Index: stable/11/sys/x86/iommu/intel_dmar.h =================================================================== --- stable/11/sys/x86/iommu/intel_dmar.h (revision 316448) +++ stable/11/sys/x86/iommu/intel_dmar.h (revision 316449) @@ -1,523 +1,555 @@ /*- * Copyright (c) 2013-2015 The FreeBSD Foundation * All rights reserved. * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef __X86_IOMMU_INTEL_DMAR_H #define __X86_IOMMU_INTEL_DMAR_H /* Host or physical memory address, after translation. */ typedef uint64_t dmar_haddr_t; /* Guest or bus address, before translation. */ typedef uint64_t dmar_gaddr_t; struct dmar_qi_genseq { u_int gen; uint32_t seq; }; struct dmar_map_entry { dmar_gaddr_t start; dmar_gaddr_t end; dmar_gaddr_t free_after; /* Free space after the entry */ dmar_gaddr_t free_down; /* Max free space below the current R/B tree node */ u_int flags; TAILQ_ENTRY(dmar_map_entry) dmamap_link; /* Link for dmamap entries */ RB_ENTRY(dmar_map_entry) rb_entry; /* Links for domain entries */ TAILQ_ENTRY(dmar_map_entry) unroll_link; /* Link for unroll after dmamap_load failure */ struct dmar_domain *domain; struct dmar_qi_genseq gseq; }; RB_HEAD(dmar_gas_entries_tree, dmar_map_entry); RB_PROTOTYPE(dmar_gas_entries_tree, dmar_map_entry, rb_entry, dmar_gas_cmp_entries); #define DMAR_MAP_ENTRY_PLACE 0x0001 /* Fake entry */ #define DMAR_MAP_ENTRY_RMRR 0x0002 /* Permanent, not linked by dmamap_link */ #define DMAR_MAP_ENTRY_MAP 0x0004 /* Busdma created, linked by dmamap_link */ #define DMAR_MAP_ENTRY_UNMAPPED 0x0010 /* No backing pages */ #define DMAR_MAP_ENTRY_QI_NF 0x0020 /* qi task, do not free entry */ #define DMAR_MAP_ENTRY_READ 0x1000 /* Read permitted */ #define DMAR_MAP_ENTRY_WRITE 0x2000 /* Write permitted */ #define DMAR_MAP_ENTRY_SNOOP 0x4000 /* Snoop */ #define DMAR_MAP_ENTRY_TM 0x8000 /* Transient */ /* * Locking annotations: * (u) - Protected by dmar unit lock * (d) - Protected by domain lock * (c) - Immutable after initialization */ /* * The domain abstraction. Most non-constant members of the domain * are protected by owning dmar unit lock, not by the domain lock. * Most important, the dmar lock protects the contexts list. * * The domain lock protects the address map for the domain, and list * of unload entries delayed. * * Page tables pages and pages content is protected by the vm object * lock pgtbl_obj, which contains the page tables pages. */ struct dmar_domain { int domain; /* (c) DID, written in context entry */ int mgaw; /* (c) Real max address width */ int agaw; /* (c) Adjusted guest address width */ int pglvl; /* (c) The pagelevel */ int awlvl; /* (c) The pagelevel as the bitmask, to set in context entry */ dmar_gaddr_t end; /* (c) Highest address + 1 in the guest AS */ u_int ctx_cnt; /* (u) Number of contexts owned */ u_int refs; /* (u) Refs, including ctx */ struct dmar_unit *dmar; /* (c) */ struct mtx lock; /* (c) */ LIST_ENTRY(dmar_domain) link; /* (u) Member in the dmar list */ LIST_HEAD(, dmar_ctx) contexts; /* (u) */ vm_object_t pgtbl_obj; /* (c) Page table pages */ u_int flags; /* (u) */ u_int entries_cnt; /* (d) */ struct dmar_gas_entries_tree rb_root; /* (d) */ struct dmar_map_entries_tailq unload_entries; /* (d) Entries to unload */ struct dmar_map_entry *first_place, *last_place; /* (d) */ struct task unload_task; /* (c) */ u_int batch_no; }; struct dmar_ctx { struct bus_dma_tag_dmar ctx_tag; /* (c) Root tag */ uint16_t rid; /* (c) pci RID */ uint64_t last_fault_rec[2]; /* Last fault reported */ struct dmar_domain *domain; /* (c) */ LIST_ENTRY(dmar_ctx) link; /* (u) Member in the domain list */ u_int refs; /* (u) References from tags */ u_int flags; /* (u) */ u_long loads; /* atomic updates, for stat only */ u_long unloads; /* same */ }; #define DMAR_DOMAIN_GAS_INITED 0x0001 #define DMAR_DOMAIN_PGTBL_INITED 0x0002 #define DMAR_DOMAIN_IDMAP 0x0010 /* Domain uses identity page table */ #define DMAR_DOMAIN_RMRR 0x0020 /* Domain contains RMRR entry, cannot be turned off */ /* struct dmar_ctx flags */ #define DMAR_CTX_FAULTED 0x0001 /* Fault was reported, last_fault_rec is valid */ #define DMAR_CTX_DISABLED 0x0002 /* Device is disabled, the ephemeral reference is kept to prevent context destruction */ #define DMAR_DOMAIN_PGLOCK(dom) VM_OBJECT_WLOCK((dom)->pgtbl_obj) #define DMAR_DOMAIN_PGTRYLOCK(dom) VM_OBJECT_TRYWLOCK((dom)->pgtbl_obj) #define DMAR_DOMAIN_PGUNLOCK(dom) VM_OBJECT_WUNLOCK((dom)->pgtbl_obj) #define DMAR_DOMAIN_ASSERT_PGLOCKED(dom) \ VM_OBJECT_ASSERT_WLOCKED((dom)->pgtbl_obj) #define DMAR_DOMAIN_LOCK(dom) mtx_lock(&(dom)->lock) #define DMAR_DOMAIN_UNLOCK(dom) mtx_unlock(&(dom)->lock) #define DMAR_DOMAIN_ASSERT_LOCKED(dom) mtx_assert(&(dom)->lock, MA_OWNED) struct dmar_msi_data { int irq; int irq_rid; struct resource *irq_res; void *intr_handle; int (*handler)(void *); int msi_data_reg; int msi_addr_reg; int msi_uaddr_reg; void (*enable_intr)(struct dmar_unit *); void (*disable_intr)(struct dmar_unit *); const char *name; }; #define DMAR_INTR_FAULT 0 #define DMAR_INTR_QI 1 #define DMAR_INTR_TOTAL 2 struct dmar_unit { device_t dev; int unit; uint16_t segment; uint64_t base; /* Resources */ int reg_rid; struct resource *regs; struct dmar_msi_data intrs[DMAR_INTR_TOTAL]; /* Hardware registers cache */ uint32_t hw_ver; uint64_t hw_cap; uint64_t hw_ecap; uint32_t hw_gcmd; /* Data for being a dmar */ struct mtx lock; LIST_HEAD(, dmar_domain) domains; struct unrhdr *domids; vm_object_t ctx_obj; u_int barrier_flags; /* Fault handler data */ struct mtx fault_lock; uint64_t *fault_log; int fault_log_head; int fault_log_tail; int fault_log_size; struct task fault_task; struct taskqueue *fault_taskqueue; /* QI */ int qi_enabled; vm_offset_t inv_queue; vm_size_t inv_queue_size; uint32_t inv_queue_avail; uint32_t inv_queue_tail; volatile uint32_t inv_waitd_seq_hw; /* hw writes there on wait descr completion */ uint64_t inv_waitd_seq_hw_phys; uint32_t inv_waitd_seq; /* next sequence number to use for wait descr */ u_int inv_waitd_gen; /* seq number generation AKA seq overflows */ u_int inv_seq_waiters; /* count of waiters for seq */ u_int inv_queue_full; /* informational counter */ /* IR */ int ir_enabled; vm_paddr_t irt_phys; dmar_irte_t *irt; u_int irte_cnt; vmem_t *irtids; /* Delayed freeing of map entries queue processing */ struct dmar_map_entries_tailq tlb_flush_entries; struct task qi_task; struct taskqueue *qi_taskqueue; /* Busdma delayed map load */ struct task dmamap_load_task; TAILQ_HEAD(, bus_dmamap_dmar) delayed_maps; struct taskqueue *delayed_taskqueue; int dma_enabled; }; #define