t4_edc_read - read from EDC through backdoor accesses * @adap: the adapter * @idx: which EDC to access * @addr: address of first byte requested * @data: 64 bytes of data containing the requested address * @ecc: where to store the corresponding 64-bit ECC word * * Read 64 bytes of data from EDC starting at a 64-byte-aligned address * that covers the requested address @addr. If @parity is not %NULL it * is assigned the 64-bit ECC word for the read data. */ int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) { int i; u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg; u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg; if (is_t4(adap)) { edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx); edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx); edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx); edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN, idx); edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA, idx); } else { /* * These macro are missing in t4_regs.h file. * Added temporarily for testing. */ #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR) #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx) edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx); edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx); edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx); edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN, idx); edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA, idx); #undef EDC_REG_T5 #undef EDC_STRIDE_T5 } if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST) return -EBUSY; t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU); t4_write_reg(adap, edc_bist_cmd_len_reg, 64); t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc); t4_write_reg(adap, edc_bist_cmd_reg, V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST); i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1); if (i) return i; #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i) for (i = 15; i >= 0; i--) *data++ = ntohl(t4_read_reg(adap, EDC_DATA(i))); if (ecc) *ecc = t4_read_reg64(adap, EDC_DATA(16)); #undef EDC_DATA return 0; } /** * t4_mem_read - read EDC 0, EDC 1 or MC into buffer * @adap: the adapter * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC * @addr: address within indicated memory type * @len: amount of memory to read * @buf: host memory buffer * * Reads an [almost] arbitrary memory region in the firmware: the * firmware memory address, length and host buffer must be aligned on * 32-bit boudaries. The memory is returned as a raw byte sequence from * the firmware's memory. If this memory contains data structures which * contain multi-byte integers, it's the callers responsibility to * perform appropriate byte order conversions. */ int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len, __be32 *buf) { u32 pos, start, end, offset; int ret; /* * Argument sanity checks ... */ if ((addr & 0x3) || (len & 0x3)) return -EINVAL; /* * The underlaying EDC/MC read routines read 64 bytes at a time so we * need to round down the start and round up the end. We'll start * copying out of the first line at (addr - start) a word at a time. */ start = addr & ~(64-1); end = (addr + len + 64-1) & ~(64-1); offset = (addr - start)/sizeof(__be32); for (pos = start; pos < end; pos += 64, offset = 0) { __be32 data[16]; /* * Read the chip's memory block and bail if there's an error. */ if ((mtype == MEM_MC) || (mtype == MEM_MC1)) ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL); else ret = t4_edc_read(adap, mtype, pos, data, NULL); if (ret) return ret; /* * Copy the data into the caller's memory buffer. */ while (offset < 16 && len > 0) { *buf++ = data[offset++]; len -= sizeof(__be32); } } return 0; } /* * Return the specified PCI-E Configuration Space register from our Physical * Function. We try first via a Firmware LDST Command (if fw_attach != 0) * since we prefer to let the firmware own all of these registers, but if that * fails we go for it directly ourselves. */ u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach) { /* * If fw_attach != 0, construct and send the Firmware LDST Command to * retrieve the specified PCI-E Configuration Space register. */ if (drv_fw_attach != 0) { struct fw_ldst_cmd ldst_cmd; int ret; memset(&ldst_cmd, 0, sizeof(ldst_cmd)); ldst_cmd.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE)); ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1); ldst_cmd.u.pcie.ctrl_to_fn = (F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf)); ldst_cmd.u.pcie.r = reg; /* * If the LDST Command succeeds, return the result, otherwise * fall through to reading it directly ourselves ... */ ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), &ldst_cmd); if (ret == 0) return be32_to_cpu(ldst_cmd.u.pcie.data[0]); CH_WARN(adap, "Firmware failed to return " "Configuration Space register %d, err = %d\n", reg, -ret); } /* * Read the desired Configuration Space register via the PCI-E * Backdoor mechanism. */ return t4_hw_pci_read_cfg4(adap, reg); } /** * t4_get_regs_len - return the size of the chips register set * @adapter: the adapter * * Returns the size of the chip's BAR0 register space. */ unsigned int t4_get_regs_len(struct adapter *adapter) { unsigned int chip_version = chip_id(adapter); switch (chip_version) { case CHELSIO_T4: if (adapter->flags & IS_VF) return FW_T4VF_REGMAP_SIZE; return T4_REGMAP_SIZE; case CHELSIO_T5: case CHELSIO_T6: if (adapter->flags & IS_VF) return FW_T4VF_REGMAP_SIZE; return T5_REGMAP_SIZE; } CH_ERR(adapter, "Unsupported chip version %d\n", chip_version); return 0; } /** * t4_get_regs - read chip registers into provided buffer * @adap: the adapter * @buf: register buffer * @buf_size: size (in bytes) of register buffer * * If the provided register buffer isn't large enough for the chip's * full register range, the register dump will be truncated to the * register buffer's size. */ void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size) { static const unsigned int t4_reg_ranges[] = { 0x1008, 0x1108, 0x1180, 0x1184, 0x1190, 0x1194, 0x11a0, 0x11a4, 0x11b0, 0x11b4, 0x11fc, 0x123c, 0x1300, 0x173c, 0x1800, 0x18fc, 0x3000, 0x30d8, 0x30e0, 0x30e4, 0x30ec, 0x5910, 0x5920, 0x5924, 0x5960, 0x5960, 0x5968, 0x5968, 0x5970, 0x5970, 0x5978, 0x5978, 0x5980, 0x5980, 0x5988, 0x5988, 0x5990, 0x5990, 0x5998, 0x5998, 0x59a0, 0x59d4, 0x5a00, 0x5ae0, 0x5ae8, 0x5ae8, 0x5af0, 0x5af0, 0x5af8, 0x5af8, 0x6000, 0x6098, 0x6100, 0x6150, 0x6200, 0x6208, 0x6240, 0x6248, 0x6280, 0x62b0, 0x62c0, 0x6338, 0x6370, 0x638c, 0x6400, 0x643c, 0x6500, 0x6524, 0x6a00, 0x6a04, 0x6a14, 0x6a38, 0x6a60, 0x6a70, 0x6a78, 0x6a78, 0x6b00, 0x6b0c, 0x6b1c, 0x6b84, 0x6bf0, 0x6bf8, 0x6c00, 0x6c0c, 0x6c1c, 0x6c84, 0x6cf0, 0x6cf8, 0x6d00, 0x6d0c, 0x6d1c, 0x6d84, 0x6df0, 0x6df8, 0x6e00, 0x6e0c, 0x6e1c, 0x6e84, 0x6ef0, 0x6ef8, 0x6f00, 0x6f0c, 0x6f1c, 0x6f84, 0x6ff0, 0x6ff8, 0x7000, 0x700c, 0x701c, 0x7084, 0x70f0, 0x70f8, 0x7100, 0x710c, 0x711c, 0x7184, 0x71f0, 0x71f8, 0x7200, 0x720c, 0x721c, 0x7284, 0x72f0, 0x72f8, 0x7300, 0x730c, 0x731c, 0x7384, 0x73f0, 0x73f8, 0x7400, 0x7450, 0x7500, 0x7530, 0x7600, 0x760c, 0x7614, 0x761c, 0x7680, 0x76cc, 0x7700, 0x7798, 0x77c0, 0x77fc, 0x7900, 0x79fc, 0x7b00, 0x7b58, 0x7b60, 0x7b84, 0x7b8c, 0x7c38, 0x7d00, 0x7d38, 0x7d40, 0x7d80, 0x7d8c, 0x7ddc, 0x7de4, 0x7e04, 0x7e10, 0x7e1c, 0x7e24, 0x7e38, 0x7e40, 0x7e44, 0x7e4c, 0x7e78, 0x7e80, 0x7ea4, 0x7eac, 0x7edc, 0x7ee8, 0x7efc, 0x8dc0, 0x8e04, 0x8e10, 0x8e1c, 0x8e30, 0x8e78, 0x8ea0, 0x8eb8, 0x8ec0, 0x8f6c, 0x8fc0, 0x9008, 0x9010, 0x9058, 0x9060, 0x9060, 0x9068, 0x9074, 0x90fc, 0x90fc, 0x9400, 0x9408, 0x9410, 0x9458, 0x9600, 0x9600, 0x9608, 0x9638, 0x9640, 0x96bc, 0x9800, 0x9808, 0x9820, 0x983c, 0x9850, 0x9864, 0x9c00, 0x9c6c, 0x9c80, 0x9cec, 0x9d00, 0x9d6c, 0x9d80, 0x9dec, 0x9e00, 0x9e6c, 0x9e80, 0x9eec, 0x9f00, 0x9f6c, 0x9f80, 0x9fec, 0xd004, 0xd004, 0xd010, 0xd03c, 0xdfc0, 0xdfe0, 0xe000, 0xea7c, 0xf000, 0x11190, 0x19040, 0x1906c, 0x19078, 0x19080, 0x1908c, 0x190e4, 0x190f0, 0x190f8, 0x19100, 0x19110, 0x19120, 0x19124, 0x19150, 0x19194, 0x1919c, 0x191b0, 0x191d0, 0x191e8, 0x19238, 0x1924c, 0x193f8, 0x1943c, 0x1944c, 0x19474, 0x19490, 0x194e0, 0x194f0, 0x194f8, 0x19800, 0x19c08, 0x19c10, 0x19c90, 0x19ca0, 0x19ce4, 0x19cf0, 0x19d40, 0x19d50, 0x19d94, 0x19da0, 0x19de8, 0x19df0, 0x19e40, 0x19e50, 0x19e90, 0x19ea0, 0x19f4c, 0x1a000, 0x1a004, 0x1a010, 0x1a06c, 0x1a0b0, 0x1a0e4, 0x1a0ec, 0x1a0f4, 0x1a100, 0x1a108, 0x1a114, 0x1a120, 0x1a128, 0x1a130, 0x1a138, 0x1a138, 0x1a190, 0x1a1c4, 0x1a1fc, 0x1a1fc, 0x1e040, 0x1e04c, 0x1e284, 0x1e28c, 0x1e2c0, 0x1e2c0, 0x1e2e0, 0x1e2e0, 0x1e300, 0x1e384, 0x1e3c0, 0x1e3c8, 0x1e440, 0x1e44c, 0x1e684, 0x1e68c, 0x1e6c0, 0x1e6c0, 0x1e6e0, 0x1e6e0, 0x1e700, 0x1e784, 0x1e7c0, 0x1e7c8, 0x1e840, 0x1e84c, 0x1ea84, 0x1ea8c, 0x1eac0, 0x1eac0, 0x1eae0, 0x1eae0, 0x1eb00, 0x1eb84, 0x1ebc0, 0x1ebc8, 0x1ec40, 0x1ec4c, 0x1ee84, 0x1ee8c, 0x1eec0, 0x1eec0, 0x1eee0, 0x1eee0, 0x1ef00, 0x1ef84, 0x1efc0, 0x1efc8, 0x1f040, 0x1f04c, 0x1f284, 0x1f28c, 0x1f2c0, 0x1f2c0, 0x1f2e0, 0x1f2e0, 0x1f300, 0x1f384, 0x1f3c0, 0x1f3c8, 0x1f440, 0x1f44c, 0x1f684, 0x1f68c, 0x1f6c0, 0x1f6c0, 0x1f6e0, 0x1f6e0, 0x1f700, 0x1f784, 0x1f7c0, 0x1f7c8, 0x1f840, 0x1f84c, 0x1fa84, 0x1fa8c, 0x1fac0, 0x1fac0, 0x1fae0, 0x1fae0, 0x1fb00, 0x1fb84, 0x1fbc0, 0x1fbc8, 0x1fc40, 0x1fc4c, 0x1fe84, 0x1fe8c, 0x1fec0, 0x1fec0, 0x1fee0, 0x1fee0, 0x1ff00, 0x1ff84, 0x1ffc0, 0x1ffc8, 0x20000, 0x2002c, 0x20100, 0x2013c, 0x20190, 0x201a0, 0x201a8, 0x201b8, 0x201c4, 0x201c8, 0x20200, 0x20318, 0x20400, 0x204b4, 0x204c0, 0x20528, 0x20540, 0x20614, 0x21000, 0x21040, 0x2104c, 0x21060, 0x210c0, 0x210ec, 0x21200, 0x21268, 0x21270, 0x21284, 0x212fc, 0x21388, 0x21400, 0x21404, 0x21500, 0x21500, 0x21510, 0x21518, 0x2152c, 0x21530, 0x2153c, 0x2153c, 0x21550, 0x21554, 0x21600, 0x21600, 0x21608, 0x2161c, 0x21624, 0x21628, 0x21630, 0x21634, 0x2163c, 0x2163c, 0x21700, 0x2171c, 0x21780, 0x2178c, 0x21800, 0x21818, 0x21820, 0x21828, 0x21830, 0x21848, 0x21850, 0x21854, 0x21860, 0x21868, 0x21870, 0x21870, 0x21878, 0x21898, 0x218a0, 0x218a8, 0x218b0, 0x218c8, 0x218d0, 0x218d4, 0x218e0, 0x218e8, 0x218f0, 0x218f0, 0x218f8, 0x21a18, 0x21a20, 0x21a28, 0x21a30, 0x21a48, 0x21a50, 0x21a54, 0x21a60, 0x21a68, 0x21a70, 0x21a70, 0x21a78, 0x21a98, 0x21aa0, 0x21aa8, 0x21ab0, 0x21ac8, 0x21ad0, 0x21ad4, 0x21ae0, 0x21ae8, 0x21af0, 0x21af0, 0x21af8, 0x21c18, 0x21c20, 0x21c20, 0x21c28, 0x21c30, 0x21c38, 0x21c38, 0x21c80, 0x21c98, 0x21ca0, 0x21ca8, 0x21cb0, 0x21cc8, 0x21cd0, 0x21cd4, 0x21ce0, 0x21ce8, 0x21cf0, 0x21cf0, 0x21cf8, 0x21d7c, 0x21e00, 0x21e04, 0x22000, 0x2202c, 0x22100, 0x2213c, 0x22190, 0x221a0, 0x221a8, 0x221b8, 0x221c4, 0x221c8, 0x22200, 0x22318, 0x22400, 0x224b4, 0x224c0, 0x22528, 0x22540, 0x22614, 0x23000, 0x23040, 0x2304c, 0x23060, 0x230c0, 0x230ec, 0x23200, 0x23268, 0x23270, 0x23284, 0x232fc, 0x23388, 0x23400, 0x23404, 0x23500, 0x23500, 0x23510, 0x23518, 0x2352c, 0x23530, 0x2353c, 0x2353c, 0x23550, 0x23554, 0x23600, 0x23600, 0x23608, 0x2361c, 0x23624, 0x23628, 0x23630, 0x23634, 0x2363c, 0x2363c, 0x23700, 0x2371c, 0x23780, 0x2378c, 0x23800, 0x23818, 0x23820, 0x23828, 0x23830, 0x23848, 0x23850, 0x23854, 0x23860, 0x23868, 0x23870, 0x23870, 0x23878, 0x23898, 0x238a0, 0x238a8, 0x238b0, 0x238c8, 0x238d0, 0x238d4, 0x238e0, 0x238e8, 0x238f0, 0x238f0, 0x238f8, 0x23a18, 0x23a20, 0x23a28, 0x23a30, 0x23a48, 0x23a50, 0x23a54, 0x23a60, 0x23a68, 0x23a70, 0x23a70, 0x23a78, 0x23a98, 0x23aa0, 0x23aa8, 0x23ab0, 0x23ac8, 0x23ad0, 0x23ad4, 0x23ae0, 0x23ae8, 0x23af0, 0x23af0, 0x23af8, 0x23c18, 0x23c20, 0x23c20, 0x23c28, 0x23c30, 0x23c38, 0x23c38, 0x23c80, 0x23c98, 0x23ca0, 0x23ca8, 0x23cb0, 0x23cc8, 0x23cd0, 0x23cd4, 0x23ce0, 0x23ce8, 0x23cf0, 0x23cf0, 0x23cf8, 0x23d7c, 0x23e00, 0x23e04, 0x24000, 0x2402c, 0x24100, 0x2413c, 0x24190, 0x241a0, 0x241a8, 0x241b8, 0x241c4, 0x241c8, 0x24200, 0x24318, 0x24400, 0x244b4, 0x244c0, 0x24528, 0x24540, 0x24614, 0x25000, 0x25040, 0x2504c, 0x25060, 0x250c0, 0x250ec, 0x25200, 0x25268, 0x25270, 0x25284, 0x252fc, 0x25388, 0x25400, 0x25404, 0x25500, 0x25500, 0x25510, 0x25518, 0x2552c, 0x25530, 0x2553c, 0x2553c, 0x25550, 0x25554, 0x25600, 0x25600, 0x25608, 0x2561c, 0x25624, 0x25628, 0x25630, 0x25634, 0x2563c, 0x2563c, 0x25700, 0x2571c, 0x25780, 0x2578c, 0x25800, 0x25818, 0x25820, 0x25828, 0x25830, 0x25848, 0x25850, 0x25854, 0x25860, 0x25868, 0x25870, 0x25870, 0x25878, 0x25898, 0x258a0, 0x258a8, 0x258b0, 0x258c8, 0x258d0, 0x258d4, 0x258e0, 0x258e8, 0x258f0, 0x258f0, 0x258f8, 0x25a18, 0x25a20, 0x25a28, 0x25a30, 0x25a48, 0x25a50, 0x25a54, 0x25a60, 0x25a68, 0x25a70, 0x25a70, 0x25a78, 0x25a98, 0x25aa0, 0x25aa8, 0x25ab0, 0x25ac8, 0x25ad0, 0x25ad4, 0x25ae0, 0x25ae8, 0x25af0, 0x25af0, 0x25af8, 0x25c18, 0x25c20, 0x25c20, 0x25c28, 0x25c30, 0x25c38, 0x25c38, 0x25c80, 0x25c98, 0x25ca0, 0x25ca8, 0x25cb0, 0x25cc8, 0x25cd0, 0x25cd4, 0x25ce0, 0x25ce8, 0x25cf0, 0x25cf0, 0x25cf8, 0x25d7c, 0x25e00, 0x25e04, 0x26000, 0x2602c, 0x26100, 0x2613c, 0x26190, 0x261a0, 0x261a8, 0x261b8, 0x261c4, 0x261c8, 0x26200, 0x26318, 0x26400, 0x264b4, 0x264c0, 0x26528, 0x26540, 0x26614, 0x27000, 0x27040, 0x2704c, 0x27060, 0x270c0, 0x270ec, 0x27200, 0x27268, 0x27270, 0x27284, 0x272fc, 0x27388, 0x27400, 0x27404, 0x27500, 0x27500, 0x27510, 0x27518, 0x2752c, 0x27530, 0x2753c, 0x2753c, 0x27550, 0x27554, 0x27600, 0x27600, 0x27608, 0x2761c, 0x27624, 0x27628, 0x27630, 0x27634, 0x2763c, 0x2763c, 0x27700, 0x2771c, 0x27780, 0x2778c, 0x27800, 0x27818, 0x27820, 0x27828, 0x27830, 0x27848, 0x27850, 0x27854, 0x27860, 0x27868, 0x27870, 0x27870, 0x27878, 0x27898, 0x278a0, 0x278a8, 0x278b0, 0x278c8, 0x278d0, 0x278d4, 0x278e0, 0x278e8, 0x278f0, 0x278f0, 0x278f8, 0x27a18, 0x27a20, 0x27a28, 0x27a30, 0x27a48, 0x27a50, 0x27a54, 0x27a60, 0x27a68, 0x27a70, 0x27a70, 0x27a78, 0x27a98, 0x27aa0, 0x27aa8, 0x27ab0, 0x27ac8, 0x27ad0, 0x27ad4, 0x27ae0, 0x27ae8, 0x27af0, 0x27af0, 0x27af8, 0x27c18, 0x27c20, 0x27c20, 0x27c28, 0x27c30, 0x27c38, 0x27c38, 0x27c80, 0x27c98, 0x27ca0, 0x27ca8, 0x27cb0, 0x27cc8, 0x27cd0, 0x27cd4, 0x27ce0, 0x27ce8, 0x27cf0, 0x27cf0, 0x27cf8, 0x27d7c, 0x27e00, 0x27e04, }; static const unsigned int t4vf_reg_ranges[] = { VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), VF_MPS_REG(A_MPS_VF_CTL), VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI), VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), FW_T4VF_MBDATA_BASE_ADDR, FW_T4VF_MBDATA_BASE_ADDR + ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), }; static const unsigned int t5_reg_ranges[] = { 0x1008, 0x10c0, 0x10cc, 0x10f8, 0x1100, 0x1100, 0x110c, 0x1148, 0x1180, 0x1184, 0x1190, 0x1194, 0x11a0, 0x11a4, 0x11b0, 0x11b4, 0x11fc, 0x123c, 0x1280, 0x173c, 0x1800, 0x18fc, 0x3000, 0x3028, 0x3060, 0x30b0, 0x30b8, 0x30d8, 0x30e0, 0x30fc, 0x3140, 0x357c, 0x35a8, 0x35cc, 0x35ec, 0x35ec, 0x3600, 0x5624, 0x56cc, 0x56ec, 0x56f4, 0x5720, 0x5728, 0x575c, 0x580c, 0x5814, 0x5890, 0x589c, 0x58a4, 0x58ac, 0x58b8, 0x58bc, 0x5940, 0x59c8, 0x59d0, 0x59dc, 0x59fc, 0x5a18, 0x5a60, 0x5a70, 0x5a80, 0x5a9c, 0x5b94, 0x5bfc, 0x6000, 0x6020, 0x6028, 0x6040, 0x6058, 0x609c, 0x60a8, 0x614c, 0x7700, 0x7798, 0x77c0, 0x78fc, 0x7b00, 0x7b58, 0x7b60, 0x7b84, 0x7b8c, 0x7c54, 0x7d00, 0x7d38, 0x7d40, 0x7d80, 0x7d8c, 0x7ddc, 0x7de4, 0x7e04, 0x7e10, 0x7e1c, 0x7e24, 0x7e38, 0x7e40, 0x7e44, 0x7e4c, 0x7e78, 0x7e80, 0x7edc, 0x7ee8, 0x7efc, 0x8dc0, 0x8de0, 0x8df8, 0x8e04, 0x8e10, 0x8e84, 0x8ea0, 0x8f84, 0x8fc0, 0x9058, 0x9060, 0x9060, 0x9068, 0x90f8, 0x9400, 0x9408, 0x9410, 0x9470, 0x9600, 0x9600, 0x9608, 0x9638, 0x9640, 0x96f4, 0x9800, 0x9808, 0x9820, 0x983c, 0x9850, 0x9864, 0x9c00, 0x9c6c, 0x9c80, 0x9cec, 0x9d00, 0x9d6c, 0x9d80, 0x9dec, 0x9e00, 0x9e6c, 0x9e80, 0x9eec, 0x9f00, 0x9f6c, 0x9f80, 0xa020, 0xd004, 0xd004, 0xd010, 0xd03c, 0xdfc0, 0xdfe0, 0xe000, 0x1106c, 0x11074, 0x11088, 0x1109c, 0x1117c, 0x11190, 0x11204, 0x19040, 0x1906c, 0x19078, 0x19080, 0x1908c, 0x190e8, 0x190f0, 0x190f8, 0x19100, 0x19110, 0x19120, 0x19124, 0x19150, 0x19194, 0x1919c, 0x191b0, 0x191d0, 0x191e8, 0x19238, 0x19290, 0x193f8, 0x19428, 0x19430, 0x19444, 0x1944c, 0x1946c, 0x19474, 0x19474, 0x19490, 0x194cc, 0x194f0, 0x194f8, 0x19c00, 0x19c08, 0x19c10, 0x19c60, 0x19c94, 0x19ce4, 0x19cf0, 0x19d40, 0x19d50, 0x19d94, 0x19da0, 0x19de8, 0x19df0, 0x19e10, 0x19e50, 0x19e90, 0x19ea0, 0x19f24, 0x19f34, 0x19f34, 0x19f40, 0x19f50, 0x19f90, 0x19fb4, 0x19fc4, 0x19fe4, 0x1a000, 0x1a004, 0x1a010, 0x1a06c, 0x1a0b0, 0x1a0e4, 0x1a0ec, 0x1a0f8, 0x1a100, 0x1a108, 0x1a114, 0x1a120, 0x1a128, 0x1a130, 0x1a138, 0x1a138, 0x1a190, 0x1a1c4, 0x1a1fc, 0x1a1fc, 0x1e008, 0x1e00c, 0x1e040, 0x1e044, 0x1e04c, 0x1e04c, 0x1e284, 0x1e290, 0x1e2c0, 0x1e2c0, 0x1e2e0, 0x1e2e0, 0x1e300, 0x1e384, 0x1e3c0, 0x1e3c8, 0x1e408, 0x1e40c, 0x1e440, 0x1e444, 0x1e44c, 0x1e44c, 0x1e684, 0x1e690, 0x1e6c0, 0x1e6c0, 0x1e6e0, 0x1e6e0, 0x1e700, 0x1e784, 0x1e7c0, 0x1e7c8, 0x1e808, 0x1e80c, 0x1e840, 0x1e844, 0x1e84c, 0x1e84c, 0x1ea84, 0x1ea90, 0x1eac0, 0x1eac0, 0x1eae0, 0x1eae0, 0x1eb00, 0x1eb84, 0x1ebc0, 0x1ebc8, 0x1ec08, 0x1ec0c, 0x1ec40, 0x1ec44, 0x1ec4c, 0x1ec4c, 0x1ee84, 0x1ee90, 0x1eec0, 0x1eec0, 0x1eee0, 0x1eee0, 0x1ef00, 0x1ef84, 0x1efc0, 0x1efc8, 0x1f008, 0x1f00c, 0x1f040, 0x1f044, 0x1f04c, 0x1f04c, 0x1f284, 0x1f290, 0x1f2c0, 0x1f2c0, 0x1f2e0, 0x1f2e0, 0x1f300, 0x1f384, 0x1f3c0, 0x1f3c8, 0x1f408, 0x1f40c, 0x1f440, 0x1f444, 0x1f44c, 0x1f44c, 0x1f684, 0x1f690, 0x1f6c0, 0x1f6c0, 0x1f6e0, 0x1f6e0, 0x1f700, 0x1f784, 0x1f7c0, 0x1f7c8, 0x1f808, 0x1f80c, 0x1f840, 0x1f844, 0x1f84c, 0x1f84c, 0x1fa84, 0x1fa90, 0x1fac0, 0x1fac0, 0x1fae0, 0x1fae0, 0x1fb00, 0x1fb84, 0x1fbc0, 0x1fbc8, 0x1fc08, 0x1fc0c, 0x1fc40, 0x1fc44, 0x1fc4c, 0x1fc4c, 0x1fe84, 0x1fe90, 0x1fec0, 0x1fec0, 0x1fee0, 0x1fee0, 0x1ff00, 0x1ff84, 0x1ffc0, 0x1ffc8, 0x30000, 0x30030, 0x30038, 0x30038, 0x30040, 0x30040, 0x30100, 0x30144, 0x30190, 0x301a0, 0x301a8, 0x301b8, 0x301c4, 0x301c8, 0x301d0, 0x301d0, 0x30200, 0x30318, 0x30400, 0x304b4, 0x304c0, 0x3052c, 0x30540, 0x3061c, 0x30800, 0x30828, 0x30834, 0x30834, 0x308c0, 0x30908, 0x30910, 0x309ac, 0x30a00, 0x30a14, 0x30a1c, 0x30a2c, 0x30a44, 0x30a50, 0x30a74, 0x30a74, 0x30a7c, 0x30afc, 0x30b08, 0x30c24, 0x30d00, 0x30d00, 0x30d08, 0x30d14, 0x30d1c, 0x30d20, 0x30d3c, 0x30d3c, 0x30d48, 0x30d50, 0x31200, 0x3120c, 0x31220, 0x31220, 0x31240, 0x31240, 0x31600, 0x3160c, 0x31a00, 0x31a1c, 0x31e00, 0x31e20, 0x31e38, 0x31e3c, 0x31e80, 0x31e80, 0x31e88, 0x31ea8, 0x31eb0, 0x31eb4, 0x31ec8, 0x31ed4, 0x31fb8, 0x32004, 0x32200, 0x32200, 0x32208, 0x32240, 0x32248, 0x32280, 0x32288, 0x322c0, 0x322c8, 0x322fc, 0x32600, 0x32630, 0x32a00, 0x32abc, 0x32b00, 0x32b10, 0x32b20, 0x32b30, 0x32b40, 0x32b50, 0x32b60, 0x32b70, 0x33000, 0x33028, 0x33030, 0x33048, 0x33060, 0x33068, 0x33070, 0x3309c, 0x330f0, 0x33128, 0x33130, 0x33148, 0x33160, 0x33168, 0x33170, 0x3319c, 0x331f0, 0x33238, 0x33240, 0x33240, 0x33248, 0x33250, 0x3325c, 0x33264, 0x33270, 0x332b8, 0x332c0, 0x332e4, 0x332f8, 0x33338, 0x33340, 0x33340, 0x33348, 0x33350, 0x3335c, 0x33364, 0x33370, 0x333b8, 0x333c0, 0x333e4, 0x333f8, 0x33428, 0x33430, 0x33448, 0x33460, 0x33468, 0x33470, 0x3349c, 0x334f0, 0x33528, 0x33530, 0x33548, 0x33560, 0x33568, 0x33570, 0x3359c, 0x335f0, 0x33638, 0x33640, 0x33640, 0x33648, 0x33650, 0x3365c, 0x33664, 0x33670, 0x336b8, 0x336c0, 0x336e4, 0x336f8, 0x33738, 0x33740, 0x33740, 0x33748, 0x33750, 0x3375c, 0x33764, 0x33770, 0x337b8, 0x337c0, 0x337e4, 0x337f8, 0x337fc, 0x33814, 0x33814, 0x3382c, 0x3382c, 0x33880, 0x3388c, 0x338e8, 0x338ec, 0x33900, 0x33928, 0x33930, 0x33948, 0x33960, 0x33968, 0x33970, 0x3399c, 0x339f0, 0x33a38, 0x33a40, 0x33a40, 0x33a48, 0x33a50, 0x33a5c, 0x33a64, 0x33a70, 0x33ab8, 0x33ac0, 0x33ae4, 0x33af8, 0x33b10, 0x33b28, 0x33b28, 0x33b3c, 0x33b50, 0x33bf0, 0x33c10, 0x33c28, 0x33c28, 0x33c3c, 0x33c50, 0x33cf0, 0x33cfc, 0x34000, 0x34030, 0x34038, 0x34038, 0x34040, 0x34040, 0x34100, 0x34144, 0x34190, 0x341a0, 0x341a8, 0x341b8, 0x341c4, 0x341c8, 0x341d0, 0x341d0, 0x34200, 0x34318, 0x34400, 0x344b4, 0x344c0, 0x3452c, 0x34540, 0x3461c, 0x34800, 0x34828, 0x34834, 0x34834, 0x348c0, 0x34908, 0x34910, 0x349ac, 0x34a00, 0x34a14, 0x34a1c, 0x34a2c, 0x34a44, 0x34a50, 0x34a74, 0x34a74, 0x34a7c, 0x34afc, 0x34b08, 0x34c24, 0x34d00, 0x34d00, 0x34d08, 0x34d14, 0x34d1c, 0x34d20, 0x34d3c, 0x34d3c, 0x34d48, 0x34d50, 0x35200, 0x3520c, 0x35220, 0x35220, 0x35240, 0x35240, 0x35600, 0x3560c, 0x35a00, 0x35a1c, 0x35e00, 0x35e20, 0x35e38, 0x35e3c, 0x35e80, 0x35e80, 0x35e88, 0x35ea8, 0x35eb0, 0x35eb4, 0x35ec8, 0x35ed4, 0x35fb8, 0x36004, 0x36200, 0x36200, 0x36208, 0x36240, 0x36248, 0x36280, 0x36288, 0x362c0, 0x362c8, 0x362fc, 0x36600, 0x36630, 0x36a00, 0x36abc, 0x36b00, 0x36b10, 0x36b20, 0x36b30, 0x36b40, 0x36b50, 0x36b60, 0x36b70, 0x37000, 0x37028, 0x37030, 0x37048, 0x37060, 0x37068, 0x37070, 0x3709c, 0x370f0, 0x37128, 0x37130, 0x37148, 0x37160, 0x37168, 0x37170, 0x3719c, 0x371f0, 0x37238, 0x37240, 0x37240, 0x37248, 0x37250, 0x3725c, 0x37264, 0x37270, 0x372b8, 0x372c0, 0x372e4, 0x372f8, 0x37338, 0x37340, 0x37340, 0x37348, 0x37350, 0x3735c, 0x37364, 0x37370, 0x373b8, 0x373c0, 0x373e4, 0x373f8, 0x37428, 0x37430, 0x37448, 0x37460, 0x37468, 0x37470, 0x3749c, 0x374f0, 0x37528, 0x37530, 0x37548, 0x37560, 0x37568, 0x37570, 0x3759c, 0x375f0, 0x37638, 0x37640, 0x37640, 0x37648, 0x37650, 0x3765c, 0x37664, 0x37670, 0x376b8, 0x376c0, 0x376e4, 0x376f8, 0x37738, 0x37740, 0x37740, 0x37748, 0x37750, 0x3775c, 0x37764, 0x37770, 0x377b8, 0x377c0, 0x377e4, 0x377f8, 0x377fc, 0x37814, 0x37814, 0x3782c, 0x3782c, 0x37880, 0x3788c, 0x378e8, 0x378ec, 0x37900, 0x37928, 0x37930, 0x37948, 0x37960, 0x37968, 0x37970, 0x3799c, 0x379f0, 0x37a38, 0x37a40, 0x37a40, 0x37a48, 0x37a50, 0x37a5c, 0x37a64, 0x37a70, 0x37ab8, 0x37ac0, 0x37ae4, 0x37af8, 0x37b10, 0x37b28, 0x37b28, 0x37b3c, 0x37b50, 0x37bf0, 0x37c10, 0x37c28, 0x37c28, 0x37c3c, 0x37c50, 0x37cf0, 0x37cfc, 0x38000, 0x38030, 0x38038, 0x38038, 0x38040, 0x38040, 0x38100, 0x38144, 0x38190, 0x381a0, 0x381a8, 0x381b8, 0x381c4, 0x381c8, 0x381d0, 0x381d0, 0x38200, 0x38318, 0x38400, 0x384b4, 0x384c0, 0x3852c, 0x38540, 0x3861c, 0x38800, 0x38828, 0x38834, 0x38834, 0x388c0, 0x38908, 0x38910, 0x389ac, 0x38a00, 0x38a14, 0x38a1c, 0x38a2c, 0x38a44, 0x38a50, 0x38a74, 0x38a74, 0x38a7c, 0x38afc, 0x38b08, 0x38c24, 0x38d00, 0x38d00, 0x38d08, 0x38d14, 0x38d1c, 0x38d20, 0x38d3c, 0x38d3c, 0x38d48, 0x38d50, 0x39200, 0x3920c, 0x39220, 0x39220, 0x39240, 0x39240, 0x39600, 0x3960c, 0x39a00, 0x39a1c, 0x39e00, 0x39e20, 0x39e38, 0x39e3c, 0x39e80, 0x39e80, 0x39e88, 0x39ea8, 0x39eb0, 0x39eb4, 0x39ec8, 0x39ed4, 0x39fb8, 0x3a004, 0x3a200, 0x3a200, 0x3a208, 0x3a240, 0x3a248, 0x3a280, 0x3a288, 0x3a2c0, 0x3a2c8, 0x3a2fc, 0x3a600, 0x3a630, 0x3aa00, 0x3aabc, 0x3ab00, 0x3ab10, 0x3ab20, 0x3ab30, 0x3ab40, 0x3ab50, 0x3ab60, 0x3ab70, 0x3b000, 0x3b028, 0x3b030, 0x3b048, 0x3b060, 0x3b068, 0x3b070, 0x3b09c, 0x3b0f0, 0x3b128, 0x3b130, 0x3b148, 0x3b160, 0x3b168, 0x3b170, 0x3b19c, 0x3b1f0, 0x3b238, 0x3b240, 0x3b240, 0x3b248, 0x3b250, 0x3b25c, 0x3b264, 0x3b270, 0x3b2b8, 0x3b2c0, 0x3b2e4, 0x3b2f8, 0x3b338, 0x3b340, 0x3b340, 0x3b348, 0x3b350, 0x3b35c, 0x3b364, 0x3b370, 0x3b3b8, 0x3b3c0, 0x3b3e4, 0x3b3f8, 0x3b428, 0x3b430, 0x3b448, 0x3b460, 0x3b468, 0x3b470, 0x3b49c, 0x3b4f0, 0x3b528, 0x3b530, 0x3b548, 0x3b560, 0x3b568, 0x3b570, 0x3b59c, 0x3b5f0, 0x3b638, 0x3b640, 0x3b640, 0x3b648, 0x3b650, 0x3b65c, 0x3b664, 0x3b670, 0x3b6b8, 0x3b6c0, 0x3b6e4, 0x3b6f8, 0x3b738, 0x3b740, 0x3b740, 0x3b748, 0x3b750, 0x3b75c, 0x3b764, 0x3b770, 0x3b7b8, 0x3b7c0, 0x3b7e4, 0x3b7f8, 0x3b7fc, 0x3b814, 0x3b814, 0x3b82c, 0x3b82c, 0x3b880, 0x3b88c, 0x3b8e8, 0x3b8ec, 0x3b900, 0x3b928, 0x3b930, 0x3b948, 0x3b960, 0x3b968, 0x3b970, 0x3b99c, 0x3b9f0, 0x3ba38, 0x3ba40, 0x3ba40, 0x3ba48, 0x3ba50, 0x3ba5c, 0x3ba64, 0x3ba70, 0x3bab8, 0x3bac0, 0x3bae4, 0x3baf8, 0x3bb10, 0x3bb28, 0x3bb28, 0x3bb3c, 0x3bb50, 0x3bbf0, 0x3bc10, 0x3bc28, 0x3bc28, 0x3bc3c, 0x3bc50, 0x3bcf0, 0x3bcfc, 0x3c000, 0x3c030, 0x3c038, 0x3c038, 0x3c040, 0x3c040, 0x3c100, 0x3c144, 0x3c190, 0x3c1a0, 0x3c1a8, 0x3c1b8, 0x3c1c4, 0x3c1c8, 0x3c1d0, 0x3c1d0, 0x3c200, 0x3c318, 0x3c400, 0x3c4b4, 0x3c4c0, 0x3c52c, 0x3c540, 0x3c61c, 0x3c800, 0x3c828, 0x3c834, 0x3c834, 0x3c8c0, 0x3c908, 0x3c910, 0x3c9ac, 0x3ca00, 0x3ca14, 0x3ca1c, 0x3ca2c, 0x3ca44, 0x3ca50, 0x3ca74, 0x3ca74, 0x3ca7c, 0x3cafc, 0x3cb08, 0x3cc24, 0x3cd00, 0x3cd00, 0x3cd08, 0x3cd14, 0x3cd1c, 0x3cd20, 0x3cd3c, 0x3cd3c, 0x3cd48, 0x3cd50, 0x3d200, 0x3d20c, 0x3d220, 0x3d220, 0x3d240, 0x3d240, 0x3d600, 0x3d60c, 0x3da00, 0x3da1c, 0x3de00, 0x3de20, 0x3de38, 0x3de3c, 0x3de80, 0x3de80, 0x3de88, 0x3dea8, 0x3deb0, 0x3deb4, 0x3dec8, 0x3ded4, 0x3dfb8, 0x3e004, 0x3e200, 0x3e200, 0x3e208, 0x3e240, 0x3e248, 0x3e280, 0x3e288, 0x3e2c0, 0x3e2c8, 0x3e2fc, 0x3e600, 0x3e630, 0x3ea00, 0x3eabc, 0x3eb00, 0x3eb10, 0x3eb20, 0x3eb30, 0x3eb40, 0x3eb50, 0x3eb60, 0x3eb70, 0x3f000, 0x3f028, 0x3f030, 0x3f048, 0x3f060, 0x3f068, 0x3f070, 0x3f09c, 0x3f0f0, 0x3f128, 0x3f130, 0x3f148, 0x3f160, 0x3f168, 0x3f170, 0x3f19c, 0x3f1f0, 0x3f238, 0x3f240, 0x3f240, 0x3f248, 0x3f250, 0x3f25c, 0x3f264, 0x3f270, 0x3f2b8, 0x3f2c0, 0x3f2e4, 0x3f2f8, 0x3f338, 0x3f340, 0x3f340, 0x3f348, 0x3f350, 0x3f35c, 0x3f364, 0x3f370, 0x3f3b8, 0x3f3c0, 0x3f3e4, 0x3f3f8, 0x3f428, 0x3f430, 0x3f448, 0x3f460, 0x3f468, 0x3f470, 0x3f49c, 0x3f4f0, 0x3f528, 0x3f530, 0x3f548, 0x3f560, 0x3f568, 0x3f570, 0x3f59c, 0x3f5f0, 0x3f638, 0x3f640, 0x3f640, 0x3f648, 0x3f650, 0x3f65c, 0x3f664, 0x3f670, 0x3f6b8, 0x3f6c0, 0x3f6e4, 0x3f6f8, 0x3f738, 0x3f740, 0x3f740, 0x3f748, 0x3f750, 0x3f75c, 0x3f764, 0x3f770, 0x3f7b8, 0x3f7c0, 0x3f7e4, 0x3f7f8, 0x3f7fc, 0x3f814, 0x3f814, 0x3f82c, 0x3f82c, 0x3f880, 0x3f88c, 0x3f8e8, 0x3f8ec, 0x3f900, 0x3f928, 0x3f930, 0x3f948, 0x3f960, 0x3f968, 0x3f970, 0x3f99c, 0x3f9f0, 0x3fa38, 0x3fa40, 0x3fa40, 0x3fa48, 0x3fa50, 0x3fa5c, 0x3fa64, 0x3fa70, 0x3fab8, 0x3fac0, 0x3fae4, 0x3faf8, 0x3fb10, 0x3fb28, 0x3fb28, 0x3fb3c, 0x3fb50, 0x3fbf0, 0x3fc10, 0x3fc28, 0x3fc28, 0x3fc3c, 0x3fc50, 0x3fcf0, 0x3fcfc, 0x40000, 0x4000c, 0x40040, 0x40050, 0x40060, 0x40068, 0x4007c, 0x4008c, 0x40094, 0x400b0, 0x400c0, 0x40144, 0x40180, 0x4018c, 0x40200, 0x40254, 0x40260, 0x40264, 0x40270, 0x40288, 0x40290, 0x40298, 0x402ac, 0x402c8, 0x402d0, 0x402e0, 0x402f0, 0x402f0, 0x40300, 0x4033c, 0x403f8, 0x403fc, 0x41304, 0x413c4, 0x41400, 0x4140c, 0x41414, 0x4141c, 0x41480, 0x414d0, 0x44000, 0x44054, 0x4405c, 0x44078, 0x440c0, 0x44174, 0x44180, 0x441ac, 0x441b4, 0x441b8, 0x441c0, 0x44254, 0x4425c, 0x44278, 0x442c0, 0x44374, 0x44380, 0x443ac, 0x443b4, 0x443b8, 0x443c0, 0x44454, 0x4445c, 0x44478, 0x444c0, 0x44574, 0x44580, 0x445ac, 0x445b4, 0x445b8, 0x445c0, 0x44654, 0x4465c, 0x44678, 0x446c0, 0x44774, 0x44780, 0x447ac, 0x447b4, 0x447b8, 0x447c0, 0x44854, 0x4485c, 0x44878, 0x448c0, 0x44974, 0x44980, 0x449ac, 0x449b4, 0x449b8, 0x449c0, 0x449fc, 0x45000, 0x45004, 0x45010, 0x45030, 0x45040, 0x45060, 0x45068, 0x45068, 0x45080, 0x45084, 0x450a0, 0x450b0, 0x45200, 0x45204, 0x45210, 0x45230, 0x45240, 0x45260, 0x45268, 0x45268, 0x45280, 0x45284, 0x452a0, 0x452b0, 0x460c0, 0x460e4, 0x47000, 0x4703c, 0x47044, 0x4708c, 0x47200, 0x47250, 0x47400, 0x47408, 0x47414, 0x47420, 0x47600, 0x47618, 0x47800, 0x47814, 0x48000, 0x4800c, 0x48040, 0x48050, 0x48060, 0x48068, 0x4807c, 0x4808c, 0x48094, 0x480b0, 0x480c0, 0x48144, 0x48180, 0x4818c, 0x48200, 0x48254, 0x48260, 0x48264, 0x48270, 0x48288, 0x48290, 0x48298, 0x482ac, 0x482c8, 0x482d0, 0x482e0, 0x482f0, 0x482f0, 0x48300, 0x4833c, 0x483f8, 0x483fc, 0x49304, 0x493c4, 0x49400, 0x4940c, 0x49414, 0x4941c, 0x49480, 0x494d0, 0x4c000, 0x4c054, 0x4c05c, 0x4c078, 0x4c0c0, 0x4c174, 0x4c180, 0x4c1ac, 0x4c1b4, 0x4c1b8, 0x4c1c0, 0x4c254, 0x4c25c, 0x4c278, 0x4c2c0, 0x4c374, 0x4c380, 0x4c3ac, 0x4c3b4, 0x4c3b8, 0x4c3c0, 0x4c454, 0x4c45c, 0x4c478, 0x4c4c0, 0x4c574, 0x4c580, 0x4c5ac, 0x4c5b4, 0x4c5b8, 0x4c5c0, 0x4c654, 0x4c65c, 0x4c678, 0x4c6c0, 0x4c774, 0x4c780, 0x4c7ac, 0x4c7b4, 0x4c7b8, 0x4c7c0, 0x4c854, 0x4c85c, 0x4c878, 0x4c8c0, 0x4c974, 0x4c980, 0x4c9ac, 0x4c9b4, 0x4c9b8, 0x4c9c0, 0x4c9fc, 0x4d000, 0x4d004, 0x4d010, 0x4d030, 0x4d040, 0x4d060, 0x4d068, 0x4d068, 0x4d080, 0x4d084, 0x4d0a0, 0x4d0b0, 0x4d200, 0x4d204, 0x4d210, 0x4d230, 0x4d240, 0x4d260, 0x4d268, 0x4d268, 0x4d280, 0x4d284, 0x4d2a0, 0x4d2b0, 0x4e0c0, 0x4e0e4, 0x4f000, 0x4f03c, 0x4f044, 0x4f08c, 0x4f200, 0x4f250, 0x4f400, 0x4f408, 0x4f414, 0x4f420, 0x4f600, 0x4f618, 0x4f800, 0x4f814, 0x50000, 0x50084, 0x50090, 0x500cc, 0x50400, 0x50400, 0x50800, 0x50884, 0x50890, 0x508cc, 0x50c00, 0x50c00, 0x51000, 0x5101c, 0x51300, 0x51308, }; static const unsigned int t5vf_reg_ranges[] = { VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), VF_MPS_REG(A_MPS_VF_CTL), VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION), VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), FW_T4VF_MBDATA_BASE_ADDR, FW_T4VF_MBDATA_BASE_ADDR + ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), }; static const unsigned int t6_reg_ranges[] = { 0x1008, 0x101c, 0x1024, 0x10a8, 0x10b4, 0x10f8, 0x1100, 0x1114, 0x111c, 0x112c, 0x1138, 0x113c, 0x1144, 0x114c, 0x1180, 0x1184, 0x1190, 0x1194, 0x11a0, 0x11a4, 0x11b0, 0x11b4, 0x11fc, 0x1274, 0x1280, 0x133c, 0x1800, 0x18fc, 0x3000, 0x302c, 0x3060, 0x30b0, 0x30b8, 0x30d8, 0x30e0, 0x30fc, 0x3140, 0x357c, 0x35a8, 0x35cc, 0x35ec, 0x35ec, 0x3600, 0x5624, 0x56cc, 0x56ec, 0x56f4, 0x5720, 0x5728, 0x575c, 0x580c, 0x5814, 0x5890, 0x589c, 0x58a4, 0x58ac, 0x58b8, 0x58bc, 0x5940, 0x595c, 0x5980, 0x598c, 0x59b0, 0x59c8, 0x59d0, 0x59dc, 0x59fc, 0x5a18, 0x5a60, 0x5a6c, 0x5a80, 0x5a8c, 0x5a94, 0x5a9c, 0x5b94, 0x5bfc, 0x5c10, 0x5e48, 0x5e50, 0x5e94, 0x5ea0, 0x5eb0, 0x5ec0, 0x5ec0, 0x5ec8, 0x5ed0, 0x5ee0, 0x5ee0, 0x5ef0, 0x5ef0, 0x5f00, 0x5f00, 0x6000, 0x6020, 0x6028, 0x6040, 0x6058, 0x609c, 0x60a8, 0x619c, 0x7700, 0x7798, 0x77c0, 0x7880, 0x78cc, 0x78fc, 0x7b00, 0x7b58, 0x7b60, 0x7b84, 0x7b8c, 0x7c54, 0x7d00, 0x7d38, 0x7d40, 0x7d84, 0x7d8c, 0x7ddc, 0x7de4, 0x7e04, 0x7e10, 0x7e1c, 0x7e24, 0x7e38, 0x7e40, 0x7e44, 0x7e4c, 0x7e78, 0x7e80, 0x7edc, 0x7ee8, 0x7efc, 0x8dc0, 0x8de4, 0x8df8, 0x8e04, 0x8e10, 0x8e84, 0x8ea0, 0x8f88, 0x8fb8, 0x9058, 0x9060, 0x9060, 0x9068, 0x90f8, 0x9100, 0x9124, 0x9400, 0x9470, 0x9600, 0x9600, 0x9608, 0x9638, 0x9640, 0x9704, 0x9710, 0x971c, 0x9800, 0x9808, 0x9820, 0x983c, 0x9850, 0x9864, 0x9c00, 0x9c6c, 0x9c80, 0x9cec, 0x9d00, 0x9d6c, 0x9d80, 0x9dec, 0x9e00, 0x9e6c, 0x9e80, 0x9eec, 0x9f00, 0x9f6c, 0x9f80, 0xa020, 0xd004, 0xd03c, 0xd100, 0xd118, 0xd200, 0xd214, 0xd220, 0xd234, 0xd240, 0xd254, 0xd260, 0xd274, 0xd280, 0xd294, 0xd2a0, 0xd2b4, 0xd2c0, 0xd2d4, 0xd2e0, 0xd2f4, 0xd300, 0xd31c, 0xdfc0, 0xdfe0, 0xe000, 0xf008, 0xf010, 0xf018, 0xf020, 0xf028, 0x11000, 0x11014, 0x11048, 0x1106c, 0x11074, 0x11088, 0x11098, 0x11120, 0x1112c, 0x1117c, 0x11190, 0x112e0, 0x11300, 0x1130c, 0x12000, 0x1206c, 0x19040, 0x1906c, 0x19078, 0x19080, 0x1908c, 0x190e8, 0x190f0, 0x190f8, 0x19100, 0x19110, 0x19120, 0x19124, 0x19150, 0x19194, 0x1919c, 0x191b0, 0x191d0, 0x191e8, 0x19238, 0x19290, 0x192a4, 0x192b0, 0x192bc, 0x192bc, 0x19348, 0x1934c, 0x193f8, 0x19418, 0x19420, 0x19428, 0x19430, 0x19444, 0x1944c, 0x1946c, 0x19474, 0x19474, 0x19490, 0x194cc, 0x194f0, 0x194f8, 0x19c00, 0x19c48, 0x19c50, 0x19c80, 0x19c94, 0x19c98, 0x19ca0, 0x19cbc, 0x19ce4, 0x19ce4, 0x19cf0, 0x19cf8, 0x19d00, 0x19d28, 0x19d50, 0x19d78, 0x19d94, 0x19d98, 0x19da0, 0x19dc8, 0x19df0, 0x19e10, 0x19e50, 0x19e6c, 0x19ea0, 0x19ebc, 0x19ec4, 0x19ef4, 0x19f04, 0x19f2c, 0x19f34, 0x19f34, 0x19f40, 0x19f50, 0x19f90, 0x19fac, 0x19fc4, 0x19fc8, 0x19fd0, 0x19fe4, 0x1a000, 0x1a004, 0x1a010, 0x1a06c, 0x1a0b0, 0x1a0e4, 0x1a0ec, 0x1a0f8, 0x1a100, 0x1a108, 0x1a114, 0x1a120, 0x1a128, 0x1a130, 0x1a138, 0x1a138, 0x1a190, 0x1a1c4, 0x1a1fc, 0x1a1fc, 0x1e008, 0x1e00c, 0x1e040, 0x1e044, 0x1e04c, 0x1e04c, 0x1e284, 0x1e290, 0x1e2c0, 0x1e2c0, 0x1e2e0, 0x1e2e0, 0x1e300, 0x1e384, 0x1e3c0, 0x1e3c8, 0x1e408, 0x1e40c, 0x1e440, 0x1e444, 0x1e44c, 0x1e44c, 0x1e684, 0x1e690, 0x1e6c0, 0x1e6c0, 0x1e6e0, 0x1e6e0, 0x1e700, 0x1e784, 0x1e7c0, 0x1e7c8, 0x1e808, 0x1e80c, 0x1e840, 0x1e844, 0x1e84c, 0x1e84c, 0x1ea84, 0x1ea90, 0x1eac0, 0x1eac0, 0x1eae0, 0x1eae0, 0x1eb00, 0x1eb84, 0x1ebc0, 0x1ebc8, 0x1ec08, 0x1ec0c, 0x1ec40, 0x1ec44, 0x1ec4c, 0x1ec4c, 0x1ee84, 0x1ee90, 0x1eec0, 0x1eec0, 0x1eee0, 0x1eee0, 0x1ef00, 0x1ef84, 0x1efc0, 0x1efc8, 0x1f008, 0x1f00c, 0x1f040, 0x1f044, 0x1f04c, 0x1f04c, 0x1f284, 0x1f290, 0x1f2c0, 0x1f2c0, 0x1f2e0, 0x1f2e0, 0x1f300, 0x1f384, 0x1f3c0, 0x1f3c8, 0x1f408, 0x1f40c, 0x1f440, 0x1f444, 0x1f44c, 0x1f44c, 0x1f684, 0x1f690, 0x1f6c0, 0x1f6c0, 0x1f6e0, 0x1f6e0, 0x1f700, 0x1f784, 0x1f7c0, 0x1f7c8, 0x1f808, 0x1f80c, 0x1f840, 0x1f844, 0x1f84c, 0x1f84c, 0x1fa84, 0x1fa90, 0x1fac0, 0x1fac0, 0x1fae0, 0x1fae0, 0x1fb00, 0x1fb84, 0x1fbc0, 0x1fbc8, 0x1fc08, 0x1fc0c, 0x1fc40, 0x1fc44, 0x1fc4c, 0x1fc4c, 0x1fe84, 0x1fe90, 0x1fec0, 0x1fec0, 0x1fee0, 0x1fee0, 0x1ff00, 0x1ff84, 0x1ffc0, 0x1ffc8, 0x30000, 0x30030, 0x30038, 0x30038, 0x30040, 0x30040, 0x30048, 0x30048, 0x30050, 0x30050, 0x3005c, 0x30060, 0x30068, 0x30068, 0x30070, 0x30070, 0x30100, 0x30168, 0x30190, 0x301a0, 0x301a8, 0x301b8, 0x301c4, 0x301c8, 0x301d0, 0x301d0, 0x30200, 0x30320, 0x30400, 0x304b4, 0x304c0, 0x3052c, 0x30540, 0x3061c, 0x30800, 0x308a0, 0x308c0, 0x30908, 0x30910, 0x309b8, 0x30a00, 0x30a04, 0x30a0c, 0x30a14, 0x30a1c, 0x30a2c, 0x30a44, 0x30a50, 0x30a74, 0x30a74, 0x30a7c, 0x30afc, 0x30b08, 0x30c24, 0x30d00, 0x30d14, 0x30d1c, 0x30d3c, 0x30d44, 0x30d4c, 0x30d54, 0x30d74, 0x30d7c, 0x30d7c, 0x30de0, 0x30de0, 0x30e00, 0x30ed4, 0x30f00, 0x30fa4, 0x30fc0, 0x30fc4, 0x31000, 0x31004, 0x31080, 0x310fc, 0x31208, 0x31220, 0x3123c, 0x31254, 0x31300, 0x31300, 0x31308, 0x3131c, 0x31338, 0x3133c, 0x31380, 0x31380, 0x31388, 0x313a8, 0x313b4, 0x313b4, 0x31400, 0x31420, 0x31438, 0x3143c, 0x31480, 0x31480, 0x314a8, 0x314a8, 0x314b0, 0x314b4, 0x314c8, 0x314d4, 0x31a40, 0x31a4c, 0x31af0, 0x31b20, 0x31b38, 0x31b3c, 0x31b80, 0x31b80, 0x31ba8, 0x31ba8, 0x31bb0, 0x31bb4, 0x31bc8, 0x31bd4, 0x32140, 0x3218c, 0x321f0, 0x321f4, 0x32200, 0x32200, 0x32218, 0x32218, 0x32400, 0x32400, 0x32408, 0x3241c, 0x32618, 0x32620, 0x32664, 0x32664, 0x326a8, 0x326a8, 0x326ec, 0x326ec, 0x32a00, 0x32abc, 0x32b00, 0x32b38, 0x32b40, 0x32b58, 0x32b60, 0x32b78, 0x32c00, 0x32c00, 0x32c08, 0x32c3c, 0x32e00, 0x32e2c, 0x32f00, 0x32f2c, 0x33000, 0x3302c, 0x33034, 0x33050, 0x33058, 0x33058, 0x33060, 0x3308c, 0x3309c, 0x330ac, 0x330c0, 0x330c0, 0x330c8, 0x330d0, 0x330d8, 0x330e0, 0x330ec, 0x3312c, 0x33134, 0x33150, 0x33158, 0x33158, 0x33160, 0x3318c, 0x3319c, 0x331ac, 0x331c0, 0x331c0, 0x331c8, 0x331d0, 0x331d8, 0x331e0, 0x331ec, 0x33290, 0x33298, 0x332c4, 0x332e4, 0x33390, 0x33398, 0x333c4, 0x333e4, 0x3342c, 0x33434, 0x33450, 0x33458, 0x33458, 0x33460, 0x3348c, 0x3349c, 0x334ac, 0x334c0, 0x334c0, 0x334c8, 0x334d0, 0x334d8, 0x334e0, 0x334ec, 0x3352c, 0x33534, 0x33550, 0x33558, 0x33558, 0x33560, 0x3358c, 0x3359c, 0x335ac, 0x335c0, 0x335c0, 0x335c8, 0x335d0, 0x335d8, 0x335e0, 0x335ec, 0x33690, 0x33698, 0x336c4, 0x336e4, 0x33790, 0x33798, 0x337c4, 0x337e4, 0x337fc, 0x33814, 0x33814, 0x33854, 0x33868, 0x33880, 0x3388c, 0x338c0, 0x338d0, 0x338e8, 0x338ec, 0x33900, 0x3392c, 0x33934, 0x33950, 0x33958, 0x33958, 0x33960, 0x3398c, 0x3399c, 0x339ac, 0x339c0, 0x339c0, 0x339c8, 0x339d0, 0x339d8, 0x339e0, 0x339ec, 0x33a90, 0x33a98, 0x33ac4, 0x33ae4, 0x33b10, 0x33b24, 0x33b28, 0x33b38, 0x33b50, 0x33bf0, 0x33c10, 0x33c24, 0x33c28, 0x33c38, 0x33c50, 0x33cf0, 0x33cfc, 0x34000, 0x34030, 0x34038, 0x34038, 0x34040, 0x34040, 0x34048, 0x34048, 0x34050, 0x34050, 0x3405c, 0x34060, 0x34068, 0x34068, 0x34070, 0x34070, 0x34100, 0x34168, 0x34190, 0x341a0, 0x341a8, 0x341b8, 0x341c4, 0x341c8, 0x341d0, 0x341d0, 0x34200, 0x34320, 0x34400, 0x344b4, 0x344c0, 0x3452c, 0x34540, 0x3461c, 0x34800, 0x348a0, 0x348c0, 0x34908, 0x34910, 0x349b8, 0x34a00, 0x34a04, 0x34a0c, 0x34a14, 0x34a1c, 0x34a2c, 0x34a44, 0x34a50, 0x34a74, 0x34a74, 0x34a7c, 0x34afc, 0x34b08, 0x34c24, 0x34d00, 0x34d14, 0x34d1c, 0x34d3c, 0x34d44, 0x34d4c, 0x34d54, 0x34d74, 0x34d7c, 0x34d7c, 0x34de0, 0x34de0, 0x34e00, 0x34ed4, 0x34f00, 0x34fa4, 0x34fc0, 0x34fc4, 0x35000, 0x35004, 0x35080, 0x350fc, 0x35208, 0x35220, 0x3523c, 0x35254, 0x35300, 0x35300, 0x35308, 0x3531c, 0x35338, 0x3533c, 0x35380, 0x35380, 0x35388, 0x353a8, 0x353b4, 0x353b4, 0x35400, 0x35420, 0x35438, 0x3543c, 0x35480, 0x35480, 0x354a8, 0x354a8, 0x354b0, 0x354b4, 0x354c8, 0x354d4, 0x35a40, 0x35a4c, 0x35af0, 0x35b20, 0x35b38, 0x35b3c, 0x35b80, 0x35b80, 0x35ba8, 0x35ba8, 0x35bb0, 0x35bb4, 0x35bc8, 0x35bd4, 0x36140, 0x3618c, 0x361f0, 0x361f4, 0x36200, 0x36200, 0x36218, 0x36218, 0x36400, 0x36400, 0x36408, 0x3641c, 0x36618, 0x36620, 0x36664, 0x36664, 0x366a8, 0x366a8, 0x366ec, 0x366ec, 0x36a00, 0x36abc, 0x36b00, 0x36b38, 0x36b40, 0x36b58, 0x36b60, 0x36b78, 0x36c00, 0x36c00, 0x36c08, 0x36c3c, 0x36e00, 0x36e2c, 0x36f00, 0x36f2c, 0x37000, 0x3702c, 0x37034, 0x37050, 0x37058, 0x37058, 0x37060, 0x3708c, 0x3709c, 0x370ac, 0x370c0, 0x370c0, 0x370c8, 0x370d0, 0x370d8, 0x370e0, 0x370ec, 0x3712c, 0x37134, 0x37150, 0x37158, 0x37158, 0x37160, 0x3718c, 0x3719c, 0x371ac, 0x371c0, 0x371c0, 0x371c8, 0x371d0, 0x371d8, 0x371e0, 0x371ec, 0x37290, 0x37298, 0x372c4, 0x372e4, 0x37390, 0x37398, 0x373c4, 0x373e4, 0x3742c, 0x37434, 0x37450, 0x37458, 0x37458, 0x37460, 0x3748c, 0x3749c, 0x374ac, 0x374c0, 0x374c0, 0x374c8, 0x374d0, 0x374d8, 0x374e0, 0x374ec, 0x3752c, 0x37534, 0x37550, 0x37558, 0x37558, 0x37560, 0x3758c, 0x3759c, 0x375ac, 0x375c0, 0x375c0, 0x375c8, 0x375d0, 0x375d8, 0x375e0, 0x375ec, 0x37690, 0x37698, 0x376c4, 0x376e4, 0x37790, 0x37798, 0x377c4, 0x377e4, 0x377fc, 0x37814, 0x37814, 0x37854, 0x37868, 0x37880, 0x3788c, 0x378c0, 0x378d0, 0x378e8, 0x378ec, 0x37900, 0x3792c, 0x37934, 0x37950, 0x37958, 0x37958, 0x37960, 0x3798c, 0x3799c, 0x379ac, 0x379c0, 0x379c0, 0x379c8, 0x379d0, 0x379d8, 0x379e0, 0x379ec, 0x37a90, 0x37a98, 0x37ac4, 0x37ae4, 0x37b10, 0x37b24, 0x37b28, 0x37b38, 0x37b50, 0x37bf0, 0x37c10, 0x37c24, 0x37c28, 0x37c38, 0x37c50, 0x37cf0, 0x37cfc, 0x40040, 0x40040, 0x40080, 0x40084, 0x40100, 0x40100, 0x40140, 0x401bc, 0x40200, 0x40214, 0x40228, 0x40228, 0x40240, 0x40258, 0x40280, 0x40280, 0x40304, 0x40304, 0x40330, 0x4033c, 0x41304, 0x413c8, 0x413d0, 0x413dc, 0x413f0, 0x413f0, 0x41400, 0x4140c, 0x41414, 0x4141c, 0x41480, 0x414d0, 0x44000, 0x4407c, 0x440c0, 0x441ac, 0x441b4, 0x4427c, 0x442c0, 0x443ac, 0x443b4, 0x4447c, 0x444c0, 0x445ac, 0x445b4, 0x4467c, 0x446c0, 0x447ac, 0x447b4, 0x4487c, 0x448c0, 0x449ac, 0x449b4, 0x44a7c, 0x44ac0, 0x44bac, 0x44bb4, 0x44c7c, 0x44cc0, 0x44dac, 0x44db4, 0x44e7c, 0x44ec0, 0x44fac, 0x44fb4, 0x4507c, 0x450c0, 0x451ac, 0x451b4, 0x451fc, 0x45800, 0x45804, 0x45810, 0x45830, 0x45840, 0x45860, 0x45868, 0x45868, 0x45880, 0x45884, 0x458a0, 0x458b0, 0x45a00, 0x45a04, 0x45a10, 0x45a30, 0x45a40, 0x45a60, 0x45a68, 0x45a68, 0x45a80, 0x45a84, 0x45aa0, 0x45ab0, 0x460c0, 0x460e4, 0x47000, 0x4703c, 0x47044, 0x4708c, 0x47200, 0x47250, 0x47400, 0x47408, 0x47414, 0x47420, 0x47600, 0x47618, 0x47800, 0x47814, 0x47820, 0x4782c, 0x50000, 0x50084, 0x50090, 0x500cc, 0x50300, 0x50384, 0x50400, 0x50400, 0x50800, 0x50884, 0x50890, 0x508cc, 0x50b00, 0x50b84, 0x50c00, 0x50c00, 0x51000, 0x51020, 0x51028, 0x510b0, 0x51300, 0x51324, }; static const unsigned int t6vf_reg_ranges[] = { VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), VF_MPS_REG(A_MPS_VF_CTL), VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION), VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), FW_T6VF_MBDATA_BASE_ADDR, FW_T6VF_MBDATA_BASE_ADDR + ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), }; u32 *buf_end = (u32 *)(buf + buf_size); const unsigned int *reg_ranges; int reg_ranges_size, range; unsigned int chip_version = chip_id(adap); /* * Select the right set of register ranges to dump depending on the * adapter chip type. */ switch (chip_version) { case CHELSIO_T4: if (adap->flags & IS_VF) { reg_ranges = t4vf_reg_ranges; reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges); } else { reg_ranges = t4_reg_ranges; reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); } break; case CHELSIO_T5: if (adap->flags & IS_VF) { reg_ranges = t5vf_reg_ranges; reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges); } else { reg_ranges = t5_reg_ranges; reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); } break; case CHELSIO_T6: if (adap->flags & IS_VF) { reg_ranges = t6vf_reg_ranges; reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges); } else { reg_ranges = t6_reg_ranges; reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); } break; default: CH_ERR(adap, "Unsupported chip version %d\n", chip_version); return; } /* * Clear the register buffer and insert the appropriate register * values selected by the above register ranges. */ memset(buf, 0, buf_size); for (range = 0; range < reg_ranges_size; range += 2) { unsigned int reg = reg_ranges[range]; unsigned int last_reg = reg_ranges[range + 1]; u32 *bufp = (u32 *)(buf + reg); /* * Iterate across the register range filling in the register * buffer but don't write past the end of the register buffer. */ while (reg <= last_reg && bufp < buf_end) { *bufp++ = t4_read_reg(adap, reg); reg += sizeof(u32); } } } /* * Partial EEPROM Vital Product Data structure. Includes only the ID and * VPD-R sections. */ struct t4_vpd_hdr { u8 id_tag; u8 id_len[2]; u8 id_data[ID_LEN]; u8 vpdr_tag; u8 vpdr_len[2]; }; /* * EEPROM reads take a few tens of us while writes can take a bit over 5 ms. */ #define EEPROM_DELAY 10 /* 10us per poll spin */ #define EEPROM_MAX_POLL 5000 /* x 5000 == 50ms */ #define EEPROM_STAT_ADDR 0x7bfc #define VPD_BASE 0x400 #define VPD_BASE_OLD 0 #define VPD_LEN 1024 #define VPD_INFO_FLD_HDR_SIZE 3 #define CHELSIO_VPD_UNIQUE_ID 0x82 /* * Small utility function to wait till any outstanding VPD Access is complete. * We have a per-adapter state variable "VPD Busy" to indicate when we have a * VPD Access in flight. This allows us to handle the problem of having a * previous VPD Access time out and prevent an attempt to inject a new VPD * Request before any in-flight VPD reguest has completed. */ static int t4_seeprom_wait(struct adapter *adapter) { unsigned int base = adapter->params.pci.vpd_cap_addr; int max_poll; /* * If no VPD Access is in flight, we can just return success right * away. */ if (!adapter->vpd_busy) return 0; /* * Poll the VPD Capability Address/Flag register waiting for it * to indicate that the operation is complete. */ max_poll = EEPROM_MAX_POLL; do { u16 val; udelay(EEPROM_DELAY); t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val); /* * If the operation is complete, mark the VPD as no longer * busy and return success. */ if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) { adapter->vpd_busy = 0; return 0; } } while (--max_poll); /* * Failure! Note that we leave the VPD Busy status set in order to * avoid pushing a new VPD Access request into the VPD Capability till * the current operation eventually succeeds. It's a bug to issue a * new request when an existing request is in flight and will result * in corrupt hardware state. */ return -ETIMEDOUT; } /** * t4_seeprom_read - read a serial EEPROM location * @adapter: adapter to read * @addr: EEPROM virtual address * @data: where to store the read data * * Read a 32-bit word from a location in serial EEPROM using the card's PCI * VPD capability. Note that this function must be called with a virtual * address. */ int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data) { unsigned int base = adapter->params.pci.vpd_cap_addr; int ret; /* * VPD Accesses must alway be 4-byte aligned! */ if (addr >= EEPROMVSIZE || (addr & 3)) return -EINVAL; /* * Wait for any previous operation which may still be in flight to * complete. */ ret = t4_seeprom_wait(adapter); if (ret) { CH_ERR(adapter, "VPD still busy from previous operation\n"); return ret; } /* * Issue our new VPD Read request, mark the VPD as being busy and wait * for our request to complete. If it doesn't complete, note the * error and return it to our caller. Note that we do not reset the * VPD Busy status! */ t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr); adapter->vpd_busy = 1; adapter->vpd_flag = PCI_VPD_ADDR_F; ret = t4_seeprom_wait(adapter); if (ret) { CH_ERR(adapter, "VPD read of address %#x failed\n", addr); return