Index: vendor/compiler-rt/dist/include/xray/xray_interface.h =================================================================== --- vendor/compiler-rt/dist/include/xray/xray_interface.h (revision 318666) +++ vendor/compiler-rt/dist/include/xray/xray_interface.h (revision 318667) @@ -1,106 +1,110 @@ //===- xray_interface.h -----------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of XRay, a dynamic runtime instrumentation system. // // APIs for controlling XRay functionality explicitly. //===----------------------------------------------------------------------===// #ifndef XRAY_XRAY_INTERFACE_H #define XRAY_XRAY_INTERFACE_H #include #include extern "C" { /// Synchronize this with AsmPrinter::SledKind in LLVM. enum XRayEntryType { ENTRY = 0, EXIT = 1, TAIL = 2, LOG_ARGS_ENTRY = 3, CUSTOM_EVENT = 4, }; /// Provide a function to invoke for when instrumentation points are hit. This /// is a user-visible control surface that overrides the default implementation. /// The function provided should take the following arguments: /// /// - function id: an identifier that indicates the id of a function; this id /// is generated by xray; the mapping between the function id /// and the actual function pointer is available through /// __xray_table. /// - entry type: identifies what kind of instrumentation point was /// encountered (function entry, function exit, etc.). See the /// enum XRayEntryType for more details. /// /// The user handler must handle correctly spurious calls after this handler is /// removed or replaced with another handler, because it would be too costly for /// XRay runtime to avoid spurious calls. /// To prevent circular calling, the handler function itself and all its /// direct&indirect callees must not be instrumented with XRay, which can be /// achieved by marking them all with: __attribute__((xray_never_instrument)) /// /// Returns 1 on success, 0 on error. extern int __xray_set_handler(void (*entry)(int32_t, XRayEntryType)); /// This removes whatever the currently provided handler is. Returns 1 on /// success, 0 on error. extern int __xray_remove_handler(); /// Use XRay to log the first argument of each (instrumented) function call. /// When this function exits, all threads will have observed the effect and /// start logging their subsequent affected function calls (if patched). /// /// Returns 1 on success, 0 on error. extern int __xray_set_handler_arg1(void (*)(int32_t, XRayEntryType, uint64_t)); /// Disables the XRay handler used to log first arguments of function calls. /// Returns 1 on success, 0 on error. extern int __xray_remove_handler_arg1(); /// Provide a function to invoke when XRay encounters a custom event. extern int __xray_set_customevent_handler(void (*entry)(void*, std::size_t)); +/// This removes whatever the currently provided custom event handler is. +/// Returns 1 on success, 0 on error. +extern int __xray_remove_customevent_handler(); + enum XRayPatchingStatus { NOT_INITIALIZED = 0, SUCCESS = 1, ONGOING = 2, FAILED = 3, }; /// This tells XRay to patch the instrumentation points. See XRayPatchingStatus /// for possible result values. extern XRayPatchingStatus __xray_patch(); /// Reverses the effect of __xray_patch(). See XRayPatchingStatus for possible /// result values. extern XRayPatchingStatus __xray_unpatch(); /// This patches a specific function id. See XRayPatchingStatus for possible /// result values. extern XRayPatchingStatus __xray_patch_function(int32_t FuncId); /// This unpatches a specific function id. See XRayPatchingStatus for possible /// result values. extern XRayPatchingStatus __xray_unpatch_function(int32_t FuncId); /// This function returns the address of the function provided a valid function /// id. We return 0 if we encounter any error, even if 0 may be a valid function /// address. extern uintptr_t __xray_function_address(int32_t FuncId); /// This function returns the maximum valid function id. Returns 0 if we /// encounter errors (when there are no instrumented functions, etc.). extern size_t __xray_max_function_id(); } // end extern "C" #endif // XRAY_XRAY_INTERFACE_H Index: vendor/compiler-rt/dist/lib/asan/asan_flags.cc =================================================================== --- vendor/compiler-rt/dist/lib/asan/asan_flags.cc (revision 318666) +++ vendor/compiler-rt/dist/lib/asan/asan_flags.cc (revision 318667) @@ -1,207 +1,203 @@ //===-- asan_flags.cc -------------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of AddressSanitizer, an address sanity checker. // // ASan flag parsing logic. //===----------------------------------------------------------------------===// #include "asan_activation.h" #include "asan_flags.h" #include "asan_interface_internal.h" #include "asan_stack.h" #include "lsan/lsan_common.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_flags.h" #include "sanitizer_common/sanitizer_flag_parser.h" #include "ubsan/ubsan_flags.h" #include "ubsan/ubsan_platform.h" namespace __asan { Flags asan_flags_dont_use_directly; // use via flags(). static const char *MaybeCallAsanDefaultOptions() { return (&__asan_default_options) ? __asan_default_options() : ""; } static const char *MaybeUseAsanDefaultOptionsCompileDefinition() { #ifdef ASAN_DEFAULT_OPTIONS // Stringize the macro value. # define ASAN_STRINGIZE(x) #x # define ASAN_STRINGIZE_OPTIONS(options) ASAN_STRINGIZE(options) return ASAN_STRINGIZE_OPTIONS(ASAN_DEFAULT_OPTIONS); #else return ""; #endif } void Flags::SetDefaults() { #define ASAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue; #include "asan_flags.inc" #undef ASAN_FLAG } static void RegisterAsanFlags(FlagParser *parser, Flags *f) { #define ASAN_FLAG(Type, Name, DefaultValue, Description) \ RegisterFlag(parser, #Name, Description, &f->Name); #include "asan_flags.inc" #undef ASAN_FLAG } void InitializeFlags() { // Set the default values and prepare for parsing ASan and common flags. SetCommonFlagsDefaults(); { CommonFlags cf; cf.CopyFrom(*common_flags()); cf.detect_leaks = cf.detect_leaks && CAN_SANITIZE_LEAKS; cf.external_symbolizer_path = GetEnv("ASAN_SYMBOLIZER_PATH"); cf.malloc_context_size = kDefaultMallocContextSize; cf.intercept_tls_get_addr = true; cf.exitcode = 1; OverrideCommonFlags(cf); } Flags *f = flags(); f->SetDefaults(); FlagParser asan_parser; RegisterAsanFlags(&asan_parser, f); RegisterCommonFlags(&asan_parser); // Set the default values and prepare for parsing LSan and UBSan flags // (which can also overwrite common flags). #if CAN_SANITIZE_LEAKS __lsan::Flags *lf = __lsan::flags(); lf->SetDefaults(); FlagParser lsan_parser; __lsan::RegisterLsanFlags(&lsan_parser, lf); RegisterCommonFlags(&lsan_parser); #endif #if CAN_SANITIZE_UB __ubsan::Flags *uf = __ubsan::flags(); uf->SetDefaults(); FlagParser ubsan_parser; __ubsan::RegisterUbsanFlags(&ubsan_parser, uf); RegisterCommonFlags(&ubsan_parser); #endif if (SANITIZER_MAC) { // Support macOS MallocScribble and MallocPreScribble: // if (GetEnv("MallocScribble")) { f->max_free_fill_size = 0x1000; } if (GetEnv("MallocPreScribble")) { f->malloc_fill_byte = 0xaa; } } // Override from ASan compile definition. const char *asan_compile_def = MaybeUseAsanDefaultOptionsCompileDefinition(); asan_parser.ParseString(asan_compile_def); // Override from user-specified string. const char *asan_default_options = MaybeCallAsanDefaultOptions(); asan_parser.ParseString(asan_default_options); #if CAN_SANITIZE_UB const char *ubsan_default_options = __ubsan::MaybeCallUbsanDefaultOptions(); ubsan_parser.ParseString(ubsan_default_options); #endif // Override from command line. asan_parser.ParseString(GetEnv("ASAN_OPTIONS")); #if CAN_SANITIZE_LEAKS lsan_parser.ParseString(GetEnv("LSAN_OPTIONS")); #endif #if CAN_SANITIZE_UB ubsan_parser.ParseString(GetEnv("UBSAN_OPTIONS")); #endif InitializeCommonFlags(); // TODO(eugenis): dump all flags at verbosity>=2? if (Verbosity()) ReportUnrecognizedFlags(); if (common_flags()->help) { // TODO(samsonov): print all of the flags (ASan, LSan, common). asan_parser.PrintFlagDescriptions(); } // Flag validation: if (!CAN_SANITIZE_LEAKS && common_flags()->detect_leaks) { Report("%s: detect_leaks is not supported on this platform.\n", SanitizerToolName); Die(); } // Make "strict_init_order" imply "check_initialization_order". // TODO(samsonov): Use a single runtime flag for an init-order checker. if (f->strict_init_order) { f->check_initialization_order = true; } CHECK_LE((uptr)common_flags()->malloc_context_size, kStackTraceMax); CHECK_LE(f->min_uar_stack_size_log, f->max_uar_stack_size_log); CHECK_GE(f->redzone, 16); CHECK_GE(f->max_redzone, f->redzone); CHECK_LE(f->max_redzone, 2048); CHECK(IsPowerOfTwo(f->redzone)); CHECK(IsPowerOfTwo(f->max_redzone)); // quarantine_size is deprecated but we still honor it. // quarantine_size can not be used together with quarantine_size_mb. if (f->quarantine_size >= 0 && f->quarantine_size_mb >= 0) { Report("%s: please use either 'quarantine_size' (deprecated) or " "quarantine_size_mb, but not both\n", SanitizerToolName); Die(); } if (f->quarantine_size >= 0) f->quarantine_size_mb = f->quarantine_size >> 20; if (f->quarantine_size_mb < 0) { const int kDefaultQuarantineSizeMb = (ASAN_LOW_MEMORY) ? 1UL << 4 : 1UL << 8; f->quarantine_size_mb = kDefaultQuarantineSizeMb; } if (f->thread_local_quarantine_size_kb < 0) { const u32 kDefaultThreadLocalQuarantineSizeKb = // It is not advised to go lower than 64Kb, otherwise quarantine batches // pushed from thread local quarantine to global one will create too // much overhead. One quarantine batch size is 8Kb and it holds up to // 1021 chunk, which amounts to 1/8 memory overhead per batch when // thread local quarantine is set to 64Kb. (ASAN_LOW_MEMORY) ? 1 << 6 : FIRST_32_SECOND_64(1 << 8, 1 << 10); f->thread_local_quarantine_size_kb = kDefaultThreadLocalQuarantineSizeKb; } if (f->thread_local_quarantine_size_kb == 0 && f->quarantine_size_mb > 0) { Report("%s: thread_local_quarantine_size_kb can be set to 0 only when " "quarantine_size_mb is set to 0\n", SanitizerToolName); Die(); } if (!f->replace_str && common_flags()->intercept_strlen) { Report("WARNING: strlen interceptor is enabled even though replace_str=0. " "Use intercept_strlen=0 to disable it."); } if (!f->replace_str && common_flags()->intercept_strchr) { Report("WARNING: strchr* interceptors are enabled even though " "replace_str=0. Use intercept_strchr=0 to disable them."); } - if (!f->replace_str && common_flags()->intercept_strndup) { - Report("WARNING: strndup* interceptors are enabled even though " - "replace_str=0. Use intercept_strndup=0 to disable them."); - } } } // namespace __asan SANITIZER_INTERFACE_WEAK_DEF(const char*, __asan_default_options, void) { return ""; } Index: vendor/compiler-rt/dist/lib/asan/tests/asan_str_test.cc =================================================================== --- vendor/compiler-rt/dist/lib/asan/tests/asan_str_test.cc (revision 318666) +++ vendor/compiler-rt/dist/lib/asan/tests/asan_str_test.cc (revision 318667) @@ -1,627 +1,606 @@ //=-- asan_str_test.cc ----------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of AddressSanitizer, an address sanity checker. // //===----------------------------------------------------------------------===// #include "asan_test_utils.h" #if defined(__APPLE__) #include // For MAC_OS_X_VERSION_* #endif // Used for string functions tests static char global_string[] = "global"; static size_t global_string_length = 6; const char kStackReadUnderflow[] = #if !GTEST_USES_SIMPLE_RE ASAN_PCRE_DOTALL "READ.*" #endif "underflows this variable"; const char kStackReadOverflow[] = #if !GTEST_USES_SIMPLE_RE ASAN_PCRE_DOTALL "READ.*" #endif "overflows this variable"; namespace { enum class OOBKind { Heap, Stack, Global, }; string LeftOOBReadMessage(OOBKind oob_kind, int oob_distance) { return oob_kind == OOBKind::Stack ? kStackReadUnderflow : ::LeftOOBReadMessage(oob_distance); } string RightOOBReadMessage(OOBKind oob_kind, int oob_distance) { return oob_kind == OOBKind::Stack ? kStackReadOverflow : ::RightOOBReadMessage(oob_distance); } } // namespace // Input to a test is a zero-terminated string str with given length // Accesses to the bytes to the left and to the right of str // are presumed to produce OOB errors void StrLenOOBTestTemplate(char *str, size_t length, OOBKind oob_kind) { // Normal strlen calls EXPECT_EQ(strlen(str), length); if (length > 0) { EXPECT_EQ(length - 1, strlen(str + 1)); EXPECT_EQ(0U, strlen(str + length)); } // Arg of strlen is not malloced, OOB access if (oob_kind != OOBKind::Global) { // We don't insert RedZones to the left of global variables EXPECT_DEATH(Ident(strlen(str - 1)), LeftOOBReadMessage(oob_kind, 1)); EXPECT_DEATH(Ident(strlen(str - 5)), LeftOOBReadMessage(oob_kind, 5)); } EXPECT_DEATH(Ident(strlen(str + length + 1)), RightOOBReadMessage(oob_kind, 0)); // Overwrite terminator str[length] = 'a'; // String is not zero-terminated, strlen will lead to OOB access EXPECT_DEATH(Ident(strlen(str)), RightOOBReadMessage(oob_kind, 0)); EXPECT_DEATH(Ident(strlen(str + length)), RightOOBReadMessage(oob_kind, 0)); // Restore terminator str[length] = 0; } TEST(AddressSanitizer, StrLenOOBTest) { // Check heap-allocated string size_t length = Ident(10); char *heap_string = Ident((char*)malloc(length + 1)); char stack_string[10 + 1]; break_optimization(&stack_string); for (size_t i = 0; i < length; i++) { heap_string[i] = 'a'; stack_string[i] = 'b'; } heap_string[length] = 0; stack_string[length] = 0; StrLenOOBTestTemplate(heap_string, length, OOBKind::Heap); StrLenOOBTestTemplate(stack_string, length, OOBKind::Stack); StrLenOOBTestTemplate(global_string, global_string_length, OOBKind::Global); free(heap_string); } TEST(AddressSanitizer, WcsLenTest) { EXPECT_EQ(0U, wcslen(Ident(L""))); size_t hello_len = 13; size_t hello_size = (hello_len + 1) * sizeof(wchar_t); EXPECT_EQ(hello_len, wcslen(Ident(L"Hello, World!"))); wchar_t *heap_string = Ident((wchar_t*)malloc(hello_size)); memcpy(heap_string, L"Hello, World!", hello_size); EXPECT_EQ(hello_len, Ident(wcslen(heap_string))); EXPECT_DEATH(Ident(wcslen(heap_string + 14)), RightOOBReadMessage(0)); free(heap_string); } #if SANITIZER_TEST_HAS_STRNLEN TEST(AddressSanitizer, StrNLenOOBTest) { size_t size = Ident(123); char *str = MallocAndMemsetString(size); // Normal strnlen calls. Ident(strnlen(str - 1, 0)); Ident(strnlen(str, size)); Ident(strnlen(str + size - 1, 1)); str[size - 1] = '\0'; Ident(strnlen(str, 2 * size)); // Argument points to not allocated memory. EXPECT_DEATH(Ident(strnlen(str - 1, 1)), LeftOOBReadMessage(1)); EXPECT_DEATH(Ident(strnlen(str + size, 1)), RightOOBReadMessage(0)); // Overwrite the terminating '\0' and hit unallocated memory. str[size - 1] = 'z'; EXPECT_DEATH(Ident(strnlen(str, size + 1)), RightOOBReadMessage(0)); free(str); } #endif // SANITIZER_TEST_HAS_STRNLEN // This test fails with the WinASan dynamic runtime because we fail to intercept // strdup. #if defined(_MSC_VER) && defined(_DLL) #define MAYBE_StrDupOOBTest DISABLED_StrDupOOBTest #else #define MAYBE_StrDupOOBTest StrDupOOBTest #endif TEST(AddressSanitizer, MAYBE_StrDupOOBTest) { size_t size = Ident(42); char *str = MallocAndMemsetString(size); char *new_str; // Normal strdup calls. str[size - 1] = '\0'; new_str = strdup(str); free(new_str); new_str = strdup(str + size - 1); free(new_str); // Argument points to not allocated memory. EXPECT_DEATH(Ident(strdup(str - 1)), LeftOOBReadMessage(1)); EXPECT_DEATH(Ident(strdup(str + size)), RightOOBReadMessage(0)); // Overwrite the terminating '\0' and hit unallocated memory. str[size - 1] = 'z'; EXPECT_DEATH(Ident(strdup(str)), RightOOBReadMessage(0)); free(str); } -#if SANITIZER_TEST_HAS_STRNDUP -TEST(AddressSanitizer, MAYBE_StrNDupOOBTest) { - size_t size = Ident(42); - char *str = MallocAndMemsetString(size); - char *new_str; - // Normal strndup calls. - str[size - 1] = '\0'; - new_str = strndup(str, size - 13); - free(new_str); - new_str = strndup(str + size - 1, 13); - free(new_str); - // Argument points to not allocated memory. - EXPECT_DEATH(Ident(strndup(str - 1, 13)), LeftOOBReadMessage(1)); - EXPECT_DEATH(Ident(strndup(str + size, 13)), RightOOBReadMessage(0)); - // Overwrite the terminating '\0' and hit unallocated memory. - str[size - 1] = 'z'; - EXPECT_DEATH(Ident(strndup(str, size + 13)), RightOOBReadMessage(0)); - free(str); -} -#endif // SANITIZER_TEST_HAS_STRNDUP - TEST(AddressSanitizer, StrCpyOOBTest) { size_t to_size = Ident(30); size_t from_size = Ident(6); // less than to_size char *to = Ident((char*)malloc(to_size)); char *from = Ident((char*)malloc(from_size)); // Normal strcpy calls. strcpy(from, "hello"); strcpy(to, from); strcpy(to + to_size - from_size, from); // Length of "from" is too small. EXPECT_DEATH(Ident(strcpy(from, "hello2")), RightOOBWriteMessage(0)); // "to" or "from" points to not allocated memory. EXPECT_DEATH(Ident(strcpy(to - 1, from)), LeftOOBWriteMessage(1)); EXPECT_DEATH(Ident(strcpy(to, from - 1)), LeftOOBReadMessage(1)); EXPECT_DEATH(Ident(strcpy(to, from + from_size)), RightOOBReadMessage(0)); EXPECT_DEATH(Ident(strcpy(to + to_size, from)), RightOOBWriteMessage(0)); // Overwrite the terminating '\0' character and hit unallocated memory. from[from_size - 1] = '!'; EXPECT_DEATH(Ident(strcpy(to, from)), RightOOBReadMessage(0)); free(to); free(from); } TEST(AddressSanitizer, StrNCpyOOBTest) { size_t to_size = Ident(20); size_t from_size = Ident(6); // less than to_size char *to = Ident((char*)malloc(to_size)); // From is a zero-terminated string "hello\0" of length 6 char *from = Ident((char*)malloc(from_size)); strcpy(from, "hello"); // copy 0 bytes strncpy(to, from, 0); strncpy(to - 1, from - 1, 0); // normal strncpy calls strncpy(to, from, from_size); strncpy(to, from, to_size); strncpy(to, from + from_size - 1, to_size); strncpy(to + to_size - 1, from, 1); // One of {to, from} points to not allocated memory EXPECT_DEATH(Ident(strncpy(to, from - 1, from_size)), LeftOOBReadMessage(1)); EXPECT_DEATH(Ident(strncpy(to - 1, from, from_size)), LeftOOBWriteMessage(1)); EXPECT_DEATH(Ident(strncpy(to, from + from_size, 1)), RightOOBReadMessage(0)); EXPECT_DEATH(Ident(strncpy(to + to_size, from, 1)), RightOOBWriteMessage(0)); // Length of "to" is too small EXPECT_DEATH(Ident(strncpy(to + to_size - from_size + 1, from, from_size)), RightOOBWriteMessage(0)); EXPECT_DEATH(Ident(strncpy(to + 1, from, to_size)), RightOOBWriteMessage(0)); // Overwrite terminator in from from[from_size - 1] = '!'; // normal strncpy call strncpy(to, from, from_size); // Length of "from" is too small EXPECT_DEATH(Ident(strncpy(to, from, to_size)), RightOOBReadMessage(0)); free(to); free(from); } // Users may have different definitions of "strchr" and "index", so provide // function pointer typedefs and overload RunStrChrTest implementation. // We can't use macro for RunStrChrTest body here, as this macro would // confuse EXPECT_DEATH gtest macro. typedef char*(*PointerToStrChr1)(const char*, int); typedef char*(*PointerToStrChr2)(char*, int); template static void RunStrChrTestImpl(StrChrFn *StrChr) { size_t size = Ident(100); char *str = MallocAndMemsetString(size); str[10] = 'q'; str[11] = '\0'; EXPECT_EQ(str, StrChr(str, 'z')); EXPECT_EQ(str + 10, StrChr(str, 'q')); EXPECT_EQ(NULL, StrChr(str, 'a')); // StrChr argument points to not allocated memory. EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBReadMessage(1)); EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBReadMessage(0)); // Overwrite the terminator and hit not allocated memory. str[11] = 'z'; EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBReadMessage(0)); free(str); } // Prefer to use the standard signature if both are available. UNUSED static void RunStrChrTest(PointerToStrChr1 StrChr, ...) { RunStrChrTestImpl(StrChr); } UNUSED static void RunStrChrTest(PointerToStrChr2 StrChr, int) { RunStrChrTestImpl(StrChr); } TEST(AddressSanitizer, StrChrAndIndexOOBTest) { RunStrChrTest(&strchr, 0); // No index() on Windows and on Android L. #if !defined(_WIN32) && !defined(__ANDROID__) RunStrChrTest(&index, 0); #endif } TEST(AddressSanitizer, StrCmpAndFriendsLogicTest) { // strcmp EXPECT_EQ(0, strcmp("", "")); EXPECT_EQ(0, strcmp("abcd", "abcd")); EXPECT_GT(0, strcmp("ab", "ac")); EXPECT_GT(0, strcmp("abc", "abcd")); EXPECT_LT(0, strcmp("acc", "abc")); EXPECT_LT(0, strcmp("abcd", "abc")); // strncmp EXPECT_EQ(0, strncmp("a", "b", 0)); EXPECT_EQ(0, strncmp("abcd", "abcd", 10)); EXPECT_EQ(0, strncmp("abcd", "abcef", 3)); EXPECT_GT(0, strncmp("abcde", "abcfa", 4)); EXPECT_GT(0, strncmp("a", "b", 5)); EXPECT_GT(0, strncmp("bc", "bcde", 4)); EXPECT_LT(0, strncmp("xyz", "xyy", 10)); EXPECT_LT(0, strncmp("baa", "aaa", 1)); EXPECT_LT(0, strncmp("zyx", "", 2)); #if !defined(_WIN32) // no str[n]casecmp on Windows. // strcasecmp EXPECT_EQ(0, strcasecmp("", "")); EXPECT_EQ(0, strcasecmp("zzz", "zzz")); EXPECT_EQ(0, strcasecmp("abCD", "ABcd")); EXPECT_GT(0, strcasecmp("aB", "Ac")); EXPECT_GT(0, strcasecmp("ABC", "ABCd")); EXPECT_LT(0, strcasecmp("acc", "abc")); EXPECT_LT(0, strcasecmp("ABCd", "abc")); // strncasecmp EXPECT_EQ(0, strncasecmp("a", "b", 0)); EXPECT_EQ(0, strncasecmp("abCD", "ABcd", 10)); EXPECT_EQ(0, strncasecmp("abCd", "ABcef", 3)); EXPECT_GT(0, strncasecmp("abcde", "ABCfa", 4)); EXPECT_GT(0, strncasecmp("a", "B", 5)); EXPECT_GT(0, strncasecmp("bc", "BCde", 4)); EXPECT_LT(0, strncasecmp("xyz", "xyy", 10)); EXPECT_LT(0, strncasecmp("Baa", "aaa", 1)); EXPECT_LT(0, strncasecmp("zyx", "", 2)); #endif // memcmp EXPECT_EQ(0, memcmp("a", "b", 0)); EXPECT_EQ(0, memcmp("ab\0c", "ab\0c", 4)); EXPECT_GT(0, memcmp("\0ab", "\0ac", 3)); EXPECT_GT(0, memcmp("abb\0", "abba", 4)); EXPECT_LT(0, memcmp("ab\0cd", "ab\0c\0", 5)); EXPECT_LT(0, memcmp("zza", "zyx", 3)); } typedef int(*PointerToStrCmp)(const char*, const char*); void RunStrCmpTest(PointerToStrCmp StrCmp) { size_t size = Ident(100); int fill = 'o'; char *s1 = MallocAndMemsetString(size, fill); char *s2 = MallocAndMemsetString(size, fill); s1[size - 1] = '\0'; s2[size - 1] = '\0'; // Normal StrCmp calls Ident(StrCmp(s1, s2)); Ident(StrCmp(s1, s2 + size - 1)); Ident(StrCmp(s1 + size - 1, s2 + size - 1)); // One of arguments points to not allocated memory. EXPECT_DEATH(Ident(StrCmp)(s1 - 1, s2), LeftOOBReadMessage(1)); EXPECT_DEATH(Ident(StrCmp)(s1, s2 - 1), LeftOOBReadMessage(1)); EXPECT_DEATH(Ident(StrCmp)(s1 + size, s2), RightOOBReadMessage(0)); EXPECT_DEATH(Ident(StrCmp)(s1, s2 + size), RightOOBReadMessage(0)); // Hit unallocated memory and die. s1[size - 1] = fill; EXPECT_DEATH(Ident(StrCmp)(s1, s1), RightOOBReadMessage(0)); EXPECT_DEATH(Ident(StrCmp)(s1 + size - 1, s2), RightOOBReadMessage(0)); free(s1); free(s2); } TEST(AddressSanitizer, StrCmpOOBTest) { RunStrCmpTest(&strcmp); } #if !defined(_WIN32) // no str[n]casecmp on Windows. TEST(AddressSanitizer, StrCaseCmpOOBTest) { RunStrCmpTest(&strcasecmp); } #endif typedef int(*PointerToStrNCmp)(const char*, const char*, size_t); void RunStrNCmpTest(PointerToStrNCmp StrNCmp) { size_t size = Ident(100); char *s1 = MallocAndMemsetString(size); char *s2 = MallocAndMemsetString(size); s1[size - 1] = '\0'; s2[size - 1] = '\0'; // Normal StrNCmp calls Ident(StrNCmp(s1, s2, size + 2)); s1[size - 1] = 'z'; s2[size - 1] = 'x'; Ident(StrNCmp(s1 + size - 2, s2 + size - 2, size)); s2[size - 1] = 'z'; Ident(StrNCmp(s1 - 1, s2 - 1, 0)); Ident(StrNCmp(s1 + size - 1, s2 + size - 1, 1)); // One of arguments points to not allocated memory. EXPECT_DEATH(Ident(StrNCmp)(s1 - 1, s2, 1), LeftOOBReadMessage(1)); EXPECT_DEATH(Ident(StrNCmp)(s1, s2 - 1, 1), LeftOOBReadMessage(1)); EXPECT_DEATH(Ident(StrNCmp)(s1 + size, s2, 1), RightOOBReadMessage(0)); EXPECT_DEATH(Ident(StrNCmp)(s1, s2 + size, 1), RightOOBReadMessage(0)); // Hit unallocated memory and die. EXPECT_DEATH(Ident(StrNCmp)(s1 + 1, s2 + 1, size), RightOOBReadMessage(0)); EXPECT_DEATH(Ident(StrNCmp)(s1 + size - 1, s2, 2), RightOOBReadMessage(0)); free(s1); free(s2); } TEST(AddressSanitizer, StrNCmpOOBTest) { RunStrNCmpTest(&strncmp); } #if !defined(_WIN32) // no str[n]casecmp on Windows. TEST(AddressSanitizer, StrNCaseCmpOOBTest) { RunStrNCmpTest(&strncasecmp); } #endif TEST(AddressSanitizer, StrCatOOBTest) { // strcat() reads strlen(to) bytes from |to| before concatenating. size_t to_size = Ident(100); char *to = MallocAndMemsetString(to_size); to[0] = '\0'; size_t from_size = Ident(20); char *from = MallocAndMemsetString(from_size); from[from_size - 1] = '\0'; // Normal strcat calls. strcat(to, from); strcat(to, from); strcat(to + from_size, from + from_size - 2); // Passing an invalid pointer is an error even when concatenating an empty // string. EXPECT_DEATH(strcat(to - 1, from + from_size - 1), LeftOOBAccessMessage(1)); // One of arguments points to not allocated memory. EXPECT_DEATH(strcat(to - 1, from), LeftOOBAccessMessage(1)); EXPECT_DEATH(strcat(to, from - 1), LeftOOBReadMessage(1)); EXPECT_DEATH(strcat(to, from + from_size), RightOOBReadMessage(0)); // "from" is not zero-terminated. from[from_size - 1] = 'z'; EXPECT_DEATH(strcat(to, from), RightOOBReadMessage(0)); from[from_size - 1] = '\0'; // "to" is too short to fit "from". memset(to, 'z', to_size); to[to_size - from_size + 1] = '\0'; EXPECT_DEATH(strcat(to, from), RightOOBWriteMessage(0)); // length of "to" is just enough. strcat(to, from + 1); free(to); free(from); } TEST(AddressSanitizer, StrNCatOOBTest) { // strncat() reads strlen(to) bytes from |to| before concatenating. size_t to_size = Ident(100); char *to = MallocAndMemsetString(to_size); to[0] = '\0'; size_t from_size = Ident(20); char *from = MallocAndMemsetString(from_size); // Normal strncat calls. strncat(to, from, 0); strncat(to, from, from_size); from[from_size - 1] = '\0'; strncat(to, from, 2 * from_size); // Catenating empty string with an invalid string is still an error. EXPECT_DEATH(strncat(to - 1, from, 0), LeftOOBAccessMessage(1)); strncat(to, from + from_size - 1, 10); // One of arguments points to not allocated memory. EXPECT_DEATH(strncat(to - 1, from, 2), LeftOOBAccessMessage(1)); EXPECT_DEATH(strncat(to, from - 1, 2), LeftOOBReadMessage(1)); EXPECT_DEATH(strncat(to, from + from_size, 2), RightOOBReadMessage(0)); memset(from, 'z', from_size); memset(to, 'z', to_size); to[0] = '\0'; // "from" is too short. EXPECT_DEATH(strncat(to, from, from_size + 1), RightOOBReadMessage(0)); // "to" is too short to fit "from". to[0] = 'z'; to[to_size - from_size + 1] = '\0'; EXPECT_DEATH(strncat(to, from, from_size - 1), RightOOBWriteMessage(0)); // "to" is just enough. strncat(to, from, from_size - 2); free(to); free(from); } static string OverlapErrorMessage(const string &func) { return func + "-param-overlap"; } TEST(AddressSanitizer, StrArgsOverlapTest) { size_t size = Ident(100); char *str = Ident((char*)malloc(size)); // Do not check memcpy() on OS X 10.7 and later, where it actually aliases // memmove(). #if !defined(__APPLE__) || !defined(MAC_OS_X_VERSION_10_7) || \ (MAC_OS_X_VERSION_MAX_ALLOWED < MAC_OS_X_VERSION_10_7) // Check "memcpy". Use Ident() to avoid inlining. #if PLATFORM_HAS_DIFFERENT_MEMCPY_AND_MEMMOVE memset(str, 'z', size); Ident(memcpy)(str + 1, str + 11, 10); Ident(memcpy)(str, str, 0); EXPECT_DEATH(Ident(memcpy)(str, str + 14, 15), OverlapErrorMessage("memcpy")); EXPECT_DEATH(Ident(memcpy)(str + 14, str, 15), OverlapErrorMessage("memcpy")); #endif #endif // We do not treat memcpy with to==from as a bug. // See http://llvm.org/bugs/show_bug.cgi?id=11763. // EXPECT_DEATH(Ident(memcpy)(str + 20, str + 20, 1), // OverlapErrorMessage("memcpy")); // Check "strcpy". memset(str, 'z', size); str[9] = '\0'; strcpy(str + 10, str); EXPECT_DEATH(strcpy(str + 9, str), OverlapErrorMessage("strcpy")); EXPECT_DEATH(strcpy(str, str + 4), OverlapErrorMessage("strcpy")); strcpy(str, str + 5); // Check "strncpy". memset(str, 'z', size); strncpy(str, str + 10, 10); EXPECT_DEATH(strncpy(str, str + 9, 10), OverlapErrorMessage("strncpy")); EXPECT_DEATH(strncpy(str + 9, str, 10), OverlapErrorMessage("strncpy")); str[10] = '\0'; strncpy(str + 11, str, 20); EXPECT_DEATH(strncpy(str + 10, str, 20), OverlapErrorMessage("strncpy")); // Check "strcat". memset(str, 'z', size); str[10] = '\0'; str[20] = '\0'; strcat(str, str + 10); EXPECT_DEATH(strcat(str, str + 11), OverlapErrorMessage("strcat")); str[10] = '\0'; strcat(str + 11, str); EXPECT_DEATH(strcat(str, str + 9), OverlapErrorMessage("strcat")); EXPECT_DEATH(strcat(str + 9, str), OverlapErrorMessage("strcat")); EXPECT_DEATH(strcat(str + 10, str), OverlapErrorMessage("strcat")); // Check "strncat". memset(str, 'z', size); str[10] = '\0'; strncat(str, str + 10, 10); // from is empty EXPECT_DEATH(strncat(str, str + 11, 10), OverlapErrorMessage("strncat")); str[10] = '\0'; str[20] = '\0'; strncat(str + 5, str, 5); str[10] = '\0'; EXPECT_DEATH(strncat(str + 5, str, 6), OverlapErrorMessage("strncat")); EXPECT_DEATH(strncat(str, str + 9, 10), OverlapErrorMessage("strncat")); free(str); } typedef void(*PointerToCallAtoi)(const char*); void RunAtoiOOBTest(PointerToCallAtoi Atoi) { char *array = MallocAndMemsetString(10, '1'); // Invalid pointer to the string. EXPECT_DEATH(Atoi(array + 11), RightOOBReadMessage(1)); EXPECT_DEATH(Atoi(array - 1), LeftOOBReadMessage(1)); // Die if a buffer doesn't have terminating NULL. EXPECT_DEATH(Atoi(array), RightOOBReadMessage(0)); // Make last symbol a terminating NULL array[9] = '\0'; Atoi(array); // Sometimes we need to detect overflow if no digits are found. memset(array, ' ', 10); EXPECT_DEATH(Atoi(array), RightOOBReadMessage(0)); array[9] = '-'; EXPECT_DEATH(Atoi(array), RightOOBReadMessage(0)); EXPECT_DEATH(Atoi(array + 9), RightOOBReadMessage(0)); free(array); } #if !defined(_WIN32) // FIXME: Fix and enable on Windows. void CallAtoi(const char *nptr) { Ident(atoi(nptr)); } void CallAtol(const char *nptr) { Ident(atol(nptr)); } void CallAtoll(const char *nptr) { Ident(atoll(nptr)); } TEST(AddressSanitizer, AtoiAndFriendsOOBTest) { RunAtoiOOBTest(&CallAtoi); RunAtoiOOBTest(&CallAtol); RunAtoiOOBTest(&CallAtoll); } #endif typedef void(*PointerToCallStrtol)(const char*, char**, int); void RunStrtolOOBTest(PointerToCallStrtol Strtol) { char *array = MallocAndMemsetString(3); array[0] = '1'; array[1] = '2'; array[2] = '3'; // Invalid pointer to the string. EXPECT_DEATH(Strtol(array + 3, NULL, 0), RightOOBReadMessage(0)); EXPECT_DEATH(Strtol(array - 1, NULL, 0), LeftOOBReadMessage(1)); // Buffer overflow if there is no terminating null (depends on base). EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0)); array[2] = 'z'; EXPECT_DEATH(Strtol(array, NULL, 36), RightOOBReadMessage(0)); // Add terminating zero to get rid of overflow. array[2] = '\0'; Strtol(array, NULL, 36); // Sometimes we need to detect overflow if no digits are found. array[0] = array[1] = array[2] = ' '; EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0)); array[2] = '+'; EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0)); array[2] = '-'; EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0)); free(array); } #if !defined(_WIN32) // FIXME: Fix and enable on Windows. void CallStrtol(const char *nptr, char **endptr, int base) { Ident(strtol(nptr, endptr, base)); } void CallStrtoll(const char *nptr, char **endptr, int base) { Ident(strtoll(nptr, endptr, base)); } TEST(AddressSanitizer, StrtollOOBTest) { RunStrtolOOBTest(&CallStrtoll); } TEST(AddressSanitizer, StrtolOOBTest) { RunStrtolOOBTest(&CallStrtol); } #endif Index: vendor/compiler-rt/dist/lib/lsan/lsan_common_mac.cc =================================================================== --- vendor/compiler-rt/dist/lib/lsan/lsan_common_mac.cc (revision 318666) +++ vendor/compiler-rt/dist/lib/lsan/lsan_common_mac.cc (revision 318667) @@ -1,178 +1,179 @@ //=-- lsan_common_mac.cc --------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of LeakSanitizer. // Implementation of common leak checking functionality. Darwin-specific code. // //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_platform.h" #include "lsan_common.h" #if CAN_SANITIZE_LEAKS && SANITIZER_MAC #include "sanitizer_common/sanitizer_allocator_internal.h" #include "lsan_allocator.h" #include #include namespace __lsan { typedef struct { int disable_counter; u32 current_thread_id; AllocatorCache cache; } thread_local_data_t; static pthread_key_t key; static pthread_once_t key_once = PTHREAD_ONCE_INIT; // The main thread destructor requires the current thread id, // so we can't destroy it until it's been used and reset to invalid tid void restore_tid_data(void *ptr) { thread_local_data_t *data = (thread_local_data_t *)ptr; if (data->current_thread_id != kInvalidTid) pthread_setspecific(key, data); } static void make_tls_key() { CHECK_EQ(pthread_key_create(&key, restore_tid_data), 0); } static thread_local_data_t *get_tls_val(bool alloc) { pthread_once(&key_once, make_tls_key); thread_local_data_t *ptr = (thread_local_data_t *)pthread_getspecific(key); if (ptr == NULL && alloc) { ptr = (thread_local_data_t *)InternalAlloc(sizeof(*ptr)); ptr->disable_counter = 0; ptr->current_thread_id = kInvalidTid; ptr->cache = AllocatorCache(); pthread_setspecific(key, ptr); } return ptr; } bool DisabledInThisThread() { thread_local_data_t *data = get_tls_val(false); return data ? data->disable_counter > 0 : false; } void DisableInThisThread() { ++get_tls_val(true)->disable_counter; } void EnableInThisThread() { int *disable_counter = &get_tls_val(true)->disable_counter; if (*disable_counter == 0) { DisableCounterUnderflow(); } --*disable_counter; } u32 GetCurrentThread() { thread_local_data_t *data = get_tls_val(false); CHECK(data); return data->current_thread_id; } void SetCurrentThread(u32 tid) { get_tls_val(true)->current_thread_id = tid; } AllocatorCache *GetAllocatorCache() { return &get_tls_val(true)->cache; } LoadedModule *GetLinker() { return nullptr; } // Required on Linux for initialization of TLS behavior, but should not be // required on Darwin. void InitializePlatformSpecificModules() { if (flags()->use_tls) { Report("use_tls=1 is not supported on Darwin.\n"); Die(); } } // Scans global variables for heap pointers. void ProcessGlobalRegions(Frontier *frontier) { MemoryMappingLayout memory_mapping(false); InternalMmapVector modules(/*initial_capacity*/ 128); memory_mapping.DumpListOfModules(&modules); for (uptr i = 0; i < modules.size(); ++i) { // Even when global scanning is disabled, we still need to scan // system libraries for stashed pointers if (!flags()->use_globals && modules[i].instrumented()) continue; for (const __sanitizer::LoadedModule::AddressRange &range : modules[i].ranges()) { - if (range.executable || !range.readable) continue; + // Sections storing global variables are writable and non-executable + if (range.executable || !range.writable) continue; ScanGlobalRange(range.beg, range.end, frontier); } } } void ProcessPlatformSpecificAllocations(Frontier *frontier) { mach_port_name_t port; if (task_for_pid(mach_task_self(), internal_getpid(), &port) != KERN_SUCCESS) { return; } unsigned depth = 1; vm_size_t size = 0; vm_address_t address = 0; kern_return_t err = KERN_SUCCESS; mach_msg_type_number_t count = VM_REGION_SUBMAP_INFO_COUNT_64; InternalMmapVector const *root_regions = GetRootRegions(); while (err == KERN_SUCCESS) { struct vm_region_submap_info_64 info; err = vm_region_recurse_64(port, &address, &size, &depth, (vm_region_info_t)&info, &count); uptr end_address = address + size; // libxpc stashes some pointers in the Kernel Alloc Once page, // make sure not to report those as leaks. if (info.user_tag == VM_MEMORY_OS_ALLOC_ONCE) { ScanRangeForPointers(address, end_address, frontier, "GLOBAL", kReachable); // Recursing over the full memory map is very slow, break out // early if we don't need the full iteration. if (!flags()->use_root_regions || !root_regions->size()) break; } // This additional root region scan is required on Darwin in order to // detect root regions contained within mmap'd memory regions, because // the Darwin implementation of sanitizer_procmaps traverses images // as loaded by dyld, and not the complete set of all memory regions. // // TODO(fjricci) - remove this once sanitizer_procmaps_mac has the same // behavior as sanitizer_procmaps_linux and traverses all memory regions if (flags()->use_root_regions) { for (uptr i = 0; i < root_regions->size(); i++) { ScanRootRegion(frontier, (*root_regions)[i], address, end_address, info.protection); } } address = end_address; } } void DoStopTheWorld(StopTheWorldCallback callback, void *argument) { StopTheWorld(callback, argument); } } // namespace __lsan #endif // CAN_SANITIZE_LEAKS && SANITIZER_MAC Index: vendor/compiler-rt/dist/lib/msan/msan_interceptors.cc =================================================================== --- vendor/compiler-rt/dist/lib/msan/msan_interceptors.cc (revision 318666) +++ vendor/compiler-rt/dist/lib/msan/msan_interceptors.cc (revision 318667) @@ -1,1606 +1,1628 @@ //===-- msan_interceptors.cc ----------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of MemorySanitizer. // // Interceptors for standard library functions. // // FIXME: move as many interceptors as possible into // sanitizer_common/sanitizer_common_interceptors.h //===----------------------------------------------------------------------===// #include "interception/interception.h" #include "msan.h" #include "msan_chained_origin_depot.h" #include "msan_origin.h" #include "msan_thread.h" #include "msan_poisoning.h" #include "sanitizer_common/sanitizer_platform_limits_posix.h" #include "sanitizer_common/sanitizer_allocator.h" #include "sanitizer_common/sanitizer_allocator_interface.h" #include "sanitizer_common/sanitizer_allocator_internal.h" #include "sanitizer_common/sanitizer_atomic.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_stackdepot.h" #include "sanitizer_common/sanitizer_libc.h" #include "sanitizer_common/sanitizer_linux.h" #include "sanitizer_common/sanitizer_tls_get_addr.h" #include // ACHTUNG! No other system header includes in this file. // Ideally, we should get rid of stdarg.h as well. using namespace __msan; using __sanitizer::memory_order; using __sanitizer::atomic_load; using __sanitizer::atomic_store; using __sanitizer::atomic_uintptr_t; DECLARE_REAL(SIZE_T, strlen, const char *s) DECLARE_REAL(SIZE_T, strnlen, const char *s, SIZE_T maxlen) DECLARE_REAL(void *, memcpy, void *dest, const void *src, uptr n) DECLARE_REAL(void *, memset, void *dest, int c, uptr n) #if SANITIZER_FREEBSD #define __errno_location __error #endif // True if this is a nested interceptor. static THREADLOCAL int in_interceptor_scope; extern "C" int *__errno_location(void); struct InterceptorScope { InterceptorScope() { ++in_interceptor_scope; } ~InterceptorScope() { --in_interceptor_scope; } }; bool IsInInterceptorScope() { return in_interceptor_scope; } static uptr allocated_for_dlsym; static const uptr kDlsymAllocPoolSize = 1024; static uptr alloc_memory_for_dlsym[kDlsymAllocPoolSize]; static bool IsInDlsymAllocPool(const void *ptr) { uptr off = (uptr)ptr - (uptr)alloc_memory_for_dlsym; return off < sizeof(alloc_memory_for_dlsym); } static void *AllocateFromLocalPool(uptr size_in_bytes) { uptr size_in_words = RoundUpTo(size_in_bytes, kWordSize) / kWordSize; void *mem = (void *)&alloc_memory_for_dlsym[allocated_for_dlsym]; allocated_for_dlsym += size_in_words; CHECK_LT(allocated_for_dlsym, kDlsymAllocPoolSize); return mem; } #define ENSURE_MSAN_INITED() do { \ CHECK(!msan_init_is_running); \ if (!msan_inited) { \ __msan_init(); \ } \ } while (0) // Check that [x, x+n) range is unpoisoned. #define CHECK_UNPOISONED_0(x, n) \ do { \ sptr offset = __msan_test_shadow(x, n); \ if (__msan::IsInSymbolizer()) \ break; \ if (offset >= 0 && __msan::flags()->report_umrs) { \ GET_CALLER_PC_BP_SP; \ (void) sp; \ ReportUMRInsideAddressRange(__func__, x, n, offset); \ __msan::PrintWarningWithOrigin( \ pc, bp, __msan_get_origin((const char *)x + offset)); \ if (__msan::flags()->halt_on_error) { \ Printf("Exiting\n"); \ Die(); \ } \ } \ } while (0) // Check that [x, x+n) range is unpoisoned unless we are in a nested // interceptor. #define CHECK_UNPOISONED(x, n) \ do { \ if (!IsInInterceptorScope()) CHECK_UNPOISONED_0(x, n); \ } while (0); #define CHECK_UNPOISONED_STRING_OF_LEN(x, len, n) \ CHECK_UNPOISONED((x), \ common_flags()->strict_string_checks ? (len) + 1 : (n) ) #define CHECK_UNPOISONED_STRING(x, n) \ CHECK_UNPOISONED_STRING_OF_LEN((x), internal_strlen(x), (n)) #if !SANITIZER_FREEBSD INTERCEPTOR(SIZE_T, fread_unlocked, void *ptr, SIZE_T size, SIZE_T nmemb, void *file) { ENSURE_MSAN_INITED(); SIZE_T res = REAL(fread_unlocked)(ptr, size, nmemb, file); if (res > 0) __msan_unpoison(ptr, res *size); return res; } #define MSAN_MAYBE_INTERCEPT_FREAD_UNLOCKED INTERCEPT_FUNCTION(fread_unlocked) #else #define MSAN_MAYBE_INTERCEPT_FREAD_UNLOCKED #endif INTERCEPTOR(SSIZE_T, readlink, const char *path, char *buf, SIZE_T bufsiz) { ENSURE_MSAN_INITED(); CHECK_UNPOISONED_STRING(path, 0) SSIZE_T res = REAL(readlink)(path, buf, bufsiz); if (res > 0) __msan_unpoison(buf, res); return res; } INTERCEPTOR(void *, mempcpy, void *dest, const void *src, SIZE_T n) { return (char *)__msan_memcpy(dest, src, n) + n; } INTERCEPTOR(void *, memccpy, void *dest, const void *src, int c, SIZE_T n) { ENSURE_MSAN_INITED(); void *res = REAL(memccpy)(dest, src, c, n); CHECK(!res || (res >= dest && res <= (char *)dest + n)); SIZE_T sz = res ? (char *)res - (char *)dest : n; CHECK_UNPOISONED(src, sz); __msan_unpoison(dest, sz); return res; } INTERCEPTOR(void *, bcopy, const void *src, void *dest, SIZE_T n) { return __msan_memmove(dest, src, n); } INTERCEPTOR(int, posix_memalign, void **memptr, SIZE_T alignment, SIZE_T size) { GET_MALLOC_STACK_TRACE; CHECK_EQ(alignment & (alignment - 1), 0); CHECK_NE(memptr, 0); *memptr = MsanReallocate(&stack, nullptr, size, alignment, false); CHECK_NE(*memptr, 0); __msan_unpoison(memptr, sizeof(*memptr)); return 0; } #if !SANITIZER_FREEBSD INTERCEPTOR(void *, memalign, SIZE_T boundary, SIZE_T size) { GET_MALLOC_STACK_TRACE; CHECK_EQ(boundary & (boundary - 1), 0); void *ptr = MsanReallocate(&stack, nullptr, size, boundary, false); return ptr; } #define MSAN_MAYBE_INTERCEPT_MEMALIGN INTERCEPT_FUNCTION(memalign) #else #define MSAN_MAYBE_INTERCEPT_MEMALIGN #endif INTERCEPTOR(void *, aligned_alloc, SIZE_T boundary, SIZE_T size) { GET_MALLOC_STACK_TRACE; CHECK_EQ(boundary & (boundary - 1), 0); void *ptr = MsanReallocate(&stack, nullptr, size, boundary, false); return ptr; } INTERCEPTOR(void *, __libc_memalign, SIZE_T boundary, SIZE_T size) { GET_MALLOC_STACK_TRACE; CHECK_EQ(boundary & (boundary - 1), 0); void *ptr = MsanReallocate(&stack, nullptr, size, boundary, false); DTLS_on_libc_memalign(ptr, size); return ptr; } INTERCEPTOR(void *, valloc, SIZE_T size) { GET_MALLOC_STACK_TRACE; void *ptr = MsanReallocate(&stack, nullptr, size, GetPageSizeCached(), false); return ptr; } #if !SANITIZER_FREEBSD INTERCEPTOR(void *, pvalloc, SIZE_T size) { GET_MALLOC_STACK_TRACE; uptr PageSize = GetPageSizeCached(); size = RoundUpTo(size, PageSize); if (size == 0) { // pvalloc(0) should allocate one page. size = PageSize; } void *ptr = MsanReallocate(&stack, nullptr, size, PageSize, false); return ptr; } #define MSAN_MAYBE_INTERCEPT_PVALLOC INTERCEPT_FUNCTION(pvalloc) #else #define MSAN_MAYBE_INTERCEPT_PVALLOC #endif INTERCEPTOR(void, free, void *ptr) { GET_MALLOC_STACK_TRACE; if (!ptr || UNLIKELY(IsInDlsymAllocPool(ptr))) return; MsanDeallocate(&stack, ptr); } #if !SANITIZER_FREEBSD INTERCEPTOR(void, cfree, void *ptr) { GET_MALLOC_STACK_TRACE; if (!ptr || UNLIKELY(IsInDlsymAllocPool(ptr))) return; MsanDeallocate(&stack, ptr); } #define MSAN_MAYBE_INTERCEPT_CFREE INTERCEPT_FUNCTION(cfree) #else #define MSAN_MAYBE_INTERCEPT_CFREE #endif INTERCEPTOR(uptr, malloc_usable_size, void *ptr) { return __sanitizer_get_allocated_size(ptr); } #if !SANITIZER_FREEBSD // This function actually returns a struct by value, but we can't unpoison a // temporary! The following is equivalent on all supported platforms but // aarch64 (which uses a different register for sret value). We have a test // to confirm that. INTERCEPTOR(void, mallinfo, __sanitizer_mallinfo *sret) { #ifdef __aarch64__ uptr r8; asm volatile("mov %0,x8" : "=r" (r8)); sret = reinterpret_cast<__sanitizer_mallinfo*>(r8); #endif REAL(memset)(sret, 0, sizeof(*sret)); __msan_unpoison(sret, sizeof(*sret)); } #define MSAN_MAYBE_INTERCEPT_MALLINFO INTERCEPT_FUNCTION(mallinfo) #else #define MSAN_MAYBE_INTERCEPT_MALLINFO #endif #if !SANITIZER_FREEBSD INTERCEPTOR(int, mallopt, int cmd, int value) { return -1; } #define MSAN_MAYBE_INTERCEPT_MALLOPT INTERCEPT_FUNCTION(mallopt) #else #define MSAN_MAYBE_INTERCEPT_MALLOPT #endif #if !SANITIZER_FREEBSD INTERCEPTOR(void, malloc_stats, void) { // FIXME: implement, but don't call REAL(malloc_stats)! } #define MSAN_MAYBE_INTERCEPT_MALLOC_STATS INTERCEPT_FUNCTION(malloc_stats) #else #define MSAN_MAYBE_INTERCEPT_MALLOC_STATS #endif INTERCEPTOR(char *, strcpy, char *dest, const char *src) { // NOLINT ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; SIZE_T n = REAL(strlen)(src); CHECK_UNPOISONED_STRING(src + n, 0); char *res = REAL(strcpy)(dest, src); // NOLINT CopyShadowAndOrigin(dest, src, n + 1, &stack); return res; } INTERCEPTOR(char *, strncpy, char *dest, const char *src, SIZE_T n) { // NOLINT ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; SIZE_T copy_size = REAL(strnlen)(src, n); if (copy_size < n) copy_size++; // trailing \0 char *res = REAL(strncpy)(dest, src, n); // NOLINT CopyShadowAndOrigin(dest, src, copy_size, &stack); __msan_unpoison(dest + copy_size, n - copy_size); return res; } INTERCEPTOR(char *, stpcpy, char *dest, const char *src) { // NOLINT ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; SIZE_T n = REAL(strlen)(src); CHECK_UNPOISONED_STRING(src + n, 0); char *res = REAL(stpcpy)(dest, src); // NOLINT CopyShadowAndOrigin(dest, src, n + 1, &stack); return res; } INTERCEPTOR(char *, strdup, char *src) { ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; // On FreeBSD strdup() leverages strlen(). InterceptorScope interceptor_scope; SIZE_T n = REAL(strlen)(src); CHECK_UNPOISONED_STRING(src + n, 0); char *res = REAL(strdup)(src); CopyShadowAndOrigin(res, src, n + 1, &stack); return res; } #if !SANITIZER_FREEBSD INTERCEPTOR(char *, __strdup, char *src) { ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; SIZE_T n = REAL(strlen)(src); CHECK_UNPOISONED_STRING(src + n, 0); char *res = REAL(__strdup)(src); CopyShadowAndOrigin(res, src, n + 1, &stack); return res; } #define MSAN_MAYBE_INTERCEPT___STRDUP INTERCEPT_FUNCTION(__strdup) #else #define MSAN_MAYBE_INTERCEPT___STRDUP #endif +INTERCEPTOR(char *, strndup, char *src, SIZE_T n) { + ENSURE_MSAN_INITED(); + GET_STORE_STACK_TRACE; + // On FreeBSD strndup() leverages strnlen(). + InterceptorScope interceptor_scope; + SIZE_T copy_size = REAL(strnlen)(src, n); + char *res = REAL(strndup)(src, n); + CopyShadowAndOrigin(res, src, copy_size, &stack); + __msan_unpoison(res + copy_size, 1); // \0 + return res; +} + +#if !SANITIZER_FREEBSD +INTERCEPTOR(char *, __strndup, char *src, SIZE_T n) { + ENSURE_MSAN_INITED(); + GET_STORE_STACK_TRACE; + SIZE_T copy_size = REAL(strnlen)(src, n); + char *res = REAL(__strndup)(src, n); + CopyShadowAndOrigin(res, src, copy_size, &stack); + __msan_unpoison(res + copy_size, 1); // \0 + return res; +} +#define MSAN_MAYBE_INTERCEPT___STRNDUP INTERCEPT_FUNCTION(__strndup) +#else +#define MSAN_MAYBE_INTERCEPT___STRNDUP +#endif + INTERCEPTOR(char *, gcvt, double number, SIZE_T ndigit, char *buf) { ENSURE_MSAN_INITED(); char *res = REAL(gcvt)(number, ndigit, buf); SIZE_T n = REAL(strlen)(buf); __msan_unpoison(buf, n + 1); return res; } INTERCEPTOR(char *, strcat, char *dest, const char *src) { // NOLINT ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; SIZE_T src_size = REAL(strlen)(src); SIZE_T dest_size = REAL(strlen)(dest); CHECK_UNPOISONED_STRING(src + src_size, 0); CHECK_UNPOISONED_STRING(dest + dest_size, 0); char *res = REAL(strcat)(dest, src); // NOLINT CopyShadowAndOrigin(dest + dest_size, src, src_size + 1, &stack); return res; } INTERCEPTOR(char *, strncat, char *dest, const char *src, SIZE_T n) { // NOLINT ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; SIZE_T dest_size = REAL(strlen)(dest); SIZE_T copy_size = REAL(strnlen)(src, n); CHECK_UNPOISONED_STRING(dest + dest_size, 0); char *res = REAL(strncat)(dest, src, n); // NOLINT CopyShadowAndOrigin(dest + dest_size, src, copy_size, &stack); __msan_unpoison(dest + dest_size + copy_size, 1); // \0 return res; } // Hack: always pass nptr and endptr as part of __VA_ARGS_ to avoid having to // deal with empty __VA_ARGS__ in the case of INTERCEPTOR_STRTO. #define INTERCEPTOR_STRTO_BODY(ret_type, func, ...) \ ENSURE_MSAN_INITED(); \ ret_type res = REAL(func)(__VA_ARGS__); \ __msan_unpoison(endptr, sizeof(*endptr)); \ return res; #define INTERCEPTOR_STRTO(ret_type, func, char_type) \ INTERCEPTOR(ret_type, func, const char_type *nptr, char_type **endptr) { \ INTERCEPTOR_STRTO_BODY(ret_type, func, nptr, endptr); \ } #define INTERCEPTOR_STRTO_BASE(ret_type, func, char_type) \ INTERCEPTOR(ret_type, func, const char_type *nptr, char_type **endptr, \ int base) { \ INTERCEPTOR_STRTO_BODY(ret_type, func, nptr, endptr, base); \ } #define INTERCEPTOR_STRTO_LOC(ret_type, func, char_type) \ INTERCEPTOR(ret_type, func, const char_type *nptr, char_type **endptr, \ void *loc) { \ INTERCEPTOR_STRTO_BODY(ret_type, func, nptr, endptr, loc); \ } #define INTERCEPTOR_STRTO_BASE_LOC(ret_type, func, char_type) \ INTERCEPTOR(ret_type, func, const char_type *nptr, char_type **endptr, \ int base, void *loc) { \ INTERCEPTOR_STRTO_BODY(ret_type, func, nptr, endptr, base, loc); \ } #define INTERCEPTORS_STRTO(ret_type, func, char_type) \ INTERCEPTOR_STRTO(ret_type, func, char_type) \ INTERCEPTOR_STRTO_LOC(ret_type, func##_l, char_type) \ INTERCEPTOR_STRTO_LOC(ret_type, __##func##_l, char_type) \ INTERCEPTOR_STRTO_LOC(ret_type, __##func##_internal, char_type) #define INTERCEPTORS_STRTO_BASE(ret_type, func, char_type) \ INTERCEPTOR_STRTO_BASE(ret_type, func, char_type) \ INTERCEPTOR_STRTO_BASE_LOC(ret_type, func##_l, char_type) \ INTERCEPTOR_STRTO_BASE_LOC(ret_type, __##func##_l, char_type) \ INTERCEPTOR_STRTO_BASE_LOC(ret_type, __##func##_internal, char_type) INTERCEPTORS_STRTO(double, strtod, char) // NOLINT INTERCEPTORS_STRTO(float, strtof, char) // NOLINT INTERCEPTORS_STRTO(long double, strtold, char) // NOLINT INTERCEPTORS_STRTO_BASE(long, strtol, char) // NOLINT INTERCEPTORS_STRTO_BASE(long long, strtoll, char) // NOLINT INTERCEPTORS_STRTO_BASE(unsigned long, strtoul, char) // NOLINT INTERCEPTORS_STRTO_BASE(unsigned long long, strtoull, char) // NOLINT INTERCEPTORS_STRTO(double, wcstod, wchar_t) // NOLINT INTERCEPTORS_STRTO(float, wcstof, wchar_t) // NOLINT INTERCEPTORS_STRTO(long double, wcstold, wchar_t) // NOLINT INTERCEPTORS_STRTO_BASE(long, wcstol, wchar_t) // NOLINT INTERCEPTORS_STRTO_BASE(long long, wcstoll, wchar_t) // NOLINT INTERCEPTORS_STRTO_BASE(unsigned long, wcstoul, wchar_t) // NOLINT INTERCEPTORS_STRTO_BASE(unsigned long long, wcstoull, wchar_t) // NOLINT #define INTERCEPT_STRTO(func) \ INTERCEPT_FUNCTION(func); \ INTERCEPT_FUNCTION(func##_l); \ INTERCEPT_FUNCTION(__##func##_l); \ INTERCEPT_FUNCTION(__##func##_internal); // FIXME: support *wprintf in common format interceptors. INTERCEPTOR(int, vswprintf, void *str, uptr size, void *format, va_list ap) { ENSURE_MSAN_INITED(); int res = REAL(vswprintf)(str, size, format, ap); if (res >= 0) { __msan_unpoison(str, 4 * (res + 1)); } return res; } INTERCEPTOR(int, swprintf, void *str, uptr size, void *format, ...) { ENSURE_MSAN_INITED(); va_list ap; va_start(ap, format); int res = vswprintf(str, size, format, ap); va_end(ap); return res; } INTERCEPTOR(SIZE_T, strxfrm, char *dest, const char *src, SIZE_T n) { ENSURE_MSAN_INITED(); CHECK_UNPOISONED(src, REAL(strlen)(src) + 1); SIZE_T res = REAL(strxfrm)(dest, src, n); if (res < n) __msan_unpoison(dest, res + 1); return res; } INTERCEPTOR(SIZE_T, strxfrm_l, char *dest, const char *src, SIZE_T n, void *loc) { ENSURE_MSAN_INITED(); CHECK_UNPOISONED(src, REAL(strlen)(src) + 1); SIZE_T res = REAL(strxfrm_l)(dest, src, n, loc); if (res < n) __msan_unpoison(dest, res + 1); return res; } #define INTERCEPTOR_STRFTIME_BODY(char_type, ret_type, func, s, ...) \ ENSURE_MSAN_INITED(); \ ret_type res = REAL(func)(s, __VA_ARGS__); \ if (s) __msan_unpoison(s, sizeof(char_type) * (res + 1)); \ return res; INTERCEPTOR(SIZE_T, strftime, char *s, SIZE_T max, const char *format, __sanitizer_tm *tm) { INTERCEPTOR_STRFTIME_BODY(char, SIZE_T, strftime, s, max, format, tm); } INTERCEPTOR(SIZE_T, strftime_l, char *s, SIZE_T max, const char *format, __sanitizer_tm *tm, void *loc) { INTERCEPTOR_STRFTIME_BODY(char, SIZE_T, strftime_l, s, max, format, tm, loc); } #if !SANITIZER_FREEBSD INTERCEPTOR(SIZE_T, __strftime_l, char *s, SIZE_T max, const char *format, __sanitizer_tm *tm, void *loc) { INTERCEPTOR_STRFTIME_BODY(char, SIZE_T, __strftime_l, s, max, format, tm, loc); } #define MSAN_MAYBE_INTERCEPT___STRFTIME_L INTERCEPT_FUNCTION(__strftime_l) #else #define MSAN_MAYBE_INTERCEPT___STRFTIME_L #endif INTERCEPTOR(SIZE_T, wcsftime, wchar_t *s, SIZE_T max, const wchar_t *format, __sanitizer_tm *tm) { INTERCEPTOR_STRFTIME_BODY(wchar_t, SIZE_T, wcsftime, s, max, format, tm); } INTERCEPTOR(SIZE_T, wcsftime_l, wchar_t *s, SIZE_T max, const wchar_t *format, __sanitizer_tm *tm, void *loc) { INTERCEPTOR_STRFTIME_BODY(wchar_t, SIZE_T, wcsftime_l, s, max, format, tm, loc); } #if !SANITIZER_FREEBSD INTERCEPTOR(SIZE_T, __wcsftime_l, wchar_t *s, SIZE_T max, const wchar_t *format, __sanitizer_tm *tm, void *loc) { INTERCEPTOR_STRFTIME_BODY(wchar_t, SIZE_T, __wcsftime_l, s, max, format, tm, loc); } #define MSAN_MAYBE_INTERCEPT___WCSFTIME_L INTERCEPT_FUNCTION(__wcsftime_l) #else #define MSAN_MAYBE_INTERCEPT___WCSFTIME_L #endif INTERCEPTOR(int, mbtowc, wchar_t *dest, const char *src, SIZE_T n) { ENSURE_MSAN_INITED(); int res = REAL(mbtowc)(dest, src, n); if (res != -1 && dest) __msan_unpoison(dest, sizeof(wchar_t)); return res; } INTERCEPTOR(int, mbrtowc, wchar_t *dest, const char *src, SIZE_T n, void *ps) { ENSURE_MSAN_INITED(); SIZE_T res = REAL(mbrtowc)(dest, src, n, ps); if (res != (SIZE_T)-1 && dest) __msan_unpoison(dest, sizeof(wchar_t)); return res; } INTERCEPTOR(SIZE_T, wcslen, const wchar_t *s) { ENSURE_MSAN_INITED(); SIZE_T res = REAL(wcslen)(s); CHECK_UNPOISONED(s, sizeof(wchar_t) * (res + 1)); return res; } INTERCEPTOR(SIZE_T, wcsnlen, const wchar_t *s, SIZE_T n) { ENSURE_MSAN_INITED(); SIZE_T res = REAL(wcsnlen)(s, n); CHECK_UNPOISONED(s, sizeof(wchar_t) * Min(res + 1, n)); return res; } // wchar_t *wcschr(const wchar_t *wcs, wchar_t wc); INTERCEPTOR(wchar_t *, wcschr, void *s, wchar_t wc, void *ps) { ENSURE_MSAN_INITED(); wchar_t *res = REAL(wcschr)(s, wc, ps); return res; } // wchar_t *wcscpy(wchar_t *dest, const wchar_t *src); INTERCEPTOR(wchar_t *, wcscpy, wchar_t *dest, const wchar_t *src) { ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; wchar_t *res = REAL(wcscpy)(dest, src); CopyShadowAndOrigin(dest, src, sizeof(wchar_t) * (REAL(wcslen)(src) + 1), &stack); return res; } INTERCEPTOR(wchar_t *, wcsncpy, wchar_t *dest, const wchar_t *src, SIZE_T n) { // NOLINT ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; SIZE_T copy_size = REAL(wcsnlen)(src, n); if (copy_size < n) copy_size++; // trailing \0 wchar_t *res = REAL(wcsncpy)(dest, src, n); // NOLINT CopyShadowAndOrigin(dest, src, copy_size * sizeof(wchar_t), &stack); __msan_unpoison(dest + copy_size, (n - copy_size) * sizeof(wchar_t)); return res; } // wchar_t *wmemcpy(wchar_t *dest, const wchar_t *src, SIZE_T n); INTERCEPTOR(wchar_t *, wmemcpy, wchar_t *dest, const wchar_t *src, SIZE_T n) { ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; wchar_t *res = REAL(wmemcpy)(dest, src, n); CopyShadowAndOrigin(dest, src, n * sizeof(wchar_t), &stack); return res; } INTERCEPTOR(wchar_t *, wmempcpy, wchar_t *dest, const wchar_t *src, SIZE_T n) { ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; wchar_t *res = REAL(wmempcpy)(dest, src, n); CopyShadowAndOrigin(dest, src, n * sizeof(wchar_t), &stack); return res; } INTERCEPTOR(wchar_t *, wmemset, wchar_t *s, wchar_t c, SIZE_T n) { CHECK(MEM_IS_APP(s)); ENSURE_MSAN_INITED(); wchar_t *res = REAL(wmemset)(s, c, n); __msan_unpoison(s, n * sizeof(wchar_t)); return res; } INTERCEPTOR(wchar_t *, wmemmove, wchar_t *dest, const wchar_t *src, SIZE_T n) { ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; wchar_t *res = REAL(wmemmove)(dest, src, n); MoveShadowAndOrigin(dest, src, n * sizeof(wchar_t), &stack); return res; } INTERCEPTOR(int, wcscmp, const wchar_t *s1, const wchar_t *s2) { ENSURE_MSAN_INITED(); int res = REAL(wcscmp)(s1, s2); return res; } INTERCEPTOR(int, gettimeofday, void *tv, void *tz) { ENSURE_MSAN_INITED(); int res = REAL(gettimeofday)(tv, tz); if (tv) __msan_unpoison(tv, 16); if (tz) __msan_unpoison(tz, 8); return res; } INTERCEPTOR(char *, fcvt, double x, int a, int *b, int *c) { ENSURE_MSAN_INITED(); char *res = REAL(fcvt)(x, a, b, c); __msan_unpoison(b, sizeof(*b)); __msan_unpoison(c, sizeof(*c)); if (res) __msan_unpoison(res, REAL(strlen)(res) + 1); return res; } INTERCEPTOR(char *, getenv, char *name) { if (msan_init_is_running) return REAL(getenv)(name); ENSURE_MSAN_INITED(); char *res = REAL(getenv)(name); if (res) __msan_unpoison(res, REAL(strlen)(res) + 1); return res; } extern char **environ; static void UnpoisonEnviron() { char **envp = environ; for (; *envp; ++envp) { __msan_unpoison(envp, sizeof(*envp)); __msan_unpoison(*envp, REAL(strlen)(*envp) + 1); } // Trailing NULL pointer. __msan_unpoison(envp, sizeof(*envp)); } INTERCEPTOR(int, setenv, const char *name, const char *value, int overwrite) { ENSURE_MSAN_INITED(); CHECK_UNPOISONED_STRING(name, 0) int res = REAL(setenv)(name, value, overwrite); if (!res) UnpoisonEnviron(); return res; } INTERCEPTOR(int, putenv, char *string) { ENSURE_MSAN_INITED(); int res = REAL(putenv)(string); if (!res) UnpoisonEnviron(); return res; } #if !SANITIZER_FREEBSD INTERCEPTOR(int, __fxstat, int magic, int fd, void *buf) { ENSURE_MSAN_INITED(); int res = REAL(__fxstat)(magic, fd, buf); if (!res) __msan_unpoison(buf, __sanitizer::struct_stat_sz); return res; } #define MSAN_MAYBE_INTERCEPT___FXSTAT INTERCEPT_FUNCTION(__fxstat) #else #define MSAN_MAYBE_INTERCEPT___FXSTAT #endif #if !SANITIZER_FREEBSD INTERCEPTOR(int, __fxstat64, int magic, int fd, void *buf) { ENSURE_MSAN_INITED(); int res = REAL(__fxstat64)(magic, fd, buf); if (!res) __msan_unpoison(buf, __sanitizer::struct_stat64_sz); return res; } #define MSAN_MAYBE_INTERCEPT___FXSTAT64 INTERCEPT_FUNCTION(__fxstat64) #else #define MSAN_MAYBE_INTERCEPT___FXSTAT64 #endif #if SANITIZER_FREEBSD INTERCEPTOR(int, fstatat, int fd, char *pathname, void *buf, int flags) { ENSURE_MSAN_INITED(); int res = REAL(fstatat)(fd, pathname, buf, flags); if (!res) __msan_unpoison(buf, __sanitizer::struct_stat_sz); return res; } # define MSAN_INTERCEPT_FSTATAT INTERCEPT_FUNCTION(fstatat) #else INTERCEPTOR(int, __fxstatat, int magic, int fd, char *pathname, void *buf, int flags) { ENSURE_MSAN_INITED(); int res = REAL(__fxstatat)(magic, fd, pathname, buf, flags); if (!res) __msan_unpoison(buf, __sanitizer::struct_stat_sz); return res; } # define MSAN_INTERCEPT_FSTATAT INTERCEPT_FUNCTION(__fxstatat) #endif #if !SANITIZER_FREEBSD INTERCEPTOR(int, __fxstatat64, int magic, int fd, char *pathname, void *buf, int flags) { ENSURE_MSAN_INITED(); int res = REAL(__fxstatat64)(magic, fd, pathname, buf, flags); if (!res) __msan_unpoison(buf, __sanitizer::struct_stat64_sz); return res; } #define MSAN_MAYBE_INTERCEPT___FXSTATAT64 INTERCEPT_FUNCTION(__fxstatat64) #else #define MSAN_MAYBE_INTERCEPT___FXSTATAT64 #endif INTERCEPTOR(int, pipe, int pipefd[2]) { if (msan_init_is_running) return REAL(pipe)(pipefd); ENSURE_MSAN_INITED(); int res = REAL(pipe)(pipefd); if (!res) __msan_unpoison(pipefd, sizeof(int[2])); return res; } INTERCEPTOR(int, pipe2, int pipefd[2], int flags) { ENSURE_MSAN_INITED(); int res = REAL(pipe2)(pipefd, flags); if (!res) __msan_unpoison(pipefd, sizeof(int[2])); return res; } INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int sv[2]) { ENSURE_MSAN_INITED(); int res = REAL(socketpair)(domain, type, protocol, sv); if (!res) __msan_unpoison(sv, sizeof(int[2])); return res; } INTERCEPTOR(char *, fgets, char *s, int size, void *stream) { ENSURE_MSAN_INITED(); char *res = REAL(fgets)(s, size, stream); if (res) __msan_unpoison(s, REAL(strlen)(s) + 1); return res; } #if !SANITIZER_FREEBSD INTERCEPTOR(char *, fgets_unlocked, char *s, int size, void *stream) { ENSURE_MSAN_INITED(); char *res = REAL(fgets_unlocked)(s, size, stream); if (res) __msan_unpoison(s, REAL(strlen)(s) + 1); return res; } #define MSAN_MAYBE_INTERCEPT_FGETS_UNLOCKED INTERCEPT_FUNCTION(fgets_unlocked) #else #define MSAN_MAYBE_INTERCEPT_FGETS_UNLOCKED #endif INTERCEPTOR(int, getrlimit, int resource, void *rlim) { if (msan_init_is_running) return REAL(getrlimit)(resource, rlim); ENSURE_MSAN_INITED(); int res = REAL(getrlimit)(resource, rlim); if (!res) __msan_unpoison(rlim, __sanitizer::struct_rlimit_sz); return res; } #if !SANITIZER_FREEBSD INTERCEPTOR(int, getrlimit64, int resource, void *rlim) { if (msan_init_is_running) return REAL(getrlimit64)(resource, rlim); ENSURE_MSAN_INITED(); int res = REAL(getrlimit64)(resource, rlim); if (!res) __msan_unpoison(rlim, __sanitizer::struct_rlimit64_sz); return res; } INTERCEPTOR(int, prlimit, int pid, int resource, void *new_rlimit, void *old_rlimit) { if (msan_init_is_running) return REAL(prlimit)(pid, resource, new_rlimit, old_rlimit); ENSURE_MSAN_INITED(); CHECK_UNPOISONED(new_rlimit, __sanitizer::struct_rlimit_sz); int res = REAL(prlimit)(pid, resource, new_rlimit, old_rlimit); if (!res) __msan_unpoison(old_rlimit, __sanitizer::struct_rlimit_sz); return res; } INTERCEPTOR(int, prlimit64, int pid, int resource, void *new_rlimit, void *old_rlimit) { if (msan_init_is_running) return REAL(prlimit64)(pid, resource, new_rlimit, old_rlimit); ENSURE_MSAN_INITED(); CHECK_UNPOISONED(new_rlimit, __sanitizer::struct_rlimit64_sz); int res = REAL(prlimit64)(pid, resource, new_rlimit, old_rlimit); if (!res) __msan_unpoison(old_rlimit, __sanitizer::struct_rlimit64_sz); return res; } #define MSAN_MAYBE_INTERCEPT_GETRLIMIT64 INTERCEPT_FUNCTION(getrlimit64) #define MSAN_MAYBE_INTERCEPT_PRLIMIT INTERCEPT_FUNCTION(prlimit) #define MSAN_MAYBE_INTERCEPT_PRLIMIT64 INTERCEPT_FUNCTION(prlimit64) #else #define MSAN_MAYBE_INTERCEPT_GETRLIMIT64 #define MSAN_MAYBE_INTERCEPT_PRLIMIT #define MSAN_MAYBE_INTERCEPT_PRLIMIT64 #endif #if SANITIZER_FREEBSD // FreeBSD's define uname() as // static __inline int uname(struct utsname *name) { // return __xuname(SYS_NMLN, (void*)name); // } INTERCEPTOR(int, __xuname, int size, void *utsname) { ENSURE_MSAN_INITED(); int res = REAL(__xuname)(size, utsname); if (!res) __msan_unpoison(utsname, __sanitizer::struct_utsname_sz); return res; } #define MSAN_INTERCEPT_UNAME INTERCEPT_FUNCTION(__xuname) #else INTERCEPTOR(int, uname, struct utsname *utsname) { ENSURE_MSAN_INITED(); int res = REAL(uname)(utsname); if (!res) __msan_unpoison(utsname, __sanitizer::struct_utsname_sz); return res; } #define MSAN_INTERCEPT_UNAME INTERCEPT_FUNCTION(uname) #endif INTERCEPTOR(int, gethostname, char *name, SIZE_T len) { ENSURE_MSAN_INITED(); int res = REAL(gethostname)(name, len); if (!res) { SIZE_T real_len = REAL(strnlen)(name, len); if (real_len < len) ++real_len; __msan_unpoison(name, real_len); } return res; } #if !SANITIZER_FREEBSD INTERCEPTOR(int, epoll_wait, int epfd, void *events, int maxevents, int timeout) { ENSURE_MSAN_INITED(); int res = REAL(epoll_wait)(epfd, events, maxevents, timeout); if (res > 0) { __msan_unpoison(events, __sanitizer::struct_epoll_event_sz * res); } return res; } #define MSAN_MAYBE_INTERCEPT_EPOLL_WAIT INTERCEPT_FUNCTION(epoll_wait) #else #define MSAN_MAYBE_INTERCEPT_EPOLL_WAIT #endif #if !SANITIZER_FREEBSD INTERCEPTOR(int, epoll_pwait, int epfd, void *events, int maxevents, int timeout, void *sigmask) { ENSURE_MSAN_INITED(); int res = REAL(epoll_pwait)(epfd, events, maxevents, timeout, sigmask); if (res > 0) { __msan_unpoison(events, __sanitizer::struct_epoll_event_sz * res); } return res; } #define MSAN_MAYBE_INTERCEPT_EPOLL_PWAIT INTERCEPT_FUNCTION(epoll_pwait) #else #define MSAN_MAYBE_INTERCEPT_EPOLL_PWAIT #endif INTERCEPTOR(void *, calloc, SIZE_T nmemb, SIZE_T size) { GET_MALLOC_STACK_TRACE; if (UNLIKELY(!msan_inited)) // Hack: dlsym calls calloc before REAL(calloc) is retrieved from dlsym. return AllocateFromLocalPool(nmemb * size); return MsanCalloc(&stack, nmemb, size); } INTERCEPTOR(void *, realloc, void *ptr, SIZE_T size) { GET_MALLOC_STACK_TRACE; if (UNLIKELY(IsInDlsymAllocPool(ptr))) { uptr offset = (uptr)ptr - (uptr)alloc_memory_for_dlsym; uptr copy_size = Min(size, kDlsymAllocPoolSize - offset); void *new_ptr; if (UNLIKELY(!msan_inited)) { new_ptr = AllocateFromLocalPool(copy_size); } else { copy_size = size; new_ptr = MsanReallocate(&stack, nullptr, copy_size, sizeof(u64), false); } internal_memcpy(new_ptr, ptr, copy_size); return new_ptr; } return MsanReallocate(&stack, ptr, size, sizeof(u64), false); } INTERCEPTOR(void *, malloc, SIZE_T size) { GET_MALLOC_STACK_TRACE; if (UNLIKELY(!msan_inited)) // Hack: dlsym calls malloc before REAL(malloc) is retrieved from dlsym. return AllocateFromLocalPool(size); return MsanReallocate(&stack, nullptr, size, sizeof(u64), false); } void __msan_allocated_memory(const void *data, uptr size) { GET_MALLOC_STACK_TRACE; if (flags()->poison_in_malloc) { stack.tag = STACK_TRACE_TAG_POISON; PoisonMemory(data, size, &stack); } } void __msan_copy_shadow(void *dest, const void *src, uptr n) { GET_STORE_STACK_TRACE; MoveShadowAndOrigin(dest, src, n, &stack); } void __sanitizer_dtor_callback(const void *data, uptr size) { GET_MALLOC_STACK_TRACE; if (flags()->poison_in_dtor) { stack.tag = STACK_TRACE_TAG_POISON; PoisonMemory(data, size, &stack); } } INTERCEPTOR(void *, mmap, void *addr, SIZE_T length, int prot, int flags, int fd, OFF_T offset) { if (msan_init_is_running) return REAL(mmap)(addr, length, prot, flags, fd, offset); ENSURE_MSAN_INITED(); if (addr && !MEM_IS_APP(addr)) { if (flags & map_fixed) { *__errno_location() = errno_EINVAL; return (void *)-1; } else { addr = nullptr; } } void *res = REAL(mmap)(addr, length, prot, flags, fd, offset); if (res != (void*)-1) __msan_unpoison(res, RoundUpTo(length, GetPageSize())); return res; } #if !SANITIZER_FREEBSD INTERCEPTOR(void *, mmap64, void *addr, SIZE_T length, int prot, int flags, int fd, OFF64_T offset) { ENSURE_MSAN_INITED(); if (addr && !MEM_IS_APP(addr)) { if (flags & map_fixed) { *__errno_location() = errno_EINVAL; return (void *)-1; } else { addr = nullptr; } } void *res = REAL(mmap64)(addr, length, prot, flags, fd, offset); if (res != (void*)-1) __msan_unpoison(res, RoundUpTo(length, GetPageSize())); return res; } #define MSAN_MAYBE_INTERCEPT_MMAP64 INTERCEPT_FUNCTION(mmap64) #else #define MSAN_MAYBE_INTERCEPT_MMAP64 #endif INTERCEPTOR(int, getrusage, int who, void *usage) { ENSURE_MSAN_INITED(); int res = REAL(getrusage)(who, usage); if (res == 0) { __msan_unpoison(usage, __sanitizer::struct_rusage_sz); } return res; } class SignalHandlerScope { public: SignalHandlerScope() { if (MsanThread *t = GetCurrentThread()) t->EnterSignalHandler(); } ~SignalHandlerScope() { if (MsanThread *t = GetCurrentThread()) t->LeaveSignalHandler(); } }; // sigactions_mu guarantees atomicity of sigaction() and signal() calls. // Access to sigactions[] is gone with relaxed atomics to avoid data race with // the signal handler. const int kMaxSignals = 1024; static atomic_uintptr_t sigactions[kMaxSignals]; static StaticSpinMutex sigactions_mu; static void SignalHandler(int signo) { SignalHandlerScope signal_handler_scope; ScopedThreadLocalStateBackup stlsb; UnpoisonParam(1); typedef void (*signal_cb)(int x); signal_cb cb = (signal_cb)atomic_load(&sigactions[signo], memory_order_relaxed); cb(signo); } static void SignalAction(int signo, void *si, void *uc) { SignalHandlerScope signal_handler_scope; ScopedThreadLocalStateBackup stlsb; UnpoisonParam(3); __msan_unpoison(si, sizeof(__sanitizer_sigaction)); __msan_unpoison(uc, __sanitizer::ucontext_t_sz); typedef void (*sigaction_cb)(int, void *, void *); sigaction_cb cb = (sigaction_cb)atomic_load(&sigactions[signo], memory_order_relaxed); cb(signo, si, uc); } INTERCEPTOR(int, sigaction, int signo, const __sanitizer_sigaction *act, __sanitizer_sigaction *oldact) { ENSURE_MSAN_INITED(); // FIXME: check that *act is unpoisoned. // That requires intercepting all of sigemptyset, sigfillset, etc. int res; if (flags()->wrap_signals) { SpinMutexLock lock(&sigactions_mu); CHECK_LT(signo, kMaxSignals); uptr old_cb = atomic_load(&sigactions[signo], memory_order_relaxed); __sanitizer_sigaction new_act; __sanitizer_sigaction *pnew_act = act ? &new_act : nullptr; if (act) { REAL(memcpy)(pnew_act, act, sizeof(__sanitizer_sigaction)); uptr cb = (uptr)pnew_act->sigaction; uptr new_cb = (pnew_act->sa_flags & __sanitizer::sa_siginfo) ? (uptr)SignalAction : (uptr)SignalHandler; if (cb != __sanitizer::sig_ign && cb != __sanitizer::sig_dfl) { atomic_store(&sigactions[signo], cb, memory_order_relaxed); pnew_act->sigaction = (void (*)(int, void *, void *))new_cb; } } res = REAL(sigaction)(signo, pnew_act, oldact); if (res == 0 && oldact) { uptr cb = (uptr)oldact->sigaction; if (cb != __sanitizer::sig_ign && cb != __sanitizer::sig_dfl) { oldact->sigaction = (void (*)(int, void *, void *))old_cb; } } } else { res = REAL(sigaction)(signo, act, oldact); } if (res == 0 && oldact) { __msan_unpoison(oldact, sizeof(__sanitizer_sigaction)); } return res; } INTERCEPTOR(int, signal, int signo, uptr cb) { ENSURE_MSAN_INITED(); if (flags()->wrap_signals) { CHECK_LT(signo, kMaxSignals); SpinMutexLock lock(&sigactions_mu); if (cb != __sanitizer::sig_ign && cb != __sanitizer::sig_dfl) { atomic_store(&sigactions[signo], cb, memory_order_relaxed); cb = (uptr) SignalHandler; } return REAL(signal)(signo, cb); } else { return REAL(signal)(signo, cb); } } extern "C" int pthread_attr_init(void *attr); extern "C" int pthread_attr_destroy(void *attr); static void *MsanThreadStartFunc(void *arg) { MsanThread *t = (MsanThread *)arg; SetCurrentThread(t); return t->ThreadStart(); } INTERCEPTOR(int, pthread_create, void *th, void *attr, void *(*callback)(void*), void * param) { ENSURE_MSAN_INITED(); // for GetTlsSize() __sanitizer_pthread_attr_t myattr; if (!attr) { pthread_attr_init(&myattr); attr = &myattr; } AdjustStackSize(attr); MsanThread *t = MsanThread::Create(callback, param); int res = REAL(pthread_create)(th, attr, MsanThreadStartFunc, t); if (attr == &myattr) pthread_attr_destroy(&myattr); if (!res) { __msan_unpoison(th, __sanitizer::pthread_t_sz); } return res; } INTERCEPTOR(int, pthread_key_create, __sanitizer_pthread_key_t *key, void (*dtor)(void *value)) { if (msan_init_is_running) return REAL(pthread_key_create)(key, dtor); ENSURE_MSAN_INITED(); int res = REAL(pthread_key_create)(key, dtor); if (!res && key) __msan_unpoison(key, sizeof(*key)); return res; } INTERCEPTOR(int, pthread_join, void *th, void **retval) { ENSURE_MSAN_INITED(); int res = REAL(pthread_join)(th, retval); if (!res && retval) __msan_unpoison(retval, sizeof(*retval)); return res; } extern char *tzname[2]; INTERCEPTOR(void, tzset, int fake) { ENSURE_MSAN_INITED(); REAL(tzset)(fake); if (tzname[0]) __msan_unpoison(tzname[0], REAL(strlen)(tzname[0]) + 1); if (tzname[1]) __msan_unpoison(tzname[1], REAL(strlen)(tzname[1]) + 1); return; } struct MSanAtExitRecord { void (*func)(void *arg); void *arg; }; void MSanAtExitWrapper(void *arg) { UnpoisonParam(1); MSanAtExitRecord *r = (MSanAtExitRecord *)arg; r->func(r->arg); InternalFree(r); } // Unpoison argument shadow for C++ module destructors. INTERCEPTOR(int, __cxa_atexit, void (*func)(void *), void *arg, void *dso_handle) { if (msan_init_is_running) return REAL(__cxa_atexit)(func, arg, dso_handle); ENSURE_MSAN_INITED(); MSanAtExitRecord *r = (MSanAtExitRecord *)InternalAlloc(sizeof(MSanAtExitRecord)); r->func = func; r->arg = arg; return REAL(__cxa_atexit)(MSanAtExitWrapper, r, dso_handle); } DECLARE_REAL(int, shmctl, int shmid, int cmd, void *buf) INTERCEPTOR(void *, shmat, int shmid, const void *shmaddr, int shmflg) { ENSURE_MSAN_INITED(); void *p = REAL(shmat)(shmid, shmaddr, shmflg); if (p != (void *)-1) { __sanitizer_shmid_ds ds; int res = REAL(shmctl)(shmid, shmctl_ipc_stat, &ds); if (!res) { __msan_unpoison(p, ds.shm_segsz); } } return p; } static void BeforeFork() { StackDepotLockAll(); ChainedOriginDepotLockAll(); } static void AfterFork() { ChainedOriginDepotUnlockAll(); StackDepotUnlockAll(); } INTERCEPTOR(int, fork, void) { ENSURE_MSAN_INITED(); BeforeFork(); int pid = REAL(fork)(); AfterFork(); return pid; } INTERCEPTOR(int, openpty, int *amaster, int *aslave, char *name, const void *termp, const void *winp) { ENSURE_MSAN_INITED(); InterceptorScope interceptor_scope; int res = REAL(openpty)(amaster, aslave, name, termp, winp); if (!res) { __msan_unpoison(amaster, sizeof(*amaster)); __msan_unpoison(aslave, sizeof(*aslave)); } return res; } INTERCEPTOR(int, forkpty, int *amaster, char *name, const void *termp, const void *winp) { ENSURE_MSAN_INITED(); InterceptorScope interceptor_scope; int res = REAL(forkpty)(amaster, name, termp, winp); if (res != -1) __msan_unpoison(amaster, sizeof(*amaster)); return res; } struct MSanInterceptorContext { bool in_interceptor_scope; }; namespace __msan { int OnExit() { // FIXME: ask frontend whether we need to return failure. return 0; } } // namespace __msan // A version of CHECK_UNPOISONED using a saved scope value. Used in common // interceptors. #define CHECK_UNPOISONED_CTX(ctx, x, n) \ do { \ if (!((MSanInterceptorContext *)ctx)->in_interceptor_scope) \ CHECK_UNPOISONED_0(x, n); \ } while (0) #define MSAN_INTERCEPT_FUNC(name) \ do { \ if ((!INTERCEPT_FUNCTION(name) || !REAL(name))) \ VReport(1, "MemorySanitizer: failed to intercept '" #name "'\n"); \ } while (0) #define MSAN_INTERCEPT_FUNC_VER(name, ver) \ do { \ if ((!INTERCEPT_FUNCTION_VER(name, ver) || !REAL(name))) \ VReport( \ 1, "MemorySanitizer: failed to intercept '" #name "@@" #ver "'\n"); \ } while (0) #define COMMON_INTERCEPT_FUNCTION(name) MSAN_INTERCEPT_FUNC(name) #define COMMON_INTERCEPT_FUNCTION_VER(name, ver) \ MSAN_INTERCEPT_FUNC_VER(name, ver) #define COMMON_INTERCEPTOR_UNPOISON_PARAM(count) \ UnpoisonParam(count) #define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size) \ __msan_unpoison(ptr, size) #define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size) \ CHECK_UNPOISONED_CTX(ctx, ptr, size) #define COMMON_INTERCEPTOR_INITIALIZE_RANGE(ptr, size) \ __msan_unpoison(ptr, size) #define COMMON_INTERCEPTOR_ENTER(ctx, func, ...) \ if (msan_init_is_running) return REAL(func)(__VA_ARGS__); \ ENSURE_MSAN_INITED(); \ MSanInterceptorContext msan_ctx = {IsInInterceptorScope()}; \ ctx = (void *)&msan_ctx; \ (void)ctx; \ InterceptorScope interceptor_scope; \ __msan_unpoison(__errno_location(), sizeof(int)); /* NOLINT */ #define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \ do { \ } while (false) #define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \ do { \ } while (false) #define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \ do { \ } while (false) #define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \ do { \ } while (false) #define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \ do { \ } while (false) // FIXME #define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \ do { \ } while (false) // FIXME #define COMMON_INTERCEPTOR_BLOCK_REAL(name) REAL(name) #define COMMON_INTERCEPTOR_ON_EXIT(ctx) OnExit() #define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \ do { \ link_map *map = GET_LINK_MAP_BY_DLOPEN_HANDLE((handle)); \ if (filename && map) \ ForEachMappedRegion(map, __msan_unpoison); \ } while (false) #define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end) \ if (MsanThread *t = GetCurrentThread()) { \ *begin = t->tls_begin(); \ *end = t->tls_end(); \ } else { \ *begin = *end = 0; \ } #define COMMON_INTERCEPTOR_MEMSET_IMPL(ctx, block, c, size) \ { \ (void)ctx; \ return __msan_memset(block, c, size); \ } #define COMMON_INTERCEPTOR_MEMMOVE_IMPL(ctx, to, from, size) \ { \ (void)ctx; \ return __msan_memmove(to, from, size); \ } #define COMMON_INTERCEPTOR_MEMCPY_IMPL(ctx, to, from, size) \ { \ (void)ctx; \ return __msan_memcpy(to, from, size); \ } -#define COMMON_INTERCEPTOR_COPY_STRING(ctx, to, from, size) \ - do { \ - GET_STORE_STACK_TRACE; \ - CopyShadowAndOrigin(to, from, size, &stack); \ - __msan_unpoison(to + size, 1); \ - } while (false) - #include "sanitizer_common/sanitizer_platform_interceptors.h" #include "sanitizer_common/sanitizer_common_interceptors.inc" #define COMMON_SYSCALL_PRE_READ_RANGE(p, s) CHECK_UNPOISONED(p, s) #define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \ do { \ } while (false) #define COMMON_SYSCALL_POST_READ_RANGE(p, s) \ do { \ } while (false) #define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) __msan_unpoison(p, s) #include "sanitizer_common/sanitizer_common_syscalls.inc" struct dlinfo { char *dli_fname; void *dli_fbase; char *dli_sname; void *dli_saddr; }; INTERCEPTOR(int, dladdr, void *addr, dlinfo *info) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, dladdr, addr, info); int res = REAL(dladdr)(addr, info); if (res != 0) { __msan_unpoison(info, sizeof(*info)); if (info->dli_fname) __msan_unpoison(info->dli_fname, REAL(strlen)(info->dli_fname) + 1); if (info->dli_sname) __msan_unpoison(info->dli_sname, REAL(strlen)(info->dli_sname) + 1); } return res; } INTERCEPTOR(char *, dlerror, int fake) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, dlerror, fake); char *res = REAL(dlerror)(fake); if (res) __msan_unpoison(res, REAL(strlen)(res) + 1); return res; } typedef int (*dl_iterate_phdr_cb)(__sanitizer_dl_phdr_info *info, SIZE_T size, void *data); struct dl_iterate_phdr_data { dl_iterate_phdr_cb callback; void *data; }; static int msan_dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size, void *data) { if (info) { __msan_unpoison(info, size); if (info->dlpi_phdr && info->dlpi_phnum) __msan_unpoison(info->dlpi_phdr, struct_ElfW_Phdr_sz * info->dlpi_phnum); if (info->dlpi_name) __msan_unpoison(info->dlpi_name, REAL(strlen)(info->dlpi_name) + 1); } dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data; UnpoisonParam(3); return cbdata->callback(info, size, cbdata->data); } INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb callback, void *data) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, dl_iterate_phdr, callback, data); dl_iterate_phdr_data cbdata; cbdata.callback = callback; cbdata.data = data; int res = REAL(dl_iterate_phdr)(msan_dl_iterate_phdr_cb, (void *)&cbdata); return res; } // These interface functions reside here so that they can use // REAL(memset), etc. void __msan_unpoison(const void *a, uptr size) { if (!MEM_IS_APP(a)) return; SetShadow(a, size, 0); } void __msan_poison(const void *a, uptr size) { if (!MEM_IS_APP(a)) return; SetShadow(a, size, __msan::flags()->poison_heap_with_zeroes ? 0 : -1); } void __msan_poison_stack(void *a, uptr size) { if (!MEM_IS_APP(a)) return; SetShadow(a, size, __msan::flags()->poison_stack_with_zeroes ? 