Index: head/sys/arm/arm/gic.c =================================================================== --- head/sys/arm/arm/gic.c (revision 316756) +++ head/sys/arm/arm/gic.c (revision 316757) @@ -1,1589 +1,1589 @@ /*- * Copyright (c) 2011 The FreeBSD Foundation * All rights reserved. * * Developed by Damjan Marion * * Based on OMAP4 GIC code by Ben Gray * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_platform.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INTRNG #include #endif #include #include #include #include #include #ifdef FDT #include #include #endif #include #include #ifdef INTRNG #include "pic_if.h" #include "msi_if.h" #endif /* We are using GICv2 register naming */ /* Distributor Registers */ /* CPU Registers */ #define GICC_CTLR 0x0000 /* v1 ICCICR */ #define GICC_PMR 0x0004 /* v1 ICCPMR */ #define GICC_BPR 0x0008 /* v1 ICCBPR */ #define GICC_IAR 0x000C /* v1 ICCIAR */ #define GICC_EOIR 0x0010 /* v1 ICCEOIR */ #define GICC_RPR 0x0014 /* v1 ICCRPR */ #define GICC_HPPIR 0x0018 /* v1 ICCHPIR */ #define GICC_ABPR 0x001C /* v1 ICCABPR */ #define GICC_IIDR 0x00FC /* v1 ICCIIDR*/ /* TYPER Registers */ #define GICD_TYPER_SECURITYEXT 0x400 #define GIC_SUPPORT_SECEXT(_sc) \ ((_sc->typer & GICD_TYPER_SECURITYEXT) == GICD_TYPER_SECURITYEXT) #ifndef GIC_DEFAULT_ICFGR_INIT #define GIC_DEFAULT_ICFGR_INIT 0x00000000 #endif #ifdef INTRNG struct gic_irqsrc { struct intr_irqsrc gi_isrc; uint32_t gi_irq; enum intr_polarity gi_pol; enum intr_trigger gi_trig; #define GI_FLAG_EARLY_EOI (1 << 0) #define GI_FLAG_MSI (1 << 1) /* This interrupt source should only */ /* be used for MSI/MSI-X interrupts */ #define GI_FLAG_MSI_USED (1 << 2) /* This irq is already allocated */ /* for a MSI/MSI-X interrupt */ u_int gi_flags; }; static u_int gic_irq_cpu; static int arm_gic_bind_intr(device_t dev, struct intr_irqsrc *isrc); #ifdef SMP static u_int sgi_to_ipi[GIC_LAST_SGI - GIC_FIRST_SGI + 1]; static u_int sgi_first_unused = GIC_FIRST_SGI; #endif #define GIC_INTR_ISRC(sc, irq) (&sc->gic_irqs[irq].gi_isrc) #else /* !INTRNG */ static struct ofw_compat_data compat_data[] = { {"arm,gic", true}, /* Non-standard, used in FreeBSD dts. */ {"arm,gic-400", true}, {"arm,cortex-a15-gic", true}, {"arm,cortex-a9-gic", true}, {"arm,cortex-a7-gic", true}, {"arm,arm11mp-gic", true}, {"brcm,brahma-b15-gic", true}, {"qcom,msm-qgic2", true}, {NULL, false} }; #endif static struct resource_spec arm_gic_spec[] = { { SYS_RES_MEMORY, 0, RF_ACTIVE }, /* Distributor registers */ { SYS_RES_MEMORY, 1, RF_ACTIVE }, /* CPU Interrupt Intf. registers */ #ifdef INTRNG { SYS_RES_IRQ, 0, RF_ACTIVE | RF_OPTIONAL }, /* Parent interrupt */ #endif { -1, 0 } }; static u_int arm_gic_map[MAXCPU]; static struct arm_gic_softc *gic_sc = NULL; #define gic_c_read_4(_sc, _reg) \ bus_space_read_4((_sc)->gic_c_bst, (_sc)->gic_c_bsh, (_reg)) #define gic_c_write_4(_sc, _reg, _val) \ bus_space_write_4((_sc)->gic_c_bst, (_sc)->gic_c_bsh, (_reg), (_val)) #define gic_d_read_4(_sc, _reg) \ bus_space_read_4((_sc)->gic_d_bst, (_sc)->gic_d_bsh, (_reg)) #define gic_d_write_1(_sc, _reg, _val) \ bus_space_write_1((_sc)->gic_d_bst, (_sc)->gic_d_bsh, (_reg), (_val)) #define gic_d_write_4(_sc, _reg, _val) \ bus_space_write_4((_sc)->gic_d_bst, (_sc)->gic_d_bsh, (_reg), (_val)) #ifndef INTRNG static int gic_config_irq(int irq, enum intr_trigger trig, enum intr_polarity pol); static void gic_post_filter(void *); #endif #ifdef INTRNG static inline void gic_irq_unmask(struct arm_gic_softc *sc, u_int irq) { gic_d_write_4(sc, GICD_ISENABLER(irq), GICD_I_MASK(irq)); } static inline void gic_irq_mask(struct arm_gic_softc *sc, u_int irq) { gic_d_write_4(sc, GICD_ICENABLER(irq), GICD_I_MASK(irq)); } #endif static uint8_t gic_cpu_mask(struct arm_gic_softc *sc) { uint32_t mask; int i; /* Read the current cpuid mask by reading ITARGETSR{0..7} */ for (i = 0; i < 8; i++) { mask = gic_d_read_4(sc, GICD_ITARGETSR(4 * i)); if (mask != 0) break; } /* No mask found, assume we are on CPU interface 0 */ if (mask == 0) return (1); /* Collect the mask in the lower byte */ mask |= mask >> 16; mask |= mask >> 8; return (mask); } #ifdef SMP #ifdef INTRNG static void arm_gic_init_secondary(device_t dev) { struct arm_gic_softc *sc = device_get_softc(dev); u_int irq, cpu; /* Set the mask so we can find this CPU to send it IPIs */ cpu = PCPU_GET(cpuid); arm_gic_map[cpu] = gic_cpu_mask(sc); for (irq = 0; irq < sc->nirqs; irq += 4) gic_d_write_4(sc, GICD_IPRIORITYR(irq), 0); /* Set all the interrupts to be in Group 0 (secure) */ for (irq = 0; GIC_SUPPORT_SECEXT(sc) && irq < sc->nirqs; irq += 32) { gic_d_write_4(sc, GICD_IGROUPR(irq), 0); } /* Enable CPU interface */ gic_c_write_4(sc, GICC_CTLR, 1); /* Set priority mask register. */ gic_c_write_4(sc, GICC_PMR, 0xff); /* Enable interrupt distribution */ gic_d_write_4(sc, GICD_CTLR, 0x01); /* Unmask attached SGI interrupts. */ for (irq = GIC_FIRST_SGI; irq <= GIC_LAST_SGI; irq++) if (intr_isrc_init_on_cpu(GIC_INTR_ISRC(sc, irq), cpu)) gic_irq_unmask(sc, irq); /* Unmask attached PPI interrupts. */ for (irq = GIC_FIRST_PPI; irq <= GIC_LAST_PPI; irq++) if (intr_isrc_init_on_cpu(GIC_INTR_ISRC(sc, irq), cpu)) gic_irq_unmask(sc, irq); } #else static void arm_gic_init_secondary(device_t dev) { struct arm_gic_softc *sc = device_get_softc(dev); int i; /* Set the mask so we can find this CPU to send it IPIs */ arm_gic_map[PCPU_GET(cpuid)] = gic_cpu_mask(sc); for (i = 0; i < sc->nirqs; i += 4) gic_d_write_4(sc, GICD_IPRIORITYR(i), 0); /* Set all the interrupts to be in Group 0 (secure) */ for (i = 0; GIC_SUPPORT_SECEXT(sc) && i < sc->nirqs; i += 32) { gic_d_write_4(sc, GICD_IGROUPR(i), 0); } /* Enable CPU interface */ gic_c_write_4(sc, GICC_CTLR, 1); /* Set priority mask register. */ gic_c_write_4(sc, GICC_PMR, 0xff); /* Enable interrupt distribution */ gic_d_write_4(sc, GICD_CTLR, 0x01); /* * Activate the timer interrupts: virtual, secure, and non-secure. */ gic_d_write_4(sc, GICD_ISENABLER(27), GICD_I_MASK(27)); gic_d_write_4(sc, GICD_ISENABLER(29), GICD_I_MASK(29)); gic_d_write_4(sc, GICD_ISENABLER(30), GICD_I_MASK(30)); } #endif /* INTRNG */ #endif /* SMP */ #ifndef INTRNG int gic_decode_fdt(phandle_t iparent, pcell_t *intr, int *interrupt, int *trig, int *pol) { static u_int num_intr_cells; static phandle_t self; struct ofw_compat_data *ocd; if (self == 0) { for (ocd = compat_data; ocd->ocd_str != NULL; ocd++) { if (ofw_bus_node_is_compatible(iparent, ocd->ocd_str)) { self = iparent; break; } } } if (self != iparent) return (ENXIO); if (num_intr_cells == 0) { if (OF_searchencprop(OF_node_from_xref(iparent), "#interrupt-cells", &num_intr_cells, sizeof(num_intr_cells)) == -1) { num_intr_cells = 1; } } if (num_intr_cells == 1) { *interrupt = fdt32_to_cpu(intr[0]); *trig = INTR_TRIGGER_CONFORM; *pol = INTR_POLARITY_CONFORM; } else { if (fdt32_to_cpu(intr[0]) == 0) *interrupt = fdt32_to_cpu(intr[1]) + GIC_FIRST_SPI; else *interrupt = fdt32_to_cpu(intr[1]) + GIC_FIRST_PPI; /* * In intr[2], bits[3:0] are trigger type and level flags. * 1 = low-to-high edge triggered * 2 = high-to-low edge triggered * 4 = active high level-sensitive * 8 = active low level-sensitive * The hardware only supports active-high-level or rising-edge * for SPIs */ if (*interrupt >= GIC_FIRST_SPI && fdt32_to_cpu(intr[2]) & 0x0a) { printf("unsupported trigger/polarity configuration " "0x%02x\n", fdt32_to_cpu(intr[2]) & 0x0f); } *pol = INTR_POLARITY_CONFORM; if (fdt32_to_cpu(intr[2]) & 0x03) *trig = INTR_TRIGGER_EDGE; else *trig = INTR_TRIGGER_LEVEL; } return (0); } #endif #ifdef INTRNG static int arm_gic_register_isrcs(struct arm_gic_softc *sc, uint32_t num) { int error; uint32_t irq; struct gic_irqsrc *irqs; struct intr_irqsrc *isrc; const char *name; irqs = malloc(num * sizeof(struct gic_irqsrc), M_DEVBUF, M_WAITOK | M_ZERO); name = device_get_nameunit(sc->gic_dev); for (irq = 0; irq < num; irq++) { irqs[irq].gi_irq = irq; irqs[irq].gi_pol = INTR_POLARITY_CONFORM; irqs[irq].gi_trig = INTR_TRIGGER_CONFORM; isrc = &irqs[irq].gi_isrc; if (irq <= GIC_LAST_SGI) { error = intr_isrc_register(isrc, sc->gic_dev, INTR_ISRCF_IPI, "%s,i%u", name, irq - GIC_FIRST_SGI); } else if (irq <= GIC_LAST_PPI) { error = intr_isrc_register(isrc, sc->gic_dev, INTR_ISRCF_PPI, "%s,p%u", name, irq - GIC_FIRST_PPI); } else { error = intr_isrc_register(isrc, sc->gic_dev, 0, "%s,s%u", name, irq - GIC_FIRST_SPI); } if (error != 0) { /* XXX call intr_isrc_deregister() */ free(irqs, M_DEVBUF); return (error); } } sc->gic_irqs = irqs; sc->nirqs = num; return (0); } static void arm_gic_reserve_msi_range(device_t dev, u_int start, u_int count) { struct arm_gic_softc *sc; int i; sc = device_get_softc(dev); KASSERT((start + count) < sc->nirqs, ("%s: Trying to allocate too many MSI IRQs: %d + %d > %d", __func__, start, count, sc->nirqs)); for (i = 0; i < count; i++) { KASSERT(sc->gic_irqs[start + i].gi_isrc.isrc_handlers == 0, ("%s: MSI interrupt %d already has a handler", __func__, count + i)); KASSERT(sc->gic_irqs[start + i].gi_pol == INTR_POLARITY_CONFORM, ("%s: MSI interrupt %d already has a polarity", __func__, count + i)); KASSERT(sc->gic_irqs[start + i].gi_trig == INTR_TRIGGER_CONFORM, ("%s: MSI interrupt %d already has a trigger", __func__, count + i)); sc->gic_irqs[start + i].gi_pol = INTR_POLARITY_HIGH; sc->gic_irqs[start + i].gi_trig = INTR_TRIGGER_EDGE; sc->gic_irqs[start + i].gi_flags |= GI_FLAG_MSI; } } #endif int arm_gic_attach(device_t dev) { struct arm_gic_softc *sc; int i; uint32_t icciidr, mask, nirqs; if (gic_sc) return (ENXIO); sc = device_get_softc(dev); if (bus_alloc_resources(dev, arm_gic_spec, sc->gic_res)) { device_printf(dev, "could not allocate resources\n"); return (ENXIO); } sc->gic_dev = dev; gic_sc = sc; /* Initialize mutex */ mtx_init(&sc->mutex, "GIC lock", "", MTX_SPIN); /* Distributor Interface */ sc->gic_d_bst = rman_get_bustag(sc->gic_res[0]); sc->gic_d_bsh = rman_get_bushandle(sc->gic_res[0]); /* CPU Interface */ sc->gic_c_bst = rman_get_bustag(sc->gic_res[1]); sc->gic_c_bsh = rman_get_bushandle(sc->gic_res[1]); /* Disable interrupt forwarding to the CPU interface */ gic_d_write_4(sc, GICD_CTLR, 0x00); /* Get the number of interrupts */ sc->typer = gic_d_read_4(sc, GICD_TYPER); nirqs = GICD_TYPER_I_NUM(sc->typer); #ifdef INTRNG if (arm_gic_register_isrcs(sc, nirqs)) { device_printf(dev, "could not register irqs\n"); goto cleanup; } #else sc->nirqs = nirqs; /* Set up function pointers */ arm_post_filter = gic_post_filter; arm_config_irq = gic_config_irq; #endif icciidr = gic_c_read_4(sc, GICC_IIDR); device_printf(dev, "pn 0x%x, arch 0x%x, rev 0x%x, implementer 0x%x irqs %u\n", GICD_IIDR_PROD(icciidr), GICD_IIDR_VAR(icciidr), GICD_IIDR_REV(icciidr), GICD_IIDR_IMPL(icciidr), sc->nirqs); #ifdef INTRNG sc->gic_iidr = icciidr; #endif /* Set all global interrupts to be level triggered, active low. */ for (i = 32; i < sc->nirqs; i += 16) { gic_d_write_4(sc, GICD_ICFGR(i), GIC_DEFAULT_ICFGR_INIT); } /* Disable all interrupts. */ for (i = 32; i < sc->nirqs; i += 32) { gic_d_write_4(sc, GICD_ICENABLER(i), 0xFFFFFFFF); } /* Find the current cpu mask */ mask = gic_cpu_mask(sc); /* Set the mask so we can find this CPU to send it IPIs */ arm_gic_map[PCPU_GET(cpuid)] = mask; /* Set all four targets to this cpu */ mask |= mask << 8; mask |= mask << 16; for (i = 0; i < sc->nirqs; i += 4) { gic_d_write_4(sc, GICD_IPRIORITYR(i), 0); if (i > 32) { gic_d_write_4(sc, GICD_ITARGETSR(i), mask); } } /* Set all the interrupts to be in Group 0 (secure) */ for (i = 0; GIC_SUPPORT_SECEXT(sc) && i < sc->nirqs; i += 32) { gic_d_write_4(sc, GICD_IGROUPR(i), 0); } /* Enable CPU interface */ gic_c_write_4(sc, GICC_CTLR, 1); /* Set priority mask register. */ gic_c_write_4(sc, GICC_PMR, 0xff); /* Enable interrupt distribution */ gic_d_write_4(sc, GICD_CTLR, 0x01); return (0); #ifdef INTRNG cleanup: arm_gic_detach(dev); return(ENXIO); #endif } int arm_gic_detach(device_t dev) { #ifdef INTRNG struct arm_gic_softc *sc; sc = device_get_softc(dev); if (sc->gic_irqs != NULL) free(sc->gic_irqs, M_DEVBUF); bus_release_resources(dev, arm_gic_spec, sc->gic_res); #endif return (0); } #ifdef INTRNG static int arm_gic_print_child(device_t bus, device_t child) { struct resource_list *rl; int rv; rv = bus_print_child_header(bus, child); rl = BUS_GET_RESOURCE_LIST(bus, child); if (rl != NULL) { rv += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx"); rv += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); } rv += bus_print_child_footer(bus, child); return (rv); } static struct resource * arm_gic_alloc_resource(device_t bus, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { struct arm_gic_softc *sc; struct resource_list_entry *rle; struct resource_list *rl; int j; KASSERT(type == SYS_RES_MEMORY, ("Invalid resoure type %x", type)); sc = device_get_softc(bus); /* * Request for the default allocation with a given rid: use resource * list stored in the local device info. */ if (RMAN_IS_DEFAULT_RANGE(start, end)) { rl = BUS_GET_RESOURCE_LIST(bus, child); if (type == SYS_RES_IOPORT) type = SYS_RES_MEMORY; rle = resource_list_find(rl, type, *rid); if (rle == NULL) { if (bootverbose) device_printf(bus, "no default resources for " "rid = %d, type = %d\n", *rid, type); return (NULL); } start = rle->start; end = rle->end; count = rle->count; } /* Remap through ranges property */ for (j = 0; j < sc->nranges; j++) { if (start >= sc->ranges[j].bus && end < sc->ranges[j].bus + sc->ranges[j].size) { start -= sc->ranges[j].bus; start += sc->ranges[j].host; end -= sc->ranges[j].bus; end += sc->ranges[j].host; break; } } if (j == sc->nranges && sc->nranges != 0) { if (bootverbose) device_printf(bus, "Could not map resource " "%#jx-%#jx\n", (uintmax_t)start, (uintmax_t)end); return (NULL); } return (bus_generic_alloc_resource(bus, child, type, rid, start, end, count, flags)); } static int arm_gic_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) { struct arm_gic_softc *sc; sc = device_get_softc(dev); switch(which) { case GIC_IVAR_HW_REV: KASSERT(GICD_IIDR_VAR(sc->gic_iidr) < 3 && GICD_IIDR_VAR(sc->gic_iidr) != 0, ("arm_gic_read_ivar: Unknown IIDR revision %u (%.08x)", GICD_IIDR_VAR(sc->gic_iidr), sc->gic_iidr)); *result = GICD_IIDR_VAR(sc->gic_iidr); return (0); case GIC_IVAR_BUS: KASSERT(sc->gic_bus != GIC_BUS_UNKNOWN, ("arm_gic_read_ivar: Unknown bus type")); KASSERT(sc->gic_bus <= GIC_BUS_MAX, ("arm_gic_read_ivar: Invalid bus type %u", sc->gic_bus)); *result = sc->gic_bus; return (0); } return (ENOENT); } int arm_gic_intr(void *arg) { struct arm_gic_softc *sc = arg; struct gic_irqsrc *gi; uint32_t irq_active_reg, irq; struct trapframe *tf; irq_active_reg = gic_c_read_4(sc, GICC_IAR); irq = irq_active_reg & 0x3FF; /* * 1. We do EOI here because recent read value from active interrupt * register must be used for it. Another approach is to save this * value into associated interrupt source. * 2. EOI must be done on same CPU where interrupt has fired. Thus * we must ensure that interrupted thread does not migrate to * another CPU. * 3. EOI cannot be delayed by any preemption which could happen on * critical_exit() used in MI intr code, when interrupt thread is * scheduled. See next point. * 4. IPI_RENDEZVOUS assumes that no preemption is permitted during * an action and any use of critical_exit() could break this * assumption. See comments within smp_rendezvous_action(). * 5. We always return FILTER_HANDLED as this is an interrupt * controller dispatch function. Otherwise, in cascaded interrupt * case, the whole interrupt subtree would be masked. */ if (irq >= sc->nirqs) { #ifdef GIC_DEBUG_SPURIOUS device_printf(sc->gic_dev, "Spurious interrupt detected: last irq: %d on CPU%d\n", sc->last_irq[PCPU_GET(cpuid)], PCPU_GET(cpuid)); #endif return (FILTER_HANDLED); } tf = curthread->td_intr_frame; dispatch_irq: gi = sc->gic_irqs + irq; /* * Note that GIC_FIRST_SGI is zero and is not used in 'if' statement * as compiler complains that comparing u_int >= 0 is always true. */ if (irq <= GIC_LAST_SGI) { #ifdef SMP /* Call