ret; } /* * Grab the returned data, swizzle it into our endianess and * return success. */ t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data); *data = le32_to_cpu(*data); return 0; } /** * t4_seeprom_write - write a serial EEPROM location * @adapter: adapter to write * @addr: virtual EEPROM address * @data: value to write * * Write a 32-bit word to a location in serial EEPROM using the card's PCI * VPD capability. Note that this function must be called with a virtual * address. */ int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data) { unsigned int base = adapter->params.pci.vpd_cap_addr; int ret; u32 stats_reg; int max_poll; /* * VPD Accesses must alway be 4-byte aligned! */ if (addr >= EEPROMVSIZE || (addr & 3)) return -EINVAL; /* * Wait for any previous operation which may still be in flight to * complete. */ ret = t4_seeprom_wait(adapter); if (ret) { CH_ERR(adapter, "VPD still busy from previous operation\n"); return ret; } /* * Issue our new VPD Read request, mark the VPD as being busy and wait * for our request to complete. If it doesn't complete, note the * error and return it to our caller. Note that we do not reset the * VPD Busy status! */ t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, cpu_to_le32(data)); t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr | PCI_VPD_ADDR_F); adapter->vpd_busy = 1; adapter->vpd_flag = 0; ret = t4_seeprom_wait(adapter); if (ret) { CH_ERR(adapter, "VPD write of address %#x failed\n", addr); return ret; } /* * Reset PCI_VPD_DATA register after a transaction and wait for our * request to complete. If it doesn't complete, return error. */ t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0); max_poll = EEPROM_MAX_POLL; do { udelay(EEPROM_DELAY); t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg); } while ((stats_reg & 0x1) && --max_poll); if (!max_poll) return -ETIMEDOUT; /* Return success! */ return 0; } /** * t4_eeprom_ptov - translate a physical EEPROM address to virtual * @phys_addr: the physical EEPROM address * @fn: the PCI function number * @sz: size of function-specific area * * Translate a physical EEPROM address to virtual. The first 1K is * accessed through virtual addresses starting at 31K, the rest is * accessed through virtual addresses starting at 0. * * The mapping is as follows: * [0..1K) -> [31K..32K) * [1K..1K+A) -> [ES-A..ES) * [1K+A..ES) -> [0..ES-A-1K) * * where A = @fn * @sz, and ES = EEPROM size. */ int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) { fn *= sz; if (phys_addr < 1024) return phys_addr + (31 << 10); if (phys_addr < 1024 + fn) return EEPROMSIZE - fn + phys_addr - 1024; if (phys_addr < EEPROMSIZE) return phys_addr - 1024 - fn; return -EINVAL; } /** * t4_seeprom_wp - enable/disable EEPROM write protection * @adapter: the adapter * @enable: whether to enable or disable write protection * * Enables or disables write protection on the serial EEPROM. */ int t4_seeprom_wp(struct adapter *adapter, int enable) { return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0); } /** * get_vpd_keyword_val - Locates an information field keyword in the VPD * @v: Pointer to buffered vpd data structure * @kw: The keyword to search for * * Returns the value of the information field keyword or * -ENOENT otherwise. */ static int get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw) { int i; unsigned int offset , len; const u8 *buf = (const u8 *)v; const u8 *vpdr_len = &v->vpdr_len[0]; offset = sizeof(struct t4_vpd_hdr); len = (u16)vpdr_len[0] + ((u16)vpdr_len[1] << 8); if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) { return -ENOENT; } for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) { if(memcmp(buf + i , kw , 2) == 0){ i += VPD_INFO_FLD_HDR_SIZE; return i; } i += VPD_INFO_FLD_HDR_SIZE + buf[i+2]; } return -ENOENT; } /** * get_vpd_params - read VPD parameters from VPD EEPROM * @adapter: adapter to read * @p: where to store the parameters * @vpd: caller provided temporary space to read the VPD into * * Reads card parameters stored in VPD EEPROM. */ static int get_vpd_params(struct adapter *adapter, struct vpd_params *p, u8 *vpd) { int i, ret, addr; int ec, sn, pn, na; u8 csum; const struct t4_vpd_hdr *v; /* * Card information normally starts at VPD_BASE but early cards had * it at 0. */ ret = t4_seeprom_read(adapter, VPD_BASE, (u32 *)(vpd)); if (ret) return (ret); /* * The VPD shall have a unique identifier specified by the PCI SIG. * For chelsio adapters, the identifier is 0x82. The first byte of a VPD * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software * is expected to automatically put this entry at the * beginning of the VPD. */ addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; for (i = 0; i < VPD_LEN; i += 4) { ret = t4_seeprom_read(adapter, addr + i, (u32 *)(vpd + i)); if (ret) return ret; } v = (const struct t4_vpd_hdr *)vpd; #define FIND_VPD_KW(var,name) do { \ var = get_vpd_keyword_val(v , name); \ if (var < 0) { \ CH_ERR(adapter, "missing VPD keyword " name "\n"); \ return -EINVAL; \ } \ } while (0) FIND_VPD_KW(i, "RV"); for (csum = 0; i >= 0; i--) csum += vpd[i]; if (csum) { CH_ERR(adapter, "corrupted VPD EEPROM, actual csum %u\n", csum); return -EINVAL; } FIND_VPD_KW(ec, "EC"); FIND_VPD_KW(sn, "SN"); FIND_VPD_KW(pn, "PN"); FIND_VPD_KW(na, "NA"); #undef FIND_VPD_KW memcpy(p->id, v->id_data, ID_LEN); strstrip(p->id); memcpy(p->ec, vpd + ec, EC_LEN); strstrip(p->ec); i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2]; memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); strstrip(p->sn); i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2]; memcpy(p->pn, vpd + pn, min(i, PN_LEN)); strstrip((char *)p->pn); i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2]; memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); strstrip((char *)p->na); return 0; } /* serial flash and firmware constants and flash config file constants */ enum { SF_ATTEMPTS = 10, /* max retries for SF operations */ /* flash command opcodes */ SF_PROG_PAGE = 2, /* program page */ SF_WR_DISABLE = 4, /* disable writes */ SF_RD_STATUS = 5, /* read status register */ SF_WR_ENABLE = 6, /* enable writes */ SF_RD_DATA_FAST = 0xb, /* read flash */ SF_RD_ID = 0x9f, /* read ID */ SF_ERASE_SECTOR = 0xd8, /* erase sector */ }; /** * sf1_read - read data from the serial flash * @adapter: the adapter * @byte_cnt: number of bytes to read * @cont: whether another operation will be chained * @lock: whether to lock SF for PL access only * @valp: where to store the read data * * Reads up to 4 bytes of data from the serial flash. The location of * the read needs to be specified prior to calling this by issuing the * appropriate commands to the serial flash. */ static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, int lock, u32 *valp) { int ret; if (!byte_cnt || byte_cnt > 4) return -EINVAL; if (t4_read_reg(adapter, A_SF_OP) & F_BUSY) return -EBUSY; t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1)); ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5); if (!ret) *valp = t4_read_reg(adapter, A_SF_DATA); return ret; } /** * sf1_write - write data to the serial flash * @adapter: the adapter * @byte_cnt: number of bytes to write * @cont: whether another operation will be chained * @lock: whether to lock SF for PL access only * @val: value to write * * Writes up to 4 bytes of data to the serial flash. The location of * the write needs to be specified prior to calling this by issuing the * appropriate commands to the serial flash. */ static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, int lock, u32 val) { if (!byte_cnt || byte_cnt > 4) return -EINVAL; if (t4_read_reg(adapter, A_SF_OP) & F_BUSY) return -EBUSY; t4_write_reg(adapter, A_SF_DATA, val); t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1)); return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5); } /** * flash_wait_op - wait for a flash operation to complete * @adapter: the adapter * @attempts: max number of polls of the status register * @delay: delay between polls in ms * * Wait for a flash operation to complete by polling the status register. */ static int flash_wait_op(struct adapter *adapter, int attempts, int delay) { int ret; u32 status; while (1) { if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) return ret; if (!(status & 1)) return 0; if (--attempts == 0) return -EAGAIN; if (delay) msleep(delay); } } /** * t4_read_flash - read words from serial flash * @adapter: the adapter * @addr: the start address for the read * @nwords: how many 32-bit words to read * @data: where to store the read data * @byte_oriented: whether to store data as bytes or as words * * Read the specified number of 32-bit words from the serial flash. * If @byte_oriented is set the read data is stored as a byte array * (i.e., big-endian), otherwise as 32-bit words in the platform's * natural endianness. */ int t4_read_flash(struct adapter *adapter, unsigned int addr, unsigned int nwords, u32 *data, int byte_oriented) { int ret; if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) return -EINVAL; addr = swab32(addr) | SF_RD_DATA_FAST; if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) return ret; for ( ; nwords; nwords--, data++) { ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); if (nwords == 1) t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ if (ret) return ret; if (byte_oriented) *data = (__force __u32)(cpu_to_be32(*data)); } return 0; } /** * t4_write_flash - write up to a page of data to the serial flash * @adapter: the adapter * @addr: the start address to write * @n: length of data to write in bytes * @data: the data to write * @byte_oriented: whether to store data as bytes or as words * * Writes up to a page of data (256 bytes) to the serial flash starting * at the given address. All the data must be written to the same page. * If @byte_oriented is set the write data is stored as byte stream * (i.e. matches what on disk), otherwise in big-endian. */ int t4_write_flash(struct adapter *adapter, unsigned int addr, unsigned int n, const u8 *data, int byte_oriented) { int ret; u32 buf[SF_PAGE_SIZE / 4]; unsigned int i, c, left, val, offset = addr & 0xff; if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) return -EINVAL; val = swab32(addr) | SF_PROG_PAGE; if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) goto unlock; for (left = n; left; left -= c) { c = min(left, 4U); for (val = 0, i = 0; i < c; ++i) val = (val << 8) + *data++; if (!byte_oriented) val = cpu_to_be32(val); ret = sf1_write(adapter, c, c != left, 1, val); if (ret) goto unlock; } ret = flash_wait_op(adapter, 8, 1); if (ret) goto unlock; t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ /* Read the page to verify the write succeeded */ ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, byte_oriented); if (ret) return ret; if (memcmp(data - n, (u8 *)buf + offset, n)) { CH_ERR(adapter, "failed to correctly write the flash page at %#x\n", addr); return -EIO; } return 0; unlock: t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ return ret; } /** * t4_get_fw_version - read the firmware version * @adapter: the adapter * @vers: where to place the version * * Reads the FW version from flash. */ int t4_get_fw_version(struct adapter *adapter, u32 *vers) { return t4_read_flash(adapter, FLASH_FW_START + offsetof(struct fw_hdr, fw_ver), 1, vers, 0); } /** * t4_get_bs_version - read the firmware bootstrap version * @adapter: the adapter * @vers: where to place the version * * Reads the FW Bootstrap version from flash. */ int t4_get_bs_version(struct adapter *adapter, u32 *vers) { return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + offsetof(struct fw_hdr, fw_ver), 1, vers, 0); } /** * t4_get_tp_version - read the TP microcode version * @adapter: the adapter * @vers: where to place the version * * Reads the TP microcode version from flash. */ int t4_get_tp_version(struct adapter *adapter, u32 *vers) { return t4_read_flash(adapter, FLASH_FW_START + offsetof(struct fw_hdr, tp_microcode_ver), 1, vers, 0); } /** * t4_get_exprom_version - return the Expansion ROM version (if any) * @adapter: the adapter * @vers: where to place the version * * Reads the Expansion ROM header from FLASH and returns the version * number (if present) through the @vers return value pointer. We return * this in the Firmware Version Format since it's convenient. Return * 0 on success, -ENOENT if no Expansion ROM is present. */ int t4_get_exprom_version(struct adapter *adap, u32 *vers) { struct exprom_header { unsigned char hdr_arr[16]; /* must start with 0x55aa */ unsigned char hdr_ver[4]; /* Expansion ROM version */ } *hdr; u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), sizeof(u32))]; int ret; ret = t4_read_flash(adap, FLASH_EXP_ROM_START, ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 0); if (ret) return ret; hdr = (struct exprom_header *)exprom_header_buf; if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) return -ENOENT; *vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) | V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) | V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) | V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3])); return 0; } /** * t4_get_scfg_version - return the Serial Configuration version * @adapter: the adapter * @vers: where to place the version * * Reads the Serial Configuration Version via the Firmware interface * (thus this can only be called once we're ready to issue Firmware * commands). The format of the Serial Configuration version is * adapter specific. Returns 0 on success, an error on failure. * * Note that early versions of the Firmware didn't include the ability * to retrieve the Serial Configuration version, so we zero-out the * return-value parameter in that case to avoid leaving it with * garbage in it. * * Also note that the Firmware will return its cached copy of the Serial * Initialization Revision ID, not the actual Revision ID as written in * the Serial EEPROM. This is only an issue if a new VPD has been written * and the Firmware/Chip haven't yet gone through a RESET sequence. So * it's best to defer calling this routine till after a FW_RESET_CMD has * been issued if the Host Driver will be performing a full adapter * initialization. */ int t4_get_scfg_version(struct adapter *adapter, u32 *vers) { u32 scfgrev_param; int ret; scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV)); ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1, &scfgrev_param, vers); if (ret) *vers = 0; return ret; } /** * t4_get_vpd_version - return the VPD version * @adapter: the adapter * @vers: where to place the version * * Reads the VPD via the Firmware interface (thus this can only be called * once we're ready to issue Firmware commands). The format of the * VPD version is adapter specific. Returns 0 on success, an error on * failure. * * Note that early versions of the Firmware didn't include the ability * to retrieve the VPD version, so we zero-out the return-value parameter * in that case to avoid leaving it with garbage in it. * * Also note that the Firmware will return its cached copy of the VPD * Revision ID, not the actual Revision ID as written in the Serial * EEPROM. This is only an issue if a new VPD has been written and the * Firmware/Chip haven't yet gone through a RESET sequence. So it's best * to defer calling this routine till after a FW_RESET_CMD has been issued * if the Host Driver will be performing a full adapter initialization. */ int t4_get_vpd_version(struct adapter *adapter, u32 *vers) { u32 vpdrev_param; int ret; vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV)); ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1, &vpdrev_param, vers); if (ret) *vers = 0; return ret; } /** * t4_get_version_info - extract various chip/firmware version information * @adapter: the adapter * * Reads various chip/firmware version numbers and stores them into the * adapter Adapter Parameters structure. If any of the efforts fails * the first failure will be returned, but all of the version numbers * will be read. */ int t4_get_version_info(struct adapter *adapter) { int ret = 0; #define FIRST_RET(__getvinfo) \ do { \ int __ret = __getvinfo; \ if (__ret && !ret) \ ret = __ret; \ } while (0) FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); #undef FIRST_RET return ret; } /** * t4_flash_erase_sectors - erase a range of flash sectors * @adapter: the adapter * @start: the first sector to erase * @end: the last sector to erase * * Erases the sectors in the given inclusive range. */ int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) { int ret = 0; if (end >= adapter->params.sf_nsec) return -EINVAL; while (start <= end) { if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || (ret = sf1_write(adapter, 4, 0, 1, SF_ERASE_SECTOR | (start << 8))) != 0 || (ret = flash_wait_op(adapter, 14, 500)) != 0) { CH_ERR(adapter, "erase of flash sector %d failed, error %d\n", start, ret); break; } start++; } t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ return ret; } /** * t4_flash_cfg_addr - return the address of the flash configuration file * @adapter: the adapter * * Return the address within the flash where the Firmware Configuration * File is stored, or an error if the device FLASH is too small to contain * a Firmware Configuration File. */ int t4_flash_cfg_addr(struct adapter *adapter) { /* * If the device FLASH isn't large enough to hold a Firmware * Configuration File, return an error. */ if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE) return -ENOSPC; return FLASH_CFG_START; } /* * Return TRUE if the specified firmware matches the adapter. I.e. T4 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead * and emit an error message for mismatched firmware to save our caller the * effort ... */ static int t4_fw_matches_chip(struct adapter *adap, const struct fw_hdr *hdr) { /* * The expression below will return FALSE for any unsupported adapter * which will keep us "honest" in the future ... */ if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) || (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) || (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6)) return 1; CH_ERR(adap, "FW image (%d) is not suitable for this adapter (%d)\n", hdr->chip, chip_id(adap)); return 0; } /** * t4_load_fw - download firmware * @adap: the adapter * @fw_data: the firmware image to write * @size: image size * * Write the supplied firmware image to the card's serial flash. */ int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) { u32 csum; int ret, addr; unsigned int i; u8 first_page[SF_PAGE_SIZE]; const u32 *p = (const u32 *)fw_data; const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; unsigned int fw_start_sec; unsigned int fw_start; unsigned int fw_size; if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) { fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC; fw_start = FLASH_FWBOOTSTRAP_START; fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE; } else { fw_start_sec = FLASH_FW_START_SEC; fw_start = FLASH_FW_START; fw_size = FLASH_FW_MAX_SIZE; } if (!size) { CH_ERR(adap, "FW image has no data\n"); return -EINVAL; } if (size & 511) { CH_ERR(adap, "FW image size not multiple of 512 bytes\n"); return -EINVAL; } if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) { CH_ERR(adap, "FW image size differs from size in FW header\n"); return -EINVAL; } if (size > fw_size) { CH_ERR(adap, "FW image too large, max is %u bytes\n", fw_size); return -EFBIG; } if (!t4_fw_matches_chip(adap, hdr)) return -EINVAL; for (csum = 0, i = 0; i < size / sizeof(csum); i++) csum += be32_to_cpu(p[i]); if (csum != 0xffffffff) { CH_ERR(adap, "corrupted firmware image, checksum %#x\n", csum); return -EINVAL; } i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); if (ret) goto out; /* * We write the correct version at the end so the driver can see a bad * version if the FW write fails. Start by writing a copy of the * first page with a bad version. */ memcpy(first_page, fw_data, SF_PAGE_SIZE); ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1); if (ret) goto out; addr = fw_start; for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { addr += SF_PAGE_SIZE; fw_data += SF_PAGE_SIZE; ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1); if (ret) goto out; } ret = t4_write_flash(adap, fw_start + offsetof(struct fw_hdr, fw_ver), sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1); out: if (ret) CH_ERR(adap, "firmware download failed, error %d\n", ret); return ret; } /** * t4_fwcache - firmware cache operation * @adap: the adapter * @op : the operation (flush or flush and invalidate) */ int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) { struct fw_params_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_PARAMS_CMD_PFN(adap->pf) | V_FW_PARAMS_CMD_VFN(0)); c.retval_len16 = cpu_to_be32(FW_LEN16(c)); c.param[0].mnem = cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE)); c.param[0].val = (__force __be32)op; return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); } void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, unsigned int *pif_req_wrptr, unsigned int *pif_rsp_wrptr) { int i, j; u32 cfg, val, req, rsp; cfg = t4_read_reg(adap, A_CIM_DEBUGCFG); if (cfg & F_LADBGEN) t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN); val = t4_read_reg(adap, A_CIM_DEBUGSTS); req = G_POLADBGWRPTR(val); rsp = G_PILADBGWRPTR(val); if (pif_req_wrptr) *pif_req_wrptr = req; if (pif_rsp_wrptr) *pif_rsp_wrptr = rsp; for (i = 0; i < CIM_PIFLA_SIZE; i++) { for (j = 0; j < 6; j++) { t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) | V_PILADBGRDPTR(rsp)); *pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA); *pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA); req++; rsp++; } req = (req + 2) & M_POLADBGRDPTR; rsp = (rsp + 2) & M_PILADBGRDPTR; } t4_write_reg(adap, A_CIM_DEBUGCFG, cfg); } void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) { u32 cfg; int i, j, idx; cfg = t4_read_reg(adap, A_CIM_DEBUGCFG); if (cfg & F_LADBGEN) t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN); for (i = 0; i < CIM_MALA_SIZE; i++) { for (j = 0; j < 5; j++) { idx = 8 * i + j; t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) | V_PILADBGRDPTR(idx)); *ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA); *ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA); } } t4_write_reg(adap, A_CIM_DEBUGCFG, cfg); } void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) { unsigned int i, j; for (i = 0; i < 8; i++) { u32 *p = la_buf + i; t4_write_reg(adap, A_ULP_RX_LA_CTL, i); j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR); t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j); for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) *p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA); } } #define ADVERT_MASK (V_FW_PORT_CAP_SPEED(M_FW_PORT_CAP_SPEED) | \ FW_PORT_CAP_ANEG) /** * t4_link_l1cfg - apply link configuration to MAC/PHY * @phy: the PHY to setup * @mac: the MAC to setup * @lc: the requested link configuration * * Set up a port's MAC and PHY according to a desired link configuration. * - If the PHY can auto-negotiate first decide what to advertise, then * enable/disable auto-negotiation as desired, and reset. * - If the PHY does not auto-negotiate just reset it. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, * otherwise do it later based on the outcome of auto-negotiation. */ int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port, struct link_config *lc) { struct fw_port_cmd c; unsigned int mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO); unsigned int fc, fec; fc = 0; if (lc->requested_fc & PAUSE_RX) fc |= FW_PORT_CAP_FC_RX; if (lc->requested_fc & PAUSE_TX) fc |= FW_PORT_CAP_FC_TX; fec = 0; if (lc->requested_fec & FEC_RS) fec |= FW_PORT_CAP_FEC_RS; if (lc->requested_fec & FEC_BASER_RS) fec |= FW_PORT_CAP_FEC_BASER_RS; if (lc->requested_fec & FEC_RESERVED) fec |= FW_PORT_CAP_FEC_RESERVED; memset(&c, 0, sizeof(c)); c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_PORT_CMD_PORTID(port)); c.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | FW_LEN16(c)); if (!(lc->supported & FW_PORT_CAP_ANEG)) { c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) | fc | fec); lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; lc->fec = lc->requested_fec; } else if (lc->autoneg == AUTONEG_DISABLE) { c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | fec | mdi); lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; lc->fec = lc->requested_fec; } else c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | fec | mdi); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_restart_aneg - restart autonegotiation * @adap: the adapter * @mbox: mbox to use for the FW command * @port: the port id * * Restarts autonegotiation for the selected port. */ int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) { struct fw_port_cmd c; memset(&c, 0, sizeof(c)); c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_PORT_CMD_PORTID(port)); c.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | FW_LEN16(c)); c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } typedef void (*int_handler_t)(struct adapter *adap); struct intr_info { unsigned int mask; /* bits to check in interrupt status */ const char *msg; /* message to print or NULL */ short stat_idx; /* stat counter to increment or -1 */ unsigned short fatal; /* whether the condition reported is fatal */ int_handler_t int_handler; /* platform-specific int handler */ }; /** * t4_handle_intr_status - table driven interrupt handler * @adapter: the adapter that generated the interrupt * @reg: the interrupt status register to process * @acts: table of interrupt actions * * A table driven interrupt handler that applies a set of masks to an * interrupt status word and performs the corresponding actions if the * interrupts described by the mask have occurred. The actions include * optionally emitting a warning or alert message. The table is terminated * by an entry specifying mask 0. Returns the number of fatal interrupt * conditions. */ static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, const struct intr_info *acts) { int fatal = 0; unsigned int mask = 0; unsigned int status = t4_read_reg(adapter, reg); for ( ; acts->mask; ++acts) { if (!(status & acts->mask)) continue; if (acts->fatal) { fatal++; CH_ALERT(adapter, "%s (0x%x)\n", acts->msg, status & acts->mask); } else if (acts->msg) CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg, status & acts->mask); if (acts->int_handler) acts->int_handler(adapter); mask |= acts->mask; } status &= mask; if (status) /* clear processed interrupts */ t4_write_reg(adapter, reg, status); return fatal; } /* * Interrupt handler for the PCIE module. */ static void pcie_intr_handler(struct adapter *adapter) { static const struct intr_info sysbus_intr_info[] = { { F_RNPP, "RXNP array parity error", -1, 1 }, { F_RPCP, "RXPC array parity error", -1, 1 }, { F_RCIP, "RXCIF array parity error", -1, 1 }, { F_RCCP, "Rx completions control array parity error", -1, 1 }, { F_RFTP, "RXFT array parity error", -1, 1 }, { 0 } }; static const struct intr_info pcie_port_intr_info[] = { { F_TPCP, "TXPC array parity error", -1, 1 }, { F_TNPP, "TXNP array parity error", -1, 1 }, { F_TFTP, "TXFT array parity error", -1, 1 }, { F_TCAP, "TXCA array parity error", -1, 1 }, { F_TCIP, "TXCIF array parity error", -1, 1 }, { F_RCAP, "RXCA array parity error", -1, 1 }, { F_OTDD, "outbound request TLP discarded", -1, 1 }, { F_RDPE, "Rx data parity error", -1, 1 }, { F_TDUE, "Tx uncorrectable data error", -1, 1 }, { 0 } }; static const struct intr_info pcie_intr_info[] = { { F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 }, { F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 }, { F_MSIDATAPERR, "MSI data parity error", -1, 1 }, { F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 }, { F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 }, { F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 }, { F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 }, { F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 }, { F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 }, { F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 }, { F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 }, { F_CREQPERR, "PCI CMD channel request parity error", -1, 1 }, { F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 }, { F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 }, { F_DREQPERR, "PCI DMA channel request parity error", -1, 1 }, { F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 }, { F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 }, { F_HREQPERR, "PCI HMA channel request parity error", -1, 1 }, { F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 }, { F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 }, { F_FIDPERR, "PCI FID parity error", -1, 1 }, { F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 }, { F_MATAGPERR, "PCI MA tag parity error", -1, 1 }, { F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 }, { F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 }, { F_RXWRPERR, "PCI Rx write parity error", -1, 1 }, { F_RPLPERR, "PCI replay buffer parity error", -1, 1 }, { F_PCIESINT, "PCI core secondary fault", -1, 1 }, { F_PCIEPINT, "PCI core primary fault", -1, 1 }, { F_UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 }, { 0 } }; static const struct intr_info t5_pcie_intr_info[] = { { F_MSTGRPPERR, "Master Response Read Queue parity error", -1, 1 }, { F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 }, { F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 }, { F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 }, { F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 }, { F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 }, { F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 }, { F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error", -1, 1 }, { F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error", -1, 1 }, { F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 }, { F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 }, { F_CREQPERR, "PCI CMD channel request parity error", -1, 1 }, { F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 }, { F_DREQWRPERR, "PCI DMA channel write request parity error", -1, 1 }, { F_DREQPERR, "PCI DMA channel request parity error", -1, 1 }, { F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 }, { F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 }, { F_HREQPERR, "PCI HMA channel request parity error", -1, 1 }, { F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 }, { F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 }, { F_FIDPERR, "PCI FID parity error", -1, 1 }, { F_VFIDPERR, "PCI INTx clear parity error", -1, 1 }, { F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 }, { F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 }, { F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error", -1, 1 }, { F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error", -1, 1 }, { F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 }, { F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 }, { F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 }, { F_READRSPERR, "Outbound read error", -1, 0 }, { 0 } }; int fat; if (is_t4(adapter)) fat = t4_handle_intr_status(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, sysbus_intr_info) + t4_handle_intr_status(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, pcie_port_intr_info) + t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE, pcie_intr_info); else fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE, t5_pcie_intr_info); if (fat) t4_fatal_err(adapter); } /* * TP interrupt handler. */ static void tp_intr_handler(struct adapter *adapter) { static const struct intr_info tp_intr_info[] = { { 0x3fffffff, "TP parity error", -1, 1 }, { F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info)) t4_fatal_err(adapter); } /* * SGE interrupt handler. */ static void sge_intr_handler(struct adapter *adapter) { u64 v; u32 err; static const struct intr_info sge_intr_info[] = { { F_ERR_CPL_EXCEED_IQE_SIZE, "SGE received CPL exceeding IQE size", -1, 1 }, { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large", -1, 0 }, { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 }, { F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full }, { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0, "SGE IQID > 1023 received CPL for FL", -1, 0 }, { F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1, 0 }, { F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1, 0 }, { F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1, 0 }, { F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1, 0 }, { F_ERR_ING_CTXT_PRIO, "SGE too many priority ingress contexts", -1, 0 }, { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 }, { F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 }, { 0 } }; static const struct intr_info t4t5_sge_intr_info[] = { { F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped }, { F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full }, { F_ERR_EGR_CTXT_PRIO, "SGE too many priority egress contexts", -1, 0 }, { 0 } }; /* * For now, treat below interrupts as fatal so that we disable SGE and * get better debug */ static const struct intr_info t6_sge_intr_info[] = { { F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1, "SGE PCIe error for a DBP thread", -1, 1 }, { F_FATAL_WRE_LEN, "SGE Actual WRE packet is less than advertized length", -1, 1 }, { 0 } }; v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) | ((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32); if (v) { CH_ALERT(adapter, "SGE parity error (%#llx)\n", (unsigned long long)v); t4_write_reg(adapter, A_SGE_INT_CAUSE1, v); t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32); } v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info); if (chip_id(adapter) <= CHELSIO_T5) v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, t4t5_sge_intr_info); else v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, t6_sge_intr_info); err = t4_read_reg(adapter, A_SGE_ERROR_STATS); if (err & F_ERROR_QID_VALID) { CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err)); if (err & F_UNCAPTURED_ERROR) CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n"); t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID | F_UNCAPTURED_ERROR); } if (v != 0) t4_fatal_err(adapter); } #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\ F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR) #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\ F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR) /* * CIM interrupt handler. */ static void cim_intr_handler(struct adapter *adapter) { static const struct intr_info cim_intr_info[] = { { F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 }, { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, { F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 }, { F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 }, { F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 }, { F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 }, { 0 } }; static const struct intr_info cim_upintr_info[] = { { F_RSVDSPACEINT, "CIM reserved space access", -1, 1 }, { F_ILLTRANSINT, "CIM illegal transaction", -1, 1 }, { F_ILLWRINT, "CIM illegal write", -1, 1 }, { F_ILLRDINT, "CIM illegal read", -1, 1 }, { F_ILLRDBEINT, "CIM illegal read BE", -1, 1 }, { F_ILLWRBEINT, "CIM illegal write BE", -1, 1 }, { F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 }, { F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 }, { F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 }, { F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 }, { F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 }, { F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 }, { F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 }, { F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 }, { F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 }, { F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 }, { F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 }, { F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 }, { F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 }, { F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 }, { F_SGLRDPLINT , "CIM single read from PL space", -1, 1 }, { F_SGLWRPLINT , "CIM single write to PL space", -1, 1 }, { F_BLKRDPLINT , "CIM block read from PL space", -1, 1 }, { F_BLKWRPLINT , "CIM block write to PL space", -1, 1 }, { F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 }, { F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 }, { F_TIMEOUTINT , "CIM PIF timeout", -1, 1 }, { F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 }, { 0 } }; int fat; if (t4_read_reg(adapter, A_PCIE_FW) & F_PCIE_FW_ERR) t4_report_fw_error(adapter); fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, cim_intr_info) + t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE, cim_upintr_info); if (fat) t4_fatal_err(adapter); } /* * ULP RX interrupt handler. */ static void ulprx_intr_handler(struct adapter *adapter) { static const struct intr_info ulprx_intr_info[] = { { F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 }, { F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 }, { 0x7fffff, "ULPRX parity error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info)) t4_fatal_err(adapter); } /* * ULP TX interrupt handler. */ static void ulptx_intr_handler(struct adapter *adapter) { static const struct intr_info ulptx_intr_info[] = { { F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1, 0 }, { F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1, 0 }, { F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1, 0 }, { F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1, 0 }, { 0xfffffff, "ULPTX parity error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info)) t4_fatal_err(adapter); } /* * PM TX interrupt handler. */ static void pmtx_intr_handler(struct adapter *adapter) { static const struct intr_info pmtx_intr_info[] = { { F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 }, { F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 }, { F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 }, { F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 }, { 0xffffff0, "PMTX framing error", -1, 1 }, { F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 }, { F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 }, { F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 }, { F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1}, { 0 } }; if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info)) t4_fatal_err(adapter); } /* * PM RX interrupt handler. */ static void pmrx_intr_handler(struct adapter *adapter) { static const struct intr_info pmrx_intr_info[] = { { F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 }, { 0x3ffff0, "PMRX framing error", -1, 1 }, { F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 }, { F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 }, { F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 }, { F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1}, { 0 } }; if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info)) t4_fatal_err(adapter); } /* * CPL switch interrupt handler. */ static void cplsw_intr_handler(struct adapter *adapter) { static const struct intr_info cplsw_intr_info[] = { { F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 }, { F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 }, { F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 }, { F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 }, { F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 }, { F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info)) t4_fatal_err(adapter); } /* * LE interrupt handler. */ static void le_intr_handler(struct adapter *adap) { unsigned int chip_ver = chip_id(adap); static const struct intr_info le_intr_info[] = { { F_LIPMISS, "LE LIP miss", -1, 0 }, { F_LIP0, "LE 0 LIP error", -1, 0 }, { F_PARITYERR, "LE parity error", -1, 1 }, { F_UNKNOWNCMD, "LE unknown command", -1, 1 }, { F_REQQPARERR, "LE request queue parity error", -1, 1 }, { 0 } }; static const struct intr_info t6_le_intr_info[] = { { F_T6_LIPMISS, "LE LIP miss", -1, 0 }, { F_T6_LIP0, "LE 0 LIP error", -1, 0 }, { F_TCAMINTPERR, "LE parity error", -1, 1 }, { F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 }, { F_SSRAMINTPERR, "LE request queue parity error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE, (chip_ver <= CHELSIO_T5) ? le_intr_info : t6_le_intr_info)) t4_fatal_err(adap); } /* * MPS interrupt handler. */ static void mps_intr_handler(struct adapter *adapter) { static const struct intr_info mps_rx_intr_info[] = { { 0xffffff, "MPS Rx parity error", -1, 1 }, { 0 } }; static const struct intr_info mps_tx_intr_info[] = { { V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 }, { F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 }, { V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error", -1, 1 }, { V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error", -1, 1 }, { F_BUBBLE, "MPS Tx underflow", -1, 1 }, { F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 }, { F_FRMERR, "MPS Tx framing error", -1, 1 }, { 0 } }; static const struct intr_info mps_trc_intr_info[] = { { V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 }, { V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1, 1 }, { F_MISCPERR, "MPS TRC misc parity error", -1, 1 }, { 0 } }; static const struct intr_info mps_stat_sram_intr_info[] = { { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, { 0 } }; static const struct intr_info mps_stat_tx_intr_info[] = { { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, { 0 } }; static const struct intr_info mps_stat_rx_intr_info[] = { { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, { 0 } }; static const struct intr_info mps_cls_intr_info[] = { { F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 }, { F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 }, { F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 }, { 0 } }; int fat; fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE, mps_rx_intr_info) + t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE, mps_tx_intr_info) + t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE, mps_trc_intr_info) + t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM, mps_stat_sram_intr_info) + t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO, mps_stat_tx_intr_info) + t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO, mps_stat_rx_intr_info) + t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE, mps_cls_intr_info); t4_write_reg(adapter, A_MPS_INT_CAUSE, 0); t4_read_reg(adapter, A_MPS_INT_CAUSE); /* flush */ if (fat) t4_fatal_err(adapter); } #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \ F_ECC_UE_INT_CAUSE) /* * EDC/MC interrupt handler. */ static void mem_intr_handler(struct adapter *adapter, int idx) { static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; unsigned int addr, cnt_addr, v; if (idx <= MEM_EDC1) { addr = EDC_REG(A_EDC_INT_CAUSE, idx); cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx); } else if (idx == MEM_MC) { if (is_t4(adapter)) { addr = A_MC_INT_CAUSE; cnt_addr = A_MC_ECC_STATUS; } else { addr = A_MC_P_INT_CAUSE; cnt_addr = A_MC_P_ECC_STATUS; } } else { addr = MC_REG(A_MC_P_INT_CAUSE, 1); cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1); } v = t4_read_reg(adapter, addr) & MEM_INT_MASK; if (v & F_PERR_INT_CAUSE) CH_ALERT(adapter, "%s FIFO parity error\n", name[idx]); if (v & F_ECC_CE_INT_CAUSE) { u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr)); if (idx <= MEM_EDC1) t4_edc_err_read(adapter, idx); t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT)); CH_WARN_RATELIMIT(adapter, "%u %s correctable ECC data error%s\n", cnt, name[idx], cnt > 1 ? "s" : ""); } if (v & F_ECC_UE_INT_CAUSE) CH_ALERT(adapter, "%s uncorrectable ECC data error\n", name[idx]); t4_write_reg(adapter, addr, v); if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE)) t4_fatal_err(adapter); } /* * MA interrupt handler. */ static void ma_intr_handler(struct adapter *adapter) { u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE); if (status & F_MEM_PERR_INT_CAUSE) { CH_ALERT(adapter, "MA parity error, parity status %#x\n", t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1)); if (is_t5(adapter)) CH_ALERT(adapter, "MA parity error, parity status %#x\n", t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS2)); } if (status & F_MEM_WRAP_INT_CAUSE) { v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS); CH_ALERT(adapter, "MA address wrap-around error by " "client %u to address %#x\n", G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4); } t4_write_reg(adapter, A_MA_INT_CAUSE, status); t4_fatal_err(adapter); } /* * SMB interrupt handler. */ static void smb_intr_handler(struct adapter *adap) { static const struct intr_info smb_intr_info[] = { { F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 }, { F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 }, { F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info)) t4_fatal_err(adap); } /* * NC-SI interrupt handler. */ static void ncsi_intr_handler(struct adapter *adap) { static const struct intr_info ncsi_intr_info[] = { { F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 }, { F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 }, { F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 }, { F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info)) t4_fatal_err(adap); } /* * XGMAC interrupt handler. */ static void xgmac_intr_handler(struct adapter *adap, int port) { u32 v, int_cause_reg; if (is_t4(adap)) int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE); else int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE); v = t4_read_reg(adap, int_cause_reg); v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR); if (!v) return; if (v & F_TXFIFO_PRTY_ERR) CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n", port); if (v & F_RXFIFO_PRTY_ERR) CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n", port); t4_write_reg(adap, int_cause_reg, v); t4_fatal_err(adap); } /* * PL interrupt handler. */ static void pl_intr_handler(struct adapter *adap) { static const struct intr_info pl_intr_info[] = { { F_FATALPERR, "Fatal parity error", -1, 1 }, { F_PERRVFID, "PL VFID_MAP parity error", -1, 1 }, { 0 } }; static const struct intr_info t5_pl_intr_info[] = { { F_FATALPERR, "Fatal parity error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE, is_t4(adap) ? pl_intr_info : t5_pl_intr_info)) t4_fatal_err(adap); } #define PF_INTR_MASK (F_PFSW | F_PFCIM) /** * t4_slow_intr_handler - control path interrupt handler * @adapter: the adapter * * T4 interrupt handler for non-data global interrupt events, e.g., errors. * The designation 'slow' is because it involves register reads, while * data interrupts typically don't involve any MMIOs. */ int t4_slow_intr_handler(struct adapter *adapter) { u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE); if (!