Index: head/contrib/compiler-rt/lib/builtins/README.txt
===================================================================
--- head/contrib/compiler-rt/lib/builtins/README.txt	(revision 316510)
+++ head/contrib/compiler-rt/lib/builtins/README.txt	(revision 316511)
@@ -1,345 +1,346 @@
 Compiler-RT
 ================================
 
 This directory and its subdirectories contain source code for the compiler
 support routines.
 
 Compiler-RT is open source software. You may freely distribute it under the
 terms of the license agreement found in LICENSE.txt.
 
 ================================
 
 This is a replacement library for libgcc.  Each function is contained
 in its own file.  Each function has a corresponding unit test under
 test/Unit.
 
 A rudimentary script to test each file is in the file called
 test/Unit/test.
 
 Here is the specification for this library:
 
 http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc
 
 Here is a synopsis of the contents of this library:
 
 typedef      int si_int;
 typedef unsigned su_int;
 
 typedef          long long di_int;
 typedef unsigned long long du_int;
 
 // Integral bit manipulation
 
 di_int __ashldi3(di_int a, si_int b);      // a << b
 ti_int __ashlti3(ti_int a, si_int b);      // a << b
 
 di_int __ashrdi3(di_int a, si_int b);      // a >> b  arithmetic (sign fill)
 ti_int __ashrti3(ti_int a, si_int b);      // a >> b  arithmetic (sign fill)
 di_int __lshrdi3(di_int a, si_int b);      // a >> b  logical    (zero fill)
 ti_int __lshrti3(ti_int a, si_int b);      // a >> b  logical    (zero fill)
 
 si_int __clzsi2(si_int a);  // count leading zeros
 si_int __clzdi2(di_int a);  // count leading zeros
 si_int __clzti2(ti_int a);  // count leading zeros
 si_int __ctzsi2(si_int a);  // count trailing zeros
 si_int __ctzdi2(di_int a);  // count trailing zeros
 si_int __ctzti2(ti_int a);  // count trailing zeros
 
+si_int __ffssi2(si_int a);  // find least significant 1 bit
 si_int __ffsdi2(di_int a);  // find least significant 1 bit
 si_int __ffsti2(ti_int a);  // find least significant 1 bit
 
 si_int __paritysi2(si_int a);  // bit parity
 si_int __paritydi2(di_int a);  // bit parity
 si_int __parityti2(ti_int a);  // bit parity
 
 si_int __popcountsi2(si_int a);  // bit population
 si_int __popcountdi2(di_int a);  // bit population
 si_int __popcountti2(ti_int a);  // bit population
 
 uint32_t __bswapsi2(uint32_t a);   // a byteswapped, arm only
 uint64_t __bswapdi2(uint64_t a);   // a byteswapped, arm only
 
 // Integral arithmetic
 
 di_int __negdi2    (di_int a);                         // -a
 ti_int __negti2    (ti_int a);                         // -a
 di_int __muldi3    (di_int a, di_int b);               // a * b
 ti_int __multi3    (ti_int a, ti_int b);               // a * b
 si_int __divsi3    (si_int a, si_int b);               // a / b   signed
 di_int __divdi3    (di_int a, di_int b);               // a / b   signed
 ti_int __divti3    (ti_int a, ti_int b);               // a / b   signed
 su_int __udivsi3   (su_int n, su_int d);               // a / b   unsigned
 du_int __udivdi3   (du_int a, du_int b);               // a / b   unsigned
 tu_int __udivti3   (tu_int a, tu_int b);               // a / b   unsigned
 si_int __modsi3    (si_int a, si_int b);               // a % b   signed
 di_int __moddi3    (di_int a, di_int b);               // a % b   signed
 ti_int __modti3    (ti_int a, ti_int b);               // a % b   signed
 su_int __umodsi3   (su_int a, su_int b);               // a % b   unsigned
 du_int __umoddi3   (du_int a, du_int b);               // a % b   unsigned
 tu_int __umodti3   (tu_int a, tu_int b);               // a % b   unsigned
 du_int __udivmoddi4(du_int a, du_int b, du_int* rem);  // a / b, *rem = a % b  unsigned
 tu_int __udivmodti4(tu_int a, tu_int b, tu_int* rem);  // a / b, *rem = a % b  unsigned
 su_int __udivmodsi4(su_int a, su_int b, su_int* rem);  // a / b, *rem = a % b  unsigned
 si_int __divmodsi4(si_int a, si_int b, si_int* rem);   // a / b, *rem = a % b  signed
 
