Index: head/sys/netinet/in_pcb.c =================================================================== --- head/sys/netinet/in_pcb.c (revision 318320) +++ head/sys/netinet/in_pcb.c (revision 318321) @@ -1,2976 +1,2986 @@ /*- * Copyright (c) 1982, 1986, 1991, 1993, 1995 * The Regents of the University of California. * Copyright (c) 2007-2009 Robert N. M. Watson * Copyright (c) 2010-2011 Juniper Networks, Inc. * All rights reserved. * * Portions of this software were developed by Robert N. M. Watson under * contract to Juniper Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_ipsec.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ratelimit.h" #include "opt_pcbgroup.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #include #include #include #include #endif #ifdef INET #include #endif #ifdef INET6 #include #include #include #include #endif /* INET6 */ #include #include static struct callout ipport_tick_callout; /* * These configure the range of local port addresses assigned to * "unspecified" outgoing connections/packets/whatever. */ VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ /* * Reserved ports accessible only to root. There are significant * security considerations that must be accounted for when changing these, * but the security benefits can be great. Please be careful. */ VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ VNET_DEFINE(int, ipport_reservedlow); /* Variables dealing with random ephemeral port allocation. */ VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ VNET_DEFINE(int, ipport_tcpallocs); static VNET_DEFINE(int, ipport_tcplastcount); #define V_ipport_tcplastcount VNET(ipport_tcplastcount) static void in_pcbremlists(struct inpcb *inp); #ifdef INET static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, struct ifnet *ifp); #define RANGECHK(var, min, max) \ if ((var) < (min)) { (var) = (min); } \ else if ((var) > (max)) { (var) = (max); } static int sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) { int error; error = sysctl_handle_int(oidp, arg1, arg2, req); if (error == 0) { RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); } return (error); } #undef RANGECHK static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports"); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, ""); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " "allocations before switching to a sequental one"); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipport_randomtime), 0, "Minimum time to keep sequental port " "allocation before switching to a random one"); #endif /* INET */ /* * in_pcb.c: manage the Protocol Control Blocks. * * NOTE: It is assumed that most of these functions will be called with * the pcbinfo lock held, and often, the inpcb lock held, as these utility * functions often modify hash chains or addresses in pcbs. */ /* + * Different protocols initialize their inpcbs differently - giving + * different name to the lock. But they all are disposed the same. + */ +static void +inpcb_fini(void *mem, int size) +{ + struct inpcb *inp = mem; + + INP_LOCK_DESTROY(inp); +} + +/* * Initialize an inpcbinfo -- we should be able to reduce the number of * arguments in time. */ void in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, - char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini, - uint32_t inpcbzone_flags, u_int hashfields) + char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) { INP_INFO_LOCK_INIT(pcbinfo, name); INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); #ifdef VIMAGE pcbinfo->ipi_vnet = curvnet; #endif pcbinfo->ipi_listhead = listhead; LIST_INIT(pcbinfo->ipi_listhead); pcbinfo->ipi_count = 0; pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, &pcbinfo->ipi_hashmask); pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, &pcbinfo->ipi_porthashmask); #ifdef PCBGROUP in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); #endif pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), - NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR, - inpcbzone_flags); + NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); uma_zone_set_warning(pcbinfo->ipi_zone, "kern.ipc.maxsockets limit reached"); } /* * Destroy an inpcbinfo. */ void in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) { KASSERT(pcbinfo->ipi_count == 0, ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, pcbinfo->ipi_porthashmask); #ifdef PCBGROUP in_pcbgroup_destroy(pcbinfo); #endif uma_zdestroy(pcbinfo->ipi_zone); INP_LIST_LOCK_DESTROY(pcbinfo); INP_HASH_LOCK_DESTROY(pcbinfo); INP_INFO_LOCK_DESTROY(pcbinfo); } /* * Allocate a PCB and associate it with the socket. * On success return with the PCB locked. */ int in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) { struct inpcb *inp; int error; #ifdef INVARIANTS if (pcbinfo == &V_tcbinfo) { INP_INFO_RLOCK_ASSERT(pcbinfo); } else { INP_INFO_WLOCK_ASSERT(pcbinfo); } #endif error = 0; inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); if (inp == NULL) return (ENOBUFS); bzero(inp, inp_zero_size); inp->inp_pcbinfo = pcbinfo; inp->inp_socket = so; inp->inp_cred = crhold(so->so_cred); inp->inp_inc.inc_fibnum = so->so_fibnum; #ifdef MAC error = mac_inpcb_init(inp, M_NOWAIT); if (error != 0) goto out; mac_inpcb_create(so, inp); #endif #if defined(IPSEC) || defined(IPSEC_SUPPORT) error = ipsec_init_pcbpolicy(inp); if (error != 0) { #ifdef MAC mac_inpcb_destroy(inp); #endif goto out; } #endif /*IPSEC*/ #ifdef INET6 if (INP_SOCKAF(so) == AF_INET6) { inp->inp_vflag |= INP_IPV6PROTO; if (V_ip6_v6only) inp->inp_flags |= IN6P_IPV6_V6ONLY; } #endif INP_WLOCK(inp); INP_LIST_WLOCK(pcbinfo); LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); pcbinfo->ipi_count++; so->so_pcb = (caddr_t)inp; #ifdef INET6 if (V_ip6_auto_flowlabel) inp->inp_flags |= IN6P_AUTOFLOWLABEL; #endif inp->inp_gencnt = ++pcbinfo->ipi_gencnt; refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ /* * Routes in inpcb's can cache L2 as well; they are guaranteed * to be cleaned up. */ inp->inp_route.ro_flags = RT_LLE_CACHE; INP_LIST_WUNLOCK(pcbinfo); #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) out: if (error != 0) { crfree(inp->inp_cred); uma_zfree(pcbinfo->ipi_zone, inp); } #endif return (error); } #ifdef INET int in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) { int anonport, error; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) return (EINVAL); anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, &inp->inp_lport, cred); if (error) return (error); if (in_pcbinshash(inp) != 0) { inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_lport = 0; return (EAGAIN); } if (anonport) inp->inp_flags |= INP_ANONPORT; return (0); } #endif /* * Select a local port (number) to use. */ #if defined(INET) || defined(INET6) int in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, struct ucred *cred, int lookupflags) { struct inpcbinfo *pcbinfo; struct inpcb *tmpinp; unsigned short *lastport; int count, dorandom, error; u_short aux, first, last, lport; #ifdef INET struct in_addr laddr; #endif pcbinfo = inp->inp_pcbinfo; /* * Because no actual state changes occur here, a global write lock on * the pcbinfo isn't required. */ INP_LOCK_ASSERT(inp); INP_HASH_LOCK_ASSERT(pcbinfo); if (inp->inp_flags & INP_HIGHPORT) { first = V_ipport_hifirstauto; /* sysctl */ last = V_ipport_hilastauto; lastport = &pcbinfo->ipi_lasthi; } else if (inp->inp_flags & INP_LOWPORT) { error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); if (error) return (error); first = V_ipport_lowfirstauto; /* 1023 */ last = V_ipport_lowlastauto; /* 600 */ lastport = &pcbinfo->ipi_lastlow; } else { first = V_ipport_firstauto; /* sysctl */ last = V_ipport_lastauto; lastport = &pcbinfo->ipi_lastport; } /* * For UDP(-Lite), use random port allocation as long as the user * allows it. For TCP (and as of yet unknown) connections, * use random port allocation only if the user allows it AND * ipport_tick() allows it. */ if (V_ipport_randomized && (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || pcbinfo == &V_ulitecbinfo)) dorandom = 1; else dorandom = 0; /* * It makes no sense to do random port allocation if * we have the only port available. */ if (first == last) dorandom = 0; /* Make sure to not include UDP(-Lite) packets in the count. */ if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) V_ipport_tcpallocs++; /* * Instead of having two loops further down counting up or down * make sure that first is always <= last and go with only one * code path implementing all logic. */ if (first > last) { aux = first; first = last; last = aux; } #ifdef INET /* Make the compiler happy. */ laddr.s_addr = 0; if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", __func__, inp)); laddr = *laddrp; } #endif tmpinp = NULL; /* Make compiler happy. */ lport = *lportp; if (dorandom) *lastport = first + (arc4random() % (last - first)); count = last - first; do { if (count-- < 0) /* completely used? */ return (EADDRNOTAVAIL); ++*lastport; if (*lastport < first || *lastport > last) *lastport = first; lport = htons(*lastport); #ifdef INET6 if ((inp->inp_vflag & INP_IPV6) != 0) tmpinp = in6_pcblookup_local(pcbinfo, &inp->in6p_laddr, lport, lookupflags, cred); #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET tmpinp = in_pcblookup_local(pcbinfo, laddr, lport, lookupflags, cred); #endif } while (tmpinp != NULL); #ifdef INET if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) laddrp->s_addr = laddr.s_addr; #endif *lportp = lport; return (0); } /* * Return cached socket options. */ short inp_so_options(const struct inpcb *inp) { short so_options; so_options = 0; if ((inp->inp_flags2 & INP_REUSEPORT) != 0) so_options |= SO_REUSEPORT; if ((inp->inp_flags2 & INP_REUSEADDR) != 0) so_options |= SO_REUSEADDR; return (so_options); } #endif /* INET || INET6 */ /* * Check if a new BINDMULTI socket is allowed to be created. * * ni points to the new inp. * oi points to the exisitng inp. * * This checks whether the existing inp also has BINDMULTI and * whether the credentials match. */ int in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) { /* Check permissions match */ if ((ni->inp_flags2 & INP_BINDMULTI) && (ni->inp_cred->cr_uid != oi->inp_cred->cr_uid)) return (0); /* Check the existing inp has BINDMULTI set */ if ((ni->inp_flags2 & INP_BINDMULTI) && ((oi->inp_flags2 & INP_BINDMULTI) == 0)) return (0); /* * We're okay - either INP_BINDMULTI isn't set on ni, or * it is and it matches the checks. */ return (1); } #ifdef INET /* * Set up a bind operation on a PCB, performing port allocation * as required, but do not actually modify the PCB. Callers can * either complete the bind by setting inp_laddr/inp_lport and * calling in_pcbinshash(), or they can just use the resulting * port and address to authorise the sending of a once-off packet. * * On error, the values of *laddrp and *lportp are not changed. */ int in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, u_short *lportp, struct ucred *cred) { struct socket *so = inp->inp_socket; struct sockaddr_in *sin; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct in_addr laddr; u_short lport = 0; int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); int error; /* * No state changes, so read locks are sufficient here. */ INP_LOCK_ASSERT(inp); INP_HASH_LOCK_ASSERT(pcbinfo); if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ return (EADDRNOTAVAIL); laddr.s_addr = *laddrp; if (nam != NULL && laddr.s_addr != INADDR_ANY) return (EINVAL); if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) lookupflags = INPLOOKUP_WILDCARD; if (nam == NULL) { if ((error = prison_local_ip4(cred, &laddr)) != 0) return (error); } else { sin = (struct sockaddr_in *)nam; if (nam->sa_len != sizeof (*sin)) return (EINVAL); #ifdef notdef /* * We should check the family, but old programs * incorrectly fail to initialize it. */ if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); #endif error = prison_local_ip4(cred, &sin->sin_addr); if (error) return (error); if (sin->sin_port != *lportp) { /* Don't allow the port to change. */ if (*lportp != 0) return (EINVAL); lport = sin->sin_port; } /* NB: lport is left as 0 if the port isn't being changed. */ if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { /* * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; * allow complete duplication of binding if * SO_REUSEPORT is set, or if SO_REUSEADDR is set * and a multicast address is bound on both * new and duplicated sockets. */ if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) reuseport = SO_REUSEADDR|SO_REUSEPORT; } else if (sin->sin_addr.s_addr != INADDR_ANY) { sin->sin_port = 0; /* yech... */ bzero(&sin->sin_zero, sizeof(sin->sin_zero)); /* * Is the address a local IP address? * If INP_BINDANY is set, then the socket may be bound * to any endpoint address, local or not. */ if ((inp->inp_flags & INP_BINDANY) == 0 && ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) return (EADDRNOTAVAIL); } laddr = sin->sin_addr; if (lport) { struct inpcb *t; struct tcptw *tw; /* GROSS */ if (ntohs(lport) <= V_ipport_reservedhigh && ntohs(lport) >= V_ipport_reservedlow && priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0)) return (EACCES); if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT, 0) != 0) { t = in_pcblookup_local(pcbinfo, sin->sin_addr, lport, INPLOOKUP_WILDCARD, cred); /* * XXX * This entire block sorely needs a rewrite. */ if (t && ((inp->inp_flags2 & INP_BINDMULTI) == 0) && ((t->inp_flags & INP_TIMEWAIT) == 0) && (so->so_type != SOCK_STREAM || ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || ntohl(t->inp_laddr.s_addr) != INADDR_ANY || (t->inp_flags2 & INP_REUSEPORT) == 0) && (inp->inp_cred->cr_uid != t->inp_cred->cr_uid)) return (EADDRINUSE); /* * If the socket is a BINDMULTI socket, then * the credentials need to match and the * original socket also has to have been bound * with BINDMULTI. */ if (t && (! in_pcbbind_check_bindmulti(inp, t))) return (EADDRINUSE); } t = in_pcblookup_local(pcbinfo, sin->sin_addr, lport, lookupflags, cred); if (t && (t->inp_flags & INP_TIMEWAIT)) { /* * XXXRW: If an incpb has had its timewait * state recycled, we treat the address as * being in use (for now). This is better * than a panic, but not desirable. */ tw = intotw(t); if (tw == NULL || (reuseport & tw->tw_so_options) == 0) return (EADDRINUSE); } else if (t && ((inp->inp_flags2 & INP_BINDMULTI) == 0) && (reuseport & inp_so_options(t)) == 0) { #ifdef INET6 if (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || ntohl(t->inp_laddr.s_addr) != INADDR_ANY || (inp->inp_vflag & INP_IPV6PROTO) == 0 || (t->inp_vflag & INP_IPV6PROTO) == 0) #endif return (EADDRINUSE); if (t && (! in_pcbbind_check_bindmulti(inp, t))) return (EADDRINUSE); } } } if (*lportp != 0) lport = *lportp; if (lport == 0) { error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); if (error != 0) return (error); } *laddrp = laddr.s_addr; *lportp = lport; return (0); } /* * Connect from a socket to a specified address. * Both address and port must be specified in argument sin. * If don't have a local address for this socket yet, * then pick one. */ int in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred, struct mbuf *m) { u_short lport, fport; in_addr_t laddr, faddr; int anonport, error; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); lport = inp->inp_lport; laddr = inp->inp_laddr.s_addr; anonport = (lport == 0); error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, NULL, cred); if (error) return (error); /* Do the initial binding of the local address if required. */ if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { inp->inp_lport = lport; inp->inp_laddr.s_addr = laddr; if (in_pcbinshash(inp) != 0) { inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_lport = 0; return (EAGAIN); } } /* Commit the remaining changes. */ inp->inp_lport = lport; inp->inp_laddr.s_addr = laddr; inp->inp_faddr.s_addr = faddr; inp->inp_fport = fport; in_pcbrehash_mbuf(inp, m); if (anonport) inp->inp_flags |= INP_ANONPORT; return (0); } int in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) { return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); } /* * Do proper source address selection on an unbound socket in case * of connect. Take jails into account as well. */ int in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, struct ucred *cred) { struct ifaddr *ifa; struct sockaddr *sa; struct sockaddr_in *sin; struct route sro; int error; KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); /* * Bypass source address selection and use the primary jail IP * if requested. */ if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) return (0); error = 0; bzero(&sro, sizeof(sro)); sin = (struct sockaddr_in *)&sro.ro_dst; sin->sin_family = AF_INET; sin->sin_len = sizeof(struct sockaddr_in); sin->sin_addr.s_addr = faddr->s_addr; /* * If route is known our src addr is taken from the i/f, * else punt. * * Find out route to destination. */ if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); /* * If we found a route, use the address corresponding to * the outgoing interface. * * Otherwise assume faddr is reachable on a directly connected * network and try to find a corresponding interface to take * the source address from. */ if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { struct in_ifaddr *ia; struct ifnet *ifp; ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, inp->inp_socket->so_fibnum)); if (ia == NULL) ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, inp->inp_socket->so_fibnum)); if (ia == NULL) { error = ENETUNREACH; goto done; } if (cred == NULL || !prison_flag(cred, PR_IP4)) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; ifa_free(&ia->ia_ifa); goto done; } ifp = ia->ia_ifp; ifa_free(&ia->ia_ifa); ia = NULL; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { sa = ifa->ifa_addr; if (sa->sa_family != AF_INET) continue; sin = (struct sockaddr_in *)sa; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)ifa; break; } } if (ia != NULL) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; IF_ADDR_RUNLOCK(ifp); goto done; } IF_ADDR_RUNLOCK(ifp); /* 3. As a last resort return the 'default' jail address. */ error = prison_get_ip4(cred, laddr); goto done; } /* * If the outgoing interface on the route found is not * a loopback interface, use the address from that interface. * In case of jails do those three steps: * 1. check if the interface address belongs to the jail. If so use it. * 2. check if we have any address on the outgoing interface * belonging to this jail. If so use it. * 3. as a last resort return the 'default' jail address. */ if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { struct in_ifaddr *ia; struct ifnet *ifp; /* If not jailed, use the default returned. */ if (cred == NULL || !prison_flag(cred, PR_IP4)) { ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } /* Jailed. */ /* 1. Check if the iface address belongs to the jail. */ sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } /* * 2. Check if we have any address on the outgoing interface * belonging to this jail. */ ia = NULL; ifp = sro.ro_rt->rt_ifp; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { sa = ifa->ifa_addr; if (sa->sa_family != AF_INET) continue; sin = (struct sockaddr_in *)sa; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)ifa; break; } } if (ia != NULL) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; IF_ADDR_RUNLOCK(ifp); goto done; } IF_ADDR_RUNLOCK(ifp); /* 3. As a last resort return the 'default' jail address. */ error = prison_get_ip4(cred, laddr); goto done; } /* * The outgoing interface is marked with 'loopback net', so a route * to ourselves is here. * Try to find the interface of the destination address and then * take the address from there. That interface is not necessarily * a loopback interface. * In case of jails, check that it is an address of the jail * and if we cannot find, fall back to the 'default' jail address. */ if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { struct sockaddr_in sain; struct in_ifaddr *ia; bzero(&sain, sizeof(struct sockaddr_in)); sain.sin_family = AF_INET; sain.sin_len = sizeof(struct sockaddr_in); sain.sin_addr.s_addr = faddr->s_addr; ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), inp->inp_socket->so_fibnum)); if (ia == NULL) ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, inp->inp_socket->so_fibnum)); if (ia == NULL) ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); if (cred == NULL || !prison_flag(cred, PR_IP4)) { if (ia == NULL) { error = ENETUNREACH; goto done; } laddr->s_addr = ia->ia_addr.sin_addr.s_addr; ifa_free(&ia->ia_ifa); goto done; } /* Jailed. */ if (ia != NULL) { struct ifnet *ifp; ifp = ia->ia_ifp; ifa_free(&ia->ia_ifa); ia = NULL; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { sa = ifa->ifa_addr; if (sa->sa_family != AF_INET) continue; sin = (struct sockaddr_in *)sa; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)ifa; break; } } if (ia != NULL) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; IF_ADDR_RUNLOCK(ifp); goto done; } IF_ADDR_RUNLOCK(ifp); } /* 3. As a last resort return the 'default' jail address. */ error = prison_get_ip4(cred, laddr); goto done; } done: if (sro.ro_rt != NULL) RTFREE(sro.ro_rt); return (error); } /* * Set up for a connect from a socket to the specified address. * On entry, *laddrp and *lportp should contain the current local * address and port for the PCB; these are updated to the values * that should be placed in inp_laddr and inp_lport to complete * the connect. * * On success, *faddrp and *fportp will be set to the remote address * and port. These are not updated in the error case. * * If the operation fails because the connection already exists, * *oinpp will be set to the PCB of that connection so that the * caller can decide to override it. In all other cases, *oinpp * is set to NULL. */ int in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, struct inpcb **oinpp, struct ucred *cred) { struct rm_priotracker in_ifa_tracker; struct sockaddr_in *sin = (struct sockaddr_in *)nam; struct in_ifaddr *ia; struct inpcb *oinp; struct in_addr laddr, faddr; u_short lport, fport; int error; /* * Because a global state change doesn't actually occur here, a read * lock is sufficient. */ INP_LOCK_ASSERT(inp); INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); if (oinpp != NULL) *oinpp = NULL; if (nam->sa_len != sizeof (*sin)) return (EINVAL); if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); if (sin->sin_port == 0) return (EADDRNOTAVAIL); laddr.s_addr = *laddrp; lport = *lportp; faddr = sin->sin_addr; fport = sin->sin_port; if (!TAILQ_EMPTY(&V_in_ifaddrhead)) { /* * If the destination address is INADDR_ANY, * use the primary local address. * If the supplied address is INADDR_BROADCAST, * and the primary interface supports broadcast, * choose the broadcast address for that interface. */ if (faddr.s_addr == INADDR_ANY) { IN_IFADDR_RLOCK(&in_ifa_tracker); faddr = IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; IN_IFADDR_RUNLOCK(&in_ifa_tracker); if (cred != NULL && (error = prison_get_ip4(cred, &faddr)) != 0) return (error); } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { IN_IFADDR_RLOCK(&in_ifa_tracker); if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & IFF_BROADCAST) faddr = satosin(&TAILQ_FIRST( &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; IN_IFADDR_RUNLOCK(&in_ifa_tracker); } } if (laddr.s_addr == INADDR_ANY) { error = in_pcbladdr(inp, &faddr, &laddr, cred); /* * If the destination address is multicast and an outgoing * interface has been set as a multicast option, prefer the * address of that interface as our source address. */ if (IN_MULTICAST(ntohl(faddr.s_addr)) && inp->inp_moptions != NULL) { struct ip_moptions *imo; struct ifnet *ifp; imo = inp->inp_moptions; if (imo->imo_multicast_ifp != NULL) { ifp = imo->imo_multicast_ifp; IN_IFADDR_RLOCK(&in_ifa_tracker); TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { if ((ia->ia_ifp == ifp) && (cred == NULL || prison_check_ip4(cred, &ia->ia_addr.sin_addr) == 0)) break; } if (ia == NULL) error = EADDRNOTAVAIL; else { laddr = ia->ia_addr.sin_addr; error = 0; } IN_IFADDR_RUNLOCK(&in_ifa_tracker); } } if (error) return (error); } oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, laddr, lport, 0, NULL); if (oinp != NULL) { if (oinpp != NULL) *oinpp = oinp; return (EADDRINUSE); } if (lport == 0) { error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, cred); if (error) return (error); } *laddrp = laddr.s_addr; *lportp = lport; *faddrp = faddr.s_addr; *fportp = fport; return (0); } void in_pcbdisconnect(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); inp->inp_faddr.s_addr = INADDR_ANY; inp->inp_fport = 0; in_pcbrehash(inp); } #endif /* INET */ /* * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. * For most protocols, this will be invoked immediately prior to calling * in_pcbfree(). However, with TCP the inpcb may significantly outlive the * socket, in which case in_pcbfree() is deferred. */ void in_pcbdetach(struct inpcb *inp) { KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); #ifdef RATELIMIT if (inp->inp_snd_tag != NULL) in_pcbdetach_txrtlmt(inp); #endif inp->inp_socket->so_pcb = NULL; inp->inp_socket = NULL; } /* * in_pcbref() bumps the reference count on an inpcb in order to maintain * stability of an inpcb pointer despite the inpcb lock being released. This * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, * but where the inpcb lock may already held, or when acquiring a reference * via a pcbgroup. * * in_pcbref() should be used only to provide brief memory stability, and * must always be followed by a call to INP_WLOCK() and in_pcbrele() to * garbage collect the inpcb if it has been in_pcbfree()'d from another * context. Until in_pcbrele() has returned that the inpcb is still valid, * lock and rele are the *only* safe operations that may be performed on the * inpcb. * * While the inpcb will not be freed, releasing the inpcb lock means that the * connection's state may change, so the caller should be careful to * revalidate any cached state on reacquiring the lock. Drop the reference * using in_pcbrele(). */ void in_pcbref(struct inpcb *inp) { KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); refcount_acquire(&inp->inp_refcount); } /* * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we * return a flag indicating whether or not the inpcb remains valid. If it is * valid, we return with the inpcb lock held. * * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a * reference on an inpcb. Historically more work was done here (actually, in * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely * about memory stability (and continued use of the write lock). */ int in_pcbrele_rlocked(struct inpcb *inp) { struct inpcbinfo *pcbinfo; KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); INP_RLOCK_ASSERT(inp); if (refcount_release(&inp->inp_refcount) == 0) { /* * If the inpcb has been freed, let the caller know, even if * this isn't the last reference. */ if (inp->inp_flags2 & INP_FREED) { INP_RUNLOCK(inp); return (1); } return (0); } KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); INP_RUNLOCK(inp); pcbinfo = inp->inp_pcbinfo; uma_zfree(pcbinfo->ipi_zone, inp); return (1); } int in_pcbrele_wlocked(struct inpcb *inp) { struct inpcbinfo *pcbinfo; KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); INP_WLOCK_ASSERT(inp); if (refcount_release(&inp->inp_refcount) == 0) { /* * If the inpcb has been freed, let the caller know, even if * this isn't the last reference. */ if (inp->inp_flags2 & INP_FREED) { INP_WUNLOCK(inp); return (1); } return (0); } KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); INP_WUNLOCK(inp); pcbinfo = inp->inp_pcbinfo; uma_zfree(pcbinfo->ipi_zone, inp); return (1); } /* * Temporary wrapper. */ int in_pcbrele(struct inpcb *inp) { return (in_pcbrele_wlocked(inp)); } /* * Unconditionally schedule an inpcb to be freed by decrementing its * reference count, which should occur only after the inpcb has been detached * from its socket. If another thread holds a temporary reference (acquired * using in_pcbref()) then the free is deferred until that reference is * released using in_pcbrele(), but the inpcb is still unlocked. Almost all * work, including removal from global lists, is done in this context, where * the pcbinfo lock is held. */ void in_pcbfree(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); #ifdef INVARIANTS if (pcbinfo == &V_tcbinfo) { INP_INFO_LOCK_ASSERT(pcbinfo); } else { INP_INFO_WLOCK_ASSERT(pcbinfo); } #endif INP_WLOCK_ASSERT(inp); /* XXXRW: Do as much as possible here. */ #if defined(IPSEC) || defined(IPSEC_SUPPORT) if (inp->inp_sp != NULL) ipsec_delete_pcbpolicy(inp); #endif INP_LIST_WLOCK(pcbinfo); inp->inp_gencnt = ++pcbinfo->ipi_gencnt; in_pcbremlists(inp); INP_LIST_WUNLOCK(pcbinfo); #ifdef INET6 if (inp->inp_vflag & INP_IPV6PROTO) { ip6_freepcbopts(inp->in6p_outputopts); if (inp->in6p_moptions != NULL) ip6_freemoptions(inp->in6p_moptions); } #endif if (inp->inp_options) (void)m_free(inp->inp_options); #ifdef INET if (inp->inp_moptions != NULL) inp_freemoptions(inp->inp_moptions); #endif RO_RTFREE(&inp->inp_route); if (inp->inp_route.ro_lle) LLE_FREE(inp->inp_route.ro_lle); /* zeros ro_lle */ inp->inp_vflag = 0; inp->inp_flags2 |= INP_FREED; crfree(inp->inp_cred); #ifdef MAC mac_inpcb_destroy(inp); #endif if (!in_pcbrele_wlocked(inp)) INP_WUNLOCK(inp); } /* * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and * port reservation, and preventing it from being returned by inpcb lookups. * * It is used by TCP to mark an inpcb as unused and avoid future packet * delivery or event notification when a socket remains open but TCP has * closed. This might occur as a result of a shutdown()-initiated TCP close * or a RST on the wire, and allows the port binding to be reused while still * maintaining the invariant that so_pcb always points to a valid inpcb until * in_pcbdetach(). * * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by * in_pcbnotifyall() and in_pcbpurgeif0()? */ void in_pcbdrop(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); /* * XXXRW: Possibly we should protect the setting of INP_DROPPED with * the hash lock...? */ inp->inp_flags |= INP_DROPPED; if (inp->inp_flags & INP_INHASHLIST) { struct inpcbport *phd = inp->inp_phd; INP_HASH_WLOCK(inp->inp_pcbinfo); LIST_REMOVE(inp, inp_hash); LIST_REMOVE(inp, inp_portlist); if (LIST_FIRST(&phd->phd_pcblist) == NULL) { LIST_REMOVE(phd, phd_hash); free(phd, M_PCB); } INP_HASH_WUNLOCK(inp->inp_pcbinfo); inp->inp_flags &= ~INP_INHASHLIST; #ifdef PCBGROUP in_pcbgroup_remove(inp); #endif } } #ifdef INET /* * Common routines to return the socket addresses associated with inpcbs. */ struct sockaddr * in_sockaddr(in_port_t port, struct in_addr *addr_p) { struct sockaddr_in *sin; sin = malloc(sizeof *sin, M_SONAME, M_WAITOK | M_ZERO); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = *addr_p; sin->sin_port = port; return (struct sockaddr *)sin; } int in_getsockaddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; struct in_addr addr; in_port_t port; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); INP_RLOCK(inp); port = inp->inp_lport; addr = inp->inp_laddr; INP_RUNLOCK(inp); *nam = in_sockaddr(port, &addr); return 0; } int in_getpeeraddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; struct in_addr addr; in_port_t port; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); INP_RLOCK(inp); port = inp->inp_fport; addr = inp->inp_faddr; INP_RUNLOCK(inp); *nam = in_sockaddr(port, &addr); return 0; } void in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, struct inpcb *(*notify)(struct inpcb *, int)) { struct inpcb *inp, *inp_temp; INP_INFO_WLOCK(pcbinfo); LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { INP_WLOCK(inp); #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) { INP_WUNLOCK(inp); continue; } #endif if (inp->inp_faddr.s_addr != faddr.s_addr || inp->inp_socket == NULL) { INP_WUNLOCK(inp); continue; } if ((*notify)(inp, errno)) INP_WUNLOCK(inp); } INP_INFO_WUNLOCK(pcbinfo); } void in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) { struct inpcb *inp; struct ip_moptions *imo; int i, gap; INP_INFO_WLOCK(pcbinfo); LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { INP_WLOCK(inp); imo = inp->inp_moptions; if ((inp->inp_vflag & INP_IPV4) && imo != NULL) { /* * Unselect the outgoing interface if it is being * detached. */ if (imo->imo_multicast_ifp == ifp) imo->imo_multicast_ifp = NULL; /* * Drop multicast group membership if we joined * through the interface being detached. */ for (i = 0, gap = 0; i < imo->imo_num_memberships; i++) { if (imo->imo_membership[i]->inm_ifp == ifp) { in_delmulti(imo->imo_membership[i]); gap++; } else if (gap != 0) imo->imo_membership[i - gap] = imo->imo_membership[i]; } imo->imo_num_memberships -= gap; } INP_WUNLOCK(inp); } INP_INFO_WUNLOCK(pcbinfo); } /* * Lookup a PCB based on the local address and port. Caller must hold the * hash lock. No inpcb locks or references are acquired. */ #define INP_LOOKUP_MAPPED_PCB_COST 3 struct inpcb * in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, u_short lport, int lookupflags, struct ucred *cred) { struct inpcb *inp; #ifdef INET6 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; #else int matchwild = 3; #endif int wildcard; KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); INP_HASH_LOCK_ASSERT(pcbinfo); if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { struct inpcbhead *head; /* * Look for an unconnected (wildcard foreign addr) PCB that * matches the local address and port we're looking for. */ head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == INADDR_ANY && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_lport == lport) { /* * Found? */ if (cred == NULL || prison_equal_ip4(cred->cr_prison, inp->inp_cred->cr_prison)) return (inp); } } /* * Not found. */ return (NULL); } else { struct inpcbporthead *porthash; struct inpcbport *phd; struct inpcb *match = NULL; /* * Best fit PCB lookup. * * First see if this local port is in use by looking on the * port hash list. */ porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, pcbinfo->ipi_porthashmask)]; LIST_FOREACH(phd, porthash, phd_hash) { if (phd->phd_port == lport) break; } if (phd != NULL) { /* * Port is in use by one or more PCBs. Look for best * fit. */ LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { wildcard = 0; if (cred != NULL && !prison_equal_ip4(inp->inp_cred->cr_prison, cred->cr_prison)) continue; #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; /* * We never select the PCB that has * INP_IPV6 flag and is bound to :: if * we have another PCB which is bound * to 0.0.0.0. If a PCB has the * INP_IPV6 flag, then we set its cost * higher than IPv4 only PCBs. * * Note that the case only happens * when a socket is bound to ::, under * the condition that the use of the * mapped address is allowed. */ if ((inp->inp_vflag & INP_IPV6) != 0) wildcard += INP_LOOKUP_MAPPED_PCB_COST; #endif if (inp->inp_faddr.s_addr != INADDR_ANY) wildcard++; if (inp->inp_laddr.s_addr != INADDR_ANY) { if (laddr.s_addr == INADDR_ANY) wildcard++; else if (inp->inp_laddr.s_addr != laddr.s_addr) continue; } else { if (laddr.s_addr != INADDR_ANY) wildcard++; } if (wildcard < matchwild) { match = inp; matchwild = wildcard; if (matchwild == 0) break; } } } return (match); } } #undef INP_LOOKUP_MAPPED_PCB_COST #ifdef PCBGROUP /* * Lookup PCB in hash list, using pcbgroup tables. */ static struct inpcb * in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, struct ifnet *ifp) { struct inpcbhead *head; struct inpcb *inp, *tmpinp; u_short fport = fport_arg, lport = lport_arg; /* * First look for an exact match. */ tmpinp = NULL; INP_GROUP_LOCK(pcbgroup); head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbgroup->ipg_hashmask)]; LIST_FOREACH(inp, head, inp_pcbgrouphash) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == faddr.s_addr && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_fport == fport && inp->inp_lport == lport) { /* * XXX We should be able to directly return * the inp here, without any checks. * Well unless both bound with SO_REUSEPORT? */ if (prison_flag(inp->inp_cred, PR_IP4)) goto found; if (tmpinp == NULL) tmpinp = inp; } } if (tmpinp != NULL) { inp = tmpinp; goto found; } #ifdef RSS /* * For incoming connections, we may wish to do a wildcard * match for an RSS-local socket. */ if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { struct inpcb *local_wild = NULL, *local_exact = NULL; #ifdef INET6 struct inpcb *local_wild_mapped = NULL; #endif struct inpcb *jail_wild = NULL; struct inpcbhead *head; int injail; /* * Order of socket selection - we always prefer jails. * 1. jailed, non-wild. * 2. jailed, wild. * 3. non-jailed, non-wild. * 4. non-jailed, wild. */ head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbgroup->ipg_hashmask)]; LIST_FOREACH(inp, head, inp_pcbgrouphash) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport) continue; injail = prison_flag(inp->inp_cred, PR_IP4); if (injail) { if (prison_check_ip4(inp->inp_cred, &laddr) != 0) continue; } else { if (local_exact != NULL) continue; } if (inp->inp_laddr.s_addr == laddr.s_addr) { if (injail) goto found; else local_exact = inp; } else if (inp->inp_laddr.s_addr == INADDR_ANY) { #ifdef INET6 /* XXX inp locking, NULL check */ if (inp->inp_vflag & INP_IPV6PROTO) local_wild_mapped = inp; else #endif if (injail) jail_wild = inp; else local_wild = inp; } } /* LIST_FOREACH */ inp = jail_wild; if (inp == NULL) inp = local_exact; if (inp == NULL) inp = local_wild; #ifdef INET6 if (inp == NULL) inp = local_wild_mapped; #endif if (inp != NULL) goto found; } #endif /* * Then look for a wildcard match, if requested. */ if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { struct inpcb *local_wild = NULL, *local_exact = NULL; #ifdef INET6 struct inpcb *local_wild_mapped = NULL; #endif struct inpcb *jail_wild = NULL; struct inpcbhead *head; int injail; /* * Order of socket selection - we always prefer jails. * 1. jailed, non-wild. * 2. jailed, wild. * 3. non-jailed, non-wild. * 4. non-jailed, wild. */ head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->ipi_wildmask)]; LIST_FOREACH(inp, head, inp_pcbgroup_wild) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport) continue; injail = prison_flag(inp->inp_cred, PR_IP4); if (injail) { if (prison_check_ip4(inp->inp_cred, &laddr) != 0) continue; } else { if (local_exact != NULL) continue; } if (inp->inp_laddr.s_addr == laddr.s_addr) { if (injail) goto found; else local_exact = inp; } else if (inp->inp_laddr.s_addr == INADDR_ANY) { #ifdef INET6 /* XXX inp locking, NULL check */ if (inp->inp_vflag & INP_IPV6PROTO) local_wild_mapped = inp; else #endif if (injail) jail_wild = inp; else local_wild = inp; } } /* LIST_FOREACH */ inp = jail_wild; if (inp == NULL) inp = local_exact; if (inp == NULL) inp = local_wild; #ifdef INET6 if (inp == NULL) inp = local_wild_mapped; #endif if (inp != NULL) goto found; } /* if (lookupflags & INPLOOKUP_WILDCARD) */ INP_GROUP_UNLOCK(pcbgroup); return (NULL); found: in_pcbref(inp); INP_GROUP_UNLOCK(pcbgroup); if (lookupflags & INPLOOKUP_WLOCKPCB) { INP_WLOCK(inp); if (in_pcbrele_wlocked(inp)) return (NULL); } else if (lookupflags & INPLOOKUP_RLOCKPCB) { INP_RLOCK(inp); if (in_pcbrele_rlocked(inp)) return (NULL); } else panic("%s: locking bug", __func__); return (inp); } #endif /* PCBGROUP */ /* * Lookup PCB in hash list, using pcbinfo tables. This variation assumes * that the caller has locked the hash list, and will not perform any further * locking or reference operations on either the hash list or the connection. */ static struct inpcb * in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, struct ifnet *ifp) { struct inpcbhead *head; struct inpcb *inp, *tmpinp; u_short fport = fport_arg, lport = lport_arg; KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); INP_HASH_LOCK_ASSERT(pcbinfo); /* * First look for an exact match. */ tmpinp = NULL; head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == faddr.s_addr && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_fport == fport && inp->inp_lport == lport) { /* * XXX We should be able to directly return * the inp here, without any checks. * Well unless both bound with SO_REUSEPORT? */ if (prison_flag(inp->inp_cred, PR_IP4)) return (inp); if (tmpinp == NULL) tmpinp = inp; } } if (tmpinp != NULL) return (tmpinp); /* * Then look for a wildcard match, if requested. */ if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { struct inpcb *local_wild = NULL, *local_exact = NULL; #ifdef INET6 struct inpcb *local_wild_mapped = NULL; #endif struct inpcb *jail_wild = NULL; int injail; /* * Order of socket selection - we always prefer jails. * 1. jailed, non-wild. * 2. jailed, wild. * 3. non-jailed, non-wild. * 4. non-jailed, wild. */ head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport) continue; injail = prison_flag(inp->inp_cred, PR_IP4); if (injail) { if (prison_check_ip4(inp->inp_cred, &laddr) != 0) continue; } else { if (local_exact != NULL) continue; } if (inp->inp_laddr.s_addr == laddr.s_addr) { if (injail) return (inp); else local_exact = inp; } else if (inp->inp_laddr.s_addr == INADDR_ANY) { #ifdef INET6 /* XXX inp locking, NULL check */ if (inp->inp_vflag & INP_IPV6PROTO) local_wild_mapped = inp; else #endif if (injail) jail_wild = inp; else local_wild = inp; } } /* LIST_FOREACH */ if (jail_wild != NULL) return (jail_wild); if (local_exact != NULL) return (local_exact); if (local_wild != NULL) return (local_wild); #ifdef INET6 if (local_wild_mapped != NULL) return (local_wild_mapped); #endif } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ return (NULL); } /* * Lookup PCB in hash list, using pcbinfo tables. This variation locks the * hash list lock, and will return the inpcb locked (i.e., requires * INPLOOKUP_LOCKPCB). */ static struct inpcb * in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) { struct inpcb *inp; INP_HASH_RLOCK(pcbinfo); inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); if (inp != NULL) { in_pcbref(inp); INP_HASH_RUNLOCK(pcbinfo); if (lookupflags & INPLOOKUP_WLOCKPCB) { INP_WLOCK(inp); if (in_pcbrele_wlocked(inp)) return (NULL); } else if (lookupflags & INPLOOKUP_RLOCKPCB) { INP_RLOCK(inp); if (in_pcbrele_rlocked(inp)) return (NULL); } else panic("%s: locking bug", __func__); } else INP_HASH_RUNLOCK(pcbinfo); return (inp); } /* * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf * from which a pre-calculated hash value may be extracted. * * Possibly more of this logic should be in in_pcbgroup.c. */ struct inpcb * in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) { #if defined(PCBGROUP) && !defined(RSS) struct inpcbgroup *pcbgroup; #endif KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, ("%s: LOCKPCB not set", __func__)); /* * When not using RSS, use connection groups in preference to the * reservation table when looking up 4-tuples. When using RSS, just * use the reservation table, due to the cost of the Toeplitz hash * in software. * * XXXRW: This policy belongs in the pcbgroup code, as in principle * we could be doing RSS with a non-Toeplitz hash that is affordable * in software. */ #if defined(PCBGROUP) && !defined(RSS) if (in_pcbgroup_enabled(pcbinfo)) { pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, fport); return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, laddr, lport, lookupflags, ifp)); } #endif return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, lookupflags, ifp)); } struct inpcb * in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp, struct mbuf *m) { #ifdef PCBGROUP struct inpcbgroup *pcbgroup; #endif KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, ("%s: LOCKPCB not set", __func__)); #ifdef PCBGROUP /* * If we can use a hardware-generated hash to look up the connection * group, use that connection group to find the inpcb. Otherwise * fall back on a software hash -- or the reservation table if we're * using RSS. * * XXXRW: As above, that policy belongs in the pcbgroup code. */ if (in_pcbgroup_enabled(pcbinfo) && !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), m->m_pkthdr.flowid); if (pcbgroup != NULL) return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, laddr, lport, lookupflags, ifp)); #ifndef RSS pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, fport); return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, laddr, lport, lookupflags, ifp)); #endif } #endif return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, lookupflags, ifp)); } #endif /* INET */ /* * Insert PCB onto various hash lists. */ static int in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) { struct inpcbhead *pcbhash; struct inpcbporthead *pcbporthash; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbport *phd; u_int32_t hashkey_faddr; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, ("in_pcbinshash: INP_INHASHLIST")); #ifdef INET6 if (inp->inp_vflag & INP_IPV6) hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); else #endif hashkey_faddr = inp->inp_faddr.s_addr; pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; pcbporthash = &pcbinfo->ipi_porthashbase[ INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; /* * Go through port list and look for a head for this lport. */ LIST_FOREACH(phd, pcbporthash, phd_hash) { if (phd->phd_port == inp->inp_lport) break; } /* * If none exists, malloc one and tack it on. */ if (phd == NULL) { phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); if (phd == NULL) { return (ENOBUFS); /* XXX */ } phd->phd_port = inp->inp_lport; LIST_INIT(&phd->phd_pcblist); LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); } inp->inp_phd = phd; LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); LIST_INSERT_HEAD(pcbhash, inp, inp_hash); inp->inp_flags |= INP_INHASHLIST; #ifdef PCBGROUP if (do_pcbgroup_update) in_pcbgroup_update(inp); #endif return (0); } /* * For now, there are two public interfaces to insert an inpcb into the hash * lists -- one that does update pcbgroups, and one that doesn't. The latter * is used only in the TCP syncache, where in_pcbinshash is called before the * full 4-tuple is set for the inpcb, and we don't want to install in the * pcbgroup until later. * * XXXRW: This seems like a misfeature. in_pcbinshash should always update * connection groups, and partially initialised inpcbs should not be exposed * to either reservation hash tables or pcbgroups. */ int in_pcbinshash(struct inpcb *inp) { return (in_pcbinshash_internal(inp, 1)); } int in_pcbinshash_nopcbgroup(struct inpcb *inp) { return (in_pcbinshash_internal(inp, 0)); } /* * Move PCB to the proper hash bucket when { faddr, fport } have been * changed. NOTE: This does not handle the case of the lport changing (the * hashed port list would have to be updated as well), so the lport must * not change after in_pcbinshash() has been called. */ void in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbhead *head; u_int32_t hashkey_faddr; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); KASSERT(inp->inp_flags & INP_INHASHLIST, ("in_pcbrehash: !INP_INHASHLIST")); #ifdef INET6 if (inp->inp_vflag & INP_IPV6) hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); else #endif hashkey_faddr = inp->inp_faddr.s_addr; head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; LIST_REMOVE(inp, inp_hash); LIST_INSERT_HEAD(head, inp, inp_hash); #ifdef PCBGROUP if (m != NULL) in_pcbgroup_update_mbuf(inp, m); else in_pcbgroup_update(inp); #endif } void in_pcbrehash(struct inpcb *inp) { in_pcbrehash_mbuf(inp, NULL); } /* * Remove PCB from various lists. */ static void in_pcbremlists(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; #ifdef INVARIANTS if (pcbinfo == &V_tcbinfo) { INP_INFO_RLOCK_ASSERT(pcbinfo); } else { INP_INFO_WLOCK_ASSERT(pcbinfo); } #endif INP_WLOCK_ASSERT(inp); INP_LIST_WLOCK_ASSERT(pcbinfo); inp->inp_gencnt = ++pcbinfo->ipi_gencnt; if (inp->inp_flags & INP_INHASHLIST) { struct inpcbport *phd = inp->inp_phd; INP_HASH_WLOCK(pcbinfo); LIST_REMOVE(inp, inp_hash); LIST_REMOVE(inp, inp_portlist); if (LIST_FIRST(&phd->phd_pcblist) == NULL) { LIST_REMOVE(phd, phd_hash); free(phd, M_PCB); } INP_HASH_WUNLOCK(pcbinfo); inp->inp_flags &= ~INP_INHASHLIST; } LIST_REMOVE(inp, inp_list); pcbinfo->ipi_count--; #ifdef PCBGROUP in_pcbgroup_remove(inp); #endif } /* * Check for alternatives when higher level complains * about service problems. For now, invalidate cached * routing information. If the route was created dynamically * (by a redirect), time to try a default gateway again. */ void in_losing(struct inpcb *inp) { RO_RTFREE(&inp->inp_route); if (inp->inp_route.ro_lle) LLE_FREE(inp->inp_route.ro_lle); /* zeros ro_lle */ return; } /* * A set label operation has occurred at the socket layer, propagate the * label change into the in_pcb for the socket. */ void in_pcbsosetlabel(struct socket *so) { #ifdef MAC struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); INP_WLOCK(inp); SOCK_LOCK(so); mac_inpcb_sosetlabel(so, inp); SOCK_UNLOCK(so); INP_WUNLOCK(inp); #endif } /* * ipport_tick runs once per second, determining if random port allocation * should be continued. If more than ipport_randomcps ports have been * allocated in the last second, then we return to sequential port * allocation. We return to random allocation only once we drop below * ipport_randomcps for at least ipport_randomtime seconds. */ static void ipport_tick(void *xtp) { VNET_ITERATOR_DECL(vnet_iter); VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ if (V_ipport_tcpallocs <= V_ipport_tcplastcount + V_ipport_randomcps) { if (V_ipport_stoprandom > 0) V_ipport_stoprandom--; } else V_ipport_stoprandom = V_ipport_randomtime; V_ipport_tcplastcount = V_ipport_tcpallocs; CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); } static void ip_fini(void *xtp) { callout_stop(&ipport_tick_callout); } /* * The ipport_callout should start running at about the time we attach the * inet or inet6 domains. */ static void ipport_tick_init(const void *unused __unused) { /* Start ipport_tick. */ callout_init(&ipport_tick_callout, 1); callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, SHUTDOWN_PRI_DEFAULT); } SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, ipport_tick_init, NULL); void inp_wlock(struct inpcb *inp) { INP_WLOCK(inp); } void inp_wunlock(struct inpcb *inp) { INP_WUNLOCK(inp); } void inp_rlock(struct inpcb *inp) { INP_RLOCK(inp); } void inp_runlock(struct inpcb *inp) { INP_RUNLOCK(inp); } #ifdef INVARIANT_SUPPORT void inp_lock_assert(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); } void inp_unlock_assert(struct inpcb *inp) { INP_UNLOCK_ASSERT(inp); } #endif void inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) { struct inpcb *inp; INP_INFO_WLOCK(&V_tcbinfo); LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { INP_WLOCK(inp); func(inp, arg); INP_WUNLOCK(inp); } INP_INFO_WUNLOCK(&V_tcbinfo); } struct socket * inp_inpcbtosocket(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); return (inp->inp_socket); } struct tcpcb * inp_inpcbtotcpcb(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); return ((struct tcpcb *)inp->inp_ppcb); } int inp_ip_tos_get(const struct inpcb *inp) { return (inp->inp_ip_tos); } void inp_ip_tos_set(struct inpcb *inp, int val) { inp->inp_ip_tos = val; } void inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, uint32_t *faddr, uint16_t *fp) { INP_LOCK_ASSERT(inp); *laddr = inp->inp_laddr.s_addr; *faddr = inp->inp_faddr.s_addr; *lp = inp->inp_lport; *fp = inp->inp_fport; } struct inpcb * so_sotoinpcb(struct socket *so) { return (sotoinpcb(so)); } struct tcpcb * so_sototcpcb(struct socket *so) { return (sototcpcb(so)); } /* * Create an external-format (``xinpcb'') structure using the information in * the kernel-format in_pcb structure pointed to by inp. This is done to * reduce the spew of irrelevant information over this interface, to isolate * user code from changes in the kernel structure, and potentially to provide * information-hiding if we decide that some of this information should be * hidden from users. */ void in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) { xi->xi_len = sizeof(struct xinpcb); if (inp->inp_socket) sotoxsocket(inp->inp_socket, &xi->xi_socket); else bzero(&xi->xi_socket, sizeof(struct xsocket)); bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); xi->inp_gencnt = inp->inp_gencnt; xi->inp_ppcb = inp->inp_ppcb; xi->inp_flow = inp->inp_flow; xi->inp_flowid = inp->inp_flowid; xi->inp_flowtype = inp->inp_flowtype; xi->inp_flags = inp->inp_flags; xi->inp_flags2 = inp->inp_flags2; xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; xi->in6p_cksum = inp->in6p_cksum; xi->in6p_hops = inp->in6p_hops; xi->inp_ip_tos = inp->inp_ip_tos; xi->inp_vflag = inp->inp_vflag; xi->inp_ip_ttl = inp->inp_ip_ttl; xi->inp_ip_p = inp->inp_ip_p; xi->inp_ip_minttl = inp->inp_ip_minttl; } #ifdef DDB static void db_print_indent(int indent) { int i; for (i = 0; i < indent; i++) db_printf(" "); } static void db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) { char faddr_str[48], laddr_str[48]; db_print_indent(indent); db_printf("%s at %p\n", name, inc); indent += 2; #ifdef INET6 if (inc->inc_flags & INC_ISIPV6) { /* IPv6. */ ip6_sprintf(laddr_str, &inc->inc6_laddr); ip6_sprintf(faddr_str, &inc->inc6_faddr); } else #endif { /* IPv4. */ inet_ntoa_r(inc->inc_laddr, laddr_str); inet_ntoa_r(inc->inc_faddr, faddr_str); } db_print_indent(indent); db_printf("inc_laddr %s inc_lport %u\n", laddr_str, ntohs(inc->inc_lport)); db_print_indent(indent); db_printf("inc_faddr %s inc_fport %u\n", faddr_str, ntohs(inc->inc_fport)); } static void db_print_inpflags(int inp_flags) { int comma; comma = 0; if (inp_flags & INP_RECVOPTS) { db_printf("%sINP_RECVOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVRETOPTS) { db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVDSTADDR) { db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_ORIGDSTADDR) { db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_HDRINCL) { db_printf("%sINP_HDRINCL", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_HIGHPORT) { db_printf("%sINP_HIGHPORT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_LOWPORT) { db_printf("%sINP_LOWPORT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_ANONPORT) { db_printf("%sINP_ANONPORT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVIF) { db_printf("%sINP_RECVIF", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_MTUDISC) { db_printf("%sINP_MTUDISC", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVTTL) { db_printf("%sINP_RECVTTL", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_DONTFRAG) { db_printf("%sINP_DONTFRAG", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVTOS) { db_printf("%sINP_RECVTOS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_IPV6_V6ONLY) { db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_PKTINFO) { db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_HOPLIMIT) { db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_HOPOPTS) { db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_DSTOPTS) { db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_RTHDR) { db_printf("%sIN6P_RTHDR", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_RTHDRDSTOPTS) { db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_TCLASS) { db_printf("%sIN6P_TCLASS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_AUTOFLOWLABEL) { db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_TIMEWAIT) { db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_ONESBCAST) { db_printf("%sINP_ONESBCAST", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_DROPPED) { db_printf("%sINP_DROPPED", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_SOCKREF) { db_printf("%sINP_SOCKREF", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_RFC2292) { db_printf("%sIN6P_RFC2292", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_MTU) { db_printf("IN6P_MTU%s", comma ? ", " : ""); comma = 1; } } static void db_print_inpvflag(u_char inp_vflag) { int comma; comma = 0; if (inp_vflag & INP_IPV4) { db_printf("%sINP_IPV4", comma ? ", " : ""); comma = 1; } if (inp_vflag & INP_IPV6) { db_printf("%sINP_IPV6", comma ? ", " : ""); comma = 1; } if (inp_vflag & INP_IPV6PROTO) { db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); comma = 1; } } static void db_print_inpcb(struct inpcb *inp, const char *name, int indent) { db_print_indent(indent); db_printf("%s at %p\n", name, inp); indent += 2; db_print_indent(indent); db_printf("inp_flow: 0x%x\n", inp->inp_flow); db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); db_print_indent(indent); db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); db_print_indent(indent); db_printf("inp_label: %p inp_flags: 0x%x (", inp->inp_label, inp->inp_flags); db_print_inpflags(inp->inp_flags); db_printf(")\n"); db_print_indent(indent); db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, inp->inp_vflag); db_print_inpvflag(inp->inp_vflag); db_printf(")\n"); db_print_indent(indent); db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); db_print_indent(indent); #ifdef INET6 if (inp->inp_vflag & INP_IPV6) { db_printf("in6p_options: %p in6p_outputopts: %p " "in6p_moptions: %p\n", inp->in6p_options, inp->in6p_outputopts, inp->in6p_moptions); db_printf("in6p_icmp6filt: %p in6p_cksum %d " "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, inp->in6p_hops); } else #endif { db_printf("inp_ip_tos: %d inp_ip_options: %p " "inp_ip_moptions: %p\n", inp->inp_ip_tos, inp->inp_options, inp->inp_moptions); } db_print_indent(indent); db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, (uintmax_t)inp->inp_gencnt); } DB_SHOW_COMMAND(inpcb, db_show_inpcb) { struct inpcb *inp; if (!have_addr) { db_printf("usage: show inpcb \n"); return; } inp = (struct inpcb *)addr; db_print_inpcb(inp, "inpcb", 0); } #endif /* DDB */ #ifdef RATELIMIT /* * Modify TX rate limit based on the existing "inp->inp_snd_tag", * if any. */ int in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) { union if_snd_tag_modify_params params = { .rate_limit.max_rate = max_pacing_rate, }; struct m_snd_tag *mst; struct ifnet *ifp; int error; mst = inp->inp_snd_tag; if (mst == NULL) return (EINVAL); ifp = mst->ifp; if (ifp == NULL) return (EINVAL); if (ifp->if_snd_tag_modify == NULL) { error = EOPNOTSUPP; } else { error = ifp->if_snd_tag_modify(mst, ¶ms); } return (error); } /* * Query existing TX rate limit based on the existing * "inp->inp_snd_tag", if any. */ int in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) { union if_snd_tag_query_params params = { }; struct m_snd_tag *mst; struct ifnet *ifp; int error; mst = inp->inp_snd_tag; if (mst == NULL) return (EINVAL); ifp = mst->ifp; if (ifp == NULL) return (EINVAL); if (ifp->if_snd_tag_query == NULL) { error = EOPNOTSUPP; } else { error = ifp->if_snd_tag_query(mst, ¶ms); if (error == 0 && p_max_pacing_rate != NULL) *p_max_pacing_rate = params.rate_limit.max_rate; } return (error); } /* * Allocate a new TX rate limit send tag from the network interface * given by the "ifp" argument and save it in "inp->inp_snd_tag": */ int in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate) { union if_snd_tag_alloc_params params = { .rate_limit.hdr.type = IF_SND_TAG_TYPE_RATE_LIMIT, .rate_limit.hdr.flowid = flowid, .rate_limit.hdr.flowtype = flowtype, .rate_limit.max_rate = max_pacing_rate, }; int