0 : -1); } void __msan_clear_and_unpoison(void *a, uptr size) { REAL(memset)(a, 0, size); SetShadow(a, size, 0); } void *__msan_memcpy(void *dest, const void *src, SIZE_T n) { if (!msan_inited) return internal_memcpy(dest, src, n); if (msan_init_is_running || __msan::IsInSymbolizer()) return REAL(memcpy)(dest, src, n); ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; void *res = REAL(memcpy)(dest, src, n); CopyShadowAndOrigin(dest, src, n, &stack); return res; } void *__msan_memset(void *s, int c, SIZE_T n) { if (!msan_inited) return internal_memset(s, c, n); if (msan_init_is_running) return REAL(memset)(s, c, n); ENSURE_MSAN_INITED(); void *res = REAL(memset)(s, c, n); __msan_unpoison(s, n); return res; } void *__msan_memmove(void *dest, const void *src, SIZE_T n) { if (!msan_inited) return internal_memmove(dest, src, n); if (msan_init_is_running) return REAL(memmove)(dest, src, n); ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; void *res = REAL(memmove)(dest, src, n); MoveShadowAndOrigin(dest, src, n, &stack); return res; } void __msan_unpoison_string(const char* s) { if (!MEM_IS_APP(s)) return; __msan_unpoison(s, REAL(strlen)(s) + 1); } namespace __msan { void InitializeInterceptors() { static int inited = 0; CHECK_EQ(inited, 0); InitializeCommonInterceptors(); INTERCEPT_FUNCTION(mmap); MSAN_MAYBE_INTERCEPT_MMAP64; INTERCEPT_FUNCTION(posix_memalign); MSAN_MAYBE_INTERCEPT_MEMALIGN; INTERCEPT_FUNCTION(__libc_memalign); INTERCEPT_FUNCTION(valloc); MSAN_MAYBE_INTERCEPT_PVALLOC; INTERCEPT_FUNCTION(malloc); INTERCEPT_FUNCTION(calloc); INTERCEPT_FUNCTION(realloc); INTERCEPT_FUNCTION(free); MSAN_MAYBE_INTERCEPT_CFREE; INTERCEPT_FUNCTION(malloc_usable_size); MSAN_MAYBE_INTERCEPT_MALLINFO; MSAN_MAYBE_INTERCEPT_MALLOPT; MSAN_MAYBE_INTERCEPT_MALLOC_STATS; INTERCEPT_FUNCTION(fread); MSAN_MAYBE_INTERCEPT_FREAD_UNLOCKED; INTERCEPT_FUNCTION(readlink); INTERCEPT_FUNCTION(memccpy); INTERCEPT_FUNCTION(mempcpy); INTERCEPT_FUNCTION(bcopy); INTERCEPT_FUNCTION(wmemset); INTERCEPT_FUNCTION(wmemcpy); INTERCEPT_FUNCTION(wmempcpy); INTERCEPT_FUNCTION(wmemmove); INTERCEPT_FUNCTION(strcpy); // NOLINT INTERCEPT_FUNCTION(stpcpy); // NOLINT INTERCEPT_FUNCTION(strdup); MSAN_MAYBE_INTERCEPT___STRDUP; + INTERCEPT_FUNCTION(strndup); + MSAN_MAYBE_INTERCEPT___STRNDUP; INTERCEPT_FUNCTION(strncpy); // NOLINT INTERCEPT_FUNCTION(gcvt); INTERCEPT_FUNCTION(strcat); // NOLINT INTERCEPT_FUNCTION(strncat); // NOLINT INTERCEPT_STRTO(strtod); INTERCEPT_STRTO(strtof); INTERCEPT_STRTO(strtold); INTERCEPT_STRTO(strtol); INTERCEPT_STRTO(strtoul); INTERCEPT_STRTO(strtoll); INTERCEPT_STRTO(strtoull); INTERCEPT_STRTO(wcstod); INTERCEPT_STRTO(wcstof); INTERCEPT_STRTO(wcstold); INTERCEPT_STRTO(wcstol); INTERCEPT_STRTO(wcstoul); INTERCEPT_STRTO(wcstoll); INTERCEPT_STRTO(wcstoull); #ifdef SANITIZER_NLDBL_VERSION INTERCEPT_FUNCTION_VER(vswprintf, SANITIZER_NLDBL_VERSION); INTERCEPT_FUNCTION_VER(swprintf, SANITIZER_NLDBL_VERSION); #else INTERCEPT_FUNCTION(vswprintf); INTERCEPT_FUNCTION(swprintf); #endif INTERCEPT_FUNCTION(strxfrm); INTERCEPT_FUNCTION(strxfrm_l); INTERCEPT_FUNCTION(strftime); INTERCEPT_FUNCTION(strftime_l); MSAN_MAYBE_INTERCEPT___STRFTIME_L; INTERCEPT_FUNCTION(wcsftime); INTERCEPT_FUNCTION(wcsftime_l); MSAN_MAYBE_INTERCEPT___WCSFTIME_L; INTERCEPT_FUNCTION(mbtowc); INTERCEPT_FUNCTION(mbrtowc); INTERCEPT_FUNCTION(wcslen); INTERCEPT_FUNCTION(wcsnlen); INTERCEPT_FUNCTION(wcschr); INTERCEPT_FUNCTION(wcscpy); INTERCEPT_FUNCTION(wcsncpy); INTERCEPT_FUNCTION(wcscmp); INTERCEPT_FUNCTION(getenv); INTERCEPT_FUNCTION(setenv); INTERCEPT_FUNCTION(putenv); INTERCEPT_FUNCTION(gettimeofday); INTERCEPT_FUNCTION(fcvt); MSAN_MAYBE_INTERCEPT___FXSTAT; MSAN_INTERCEPT_FSTATAT; MSAN_MAYBE_INTERCEPT___FXSTAT64; MSAN_MAYBE_INTERCEPT___FXSTATAT64; INTERCEPT_FUNCTION(pipe); INTERCEPT_FUNCTION(pipe2); INTERCEPT_FUNCTION(socketpair); INTERCEPT_FUNCTION(fgets); MSAN_MAYBE_INTERCEPT_FGETS_UNLOCKED; INTERCEPT_FUNCTION(getrlimit); MSAN_MAYBE_INTERCEPT_GETRLIMIT64; MSAN_MAYBE_INTERCEPT_PRLIMIT; MSAN_MAYBE_INTERCEPT_PRLIMIT64; MSAN_INTERCEPT_UNAME; INTERCEPT_FUNCTION(gethostname); MSAN_MAYBE_INTERCEPT_EPOLL_WAIT; MSAN_MAYBE_INTERCEPT_EPOLL_PWAIT; INTERCEPT_FUNCTION(dladdr); INTERCEPT_FUNCTION(dlerror); INTERCEPT_FUNCTION(dl_iterate_phdr); INTERCEPT_FUNCTION(getrusage); INTERCEPT_FUNCTION(sigaction); INTERCEPT_FUNCTION(signal); #if defined(__mips__) INTERCEPT_FUNCTION_VER(pthread_create, "GLIBC_2.2"); #else INTERCEPT_FUNCTION(pthread_create); #endif INTERCEPT_FUNCTION(pthread_key_create); INTERCEPT_FUNCTION(pthread_join); INTERCEPT_FUNCTION(tzset); INTERCEPT_FUNCTION(__cxa_atexit); INTERCEPT_FUNCTION(shmat); INTERCEPT_FUNCTION(fork); INTERCEPT_FUNCTION(openpty); INTERCEPT_FUNCTION(forkpty); inited = 1; } } // namespace __msan Index: vendor/compiler-rt/dist/lib/msan/tests/msan_test.cc =================================================================== --- vendor/compiler-rt/dist/lib/msan/tests/msan_test.cc (revision 318666) +++ vendor/compiler-rt/dist/lib/msan/tests/msan_test.cc (revision 318667) @@ -1,4559 +1,4557 @@ //===-- msan_test.cc ------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of MemorySanitizer. // // MemorySanitizer unit tests. //===----------------------------------------------------------------------===// #ifndef MSAN_EXTERNAL_TEST_CONFIG #include "msan_test_config.h" #endif // MSAN_EXTERNAL_TEST_CONFIG #include "sanitizer_common/tests/sanitizer_test_utils.h" #include "sanitizer/allocator_interface.h" #include "sanitizer/msan_interface.h" #if defined(__FreeBSD__) # define _KERNEL // To declare 'shminfo' structure. # include # undef _KERNEL extern "C" { // doesn't declare these functions in _KERNEL mode. void *shmat(int, const void *, int); int shmget(key_t, size_t, int); int shmctl(int, int, struct shmid_ds *); int shmdt(const void *); } #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if !defined(__FreeBSD__) # include # include # include # include # include #else # include # include # include # include # include # include # include # define f_namelen f_namemax // FreeBSD names this statfs field so. # define cpu_set_t cpuset_t extern "C" { // FreeBSD's defines mempcpy() to be a macro expanding into // a __builtin___mempcpy_chk() call, but since Msan RTL defines it as an // ordinary function, we can declare it here to complete the tests. void *mempcpy(void *dest, const void *src, size_t n); } #endif #if defined(__i386__) || defined(__x86_64__) # include # define MSAN_HAS_M128 1 #else # define MSAN_HAS_M128 0 #endif #ifdef __AVX2__ # include #endif // On FreeBSD procfs is not enabled by default. #if defined(__FreeBSD__) # define FILE_TO_READ "/bin/cat" # define DIR_TO_READ "/bin" # define SUBFILE_TO_READ "cat" # define SYMLINK_TO_READ "/usr/bin/tar" # define SUPERUSER_GROUP "wheel" #else # define FILE_TO_READ "/proc/self/stat" # define DIR_TO_READ "/proc/self" # define SUBFILE_TO_READ "stat" # define SYMLINK_TO_READ "/proc/self/exe" # define SUPERUSER_GROUP "root" #endif static uintptr_t GetPageSize() { return sysconf(_SC_PAGESIZE); } const size_t kMaxPathLength = 4096; typedef unsigned char U1; typedef unsigned short U2; // NOLINT typedef unsigned int U4; typedef unsigned long long U8; // NOLINT typedef signed char S1; typedef signed short S2; // NOLINT typedef signed int S4; typedef signed long long S8; // NOLINT #define NOINLINE __attribute__((noinline)) #define INLINE __attribute__((always_inline)) static bool TrackingOrigins() { S8 x; __msan_set_origin(&x, sizeof(x), 0x1234); U4 origin = __msan_get_origin(&x); __msan_set_origin(&x, sizeof(x), 0); return __msan_origin_is_descendant_or_same(origin, 0x1234); } #define EXPECT_ORIGIN(expected, origin) \ EXPECT_TRUE(__msan_origin_is_descendant_or_same((origin), (expected))) #define EXPECT_UMR(action) \ do { \ __msan_set_expect_umr(1); \ action; \ __msan_set_expect_umr(0); \ } while (0) #define EXPECT_UMR_O(action, origin) \ do { \ __msan_set_expect_umr(1); \ action; \ __msan_set_expect_umr(0); \ if (TrackingOrigins()) EXPECT_ORIGIN(origin, __msan_get_umr_origin()); \ } while (0) #define EXPECT_POISONED(x) ExpectPoisoned(x) template void ExpectPoisoned(const T& t) { EXPECT_NE(-1, __msan_test_shadow((void*)&t, sizeof(t))); } #define EXPECT_POISONED_O(x, origin) \ ExpectPoisonedWithOrigin(x, origin) template void ExpectPoisonedWithOrigin(const T& t, unsigned origin) { EXPECT_NE(-1, __msan_test_shadow((void*)&t, sizeof(t))); if (TrackingOrigins()) EXPECT_ORIGIN(origin, __msan_get_origin((void *)&t)); } #define EXPECT_NOT_POISONED(x) EXPECT_EQ(true, TestForNotPoisoned((x))) #define EXPECT_NOT_POISONED2(data, size) \ EXPECT_EQ(true, TestForNotPoisoned((data), (size))) bool TestForNotPoisoned(const void *data, size_t size) { return __msan_test_shadow(data, size) == -1; } template bool TestForNotPoisoned(const T& t) { return TestForNotPoisoned((void *)&t, sizeof(t)); } static U8 poisoned_array[100]; template T *GetPoisoned(int i = 0, T val = 0) { T *res = (T*)&poisoned_array[i]; *res = val; __msan_poison(&poisoned_array[i], sizeof(T)); return res; } template T *GetPoisonedO(int i, U4 origin, T val = 0) { T *res = (T*)&poisoned_array[i]; *res = val; __msan_poison(&poisoned_array[i], sizeof(T)); __msan_set_origin(&poisoned_array[i], sizeof(T), origin); return res; } template T Poisoned(T v = 0, T s = (T)(-1)) { __msan_partial_poison(&v, &s, sizeof(T)); return v; } template NOINLINE T ReturnPoisoned() { return *GetPoisoned(); } static volatile int g_one = 1; static volatile int g_zero = 0; static volatile int g_0 = 0; static volatile int g_1 = 1; S4 a_s4[100]; S8 a_s8[100]; // Check that malloc poisons memory. // A lot of tests below depend on this. TEST(MemorySanitizerSanity, PoisonInMalloc) { int *x = (int*)malloc(sizeof(int)); EXPECT_POISONED(*x); free(x); } TEST(MemorySanitizer, NegativeTest1) { S4 *x = GetPoisoned(); if (g_one) *x = 0; EXPECT_NOT_POISONED(*x); } TEST(MemorySanitizer, PositiveTest1) { // Load to store. EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); // S->S conversions. EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); // ZExt EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(*GetPoisoned()); // Unary ops. EXPECT_POISONED(- *GetPoisoned()); EXPECT_UMR(a_s4[g_zero] = 100 / *GetPoisoned(0, 1)); a_s4[g_zero] = 1 - *GetPoisoned(); a_s4[g_zero] = 1 + *GetPoisoned(); } TEST(MemorySanitizer, Phi1) { S4 c; if (g_one) { c = *GetPoisoned(); } else { break_optimization(0); c = 0; } EXPECT_POISONED(c); } TEST(MemorySanitizer, Phi2) { S4 i = *GetPoisoned(); S4 n = g_one; EXPECT_UMR(for (; i < g_one; i++);); EXPECT_POISONED(i); } NOINLINE void Arg1ExpectUMR(S4 a1) { EXPECT_POISONED(a1); } NOINLINE void Arg2ExpectUMR(S4 a1, S4 a2) { EXPECT_POISONED(a2); } NOINLINE void Arg3ExpectUMR(S1 a1, S4 a2, S8 a3) { EXPECT_POISONED(a3); } TEST(MemorySanitizer, ArgTest) { Arg1ExpectUMR(*GetPoisoned()); Arg2ExpectUMR(0, *GetPoisoned()); Arg3ExpectUMR(0, 1, *GetPoisoned()); } TEST(MemorySanitizer, CallAndRet) { ReturnPoisoned(); ReturnPoisoned(); ReturnPoisoned(); ReturnPoisoned(); EXPECT_POISONED(ReturnPoisoned()); EXPECT_POISONED(ReturnPoisoned()); EXPECT_POISONED(ReturnPoisoned()); EXPECT_POISONED(ReturnPoisoned()); } // malloc() in the following test may be optimized to produce a compile-time // undef value. Check that we trap on the volatile assignment anyway. TEST(MemorySanitizer, DISABLED_MallocNoIdent) { S4 *x = (int*)malloc(sizeof(S4)); EXPECT_POISONED(*x); free(x); } TEST(MemorySanitizer, Malloc) { S4 *x = (int*)Ident(malloc(sizeof(S4))); EXPECT_POISONED(*x); free(x); } TEST(MemorySanitizer, Realloc) { S4 *x = (int*)Ident(realloc(0, sizeof(S4))); EXPECT_POISONED(x[0]); x[0] = 1; x = (int*)Ident(realloc(x, 2 * sizeof(S4))); EXPECT_NOT_POISONED(x[0]); // Ok, was inited before. EXPECT_POISONED(x[1]); x = (int*)Ident(realloc(x, 3 * sizeof(S4))); EXPECT_NOT_POISONED(x[0]); // Ok, was inited before. EXPECT_POISONED(x[2]); EXPECT_POISONED(x[1]); x[2] = 1; // Init this here. Check that after realloc it is poisoned again. x = (int*)Ident(realloc(x, 2 * sizeof(S4))); EXPECT_NOT_POISONED(x[0]); // Ok, was inited before. EXPECT_POISONED(x[1]); x = (int*)Ident(realloc(x, 3 * sizeof(S4))); EXPECT_POISONED(x[1]); EXPECT_POISONED(x[2]); free(x); } TEST(MemorySanitizer, Calloc) { S4 *x = (int*)Ident(calloc(1, sizeof(S4))); EXPECT_NOT_POISONED(*x); // Should not be poisoned. EXPECT_EQ(0, *x); free(x); } TEST(MemorySanitizer, CallocReturnsZeroMem) { size_t sizes[] = {16, 1000, 10000, 100000, 2100000}; for (size_t s = 0; s < sizeof(sizes)/sizeof(sizes[0]); s++) { size_t size = sizes[s]; for (size_t iter = 0; iter < 5; iter++) { char *x = Ident((char*)calloc(1, size)); EXPECT_EQ(x[0], 0); EXPECT_EQ(x[size - 1], 0); EXPECT_EQ(x[size / 2], 0); EXPECT_EQ(x[size / 3], 0); EXPECT_EQ(x[size / 4], 0); memset(x, 0x42, size); free(Ident(x)); } } } TEST(MemorySanitizer, AndOr) { U4 *p = GetPoisoned(); // We poison two bytes in the midle of a 4-byte word to make the test // correct regardless of endianness. ((U1*)p)[1] = 0; ((U1*)p)[2] = 0xff; EXPECT_NOT_POISONED(*p & 0x00ffff00); EXPECT_NOT_POISONED(*p & 0x00ff0000); EXPECT_NOT_POISONED(*p & 0x0000ff00); EXPECT_POISONED(*p & 0xff000000); EXPECT_POISONED(*p & 0x000000ff); EXPECT_POISONED(*p & 0x0000ffff); EXPECT_POISONED(*p & 0xffff0000); EXPECT_NOT_POISONED(*p | 0xff0000ff); EXPECT_NOT_POISONED(*p | 0xff00ffff); EXPECT_NOT_POISONED(*p | 0xffff00ff); EXPECT_POISONED(*p | 0xff000000); EXPECT_POISONED(*p | 0x000000ff); EXPECT_POISONED(*p | 0x0000ffff); EXPECT_POISONED(*p | 0xffff0000); EXPECT_POISONED(*GetPoisoned() & *GetPoisoned()); } template static bool applyNot(T value, T shadow) { __msan_partial_poison(&value, &shadow, sizeof(T)); return !value; } TEST(MemorySanitizer, Not) { EXPECT_NOT_POISONED(applyNot(0x0, 0x0)); EXPECT_NOT_POISONED(applyNot(0xFFFFFFFF, 0x0)); EXPECT_POISONED(applyNot(0xFFFFFFFF, 0xFFFFFFFF)); EXPECT_NOT_POISONED(applyNot(0xFF000000, 0x0FFFFFFF)); EXPECT_NOT_POISONED(applyNot(0xFF000000, 0x00FFFFFF)); EXPECT_NOT_POISONED(applyNot(0xFF000000, 0x0000FFFF)); EXPECT_NOT_POISONED(applyNot(0xFF000000, 0x00000000)); EXPECT_POISONED(applyNot(0xFF000000, 0xFF000000)); EXPECT_NOT_POISONED(applyNot(0xFF800000, 0xFF000000)); EXPECT_POISONED(applyNot(0x00008000, 0x00008000)); EXPECT_NOT_POISONED(applyNot(0x0, 0x0)); EXPECT_NOT_POISONED(applyNot(0xFF, 0xFE)); EXPECT_NOT_POISONED(applyNot(0xFF, 0x0)); EXPECT_POISONED(applyNot(0xFF, 0xFF)); EXPECT_POISONED(applyNot((void*)0xFFFFFF, (void*)(-1))); EXPECT_NOT_POISONED(applyNot((void*)0xFFFFFF, (void*)(-2))); } TEST(MemorySanitizer, Shift) { U4 *up = GetPoisoned(); ((U1*)up)[0] = 0; ((U1*)up)[3] = 0xff; EXPECT_NOT_POISONED(*up >> 30); EXPECT_NOT_POISONED(*up >> 24); EXPECT_POISONED(*up >> 23); EXPECT_POISONED(*up >> 10); EXPECT_NOT_POISONED(*up << 30); EXPECT_NOT_POISONED(*up << 24); EXPECT_POISONED(*up << 23); EXPECT_POISONED(*up << 10); S4 *sp = (S4*)up; EXPECT_NOT_POISONED(*sp >> 30); EXPECT_NOT_POISONED(*sp >> 24); EXPECT_POISONED(*sp >> 23); EXPECT_POISONED(*sp >> 10); sp = GetPoisoned(); ((S1*)sp)[1] = 0; ((S1*)sp)[2] = 0; EXPECT_POISONED(*sp >> 31); EXPECT_POISONED(100 >> *GetPoisoned()); EXPECT_POISONED(100U >> *GetPoisoned()); } NOINLINE static int GetPoisonedZero() { int *zero = new int; *zero = 0; __msan_poison(zero, sizeof(*zero)); int res = *zero; delete zero; return res; } TEST(MemorySanitizer, LoadFromDirtyAddress) { int *a = new int; *a = 0; EXPECT_UMR(break_optimization((void*)(U8)a[GetPoisonedZero()])); delete a; } TEST(MemorySanitizer, StoreToDirtyAddress) { int *a = new int; EXPECT_UMR(a[GetPoisonedZero()] = 0); break_optimization(a); delete a; } NOINLINE void StackTestFunc() { S4 p4; S4 ok4 = 1; S2 p2; S2 ok2 = 1; S1 p1; S1 ok1 = 1; break_optimization(&p4); break_optimization(&ok4); break_optimization(&p2); break_optimization(&ok2); break_optimization(&p1); break_optimization(&ok1); EXPECT_POISONED(p4); EXPECT_POISONED(p2); EXPECT_POISONED(p1); EXPECT_NOT_POISONED(ok1); EXPECT_NOT_POISONED(ok2); EXPECT_NOT_POISONED(ok4); } TEST(MemorySanitizer, StackTest) { StackTestFunc(); } NOINLINE void StackStressFunc() { int foo[10000]; break_optimization(foo); } TEST(MemorySanitizer, DISABLED_StackStressTest) { for (int i = 0; i < 1000000; i++) StackStressFunc(); } template void TestFloatingPoint() { static volatile T v; static T g[100]; break_optimization(&g); T *x = GetPoisoned(); T *y = GetPoisoned(1); EXPECT_POISONED(*x); EXPECT_POISONED((long long)*x); EXPECT_POISONED((int)*x); g[0] = *x; g[1] = *x + *y; g[2] = *x - *y; g[3] = *x * *y; } TEST(MemorySanitizer, FloatingPointTest) { TestFloatingPoint(); TestFloatingPoint(); } TEST(MemorySanitizer, DynMem) { S4 x = 0; S4 *y = GetPoisoned(); memcpy(y, &x, g_one * sizeof(S4)); EXPECT_NOT_POISONED(*y); } static char *DynRetTestStr; TEST(MemorySanitizer, DynRet) { ReturnPoisoned(); EXPECT_NOT_POISONED(atoi("0")); } TEST(MemorySanitizer, DynRet1) { ReturnPoisoned(); } struct LargeStruct { S4 x[10]; }; NOINLINE LargeStruct LargeRetTest() { LargeStruct res; res.x[0] = *GetPoisoned(); res.x[1] = *GetPoisoned(); res.x[2] = *GetPoisoned(); res.x[3] = *GetPoisoned(); res.x[4] = *GetPoisoned(); res.x[5] = *GetPoisoned(); res.x[6] = *GetPoisoned(); res.x[7] = *GetPoisoned(); res.x[8] = *GetPoisoned(); res.x[9] = *GetPoisoned(); return res; } TEST(MemorySanitizer, strcmp) { char s1[10]; char s2[10]; strncpy(s1, "foo", 10); s2[0] = 'f'; s2[1] = 'n'; EXPECT_GT(strcmp(s1, s2), 0); s2[1] = 'o'; int res; EXPECT_UMR(res = strcmp(s1, s2)); EXPECT_NOT_POISONED(res); EXPECT_EQ(strncmp(s1, s2, 1), 0); } TEST(MemorySanitizer, LargeRet) { LargeStruct a = LargeRetTest(); EXPECT_POISONED(a.x[0]); EXPECT_POISONED(a.x[9]); } TEST(MemorySanitizer, strerror) { char *buf = strerror(EINVAL); EXPECT_NOT_POISONED(strlen(buf)); buf = strerror(123456); EXPECT_NOT_POISONED(strlen(buf)); } TEST(MemorySanitizer, strerror_r) { errno = 0; char buf[1000]; char *res = (char*) (size_t) strerror_r(EINVAL, buf, sizeof(buf)); ASSERT_EQ(0, errno); if (!res) res = buf; // POSIX version success. EXPECT_NOT_POISONED(strlen(res)); } TEST(MemorySanitizer, fread) { char *x = new char[32]; FILE *f = fopen(FILE_TO_READ, "r"); ASSERT_TRUE(f != NULL); fread(x, 1, 32, f); EXPECT_NOT_POISONED(x[0]); EXPECT_NOT_POISONED(x[16]); EXPECT_NOT_POISONED(x[31]); fclose(f); delete[] x; } TEST(MemorySanitizer, read) { char *x = new char[32]; int fd = open(FILE_TO_READ, O_RDONLY); ASSERT_GT(fd, 0); int sz = read(fd, x, 32); ASSERT_EQ(sz, 32); EXPECT_NOT_POISONED(x[0]); EXPECT_NOT_POISONED(x[16]); EXPECT_NOT_POISONED(x[31]); close(fd); delete[] x; } TEST(MemorySanitizer, pread) { char *x = new char[32]; int fd = open(FILE_TO_READ, O_RDONLY); ASSERT_GT(fd, 0); int sz = pread(fd, x, 32, 0); ASSERT_EQ(sz, 32); EXPECT_NOT_POISONED(x[0]); EXPECT_NOT_POISONED(x[16]); EXPECT_NOT_POISONED(x[31]); close(fd); delete[] x; } TEST(MemorySanitizer, readv) { char buf[2011]; struct iovec iov[2]; iov[0].iov_base = buf + 1; iov[0].iov_len = 5; iov[1].iov_base = buf + 10; iov[1].iov_len = 2000; int fd = open(FILE_TO_READ, O_RDONLY); ASSERT_GT(fd, 0); int sz = readv(fd, iov, 2); ASSERT_GE(sz, 0); ASSERT_LE(sz, 5 + 2000); ASSERT_GT((size_t)sz, iov[0].iov_len); EXPECT_POISONED(buf[0]); EXPECT_NOT_POISONED(buf[1]); EXPECT_NOT_POISONED(buf[5]); EXPECT_POISONED(buf[6]); EXPECT_POISONED(buf[9]); EXPECT_NOT_POISONED(buf[10]); EXPECT_NOT_POISONED(buf[10 + (sz - 1) - 5]); EXPECT_POISONED(buf[11 + (sz - 1) - 5]); close(fd); } TEST(MemorySanitizer, preadv) { char buf[2011]; struct iovec iov[2]; iov[0].iov_base = buf + 1; iov[0].iov_len = 5; iov[1].iov_base = buf + 10; iov[1].iov_len = 2000; int fd = open(FILE_TO_READ, O_RDONLY); ASSERT_GT(fd, 0); int sz = preadv(fd, iov, 2, 3); ASSERT_GE(sz, 0); ASSERT_LE(sz, 5 + 2000); ASSERT_GT((size_t)sz, iov[0].iov_len); EXPECT_POISONED(buf[0]); EXPECT_NOT_POISONED(buf[1]); EXPECT_NOT_POISONED(buf[5]); EXPECT_POISONED(buf[6]); EXPECT_POISONED(buf[9]); EXPECT_NOT_POISONED(buf[10]); EXPECT_NOT_POISONED(buf[10 + (sz - 1) - 5]); EXPECT_POISONED(buf[11 + (sz - 1) - 5]); close(fd); } // FIXME: fails now. TEST(MemorySanitizer, DISABLED_ioctl) { struct winsize ws; EXPECT_EQ(ioctl(2, TIOCGWINSZ, &ws), 0); EXPECT_NOT_POISONED(ws.ws_col); } TEST(MemorySanitizer, readlink) { char *x = new char[1000]; readlink(SYMLINK_TO_READ, x, 1000); EXPECT_NOT_POISONED(x[0]); delete [] x; } TEST(MemorySanitizer, stat) { struct stat* st = new struct stat; int res = stat(FILE_TO_READ, st); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(st->st_dev); EXPECT_NOT_POISONED(st->st_mode); EXPECT_NOT_POISONED(st->st_size); } TEST(MemorySanitizer, fstatat) { struct stat* st = new struct stat; int dirfd = open(DIR_TO_READ, O_RDONLY); ASSERT_GT(dirfd, 0); int res = fstatat(dirfd, SUBFILE_TO_READ, st, 0); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(st->st_dev); EXPECT_NOT_POISONED(st->st_mode); EXPECT_NOT_POISONED(st->st_size); close(dirfd); } TEST(MemorySanitizer, statfs) { struct statfs st; int res = statfs("/", &st); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(st.f_type); EXPECT_NOT_POISONED(st.f_bfree); EXPECT_NOT_POISONED(st.f_namelen); } TEST(MemorySanitizer, statvfs) { struct statvfs st; int res = statvfs("/", &st); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(st.f_bsize); EXPECT_NOT_POISONED(st.f_blocks); EXPECT_NOT_POISONED(st.f_bfree); EXPECT_NOT_POISONED(st.f_namemax); } TEST(MemorySanitizer, fstatvfs) { struct statvfs st; int fd = open("/", O_RDONLY | O_DIRECTORY); int res = fstatvfs(fd, &st); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(st.f_bsize); EXPECT_NOT_POISONED(st.f_blocks); EXPECT_NOT_POISONED(st.f_bfree); EXPECT_NOT_POISONED(st.f_namemax); close(fd); } TEST(MemorySanitizer, pipe) { int* pipefd = new int[2]; int res = pipe(pipefd); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(pipefd[0]); EXPECT_NOT_POISONED(pipefd[1]); close(pipefd[0]); close(pipefd[1]); } TEST(MemorySanitizer, pipe2) { int* pipefd = new int[2]; int res = pipe2(pipefd, O_NONBLOCK); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(pipefd[0]); EXPECT_NOT_POISONED(pipefd[1]); close(pipefd[0]); close(pipefd[1]); } TEST(MemorySanitizer, socketpair) { int sv[2]; int res = socketpair(AF_UNIX, SOCK_STREAM, 0, sv); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(sv[0]); EXPECT_NOT_POISONED(sv[1]); close(sv[0]); close(sv[1]); } TEST(MemorySanitizer, poll) { int* pipefd = new int[2]; int res = pipe(pipefd); ASSERT_EQ(0, res); char data = 42; res = write(pipefd[1], &data, 1); ASSERT_EQ(1, res); pollfd fds[2]; fds[0].fd = pipefd[0]; fds[0].events = POLLIN; fds[1].fd = pipefd[1]; fds[1].events = POLLIN; res = poll(fds, 2, 500); ASSERT_EQ(1, res); EXPECT_NOT_POISONED(fds[0].revents); EXPECT_NOT_POISONED(fds[1].revents); close(pipefd[0]); close(pipefd[1]); } // There is no ppoll() on FreeBSD. #if !defined (__FreeBSD__) TEST(MemorySanitizer, ppoll) { int* pipefd = new int[2]; int res = pipe(pipefd); ASSERT_EQ(0, res); char data = 42; res = write(pipefd[1], &data, 1); ASSERT_EQ(1, res); pollfd fds[2]; fds[0].fd = pipefd[0]; fds[0].events = POLLIN; fds[1].fd = pipefd[1]; fds[1].events = POLLIN; sigset_t ss; sigemptyset(&ss); res = ppoll(fds, 2, NULL, &ss); ASSERT_EQ(1, res); EXPECT_NOT_POISONED(fds[0].revents); EXPECT_NOT_POISONED(fds[1].revents); close(pipefd[0]); close(pipefd[1]); } #endif TEST(MemorySanitizer, poll_positive) { int* pipefd = new int[2]; int res = pipe(pipefd); ASSERT_EQ(0, res); pollfd fds[2]; fds[0].fd = pipefd[0]; fds[0].events = POLLIN; // fds[1].fd uninitialized fds[1].events = POLLIN; EXPECT_UMR(poll(fds, 2, 0)); close(pipefd[0]); close(pipefd[1]); } TEST(MemorySanitizer, bind_getsockname) { int sock = socket(AF_UNIX, SOCK_STREAM, 0); struct sockaddr_in sai; memset(&sai, 0, sizeof(sai)); sai.sin_family = AF_UNIX; int res = bind(sock, (struct sockaddr *)&sai, sizeof(sai)); ASSERT_EQ(0, res); char buf[200]; socklen_t addrlen; EXPECT_UMR(getsockname(sock, (struct sockaddr *)&buf, &addrlen)); addrlen = sizeof(buf); res = getsockname(sock, (struct sockaddr *)&buf, &addrlen); EXPECT_NOT_POISONED(addrlen); EXPECT_NOT_POISONED(buf[0]); EXPECT_NOT_POISONED(buf[addrlen - 1]); EXPECT_POISONED(buf[addrlen]); close(sock); } class SocketAddr { public: virtual ~SocketAddr() = default; virtual struct sockaddr *ptr() = 0; virtual size_t size() const = 0; template static std::unique_ptr Create(int family, Args... args); }; class SocketAddr4 : public SocketAddr { public: SocketAddr4() { EXPECT_POISONED(sai_); } explicit SocketAddr4(uint16_t port) { memset(&sai_, 0, sizeof(sai_)); sai_.sin_family = AF_INET; sai_.sin_port = port; sai_.sin_addr.s_addr = htonl(INADDR_LOOPBACK); } sockaddr *ptr() override { return reinterpret_cast(&sai_); } size_t size() const override { return sizeof(sai_); } private: sockaddr_in sai_; }; class SocketAddr6 : public SocketAddr { public: SocketAddr6() { EXPECT_POISONED(sai_); } explicit SocketAddr6(uint16_t port) { memset(&sai_, 0, sizeof(sai_)); sai_.sin6_family = AF_INET6; sai_.sin6_port = port; sai_.sin6_addr = in6addr_loopback; } sockaddr *ptr() override { return reinterpret_cast(&sai_); } size_t size() const override { return sizeof(sai_); } private: sockaddr_in6 sai_; }; template std::unique_ptr SocketAddr::Create(int family, Args... args) { if (family == AF_INET) return std::unique_ptr(new SocketAddr4(args...)); return std::unique_ptr(new SocketAddr6(args...)); } class MemorySanitizerIpTest : public ::testing::TestWithParam { public: void SetUp() override { ASSERT_TRUE(GetParam() == AF_INET || GetParam() == AF_INET6); } template std::unique_ptr CreateSockAddr(Args... args) const { return SocketAddr::Create(GetParam(), args...); } int CreateSocket(int socket_type) const { return socket(GetParam(), socket_type, 0); } }; std::vector GetAvailableIpSocketFamilies() { std::vector result; for (int i : {AF_INET, AF_INET6}) { int s = socket(i, SOCK_STREAM, 0); if (s > 0) { auto sai = SocketAddr::Create(i, 0); if (bind(s, sai->ptr(), sai->size()) == 0) result.push_back(i); close(s); } } return result; } INSTANTIATE_TEST_CASE_P(IpTests, MemorySanitizerIpTest, ::testing::ValuesIn(GetAvailableIpSocketFamilies())); TEST_P(MemorySanitizerIpTest, accept) { int listen_socket = CreateSocket(SOCK_STREAM); ASSERT_LT(0, listen_socket); auto sai = CreateSockAddr(0); int res = bind(listen_socket, sai->ptr(), sai->size()); ASSERT_EQ(0, res); res = listen(listen_socket, 1); ASSERT_EQ(0, res); socklen_t sz = sai->size(); res = getsockname(listen_socket, sai->ptr(), &sz); ASSERT_EQ(0, res); ASSERT_EQ(sai->size(), sz); int connect_socket = CreateSocket(SOCK_STREAM); ASSERT_LT(0, connect_socket); res = fcntl(connect_socket, F_SETFL, O_NONBLOCK); ASSERT_EQ(0, res); res = connect(connect_socket, sai->ptr(), sai->size()); // On FreeBSD this connection completes immediately. if (res != 0) { ASSERT_EQ(-1, res); ASSERT_EQ(EINPROGRESS, errno); } __msan_poison(sai->ptr(), sai->size()); int new_sock = accept(listen_socket, sai->ptr(), &sz); ASSERT_LT(0, new_sock); ASSERT_EQ(sai->size(), sz); EXPECT_NOT_POISONED2(sai->ptr(), sai->size()); __msan_poison(sai->ptr(), sai->size()); res = getpeername(new_sock, sai->ptr(), &sz); ASSERT_EQ(0, res); ASSERT_EQ(sai->size(), sz); EXPECT_NOT_POISONED2(sai->ptr(), sai->size()); close(new_sock); close(connect_socket); close(listen_socket); } TEST_P(MemorySanitizerIpTest, recvmsg) { int server_socket = CreateSocket(SOCK_DGRAM); ASSERT_LT(0, server_socket); auto sai = CreateSockAddr(0); int res = bind(server_socket, sai->ptr(), sai->size()); ASSERT_EQ(0, res); socklen_t sz = sai->size(); res = getsockname(server_socket, sai->ptr(), &sz); ASSERT_EQ(0, res); ASSERT_EQ(sai->size(), sz); int client_socket = CreateSocket(SOCK_DGRAM); ASSERT_LT(0, client_socket); auto client_sai = CreateSockAddr(0); res = bind(client_socket, client_sai->ptr(), client_sai->size()); ASSERT_EQ(0, res); sz = client_sai->size(); res = getsockname(client_socket, client_sai->ptr(), &sz); ASSERT_EQ(0, res); ASSERT_EQ(client_sai->size(), sz); const char *s = "message text"; struct iovec iov; iov.iov_base = (void *)s; iov.iov_len = strlen(s) + 1; struct msghdr msg; memset(&msg, 0, sizeof(msg)); msg.msg_name = sai->ptr(); msg.msg_namelen = sai->size(); msg.msg_iov = &iov; msg.msg_iovlen = 1; res = sendmsg(client_socket, &msg, 0); ASSERT_LT(0, res); char buf[1000]; struct iovec recv_iov; recv_iov.iov_base = (void *)&buf; recv_iov.iov_len = sizeof(buf); auto recv_sai = CreateSockAddr(); struct msghdr recv_msg; memset(&recv_msg, 0, sizeof(recv_msg)); recv_msg.msg_name = recv_sai->ptr(); recv_msg.msg_namelen = recv_sai->size(); recv_msg.msg_iov = &recv_iov; recv_msg.msg_iovlen = 1; res = recvmsg(server_socket, &recv_msg, 0); ASSERT_LT(0, res); ASSERT_EQ(recv_sai->size(), recv_msg.msg_namelen); EXPECT_NOT_POISONED2(recv_sai->ptr(), recv_sai->size()); EXPECT_STREQ(s, buf); close(server_socket); close(client_socket); } #define EXPECT_HOSTENT_NOT_POISONED(he) \ do { \ EXPECT_NOT_POISONED(*(he)); \ ASSERT_NE((void *)0, (he)->h_name); \ ASSERT_NE((void *)0, (he)->h_aliases); \ ASSERT_NE((void *)0, (he)->h_addr_list); \ EXPECT_NOT_POISONED(strlen((he)->h_name)); \ char **p = (he)->h_aliases; \ while (*p) { \ EXPECT_NOT_POISONED(strlen(*p)); \ ++p; \ } \ char **q = (he)->h_addr_list; \ while (*q) { \ EXPECT_NOT_POISONED(*q[0]); \ ++q; \ } \ EXPECT_NOT_POISONED(*q); \ } while (0) TEST(MemorySanitizer, gethostent) { struct hostent *he = gethostent(); ASSERT_NE((void *)NULL, he); EXPECT_HOSTENT_NOT_POISONED(he); } #ifndef MSAN_TEST_DISABLE_GETHOSTBYNAME TEST(MemorySanitizer, gethostbyname) { struct hostent *he = gethostbyname("localhost"); ASSERT_NE((void *)NULL, he); EXPECT_HOSTENT_NOT_POISONED(he); } #endif // MSAN_TEST_DISABLE_GETHOSTBYNAME TEST(MemorySanitizer, getaddrinfo) { struct addrinfo *ai; struct addrinfo hints; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_INET; int res = getaddrinfo("localhost", NULL, &hints, &ai); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(*ai); ASSERT_EQ(sizeof(sockaddr_in), ai->ai_addrlen); EXPECT_NOT_POISONED(*(sockaddr_in *)ai->ai_addr); } TEST(MemorySanitizer, getnameinfo) { struct sockaddr_in sai; memset(&sai, 0, sizeof(sai)); sai.sin_family = AF_INET; sai.sin_port = 80; sai.sin_addr.s_addr = htonl(INADDR_LOOPBACK); char host[500]; char serv[500]; int res = getnameinfo((struct sockaddr *)&sai, sizeof(sai), host, sizeof(host), serv, sizeof(serv), 0); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(host[0]); EXPECT_POISONED(host[sizeof(host) - 1]); ASSERT_NE(0U, strlen(host)); EXPECT_NOT_POISONED(serv[0]); EXPECT_POISONED(serv[sizeof(serv) - 1]); ASSERT_NE(0U, strlen(serv)); } TEST(MemorySanitizer, gethostbyname2) { struct hostent *he = gethostbyname2("localhost", AF_INET); ASSERT_NE((void *)NULL, he); EXPECT_HOSTENT_NOT_POISONED(he); } TEST(MemorySanitizer, gethostbyaddr) { in_addr_t addr = inet_addr("127.0.0.1"); EXPECT_NOT_POISONED(addr); struct hostent *he = gethostbyaddr(&addr, sizeof(addr), AF_INET); ASSERT_NE((void *)NULL, he); EXPECT_HOSTENT_NOT_POISONED(he); } TEST(MemorySanitizer, gethostent_r) { char buf[2000]; struct hostent he; struct hostent *result; int err; int res = gethostent_r(&he, buf, sizeof(buf), &result, &err); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(result); ASSERT_NE((void *)NULL, result); EXPECT_HOSTENT_NOT_POISONED(result); EXPECT_NOT_POISONED(err); } TEST(MemorySanitizer, gethostbyname_r) { char buf[2000]; struct hostent he; struct hostent *result; int err; int res = gethostbyname_r("localhost", &he, buf, sizeof(buf), &result, &err); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(result); ASSERT_NE((void *)NULL, result); EXPECT_HOSTENT_NOT_POISONED(result); EXPECT_NOT_POISONED(err); } TEST(MemorySanitizer, gethostbyname_r_bad_host_name) { char buf[2000]; struct hostent he; struct hostent *result; int err; int res = gethostbyname_r("bad-host-name", &he, buf, sizeof(buf), &result, &err); ASSERT_EQ((struct hostent *)0, result); EXPECT_NOT_POISONED(err); } TEST(MemorySanitizer, gethostbyname_r_erange) { char buf[5]; struct hostent he; struct hostent *result; int err; gethostbyname_r("localhost", &he, buf, sizeof(buf), &result, &err); ASSERT_EQ(ERANGE, errno); EXPECT_NOT_POISONED(err); } TEST(MemorySanitizer, gethostbyname2_r) { char buf[2000]; struct hostent he; struct hostent *result; int err; int res = gethostbyname2_r("localhost", AF_INET, &he, buf, sizeof(buf), &result, &err); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(result); ASSERT_NE((void *)NULL, result); EXPECT_HOSTENT_NOT_POISONED(result); EXPECT_NOT_POISONED(err); } TEST(MemorySanitizer, gethostbyaddr_r) { char buf[2000]; struct hostent he; struct hostent *result; int err; in_addr_t addr = inet_addr("127.0.0.1"); EXPECT_NOT_POISONED(addr); int res = gethostbyaddr_r(&addr, sizeof(addr), AF_INET, &he, buf, sizeof(buf), &result, &err); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(result); ASSERT_NE((void *)NULL, result); EXPECT_HOSTENT_NOT_POISONED(result); EXPECT_NOT_POISONED(err); } TEST(MemorySanitizer, getsockopt) { int sock = socket(AF_UNIX, SOCK_STREAM, 0); struct linger l[2]; socklen_t sz = sizeof(l[0]); int res = getsockopt(sock, SOL_SOCKET, SO_LINGER, &l[0], &sz); ASSERT_EQ(0, res); ASSERT_EQ(sizeof(l[0]), sz); EXPECT_NOT_POISONED(l[0]); EXPECT_POISONED(*(char *)(l + 1)); } TEST(MemorySanitizer, getcwd) { char path[PATH_MAX + 1]; char* res = getcwd(path, sizeof(path)); ASSERT_TRUE(res != NULL); EXPECT_NOT_POISONED(path[0]); } TEST(MemorySanitizer, getcwd_gnu) { char* res = getcwd(NULL, 0); ASSERT_TRUE(res != NULL); EXPECT_NOT_POISONED(res[0]); free(res); } // There's no get_current_dir_name() on FreeBSD. #if !defined(__FreeBSD__) TEST(MemorySanitizer, get_current_dir_name) { char* res = get_current_dir_name(); ASSERT_TRUE(res != NULL); EXPECT_NOT_POISONED(res[0]); free(res); } #endif TEST(MemorySanitizer, shmctl) { int id = shmget(IPC_PRIVATE, 4096, 0644 | IPC_CREAT); ASSERT_GT(id, -1); struct shmid_ds ds; int res = shmctl(id, IPC_STAT, &ds); ASSERT_GT(res, -1); EXPECT_NOT_POISONED(ds); // FreeBSD does not support shmctl(IPC_INFO) and shmctl(SHM_INFO). #if !defined(__FreeBSD__) struct shminfo si; res = shmctl(id, IPC_INFO, (struct shmid_ds *)&si); ASSERT_GT(res, -1); EXPECT_NOT_POISONED(si); struct shm_info s_i; res = shmctl(id, SHM_INFO, (struct shmid_ds *)&s_i); ASSERT_GT(res, -1); EXPECT_NOT_POISONED(s_i); #endif res = shmctl(id, IPC_RMID, 0); ASSERT_GT(res, -1); } TEST(MemorySanitizer, shmat) { const int kShmSize = 4096; void *mapping_start = mmap(NULL, kShmSize + SHMLBA, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); ASSERT_NE(MAP_FAILED, mapping_start); void *p = (void *)(((unsigned long)mapping_start + SHMLBA - 1) / SHMLBA * SHMLBA); // p is now SHMLBA-aligned; ((char *)p)[10] = *GetPoisoned(); ((char *)p)[kShmSize - 1] = *GetPoisoned(); int res = munmap(mapping_start, kShmSize + SHMLBA); ASSERT_EQ(0, res); int id = shmget(IPC_PRIVATE, kShmSize, 0644 | IPC_CREAT); ASSERT_GT(id, -1); void *q = shmat(id, p, 0); ASSERT_EQ(p, q); EXPECT_NOT_POISONED(((char *)q)[0]); EXPECT_NOT_POISONED(((char *)q)[10]); EXPECT_NOT_POISONED(((char *)q)[kShmSize - 1]); res = shmdt(q); ASSERT_EQ(0, res); res = shmctl(id, IPC_RMID, 0); ASSERT_GT(res, -1); } // There's no random_r() on FreeBSD. #if !defined(__FreeBSD__) TEST(MemorySanitizer, random_r) { int32_t x; char z[64]; memset(z, 0, sizeof(z)); struct random_data buf; memset(&buf, 0, sizeof(buf)); int res = initstate_r(0, z, sizeof(z), &buf); ASSERT_EQ(0, res); res = random_r(&buf, &x); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(x); } #endif TEST(MemorySanitizer, confstr) { char buf[3]; size_t res = confstr(_CS_PATH, buf, sizeof(buf)); ASSERT_GT(res, sizeof(buf)); EXPECT_NOT_POISONED(buf[0]); EXPECT_NOT_POISONED(buf[sizeof(buf) - 1]); char buf2[1000]; res = confstr(_CS_PATH, buf2, sizeof(buf2)); ASSERT_LT(res, sizeof(buf2)); EXPECT_NOT_POISONED(buf2[0]); EXPECT_NOT_POISONED(buf2[res - 1]); EXPECT_POISONED(buf2[res]); ASSERT_EQ(res, strlen(buf2) + 1); } TEST(MemorySanitizer, opendir) { DIR *dir = opendir("."); closedir(dir); char name[10] = "."; __msan_poison(name, sizeof(name)); EXPECT_UMR(dir = opendir(name)); closedir(dir); } TEST(MemorySanitizer, readdir) { DIR *dir = opendir("."); struct dirent *d = readdir(dir); ASSERT_TRUE(d != NULL); EXPECT_NOT_POISONED(d->d_name[0]); closedir(dir); } TEST(MemorySanitizer, readdir_r) { DIR *dir = opendir("."); struct dirent d; struct dirent *pd; int res = readdir_r(dir, &d, &pd); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(pd); EXPECT_NOT_POISONED(d.d_name[0]); closedir(dir); } TEST(MemorySanitizer, realpath) { const char* relpath = "."; char path[PATH_MAX + 1]; char* res = realpath(relpath, path); ASSERT_TRUE(res != NULL); EXPECT_NOT_POISONED(path[0]); } TEST(MemorySanitizer, realpath_null) { const char* relpath = "."; char* res = realpath(relpath, NULL); printf("%d, %s\n", errno, strerror(errno)); ASSERT_TRUE(res != NULL); EXPECT_NOT_POISONED(res[0]); free(res); } // There's no canonicalize_file_name() on FreeBSD. #if !defined(__FreeBSD__) TEST(MemorySanitizer, canonicalize_file_name) { const char* relpath = "."; char* res = canonicalize_file_name(relpath); ASSERT_TRUE(res != NULL); EXPECT_NOT_POISONED(res[0]); free(res); } #endif extern char **environ; TEST(MemorySanitizer, setenv) { setenv("AAA", "BBB", 1); for (char **envp = environ; *envp; ++envp) { EXPECT_NOT_POISONED(*envp); EXPECT_NOT_POISONED(*envp[0]); } } TEST(MemorySanitizer, putenv) { char s[] = "AAA=BBB"; putenv(s); for (char **envp = environ; *envp; ++envp) { EXPECT_NOT_POISONED(*envp); EXPECT_NOT_POISONED(*envp[0]); } } TEST(MemorySanitizer, memcpy) { char* x = new char[2]; char* y = new char[2]; x[0] = 1; x[1] = *GetPoisoned(); memcpy(y, x, 2); EXPECT_NOT_POISONED(y[0]); EXPECT_POISONED(y[1]); } void TestUnalignedMemcpy(unsigned left, unsigned right, bool src_is_aligned, bool src_is_poisoned, bool dst_is_poisoned) { fprintf(stderr, "%s(%d, %d, %d, %d, %d)\n", __func__, left, right, src_is_aligned, src_is_poisoned, dst_is_poisoned); const unsigned sz = 20; U4 dst_origin, src_origin; char *dst = (char *)malloc(sz); if (dst_is_poisoned) dst_origin = __msan_get_origin(dst); else memset(dst, 0, sz); char *src = (char *)malloc(sz); if (src_is_poisoned) src_origin = __msan_get_origin(src); else memset(src, 0, sz); memcpy(dst + left, src_is_aligned ? src + left : src, sz - left - right); for (unsigned i = 0; i < (left & (~3U)); ++i) if (dst_is_poisoned) EXPECT_POISONED_O(dst[i], dst_origin); else EXPECT_NOT_POISONED(dst[i]); for (unsigned i = 0; i < (right & (~3U)); ++i) if (dst_is_poisoned) EXPECT_POISONED_O(dst[sz - i - 1], dst_origin); else EXPECT_NOT_POISONED(dst[sz - i - 1]); for (unsigned i = left; i < sz - right; ++i) if (src_is_poisoned) EXPECT_POISONED_O(dst[i], src_origin); else EXPECT_NOT_POISONED(dst[i]); free(dst); free(src); } TEST(MemorySanitizer, memcpy_unaligned) { for (int i = 0; i < 10; ++i) for (int j = 0; j < 10; ++j) for (int aligned = 0; aligned < 2; ++aligned) for (int srcp = 0; srcp < 2; ++srcp) for (int dstp = 0; dstp < 2; ++dstp) TestUnalignedMemcpy(i, j, aligned, srcp, dstp); } TEST(MemorySanitizer, memmove) { char* x = new char[2]; char* y = new char[2]; x[0] = 1; x[1] = *GetPoisoned(); memmove(y, x, 2); EXPECT_NOT_POISONED(y[0]); EXPECT_POISONED(y[1]); } TEST(MemorySanitizer, memccpy_nomatch) { char* x = new char[5]; char* y = new char[5]; strcpy(x, "abc"); memccpy(y, x, 'd', 4); EXPECT_NOT_POISONED(y[0]); EXPECT_NOT_POISONED(y[1]); EXPECT_NOT_POISONED(y[2]); EXPECT_NOT_POISONED(y[3]); EXPECT_POISONED(y[4]); delete[] x; delete[] y; } TEST(MemorySanitizer, memccpy_match) { char* x = new char[5]; char* y = new char[5]; strcpy(x, "abc"); memccpy(y, x, 'b', 4); EXPECT_NOT_POISONED(y[0]); EXPECT_NOT_POISONED(y[1]); EXPECT_POISONED(y[2]); EXPECT_POISONED(y[3]); EXPECT_POISONED(y[4]); delete[] x; delete[] y; } TEST(MemorySanitizer, memccpy_nomatch_positive) { char* x = new char[5]; char* y = new char[5]; strcpy(x, "abc"); EXPECT_UMR(memccpy(y, x, 'd', 5)); delete[] x; delete[] y; } TEST(MemorySanitizer, memccpy_match_positive) { char* x = new char[5]; char* y = new char[5]; x[0] = 'a'; x[2] = 'b'; EXPECT_UMR(memccpy(y, x, 'b', 5)); delete[] x; delete[] y; } TEST(MemorySanitizer, bcopy) { char* x = new char[2]; char* y = new char[2]; x[0] = 1; x[1] = *GetPoisoned(); bcopy(x, y, 2); EXPECT_NOT_POISONED(y[0]); EXPECT_POISONED(y[1]); } TEST(MemorySanitizer, strdup) { char buf[4] = "abc"; __msan_poison(buf + 2, sizeof(*buf)); char *x = strdup(buf); EXPECT_NOT_POISONED(x[0]); EXPECT_NOT_POISONED(x[1]); EXPECT_POISONED(x[2]); EXPECT_NOT_POISONED(x[3]); free(x); } TEST(MemorySanitizer, strndup) { char buf[4] = "abc"; __msan_poison(buf + 2, sizeof(*buf)); - char *x; - EXPECT_UMR(x = strndup(buf, 3)); + char *x = strndup(buf, 3); EXPECT_NOT_POISONED(x[0]); EXPECT_NOT_POISONED(x[1]); EXPECT_POISONED(x[2]); EXPECT_NOT_POISONED(x[3]); free(x); } TEST(MemorySanitizer, strndup_short) { char buf[4] = "abc"; __msan_poison(buf + 1, sizeof(*buf)); __msan_poison(buf + 2, sizeof(*buf)); - char *x; - EXPECT_UMR(x = strndup(buf, 2)); + char *x = strndup(buf, 2); EXPECT_NOT_POISONED(x[0]); EXPECT_POISONED(x[1]); EXPECT_NOT_POISONED(x[2]); free(x); } template void TestOverlapMemmove() { T *x = new T[size]; ASSERT_GE(size, 3); x[2] = 0; memmove(x, x + 1, (size - 1) * sizeof(T)); EXPECT_NOT_POISONED(x[1]); EXPECT_POISONED(x[0]); EXPECT_POISONED(x[2]); delete [] x; } TEST(MemorySanitizer, overlap_memmove) { TestOverlapMemmove(); TestOverlapMemmove(); TestOverlapMemmove(); TestOverlapMemmove(); } TEST(MemorySanitizer, strcpy) { // NOLINT char* x = new char[3]; char* y = new char[3]; x[0] = 'a'; x[1] = *GetPoisoned(1, 1); x[2] = 0; strcpy(y, x); // NOLINT EXPECT_NOT_POISONED(y[0]); EXPECT_POISONED(y[1]); EXPECT_NOT_POISONED(y[2]); } TEST(MemorySanitizer, strncpy) { // NOLINT char* x = new char[3]; char* y = new char[5]; x[0] = 'a'; x[1] = *GetPoisoned(1, 1); x[2] = '\0'; strncpy(y, x, 4); // NOLINT EXPECT_NOT_POISONED(y[0]); EXPECT_POISONED(y[1]); EXPECT_NOT_POISONED(y[2]); EXPECT_NOT_POISONED(y[3]); EXPECT_POISONED(y[4]); } TEST(MemorySanitizer, stpcpy) { // NOLINT char* x = new char[3]; char* y = new char[3]; x[0] = 'a'; x[1] = *GetPoisoned(1, 1); x[2] = 0; char *res = stpcpy(y, x); // NOLINT ASSERT_EQ(res, y + 2); EXPECT_NOT_POISONED(y[0]); EXPECT_POISONED(y[1]); EXPECT_NOT_POISONED(y[2]); } TEST(MemorySanitizer, strcat) { // NOLINT char a[10]; char b[] = "def"; strcpy(a, "abc"); __msan_poison(b + 1, 1); strcat(a, b); EXPECT_NOT_POISONED(a[3]); EXPECT_POISONED(a[4]); EXPECT_NOT_POISONED(a[5]); EXPECT_NOT_POISONED(a[6]); EXPECT_POISONED(a[7]); } TEST(MemorySanitizer, strncat) { // NOLINT char a[10]; char b[] = "def"; strcpy(a, "abc"); __msan_poison(b + 1, 1); strncat(a, b, 5); EXPECT_NOT_POISONED(a[3]); EXPECT_POISONED(a[4]); EXPECT_NOT_POISONED(a[5]); EXPECT_NOT_POISONED(a[6]); EXPECT_POISONED(a[7]); } TEST(MemorySanitizer, strncat_overflow) { // NOLINT char a[10]; char b[] = "def"; strcpy(a, "abc"); __msan_poison(b + 1, 1); strncat(a, b, 2); EXPECT_NOT_POISONED(a[3]); EXPECT_POISONED(a[4]); EXPECT_NOT_POISONED(a[5]); EXPECT_POISONED(a[6]); EXPECT_POISONED(a[7]); } #define TEST_STRTO_INT(func_name, char_type, str_prefix) \ TEST(MemorySanitizer, func_name) { \ char_type *e; \ EXPECT_EQ(1U, func_name(str_prefix##"1", &e, 10)); \ EXPECT_NOT_POISONED((S8)e); \ } #define TEST_STRTO_FLOAT(func_name, char_type, str_prefix) \ TEST(MemorySanitizer, func_name) { \ char_type *e; \ EXPECT_NE(0, func_name(str_prefix##"1.5", &e)); \ EXPECT_NOT_POISONED((S8)e); \ } #define TEST_STRTO_FLOAT_LOC(func_name, char_type, str_prefix) \ TEST(MemorySanitizer, func_name) { \ locale_t loc = newlocale(LC_NUMERIC_MASK, "C", (locale_t)0); \ char_type *e; \ EXPECT_NE(0, func_name(str_prefix##"1.5", &e, loc)); \ EXPECT_NOT_POISONED((S8)e); \ freelocale(loc); \ } #define TEST_STRTO_INT_LOC(func_name, char_type, str_prefix) \ TEST(MemorySanitizer, func_name) { \ locale_t loc = newlocale(LC_NUMERIC_MASK, "C", (locale_t)0); \ char_type *e; \ ASSERT_EQ(1U, func_name(str_prefix##"1", &e, 10, loc)); \ EXPECT_NOT_POISONED((S8)e); \ freelocale(loc); \ } TEST_STRTO_INT(strtol, char, ) TEST_STRTO_INT(strtoll, char, ) TEST_STRTO_INT(strtoul, char, ) TEST_STRTO_INT(strtoull, char, ) TEST_STRTO_FLOAT(strtof, char, ) TEST_STRTO_FLOAT(strtod, char, ) TEST_STRTO_FLOAT(strtold, char, ) TEST_STRTO_FLOAT_LOC(strtof_l, char, ) TEST_STRTO_FLOAT_LOC(strtod_l, char, ) TEST_STRTO_FLOAT_LOC(strtold_l, char, ) TEST_STRTO_INT_LOC(strtol_l, char, ) TEST_STRTO_INT_LOC(strtoll_l, char, ) TEST_STRTO_INT_LOC(strtoul_l, char, ) TEST_STRTO_INT_LOC(strtoull_l, char, ) TEST_STRTO_INT(wcstol, wchar_t, L) TEST_STRTO_INT(wcstoll, wchar_t, L) TEST_STRTO_INT(wcstoul, wchar_t, L) TEST_STRTO_INT(wcstoull, wchar_t, L) TEST_STRTO_FLOAT(wcstof, wchar_t, L) TEST_STRTO_FLOAT(wcstod, wchar_t, L) TEST_STRTO_FLOAT(wcstold, wchar_t, L) TEST_STRTO_FLOAT_LOC(wcstof_l, wchar_t, L) TEST_STRTO_FLOAT_LOC(wcstod_l, wchar_t, L) TEST_STRTO_FLOAT_LOC(wcstold_l, wchar_t, L) TEST_STRTO_INT_LOC(wcstol_l, wchar_t, L) TEST_STRTO_INT_LOC(wcstoll_l, wchar_t, L) TEST_STRTO_INT_LOC(wcstoul_l, wchar_t, L) TEST_STRTO_INT_LOC(wcstoull_l, wchar_t, L) TEST(MemorySanitizer, strtoimax) { char *e; ASSERT_EQ(1, strtoimax("1", &e, 10)); EXPECT_NOT_POISONED((S8) e); } TEST(MemorySanitizer, strtoumax) { char *e; ASSERT_EQ(1U, strtoumax("1", &e, 10)); EXPECT_NOT_POISONED((S8) e); } #ifdef __GLIBC__ extern "C" float __strtof_l(const char *nptr, char **endptr, locale_t loc); TEST_STRTO_FLOAT_LOC(__strtof_l, char, ) extern "C" double __strtod_l(const char *nptr, char **endptr, locale_t loc); TEST_STRTO_FLOAT_LOC(__strtod_l, char, ) extern "C" long double __strtold_l(const char *nptr, char **endptr, locale_t loc); TEST_STRTO_FLOAT_LOC(__strtold_l, char, ) extern "C" float __wcstof_l(const wchar_t *nptr, wchar_t **endptr, locale_t loc); TEST_STRTO_FLOAT_LOC(__wcstof_l, wchar_t, L) extern "C" double __wcstod_l(const wchar_t *nptr, wchar_t **endptr, locale_t loc); TEST_STRTO_FLOAT_LOC(__wcstod_l, wchar_t, L) extern "C" long double __wcstold_l(const wchar_t *nptr, wchar_t **endptr, locale_t loc); TEST_STRTO_FLOAT_LOC(__wcstold_l, wchar_t, L) #endif // __GLIBC__ TEST(MemorySanitizer, modf) { double x, y; x = modf(2.1, &y); EXPECT_NOT_POISONED(y); } TEST(MemorySanitizer, modff) { float x, y; x = modff(2.1, &y); EXPECT_NOT_POISONED(y); } TEST(MemorySanitizer, modfl) { long double x, y; x = modfl(2.1, &y); EXPECT_NOT_POISONED(y); } // There's no sincos() on FreeBSD. #if !defined(__FreeBSD__) TEST(MemorySanitizer, sincos) { double s, c; sincos(0.2, &s, &c); EXPECT_NOT_POISONED(s); EXPECT_NOT_POISONED(c); } #endif // There's no sincosf() on FreeBSD. #if !defined(__FreeBSD__) TEST(MemorySanitizer, sincosf) { float s, c; sincosf(0.2, &s, &c); EXPECT_NOT_POISONED(s); EXPECT_NOT_POISONED(c); } #endif // There's no sincosl() on FreeBSD. #if !defined(__FreeBSD__) TEST(MemorySanitizer, sincosl) { long double s, c; sincosl(0.2, &s, &c); EXPECT_NOT_POISONED(s); EXPECT_NOT_POISONED(c); } #endif TEST(MemorySanitizer, remquo) { int quo; double res = remquo(29.0, 3.0, &quo); ASSERT_NE(0.0, res); EXPECT_NOT_POISONED(quo); } TEST(MemorySanitizer, remquof) { int quo; float res = remquof(29.0, 3.0, &quo); ASSERT_NE(0.0, res); EXPECT_NOT_POISONED(quo); } TEST(MemorySanitizer, remquol) { int quo; long double res = remquof(29.0, 3.0, &quo); ASSERT_NE(0.0, res); EXPECT_NOT_POISONED(quo); } TEST(MemorySanitizer, lgamma) { double res = lgamma(1.1); ASSERT_NE(0.0, res); EXPECT_NOT_POISONED(signgam); } TEST(MemorySanitizer, lgammaf) { float res = lgammaf(1.1); ASSERT_NE(0.0, res); EXPECT_NOT_POISONED(signgam); } TEST(MemorySanitizer, lgammal) { long double res = lgammal(1.1); ASSERT_NE(0.0, res); EXPECT_NOT_POISONED(signgam); } TEST(MemorySanitizer, lgamma_r) { int sgn; double res = lgamma_r(1.1, &sgn); ASSERT_NE(0.0, res); EXPECT_NOT_POISONED(sgn); } TEST(MemorySanitizer, lgammaf_r) { int sgn; float res = lgammaf_r(1.1, &sgn); ASSERT_NE(0.0, res); EXPECT_NOT_POISONED(sgn); } // There's no lgammal_r() on FreeBSD. #if !defined(__FreeBSD__) TEST(MemorySanitizer, lgammal_r) { int sgn; long double res = lgammal_r(1.1, &sgn); ASSERT_NE(0.0, res); EXPECT_NOT_POISONED(sgn); } #endif // There's no drand48_r() on FreeBSD. #if !defined(__FreeBSD__) TEST(MemorySanitizer, drand48_r) { struct drand48_data buf; srand48_r(0, &buf); double d; drand48_r(&buf, &d); EXPECT_NOT_POISONED(d); } #endif // There's no lrand48_r() on FreeBSD. #if !defined(__FreeBSD__) TEST(MemorySanitizer, lrand48_r) { struct drand48_data buf; srand48_r(0, &buf); long d; lrand48_r(&buf, &d); EXPECT_NOT_POISONED(d); } #endif TEST(MemorySanitizer, sprintf) { // NOLINT char buff[10]; break_optimization(buff); EXPECT_POISONED(buff[0]); int res = sprintf(buff, "%d", 1234567); // NOLINT ASSERT_EQ(res, 7); ASSERT_EQ(buff[0], '1'); ASSERT_EQ(buff[1], '2'); ASSERT_EQ(buff[2], '3'); ASSERT_EQ(buff[6], '7'); ASSERT_EQ(buff[7], 0); EXPECT_POISONED(buff[8]); } TEST(MemorySanitizer, snprintf) { char buff[10]; break_optimization(buff); EXPECT_POISONED(buff[0]); int res = snprintf(buff, sizeof(buff), "%d", 1234567); ASSERT_EQ(res, 7); ASSERT_EQ(buff[0], '1'); ASSERT_EQ(buff[1], '2'); ASSERT_EQ(buff[2], '3'); ASSERT_EQ(buff[6], '7'); ASSERT_EQ(buff[7], 0); EXPECT_POISONED(buff[8]); } TEST(MemorySanitizer, swprintf) { wchar_t buff[10]; ASSERT_EQ(4U, sizeof(wchar_t)); break_optimization(buff); EXPECT_POISONED(buff[0]); int res = swprintf(buff, 9, L"%d", 1234567); ASSERT_EQ(res, 7); ASSERT_EQ(buff[0], '1'); ASSERT_EQ(buff[1], '2'); ASSERT_EQ(buff[2], '3'); ASSERT_EQ(buff[6], '7'); ASSERT_EQ(buff[7], L'\0'); EXPECT_POISONED(buff[8]); } TEST(MemorySanitizer, asprintf) { // NOLINT char *pbuf; EXPECT_POISONED(pbuf); int res = asprintf(&pbuf, "%d", 1234567); // NOLINT ASSERT_EQ(res, 7); EXPECT_NOT_POISONED(pbuf); ASSERT_EQ(pbuf[0], '1'); ASSERT_EQ(pbuf[1], '2'); ASSERT_EQ(pbuf[2], '3'); ASSERT_EQ(pbuf[6], '7'); ASSERT_EQ(pbuf[7], 0); free(pbuf); } TEST(MemorySanitizer, mbstowcs) { const char *x = "abc"; wchar_t buff[10]; int res = mbstowcs(buff, x, 2); EXPECT_EQ(2, res); EXPECT_EQ(L'a', buff[0]); EXPECT_EQ(L'b', buff[1]); EXPECT_POISONED(buff[2]); res = mbstowcs(buff, x, 10); EXPECT_EQ(3, res); EXPECT_NOT_POISONED(buff[3]); } TEST(MemorySanitizer, wcstombs) { const wchar_t *x = L"abc"; char buff[10]; int res = wcstombs(buff, x, 4); EXPECT_EQ(res, 3); EXPECT_EQ(buff[0], 'a'); EXPECT_EQ(buff[1], 'b'); EXPECT_EQ(buff[2], 'c'); } TEST(MemorySanitizer, wcsrtombs) { const wchar_t *x = L"abc"; const wchar_t *p = x; char buff[10]; mbstate_t mbs; memset(&mbs, 0, sizeof(mbs)); int res = wcsrtombs(buff, &p, 4, &mbs); EXPECT_EQ(res, 3); EXPECT_EQ(buff[0], 'a'); EXPECT_EQ(buff[1], 'b'); EXPECT_EQ(buff[2], 'c'); EXPECT_EQ(buff[3], '\0'); EXPECT_POISONED(buff[4]); } TEST(MemorySanitizer, wcsnrtombs) { const wchar_t *x = L"abc"; const wchar_t *p = x; char buff[10]; mbstate_t mbs; memset(&mbs, 0, sizeof(mbs)); int res = wcsnrtombs(buff, &p, 2, 4, &mbs); EXPECT_EQ(res, 2); EXPECT_EQ(buff[0], 'a'); EXPECT_EQ(buff[1], 'b'); EXPECT_POISONED(buff[2]); } TEST(MemorySanitizer, wcrtomb) { wchar_t x = L'a'; char buff[10]; mbstate_t mbs; memset(&mbs, 0, sizeof(mbs)); size_t res = wcrtomb(buff, x, &mbs); EXPECT_EQ(res, (size_t)1); EXPECT_EQ(buff[0], 'a'); } TEST(MemorySanitizer, wmemset) { wchar_t x[25]; break_optimization(x); EXPECT_POISONED(x[0]); wmemset(x, L'A', 10); EXPECT_EQ(x[0], L'A'); EXPECT_EQ(x[9], L'A'); EXPECT_POISONED(x[10]); } TEST(MemorySanitizer, mbtowc) { const char *x = "abc"; wchar_t wx; int res = mbtowc(&wx, x, 3); EXPECT_GT(res, 0); EXPECT_NOT_POISONED(wx); } TEST(MemorySanitizer, mbrtowc) { const char *x = "abc"; wchar_t wx; mbstate_t mbs; memset(&mbs, 0, sizeof(mbs)); int res = mbrtowc(&wx, x, 3, &mbs); EXPECT_GT(res, 0); EXPECT_NOT_POISONED(wx); } TEST(MemorySanitizer, wcsftime) { wchar_t x[100]; time_t t = time(NULL); struct tm tms; struct tm *tmres = localtime_r(&t, &tms); ASSERT_NE((void *)0, tmres); size_t res = wcsftime(x, sizeof(x) / sizeof(x[0]), L"%Y-%m-%d", tmres); EXPECT_GT(res, 0UL); EXPECT_EQ(res, wcslen(x)); } TEST(MemorySanitizer, gettimeofday) { struct timeval tv; struct timezone tz; break_optimization(&tv); break_optimization(&tz); ASSERT_EQ(16U, sizeof(tv)); ASSERT_EQ(8U, sizeof(tz)); EXPECT_POISONED(tv.tv_sec); EXPECT_POISONED(tv.tv_usec); EXPECT_POISONED(tz.tz_minuteswest); EXPECT_POISONED(tz.tz_dsttime); ASSERT_EQ(0, gettimeofday(&tv, &tz)); EXPECT_NOT_POISONED(tv.tv_sec); EXPECT_NOT_POISONED(tv.tv_usec); EXPECT_NOT_POISONED(tz.tz_minuteswest); EXPECT_NOT_POISONED(tz.tz_dsttime); } TEST(MemorySanitizer, clock_gettime) { struct timespec tp; EXPECT_POISONED(tp.tv_sec); EXPECT_POISONED(tp.tv_nsec); ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &tp)); EXPECT_NOT_POISONED(tp.tv_sec); EXPECT_NOT_POISONED(tp.tv_nsec); } TEST(MemorySanitizer, clock_getres) { struct timespec tp; EXPECT_POISONED(tp.tv_sec); EXPECT_POISONED(tp.tv_nsec); ASSERT_EQ(0, clock_getres(CLOCK_REALTIME, 0)); EXPECT_POISONED(tp.tv_sec); EXPECT_POISONED(tp.tv_nsec); ASSERT_EQ(0, clock_getres(CLOCK_REALTIME, &tp)); EXPECT_NOT_POISONED(tp.tv_sec); EXPECT_NOT_POISONED(tp.tv_nsec); } TEST(MemorySanitizer, getitimer) { struct itimerval it1, it2; int res; EXPECT_POISONED(it1.it_interval.tv_sec); EXPECT_POISONED(it1.it_interval.tv_usec); EXPECT_POISONED(it1.it_value.tv_sec); EXPECT_POISONED(it1.it_value.tv_usec); res = getitimer(ITIMER_VIRTUAL, &it1); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(it1.it_interval.tv_sec); EXPECT_NOT_POISONED(it1.it_interval.tv_usec); EXPECT_NOT_POISONED(it1.it_value.tv_sec); EXPECT_NOT_POISONED(it1.it_value.tv_usec); it1.it_interval.tv_sec = it1.it_value.tv_sec = 10000; it1.it_interval.tv_usec = it1.it_value.tv_usec = 0; res = setitimer(ITIMER_VIRTUAL, &it1, &it2); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(it2.it_interval.tv_sec); EXPECT_NOT_POISONED(it2.it_interval.tv_usec); EXPECT_NOT_POISONED(it2.it_value.tv_sec); EXPECT_NOT_POISONED(it2.it_value.tv_usec); // Check that old_value can be 0, and disable the timer. memset(&it1, 0, sizeof(it1)); res = setitimer(ITIMER_VIRTUAL, &it1, 0); ASSERT_EQ(0, res); } TEST(MemorySanitizer, setitimer_null) { setitimer(ITIMER_VIRTUAL, 0, 0); // Not testing the return value, since it the behaviour seems to differ // between libc implementations and POSIX. // Should never crash, though. } TEST(MemorySanitizer, time) { time_t t; EXPECT_POISONED(t); time_t t2 = time(&t); ASSERT_NE(t2, (time_t)-1); EXPECT_NOT_POISONED(t); } TEST(MemorySanitizer, strptime) { struct tm time; char *p = strptime("11/1/2013-05:39", "%m/%d/%Y-%H:%M", &time); ASSERT_TRUE(p != NULL); EXPECT_NOT_POISONED(time.tm_sec); EXPECT_NOT_POISONED(time.tm_hour); EXPECT_NOT_POISONED(time.tm_year); } TEST(MemorySanitizer, localtime) { time_t t = 123; struct tm *time = localtime(&t); ASSERT_TRUE(time != NULL); EXPECT_NOT_POISONED(time->tm_sec); EXPECT_NOT_POISONED(time->tm_hour); EXPECT_NOT_POISONED(time->tm_year); EXPECT_NOT_POISONED(time->tm_isdst); EXPECT_NE(0U, strlen(time->tm_zone)); } TEST(MemorySanitizer, localtime_r) { time_t t = 123; struct tm time; struct tm *res = localtime_r(&t, &time); ASSERT_TRUE(res != NULL); EXPECT_NOT_POISONED(time.tm_sec); EXPECT_NOT_POISONED(time.tm_hour); EXPECT_NOT_POISONED(time.tm_year); EXPECT_NOT_POISONED(time.tm_isdst); EXPECT_NE(0U, strlen(time.tm_zone)); } #if !defined(__FreeBSD__) /* Creates a temporary file with contents similar to /etc/fstab to be used with getmntent{_r}. */ class TempFstabFile { public: TempFstabFile() : fd (-1) { } ~TempFstabFile() { if (fd >= 0) close (fd); } bool Create(void) { snprintf(tmpfile, sizeof(tmpfile), "/tmp/msan.getmntent.tmp.XXXXXX"); fd = mkstemp(tmpfile); if (fd == -1) return false; const char entry[] = "/dev/root / ext4 errors=remount-ro 0 1"; size_t entrylen = sizeof(entry); size_t bytesWritten = write(fd, entry, entrylen); if (entrylen != bytesWritten) return false; return true; } const char* FileName(void) { return tmpfile; } private: char tmpfile[128]; int fd; }; #endif // There's no getmntent() on FreeBSD. #if !defined(__FreeBSD__) TEST(MemorySanitizer, getmntent) { TempFstabFile fstabtmp; ASSERT_TRUE(fstabtmp.Create()); FILE *fp = setmntent(fstabtmp.FileName(), "r"); struct mntent *mnt = getmntent(fp); ASSERT_TRUE(mnt != NULL); ASSERT_NE(0U, strlen(mnt->mnt_fsname)); ASSERT_NE(0U, strlen(mnt->mnt_dir)); ASSERT_NE(0U, strlen(mnt->mnt_type)); ASSERT_NE(0U, strlen(mnt->mnt_opts)); EXPECT_NOT_POISONED(mnt->mnt_freq); EXPECT_NOT_POISONED(mnt->mnt_passno); fclose(fp); } #endif // There's no getmntent_r() on FreeBSD. #if !defined(__FreeBSD__) TEST(MemorySanitizer, getmntent_r) { TempFstabFile fstabtmp; ASSERT_TRUE(fstabtmp.Create()); FILE *fp = setmntent(fstabtmp.FileName(), "r"); struct mntent mntbuf; char buf[1000]; struct mntent *mnt = getmntent_r(fp, &mntbuf, buf, sizeof(buf)); ASSERT_TRUE(mnt != NULL); ASSERT_NE(0U, strlen(mnt->mnt_fsname)); ASSERT_NE(0U, strlen(mnt->mnt_dir)); ASSERT_NE(0U, strlen(mnt->mnt_type)); ASSERT_NE(0U, strlen(mnt->mnt_opts)); EXPECT_NOT_POISONED(mnt->mnt_freq); EXPECT_NOT_POISONED(mnt->mnt_passno); fclose(fp); } #endif TEST(MemorySanitizer, ether) { const char *asc = "11:22:33:44:55:66"; struct ether_addr *paddr = ether_aton(asc); EXPECT_NOT_POISONED(*paddr); struct ether_addr addr; paddr = ether_aton_r(asc, &addr); ASSERT_EQ(paddr, &addr); EXPECT_NOT_POISONED(addr); char *s = ether_ntoa(&addr); ASSERT_NE(0U, strlen(s)); char buf[100]; s = ether_ntoa_r(&addr, buf); ASSERT_EQ(s, buf); ASSERT_NE(0U, strlen(buf)); } TEST(MemorySanitizer, mmap) { const int size = 4096; void *p1, *p2; p1 = mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, 0); __msan_poison(p1, size); munmap(p1, size); for (int i = 0; i < 1000; i++) { p2 = mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, 0); if (p2 == p1) break; else munmap(p2, size); } if (p1 == p2) { EXPECT_NOT_POISONED(*(char*)p2); munmap(p2, size); } } // There's no fcvt() on FreeBSD. #if !defined(__FreeBSD__) // FIXME: enable and add ecvt. // FIXME: check why msandr does nt handle fcvt. TEST(MemorySanitizer, fcvt) { int a, b; break_optimization(&a); break_optimization(&b); EXPECT_POISONED(a); EXPECT_POISONED(b); char *str = fcvt(12345.6789, 10, &a, &b); EXPECT_NOT_POISONED(a); EXPECT_NOT_POISONED(b); ASSERT_NE(nullptr, str); EXPECT_NOT_POISONED(str[0]); ASSERT_NE(0U, strlen(str)); } #endif // There's no fcvt_long() on FreeBSD. #if !defined(__FreeBSD__) TEST(MemorySanitizer, fcvt_long) { int a, b; break_optimization(&a); break_optimization(&b); EXPECT_POISONED(a); EXPECT_POISONED(b); char *str = fcvt(111111112345.6789, 10, &a, &b); EXPECT_NOT_POISONED(a); EXPECT_NOT_POISONED(b); ASSERT_NE(nullptr, str); EXPECT_NOT_POISONED(str[0]); ASSERT_NE(0U, strlen(str)); } #endif TEST(MemorySanitizer, memchr) { char x[10]; break_optimization(x); EXPECT_POISONED(x[0]); x[2] = '2'; void *res; EXPECT_UMR(res = memchr(x, '2', 10)); EXPECT_NOT_POISONED(res); x[0] = '0'; x[1] = '1'; res = memchr(x, '2', 10); EXPECT_EQ(&x[2], res); EXPECT_UMR(res = memchr(x, '3', 10)); EXPECT_NOT_POISONED(res); } TEST(MemorySanitizer, memrchr) { char x[10]; break_optimization(x); EXPECT_POISONED(x[0]); x[9] = '9'; void *res; EXPECT_UMR(res = memrchr(x, '9', 10)); EXPECT_NOT_POISONED(res); x[0] = '0'; x[1] = '1'; res = memrchr(x, '0', 2); EXPECT_EQ(&x[0], res); EXPECT_UMR(res = memrchr(x, '7', 10)); EXPECT_NOT_POISONED(res); } TEST(MemorySanitizer, frexp) { int x; x = *GetPoisoned(); double r = frexp(1.1, &x); EXPECT_NOT_POISONED(r); EXPECT_NOT_POISONED(x); x = *GetPoisoned(); float rf = frexpf(1.1, &x); EXPECT_NOT_POISONED(rf); EXPECT_NOT_POISONED(x); x = *GetPoisoned(); double rl = frexpl(1.1, &x); EXPECT_NOT_POISONED(rl); EXPECT_NOT_POISONED(x); } namespace { static int cnt; void SigactionHandler(int signo, siginfo_t* si, void* uc) { ASSERT_EQ(signo, SIGPROF); ASSERT_TRUE(si != NULL); EXPECT_NOT_POISONED(si->si_errno); EXPECT_NOT_POISONED(si->si_pid); #if __linux__ # if defined(__x86_64__) EXPECT_NOT_POISONED(((ucontext_t*)uc)->uc_mcontext.gregs[REG_RIP]); # elif defined(__i386__) EXPECT_NOT_POISONED(((ucontext_t*)uc)->uc_mcontext.gregs[REG_EIP]); # endif #endif ++cnt; } TEST(MemorySanitizer, sigaction) { struct sigaction act = {}; struct sigaction oldact = {}; struct sigaction origact = {}; sigaction(SIGPROF, 0, &origact); act.sa_flags |= SA_SIGINFO; act.sa_sigaction = &SigactionHandler; sigaction(SIGPROF, &act, 0); kill(getpid(), SIGPROF); act.sa_flags &= ~SA_SIGINFO; act.sa_handler = SIG_DFL; sigaction(SIGPROF, &act, 0); act.sa_flags &= ~SA_SIGINFO; act.sa_handler = SIG_IGN; sigaction(SIGPROF, &act, &oldact); EXPECT_FALSE(oldact.sa_flags & SA_SIGINFO); EXPECT_EQ(SIG_DFL, oldact.sa_handler); kill(getpid(), SIGPROF); act.sa_flags |= SA_SIGINFO; act.sa_sigaction = &SigactionHandler; sigaction(SIGPROF, &act, &oldact); EXPECT_FALSE(oldact.sa_flags & SA_SIGINFO); EXPECT_EQ(SIG_IGN, oldact.sa_handler); kill(getpid(), SIGPROF); act.sa_flags &= ~SA_SIGINFO; act.sa_handler = SIG_DFL; sigaction(SIGPROF, &act, &oldact); EXPECT_TRUE(oldact.sa_flags & SA_SIGINFO); EXPECT_EQ(&SigactionHandler, oldact.sa_sigaction); EXPECT_EQ(2, cnt); sigaction(SIGPROF, &origact, 0); } } // namespace TEST(MemorySanitizer, sigemptyset) { sigset_t s; EXPECT_POISONED(s); int res = sigemptyset(&s); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(s); } TEST(MemorySanitizer, sigfillset) { sigset_t s; EXPECT_POISONED(s); int res = sigfillset(&s); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(s); } TEST(MemorySanitizer, sigpending) { sigset_t s; EXPECT_POISONED(s); int res = sigpending(&s); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(s); } TEST(MemorySanitizer, sigprocmask) { sigset_t s; EXPECT_POISONED(s); int res = sigprocmask(SIG_BLOCK, 0, &s); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(s); } struct StructWithDtor { ~StructWithDtor(); }; NOINLINE StructWithDtor::~StructWithDtor() { break_optimization(0); } TEST(MemorySanitizer, Invoke) { StructWithDtor s; // Will cause the calls to become invokes. EXPECT_NOT_POISONED(0); EXPECT_POISONED(*GetPoisoned()); EXPECT_NOT_POISONED(0); EXPECT_POISONED(*GetPoisoned()); EXPECT_POISONED(ReturnPoisoned()); } TEST(MemorySanitizer, ptrtoint) { // Test that shadow is propagated through pointer-to-integer conversion. unsigned char c = 0; __msan_poison(&c, 1); uintptr_t u = (uintptr_t)c << 8; EXPECT_NOT_POISONED(u & 0xFF00FF); EXPECT_POISONED(u & 0xFF00); break_optimization(&u); void* p = (void*)u; break_optimization(&p); EXPECT_POISONED(p); EXPECT_NOT_POISONED(((uintptr_t)p) & 0xFF00FF); EXPECT_POISONED(((uintptr_t)p) & 0xFF00); } static void vaargsfn2(int guard, ...) { va_list vl; va_start(vl, guard); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, double)); va_end(vl); } static void vaargsfn(int guard, ...) { va_list vl; va_start(vl, guard); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, int)); // The following call will overwrite __msan_param_tls. // Checks after it test that arg shadow was somehow saved across the call. vaargsfn2(1, 2, 3, 4, *GetPoisoned()); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, int)); va_end(vl); } TEST(MemorySanitizer, VAArgTest) { int* x = GetPoisoned(); int* y = GetPoisoned(4); vaargsfn(1, 13, *x, 42, *y); } static void vaargsfn_many(int guard, ...) { va_list vl; va_start(vl, guard); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, int)); va_end(vl); } TEST(MemorySanitizer, VAArgManyTest) { int* x = GetPoisoned(); int* y = GetPoisoned(4); vaargsfn_many(1, 2, *x, 3, 4, 5, 6, 7, 8, 9, *y); } static void vaargsfn_manyfix(int g1, int g2, int g3, int g4, int g5, int g6, int g7, int g8, int g9, ...) { va_list vl; va_start(vl, g9); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, int)); va_end(vl); } TEST(MemorySanitizer, VAArgManyFixTest) { int* x = GetPoisoned(); int* y = GetPoisoned(); vaargsfn_manyfix(1, *x, 3, 4, 5, 6, 7, 8, 9, 10, *y); } static void vaargsfn_pass2(va_list vl) { EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, int)); } static void vaargsfn_pass(int guard, ...) { va_list vl; va_start(vl, guard); EXPECT_POISONED(va_arg(vl, int)); vaargsfn_pass2(vl); va_end(vl); } TEST(MemorySanitizer, VAArgPass) { int* x = GetPoisoned(); int* y = GetPoisoned(4); vaargsfn_pass(1, *x, 2, 3, *y); } static void vaargsfn_copy2(va_list vl) { EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, int)); } static void vaargsfn_copy(int guard, ...) { va_list vl; va_start(vl, guard); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, int)); va_list vl2; va_copy(vl2, vl); vaargsfn_copy2(vl2); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, int)); va_end(vl); } TEST(MemorySanitizer, VAArgCopy) { int* x = GetPoisoned(); int* y = GetPoisoned(4); vaargsfn_copy(1, 2, *x, 3, *y); } static void vaargsfn_ptr(int guard, ...) { va_list vl; va_start(vl, guard); EXPECT_NOT_POISONED(va_arg(vl, int*)); EXPECT_POISONED(va_arg(vl, int*)); EXPECT_NOT_POISONED(va_arg(vl, int*)); EXPECT_POISONED(va_arg(vl, double*)); va_end(vl); } TEST(MemorySanitizer, VAArgPtr) { int** x = GetPoisoned(); double** y = GetPoisoned(8); int z; vaargsfn_ptr(1, &z, *x, &z, *y); } static void vaargsfn_overflow(int guard, ...) { va_list vl; va_start(vl, guard); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, double)); EXPECT_NOT_POISONED(va_arg(vl, double)); EXPECT_NOT_POISONED(va_arg(vl, double)); EXPECT_POISONED(va_arg(vl, double)); EXPECT_NOT_POISONED(va_arg(vl, double)); EXPECT_POISONED(va_arg(vl, int*)); EXPECT_NOT_POISONED(va_arg(vl, double)); EXPECT_NOT_POISONED(va_arg(vl, double)); EXPECT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, double)); EXPECT_POISONED(va_arg(vl, int*)); EXPECT_NOT_POISONED(va_arg(vl, int)); EXPECT_NOT_POISONED(va_arg(vl, double)); EXPECT_NOT_POISONED(va_arg(vl, int*)); EXPECT_POISONED(va_arg(vl, int)); EXPECT_POISONED(va_arg(vl, double)); EXPECT_POISONED(va_arg(vl, int*)); va_end(vl); } TEST(MemorySanitizer, VAArgOverflow) { int* x = GetPoisoned(); double* y = GetPoisoned(8); int** p = GetPoisoned(16); int z; vaargsfn_overflow(1, 1, 2, *x, 4, 5, 6, 1.1, 2.2, 3.3, *y, 5.5, *p, 7.7, 8.8, // the following args will overflow for sure *x, *y, *p, 7, 9.9, &z, *x, *y, *p); } static void vaargsfn_tlsoverwrite2(int guard, ...) { va_list vl; va_start(vl, guard); for (int i = 0; i < 20; ++i) EXPECT_NOT_POISONED(va_arg(vl, int)); va_end(vl); } static void vaargsfn_tlsoverwrite(int guard, ...) { // This call will overwrite TLS contents unless it's backed up somewhere. vaargsfn_tlsoverwrite2(2, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42); // 20x va_list vl; va_start(vl, guard); for (int i = 0; i < 20; ++i) EXPECT_POISONED(va_arg(vl, int)); va_end(vl); } TEST(MemorySanitizer, VAArgTLSOverwrite) { int* x = GetPoisoned(); vaargsfn_tlsoverwrite(1, *x, *x, *x, *x, *x, *x, *x, *x, *x, *x, *x, *x, *x, *x, *x, *x, *x, *x, *x, *x); // 20x } struct StructByVal { int a, b, c, d, e, f; }; static void vaargsfn_structbyval(int guard, ...) { va_list vl; va_start(vl, guard); { StructByVal s = va_arg(vl, StructByVal); EXPECT_NOT_POISONED(s.a); EXPECT_POISONED(s.b); EXPECT_NOT_POISONED(s.c); EXPECT_POISONED(s.d); EXPECT_NOT_POISONED(s.e); EXPECT_POISONED(s.f); } { StructByVal s = va_arg(vl, StructByVal); EXPECT_NOT_POISONED(s.a); EXPECT_POISONED(s.b); EXPECT_NOT_POISONED(s.c); EXPECT_POISONED(s.d); EXPECT_NOT_POISONED(s.e); EXPECT_POISONED(s.f); } va_end(vl); } TEST(MemorySanitizer, VAArgStructByVal) { StructByVal s; s.a = 1; s.b = *GetPoisoned(); s.c = 2; s.d = *GetPoisoned(); s.e = 3; s.f = *GetPoisoned(); vaargsfn_structbyval(0, s, s); } NOINLINE void StructByValTestFunc(struct StructByVal s) { EXPECT_NOT_POISONED(s.a); EXPECT_POISONED(s.b); EXPECT_NOT_POISONED(s.c); EXPECT_POISONED(s.d); EXPECT_NOT_POISONED(s.e); EXPECT_POISONED(s.f); } NOINLINE void StructByValTestFunc1(struct StructByVal s) { StructByValTestFunc(s); } NOINLINE void StructByValTestFunc2(int z, struct StructByVal s) { StructByValTestFunc(s); } TEST(MemorySanitizer, StructByVal) { // Large aggregates are passed as "byval" pointer argument in LLVM. struct StructByVal s; s.a = 1; s.b = *GetPoisoned(); s.c = 2; s.d = *GetPoisoned(); s.e = 3; s.f = *GetPoisoned(); StructByValTestFunc(s); StructByValTestFunc1(s); StructByValTestFunc2(0, s); } #if MSAN_HAS_M128 NOINLINE __m128i m128Eq(__m128i *a, __m128i *b) { return _mm_cmpeq_epi16(*a, *b); } NOINLINE __m128i m128Lt(__m128i *a, __m128i *b) { return _mm_cmplt_epi16(*a, *b); } TEST(MemorySanitizer, m128) { __m128i a = _mm_set1_epi16(0x1234); __m128i b = _mm_set1_epi16(0x7890); EXPECT_NOT_POISONED(m128Eq(&a, &b)); EXPECT_NOT_POISONED(m128Lt(&a, &b)); } // FIXME: add more tests for __m128i. #endif // MSAN_HAS_M128 // We should not complain when copying this poisoned hole. struct StructWithHole { U4 a; // 4-byte hole. U8 b; }; NOINLINE StructWithHole ReturnStructWithHole() { StructWithHole res; __msan_poison(&res, sizeof(res)); res.a = 1; res.b = 2; return res; } TEST(MemorySanitizer, StructWithHole) { StructWithHole a = ReturnStructWithHole(); break_optimization(&a); } template NOINLINE T ReturnStruct() { T res; __msan_poison(&res, sizeof(res)); res.a = 1; return res; } template NOINLINE void TestReturnStruct() { T s1 = ReturnStruct(); EXPECT_NOT_POISONED(s1.a); EXPECT_POISONED(s1.b); } struct SSS1 { int a, b, c; }; struct SSS2 { int b, a, c; }; struct SSS3 { int b, c, a; }; struct SSS4 { int c, b, a; }; struct SSS5 { int a; float b; }; struct SSS6 { int a; double b; }; struct SSS7 { S8 b; int a; }; struct SSS8 { S2 b; S8 a; }; TEST(MemorySanitizer, IntStruct3) { TestReturnStruct(); TestReturnStruct(); TestReturnStruct(); TestReturnStruct(); TestReturnStruct(); TestReturnStruct(); TestReturnStruct(); TestReturnStruct(); } struct LongStruct { U1 a1, b1; U2 a2, b2; U4 a4, b4; U8 a8, b8; }; NOINLINE LongStruct ReturnLongStruct1() { LongStruct res; __msan_poison(&res, sizeof(res)); res.a1 = res.a2 = res.a4 = res.a8 = 111; // leaves b1, .., b8 poisoned. return res; } NOINLINE LongStruct ReturnLongStruct2() { LongStruct res; __msan_poison(&res, sizeof(res)); res.b1 = res.b2 = res.b4 = res.b8 = 111; // leaves a1, .., a8 poisoned. return res; } TEST(MemorySanitizer, LongStruct) { LongStruct s1 = ReturnLongStruct1(); __msan_print_shadow(&s1, sizeof(s1)); EXPECT_NOT_POISONED(s1.a1); EXPECT_NOT_POISONED(s1.a2); EXPECT_NOT_POISONED(s1.a4); EXPECT_NOT_POISONED(s1.a8); EXPECT_POISONED(s1.b1); EXPECT_POISONED(s1.b2); EXPECT_POISONED(s1.b4); EXPECT_POISONED(s1.b8); LongStruct s2 = ReturnLongStruct2(); __msan_print_shadow(&s2, sizeof(s2)); EXPECT_NOT_POISONED(s2.b1); EXPECT_NOT_POISONED(s2.b2); EXPECT_NOT_POISONED(s2.b4); EXPECT_NOT_POISONED(s2.b8); EXPECT_POISONED(s2.a1); EXPECT_POISONED(s2.a2); EXPECT_POISONED(s2.a4); EXPECT_POISONED(s2.a8); } #ifdef __GLIBC__ #define MSAN_TEST_PRLIMIT __GLIBC_PREREQ(2, 13) #else #define MSAN_TEST_PRLIMIT 1 #endif TEST(MemorySanitizer, getrlimit) { struct rlimit limit; __msan_poison(&limit, sizeof(limit)); int result = getrlimit(RLIMIT_DATA, &limit); ASSERT_EQ(result, 0); EXPECT_NOT_POISONED(limit.rlim_cur); EXPECT_NOT_POISONED(limit.rlim_max); #if MSAN_TEST_PRLIMIT struct rlimit limit2; __msan_poison(&limit2, sizeof(limit2)); result = prlimit(getpid(), RLIMIT_DATA, &limit, &limit2); ASSERT_EQ(result, 0); EXPECT_NOT_POISONED(limit2.rlim_cur); EXPECT_NOT_POISONED(limit2.rlim_max); __msan_poison(&limit, sizeof(limit)); result = prlimit(getpid(), RLIMIT_DATA, nullptr, &limit); ASSERT_EQ(result, 0); EXPECT_NOT_POISONED(limit.rlim_cur); EXPECT_NOT_POISONED(limit.rlim_max); result = prlimit(getpid(), RLIMIT_DATA, &limit, nullptr); ASSERT_EQ(result, 0); #endif } TEST(MemorySanitizer, getrusage) { struct rusage usage; __msan_poison(&usage, sizeof(usage)); int result = getrusage(RUSAGE_SELF, &usage); ASSERT_EQ(result, 0); EXPECT_NOT_POISONED(usage.ru_utime.tv_sec); EXPECT_NOT_POISONED(usage.ru_utime.tv_usec); EXPECT_NOT_POISONED(usage.ru_stime.tv_sec); EXPECT_NOT_POISONED(usage.ru_stime.tv_usec); EXPECT_NOT_POISONED(usage.ru_maxrss); EXPECT_NOT_POISONED(usage.ru_minflt); EXPECT_NOT_POISONED(usage.ru_majflt); EXPECT_NOT_POISONED(usage.ru_inblock); EXPECT_NOT_POISONED(usage.ru_oublock); EXPECT_NOT_POISONED(usage.ru_nvcsw); EXPECT_NOT_POISONED(usage.ru_nivcsw); } #if defined(__FreeBSD__) static void GetProgramPath(char *buf, size_t sz) { int mib[4] = { CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, -1 }; int res = sysctl(mib, 4, buf, &sz, NULL, 0); ASSERT_EQ(0, res); } #elif defined(__GLIBC__) static void GetProgramPath(char *buf, size_t sz) { extern char *program_invocation_name; int res = snprintf(buf, sz, "%s", program_invocation_name); ASSERT_GE(res, 0); ASSERT_LT((size_t)res, sz); } #else # error "TODO: port this" #endif static void dladdr_testfn() {} TEST(MemorySanitizer, dladdr) { Dl_info info; __msan_poison(&info, sizeof(info)); int result = dladdr((const void*)dladdr_testfn, &info); ASSERT_NE(result, 0); EXPECT_NOT_POISONED((unsigned long)info.dli_fname); if (info.dli_fname) EXPECT_NOT_POISONED(strlen(info.dli_fname)); EXPECT_NOT_POISONED((unsigned long)info.dli_fbase); EXPECT_NOT_POISONED((unsigned long)info.dli_sname); if (info.dli_sname) EXPECT_NOT_POISONED(strlen(info.dli_sname)); EXPECT_NOT_POISONED((unsigned long)info.dli_saddr); } #ifndef MSAN_TEST_DISABLE_DLOPEN static int dl_phdr_callback(struct dl_phdr_info *info, size_t size, void *data) { (*(int *)data)++; EXPECT_NOT_POISONED(info->dlpi_addr); EXPECT_NOT_POISONED(strlen(info->dlpi_name)); EXPECT_NOT_POISONED(info->dlpi_phnum); for (int i = 0; i < info->dlpi_phnum; ++i) EXPECT_NOT_POISONED(info->dlpi_phdr[i]); return 0; } // Compute the path to our loadable DSO. We assume it's in the same // directory. Only use string routines that we intercept so far to do this. static void GetPathToLoadable(char *buf, size_t sz) { char program_path[kMaxPathLength]; GetProgramPath(program_path, sizeof(program_path)); const char *last_slash = strrchr(program_path, '/'); ASSERT_NE(nullptr, last_slash); size_t dir_len = (size_t)(last_slash - program_path); #if defined(__x86_64__) static const char basename[] = "libmsan_loadable.x86_64.so"; #elif defined(__MIPSEB__) || defined(MIPSEB) static const char basename[] = "libmsan_loadable.mips64.so"; #elif defined(__mips64) static const char basename[] = "libmsan_loadable.mips64el.so"; #elif defined(__aarch64__) static const char basename[] = "libmsan_loadable.aarch64.so"; #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ static const char basename[] = "libmsan_loadable.powerpc64.so"; #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ static const char basename[] = "libmsan_loadable.powerpc64le.so"; #endif int res = snprintf(buf, sz, "%.