(cause & GLBL_INTR_MASK)) return 0; if (cause & F_CIM) cim_intr_handler(adapter); if (cause & F_MPS) mps_intr_handler(adapter); if (cause & F_NCSI) ncsi_intr_handler(adapter); if (cause & F_PL) pl_intr_handler(adapter); if (cause & F_SMB) smb_intr_handler(adapter); if (cause & F_MAC0) xgmac_intr_handler(adapter, 0); if (cause & F_MAC1) xgmac_intr_handler(adapter, 1); if (cause & F_MAC2) xgmac_intr_handler(adapter, 2); if (cause & F_MAC3) xgmac_intr_handler(adapter, 3); if (cause & F_PCIE) pcie_intr_handler(adapter); if (cause & F_MC0) mem_intr_handler(adapter, MEM_MC); if (is_t5(adapter) && (cause & F_MC1)) mem_intr_handler(adapter, MEM_MC1); if (cause & F_EDC0) mem_intr_handler(adapter, MEM_EDC0); if (cause & F_EDC1) mem_intr_handler(adapter, MEM_EDC1); if (cause & F_LE) le_intr_handler(adapter); if (cause & F_TP) tp_intr_handler(adapter); if (cause & F_MA) ma_intr_handler(adapter); if (cause & F_PM_TX) pmtx_intr_handler(adapter); if (cause & F_PM_RX) pmrx_intr_handler(adapter); if (cause & F_ULP_RX) ulprx_intr_handler(adapter); if (cause & F_CPL_SWITCH) cplsw_intr_handler(adapter); if (cause & F_SGE) sge_intr_handler(adapter); if (cause & F_ULP_TX) ulptx_intr_handler(adapter); /* Clear the interrupts just processed for which we are the master. */ t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK); (void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */ return 1; } /** * t4_intr_enable - enable interrupts * @adapter: the adapter whose interrupts should be enabled * * Enable PF-specific interrupts for the calling function and the top-level * interrupt concentrator for global interrupts. Interrupts are already * enabled at each module, here we just enable the roots of the interrupt * hierarchies. * * Note: this function should be called only when the driver manages * non PF-specific interrupts from the various HW modules. Only one PCI * function at a time should be doing this. */ void t4_intr_enable(struct adapter *adapter) { u32 val = 0; u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI); u32 pf = (chip_id(adapter) <= CHELSIO_T5 ? G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami)); if (chip_id(adapter) <= CHELSIO_T5) val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT; else val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN; t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 | F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val); t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK); t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf); } /** * t4_intr_disable - disable interrupts * @adapter: the adapter whose interrupts should be disabled * * Disable interrupts. We only disable the top-level interrupt * concentrators. The caller must be a PCI function managing global * interrupts. */ void t4_intr_disable(struct adapter *adapter) { u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI); u32 pf = (chip_id(adapter) <= CHELSIO_T5 ? G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami)); t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0); t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0); } /** * t4_intr_clear - clear all interrupts * @adapter: the adapter whose interrupts should be cleared * * Clears all interrupts. The caller must be a PCI function managing * global interrupts. */ void t4_intr_clear(struct adapter *adapter) { static const unsigned int cause_reg[] = { A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3, A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE, A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE, A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1), A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE, MYPF_REG(A_CIM_PF_HOST_INT_CAUSE), A_TP_INT_CAUSE, A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE, A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE, A_MPS_RX_PERR_INT_CAUSE, A_CPL_INTR_CAUSE, MYPF_REG(A_PL_PF_INT_CAUSE), A_PL_PL_INT_CAUSE, A_LE_DB_INT_CAUSE, }; unsigned int i; for (i = 0; i < ARRAY_SIZE(cause_reg); ++i) t4_write_reg(adapter, cause_reg[i], 0xffffffff); t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE : A_MC_P_INT_CAUSE, 0xffffffff); if (is_t4(adapter)) { t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, 0xffffffff); t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, 0xffffffff); } else t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff); t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK); (void) t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */ } /** * hash_mac_addr - return the hash value of a MAC address * @addr: the 48-bit Ethernet MAC address * * Hashes a MAC address according to the hash function used by HW inexact * (hash) address matching. */ static int hash_mac_addr(const u8 *addr) { u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; a ^= b; a ^= (a >> 12); a ^= (a >> 6); return a & 0x3f; } /** * t4_config_rss_range - configure a portion of the RSS mapping table * @adapter: the adapter * @mbox: mbox to use for the FW command * @viid: virtual interface whose RSS subtable is to be written * @start: start entry in the table to write * @n: how many table entries to write * @rspq: values for the "response queue" (Ingress Queue) lookup table * @nrspq: number of values in @rspq * * Programs the selected part of the VI's RSS mapping table with the * provided values. If @nrspq < @n the supplied values are used repeatedly * until the full table range is populated. * * The caller must ensure the values in @rspq are in the range allowed for * @viid. */ int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, int start, int n, const u16 *rspq, unsigned int nrspq) { int ret; const u16 *rsp = rspq; const u16 *rsp_end = rspq + nrspq; struct fw_rss_ind_tbl_cmd cmd; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_RSS_IND_TBL_CMD_VIID(viid)); cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); /* * Each firmware RSS command can accommodate up to 32 RSS Ingress * Queue Identifiers. These Ingress Queue IDs are packed three to * a 32-bit word as 10-bit values with the upper remaining 2 bits * reserved. */ while (n > 0) { int nq = min(n, 32); int nq_packed = 0; __be32 *qp = &cmd.iq0_to_iq2; /* * Set up the firmware RSS command header to send the next * "nq" Ingress Queue IDs to the firmware. */ cmd.niqid = cpu_to_be16(nq); cmd.startidx = cpu_to_be16(start); /* * "nq" more done for the start of the next loop. */ start += nq; n -= nq; /* * While there are still Ingress Queue IDs to stuff into the * current firmware RSS command, retrieve them from the * Ingress Queue ID array and insert them into the command. */ while (nq > 0) { /* * Grab up to the next 3 Ingress Queue IDs (wrapping * around the Ingress Queue ID array if necessary) and * insert them into the firmware RSS command at the * current 3-tuple position within the commad. */ u16 qbuf[3]; u16 *qbp = qbuf; int nqbuf = min(3, nq); nq -= nqbuf; qbuf[0] = qbuf[1] = qbuf[2] = 0; while (nqbuf && nq_packed < 32) { nqbuf--; nq_packed++; *qbp++ = *rsp++; if (rsp >= rsp_end) rsp = rspq; } *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) | V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) | V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2])); } /* * Send this portion of the RRS table update to the firmware; * bail out on any errors. */ ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); if (ret) return ret; } return 0; } /** * t4_config_glbl_rss - configure the global RSS mode * @adapter: the adapter * @mbox: mbox to use for the FW command * @mode: global RSS mode * @flags: mode-specific flags * * Sets the global RSS mode. */ int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, unsigned int flags) { struct fw_rss_glb_config_cmd c; memset(&c, 0, sizeof(c)); c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE); c.retval_len16 = cpu_to_be32(FW_LEN16(c)); if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { c.u.manual.mode_pkd = cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode)); } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { c.u.basicvirtual.mode_keymode = cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode)); c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); } else return -EINVAL; return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); } /** * t4_config_vi_rss - configure per VI RSS settings * @adapter: the adapter * @mbox: mbox to use for the FW command * @viid: the VI id * @flags: RSS flags * @defq: id of the default RSS queue for the VI. * @skeyidx: RSS secret key table index for non-global mode * @skey: RSS vf_scramble key for VI. * * Configures VI-specific RSS properties. */ int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, unsigned int flags, unsigned int defq, unsigned int skeyidx, unsigned int skey) { struct fw_rss_vi_config_cmd c; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_RSS_VI_CONFIG_CMD_VIID(viid)); c.retval_len16 = cpu_to_be32(FW_LEN16(c)); c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq)); c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32( V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx)); c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey); return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); } /* Read an RSS table row */ static int rd_rss_row(struct adapter *adap, int row, u32 *val) { t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row); return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1, 5, 0, val); } /** * t4_read_rss - read the contents of the RSS mapping table * @adapter: the adapter * @map: holds the contents of the RSS mapping table * * Reads the contents of the RSS hash->queue mapping table. */ int t4_read_rss(struct adapter *adapter, u16 *map) { u32 val; int i, ret; for (i = 0; i < RSS_NENTRIES / 2; ++i) { ret = rd_rss_row(adapter, i, &val); if (ret) return ret; *map++ = G_LKPTBLQUEUE0(val); *map++ = G_LKPTBLQUEUE1(val); } return 0; } /** * t4_fw_tp_pio_rw - Access TP PIO through LDST * @adap: the adapter * @vals: where the indirect register values are stored/written * @nregs: how many indirect registers to read/write * @start_idx: index of first indirect register to read/write * @rw: Read (1) or Write (0) * * Access TP PIO registers through LDST */ void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs, unsigned int start_index, unsigned int rw) { int ret, i; int cmd = FW_LDST_ADDRSPC_TP_PIO; struct fw_ldst_cmd c; for (i = 0 ; i < nregs; i++) { memset(&c, 0, sizeof(c)); c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | (rw ? F_FW_CMD_READ : F_FW_CMD_WRITE) | V_FW_LDST_CMD_ADDRSPACE(cmd)); c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); c.u.addrval.addr = cpu_to_be32(start_index + i); c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); if (ret == 0) { if (rw) vals[i] = be32_to_cpu(c.u.addrval.val); } } } /** * t4_read_rss_key - read the global RSS key * @adap: the adapter * @key: 10-entry array holding the 320-bit RSS key * * Reads the global 320-bit RSS key. */ void t4_read_rss_key(struct adapter *adap, u32 *key) { if (t4_use_ldst(adap)) t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 1); else t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10, A_TP_RSS_SECRET_KEY0); } /** * t4_write_rss_key - program one of the RSS keys * @adap: the adapter * @key: 10-entry array holding the 320-bit RSS key * @idx: which RSS key to write * * Writes one of the RSS keys with the given 320-bit value. If @idx is * 0..15 the corresponding entry in the RSS key table is written, * otherwise the global RSS key is written. */ void t4_write_rss_key(struct adapter *adap, u32 *key, int idx) { u8 rss_key_addr_cnt = 16; u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT); /* * T6 and later: for KeyMode 3 (per-vf and per-vf scramble), * allows access to key addresses 16-63 by using KeyWrAddrX * as index[5:4](upper 2) into key table */ if ((chip_id(adap) > CHELSIO_T5) && (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3)) rss_key_addr_cnt = 32; if (t4_use_ldst(adap)) t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 0); else t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10, A_TP_RSS_SECRET_KEY0); if (idx >= 0 && idx < rss_key_addr_cnt) { if (rss_key_addr_cnt > 16) t4_write_reg(adap, A_TP_RSS_CONFIG_VRT, vrt | V_KEYWRADDRX(idx >> 4) | V_T6_VFWRADDR(idx) | F_KEYWREN); else t4_write_reg(adap, A_TP_RSS_CONFIG_VRT, vrt| V_KEYWRADDR(idx) | F_KEYWREN); } } /** * t4_read_rss_pf_config - read PF RSS Configuration Table * @adapter: the adapter * @index: the entry in the PF RSS table to read * @valp: where to store the returned value * * Reads the PF RSS Configuration Table at the specified index and returns * the value found there. */ void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, u32 *valp) { if (t4_use_ldst(adapter)) t4_fw_tp_pio_rw(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, 1); else t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA, valp, 1, A_TP_RSS_PF0_CONFIG + index); } /** * t4_write_rss_pf_config - write PF RSS Configuration Table * @adapter: the adapter * @index: the entry in the VF RSS table to read * @val: the value to store * * Writes the PF RSS Configuration Table at the specified index with the * specified value. */ void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index, u32 val) { if (t4_use_ldst(adapter)) t4_fw_tp_pio_rw(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index, 0); else t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA, &val, 1, A_TP_RSS_PF0_CONFIG + index); } /** * t4_read_rss_vf_config - read VF RSS Configuration Table * @adapter: the adapter * @index: the entry in the VF RSS table to read * @vfl: where to store the returned VFL * @vfh: where to store the returned VFH * * Reads the VF RSS Configuration Table at the specified index and returns * the (VFL, VFH) values found there. */ void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, u32 *vfl, u32 *vfh) { u32 vrt, mask, data; if (chip_id(adapter) <= CHELSIO_T5) { mask = V_VFWRADDR(M_VFWRADDR); data = V_VFWRADDR(index); } else { mask = V_T6_VFWRADDR(M_T6_VFWRADDR); data = V_T6_VFWRADDR(index); } /* * Request that the index'th VF Table values be read into VFL/VFH. */ vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT); vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask); vrt |= data | F_VFRDEN; t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt); /* * Grab the VFL/VFH values ... */ if (t4_use_ldst(adapter)) { t4_fw_tp_pio_rw(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, 1); t4_fw_tp_pio_rw(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, 1); } else { t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA, vfl, 1, A_TP_RSS_VFL_CONFIG); t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA, vfh, 1, A_TP_RSS_VFH_CONFIG); } } /** * t4_write_rss_vf_config - write VF RSS Configuration Table * * @adapter: the adapter * @index: the entry in the VF RSS table to write * @vfl: the VFL to store * @vfh: the VFH to store * * Writes the VF RSS Configuration Table at the specified index with the * specified (VFL, VFH) values. */ void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index, u32 vfl, u32 vfh) { u32 vrt, mask, data; if (chip_id(adapter) <= CHELSIO_T5) { mask = V_VFWRADDR(M_VFWRADDR); data = V_VFWRADDR(index); } else { mask = V_T6_VFWRADDR(M_T6_VFWRADDR); data = V_T6_VFWRADDR(index); } /* * Load up VFL/VFH with the values to be written ... */ if (t4_use_ldst(adapter)) { t4_fw_tp_pio_rw(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, 0); t4_fw_tp_pio_rw(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, 0); } else { t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA, &vfl, 1, A_TP_RSS_VFL_CONFIG); t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA, &vfh, 1, A_TP_RSS_VFH_CONFIG); } /* * Write the VFL/VFH into the VF Table at index'th location. */ vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT); vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask); vrt |= data | F_VFRDEN; t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt); } /** * t4_read_rss_pf_map - read PF RSS Map * @adapter: the adapter * * Reads the PF RSS Map register and returns its value. */ u32 t4_read_rss_pf_map(struct adapter *adapter) { u32 pfmap; if (t4_use_ldst(adapter)) t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 1); else t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA, &pfmap, 1, A_TP_RSS_PF_MAP); return pfmap; } /** * t4_write_rss_pf_map - write PF RSS Map * @adapter: the adapter * @pfmap: PF RSS Map value * * Writes the specified value to the PF RSS Map register. */ void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap) { if (t4_use_ldst(adapter)) t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 0); else t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA, &pfmap, 1, A_TP_RSS_PF_MAP); } /** * t4_read_rss_pf_mask - read PF RSS Mask * @adapter: the adapter * * Reads the PF RSS Mask register and returns its value. */ u32 t4_read_rss_pf_mask(struct adapter *adapter) { u32 pfmask; if (t4_use_ldst(adapter)) t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 1); else t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA, &pfmask, 1, A_TP_RSS_PF_MSK); return pfmask; } /** * t4_write_rss_pf_mask - write PF RSS Mask * @adapter: the adapter * @pfmask: PF RSS Mask value * * Writes the specified value to the PF RSS Mask register. */ void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask) { if (t4_use_ldst(adapter)) t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 0); else t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA, &pfmask, 1, A_TP_RSS_PF_MSK); } /** * t4_tp_get_tcp_stats - read TP's TCP MIB counters * @adap: the adapter * @v4: holds the TCP/IP counter values * @v6: holds the TCP/IPv6 counter values * * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. * Either @v4 or @v6 may be %NULL to skip the corresponding stats. */ void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, struct tp_tcp_stats *v6) { u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1]; #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST) #define STAT(x) val[STAT_IDX(x)] #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) if (v4) { t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, ARRAY_SIZE(val), A_TP_MIB_TCP_OUT_RST); v4->tcp_out_rsts = STAT(OUT_RST); v4->tcp_in_segs = STAT64(IN_SEG); v4->tcp_out_segs = STAT64(OUT_SEG); v4->tcp_retrans_segs = STAT64(RXT_SEG); } if (v6) { t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, ARRAY_SIZE(val), A_TP_MIB_TCP_V6OUT_RST); v6->tcp_out_rsts = STAT(OUT_RST); v6->tcp_in_segs = STAT64(IN_SEG); v6->tcp_out_segs = STAT64(OUT_SEG); v6->tcp_retrans_segs = STAT64(RXT_SEG); } #undef STAT64 #undef STAT #undef STAT_IDX } /** * t4_tp_get_err_stats - read TP's error MIB counters * @adap: the adapter * @st: holds the counter values * * Returns the values of TP's error counters. */ void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st) { int nchan = adap->chip_params->nchan; t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0); t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0); t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0); t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tnl_cong_drops, nchan, A_TP_MIB_TNL_CNG_DROP_0); t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->ofld_chan_drops, nchan, A_TP_MIB_OFD_CHN_DROP_0); t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0); t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->ofld_vlan_drops, nchan, A_TP_MIB_OFD_VLN_DROP_0); t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tcp6_in_errs, nchan, A_TP_MIB_TCP_V6IN_ERR_0); t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP); } /** * t4_tp_get_proxy_stats - read TP's proxy MIB counters * @adap: the adapter * @st: holds the counter values * * Returns the values of TP's proxy counters. */ void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st) { int nchan = adap->chip_params->nchan; t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0); } /** * t4_tp_get_cpl_stats - read TP's CPL MIB counters * @adap: the adapter * @st: holds the counter values * * Returns the values of TP's CPL counters. */ void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st) { int nchan = adap->chip_params->nchan; t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0); t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0); } /** * t4_tp_get_rdma_stats - read TP's RDMA MIB counters * @adap: the adapter * @st: holds the counter values * * Returns the values of TP's RDMA counters. */ void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st) { t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT); } /** * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port * @adap: the adapter * @idx: the port index * @st: holds the counter values * * Returns the values of TP's FCoE counters for the selected port. */ void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, struct tp_fcoe_stats *st) { u32 val[2]; t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx); t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_drop, 1, A_TP_MIB_FCOE_DROP_0 + idx); t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx); st->octets_ddp = ((u64)val[0] << 32) | val[1]; } /** * t4_get_usm_stats - read TP's non-TCP DDP MIB counters * @adap: the adapter * @st: holds the counter values * * Returns the values of TP's counters for non-TCP directly-placed packets. */ void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st) { u32 val[4]; t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, 4, A_TP_MIB_USM_PKTS); st->frames = val[0]; st->drops = val[1]; st->octets = ((u64)val[2] << 32) | val[3]; } /** * t4_read_mtu_tbl - returns the values in the HW path MTU table * @adap: the adapter * @mtus: where to store the MTU values * @mtu_log: where to store the MTU base-2 log (may be %NULL) * * Reads the HW path MTU table. */ void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) { u32 v; int i; for (i = 0; i < NMTUS; ++i) { t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(0xff) | V_MTUVALUE(i)); v = t4_read_reg(adap, A_TP_MTU_TABLE); mtus[i] = G_MTUVALUE(v); if (mtu_log) mtu_log[i] = G_MTUWIDTH(v); } } /** * t4_read_cong_tbl - reads the congestion control table * @adap: the adapter * @incr: where to store the alpha values * * Reads the additive increments programmed into the HW congestion * control table. */ void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) { unsigned int mtu, w; for (mtu = 0; mtu < NMTUS; ++mtu) for (w = 0; w < NCCTRL_WIN; ++w) { t4_write_reg(adap, A_TP_CCTRL_TABLE, V_ROWINDEX(0xffff) | (mtu << 5) | w); incr[mtu][w] = (u16)t4_read_reg(adap, A_TP_CCTRL_TABLE) & 0x1fff; } } /** * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register * @adap: the adapter * @addr: the indirect TP register address * @mask: specifies the field within the register to modify * @val: new value for the field * * Sets a field of an indirect TP register to the given value. */ void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, unsigned int mask, unsigned int val) { t4_write_reg(adap, A_TP_PIO_ADDR, addr); val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask; t4_write_reg(adap, A_TP_PIO_DATA, val); } /** * init_cong_ctrl - initialize congestion control parameters * @a: the alpha values for congestion control * @b: the beta values for congestion control * * Initialize the congestion control parameters. */ static void init_cong_ctrl(unsigned short *a, unsigned short *b) { a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; a[9] = 2; a[10] = 3; a[11] = 4; a[12] = 5; a[13] = 6; a[14] = 7; a[15] = 8; a[16] = 9; a[17] = 10; a[18] = 14; a[19] = 17; a[20] = 21; a[21] = 25; a[22] = 30; a[23] = 35; a[24] = 45; a[25] = 60; a[26] = 80; a[27] = 100; a[28] = 200; a[29] = 300; a[30] = 400; a[31] = 500; b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; b[9] = b[10] = 1; b[11] = b[12] = 2; b[13] = b[14] = b[15] = b[16] = 3; b[17] = b[18] = b[19] = b[20] = b[21] = 4; b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; b[28] = b[29] = 6; b[30] = b[31] = 7; } /* The minimum additive increment value for the congestion control table */ #define CC_MIN_INCR 2U /** * t4_load_mtus - write the MTU and congestion control HW tables * @adap: the adapter * @mtus: the values for the MTU table * @alpha: the values for the congestion control alpha parameter * @beta: the values for the congestion control beta parameter * * Write the HW MTU table with the supplied MTUs and the high-speed * congestion control table with the supplied alpha, beta, and MTUs. * We write the two tables together because the additive increments * depend on the MTUs. */ void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, const unsigned short *alpha, const unsigned short *beta) { static const unsigned int avg_pkts[NCCTRL_WIN] = { 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 28672, 40960, 57344, 81920, 114688, 163840, 229376 }; unsigned int i, w; for (i = 0; i < NMTUS; ++i) { unsigned int mtu = mtus[i]; unsigned int log2 = fls(mtu); if (!(mtu & ((1 << log2) >> 2))) /* round */ log2--; t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) | V_MTUWIDTH(log2) | V_MTUVALUE(mtu)); for (w = 0; w < NCCTRL_WIN; ++w) { unsigned int inc; inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], CC_MIN_INCR); t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) | (w << 16) | (beta[w] << 13) | inc); } } } /** * t4_set_pace_tbl - set the pace table * @adap: the adapter * @pace_vals: the pace values in microseconds * @start: index of the first entry in the HW pace table to set * @n: how many entries to set * * Sets (a subset of the) HW pace table. */ int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals, unsigned int start, unsigned int n) { unsigned int vals[NTX_SCHED], i; unsigned int tick_ns = dack_ticks_to_usec(adap, 1000); if (n > NTX_SCHED) return -ERANGE; /* convert values from us to dack ticks, rounding to closest value */ for (i = 0; i < n; i++, pace_vals++) { vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns; if (vals[i] > 0x7ff) return -ERANGE; if (*pace_vals && vals[i] == 0) return -ERANGE; } for (i = 0; i < n; i++, start++) t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]); return 0; } /** * t4_set_sched_bps - set the bit rate for a HW traffic scheduler * @adap: the adapter * @kbps: target rate in Kbps * @sched: the scheduler index * * Configure a Tx HW scheduler for the target rate. */ int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps) { unsigned int v, tps, cpt, bpt, delta, mindelta = ~0; unsigned int clk = adap->params.vpd.cclk * 1000; unsigned int selected_cpt = 0, selected_bpt = 0; if (kbps > 0) { kbps *= 125; /* -> bytes */ for (cpt = 1; cpt <= 255; cpt++) { tps = clk / cpt; bpt = (kbps + tps / 2) / tps; if (bpt > 0 && bpt <= 255) { v = bpt * tps; delta = v >= kbps ? v - kbps : kbps - v; if (delta < mindelta) { mindelta = delta; selected_cpt = cpt; selected_bpt = bpt; } } else if (selected_cpt) break; } if (!selected_cpt) return -EINVAL; } t4_write_reg(adap, A_TP_TM_PIO_ADDR, A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2); v = t4_read_reg(adap, A_TP_TM_PIO_DATA); if (sched & 1) v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24); else v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8); t4_write_reg(adap, A_TP_TM_PIO_DATA, v); return 0; } /** * t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler * @adap: the adapter * @sched: the scheduler index * @ipg: the interpacket delay in tenths of nanoseconds * * Set the interpacket delay for a HW packet rate scheduler. */ int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg) { unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2; /* convert ipg to nearest number of core clocks */ ipg *= core_ticks_per_usec(adap); ipg = (ipg + 5000) / 10000; if (ipg > M_TXTIMERSEPQ0) return -EINVAL; t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr); v = t4_read_reg(adap, A_TP_TM_PIO_DATA); if (sched & 1) v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg); else v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg); t4_write_reg(adap, A_TP_TM_PIO_DATA, v); t4_read_reg(adap, A_TP_TM_PIO_DATA); return 0; } /* * Calculates a rate in bytes/s given the number of 256-byte units per 4K core * clocks. The formula is * * bytes/s = bytes256 * 256 * ClkFreq / 4096 * * which is equivalent to * * bytes/s = 62.5 * bytes256 * ClkFreq_ms */ static u64 chan_rate(struct adapter *adap, unsigned int bytes256) { u64 v = bytes256 * adap->params.vpd.cclk; return v * 62 + v / 2; } /** * t4_get_chan_txrate - get the current per channel Tx rates * @adap: the adapter * @nic_rate: rates for NIC traffic * @ofld_rate: rates for offloaded traffic * * Return the current Tx rates in bytes/s for NIC and offloaded traffic * for each channel. */ void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) { u32 v; v = t4_read_reg(adap, A_TP_TX_TRATE); nic_rate[0] = chan_rate(adap, G_TNLRATE0(v)); nic_rate[1] = chan_rate(adap, G_TNLRATE1(v)); if (adap->chip_params->nchan > 2) { nic_rate[2] = chan_rate(adap, G_TNLRATE2(v)); nic_rate[3] = chan_rate(adap, G_TNLRATE3(v)); } v = t4_read_reg(adap, A_TP_TX_ORATE); ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v)); ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v)); if (adap->chip_params->nchan > 2) { ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v)); ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v)); } } /** * t4_set_trace_filter - configure one of the tracing filters * @adap: the adapter * @tp: the desired trace filter parameters * @idx: which filter to configure * @enable: whether to enable or disable the filter * * Configures one of the tracing filters available in HW. If @tp is %NULL * it indicates that the filter is already written in the register and it * just needs to be enabled or disabled. */ int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, int idx, int enable) { int i, ofst = idx * 4; u32 data_reg, mask_reg, cfg; u32 multitrc = F_TRCMULTIFILTER; u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN; if (idx < 0 || idx >= NTRACE) return -EINVAL; if (tp == NULL || !enable) { t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, enable ? en : 0); return 0; } /* * TODO - After T4 data book is updated, specify the exact * section below. * * See T4 data book - MPS section for a complete description * of the below if..else handling of A_MPS_TRC_CFG register * value. */ cfg = t4_read_reg(adap, A_MPS_TRC_CFG); if (cfg & F_TRCMULTIFILTER) { /* * If multiple tracers are enabled, then maximum * capture size is 2.5KB (FIFO size of a single channel) * minus 2 flits for CPL_TRACE_PKT header. */ if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) return -EINVAL; } else { /* * If multiple tracers are disabled, to avoid deadlocks * maximum packet capture size of 9600 bytes is recommended. * Also in this mode, only trace0 can be enabled and running. */ multitrc = 0; if (tp->snap_len > 9600 || idx) return -EINVAL; } if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 || tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET || tp->min_len > M_TFMINPKTSIZE) return -EINVAL; /* stop the tracer we'll be changing */ t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0); idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH); data_reg = A_MPS_TRC_FILTER0_MATCH + idx; mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx; for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { t4_write_reg(adap, data_reg, tp->data[i]); t4_write_reg(adap, mask_reg, ~tp->mask[i]); } t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst, V_TFCAPTUREMAX(tp->snap_len) | V_TFMINPKTSIZE(tp->min_len)); t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en | (is_t4(adap) ? V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) : V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert))); return 0; } /** * t4_get_trace_filter - query one of the tracing filters * @adap: the adapter * @tp: the current trace filter parameters * @idx: which trace filter to query * @enabled: non-zero if the filter is enabled * * Returns the current settings of one of the HW tracing filters. */ void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, int *enabled) { u32 ctla, ctlb; int i, ofst = idx * 4; u32 data_reg, mask_reg; ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst); ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst); if (is_t4(adap)) { *enabled = !!(ctla & F_TFEN); tp->port = G_TFPORT(ctla); tp->invert = !!(ctla & F_TFINVERTMATCH); } else { *enabled = !!(ctla & F_T5_TFEN); tp->port = G_T5_TFPORT(ctla); tp->invert = !!(ctla & F_T5_TFINVERTMATCH); } tp->snap_len = G_TFCAPTUREMAX(ctlb); tp->min_len = G_TFMINPKTSIZE(ctlb); tp->skip_ofst = G_TFOFFSET(ctla); tp->skip_len = G_TFLENGTH(ctla); ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx; data_reg = A_MPS_TRC_FILTER0_MATCH + ofst; mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst; for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { tp->mask[i] = ~t4_read_reg(adap, mask_reg); tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; } } /** * t4_pmtx_get_stats - returns the HW stats from PMTX * @adap: the adapter * @cnt: where to store the count statistics * @cycles: where to store the cycle statistics * * Returns performance statistics from PMTX. */ void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) { int i; u32 data[2]; for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) { t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1); cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT); if (is_t4(adap)) cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB); else { t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, data, 2, A_PM_TX_DBG_STAT_MSB); cycles[i] = (((u64)data[0] << 32) | data[1]); } } } /** * t4_pmrx_get_stats - returns the HW stats from PMRX * @adap: the adapter * @cnt: where to store the count statistics * @cycles: where to store the cycle statistics * * Returns performance statistics from PMRX. */ void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) { int i; u32 data[2]; for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) { t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1); cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT); if (is_t4(adap)) { cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB); } else { t4_read_indirect(adap, A_PM_RX_DBG_CTRL, A_PM_RX_DBG_DATA, data, 2, A_PM_RX_DBG_STAT_MSB); cycles[i] = (((u64)data[0] << 32) | data[1]); } } } /** * t4_get_mps_bg_map - return the buffer groups associated with a port * @adap: the adapter * @idx: the port index * * Returns a bitmap indicating which MPS buffer groups are associated * with the given port. Bit i is set if buffer group i is used by the * port. */ static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx) { u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL)); if (n == 0) return idx == 0 ? 0xf : 0; if (n == 1 && chip_id(adap) <= CHELSIO_T5) return idx < 2 ? (3 << (2 * idx)) : 0; return 1 << idx; } /** * t4_get_port_type_description - return Port Type string description * @port_type: firmware Port Type enumeration */ const char *t4_get_port_type_description(enum fw_port_type port_type) { static const char *const port_type_description[] = { "Fiber_XFI", "Fiber_XAUI", "BT_SGMII", "BT_XFI", "BT_XAUI", "KX4", "CX4", "KX", "KR", "SFP", "BP_AP", "BP4_AP", "QSFP_10G", "QSA", "QSFP", "BP40_BA", "KR4_100G", "CR4_QSFP", "CR_QSFP", "CR2_QSFP", "SFP28", "KR_SFP28", }; if (port_type < ARRAY_SIZE(port_type_description)) return port_type_description[port_type]; return "UNKNOWN"; } /** * t4_get_port_stats_offset - collect port stats relative to a previous * snapshot * @adap: The adapter * @idx: The port * @stats: Current stats to fill * @offset: Previous stats snapshot */ void t4_get_port_stats_offset(struct adapter *adap, int idx, struct port_stats *stats, struct port_stats *offset) { u64 *s, *o; int i; t4_get_port_stats(adap, idx, stats); for (i = 0, s = (u64 *)stats, o = (u64 *)offset ; i < (sizeof(struct port_stats)/sizeof(u64)) ; i++, s++, o++) *s -= *o; } /** * t4_get_port_stats - collect port statistics * @adap: the adapter * @idx: the port index * @p: the stats structure to fill * * Collect statistics related to the given port from HW. */ void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) { u32 bgmap = t4_get_mps_bg_map(adap, idx); u32 stat_ctl; #define GET_STAT(name) \ t4_read_reg64(adap, \ (is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \ T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L))) #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L) stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL); p->tx_pause = GET_STAT(TX_PORT_PAUSE); p->tx_octets = GET_STAT(TX_PORT_BYTES); p->tx_frames = GET_STAT(TX_PORT_FRAMES); p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); p->tx_error_frames = GET_STAT(TX_PORT_ERROR); p->tx_frames_64 = GET_STAT(TX_PORT_64B); p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); p->tx_drop = GET_STAT(TX_PORT_DROP); p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); if (chip_id(adap) >= CHELSIO_T5) { if (stat_ctl & F_COUNTPAUSESTATTX) { p->tx_frames -= p->tx_pause; p->tx_octets -= p->tx_pause * 64; } if (stat_ctl & F_COUNTPAUSEMCTX) p->tx_mcast_frames -= p->tx_pause; } p->rx_pause = GET_STAT(RX_PORT_PAUSE); p->rx_octets = GET_STAT(RX_PORT_BYTES); p->rx_frames = GET_STAT(RX_PORT_FRAMES); p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); p->rx_runt = GET_STAT(RX_PORT_LESS_64B); p->rx_frames_64 = GET_STAT(RX_PORT_64B); p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); if (chip_id(adap) >= CHELSIO_T5) { if (stat_ctl & F_COUNTPAUSESTATRX) { p->rx_frames -= p->rx_pause; p->rx_octets -= p->rx_pause * 64; } if (stat_ctl & F_COUNTPAUSEMCRX) p->rx_mcast_frames -= p->rx_pause; } p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; #undef GET_STAT #undef GET_STAT_COM } /** * t4_get_lb_stats - collect loopback port statistics * @adap: the adapter * @idx: the loopback port index * @p: the stats structure to fill * * Return HW statistics for the given loopback port. */ void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) { u32 bgmap = t4_get_mps_bg_map(adap, idx); #define GET_STAT(name) \ t4_read_reg64(adap, \ (is_t4(adap) ? \ PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \ T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L))) #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L) p->octets = GET_STAT(BYTES); p->frames = GET_STAT(FRAMES); p->bcast_frames = GET_STAT(BCAST); p->mcast_frames = GET_STAT(MCAST); p->ucast_frames = GET_STAT(UCAST); p->error_frames = GET_STAT(ERROR); p->frames_64 = GET_STAT(64B); p->frames_65_127 = GET_STAT(65B_127B); p->frames_128_255 = GET_STAT(128B_255B); p->frames_256_511 = GET_STAT(256B_511B); p->frames_512_1023 = GET_STAT(512B_1023B); p->frames_1024_1518 = GET_STAT(1024B_1518B); p->frames_1519_max = GET_STAT(1519B_MAX); p->drop = GET_STAT(DROP_FRAMES); p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; #undef GET_STAT #undef GET_STAT_COM } /** * t4_wol_magic_enable - enable/disable magic packet WoL * @adap: the adapter * @port: the physical port index * @addr: MAC address expected in magic packets, %NULL to disable * * Enables/disables magic packet wake-on-LAN for the selected port. */ void t4_wol_magic_enable(struct adapter *adap, unsigned int port, const u8 *addr) { u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg; if (is_t4(adap)) { mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO); mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI); port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2); } else { mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO); mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI); port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2); } if (addr) { t4_write_reg(adap, mag_id_reg_l, (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5]); t4_write_reg(adap, mag_id_reg_h, (addr[0] << 8) | addr[1]); } t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN, V_MAGICEN(addr != NULL)); } /** * t4_wol_pat_enable - enable/disable pattern-based WoL * @adap: the adapter * @port: the physical port index * @map: bitmap of which HW pattern filters to set * @mask0: byte mask for bytes 0-63 of a packet * @mask1: byte mask for bytes 64-127 of a packet * @crc: Ethernet CRC for selected bytes * @enable: enable/disable switch * * Sets the pattern filters indicated in @map to mask out the bytes * specified in @mask0/@mask1 in received packets and compare the CRC of * the resulting packet against @crc. If @enable is %true pattern-based * WoL is enabled, otherwise disabled. */ int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map, u64 mask0, u64 mask1, unsigned int crc, bool enable) { int i; u32 port_cfg_reg; if (is_t4(adap)) port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2); else port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2); if (!enable) { t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0); return 0; } if (map > 0xff) return -EINVAL; #define EPIO_REG(name) \ (is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \ T5_PORT_REG(port, A_MAC_PORT_EPIO_##name)) t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32); t4_write_reg(adap, EPIO_REG(DATA2), mask1); t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32); for (i = 0; i < NWOL_PAT; i++, map >>= 1) { if (!