 
 
 //  Integral arithmetic with trapping overflow
 
 si_int __absvsi2(si_int a);           // abs(a)
 di_int __absvdi2(di_int a);           // abs(a)
 ti_int __absvti2(ti_int a);           // abs(a)
 
 si_int __negvsi2(si_int a);           // -a
 di_int __negvdi2(di_int a);           // -a
 ti_int __negvti2(ti_int a);           // -a
 
 si_int __addvsi3(si_int a, si_int b);  // a + b
 di_int __addvdi3(di_int a, di_int b);  // a + b
 ti_int __addvti3(ti_int a, ti_int b);  // a + b
 
 si_int __subvsi3(si_int a, si_int b);  // a - b
 di_int __subvdi3(di_int a, di_int b);  // a - b
 ti_int __subvti3(ti_int a, ti_int b);  // a - b
 
 si_int __mulvsi3(si_int a, si_int b);  // a * b
 di_int __mulvdi3(di_int a, di_int b);  // a * b
 ti_int __mulvti3(ti_int a, ti_int b);  // a * b
 
 
 // Integral arithmetic which returns if overflow
 
 si_int __mulosi4(si_int a, si_int b, int* overflow);  // a * b, overflow set to one if result not in signed range
 di_int __mulodi4(di_int a, di_int b, int* overflow);  // a * b, overflow set to one if result not in signed range
 ti_int __muloti4(ti_int a, ti_int b, int* overflow);  // a * b, overflow set to
  one if result not in signed range
 
 
 //  Integral comparison: a  < b -> 0
 //                       a == b -> 1
 //                       a  > b -> 2
 
 si_int __cmpdi2 (di_int a, di_int b);
 si_int __cmpti2 (ti_int a, ti_int b);
 si_int __ucmpdi2(du_int a, du_int b);
 si_int __ucmpti2(tu_int a, tu_int b);
 
 //  Integral / floating point conversion
 
 di_int __fixsfdi(      float a);
 di_int __fixdfdi(     double a);
 di_int __fixxfdi(long double a);
 
 ti_int __fixsfti(      float a);
 ti_int __fixdfti(     double a);
 ti_int __fixxfti(long double a);
 uint64_t __fixtfdi(long double input);  // ppc only, doesn't match documentation
 
 su_int __fixunssfsi(      float a);
 su_int __fixunsdfsi(     double a);
 su_int __fixunsxfsi(long double a);
 
 du_int __fixunssfdi(      float a);
 du_int __fixunsdfdi(     double a);
 du_int __fixunsxfdi(long double a);
 
 tu_int __fixunssfti(      float a);
 tu_int __fixunsdfti(     double a);
 tu_int __fixunsxfti(long double a);
 uint64_t __fixunstfdi(long double input);  // ppc only
 
 float       __floatdisf(di_int a);
 double      __floatdidf(di_int a);
 long double __floatdixf(di_int a);
 long double __floatditf(int64_t a);        // ppc only
 
 float       __floattisf(ti_int a);
 double      __floattidf(ti_int a);
 long double __floattixf(ti_int a);
 
 float       __floatundisf(du_int a);
 double      __floatundidf(du_int a);
 long double __floatundixf(du_int a);
 long double __floatunditf(uint64_t a);     // ppc only
 
 float       __floatuntisf(tu_int a);
 double      __floatuntidf(tu_int a);
 long double __floatuntixf(tu_int a);
 
 //  Floating point raised to integer power
 
 float       __powisf2(      float a, si_int b);  // a ^ b
 double      __powidf2(     double a, si_int b);  // a ^ b
 long double __powixf2(long double a, si_int b);  // a ^ b
 long double __powitf2(long double a, si_int b);  // ppc only, a ^ b
 
 //  Complex arithmetic
 
 //  (a + ib) * (c + id)
 
       float _Complex __mulsc3( float a,  float b,  float c,  float d);
      double _Complex __muldc3(double a, double b, double c, double d);
 long double _Complex __mulxc3(long double a, long double b,
                               long double c, long double d);
 long double _Complex __multc3(long double a, long double b,
                               long double c, long double d); // ppc only
 