*s/%s", (int)dir_len, program_path, basename); ASSERT_GE(res, 0); ASSERT_LT((size_t)res, sz); } TEST(MemorySanitizer, dl_iterate_phdr) { char path[kMaxPathLength]; GetPathToLoadable(path, sizeof(path)); // Having at least one dlopen'ed library in the process makes this more // entertaining. void *lib = dlopen(path, RTLD_LAZY); ASSERT_NE((void*)0, lib); int count = 0; int result = dl_iterate_phdr(dl_phdr_callback, &count); ASSERT_GT(count, 0); dlclose(lib); } TEST(MemorySanitizer, dlopen) { char path[kMaxPathLength]; GetPathToLoadable(path, sizeof(path)); // We need to clear shadow for globals when doing dlopen. In order to test // this, we have to poison the shadow for the DSO before we load it. In // general this is difficult, but the loader tends to reload things in the // same place, so we open, close, and then reopen. The global should always // start out clean after dlopen. for (int i = 0; i < 2; i++) { void *lib = dlopen(path, RTLD_LAZY); if (lib == NULL) { printf("dlerror: %s\n", dlerror()); ASSERT_TRUE(lib != NULL); } void **(*get_dso_global)() = (void **(*)())dlsym(lib, "get_dso_global"); ASSERT_TRUE(get_dso_global != NULL); void **dso_global = get_dso_global(); EXPECT_NOT_POISONED(*dso_global); __msan_poison(dso_global, sizeof(*dso_global)); EXPECT_POISONED(*dso_global); dlclose(lib); } } // Regression test for a crash in dlopen() interceptor. TEST(MemorySanitizer, dlopenFailed) { const char *path = "/libmsan_loadable_does_not_exist.so"; void *lib = dlopen(path, RTLD_LAZY); ASSERT_TRUE(lib == NULL); } #endif // MSAN_TEST_DISABLE_DLOPEN // There's no sched_getaffinity() on FreeBSD. #if !defined(__FreeBSD__) TEST(MemorySanitizer, sched_getaffinity) { cpu_set_t mask; int res = sched_getaffinity(getpid(), sizeof(mask), &mask); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(mask); } #endif TEST(MemorySanitizer, scanf) { const char *input = "42 hello"; int* d = new int; char* s = new char[7]; int res = sscanf(input, "%d %5s", d, s); printf("res %d\n", res); ASSERT_EQ(res, 2); EXPECT_NOT_POISONED(*d); EXPECT_NOT_POISONED(s[0]); EXPECT_NOT_POISONED(s[1]); EXPECT_NOT_POISONED(s[2]); EXPECT_NOT_POISONED(s[3]); EXPECT_NOT_POISONED(s[4]); EXPECT_NOT_POISONED(s[5]); EXPECT_POISONED(s[6]); delete[] s; delete d; } static void *SimpleThread_threadfn(void* data) { return new int; } TEST(MemorySanitizer, SimpleThread) { pthread_t t; void *p; int res = pthread_create(&t, NULL, SimpleThread_threadfn, NULL); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(t); res = pthread_join(t, &p); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(p); delete (int*)p; } static void *SmallStackThread_threadfn(void* data) { return 0; } #ifdef PTHREAD_STACK_MIN # define SMALLSTACKSIZE PTHREAD_STACK_MIN # define SMALLPRESTACKSIZE PTHREAD_STACK_MIN #else # define SMALLSTACKSIZE 64 * 1024 # define SMALLPRESTACKSIZE 16 * 1024 #endif TEST(MemorySanitizer, SmallStackThread) { pthread_attr_t attr; pthread_t t; void *p; int res; res = pthread_attr_init(&attr); ASSERT_EQ(0, res); res = pthread_attr_setstacksize(&attr, SMALLSTACKSIZE); ASSERT_EQ(0, res); res = pthread_create(&t, &attr, SmallStackThread_threadfn, NULL); ASSERT_EQ(0, res); res = pthread_join(t, &p); ASSERT_EQ(0, res); res = pthread_attr_destroy(&attr); ASSERT_EQ(0, res); } TEST(MemorySanitizer, SmallPreAllocatedStackThread) { pthread_attr_t attr; pthread_t t; int res; res = pthread_attr_init(&attr); ASSERT_EQ(0, res); void *stack; const size_t kStackSize = SMALLPRESTACKSIZE; res = posix_memalign(&stack, 4096, kStackSize); ASSERT_EQ(0, res); res = pthread_attr_setstack(&attr, stack, kStackSize); ASSERT_EQ(0, res); res = pthread_create(&t, &attr, SmallStackThread_threadfn, NULL); EXPECT_EQ(0, res); res = pthread_join(t, NULL); ASSERT_EQ(0, res); res = pthread_attr_destroy(&attr); ASSERT_EQ(0, res); } TEST(MemorySanitizer, pthread_attr_get) { pthread_attr_t attr; int res; res = pthread_attr_init(&attr); ASSERT_EQ(0, res); { int v; res = pthread_attr_getdetachstate(&attr, &v); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(v); } { size_t v; res = pthread_attr_getguardsize(&attr, &v); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(v); } { struct sched_param v; res = pthread_attr_getschedparam(&attr, &v); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(v); } { int v; res = pthread_attr_getschedpolicy(&attr, &v); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(v); } { int v; res = pthread_attr_getinheritsched(&attr, &v); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(v); } { int v; res = pthread_attr_getscope(&attr, &v); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(v); } { size_t v; res = pthread_attr_getstacksize(&attr, &v); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(v); } { void *v; size_t w; res = pthread_attr_getstack(&attr, &v, &w); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(v); EXPECT_NOT_POISONED(w); } { cpu_set_t v; res = pthread_attr_getaffinity_np(&attr, sizeof(v), &v); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(v); } res = pthread_attr_destroy(&attr); ASSERT_EQ(0, res); } TEST(MemorySanitizer, pthread_getschedparam) { int policy; struct sched_param param; int res = pthread_getschedparam(pthread_self(), &policy, ¶m); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(policy); EXPECT_NOT_POISONED(param.sched_priority); } TEST(MemorySanitizer, pthread_key_create) { pthread_key_t key; int res = pthread_key_create(&key, NULL); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(key); res = pthread_key_delete(key); ASSERT_EQ(0, res); } namespace { struct SignalCondArg { pthread_cond_t* cond; pthread_mutex_t* mu; bool broadcast; }; void *SignalCond(void *param) { SignalCondArg *arg = reinterpret_cast(param); pthread_mutex_lock(arg->mu); if (arg->broadcast) pthread_cond_broadcast(arg->cond); else pthread_cond_signal(arg->cond); pthread_mutex_unlock(arg->mu); return 0; } } // namespace TEST(MemorySanitizer, pthread_cond_wait) { pthread_cond_t cond; pthread_mutex_t mu; SignalCondArg args = {&cond, &mu, false}; pthread_cond_init(&cond, 0); pthread_mutex_init(&mu, 0); pthread_mutex_lock(&mu); // signal pthread_t thr; pthread_create(&thr, 0, SignalCond, &args); int res = pthread_cond_wait(&cond, &mu); ASSERT_EQ(0, res); pthread_join(thr, 0); // broadcast args.broadcast = true; pthread_create(&thr, 0, SignalCond, &args); res = pthread_cond_wait(&cond, &mu); ASSERT_EQ(0, res); pthread_join(thr, 0); pthread_mutex_unlock(&mu); pthread_mutex_destroy(&mu); pthread_cond_destroy(&cond); } TEST(MemorySanitizer, tmpnam) { char s[L_tmpnam]; char *res = tmpnam(s); ASSERT_EQ(s, res); EXPECT_NOT_POISONED(strlen(res)); } TEST(MemorySanitizer, tempnam) { char *res = tempnam(NULL, "zzz"); EXPECT_NOT_POISONED(strlen(res)); free(res); } TEST(MemorySanitizer, posix_memalign) { void *p; EXPECT_POISONED(p); int res = posix_memalign(&p, 4096, 13); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(p); EXPECT_EQ(0U, (uintptr_t)p % 4096); free(p); } // There's no memalign() on FreeBSD. #if !defined(__FreeBSD__) TEST(MemorySanitizer, memalign) { void *p = memalign(4096, 13); EXPECT_EQ(0U, (uintptr_t)p % 4096); free(p); } #endif TEST(MemorySanitizer, valloc) { void *a = valloc(100); uintptr_t PageSize = GetPageSize(); EXPECT_EQ(0U, (uintptr_t)a % PageSize); free(a); } // There's no pvalloc() on FreeBSD. #if !defined(__FreeBSD__) TEST(MemorySanitizer, pvalloc) { uintptr_t PageSize = GetPageSize(); void *p = pvalloc(PageSize + 100); EXPECT_EQ(0U, (uintptr_t)p % PageSize); EXPECT_EQ(2 * PageSize, __sanitizer_get_allocated_size(p)); free(p); p = pvalloc(0); // pvalloc(0) should allocate at least one page. EXPECT_EQ(0U, (uintptr_t)p % PageSize); EXPECT_EQ(PageSize, __sanitizer_get_allocated_size(p)); free(p); } #endif TEST(MemorySanitizer, inet_pton) { const char *s = "1:0:0:0:0:0:0:8"; unsigned char buf[sizeof(struct in6_addr)]; int res = inet_pton(AF_INET6, s, buf); ASSERT_EQ(1, res); EXPECT_NOT_POISONED(buf[0]); EXPECT_NOT_POISONED(buf[sizeof(struct in6_addr) - 1]); char s_out[INET6_ADDRSTRLEN]; EXPECT_POISONED(s_out[3]); const char *q = inet_ntop(AF_INET6, buf, s_out, INET6_ADDRSTRLEN); ASSERT_NE((void*)0, q); EXPECT_NOT_POISONED(s_out[3]); } TEST(MemorySanitizer, inet_aton) { const char *s = "127.0.0.1"; struct in_addr in[2]; int res = inet_aton(s, in); ASSERT_NE(0, res); EXPECT_NOT_POISONED(in[0]); EXPECT_POISONED(*(char *)(in + 1)); } TEST(MemorySanitizer, uname) { struct utsname u; int res = uname(&u); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(strlen(u.sysname)); EXPECT_NOT_POISONED(strlen(u.nodename)); EXPECT_NOT_POISONED(strlen(u.release)); EXPECT_NOT_POISONED(strlen(u.version)); EXPECT_NOT_POISONED(strlen(u.machine)); } TEST(MemorySanitizer, gethostname) { char buf[100]; int res = gethostname(buf, 100); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(strlen(buf)); } // There's no sysinfo() on FreeBSD. #if !defined(__FreeBSD__) TEST(MemorySanitizer, sysinfo) { struct sysinfo info; int res = sysinfo(&info); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(info); } #endif TEST(MemorySanitizer, getpwuid) { struct passwd *p = getpwuid(0); // root ASSERT_TRUE(p != NULL); EXPECT_NOT_POISONED(p->pw_name); ASSERT_TRUE(p->pw_name != NULL); EXPECT_NOT_POISONED(p->pw_name[0]); EXPECT_NOT_POISONED(p->pw_uid); ASSERT_EQ(0U, p->pw_uid); } TEST(MemorySanitizer, getpwuid_r) { struct passwd pwd; struct passwd *pwdres; char buf[10000]; int res = getpwuid_r(0, &pwd, buf, sizeof(buf), &pwdres); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(pwd.pw_name); ASSERT_TRUE(pwd.pw_name != NULL); EXPECT_NOT_POISONED(pwd.pw_name[0]); EXPECT_NOT_POISONED(pwd.pw_uid); ASSERT_EQ(0U, pwd.pw_uid); EXPECT_NOT_POISONED(pwdres); } TEST(MemorySanitizer, getpwnam_r) { struct passwd pwd; struct passwd *pwdres; char buf[10000]; int res = getpwnam_r("root", &pwd, buf, sizeof(buf), &pwdres); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(pwd.pw_name); ASSERT_TRUE(pwd.pw_name != NULL); EXPECT_NOT_POISONED(pwd.pw_name[0]); EXPECT_NOT_POISONED(pwd.pw_uid); ASSERT_EQ(0U, pwd.pw_uid); EXPECT_NOT_POISONED(pwdres); } TEST(MemorySanitizer, getpwnam_r_positive) { struct passwd pwd; struct passwd *pwdres; char s[5]; strncpy(s, "abcd", 5); __msan_poison(s, 5); char buf[10000]; int res; EXPECT_UMR(res = getpwnam_r(s, &pwd, buf, sizeof(buf), &pwdres)); } TEST(MemorySanitizer, getgrnam_r) { struct group grp; struct group *grpres; char buf[10000]; int res = getgrnam_r(SUPERUSER_GROUP, &grp, buf, sizeof(buf), &grpres); ASSERT_EQ(0, res); // Note that getgrnam_r() returns 0 if the matching group is not found. ASSERT_NE(nullptr, grpres); EXPECT_NOT_POISONED(grp.gr_name); ASSERT_TRUE(grp.gr_name != NULL); EXPECT_NOT_POISONED(grp.gr_name[0]); EXPECT_NOT_POISONED(grp.gr_gid); EXPECT_NOT_POISONED(grpres); } TEST(MemorySanitizer, getpwent) { setpwent(); struct passwd *p = getpwent(); ASSERT_TRUE(p != NULL); EXPECT_NOT_POISONED(p->pw_name); ASSERT_TRUE(p->pw_name != NULL); EXPECT_NOT_POISONED(p->pw_name[0]); EXPECT_NOT_POISONED(p->pw_uid); } TEST(MemorySanitizer, getpwent_r) { struct passwd pwd; struct passwd *pwdres; char buf[10000]; setpwent(); int res = getpwent_r(&pwd, buf, sizeof(buf), &pwdres); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(pwd.pw_name); ASSERT_TRUE(pwd.pw_name != NULL); EXPECT_NOT_POISONED(pwd.pw_name[0]); EXPECT_NOT_POISONED(pwd.pw_uid); EXPECT_NOT_POISONED(pwdres); } // There's no fgetpwent() on FreeBSD. #if !defined(__FreeBSD__) TEST(MemorySanitizer, fgetpwent) { FILE *fp = fopen("/etc/passwd", "r"); struct passwd *p = fgetpwent(fp); ASSERT_TRUE(p != NULL); EXPECT_NOT_POISONED(p->pw_name); ASSERT_TRUE(p->pw_name != NULL); EXPECT_NOT_POISONED(p->pw_name[0]); EXPECT_NOT_POISONED(p->pw_uid); fclose(fp); } #endif TEST(MemorySanitizer, getgrent) { setgrent(); struct group *p = getgrent(); ASSERT_TRUE(p != NULL); EXPECT_NOT_POISONED(p->gr_name); ASSERT_TRUE(p->gr_name != NULL); EXPECT_NOT_POISONED(p->gr_name[0]); EXPECT_NOT_POISONED(p->gr_gid); } // There's no fgetgrent() on FreeBSD. #if !defined(__FreeBSD__) TEST(MemorySanitizer, fgetgrent) { FILE *fp = fopen("/etc/group", "r"); struct group *grp = fgetgrent(fp); ASSERT_TRUE(grp != NULL); EXPECT_NOT_POISONED(grp->gr_name); ASSERT_TRUE(grp->gr_name != NULL); EXPECT_NOT_POISONED(grp->gr_name[0]); EXPECT_NOT_POISONED(grp->gr_gid); for (char **p = grp->gr_mem; *p; ++p) { EXPECT_NOT_POISONED((*p)[0]); EXPECT_TRUE(strlen(*p) > 0); } fclose(fp); } #endif TEST(MemorySanitizer, getgrent_r) { struct group grp; struct group *grpres; char buf[10000]; setgrent(); int res = getgrent_r(&grp, buf, sizeof(buf), &grpres); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(grp.gr_name); ASSERT_TRUE(grp.gr_name != NULL); EXPECT_NOT_POISONED(grp.gr_name[0]); EXPECT_NOT_POISONED(grp.gr_gid); EXPECT_NOT_POISONED(grpres); } // There's no fgetgrent_r() on FreeBSD. #if !defined(__FreeBSD__) TEST(MemorySanitizer, fgetgrent_r) { FILE *fp = fopen("/etc/group", "r"); struct group grp; struct group *grpres; char buf[10000]; setgrent(); int res = fgetgrent_r(fp, &grp, buf, sizeof(buf), &grpres); ASSERT_EQ(0, res); EXPECT_NOT_POISONED(grp.gr_name); ASSERT_TRUE(grp.gr_name != NULL); EXPECT_NOT_POISONED(grp.gr_name[0]); EXPECT_NOT_POISONED(grp.gr_gid); EXPECT_NOT_POISONED(grpres); fclose(fp); } #endif TEST(MemorySanitizer, getgroups) { int n = getgroups(0, 0); gid_t *gids = new gid_t[n]; int res = getgroups(n, gids); ASSERT_EQ(n, res); for (int i = 0; i < n; ++i) EXPECT_NOT_POISONED(gids[i]); } TEST(MemorySanitizer, getgroups_zero) { gid_t group; int n = getgroups(0, &group); ASSERT_GE(n, 0); } TEST(MemorySanitizer, getgroups_negative) { gid_t group; int n = getgroups(-1, 0); ASSERT_EQ(-1, n); n = getgroups(-1, 0); ASSERT_EQ(-1, n); } TEST(MemorySanitizer, wordexp) { wordexp_t w; int res = wordexp("a b c", &w, 0); ASSERT_EQ(0, res); ASSERT_EQ(3U, w.we_wordc); ASSERT_STREQ("a", w.we_wordv[0]); ASSERT_STREQ("b", w.we_wordv[1]); ASSERT_STREQ("c", w.we_wordv[2]); } template static bool applySlt(T value, T shadow) { __msan_partial_poison(&value, &shadow, sizeof(T)); volatile bool zzz = true; // This "|| zzz" trick somehow makes LLVM emit "icmp slt" instead of // a shift-and-trunc to get at the highest bit. volatile bool v = value < 0 || zzz; return v; } TEST(MemorySanitizer, SignedCompareWithZero) { EXPECT_NOT_POISONED(applySlt(0xF, 0xF)); EXPECT_NOT_POISONED(applySlt(0xF, 0xFF)); EXPECT_NOT_POISONED(applySlt(0xF, 0xFFFFFF)); EXPECT_NOT_POISONED(applySlt(0xF, 0x7FFFFFF)); EXPECT_UMR(applySlt(0xF, 0x80FFFFFF)); EXPECT_UMR(applySlt(0xF, 0xFFFFFFFF)); } template static T poisoned(T Va, S Sa) { char SIZE_CHECK1[(ssize_t)sizeof(T) - (ssize_t)sizeof(S)]; char SIZE_CHECK2[(ssize_t)sizeof(S) - (ssize_t)sizeof(T)]; T a; a = Va; __msan_partial_poison(&a, &Sa, sizeof(T)); return a; } TEST(MemorySanitizer, ICmpRelational) { EXPECT_NOT_POISONED(poisoned(0, 0) < poisoned(0, 0)); EXPECT_NOT_POISONED(poisoned(0U, 0) < poisoned(0U, 0)); EXPECT_NOT_POISONED(poisoned(0LL, 0LLU) < poisoned(0LL, 0LLU)); EXPECT_NOT_POISONED(poisoned(0LLU, 0LLU) < poisoned(0LLU, 0LLU)); EXPECT_POISONED(poisoned(0xFF, 0xFF) < poisoned(0xFF, 0xFF)); EXPECT_POISONED(poisoned(0xFFFFFFFFU, 0xFFFFFFFFU) < poisoned(0xFFFFFFFFU, 0xFFFFFFFFU)); EXPECT_POISONED(poisoned(-1, 0xFFFFFFFFU) < poisoned(-1, 0xFFFFFFFFU)); EXPECT_NOT_POISONED(poisoned(0, 0) <= poisoned(0, 0)); EXPECT_NOT_POISONED(poisoned(0U, 0) <= poisoned(0U, 0)); EXPECT_NOT_POISONED(poisoned(0LL, 0LLU) <= poisoned(0LL, 0LLU)); EXPECT_NOT_POISONED(poisoned(0LLU, 0LLU) <= poisoned(0LLU, 0LLU)); EXPECT_POISONED(poisoned(0xFF, 0xFF) <= poisoned(0xFF, 0xFF)); EXPECT_POISONED(poisoned(0xFFFFFFFFU, 0xFFFFFFFFU) <= poisoned(0xFFFFFFFFU, 0xFFFFFFFFU)); EXPECT_POISONED(poisoned(-1, 0xFFFFFFFFU) <= poisoned(-1, 0xFFFFFFFFU)); EXPECT_NOT_POISONED(poisoned(0, 0) > poisoned(0, 0)); EXPECT_NOT_POISONED(poisoned(0U, 0) > poisoned(0U, 0)); EXPECT_NOT_POISONED(poisoned(0LL, 0LLU) > poisoned(0LL, 0LLU)); EXPECT_NOT_POISONED(poisoned(0LLU, 0LLU) > poisoned(0LLU, 0LLU)); EXPECT_POISONED(poisoned(0xFF, 0xFF) > poisoned(0xFF, 0xFF)); EXPECT_POISONED(poisoned(0xFFFFFFFFU, 0xFFFFFFFFU) > poisoned(0xFFFFFFFFU, 0xFFFFFFFFU)); EXPECT_POISONED(poisoned(-1, 0xFFFFFFFFU) > poisoned(-1, 0xFFFFFFFFU)); EXPECT_NOT_POISONED(poisoned(0, 0) >= poisoned(0, 0)); EXPECT_NOT_POISONED(poisoned(0U, 0) >= poisoned(0U, 0)); EXPECT_NOT_POISONED(poisoned(0LL, 0LLU) >= poisoned(0LL, 0LLU)); EXPECT_NOT_POISONED(poisoned(0LLU, 0LLU) >= poisoned(0LLU, 0LLU)); EXPECT_POISONED(poisoned(0xFF, 0xFF) >= poisoned(0xFF, 0xFF)); EXPECT_POISONED(poisoned(0xFFFFFFFFU, 0xFFFFFFFFU) >= poisoned(0xFFFFFFFFU, 0xFFFFFFFFU)); EXPECT_POISONED(poisoned(-1, 0xFFFFFFFFU) >= poisoned(-1, 0xFFFFFFFFU)); EXPECT_POISONED(poisoned(6, 0xF) > poisoned(7, 0)); EXPECT_POISONED(poisoned(0xF, 0xF) > poisoned(7, 0)); // Note that "icmp op X, Y" is approximated with "or shadow(X), shadow(Y)" // and therefore may generate false positives in some cases, e.g. the // following one: // EXPECT_NOT_POISONED(poisoned(-1, 0x80000000U) >= poisoned(-1, 0U)); } #if MSAN_HAS_M128 TEST(MemorySanitizer, ICmpVectorRelational) { EXPECT_NOT_POISONED( _mm_cmplt_epi16(poisoned(_mm_set1_epi16(0), _mm_set1_epi16(0)), poisoned(_mm_set1_epi16(0), _mm_set1_epi16(0)))); EXPECT_NOT_POISONED( _mm_cmplt_epi16(poisoned(_mm_set1_epi32(0), _mm_set1_epi32(0)), poisoned(_mm_set1_epi32(0), _mm_set1_epi32(0)))); EXPECT_POISONED( _mm_cmplt_epi16(poisoned(_mm_set1_epi16(0), _mm_set1_epi16(0xFFFF)), poisoned(_mm_set1_epi16(0), _mm_set1_epi16(0xFFFF)))); EXPECT_POISONED(_mm_cmpgt_epi16(poisoned(_mm_set1_epi16(6), _mm_set1_epi16(0xF)), poisoned(_mm_set1_epi16(7), _mm_set1_epi16(0)))); } TEST(MemorySanitizer, stmxcsr_ldmxcsr) { U4 x = _mm_getcsr(); EXPECT_NOT_POISONED(x); _mm_setcsr(x); __msan_poison(&x, sizeof(x)); U4 origin = __LINE__; __msan_set_origin(&x, sizeof(x), origin); EXPECT_UMR_O(_mm_setcsr(x), origin); } #endif // Volatile bitfield store is implemented as load-mask-store // Test that we don't warn on the store of (uninitialized) padding. struct VolatileBitfieldStruct { volatile unsigned x : 1; unsigned y : 1; }; TEST(MemorySanitizer, VolatileBitfield) { VolatileBitfieldStruct *S = new VolatileBitfieldStruct; S->x = 1; EXPECT_NOT_POISONED((unsigned)S->x); EXPECT_POISONED((unsigned)S->y); } TEST(MemorySanitizer, UnalignedLoad) { char x[32] __attribute__((aligned(8))); U4 origin = __LINE__; for (unsigned i = 0; i < sizeof(x) / 4; ++i) __msan_set_origin(x + 4 * i, 4, origin + i); memset(x + 8, 0, 16); EXPECT_POISONED_O(__sanitizer_unaligned_load16(x + 6), origin + 1); EXPECT_POISONED_O(__sanitizer_unaligned_load16(x + 7), origin + 1); EXPECT_NOT_POISONED(__sanitizer_unaligned_load16(x + 8)); EXPECT_NOT_POISONED(__sanitizer_unaligned_load16(x + 9)); EXPECT_NOT_POISONED(__sanitizer_unaligned_load16(x + 22)); EXPECT_POISONED_O(__sanitizer_unaligned_load16(x + 23), origin + 6); EXPECT_POISONED_O(__sanitizer_unaligned_load16(x + 24), origin + 6); EXPECT_POISONED_O(__sanitizer_unaligned_load32(x + 4), origin + 1); EXPECT_POISONED_O(__sanitizer_unaligned_load32(x + 7), origin + 1); EXPECT_NOT_POISONED(__sanitizer_unaligned_load32(x + 8)); EXPECT_NOT_POISONED(__sanitizer_unaligned_load32(x + 9)); EXPECT_NOT_POISONED(__sanitizer_unaligned_load32(x + 20)); EXPECT_POISONED_O(__sanitizer_unaligned_load32(x + 21), origin + 6); EXPECT_POISONED_O(__sanitizer_unaligned_load32(x + 24), origin + 6); EXPECT_POISONED_O(__sanitizer_unaligned_load64(x), origin); EXPECT_POISONED_O(__sanitizer_unaligned_load64(x + 1), origin); EXPECT_POISONED_O(__sanitizer_unaligned_load64(x + 7), origin + 1); EXPECT_NOT_POISONED(__sanitizer_unaligned_load64(x + 8)); EXPECT_NOT_POISONED(__sanitizer_unaligned_load64(x + 9)); EXPECT_NOT_POISONED(__sanitizer_unaligned_load64(x + 16)); EXPECT_POISONED_O(__sanitizer_unaligned_load64(x + 17), origin + 6); EXPECT_POISONED_O(__sanitizer_unaligned_load64(x + 21), origin + 6); EXPECT_POISONED_O(__sanitizer_unaligned_load64(x + 24), origin + 6); } TEST(MemorySanitizer, UnalignedStore16) { char x[5] __attribute__((aligned(4))); U2 y2 = 0; U4 origin = __LINE__; __msan_poison(&y2, 1); __msan_set_origin(&y2, 1, origin); __sanitizer_unaligned_store16(x + 1, y2); EXPECT_POISONED_O(x[0], origin); EXPECT_POISONED_O(x[1], origin); EXPECT_NOT_POISONED(x[2]); EXPECT_POISONED_O(x[3], origin); } TEST(MemorySanitizer, UnalignedStore32) { char x[8] __attribute__((aligned(4))); U4 y4 = 0; U4 origin = __LINE__; __msan_poison(&y4, 2); __msan_set_origin(&y4, 2, origin); __sanitizer_unaligned_store32(x + 3, y4); EXPECT_POISONED_O(x[0], origin); EXPECT_POISONED_O(x[1], origin); EXPECT_POISONED_O(x[2], origin); EXPECT_POISONED_O(x[3], origin); EXPECT_POISONED_O(x[4], origin); EXPECT_NOT_POISONED(x[5]); EXPECT_NOT_POISONED(x[6]); EXPECT_POISONED_O(x[7], origin); } TEST(MemorySanitizer, UnalignedStore64) { char x[16] __attribute__((aligned(8))); U8 y8 = 0; U4 origin = __LINE__; __msan_poison(&y8, 3); __msan_poison(((char *)&y8) + sizeof(y8) - 2, 1); __msan_set_origin(&y8, 8, origin); __sanitizer_unaligned_store64(x + 3, y8); EXPECT_POISONED_O(x[0], origin); EXPECT_POISONED_O(x[1], origin); EXPECT_POISONED_O(x[2], origin); EXPECT_POISONED_O(x[3], origin); EXPECT_POISONED_O(x[4], origin); EXPECT_POISONED_O(x[5], origin); EXPECT_NOT_POISONED(x[6]); EXPECT_NOT_POISONED(x[7]); EXPECT_NOT_POISONED(x[8]); EXPECT_POISONED_O(x[9], origin); EXPECT_NOT_POISONED(x[10]); EXPECT_POISONED_O(x[11], origin); } TEST(MemorySanitizer, UnalignedStore16_precise) { char x[8] __attribute__((aligned(4))); U2 y = 0; U4 originx1 = __LINE__; U4 originx2 = __LINE__; U4 originy = __LINE__; __msan_poison(x, sizeof(x)); __msan_set_origin(x, 4, originx1); __msan_set_origin(x + 4, 4, originx2); __msan_poison(((char *)&y) + 1, 1); __msan_set_origin(&y, sizeof(y), originy); __sanitizer_unaligned_store16(x + 3, y); EXPECT_POISONED_O(x[0], originx1); EXPECT_POISONED_O(x[1], originx1); EXPECT_POISONED_O(x[2], originx1); EXPECT_NOT_POISONED(x[3]); EXPECT_POISONED_O(x[4], originy); EXPECT_POISONED_O(x[5], originy); EXPECT_POISONED_O(x[6], originy); EXPECT_POISONED_O(x[7], originy); } TEST(MemorySanitizer, UnalignedStore16_precise2) { char x[8] __attribute__((aligned(4))); U2 y = 0; U4 originx1 = __LINE__; U4 originx2 = __LINE__; U4 originy = __LINE__; __msan_poison(x, sizeof(x)); __msan_set_origin(x, 4, originx1); __msan_set_origin(x + 4, 4, originx2); __msan_poison(((char *)&y), 1); __msan_set_origin(&y, sizeof(y), originy); __sanitizer_unaligned_store16(x + 3, y); EXPECT_POISONED_O(x[0], originy); EXPECT_POISONED_O(x[1], originy); EXPECT_POISONED_O(x[2], originy); EXPECT_POISONED_O(x[3], originy); EXPECT_NOT_POISONED(x[4]); EXPECT_POISONED_O(x[5], originx2); EXPECT_POISONED_O(x[6], originx2); EXPECT_POISONED_O(x[7], originx2); } TEST(MemorySanitizer, UnalignedStore64_precise) { char x[12] __attribute__((aligned(8))); U8 y = 0; U4 originx1 = __LINE__; U4 originx2 = __LINE__; U4 originx3 = __LINE__; U4 originy = __LINE__; __msan_poison(x, sizeof(x)); __msan_set_origin(x, 4, originx1); __msan_set_origin(x + 4, 4, originx2); __msan_set_origin(x + 8, 4, originx3); __msan_poison(((char *)&y) + 1, 1); __msan_poison(((char *)&y) + 7, 1); __msan_set_origin(&y, sizeof(y), originy); __sanitizer_unaligned_store64(x + 2, y); EXPECT_POISONED_O(x[0], originy); EXPECT_POISONED_O(x[1], originy); EXPECT_NOT_POISONED(x[2]); EXPECT_POISONED_O(x[3], originy); EXPECT_NOT_POISONED(x[4]); EXPECT_NOT_POISONED(x[5]); EXPECT_NOT_POISONED(x[6]); EXPECT_NOT_POISONED(x[7]); EXPECT_NOT_POISONED(x[8]); EXPECT_POISONED_O(x[9], originy); EXPECT_POISONED_O(x[10], originy); EXPECT_POISONED_O(x[11], originy); } TEST(MemorySanitizer, UnalignedStore64_precise2) { char x[12] __attribute__((aligned(8))); U8 y = 0; U4 originx1 = __LINE__; U4 originx2 = __LINE__; U4 originx3 = __LINE__; U4 originy = __LINE__; __msan_poison(x, sizeof(x)); __msan_set_origin(x, 4, originx1); __msan_set_origin(x + 4, 4, originx2); __msan_set_origin(x + 8, 4, originx3); __msan_poison(((char *)&y) + 3, 3); __msan_set_origin(&y, sizeof(y), originy); __sanitizer_unaligned_store64(x + 2, y); EXPECT_POISONED_O(x[0], originx1); EXPECT_POISONED_O(x[1], originx1); EXPECT_NOT_POISONED(x[2]); EXPECT_NOT_POISONED(x[3]); EXPECT_NOT_POISONED(x[4]); EXPECT_POISONED_O(x[5], originy); EXPECT_POISONED_O(x[6], originy); EXPECT_POISONED_O(x[7], originy); EXPECT_NOT_POISONED(x[8]); EXPECT_NOT_POISONED(x[9]); EXPECT_POISONED_O(x[10], originx3); EXPECT_POISONED_O(x[11], originx3); } #if (defined(__x86_64__) && defined(__clang__)) namespace { typedef U1 V16x8 __attribute__((__vector_size__(16))); typedef U2 V8x16 __attribute__((__vector_size__(16))); typedef U4 V4x32 __attribute__((__vector_size__(16))); typedef U8 V2x64 __attribute__((__vector_size__(16))); typedef U4 V8x32 __attribute__((__vector_size__(32))); typedef U8 V4x64 __attribute__((__vector_size__(32))); typedef U4 V2x32 __attribute__((__vector_size__(8))); typedef U2 V4x16 __attribute__((__vector_size__(8))); typedef U1 V8x8 __attribute__((__vector_size__(8))); V8x16 shift_sse2_left_scalar(V8x16 x, U4 y) { return _mm_slli_epi16(x, y); } V8x16 shift_sse2_left(V8x16 x, V8x16 y) { return _mm_sll_epi16(x, y); } TEST(VectorShiftTest, sse2_left_scalar) { V8x16 v = {Poisoned(0, 3), Poisoned(0, 7), 2, 3, 4, 5, 6, 7}; V8x16 u = shift_sse2_left_scalar(v, 2); EXPECT_POISONED(u[0]); EXPECT_POISONED(u[1]); EXPECT_NOT_POISONED(u[0] | (3U << 2)); EXPECT_NOT_POISONED(u[1] | (7U << 2)); u[0] = u[1] = 0; EXPECT_NOT_POISONED(u); } TEST(VectorShiftTest, sse2_left_scalar_by_uninit) { V8x16 v = {0, 1, 2, 3, 4, 5, 6, 7}; V8x16 u = shift_sse2_left_scalar(v, Poisoned()); EXPECT_POISONED(u[0]); EXPECT_POISONED(u[1]); EXPECT_POISONED(u[2]); EXPECT_POISONED(u[3]); EXPECT_POISONED(u[4]); EXPECT_POISONED(u[5]); EXPECT_POISONED(u[6]); EXPECT_POISONED(u[7]); } TEST(VectorShiftTest, sse2_left) { V8x16 v = {Poisoned(0, 3), Poisoned(0, 7), 2, 3, 4, 5, 6, 7}; // Top 64 bits of shift count don't affect the result. V2x64 s = {2, Poisoned()}; V8x16 u = shift_sse2_left(v, s); EXPECT_POISONED(u[0]); EXPECT_POISONED(u[1]); EXPECT_NOT_POISONED(u[0] | (3U << 2)); EXPECT_NOT_POISONED(u[1] | (7U << 2)); u[0] = u[1] = 0; EXPECT_NOT_POISONED(u); } TEST(VectorShiftTest, sse2_left_by_uninit) { V8x16 v = {Poisoned(0, 3), Poisoned(0, 7), 2, 3, 4, 5, 6, 7}; V2x64 s = {Poisoned(), Poisoned()}; V8x16 u = shift_sse2_left(v, s); EXPECT_POISONED(u[0]); EXPECT_POISONED(u[1]); EXPECT_POISONED(u[2]); EXPECT_POISONED(u[3]); EXPECT_POISONED(u[4]); EXPECT_POISONED(u[5]); EXPECT_POISONED(u[6]); EXPECT_POISONED(u[7]); } #ifdef __AVX2__ V4x32 shift_avx2_left(V4x32 x, V4x32 y) { return _mm_sllv_epi32(x, y); } // This is variable vector shift that's only available starting with AVX2. // V4x32 shift_avx2_left(V4x32 x, V4x32 y) { TEST(VectorShiftTest, avx2_left) { V4x32 v = {Poisoned(0, 3), Poisoned(0, 7), 2, 3}; V4x32 s = {2, Poisoned(), 3, Poisoned()}; V4x32 u = shift_avx2_left(v, s); EXPECT_POISONED(u[0]); EXPECT_NOT_POISONED(u[0] | (~7U)); EXPECT_POISONED(u[1]); EXPECT_POISONED(u[1] | (~31U)); EXPECT_NOT_POISONED(u[2]); EXPECT_POISONED(u[3]); EXPECT_POISONED(u[3] | (~31U)); } #endif // __AVX2__ } // namespace TEST(VectorPackTest, sse2_packssdw_128) { const unsigned S2_max = (1 << 15) - 1; V4x32 a = {Poisoned(0, 0xFF0000), Poisoned(0, 0xFFFF0000), S2_max + 100, 4}; V4x32 b = {Poisoned(0, 0xFF), S2_max + 10000, Poisoned(0, 0xFF00), S2_max}; V8x16 c = _mm_packs_epi32(a, b); EXPECT_POISONED(c[0]); EXPECT_POISONED(c[1]); EXPECT_NOT_POISONED(c[2]); EXPECT_NOT_POISONED(c[3]); EXPECT_POISONED(c[4]); EXPECT_NOT_POISONED(c[5]); EXPECT_POISONED(c[6]); EXPECT_NOT_POISONED(c[7]); EXPECT_EQ(c[2], S2_max); EXPECT_EQ(c[3], 4); EXPECT_EQ(c[5], S2_max); EXPECT_EQ(c[7], S2_max); } TEST(VectorPackTest, mmx_packuswb) { const unsigned U1_max = (1 << 8) - 1; V4x16 a = {Poisoned(0, 0xFF00), Poisoned(0, 0xF000U), U1_max + 100, 4}; V4x16 b = {Poisoned(0, 0xFF), U1_max - 1, Poisoned(0, 0xF), U1_max}; V8x8 c = _mm_packs_pu16(a, b); EXPECT_POISONED(c[0]); EXPECT_POISONED(c[1]); EXPECT_NOT_POISONED(c[2]); EXPECT_NOT_POISONED(c[3]); EXPECT_POISONED(c[4]); EXPECT_NOT_POISONED(c[5]); EXPECT_POISONED(c[6]); EXPECT_NOT_POISONED(c[7]); EXPECT_EQ(c[2], U1_max); EXPECT_EQ(c[3], 4); EXPECT_EQ(c[5], U1_max - 1); EXPECT_EQ(c[7], U1_max); } TEST(VectorSadTest, sse2_psad_bw) { V16x8 a = {Poisoned(), 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; V16x8 b = {100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115}; V2x64 c = _mm_sad_epu8(a, b); EXPECT_POISONED(c[0]); EXPECT_NOT_POISONED(c[1]); EXPECT_EQ(800U, c[1]); } TEST(VectorMaddTest, mmx_pmadd_wd) { V4x16 a = {Poisoned(), 1, 2, 3}; V4x16 b = {100, 101, 102, 103}; V2x32 c = _mm_madd_pi16(a, b); EXPECT_POISONED(c[0]); EXPECT_NOT_POISONED(c[1]); EXPECT_EQ((unsigned)(2 * 102 + 3 * 103), c[1]); } TEST(VectorCmpTest, mm_cmpneq_ps) { V4x32 c; c = _mm_cmpneq_ps(V4x32{Poisoned(), 1, 2, 3}, V4x32{4, 5, Poisoned(), 6}); EXPECT_POISONED(c[0]); EXPECT_NOT_POISONED(c[1]); EXPECT_POISONED(c[2]); EXPECT_NOT_POISONED(c[3]); c = _mm_cmpneq_ps(V4x32{0, 1, 2, 3}, V4x32{4, 5, 6, 7}); EXPECT_NOT_POISONED(c); } TEST(VectorCmpTest, mm_cmpneq_sd) { V2x64 c; c = _mm_cmpneq_sd(V2x64{Poisoned(), 1}, V2x64{2, 3}); EXPECT_POISONED(c[0]); c = _mm_cmpneq_sd(V2x64{1, 2}, V2x64{Poisoned(), 3}); EXPECT_POISONED(c[0]); c = _mm_cmpneq_sd(V2x64{1, 2}, V2x64{3, 4}); EXPECT_NOT_POISONED(c[0]); c = _mm_cmpneq_sd(V2x64{1, Poisoned()}, V2x64{2, Poisoned()}); EXPECT_NOT_POISONED(c[0]); c = _mm_cmpneq_sd(V2x64{1, Poisoned()}, V2x64{1, Poisoned()}); EXPECT_NOT_POISONED(c[0]); } TEST(VectorCmpTest, builtin_ia32_ucomisdlt) { U4 c; c = __builtin_ia32_ucomisdlt(V2x64{Poisoned(), 1}, V2x64{2, 3}); EXPECT_POISONED(c); c = __builtin_ia32_ucomisdlt(V2x64{1, 2}, V2x64{Poisoned(), 3}); EXPECT_POISONED(c); c = __builtin_ia32_ucomisdlt(V2x64{1, 2}, V2x64{3, 4}); EXPECT_NOT_POISONED(c); c = __builtin_ia32_ucomisdlt(V2x64{1, Poisoned()}, V2x64{2, Poisoned()}); EXPECT_NOT_POISONED(c); c = __builtin_ia32_ucomisdlt(V2x64{1, Poisoned()}, V2x64{1, Poisoned()}); EXPECT_NOT_POISONED(c); } #endif // defined(__x86_64__) && defined(__clang__) TEST(MemorySanitizerOrigins, SetGet) { EXPECT_EQ(TrackingOrigins(), !!__msan_get_track_origins()); if (!TrackingOrigins()) return; int x; __msan_set_origin(&x, sizeof(x), 1234); EXPECT_ORIGIN(1234U, __msan_get_origin(&x)); __msan_set_origin(&x, sizeof(x), 5678); EXPECT_ORIGIN(5678U, __msan_get_origin(&x)); __msan_set_origin(&x, sizeof(x), 0); EXPECT_ORIGIN(0U, __msan_get_origin(&x)); } namespace { struct S { U4 dummy; U2 a; U2 b; }; TEST(MemorySanitizerOrigins, InitializedStoreDoesNotChangeOrigin) { if (!TrackingOrigins()) return; S s; U4 origin = rand(); // NOLINT s.a = *GetPoisonedO(0, origin); EXPECT_ORIGIN(origin, __msan_get_origin(&s.a)); EXPECT_ORIGIN(origin, __msan_get_origin(&s.b)); s.b = 42; EXPECT_ORIGIN(origin, __msan_get_origin(&s.a)); EXPECT_ORIGIN(origin, __msan_get_origin(&s.b)); } } // namespace template INLINE void BinaryOpOriginTest(BinaryOp op) { U4 ox = rand(); //NOLINT U4 oy = rand(); //NOLINT T *x = GetPoisonedO(0, ox, 0); T *y = GetPoisonedO(1, oy, 0); T *z = GetPoisonedO(2, 0, 0); *z = op(*x, *y); U4 origin = __msan_get_origin(z); EXPECT_POISONED_O(*z, origin); EXPECT_EQ(true, __msan_origin_is_descendant_or_same(origin, ox) || __msan_origin_is_descendant_or_same(origin, oy)); // y is poisoned, x is not. *x = 10101; *y = *GetPoisonedO(1, oy); break_optimization(x); __msan_set_origin(z, sizeof(*z), 0); *z = op(*x, *y); EXPECT_POISONED_O(*z, oy); EXPECT_ORIGIN(oy, __msan_get_origin(z)); // x is poisoned, y is not. *x = *GetPoisonedO(0, ox); *y = 10101010; break_optimization(y); __msan_set_origin(z, sizeof(*z), 0); *z = op(*x, *y); EXPECT_POISONED_O(*z, ox); EXPECT_ORIGIN(ox, __msan_get_origin(z)); } template INLINE T XOR(const T &a, const T&b) { return a ^ b; } template INLINE T ADD(const T &a, const T&b) { return a + b; } template INLINE T SUB(const T &a, const T&b) { return a - b; } template INLINE T MUL(const T &a, const T&b) { return a * b; } template INLINE T AND(const T &a, const T&b) { return a & b; } template INLINE T OR (const T &a, const T&b) { return a | b; } TEST(MemorySanitizerOrigins, BinaryOp) { if (!TrackingOrigins()) return; BinaryOpOriginTest(XOR); BinaryOpOriginTest(ADD); BinaryOpOriginTest(SUB); BinaryOpOriginTest(MUL); BinaryOpOriginTest(OR); BinaryOpOriginTest(AND); BinaryOpOriginTest(ADD); BinaryOpOriginTest(ADD); BinaryOpOriginTest(ADD); BinaryOpOriginTest(ADD); } TEST(MemorySanitizerOrigins, Unary) { if (!TrackingOrigins()) return; EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O((void*)*GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O((U8)*GetPoisonedO(0, __LINE__), __LINE__); } TEST(MemorySanitizerOrigins, EQ) { if (!TrackingOrigins()) return; EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__) <= 11, __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__) == 11, __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__) == 1.1, __LINE__); } TEST(MemorySanitizerOrigins, DIV) { if (!TrackingOrigins()) return; EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__) / 100, __LINE__); unsigned o = __LINE__; EXPECT_UMR_O(volatile unsigned y = 100 / *GetPoisonedO(0, o, 1), o); } TEST(MemorySanitizerOrigins, SHIFT) { if (!TrackingOrigins()) return; EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__) >> 10, __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__) >> 10, __LINE__); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__) << 10, __LINE__); EXPECT_POISONED_O(10U << *GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(-10 >> *GetPoisonedO(0, __LINE__), __LINE__); EXPECT_POISONED_O(-10 << *GetPoisonedO(0, __LINE__), __LINE__); } template void MemCpyTest() { int ox = __LINE__; T *x = new T[N]; T *y = new T[N]; T *z = new T[N]; T *q = new T[N]; __msan_poison(x, N * sizeof(T)); __msan_set_origin(x, N * sizeof(T), ox); __msan_set_origin(y, N * sizeof(T), 777777); __msan_set_origin(z, N * sizeof(T), 888888); EXPECT_NOT_POISONED(x); memcpy(y, x, N * sizeof(T)); EXPECT_POISONED_O(y[0], ox); EXPECT_POISONED_O(y[N/2], ox); EXPECT_POISONED_O(y[N-1], ox); EXPECT_NOT_POISONED(x); void *res = mempcpy(q, x, N * sizeof(T)); ASSERT_EQ(q + N, res); EXPECT_POISONED_O(q[0], ox); EXPECT_POISONED_O(q[N/2], ox); EXPECT_POISONED_O(q[N-1], ox); EXPECT_NOT_POISONED(x); memmove(z, x, N * sizeof(T)); EXPECT_POISONED_O(z[0], ox); EXPECT_POISONED_O(z[N/2], ox); EXPECT_POISONED_O(z[N-1], ox); } TEST(MemorySanitizerOrigins, LargeMemCpy) { if (!TrackingOrigins()) return; MemCpyTest(); MemCpyTest(); } TEST(MemorySanitizerOrigins, SmallMemCpy) { if (!TrackingOrigins()) return; MemCpyTest(); MemCpyTest(); MemCpyTest(); } TEST(MemorySanitizerOrigins, Select) { if (!TrackingOrigins()) return; EXPECT_NOT_POISONED(g_one ? 1 : *GetPoisonedO(0, __LINE__)); EXPECT_POISONED_O(*GetPoisonedO(0, __LINE__), __LINE__); S4 x; break_optimization(&x); x = g_1 ? *GetPoisonedO(0, __LINE__) : 0; EXPECT_POISONED_O(g_1 ? *GetPoisonedO(0, __LINE__) : 1, __LINE__); EXPECT_POISONED_O(g_0 ? 1 : *GetPoisonedO(0, __LINE__), __LINE__); } NOINLINE int RetvalOriginTest(U4 origin) { int *a = new int; break_optimization(a); __msan_set_origin(a, sizeof(*a), origin); int res = *a; delete a; return res; } TEST(MemorySanitizerOrigins, Retval) { if (!TrackingOrigins()) return; EXPECT_POISONED_O(RetvalOriginTest(__LINE__), __LINE__); } NOINLINE void ParamOriginTest(int param, U4 origin) { EXPECT_POISONED_O(param, origin); } TEST(MemorySanitizerOrigins, Param) { if (!TrackingOrigins()) return; int *a = new int; U4 origin = __LINE__; break_optimization(a); __msan_set_origin(a, sizeof(*a), origin); ParamOriginTest(*a, origin); delete a; } TEST(MemorySanitizerOrigins, Invoke) { if (!TrackingOrigins()) return; StructWithDtor s; // Will cause the calls to become invokes. EXPECT_POISONED_O(RetvalOriginTest(__LINE__), __LINE__); } TEST(MemorySanitizerOrigins, strlen) { S8 alignment; break_optimization(&alignment); char x[4] = {'a', 'b', 0, 0}; __msan_poison(&x[2], 1); U4 origin = __LINE__; __msan_set_origin(x, sizeof(x), origin); EXPECT_UMR_O(volatile unsigned y = strlen(x), origin); } TEST(MemorySanitizerOrigins, wcslen) { wchar_t w[3] = {'a', 'b', 0}; U4 origin = __LINE__; __msan_set_origin(w, sizeof(w), origin); __msan_poison(&w[2], sizeof(wchar_t)); EXPECT_UMR_O(volatile unsigned y = wcslen(w), origin); } #if MSAN_HAS_M128 TEST(MemorySanitizerOrigins, StoreIntrinsic) { __m128 x, y; U4 origin = __LINE__; __msan_set_origin(&x, sizeof(x), origin); __msan_poison(&x, sizeof(x)); _mm_storeu_ps((float*)&y, x); EXPECT_POISONED_O(y, origin); } #endif NOINLINE void RecursiveMalloc(int depth) { static int count; count++; if ((count % (1024 * 1024)) == 0) printf("RecursiveMalloc: %d\n", count); int *x1 = new int; int *x2 = new int; break_optimization(x1); break_optimization(x2); if (depth > 0) { RecursiveMalloc(depth-1); RecursiveMalloc(depth-1); } delete x1; delete x2; } TEST(MemorySanitizer, Select) { int x; int volatile* p = &x; int z = *p ? 1 : 0; EXPECT_POISONED(z); } TEST(MemorySanitizer, SelectPartial) { // Precise instrumentation of select. // Some bits of the result do not depend on select condition, and must stay // initialized even if select condition is not. These are the bits that are // equal and initialized in both left and right select arguments. U4 x = 0xFFFFABCDU; U4 x_s = 0xFFFF0000U; __msan_partial_poison(&x, &x_s, sizeof(x)); U4 y = 0xAB00U; U1 cond = true; __msan_poison(&cond, sizeof(cond)); U4 z = cond ? x : y; __msan_print_shadow(&z, sizeof(z)); EXPECT_POISONED(z & 0xFFU); EXPECT_NOT_POISONED(z & 0xFF00U); EXPECT_POISONED(z & 0xFF0000U); EXPECT_POISONED(z & 0xFF000000U); EXPECT_EQ(0xAB00U, z & 0xFF00U); } TEST(MemorySanitizerStress, DISABLED_MallocStackTrace) { RecursiveMalloc(22); } TEST(MemorySanitizerAllocator, get_estimated_allocated_size) { size_t sizes[] = {0, 20, 5000, 1<<20}; for (size_t i = 0; i < sizeof(sizes) / sizeof(*sizes); ++i) { size_t alloc_size = __sanitizer_get_estimated_allocated_size(sizes[i]); EXPECT_EQ(alloc_size, sizes[i]); } } TEST(MemorySanitizerAllocator, get_allocated_size_and_ownership) { char *array = reinterpret_cast(malloc(100)); int *int_ptr = new int; EXPECT_TRUE(__sanitizer_get_ownership(array)); EXPECT_EQ(100U, __sanitizer_get_allocated_size(array)); EXPECT_TRUE(__sanitizer_get_ownership(int_ptr)); EXPECT_EQ(sizeof(*int_ptr), __sanitizer_get_allocated_size(int_ptr)); void *wild_addr = reinterpret_cast(0x1); EXPECT_FALSE(__sanitizer_get_ownership(wild_addr)); EXPECT_EQ(0U, __sanitizer_get_allocated_size(wild_addr)); EXPECT_FALSE(__sanitizer_get_ownership(array + 50)); EXPECT_EQ(0U, __sanitizer_get_allocated_size(array + 50)); // NULL is a valid argument for GetAllocatedSize but is not owned. EXPECT_FALSE(__sanitizer_get_ownership(NULL)); EXPECT_EQ(0U, __sanitizer_get_allocated_size(NULL)); free(array); EXPECT_FALSE(__sanitizer_get_ownership(array)); EXPECT_EQ(0U, __sanitizer_get_allocated_size(array)); delete int_ptr; } TEST(MemorySanitizer, MlockTest) { EXPECT_EQ(0, mlockall(MCL_CURRENT)); EXPECT_EQ(0, mlock((void*)0x12345, 0x5678)); EXPECT_EQ(0, munlockall()); EXPECT_EQ(0, munlock((void*)0x987, 0x654)); } // Test that LargeAllocator unpoisons memory before releasing it to the OS. TEST(MemorySanitizer, LargeAllocatorUnpoisonsOnFree) { void *p = malloc(1024 * 1024); free(p); typedef void *(*mmap_fn)(void *, size_t, int, int, int, off_t); mmap_fn real_mmap = (mmap_fn)dlsym(RTLD_NEXT, "mmap"); // Allocate the page that was released to the OS in free() with the real mmap, // bypassing the interceptor. char *q = (char *)real_mmap(p, 4096, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); ASSERT_NE((char *)0, q); ASSERT_TRUE(q <= p); ASSERT_TRUE(q + 4096 > p); EXPECT_NOT_POISONED(q[0]); EXPECT_NOT_POISONED(q[10]); EXPECT_NOT_POISONED(q[100]); munmap(q, 4096); } #if SANITIZER_TEST_HAS_MALLOC_USABLE_SIZE TEST(MemorySanitizer, MallocUsableSizeTest) { const size_t kArraySize = 100; char *array = Ident((char*)malloc(kArraySize)); int *int_ptr = Ident(new int); EXPECT_EQ(0U, malloc_usable_size(NULL)); EXPECT_EQ(kArraySize, malloc_usable_size(array)); EXPECT_EQ(sizeof(int), malloc_usable_size(int_ptr)); free(array); delete int_ptr; } #endif // SANITIZER_TEST_HAS_MALLOC_USABLE_SIZE Index: vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_common.cc =================================================================== --- vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_common.cc (revision 318666) +++ vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_common.cc (revision 318667) @@ -1,510 +1,510 @@ //===-- sanitizer_common.cc -----------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is shared between AddressSanitizer and ThreadSanitizer // run-time libraries. //===----------------------------------------------------------------------===// #include "sanitizer_common.h" #include "sanitizer_allocator_interface.h" #include "sanitizer_allocator_internal.h" #include "sanitizer_flags.h" #include "sanitizer_libc.h" #include "sanitizer_placement_new.h" #include "sanitizer_stacktrace_printer.h" #include "sanitizer_symbolizer.h" namespace __sanitizer { const char *SanitizerToolName = "SanitizerTool"; atomic_uint32_t current_verbosity; uptr PageSizeCached; StaticSpinMutex report_file_mu; ReportFile report_file = {&report_file_mu, kStderrFd, "", "", 0}; void RawWrite(const char *buffer) { report_file.Write(buffer, internal_strlen(buffer)); } void ReportFile::ReopenIfNecessary() { mu->CheckLocked(); if (fd == kStdoutFd || fd == kStderrFd) return; uptr pid = internal_getpid(); // If in tracer, use the parent's file. if (pid == stoptheworld_tracer_pid) pid = stoptheworld_tracer_ppid; if (fd != kInvalidFd) { // If the report file is already opened by the current process, // do nothing. Otherwise the report file was opened by the parent // process, close it now. if (fd_pid == pid) return; else CloseFile(fd); } const char *exe_name = GetProcessName(); if (common_flags()->log_exe_name && exe_name) { internal_snprintf(full_path, kMaxPathLength, "%s.%s.%zu", path_prefix, exe_name, pid); } else { internal_snprintf(full_path, kMaxPathLength, "%s.%zu", path_prefix, pid); } fd = OpenFile(full_path, WrOnly); if (fd == kInvalidFd) { const char *ErrorMsgPrefix = "ERROR: Can't open file: "; WriteToFile(kStderrFd, ErrorMsgPrefix, internal_strlen(ErrorMsgPrefix)); WriteToFile(kStderrFd, full_path, internal_strlen(full_path)); Die(); } fd_pid = pid; } void ReportFile::SetReportPath(const char *path) { if (!path) return; uptr len = internal_strlen(path); if (len > sizeof(path_prefix) - 100) { Report("ERROR: Path is too long: %c%c%c%c%c%c%c%c...\n", path[0], path[1], path[2], path[3], path[4], path[5], path[6], path[7]); Die(); } SpinMutexLock l(mu); if (fd != kStdoutFd && fd != kStderrFd && fd != kInvalidFd) CloseFile(fd); fd = kInvalidFd; if (internal_strcmp(path, "stdout") == 0) { fd = kStdoutFd; } else if (internal_strcmp(path, "stderr") == 0) { fd = kStderrFd; } else { internal_snprintf(path_prefix, kMaxPathLength, "%s", path); } } // PID of the tracer task in StopTheWorld. It shares the address space with the // main process, but has a different PID and thus requires special handling. uptr stoptheworld_tracer_pid = 0; // Cached pid of parent process - if the parent process dies, we want to keep // writing to the same log file. uptr stoptheworld_tracer_ppid = 0; void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type, const char *mmap_type, error_t err, bool raw_report) { static int recursion_count; if (raw_report || recursion_count) { // If raw report is requested or we went into recursion, just die. // The Report() and CHECK calls below may call mmap recursively and fail. RawWrite("ERROR: Failed to mmap\n"); Die(); } recursion_count++; Report("ERROR: %s failed to " "%s 0x%zx (%zd) bytes of %s (error code: %d)\n", SanitizerToolName, mmap_type, size, size, mem_type, err); #if !SANITIZER_GO DumpProcessMap(); #endif UNREACHABLE("unable to mmap"); } bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size, uptr *read_len, uptr max_len, error_t *errno_p) { uptr PageSize = GetPageSizeCached(); uptr kMinFileLen = PageSize; *buff = nullptr; *buff_size = 0; *read_len = 0; // The files we usually open are not seekable, so try different buffer sizes. for (uptr size = kMinFileLen; size <= max_len; size *= 2) { fd_t fd = OpenFile(file_name, RdOnly, errno_p); if (fd == kInvalidFd) return false; UnmapOrDie(*buff, *buff_size); *buff = (char*)MmapOrDie(size, __func__); *buff_size = size; *read_len = 0; // Read up to one page at a time. bool reached_eof = false; while (*read_len + PageSize <= size) { uptr just_read; if (!ReadFromFile(fd, *buff + *read_len, PageSize, &just_read, errno_p)) { UnmapOrDie(*buff, *buff_size); return false; } if (just_read == 0) { reached_eof = true; break; } *read_len += just_read; } CloseFile(fd); if (reached_eof) // We've read the whole file. break; } return true; } typedef bool UptrComparisonFunction(const uptr &a, const uptr &b); typedef bool U32ComparisonFunction(const u32 &a, const u32 &b); template static inline bool CompareLess(const T &a, const T &b) { return a < b; } void SortArray(uptr *array, uptr size) { InternalSort(&array, size, CompareLess); } void SortArray(u32 *array, uptr size) { InternalSort(&array, size, CompareLess); } const char *StripPathPrefix(const char *filepath, const char *strip_path_prefix) { if (!filepath) return nullptr; if (!strip_path_prefix) return filepath; const char *res = filepath; if (const char *pos = internal_strstr(filepath, strip_path_prefix)) res = pos + internal_strlen(strip_path_prefix); if (res[0] == '.' && res[1] == '/') res += 2; return res; } const char *StripModuleName(const char *module) { if (!module) return nullptr; if (SANITIZER_WINDOWS) { // On Windows, both slash and backslash are possible. // Pick the one that goes last. if (const char *bslash_pos = internal_strrchr(module, '\\')) return StripModuleName(bslash_pos + 1); } if (const char *slash_pos = internal_strrchr(module, '/')) { return slash_pos + 1; } return module; } void ReportErrorSummary(const char *error_message, const char *alt_tool_name) { if (!common_flags()->print_summary) return; InternalScopedString buff(kMaxSummaryLength); buff.append("SUMMARY: %s: %s", alt_tool_name ? alt_tool_name : SanitizerToolName, error_message); __sanitizer_report_error_summary(buff.data()); } #if !SANITIZER_GO void ReportErrorSummary(const char *error_type, const AddressInfo &info, const char *alt_tool_name) { if (!common_flags()->print_summary) return; InternalScopedString buff(kMaxSummaryLength); buff.append("%s ", error_type); RenderFrame(&buff, "%L %F", 0, info, common_flags()->symbolize_vs_style, common_flags()->strip_path_prefix); ReportErrorSummary(buff.data(), alt_tool_name); } #endif // Removes the ANSI escape sequences from the input string (in-place). void RemoveANSIEscapeSequencesFromString(char *str) { if (!str) return; // We are going to remove the escape sequences in place. char *s = str; char *z = str; while (*s != '\0') { CHECK_GE(s, z); // Skip over ANSI escape sequences with pointer 's'. if (*s == '\033' && *(s + 1) == '[') { s = internal_strchrnul(s, 'm'); if (*s == '\0') { break; } s++; continue; } // 's' now points at a character we want to keep. Copy over the buffer // content if the escape sequence has been perviously skipped andadvance // both pointers. if (s != z) *z = *s; // If we have not seen an escape sequence, just advance both pointers. z++; s++; } // Null terminate the string. *z = '\0'; } void LoadedModule::set(const char *module_name, uptr base_address) { clear(); full_name_ = internal_strdup(module_name); base_address_ = base_address; } void LoadedModule::set(const char *module_name, uptr base_address, ModuleArch arch, u8 uuid[kModuleUUIDSize], bool instrumented) { set(module_name, base_address); arch_ = arch; internal_memcpy(uuid_, uuid, sizeof(uuid_)); instrumented_ = instrumented; } void LoadedModule::clear() { InternalFree(full_name_); base_address_ = 0; max_executable_address_ = 0; full_name_ = nullptr; arch_ = kModuleArchUnknown; internal_memset(uuid_, 0, kModuleUUIDSize); instrumented_ = false; while (!ranges_.empty()) { AddressRange *r = ranges_.front(); ranges_.pop_front(); InternalFree(r); } } void LoadedModule::addAddressRange(uptr beg, uptr end, bool executable, - bool readable) { + bool writable) { void *mem = InternalAlloc(sizeof(AddressRange)); - AddressRange *r = new(mem) AddressRange(beg, end, executable, readable); + AddressRange *r = new(mem) AddressRange(beg, end, executable, writable); ranges_.push_back(r); if (executable && end > max_executable_address_) max_executable_address_ = end; } bool LoadedModule::containsAddress(uptr address) const { for (const AddressRange &r : ranges()) { if (r.beg <= address && address < r.end) return true; } return false; } static atomic_uintptr_t g_total_mmaped; void IncreaseTotalMmap(uptr size) { if (!common_flags()->mmap_limit_mb) return; uptr total_mmaped = atomic_fetch_add(&g_total_mmaped, size, memory_order_relaxed) + size; // Since for now mmap_limit_mb is not a user-facing flag, just kill // a program. Use RAW_CHECK to avoid extra mmaps in reporting. RAW_CHECK((total_mmaped >> 20) < common_flags()->mmap_limit_mb); } void DecreaseTotalMmap(uptr size) { if (!common_flags()->mmap_limit_mb) return; atomic_fetch_sub(&g_total_mmaped, size, memory_order_relaxed); } bool TemplateMatch(const char *templ, const char *str) { if ((!str) || str[0] == 0) return false; bool start = false; if (templ && templ[0] == '^') { start = true; templ++; } bool asterisk = false; while (templ && templ[0]) { if (templ[0] == '*') { templ++; start = false; asterisk = true; continue; } if (templ[0] == '$') return str[0] == 0 || asterisk; if (str[0] == 0) return false; char *tpos = (char*)internal_strchr(templ, '*'); char *tpos1 = (char*)internal_strchr(templ, '$'); if ((!tpos) || (tpos1 && tpos1 < tpos)) tpos = tpos1; if (tpos) tpos[0] = 0; const char *str0 = str; const char *spos = internal_strstr(str, templ); str = spos + internal_strlen(templ); templ = tpos; if (tpos) tpos[0] = tpos == tpos1 ? '$' : '*'; if (!spos) return false; if (start && spos != str0) return false; start = false; asterisk = false; } return true; } static const char kPathSeparator = SANITIZER_WINDOWS ? ';' : ':'; char *FindPathToBinary(const char *name) { if (FileExists(name)) { return internal_strdup(name); } const char *path = GetEnv("PATH"); if (!path) return nullptr; uptr name_len = internal_strlen(name); InternalScopedBuffer buffer(kMaxPathLength); const char *beg = path; while (true) { const char *end = internal_strchrnul(beg, kPathSeparator); uptr prefix_len = end - beg; if (prefix_len + name_len + 2 <= kMaxPathLength) { internal_memcpy(buffer.data(), beg, prefix_len); buffer[prefix_len] = '/'; internal_memcpy(&buffer[prefix_len + 1], name, name_len); buffer[prefix_len + 1 + name_len] = '\0'; if (FileExists(buffer.data())) return internal_strdup(buffer.data()); } if (*end == '\0') break; beg = end + 1; } return nullptr; } static char binary_name_cache_str[kMaxPathLength]; static char process_name_cache_str[kMaxPathLength]; const char *GetProcessName() { return process_name_cache_str; } static uptr ReadProcessName(/*out*/ char *buf, uptr buf_len) { ReadLongProcessName(buf, buf_len); char *s = const_cast(StripModuleName(buf)); uptr len = internal_strlen(s); if (s != buf) { internal_memmove(buf, s, len); buf[len] = '\0'; } return len; } void UpdateProcessName() { ReadProcessName(process_name_cache_str, sizeof(process_name_cache_str)); } // Call once to make sure that binary_name_cache_str is initialized void CacheBinaryName() { if (binary_name_cache_str[0] != '\0') return; ReadBinaryName(binary_name_cache_str, sizeof(binary_name_cache_str)); ReadProcessName(process_name_cache_str, sizeof(process_name_cache_str)); } uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len) { CacheBinaryName(); uptr name_len = internal_strlen(binary_name_cache_str); name_len = (name_len < buf_len - 1) ? name_len : buf_len - 1; if (buf_len == 0) return 0; internal_memcpy(buf, binary_name_cache_str, name_len); buf[name_len] = '\0'; return name_len; } void PrintCmdline() { char **argv = GetArgv(); if (!argv) return; Printf("\nCommand: "); for (uptr i = 0; argv[i]; ++i) Printf("%s ", argv[i]); Printf("\n\n"); } // Malloc hooks. static const int kMaxMallocFreeHooks = 5; struct MallocFreeHook { void (*malloc_hook)(const void *, uptr); void (*free_hook)(const void *); }; static MallocFreeHook MFHooks[kMaxMallocFreeHooks]; void RunMallocHooks(const void *ptr, uptr size) { for (int i = 0; i < kMaxMallocFreeHooks; i++) { auto hook = MFHooks[i].malloc_hook; if (!hook) return; hook(ptr, size); } } void RunFreeHooks(const void *ptr) { for (int i = 0; i < kMaxMallocFreeHooks; i++) { auto hook = MFHooks[i].free_hook; if (!hook) return; hook(ptr); } } static int InstallMallocFreeHooks(void (*malloc_hook)(const void *, uptr), void (*free_hook)(const void *)) { if (!malloc_hook || !free_hook) return 0; for (int i = 0; i < kMaxMallocFreeHooks; i++) { if (MFHooks[i].malloc_hook == nullptr) { MFHooks[i].malloc_hook = malloc_hook; MFHooks[i].free_hook = free_hook; return i + 1; } } return 0; } } // namespace __sanitizer using namespace __sanitizer; // NOLINT extern "C" { void __sanitizer_set_report_path(const char *path) { report_file.SetReportPath(path); } void __sanitizer_set_report_fd(void *fd) { report_file.fd = (fd_t)reinterpret_cast(fd); report_file.fd_pid = internal_getpid(); } SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_report_error_summary, const char *error_summary) { Printf("%s\n", error_summary); } SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_set_death_callback(void (*callback)(void)) { SetUserDieCallback(callback); } SANITIZER_INTERFACE_ATTRIBUTE int __sanitizer_install_malloc_and_free_hooks(void (*malloc_hook)(const void *, uptr), void (*free_hook)(const void *)) { return InstallMallocFreeHooks(malloc_hook, free_hook); } } // extern "C" Index: vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_common.h =================================================================== --- vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_common.h (revision 318666) +++ vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_common.h (revision 318667) @@ -1,932 +1,932 @@ //===-- sanitizer_common.h --------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is shared between run-time libraries of sanitizers. // // It declares common functions and classes that are used in both runtimes. // Implementation of some functions are provided in sanitizer_common, while // others must be defined by run-time library itself. //===----------------------------------------------------------------------===// #ifndef SANITIZER_COMMON_H #define SANITIZER_COMMON_H #include "sanitizer_flags.h" #include "sanitizer_interface_internal.h" #include "sanitizer_internal_defs.h" #include "sanitizer_libc.h" #include "sanitizer_list.h" #include "sanitizer_mutex.h" #if defined(_MSC_VER) && !defined(__clang__) extern "C" void _ReadWriteBarrier(); #pragma intrinsic(_ReadWriteBarrier) #endif namespace __sanitizer { struct StackTrace; struct AddressInfo; // Constants. const uptr kWordSize = SANITIZER_WORDSIZE / 8; const uptr kWordSizeInBits = 8 * kWordSize; #if defined(__powerpc__) || defined(__powerpc64__) const uptr kCacheLineSize = 128; #else const uptr kCacheLineSize = 64; #endif const uptr kMaxPathLength = 4096; const uptr kMaxThreadStackSize = 1 << 30; // 1Gb static const uptr kErrorMessageBufferSize = 1 << 16; // Denotes fake PC values that come from JIT/JAVA/etc. // For such PC values __tsan_symbolize_external() will be called. const u64 kExternalPCBit = 1ULL << 60; extern const char *SanitizerToolName; // Can be changed by the tool. extern atomic_uint32_t current_verbosity; INLINE void SetVerbosity(int verbosity) { atomic_store(¤t_verbosity, verbosity, memory_order_relaxed); } INLINE int Verbosity() { return atomic_load(¤t_verbosity, memory_order_relaxed); } uptr GetPageSize(); extern uptr PageSizeCached; INLINE uptr GetPageSizeCached() { if (!PageSizeCached) PageSizeCached = GetPageSize(); return PageSizeCached; } uptr GetMmapGranularity(); uptr GetMaxVirtualAddress(); // Threads tid_t GetTid(); uptr GetThreadSelf(); void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, uptr *stack_bottom); void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, uptr *tls_addr, uptr *tls_size); // Memory management void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false); INLINE void *MmapOrDieQuietly(uptr size, const char *mem_type) { return MmapOrDie(size, mem_type, /*raw_report*/ true); } void UnmapOrDie(void *addr, uptr size); void *MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name = nullptr); void *MmapNoReserveOrDie(uptr size, const char *mem_type); void *MmapFixedOrDie(uptr fixed_addr, uptr size); void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr); void *MmapNoAccess(uptr size); // Map aligned chunk of address space; size and alignment are powers of two. void *MmapAlignedOrDie(uptr size, uptr alignment, const char *mem_type); // Disallow access to a memory range. Use MmapFixedNoAccess to allocate an // unaccessible memory. bool MprotectNoAccess(uptr addr, uptr size); bool MprotectReadOnly(uptr addr, uptr size); // Find an available address space. uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding); // Used to check if we can map shadow memory to a fixed location. bool MemoryRangeIsAvailable(uptr range_start, uptr range_end); // Releases memory pages entirely within the [beg, end] address range. Noop if // the provided range does not contain at least one entire page. void ReleaseMemoryPagesToOS(uptr beg, uptr end); void IncreaseTotalMmap(uptr size); void DecreaseTotalMmap(uptr size); uptr GetRSS(); void NoHugePagesInRegion(uptr addr, uptr length); void DontDumpShadowMemory(uptr addr, uptr length); // Check if the built VMA size matches the runtime one. void CheckVMASize(); void RunMallocHooks(const void *ptr, uptr size); void RunFreeHooks(const void *ptr); // InternalScopedBuffer can be used instead of large stack arrays to // keep frame size low. // FIXME: use InternalAlloc instead of MmapOrDie once // InternalAlloc is made libc-free. template class InternalScopedBuffer { public: explicit InternalScopedBuffer(uptr cnt) { cnt_ = cnt; ptr_ = (T *)MmapOrDie(cnt * sizeof(T), "InternalScopedBuffer"); } ~InternalScopedBuffer() { UnmapOrDie(ptr_, cnt_ * sizeof(T)); } T &operator[](uptr i) { return ptr_[i]; } T *data() { return ptr_; } uptr size() { return cnt_ * sizeof(T); } private: T *ptr_; uptr cnt_; // Disallow copies and moves. InternalScopedBuffer(const InternalScopedBuffer &) = delete; InternalScopedBuffer &operator=(const InternalScopedBuffer &) = delete; InternalScopedBuffer(InternalScopedBuffer &&) = delete; InternalScopedBuffer &operator=(InternalScopedBuffer &&) = delete; }; class InternalScopedString : public InternalScopedBuffer { public: explicit InternalScopedString(uptr max_length) : InternalScopedBuffer(max_length), length_(0) { (*this)[0] = '\0'; } uptr length() { return length_; } void clear() { (*this)[0] = '\0'; length_ = 0; } void append(const char *format, ...); private: uptr length_; }; // Simple low-level (mmap-based) allocator for internal use. Doesn't have // constructor, so all instances of LowLevelAllocator should be // linker initialized. class LowLevelAllocator { public: // Requires an external lock. void *Allocate(uptr size); private: char *allocated_end_; char *allocated_current_; }; typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size); // Allows to register tool-specific callbacks for LowLevelAllocator. // Passing NULL removes the callback. void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback); // IO void RawWrite(const char *buffer); bool ColorizeReports(); void RemoveANSIEscapeSequencesFromString(char *buffer); void Printf(const char *format, ...); void Report(const char *format, ...); void SetPrintfAndReportCallback(void (*callback)(const char *)); #define VReport(level, ...) \ do { \ if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \ } while (0) #define VPrintf(level, ...) \ do { \ if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \ } while (0) // Can be used to prevent mixing error reports from different sanitizers. extern StaticSpinMutex CommonSanitizerReportMutex; struct ReportFile { void Write(const char *buffer, uptr length); bool SupportsColors(); void SetReportPath(const char *path); // Don't use fields directly. They are only declared public to allow // aggregate initialization. // Protects fields below. StaticSpinMutex *mu; // Opened file descriptor. Defaults to stderr. It may be equal to // kInvalidFd, in which case new file will be opened when necessary. fd_t fd; // Path prefix of report file, set via __sanitizer_set_report_path. char path_prefix[kMaxPathLength]; // Full path to report, obtained as .PID char full_path[kMaxPathLength]; // PID of the process that opened fd. If a fork() occurs, // the PID of child will be different from fd_pid. uptr fd_pid; private: void ReopenIfNecessary(); }; extern ReportFile report_file; extern uptr stoptheworld_tracer_pid; extern uptr stoptheworld_tracer_ppid; enum FileAccessMode { RdOnly, WrOnly, RdWr }; // Returns kInvalidFd on error. fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *errno_p = nullptr); void CloseFile(fd_t); // Return true on success, false on error. bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read = nullptr, error_t *error_p = nullptr); bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written = nullptr, error_t *error_p = nullptr); bool RenameFile(const char *oldpath, const char *newpath, error_t *error_p = nullptr); // Scoped file handle closer. struct FileCloser { explicit FileCloser(fd_t fd) : fd(fd) {} ~FileCloser() { CloseFile(fd); } fd_t fd; }; bool SupportsColoredOutput(fd_t fd); // Opens the file 'file_name" and reads up to 'max_len' bytes. // The resulting buffer is mmaped and stored in '*buff'. // The size of the mmaped region is stored in '*buff_size'. // The total number of read bytes is stored in '*read_len'. // Returns true if file was successfully opened and read. bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size, uptr *read_len, uptr max_len = 1 << 26, error_t *errno_p = nullptr); // Maps given file to virtual memory, and returns pointer to it // (or NULL if mapping fails). Stores the size of mmaped region // in '*buff_size'. void *MapFileToMemory(const char *file_name, uptr *buff_size); void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset); bool IsAccessibleMemoryRange(uptr beg, uptr size); // Error report formatting. const char *StripPathPrefix(const char *filepath, const char *strip_file_prefix); // Strip the directories from the module name. const char *StripModuleName(const char *module); // OS uptr ReadBinaryName(/*out*/char *buf, uptr buf_len); uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len); uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len); const char *GetProcessName(); void UpdateProcessName(); void CacheBinaryName(); void DisableCoreDumperIfNecessary(); void DumpProcessMap(); void PrintModuleMap(); bool FileExists(const char *filename); const char *GetEnv(const char *name); bool SetEnv(const char *name, const char *value); const char *GetPwd(); char *FindPathToBinary(const char *name); bool IsPathSeparator(const char c); bool IsAbsolutePath(const char *path); // Starts a subprocess and returs its pid. // If *_fd parameters are not kInvalidFd their corresponding input/output // streams will be redirect to the file. The files will always be closed // in parent process even in case of an error. // The child process will close all fds after STDERR_FILENO // before passing control to a program. pid_t StartSubprocess(const char *filename, const char *const argv[], fd_t stdin_fd = kInvalidFd, fd_t stdout_fd = kInvalidFd, fd_t stderr_fd = kInvalidFd); // Checks if specified process is still running bool IsProcessRunning(pid_t pid); // Waits for the process to finish and returns its exit code. // Returns -1 in case of an error. int WaitForProcess(pid_t pid); u32 GetUid(); void ReExec(); char **GetArgv(); void PrintCmdline(); bool StackSizeIsUnlimited(); uptr GetStackSizeLimitInBytes(); void SetStackSizeLimitInBytes(uptr limit); bool AddressSpaceIsUnlimited(); void SetAddressSpaceUnlimited(); void AdjustStackSize(void *attr); void PrepareForSandboxing(__sanitizer_sandbox_arguments *args); void CovPrepareForSandboxing(__sanitizer_sandbox_arguments *args); void SetSandboxingCallback(void (*f)()); void CoverageUpdateMapping(); void CovBeforeFork(); void CovAfterFork(int child_pid); void InitializeCoverage(bool enabled, const char *coverage_dir); void ReInitializeCoverage(bool enabled, const char *coverage_dir); void InitTlsSize(); uptr GetTlsSize(); // Other void SleepForSeconds(int seconds); void SleepForMillis(int millis); u64 NanoTime(); int Atexit(void (*function)(void)); void SortArray(uptr *array, uptr size); void SortArray(u32 *array, uptr size); bool TemplateMatch(const char *templ, const char *str); // Exit void NORETURN Abort(); void NORETURN Die(); void NORETURN CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2); void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type, const char *mmap_type, error_t err, bool raw_report = false); // Set the name of the current thread to 'name', return true on succees. // The name may be truncated to a system-dependent limit. bool SanitizerSetThreadName(const char *name); // Get the name of the current thread (no more than max_len bytes), // return true on succees. name should have space for at least max_len+1 bytes. bool SanitizerGetThreadName(char *name, int max_len); // Specific tools may override behavior of "Die" and "CheckFailed" functions // to do tool-specific job. typedef void (*DieCallbackType)(void); // It's possible to add several callbacks that would be run when "Die" is // called. The callbacks will be run in the opposite order. The tools are // strongly recommended to setup all callbacks during initialization, when there // is only a single thread. bool AddDieCallback(DieCallbackType callback); bool RemoveDieCallback(DieCallbackType callback); void SetUserDieCallback(DieCallbackType callback); typedef void (*CheckFailedCallbackType)(const char *, int, const char *, u64, u64); void SetCheckFailedCallback(CheckFailedCallbackType callback); // Callback will be called if soft_rss_limit_mb is given and the limit is // exceeded (exceeded==true) or if rss went down below the limit // (exceeded==false). // The callback should be registered once at the tool init time. void SetSoftRssLimitExceededCallback(void (*Callback)(bool exceeded)); // Functions related to signal handling. typedef void (*SignalHandlerType)(int, void *, void *); bool IsHandledDeadlySignal(int signum); void InstallDeadlySignalHandlers(SignalHandlerType handler); const char *DescribeSignalOrException(int signo); // Alternative signal stack (POSIX-only). void SetAlternateSignalStack(); void UnsetAlternateSignalStack(); // We don't want a summary too long. const int kMaxSummaryLength = 1024; // Construct a one-line string: // SUMMARY: SanitizerToolName: error_message // and pass it to __sanitizer_report_error_summary. // If alt_tool_name is provided, it's used in place of SanitizerToolName. void ReportErrorSummary(const char *error_message, const char *alt_tool_name = nullptr); // Same as above, but construct error_message as: // error_type file:line[:column][ function] void ReportErrorSummary(const char *error_type, const AddressInfo &info, const char *alt_tool_name = nullptr); // Same as above, but obtains AddressInfo by symbolizing top stack trace frame. void ReportErrorSummary(const char *error_type, const StackTrace *trace, const char *alt_tool_name = nullptr); // Math #if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__) extern "C" { unsigned char _BitScanForward(unsigned long *index, unsigned long mask); // NOLINT unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); // NOLINT #if defined(_WIN64) unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask); // NOLINT unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask); // NOLINT #endif } #endif INLINE uptr MostSignificantSetBitIndex(uptr x) { CHECK_NE(x, 0U); unsigned long up; // NOLINT #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) # ifdef _WIN64 up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x); # else up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x); # endif #elif defined(_WIN64) _BitScanReverse64(&up, x); #else _BitScanReverse(&up, x); #endif return up; } INLINE uptr LeastSignificantSetBitIndex(uptr x) { CHECK_NE(x, 0U); unsigned long up; // NOLINT #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) # ifdef _WIN64 up = __builtin_ctzll(x); # else up = __builtin_ctzl(x); # endif #elif defined(_WIN64) _BitScanForward64(&up, x); #else _BitScanForward(&up, x); #endif return up; } INLINE bool IsPowerOfTwo(uptr x) { return (x & (x - 1)) == 0; } INLINE uptr RoundUpToPowerOfTwo(uptr size) { CHECK(size); if (IsPowerOfTwo(size)) return size; uptr up = MostSignificantSetBitIndex(size); CHECK_LT(size, (1ULL << (up + 1))); CHECK_GT(size, (1ULL << up)); return 1ULL << (up + 1); } INLINE uptr RoundUpTo(uptr size, uptr boundary) { RAW_CHECK(IsPowerOfTwo(boundary)); return (size + boundary - 1) & ~(boundary - 1); } INLINE uptr RoundDownTo(uptr x, uptr boundary) { return x & ~(boundary - 1); } INLINE bool IsAligned(uptr a, uptr alignment) { return (a & (alignment - 1)) == 0; } INLINE uptr Log2(uptr x) { CHECK(IsPowerOfTwo(x)); return LeastSignificantSetBitIndex(x); } // Don't use std::min, std::max or std::swap, to minimize dependency // on libstdc++. template T Min(T a, T b) { return a < b ? a : b; } template T Max(T a, T b) { return a > b ? a : b; } template void Swap(T& a, T& b) { T tmp = a; a = b; b = tmp; } // Char handling INLINE bool IsSpace(int c) { return (c == ' ') || (c == '\n') || (c == '\t') || (c == '\f') || (c == '\r') || (c == '\v'); } INLINE bool IsDigit(int c) { return (c >= '0') && (c <= '9'); } INLINE int ToLower(int c) { return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c; } // A low-level vector based on mmap. May incur a significant memory overhead for // small vectors. // WARNING: The current implementation supports only POD types. template class InternalMmapVectorNoCtor { public: void Initialize(uptr initial_capacity) { capacity_ = Max(initial_capacity, (uptr)1); size_ = 0; data_ = (T *)MmapOrDie(capacity_ * sizeof(T), "InternalMmapVectorNoCtor"); } void Destroy() { UnmapOrDie(data_, capacity_ * sizeof(T)); } T &operator[](uptr i) { CHECK_LT(i, size_); return data_[i]; } const T &operator[](uptr i) const { CHECK_LT(i, size_); return data_[i]; } void push_back(const T &element) { CHECK_LE(size_, capacity_); if (size_ == capacity_) { uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1); Resize(new_capacity); } internal_memcpy(&data_[size_++], &element, sizeof(T)); } T &back() { CHECK_GT(size_, 0); return data_[size_ - 1]; } void pop_back() { CHECK_GT(size_, 0); size_--; } uptr size() const { return size_; } const T *data() const { return data_; } T *data() { return data_; } uptr capacity() const { return capacity_; } void resize(uptr new_size) { Resize(new_size); if (new_size > size_) { internal_memset(&data_[size_], 0, sizeof(T) * (new_size - size_)); } size_ = new_size; } void clear() { size_ = 0; } bool empty() const { return size() == 0; } const T *begin() const { return data(); } T *begin() { return data(); } const T *end() const { return data() + size(); } T *end() { return data() + size(); } private: void Resize(uptr new_capacity) { CHECK_GT(new_capacity, 0); CHECK_LE(size_, new_capacity); T *new_data = (T *)MmapOrDie(new_capacity * sizeof(T), "InternalMmapVector"); internal_memcpy(new_data, data_, size_ * sizeof(T)); T *old_data = data_; data_ = new_data; UnmapOrDie(old_data, capacity_ * sizeof(T)); capacity_ = new_capacity; } T *data_; uptr capacity_; uptr size_; }; template class InternalMmapVector : public InternalMmapVectorNoCtor { public: explicit InternalMmapVector(uptr initial_capacity) { InternalMmapVectorNoCtor::Initialize(initial_capacity); } ~InternalMmapVector() { InternalMmapVectorNoCtor::Destroy(); } // Disallow evil constructors. InternalMmapVector(const InternalMmapVector&); void operator=(const InternalMmapVector&); }; // HeapSort for arrays and InternalMmapVector. template void InternalSort(Container *v, uptr size, Compare comp) { if (size < 2) return; // Stage 1: insert elements to the heap. for (uptr i = 1; i < size; i++) { uptr j, p; for (j = i; j > 0; j = p) { p = (j - 1) / 2; if (comp((*v)[p], (*v)[j])) Swap((*v)[j], (*v)[p]); else break; } } // Stage 2: swap largest element with the last one, // and sink the new top. for (uptr i = size - 1; i > 0; i--) { Swap((*v)[0], (*v)[i]); uptr j, max_ind; for (j = 0; j < i; j = max_ind) { uptr left = 2 * j + 1; uptr right = 2 * j + 2; max_ind = j; if (left < i && comp((*v)[max_ind], (*v)[left])) max_ind = left; if (right < i && comp((*v)[max_ind], (*v)[right])) max_ind = right; if (max_ind != j) Swap((*v)[j], (*v)[max_ind]); else break; } } } // Works like std::lower_bound: finds the first element that is not less // than the val. template uptr InternalLowerBound(const Container &v, uptr first, uptr last, const Value &val, Compare comp) { while (last > first) { uptr mid = (first + last) / 2; if (comp(v[mid], val)) first = mid + 1; else last = mid; } return first; } enum ModuleArch { kModuleArchUnknown, kModuleArchI386, kModuleArchX86_64, kModuleArchX86_64H, kModuleArchARMV6, kModuleArchARMV7, kModuleArchARMV7S, kModuleArchARMV7K, kModuleArchARM64 }; // When adding a new architecture, don't forget to also update // script/asan_symbolize.py and sanitizer_symbolizer_libcdep.cc. inline const char *ModuleArchToString(ModuleArch arch) { switch (arch) { case kModuleArchUnknown: return ""; case kModuleArchI386: return "i386"; case kModuleArchX86_64: return "x86_64"; case kModuleArchX86_64H: return "x86_64h"; case kModuleArchARMV6: return "armv6"; case kModuleArchARMV7: return "armv7"; case kModuleArchARMV7S: return "armv7s"; case kModuleArchARMV7K: return "armv7k"; case kModuleArchARM64: return "arm64"; } CHECK(0 && "Invalid module arch"); return ""; } const uptr kModuleUUIDSize = 16; // Represents a binary loaded into virtual memory (e.g. this can be an // executable or a shared object). class LoadedModule { public: LoadedModule() : full_name_(nullptr), base_address_(0), max_executable_address_(0), arch_(kModuleArchUnknown), instrumented_(false) { internal_memset(uuid_, 0, kModuleUUIDSize); ranges_.clear(); } void set(const char *module_name, uptr base_address); void set(const char *module_name, uptr base_address, ModuleArch arch, u8 uuid[kModuleUUIDSize], bool instrumented); void clear(); - void addAddressRange(uptr beg, uptr end, bool executable, bool readable); + void addAddressRange(uptr beg, uptr end, bool executable, bool writable); bool containsAddress(uptr address) const; const char *full_name() const { return full_name_; } uptr base_address() const { return base_address_; } uptr max_executable_address() const { return max_executable_address_; } ModuleArch arch() const { return arch_; } const u8 *uuid() const { return uuid_; } bool instrumented() const { return instrumented_; } struct AddressRange { AddressRange *next; uptr beg; uptr end; bool executable; - bool readable; + bool writable; - AddressRange(uptr beg, uptr end, bool executable, bool readable) + AddressRange(uptr beg, uptr end, bool executable, bool writable) : next(nullptr), beg(beg), end(end), executable(executable), - readable(readable) {} + writable(writable) {} }; const IntrusiveList &ranges() const { return ranges_; } private: char *full_name_; // Owned. uptr base_address_; uptr max_executable_address_; ModuleArch arch_; u8 uuid_[kModuleUUIDSize]; bool instrumented_; IntrusiveList ranges_; }; // List of LoadedModules. OS-dependent implementation is responsible for // filling this information. class ListOfModules { public: ListOfModules() : modules_(kInitialCapacity) {} ~ListOfModules() { clear(); } void init(); const LoadedModule *begin() const { return modules_.begin(); } LoadedModule *begin() { return modules_.begin(); } const LoadedModule *end() const { return modules_.end(); } LoadedModule *end() { return modules_.end(); } uptr size() const { return modules_.size(); } const LoadedModule &operator[](uptr i) const { CHECK_LT(i, modules_.size()); return modules_[i]; } private: void clear() { for (auto &module : modules_) module.clear(); modules_.clear(); } InternalMmapVector modules_; // We rarely have more than 16K loaded modules. static const uptr kInitialCapacity = 1 << 14; }; // Callback type for iterating over a set of memory ranges. typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg); enum AndroidApiLevel { ANDROID_NOT_ANDROID = 0, ANDROID_KITKAT = 19, ANDROID_LOLLIPOP_MR1 = 22, ANDROID_POST_LOLLIPOP = 23 }; void WriteToSyslog(const char *buffer); #if SANITIZER_MAC void LogFullErrorReport(const char *buffer); #else INLINE void LogFullErrorReport(const char *buffer) {} #endif #if SANITIZER_LINUX || SANITIZER_MAC void WriteOneLineToSyslog(const char *s); void LogMessageOnPrintf(const char *str); #else INLINE void WriteOneLineToSyslog(const char *s) {} INLINE void LogMessageOnPrintf(const char *str) {} #endif #if SANITIZER_LINUX // Initialize Android logging. Any writes before this are silently lost. void AndroidLogInit(); #else INLINE void AndroidLogInit() {} #endif #if SANITIZER_ANDROID void SanitizerInitializeUnwinder(); AndroidApiLevel AndroidGetApiLevel(); #else INLINE void AndroidLogWrite(const char *buffer_unused) {} INLINE void SanitizerInitializeUnwinder() {} INLINE AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; } #endif INLINE uptr GetPthreadDestructorIterations() { #if SANITIZER_ANDROID return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4; #elif SANITIZER_POSIX return 4; #else // Unused on Windows. return 0; #endif } void *internal_start_thread(void(*func)(void*), void *arg); void internal_join_thread(void *th); void MaybeStartBackgroudThread(); // Make the compiler think that something is going on there. // Use this inside a loop that looks like memset/memcpy/etc to prevent the // compiler from recognising it and turning it into an actual call to // memset/memcpy/etc. static inline void SanitizerBreakOptimization(void *arg) { #if defined(_MSC_VER) && !defined(__clang__) _ReadWriteBarrier(); #else __asm__ __volatile__("" : : "r" (arg) : "memory"); #endif } struct SignalContext { void *context; uptr addr; uptr pc; uptr sp; uptr bp; bool is_memory_access; enum WriteFlag { UNKNOWN, READ, WRITE } write_flag; SignalContext(void *context, uptr addr, uptr pc, uptr sp, uptr bp, bool is_memory_access, WriteFlag write_flag) : context(context), addr(addr), pc(pc), sp(sp), bp(bp), is_memory_access(is_memory_access), write_flag(write_flag) {} static void DumpAllRegisters(void *context); // Creates signal context in a platform-specific manner. static SignalContext Create(void *siginfo, void *context); // Returns true if the "context" indicates a memory write. static WriteFlag GetWriteFlag(void *context); }; void GetPcSpBp(void *context, uptr *pc, uptr *sp, uptr *bp); void MaybeReexec(); template class RunOnDestruction { public: explicit RunOnDestruction(Fn fn) : fn_(fn) {} ~RunOnDestruction() { fn_(); } private: Fn fn_; }; // A simple scope guard. Usage: // auto cleanup = at_scope_exit([]{ do_cleanup; }); template RunOnDestruction at_scope_exit(Fn fn) { return RunOnDestruction(fn); } // Linux on 64-bit s390 had a nasty bug that crashes the whole machine // if a process uses virtual memory over 4TB (as many sanitizers like // to do). This function will abort the process if running on a kernel // that looks vulnerable. #if SANITIZER_LINUX && SANITIZER_S390_64 void AvoidCVE_2016_2143(); #else INLINE void AvoidCVE_2016_2143() {} #endif struct StackDepotStats { uptr n_uniq_ids; uptr allocated; }; // The default value for allocator_release_to_os_interval_ms common flag to // indicate that sanitizer allocator should not attempt to release memory to OS. const s32 kReleaseToOSIntervalNever = -1; void CheckNoDeepBind(const char *filename, int flag); } // namespace __sanitizer inline void *operator new(__sanitizer::operator_new_size_type size, __sanitizer::LowLevelAllocator &alloc) { return alloc.Allocate(size); } #endif // SANITIZER_COMMON_H Index: vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_common_interceptors.inc =================================================================== --- vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_common_interceptors.inc (revision 318666) +++ vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_common_interceptors.inc (revision 318667) @@ -1,6404 +1,6361 @@ //===-- sanitizer_common_interceptors.inc -----------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Common function interceptors for tools like AddressSanitizer, // ThreadSanitizer, MemorySanitizer, etc. // // This file should be included into the tool's interceptor file, // which has to define its own macros: // COMMON_INTERCEPTOR_ENTER // COMMON_INTERCEPTOR_ENTER_NOIGNORE // COMMON_INTERCEPTOR_READ_RANGE // COMMON_INTERCEPTOR_WRITE_RANGE // COMMON_INTERCEPTOR_INITIALIZE_RANGE // COMMON_INTERCEPTOR_DIR_ACQUIRE // COMMON_INTERCEPTOR_FD_ACQUIRE // COMMON_INTERCEPTOR_FD_RELEASE // COMMON_INTERCEPTOR_FD_ACCESS // COMMON_INTERCEPTOR_SET_THREAD_NAME // COMMON_INTERCEPTOR_ON_DLOPEN // COMMON_INTERCEPTOR_ON_EXIT // COMMON_INTERCEPTOR_MUTEX_PRE_LOCK // COMMON_INTERCEPTOR_MUTEX_POST_LOCK // COMMON_INTERCEPTOR_MUTEX_UNLOCK // COMMON_INTERCEPTOR_MUTEX_REPAIR // COMMON_INTERCEPTOR_SET_PTHREAD_NAME // COMMON_INTERCEPTOR_HANDLE_RECVMSG // COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED // COMMON_INTERCEPTOR_MEMSET_IMPL // COMMON_INTERCEPTOR_MEMMOVE_IMPL // COMMON_INTERCEPTOR_MEMCPY_IMPL -// COMMON_INTERCEPTOR_COPY_STRING -// COMMON_INTERCEPTOR_STRNDUP_IMPL //===----------------------------------------------------------------------===// #include "interception/interception.h" #include "sanitizer_addrhashmap.h" #include "sanitizer_placement_new.h" #include "sanitizer_platform_interceptors.h" #include "sanitizer_tls_get_addr.h" #include #if SANITIZER_INTERCEPTOR_HOOKS #define CALL_WEAK_INTERCEPTOR_HOOK(f, ...) f(__VA_ARGS__); #define DECLARE_WEAK_INTERCEPTOR_HOOK(f, ...) \ SANITIZER_INTERFACE_WEAK_DEF(void, f, __VA_ARGS__) {} #else #define DECLARE_WEAK_INTERCEPTOR_HOOK(f, ...) #define CALL_WEAK_INTERCEPTOR_HOOK(f, ...) #endif // SANITIZER_INTERCEPTOR_HOOKS #if SANITIZER_WINDOWS && !defined(va_copy) #define va_copy(dst, src) ((dst) = (src)) #endif // _WIN32 #if SANITIZER_FREEBSD #define pthread_setname_np pthread_set_name_np #define inet_aton __inet_aton #define inet_pton __inet_pton #define iconv __bsd_iconv #endif // Platform-specific options. #if SANITIZER_MAC namespace __sanitizer { bool PlatformHasDifferentMemcpyAndMemmove(); } #define PLATFORM_HAS_DIFFERENT_MEMCPY_AND_MEMMOVE \ (__sanitizer::PlatformHasDifferentMemcpyAndMemmove()) #elif SANITIZER_WINDOWS64 #define PLATFORM_HAS_DIFFERENT_MEMCPY_AND_MEMMOVE false #else #define PLATFORM_HAS_DIFFERENT_MEMCPY_AND_MEMMOVE true #endif // SANITIZER_MAC #ifndef COMMON_INTERCEPTOR_INITIALIZE_RANGE #define COMMON_INTERCEPTOR_INITIALIZE_RANGE(p, size) {} #endif #ifndef COMMON_INTERCEPTOR_UNPOISON_PARAM #define COMMON_INTERCEPTOR_UNPOISON_PARAM(count) {} #endif #ifndef COMMON_INTERCEPTOR_FD_ACCESS #define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) {} #endif #ifndef COMMON_INTERCEPTOR_MUTEX_PRE_LOCK #define COMMON_INTERCEPTOR_MUTEX_PRE_LOCK(ctx, m) {} #endif #ifndef COMMON_INTERCEPTOR_MUTEX_POST_LOCK #define COMMON_INTERCEPTOR_MUTEX_POST_LOCK(ctx, m) {} #endif #ifndef COMMON_INTERCEPTOR_MUTEX_UNLOCK #define COMMON_INTERCEPTOR_MUTEX_UNLOCK(ctx, m) {} #endif #ifndef COMMON_INTERCEPTOR_MUTEX_REPAIR #define COMMON_INTERCEPTOR_MUTEX_REPAIR(ctx, m) {} #endif #ifndef COMMON_INTERCEPTOR_MUTEX_INVALID #define COMMON_INTERCEPTOR_MUTEX_INVALID(ctx, m) {} #endif #ifndef COMMON_INTERCEPTOR_HANDLE_RECVMSG #define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) ((void)(msg)) #endif #ifndef COMMON_INTERCEPTOR_FILE_OPEN #define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) {} #endif #ifndef COMMON_INTERCEPTOR_FILE_CLOSE #define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) {} #endif #ifndef COMMON_INTERCEPTOR_LIBRARY_LOADED #define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) {} #endif #ifndef COMMON_INTERCEPTOR_LIBRARY_UNLOADED #define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() {} #endif #ifndef COMMON_INTERCEPTOR_ENTER_NOIGNORE #define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, ...) \ COMMON_INTERCEPTOR_ENTER(ctx, __VA_ARGS__) #endif #ifndef COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED #define COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED (0) #endif #define COMMON_INTERCEPTOR_READ_STRING(ctx, s, n) \ COMMON_INTERCEPTOR_READ_RANGE((ctx), (s), \ common_flags()->strict_string_checks ? (REAL(strlen)(s)) + 1 : (n) ) #ifndef COMMON_INTERCEPTOR_ON_DLOPEN #define COMMON_INTERCEPTOR_ON_DLOPEN(filename, flag) \ CheckNoDeepBind(filename, flag); #endif #ifndef COMMON_INTERCEPTOR_GET_TLS_RANGE #define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end) *begin = *end = 0; #endif #ifndef COMMON_INTERCEPTOR_ACQUIRE #define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) {} #endif #ifndef COMMON_INTERCEPTOR_RELEASE #define COMMON_INTERCEPTOR_RELEASE(ctx, u) {} #endif #ifndef COMMON_INTERCEPTOR_USER_CALLBACK_START #define COMMON_INTERCEPTOR_USER_CALLBACK_START() {} #endif #ifndef COMMON_INTERCEPTOR_USER_CALLBACK_END #define COMMON_INTERCEPTOR_USER_CALLBACK_END() {} #endif #ifdef SANITIZER_NLDBL_VERSION #define COMMON_INTERCEPT_FUNCTION_LDBL(fn) \ COMMON_INTERCEPT_FUNCTION_VER(fn, SANITIZER_NLDBL_VERSION) #else #define COMMON_INTERCEPT_FUNCTION_LDBL(fn) \ COMMON_INTERCEPT_FUNCTION(fn) #endif #ifndef COMMON_INTERCEPTOR_MEMSET_IMPL #define COMMON_INTERCEPTOR_MEMSET_IMPL(ctx, dst, v, size) \ { \ if (COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED) \ return internal_memset(dst, v, size); \ COMMON_INTERCEPTOR_ENTER(ctx, memset, dst, v, size); \ if (common_flags()->intercept_intrin) \ COMMON_INTERCEPTOR_WRITE_RANGE(ctx, dst, size); \ return REAL(memset)(dst, v, size); \ } #endif #ifndef COMMON_INTERCEPTOR_MEMMOVE_IMPL #define COMMON_INTERCEPTOR_MEMMOVE_IMPL(ctx, dst, src, size) \ { \ if (COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED) \ return internal_memmove(dst, src, size); \ COMMON_INTERCEPTOR_ENTER(ctx, memmove, dst, src, size); \ if (common_flags()->intercept_intrin) { \ COMMON_INTERCEPTOR_WRITE_RANGE(ctx, dst, size); \ COMMON_INTERCEPTOR_READ_RANGE(ctx, src, size); \ } \ return REAL(memmove)(dst, src, size); \ } #endif #ifndef COMMON_INTERCEPTOR_MEMCPY_IMPL #define COMMON_INTERCEPTOR_MEMCPY_IMPL(ctx, dst, src, size) \ { \ if (COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED) { \ return internal_memmove(dst, src, size); \ } \ COMMON_INTERCEPTOR_ENTER(ctx, memcpy, dst, src, size); \ if (common_flags()->intercept_intrin) { \ COMMON_INTERCEPTOR_WRITE_RANGE(ctx, dst, size); \ COMMON_INTERCEPTOR_READ_RANGE(ctx, src, size); \ } \ return REAL(memcpy)(dst, src, size); \ } #endif -#ifndef COMMON_INTERCEPTOR_COPY_STRING -#define COMMON_INTERCEPTOR_COPY_STRING(ctx, to, from, size) {} -#endif - -#ifndef COMMON_INTERCEPTOR_STRNDUP_IMPL -#define COMMON_INTERCEPTOR_STRNDUP_IMPL(ctx, s, size) \ - COMMON_INTERCEPTOR_ENTER(ctx, strndup, s, size); \ - uptr from_length = internal_strnlen(s, size); \ - uptr copy_length = Min(size, from_length); \ - char *new_mem = (char *)WRAP(malloc)(copy_length + 1); \ - if (common_flags()->intercept_strndup) { \ - COMMON_INTERCEPTOR_READ_RANGE(ctx, s, copy_length + 1); \ - } \ - COMMON_INTERCEPTOR_COPY_STRING(ctx, new_mem, s, copy_length); \ - internal_memcpy(new_mem, s, copy_length); \ - new_mem[copy_length] = '\0'; \ - return new_mem; -#endif - struct FileMetadata { // For open_memstream(). char **addr; SIZE_T *size; }; struct CommonInterceptorMetadata { enum { CIMT_INVALID = 0, CIMT_FILE } type; union { FileMetadata file; }; }; typedef AddrHashMap MetadataHashMap; static MetadataHashMap *interceptor_metadata_map; #if SI_NOT_WINDOWS UNUSED static void SetInterceptorMetadata(__sanitizer_FILE *addr, const FileMetadata &file) { MetadataHashMap::Handle h(interceptor_metadata_map, (uptr)addr); CHECK(h.created()); h->type = CommonInterceptorMetadata::CIMT_FILE; h->file = file; } UNUSED static const FileMetadata *GetInterceptorMetadata( __sanitizer_FILE *addr) { MetadataHashMap::Handle h(interceptor_metadata_map, (uptr)addr, /* remove */ false, /* create */ false); if (h.exists()) { CHECK(!h.created()); CHECK(h->type == CommonInterceptorMetadata::CIMT_FILE); return &h->file; } else { return 0; } } UNUSED static void DeleteInterceptorMetadata(void *addr) { MetadataHashMap::Handle h(interceptor_metadata_map, (uptr)addr, true); CHECK(h.exists()); } #endif // SI_NOT_WINDOWS #if SANITIZER_INTERCEPT_STRLEN INTERCEPTOR(SIZE_T, strlen, const char *s) { // Sometimes strlen is called prior to InitializeCommonInterceptors, // in which case the REAL(strlen) typically used in // COMMON_INTERCEPTOR_ENTER will fail. We use internal_strlen here // to handle that. if (COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED) return internal_strlen(s); void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, strlen, s); SIZE_T result = REAL(strlen)(s); if (common_flags()->intercept_strlen) COMMON_INTERCEPTOR_READ_RANGE(ctx, s, result + 1); return result; } #define INIT_STRLEN COMMON_INTERCEPT_FUNCTION(strlen) #else #define INIT_STRLEN #endif #if SANITIZER_INTERCEPT_STRNLEN INTERCEPTOR(SIZE_T, strnlen, const char *s, SIZE_T maxlen) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, strnlen, s, maxlen); SIZE_T length = REAL(strnlen)(s, maxlen); if (common_flags()->intercept_strlen) COMMON_INTERCEPTOR_READ_RANGE(ctx, s, Min(length + 1, maxlen)); return length; } #define INIT_STRNLEN COMMON_INTERCEPT_FUNCTION(strnlen) #else #define INIT_STRNLEN #endif -#if SANITIZER_INTERCEPT_STRNDUP -INTERCEPTOR(char*, strndup, const char *s, uptr size) { - void *ctx; - COMMON_INTERCEPTOR_STRNDUP_IMPL(ctx, s, size); -} -#define INIT_STRNDUP COMMON_INTERCEPT_FUNCTION(strndup) -#else -#define INIT_STRNDUP -#endif // SANITIZER_INTERCEPT_STRNDUP - -#if SANITIZER_INTERCEPT___STRNDUP -INTERCEPTOR(char*, __strndup, const char *s, uptr size) { - void *ctx; - COMMON_INTERCEPTOR_STRNDUP_IMPL(ctx, s, size); -} -#define INIT___STRNDUP COMMON_INTERCEPT_FUNCTION(__strndup) -#else -#define INIT___STRNDUP -#endif // SANITIZER_INTERCEPT___STRNDUP - #if SANITIZER_INTERCEPT_TEXTDOMAIN INTERCEPTOR(char*, textdomain, const char *domainname) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, textdomain, domainname); if (domainname) COMMON_INTERCEPTOR_READ_STRING(ctx, domainname, 0); char *domain = REAL(textdomain)(domainname); if (domain) { COMMON_INTERCEPTOR_INITIALIZE_RANGE(domain, REAL(strlen)(domain) + 1); } return domain; } #define INIT_TEXTDOMAIN COMMON_INTERCEPT_FUNCTION(textdomain) #else #define INIT_TEXTDOMAIN #endif #if SANITIZER_INTERCEPT_STRCMP static inline int CharCmpX(unsigned char c1, unsigned char c2) { return (c1 == c2) ? 