(map & 1)) continue; /* write byte masks */ t4_write_reg(adap, EPIO_REG(DATA0), mask0); t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR); t4_read_reg(adap, EPIO_REG(OP)); /* flush */ if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY) return -ETIMEDOUT; /* write CRC */ t4_write_reg(adap, EPIO_REG(DATA0), crc); t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR); t4_read_reg(adap, EPIO_REG(OP)); /* flush */ if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY) return -ETIMEDOUT; } #undef EPIO_REG t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN); return 0; } /* t4_mk_filtdelwr - create a delete filter WR * @ftid: the filter ID * @wr: the filter work request to populate * @qid: ingress queue to receive the delete notification * * Creates a filter work request to delete the supplied filter. If @qid is * negative the delete notification is suppressed. */ void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) { memset(wr, 0, sizeof(*wr)); wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR)); wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16)); wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) | V_FW_FILTER_WR_NOREPLY(qid < 0)); wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER); if (qid >= 0) wr->rx_chan_rx_rpl_iq = cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid)); } #define INIT_CMD(var, cmd, rd_wr) do { \ (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \ F_FW_CMD_REQUEST | \ F_FW_CMD_##rd_wr); \ (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ } while (0) int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, u32 addr, u32 val) { u32 ldst_addrspace; struct fw_ldst_cmd c; memset(&c, 0, sizeof(c)); ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE); c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | ldst_addrspace); c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); c.u.addrval.addr = cpu_to_be32(addr); c.u.addrval.val = cpu_to_be32(val); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_mdio_rd - read a PHY register through MDIO * @adap: the adapter * @mbox: mailbox to use for the FW command * @phy_addr: the PHY address * @mmd: the PHY MMD to access (0 for clause 22 PHYs) * @reg: the register to read * @valp: where to store the value * * Issues a FW command through the given mailbox to read a PHY register. */ int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, unsigned int mmd, unsigned int reg, unsigned int *valp) { int ret; u32 ldst_addrspace; struct fw_ldst_cmd c; memset(&c, 0, sizeof(c)); ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO); c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ | ldst_addrspace); c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) | V_FW_LDST_CMD_MMD(mmd)); c.u.mdio.raddr = cpu_to_be16(reg); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret == 0) *valp = be16_to_cpu(c.u.mdio.rval); return ret; } /** * t4_mdio_wr - write a PHY register through MDIO * @adap: the adapter * @mbox: mailbox to use for the FW command * @phy_addr: the PHY address * @mmd: the PHY MMD to access (0 for clause 22 PHYs) * @reg: the register to write * @valp: value to write * * Issues a FW command through the given mailbox to write a PHY register. */ int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, unsigned int mmd, unsigned int reg, unsigned int val) { u32 ldst_addrspace; struct fw_ldst_cmd c; memset(&c, 0, sizeof(c)); ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO); c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | ldst_addrspace); c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) | V_FW_LDST_CMD_MMD(mmd)); c.u.mdio.raddr = cpu_to_be16(reg); c.u.mdio.rval = cpu_to_be16(val); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * * t4_sge_decode_idma_state - decode the idma state * @adap: the adapter * @state: the state idma is stuck in */ void t4_sge_decode_idma_state(struct adapter *adapter, int state) { static const char * const t4_decode[] = { "IDMA_IDLE", "IDMA_PUSH_MORE_CPL_FIFO", "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", "Not used", "IDMA_PHYSADDR_SEND_PCIEHDR", "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", "IDMA_PHYSADDR_SEND_PAYLOAD", "IDMA_SEND_FIFO_TO_IMSG", "IDMA_FL_REQ_DATA_FL_PREP", "IDMA_FL_REQ_DATA_FL", "IDMA_FL_DROP", "IDMA_FL_H_REQ_HEADER_FL", "IDMA_FL_H_SEND_PCIEHDR", "IDMA_FL_H_PUSH_CPL_FIFO", "IDMA_FL_H_SEND_CPL", "IDMA_FL_H_SEND_IP_HDR_FIRST", "IDMA_FL_H_SEND_IP_HDR", "IDMA_FL_H_REQ_NEXT_HEADER_FL", "IDMA_FL_H_SEND_NEXT_PCIEHDR", "IDMA_FL_H_SEND_IP_HDR_PADDING", "IDMA_FL_D_SEND_PCIEHDR", "IDMA_FL_D_SEND_CPL_AND_IP_HDR", "IDMA_FL_D_REQ_NEXT_DATA_FL", "IDMA_FL_SEND_PCIEHDR", "IDMA_FL_PUSH_CPL_FIFO", "IDMA_FL_SEND_CPL", "IDMA_FL_SEND_PAYLOAD_FIRST", "IDMA_FL_SEND_PAYLOAD", "IDMA_FL_REQ_NEXT_DATA_FL", "IDMA_FL_SEND_NEXT_PCIEHDR", "IDMA_FL_SEND_PADDING", "IDMA_FL_SEND_COMPLETION_TO_IMSG", "IDMA_FL_SEND_FIFO_TO_IMSG", "IDMA_FL_REQ_DATAFL_DONE", "IDMA_FL_REQ_HEADERFL_DONE", }; static const char * const t5_decode[] = { "IDMA_IDLE", "IDMA_ALMOST_IDLE", "IDMA_PUSH_MORE_CPL_FIFO", "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", "IDMA_PHYSADDR_SEND_PCIEHDR", "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", "IDMA_PHYSADDR_SEND_PAYLOAD", "IDMA_SEND_FIFO_TO_IMSG", "IDMA_FL_REQ_DATA_FL", "IDMA_FL_DROP", "IDMA_FL_DROP_SEND_INC", "IDMA_FL_H_REQ_HEADER_FL", "IDMA_FL_H_SEND_PCIEHDR", "IDMA_FL_H_PUSH_CPL_FIFO", "IDMA_FL_H_SEND_CPL", "IDMA_FL_H_SEND_IP_HDR_FIRST", "IDMA_FL_H_SEND_IP_HDR", "IDMA_FL_H_REQ_NEXT_HEADER_FL", "IDMA_FL_H_SEND_NEXT_PCIEHDR", "IDMA_FL_H_SEND_IP_HDR_PADDING", "IDMA_FL_D_SEND_PCIEHDR", "IDMA_FL_D_SEND_CPL_AND_IP_HDR", "IDMA_FL_D_REQ_NEXT_DATA_FL", "IDMA_FL_SEND_PCIEHDR", "IDMA_FL_PUSH_CPL_FIFO", "IDMA_FL_SEND_CPL", "IDMA_FL_SEND_PAYLOAD_FIRST", "IDMA_FL_SEND_PAYLOAD", "IDMA_FL_REQ_NEXT_DATA_FL", "IDMA_FL_SEND_NEXT_PCIEHDR", "IDMA_FL_SEND_PADDING", "IDMA_FL_SEND_COMPLETION_TO_IMSG", }; static const char * const t6_decode[] = { "IDMA_IDLE", "IDMA_PUSH_MORE_CPL_FIFO", "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", "IDMA_PHYSADDR_SEND_PCIEHDR", "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", "IDMA_PHYSADDR_SEND_PAYLOAD", "IDMA_FL_REQ_DATA_FL", "IDMA_FL_DROP", "IDMA_FL_DROP_SEND_INC", "IDMA_FL_H_REQ_HEADER_FL", "IDMA_FL_H_SEND_PCIEHDR", "IDMA_FL_H_PUSH_CPL_FIFO", "IDMA_FL_H_SEND_CPL", "IDMA_FL_H_SEND_IP_HDR_FIRST", "IDMA_FL_H_SEND_IP_HDR", "IDMA_FL_H_REQ_NEXT_HEADER_FL", "IDMA_FL_H_SEND_NEXT_PCIEHDR", "IDMA_FL_H_SEND_IP_HDR_PADDING", "IDMA_FL_D_SEND_PCIEHDR", "IDMA_FL_D_SEND_CPL_AND_IP_HDR", "IDMA_FL_D_REQ_NEXT_DATA_FL", "IDMA_FL_SEND_PCIEHDR", "IDMA_FL_PUSH_CPL_FIFO", "IDMA_FL_SEND_CPL", "IDMA_FL_SEND_PAYLOAD_FIRST", "IDMA_FL_SEND_PAYLOAD", "IDMA_FL_REQ_NEXT_DATA_FL", "IDMA_FL_SEND_NEXT_PCIEHDR", "IDMA_FL_SEND_PADDING", "IDMA_FL_SEND_COMPLETION_TO_IMSG", }; static const u32 sge_regs[] = { A_SGE_DEBUG_DATA_LOW_INDEX_2, A_SGE_DEBUG_DATA_LOW_INDEX_3, A_SGE_DEBUG_DATA_HIGH_INDEX_10, }; const char * const *sge_idma_decode; int sge_idma_decode_nstates; int i; unsigned int chip_version = chip_id(adapter); /* Select the right set of decode strings to dump depending on the * adapter chip type. */ switch (chip_version) { case CHELSIO_T4: sge_idma_decode = (const char * const *)t4_decode; sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); break; case CHELSIO_T5: sge_idma_decode = (const char * const *)t5_decode; sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); break; case CHELSIO_T6: sge_idma_decode = (const char * const *)t6_decode; sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); break; default: CH_ERR(adapter, "Unsupported chip version %d\n", chip_version); return; } if (state < sge_idma_decode_nstates) CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); else CH_WARN(adapter, "idma state %d unknown\n", state); for (i = 0; i < ARRAY_SIZE(sge_regs); i++) CH_WARN(adapter, "SGE register %#x value %#x\n", sge_regs[i], t4_read_reg(adapter, sge_regs[i])); } /** * t4_sge_ctxt_flush - flush the SGE context cache * @adap: the adapter * @mbox: mailbox to use for the FW command * * Issues a FW command through the given mailbox to flush the * SGE context cache. */ int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox) { int ret; u32 ldst_addrspace; struct fw_ldst_cmd c; memset(&c, 0, sizeof(c)); ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC); c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ | ldst_addrspace); c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); return ret; } /** * t4_fw_hello - establish communication with FW * @adap: the adapter * @mbox: mailbox to use for the FW command * @evt_mbox: mailbox to receive async FW events * @master: specifies the caller's willingness to be the device master * @state: returns the current device state (if non-NULL) * * Issues a command to establish communication with FW. Returns either * an error (negative integer) or the mailbox of the Master PF. */ int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, enum dev_master master, enum dev_state *state) { int ret; struct fw_hello_cmd c; u32 v; unsigned int master_mbox; int retries = FW_CMD_HELLO_RETRIES; retry: memset(&c, 0, sizeof(c)); INIT_CMD(c, HELLO, WRITE); c.err_to_clearinit = cpu_to_be32( V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) | V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) | V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox : M_FW_HELLO_CMD_MBMASTER) | V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) | V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) | F_FW_HELLO_CMD_CLEARINIT); /* * Issue the HELLO command to the firmware. If it's not successful * but indicates that we got a "busy" or "timeout" condition, retry * the HELLO until we exhaust our retry limit. If we do exceed our * retry limit, check to see if the firmware left us any error * information and report that if so ... */ ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret != FW_SUCCESS) { if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) goto retry; if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR) t4_report_fw_error(adap); return ret; } v = be32_to_cpu(c.err_to_clearinit); master_mbox = G_FW_HELLO_CMD_MBMASTER(v); if (state) { if (v & F_FW_HELLO_CMD_ERR) *state = DEV_STATE_ERR; else if (v & F_FW_HELLO_CMD_INIT) *state = DEV_STATE_INIT; else *state = DEV_STATE_UNINIT; } /* * If we're not the Master PF then we need to wait around for the * Master PF Driver to finish setting up the adapter. * * Note that we also do this wait if we're a non-Master-capable PF and * there is no current Master PF; a Master PF may show up momentarily * and we wouldn't want to fail pointlessly. (This can happen when an * OS loads lots of different drivers rapidly at the same time). In * this case, the Master PF returned by the firmware will be * M_PCIE_FW_MASTER so the test below will work ... */ if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 && master_mbox != mbox) { int waiting = FW_CMD_HELLO_TIMEOUT; /* * Wait for the firmware to either indicate an error or * initialized state. If we see either of these we bail out * and report the issue to the caller. If we exhaust the * "hello timeout" and we haven't exhausted our retries, try * again. Otherwise bail with a timeout error. */ for (;;) { u32 pcie_fw; msleep(50); waiting -= 50; /* * If neither Error nor Initialialized are indicated * by the firmware keep waiting till we exhaust our * timeout ... and then retry if we haven't exhausted * our retries ... */ pcie_fw = t4_read_reg(adap, A_PCIE_FW); if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) { if (waiting <= 0) { if (retries-- > 0) goto retry; return -ETIMEDOUT; } continue; } /* * We either have an Error or Initialized condition * report errors preferentially. */ if (state) { if (pcie_fw & F_PCIE_FW_ERR) *state = DEV_STATE_ERR; else if (pcie_fw & F_PCIE_FW_INIT) *state = DEV_STATE_INIT; } /* * If we arrived before a Master PF was selected and * there's not a valid Master PF, grab its identity * for our caller. */ if (master_mbox == M_PCIE_FW_MASTER && (pcie_fw & F_PCIE_FW_MASTER_VLD)) master_mbox = G_PCIE_FW_MASTER(pcie_fw); break; } } return master_mbox; } /** * t4_fw_bye - end communication with FW * @adap: the adapter * @mbox: mailbox to use for the FW command * * Issues a command to terminate communication with FW. */ int t4_fw_bye(struct adapter *adap, unsigned int mbox) { struct fw_bye_cmd c; memset(&c, 0, sizeof(c)); INIT_CMD(c, BYE, WRITE); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_fw_reset - issue a reset to FW * @adap: the adapter * @mbox: mailbox to use for the FW command * @reset: specifies the type of reset to perform * * Issues a reset command of the specified type to FW. */ int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) { struct fw_reset_cmd c; memset(&c, 0, sizeof(c)); INIT_CMD(c, RESET, WRITE); c.val = cpu_to_be32(reset); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_fw_halt - issue a reset/halt to FW and put uP into RESET * @adap: the adapter * @mbox: mailbox to use for the FW RESET command (if desired) * @force: force uP into RESET even if FW RESET command fails * * Issues a RESET command to firmware (if desired) with a HALT indication * and then puts the microprocessor into RESET state. The RESET command * will only be issued if a legitimate mailbox is provided (mbox <= * M_PCIE_FW_MASTER). * * This is generally used in order for the host to safely manipulate the * adapter without fear of conflicting with whatever the firmware might * be doing. The only way out of this state is to RESTART the firmware * ... */ int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) { int ret = 0; /* * If a legitimate mailbox is provided, issue a RESET command * with a HALT indication. */ if (mbox <= M_PCIE_FW_MASTER) { struct fw_reset_cmd c; memset(&c, 0, sizeof(c)); INIT_CMD(c, RESET, WRITE); c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE); c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /* * Normally we won't complete the operation if the firmware RESET * command fails but if our caller insists we'll go ahead and put the * uP into RESET. This can be useful if the firmware is hung or even * missing ... We'll have to take the risk of putting the uP into * RESET without the cooperation of firmware in that case. * * We also force the firmware's HALT flag to be on in case we bypassed * the firmware RESET command above or we're dealing with old firmware * which doesn't have the HALT capability. This will serve as a flag * for the incoming firmware to know that it's coming out of a HALT * rather than a RESET ... if it's new enough to understand that ... */ if (ret == 0 || force) { t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST); t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, F_PCIE_FW_HALT); } /* * And we always return the result of the firmware RESET command * even when we force the uP into RESET ... */ return ret; } /** * t4_fw_restart - restart the firmware by taking the uP out of RESET * @adap: the adapter * @reset: if we want to do a RESET to restart things * * Restart firmware previously halted by t4_fw_halt(). On successful * return the previous PF Master remains as the new PF Master and there * is no need to issue a new HELLO command, etc. * * We do this in two ways: * * 1. If we're dealing with newer firmware we'll simply want to take * the chip's microprocessor out of RESET. This will cause the * firmware to start up from its start vector. And then we'll loop * until the firmware indicates it's started again (PCIE_FW.HALT * reset to 0) or we timeout. * * 2. If we're dealing with older firmware then we'll need to RESET * the chip since older firmware won't recognize the PCIE_FW.HALT * flag and automatically RESET itself on startup. */ int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) { if (reset) { /* * Since we're directing the RESET instead of the firmware * doing it automatically, we need to clear the PCIE_FW.HALT * bit. */ t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0); /* * If we've been given a valid mailbox, first try to get the * firmware to do the RESET. If that works, great and we can * return success. Otherwise, if we haven't been given a * valid mailbox or the RESET command failed, fall back to * hitting the chip with a hammer. */ if (mbox <= M_PCIE_FW_MASTER) { t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0); msleep(100); if (t4_fw_reset(adap, mbox, F_PIORST | F_PIORSTMODE) == 0) return 0; } t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE); msleep(2000); } else { int ms; t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0); for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT)) return FW_SUCCESS; msleep(100); ms += 100; } return -ETIMEDOUT; } return 0; } /** * t4_fw_upgrade - perform all of the steps necessary to upgrade FW * @adap: the adapter * @mbox: mailbox to use for the FW RESET command (if desired) * @fw_data: the firmware image to write * @size: image size * @force: force upgrade even if firmware doesn't cooperate * * Perform all of the steps necessary for upgrading an adapter's * firmware image. Normally this requires the cooperation of the * existing firmware in order to halt all existing activities * but if an invalid mailbox token is passed in we skip that step * (though we'll still put the adapter microprocessor into RESET in * that case). * * On successful return the new firmware will have been loaded and * the adapter will have been fully RESET losing all previous setup * state. On unsuccessful return the adapter may be completely hosed ... * positive errno indicates that the adapter is ~probably~ intact, a * negative errno indicates that things are looking bad ... */ int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, const u8 *fw_data, unsigned int size, int force) { const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; unsigned int bootstrap = be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP; int reset, ret; if (!t4_fw_matches_chip(adap, fw_hdr)) return -EINVAL; if (!bootstrap) { ret = t4_fw_halt(adap, mbox, force); if (ret < 0 && !force) return ret; } ret = t4_load_fw(adap, fw_data, size); if (ret < 0 || bootstrap) return ret; /* * Older versions of the firmware don't understand the new * PCIE_FW.HALT flag and so won't know to perform a RESET when they * restart. So for newly loaded older firmware we'll have to do the * RESET for it so it starts up on a clean slate. We can tell if * the newly loaded firmware will handle this right by checking * its header flags to see if it advertises the capability. */ reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); return t4_fw_restart(adap, mbox, reset); } /** * t4_fw_initialize - ask FW to initialize the device * @adap: the adapter * @mbox: mailbox to use for the FW command * * Issues a command to FW to partially initialize the device. This * performs initialization that generally doesn't depend on user input. */ int t4_fw_initialize(struct adapter *adap, unsigned int mbox) { struct fw_initialize_cmd c; memset(&c, 0, sizeof(c)); INIT_CMD(c, INITIALIZE, WRITE); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_query_params_rw - query FW or device parameters * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF * @vf: the VF * @nparams: the number of parameters * @params: the parameter names * @val: the parameter values * @rw: Write and read flag * * Reads the value of FW or device parameters. Up to 7 parameters can be * queried at once. */ int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int nparams, const u32 *params, u32 *val, int rw) { int i, ret; struct fw_params_cmd c; __be32 *p = &c.param[0].mnem; if (nparams > 7) return -EINVAL; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ | V_FW_PARAMS_CMD_PFN(pf) | V_FW_PARAMS_CMD_VFN(vf)); c.retval_len16 = cpu_to_be32(FW_LEN16(c)); for (i = 0; i < nparams; i++) { *p++ = cpu_to_be32(*params++); if (rw) *p = cpu_to_be32(*(val + i)); p++; } ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret == 0) for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) *val++ = be32_to_cpu(*p); return ret; } int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int nparams, const u32 *params, u32 *val) { return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0); } /** * t4_set_params_timeout - sets FW or device parameters * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF * @vf: the VF * @nparams: the number of parameters * @params: the parameter names * @val: the parameter values * @timeout: the timeout time * * Sets the value of FW or device parameters. Up to 7 parameters can be * specified at once. */ int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int nparams, const u32 *params, const u32 *val, int timeout) { struct fw_params_cmd c; __be32 *p = &c.param[0].mnem; if (nparams > 7) return -EINVAL; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_PARAMS_CMD_PFN(pf) | V_FW_PARAMS_CMD_VFN(vf)); c.retval_len16 = cpu_to_be32(FW_LEN16(c)); while (nparams--) { *p++ = cpu_to_be32(*params++); *p++ = cpu_to_be32(*val++); } return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); } /** * t4_set_params - sets FW or device parameters * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF * @vf: the VF * @nparams: the number of parameters * @params: the parameter names * @val: the parameter values * * Sets the value of FW or device parameters. Up to 7 parameters can be * specified at once. */ int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int nparams, const u32 *params, const u32 *val) { return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, FW_CMD_MAX_TIMEOUT); } /** * t4_cfg_pfvf - configure PF/VF resource limits * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF being configured * @vf: the VF being configured * @txq: the max number of egress queues * @txq_eth_ctrl: the max number of egress Ethernet or control queues * @rxqi: the max number of interrupt-capable ingress queues * @rxq: the max number of interruptless ingress queues * @tc: the PCI traffic class * @vi: the max number of virtual interfaces * @cmask: the channel access rights mask for the PF/VF * @pmask: the port access rights mask for the PF/VF * @nexact: the maximum number of exact MPS filters * @rcaps: read capabilities * @wxcaps: write/execute capabilities * * Configures resource limits and capabilities for a physical or virtual * function. */ int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, unsigned int rxqi, unsigned int rxq, unsigned int tc, unsigned int vi, unsigned int cmask, unsigned int pmask, unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) { struct fw_pfvf_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) | V_FW_PFVF_CMD_VFN(vf)); c.retval_len16 = cpu_to_be32(FW_LEN16(c)); c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) | V_FW_PFVF_CMD_NIQ(rxq)); c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) | V_FW_PFVF_CMD_PMASK(pmask) | V_FW_PFVF_CMD_NEQ(txq)); c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) | V_FW_PFVF_CMD_NVI(vi) | V_FW_PFVF_CMD_NEXACTF(nexact)); c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) | V_FW_PFVF_CMD_WX_CAPS(wxcaps) | V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_alloc_vi_func - allocate a virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @port: physical port associated with the VI * @pf: the PF owning the VI * @vf: the VF owning the VI * @nmac: number of MAC addresses needed (1 to 5) * @mac: the MAC addresses of the VI * @rss_size: size of RSS table slice associated with this VI * @portfunc: which Port Application Function MAC Address is desired * @idstype: Intrusion Detection Type * * Allocates a virtual interface for the given physical port. If @mac is * not %NULL it contains the MAC addresses of the VI as assigned by FW. * If @rss_size is %NULL the VI is not assigned any RSS slice by FW. * @mac should be large enough to hold @nmac Ethernet addresses, they are * stored consecutively so the space needed is @nmac * 6 bytes. * Returns a negative error number or the non-negative VI id. */ int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox, unsigned int port, unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, u16 *rss_size, unsigned int portfunc, unsigned int idstype) { int ret; struct fw_vi_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf)); c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c)); c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) | V_FW_VI_CMD_FUNC(portfunc)); c.portid_pkd = V_FW_VI_CMD_PORTID(port); c.nmac = nmac - 1; if(!rss_size) c.norss_rsssize = F_FW_VI_CMD_NORSS; ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret) return ret; if (mac) { memcpy(mac, c.mac, sizeof(c.mac)); switch (nmac) { case 5: memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); case 4: memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); case 3: memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); case 2: memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); } } if (rss_size) *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize)); return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid)); } /** * t4_alloc_vi - allocate an [Ethernet Function] virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @port: physical port associated with the VI * @pf: the PF owning the VI * @vf: the VF owning the VI * @nmac: number of MAC addresses needed (1 to 5) * @mac: the MAC addresses of the VI * @rss_size: size of RSS table slice associated with this VI * * backwards compatible and convieniance routine to allocate a Virtual * Interface with a Ethernet Port Application Function and Intrustion * Detection System disabled. */ int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, u16 *rss_size) { return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size, FW_VI_FUNC_ETH, 0); } /** * t4_free_vi - free a virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the VI * @vf: the VF owning the VI * @viid: virtual interface identifiler * * Free a previously allocated virtual interface. */ int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int viid) { struct fw_vi_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf)); c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c)); c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); } /** * t4_set_rxmode - set Rx properties of a virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @mtu: the new MTU or -1 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change * @sleep_ok: if true we may sleep while awaiting command completion * * Sets Rx properties of a virtual interface. */ int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, int mtu, int promisc, int all_multi, int bcast, int vlanex, bool sleep_ok) { struct fw_vi_rxmode_cmd c; /* convert to FW values */ if (mtu < 0) mtu = M_FW_VI_RXMODE_CMD_MTU; if (promisc < 0) promisc = M_FW_VI_RXMODE_CMD_PROMISCEN; if (all_multi < 0) all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN; if (bcast < 0) bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN; if (vlanex < 0) vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_VI_RXMODE_CMD_VIID(viid)); c.retval_len16 = cpu_to_be32(FW_LEN16(c)); c.mtu_to_vlanexen = cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) | V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) | V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) | V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) | V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex)); return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); } /** * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @free: if true any existing filters for this VI id are first removed * @naddr: the number of MAC addresses to allocate filters for (up to 7) * @addr: the MAC address(es) * @idx: where to store the index of each allocated filter * @hash: pointer to hash address filter bitmap * @sleep_ok: call is allowed to sleep * * Allocates an exact-match filter for each of the supplied addresses and * sets it to the corresponding address. If @idx is not %NULL it should * have at least @naddr entries, each of which will be set to the index of * the filter allocated for the corresponding MAC address. If a filter * could not be allocated for an address its index is set to 0xffff. * If @hash is not %NULL addresses that fail to allocate an exact filter * are hashed and update the hash filter bitmap pointed at by @hash. * * Returns a negative error number or the number of filters allocated. */ int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, unsigned int viid, bool free, unsigned int naddr, const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) { int offset, ret = 0; struct fw_vi_mac_cmd c; unsigned int nfilters = 0; unsigned int max_naddr = adap->chip_params->mps_tcam_size; unsigned int rem = naddr; if (naddr > max_naddr) return -EINVAL; for (offset = 0; offset < naddr ; /**/) { unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? rem : ARRAY_SIZE(c.u.exact)); size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, u.exact[fw_naddr]), 16); struct fw_vi_mac_exact *p; int i; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_CMD_EXEC(free) | V_FW_VI_MAC_CMD_VIID(viid)); c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) | V_FW_CMD_LEN16(len16)); for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID | V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC)); memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); } /* * It's okay if we run out of space in our MAC address arena. * Some of the addresses we submit may get stored so we need * to run through the reply to see what the results were ... */ ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); if (ret && ret != -FW_ENOMEM) break; for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { u16 index = G_FW_VI_MAC_CMD_IDX( be16_to_cpu(p->valid_to_idx)); if (idx) idx[offset+i] = (index >= max_naddr ? 0xffff : index); if (index < max_naddr) nfilters++; else if (hash) *hash |= (1ULL << hash_mac_addr(addr[offset+i])); } free = false; offset += fw_naddr; rem -= fw_naddr; } if (ret == 0 || ret == -FW_ENOMEM) ret = nfilters; return ret; } /** * t4_change_mac - modifies the exact-match filter for a MAC address * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @idx: index of existing filter for old value of MAC address, or -1 * @addr: the new MAC address value * @persist: whether a new MAC allocation should be persistent * @add_smt: if true also add the address to the HW SMT * * Modifies an exact-match filter and sets it to the new MAC address if * @idx >= 0, or adds the MAC address to a new filter if @idx < 0. In the * latter case the address is added persistently if @persist is %true. * * Note that in general it is not possible to modify the value of a given * filter so the generic way to modify an address filter is to free the one * being used by the old address value and allocate a new filter for the * new address value. * * Returns a negative error number or the index of the filter with the new * MAC value. Note that this index may differ from @idx. */ int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, int idx, const u8 *addr, bool persist, bool add_smt) { int ret, mode; struct fw_vi_mac_cmd c; struct fw_vi_mac_exact *p = c.u.exact; unsigned int max_mac_addr = adap->chip_params->mps_tcam_size; if (idx < 0) /* new allocation */ idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_VI_MAC_CMD_VIID(viid)); c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1)); p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID | V_FW_VI_MAC_CMD_SMAC_RESULT(mode) | V_FW_VI_MAC_CMD_IDX(idx)); memcpy(p->macaddr, addr, sizeof(p->macaddr)); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret == 0) { ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx)); if (ret >= max_mac_addr) ret = -ENOMEM; } return ret; } /** * t4_set_addr_hash - program the MAC inexact-match hash filter * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @ucast: whether the hash filter should also match unicast addresses * @vec: the value to be written to the hash filter * @sleep_ok: call is allowed to sleep * * Sets the 64-bit inexact-match hash filter for a virtual interface. */ int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, bool ucast, u64 vec, bool sleep_ok) { struct fw_vi_mac_cmd c; u32 val; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_VI_ENABLE_CMD_VIID(viid)); val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) | V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1); c.freemacs_to_len16 = cpu_to_be32(val); c.u.hash.hashvec = cpu_to_be64(vec); return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); } /** * t4_enable_vi_params - enable/disable a virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @rx_en: 1=enable Rx, 0=disable Rx * @tx_en: 1=enable Tx, 0=disable Tx * @dcb_en: 1=enable delivery of Data Center Bridging messages. * * Enables/disables a virtual interface. Note that setting DCB Enable * only makes sense when enabling a Virtual Interface ... */ int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) { struct fw_vi_enable_cmd c; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_VI_ENABLE_CMD_VIID(viid)); c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) | V_FW_VI_ENABLE_CMD_EEN(tx_en) | V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) | FW_LEN16(c)); return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); } /** * t4_enable_vi - enable/disable a virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @rx_en: 1=enable Rx, 0=disable Rx * @tx_en: 1=enable Tx, 0=disable Tx * * Enables/disables a virtual interface. Note that setting DCB Enable * only makes sense when enabling a Virtual Interface ... */ int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, bool rx_en, bool tx_en) { return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); } /** * t4_identify_port - identify a VI's port by blinking its LED * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @nblinks: how many times to blink LED at 2.5 Hz * * Identifies a VI's port by blinking its LED. */ int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, unsigned int nblinks) { struct fw_vi_enable_cmd c; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_VI_ENABLE_CMD_VIID(viid)); c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c)); c.blinkdur = cpu_to_be16(nblinks); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_iq_stop - stop an ingress queue and its FLs * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queues * @vf: the VF owning the queues * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) * @iqid: ingress queue id * @fl0id: FL0 queue id or 0xffff if no attached FL0 * @fl1id: FL1 queue id or 0xffff if no attached FL1 * * Stops an ingress queue and its associated FLs, if any. This causes * any current or future data/messages destined for these queues to be * tossed. */ int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int iqtype, unsigned int iqid, unsigned int fl0id, unsigned int fl1id) { struct fw_iq_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) | V_FW_IQ_CMD_VFN(vf)); c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c)); c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype)); c.iqid = cpu_to_be16(iqid); c.fl0id = cpu_to_be16(fl0id); c.fl1id = cpu_to_be16(fl1id); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_iq_free - free an ingress queue and its FLs * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queues * @vf: the VF owning the queues * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) * @iqid: ingress queue id * @fl0id: FL0 queue id or 0xffff if no attached FL0 * @fl1id: FL1 queue id or 0xffff if no attached FL1 * * Frees an ingress queue and its associated FLs, if any. */ int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int iqtype, unsigned int iqid, unsigned int fl0id, unsigned int fl1id) { struct fw_iq_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) | V_FW_IQ_CMD_VFN(vf)); c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c)); c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype)); c.iqid = cpu_to_be16(iqid); c.fl0id = cpu_to_be16(fl0id); c.fl1id = cpu_to_be16(fl1id); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_eth_eq_free - free an Ethernet egress queue * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queue * @vf: the VF owning the queue * @eqid: egress queue id * * Frees an Ethernet egress queue. */ int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int eqid) { struct fw_eq_eth_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(pf) | V_FW_EQ_ETH_CMD_VFN(vf)); c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c)); c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_ctrl_eq_free - free a control egress queue * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queue * @vf: the VF owning the queue * @eqid: egress queue id * * Frees a control egress queue. */ int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int eqid) { struct fw_eq_ctrl_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(pf) | V_FW_EQ_CTRL_CMD_VFN(vf)); c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c)); c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_ofld_eq_free - free an offload egress queue * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queue * @vf: the VF owning the queue * @eqid: egress queue id * * Frees a control egress queue. */ int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int eqid) { struct fw_eq_ofld_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(pf) | V_FW_EQ_OFLD_CMD_VFN(vf)); c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c)); c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_link_down_rc_str - return a string for a Link Down Reason Code * @link_down_rc: Link Down Reason Code * * Returns a string representation of the Link Down Reason Code. */ const char *t4_link_down_rc_str(unsigned char link_down_rc) { static const char *reason[] = { "Link Down", "Remote Fault", "Auto-negotiation Failure", "Reserved3", "Insufficient Airflow", "Unable To Determine Reason", "No RX Signal Detected", "Reserved7", }; if (link_down_rc >= ARRAY_SIZE(reason)) return "Bad Reason Code"; return reason[link_down_rc]; } /** * t4_handle_fw_rpl - process a FW reply message * @adap: the adapter * @rpl: start of the FW message * * Processes a FW message, such as link state change messages. */ int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) { u8 opcode = *(const u8 *)rpl; const struct fw_port_cmd *p = (const void *)rpl; unsigned int action = G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16)); if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) { /* link/module state change message */ int speed = 0, fc = 0, i; int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid)); struct port_info *pi = NULL; struct link_config *lc; u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype); int link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0; u32 mod = G_FW_PORT_CMD_MODTYPE(stat); if (stat & F_FW_PORT_CMD_RXPAUSE) fc |= PAUSE_RX; if (stat & F_FW_PORT_CMD_TXPAUSE) fc |= PAUSE_TX; if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M)) speed = 100; else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G)) speed = 1000; else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G)) speed = 10000; else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G)) speed = 25000; else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G)) speed = 40000; else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G)) speed = 100000; for_each_port(adap, i) { pi = adap2pinfo(adap, i); if (pi->tx_chan == chan) break; } lc = &pi->link_cfg; if (mod != pi->mod_type) { pi->mod_type = mod; t4_os_portmod_changed(adap, i); } if (link_ok != lc->link_ok || speed != lc->speed || fc != lc->fc) { /* something changed */ if (!link_ok && lc->link_ok) lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat); lc->link_ok = link_ok; lc->speed = speed; lc->fc = fc; lc->supported = be16_to_cpu(p->u.info.pcap); lc->lp_advertising = be16_to_cpu(p->u.info.lpacap); t4_os_link_changed(adap, i, link_ok); } } else { CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode); return -EINVAL; } return 0; } /** * get_pci_mode - determine a card's PCI mode * @adapter: the adapter * @p: where to store the PCI settings * * Determines a card's PCI mode and associated parameters, such as speed * and width. */ static void get_pci_mode(struct adapter *adapter, struct pci_params *p) { u16 val; u32 pcie_cap; pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP); if (pcie_cap) { t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val); p->speed = val & PCI_EXP_LNKSTA_CLS; p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; } } /** * init_link_config - initialize a link's SW state * @lc: structure holding the link state * @pcaps: supported link capabilities * @acaps: advertised link capabilities * * Initializes the SW state maintained for each link, including the link's * capabilities and default speed/flow-control/autonegotiation settings. */ static void init_link_config(struct link_config *lc, unsigned int pcaps, unsigned int acaps) { unsigned int fec; lc->supported = pcaps; lc->lp_advertising = 0; lc->requested_speed = 0; lc->speed = 0; lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; lc->link_ok = 0; lc->link_down_rc = 255; fec = 0; if (acaps & FW_PORT_CAP_FEC_RS) fec |= FEC_RS; if (acaps & FW_PORT_CAP_FEC_BASER_RS) fec |= FEC_BASER_RS; if (acaps & FW_PORT_CAP_FEC_RESERVED) fec |= FEC_RESERVED; lc->requested_fec = lc->fec = fec; if (lc->supported & FW_PORT_CAP_ANEG) { lc->advertising = lc->supported & ADVERT_MASK; lc->autoneg = AUTONEG_ENABLE; lc->requested_fc |= PAUSE_AUTONEG; } else { lc->advertising = 0; lc->autoneg = AUTONEG_DISABLE; } } struct flash_desc { u32 vendor_and_model_id; u32 size_mb; }; int t4_get_flash_params(struct adapter *adapter) { /* * Table for non-Numonix supported flash parts. Numonix parts are left * to the preexisting well-tested code. All flash parts have 64KB * sectors. */ static struct flash_desc supported_flash[] = { { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ }; int ret; u32 info = 0; ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID); if (!ret) ret = sf1_read(adapter, 3, 0, 1, &info); t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ if (ret < 0) return ret; for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret) if (supported_flash[ret].vendor_and_model_id == info) { adapter->params.sf_size = supported_flash[ret].size_mb; adapter->params.sf_nsec = adapter->params.sf_size / SF_SEC_SIZE; return 0; } if ((info & 0xff) != 0x20) /* not a Numonix flash */ return -EINVAL; info >>= 16; /* log2 of size */ if (info >= 0x14 && info < 0x18) adapter->params.sf_nsec = 1 << (info - 16); else if (info == 0x18) adapter->params.sf_nsec = 64; else return -EINVAL; adapter->params.sf_size = 1 << info; /* * We should ~probably~ reject adapters with FLASHes which are too * small but we have some legacy FPGAs with small FLASHes that we'd * still like to use. So instead we emit a scary message ... */ if (adapter->params.sf_size < FLASH_MIN_SIZE) CH_WARN(adapter, "WARNING!!! FLASH size %#x < %#x!!!