error; INP_WLOCK_ASSERT(inp); if (inp->inp_snd_tag != NULL) return (EINVAL); if (ifp->if_snd_tag_alloc == NULL) { error = EOPNOTSUPP; } else { error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag); /* * At success increment the refcount on * the send tag's network interface: */ if (error == 0) if_ref(inp->inp_snd_tag->ifp); } return (error); } /* * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", * if any: */ void in_pcbdetach_txrtlmt(struct inpcb *inp) { struct m_snd_tag *mst; struct ifnet *ifp; INP_WLOCK_ASSERT(inp); mst = inp->inp_snd_tag; inp->inp_snd_tag = NULL; if (mst == NULL) return; ifp = mst->ifp; if (ifp == NULL) return; /* * If the device was detached while we still had reference(s) * on the ifp, we assume if_snd_tag_free() was replaced with * stubs. */ ifp->if_snd_tag_free(mst); /* release reference count on network interface */ if_rele(ifp); } /* * This function should be called when the INP_RATE_LIMIT_CHANGED flag * is set in the fast path and will attach/detach/modify the TX rate * limit send tag based on the socket's so_max_pacing_rate value. */ void in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) { struct socket *socket; uint32_t max_pacing_rate; bool did_upgrade; int error; if (inp == NULL) return; socket = inp->inp_socket; if (socket == NULL) return; if (!INP_WLOCKED(inp)) { /* * NOTE: If the write locking fails, we need to bail * out and use the non-ratelimited ring for the * transmit until there is a new chance to get the * write lock. */ if (!INP_TRY_UPGRADE(inp)) return; did_upgrade = 1; } else { did_upgrade = 0; } /* * NOTE: The so_max_pacing_rate value is read unlocked, * because atomic updates are not required since the variable * is checked at every mbuf we send. It is assumed that the * variable read itself will be atomic. */ max_pacing_rate = socket->so_max_pacing_rate; /* * NOTE: When attaching to a network interface a reference is * made to ensure the network interface doesn't go away until * all ratelimit connections are gone. The network interface * pointers compared below represent valid network interfaces, * except when comparing towards NULL. */ if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { error = 0; } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { if (inp->inp_snd_tag != NULL) in_pcbdetach_txrtlmt(inp); error = 0; } else if (inp->inp_snd_tag == NULL) { /* * In order to utilize packet pacing with RSS, we need * to wait until there is a valid RSS hash before we * can proceed: */ if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { error = EAGAIN; } else { error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), mb->m_pkthdr.flowid, max_pacing_rate); } } else { error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); } if (error == 0 || error == EOPNOTSUPP) inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; if (did_upgrade) INP_DOWNGRADE(inp); } /* * Track route changes for TX rate limiting. */ void in_pcboutput_eagain(struct inpcb *inp) { struct socket *socket; bool did_upgrade; if (inp == NULL) return; socket = inp->inp_socket; if (socket == NULL) return; if (inp->inp_snd_tag == NULL) return; if (!INP_WLOCKED(inp)) { /* * NOTE: If the write locking fails, we need to bail * out and use the non-ratelimited ring for the * transmit until there is a new chance to get the * write lock. */ if (!INP_TRY_UPGRADE(inp)) return; did_upgrade = 1; } else { did_upgrade = 0; } /* detach rate limiting */ in_pcbdetach_txrtlmt(inp); /* make sure new mbuf send tag allocation is made */ inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; if (did_upgrade) INP_DOWNGRADE(inp); } #endif /* RATELIMIT */ Index: head/sys/netinet/in_pcb.h =================================================================== --- head/sys/netinet/in_pcb.h (revision 318320) +++ head/sys/netinet/in_pcb.h (revision 318321) @@ -1,767 +1,767 @@ /*- * Copyright (c) 1982, 1986, 1990, 1993 * The Regents of the University of California. * Copyright (c) 2010-2011 Juniper Networks, Inc. * All rights reserved. * * Portions of this software were developed by Robert N. M. Watson under * contract to Juniper Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_pcb.h 8.1 (Berkeley) 6/10/93 * $FreeBSD$ */ #ifndef _NETINET_IN_PCB_H_ #define _NETINET_IN_PCB_H_ #include #include #include #include #include #ifdef _KERNEL #include #include #include #include #endif #define in6pcb inpcb /* for KAME src sync over BSD*'s */ #define in6p_sp inp_sp /* for KAME src sync over BSD*'s */ /* * struct inpcb is the common protocol control block structure used in most * IP transport protocols. * * Pointers to local and foreign host table entries, local and foreign socket * numbers, and pointers up (to a socket structure) and down (to a * protocol-specific control block) are stored here. */ LIST_HEAD(inpcbhead, inpcb); LIST_HEAD(inpcbporthead, inpcbport); typedef uint64_t inp_gen_t; /* * PCB with AF_INET6 null bind'ed laddr can receive AF_INET input packet. * So, AF_INET6 null laddr is also used as AF_INET null laddr, by utilizing * the following structure. */ struct in_addr_4in6 { u_int32_t ia46_pad32[3]; struct in_addr ia46_addr4; }; /* * NOTE: ipv6 addrs should be 64-bit aligned, per RFC 2553. in_conninfo has * some extra padding to accomplish this. * NOTE 2: tcp_syncache.c uses first 5 32-bit words, which identify fport, * lport, faddr to generate hash, so these fields shouldn't be moved. */ struct in_endpoints { u_int16_t ie_fport; /* foreign port */ u_int16_t ie_lport; /* local port */ /* protocol dependent part, local and foreign addr */ union { /* foreign host table entry */ struct in_addr_4in6 ie46_foreign; struct in6_addr ie6_foreign; } ie_dependfaddr; union { /* local host table entry */ struct in_addr_4in6 ie46_local; struct in6_addr ie6_local; } ie_dependladdr; u_int32_t ie6_zoneid; /* scope zone id */ }; #define ie_faddr ie_dependfaddr.ie46_foreign.ia46_addr4 #define ie_laddr ie_dependladdr.ie46_local.ia46_addr4 #define ie6_faddr ie_dependfaddr.ie6_foreign #define ie6_laddr ie_dependladdr.ie6_local /* * XXX The defines for inc_* are hacks and should be changed to direct * references. */ struct in_conninfo { u_int8_t inc_flags; u_int8_t inc_len; u_int16_t inc_fibnum; /* XXX was pad, 16 bits is plenty */ /* protocol dependent part */ struct in_endpoints inc_ie; }; /* * Flags for inc_flags. */ #define INC_ISIPV6 0x01 #define inc_isipv6 inc_flags /* temp compatibility */ #define inc_fport inc_ie.ie_fport #define inc_lport inc_ie.ie_lport #define inc_faddr inc_ie.ie_faddr #define inc_laddr inc_ie.ie_laddr #define inc6_faddr inc_ie.ie6_faddr #define inc6_laddr inc_ie.ie6_laddr #define inc6_zoneid inc_ie.ie6_zoneid #if defined(_KERNEL) || defined(_WANT_INPCB) /* * struct inpcb captures the network layer state for TCP, UDP, and raw IPv4 and * IPv6 sockets. In the case of TCP and UDP, further per-connection state is * hung off of inp_ppcb most of the time. Almost all fields of struct inpcb * are static after creation or protected by a per-inpcb rwlock, inp_lock. A * few fields are protected by multiple locks as indicated in the locking notes * below. For these fields, all of the listed locks must be write-locked for * any modifications. However, these fields can be safely read while any one of * the listed locks are read-locked. This model can permit greater concurrency * for read operations. For example, connections can be looked up while only * holding a read lock on the global pcblist lock. This is important for * performance when attempting to find the connection for a packet given its IP * and port tuple. * * One noteworthy exception is that the global pcbinfo lock follows a different * set of rules in relation to the inp_list field. Rather than being * write-locked for modifications and read-locked for list iterations, it must * be read-locked during modifications and write-locked during list iterations. * This ensures that the relatively rare global list iterations safely walk a * stable snapshot of connections while allowing more common list modifications * to safely grab the pcblist lock just while adding or removing a connection * from the global list. * * Key: * (c) - Constant after initialization * (g) - Protected by the pcbgroup lock * (i) - Protected by the inpcb lock * (p) - Protected by the pcbinfo lock for the inpcb * (l) - Protected by the pcblist lock for the inpcb * (h) - Protected by the pcbhash lock for the inpcb * (s) - Protected by another subsystem's locks * (x) - Undefined locking * * A few other notes: * * When a read lock is held, stability of the field is guaranteed; to write * to a field, a write lock must generally be held. * * netinet/netinet6-layer code should not assume that the inp_socket pointer * is safe to dereference without inp_lock being held, even for protocols * other than TCP (where the inpcb persists during TIMEWAIT even after the * socket has been freed), or there may be close(2)-related races. * * The inp_vflag field is overloaded, and would otherwise ideally be (c). * * TODO: Currently only the TCP stack is leveraging the global pcbinfo lock * read-lock usage during modification, this model can be applied to other * protocols (especially SCTP). */ struct icmp6_filter; struct inpcbpolicy; struct m_snd_tag; struct inpcb { LIST_ENTRY(inpcb) inp_hash; /* (h/i) hash list */ LIST_ENTRY(inpcb) inp_pcbgrouphash; /* (g/i) hash list */ LIST_ENTRY(inpcb) inp_list; /* (p/l) list for all PCBs for proto */ /* (p[w]) for list iteration */ /* (p[r]/l) for addition/removal */ void *inp_ppcb; /* (i) pointer to per-protocol pcb */ struct inpcbinfo *inp_pcbinfo; /* (c) PCB list info */ struct inpcbgroup *inp_pcbgroup; /* (g/i) PCB group list */ LIST_ENTRY(inpcb) inp_pcbgroup_wild; /* (g/i/h) group wildcard entry */ struct socket *inp_socket; /* (i) back pointer to socket */ struct ucred *inp_cred; /* (c) cache of socket cred */ u_int32_t inp_flow; /* (i) IPv6 flow information */ int inp_flags; /* (i) generic IP/datagram flags */ int inp_flags2; /* (i) generic IP/datagram flags #2*/ u_char inp_vflag; /* (i) IP version flag (v4/v6) */ u_char inp_ip_ttl; /* (i) time to live proto */ u_char inp_ip_p; /* (c) protocol proto */ u_char inp_ip_minttl; /* (i) minimum TTL or drop */ uint32_t inp_flowid; /* (x) flow id / queue id */ u_int inp_refcount; /* (i) refcount */ struct m_snd_tag *inp_snd_tag; /* (i) send tag for outgoing mbufs */ uint32_t inp_flowtype; /* (x) M_HASHTYPE value */ uint32_t inp_rss_listen_bucket; /* (x) overridden RSS listen bucket */ /* Local and foreign ports, local and foreign addr. */ struct in_conninfo inp_inc; /* (i) list for PCB's local port */ /* MAC and IPSEC policy information. */ struct label *inp_label; /* (i) MAC label */ struct inpcbpolicy *inp_sp; /* (s) for IPSEC */ /* Protocol-dependent part; options. */ struct { u_char inp_ip_tos; /* (i) type of service proto */ struct mbuf *inp_options; /* (i) IP options */ struct ip_moptions *inp_moptions; /* (i) mcast options */ }; struct { /* (i) IP options */ struct mbuf *in6p_options; /* (i) IP6 options for outgoing packets */ struct ip6_pktopts *in6p_outputopts; /* (i) IP multicast options */ struct ip6_moptions *in6p_moptions; /* (i) ICMPv6 code type filter */ struct icmp6_filter *in6p_icmp6filt; /* (i) IPV6_CHECKSUM setsockopt */ int in6p_cksum; short in6p_hops; }; LIST_ENTRY(inpcb) inp_portlist; /* (i/h) */ struct inpcbport *inp_phd; /* (i/h) head of this list */ #define inp_zero_size offsetof(struct inpcb, inp_gencnt) inp_gen_t inp_gencnt; /* (c) generation count */ struct llentry *inp_lle; /* cached L2 information */ struct rwlock inp_lock; rt_gen_t inp_rt_cookie; /* generation for route entry */ union { /* cached L3 information */ struct route inpu_route; struct route_in6 inpu_route6; } inp_rtu; #define inp_route inp_rtu.inpu_route #define inp_route6 inp_rtu.inpu_route6 }; #endif /* _KERNEL */ #define inp_fport inp_inc.inc_fport #define inp_lport inp_inc.inc_lport #define inp_faddr inp_inc.inc_faddr #define inp_laddr inp_inc.inc_laddr #define in6p_faddr inp_inc.inc6_faddr #define in6p_laddr inp_inc.inc6_laddr #define in6p_zoneid inp_inc.inc6_zoneid #define in6p_flowinfo inp_flow #define inp_vnet inp_pcbinfo->ipi_vnet /* * The range of the generation count, as used in this implementation, is 9e19. * We would have to create 300 billion connections per second for this number * to roll over in a year. This seems sufficiently unlikely that we simply * don't concern ourselves with that possibility. */ /* * Interface exported to userland by various protocols which use inpcbs. Hack * alert -- only define if struct xsocket is in scope. * Fields prefixed with "xi_" are unique to this structure, and the rest * match fields in the struct inpcb, to ease coding and porting. * * Legend: * (s) - used by userland utilities in src * (p) - used by utilities in ports * (3) - is known to be used by third party software not in ports * (n) - no known usage */ #ifdef _SYS_SOCKETVAR_H_ struct xinpcb { size_t xi_len; /* length of this structure */ struct xsocket xi_socket; /* (s,p) */ struct in_conninfo inp_inc; /* (s,p) */ uint64_t inp_gencnt; /* (s,p) */ union { void *inp_ppcb; /* (s) netstat(1) */ int64_t ph_ppcb; }; int64_t inp_spare64[4]; uint32_t inp_flow; /* (s) */ uint32_t inp_flowid; /* (s) */ uint32_t inp_flowtype; /* (s) */ int32_t inp_flags; /* (s,p) */ int32_t inp_flags2; /* (s) */ int32_t inp_rss_listen_bucket; /* (n) */ int32_t in6p_cksum; /* (n) */ int32_t inp_spare32[4]; uint16_t in6p_hops; /* (n) */ uint8_t inp_ip_tos; /* (n) */ int8_t pad8; uint8_t inp_vflag; /* (s,p) */ uint8_t inp_ip_ttl; /* (n) */ uint8_t inp_ip_p; /* (n) */ uint8_t inp_ip_minttl; /* (n) */ int8_t inp_spare8[4]; } __aligned(8); struct xinpgen { size_t xig_len; /* length of this structure */ u_int xig_count; /* number of PCBs at this time */ inp_gen_t xig_gen; /* generation count at this time */ so_gen_t xig_sogen; /* socket generation count this time */ } __aligned(8); #ifdef _KERNEL void in_pcbtoxinpcb(const struct inpcb *, struct xinpcb *); #endif #endif /* _SYS_SOCKETVAR_H_ */ struct inpcbport { LIST_ENTRY(inpcbport) phd_hash; struct inpcbhead phd_pcblist; u_short phd_port; }; /*- * Global data structure for each high-level protocol (UDP, TCP, ...) in both * IPv4 and IPv6. Holds inpcb lists and information for managing them. * * Each pcbinfo is protected by three locks: ipi_lock, ipi_hash_lock and * ipi_list_lock: * - ipi_lock covering the global pcb list stability during loop iteration, * - ipi_hash_lock covering the hashed lookup tables, * - ipi_list_lock covering mutable global fields (such as the global * pcb list) * * The lock order is: * * ipi_lock (before) * inpcb locks (before) * ipi_list locks (before) * {ipi_hash_lock, pcbgroup locks} * * Locking key: * * (c) Constant or nearly constant after initialisation * (g) Locked by ipi_lock * (l) Locked by ipi_list_lock * (h) Read using either ipi_hash_lock or inpcb lock; write requires both * (p) Protected by one or more pcbgroup locks * (x) Synchronisation properties poorly defined */ struct inpcbinfo { /* * Global lock protecting full inpcb list traversal */ struct rwlock ipi_lock; /* * Global list of inpcbs on the protocol. */ struct inpcbhead *ipi_listhead; /* (g/l) */ u_int ipi_count; /* (l) */ /* * Generation count -- incremented each time a connection is allocated * or freed. */ u_quad_t ipi_gencnt; /* (l) */ /* * Fields associated with port lookup and allocation. */ u_short ipi_lastport; /* (x) */ u_short ipi_lastlow; /* (x) */ u_short ipi_lasthi; /* (x) */ /* * UMA zone from which inpcbs are allocated for this protocol. */ struct uma_zone *ipi_zone; /* (c) */ /* * Connection groups associated with this protocol. These fields are * constant, but pcbgroup structures themselves are protected by * per-pcbgroup locks. */ struct inpcbgroup *ipi_pcbgroups; /* (c) */ u_int ipi_npcbgroups; /* (c) */ u_int ipi_hashfields; /* (c) */ /* * Global lock protecting non-pcbgroup hash lookup tables. */ struct rwlock ipi_hash_lock; /* * Global hash of inpcbs, hashed by local and foreign addresses and * port numbers. */ struct inpcbhead *ipi_hashbase; /* (h) */ u_long ipi_hashmask; /* (h) */ /* * Global hash of inpcbs, hashed by only local port number. */ struct inpcbporthead *ipi_porthashbase; /* (h) */ u_long ipi_porthashmask; /* (h) */ /* * List of wildcard inpcbs for use with pcbgroups. In the past, was * per-pcbgroup but is now global. All pcbgroup locks must be held * to modify the list, so any is sufficient to read it. */ struct inpcbhead *ipi_wildbase; /* (p) */ u_long ipi_wildmask; /* (p) */ /* * Pointer to network stack instance */ struct vnet *ipi_vnet; /* (c) */ /* * general use 2 */ void *ipi_pspare[2]; /* * Global lock protecting global inpcb list, inpcb count, etc. */ struct rwlock ipi_list_lock; }; #ifdef _KERNEL /* * Connection groups hold sets of connections that have similar CPU/thread * affinity. Each connection belongs to exactly one connection group. */ struct inpcbgroup { /* * Per-connection group hash of inpcbs, hashed by local and foreign * addresses and port numbers. */ struct inpcbhead *ipg_hashbase; /* (c) */ u_long ipg_hashmask; /* (c) */ /* * Notional affinity of this pcbgroup. */ u_int ipg_cpu; /* (p) */ /* * Per-connection group lock, not to be confused with ipi_lock. * Protects the hash table hung off the group, but also the global * wildcard list in inpcbinfo. */ struct mtx ipg_lock; } __aligned(CACHE_LINE_SIZE); #define INP_LOCK_INIT(inp, d, t) \ rw_init_flags(&(inp)->inp_lock, (t), RW_RECURSE | RW_DUPOK) #define INP_LOCK_DESTROY(inp) rw_destroy(&(inp)->inp_lock) #define INP_RLOCK(inp) rw_rlock(&(inp)->inp_lock) #define INP_WLOCK(inp) rw_wlock(&(inp)->inp_lock) #define INP_TRY_RLOCK(inp) rw_try_rlock(&(inp)->inp_lock) #define INP_TRY_WLOCK(inp) rw_try_wlock(&(inp)->inp_lock) #define INP_RUNLOCK(inp) rw_runlock(&(inp)->inp_lock) #define INP_WUNLOCK(inp) rw_wunlock(&(inp)->inp_lock) #define INP_TRY_UPGRADE(inp) rw_try_upgrade(&(inp)->inp_lock) #define INP_DOWNGRADE(inp) rw_downgrade(&(inp)->inp_lock) #define INP_WLOCKED(inp) rw_wowned(&(inp)->inp_lock) #define INP_LOCK_ASSERT(inp) rw_assert(&(inp)->inp_lock, RA_LOCKED) #define INP_RLOCK_ASSERT(inp) rw_assert(&(inp)->inp_lock, RA_RLOCKED) #define INP_WLOCK_ASSERT(inp) rw_assert(&(inp)->inp_lock, RA_WLOCKED) #define INP_UNLOCK_ASSERT(inp) rw_assert(&(inp)->inp_lock, RA_UNLOCKED) /* * These locking functions are for inpcb consumers outside of sys/netinet, * more specifically, they were added for the benefit of TOE drivers. The * macros are reserved for use by the stack. */ void inp_wlock(struct inpcb *); void inp_wunlock(struct inpcb *); void inp_rlock(struct inpcb *); void inp_runlock(struct inpcb *); #ifdef INVARIANT_SUPPORT void inp_lock_assert(struct inpcb *); void inp_unlock_assert(struct inpcb *); #else #define inp_lock_assert(inp) do {} while (0) #define inp_unlock_assert(inp) do {} while (0) #endif void inp_apply_all(void (*func)(struct inpcb *, void *), void *arg); int inp_ip_tos_get(const struct inpcb *inp); void inp_ip_tos_set(struct inpcb *inp, int val); struct socket * inp_inpcbtosocket(struct inpcb *inp); struct tcpcb * inp_inpcbtotcpcb(struct inpcb *inp); void inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, uint32_t *faddr, uint16_t *fp); short inp_so_options(const struct inpcb *inp); #endif /* _KERNEL */ #define INP_INFO_LOCK_INIT(ipi, d) \ rw_init_flags(&(ipi)->ipi_lock, (d), RW_RECURSE) #define INP_INFO_LOCK_DESTROY(ipi) rw_destroy(&(ipi)->ipi_lock) #define INP_INFO_RLOCK(ipi) rw_rlock(&(ipi)->ipi_lock) #define INP_INFO_WLOCK(ipi) rw_wlock(&(ipi)->ipi_lock) #define INP_INFO_TRY_RLOCK(ipi) rw_try_rlock(&(ipi)->ipi_lock) #define INP_INFO_TRY_WLOCK(ipi) rw_try_wlock(&(ipi)->ipi_lock) #define INP_INFO_TRY_UPGRADE(ipi) rw_try_upgrade(&(ipi)->ipi_lock) #define INP_INFO_WLOCKED(ipi) rw_wowned(&(ipi)->ipi_lock) #define INP_INFO_RUNLOCK(ipi) rw_runlock(&(ipi)->ipi_lock) #define INP_INFO_WUNLOCK(ipi) rw_wunlock(&(ipi)->ipi_lock) #define INP_INFO_LOCK_ASSERT(ipi) rw_assert(&(ipi)->ipi_lock, RA_LOCKED) #define INP_INFO_RLOCK_ASSERT(ipi) rw_assert(&(ipi)->ipi_lock, RA_RLOCKED) #define INP_INFO_WLOCK_ASSERT(ipi) rw_assert(&(ipi)->ipi_lock, RA_WLOCKED) #define INP_INFO_UNLOCK_ASSERT(ipi) rw_assert(&(ipi)->ipi_lock, RA_UNLOCKED) #define INP_LIST_LOCK_INIT(ipi, d) \ rw_init_flags(&(ipi)->ipi_list_lock, (d), 0) #define INP_LIST_LOCK_DESTROY(ipi) rw_destroy(&(ipi)->ipi_list_lock) #define INP_LIST_RLOCK(ipi) rw_rlock(&(ipi)->ipi_list_lock) #define INP_LIST_WLOCK(ipi) rw_wlock(&(ipi)->ipi_list_lock) #define INP_LIST_TRY_RLOCK(ipi) rw_try_rlock(&(ipi)->ipi_list_lock) #define INP_LIST_TRY_WLOCK(ipi) rw_try_wlock(&(ipi)->ipi_list_lock) #define INP_LIST_TRY_UPGRADE(ipi) rw_try_upgrade(&(ipi)->ipi_list_lock) #define INP_LIST_RUNLOCK(ipi) rw_runlock(&(ipi)->ipi_list_lock) #define INP_LIST_WUNLOCK(ipi) rw_wunlock(&(ipi)->ipi_list_lock) #define INP_LIST_LOCK_ASSERT(ipi) \ rw_assert(&(ipi)->ipi_list_lock, RA_LOCKED) #define INP_LIST_RLOCK_ASSERT(ipi) \ rw_assert(&(ipi)->ipi_list_lock, RA_RLOCKED) #define INP_LIST_WLOCK_ASSERT(ipi) \ rw_assert(&(ipi)->ipi_list_lock, RA_WLOCKED) #define INP_LIST_UNLOCK_ASSERT(ipi) \ rw_assert(&(ipi)->ipi_list_lock, RA_UNLOCKED) #define INP_HASH_LOCK_INIT(ipi, d) \ rw_init_flags(&(ipi)->ipi_hash_lock, (d), 0) #define INP_HASH_LOCK_DESTROY(ipi) rw_destroy(&(ipi)->ipi_hash_lock) #define INP_HASH_RLOCK(ipi) rw_rlock(&(ipi)->ipi_hash_lock) #define INP_HASH_WLOCK(ipi) rw_wlock(&(ipi)->ipi_hash_lock) #define INP_HASH_RUNLOCK(ipi) rw_runlock(&(ipi)->ipi_hash_lock) #define INP_HASH_WUNLOCK(ipi) rw_wunlock(&(ipi)->ipi_hash_lock) #define INP_HASH_LOCK_ASSERT(ipi) rw_assert(&(ipi)->ipi_hash_lock, \ RA_LOCKED) #define INP_HASH_WLOCK_ASSERT(ipi) rw_assert(&(ipi)->ipi_hash_lock, \ RA_WLOCKED) #define INP_GROUP_LOCK_INIT(ipg, d) mtx_init(&(ipg)->ipg_lock, (d), NULL, \ MTX_DEF | MTX_DUPOK) #define INP_GROUP_LOCK_DESTROY(ipg) mtx_destroy(&(ipg)->ipg_lock) #define INP_GROUP_LOCK(ipg) mtx_lock(&(ipg)->ipg_lock) #define INP_GROUP_LOCK_ASSERT(ipg) mtx_assert(&(ipg)->ipg_lock, MA_OWNED) #define INP_GROUP_UNLOCK(ipg) mtx_unlock(&(ipg)->ipg_lock) #define INP_PCBHASH(faddr, lport, fport, mask) \ (((faddr) ^ ((faddr) >> 16) ^ ntohs((lport) ^ (fport))) & (mask)) #define INP_PCBPORTHASH(lport, mask) \ (ntohs((lport)) & (mask)) #define INP6_PCBHASHKEY(faddr) ((faddr)->s6_addr32[3]) /* * Flags for inp_vflags -- historically version flags only */ #define INP_IPV4 0x1 #define INP_IPV6 0x2 #define INP_IPV6PROTO 0x4 /* opened under IPv6 protocol */ /* * Flags for inp_flags. */ #define INP_RECVOPTS 0x00000001 /* receive incoming IP options */ #define INP_RECVRETOPTS 0x00000002 /* receive IP options for reply */ #define INP_RECVDSTADDR 0x00000004 /* receive IP dst address */ #define INP_HDRINCL 0x00000008 /* user supplies entire IP header */ #define INP_HIGHPORT 0x00000010 /* user wants "high" port binding */ #define INP_LOWPORT 0x00000020 /* user wants "low" port binding */ #define INP_ANONPORT 0x00000040 /* port chosen for user */ #define INP_RECVIF 0x00000080 /* receive incoming interface */ #define INP_MTUDISC 0x00000100 /* user can do MTU discovery */ /* 0x000200 unused: was INP_FAITH */ #define INP_RECVTTL 0x00000400 /* receive incoming IP TTL */ #define INP_DONTFRAG 0x00000800 /* don't fragment packet */ #define INP_BINDANY 0x00001000 /* allow bind to any address */ #define INP_INHASHLIST 0x00002000 /* in_pcbinshash() has been called */ #define INP_RECVTOS 0x00004000 /* receive incoming IP TOS */ #define IN6P_IPV6_V6ONLY 0x00008000 /* restrict AF_INET6 socket for v6 */ #define IN6P_PKTINFO 0x00010000 /* receive IP6 dst and I/F */ #define IN6P_HOPLIMIT 0x00020000 /* receive hoplimit */ #define IN6P_HOPOPTS 0x00040000 /* receive hop-by-hop options */ #define IN6P_DSTOPTS 0x00080000 /* receive dst options after rthdr */ #define IN6P_RTHDR 0x00100000 /* receive routing header */ #define IN6P_RTHDRDSTOPTS 0x00200000 /* receive dstoptions before rthdr */ #define IN6P_TCLASS 0x00400000 /* receive traffic class value */ #define IN6P_AUTOFLOWLABEL 0x00800000 /* attach flowlabel automatically */ #define INP_TIMEWAIT 0x01000000 /* in TIMEWAIT, ppcb is tcptw */ #define INP_ONESBCAST 0x02000000 /* send all-ones broadcast */ #define INP_DROPPED 0x04000000 /* protocol drop flag */ #define INP_SOCKREF 0x08000000 /* strong socket reference */ #define INP_RESERVED_0 0x10000000 /* reserved field */ #define INP_RESERVED_1 0x20000000 /* reserved field */ #define IN6P_RFC2292 0x40000000 /* used RFC2292 API on the socket */ #define IN6P_MTU 0x80000000 /* receive path MTU */ #define INP_CONTROLOPTS (INP_RECVOPTS|INP_RECVRETOPTS|INP_RECVDSTADDR|\ INP_RECVIF|INP_RECVTTL|INP_RECVTOS|\ IN6P_PKTINFO|IN6P_HOPLIMIT|IN6P_HOPOPTS|\ IN6P_DSTOPTS|IN6P_RTHDR|IN6P_RTHDRDSTOPTS|\ IN6P_TCLASS|IN6P_AUTOFLOWLABEL|IN6P_RFC2292|\ IN6P_MTU) /* * Flags for inp_flags2. */ #define INP_LLE_VALID 0x00000001 /* cached lle is valid */ #define INP_RT_VALID 0x00000002 /* cached rtentry is valid */ #define INP_PCBGROUPWILD 0x00000004 /* in pcbgroup wildcard list */ #define INP_REUSEPORT 0x00000008 /* SO_REUSEPORT option is set */ #define INP_FREED 0x00000010 /* inp itself is not valid */ #define INP_REUSEADDR 0x00000020 /* SO_REUSEADDR option is set */ #define INP_BINDMULTI 0x00000040 /* IP_BINDMULTI option is set */ #define INP_RSS_BUCKET_SET 0x00000080 /* IP_RSS_LISTEN_BUCKET is set */ #define INP_RECVFLOWID 0x00000100 /* populate recv datagram with flow info */ #define INP_RECVRSSBUCKETID 0x00000200 /* populate recv datagram with bucket id */ #define INP_RATE_LIMIT_CHANGED 0x00000400 /* rate limit needs attention */ #define INP_ORIGDSTADDR 0x00000800 /* receive IP dst address/port */ /* * Flags passed to in_pcblookup*() functions. */ #define INPLOOKUP_WILDCARD 0x00000001 /* Allow wildcard sockets. */ #define INPLOOKUP_RLOCKPCB 0x00000002 /* Return inpcb read-locked. */ #define INPLOOKUP_WLOCKPCB 0x00000004 /* Return inpcb write-locked. */ #define INPLOOKUP_MASK (INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB | \ INPLOOKUP_WLOCKPCB) #define sotoinpcb(so) ((struct inpcb *)(so)->so_pcb) #define sotoin6pcb(so) sotoinpcb(so) /* for KAME src sync over BSD*'s */ #define INP_SOCKAF(so) so->so_proto->pr_domain->dom_family #define INP_CHECK_SOCKAF(so, af) (INP_SOCKAF(so) == af) /* * Constants for pcbinfo.ipi_hashfields. */ #define IPI_HASHFIELDS_NONE 0 #define IPI_HASHFIELDS_2TUPLE 1 #define IPI_HASHFIELDS_4TUPLE 2 #ifdef _KERNEL VNET_DECLARE(int, ipport_reservedhigh); VNET_DECLARE(int, ipport_reservedlow); VNET_DECLARE(int, ipport_lowfirstauto); VNET_DECLARE(int, ipport_lowlastauto); VNET_DECLARE(int, ipport_firstauto); VNET_DECLARE(int, ipport_lastauto); VNET_DECLARE(int, ipport_hifirstauto); VNET_DECLARE(int, ipport_hilastauto); VNET_DECLARE(int, ipport_randomized); VNET_DECLARE(int, ipport_randomcps); VNET_DECLARE(int, ipport_randomtime); VNET_DECLARE(int, ipport_stoprandom); VNET_DECLARE(int, ipport_tcpallocs); #define V_ipport_reservedhigh VNET(ipport_reservedhigh) #define V_ipport_reservedlow VNET(ipport_reservedlow) #define V_ipport_lowfirstauto VNET(ipport_lowfirstauto) #define V_ipport_lowlastauto VNET(ipport_lowlastauto) #define V_ipport_firstauto VNET(ipport_firstauto) #define V_ipport_lastauto VNET(ipport_lastauto) #define V_ipport_hifirstauto VNET(ipport_hifirstauto) #define V_ipport_hilastauto VNET(ipport_hilastauto) #define V_ipport_randomized VNET(ipport_randomized) #define V_ipport_randomcps VNET(ipport_randomcps) #define V_ipport_randomtime VNET(ipport_randomtime) #define V_ipport_stoprandom VNET(ipport_stoprandom) #define V_ipport_tcpallocs VNET(ipport_tcpallocs) void in_pcbinfo_destroy(struct inpcbinfo *); void in_pcbinfo_init(struct inpcbinfo *, const char *, struct inpcbhead *, - int, int, char *, uma_init, uma_fini, uint32_t, u_int); + int, int, char *, uma_init, u_int); int in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi); struct inpcbgroup * in_pcbgroup_byhash(struct inpcbinfo *, u_int, uint32_t); struct inpcbgroup * in_pcbgroup_byinpcb(struct inpcb *); struct inpcbgroup * in_pcbgroup_bytuple(struct inpcbinfo *, struct in_addr, u_short, struct in_addr, u_short); void in_pcbgroup_destroy(struct inpcbinfo *); int in_pcbgroup_enabled(struct inpcbinfo *); void in_pcbgroup_init(struct inpcbinfo *, u_int, int); void in_pcbgroup_remove(struct inpcb *); void in_pcbgroup_update(struct inpcb *); void in_pcbgroup_update_mbuf(struct inpcb *, struct mbuf *); void in_pcbpurgeif0(struct inpcbinfo *, struct ifnet *); int in_pcballoc(struct socket *, struct inpcbinfo *); int in_pcbbind(struct inpcb *, struct sockaddr *, struct ucred *); int in_pcb_lport(struct inpcb *, struct in_addr *, u_short *, struct ucred *, int); int in_pcbbind_setup(struct inpcb *, struct sockaddr *, in_addr_t *, u_short *, struct ucred *); int in_pcbconnect(struct inpcb *, struct sockaddr *, struct ucred *); int in_pcbconnect_mbuf(struct inpcb *, struct sockaddr *, struct ucred *, struct mbuf *); int in_pcbconnect_setup(struct inpcb *, struct sockaddr *, in_addr_t *, u_short *, in_addr_t *, u_short *, struct inpcb **, struct ucred *); void in_pcbdetach(struct inpcb *); void in_pcbdisconnect(struct inpcb *); void in_pcbdrop(struct inpcb *); void in_pcbfree(struct inpcb *); int in_pcbinshash(struct inpcb *); int in_pcbinshash_nopcbgroup(struct inpcb *); int in_pcbladdr(struct inpcb *, struct in_addr *, struct in_addr *, struct ucred *); struct inpcb * in_pcblookup_local(struct inpcbinfo *, struct in_addr, u_short, int, struct ucred *); struct inpcb * in_pcblookup(struct inpcbinfo *, struct in_addr, u_int, struct in_addr, u_int, int, struct ifnet *); struct inpcb * in_pcblookup_mbuf(struct inpcbinfo *, struct in_addr, u_int, struct in_addr, u_int, int, struct ifnet *, struct mbuf *); void in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr, int, struct inpcb *(*)(struct inpcb *, int)); void in_pcbref(struct inpcb *); void in_pcbrehash(struct inpcb *); void in_pcbrehash_mbuf(struct inpcb *, struct mbuf *); int in_pcbrele(struct inpcb *); int in_pcbrele_rlocked(struct inpcb *); int in_pcbrele_wlocked(struct inpcb *); void in_losing(struct inpcb *); void in_pcbsetsolabel(struct socket *so); int in_getpeeraddr(struct socket *so, struct sockaddr **nam); int in_getsockaddr(struct socket *so, struct sockaddr **nam); struct sockaddr * in_sockaddr(in_port_t port, struct in_addr *addr); void in_pcbsosetlabel(struct socket *so); #ifdef RATELIMIT int in_pcbattach_txrtlmt(struct inpcb *, struct ifnet *, uint32_t, uint32_t, uint32_t); void in_pcbdetach_txrtlmt(struct inpcb *); int in_pcbmodify_txrtlmt(struct inpcb *, uint32_t); int in_pcbquery_txrtlmt(struct inpcb *, uint32_t *); void in_pcboutput_txrtlmt(struct inpcb *, struct ifnet *, struct mbuf *); void in_pcboutput_eagain(struct inpcb *); #endif #endif /* _KERNEL */ #endif /* !