0 : (c1 < c2) ? -1 : 1; } DECLARE_WEAK_INTERCEPTOR_HOOK(__sanitizer_weak_hook_strcmp, uptr called_pc, const char *s1, const char *s2, int result) INTERCEPTOR(int, strcmp, const char *s1, const char *s2) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, strcmp, s1, s2); unsigned char c1, c2; uptr i; for (i = 0;; i++) { c1 = (unsigned char)s1[i]; c2 = (unsigned char)s2[i]; if (c1 != c2 || c1 == '\0') break; } COMMON_INTERCEPTOR_READ_STRING(ctx, s1, i + 1); COMMON_INTERCEPTOR_READ_STRING(ctx, s2, i + 1); int result = CharCmpX(c1, c2); CALL_WEAK_INTERCEPTOR_HOOK(__sanitizer_weak_hook_strcmp, GET_CALLER_PC(), s1, s2, result); return result; } DECLARE_WEAK_INTERCEPTOR_HOOK(__sanitizer_weak_hook_strncmp, uptr called_pc, const char *s1, const char *s2, uptr n, int result) INTERCEPTOR(int, strncmp, const char *s1, const char *s2, uptr size) { if (COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED) return internal_strncmp(s1, s2, size); void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, strncmp, s1, s2, size); unsigned char c1 = 0, c2 = 0; uptr i; for (i = 0; i < size; i++) { c1 = (unsigned char)s1[i]; c2 = (unsigned char)s2[i]; if (c1 != c2 || c1 == '\0') break; } uptr i1 = i; uptr i2 = i; if (common_flags()->strict_string_checks) { for (; i1 < size && s1[i1]; i1++) {} for (; i2 < size && s2[i2]; i2++) {} } COMMON_INTERCEPTOR_READ_RANGE((ctx), (s1), Min(i1 + 1, size)); COMMON_INTERCEPTOR_READ_RANGE((ctx), (s2), Min(i2 + 1, size)); int result = CharCmpX(c1, c2); CALL_WEAK_INTERCEPTOR_HOOK(__sanitizer_weak_hook_strncmp, GET_CALLER_PC(), s1, s2, size, result); return result; } #define INIT_STRCMP COMMON_INTERCEPT_FUNCTION(strcmp) #define INIT_STRNCMP COMMON_INTERCEPT_FUNCTION(strncmp) #else #define INIT_STRCMP #define INIT_STRNCMP #endif #if SANITIZER_INTERCEPT_STRCASECMP static inline int CharCaseCmp(unsigned char c1, unsigned char c2) { int c1_low = ToLower(c1); int c2_low = ToLower(c2); return c1_low - c2_low; } DECLARE_WEAK_INTERCEPTOR_HOOK(__sanitizer_weak_hook_strcasecmp, uptr called_pc, const char *s1, const char *s2, int result) INTERCEPTOR(int, strcasecmp, const char *s1, const char *s2) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, strcasecmp, s1, s2); unsigned char c1 = 0, c2 = 0; uptr i; for (i = 0;; i++) { c1 = (unsigned char)s1[i]; c2 = (unsigned char)s2[i]; if (CharCaseCmp(c1, c2) != 0 || c1 == '\0') break; } COMMON_INTERCEPTOR_READ_STRING(ctx, s1, i + 1); COMMON_INTERCEPTOR_READ_STRING(ctx, s2, i + 1); int result = CharCaseCmp(c1, c2); CALL_WEAK_INTERCEPTOR_HOOK(__sanitizer_weak_hook_strcasecmp, GET_CALLER_PC(), s1, s2, result); return result; } DECLARE_WEAK_INTERCEPTOR_HOOK(__sanitizer_weak_hook_strncasecmp, uptr called_pc, const char *s1, const char *s2, uptr size, int result) INTERCEPTOR(int, strncasecmp, const char *s1, const char *s2, SIZE_T size) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, strncasecmp, s1, s2, size); unsigned char c1 = 0, c2 = 0; uptr i; for (i = 0; i < size; i++) { c1 = (unsigned char)s1[i]; c2 = (unsigned char)s2[i]; if (CharCaseCmp(c1, c2) != 0 || c1 == '\0') break; } uptr i1 = i; uptr i2 = i; if (common_flags()->strict_string_checks) { for (; i1 < size && s1[i1]; i1++) {} for (; i2 < size && s2[i2]; i2++) {} } COMMON_INTERCEPTOR_READ_RANGE((ctx), (s1), Min(i1 + 1, size)); COMMON_INTERCEPTOR_READ_RANGE((ctx), (s2), Min(i2 + 1, size)); int result = CharCaseCmp(c1, c2); CALL_WEAK_INTERCEPTOR_HOOK(__sanitizer_weak_hook_strncasecmp, GET_CALLER_PC(), s1, s2, size, result); return result; } #define INIT_STRCASECMP COMMON_INTERCEPT_FUNCTION(strcasecmp) #define INIT_STRNCASECMP COMMON_INTERCEPT_FUNCTION(strncasecmp) #else #define INIT_STRCASECMP #define INIT_STRNCASECMP #endif #if SANITIZER_INTERCEPT_STRSTR || SANITIZER_INTERCEPT_STRCASESTR static inline void StrstrCheck(void *ctx, char *r, const char *s1, const char *s2) { uptr len1 = REAL(strlen)(s1); uptr len2 = REAL(strlen)(s2); COMMON_INTERCEPTOR_READ_STRING(ctx, s1, r ? r - s1 + len2 : len1 + 1); COMMON_INTERCEPTOR_READ_RANGE(ctx, s2, len2 + 1); } #endif #if SANITIZER_INTERCEPT_STRSTR DECLARE_WEAK_INTERCEPTOR_HOOK(__sanitizer_weak_hook_strstr, uptr called_pc, const char *s1, const char *s2, char *result) INTERCEPTOR(char*, strstr, const char *s1, const char *s2) { if (COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED) return internal_strstr(s1, s2); void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, strstr, s1, s2); char *r = REAL(strstr)(s1, s2); if (common_flags()->intercept_strstr) StrstrCheck(ctx, r, s1, s2); CALL_WEAK_INTERCEPTOR_HOOK(__sanitizer_weak_hook_strstr, GET_CALLER_PC(), s1, s2, r); return r; } #define INIT_STRSTR COMMON_INTERCEPT_FUNCTION(strstr); #else #define INIT_STRSTR #endif #if SANITIZER_INTERCEPT_STRCASESTR DECLARE_WEAK_INTERCEPTOR_HOOK(__sanitizer_weak_hook_strcasestr, uptr called_pc, const char *s1, const char *s2, char *result) INTERCEPTOR(char*, strcasestr, const char *s1, const char *s2) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, strcasestr, s1, s2); char *r = REAL(strcasestr)(s1, s2); if (common_flags()->intercept_strstr) StrstrCheck(ctx, r, s1, s2); CALL_WEAK_INTERCEPTOR_HOOK(__sanitizer_weak_hook_strcasestr, GET_CALLER_PC(), s1, s2, r); return r; } #define INIT_STRCASESTR COMMON_INTERCEPT_FUNCTION(strcasestr); #else #define INIT_STRCASESTR #endif #if SANITIZER_INTERCEPT_STRTOK INTERCEPTOR(char*, strtok, char *str, const char *delimiters) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, strtok, str, delimiters); if (!common_flags()->intercept_strtok) { return REAL(strtok)(str, delimiters); } if (common_flags()->strict_string_checks) { // If strict_string_checks is enabled, we check the whole first argument // string on the first call (strtok saves this string in a static buffer // for subsequent calls). We do not need to check strtok's result. // As the delimiters can change, we check them every call. if (str != nullptr) { COMMON_INTERCEPTOR_READ_RANGE(ctx, str, REAL(strlen)(str) + 1); } COMMON_INTERCEPTOR_READ_RANGE(ctx, delimiters, REAL(strlen)(delimiters) + 1); return REAL(strtok)(str, delimiters); } else { // However, when strict_string_checks is disabled we cannot check the // whole string on the first call. Instead, we check the result string // which is guaranteed to be a NULL-terminated substring of the first // argument. We also conservatively check one character of str and the // delimiters. if (str != nullptr) { COMMON_INTERCEPTOR_READ_STRING(ctx, str, 1); } COMMON_INTERCEPTOR_READ_RANGE(ctx, delimiters, 1); char *result = REAL(strtok)(str, delimiters); if (result != nullptr) { COMMON_INTERCEPTOR_READ_RANGE(ctx, result, REAL(strlen)(result) + 1); } else if (str != nullptr) { // No delimiter were found, it's safe to assume that the entire str was // scanned. COMMON_INTERCEPTOR_READ_RANGE(ctx, str, REAL(strlen)(str) + 1); } return result; } } #define INIT_STRTOK COMMON_INTERCEPT_FUNCTION(strtok) #else #define INIT_STRTOK #endif #if SANITIZER_INTERCEPT_MEMMEM DECLARE_WEAK_INTERCEPTOR_HOOK(__sanitizer_weak_hook_memmem, uptr called_pc, const void *s1, SIZE_T len1, const void *s2, SIZE_T len2, void *result) INTERCEPTOR(void*, memmem, const void *s1, SIZE_T len1, const void *s2, SIZE_T len2) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, memmem, s1, len1, s2, len2); void *r = REAL(memmem)(s1, len1, s2, len2); if (common_flags()->intercept_memmem) { COMMON_INTERCEPTOR_READ_RANGE(ctx, s1, len1); COMMON_INTERCEPTOR_READ_RANGE(ctx, s2, len2); } CALL_WEAK_INTERCEPTOR_HOOK(__sanitizer_weak_hook_memmem, GET_CALLER_PC(), s1, len1, s2, len2, r); return r; } #define INIT_MEMMEM COMMON_INTERCEPT_FUNCTION(memmem); #else #define INIT_MEMMEM #endif // SANITIZER_INTERCEPT_MEMMEM #if SANITIZER_INTERCEPT_STRCHR INTERCEPTOR(char*, strchr, const char *s, int c) { void *ctx; if (COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED) return internal_strchr(s, c); COMMON_INTERCEPTOR_ENTER(ctx, strchr, s, c); char *result = REAL(strchr)(s, c); if (common_flags()->intercept_strchr) { // Keep strlen as macro argument, as macro may ignore it. COMMON_INTERCEPTOR_READ_STRING(ctx, s, (result ? result - s : REAL(strlen)(s)) + 1); } return result; } #define INIT_STRCHR COMMON_INTERCEPT_FUNCTION(strchr) #else #define INIT_STRCHR #endif #if SANITIZER_INTERCEPT_STRCHRNUL INTERCEPTOR(char*, strchrnul, const char *s, int c) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, strchrnul, s, c); char *result = REAL(strchrnul)(s, c); uptr len = result - s + 1; if (common_flags()->intercept_strchr) COMMON_INTERCEPTOR_READ_STRING(ctx, s, len); return result; } #define INIT_STRCHRNUL COMMON_INTERCEPT_FUNCTION(strchrnul) #else #define INIT_STRCHRNUL #endif #if SANITIZER_INTERCEPT_STRRCHR INTERCEPTOR(char*, strrchr, const char *s, int c) { void *ctx; if (COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED) return internal_strrchr(s, c); COMMON_INTERCEPTOR_ENTER(ctx, strrchr, s, c); if (common_flags()->intercept_strchr) COMMON_INTERCEPTOR_READ_RANGE(ctx, s, REAL(strlen)(s) + 1); return REAL(strrchr)(s, c); } #define INIT_STRRCHR COMMON_INTERCEPT_FUNCTION(strrchr) #else #define INIT_STRRCHR #endif #if SANITIZER_INTERCEPT_STRSPN INTERCEPTOR(SIZE_T, strspn, const char *s1, const char *s2) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, strspn, s1, s2); SIZE_T r = REAL(strspn)(s1, s2); if (common_flags()->intercept_strspn) { COMMON_INTERCEPTOR_READ_RANGE(ctx, s2, REAL(strlen)(s2) + 1); COMMON_INTERCEPTOR_READ_STRING(ctx, s1, r + 1); } return r; } INTERCEPTOR(SIZE_T, strcspn, const char *s1, const char *s2) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, strcspn, s1, s2); SIZE_T r = REAL(strcspn)(s1, s2); if (common_flags()->intercept_strspn) { COMMON_INTERCEPTOR_READ_RANGE(ctx, s2, REAL(strlen)(s2) + 1); COMMON_INTERCEPTOR_READ_STRING(ctx, s1, r + 1); } return r; } #define INIT_STRSPN \ COMMON_INTERCEPT_FUNCTION(strspn); \ COMMON_INTERCEPT_FUNCTION(strcspn); #else #define INIT_STRSPN #endif #if SANITIZER_INTERCEPT_STRPBRK INTERCEPTOR(char *, strpbrk, const char *s1, const char *s2) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, strpbrk, s1, s2); char *r = REAL(strpbrk)(s1, s2); if (common_flags()->intercept_strpbrk) { COMMON_INTERCEPTOR_READ_RANGE(ctx, s2, REAL(strlen)(s2) + 1); COMMON_INTERCEPTOR_READ_STRING(ctx, s1, r ? r - s1 + 1 : REAL(strlen)(s1) + 1); } return r; } #define INIT_STRPBRK COMMON_INTERCEPT_FUNCTION(strpbrk); #else #define INIT_STRPBRK #endif #if SANITIZER_INTERCEPT_MEMSET INTERCEPTOR(void *, memset, void *dst, int v, uptr size) { void *ctx; COMMON_INTERCEPTOR_MEMSET_IMPL(ctx, dst, v, size); } #define INIT_MEMSET COMMON_INTERCEPT_FUNCTION(memset) #else #define INIT_MEMSET #endif #if SANITIZER_INTERCEPT_MEMMOVE INTERCEPTOR(void *, memmove, void *dst, const void *src, uptr size) { void *ctx; COMMON_INTERCEPTOR_MEMMOVE_IMPL(ctx, dst, src, size); } #define INIT_MEMMOVE COMMON_INTERCEPT_FUNCTION(memmove) #else #define INIT_MEMMOVE #endif #if SANITIZER_INTERCEPT_MEMCPY INTERCEPTOR(void *, memcpy, void *dst, const void *src, uptr size) { // On OS X, calling internal_memcpy here will cause memory corruptions, // because memcpy and memmove are actually aliases of the same // implementation. We need to use internal_memmove here. // N.B.: If we switch this to internal_ we'll have to use internal_memmove // due to memcpy being an alias of memmove on OS X. void *ctx; if (PLATFORM_HAS_DIFFERENT_MEMCPY_AND_MEMMOVE) { COMMON_INTERCEPTOR_MEMCPY_IMPL(ctx, dst, src, size); } else { COMMON_INTERCEPTOR_MEMMOVE_IMPL(ctx, dst, src, size); } } #define INIT_MEMCPY \ do { \ if (PLATFORM_HAS_DIFFERENT_MEMCPY_AND_MEMMOVE) { \ COMMON_INTERCEPT_FUNCTION(memcpy); \ } else { \ ASSIGN_REAL(memcpy, memmove); \ } \ CHECK(REAL(memcpy)); \ } while (false) #else #define INIT_MEMCPY #endif #if SANITIZER_INTERCEPT_MEMCMP DECLARE_WEAK_INTERCEPTOR_HOOK(__sanitizer_weak_hook_memcmp, uptr called_pc, const void *s1, const void *s2, uptr n, int result) INTERCEPTOR(int, memcmp, const void *a1, const void *a2, uptr size) { if (COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED) return internal_memcmp(a1, a2, size); void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, memcmp, a1, a2, size); if (common_flags()->intercept_memcmp) { if (common_flags()->strict_memcmp) { // Check the entire regions even if the first bytes of the buffers are // different. COMMON_INTERCEPTOR_READ_RANGE(ctx, a1, size); COMMON_INTERCEPTOR_READ_RANGE(ctx, a2, size); // Fallthrough to REAL(memcmp) below. } else { unsigned char c1 = 0, c2 = 0; const unsigned char *s1 = (const unsigned char*)a1; const unsigned char *s2 = (const unsigned char*)a2; uptr i; for (i = 0; i < size; i++) { c1 = s1[i]; c2 = s2[i]; if (c1 != c2) break; } COMMON_INTERCEPTOR_READ_RANGE(ctx, s1, Min(i + 1, size)); COMMON_INTERCEPTOR_READ_RANGE(ctx, s2, Min(i + 1, size)); int r = CharCmpX(c1, c2); CALL_WEAK_INTERCEPTOR_HOOK(__sanitizer_weak_hook_memcmp, GET_CALLER_PC(), a1, a2, size, r); return r; } } int result = REAL(memcmp(a1, a2, size)); CALL_WEAK_INTERCEPTOR_HOOK(__sanitizer_weak_hook_memcmp, GET_CALLER_PC(), a1, a2, size, result); return result; } #define INIT_MEMCMP COMMON_INTERCEPT_FUNCTION(memcmp) #else #define INIT_MEMCMP #endif #if SANITIZER_INTERCEPT_MEMCHR INTERCEPTOR(void*, memchr, const void *s, int c, SIZE_T n) { if (COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED) return internal_memchr(s, c, n); void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, memchr, s, c, n); #if SANITIZER_WINDOWS void *res; if (REAL(memchr)) { res = REAL(memchr)(s, c, n); } else { res = internal_memchr(s, c, n); } #else void *res = REAL(memchr)(s, c, n); #endif uptr len = res ? (char *)res - (const char *)s + 1 : n; COMMON_INTERCEPTOR_READ_RANGE(ctx, s, len); return res; } #define INIT_MEMCHR COMMON_INTERCEPT_FUNCTION(memchr) #else #define INIT_MEMCHR #endif #if SANITIZER_INTERCEPT_MEMRCHR INTERCEPTOR(void*, memrchr, const void *s, int c, SIZE_T n) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, memrchr, s, c, n); COMMON_INTERCEPTOR_READ_RANGE(ctx, s, n); return REAL(memrchr)(s, c, n); } #define INIT_MEMRCHR COMMON_INTERCEPT_FUNCTION(memrchr) #else #define INIT_MEMRCHR #endif #if SANITIZER_INTERCEPT_FREXP INTERCEPTOR(double, frexp, double x, int *exp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, frexp, x, exp); // Assuming frexp() always writes to |exp|. COMMON_INTERCEPTOR_WRITE_RANGE(ctx, exp, sizeof(*exp)); double res = REAL(frexp)(x, exp); return res; } #define INIT_FREXP COMMON_INTERCEPT_FUNCTION(frexp); #else #define INIT_FREXP #endif // SANITIZER_INTERCEPT_FREXP #if SANITIZER_INTERCEPT_FREXPF_FREXPL INTERCEPTOR(float, frexpf, float x, int *exp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, frexpf, x, exp); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. float res = REAL(frexpf)(x, exp); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, exp, sizeof(*exp)); return res; } INTERCEPTOR(long double, frexpl, long double x, int *exp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, frexpl, x, exp); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. long double res = REAL(frexpl)(x, exp); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, exp, sizeof(*exp)); return res; } #define INIT_FREXPF_FREXPL \ COMMON_INTERCEPT_FUNCTION(frexpf); \ COMMON_INTERCEPT_FUNCTION_LDBL(frexpl) #else #define INIT_FREXPF_FREXPL #endif // SANITIZER_INTERCEPT_FREXPF_FREXPL #if SI_NOT_WINDOWS static void write_iovec(void *ctx, struct __sanitizer_iovec *iovec, SIZE_T iovlen, SIZE_T maxlen) { for (SIZE_T i = 0; i < iovlen && maxlen; ++i) { SSIZE_T sz = Min(iovec[i].iov_len, maxlen); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, iovec[i].iov_base, sz); maxlen -= sz; } } static void read_iovec(void *ctx, struct __sanitizer_iovec *iovec, SIZE_T iovlen, SIZE_T maxlen) { COMMON_INTERCEPTOR_READ_RANGE(ctx, iovec, sizeof(*iovec) * iovlen); for (SIZE_T i = 0; i < iovlen && maxlen; ++i) { SSIZE_T sz = Min(iovec[i].iov_len, maxlen); COMMON_INTERCEPTOR_READ_RANGE(ctx, iovec[i].iov_base, sz); maxlen -= sz; } } #endif #if SANITIZER_INTERCEPT_READ INTERCEPTOR(SSIZE_T, read, int fd, void *ptr, SIZE_T count) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, read, fd, ptr, count); COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. SSIZE_T res = REAL(read)(fd, ptr, count); if (res > 0) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, res); if (res >= 0 && fd >= 0) COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd); return res; } #define INIT_READ COMMON_INTERCEPT_FUNCTION(read) #else #define INIT_READ #endif #if SANITIZER_INTERCEPT_FREAD INTERCEPTOR(SIZE_T, fread, void *ptr, SIZE_T size, SIZE_T nmemb, void *file) { // libc file streams can call user-supplied functions, see fopencookie. void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, fread, ptr, size, nmemb, file); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. SIZE_T res = REAL(fread)(ptr, size, nmemb, file); if (res > 0) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, res * size); return res; } #define INIT_FREAD COMMON_INTERCEPT_FUNCTION(fread) #else #define INIT_FREAD #endif #if SANITIZER_INTERCEPT_PREAD INTERCEPTOR(SSIZE_T, pread, int fd, void *ptr, SIZE_T count, OFF_T offset) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, pread, fd, ptr, count, offset); COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. SSIZE_T res = REAL(pread)(fd, ptr, count, offset); if (res > 0) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, res); if (res >= 0 && fd >= 0) COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd); return res; } #define INIT_PREAD COMMON_INTERCEPT_FUNCTION(pread) #else #define INIT_PREAD #endif #if SANITIZER_INTERCEPT_PREAD64 INTERCEPTOR(SSIZE_T, pread64, int fd, void *ptr, SIZE_T count, OFF64_T offset) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, pread64, fd, ptr, count, offset); COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. SSIZE_T res = REAL(pread64)(fd, ptr, count, offset); if (res > 0) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, res); if (res >= 0 && fd >= 0) COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd); return res; } #define INIT_PREAD64 COMMON_INTERCEPT_FUNCTION(pread64) #else #define INIT_PREAD64 #endif #if SANITIZER_INTERCEPT_READV INTERCEPTOR_WITH_SUFFIX(SSIZE_T, readv, int fd, __sanitizer_iovec *iov, int iovcnt) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, readv, fd, iov, iovcnt); COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd); SSIZE_T res = REAL(readv)(fd, iov, iovcnt); if (res > 0) write_iovec(ctx, iov, iovcnt, res); if (res >= 0 && fd >= 0) COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd); return res; } #define INIT_READV COMMON_INTERCEPT_FUNCTION(readv) #else #define INIT_READV #endif #if SANITIZER_INTERCEPT_PREADV INTERCEPTOR(SSIZE_T, preadv, int fd, __sanitizer_iovec *iov, int iovcnt, OFF_T offset) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, preadv, fd, iov, iovcnt, offset); COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd); SSIZE_T res = REAL(preadv)(fd, iov, iovcnt, offset); if (res > 0) write_iovec(ctx, iov, iovcnt, res); if (res >= 0 && fd >= 0) COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd); return res; } #define INIT_PREADV COMMON_INTERCEPT_FUNCTION(preadv) #else #define INIT_PREADV #endif #if SANITIZER_INTERCEPT_PREADV64 INTERCEPTOR(SSIZE_T, preadv64, int fd, __sanitizer_iovec *iov, int iovcnt, OFF64_T offset) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, preadv64, fd, iov, iovcnt, offset); COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd); SSIZE_T res = REAL(preadv64)(fd, iov, iovcnt, offset); if (res > 0) write_iovec(ctx, iov, iovcnt, res); if (res >= 0 && fd >= 0) COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd); return res; } #define INIT_PREADV64 COMMON_INTERCEPT_FUNCTION(preadv64) #else #define INIT_PREADV64 #endif #if SANITIZER_INTERCEPT_WRITE INTERCEPTOR(SSIZE_T, write, int fd, void *ptr, SIZE_T count) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, write, fd, ptr, count); COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd); if (fd >= 0) COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd); SSIZE_T res = REAL(write)(fd, ptr, count); // FIXME: this check should be _before_ the call to REAL(write), not after if (res > 0) COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, res); return res; } #define INIT_WRITE COMMON_INTERCEPT_FUNCTION(write) #else #define INIT_WRITE #endif #if SANITIZER_INTERCEPT_FWRITE INTERCEPTOR(SIZE_T, fwrite, const void *p, uptr size, uptr nmemb, void *file) { // libc file streams can call user-supplied functions, see fopencookie. void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, fwrite, p, size, nmemb, file); SIZE_T res = REAL(fwrite)(p, size, nmemb, file); if (res > 0) COMMON_INTERCEPTOR_READ_RANGE(ctx, p, res * size); return res; } #define INIT_FWRITE COMMON_INTERCEPT_FUNCTION(fwrite) #else #define INIT_FWRITE #endif #if SANITIZER_INTERCEPT_PWRITE INTERCEPTOR(SSIZE_T, pwrite, int fd, void *ptr, SIZE_T count, OFF_T offset) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, pwrite, fd, ptr, count, offset); COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd); if (fd >= 0) COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd); SSIZE_T res = REAL(pwrite)(fd, ptr, count, offset); if (res > 0) COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, res); return res; } #define INIT_PWRITE COMMON_INTERCEPT_FUNCTION(pwrite) #else #define INIT_PWRITE #endif #if SANITIZER_INTERCEPT_PWRITE64 INTERCEPTOR(SSIZE_T, pwrite64, int fd, void *ptr, OFF64_T count, OFF64_T offset) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, pwrite64, fd, ptr, count, offset); COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd); if (fd >= 0) COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd); SSIZE_T res = REAL(pwrite64)(fd, ptr, count, offset); if (res > 0) COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, res); return res; } #define INIT_PWRITE64 COMMON_INTERCEPT_FUNCTION(pwrite64) #else #define INIT_PWRITE64 #endif #if SANITIZER_INTERCEPT_WRITEV INTERCEPTOR_WITH_SUFFIX(SSIZE_T, writev, int fd, __sanitizer_iovec *iov, int iovcnt) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, writev, fd, iov, iovcnt); COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd); if (fd >= 0) COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd); SSIZE_T res = REAL(writev)(fd, iov, iovcnt); if (res > 0) read_iovec(ctx, iov, iovcnt, res); return res; } #define INIT_WRITEV COMMON_INTERCEPT_FUNCTION(writev) #else #define INIT_WRITEV #endif #if SANITIZER_INTERCEPT_PWRITEV INTERCEPTOR(SSIZE_T, pwritev, int fd, __sanitizer_iovec *iov, int iovcnt, OFF_T offset) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, pwritev, fd, iov, iovcnt, offset); COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd); if (fd >= 0) COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd); SSIZE_T res = REAL(pwritev)(fd, iov, iovcnt, offset); if (res > 0) read_iovec(ctx, iov, iovcnt, res); return res; } #define INIT_PWRITEV COMMON_INTERCEPT_FUNCTION(pwritev) #else #define INIT_PWRITEV #endif #if SANITIZER_INTERCEPT_PWRITEV64 INTERCEPTOR(SSIZE_T, pwritev64, int fd, __sanitizer_iovec *iov, int iovcnt, OFF64_T offset) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, pwritev64, fd, iov, iovcnt, offset); COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd); if (fd >= 0) COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd); SSIZE_T res = REAL(pwritev64)(fd, iov, iovcnt, offset); if (res > 0) read_iovec(ctx, iov, iovcnt, res); return res; } #define INIT_PWRITEV64 COMMON_INTERCEPT_FUNCTION(pwritev64) #else #define INIT_PWRITEV64 #endif #if SANITIZER_INTERCEPT_PRCTL INTERCEPTOR(int, prctl, int option, unsigned long arg2, unsigned long arg3, // NOLINT unsigned long arg4, unsigned long arg5) { // NOLINT void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, prctl, option, arg2, arg3, arg4, arg5); static const int PR_SET_NAME = 15; int res = REAL(prctl(option, arg2, arg3, arg4, arg5)); if (option == PR_SET_NAME) { char buff[16]; internal_strncpy(buff, (char *)arg2, 15); buff[15] = 0; COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, buff); } return res; } #define INIT_PRCTL COMMON_INTERCEPT_FUNCTION(prctl) #else #define INIT_PRCTL #endif // SANITIZER_INTERCEPT_PRCTL #if SANITIZER_INTERCEPT_TIME INTERCEPTOR(unsigned long, time, unsigned long *t) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, time, t); unsigned long local_t; unsigned long res = REAL(time)(&local_t); if (t && res != (unsigned long)-1) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, t, sizeof(*t)); *t = local_t; } return res; } #define INIT_TIME COMMON_INTERCEPT_FUNCTION(time); #else #define INIT_TIME #endif // SANITIZER_INTERCEPT_TIME #if SANITIZER_INTERCEPT_LOCALTIME_AND_FRIENDS static void unpoison_tm(void *ctx, __sanitizer_tm *tm) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, tm, sizeof(*tm)); if (tm->tm_zone) { // Can not use COMMON_INTERCEPTOR_WRITE_RANGE here, because tm->tm_zone // can point to shared memory and tsan would report a data race. COMMON_INTERCEPTOR_INITIALIZE_RANGE(tm->tm_zone, REAL(strlen(tm->tm_zone)) + 1); } } INTERCEPTOR(__sanitizer_tm *, localtime, unsigned long *timep) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, localtime, timep); __sanitizer_tm *res = REAL(localtime)(timep); if (res) { COMMON_INTERCEPTOR_READ_RANGE(ctx, timep, sizeof(*timep)); unpoison_tm(ctx, res); } return res; } INTERCEPTOR(__sanitizer_tm *, localtime_r, unsigned long *timep, void *result) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, localtime_r, timep, result); __sanitizer_tm *res = REAL(localtime_r)(timep, result); if (res) { COMMON_INTERCEPTOR_READ_RANGE(ctx, timep, sizeof(*timep)); unpoison_tm(ctx, res); } return res; } INTERCEPTOR(__sanitizer_tm *, gmtime, unsigned long *timep) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, gmtime, timep); __sanitizer_tm *res = REAL(gmtime)(timep); if (res) { COMMON_INTERCEPTOR_READ_RANGE(ctx, timep, sizeof(*timep)); unpoison_tm(ctx, res); } return res; } INTERCEPTOR(__sanitizer_tm *, gmtime_r, unsigned long *timep, void *result) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, gmtime_r, timep, result); __sanitizer_tm *res = REAL(gmtime_r)(timep, result); if (res) { COMMON_INTERCEPTOR_READ_RANGE(ctx, timep, sizeof(*timep)); unpoison_tm(ctx, res); } return res; } INTERCEPTOR(char *, ctime, unsigned long *timep) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, ctime, timep); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. char *res = REAL(ctime)(timep); if (res) { COMMON_INTERCEPTOR_READ_RANGE(ctx, timep, sizeof(*timep)); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, res, REAL(strlen)(res) + 1); } return res; } INTERCEPTOR(char *, ctime_r, unsigned long *timep, char *result) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, ctime_r, timep, result); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. char *res = REAL(ctime_r)(timep, result); if (res) { COMMON_INTERCEPTOR_READ_RANGE(ctx, timep, sizeof(*timep)); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, res, REAL(strlen)(res) + 1); } return res; } INTERCEPTOR(char *, asctime, __sanitizer_tm *tm) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, asctime, tm); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. char *res = REAL(asctime)(tm); if (res) { COMMON_INTERCEPTOR_READ_RANGE(ctx, tm, sizeof(*tm)); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, res, REAL(strlen)(res) + 1); } return res; } INTERCEPTOR(char *, asctime_r, __sanitizer_tm *tm, char *result) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, asctime_r, tm, result); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. char *res = REAL(asctime_r)(tm, result); if (res) { COMMON_INTERCEPTOR_READ_RANGE(ctx, tm, sizeof(*tm)); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, res, REAL(strlen)(res) + 1); } return res; } INTERCEPTOR(long, mktime, __sanitizer_tm *tm) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, mktime, tm); COMMON_INTERCEPTOR_READ_RANGE(ctx, &tm->tm_sec, sizeof(tm->tm_sec)); COMMON_INTERCEPTOR_READ_RANGE(ctx, &tm->tm_min, sizeof(tm->tm_min)); COMMON_INTERCEPTOR_READ_RANGE(ctx, &tm->tm_hour, sizeof(tm->tm_hour)); COMMON_INTERCEPTOR_READ_RANGE(ctx, &tm->tm_mday, sizeof(tm->tm_mday)); COMMON_INTERCEPTOR_READ_RANGE(ctx, &tm->tm_mon, sizeof(tm->tm_mon)); COMMON_INTERCEPTOR_READ_RANGE(ctx, &tm->tm_year, sizeof(tm->tm_year)); COMMON_INTERCEPTOR_READ_RANGE(ctx, &tm->tm_isdst, sizeof(tm->tm_isdst)); long res = REAL(mktime)(tm); if (res != -1) unpoison_tm(ctx, tm); return res; } #define INIT_LOCALTIME_AND_FRIENDS \ COMMON_INTERCEPT_FUNCTION(localtime); \ COMMON_INTERCEPT_FUNCTION(localtime_r); \ COMMON_INTERCEPT_FUNCTION(gmtime); \ COMMON_INTERCEPT_FUNCTION(gmtime_r); \ COMMON_INTERCEPT_FUNCTION(ctime); \ COMMON_INTERCEPT_FUNCTION(ctime_r); \ COMMON_INTERCEPT_FUNCTION(asctime); \ COMMON_INTERCEPT_FUNCTION(asctime_r); \ COMMON_INTERCEPT_FUNCTION(mktime); #else #define INIT_LOCALTIME_AND_FRIENDS #endif // SANITIZER_INTERCEPT_LOCALTIME_AND_FRIENDS #if SANITIZER_INTERCEPT_STRPTIME INTERCEPTOR(char *, strptime, char *s, char *format, __sanitizer_tm *tm) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, strptime, s, format, tm); if (format) COMMON_INTERCEPTOR_READ_RANGE(ctx, format, REAL(strlen)(format) + 1); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. char *res = REAL(strptime)(s, format, tm); COMMON_INTERCEPTOR_READ_STRING(ctx, s, res ? res - s : 0); if (res && tm) { // Do not call unpoison_tm here, because strptime does not, in fact, // initialize the entire struct tm. For example, tm_zone pointer is left // uninitialized. COMMON_INTERCEPTOR_WRITE_RANGE(ctx, tm, sizeof(*tm)); } return res; } #define INIT_STRPTIME COMMON_INTERCEPT_FUNCTION(strptime); #else #define INIT_STRPTIME #endif #if SANITIZER_INTERCEPT_SCANF || SANITIZER_INTERCEPT_PRINTF #include "sanitizer_common_interceptors_format.inc" #define FORMAT_INTERCEPTOR_IMPL(name, vname, ...) \ { \ void *ctx; \ va_list ap; \ va_start(ap, format); \ COMMON_INTERCEPTOR_ENTER(ctx, vname, __VA_ARGS__, ap); \ int res = WRAP(vname)(__VA_ARGS__, ap); \ va_end(ap); \ return res; \ } #endif #if SANITIZER_INTERCEPT_SCANF #define VSCANF_INTERCEPTOR_IMPL(vname, allowGnuMalloc, ...) \ { \ void *ctx; \ COMMON_INTERCEPTOR_ENTER(ctx, vname, __VA_ARGS__); \ va_list aq; \ va_copy(aq, ap); \ int res = REAL(vname)(__VA_ARGS__); \ if (res > 0) \ scanf_common(ctx, res, allowGnuMalloc, format, aq); \ va_end(aq); \ return res; \ } INTERCEPTOR(int, vscanf, const char *format, va_list ap) VSCANF_INTERCEPTOR_IMPL(vscanf, true, format, ap) INTERCEPTOR(int, vsscanf, const char *str, const char *format, va_list ap) VSCANF_INTERCEPTOR_IMPL(vsscanf, true, str, format, ap) INTERCEPTOR(int, vfscanf, void *stream, const char *format, va_list ap) VSCANF_INTERCEPTOR_IMPL(vfscanf, true, stream, format, ap) #if SANITIZER_INTERCEPT_ISOC99_SCANF INTERCEPTOR(int, __isoc99_vscanf, const char *format, va_list ap) VSCANF_INTERCEPTOR_IMPL(__isoc99_vscanf, false, format, ap) INTERCEPTOR(int, __isoc99_vsscanf, const char *str, const char *format, va_list ap) VSCANF_INTERCEPTOR_IMPL(__isoc99_vsscanf, false, str, format, ap) INTERCEPTOR(int, __isoc99_vfscanf, void *stream, const char *format, va_list ap) VSCANF_INTERCEPTOR_IMPL(__isoc99_vfscanf, false, stream, format, ap) #endif // SANITIZER_INTERCEPT_ISOC99_SCANF INTERCEPTOR(int, scanf, const char *format, ...) FORMAT_INTERCEPTOR_IMPL(scanf, vscanf, format) INTERCEPTOR(int, fscanf, void *stream, const char *format, ...) FORMAT_INTERCEPTOR_IMPL(fscanf, vfscanf, stream, format) INTERCEPTOR(int, sscanf, const char *str, const char *format, ...) FORMAT_INTERCEPTOR_IMPL(sscanf, vsscanf, str, format) #if SANITIZER_INTERCEPT_ISOC99_SCANF INTERCEPTOR(int, __isoc99_scanf, const char *format, ...) FORMAT_INTERCEPTOR_IMPL(__isoc99_scanf, __isoc99_vscanf, format) INTERCEPTOR(int, __isoc99_fscanf, void *stream, const char *format, ...) FORMAT_INTERCEPTOR_IMPL(__isoc99_fscanf, __isoc99_vfscanf, stream, format) INTERCEPTOR(int, __isoc99_sscanf, const char *str, const char *format, ...) FORMAT_INTERCEPTOR_IMPL(__isoc99_sscanf, __isoc99_vsscanf, str, format) #endif #endif #if SANITIZER_INTERCEPT_SCANF #define INIT_SCANF \ COMMON_INTERCEPT_FUNCTION_LDBL(scanf); \ COMMON_INTERCEPT_FUNCTION_LDBL(sscanf); \ COMMON_INTERCEPT_FUNCTION_LDBL(fscanf); \ COMMON_INTERCEPT_FUNCTION_LDBL(vscanf); \ COMMON_INTERCEPT_FUNCTION_LDBL(vsscanf); \ COMMON_INTERCEPT_FUNCTION_LDBL(vfscanf); #else #define INIT_SCANF #endif #if SANITIZER_INTERCEPT_ISOC99_SCANF #define INIT_ISOC99_SCANF \ COMMON_INTERCEPT_FUNCTION(__isoc99_scanf); \ COMMON_INTERCEPT_FUNCTION(__isoc99_sscanf); \ COMMON_INTERCEPT_FUNCTION(__isoc99_fscanf); \ COMMON_INTERCEPT_FUNCTION(__isoc99_vscanf); \ COMMON_INTERCEPT_FUNCTION(__isoc99_vsscanf); \ COMMON_INTERCEPT_FUNCTION(__isoc99_vfscanf); #else #define INIT_ISOC99_SCANF #endif #if SANITIZER_INTERCEPT_PRINTF #define VPRINTF_INTERCEPTOR_ENTER(vname, ...) \ void *ctx; \ COMMON_INTERCEPTOR_ENTER(ctx, vname, __VA_ARGS__); \ va_list aq; \ va_copy(aq, ap); #define VPRINTF_INTERCEPTOR_RETURN() \ va_end(aq); #define VPRINTF_INTERCEPTOR_IMPL(vname, ...) \ { \ VPRINTF_INTERCEPTOR_ENTER(vname, __VA_ARGS__); \ if (common_flags()->check_printf) \ printf_common(ctx, format, aq); \ int res = REAL(vname)(__VA_ARGS__); \ VPRINTF_INTERCEPTOR_RETURN(); \ return res; \ } // FIXME: under ASan the REAL() call below may write to freed memory and // corrupt its metadata. See // https://github.com/google/sanitizers/issues/321. #define VSPRINTF_INTERCEPTOR_IMPL(vname, str, ...) \ { \ VPRINTF_INTERCEPTOR_ENTER(vname, str, __VA_ARGS__) \ if (common_flags()->check_printf) { \ printf_common(ctx, format, aq); \ } \ int res = REAL(vname)(str, __VA_ARGS__); \ if (res >= 0) { \ COMMON_INTERCEPTOR_WRITE_RANGE(ctx, str, res + 1); \ } \ VPRINTF_INTERCEPTOR_RETURN(); \ return res; \ } // FIXME: under ASan the REAL() call below may write to freed memory and // corrupt its metadata. See // https://github.com/google/sanitizers/issues/321. #define VSNPRINTF_INTERCEPTOR_IMPL(vname, str, size, ...) \ { \ VPRINTF_INTERCEPTOR_ENTER(vname, str, size, __VA_ARGS__) \ if (common_flags()->check_printf) { \ printf_common(ctx, format, aq); \ } \ int res = REAL(vname)(str, size, __VA_ARGS__); \ if (res >= 0) { \ COMMON_INTERCEPTOR_WRITE_RANGE(ctx, str, Min(size, (SIZE_T)(res + 1))); \ } \ VPRINTF_INTERCEPTOR_RETURN(); \ return res; \ } // FIXME: under ASan the REAL() call below may write to freed memory and // corrupt its metadata. See // https://github.com/google/sanitizers/issues/321. #define VASPRINTF_INTERCEPTOR_IMPL(vname, strp, ...) \ { \ VPRINTF_INTERCEPTOR_ENTER(vname, strp, __VA_ARGS__) \ COMMON_INTERCEPTOR_WRITE_RANGE(ctx, strp, sizeof(char *)); \ if (common_flags()->check_printf) { \ printf_common(ctx, format, aq); \ } \ int res = REAL(vname)(strp, __VA_ARGS__); \ if (res >= 0) { \ COMMON_INTERCEPTOR_WRITE_RANGE(ctx, *strp, res + 1); \ } \ VPRINTF_INTERCEPTOR_RETURN(); \ return res; \ } INTERCEPTOR(int, vprintf, const char *format, va_list ap) VPRINTF_INTERCEPTOR_IMPL(vprintf, format, ap) INTERCEPTOR(int, vfprintf, __sanitizer_FILE *stream, const char *format, va_list ap) VPRINTF_INTERCEPTOR_IMPL(vfprintf, stream, format, ap) INTERCEPTOR(int, vsnprintf, char *str, SIZE_T size, const char *format, va_list ap) VSNPRINTF_INTERCEPTOR_IMPL(vsnprintf, str, size, format, ap) #if SANITIZER_INTERCEPT_PRINTF_L INTERCEPTOR(int, vsnprintf_l, char *str, SIZE_T size, void *loc, const char *format, va_list ap) VSNPRINTF_INTERCEPTOR_IMPL(vsnprintf_l, str, size, loc, format, ap) INTERCEPTOR(int, snprintf_l, char *str, SIZE_T size, void *loc, const char *format, ...) FORMAT_INTERCEPTOR_IMPL(snprintf_l, vsnprintf_l, str, size, loc, format) #endif // SANITIZER_INTERCEPT_PRINTF_L INTERCEPTOR(int, vsprintf, char *str, const char *format, va_list ap) VSPRINTF_INTERCEPTOR_IMPL(vsprintf, str, format, ap) INTERCEPTOR(int, vasprintf, char **strp, const char *format, va_list ap) VASPRINTF_INTERCEPTOR_IMPL(vasprintf, strp, format, ap) #if SANITIZER_INTERCEPT_ISOC99_PRINTF INTERCEPTOR(int, __isoc99_vprintf, const char *format, va_list ap) VPRINTF_INTERCEPTOR_IMPL(__isoc99_vprintf, format, ap) INTERCEPTOR(int, __isoc99_vfprintf, __sanitizer_FILE *stream, const char *format, va_list ap) VPRINTF_INTERCEPTOR_IMPL(__isoc99_vfprintf, stream, format, ap) INTERCEPTOR(int, __isoc99_vsnprintf, char *str, SIZE_T size, const char *format, va_list ap) VSNPRINTF_INTERCEPTOR_IMPL(__isoc99_vsnprintf, str, size, format, ap) INTERCEPTOR(int, __isoc99_vsprintf, char *str, const char *format, va_list ap) VSPRINTF_INTERCEPTOR_IMPL(__isoc99_vsprintf, str, format, ap) #endif // SANITIZER_INTERCEPT_ISOC99_PRINTF INTERCEPTOR(int, printf, const char *format, ...) FORMAT_INTERCEPTOR_IMPL(printf, vprintf, format) INTERCEPTOR(int, fprintf, __sanitizer_FILE *stream, const char *format, ...) FORMAT_INTERCEPTOR_IMPL(fprintf, vfprintf, stream, format) INTERCEPTOR(int, sprintf, char *str, const char *format, ...) // NOLINT FORMAT_INTERCEPTOR_IMPL(sprintf, vsprintf, str, format) // NOLINT INTERCEPTOR(int, snprintf, char *str, SIZE_T size, const char *format, ...) FORMAT_INTERCEPTOR_IMPL(snprintf, vsnprintf, str, size, format) INTERCEPTOR(int, asprintf, char **strp, const char *format, ...) FORMAT_INTERCEPTOR_IMPL(asprintf, vasprintf, strp, format) #if SANITIZER_INTERCEPT_ISOC99_PRINTF INTERCEPTOR(int, __isoc99_printf, const char *format, ...) FORMAT_INTERCEPTOR_IMPL(__isoc99_printf, __isoc99_vprintf, format) INTERCEPTOR(int, __isoc99_fprintf, __sanitizer_FILE *stream, const char *format, ...) FORMAT_INTERCEPTOR_IMPL(__isoc99_fprintf, __isoc99_vfprintf, stream, format) INTERCEPTOR(int, __isoc99_sprintf, char *str, const char *format, ...) FORMAT_INTERCEPTOR_IMPL(__isoc99_sprintf, __isoc99_vsprintf, str, format) INTERCEPTOR(int, __isoc99_snprintf, char *str, SIZE_T size, const char *format, ...) FORMAT_INTERCEPTOR_IMPL(__isoc99_snprintf, __isoc99_vsnprintf, str, size, format) #endif // SANITIZER_INTERCEPT_ISOC99_PRINTF #endif // SANITIZER_INTERCEPT_PRINTF #if SANITIZER_INTERCEPT_PRINTF #define INIT_PRINTF \ COMMON_INTERCEPT_FUNCTION_LDBL(printf); \ COMMON_INTERCEPT_FUNCTION_LDBL(sprintf); \ COMMON_INTERCEPT_FUNCTION_LDBL(snprintf); \ COMMON_INTERCEPT_FUNCTION_LDBL(asprintf); \ COMMON_INTERCEPT_FUNCTION_LDBL(fprintf); \ COMMON_INTERCEPT_FUNCTION_LDBL(vprintf); \ COMMON_INTERCEPT_FUNCTION_LDBL(vsprintf); \ COMMON_INTERCEPT_FUNCTION_LDBL(vsnprintf); \ COMMON_INTERCEPT_FUNCTION_LDBL(vasprintf); \ COMMON_INTERCEPT_FUNCTION_LDBL(vfprintf); #else #define INIT_PRINTF #endif #if SANITIZER_INTERCEPT_PRINTF_L #define INIT_PRINTF_L \ COMMON_INTERCEPT_FUNCTION(snprintf_l); \ COMMON_INTERCEPT_FUNCTION(vsnprintf_l); #else #define INIT_PRINTF_L #endif #if SANITIZER_INTERCEPT_ISOC99_PRINTF #define INIT_ISOC99_PRINTF \ COMMON_INTERCEPT_FUNCTION(__isoc99_printf); \ COMMON_INTERCEPT_FUNCTION(__isoc99_sprintf); \ COMMON_INTERCEPT_FUNCTION(__isoc99_snprintf); \ COMMON_INTERCEPT_FUNCTION(__isoc99_fprintf); \ COMMON_INTERCEPT_FUNCTION(__isoc99_vprintf); \ COMMON_INTERCEPT_FUNCTION(__isoc99_vsprintf); \ COMMON_INTERCEPT_FUNCTION(__isoc99_vsnprintf); \ COMMON_INTERCEPT_FUNCTION(__isoc99_vfprintf); #else #define INIT_ISOC99_PRINTF #endif #if SANITIZER_INTERCEPT_IOCTL #include "sanitizer_common_interceptors_ioctl.inc" INTERCEPTOR(int, ioctl, int d, unsigned long request, ...) { // We need a frame pointer, because we call into ioctl_common_[pre|post] which // can trigger a report and we need to be able to unwind through this // function. On Mac in debug mode we might not have a frame pointer, because // ioctl_common_[pre|post] doesn't get inlined here. ENABLE_FRAME_POINTER; void *ctx; va_list ap; va_start(ap, request); void *arg = va_arg(ap, void *); va_end(ap); COMMON_INTERCEPTOR_ENTER(ctx, ioctl, d, request, arg); CHECK(ioctl_initialized); // Note: TSan does not use common flags, and they are zero-initialized. // This effectively disables ioctl handling in TSan. if (!common_flags()->handle_ioctl) return REAL(ioctl)(d, request, arg); // Although request is unsigned long, the rest of the interceptor uses it // as just "unsigned" to save space, because we know that all values fit in // "unsigned" - they are compile-time constants. const ioctl_desc *desc = ioctl_lookup(request); ioctl_desc decoded_desc; if (!desc) { VPrintf(2, "Decoding unknown ioctl 0x%x\n", request); if (!ioctl_decode(request, &decoded_desc)) Printf("WARNING: failed decoding unknown ioctl 0x%x\n", request); else desc = &decoded_desc; } if (desc) ioctl_common_pre(ctx, desc, d, request, arg); int res = REAL(ioctl)(d, request, arg); // FIXME: some ioctls have different return values for success and failure. if (desc && res != -1) ioctl_common_post(ctx, desc, res, d, request, arg); return res; } #define INIT_IOCTL \ ioctl_init(); \ COMMON_INTERCEPT_FUNCTION(ioctl); #else #define INIT_IOCTL #endif #if SANITIZER_INTERCEPT_GETPWNAM_AND_FRIENDS || \ SANITIZER_INTERCEPT_GETPWENT || SANITIZER_INTERCEPT_FGETPWENT || \ SANITIZER_INTERCEPT_GETPWENT_R || SANITIZER_INTERCEPT_GETPWNAM_R_AND_FRIENDS static void unpoison_passwd(void *ctx, __sanitizer_passwd *pwd) { if (pwd) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, pwd, sizeof(*pwd)); if (pwd->pw_name) COMMON_INTERCEPTOR_INITIALIZE_RANGE(pwd->pw_name, REAL(strlen)(pwd->pw_name) + 1); if (pwd->pw_passwd) COMMON_INTERCEPTOR_INITIALIZE_RANGE(pwd->pw_passwd, REAL(strlen)(pwd->pw_passwd) + 1); #if !SANITIZER_ANDROID if (pwd->pw_gecos) COMMON_INTERCEPTOR_INITIALIZE_RANGE(pwd->pw_gecos, REAL(strlen)(pwd->pw_gecos) + 1); #endif #if SANITIZER_MAC if (pwd->pw_class) COMMON_INTERCEPTOR_INITIALIZE_RANGE(pwd->pw_class, REAL(strlen)(pwd->pw_class) + 1); #endif if (pwd->pw_dir) COMMON_INTERCEPTOR_INITIALIZE_RANGE(pwd->pw_dir, REAL(strlen)(pwd->pw_dir) + 1); if (pwd->pw_shell) COMMON_INTERCEPTOR_INITIALIZE_RANGE(pwd->pw_shell, REAL(strlen)(pwd->pw_shell) + 1); } } static void unpoison_group(void *ctx, __sanitizer_group *grp) { if (grp) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, grp, sizeof(*grp)); if (grp->gr_name) COMMON_INTERCEPTOR_INITIALIZE_RANGE(grp->gr_name, REAL(strlen)(grp->gr_name) + 1); if (grp->gr_passwd) COMMON_INTERCEPTOR_INITIALIZE_RANGE(grp->gr_passwd, REAL(strlen)(grp->gr_passwd) + 1); char **p = grp->gr_mem; for (; *p; ++p) { COMMON_INTERCEPTOR_INITIALIZE_RANGE(*p, REAL(strlen)(*p) + 1); } COMMON_INTERCEPTOR_INITIALIZE_RANGE(grp->gr_mem, (p - grp->gr_mem + 1) * sizeof(*p)); } } #endif // SANITIZER_INTERCEPT_GETPWNAM_AND_FRIENDS || // SANITIZER_INTERCEPT_GETPWENT || SANITIZER_INTERCEPT_FGETPWENT || // SANITIZER_INTERCEPT_GETPWENT_R || // SANITIZER_INTERCEPT_GETPWNAM_R_AND_FRIENDS #if SANITIZER_INTERCEPT_GETPWNAM_AND_FRIENDS INTERCEPTOR(__sanitizer_passwd *, getpwnam, const char *name) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getpwnam, name); COMMON_INTERCEPTOR_READ_RANGE(ctx, name, REAL(strlen)(name) + 1); __sanitizer_passwd *res = REAL(getpwnam)(name); if (res) unpoison_passwd(ctx, res); return res; } INTERCEPTOR(__sanitizer_passwd *, getpwuid, u32 uid) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getpwuid, uid); __sanitizer_passwd *res = REAL(getpwuid)(uid); if (res) unpoison_passwd(ctx, res); return res; } INTERCEPTOR(__sanitizer_group *, getgrnam, const char *name) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getgrnam, name); COMMON_INTERCEPTOR_READ_RANGE(ctx, name, REAL(strlen)(name) + 1); __sanitizer_group *res = REAL(getgrnam)(name); if (res) unpoison_group(ctx, res); return res; } INTERCEPTOR(__sanitizer_group *, getgrgid, u32 gid) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getgrgid, gid); __sanitizer_group *res = REAL(getgrgid)(gid); if (res) unpoison_group(ctx, res); return res; } #define INIT_GETPWNAM_AND_FRIENDS \ COMMON_INTERCEPT_FUNCTION(getpwnam); \ COMMON_INTERCEPT_FUNCTION(getpwuid); \ COMMON_INTERCEPT_FUNCTION(getgrnam); \ COMMON_INTERCEPT_FUNCTION(getgrgid); #else #define INIT_GETPWNAM_AND_FRIENDS #endif #if SANITIZER_INTERCEPT_GETPWNAM_R_AND_FRIENDS INTERCEPTOR(int, getpwnam_r, const char *name, __sanitizer_passwd *pwd, char *buf, SIZE_T buflen, __sanitizer_passwd **result) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getpwnam_r, name, pwd, buf, buflen, result); COMMON_INTERCEPTOR_READ_RANGE(ctx, name, REAL(strlen)(name) + 1); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(getpwnam_r)(name, pwd, buf, buflen, result); if (!res) { if (result && *result) unpoison_passwd(ctx, *result); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, buflen); } if (result) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, result, sizeof(*result)); return res; } INTERCEPTOR(int, getpwuid_r, u32 uid, __sanitizer_passwd *pwd, char *buf, SIZE_T buflen, __sanitizer_passwd **result) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getpwuid_r, uid, pwd, buf, buflen, result); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(getpwuid_r)(uid, pwd, buf, buflen, result); if (!res) { if (result && *result) unpoison_passwd(ctx, *result); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, buflen); } if (result) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, result, sizeof(*result)); return res; } INTERCEPTOR(int, getgrnam_r, const char *name, __sanitizer_group *grp, char *buf, SIZE_T buflen, __sanitizer_group **result) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getgrnam_r, name, grp, buf, buflen, result); COMMON_INTERCEPTOR_READ_RANGE(ctx, name, REAL(strlen)(name) + 1); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(getgrnam_r)(name, grp, buf, buflen, result); if (!res) { if (result && *result) unpoison_group(ctx, *result); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, buflen); } if (result) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, result, sizeof(*result)); return res; } INTERCEPTOR(int, getgrgid_r, u32 gid, __sanitizer_group *grp, char *buf, SIZE_T buflen, __sanitizer_group **result) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getgrgid_r, gid, grp, buf, buflen, result); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(getgrgid_r)(gid, grp, buf, buflen, result); if (!res) { if (result && *result) unpoison_group(ctx, *result); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, buflen); } if (result) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, result, sizeof(*result)); return res; } #define INIT_GETPWNAM_R_AND_FRIENDS \ COMMON_INTERCEPT_FUNCTION(getpwnam_r); \ COMMON_INTERCEPT_FUNCTION(getpwuid_r); \ COMMON_INTERCEPT_FUNCTION(getgrnam_r); \ COMMON_INTERCEPT_FUNCTION(getgrgid_r); #else #define INIT_GETPWNAM_R_AND_FRIENDS #endif #if SANITIZER_INTERCEPT_GETPWENT INTERCEPTOR(__sanitizer_passwd *, getpwent, int dummy) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getpwent, dummy); __sanitizer_passwd *res = REAL(getpwent)(dummy); if (res) unpoison_passwd(ctx, res); return res; } INTERCEPTOR(__sanitizer_group *, getgrent, int dummy) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getgrent, dummy); __sanitizer_group *res = REAL(getgrent)(dummy); if (res) unpoison_group(ctx, res);; return res; } #define INIT_GETPWENT \ COMMON_INTERCEPT_FUNCTION(getpwent); \ COMMON_INTERCEPT_FUNCTION(getgrent); #else #define INIT_GETPWENT #endif #if SANITIZER_INTERCEPT_FGETPWENT INTERCEPTOR(__sanitizer_passwd *, fgetpwent, void *fp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, fgetpwent, fp); __sanitizer_passwd *res = REAL(fgetpwent)(fp); if (res) unpoison_passwd(ctx, res); return res; } INTERCEPTOR(__sanitizer_group *, fgetgrent, void *fp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, fgetgrent, fp); __sanitizer_group *res = REAL(fgetgrent)(fp); if (res) unpoison_group(ctx, res); return res; } #define INIT_FGETPWENT \ COMMON_INTERCEPT_FUNCTION(fgetpwent); \ COMMON_INTERCEPT_FUNCTION(fgetgrent); #else #define INIT_FGETPWENT #endif #if SANITIZER_INTERCEPT_GETPWENT_R INTERCEPTOR(int, getpwent_r, __sanitizer_passwd *pwbuf, char *buf, SIZE_T buflen, __sanitizer_passwd **pwbufp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getpwent_r, pwbuf, buf, buflen, pwbufp); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(getpwent_r)(pwbuf, buf, buflen, pwbufp); if (!res) { if (pwbufp && *pwbufp) unpoison_passwd(ctx, *pwbufp); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, buflen); } if (pwbufp) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, pwbufp, sizeof(*pwbufp)); return res; } INTERCEPTOR(int, fgetpwent_r, void *fp, __sanitizer_passwd *pwbuf, char *buf, SIZE_T buflen, __sanitizer_passwd **pwbufp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, fgetpwent_r, fp, pwbuf, buf, buflen, pwbufp); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(fgetpwent_r)(fp, pwbuf, buf, buflen, pwbufp); if (!res) { if (pwbufp && *pwbufp) unpoison_passwd(ctx, *pwbufp); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, buflen); } if (pwbufp) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, pwbufp, sizeof(*pwbufp)); return res; } INTERCEPTOR(int, getgrent_r, __sanitizer_group *pwbuf, char *buf, SIZE_T buflen, __sanitizer_group **pwbufp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getgrent_r, pwbuf, buf, buflen, pwbufp); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(getgrent_r)(pwbuf, buf, buflen, pwbufp); if (!res) { if (pwbufp && *pwbufp) unpoison_group(ctx, *pwbufp); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, buflen); } if (pwbufp) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, pwbufp, sizeof(*pwbufp)); return res; } INTERCEPTOR(int, fgetgrent_r, void *fp, __sanitizer_group *pwbuf, char *buf, SIZE_T buflen, __sanitizer_group **pwbufp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, fgetgrent_r, fp, pwbuf, buf, buflen, pwbufp); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(fgetgrent_r)(fp, pwbuf, buf, buflen, pwbufp); if (!res) { if (pwbufp && *pwbufp) unpoison_group(ctx, *pwbufp); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, buflen); } if (pwbufp) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, pwbufp, sizeof(*pwbufp)); return res; } #define INIT_GETPWENT_R \ COMMON_INTERCEPT_FUNCTION(getpwent_r); \ COMMON_INTERCEPT_FUNCTION(fgetpwent_r); \ COMMON_INTERCEPT_FUNCTION(getgrent_r); \ COMMON_INTERCEPT_FUNCTION(fgetgrent_r); #else #define INIT_GETPWENT_R #endif #if SANITIZER_INTERCEPT_SETPWENT // The only thing these interceptors do is disable any nested interceptors. // These functions may open nss modules and call uninstrumented functions from // them, and we don't want things like strlen() to trigger. INTERCEPTOR(void, setpwent, int dummy) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, setpwent, dummy); REAL(setpwent)(dummy); } INTERCEPTOR(void, endpwent, int dummy) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, endpwent, dummy); REAL(endpwent)(dummy); } INTERCEPTOR(void, setgrent, int dummy) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, setgrent, dummy); REAL(setgrent)(dummy); } INTERCEPTOR(void, endgrent, int dummy) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, endgrent, dummy); REAL(endgrent)(dummy); } #define INIT_SETPWENT \ COMMON_INTERCEPT_FUNCTION(setpwent); \ COMMON_INTERCEPT_FUNCTION(endpwent); \ COMMON_INTERCEPT_FUNCTION(setgrent); \ COMMON_INTERCEPT_FUNCTION(endgrent); #else #define INIT_SETPWENT #endif #if SANITIZER_INTERCEPT_CLOCK_GETTIME INTERCEPTOR(int, clock_getres, u32 clk_id, void *tp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, clock_getres, clk_id, tp); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(clock_getres)(clk_id, tp); if (!res && tp) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, tp, struct_timespec_sz); } return res; } INTERCEPTOR(int, clock_gettime, u32 clk_id, void *tp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, clock_gettime, clk_id, tp); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(clock_gettime)(clk_id, tp); if (!res) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, tp, struct_timespec_sz); } return res; } INTERCEPTOR(int, clock_settime, u32 clk_id, const void *tp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, clock_settime, clk_id, tp); COMMON_INTERCEPTOR_READ_RANGE(ctx, tp, struct_timespec_sz); return REAL(clock_settime)(clk_id, tp); } #define INIT_CLOCK_GETTIME \ COMMON_INTERCEPT_FUNCTION(clock_getres); \ COMMON_INTERCEPT_FUNCTION(clock_gettime); \ COMMON_INTERCEPT_FUNCTION(clock_settime); #else #define INIT_CLOCK_GETTIME #endif #if SANITIZER_INTERCEPT_GETITIMER INTERCEPTOR(int, getitimer, int which, void *curr_value) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getitimer, which, curr_value); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(getitimer)(which, curr_value); if (!res && curr_value) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, curr_value, struct_itimerval_sz); } return res; } INTERCEPTOR(int, setitimer, int which, const void *new_value, void *old_value) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, setitimer, which, new_value, old_value); if (new_value) COMMON_INTERCEPTOR_READ_RANGE(ctx, new_value, struct_itimerval_sz); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(setitimer)(which, new_value, old_value); if (!res && old_value) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, old_value, struct_itimerval_sz); } return res; } #define INIT_GETITIMER \ COMMON_INTERCEPT_FUNCTION(getitimer); \ COMMON_INTERCEPT_FUNCTION(setitimer); #else #define INIT_GETITIMER #endif #if SANITIZER_INTERCEPT_GLOB static void unpoison_glob_t(void *ctx, __sanitizer_glob_t *pglob) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, pglob, sizeof(*pglob)); // +1 for NULL pointer at the end. if (pglob->gl_pathv) COMMON_INTERCEPTOR_WRITE_RANGE( ctx, pglob->gl_pathv, (pglob->gl_pathc + 1) * sizeof(*pglob->gl_pathv)); for (SIZE_T i = 0; i < pglob->gl_pathc; ++i) { char *p = pglob->gl_pathv[i]; COMMON_INTERCEPTOR_WRITE_RANGE(ctx, p, REAL(strlen)(p) + 1); } } static THREADLOCAL __sanitizer_glob_t *pglob_copy; static void wrapped_gl_closedir(void *dir) { COMMON_INTERCEPTOR_UNPOISON_PARAM(1); pglob_copy->gl_closedir(dir); } static void *wrapped_gl_readdir(void *dir) { COMMON_INTERCEPTOR_UNPOISON_PARAM(1); return pglob_copy->gl_readdir(dir); } static void *wrapped_gl_opendir(const char *s) { COMMON_INTERCEPTOR_UNPOISON_PARAM(1); COMMON_INTERCEPTOR_INITIALIZE_RANGE(s, REAL(strlen)(s) + 1); return pglob_copy->gl_opendir(s); } static int wrapped_gl_lstat(const char *s, void *st) { COMMON_INTERCEPTOR_UNPOISON_PARAM(2); COMMON_INTERCEPTOR_INITIALIZE_RANGE(s, REAL(strlen)(s) + 1); return pglob_copy->gl_lstat(s, st); } static int wrapped_gl_stat(const char *s, void *st) { COMMON_INTERCEPTOR_UNPOISON_PARAM(2); COMMON_INTERCEPTOR_INITIALIZE_RANGE(s, REAL(strlen)(s) + 1); return pglob_copy->gl_stat(s, st); } static const __sanitizer_glob_t kGlobCopy = { 0, 0, 0, 0, wrapped_gl_closedir, wrapped_gl_readdir, wrapped_gl_opendir, wrapped_gl_lstat, wrapped_gl_stat}; INTERCEPTOR(int, glob, const char *pattern, int flags, int (*errfunc)(const char *epath, int eerrno), __sanitizer_glob_t *pglob) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, glob, pattern, flags, errfunc, pglob); COMMON_INTERCEPTOR_READ_STRING(ctx, pattern, 0); __sanitizer_glob_t glob_copy; internal_memcpy(&glob_copy, &kGlobCopy, sizeof(glob_copy)); if (flags & glob_altdirfunc) { Swap(pglob->gl_closedir, glob_copy.gl_closedir); Swap(pglob->gl_readdir, glob_copy.gl_readdir); Swap(pglob->gl_opendir, glob_copy.gl_opendir); Swap(pglob->gl_lstat, glob_copy.gl_lstat); Swap(pglob->gl_stat, glob_copy.gl_stat); pglob_copy = &glob_copy; } int res = REAL(glob)(pattern, flags, errfunc, pglob); if (flags & glob_altdirfunc) { Swap(pglob->gl_closedir, glob_copy.gl_closedir); Swap(pglob->gl_readdir, glob_copy.gl_readdir); Swap(pglob->gl_opendir, glob_copy.gl_opendir); Swap(pglob->gl_lstat, glob_copy.gl_lstat); Swap(pglob->gl_stat, glob_copy.gl_stat); } pglob_copy = 0; if ((!res || res == glob_nomatch) && pglob) unpoison_glob_t(ctx, pglob); return res; } INTERCEPTOR(int, glob64, const char *pattern, int flags, int (*errfunc)(const char *epath, int eerrno), __sanitizer_glob_t *pglob) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, glob64, pattern, flags, errfunc, pglob); COMMON_INTERCEPTOR_READ_STRING(ctx, pattern, 0); __sanitizer_glob_t glob_copy; internal_memcpy(&glob_copy, &kGlobCopy, sizeof(glob_copy)); if (flags & glob_altdirfunc) { Swap(pglob->gl_closedir, glob_copy.gl_closedir); Swap(pglob->gl_readdir, glob_copy.gl_readdir); Swap(pglob->gl_opendir, glob_copy.gl_opendir); Swap(pglob->gl_lstat, glob_copy.gl_lstat); Swap(pglob->gl_stat, glob_copy.gl_stat); pglob_copy = &glob_copy; } int res = REAL(glob64)(pattern, flags, errfunc, pglob); if (flags & glob_altdirfunc) { Swap(pglob->gl_closedir, glob_copy.gl_closedir); Swap(pglob->gl_readdir, glob_copy.gl_readdir); Swap(pglob->gl_opendir, glob_copy.gl_opendir); Swap(pglob->gl_lstat, glob_copy.gl_lstat); Swap(pglob->gl_stat, glob_copy.gl_stat); } pglob_copy = 0; if ((!res || res == glob_nomatch) && pglob) unpoison_glob_t(ctx, pglob); return res; } #define INIT_GLOB \ COMMON_INTERCEPT_FUNCTION(glob); \ COMMON_INTERCEPT_FUNCTION(glob64); #else // SANITIZER_INTERCEPT_GLOB #define INIT_GLOB #endif // SANITIZER_INTERCEPT_GLOB #if SANITIZER_INTERCEPT_WAIT // According to sys/wait.h, wait(), waitid(), waitpid() may have symbol version // suffixes on Darwin. See the declaration of INTERCEPTOR_WITH_SUFFIX for // details. INTERCEPTOR_WITH_SUFFIX(int, wait, int *status) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, wait, status); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(wait)(status); if (res != -1 && status) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, status, sizeof(*status)); return res; } // On FreeBSD id_t is always 64-bit wide. #if SANITIZER_FREEBSD && (SANITIZER_WORDSIZE == 32) INTERCEPTOR_WITH_SUFFIX(int, waitid, int idtype, long long id, void *infop, int options) { #else INTERCEPTOR_WITH_SUFFIX(int, waitid, int idtype, int id, void *infop, int options) { #endif void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, waitid, idtype, id, infop, options); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(waitid)(idtype, id, infop, options); if (res != -1 && infop) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, infop, siginfo_t_sz); return res; } INTERCEPTOR_WITH_SUFFIX(int, waitpid, int pid, int *status, int options) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, waitpid, pid, status, options); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(waitpid)(pid, status, options); if (res != -1 && status) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, status, sizeof(*status)); return res; } INTERCEPTOR(int, wait3, int *status, int options, void *rusage) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, wait3, status, options, rusage); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(wait3)(status, options, rusage); if (res != -1) { if (status) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, status, sizeof(*status)); if (rusage) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, rusage, struct_rusage_sz); } return res; } #if SANITIZER_ANDROID INTERCEPTOR(int, __wait4, int pid, int *status, int options, void *rusage) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, __wait4, pid, status, options, rusage); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(__wait4)(pid, status, options, rusage); if (res != -1) { if (status) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, status, sizeof(*status)); if (rusage) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, rusage, struct_rusage_sz); } return res; } #define INIT_WAIT4 COMMON_INTERCEPT_FUNCTION(__wait4); #else INTERCEPTOR(int, wait4, int pid, int *status, int options, void *rusage) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, wait4, pid, status, options, rusage); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(wait4)(pid, status, options, rusage); if (res != -1) { if (status) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, status, sizeof(*status)); if (rusage) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, rusage, struct_rusage_sz); } return res; } #define INIT_WAIT4 COMMON_INTERCEPT_FUNCTION(wait4); #endif // SANITIZER_ANDROID #define INIT_WAIT \ COMMON_INTERCEPT_FUNCTION(wait); \ COMMON_INTERCEPT_FUNCTION(waitid); \ COMMON_INTERCEPT_FUNCTION(waitpid); \ COMMON_INTERCEPT_FUNCTION(wait3); #else #define INIT_WAIT #define INIT_WAIT4 #endif #if SANITIZER_INTERCEPT_INET INTERCEPTOR(char *, inet_ntop, int af, const void *src, char *dst, u32 size) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, inet_ntop, af, src, dst, size); uptr sz = __sanitizer_in_addr_sz(af); if (sz) COMMON_INTERCEPTOR_READ_RANGE(ctx, src, sz); // FIXME: figure out read size based on the address family. // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. char *res = REAL(inet_ntop)(af, src, dst, size); if (res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, res, REAL(strlen)(res) + 1); return res; } INTERCEPTOR(int, inet_pton, int af, const char *src, void *dst) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, inet_pton, af, src, dst); COMMON_INTERCEPTOR_READ_STRING(ctx, src, 0); // FIXME: figure out read size based on the address family. // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(inet_pton)(af, src, dst); if (res == 1) { uptr sz = __sanitizer_in_addr_sz(af); if (sz) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, dst, sz); } return res; } #define INIT_INET \ COMMON_INTERCEPT_FUNCTION(inet_ntop); \ COMMON_INTERCEPT_FUNCTION(inet_pton); #else #define INIT_INET #endif #if SANITIZER_INTERCEPT_INET INTERCEPTOR(int, inet_aton, const char *cp, void *dst) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, inet_aton, cp, dst); if (cp) COMMON_INTERCEPTOR_READ_RANGE(ctx, cp, REAL(strlen)(cp) + 1); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(inet_aton)(cp, dst); if (res != 0) { uptr sz = __sanitizer_in_addr_sz(af_inet); if (sz) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, dst, sz); } return res; } #define INIT_INET_ATON COMMON_INTERCEPT_FUNCTION(inet_aton); #else #define INIT_INET_ATON #endif #if SANITIZER_INTERCEPT_PTHREAD_GETSCHEDPARAM INTERCEPTOR(int, pthread_getschedparam, uptr thread, int *policy, int *param) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, pthread_getschedparam, thread, policy, param); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(pthread_getschedparam)(thread, policy, param); if (res == 0) { if (policy) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, policy, sizeof(*policy)); if (param) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, param, sizeof(*param)); } return res; } #define INIT_PTHREAD_GETSCHEDPARAM \ COMMON_INTERCEPT_FUNCTION(pthread_getschedparam); #else #define INIT_PTHREAD_GETSCHEDPARAM #endif #if SANITIZER_INTERCEPT_GETADDRINFO INTERCEPTOR(int, getaddrinfo, char *node, char *service, struct __sanitizer_addrinfo *hints, struct __sanitizer_addrinfo **out) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getaddrinfo, node, service, hints, out); if (node) COMMON_INTERCEPTOR_READ_RANGE(ctx, node, REAL(strlen)(node) + 1); if (service) COMMON_INTERCEPTOR_READ_RANGE(ctx, service, REAL(strlen)(service) + 1); if (hints) COMMON_INTERCEPTOR_READ_RANGE(ctx, hints, sizeof(__sanitizer_addrinfo)); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(getaddrinfo)(node, service, hints, out); if (res == 0 && out) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, out, sizeof(*out)); struct __sanitizer_addrinfo *p = *out; while (p) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, p, sizeof(*p)); if (p->ai_addr) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, p->ai_addr, p->ai_addrlen); if (p->ai_canonname) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, p->ai_canonname, REAL(strlen)(p->ai_canonname) + 1); p = p->ai_next; } } return res; } #define INIT_GETADDRINFO COMMON_INTERCEPT_FUNCTION(getaddrinfo); #else #define INIT_GETADDRINFO #endif #if SANITIZER_INTERCEPT_GETNAMEINFO INTERCEPTOR(int, getnameinfo, void *sockaddr, unsigned salen, char *host, unsigned hostlen, char *serv, unsigned servlen, int flags) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getnameinfo, sockaddr, salen, host, hostlen, serv, servlen, flags); // FIXME: consider adding READ_RANGE(sockaddr, salen) // There is padding in in_addr that may make this too noisy // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(getnameinfo)(sockaddr, salen, host, hostlen, serv, servlen, flags); if (res == 0) { if (host && hostlen) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, host, REAL(strlen)(host) + 1); if (serv && servlen) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, serv, REAL(strlen)(serv) + 1); } return res; } #define INIT_GETNAMEINFO COMMON_INTERCEPT_FUNCTION(getnameinfo); #else #define INIT_GETNAMEINFO #endif #if SANITIZER_INTERCEPT_GETSOCKNAME INTERCEPTOR(int, getsockname, int sock_fd, void *addr, int *addrlen) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getsockname, sock_fd, addr, addrlen); COMMON_INTERCEPTOR_READ_RANGE(ctx, addrlen, sizeof(*addrlen)); int addrlen_in = *addrlen; // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(getsockname)(sock_fd, addr, addrlen); if (res == 0) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, addr, Min(addrlen_in, *addrlen)); } return res; } #define INIT_GETSOCKNAME COMMON_INTERCEPT_FUNCTION(getsockname); #else #define INIT_GETSOCKNAME #endif #if SANITIZER_INTERCEPT_GETHOSTBYNAME || SANITIZER_INTERCEPT_GETHOSTBYNAME_R static void write_hostent(void *ctx, struct __sanitizer_hostent *h) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, h, sizeof(__sanitizer_hostent)); if (h->h_name) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, h->h_name, REAL(strlen)(h->h_name) + 1); char **p = h->h_aliases; while (*p) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, *p, REAL(strlen)(*p) + 1); ++p; } COMMON_INTERCEPTOR_WRITE_RANGE( ctx, h->h_aliases, (p - h->h_aliases + 1) * sizeof(*h->h_aliases)); p = h->h_addr_list; while (*p) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, *p, h->h_length); ++p; } COMMON_INTERCEPTOR_WRITE_RANGE( ctx, h->h_addr_list, (p - h->h_addr_list + 1) * sizeof(*h->h_addr_list)); } #endif #if SANITIZER_INTERCEPT_GETHOSTBYNAME INTERCEPTOR(struct __sanitizer_hostent *, gethostbyname, char *name) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, gethostbyname, name); struct __sanitizer_hostent *res = REAL(gethostbyname)(name); if (res) write_hostent(ctx, res); return res; } INTERCEPTOR(struct __sanitizer_hostent *, gethostbyaddr, void *addr, int len, int type) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, gethostbyaddr, addr, len, type); COMMON_INTERCEPTOR_READ_RANGE(ctx, addr, len); struct __sanitizer_hostent *res = REAL(gethostbyaddr)(addr, len, type); if (res) write_hostent(ctx, res); return res; } INTERCEPTOR(struct __sanitizer_hostent *, gethostent, int fake) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, gethostent, fake); struct __sanitizer_hostent *res = REAL(gethostent)(fake); if (res) write_hostent(ctx, res); return res; } INTERCEPTOR(struct __sanitizer_hostent *, gethostbyname2, char *name, int af) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, gethostbyname2, name, af); struct __sanitizer_hostent *res = REAL(gethostbyname2)(name, af); if (res) write_hostent(ctx, res); return res; } #define INIT_GETHOSTBYNAME \ COMMON_INTERCEPT_FUNCTION(gethostent); \ COMMON_INTERCEPT_FUNCTION(gethostbyaddr); \ COMMON_INTERCEPT_FUNCTION(gethostbyname); \ COMMON_INTERCEPT_FUNCTION(gethostbyname2); #else #define INIT_GETHOSTBYNAME #endif #if SANITIZER_INTERCEPT_GETHOSTBYNAME_R INTERCEPTOR(int, gethostbyname_r, char *name, struct __sanitizer_hostent *ret, char *buf, SIZE_T buflen, __sanitizer_hostent **result, int *h_errnop) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, gethostbyname_r, name, ret, buf, buflen, result, h_errnop); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(gethostbyname_r)(name, ret, buf, buflen, result, h_errnop); if (result) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, result, sizeof(*result)); if (res == 0 && *result) write_hostent(ctx, *result); } if (h_errnop) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, h_errnop, sizeof(*h_errnop)); return res; } #define INIT_GETHOSTBYNAME_R COMMON_INTERCEPT_FUNCTION(gethostbyname_r); #else #define INIT_GETHOSTBYNAME_R #endif #if SANITIZER_INTERCEPT_GETHOSTENT_R INTERCEPTOR(int, gethostent_r, struct __sanitizer_hostent *ret, char *buf, SIZE_T buflen, __sanitizer_hostent **result, int *h_errnop) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, gethostent_r, ret, buf, buflen, result, h_errnop); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(gethostent_r)(ret, buf, buflen, result, h_errnop); if (result) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, result, sizeof(*result)); if (res == 0 && *result) write_hostent(ctx, *result); } if (h_errnop) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, h_errnop, sizeof(*h_errnop)); return res; } #define INIT_GETHOSTENT_R \ COMMON_INTERCEPT_FUNCTION(gethostent_r); #else #define INIT_GETHOSTENT_R #endif #if SANITIZER_INTERCEPT_GETHOSTBYADDR_R INTERCEPTOR(int, gethostbyaddr_r, void *addr, int len, int type, struct __sanitizer_hostent *ret, char *buf, SIZE_T buflen, __sanitizer_hostent **result, int *h_errnop) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, gethostbyaddr_r, addr, len, type, ret, buf, buflen, result, h_errnop); COMMON_INTERCEPTOR_READ_RANGE(ctx, addr, len); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(gethostbyaddr_r)(addr, len, type, ret, buf, buflen, result, h_errnop); if (result) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, result, sizeof(*result)); if (res == 0 && *result) write_hostent(ctx, *result); } if (h_errnop) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, h_errnop, sizeof(*h_errnop)); return res; } #define INIT_GETHOSTBYADDR_R \ COMMON_INTERCEPT_FUNCTION(gethostbyaddr_r); #else #define INIT_GETHOSTBYADDR_R #endif #if SANITIZER_INTERCEPT_GETHOSTBYNAME2_R INTERCEPTOR(int, gethostbyname2_r, char *name, int af, struct __sanitizer_hostent *ret, char *buf, SIZE_T buflen, __sanitizer_hostent **result, int *h_errnop) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, gethostbyname2_r, name, af, ret, buf, buflen, result, h_errnop); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(gethostbyname2_r)(name, af, ret, buf, buflen, result, h_errnop); if (result) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, result, sizeof(*result)); if (res == 0 && *result) write_hostent(ctx, *result); } if (h_errnop) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, h_errnop, sizeof(*h_errnop)); return res; } #define INIT_GETHOSTBYNAME2_R \ COMMON_INTERCEPT_FUNCTION(gethostbyname2_r); #else #define INIT_GETHOSTBYNAME2_R #endif #if SANITIZER_INTERCEPT_GETSOCKOPT INTERCEPTOR(int, getsockopt, int sockfd, int level, int optname, void *optval, int *optlen) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getsockopt, sockfd, level, optname, optval, optlen); if (optlen) COMMON_INTERCEPTOR_READ_RANGE(ctx, optlen, sizeof(*optlen)); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(getsockopt)(sockfd, level, optname, optval, optlen); if (res == 0) if (optval && optlen) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, optval, *optlen); return res; } #define INIT_GETSOCKOPT COMMON_INTERCEPT_FUNCTION(getsockopt); #else #define INIT_GETSOCKOPT #endif #if SANITIZER_INTERCEPT_ACCEPT INTERCEPTOR(int, accept, int fd, void *addr, unsigned *addrlen) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, accept, fd, addr, addrlen); unsigned addrlen0 = 0; if (addrlen) { COMMON_INTERCEPTOR_READ_RANGE(ctx, addrlen, sizeof(*addrlen)); addrlen0 = *addrlen; } int fd2 = REAL(accept)(fd, addr, addrlen); if (fd2 >= 0) { if (fd >= 0) COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, fd2); if (addr && addrlen) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, addr, Min(*addrlen, addrlen0)); } return fd2; } #define INIT_ACCEPT COMMON_INTERCEPT_FUNCTION(accept); #else #define INIT_ACCEPT #endif #if SANITIZER_INTERCEPT_ACCEPT4 INTERCEPTOR(int, accept4, int fd, void *addr, unsigned *addrlen, int f) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, accept4, fd, addr, addrlen, f); unsigned addrlen0 = 0; if (addrlen) { COMMON_INTERCEPTOR_READ_RANGE(ctx, addrlen, sizeof(*addrlen)); addrlen0 = *addrlen; } // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int fd2 = REAL(accept4)(fd, addr, addrlen, f); if (fd2 >= 0) { if (fd >= 0) COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, fd2); if (addr && addrlen) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, addr, Min(*addrlen, addrlen0)); } return fd2; } #define INIT_ACCEPT4 COMMON_INTERCEPT_FUNCTION(accept4); #else #define INIT_ACCEPT4 #endif #if SANITIZER_INTERCEPT_MODF INTERCEPTOR(double, modf, double x, double *iptr) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, modf, x, iptr); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. double res = REAL(modf)(x, iptr); if (iptr) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, iptr, sizeof(*iptr)); } return res; } INTERCEPTOR(float, modff, float x, float *iptr) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, modff, x, iptr); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. float res = REAL(modff)(x, iptr); if (iptr) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, iptr, sizeof(*iptr)); } return res; } INTERCEPTOR(long double, modfl, long double x, long double *iptr) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, modfl, x, iptr); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. long double res = REAL(modfl)(x, iptr); if (iptr) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, iptr, sizeof(*iptr)); } return res; } #define INIT_MODF \ COMMON_INTERCEPT_FUNCTION(modf); \ COMMON_INTERCEPT_FUNCTION(modff); \ COMMON_INTERCEPT_FUNCTION_LDBL(modfl); #else #define INIT_MODF #endif #if SANITIZER_INTERCEPT_RECVMSG static void write_msghdr(void *ctx, struct __sanitizer_msghdr *msg, SSIZE_T maxlen) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, msg, sizeof(*msg)); if (msg->msg_name && msg->msg_namelen) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, msg->msg_name, msg->msg_namelen); if (msg->msg_iov && msg->msg_iovlen) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, msg->msg_iov, sizeof(*msg->msg_iov) * msg->msg_iovlen); write_iovec(ctx, msg->msg_iov, msg->msg_iovlen, maxlen); if (msg->msg_control && msg->msg_controllen) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, msg->msg_control, msg->msg_controllen); } INTERCEPTOR(SSIZE_T, recvmsg, int fd, struct __sanitizer_msghdr *msg, int flags) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, recvmsg, fd, msg, flags); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. SSIZE_T res = REAL(recvmsg)(fd, msg, flags); if (res >= 0) { if (fd >= 0) COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd); if (msg) { write_msghdr(ctx, msg, res); COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg); } } return res; } #define INIT_RECVMSG COMMON_INTERCEPT_FUNCTION(recvmsg); #else #define INIT_RECVMSG #endif #if SANITIZER_INTERCEPT_SENDMSG static void read_msghdr_control(void *ctx, void *control, uptr controllen) { const unsigned kCmsgDataOffset = RoundUpTo(sizeof(__sanitizer_cmsghdr), sizeof(uptr)); char *p = (char *)control; char *const control_end = p + controllen; while (true) { if (p + sizeof(__sanitizer_cmsghdr) > control_end) break; __sanitizer_cmsghdr *cmsg = (__sanitizer_cmsghdr *)p; COMMON_INTERCEPTOR_READ_RANGE(ctx, &cmsg->cmsg_len, sizeof(cmsg->cmsg_len)); if (p + RoundUpTo(cmsg->cmsg_len, sizeof(uptr)) > control_end) break; COMMON_INTERCEPTOR_READ_RANGE(ctx, &cmsg->cmsg_level, sizeof(cmsg->cmsg_level)); COMMON_INTERCEPTOR_READ_RANGE(ctx, &cmsg->cmsg_type, sizeof(cmsg->cmsg_type)); if (cmsg->cmsg_len > kCmsgDataOffset) { char *data = p + kCmsgDataOffset; unsigned data_len = cmsg->cmsg_len - kCmsgDataOffset; if (data_len > 0) COMMON_INTERCEPTOR_READ_RANGE(ctx, data, data_len); } p += RoundUpTo(cmsg->cmsg_len, sizeof(uptr)); } } static void read_msghdr(void *ctx, struct __sanitizer_msghdr *msg, SSIZE_T maxlen) { #define R(f) \ COMMON_INTERCEPTOR_READ_RANGE(ctx, &msg->msg_##f, sizeof(msg->msg_##f)) R(name); R(namelen); R(iov); R(iovlen); R(control); R(controllen); R(flags); #undef R if (msg->msg_name && msg->msg_namelen) COMMON_INTERCEPTOR_READ_RANGE(ctx, msg->msg_name, msg->msg_namelen); if (msg->msg_iov && msg->msg_iovlen) COMMON_INTERCEPTOR_READ_RANGE(ctx, msg->msg_iov, sizeof(*msg->msg_iov) * msg->msg_iovlen); read_iovec(ctx, msg->msg_iov, msg->msg_iovlen, maxlen); if (msg->msg_control && msg->msg_controllen) read_msghdr_control(ctx, msg->msg_control, msg->msg_controllen); } INTERCEPTOR(SSIZE_T, sendmsg, int fd, struct __sanitizer_msghdr *msg, int flags) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, sendmsg, fd, msg, flags); if (fd >= 0) { COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd); COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd); } SSIZE_T res = REAL(sendmsg)(fd, msg, flags); if (common_flags()->intercept_send && res >= 0 && msg) read_msghdr(ctx, msg, res); return res; } #define INIT_SENDMSG COMMON_INTERCEPT_FUNCTION(sendmsg); #else #define INIT_SENDMSG #endif #if SANITIZER_INTERCEPT_GETPEERNAME INTERCEPTOR(int, getpeername, int sockfd, void *addr, unsigned *addrlen) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getpeername, sockfd, addr, addrlen); unsigned addr_sz; if (addrlen) addr_sz = *addrlen; // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(getpeername)(sockfd, addr, addrlen); if (!res && addr && addrlen) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, addr, Min(addr_sz, *addrlen)); return res; } #define INIT_GETPEERNAME COMMON_INTERCEPT_FUNCTION(getpeername); #else #define INIT_GETPEERNAME #endif #if SANITIZER_INTERCEPT_SYSINFO INTERCEPTOR(int, sysinfo, void *info) { void *ctx; // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. COMMON_INTERCEPTOR_ENTER(ctx, sysinfo, info); int res = REAL(sysinfo)(info); if (!res && info) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, info, struct_sysinfo_sz); return res; } #define INIT_SYSINFO COMMON_INTERCEPT_FUNCTION(sysinfo); #else #define INIT_SYSINFO #endif #if SANITIZER_INTERCEPT_READDIR INTERCEPTOR(__sanitizer_dirent *, opendir, const char *path) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, opendir, path); COMMON_INTERCEPTOR_READ_RANGE(ctx, path, REAL(strlen)(path) + 1); __sanitizer_dirent *res = REAL(opendir)(path); if (res) COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path); return res; } INTERCEPTOR(__sanitizer_dirent *, readdir, void *dirp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, readdir, dirp); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. __sanitizer_dirent *res = REAL(readdir)(dirp); if (res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, res, res->d_reclen); return res; } INTERCEPTOR(int, readdir_r, void *dirp, __sanitizer_dirent *entry, __sanitizer_dirent **result) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, readdir_r, dirp, entry, result); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(readdir_r)(dirp, entry, result); if (!res) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, result, sizeof(*result)); if (*result) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, *result, (*result)->d_reclen); } return res; } #define INIT_READDIR \ COMMON_INTERCEPT_FUNCTION(opendir); \ COMMON_INTERCEPT_FUNCTION(readdir); \ COMMON_INTERCEPT_FUNCTION(readdir_r); #else #define INIT_READDIR #endif #if SANITIZER_INTERCEPT_READDIR64 INTERCEPTOR(__sanitizer_dirent64 *, readdir64, void *dirp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, readdir64, dirp); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. __sanitizer_dirent64 *res = REAL(readdir64)(dirp); if (res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, res, res->d_reclen); return res; } INTERCEPTOR(int, readdir64_r, void *dirp, __sanitizer_dirent64 *entry, __sanitizer_dirent64 **result) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, readdir64_r, dirp, entry, result); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(readdir64_r)(dirp, entry, result); if (!res) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, result, sizeof(*result)); if (*result) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, *result, (*result)->d_reclen); } return res; } #define INIT_READDIR64 \ COMMON_INTERCEPT_FUNCTION(readdir64); \ COMMON_INTERCEPT_FUNCTION(readdir64_r); #else #define INIT_READDIR64 #endif #if SANITIZER_INTERCEPT_PTRACE INTERCEPTOR(uptr, ptrace, int request, int pid, void *addr, void *data) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, ptrace, request, pid, addr, data); __sanitizer_iovec local_iovec; if (data) { if (request == ptrace_setregs) COMMON_INTERCEPTOR_READ_RANGE(ctx, data, struct_user_regs_struct_sz); else if (request == ptrace_setfpregs) COMMON_INTERCEPTOR_READ_RANGE(ctx, data, struct_user_fpregs_struct_sz); else if (request == ptrace_setfpxregs) COMMON_INTERCEPTOR_READ_RANGE(ctx, data, struct_user_fpxregs_struct_sz); else if (request == ptrace_setvfpregs) COMMON_INTERCEPTOR_READ_RANGE(ctx, data, struct_user_vfpregs_struct_sz); else if (request == ptrace_setsiginfo) COMMON_INTERCEPTOR_READ_RANGE(ctx, data, siginfo_t_sz); // Some kernel might zero the iovec::iov_base in case of invalid // write access. In this case copy the invalid address for further // inspection. else if (request == ptrace_setregset || request == ptrace_getregset) { __sanitizer_iovec *iovec = (__sanitizer_iovec*)data; COMMON_INTERCEPTOR_READ_RANGE(ctx, iovec, sizeof(*iovec)); local_iovec = *iovec; if (request == ptrace_setregset) COMMON_INTERCEPTOR_READ_RANGE(ctx, iovec->iov_base, iovec->iov_len); } } // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. uptr res = REAL(ptrace)(request, pid, addr, data); if (!res && data) { // Note that PEEK* requests assign different meaning to the return value. // This function does not handle them (nor does it need to). if (request == ptrace_getregs) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, data, struct_user_regs_struct_sz); else if (request == ptrace_getfpregs) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, data, struct_user_fpregs_struct_sz); else if (request == ptrace_getfpxregs) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, data, struct_user_fpxregs_struct_sz); else if (request == ptrace_getvfpregs) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, data, struct_user_vfpregs_struct_sz); else if (request == ptrace_getsiginfo) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, data, siginfo_t_sz); else if (request == ptrace_geteventmsg) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, data, sizeof(unsigned long)); else if (request == ptrace_getregset) { __sanitizer_iovec *iovec = (__sanitizer_iovec*)data; COMMON_INTERCEPTOR_WRITE_RANGE(ctx, iovec, sizeof(*iovec)); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, local_iovec.iov_base, local_iovec.iov_len); } } return res; } #define INIT_PTRACE COMMON_INTERCEPT_FUNCTION(ptrace); #else #define INIT_PTRACE #endif #if SANITIZER_INTERCEPT_SETLOCALE INTERCEPTOR(char *, setlocale, int category, char *locale) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, setlocale, category, locale); if (locale) COMMON_INTERCEPTOR_READ_RANGE(ctx, locale, REAL(strlen)(locale) + 1); char *res = REAL(setlocale)(category, locale); if (res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, res, REAL(strlen)(res) + 1); return res; } #define INIT_SETLOCALE COMMON_INTERCEPT_FUNCTION(setlocale); #else #define INIT_SETLOCALE #endif #if SANITIZER_INTERCEPT_GETCWD INTERCEPTOR(char *, getcwd, char *buf, SIZE_T size) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getcwd, buf, size); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. char *res = REAL(getcwd)(buf, size); if (res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, res, REAL(strlen)(res) + 1); return res; } #define INIT_GETCWD COMMON_INTERCEPT_FUNCTION(getcwd); #else #define INIT_GETCWD #endif #if SANITIZER_INTERCEPT_GET_CURRENT_DIR_NAME INTERCEPTOR(char *, get_current_dir_name, int fake) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, get_current_dir_name, fake); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. char *res = REAL(get_current_dir_name)(fake); if (res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, res, REAL(strlen)(res) + 1); return res; } #define INIT_GET_CURRENT_DIR_NAME \ COMMON_INTERCEPT_FUNCTION(get_current_dir_name); #else #define INIT_GET_CURRENT_DIR_NAME #endif UNUSED static inline void FixRealStrtolEndptr(const char *nptr, char **endptr) { CHECK(endptr); if (nptr == *endptr) { // No digits were found at strtol call, we need to find out the last // symbol accessed by strtoll on our own. // We get this symbol by skipping leading blanks and optional +/- sign. while (IsSpace(*nptr)) nptr++; if (*nptr == '+' || *nptr == '-') nptr++; *endptr = const_cast(nptr); } CHECK(*endptr >= nptr); } UNUSED static inline void StrtolFixAndCheck(void *ctx, const char *nptr, char **endptr, char *real_endptr, int base) { if (endptr) { *endptr = real_endptr; COMMON_INTERCEPTOR_WRITE_RANGE(ctx, endptr, sizeof(*endptr)); } // If base has unsupported value, strtol can exit with EINVAL // without reading any characters. So do additional checks only // if base is valid. bool is_valid_base = (base == 0) || (2 <= base && base <= 36); if (is_valid_base) { FixRealStrtolEndptr(nptr, &real_endptr); } COMMON_INTERCEPTOR_READ_STRING(ctx, nptr, is_valid_base ? (real_endptr - nptr) + 1 : 0); } #if SANITIZER_INTERCEPT_STRTOIMAX INTERCEPTOR(INTMAX_T, strtoimax, const char *nptr, char **endptr, int base) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, strtoimax, nptr, endptr, base); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. char *real_endptr; INTMAX_T res = REAL(strtoimax)(nptr, &real_endptr, base); StrtolFixAndCheck(ctx, nptr, endptr, real_endptr, base); return res; } INTERCEPTOR(INTMAX_T, strtoumax, const char *nptr, char **endptr, int base) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, strtoumax, nptr, endptr, base); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. char *real_endptr; INTMAX_T res = REAL(strtoumax)(nptr, &real_endptr, base); StrtolFixAndCheck(ctx, nptr, endptr, real_endptr, base); return res; } #define INIT_STRTOIMAX \ COMMON_INTERCEPT_FUNCTION(strtoimax); \ COMMON_INTERCEPT_FUNCTION(strtoumax); #else #define INIT_STRTOIMAX #endif #if SANITIZER_INTERCEPT_MBSTOWCS INTERCEPTOR(SIZE_T, mbstowcs, wchar_t *dest, const char *src, SIZE_T len) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, mbstowcs, dest, src, len); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. SIZE_T res = REAL(mbstowcs)(dest, src, len); if (res != (SIZE_T) - 1 && dest) { SIZE_T write_cnt = res + (res < len); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, dest, write_cnt * sizeof(wchar_t)); } return res; } INTERCEPTOR(SIZE_T, mbsrtowcs, wchar_t *dest, const char **src, SIZE_T len, void *ps) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, mbsrtowcs, dest, src, len, ps); if (src) COMMON_INTERCEPTOR_READ_RANGE(ctx, src, sizeof(*src)); if (ps) COMMON_INTERCEPTOR_READ_RANGE(ctx, ps, mbstate_t_sz); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. SIZE_T res = REAL(mbsrtowcs)(dest, src, len, ps); if (res != (SIZE_T)(-1) && dest && src) { // This function, and several others, may or may not write the terminating // \0 character. They write it iff they clear *src. SIZE_T write_cnt = res + !*src; COMMON_INTERCEPTOR_WRITE_RANGE(ctx, dest, write_cnt * sizeof(wchar_t)); } return res; } #define INIT_MBSTOWCS \ COMMON_INTERCEPT_FUNCTION(mbstowcs); \ COMMON_INTERCEPT_FUNCTION(mbsrtowcs); #else #define INIT_MBSTOWCS #endif #if SANITIZER_INTERCEPT_MBSNRTOWCS INTERCEPTOR(SIZE_T, mbsnrtowcs, wchar_t *dest, const char **src, SIZE_T nms, SIZE_T len, void *ps) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, mbsnrtowcs, dest, src, nms, len, ps); if (src) { COMMON_INTERCEPTOR_READ_RANGE(ctx, src, sizeof(*src)); if (nms) COMMON_INTERCEPTOR_READ_RANGE(ctx, *src, nms); } if (ps) COMMON_INTERCEPTOR_READ_RANGE(ctx, ps, mbstate_t_sz); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. SIZE_T res = REAL(mbsnrtowcs)(dest, src, nms, len, ps); if (res != (SIZE_T)(-1) && dest && src) { SIZE_T write_cnt = res + !*src; COMMON_INTERCEPTOR_WRITE_RANGE(ctx, dest, write_cnt * sizeof(wchar_t)); } return res; } #define INIT_MBSNRTOWCS COMMON_INTERCEPT_FUNCTION(mbsnrtowcs); #else #define INIT_MBSNRTOWCS #endif #if SANITIZER_INTERCEPT_WCSTOMBS INTERCEPTOR(SIZE_T, wcstombs, char *dest, const wchar_t *src, SIZE_T len) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, wcstombs, dest, src, len); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. SIZE_T res = REAL(wcstombs)(dest, src, len); if (res != (SIZE_T) - 1 && dest) { SIZE_T write_cnt = res + (res < len); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, dest, write_cnt); } return res; } INTERCEPTOR(SIZE_T, wcsrtombs, char *dest, const wchar_t **src, SIZE_T len, void *ps) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, wcsrtombs, dest, src, len, ps); if (src) COMMON_INTERCEPTOR_READ_RANGE(ctx, src, sizeof(*src)); if (ps) COMMON_INTERCEPTOR_READ_RANGE(ctx, ps, mbstate_t_sz); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. SIZE_T res = REAL(wcsrtombs)(dest, src, len, ps); if (res != (SIZE_T) - 1 && dest && src) { SIZE_T write_cnt = res + !*src; COMMON_INTERCEPTOR_WRITE_RANGE(ctx, dest, write_cnt); } return res; } #define INIT_WCSTOMBS \ COMMON_INTERCEPT_FUNCTION(wcstombs); \ COMMON_INTERCEPT_FUNCTION(wcsrtombs); #else #define INIT_WCSTOMBS #endif #if SANITIZER_INTERCEPT_WCSNRTOMBS INTERCEPTOR(SIZE_T, wcsnrtombs, char *dest, const wchar_t **src, SIZE_T nms, SIZE_T len, void *ps) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, wcsnrtombs, dest, src, nms, len, ps); if (src) { COMMON_INTERCEPTOR_READ_RANGE(ctx, src, sizeof(*src)); if (nms) COMMON_INTERCEPTOR_READ_RANGE(ctx, *src, nms); } if (ps) COMMON_INTERCEPTOR_READ_RANGE(ctx, ps, mbstate_t_sz); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. SIZE_T res = REAL(wcsnrtombs)(dest, src, nms, len, ps); if (res != ((SIZE_T)-1) && dest && src) { SIZE_T write_cnt = res + !*src; COMMON_INTERCEPTOR_WRITE_RANGE(ctx, dest, write_cnt); } return res; } #define INIT_WCSNRTOMBS COMMON_INTERCEPT_FUNCTION(wcsnrtombs); #else #define INIT_WCSNRTOMBS #endif #if SANITIZER_INTERCEPT_WCRTOMB INTERCEPTOR(SIZE_T, wcrtomb, char *dest, wchar_t src, void *ps) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, wcrtomb, dest, src, ps); if (ps) COMMON_INTERCEPTOR_READ_RANGE(ctx, ps, mbstate_t_sz); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. SIZE_T res = REAL(wcrtomb)(dest, src, ps); if (res != ((SIZE_T)-1) && dest) { SIZE_T write_cnt = res; COMMON_INTERCEPTOR_WRITE_RANGE(ctx, dest, write_cnt); } return res; } #define INIT_WCRTOMB COMMON_INTERCEPT_FUNCTION(wcrtomb); #else #define INIT_WCRTOMB #endif #if SANITIZER_INTERCEPT_TCGETATTR INTERCEPTOR(int, tcgetattr, int fd, void *termios_p) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, tcgetattr, fd, termios_p); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(tcgetattr)(fd, termios_p); if (!res && termios_p) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, termios_p, struct_termios_sz); return res; } #define INIT_TCGETATTR COMMON_INTERCEPT_FUNCTION(tcgetattr); #else #define INIT_TCGETATTR #endif #if SANITIZER_INTERCEPT_REALPATH INTERCEPTOR(char *, realpath, const char *path, char *resolved_path) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, realpath, path, resolved_path); if (path) COMMON_INTERCEPTOR_READ_RANGE(ctx, path, REAL(strlen)(path) + 1); // Workaround a bug in glibc where dlsym(RTLD_NEXT, ...) returns the oldest // version of a versioned symbol. For realpath(), this gives us something // (called __old_realpath) that does not handle NULL in the second argument. // Handle it as part of the interceptor. char *allocated_path = nullptr; if (!resolved_path) allocated_path = resolved_path = (char *)WRAP(malloc)(path_max + 1); char *res = REAL(realpath)(path, resolved_path); if (allocated_path && !res) WRAP(free)(allocated_path); if (res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, res, REAL(strlen)(res) + 1); return res; } #define INIT_REALPATH COMMON_INTERCEPT_FUNCTION(realpath); #else #define INIT_REALPATH #endif #if SANITIZER_INTERCEPT_CANONICALIZE_FILE_NAME INTERCEPTOR(char *, canonicalize_file_name, const char *path) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, canonicalize_file_name, path); if (path) COMMON_INTERCEPTOR_READ_RANGE(ctx, path, REAL(strlen)(path) + 1); char *res = REAL(canonicalize_file_name)(path); if (res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, res, REAL(strlen)(res) + 1); return res; } #define INIT_CANONICALIZE_FILE_NAME \ COMMON_INTERCEPT_FUNCTION(canonicalize_file_name); #else #define INIT_CANONICALIZE_FILE_NAME #endif #if SANITIZER_INTERCEPT_CONFSTR INTERCEPTOR(SIZE_T, confstr, int name, char *buf, SIZE_T len) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, confstr, name, buf, len); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. SIZE_T res = REAL(confstr)(name, buf, len); if (buf && res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, res < len ? res : len); return res; } #define INIT_CONFSTR COMMON_INTERCEPT_FUNCTION(confstr); #else #define INIT_CONFSTR #endif #if SANITIZER_INTERCEPT_SCHED_GETAFFINITY INTERCEPTOR(int, sched_getaffinity, int pid, SIZE_T cpusetsize, void *mask) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, sched_getaffinity, pid, cpusetsize, mask); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(sched_getaffinity)(pid, cpusetsize, mask); if (mask && !res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, mask, cpusetsize); return res; } #define INIT_SCHED_GETAFFINITY COMMON_INTERCEPT_FUNCTION(sched_getaffinity); #else #define INIT_SCHED_GETAFFINITY #endif #if SANITIZER_INTERCEPT_SCHED_GETPARAM INTERCEPTOR(int, sched_getparam, int pid, void *param) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, sched_getparam, pid, param); int res = REAL(sched_getparam)(pid, param); if (!res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, param, struct_sched_param_sz); return res; } #define INIT_SCHED_GETPARAM COMMON_INTERCEPT_FUNCTION(sched_getparam); #else #define INIT_SCHED_GETPARAM #endif #if SANITIZER_INTERCEPT_STRERROR INTERCEPTOR(char *, strerror, int errnum) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, strerror, errnum); char *res = REAL(strerror)(errnum); if (res) COMMON_INTERCEPTOR_INITIALIZE_RANGE(res, REAL(strlen)(res) + 1); return res; } #define INIT_STRERROR COMMON_INTERCEPT_FUNCTION(strerror); #else #define INIT_STRERROR #endif #if SANITIZER_INTERCEPT_STRERROR_R // There are 2 versions of strerror_r: // * POSIX version returns 0 on success, negative error code on failure, // writes message to buf. // * GNU version returns message pointer, which points to either buf or some // static storage. #if ((_POSIX_C_SOURCE >= 200112L || _XOPEN_SOURCE >= 600) && !_GNU_SOURCE) || \ SANITIZER_MAC || SANITIZER_ANDROID // POSIX version. Spec is not clear on whether buf is NULL-terminated. // At least on OSX, buf contents are valid even when the call fails. INTERCEPTOR(int, strerror_r, int errnum, char *buf, SIZE_T buflen) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, strerror_r, errnum, buf, buflen); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(strerror_r)(errnum, buf, buflen); SIZE_T sz = internal_strnlen(buf, buflen); if (sz < buflen) ++sz; COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, sz); return res; } #else // GNU version. INTERCEPTOR(char *, strerror_r, int errnum, char *buf, SIZE_T buflen) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, strerror_r, errnum, buf, buflen); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. char *res = REAL(strerror_r)(errnum, buf, buflen); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, res, REAL(strlen)(res) + 1); return res; } #endif //(_POSIX_C_SOURCE >= 200112L || _XOPEN_SOURCE >= 600) && !_GNU_SOURCE || //SANITIZER_MAC #define INIT_STRERROR_R COMMON_INTERCEPT_FUNCTION(strerror_r); #else #define INIT_STRERROR_R #endif #if SANITIZER_INTERCEPT_XPG_STRERROR_R INTERCEPTOR(int, __xpg_strerror_r, int errnum, char *buf, SIZE_T buflen) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, __xpg_strerror_r, errnum, buf, buflen); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(__xpg_strerror_r)(errnum, buf, buflen); // This version always returns a null-terminated string. if (buf && buflen) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, REAL(strlen)(buf) + 1); return res; } #define INIT_XPG_STRERROR_R COMMON_INTERCEPT_FUNCTION(__xpg_strerror_r); #else #define INIT_XPG_STRERROR_R #endif #if SANITIZER_INTERCEPT_SCANDIR typedef int (*scandir_filter_f)(const struct __sanitizer_dirent *); typedef int (*scandir_compar_f)(const struct __sanitizer_dirent **, const struct __sanitizer_dirent **); static THREADLOCAL scandir_filter_f scandir_filter; static THREADLOCAL scandir_compar_f scandir_compar; static int wrapped_scandir_filter(const struct __sanitizer_dirent *dir) { COMMON_INTERCEPTOR_UNPOISON_PARAM(1); COMMON_INTERCEPTOR_INITIALIZE_RANGE(dir, dir->d_reclen); return scandir_filter(dir); } static int wrapped_scandir_compar(const struct __sanitizer_dirent **a, const struct __sanitizer_dirent **b) { COMMON_INTERCEPTOR_UNPOISON_PARAM(2); COMMON_INTERCEPTOR_INITIALIZE_RANGE(a, sizeof(*a)); COMMON_INTERCEPTOR_INITIALIZE_RANGE(*a, (*a)->d_reclen); COMMON_INTERCEPTOR_INITIALIZE_RANGE(b, sizeof(*b)); COMMON_INTERCEPTOR_INITIALIZE_RANGE(*b, (*b)->d_reclen); return scandir_compar(a, b); } INTERCEPTOR(int, scandir, char *dirp, __sanitizer_dirent ***namelist, scandir_filter_f filter, scandir_compar_f compar) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, scandir, dirp, namelist, filter, compar); if (dirp) COMMON_INTERCEPTOR_READ_RANGE(ctx, dirp, REAL(strlen)(dirp) + 1); scandir_filter = filter; scandir_compar = compar; // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(scandir)(dirp, namelist, filter ? wrapped_scandir_filter : nullptr, compar ? wrapped_scandir_compar : nullptr); scandir_filter = nullptr; scandir_compar = nullptr; if (namelist && res > 0) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, namelist, sizeof(*namelist)); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, *namelist, sizeof(**namelist) * res); for (int i = 0; i < res; ++i) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, (*namelist)[i], (*namelist)[i]->d_reclen); } return res; } #define INIT_SCANDIR COMMON_INTERCEPT_FUNCTION(scandir); #else #define INIT_SCANDIR #endif #if SANITIZER_INTERCEPT_SCANDIR64 typedef int (*scandir64_filter_f)(const struct __sanitizer_dirent64 *); typedef int (*scandir64_compar_f)(const struct __sanitizer_dirent64 **, const struct __sanitizer_dirent64 **); static THREADLOCAL scandir64_filter_f scandir64_filter; static THREADLOCAL scandir64_compar_f scandir64_compar; static int wrapped_scandir64_filter(const struct __sanitizer_dirent64 *dir) { COMMON_INTERCEPTOR_UNPOISON_PARAM(1); COMMON_INTERCEPTOR_INITIALIZE_RANGE(dir, dir->d_reclen); return scandir64_filter(dir); } static int wrapped_scandir64_compar(const struct __sanitizer_dirent64 **a, const struct __sanitizer_dirent64 **b) { COMMON_INTERCEPTOR_UNPOISON_PARAM(2); COMMON_INTERCEPTOR_INITIALIZE_RANGE(a, sizeof(*a)); COMMON_INTERCEPTOR_INITIALIZE_RANGE(*a, (*a)->d_reclen); COMMON_INTERCEPTOR_INITIALIZE_RANGE(b, sizeof(*b)); COMMON_INTERCEPTOR_INITIALIZE_RANGE(*b, (*b)->d_reclen); return scandir64_compar(a, b); } INTERCEPTOR(int, scandir64, char *dirp, __sanitizer_dirent64 ***namelist, scandir64_filter_f filter, scandir64_compar_f compar) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, scandir64, dirp, namelist, filter, compar); if (dirp) COMMON_INTERCEPTOR_READ_RANGE(ctx, dirp, REAL(strlen)(dirp) + 1); scandir64_filter = filter; scandir64_compar = compar; // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(scandir64)(dirp, namelist, filter ? wrapped_scandir64_filter : nullptr, compar ? wrapped_scandir64_compar : nullptr); scandir64_filter = nullptr; scandir64_compar = nullptr; if (namelist && res > 0) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, namelist, sizeof(*namelist)); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, *namelist, sizeof(**namelist) * res); for (int i = 0; i < res; ++i) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, (*namelist)[i], (*namelist)[i]->d_reclen); } return res; } #define INIT_SCANDIR64 COMMON_INTERCEPT_FUNCTION(scandir64); #else #define INIT_SCANDIR64 #endif #if SANITIZER_INTERCEPT_GETGROUPS INTERCEPTOR(int, getgroups, int size, u32 *lst) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getgroups, size, lst); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(getgroups)(size, lst); if (res >= 0 && lst && size > 0) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, lst, res * sizeof(*lst)); return res; } #define INIT_GETGROUPS COMMON_INTERCEPT_FUNCTION(getgroups); #else #define INIT_GETGROUPS #endif #if SANITIZER_INTERCEPT_POLL static void read_pollfd(void *ctx, __sanitizer_pollfd *fds, __sanitizer_nfds_t nfds) { for (unsigned i = 0; i < nfds; ++i) { COMMON_INTERCEPTOR_READ_RANGE(ctx, &fds[i].fd, sizeof(fds[i].fd)); COMMON_INTERCEPTOR_READ_RANGE(ctx, &fds[i].events, sizeof(fds[i].events)); } } static void write_pollfd(void *ctx, __sanitizer_pollfd *fds, __sanitizer_nfds_t nfds) { for (unsigned i = 0; i < nfds; ++i) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, &fds[i].revents, sizeof(fds[i].revents)); } INTERCEPTOR(int, poll, __sanitizer_pollfd *fds, __sanitizer_nfds_t nfds, int timeout) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, poll, fds, nfds, timeout); if (fds && nfds) read_pollfd(ctx, fds, nfds); int res = COMMON_INTERCEPTOR_BLOCK_REAL(poll)(fds, nfds, timeout); if (fds && nfds) write_pollfd(ctx, fds, nfds); return res; } #define INIT_POLL COMMON_INTERCEPT_FUNCTION(poll); #else #define INIT_POLL #endif #if SANITIZER_INTERCEPT_PPOLL INTERCEPTOR(int, ppoll, __sanitizer_pollfd *fds, __sanitizer_nfds_t nfds, void *timeout_ts, __sanitizer_sigset_t *sigmask) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, ppoll, fds, nfds, timeout_ts, sigmask); if (fds && nfds) read_pollfd(ctx, fds, nfds); if (timeout_ts) COMMON_INTERCEPTOR_READ_RANGE(ctx, timeout_ts, struct_timespec_sz); // FIXME: read sigmask when all of sigemptyset, etc are intercepted. int res = COMMON_INTERCEPTOR_BLOCK_REAL(ppoll)(fds, nfds, timeout_ts, sigmask); if (fds && nfds) write_pollfd(ctx, fds, nfds); return res; } #define INIT_PPOLL COMMON_INTERCEPT_FUNCTION(ppoll); #else #define INIT_PPOLL #endif #if SANITIZER_INTERCEPT_WORDEXP INTERCEPTOR(int, wordexp, char *s, __sanitizer_wordexp_t *p, int flags) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, wordexp, s, p, flags); if (s) COMMON_INTERCEPTOR_READ_RANGE(ctx, s, REAL(strlen)(s) + 1); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(wordexp)(s, p, flags); if (!res && p) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, p, sizeof(*p)); if (p->we_wordc) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, p->we_wordv, sizeof(*p->we_wordv) * p->we_wordc); for (uptr i = 0; i < p->we_wordc; ++i) { char *w = p->we_wordv[i]; if (w) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, w, REAL(strlen)(w) + 1); } } return res; } #define INIT_WORDEXP COMMON_INTERCEPT_FUNCTION(wordexp); #else #define INIT_WORDEXP #endif #if SANITIZER_INTERCEPT_SIGWAIT INTERCEPTOR(int, sigwait, __sanitizer_sigset_t *set, int *sig) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, sigwait, set, sig); // FIXME: read sigset_t when all of sigemptyset, etc are intercepted // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(sigwait)(set, sig); if (!res && sig) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, sig, sizeof(*sig)); return res; } #define INIT_SIGWAIT COMMON_INTERCEPT_FUNCTION(sigwait); #else #define INIT_SIGWAIT #endif #if SANITIZER_INTERCEPT_SIGWAITINFO INTERCEPTOR(int, sigwaitinfo, __sanitizer_sigset_t *set, void *info) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, sigwaitinfo, set, info); // FIXME: read sigset_t when all of sigemptyset, etc are intercepted // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(sigwaitinfo)(set, info); if (res > 0 && info) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, info, siginfo_t_sz); return res; } #define INIT_SIGWAITINFO COMMON_INTERCEPT_FUNCTION(sigwaitinfo); #else #define INIT_SIGWAITINFO #endif #if SANITIZER_INTERCEPT_SIGTIMEDWAIT INTERCEPTOR(int, sigtimedwait, __sanitizer_sigset_t *set, void *info, void *timeout) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, sigtimedwait, set, info, timeout); if (timeout) COMMON_INTERCEPTOR_READ_RANGE(ctx, timeout, struct_timespec_sz); // FIXME: read sigset_t when all of sigemptyset, etc are intercepted // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(sigtimedwait)(set, info, timeout); if (res > 0 && info) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, info, siginfo_t_sz); return res; } #define INIT_SIGTIMEDWAIT COMMON_INTERCEPT_FUNCTION(sigtimedwait); #else #define INIT_SIGTIMEDWAIT #endif #if SANITIZER_INTERCEPT_SIGSETOPS INTERCEPTOR(int, sigemptyset, __sanitizer_sigset_t *set) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, sigemptyset, set); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(sigemptyset)(set); if (!res && set) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, set, sizeof(*set)); return res; } INTERCEPTOR(int, sigfillset, __sanitizer_sigset_t *set) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, sigfillset, set); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(sigfillset)(set); if (!res && set) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, set, sizeof(*set)); return res; } #define INIT_SIGSETOPS \ COMMON_INTERCEPT_FUNCTION(sigemptyset); \ COMMON_INTERCEPT_FUNCTION(sigfillset); #else #define INIT_SIGSETOPS #endif #if SANITIZER_INTERCEPT_SIGPENDING INTERCEPTOR(int, sigpending, __sanitizer_sigset_t *set) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, sigpending, set); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(sigpending)(set); if (!res && set) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, set, sizeof(*set)); return res; } #define INIT_SIGPENDING COMMON_INTERCEPT_FUNCTION(sigpending); #else #define INIT_SIGPENDING #endif #if SANITIZER_INTERCEPT_SIGPROCMASK INTERCEPTOR(int, sigprocmask, int how, __sanitizer_sigset_t *set, __sanitizer_sigset_t *oldset) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, sigprocmask, how, set, oldset); // FIXME: read sigset_t when all of sigemptyset, etc are intercepted // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(sigprocmask)(how, set, oldset); if (!res && oldset) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, oldset, sizeof(*oldset)); return res; } #define INIT_SIGPROCMASK COMMON_INTERCEPT_FUNCTION(sigprocmask); #else #define INIT_SIGPROCMASK #endif #if SANITIZER_INTERCEPT_BACKTRACE INTERCEPTOR(int, backtrace, void **buffer, int size) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, backtrace, buffer, size); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(backtrace)(buffer, size); if (res && buffer) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buffer, res * sizeof(*buffer)); return res; } INTERCEPTOR(char **, backtrace_symbols, void **buffer, int size) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, backtrace_symbols, buffer, size); if (buffer && size) COMMON_INTERCEPTOR_READ_RANGE(ctx, buffer, size * sizeof(*buffer)); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. char **res = REAL(backtrace_symbols)(buffer, size); if (res && size) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, res, size * sizeof(*res)); for (int i = 0; i < size; ++i) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, res[i], REAL(strlen(res[i])) + 1); } return res; } #define INIT_BACKTRACE \ COMMON_INTERCEPT_FUNCTION(backtrace); \ COMMON_INTERCEPT_FUNCTION(backtrace_symbols); #else #define INIT_BACKTRACE #endif #if SANITIZER_INTERCEPT__EXIT INTERCEPTOR(void, _exit, int status) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, _exit, status); COMMON_INTERCEPTOR_USER_CALLBACK_START(); int status1 = COMMON_INTERCEPTOR_ON_EXIT(ctx); COMMON_INTERCEPTOR_USER_CALLBACK_END(); if (status == 0) status = status1; REAL(_exit)(status); } #define INIT__EXIT COMMON_INTERCEPT_FUNCTION(_exit); #else #define INIT__EXIT #endif #if SANITIZER_INTERCEPT_PHTREAD_MUTEX INTERCEPTOR(int, pthread_mutex_lock, void *m) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, pthread_mutex_lock, m); COMMON_INTERCEPTOR_MUTEX_PRE_LOCK(ctx, m); int res = REAL(pthread_mutex_lock)(m); if (res == errno_EOWNERDEAD) COMMON_INTERCEPTOR_MUTEX_REPAIR(ctx, m); if (res == 0 || res == errno_EOWNERDEAD) COMMON_INTERCEPTOR_MUTEX_POST_LOCK(ctx, m); if (res == errno_EINVAL) COMMON_INTERCEPTOR_MUTEX_INVALID(ctx, m); return res; } INTERCEPTOR(int, pthread_mutex_unlock, void *m) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, pthread_mutex_unlock, m); COMMON_INTERCEPTOR_MUTEX_UNLOCK(ctx, m); int res = REAL(pthread_mutex_unlock)(m); if (res == errno_EINVAL) COMMON_INTERCEPTOR_MUTEX_INVALID(ctx, m); return res; } #define INIT_PTHREAD_MUTEX_LOCK COMMON_INTERCEPT_FUNCTION(pthread_mutex_lock) #define INIT_PTHREAD_MUTEX_UNLOCK \ COMMON_INTERCEPT_FUNCTION(pthread_mutex_unlock) #else #define INIT_PTHREAD_MUTEX_LOCK #define INIT_PTHREAD_MUTEX_UNLOCK #endif #if SANITIZER_INTERCEPT_GETMNTENT || SANITIZER_INTERCEPT_GETMNTENT_R static void write_mntent(void *ctx, __sanitizer_mntent *mnt) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, mnt, sizeof(*mnt)); if (mnt->mnt_fsname) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, mnt->mnt_fsname, REAL(strlen)(mnt->mnt_fsname) + 1); if (mnt->mnt_dir) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, mnt->mnt_dir, REAL(strlen)(mnt->mnt_dir) + 1); if (mnt->mnt_type) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, mnt->mnt_type, REAL(strlen)(mnt->mnt_type) + 1); if (mnt->mnt_opts) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, mnt->mnt_opts, REAL(strlen)(mnt->mnt_opts) + 1); } #endif #if SANITIZER_INTERCEPT_GETMNTENT INTERCEPTOR(__sanitizer_mntent *, getmntent, void *fp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getmntent, fp); __sanitizer_mntent *res = REAL(getmntent)(fp); if (res) write_mntent(ctx, res); return res; } #define INIT_GETMNTENT COMMON_INTERCEPT_FUNCTION(getmntent); #else #define INIT_GETMNTENT #endif #if SANITIZER_INTERCEPT_GETMNTENT_R INTERCEPTOR(__sanitizer_mntent *, getmntent_r, void *fp, __sanitizer_mntent *mntbuf, char *buf, int buflen) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getmntent_r, fp, mntbuf, buf, buflen); __sanitizer_mntent *res = REAL(getmntent_r)(fp, mntbuf, buf, buflen); if (res) write_mntent(ctx, res); return res; } #define INIT_GETMNTENT_R COMMON_INTERCEPT_FUNCTION(getmntent_r); #else #define INIT_GETMNTENT_R #endif #if SANITIZER_INTERCEPT_STATFS INTERCEPTOR(int, statfs, char *path, void *buf) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, statfs, path, buf); if (path) COMMON_INTERCEPTOR_READ_RANGE(ctx, path, REAL(strlen)(path) + 1); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(statfs)(path, buf); if (!res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, struct_statfs_sz); return res; } INTERCEPTOR(int, fstatfs, int fd, void *buf) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, fstatfs, fd, buf); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(fstatfs)(fd, buf); if (!res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, struct_statfs_sz); return res; } #define INIT_STATFS \ COMMON_INTERCEPT_FUNCTION(statfs); \ COMMON_INTERCEPT_FUNCTION(fstatfs); #else #define INIT_STATFS #endif #if SANITIZER_INTERCEPT_STATFS64 INTERCEPTOR(int, statfs64, char *path, void *buf) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, statfs64, path, buf); if (path) COMMON_INTERCEPTOR_READ_RANGE(ctx, path, REAL(strlen)(path) + 1); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(statfs64)(path, buf); if (!res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, struct_statfs64_sz); return res; } INTERCEPTOR(int, fstatfs64, int fd, void *buf) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, fstatfs64, fd, buf); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(fstatfs64)(fd, buf); if (!res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, struct_statfs64_sz); return res; } #define INIT_STATFS64 \ COMMON_INTERCEPT_FUNCTION(statfs64); \ COMMON_INTERCEPT_FUNCTION(fstatfs64); #else #define INIT_STATFS64 #endif #if SANITIZER_INTERCEPT_STATVFS INTERCEPTOR(int, statvfs, char *path, void *buf) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, statvfs, path, buf); if (path) COMMON_INTERCEPTOR_READ_RANGE(ctx, path, REAL(strlen)(path) + 1); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(statvfs)(path, buf); if (!res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, struct_statvfs_sz); return res; } INTERCEPTOR(int, fstatvfs, int fd, void *buf) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, fstatvfs, fd, buf); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(fstatvfs)(fd, buf); if (!res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, struct_statvfs_sz); return res; } #define INIT_STATVFS \ COMMON_INTERCEPT_FUNCTION(statvfs); \ COMMON_INTERCEPT_FUNCTION(fstatvfs); #else #define INIT_STATVFS #endif #if SANITIZER_INTERCEPT_STATVFS64 INTERCEPTOR(int, statvfs64, char *path, void *buf) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, statvfs64, path, buf); if (path) COMMON_INTERCEPTOR_READ_RANGE(ctx, path, REAL(strlen)(path) + 1); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(statvfs64)(path, buf); if (!res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, struct_statvfs64_sz); return res; } INTERCEPTOR(int, fstatvfs64, int fd, void *buf) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, fstatvfs64, fd, buf); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(fstatvfs64)(fd, buf); if (!res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, struct_statvfs64_sz); return res; } #define INIT_STATVFS64 \ COMMON_INTERCEPT_FUNCTION(statvfs64); \ COMMON_INTERCEPT_FUNCTION(fstatvfs64); #else #define INIT_STATVFS64 #endif #if SANITIZER_INTERCEPT_INITGROUPS INTERCEPTOR(int, initgroups, char *user, u32 group) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, initgroups, user, group); if (user) COMMON_INTERCEPTOR_READ_RANGE(ctx, user, REAL(strlen)(user) + 1); int res = REAL(initgroups)(user, group); return res; } #define INIT_INITGROUPS COMMON_INTERCEPT_FUNCTION(initgroups); #else #define INIT_INITGROUPS #endif #if SANITIZER_INTERCEPT_ETHER_NTOA_ATON INTERCEPTOR(char *, ether_ntoa, __sanitizer_ether_addr *addr) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, ether_ntoa, addr); if (addr) COMMON_INTERCEPTOR_READ_RANGE(ctx, addr, sizeof(*addr)); char *res = REAL(ether_ntoa)(addr); if (res) COMMON_INTERCEPTOR_INITIALIZE_RANGE(res, REAL(strlen)(res) + 1); return res; } INTERCEPTOR(__sanitizer_ether_addr *, ether_aton, char *buf) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, ether_aton, buf); if (buf) COMMON_INTERCEPTOR_READ_RANGE(ctx, buf, REAL(strlen)(buf) + 1); __sanitizer_ether_addr *res = REAL(ether_aton)(buf); if (res) COMMON_INTERCEPTOR_INITIALIZE_RANGE(res, sizeof(*res)); return res; } #define INIT_ETHER_NTOA_ATON \ COMMON_INTERCEPT_FUNCTION(ether_ntoa); \ COMMON_INTERCEPT_FUNCTION(ether_aton); #else #define INIT_ETHER_NTOA_ATON #endif #if SANITIZER_INTERCEPT_ETHER_HOST INTERCEPTOR(int, ether_ntohost, char *hostname, __sanitizer_ether_addr *addr) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, ether_ntohost, hostname, addr); if (addr) COMMON_INTERCEPTOR_READ_RANGE(ctx, addr, sizeof(*addr)); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(ether_ntohost)(hostname, addr); if (!res && hostname) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, hostname, REAL(strlen)(hostname) + 1); return res; } INTERCEPTOR(int, ether_hostton, char *hostname, __sanitizer_ether_addr *addr) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, ether_hostton, hostname, addr); if (hostname) COMMON_INTERCEPTOR_READ_RANGE(ctx, hostname, REAL(strlen)(hostname) + 1); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(ether_hostton)(hostname, addr); if (!res && addr) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, addr, sizeof(*addr)); return res; } INTERCEPTOR(int, ether_line, char *line, __sanitizer_ether_addr *addr, char *hostname) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, ether_line, line, addr, hostname); if (line) COMMON_INTERCEPTOR_READ_RANGE(ctx, line, REAL(strlen)(line) + 1); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(ether_line)(line, addr, hostname); if (!res) { if (addr) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, addr, sizeof(*addr)); if (hostname) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, hostname, REAL(strlen)(hostname) + 1); } return res; } #define INIT_ETHER_HOST \ COMMON_INTERCEPT_FUNCTION(ether_ntohost); \ COMMON_INTERCEPT_FUNCTION(ether_hostton); \ COMMON_INTERCEPT_FUNCTION(ether_line); #else #define INIT_ETHER_HOST #endif #if SANITIZER_INTERCEPT_ETHER_R INTERCEPTOR(char *, ether_ntoa_r, __sanitizer_ether_addr *addr, char *buf) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, ether_ntoa_r, addr, buf); if (addr) COMMON_INTERCEPTOR_READ_RANGE(ctx, addr, sizeof(*addr)); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. char *res = REAL(ether_ntoa_r)(addr, buf); if (res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, res, REAL(strlen)(res) + 1); return res; } INTERCEPTOR(__sanitizer_ether_addr *, ether_aton_r, char *buf, __sanitizer_ether_addr *addr) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, ether_aton_r, buf, addr); if (buf) COMMON_INTERCEPTOR_READ_RANGE(ctx, buf, REAL(strlen)(buf) + 1); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. __sanitizer_ether_addr *res = REAL(ether_aton_r)(buf, addr); if (res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, res, sizeof(*res)); return res; } #define INIT_ETHER_R \ COMMON_INTERCEPT_FUNCTION(ether_ntoa_r); \ COMMON_INTERCEPT_FUNCTION(ether_aton_r); #else #define INIT_ETHER_R #endif #if SANITIZER_INTERCEPT_SHMCTL INTERCEPTOR(int, shmctl, int shmid, int cmd, void *buf) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, shmctl, shmid, cmd, buf); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(shmctl)(shmid, cmd, buf); if (res >= 0) { unsigned sz = 0; if (cmd == shmctl_ipc_stat || cmd == shmctl_shm_stat) sz = sizeof(__sanitizer_shmid_ds); else if (cmd == shmctl_ipc_info) sz = struct_shminfo_sz; else if (cmd == shmctl_shm_info) sz = struct_shm_info_sz; if (sz) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, sz); } return res; } #define INIT_SHMCTL COMMON_INTERCEPT_FUNCTION(shmctl); #else #define INIT_SHMCTL #endif #if SANITIZER_INTERCEPT_RANDOM_R INTERCEPTOR(int, random_r, void *buf, u32 *result) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, random_r, buf, result); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(random_r)(buf, result); if (!res && result) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, result, sizeof(*result)); return res; } #define INIT_RANDOM_R COMMON_INTERCEPT_FUNCTION(random_r); #else #define INIT_RANDOM_R #endif // FIXME: under ASan the REAL() call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. #if SANITIZER_INTERCEPT_PTHREAD_ATTR_GET || \ SANITIZER_INTERCEPT_PTHREAD_ATTR_GETINHERITSSCHED || \ SANITIZER_INTERCEPT_PTHREAD_MUTEXATTR_GET || \ SANITIZER_INTERCEPT_PTHREAD_RWLOCKATTR_GET || \ SANITIZER_INTERCEPT_PTHREAD_CONDATTR_GET || \ SANITIZER_INTERCEPT_PTHREAD_BARRIERATTR_GET #define INTERCEPTOR_PTHREAD_OBJECT_ATTR_GET(fn, sz) \ INTERCEPTOR(int, fn, void *attr, void *r) { \ void *ctx; \ COMMON_INTERCEPTOR_ENTER(ctx, fn, attr, r); \ int res = REAL(fn)(attr, r); \ if (!res && r) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, r, sz); \ return res; \ } #define INTERCEPTOR_PTHREAD_ATTR_GET(what, sz) \ INTERCEPTOR_PTHREAD_OBJECT_ATTR_GET(pthread_attr_get##what, sz) #define INTERCEPTOR_PTHREAD_MUTEXATTR_GET(what, sz) \ INTERCEPTOR_PTHREAD_OBJECT_ATTR_GET(pthread_mutexattr_get##what, sz) #define INTERCEPTOR_PTHREAD_RWLOCKATTR_GET(what, sz) \ INTERCEPTOR_PTHREAD_OBJECT_ATTR_GET(pthread_rwlockattr_get##what, sz) #define INTERCEPTOR_PTHREAD_CONDATTR_GET(what, sz) \ INTERCEPTOR_PTHREAD_OBJECT_ATTR_GET(pthread_condattr_get##what, sz) #define INTERCEPTOR_PTHREAD_BARRIERATTR_GET(what, sz) \ INTERCEPTOR_PTHREAD_OBJECT_ATTR_GET(pthread_barrierattr_get##what, sz) #endif #if SANITIZER_INTERCEPT_PTHREAD_ATTR_GET INTERCEPTOR_PTHREAD_ATTR_GET(detachstate, sizeof(int)) INTERCEPTOR_PTHREAD_ATTR_GET(guardsize, sizeof(SIZE_T)) INTERCEPTOR_PTHREAD_ATTR_GET(schedparam, struct_sched_param_sz) INTERCEPTOR_PTHREAD_ATTR_GET(schedpolicy, sizeof(int)) INTERCEPTOR_PTHREAD_ATTR_GET(scope, sizeof(int)) INTERCEPTOR_PTHREAD_ATTR_GET(stacksize, sizeof(SIZE_T)) INTERCEPTOR(int, pthread_attr_getstack, void *attr, void **addr, SIZE_T *size) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, pthread_attr_getstack, attr, addr, size); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(pthread_attr_getstack)(attr, addr, size); if (!res) { if (addr) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, addr, sizeof(*addr)); if (size) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, size, sizeof(*size)); } return res; } // We may need to call the real pthread_attr_getstack from the run-time // in sanitizer_common, but we don't want to include the interception headers // there. So, just define this function here. namespace __sanitizer { extern "C" { int real_pthread_attr_getstack(void *attr, void **addr, SIZE_T *size) { return REAL(pthread_attr_getstack)(attr, addr, size); } } // extern "C" } // namespace __sanitizer #define INIT_PTHREAD_ATTR_GET \ COMMON_INTERCEPT_FUNCTION(pthread_attr_getdetachstate); \ COMMON_INTERCEPT_FUNCTION(pthread_attr_getguardsize); \ COMMON_INTERCEPT_FUNCTION(pthread_attr_getschedparam); \ COMMON_INTERCEPT_FUNCTION(pthread_attr_getschedpolicy); \ COMMON_INTERCEPT_FUNCTION(pthread_attr_getscope); \ COMMON_INTERCEPT_FUNCTION(pthread_attr_getstacksize); \ COMMON_INTERCEPT_FUNCTION(pthread_attr_getstack); #else #define INIT_PTHREAD_ATTR_GET #endif #if SANITIZER_INTERCEPT_PTHREAD_ATTR_GETINHERITSCHED INTERCEPTOR_PTHREAD_ATTR_GET(inheritsched, sizeof(int)) #define INIT_PTHREAD_ATTR_GETINHERITSCHED \ COMMON_INTERCEPT_FUNCTION(pthread_attr_getinheritsched); #else #define INIT_PTHREAD_ATTR_GETINHERITSCHED #endif #if SANITIZER_INTERCEPT_PTHREAD_ATTR_GETAFFINITY_NP INTERCEPTOR(int, pthread_attr_getaffinity_np, void *attr, SIZE_T cpusetsize, void *cpuset) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, pthread_attr_getaffinity_np, attr, cpusetsize, cpuset); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(pthread_attr_getaffinity_np)(attr, cpusetsize, cpuset); if (!res && cpusetsize && cpuset) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, cpuset, cpusetsize); return res; } #define INIT_PTHREAD_ATTR_GETAFFINITY_NP \ COMMON_INTERCEPT_FUNCTION(pthread_attr_getaffinity_np); #else #define INIT_PTHREAD_ATTR_GETAFFINITY_NP #endif #if SANITIZER_INTERCEPT_PTHREAD_MUTEXATTR_GETPSHARED INTERCEPTOR_PTHREAD_MUTEXATTR_GET(pshared, sizeof(int)) #define INIT_PTHREAD_MUTEXATTR_GETPSHARED \ COMMON_INTERCEPT_FUNCTION(pthread_mutexattr_getpshared); #else #define INIT_PTHREAD_MUTEXATTR_GETPSHARED #endif #if SANITIZER_INTERCEPT_PTHREAD_MUTEXATTR_GETTYPE INTERCEPTOR_PTHREAD_MUTEXATTR_GET(type, sizeof(int)) #define INIT_PTHREAD_MUTEXATTR_GETTYPE \ COMMON_INTERCEPT_FUNCTION(pthread_mutexattr_gettype); #else #define INIT_PTHREAD_MUTEXATTR_GETTYPE #endif #if SANITIZER_INTERCEPT_PTHREAD_MUTEXATTR_GETPROTOCOL INTERCEPTOR_PTHREAD_MUTEXATTR_GET(protocol, sizeof(int)) #define INIT_PTHREAD_MUTEXATTR_GETPROTOCOL \ COMMON_INTERCEPT_FUNCTION(pthread_mutexattr_getprotocol); #else #define INIT_PTHREAD_MUTEXATTR_GETPROTOCOL #endif #if SANITIZER_INTERCEPT_PTHREAD_MUTEXATTR_GETPRIOCEILING INTERCEPTOR_PTHREAD_MUTEXATTR_GET(prioceiling, sizeof(int)) #define INIT_PTHREAD_MUTEXATTR_GETPRIOCEILING \ COMMON_INTERCEPT_FUNCTION(pthread_mutexattr_getprioceiling); #else #define INIT_PTHREAD_MUTEXATTR_GETPRIOCEILING #endif #if SANITIZER_INTERCEPT_PTHREAD_MUTEXATTR_GETROBUST INTERCEPTOR_PTHREAD_MUTEXATTR_GET(robust, sizeof(int)) #define INIT_PTHREAD_MUTEXATTR_GETROBUST \ COMMON_INTERCEPT_FUNCTION(pthread_mutexattr_getrobust); #else #define INIT_PTHREAD_MUTEXATTR_GETROBUST #endif #if SANITIZER_INTERCEPT_PTHREAD_MUTEXATTR_GETROBUST_NP INTERCEPTOR_PTHREAD_MUTEXATTR_GET(robust_np, sizeof(int)) #define INIT_PTHREAD_MUTEXATTR_GETROBUST_NP \ COMMON_INTERCEPT_FUNCTION(pthread_mutexattr_getrobust_np); #else #define INIT_PTHREAD_MUTEXATTR_GETROBUST_NP #endif #if SANITIZER_INTERCEPT_PTHREAD_RWLOCKATTR_GETPSHARED INTERCEPTOR_PTHREAD_RWLOCKATTR_GET(pshared, sizeof(int)) #define INIT_PTHREAD_RWLOCKATTR_GETPSHARED \ COMMON_INTERCEPT_FUNCTION(pthread_rwlockattr_getpshared); #else #define INIT_PTHREAD_RWLOCKATTR_GETPSHARED #endif #if SANITIZER_INTERCEPT_PTHREAD_RWLOCKATTR_GETKIND_NP INTERCEPTOR_PTHREAD_RWLOCKATTR_GET(kind_np, sizeof(int)) #define INIT_PTHREAD_RWLOCKATTR_GETKIND_NP \ COMMON_INTERCEPT_FUNCTION(pthread_rwlockattr_getkind_np); #else #define INIT_PTHREAD_RWLOCKATTR_GETKIND_NP #endif #if SANITIZER_INTERCEPT_PTHREAD_CONDATTR_GETPSHARED INTERCEPTOR_PTHREAD_CONDATTR_GET(pshared, sizeof(int)) #define INIT_PTHREAD_CONDATTR_GETPSHARED \ COMMON_INTERCEPT_FUNCTION(pthread_condattr_getpshared); #else #define INIT_PTHREAD_CONDATTR_GETPSHARED #endif #if SANITIZER_INTERCEPT_PTHREAD_CONDATTR_GETCLOCK INTERCEPTOR_PTHREAD_CONDATTR_GET(clock, sizeof(int)) #define INIT_PTHREAD_CONDATTR_GETCLOCK \ COMMON_INTERCEPT_FUNCTION(pthread_condattr_getclock); #else #define INIT_PTHREAD_CONDATTR_GETCLOCK #endif #if SANITIZER_INTERCEPT_PTHREAD_BARRIERATTR_GETPSHARED INTERCEPTOR_PTHREAD_BARRIERATTR_GET(pshared, sizeof(int)) // !mac !android #define INIT_PTHREAD_BARRIERATTR_GETPSHARED \ COMMON_INTERCEPT_FUNCTION(pthread_barrierattr_getpshared); #else #define INIT_PTHREAD_BARRIERATTR_GETPSHARED #endif #if SANITIZER_INTERCEPT_TMPNAM INTERCEPTOR(char *, tmpnam, char *s) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, tmpnam, s); char *res = REAL(tmpnam)(s); if (res) { if (s) // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. COMMON_INTERCEPTOR_WRITE_RANGE(ctx, s, REAL(strlen)(s) + 1); else COMMON_INTERCEPTOR_INITIALIZE_RANGE(res, REAL(strlen)(res) + 1); } return res; } #define INIT_TMPNAM COMMON_INTERCEPT_FUNCTION(tmpnam); #else #define INIT_TMPNAM #endif #if SANITIZER_INTERCEPT_TMPNAM_R INTERCEPTOR(char *, tmpnam_r, char *s) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, tmpnam_r, s); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. char *res = REAL(tmpnam_r)(s); if (res && s) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, s, REAL(strlen)(s) + 1); return res; } #define INIT_TMPNAM_R COMMON_INTERCEPT_FUNCTION(tmpnam_r); #else #define INIT_TMPNAM_R #endif #if SANITIZER_INTERCEPT_TTYNAME_R INTERCEPTOR(int, ttyname_r, int fd, char *name, SIZE_T namesize) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, ttyname_r, fd, name, namesize); int res = REAL(ttyname_r)(fd, name, namesize); if (res == 0) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, name, REAL(strlen)(name) + 1); return res; } #define INIT_TTYNAME_R COMMON_INTERCEPT_FUNCTION(ttyname_r); #else #define INIT_TTYNAME_R #endif #if SANITIZER_INTERCEPT_TEMPNAM INTERCEPTOR(char *, tempnam, char *dir, char *pfx) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, tempnam, dir, pfx); if (dir) COMMON_INTERCEPTOR_READ_RANGE(ctx, dir, REAL(strlen)(dir) + 1); if (pfx) COMMON_INTERCEPTOR_READ_RANGE(ctx, pfx, REAL(strlen)(pfx) + 1); char *res = REAL(tempnam)(dir, pfx); if (res) COMMON_INTERCEPTOR_INITIALIZE_RANGE(res, REAL(strlen)(res) + 1); return res; } #define INIT_TEMPNAM COMMON_INTERCEPT_FUNCTION(tempnam); #else #define INIT_TEMPNAM #endif #if SANITIZER_INTERCEPT_PTHREAD_SETNAME_NP INTERCEPTOR(int, pthread_setname_np, uptr thread, const char *name) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, pthread_setname_np, thread, name); COMMON_INTERCEPTOR_READ_STRING(ctx, name, 0); COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name); return REAL(pthread_setname_np)(thread, name); } #define INIT_PTHREAD_SETNAME_NP COMMON_INTERCEPT_FUNCTION(pthread_setname_np); #else #define INIT_PTHREAD_SETNAME_NP #endif #if SANITIZER_INTERCEPT_SINCOS INTERCEPTOR(void, sincos, double x, double *sin, double *cos) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, sincos, x, sin, cos); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. REAL(sincos)(x, sin, cos); if (sin) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, sin, sizeof(*sin)); if (cos) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, cos, sizeof(*cos)); } INTERCEPTOR(void, sincosf, float x, float *sin, float *cos) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, sincosf, x, sin, cos); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. REAL(sincosf)(x, sin, cos); if (sin) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, sin, sizeof(*sin)); if (cos) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, cos, sizeof(*cos)); } INTERCEPTOR(void, sincosl, long double x, long double *sin, long double *cos) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, sincosl, x, sin, cos); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. REAL(sincosl)(x, sin, cos); if (sin) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, sin, sizeof(*sin)); if (cos) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, cos, sizeof(*cos)); } #define INIT_SINCOS \ COMMON_INTERCEPT_FUNCTION(sincos); \ COMMON_INTERCEPT_FUNCTION(sincosf); \ COMMON_INTERCEPT_FUNCTION_LDBL(sincosl); #else #define INIT_SINCOS #endif #if SANITIZER_INTERCEPT_REMQUO INTERCEPTOR(double, remquo, double x, double y, int *quo) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, remquo, x, y, quo); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. double res = REAL(remquo)(x, y, quo); if (quo) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, quo, sizeof(*quo)); return res; } INTERCEPTOR(float, remquof, float x, float y, int *quo) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, remquof, x, y, quo); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. float res = REAL(remquof)(x, y, quo); if (quo) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, quo, sizeof(*quo)); return res; } INTERCEPTOR(long double, remquol, long double x, long double y, int *quo) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, remquol, x, y, quo); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. long double res = REAL(remquol)(x, y, quo); if (quo) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, quo, sizeof(*quo)); return res; } #define INIT_REMQUO \ COMMON_INTERCEPT_FUNCTION(remquo); \ COMMON_INTERCEPT_FUNCTION(remquof); \ COMMON_INTERCEPT_FUNCTION_LDBL(remquol); #else #define INIT_REMQUO #endif #if SANITIZER_INTERCEPT_LGAMMA extern int signgam; INTERCEPTOR(double, lgamma, double x) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, lgamma, x); double res = REAL(lgamma)(x); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, &signgam, sizeof(signgam)); return res; } INTERCEPTOR(float, lgammaf, float x) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, lgammaf, x); float res = REAL(lgammaf)(x); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, &signgam, sizeof(signgam)); return res; } INTERCEPTOR(long double, lgammal, long double x) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, lgammal, x); long double res = REAL(lgammal)(x); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, &signgam, sizeof(signgam)); return res; } #define INIT_LGAMMA \ COMMON_INTERCEPT_FUNCTION(lgamma); \ COMMON_INTERCEPT_FUNCTION(lgammaf); \ COMMON_INTERCEPT_FUNCTION_LDBL(lgammal); #else #define INIT_LGAMMA #endif #if SANITIZER_INTERCEPT_LGAMMA_R INTERCEPTOR(double, lgamma_r, double x, int *signp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, lgamma_r, x, signp); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. double res = REAL(lgamma_r)(x, signp); if (signp) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, signp, sizeof(*signp)); return res; } INTERCEPTOR(float, lgammaf_r, float x, int *signp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, lgammaf_r, x, signp); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. float res = REAL(lgammaf_r)(x, signp); if (signp) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, signp, sizeof(*signp)); return res; } #define INIT_LGAMMA_R \ COMMON_INTERCEPT_FUNCTION(lgamma_r); \ COMMON_INTERCEPT_FUNCTION(lgammaf_r); #else #define INIT_LGAMMA_R #endif #if SANITIZER_INTERCEPT_LGAMMAL_R INTERCEPTOR(long double, lgammal_r, long double x, int *signp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, lgammal_r, x, signp); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. long double res = REAL(lgammal_r)(x, signp); if (signp) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, signp, sizeof(*signp)); return res; } #define INIT_LGAMMAL_R COMMON_INTERCEPT_FUNCTION_LDBL(lgammal_r); #else #define INIT_LGAMMAL_R #endif #if SANITIZER_INTERCEPT_DRAND48_R INTERCEPTOR(int, drand48_r, void *buffer, double *result) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, drand48_r, buffer, result); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(drand48_r)(buffer, result); if (result) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, result, sizeof(*result)); return res; } INTERCEPTOR(int, lrand48_r, void *buffer, long *result) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, lrand48_r, buffer, result); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(lrand48_r)(buffer, result); if (result) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, result, sizeof(*result)); return res; } #define INIT_DRAND48_R \ COMMON_INTERCEPT_FUNCTION(drand48_r); \ COMMON_INTERCEPT_FUNCTION(lrand48_r); #else #define INIT_DRAND48_R #endif #if SANITIZER_INTERCEPT_RAND_R INTERCEPTOR(int, rand_r, unsigned *seedp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, rand_r, seedp); COMMON_INTERCEPTOR_READ_RANGE(ctx, seedp, sizeof(*seedp)); return REAL(rand_r)(seedp); } #define INIT_RAND_R COMMON_INTERCEPT_FUNCTION(rand_r); #else #define INIT_RAND_R #endif #if SANITIZER_INTERCEPT_GETLINE INTERCEPTOR(SSIZE_T, getline, char **lineptr, SIZE_T *n, void *stream) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getline, lineptr, n, stream); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. SSIZE_T res = REAL(getline)(lineptr, n, stream); if (res > 0) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, lineptr, sizeof(*lineptr)); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, n, sizeof(*n)); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, *lineptr, res + 1); } return res; } // FIXME: under ASan the call below may write to freed memory and corrupt its // metadata. See // https://github.com/google/sanitizers/issues/321. #define GETDELIM_INTERCEPTOR_IMPL(vname) \ { \ void *ctx; \ COMMON_INTERCEPTOR_ENTER(ctx, vname, lineptr, n, delim, stream); \ SSIZE_T res = REAL(vname)(lineptr, n, delim, stream); \ if (res > 0) { \ COMMON_INTERCEPTOR_WRITE_RANGE(ctx, lineptr, sizeof(*lineptr)); \ COMMON_INTERCEPTOR_WRITE_RANGE(ctx, n, sizeof(*n)); \ COMMON_INTERCEPTOR_WRITE_RANGE(ctx, *lineptr, res + 1); \ } \ return res; \ } INTERCEPTOR(SSIZE_T, __getdelim, char **lineptr, SIZE_T *n, int delim, void *stream) GETDELIM_INTERCEPTOR_IMPL(__getdelim) // There's no __getdelim() on FreeBSD so we supply the getdelim() interceptor // with its own body. INTERCEPTOR(SSIZE_T, getdelim, char **lineptr, SIZE_T *n, int delim, void *stream) GETDELIM_INTERCEPTOR_IMPL(getdelim) #define INIT_GETLINE \ COMMON_INTERCEPT_FUNCTION(getline); \ COMMON_INTERCEPT_FUNCTION(__getdelim); \ COMMON_INTERCEPT_FUNCTION(getdelim); #else #define INIT_GETLINE #endif #if SANITIZER_INTERCEPT_ICONV INTERCEPTOR(SIZE_T, iconv, void *cd, char **inbuf, SIZE_T *inbytesleft, char **outbuf, SIZE_T *outbytesleft) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, iconv, cd, inbuf, inbytesleft, outbuf, outbytesleft); if (inbytesleft) COMMON_INTERCEPTOR_READ_RANGE(ctx, inbytesleft, sizeof(*inbytesleft)); if (inbuf && inbytesleft) COMMON_INTERCEPTOR_READ_RANGE(ctx, *inbuf, *inbytesleft); if (outbytesleft) COMMON_INTERCEPTOR_READ_RANGE(ctx, outbytesleft, sizeof(*outbytesleft)); void *outbuf_orig = outbuf ? *outbuf : nullptr; // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. SIZE_T res = REAL(iconv)(cd, inbuf, inbytesleft, outbuf, outbytesleft); if (outbuf && *outbuf > outbuf_orig) { SIZE_T sz = (char *)*outbuf - (char *)outbuf_orig; COMMON_INTERCEPTOR_WRITE_RANGE(ctx, outbuf_orig, sz); } return res; } #define INIT_ICONV COMMON_INTERCEPT_FUNCTION(iconv); #else #define INIT_ICONV #endif #if SANITIZER_INTERCEPT_TIMES INTERCEPTOR(__sanitizer_clock_t, times, void *tms) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, times, tms); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. __sanitizer_clock_t res = REAL(times)(tms); if (res != (__sanitizer_clock_t)-1 && tms) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, tms, struct_tms_sz); return res; } #define INIT_TIMES COMMON_INTERCEPT_FUNCTION(times); #else #define INIT_TIMES #endif #if SANITIZER_INTERCEPT_TLS_GET_ADDR #if !SANITIZER_S390 #define INIT_TLS_GET_ADDR COMMON_INTERCEPT_FUNCTION(__tls_get_addr) // If you see any crashes around this functions, there are 2 known issues with // it: 1. __tls_get_addr can be called with mis-aligned stack due to: // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066 // 2. It can be called recursively if sanitizer code uses __tls_get_addr // to access thread local variables (it should not happen normally, // because sanitizers use initial-exec tls model). INTERCEPTOR(void *, __tls_get_addr, void *arg) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, __tls_get_addr, arg); void *res = REAL(__tls_get_addr)(arg); uptr tls_begin, tls_end; COMMON_INTERCEPTOR_GET_TLS_RANGE(&tls_begin, &tls_end); DTLS::DTV *dtv = DTLS_on_tls_get_addr(arg, res, tls_begin, tls_end); if (dtv) { // New DTLS block has been allocated. COMMON_INTERCEPTOR_INITIALIZE_RANGE((void *)dtv->beg, dtv->size); } return res; } #if SANITIZER_PPC // On PowerPC, we also need to intercept __tls_get_addr_opt, which has // mostly the same semantics as __tls_get_addr, but its presence enables // some optimizations in linker (which are safe to ignore here). extern "C" __attribute__((alias("__interceptor___tls_get_addr"), visibility("default"))) void *__tls_get_addr_opt(void *arg); #endif #else // SANITIZER_S390 // On s390, we have to intercept two functions here: // - __tls_get_addr_internal, which is a glibc-internal function that is like // the usual __tls_get_addr, but returns a TP-relative offset instead of // a proper pointer. It is used by dlsym for TLS symbols. // - __tls_get_offset, which is like the above, but also takes a GOT-relative // descriptor offset as an argument instead of a pointer. GOT address // is passed in r12, so it's necessary to write it in assembly. This is // the function used by the compiler. extern "C" uptr __tls_get_offset_wrapper(void *arg, uptr (*fn)(void *arg)); #define INIT_TLS_GET_ADDR COMMON_INTERCEPT_FUNCTION(__tls_get_offset) DEFINE_REAL(uptr, __tls_get_offset, void *arg) extern "C" uptr __tls_get_offset(void *arg); extern "C" uptr __interceptor___tls_get_offset(void *arg); INTERCEPTOR(uptr, __tls_get_addr_internal, void *arg) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, __tls_get_addr_internal, arg); uptr res = __tls_get_offset_wrapper(arg, REAL(__tls_get_offset)); uptr tp = reinterpret_cast(__builtin_thread_pointer()); void *ptr = reinterpret_cast(res + tp); uptr tls_begin, tls_end; COMMON_INTERCEPTOR_GET_TLS_RANGE(&tls_begin, &tls_end); DTLS::DTV *dtv = DTLS_on_tls_get_addr(arg, ptr, tls_begin, tls_end); if (dtv) { // New DTLS block has been allocated. COMMON_INTERCEPTOR_INITIALIZE_RANGE((void *)dtv->beg, dtv->size); } return res; } // We need a hidden symbol aliasing the above, so that we can jump // directly to it from the assembly below. extern "C" __attribute__((alias("__interceptor___tls_get_addr_internal"), visibility("hidden"))) uptr __tls_get_addr_hidden(void *arg); // Now carefully intercept __tls_get_offset. asm( ".text\n" // The __intercept_ version has to exist, so that gen_dynamic_list.py // exports our symbol. ".weak __tls_get_offset\n" ".type __tls_get_offset, @function\n" "__tls_get_offset:\n" ".global __interceptor___tls_get_offset\n" ".type __interceptor___tls_get_offset, @function\n" "__interceptor___tls_get_offset:\n" #ifdef __s390x__ "la %r2, 0(%r2,%r12)\n" "jg __tls_get_addr_hidden\n" #else "basr %r3,0\n" "0: la %r2,0(%r2,%r12)\n" "l %r4,1f-0b(%r3)\n" "b 0(%r4,%r3)\n" "1: .long __tls_get_addr_hidden - 0b\n" #endif ".size __interceptor___tls_get_offset, .-__interceptor___tls_get_offset\n" // Assembly wrapper to call REAL(__tls_get_offset)(arg) ".type __tls_get_offset_wrapper, @function\n" "__tls_get_offset_wrapper:\n" #ifdef __s390x__ "sgr %r2,%r12\n" #else "sr %r2,%r12\n" #endif "br %r3\n" ".size __tls_get_offset_wrapper, .-__tls_get_offset_wrapper\n" ); #endif // SANITIZER_S390 #else #define INIT_TLS_GET_ADDR #endif #if SANITIZER_INTERCEPT_LISTXATTR INTERCEPTOR(SSIZE_T, listxattr, const char *path, char *list, SIZE_T size) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, listxattr, path, list, size); if (path) COMMON_INTERCEPTOR_READ_RANGE(ctx, path, REAL(strlen)(path) + 1); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. SSIZE_T res = REAL(listxattr)(path, list, size); // Here and below, size == 0 is a special case where nothing is written to the // buffer, and res contains the desired buffer size. if (size && res > 0 && list) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, list, res); return res; } INTERCEPTOR(SSIZE_T, llistxattr, const char *path, char *list, SIZE_T size) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, llistxattr, path, list, size); if (path) COMMON_INTERCEPTOR_READ_RANGE(ctx, path, REAL(strlen)(path) + 1); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. SSIZE_T res = REAL(llistxattr)(path, list, size); if (size && res > 0 && list) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, list, res); return res; } INTERCEPTOR(SSIZE_T, flistxattr, int fd, char *list, SIZE_T size) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, flistxattr, fd, list, size); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. SSIZE_T res = REAL(flistxattr)(fd, list, size); if (size && res > 0 && list) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, list, res); return res; } #define INIT_LISTXATTR \ COMMON_INTERCEPT_FUNCTION(listxattr); \ COMMON_INTERCEPT_FUNCTION(llistxattr); \ COMMON_INTERCEPT_FUNCTION(flistxattr); #else #define INIT_LISTXATTR #endif #if SANITIZER_INTERCEPT_GETXATTR INTERCEPTOR(SSIZE_T, getxattr, const char *path, const char *name, char *value, SIZE_T size) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getxattr, path, name, value, size); if (path) COMMON_INTERCEPTOR_READ_RANGE(ctx, path, REAL(strlen)(path) + 1); if (name) COMMON_INTERCEPTOR_READ_RANGE(ctx, name, REAL(strlen)(name) + 1); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. SSIZE_T res = REAL(getxattr)(path, name, value, size); if (size && res > 0 && value) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, value, res); return res; } INTERCEPTOR(SSIZE_T, lgetxattr, const char *path, const char *name, char *value, SIZE_T size) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, lgetxattr, path, name, value, size); if (path) COMMON_INTERCEPTOR_READ_RANGE(ctx, path, REAL(strlen)(path) + 1); if (name) COMMON_INTERCEPTOR_READ_RANGE(ctx, name, REAL(strlen)(name) + 1); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. SSIZE_T res = REAL(lgetxattr)(path, name, value, size); if (size && res > 0 && value) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, value, res); return res; } INTERCEPTOR(SSIZE_T, fgetxattr, int fd, const char *name, char *value, SIZE_T size) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, fgetxattr, fd, name, value, size); if (name) COMMON_INTERCEPTOR_READ_RANGE(ctx, name, REAL(strlen)(name) + 1); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. SSIZE_T res = REAL(fgetxattr)(fd, name, value, size); if (size && res > 0 && value) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, value, res); return res; } #define INIT_GETXATTR \ COMMON_INTERCEPT_FUNCTION(getxattr); \ COMMON_INTERCEPT_FUNCTION(lgetxattr); \ COMMON_INTERCEPT_FUNCTION(fgetxattr); #else #define INIT_GETXATTR #endif #if SANITIZER_INTERCEPT_GETRESID INTERCEPTOR(int, getresuid, void *ruid, void *euid, void *suid) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getresuid, ruid, euid, suid); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(getresuid)(ruid, euid, suid); if (res >= 0) { if (ruid) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ruid, uid_t_sz); if (euid) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, euid, uid_t_sz); if (suid) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, suid, uid_t_sz); } return res; } INTERCEPTOR(int, getresgid, void *rgid, void *egid, void *sgid) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getresgid, rgid, egid, sgid); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(getresgid)(rgid, egid, sgid); if (res >= 0) { if (rgid) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, rgid, gid_t_sz); if (egid) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, egid, gid_t_sz); if (sgid) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, sgid, gid_t_sz); } return res; } #define INIT_GETRESID \ COMMON_INTERCEPT_FUNCTION(getresuid); \ COMMON_INTERCEPT_FUNCTION(getresgid); #else #define INIT_GETRESID #endif #if SANITIZER_INTERCEPT_GETIFADDRS // As long as getifaddrs()/freeifaddrs() use calloc()/free(), we don't need to // intercept freeifaddrs(). If that ceases to be the case, we might need to // intercept it to poison the memory again. INTERCEPTOR(int, getifaddrs, __sanitizer_ifaddrs **ifap) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getifaddrs, ifap); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(getifaddrs)(ifap); if (res == 0 && ifap) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ifap, sizeof(void *)); __sanitizer_ifaddrs *p = *ifap; while (p) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, p, sizeof(__sanitizer_ifaddrs)); if (p->ifa_name) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, p->ifa_name, REAL(strlen)(p->ifa_name) + 1); if (p->ifa_addr) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, p->ifa_addr, struct_sockaddr_sz); if (p->ifa_netmask) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, p->ifa_netmask, struct_sockaddr_sz); // On Linux this is a union, but the other member also points to a // struct sockaddr, so the following is sufficient. if (p->ifa_dstaddr) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, p->ifa_dstaddr, struct_sockaddr_sz); // FIXME(smatveev): Unpoison p->ifa_data as well. p = p->ifa_next; } } return res; } #define INIT_GETIFADDRS \ COMMON_INTERCEPT_FUNCTION(getifaddrs); #else #define INIT_GETIFADDRS #endif #if SANITIZER_INTERCEPT_IF_INDEXTONAME INTERCEPTOR(char *, if_indextoname, unsigned int ifindex, char* ifname) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, if_indextoname, ifindex, ifname); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. char *res = REAL(if_indextoname)(ifindex, ifname); if (res && ifname) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ifname, REAL(strlen)(ifname) + 1); return res; } INTERCEPTOR(unsigned int, if_nametoindex, const char* ifname) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, if_nametoindex, ifname); if (ifname) COMMON_INTERCEPTOR_READ_RANGE(ctx, ifname, REAL(strlen)(ifname) + 1); return REAL(if_nametoindex)(ifname); } #define INIT_IF_INDEXTONAME \ COMMON_INTERCEPT_FUNCTION(if_indextoname); \ COMMON_INTERCEPT_FUNCTION(if_nametoindex); #else #define INIT_IF_INDEXTONAME #endif #if SANITIZER_INTERCEPT_CAPGET INTERCEPTOR(int, capget, void *hdrp, void *datap) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, capget, hdrp, datap); if (hdrp) COMMON_INTERCEPTOR_READ_RANGE(ctx, hdrp, __user_cap_header_struct_sz); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(capget)(hdrp, datap); if (res == 0 && datap) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, datap, __user_cap_data_struct_sz); // We can also return -1 and write to hdrp->version if the version passed in // hdrp->version is unsupported. But that's not a trivial condition to check, // and anyway COMMON_INTERCEPTOR_READ_RANGE protects us to some extent. return res; } INTERCEPTOR(int, capset, void *hdrp, const void *datap) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, capset, hdrp, datap); if (hdrp) COMMON_INTERCEPTOR_READ_RANGE(ctx, hdrp, __user_cap_header_struct_sz); if (datap) COMMON_INTERCEPTOR_READ_RANGE(ctx, datap, __user_cap_data_struct_sz); return REAL(capset)(hdrp, datap); } #define INIT_CAPGET \ COMMON_INTERCEPT_FUNCTION(capget); \ COMMON_INTERCEPT_FUNCTION(capset); #else #define INIT_CAPGET #endif #if SANITIZER_INTERCEPT_AEABI_MEM INTERCEPTOR(void *, __aeabi_memmove, void *to, const void *from, uptr size) { void *ctx; COMMON_INTERCEPTOR_MEMMOVE_IMPL(ctx, to, from, size); } INTERCEPTOR(void *, __aeabi_memmove4, void *to, const void *from, uptr size) { void *ctx; COMMON_INTERCEPTOR_MEMMOVE_IMPL(ctx, to, from, size); } INTERCEPTOR(void *, __aeabi_memmove8, void *to, const void *from, uptr size) { void *ctx; COMMON_INTERCEPTOR_MEMMOVE_IMPL(ctx, to, from, size); } INTERCEPTOR(void *, __aeabi_memcpy, void *to, const void *from, uptr size) { void *ctx; COMMON_INTERCEPTOR_MEMCPY_IMPL(ctx, to, from, size); } INTERCEPTOR(void *, __aeabi_memcpy4, void *to, const void *from, uptr size) { void *ctx; COMMON_INTERCEPTOR_MEMCPY_IMPL(ctx, to, from, size); } INTERCEPTOR(void *, __aeabi_memcpy8, void *to, const void *from, uptr size) { void *ctx; COMMON_INTERCEPTOR_MEMCPY_IMPL(ctx, to, from, size); } // Note the argument order. INTERCEPTOR(void *, __aeabi_memset, void *block, uptr size, int c) { void *ctx; COMMON_INTERCEPTOR_MEMSET_IMPL(ctx, block, c, size); } INTERCEPTOR(void *, __aeabi_memset4, void *block, uptr size, int c) { void *ctx; COMMON_INTERCEPTOR_MEMSET_IMPL(ctx, block, c, size); } INTERCEPTOR(void *, __aeabi_memset8, void *block, uptr size, int c) { void *ctx; COMMON_INTERCEPTOR_MEMSET_IMPL(ctx, block, c, size); } INTERCEPTOR(void *, __aeabi_memclr, void *block, uptr size) { void *ctx; COMMON_INTERCEPTOR_MEMSET_IMPL(ctx, block, 0, size); } INTERCEPTOR(void *, __aeabi_memclr4, void *block, uptr size) { void *ctx; COMMON_INTERCEPTOR_MEMSET_IMPL(ctx, block, 0, size); } INTERCEPTOR(void *, __aeabi_memclr8, void *block, uptr size) { void *ctx; COMMON_INTERCEPTOR_MEMSET_IMPL(ctx, block, 0, size); } #define INIT_AEABI_MEM \ COMMON_INTERCEPT_FUNCTION(__aeabi_memmove); \ COMMON_INTERCEPT_FUNCTION(__aeabi_memmove4); \ COMMON_INTERCEPT_FUNCTION(__aeabi_memmove8); \ COMMON_INTERCEPT_FUNCTION(__aeabi_memcpy); \ COMMON_INTERCEPT_FUNCTION(__aeabi_memcpy4); \ COMMON_INTERCEPT_FUNCTION(__aeabi_memcpy8); \ COMMON_INTERCEPT_FUNCTION(__aeabi_memset); \ COMMON_INTERCEPT_FUNCTION(__aeabi_memset4); \ COMMON_INTERCEPT_FUNCTION(__aeabi_memset8); \ COMMON_INTERCEPT_FUNCTION(__aeabi_memclr); \ COMMON_INTERCEPT_FUNCTION(__aeabi_memclr4); \ COMMON_INTERCEPT_FUNCTION(__aeabi_memclr8); #else #define INIT_AEABI_MEM #endif // SANITIZER_INTERCEPT_AEABI_MEM #if SANITIZER_INTERCEPT___BZERO INTERCEPTOR(void *, __bzero, void *block, uptr size) { void *ctx; COMMON_INTERCEPTOR_MEMSET_IMPL(ctx, block, 0, size); } #define INIT___BZERO COMMON_INTERCEPT_FUNCTION(__bzero); #else #define INIT___BZERO #endif // SANITIZER_INTERCEPT___BZERO #if SANITIZER_INTERCEPT_FTIME INTERCEPTOR(int, ftime, __sanitizer_timeb *tp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, ftime, tp); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(ftime)(tp); if (tp) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, tp, sizeof(*tp)); return res; } #define INIT_FTIME COMMON_INTERCEPT_FUNCTION(ftime); #else #define INIT_FTIME #endif // SANITIZER_INTERCEPT_FTIME #if SANITIZER_INTERCEPT_XDR INTERCEPTOR(void, xdrmem_create, __sanitizer_XDR *xdrs, uptr addr, unsigned size, int op) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, xdrmem_create, xdrs, addr, size, op); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. REAL(xdrmem_create)(xdrs, addr, size, op); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, xdrs, sizeof(*xdrs)); if (op == __sanitizer_XDR_ENCODE) { // It's not obvious how much data individual xdr_ routines write. // Simply unpoison the entire target buffer in advance. COMMON_INTERCEPTOR_WRITE_RANGE(ctx, (void *)addr, size); } } INTERCEPTOR(void, xdrstdio_create, __sanitizer_XDR *xdrs, void *file, int op) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, xdrstdio_create, xdrs, file, op); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. REAL(xdrstdio_create)(xdrs, file, op); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, xdrs, sizeof(*xdrs)); } // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. #define XDR_INTERCEPTOR(F, T) \ INTERCEPTOR(int, F, __sanitizer_XDR *xdrs, T *p) { \ void *ctx; \ COMMON_INTERCEPTOR_ENTER(ctx, F, xdrs, p); \ if (p && xdrs->x_op == __sanitizer_XDR_ENCODE) \ COMMON_INTERCEPTOR_READ_RANGE(ctx, p, sizeof(*p)); \ int res = REAL(F)(xdrs, p); \ if (res && p && xdrs->x_op == __sanitizer_XDR_DECODE) \ COMMON_INTERCEPTOR_WRITE_RANGE(ctx, p, sizeof(*p)); \ return res; \ } XDR_INTERCEPTOR(xdr_short, short) XDR_INTERCEPTOR(xdr_u_short, unsigned short) XDR_INTERCEPTOR(xdr_int, int) XDR_INTERCEPTOR(xdr_u_int, unsigned) XDR_INTERCEPTOR(xdr_long, long) XDR_INTERCEPTOR(xdr_u_long, unsigned long) XDR_INTERCEPTOR(xdr_hyper, long long) XDR_INTERCEPTOR(xdr_u_hyper, unsigned long long) XDR_INTERCEPTOR(xdr_longlong_t, long long) XDR_INTERCEPTOR(xdr_u_longlong_t, unsigned long long) XDR_INTERCEPTOR(xdr_int8_t, u8) XDR_INTERCEPTOR(xdr_uint8_t, u8) XDR_INTERCEPTOR(xdr_int16_t, u16) XDR_INTERCEPTOR(xdr_uint16_t, u16) XDR_INTERCEPTOR(xdr_int32_t, u32) XDR_INTERCEPTOR(xdr_uint32_t, u32) XDR_INTERCEPTOR(xdr_int64_t, u64) XDR_INTERCEPTOR(xdr_uint64_t, u64) XDR_INTERCEPTOR(xdr_quad_t, long long) XDR_INTERCEPTOR(xdr_u_quad_t, unsigned long long) XDR_INTERCEPTOR(xdr_bool, bool) XDR_INTERCEPTOR(xdr_enum, int) XDR_INTERCEPTOR(xdr_char, char) XDR_INTERCEPTOR(xdr_u_char, unsigned char) XDR_INTERCEPTOR(xdr_float, float) XDR_INTERCEPTOR(xdr_double, double) // FIXME: intercept xdr_array, opaque, union, vector, reference, pointer, // wrapstring, sizeof INTERCEPTOR(int, xdr_bytes, __sanitizer_XDR *xdrs, char **p, unsigned *sizep, unsigned maxsize) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, xdr_bytes, xdrs, p, sizep, maxsize); if (p && sizep && xdrs->x_op == __sanitizer_XDR_ENCODE) { COMMON_INTERCEPTOR_READ_RANGE(ctx, p, sizeof(*p)); COMMON_INTERCEPTOR_READ_RANGE(ctx, sizep, sizeof(*sizep)); COMMON_INTERCEPTOR_READ_RANGE(ctx, *p, *sizep); } // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(xdr_bytes)(xdrs, p, sizep, maxsize); if (p && sizep && xdrs->x_op == __sanitizer_XDR_DECODE) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, p, sizeof(*p)); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, sizep, sizeof(*sizep)); if (res && *p && *sizep) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, *p, *sizep); } return res; } INTERCEPTOR(int, xdr_string, __sanitizer_XDR *xdrs, char **p, unsigned maxsize) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, xdr_string, xdrs, p, maxsize); if (p && xdrs->x_op == __sanitizer_XDR_ENCODE) { COMMON_INTERCEPTOR_READ_RANGE(ctx, p, sizeof(*p)); COMMON_INTERCEPTOR_READ_RANGE(ctx, *p, REAL(strlen)(*p) + 1); } // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. int res = REAL(xdr_string)(xdrs, p, maxsize); if (p && xdrs->x_op == __sanitizer_XDR_DECODE) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, p, sizeof(*p)); if (res && *p) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, *p, REAL(strlen)(*p) + 1); } return res; } #define INIT_XDR \ COMMON_INTERCEPT_FUNCTION(xdrmem_create); \ COMMON_INTERCEPT_FUNCTION(xdrstdio_create); \ COMMON_INTERCEPT_FUNCTION(xdr_short); \ COMMON_INTERCEPT_FUNCTION(xdr_u_short); \ COMMON_INTERCEPT_FUNCTION(xdr_int); \ COMMON_INTERCEPT_FUNCTION(xdr_u_int); \ COMMON_INTERCEPT_FUNCTION(xdr_long); \ COMMON_INTERCEPT_FUNCTION(xdr_u_long); \ COMMON_INTERCEPT_FUNCTION(xdr_hyper); \ COMMON_INTERCEPT_FUNCTION(xdr_u_hyper); \ COMMON_INTERCEPT_FUNCTION(xdr_longlong_t); \ COMMON_INTERCEPT_FUNCTION(xdr_u_longlong_t); \ COMMON_INTERCEPT_FUNCTION(xdr_int8_t); \ COMMON_INTERCEPT_FUNCTION(xdr_uint8_t); \ COMMON_INTERCEPT_FUNCTION(xdr_int16_t); \ COMMON_INTERCEPT_FUNCTION(xdr_uint16_t); \ COMMON_INTERCEPT_FUNCTION(xdr_int32_t); \ COMMON_INTERCEPT_FUNCTION(xdr_uint32_t); \ COMMON_INTERCEPT_FUNCTION(xdr_int64_t); \ COMMON_INTERCEPT_FUNCTION(xdr_uint64_t); \ COMMON_INTERCEPT_FUNCTION(xdr_quad_t); \ COMMON_INTERCEPT_FUNCTION(xdr_u_quad_t); \ COMMON_INTERCEPT_FUNCTION(xdr_bool); \ COMMON_INTERCEPT_FUNCTION(xdr_enum); \ COMMON_INTERCEPT_FUNCTION(xdr_char); \ COMMON_INTERCEPT_FUNCTION(xdr_u_char); \ COMMON_INTERCEPT_FUNCTION(xdr_float); \ COMMON_INTERCEPT_FUNCTION(xdr_double); \ COMMON_INTERCEPT_FUNCTION(xdr_bytes); \ COMMON_INTERCEPT_FUNCTION(xdr_string); #else #define INIT_XDR #endif // SANITIZER_INTERCEPT_XDR #if SANITIZER_INTERCEPT_TSEARCH INTERCEPTOR(void *, tsearch, void *key, void **rootp, int (*compar)(const void *, const void *)) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, tsearch, key, rootp, compar); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. void *res = REAL(tsearch)(key, rootp, compar); if (res && *(void **)res == key) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, res, sizeof(void *)); return res; } #define INIT_TSEARCH COMMON_INTERCEPT_FUNCTION(tsearch); #else #define INIT_TSEARCH #endif #if SANITIZER_INTERCEPT_LIBIO_INTERNALS || SANITIZER_INTERCEPT_FOPEN || \ SANITIZER_INTERCEPT_OPEN_MEMSTREAM void unpoison_file(__sanitizer_FILE *fp) { #if SANITIZER_HAS_STRUCT_FILE COMMON_INTERCEPTOR_INITIALIZE_RANGE(fp, sizeof(*fp)); if (fp->_IO_read_base && fp->_IO_read_base < fp->_IO_read_end) COMMON_INTERCEPTOR_INITIALIZE_RANGE(fp->_IO_read_base, fp->_IO_read_end - fp->_IO_read_base); #endif // SANITIZER_HAS_STRUCT_FILE } #endif #if SANITIZER_INTERCEPT_LIBIO_INTERNALS // These guys are called when a .c source is built with -O2. INTERCEPTOR(int, __uflow, __sanitizer_FILE *fp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, __uflow, fp); int res = REAL(__uflow)(fp); unpoison_file(fp); return res; } INTERCEPTOR(int, __underflow, __sanitizer_FILE *fp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, __underflow, fp); int res = REAL(__underflow)(fp); unpoison_file(fp); return res; } INTERCEPTOR(int, __overflow, __sanitizer_FILE *fp, int ch) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, __overflow, fp, ch); int res = REAL(__overflow)(fp, ch); unpoison_file(fp); return res; } INTERCEPTOR(int, __wuflow, __sanitizer_FILE *fp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, __wuflow, fp); int res = REAL(__wuflow)(fp); unpoison_file(fp); return res; } INTERCEPTOR(int, __wunderflow, __sanitizer_FILE *fp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, __wunderflow, fp); int res = REAL(__wunderflow)(fp); unpoison_file(fp); return res; } INTERCEPTOR(int, __woverflow, __sanitizer_FILE *fp, int ch) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, __woverflow, fp, ch); int res = REAL(__woverflow)(fp, ch); unpoison_file(fp); return res; } #define INIT_LIBIO_INTERNALS \ COMMON_INTERCEPT_FUNCTION(__uflow); \ COMMON_INTERCEPT_FUNCTION(__underflow); \ COMMON_INTERCEPT_FUNCTION(__overflow); \ COMMON_INTERCEPT_FUNCTION(__wuflow); \ COMMON_INTERCEPT_FUNCTION(__wunderflow); \ COMMON_INTERCEPT_FUNCTION(__woverflow); #else #define INIT_LIBIO_INTERNALS #endif #if SANITIZER_INTERCEPT_FOPEN INTERCEPTOR(__sanitizer_FILE *, fopen, const char *path, const char *mode) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, fopen, path, mode); if (path) COMMON_INTERCEPTOR_READ_RANGE(ctx, path, REAL(strlen)(path) + 1); COMMON_INTERCEPTOR_READ_RANGE(ctx, mode, REAL(strlen)(mode) + 1); __sanitizer_FILE *res = REAL(fopen)(path, mode); COMMON_INTERCEPTOR_FILE_OPEN(ctx, res, path); if (res) unpoison_file(res); return res; } INTERCEPTOR(__sanitizer_FILE *, fdopen, int fd, const char *mode) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, fdopen, fd, mode); COMMON_INTERCEPTOR_READ_RANGE(ctx, mode, REAL(strlen)(mode) + 1); __sanitizer_FILE *res = REAL(fdopen)(fd, mode); if (res) unpoison_file(res); return res; } INTERCEPTOR(__sanitizer_FILE *, freopen, const char *path, const char *mode, __sanitizer_FILE *fp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, freopen, path, mode, fp); if (path) COMMON_INTERCEPTOR_READ_RANGE(ctx, path, REAL(strlen)(path) + 1); COMMON_INTERCEPTOR_READ_RANGE(ctx, mode, REAL(strlen)(mode) + 1); COMMON_INTERCEPTOR_FILE_CLOSE(ctx, fp); __sanitizer_FILE *res = REAL(freopen)(path, mode, fp); COMMON_INTERCEPTOR_FILE_OPEN(ctx, res, path); if (res) unpoison_file(res); return res; } #define INIT_FOPEN \ COMMON_INTERCEPT_FUNCTION(fopen); \ COMMON_INTERCEPT_FUNCTION(fdopen); \ COMMON_INTERCEPT_FUNCTION(freopen); #else #define INIT_FOPEN #endif #if SANITIZER_INTERCEPT_FOPEN64 INTERCEPTOR(__sanitizer_FILE *, fopen64, const char *path, const char *mode) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, fopen64, path, mode); COMMON_INTERCEPTOR_READ_RANGE(ctx, path, REAL(strlen)(path) + 1); COMMON_INTERCEPTOR_READ_RANGE(ctx, mode, REAL(strlen)(mode) + 1); __sanitizer_FILE *res = REAL(fopen64)(path, mode); COMMON_INTERCEPTOR_FILE_OPEN(ctx, res, path); if (res) unpoison_file(res); return res; } INTERCEPTOR(__sanitizer_FILE *, freopen64, const char *path, const char *mode, __sanitizer_FILE *fp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, freopen64, path, mode, fp); if (path) COMMON_INTERCEPTOR_READ_RANGE(ctx, path, REAL(strlen)(path) + 1); COMMON_INTERCEPTOR_READ_RANGE(ctx, mode, REAL(strlen)(mode) + 1); COMMON_INTERCEPTOR_FILE_CLOSE(ctx, fp); __sanitizer_FILE *res = REAL(freopen64)(path, mode, fp); COMMON_INTERCEPTOR_FILE_OPEN(ctx, res, path); if (res) unpoison_file(res); return res; } #define INIT_FOPEN64 \ COMMON_INTERCEPT_FUNCTION(fopen64); \ COMMON_INTERCEPT_FUNCTION(freopen64); #else #define INIT_FOPEN64 #endif #if SANITIZER_INTERCEPT_OPEN_MEMSTREAM INTERCEPTOR(__sanitizer_FILE *, open_memstream, char **ptr, SIZE_T *sizeloc) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, open_memstream, ptr, sizeloc); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. __sanitizer_FILE *res = REAL(open_memstream)(ptr, sizeloc); if (res) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, sizeof(*ptr)); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, sizeloc, sizeof(*sizeloc)); unpoison_file(res); FileMetadata file = {ptr, sizeloc}; SetInterceptorMetadata(res, file); } return res; } INTERCEPTOR(__sanitizer_FILE *, open_wmemstream, wchar_t **ptr, SIZE_T *sizeloc) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, open_wmemstream, ptr, sizeloc); __sanitizer_FILE *res = REAL(open_wmemstream)(ptr, sizeloc); if (res) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, sizeof(*ptr)); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, sizeloc, sizeof(*sizeloc)); unpoison_file(res); FileMetadata file = {(char **)ptr, sizeloc}; SetInterceptorMetadata(res, file); } return res; } INTERCEPTOR(__sanitizer_FILE *, fmemopen, void *buf, SIZE_T size, const char *mode) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, fmemopen, buf, size, mode); // FIXME: under ASan the call below may write to freed memory and corrupt // its metadata. See // https://github.com/google/sanitizers/issues/321. __sanitizer_FILE *res = REAL(fmemopen)(buf, size, mode); if (res) unpoison_file(res); return res; } #define INIT_OPEN_MEMSTREAM \ COMMON_INTERCEPT_FUNCTION(open_memstream); \ COMMON_INTERCEPT_FUNCTION(open_wmemstream); \ COMMON_INTERCEPT_FUNCTION(fmemopen); #else #define INIT_OPEN_MEMSTREAM #endif #if SANITIZER_INTERCEPT_OBSTACK static void initialize_obstack(__sanitizer_obstack *obstack) { COMMON_INTERCEPTOR_INITIALIZE_RANGE(obstack, sizeof(*obstack)); if (obstack->chunk) COMMON_INTERCEPTOR_INITIALIZE_RANGE(obstack->chunk, sizeof(*obstack->chunk)); } INTERCEPTOR(int, _obstack_begin_1, __sanitizer_obstack *obstack, int sz, int align, void *(*alloc_fn)(uptr arg, uptr sz), void (*free_fn)(uptr arg, void *p)) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, _obstack_begin_1, obstack, sz, align, alloc_fn, free_fn); int res = REAL(_obstack_begin_1)(obstack, sz, align, alloc_fn, free_fn); if (res) initialize_obstack(obstack); return res; } INTERCEPTOR(int, _obstack_begin, __sanitizer_obstack *obstack, int sz, int align, void *(*alloc_fn)(uptr sz), void (*free_fn)(void *p)) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, _obstack_begin, obstack, sz, align, alloc_fn, free_fn); int res = REAL(_obstack_begin)(obstack, sz, align, alloc_fn, free_fn); if (res) initialize_obstack(obstack); return res; } INTERCEPTOR(void, _obstack_newchunk, __sanitizer_obstack *obstack, int length) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, _obstack_newchunk, obstack, length); REAL(_obstack_newchunk)(obstack, length); if (obstack->chunk) COMMON_INTERCEPTOR_INITIALIZE_RANGE( obstack->chunk, obstack->next_free - (char *)obstack->chunk); } #define INIT_OBSTACK \ COMMON_INTERCEPT_FUNCTION(_obstack_begin_1); \ COMMON_INTERCEPT_FUNCTION(_obstack_begin); \ COMMON_INTERCEPT_FUNCTION(_obstack_newchunk); #else #define INIT_OBSTACK #endif #if SANITIZER_INTERCEPT_FFLUSH INTERCEPTOR(int, fflush, __sanitizer_FILE *fp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, fflush, fp); int res = REAL(fflush)(fp); // FIXME: handle fp == NULL if (fp) { const FileMetadata *m = GetInterceptorMetadata(fp); if (m) COMMON_INTERCEPTOR_INITIALIZE_RANGE(*m->addr, *m->size); } return res; } #define INIT_FFLUSH COMMON_INTERCEPT_FUNCTION(fflush); #else #define INIT_FFLUSH #endif #if SANITIZER_INTERCEPT_FCLOSE INTERCEPTOR(int, fclose, __sanitizer_FILE *fp) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, fclose, fp); COMMON_INTERCEPTOR_FILE_CLOSE(ctx, fp); const FileMetadata *m = GetInterceptorMetadata(fp); int res = REAL(fclose)(fp); if (m) { COMMON_INTERCEPTOR_INITIALIZE_RANGE(*m->addr, *m->size); DeleteInterceptorMetadata(fp); } return res; } #define INIT_FCLOSE COMMON_INTERCEPT_FUNCTION(fclose); #else #define INIT_FCLOSE #endif #if SANITIZER_INTERCEPT_DLOPEN_DLCLOSE INTERCEPTOR(void*, dlopen, const char *filename, int flag) { void *ctx; COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, dlopen, filename, flag); if (filename) COMMON_INTERCEPTOR_READ_STRING(ctx, filename, 0); COMMON_INTERCEPTOR_ON_DLOPEN(filename, flag); void *res = REAL(dlopen)(filename, flag); COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, res); return res; } INTERCEPTOR(int, dlclose, void *handle) { void *ctx; COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, dlclose, handle); int res = REAL(dlclose)(handle); COMMON_INTERCEPTOR_LIBRARY_UNLOADED(); return res; } #define INIT_DLOPEN_DLCLOSE \ COMMON_INTERCEPT_FUNCTION(dlopen); \ COMMON_INTERCEPT_FUNCTION(dlclose); #else #define INIT_DLOPEN_DLCLOSE #endif #if SANITIZER_INTERCEPT_GETPASS INTERCEPTOR(char *, getpass, const char *prompt) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getpass, prompt); if (prompt) COMMON_INTERCEPTOR_READ_RANGE(ctx, prompt, REAL(strlen)(prompt)+1); char *res = REAL(getpass)(prompt); if (res) COMMON_INTERCEPTOR_INITIALIZE_RANGE(res, REAL(strlen)(res)+1); return res; } #define INIT_GETPASS COMMON_INTERCEPT_FUNCTION(getpass); #else #define INIT_GETPASS #endif #if SANITIZER_INTERCEPT_TIMERFD INTERCEPTOR(int, timerfd_settime, int fd, int flags, void *new_value, void *old_value) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, timerfd_settime, fd, flags, new_value, old_value); COMMON_INTERCEPTOR_READ_RANGE(ctx, new_value, struct_itimerspec_sz); int res = REAL(timerfd_settime)(fd, flags, new_value, old_value); if (res != -1 && old_value) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, old_value, struct_itimerspec_sz); return res; } INTERCEPTOR(int, timerfd_gettime, int fd, void *curr_value) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, timerfd_gettime, fd, curr_value); int res = REAL(timerfd_gettime)(fd, curr_value); if (res != -1 && curr_value) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, curr_value, struct_itimerspec_sz); return res; } #define INIT_TIMERFD \ COMMON_INTERCEPT_FUNCTION(timerfd_settime); \ COMMON_INTERCEPT_FUNCTION(timerfd_gettime); #else #define INIT_TIMERFD #endif #if SANITIZER_INTERCEPT_MLOCKX // Linux kernel has a bug that leads to kernel deadlock if a process // maps TBs of memory and then calls mlock(). static void MlockIsUnsupported() { static atomic_uint8_t printed; if (atomic_exchange(&printed, 1, memory_order_relaxed)) return; VPrintf(1, "%s ignores mlock/mlockall/munlock/munlockall\n", SanitizerToolName); } INTERCEPTOR(int, mlock, const void *addr, uptr len) { MlockIsUnsupported(); return 0; } INTERCEPTOR(int, munlock, const void *addr, uptr len) { MlockIsUnsupported(); return 0; } INTERCEPTOR(int, mlockall, int flags) { MlockIsUnsupported(); return 0; } INTERCEPTOR(int, munlockall, void) { MlockIsUnsupported(); return 0; } #define INIT_MLOCKX \ COMMON_INTERCEPT_FUNCTION(mlock); \ COMMON_INTERCEPT_FUNCTION(munlock); \ COMMON_INTERCEPT_FUNCTION(mlockall); \ COMMON_INTERCEPT_FUNCTION(munlockall); #else #define INIT_MLOCKX #endif // SANITIZER_INTERCEPT_MLOCKX #if SANITIZER_INTERCEPT_FOPENCOOKIE struct WrappedCookie { void *real_cookie; __sanitizer_cookie_io_functions_t real_io_funcs; }; static uptr wrapped_read(void *cookie, char *buf, uptr size) { COMMON_INTERCEPTOR_UNPOISON_PARAM(3); WrappedCookie *wrapped_cookie = (WrappedCookie *)cookie; __sanitizer_cookie_io_read real_read = wrapped_cookie->real_io_funcs.read; return real_read ? real_read(wrapped_cookie->real_cookie, buf, size) : 0; } static uptr wrapped_write(void *cookie, const char *buf, uptr size) { COMMON_INTERCEPTOR_UNPOISON_PARAM(3); WrappedCookie *wrapped_cookie = (WrappedCookie *)cookie; __sanitizer_cookie_io_write real_write = wrapped_cookie->real_io_funcs.write; return real_write ? real_write(wrapped_cookie->real_cookie, buf, size) : size; } static int wrapped_seek(void *cookie, u64 *offset, int whence) { COMMON_INTERCEPTOR_UNPOISON_PARAM(3); COMMON_INTERCEPTOR_INITIALIZE_RANGE(offset, sizeof(*offset)); WrappedCookie *wrapped_cookie = (WrappedCookie *)cookie; __sanitizer_cookie_io_seek real_seek = wrapped_cookie->real_io_funcs.seek; return real_seek ? real_seek(wrapped_cookie->real_cookie, offset, whence) : -1; } static int wrapped_close(void *cookie) { COMMON_INTERCEPTOR_UNPOISON_PARAM(1); WrappedCookie *wrapped_cookie = (WrappedCookie *)cookie; __sanitizer_cookie_io_close real_close = wrapped_cookie->real_io_funcs.close; int res = real_close ? real_close(wrapped_cookie->real_cookie) : 0; InternalFree(wrapped_cookie); return res; } INTERCEPTOR(__sanitizer_FILE *, fopencookie, void *cookie, const char *mode, __sanitizer_cookie_io_functions_t io_funcs) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, fopencookie, cookie, mode, io_funcs); WrappedCookie *wrapped_cookie = (WrappedCookie *)InternalAlloc(sizeof(WrappedCookie)); wrapped_cookie->real_cookie = cookie; wrapped_cookie->real_io_funcs = io_funcs; __sanitizer_FILE *res = REAL(fopencookie)(wrapped_cookie, mode, {wrapped_read, wrapped_write, wrapped_seek, wrapped_close}); return res; } #define INIT_FOPENCOOKIE COMMON_INTERCEPT_FUNCTION(fopencookie); #else #define INIT_FOPENCOOKIE #endif // SANITIZER_INTERCEPT_FOPENCOOKIE #if SANITIZER_INTERCEPT_SEM INTERCEPTOR(int, sem_init, __sanitizer_sem_t *s, int pshared, unsigned value) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, sem_init, s, pshared, value); // Workaround a bug in glibc's "old" semaphore implementation by // zero-initializing the sem_t contents. This has to be done here because // interceptors bind to the lowest symbols version by default, hitting the // buggy code path while the non-sanitized build of the same code works fine. REAL(memset)(s, 0, sizeof(*s)); int res = REAL(sem_init)(s, pshared, value); return res; } INTERCEPTOR(int, sem_destroy, __sanitizer_sem_t *s) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, sem_destroy, s); int res = REAL(sem_destroy)(s); return res; } INTERCEPTOR(int, sem_wait, __sanitizer_sem_t *s) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, sem_wait, s); int res = COMMON_INTERCEPTOR_BLOCK_REAL(sem_wait)(s); if (res == 0) { COMMON_INTERCEPTOR_ACQUIRE(ctx, (uptr)s); } return res; } INTERCEPTOR(int, sem_trywait, __sanitizer_sem_t *s) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, sem_trywait, s); int res = COMMON_INTERCEPTOR_BLOCK_REAL(sem_trywait)(s); if (res == 0) { COMMON_INTERCEPTOR_ACQUIRE(ctx, (uptr)s); } return res; } INTERCEPTOR(int, sem_timedwait, __sanitizer_sem_t *s, void *abstime) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, sem_timedwait, s, abstime); COMMON_INTERCEPTOR_READ_RANGE(ctx, abstime, struct_timespec_sz); int res = COMMON_INTERCEPTOR_BLOCK_REAL(sem_timedwait)(s, abstime); if (res == 0) { COMMON_INTERCEPTOR_ACQUIRE(ctx, (uptr)s); } return res; } INTERCEPTOR(int, sem_post, __sanitizer_sem_t *s) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, sem_post, s); COMMON_INTERCEPTOR_RELEASE(ctx, (uptr)s); int res = REAL(sem_post)(s); return res; } INTERCEPTOR(int, sem_getvalue, __sanitizer_sem_t *s, int *sval) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, sem_getvalue, s, sval); int res = REAL(sem_getvalue)(s, sval); if (res == 0) { COMMON_INTERCEPTOR_ACQUIRE(ctx, (uptr)s); COMMON_INTERCEPTOR_WRITE_RANGE(ctx, sval, sizeof(*sval)); } return res; } #define INIT_SEM \ COMMON_INTERCEPT_FUNCTION(sem_init); \ COMMON_INTERCEPT_FUNCTION(sem_destroy); \ COMMON_INTERCEPT_FUNCTION(sem_wait); \ COMMON_INTERCEPT_FUNCTION(sem_trywait); \ COMMON_INTERCEPT_FUNCTION(sem_timedwait); \ COMMON_INTERCEPT_FUNCTION(sem_post); \ COMMON_INTERCEPT_FUNCTION(sem_getvalue); #else #define INIT_SEM #endif // SANITIZER_INTERCEPT_SEM #if SANITIZER_INTERCEPT_PTHREAD_SETCANCEL INTERCEPTOR(int, pthread_setcancelstate, int state, int *oldstate) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, pthread_setcancelstate, state, oldstate); int res = REAL(pthread_setcancelstate)(state, oldstate); if (res == 0) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, oldstate, sizeof(*oldstate)); return res; } INTERCEPTOR(int, pthread_setcanceltype, int type, int *oldtype) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, pthread_setcanceltype, type, oldtype); int res = REAL(pthread_setcanceltype)(type, oldtype); if (res == 0) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, oldtype, sizeof(*oldtype)); return res; } #define INIT_PTHREAD_SETCANCEL \ COMMON_INTERCEPT_FUNCTION(pthread_setcancelstate); \ COMMON_INTERCEPT_FUNCTION(pthread_setcanceltype); #else #define INIT_PTHREAD_SETCANCEL #endif #if SANITIZER_INTERCEPT_MINCORE INTERCEPTOR(int, mincore, void *addr, uptr length, unsigned char *vec) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, mincore, addr, length, vec); int res = REAL(mincore)(addr, length, vec); if (res == 0) { uptr page_size = GetPageSizeCached(); uptr vec_size = ((length + page_size - 1) & (~(page_size - 1))) / page_size; COMMON_INTERCEPTOR_WRITE_RANGE(ctx, vec, vec_size); } return res; } #define INIT_MINCORE COMMON_INTERCEPT_FUNCTION(mincore); #else #define INIT_MINCORE #endif #if SANITIZER_INTERCEPT_PROCESS_VM_READV INTERCEPTOR(SSIZE_T, process_vm_readv, int pid, __sanitizer_iovec *local_iov, uptr liovcnt, __sanitizer_iovec *remote_iov, uptr riovcnt, uptr flags) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, process_vm_readv, pid, local_iov, liovcnt, remote_iov, riovcnt, flags); SSIZE_T res = REAL(process_vm_readv)(pid, local_iov, liovcnt, remote_iov, riovcnt, flags); if (res > 0) write_iovec(ctx, local_iov, liovcnt, res); return res; } INTERCEPTOR(SSIZE_T, process_vm_writev, int pid, __sanitizer_iovec *local_iov, uptr liovcnt, __sanitizer_iovec *remote_iov, uptr riovcnt, uptr flags) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, process_vm_writev, pid, local_iov, liovcnt, remote_iov, riovcnt, flags); SSIZE_T res = REAL(process_vm_writev)(pid, local_iov, liovcnt, remote_iov, riovcnt, flags); if (res > 0) read_iovec(ctx, local_iov, liovcnt, res); return res; } #define INIT_PROCESS_VM_READV \ COMMON_INTERCEPT_FUNCTION(process_vm_readv); \ COMMON_INTERCEPT_FUNCTION(process_vm_writev); #else #define INIT_PROCESS_VM_READV #endif #if SANITIZER_INTERCEPT_CTERMID INTERCEPTOR(char *, ctermid, char *s) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, ctermid, s); char *res = REAL(ctermid)(s); if (res) { COMMON_INTERCEPTOR_INITIALIZE_RANGE(res, REAL(strlen)(res) + 1); } return res; } #define INIT_CTERMID COMMON_INTERCEPT_FUNCTION(ctermid); #else #define INIT_CTERMID #endif #if SANITIZER_INTERCEPT_CTERMID_R INTERCEPTOR(char *, ctermid_r, char *s) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, ctermid_r, s); char *res = REAL(ctermid_r)(s); if (res) { COMMON_INTERCEPTOR_INITIALIZE_RANGE(res, REAL(strlen)(res) + 1); } return res; } #define INIT_CTERMID_R COMMON_INTERCEPT_FUNCTION(ctermid_r); #else #define INIT_CTERMID_R #endif #if SANITIZER_INTERCEPT_RECV_RECVFROM INTERCEPTOR(SSIZE_T, recv, int fd, void *buf, SIZE_T len, int flags) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, recv, fd, buf, len, flags); COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd); SSIZE_T res = REAL(recv)(fd, buf, len, flags); if (res > 0) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, Min((SIZE_T)res, len)); } if (res >= 0 && fd >= 0) COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd); return res; } INTERCEPTOR(SSIZE_T, recvfrom, int fd, void *buf, SIZE_T len, int flags, void *srcaddr, int *addrlen) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, recvfrom, fd, buf, len, flags, srcaddr, addrlen); COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd); SIZE_T srcaddr_sz; if (srcaddr) srcaddr_sz = *addrlen; (void)srcaddr_sz; // prevent "set but not used" warning SSIZE_T res = REAL(recvfrom)(fd, buf, len, flags, srcaddr, addrlen); if (res > 0) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, Min((SIZE_T)res, len)); if (srcaddr) COMMON_INTERCEPTOR_INITIALIZE_RANGE(srcaddr, Min((SIZE_T)*addrlen, srcaddr_sz)); } return res; } #define INIT_RECV_RECVFROM \ COMMON_INTERCEPT_FUNCTION(recv); \ COMMON_INTERCEPT_FUNCTION(recvfrom); #else #define INIT_RECV_RECVFROM #endif #if SANITIZER_INTERCEPT_SEND_SENDTO INTERCEPTOR(SSIZE_T, send, int fd, void *buf, SIZE_T len, int flags) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, send, fd, buf, len, flags); if (fd >= 0) { COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd); COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd); } SSIZE_T res = REAL(send)(fd, buf, len, flags); if (common_flags()->intercept_send && res > 0) COMMON_INTERCEPTOR_READ_RANGE(ctx, buf, Min((SIZE_T)res, len)); return res; } INTERCEPTOR(SSIZE_T, sendto, int fd, void *buf, SIZE_T len, int flags, void *dstaddr, int addrlen) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, sendto, fd, buf, len, flags, dstaddr, addrlen); if (fd >= 0) { COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd); COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd); } // Can't check dstaddr as it may have uninitialized padding at the end. SSIZE_T res = REAL(sendto)(fd, buf, len, flags, dstaddr, addrlen); if (common_flags()->intercept_send && res > 0) COMMON_INTERCEPTOR_READ_RANGE(ctx, buf, Min((SIZE_T)res, len)); return res; } #define INIT_SEND_SENDTO \ COMMON_INTERCEPT_FUNCTION(send); \ COMMON_INTERCEPT_FUNCTION(sendto); #else #define INIT_SEND_SENDTO #endif #if SANITIZER_INTERCEPT_EVENTFD_READ_WRITE INTERCEPTOR(int, eventfd_read, int fd, u64 *value) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, eventfd_read, fd, value); COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd); int res = REAL(eventfd_read)(fd, value); if (res == 0) { COMMON_INTERCEPTOR_WRITE_RANGE(ctx, value, sizeof(*value)); if (fd >= 0) COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd); } return res; } INTERCEPTOR(int, eventfd_write, int fd, u64 value) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, eventfd_write, fd, value); if (fd >= 0) { COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd); COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd); } int res = REAL(eventfd_write)(fd, value); return res; } #define INIT_EVENTFD_READ_WRITE \ COMMON_INTERCEPT_FUNCTION(eventfd_read); \ COMMON_INTERCEPT_FUNCTION(eventfd_write) #else #define INIT_EVENTFD_READ_WRITE #endif #if SANITIZER_INTERCEPT_STAT INTERCEPTOR(int, stat, const char *path, void *buf) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, stat, path, buf); if (common_flags()->intercept_stat) COMMON_INTERCEPTOR_READ_STRING(ctx, path, 0); int res = REAL(stat)(path, buf); if (!res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, __sanitizer::struct_stat_sz); return res; } #define INIT_STAT COMMON_INTERCEPT_FUNCTION(stat) #else #define INIT_STAT #endif #if SANITIZER_INTERCEPT___XSTAT INTERCEPTOR(int, __xstat, int version, const char *path, void *buf) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, __xstat, version, path, buf); if (common_flags()->intercept_stat) COMMON_INTERCEPTOR_READ_STRING(ctx, path, 0); int res = REAL(__xstat)(version, path, buf); if (!res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, __sanitizer::struct_stat_sz); return res; } #define INIT___XSTAT COMMON_INTERCEPT_FUNCTION(__xstat) #else #define INIT___XSTAT #endif #if SANITIZER_INTERCEPT___XSTAT64 INTERCEPTOR(int, __xstat64, int version, const char *path, void *buf) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, __xstat64, version, path, buf); if (common_flags()->intercept_stat) COMMON_INTERCEPTOR_READ_STRING(ctx, path, 0); int res = REAL(__xstat64)(version, path, buf); if (!res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, __sanitizer::struct_stat64_sz); return res; } #define INIT___XSTAT64 COMMON_INTERCEPT_FUNCTION(__xstat64) #else #define INIT___XSTAT64 #endif #if SANITIZER_INTERCEPT___LXSTAT INTERCEPTOR(int, __lxstat, int version, const char *path, void *buf) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, __lxstat, version, path, buf); if (common_flags()->intercept_stat) COMMON_INTERCEPTOR_READ_STRING(ctx, path, 0); int res = REAL(__lxstat)(version, path, buf); if (!res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, __sanitizer::struct_stat_sz); return res; } #define INIT___LXSTAT COMMON_INTERCEPT_FUNCTION(__lxstat) #else #define INIT___LXSTAT #endif #if SANITIZER_INTERCEPT___LXSTAT64 INTERCEPTOR(int, __lxstat64, int version, const char *path, void *buf) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, __lxstat64, version, path, buf); if (common_flags()->intercept_stat) COMMON_INTERCEPTOR_READ_STRING(ctx, path, 0); int res = REAL(__lxstat64)(version, path, buf); if (!res) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, buf, __sanitizer::struct_stat64_sz); return res; } #define INIT___LXSTAT64 COMMON_INTERCEPT_FUNCTION(__lxstat64) #else #define INIT___LXSTAT64 #endif // FIXME: add other *stat interceptor #if SANITIZER_INTERCEPT_UTMP INTERCEPTOR(void *, getutent, int dummy) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getutent, dummy); void *res = REAL(getutent)(dummy); if (res) COMMON_INTERCEPTOR_INITIALIZE_RANGE(res, __sanitizer::struct_utmp_sz); return res; } INTERCEPTOR(void *, getutid, void *ut) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getutid, ut); void *res = REAL(getutid)(ut); if (res) COMMON_INTERCEPTOR_INITIALIZE_RANGE(res, __sanitizer::struct_utmp_sz); return res; } INTERCEPTOR(void *, getutline, void *ut) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getutline, ut); void *res = REAL(getutline)(ut); if (res) COMMON_INTERCEPTOR_INITIALIZE_RANGE(res, __sanitizer::struct_utmp_sz); return res; } #define INIT_UTMP \ COMMON_INTERCEPT_FUNCTION(getutent); \ COMMON_INTERCEPT_FUNCTION(getutid); \ COMMON_INTERCEPT_FUNCTION(getutline); #else #define INIT_UTMP #endif #if SANITIZER_INTERCEPT_UTMPX INTERCEPTOR(void *, getutxent, int dummy) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getutxent, dummy); void *res = REAL(getutxent)(dummy); if (res) COMMON_INTERCEPTOR_INITIALIZE_RANGE(res, __sanitizer::struct_utmpx_sz); return res; } INTERCEPTOR(void *, getutxid, void *ut) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getutxid, ut); void *res = REAL(getutxid)(ut); if (res) COMMON_INTERCEPTOR_INITIALIZE_RANGE(res, __sanitizer::struct_utmpx_sz); return res; } INTERCEPTOR(void *, getutxline, void *ut) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getutxline, ut); void *res = REAL(getutxline)(ut); if (res) COMMON_INTERCEPTOR_INITIALIZE_RANGE(res, __sanitizer::struct_utmpx_sz); return res; } #define INIT_UTMPX \ COMMON_INTERCEPT_FUNCTION(getutxent); \ COMMON_INTERCEPT_FUNCTION(getutxid); \ COMMON_INTERCEPT_FUNCTION(getutxline); #else #define INIT_UTMPX #endif #if SANITIZER_INTERCEPT_GETLOADAVG INTERCEPTOR(int, getloadavg, double *loadavg, int nelem) { void *ctx; COMMON_INTERCEPTOR_ENTER(ctx, getloadavg, loadavg, nelem); int res = REAL(getloadavg)(loadavg, nelem); if (res > 0) COMMON_INTERCEPTOR_WRITE_RANGE(ctx, loadavg, res * sizeof(*loadavg)); return res; } #define INIT_GETLOADAVG \ COMMON_INTERCEPT_FUNCTION(getloadavg); #else #define INIT_GETLOADAVG #endif #if SANITIZER_INTERCEPT_MCHECK_MPROBE INTERCEPTOR(int, mcheck, void (*abortfunc)(int mstatus)) { return 0; } INTERCEPTOR(int, mcheck_pedantic, void (*abortfunc)(int mstatus)) { return 0; } INTERCEPTOR(int, mprobe, void *ptr) { return 0; } #endif static void InitializeCommonInterceptors() { static u64 metadata_mem[sizeof(MetadataHashMap) / sizeof(u64) + 1]; interceptor_metadata_map = new((void *)&metadata_mem) MetadataHashMap(); INIT_TEXTDOMAIN; INIT_STRLEN; INIT_STRNLEN; - INIT_STRNDUP; - INIT___STRNDUP; INIT_STRCMP; INIT_STRNCMP; INIT_STRCASECMP; INIT_STRNCASECMP; INIT_STRSTR; INIT_STRCASESTR; INIT_STRCHR; INIT_STRCHRNUL; INIT_STRRCHR; INIT_STRSPN; INIT_STRTOK; INIT_STRPBRK; INIT_MEMSET; INIT_MEMMOVE; INIT_MEMCPY; INIT_MEMCHR; INIT_MEMCMP; INIT_MEMRCHR; INIT_MEMMEM; INIT_READ; INIT_FREAD; INIT_PREAD; INIT_PREAD64; INIT_READV; INIT_PREADV; INIT_PREADV64; INIT_WRITE; INIT_FWRITE; INIT_PWRITE; INIT_PWRITE64; INIT_WRITEV; INIT_PWRITEV; INIT_PWRITEV64; INIT_PRCTL; INIT_LOCALTIME_AND_FRIENDS; INIT_STRPTIME; INIT_SCANF; INIT_ISOC99_SCANF; INIT_PRINTF; INIT_PRINTF_L; INIT_ISOC99_PRINTF; INIT_FREXP; INIT_FREXPF_FREXPL; INIT_GETPWNAM_AND_FRIENDS; INIT_GETPWNAM_R_AND_FRIENDS; INIT_GETPWENT; INIT_FGETPWENT; INIT_GETPWENT_R; INIT_SETPWENT; INIT_CLOCK_GETTIME; INIT_GETITIMER; INIT_TIME; INIT_GLOB; INIT_WAIT; INIT_WAIT4; INIT_INET; INIT_PTHREAD_GETSCHEDPARAM; INIT_GETADDRINFO; INIT_GETNAMEINFO; INIT_GETSOCKNAME; INIT_GETHOSTBYNAME; INIT_GETHOSTBYNAME_R; INIT_GETHOSTBYNAME2_R; INIT_GETHOSTBYADDR_R; INIT_GETHOSTENT_R; INIT_GETSOCKOPT; INIT_ACCEPT; INIT_ACCEPT4; INIT_MODF; INIT_RECVMSG; INIT_SENDMSG; INIT_GETPEERNAME; INIT_IOCTL; INIT_INET_ATON; INIT_SYSINFO; INIT_READDIR; INIT_READDIR64; INIT_PTRACE; INIT_SETLOCALE; INIT_GETCWD; INIT_GET_CURRENT_DIR_NAME; INIT_STRTOIMAX; INIT_MBSTOWCS; INIT_MBSNRTOWCS; INIT_WCSTOMBS; INIT_WCSNRTOMBS; INIT_WCRTOMB; INIT_TCGETATTR; INIT_REALPATH; INIT_CANONICALIZE_FILE_NAME; INIT_CONFSTR; INIT_SCHED_GETAFFINITY; INIT_SCHED_GETPARAM; INIT_STRERROR; INIT_STRERROR_R; INIT_XPG_STRERROR_R; INIT_SCANDIR; INIT_SCANDIR64; INIT_GETGROUPS; INIT_POLL; INIT_PPOLL; INIT_WORDEXP; INIT_SIGWAIT; INIT_SIGWAITINFO; INIT_SIGTIMEDWAIT; INIT_SIGSETOPS; INIT_SIGPENDING; INIT_SIGPROCMASK; INIT_BACKTRACE; INIT__EXIT; INIT_PTHREAD_MUTEX_LOCK; INIT_PTHREAD_MUTEX_UNLOCK; INIT_GETMNTENT; INIT_GETMNTENT_R; INIT_STATFS; INIT_STATFS64; INIT_STATVFS; INIT_STATVFS64; INIT_INITGROUPS; INIT_ETHER_NTOA_ATON; INIT_ETHER_HOST; INIT_ETHER_R; INIT_SHMCTL; INIT_RANDOM_R; INIT_PTHREAD_ATTR_GET; INIT_PTHREAD_ATTR_GETINHERITSCHED; INIT_PTHREAD_ATTR_GETAFFINITY_NP; INIT_PTHREAD_MUTEXATTR_GETPSHARED; INIT_PTHREAD_MUTEXATTR_GETTYPE; INIT_PTHREAD_MUTEXATTR_GETPROTOCOL; INIT_PTHREAD_MUTEXATTR_GETPRIOCEILING; INIT_PTHREAD_MUTEXATTR_GETROBUST; INIT_PTHREAD_MUTEXATTR_GETROBUST_NP; INIT_PTHREAD_RWLOCKATTR_GETPSHARED; INIT_PTHREAD_RWLOCKATTR_GETKIND_NP; INIT_PTHREAD_CONDATTR_GETPSHARED; INIT_PTHREAD_CONDATTR_GETCLOCK; INIT_PTHREAD_BARRIERATTR_GETPSHARED; INIT_TMPNAM; INIT_TMPNAM_R; INIT_TTYNAME_R; INIT_TEMPNAM; INIT_PTHREAD_SETNAME_NP; INIT_SINCOS; INIT_REMQUO; INIT_LGAMMA; INIT_LGAMMA_R; INIT_LGAMMAL_R; INIT_DRAND48_R; INIT_RAND_R; INIT_GETLINE; INIT_ICONV; INIT_TIMES; INIT_TLS_GET_ADDR; INIT_LISTXATTR; INIT_GETXATTR; INIT_GETRESID; INIT_GETIFADDRS; INIT_IF_INDEXTONAME; INIT_CAPGET; INIT_AEABI_MEM; INIT___BZERO; INIT_FTIME; INIT_XDR; INIT_TSEARCH; INIT_LIBIO_INTERNALS; INIT_FOPEN; INIT_FOPEN64; INIT_OPEN_MEMSTREAM; INIT_OBSTACK; INIT_FFLUSH; INIT_FCLOSE; INIT_DLOPEN_DLCLOSE; INIT_GETPASS; INIT_TIMERFD; INIT_MLOCKX; INIT_FOPENCOOKIE; INIT_SEM; INIT_PTHREAD_SETCANCEL; INIT_MINCORE; INIT_PROCESS_VM_READV; INIT_CTERMID; INIT_CTERMID_R; INIT_RECV_RECVFROM; INIT_SEND_SENDTO; INIT_STAT; INIT_EVENTFD_READ_WRITE; INIT___XSTAT; INIT___XSTAT64; INIT___LXSTAT; INIT___LXSTAT64; // FIXME: add other *stat interceptors. INIT_UTMP; INIT_UTMPX; INIT_GETLOADAVG; } Index: vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_flag_parser.h =================================================================== --- vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_flag_parser.h (revision 318666) +++ vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_flag_parser.h (revision 318667) @@ -1,122 +1,138 @@ //===-- sanitizer_flag_parser.h ---------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer/AddressSanitizer runtime. // //===----------------------------------------------------------------------===// #ifndef SANITIZER_FLAG_REGISTRY_H #define SANITIZER_FLAG_REGISTRY_H #include "sanitizer_internal_defs.h" #include "sanitizer_libc.h" #include "sanitizer_common.h" namespace __sanitizer { class FlagHandlerBase { public: virtual bool Parse(const char *value) { return false; } }; template class FlagHandler : public FlagHandlerBase { T *t_; public: explicit FlagHandler(T *t) : t_(t) {} bool Parse(const char *value) final; }; -template <> -inline bool FlagHandler::Parse(const char *value) { +inline bool ParseBool(const char *value, bool *b) { if (internal_strcmp(value, "0") == 0 || internal_strcmp(value, "no") == 0 || internal_strcmp(value, "false") == 0) { - *t_ = false; + *b = false; return true; } if (internal_strcmp(value, "1") == 0 || internal_strcmp(value, "yes") == 0 || internal_strcmp(value, "true") == 0) { - *t_ = true; + *b = true; return true; } + return false; +} + +template <> +inline bool FlagHandler::Parse(const char *value) { + if (ParseBool(value, t_)) return true; Printf("ERROR: Invalid value for bool option: '%s'\n", value); + return false; +} + +template <> +inline bool FlagHandler::Parse(const char *value) { + bool b; + if (ParseBool(value, &b)) { + *t_ = b ? kHandleSignalYes : kHandleSignalNo; + return true; + } + Printf("ERROR: Invalid value for signal handler option: '%s'\n", value); return false; } template <> inline bool FlagHandler::Parse(const char *value) { *t_ = internal_strdup(value); return true; } template <> inline bool FlagHandler::Parse(const char *value) { char *value_end; *t_ = internal_simple_strtoll(value, &value_end, 10); bool ok = *value_end == 0; if (!ok) Printf("ERROR: Invalid value for int option: '%s'\n", value); return ok; } template <> inline bool FlagHandler::Parse(const char *value) { char *value_end; *t_ = internal_simple_strtoll(value, &value_end, 10); bool ok = *value_end == 0; if (!ok) Printf("ERROR: Invalid value for uptr option: '%s'\n", value); return ok; } class FlagParser { static const int kMaxFlags = 200; struct Flag { const char *name; const char *desc; FlagHandlerBase *handler; } *flags_; int n_flags_; const char *buf_; uptr pos_; public: FlagParser(); void RegisterHandler(const char *name, FlagHandlerBase *handler, const char *desc); void ParseString(const char *s); bool ParseFile(const char *path, bool ignore_missing); void PrintFlagDescriptions(); static LowLevelAllocator Alloc; private: void fatal_error(const char *err); bool is_space(char c); void skip_whitespace(); void parse_flags(); void parse_flag(); bool run_handler(const char *name, const char *value); char *ll_strndup(const char *s, uptr n); }; template static void RegisterFlag(FlagParser *parser, const char *name, const char *desc, T *var) { FlagHandler *fh = new (FlagParser::Alloc) FlagHandler(var); // NOLINT parser->RegisterHandler(name, fh, desc); } void ReportUnrecognizedFlags(); } // namespace __sanitizer #endif // SANITIZER_FLAG_REGISTRY_H Index: vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_flags.h =================================================================== --- vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_flags.h (revision 318666) +++ vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_flags.h (revision 318667) @@ -1,62 +1,67 @@ //===-- sanitizer_flags.h ---------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer/AddressSanitizer runtime. // //===----------------------------------------------------------------------===// #ifndef SANITIZER_FLAGS_H #define SANITIZER_FLAGS_H #include "sanitizer_internal_defs.h" namespace __sanitizer { +enum HandleSignalMode { + kHandleSignalNo, + kHandleSignalYes, +}; + struct CommonFlags { #define COMMON_FLAG(Type, Name, DefaultValue, Description) Type Name; #include "sanitizer_flags.inc" #undef COMMON_FLAG void SetDefaults(); void CopyFrom(const CommonFlags &other); }; // Functions to get/set global CommonFlags shared by all sanitizer runtimes: extern CommonFlags common_flags_dont_use; inline const CommonFlags *common_flags() { return &common_flags_dont_use; } inline void SetCommonFlagsDefaults() { common_flags_dont_use.SetDefaults(); } // This function can only be used to setup tool-specific overrides for // CommonFlags defaults. Generally, it should only be used right after // SetCommonFlagsDefaults(), but before ParseCommonFlagsFromString(), and // only during the flags initialization (i.e. before they are used for // the first time). inline void OverrideCommonFlags(const CommonFlags &cf) { common_flags_dont_use.CopyFrom(cf); } void SubstituteForFlagValue(const char *s, char *out, uptr out_size); class FlagParser; void RegisterCommonFlags(FlagParser *parser, CommonFlags *cf = &common_flags_dont_use); void RegisterIncludeFlags(FlagParser *parser, CommonFlags *cf); // Should be called after parsing all flags. Sets up common flag values // and perform initializations common to all sanitizers (e.g. setting // verbosity). void InitializeCommonFlags(CommonFlags *cf = &common_flags_dont_use); } // namespace __sanitizer #endif // SANITIZER_FLAGS_H Index: vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_flags.inc =================================================================== --- vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_flags.inc (revision 318666) +++ vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_flags.inc (revision 318667) @@ -1,236 +1,237 @@ //===-- sanitizer_flags.h ---------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes common flags available in all sanitizers. // //===----------------------------------------------------------------------===// #ifndef COMMON_FLAG #error "Define COMMON_FLAG prior to including this file!" #endif // COMMON_FLAG(Type, Name, DefaultValue, Description) // Supported types: bool, const char *, int, uptr. // Default value must be a compile-time constant. // Description must be a string literal. COMMON_FLAG( bool, symbolize, true, "If set, use the online symbolizer from common sanitizer runtime to turn " "virtual addresses to file/line locations.") COMMON_FLAG( const char *, external_symbolizer_path, nullptr, "Path to external symbolizer. If empty, the tool will search $PATH for " "the symbolizer.") COMMON_FLAG( bool, allow_addr2line, false, "If set, allows online symbolizer to run addr2line binary to symbolize " "stack traces (addr2line will only be used if llvm-symbolizer binary is " "unavailable.") COMMON_FLAG(const char *, strip_path_prefix, "", "Strips this prefix from file paths in error reports.") COMMON_FLAG(bool, fast_unwind_on_check, false, "If available, use the fast frame-pointer-based unwinder on " "internal CHECK failures.") COMMON_FLAG(bool, fast_unwind_on_fatal, false, "If available, use the fast frame-pointer-based unwinder on fatal " "errors.") COMMON_FLAG(bool, fast_unwind_on_malloc, true, "If available, use the fast frame-pointer-based unwinder on " "malloc/free.") COMMON_FLAG(bool, handle_ioctl, false, "Intercept and handle ioctl requests.") COMMON_FLAG(int, malloc_context_size, 1, "Max number of stack frames kept for each allocation/deallocation.") COMMON_FLAG( const char *, log_path, "stderr", "Write logs to \"log_path.pid\". The special values are \"stdout\" and " "\"stderr\". The default is \"stderr\".") COMMON_FLAG( bool, log_exe_name, false, "Mention name of executable when reporting error and " "append executable name to logs (as in \"log_path.exe_name.pid\").") COMMON_FLAG( bool, log_to_syslog, SANITIZER_ANDROID || SANITIZER_MAC, "Write all sanitizer output to syslog in addition to other means of " "logging.") COMMON_FLAG( int, verbosity, 0, "Verbosity level (0 - silent, 1 - a bit of output, 2+ - more output).") COMMON_FLAG(bool, detect_leaks, !SANITIZER_MAC, "Enable memory leak detection.") COMMON_FLAG( bool, leak_check_at_exit, true, "Invoke leak checking in an atexit handler. Has no effect if " "detect_leaks=false, or if __lsan_do_leak_check() is called before the " "handler has a chance to run.") COMMON_FLAG(bool, allocator_may_return_null, false, "If false, the allocator will crash instead of returning 0 on " "out-of-memory.") COMMON_FLAG(bool, print_summary, true, "If false, disable printing error summaries in addition to error " "reports.") COMMON_FLAG(int, print_module_map, 0, "OS X only. 0 = don't print, 1 = print only once before process " "exits, 2 = print after each report.") COMMON_FLAG(bool, check_printf, true, "Check printf arguments.") -COMMON_FLAG(bool, handle_segv, true, - "If set, registers the tool's custom SIGSEGV handler.") -COMMON_FLAG(bool, handle_sigbus, true, - "If set, registers the tool's custom SIGBUS handler.") -COMMON_FLAG(bool, handle_abort, false, - "If set, registers the tool's custom SIGABRT handler.") -COMMON_FLAG(bool, handle_sigill, false, - "If set, registers the tool's custom SIGILL handler.") -COMMON_FLAG(bool, handle_sigfpe, true, - "If set, registers the tool's custom SIGFPE handler.") +#define COMMON_FLAG_HANDLE_SIGNAL_HELP(signal) \ + "Controls custom tool's " #signal " handler (0 - do not registers the " \ + "handler, 1 - register the handler). " +COMMON_FLAG(HandleSignalMode, handle_segv, kHandleSignalYes, + COMMON_FLAG_HANDLE_SIGNAL_HELP(SIGSEGV)) +COMMON_FLAG(HandleSignalMode, handle_sigbus, kHandleSignalYes, + COMMON_FLAG_HANDLE_SIGNAL_HELP(SIGBUS)) +COMMON_FLAG(HandleSignalMode, handle_abort, kHandleSignalNo, + COMMON_FLAG_HANDLE_SIGNAL_HELP(SIGABRT)) +COMMON_FLAG(HandleSignalMode, handle_sigill, kHandleSignalNo, + COMMON_FLAG_HANDLE_SIGNAL_HELP(SIGILL)) +COMMON_FLAG(HandleSignalMode, handle_sigfpe, kHandleSignalYes, + COMMON_FLAG_HANDLE_SIGNAL_HELP(SIGFPE)) +#undef COMMON_FLAG_HANDLE_SIGNAL_HELP COMMON_FLAG(bool, allow_user_segv_handler, false, "If set, allows user to register a SEGV handler even if the tool " "registers one.") COMMON_FLAG(bool, use_sigaltstack, true, "If set, uses alternate stack for signal handling.") COMMON_FLAG(bool, detect_deadlocks, false, "If set, deadlock detection is enabled.") COMMON_FLAG( uptr, clear_shadow_mmap_threshold, 64 * 1024, "Large shadow regions are zero-filled using mmap(NORESERVE) instead of " "memset(). This is the threshold size in bytes.") COMMON_FLAG(const char *, color, "auto", "Colorize reports: (always|never|auto).") COMMON_FLAG( bool, legacy_pthread_cond, false, "Enables support for dynamic libraries linked with libpthread 2.2.5.") COMMON_FLAG(bool, intercept_tls_get_addr, false, "Intercept __tls_get_addr.") COMMON_FLAG(bool, help, false, "Print the flag descriptions.") COMMON_FLAG(uptr, mmap_limit_mb, 0, "Limit the amount of mmap-ed memory (excluding shadow) in Mb; " "not a user-facing flag, used mosly for testing the tools") COMMON_FLAG(uptr, hard_rss_limit_mb, 0, "Hard RSS limit in Mb." " If non-zero, a background thread is spawned at startup" " which periodically reads RSS and aborts the process if the" " limit is reached") COMMON_FLAG(uptr, soft_rss_limit_mb, 0, "Soft RSS limit in Mb." " If non-zero, a background thread is spawned at startup" " which periodically reads RSS. If the limit is reached" " all subsequent malloc/new calls will fail or return NULL" " (depending on the value of allocator_may_return_null)" " until the RSS goes below the soft limit." " This limit does not affect memory allocations other than" " malloc/new.") COMMON_FLAG(bool, heap_profile, false, "Experimental heap profiler, asan-only") COMMON_FLAG(s32, allocator_release_to_os_interval_ms, kReleaseToOSIntervalNever, "Experimental. Only affects a 64-bit allocator. If set, tries to " "release unused memory to the OS, but not more often than this " "interval (in milliseconds). Negative values mean do not attempt " "to release memory to the OS.\n") COMMON_FLAG(bool, can_use_proc_maps_statm, true, "If false, do not attempt to read /proc/maps/statm." " Mostly useful for testing sanitizers.") COMMON_FLAG( bool, coverage, false, "If set, coverage information will be dumped at program shutdown (if the " "coverage instrumentation was enabled at compile time).") COMMON_FLAG(bool, coverage_pcs, true, "If set (and if 'coverage' is set too), the coverage information " "will be dumped as a set of PC offsets for every module.") COMMON_FLAG(bool, coverage_order_pcs, false, "If true, the PCs will be dumped in the order they've" " appeared during the execution.") COMMON_FLAG(bool, coverage_direct, SANITIZER_ANDROID, "If set, coverage information will be dumped directly to a memory " "mapped file. This way data is not lost even if the process is " "suddenly killed.") COMMON_FLAG(const char *, coverage_dir, ".", "Target directory for coverage dumps. Defaults to the current " "directory.") COMMON_FLAG(bool, full_address_space, false, "Sanitize complete address space; " "by default kernel area on 32-bit platforms will not be sanitized") COMMON_FLAG(bool, print_suppressions, true, "Print matched suppressions at exit.") COMMON_FLAG( bool, disable_coredump, (SANITIZER_WORDSIZE == 64) && !SANITIZER_GO, "Disable core dumping. By default, disable_coredump=1 on 64-bit to avoid" " dumping a 16T+ core file. Ignored on OSes that don't dump core by" " default and for sanitizers that don't reserve lots of virtual memory.") COMMON_FLAG(bool, use_madv_dontdump, true, "If set, instructs kernel to not store the (huge) shadow " "in core file.") COMMON_FLAG(bool, symbolize_inline_frames, true, "Print inlined frames in stacktraces. Defaults to true.") COMMON_FLAG(bool, symbolize_vs_style, false, "Print file locations in Visual Studio style (e.g: " " file(10,42): ...") COMMON_FLAG(int, dedup_token_length, 0, "If positive, after printing a stack trace also print a short " "string token based on this number of frames that will simplify " "deduplication of the reports. " "Example: 'DEDUP_TOKEN: foo-bar-main'. Default is 0.") COMMON_FLAG(const char *, stack_trace_format, "DEFAULT", "Format string used to render stack frames. " "See sanitizer_stacktrace_printer.h for the format description. " "Use DEFAULT to get default format.") COMMON_FLAG(bool, no_huge_pages_for_shadow, true, "If true, the shadow is not allowed to use huge pages. ") COMMON_FLAG(bool, strict_string_checks, false, "If set check that string arguments are properly null-terminated") COMMON_FLAG(bool, intercept_strstr, true, "If set, uses custom wrappers for strstr and strcasestr functions " "to find more errors.") COMMON_FLAG(bool, intercept_strspn, true, "If set, uses custom wrappers for strspn and strcspn function " "to find more errors.") COMMON_FLAG(bool, intercept_strtok, true, "If set, uses a custom wrapper for the strtok function " "to find more errors.") COMMON_FLAG(bool, intercept_strpbrk, true, "If set, uses custom wrappers for strpbrk function " "to find more errors.") COMMON_FLAG(bool, intercept_strlen, true, "If set, uses custom wrappers for strlen and strnlen functions " - "to find more errors.") -COMMON_FLAG(bool, intercept_strndup, true, - "If set, uses custom wrappers for strndup functions " "to find more errors.") COMMON_FLAG(bool, intercept_strchr, true, "If set, uses custom wrappers for strchr, strchrnul, and strrchr " "functions to find more errors.") COMMON_FLAG(bool, intercept_memcmp, true, "If set, uses custom wrappers for memcmp function " "to find more errors.") COMMON_FLAG(bool, strict_memcmp, true, "If true, assume that memcmp(p1, p2, n) always reads n bytes before " "comparing p1 and p2.") COMMON_FLAG(bool, intercept_memmem, true, "If set, uses a wrapper for memmem() to find more errors.") COMMON_FLAG(bool, intercept_intrin, true, "If set, uses custom wrappers for memset/memcpy/memmove " "intrinsics to find more errors.") COMMON_FLAG(bool, intercept_stat, true, "If set, uses custom wrappers for *stat functions " "to find more errors.") COMMON_FLAG(bool, intercept_send, true, "If set, uses custom wrappers for send* functions " "to find more errors.") COMMON_FLAG(bool, decorate_proc_maps, false, "If set, decorate sanitizer " "mappings in /proc/self/maps with " "user-readable names") COMMON_FLAG(int, exitcode, 1, "Override the program exit status if the tool " "found an error") COMMON_FLAG( bool, abort_on_error, SANITIZER_ANDROID || SANITIZER_MAC, "If set, the tool calls abort() instead of _exit() after printing the " "error report.") COMMON_FLAG(bool, suppress_equal_pcs, true, "Deduplicate multiple reports for single source location in " "halt_on_error=false mode (asan only).") COMMON_FLAG(bool, print_cmdline, false, "Print command line on crash " "(asan only).") COMMON_FLAG(bool, html_cov_report, false, "Generate html coverage report.") COMMON_FLAG(const char *, sancov_path, "sancov", "Sancov tool location.") Index: vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_linux.cc =================================================================== --- vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_linux.cc (revision 318666) +++ vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_linux.cc (revision 318667) @@ -1,1596 +1,1600 @@ //===-- sanitizer_linux.cc ------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is shared between AddressSanitizer and ThreadSanitizer // run-time libraries and implements linux-specific functions from // sanitizer_libc.h. //===----------------------------------------------------------------------===// #include "sanitizer_platform.h" #if SANITIZER_FREEBSD || SANITIZER_LINUX #include "sanitizer_common.h" #include "sanitizer_flags.h" #include "sanitizer_internal_defs.h" #include "sanitizer_libc.h" #include "sanitizer_linux.h" #include "sanitizer_mutex.h" #include "sanitizer_placement_new.h" #include "sanitizer_procmaps.h" #include "sanitizer_stacktrace.h" #include "sanitizer_symbolizer.h" #if !SANITIZER_FREEBSD #include #endif // For mips64, syscall(__NR_stat) fills the buffer in the 'struct kernel_stat' // format. Struct kernel_stat is defined as 'struct stat' in asm/stat.h. To // access stat from asm/stat.h, without conflicting with definition in // sys/stat.h, we use this trick. #if defined(__mips64) #include #include #define stat kernel_stat #include #undef stat #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if SANITIZER_FREEBSD #include #include #include #include #include extern "C" { // must be included after and on // FreeBSD 9.2 and 10.0. #include } extern char **environ; // provided by crt1 #endif // SANITIZER_FREEBSD #if !SANITIZER_ANDROID #include #endif #ifndef __GLIBC_PREREQ #define __GLIBC_PREREQ(x, y) 0 #endif #if SANITIZER_LINUX && __GLIBC_PREREQ(2, 16) # define SANITIZER_USE_GETAUXVAL 1 #else # define SANITIZER_USE_GETAUXVAL 0 #endif #if SANITIZER_USE_GETAUXVAL #include #endif #if SANITIZER_LINUX // struct kernel_timeval { long tv_sec; long tv_usec; }; // is broken on some linux distributions. const int FUTEX_WAIT = 0; const int FUTEX_WAKE = 1; #endif // SANITIZER_LINUX // Are we using 32-bit or 64-bit Linux syscalls? // x32 (which defines __x86_64__) has SANITIZER_WORDSIZE == 32 // but it still needs to use 64-bit syscalls. #if SANITIZER_LINUX && (defined(__x86_64__) || defined(__powerpc64__) || \ SANITIZER_WORDSIZE == 64) # define SANITIZER_LINUX_USES_64BIT_SYSCALLS 1 #else # define SANITIZER_LINUX_USES_64BIT_SYSCALLS 0 #endif #if defined(__x86_64__) || SANITIZER_MIPS64 extern "C" { extern void internal_sigreturn(); } #endif namespace __sanitizer { #if SANITIZER_LINUX && defined(__x86_64__) #include "sanitizer_syscall_linux_x86_64.inc" #elif SANITIZER_LINUX && defined(__aarch64__) #include "sanitizer_syscall_linux_aarch64.inc" #else #include "sanitizer_syscall_generic.inc" #endif // --------------- sanitizer_libc.h #if !SANITIZER_S390 uptr internal_mmap(void *addr, uptr length, int prot, int flags, int fd, OFF_T offset) { #if SANITIZER_FREEBSD || SANITIZER_LINUX_USES_64BIT_SYSCALLS return internal_syscall(SYSCALL(mmap), (uptr)addr, length, prot, flags, fd, offset); #else // mmap2 specifies file offset in 4096-byte units. CHECK(IsAligned(offset, 4096)); return internal_syscall(SYSCALL(mmap2), addr, length, prot, flags, fd, offset / 4096); #endif } #endif // !SANITIZER_S390 uptr internal_munmap(void *addr, uptr length) { return internal_syscall(SYSCALL(munmap), (uptr)addr, length); } int internal_mprotect(void *addr, uptr length, int prot) { return internal_syscall(SYSCALL(mprotect), (uptr)addr, length, prot); } uptr internal_close(fd_t fd) { return internal_syscall(SYSCALL(close), fd); } uptr internal_open(const char *filename, int flags) { #if SANITIZER_USES_CANONICAL_LINUX_SYSCALLS return internal_syscall(SYSCALL(openat), AT_FDCWD, (uptr)filename, flags); #else return internal_syscall(SYSCALL(open), (uptr)filename, flags); #endif } uptr internal_open(const char *filename, int flags, u32 mode) { #if SANITIZER_USES_CANONICAL_LINUX_SYSCALLS return internal_syscall(SYSCALL(openat), AT_FDCWD, (uptr)filename, flags, mode); #else return internal_syscall(SYSCALL(open), (uptr)filename, flags, mode); #endif } uptr internal_read(fd_t fd, void *buf, uptr count) { sptr res; HANDLE_EINTR(res, (sptr)internal_syscall(SYSCALL(read), fd, (uptr)buf, count)); return res; } uptr internal_write(fd_t fd, const void *buf, uptr count) { sptr res; HANDLE_EINTR(res, (sptr)internal_syscall(SYSCALL(write), fd, (uptr)buf, count)); return res; } uptr internal_ftruncate(fd_t fd, uptr size) { sptr res; HANDLE_EINTR(res, (sptr)internal_syscall(SYSCALL(ftruncate), fd, (OFF_T)size)); return res; } #if !SANITIZER_LINUX_USES_64BIT_SYSCALLS && !SANITIZER_FREEBSD static void stat64_to_stat(struct stat64 *in, struct stat *out) { internal_memset(out, 0, sizeof(*out)); out->st_dev = in->st_dev; out->st_ino = in->st_ino; out->st_mode = in->st_mode; out->st_nlink = in->st_nlink; out->st_uid = in->st_uid; out->st_gid = in->st_gid; out->st_rdev = in->st_rdev; out->st_size = in->st_size; out->st_blksize = in->st_blksize; out->st_blocks = in->st_blocks; out->st_atime = in->st_atime; out->st_mtime = in->st_mtime; out->st_ctime = in->st_ctime; out->st_ino = in->st_ino; } #endif #if defined(__mips64) static void kernel_stat_to_stat(struct kernel_stat *in, struct stat *out) { internal_memset(out, 0, sizeof(*out)); out->st_dev = in->st_dev; out->st_ino = in->st_ino; out->st_mode = in->st_mode; out->st_nlink = in->st_nlink; out->st_uid = in->st_uid; out->st_gid = in->st_gid; out->st_rdev = in->st_rdev; out->st_size = in->st_size; out->st_blksize = in->st_blksize; out->st_blocks = in->st_blocks; out->st_atime = in->st_atime_nsec; out->st_mtime = in->st_mtime_nsec; out->st_ctime = in->st_ctime_nsec; out->st_ino = in->st_ino; } #endif uptr internal_stat(const char *path, void *buf) { #if SANITIZER_FREEBSD return internal_syscall(SYSCALL(stat), path, buf); #elif SANITIZER_USES_CANONICAL_LINUX_SYSCALLS return internal_syscall(SYSCALL(newfstatat), AT_FDCWD, (uptr)path, (uptr)buf, 0); #elif SANITIZER_LINUX_USES_64BIT_SYSCALLS # if defined(__mips64) // For mips64, stat syscall fills buffer in the format of kernel_stat struct kernel_stat kbuf; int res = internal_syscall(SYSCALL(stat), path, &kbuf); kernel_stat_to_stat(&kbuf, (struct stat *)buf); return res; # else return internal_syscall(SYSCALL(stat), (uptr)path, (uptr)buf); # endif #else struct stat64 buf64; int res = internal_syscall(SYSCALL(stat64), path, &buf64); stat64_to_stat(&buf64, (struct stat *)buf); return res; #endif } uptr internal_lstat(const char *path, void *buf) { #if SANITIZER_FREEBSD return internal_syscall(SYSCALL(lstat), path, buf); #elif SANITIZER_USES_CANONICAL_LINUX_SYSCALLS return internal_syscall(SYSCALL(newfstatat), AT_FDCWD, (uptr)path, (uptr)buf, AT_SYMLINK_NOFOLLOW); #elif SANITIZER_LINUX_USES_64BIT_SYSCALLS # if SANITIZER_MIPS64 // For mips64, lstat syscall fills buffer in the format of kernel_stat struct kernel_stat kbuf; int res = internal_syscall(SYSCALL(lstat), path, &kbuf); kernel_stat_to_stat(&kbuf, (struct stat *)buf); return res; # else return internal_syscall(SYSCALL(lstat), (uptr)path, (uptr)buf); # endif #else struct stat64 buf64; int res = internal_syscall(SYSCALL(lstat64), path, &buf64); stat64_to_stat(&buf64, (struct stat *)buf); return res; #endif } uptr internal_fstat(fd_t fd, void *buf) { #if SANITIZER_FREEBSD || SANITIZER_LINUX_USES_64BIT_SYSCALLS # if SANITIZER_MIPS64 // For mips64, fstat syscall fills buffer in the format of kernel_stat struct kernel_stat kbuf; int res = internal_syscall(SYSCALL(fstat), fd, &kbuf); kernel_stat_to_stat(&kbuf, (struct stat *)buf); return res; # else return internal_syscall(SYSCALL(fstat), fd, (uptr)buf); # endif #else struct stat64 buf64; int res = internal_syscall(SYSCALL(fstat64), fd, &buf64); stat64_to_stat(&buf64, (struct stat *)buf); return res; #endif } uptr internal_filesize(fd_t fd) { struct stat st; if (internal_fstat(fd, &st)) return -1; return (uptr)st.st_size; } uptr internal_dup2(int oldfd, int newfd) { #if SANITIZER_USES_CANONICAL_LINUX_SYSCALLS return internal_syscall(SYSCALL(dup3), oldfd, newfd, 0); #else return internal_syscall(SYSCALL(dup2), oldfd, newfd); #endif } uptr internal_readlink(const char *path, char *buf, uptr bufsize) { #if SANITIZER_USES_CANONICAL_LINUX_SYSCALLS return internal_syscall(SYSCALL(readlinkat), AT_FDCWD, (uptr)path, (uptr)buf, bufsize); #else return internal_syscall(SYSCALL(readlink), (uptr)path, (uptr)buf, bufsize); #endif } uptr internal_unlink(const char *path) { #if SANITIZER_USES_CANONICAL_LINUX_SYSCALLS return internal_syscall(SYSCALL(unlinkat), AT_FDCWD, (uptr)path, 0); #else return internal_syscall(SYSCALL(unlink), (uptr)path); #endif } uptr internal_rename(const char *oldpath, const char *newpath) { #if SANITIZER_USES_CANONICAL_LINUX_SYSCALLS return internal_syscall(SYSCALL(renameat), AT_FDCWD, (uptr)oldpath, AT_FDCWD, (uptr)newpath); #else return internal_syscall(SYSCALL(rename), (uptr)oldpath, (uptr)newpath); #endif } uptr internal_sched_yield() { return internal_syscall(SYSCALL(sched_yield)); } void internal__exit(int exitcode) { #if SANITIZER_FREEBSD internal_syscall(SYSCALL(exit), exitcode); #else internal_syscall(SYSCALL(exit_group), exitcode); #endif Die(); // Unreachable. } unsigned int internal_sleep(unsigned int seconds) { struct timespec ts; ts.tv_sec = 1; ts.tv_nsec = 0; int res = internal_syscall(SYSCALL(nanosleep), &ts, &ts); if (res) return ts.tv_sec; return 0; } uptr internal_execve(const char *filename, char *const argv[], char *const envp[]) { return internal_syscall(SYSCALL(execve), (uptr)filename, (uptr)argv, (uptr)envp); } // ----------------- sanitizer_common.h bool FileExists(const char *filename) { struct stat st; #if SANITIZER_USES_CANONICAL_LINUX_SYSCALLS if (internal_syscall(SYSCALL(newfstatat), AT_FDCWD, filename, &st, 0)) #else if (internal_stat(filename, &st)) #endif return false; // Sanity check: filename is a regular file. return S_ISREG(st.st_mode); } tid_t GetTid() { #if SANITIZER_FREEBSD return (uptr)pthread_self(); #else return internal_syscall(SYSCALL(gettid)); #endif } u64 NanoTime() { #if SANITIZER_FREEBSD timeval tv; #else kernel_timeval tv; #endif internal_memset(&tv, 0, sizeof(tv)); internal_syscall(SYSCALL(gettimeofday), (uptr)&tv, 0); return (u64)tv.tv_sec * 1000*1000*1000 + tv.tv_usec * 1000; } // Like getenv, but reads env directly from /proc (on Linux) or parses the // 'environ' array (on FreeBSD) and does not use libc. This function should be // called first inside __asan_init. const char *GetEnv(const char *name) { #if SANITIZER_FREEBSD if (::environ != 0) { uptr NameLen = internal_strlen(name); for (char **Env = ::environ; *Env != 0; Env++) { if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=') return (*Env) + NameLen + 1; } } return 0; // Not found. #elif SANITIZER_LINUX static char *environ; static uptr len; static bool inited; if (!inited) { inited = true; uptr environ_size; if (!ReadFileToBuffer("/proc/self/environ", &environ, &environ_size, &len)) environ = nullptr; } if (!environ || len == 0) return nullptr; uptr namelen = internal_strlen(name); const char *p = environ; while (*p != '\0') { // will happen at the \0\0 that terminates the buffer // proc file has the format NAME=value\0NAME=value\0NAME=value\0... const char* endp = (char*)internal_memchr(p, '\0', len - (p - environ)); if (!endp) // this entry isn't NUL terminated return nullptr; else if (!internal_memcmp(p, name, namelen) && p[namelen] == '=') // Match. return p + namelen + 1; // point after = p = endp + 1; } return nullptr; // Not found. #else #error "Unsupported platform" #endif } #if !SANITIZER_FREEBSD extern "C" { SANITIZER_WEAK_ATTRIBUTE extern void *__libc_stack_end; } #endif #if !SANITIZER_GO && !SANITIZER_FREEBSD static void ReadNullSepFileToArray(const char *path, char ***arr, int arr_size) { char *buff; uptr buff_size; uptr buff_len; *arr = (char **)MmapOrDie(arr_size * sizeof(char *), "NullSepFileArray"); if (!ReadFileToBuffer(path, &buff, &buff_size, &buff_len, 1024 * 1024)) { (*arr)[0] = nullptr; return; } (*arr)[0] = buff; int count, i; for (count = 1, i = 1; ; i++) { if (buff[i] == 0) { if (buff[i+1] == 0) break; (*arr)[count] = &buff[i+1]; CHECK_LE(count, arr_size - 1); // FIXME: make this more flexible. count++; } } (*arr)[count] = nullptr; } #endif static void GetArgsAndEnv(char ***argv, char ***envp) { #if !SANITIZER_FREEBSD #if !SANITIZER_GO if (&__libc_stack_end) { #endif uptr* stack_end = (uptr*)__libc_stack_end; int argc = *stack_end; *argv = (char**)(stack_end + 1); *envp = (char**)(stack_end + argc + 2); #if !SANITIZER_GO } else { static const int kMaxArgv = 2000, kMaxEnvp = 2000; ReadNullSepFileToArray("/proc/self/cmdline", argv, kMaxArgv); ReadNullSepFileToArray("/proc/self/environ", envp, kMaxEnvp); } #endif #else // On FreeBSD, retrieving the argument and environment arrays is done via the // kern.ps_strings sysctl, which returns a pointer to a structure containing // this information. See also . ps_strings *pss; size_t sz = sizeof(pss); if (sysctlbyname("kern.ps_strings", &pss, &sz, NULL, 0) == -1) { Printf("sysctl kern.ps_strings failed\n"); Die(); } *argv = pss->ps_argvstr; *envp = pss->ps_envstr; #endif } char **GetArgv() { char **argv, **envp; GetArgsAndEnv(&argv, &envp); return argv; } void ReExec() { char **argv, **envp; GetArgsAndEnv(&argv, &envp); uptr rv = internal_execve("/proc/self/exe", argv, envp); int rverrno; CHECK_EQ(internal_iserror(rv, &rverrno), true); Printf("execve failed, errno %d\n", rverrno); Die(); } enum MutexState { MtxUnlocked = 0, MtxLocked = 1, MtxSleeping = 2 }; BlockingMutex::BlockingMutex() { internal_memset(this, 0, sizeof(*this)); } void BlockingMutex::Lock() { CHECK_EQ(owner_, 0); atomic_uint32_t *m = reinterpret_cast(&opaque_storage_); if (atomic_exchange(m, MtxLocked, memory_order_acquire) == MtxUnlocked) return; while (atomic_exchange(m, MtxSleeping, memory_order_acquire) != MtxUnlocked) { #if SANITIZER_FREEBSD _umtx_op(m, UMTX_OP_WAIT_UINT, MtxSleeping, 0, 0); #else internal_syscall(SYSCALL(futex), (uptr)m, FUTEX_WAIT, MtxSleeping, 0, 0, 0); #endif } } void BlockingMutex::Unlock() { atomic_uint32_t *m = reinterpret_cast(&opaque_storage_); u32 v = atomic_exchange(m, MtxUnlocked, memory_order_relaxed); CHECK_NE(v, MtxUnlocked); if (v == MtxSleeping) { #if SANITIZER_FREEBSD _umtx_op(m, UMTX_OP_WAKE, 1, 0, 0); #else internal_syscall(SYSCALL(futex), (uptr)m, FUTEX_WAKE, 1, 0, 0, 0); #endif } } void BlockingMutex::CheckLocked() { atomic_uint32_t *m = reinterpret_cast(&opaque_storage_); CHECK_NE(MtxUnlocked, atomic_load(m, memory_order_relaxed)); } // ----------------- sanitizer_linux.h // The actual size of this structure is specified by d_reclen. // Note that getdents64 uses a different structure format. We only provide the // 32-bit syscall here. struct linux_dirent { #if SANITIZER_X32 || defined(__aarch64__) u64 d_ino; u64 d_off; #else unsigned long d_ino; unsigned long d_off; #endif unsigned short d_reclen; #ifdef __aarch64__ unsigned char d_type; #endif char d_name[256]; }; // Syscall wrappers. uptr internal_ptrace(int request, int pid, void *addr, void *data) { return internal_syscall(SYSCALL(ptrace), request, pid, (uptr)addr, (uptr)data); } uptr internal_waitpid(int pid, int *status, int options) { return internal_syscall(SYSCALL(wait4), pid, (uptr)status, options, 0 /* rusage */); } uptr internal_getpid() { return internal_syscall(SYSCALL(getpid)); } uptr internal_getppid() { return internal_syscall(SYSCALL(getppid)); } uptr internal_getdents(fd_t fd, struct linux_dirent *dirp, unsigned int count) { #if SANITIZER_USES_CANONICAL_LINUX_SYSCALLS return internal_syscall(SYSCALL(getdents64), fd, (uptr)dirp, count); #else return internal_syscall(SYSCALL(getdents), fd, (uptr)dirp, count); #endif } uptr internal_lseek(fd_t fd, OFF_T offset, int whence) { return internal_syscall(SYSCALL(lseek), fd, offset, whence); } #if SANITIZER_LINUX uptr internal_prctl(int option, uptr arg2, uptr arg3, uptr arg4, uptr arg5) { return internal_syscall(SYSCALL(prctl), option, arg2, arg3, arg4, arg5); } #endif uptr internal_sigaltstack(const struct sigaltstack *ss, struct sigaltstack *oss) { return internal_syscall(SYSCALL(sigaltstack), (uptr)ss, (uptr)oss); } int internal_fork() { #if SANITIZER_USES_CANONICAL_LINUX_SYSCALLS return internal_syscall(SYSCALL(clone), SIGCHLD, 0); #else return internal_syscall(SYSCALL(fork)); #endif } #if SANITIZER_LINUX #define SA_RESTORER 0x04000000 // Doesn't set sa_restorer if the caller did not set it, so use with caution //(see below). int internal_sigaction_norestorer(int signum, const void *act, void *oldact) { __sanitizer_kernel_sigaction_t k_act, k_oldact; internal_memset(&k_act, 0, sizeof(__sanitizer_kernel_sigaction_t)); internal_memset(&k_oldact, 0, sizeof(__sanitizer_kernel_sigaction_t)); const __sanitizer_sigaction *u_act = (const __sanitizer_sigaction *)act; __sanitizer_sigaction *u_oldact = (__sanitizer_sigaction *)oldact; if (u_act) { k_act.handler = u_act->handler; k_act.sigaction = u_act->sigaction; internal_memcpy(&k_act.sa_mask, &u_act->sa_mask, sizeof(__sanitizer_kernel_sigset_t)); // Without SA_RESTORER kernel ignores the calls (probably returns EINVAL). k_act.sa_flags = u_act->sa_flags | SA_RESTORER; // FIXME: most often sa_restorer is unset, however the kernel requires it // to point to a valid signal restorer that calls the rt_sigreturn syscall. // If sa_restorer passed to the kernel is NULL, the program may crash upon // signal delivery or fail to unwind the stack in the signal handler. // libc implementation of sigaction() passes its own restorer to // rt_sigaction, so we need to do the same (we'll need to reimplement the // restorers; for x86_64 the restorer address can be obtained from // oldact->sa_restorer upon a call to sigaction(xxx, NULL, oldact). #if !SANITIZER_ANDROID || !SANITIZER_MIPS32 k_act.sa_restorer = u_act->sa_restorer; #endif } uptr result = internal_syscall(SYSCALL(rt_sigaction), (uptr)signum, (uptr)(u_act ? &k_act : nullptr), (uptr)(u_oldact ? &k_oldact : nullptr), (uptr)sizeof(__sanitizer_kernel_sigset_t)); if ((result == 0) && u_oldact) { u_oldact->handler = k_oldact.handler; u_oldact->sigaction = k_oldact.sigaction; internal_memcpy(&u_oldact->sa_mask, &k_oldact.sa_mask, sizeof(__sanitizer_kernel_sigset_t)); u_oldact->sa_flags = k_oldact.sa_flags; #if !SANITIZER_ANDROID || !SANITIZER_MIPS32 u_oldact->sa_restorer = k_oldact.sa_restorer; #endif } return result; } // Invokes sigaction via a raw syscall with a restorer, but does not support // all platforms yet. // We disable for Go simply because we have not yet added to buildgo.sh. #if (defined(__x86_64__) || SANITIZER_MIPS64) && !SANITIZER_GO int internal_sigaction_syscall(int signum, const void *act, void *oldact) { if (act == nullptr) return internal_sigaction_norestorer(signum, act, oldact); __sanitizer_sigaction u_adjust; internal_memcpy(&u_adjust, act, sizeof(u_adjust)); #if !SANITIZER_ANDROID || !SANITIZER_MIPS32 if (u_adjust.sa_restorer == nullptr) { u_adjust.sa_restorer = internal_sigreturn; } #endif return internal_sigaction_norestorer(signum, (const void *)&u_adjust, oldact); } #endif // defined(__x86_64__) && !SANITIZER_GO #endif // SANITIZER_LINUX uptr internal_sigprocmask(int how, __sanitizer_sigset_t *set, __sanitizer_sigset_t *oldset) { #if SANITIZER_FREEBSD return internal_syscall(SYSCALL(sigprocmask), how, set, oldset); #else __sanitizer_kernel_sigset_t *k_set = (__sanitizer_kernel_sigset_t *)set; __sanitizer_kernel_sigset_t *k_oldset = (__sanitizer_kernel_sigset_t *)oldset; return internal_syscall(SYSCALL(rt_sigprocmask), (uptr)how, (uptr)&k_set->sig[0], (uptr)&k_oldset->sig[0], sizeof(__sanitizer_kernel_sigset_t)); #endif } void internal_sigfillset(__sanitizer_sigset_t *set) { internal_memset(set, 0xff, sizeof(*set)); } void internal_sigemptyset(__sanitizer_sigset_t *set) { internal_memset(set, 0, sizeof(*set)); } #if SANITIZER_LINUX void internal_sigdelset(__sanitizer_sigset_t *set, int signum) { signum -= 1; CHECK_GE(signum, 0); CHECK_LT(signum, sizeof(*set) * 8); __sanitizer_kernel_sigset_t *k_set = (__sanitizer_kernel_sigset_t *)set; const uptr idx = signum / (sizeof(k_set->sig[0]) * 8); const uptr bit = signum % (sizeof(k_set->sig[0]) * 8); k_set->sig[idx] &= ~(1 << bit); } bool internal_sigismember(__sanitizer_sigset_t *set, int signum) { signum -= 1; CHECK_GE(signum, 0); CHECK_LT(signum, sizeof(*set) * 8); __sanitizer_kernel_sigset_t *k_set = (__sanitizer_kernel_sigset_t *)set; const uptr idx = signum / (sizeof(k_set->sig[0]) * 8); const uptr bit = signum % (sizeof(k_set->sig[0]) * 8); return k_set->sig[idx] & (1 << bit); } #endif // SANITIZER_LINUX // ThreadLister implementation. ThreadLister::ThreadLister(int pid) : pid_(pid), descriptor_(-1), buffer_(4096), error_(true), entry_((struct linux_dirent *)buffer_.data()), bytes_read_(0) { char task_directory_path[80]; internal_snprintf(task_directory_path, sizeof(task_directory_path), "/proc/%d/task/", pid); uptr openrv = internal_open(task_directory_path, O_RDONLY | O_DIRECTORY); if (internal_iserror(openrv)) { error_ = true; Report("Can't open /proc/%d/task for reading.\n", pid); } else { error_ = false; descriptor_ = openrv; } } int ThreadLister::GetNextTID() { int tid = -1; do { if (error_) return -1; if ((char *)entry_ >= &buffer_[bytes_read_] && !GetDirectoryEntries()) return -1; if (entry_->d_ino != 0 && entry_->d_name[0] >= '0' && entry_->d_name[0] <= '9') { // Found a valid tid. tid = (int)internal_atoll(entry_->d_name); } entry_ = (struct linux_dirent *)(((char *)entry_) + entry_->d_reclen); } while (tid < 0); return tid; } void ThreadLister::Reset() { if (error_ || descriptor_ < 0) return; internal_lseek(descriptor_, 0, SEEK_SET); } ThreadLister::~ThreadLister() { if (descriptor_ >= 0) internal_close(descriptor_); } bool ThreadLister::error() { return error_; } bool ThreadLister::GetDirectoryEntries() { CHECK_GE(descriptor_, 0); CHECK_NE(error_, true); bytes_read_ = internal_getdents(descriptor_, (struct linux_dirent *)buffer_.data(), buffer_.size()); if (internal_iserror(bytes_read_)) { Report("Can't read directory entries from /proc/%d/task.\n", pid_); error_ = true; return false; } else if (bytes_read_ == 0) { return false; } entry_ = (struct linux_dirent *)buffer_.data(); return true; } uptr GetPageSize() { // Android post-M sysconf(_SC_PAGESIZE) crashes if called from .preinit_array. #if SANITIZER_ANDROID return 4096; #elif SANITIZER_LINUX && (defined(__x86_64__) || defined(__i386__)) return EXEC_PAGESIZE; #elif SANITIZER_USE_GETAUXVAL return getauxval(AT_PAGESZ); #else return sysconf(_SC_PAGESIZE); // EXEC_PAGESIZE may not be trustworthy. #endif } uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) { #if SANITIZER_FREEBSD const int Mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, -1 }; const char *default_module_name = "kern.proc.pathname"; size_t Size = buf_len; bool IsErr = (sysctl(Mib, ARRAY_SIZE(Mib), buf, &Size, NULL, 0) != 0); int readlink_error = IsErr ? errno : 0; uptr module_name_len = Size; #else const char *default_module_name = "/proc/self/exe"; uptr module_name_len = internal_readlink( default_module_name, buf, buf_len); int readlink_error; bool IsErr = internal_iserror(module_name_len, &readlink_error); #endif if (IsErr) { // We can't read binary name for some reason, assume it's unknown. Report("WARNING: reading executable name failed with errno %d, " "some stack frames may not be symbolized\n", readlink_error); module_name_len = internal_snprintf(buf, buf_len, "%s", default_module_name); CHECK_LT(module_name_len, buf_len); } return module_name_len; } uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) { #if SANITIZER_LINUX char *tmpbuf; uptr tmpsize; uptr tmplen; if (ReadFileToBuffer("/proc/self/cmdline", &tmpbuf, &tmpsize, &tmplen, 1024 * 1024)) { internal_strncpy(buf, tmpbuf, buf_len); UnmapOrDie(tmpbuf, tmpsize); return internal_strlen(buf); } #endif return ReadBinaryName(buf, buf_len); } // Match full names of the form /path/to/base_name{-,.