EOI for all IPI before dispatch. */ gic_c_write_4(sc, GICC_EOIR, irq_active_reg); intr_ipi_dispatch(sgi_to_ipi[gi->gi_irq], tf); goto next_irq; #else device_printf(sc->gic_dev, "SGI %u on UP system detected\n", irq - GIC_FIRST_SGI); gic_c_write_4(sc, GICC_EOIR, irq_active_reg); goto next_irq; #endif } #ifdef GIC_DEBUG_SPURIOUS sc->last_irq[PCPU_GET(cpuid)] = irq; #endif if ((gi->gi_flags & GI_FLAG_EARLY_EOI) == GI_FLAG_EARLY_EOI) gic_c_write_4(sc, GICC_EOIR, irq_active_reg); if (intr_isrc_dispatch(&gi->gi_isrc, tf) != 0) { gic_irq_mask(sc, irq); if ((gi->gi_flags & GI_FLAG_EARLY_EOI) != GI_FLAG_EARLY_EOI) gic_c_write_4(sc, GICC_EOIR, irq_active_reg); device_printf(sc->gic_dev, "Stray irq %u disabled\n", irq); } next_irq: arm_irq_memory_barrier(irq); irq_active_reg = gic_c_read_4(sc, GICC_IAR); irq = irq_active_reg & 0x3FF; if (irq < sc->nirqs) goto dispatch_irq; return (FILTER_HANDLED); } static void gic_config(struct arm_gic_softc *sc, u_int irq, enum intr_trigger trig, enum intr_polarity pol) { uint32_t reg; uint32_t mask; if (irq < GIC_FIRST_SPI) return; mtx_lock_spin(&sc->mutex); reg = gic_d_read_4(sc, GICD_ICFGR(irq)); mask = (reg >> 2*(irq % 16)) & 0x3; if (pol == INTR_POLARITY_LOW) { mask &= ~GICD_ICFGR_POL_MASK; mask |= GICD_ICFGR_POL_LOW; } else if (pol == INTR_POLARITY_HIGH) { mask &= ~GICD_ICFGR_POL_MASK; mask |= GICD_ICFGR_POL_HIGH; } if (trig == INTR_TRIGGER_LEVEL) { mask &= ~GICD_ICFGR_TRIG_MASK; mask |= GICD_ICFGR_TRIG_LVL; } else if (trig == INTR_TRIGGER_EDGE) { mask &= ~GICD_ICFGR_TRIG_MASK; mask |= GICD_ICFGR_TRIG_EDGE; } /* Set mask */ reg = reg & ~(0x3 << 2*(irq % 16)); reg = reg | (mask << 2*(irq % 16)); gic_d_write_4(sc, GICD_ICFGR(irq), reg); mtx_unlock_spin(&sc->mutex); } static int gic_bind(struct arm_gic_softc *sc, u_int irq, cpuset_t *cpus) { uint32_t cpu, end, mask; end = min(mp_ncpus, 8); for (cpu = end; cpu < MAXCPU; cpu++) if (CPU_ISSET(cpu, cpus)) return (EINVAL); for (mask = 0, cpu = 0; cpu < end; cpu++) if (CPU_ISSET(cpu, cpus)) mask |= arm_gic_map[cpu]; gic_d_write_1(sc, GICD_ITARGETSR(0) + irq, mask); return (0); } #ifdef FDT static int gic_map_fdt(device_t dev, u_int ncells, pcell_t *cells, u_int *irqp, enum intr_polarity *polp, enum intr_trigger *trigp) { if (ncells == 1) { *irqp = cells[0]; *polp = INTR_POLARITY_CONFORM; *trigp = INTR_TRIGGER_CONFORM; return (0); } if (ncells == 3) { u_int irq, tripol; /* * The 1st cell is the interrupt type: * 0 = SPI * 1 = PPI * The 2nd cell contains the interrupt number: * [0 - 987] for SPI * [0 - 15] for PPI * The 3rd cell is the flags, encoded as follows: * bits[3:0] trigger type and level flags * 1 = low-to-high edge triggered * 2 = high-to-low edge triggered * 4 = active high level-sensitive * 8 = active low level-sensitive * bits[15:8] PPI interrupt cpu mask * Each bit corresponds to each of the 8 possible cpus * attached to the GIC. A bit set to '1' indicated * the interrupt is wired to that CPU. */ switch (cells[0]) { case 0: irq = GIC_FIRST_SPI + cells[1]; /* SPI irq is checked later. */ break; case 1: irq = GIC_FIRST_PPI + cells[1]; if (irq > GIC_LAST_PPI) { device_printf(dev, "unsupported PPI interrupt " "number %u\n", cells[1]); return (EINVAL); } break; default: device_printf(dev, "unsupported interrupt type " "configuration %u\n", cells[0]); return (EINVAL); } tripol = cells[2] & 0xff; if (tripol & 0xf0 || (tripol & FDT_INTR_LOW_MASK && cells[0] == 0)) device_printf(dev, "unsupported trigger/polarity " "configuration 0x%02x\n", tripol); *irqp = irq; *polp = INTR_POLARITY_CONFORM; *trigp = tripol & FDT_INTR_EDGE_MASK ? INTR_TRIGGER_EDGE : INTR_TRIGGER_LEVEL; return (0); } return (EINVAL); } #endif static int gic_map_msi(device_t dev, struct intr_map_data_msi *msi_data, u_int *irqp, enum intr_polarity *polp, enum intr_trigger *trigp) { struct gic_irqsrc *gi; /* Map a non-GICv2m MSI */ gi = (struct gic_irqsrc *)msi_data->isrc; if (gi == NULL) return (ENXIO); *irqp = gi->gi_irq; /* MSI/MSI-X interrupts are always edge triggered with high polarity */ *polp = INTR_POLARITY_HIGH; *trigp = INTR_TRIGGER_EDGE; return (0); } static int gic_map_intr(device_t dev, struct intr_map_data *data, u_int *irqp, enum intr_polarity *polp, enum intr_trigger *trigp) { u_int irq; enum intr_polarity pol; enum intr_trigger trig; struct arm_gic_softc *sc; struct intr_map_data_msi *dam; #ifdef FDT struct intr_map_data_fdt *daf; #endif sc = device_get_softc(dev); switch (data->type) { #ifdef FDT case INTR_MAP_DATA_FDT: daf = (struct intr_map_data_fdt *)data; if (gic_map_fdt(dev, daf->ncells, daf->cells, &irq, &pol, &trig) != 0) return (EINVAL); KASSERT(irq >= sc->nirqs || (sc->gic_irqs[irq].gi_flags & GI_FLAG_MSI) == 0, ("%s: Attempting to map a MSI interrupt from FDT", __func__)); break; #endif case INTR_MAP_DATA_MSI: /* Non-GICv2m MSI */ dam = (struct intr_map_data_msi *)data; if (gic_map_msi(dev, dam, &irq, &pol, &trig) != 0) return (EINVAL); break; default: return (ENOTSUP); } if (irq >= sc->nirqs) return (EINVAL); if (pol != INTR_POLARITY_CONFORM && pol != INTR_POLARITY_LOW && pol != INTR_POLARITY_HIGH) return (EINVAL); if (trig != INTR_TRIGGER_CONFORM && trig != INTR_TRIGGER_EDGE && trig != INTR_TRIGGER_LEVEL) return (EINVAL); *irqp = irq; if (polp != NULL) *polp = pol; if (trigp != NULL) *trigp = trig; return (0); } static int arm_gic_map_intr(device_t dev, struct intr_map_data *data, struct intr_irqsrc **isrcp) { int error; u_int irq; struct arm_gic_softc *sc; error = gic_map_intr(dev, data, &irq, NULL, NULL); if (error == 0) { sc = device_get_softc(dev); *isrcp = GIC_INTR_ISRC(sc, irq); } return (error); } static int arm_gic_setup_intr(device_t dev, struct intr_irqsrc *isrc, struct resource *res, struct intr_map_data *data) { struct arm_gic_softc *sc = device_get_softc(dev); struct gic_irqsrc *gi = (struct gic_irqsrc *)isrc; enum intr_trigger trig; enum intr_polarity pol; if ((gi->gi_flags & GI_FLAG_MSI) == GI_FLAG_MSI) { /* GICv2m MSI */ pol = gi->gi_pol; trig = gi->gi_trig; KASSERT(pol == INTR_POLARITY_HIGH, ("%s: MSI interrupts must be active-high", __func__)); KASSERT(trig == INTR_TRIGGER_EDGE, ("%s: MSI interrupts must be edge triggered", __func__)); } else if (data != NULL) { u_int irq; /* Get config for resource. */ if (gic_map_intr(dev, data, &irq, &pol, &trig) || gi->gi_irq != irq) return (EINVAL); } else { pol = INTR_POLARITY_CONFORM; trig = INTR_TRIGGER_CONFORM; } /* Compare config if this is not first setup. */ if (isrc->isrc_handlers != 0) { if ((pol != INTR_POLARITY_CONFORM && pol != gi->gi_pol) || (trig != INTR_TRIGGER_CONFORM && trig != gi->gi_trig)) return (EINVAL); else return (0); } /* For MSI/MSI-X we should have already configured these */ if ((gi->gi_flags & GI_FLAG_MSI) == 0) { if (pol == INTR_POLARITY_CONFORM) pol = INTR_POLARITY_LOW; /* just pick some */ if (trig == INTR_TRIGGER_CONFORM) trig = INTR_TRIGGER_EDGE; /* just pick some */ gi->gi_pol = pol; gi->gi_trig = trig; /* Edge triggered interrupts need an early EOI sent */ - if (gi->gi_pol == INTR_TRIGGER_EDGE) + if (gi->gi_trig == INTR_TRIGGER_EDGE) gi->gi_flags |= GI_FLAG_EARLY_EOI; } /* * XXX - In case that per CPU interrupt is going to be enabled in time * when SMP is already started, we need some IPI call which * enables it on others CPUs. Further, it's more complicated as * pic_enable_source() and pic_disable_source() should act on * per CPU basis only. Thus, it should be solved here somehow. */ if (isrc->isrc_flags & INTR_ISRCF_PPI) CPU_SET(PCPU_GET(cpuid), &isrc->isrc_cpu); gic_config(sc, gi->gi_irq, gi->gi_trig, gi->gi_pol); arm_gic_bind_intr(dev, isrc); return (0); } static int arm_gic_teardown_intr(device_t dev, struct intr_irqsrc *isrc, struct resource *res, struct intr_map_data *data) { struct gic_irqsrc *gi = (struct gic_irqsrc *)isrc; if (isrc->isrc_handlers == 0 && (gi->gi_flags & GI_FLAG_MSI) == 0) { gi->gi_pol = INTR_POLARITY_CONFORM; gi->gi_trig = INTR_TRIGGER_CONFORM; } return (0); } static void arm_gic_enable_intr(device_t dev, struct intr_irqsrc *isrc) { struct