_NETINET_IN_PCB_H_ */ Index: head/sys/netinet/ip_divert.c =================================================================== --- head/sys/netinet/ip_divert.c (revision 318320) +++ head/sys/netinet/ip_divert.c (revision 318321) @@ -1,827 +1,819 @@ /*- * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_sctp.h" #ifndef INET #error "IPDIVERT requires INET" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #endif #ifdef SCTP #include #endif #include /* * Divert sockets */ /* * Allocate enough space to hold a full IP packet */ #define DIVSNDQ (65536 + 100) #define DIVRCVQ (65536 + 100) /* * Divert sockets work in conjunction with ipfw or other packet filters, * see the divert(4) manpage for features. * Packets are selected by the packet filter and tagged with an * MTAG_IPFW_RULE tag carrying the 'divert port' number (as set by * the packet filter) and information on the matching filter rule for * subsequent reinjection. The divert_port is used to put the packet * on the corresponding divert socket, while the rule number is passed * up (at least partially) as the sin_port in the struct sockaddr. * * Packets written to the divert socket carry in sin_addr a * destination address, and in sin_port the number of the filter rule * after which to continue processing. * If the destination address is INADDR_ANY, the packet is treated as * as outgoing and sent to ip_output(); otherwise it is treated as * incoming and sent to ip_input(). * Further, sin_zero carries some information on the interface, * which can be used in the reinject -- see comments in the code. * * On reinjection, processing in ip_input() and ip_output() * will be exactly the same as for the original packet, except that * packet filter processing will start at the rule number after the one * written in the sin_port (ipfw does not allow a rule #0, so sin_port=0 * will apply the entire ruleset to the packet). */ /* Internal variables. */ static VNET_DEFINE(struct inpcbhead, divcb); static VNET_DEFINE(struct inpcbinfo, divcbinfo); #define V_divcb VNET(divcb) #define V_divcbinfo VNET(divcbinfo) static u_long div_sendspace = DIVSNDQ; /* XXX sysctl ? */ static u_long div_recvspace = DIVRCVQ; /* XXX sysctl ? */ static eventhandler_tag ip_divert_event_tag; /* * Initialize divert connection block queue. */ static void div_zone_change(void *tag) { uma_zone_set_max(V_divcbinfo.ipi_zone, maxsockets); } static int div_inpcb_init(void *mem, int size, int flags) { struct inpcb *inp = mem; INP_LOCK_INIT(inp, "inp", "divinp"); return (0); } static void -div_inpcb_fini(void *mem, int size) -{ - struct inpcb *inp = mem; - - INP_LOCK_DESTROY(inp); -} - -static void div_init(void) { /* * XXX We don't use the hash list for divert IP, but it's easier to * allocate one-entry hash lists than it is to check all over the * place for hashbase == NULL. */ in_pcbinfo_init(&V_divcbinfo, "div", &V_divcb, 1, 1, "divcb", - div_inpcb_init, div_inpcb_fini, 0, IPI_HASHFIELDS_NONE); + div_inpcb_init, IPI_HASHFIELDS_NONE); } static void div_destroy(void *unused __unused) { in_pcbinfo_destroy(&V_divcbinfo); } VNET_SYSUNINIT(divert, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, div_destroy, NULL); /* * IPPROTO_DIVERT is not in the real IP protocol number space; this * function should never be called. Just in case, drop any packets. */ static int div_input(struct mbuf **mp, int *offp, int proto) { struct mbuf *m = *mp; KMOD_IPSTAT_INC(ips_noproto); m_freem(m); return (IPPROTO_DONE); } /* * Divert a packet by passing it up to the divert socket at port 'port'. * * Setup generic address and protocol structures for div_input routine, * then pass them along with mbuf chain. */ static void divert_packet(struct mbuf *m, int incoming) { struct ip *ip; struct inpcb *inp; struct socket *sa; u_int16_t nport; struct sockaddr_in divsrc; struct m_tag *mtag; mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); if (mtag == NULL) { m_freem(m); return; } /* Assure header */ if (m->m_len < sizeof(struct ip) && (m = m_pullup(m, sizeof(struct ip))) == NULL) return; ip = mtod(m, struct ip *); /* Delayed checksums are currently not compatible with divert. */ if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { in_delayed_cksum(m); m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; } #ifdef SCTP if (m->m_pkthdr.csum_flags & CSUM_SCTP) { sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); m->m_pkthdr.csum_flags &= ~CSUM_SCTP; } #endif bzero(&divsrc, sizeof(divsrc)); divsrc.sin_len = sizeof(divsrc); divsrc.sin_family = AF_INET; /* record matching rule, in host format */ divsrc.sin_port = ((struct ipfw_rule_ref *)(mtag+1))->rulenum; /* * Record receive interface address, if any. * But only for incoming packets. */ if (incoming) { struct ifaddr *ifa; struct ifnet *ifp; /* Sanity check */ M_ASSERTPKTHDR(m); /* Find IP address for receive interface */ ifp = m->m_pkthdr.rcvif; if_addr_rlock(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET) continue; divsrc.sin_addr = ((struct sockaddr_in *) ifa->ifa_addr)->sin_addr; break; } if_addr_runlock(ifp); } /* * Record the incoming interface name whenever we have one. */ if (m->m_pkthdr.rcvif) { /* * Hide the actual interface name in there in the * sin_zero array. XXX This needs to be moved to a * different sockaddr type for divert, e.g. * sockaddr_div with multiple fields like * sockaddr_dl. Presently we have only 7 bytes * but that will do for now as most interfaces * are 4 or less + 2 or less bytes for unit. * There is probably a faster way of doing this, * possibly taking it from the sockaddr_dl on the iface. * This solves the problem of a P2P link and a LAN interface * having the same address, which can result in the wrong * interface being assigned to the packet when fed back * into the divert socket. Theoretically if the daemon saves * and re-uses the sockaddr_in as suggested in the man pages, * this iface name will come along for the ride. * (see div_output for the other half of this.) */ strlcpy(divsrc.sin_zero, m->m_pkthdr.rcvif->if_xname, sizeof(divsrc.sin_zero)); } /* Put packet on socket queue, if any */ sa = NULL; nport = htons((u_int16_t)(((struct ipfw_rule_ref *)(mtag+1))->info)); INP_INFO_RLOCK(&V_divcbinfo); LIST_FOREACH(inp, &V_divcb, inp_list) { /* XXX why does only one socket match? */ if (inp->inp_lport == nport) { INP_RLOCK(inp); sa = inp->inp_socket; SOCKBUF_LOCK(&sa->so_rcv); if (sbappendaddr_locked(&sa->so_rcv, (struct sockaddr *)&divsrc, m, (struct mbuf *)0) == 0) { SOCKBUF_UNLOCK(&sa->so_rcv); sa = NULL; /* force mbuf reclaim below */ } else sorwakeup_locked(sa); INP_RUNLOCK(inp); break; } } INP_INFO_RUNLOCK(&V_divcbinfo); if (sa == NULL) { m_freem(m); KMOD_IPSTAT_INC(ips_noproto); KMOD_IPSTAT_DEC(ips_delivered); } } /* * Deliver packet back into the IP processing machinery. * * If no address specified, or address is 0.0.0.0, send to ip_output(); * otherwise, send to ip_input() and mark as having been received on * the interface with that address. */ static int div_output(struct socket *so, struct mbuf *m, struct sockaddr_in *sin, struct mbuf *control) { struct ip *const ip = mtod(m, struct ip *); struct m_tag *mtag; struct ipfw_rule_ref *dt; int error = 0; /* * An mbuf may hasn't come from userland, but we pretend * that it has. */ m->m_pkthdr.rcvif = NULL; m->m_nextpkt = NULL; M_SETFIB(m, so->so_fibnum); if (control) m_freem(control); /* XXX */ mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); if (mtag == NULL) { /* this should be normal */ mtag = m_tag_alloc(MTAG_IPFW_RULE, 0, sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); if (mtag == NULL) { error = ENOBUFS; goto cantsend; } m_tag_prepend(m, mtag); } dt = (struct ipfw_rule_ref *)(mtag+1); /* Loopback avoidance and state recovery */ if (sin) { int i; /* set the starting point. We provide a non-zero slot, * but a non_matching chain_id to skip that info and use * the rulenum/rule_id. */ dt->slot = 1; /* dummy, chain_id is invalid */ dt->chain_id = 0; dt->rulenum = sin->sin_port+1; /* host format ? */ dt->rule_id = 0; /* * Find receive interface with the given name, stuffed * (if it exists) in the sin_zero[] field. * The name is user supplied data so don't trust its size * or that it is zero terminated. */ for (i = 0; i < sizeof(sin->sin_zero) && sin->sin_zero[i]; i++) ; if ( i > 0 && i < sizeof(sin->sin_zero)) m->m_pkthdr.rcvif = ifunit(sin->sin_zero); } /* Reinject packet into the system as incoming or outgoing */ if (!sin || sin->sin_addr.s_addr == 0) { struct mbuf *options = NULL; struct inpcb *inp; dt->info |= IPFW_IS_DIVERT | IPFW_INFO_OUT; inp = sotoinpcb(so); INP_RLOCK(inp); switch (ip->ip_v) { case IPVERSION: /* * Don't allow both user specified and setsockopt * options, and don't allow packet length sizes that * will crash. */ if ((((ip->ip_hl << 2) != sizeof(struct ip)) && inp->inp_options != NULL) || ((u_short)ntohs(ip->ip_len) > m->m_pkthdr.len)) { error = EINVAL; INP_RUNLOCK(inp); goto cantsend; } break; #ifdef INET6 case IPV6_VERSION >> 4: { struct ip6_hdr *const ip6 = mtod(m, struct ip6_hdr *); /* Don't allow packet length sizes that will crash */ if (((u_short)ntohs(ip6->ip6_plen) > m->m_pkthdr.len)) { error = EINVAL; INP_RUNLOCK(inp); goto cantsend; } break; } #endif default: error = EINVAL; INP_RUNLOCK(inp); goto cantsend; } /* Send packet to output processing */ KMOD_IPSTAT_INC(ips_rawout); /* XXX */ #ifdef MAC mac_inpcb_create_mbuf(inp, m); #endif /* * Get ready to inject the packet into ip_output(). * Just in case socket options were specified on the * divert socket, we duplicate them. This is done * to avoid having to hold the PCB locks over the call * to ip_output(), as doing this results in a number of * lock ordering complexities. * * Note that we set the multicast options argument for * ip_output() to NULL since it should be invariant that * they are not present. */ KASSERT(inp->inp_moptions == NULL, ("multicast options set on a divert socket")); /* * XXXCSJP: It is unclear to me whether or not it makes * sense for divert sockets to have options. However, * for now we will duplicate them with the INP locks * held so we can use them in ip_output() without * requring a reference to the pcb. */ if (inp->inp_options != NULL) { options = m_dup(inp->inp_options, M_NOWAIT); if (options == NULL) { INP_RUNLOCK(inp); error = ENOBUFS; goto cantsend; } } INP_RUNLOCK(inp); switch (ip->ip_v) { case IPVERSION: error = ip_output(m, options, NULL, ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0) | IP_ALLOWBROADCAST | IP_RAWOUTPUT, NULL, NULL); break; #ifdef INET6 case IPV6_VERSION >> 4: error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL); break; #endif } if (options != NULL) m_freem(options); } else { dt->info |= IPFW_IS_DIVERT | IPFW_INFO_IN; if (m->m_pkthdr.rcvif == NULL) { /* * No luck with the name, check by IP address. * Clear the port and the ifname to make sure * there are no distractions for ifa_ifwithaddr. */ struct ifaddr *ifa; bzero(sin->sin_zero, sizeof(sin->sin_zero)); sin->sin_port = 0; ifa = ifa_ifwithaddr((struct sockaddr *) sin); if (ifa == NULL) { error = EADDRNOTAVAIL; goto cantsend; } m->m_pkthdr.rcvif = ifa->ifa_ifp; ifa_free(ifa); } #ifdef MAC mac_socket_create_mbuf(so, m); #endif /* Send packet to input processing via netisr */ switch (ip->ip_v) { case IPVERSION: netisr_queue_src(NETISR_IP, (uintptr_t)so, m); break; #ifdef INET6 case IPV6_VERSION >> 4: netisr_queue_src(NETISR_IPV6, (uintptr_t)so, m); break; #endif default: error = EINVAL; goto cantsend; } } return (error); cantsend: m_freem(m); return (error); } static int div_attach(struct socket *so, int proto, struct thread *td) { struct inpcb *inp; int error; inp = sotoinpcb(so); KASSERT(inp == NULL, ("div_attach: inp != NULL")); if (td != NULL) { error = priv_check(td, PRIV_NETINET_DIVERT); if (error) return (error); } error = soreserve(so, div_sendspace, div_recvspace); if (error) return error; INP_INFO_WLOCK(&V_divcbinfo); error = in_pcballoc(so, &V_divcbinfo); if (error) { INP_INFO_WUNLOCK(&V_divcbinfo); return error; } inp = (struct inpcb *)so->so_pcb; INP_INFO_WUNLOCK(&V_divcbinfo); inp->inp_ip_p = proto; inp->inp_vflag |= INP_IPV4; inp->inp_flags |= INP_HDRINCL; INP_WUNLOCK(inp); return 0; } static void div_detach(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("div_detach: inp == NULL")); INP_INFO_WLOCK(&V_divcbinfo); INP_WLOCK(inp); in_pcbdetach(inp); in_pcbfree(inp); INP_INFO_WUNLOCK(&V_divcbinfo); } static int div_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { struct inpcb *inp; int error; inp = sotoinpcb(so); KASSERT(inp != NULL, ("div_bind: inp == NULL")); /* in_pcbbind assumes that nam is a sockaddr_in * and in_pcbbind requires a valid address. Since divert * sockets don't we need to make sure the address is * filled in properly. * XXX -- divert should not be abusing in_pcbind * and should probably have its own family. */ if (nam->sa_family != AF_INET) return EAFNOSUPPORT; ((struct sockaddr_in *)nam)->sin_addr.s_addr = INADDR_ANY; INP_INFO_WLOCK(&V_divcbinfo); INP_WLOCK(inp); INP_HASH_WLOCK(&V_divcbinfo); error = in_pcbbind(inp, nam, td->td_ucred); INP_HASH_WUNLOCK(&V_divcbinfo); INP_WUNLOCK(inp); INP_INFO_WUNLOCK(&V_divcbinfo); return error; } static int div_shutdown(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("div_shutdown: inp == NULL")); INP_WLOCK(inp); socantsendmore(so); INP_WUNLOCK(inp); return 0; } static int div_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct thread *td) { /* Packet must have a header (but that's about it) */ if (m->m_len < sizeof (struct ip) && (m = m_pullup(m, sizeof (struct ip))) == NULL) { KMOD_IPSTAT_INC(ips_toosmall); m_freem(m); return EINVAL; } /* Send packet */ return div_output(so, m, (struct sockaddr_in *)nam, control); } static void div_ctlinput(int cmd, struct sockaddr *sa, void *vip) { struct in_addr faddr; faddr = ((struct sockaddr_in *)sa)->sin_addr; if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) return; if (PRC_IS_REDIRECT(cmd)) return; } static int div_pcblist(SYSCTL_HANDLER_ARGS) { int error, i, n; struct inpcb *inp, **inp_list; inp_gen_t gencnt; struct xinpgen xig; /* * The process of preparing the TCB list is too time-consuming and * resource-intensive to repeat twice on every request. */ if (req->oldptr == 0) { n = V_divcbinfo.ipi_count; n += imax(n / 8, 10); req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); return 0; } if (req->newptr != 0) return EPERM; /* * OK, now we're committed to doing something. */ INP_INFO_RLOCK(&V_divcbinfo); gencnt = V_divcbinfo.ipi_gencnt; n = V_divcbinfo.ipi_count; INP_INFO_RUNLOCK(&V_divcbinfo); error = sysctl_wire_old_buffer(req, 2 * sizeof(xig) + n*sizeof(struct xinpcb)); if (error != 0) return (error); xig.xig_len = sizeof xig; xig.xig_count = n; xig.xig_gen = gencnt; xig.xig_sogen = so_gencnt; error = SYSCTL_OUT(req, &xig, sizeof xig); if (error) return error; inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); if (inp_list == NULL) return ENOMEM; INP_INFO_RLOCK(&V_divcbinfo); for (inp = LIST_FIRST(V_divcbinfo.ipi_listhead), i = 0; inp && i < n; inp = LIST_NEXT(inp, inp_list)) { INP_WLOCK(inp); if (inp->inp_gencnt <= gencnt && cr_canseeinpcb(req->td->td_ucred, inp) == 0) { in_pcbref(inp); inp_list[i++] = inp; } INP_WUNLOCK(inp); } INP_INFO_RUNLOCK(&V_divcbinfo); n = i; error = 0; for (i = 0; i < n; i++) { inp = inp_list[i]; INP_RLOCK(inp); if (inp->inp_gencnt <= gencnt) { struct xinpcb xi; in_pcbtoxinpcb(inp, &xi); INP_RUNLOCK(inp); error = SYSCTL_OUT(req, &xi, sizeof xi); } else INP_RUNLOCK(inp); } INP_INFO_WLOCK(&V_divcbinfo); for (i = 0; i < n; i++) { inp = inp_list[i]; INP_RLOCK(inp); if (!in_pcbrele_rlocked(inp)) INP_RUNLOCK(inp); } INP_INFO_WUNLOCK(&V_divcbinfo); if (!error) { /* * Give the user an updated idea of our state. * If the generation differs from what we told * her before, she knows that something happened * while we were processing this request, and it * might be necessary to retry. */ INP_INFO_RLOCK(&V_divcbinfo); xig.xig_gen = V_divcbinfo.ipi_gencnt; xig.xig_sogen = so_gencnt; xig.xig_count = V_divcbinfo.ipi_count; INP_INFO_RUNLOCK(&V_divcbinfo); error = SYSCTL_OUT(req, &xig, sizeof xig); } free(inp_list, M_TEMP); return error; } #ifdef SYSCTL_NODE static SYSCTL_NODE(_net_inet, IPPROTO_DIVERT, divert, CTLFLAG_RW, 0, "IPDIVERT"); SYSCTL_PROC(_net_inet_divert, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, div_pcblist, "S,xinpcb", "List of active divert sockets"); #endif struct pr_usrreqs div_usrreqs = { .pru_attach = div_attach, .pru_bind = div_bind, .pru_control = in_control, .pru_detach = div_detach, .pru_peeraddr = in_getpeeraddr, .pru_send = div_send, .pru_shutdown = div_shutdown, .pru_sockaddr = in_getsockaddr, .pru_sosetlabel = in_pcbsosetlabel }; struct protosw div_protosw = { .pr_type = SOCK_RAW, .pr_protocol = IPPROTO_DIVERT, .pr_flags = PR_ATOMIC|PR_ADDR, .pr_input = div_input, .pr_ctlinput = div_ctlinput, .pr_ctloutput = ip_ctloutput, .pr_init = div_init, .pr_usrreqs = &div_usrreqs }; static int div_modevent(module_t mod, int type, void *unused) { int err = 0; switch (type) { case MOD_LOAD: /* * Protocol will be initialized by pf_proto_register(). * We don't have to register ip_protox because we are not * a true IP protocol that goes over the wire. */ err = pf_proto_register(PF_INET, &div_protosw); if (err != 0) return (err); ip_divert_ptr = divert_packet; ip_divert_event_tag = EVENTHANDLER_REGISTER(maxsockets_change, div_zone_change, NULL, EVENTHANDLER_PRI_ANY); break; case MOD_QUIESCE: /* * IPDIVERT may normally not be unloaded because of the * potential race conditions. Tell kldunload we can't be * unloaded unless the unload is forced. */ err = EPERM; break; case MOD_UNLOAD: /* * Forced unload. * * Module ipdivert can only be unloaded if no sockets are * connected. Maybe this can be changed later to forcefully * disconnect any open sockets. * * XXXRW: Note that there is a slight race here, as a new * socket open request could be spinning on the lock and then * we destroy the lock. */ INP_INFO_WLOCK(&V_divcbinfo); if (V_divcbinfo.ipi_count != 0) { err = EBUSY; INP_INFO_WUNLOCK(&V_divcbinfo); break; } ip_divert_ptr = NULL; err = pf_proto_unregister(PF_INET, IPPROTO_DIVERT, SOCK_RAW); INP_INFO_WUNLOCK(&V_divcbinfo); #ifndef VIMAGE div_destroy(NULL); #endif EVENTHANDLER_DEREGISTER(maxsockets_change, ip_divert_event_tag); break; default: err = EOPNOTSUPP; break; } return err; } static moduledata_t ipdivertmod = { "ipdivert", div_modevent, 0 }; DECLARE_MODULE(ipdivert, ipdivertmod, SI_SUB_PROTO_FIREWALL, SI_ORDER_ANY); MODULE_DEPEND(ipdivert, ipfw, 3, 3, 3); MODULE_VERSION(ipdivert, 1); Index: head/sys/netinet/raw_ip.c =================================================================== --- head/sys/netinet/raw_ip.c (revision 318320) +++ head/sys/netinet/raw_ip.c (revision 318321) @@ -1,1133 +1,1133 @@ /*- * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)raw_ip.c 8.7 (Berkeley) 5/15/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include VNET_DEFINE(int, ip_defttl) = IPDEFTTL; SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip_defttl), 0, "Maximum TTL on IP packets"); VNET_DEFINE(struct inpcbhead, ripcb); VNET_DEFINE(struct inpcbinfo, ripcbinfo); #define V_ripcb VNET(ripcb) #define V_ripcbinfo VNET(ripcbinfo) /* * Control and data hooks for ipfw, dummynet, divert and so on. * The data hooks are not used here but it is convenient * to keep them all in one place. */ VNET_DEFINE(ip_fw_chk_ptr_t, ip_fw_chk_ptr) = NULL; VNET_DEFINE(ip_fw_ctl_ptr_t, ip_fw_ctl_ptr) = NULL; int (*ip_dn_ctl_ptr)(struct sockopt *); int (*ip_dn_io_ptr)(struct mbuf **, int, struct ip_fw_args *); void (*ip_divert_ptr)(struct mbuf *, int); int (*ng_ipfw_input_p)(struct mbuf **, int, struct ip_fw_args *, int); #ifdef INET /* * Hooks for multicast routing. They all default to NULL, so leave them not * initialized and rely on BSS being set to 0. */ /* * The socket used to communicate with the multicast routing daemon. */ VNET_DEFINE(struct socket *, ip_mrouter); /* * The various mrouter and rsvp functions. */ int (*ip_mrouter_set)(struct socket *, struct sockopt *); int (*ip_mrouter_get)(struct socket *, struct sockopt *); int (*ip_mrouter_done)(void); int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *, struct ip_moptions *); int (*mrt_ioctl)(u_long, caddr_t, int); int (*legal_vif_num)(int); u_long (*ip_mcast_src)(int); int (*rsvp_input_p)(struct mbuf **, int *, int); int (*ip_rsvp_vif)(struct socket *, struct sockopt *); void (*ip_rsvp_force_done)(struct socket *); #endif /* INET */ extern struct protosw inetsw[]; u_long rip_sendspace = 9216; SYSCTL_ULONG(_net_inet_raw, OID_AUTO, maxdgram, CTLFLAG_RW, &rip_sendspace, 0, "Maximum outgoing raw IP datagram size"); u_long rip_recvspace = 9216; SYSCTL_ULONG(_net_inet_raw, OID_AUTO, recvspace, CTLFLAG_RW, &rip_recvspace, 0, "Maximum space for incoming raw IP datagrams"); /* * Hash functions */ #define INP_PCBHASH_RAW_SIZE 256 #define INP_PCBHASH_RAW(proto, laddr, faddr, mask) \ (((proto) + (laddr) + (faddr)) % (mask) + 1) #ifdef INET static void rip_inshash(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbhead *pcbhash; int hash; INP_INFO_WLOCK_ASSERT(pcbinfo); INP_WLOCK_ASSERT(inp); if (inp->inp_ip_p != 0 && inp->inp_laddr.s_addr != INADDR_ANY && inp->inp_faddr.s_addr != INADDR_ANY) { hash = INP_PCBHASH_RAW(inp->inp_ip_p, inp->inp_laddr.s_addr, inp->inp_faddr.s_addr, pcbinfo->ipi_hashmask); } else hash = 0; pcbhash = &pcbinfo->ipi_hashbase[hash]; LIST_INSERT_HEAD(pcbhash, inp, inp_hash); } static void rip_delhash(struct inpcb *inp) { INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); INP_WLOCK_ASSERT(inp); LIST_REMOVE(inp, inp_hash); } #endif /* INET */ /* * Raw interface to IP protocol. */ /* * Initialize raw connection block q. */ static void rip_zone_change(void *tag) { uma_zone_set_max(V_ripcbinfo.ipi_zone, maxsockets); } static int rip_inpcb_init(void *mem, int size, int flags) { struct inpcb *inp = mem; INP_LOCK_INIT(inp, "inp", "rawinp"); return (0); } void rip_init(void) { in_pcbinfo_init(&V_ripcbinfo, "rip", &V_ripcb, INP_PCBHASH_RAW_SIZE, - 1, "ripcb", rip_inpcb_init, NULL, 0, IPI_HASHFIELDS_NONE); + 1, "ripcb", rip_inpcb_init, IPI_HASHFIELDS_NONE); EVENTHANDLER_REGISTER(maxsockets_change, rip_zone_change, NULL, EVENTHANDLER_PRI_ANY); } #ifdef VIMAGE static void rip_destroy(void *unused __unused) { in_pcbinfo_destroy(&V_ripcbinfo); } VNET_SYSUNINIT(raw_ip, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, rip_destroy, NULL); #endif #ifdef INET static int rip_append(struct inpcb *last, struct ip *ip, struct mbuf *n, struct sockaddr_in *ripsrc) { int policyfail = 0; INP_LOCK_ASSERT(last); #if defined(IPSEC) || defined(IPSEC_SUPPORT) /* check AH/ESP integrity. */ if (IPSEC_ENABLED(ipv4)) { if (IPSEC_CHECK_POLICY(ipv4, n, last) != 0) policyfail = 1; } #endif /* IPSEC */ #ifdef MAC if (!policyfail && mac_inpcb_check_deliver(last, n) != 0) policyfail = 1; #endif /* Check the minimum TTL for socket. */ if (last->inp_ip_minttl && last->inp_ip_minttl > ip->ip_ttl) policyfail = 1; if (!policyfail) { struct mbuf *opts = NULL; struct socket *so; so = last->inp_socket; if ((last->inp_flags & INP_CONTROLOPTS) || (so->so_options & (SO_TIMESTAMP | SO_BINTIME))) ip_savecontrol(last, &opts, ip, n); SOCKBUF_LOCK(&so->so_rcv); if (sbappendaddr_locked(&so->so_rcv, (struct sockaddr *)ripsrc, n, opts) == 0) { /* should notify about lost packet */ m_freem(n); if (opts) m_freem(opts); SOCKBUF_UNLOCK(&so->so_rcv); } else sorwakeup_locked(so); } else m_freem(n); return (policyfail); } /* * Setup generic address and protocol structures for raw_input routine, then * pass them along with mbuf chain. */ int rip_input(struct mbuf **mp, int *offp, int proto) { struct ifnet *ifp; struct mbuf *m = *mp; struct ip *ip = mtod(m, struct ip *); struct inpcb *inp, *last; struct sockaddr_in ripsrc; int hash; *mp = NULL; bzero(&ripsrc, sizeof(ripsrc)); ripsrc.sin_len = sizeof(ripsrc); ripsrc.sin_family = AF_INET; ripsrc.sin_addr = ip->ip_src; last = NULL; ifp = m->m_pkthdr.rcvif; hash = INP_PCBHASH_RAW(proto, ip->ip_src.s_addr, ip->ip_dst.s_addr, V_ripcbinfo.ipi_hashmask); INP_INFO_RLOCK(&V_ripcbinfo); LIST_FOREACH(inp, &V_ripcbinfo.ipi_hashbase[hash], inp_hash) { if (inp->inp_ip_p != proto) continue; #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_laddr.s_addr != ip->ip_dst.s_addr) continue; if (inp->inp_faddr.s_addr != ip->ip_src.s_addr) continue; if (jailed_without_vnet(inp->inp_cred)) { /* * XXX: If faddr was bound to multicast group, * jailed raw socket will drop datagram. */ if (prison_check_ip4(inp->inp_cred, &ip->ip_dst) != 0) continue; } if (last != NULL) { struct mbuf *n; n = m_copym(m, 0, M_COPYALL, M_NOWAIT); if (n != NULL) (void) rip_append(last, ip, n, &ripsrc); /* XXX count dropped packet */ INP_RUNLOCK(last); } INP_RLOCK(inp); last = inp; } LIST_FOREACH(inp, &V_ripcbinfo.ipi_hashbase[0], inp_hash) { if (inp->inp_ip_p && inp->inp_ip_p != proto) continue; #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (!in_nullhost(inp->inp_laddr) && !in_hosteq(inp->inp_laddr, ip->ip_dst)) continue; if (!in_nullhost(inp->inp_faddr) && !in_hosteq(inp->inp_faddr, ip->ip_src)) continue; if (jailed_without_vnet(inp->inp_cred)) { /* * Allow raw socket in jail to receive multicast; * assume process had PRIV_NETINET_RAW at attach, * and fall through into normal filter path if so. */ if (!IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && prison_check_ip4(inp->inp_cred, &ip->ip_dst) != 0) continue; } /* * If this raw socket has multicast state, and we * have received a multicast, check if this socket * should receive it, as multicast filtering is now * the responsibility of the transport layer. */ if (inp->inp_moptions != NULL && IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { /* * If the incoming datagram is for IGMP, allow it * through unconditionally to the raw socket. * * In the case of IGMPv2, we may not have explicitly * joined the group, and may have set IFF_ALLMULTI * on the interface. imo_multi_filter() may discard * control traffic we actually need to see. * * Userland multicast routing daemons should continue * filter the control traffic appropriately. */ int blocked; blocked = MCAST_PASS; if (proto != IPPROTO_IGMP) { struct sockaddr_in group; bzero(&group, sizeof(struct sockaddr_in)); group.sin_len = sizeof(struct sockaddr_in); group.sin_family = AF_INET; group.sin_addr = ip->ip_dst; blocked = imo_multi_filter(inp->inp_moptions, ifp, (struct sockaddr *)&group, (struct sockaddr *)&ripsrc); } if (blocked != MCAST_PASS) { IPSTAT_INC(ips_notmember); continue; } } if (last != NULL) { struct mbuf *n; n = m_copym(m, 0, M_COPYALL, M_NOWAIT); if (n != NULL) (void) rip_append(last, ip, n, &ripsrc); /* XXX count dropped packet */ INP_RUNLOCK(last); } INP_RLOCK(inp); last = inp; } INP_INFO_RUNLOCK(&V_ripcbinfo); if (last != NULL) { if (rip_append(last, ip, m, &ripsrc) != 0) IPSTAT_INC(ips_delivered); INP_RUNLOCK(last); } else { if (inetsw[ip_protox[ip->ip_p]].pr_input == rip_input) { IPSTAT_INC(ips_noproto); IPSTAT_DEC(ips_delivered); icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PROTOCOL, 0, 0); } else { m_freem(m); } } return (IPPROTO_DONE); } /* * Generate IP header and pass packet to ip_output. Tack on options user may * have setup with control call. */ int rip_output(struct mbuf *m, struct socket *so, ...) { struct ip *ip; int error; struct inpcb *inp = sotoinpcb(so); va_list ap; u_long dst; int flags = ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0) | IP_ALLOWBROADCAST; va_start(ap, so); dst = va_arg(ap, u_long); va_end(ap); /* * If the user handed us a complete IP packet, use it. Otherwise, * allocate an mbuf for a header and fill it in. */ if ((inp->inp_flags & INP_HDRINCL) == 0) { if (m->m_pkthdr.len + sizeof(struct ip) > IP_MAXPACKET) { m_freem(m); return(EMSGSIZE); } M_PREPEND(m, sizeof(struct ip), M_NOWAIT); if (m == NULL) return(ENOBUFS); INP_RLOCK(inp); ip = mtod(m, struct ip *); ip->ip_tos = inp->inp_ip_tos; if (inp->inp_flags & INP_DONTFRAG) ip->ip_off = htons(IP_DF); else ip->ip_off = htons(0); ip->ip_p = inp->inp_ip_p; ip->ip_len = htons(m->m_pkthdr.len); ip->ip_src = inp->inp_laddr; ip->ip_dst.s_addr = dst; if (jailed(inp->inp_cred)) { /* * prison_local_ip4() would be good enough but would * let a source of INADDR_ANY pass, which we do not * want to see from jails. */ if (ip->ip_src.s_addr == INADDR_ANY) { error = in_pcbladdr(inp, &ip->ip_dst, &ip->ip_src, inp->inp_cred); } else { error = prison_local_ip4(inp->inp_cred, &ip->ip_src); } if (error != 0) { INP_RUNLOCK(inp); m_freem(m); return (error); } } ip->ip_ttl = inp->inp_ip_ttl; } else { if (m->m_pkthdr.len > IP_MAXPACKET) { m_freem(m); return(EMSGSIZE); } INP_RLOCK(inp); ip = mtod(m, struct ip *); error = prison_check_ip4(inp->inp_cred, &ip->ip_src); if (error != 0) { INP_RUNLOCK(inp); m_freem(m); return (error); } /* * Don't allow both user specified and setsockopt options, * and don't allow packet length sizes that will crash. */ if (((ip->ip_hl != (sizeof (*ip) >> 2)) && inp->inp_options) || (ntohs(ip->ip_len) != m->m_pkthdr.len) || (ntohs(ip->ip_len) < (ip->ip_hl << 2))) { INP_RUNLOCK(inp); m_freem(m); return (EINVAL); } /* * This doesn't allow application to specify ID of zero, * but we got this limitation from the beginning of history. */ if (ip->ip_id == 0) ip_fillid(ip); /* * XXX prevent ip_output from overwriting header fields. */ flags |= IP_RAWOUTPUT; IPSTAT_INC(ips_rawout); } if (inp->inp_flags & INP_ONESBCAST) flags |= IP_SENDONES; #ifdef MAC mac_inpcb_create_mbuf(inp, m); #endif error = ip_output(m, inp->inp_options, NULL, flags, inp->inp_moptions, inp); INP_RUNLOCK(inp); return (error); } /* * Raw IP socket option processing. * * IMPORTANT NOTE regarding access control: Traditionally, raw sockets could * only be created by a privileged process, and as such, socket option * operations to manage system properties on any raw socket were allowed to * take place without explicit additional access control checks. However, * raw sockets can now also be created in jail(), and therefore explicit * checks are now required. Likewise, raw sockets can be used by a process * after it gives up privilege, so some caution is required. For options * passed down to the IP layer via ip_ctloutput(), checks are assumed to be * performed in ip_ctloutput() and therefore no check occurs here. * Unilaterally checking priv_check() here breaks normal IP socket option * operations on raw sockets. * * When adding new socket options here, make sure to add access control * checks here as necessary. * * XXX-BZ inp locking? */ int rip_ctloutput(struct socket *so, struct sockopt *sopt) { struct inpcb *inp = sotoinpcb(so); int error, optval; if (sopt->sopt_level != IPPROTO_IP) { if ((sopt->sopt_level == SOL_SOCKET) && (sopt->sopt_name == SO_SETFIB)) { inp->inp_inc.inc_fibnum = so->so_fibnum; return (0); } return (EINVAL); } error = 0; switch (sopt->sopt_dir) { case SOPT_GET: switch (sopt->sopt_name) { case IP_HDRINCL: optval = inp->inp_flags & INP_HDRINCL; error = sooptcopyout(sopt, &optval, sizeof optval); break; case IP_FW3: /* generic ipfw v.3 functions */ case IP_FW_ADD: /* ADD actually returns the body... */ case IP_FW_GET: case IP_FW_TABLE_GETSIZE: case IP_FW_TABLE_LIST: case IP_FW_NAT_GET_CONFIG: case IP_FW_NAT_GET_LOG: if (V_ip_fw_ctl_ptr != NULL) error = V_ip_fw_ctl_ptr(sopt); else error = ENOPROTOOPT; break; case IP_DUMMYNET3: /* generic dummynet v.3 functions */ case IP_DUMMYNET_GET: if (ip_dn_ctl_ptr != NULL) error = ip_dn_ctl_ptr(sopt); else error = ENOPROTOOPT; break ; case MRT_INIT: case MRT_DONE: case MRT_ADD_VIF: case MRT_DEL_VIF: case MRT_ADD_MFC: case MRT_DEL_MFC: case MRT_VERSION: case MRT_ASSERT: case MRT_API_SUPPORT: case MRT_API_CONFIG: case MRT_ADD_BW_UPCALL: case MRT_DEL_BW_UPCALL: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); error = ip_mrouter_get ? ip_mrouter_get(so, sopt) : EOPNOTSUPP; break; default: error = ip_ctloutput(so, sopt); break; } break; case SOPT_SET: switch (sopt->sopt_name) { case IP_HDRINCL: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; if (optval) inp->inp_flags |= INP_HDRINCL; else inp->inp_flags &= ~INP_HDRINCL; break; case IP_FW3: /* generic ipfw v.3 functions */ case IP_FW_ADD: case IP_FW_DEL: case IP_FW_FLUSH: case IP_FW_ZERO: case IP_FW_RESETLOG: case IP_FW_TABLE_ADD: case IP_FW_TABLE_DEL: case IP_FW_TABLE_FLUSH: case IP_FW_NAT_CFG: case IP_FW_NAT_DEL: if (V_ip_fw_ctl_ptr != NULL) error = V_ip_fw_ctl_ptr(sopt); else error = ENOPROTOOPT; break; case IP_DUMMYNET3: /* generic dummynet v.3 functions */ case IP_DUMMYNET_CONFIGURE: case IP_DUMMYNET_DEL: case IP_DUMMYNET_FLUSH: if (ip_dn_ctl_ptr != NULL) error = ip_dn_ctl_ptr(sopt); else error = ENOPROTOOPT ; break ; case IP_RSVP_ON: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); error = ip_rsvp_init(so); break; case IP_RSVP_OFF: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); error = ip_rsvp_done(); break; case IP_RSVP_VIF_ON: case IP_RSVP_VIF_OFF: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); error = ip_rsvp_vif ? ip_rsvp_vif(so, sopt) : EINVAL; break; case MRT_INIT: case MRT_DONE: case MRT_ADD_VIF: case MRT_DEL_VIF: case MRT_ADD_MFC: case MRT_DEL_MFC: case MRT_VERSION: case MRT_ASSERT: case MRT_API_SUPPORT: case MRT_API_CONFIG: case MRT_ADD_BW_UPCALL: case MRT_DEL_BW_UPCALL: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); error = ip_mrouter_set ? ip_mrouter_set(so, sopt) : EOPNOTSUPP; break; default: error = ip_ctloutput(so, sopt); break; } break; } return (error); } /* * This function exists solely to receive the PRC_IFDOWN messages which are * sent by if_down(). It looks for an ifaddr whose ifa_addr is sa, and calls * in_ifadown() to remove all routes corresponding to that address. It also * receives the PRC_IFUP messages from if_up() and reinstalls the interface * routes. */ void rip_ctlinput(int cmd, struct sockaddr *sa, void *vip) { struct rm_priotracker in_ifa_tracker; struct in_ifaddr *ia; struct ifnet *ifp; int err; int flags; switch (cmd) { case PRC_IFDOWN: IN_IFADDR_RLOCK(&in_ifa_tracker); TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { if (ia->ia_ifa.ifa_addr == sa && (ia->ia_flags & IFA_ROUTE)) { ifa_ref(&ia->ia_ifa); IN_IFADDR_RUNLOCK(&in_ifa_tracker); /* * in_scrubprefix() kills the interface route. */ in_scrubprefix(ia, 0); /* * in_ifadown gets rid of all the rest of the * routes. This is not quite the right thing * to do, but at least if we are running a * routing process they will come back. */ in_ifadown(&ia->ia_ifa, 0); ifa_free(&ia->ia_ifa); break; } } if (ia == NULL) /* If ia matched, already unlocked. */ IN_IFADDR_RUNLOCK(&in_ifa_tracker); break; case PRC_IFUP: IN_IFADDR_RLOCK(&in_ifa_tracker); TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { if (ia->ia_ifa.ifa_addr == sa) break; } if (ia == NULL || (ia->ia_flags & IFA_ROUTE)) { IN_IFADDR_RUNLOCK(&in_ifa_tracker); return; } ifa_ref(&ia->ia_ifa); IN_IFADDR_RUNLOCK(&in_ifa_tracker); flags = RTF_UP; ifp = ia->ia_ifa.ifa_ifp; if ((ifp->if_flags & IFF_LOOPBACK) || (ifp->if_flags & IFF_POINTOPOINT)) flags |= RTF_HOST; err = ifa_del_loopback_route((struct ifaddr *)ia, sa); err = rtinit(&ia->ia_ifa, RTM_ADD, flags); if (err == 0) ia->ia_flags |= IFA_ROUTE; err = ifa_add_loopback_route((struct ifaddr *)ia, sa); ifa_free(&ia->ia_ifa); break; } } static int rip_attach(struct socket *so, int proto, struct thread *td) { struct inpcb *inp; int error; inp = sotoinpcb(so); KASSERT(inp == NULL, ("rip_attach: inp != NULL")); error = priv_check(td, PRIV_NETINET_RAW); if (error) return (error); if (proto >= IPPROTO_MAX || proto < 0) return EPROTONOSUPPORT; error = soreserve(so, rip_sendspace, rip_recvspace); if (error) return (error); INP_INFO_WLOCK(&V_ripcbinfo); error = in_pcballoc(so, &V_ripcbinfo); if (error) { INP_INFO_WUNLOCK(&V_ripcbinfo); return (error); } inp = (struct inpcb *)so->so_pcb; inp->inp_vflag |= INP_IPV4; inp->inp_ip_p = proto; inp->inp_ip_ttl = V_ip_defttl; rip_inshash(inp); INP_INFO_WUNLOCK(&V_ripcbinfo); INP_WUNLOCK(inp); return (0); } static void rip_detach(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_detach: inp == NULL")); KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, ("rip_detach: not closed")); INP_INFO_WLOCK(&V_ripcbinfo); INP_WLOCK(inp); rip_delhash(inp); if (so == V_ip_mrouter && ip_mrouter_done) ip_mrouter_done(); if (ip_rsvp_force_done) ip_rsvp_force_done(so); if (so == V_ip_rsvpd) ip_rsvp_done(); in_pcbdetach(inp); in_pcbfree(inp); INP_INFO_WUNLOCK(&V_ripcbinfo); } static void rip_dodisconnect(struct socket *so, struct inpcb *inp) { struct inpcbinfo *pcbinfo; pcbinfo = inp->inp_pcbinfo; INP_INFO_WLOCK(pcbinfo); INP_WLOCK(inp); rip_delhash(inp); inp->inp_faddr.s_addr = INADDR_ANY; rip_inshash(inp); SOCK_LOCK(so); so->so_state &= ~SS_ISCONNECTED; SOCK_UNLOCK(so); INP_WUNLOCK(inp); INP_INFO_WUNLOCK(pcbinfo); } static void rip_abort(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_abort: inp == NULL")); rip_dodisconnect(so, inp); } static void rip_close(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_close: inp == NULL")); rip_dodisconnect(so, inp); } static int rip_disconnect(struct socket *so) { struct inpcb *inp; if ((so->so_state & SS_ISCONNECTED) == 0) return (ENOTCONN); inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_disconnect: inp == NULL")); rip_dodisconnect(so, inp); return (0); } static int rip_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { struct sockaddr_in *addr = (struct sockaddr_in *)nam; struct inpcb *inp; int error; if (nam->sa_len != sizeof(*addr)) return (EINVAL); error = prison_check_ip4(td->td_ucred, &addr->sin_addr); if (error != 0) return (error); inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_bind: inp == NULL")); if (TAILQ_EMPTY(&V_ifnet) || (addr->sin_family != AF_INET && addr->sin_family != AF_IMPLINK) || (addr->sin_addr.s_addr && (inp->inp_flags & INP_BINDANY) == 0 && ifa_ifwithaddr_check((struct sockaddr *)addr) == 0)) return (EADDRNOTAVAIL); INP_INFO_WLOCK(&V_ripcbinfo); INP_WLOCK(inp); rip_delhash(inp); inp->inp_laddr = addr->sin_addr; rip_inshash(inp); INP_WUNLOCK(inp); INP_INFO_WUNLOCK(&V_ripcbinfo); return (0); } static int rip_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { struct sockaddr_in *addr = (struct sockaddr_in *)nam; struct inpcb *inp; if (nam->sa_len != sizeof(*addr)) return (EINVAL); if (TAILQ_EMPTY(&V_ifnet)) return (EADDRNOTAVAIL); if (addr->sin_family != AF_INET && addr->sin_family != AF_IMPLINK) return (EAFNOSUPPORT); inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_connect: inp == NULL")); INP_INFO_WLOCK(&V_ripcbinfo); INP_WLOCK(inp); rip_delhash(inp); inp->inp_faddr = addr->sin_addr; rip_inshash(inp); soisconnected(so); INP_WUNLOCK(inp); INP_INFO_WUNLOCK(&V_ripcbinfo); return (0); } static int rip_shutdown(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_shutdown: inp == NULL")); INP_WLOCK(inp); socantsendmore(so); INP_WUNLOCK(inp); return (0); } static int rip_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct thread *td) { struct inpcb *inp; u_long dst; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_send: inp == NULL")); /* * Note: 'dst' reads below are unlocked. */ if (so->so_state & SS_ISCONNECTED) { if (nam) { m_freem(m); return (EISCONN); } dst = inp->inp_faddr.s_addr; /* Unlocked read. */ } else { if (nam == NULL) { m_freem(m); return (ENOTCONN); } dst = ((struct sockaddr_in *)nam)->sin_addr.s_addr; } return (rip_output(m, so, dst)); } #endif /* INET */ static int rip_pcblist(SYSCTL_HANDLER_ARGS) { int error, i, n; struct inpcb *inp, **inp_list; inp_gen_t gencnt; struct xinpgen xig; /* * The process of preparing the TCB list is too time-consuming and * resource-intensive to repeat twice on every request. */ if (req->oldptr == 0) { n = V_ripcbinfo.ipi_count; n += imax(n / 8, 10); req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); return (0); } if (req->newptr != 0) return (EPERM); /* * OK, now we're committed to doing something. */ INP_INFO_RLOCK(&V_ripcbinfo); gencnt = V_ripcbinfo.ipi_gencnt; n = V_ripcbinfo.ipi_count; INP_INFO_RUNLOCK(&V_ripcbinfo); xig.xig_len = sizeof xig; xig.xig_count = n; xig.xig_gen = gencnt; xig.xig_sogen = so_gencnt; error = SYSCTL_OUT(req, &xig, sizeof xig); if (error) return (error); inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); if (inp_list == NULL) return (ENOMEM); INP_INFO_RLOCK(&V_ripcbinfo); for (inp = LIST_FIRST(V_ripcbinfo.ipi_listhead), i = 0; inp && i < n; inp = LIST_NEXT(inp, inp_list)) { INP_WLOCK(inp); if (inp->inp_gencnt <= gencnt && cr_canseeinpcb(req->td->td_ucred, inp) == 0) { in_pcbref(inp); inp_list[i++] = inp; } INP_WUNLOCK(inp); } INP_INFO_RUNLOCK(&V_ripcbinfo); n = i; error = 0; for (i = 0; i < n; i++) { inp = inp_list[i]; INP_RLOCK(inp); if (inp->inp_gencnt <= gencnt) { struct xinpcb xi; in_pcbtoxinpcb(inp, &xi); INP_RUNLOCK(inp); error = SYSCTL_OUT(req, &xi, sizeof xi); } else INP_RUNLOCK(inp); } INP_INFO_WLOCK(&V_ripcbinfo); for (i = 0; i < n; i++) { inp = inp_list[i]; INP_RLOCK(inp); if (!in_pcbrele_rlocked(inp)) INP_RUNLOCK(inp); } INP_INFO_WUNLOCK(&V_ripcbinfo); if (!error) { /* * Give the user an updated idea of our state. If the * generation differs from what we told her before, she knows * that something happened while we were processing this * request, and it might be necessary to retry. */ INP_INFO_RLOCK(&V_ripcbinfo); xig.xig_gen = V_ripcbinfo.ipi_gencnt; xig.xig_sogen = so_gencnt; xig.xig_count = V_ripcbinfo.ipi_count; INP_INFO_RUNLOCK(&V_ripcbinfo); error = SYSCTL_OUT(req, &xig, sizeof xig); } free(inp_list, M_TEMP); return (error); } SYSCTL_PROC(_net_inet_raw, OID_AUTO/*XXX*/, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, rip_pcblist, "S,xinpcb", "List of active raw IP sockets"); #ifdef INET struct pr_usrreqs rip_usrreqs = { .pru_abort = rip_abort, .pru_attach = rip_attach, .pru_bind = rip_bind, .pru_connect = rip_connect, .pru_control = in_control, .pru_detach = rip_detach, .pru_disconnect = rip_disconnect, .pru_peeraddr = in_getpeeraddr, .pru_send = rip_send, .pru_shutdown = rip_shutdown, .pru_sockaddr = in_getsockaddr, .pru_sosetlabel = in_pcbsosetlabel, .pru_close = rip_close, }; #endif /* INET */ Index: head/sys/netinet/tcp_subr.c =================================================================== --- head/sys/netinet/tcp_subr.c (revision 318320) +++ head/sys/netinet/tcp_subr.c (revision 318321) @@ -1,2795 +1,2795 @@ /*- * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_tcpdebug.h" #include #include #include #include #ifdef TCP_HHOOK #include #endif #include #ifdef TCP_HHOOK #include #endif #include #include #include #include #include #ifdef INET6 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #include #include #include #include #endif #ifdef TCP_RFC7413 #include #endif #include #include #include #include #include #include #include #ifdef INET6 #include #endif #include #ifdef TCPPCAP #include #endif #ifdef TCPDEBUG #include #endif #ifdef INET6 #include #endif #ifdef TCP_OFFLOAD #include #endif #include #include #include #include VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS; #ifdef INET6 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS; #endif struct rwlock tcp_function_lock; static int sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS) { int error, new; new = V_tcp_mssdflt; error = sysctl_handle_int(oidp, &new, 0, req); if (error == 0 && req->newptr) { if (new < TCP_MINMSS) error = EINVAL; else V_tcp_mssdflt = new; } return (error); } SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0, &sysctl_net_inet_tcp_mss_check, "I", "Default TCP Maximum Segment Size"); #ifdef INET6 static int sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS) { int error, new; new = V_tcp_v6mssdflt; error = sysctl_handle_int(oidp, &new, 0, req); if (error == 0 && req->newptr) { if (new < TCP_MINMSS) error = EINVAL; else V_tcp_v6mssdflt = new; } return (error); } SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0, &sysctl_net_inet_tcp_mss_v6_check, "I", "Default TCP Maximum Segment Size for IPv6"); #endif /* INET6 */ /* * Minimum MSS we accept and use. This prevents DoS attacks where * we are forced to a ridiculous low MSS like 20 and send hundreds * of packets instead of one. The effect scales with the available * bandwidth and quickly saturates the CPU and network interface * with packet generation and sending. Set to zero to disable MINMSS * checking. This setting prevents us from sending too small packets. */ VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS; SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_minmss), 0, "Minimum TCP Maximum Segment Size"); VNET_DEFINE(int, tcp_do_rfc1323) = 1; SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_do_rfc1323), 0, "Enable rfc1323 (high performance TCP) extensions"); static int tcp_log_debug = 0; SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW, &tcp_log_debug, 0, "Log errors caused by incoming TCP segments"); static int tcp_tcbhashsize; SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable"); static int do_tcpdrain = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0, "Enable tcp_drain routine for extra help when low on mbufs"); SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs"); static VNET_DEFINE(int, icmp_may_rst) = 1; #define V_icmp_may_rst VNET(icmp_may_rst) SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(icmp_may_rst), 0, "Certain ICMP unreachable messages may abort connections in SYN_SENT"); static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0; #define V_tcp_isn_reseed_interval VNET(tcp_isn_reseed_interval) SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_isn_reseed_interval), 0, "Seconds between reseeding of ISN secret"); static int tcp_soreceive_stream; SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN, &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets"); VNET_DEFINE(uma_zone_t, sack_hole_zone); #define V_sack_hole_zone VNET(sack_hole_zone) #ifdef TCP_HHOOK VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]); #endif static struct inpcb *tcp_notify(struct inpcb *, int); static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int); static void tcp_mtudisc(struct inpcb *, int); static char * tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, const void *ip6hdr); static struct tcp_function_block tcp_def_funcblk = { "default", tcp_output, tcp_do_segment, tcp_default_ctloutput, NULL, NULL, NULL, NULL, NULL, NULL, 0, 0 }; int t_functions_inited = 0; struct tcp_funchead t_functions; static struct tcp_function_block *tcp_func_set_ptr = &tcp_def_funcblk; static void init_tcp_functions(void) { if (t_functions_inited == 0) { TAILQ_INIT(&t_functions); rw_init_flags(&tcp_function_lock, "tcp_func_lock" , 0); t_functions_inited = 1; } } static struct tcp_function_block * find_tcp_functions_locked(struct tcp_function_set *fs) { struct tcp_function *f; struct tcp_function_block *blk=NULL; TAILQ_FOREACH(f, &t_functions, tf_next) { if (strcmp(f->tf_fb->tfb_tcp_block_name, fs->function_set_name) == 0) { blk = f->tf_fb; break; } } return(blk); } static struct tcp_function_block * find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s) { struct tcp_function_block *rblk=NULL; struct tcp_function *f; TAILQ_FOREACH(f, &t_functions, tf_next) { if (f->tf_fb == blk) { rblk = blk; if (s) { *s = f; } break; } } return (rblk); } struct tcp_function_block * find_and_ref_tcp_functions(struct tcp_function_set *fs) { struct tcp_function_block *blk; rw_rlock(&tcp_function_lock); blk = find_tcp_functions_locked(fs); if (blk) refcount_acquire(&blk->tfb_refcnt); rw_runlock(&tcp_function_lock); return(blk); } struct tcp_function_block * find_and_ref_tcp_fb(struct tcp_function_block *blk) { struct tcp_function_block *rblk; rw_rlock(&tcp_function_lock); rblk = find_tcp_fb_locked(blk, NULL); if (rblk) refcount_acquire(&rblk->tfb_refcnt); rw_runlock(&tcp_function_lock); return(rblk); } static int sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS) { int error=ENOENT; struct tcp_function_set fs; struct tcp_function_block *blk; memset(&fs, 0, sizeof(fs)); rw_rlock(&tcp_function_lock); blk = find_tcp_fb_locked(tcp_func_set_ptr, NULL); if (blk) { /* Found him */ strcpy(fs.function_set_name, blk->tfb_tcp_block_name); fs.pcbcnt = blk->tfb_refcnt; } rw_runlock(&tcp_function_lock); error = sysctl_handle_string(oidp, fs.function_set_name, sizeof(fs.function_set_name), req); /* Check for error or no change */ if (error != 0 || req->newptr == NULL) return(error); rw_wlock(&tcp_function_lock); blk = find_tcp_functions_locked(&fs); if ((blk == NULL) || (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) { error = ENOENT; goto done; } tcp_func_set_ptr = blk; done: rw_wunlock(&tcp_function_lock); return (error); } SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default, CTLTYPE_STRING | CTLFLAG_RW, NULL, 0, sysctl_net_inet_default_tcp_functions, "A", "Set/get the default TCP functions"); static int sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS) { int error, cnt, linesz; struct tcp_function *f; char *buffer, *cp; size_t bufsz, outsz; cnt = 0; rw_rlock(&tcp_function_lock); TAILQ_FOREACH(f, &t_functions, tf_next) { cnt++; } rw_runlock(&tcp_function_lock); bufsz = (cnt+2) * (TCP_FUNCTION_NAME_LEN_MAX + 12) + 1; buffer = malloc(bufsz, M_TEMP, M_WAITOK); error = 0; cp = buffer; linesz = snprintf(cp, bufsz, "\n%-32s%c %s\n", "Stack", 'D', "PCB count"); cp += linesz; bufsz -= linesz; outsz = linesz; rw_rlock(&tcp_function_lock); TAILQ_FOREACH(f, &t_functions, tf_next) { linesz = snprintf(cp, bufsz, "%-32s%c %u\n", f->tf_fb->tfb_tcp_block_name, (f->tf_fb == tcp_func_set_ptr) ? '*' : ' ', f->tf_fb->tfb_refcnt); if (linesz >= bufsz) { error = EOVERFLOW; break; } cp += linesz; bufsz -= linesz; outsz += linesz; } rw_runlock(&tcp_function_lock); if (error == 0) error = sysctl_handle_string(oidp, buffer, outsz + 1, req); free(buffer, M_TEMP); return (error); } SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available, CTLTYPE_STRING|CTLFLAG_RD, NULL, 0, sysctl_net_inet_list_available, "A", "list available TCP Function sets"); /* * Target size of TCP PCB hash tables. Must be a power of two. * * Note that this can be overridden by the kernel environment * variable net.inet.tcp.tcbhashsize */ #ifndef TCBHASHSIZE #define TCBHASHSIZE 0 #endif /* * XXX * Callouts should be moved into struct tcp directly. They are currently * separate because the tcpcb structure is exported to userland for sysctl * parsing purposes, which do not know about callouts. */ struct tcpcb_mem { struct tcpcb tcb; struct tcp_timer tt; struct cc_var ccv; #ifdef TCP_HHOOK struct osd osd; #endif }; static VNET_DEFINE(uma_zone_t, tcpcb_zone); #define V_tcpcb_zone VNET(tcpcb_zone) MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers"); MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory"); static struct mtx isn_mtx; #define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF) #define ISN_LOCK() mtx_lock(&isn_mtx) #define ISN_UNLOCK() mtx_unlock(&isn_mtx) /* * TCP initialization. */ static void tcp_zone_change(void *tag) { uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets); uma_zone_set_max(V_tcpcb_zone, maxsockets); tcp_tw_zone_change(); } static int tcp_inpcb_init(void *mem, int size, int flags) { struct inpcb *inp = mem; INP_LOCK_INIT(inp, "inp", "tcpinp"); return (0); } /* * Take a value and get the next power of 2 that doesn't overflow. * Used to size the tcp_inpcb hash buckets. */ static int maketcp_hashsize(int size) { int hashsize; /* * auto tune. * get the next power of 2 higher than maxsockets. */ hashsize = 1 << fls(size); /* catch overflow, and just go one power of 2 smaller */ if (hashsize < size) { hashsize = 1 << (fls(size) - 1); } return (hashsize); } int register_tcp_functions(struct tcp_function_block *blk, int wait) { struct tcp_function_block *lblk; struct tcp_function *n; struct tcp_function_set fs; if (t_functions_inited == 0) { init_tcp_functions(); } if ((blk->tfb_tcp_output == NULL) || (blk->tfb_tcp_do_segment == NULL) || (blk->tfb_tcp_ctloutput == NULL) || (strlen(blk->tfb_tcp_block_name) == 0)) { /* * These functions are required and you * need a name. */ return (EINVAL); } if (blk->tfb_tcp_timer_stop_all || blk->tfb_tcp_timer_activate || blk->tfb_tcp_timer_active || blk->tfb_tcp_timer_stop) { /* * If you define one timer function you * must have them all. */ if ((blk->tfb_tcp_timer_stop_all == NULL) || (blk->tfb_tcp_timer_activate == NULL) || (blk->tfb_tcp_timer_active == NULL) || (blk->tfb_tcp_timer_stop == NULL)) { return (EINVAL); } } n = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait); if (n == NULL) { return (ENOMEM); } n->tf_fb = blk; strcpy(fs.function_set_name, blk->tfb_tcp_block_name); rw_wlock(&tcp_function_lock); lblk = find_tcp_functions_locked(&fs); if (lblk) { /* Duplicate name space not allowed */ rw_wunlock(&tcp_function_lock); free(n, M_TCPFUNCTIONS); return (EALREADY); } refcount_init(&blk->tfb_refcnt, 0); blk->tfb_flags = 0; TAILQ_INSERT_TAIL(&t_functions, n, tf_next); rw_wunlock(&tcp_function_lock); return(0); } int deregister_tcp_functions(struct tcp_function_block *blk) { struct tcp_function_block *lblk; struct tcp_function *f; int error=ENOENT; if (strcmp(blk->tfb_tcp_block_name, "default") == 0) { /* You can't un-register the default */ return (EPERM); } rw_wlock(&tcp_function_lock); if (blk == tcp_func_set_ptr) { /* You can't free the current default */ rw_wunlock(&tcp_function_lock); return (EBUSY); } if (blk->tfb_refcnt) { /* Still tcb attached, mark it. */ blk->tfb_flags |= TCP_FUNC_BEING_REMOVED; rw_wunlock(&tcp_function_lock); return (EBUSY); } lblk = find_tcp_fb_locked(blk, &f); if (lblk) { /* Found */ TAILQ_REMOVE(&t_functions, f, tf_next); f->tf_fb = NULL; free(f, M_TCPFUNCTIONS); error = 0; } rw_wunlock(&tcp_function_lock); return (error); } void tcp_init(void) { const char *tcbhash_tuneable; int hashsize; tcbhash_tuneable = "net.inet.tcp.tcbhashsize"; #ifdef TCP_HHOOK if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) printf("%s: WARNING: unable to register helper hook\n", __func__); if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) printf("%s: WARNING: unable to register helper hook\n", __func__); #endif hashsize = TCBHASHSIZE; TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize); if (hashsize == 0) { /* * Auto tune the hash size based on maxsockets. * A perfect hash would have a 1:1 mapping * (hashsize = maxsockets) however it's been * suggested that O(2) average is better. */ hashsize = maketcp_hashsize(maxsockets / 4); /* * Our historical default is 512, * do not autotune lower than this. */ if (hashsize < 512) hashsize = 512; if (bootverbose && IS_DEFAULT_VNET(curvnet)) printf("%s: %s auto tuned to %d\n", __func__, tcbhash_tuneable, hashsize); } /* * We require a hashsize to be a power of two. * Previously if it was not a power of two we would just reset it * back to 512, which could be a nasty surprise if you did not notice * the error message. * Instead what we do is clip it to the closest power of two lower * than the specified hash value. */ if (!powerof2(hashsize)) { int oldhashsize = hashsize; hashsize = maketcp_hashsize(hashsize); /* prevent absurdly low value */ if (hashsize < 16) hashsize = 16; printf("%s: WARNING: TCB hash size not a power of 2, " "clipped from %d to %d.\n", __func__, oldhashsize, hashsize); } in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize, - "tcp_inpcb", tcp_inpcb_init, NULL, 0, IPI_HASHFIELDS_4TUPLE); + "tcp_inpcb", tcp_inpcb_init, IPI_HASHFIELDS_4TUPLE); /* * These have to be type stable for the benefit of the timers. */ V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); uma_zone_set_max(V_tcpcb_zone, maxsockets); uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached"); tcp_tw_init(); syncache_init(); tcp_hc_init(); TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack); V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); #ifdef TCP_RFC7413 tcp_fastopen_init(); #endif /* Skip initialization of globals for non-default instances. */ if (!IS_DEFAULT_VNET(curvnet)) return; tcp_reass_global_init(); /* XXX virtualize those bellow? */ tcp_delacktime = TCPTV_DELACK; tcp_keepinit = TCPTV_KEEP_INIT; tcp_keepidle = TCPTV_KEEP_IDLE; tcp_keepintvl = TCPTV_KEEPINTVL; tcp_maxpersistidle = TCPTV_KEEP_IDLE; tcp_msl = TCPTV_MSL; tcp_rexmit_min = TCPTV_MIN; if (tcp_rexmit_min < 1) tcp_rexmit_min = 1; tcp_persmin = TCPTV_PERSMIN; tcp_persmax = TCPTV_PERSMAX; tcp_rexmit_slop = TCPTV_CPU_VAR; tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT; tcp_tcbhashsize = hashsize; /* Setup the tcp function block list */ init_tcp_functions(); register_tcp_functions(&tcp_def_funcblk, M_WAITOK); if (tcp_soreceive_stream) { #ifdef INET tcp_usrreqs.pru_soreceive = soreceive_stream; #endif #ifdef INET6 tcp6_usrreqs.pru_soreceive = soreceive_stream; #endif /* INET6 */ } #ifdef INET6 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr)) #else /* INET6 */ #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr)) #endif /* INET6 */ if (max_protohdr < TCP_MINPROTOHDR) max_protohdr = TCP_MINPROTOHDR; if (max_linkhdr + TCP_MINPROTOHDR > MHLEN) panic("tcp_init"); #undef TCP_MINPROTOHDR ISN_LOCK_INIT(); EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL, SHUTDOWN_PRI_DEFAULT); EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL, EVENTHANDLER_PRI_ANY); #ifdef TCPPCAP tcp_pcap_init(); #endif } #ifdef VIMAGE static void tcp_destroy(void *unused __unused) { int n; #ifdef TCP_HHOOK int error; #endif /* * All our processes are gone, all our sockets should be cleaned * up, which means, we should be past the tcp_discardcb() calls. * Sleep to let all tcpcb timers really disappear and cleanup. */ for (;;) { INP_LIST_RLOCK(&V_tcbinfo); n = V_tcbinfo.ipi_count; INP_LIST_RUNLOCK(&V_tcbinfo); if (n == 0) break; pause("tcpdes", hz / 10); } tcp_hc_destroy(); syncache_destroy(); tcp_tw_destroy(); in_pcbinfo_destroy(&V_tcbinfo); /* tcp_discardcb() clears the sack_holes up. */ uma_zdestroy(V_sack_hole_zone); uma_zdestroy(V_tcpcb_zone); #ifdef TCP_RFC7413 /* * Cannot free the zone until all tcpcbs are released as we attach * the allocations to them. */ tcp_fastopen_destroy(); #endif #ifdef TCP_HHOOK error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]); if (error != 0) { printf("%s: WARNING: unable to deregister helper hook " "type=%d, id=%d: error %d returned\n", __func__, HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error); } error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]); if (error != 0) { printf("%s: WARNING: unable to deregister helper hook " "type=%d, id=%d: error %d returned\n", __func__, HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error); } #endif } VNET_SYSUNINIT(tcp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, tcp_destroy, NULL); #endif void tcp_fini(void *xtp) { } /* * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb. * tcp_template used to store this data in mbufs, but we now recopy it out * of the tcpcb each time to conserve mbufs. */ void tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr) { struct tcphdr *th = (struct tcphdr *)tcp_ptr; INP_WLOCK_ASSERT(inp); #ifdef INET6 if ((inp->inp_vflag & INP_IPV6) != 0) { struct ip6_hdr *ip6; ip6 = (struct ip6_hdr *)ip_ptr; ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | (inp->inp_flow & IPV6_FLOWINFO_MASK); ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | (IPV6_VERSION & IPV6_VERSION_MASK); ip6->ip6_nxt = IPPROTO_TCP; ip6->ip6_plen = htons(sizeof(struct tcphdr)); ip6->ip6_src = inp->in6p_laddr; ip6->ip6_dst = inp->in6p_faddr; } #endif /* INET6 */ #if defined(INET6) && defined(INET) else #endif #ifdef INET { struct ip *ip; ip = (struct ip *)ip_ptr; ip->ip_v = IPVERSION; ip->ip_hl = 5; ip->ip_tos = inp->inp_ip_tos; ip->ip_len = 0; ip->ip_id = 0; ip->ip_off = 0; ip->ip_ttl = inp->inp_ip_ttl; ip->ip_sum = 0; ip->ip_p = IPPROTO_TCP; ip->ip_src = inp->inp_laddr; ip->ip_dst = inp->inp_faddr; } #endif /* INET */ th->th_sport = inp->inp_lport; th->th_dport = inp->inp_fport; th->th_seq = 0; th->th_ack = 0; th->th_x2 = 0; th->th_off = 5; th->th_flags = 0; th->th_win = 0; th->th_urp = 0; th->th_sum = 0; /* in_pseudo() is called later for ipv4 */ } /* * Create template to be used to send tcp packets on a connection. * Allocates an mbuf and fills in a skeletal tcp/ip header. The only * use for this function is in keepalives, which use tcp_respond. */ struct tcptemp * tcpip_maketemplate(struct inpcb *inp) { struct tcptemp *t; t = malloc(sizeof(*t), M_TEMP, M_NOWAIT); if (t == NULL) return (NULL); tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t); return (t); } /* * Send a single message to the TCP at address specified by * the given TCP/IP header. If m == NULL, then we make a copy * of the tcpiphdr at th and send directly to the addressed host. * This is used to force keep alive messages out using the TCP * template for a connection. If flags are given then we send * a message back to the TCP which originated the segment th, * and discard the mbuf containing it and any other attached mbufs. * * In any case the ack and sequence number of the transmitted * segment are as specified by the parameters. * * NOTE: If m != NULL, then th must point to *inside* the mbuf. */ void tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags) { struct tcpopt to; struct inpcb *inp; struct ip *ip; struct mbuf *optm; struct tcphdr *nth; u_char *optp; #ifdef INET6 struct ip6_hdr *ip6; int isipv6; #endif /* INET6 */ int optlen, tlen, win; bool incl_opts; KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL")); #ifdef INET6 isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4); ip6 = ipgen; #endif /* INET6 */ ip = ipgen; if (tp != NULL) { inp = tp->t_inpcb; KASSERT(inp != NULL, ("tcp control block w/o inpcb")); INP_WLOCK_ASSERT(inp); } else inp = NULL; incl_opts = false; win = 0; if (tp != NULL) { if (!