\n", adapter->params.sf_size, FLASH_MIN_SIZE); return 0; } static void set_pcie_completion_timeout(struct adapter *adapter, u8 range) { u16 val; u32 pcie_cap; pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP); if (pcie_cap) { t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val); val &= 0xfff0; val |= range ; t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val); } } const struct chip_params *t4_get_chip_params(int chipid) { static const struct chip_params chip_params[] = { { /* T4 */ .nchan = NCHAN, .pm_stats_cnt = PM_NSTATS, .cng_ch_bits_log = 2, .nsched_cls = 15, .cim_num_obq = CIM_NUM_OBQ, .mps_rplc_size = 128, .vfcount = 128, .sge_fl_db = F_DBPRIO, .mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES, }, { /* T5 */ .nchan = NCHAN, .pm_stats_cnt = PM_NSTATS, .cng_ch_bits_log = 2, .nsched_cls = 16, .cim_num_obq = CIM_NUM_OBQ_T5, .mps_rplc_size = 128, .vfcount = 128, .sge_fl_db = F_DBPRIO | F_DBTYPE, .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES, }, { /* T6 */ .nchan = T6_NCHAN, .pm_stats_cnt = T6_PM_NSTATS, .cng_ch_bits_log = 3, .nsched_cls = 16, .cim_num_obq = CIM_NUM_OBQ_T5, .mps_rplc_size = 256, .vfcount = 256, .sge_fl_db = 0, .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES, }, }; chipid -= CHELSIO_T4; if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params)) return NULL; return &chip_params[chipid]; } /** * t4_prep_adapter - prepare SW and HW for operation * @adapter: the adapter * @buf: temporary space of at least VPD_LEN size provided by the caller. * * Initialize adapter SW state for the various HW modules, set initial * values for some adapter tunables, take PHYs out of reset, and * initialize the MDIO interface. */ int t4_prep_adapter(struct adapter *adapter, u8 *buf) { int ret; uint16_t device_id; uint32_t pl_rev; get_pci_mode(adapter, &adapter->params.pci); pl_rev = t4_read_reg(adapter, A_PL_REV); adapter->params.chipid = G_CHIPID(pl_rev); adapter->params.rev = G_REV(pl_rev); if (adapter->params.chipid == 0) { /* T4 did not have chipid in PL_REV (T5 onwards do) */ adapter->params.chipid = CHELSIO_T4; /* T4A1 chip is not supported */ if (adapter->params.rev == 1) { CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n"); return -EINVAL; } } adapter->chip_params = t4_get_chip_params(chip_id(adapter)); if (adapter->chip_params == NULL) return -EINVAL; adapter->params.pci.vpd_cap_addr = t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD); ret = t4_get_flash_params(adapter); if (ret < 0) return ret; ret = get_vpd_params(adapter, &adapter->params.vpd, buf); if (ret < 0) return ret; /* Cards with real ASICs have the chipid in the PCIe device id */ t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id); if (device_id >> 12 == chip_id(adapter)) adapter->params.cim_la_size = CIMLA_SIZE; else { /* FPGA */ adapter->params.fpga = 1; adapter->params.cim_la_size = 2 * CIMLA_SIZE; } init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); /* * Default port and clock for debugging in case we can't reach FW. */ adapter->params.nports = 1; adapter->params.portvec = 1; adapter->params.vpd.cclk = 50000; /* Set pci completion timeout value to 4 seconds. */ set_pcie_completion_timeout(adapter, 0xd); return 0; } /** * t4_shutdown_adapter - shut down adapter, host & wire * @adapter: the adapter * * Perform an emergency shutdown of the adapter and stop it from * continuing any further communication on the ports or DMA to the * host. This is typically used when the adapter and/or firmware * have crashed and we want to prevent any further accidental * communication with the rest of the world. This will also force * the port Link Status to go down -- if register writes work -- * which should help our peers figure out that we're down. */ int t4_shutdown_adapter(struct adapter *adapter) { int port; t4_intr_disable(adapter); t4_write_reg(adapter, A_DBG_GPIO_EN, 0); for_each_port(adapter, port) { u32 a_port_cfg = PORT_REG(port, is_t4(adapter) ? A_XGMAC_PORT_CFG : A_MAC_PORT_CFG); t4_write_reg(adapter, a_port_cfg, t4_read_reg(adapter, a_port_cfg) & ~V_SIGNAL_DET(1)); } t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0); return 0; } /** * t4_init_devlog_params - initialize adapter->params.devlog * @adap: the adapter * @fw_attach: whether we can talk to the firmware * * Initialize various fields of the adapter's Firmware Device Log * Parameters structure. */ int t4_init_devlog_params(struct adapter *adap, int fw_attach) { struct devlog_params *dparams = &adap->params.devlog; u32 pf_dparams; unsigned int devlog_meminfo; struct fw_devlog_cmd devlog_cmd; int ret; /* If we're dealing with newer firmware, the Device Log Paramerters * are stored in a designated register which allows us to access the * Device Log even if we can't talk to the firmware. */ pf_dparams = t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG)); if (pf_dparams) { unsigned int nentries, nentries128; dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams); dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4; nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams); nentries = (nentries128 + 1) * 128; dparams->size = nentries * sizeof(struct fw_devlog_e); return 0; } /* * For any failing returns ... */ memset(dparams, 0, sizeof *dparams); /* * If we can't talk to the firmware, there's really nothing we can do * at this point. */ if (!fw_attach) return -ENXIO; /* Otherwise, ask the firmware for it's Device Log Parameters. */ memset(&devlog_cmd, 0, sizeof devlog_cmd); devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ); devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), &devlog_cmd); if (ret) return ret; devlog_meminfo = be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo); dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4; dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); return 0; } /** * t4_init_sge_params - initialize adap->params.sge * @adapter: the adapter * * Initialize various fields of the adapter's SGE Parameters structure. */ int t4_init_sge_params(struct adapter *adapter) { u32 r; struct sge_params *sp = &adapter->params.sge; - unsigned i; + unsigned i, tscale = 1; r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD); sp->counter_val[0] = G_THRESHOLD_0(r); sp->counter_val[1] = G_THRESHOLD_1(r); sp->counter_val[2] = G_THRESHOLD_2(r); sp->counter_val[3] = G_THRESHOLD_3(r); + if (chip_id(adapter) >= CHELSIO_T6) { + r = t4_read_reg(adapter, A_SGE_ITP_CONTROL); + tscale = G_TSCALE(r); + if (tscale == 0) + tscale = 1; + else + tscale += 2; + } + r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1); - sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)); - sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)); + sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale; + sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale; r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3); - sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)); - sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)); + sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale; + sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale; r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5); - sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)); - sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)); + sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale; + sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale; r = t4_read_reg(adapter, A_SGE_CONM_CTRL); sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1; if (is_t4(adapter)) sp->fl_starve_threshold2 = sp->fl_starve_threshold; else if (is_t5(adapter)) sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1; else sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1; /* egress queues: log2 of # of doorbells per BAR2 page */ r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF); r >>= S_QUEUESPERPAGEPF0 + (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf; sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0; /* ingress queues: log2 of # of doorbells per BAR2 page */ r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF); r >>= S_QUEUESPERPAGEPF0 + (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf; sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0; r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE); r >>= S_HOSTPAGESIZEPF0 + (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf; sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10; r = t4_read_reg(adapter, A_SGE_CONTROL); sp->sge_control = r; sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64; sp->fl_pktshift = G_PKTSHIFT(r); if (chip_id(adapter) <= CHELSIO_T5) { sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + X_INGPADBOUNDARY_SHIFT); } else { sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + X_T6_INGPADBOUNDARY_SHIFT); } if (is_t4(adapter)) sp->pack_boundary = sp->pad_boundary; else { r = t4_read_reg(adapter, A_SGE_CONTROL2); if (G_INGPACKBOUNDARY(r) == 0) sp->pack_boundary = 16; else sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5); } for (i = 0; i < SGE_FLBUF_SIZES; i++) sp->sge_fl_buffer_size[i] = t4_read_reg(adapter, A_SGE_FL_BUFFER_SIZE0 + (4 * i)); return 0; } /* * Read and cache the adapter's compressed filter mode and ingress config. */ static void read_filter_mode_and_ingress_config(struct adapter *adap) { struct tp_params *tpp = &adap->params.tp; if (t4_use_ldst(adap)) { t4_fw_tp_pio_rw(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP, 1); t4_fw_tp_pio_rw(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG, 1); } else { t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP); t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG); } /* * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field * shift positions of several elements of the Compressed Filter Tuple * for this adapter which we need frequently ... */ tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE); tpp->port_shift = t4_filter_field_shift(adap, F_PORT); tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID); tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN); tpp->tos_shift = t4_filter_field_shift(adap, F_TOS); tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL); tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE); tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH); tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE); tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION); /* * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID * represents the presense of an Outer VLAN instead of a VNIC ID. */ if ((tpp->ingress_config & F_VNIC) == 0) tpp->vnic_shift = -1; } /** * t4_init_tp_params - initialize adap->params.tp * @adap: the adapter * * Initialize various fields of the adapter's TP Parameters structure. */ int t4_init_tp_params(struct adapter *adap) { int chan; u32 v; struct tp_params *tpp = &adap->params.tp; v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION); tpp->tre = G_TIMERRESOLUTION(v); tpp->dack_re = G_DELAYEDACKRESOLUTION(v); /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ for (chan = 0; chan < MAX_NCHAN; chan++) tpp->tx_modq[chan] = chan; read_filter_mode_and_ingress_config(adap); /* * Cache a mask of the bits that represent the error vector portion of * rx_pkt.err_vec. T6+ can use a compressed error vector to make room * for information about outer encapsulation (GENEVE/VXLAN/NVGRE). */ tpp->err_vec_mask = htobe16(0xffff); if (chip_id(adap) > CHELSIO_T5) { v = t4_read_reg(adap, A_TP_OUT_CONFIG); if (v & F_CRXPKTENC) { tpp->err_vec_mask = htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC)); } } return 0; } /** * t4_filter_field_shift - calculate filter field shift * @adap: the adapter * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) * * Return the shift position of a filter field within the Compressed * Filter Tuple. The filter field is specified via its selection bit * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. */ int t4_filter_field_shift(const struct adapter *adap, int filter_sel) { unsigned int filter_mode = adap->params.tp.vlan_pri_map; unsigned int sel; int field_shift; if ((filter_mode & filter_sel) == 0) return -1; for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { switch (filter_mode & sel) { case F_FCOE: field_shift += W_FT_FCOE; break; case F_PORT: field_shift += W_FT_PORT; break; case F_VNIC_ID: field_shift += W_FT_VNIC_ID; break; case F_VLAN: field_shift += W_FT_VLAN; break; case F_TOS: field_shift += W_FT_TOS; break; case F_PROTOCOL: field_shift += W_FT_PROTOCOL; break; case F_ETHERTYPE: field_shift += W_FT_ETHERTYPE; break; case F_MACMATCH: field_shift += W_FT_MACMATCH; break; case F_MPSHITTYPE: field_shift += W_FT_MPSHITTYPE; break; case F_FRAGMENTATION: field_shift += W_FT_FRAGMENTATION; break; } } return field_shift; } int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id) { u8 addr[6]; int ret, i, j; struct fw_port_cmd c; u16 rss_size; struct port_info *p = adap2pinfo(adap, port_id); u32 param, val; memset(&c, 0, sizeof(c)); for (i = 0, j = -1; i <= p->port_id; i++) { do { j++; } while ((adap->params.portvec & (1 << j)) == 0); } if (!(adap->flags & IS_VF) || adap->params.vfres.r_caps & FW_CMD_CAP_PORT) { c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ | V_FW_PORT_CMD_PORTID(j)); c.action_to_len16 = htonl( V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) | FW_LEN16(c)); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret) return ret; ret = be32_to_cpu(c.u.info.lstatus_to_modtype); p->mdio_addr = (ret & F_FW_PORT_CMD_MDIOCAP) ? G_FW_PORT_CMD_MDIOADDR(ret) : -1; p->port_type = G_FW_PORT_CMD_PTYPE(ret); p->mod_type = G_FW_PORT_CMD_MODTYPE(ret); init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap), be16_to_cpu(c.u.info.acap)); } ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size); if (ret < 0) return ret; p->vi[0].viid = ret; if (chip_id(adap) <= CHELSIO_T5) p->vi[0].smt_idx = (ret & 0x7f) << 1; else p->vi[0].smt_idx = (ret & 0x7f); p->tx_chan = j; p->rx_chan_map = t4_get_mps_bg_map(adap, j); p->lport = j; p->vi[0].rss_size = rss_size; t4_os_set_hw_addr(adap, p->port_id, addr); param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | V_FW_PARAMS_PARAM_YZ(p->vi[0].viid); ret = t4_query_params(adap, mbox, pf, vf, 1, ¶m, &val); if (ret) p->vi[0].rss_base = 0xffff; else { /* MPASS((val >> 16) == rss_size); */ p->vi[0].rss_base = val & 0xffff; } return 0; } /** * t4_read_cimq_cfg - read CIM queue configuration * @adap: the adapter * @base: holds the queue base addresses in bytes * @size: holds the queue sizes in bytes * @thres: holds the queue full thresholds in bytes * * Returns the current configuration of the CIM queues, starting with * the IBQs, then the OBQs. */ void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) { unsigned int i, v; int cim_num_obq = adap->chip_params->cim_num_obq; for (i = 0; i < CIM_NUM_IBQ; i++) { t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT | V_QUENUMSELECT(i)); v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); /* value is in 256-byte units */ *base++ = G_CIMQBASE(v) * 256; *size++ = G_CIMQSIZE(v) * 256; *thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */ } for (i = 0; i < cim_num_obq; i++) { t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT | V_QUENUMSELECT(i)); v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); /* value is in 256-byte units */ *base++ = G_CIMQBASE(v) * 256; *size++ = G_CIMQSIZE(v) * 256; } } /** * t4_read_cim_ibq - read the contents of a CIM inbound queue * @adap: the adapter * @qid: the queue index * @data: where to store the queue contents * @n: capacity of @data in 32-bit words * * Reads the contents of the selected CIM queue starting at address 0 up * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on * error and the number of 32-bit words actually read on success. */ int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) { int i, err, attempts; unsigned int addr; const unsigned int nwords = CIM_IBQ_SIZE * 4; if (qid > 5 || (n & 3)) return -EINVAL; addr = qid * nwords; if (n > nwords) n = nwords; /* It might take 3-10ms before the IBQ debug read access is allowed. * Wait for 1 Sec with a delay of 1 usec. */ attempts = 1000000; for (i = 0; i < n; i++, addr++) { t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) | F_IBQDBGEN); err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0, attempts, 1); if (err) return err; *data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA); } t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0); return i; } /** * t4_read_cim_obq - read the contents of a CIM outbound queue * @adap: the adapter * @qid: the queue index * @data: where to store the queue contents * @n: capacity of @data in 32-bit words * * Reads the contents of the selected CIM queue starting at address 0 up * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on * error and the number of 32-bit words actually read on success. */ int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) { int i, err; unsigned int addr, v, nwords; int cim_num_obq = adap->chip_params->cim_num_obq; if ((qid > (cim_num_obq - 1)) || (n & 3)) return -EINVAL; t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT | V_QUENUMSELECT(qid)); v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); addr = G_CIMQBASE(v) * 64; /* muliple of 256 -> muliple of 4 */ nwords = G_CIMQSIZE(v) * 64; /* same */ if (n > nwords) n = nwords; for (i = 0; i < n; i++, addr++) { t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) | F_OBQDBGEN); err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0, 2, 1); if (err) return err; *data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA); } t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0); return i; } enum { CIM_QCTL_BASE = 0, CIM_CTL_BASE = 0x2000, CIM_PBT_ADDR_BASE = 0x2800, CIM_PBT_LRF_BASE = 0x3000, CIM_PBT_DATA_BASE = 0x3800 }; /** * t4_cim_read - read a block from CIM internal address space * @adap: the adapter * @addr: the start address within the CIM address space * @n: number of words to read * @valp: where to store the result * * Reads a block of 4-byte words from the CIM intenal address space. */ int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, unsigned int *valp) { int ret = 0; if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) return -EBUSY; for ( ; !ret && n--; addr += 4) { t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr); ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, 0, 5, 2); if (!ret) *valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA); } return ret; } /** * t4_cim_write - write a block into CIM internal address space * @adap: the adapter * @addr: the start address within the CIM address space * @n: number of words to write * @valp: set of values to write * * Writes a block of 4-byte words into the CIM intenal address space. */ int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, const unsigned int *valp) { int ret = 0; if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) return -EBUSY; for ( ; !ret && n--; addr += 4) { t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++); t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE); ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, 0, 5, 2); } return ret; } static int t4_cim_write1(struct adapter *adap, unsigned int addr, unsigned int val) { return t4_cim_write(adap, addr, 1, &val); } /** * t4_cim_ctl_read - read a block from CIM control region * @adap: the adapter * @addr: the start address within the CIM control region * @n: number of words to read * @valp: where to store the result * * Reads a block of 4-byte words from the CIM control region. */ int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n, unsigned int *valp) { return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp); } /** * t4_cim_read_la - read CIM LA capture buffer * @adap: the adapter * @la_buf: where to store the LA data * @wrptr: the HW write pointer within the capture buffer * * Reads the contents of the CIM LA buffer with the most recent entry at * the end of the returned data and with the entry at @wrptr first. * We try to leave the LA in the running state we find it in. */ int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) { int i, ret; unsigned int cfg, val, idx; ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg); if (ret) return ret; if (cfg & F_UPDBGLAEN) { /* LA is running, freeze it */ ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0); if (ret) return ret; } ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val); if (ret) goto restart; idx = G_UPDBGLAWRPTR(val); if (wrptr) *wrptr = idx; for (i = 0; i < adap->params.cim_la_size; i++) { ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN); if (ret) break; ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val); if (ret) break; if (val & F_UPDBGLARDEN) { ret = -ETIMEDOUT; break; } ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]); if (ret) break; /* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */ idx = (idx + 1) & M_UPDBGLARDPTR; /* * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to * identify the 32-bit portion of the full 312-bit data */ if (is_t6(adap)) while ((idx & 0xf) > 9) idx = (idx + 1) % M_UPDBGLARDPTR; } restart: if (cfg & F_UPDBGLAEN) { int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, cfg & ~F_UPDBGLARDEN); if (!ret) ret = r; } return ret; } /** * t4_tp_read_la - read TP LA capture buffer * @adap: the adapter * @la_buf: where to store the LA data * @wrptr: the HW write pointer within the capture buffer * * Reads the contents of the TP LA buffer with the most recent entry at * the end of the returned data and with the entry at @wrptr first. * We leave the LA in the running state we find it in. */ void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) { bool last_incomplete; unsigned int i, cfg, val, idx; cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff; if (cfg & F_DBGLAENABLE) /* freeze LA */ t4_write_reg(adap, A_TP_DBG_LA_CONFIG, adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE)); val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG); idx = G_DBGLAWPTR(val); last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0; if (last_incomplete) idx = (idx + 1) & M_DBGLARPTR; if (wrptr) *wrptr = idx; val &= 0xffff; val &= ~V_DBGLARPTR(M_DBGLARPTR); val |= adap->params.tp.la_mask; for (i = 0; i < TPLA_SIZE; i++) { t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val); la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL); idx = (idx + 1) & M_DBGLARPTR; } /* Wipe out last entry if it isn't valid */ if (last_incomplete) la_buf[TPLA_SIZE - 1] = ~0ULL; if (cfg & F_DBGLAENABLE) /* restore running state */ t4_write_reg(adap, A_TP_DBG_LA_CONFIG, cfg | adap->params.tp.la_mask); } /* * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in * seconds). If we find one of the SGE Ingress DMA State Machines in the same * state for more than the Warning Threshold then we'll issue a warning about * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel * appears to be hung every Warning Repeat second till the situation clears. * If the situation clears, we'll note that as well. */ #define SGE_IDMA_WARN_THRESH 1 #define SGE_IDMA_WARN_REPEAT 300 /** * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor * @adapter: the adapter * @idma: the adapter IDMA Monitor state * * Initialize the state of an SGE Ingress DMA Monitor. */ void t4_idma_monitor_init(struct adapter *adapter, struct sge_idma_monitor_state *idma) { /* Initialize the state variables for detecting an SGE Ingress DMA * hang. The SGE has internal counters which count up on each clock * tick whenever the SGE finds its Ingress DMA State Engines in the * same state they were on the previous clock tick. The clock used is * the Core Clock so we have a limit on the maximum "time" they can * record; typically a very small number of seconds. For instance, * with a 600MHz Core Clock, we can only count up to a bit more than * 7s. So we'll synthesize a larger counter in order to not run the * risk of having the "timers" overflow and give us the flexibility to * maintain a Hung SGE State Machine of our own which operates across * a longer time frame. */ idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ idma->idma_stalled[0] = idma->idma_stalled[1] = 0; } /** * t4_idma_monitor - monitor SGE Ingress DMA state * @adapter: the adapter * @idma: the adapter IDMA Monitor state * @hz: number of ticks/second * @ticks: number of ticks since the last IDMA Monitor call */ void t4_idma_monitor(struct adapter *adapter, struct sge_idma_monitor_state *idma, int hz, int ticks) { int i, idma_same_state_cnt[2]; /* Read the SGE Debug Ingress DMA Same State Count registers. These * are counters inside the SGE which count up on each clock when the * SGE finds its Ingress DMA State Engines in the same states they * were in the previous clock. The counters will peg out at * 0xffffffff without wrapping around so once they pass the 1s * threshold they'll stay above that till the IDMA state changes. */ t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13); idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH); idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); for (i = 0; i < 2; i++) { u32 debug0, debug11; /* If the Ingress DMA Same State Counter ("timer") is less * than 1s, then we can reset our synthesized Stall Timer and * continue. If we have previously emitted warnings about a * potential stalled Ingress Queue, issue a note indicating * that the Ingress Queue has resumed forward progress. */ if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz) CH_WARN(adapter, "SGE idma%d, queue %u, " "resumed after %d seconds\n", i, idma->idma_qid[i], idma->idma_stalled[i]/hz); idma->idma_stalled[i] = 0; continue; } /* Synthesize an SGE Ingress DMA Same State Timer in the Hz * domain. The first time we get here it'll be because we * passed the 1s Threshold; each additional time it'll be * because the RX Timer Callback is being fired on its regular * schedule. * * If the stall is below our Potential Hung Ingress Queue * Warning Threshold, continue. */ if (idma->idma_stalled[i] == 0) { idma->idma_stalled[i] = hz; idma->idma_warn[i] = 0; } else { idma->idma_stalled[i] += ticks; idma->idma_warn[i] -= ticks; } if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz) continue; /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. */ if (idma->idma_warn[i] > 0) continue; idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz; /* Read and save the SGE IDMA State and Queue ID information. * We do this every time in case it changes across time ... * can't be too careful ... */ t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0); debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11); debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in " " state %u for %d seconds (debug0=%#x, debug11=%#x)\n", i, idma->idma_qid[i], idma->idma_state[i], idma->idma_stalled[i]/hz, debug0, debug11); t4_sge_decode_idma_state(adapter, idma->idma_state[i]); } } /** * t4_read_pace_tbl - read the pace table * @adap: the adapter * @pace_vals: holds the returned values * * Returns the values of TP's pace table in microseconds. */ void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) { unsigned int i, v; for (i = 0; i < NTX_SCHED; i++) { t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i); v = t4_read_reg(adap, A_TP_PACE_TABLE); pace_vals[i] = dack_ticks_to_usec(adap, v); } } /** * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler * @adap: the adapter * @sched: the scheduler index * @kbps: the byte rate in Kbps * @ipg: the interpacket delay in tenths of nanoseconds * * Return the current configuration of a HW Tx scheduler. */ void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps, unsigned int *ipg) { unsigned int v, addr, bpt, cpt; if (kbps) { addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2; t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr); v = t4_read_reg(adap, A_TP_TM_PIO_DATA); if (sched & 1) v >>= 16; bpt = (v >> 8) & 0xff; cpt = v & 0xff; if (!cpt) *kbps = 0; /* scheduler disabled */ else { v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ *kbps = (v * bpt) / 125; } } if (ipg) { addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2; t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr); v = t4_read_reg(adap, A_TP_TM_PIO_DATA); if (sched & 1) v >>= 16; v &= 0xffff; *ipg = (10000 * v) / core_ticks_per_usec(adap); } } /** * t4_load_cfg - download config file * @adap: the adapter * @cfg_data: the cfg text file to write * @size: text file size * * Write the supplied config text file to the card's serial flash. */ int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) { int ret, i, n, cfg_addr; unsigned int addr; unsigned int flash_cfg_start_sec; unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; cfg_addr = t4_flash_cfg_addr(adap); if (cfg_addr < 0) return cfg_addr; addr = cfg_addr; flash_cfg_start_sec = addr / SF_SEC_SIZE; if (size > FLASH_CFG_MAX_SIZE) { CH_ERR(adap, "cfg file too large, max is %u bytes\n", FLASH_CFG_MAX_SIZE); return -EFBIG; } i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ sf_sec_size); ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, flash_cfg_start_sec + i - 1); /* * If size == 0 then we're simply erasing the FLASH sectors associated * with the on-adapter Firmware Configuration File. */ if (ret || size == 0) goto out; /* this will write to the flash up to SF_PAGE_SIZE at a time */ for (i = 0; i< size; i+= SF_PAGE_SIZE) { if ( (size - i) < SF_PAGE_SIZE) n = size - i; else n = SF_PAGE_SIZE; ret = t4_write_flash(adap, addr, n, cfg_data, 1); if (ret) goto out; addr += SF_PAGE_SIZE; cfg_data += SF_PAGE_SIZE; } out: if (ret) CH_ERR(adap, "config file %s failed %d\n", (size == 0 ? "clear" : "download"), ret); return ret; } /** * t5_fw_init_extern_mem - initialize the external memory * @adap: the adapter * * Initializes the external memory on T5. */ int t5_fw_init_extern_mem(struct adapter *adap) { u32 params[1], val[1]; int ret; if (!is_t5(adap)) return 0; val[0] = 0xff; /* Initialize all MCs */ params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT)); ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val, FW_CMD_MAX_TIMEOUT); return ret; } /* BIOS boot headers */ typedef struct pci_expansion_rom_header { u8 signature[2]; /* ROM Signature. Should be 0xaa55 */ u8 reserved[22]; /* Reserved per processor Architecture data */ u8 pcir_offset[2]; /* Offset to PCI Data Structure */ } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */ /* Legacy PCI Expansion ROM Header */ typedef struct legacy_pci_expansion_rom_header { u8 signature[2]; /* ROM Signature. Should be 0xaa55 */ u8 size512; /* Current Image Size in units of 512 bytes */ u8 initentry_point[4]; u8 cksum; /* Checksum computed on the entire Image */ u8 reserved[16]; /* Reserved */ u8 pcir_offset[2]; /* Offset to PCI Data Struture */ } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */ /* EFI PCI Expansion ROM Header */ typedef struct efi_pci_expansion_rom_header { u8 signature[2]; // ROM signature. The value 0xaa55 u8 initialization_size[2]; /* Units 512. Includes this header */ u8 efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */ u8 efi_subsystem[2]; /* Subsystem value for EFI image header */ u8 efi_machine_type[2]; /* Machine type from EFI image header */ u8 compression_type[2]; /* Compression type. */ /* * Compression type definition * 0x0: uncompressed * 0x1: Compressed * 0x2-0xFFFF: Reserved */ u8 reserved[8]; /* Reserved */ u8 efi_image_header_offset[2]; /* Offset to EFI Image */ u8 pcir_offset[2]; /* Offset to PCI Data Structure */ } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */ /* PCI Data Structure Format */ typedef struct pcir_data_structure { /* PCI Data Structure */ u8 signature[4]; /* Signature. The string "PCIR" */ u8 vendor_id[2]; /* Vendor Identification */ u8 device_id[2]; /* Device Identification */ u8 vital_product[2]; /* Pointer to Vital Product Data */ u8 length[2]; /* PCIR Data Structure Length */ u8 revision; /* PCIR Data Structure Revision */ u8 class_code[3]; /* Class Code */ u8 image_length[2]; /* Image Length. Multiple of 512B */ u8 code_revision[2]; /* Revision Level of Code/Data */ u8 code_type; /* Code Type. */ /* * PCI Expansion ROM Code Types * 0x00: Intel IA-32, PC-AT compatible. Legacy * 0x01: Open Firmware standard for PCI. FCODE * 0x02: Hewlett-Packard PA RISC. HP reserved * 0x03: EFI Image. EFI * 0x04-0xFF: Reserved. */ u8 indicator; /* Indicator. Identifies the last image in the ROM */ u8 reserved[2]; /* Reserved */ } pcir_data_t; /* PCI__DATA_STRUCTURE */ /* BOOT constants */ enum { BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */ BOOT_SIGNATURE = 0xaa55, /* signature of BIOS boot ROM */ BOOT_SIZE_INC = 512, /* image size measured in 512B chunks */ BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */ BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment */ VENDOR_ID = 0x1425, /* Vendor ID */ PCIR_SIGNATURE = 0x52494350 /* PCIR signature */ }; /* * modify_device_id - Modifies the device ID of the Boot BIOS image * @adatper: the device ID to write. * @boot_data: the boot image to modify. * * Write the supplied device ID to the boot BIOS image. */ static void modify_device_id(int device_id, u8 *boot_data) { legacy_pci_exp_rom_header_t *header; pcir_data_t *pcir_header; u32 cur_header = 0; /* * Loop through all chained images and change the device ID's */ while (1) { header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header]; pcir_header = (pcir_data_t *) &boot_data[cur_header + le16_to_cpu(*(u16*)header->pcir_offset)]; /* * Only modify the Device ID if code type is Legacy or HP. * 0x00: Okay to modify * 0x01: FCODE. Do not be modify * 0x03: Okay to modify * 0x04-0xFF: Do not modify */ if (pcir_header->code_type == 0x00) { u8 csum = 0; int i; /* * Modify Device ID to match current adatper */ *(u16*) pcir_header->device_id = device_id; /* * Set checksum temporarily to 0. * We will recalculate it later. */ header->cksum = 0x0; /* * Calculate and update checksum */ for (i = 0; i < (header->size512 * 512); i++) csum += (u8)boot_data[cur_header + i]; /* * Invert summed value to create the checksum * Writing new checksum value directly to the boot data */ boot_data[cur_header + 7] = -csum; } else if (pcir_header->code_type == 0x03) { /* * Modify Device ID to match current adatper */ *(u16*) pcir_header->device_id = device_id; } /* * Check indicator element to identify if this is the last * image in the ROM. */ if (pcir_header->indicator & 0x80) break; /* * Move header pointer up to the next image in the ROM. */ cur_header += header->size512 * 512; } } /* * t4_load_boot - download boot flash * @adapter: the adapter * @boot_data: the boot image to write * @boot_addr: offset in flash to write boot_data * @size: image size * * Write the supplied boot image to the card's serial flash. * The boot image has the following sections: a 28-byte header and the * boot image. */ int t4_load_boot(struct adapter *adap, u8 *boot_data, unsigned int boot_addr, unsigned int size) { pci_exp_rom_header_t *header; int pcir_offset ; pcir_data_t *pcir_header; int ret, addr; uint16_t device_id; unsigned int i; unsigned int boot_sector = (boot_addr * 1024 ); unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; /* * Make sure the boot image does not encroach on the firmware region */ if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) { CH_ERR(adap, "boot image encroaching on firmware region\n"); return -EFBIG; } /* * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot, * and Boot configuration data sections. These 3 boot sections span * sectors 0 to 7 in flash and live right before the FW image location. */ i = DIV_ROUND_UP(size ? size : FLASH_FW_START, sf_sec_size); ret = t4_flash_erase_sectors(adap, boot_sector >> 16, (boot_sector >> 16) + i - 1); /* * If size == 0 then we're simply erasing the FLASH sectors associated * with the on-adapter option ROM file */ if (ret || (size == 0)) goto out; /* Get boot header */ header = (pci_exp_rom_header_t *)boot_data; pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset); /* PCIR Data Structure */ pcir_header = (pcir_data_t *) &boot_data[pcir_offset]; /* * Perform some primitive sanity testing to avoid accidentally * writing garbage over the boot sectors. We ought to check for * more but it's not worth it for now ... */ if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) { CH_ERR(adap, "boot image too small/large\n"); return -EFBIG; } #ifndef CHELSIO_T4_DIAGS /* * Check BOOT ROM header signature */ if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) { CH_ERR(adap, "Boot image missing signature\n"); return -EINVAL; } /* * Check PCI header signature */ if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) { CH_ERR(adap, "PCI header missing signature\n"); return -EINVAL; } /* * Check Vendor ID matches Chelsio ID */ if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) { CH_ERR(adap, "Vendor ID missing signature\n"); return -EINVAL; } #endif /* * Retrieve adapter's device ID */ t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id); /* Want to deal with PF 0 so I strip off PF 4 indicator */ device_id = device_id & 0xf0ff; /* * Check PCIE Device ID */ if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) { /* * Change the device ID in the Boot BIOS image to match * the Device ID of the current adapter. */ modify_device_id(device_id, boot_data); } /* * Skip over the first SF_PAGE_SIZE worth of data and write it after * we finish copying the rest of the boot image. This will ensure * that the BIOS boot header will only be written if the boot image * was written in full. */ addr = boot_sector; for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { addr += SF_PAGE_SIZE; boot_data += SF_PAGE_SIZE; ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0); if (ret) goto out; } ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE, (const u8 *)header, 0); out: if (ret) CH_ERR(adap, "boot image download failed, error %d\n", ret); return ret; } /* * t4_flash_bootcfg_addr - return the address of the flash optionrom configuration * @adapter: the adapter * * Return the address within the flash where the OptionROM Configuration * is stored, or an error if the device FLASH is too small to contain * a OptionROM Configuration. */ static int t4_flash_bootcfg_addr(struct adapter *adapter) { /* * If the device FLASH isn't large enough to hold a Firmware * Configuration File, return an error. */ if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE) return -ENOSPC; return FLASH_BOOTCFG_START; } int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size) { int ret, i, n, cfg_addr; unsigned int addr; unsigned int flash_cfg_start_sec; unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; cfg_addr = t4_flash_bootcfg_addr(adap); if (cfg_addr < 0) return cfg_addr; addr = cfg_addr; flash_cfg_start_sec = addr / SF_SEC_SIZE; if (size > FLASH_BOOTCFG_MAX_SIZE) { CH_ERR(adap, "bootcfg file too large, max is %u bytes\n", FLASH_BOOTCFG_MAX_SIZE); return -EFBIG; } i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */ sf_sec_size); ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, flash_cfg_start_sec + i - 1); /* * If size == 0 then we're simply erasing the FLASH sectors associated * with the on-adapter OptionROM Configuration File. */ if (ret || size == 0) goto out; /* this will write to the flash up to SF_PAGE_SIZE at a time */ for (i = 0; i< size; i+= SF_PAGE_SIZE) { if ( (size - i) < SF_PAGE_SIZE) n = size - i; else n = SF_PAGE_SIZE; ret = t4_write_flash(adap, addr, n, cfg_data, 0); if (ret) goto out; addr += SF_PAGE_SIZE; cfg_data += SF_PAGE_SIZE; } out: if (ret) CH_ERR(adap, "boot config data %s failed %d\n", (size == 0 ? "clear" : "download"), ret); return ret; } /** * t4_set_filter_mode - configure the optional components of filter tuples * @adap: the adapter * @mode_map: a bitmap selcting which optional filter components to enable * * Sets the filter mode by selecting the optional components to enable * in filter tuples. Returns 0 on success and a negative error if the * requested mode needs more bits than are available for optional * components. */ int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map) { static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 }; int i, nbits = 0; for (i = S_FCOE; i <= S_FRAGMENTATION; i++) if (mode_map & (1 << i)) nbits += width[i]; if (nbits > FILTER_OPT_LEN) return -EINVAL; if (t4_use_ldst(adap)) t4_fw_tp_pio_rw(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, 0); else t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, &mode_map, 1, A_TP_VLAN_PRI_MAP); read_filter_mode_and_ingress_config(adap); return 0; } /** * t4_clr_port_stats - clear port statistics * @adap: the adapter * @idx: the port index * * Clear HW statistics for the given port. */ void t4_clr_port_stats(struct adapter *adap, int idx) { unsigned int i; u32 bgmap = t4_get_mps_bg_map(adap, idx); u32 port_base_addr; if (is_t4(adap)) port_base_addr = PORT_BASE(idx); else port_base_addr = T5_PORT_BASE(idx); for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L; i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8) t4_write_reg(adap, port_base_addr + i, 0); for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L; i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8) t4_write_reg(adap, port_base_addr + i, 0); for (i = 0; i < 4; i++) if (bgmap & (1 << i)) { t4_write_reg(adap, A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0); t4_write_reg(adap, A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0); } } /** * t4_i2c_rd - read I2C data from adapter * @adap: the adapter * @port: Port number if per-port device; <0 if not * @devid: per-port device ID or absolute device ID * @offset: byte offset into device I2C space * @len: byte length of I2C space data * @buf: buffer in which to return I2C data * * Reads the I2C data from the indicated device and location. */ int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port, unsigned int devid, unsigned int offset, unsigned int len, u8 *buf) { u32 ldst_addrspace; struct fw_ldst_cmd ldst; int ret; if (port >= 4 || devid >= 256 || offset >= 256 || len > sizeof ldst.u.i2c.data) return -EINVAL; memset(&ldst, 0, sizeof ldst); ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C); ldst.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ | ldst_addrspace); ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst)); ldst.u.i2c.pid = (port < 0 ? 