 //  (a + ib) / (c + id)
 
       float _Complex __divsc3( float a,  float b,  float c,  float d);
      double _Complex __divdc3(double a, double b, double c, double d);
 long double _Complex __divxc3(long double a, long double b,
                               long double c, long double d);
 long double _Complex __divtc3(long double a, long double b,
                               long double c, long double d);  // ppc only
 
 
 //         Runtime support
 
 // __clear_cache() is used to tell process that new instructions have been
 // written to an address range.  Necessary on processors that do not have
 // a unified instruction and data cache.
 void __clear_cache(void* start, void* end);
 
 // __enable_execute_stack() is used with nested functions when a trampoline
 // function is written onto the stack and that page range needs to be made
 // executable.
 void __enable_execute_stack(void* addr);
 
 // __gcc_personality_v0() is normally only called by the system unwinder.
 // C code (as opposed to C++) normally does not need a personality function
 // because there are no catch clauses or destructors to be run.  But there
 // is a C language extension __attribute__((cleanup(func))) which marks local
 // variables as needing the cleanup function "func" to be run when the
 // variable goes out of scope.  That includes when an exception is thrown,
 // so a personality handler is needed.  
 _Unwind_Reason_Code __gcc_personality_v0(int version, _Unwind_Action actions,
          uint64_t exceptionClass, struct _Unwind_Exception* exceptionObject,
          _Unwind_Context_t context);
 
 // for use with some implementations of assert() in <assert.h>
 void __eprintf(const char* format, const char* assertion_expression,
 				const char* line, const char* file);
 
 // for systems with emulated thread local storage
 void* __emutls_get_address(struct __emutls_control*);
 
 
 //   Power PC specific functions
 
 // There is no C interface to the saveFP/restFP functions.  They are helper
 // functions called by the prolog and epilog of functions that need to save
 // a number of non-volatile float point registers.  
 saveFP
 restFP
 
 // PowerPC has a standard template for trampoline functions.  This function
 // generates a custom trampoline function with the specific realFunc
 // and localsPtr values.
 void __trampoline_setup(uint32_t* trampOnStack, int trampSizeAllocated, 
                                 const void* realFunc, void* localsPtr);
 
 // adds two 128-bit double-double precision values ( x + y )
 long double __gcc_qadd(long double x, long double y);  
 
 // subtracts two 128-bit double-double precision values ( x - y )
 long double __gcc_qsub(long double x, long double y); 
 
 // multiples two 128-bit double-double precision values ( x * y )
 long double __gcc_qmul(long double x, long double y);  
 
 // divides two 128-bit double-double precision values ( x / y )
 long double __gcc_qdiv(long double a, long double b);  
 
 
 //    ARM specific functions
 
 // There is no C interface to the switch* functions.  These helper functions
 // are only needed by Thumb1 code for efficient switch table generation.
 switch16
 switch32
 switch8
 switchu8
 
 // There is no C interface to the *_vfp_d8_d15_regs functions.  There are
 // called in the prolog and epilog of Thumb1 functions.  When the C++ ABI use
 // SJLJ for exceptions, each function with a catch clause or destuctors needs
 // to save and restore all registers in it prolog and epliog.  But there is 
 // no way to access vector and high float registers from thumb1 code, so the 
 // compiler must add call outs to these helper functions in the prolog and 
 // epilog.
 restore_vfp_d8_d15_regs
 save_vfp_d8_d15_regs
 
 
 // Note: long ago ARM processors did not have floating point hardware support.
 // Floating point was done in software and floating point parameters were 
 // passed in integer registers.  When hardware support was added for floating
 // point, new *vfp functions were added to do the same operations but with 
 // floating point parameters in floating point registers.
 