}* bool LibraryNameIs(const char *full_name, const char *base_name) { const char *name = full_name; // Strip path. while (*name != '\0') name++; while (name > full_name && *name != '/') name--; if (*name == '/') name++; uptr base_name_length = internal_strlen(base_name); if (internal_strncmp(name, base_name, base_name_length)) return false; return (name[base_name_length] == '-' || name[base_name_length] == '.'); } #if !SANITIZER_ANDROID // Call cb for each region mapped by map. void ForEachMappedRegion(link_map *map, void (*cb)(const void *, uptr)) { CHECK_NE(map, nullptr); #if !SANITIZER_FREEBSD typedef ElfW(Phdr) Elf_Phdr; typedef ElfW(Ehdr) Elf_Ehdr; #endif // !SANITIZER_FREEBSD char *base = (char *)map->l_addr; Elf_Ehdr *ehdr = (Elf_Ehdr *)base; char *phdrs = base + ehdr->e_phoff; char *phdrs_end = phdrs + ehdr->e_phnum * ehdr->e_phentsize; // Find the segment with the minimum base so we can "relocate" the p_vaddr // fields. Typically ET_DYN objects (DSOs) have base of zero and ET_EXEC // objects have a non-zero base. uptr preferred_base = (uptr)-1; for (char *iter = phdrs; iter != phdrs_end; iter += ehdr->e_phentsize) { Elf_Phdr *phdr = (Elf_Phdr *)iter; if (phdr->p_type == PT_LOAD && preferred_base > (uptr)phdr->p_vaddr) preferred_base = (uptr)phdr->p_vaddr; } // Compute the delta from the real base to get a relocation delta. sptr delta = (uptr)base - preferred_base; // Now we can figure out what the loader really mapped. for (char *iter = phdrs; iter != phdrs_end; iter += ehdr->e_phentsize) { Elf_Phdr *phdr = (Elf_Phdr *)iter; if (phdr->p_type == PT_LOAD) { uptr seg_start = phdr->p_vaddr + delta; uptr seg_end = seg_start + phdr->p_memsz; // None of these values are aligned. We consider the ragged edges of the // load command as defined, since they are mapped from the file. seg_start = RoundDownTo(seg_start, GetPageSizeCached()); seg_end = RoundUpTo(seg_end, GetPageSizeCached()); cb((void *)seg_start, seg_end - seg_start); } } } #endif #if defined(__x86_64__) && SANITIZER_LINUX // We cannot use glibc's clone wrapper, because it messes with the child // task's TLS. It writes the PID and TID of the child task to its thread // descriptor, but in our case the child task shares the thread descriptor with // the parent (because we don't know how to allocate a new thread // descriptor to keep glibc happy). So the stock version of clone(), when // used with CLONE_VM, would end up corrupting the parent's thread descriptor. uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, int *parent_tidptr, void *newtls, int *child_tidptr) { long long res; if (!fn || !child_stack) return -EINVAL; CHECK_EQ(0, (uptr)child_stack % 16); child_stack = (char *)child_stack - 2 * sizeof(unsigned long long); ((unsigned long long *)child_stack)[0] = (uptr)fn; ((unsigned long long *)child_stack)[1] = (uptr)arg; register void *r8 __asm__("r8") = newtls; register int *r10 __asm__("r10") = child_tidptr; __asm__ __volatile__( /* %rax = syscall(%rax = SYSCALL(clone), * %rdi = flags, * %rsi = child_stack, * %rdx = parent_tidptr, * %r8 = new_tls, * %r10 = child_tidptr) */ "syscall\n" /* if (%rax != 0) * return; */ "testq %%rax,%%rax\n" "jnz 1f\n" /* In the child. Terminate unwind chain. */ // XXX: We should also terminate the CFI unwind chain // here. Unfortunately clang 3.2 doesn't support the // necessary CFI directives, so we skip that part. "xorq %%rbp,%%rbp\n" /* Call "fn(arg)". */ "popq %%rax\n" "popq %%rdi\n" "call *%%rax\n" /* Call _exit(%rax). */ "movq %%rax,%%rdi\n" "movq %2,%%rax\n" "syscall\n" /* Return to parent. */ "1:\n" : "=a" (res) : "a"(SYSCALL(clone)), "i"(SYSCALL(exit)), "S"(child_stack), "D"(flags), "d"(parent_tidptr), "r"(r8), "r"(r10) : "rsp", "memory", "r11", "rcx"); return res; } #elif defined(__mips__) uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, int *parent_tidptr, void *newtls, int *child_tidptr) { long long res; if (!fn || !child_stack) return -EINVAL; CHECK_EQ(0, (uptr)child_stack % 16); child_stack = (char *)child_stack - 2 * sizeof(unsigned long long); ((unsigned long long *)child_stack)[0] = (uptr)fn; ((unsigned long long *)child_stack)[1] = (uptr)arg; register void *a3 __asm__("$7") = newtls; register int *a4 __asm__("$8") = child_tidptr; // We don't have proper CFI directives here because it requires alot of code // for very marginal benefits. __asm__ __volatile__( /* $v0 = syscall($v0 = __NR_clone, * $a0 = flags, * $a1 = child_stack, * $a2 = parent_tidptr, * $a3 = new_tls, * $a4 = child_tidptr) */ ".cprestore 16;\n" "move $4,%1;\n" "move $5,%2;\n" "move $6,%3;\n" "move $7,%4;\n" /* Store the fifth argument on stack * if we are using 32-bit abi. */ #if SANITIZER_WORDSIZE == 32 "lw %5,16($29);\n" #else "move $8,%5;\n" #endif "li $2,%6;\n" "syscall;\n" /* if ($v0 != 0) * return; */ "bnez $2,1f;\n" /* Call "fn(arg)". */ #if SANITIZER_WORDSIZE == 32 #ifdef __BIG_ENDIAN__ "lw $25,4($29);\n" "lw $4,12($29);\n" #else "lw $25,0($29);\n" "lw $4,8($29);\n" #endif #else "ld $25,0($29);\n" "ld $4,8($29);\n" #endif "jal $25;\n" /* Call _exit($v0). */ "move $4,$2;\n" "li $2,%7;\n" "syscall;\n" /* Return to parent. */ "1:\n" : "=r" (res) : "r"(flags), "r"(child_stack), "r"(parent_tidptr), "r"(a3), "r"(a4), "i"(__NR_clone), "i"(__NR_exit) : "memory", "$29" ); return res; } #elif defined(__aarch64__) uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, int *parent_tidptr, void *newtls, int *child_tidptr) { long long res; if (!fn || !child_stack) return -EINVAL; CHECK_EQ(0, (uptr)child_stack % 16); child_stack = (char *)child_stack - 2 * sizeof(unsigned long long); ((unsigned long long *)child_stack)[0] = (uptr)fn; ((unsigned long long *)child_stack)[1] = (uptr)arg; register int (*__fn)(void *) __asm__("x0") = fn; register void *__stack __asm__("x1") = child_stack; register int __flags __asm__("x2") = flags; register void *__arg __asm__("x3") = arg; register int *__ptid __asm__("x4") = parent_tidptr; register void *__tls __asm__("x5") = newtls; register int *__ctid __asm__("x6") = child_tidptr; __asm__ __volatile__( "mov x0,x2\n" /* flags */ "mov x2,x4\n" /* ptid */ "mov x3,x5\n" /* tls */ "mov x4,x6\n" /* ctid */ "mov x8,%9\n" /* clone */ "svc 0x0\n" /* if (%r0 != 0) * return %r0; */ "cmp x0, #0\n" "bne 1f\n" /* In the child, now. Call "fn(arg)". */ "ldp x1, x0, [sp], #16\n" "blr x1\n" /* Call _exit(%r0). */ "mov x8, %10\n" "svc 0x0\n" "1:\n" : "=r" (res) : "i"(-EINVAL), "r"(__fn), "r"(__stack), "r"(__flags), "r"(__arg), "r"(__ptid), "r"(__tls), "r"(__ctid), "i"(__NR_clone), "i"(__NR_exit) : "x30", "memory"); return res; } #elif defined(__powerpc64__) uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, int *parent_tidptr, void *newtls, int *child_tidptr) { long long res; // Stack frame structure. #if SANITIZER_PPC64V1 // Back chain == 0 (SP + 112) // Frame (112 bytes): // Parameter save area (SP + 48), 8 doublewords // TOC save area (SP + 40) // Link editor doubleword (SP + 32) // Compiler doubleword (SP + 24) // LR save area (SP + 16) // CR save area (SP + 8) // Back chain (SP + 0) # define FRAME_SIZE 112 # define FRAME_TOC_SAVE_OFFSET 40 #elif SANITIZER_PPC64V2 // Back chain == 0 (SP + 32) // Frame (32 bytes): // TOC save area (SP + 24) // LR save area (SP + 16) // CR save area (SP + 8) // Back chain (SP + 0) # define FRAME_SIZE 32 # define FRAME_TOC_SAVE_OFFSET 24 #else # error "Unsupported PPC64 ABI" #endif if (!fn || !child_stack) return -EINVAL; CHECK_EQ(0, (uptr)child_stack % 16); register int (*__fn)(void *) __asm__("r3") = fn; register void *__cstack __asm__("r4") = child_stack; register int __flags __asm__("r5") = flags; register void *__arg __asm__("r6") = arg; register int *__ptidptr __asm__("r7") = parent_tidptr; register void *__newtls __asm__("r8") = newtls; register int *__ctidptr __asm__("r9") = child_tidptr; __asm__ __volatile__( /* fn and arg are saved across the syscall */ "mr 28, %5\n\t" "mr 27, %8\n\t" /* syscall r0 == __NR_clone r3 == flags r4 == child_stack r5 == parent_tidptr r6 == newtls r7 == child_tidptr */ "mr 3, %7\n\t" "mr 5, %9\n\t" "mr 6, %10\n\t" "mr 7, %11\n\t" "li 0, %3\n\t" "sc\n\t" /* Test if syscall was successful */ "cmpdi cr1, 3, 0\n\t" "crandc cr1*4+eq, cr1*4+eq, cr0*4+so\n\t" "bne- cr1, 1f\n\t" /* Set up stack frame */ "li 29, 0\n\t" "stdu 29, -8(1)\n\t" "stdu 1, -%12(1)\n\t" /* Do the function call */ "std 2, %13(1)\n\t" #if SANITIZER_PPC64V1 "ld 0, 0(28)\n\t" "ld 2, 8(28)\n\t" "mtctr 0\n\t" #elif SANITIZER_PPC64V2 "mr 12, 28\n\t" "mtctr 12\n\t" #else # error "Unsupported PPC64 ABI" #endif "mr 3, 27\n\t" "bctrl\n\t" "ld 2, %13(1)\n\t" /* Call _exit(r3) */ "li 0, %4\n\t" "sc\n\t" /* Return to parent */ "1:\n\t" "mr %0, 3\n\t" : "=r" (res) : "0" (-1), "i" (EINVAL), "i" (__NR_clone), "i" (__NR_exit), "r" (__fn), "r" (__cstack), "r" (__flags), "r" (__arg), "r" (__ptidptr), "r" (__newtls), "r" (__ctidptr), "i" (FRAME_SIZE), "i" (FRAME_TOC_SAVE_OFFSET) : "cr0", "cr1", "memory", "ctr", "r0", "r27", "r28", "r29"); return res; } #elif defined(__i386__) && SANITIZER_LINUX uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, int *parent_tidptr, void *newtls, int *child_tidptr) { int res; if (!fn || !child_stack) return -EINVAL; CHECK_EQ(0, (uptr)child_stack % 16); child_stack = (char *)child_stack - 7 * sizeof(unsigned int); ((unsigned int *)child_stack)[0] = (uptr)flags; ((unsigned int *)child_stack)[1] = (uptr)0; ((unsigned int *)child_stack)[2] = (uptr)fn; ((unsigned int *)child_stack)[3] = (uptr)arg; __asm__ __volatile__( /* %eax = syscall(%eax = SYSCALL(clone), * %ebx = flags, * %ecx = child_stack, * %edx = parent_tidptr, * %esi = new_tls, * %edi = child_tidptr) */ /* Obtain flags */ "movl (%%ecx), %%ebx\n" /* Do the system call */ "pushl %%ebx\n" "pushl %%esi\n" "pushl %%edi\n" /* Remember the flag value. */ "movl %%ebx, (%%ecx)\n" "int $0x80\n" "popl %%edi\n" "popl %%esi\n" "popl %%ebx\n" /* if (%eax != 0) * return; */ "test %%eax,%%eax\n" "jnz 1f\n" /* terminate the stack frame */ "xorl %%ebp,%%ebp\n" /* Call FN. */ "call *%%ebx\n" #ifdef PIC "call here\n" "here:\n" "popl %%ebx\n" "addl $_GLOBAL_OFFSET_TABLE_+[.-here], %%ebx\n" #endif /* Call exit */ "movl %%eax, %%ebx\n" "movl %2, %%eax\n" "int $0x80\n" "1:\n" : "=a" (res) : "a"(SYSCALL(clone)), "i"(SYSCALL(exit)), "c"(child_stack), "d"(parent_tidptr), "S"(newtls), "D"(child_tidptr) : "memory"); return res; } #elif defined(__arm__) && SANITIZER_LINUX uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, int *parent_tidptr, void *newtls, int *child_tidptr) { unsigned int res; if (!fn || !child_stack) return -EINVAL; child_stack = (char *)child_stack - 2 * sizeof(unsigned int); ((unsigned int *)child_stack)[0] = (uptr)fn; ((unsigned int *)child_stack)[1] = (uptr)arg; register int r0 __asm__("r0") = flags; register void *r1 __asm__("r1") = child_stack; register int *r2 __asm__("r2") = parent_tidptr; register void *r3 __asm__("r3") = newtls; register int *r4 __asm__("r4") = child_tidptr; register int r7 __asm__("r7") = __NR_clone; #if __ARM_ARCH > 4 || defined (__ARM_ARCH_4T__) # define ARCH_HAS_BX #endif #if __ARM_ARCH > 4 # define ARCH_HAS_BLX #endif #ifdef ARCH_HAS_BX # ifdef ARCH_HAS_BLX # define BLX(R) "blx " #R "\n" # else # define BLX(R) "mov lr, pc; bx " #R "\n" # endif #else # define BLX(R) "mov lr, pc; mov pc," #R "\n" #endif __asm__ __volatile__( /* %r0 = syscall(%r7 = SYSCALL(clone), * %r0 = flags, * %r1 = child_stack, * %r2 = parent_tidptr, * %r3 = new_tls, * %r4 = child_tidptr) */ /* Do the system call */ "swi 0x0\n" /* if (%r0 != 0) * return %r0; */ "cmp r0, #0\n" "bne 1f\n" /* In the child, now. Call "fn(arg)". */ "ldr r0, [sp, #4]\n" "ldr ip, [sp], #8\n" BLX(ip) /* Call _exit(%r0). */ "mov r7, %7\n" "swi 0x0\n" "1:\n" "mov %0, r0\n" : "=r"(res) : "r"(r0), "r"(r1), "r"(r2), "r"(r3), "r"(r4), "r"(r7), "i"(__NR_exit) : "memory"); return res; } #endif // defined(__x86_64__) && SANITIZER_LINUX #if SANITIZER_ANDROID #if __ANDROID_API__ < 21 extern "C" __attribute__((weak)) int dl_iterate_phdr( int (*)(struct dl_phdr_info *, size_t, void *), void *); #endif static int dl_iterate_phdr_test_cb(struct dl_phdr_info *info, size_t size, void *data) { // Any name starting with "lib" indicates a bug in L where library base names // are returned instead of paths. if (info->dlpi_name && info->dlpi_name[0] == 'l' && info->dlpi_name[1] == 'i' && info->dlpi_name[2] == 'b') { *(bool *)data = true; return 1; } return 0; } static atomic_uint32_t android_api_level; static AndroidApiLevel AndroidDetectApiLevel() { if (!&dl_iterate_phdr) return ANDROID_KITKAT; // K or lower bool base_name_seen = false; dl_iterate_phdr(dl_iterate_phdr_test_cb, &base_name_seen); if (base_name_seen) return ANDROID_LOLLIPOP_MR1; // L MR1 return ANDROID_POST_LOLLIPOP; // post-L // Plain L (API level 21) is completely broken wrt ASan and not very // interesting to detect. } AndroidApiLevel AndroidGetApiLevel() { AndroidApiLevel level = (AndroidApiLevel)atomic_load(&android_api_level, memory_order_relaxed); if (level) return level; level = AndroidDetectApiLevel(); atomic_store(&android_api_level, level, memory_order_relaxed); return level; } #endif bool IsHandledDeadlySignal(int signum) { - if (common_flags()->handle_abort && signum == SIGABRT) - return true; - if (common_flags()->handle_sigill && signum == SIGILL) - return true; - if (common_flags()->handle_sigfpe && signum == SIGFPE) - return true; - if (common_flags()->handle_segv && signum == SIGSEGV) - return true; - return common_flags()->handle_sigbus && signum == SIGBUS; + switch (signum) { + case SIGABRT: + return common_flags()->handle_abort; + case SIGILL: + return common_flags()->handle_sigill; + case SIGFPE: + return common_flags()->handle_sigfpe; + case SIGSEGV: + return common_flags()->handle_segv; + case SIGBUS: + return common_flags()->handle_sigbus; + } + return false; } #if !SANITIZER_GO void *internal_start_thread(void(*func)(void *arg), void *arg) { // Start the thread with signals blocked, otherwise it can steal user signals. __sanitizer_sigset_t set, old; internal_sigfillset(&set); #if SANITIZER_LINUX && !SANITIZER_ANDROID // Glibc uses SIGSETXID signal during setuid call. If this signal is blocked // on any thread, setuid call hangs (see test/tsan/setuid.c). internal_sigdelset(&set, 33); #endif internal_sigprocmask(SIG_SETMASK, &set, &old); void *th; real_pthread_create(&th, nullptr, (void*(*)(void *arg))func, arg); internal_sigprocmask(SIG_SETMASK, &old, nullptr); return th; } void internal_join_thread(void *th) { real_pthread_join(th, nullptr); } #else void *internal_start_thread(void (*func)(void *), void *arg) { return 0; } void internal_join_thread(void *th) {} #endif #if defined(__aarch64__) // Android headers in the older NDK releases miss this definition. struct __sanitizer_esr_context { struct _aarch64_ctx head; uint64_t esr; }; static bool Aarch64GetESR(ucontext_t *ucontext, u64 *esr) { static const u32 kEsrMagic = 0x45535201; u8 *aux = ucontext->uc_mcontext.__reserved; while (true) { _aarch64_ctx *ctx = (_aarch64_ctx *)aux; if (ctx->size == 0) break; if (ctx->magic == kEsrMagic) { *esr = ((__sanitizer_esr_context *)ctx)->esr; return true; } aux += ctx->size; } return false; } #endif SignalContext::WriteFlag SignalContext::GetWriteFlag(void *context) { ucontext_t *ucontext = (ucontext_t *)context; #if defined(__x86_64__) || defined(__i386__) static const uptr PF_WRITE = 1U << 1; #if SANITIZER_FREEBSD uptr err = ucontext->uc_mcontext.mc_err; #else uptr err = ucontext->uc_mcontext.gregs[REG_ERR]; #endif return err & PF_WRITE ? WRITE : READ; #elif defined(__arm__) static const uptr FSR_WRITE = 1U << 11; uptr fsr = ucontext->uc_mcontext.error_code; return fsr & FSR_WRITE ? WRITE : READ; #elif defined(__aarch64__) static const u64 ESR_ELx_WNR = 1U << 6; u64 esr; if (!Aarch64GetESR(ucontext, &esr)) return UNKNOWN; return esr & ESR_ELx_WNR ? WRITE : READ; #else (void)ucontext; return UNKNOWN; // FIXME: Implement. #endif } void SignalContext::DumpAllRegisters(void *context) { // FIXME: Implement this. } void GetPcSpBp(void *context, uptr *pc, uptr *sp, uptr *bp) { #if defined(__arm__) ucontext_t *ucontext = (ucontext_t*)context; *pc = ucontext->uc_mcontext.arm_pc; *bp = ucontext->uc_mcontext.arm_fp; *sp = ucontext->uc_mcontext.arm_sp; #elif defined(__aarch64__) ucontext_t *ucontext = (ucontext_t*)context; *pc = ucontext->uc_mcontext.pc; *bp = ucontext->uc_mcontext.regs[29]; *sp = ucontext->uc_mcontext.sp; #elif defined(__hppa__) ucontext_t *ucontext = (ucontext_t*)context; *pc = ucontext->uc_mcontext.sc_iaoq[0]; /* GCC uses %r3 whenever a frame pointer is needed. */ *bp = ucontext->uc_mcontext.sc_gr[3]; *sp = ucontext->uc_mcontext.sc_gr[30]; #elif defined(__x86_64__) # if SANITIZER_FREEBSD ucontext_t *ucontext = (ucontext_t*)context; *pc = ucontext->uc_mcontext.mc_rip; *bp = ucontext->uc_mcontext.mc_rbp; *sp = ucontext->uc_mcontext.mc_rsp; # else ucontext_t *ucontext = (ucontext_t*)context; *pc = ucontext->uc_mcontext.gregs[REG_RIP]; *bp = ucontext->uc_mcontext.gregs[REG_RBP]; *sp = ucontext->uc_mcontext.gregs[REG_RSP]; # endif #elif defined(__i386__) # if SANITIZER_FREEBSD ucontext_t *ucontext = (ucontext_t*)context; *pc = ucontext->uc_mcontext.mc_eip; *bp = ucontext->uc_mcontext.mc_ebp; *sp = ucontext->uc_mcontext.mc_esp; # else ucontext_t *ucontext = (ucontext_t*)context; *pc = ucontext->uc_mcontext.gregs[REG_EIP]; *bp = ucontext->uc_mcontext.gregs[REG_EBP]; *sp = ucontext->uc_mcontext.gregs[REG_ESP]; # endif #elif defined(__powerpc__) || defined(__powerpc64__) ucontext_t *ucontext = (ucontext_t*)context; *pc = ucontext->uc_mcontext.regs->nip; *sp = ucontext->uc_mcontext.regs->gpr[PT_R1]; // The powerpc{,64}-linux ABIs do not specify r31 as the frame // pointer, but GCC always uses r31 when we need a frame pointer. *bp = ucontext->uc_mcontext.regs->gpr[PT_R31]; #elif defined(__sparc__) ucontext_t *ucontext = (ucontext_t*)context; uptr *stk_ptr; # if defined (__arch64__) *pc = ucontext->uc_mcontext.mc_gregs[MC_PC]; *sp = ucontext->uc_mcontext.mc_gregs[MC_O6]; stk_ptr = (uptr *) (*sp + 2047); *bp = stk_ptr[15]; # else *pc = ucontext->uc_mcontext.gregs[REG_PC]; *sp = ucontext->uc_mcontext.gregs[REG_O6]; stk_ptr = (uptr *) *sp; *bp = stk_ptr[15]; # endif #elif defined(__mips__) ucontext_t *ucontext = (ucontext_t*)context; *pc = ucontext->uc_mcontext.pc; *bp = ucontext->uc_mcontext.gregs[30]; *sp = ucontext->uc_mcontext.gregs[29]; #elif defined(__s390__) ucontext_t *ucontext = (ucontext_t*)context; # if defined(__s390x__) *pc = ucontext->uc_mcontext.psw.addr; # else *pc = ucontext->uc_mcontext.psw.addr & 0x7fffffff; # endif *bp = ucontext->uc_mcontext.gregs[11]; *sp = ucontext->uc_mcontext.gregs[15]; #else # error "Unsupported arch" #endif } void MaybeReexec() { // No need to re-exec on Linux. } void PrintModuleMap() { } void CheckNoDeepBind(const char *filename, int flag) { #ifdef RTLD_DEEPBIND if (flag & RTLD_DEEPBIND) { Report( "You are trying to dlopen a %s shared library with RTLD_DEEPBIND flag" " which is incompatibe with sanitizer runtime " "(see https://github.com/google/sanitizers/issues/611 for details" "). If you want to run %s library under sanitizers please remove " "RTLD_DEEPBIND from dlopen flags.\n", filename, filename); Die(); } #endif } uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding) { UNREACHABLE("FindAvailableMemoryRange is not available"); return 0; } } // namespace __sanitizer #endif // SANITIZER_FREEBSD || SANITIZER_LINUX Index: vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_linux_libcdep.cc =================================================================== --- vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_linux_libcdep.cc (revision 318666) +++ vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_linux_libcdep.cc (revision 318667) @@ -1,559 +1,559 @@ //===-- sanitizer_linux_libcdep.cc ----------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is shared between AddressSanitizer and ThreadSanitizer // run-time libraries and implements linux-specific functions from // sanitizer_libc.h. //===----------------------------------------------------------------------===// #include "sanitizer_platform.h" #if SANITIZER_FREEBSD || SANITIZER_LINUX #include "sanitizer_allocator_internal.h" #include "sanitizer_atomic.h" #include "sanitizer_common.h" #include "sanitizer_flags.h" #include "sanitizer_freebsd.h" #include "sanitizer_linux.h" #include "sanitizer_placement_new.h" #include "sanitizer_procmaps.h" #include "sanitizer_stacktrace.h" #include // for dlsym() #include #include #include #include #include #if SANITIZER_FREEBSD #include #include #define pthread_getattr_np pthread_attr_get_np #endif #if SANITIZER_LINUX #include #endif #if SANITIZER_ANDROID #include #endif #if SANITIZER_ANDROID && __ANDROID_API__ < 21 #include #endif #if !SANITIZER_ANDROID #include #include #endif namespace __sanitizer { SANITIZER_WEAK_ATTRIBUTE int real_sigaction(int signum, const void *act, void *oldact); int internal_sigaction(int signum, const void *act, void *oldact) { #if !SANITIZER_GO if (&real_sigaction) return real_sigaction(signum, act, oldact); #endif return sigaction(signum, (const struct sigaction *)act, (struct sigaction *)oldact); } void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, uptr *stack_bottom) { CHECK(stack_top); CHECK(stack_bottom); if (at_initialization) { // This is the main thread. Libpthread may not be initialized yet. struct rlimit rl; CHECK_EQ(getrlimit(RLIMIT_STACK, &rl), 0); // Find the mapping that contains a stack variable. MemoryMappingLayout proc_maps(/*cache_enabled*/true); uptr start, end, offset; uptr prev_end = 0; while (proc_maps.Next(&start, &end, &offset, nullptr, 0, /* protection */nullptr)) { if ((uptr)&rl < end) break; prev_end = end; } CHECK((uptr)&rl >= start && (uptr)&rl < end); // Get stacksize from rlimit, but clip it so that it does not overlap // with other mappings. uptr stacksize = rl.rlim_cur; if (stacksize > end - prev_end) stacksize = end - prev_end; // When running with unlimited stack size, we still want to set some limit. // The unlimited stack size is caused by 'ulimit -s unlimited'. // Also, for some reason, GNU make spawns subprocesses with unlimited stack. if (stacksize > kMaxThreadStackSize) stacksize = kMaxThreadStackSize; *stack_top = end; *stack_bottom = end - stacksize; return; } pthread_attr_t attr; pthread_attr_init(&attr); CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0); uptr stacksize = 0; void *stackaddr = nullptr; my_pthread_attr_getstack(&attr, &stackaddr, &stacksize); pthread_attr_destroy(&attr); CHECK_LE(stacksize, kMaxThreadStackSize); // Sanity check. *stack_top = (uptr)stackaddr + stacksize; *stack_bottom = (uptr)stackaddr; } #if !SANITIZER_GO bool SetEnv(const char *name, const char *value) { void *f = dlsym(RTLD_NEXT, "setenv"); if (!f) return false; typedef int(*setenv_ft)(const char *name, const char *value, int overwrite); setenv_ft setenv_f; CHECK_EQ(sizeof(setenv_f), sizeof(f)); internal_memcpy(&setenv_f, &f, sizeof(f)); return setenv_f(name, value, 1) == 0; } #endif bool SanitizerSetThreadName(const char *name) { #ifdef PR_SET_NAME return 0 == prctl(PR_SET_NAME, (unsigned long)name, 0, 0, 0); // NOLINT #else return false; #endif } bool SanitizerGetThreadName(char *name, int max_len) { #ifdef PR_GET_NAME char buff[17]; if (prctl(PR_GET_NAME, (unsigned long)buff, 0, 0, 0)) // NOLINT return false; internal_strncpy(name, buff, max_len); name[max_len] = 0; return true; #else return false; #endif } #if !SANITIZER_FREEBSD && !SANITIZER_ANDROID && !SANITIZER_GO static uptr g_tls_size; #ifdef __i386__ # define DL_INTERNAL_FUNCTION __attribute__((regparm(3), stdcall)) #else # define DL_INTERNAL_FUNCTION #endif void InitTlsSize() { // all current supported platforms have 16 bytes stack alignment const size_t kStackAlign = 16; typedef void (*get_tls_func)(size_t*, size_t*) DL_INTERNAL_FUNCTION; get_tls_func get_tls; void *get_tls_static_info_ptr = dlsym(RTLD_NEXT, "_dl_get_tls_static_info"); CHECK_EQ(sizeof(get_tls), sizeof(get_tls_static_info_ptr)); internal_memcpy(&get_tls, &get_tls_static_info_ptr, sizeof(get_tls_static_info_ptr)); CHECK_NE(get_tls, 0); size_t tls_size = 0; size_t tls_align = 0; get_tls(&tls_size, &tls_align); if (tls_align < kStackAlign) tls_align = kStackAlign; g_tls_size = RoundUpTo(tls_size, tls_align); } #else void InitTlsSize() { } #endif // !SANITIZER_FREEBSD && !SANITIZER_ANDROID && !SANITIZER_GO #if (defined(__x86_64__) || defined(__i386__) || defined(__mips__) \ || defined(__aarch64__) || defined(__powerpc64__) || defined(__s390__) \ || defined(__arm__)) && SANITIZER_LINUX && !SANITIZER_ANDROID // sizeof(struct pthread) from glibc. static atomic_uintptr_t kThreadDescriptorSize; uptr ThreadDescriptorSize() { uptr val = atomic_load(&kThreadDescriptorSize, memory_order_relaxed); if (val) return val; #if defined(__x86_64__) || defined(__i386__) || defined(__arm__) #ifdef _CS_GNU_LIBC_VERSION char buf[64]; uptr len = confstr(_CS_GNU_LIBC_VERSION, buf, sizeof(buf)); if (len < sizeof(buf) && internal_strncmp(buf, "glibc 2.", 8) == 0) { char *end; int minor = internal_simple_strtoll(buf + 8, &end, 10); if (end != buf + 8 && (*end == '\0' || *end == '.' || *end == '-')) { int patch = 0; if (*end == '.') // strtoll will return 0 if no valid conversion could be performed patch = internal_simple_strtoll(end + 1, nullptr, 10); /* sizeof(struct pthread) values from various glibc versions. */ if (SANITIZER_X32) val = 1728; // Assume only one particular version for x32. // For ARM sizeof(struct pthread) changed in Glibc 2.23. else if (SANITIZER_ARM) val = minor <= 22 ? 1120 : 1216; else if (minor <= 3) val = FIRST_32_SECOND_64(1104, 1696); else if (minor == 4) val = FIRST_32_SECOND_64(1120, 1728); else if (minor == 5) val = FIRST_32_SECOND_64(1136, 1728); else if (minor <= 9) val = FIRST_32_SECOND_64(1136, 1712); else if (minor == 10) val = FIRST_32_SECOND_64(1168, 1776); else if (minor == 11 || (minor == 12 && patch == 1)) val = FIRST_32_SECOND_64(1168, 2288); else if (minor <= 13) val = FIRST_32_SECOND_64(1168, 2304); else val = FIRST_32_SECOND_64(1216, 2304); } if (val) atomic_store(&kThreadDescriptorSize, val, memory_order_relaxed); return val; } #endif #elif defined(__mips__) // TODO(sagarthakur): add more values as per different glibc versions. val = FIRST_32_SECOND_64(1152, 1776); if (val) atomic_store(&kThreadDescriptorSize, val, memory_order_relaxed); return val; #elif defined(__aarch64__) // The sizeof (struct pthread) is the same from GLIBC 2.17 to 2.22. val = 1776; atomic_store(&kThreadDescriptorSize, val, memory_order_relaxed); return val; #elif defined(__powerpc64__) val = 1776; // from glibc.ppc64le 2.20-8.fc21 atomic_store(&kThreadDescriptorSize, val, memory_order_relaxed); return val; #elif defined(__s390__) val = FIRST_32_SECOND_64(1152, 1776); // valid for glibc 2.22 atomic_store(&kThreadDescriptorSize, val, memory_order_relaxed); #endif return 0; } // The offset at which pointer to self is located in the thread descriptor. const uptr kThreadSelfOffset = FIRST_32_SECOND_64(8, 16); uptr ThreadSelfOffset() { return kThreadSelfOffset; } #if defined(__mips__) || defined(__powerpc64__) // TlsPreTcbSize includes size of struct pthread_descr and size of tcb // head structure. It lies before the static tls blocks. static uptr TlsPreTcbSize() { # if defined(__mips__) const uptr kTcbHead = 16; // sizeof (tcbhead_t) # elif defined(__powerpc64__) const uptr kTcbHead = 88; // sizeof (tcbhead_t) # endif const uptr kTlsAlign = 16; const uptr kTlsPreTcbSize = RoundUpTo(ThreadDescriptorSize() + kTcbHead, kTlsAlign); return kTlsPreTcbSize; } #endif uptr ThreadSelf() { uptr descr_addr; # if defined(__i386__) asm("mov %%gs:%c1,%0" : "=r"(descr_addr) : "i"(kThreadSelfOffset)); # elif defined(__x86_64__) asm("mov %%fs:%c1,%0" : "=r"(descr_addr) : "i"(kThreadSelfOffset)); # elif defined(__mips__) // MIPS uses TLS variant I. The thread pointer (in hardware register $29) // points to the end of the TCB + 0x7000. The pthread_descr structure is // immediately in front of the TCB. TlsPreTcbSize() includes the size of the // TCB and the size of pthread_descr. const uptr kTlsTcbOffset = 0x7000; uptr thread_pointer; asm volatile(".set push;\ .set mips64r2;\ rdhwr %0,$29;\ .set pop" : "=r" (thread_pointer)); descr_addr = thread_pointer - kTlsTcbOffset - TlsPreTcbSize(); # elif defined(__aarch64__) || defined(__arm__) descr_addr = reinterpret_cast(__builtin_thread_pointer()) - ThreadDescriptorSize(); # elif defined(__s390__) descr_addr = reinterpret_cast(__builtin_thread_pointer()); # elif defined(__powerpc64__) // PPC64LE uses TLS variant I. The thread pointer (in GPR 13) // points to the end of the TCB + 0x7000. The pthread_descr structure is // immediately in front of the TCB. TlsPreTcbSize() includes the size of the // TCB and the size of pthread_descr. const uptr kTlsTcbOffset = 0x7000; uptr thread_pointer; asm("addi %0,13,%1" : "=r"(thread_pointer) : "I"(-kTlsTcbOffset)); descr_addr = thread_pointer - TlsPreTcbSize(); # else # error "unsupported CPU arch" # endif return descr_addr; } #endif // (x86_64 || i386 || MIPS) && SANITIZER_LINUX #if SANITIZER_FREEBSD static void **ThreadSelfSegbase() { void **segbase = 0; # if defined(__i386__) // sysarch(I386_GET_GSBASE, segbase); __asm __volatile("mov %%gs:0, %0" : "=r" (segbase)); # elif defined(__x86_64__) // sysarch(AMD64_GET_FSBASE, segbase); __asm __volatile("movq %%fs:0, %0" : "=r" (segbase)); # else # error "unsupported CPU arch for FreeBSD platform" # endif return segbase; } uptr ThreadSelf() { return (uptr)ThreadSelfSegbase()[2]; } #endif // SANITIZER_FREEBSD #if !SANITIZER_GO static void GetTls(uptr *addr, uptr *size) { #if SANITIZER_LINUX && !SANITIZER_ANDROID # if defined(__x86_64__) || defined(__i386__) || defined(__s390__) *addr = ThreadSelf(); *size = GetTlsSize(); *addr -= *size; *addr += ThreadDescriptorSize(); # elif defined(__mips__) || defined(__aarch64__) || defined(__powerpc64__) \ || defined(__arm__) *addr = ThreadSelf(); *size = GetTlsSize(); # else *addr = 0; *size = 0; # endif #elif SANITIZER_FREEBSD void** segbase = ThreadSelfSegbase(); *addr = 0; *size = 0; if (segbase != 0) { // tcbalign = 16 // tls_size = round(tls_static_space, tcbalign); // dtv = segbase[1]; // dtv[2] = segbase - tls_static_space; void **dtv = (void**) segbase[1]; *addr = (uptr) dtv[2]; *size = (*addr == 0) ? 0 : ((uptr) segbase[0] - (uptr) dtv[2]); } #elif SANITIZER_ANDROID *addr = 0; *size = 0; #else # error "Unknown OS" #endif } #endif #if !SANITIZER_GO uptr GetTlsSize() { #if SANITIZER_FREEBSD || SANITIZER_ANDROID uptr addr, size; GetTls(&addr, &size); return size; #elif defined(__mips__) || defined(__powerpc64__) return RoundUpTo(g_tls_size + TlsPreTcbSize(), 16); #else return g_tls_size; #endif } #endif void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, uptr *tls_addr, uptr *tls_size) { #if SANITIZER_GO // Stub implementation for Go. *stk_addr = *stk_size = *tls_addr = *tls_size = 0; #else GetTls(tls_addr, tls_size); uptr stack_top, stack_bottom; GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom); *stk_addr = stack_bottom; *stk_size = stack_top - stack_bottom; if (!main) { // If stack and tls intersect, make them non-intersecting. if (*tls_addr > *stk_addr && *tls_addr < *stk_addr + *stk_size) { CHECK_GT(*tls_addr + *tls_size, *stk_addr); CHECK_LE(*tls_addr + *tls_size, *stk_addr + *stk_size); *stk_size -= *tls_size; *tls_addr = *stk_addr + *stk_size; } } #endif } # if !SANITIZER_FREEBSD typedef ElfW(Phdr) Elf_Phdr; # elif SANITIZER_WORDSIZE == 32 && __FreeBSD_version <= 902001 // v9.2 # define Elf_Phdr XElf32_Phdr # define dl_phdr_info xdl_phdr_info # define dl_iterate_phdr(c, b) xdl_iterate_phdr((c), (b)) # endif struct DlIteratePhdrData { InternalMmapVector *modules; bool first; }; static int dl_iterate_phdr_cb(dl_phdr_info *info, size_t size, void *arg) { DlIteratePhdrData *data = (DlIteratePhdrData*)arg; InternalScopedString module_name(kMaxPathLength); if (data->first) { data->first = false; // First module is the binary itself. ReadBinaryNameCached(module_name.data(), module_name.size()); } else if (info->dlpi_name) { module_name.append("%s", info->dlpi_name); } if (module_name[0] == '\0') return 0; LoadedModule cur_module; cur_module.set(module_name.data(), info->dlpi_addr); for (int i = 0; i < info->dlpi_phnum; i++) { const Elf_Phdr *phdr = &info->dlpi_phdr[i]; if (phdr->p_type == PT_LOAD) { uptr cur_beg = info->dlpi_addr + phdr->p_vaddr; uptr cur_end = cur_beg + phdr->p_memsz; bool executable = phdr->p_flags & PF_X; - bool readable = phdr->p_flags & PF_R; + bool writable = phdr->p_flags & PF_W; cur_module.addAddressRange(cur_beg, cur_end, executable, - readable); + writable); } } data->modules->push_back(cur_module); return 0; } #if SANITIZER_ANDROID && __ANDROID_API__ < 21 extern "C" __attribute__((weak)) int dl_iterate_phdr( int (*)(struct dl_phdr_info *, size_t, void *), void *); #endif void ListOfModules::init() { clear(); #if SANITIZER_ANDROID && __ANDROID_API__ <= 22 u32 api_level = AndroidGetApiLevel(); // Fall back to /proc/maps if dl_iterate_phdr is unavailable or broken. // The runtime check allows the same library to work with // both K and L (and future) Android releases. if (api_level <= ANDROID_LOLLIPOP_MR1) { // L or earlier MemoryMappingLayout memory_mapping(false); memory_mapping.DumpListOfModules(&modules_); return; } #endif DlIteratePhdrData data = {&modules_, true}; dl_iterate_phdr(dl_iterate_phdr_cb, &data); } // getrusage does not give us the current RSS, only the max RSS. // Still, this is better than nothing if /proc/self/statm is not available // for some reason, e.g. due to a sandbox. static uptr GetRSSFromGetrusage() { struct rusage usage; if (getrusage(RUSAGE_SELF, &usage)) // Failed, probably due to a sandbox. return 0; return usage.ru_maxrss << 10; // ru_maxrss is in Kb. } uptr GetRSS() { if (!common_flags()->can_use_proc_maps_statm) return GetRSSFromGetrusage(); fd_t fd = OpenFile("/proc/self/statm", RdOnly); if (fd == kInvalidFd) return GetRSSFromGetrusage(); char buf[64]; uptr len = internal_read(fd, buf, sizeof(buf) - 1); internal_close(fd); if ((sptr)len <= 0) return 0; buf[len] = 0; // The format of the file is: // 1084 89 69 11 0 79 0 // We need the second number which is RSS in pages. char *pos = buf; // Skip the first number. while (*pos >= '0' && *pos <= '9') pos++; // Skip whitespaces. while (!(*pos >= '0' && *pos <= '9') && *pos != 0) pos++; // Read the number. uptr rss = 0; while (*pos >= '0' && *pos <= '9') rss = rss * 10 + *pos++ - '0'; return rss * GetPageSizeCached(); } // 64-bit Android targets don't provide the deprecated __android_log_write. // Starting with the L release, syslog() works and is preferable to // __android_log_write. #if SANITIZER_LINUX #if SANITIZER_ANDROID static atomic_uint8_t android_log_initialized; void AndroidLogInit() { openlog(GetProcessName(), 0, LOG_USER); atomic_store(&android_log_initialized, 1, memory_order_release); } static bool ShouldLogAfterPrintf() { return atomic_load(&android_log_initialized, memory_order_acquire); } #else void AndroidLogInit() {} static bool ShouldLogAfterPrintf() { return true; } #endif // SANITIZER_ANDROID void WriteOneLineToSyslog(const char *s) { #if SANITIZER_ANDROID &&__ANDROID_API__ < 21 __android_log_write(ANDROID_LOG_INFO, NULL, s); #else syslog(LOG_INFO, "%s", s); #endif } void LogMessageOnPrintf(const char *str) { if (common_flags()->log_to_syslog && ShouldLogAfterPrintf()) WriteToSyslog(str); } #endif // SANITIZER_LINUX } // namespace __sanitizer #endif // SANITIZER_FREEBSD || SANITIZER_LINUX Index: vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_mac.cc =================================================================== --- vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_mac.cc (revision 318666) +++ vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_mac.cc (revision 318667) @@ -1,896 +1,900 @@ //===-- sanitizer_mac.cc --------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is shared between various sanitizers' runtime libraries and // implements OSX-specific functions. //===----------------------------------------------------------------------===// #include "sanitizer_platform.h" #if SANITIZER_MAC #include "sanitizer_mac.h" // Use 64-bit inodes in file operations. ASan does not support OS X 10.5, so // the clients will most certainly use 64-bit ones as well. #ifndef _DARWIN_USE_64_BIT_INODE #define _DARWIN_USE_64_BIT_INODE 1 #endif #include #include "sanitizer_common.h" #include "sanitizer_flags.h" #include "sanitizer_internal_defs.h" #include "sanitizer_libc.h" #include "sanitizer_placement_new.h" #include "sanitizer_platform_limits_posix.h" #include "sanitizer_procmaps.h" #if !SANITIZER_IOS #include // for _NSGetEnviron #else extern char **environ; #endif #if defined(__has_include) && __has_include() #define SANITIZER_OS_TRACE 1 #include #else #define SANITIZER_OS_TRACE 0 #endif #if !SANITIZER_IOS #include // for _NSGetArgv and _NSGetEnviron #else extern "C" { extern char ***_NSGetArgv(void); } #endif #include #include // for dladdr() #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // From , but we don't have that file on iOS. extern "C" { extern char ***_NSGetArgv(void); extern char ***_NSGetEnviron(void); } // From , but we don't have that file on iOS. extern "C" { extern kern_return_t mach_vm_region_recurse( vm_map_t target_task, mach_vm_address_t *address, mach_vm_size_t *size, natural_t *nesting_depth, vm_region_recurse_info_t info, mach_msg_type_number_t *infoCnt); } namespace __sanitizer { #include "sanitizer_syscall_generic.inc" // Direct syscalls, don't call libmalloc hooks (but not available on 10.6). extern "C" void *__mmap(void *addr, size_t len, int prot, int flags, int fildes, off_t off) SANITIZER_WEAK_ATTRIBUTE; extern "C" int __munmap(void *, size_t) SANITIZER_WEAK_ATTRIBUTE; // ---------------------- sanitizer_libc.h uptr internal_mmap(void *addr, size_t length, int prot, int flags, int fd, u64 offset) { if (fd == -1) fd = VM_MAKE_TAG(VM_MEMORY_ANALYSIS_TOOL); if (&__mmap) return (uptr)__mmap(addr, length, prot, flags, fd, offset); return (uptr)mmap(addr, length, prot, flags, fd, offset); } uptr internal_munmap(void *addr, uptr length) { if (&__munmap) return __munmap(addr, length); return munmap(addr, length); } int internal_mprotect(void *addr, uptr length, int prot) { return mprotect(addr, length, prot); } uptr internal_close(fd_t fd) { return close(fd); } uptr internal_open(const char *filename, int flags) { return open(filename, flags); } uptr internal_open(const char *filename, int flags, u32 mode) { return open(filename, flags, mode); } uptr internal_read(fd_t fd, void *buf, uptr count) { return read(fd, buf, count); } uptr internal_write(fd_t fd, const void *buf, uptr count) { return write(fd, buf, count); } uptr internal_stat(const char *path, void *buf) { return stat(path, (struct stat *)buf); } uptr internal_lstat(const char *path, void *buf) { return lstat(path, (struct stat *)buf); } uptr internal_fstat(fd_t fd, void *buf) { return fstat(fd, (struct stat *)buf); } uptr internal_filesize(fd_t fd) { struct stat st; if (internal_fstat(fd, &st)) return -1; return (uptr)st.st_size; } uptr internal_dup2(int oldfd, int newfd) { return dup2(oldfd, newfd); } uptr internal_readlink(const char *path, char *buf, uptr bufsize) { return readlink(path, buf, bufsize); } uptr internal_unlink(const char *path) { return unlink(path); } uptr internal_sched_yield() { return sched_yield(); } void internal__exit(int exitcode) { _exit(exitcode); } unsigned int internal_sleep(unsigned int seconds) { return sleep(seconds); } uptr internal_getpid() { return getpid(); } int internal_sigaction(int signum, const void *act, void *oldact) { return sigaction(signum, (struct sigaction *)act, (struct sigaction *)oldact); } void internal_sigfillset(__sanitizer_sigset_t *set) { sigfillset(set); } uptr internal_sigprocmask(int how, __sanitizer_sigset_t *set, __sanitizer_sigset_t *oldset) { return sigprocmask(how, set, oldset); } // Doesn't call pthread_atfork() handlers (but not available on 10.6). extern "C" pid_t __fork(void) SANITIZER_WEAK_ATTRIBUTE; int internal_fork() { if (&__fork) return __fork(); return fork(); } int internal_forkpty(int *amaster) { int master, slave; if (openpty(&master, &slave, nullptr, nullptr, nullptr) == -1) return -1; int pid = internal_fork(); if (pid == -1) { close(master); close(slave); return -1; } if (pid == 0) { close(master); if (login_tty(slave) != 0) { // We already forked, there's not much we can do. Let's quit. Report("login_tty failed (errno %d)\n", errno); internal__exit(1); } } else { *amaster = master; close(slave); } return pid; } uptr internal_rename(const char *oldpath, const char *newpath) { return rename(oldpath, newpath); } uptr internal_ftruncate(fd_t fd, uptr size) { return ftruncate(fd, size); } uptr internal_execve(const char *filename, char *const argv[], char *const envp[]) { return execve(filename, argv, envp); } uptr internal_waitpid(int pid, int *status, int options) { return waitpid(pid, status, options); } // ----------------- sanitizer_common.h bool FileExists(const char *filename) { struct stat st; if (stat(filename, &st)) return false; // Sanity check: filename is a regular file. return S_ISREG(st.st_mode); } tid_t GetTid() { tid_t tid; pthread_threadid_np(nullptr, &tid); return tid; } void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, uptr *stack_bottom) { CHECK(stack_top); CHECK(stack_bottom); uptr stacksize = pthread_get_stacksize_np(pthread_self()); // pthread_get_stacksize_np() returns an incorrect stack size for the main // thread on Mavericks. See // https://github.com/google/sanitizers/issues/261 if ((GetMacosVersion() >= MACOS_VERSION_MAVERICKS) && at_initialization && stacksize == (1 << 19)) { struct rlimit rl; CHECK_EQ(getrlimit(RLIMIT_STACK, &rl), 0); // Most often rl.rlim_cur will be the desired 8M. if (rl.rlim_cur < kMaxThreadStackSize) { stacksize = rl.rlim_cur; } else { stacksize = kMaxThreadStackSize; } } void *stackaddr = pthread_get_stackaddr_np(pthread_self()); *stack_top = (uptr)stackaddr; *stack_bottom = *stack_top - stacksize; } char **GetEnviron() { #if !SANITIZER_IOS char ***env_ptr = _NSGetEnviron(); if (!env_ptr) { Report("_NSGetEnviron() returned NULL. Please make sure __asan_init() is " "called after libSystem_initializer().\n"); CHECK(env_ptr); } char **environ = *env_ptr; #endif CHECK(environ); return environ; } const char *GetEnv(const char *name) { char **env = GetEnviron(); uptr name_len = internal_strlen(name); while (*env != 0) { uptr len = internal_strlen(*env); if (len > name_len) { const char *p = *env; if (!internal_memcmp(p, name, name_len) && p[name_len] == '=') { // Match. return *env + name_len + 1; // String starting after =. } } env++; } return 0; } uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) { CHECK_LE(kMaxPathLength, buf_len); // On OS X the executable path is saved to the stack by dyld. Reading it // from there is much faster than calling dladdr, especially for large // binaries with symbols. InternalScopedString exe_path(kMaxPathLength); uint32_t size = exe_path.size(); if (_NSGetExecutablePath(exe_path.data(), &size) == 0 && realpath(exe_path.data(), buf) != 0) { return internal_strlen(buf); } return 0; } uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) { return ReadBinaryName(buf, buf_len); } void ReExec() { UNIMPLEMENTED(); } uptr GetPageSize() { return sysconf(_SC_PAGESIZE); } BlockingMutex::BlockingMutex() { internal_memset(this, 0, sizeof(*this)); } void BlockingMutex::Lock() { CHECK(sizeof(OSSpinLock) <= sizeof(opaque_storage_)); CHECK_EQ(OS_SPINLOCK_INIT, 0); CHECK_EQ(owner_, 0); OSSpinLockLock((OSSpinLock*)&opaque_storage_); } void BlockingMutex::Unlock() { OSSpinLockUnlock((OSSpinLock*)&opaque_storage_); } void BlockingMutex::CheckLocked() { CHECK_NE(*(OSSpinLock*)&opaque_storage_, 0); } u64 NanoTime() { return 0; } uptr GetTlsSize() { return 0; } void InitTlsSize() { } void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, uptr *tls_addr, uptr *tls_size) { #if !SANITIZER_GO uptr stack_top, stack_bottom; GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom); *stk_addr = stack_bottom; *stk_size = stack_top - stack_bottom; *tls_addr = 0; *tls_size = 0; #else *stk_addr = 0; *stk_size = 0; *tls_addr = 0; *tls_size = 0; #endif } void ListOfModules::init() { clear(); MemoryMappingLayout memory_mapping(false); memory_mapping.DumpListOfModules(&modules_); } bool IsHandledDeadlySignal(int signum) { + // Handling fatal signals on watchOS and tvOS devices is disallowed. if ((SANITIZER_WATCHOS || SANITIZER_TVOS) && !(SANITIZER_IOSSIM)) - // Handling fatal signals on watchOS and tvOS devices is disallowed. return false; - if (common_flags()->handle_abort && signum == SIGABRT) - return true; - if (common_flags()->handle_sigill && signum == SIGILL) - return true; - if (common_flags()->handle_sigfpe && signum == SIGFPE) - return true; - if (common_flags()->handle_segv && signum == SIGSEGV) - return true; - return common_flags()->handle_sigbus && signum == SIGBUS; + switch (signum) { + case SIGABRT: + return common_flags()->handle_abort; + case SIGILL: + return common_flags()->handle_sigill; + case SIGFPE: + return common_flags()->handle_sigfpe; + case SIGSEGV: + return common_flags()->handle_segv; + case SIGBUS: + return common_flags()->handle_sigbus; + } + return false; } MacosVersion cached_macos_version = MACOS_VERSION_UNINITIALIZED; MacosVersion GetMacosVersionInternal() { int mib[2] = { CTL_KERN, KERN_OSRELEASE }; char version[100]; uptr len = 0, maxlen = sizeof(version) / sizeof(version[0]); for (uptr i = 0; i < maxlen; i++) version[i] = '\0'; // Get the version length. CHECK_NE(sysctl(mib, 2, 0, &len, 0, 0), -1); CHECK_LT(len, maxlen); CHECK_NE(sysctl(mib, 2, version, &len, 0, 0), -1); switch (version[0]) { case '9': return MACOS_VERSION_LEOPARD; case '1': { switch (version[1]) { case '0': return MACOS_VERSION_SNOW_LEOPARD; case '1': return MACOS_VERSION_LION; case '2': return MACOS_VERSION_MOUNTAIN_LION; case '3': return MACOS_VERSION_MAVERICKS; case '4': return MACOS_VERSION_YOSEMITE; default: if (IsDigit(version[1])) return MACOS_VERSION_UNKNOWN_NEWER; else return MACOS_VERSION_UNKNOWN; } } default: return MACOS_VERSION_UNKNOWN; } } MacosVersion GetMacosVersion() { atomic_uint32_t *cache = reinterpret_cast(&cached_macos_version); MacosVersion result = static_cast(atomic_load(cache, memory_order_acquire)); if (result == MACOS_VERSION_UNINITIALIZED) { result = GetMacosVersionInternal(); atomic_store(cache, result, memory_order_release); } return result; } bool PlatformHasDifferentMemcpyAndMemmove() { // On OS X 10.7 memcpy() and memmove() are both resolved // into memmove$VARIANT$sse42. // See also https://github.com/google/sanitizers/issues/34. // TODO(glider): need to check dynamically that memcpy() and memmove() are // actually the same function. return GetMacosVersion() == MACOS_VERSION_SNOW_LEOPARD; } uptr GetRSS() { struct task_basic_info info; unsigned count = TASK_BASIC_INFO_COUNT; kern_return_t result = task_info(mach_task_self(), TASK_BASIC_INFO, (task_info_t)&info, &count); if (UNLIKELY(result != KERN_SUCCESS)) { Report("Cannot get task info. Error: %d\n", result); Die(); } return info.resident_size; } void *internal_start_thread(void(*func)(void *arg), void *arg) { // Start the thread with signals blocked, otherwise it can steal user signals. __sanitizer_sigset_t set, old; internal_sigfillset(&set); internal_sigprocmask(SIG_SETMASK, &set, &old); pthread_t th; pthread_create(&th, 0, (void*(*)(void *arg))func, arg); internal_sigprocmask(SIG_SETMASK, &old, 0); return th; } void internal_join_thread(void *th) { pthread_join((pthread_t)th, 0); } #if !SANITIZER_GO static BlockingMutex syslog_lock(LINKER_INITIALIZED); #endif void WriteOneLineToSyslog(const char *s) { #if !SANITIZER_GO syslog_lock.CheckLocked(); asl_log(nullptr, nullptr, ASL_LEVEL_ERR, "%s", s); #endif } void LogMessageOnPrintf(const char *str) { // Log all printf output to CrashLog. if (common_flags()->abort_on_error) CRAppendCrashLogMessage(str); } void LogFullErrorReport(const char *buffer) { #if !SANITIZER_GO // Log with os_trace. This will make it into the crash log. #if SANITIZER_OS_TRACE if (GetMacosVersion() >= MACOS_VERSION_YOSEMITE) { // os_trace requires the message (format parameter) to be a string literal. if (internal_strncmp(SanitizerToolName, "AddressSanitizer", sizeof("AddressSanitizer") - 1) == 0) os_trace("Address Sanitizer reported a failure."); else if (internal_strncmp(SanitizerToolName, "UndefinedBehaviorSanitizer", sizeof("UndefinedBehaviorSanitizer") - 1) == 0) os_trace("Undefined Behavior Sanitizer reported a failure."); else if (internal_strncmp(SanitizerToolName, "ThreadSanitizer", sizeof("ThreadSanitizer") - 1) == 0) os_trace("Thread Sanitizer reported a failure."); else os_trace("Sanitizer tool reported a failure."); if (common_flags()->log_to_syslog) os_trace("Consult syslog for more information."); } #endif // Log to syslog. // The logging on OS X may call pthread_create so we need the threading // environment to be fully initialized. Also, this should never be called when // holding the thread registry lock since that may result in a deadlock. If // the reporting thread holds the thread registry mutex, and asl_log waits // for GCD to dispatch a new thread, the process will deadlock, because the // pthread_create wrapper needs to acquire the lock as well. BlockingMutexLock l(&syslog_lock); if (common_flags()->log_to_syslog) WriteToSyslog(buffer); // The report is added to CrashLog as part of logging all of Printf output. #endif } SignalContext::WriteFlag SignalContext::GetWriteFlag(void *context) { #if defined(__x86_64__) || defined(__i386__) ucontext_t *ucontext = static_cast(context); return ucontext->uc_mcontext->__es.__err & 2 /*T_PF_WRITE*/ ? WRITE : READ; #else return UNKNOWN; #endif } void GetPcSpBp(void *context, uptr *pc, uptr *sp, uptr *bp) { ucontext_t *ucontext = (ucontext_t*)context; # if defined(__aarch64__) *pc = ucontext->uc_mcontext->__ss.__pc; # if defined(__IPHONE_8_0) && __IPHONE_OS_VERSION_MAX_ALLOWED >= __IPHONE_8_0 *bp = ucontext->uc_mcontext->__ss.__fp; # else *bp = ucontext->uc_mcontext->__ss.__lr; # endif *sp = ucontext->uc_mcontext->__ss.__sp; # elif defined(__x86_64__) *pc = ucontext->uc_mcontext->__ss.__rip; *bp = ucontext->uc_mcontext->__ss.__rbp; *sp = ucontext->uc_mcontext->__ss.__rsp; # elif defined(__arm__) *pc = ucontext->uc_mcontext->__ss.__pc; *bp = ucontext->uc_mcontext->__ss.__r[7]; *sp = ucontext->uc_mcontext->__ss.__sp; # elif defined(__i386__) *pc = ucontext->uc_mcontext->__ss.__eip; *bp = ucontext->uc_mcontext->__ss.__ebp; *sp = ucontext->uc_mcontext->__ss.__esp; # else # error "Unknown architecture" # endif } #if !SANITIZER_GO static const char kDyldInsertLibraries[] = "DYLD_INSERT_LIBRARIES"; LowLevelAllocator allocator_for_env; // Change the value of the env var |name|, leaking the original value. // If |name_value| is NULL, the variable is deleted from the environment, // otherwise the corresponding "NAME=value" string is replaced with // |name_value|. void LeakyResetEnv(const char *name, const char *name_value) { char **env = GetEnviron(); uptr name_len = internal_strlen(name); while (*env != 0) { uptr len = internal_strlen(*env); if (len > name_len) { const char *p = *env; if (!internal_memcmp(p, name, name_len) && p[name_len] == '=') { // Match. if (name_value) { // Replace the old value with the new one. *env = const_cast(name_value); } else { // Shift the subsequent pointers back. char **del = env; do { del[0] = del[1]; } while (*del++); } } } env++; } } SANITIZER_WEAK_CXX_DEFAULT_IMPL bool ReexecDisabled() { return false; } extern "C" SANITIZER_WEAK_ATTRIBUTE double dyldVersionNumber; static const double kMinDyldVersionWithAutoInterposition = 360.0; bool DyldNeedsEnvVariable() { // Although sanitizer support was added to LLVM on OS X 10.7+, GCC users // still may want use them on older systems. On older Darwin platforms, dyld // doesn't export dyldVersionNumber symbol and we simply return true. if (!&dyldVersionNumber) return true; // If running on OS X 10.11+ or iOS 9.0+, dyld will interpose even if // DYLD_INSERT_LIBRARIES is not set. However, checking OS version via // GetMacosVersion() doesn't work for the simulator. Let's instead check // `dyldVersionNumber`, which is exported by dyld, against a known version // number from the first OS release where this appeared. return dyldVersionNumber < kMinDyldVersionWithAutoInterposition; } void MaybeReexec() { if (ReexecDisabled()) return; // Make sure the dynamic runtime library is preloaded so that the // wrappers work. If it is not, set DYLD_INSERT_LIBRARIES and re-exec // ourselves. Dl_info info; RAW_CHECK(dladdr((void*)((uptr)&__sanitizer_report_error_summary), &info)); char *dyld_insert_libraries = const_cast(GetEnv(kDyldInsertLibraries)); uptr old_env_len = dyld_insert_libraries ? internal_strlen(dyld_insert_libraries) : 0; uptr fname_len = internal_strlen(info.dli_fname); const char *dylib_name = StripModuleName(info.dli_fname); uptr dylib_name_len = internal_strlen(dylib_name); bool lib_is_in_env = dyld_insert_libraries && internal_strstr(dyld_insert_libraries, dylib_name); if (DyldNeedsEnvVariable() && !lib_is_in_env) { // DYLD_INSERT_LIBRARIES is not set or does not contain the runtime // library. InternalScopedString program_name(1024); uint32_t buf_size = program_name.size(); _NSGetExecutablePath(program_name.data(), &buf_size); char *new_env = const_cast(info.dli_fname); if (dyld_insert_libraries) { // Append the runtime dylib name to the existing value of // DYLD_INSERT_LIBRARIES. new_env = (char*)allocator_for_env.Allocate(old_env_len + fname_len + 2); internal_strncpy(new_env, dyld_insert_libraries, old_env_len); new_env[old_env_len] = ':'; // Copy fname_len and add a trailing zero. internal_strncpy(new_env + old_env_len + 1, info.dli_fname, fname_len + 1); // Ok to use setenv() since the wrappers don't depend on the value of // asan_inited. setenv(kDyldInsertLibraries, new_env, /*overwrite*/1); } else { // Set DYLD_INSERT_LIBRARIES equal to the runtime dylib name. setenv(kDyldInsertLibraries, info.dli_fname, /*overwrite*/0); } VReport(1, "exec()-ing the program with\n"); VReport(1, "%s=%s\n", kDyldInsertLibraries, new_env); VReport(1, "to enable wrappers.\n"); execv(program_name.data(), *_NSGetArgv()); // We get here only if execv() failed. Report("ERROR: The process is launched without DYLD_INSERT_LIBRARIES, " "which is required for the sanitizer to work. We tried to set the " "environment variable and re-execute itself, but execv() failed, " "possibly because of sandbox restrictions. Make sure to launch the " "executable with:\n%s=%s\n", kDyldInsertLibraries, new_env); RAW_CHECK("execv failed" && 0); } // Verify that interceptors really work. We'll use dlsym to locate // "pthread_create", if interceptors are working, it should really point to // "wrap_pthread_create" within our own dylib. Dl_info info_pthread_create; void *dlopen_addr = dlsym(RTLD_DEFAULT, "pthread_create"); RAW_CHECK(dladdr(dlopen_addr, &info_pthread_create)); if (internal_strcmp(info.dli_fname, info_pthread_create.dli_fname) != 0) { Report( "ERROR: Interceptors are not working. This may be because %s is " "loaded too late (e.g. via dlopen). Please launch the executable " "with:\n%s=%s\n", SanitizerToolName, kDyldInsertLibraries, info.dli_fname); RAW_CHECK("interceptors not installed" && 0); } if (!lib_is_in_env) return; // DYLD_INSERT_LIBRARIES is set and contains the runtime library. Let's remove // the dylib from the environment variable, because interceptors are installed // and we don't want our children to inherit the variable. uptr env_name_len = internal_strlen(kDyldInsertLibraries); // Allocate memory to hold the previous env var name, its value, the '=' // sign and the '\0' char. char *new_env = (char*)allocator_for_env.Allocate( old_env_len + 2 + env_name_len); RAW_CHECK(new_env); internal_memset(new_env, '\0', old_env_len + 2 + env_name_len); internal_strncpy(new_env, kDyldInsertLibraries, env_name_len); new_env[env_name_len] = '='; char *new_env_pos = new_env + env_name_len + 1; // Iterate over colon-separated pieces of |dyld_insert_libraries|. char *piece_start = dyld_insert_libraries; char *piece_end = NULL; char *old_env_end = dyld_insert_libraries + old_env_len; do { if (piece_start[0] == ':') piece_start++; piece_end = internal_strchr(piece_start, ':'); if (!piece_end) piece_end = dyld_insert_libraries + old_env_len; if ((uptr)(piece_start - dyld_insert_libraries) > old_env_len) break; uptr piece_len = piece_end - piece_start; char *filename_start = (char *)internal_memrchr(piece_start, '/', piece_len); uptr filename_len = piece_len; if (filename_start) { filename_start += 1; filename_len = piece_len - (filename_start - piece_start); } else { filename_start = piece_start; } // If the current piece isn't the runtime library name, // append it to new_env. if ((dylib_name_len != filename_len) || (internal_memcmp(filename_start, dylib_name, dylib_name_len) != 0)) { if (new_env_pos != new_env + env_name_len + 1) { new_env_pos[0] = ':'; new_env_pos++; } internal_strncpy(new_env_pos, piece_start, piece_len); new_env_pos += piece_len; } // Move on to the next piece. piece_start = piece_end; } while (piece_start < old_env_end); // Can't use setenv() here, because it requires the allocator to be // initialized. // FIXME: instead of filtering DYLD_INSERT_LIBRARIES here, do it in // a separate function called after InitializeAllocator(). if (new_env_pos == new_env + env_name_len + 1) new_env = NULL; LeakyResetEnv(kDyldInsertLibraries, new_env); } #endif // SANITIZER_GO char **GetArgv() { return *_NSGetArgv(); } uptr FindAvailableMemoryRange(uptr shadow_size, uptr alignment, uptr left_padding) { typedef vm_region_submap_short_info_data_64_t RegionInfo; enum { kRegionInfoSize = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64 }; // Start searching for available memory region past PAGEZERO, which is // 4KB on 32-bit and 4GB on 64-bit. mach_vm_address_t start_address = (SANITIZER_WORDSIZE == 32) ? 0x000000001000 : 0x000100000000; mach_vm_address_t address = start_address; mach_vm_address_t free_begin = start_address; kern_return_t kr = KERN_SUCCESS; while (kr == KERN_SUCCESS) { mach_vm_size_t vmsize = 0; natural_t depth = 0; RegionInfo vminfo; mach_msg_type_number_t count = kRegionInfoSize; kr = mach_vm_region_recurse(mach_task_self(), &address, &vmsize, &depth, (vm_region_info_t)&vminfo, &count); if (free_begin != address) { // We found a free region [free_begin..address-1]. uptr shadow_address = RoundUpTo((uptr)free_begin + left_padding, alignment); if (shadow_address + shadow_size < (uptr)address) { return shadow_address; } } // Move to the next region. address += vmsize; free_begin = address; } // We looked at all free regions and could not find one large enough. return 0; } // FIXME implement on this platform. void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) { } void SignalContext::DumpAllRegisters(void *context) { Report("Register values:\n"); ucontext_t *ucontext = (ucontext_t*)context; # define DUMPREG64(r) \ Printf("%s = 0x%016llx ", #r, ucontext->uc_mcontext->__ss.__ ## r); # define DUMPREG32(r) \ Printf("%s = 0x%08x ", #r, ucontext->uc_mcontext->__ss.__ ## r); # define DUMPREG_(r) Printf(" "); DUMPREG(r); # define DUMPREG__(r) Printf(" "); DUMPREG(r); # define DUMPREG___(r) Printf(" "); DUMPREG(r); # if defined(__x86_64__) # define DUMPREG(r) DUMPREG64(r) DUMPREG(rax); DUMPREG(rbx); DUMPREG(rcx); DUMPREG(rdx); Printf("\n"); DUMPREG(rdi); DUMPREG(rsi); DUMPREG(rbp); DUMPREG(rsp); Printf("\n"); DUMPREG_(r8); DUMPREG_(r9); DUMPREG(r10); DUMPREG(r11); Printf("\n"); DUMPREG(r12); DUMPREG(r13); DUMPREG(r14); DUMPREG(r15); Printf("\n"); # elif defined(__i386__) # define DUMPREG(r) DUMPREG32(r) DUMPREG(eax); DUMPREG(ebx); DUMPREG(ecx); DUMPREG(edx); Printf("\n"); DUMPREG(edi); DUMPREG(esi); DUMPREG(ebp); DUMPREG(esp); Printf("\n"); # elif defined(__aarch64__) # define DUMPREG(r) DUMPREG64(r) DUMPREG_(x[0]); DUMPREG_(x[1]); DUMPREG_(x[2]); DUMPREG_(x[3]); Printf("\n"); DUMPREG_(x[4]); DUMPREG_(x[5]); DUMPREG_(x[6]); DUMPREG_(x[7]); Printf("\n"); DUMPREG_(x[8]); DUMPREG_(x[9]); DUMPREG(x[10]); DUMPREG(x[11]); Printf("\n"); DUMPREG(x[12]); DUMPREG(x[13]); DUMPREG(x[14]); DUMPREG(x[15]); Printf("\n"); DUMPREG(x[16]); DUMPREG(x[17]); DUMPREG(x[18]); DUMPREG(x[19]); Printf("\n"); DUMPREG(x[20]); DUMPREG(x[21]); DUMPREG(x[22]); DUMPREG(x[23]); Printf("\n"); DUMPREG(x[24]); DUMPREG(x[25]); DUMPREG(x[26]); DUMPREG(x[27]); Printf("\n"); DUMPREG(x[28]); DUMPREG___(fp); DUMPREG___(lr); DUMPREG___(sp); Printf("\n"); # elif defined(__arm__) # define DUMPREG(r) DUMPREG32(r) DUMPREG_(r[0]); DUMPREG_(r[1]); DUMPREG_(r[2]); DUMPREG_(r[3]); Printf("\n"); DUMPREG_(r[4]); DUMPREG_(r[5]); DUMPREG_(r[6]); DUMPREG_(r[7]); Printf("\n"); DUMPREG_(r[8]); DUMPREG_(r[9]); DUMPREG(r[10]); DUMPREG(r[11]); Printf("\n"); DUMPREG(r[12]); DUMPREG___(sp); DUMPREG___(lr); DUMPREG___(pc); Printf("\n"); # else # error "Unknown architecture" # endif # undef DUMPREG64 # undef DUMPREG32 # undef DUMPREG_ # undef DUMPREG__ # undef DUMPREG___ # undef DUMPREG } static inline bool CompareBaseAddress(const LoadedModule &a, const LoadedModule &b) { return a.base_address() < b.base_address(); } void FormatUUID(char *out, uptr size, const u8 *uuid) { internal_snprintf(out, size, "<%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-" "%02X%02X%02X%02X%02X%02X>", uuid[0], uuid[1], uuid[2], uuid[3], uuid[4], uuid[5], uuid[6], uuid[7], uuid[8], uuid[9], uuid[10], uuid[11], uuid[12], uuid[13], uuid[14], uuid[15]); } void PrintModuleMap() { Printf("Process module map:\n"); MemoryMappingLayout memory_mapping(false); InternalMmapVector modules(/*initial_capacity*/ 128); memory_mapping.DumpListOfModules(&modules); InternalSort(&modules, modules.size(), CompareBaseAddress); for (uptr i = 0; i < modules.size(); ++i) { char uuid_str[128]; FormatUUID(uuid_str, sizeof(uuid_str), modules[i].uuid()); Printf("0x%zx-0x%zx %s (%s) %s\n", modules[i].base_address(), modules[i].max_executable_address(), modules[i].full_name(), ModuleArchToString(modules[i].arch()), uuid_str); } Printf("End of module map.\n"); } void CheckNoDeepBind(const char *filename, int flag) { // Do nothing. } } // namespace __sanitizer #endif // SANITIZER_MAC Index: vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_platform_interceptors.h =================================================================== --- vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_platform_interceptors.h (revision 318666) +++ vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_platform_interceptors.h (revision 318667) @@ -1,358 +1,344 @@ //===-- sanitizer_platform_interceptors.h -----------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines macro telling whether sanitizer tools can/should intercept // given library functions on a given platform. // //===----------------------------------------------------------------------===// #ifndef SANITIZER_PLATFORM_INTERCEPTORS_H #define SANITIZER_PLATFORM_INTERCEPTORS_H #include "sanitizer_internal_defs.h" #if !SANITIZER_WINDOWS # define SI_WINDOWS 0 # define SI_NOT_WINDOWS 1 # include "sanitizer_platform_limits_posix.h" #else # define SI_WINDOWS 1 # define SI_NOT_WINDOWS 0 #endif -#if SANITIZER_POSIX -# define SI_POSIX 1 -#else -# define SI_POSIX 0 -#endif - #if SANITIZER_LINUX && !SANITIZER_ANDROID # define SI_LINUX_NOT_ANDROID 1 #else # define SI_LINUX_NOT_ANDROID 0 #endif #if SANITIZER_ANDROID # define SI_ANDROID 1 #else # define SI_ANDROID 0 #endif #if SANITIZER_FREEBSD # define SI_FREEBSD 1 #else # define SI_FREEBSD 0 #endif #if SANITIZER_LINUX # define SI_LINUX 1 #else # define SI_LINUX 0 #endif #if SANITIZER_MAC # define SI_MAC 1 # define SI_NOT_MAC 0 #else # define SI_MAC 0 # define SI_NOT_MAC 1 #endif #if SANITIZER_IOS # define SI_IOS 1 #else # define SI_IOS 0 #endif #if !SANITIZER_WINDOWS && !SANITIZER_MAC # define SI_UNIX_NOT_MAC 1 #else # define SI_UNIX_NOT_MAC 0 #endif -#if SANITIZER_LINUX && !SANITIZER_FREEBSD -# define SI_LINUX_NOT_FREEBSD 1 -# else -# define SI_LINUX_NOT_FREEBSD 0 -#endif - #define SANITIZER_INTERCEPT_STRLEN 1 #define SANITIZER_INTERCEPT_STRNLEN SI_NOT_MAC #define SANITIZER_INTERCEPT_STRCMP 1 #define SANITIZER_INTERCEPT_STRSTR 1 #define SANITIZER_INTERCEPT_STRCASESTR SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_STRTOK 1 #define SANITIZER_INTERCEPT_STRCHR 1 #define SANITIZER_INTERCEPT_STRCHRNUL SI_UNIX_NOT_MAC #define SANITIZER_INTERCEPT_STRRCHR 1 #define SANITIZER_INTERCEPT_STRSPN 1 #define SANITIZER_INTERCEPT_STRPBRK 1 #define SANITIZER_INTERCEPT_TEXTDOMAIN SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_STRCASECMP SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_MEMSET 1 #define SANITIZER_INTERCEPT_MEMMOVE 1 #define SANITIZER_INTERCEPT_MEMCPY 1 #define SANITIZER_INTERCEPT_MEMCMP 1 -#define SANITIZER_INTERCEPT_STRNDUP SI_POSIX -#define SANITIZER_INTERCEPT___STRNDUP SI_LINUX_NOT_FREEBSD #if defined(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__) && \ __ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__ < 1070 # define SI_MAC_DEPLOYMENT_BELOW_10_7 1 #else # define SI_MAC_DEPLOYMENT_BELOW_10_7 0 #endif // memmem on Darwin doesn't exist on 10.6 // FIXME: enable memmem on Windows. #define SANITIZER_INTERCEPT_MEMMEM \ SI_NOT_WINDOWS && !SI_MAC_DEPLOYMENT_BELOW_10_7 #define SANITIZER_INTERCEPT_MEMCHR 1 #define SANITIZER_INTERCEPT_MEMRCHR SI_FREEBSD || SI_LINUX #define SANITIZER_INTERCEPT_READ SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_PREAD SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_WRITE SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_PWRITE SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_FREAD SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_FWRITE SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_PREAD64 SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_PWRITE64 SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_READV SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_WRITEV SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_PREADV SI_FREEBSD || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_PWRITEV SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_PREADV64 SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_PWRITEV64 SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_PRCTL SI_LINUX #define SANITIZER_INTERCEPT_LOCALTIME_AND_FRIENDS SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_STRPTIME SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_SCANF SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_ISOC99_SCANF SI_LINUX_NOT_ANDROID #ifndef SANITIZER_INTERCEPT_PRINTF # define SANITIZER_INTERCEPT_PRINTF SI_NOT_WINDOWS # define SANITIZER_INTERCEPT_PRINTF_L SI_FREEBSD # define SANITIZER_INTERCEPT_ISOC99_PRINTF SI_LINUX_NOT_ANDROID #endif #define SANITIZER_INTERCEPT_FREXP 1 #define SANITIZER_INTERCEPT_FREXPF_FREXPL SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_GETPWNAM_AND_FRIENDS SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_GETPWNAM_R_AND_FRIENDS \ SI_FREEBSD || SI_MAC || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_GETPWENT \ SI_FREEBSD || SI_MAC || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_FGETPWENT SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_GETPWENT_R SI_FREEBSD || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_SETPWENT SI_MAC || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_CLOCK_GETTIME SI_FREEBSD || SI_LINUX #define SANITIZER_INTERCEPT_GETITIMER SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_TIME SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_GLOB SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_WAIT SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_INET SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_PTHREAD_GETSCHEDPARAM SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_GETADDRINFO SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_GETNAMEINFO SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_GETSOCKNAME SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_GETHOSTBYNAME SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_GETHOSTBYNAME_R SI_FREEBSD || SI_LINUX #define SANITIZER_INTERCEPT_GETHOSTBYNAME2_R SI_FREEBSD || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_GETHOSTBYADDR_R SI_FREEBSD || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_GETHOSTENT_R SI_FREEBSD || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_GETSOCKOPT SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_ACCEPT SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_ACCEPT4 SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_MODF SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_RECVMSG SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_SENDMSG SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_GETPEERNAME SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_IOCTL SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_INET_ATON SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_SYSINFO SI_LINUX #define SANITIZER_INTERCEPT_READDIR SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_READDIR64 SI_LINUX_NOT_ANDROID #if SI_LINUX_NOT_ANDROID && \ (defined(__i386) || defined(__x86_64) || defined(__mips64) || \ defined(__powerpc64__) || defined(__aarch64__) || defined(__arm__) || \ defined(__s390__)) #define SANITIZER_INTERCEPT_PTRACE 1 #else #define SANITIZER_INTERCEPT_PTRACE 0 #endif #define SANITIZER_INTERCEPT_SETLOCALE SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_GETCWD SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_GET_CURRENT_DIR_NAME SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_STRTOIMAX SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_MBSTOWCS SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_MBSNRTOWCS SI_MAC || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_WCSTOMBS SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_WCSNRTOMBS \ SI_FREEBSD || SI_MAC || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_WCRTOMB \ SI_FREEBSD || SI_MAC || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_TCGETATTR SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_REALPATH SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_CANONICALIZE_FILE_NAME SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_CONFSTR \ SI_FREEBSD || SI_MAC || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_SCHED_GETAFFINITY SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_SCHED_GETPARAM SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_STRERROR SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_STRERROR_R SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_XPG_STRERROR_R SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_SCANDIR \ SI_FREEBSD || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_SCANDIR64 SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_GETGROUPS SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_POLL SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_PPOLL SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_WORDEXP \ SI_FREEBSD || (SI_MAC && !SI_IOS) || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_SIGWAIT SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_SIGWAITINFO SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_SIGTIMEDWAIT SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_SIGSETOPS \ SI_FREEBSD || SI_MAC || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_SIGPENDING SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_SIGPROCMASK SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_BACKTRACE SI_FREEBSD || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_GETMNTENT SI_LINUX #define SANITIZER_INTERCEPT_GETMNTENT_R SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_STATFS SI_FREEBSD || SI_MAC || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_STATFS64 \ (SI_MAC && !SI_IOS) || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_STATVFS SI_FREEBSD || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_STATVFS64 SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_INITGROUPS SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_ETHER_NTOA_ATON SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_ETHER_HOST \ SI_FREEBSD || SI_MAC || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_ETHER_R SI_FREEBSD || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_SHMCTL \ ((SI_FREEBSD || SI_LINUX_NOT_ANDROID) && SANITIZER_WORDSIZE == 64) #define SANITIZER_INTERCEPT_RANDOM_R SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_PTHREAD_ATTR_GET SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_PTHREAD_ATTR_GETINHERITSCHED \ SI_FREEBSD || SI_MAC || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_PTHREAD_ATTR_GETAFFINITY_NP SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_PTHREAD_MUTEXATTR_GETPSHARED SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_PTHREAD_MUTEXATTR_GETTYPE SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_PTHREAD_MUTEXATTR_GETPROTOCOL \ SI_MAC || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_PTHREAD_MUTEXATTR_GETPRIOCEILING \ SI_MAC || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_PTHREAD_MUTEXATTR_GETROBUST SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_PTHREAD_MUTEXATTR_GETROBUST_NP SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_PTHREAD_RWLOCKATTR_GETPSHARED SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_PTHREAD_RWLOCKATTR_GETKIND_NP SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_PTHREAD_CONDATTR_GETPSHARED SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_PTHREAD_CONDATTR_GETCLOCK SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_PTHREAD_BARRIERATTR_GETPSHARED SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_TMPNAM SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_TMPNAM_R SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_TTYNAME_R SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_TEMPNAM SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_SINCOS SI_LINUX #define SANITIZER_INTERCEPT_REMQUO SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_LGAMMA SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_LGAMMA_R SI_FREEBSD || SI_LINUX #define SANITIZER_INTERCEPT_LGAMMAL_R SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_DRAND48_R SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_RAND_R \ SI_FREEBSD || SI_MAC || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_ICONV SI_FREEBSD || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_TIMES SI_NOT_WINDOWS // FIXME: getline seems to be available on OSX 10.7 #define SANITIZER_INTERCEPT_GETLINE SI_FREEBSD || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT__EXIT SI_LINUX || SI_FREEBSD || SI_MAC #define SANITIZER_INTERCEPT_PHTREAD_MUTEX SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_PTHREAD_SETNAME_NP \ SI_FREEBSD || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_TLS_GET_ADDR \ SI_FREEBSD || SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_LISTXATTR SI_LINUX #define SANITIZER_INTERCEPT_GETXATTR SI_LINUX #define SANITIZER_INTERCEPT_GETRESID SI_LINUX #define SANITIZER_INTERCEPT_GETIFADDRS \ SI_FREEBSD || SI_LINUX_NOT_ANDROID || SI_MAC #define SANITIZER_INTERCEPT_IF_INDEXTONAME \ SI_FREEBSD || SI_LINUX_NOT_ANDROID || SI_MAC #define SANITIZER_INTERCEPT_CAPGET SI_LINUX_NOT_ANDROID #if SI_LINUX && defined(__arm__) #define SANITIZER_INTERCEPT_AEABI_MEM 1 #else #define SANITIZER_INTERCEPT_AEABI_MEM 0 #endif #define SANITIZER_INTERCEPT___BZERO SI_MAC #define SANITIZER_INTERCEPT_FTIME !SI_FREEBSD && SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_XDR SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_TSEARCH SI_LINUX_NOT_ANDROID || SI_MAC #define SANITIZER_INTERCEPT_LIBIO_INTERNALS SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_FOPEN SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_FOPEN64 SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_OPEN_MEMSTREAM SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_OBSTACK SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_FFLUSH SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_FCLOSE SI_NOT_WINDOWS #ifndef SANITIZER_INTERCEPT_DLOPEN_DLCLOSE #define SANITIZER_INTERCEPT_DLOPEN_DLCLOSE \ SI_FREEBSD || SI_LINUX_NOT_ANDROID || SI_MAC #endif #define SANITIZER_INTERCEPT_GETPASS SI_LINUX_NOT_ANDROID || SI_MAC #define SANITIZER_INTERCEPT_TIMERFD SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_MLOCKX SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_FOPENCOOKIE SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_SEM SI_LINUX || SI_FREEBSD #define SANITIZER_INTERCEPT_PTHREAD_SETCANCEL SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_MINCORE SI_LINUX #define SANITIZER_INTERCEPT_PROCESS_VM_READV SI_LINUX #define SANITIZER_INTERCEPT_CTERMID SI_LINUX || SI_MAC || SI_FREEBSD #define SANITIZER_INTERCEPT_CTERMID_R SI_MAC || SI_FREEBSD #define SANITIZER_INTERCEPTOR_HOOKS SI_LINUX || SI_MAC || SI_WINDOWS #define SANITIZER_INTERCEPT_RECV_RECVFROM SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_SEND_SENDTO SI_NOT_WINDOWS #define SANITIZER_INTERCEPT_EVENTFD_READ_WRITE SI_LINUX #define SANITIZER_INTERCEPT_STAT (SI_FREEBSD || SI_MAC || SI_ANDROID) #define SANITIZER_INTERCEPT___XSTAT !SANITIZER_INTERCEPT_STAT && SI_NOT_WINDOWS #define SANITIZER_INTERCEPT___XSTAT64 SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT___LXSTAT SANITIZER_INTERCEPT___XSTAT #define SANITIZER_INTERCEPT___LXSTAT64 SI_LINUX_NOT_ANDROID #define SANITIZER_INTERCEPT_UTMP SI_NOT_WINDOWS && !SI_MAC && !SI_FREEBSD #define SANITIZER_INTERCEPT_UTMPX SI_LINUX_NOT_ANDROID || SI_MAC || SI_FREEBSD #define SANITIZER_INTERCEPT_GETLOADAVG \ SI_LINUX_NOT_ANDROID || SI_MAC || SI_FREEBSD #define SANITIZER_INTERCEPT_MALLOPT_AND_MALLINFO (!SI_FREEBSD && !SI_MAC) #define SANITIZER_INTERCEPT_MEMALIGN (!SI_FREEBSD && !SI_MAC) #define SANITIZER_INTERCEPT_PVALLOC (!SI_FREEBSD && !SI_MAC) #define SANITIZER_INTERCEPT_CFREE (!SI_FREEBSD && !SI_MAC) #define SANITIZER_INTERCEPT_ALIGNED_ALLOC (!SI_MAC) #define SANITIZER_INTERCEPT_MALLOC_USABLE_SIZE (!SI_MAC) #define SANITIZER_INTERCEPT_MCHECK_MPROBE SI_LINUX_NOT_ANDROID #endif // #ifndef SANITIZER_PLATFORM_INTERCEPTORS_H Index: vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_procmaps_common.cc =================================================================== --- vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_procmaps_common.cc (revision 318666) +++ vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_procmaps_common.cc (revision 318667) @@ -1,176 +1,176 @@ //===-- sanitizer_procmaps_common.cc --------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Information about the process mappings (common parts). //===----------------------------------------------------------------------===// #include "sanitizer_platform.h" #if SANITIZER_FREEBSD || SANITIZER_LINUX #include "sanitizer_common.h" #include "sanitizer_placement_new.h" #include "sanitizer_procmaps.h" namespace __sanitizer { // Linker initialized. ProcSelfMapsBuff MemoryMappingLayout::cached_proc_self_maps_; StaticSpinMutex MemoryMappingLayout::cache_lock_; // Linker initialized. static int TranslateDigit(char c) { if (c >= '0' && c <= '9') return c - '0'; if (c >= 'a' && c <= 'f') return c - 'a' + 10; if (c >= 'A' && c <= 'F') return c - 'A' + 10; return -1; } // Parse a number and promote 'p' up to the first non-digit character. static uptr ParseNumber(const char **p, int base) { uptr n = 0; int d; CHECK(base >= 2 && base <= 16); while ((d = TranslateDigit(**p)) >= 0 && d < base) { n = n * base + d; (*p)++; } return n; } bool IsDecimal(char c) { int d = TranslateDigit(c); return d >= 0 && d < 10; } uptr ParseDecimal(const char **p) { return ParseNumber(p, 10); } bool IsHex(char c) { int d = TranslateDigit(c); return d >= 0 && d < 16; } uptr ParseHex(const char **p) { return ParseNumber(p, 16); } MemoryMappingLayout::MemoryMappingLayout(bool cache_enabled) { ReadProcMaps(&proc_self_maps_); if (cache_enabled) { if (proc_self_maps_.mmaped_size == 0) { LoadFromCache(); CHECK_GT(proc_self_maps_.len, 0); } } else { CHECK_GT(proc_self_maps_.mmaped_size, 0); } Reset(); // FIXME: in the future we may want to cache the mappings on demand only. if (cache_enabled) CacheMemoryMappings(); } MemoryMappingLayout::~MemoryMappingLayout() { // Only unmap the buffer if it is different from the cached one. Otherwise // it will be unmapped when the cache is refreshed. if (proc_self_maps_.data != cached_proc_self_maps_.data) { UnmapOrDie(proc_self_maps_.data, proc_self_maps_.mmaped_size); } } void MemoryMappingLayout::Reset() { current_ = proc_self_maps_.data; } // static void MemoryMappingLayout::CacheMemoryMappings() { SpinMutexLock l(&cache_lock_); // Don't invalidate the cache if the mappings are unavailable. ProcSelfMapsBuff old_proc_self_maps; old_proc_self_maps = cached_proc_self_maps_; ReadProcMaps(&cached_proc_self_maps_); if (cached_proc_self_maps_.mmaped_size == 0) { cached_proc_self_maps_ = old_proc_self_maps; } else { if (old_proc_self_maps.mmaped_size) { UnmapOrDie(old_proc_self_maps.data, old_proc_self_maps.mmaped_size); } } } void MemoryMappingLayout::LoadFromCache() { SpinMutexLock l(&cache_lock_); if (cached_proc_self_maps_.data) { proc_self_maps_ = cached_proc_self_maps_; } } void MemoryMappingLayout::DumpListOfModules( InternalMmapVector *modules) { Reset(); uptr cur_beg, cur_end, cur_offset, prot; InternalScopedString module_name(kMaxPathLength); for (uptr i = 0; Next(&cur_beg, &cur_end, &cur_offset, module_name.data(), module_name.size(), &prot); i++) { const char *cur_name = module_name.data(); if (cur_name[0] == '\0') continue; // Don't subtract 'cur_beg' from the first entry: // * If a binary is compiled w/o -pie, then the first entry in // process maps is likely the binary itself (all dynamic libs // are mapped higher in address space). For such a binary, // instruction offset in binary coincides with the actual // instruction address in virtual memory (as code section // is mapped to a fixed memory range). // * If a binary is compiled with -pie, all the modules are // mapped high at address space (in particular, higher than // shadow memory of the tool), so the module can't be the // first entry. uptr base_address = (i ? cur_beg : 0) - cur_offset; LoadedModule cur_module; cur_module.set(cur_name, base_address); cur_module.addAddressRange(cur_beg, cur_end, prot & kProtectionExecute, - prot & kProtectionRead); + prot & kProtectionWrite); modules->push_back(cur_module); } } void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) { char *smaps = nullptr; uptr smaps_cap = 0; uptr smaps_len = 0; if (!ReadFileToBuffer("/proc/self/smaps", &smaps, &smaps_cap, &smaps_len)) return; uptr start = 0; bool file = false; const char *pos = smaps; while (pos < smaps + smaps_len) { if (IsHex(pos[0])) { start = ParseHex(&pos); for (; *pos != '/' && *pos > '\n'; pos++) {} file = *pos == '/'; } else if (internal_strncmp(pos, "Rss:", 4) == 0) { while (!IsDecimal(*pos)) pos++; uptr rss = ParseDecimal(&pos) * 1024; cb(start, rss, file, stats, stats_size); } while (*pos++ != '\n') {} } UnmapOrDie(smaps, smaps_cap); } } // namespace __sanitizer #endif // SANITIZER_FREEBSD || SANITIZER_LINUX Index: vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_procmaps_mac.cc =================================================================== --- vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_procmaps_mac.cc (revision 318666) +++ vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_procmaps_mac.cc (revision 318667) @@ -1,345 +1,345 @@ //===-- sanitizer_procmaps_mac.cc -----------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Information about the process mappings (Mac-specific parts). //===----------------------------------------------------------------------===// #include "sanitizer_platform.h" #if SANITIZER_MAC #include "sanitizer_common.h" #include "sanitizer_placement_new.h" #include "sanitizer_procmaps.h" #include #include #include // These are not available in older macOS SDKs. #ifndef CPU_SUBTYPE_X86_64_H #define CPU_SUBTYPE_X86_64_H ((cpu_subtype_t)8) /* Haswell */ #endif #ifndef CPU_SUBTYPE_ARM_V7S #define CPU_SUBTYPE_ARM_V7S ((cpu_subtype_t)11) /* Swift */ #endif #ifndef CPU_SUBTYPE_ARM_V7K #define CPU_SUBTYPE_ARM_V7K ((cpu_subtype_t)12) #endif #ifndef CPU_TYPE_ARM64 #define CPU_TYPE_ARM64 (CPU_TYPE_ARM | CPU_ARCH_ABI64) #endif namespace __sanitizer { MemoryMappingLayout::MemoryMappingLayout(bool cache_enabled) { Reset(); } MemoryMappingLayout::~MemoryMappingLayout() { } // More information about Mach-O headers can be found in mach-o/loader.h // Each Mach-O image has a header (mach_header or mach_header_64) starting with // a magic number, and a list of linker load commands directly following the // header. // A load command is at least two 32-bit words: the command type and the // command size in bytes. We're interested only in segment load commands // (LC_SEGMENT and LC_SEGMENT_64), which tell that a part of the file is mapped // into the task's address space. // The |vmaddr|, |vmsize| and |fileoff| fields of segment_command or // segment_command_64 correspond to the memory address, memory size and the // file offset of the current memory segment. // Because these fields are taken from the images as is, one needs to add // _dyld_get_image_vmaddr_slide() to get the actual addresses at runtime. void MemoryMappingLayout::Reset() { // Count down from the top. // TODO(glider): as per man 3 dyld, iterating over the headers with // _dyld_image_count is thread-unsafe. We need to register callbacks for // adding and removing images which will invalidate the MemoryMappingLayout // state. current_image_ = _dyld_image_count(); current_load_cmd_count_ = -1; current_load_cmd_addr_ = 0; current_magic_ = 0; current_filetype_ = 0; current_arch_ = kModuleArchUnknown; internal_memset(current_uuid_, 0, kModuleUUIDSize); } // The dyld load address should be unchanged throughout process execution, // and it is expensive to compute once many libraries have been loaded, // so cache it here and do not reset. static mach_header *dyld_hdr = 0; static const char kDyldPath[] = "/usr/lib/dyld"; static const int kDyldImageIdx = -1; // static void MemoryMappingLayout::CacheMemoryMappings() { // No-op on Mac for now. } void MemoryMappingLayout::LoadFromCache() { // No-op on Mac for now. } // Next and NextSegmentLoad were inspired by base/sysinfo.cc in // Google Perftools, https://github.com/gperftools/gperftools. // NextSegmentLoad scans the current image for the next segment load command // and returns the start and end addresses and file offset of the corresponding // segment. // Note that the segment addresses are not necessarily sorted. template bool MemoryMappingLayout::NextSegmentLoad(uptr *start, uptr *end, uptr *offset, char filename[], uptr filename_size, ModuleArch *arch, u8 *uuid, uptr *protection) { const char *lc = current_load_cmd_addr_; current_load_cmd_addr_ += ((const load_command *)lc)->cmdsize; if (((const load_command *)lc)->cmd == kLCSegment) { const SegmentCommand* sc = (const SegmentCommand *)lc; GetSegmentAddrRange(start, end, sc->vmaddr, sc->vmsize); if (protection) { // Return the initial protection. *protection = sc->initprot; } if (offset) { if (current_filetype_ == /*MH_EXECUTE*/ 0x2) { *offset = sc->vmaddr; } else { *offset = sc->fileoff; } } if (filename) { if (current_image_ == kDyldImageIdx) { internal_strncpy(filename, kDyldPath, filename_size); } else { internal_strncpy(filename, _dyld_get_image_name(current_image_), filename_size); } } if (arch) { *arch = current_arch_; } if (uuid) { internal_memcpy(uuid, current_uuid_, kModuleUUIDSize); } return true; } return false; } ModuleArch ModuleArchFromCpuType(cpu_type_t cputype, cpu_subtype_t cpusubtype) { cpusubtype = cpusubtype & ~CPU_SUBTYPE_MASK; switch (cputype) { case CPU_TYPE_I386: return kModuleArchI386; case CPU_TYPE_X86_64: if (cpusubtype == CPU_SUBTYPE_X86_64_ALL) return kModuleArchX86_64; if (cpusubtype == CPU_SUBTYPE_X86_64_H) return kModuleArchX86_64H; CHECK(0 && "Invalid subtype of x86_64"); return kModuleArchUnknown; case CPU_TYPE_ARM: if (cpusubtype == CPU_SUBTYPE_ARM_V6) return kModuleArchARMV6; if (cpusubtype == CPU_SUBTYPE_ARM_V7) return kModuleArchARMV7; if (cpusubtype == CPU_SUBTYPE_ARM_V7S) return kModuleArchARMV7S; if (cpusubtype == CPU_SUBTYPE_ARM_V7K) return kModuleArchARMV7K; CHECK(0 && "Invalid subtype of ARM"); return kModuleArchUnknown; case CPU_TYPE_ARM64: return kModuleArchARM64; default: CHECK(0 && "Invalid CPU type"); return kModuleArchUnknown; } } static const load_command *NextCommand(const load_command *lc) { return (const load_command *)((char *)lc + lc->cmdsize); } static void FindUUID(const load_command *first_lc, u8 *uuid_output) { for (const load_command *lc = first_lc; lc->cmd != 0; lc = NextCommand(lc)) { if (lc->cmd != LC_UUID) continue; const uuid_command *uuid_lc = (const uuid_command *)lc; const uint8_t *uuid = &uuid_lc->uuid[0]; internal_memcpy(uuid_output, uuid, kModuleUUIDSize); return; } } static bool IsModuleInstrumented(const load_command *first_lc) { for (const load_command *lc = first_lc; lc->cmd != 0; lc = NextCommand(lc)) { if (lc->cmd != LC_LOAD_DYLIB) continue; const dylib_command *dylib_lc = (const dylib_command *)lc; uint32_t dylib_name_offset = dylib_lc->dylib.name.offset; const char *dylib_name = ((const char *)dylib_lc) + dylib_name_offset; dylib_name = StripModuleName(dylib_name); if (dylib_name != 0 && (internal_strstr(dylib_name, "libclang_rt."))) { return true; } } return false; } // _dyld_get_image_header() and related APIs don't report dyld itself. // We work around this by manually recursing through the memory map // until we hit a Mach header matching dyld instead. These recurse // calls are expensive, but the first memory map generation occurs // early in the process, when dyld is one of the only images loaded, // so it will be hit after only a few iterations. static mach_header *get_dyld_image_header() { mach_port_name_t port; if (task_for_pid(mach_task_self(), internal_getpid(), &port) != KERN_SUCCESS) { return nullptr; } unsigned depth = 1; vm_size_t size = 0; vm_address_t address = 0; kern_return_t err = KERN_SUCCESS; mach_msg_type_number_t count = VM_REGION_SUBMAP_INFO_COUNT_64; while (true) { struct vm_region_submap_info_64 info; err = vm_region_recurse_64(port, &address, &size, &depth, (vm_region_info_t)&info, &count); if (err != KERN_SUCCESS) return nullptr; if (size >= sizeof(mach_header) && info.protection & MemoryMappingLayout::kProtectionRead) { mach_header *hdr = (mach_header *)address; if ((hdr->magic == MH_MAGIC || hdr->magic == MH_MAGIC_64) && hdr->filetype == MH_DYLINKER) { return hdr; } } address += size; } } const mach_header *get_dyld_hdr() { if (!dyld_hdr) dyld_hdr = get_dyld_image_header(); return dyld_hdr; } void MemoryMappingLayout::GetSegmentAddrRange(uptr *start, uptr *end, uptr vmaddr, uptr vmsize) { if (current_image_ == kDyldImageIdx) { // vmaddr is masked with 0xfffff because on macOS versions < 10.12, // it contains an absolute address rather than an offset for dyld. // To make matters even more complicated, this absolute address // isn't actually the absolute segment address, but the offset portion // of the address is accurate when combined with the dyld base address, // and the mask will give just this offset. if (start) *start = (vmaddr & 0xfffff) + (uptr)get_dyld_hdr(); if (end) *end = (vmaddr & 0xfffff) + vmsize + (uptr)get_dyld_hdr(); } else { const sptr dlloff = _dyld_get_image_vmaddr_slide(current_image_); if (start) *start = vmaddr + dlloff; if (end) *end = vmaddr + vmsize + dlloff; } } bool MemoryMappingLayout::Next(uptr *start, uptr *end, uptr *offset, char filename[], uptr filename_size, uptr *protection, ModuleArch *arch, u8 *uuid) { for (; current_image_ >= kDyldImageIdx; current_image_--) { const mach_header *hdr = (current_image_ == kDyldImageIdx) ? get_dyld_hdr() : _dyld_get_image_header(current_image_); if (!hdr) continue; if (current_load_cmd_count_ < 0) { // Set up for this image; current_load_cmd_count_ = hdr->ncmds; current_magic_ = hdr->magic; current_filetype_ = hdr->filetype; current_arch_ = ModuleArchFromCpuType(hdr->cputype, hdr->cpusubtype); switch (current_magic_) { #ifdef MH_MAGIC_64 case MH_MAGIC_64: { current_load_cmd_addr_ = (char*)hdr + sizeof(mach_header_64); break; } #endif case MH_MAGIC: { current_load_cmd_addr_ = (char*)hdr + sizeof(mach_header); break; } default: { continue; } } FindUUID((const load_command *)current_load_cmd_addr_, ¤t_uuid_[0]); current_instrumented_ = IsModuleInstrumented((const load_command *)current_load_cmd_addr_); } for (; current_load_cmd_count_ >= 0; current_load_cmd_count_--) { switch (current_magic_) { // current_magic_ may be only one of MH_MAGIC, MH_MAGIC_64. #ifdef MH_MAGIC_64 case MH_MAGIC_64: { if (NextSegmentLoad( start, end, offset, filename, filename_size, arch, uuid, protection)) return true; break; } #endif case MH_MAGIC: { if (NextSegmentLoad( start, end, offset, filename, filename_size, arch, uuid, protection)) return true; break; } } } // If we get here, no more load_cmd's in this image talk about // segments. Go on to the next image. } return false; } void MemoryMappingLayout::DumpListOfModules( InternalMmapVector *modules) { Reset(); uptr cur_beg, cur_end, prot; ModuleArch cur_arch; u8 cur_uuid[kModuleUUIDSize]; InternalScopedString module_name(kMaxPathLength); for (uptr i = 0; Next(&cur_beg, &cur_end, 0, module_name.data(), module_name.size(), &prot, &cur_arch, &cur_uuid[0]); i++) { const char *cur_name = module_name.data(); if (cur_name[0] == '\0') continue; LoadedModule *cur_module = nullptr; if (!modules->empty() && 0 == internal_strcmp(cur_name, modules->back().full_name())) { cur_module = &modules->back(); } else { modules->push_back(LoadedModule()); cur_module = &modules->back(); cur_module->set(cur_name, cur_beg, cur_arch, cur_uuid, current_instrumented_); } cur_module->addAddressRange(cur_beg, cur_end, prot & kProtectionExecute, - prot & kProtectionRead); + prot & kProtectionWrite); } } } // namespace __sanitizer #endif // SANITIZER_MAC Index: vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_win.cc =================================================================== --- vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_win.cc (revision 318666) +++ vendor/compiler-rt/dist/lib/sanitizer_common/sanitizer_win.cc (revision 318667) @@ -1,1000 +1,1000 @@ //===-- sanitizer_win.cc --------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is shared between AddressSanitizer and ThreadSanitizer // run-time libraries and implements windows-specific functions from // sanitizer_libc.h. //===----------------------------------------------------------------------===// #include "sanitizer_platform.h" #if SANITIZER_WINDOWS #define WIN32_LEAN_AND_MEAN #define NOGDI #include #include #include #include #include "sanitizer_common.h" #include "sanitizer_dbghelp.h" #include "sanitizer_libc.h" #include "sanitizer_mutex.h" #include "sanitizer_placement_new.h" #include "sanitizer_procmaps.h" #include "sanitizer_stacktrace.h" #include "sanitizer_symbolizer.h" #include "sanitizer_win_defs.h" // A macro to tell the compiler that this part of the code cannot be reached, // if the compiler supports this feature. Since we're using this in // code that is called when terminating the process, the expansion of the // macro should not terminate the process to avoid infinite recursion. #if defined(__clang__) # define BUILTIN_UNREACHABLE() __builtin_unreachable() #elif defined(__GNUC__) && \ (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)) # define BUILTIN_UNREACHABLE() __builtin_unreachable() #elif defined(_MSC_VER) # define BUILTIN_UNREACHABLE() __assume(0) #else # define BUILTIN_UNREACHABLE() #endif namespace __sanitizer { #include "sanitizer_syscall_generic.inc" // --------------------- sanitizer_common.h uptr GetPageSize() { SYSTEM_INFO si; GetSystemInfo(&si); return si.dwPageSize; } uptr GetMmapGranularity() { SYSTEM_INFO si; GetSystemInfo(&si); return si.dwAllocationGranularity; } uptr GetMaxVirtualAddress() { SYSTEM_INFO si; GetSystemInfo(&si); return (uptr)si.lpMaximumApplicationAddress; } bool FileExists(const char *filename) { return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES; } uptr internal_getpid() { return GetProcessId(GetCurrentProcess()); } // In contrast to POSIX, on Windows GetCurrentThreadId() // returns a system-unique identifier. tid_t GetTid() { return GetCurrentThreadId(); } uptr GetThreadSelf() { return GetTid(); } #if !SANITIZER_GO void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, uptr *stack_bottom) { CHECK(stack_top); CHECK(stack_bottom); MEMORY_BASIC_INFORMATION mbi; CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0); // FIXME: is it possible for the stack to not be a single allocation? // Are these values what ASan expects to get (reserved, not committed; // including stack guard page) ? *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize; *stack_bottom = (uptr)mbi.AllocationBase; } #endif // #if !SANITIZER_GO void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) { void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); if (rv == 0) ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError(), raw_report); return rv; } void UnmapOrDie(void *addr, uptr size) { if (!size || !addr) return; MEMORY_BASIC_INFORMATION mbi; CHECK(VirtualQuery(addr, &mbi, sizeof(mbi))); // MEM_RELEASE can only be used to unmap whole regions previously mapped with // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that // fails try MEM_DECOMMIT. if (VirtualFree(addr, 0, MEM_RELEASE) == 0) { if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) { Report("ERROR: %s failed to " "deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n", SanitizerToolName, size, size, addr, GetLastError()); CHECK("unable to unmap" && 0); } } } // We want to map a chunk of address space aligned to 'alignment'. void *MmapAlignedOrDie(uptr size, uptr alignment, const char *mem_type) { CHECK(IsPowerOfTwo(size)); CHECK(IsPowerOfTwo(alignment)); // Windows will align our allocations to at least 64K. alignment = Max(alignment, GetMmapGranularity()); uptr mapped_addr = (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); if (!mapped_addr) ReportMmapFailureAndDie(size, mem_type, "allocate aligned", GetLastError()); // If we got it right on the first try, return. Otherwise, unmap it and go to // the slow path. if (IsAligned(mapped_addr, alignment)) return (void*)mapped_addr; if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0) ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError()); // If we didn't get an aligned address, overallocate, find an aligned address, // unmap, and try to allocate at that aligned address. int retries = 0; const int kMaxRetries = 10; for (; retries < kMaxRetries && (mapped_addr == 0 || !IsAligned(mapped_addr, alignment)); retries++) { // Overallocate size + alignment bytes. mapped_addr = (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS); if (!mapped_addr) ReportMmapFailureAndDie(size, mem_type, "allocate aligned", GetLastError()); // Find the aligned address. uptr aligned_addr = RoundUpTo(mapped_addr, alignment); // Free the overallocation. if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0) ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError()); // Attempt to allocate exactly the number of bytes we need at the aligned // address. This may fail for a number of reasons, in which case we continue // the loop. mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); } // Fail if we can't make this work quickly. if (retries == kMaxRetries && mapped_addr == 0) ReportMmapFailureAndDie(size, mem_type, "allocate aligned", GetLastError()); return (void *)mapped_addr; } void *MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) { // FIXME: is this really "NoReserve"? On Win32 this does not matter much, // but on Win64 it does. (void)name; // unsupported #if !SANITIZER_GO && SANITIZER_WINDOWS64 // On asan/Windows64, use MEM_COMMIT would result in error // 1455:ERROR_COMMITMENT_LIMIT. // Asan uses exception handler to commit page on demand. void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE); #else void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); #endif if (p == 0) Report("ERROR: %s failed to " "allocate %p (%zd) bytes at %p (error code: %d)\n", SanitizerToolName, size, size, fixed_addr, GetLastError()); return p; } // Memory space mapped by 'MmapFixedOrDie' must have been reserved by // 'MmapFixedNoAccess'. void *MmapFixedOrDie(uptr fixed_addr, uptr size) { void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_COMMIT, PAGE_READWRITE); if (p == 0) { char mem_type[30]; internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx", fixed_addr); ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError()); } return p; } void *MmapNoReserveOrDie(uptr size, const char *mem_type) { // FIXME: make this really NoReserve? return MmapOrDie(size, mem_type); } void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) { (void)name; // unsupported void *res = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_NOACCESS); if (res == 0) Report("WARNING: %s failed to " "mprotect %p (%zd) bytes at %p (error code: %d)\n", SanitizerToolName, size, size, fixed_addr, GetLastError()); return res; } void *MmapNoAccess(uptr size) { void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS); if (res == 0) Report("WARNING: %s failed to " "mprotect %p (%zd) bytes (error code: %d)\n", SanitizerToolName, size, size, GetLastError()); return res; } bool MprotectNoAccess(uptr addr, uptr size) { DWORD old_protection; return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection); } void ReleaseMemoryPagesToOS(uptr beg, uptr end) { // This is almost useless on 32-bits. // FIXME: add madvise-analog when we move to 64-bits. } void NoHugePagesInRegion(uptr addr, uptr size) { // FIXME: probably similar to ReleaseMemoryToOS. } void DontDumpShadowMemory(uptr addr, uptr length) { // This is almost useless on 32-bits. // FIXME: add madvise-analog when we move to 64-bits. } uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding) { uptr address = 0; while (true) { MEMORY_BASIC_INFORMATION info; if (!::VirtualQuery((void*)address, &info, sizeof(info))) return 0; if (info.State == MEM_FREE) { uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding, alignment); if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize) return shadow_address; } // Move to the next region. address = (uptr)info.BaseAddress + info.RegionSize; } return 0; } bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) { MEMORY_BASIC_INFORMATION mbi; CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi))); return mbi.Protect == PAGE_NOACCESS && (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end; } void *MapFileToMemory(const char *file_name, uptr *buff_size) { UNIMPLEMENTED(); } void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) { UNIMPLEMENTED(); } static const int kMaxEnvNameLength = 128; static const DWORD kMaxEnvValueLength = 32767; namespace { struct EnvVariable { char name[kMaxEnvNameLength]; char value[kMaxEnvValueLength]; }; } // namespace static const int kEnvVariables = 5; static EnvVariable env_vars[kEnvVariables]; static int num_env_vars; const char *GetEnv(const char *name) { // Note: this implementation caches the values of the environment variables // and limits their quantity. for (int i = 0; i < num_env_vars; i++) { if (0 == internal_strcmp(name, env_vars[i].name)) return env_vars[i].value; } CHECK_LT(num_env_vars, kEnvVariables); DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value, kMaxEnvValueLength); if (rv > 0 && rv < kMaxEnvValueLength) { CHECK_LT(internal_strlen(name), kMaxEnvNameLength); internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength); num_env_vars++; return env_vars[num_env_vars - 1].value; } return 0; } const char *GetPwd() { UNIMPLEMENTED(); } u32 GetUid() { UNIMPLEMENTED(); } namespace { struct ModuleInfo { const char *filepath; uptr base_address; uptr end_address; }; #if !SANITIZER_GO int CompareModulesBase(const void *pl, const void *pr) { const ModuleInfo *l = (ModuleInfo *)pl, *r = (ModuleInfo *)pr; if (l->base_address < r->base_address) return -1; return l->base_address > r->base_address; } #endif } // namespace #if !SANITIZER_GO void DumpProcessMap() { Report("Dumping process modules:\n"); ListOfModules modules; modules.init(); uptr num_modules = modules.size(); InternalScopedBuffer module_infos(num_modules); for (size_t i = 0; i < num_modules; ++i) { module_infos[i].filepath = modules[i].full_name(); module_infos[i].base_address = modules[i].ranges().front()->beg; module_infos[i].end_address = modules[i].ranges().back()->end; } qsort(module_infos.data(), num_modules, sizeof(ModuleInfo), CompareModulesBase); for (size_t i = 0; i < num_modules; ++i) { const ModuleInfo &mi = module_infos[i]; if (mi.end_address != 0) { Printf("\t%p-%p %s\n", mi.base_address, mi.end_address, mi.filepath[0] ? mi.filepath : "[no name]"); } else if (mi.filepath[0]) { Printf("\t??\?-??? %s\n", mi.filepath); } else { Printf("\t???\n"); } } } #endif void PrintModuleMap() { } void DisableCoreDumperIfNecessary() { // Do nothing. } void ReExec() { UNIMPLEMENTED(); } void PrepareForSandboxing(__sanitizer_sandbox_arguments *args) { #if !SANITIZER_GO CovPrepareForSandboxing(args); #endif } bool StackSizeIsUnlimited() { UNIMPLEMENTED(); } void SetStackSizeLimitInBytes(uptr limit) { UNIMPLEMENTED(); } bool AddressSpaceIsUnlimited() { UNIMPLEMENTED(); } void SetAddressSpaceUnlimited() { UNIMPLEMENTED(); } bool IsPathSeparator(const char c) { return c == '\\' || c == '/'; } bool IsAbsolutePath(const char *path) { UNIMPLEMENTED(); } void SleepForSeconds(int seconds) { Sleep(seconds * 1000); } void SleepForMillis(int millis) { Sleep(millis); } u64 NanoTime() { return 0; } void Abort() { internal__exit(3); } #if !SANITIZER_GO // Read the file to extract the ImageBase field from the PE header. If ASLR is // disabled and this virtual address is available, the loader will typically // load the image at this address. Therefore, we call it the preferred base. Any // addresses in the DWARF typically assume that the object has been loaded at // this address. static uptr GetPreferredBase(const char *modname) { fd_t fd = OpenFile(modname, RdOnly, nullptr); if (fd == kInvalidFd) return 0; FileCloser closer(fd); // Read just the DOS header. IMAGE_DOS_HEADER dos_header; uptr bytes_read; if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) || bytes_read != sizeof(dos_header)) return 0; // The file should start with the right signature. if (dos_header.e_magic != IMAGE_DOS_SIGNATURE) return 0; // The layout at e_lfanew is: // "PE\0\0" // IMAGE_FILE_HEADER // IMAGE_OPTIONAL_HEADER // Seek to e_lfanew and read all that data. char buf[4 + sizeof(IMAGE_FILE_HEADER) + sizeof(IMAGE_OPTIONAL_HEADER)]; if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) == INVALID_SET_FILE_POINTER) return 0; if (!ReadFromFile(fd, &buf[0], sizeof(buf), &bytes_read) || bytes_read != sizeof(buf)) return 0; // Check for "PE\0\0" before the PE header. char *pe_sig = &buf[0]; if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0) return 0; // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted. IMAGE_OPTIONAL_HEADER *pe_header = (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER)); // Check for more magic in the PE header. if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC) return 0; // Finally, return the ImageBase. return (uptr)pe_header->ImageBase; } void ListOfModules::init() { clear(); HANDLE cur_process = GetCurrentProcess(); // Query the list of modules. Start by assuming there are no more than 256 // modules and retry if that's not sufficient. HMODULE *hmodules = 0; uptr modules_buffer_size = sizeof(HMODULE) * 256; DWORD bytes_required; while (!hmodules) { hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__); CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size, &bytes_required)); if (bytes_required > modules_buffer_size) { // Either there turned out to be more than 256 hmodules, or new hmodules // could have loaded since the last try. Retry. UnmapOrDie(hmodules, modules_buffer_size); hmodules = 0; modules_buffer_size = bytes_required; } } // |num_modules| is the number of modules actually present, size_t num_modules = bytes_required / sizeof(HMODULE); for (size_t i = 0; i < num_modules; ++i) { HMODULE handle = hmodules[i]; MODULEINFO mi; if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi))) continue; // Get the UTF-16 path and convert to UTF-8. wchar_t modname_utf16[kMaxPathLength]; int modname_utf16_len = GetModuleFileNameW(handle, modname_utf16, kMaxPathLength); if (modname_utf16_len == 0) modname_utf16[0] = '\0'; char module_name[kMaxPathLength]; int module_name_len = ::WideCharToMultiByte(CP_UTF8, 0, modname_utf16, modname_utf16_len + 1, &module_name[0], kMaxPathLength, NULL, NULL); module_name[module_name_len] = '\0'; uptr base_address = (uptr)mi.lpBaseOfDll; uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage; // Adjust the base address of the module so that we get a VA instead of an // RVA when computing the module offset. This helps llvm-symbolizer find the // right DWARF CU. In the common case that the image is loaded at it's // preferred address, we will now print normal virtual addresses. uptr preferred_base = GetPreferredBase(&module_name[0]); uptr adjusted_base = base_address - preferred_base; LoadedModule cur_module; cur_module.set(module_name, adjusted_base); // We add the whole module as one single address range. cur_module.addAddressRange(base_address, end_address, /*executable*/ true, - /*readable*/ true); + /*writable*/ true); modules_.push_back(cur_module); } UnmapOrDie(hmodules, modules_buffer_size); }; // We can't use atexit() directly at __asan_init time as the CRT is not fully // initialized at this point. Place the functions into a vector and use // atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers). InternalMmapVectorNoCtor atexit_functions; int Atexit(void (*function)(void)) { atexit_functions.push_back(function); return 0; } static int RunAtexit() { int ret = 0; for (uptr i = 0; i < atexit_functions.size(); ++i) { ret |= atexit(atexit_functions[i]); } return ret; } #pragma section(".CRT$XID", long, read) // NOLINT __declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit; #endif // ------------------ sanitizer_libc.h fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) { // FIXME: Use the wide variants to handle Unicode filenames. fd_t res; if (mode == RdOnly) { res = CreateFileA(filename, GENERIC_READ, FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr); } else if (mode == WrOnly) { res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, nullptr); } else { UNIMPLEMENTED(); } CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd); CHECK(res != kStderrFd || kStderrFd == kInvalidFd); if (res == kInvalidFd && last_error) *last_error = GetLastError(); return res; } void CloseFile(fd_t fd) { CloseHandle(fd); } bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read, error_t *error_p) { CHECK(fd != kInvalidFd); // bytes_read can't be passed directly to ReadFile: // uptr is unsigned long long on 64-bit Windows. unsigned long num_read_long; bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr); if (!success && error_p) *error_p = GetLastError(); if (bytes_read) *bytes_read = num_read_long; return success; } bool SupportsColoredOutput(fd_t fd) { // FIXME: support colored output. return false; } bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written, error_t *error_p) { CHECK(fd != kInvalidFd); // Handle null optional parameters. error_t dummy_error; error_p = error_p ? error_p : &dummy_error; uptr dummy_bytes_written; bytes_written = bytes_written ? bytes_written : &dummy_bytes_written; // Initialize output parameters in case we fail. *error_p = 0; *bytes_written = 0; // Map the conventional Unix fds 1 and 2 to Windows handles. They might be // closed, in which case this will fail. if (fd == kStdoutFd || fd == kStderrFd) { fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE); if (fd == 0) { *error_p = ERROR_INVALID_HANDLE; return false; } } DWORD bytes_written_32; if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) { *error_p = GetLastError(); return false; } else { *bytes_written = bytes_written_32; return true; } } bool RenameFile(const char *oldpath, const char *newpath, error_t *error_p) { UNIMPLEMENTED(); } uptr internal_sched_yield() { Sleep(0); return 0; } void internal__exit(int exitcode) { // ExitProcess runs some finalizers, so use TerminateProcess to avoid that. // The debugger doesn't stop on TerminateProcess like it does on ExitProcess, // so add our own breakpoint here. if (::IsDebuggerPresent()) __debugbreak(); TerminateProcess(GetCurrentProcess(), exitcode); BUILTIN_UNREACHABLE(); } uptr internal_ftruncate(fd_t fd, uptr size) { UNIMPLEMENTED(); } uptr GetRSS() { return 0; } void *internal_start_thread(void (*func)(void *arg), void *arg) { return 0; } void internal_join_thread(void *th) { } // ---------------------- BlockingMutex ---------------- {{{1 const uptr LOCK_UNINITIALIZED = 0; const uptr LOCK_READY = (uptr)-1; BlockingMutex::BlockingMutex(LinkerInitialized li) { // FIXME: see comments in BlockingMutex::Lock() for the details. CHECK(li == LINKER_INITIALIZED || owner_ == LOCK_UNINITIALIZED); CHECK(sizeof(CRITICAL_SECTION) <= sizeof(opaque_storage_)); InitializeCriticalSection((LPCRITICAL_SECTION)opaque_storage_); owner_ = LOCK_READY; } BlockingMutex::BlockingMutex() { CHECK(sizeof(CRITICAL_SECTION) <= sizeof(opaque_storage_)); InitializeCriticalSection((LPCRITICAL_SECTION)opaque_storage_); owner_ = LOCK_READY; } void BlockingMutex::Lock() { if (owner_ == LOCK_UNINITIALIZED) { // FIXME: hm, global BlockingMutex objects are not initialized?!? // This might be a side effect of the clang+cl+link Frankenbuild... new(this) BlockingMutex((LinkerInitialized)(LINKER_INITIALIZED + 1)); // FIXME: If it turns out the linker doesn't invoke our // constructors, we should probably manually Lock/Unlock all the global // locks while we're starting in one thread to avoid double-init races. } EnterCriticalSection((LPCRITICAL_SECTION)opaque_storage_); CHECK_EQ(owner_, LOCK_READY); owner_ = GetThreadSelf(); } void BlockingMutex::Unlock() { CHECK_EQ(owner_, GetThreadSelf()); owner_ = LOCK_READY; LeaveCriticalSection((LPCRITICAL_SECTION)opaque_storage_); } void BlockingMutex::CheckLocked() { CHECK_EQ(owner_, GetThreadSelf()); } uptr GetTlsSize() { return 0; } void InitTlsSize() { } void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, uptr *tls_addr, uptr *tls_size) { #if SANITIZER_GO *stk_addr = 0; *stk_size = 0; *tls_addr = 0; *tls_size = 0; #else uptr stack_top, stack_bottom; GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom); *stk_addr = stack_bottom; *stk_size = stack_top - stack_bottom; *tls_addr = 0; *tls_size = 0; #endif } #if !SANITIZER_GO void BufferedStackTrace::SlowUnwindStack(uptr pc, u32 max_depth) { CHECK_GE(max_depth, 2); // FIXME: CaptureStackBackTrace might be too slow for us. // FIXME: Compare with StackWalk64. // FIXME: Look at LLVMUnhandledExceptionFilter in Signals.inc size = CaptureStackBackTrace(1, Min(max_depth, kStackTraceMax), (void**)trace, 0); if (size == 0) return; // Skip the RTL frames by searching for the PC in the stacktrace. uptr pc_location = LocatePcInTrace(pc); PopStackFrames(pc_location); } void BufferedStackTrace::SlowUnwindStackWithContext(uptr pc, void *context, u32 max_depth) { CONTEXT ctx = *(CONTEXT *)context; STACKFRAME64 stack_frame; memset(&stack_frame, 0, sizeof(stack_frame)); InitializeDbgHelpIfNeeded(); size = 0; #if defined(_WIN64) int machine_type = IMAGE_FILE_MACHINE_AMD64; stack_frame.AddrPC.Offset = ctx.Rip; stack_frame.AddrFrame.Offset = ctx.Rbp; stack_frame.AddrStack.Offset = ctx.Rsp; #else int machine_type = IMAGE_FILE_MACHINE_I386; stack_frame.AddrPC.Offset = ctx.Eip; stack_frame.AddrFrame.Offset = ctx.Ebp; stack_frame.AddrStack.Offset = ctx.Esp; #endif stack_frame.AddrPC.Mode = AddrModeFlat; stack_frame.AddrFrame.Mode = AddrModeFlat; stack_frame.AddrStack.Mode = AddrModeFlat; while (StackWalk64(machine_type, GetCurrentProcess(), GetCurrentThread(), &stack_frame, &ctx, NULL, SymFunctionTableAccess64, SymGetModuleBase64, NULL) && size < Min(max_depth, kStackTraceMax)) { trace_buffer[size++] = (uptr)stack_frame.AddrPC.Offset; } } #endif // #if !SANITIZER_GO void ReportFile::Write(const char *buffer, uptr length) { SpinMutexLock l(mu); ReopenIfNecessary(); if (!WriteToFile(fd, buffer, length)) { // stderr may be closed, but we may be able to print to the debugger // instead. This is the case when launching a program from Visual Studio, // and the following routine should write to its console. OutputDebugStringA(buffer); } } void SetAlternateSignalStack() { // FIXME: Decide what to do on Windows. } void UnsetAlternateSignalStack() { // FIXME: Decide what to do on Windows. } void InstallDeadlySignalHandlers(SignalHandlerType handler) { (void)handler; // FIXME: Decide what to do on Windows. } bool IsHandledDeadlySignal(int signum) { // FIXME: Decide what to do on Windows. return false; } // Check based on flags if we should handle this exception. bool IsHandledDeadlyException(DWORD exceptionCode) { switch (exceptionCode) { case EXCEPTION_ACCESS_VIOLATION: case EXCEPTION_ARRAY_BOUNDS_EXCEEDED: case EXCEPTION_STACK_OVERFLOW: case EXCEPTION_DATATYPE_MISALIGNMENT: case EXCEPTION_IN_PAGE_ERROR: return common_flags()->handle_segv; case EXCEPTION_ILLEGAL_INSTRUCTION: case EXCEPTION_PRIV_INSTRUCTION: case EXCEPTION_BREAKPOINT: return common_flags()->handle_sigill; case EXCEPTION_FLT_DENORMAL_OPERAND: case EXCEPTION_FLT_DIVIDE_BY_ZERO: case EXCEPTION_FLT_INEXACT_RESULT: case EXCEPTION_FLT_INVALID_OPERATION: case EXCEPTION_FLT_OVERFLOW: case EXCEPTION_FLT_STACK_CHECK: case EXCEPTION_FLT_UNDERFLOW: case EXCEPTION_INT_DIVIDE_BY_ZERO: case EXCEPTION_INT_OVERFLOW: return common_flags()->handle_sigfpe; } return false; } const char *DescribeSignalOrException(int signo) { unsigned code = signo; // Get the string description of the exception if this is a known deadly // exception. switch (code) { case EXCEPTION_ACCESS_VIOLATION: return "access-violation"; case EXCEPTION_ARRAY_BOUNDS_EXCEEDED: return "array-bounds-exceeded"; case EXCEPTION_STACK_OVERFLOW: return "stack-overflow"; case EXCEPTION_DATATYPE_MISALIGNMENT: return "datatype-misalignment"; case EXCEPTION_IN_PAGE_ERROR: return "in-page-error"; case EXCEPTION_ILLEGAL_INSTRUCTION: return "illegal-instruction"; case EXCEPTION_PRIV_INSTRUCTION: return "priv-instruction"; case EXCEPTION_BREAKPOINT: return "breakpoint"; case EXCEPTION_FLT_DENORMAL_OPERAND: return "flt-denormal-operand"; case EXCEPTION_FLT_DIVIDE_BY_ZERO: return "flt-divide-by-zero"; case EXCEPTION_FLT_INEXACT_RESULT: return "flt-inexact-result"; case EXCEPTION_FLT_INVALID_OPERATION: return "flt-invalid-operation"; case EXCEPTION_FLT_OVERFLOW: return "flt-overflow"; case EXCEPTION_FLT_STACK_CHECK: return "flt-stack-check"; case EXCEPTION_FLT_UNDERFLOW: return "flt-underflow"; case EXCEPTION_INT_DIVIDE_BY_ZERO: return "int-divide-by-zero"; case EXCEPTION_INT_OVERFLOW: return "int-overflow"; } return "unknown exception"; } bool IsAccessibleMemoryRange(uptr beg, uptr size) { SYSTEM_INFO si; GetNativeSystemInfo(&si); uptr page_size = si.dwPageSize; uptr page_mask = ~(page_size - 1); for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask; page <= end;) { MEMORY_BASIC_INFORMATION info; if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info)) return false; if (info.Protect == 0 || info.Protect == PAGE_NOACCESS || info.Protect == PAGE_EXECUTE) return false; if (info.RegionSize == 0) return false; page += info.RegionSize; } return true; } SignalContext SignalContext::Create(void *siginfo, void *context) { EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo; CONTEXT *context_record = (CONTEXT *)context; uptr pc = (uptr)exception_record->ExceptionAddress; #ifdef _WIN64 uptr bp = (uptr)context_record->Rbp; uptr sp = (uptr)context_record->Rsp; #else uptr bp = (uptr)context_record->Ebp; uptr sp = (uptr)context_record->Esp; #endif uptr access_addr = exception_record->ExceptionInformation[1]; // The contents of this array are documented at // https://msdn.microsoft.com/en-us/library/windows/desktop/aa363082(v=vs.85).aspx // The first element indicates read as 0, write as 1, or execute as 8. The // second element is the faulting address. WriteFlag write_flag = SignalContext::UNKNOWN; switch (exception_record->ExceptionInformation[0]) { case 0: write_flag = SignalContext::READ; break; case 1: write_flag = SignalContext::WRITE; break; case 8: write_flag = SignalContext::UNKNOWN; break; } bool is_memory_access = write_flag != SignalContext::UNKNOWN; return SignalContext(context, access_addr, pc, sp, bp, is_memory_access, write_flag); } void SignalContext::DumpAllRegisters(void *context) { // FIXME: Implement this. } uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) { // FIXME: Actually implement this function. CHECK_GT(buf_len, 0); buf[0] = 0; return 0; } uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) { return ReadBinaryName(buf, buf_len); } void CheckVMASize() { // Do nothing. } void MaybeReexec() { // No need to re-exec on Windows. } char **GetArgv() { // FIXME: Actually implement this function. return 0; } pid_t StartSubprocess(const char *program, const char *const argv[], fd_t stdin_fd, fd_t stdout_fd, fd_t stderr_fd) { // FIXME: implement on this platform // Should be implemented based on // SymbolizerProcess::StarAtSymbolizerSubprocess // from lib/sanitizer_common/sanitizer_symbolizer_win.cc. return -1; } bool IsProcessRunning(pid_t pid) { // FIXME: implement on this platform. return false; } int WaitForProcess(pid_t pid) { return -1; } // FIXME implement on this platform. void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) { } void CheckNoDeepBind(const char *filename, int flag) { // Do nothing. } } // namespace __sanitizer #endif // _WIN32 Index: vendor/compiler-rt/dist/lib/sanitizer_common/tests/CMakeLists.txt =================================================================== --- vendor/compiler-rt/dist/lib/sanitizer_common/tests/CMakeLists.txt (revision 318666) +++ vendor/compiler-rt/dist/lib/sanitizer_common/tests/CMakeLists.txt (revision 318667) @@ -1,240 +1,249 @@ include(CompilerRTCompile) clang_compiler_add_cxx_check() # FIXME: use SANITIZER_COMMON_SUPPORTED_ARCH here filter_available_targets(SANITIZER_UNITTEST_SUPPORTED_ARCH x86_64 i386 mips64 mips64el) if(APPLE) darwin_filter_host_archs(SANITIZER_UNITTEST_SUPPORTED_ARCH SANITIZER_COMMON_SUPPORTED_ARCH) endif() set(SANITIZER_UNITTESTS sanitizer_allocator_test.cc sanitizer_atomic_test.cc sanitizer_bitvector_test.cc sanitizer_bvgraph_test.cc sanitizer_common_test.cc sanitizer_deadlock_detector_test.cc sanitizer_flags_test.cc sanitizer_format_interceptor_test.cc sanitizer_ioctl_test.cc sanitizer_libc_test.cc sanitizer_linux_test.cc sanitizer_list_test.cc sanitizer_mutex_test.cc sanitizer_nolibc_test.cc sanitizer_posix_test.cc sanitizer_printf_test.cc sanitizer_procmaps_test.cc sanitizer_quarantine_test.cc sanitizer_stackdepot_test.cc sanitizer_stacktrace_printer_test.cc sanitizer_stacktrace_test.cc sanitizer_stoptheworld_test.cc sanitizer_suppressions_test.cc sanitizer_symbolizer_test.cc sanitizer_test_main.cc sanitizer_thread_registry_test.cc) set(SANITIZER_TEST_HEADERS sanitizer_pthread_wrappers.h sanitizer_test_config.h sanitizer_test_utils.h) foreach(header ${SANITIZER_HEADERS}) list(APPEND SANITIZER_TEST_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/../${header}) endforeach() set(SANITIZER_TEST_CFLAGS_COMMON ${COMPILER_RT_UNITTEST_CFLAGS} ${COMPILER_RT_GTEST_CFLAGS} -I${COMPILER_RT_SOURCE_DIR}/include -I${COMPILER_RT_SOURCE_DIR}/lib -I${COMPILER_RT_SOURCE_DIR}/lib/sanitizer_common -fno-rtti -O2 -Werror=sign-compare -Wno-non-virtual-dtor) if(MSVC) # Disable exceptions on Windows until they work reliably. list(APPEND SANITIZER_TEST_CFLAGS_COMMON -fno-exceptions -DGTEST_HAS_SEH=0) endif() # -gline-tables-only must be enough for these tests, so use it if possible. if(COMPILER_RT_TEST_COMPILER_ID MATCHES "Clang") list(APPEND SANITIZER_TEST_CFLAGS_COMMON -gline-tables-only) else() list(APPEND SANITIZER_TEST_CFLAGS_COMMON -g) endif() if(MSVC) list(APPEND SANITIZER_TEST_CFLAGS_COMMON -gcodeview) endif() list(APPEND SANITIZER_TEST_LINK_FLAGS_COMMON -g) if(NOT MSVC) list(APPEND SANITIZER_TEST_LINK_FLAGS_COMMON --driver-mode=g++) endif() if(ANDROID) list(APPEND SANITIZER_TEST_LINK_FLAGS_COMMON -pie) endif() if(APPLE) list(APPEND SANITIZER_TEST_CFLAGS_COMMON ${DARWIN_osx_CFLAGS}) list(APPEND SANITIZER_TEST_LINK_FLAGS_COMMON ${DARWIN_osx_LINK_FLAGS}) add_weak_symbols("sanitizer_common" WEAK_SYMBOL_LINK_FLAGS) list(APPEND SANITIZER_TEST_LINK_FLAGS_COMMON ${WEAK_SYMBOL_LINK_FLAGS}) endif() # MSVC linker is allocating 1M for the stack by default, which is not # enough for the unittests. Some unittests require more than 2M. # The default stack size for clang is 8M. if(MSVC) list(APPEND SANITIZER_TEST_LINK_FLAGS_COMMON -Wl,/STACK:0xC00000) endif() set(SANITIZER_TEST_LINK_LIBS) append_list_if(COMPILER_RT_HAS_LIBLOG log SANITIZER_TEST_LINK_LIBS) # NDK r10 requires -latomic almost always. append_list_if(ANDROID atomic SANITIZER_TEST_LINK_LIBS) append_list_if(COMPILER_RT_HAS_LIBDL -ldl SANITIZER_TEST_LINK_FLAGS_COMMON) append_list_if(COMPILER_RT_HAS_LIBRT -lrt SANITIZER_TEST_LINK_FLAGS_COMMON) append_list_if(COMPILER_RT_HAS_LIBPTHREAD -pthread SANITIZER_TEST_LINK_FLAGS_COMMON) # x86_64 FreeBSD 9.2 additionally requires libc++ to build the tests. Also, # 'libm' shall be specified explicitly to build i386 tests. if(CMAKE_SYSTEM MATCHES "FreeBSD-9.2-RELEASE") list(APPEND SANITIZER_TEST_LINK_FLAGS_COMMON "-lc++ -lm") endif() include_directories(..) include_directories(../..) # Adds static library which contains sanitizer_common object file # (universal binary on Mac and arch-specific object files on Linux). macro(add_sanitizer_common_lib library) add_library(${library} STATIC ${ARGN}) set_target_properties(${library} PROPERTIES ARCHIVE_OUTPUT_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} FOLDER "Compiler-RT Runtime tests") endmacro() function(get_sanitizer_common_lib_for_arch arch lib lib_name) if(APPLE) set(tgt_name "RTSanitizerCommon.test.osx") else() set(tgt_name "RTSanitizerCommon.test.${arch}") endif() set(${lib} "${tgt_name}" PARENT_SCOPE) if(CMAKE_CONFIGURATION_TYPES) set(configuration_path "${CMAKE_CFG_INTDIR}/") else() set(configuration_path "") endif() if(NOT MSVC) set(${lib_name} "${configuration_path}lib${tgt_name}.a" PARENT_SCOPE) else() set(${lib_name} "${configuration_path}${tgt_name}.lib" PARENT_SCOPE) endif() endfunction() # Sanitizer_common unit tests testsuite. add_custom_target(SanitizerUnitTests) set_target_properties(SanitizerUnitTests PROPERTIES FOLDER "Compiler-RT Tests") # Adds sanitizer tests for architecture. macro(add_sanitizer_tests_for_arch arch) get_target_flags_for_arch(${arch} TARGET_FLAGS) + + # If the sanitizer library was built with _FILE_OFFSET_BITS=64 we need + # to ensure that the library and tests agree on the layout of certain + # structures such as 'struct stat'. + if( CMAKE_SIZEOF_VOID_P EQUAL 4 ) + list(APPEND TARGET_FLAGS "-D_LARGEFILE_SOURCE") + list(APPEND TARGET_FLAGS "-D_FILE_OFFSET_BITS=64") + endif() + set(SANITIZER_TEST_SOURCES ${SANITIZER_UNITTESTS} ${COMPILER_RT_GTEST_SOURCE}) set(SANITIZER_TEST_COMPILE_DEPS ${SANITIZER_TEST_HEADERS}) if(NOT COMPILER_RT_STANDALONE_BUILD) list(APPEND SANITIZER_TEST_COMPILE_DEPS gtest) endif() set(SANITIZER_TEST_OBJECTS) foreach(source ${SANITIZER_TEST_SOURCES}) get_filename_component(basename ${source} NAME) if(CMAKE_CONFIGURATION_TYPES) set(output_obj "${CMAKE_CFG_INTDIR}/${basename}.${arch}.o") else() set(output_obj "${basename}.${arch}.o") endif() clang_compile(${output_obj} ${source} CFLAGS ${SANITIZER_TEST_CFLAGS_COMMON} ${TARGET_FLAGS} DEPS ${SANITIZER_TEST_COMPILE_DEPS}) list(APPEND SANITIZER_TEST_OBJECTS ${output_obj}) endforeach() get_sanitizer_common_lib_for_arch(${arch} SANITIZER_COMMON_LIB SANITIZER_COMMON_LIB_NAME) # Add unittest target. set(SANITIZER_TEST_NAME "Sanitizer-${arch}-Test") add_compiler_rt_test(SanitizerUnitTests ${SANITIZER_TEST_NAME} OBJECTS ${SANITIZER_TEST_OBJECTS} ${SANITIZER_COMMON_LIB_NAME} DEPS ${SANITIZER_TEST_OBJECTS} ${SANITIZER_COMMON_LIB} LINK_FLAGS ${SANITIZER_TEST_LINK_FLAGS_COMMON} ${TARGET_FLAGS}) if("${CMAKE_SYSTEM_NAME}" STREQUAL "Linux" AND "${arch}" STREQUAL "x86_64") # Test that the libc-independent part of sanitizer_common is indeed # independent of libc, by linking this binary without libc (here) and # executing it (unit test in sanitizer_nolibc_test.cc). clang_compile(sanitizer_nolibc_test_main.${arch}.o sanitizer_nolibc_test_main.cc CFLAGS ${SANITIZER_TEST_CFLAGS_COMMON} ${TARGET_FLAGS} DEPS ${SANITIZER_TEST_COMPILE_DEPS}) add_compiler_rt_test(SanitizerUnitTests "Sanitizer-${arch}-Test-Nolibc" OBJECTS sanitizer_nolibc_test_main.${arch}.o -Wl,-whole-archive libRTSanitizerCommon.test.nolibc.${arch}.a -Wl,-no-whole-archive DEPS sanitizer_nolibc_test_main.${arch}.o RTSanitizerCommon.test.nolibc.${arch} LINK_FLAGS -nostdlib ${TARGET_FLAGS}) endif() endmacro() if(COMPILER_RT_CAN_EXECUTE_TESTS AND NOT ANDROID) # We use just-built clang to build sanitizer_common unittests, so we must # be sure that produced binaries would work. if(APPLE) add_sanitizer_common_lib("RTSanitizerCommon.test.osx" $ $) else() if(CAN_TARGET_x86_64) add_sanitizer_common_lib("RTSanitizerCommon.test.nolibc.x86_64" $ $) endif() foreach(arch ${SANITIZER_UNITTEST_SUPPORTED_ARCH}) add_sanitizer_common_lib("RTSanitizerCommon.test.${arch}" $ $) endforeach() endif() foreach(arch ${SANITIZER_UNITTEST_SUPPORTED_ARCH}) add_sanitizer_tests_for_arch(${arch}) endforeach() endif() if(ANDROID) foreach(arch ${SANITIZER_COMMON_SUPPORTED_ARCH}) add_executable(SanitizerTest ${SANITIZER_UNITTESTS} ${COMPILER_RT_GTEST_SOURCE} $ $) set_target_compile_flags(SanitizerTest ${SANITIZER_COMMON_CFLAGS} ${SANITIZER_TEST_CFLAGS_COMMON}) # Setup correct output directory and link flags. set_target_properties(SanitizerTest PROPERTIES RUNTIME_OUTPUT_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}) set_target_link_flags(SanitizerTest ${SANITIZER_TEST_LINK_FLAGS_COMMON}) target_link_libraries(SanitizerTest ${SANITIZER_TEST_LINK_LIBS}) # Add unit test to test suite. add_dependencies(SanitizerUnitTests SanitizerTest) endforeach() endif() Index: vendor/compiler-rt/dist/lib/sanitizer_common/tests/sanitizer_flags_test.cc =================================================================== --- vendor/compiler-rt/dist/lib/sanitizer_common/tests/sanitizer_flags_test.cc (revision 318666) +++ vendor/compiler-rt/dist/lib/sanitizer_common/tests/sanitizer_flags_test.cc (revision 318667) @@ -1,148 +1,178 @@ //===-- sanitizer_flags_test.cc -------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer/AddressSanitizer runtime. // //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_flags.h" #include "sanitizer_common/sanitizer_flag_parser.h" #include "sanitizer_common/sanitizer_libc.h" #include "sanitizer_common/sanitizer_allocator_internal.h" #include "gtest/gtest.h" #include namespace __sanitizer { static const char kFlagName[] = "flag_name"; static const char kFlagDesc[] = "flag description"; template static void TestFlag(T start_value, const char *env, T final_value) { T flag = start_value; FlagParser parser; RegisterFlag(&parser, kFlagName, kFlagDesc, &flag); parser.ParseString(env); EXPECT_EQ(final_value, flag); } template <> void TestFlag(const char *start_value, const char *env, const char *final_value) { const char *flag = start_value; FlagParser parser; RegisterFlag(&parser, kFlagName, kFlagDesc, &flag); parser.ParseString(env); EXPECT_EQ(0, internal_strcmp(final_value, flag)); // Reporting unrecognized flags is needed to reset them. ReportUnrecognizedFlags(); } TEST(SanitizerCommon, BooleanFlags) { TestFlag(false, "flag_name=1", true); TestFlag(false, "flag_name=yes", true); TestFlag(false, "flag_name=true", true); TestFlag(true, "flag_name=0", false); TestFlag(true, "flag_name=no", false); TestFlag(true, "flag_name=false", false); + + EXPECT_DEATH(TestFlag(false, "flag_name", true), "expected '='"); + EXPECT_DEATH(TestFlag(false, "flag_name=", true), + "Invalid value for bool option: ''"); + EXPECT_DEATH(TestFlag(false, "flag_name=2", true), + "Invalid value for bool option: '2'"); + EXPECT_DEATH(TestFlag(false, "flag_name=-1", true), + "Invalid value for bool option: '-1'"); + EXPECT_DEATH(TestFlag(false, "flag_name=on", true), + "Invalid value for bool option: 'on'"); +} + +TEST(SanitizerCommon, HandleSignalMode) { + TestFlag(kHandleSignalNo, "flag_name=1", kHandleSignalYes); + TestFlag(kHandleSignalNo, "flag_name=yes", kHandleSignalYes); + TestFlag(kHandleSignalNo, "flag_name=true", kHandleSignalYes); + TestFlag(kHandleSignalYes, "flag_name=0", kHandleSignalNo); + TestFlag(kHandleSignalYes, "flag_name=no", kHandleSignalNo); + TestFlag(kHandleSignalYes, "flag_name=false", kHandleSignalNo); + + EXPECT_DEATH(TestFlag(kHandleSignalNo, "flag_name", kHandleSignalNo), + "expected '='"); + EXPECT_DEATH(TestFlag(kHandleSignalNo, "flag_name=", kHandleSignalNo), + "Invalid value for signal handler option: ''"); + EXPECT_DEATH(TestFlag(kHandleSignalNo, "flag_name=2", kHandleSignalNo), + "Invalid value for signal handler option: '2'"); + EXPECT_DEATH(TestFlag(kHandleSignalNo, "flag_name=-1", kHandleSignalNo), + "Invalid value for signal handler option: '-1'"); + EXPECT_DEATH(TestFlag(kHandleSignalNo, "flag_name=on", kHandleSignalNo), + "Invalid value for signal handler option: 'on'"); } TEST(SanitizerCommon, IntFlags) { TestFlag(-11, 0, -11); TestFlag(-11, "flag_name=0", 0); TestFlag(-11, "flag_name=42", 42); TestFlag(-11, "flag_name=-42", -42); // Unrecognized flags are ignored. TestFlag(-11, "--flag_name=42", -11); TestFlag(-11, "zzzzzzz=42", -11); EXPECT_DEATH(TestFlag(-11, "flag_name", 0), "expected '='"); EXPECT_DEATH(TestFlag(-11, "flag_name=42U", 0), "Invalid value for int option"); } TEST(SanitizerCommon, StrFlags) { TestFlag("zzz", 0, "zzz"); TestFlag("zzz", "flag_name=", ""); TestFlag("zzz", "flag_name=abc", "abc"); TestFlag("", "flag_name=abc", "abc"); TestFlag("", "flag_name='abc zxc'", "abc zxc"); // TestStrFlag("", "flag_name=\"abc qwe\" asd", "abc qwe"); } static void TestTwoFlags(const char *env, bool expected_flag1, const char *expected_flag2, const char *name1 = "flag1", const char *name2 = "flag2") { bool flag1 = !expected_flag1; const char *flag2 = ""; FlagParser parser; RegisterFlag(&parser, name1, kFlagDesc, &flag1); RegisterFlag(&parser, name2, kFlagDesc, &flag2); parser.ParseString(env); EXPECT_EQ(expected_flag1, flag1); EXPECT_EQ(0, internal_strcmp(flag2, expected_flag2)); // Reporting unrecognized flags is needed to reset them. ReportUnrecognizedFlags(); } TEST(SanitizerCommon, MultipleFlags) { TestTwoFlags("flag1=1 flag2='zzz'", true, "zzz"); TestTwoFlags("flag2='qxx' flag1=0", false, "qxx"); TestTwoFlags("flag1=false:flag2='zzz'", false, "zzz"); TestTwoFlags("flag2=qxx:flag1=yes", true, "qxx"); TestTwoFlags("flag2=qxx\nflag1=yes", true, "qxx"); TestTwoFlags("flag2=qxx\r\nflag1=yes", true, "qxx"); TestTwoFlags("flag2=qxx\tflag1=yes", true, "qxx"); } TEST(SanitizerCommon, CommonSuffixFlags) { TestTwoFlags("flag=1 other_flag='zzz'", true, "zzz", "flag", "other_flag"); TestTwoFlags("other_flag='zzz' flag=1", true, "zzz", "flag", "other_flag"); TestTwoFlags("other_flag=' flag=0 ' flag=1", true, " flag=0 ", "flag", "other_flag"); TestTwoFlags("flag=1 other_flag=' flag=0 '", true, " flag=0 ", "flag", "other_flag"); } TEST(SanitizerCommon, CommonFlags) { CommonFlags cf; FlagParser parser; RegisterCommonFlags(&parser, &cf); cf.SetDefaults(); EXPECT_TRUE(cf.symbolize); EXPECT_STREQ(".", cf.coverage_dir); cf.symbolize = false; cf.coverage = true; cf.coverage_direct = true; cf.log_path = "path/one"; parser.ParseString("symbolize=1:coverage_direct=false log_path='path/two'"); EXPECT_TRUE(cf.symbolize); EXPECT_TRUE(cf.coverage); EXPECT_FALSE(cf.coverage_direct); EXPECT_STREQ("path/two", cf.log_path); } } // namespace __sanitizer Index: vendor/compiler-rt/dist/lib/sanitizer_common/tests/sanitizer_test_utils.h =================================================================== --- vendor/compiler-rt/dist/lib/sanitizer_common/tests/sanitizer_test_utils.h (revision 318666) +++ vendor/compiler-rt/dist/lib/sanitizer_common/tests/sanitizer_test_utils.h (revision 318667) @@ -1,133 +1,127 @@ //===-- sanitizer_test_utils.h ----------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of *Sanitizer runtime. // Common unit tests utilities. // //===----------------------------------------------------------------------===// #ifndef SANITIZER_TEST_UTILS_H #define SANITIZER_TEST_UTILS_H #if defined(_WIN32) // should always be the first include on Windows. # include // MSVS headers define max/min as macros, so std::max/min gets crazy. # undef max # undef min #endif #if !defined(SANITIZER_EXTERNAL_TEST_CONFIG) # define INCLUDED_FROM_SANITIZER_TEST_UTILS_H # include "sanitizer_test_config.h" # undef INCLUDED_FROM_SANITIZER_TEST_UTILS_H #endif #include #if defined(_MSC_VER) # define NOINLINE __declspec(noinline) #else // defined(_MSC_VER) # define NOINLINE __attribute__((noinline)) #endif // defined(_MSC_VER) #if !defined(_MSC_VER) || defined(__clang__) # define UNUSED __attribute__((unused)) # define USED __attribute__((used)) #else # define UNUSED # define USED #endif #if !defined(__has_feature) #define __has_feature(x) 0 #endif #ifndef ATTRIBUTE_NO_SANITIZE_ADDRESS # if __has_feature(address_sanitizer) || defined(__SANITIZE_ADDRESS__) # define ATTRIBUTE_NO_SANITIZE_ADDRESS \ __attribute__((no_sanitize_address)) # else # define ATTRIBUTE_NO_SANITIZE_ADDRESS # endif #endif // ATTRIBUTE_NO_SANITIZE_ADDRESS #if __LP64__ || defined(_WIN64) # define SANITIZER_WORDSIZE 64 #else # define SANITIZER_WORDSIZE 32 #endif // Make the compiler thinks that something is going on there. inline void break_optimization(void *arg) { #if !defined(_WIN32) || defined(__clang__) __asm__ __volatile__("" : : "r" (arg) : "memory"); #endif } // This function returns its parameter but in such a way that compiler // can not prove it. template NOINLINE static T Ident(T t) { T ret = t; break_optimization(&ret); return ret; } // Simple stand-alone pseudorandom number generator. // Current algorithm is ANSI C linear congruential PRNG. static inline uint32_t my_rand_r(uint32_t* state) { return (*state = *state * 1103515245 + 12345) >> 16; } static uint32_t global_seed = 0; static inline uint32_t my_rand() { return my_rand_r(&global_seed); } // Set availability of platform-specific functions. #if !defined(__APPLE__) && !defined(__ANDROID__) && !defined(_WIN32) # define SANITIZER_TEST_HAS_POSIX_MEMALIGN 1 #else # define SANITIZER_TEST_HAS_POSIX_MEMALIGN 0 #endif #if !defined(__APPLE__) && !defined(__FreeBSD__) && \ !defined(__ANDROID__) && !defined(_WIN32) # define SANITIZER_TEST_HAS_MEMALIGN 1 # define SANITIZER_TEST_HAS_PVALLOC 1 # define SANITIZER_TEST_HAS_MALLOC_USABLE_SIZE 1 #else # define SANITIZER_TEST_HAS_MEMALIGN 0 # define SANITIZER_TEST_HAS_PVALLOC 0 # define SANITIZER_TEST_HAS_MALLOC_USABLE_SIZE 0 #endif #if !defined(__APPLE__) # define SANITIZER_TEST_HAS_STRNLEN 1 #else # define SANITIZER_TEST_HAS_STRNLEN 0 #endif #if defined(__FreeBSD__) # define SANITIZER_TEST_HAS_PRINTF_L 1 #else # define SANITIZER_TEST_HAS_PRINTF_L 0 #endif -#if !defined(_MSC_VER) -# define SANITIZER_TEST_HAS_STRNDUP 1 -#else -# define SANITIZER_TEST_HAS_STRNDUP 0 -#endif - #endif // SANITIZER_TEST_UTILS_H Index: vendor/compiler-rt/dist/lib/scudo/scudo_flags.cpp =================================================================== --- vendor/compiler-rt/dist/lib/scudo/scudo_flags.cpp (revision 318666) +++ vendor/compiler-rt/dist/lib/scudo/scudo_flags.cpp (revision 318667) @@ -1,98 +1,98 @@ //===-- scudo_flags.cpp -----------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// Hardened Allocator flag parsing logic. /// //===----------------------------------------------------------------------===// #include "scudo_flags.h" #include "scudo_utils.h" #include "sanitizer_common/sanitizer_flags.h" #include "sanitizer_common/sanitizer_flag_parser.h" extern "C" SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE const char* __scudo_default_options(); namespace __scudo { Flags ScudoFlags; // Use via getFlags(). void Flags::setDefaults() { #define SCUDO_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue; #include "scudo_flags.inc" #undef SCUDO_FLAG } static void RegisterScudoFlags(FlagParser *parser, Flags *f) { #define SCUDO_FLAG(Type, Name, DefaultValue, Description) \ RegisterFlag(parser, #Name, Description, &f->Name); #include "scudo_flags.inc" #undef SCUDO_FLAG } static const char *callGetScudoDefaultOptions() { return (&__scudo_default_options) ? __scudo_default_options() : ""; } void initFlags() { SetCommonFlagsDefaults(); { CommonFlags cf; cf.CopyFrom(*common_flags()); cf.exitcode = 1; OverrideCommonFlags(cf); } Flags *f = getFlags(); f->setDefaults(); FlagParser ScudoParser; RegisterScudoFlags(&ScudoParser, f); RegisterCommonFlags(&ScudoParser); // Override from user-specified string. const char *ScudoDefaultOptions = callGetScudoDefaultOptions(); ScudoParser.ParseString(ScudoDefaultOptions); // Override from environment. ScudoParser.ParseString(GetEnv("SCUDO_OPTIONS")); InitializeCommonFlags(); // Sanity checks and default settings for the Quarantine parameters. if (f->QuarantineSizeMb < 0) { - const int DefaultQuarantineSizeMb = FIRST_32_SECOND_64(16, 64); + const int DefaultQuarantineSizeMb = FIRST_32_SECOND_64(4, 16); f->QuarantineSizeMb = DefaultQuarantineSizeMb; } // We enforce an upper limit for the quarantine size of 4Gb. if (f->QuarantineSizeMb > (4 * 1024)) { dieWithMessage("ERROR: the quarantine size is too large\n"); } if (f->ThreadLocalQuarantineSizeKb < 0) { const int DefaultThreadLocalQuarantineSizeKb = - FIRST_32_SECOND_64(256, 1024); + FIRST_32_SECOND_64(64, 256); f->ThreadLocalQuarantineSizeKb = DefaultThreadLocalQuarantineSizeKb; } // And an upper limit of 128Mb for the thread quarantine cache. if (f->ThreadLocalQuarantineSizeKb > (128 * 1024)) { dieWithMessage("ERROR: the per thread quarantine cache size is too " "large\n"); } if (f->ThreadLocalQuarantineSizeKb == 0 && f->QuarantineSizeMb > 0) { dieWithMessage("ERROR: ThreadLocalQuarantineSizeKb can be set to 0 only " "when QuarantineSizeMb is set to 0\n"); } } Flags *getFlags() { return &ScudoFlags; } } // namespace __scudo Index: vendor/compiler-rt/dist/lib/xray/xray_interface.cc =================================================================== --- vendor/compiler-rt/dist/lib/xray/xray_interface.cc (revision 318666) +++ vendor/compiler-rt/dist/lib/xray/xray_interface.cc (revision 318667) @@ -1,335 +1,347 @@ //===-- xray_interface.cpp --------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of XRay, a dynamic runtime instrumentation system. // // Implementation of the API functions. // //===----------------------------------------------------------------------===// #include "xray_interface_internal.h" #include #include #include #include #include #include "sanitizer_common/sanitizer_common.h" #include "xray_defs.h" namespace __xray { #if defined(__x86_64__) // FIXME: The actual length is 11 bytes. Why was length 12 passed to mprotect() // ? static const int16_t cSledLength = 12; #elif defined(__aarch64__) static const int16_t cSledLength = 32; #elif defined(__arm__) static const int16_t cSledLength = 28; #elif SANITIZER_MIPS32 static const int16_t cSledLength = 48; #elif SANITIZER_MIPS64 static const int16_t cSledLength = 64; #elif defined(__powerpc64__) static const int16_t cSledLength = 8; #else #error "Unsupported CPU Architecture" #endif /* CPU architecture */ // This is the function to call when we encounter the entry or exit sleds. __sanitizer::atomic_uintptr_t XRayPatchedFunction{0}; // This is the function to call from the arg1-enabled sleds/trampolines. __sanitizer::atomic_uintptr_t XRayArgLogger{0}; // This is the function to call when we encounter a custom event log call. __sanitizer::atomic_uintptr_t XRayPatchedCustomEvent{0}; // MProtectHelper is an RAII wrapper for calls to mprotect(...) that will undo // any successful mprotect(...) changes. This is used to make a page writeable // and executable, and upon destruction if it was successful in doing so returns // the page into a read-only and executable page. // // This is only used specifically for runtime-patching of the XRay // instrumentation points. This assumes that the executable pages are originally // read-and-execute only. class MProtectHelper { void *PageAlignedAddr; std::size_t MProtectLen; bool MustCleanup; public: explicit MProtectHelper(void *PageAlignedAddr, std::size_t MProtectLen) XRAY_NEVER_INSTRUMENT : PageAlignedAddr(PageAlignedAddr), MProtectLen(MProtectLen), MustCleanup(false) {} int MakeWriteable() XRAY_NEVER_INSTRUMENT { auto R = mprotect(PageAlignedAddr, MProtectLen, PROT_READ | PROT_WRITE | PROT_EXEC); if (R != -1) MustCleanup = true; return R; } ~MProtectHelper() XRAY_NEVER_INSTRUMENT { if (MustCleanup) { mprotect(PageAlignedAddr, MProtectLen, PROT_READ | PROT_EXEC); } } }; } // namespace __xray extern __sanitizer::SpinMutex XRayInstrMapMutex; extern __sanitizer::atomic_uint8_t XRayInitialized; extern __xray::XRaySledMap XRayInstrMap; int __xray_set_handler(void (*entry)(int32_t, XRayEntryType)) XRAY_NEVER_INSTRUMENT { if (__sanitizer::atomic_load(&XRayInitialized, __sanitizer::memory_order_acquire)) { __sanitizer::atomic_store(&__xray::XRayPatchedFunction, reinterpret_cast(entry), __sanitizer::memory_order_release); return 1; } return 0; } int __xray_set_customevent_handler(void (*entry)(void *, size_t)) XRAY_NEVER_INSTRUMENT { if (__sanitizer::atomic_load(&XRayInitialized, __sanitizer::memory_order_acquire)) { __sanitizer::atomic_store(&__xray::XRayPatchedCustomEvent, reinterpret_cast(entry), __sanitizer::memory_order_release); return 1; } return 0; } + int __xray_remove_handler() XRAY_NEVER_INSTRUMENT { return __xray_set_handler(nullptr); } +int __xray_remove_customevent_handler() XRAY_NEVER_INSTRUMENT { + return __xray_set_customevent_handler(nullptr); +} + __sanitizer::atomic_uint8_t XRayPatching{0}; using namespace __xray; // FIXME: Figure out whether we can move this class to sanitizer_common instead // as a generic "scope guard". template class CleanupInvoker { Function Fn; public: explicit CleanupInvoker(Function Fn) XRAY_NEVER_INSTRUMENT : Fn(Fn) {} CleanupInvoker(const CleanupInvoker &) XRAY_NEVER_INSTRUMENT = default; CleanupInvoker(CleanupInvoker &&) XRAY_NEVER_INSTRUMENT = default; CleanupInvoker & operator=(const CleanupInvoker &) XRAY_NEVER_INSTRUMENT = delete; CleanupInvoker &operator=(CleanupInvoker &&) XRAY_NEVER_INSTRUMENT = delete; ~CleanupInvoker() XRAY_NEVER_INSTRUMENT { Fn(); } }; template CleanupInvoker scopeCleanup(Function Fn) XRAY_NEVER_INSTRUMENT { return CleanupInvoker{Fn}; } inline bool patchSled(const XRaySledEntry &Sled, bool Enable, int32_t FuncId) XRAY_NEVER_INSTRUMENT { // While we're here, we should patch the nop sled. To do that we mprotect // the page containing the function to be writeable. const uint64_t PageSize = GetPageSizeCached(); void *PageAlignedAddr = reinterpret_cast(Sled.Address & ~(PageSize - 1)); std::size_t MProtectLen = (Sled.Address + cSledLength) - reinterpret_cast(PageAlignedAddr); MProtectHelper Protector(PageAlignedAddr, MProtectLen); if (Protector.MakeWriteable() == -1) { printf("Failed mprotect: %d\n", errno); return XRayPatchingStatus::FAILED; } bool Success = false; switch (Sled.Kind) { case XRayEntryType::ENTRY: Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_FunctionEntry); break; case XRayEntryType::EXIT: Success = patchFunctionExit(Enable, FuncId, Sled); break; case XRayEntryType::TAIL: Success = patchFunctionTailExit(Enable, FuncId, Sled); break; case XRayEntryType::LOG_ARGS_ENTRY: Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_ArgLoggerEntry); break; case XRayEntryType::CUSTOM_EVENT: Success = patchCustomEvent(Enable, FuncId, Sled); break; default: Report("Unsupported sled kind '%d' @%04x\n", Sled.Address, int(Sled.Kind)); return false; } return Success; } // controlPatching implements the common internals of the patching/unpatching // implementation. |Enable| defines whether we're enabling or disabling the // runtime XRay instrumentation. XRayPatchingStatus controlPatching(bool Enable) XRAY_NEVER_INSTRUMENT { if (!__sanitizer::atomic_load(&XRayInitialized, __sanitizer::memory_order_acquire)) return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized. uint8_t NotPatching = false; if (!__sanitizer::atomic_compare_exchange_strong( &XRayPatching, &NotPatching, true, __sanitizer::memory_order_acq_rel)) return XRayPatchingStatus::ONGOING; // Already patching. uint8_t PatchingSuccess = false; auto XRayPatchingStatusResetter = scopeCleanup([&PatchingSuccess] { if (!PatchingSuccess) __sanitizer::atomic_store(&XRayPatching, false, __sanitizer::memory_order_release); }); // Step 1: Compute the function id, as a unique identifier per function in the // instrumentation map. XRaySledMap InstrMap; { __sanitizer::SpinMutexLock Guard(&XRayInstrMapMutex); InstrMap = XRayInstrMap; } if (InstrMap.Entries == 0) return XRayPatchingStatus::NOT_INITIALIZED; const uint64_t PageSize = GetPageSizeCached(); if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) { Report("System page size is not a power of two: %lld\n", PageSize); return XRayPatchingStatus::FAILED; } uint32_t FuncId = 1; uint64_t CurFun = 0; for (std::size_t I = 0; I < InstrMap.Entries; I++) { auto Sled = InstrMap.Sleds[I]; auto F = Sled.Function; if (CurFun == 0) CurFun = F; if (F != CurFun) { ++FuncId; CurFun = F; } patchSled(Sled, Enable, FuncId); } __sanitizer::atomic_store(&XRayPatching, false, __sanitizer::memory_order_release); PatchingSuccess = true; return XRayPatchingStatus::SUCCESS; } XRayPatchingStatus __xray_patch() XRAY_NEVER_INSTRUMENT { return controlPatching(true); } XRayPatchingStatus __xray_unpatch() XRAY_NEVER_INSTRUMENT { return controlPatching(false); } XRayPatchingStatus patchFunction(int32_t FuncId, bool Enable) XRAY_NEVER_INSTRUMENT { if (!__sanitizer::atomic_load(&XRayInitialized, __sanitizer::memory_order_acquire)) return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized. uint8_t NotPatching = false; if (!__sanitizer::atomic_compare_exchange_strong( &XRayPatching, &NotPatching, true, __sanitizer::memory_order_acq_rel)) return XRayPatchingStatus::ONGOING; // Already patching. // Next, we look for the function index. XRaySledMap InstrMap; { __sanitizer::SpinMutexLock Guard(&XRayInstrMapMutex); InstrMap = XRayInstrMap; } // If we don't have an index, we can't patch individual functions. if (InstrMap.Functions == 0) return XRayPatchingStatus::NOT_INITIALIZED; // FuncId must be a positive number, less than the number of functions // instrumented. if (FuncId <= 0 || static_cast(FuncId) > InstrMap.Functions) { Report("Invalid function id provided: %d\n", FuncId); return XRayPatchingStatus::FAILED; } // Now we patch ths sleds for this specific function. auto SledRange = InstrMap.SledsIndex[FuncId - 1]; auto *f = SledRange.Begin; auto *e = SledRange.End; bool SucceedOnce = false; while (f != e) SucceedOnce |= patchSled(*f++, Enable, FuncId); __sanitizer::atomic_store(&XRayPatching, false, __sanitizer::memory_order_release); if (!SucceedOnce) { Report("Failed patching any sled for function '%d'.", FuncId); return XRayPatchingStatus::FAILED; } return XRayPatchingStatus::SUCCESS; } XRayPatchingStatus __xray_patch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT { return patchFunction(FuncId, true); } XRayPatchingStatus __xray_unpatch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT { return patchFunction(FuncId, false); } int __xray_set_handler_arg1(void (*Handler)(int32_t, XRayEntryType, uint64_t)) { if (!__sanitizer::atomic_load(&XRayInitialized, __sanitizer::memory_order_acquire)) return 0; // A relaxed write might not be visible even if the current thread gets // scheduled on a different CPU/NUMA node. We need to wait for everyone to // have this handler installed for consistency of collected data across CPUs. __sanitizer::atomic_store(&XRayArgLogger, reinterpret_cast(Handler), __sanitizer::memory_order_release); return 1; } int __xray_remove_handler_arg1() { return __xray_set_handler_arg1(nullptr); } uintptr_t __xray_function_address(int32_t FuncId) XRAY_NEVER_INSTRUMENT { __sanitizer::SpinMutexLock Guard(&XRayInstrMapMutex); if (FuncId <= 0 || static_cast(FuncId) > XRayInstrMap.Functions) return 0; - return XRayInstrMap.SledsIndex[FuncId - 1].Begin->Address; + return XRayInstrMap.SledsIndex[FuncId - 1].Begin->Address +// On PPC, function entries are always aligned to 16 bytes. The beginning of a +// sled might be a local entry, which is always +8 based on the global entry. +// Always return the global entry. +#ifdef __PPC__ + & ~0xf +#endif + ; } size_t __xray_max_function_id() XRAY_NEVER_INSTRUMENT { __sanitizer::SpinMutexLock Guard(&XRayInstrMapMutex); return XRayInstrMap.Functions; } Index: vendor/compiler-rt/dist/test/asan/TestCases/Posix/strndup_oob_test.cc =================================================================== --- vendor/compiler-rt/dist/test/asan/TestCases/Posix/strndup_oob_test.cc (revision 318666) +++ vendor/compiler-rt/dist/test/asan/TestCases/Posix/strndup_oob_test.cc (nonexistent) @@ -1,27 +0,0 @@ -// RUN: %clangxx_asan -O0 %s -o %t && not %run %t 2>&1 | FileCheck %s -// RUN: %clangxx_asan -O1 %s -o %t && not %run %t 2>&1 | FileCheck %s -// RUN: %clangxx_asan -O2 %s -o %t && not %run %t 2>&1 | FileCheck %s -// RUN: %clangxx_asan -O3 %s -o %t && not %run %t 2>&1 | FileCheck %s - -// When built as C on Linux, strndup is transformed to __strndup. -// RUN: %clangxx_asan -O3 -xc %s -o %t && not %run %t 2>&1 | FileCheck %s - -// Unwind problem on arm: "main" is missing from the allocation stack trace. -// UNSUPPORTED: win32,s390,armv7l-unknown-linux-gnueabihf - -#include - -char kString[] = "foo"; - -int main(int argc, char **argv) { - char *copy = strndup(kString, 2); - int x = copy[2 + argc]; // BOOM - // CHECK: AddressSanitizer: heap-buffer-overflow - // CHECK: #0 {{.*}}main {{.*}}strndup_oob_test.cc:[[@LINE-2]] - // CHECK-LABEL: allocated by thread T{{.*}} here: - // CHECK: #{{[01]}} {{.*}}strndup - // CHECK: #{{.*}}main {{.*}}strndup_oob_test.cc:[[@LINE-6]] - // CHECK-LABEL: SUMMARY - // CHECK: strndup_oob_test.cc:[[@LINE-7]] - return x; -} Property changes on: vendor/compiler-rt/dist/test/asan/TestCases/Posix/strndup_oob_test.cc ___________________________________________________________________ Deleted: svn:eol-style ## -1 +0,0 ## -native \ No newline at end of property Deleted: svn:keywords ## -1 +0,0 ## -FreeBSD=%H \ No newline at end of property Deleted: svn:mime-type ## -1 +0,0 ## -text/plain \ No newline at end of property Index: vendor/compiler-rt/dist/test/asan/TestCases/Posix/asan-sigbus.cpp =================================================================== --- vendor/compiler-rt/dist/test/asan/TestCases/Posix/asan-sigbus.cpp (revision 318666) +++ vendor/compiler-rt/dist/test/asan/TestCases/Posix/asan-sigbus.cpp (revision 318667) @@ -1,42 +1,42 @@ // Check handle_bus flag // Defaults to true // RUN: %clangxx_asan -std=c++11 %s -o %t // RUN: not %run %t %T/file 2>&1 | FileCheck %s -check-prefix=CHECK-BUS -// RUN: %env_asan_opts=handle_sigbus=false not --crash %run %t %T/file 2>&1 | FileCheck %s +// RUN: %env_asan_opts=handle_sigbus=0 not --crash %run %t %T/file 2>&1 | FileCheck %s // UNSUPPORTED: ios #include #include #include #include #include #include char array[4096]; int main(int argc, char **argv) { assert(argc > 1); int fd = open(argv[1], O_RDWR | O_CREAT, 0700); if (fd < 0) { perror("open"); exit(1); } assert(write(fd, array, sizeof(array)) == sizeof(array)); // Write some zeroes to the file, then mmap it while it has a 4KiB size char *addr = (char *)mmap(nullptr, sizeof(array), PROT_READ, MAP_FILE | MAP_SHARED, fd, 0); if (addr == MAP_FAILED) { perror("mmap"); exit(1); } // Truncate the file so our memory isn't valid any more assert(ftruncate(fd, 0) == 0); // Try to access the memory return addr[42]; // CHECK-NOT: DEADLYSIGNAL // CHECK-BUS: DEADLYSIGNAL // CHECK-BUS: ERROR: AddressSanitizer: BUS } Index: vendor/compiler-rt/dist/test/msan/strndup.cc =================================================================== --- vendor/compiler-rt/dist/test/msan/strndup.cc (revision 318666) +++ vendor/compiler-rt/dist/test/msan/strndup.cc (nonexistent) @@ -1,28 +0,0 @@ -// RUN: %clangxx_msan %s -o %t && not %run %t 2>&1 | FileCheck --check-prefix=ON %s -// RUN: %clangxx_msan %s -o %t && MSAN_OPTIONS=intercept_strndup=0 %run %t 2>&1 | FileCheck --check-prefix=OFF --allow-empty %s - -// When built as C on Linux, strndup is transformed to __strndup. -// RUN: %clangxx_msan -O3 -xc %s -o %t && not %run %t 2>&1 | FileCheck --check-prefix=ON %s - -// UNSUPPORTED: win32 - -#include -#include -#include -#include - -int main(int argc, char **argv) { - char kString[4] = "abc"; - __msan_poison(kString + 2, 1); - char *copy = strndup(kString, 4); // BOOM - assert(__msan_test_shadow(copy, 4) == 2); // Poisoning is preserved. - free(copy); - return 0; - // ON: Uninitialized bytes in __interceptor_{{(__)?}}strndup at offset 2 inside [{{.*}}, 4) - // ON: MemorySanitizer: use-of-uninitialized-value - // ON: #0 {{.*}}main {{.*}}strndup.cc:[[@LINE-6]] - // ON-LABEL: SUMMARY - // ON: {{.*}}strndup.cc:[[@LINE-8]] - // OFF-NOT: MemorySanitizer -} - Property changes on: vendor/compiler-rt/dist/test/msan/strndup.cc ___________________________________________________________________ Deleted: svn:eol-style ## -1 +0,0 ## -native \ No newline at end of property Deleted: svn:keywords ## -1 +0,0 ## -FreeBSD=%H \ No newline at end of property Deleted: svn:mime-type ## -1 +0,0 ## -text/plain \ No newline at end of property Index: vendor/compiler-rt/dist/test/xray/TestCases/Linux/custom-event-logging.cc =================================================================== --- vendor/compiler-rt/dist/test/xray/TestCases/Linux/custom-event-logging.cc (revision 318666) +++ vendor/compiler-rt/dist/test/xray/TestCases/Linux/custom-event-logging.cc (revision 318667) @@ -1,40 +1,40 @@ // Use the clang feature for custom xray event logging. // // RUN: %clangxx_xray -std=c++11 %s -o %t // RUN: XRAY_OPTIONS="patch_premain=false verbosity=1 xray_naive_log=false xray_logfile_base=custom-event-logging.xray-" %run %t 2>&1 | FileCheck %s // FIXME: Support this in non-x86_64 as well // REQUIRES: x86_64-linux // REQUIRES: built-in-llvm-tree #include #include "xray/xray_interface.h" [[clang::xray_always_instrument]] void foo() { static constexpr char CustomLogged[] = "hello custom logging!"; printf("before calling the custom logging...\n"); __xray_customevent(CustomLogged, sizeof(CustomLogged)); printf("after calling the custom logging...\n"); } void myprinter(void* ptr, size_t size) { printf("%.*s\n", static_cast(size), static_cast(ptr)); } int main() { foo(); // CHECK: before calling the custom logging... // CHECK-NEXT: after calling the custom logging... printf("setting up custom event handler...\n"); // CHECK-NEXT: setting up custom event handler... __xray_set_customevent_handler(myprinter); __xray_patch(); // CHECK-NEXT: before calling the custom logging... foo(); // CHECK-NEXT: hello custom logging! // CHECK-NEXT: after calling the custom logging... printf("removing custom event handler...\n"); // CHECK-NEXT: removing custom event handler... - __xray_set_customevent_handler(nullptr); + __xray_remove_customevent_handler(); foo(); // CHECK-NEXT: before calling the custom logging... // CHECK-NEXT: after calling the custom logging... } Index: vendor/compiler-rt/dist/test/xray/TestCases/Linux/func-id-utils.cc =================================================================== --- vendor/compiler-rt/dist/test/xray/TestCases/Linux/func-id-utils.cc (revision 318666) +++ vendor/compiler-rt/dist/test/xray/TestCases/Linux/func-id-utils.cc (revision 318667) @@ -1,50 +1,42 @@ // Check that we can turn a function id to a function address, and also get the // maximum function id for the current binary. // // RUN: %clangxx_xray -std=c++11 %s -o %t // RUN: XRAY_OPTIONS="patch_premain=false xray_naive_log=false" %run %t #include "xray/xray_interface.h" #include #include #include #include #include [[clang::xray_always_instrument]] void bar(){} [[clang::xray_always_instrument]] void foo() { bar(); } [[clang::xray_always_instrument]] int main(int argc, char *argv[]) { assert(__xray_max_function_id() != 0 && "we need xray instrumentation!"); std::set must_be_instrumented = {reinterpret_cast(&foo), reinterpret_cast(&bar), reinterpret_cast(&main)}; std::set all_instrumented; for (auto i = __xray_max_function_id(); i != 0; --i) { auto addr = __xray_function_address(i); all_instrumented.insert(reinterpret_cast(addr)); } assert(all_instrumented.size() == __xray_max_function_id() && "each function id must be assigned to a unique function"); std::set not_instrumented; - const auto comp = [](void *lhs, void *rhs) { -#ifdef __PPC__ - return reinterpret_cast(lhs) + 8 < - reinterpret_cast(rhs); -#else - return lhs < rhs; -#endif - }; - std::set_difference(must_be_instrumented.begin(), must_be_instrumented.end(), - all_instrumented.begin(), all_instrumented.end(), - std::inserter(not_instrumented, not_instrumented.begin()), - comp); + std::set_difference( + must_be_instrumented.begin(), must_be_instrumented.end(), + all_instrumented.begin(), all_instrumented.end(), + std::inserter(not_instrumented, not_instrumented.begin())); assert( not_instrumented.empty() && "we should see all explicitly instrumented functions with function ids"); return not_instrumented.empty() ? 0 : 1; }