0xff : port); ldst.u.i2c.did = devid; ldst.u.i2c.boffset = offset; ldst.u.i2c.blen = len; ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst); if (!ret) memcpy(buf, ldst.u.i2c.data, len); return ret; } /** * t4_i2c_wr - write I2C data to adapter * @adap: the adapter * @port: Port number if per-port device; <0 if not * @devid: per-port device ID or absolute device ID * @offset: byte offset into device I2C space * @len: byte length of I2C space data * @buf: buffer containing new I2C data * * Write the I2C data to the indicated device and location. */ int t4_i2c_wr(struct adapter *adap, unsigned int mbox, int port, unsigned int devid, unsigned int offset, unsigned int len, u8 *buf) { u32 ldst_addrspace; struct fw_ldst_cmd ldst; if (port >= 4 || devid >= 256 || offset >= 256 || len > sizeof ldst.u.i2c.data) return -EINVAL; memset(&ldst, 0, sizeof ldst); ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C); ldst.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | ldst_addrspace); ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst)); ldst.u.i2c.pid = (port < 0 ? 0xff : port); ldst.u.i2c.did = devid; ldst.u.i2c.boffset = offset; ldst.u.i2c.blen = len; memcpy(ldst.u.i2c.data, buf, len); return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst); } /** * t4_sge_ctxt_rd - read an SGE context through FW * @adap: the adapter * @mbox: mailbox to use for the FW command * @cid: the context id * @ctype: the context type * @data: where to store the context data * * Issues a FW command through the given mailbox to read an SGE context. */ int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, enum ctxt_type ctype, u32 *data) { int ret; struct fw_ldst_cmd c; if (ctype == CTXT_EGRESS) ret = FW_LDST_ADDRSPC_SGE_EGRC; else if (ctype == CTXT_INGRESS) ret = FW_LDST_ADDRSPC_SGE_INGC; else if (ctype == CTXT_FLM) ret = FW_LDST_ADDRSPC_SGE_FLMC; else ret = FW_LDST_ADDRSPC_SGE_CONMC; memset(&c, 0, sizeof(c)); c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(ret)); c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); c.u.idctxt.physid = cpu_to_be32(cid); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret == 0) { data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); } return ret; } /** * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW * @adap: the adapter * @cid: the context id * @ctype: the context type * @data: where to store the context data * * Reads an SGE context directly, bypassing FW. This is only for * debugging when FW is unavailable. */ int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype, u32 *data) { int i, ret; t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype)); ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1); if (!ret) for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4) *data++ = t4_read_reg(adap, i); return ret; } int t4_sched_config(struct adapter *adapter, int type, int minmaxen, int sleep_ok) { struct fw_sched_cmd cmd; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE); cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); cmd.u.config.sc = FW_SCHED_SC_CONFIG; cmd.u.config.type = type; cmd.u.config.minmaxen = minmaxen; return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), NULL, sleep_ok); } int t4_sched_params(struct adapter *adapter, int type, int level, int mode, int rateunit, int ratemode, int channel, int cl, int minrate, int maxrate, int weight, int pktsize, int sleep_ok) { struct fw_sched_cmd cmd; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE); cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); cmd.u.params.sc = FW_SCHED_SC_PARAMS; cmd.u.params.type = type; cmd.u.params.level = level; cmd.u.params.mode = mode; cmd.u.params.ch = channel; cmd.u.params.cl = cl; cmd.u.params.unit = rateunit; cmd.u.params.rate = ratemode; cmd.u.params.min = cpu_to_be32(minrate); cmd.u.params.max = cpu_to_be32(maxrate); cmd.u.params.weight = cpu_to_be16(weight); cmd.u.params.pktsize = cpu_to_be16(pktsize); return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), NULL, sleep_ok); } /* * t4_config_watchdog - configure (enable/disable) a watchdog timer * @adapter: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queue * @vf: the VF owning the queue * @timeout: watchdog timeout in ms * @action: watchdog timer / action * * There are separate watchdog timers for each possible watchdog * action. Configure one of the watchdog timers by setting a non-zero * timeout. Disable a watchdog timer by using a timeout of zero. */ int t4_config_watchdog(struct adapter *adapter, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int timeout, unsigned int action) { struct fw_watchdog_cmd wdog; unsigned int ticks; /* * The watchdog command expects a timeout in units of 10ms so we need * to convert it here (via rounding) and force a minimum of one 10ms * "tick" if the timeout is non-zero but the convertion results in 0 * ticks. */ ticks = (timeout + 5)/10; if (timeout && !ticks) ticks = 1; memset(&wdog, 0, sizeof wdog); wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_PARAMS_CMD_PFN(pf) | V_FW_PARAMS_CMD_VFN(vf)); wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog)); wdog.timeout = cpu_to_be32(ticks); wdog.action = cpu_to_be32(action); return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL); } int t4_get_devlog_level(struct adapter *adapter, unsigned int *level) { struct fw_devlog_cmd devlog_cmd; int ret; memset(&devlog_cmd, 0, sizeof(devlog_cmd)); devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ); devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd, sizeof(devlog_cmd), &devlog_cmd); if (ret) return ret; *level = devlog_cmd.level; return 0; } int t4_set_devlog_level(struct adapter *adapter, unsigned int level) { struct fw_devlog_cmd devlog_cmd; memset(&devlog_cmd, 0, sizeof(devlog_cmd)); devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE); devlog_cmd.level = level; devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd, sizeof(devlog_cmd), &devlog_cmd); } Index: stable/10/sys/dev/cxgbe/t4_sge.c =================================================================== --- stable/10/sys/dev/cxgbe/t4_sge.c (revision 318839) +++ stable/10/sys/dev/cxgbe/t4_sge.c (revision 318840) @@ -1,5234 +1,5256 @@ /*- * Copyright (c) 2011 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEV_NETMAP #include #include #include #include #include #endif #include "common/common.h" #include "common/t4_regs.h" #include "common/t4_regs_values.h" #include "common/t4_msg.h" #include "t4_l2t.h" #include "t4_mp_ring.h" #ifdef T4_PKT_TIMESTAMP #define RX_COPY_THRESHOLD (MINCLSIZE - 8) #else #define RX_COPY_THRESHOLD MINCLSIZE #endif /* * Ethernet frames are DMA'd at this byte offset into the freelist buffer. * 0-7 are valid values. */ static int fl_pktshift = 2; TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift); /* * Pad ethernet payload up to this boundary. * -1: driver should figure out a good value. * 0: disable padding. * Any power of 2 from 32 to 4096 (both inclusive) is also a valid value. */ int fl_pad = -1; TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad); /* * Status page length. * -1: driver should figure out a good value. * 64 or 128 are the only other valid values. */ static int spg_len = -1; TUNABLE_INT("hw.cxgbe.spg_len", &spg_len); /* * Congestion drops. * -1: no congestion feedback (not recommended). * 0: backpressure the channel instead of dropping packets right away. * 1: no backpressure, drop packets for the congested queue immediately. */ static int cong_drop = 0; TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop); /* * Deliver multiple frames in the same free list buffer if they fit. * -1: let the driver decide whether to enable buffer packing or not. * 0: disable buffer packing. * 1: enable buffer packing. */ static int buffer_packing = -1; TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing); /* * Start next frame in a packed buffer at this boundary. * -1: driver should figure out a good value. * T4: driver will ignore this and use the same value as fl_pad above. * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value. */ static int fl_pack = -1; TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack); /* * Allow the driver to create mbuf(s) in a cluster allocated for rx. * 0: never; always allocate mbufs from the zone_mbuf UMA zone. * 1: ok to create mbuf(s) within a cluster if there is room. */ static int allow_mbufs_in_cluster = 1; TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster); /* * Largest rx cluster size that the driver is allowed to allocate. */ static int largest_rx_cluster = MJUM16BYTES; TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster); /* * Size of cluster allocation that's most likely to succeed. The driver will * fall back to this size if it fails to allocate clusters larger than this. */ static int safest_rx_cluster = PAGE_SIZE; TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster); +/* + * The interrupt holdoff timers are multiplied by this value on T6+. + * 1 and 3-17 (both inclusive) are legal values. + */ +static int tscale = 1; +TUNABLE_INT("hw.cxgbe.tscale", &tscale); + struct txpkts { u_int wr_type; /* type 0 or type 1 */ u_int npkt; /* # of packets in this work request */ u_int plen; /* total payload (sum of all packets) */ u_int len16; /* # of 16B pieces used by this work request */ }; /* A packet's SGL. This + m_pkthdr has all info needed for tx */ struct sgl { struct sglist sg; struct sglist_seg seg[TX_SGL_SEGS]; }; static int service_iq(struct sge_iq *, int); static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t); static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *); static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int); static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *); static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t, uint16_t, char *); static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *, bus_addr_t *, void **); static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t, void *); static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *, int, int); static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *); static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *, struct sysctl_oid *, struct sge_fl *); static int alloc_fwq(struct adapter *); static int free_fwq(struct adapter *); static int alloc_mgmtq(struct adapter *); static int free_mgmtq(struct adapter *); static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, struct sysctl_oid *); static int free_rxq(struct vi_info *, struct sge_rxq *); #ifdef TCP_OFFLOAD static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int, struct sysctl_oid *); static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *); #endif #ifdef DEV_NETMAP static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int, struct sysctl_oid *); static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *); static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int, struct sysctl_oid *); static int free_nm_txq(struct vi_info *, struct sge_nm_txq *); #endif static int ctrl_eq_alloc(struct adapter *, struct sge_eq *); static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *); #ifdef TCP_OFFLOAD static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *); #endif static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *); static int free_eq(struct adapter *, struct sge_eq *); static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *, struct sysctl_oid *); static int free_wrq(struct adapter *, struct sge_wrq *); static int alloc_txq(struct vi_info *, struct sge_txq *, int, struct sysctl_oid *); static int free_txq(struct vi_info *, struct sge_txq *); static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int); static inline void ring_fl_db(struct adapter *, struct sge_fl *); static int refill_fl(struct adapter *, struct sge_fl *, int); static void refill_sfl(void *); static int alloc_fl_sdesc(struct sge_fl *); static void free_fl_sdesc(struct adapter *, struct sge_fl *); static void find_best_refill_source(struct adapter *, struct sge_fl *, int); static void find_safe_refill_source(struct adapter *, struct sge_fl *); static void add_fl_to_sfl(struct adapter *, struct sge_fl *); static inline void get_pkt_gl(struct mbuf *, struct sglist *); static inline u_int txpkt_len16(u_int, u_int); static inline u_int txpkt_vm_len16(u_int, u_int); static inline u_int txpkts0_len16(u_int); static inline u_int txpkts1_len16(void); static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *, struct mbuf *, u_int); static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *, struct fw_eth_tx_pkt_vm_wr *, struct mbuf *, u_int); static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int); static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int); static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *, struct mbuf *, const struct txpkts *, u_int); static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int); static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int); static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int); static inline uint16_t read_hw_cidx(struct sge_eq *); static inline u_int reclaimable_tx_desc(struct sge_eq *); static inline u_int total_available_tx_desc(struct sge_eq *); static u_int reclaim_tx_descs(struct sge_txq *, u_int); static void tx_reclaim(void *, int); static __be64 get_flit(struct sglist_seg *, int, int); static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *, struct mbuf *); static int handle_fw_msg(struct sge_iq *, const struct rss_header *, struct mbuf *); static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *); static void wrq_tx_drain(void *, int); static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *); static int sysctl_uint16(SYSCTL_HANDLER_ARGS); static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS); static int sysctl_tc(SYSCTL_HANDLER_ARGS); static counter_u64_t extfree_refs; static counter_u64_t extfree_rels; an_handler_t t4_an_handler; fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES]; cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS]; static int an_not_handled(struct sge_iq *iq, const struct rsp_ctrl *ctrl) { #ifdef INVARIANTS panic("%s: async notification on iq %p (ctrl %p)", __func__, iq, ctrl); #else log(LOG_ERR, "%s: async notification on iq %p (ctrl %p)\n", __func__, iq, ctrl); #endif return (EDOOFUS); } int t4_register_an_handler(an_handler_t h) { uintptr_t *loc, new; new = h ? (uintptr_t)h : (uintptr_t)an_not_handled; loc = (uintptr_t *) &t4_an_handler; atomic_store_rel_ptr(loc, new); return (0); } static int fw_msg_not_handled(struct adapter *sc, const __be64 *rpl) { const struct cpl_fw6_msg *cpl = __containerof(rpl, struct cpl_fw6_msg, data[0]); #ifdef INVARIANTS panic("%s: fw_msg type %d", __func__, cpl->type); #else log(LOG_ERR, "%s: fw_msg type %d\n", __func__, cpl->type); #endif return (EDOOFUS); } int t4_register_fw_msg_handler(int type, fw_msg_handler_t h) { uintptr_t *loc, new; if (type >= nitems(t4_fw_msg_handler)) return (EINVAL); /* * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL * handler dispatch table. Reject any attempt to install a handler for * this subtype. */ if (type == FW_TYPE_RSSCPL || type == FW6_TYPE_RSSCPL) return (EINVAL); new = h ? (uintptr_t)h : (uintptr_t)fw_msg_not_handled; loc = (uintptr_t *) &t4_fw_msg_handler[type]; atomic_store_rel_ptr(loc, new); return (0); } static int cpl_not_handled(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { #ifdef INVARIANTS panic("%s: opcode 0x%02x on iq %p with payload %p", __func__, rss->opcode, iq, m); #else log(LOG_ERR, "%s: opcode 0x%02x on iq %p with payload %p\n", __func__, rss->opcode, iq, m); m_freem(m); #endif return (EDOOFUS); } int t4_register_cpl_handler(int opcode, cpl_handler_t h) { uintptr_t *loc, new; if (opcode >= nitems(t4_cpl_handler)) return (EINVAL); new = h ? (uintptr_t)h : (uintptr_t)cpl_not_handled; loc = (uintptr_t *) &t4_cpl_handler[opcode]; atomic_store_rel_ptr(loc, new); return (0); } /* * Called on MOD_LOAD. Validates and calculates the SGE tunables. */ void t4_sge_modload(void) { int i; if (fl_pktshift < 0 || fl_pktshift > 7) { printf("Invalid hw.cxgbe.fl_pktshift value (%d)," " using 2 instead.\n", fl_pktshift); fl_pktshift = 2; } if (spg_len != 64 && spg_len != 128) { int len; #if defined(__i386__) || defined(__amd64__) len = cpu_clflush_line_size > 64 ? 128 : 64; #else len = 64; #endif if (spg_len != -1) { printf("Invalid hw.cxgbe.spg_len value (%d)," " using %d instead.\n", spg_len, len); } spg_len = len; } if (cong_drop < -1 || cong_drop > 1) { printf("Invalid hw.cxgbe.cong_drop value (%d)," " using 0 instead.\n", cong_drop); cong_drop = 0; } + if (tscale != 1 && (tscale < 3 || tscale > 17)) { + printf("Invalid hw.cxgbe.tscale value (%d)," + " using 1 instead.\n", tscale); + tscale = 1; + } + extfree_refs = counter_u64_alloc(M_WAITOK); extfree_rels = counter_u64_alloc(M_WAITOK); counter_u64_zero(extfree_refs); counter_u64_zero(extfree_rels); t4_an_handler = an_not_handled; for (i = 0; i < nitems(t4_fw_msg_handler); i++) t4_fw_msg_handler[i] = fw_msg_not_handled; for (i = 0; i < nitems(t4_cpl_handler); i++) t4_cpl_handler[i] = cpl_not_handled; t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg); t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg); t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update); t4_register_cpl_handler(CPL_RX_PKT, t4_eth_rx); t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl); t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl); } void t4_sge_modunload(void) { counter_u64_free(extfree_refs); counter_u64_free(extfree_rels); } uint64_t t4_sge_extfree_refs(void) { uint64_t refs, rels; rels = counter_u64_fetch(extfree_rels); refs = counter_u64_fetch(extfree_refs); return (refs - rels); } static inline void setup_pad_and_pack_boundaries(struct adapter *sc) { uint32_t v, m; int pad, pack, pad_shift; pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT : X_INGPADBOUNDARY_SHIFT; pad = fl_pad; if (fl_pad < (1 << pad_shift) || fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) || !powerof2(fl_pad)) { /* * If there is any chance that we might use buffer packing and * the chip is a T4, then pick 64 as the pad/pack boundary. Set * it to the minimum allowed in all other cases. */ pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift; /* * For fl_pad = 0 we'll still write a reasonable value to the * register but all the freelists will opt out of padding. * We'll complain here only if the user tried to set it to a * value greater than 0 that was invalid. */ if (fl_pad > 0) { device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value" " (%d), using %d instead.\n", fl_pad, pad); } } m = V_INGPADBOUNDARY(M_INGPADBOUNDARY); v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift); t4_set_reg_field(sc, A_SGE_CONTROL, m, v); if (is_t4(sc)) { if (fl_pack != -1 && fl_pack != pad) { /* Complain but carry on. */ device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored," " using %d instead.\n", fl_pack, pad); } return; } pack = fl_pack; if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 || !powerof2(fl_pack)) { pack = max(sc->params.pci.mps, CACHE_LINE_SIZE); MPASS(powerof2(pack)); if (pack < 16) pack = 16; if (pack == 32) pack = 64; if (pack > 4096) pack = 4096; if (fl_pack != -1) { device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value" " (%d), using %d instead.\n", fl_pack, pack); } } m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY); if (pack == 16) v = V_INGPACKBOUNDARY(0); else v = V_INGPACKBOUNDARY(ilog2(pack) - 5); MPASS(!is_t4(sc)); /* T4 doesn't have SGE_CONTROL2 */ t4_set_reg_field(sc, A_SGE_CONTROL2, m, v); } /* * adap->params.vpd.cclk must be set up before this is called. */ void t4_tweak_chip_settings(struct adapter *sc) { int i; uint32_t v, m; int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200}; int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk; int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */ uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); static int sge_flbuf_sizes[] = { MCLBYTES, #if MJUMPAGESIZE != MCLBYTES MJUMPAGESIZE, MJUMPAGESIZE - CL_METADATA_SIZE, MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE, #endif MJUM9BYTES, MJUM16BYTES, MCLBYTES - MSIZE - CL_METADATA_SIZE, MJUM9BYTES - CL_METADATA_SIZE, MJUM16BYTES - CL_METADATA_SIZE, }; KASSERT(sc->flags & MASTER_PF, ("%s: trying to change chip settings when not master.", __func__)); m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE; v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE | V_EGRSTATUSPAGESIZE(spg_len == 128); t4_set_reg_field(sc, A_SGE_CONTROL, m, v); setup_pad_and_pack_boundaries(sc); v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10); t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v); KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES, ("%s: hw buffer size table too big", __func__)); for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) { t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i), sge_flbuf_sizes[i]); } v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) | V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]); t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v); KASSERT(intr_timer[0] <= timer_max, ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0], timer_max)); for (i = 1; i < nitems(intr_timer); i++) { KASSERT(intr_timer[i] >= intr_timer[i - 1], ("%s: timers not listed in increasing order (%d)", __func__, i)); while (intr_timer[i] > timer_max) { if (i == nitems(intr_timer) - 1) { intr_timer[i] = timer_max; break; } intr_timer[i] += intr_timer[i - 1]; intr_timer[i] /= 2; } } v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) | V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1])); t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v); v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) | V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3])); t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v); v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) | V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5])); t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v); + + if (chip_id(sc) >= CHELSIO_T6) { + m = V_TSCALE(M_TSCALE); + if (tscale == 1) + v = 0; + else + v = V_TSCALE(tscale - 2); + t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v); + } /* 4K, 16K, 64K, 256K DDP "page sizes" */ v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v); m = v = F_TDDPTAGTCB; t4_set_reg_field(sc, A_ULP_RX_CTL, m, v); m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; t4_set_reg_field(sc, A_TP_PARA_REG5, m, v); } /* * SGE wants the buffer to be at least 64B and then a multiple of 16. If * padding is in use, the buffer's start and end need to be aligned to the pad * boundary as well. We'll just make sure that the size is a multiple of the * boundary here, it is up to the buffer allocation code to make sure the start * of the buffer is aligned as well. */ static inline int hwsz_ok(struct adapter *sc, int hwsz) { int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1; return (hwsz >= 64 && (hwsz & mask) == 0); } /* * XXX: driver really should be able to deal with unexpected settings. */ int t4_read_chip_settings(struct adapter *sc) { struct sge *s = &sc->sge; struct sge_params *sp = &sc->params.sge; int i, j, n, rc = 0; uint32_t m, v, r; uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); static int sw_buf_sizes[] = { /* Sorted by size */ MCLBYTES, #if MJUMPAGESIZE != MCLBYTES MJUMPAGESIZE, #endif MJUM9BYTES, MJUM16BYTES }; struct sw_zone_info *swz, *safe_swz; struct hw_buf_info *hwb; m = F_RXPKTCPLMODE; v = F_RXPKTCPLMODE; r = sc->params.sge.sge_control; if ((r & m) != v) { device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r); rc = EINVAL; } /* * If this changes then every single use of PAGE_SHIFT in the driver * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift. */ if (sp->page_shift != PAGE_SHIFT) { device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r); rc = EINVAL; } /* Filter out unusable hw buffer sizes entirely (mark with -2). */ hwb = &s->hw_buf_info[0]; for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) { r = sc->params.sge.sge_fl_buffer_size[i]; hwb->size = r; hwb->zidx = hwsz_ok(sc, r) ? -1 : -2; hwb->next = -1; } /* * Create a sorted list in decreasing order of hw buffer sizes (and so * increasing order of spare area) for each software zone. * * If padding is enabled then the start and end of the buffer must align * to the pad boundary; if packing is enabled then they must align with * the pack boundary as well. Allocations from the cluster zones are * aligned to min(size, 4K), so the buffer starts at that alignment and * ends at hwb->size alignment. If mbuf inlining is allowed the * starting alignment will be reduced to MSIZE and the driver will * exercise appropriate caution when deciding on the best buffer layout * to use. */ n = 0; /* no usable buffer size to begin with */ swz = &s->sw_zone_info[0]; safe_swz = NULL; for (i = 0; i < SW_ZONE_SIZES; i++, swz++) { int8_t head = -1, tail = -1; swz->size = sw_buf_sizes[i]; swz->zone = m_getzone(swz->size); swz->type = m_gettype(swz->size); if (swz->size < PAGE_SIZE) { MPASS(powerof2(swz->size)); if (fl_pad && (swz->size % sp->pad_boundary != 0)) continue; } if (swz->size == safest_rx_cluster) safe_swz = swz; hwb = &s->hw_buf_info[0]; for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) { if (hwb->zidx != -1 || hwb->size > swz->size) continue; #ifdef INVARIANTS if (fl_pad) MPASS(hwb->size % sp->pad_boundary == 0); #endif hwb->zidx = i; if (head == -1) head = tail = j; else if (hwb->size < s->hw_buf_info[tail].size) { s->hw_buf_info[tail].next = j; tail = j; } else { int8_t *cur; struct hw_buf_info *t; for (cur = &head; *cur != -1; cur = &t->next) { t = &s->hw_buf_info[*cur]; if (hwb->size == t->size) { hwb->zidx = -2; break; } if (hwb->size > t->size) { hwb->next = *cur; *cur = j; break; } } } } swz->head_hwidx = head; swz->tail_hwidx = tail; if (tail != -1) { n++; if (swz->size - s->hw_buf_info[tail].size >= CL_METADATA_SIZE) sc->flags |= BUF_PACKING_OK; } } if (n == 0) { device_printf(sc->dev, "no usable SGE FL buffer size.\n"); rc = EINVAL; } s->safe_hwidx1 = -1; s->safe_hwidx2 = -1; if (safe_swz != NULL) { s->safe_hwidx1 = safe_swz->head_hwidx; for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) { int spare; hwb = &s->hw_buf_info[i]; #ifdef INVARIANTS if (fl_pad) MPASS(hwb->size % sp->pad_boundary == 0); #endif spare = safe_swz->size - hwb->size; if (spare >= CL_METADATA_SIZE) { s->safe_hwidx2 = i; break; } } } if (sc->flags & IS_VF) return (0); v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ); if (r != v) { device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r); rc = EINVAL; } m = v = F_TDDPTAGTCB; r = t4_read_reg(sc, A_ULP_RX_CTL); if ((r & m) != v) { device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r); rc = EINVAL; } m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; r = t4_read_reg(sc, A_TP_PARA_REG5); if ((r & m) != v) { device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r); rc = EINVAL; } t4_init_tp_params(sc); t4_read_mtu_tbl(sc, sc->params.mtus, NULL); t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); return (rc); } int t4_create_dma_tag(struct adapter *sc) { int rc; rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE, BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->dmat); if (rc != 0) { device_printf(sc->dev, "failed to create main DMA tag: %d\n", rc); } return (rc); } void t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, struct sysctl_oid_list *children) { struct sge_params *sp = &sc->params.sge; SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes", CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A", "freelist buffer sizes"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD, NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD, NULL, sp->pad_boundary, "payload pad boundary (bytes)"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD, NULL, sp->spg_len, "status page size (bytes)"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD, NULL, cong_drop, "congestion drop setting"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD, NULL, sp->pack_boundary, "payload pack boundary (bytes)"); } int t4_destroy_dma_tag(struct adapter *sc) { if (sc->dmat) bus_dma_tag_destroy(sc->dmat); return (0); } /* * Allocate and initialize the firmware event queue and the management queue. * * Returns errno on failure. Resources allocated up to that point may still be * allocated. Caller is responsible for cleanup in case this function fails. */ int t4_setup_adapter_queues(struct adapter *sc) { int rc; ADAPTER_LOCK_ASSERT_NOTOWNED(sc); sysctl_ctx_init(&sc->ctx); sc->flags |= ADAP_SYSCTL_CTX; /* * Firmware event queue */ rc = alloc_fwq(sc); if (rc != 0) return (rc); /* * Management queue. This is just a control queue that uses the fwq as * its associated iq. */ if (!(sc->flags & IS_VF)) rc = alloc_mgmtq(sc); return (rc); } /* * Idempotent */ int t4_teardown_adapter_queues(struct adapter *sc) { ADAPTER_LOCK_ASSERT_NOTOWNED(sc); /* Do this before freeing the queue */ if (sc->flags & ADAP_SYSCTL_CTX) { sysctl_ctx_free(&sc->ctx); sc->flags &= ~ADAP_SYSCTL_CTX; } free_mgmtq(sc); free_fwq(sc); return (0); } static inline int first_vector(struct vi_info *vi) { struct adapter *sc = vi->pi->adapter; if (sc->intr_count == 1) return (0); return (vi->first_intr); } /* * Given an arbitrary "index," come up with an iq that can be used by other * queues (of this VI) for interrupt forwarding, SGE egress updates, etc. * The iq returned is guaranteed to be something that takes direct interrupts. */ static struct sge_iq * vi_intr_iq(struct vi_info *vi, int idx) { struct adapter *sc = vi->pi->adapter; struct sge *s = &sc->sge; struct sge_iq *iq = NULL; int nintr, i; if (sc->intr_count == 1) return (&sc->sge.fwq); nintr = vi->nintr; KASSERT(nintr != 0, ("%s: vi %p has no exclusive interrupts, total interrupts = %d", __func__, vi, sc->intr_count)); i = idx % nintr; if (vi->flags & INTR_RXQ) { if (i < vi->nrxq) { iq = &s->rxq[vi->first_rxq + i].iq; goto done; } i -= vi->nrxq; } #ifdef TCP_OFFLOAD if (vi->flags & INTR_OFLD_RXQ) { if (i < vi->nofldrxq) { iq = &s->ofld_rxq[vi->first_ofld_rxq + i].iq; goto done; } i -= vi->nofldrxq; } #endif panic("%s: vi %p, intr_flags 0x%lx, idx %d, total intr %d\n", __func__, vi, vi->flags & INTR_ALL, idx, nintr); done: MPASS(iq != NULL); KASSERT(iq->flags & IQ_INTR, ("%s: iq %p (vi %p, intr_flags 0x%lx, idx %d)", __func__, iq, vi, vi->flags & INTR_ALL, idx)); return (iq); } /* Maximum payload that can be delivered with a single iq descriptor */ static inline int mtu_to_max_payload(struct adapter *sc, int mtu, const int toe) { int payload; #ifdef TCP_OFFLOAD if (toe) { payload = sc->tt.rx_coalesce ? G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu; } else { #endif /* large enough even when hw VLAN extraction is disabled */ payload = sc->params.sge.fl_pktshift + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + mtu; #ifdef TCP_OFFLOAD } #endif return (payload); } int t4_setup_vi_queues(struct vi_info *vi) { int rc = 0, i, j, intr_idx, iqid; struct sge_rxq *rxq; struct sge_txq *txq; struct sge_wrq *ctrlq; #ifdef TCP_OFFLOAD struct sge_ofld_rxq *ofld_rxq; struct sge_wrq *ofld_txq; #endif #ifdef DEV_NETMAP int saved_idx; struct sge_nm_rxq *nm_rxq; struct sge_nm_txq *nm_txq; #endif char name[16]; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct ifnet *ifp = vi->ifp; struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev); struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); int maxp, mtu = ifp->if_mtu; /* Interrupt vector to start from (when using multiple vectors) */ intr_idx = first_vector(vi); #ifdef DEV_NETMAP saved_idx = intr_idx; if (ifp->if_capabilities & IFCAP_NETMAP) { /* netmap is supported with direct interrupts only. */ MPASS(vi->flags & INTR_RXQ); /* * We don't have buffers to back the netmap rx queues * right now so we create the queues in a way that * doesn't set off any congestion signal in the chip. */ oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq", CTLFLAG_RD, NULL, "rx queues"); for_each_nm_rxq(vi, i, nm_rxq) { rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid); if (rc != 0) goto done; intr_idx++; } oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq", CTLFLAG_RD, NULL, "tx queues"); for_each_nm_txq(vi, i, nm_txq) { iqid = vi->first_nm_rxq + (i % vi->nnmrxq); rc = alloc_nm_txq(vi, nm_txq, iqid, i, oid); if (rc != 0) goto done; } } /* Normal rx queues and netmap rx queues share the same interrupts. */ intr_idx = saved_idx; #endif /* * First pass over all NIC and TOE rx queues: * a) initialize iq and fl * b) allocate queue iff it will take direct interrupts. */ maxp = mtu_to_max_payload(sc, mtu, 0); if (vi->flags & INTR_RXQ) { oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq", CTLFLAG_RD, NULL, "rx queues"); } for_each_rxq(vi, i, rxq) { init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq); snprintf(name, sizeof(name), "%s rxq%d-fl", device_get_nameunit(vi->dev), i); init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name); if (vi->flags & INTR_RXQ) { rxq->iq.flags |= IQ_INTR; rc = alloc_rxq(vi, rxq, intr_idx, i, oid); if (rc != 0) goto done; intr_idx++; } } #ifdef DEV_NETMAP if (ifp->if_capabilities & IFCAP_NETMAP) intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq); #endif #ifdef TCP_OFFLOAD maxp = mtu_to_max_payload(sc, mtu, 1); if (vi->flags & INTR_OFLD_RXQ) { oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq", CTLFLAG_RD, NULL, "rx queues for offloaded TCP connections"); } for_each_ofld_rxq(vi, i, ofld_rxq) { init_iq(&ofld_rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq); snprintf(name, sizeof(name), "%s ofld_rxq%d-fl", device_get_nameunit(vi->dev), i); init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name); if (vi->flags & INTR_OFLD_RXQ) { ofld_rxq->iq.flags |= IQ_INTR; rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid); if (rc != 0) goto done; intr_idx++; } } #endif /* * Second pass over all NIC and TOE rx queues. The queues forwarding * their interrupts are allocated now. */ j = 0; if (!(vi->flags & INTR_RXQ)) { oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq", CTLFLAG_RD, NULL, "rx queues"); for_each_rxq(vi, i, rxq) { MPASS(!(rxq->iq.flags & IQ_INTR)); intr_idx = vi_intr_iq(vi, j)->abs_id; rc = alloc_rxq(vi, rxq, intr_idx, i, oid); if (rc != 0) goto done; j++; } } #ifdef TCP_OFFLOAD if (vi->nofldrxq != 0 && !(vi->flags & INTR_OFLD_RXQ)) { oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq", CTLFLAG_RD, NULL, "rx queues for offloaded TCP connections"); for_each_ofld_rxq(vi, i, ofld_rxq) { MPASS(!(ofld_rxq->iq.flags & IQ_INTR)); intr_idx = vi_intr_iq(vi, j)->abs_id; rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid); if (rc != 0) goto done; j++; } } #endif /* * Now the tx queues. Only one pass needed. */ oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD, NULL, "tx queues"); j = 0; for_each_txq(vi, i, txq) { iqid = vi_intr_iq(vi, j)->cntxt_id; snprintf(name, sizeof(name), "%s txq%d", device_get_nameunit(vi->dev), i); init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan, iqid, name); rc = alloc_txq(vi, txq, i, oid); if (rc != 0) goto done; j++; } #ifdef TCP_OFFLOAD oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq", CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections"); for_each_ofld_txq(vi, i, ofld_txq) { struct sysctl_oid *oid2; iqid = vi_intr_iq(vi, j)->cntxt_id; snprintf(name, sizeof(name), "%s ofld_txq%d", device_get_nameunit(vi->dev), i); init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan, iqid, name); snprintf(name, sizeof(name), "%d", i); oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO, name, CTLFLAG_RD, NULL, "offload tx queue"); rc = alloc_wrq(sc, vi, ofld_txq, oid2); if (rc != 0) goto done; j++; } #endif /* * Finally, the control queue. */ if (!IS_MAIN_VI(vi) || sc->flags & IS_VF) goto done; oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD, NULL, "ctrl queue"); ctrlq = &sc->sge.ctrlq[pi->port_id]; iqid = vi_intr_iq(vi, 0)->cntxt_id; snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(vi->dev)); init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name); rc = alloc_wrq(sc, vi, ctrlq, oid); done: if (rc) t4_teardown_vi_queues(vi); return (rc); } /* * Idempotent */ int t4_teardown_vi_queues(struct vi_info *vi) { int i; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct sge_rxq *rxq; struct sge_txq *txq; #ifdef TCP_OFFLOAD struct sge_ofld_rxq *ofld_rxq; struct sge_wrq *ofld_txq; #endif #ifdef DEV_NETMAP struct sge_nm_rxq *nm_rxq; struct sge_nm_txq *nm_txq; #endif /* Do this before freeing the queues */ if (vi->flags & VI_SYSCTL_CTX) { sysctl_ctx_free(&vi->ctx); vi->flags &= ~VI_SYSCTL_CTX; } #ifdef DEV_NETMAP if (vi->ifp->if_capabilities & IFCAP_NETMAP) { for_each_nm_txq(vi, i, nm_txq) { free_nm_txq(vi, nm_txq); } for_each_nm_rxq(vi, i, nm_rxq) { free_nm_rxq(vi, nm_rxq); } } #endif /* * Take down all the tx queues first, as they reference the rx queues * (for egress updates, etc.). */ if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF)) free_wrq(sc, &sc->sge.ctrlq[pi->port_id]); for_each_txq(vi, i, txq) { free_txq(vi, txq); } #ifdef TCP_OFFLOAD for_each_ofld_txq(vi, i, ofld_txq) { free_wrq(sc, ofld_txq); } #endif /* * Then take down the rx queues that forward their interrupts, as they * reference other rx queues. */ for_each_rxq(vi, i, rxq) { if ((rxq->iq.flags & IQ_INTR) == 0) free_rxq(vi, rxq); } #ifdef TCP_OFFLOAD for_each_ofld_rxq(vi, i, ofld_rxq) { if ((ofld_rxq->iq.flags & IQ_INTR) == 0) free_ofld_rxq(vi, ofld_rxq); } #endif /* * Then take down the rx queues that take direct interrupts. */ for_each_rxq(vi, i, rxq) { if (rxq->iq.flags & IQ_INTR) free_rxq(vi, rxq); } #ifdef TCP_OFFLOAD for_each_ofld_rxq(vi, i, ofld_rxq) { if (ofld_rxq->iq.flags & IQ_INTR) free_ofld_rxq(vi, ofld_rxq); } #endif return (0); } /* * Deals with errors and the firmware event queue. All data rx queues forward * their interrupt to the firmware event queue. */ void t4_intr_all(void *arg) { struct adapter *sc = arg; struct sge_iq *fwq = &sc->sge.fwq; t4_intr_err(arg); if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) { service_iq(fwq, 0); atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE); } } /* Deals with error interrupts */ void t4_intr_err(void *arg) { struct adapter *sc = arg; t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0); t4_slow_intr_handler(sc); } void t4_intr_evt(void *arg) { struct sge_iq *iq = arg; if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { service_iq(iq, 0); atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); } } void t4_intr(void *arg) { struct sge_iq *iq = arg; if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { service_iq(iq, 0); atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); } } void t4_vi_intr(void *arg) { struct irq *irq = arg; #ifdef DEV_NETMAP if (atomic_cmpset_int(&irq->nm_state, NM_ON, NM_BUSY)) { t4_nm_intr(irq->nm_rxq); atomic_cmpset_int(&irq->nm_state, NM_BUSY, NM_ON); } #endif if (irq->rxq != NULL) t4_intr(irq->rxq); } /* * Deals with anything and everything on the given ingress queue. */ static int service_iq(struct sge_iq *iq, int budget) { struct sge_iq *q; struct sge_rxq *rxq = iq_to_rxq(iq); /* Use iff iq is part of rxq */ struct sge_fl *fl; /* Use iff IQ_HAS_FL */ struct adapter *sc = iq->adapter; struct iq_desc *d = &iq->desc[iq->cidx]; int ndescs = 0, limit; int rsp_type, refill; uint32_t lq; uint16_t fl_hw_cidx; struct mbuf *m0; STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql); #if defined(INET) || defined(INET6) const struct timeval lro_timeout = {0, sc->lro_timeout}; #endif KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq)); limit = budget ? budget : iq->qsize / 16; if (iq->flags & IQ_HAS_FL) { fl = &rxq->fl; fl_hw_cidx = fl->hw_cidx; /* stable snapshot */ } else { fl = NULL; fl_hw_cidx = 0; /* to silence gcc warning */ } /* * We always come back and check the descriptor ring for new indirect * interrupts and other responses after running a single handler. */ for (;;) { while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) { rmb(); refill = 0; m0 = NULL; rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen); lq = be32toh(d->rsp.pldbuflen_qid); switch (rsp_type) { case X_RSPD_TYPE_FLBUF: KASSERT(iq->flags & IQ_HAS_FL, ("%s: data for an iq (%p) with no freelist", __func__, iq)); m0 = get_fl_payload(sc, fl, lq); if (__predict_false(m0 == NULL)) goto process_iql; refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2; #ifdef T4_PKT_TIMESTAMP /* * 60 bit timestamp for the payload is * *(uint64_t *)m0->m_pktdat. Note that it is * in the leading free-space in the mbuf. The * kernel can clobber it during a pullup, * m_copymdata, etc. You need to make sure that * the mbuf reaches you unmolested if you care * about the timestamp. */ *(uint64_t *)m0->m_pktdat = be64toh(ctrl->u.last_flit) & 0xfffffffffffffff; #endif /* fall through */ case X_RSPD_TYPE_CPL: KASSERT(d->rss.opcode < NUM_CPL_CMDS, ("%s: bad opcode %02x.", __func__, d->rss.opcode)); t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0); break; case X_RSPD_TYPE_INTR: /* * Interrupts should be forwarded only to queues * that are not forwarding their interrupts. * This means service_iq can recurse but only 1 * level deep. */ KASSERT(budget == 0, ("%s: budget %u, rsp_type %u", __func__, budget, rsp_type)); /* * There are 1K interrupt-capable queues (qids 0 * through 1023). A response type indicating a * forwarded interrupt with a qid >= 1K is an * iWARP async notification. */ if (lq >= 1024) { t4_an_handler(iq, &d->rsp); break; } q = sc->sge.iqmap[lq - sc->sge.iq_start - sc->sge.iq_base]; if (atomic_cmpset_int(&q->state, IQS_IDLE, IQS_BUSY)) { if (service_iq(q, q->qsize / 16) == 0) { atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE); } else { STAILQ_INSERT_TAIL(&iql, q, link); } } break; default: KASSERT(0, ("%s: illegal response type %d on iq %p", __func__, rsp_type, iq)); log(LOG_ERR, "%s: illegal response type %d on iq %p", device_get_nameunit(sc->dev), rsp_type, iq); break; } d++; if (__predict_false(++iq->cidx == iq->sidx)) { iq->cidx = 0; iq->gen ^= F_RSPD_GEN; d = &iq->desc[0]; } if (__predict_false(++ndescs == limit)) { t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) | V_INGRESSQID(iq->cntxt_id) | V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); ndescs = 0; #if defined(INET) || defined(INET6) if (iq->flags & IQ_LRO_ENABLED && sc->lro_timeout != 0) { tcp_lro_flush_inactive(&rxq->lro, &lro_timeout); } #endif if (budget) { if (iq->flags & IQ_HAS_FL) { FL_LOCK(fl); refill_fl(sc, fl, 32); FL_UNLOCK(fl); } return (EINPROGRESS); } } if (refill) { FL_LOCK(fl); refill_fl(sc, fl, 32); FL_UNLOCK(fl); fl_hw_cidx = fl->hw_cidx; } } process_iql: if (STAILQ_EMPTY(&iql)) break; /* * Process the head only, and send it to the back of the list if * it's still not done. */ q = STAILQ_FIRST(&iql); STAILQ_REMOVE_HEAD(&iql, link); if (service_iq(q, q->qsize / 8) == 0) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE); else STAILQ_INSERT_TAIL(&iql, q, link); } #if defined(INET) || defined(INET6) if (iq->flags & IQ_LRO_ENABLED) { struct lro_ctrl *lro = &rxq->lro; struct lro_entry *l; while (!SLIST_EMPTY(&lro->lro_active)) { l = SLIST_FIRST(&lro->lro_active); SLIST_REMOVE_HEAD(&lro->lro_active, next); tcp_lro_flush(lro, l); } } #endif t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) | V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params)); if (iq->flags & IQ_HAS_FL) { int starved; FL_LOCK(fl); starved = refill_fl(sc, fl, 64); FL_UNLOCK(fl); if (__predict_false(starved != 0)) add_fl_to_sfl(sc, fl); } return (0); } static inline int cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll) { int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0; if (rc) MPASS(cll->region3 >= CL_METADATA_SIZE); return (rc); } static inline struct cluster_metadata * cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll, caddr_t cl) { if (cl_has_metadata(fl, cll)) { struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx]; return ((struct cluster_metadata *)(cl + swz->size) - 1); } return (NULL); } static int rxb_free(struct mbuf *m, void *arg1, void *arg2) { uma_zone_t zone = arg1; caddr_t cl = arg2; uma_zfree(zone, cl); counter_u64_add(extfree_rels, 1); return (EXT_FREE_OK); } /* * The mbuf returned by this function could be allocated from zone_mbuf or * constructed in spare room in the cluster. * * The mbuf carries the payload in one of these ways * a) frame inside the mbuf (mbuf from zone_mbuf) * b) m_cljset (for clusters without metadata) zone_mbuf * c) m_extaddref (cluster with metadata) inline mbuf * d) m_extaddref (cluster with metadata) zone_mbuf */ static struct mbuf * get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset, int remaining) { struct mbuf *m; struct fl_sdesc *sd = &fl->sdesc[fl->cidx]; struct cluster_layout *cll = &sd->cll; struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx]; struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx]; struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl); int len, blen; caddr_t payload; blen = hwb->size - fl->rx_offset; /* max possible in this buf */ len = min(remaining, blen); payload = sd->cl + cll->region1 + fl->rx_offset; if (fl->flags & FL_BUF_PACKING) { const u_int l = fr_offset + len; const u_int pad = roundup2(l, fl->buf_boundary) - l; if (fl->rx_offset + len + pad < hwb->size) blen = len + pad; MPASS(fl->rx_offset + blen <= hwb->size); } else { MPASS(fl->rx_offset == 0); /* not packing */ } if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) { /* * Copy payload into a freshly allocated mbuf. */ m = fr_offset == 0 ? m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA); if (m == NULL) return (NULL); fl->mbuf_allocated++; #ifdef T4_PKT_TIMESTAMP /* Leave room for a timestamp */ m->m_data += 8; #endif /* copy data to mbuf */ bcopy(payload, mtod(m, caddr_t), len); } else if (sd->nmbuf * MSIZE < cll->region1) { /* * There's spare room in the cluster for an mbuf. Create one * and associate it with the payload that's in the cluster. */ MPASS(clm != NULL); m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE); /* No bzero required */ if (m_init(m, NULL, 0, M_NOWAIT, MT_DATA, fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE)) return (NULL); fl->mbuf_inlined++; m_extaddref(m, payload, blen, &clm->refcount, rxb_free, swz->zone, sd->cl); if (sd->nmbuf++ == 0) counter_u64_add(extfree_refs, 1); } else { /* * Grab an mbuf from zone_mbuf and associate it with the * payload in the cluster. */ m = fr_offset == 0 ? m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA); if (m == NULL) return (NULL); fl->mbuf_allocated++; if (clm != NULL) { m_extaddref(m, payload, blen, &clm->refcount, rxb_free, swz->zone, sd->cl); if (sd->nmbuf++ == 0) counter_u64_add(extfree_refs, 1); } else { m_cljset(m, sd->cl, swz->type); sd->cl = NULL; /* consumed, not a recycle candidate */ } } if (fr_offset == 0) m->m_pkthdr.len = remaining; m->m_len = len; if (fl->flags & FL_BUF_PACKING) { fl->rx_offset += blen; MPASS(fl->rx_offset <= hwb->size); if (fl->rx_offset < hwb->size) return (m); /* without advancing the cidx */ } if (__predict_false(++fl->cidx % 8 == 0)) { uint16_t cidx = fl->cidx / 8; if (__predict_false(cidx == fl->sidx)) fl->cidx = cidx = 0; fl->hw_cidx = cidx; } fl->rx_offset = 0; return (m); } static struct mbuf * get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf) { struct mbuf *m0, *m, **pnext; u_int remaining; const u_int total = G_RSPD_LEN(len_newbuf); if (__predict_false(fl->flags & FL_BUF_RESUME)) { M_ASSERTPKTHDR(fl->m0); MPASS(fl->m0->m_pkthdr.len == total); MPASS(fl->remaining < total); m0 = fl->m0; pnext = fl->pnext; remaining = fl->remaining; fl->flags &= ~FL_BUF_RESUME; goto get_segment; } if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) { fl->rx_offset = 0; if (__predict_false(++fl->cidx % 8 == 0)) { uint16_t cidx = fl->cidx / 8; if (__predict_false(cidx == fl->sidx)) fl->cidx = cidx = 0; fl->hw_cidx = cidx; } } /* * Payload starts at rx_offset in the current hw buffer. Its length is * 'len' and it may span multiple hw buffers. */ m0 = get_scatter_segment(sc, fl, 0, total); if (m0 == NULL) return (NULL); remaining = total - m0->m_len; pnext = &m0->m_next; while (remaining > 0) { get_segment: MPASS(fl->rx_offset == 0); m = get_scatter_segment(sc, fl, total - remaining, remaining); if (__predict_false(m == NULL)) { fl->m0 = m0; fl->pnext = pnext; fl->remaining = remaining; fl->flags |= FL_BUF_RESUME; return (NULL); } *pnext = m; pnext = &m->m_next; remaining -= m->m_len; } *pnext = NULL; M_ASSERTPKTHDR(m0); return (m0); } static int t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0) { struct sge_rxq *rxq = iq_to_rxq(iq); struct ifnet *ifp = rxq->ifp; struct adapter *sc = iq->adapter; const struct cpl_rx_pkt *cpl = (const void *)(rss + 1); #if defined(INET) || defined(INET6) struct lro_ctrl *lro = &rxq->lro; #endif KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__, rss->opcode)); m0->m_pkthdr.len -= sc->params.sge.fl_pktshift; m0->m_len -= sc->params.sge.fl_pktshift; m0->m_data += sc->params.sge.fl_pktshift; m0->m_pkthdr.rcvif = ifp; M_HASHTYPE_SET(m0, M_HASHTYPE_OPAQUE); m0->m_pkthdr.flowid = be32toh(rss->hash_val); if (cpl->csum_calc && !