arm_gic_softc *sc = device_get_softc(dev); struct gic_irqsrc *gi = (struct gic_irqsrc *)isrc; arm_irq_memory_barrier(gi->gi_irq); gic_irq_unmask(sc, gi->gi_irq); } static void arm_gic_disable_intr(device_t dev, struct intr_irqsrc *isrc) { struct arm_gic_softc *sc = device_get_softc(dev); struct gic_irqsrc *gi = (struct gic_irqsrc *)isrc; gic_irq_mask(sc, gi->gi_irq); } static void arm_gic_pre_ithread(device_t dev, struct intr_irqsrc *isrc) { struct arm_gic_softc *sc = device_get_softc(dev); struct gic_irqsrc *gi = (struct gic_irqsrc *)isrc; arm_gic_disable_intr(dev, isrc); gic_c_write_4(sc, GICC_EOIR, gi->gi_irq); } static void arm_gic_post_ithread(device_t dev, struct intr_irqsrc *isrc) { arm_irq_memory_barrier(0); arm_gic_enable_intr(dev, isrc); } static void arm_gic_post_filter(device_t dev, struct intr_irqsrc *isrc) { struct arm_gic_softc *sc = device_get_softc(dev); struct gic_irqsrc *gi = (struct gic_irqsrc *)isrc; /* EOI for edge-triggered done earlier. */ if ((gi->gi_flags & GI_FLAG_EARLY_EOI) == GI_FLAG_EARLY_EOI) return; arm_irq_memory_barrier(0); gic_c_write_4(sc, GICC_EOIR, gi->gi_irq); } static int arm_gic_bind_intr(device_t dev, struct intr_irqsrc *isrc) { struct arm_gic_softc *sc = device_get_softc(dev); struct gic_irqsrc *gi = (struct gic_irqsrc *)isrc; if (gi->gi_irq < GIC_FIRST_SPI) return (EINVAL); if (CPU_EMPTY(&isrc->isrc_cpu)) { gic_irq_cpu = intr_irq_next_cpu(gic_irq_cpu, &all_cpus); CPU_SETOF(gic_irq_cpu, &isrc->isrc_cpu); } return (gic_bind(sc, gi->gi_irq, &isrc->isrc_cpu)); } #ifdef SMP static void arm_gic_ipi_send(device_t dev, struct intr_irqsrc *isrc, cpuset_t cpus, u_int ipi) { struct arm_gic_softc *sc = device_get_softc(dev); struct gic_irqsrc *gi = (struct gic_irqsrc *)isrc; uint32_t val = 0, i; for (i = 0; i < MAXCPU; i++) if (CPU_ISSET(i, &cpus)) val |= arm_gic_map[i] << GICD_SGI_TARGET_SHIFT; gic_d_write_4(sc, GICD_SGIR, val | gi->gi_irq); } static int arm_gic_ipi_setup(device_t dev, u_int ipi, struct intr_irqsrc **isrcp) { struct intr_irqsrc *isrc; struct arm_gic_softc *sc = device_get_softc(dev); if (sgi_first_unused > GIC_LAST_SGI) return (ENOSPC); isrc = GIC_INTR_ISRC(sc, sgi_first_unused); sgi_to_ipi[sgi_first_unused++] = ipi; CPU_SET(PCPU_GET(cpuid), &isrc->isrc_cpu); *isrcp = isrc; return (0); } #endif #else static int arm_gic_next_irq(struct arm_gic_softc *sc, int last_irq) { uint32_t active_irq; active_irq = gic_c_read_4(sc, GICC_IAR); /* * Immediately EOIR the SGIs, because doing so requires the other * bits (ie CPU number), not just the IRQ number, and we do not * have this information later. */ if ((active_irq & 0x3ff) <= GIC_LAST_SGI) gic_c_write_4(sc, GICC_EOIR, active_irq); active_irq &= 0x3FF; if (active_irq == 0x3FF) { if (last_irq == -1) device_printf(sc->gic_dev, "Spurious interrupt detected\n"); return -1; } return active_irq; } static int arm_gic_config(device_t dev, int irq, enum intr_trigger trig, enum intr_polarity pol) { struct arm_gic_softc *sc = device_get_softc(dev); uint32_t reg; uint32_t mask; /* Function is public-accessible, so validate input arguments */ if ((irq < 0) || (irq >= sc->nirqs)) goto invalid_args; if ((trig != INTR_TRIGGER_EDGE) && (trig != INTR_TRIGGER_LEVEL) && (trig != INTR_TRIGGER_CONFORM)) goto invalid_args; if ((pol != INTR_POLARITY_HIGH) && (pol != INTR_POLARITY_LOW) && (pol != INTR_POLARITY_CONFORM)) goto invalid_args; mtx_lock_spin(&sc->mutex); reg = gic_d_read_4(sc, GICD_ICFGR(irq)); mask = (reg >> 2*(irq % 16)) & 0x3; if (pol == INTR_POLARITY_LOW) { mask &= ~GICD_ICFGR_POL_MASK; mask |= GICD_ICFGR_POL_LOW; } else if (pol == INTR_POLARITY_HIGH) { mask &= ~GICD_ICFGR_POL_MASK; mask |= GICD_ICFGR_POL_HIGH; } if (trig == INTR_TRIGGER_LEVEL) { mask &= ~GICD_ICFGR_TRIG_MASK; mask |= GICD_ICFGR_TRIG_LVL; } else if (trig == INTR_TRIGGER_EDGE) { mask &= ~GICD_ICFGR_TRIG_MASK; mask |= GICD_ICFGR_TRIG_EDGE; } /* Set mask */ reg = reg & ~(0x3 << 2*(irq % 16)); reg = reg | (mask << 2*(irq % 16)); gic_d_write_4(sc, GICD_ICFGR(irq), reg); mtx_unlock_spin(&sc->mutex); return (0); invalid_args: device_printf(dev, "gic_config_irg, invalid parameters\n"); return (EINVAL); } static void arm_gic_mask(device_t dev, int irq) { struct arm_gic_softc *sc = device_get_softc(dev); gic_d_write_4(sc, GICD_ICENABLER(irq), (1UL << (irq & 0x1F))); gic_c_write_4(sc, GICC_EOIR, irq); /* XXX - not allowed */ } static void arm_gic_unmask(device_t dev, int irq) { struct arm_gic_softc *sc = device_get_softc(dev); if (irq > GIC_LAST_SGI) arm_irq_memory_barrier(irq); gic_d_write_4(sc, GICD_ISENABLER(irq), (1UL << (irq & 0x1F))); } #ifdef SMP static void arm_gic_ipi_send(device_t dev, cpuset_t cpus, u_int ipi) { struct arm_gic_softc *sc = device_get_softc(dev); uint32_t val = 0, i; for (i = 0; i < MAXCPU; i++) if (CPU_ISSET(i, &cpus)) val |= arm_gic_map[i] << GICD_SGI_TARGET_SHIFT; gic_d_write_4(sc, GICD_SGIR, val | ipi); } static int arm_gic_ipi_read(device_t dev, int i) { if (i != -1) { /* * The intr code will automagically give the frame pointer * if the interrupt argument is 0. */ if ((unsigned int)i > 16) return (0); return (i); } return (0x3ff); } static void arm_gic_ipi_clear(device_t dev, int ipi) { /* no-op */ } #endif static void gic_post_filter(void *arg) { struct arm_gic_softc *sc = gic_sc; uintptr_t irq = (uintptr_t) arg; if (irq > GIC_LAST_SGI) arm_irq_memory_barrier(irq); gic_c_write_4(sc, GICC_EOIR, irq); } static int gic_config_irq(int irq, enum intr_trigger trig, enum intr_polarity pol) { return (arm_gic_config(gic_sc->gic_dev, irq, trig, pol)); } void arm_mask_irq(uintptr_t nb) { arm_gic_mask(gic_sc->gic_dev, nb); } void arm_unmask_irq(uintptr_t nb) { arm_gic_unmask(gic_sc->gic_dev, nb); } int arm_get_next_irq(int last_irq) { return (arm_gic_next_irq(gic_sc, last_irq)); } #ifdef SMP void intr_pic_init_secondary(void) { arm_gic_init_secondary(gic_sc->gic_dev); } void pic_ipi_send(cpuset_t cpus, u_int ipi) { arm_gic_ipi_send(gic_sc->gic_dev, cpus, ipi); } int pic_ipi_read(int i) { return (arm_gic_ipi_read(gic_sc->gic_dev, i)); } void pic_ipi_clear(int ipi) { arm_gic_ipi_clear(gic_sc->gic_dev, ipi); } #endif #endif /* INTRNG */ static device_method_t arm_gic_methods[] = { #ifdef INTRNG /* Bus interface */ DEVMETHOD(bus_print_child, arm_gic_print_child), DEVMETHOD(bus_add_child, bus_generic_add_child), DEVMETHOD(bus_alloc_resource, arm_gic_alloc_resource), DEVMETHOD(bus_release_resource, bus_generic_release_resource), DEVMETHOD(bus_activate_resource,bus_generic_activate_resource), DEVMETHOD(bus_read_ivar, arm_gic_read_ivar), /* Interrupt controller interface */ DEVMETHOD(pic_disable_intr, arm_gic_disable_intr), DEVMETHOD(pic_enable_intr, arm_gic_enable_intr), DEVMETHOD(pic_map_intr, arm_gic_map_intr), DEVMETHOD(pic_setup_intr, arm_gic_setup_intr), DEVMETHOD(pic_teardown_intr, arm_gic_teardown_intr), DEVMETHOD(pic_post_filter, arm_gic_post_filter), DEVMETHOD(pic_post_ithread, arm_gic_post_ithread), DEVMETHOD(pic_pre_ithread, arm_gic_pre_ithread), #ifdef SMP DEVMETHOD(pic_bind_intr, arm_gic_bind_intr), DEVMETHOD(pic_init_secondary, arm_gic_init_secondary), DEVMETHOD(pic_ipi_send, arm_gic_ipi_send), DEVMETHOD(pic_ipi_setup, arm_gic_ipi_setup), #endif #endif { 0, 0 } }; DEFINE_CLASS_0(gic, arm_gic_driver, arm_gic_methods, sizeof(struct arm_gic_softc)); #ifdef INTRNG /* * GICv2m support -- the GICv2 MSI/MSI-X controller. */ #define GICV2M_MSI_TYPER 0x008 #define MSI_TYPER_SPI_BASE(x) (((x) >> 16) & 0x3ff) #define MSI_TYPER_SPI_COUNT(x) (((x) >> 0) & 0x3ff) #define GICv2M_MSI_SETSPI_NS 0x040 #define GICV2M_MSI_IIDR 0xFCC int arm_gicv2m_attach(device_t dev) { struct arm_gicv2m_softc *sc; struct arm_gic_softc *psc; uint32_t typer; int rid; psc = device_get_softc(device_get_parent(dev)); sc = device_get_softc(dev); rid = 0; sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->sc_mem == NULL) { device_printf(dev, "Unable to allocate resources\n"); return (ENXIO); } typer = bus_read_4(sc->sc_mem, GICV2M_MSI_TYPER); sc->sc_spi_start = MSI_TYPER_SPI_BASE(typer); sc->sc_spi_count = MSI_TYPER_SPI_COUNT(typer); sc->sc_spi_end = sc->sc_spi_start + sc->sc_spi_count; /* Reserve these interrupts for MSI/MSI-X use */ arm_gic_reserve_msi_range(device_get_parent(dev), sc->sc_spi_start, sc->sc_spi_count); mtx_init(&sc->sc_mutex, "GICv2m lock", "", MTX_DEF); intr_msi_register(dev, sc->sc_xref); if (bootverbose) device_printf(dev, "using spi %u to %u\n", sc->sc_spi_start, sc->sc_spi_start + sc->sc_spi_count - 1); return (0); } static int arm_gicv2m_alloc_msi(device_t dev, device_t child, int count, int maxcount, device_t *pic, struct intr_irqsrc **srcs) { struct arm_gic_softc *psc; struct arm_gicv2m_softc *sc; int i, irq, end_irq; bool found; KASSERT(powerof2(count), ("%s: bad count", __func__)); KASSERT(powerof2(maxcount), ("%s: bad maxcount", __func__)); psc = device_get_softc(device_get_parent(dev)); sc = device_get_softc(dev); mtx_lock(&sc->sc_mutex); found = false; for (irq = sc->sc_spi_start; irq < sc->sc_spi_end && !found; irq++) { /* Start on an aligned interrupt */ if ((irq & (maxcount - 1)) != 0) continue; /* Assume we found a valid range until shown otherwise */ found = true; /* Check this range is valid */ for (end_irq = irq; end_irq != irq + count - 1; end_irq++) { /* No free interrupts */ if (end_irq == sc->sc_spi_end) { found = false; break; } KASSERT((psc->gic_irqs[irq].gi_flags & GI_FLAG_MSI)!= 0, ("%s: Non-MSI interrupt found", __func__)); /* This is already used */ if ((psc->gic_irqs[irq].gi_flags & GI_FLAG_MSI_USED) == GI_FLAG_MSI_USED) { found = false; break; } } } /* Not enough interrupts were found */ if (!found || irq == sc->sc_spi_end) { mtx_unlock(&sc->sc_mutex); return (ENXIO); } for (i = 0; i < count; i++) { /* Mark the interrupt as used */ psc->gic_irqs[irq + i].gi_flags |= GI_FLAG_MSI_USED; } mtx_unlock(&sc->sc_mutex); for (i = 0; i < count; i++) srcs[i] = (struct intr_irqsrc *)&psc->gic_irqs[irq + i]; *pic = device_get_parent(dev); return (0); } static int arm_gicv2m_release_msi(device_t dev, device_t child, int count, struct intr_irqsrc **isrc) { struct arm_gicv2m_softc *sc; struct gic_irqsrc *gi; int i; sc = device_get_softc(dev); mtx_lock(&sc->sc_mutex); for (i = 0; i < count; i++) { gi = (struct gic_irqsrc *)isrc[i]; KASSERT((gi->gi_flags & GI_FLAG_MSI_USED) == GI_FLAG_MSI_USED, ("%s: Trying to release an unused MSI-X interrupt", __func__)); gi->gi_flags &= ~GI_FLAG_MSI_USED; } mtx_unlock(&sc->sc_mutex); return (0); } static int arm_gicv2m_alloc_msix(device_t dev, device_t child, device_t *pic, struct intr_irqsrc **isrcp) { struct arm_gicv2m_softc *sc; struct arm_gic_softc *psc; int irq; psc = device_get_softc(device_get_parent(dev)); sc = device_get_softc(dev); mtx_lock(&sc->sc_mutex); /* Find an unused interrupt */ for (irq = sc->sc_spi_start; irq < sc->sc_spi_end; irq++) { KASSERT((psc->gic_irqs[irq].gi_flags & GI_FLAG_MSI) != 0, ("%s: Non-MSI interrupt found", __func__)); if ((psc->gic_irqs[irq].gi_flags & GI_FLAG_MSI_USED) == 0) break; } /* No free interrupt was found */ if (irq == sc->sc_spi_end) { mtx_unlock(&sc->sc_mutex); return (ENXIO); } /* Mark the interrupt as used */ psc->gic_irqs[irq].gi_flags |= GI_FLAG_MSI_USED; mtx_unlock(&sc->sc_mutex); *isrcp = (struct intr_irqsrc *)&psc->gic_irqs[irq]; *pic = device_get_parent(dev); return (0); } static int arm_gicv2m_release_msix(device_t dev, device_t child, struct intr_irqsrc *isrc) { struct arm_gicv2m_softc *sc; struct gic_irqsrc *gi; sc = device_get_softc(dev); gi = (struct gic_irqsrc *)isrc; KASSERT((gi->gi_flags & GI_FLAG_MSI_USED) == GI_FLAG_MSI_USED, ("%s: Trying to release an unused MSI-X interrupt", __func__)); mtx_lock(&sc->sc_mutex); gi->gi_flags &= ~GI_FLAG_MSI_USED; mtx_unlock(&sc->sc_mutex); return (0); } static int arm_gicv2m_map_msi(device_t dev, device_t child, struct intr_irqsrc *isrc, uint64_t *addr, uint32_t *data) { struct arm_gicv2m_softc *sc = device_get_softc(dev); struct gic_irqsrc *gi = (struct gic_irqsrc *)isrc; *addr = vtophys(rman_get_virtual(sc->sc_mem)) + GICv2M_MSI_SETSPI_NS; *data = gi->gi_irq; return (0); } static device_method_t arm_gicv2m_methods[] = { /* Device interface */ DEVMETHOD(device_attach, arm_gicv2m_attach), /* MSI/MSI-X */ DEVMETHOD(msi_alloc_msi, arm_gicv2m_alloc_msi), DEVMETHOD(msi_release_msi, arm_gicv2m_release_msi), DEVMETHOD(msi_alloc_msix, arm_gicv2m_alloc_msix), DEVMETHOD(msi_release_msix, arm_gicv2m_release_msix), DEVMETHOD(msi_map_msi, arm_gicv2m_map_msi), /* End */ DEVMETHOD_END }; DEFINE_CLASS_0(gicv2m, arm_gicv2m_driver, arm_gicv2m_methods, sizeof(struct arm_gicv2m_softc)); #endif Index: head/sys/arm64/arm64/gic_v3.c =================================================================== --- head/sys/arm64/arm64/gic_v3.c (revision 316756) +++ head/sys/arm64/arm64/gic_v3.c (revision 316757) @@ -1,1233 +1,1233 @@ /*- * Copyright (c) 2015-2016 The FreeBSD Foundation * All rights reserved. * * This software was developed by Andrew Turner under * the sponsorship of the FreeBSD Foundation. * * This software was developed by Semihalf under * the sponsorship of the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_platform.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef FDT #include #include #endif #include "pic_if.h" #include #include "gic_v3_reg.h" #include "gic_v3_var.h" static bus_read_ivar_t gic_v3_read_ivar; static pic_disable_intr_t gic_v3_disable_intr; static pic_enable_intr_t gic_v3_enable_intr; static pic_map_intr_t gic_v3_map_intr; static pic_setup_intr_t gic_v3_setup_intr; static pic_teardown_intr_t gic_v3_teardown_intr; static pic_post_filter_t gic_v3_post_filter; static pic_post_ithread_t gic_v3_post_ithread; static pic_pre_ithread_t gic_v3_pre_ithread; static pic_bind_intr_t gic_v3_bind_intr; #ifdef SMP static pic_init_secondary_t gic_v3_init_secondary; static pic_ipi_send_t gic_v3_ipi_send; static pic_ipi_setup_t gic_v3_ipi_setup; #endif static u_int gic_irq_cpu; #ifdef SMP static u_int sgi_to_ipi[GIC_LAST_SGI - GIC_FIRST_SGI + 1]; static u_int sgi_first_unused = GIC_FIRST_SGI; #endif static device_method_t gic_v3_methods[] = { /* Device interface */ DEVMETHOD(device_detach, gic_v3_detach), /* Bus interface */ DEVMETHOD(bus_read_ivar, gic_v3_read_ivar), /* Interrupt controller interface */ DEVMETHOD(pic_disable_intr, gic_v3_disable_intr), DEVMETHOD(pic_enable_intr, gic_v3_enable_intr), DEVMETHOD(pic_map_intr, gic_v3_map_intr), DEVMETHOD(pic_setup_intr, gic_v3_setup_intr), DEVMETHOD(pic_teardown_intr, gic_v3_teardown_intr), DEVMETHOD(pic_post_filter, gic_v3_post_filter), DEVMETHOD(pic_post_ithread, gic_v3_post_ithread), DEVMETHOD(pic_pre_ithread, gic_v3_pre_ithread), #ifdef SMP DEVMETHOD(pic_bind_intr, gic_v3_bind_intr), DEVMETHOD(pic_init_secondary, gic_v3_init_secondary), DEVMETHOD(pic_ipi_send, gic_v3_ipi_send), DEVMETHOD(pic_ipi_setup, gic_v3_ipi_setup), #endif /* End */ DEVMETHOD_END }; DEFINE_CLASS_0(gic, gic_v3_driver, gic_v3_methods, sizeof(struct gic_v3_softc)); /* * Driver-specific definitions. */ MALLOC_DEFINE(M_GIC_V3, "GICv3", GIC_V3_DEVSTR); /* * Helper functions and definitions. */ /* Destination registers, either Distributor or Re-Distributor */ enum gic_v3_xdist { DIST = 0, REDIST, }; struct gic_v3_irqsrc { struct intr_irqsrc gi_isrc; uint32_t gi_irq; enum intr_polarity gi_pol; enum intr_trigger gi_trig; }; /* Helper routines starting with gic_v3_ */ static int gic_v3_dist_init(struct gic_v3_softc *); static int gic_v3_redist_alloc(struct gic_v3_softc *); static int gic_v3_redist_find(struct gic_v3_softc *); static int gic_v3_redist_init(struct gic_v3_softc *); static int gic_v3_cpu_init(struct gic_v3_softc *); static void gic_v3_wait_for_rwp(struct gic_v3_softc *, enum gic_v3_xdist); /* A sequence of init functions for primary (boot) CPU */ typedef int (*gic_v3_initseq_t) (struct gic_v3_softc *); /* Primary CPU initialization sequence */ static gic_v3_initseq_t gic_v3_primary_init[] = { gic_v3_dist_init, gic_v3_redist_alloc, gic_v3_redist_init, gic_v3_cpu_init, NULL }; #ifdef SMP /* Secondary CPU initialization sequence */ static gic_v3_initseq_t gic_v3_secondary_init[] = { gic_v3_redist_init, gic_v3_cpu_init, NULL }; #endif uint32_t gic_r_read_4(device_t dev, bus_size_t offset) { struct gic_v3_softc *sc; sc = device_get_softc(dev); return (bus_read_4(sc->gic_redists.pcpu[PCPU_GET(cpuid)], offset)); } uint64_t gic_r_read_8(device_t dev, bus_size_t offset) { struct gic_v3_softc *sc; sc = device_get_softc(dev); return (bus_read_8(sc->gic_redists.pcpu[PCPU_GET(cpuid)], offset)); } void gic_r_write_4(device_t dev, bus_size_t offset, uint32_t val) { struct gic_v3_softc *sc; sc = device_get_softc(dev); bus_write_4(sc->gic_redists.pcpu[PCPU_GET(cpuid)], offset, val); } void gic_r_write_8(device_t dev, bus_size_t offset, uint64_t val) { struct gic_v3_softc *sc; sc = device_get_softc(dev); bus_write_8(sc->gic_redists.pcpu[PCPU_GET(cpuid)], offset, val); } /* * Device interface. */ int gic_v3_attach(device_t dev) { struct gic_v3_softc *sc; gic_v3_initseq_t *init_func; uint32_t typer; int rid; int err; size_t i; u_int irq; const char *name; sc = device_get_softc(dev); sc->gic_registered = FALSE; sc->dev = dev; err = 0; /* Initialize mutex */ mtx_init(&sc->gic_mtx, "GICv3 lock", NULL, MTX_SPIN); /* * Allocate array of struct resource. * One entry for Distributor and all remaining for Re-Distributor. */ sc->gic_res = malloc( sizeof(*sc->gic_res) * (sc->gic_redists.nregions + 1), M_GIC_V3, M_WAITOK); /* Now allocate corresponding resources */ for (i = 0, rid = 0; i < (sc->gic_redists.nregions + 1); i++, rid++) { sc->gic_res[rid] = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->gic_res[rid] == NULL) return (ENXIO); } /* * Distributor interface */ sc->gic_dist = sc->gic_res[0]; /* * Re-Dristributor interface */ /* Allocate space under region descriptions */ sc->gic_redists.regions = malloc( sizeof(*sc->gic_redists.regions) * sc->gic_redists.nregions, M_GIC_V3, M_WAITOK); /* Fill-up bus_space information for each region. */ for (i = 0, rid = 1; i < sc->gic_redists.nregions; i++, rid++) sc->gic_redists.regions[i] = sc->gic_res[rid]; /* Get the number of supported SPI interrupts */ typer = gic_d_read(sc, 4, GICD_TYPER); sc->gic_nirqs = GICD_TYPER_I_NUM(typer); if (sc->gic_nirqs > GIC_I_NUM_MAX) sc->gic_nirqs = GIC_I_NUM_MAX; sc->gic_irqs = malloc(sizeof(*sc->gic_irqs) * sc->gic_nirqs, M_GIC_V3, M_WAITOK | M_ZERO); name = device_get_nameunit(dev); for (irq = 0; irq < sc->gic_nirqs; irq++) { struct intr_irqsrc *isrc; sc->gic_irqs[irq].gi_irq = irq; sc->gic_irqs[irq].gi_pol = INTR_POLARITY_CONFORM; sc->gic_irqs[irq].gi_trig = INTR_TRIGGER_CONFORM; isrc = &sc->gic_irqs[irq].gi_isrc; if (irq <= GIC_LAST_SGI) { err = intr_isrc_register(isrc, sc->dev, INTR_ISRCF_IPI, "%s,i%u", name, irq - GIC_FIRST_SGI); } else if (irq <= GIC_LAST_PPI) { err = intr_isrc_register(isrc, sc->dev, INTR_ISRCF_PPI, "%s,p%u", name, irq - GIC_FIRST_PPI); } else { err = intr_isrc_register(isrc, sc->dev, 0, "%s,s%u", name, irq - GIC_FIRST_SPI); } if (err != 0) { /* XXX call intr_isrc_deregister() */ free(sc->gic_irqs, M_DEVBUF); return (err); } } /* * Read the Peripheral ID2 register. This is an implementation * defined register, but seems to be implemented in all GICv3 * parts and Linux expects it to be there. */ sc->gic_pidr2 = gic_d_read(sc, 4, GICD_PIDR2); /* Get the number of supported interrupt identifier bits */ sc->gic_idbits = GICD_TYPER_IDBITS(typer); if (bootverbose) { device_printf(dev, "SPIs: %u, IDs: %u\n", sc->gic_nirqs, (1 << sc->gic_idbits) - 1); } /* Train init sequence for boot CPU */ for (init_func = gic_v3_primary_init; *init_func != NULL; init_func++) { err = (*init_func)(sc); if (err != 0) return (err); } return (0); } int gic_v3_detach(device_t dev) { struct gic_v3_softc *sc; size_t i; int rid; sc = device_get_softc(dev); if (device_is_attached(dev)) { /* * XXX: We should probably deregister PIC */ if (sc->gic_registered) panic("Trying to detach registered PIC"); } for (rid = 0; rid < (sc->gic_redists.nregions + 1); rid++) bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->gic_res[rid]); for (i = 0; i < mp_ncpus; i++) free(sc->gic_redists.pcpu[i], M_GIC_V3); free(sc->gic_res, M_GIC_V3); free(sc->gic_redists.regions, M_GIC_V3); return (0); } static int gic_v3_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) { struct gic_v3_softc *sc; sc = device_get_softc(dev); switch (which) { case GICV3_IVAR_NIRQS: *result = sc->gic_nirqs; return (0); case GICV3_IVAR_REDIST_VADDR: *result = (uintptr_t)rman_get_virtual( sc->gic_redists.pcpu[PCPU_GET(cpuid)]); return (0); case GIC_IVAR_HW_REV: KASSERT( GICR_PIDR2_ARCH(sc->gic_pidr2) == GICR_PIDR2_ARCH_GICv3 || GICR_PIDR2_ARCH(sc->gic_pidr2) == GICR_PIDR2_ARCH_GICv4, ("gic_v3_read_ivar: Invalid GIC architecture: %d (%.08X)", GICR_PIDR2_ARCH(sc->gic_pidr2), sc->gic_pidr2)); *result = GICR_PIDR2_ARCH(sc->gic_pidr2); return (0); case GIC_IVAR_BUS: KASSERT(sc->gic_bus != GIC_BUS_UNKNOWN, ("gic_v3_read_ivar: Unknown bus type")); KASSERT(sc->gic_bus <= GIC_BUS_MAX, ("gic_v3_read_ivar: Invalid bus type %u", sc->gic_bus)); *result = sc->gic_bus; return (0); } return (ENOENT); } int arm_gic_v3_intr(void *arg) { struct gic_v3_softc *sc = arg; struct gic_v3_irqsrc *gi; struct intr_pic *pic; uint64_t active_irq; struct trapframe *tf; bool first; first = true; pic = sc->gic_pic; while (1) { if (CPU_MATCH_ERRATA_CAVIUM_THUNDER_1_1) { /* * Hardware: Cavium ThunderX * Chip revision: Pass 1.0 (early version) * Pass 1.1 (production) * ERRATUM: 22978, 23154 */ __asm __volatile( "nop;nop;nop;nop;nop;nop;nop;nop; \n" "mrs %0, ICC_IAR1_EL1 \n" "nop;nop;nop;nop; \n" "dsb sy \n" : "=&r" (active_irq)); } else { active_irq = gic_icc_read(IAR1); } if (active_irq >= GIC_FIRST_LPI) { intr_child_irq_handler(pic, active_irq); continue; } if (__predict_false(active_irq >= sc->gic_nirqs)) return (FILTER_HANDLED); tf = curthread->td_intr_frame; gi = &sc->gic_irqs[active_irq]; if (active_irq <= GIC_LAST_SGI) { /* Call EOI for all IPI before dispatch. */ gic_icc_write(EOIR1, (uint64_t)active_irq); #ifdef SMP intr_ipi_dispatch(sgi_to_ipi[gi->gi_irq], tf); #else device_printf(sc->dev, "SGI %ju on UP system detected\n", (uintmax_t)(active_irq - GIC_FIRST_SGI)); #endif } else if (active_irq >= GIC_FIRST_PPI && active_irq <= GIC_LAST_SPI) { - if (gi->gi_pol == INTR_TRIGGER_EDGE) + if (gi->gi_trig == INTR_TRIGGER_EDGE) gic_icc_write(EOIR1, gi->gi_irq); if (intr_isrc_dispatch(&gi->gi_isrc, tf) != 0) { - if (gi->gi_pol != INTR_TRIGGER_EDGE) + if (gi->gi_trig != INTR_TRIGGER_EDGE) gic_icc_write(EOIR1, gi->gi_irq); gic_v3_disable_intr(sc->dev, &gi->gi_isrc); device_printf(sc->dev, "Stray irq %lu disabled\n", active_irq); } } } } #ifdef FDT static int gic_map_fdt(device_t dev, u_int ncells, pcell_t *cells, u_int *irqp, enum intr_polarity *polp, enum intr_trigger *trigp) { u_int irq; if (ncells < 3) return (EINVAL); /* * The 1st cell is the interrupt type: * 0 = SPI * 1 = PPI * The 2nd cell contains the interrupt number: * [0 - 987] for SPI * [0 - 15] for PPI * The 3rd cell is the flags, encoded as follows: * bits[3:0] trigger type and level flags * 1 = edge triggered * 2 = edge triggered (PPI only) * 4 = level-sensitive * 8 = level-sensitive (PPI only) */ switch (cells[0]) { case 0: irq = GIC_FIRST_SPI + cells[1]; /* SPI irq is checked later. */ break; case 1: irq = GIC_FIRST_PPI + cells[1]; if (irq > GIC_LAST_PPI) { device_printf(dev, "unsupported PPI interrupt " "number %u\n", cells[1]); return (EINVAL); } break; default: device_printf(dev, "unsupported interrupt type " "configuration %u\n", cells[0]); return (EINVAL); } switch (cells[2] & FDT_INTR_MASK) { case FDT_INTR_EDGE_RISING: *trigp = INTR_TRIGGER_EDGE; *polp = INTR_POLARITY_HIGH; break; case FDT_INTR_EDGE_FALLING: *trigp = INTR_TRIGGER_EDGE; *polp = INTR_POLARITY_LOW; break; case FDT_INTR_LEVEL_HIGH: *trigp = INTR_TRIGGER_LEVEL; *polp = INTR_POLARITY_HIGH; break; case FDT_INTR_LEVEL_LOW: *trigp = INTR_TRIGGER_LEVEL; *polp = INTR_POLARITY_LOW; break; default: device_printf(dev, "unsupported trigger/polarity " "configuration 0x%02x\n", cells[2]); return (EINVAL); } /* Check the interrupt is valid */ if (irq >= GIC_FIRST_SPI && *polp != INTR_POLARITY_HIGH) return (EINVAL); *irqp = irq; return (0); } #endif static int gic_map_msi(device_t dev, struct intr_map_data_msi *msi_data, u_int *irqp, enum intr_polarity *polp, enum intr_trigger *trigp) { struct gic_v3_irqsrc *gi; /* SPI-mapped MSI */ gi = (struct gic_v3_irqsrc *)msi_data->isrc; if (gi == NULL) return (ENXIO); *irqp = gi->gi_irq; /* MSI/MSI-X interrupts are always edge triggered with high polarity */ *polp = INTR_POLARITY_HIGH; *trigp = INTR_TRIGGER_EDGE; return (0); } static int do_gic_v3_map_intr(device_t dev, struct intr_map_data *data, u_int *irqp, enum intr_polarity *polp, enum intr_trigger *trigp) { struct gic_v3_softc *sc; enum intr_polarity pol; enum intr_trigger trig; struct intr_map_data_msi *dam; #ifdef FDT struct intr_map_data_fdt *daf; #endif u_int irq; sc = device_get_softc(dev); switch (data->type) { #ifdef FDT case INTR_MAP_DATA_FDT: daf = (struct intr_map_data_fdt *)data; if (gic_map_fdt(dev, daf->ncells, daf->cells, &irq, &pol, &trig) != 0) return (EINVAL); break; #endif case INTR_MAP_DATA_MSI: /* SPI-mapped MSI */ dam = (struct intr_map_data_msi *)data; if (gic_map_msi(dev, dam, &irq, &pol, &trig) != 0) return (EINVAL); break; default: return (EINVAL); } if (irq >= sc->gic_nirqs) return (EINVAL); switch (pol) { case INTR_POLARITY_CONFORM: case INTR_POLARITY_LOW: case INTR_POLARITY_HIGH: break; default: return (EINVAL); } switch (trig) { case INTR_TRIGGER_CONFORM: case INTR_TRIGGER_EDGE: case INTR_TRIGGER_LEVEL: break; default: return (EINVAL); } *irqp = irq; if (polp != NULL) *polp = pol; if (trigp != NULL) *trigp = trig; return (0); } static int gic_v3_map_intr(device_t dev, struct intr_map_data *data, struct intr_irqsrc **isrcp) { struct gic_v3_softc *sc; int error; u_int irq; error = do_gic_v3_map_intr(dev, data, &irq, NULL, NULL); if (error == 0) { sc = device_get_softc(dev); *isrcp = GIC_INTR_ISRC(sc, irq); } return (error); } static int gic_v3_setup_intr(device_t dev, struct intr_irqsrc *isrc, struct resource *res, struct intr_map_data *data) { struct gic_v3_softc *sc = device_get_softc(dev); struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc; enum intr_trigger trig; enum intr_polarity pol; uint32_t reg; u_int irq; int error; if (data == NULL) return (ENOTSUP); error = do_gic_v3_map_intr(dev, data, &irq, &pol, &trig); if (error != 0) return (error); if (gi->gi_irq != irq || pol == INTR_POLARITY_CONFORM || trig == INTR_TRIGGER_CONFORM) return (EINVAL); /* Compare config if this is not first setup. */ if (isrc->isrc_handlers != 0) { if (pol != gi->gi_pol || trig != gi->gi_trig) return (EINVAL); else return (0); } gi->gi_pol = pol; gi->gi_trig = trig; /* * XXX - In case that per CPU interrupt is going to be enabled in time * when SMP is already started, we need some IPI call which * enables it on others CPUs. Further, it's more complicated as * pic_enable_source() and pic_disable_source() should act on * per CPU basis only. Thus, it should be solved here somehow. */ if (isrc->isrc_flags & INTR_ISRCF_PPI) CPU_SET(PCPU_GET(cpuid), &isrc->isrc_cpu); if (irq >= GIC_FIRST_PPI && irq <= GIC_LAST_SPI) { mtx_lock_spin(&sc->gic_mtx); /* Set the trigger and polarity */ if (irq <= GIC_LAST_PPI) reg = gic_r_read(sc, 4, GICR_SGI_BASE_SIZE + GICD_ICFGR(irq)); else reg = gic_d_read(sc, 4, GICD_ICFGR(irq)); if (trig == INTR_TRIGGER_LEVEL) reg &= ~(2 << ((irq % 16) * 2)); else reg |= 2 << ((irq % 16) * 2); if (irq <= GIC_LAST_PPI) { gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICD_ICFGR(irq), reg); gic_v3_wait_for_rwp(sc, REDIST); } else { gic_d_write(sc, 4, GICD_ICFGR(irq), reg); gic_v3_wait_for_rwp(sc, DIST); } mtx_unlock_spin(&sc->gic_mtx); gic_v3_bind_intr(dev, isrc); } return (0); } static int gic_v3_teardown_intr(device_t dev, struct intr_irqsrc *isrc, struct resource *res, struct intr_map_data *data) { struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc; if (isrc->isrc_handlers == 0) { gi->gi_pol = INTR_POLARITY_CONFORM; gi->gi_trig = INTR_TRIGGER_CONFORM; } return (0); } static void gic_v3_disable_intr(device_t dev, struct intr_irqsrc *isrc) { struct gic_v3_softc *sc; struct gic_v3_irqsrc *gi; u_int irq; sc = device_get_softc(dev); gi = (struct gic_v3_irqsrc *)isrc; irq = gi->gi_irq; if (irq <= GIC_LAST_PPI) { /* SGIs and PPIs in corresponding Re-Distributor */ gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICD_ICENABLER(irq), GICD_I_MASK(irq)); gic_v3_wait_for_rwp(sc, REDIST); } else if (irq >= GIC_FIRST_SPI && irq <= GIC_LAST_SPI) { /* SPIs in distributor */ gic_d_write(sc, 4, GICD_ICENABLER(irq), GICD_I_MASK(irq)); gic_v3_wait_for_rwp(sc, DIST); } else panic("%s: Unsupported IRQ %u", __func__, irq); } static void gic_v3_enable_intr(device_t dev, struct intr_irqsrc *isrc) { struct gic_v3_softc *sc; struct gic_v3_irqsrc *gi; u_int irq; sc = device_get_softc(dev); gi = (struct gic_v3_irqsrc *)isrc; irq = gi->gi_irq; if (irq <= GIC_LAST_PPI) { /* SGIs and PPIs in corresponding Re-Distributor */ gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICD_ISENABLER(irq), GICD_I_MASK(irq)); gic_v3_wait_for_rwp(sc, REDIST); } else if (irq >= GIC_FIRST_SPI && irq <= GIC_LAST_SPI) { /* SPIs in distributor */ gic_d_write(sc, 4, GICD_ISENABLER(irq), GICD_I_MASK(irq)); gic_v3_wait_for_rwp(sc, DIST); } else panic("%s: Unsupported IRQ %u", __func__, irq); } static void gic_v3_pre_ithread(device_t dev, struct intr_irqsrc *isrc) { struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc; gic_v3_disable_intr(dev, isrc); gic_icc_write(EOIR1, gi->gi_irq); } static void gic_v3_post_ithread(device_t dev, struct intr_irqsrc *isrc) { gic_v3_enable_intr(dev, isrc); } static void gic_v3_post_filter(device_t dev, struct intr_irqsrc *isrc) { struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc; - if (gi->gi_pol == INTR_TRIGGER_EDGE) + if (gi->gi_trig == INTR_TRIGGER_EDGE) return; gic_icc_write(EOIR1, gi->gi_irq); } static int gic_v3_bind_intr(device_t dev, struct intr_irqsrc *isrc) { struct gic_v3_softc *sc; struct gic_v3_irqsrc *gi; int cpu; gi = (struct gic_v3_irqsrc *)isrc; if (gi->gi_irq <= GIC_LAST_PPI) return (EINVAL); KASSERT(gi->gi_irq >= GIC_FIRST_SPI && gi->gi_irq <= GIC_LAST_SPI, ("%s: Attempting to bind an invalid IRQ", __func__)); sc = device_get_softc(dev); if (CPU_EMPTY(&isrc->isrc_cpu)) { gic_irq_cpu = intr_irq_next_cpu(gic_irq_cpu, &all_cpus); CPU_SETOF(gic_irq_cpu, &isrc->isrc_cpu); gic_d_write(sc, 4, GICD_IROUTER(gi->gi_irq), CPU_AFFINITY(gic_irq_cpu)); } else { /* * We can only bind to a single CPU so select * the first CPU found. */ cpu = CPU_FFS(&isrc->isrc_cpu) - 1; gic_d_write(sc, 4, GICD_IROUTER(gi->gi_irq), CPU_AFFINITY(cpu)); } return (0); } #ifdef SMP static void gic_v3_init_secondary(device_t dev) { device_t child; struct gic_v3_softc *sc; gic_v3_initseq_t *init_func; struct intr_irqsrc *isrc; u_int cpu, irq; int err, i; sc = device_get_softc(dev); cpu = PCPU_GET(cpuid); /* Train init sequence for boot CPU */ for (init_func = gic_v3_secondary_init; *init_func != NULL; init_func++) { err = (*init_func)(sc); if (err != 0) { device_printf(dev, "Could not initialize GIC for CPU%u\n", cpu); return; } } /* Unmask attached SGI interrupts. */ for (irq = GIC_FIRST_SGI; irq <= GIC_LAST_SGI; irq++) { isrc = GIC_INTR_ISRC(sc, irq); if (intr_isrc_init_on_cpu(isrc, cpu)) gic_v3_enable_intr(dev, isrc); } /* Unmask attached PPI interrupts. */ for (irq = GIC_FIRST_PPI; irq <= GIC_LAST_PPI; irq++) { isrc = GIC_INTR_ISRC(sc, irq); if (intr_isrc_init_on_cpu(isrc, cpu)) gic_v3_enable_intr(dev, isrc); } for (i = 0; i < sc->gic_nchildren; i++) { child = sc->gic_children[i]; PIC_INIT_SECONDARY(child); } } static void gic_v3_ipi_send(device_t dev, struct intr_irqsrc *isrc, cpuset_t cpus, u_int ipi) { struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc; uint64_t aff, val, irq; int i; #define GIC_AFF_MASK (CPU_AFF3_MASK | CPU_AFF2_MASK | CPU_AFF1_MASK) #define