 // Undocumented functions
 
 float  __addsf3vfp(float a, float b);   // Appears to return a + b
 double __adddf3vfp(double a, double b); // Appears to return a + b
 float  __divsf3vfp(float a, float b);   // Appears to return a / b
 double __divdf3vfp(double a, double b); // Appears to return a / b
 int    __eqsf2vfp(float a, float b);    // Appears to return  one
                                         //     iff a == b and neither is NaN.
 int    __eqdf2vfp(double a, double b);  // Appears to return  one
                                         //     iff a == b and neither is NaN.
 double __extendsfdf2vfp(float a);       // Appears to convert from
                                         //     float to double.
 int    __fixdfsivfp(double a);          // Appears to convert from
                                         //     double to int.
 int    __fixsfsivfp(float a);           // Appears to convert from
                                         //     float to int.
 unsigned int __fixunssfsivfp(float a);  // Appears to convert from
                                         //     float to unsigned int.
 unsigned int __fixunsdfsivfp(double a); // Appears to convert from
                                         //     double to unsigned int.
 double __floatsidfvfp(int a);           // Appears to convert from
                                         //     int to double.
 float __floatsisfvfp(int a);            // Appears to convert from
                                         //     int to float.
 double __floatunssidfvfp(unsigned int a); // Appears to convert from
                                         //     unisgned int to double.
 float __floatunssisfvfp(unsigned int a); // Appears to convert from
                                         //     unisgned int to float.
 int __gedf2vfp(double a, double b);     // Appears to return __gedf2
                                         //     (a >= b)
 int __gesf2vfp(float a, float b);       // Appears to return __gesf2
                                         //     (a >= b)
 int __gtdf2vfp(double a, double b);     // Appears to return __gtdf2
                                         //     (a > b)
 int __gtsf2vfp(float a, float b);       // Appears to return __gtsf2
                                         //     (a > b)
 int __ledf2vfp(double a, double b);     // Appears to return __ledf2
                                         //     (a <= b)
 int __lesf2vfp(float a, float b);       // Appears to return __lesf2
                                         //     (a <= b)
 int __ltdf2vfp(double a, double b);     // Appears to return __ltdf2
                                         //     (a < b)
 int __ltsf2vfp(float a, float b);       // Appears to return __ltsf2
                                         //     (a < b)
 double __muldf3vfp(double a, double b); // Appears to return a * b
 float __mulsf3vfp(float a, float b);    // Appears to return a * b
 int __nedf2vfp(double a, double b);     // Appears to return __nedf2
                                         //     (a != b)
 double __negdf2vfp(double a);           // Appears to return -a
 float __negsf2vfp(float a);             // Appears to return -a
 float __negsf2vfp(float a);             // Appears to return -a
 double __subdf3vfp(double a, double b); // Appears to return a - b
 float __subsf3vfp(float a, float b);    // Appears to return a - b
 float __truncdfsf2vfp(double a);        // Appears to convert from
                                         //     double to float.
 int __unorddf2vfp(double a, double b);  // Appears to return __unorddf2
 int __unordsf2vfp(float a, float b);    // Appears to return __unordsf2
 
 
 Preconditions are listed for each function at the definition when there are any.
 Any preconditions reflect the specification at
 http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc.
 
 Assumptions are listed in "int_lib.h", and in individual files.  Where possible
 assumptions are checked at compile time.
Index: head/contrib/compiler-rt/lib/builtins/ffssi2.c
===================================================================
--- head/contrib/compiler-rt/lib/builtins/ffssi2.c	(nonexistent)
+++ head/contrib/compiler-rt/lib/builtins/ffssi2.c	(revision 316511)
@@ -0,0 +1,29 @@
+/* ===-- ffssi2.c - Implement __ffssi2 -------------------------------------===
+ *
+ *                     The LLVM Compiler Infrastructure
+ *
+ * This file is dual licensed under the MIT and the University of Illinois Open
+ * Source Licenses. See LICENSE.TXT for details.
+ *
+ * ===----------------------------------------------------------------------===
+ *
+ * This file implements __ffssi2 for the compiler_rt library.
+ *
+ * ===----------------------------------------------------------------------===
+ */
+
+#include "int_lib.h"
+
+/* Returns: the index of the least significant 1-bit in a, or
+ * the value zero if a is zero. The least significant bit is index one.
+ */
+
+COMPILER_RT_ABI si_int
+__ffssi2(si_int a)
+{
+    if (a == 0)
+    {
+        return 0;
+    }
+    return __builtin_ctz(a) + 1;
+}

Property changes on: head/contrib/compiler-rt/lib/builtins/ffssi2.c
___________________________________________________________________
Added: svn:eol-style
## -0,0 +1 ##
+native
\ No newline at end of property
Added: svn:keywords
## -0,0 +1 ##
+FreeBSD=%H
\ No newline at end of property
Added: svn:mime-type
## -0,0 +1 ##
+text/plain
\ No newline at end of property
Index: head/lib/libcompiler_rt/Makefile.inc
===================================================================
--- head/lib/libcompiler_rt/Makefile.inc	(revision 316510)
+++ head/lib/libcompiler_rt/Makefile.inc	(revision 316511)
@@ -1,225 +1,226 @@
 # $FreeBSD$
 