(cpl->err_vec & sc->params.tp.err_vec_mask)) { if (ifp->if_capenable & IFCAP_RXCSUM && cpl->l2info & htobe32(F_RXF_IP)) { m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); rxq->rxcsum++; } else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 && cpl->l2info & htobe32(F_RXF_IP6)) { m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR); rxq->rxcsum++; } if (__predict_false(cpl->ip_frag)) m0->m_pkthdr.csum_data = be16toh(cpl->csum); else m0->m_pkthdr.csum_data = 0xffff; } if (cpl->vlan_ex) { m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan); m0->m_flags |= M_VLANTAG; rxq->vlan_extraction++; } #if defined(INET) || defined(INET6) if (iq->flags & IQ_LRO_ENABLED && tcp_lro_rx(lro, m0, 0) == 0) { /* queued for LRO */ } else #endif ifp->if_input(ifp, m0); return (0); } /* * Must drain the wrq or make sure that someone else will. */ static void wrq_tx_drain(void *arg, int n) { struct sge_wrq *wrq = arg; struct sge_eq *eq = &wrq->eq; EQ_LOCK(eq); if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) drain_wrq_wr_list(wrq->adapter, wrq); EQ_UNLOCK(eq); } static void drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq) { struct sge_eq *eq = &wrq->eq; u_int available, dbdiff; /* # of hardware descriptors */ u_int n; struct wrqe *wr; struct fw_eth_tx_pkt_wr *dst; /* any fw WR struct will do */ EQ_LOCK_ASSERT_OWNED(eq); MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs)); wr = STAILQ_FIRST(&wrq->wr_list); MPASS(wr != NULL); /* Must be called with something useful to do */ MPASS(eq->pidx == eq->dbidx); dbdiff = 0; do { eq->cidx = read_hw_cidx(eq); if (eq->pidx == eq->cidx) available = eq->sidx - 1; else available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; MPASS(wr->wrq == wrq); n = howmany(wr->wr_len, EQ_ESIZE); if (available < n) break; dst = (void *)&eq->desc[eq->pidx]; if (__predict_true(eq->sidx - eq->pidx > n)) { /* Won't wrap, won't end exactly at the status page. */ bcopy(&wr->wr[0], dst, wr->wr_len); eq->pidx += n; } else { int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE; bcopy(&wr->wr[0], dst, first_portion); if (wr->wr_len > first_portion) { bcopy(&wr->wr[first_portion], &eq->desc[0], wr->wr_len - first_portion); } eq->pidx = n - (eq->sidx - eq->pidx); } wrq->tx_wrs_copied++; if (available < eq->sidx / 4 && atomic_cmpset_int(&eq->equiq, 0, 1)) { dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | F_FW_WR_EQUEQ); eq->equeqidx = eq->pidx; } else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) { dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ); eq->equeqidx = eq->pidx; } dbdiff += n; if (dbdiff >= 16) { ring_eq_db(sc, eq, dbdiff); dbdiff = 0; } STAILQ_REMOVE_HEAD(&wrq->wr_list, link); free_wrqe(wr); MPASS(wrq->nwr_pending > 0); wrq->nwr_pending--; MPASS(wrq->ndesc_needed >= n); wrq->ndesc_needed -= n; } while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL); if (dbdiff) ring_eq_db(sc, eq, dbdiff); } /* * Doesn't fail. Holds on to work requests it can't send right away. */ void t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr) { #ifdef INVARIANTS struct sge_eq *eq = &wrq->eq; #endif EQ_LOCK_ASSERT_OWNED(eq); MPASS(wr != NULL); MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN); MPASS((wr->wr_len & 0x7) == 0); STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link); wrq->nwr_pending++; wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE); if (!TAILQ_EMPTY(&wrq->incomplete_wrs)) return; /* commit_wrq_wr will drain wr_list as well. */ drain_wrq_wr_list(sc, wrq); /* Doorbell must have caught up to the pidx. */ MPASS(eq->pidx == eq->dbidx); } void t4_update_fl_bufsize(struct ifnet *ifp) { struct vi_info *vi = ifp->if_softc; struct adapter *sc = vi->pi->adapter; struct sge_rxq *rxq; #ifdef TCP_OFFLOAD struct sge_ofld_rxq *ofld_rxq; #endif struct sge_fl *fl; int i, maxp, mtu = ifp->if_mtu; maxp = mtu_to_max_payload(sc, mtu, 0); for_each_rxq(vi, i, rxq) { fl = &rxq->fl; FL_LOCK(fl); find_best_refill_source(sc, fl, maxp); FL_UNLOCK(fl); } #ifdef TCP_OFFLOAD maxp = mtu_to_max_payload(sc, mtu, 1); for_each_ofld_rxq(vi, i, ofld_rxq) { fl = &ofld_rxq->fl; FL_LOCK(fl); find_best_refill_source(sc, fl, maxp); FL_UNLOCK(fl); } #endif } static inline int mbuf_nsegs(struct mbuf *m) { M_ASSERTPKTHDR(m); KASSERT(m->m_pkthdr.l5hlen > 0, ("%s: mbuf %p missing information on # of segments.", __func__, m)); return (m->m_pkthdr.l5hlen); } static inline void set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs) { M_ASSERTPKTHDR(m); m->m_pkthdr.l5hlen = nsegs; } static inline int mbuf_len16(struct mbuf *m) { int n; M_ASSERTPKTHDR(m); n = m->m_pkthdr.PH_loc.eigth[0]; MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16); return (n); } static inline void set_mbuf_len16(struct mbuf *m, uint8_t len16) { M_ASSERTPKTHDR(m); m->m_pkthdr.PH_loc.eigth[0] = len16; } static inline int needs_tso(struct mbuf *m) { M_ASSERTPKTHDR(m); if (m->m_pkthdr.csum_flags & CSUM_TSO) { KASSERT(m->m_pkthdr.tso_segsz > 0, ("%s: TSO requested in mbuf %p but MSS not provided", __func__, m)); return (1); } return (0); } static inline int needs_l3_csum(struct mbuf *m) { M_ASSERTPKTHDR(m); if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)) return (1); return (0); } static inline int needs_l4_csum(struct mbuf *m) { M_ASSERTPKTHDR(m); if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) return (1); return (0); } static inline int needs_vlan_insertion(struct mbuf *m) { M_ASSERTPKTHDR(m); if (m->m_flags & M_VLANTAG) { KASSERT(m->m_pkthdr.ether_vtag != 0, ("%s: HWVLAN requested in mbuf %p but tag not provided", __func__, m)); return (1); } return (0); } static void * m_advance(struct mbuf **pm, int *poffset, int len) { struct mbuf *m = *pm; int offset = *poffset; uintptr_t p = 0; MPASS(len > 0); for (;;) { if (offset + len < m->m_len) { offset += len; p = mtod(m, uintptr_t) + offset; break; } len -= m->m_len - offset; m = m->m_next; offset = 0; MPASS(m != NULL); } *poffset = offset; *pm = m; return ((void *)p); } /* * Can deal with empty mbufs in the chain that have m_len = 0, but the chain * must have at least one mbuf that's not empty. */ static inline int count_mbuf_nsegs(struct mbuf *m) { vm_paddr_t lastb, next; vm_offset_t va; int len, nsegs; MPASS(m != NULL); nsegs = 0; lastb = 0; for (; m; m = m->m_next) { len = m->m_len; if (__predict_false(len == 0)) continue; va = mtod(m, vm_offset_t); next = pmap_kextract(va); nsegs += sglist_count(m->m_data, len); if (lastb + 1 == next) nsegs--; lastb = pmap_kextract(va + len - 1); } MPASS(nsegs > 0); return (nsegs); } /* * Analyze the mbuf to determine its tx needs. The mbuf passed in may change: * a) caller can assume it's been freed if this function returns with an error. * b) it may get defragged up if the gather list is too long for the hardware. */ int parse_pkt(struct adapter *sc, struct mbuf **mp) { struct mbuf *m0 = *mp, *m; int rc, nsegs, defragged = 0, offset; struct ether_header *eh; void *l3hdr; #if defined(INET) || defined(INET6) struct tcphdr *tcp; #endif uint16_t eh_type; M_ASSERTPKTHDR(m0); if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) { rc = EINVAL; fail: m_freem(m0); *mp = NULL; return (rc); } restart: /* * First count the number of gather list segments in the payload. * Defrag the mbuf if nsegs exceeds the hardware limit. */ M_ASSERTPKTHDR(m0); MPASS(m0->m_pkthdr.len > 0); nsegs = count_mbuf_nsegs(m0); if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) { if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) { rc = EFBIG; goto fail; } *mp = m0 = m; /* update caller's copy after defrag */ goto restart; } if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) { m0 = m_pullup(m0, m0->m_pkthdr.len); if (m0 == NULL) { /* Should have left well enough alone. */ rc = EFBIG; goto fail; } *mp = m0; /* update caller's copy after pullup */ goto restart; } set_mbuf_nsegs(m0, nsegs); if (sc->flags & IS_VF) set_mbuf_len16(m0, txpkt_vm_len16(nsegs, needs_tso(m0))); else set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0))); if (!needs_tso(m0) && !(sc->flags & IS_VF && (needs_l3_csum(m0) || needs_l4_csum(m0)))) return (0); m = m0; eh = mtod(m, struct ether_header *); eh_type = ntohs(eh->ether_type); if (eh_type == ETHERTYPE_VLAN) { struct ether_vlan_header *evh = (void *)eh; eh_type = ntohs(evh->evl_proto); m0->m_pkthdr.l2hlen = sizeof(*evh); } else m0->m_pkthdr.l2hlen = sizeof(*eh); offset = 0; l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen); switch (eh_type) { #ifdef INET6 case ETHERTYPE_IPV6: { struct ip6_hdr *ip6 = l3hdr; MPASS(!needs_tso(m0) || ip6->ip6_nxt == IPPROTO_TCP); m0->m_pkthdr.l3hlen = sizeof(*ip6); break; } #endif #ifdef INET case ETHERTYPE_IP: { struct ip *ip = l3hdr; m0->m_pkthdr.l3hlen = ip->ip_hl * 4; break; } #endif default: panic("%s: ethertype 0x%04x unknown. if_cxgbe must be compiled" " with the same INET/INET6 options as the kernel.", __func__, eh_type); } #if defined(INET) || defined(INET6) if (needs_tso(m0)) { tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen); m0->m_pkthdr.l4hlen = tcp->th_off * 4; } #endif MPASS(m0 == *mp); return (0); } void * start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie) { struct sge_eq *eq = &wrq->eq; struct adapter *sc = wrq->adapter; int ndesc, available; struct wrqe *wr; void *w; MPASS(len16 > 0); ndesc = howmany(len16, EQ_ESIZE / 16); MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC); EQ_LOCK(eq); if (!STAILQ_EMPTY(&wrq->wr_list)) drain_wrq_wr_list(sc, wrq); if (!STAILQ_EMPTY(&wrq->wr_list)) { slowpath: EQ_UNLOCK(eq); wr = alloc_wrqe(len16 * 16, wrq); if (__predict_false(wr == NULL)) return (NULL); cookie->pidx = -1; cookie->ndesc = ndesc; return (&wr->wr); } eq->cidx = read_hw_cidx(eq); if (eq->pidx == eq->cidx) available = eq->sidx - 1; else available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; if (available < ndesc) goto slowpath; cookie->pidx = eq->pidx; cookie->ndesc = ndesc; TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link); w = &eq->desc[eq->pidx]; IDXINCR(eq->pidx, ndesc, eq->sidx); if (__predict_false(cookie->pidx + ndesc > eq->sidx)) { w = &wrq->ss[0]; wrq->ss_pidx = cookie->pidx; wrq->ss_len = len16 * 16; } EQ_UNLOCK(eq); return (w); } void commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie) { struct sge_eq *eq = &wrq->eq; struct adapter *sc = wrq->adapter; int ndesc, pidx; struct wrq_cookie *prev, *next; if (cookie->pidx == -1) { struct wrqe *wr = __containerof(w, struct wrqe, wr); t4_wrq_tx(sc, wr); return; } ndesc = cookie->ndesc; /* Can be more than SGE_MAX_WR_NDESC here. */ pidx = cookie->pidx; MPASS(pidx >= 0 && pidx < eq->sidx); if (__predict_false(w == &wrq->ss[0])) { int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE; MPASS(wrq->ss_len > n); /* WR had better wrap around. */ bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n); bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n); wrq->tx_wrs_ss++; } else wrq->tx_wrs_direct++; EQ_LOCK(eq); prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link); next = TAILQ_NEXT(cookie, link); if (prev == NULL) { MPASS(pidx == eq->dbidx); if (next == NULL || ndesc >= 16) ring_eq_db(wrq->adapter, eq, ndesc); else { MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc); next->pidx = pidx; next->ndesc += ndesc; } } else { MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc); prev->ndesc += ndesc; } TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link); if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) drain_wrq_wr_list(sc, wrq); #ifdef INVARIANTS if (TAILQ_EMPTY(&wrq->incomplete_wrs)) { /* Doorbell must have caught up to the pidx. */ MPASS(wrq->eq.pidx == wrq->eq.dbidx); } #endif EQ_UNLOCK(eq); } static u_int can_resume_eth_tx(struct mp_ring *r) { struct sge_eq *eq = r->cookie; return (total_available_tx_desc(eq) > eq->sidx / 8); } static inline int cannot_use_txpkts(struct mbuf *m) { /* maybe put a GL limit too, to avoid silliness? */ return (needs_tso(m)); } /* * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to * be consumed. Return the actual number consumed. 0 indicates a stall. */ static u_int eth_tx(struct mp_ring *r, u_int cidx, u_int pidx) { struct sge_txq *txq = r->cookie; struct sge_eq *eq = &txq->eq; struct ifnet *ifp = txq->ifp; struct vi_info *vi = ifp->if_softc; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; u_int total, remaining; /* # of packets */ u_int available, dbdiff; /* # of hardware descriptors */ u_int n, next_cidx; struct mbuf *m0, *tail; struct txpkts txp; struct fw_eth_tx_pkts_wr *wr; /* any fw WR struct will do */ remaining = IDXDIFF(pidx, cidx, r->size); MPASS(remaining > 0); /* Must not be called without work to do. */ total = 0; TXQ_LOCK(txq); if (__predict_false((eq->flags & EQ_ENABLED) == 0)) { while (cidx != pidx) { m0 = r->items[cidx]; m_freem(m0); if (++cidx == r->size) cidx = 0; } reclaim_tx_descs(txq, 2048); total = remaining; goto done; } /* How many hardware descriptors do we have readily available. */ if (eq->pidx == eq->cidx) available = eq->sidx - 1; else available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx); while (remaining > 0) { m0 = r->items[cidx]; M_ASSERTPKTHDR(m0); MPASS(m0->m_nextpkt == NULL); if (available < SGE_MAX_WR_NDESC) { available += reclaim_tx_descs(txq, 64); if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16)) break; /* out of descriptors */ } next_cidx = cidx + 1; if (__predict_false(next_cidx == r->size)) next_cidx = 0; wr = (void *)&eq->desc[eq->pidx]; if (sc->flags & IS_VF) { total++; remaining--; ETHER_BPF_MTAP(ifp, m0); n = write_txpkt_vm_wr(sc, txq, (void *)wr, m0, available); } else if (remaining > 1 && try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) { /* pkts at cidx, next_cidx should both be in txp. */ MPASS(txp.npkt == 2); tail = r->items[next_cidx]; MPASS(tail->m_nextpkt == NULL); ETHER_BPF_MTAP(ifp, m0); ETHER_BPF_MTAP(ifp, tail); m0->m_nextpkt = tail; if (__predict_false(++next_cidx == r->size)) next_cidx = 0; while (next_cidx != pidx) { if (add_to_txpkts(r->items[next_cidx], &txp, available) != 0) break; tail->m_nextpkt = r->items[next_cidx]; tail = tail->m_nextpkt; ETHER_BPF_MTAP(ifp, tail); if (__predict_false(++next_cidx == r->size)) next_cidx = 0; } n = write_txpkts_wr(txq, wr, m0, &txp, available); total += txp.npkt; remaining -= txp.npkt; } else { total++; remaining--; ETHER_BPF_MTAP(ifp, m0); n = write_txpkt_wr(txq, (void *)wr, m0, available); } MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC); available -= n; dbdiff += n; IDXINCR(eq->pidx, n, eq->sidx); if (total_available_tx_desc(eq) < eq->sidx / 4 && atomic_cmpset_int(&eq->equiq, 0, 1)) { wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | F_FW_WR_EQUEQ); eq->equeqidx = eq->pidx; } else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) { wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ); eq->equeqidx = eq->pidx; } if (dbdiff >= 16 && remaining >= 4) { ring_eq_db(sc, eq, dbdiff); available += reclaim_tx_descs(txq, 4 * dbdiff); dbdiff = 0; } cidx = next_cidx; } if (dbdiff != 0) { ring_eq_db(sc, eq, dbdiff); reclaim_tx_descs(txq, 32); } done: TXQ_UNLOCK(txq); return (total); } static inline void init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx, int qsize) { KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS, ("%s: bad tmr_idx %d", __func__, tmr_idx)); KASSERT(pktc_idx < SGE_NCOUNTERS, /* -ve is ok, means don't use */ ("%s: bad pktc_idx %d", __func__, pktc_idx)); iq->flags = 0; iq->adapter = sc; iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx); iq->intr_pktc_idx = SGE_NCOUNTERS - 1; if (pktc_idx >= 0) { iq->intr_params |= F_QINTR_CNT_EN; iq->intr_pktc_idx = pktc_idx; } iq->qsize = roundup2(qsize, 16); /* See FW_IQ_CMD/iqsize */ iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE; } static inline void init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name) { fl->qsize = qsize; fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE; strlcpy(fl->lockname, name, sizeof(fl->lockname)); if (sc->flags & BUF_PACKING_OK && ((!is_t4(sc) && buffer_packing) || /* T5+: enabled unless 0 */ (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */ fl->flags |= FL_BUF_PACKING; find_best_refill_source(sc, fl, maxp); find_safe_refill_source(sc, fl); } static inline void init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan, uint16_t iqid, char *name) { KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype)); eq->flags = eqtype & EQ_TYPEMASK; eq->tx_chan = tx_chan; eq->iqid = iqid; eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE; strlcpy(eq->lockname, name, sizeof(eq->lockname)); } static int alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag, bus_dmamap_t *map, bus_addr_t *pa, void **va) { int rc; rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag); if (rc != 0) { device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc); goto done; } rc = bus_dmamem_alloc(*tag, va, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map); if (rc != 0) { device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc); goto done; } rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0); if (rc != 0) { device_printf(sc->dev, "cannot load DMA map: %d\n", rc); goto done; } done: if (rc) free_ring(sc, *tag, *map, *pa, *va); return (rc); } static int free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map, bus_addr_t pa, void *va) { if (pa) bus_dmamap_unload(tag, map); if (va) bus_dmamem_free(tag, va, map); if (tag) bus_dma_tag_destroy(tag); return (0); } /* * Allocates the ring for an ingress queue and an optional freelist. If the * freelist is specified it will be allocated and then associated with the * ingress queue. * * Returns errno on failure. Resources allocated up to that point may still be * allocated. Caller is responsible for cleanup in case this function fails. * * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then * the intr_idx specifies the vector, starting from 0. Otherwise it specifies * the abs_id of the ingress queue to which its interrupts should be forwarded. */ static int alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl, int intr_idx, int cong) { int rc, i, cntxt_id; size_t len; struct fw_iq_cmd c; struct port_info *pi = vi->pi; struct adapter *sc = iq->adapter; struct sge_params *sp = &sc->params.sge; __be32 v = 0; len = iq->qsize * IQ_ESIZE; rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba, (void **)&iq->desc); if (rc != 0) return (rc); bzero(&c, sizeof(c)); c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) | V_FW_IQ_CMD_VFN(0)); c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART | FW_LEN16(c)); /* Special handling for firmware event queue */ if (iq == &sc->sge.fwq) v |= F_FW_IQ_CMD_IQASYNCH; if (iq->flags & IQ_INTR) { KASSERT(intr_idx < sc->intr_count, ("%s: invalid direct intr_idx %d", __func__, intr_idx)); } else v |= F_FW_IQ_CMD_IQANDST; v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx); c.type_to_iqandstindex = htobe32(v | V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | V_FW_IQ_CMD_VIID(vi->viid) | V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT)); c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) | F_FW_IQ_CMD_IQGTSMODE | V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) | V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4)); c.iqsize = htobe16(iq->qsize); c.iqaddr = htobe64(iq->ba); if (cong >= 0) c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN); if (fl) { mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF); len = fl->qsize * EQ_ESIZE; rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map, &fl->ba, (void **)&fl->desc); if (rc) return (rc); /* Allocate space for one software descriptor per buffer. */ rc = alloc_fl_sdesc(fl); if (rc != 0) { device_printf(sc->dev, "failed to setup fl software descriptors: %d\n", rc); return (rc); } if (fl->flags & FL_BUF_PACKING) { fl->lowat = roundup2(sp->fl_starve_threshold2, 8); fl->buf_boundary = sp->pack_boundary; } else { fl->lowat = roundup2(sp->fl_starve_threshold, 8); fl->buf_boundary = 16; } if (fl_pad && fl->buf_boundary < sp->pad_boundary) fl->buf_boundary = sp->pad_boundary; c.iqns_to_fl0congen |= htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) | F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO | (fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) | (fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN : 0)); if (cong >= 0) { c.iqns_to_fl0congen |= htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) | F_FW_IQ_CMD_FL0CONGCIF | F_FW_IQ_CMD_FL0CONGEN); } c.fl0dcaen_to_fl0cidxfthresh = htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ? X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B) | V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ? X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B)); c.fl0size = htobe16(fl->qsize); c.fl0addr = htobe64(fl->ba); } rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); if (rc != 0) { device_printf(sc->dev, "failed to create ingress queue: %d\n", rc); return (rc); } iq->cidx = 0; iq->gen = F_RSPD_GEN; iq->intr_next = iq->intr_params; iq->cntxt_id = be16toh(c.iqid); iq->abs_id = be16toh(c.physiqid); iq->flags |= IQ_ALLOCATED; cntxt_id = iq->cntxt_id - sc->sge.iq_start; if (cntxt_id >= sc->sge.niq) { panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__, cntxt_id, sc->sge.niq - 1); } sc->sge.iqmap[cntxt_id] = iq; if (fl) { u_int qid; iq->flags |= IQ_HAS_FL; fl->cntxt_id = be16toh(c.fl0id); fl->pidx = fl->cidx = 0; cntxt_id = fl->cntxt_id - sc->sge.eq_start; if (cntxt_id >= sc->sge.neq) { panic("%s: fl->cntxt_id (%d) more than the max (%d)", __func__, cntxt_id, sc->sge.neq - 1); } sc->sge.eqmap[cntxt_id] = (void *)fl; qid = fl->cntxt_id; if (isset(&sc->doorbells, DOORBELL_UDB)) { uint32_t s_qpp = sc->params.sge.eq_s_qpp; uint32_t mask = (1 << s_qpp) - 1; volatile uint8_t *udb; udb = sc->udbs_base + UDBS_DB_OFFSET; udb += (qid >> s_qpp) << PAGE_SHIFT; qid &= mask; if (qid < PAGE_SIZE / UDBS_SEG_SIZE) { udb += qid << UDBS_SEG_SHIFT; qid = 0; } fl->udb = (volatile void *)udb; } fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db; FL_LOCK(fl); /* Enough to make sure the SGE doesn't think it's starved */ refill_fl(sc, fl, fl->lowat); FL_UNLOCK(fl); } if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && cong >= 0) { uint32_t param, val; param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | V_FW_PARAMS_PARAM_YZ(iq->cntxt_id); if (cong == 0) val = 1 << 19; else { val = 2 << 19; for (i = 0; i < 4; i++) { if (cong & (1 << i)) val |= 1 << (i << 2); } } rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); if (rc != 0) { /* report error but carry on */ device_printf(sc->dev, "failed to set congestion manager context for " "ingress queue %d: %d\n", iq->cntxt_id, rc); } } /* Enable IQ interrupts */ atomic_store_rel_int(&iq->state, IQS_IDLE); t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) | V_INGRESSQID(iq->cntxt_id)); return (0); } static int free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl) { int rc; struct adapter *sc = iq->adapter; device_t dev; if (sc == NULL) return (0); /* nothing to do */ dev = vi ? vi->dev : sc->dev; if (iq->flags & IQ_ALLOCATED) { rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff); if (rc != 0) { device_printf(dev, "failed to free queue %p: %d\n", iq, rc); return (rc); } iq->flags &= ~IQ_ALLOCATED; } free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc); bzero(iq, sizeof(*iq)); if (fl) { free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, fl->desc); if (fl->sdesc) free_fl_sdesc(sc, fl); if (mtx_initialized(&fl->fl_lock)) mtx_destroy(&fl->fl_lock); bzero(fl, sizeof(*fl)); } return (0); } static void add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, struct sysctl_oid *oid, struct sge_fl *fl) { struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, "freelist"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &fl->ba, "bus address of descriptor ring"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, fl->sidx * EQ_ESIZE + sc->params.sge.spg_len, "desc ring size in bytes"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I", "SGE context id of the freelist"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL, fl_pad ? 1 : 0, "padding enabled"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL, fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx, 0, "consumer index"); if (fl->flags & FL_BUF_PACKING) { SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset", CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset"); } SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx, 0, "producer index"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated", CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined", CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated", CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled", CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled", CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)"); } static int alloc_fwq(struct adapter *sc) { int rc, intr_idx; struct sge_iq *fwq = &sc->sge.fwq; struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE); fwq->flags |= IQ_INTR; /* always */ if (sc->flags & IS_VF) intr_idx = 0; else { intr_idx = sc->intr_count > 1 ? 1 : 0; fwq->set_tcb_rpl = t4_filter_rpl; fwq->l2t_write_rpl = do_l2t_write_rpl; } rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1); if (rc != 0) { device_printf(sc->dev, "failed to create firmware event queue: %d\n", rc); return (rc); } oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD, NULL, "firmware event queue"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_UAUTO(&sc->ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &fwq->ba, "bus address of descriptor ring"); SYSCTL_ADD_INT(&sc->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, fwq->qsize * IQ_ESIZE, "descriptor ring size in bytes"); SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id", CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I", "absolute id of the queue"); SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id", CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I", "SGE context id of the queue"); SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx", CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I", "consumer index"); return (0); } static int free_fwq(struct adapter *sc) { return free_iq_fl(NULL, &sc->sge.fwq, NULL); } static int alloc_mgmtq(struct adapter *sc) { int rc; struct sge_wrq *mgmtq = &sc->sge.mgmtq; char name[16]; struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD, NULL, "management queue"); snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev)); init_eq(sc, &mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan, sc->sge.fwq.cntxt_id, name); rc = alloc_wrq(sc, NULL, mgmtq, oid); if (rc != 0) { device_printf(sc->dev, "failed to create management queue: %d\n", rc); return (rc); } return (0); } static int free_mgmtq(struct adapter *sc) { return free_wrq(sc, &sc->sge.mgmtq); } int tnl_cong(struct port_info *pi, int drop) { if (drop == -1) return (-1); else if (drop == 1) return (0); else return (pi->rx_chan_map); } static int alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx, struct sysctl_oid *oid) { int rc; struct adapter *sc = vi->pi->adapter; struct sysctl_oid_list *children; char name[16]; rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx, tnl_cong(vi->pi, cong_drop)); if (rc != 0) return (rc); if (idx == 0) sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id; else KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id, ("iq_base mismatch")); KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF, ("PF with non-zero iq_base")); /* * The freelist is just barely above the starvation threshold right now, * fill it up a bit more. */ FL_LOCK(&rxq->fl); refill_fl(sc, &rxq->fl, 128); FL_UNLOCK(&rxq->fl); #if defined(INET) || defined(INET6) rc = tcp_lro_init(&rxq->lro); if (rc != 0) return (rc); rxq->lro.ifp = vi->ifp; /* also indicates LRO init'ed */ if (vi->ifp->if_capenable & IFCAP_LRO) rxq->iq.flags |= IQ_LRO_ENABLED; #endif rxq->ifp = vi->ifp; children = SYSCTL_CHILDREN(oid); snprintf(name, sizeof(name), "%d", idx); oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, "rx queue"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &rxq->iq.ba, "bus address of descriptor ring"); SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, rxq->iq.qsize * IQ_ESIZE, "descriptor ring size in bytes"); SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id", CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I", "absolute id of the queue"); SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I", "SGE context id of the queue"); SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I", "consumer index"); #if defined(INET) || defined(INET6) SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD, &rxq->lro.lro_queued, 0, NULL); SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD, &rxq->lro.lro_flushed, 0, NULL); #endif SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD, &rxq->rxcsum, "# of times hardware assisted with checksum"); SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction", CTLFLAG_RD, &rxq->vlan_extraction, "# of times hardware extracted 802.1Q tag"); add_fl_sysctls(sc, &vi->ctx, oid, &rxq->fl); return (rc); } static int free_rxq(struct vi_info *vi, struct sge_rxq *rxq) { int rc; #if defined(INET) || defined(INET6) if (rxq->lro.ifp) { tcp_lro_free(&rxq->lro); rxq->lro.ifp = NULL; } #endif rc = free_iq_fl(vi, &rxq->iq, &rxq->fl); if (rc == 0) bzero(rxq, sizeof(*rxq)); return (rc); } #ifdef TCP_OFFLOAD static int alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, int intr_idx, int idx, struct sysctl_oid *oid) { struct port_info *pi = vi->pi; int rc; struct sysctl_oid_list *children; char name[16]; rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, pi->rx_chan_map); if (rc != 0) return (rc); children = SYSCTL_CHILDREN(oid); snprintf(name, sizeof(name), "%d", idx); oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, "rx queue"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &ofld_rxq->iq.ba, "bus address of descriptor ring"); SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, ofld_rxq->iq.qsize * IQ_ESIZE, "descriptor ring size in bytes"); SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id", CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16, "I", "absolute id of the queue"); SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16, "I", "SGE context id of the queue"); SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I", "consumer index"); add_fl_sysctls(pi->adapter, &vi->ctx, oid, &ofld_rxq->fl); return (rc); } static int free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq) { int rc; rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl); if (rc == 0) bzero(ofld_rxq, sizeof(*ofld_rxq)); return (rc); } #endif #ifdef DEV_NETMAP static int alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx, int idx, struct sysctl_oid *oid) { int rc; struct sysctl_oid_list *children; struct sysctl_ctx_list *ctx; char name[16]; size_t len; struct adapter *sc = vi->pi->adapter; struct netmap_adapter *na = NA(vi->ifp); MPASS(na != NULL); len = vi->qsize_rxq * IQ_ESIZE; rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map, &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc); if (rc != 0) return (rc); len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len; rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map, &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc); if (rc != 0) return (rc); nm_rxq->vi = vi; nm_rxq->nid = idx; nm_rxq->iq_cidx = 0; nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE; nm_rxq->iq_gen = F_RSPD_GEN; nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0; nm_rxq->fl_sidx = na->num_rx_desc; nm_rxq->intr_idx = intr_idx; ctx = &vi->ctx; children = SYSCTL_CHILDREN(oid); snprintf(name, sizeof(name), "%d", idx); oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, "rx queue"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id", CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16, "I", "absolute id of the queue"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16, "I", "SGE context id of the queue"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I", "consumer index"); children = SYSCTL_CHILDREN(oid); oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, "freelist"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16, "I", "SGE context id of the freelist"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &nm_rxq->fl_cidx, 0, "consumer index"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &nm_rxq->fl_pidx, 0, "producer index"); return (rc); } static int free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq) { struct adapter *sc = vi->pi->adapter; free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba, nm_rxq->iq_desc); free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba, nm_rxq->fl_desc); return (0); } static int alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx, struct sysctl_oid *oid) { int rc; size_t len; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct netmap_adapter *na = NA(vi->ifp); char name[16]; struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len; rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map, &nm_txq->ba, (void **)&nm_txq->desc); if (rc) return (rc); nm_txq->pidx = nm_txq->cidx = 0; nm_txq->sidx = na->num_tx_desc; nm_txq->nid = idx; nm_txq->iqidx = iqidx; nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) | V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) | V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid))); snprintf(name, sizeof(name), "%d", idx); oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, "netmap tx queue"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, &nm_txq->cntxt_id, 0, "SGE context id of the queue"); SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I", "consumer index"); SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx", CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I", "producer index"); return (rc); } static int free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq) { struct adapter *sc = vi->pi->adapter; free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba, nm_txq->desc); return (0); } #endif static int ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq) { int rc, cntxt_id; struct fw_eq_ctrl_cmd c; int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; bzero(&c, sizeof(c)); c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) | V_FW_EQ_CTRL_CMD_VFN(0)); c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC | F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c)); c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); c.physeqid_pkd = htobe32(0); c.fetchszm_to_iqid = htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid)); c.dcaen_to_eqsize = htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) | V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) | V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | V_FW_EQ_CTRL_CMD_EQSIZE(qsize)); c.eqaddr = htobe64(eq->ba); rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); if (rc != 0) { device_printf(sc->dev, "failed to create control queue %d: %d\n", eq->tx_chan, rc); return (rc); } eq->flags |= EQ_ALLOCATED; eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid)); cntxt_id = eq->cntxt_id - sc->sge.eq_start; if (cntxt_id >= sc->sge.neq) panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, cntxt_id, sc->sge.neq - 1); sc->sge.eqmap[cntxt_id] = eq; return (rc); } static int eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) { int rc, cntxt_id; struct fw_eq_eth_cmd c; int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; bzero(&c, sizeof(c)); c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) | V_FW_EQ_ETH_CMD_VFN(0)); c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC | F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c)); c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE | F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid)); c.fetchszm_to_iqid = htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO | V_FW_EQ_ETH_CMD_IQID(eq->iqid)); c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) | V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) | V_FW_EQ_ETH_CMD_EQSIZE(qsize)); c.eqaddr = htobe64(eq->ba); rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); if (rc != 0) { device_printf(vi->dev, "failed to create Ethernet egress queue: %d\n", rc); return (rc); } eq->flags |= EQ_ALLOCATED; eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd)); eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd)); cntxt_id = eq->cntxt_id - sc->sge.eq_start; if (cntxt_id >= sc->sge.neq) panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, cntxt_id, sc->sge.neq - 1); sc->sge.eqmap[cntxt_id] = eq; return (rc); } #ifdef TCP_OFFLOAD static int ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) { int rc, cntxt_id; struct fw_eq_ofld_cmd c; int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; bzero(&c, sizeof(c)); c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) | V_FW_EQ_OFLD_CMD_VFN(0)); c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC | F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c)); c.fetchszm_to_iqid = htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid)); c.dcaen_to_eqsize = htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) | V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) | V_FW_EQ_OFLD_CMD_EQSIZE(qsize)); c.eqaddr = htobe64(eq->ba); rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); if (rc != 0) { device_printf(vi->dev, "failed to create egress queue for TCP offload: %d\n", rc); return (rc); } eq->flags |= EQ_ALLOCATED; eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd)); cntxt_id = eq->cntxt_id - sc->sge.eq_start; if (cntxt_id >= sc->sge.neq) panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, cntxt_id, sc->sge.neq - 1); sc->sge.eqmap[cntxt_id] = eq; return (rc); } #endif static int alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) { int rc, qsize; size_t len; mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF); qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; len = qsize * EQ_ESIZE; rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, &eq->ba, (void **)&eq->desc); if (rc) return (rc); eq->pidx = eq->cidx = 0; eq->equeqidx = eq->dbidx = 0; eq->doorbells = sc->doorbells; switch (eq->flags & EQ_TYPEMASK) { case EQ_CTRL: rc = ctrl_eq_alloc(sc, eq); break; case EQ_ETH: rc = eth_eq_alloc(sc, vi, eq); break; #ifdef TCP_OFFLOAD case EQ_OFLD: rc = ofld_eq_alloc(sc, vi, eq); break; #endif default: panic("%s: invalid eq type %d.", __func__, eq->flags & EQ_TYPEMASK); } if (rc != 0) { device_printf(sc->dev, "failed to allocate egress queue(%d): %d\n", eq->flags & EQ_TYPEMASK, rc); } if (isset(&eq->doorbells, DOORBELL_UDB) || isset(&eq->doorbells, DOORBELL_UDBWC) || isset(&eq->doorbells, DOORBELL_WCWR)) { uint32_t s_qpp = sc->params.sge.eq_s_qpp; uint32_t mask = (1 << s_qpp) - 1; volatile uint8_t *udb; udb = sc->udbs_base + UDBS_DB_OFFSET; udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT; /* pg offset */ eq->udb_qid = eq->cntxt_id & mask; /* id in page */ if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE) clrbit(&eq->doorbells, DOORBELL_WCWR); else { udb += eq->udb_qid << UDBS_SEG_SHIFT; /* seg offset */ eq->udb_qid = 0; } eq->udb = (volatile void *)udb; } return (rc); } static int free_eq(struct adapter *sc, struct sge_eq *eq) { int rc; if (eq->flags & EQ_ALLOCATED) { switch (eq->flags & EQ_TYPEMASK) { case EQ_CTRL: rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id); break; case EQ_ETH: rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id); break; #ifdef TCP_OFFLOAD case EQ_OFLD: rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id); break; #endif default: panic("%s: invalid eq type %d.", __func__, eq->flags & EQ_TYPEMASK); } if (rc != 0) { device_printf(sc->dev, "failed to free egress queue (%d): %d\n", eq->flags & EQ_TYPEMASK, rc); return (rc); } eq->flags &= ~EQ_ALLOCATED; } free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc); if (mtx_initialized(&eq->eq_lock)) mtx_destroy(&eq->eq_lock); bzero(eq, sizeof(*eq)); return (0); } static int alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq, struct sysctl_oid *oid) { int rc; struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx; struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); rc = alloc_eq(sc, vi, &wrq->eq); if (rc) return (rc); wrq->adapter = sc; TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq); TAILQ_INIT(&wrq->incomplete_wrs); STAILQ_INIT(&wrq->wr_list); wrq->nwr_pending = 0; wrq->ndesc_needed = 0; SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &wrq->eq.ba, "bus address of descriptor ring"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, wrq->eq.sidx * EQ_ESIZE + sc->params.sge.spg_len, "desc ring size in bytes"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, &wrq->eq.cntxt_id, 0, "SGE context id of the queue"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I", "consumer index"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx", CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I", "producer index"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL, wrq->eq.sidx, "status page index"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD, &wrq->tx_wrs_direct, "# of work requests (direct)"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD, &wrq->tx_wrs_copied, "# of work requests (copied)"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD, &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)"); return (rc); } static int free_wrq(struct adapter *sc, struct sge_wrq *wrq) { int rc; rc = free_eq(sc, &wrq->eq); if (rc) return (rc); bzero(wrq, sizeof(*wrq)); return (0); } static int alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx, struct sysctl_oid *oid) { int rc; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct sge_eq *eq = &txq->eq; char name[16]; struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx, M_CXGBE, M_WAITOK); if (rc != 0) { device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc); return (rc); } rc = alloc_eq(sc, vi, eq); if (rc != 0) { mp_ring_free(txq->r); txq->r = NULL; return (rc); } /* Can't fail after this point. */ if (idx == 0) sc->sge.eq_base = eq->abs_id - eq->cntxt_id; else KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id, ("eq_base mismatch")); KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF, ("PF with non-zero eq_base")); TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq); txq->ifp = vi->ifp; txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK); if (sc->flags & IS_VF) txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | V_TXPKT_INTF(pi->tx_chan)); else txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) | V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) | V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid))); txq->tc_idx = -1; txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE, M_ZERO | M_WAITOK); snprintf(name, sizeof(name), "%d", idx); oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, "tx queue"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &eq->ba, "bus address of descriptor ring"); SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, eq->sidx * EQ_ESIZE + sc->params.sge.spg_len, "desc ring size in bytes"); SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD, &eq->abs_id, 0, "absolute id of the queue"); SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, &eq->cntxt_id, 0, "SGE context id of the queue"); SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I", "consumer index"); SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx", CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I", "producer index"); SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL, eq->sidx, "status page index"); SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc", CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I", "traffic class (-1 means none)"); SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD, &txq->txcsum, "# of times hardware assisted with checksum"); SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion", CTLFLAG_RD, &txq->vlan_insertion, "# of times hardware inserted 802.1Q tag"); SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD, &txq->tso_wrs, "# of TSO work requests"); SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD, &txq->imm_wrs, "# of work requests with immediate data"); SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD, &txq->sgl_wrs, "# of work requests with direct SGL"); SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD, &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)"); SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs", CTLFLAG_RD, &txq->txpkts0_wrs, "# of txpkts (type 0) work requests"); SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs", CTLFLAG_RD, &txq->txpkts1_wrs, "# of txpkts (type 1) work requests"); SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts", CTLFLAG_RD, &txq->txpkts0_pkts, "# of frames tx'd using type0 txpkts work requests"); SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts", CTLFLAG_RD, &txq->txpkts1_pkts, "# of frames tx'd using type1 txpkts work requests"); SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues", CTLFLAG_RD, &txq->r->enqueues, "# of enqueues to the mp_ring for this queue"); SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops", CTLFLAG_RD, &txq->r->drops, "# of drops in the mp_ring for this queue"); SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts", CTLFLAG_RD, &txq->r->starts, "# of normal consumer starts in the mp_ring for this queue"); SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls", CTLFLAG_RD, &txq->r->stalls, "# of consumer stalls in the mp_ring for this queue"); SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts", CTLFLAG_RD, &txq->r->restarts, "# of consumer restarts in the mp_ring for this queue"); SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications", CTLFLAG_RD, &txq->r->abdications, "# of consumer abdications in the mp_ring for this queue"); return (0); } static int free_txq(struct vi_info *vi, struct sge_txq *txq) { int rc; struct adapter *sc = vi->pi->adapter; struct sge_eq *eq = &txq->eq; rc = free_eq(sc, eq); if (rc) return (rc); sglist_free(txq->gl); free(txq->sdesc, M_CXGBE); mp_ring_free(txq->r); bzero(txq, sizeof(*txq)); return (0); } static void oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error) { bus_addr_t *ba = arg; KASSERT(nseg == 1, ("%s meant for single segment mappings only.", __func__)); *ba = error ? 0 : segs->ds_addr; } static inline void ring_fl_db(struct adapter *sc, struct sge_fl *fl) { uint32_t n, v; n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx); MPASS(n > 0); wmb(); v = fl->dbval | V_PIDX(n); if (fl->udb) *fl->udb = htole32(v); else t4_write_reg(sc, sc->sge_kdoorbell_reg, v); IDXINCR(fl->dbidx, n, fl->sidx); } /* * Fills up the freelist by allocating upto 'n' buffers. Buffers that are * recycled do not count towards this allocation budget. * * Returns non-zero to indicate that this freelist should be added to the list * of starving freelists. */ static int refill_fl(struct adapter *sc, struct sge_fl *fl, int n) { __be64 *d; struct fl_sdesc *sd; uintptr_t pa; caddr_t cl; struct cluster_layout *cll; struct sw_zone_info *swz; struct cluster_metadata *clm; uint16_t max_pidx; uint16_t hw_cidx = fl->hw_cidx; /* stable snapshot */ FL_LOCK_ASSERT_OWNED(fl); /* * We always stop at the begining of the hardware descriptor that's just * before the one with the hw cidx. This is to avoid hw pidx = hw cidx, * which would mean an empty freelist to the chip. */ max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1; if (fl->pidx == max_pidx * 8) return (0); d = &fl->desc[fl->pidx]; sd = &fl->sdesc[fl->pidx]; cll = &fl->cll_def; /* default layout */ swz = &sc->sge.sw_zone_info[cll->zidx]; while (n > 0) { if (sd->cl != NULL) { if (sd->nmbuf == 0) { /* * Fast recycle without involving any atomics on * the cluster's metadata (if the cluster has * metadata). This happens when all frames * received in the cluster were small enough to * fit within a single mbuf each. */ fl->cl_fast_recycled++; #ifdef INVARIANTS clm = cl_metadata(sc, fl, &sd->cll, sd->cl); if (clm != NULL) MPASS(clm->refcount == 1); #endif goto recycled_fast; } /* * Cluster is guaranteed to have metadata. Clusters * without metadata always take the fast recycle path * when they're recycled. */ clm = cl_metadata(sc, fl, &sd->cll, sd->cl); MPASS(clm != NULL); if (atomic_fetchadd_int(&clm->refcount, -1) == 1) { fl->cl_recycled++; counter_u64_add(extfree_rels, 1); goto recycled; } sd->cl = NULL; /* gave up my reference */ } MPASS(sd->cl == NULL); alloc: cl = uma_zalloc(swz->zone, M_NOWAIT); if (__predict_false(cl == NULL)) { if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 || fl->cll_def.zidx == fl->cll_alt.zidx) break; /* fall back to the safe zone */ cll = &fl->cll_alt; swz = &sc->sge.sw_zone_info[cll->zidx]; goto alloc; } fl->cl_allocated++; n--; pa = pmap_kextract((vm_offset_t)cl); pa += cll->region1; sd->cl = cl; sd->cll = *cll; *d = htobe64(pa | cll->hwidx); clm = cl_metadata(sc, fl, cll, cl); if (clm != NULL) { recycled: #ifdef INVARIANTS clm->sd = sd; #endif clm->refcount = 1; } sd->nmbuf = 0; recycled_fast: d++; sd++; if (__predict_false(++fl->pidx % 8 == 0)) { uint16_t pidx = fl->pidx / 8; if (__predict_false(pidx == fl->sidx)) { fl->pidx = 0; pidx = 0; sd = fl->sdesc; d = fl->desc; } if (pidx == max_pidx) break; if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4) ring_fl_db(sc, fl); } } if (fl->pidx / 8 != fl->dbidx) ring_fl_db(sc, fl); return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING)); } /* * Attempt to refill all starving freelists. */ static void refill_sfl(void *arg) { struct adapter *sc = arg; struct sge_fl *fl, *fl_temp; mtx_assert(&sc->sfl_lock, MA_OWNED); TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) { FL_LOCK(fl); refill_fl(sc, fl, 64); if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) { TAILQ_REMOVE(&sc->sfl, fl, link); fl->flags &= ~FL_STARVING; } FL_UNLOCK(fl); } if (!TAILQ_EMPTY(&sc->sfl)) callout_schedule(&sc->sfl_callout, hz / 5); } static int alloc_fl_sdesc(struct sge_fl *fl) { fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE, M_ZERO | M_WAITOK); return (0); } static void free_fl_sdesc(struct adapter *sc, struct sge_fl *fl) { struct fl_sdesc *sd; struct cluster_metadata *clm; struct cluster_layout *cll; int i; sd = fl->sdesc; for (i = 0; i < fl->sidx * 8; i++, sd++) { if (sd->cl == NULL) continue; cll = &sd->cll; clm = cl_metadata(sc, fl, cll, sd->cl); if (sd->nmbuf == 0) uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl); else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) { uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl); counter_u64_add(extfree_rels, 1); } sd->cl = NULL; } free(fl->sdesc, M_CXGBE); fl->sdesc = NULL; } static inline void get_pkt_gl(struct mbuf *m, struct sglist *gl) { int rc; M_ASSERTPKTHDR(m); sglist_reset(gl); rc = sglist_append_mbuf(gl, m); if (__predict_false(rc != 0)) { panic("%s: mbuf %p (%d segs) was vetted earlier but now fails " "with %d.", __func__, m, mbuf_nsegs(m), rc); } KASSERT(gl->sg_nseg == mbuf_nsegs(m), ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m, mbuf_nsegs(m), gl->sg_nseg)); KASSERT(gl->sg_nseg > 0 && gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS), ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__, gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)); } /* * len16 for a txpkt WR with a GL. Includes the firmware work request header. */ static inline u_int txpkt_len16(u_int nsegs, u_int tso) { u_int n; MPASS(nsegs > 0); nsegs--; /* first segment is part of ulptx_sgl */ n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); if (tso) n += sizeof(struct cpl_tx_pkt_lso_core); return (howmany(n, 16)); } /* * len16 for a txpkt_vm WR with a GL. Includes the firmware work * request header. */ static inline u_int txpkt_vm_len16(u_int nsegs, u_int tso) { u_int n; MPASS(nsegs > 0); nsegs--; /* first segment is part of ulptx_sgl */ n = sizeof(struct fw_eth_tx_pkt_vm_wr) + sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); if (tso) n += sizeof(struct cpl_tx_pkt_lso_core); return (howmany(n, 16)); } /* * len16 for a txpkts type 0 WR with a GL. Does not include the firmware work * request header. */ static inline u_int txpkts0_len16(u_int nsegs) { u_int n; MPASS(nsegs > 0); nsegs--; /* first segment is part of ulptx_sgl */ n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) + sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); return (howmany(n, 16)); } /* * len16 for a txpkts type 1 WR with a GL. Does not include the firmware work * request header. */ static inline u_int txpkts1_len16(void) { u_int n; n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl); return (howmany(n, 16)); } static inline u_int imm_payload(u_int ndesc) { u_int n; n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) - sizeof(struct cpl_tx_pkt_core); return (n); } /* * Write a VM txpkt WR for this packet to the hardware descriptors, update the * software descriptor, and advance the pidx. It is guaranteed that enough * descriptors are available. * * The return value is the # of hardware descriptors used. */ static u_int write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, struct fw_eth_tx_pkt_vm_wr *wr, struct mbuf *m0, u_int available) { struct sge_eq *eq = &txq->eq; struct tx_sdesc *txsd; struct cpl_tx_pkt_core *cpl; uint32_t ctrl; /* used in many unrelated places */ uint64_t ctrl1; int csum_type, len16, ndesc, pktlen, nsegs; caddr_t dst; TXQ_LOCK_ASSERT_OWNED(txq); M_ASSERTPKTHDR(m0); MPASS(available > 0 && available < eq->sidx); len16 = mbuf_len16(m0); nsegs = mbuf_nsegs(m0); pktlen = m0->m_pkthdr.len; ctrl = sizeof(struct cpl_tx_pkt_core); if (needs_tso(m0)) ctrl += sizeof(struct cpl_tx_pkt_lso_core); ndesc = howmany(len16, EQ_ESIZE / 16); MPASS(ndesc <= available); /* Firmware work request header */ MPASS(wr == (void *)&eq->desc[eq->pidx]); wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) | V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl)); ctrl = V_FW_WR_LEN16(len16); wr->equiq_to_len16 = htobe32(ctrl); wr->r3[0] = 0; wr->r3[1] = 0; /* * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci. * vlantci is ignored unless the ethtype is 0x8100, so it's * simpler to always copy it rather than making it * conditional. Also, it seems that we do not have to set * vlantci or fake the ethtype when doing VLAN tag insertion. */ m_copydata(m0, 0, sizeof(struct ether_header) + 2, wr->ethmacdst); csum_type = -1; if (needs_tso(m0)) { struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && m0->m_pkthdr.l4hlen > 0, ("%s: mbuf %p needs TSO but missing header lengths", __func__, m0)); ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2); if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header)) ctrl |= V_LSO_ETHHDR_LEN(1); if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) ctrl |= F_LSO_IPV6; lso->lso_ctrl = htobe32(ctrl); lso->ipid_ofst = htobe16(0); lso->mss = htobe16(m0->m_pkthdr.tso_segsz); lso->seqno_offset = htobe32(0); lso->len = htobe32(pktlen); if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) csum_type = TX_CSUM_TCPIP6; else csum_type = TX_CSUM_TCPIP; cpl = (void *)(lso + 1); txq->tso_wrs++; } else { if (m0->m_pkthdr.csum_flags & CSUM_IP_TCP) csum_type = TX_CSUM_TCPIP; else if (m0->m_pkthdr.csum_flags & CSUM_IP_UDP) csum_type = TX_CSUM_UDPIP; else if (m0->m_pkthdr.csum_flags & CSUM_IP6_TCP) csum_type = TX_CSUM_TCPIP6; else if (m0->m_pkthdr.csum_flags & CSUM_IP6_UDP) csum_type = TX_CSUM_UDPIP6; #if defined(INET) else if (m0->m_pkthdr.csum_flags & CSUM_IP) { /* * XXX: The firmware appears to stomp on the * fragment/flags field of the IP header when * using TX_CSUM_IP. Fall back to doing * software checksums. */ u_short *sump; struct mbuf *m; int offset; m = m0; offset = 0; sump = m_advance(&m, &offset, m0->m_pkthdr.l2hlen + offsetof(struct ip, ip_sum)); *sump = in_cksum_skip(m0, m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen, m0->m_pkthdr.l2hlen); m0->m_pkthdr.csum_flags &= ~CSUM_IP; } #endif cpl = (void *)(wr + 1); } /* Checksum offload */ ctrl1 = 0; if (needs_l3_csum(m0) == 0) ctrl1 |= F_TXPKT_IPCSUM_DIS; if (csum_type >= 0) { KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0, ("%s: mbuf %p needs checksum offload but missing header lengths", __func__, m0)); if (chip_id(sc) <= CHELSIO_T5) { ctrl1 |= V_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen - ETHER_HDR_LEN); } else { ctrl1 |= V_T6_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen - ETHER_HDR_LEN); } ctrl1 |= V_TXPKT_IPHDR_LEN(m0->m_pkthdr.l3hlen); ctrl1 |= V_TXPKT_CSUM_TYPE(csum_type); } else ctrl1 |= F_TXPKT_L4CSUM_DIS; if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) txq->txcsum++; /* some hardware assistance provided */ /* VLAN tag insertion */ if (needs_vlan_insertion(m0)) { ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); txq->vlan_insertion++; } /* CPL header */ cpl->ctrl0 = txq->cpl_ctrl0; cpl->pack = 0; cpl->len = htobe16(pktlen); cpl->ctrl1 = htobe64(ctrl1); /* SGL */ dst = (void *)(cpl + 1); /* * A packet using TSO will use up an entire descriptor for the * firmware work request header, LSO CPL, and TX_PKT_XT CPL. * If this descriptor is the last descriptor in the ring, wrap * around to the front of the ring explicitly for the start of * the sgl. */ if (dst == (void *)&eq->desc[eq->sidx]) { dst = (void *)&eq->desc[0]; write_gl_to_txd(txq, m0, &dst, 0); } else write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx); txq->sgl_wrs++; txq->txpkt_wrs++; txsd = &txq->sdesc[eq->pidx]; txsd->m = m0; txsd->desc_used = ndesc; return (ndesc); } /* * Write a txpkt WR for this packet to the hardware descriptors, update the * software descriptor, and advance the pidx. It is guaranteed that enough * descriptors are available. * * The return value is the # of hardware descriptors used. */ static u_int write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr, struct mbuf *m0, u_int available) { struct sge_eq *eq = &txq->eq; struct tx_sdesc *txsd; struct cpl_tx_pkt_core *cpl; uint32_t ctrl; /* used in many unrelated places */ uint64_t ctrl1; int len16, ndesc, pktlen, nsegs; caddr_t dst; TXQ_LOCK_ASSERT_OWNED(txq); M_ASSERTPKTHDR(m0); MPASS(available > 0 && available < eq->sidx); len16 = mbuf_len16(m0); nsegs = mbuf_nsegs(m0); pktlen = m0->m_pkthdr.len; ctrl = sizeof(struct cpl_tx_pkt_core); if (needs_tso(m0)) ctrl += sizeof(struct cpl_tx_pkt_lso_core); else if (pktlen <= imm_payload(2) && available >= 2) { /* Immediate data. Recalculate len16 and set nsegs to 0. */ ctrl += pktlen; len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) + pktlen, 16); nsegs = 0; } ndesc = howmany(len16, EQ_ESIZE / 16); MPASS(ndesc <= available); /* Firmware work request header */ MPASS(wr == (void *)&eq->desc[eq->pidx]); wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) | V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl)); ctrl = V_FW_WR_LEN16(len16); wr->equiq_to_len16 = htobe32(ctrl); wr->r3 = 0; if (needs_tso(m0)) { struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && m0->m_pkthdr.l4hlen > 0, ("%s: mbuf %p needs TSO but missing header lengths", __func__, m0)); ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2); if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header)) ctrl |= V_LSO_ETHHDR_LEN(1); if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) ctrl |= F_LSO_IPV6; lso->lso_ctrl = htobe32(ctrl); lso->ipid_ofst = htobe16(0); lso->mss = htobe16(m0->m_pkthdr.tso_segsz); lso->seqno_offset = htobe32(0); lso->len = htobe32(pktlen); cpl = (void *)(lso + 1); txq->tso_wrs++; } else cpl = (void *)(wr + 1); /* Checksum offload */ ctrl1 = 0; if (needs_l3_csum(m0) == 0) ctrl1 |= F_TXPKT_IPCSUM_DIS; if (needs_l4_csum(m0) == 0) ctrl1 |= F_TXPKT_L4CSUM_DIS; if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) txq->txcsum++; /* some hardware assistance provided */ /* VLAN tag insertion */ if (needs_vlan_insertion(m0)) { ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); txq->vlan_insertion++; } /* CPL header */ cpl->ctrl0 = txq->cpl_ctrl0; cpl->pack = 0; cpl->len = htobe16(pktlen); cpl->ctrl1 = htobe64(ctrl1); /* SGL */ dst = (void *)(cpl + 1); if (nsegs > 0) { write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx); txq->sgl_wrs++; } else { struct mbuf *m; for (m = m0; m != NULL; m = m->m_next) { copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len); #ifdef INVARIANTS pktlen -= m->m_len; #endif } #ifdef INVARIANTS KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen)); #endif txq->imm_wrs++; } txq->txpkt_wrs++; txsd = &txq->sdesc[eq->pidx]; txsd->m = m0; txsd->desc_used = ndesc; return (ndesc); } static int try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available) { u_int needed, nsegs1, nsegs2, l1, l2; if (cannot_use_txpkts(m) || cannot_use_txpkts(n)) return (1); nsegs1 = mbuf_nsegs(m); nsegs2 = mbuf_nsegs(n); if (nsegs1 + nsegs2 == 2) { txp->wr_type = 1; l1 = l2 = txpkts1_len16(); } else { txp->wr_type = 0; l1 = txpkts0_len16(nsegs1); l2 = txpkts0_len16(nsegs2); } txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2; needed = howmany(txp->len16, EQ_ESIZE / 16); if (needed > SGE_MAX_WR_NDESC || needed > available) return (1); txp->plen = m->m_pkthdr.len + n->m_pkthdr.len; if (txp->plen > 65535) return (1); txp->npkt = 2; set_mbuf_len16(m, l1); set_mbuf_len16(n, l2); return (0); } static int add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available) { u_int plen, len16, needed, nsegs; MPASS(txp->wr_type == 0 || txp->wr_type == 1); nsegs = mbuf_nsegs(m); if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1)) return (1); plen = txp->plen + m->m_pkthdr.len; if (plen > 65535) return (1); if (txp->wr_type == 0) len16 = txpkts0_len16(nsegs); else len16 = txpkts1_len16(); needed = howmany(txp->len16 + len16, EQ_ESIZE / 16); if (needed > SGE_MAX_WR_NDESC || needed > available) return (1); txp->npkt++; txp->plen = plen; txp->len16 += len16; set_mbuf_len16(m, len16); return (0); } /* * Write a txpkts WR for the packets in txp to the hardware descriptors, update * the software descriptor, and advance the pidx. It is guaranteed that enough * descriptors are available. * * The return value is the # of hardware descriptors used. */ static u_int write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr, struct mbuf *m0, const struct txpkts *txp, u_int available) { struct sge_eq *eq = &txq->eq; struct tx_sdesc *txsd; struct cpl_tx_pkt_core *cpl; uint32_t ctrl; uint64_t ctrl1; int ndesc, checkwrap; struct mbuf *m; void *flitp; TXQ_LOCK_ASSERT_OWNED(txq); MPASS(txp->npkt > 0); MPASS(txp->plen < 65536); MPASS(m0 != NULL); MPASS(m0->m_nextpkt != NULL); MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16)); MPASS(available > 0 && available < eq->sidx); ndesc = howmany(txp->len16, EQ_ESIZE / 16); MPASS(ndesc <= available); MPASS(wr == (void *)&eq->desc[eq->pidx]); wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR)); ctrl = V_FW_WR_LEN16(txp->len16); wr->equiq_to_len16 = htobe32(ctrl); wr->plen = htobe16(txp->plen); wr->npkt = txp->npkt; wr->r3 = 0; wr->type = txp->wr_type; flitp = wr + 1; /* * At this point we are 16B into a hardware descriptor. If checkwrap is * set then we know the WR is going to wrap around somewhere. We'll * check for that at appropriate points. */ checkwrap = eq->sidx - ndesc < eq->pidx; for (m = m0; m != NULL; m = m->m_nextpkt) { if (txp->wr_type == 0) { struct ulp_txpkt *ulpmc; struct ulptx_idata *ulpsc; /* ULP master command */ ulpmc = flitp; ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid)); ulpmc->len = htobe32(mbuf_len16(m)); /* ULP subcommand */ ulpsc = (void *)(ulpmc + 1); ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) | F_ULP_TX_SC_MORE); ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core)); cpl = (void *)(ulpsc + 1); if (checkwrap && (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx]) cpl = (void *)&eq->desc[0]; txq->txpkts0_pkts += txp->npkt; txq->txpkts0_wrs++; } else { cpl = flitp; txq->txpkts1_pkts += txp->npkt; txq->txpkts1_wrs++; } /* Checksum offload */ ctrl1 = 0; if (needs_l3_csum(m) == 0) ctrl1 |= F_TXPKT_IPCSUM_DIS; if (needs_l4_csum(m) == 0) ctrl1 |= F_TXPKT_L4CSUM_DIS; if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) txq->txcsum++; /* some hardware assistance provided */ /* VLAN tag insertion */ if (needs_vlan_insertion(m)) { ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag); txq->vlan_insertion++; } /* CPL header */ cpl->ctrl0 = txq->cpl_ctrl0; cpl->pack = 0; cpl->len = htobe16(m->m_pkthdr.len); cpl->ctrl1 = htobe64(ctrl1); flitp = cpl + 1; if (checkwrap && (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx]) flitp = (void *)&eq->desc[0]; write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap); } txsd = &txq->sdesc[eq->pidx]; txsd->m = m0; txsd->desc_used = ndesc; return (ndesc); } /* * If the SGL ends on an address that is not 16 byte aligned, this function will * add a 0 filled flit at the end. */ static void write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap) { struct sge_eq *eq = &txq->eq; struct sglist *gl = txq->gl; struct sglist_seg *seg; __be64 *flitp, *wrap; struct ulptx_sgl *usgl; int i, nflits, nsegs; KASSERT(((uintptr_t)(*to) & 0xf) == 0, ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to)); MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]); MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]); get_pkt_gl(m, gl); nsegs = gl->sg_nseg; MPASS(nsegs > 0); nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2; flitp = (__be64 *)(*to); wrap = (__be64 *)(&eq->desc[eq->sidx]); seg = &gl->sg_segs[0]; usgl = (void *)flitp; /* * We start at a 16 byte boundary somewhere inside the tx descriptor * ring, so we're at least 16 bytes away from the status page. There is * no chance of a wrap around in the middle of usgl (which is 16 bytes). */ usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | V_ULPTX_NSGE(nsegs)); usgl->len0 = htobe32(seg->ss_len); usgl->addr0 = htobe64(seg->ss_paddr); seg++; if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) { /* Won't wrap around at all */ for (i = 0; i < nsegs - 1; i++, seg++) { usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len); usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr); } if (i & 1) usgl->sge[i / 2].len[1] = htobe32(0); flitp += nflits; } else { /* Will wrap somewhere in the rest of the SGL */ /* 2 flits already written, write the rest flit by flit */ flitp = (void *)(usgl + 1); for (i = 0; i < nflits - 2; i++) { if (flitp == wrap) flitp = (void *)eq->desc; *flitp++ = get_flit(seg, nsegs - 1, i); } } if (nflits & 1) { MPASS(((uintptr_t)flitp) & 0xf); *flitp++ = 0; } MPASS((((uintptr_t)flitp) & 0xf) == 0); if (__predict_false(flitp == wrap)) *to = (void *)eq->desc; else *to = (void *)flitp; } static inline void copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len) { MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]); MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]); if (__predict_true((uintptr_t)(*to) + len <= (uintptr_t)&eq->desc[eq->sidx])) { bcopy(from, *to, len); (*to) += len; } else { int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to); bcopy(from, *to, portion); from += portion; portion = len - portion; /* remaining */ bcopy(from, (void *)eq->desc, portion); (*to) = (caddr_t)eq->desc + portion; } } static inline void ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n) { u_int db; MPASS(n > 0); db = eq->doorbells; if (n > 1) clrbit(&db, DOORBELL_WCWR); wmb(); switch (ffs(db) - 1) { case DOORBELL_UDB: *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n)); break; case DOORBELL_WCWR: { volatile uint64_t *dst, *src; int i; /* * Queues whose 128B doorbell segment fits in the page do not * use relative qid (udb_qid is always 0). Only queues with * doorbell segments can do WCWR. */ KASSERT(eq->udb_qid == 0 && n == 1, ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p", __func__, eq->doorbells, n, eq->dbidx, eq)); dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET - UDBS_DB_OFFSET); i = eq->dbidx; src = (void *)&eq->desc[i]; while (src != (void *)&eq->desc[i + 1]) *dst++ = *src++; wmb(); break; } case DOORBELL_UDBWC: *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n)); wmb(); break; case DOORBELL_KDB: t4_write_reg(sc, sc->sge_kdoorbell_reg, V_QID(eq->cntxt_id) | V_PIDX(n)); break; } IDXINCR(eq->dbidx, n, eq->sidx); } static inline u_int reclaimable_tx_desc(struct sge_eq *eq) { uint16_t hw_cidx; hw_cidx = read_hw_cidx(eq); return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx)); } static inline u_int total_available_tx_desc(struct sge_eq *eq) { uint16_t hw_cidx, pidx; hw_cidx = read_hw_cidx(eq); pidx = eq->pidx; if (pidx == hw_cidx) return (eq->sidx - 1); else return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1); } static inline uint16_t read_hw_cidx(struct sge_eq *eq) { struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; uint16_t cidx = spg->cidx; /* stable snapshot */ return (be16toh(cidx)); } /* * Reclaim 'n' descriptors approximately. */ static u_int reclaim_tx_descs(struct sge_txq *txq, u_int n) { struct tx_sdesc *txsd; struct sge_eq *eq = &txq->eq; u_int can_reclaim, reclaimed; TXQ_LOCK_ASSERT_OWNED(txq); MPASS(n > 0); reclaimed = 0; can_reclaim = reclaimable_tx_desc(eq); while (can_reclaim && reclaimed < n) { int ndesc; struct mbuf *m, *nextpkt; txsd = &txq->sdesc[eq->cidx]; ndesc = txsd->desc_used; /* Firmware doesn't return "partial" credits. */ KASSERT(can_reclaim >= ndesc, ("%s: unexpected number of credits: %d, %d", __func__, can_reclaim, ndesc)); for (m = txsd->m; m != NULL; m = nextpkt) { nextpkt = m->m_nextpkt; m->m_nextpkt = NULL; m_freem(m); } reclaimed += ndesc; can_reclaim -= ndesc; IDXINCR(eq->cidx, ndesc, eq->sidx); } return (reclaimed); } static void tx_reclaim(void *arg, int n) { struct sge_txq *txq = arg; struct sge_eq *eq = &txq->eq; do { if (TXQ_TRYLOCK(txq) == 0) break; n = reclaim_tx_descs(txq, 32); if (eq->cidx == eq->pidx) eq->equeqidx = eq->pidx; TXQ_UNLOCK(txq); } while (n > 0); } static __be64 get_flit(struct sglist_seg *segs, int nsegs, int idx) { int i = (idx / 3) * 2; switch (idx % 3) { case 0: { __be64 rc; rc = htobe32(segs[i].ss_len); if (i + 1 < nsegs) rc |= (uint64_t)htobe32(segs[i + 1].ss_len) << 32; return (rc); } case 1: return (htobe64(segs[i].ss_paddr)); case 2: return (htobe64(segs[i + 1].ss_paddr)); } return (0); } static void find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp) { int8_t zidx, hwidx, idx; uint16_t region1, region3; int spare, spare_needed, n; struct sw_zone_info *swz; struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0]; /* * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize * large enough for the max payload and cluster metadata. Otherwise * settle for the largest bufsize that leaves enough room in the cluster * for metadata. * * Without buffer packing: Look for the smallest zone which has a * bufsize large enough for the max payload. Settle for the largest * bufsize available if there's nothing big enough for max payload. */ spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0; swz = &sc->sge.sw_zone_info[0]; hwidx = -1; for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) { if (swz->size > largest_rx_cluster) { if (__predict_true(hwidx != -1)) break; /* * This is a misconfiguration. largest_rx_cluster is * preventing us from finding a refill source. See * dev.t5nex..buffer_sizes to figure out why. */ device_printf(sc->dev, "largest_rx_cluster=%u leaves no" " refill source for fl %p (dma %u). Ignored.\n", largest_rx_cluster, fl, maxp); } for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) { hwb = &hwb_list[idx]; spare = swz->size - hwb->size; if (spare < spare_needed) continue; hwidx = idx; /* best option so far */ if (hwb->size >= maxp) { if ((fl->flags & FL_BUF_PACKING) == 0) goto done; /* stop looking (not packing) */ if (swz->size >= safest_rx_cluster) goto done; /* stop looking (packing) */ } break; /* keep looking, next zone */ } } done: /* A usable hwidx has been located. */ MPASS(hwidx != -1); hwb = &hwb_list[hwidx]; zidx = hwb->zidx; swz = &sc->sge.sw_zone_info[zidx]; region1 = 0; region3 = swz->size - hwb->size; /* * Stay within this zone and see if there is a better match when mbuf * inlining is allowed. Remember that the hwidx's are sorted in * decreasing order of size (so in increasing order of spare area). */ for (idx = hwidx; idx != -1; idx = hwb->next) { hwb = &hwb_list[idx]; spare = swz->size - hwb->size; if (allow_mbufs_in_cluster == 0 || hwb->size < maxp) break; /* * Do not inline mbufs if doing so would violate the pad/pack * boundary alignment requirement. */ if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0) continue; if (fl->flags & FL_BUF_PACKING && (MSIZE % sc->params.sge.pack_boundary) != 0) continue; if (spare < CL_METADATA_SIZE + MSIZE) continue; n = (spare - CL_METADATA_SIZE) / MSIZE; if (n > howmany(hwb->size, maxp)) break; hwidx = idx; if (fl->flags & FL_BUF_PACKING) { region1 = n * MSIZE; region3 = spare - region1; } else { region1 = MSIZE; region3 = spare - region1; break; } } KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES, ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp)); KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES, ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp)); KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 == sc->sge.sw_zone_info[zidx].size, ("%s: bad buffer layout for fl %p, maxp %d. " "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, sc->sge.sw_zone_info[zidx].size, region1, sc->sge.hw_buf_info[hwidx].size, region3)); if (fl->flags & FL_BUF_PACKING || region1 > 0) { KASSERT(region3 >= CL_METADATA_SIZE, ("%s: no room for metadata. fl %p, maxp %d; " "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, sc->sge.sw_zone_info[zidx].size, region1, sc->sge.hw_buf_info[hwidx].size, region3)); KASSERT(region1 % MSIZE == 0, ("%s: bad mbuf region for fl %p, maxp %d. " "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, sc->sge.sw_zone_info[zidx].size, region1, sc->sge.hw_buf_info[hwidx].size, region3)); } fl->cll_def.zidx = zidx; fl->cll_def.hwidx = hwidx; fl->cll_def.region1 = region1; fl->cll_def.region3 = region3; } static void find_safe_refill_source(struct adapter *sc, struct sge_fl *fl) { struct sge *s = &sc->sge; struct hw_buf_info *hwb; struct sw_zone_info *swz; int spare; int8_t hwidx; if (fl->flags & FL_BUF_PACKING) hwidx = s->safe_hwidx2; /* with room for metadata */ else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) { hwidx = s->safe_hwidx2; hwb = &s->hw_buf_info[hwidx]; swz = &s->sw_zone_info[hwb->zidx]; spare = swz->size - hwb->size; /* no good if there isn't room for an mbuf as well */ if (spare < CL_METADATA_SIZE + MSIZE) hwidx = s->safe_hwidx1; } else hwidx = s->safe_hwidx1; if (hwidx == -1) { /* No fallback source */ fl->cll_alt.hwidx = -1; fl->cll_alt.zidx = -1; return; } hwb = &s->hw_buf_info[hwidx]; swz = &s->sw_zone_info[hwb->zidx]; spare = swz->size - hwb->size; fl->cll_alt.hwidx = hwidx; fl->cll_alt.zidx = hwb->zidx; if (allow_mbufs_in_cluster && (fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0)) fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE; else fl->cll_alt.region1 = 0; fl->cll_alt.region3 = spare - fl->cll_alt.region1; } static void add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl) { mtx_lock(&sc->sfl_lock); FL_LOCK(fl); if ((fl->flags & FL_DOOMED) == 0) { fl->flags |= FL_STARVING; TAILQ_INSERT_TAIL(&sc->sfl, fl, link); callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc); } FL_UNLOCK(fl); mtx_unlock(&sc->sfl_lock); } static void handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq) { struct sge_wrq *wrq = (void *)eq; atomic_readandclear_int(&eq->equiq); taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task); } static void handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq) { struct sge_txq *txq = (void *)eq; MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH); atomic_readandclear_int(&eq->equiq); mp_ring_check_drainage(txq->r, 0); taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task); } static int handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1); unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid)); struct adapter *sc = iq->adapter; struct sge *s = &sc->sge; struct sge_eq *eq; static void (*h[])(struct adapter *, struct sge_eq *) = {NULL, &handle_wrq_egr_update, &handle_eth_egr_update, &handle_wrq_egr_update}; KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, rss->opcode)); eq = s->eqmap[qid - s->eq_start - s->eq_base]; (*h[eq->flags & EQ_TYPEMASK])(sc, eq); return (0); } /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */ CTASSERT(offsetof(struct cpl_fw4_msg, data) == \ offsetof(struct cpl_fw6_msg, data)); static int handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_fw6_msg *cpl = (const void *)(rss + 1); KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, rss->opcode)); if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) { const struct rss_header *rss2; rss2 = (const struct rss_header *)&cpl->data[0]; return (t4_cpl_handler[rss2->opcode](iq, rss2, m)); } return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0])); } /** * t4_handle_wrerr_rpl - process a FW work request error message * @adap: the adapter * @rpl: start of the FW message */ static int t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl) { u8 opcode = *(const u8 *)rpl; const struct fw_error_cmd *e = (const void *)rpl; unsigned int i; if (opcode != FW_ERROR_CMD) { log(LOG_ERR, "%s: Received WRERR_RPL message with opcode %#x\n", device_get_nameunit(adap->dev), opcode); return (EINVAL); } log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev), G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" : "non-fatal"); switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) { case FW_ERROR_TYPE_EXCEPTION: log(LOG_ERR, "exception info:\n"); for (i = 0; i < nitems(e->u.exception.info); i++) log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ", be32toh(e->u.exception.info[i])); log(LOG_ERR, "\n"); break; case FW_ERROR_TYPE_HWMODULE: log(LOG_ERR, "HW module regaddr %08x regval %08x\n", be32toh(e->u.hwmodule.regaddr), be32toh(e->u.hwmodule.regval)); break; case FW_ERROR_TYPE_WR: log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n", be16toh(e->u.wr.cidx), G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)), G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)), be32toh(e->u.wr.eqid)); for (i = 0; i < nitems(e->u.wr.wrhdr); i++) log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ", e->u.wr.wrhdr[i]); log(LOG_ERR, "\n"); break; case FW_ERROR_TYPE_ACL: log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s", be16toh(e->u.acl.cidx), G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)), G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)), be32toh(e->u.acl.eqid), G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" : "MAC"); for (i = 0; i < nitems(e->u.acl.val); i++) log(LOG_ERR, " %02x", e->u.acl.val[i]); log(LOG_ERR, "\n"); break; default: log(LOG_ERR, "type %#x\n", G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))); return (EINVAL); } return (0); } static int sysctl_uint16(SYSCTL_HANDLER_ARGS) { uint16_t *id = arg1; int i = *id; return sysctl_handle_int(oidp, &i, 0, req); } static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS) { struct sge *s = arg1; struct hw_buf_info *hwb = &s->hw_buf_info[0]; struct sw_zone_info *swz = &s->sw_zone_info[0]; int i, rc; struct sbuf sb; char c; sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) { if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster) c = '*'; else c = '\0'; sbuf_printf(&sb, "%u%c ", hwb->size, c); } sbuf_trim(&sb); sbuf_finish(&sb); rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); sbuf_delete(&sb); return (rc); } static int sysctl_tc(SYSCTL_HANDLER_ARGS) { struct vi_info *vi = arg1; struct port_info *pi; struct adapter *sc; struct sge_txq *txq; struct tx_sched_class *tc; int qidx = arg2, rc, tc_idx; uint32_t fw_queue, fw_class; MPASS(qidx >= 0 && qidx < vi->ntxq); pi = vi->pi; sc = pi->adapter; txq = &sc->sge.txq[vi->first_txq + qidx]; tc_idx = txq->tc_idx; rc = sysctl_handle_int(oidp, &tc_idx, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); /* Note that -1 is legitimate input (it means unbind). */ if (tc_idx < -1 || tc_idx >= sc->chip_params->nsched_cls) return (EINVAL); rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4stc"); if (rc) return (rc); if (tc_idx == txq->tc_idx) { rc = 0; /* No change, nothing to do. */ goto done; } fw_queue = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_SCHEDCLASS_ETH) | V_FW_PARAMS_PARAM_YZ(txq->eq.cntxt_id); if (tc_idx == -1) fw_class = 0xffffffff; /* Unbind. */ else { /* * Bind to a different class. Ethernet txq's are only allowed * to bind to cl-rl mode-class for now. XXX: too restrictive. */ tc = &pi->tc[tc_idx]; if (tc->flags & TX_SC_OK && tc->params.level == SCHED_CLASS_LEVEL_CL_RL && tc->params.mode == SCHED_CLASS_MODE_CLASS) { /* Ok to proceed. */ fw_class = tc_idx; } else { rc = tc->flags & TX_SC_OK ? EBUSY : ENXIO; goto done; } } rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &fw_queue, &fw_class); if (rc == 0) { if (txq->tc_idx != -1) { tc = &pi->tc[txq->tc_idx]; MPASS(tc->refcount > 0); tc->refcount--; } if (tc_idx != -1) { tc = &pi->tc[tc_idx]; tc->refcount++; } txq->tc_idx = tc_idx; } done: end_synchronized_op(sc, 0); return (rc); } Index: stable/10 =================================================================== --- stable/10 (revision 318839) +++ stable/10 (revision 318840) Property changes on: stable/10 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r316971