(flags & TH_RST)) { win = sbspace(&inp->inp_socket->so_rcv); if (win > TCP_MAXWIN << tp->rcv_scale) win = TCP_MAXWIN << tp->rcv_scale; } if ((tp->t_flags & TF_NOOPT) == 0) incl_opts = true; } if (m == NULL) { m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) return; m->m_data += max_linkhdr; #ifdef INET6 if (isipv6) { bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr)); ip6 = mtod(m, struct ip6_hdr *); nth = (struct tcphdr *)(ip6 + 1); } else #endif /* INET6 */ { bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); ip = mtod(m, struct ip *); nth = (struct tcphdr *)(ip + 1); } bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); flags = TH_ACK; } else if (!M_WRITABLE(m)) { struct mbuf *n; /* Can't reuse 'm', allocate a new mbuf. */ n = m_gethdr(M_NOWAIT, MT_DATA); if (n == NULL) { m_freem(m); return; } if (!m_dup_pkthdr(n, m, M_NOWAIT)) { m_freem(m); m_freem(n); return; } n->m_data += max_linkhdr; /* m_len is set later */ #define xchg(a,b,type) { type t; t=a; a=b; b=t; } #ifdef INET6 if (isipv6) { bcopy((caddr_t)ip6, mtod(n, caddr_t), sizeof(struct ip6_hdr)); ip6 = mtod(n, struct ip6_hdr *); xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); nth = (struct tcphdr *)(ip6 + 1); } else #endif /* INET6 */ { bcopy((caddr_t)ip, mtod(n, caddr_t), sizeof(struct ip)); ip = mtod(n, struct ip *); xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); nth = (struct tcphdr *)(ip + 1); } bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); xchg(nth->th_dport, nth->th_sport, uint16_t); th = nth; m_freem(m); m = n; } else { /* * reuse the mbuf. * XXX MRT We inherit the FIB, which is lucky. */ m_freem(m->m_next); m->m_next = NULL; m->m_data = (caddr_t)ipgen; /* m_len is set later */ #ifdef INET6 if (isipv6) { xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); nth = (struct tcphdr *)(ip6 + 1); } else #endif /* INET6 */ { xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); nth = (struct tcphdr *)(ip + 1); } if (th != nth) { /* * this is usually a case when an extension header * exists between the IPv6 header and the * TCP header. */ nth->th_sport = th->th_sport; nth->th_dport = th->th_dport; } xchg(nth->th_dport, nth->th_sport, uint16_t); #undef xchg } tlen = 0; #ifdef INET6 if (isipv6) tlen = sizeof (struct ip6_hdr) + sizeof (struct tcphdr); #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET tlen = sizeof (struct tcpiphdr); #endif #ifdef INVARIANTS m->m_len = 0; KASSERT(M_TRAILINGSPACE(m) >= tlen, ("Not enough trailing space for message (m=%p, need=%d, have=%ld)", m, tlen, (long)M_TRAILINGSPACE(m))); #endif m->m_len = tlen; to.to_flags = 0; if (incl_opts) { /* Make sure we have room. */ if (M_TRAILINGSPACE(m) < TCP_MAXOLEN) { m->m_next = m_get(M_NOWAIT, MT_DATA); if (m->m_next) { optp = mtod(m->m_next, u_char *); optm = m->m_next; } else incl_opts = false; } else { optp = (u_char *) (nth + 1); optm = m; } } if (incl_opts) { /* Timestamps. */ if (tp->t_flags & TF_RCVD_TSTMP) { to.to_tsval = tcp_ts_getticks() + tp->ts_offset; to.to_tsecr = tp->ts_recent; to.to_flags |= TOF_TS; } #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) /* TCP-MD5 (RFC2385). */ if (tp->t_flags & TF_SIGNATURE) to.to_flags |= TOF_SIGNATURE; #endif /* Add the options. */ tlen += optlen = tcp_addoptions(&to, optp); /* Update m_len in the correct mbuf. */ optm->m_len += optlen; } else optlen = 0; #ifdef INET6 if (isipv6) { ip6->ip6_flow = 0; ip6->ip6_vfc = IPV6_VERSION; ip6->ip6_nxt = IPPROTO_TCP; ip6->ip6_plen = htons(tlen - sizeof(*ip6)); } #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET { ip->ip_len = htons(tlen); ip->ip_ttl = V_ip_defttl; if (V_path_mtu_discovery) ip->ip_off |= htons(IP_DF); } #endif m->m_pkthdr.len = tlen; m->m_pkthdr.rcvif = NULL; #ifdef MAC if (inp != NULL) { /* * Packet is associated with a socket, so allow the * label of the response to reflect the socket label. */ INP_WLOCK_ASSERT(inp); mac_inpcb_create_mbuf(inp, m); } else { /* * Packet is not associated with a socket, so possibly * update the label in place. */ mac_netinet_tcp_reply(m); } #endif nth->th_seq = htonl(seq); nth->th_ack = htonl(ack); nth->th_x2 = 0; nth->th_off = (sizeof (struct tcphdr) + optlen) >> 2; nth->th_flags = flags; if (tp != NULL) nth->th_win = htons((u_short) (win >> tp->rcv_scale)); else nth->th_win = htons((u_short)win); nth->th_urp = 0; #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) if (to.to_flags & TOF_SIGNATURE) { if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, nth, to.to_signature) != 0) { m_freem(m); return; } } #endif m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); #ifdef INET6 if (isipv6) { m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; nth->th_sum = in6_cksum_pseudo(ip6, tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0); ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb : NULL, NULL); } #endif /* INET6 */ #if defined(INET6) && defined(INET) else #endif #ifdef INET { m->m_pkthdr.csum_flags = CSUM_TCP; nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p))); } #endif /* INET */ #ifdef TCPDEBUG if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG)) tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0); #endif TCP_PROBE3(debug__output, tp, th, m); if (flags & TH_RST) TCP_PROBE5(accept__refused, NULL, NULL, m, tp, nth); TCP_PROBE5(send, NULL, tp, m, tp, nth); #ifdef INET6 if (isipv6) (void) ip6_output(m, NULL, NULL, 0, NULL, NULL, inp); #endif /* INET6 */ #if defined(INET) && defined(INET6) else #endif #ifdef INET (void) ip_output(m, NULL, NULL, 0, NULL, inp); #endif } /* * Create a new TCP control block, making an * empty reassembly queue and hooking it to the argument * protocol control block. The `inp' parameter must have * come from the zone allocator set up in tcp_init(). */ struct tcpcb * tcp_newtcpcb(struct inpcb *inp) { struct tcpcb_mem *tm; struct tcpcb *tp; #ifdef INET6 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; #endif /* INET6 */ tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO); if (tm == NULL) return (NULL); tp = &tm->tcb; /* Initialise cc_var struct for this tcpcb. */ tp->ccv = &tm->ccv; tp->ccv->type = IPPROTO_TCP; tp->ccv->ccvc.tcp = tp; rw_rlock(&tcp_function_lock); tp->t_fb = tcp_func_set_ptr; refcount_acquire(&tp->t_fb->tfb_refcnt); rw_runlock(&tcp_function_lock); /* * Use the current system default CC algorithm. */ CC_LIST_RLOCK(); KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!")); CC_ALGO(tp) = CC_DEFAULT(); CC_LIST_RUNLOCK(); if (CC_ALGO(tp)->cb_init != NULL) if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) { if (tp->t_fb->tfb_tcp_fb_fini) (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); refcount_release(&tp->t_fb->tfb_refcnt); uma_zfree(V_tcpcb_zone, tm); return (NULL); } #ifdef TCP_HHOOK tp->osd = &tm->osd; if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) { if (tp->t_fb->tfb_tcp_fb_fini) (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); refcount_release(&tp->t_fb->tfb_refcnt); uma_zfree(V_tcpcb_zone, tm); return (NULL); } #endif #ifdef VIMAGE tp->t_vnet = inp->inp_vnet; #endif tp->t_timers = &tm->tt; /* LIST_INIT(&tp->t_segq); */ /* XXX covered by M_ZERO */ tp->t_maxseg = #ifdef INET6 isipv6 ? V_tcp_v6mssdflt : #endif /* INET6 */ V_tcp_mssdflt; /* Set up our timeouts. */ callout_init(&tp->t_timers->tt_rexmt, 1); callout_init(&tp->t_timers->tt_persist, 1); callout_init(&tp->t_timers->tt_keep, 1); callout_init(&tp->t_timers->tt_2msl, 1); callout_init(&tp->t_timers->tt_delack, 1); if (V_tcp_do_rfc1323) tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); if (V_tcp_do_sack) tp->t_flags |= TF_SACK_PERMIT; TAILQ_INIT(&tp->snd_holes); /* * The tcpcb will hold a reference on its inpcb until tcp_discardcb() * is called. */ in_pcbref(inp); /* Reference for tcpcb */ tp->t_inpcb = inp; /* * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives * reasonable initial retransmit time. */ tp->t_srtt = TCPTV_SRTTBASE; tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; tp->t_rttmin = tcp_rexmit_min; tp->t_rxtcur = TCPTV_RTOBASE; tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; tp->t_rcvtime = ticks; /* * IPv4 TTL initialization is necessary for an IPv6 socket as well, * because the socket may be bound to an IPv6 wildcard address, * which may match an IPv4-mapped IPv6 address. */ inp->inp_ip_ttl = V_ip_defttl; inp->inp_ppcb = tp; #ifdef TCPPCAP /* * Init the TCP PCAP queues. */ tcp_pcap_tcpcb_init(tp); #endif if (tp->t_fb->tfb_tcp_fb_init) { (*tp->t_fb->tfb_tcp_fb_init)(tp); } return (tp); /* XXX */ } /* * Switch the congestion control algorithm back to NewReno for any active * control blocks using an algorithm which is about to go away. * This ensures the CC framework can allow the unload to proceed without leaving * any dangling pointers which would trigger a panic. * Returning non-zero would inform the CC framework that something went wrong * and it would be unsafe to allow the unload to proceed. However, there is no * way for this to occur with this implementation so we always return zero. */ int tcp_ccalgounload(struct cc_algo *unload_algo) { struct cc_algo *tmpalgo; struct inpcb *inp; struct tcpcb *tp; VNET_ITERATOR_DECL(vnet_iter); /* * Check all active control blocks across all network stacks and change * any that are using "unload_algo" back to NewReno. If "unload_algo" * requires cleanup code to be run, call it. */ VNET_LIST_RLOCK(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); INP_INFO_WLOCK(&V_tcbinfo); /* * New connections already part way through being initialised * with the CC algo we're removing will not race with this code * because the INP_INFO_WLOCK is held during initialisation. We * therefore don't enter the loop below until the connection * list has stabilised. */ LIST_FOREACH(inp, &V_tcb, inp_list) { INP_WLOCK(inp); /* Important to skip tcptw structs. */ if (!(inp->inp_flags & INP_TIMEWAIT) && (tp = intotcpcb(inp)) != NULL) { /* * By holding INP_WLOCK here, we are assured * that the connection is not currently * executing inside the CC module's functions * i.e. it is safe to make the switch back to * NewReno. */ if (CC_ALGO(tp) == unload_algo) { tmpalgo = CC_ALGO(tp); /* NewReno does not require any init. */ CC_ALGO(tp) = &newreno_cc_algo; if (tmpalgo->cb_destroy != NULL) tmpalgo->cb_destroy(tp->ccv); } } INP_WUNLOCK(inp); } INP_INFO_WUNLOCK(&V_tcbinfo); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK(); return (0); } /* * Drop a TCP connection, reporting * the specified error. If connection is synchronized, * then send a RST to peer. */ struct tcpcb * tcp_drop(struct tcpcb *tp, int errno) { struct socket *so = tp->t_inpcb->inp_socket; INP_INFO_LOCK_ASSERT(&V_tcbinfo); INP_WLOCK_ASSERT(tp->t_inpcb); if (TCPS_HAVERCVDSYN(tp->t_state)) { tcp_state_change(tp, TCPS_CLOSED); (void) tp->t_fb->tfb_tcp_output(tp); TCPSTAT_INC(tcps_drops); } else TCPSTAT_INC(tcps_conndrops); if (errno == ETIMEDOUT && tp->t_softerror) errno = tp->t_softerror; so->so_error = errno; return (tcp_close(tp)); } void tcp_discardcb(struct tcpcb *tp) { struct inpcb *inp = tp->t_inpcb; struct socket *so = inp->inp_socket; #ifdef INET6 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; #endif /* INET6 */ int released; INP_WLOCK_ASSERT(inp); /* * Make sure that all of our timers are stopped before we delete the * PCB. * * If stopping a timer fails, we schedule a discard function in same * callout, and the last discard function called will take care of * deleting the tcpcb. */ tp->t_timers->tt_draincnt = 0; tcp_timer_stop(tp, TT_REXMT); tcp_timer_stop(tp, TT_PERSIST); tcp_timer_stop(tp, TT_KEEP); tcp_timer_stop(tp, TT_2MSL); tcp_timer_stop(tp, TT_DELACK); if (tp->t_fb->tfb_tcp_timer_stop_all) { /* * Call the stop-all function of the methods, * this function should call the tcp_timer_stop() * method with each of the function specific timeouts. * That stop will be called via the tfb_tcp_timer_stop() * which should use the async drain function of the * callout system (see tcp_var.h). */ tp->t_fb->tfb_tcp_timer_stop_all(tp); } /* * If we got enough samples through the srtt filter, * save the rtt and rttvar in the routing entry. * 'Enough' is arbitrarily defined as 4 rtt samples. * 4 samples is enough for the srtt filter to converge * to within enough % of the correct value; fewer samples * and we could save a bogus rtt. The danger is not high * as tcp quickly recovers from everything. * XXX: Works very well but needs some more statistics! */ if (tp->t_rttupdated >= 4) { struct hc_metrics_lite metrics; uint32_t ssthresh; bzero(&metrics, sizeof(metrics)); /* * Update the ssthresh always when the conditions below * are satisfied. This gives us better new start value * for the congestion avoidance for new connections. * ssthresh is only set if packet loss occurred on a session. * * XXXRW: 'so' may be NULL here, and/or socket buffer may be * being torn down. Ideally this code would not use 'so'. */ ssthresh = tp->snd_ssthresh; if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) { /* * convert the limit from user data bytes to * packets then to packet data bytes. */ ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg; if (ssthresh < 2) ssthresh = 2; ssthresh *= (tp->t_maxseg + #ifdef INET6 (isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr) : #endif sizeof (struct tcpiphdr) #ifdef INET6 ) #endif ); } else ssthresh = 0; metrics.rmx_ssthresh = ssthresh; metrics.rmx_rtt = tp->t_srtt; metrics.rmx_rttvar = tp->t_rttvar; metrics.rmx_cwnd = tp->snd_cwnd; metrics.rmx_sendpipe = 0; metrics.rmx_recvpipe = 0; tcp_hc_update(&inp->inp_inc, &metrics); } /* free the reassembly queue, if any */ tcp_reass_flush(tp); #ifdef TCP_OFFLOAD /* Disconnect offload device, if any. */ if (tp->t_flags & TF_TOE) tcp_offload_detach(tp); #endif tcp_free_sackholes(tp); #ifdef TCPPCAP /* Free the TCP PCAP queues. */ tcp_pcap_drain(&(tp->t_inpkts)); tcp_pcap_drain(&(tp->t_outpkts)); #endif /* Allow the CC algorithm to clean up after itself. */ if (CC_ALGO(tp)->cb_destroy != NULL) CC_ALGO(tp)->cb_destroy(tp->ccv); #ifdef TCP_HHOOK khelp_destroy_osd(tp->osd); #endif CC_ALGO(tp) = NULL; inp->inp_ppcb = NULL; if (tp->t_timers->tt_draincnt == 0) { /* We own the last reference on tcpcb, let's free it. */ TCPSTATES_DEC(tp->t_state); if (tp->t_fb->tfb_tcp_fb_fini) (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); refcount_release(&tp->t_fb->tfb_refcnt); tp->t_inpcb = NULL; uma_zfree(V_tcpcb_zone, tp); released = in_pcbrele_wlocked(inp); KASSERT(!released, ("%s: inp %p should not have been released " "here", __func__, inp)); } } void tcp_timer_discard(void *ptp) { struct inpcb *inp; struct tcpcb *tp; tp = (struct tcpcb *)ptp; CURVNET_SET(tp->t_vnet); INP_INFO_RLOCK(&V_tcbinfo); inp = tp->t_inpcb; KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", __func__, tp)); INP_WLOCK(inp); KASSERT((tp->t_timers->tt_flags & TT_STOPPED) != 0, ("%s: tcpcb has to be stopped here", __func__)); tp->t_timers->tt_draincnt--; if (tp->t_timers->tt_draincnt == 0) { /* We own the last reference on this tcpcb, let's free it. */ TCPSTATES_DEC(tp->t_state); if (tp->t_fb->tfb_tcp_fb_fini) (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); refcount_release(&tp->t_fb->tfb_refcnt); tp->t_inpcb = NULL; uma_zfree(V_tcpcb_zone, tp); if (in_pcbrele_wlocked(inp)) { INP_INFO_RUNLOCK(&V_tcbinfo); CURVNET_RESTORE(); return; } } INP_WUNLOCK(inp); INP_INFO_RUNLOCK(&V_tcbinfo); CURVNET_RESTORE(); } /* * Attempt to close a TCP control block, marking it as dropped, and freeing * the socket if we hold the only reference. */ struct tcpcb * tcp_close(struct tcpcb *tp) { struct inpcb *inp = tp->t_inpcb; struct socket *so; INP_INFO_LOCK_ASSERT(&V_tcbinfo); INP_WLOCK_ASSERT(inp); #ifdef TCP_OFFLOAD if (tp->t_state == TCPS_LISTEN) tcp_offload_listen_stop(tp); #endif #ifdef TCP_RFC7413 /* * This releases the TFO pending counter resource for TFO listen * sockets as well as passively-created TFO sockets that transition * from SYN_RECEIVED to CLOSED. */ if (tp->t_tfo_pending) { tcp_fastopen_decrement_counter(tp->t_tfo_pending); tp->t_tfo_pending = NULL; } #endif in_pcbdrop(inp); TCPSTAT_INC(tcps_closed); if (tp->t_state != TCPS_CLOSED) tcp_state_change(tp, TCPS_CLOSED); KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL")); so = inp->inp_socket; soisdisconnected(so); if (inp->inp_flags & INP_SOCKREF) { KASSERT(so->so_state & SS_PROTOREF, ("tcp_close: !SS_PROTOREF")); inp->inp_flags &= ~INP_SOCKREF; INP_WUNLOCK(inp); ACCEPT_LOCK(); SOCK_LOCK(so); so->so_state &= ~SS_PROTOREF; sofree(so); return (NULL); } return (tp); } void tcp_drain(void) { VNET_ITERATOR_DECL(vnet_iter); if (!do_tcpdrain) return; VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); struct inpcb *inpb; struct tcpcb *tcpb; /* * Walk the tcpbs, if existing, and flush the reassembly queue, * if there is one... * XXX: The "Net/3" implementation doesn't imply that the TCP * reassembly queue should be flushed, but in a situation * where we're really low on mbufs, this is potentially * useful. */ INP_INFO_WLOCK(&V_tcbinfo); LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) { if (inpb->inp_flags & INP_TIMEWAIT) continue; INP_WLOCK(inpb); if ((tcpb = intotcpcb(inpb)) != NULL) { tcp_reass_flush(tcpb); tcp_clean_sackreport(tcpb); #ifdef TCPPCAP if (tcp_pcap_aggressive_free) { /* Free the TCP PCAP queues. */ tcp_pcap_drain(&(tcpb->t_inpkts)); tcp_pcap_drain(&(tcpb->t_outpkts)); } #endif } INP_WUNLOCK(inpb); } INP_INFO_WUNLOCK(&V_tcbinfo); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); } /* * Notify a tcp user of an asynchronous error; * store error as soft error, but wake up user * (for now, won't do anything until can select for soft error). * * Do not wake up user since there currently is no mechanism for * reporting soft errors (yet - a kqueue filter may be added). */ static struct inpcb * tcp_notify(struct inpcb *inp, int error) { struct tcpcb *tp; INP_INFO_LOCK_ASSERT(&V_tcbinfo); INP_WLOCK_ASSERT(inp); if ((inp->inp_flags & INP_TIMEWAIT) || (inp->inp_flags & INP_DROPPED)) return (inp); tp = intotcpcb(inp); KASSERT(tp != NULL, ("tcp_notify: tp == NULL")); /* * Ignore some errors if we are hooked up. * If connection hasn't completed, has retransmitted several times, * and receives a second error, give up now. This is better * than waiting a long time to establish a connection that * can never complete. */ if (tp->t_state == TCPS_ESTABLISHED && (error == EHOSTUNREACH || error == ENETUNREACH || error == EHOSTDOWN)) { if (inp->inp_route.ro_rt) { RTFREE(inp->inp_route.ro_rt); inp->inp_route.ro_rt = (struct rtentry *)NULL; } return (inp); } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && tp->t_softerror) { tp = tcp_drop(tp, error); if (tp != NULL) return (inp); else return (NULL); } else { tp->t_softerror = error; return (inp); } #if 0 wakeup( &so->so_timeo); sorwakeup(so); sowwakeup(so); #endif } static int tcp_pcblist(SYSCTL_HANDLER_ARGS) { int error, i, m, n, pcb_count; struct inpcb *inp, **inp_list; inp_gen_t gencnt; struct xinpgen xig; /* * The process of preparing the TCB list is too time-consuming and * resource-intensive to repeat twice on every request. */ if (req->oldptr == NULL) { n = V_tcbinfo.ipi_count + counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]); n += imax(n / 8, 10); req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb); return (0); } if (req->newptr != NULL) return (EPERM); /* * OK, now we're committed to doing something. */ INP_LIST_RLOCK(&V_tcbinfo); gencnt = V_tcbinfo.ipi_gencnt; n = V_tcbinfo.ipi_count; INP_LIST_RUNLOCK(&V_tcbinfo); m = counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]); error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) + (n + m) * sizeof(struct xtcpcb)); if (error != 0) return (error); xig.xig_len = sizeof xig; xig.xig_count = n + m; xig.xig_gen = gencnt; xig.xig_sogen = so_gencnt; error = SYSCTL_OUT(req, &xig, sizeof xig); if (error) return (error); error = syncache_pcblist(req, m, &pcb_count); if (error) return (error); inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); INP_INFO_WLOCK(&V_tcbinfo); for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0; inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) { INP_WLOCK(inp); if (inp->inp_gencnt <= gencnt) { /* * XXX: This use of cr_cansee(), introduced with * TCP state changes, is not quite right, but for * now, better than nothing. */ if (inp->inp_flags & INP_TIMEWAIT) { if (intotw(inp) != NULL) error = cr_cansee(req->td->td_ucred, intotw(inp)->tw_cred); else error = EINVAL; /* Skip this inp. */ } else error = cr_canseeinpcb(req->td->td_ucred, inp); if (error == 0) { in_pcbref(inp); inp_list[i++] = inp; } } INP_WUNLOCK(inp); } INP_INFO_WUNLOCK(&V_tcbinfo); n = i; error = 0; for (i = 0; i < n; i++) { inp = inp_list[i]; INP_RLOCK(inp); if (inp->inp_gencnt <= gencnt) { struct xtcpcb xt; tcp_inptoxtp(inp, &xt); INP_RUNLOCK(inp); error = SYSCTL_OUT(req, &xt, sizeof xt); } else INP_RUNLOCK(inp); } INP_INFO_RLOCK(&V_tcbinfo); for (i = 0; i < n; i++) { inp = inp_list[i]; INP_RLOCK(inp); if (!in_pcbrele_rlocked(inp)) INP_RUNLOCK(inp); } INP_INFO_RUNLOCK(&V_tcbinfo); if (!error) { /* * Give the user an updated idea of our state. * If the generation differs from what we told * her before, she knows that something happened * while we were processing this request, and it * might be necessary to retry. */ INP_LIST_RLOCK(&V_tcbinfo); xig.xig_gen = V_tcbinfo.ipi_gencnt; xig.xig_sogen = so_gencnt; xig.xig_count = V_tcbinfo.ipi_count + pcb_count; INP_LIST_RUNLOCK(&V_tcbinfo); error = SYSCTL_OUT(req, &xig, sizeof xig); } free(inp_list, M_TEMP); return (error); } SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, tcp_pcblist, "S,xtcpcb", "List of active TCP connections"); #ifdef INET static int tcp_getcred(SYSCTL_HANDLER_ARGS) { struct xucred xuc; struct sockaddr_in addrs[2]; struct inpcb *inp; int error; error = priv_check(req->td, PRIV_NETINET_GETCRED); if (error) return (error); error = SYSCTL_IN(req, addrs, sizeof(addrs)); if (error) return (error); inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL); if (inp != NULL) { if (inp->inp_socket == NULL) error = ENOENT; if (error == 0) error = cr_canseeinpcb(req->td->td_ucred, inp); if (error == 0) cru2x(inp->inp_cred, &xuc); INP_RUNLOCK(inp); } else error = ENOENT; if (error == 0) error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); return (error); } SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, tcp_getcred, "S,xucred", "Get the xucred of a TCP connection"); #endif /* INET */ #ifdef INET6 static int tcp6_getcred(SYSCTL_HANDLER_ARGS) { struct xucred xuc; struct sockaddr_in6 addrs[2]; struct inpcb *inp; int error; #ifdef INET int mapped = 0; #endif error = priv_check(req->td, PRIV_NETINET_GETCRED); if (error) return (error); error = SYSCTL_IN(req, addrs, sizeof(addrs)); if (error) return (error); if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 || (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) { return (error); } if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) { #ifdef INET if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr)) mapped = 1; else #endif return (EINVAL); } #ifdef INET if (mapped == 1) inp = in_pcblookup(&V_tcbinfo, *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12], addrs[1].sin6_port, *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12], addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL); else #endif inp = in6_pcblookup(&V_tcbinfo, &addrs[1].sin6_addr, addrs[1].sin6_port, &addrs[0].sin6_addr, addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL); if (inp != NULL) { if (inp->inp_socket == NULL) error = ENOENT; if (error == 0) error = cr_canseeinpcb(req->td->td_ucred, inp); if (error == 0) cru2x(inp->inp_cred, &xuc); INP_RUNLOCK(inp); } else error = ENOENT; if (error == 0) error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); return (error); } SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection"); #endif /* INET6 */ #ifdef INET void tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip) { struct ip *ip = vip; struct tcphdr *th; struct in_addr faddr; struct inpcb *inp; struct tcpcb *tp; struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; struct icmp *icp; struct in_conninfo inc; tcp_seq icmp_tcp_seq; int mtu; faddr = ((struct sockaddr_in *)sa)->sin_addr; if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) return; if (cmd == PRC_MSGSIZE) notify = tcp_mtudisc_notify; else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB || cmd == PRC_UNREACH_PORT || cmd == PRC_UNREACH_PROTOCOL || cmd == PRC_TIMXCEED_INTRANS) && ip) notify = tcp_drop_syn_sent; /* * Hostdead is ugly because it goes linearly through all PCBs. * XXX: We never get this from ICMP, otherwise it makes an * excellent DoS attack on machines with many connections. */ else if (cmd == PRC_HOSTDEAD) ip = NULL; else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) return; if (ip == NULL) { in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify); return; } icp = (struct icmp *)((caddr_t)ip - offsetof(struct icmp, icmp_ip)); th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); INP_INFO_RLOCK(&V_tcbinfo); inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport, ip->ip_src, th->th_sport, INPLOOKUP_WLOCKPCB, NULL); if (inp != NULL && PRC_IS_REDIRECT(cmd)) { /* signal EHOSTDOWN, as it flushes the cached route */ inp = (*notify)(inp, EHOSTDOWN); if (inp != NULL) INP_WUNLOCK(inp); } else if (inp != NULL) { if (!(inp->inp_flags & INP_TIMEWAIT) && !(inp->inp_flags & INP_DROPPED) && !