 CRTARCH=	${MACHINE_CPUARCH:C/amd64/x86_64/}
 
 CRTSRC=		${SRCTOP}/contrib/compiler-rt/lib/builtins
 
 .PATH:		${CRTSRC}/${CRTARCH}
 .PATH:		${CRTSRC}
 
 SRCF+=		absvdi2
 SRCF+=		absvsi2
 SRCF+=		absvti2
 SRCF+=		addvdi3
 SRCF+=		addvsi3
 SRCF+=		addvti3
 SRCF+=		apple_versioning
 SRCF+=		ashldi3
 SRCF+=		ashlti3
 SRCF+=		ashrdi3
 SRCF+=		ashrti3
 SRCF+=		clear_cache
 SRCF+=		clzdi2
 SRCF+=		clzsi2
 SRCF+=		clzti2
 SRCF+=		cmpdi2
 SRCF+=		cmpti2
 SRCF+=		ctzdi2
 SRCF+=		ctzsi2
 SRCF+=		ctzti2
 SRCF+=		divdc3
 SRCF+=		divdi3
 SRCF+=		divmoddi4
 SRCF+=		divmodsi4
 SRCF+=		divsc3
 SRCF+=		divtc3
 SRCF+=		divti3
 SRCF+=		divxc3
 SRCF+=		enable_execute_stack
 SRCF+=		eprintf
 SRCF+=		extendhfsf2
+SRCF+=		ffssi2
 SRCF+=		ffsdi2
 SRCF+=		ffsti2
 SRCF+=		fixdfdi
 SRCF+=		fixdfti
 SRCF+=		fixsfdi
 SRCF+=		fixsfti
 SRCF+=		fixunsdfdi
 SRCF+=		fixunsdfsi
 SRCF+=		fixunsdfti
 SRCF+=		fixunssfdi
 SRCF+=		fixunssfsi
 SRCF+=		fixunssfti
 SRCF+=		fixunsxfdi
 SRCF+=		fixunsxfsi
 SRCF+=		fixunsxfti
 SRCF+=		fixxfdi
 SRCF+=		fixxfti
 SRCF+=		floatdidf
 SRCF+=		floatdisf
 SRCF+=		floatditf
 SRCF+=		floatdixf
 SRCF+=		floatsitf
 SRCF+=		floattidf
 SRCF+=		floattisf
 SRCF+=		floattixf
 SRCF+=		floatundidf
 SRCF+=		floatundisf
 SRCF+=		floatunditf
 SRCF+=		floatundixf
 SRCF+=		floatunsidf
 SRCF+=		floatunsisf
 SRCF+=		floatuntidf
 SRCF+=		floatuntisf
 SRCF+=		floatuntixf
 SRCF+=		gcc_personality_v0
 SRCF+=		int_util
 SRCF+=		lshrdi3
 SRCF+=		lshrti3
 SRCF+=		moddi3
 SRCF+=		modti3
 SRCF+=		muldc3
 SRCF+=		muldi3
 SRCF+=		mulodi4
 SRCF+=		mulosi4
 SRCF+=		muloti4
 SRCF+=		mulsc3
 SRCF+=		multi3
 SRCF+=		mulvdi3
 SRCF+=		mulvsi3
 SRCF+=		mulvti3
 SRCF+=		multc3
 SRCF+=		mulxc3
 SRCF+=		negdf2
 SRCF+=		negdi2
 SRCF+=		negsf2
 SRCF+=		negti2
 SRCF+=		negvdi2
 SRCF+=		negvsi2
 SRCF+=		negvti2
 SRCF+=		paritydi2
 SRCF+=		paritysi2
 SRCF+=		parityti2
 SRCF+=		popcountdi2
 SRCF+=		popcountsi2
 SRCF+=		popcountti2
 SRCF+=		powidf2
 SRCF+=		powisf2
 SRCF+=		powitf2
 SRCF+=		powixf2
 SRCF+=		subvdi3
 SRCF+=		subvsi3
 SRCF+=		subvti3
 SRCF+=		trampoline_setup
 SRCF+=		truncdfhf2
 SRCF+=		truncsfhf2
 SRCF+=		ucmpdi2
 SRCF+=		ucmpti2
 SRCF+=		udivdi3
 SRCF+=		udivmoddi4
 SRCF+=		udivmodsi4
 SRCF+=		udivmodti4
 SRCF+=		udivti3
 SRCF+=		umoddi3
 SRCF+=		umodti3
 