GIC_AFFINITY(i) (CPU_AFFINITY(i) & GIC_AFF_MASK) aff = GIC_AFFINITY(0); irq = gi->gi_irq; val = 0; /* Iterate through all CPUs in set */ for (i = 0; i < mp_ncpus; i++) { /* Move to the next affinity group */ if (aff != GIC_AFFINITY(i)) { /* Send the IPI */ if (val != 0) { gic_icc_write(SGI1R, val); val = 0; } aff = GIC_AFFINITY(i); } /* Send the IPI to this cpu */ if (CPU_ISSET(i, &cpus)) { #define ICC_SGI1R_AFFINITY(aff) \ (((uint64_t)CPU_AFF3(aff) << ICC_SGI1R_EL1_AFF3_SHIFT) | \ ((uint64_t)CPU_AFF2(aff) << ICC_SGI1R_EL1_AFF2_SHIFT) | \ ((uint64_t)CPU_AFF1(aff) << ICC_SGI1R_EL1_AFF1_SHIFT)) /* Set the affinity when the first at this level */ if (val == 0) val = ICC_SGI1R_AFFINITY(aff) | irq << ICC_SGI1R_EL1_SGIID_SHIFT; /* Set the bit to send the IPI to te CPU */ val |= 1 << CPU_AFF0(CPU_AFFINITY(i)); } } /* Send the IPI to the last cpu affinity group */ if (val != 0) gic_icc_write(SGI1R, val); #undef GIC_AFF_MASK #undef GIC_AFFINITY } static int gic_v3_ipi_setup(device_t dev, u_int ipi, struct intr_irqsrc **isrcp) { struct intr_irqsrc *isrc; struct gic_v3_softc *sc = device_get_softc(dev); if (sgi_first_unused > GIC_LAST_SGI) return (ENOSPC); isrc = GIC_INTR_ISRC(sc, sgi_first_unused); sgi_to_ipi[sgi_first_unused++] = ipi; CPU_SET(PCPU_GET(cpuid), &isrc->isrc_cpu); *isrcp = isrc; return (0); } #endif /* SMP */ /* * Helper routines */ static void gic_v3_wait_for_rwp(struct gic_v3_softc *sc, enum gic_v3_xdist xdist) { struct resource *res; u_int cpuid; size_t us_left = 1000000; cpuid = PCPU_GET(cpuid); switch (xdist) { case DIST: res = sc->gic_dist; break; case REDIST: res = sc->gic_redists.pcpu[cpuid]; break; default: KASSERT(0, ("%s: Attempt to wait for unknown RWP", __func__)); return; } while ((bus_read_4(res, GICD_CTLR) & GICD_CTLR_RWP) != 0) { DELAY(1); if (us_left-- == 0) panic("GICD Register write pending for too long"); } } /* CPU interface. */ static __inline void gic_v3_cpu_priority(uint64_t mask) { /* Set prority mask */ gic_icc_write(PMR, mask & ICC_PMR_EL1_PRIO_MASK); } static int gic_v3_cpu_enable_sre(struct gic_v3_softc *sc) { uint64_t sre; u_int cpuid; cpuid = PCPU_GET(cpuid); /* * Set the SRE bit to enable access to GIC CPU interface * via system registers. */ sre = READ_SPECIALREG(icc_sre_el1); sre |= ICC_SRE_EL1_SRE; WRITE_SPECIALREG(icc_sre_el1, sre); isb(); /* * Now ensure that the bit is set. */ sre = READ_SPECIALREG(icc_sre_el1); if ((sre & ICC_SRE_EL1_SRE) == 0) { /* We are done. This was disabled in EL2 */ device_printf(sc->dev, "ERROR: CPU%u cannot enable CPU interface " "via system registers\n", cpuid); return (ENXIO); } else if (bootverbose) { device_printf(sc->dev, "CPU%u enabled CPU interface via system registers\n", cpuid); } return (0); } static int gic_v3_cpu_init(struct gic_v3_softc *sc) { int err; /* Enable access to CPU interface via system registers */ err = gic_v3_cpu_enable_sre(sc); if (err != 0) return (err); /* Priority mask to minimum - accept all interrupts */ gic_v3_cpu_priority(GIC_PRIORITY_MIN); /* Disable EOI mode */ gic_icc_clear(CTLR, ICC_CTLR_EL1_EOIMODE); /* Enable group 1 (insecure) interrups */ gic_icc_set(IGRPEN1, ICC_IGRPEN0_EL1_EN); return (0); } /* Distributor */ static int gic_v3_dist_init(struct gic_v3_softc *sc) { uint64_t aff; u_int i; /* * 1. Disable the Distributor */ gic_d_write(sc, 4, GICD_CTLR, 0); gic_v3_wait_for_rwp(sc, DIST); /* * 2. Configure the Distributor */ /* Set all SPIs to be Group 1 Non-secure */ for (i = GIC_FIRST_SPI; i < sc->gic_nirqs; i += GICD_I_PER_IGROUPRn) gic_d_write(sc, 4, GICD_IGROUPR(i), 0xFFFFFFFF); /* Set all global interrupts to be level triggered, active low. */ for (i = GIC_FIRST_SPI; i < sc->gic_nirqs; i += GICD_I_PER_ICFGRn) gic_d_write(sc, 4, GICD_ICFGR(i), 0x00000000); /* Set priority to all shared interrupts */ for (i = GIC_FIRST_SPI; i < sc->gic_nirqs; i += GICD_I_PER_IPRIORITYn) { /* Set highest priority */ gic_d_write(sc, 4, GICD_IPRIORITYR(i), GIC_PRIORITY_MAX); } /* * Disable all interrupts. Leave PPI and SGIs as they are enabled in * Re-Distributor registers. */ for (i = GIC_FIRST_SPI; i < sc->gic_nirqs; i += GICD_I_PER_ISENABLERn) gic_d_write(sc, 4, GICD_ICENABLER(i), 0xFFFFFFFF); gic_v3_wait_for_rwp(sc, DIST); /* * 3. Enable Distributor */ /* Enable Distributor with ARE, Group 1 */ gic_d_write(sc, 4, GICD_CTLR, GICD_CTLR_ARE_NS | GICD_CTLR_G1A | GICD_CTLR_G1); /* * 4. Route all interrupts to boot CPU. */ aff = CPU_AFFINITY(0); for (i = GIC_FIRST_SPI; i < sc->gic_nirqs; i++) gic_d_write(sc, 4, GICD_IROUTER(i), aff); return (0); } /* Re-Distributor */ static int gic_v3_redist_alloc(struct gic_v3_softc *sc) { u_int cpuid; /* Allocate struct resource for all CPU's Re-Distributor registers */ for (cpuid = 0; cpuid < mp_ncpus; cpuid++) if (CPU_ISSET(cpuid, &all_cpus) != 0) sc->gic_redists.pcpu[cpuid] = malloc(sizeof(*sc->gic_redists.pcpu[0]), M_GIC_V3, M_WAITOK); else sc->gic_redists.pcpu[cpuid] = NULL; return (0); } static int gic_v3_redist_find(struct gic_v3_softc *sc) { struct resource r_res; bus_space_handle_t r_bsh; uint64_t aff; uint64_t typer; uint32_t pidr2; u_int cpuid; size_t i; cpuid = PCPU_GET(cpuid); aff = CPU_AFFINITY(cpuid); /* Affinity in format for comparison with typer */ aff = (CPU_AFF3(aff) << 24) | (CPU_AFF2(aff) << 16) | (CPU_AFF1(aff) << 8) | CPU_AFF0(aff); if (bootverbose) { device_printf(sc->dev, "Start searching for Re-Distributor\n"); } /* Iterate through Re-Distributor regions */ for (i = 0; i < sc->gic_redists.nregions; i++) { /* Take a copy of the region's resource */ r_res = *sc->gic_redists.regions[i]; r_bsh = rman_get_bushandle(&r_res); pidr2 = bus_read_4(&r_res, GICR_PIDR2); switch (GICR_PIDR2_ARCH(pidr2)) { case GICR_PIDR2_ARCH_GICv3: /* fall through */ case GICR_PIDR2_ARCH_GICv4: break; default: device_printf(sc->dev, "No Re-Distributor found for CPU%u\n", cpuid); return (ENODEV); } do { typer = bus_read_8(&r_res, GICR_TYPER); if ((typer >> GICR_TYPER_AFF_SHIFT) == aff) { KASSERT(sc->gic_redists.pcpu[cpuid] != NULL, ("Invalid pointer to per-CPU redistributor")); /* Copy res contents to its final destination */ *sc->gic_redists.pcpu[cpuid] = r_res; if (bootverbose) { device_printf(sc->dev, "CPU%u Re-Distributor has been found\n", cpuid); } return (0); } r_bsh += (GICR_RD_BASE_SIZE + GICR_SGI_BASE_SIZE); if ((typer & GICR_TYPER_VLPIS) != 0) { r_bsh += (GICR_VLPI_BASE_SIZE + GICR_RESERVED_SIZE); } rman_set_bushandle(&r_res, r_bsh); } while ((typer & GICR_TYPER_LAST) == 0); } device_printf(sc->dev, "No Re-Distributor found for CPU%u\n", cpuid); return (ENXIO); } static int gic_v3_redist_wake(struct gic_v3_softc *sc) { uint32_t waker; size_t us_left = 1000000; waker = gic_r_read(sc, 4, GICR_WAKER); /* Wake up Re-Distributor for this CPU */ waker &= ~GICR_WAKER_PS; gic_r_write(sc, 4, GICR_WAKER, waker); /* * When clearing ProcessorSleep bit it is required to wait for * ChildrenAsleep to become zero following the processor power-on. */ while ((gic_r_read(sc, 4, GICR_WAKER) & GICR_WAKER_CA) != 0) { DELAY(1); if (us_left-- == 0) { panic("Could not wake Re-Distributor for CPU%u", PCPU_GET(cpuid)); } } if (bootverbose) { device_printf(sc->dev, "CPU%u Re-Distributor woke up\n", PCPU_GET(cpuid)); } return (0); } static int gic_v3_redist_init(struct gic_v3_softc *sc) { int err; size_t i; err = gic_v3_redist_find(sc); if (err != 0) return (err); err = gic_v3_redist_wake(sc); if (err != 0) return (err); /* Configure SGIs and PPIs to be Group1 Non-secure */ gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICR_IGROUPR0, 0xFFFFFFFF); /* Disable SPIs */ gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICR_ICENABLER0, GICR_I_ENABLER_PPI_MASK); /* Enable SGIs */ gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICR_ISENABLER0, GICR_I_ENABLER_SGI_MASK); /* Set priority for SGIs and PPIs */ for (i = 0; i <= GIC_LAST_PPI; i += GICR_I_PER_IPRIORITYn) { gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICD_IPRIORITYR(i), GIC_PRIORITY_MAX); } gic_v3_wait_for_rwp(sc, REDIST); return (0); }