(inp->inp_socket == NULL)) { icmp_tcp_seq = ntohl(th->th_seq); tp = intotcpcb(inp); if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) && SEQ_LT(icmp_tcp_seq, tp->snd_max)) { if (cmd == PRC_MSGSIZE) { /* * MTU discovery: * If we got a needfrag set the MTU * in the route to the suggested new * value (if given) and then notify. */ mtu = ntohs(icp->icmp_nextmtu); /* * If no alternative MTU was * proposed, try the next smaller * one. */ if (!mtu) mtu = ip_next_mtu( ntohs(ip->ip_len), 1); if (mtu < V_tcp_minmss + sizeof(struct tcpiphdr)) mtu = V_tcp_minmss + sizeof(struct tcpiphdr); /* * Only process the offered MTU if it * is smaller than the current one. */ if (mtu < tp->t_maxseg + sizeof(struct tcpiphdr)) { bzero(&inc, sizeof(inc)); inc.inc_faddr = faddr; inc.inc_fibnum = inp->inp_inc.inc_fibnum; tcp_hc_updatemtu(&inc, mtu); tcp_mtudisc(inp, mtu); } } else inp = (*notify)(inp, inetctlerrmap[cmd]); } } if (inp != NULL) INP_WUNLOCK(inp); } else { bzero(&inc, sizeof(inc)); inc.inc_fport = th->th_dport; inc.inc_lport = th->th_sport; inc.inc_faddr = faddr; inc.inc_laddr = ip->ip_src; syncache_unreach(&inc, th); } INP_INFO_RUNLOCK(&V_tcbinfo); } #endif /* INET */ #ifdef INET6 void tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d) { struct in6_addr *dst; struct tcphdr *th; struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; struct ip6_hdr *ip6; struct mbuf *m; struct inpcb *inp; struct tcpcb *tp; struct icmp6_hdr *icmp6; struct ip6ctlparam *ip6cp = NULL; const struct sockaddr_in6 *sa6_src = NULL; struct in_conninfo inc; tcp_seq icmp_tcp_seq; unsigned int mtu; unsigned int off; if (sa->sa_family != AF_INET6 || sa->sa_len != sizeof(struct sockaddr_in6)) return; /* if the parameter is from icmp6, decode it. */ if (d != NULL) { ip6cp = (struct ip6ctlparam *)d; icmp6 = ip6cp->ip6c_icmp6; m = ip6cp->ip6c_m; ip6 = ip6cp->ip6c_ip6; off = ip6cp->ip6c_off; sa6_src = ip6cp->ip6c_src; dst = ip6cp->ip6c_finaldst; } else { m = NULL; ip6 = NULL; off = 0; /* fool gcc */ sa6_src = &sa6_any; dst = NULL; } if (cmd == PRC_MSGSIZE) notify = tcp_mtudisc_notify; else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB || cmd == PRC_UNREACH_PORT || cmd == PRC_UNREACH_PROTOCOL || cmd == PRC_TIMXCEED_INTRANS) && ip6 != NULL) notify = tcp_drop_syn_sent; /* * Hostdead is ugly because it goes linearly through all PCBs. * XXX: We never get this from ICMP, otherwise it makes an * excellent DoS attack on machines with many connections. */ else if (cmd == PRC_HOSTDEAD) ip6 = NULL; else if ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0) return; if (ip6 == NULL) { in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify); return; } /* Check if we can safely get the ports from the tcp hdr */ if (m == NULL || (m->m_pkthdr.len < (int32_t) (off + offsetof(struct tcphdr, th_seq)))) { return; } th = (struct tcphdr *) mtodo(ip6cp->ip6c_m, ip6cp->ip6c_off); INP_INFO_RLOCK(&V_tcbinfo); inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_dst, th->th_dport, &ip6->ip6_src, th->th_sport, INPLOOKUP_WLOCKPCB, NULL); if (inp != NULL && PRC_IS_REDIRECT(cmd)) { /* signal EHOSTDOWN, as it flushes the cached route */ inp = (*notify)(inp, EHOSTDOWN); if (inp != NULL) INP_WUNLOCK(inp); } else if (inp != NULL) { if (!(inp->inp_flags & INP_TIMEWAIT) && !(inp->inp_flags & INP_DROPPED) && !(inp->inp_socket == NULL)) { icmp_tcp_seq = ntohl(th->th_seq); tp = intotcpcb(inp); if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) && SEQ_LT(icmp_tcp_seq, tp->snd_max)) { if (cmd == PRC_MSGSIZE) { /* * MTU discovery: * If we got a needfrag set the MTU * in the route to the suggested new * value (if given) and then notify. */ mtu = ntohl(icmp6->icmp6_mtu); /* * If no alternative MTU was * proposed, or the proposed * MTU was too small, set to * the min. */ if (mtu < IPV6_MMTU) mtu = IPV6_MMTU - 8; bzero(&inc, sizeof(inc)); inc.inc_fibnum = M_GETFIB(m); inc.inc_flags |= INC_ISIPV6; inc.inc6_faddr = *dst; if (in6_setscope(&inc.inc6_faddr, m->m_pkthdr.rcvif, NULL)) goto unlock_inp; /* * Only process the offered MTU if it * is smaller than the current one. */ if (mtu < tp->t_maxseg + (sizeof (*th) + sizeof (*ip6))) { tcp_hc_updatemtu(&inc, mtu); tcp_mtudisc(inp, mtu); ICMP6STAT_INC(icp6s_pmtuchg); } } else inp = (*notify)(inp, inet6ctlerrmap[cmd]); } } unlock_inp: if (inp != NULL) INP_WUNLOCK(inp); } else { bzero(&inc, sizeof(inc)); inc.inc_fibnum = M_GETFIB(m); inc.inc_flags |= INC_ISIPV6; inc.inc_fport = th->th_dport; inc.inc_lport = th->th_sport; inc.inc6_faddr = *dst; inc.inc6_laddr = ip6->ip6_src; syncache_unreach(&inc, th); } INP_INFO_RUNLOCK(&V_tcbinfo); } #endif /* INET6 */ /* * Following is where TCP initial sequence number generation occurs. * * There are two places where we must use initial sequence numbers: * 1. In SYN-ACK packets. * 2. In SYN packets. * * All ISNs for SYN-ACK packets are generated by the syncache. See * tcp_syncache.c for details. * * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling * depends on this property. In addition, these ISNs should be * unguessable so as to prevent connection hijacking. To satisfy * the requirements of this situation, the algorithm outlined in * RFC 1948 is used, with only small modifications. * * Implementation details: * * Time is based off the system timer, and is corrected so that it * increases by one megabyte per second. This allows for proper * recycling on high speed LANs while still leaving over an hour * before rollover. * * As reading the *exact* system time is too expensive to be done * whenever setting up a TCP connection, we increment the time * offset in two ways. First, a small random positive increment * is added to isn_offset for each connection that is set up. * Second, the function tcp_isn_tick fires once per clock tick * and increments isn_offset as necessary so that sequence numbers * are incremented at approximately ISN_BYTES_PER_SECOND. The * random positive increments serve only to ensure that the same * exact sequence number is never sent out twice (as could otherwise * happen when a port is recycled in less than the system tick * interval.) * * net.inet.tcp.isn_reseed_interval controls the number of seconds * between seeding of isn_secret. This is normally set to zero, * as reseeding should not be necessary. * * Locking of the global variables isn_secret, isn_last_reseed, isn_offset, * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock. In * general, this means holding an exclusive (write) lock. */ #define ISN_BYTES_PER_SECOND 1048576 #define ISN_STATIC_INCREMENT 4096 #define ISN_RANDOM_INCREMENT (4096 - 1) static VNET_DEFINE(u_char, isn_secret[32]); static VNET_DEFINE(int, isn_last); static VNET_DEFINE(int, isn_last_reseed); static VNET_DEFINE(u_int32_t, isn_offset); static VNET_DEFINE(u_int32_t, isn_offset_old); #define V_isn_secret VNET(isn_secret) #define V_isn_last VNET(isn_last) #define V_isn_last_reseed VNET(isn_last_reseed) #define V_isn_offset VNET(isn_offset) #define V_isn_offset_old VNET(isn_offset_old) tcp_seq tcp_new_isn(struct tcpcb *tp) { MD5_CTX isn_ctx; u_int32_t md5_buffer[4]; tcp_seq new_isn; u_int32_t projected_offset; INP_WLOCK_ASSERT(tp->t_inpcb); ISN_LOCK(); /* Seed if this is the first use, reseed if requested. */ if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) && (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz) < (u_int)ticks))) { read_random(&V_isn_secret, sizeof(V_isn_secret)); V_isn_last_reseed = ticks; } /* Compute the md5 hash and return the ISN. */ MD5Init(&isn_ctx); MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short)); MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short)); #ifdef INET6 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) { MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr, sizeof(struct in6_addr)); MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr, sizeof(struct in6_addr)); } else #endif { MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr, sizeof(struct in_addr)); MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr, sizeof(struct in_addr)); } MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret)); MD5Final((u_char *) &md5_buffer, &isn_ctx); new_isn = (tcp_seq) md5_buffer[0]; V_isn_offset += ISN_STATIC_INCREMENT + (arc4random() & ISN_RANDOM_INCREMENT); if (ticks != V_isn_last) { projected_offset = V_isn_offset_old + ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last); if (SEQ_GT(projected_offset, V_isn_offset)) V_isn_offset = projected_offset; V_isn_offset_old = V_isn_offset; V_isn_last = ticks; } new_isn += V_isn_offset; ISN_UNLOCK(); return (new_isn); } /* * When a specific ICMP unreachable message is received and the * connection state is SYN-SENT, drop the connection. This behavior * is controlled by the icmp_may_rst sysctl. */ struct inpcb * tcp_drop_syn_sent(struct inpcb *inp, int errno) { struct tcpcb *tp; INP_INFO_RLOCK_ASSERT(&V_tcbinfo); INP_WLOCK_ASSERT(inp); if ((inp->inp_flags & INP_TIMEWAIT) || (inp->inp_flags & INP_DROPPED)) return (inp); tp = intotcpcb(inp); if (tp->t_state != TCPS_SYN_SENT) return (inp); tp = tcp_drop(tp, errno); if (tp != NULL) return (inp); else return (NULL); } /* * When `need fragmentation' ICMP is received, update our idea of the MSS * based on the new value. Also nudge TCP to send something, since we * know the packet we just sent was dropped. * This duplicates some code in the tcp_mss() function in tcp_input.c. */ static struct inpcb * tcp_mtudisc_notify(struct inpcb *inp, int error) { tcp_mtudisc(inp, -1); return (inp); } static void tcp_mtudisc(struct inpcb *inp, int mtuoffer) { struct tcpcb *tp; struct socket *so; INP_WLOCK_ASSERT(inp); if ((inp->inp_flags & INP_TIMEWAIT) || (inp->inp_flags & INP_DROPPED)) return; tp = intotcpcb(inp); KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL")); tcp_mss_update(tp, -1, mtuoffer, NULL, NULL); so = inp->inp_socket; SOCKBUF_LOCK(&so->so_snd); /* If the mss is larger than the socket buffer, decrease the mss. */ if (so->so_snd.sb_hiwat < tp->t_maxseg) tp->t_maxseg = so->so_snd.sb_hiwat; SOCKBUF_UNLOCK(&so->so_snd); TCPSTAT_INC(tcps_mturesent); tp->t_rtttime = 0; tp->snd_nxt = tp->snd_una; tcp_free_sackholes(tp); tp->snd_recover = tp->snd_max; if (tp->t_flags & TF_SACK_PERMIT) EXIT_FASTRECOVERY(tp->t_flags); tp->t_fb->tfb_tcp_output(tp); } #ifdef INET /* * Look-up the routing entry to the peer of this inpcb. If no route * is found and it cannot be allocated, then return 0. This routine * is called by TCP routines that access the rmx structure and by * tcp_mss_update to get the peer/interface MTU. */ uint32_t tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap) { struct nhop4_extended nh4; struct ifnet *ifp; uint32_t maxmtu = 0; KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer")); if (inc->inc_faddr.s_addr != INADDR_ANY) { if (fib4_lookup_nh_ext(inc->inc_fibnum, inc->inc_faddr, NHR_REF, 0, &nh4) != 0) return (0); ifp = nh4.nh_ifp; maxmtu = nh4.nh_mtu; /* Report additional interface capabilities. */ if (cap != NULL) { if (ifp->if_capenable & IFCAP_TSO4 && ifp->if_hwassist & CSUM_TSO) { cap->ifcap |= CSUM_TSO; cap->tsomax = ifp->if_hw_tsomax; cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; } } fib4_free_nh_ext(inc->inc_fibnum, &nh4); } return (maxmtu); } #endif /* INET */ #ifdef INET6 uint32_t tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap) { struct nhop6_extended nh6; struct in6_addr dst6; uint32_t scopeid; struct ifnet *ifp; uint32_t maxmtu = 0; KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer")); if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) { in6_splitscope(&inc->inc6_faddr, &dst6, &scopeid); if (fib6_lookup_nh_ext(inc->inc_fibnum, &dst6, scopeid, 0, 0, &nh6) != 0) return (0); ifp = nh6.nh_ifp; maxmtu = nh6.nh_mtu; /* Report additional interface capabilities. */ if (cap != NULL) { if (ifp->if_capenable & IFCAP_TSO6 && ifp->if_hwassist & CSUM_TSO) { cap->ifcap |= CSUM_TSO; cap->tsomax = ifp->if_hw_tsomax; cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; } } fib6_free_nh_ext(inc->inc_fibnum, &nh6); } return (maxmtu); } #endif /* INET6 */ /* * Calculate effective SMSS per RFC5681 definition for a given TCP * connection at its current state, taking into account SACK and etc. */ u_int tcp_maxseg(const struct tcpcb *tp) { u_int optlen; if (tp->t_flags & TF_NOOPT) return (tp->t_maxseg); /* * Here we have a simplified code from tcp_addoptions(), * without a proper loop, and having most of paddings hardcoded. * We might make mistakes with padding here in some edge cases, * but this is harmless, since result of tcp_maxseg() is used * only in cwnd and ssthresh estimations. */ #define PAD(len) ((((len) / 4) + !!((len) % 4)) * 4) if (TCPS_HAVEESTABLISHED(tp->t_state)) { if (tp->t_flags & TF_RCVD_TSTMP) optlen = TCPOLEN_TSTAMP_APPA; else optlen = 0; #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) if (tp->t_flags & TF_SIGNATURE) optlen += PAD(TCPOLEN_SIGNATURE); #endif if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) { optlen += TCPOLEN_SACKHDR; optlen += tp->rcv_numsacks * TCPOLEN_SACK; optlen = PAD(optlen); } } else { if (tp->t_flags & TF_REQ_TSTMP) optlen = TCPOLEN_TSTAMP_APPA; else optlen = PAD(TCPOLEN_MAXSEG); if (tp->t_flags & TF_REQ_SCALE) optlen += PAD(TCPOLEN_WINDOW); #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) if (tp->t_flags & TF_SIGNATURE) optlen += PAD(TCPOLEN_SIGNATURE); #endif if (tp->t_flags & TF_SACK_PERMIT) optlen += PAD(TCPOLEN_SACK_PERMITTED); } #undef PAD optlen = min(optlen, TCP_MAXOLEN); return (tp->t_maxseg - optlen); } static int sysctl_drop(SYSCTL_HANDLER_ARGS) { /* addrs[0] is a foreign socket, addrs[1] is a local one. */ struct sockaddr_storage addrs[2]; struct inpcb *inp; struct tcpcb *tp; struct tcptw *tw; struct sockaddr_in *fin, *lin; #ifdef INET6 struct sockaddr_in6 *fin6, *lin6; #endif int error; inp = NULL; fin = lin = NULL; #ifdef INET6 fin6 = lin6 = NULL; #endif error = 0; if (req->oldptr != NULL || req->oldlen != 0) return (EINVAL); if (req->newptr == NULL) return (EPERM); if (req->newlen < sizeof(addrs)) return (ENOMEM); error = SYSCTL_IN(req, &addrs, sizeof(addrs)); if (error) return (error); switch (addrs[0].ss_family) { #ifdef INET6 case AF_INET6: fin6 = (struct sockaddr_in6 *)&addrs[0]; lin6 = (struct sockaddr_in6 *)&addrs[1]; if (fin6->sin6_len != sizeof(struct sockaddr_in6) || lin6->sin6_len != sizeof(struct sockaddr_in6)) return (EINVAL); if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) { if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr)) return (EINVAL); in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]); in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]); fin = (struct sockaddr_in *)&addrs[0]; lin = (struct sockaddr_in *)&addrs[1]; break; } error = sa6_embedscope(fin6, V_ip6_use_defzone); if (error) return (error); error = sa6_embedscope(lin6, V_ip6_use_defzone); if (error) return (error); break; #endif #ifdef INET case AF_INET: fin = (struct sockaddr_in *)&addrs[0]; lin = (struct sockaddr_in *)&addrs[1]; if (fin->sin_len != sizeof(struct sockaddr_in) || lin->sin_len != sizeof(struct sockaddr_in)) return (EINVAL); break; #endif default: return (EINVAL); } INP_INFO_RLOCK(&V_tcbinfo); switch (addrs[0].ss_family) { #ifdef INET6 case AF_INET6: inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr, fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, INPLOOKUP_WLOCKPCB, NULL); break; #endif #ifdef INET case AF_INET: inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port, lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL); break; #endif } if (inp != NULL) { if (inp->inp_flags & INP_TIMEWAIT) { /* * XXXRW: There currently exists a state where an * inpcb is present, but its timewait state has been * discarded. For now, don't allow dropping of this * type of inpcb. */ tw = intotw(inp); if (tw != NULL) tcp_twclose(tw, 0); else INP_WUNLOCK(inp); } else if (!(inp->inp_flags & INP_DROPPED) && !(inp->inp_socket->so_options & SO_ACCEPTCONN)) { tp = intotcpcb(inp); tp = tcp_drop(tp, ECONNABORTED); if (tp != NULL) INP_WUNLOCK(inp); } else INP_WUNLOCK(inp); } else error = ESRCH; INP_INFO_RUNLOCK(&V_tcbinfo); return (error); } SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop, CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL, 0, sysctl_drop, "", "Drop TCP connection"); /* * Generate a standardized TCP log line for use throughout the * tcp subsystem. Memory allocation is done with M_NOWAIT to * allow use in the interrupt context. * * NB: The caller MUST free(s, M_TCPLOG) the returned string. * NB: The function may return NULL if memory allocation failed. * * Due to header inclusion and ordering limitations the struct ip * and ip6_hdr pointers have to be passed as void pointers. */ char * tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, const void *ip6hdr) { /* Is logging enabled? */ if (tcp_log_in_vain == 0) return (NULL); return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); } char * tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, const void *ip6hdr) { /* Is logging enabled? */ if (tcp_log_debug == 0) return (NULL); return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); } static char * tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, const void *ip6hdr) { char *s, *sp; size_t size; struct ip *ip; #ifdef INET6 const struct ip6_hdr *ip6; ip6 = (const struct ip6_hdr *)ip6hdr; #endif /* INET6 */ ip = (struct ip *)ip4hdr; /* * The log line looks like this: * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2" */ size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") + sizeof(PRINT_TH_FLAGS) + 1 + #ifdef INET6 2 * INET6_ADDRSTRLEN; #else 2 * INET_ADDRSTRLEN; #endif /* INET6 */ s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT); if (s == NULL) return (NULL); strcat(s, "TCP: ["); sp = s + strlen(s); if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) { inet_ntoa_r(inc->inc_faddr, sp); sp = s + strlen(s); sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); sp = s + strlen(s); inet_ntoa_r(inc->inc_laddr, sp); sp = s + strlen(s); sprintf(sp, "]:%i", ntohs(inc->inc_lport)); #ifdef INET6 } else if (inc) { ip6_sprintf(sp, &inc->inc6_faddr); sp = s + strlen(s); sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); sp = s + strlen(s); ip6_sprintf(sp, &inc->inc6_laddr); sp = s + strlen(s); sprintf(sp, "]:%i", ntohs(inc->inc_lport)); } else if (ip6 && th) { ip6_sprintf(sp, &ip6->ip6_src); sp = s + strlen(s); sprintf(sp, "]:%i to [", ntohs(th->th_sport)); sp = s + strlen(s); ip6_sprintf(sp, &ip6->ip6_dst); sp = s + strlen(s); sprintf(sp, "]:%i", ntohs(th->th_dport)); #endif /* INET6 */ #ifdef INET } else if (ip && th) { inet_ntoa_r(ip->ip_src, sp); sp = s + strlen(s); sprintf(sp, "]:%i to [", ntohs(th->th_sport)); sp = s + strlen(s); inet_ntoa_r(ip->ip_dst, sp); sp = s + strlen(s); sprintf(sp, "]:%i", ntohs(th->th_dport)); #endif /* INET */ } else { free(s, M_TCPLOG); return (NULL); } sp = s + strlen(s); if (th) sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS); if (*(s + size - 1) != '\0') panic("%s: string too long", __func__); return (s); } /* * A subroutine which makes it easy to track TCP state changes with DTrace. * This function shouldn't be called for t_state initializations that don't * correspond to actual TCP state transitions. */ void tcp_state_change(struct tcpcb *tp, int newstate) { #if defined(KDTRACE_HOOKS) int pstate = tp->t_state; #endif TCPSTATES_DEC(tp->t_state); TCPSTATES_INC(newstate); tp->t_state = newstate; TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate); } /* * Create an external-format (``xtcpcb'') structure using the information in * the kernel-format tcpcb structure pointed to by tp. This is done to * reduce the spew of irrelevant information over this interface, to isolate * user code from changes in the kernel structure, and potentially to provide * information-hiding if we decide that some of this information should be * hidden from users. */ void tcp_inptoxtp(const struct inpcb *inp, struct xtcpcb *xt) { struct tcpcb *tp = intotcpcb(inp); sbintime_t now; if (inp->inp_flags & INP_TIMEWAIT) { bzero(xt, sizeof(struct xtcpcb)); xt->t_state = TCPS_TIME_WAIT; } else { xt->t_state = tp->t_state; xt->t_flags = tp->t_flags; xt->t_sndzerowin = tp->t_sndzerowin; xt->t_sndrexmitpack = tp->t_sndrexmitpack; xt->t_rcvoopack = tp->t_rcvoopack; now = getsbinuptime(); #define COPYTIMER(ttt) do { \ if (callout_active(&tp->t_timers->ttt)) \ xt->ttt = (tp->t_timers->ttt.c_time - now) / \ SBT_1MS; \ else \ xt->ttt = 0; \ } while (0) COPYTIMER(tt_delack); COPYTIMER(tt_rexmt); COPYTIMER(tt_persist); COPYTIMER(tt_keep); COPYTIMER(tt_2msl); #undef COPYTIMER xt->t_rcvtime = 1000 * (ticks - tp->t_rcvtime) / hz; bcopy(tp->t_fb->tfb_tcp_block_name, xt->xt_stack, TCP_FUNCTION_NAME_LEN_MAX); } xt->xt_len = sizeof(struct xtcpcb); in_pcbtoxinpcb(inp, &xt->xt_inp); if (inp->inp_socket == NULL) xt->xt_inp.xi_socket.xso_protocol = IPPROTO_TCP; } Index: head/sys/netinet/udp_usrreq.c =================================================================== --- head/sys/netinet/udp_usrreq.c (revision 318320) +++ head/sys/netinet/udp_usrreq.c (revision 318321) @@ -1,1794 +1,1793 @@ /*- * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 * The Regents of the University of California. * Copyright (c) 2008 Robert N. M. Watson * Copyright (c) 2010-2011 Juniper Networks, Inc. * Copyright (c) 2014 Kevin Lo * All rights reserved. * * Portions of this software were developed by Robert N. M. Watson under * contract to Juniper Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif #include #include #include #include #ifdef INET6 #include #endif #include #include #include #include #include #include #include /* * UDP and UDP-Lite protocols implementation. * Per RFC 768, August, 1980. * Per RFC 3828, July, 2004. */ /* * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums * removes the only data integrity mechanism for packets and malformed * packets that would otherwise be discarded due to bad checksums, and may * cause problems (especially for NFS data blocks). */ VNET_DEFINE(int, udp_cksum) = 1; SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(udp_cksum), 0, "compute udp checksum"); int udp_log_in_vain = 0; SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW, &udp_log_in_vain, 0, "Log all incoming UDP packets"); VNET_DEFINE(int, udp_blackhole) = 0; SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(udp_blackhole), 0, "Do not send port unreachables for refused connects"); u_long udp_sendspace = 9216; /* really max datagram size */ SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); u_long udp_recvspace = 40 * (1024 + #ifdef INET6 sizeof(struct sockaddr_in6) #else sizeof(struct sockaddr_in) #endif ); /* 40 1K datagrams */ SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, &udp_recvspace, 0, "Maximum space for incoming UDP datagrams"); VNET_DEFINE(struct inpcbhead, udb); /* from udp_var.h */ VNET_DEFINE(struct inpcbinfo, udbinfo); VNET_DEFINE(struct inpcbhead, ulitecb); VNET_DEFINE(struct inpcbinfo, ulitecbinfo); static VNET_DEFINE(uma_zone_t, udpcb_zone); #define V_udpcb_zone VNET(udpcb_zone) #ifndef UDBHASHSIZE #define UDBHASHSIZE 128 #endif VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */ VNET_PCPUSTAT_SYSINIT(udpstat); SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat, udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); #ifdef VIMAGE VNET_PCPUSTAT_SYSUNINIT(udpstat); #endif /* VIMAGE */ #ifdef INET static void udp_detach(struct socket *so); static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *, struct mbuf *, struct thread *); #endif static void udp_zone_change(void *tag) { uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets); uma_zone_set_max(V_udpcb_zone, maxsockets); } static int udp_inpcb_init(void *mem, int size, int flags) { struct inpcb *inp; inp = mem; INP_LOCK_INIT(inp, "inp", "udpinp"); return (0); } static int udplite_inpcb_init(void *mem, int size, int flags) { struct inpcb *inp; inp = mem; INP_LOCK_INIT(inp, "inp", "udpliteinp"); return (0); } void udp_init(void) { /* * For now default to 2-tuple UDP hashing - until the fragment * reassembly code can also update the flowid. * * Once we can calculate the flowid that way and re-establish * a 4-tuple, flip this to 4-tuple. */ in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE, - "udp_inpcb", udp_inpcb_init, NULL, 0, - IPI_HASHFIELDS_2TUPLE); + "udp_inpcb", udp_inpcb_init, IPI_HASHFIELDS_2TUPLE); V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); uma_zone_set_max(V_udpcb_zone, maxsockets); uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached"); EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL, EVENTHANDLER_PRI_ANY); } void udplite_init(void) { in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE, - UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init, NULL, - 0, IPI_HASHFIELDS_2TUPLE); + UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init, + IPI_HASHFIELDS_2TUPLE); } /* * Kernel module interface for updating udpstat. The argument is an index * into udpstat treated as an array of u_long. While this encodes the * general layout of udpstat into the caller, it doesn't encode its location, * so that future changes to add, for example, per-CPU stats support won't * cause binary compatibility problems for kernel modules. */ void kmod_udpstat_inc(int statnum) { counter_u64_add(VNET(udpstat)[statnum], 1); } int udp_newudpcb(struct inpcb *inp) { struct udpcb *up; up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO); if (up == NULL) return (ENOBUFS); inp->inp_ppcb = up; return (0); } void udp_discardcb(struct udpcb *up) { uma_zfree(V_udpcb_zone, up); } #ifdef VIMAGE static void udp_destroy(void *unused __unused) { in_pcbinfo_destroy(&V_udbinfo); uma_zdestroy(V_udpcb_zone); } VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL); static void udplite_destroy(void *unused __unused) { in_pcbinfo_destroy(&V_ulitecbinfo); } VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy, NULL); #endif #ifdef INET /* * Subroutine of udp_input(), which appends the provided mbuf chain to the * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that * contains the source address. If the socket ends up being an IPv6 socket, * udp_append() will convert to a sockaddr_in6 before passing the address * into the socket code. * * In the normal case udp_append() will return 0, indicating that you * must unlock the inp. However if a tunneling protocol is in place we increment * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we * then decrement the reference count. If the inp_rele returns 1, indicating the * inp is gone, we return that to the caller to tell them *not* to unlock * the inp. In the case of multi-cast this will cause the distribution * to stop (though most tunneling protocols known currently do *not* use * multicast). */ static int udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off, struct sockaddr_in *udp_in) { struct sockaddr *append_sa; struct socket *so; struct mbuf *tmpopts, *opts = NULL; #ifdef INET6 struct sockaddr_in6 udp_in6; #endif struct udpcb *up; INP_LOCK_ASSERT(inp); /* * Engage the tunneling protocol. */ up = intoudpcb(inp); if (up->u_tun_func != NULL) { in_pcbref(inp); INP_RUNLOCK(inp); (*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0], up->u_tun_ctx); INP_RLOCK(inp); return (in_pcbrele_rlocked(inp)); } off += sizeof(struct udphdr); #if defined(IPSEC) || defined(IPSEC_SUPPORT) /* Check AH/ESP integrity. */ if (IPSEC_ENABLED(ipv4) && IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) { m_freem(n); return (0); } if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */ if (IPSEC_ENABLED(ipv4) && UDPENCAP_INPUT(n, off, AF_INET) != 0) return (0); /* Consumed. */ } #endif /* IPSEC */ #ifdef MAC if (mac_inpcb_check_deliver(inp, n) != 0) { m_freem(n); return (0); } #endif /* MAC */ if (inp->inp_flags & INP_CONTROLOPTS || inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) { #ifdef INET6 if (inp->inp_vflag & INP_IPV6) (void)ip6_savecontrol_v4(inp, n, &opts, NULL); else #endif /* INET6 */ ip_savecontrol(inp, &opts, ip, n); } if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) { tmpopts = sbcreatecontrol((caddr_t)&udp_in[1], sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP); if (tmpopts) { if (opts) { tmpopts->m_next = opts; opts = tmpopts; } else opts = tmpopts; } } #ifdef INET6 if (inp->inp_vflag & INP_IPV6) { bzero(&udp_in6, sizeof(udp_in6)); udp_in6.sin6_len = sizeof(udp_in6); udp_in6.sin6_family = AF_INET6; in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6); append_sa = (struct sockaddr *)&udp_in6; } else #endif /* INET6 */ append_sa = (struct sockaddr *)&udp_in[0]; m_adj(n, off); so = inp->inp_socket; SOCKBUF_LOCK(&so->so_rcv); if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) { SOCKBUF_UNLOCK(&so->so_rcv); m_freem(n); if (opts) m_freem(opts); UDPSTAT_INC(udps_fullsock); } else sorwakeup_locked(so); return (0); } int udp_input(struct mbuf **mp, int *offp, int proto) { struct ip *ip; struct udphdr *uh; struct ifnet *ifp; struct inpcb *inp; uint16_t len, ip_len; struct inpcbinfo *pcbinfo; struct ip save_ip; struct sockaddr_in udp_in[2]; struct mbuf *m; struct m_tag *fwd_tag; int cscov_partial, iphlen; m = *mp; iphlen = *offp; ifp = m->m_pkthdr.rcvif; *mp = NULL; UDPSTAT_INC(udps_ipackets); /* * Strip IP options, if any; should skip this, make available to * user, and use on returned packets, but we don't yet have a way to * check the checksum with options still present. */ if (iphlen > sizeof (struct ip)) { ip_stripoptions(m); iphlen = sizeof(struct ip); } /* * Get IP and UDP header together in first mbuf. */ ip = mtod(m, struct ip *); if (m->m_len < iphlen + sizeof(struct udphdr)) { if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) { UDPSTAT_INC(udps_hdrops); return (IPPROTO_DONE); } ip = mtod(m, struct ip *); } uh = (struct udphdr *)((caddr_t)ip + iphlen); cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0; /* * Destination port of 0 is illegal, based on RFC768. */ if (uh->uh_dport == 0) goto badunlocked; /* * Construct sockaddr format source address. Stuff source address * and datagram in user buffer. */ bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2); udp_in[0].sin_len = sizeof(struct sockaddr_in); udp_in[0].sin_family = AF_INET; udp_in[0].sin_port = uh->uh_sport; udp_in[0].sin_addr = ip->ip_src; udp_in[1].sin_len = sizeof(struct sockaddr_in); udp_in[1].sin_family = AF_INET; udp_in[1].sin_port = uh->uh_dport; udp_in[1].sin_addr = ip->ip_dst; /* * Make mbuf data length reflect UDP length. If not enough data to * reflect UDP length, drop. */ len = ntohs((u_short)uh->uh_ulen); ip_len = ntohs(ip->ip_len) - iphlen; if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) { /* Zero means checksum over the complete packet. */ if (len == 0) len = ip_len; cscov_partial = 0; } if (ip_len != len) { if (len > ip_len || len < sizeof(struct udphdr)) { UDPSTAT_INC(udps_badlen); goto badunlocked; } if (proto == IPPROTO_UDP) m_adj(m, len - ip_len); } /* * Save a copy of the IP header in case we want restore it for * sending an ICMP error message in response. */ if (!V_udp_blackhole) save_ip = *ip; else memset(&save_ip, 0, sizeof(save_ip)); /* * Checksum extended UDP header and data. */ if (uh->uh_sum) { u_short uh_sum; if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && !cscov_partial) { if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) uh_sum = m->m_pkthdr.csum_data; else uh_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htonl((u_short)len + m->m_pkthdr.csum_data + proto)); uh_sum ^= 0xffff; } else { char b[9]; bcopy(((struct ipovly *)ip)->ih_x1, b, 9); bzero(((struct ipovly *)ip)->ih_x1, 9); ((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ? uh->uh_ulen : htons(ip_len); uh_sum = in_cksum(m, len + sizeof (struct ip)); bcopy(b, ((struct ipovly *)ip)->ih_x1, 9); } if (uh_sum) { UDPSTAT_INC(udps_badsum); m_freem(m); return (IPPROTO_DONE); } } else { if (proto == IPPROTO_UDP) { UDPSTAT_INC(udps_nosum); } else { /* UDPLite requires a checksum */ /* XXX: What is the right UDPLite MIB counter here? */ m_freem(m); return (IPPROTO_DONE); } } pcbinfo = udp_get_inpcbinfo(proto); if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || in_broadcast(ip->ip_dst, ifp)) { struct inpcb *last; struct inpcbhead *pcblist; struct ip_moptions *imo; INP_INFO_RLOCK(pcbinfo); pcblist = udp_get_pcblist(proto); last = NULL; LIST_FOREACH(inp, pcblist, inp_list) { if (inp->inp_lport != uh->uh_dport) continue; #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_laddr.s_addr != INADDR_ANY && inp->inp_laddr.s_addr != ip->ip_dst.s_addr) continue; if (inp->inp_faddr.s_addr != INADDR_ANY && inp->inp_faddr.s_addr != ip->ip_src.s_addr) continue; if (inp->inp_fport != 0 && inp->inp_fport != uh->uh_sport) continue; INP_RLOCK(inp); /* * XXXRW: Because we weren't holding either the inpcb * or the hash lock when we checked for a match * before, we should probably recheck now that the * inpcb lock is held. */ /* * Handle socket delivery policy for any-source * and source-specific multicast. [RFC3678] */ imo = inp->inp_moptions; if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { struct sockaddr_in group; int blocked; if (imo == NULL) { INP_RUNLOCK(inp); continue; } bzero(&group, sizeof(struct sockaddr_in)); group.sin_len = sizeof(struct sockaddr_in); group.sin_family = AF_INET; group.sin_addr = ip->ip_dst; blocked = imo_multi_filter(imo, ifp, (struct sockaddr *)&group, (struct sockaddr *)&udp_in[0]); if (blocked != MCAST_PASS) { if (blocked == MCAST_NOTGMEMBER) IPSTAT_INC(ips_notmember); if (blocked == MCAST_NOTSMEMBER || blocked == MCAST_MUTED) UDPSTAT_INC(udps_filtermcast); INP_RUNLOCK(inp); continue; } } if (last != NULL) { struct mbuf *n; if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) != NULL) { UDP_PROBE(receive, NULL, last, ip, last, uh); if (udp_append(last, ip, n, iphlen, udp_in)) { goto inp_lost; } } INP_RUNLOCK(last); } last = inp; /* * Don't look for additional matches if this one does * not have either the SO_REUSEPORT or SO_REUSEADDR * socket options set. This heuristic avoids * searching through all pcbs in the common case of a * non-shared port. It assumes that an application * will never clear these options after setting them. */ if ((last->inp_socket->so_options & (SO_REUSEPORT|SO_REUSEADDR)) == 0) break; } if (last == NULL) { /* * No matching pcb found; discard datagram. (No need * to send an ICMP Port Unreachable for a broadcast * or multicast datgram.) */ UDPSTAT_INC(udps_noportbcast); if (inp) INP_RUNLOCK(inp); INP_INFO_RUNLOCK(pcbinfo); goto badunlocked; } UDP_PROBE(receive, NULL, last, ip, last, uh); if (udp_append(last, ip, m, iphlen, udp_in) == 0) INP_RUNLOCK(last); inp_lost: INP_INFO_RUNLOCK(pcbinfo); return (IPPROTO_DONE); } /* * Locate pcb for datagram. */ /* * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */ if ((m->m_flags & M_IP_NEXTHOP) && (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { struct sockaddr_in *next_hop; next_hop = (struct sockaddr_in *)(fwd_tag + 1); /* * Transparently forwarded. Pretend to be the destination. * Already got one like this? */ inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m); if (!inp) { /* * It's new. Try to find the ambushing socket. * Because we've rewritten the destination address, * any hardware-generated hash is ignored. */ inp = in_pcblookup(pcbinfo, ip->ip_src, uh->uh_sport, next_hop->sin_addr, next_hop->sin_port ? htons(next_hop->sin_port) : uh->uh_dport, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, ifp); } /* Remove the tag from the packet. We don't need it anymore. */ m_tag_delete(m, fwd_tag); m->m_flags &= ~M_IP_NEXTHOP; } else inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, ifp, m); if (inp == NULL) { if (udp_log_in_vain) { char src[INET_ADDRSTRLEN]; char dst[INET_ADDRSTRLEN]; log(LOG_INFO, "Connection attempt to UDP %s:%d from %s:%d\n", inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport), inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport)); } UDPSTAT_INC(udps_noport); if (m->m_flags & (M_BCAST | M_MCAST)) { UDPSTAT_INC(udps_noportbcast); goto badunlocked; } if (V_udp_blackhole) goto badunlocked; if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) goto badunlocked; *ip = save_ip; icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); return (IPPROTO_DONE); } /* * Check the minimum TTL for socket. */ INP_RLOCK_ASSERT(inp); if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) { INP_RUNLOCK(inp); m_freem(m); return (IPPROTO_DONE); } if (cscov_partial) { struct udpcb *up; up = intoudpcb(inp); if (up->u_rxcslen == 0 || up->u_rxcslen > len) { INP_RUNLOCK(inp); m_freem(m); return (IPPROTO_DONE); } } UDP_PROBE(receive, NULL, inp, ip, inp, uh); if (udp_append(inp, ip, m, iphlen, udp_in) == 0) INP_RUNLOCK(inp); return (IPPROTO_DONE); badunlocked: m_freem(m); return (IPPROTO_DONE); } #endif /* INET */ /* * Notify a udp user of an asynchronous error; just wake up so that they can * collect error status. */ struct inpcb * udp_notify(struct inpcb *inp, int errno) { /* * While udp_ctlinput() always calls udp_notify() with a read lock * when invoking it directly, in_pcbnotifyall() currently uses write * locks due to sharing code with TCP. For now, accept either a read * or a write lock, but a read lock is sufficient. */ INP_LOCK_ASSERT(inp); if ((errno == EHOSTUNREACH || errno == ENETUNREACH || errno == EHOSTDOWN) && inp->inp_route.ro_rt) { RTFREE(inp->inp_route.ro_rt); inp->inp_route.ro_rt = (struct rtentry *)NULL; } inp->inp_socket->so_error = errno; sorwakeup(inp->inp_socket); sowwakeup(inp->inp_socket); return (inp); } #ifdef INET static void udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip, struct inpcbinfo *pcbinfo) { struct ip *ip = vip; struct udphdr *uh; struct in_addr faddr; struct inpcb *inp; faddr = ((struct sockaddr_in *)sa)->sin_addr; if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) return; if (PRC_IS_REDIRECT(cmd)) { /* signal EHOSTDOWN, as it flushes the cached route */ in_pcbnotifyall(&V_udbinfo, faddr, EHOSTDOWN, udp_notify); return; } /* * Hostdead is ugly because it goes linearly through all PCBs. * * XXX: We never get this from ICMP, otherwise it makes an excellent * DoS attack on machines with many connections. */ if (cmd == PRC_HOSTDEAD) ip = NULL; else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) return; if (ip != NULL) { uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport, ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL); if (inp != NULL) { INP_RLOCK_ASSERT(inp); if (inp->inp_socket != NULL) { udp_notify(inp, inetctlerrmap[cmd]); } INP_RUNLOCK(inp); } else { inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport, ip->ip_src, uh->uh_sport, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); if (inp != NULL) { struct udpcb *up; up = intoudpcb(inp); if (up->u_icmp_func != NULL) { INP_RUNLOCK(inp); (*up->u_icmp_func)(cmd, sa, vip, up->u_tun_ctx); } else { INP_RUNLOCK(inp); } } } } else in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd], udp_notify); } void udp_ctlinput(int cmd, struct sockaddr *sa, void *vip) { return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo)); } void udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip) { return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo)); } #endif /* INET */ static int udp_pcblist(SYSCTL_HANDLER_ARGS) { int error, i, n; struct inpcb *inp, **inp_list; inp_gen_t gencnt; struct xinpgen xig; /* * The process of preparing the PCB list is too time-consuming and * resource-intensive to repeat twice on every request. */ if (req->oldptr == 0) { n = V_udbinfo.ipi_count; n += imax(n / 8, 10); req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); return (0); } if (req->newptr != 0) return (EPERM); /* * OK, now we're committed to doing something. */ INP_INFO_RLOCK(&V_udbinfo); gencnt = V_udbinfo.ipi_gencnt; n = V_udbinfo.ipi_count; INP_INFO_RUNLOCK(&V_udbinfo); error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) + n * sizeof(struct xinpcb)); if (error != 0) return (error); xig.xig_len = sizeof xig; xig.xig_count = n; xig.xig_gen = gencnt; xig.xig_sogen = so_gencnt; error = SYSCTL_OUT(req, &xig, sizeof xig); if (error) return (error); inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); if (inp_list == NULL) return (ENOMEM); INP_INFO_RLOCK(&V_udbinfo); for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n; inp = LIST_NEXT(inp, inp_list)) { INP_WLOCK(inp); if (inp->inp_gencnt <= gencnt && cr_canseeinpcb(req->td->td_ucred, inp) == 0) { in_pcbref(inp); inp_list[i++] = inp; } INP_WUNLOCK(inp); } INP_INFO_RUNLOCK(&V_udbinfo); n = i; error = 0; for (i = 0; i < n; i++) { inp = inp_list[i]; INP_RLOCK(inp); if (inp->inp_gencnt <= gencnt) { struct xinpcb xi; in_pcbtoxinpcb(inp, &xi); INP_RUNLOCK(inp); error = SYSCTL_OUT(req, &xi, sizeof xi); } else INP_RUNLOCK(inp); } INP_INFO_WLOCK(&V_udbinfo); for (i = 0; i < n; i++) { inp = inp_list[i]; INP_RLOCK(inp); if (!in_pcbrele_rlocked(inp)) INP_RUNLOCK(inp); } INP_INFO_WUNLOCK(&V_udbinfo); if (!error) { /* * Give the user an updated idea of our state. If the * generation differs from what we told her before, she knows * that something happened while we were processing this * request, and it might be necessary to retry. */ INP_INFO_RLOCK(&V_udbinfo); xig.xig_gen = V_udbinfo.ipi_gencnt; xig.xig_sogen = so_gencnt; xig.xig_count = V_udbinfo.ipi_count; INP_INFO_RUNLOCK(&V_udbinfo); error = SYSCTL_OUT(req, &xig, sizeof xig); } free(inp_list, M_TEMP); return (error); } SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, udp_pcblist, "S,xinpcb", "List of active UDP sockets"); #ifdef INET static int udp_getcred(SYSCTL_HANDLER_ARGS) { struct xucred xuc; struct sockaddr_in addrs[2]; struct inpcb *inp; int error; error = priv_check(req->td, PRIV_NETINET_GETCRED); if (error) return (error); error = SYSCTL_IN(req, addrs, sizeof(addrs)); if (error) return (error); inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); if (inp != NULL) { INP_RLOCK_ASSERT(inp); if (inp->inp_socket == NULL) error = ENOENT; if (error == 0) error = cr_canseeinpcb(req->td->td_ucred, inp); if (error == 0) cru2x(inp->inp_cred, &xuc); INP_RUNLOCK(inp); } else error = ENOENT; if (error == 0) error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); return (error); } SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, udp_getcred, "S,xucred", "Get the xucred of a UDP connection"); #endif /* INET */ int udp_ctloutput(struct socket *so, struct sockopt *sopt) { struct inpcb *inp; struct udpcb *up; int isudplite, error, optval; error = 0; isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0; inp = sotoinpcb(so); KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); INP_WLOCK(inp); if (sopt->sopt_level != so->so_proto->pr_protocol) { #ifdef INET6 if (INP_CHECK_SOCKAF(so, AF_INET6)) { INP_WUNLOCK(inp); error = ip6_ctloutput(so, sopt); } #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET { INP_WUNLOCK(inp); error = ip_ctloutput(so, sopt); } #endif return (error); } switch (sopt->sopt_dir) { case SOPT_SET: switch (sopt->sopt_name) { #if defined(IPSEC) || defined(IPSEC_SUPPORT) #ifdef INET case UDP_ENCAP: if (!IPSEC_ENABLED(ipv4)) { INP_WUNLOCK(inp); return (ENOPROTOOPT); } error = UDPENCAP_PCBCTL(inp, sopt); break; #endif /* INET */ #endif /* IPSEC */ case UDPLITE_SEND_CSCOV: case UDPLITE_RECV_CSCOV: if (!isudplite) { INP_WUNLOCK(inp); error = ENOPROTOOPT; break; } INP_WUNLOCK(inp); error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error != 0) break; inp = sotoinpcb(so); KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); INP_WLOCK(inp); up = intoudpcb(inp); KASSERT(up != NULL, ("%s: up == NULL", __func__)); if ((optval != 0 && optval < 8) || (optval > 65535)) { INP_WUNLOCK(inp); error = EINVAL; break; } if (sopt->sopt_name == UDPLITE_SEND_CSCOV) up->u_txcslen = optval; else up->u_rxcslen = optval; INP_WUNLOCK(inp); break; default: INP_WUNLOCK(inp); error = ENOPROTOOPT; break; } break; case SOPT_GET: switch (sopt->sopt_name) { #if defined(IPSEC) || defined(IPSEC_SUPPORT) #ifdef INET case UDP_ENCAP: if (!IPSEC_ENABLED(ipv4)) { INP_WUNLOCK(inp); return (ENOPROTOOPT); } error = UDPENCAP_PCBCTL(inp, sopt); break; #endif /* INET */ #endif /* IPSEC */ case UDPLITE_SEND_CSCOV: case UDPLITE_RECV_CSCOV: if (!isudplite) { INP_WUNLOCK(inp); error = ENOPROTOOPT; break; } up = intoudpcb(inp); KASSERT(up != NULL, ("%s: up == NULL", __func__)); if (sopt->sopt_name == UDPLITE_SEND_CSCOV) optval = up->u_txcslen; else optval = up->u_rxcslen; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof(optval)); break; default: INP_WUNLOCK(inp); error = ENOPROTOOPT; break; } break; } return (error); } #ifdef INET #define UH_WLOCKED 2 #define UH_RLOCKED 1 #define UH_UNLOCKED 0 static int udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct thread *td) { struct udpiphdr *ui; int len = m->m_pkthdr.len; struct in_addr faddr, laddr; struct cmsghdr *cm; struct inpcbinfo *pcbinfo; struct sockaddr_in *sin, src; int cscov_partial = 0; int error = 0; int ipflags; u_short fport, lport; int unlock_udbinfo, unlock_inp; u_char tos; uint8_t pr; uint16_t cscov = 0; uint32_t flowid = 0; uint8_t flowtype = M_HASHTYPE_NONE; /* * udp_output() may need to temporarily bind or connect the current * inpcb. As such, we don't know up front whether we will need the * pcbinfo lock or not. Do any work to decide what is needed up * front before acquiring any locks. */ if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { if (control) m_freem(control); m_freem(m); return (EMSGSIZE); } src.sin_family = 0; sin = (struct sockaddr_in *)addr; if (sin == NULL || (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) { INP_WLOCK(inp); unlock_inp = UH_WLOCKED; } else { INP_RLOCK(inp); unlock_inp = UH_RLOCKED; } tos = inp->inp_ip_tos; if (control != NULL) { /* * XXX: Currently, we assume all the optional information is * stored in a single mbuf. */ if (control->m_next) { if (unlock_inp == UH_WLOCKED) INP_WUNLOCK(inp); else INP_RUNLOCK(inp); m_freem(control); m_freem(m); return (EINVAL); } for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { cm = mtod(control, struct cmsghdr *); if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) { error = EINVAL; break; } if (cm->cmsg_level != IPPROTO_IP) continue; switch (cm->cmsg_type) { case IP_SENDSRCADDR: if (cm->cmsg_len != CMSG_LEN(sizeof(struct in_addr))) { error = EINVAL; break; } bzero(&src, sizeof(src)); src.sin_family = AF_INET; src.sin_len = sizeof(src); src.sin_port = inp->inp_lport; src.sin_addr = *(struct in_addr *)CMSG_DATA(cm); break; case IP_TOS: if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) { error = EINVAL; break; } tos = *(u_char *)CMSG_DATA(cm); break; case IP_FLOWID: if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { error = EINVAL; break; } flowid = *(uint32_t *) CMSG_DATA(cm); break; case IP_FLOWTYPE: if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { error = EINVAL; break; } flowtype = *(uint32_t *) CMSG_DATA(cm); break; #ifdef RSS case IP_RSSBUCKETID: if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { error = EINVAL; break; } /* This is just a placeholder for now */ break; #endif /* RSS */ default: error = ENOPROTOOPT; break; } if (error) break; } m_freem(control); } if (error) { if (unlock_inp == UH_WLOCKED) INP_WUNLOCK(inp); else INP_RUNLOCK(inp); m_freem(m); return (error); } /* * Depending on whether or not the application has bound or connected * the socket, we may have to do varying levels of work. The optimal * case is for a connected UDP socket, as a global lock isn't * required at all. * * In order to decide which we need, we require stability of the * inpcb binding, which we ensure by acquiring a read lock on the * inpcb. This doesn't strictly follow the lock order, so we play * the trylock and retry game; note that we may end up with more * conservative locks than required the second time around, so later * assertions have to accept that. Further analysis of the number of * misses under contention is required. * * XXXRW: Check that hash locking update here is correct. */ pr = inp->inp_socket->so_proto->pr_protocol; pcbinfo = udp_get_inpcbinfo(pr); sin = (struct sockaddr_in *)addr; if (sin != NULL && (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) { INP_HASH_WLOCK(pcbinfo); unlock_udbinfo = UH_WLOCKED; } else if ((sin != NULL && ( (sin->sin_addr.s_addr == INADDR_ANY) || (sin->sin_addr.s_addr == INADDR_BROADCAST) || (inp->inp_laddr.s_addr == INADDR_ANY) || (inp->inp_lport == 0))) || (src.sin_family == AF_INET)) { INP_HASH_RLOCK(pcbinfo); unlock_udbinfo = UH_RLOCKED; } else unlock_udbinfo = UH_UNLOCKED; /* * If the IP_SENDSRCADDR control message was specified, override the * source address for this datagram. Its use is invalidated if the * address thus specified is incomplete or clobbers other inpcbs. */ laddr = inp->inp_laddr; lport = inp->inp_lport; if (src.sin_family == AF_INET) { INP_HASH_LOCK_ASSERT(pcbinfo); if ((lport == 0) || (laddr.s_addr == INADDR_ANY && src.sin_addr.s_addr == INADDR_ANY)) { error = EINVAL; goto release; } error = in_pcbbind_setup(inp, (struct sockaddr *)&src, &laddr.s_addr, &lport, td->td_ucred); if (error) goto release; } /* * If a UDP socket has been connected, then a local address/port will * have been selected and bound. * * If a UDP socket has not been connected to, then an explicit * destination address must be used, in which case a local * address/port may not have been selected and bound. */ if (sin != NULL) { INP_LOCK_ASSERT(inp); if (inp->inp_faddr.s_addr != INADDR_ANY) { error = EISCONN; goto release; } /* * Jail may rewrite the destination address, so let it do * that before we use it. */ error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); if (error) goto release; /* * If a local address or port hasn't yet been selected, or if * the destination address needs to be rewritten due to using * a special INADDR_ constant, invoke in_pcbconnect_setup() * to do the heavy lifting. Once a port is selected, we * commit the binding back to the socket; we also commit the * binding of the address if in jail. * * If we already have a valid binding and we're not * requesting a destination address rewrite, use a fast path. */ if (inp->inp_laddr.s_addr == INADDR_ANY || inp->inp_lport == 0 || sin->sin_addr.s_addr == INADDR_ANY || sin->sin_addr.s_addr == INADDR_BROADCAST) { INP_HASH_LOCK_ASSERT(pcbinfo); error = in_pcbconnect_setup(inp, addr, &laddr.s_addr, &lport, &faddr.s_addr, &fport, NULL, td->td_ucred); if (error) goto release; /* * XXXRW: Why not commit the port if the address is * !INADDR_ANY? */ /* Commit the local port if newly assigned. */ if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); /* * Remember addr if jailed, to prevent * rebinding. */ if (prison_flag(td->td_ucred, PR_IP4)) inp->inp_laddr = laddr; inp->inp_lport = lport; if (in_pcbinshash(inp) != 0) { inp->inp_lport = 0; error = EAGAIN; goto release; } inp->inp_flags |= INP_ANONPORT; } } else { faddr = sin->sin_addr; fport = sin->sin_port; } } else { INP_LOCK_ASSERT(inp); faddr = inp->inp_faddr; fport = inp->inp_fport; if (faddr.s_addr == INADDR_ANY) { error = ENOTCONN; goto release; } } /* * Calculate data length and get a mbuf for UDP, IP, and possible * link-layer headers. Immediate slide the data pointer back forward * since we won't use that space at this layer. */ M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT); if (m == NULL) { error = ENOBUFS; goto release; } m->m_data += max_linkhdr; m->m_len -= max_linkhdr; m->m_pkthdr.len -= max_linkhdr; /* * Fill in mbuf with extended UDP header and addresses and length put * into network format. */ ui = mtod(m, struct udpiphdr *); bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */ ui->ui_pr = pr; ui->ui_src = laddr; ui->ui_dst = faddr; ui->ui_sport = lport; ui->ui_dport = fport; ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); if (pr == IPPROTO_UDPLITE) { struct udpcb *up; uint16_t plen; up = intoudpcb(inp); cscov = up->u_txcslen; plen = (u_short)len + sizeof(struct udphdr); if (cscov >= plen) cscov = 0; ui->ui_len = htons(plen); ui->ui_ulen = htons(cscov); /* * For UDP-Lite, checksum coverage length of zero means * the entire UDPLite packet is covered by the checksum. */ cscov_partial = (cscov == 0) ? 0 : 1; } else ui->ui_v = IPVERSION << 4; /* * Set the Don't Fragment bit in the IP header. */ if (inp->inp_flags & INP_DONTFRAG) { struct ip *ip; ip = (struct ip *)&ui->ui_i; ip->ip_off |= htons(IP_DF); } ipflags = 0; if (inp->inp_socket->so_options & SO_DONTROUTE) ipflags |= IP_ROUTETOIF; if (inp->inp_socket->so_options & SO_BROADCAST) ipflags |= IP_ALLOWBROADCAST; if (inp->inp_flags & INP_ONESBCAST) ipflags |= IP_SENDONES; #ifdef MAC mac_inpcb_create_mbuf(inp, m); #endif /* * Set up checksum and output datagram. */ ui->ui_sum = 0; if (pr == IPPROTO_UDPLITE) { if (inp->inp_flags & INP_ONESBCAST) faddr.s_addr = INADDR_BROADCAST; if (cscov_partial) { if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0) ui->ui_sum = 0xffff; } else { if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0) ui->ui_sum = 0xffff; } } else if (V_udp_cksum) { if (inp->inp_flags & INP_ONESBCAST) faddr.s_addr = INADDR_BROADCAST; ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr, htons((u_short)len + sizeof(struct udphdr) + pr)); m->m_pkthdr.csum_flags = CSUM_UDP; m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); } ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len); ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ ((struct ip *)ui)->ip_tos = tos; /* XXX */ UDPSTAT_INC(udps_opackets); /* * Setup flowid / RSS information for outbound socket. * * Once the UDP code decides to set a flowid some other way, * this allows the flowid to be overridden by userland. */ if (flowtype != M_HASHTYPE_NONE) { m->m_pkthdr.flowid = flowid; M_HASHTYPE_SET(m, flowtype); #ifdef RSS } else { uint32_t hash_val, hash_type; /* * Calculate an appropriate RSS hash for UDP and * UDP Lite. * * The called function will take care of figuring out * whether a 2-tuple or 4-tuple hash is required based * on the currently configured scheme. * * Later later on connected socket values should be * cached in the inpcb and reused, rather than constantly * re-calculating it. * * UDP Lite is a different protocol number and will * likely end up being hashed as a 2-tuple until * RSS / NICs grow UDP Lite protocol awareness. */ if (rss_proto_software_hash_v4(faddr, laddr, fport, lport, pr, &hash_val, &hash_type) == 0) { m->m_pkthdr.flowid = hash_val; M_HASHTYPE_SET(m, hash_type); } #endif } #ifdef RSS /* * Don't override with the inp cached flowid value. * * Depending upon the kind of send being done, the inp * flowid/flowtype values may actually not be appropriate * for this particular socket send. * * We should either leave the flowid at zero (which is what is * currently done) or set it to some software generated * hash value based on the packet contents. */ ipflags |= IP_NODEFAULTFLOWID; #endif /* RSS */ if (unlock_udbinfo == UH_WLOCKED) INP_HASH_WUNLOCK(pcbinfo); else if (unlock_udbinfo == UH_RLOCKED) INP_HASH_RUNLOCK(pcbinfo); UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); error = ip_output(m, inp->inp_options, (unlock_inp == UH_WLOCKED ? &inp->inp_route : NULL), ipflags, inp->inp_moptions, inp); if (unlock_inp == UH_WLOCKED) INP_WUNLOCK(inp); else INP_RUNLOCK(inp); return (error); release: if (unlock_udbinfo == UH_WLOCKED) { KASSERT(unlock_inp == UH_WLOCKED, ("%s: excl udbinfo lock, shared inp lock", __func__)); INP_HASH_WUNLOCK(pcbinfo); INP_WUNLOCK(inp); } else if (unlock_udbinfo == UH_RLOCKED) { KASSERT(unlock_inp == UH_RLOCKED, ("%s: shared udbinfo lock, excl inp lock", __func__)); INP_HASH_RUNLOCK(pcbinfo); INP_RUNLOCK(inp); } else if (unlock_inp == UH_WLOCKED) INP_WUNLOCK(inp); else INP_RUNLOCK(inp); m_freem(m); return (error); } static void udp_abort(struct socket *so) { struct inpcb *inp; struct inpcbinfo *pcbinfo; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_abort: inp == NULL")); INP_WLOCK(inp); if (inp->inp_faddr.s_addr != INADDR_ANY) { INP_HASH_WLOCK(pcbinfo); in_pcbdisconnect(inp); inp->inp_laddr.s_addr = INADDR_ANY; INP_HASH_WUNLOCK(pcbinfo); soisdisconnected(so); } INP_WUNLOCK(inp); } static int udp_attach(struct socket *so, int proto, struct thread *td) { struct inpcb *inp; struct inpcbinfo *pcbinfo; int error; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp == NULL, ("udp_attach: inp != NULL")); error = soreserve(so, udp_sendspace, udp_recvspace); if (error) return (error); INP_INFO_WLOCK(pcbinfo); error = in_pcballoc(so, pcbinfo); if (error) { INP_INFO_WUNLOCK(pcbinfo); return (error); } inp = sotoinpcb(so); inp->inp_vflag |= INP_IPV4; inp->inp_ip_ttl = V_ip_defttl; error = udp_newudpcb(inp); if (error) { in_pcbdetach(inp); in_pcbfree(inp); INP_INFO_WUNLOCK(pcbinfo); return (error); } INP_WUNLOCK(inp); INP_INFO_WUNLOCK(pcbinfo); return (0); } #endif /* INET */ int udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx) { struct inpcb *inp; struct udpcb *up; KASSERT(so->so_type == SOCK_DGRAM, ("udp_set_kernel_tunneling: !dgram")); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL")); INP_WLOCK(inp); up = intoudpcb(inp); if ((up->u_tun_func != NULL) || (up->u_icmp_func != NULL)) { INP_WUNLOCK(inp); return (EBUSY); } up->u_tun_func = f; up->u_icmp_func = i; up->u_tun_ctx = ctx; INP_WUNLOCK(inp); return (0); } #ifdef INET static int udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { struct inpcb *inp; struct inpcbinfo *pcbinfo; int error; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_bind: inp == NULL")); INP_WLOCK(inp); INP_HASH_WLOCK(pcbinfo); error = in_pcbbind(inp, nam, td->td_ucred); INP_HASH_WUNLOCK(pcbinfo); INP_WUNLOCK(inp); return (error); } static void udp_close(struct socket *so) { struct inpcb *inp; struct inpcbinfo *pcbinfo; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_close: inp == NULL")); INP_WLOCK(inp); if (inp->inp_faddr.s_addr != INADDR_ANY) { INP_HASH_WLOCK(pcbinfo); in_pcbdisconnect(inp); inp->inp_laddr.s_addr = INADDR_ANY; INP_HASH_WUNLOCK(pcbinfo); soisdisconnected(so); } INP_WUNLOCK(inp); } static int udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { struct inpcb *inp; struct inpcbinfo *pcbinfo; struct sockaddr_in *sin; int error; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_connect: inp == NULL")); INP_WLOCK(inp); if (inp->inp_faddr.s_addr != INADDR_ANY) { INP_WUNLOCK(inp); return (EISCONN); } sin = (struct sockaddr_in *)nam; error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); if (error != 0) { INP_WUNLOCK(inp); return (error); } INP_HASH_WLOCK(pcbinfo); error = in_pcbconnect(inp, nam, td->td_ucred); INP_HASH_WUNLOCK(pcbinfo); if (error == 0) soisconnected(so); INP_WUNLOCK(inp); return (error); } static void udp_detach(struct socket *so) { struct inpcb *inp; struct inpcbinfo *pcbinfo; struct udpcb *up; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_detach: inp == NULL")); KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, ("udp_detach: not disconnected")); INP_INFO_WLOCK(pcbinfo); INP_WLOCK(inp); up = intoudpcb(inp); KASSERT(up != NULL, ("%s: up == NULL", __func__)); inp->inp_ppcb = NULL; in_pcbdetach(inp); in_pcbfree(inp); INP_INFO_WUNLOCK(pcbinfo); udp_discardcb(up); } static int udp_disconnect(struct socket *so) { struct inpcb *inp; struct inpcbinfo *pcbinfo; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_disconnect: inp == NULL")); INP_WLOCK(inp); if (inp->inp_faddr.s_addr == INADDR_ANY) { INP_WUNLOCK(inp); return (ENOTCONN); } INP_HASH_WLOCK(pcbinfo); in_pcbdisconnect(inp); inp->inp_laddr.s_addr = INADDR_ANY; INP_HASH_WUNLOCK(pcbinfo); SOCK_LOCK(so); so->so_state &= ~SS_ISCONNECTED; /* XXX */ SOCK_UNLOCK(so); INP_WUNLOCK(inp); return (0); } static int udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct thread *td) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_send: inp == NULL")); return (udp_output(inp, m, addr, control, td)); } #endif /* INET */ int udp_shutdown(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_shutdown: inp == NULL")); INP_WLOCK(inp); socantsendmore(so); INP_WUNLOCK(inp); return (0); } #ifdef INET struct pr_usrreqs udp_usrreqs = { .pru_abort = udp_abort, .pru_attach = udp_attach, .pru_bind = udp_bind, .pru_connect = udp_connect, .pru_control = in_control, .pru_detach = udp_detach, .pru_disconnect = udp_disconnect, .pru_peeraddr = in_getpeeraddr, .pru_send = udp_send, .pru_soreceive = soreceive_dgram, .pru_sosend = sosend_dgram, .pru_shutdown = udp_shutdown, .pru_sockaddr = in_getsockaddr, .pru_sosetlabel = in_pcbsosetlabel, .pru_close = udp_close, }; #endif /* INET */