 # __cpu_model support, only used on x86
 .if ${MACHINE_CPUARCH} == "amd64" || ${MACHINE_CPUARCH} == "i386"
 SRCF+=		cpu_model
 .endif
 
 #
 # 128-bit quad precision long double support,
 # only used on some architectures.
 #
 .if ${MACHINE_CPUARCH} == "aarch64" || ${MACHINE_CPUARCH} == "riscv"
 SRCF+=		addtf3
 SRCF+=		comparetf2
 SRCF+=		divtf3
 SRCF+=		extenddftf2
 SRCF+=		extendsftf2
 SRCF+=		fixtfdi
 SRCF+=		fixtfsi
 SRCF+=		fixtfti
 SRCF+=		fixunstfdi
 SRCF+=		fixunstfsi
 SRCF+=		fixunstfti
 SRCF+=		floatunsitf
 SRCF+=		multf3
 SRCF+=		subtf3
 SRCF+=		trunctfdf2
 SRCF+=		trunctfsf2
 .endif
 
 # These are already shipped by libc.a on some architectures.
 .if ${MACHINE_CPUARCH} != "arm" && ${MACHINE_CPUARCH} != "mips" && \
     ${MACHINE_CPUARCH} != "riscv"
 SRCF+=		adddf3
 SRCF+=		addsf3
 SRCF+=		divdf3
 SRCF+=		divsf3
 SRCF+=		extendsfdf2
 SRCF+=		fixdfsi
 SRCF+=		fixsfsi
 SRCF+=		floatsidf
 SRCF+=		floatsisf
 SRCF+=		muldf3
 SRCF+=		mulsf3
 SRCF+=		subdf3
 SRCF+=		subsf3
 SRCF+=		truncdfsf2
 .endif
 
 .if ${MACHINE_CPUARCH} != "arm"
 SRCF+=		comparedf2
 SRCF+=		comparesf2
 .endif
 
 .if ${MACHINE_CPUARCH} != "mips"
 SRCF+=		divsi3
 SRCF+=		modsi3
 SRCF+=		udivsi3
 SRCF+=		umodsi3
 .endif
 
 # FreeBSD-specific atomic intrinsics.
 .if ${MACHINE_CPUARCH} == "arm" || ${MACHINE_CPUARCH} == "armv6"
 .PATH:		${SRCTOP}/sys/arm/arm
 
 SRCF+=		stdatomic
 CFLAGS+=	-DEMIT_SYNC_ATOMICS
 .elif ${MACHINE_CPUARCH} == "mips"
 .PATH:		${SRCTOP}/sys/mips/mips
 
 SRCF+=		stdatomic
 .endif
 
 .for file in ${SRCF}
 .if ${MACHINE_ARCH:Marmv6*} && (!defined(CPUTYPE) || ${CPUTYPE:M*soft*} == "") \
     && exists(${CRTSRC}/${CRTARCH}/${file}vfp.S)
 SRCS+=		${file}vfp.S
 . elif exists(${CRTSRC}/${CRTARCH}/${file}.S)
 SRCS+=		${file}.S
 . else
 SRCS+=		${file}.c
 . endif
 .endfor
 
 .if ${MACHINE_CPUARCH} == "arm"
 SRCS+=		aeabi_div0.c
 SRCS+=		aeabi_idivmod.S
 SRCS+=		aeabi_ldivmod.S
 SRCS+=		aeabi_memcmp.S
 SRCS+=		aeabi_memcpy.S
 SRCS+=		aeabi_memmove.S
 SRCS+=		aeabi_memset.S
 SRCS+=		aeabi_uidivmod.S
 SRCS+=		aeabi_uldivmod.S
 SRCS+=		bswapdi2.S
 SRCS+=		bswapsi2.S
 SRCS+=		switch16.S
 SRCS+=		switch32.S
 SRCS+=		switch8.S
 SRCS+=		switchu8.S
 SRCS+=		sync_synchronize.S
 .endif