DMAR_LOCK(dmar) mtx_lock(&(dmar)->lock) #define DMAR_UNLOCK(dmar) mtx_unlock(&(dmar)->lock) #define DMAR_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->lock, MA_OWNED) #define DMAR_FAULT_LOCK(dmar) mtx_lock_spin(&(dmar)->fault_lock) #define DMAR_FAULT_UNLOCK(dmar) mtx_unlock_spin(&(dmar)->fault_lock) #define DMAR_FAULT_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->fault_lock, MA_OWNED) #define DMAR_IS_COHERENT(dmar) (((dmar)->hw_ecap & DMAR_ECAP_C) != 0) #define DMAR_HAS_QI(dmar) (((dmar)->hw_ecap & DMAR_ECAP_QI) != 0) #define DMAR_X2APIC(dmar) \ (x2apic_mode && ((dmar)->hw_ecap & DMAR_ECAP_EIM) != 0) /* Barrier ids */ #define DMAR_BARRIER_RMRR 0 #define DMAR_BARRIER_USEQ 1 struct dmar_unit *dmar_find(device_t dev); struct dmar_unit *dmar_find_hpet(device_t dev, uint16_t *rid); struct dmar_unit *dmar_find_ioapic(u_int apic_id, uint16_t *rid); u_int dmar_nd2mask(u_int nd); bool dmar_pglvl_supported(struct dmar_unit *unit, int pglvl); int domain_set_agaw(struct dmar_domain *domain, int mgaw); int dmar_maxaddr2mgaw(struct dmar_unit *unit, dmar_gaddr_t maxaddr, bool allow_less); vm_pindex_t pglvl_max_pages(int pglvl); int domain_is_sp_lvl(struct dmar_domain *domain, int lvl); dmar_gaddr_t pglvl_page_size(int total_pglvl, int lvl); dmar_gaddr_t domain_page_size(struct dmar_domain *domain, int lvl); int calc_am(struct dmar_unit *unit, dmar_gaddr_t base, dmar_gaddr_t size, dmar_gaddr_t *isizep); struct vm_page *dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags); void dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags); void *dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags, struct sf_buf **sf); void dmar_unmap_pgtbl(struct sf_buf *sf); int dmar_load_root_entry_ptr(struct dmar_unit *unit); int dmar_inv_ctx_glob(struct dmar_unit *unit); int dmar_inv_iotlb_glob(struct dmar_unit *unit); int dmar_flush_write_bufs(struct dmar_unit *unit); void dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst); void dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst); void dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst); int dmar_enable_translation(struct dmar_unit *unit); int dmar_disable_translation(struct dmar_unit *unit); int dmar_load_irt_ptr(struct dmar_unit *unit); int dmar_enable_ir(struct dmar_unit *unit); int dmar_disable_ir(struct dmar_unit *unit); bool dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id); void dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id); +uint64_t dmar_get_timeout(void); +void dmar_update_timeout(uint64_t newval); int dmar_fault_intr(void *arg); void dmar_enable_fault_intr(struct dmar_unit *unit); void dmar_disable_fault_intr(struct dmar_unit *unit); int dmar_init_fault_log(struct dmar_unit *unit); void dmar_fini_fault_log(struct dmar_unit *unit); int dmar_qi_intr(void *arg); void dmar_enable_qi_intr(struct dmar_unit *unit); void dmar_disable_qi_intr(struct dmar_unit *unit); int dmar_init_qi(struct dmar_unit *unit); void dmar_fini_qi(struct dmar_unit *unit); void dmar_qi_invalidate_locked(struct dmar_domain *domain, dmar_gaddr_t start, dmar_gaddr_t size, struct dmar_qi_genseq *pseq); void dmar_qi_invalidate_ctx_glob_locked(struct dmar_unit *unit); void dmar_qi_invalidate_iotlb_glob_locked(struct dmar_unit *unit); void dmar_qi_invalidate_iec_glob(struct dmar_unit *unit); void dmar_qi_invalidate_iec(struct dmar_unit *unit, u_int start, u_int cnt); vm_object_t domain_get_idmap_pgtbl(struct dmar_domain *domain, dmar_gaddr_t maxaddr); void put_idmap_pgtbl(vm_object_t obj); int domain_map_buf(struct dmar_domain *domain, dmar_gaddr_t base, dmar_gaddr_t size, vm_page_t *ma, uint64_t pflags, int flags); int domain_unmap_buf(struct dmar_domain *domain, dmar_gaddr_t base, dmar_gaddr_t size, int flags); void domain_flush_iotlb_sync(struct dmar_domain *domain, dmar_gaddr_t base, dmar_gaddr_t size); int domain_alloc_pgtbl(struct dmar_domain *domain); void domain_free_pgtbl(struct dmar_domain *domain); struct dmar_ctx *dmar_instantiate_ctx(struct dmar_unit *dmar, device_t dev, bool rmrr); struct dmar_ctx *dmar_get_ctx_for_dev(struct dmar_unit *dmar, device_t dev, uint16_t rid, bool id_mapped, bool rmrr_init); int dmar_move_ctx_to_domain(struct dmar_domain *domain, struct dmar_ctx *ctx); void dmar_free_ctx_locked(struct dmar_unit *dmar, struct dmar_ctx *ctx); void dmar_free_ctx(struct dmar_ctx *ctx); struct dmar_ctx *dmar_find_ctx_locked(struct dmar_unit *dmar, uint16_t rid); void dmar_domain_unload_entry(struct dmar_map_entry *entry, bool free); void dmar_domain_unload(struct dmar_domain *domain, struct dmar_map_entries_tailq *entries, bool cansleep); void dmar_domain_free_entry(struct dmar_map_entry *entry, bool free); int dmar_init_busdma(struct dmar_unit *unit); void dmar_fini_busdma(struct dmar_unit *unit); device_t dmar_get_requester(device_t dev, uint16_t *rid); void dmar_gas_init_domain(struct dmar_domain *domain); void dmar_gas_fini_domain(struct dmar_domain *domain); struct dmar_map_entry *dmar_gas_alloc_entry(struct dmar_domain *domain, u_int flags); void dmar_gas_free_entry(struct dmar_domain *domain, struct dmar_map_entry *entry); void dmar_gas_free_space(struct dmar_domain *domain, struct dmar_map_entry *entry); int dmar_gas_map(struct dmar_domain *domain, const struct bus_dma_tag_common *common, dmar_gaddr_t size, int offset, u_int eflags, u_int flags, vm_page_t *ma, struct dmar_map_entry **res); void dmar_gas_free_region(struct dmar_domain *domain, struct dmar_map_entry *entry); int dmar_gas_map_region(struct dmar_domain *domain, struct dmar_map_entry *entry, u_int eflags, u_int flags, vm_page_t *ma); int dmar_gas_reserve_region(struct dmar_domain *domain, dmar_gaddr_t start, dmar_gaddr_t end); void dmar_dev_parse_rmrr(struct dmar_domain *domain, device_t dev, struct dmar_map_entries_tailq *rmrr_entries); int dmar_instantiate_rmrr_ctxs(struct dmar_unit *dmar); void dmar_quirks_post_ident(struct dmar_unit *dmar); void dmar_quirks_pre_use(struct dmar_unit *dmar); int dmar_init_irt(struct dmar_unit *unit); void dmar_fini_irt(struct dmar_unit *unit); #define DMAR_GM_CANWAIT 0x0001 #define DMAR_GM_CANSPLIT 0x0002 #define DMAR_PGF_WAITOK 0x0001 #define DMAR_PGF_ZERO 0x0002 #define DMAR_PGF_ALLOC 0x0004 #define DMAR_PGF_NOALLOC 0x0008 #define DMAR_PGF_OBJL 0x0010 extern dmar_haddr_t dmar_high; extern int haw; extern int dmar_tbl_pagecnt; extern int dmar_match_verbose; extern int dmar_batch_coalesce; extern int dmar_check_free; static inline uint32_t dmar_read4(const struct dmar_unit *unit, int reg) { return (bus_read_4(unit->regs, reg)); } static inline uint64_t dmar_read8(const struct dmar_unit *unit, int reg) { #ifdef __i386__ uint32_t high, low; low = bus_read_4(unit->regs, reg); high = bus_read_4(unit->regs, reg + 4); return (low | ((uint64_t)high << 32)); #else return (bus_read_8(unit->regs, reg)); #endif } static inline void dmar_write4(const struct dmar_unit *unit, int reg, uint32_t val) { KASSERT(reg != DMAR_GCMD_REG || (val & DMAR_GCMD_TE) == (unit->hw_gcmd & DMAR_GCMD_TE), ("dmar%d clearing TE 0x%08x 0x%08x", unit->unit, unit->hw_gcmd, val)); bus_write_4(unit->regs, reg, val); } static inline void dmar_write8(const struct dmar_unit *unit, int reg, uint64_t val) { KASSERT(reg != DMAR_GCMD_REG, ("8byte GCMD write")); #ifdef __i386__ uint32_t high, low; low = val; high = val >> 32; bus_write_4(unit->regs, reg, low); bus_write_4(unit->regs, reg + 4, high); #else bus_write_8(unit->regs, reg, val); #endif } /* * dmar_pte_store and dmar_pte_clear ensure that on i386, 32bit writes * are issued in the correct order. For store, the lower word, * containing the P or R and W bits, is set only after the high word * is written. For clear, the P bit is cleared first, then the high * word is cleared. * * dmar_pte_update updates the pte. For amd64, the update is atomic. * For i386, it first disables the entry by clearing the word * containing the P bit, and then defer to dmar_pte_store. The locked * cmpxchg8b is probably available on any machine having DMAR support, * but interrupt translation table may be mapped uncached. */ static inline void dmar_pte_store1(volatile uint64_t *dst, uint64_t val) { #ifdef __i386__ volatile uint32_t *p; uint32_t hi, lo; hi = val >> 32; lo = val; p = (volatile uint32_t *)dst; *(p + 1) = hi; *p = lo; #else *dst = val; #endif } static inline void dmar_pte_store(volatile uint64_t *dst, uint64_t val) { KASSERT(*dst == 0, ("used pte %p oldval %jx newval %jx", dst, (uintmax_t)*dst, (uintmax_t)val)); dmar_pte_store1(dst, val); } static inline void dmar_pte_update(volatile uint64_t *dst, uint64_t val) { #ifdef __i386__ volatile uint32_t *p; p = (volatile uint32_t *)dst; *p = 0; #endif dmar_pte_store1(dst, val); } static inline void dmar_pte_clear(volatile uint64_t *dst) { #ifdef __i386__ volatile uint32_t *p; p = (volatile uint32_t *)dst; *p = 0; *(p + 1) = 0; #else *dst = 0; #endif } static inline bool dmar_test_boundary(dmar_gaddr_t start, dmar_gaddr_t size, dmar_gaddr_t boundary) { if (boundary == 0) return (true); return (start + size <= ((start + boundary) & ~(boundary - 1))); +} + +extern struct timespec dmar_hw_timeout; + +#define DMAR_WAIT_UNTIL(cond) \ +{ \ + struct timespec last, curr; \ + bool forever; \ + \ + if (dmar_hw_timeout.tv_sec == 0 && \ + dmar_hw_timeout.tv_nsec == 0) { \ + forever = true; \ + } else { \ + forever = false; \ + nanouptime(&curr); \ + last = curr; \ + timespecadd(&last, &dmar_hw_timeout); \ + } \ + for (;;) { \ + if (cond) { \ + error = 0; \ + break; \ + } \ + nanouptime(&curr); \ + if (!forever && timespeccmp(&last, &curr, <)) { \ + error = ETIMEDOUT; \ + break; \ + } \ + cpu_spinwait(); \ + } \ } #ifdef INVARIANTS #define TD_PREP_PINNED_ASSERT \ int old_td_pinned; \ old_td_pinned = curthread->td_pinned #define TD_PINNED_ASSERT \ KASSERT(curthread->td_pinned == old_td_pinned, \ ("pin count leak: %d %d %s:%d", curthread->td_pinned, \ old_td_pinned, __FILE__, __LINE__)) #else #define TD_PREP_PINNED_ASSERT #define TD_PINNED_ASSERT #endif #endif Index: stable/11/sys/x86/iommu/intel_drv.c =================================================================== --- stable/11/sys/x86/iommu/intel_drv.c (revision 316448) +++ stable/11/sys/x86/iommu/intel_drv.c (revision 316449) @@ -1,1290 +1,1295 @@ /*- * Copyright (c) 2013-2015 The FreeBSD Foundation * All rights reserved. * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_acpi.h" #if defined(__amd64__) #define DEV_APIC #else #include "opt_apic.h" #endif #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEV_APIC #include "pcib_if.h" #endif #define DMAR_FAULT_IRQ_RID 0 #define DMAR_QI_IRQ_RID 1 #define DMAR_REG_RID 2 static devclass_t dmar_devclass; static device_t *dmar_devs; static int dmar_devcnt; typedef int (*dmar_iter_t)(ACPI_DMAR_HEADER *, void *); static void dmar_iterate_tbl(dmar_iter_t iter, void *arg) { ACPI_TABLE_DMAR *dmartbl; ACPI_DMAR_HEADER *dmarh; char *ptr, *ptrend; ACPI_STATUS status; status = AcpiGetTable(ACPI_SIG_DMAR, 1, (ACPI_TABLE_HEADER **)&dmartbl); if (ACPI_FAILURE(status)) return; ptr = (char *)dmartbl + sizeof(*dmartbl); ptrend = (char *)dmartbl + dmartbl->Header.Length; for (;;) { if (ptr >= ptrend) break; dmarh = (ACPI_DMAR_HEADER *)ptr; if (dmarh->Length <= 0) { printf("dmar_identify: corrupted DMAR table, l %d\n", dmarh->Length); break; } ptr += dmarh->Length; if (!iter(dmarh, arg)) break; } AcpiPutTable((ACPI_TABLE_HEADER *)dmartbl); } struct find_iter_args { int i; ACPI_DMAR_HARDWARE_UNIT *res; }; static int dmar_find_iter(ACPI_DMAR_HEADER *dmarh, void *arg) { struct find_iter_args *fia; if (dmarh->Type != ACPI_DMAR_TYPE_HARDWARE_UNIT) return (1); fia = arg; if (fia->i == 0) { fia->res = (ACPI_DMAR_HARDWARE_UNIT *)dmarh; return (0); } fia->i--; return (1); } static ACPI_DMAR_HARDWARE_UNIT * dmar_find_by_index(int idx) { struct find_iter_args fia; fia.i = idx; fia.res = NULL; dmar_iterate_tbl(dmar_find_iter, &fia); return (fia.res); } static int dmar_count_iter(ACPI_DMAR_HEADER *dmarh, void *arg) { if (dmarh->Type == ACPI_DMAR_TYPE_HARDWARE_UNIT) dmar_devcnt++; return (1); } static int dmar_enable = 0; static void dmar_identify(driver_t *driver, device_t parent) { ACPI_TABLE_DMAR *dmartbl; ACPI_DMAR_HARDWARE_UNIT *dmarh; ACPI_STATUS status; int i, error; if (acpi_disabled("dmar")) return; TUNABLE_INT_FETCH("hw.dmar.enable", &dmar_enable); if (!dmar_enable) return; #ifdef INVARIANTS TUNABLE_INT_FETCH("hw.dmar.check_free", &dmar_check_free); #endif TUNABLE_INT_FETCH("hw.dmar.match_verbose", &dmar_match_verbose); status = AcpiGetTable(ACPI_SIG_DMAR, 1, (ACPI_TABLE_HEADER **)&dmartbl); if (ACPI_FAILURE(status)) return; haw = dmartbl->Width + 1; if ((1ULL << (haw + 1)) > BUS_SPACE_MAXADDR) dmar_high = BUS_SPACE_MAXADDR; else dmar_high = 1ULL << (haw + 1); if (bootverbose) { printf("DMAR HAW=%d flags=<%b>\n", dmartbl->Width, (unsigned)dmartbl->Flags, "\020\001INTR_REMAP\002X2APIC_OPT_OUT"); } AcpiPutTable((ACPI_TABLE_HEADER *)dmartbl); dmar_iterate_tbl(dmar_count_iter, NULL); if (dmar_devcnt == 0) return; dmar_devs = malloc(sizeof(device_t) * dmar_devcnt, M_DEVBUF, M_WAITOK | M_ZERO); for (i = 0; i < dmar_devcnt; i++) { dmarh = dmar_find_by_index(i); if (dmarh == NULL) { printf("dmar_identify: cannot find HWUNIT %d\n", i); continue; } dmar_devs[i] = BUS_ADD_CHILD(parent, 1, "dmar", i); if (dmar_devs[i] == NULL) { printf("dmar_identify: cannot create instance %d\n", i); continue; } error = bus_set_resource(dmar_devs[i], SYS_RES_MEMORY, DMAR_REG_RID, dmarh->Address, PAGE_SIZE); if (error != 0) { printf( "dmar%d: unable to alloc register window at 0x%08jx: error %d\n", i, (uintmax_t)dmarh->Address, error); device_delete_child(parent, dmar_devs[i]); dmar_devs[i] = NULL; } } } static int dmar_probe(device_t dev) { if (acpi_get_handle(dev) != NULL) return (ENXIO); device_set_desc(dev, "DMA remap"); return (BUS_PROBE_NOWILDCARD); } static void dmar_release_intr(device_t dev, struct dmar_unit *unit, int idx) { struct dmar_msi_data *dmd; dmd = &unit->intrs[idx]; if (dmd->irq == -1) return; bus_teardown_intr(dev, dmd->irq_res, dmd->intr_handle); bus_release_resource(dev, SYS_RES_IRQ, dmd->irq_rid, dmd->irq_res); bus_delete_resource(dev, SYS_RES_IRQ, dmd->irq_rid); PCIB_RELEASE_MSIX(device_get_parent(device_get_parent(dev)), dev, dmd->irq); dmd->irq = -1; } static void dmar_release_resources(device_t dev, struct dmar_unit *unit) { int i; dmar_fini_busdma(unit); dmar_fini_irt(unit); dmar_fini_qi(unit); dmar_fini_fault_log(unit); for (i = 0; i < DMAR_INTR_TOTAL; i++) dmar_release_intr(dev, unit, i); if (unit->regs != NULL) { bus_deactivate_resource(dev, SYS_RES_MEMORY, unit->reg_rid, unit->regs); bus_release_resource(dev, SYS_RES_MEMORY, unit->reg_rid, unit->regs); unit->regs = NULL; } if (unit->domids != NULL) { delete_unrhdr(unit->domids); unit->domids = NULL; } if (unit->ctx_obj != NULL) { vm_object_deallocate(unit->ctx_obj); unit->ctx_obj = NULL; } } static int dmar_alloc_irq(device_t dev, struct dmar_unit *unit, int idx) { device_t pcib; struct dmar_msi_data *dmd; uint64_t msi_addr; uint32_t msi_data; int error; dmd = &unit->intrs[idx]; pcib = device_get_parent(device_get_parent(dev)); /* Really not pcib */ error = PCIB_ALLOC_MSIX(pcib, dev, &dmd->irq); if (error != 0) { device_printf(dev, "cannot allocate %s interrupt, %d\n", dmd->name, error); goto err1; } error = bus_set_resource(dev, SYS_RES_IRQ, dmd->irq_rid, dmd->irq, 1); if (error != 0) { device_printf(dev, "cannot set %s interrupt resource, %d\n", dmd->name, error); goto err2; } dmd->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &dmd->irq_rid, RF_ACTIVE); if (dmd->irq_res == NULL) { device_printf(dev, "cannot allocate resource for %s interrupt\n", dmd->name); error = ENXIO; goto err3; } error = bus_setup_intr(dev, dmd->irq_res, INTR_TYPE_MISC, dmd->handler, NULL, unit, &dmd->intr_handle); if (error != 0) { device_printf(dev, "cannot setup %s interrupt, %d\n", dmd->name, error); goto err4; } bus_describe_intr(dev, dmd->irq_res, dmd->intr_handle, "%s", dmd->name); error = PCIB_MAP_MSI(pcib, dev, dmd->irq, &msi_addr, &msi_data); if (error != 0) { device_printf(dev, "cannot map %s interrupt, %d\n", dmd->name, error); goto err5; } dmar_write4(unit, dmd->msi_data_reg, msi_data); dmar_write4(unit, dmd->msi_addr_reg, msi_addr); /* Only for xAPIC mode */ dmar_write4(unit, dmd->msi_uaddr_reg, msi_addr >> 32); return (0); err5: bus_teardown_intr(dev, dmd->irq_res, dmd->intr_handle); err4: bus_release_resource(dev, SYS_RES_IRQ, dmd->irq_rid, dmd->irq_res); err3: bus_delete_resource(dev, SYS_RES_IRQ, dmd->irq_rid); err2: PCIB_RELEASE_MSIX(pcib, dev, dmd->irq); dmd->irq = -1; err1: return (error); } #ifdef DEV_APIC static int dmar_remap_intr(device_t dev, device_t child, u_int irq) { struct dmar_unit *unit; struct dmar_msi_data *dmd; uint64_t msi_addr; uint32_t msi_data; int i, error; unit = device_get_softc(dev); for (i = 0; i < DMAR_INTR_TOTAL; i++) { dmd = &unit->intrs[i]; if (irq == dmd->irq) { error = PCIB_MAP_MSI(device_get_parent( device_get_parent(dev)), dev, irq, &msi_addr, &msi_data); if (error != 0) return (error); DMAR_LOCK(unit); (dmd->disable_intr)(unit); dmar_write4(unit, dmd->msi_data_reg, msi_data); dmar_write4(unit, dmd->msi_addr_reg, msi_addr); dmar_write4(unit, dmd->msi_uaddr_reg, msi_addr >> 32); (dmd->enable_intr)(unit); DMAR_UNLOCK(unit); return (0); } } return (ENOENT); } #endif static void dmar_print_caps(device_t dev, struct dmar_unit *unit, ACPI_DMAR_HARDWARE_UNIT *dmaru) { uint32_t caphi, ecaphi; device_printf(dev, "regs@0x%08jx, ver=%d.%d, seg=%d, flags=<%b>\n", (uintmax_t)dmaru->Address, DMAR_MAJOR_VER(unit->hw_ver), DMAR_MINOR_VER(unit->hw_ver), dmaru->Segment, dmaru->Flags, "\020\001INCLUDE_ALL_PCI"); caphi = unit->hw_cap >> 32; device_printf(dev, "cap=%b,", (u_int)unit->hw_cap, "\020\004AFL\005WBF\006PLMR\007PHMR\010CM\027ZLR\030ISOCH"); printf("%b, ", caphi, "\020\010PSI\027DWD\030DRD\031FL1GP\034PSI"); printf("ndoms=%d, sagaw=%d, mgaw=%d, fro=%d, nfr=%d, superp=%d", DMAR_CAP_ND(unit->hw_cap), DMAR_CAP_SAGAW(unit->hw_cap), DMAR_CAP_MGAW(unit->hw_cap), DMAR_CAP_FRO(unit->hw_cap), DMAR_CAP_NFR(unit->hw_cap), DMAR_CAP_SPS(unit->hw_cap)); if ((unit->hw_cap & DMAR_CAP_PSI) != 0) printf(", mamv=%d", DMAR_CAP_MAMV(unit->hw_cap)); printf("\n"); ecaphi = unit->hw_ecap >> 32; device_printf(dev, "ecap=%b,", (u_int)unit->hw_ecap, "\020\001C\002QI\003DI\004IR\005EIM\007PT\010SC\031ECS\032MTS" "\033NEST\034DIS\035PASID\036PRS\037ERS\040SRS"); printf("%b, ", ecaphi, "\020\002NWFS\003EAFS"); printf("mhmw=%d, iro=%d\n", DMAR_ECAP_MHMV(unit->hw_ecap), DMAR_ECAP_IRO(unit->hw_ecap)); } static int dmar_attach(device_t dev) { struct dmar_unit *unit; ACPI_DMAR_HARDWARE_UNIT *dmaru; + uint64_t timeout; int i, error; unit = device_get_softc(dev); unit->dev = dev; unit->unit = device_get_unit(dev); dmaru = dmar_find_by_index(unit->unit); if (dmaru == NULL) return (EINVAL); unit->segment = dmaru->Segment; unit->base = dmaru->Address; unit->reg_rid = DMAR_REG_RID; unit->regs = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &unit->reg_rid, RF_ACTIVE); if (unit->regs == NULL) { device_printf(dev, "cannot allocate register window\n"); return (ENOMEM); } unit->hw_ver = dmar_read4(unit, DMAR_VER_REG); unit->hw_cap = dmar_read8(unit, DMAR_CAP_REG); unit->hw_ecap = dmar_read8(unit, DMAR_ECAP_REG); if (bootverbose) dmar_print_caps(dev, unit, dmaru); dmar_quirks_post_ident(unit); + + timeout = dmar_get_timeout(); + TUNABLE_UINT64_FETCH("hw.dmar.timeout", &timeout); + dmar_update_timeout(timeout); for (i = 0; i < DMAR_INTR_TOTAL; i++) unit->intrs[i].irq = -1; unit->intrs[DMAR_INTR_FAULT].name = "fault"; unit->intrs[DMAR_INTR_FAULT].irq_rid = DMAR_FAULT_IRQ_RID; unit->intrs[DMAR_INTR_FAULT].handler = dmar_fault_intr; unit->intrs[DMAR_INTR_FAULT].msi_data_reg = DMAR_FEDATA_REG; unit->intrs[DMAR_INTR_FAULT].msi_addr_reg = DMAR_FEADDR_REG; unit->intrs[DMAR_INTR_FAULT].msi_uaddr_reg = DMAR_FEUADDR_REG; unit->intrs[DMAR_INTR_FAULT].enable_intr = dmar_enable_fault_intr; unit->intrs[DMAR_INTR_FAULT].disable_intr = dmar_disable_fault_intr; error = dmar_alloc_irq(dev, unit, DMAR_INTR_FAULT); if (error != 0) { dmar_release_resources(dev, unit); return (error); } if (DMAR_HAS_QI(unit)) { unit->intrs[DMAR_INTR_QI].name = "qi"; unit->intrs[DMAR_INTR_QI].irq_rid = DMAR_QI_IRQ_RID; unit->intrs[DMAR_INTR_QI].handler = dmar_qi_intr; unit->intrs[DMAR_INTR_QI].msi_data_reg = DMAR_IEDATA_REG; unit->intrs[DMAR_INTR_QI].msi_addr_reg = DMAR_IEADDR_REG; unit->intrs[DMAR_INTR_QI].msi_uaddr_reg = DMAR_IEUADDR_REG; unit->intrs[DMAR_INTR_QI].enable_intr = dmar_enable_qi_intr; unit->intrs[DMAR_INTR_QI].disable_intr = dmar_disable_qi_intr; error = dmar_alloc_irq(dev, unit, DMAR_INTR_QI); if (error != 0) { dmar_release_resources(dev, unit); return (error); } } mtx_init(&unit->lock, "dmarhw", NULL, MTX_DEF); unit->domids = new_unrhdr(0, dmar_nd2mask(DMAR_CAP_ND(unit->hw_cap)), &unit->lock); LIST_INIT(&unit->domains); /* * 9.2 "Context Entry": * When Caching Mode (CM) field is reported as Set, the * domain-id value of zero is architecturally reserved. * Software must not use domain-id value of zero * when CM is Set. */ if ((unit->hw_cap & DMAR_CAP_CM) != 0) alloc_unr_specific(unit->domids, 0); unit->ctx_obj = vm_pager_allocate(OBJT_PHYS, NULL, IDX_TO_OFF(1 + DMAR_CTX_CNT), 0, 0, NULL); /* * Allocate and load the root entry table pointer. Enable the * address translation after the required invalidations are * done. */ dmar_pgalloc(unit->ctx_obj, 0, DMAR_PGF_WAITOK | DMAR_PGF_ZERO); DMAR_LOCK(unit); error = dmar_load_root_entry_ptr(unit); if (error != 0) { DMAR_UNLOCK(unit); dmar_release_resources(dev, unit); return (error); } error = dmar_inv_ctx_glob(unit); if (error != 0) { DMAR_UNLOCK(unit); dmar_release_resources(dev, unit); return (error); } if ((unit->hw_ecap & DMAR_ECAP_DI) != 0) { error = dmar_inv_iotlb_glob(unit); if (error != 0) { DMAR_UNLOCK(unit); dmar_release_resources(dev, unit); return (error); } } DMAR_UNLOCK(unit); error = dmar_init_fault_log(unit); if (error != 0) { dmar_release_resources(dev, unit); return (error); } error = dmar_init_qi(unit); if (error != 0) { dmar_release_resources(dev, unit); return (error); } error = dmar_init_irt(unit); if (error != 0) { dmar_release_resources(dev, unit); return (error); } error = dmar_init_busdma(unit); if (error != 0) { dmar_release_resources(dev, unit); return (error); } #ifdef NOTYET DMAR_LOCK(unit); error = dmar_enable_translation(unit); if (error != 0) { DMAR_UNLOCK(unit); dmar_release_resources(dev, unit); return (error); } DMAR_UNLOCK(unit); #endif return (0); } static int dmar_detach(device_t dev) { return (EBUSY); } static int dmar_suspend(device_t dev) { return (0); } static int dmar_resume(device_t dev) { /* XXXKIB */ return (0); } static device_method_t dmar_methods[] = { DEVMETHOD(device_identify, dmar_identify), DEVMETHOD(device_probe, dmar_probe), DEVMETHOD(device_attach, dmar_attach), DEVMETHOD(device_detach, dmar_detach), DEVMETHOD(device_suspend, dmar_suspend), DEVMETHOD(device_resume, dmar_resume), #ifdef DEV_APIC DEVMETHOD(bus_remap_intr, dmar_remap_intr), #endif DEVMETHOD_END }; static driver_t dmar_driver = { "dmar", dmar_methods, sizeof(struct dmar_unit), }; DRIVER_MODULE(dmar, acpi, dmar_driver, dmar_devclass, 0, 0); MODULE_DEPEND(dmar, acpi, 1, 1, 1); static void dmar_print_path(device_t dev, const char *banner, int busno, int depth, const ACPI_DMAR_PCI_PATH *path) { int i; device_printf(dev, "%s [%d, ", banner, busno); for (i = 0; i < depth; i++) { if (i != 0) printf(", "); printf("(%d, %d)", path[i].Device, path[i].Function); } printf("]\n"); } static int dmar_dev_depth(device_t child) { devclass_t pci_class; device_t bus, pcib; int depth; pci_class = devclass_find("pci"); for (depth = 1; ; depth++) { bus = device_get_parent(child); pcib = device_get_parent(bus); if (device_get_devclass(device_get_parent(pcib)) != pci_class) return (depth); child = pcib; } } static void dmar_dev_path(device_t child, int *busno, ACPI_DMAR_PCI_PATH *path, int depth) { devclass_t pci_class; device_t bus, pcib; pci_class = devclass_find("pci"); for (depth--; depth != -1; depth--) { path[depth].Device = pci_get_slot(child); path[depth].Function = pci_get_function(child); bus = device_get_parent(child); pcib = device_get_parent(bus); if (device_get_devclass(device_get_parent(pcib)) != pci_class) { /* reached a host bridge */ *busno = pcib_get_bus(bus); return; } child = pcib; } panic("wrong depth"); } static int dmar_match_pathes(int busno1, const ACPI_DMAR_PCI_PATH *path1, int depth1, int busno2, const ACPI_DMAR_PCI_PATH *path2, int depth2, enum AcpiDmarScopeType scope_type) { int i, depth; if (busno1 != busno2) return (0); if (scope_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && depth1 != depth2) return (0); depth = depth1; if (depth2 < depth) depth = depth2; for (i = 0; i < depth; i++) { if (path1[i].Device != path2[i].Device || path1[i].Function != path2[i].Function) return (0); } return (1); } static int dmar_match_devscope(ACPI_DMAR_DEVICE_SCOPE *devscope, device_t dev, int dev_busno, const ACPI_DMAR_PCI_PATH *dev_path, int dev_path_len) { ACPI_DMAR_PCI_PATH *path; int path_len; if (devscope->Length < sizeof(*devscope)) { printf("dmar_find: corrupted DMAR table, dl %d\n", devscope->Length); return (-1); } if (devscope->EntryType != ACPI_DMAR_SCOPE_TYPE_ENDPOINT && devscope->EntryType != ACPI_DMAR_SCOPE_TYPE_BRIDGE) return (0); path_len = devscope->Length - sizeof(*devscope); if (path_len % 2 != 0) { printf("dmar_find_bsf: corrupted DMAR table, dl %d\n", devscope->Length); return (-1); } path_len /= 2; path = (ACPI_DMAR_PCI_PATH *)(devscope + 1); if (path_len == 0) { printf("dmar_find: corrupted DMAR table, dl %d\n", devscope->Length); return (-1); } if (dmar_match_verbose) dmar_print_path(dev, "DMAR", devscope->Bus, path_len, path); return (dmar_match_pathes(devscope->Bus, path, path_len, dev_busno, dev_path, dev_path_len, devscope->EntryType)); } struct dmar_unit * dmar_find(device_t dev) { device_t dmar_dev; ACPI_DMAR_HARDWARE_UNIT *dmarh; ACPI_DMAR_DEVICE_SCOPE *devscope; char *ptr, *ptrend; int i, match, dev_domain, dev_busno, dev_path_len; dmar_dev = NULL; dev_domain = pci_get_domain(dev); dev_path_len = dmar_dev_depth(dev); ACPI_DMAR_PCI_PATH dev_path[dev_path_len]; dmar_dev_path(dev, &dev_busno, dev_path, dev_path_len); if (dmar_match_verbose) dmar_print_path(dev, "PCI", dev_busno, dev_path_len, dev_path); for (i = 0; i < dmar_devcnt; i++) { if (dmar_devs[i] == NULL) continue; dmarh = dmar_find_by_index(i); if (dmarh == NULL) continue; if (dmarh->Segment != dev_domain) continue; if ((dmarh->Flags & ACPI_DMAR_INCLUDE_ALL) != 0) { dmar_dev = dmar_devs[i]; if (dmar_match_verbose) { device_printf(dev, "pci%d:%d:%d:%d matched dmar%d INCLUDE_ALL\n", dev_domain, pci_get_bus(dev), pci_get_slot(dev), pci_get_function(dev), ((struct dmar_unit *)device_get_softc( dmar_dev))->unit); } goto found; } ptr = (char *)dmarh + sizeof(*dmarh); ptrend = (char *)dmarh + dmarh->Header.Length; for (;;) { if (ptr >= ptrend) break; devscope = (ACPI_DMAR_DEVICE_SCOPE *)ptr; ptr += devscope->Length; if (dmar_match_verbose) { device_printf(dev, "pci%d:%d:%d:%d matching dmar%d\n", dev_domain, pci_get_bus(dev), pci_get_slot(dev), pci_get_function(dev), ((struct dmar_unit *)device_get_softc( dmar_devs[i]))->unit); } match = dmar_match_devscope(devscope, dev, dev_busno, dev_path, dev_path_len); if (dmar_match_verbose) { if (match == -1) printf("table error\n"); else if (match == 0) printf("not matched\n"); else printf("matched\n"); } if (match == -1) return (NULL); else if (match == 1) { dmar_dev = dmar_devs[i]; goto found; } } } return (NULL); found: return (device_get_softc(dmar_dev)); } static struct dmar_unit * dmar_find_nonpci(u_int id, u_int entry_type, uint16_t *rid) { device_t dmar_dev; struct dmar_unit *unit; ACPI_DMAR_HARDWARE_UNIT *dmarh; ACPI_DMAR_DEVICE_SCOPE *devscope; ACPI_DMAR_PCI_PATH *path; char *ptr, *ptrend; int i; for (i = 0; i < dmar_devcnt; i++) { dmar_dev = dmar_devs[i]; if (dmar_dev == NULL) continue; unit = (struct dmar_unit *)device_get_softc(dmar_dev); dmarh = dmar_find_by_index(i); if (dmarh == NULL) continue; ptr = (char *)dmarh + sizeof(*dmarh); ptrend = (char *)dmarh + dmarh->Header.Length; for (;;) { if (ptr >= ptrend) break; devscope = (ACPI_DMAR_DEVICE_SCOPE *)ptr; ptr += devscope->Length; if (devscope->EntryType != entry_type) continue; if (devscope->EnumerationId != id) continue; if (devscope->Length - sizeof(ACPI_DMAR_DEVICE_SCOPE) == 2) { if (rid != NULL) { path = (ACPI_DMAR_PCI_PATH *) (devscope + 1); *rid = PCI_RID(devscope->Bus, path->Device, path->Function); } return (unit); } else { /* XXXKIB */ printf( "dmar_find_nonpci: id %d type %d path length != 2\n", id, entry_type); } } } return (NULL); } struct dmar_unit * dmar_find_hpet(device_t dev, uint16_t *rid) { return (dmar_find_nonpci(hpet_get_uid(dev), ACPI_DMAR_SCOPE_TYPE_HPET, rid)); } struct dmar_unit * dmar_find_ioapic(u_int apic_id, uint16_t *rid) { return (dmar_find_nonpci(apic_id, ACPI_DMAR_SCOPE_TYPE_IOAPIC, rid)); } struct rmrr_iter_args { struct dmar_domain *domain; device_t dev; int dev_domain; int dev_busno; ACPI_DMAR_PCI_PATH *dev_path; int dev_path_len; struct dmar_map_entries_tailq *rmrr_entries; }; static int dmar_rmrr_iter(ACPI_DMAR_HEADER *dmarh, void *arg) { struct rmrr_iter_args *ria; ACPI_DMAR_RESERVED_MEMORY *resmem; ACPI_DMAR_DEVICE_SCOPE *devscope; struct dmar_map_entry *entry; char *ptr, *ptrend; int match; if (dmarh->Type != ACPI_DMAR_TYPE_RESERVED_MEMORY) return (1); ria = arg; resmem = (ACPI_DMAR_RESERVED_MEMORY *)dmarh; if (dmar_match_verbose) { printf("RMRR [%jx,%jx] segment %d\n", (uintmax_t)resmem->BaseAddress, (uintmax_t)resmem->EndAddress, resmem->Segment); } if (resmem->Segment != ria->dev_domain) return (1); ptr = (char *)resmem + sizeof(*resmem); ptrend = (char *)resmem + resmem->Header.Length; for (;;) { if (ptr >= ptrend) break; devscope = (ACPI_DMAR_DEVICE_SCOPE *)ptr; ptr += devscope->Length; match = dmar_match_devscope(devscope, ria->dev, ria->dev_busno, ria->dev_path, ria->dev_path_len); if (match == 1) { if (dmar_match_verbose) printf("matched\n"); entry = dmar_gas_alloc_entry(ria->domain, DMAR_PGF_WAITOK); entry->start = resmem->BaseAddress; /* The RMRR entry end address is inclusive. */ entry->end = resmem->EndAddress; TAILQ_INSERT_TAIL(ria->rmrr_entries, entry, unroll_link); } else if (dmar_match_verbose) { printf("not matched, err %d\n", match); } } return (1); } void dmar_dev_parse_rmrr(struct dmar_domain *domain, device_t dev, struct dmar_map_entries_tailq *rmrr_entries) { struct rmrr_iter_args ria; ria.dev_domain = pci_get_domain(dev); ria.dev_path_len = dmar_dev_depth(dev); ACPI_DMAR_PCI_PATH dev_path[ria.dev_path_len]; dmar_dev_path(dev, &ria.dev_busno, dev_path, ria.dev_path_len); if (dmar_match_verbose) { device_printf(dev, "parsing RMRR entries for "); dmar_print_path(dev, "PCI", ria.dev_busno, ria.dev_path_len, dev_path); } ria.domain = domain; ria.dev = dev; ria.dev_path = dev_path; ria.rmrr_entries = rmrr_entries; dmar_iterate_tbl(dmar_rmrr_iter, &ria); } struct inst_rmrr_iter_args { struct dmar_unit *dmar; }; static device_t dmar_path_dev(int segment, int path_len, int busno, const ACPI_DMAR_PCI_PATH *path) { devclass_t pci_class; device_t bus, pcib, dev; int i; pci_class = devclass_find("pci"); dev = NULL; for (i = 0; i < path_len; i++, path++) { dev = pci_find_dbsf(segment, busno, path->Device, path->Function); if (dev == NULL) break; if (i != path_len - 1) { bus = device_get_parent(dev); pcib = device_get_parent(bus); if (device_get_devclass(device_get_parent(pcib)) != pci_class) return (NULL); } busno = pcib_get_bus(dev); } return (dev); } static int dmar_inst_rmrr_iter(ACPI_DMAR_HEADER *dmarh, void *arg) { const ACPI_DMAR_RESERVED_MEMORY *resmem; const ACPI_DMAR_DEVICE_SCOPE *devscope; struct inst_rmrr_iter_args *iria; const char *ptr, *ptrend; struct dmar_unit *dev_dmar; device_t dev; if (dmarh->Type != ACPI_DMAR_TYPE_RESERVED_MEMORY) return (1); iria = arg; resmem = (ACPI_DMAR_RESERVED_MEMORY *)dmarh; if (resmem->Segment != iria->dmar->segment) return (1); if (dmar_match_verbose) { printf("dmar%d: RMRR [%jx,%jx]\n", iria->dmar->unit, (uintmax_t)resmem->BaseAddress, (uintmax_t)resmem->EndAddress); } ptr = (const char *)resmem + sizeof(*resmem); ptrend = (const char *)resmem + resmem->Header.Length; for (;;) { if (ptr >= ptrend) break; devscope = (const ACPI_DMAR_DEVICE_SCOPE *)ptr; ptr += devscope->Length; /* XXXKIB bridge */ if (devscope->EntryType != ACPI_DMAR_SCOPE_TYPE_ENDPOINT) continue; if (dmar_match_verbose) { dmar_print_path(iria->dmar->dev, "RMRR scope", devscope->Bus, (devscope->Length - sizeof(ACPI_DMAR_DEVICE_SCOPE)) / 2, (const ACPI_DMAR_PCI_PATH *)(devscope + 1)); } dev = dmar_path_dev(resmem->Segment, (devscope->Length - sizeof(ACPI_DMAR_DEVICE_SCOPE)) / 2, devscope->Bus, (const ACPI_DMAR_PCI_PATH *)(devscope + 1)); if (dev == NULL) { if (dmar_match_verbose) printf("null dev\n"); continue; } dev_dmar = dmar_find(dev); if (dev_dmar != iria->dmar) { if (dmar_match_verbose) { printf("dmar%d matched, skipping\n", dev_dmar->unit); } continue; } if (dmar_match_verbose) printf("matched, instantiating RMRR context\n"); dmar_instantiate_ctx(iria->dmar, dev, true); } return (1); } /* * Pre-create all contexts for the DMAR which have RMRR entries. */ int dmar_instantiate_rmrr_ctxs(struct dmar_unit *dmar) { struct inst_rmrr_iter_args iria; int error; if (!dmar_barrier_enter(dmar, DMAR_BARRIER_RMRR)) return (0); error = 0; iria.dmar = dmar; if (dmar_match_verbose) printf("dmar%d: instantiating RMRR contexts\n", dmar->unit); dmar_iterate_tbl(dmar_inst_rmrr_iter, &iria); DMAR_LOCK(dmar); if (!LIST_EMPTY(&dmar->domains)) { KASSERT((dmar->hw_gcmd & DMAR_GCMD_TE) == 0, ("dmar%d: RMRR not handled but translation is already enabled", dmar->unit)); error = dmar_enable_translation(dmar); } dmar_barrier_exit(dmar, DMAR_BARRIER_RMRR); return (error); } #ifdef DDB #include #include static void dmar_print_domain_entry(const struct dmar_map_entry *entry) { struct dmar_map_entry *l, *r; db_printf( " start %jx end %jx free_after %jx free_down %jx flags %x ", entry->start, entry->end, entry->free_after, entry->free_down, entry->flags); db_printf("left "); l = RB_LEFT(entry, rb_entry); if (l == NULL) db_printf("NULL "); else db_printf("%jx ", l->start); db_printf("right "); r = RB_RIGHT(entry, rb_entry); if (r == NULL) db_printf("NULL"); else db_printf("%jx", r->start); db_printf("\n"); } static void dmar_print_ctx(struct dmar_ctx *ctx) { db_printf( " @%p pci%d:%d:%d refs %d flags %x loads %lu unloads %lu\n", ctx, pci_get_bus(ctx->ctx_tag.owner), pci_get_slot(ctx->ctx_tag.owner), pci_get_function(ctx->ctx_tag.owner), ctx->refs, ctx->flags, ctx->loads, ctx->unloads); } static void dmar_print_domain(struct dmar_domain *domain, bool show_mappings) { struct dmar_map_entry *entry; struct dmar_ctx *ctx; db_printf( " @%p dom %d mgaw %d agaw %d pglvl %d end %jx refs %d\n" " ctx_cnt %d flags %x pgobj %p map_ents %u\n", domain, domain->domain, domain->mgaw, domain->agaw, domain->pglvl, (uintmax_t)domain->end, domain->refs, domain->ctx_cnt, domain->flags, domain->pgtbl_obj, domain->entries_cnt); if (!LIST_EMPTY(&domain->contexts)) { db_printf(" Contexts:\n"); LIST_FOREACH(ctx, &domain->contexts, link) dmar_print_ctx(ctx); } if (!show_mappings) return; db_printf(" mapped:\n"); RB_FOREACH(entry, dmar_gas_entries_tree, &domain->rb_root) { dmar_print_domain_entry(entry); if (db_pager_quit) break; } if (db_pager_quit) return; db_printf(" unloading:\n"); TAILQ_FOREACH(entry, &domain->unload_entries, dmamap_link) { dmar_print_domain_entry(entry); if (db_pager_quit) break; } } DB_FUNC(dmar_domain, db_dmar_print_domain, db_show_table, CS_OWN, NULL) { struct dmar_unit *unit; struct dmar_domain *domain; struct dmar_ctx *ctx; bool show_mappings, valid; int pci_domain, bus, device, function, i, t; db_expr_t radix; valid = false; radix = db_radix; db_radix = 10; t = db_read_token(); if (t == tSLASH) { t = db_read_token(); if (t != tIDENT) { db_printf("Bad modifier\n"); db_radix = radix; db_skip_to_eol(); return; } show_mappings = strchr(db_tok_string, 'm') != NULL; t = db_read_token(); } else { show_mappings = false; } if (t == tNUMBER) { pci_domain = db_tok_number; t = db_read_token(); if (t == tNUMBER) { bus = db_tok_number; t = db_read_token(); if (t == tNUMBER) { device = db_tok_number; t = db_read_token(); if (t == tNUMBER) { function = db_tok_number; valid = true; } } } } db_radix = radix; db_skip_to_eol(); if (!valid) { db_printf("usage: show dmar_domain [/m] " " \n"); return; } for (i = 0; i < dmar_devcnt; i++) { unit = device_get_softc(dmar_devs[i]); LIST_FOREACH(domain, &unit->domains, link) { LIST_FOREACH(ctx, &domain->contexts, link) { if (pci_domain == unit->segment && bus == pci_get_bus(ctx->ctx_tag.owner) && device == pci_get_slot(ctx->ctx_tag.owner) && function == pci_get_function(ctx->ctx_tag.owner)) { dmar_print_domain(domain, show_mappings); goto out; } } } } out:; } static void dmar_print_one(int idx, bool show_domains, bool show_mappings) { struct dmar_unit *unit; struct dmar_domain *domain; int i, frir; unit = device_get_softc(dmar_devs[idx]); db_printf("dmar%d at %p, root at 0x%jx, ver 0x%x\n", unit->unit, unit, dmar_read8(unit, DMAR_RTADDR_REG), dmar_read4(unit, DMAR_VER_REG)); db_printf("cap 0x%jx ecap 0x%jx gsts 0x%x fsts 0x%x fectl 0x%x\n", (uintmax_t)dmar_read8(unit, DMAR_CAP_REG), (uintmax_t)dmar_read8(unit, DMAR_ECAP_REG), dmar_read4(unit, DMAR_GSTS_REG), dmar_read4(unit, DMAR_FSTS_REG), dmar_read4(unit, DMAR_FECTL_REG)); if (unit->ir_enabled) { db_printf("ir is enabled; IRT @%p phys 0x%jx maxcnt %d\n", unit->irt, (uintmax_t)unit->irt_phys, unit->irte_cnt); } db_printf("fed 0x%x fea 0x%x feua 0x%x\n", dmar_read4(unit, DMAR_FEDATA_REG), dmar_read4(unit, DMAR_FEADDR_REG), dmar_read4(unit, DMAR_FEUADDR_REG)); db_printf("primary fault log:\n"); for (i = 0; i < DMAR_CAP_NFR(unit->hw_cap); i++) { frir = (DMAR_CAP_FRO(unit->hw_cap) + i) * 16; db_printf(" %d at 0x%x: %jx %jx\n", i, frir, (uintmax_t)dmar_read8(unit, frir), (uintmax_t)dmar_read8(unit, frir + 8)); } if (DMAR_HAS_QI(unit)) { db_printf("ied 0x%x iea 0x%x ieua 0x%x\n", dmar_read4(unit, DMAR_IEDATA_REG), dmar_read4(unit, DMAR_IEADDR_REG), dmar_read4(unit, DMAR_IEUADDR_REG)); if (unit->qi_enabled) { db_printf("qi is enabled: queue @0x%jx (IQA 0x%jx) " "size 0x%jx\n" " head 0x%x tail 0x%x avail 0x%x status 0x%x ctrl 0x%x\n" " hw compl 0x%x@%p/phys@%jx next seq 0x%x gen 0x%x\n", (uintmax_t)unit->inv_queue, (uintmax_t)dmar_read8(unit, DMAR_IQA_REG), (uintmax_t)unit->inv_queue_size, dmar_read4(unit, DMAR_IQH_REG), dmar_read4(unit, DMAR_IQT_REG), unit->inv_queue_avail, dmar_read4(unit, DMAR_ICS_REG), dmar_read4(unit, DMAR_IECTL_REG), unit->inv_waitd_seq_hw, &unit->inv_waitd_seq_hw, (uintmax_t)unit->inv_waitd_seq_hw_phys, unit->inv_waitd_seq, unit->inv_waitd_gen); } else { db_printf("qi is disabled\n"); } } if (show_domains) { db_printf("domains:\n"); LIST_FOREACH(domain, &unit->domains, link) { dmar_print_domain(domain, show_mappings); if (db_pager_quit) break; } } } DB_SHOW_COMMAND(dmar, db_dmar_print) { bool show_domains, show_mappings; show_domains = strchr(modif, 'd') != NULL; show_mappings = strchr(modif, 'm') != NULL; if (!have_addr) { db_printf("usage: show dmar [/d] [/m] index\n"); return; } dmar_print_one((int)addr, show_domains, show_mappings); } DB_SHOW_ALL_COMMAND(dmars, db_show_all_dmars) { int i; bool show_domains, show_mappings; show_domains = strchr(modif, 'd') != NULL; show_mappings = strchr(modif, 'm') != NULL; for (i = 0; i < dmar_devcnt; i++) { dmar_print_one(i, show_domains, show_mappings); if (db_pager_quit) break; } } #endif Index: stable/11/sys/x86/iommu/intel_qi.c =================================================================== --- stable/11/sys/x86/iommu/intel_qi.c (revision 316448) +++ stable/11/sys/x86/iommu/intel_qi.c (revision 316449) @@ -1,471 +1,472 @@ /*- * Copyright (c) 2013 The FreeBSD Foundation * All rights reserved. * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_acpi.h" #include #include #include #include #include #include #include #include +#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static bool dmar_qi_seq_processed(const struct dmar_unit *unit, const struct dmar_qi_genseq *pseq) { return (pseq->gen < unit->inv_waitd_gen || (pseq->gen == unit->inv_waitd_gen && pseq->seq <= unit->inv_waitd_seq_hw)); } static int dmar_enable_qi(struct dmar_unit *unit) { + int error; DMAR_ASSERT_LOCKED(unit); unit->hw_gcmd |= DMAR_GCMD_QIE; dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); - /* XXXKIB should have a timeout */ - while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_QIES) == 0) - cpu_spinwait(); - return (0); + DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_QIES) + != 0)); + return (error); } static int dmar_disable_qi(struct dmar_unit *unit) { + int error; DMAR_ASSERT_LOCKED(unit); unit->hw_gcmd &= ~DMAR_GCMD_QIE; dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); - /* XXXKIB should have a timeout */ - while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_QIES) != 0) - cpu_spinwait(); - return (0); + DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_QIES) + == 0)); + return (error); } static void dmar_qi_advance_tail(struct dmar_unit *unit) { DMAR_ASSERT_LOCKED(unit); dmar_write4(unit, DMAR_IQT_REG, unit->inv_queue_tail); } static void dmar_qi_ensure(struct dmar_unit *unit, int descr_count) { uint32_t head; int bytes; DMAR_ASSERT_LOCKED(unit); bytes = descr_count << DMAR_IQ_DESCR_SZ_SHIFT; for (;;) { if (bytes <= unit->inv_queue_avail) break; /* refill */ head = dmar_read4(unit, DMAR_IQH_REG); head &= DMAR_IQH_MASK; unit->inv_queue_avail = head - unit->inv_queue_tail - DMAR_IQ_DESCR_SZ; if (head <= unit->inv_queue_tail) unit->inv_queue_avail += unit->inv_queue_size; if (bytes <= unit->inv_queue_avail) break; /* * No space in the queue, do busy wait. Hardware must * make a progress. But first advance the tail to * inform the descriptor streamer about entries we * might have already filled, otherwise they could * clog the whole queue.. */ dmar_qi_advance_tail(unit); unit->inv_queue_full++; cpu_spinwait(); } unit->inv_queue_avail -= bytes; } static void dmar_qi_emit(struct dmar_unit *unit, uint64_t data1, uint64_t data2) { DMAR_ASSERT_LOCKED(unit); *(volatile uint64_t *)(unit->inv_queue + unit->inv_queue_tail) = data1; unit->inv_queue_tail += DMAR_IQ_DESCR_SZ / 2; KASSERT(unit->inv_queue_tail <= unit->inv_queue_size, ("tail overflow 0x%x 0x%jx", unit->inv_queue_tail, (uintmax_t)unit->inv_queue_size)); unit->inv_queue_tail &= unit->inv_queue_size - 1; *(volatile uint64_t *)(unit->inv_queue + unit->inv_queue_tail) = data2; unit->inv_queue_tail += DMAR_IQ_DESCR_SZ / 2; KASSERT(unit->inv_queue_tail <= unit->inv_queue_size, ("tail overflow 0x%x 0x%jx", unit->inv_queue_tail, (uintmax_t)unit->inv_queue_size)); unit->inv_queue_tail &= unit->inv_queue_size - 1; } static void dmar_qi_emit_wait_descr(struct dmar_unit *unit, uint32_t seq, bool intr, bool memw, bool fence) { DMAR_ASSERT_LOCKED(unit); dmar_qi_emit(unit, DMAR_IQ_DESCR_WAIT_ID | (intr ? DMAR_IQ_DESCR_WAIT_IF : 0) | (memw ? DMAR_IQ_DESCR_WAIT_SW : 0) | (fence ? DMAR_IQ_DESCR_WAIT_FN : 0) | (memw ? DMAR_IQ_DESCR_WAIT_SD(seq) : 0), memw ? unit->inv_waitd_seq_hw_phys : 0); } static void dmar_qi_emit_wait_seq(struct dmar_unit *unit, struct dmar_qi_genseq *pseq) { struct dmar_qi_genseq gsec; uint32_t seq; KASSERT(pseq != NULL, ("wait descriptor with no place for seq")); DMAR_ASSERT_LOCKED(unit); if (unit->inv_waitd_seq == 0xffffffff) { gsec.gen = unit->inv_waitd_gen; gsec.seq = unit->inv_waitd_seq; dmar_qi_ensure(unit, 1); dmar_qi_emit_wait_descr(unit, gsec.seq, false, true, false); dmar_qi_advance_tail(unit); while (!dmar_qi_seq_processed(unit, &gsec)) cpu_spinwait(); unit->inv_waitd_gen++; unit->inv_waitd_seq = 1; } seq = unit->inv_waitd_seq++; pseq->gen = unit->inv_waitd_gen; pseq->seq = seq; dmar_qi_emit_wait_descr(unit, seq, true, true, false); } static void dmar_qi_wait_for_seq(struct dmar_unit *unit, const struct dmar_qi_genseq *gseq, bool nowait) { DMAR_ASSERT_LOCKED(unit); unit->inv_seq_waiters++; while (!dmar_qi_seq_processed(unit, gseq)) { if (cold || nowait) { cpu_spinwait(); } else { msleep(&unit->inv_seq_waiters, &unit->lock, 0, "dmarse", hz); } } unit->inv_seq_waiters--; } void dmar_qi_invalidate_locked(struct dmar_domain *domain, dmar_gaddr_t base, dmar_gaddr_t size, struct dmar_qi_genseq *pseq) { struct dmar_unit *unit; dmar_gaddr_t isize; int am; unit = domain->dmar; DMAR_ASSERT_LOCKED(unit); for (; size > 0; base += isize, size -= isize) { am = calc_am(unit, base, size, &isize); dmar_qi_ensure(unit, 1); dmar_qi_emit(unit, DMAR_IQ_DESCR_IOTLB_INV | DMAR_IQ_DESCR_IOTLB_PAGE | DMAR_IQ_DESCR_IOTLB_DW | DMAR_IQ_DESCR_IOTLB_DR | DMAR_IQ_DESCR_IOTLB_DID(domain->domain), base | am); } if (pseq != NULL) { dmar_qi_ensure(unit, 1); dmar_qi_emit_wait_seq(unit, pseq); } dmar_qi_advance_tail(unit); } void dmar_qi_invalidate_ctx_glob_locked(struct dmar_unit *unit) { struct dmar_qi_genseq gseq; DMAR_ASSERT_LOCKED(unit); dmar_qi_ensure(unit, 2); dmar_qi_emit(unit, DMAR_IQ_DESCR_CTX_INV | DMAR_IQ_DESCR_CTX_GLOB, 0); dmar_qi_emit_wait_seq(unit, &gseq); dmar_qi_advance_tail(unit); dmar_qi_wait_for_seq(unit, &gseq, false); } void dmar_qi_invalidate_iotlb_glob_locked(struct dmar_unit *unit) { struct dmar_qi_genseq gseq; DMAR_ASSERT_LOCKED(unit); dmar_qi_ensure(unit, 2); dmar_qi_emit(unit, DMAR_IQ_DESCR_IOTLB_INV | DMAR_IQ_DESCR_IOTLB_GLOB | DMAR_IQ_DESCR_IOTLB_DW | DMAR_IQ_DESCR_IOTLB_DR, 0); dmar_qi_emit_wait_seq(unit, &gseq); dmar_qi_advance_tail(unit); dmar_qi_wait_for_seq(unit, &gseq, false); } void dmar_qi_invalidate_iec_glob(struct dmar_unit *unit) { struct dmar_qi_genseq gseq; DMAR_ASSERT_LOCKED(unit); dmar_qi_ensure(unit, 2); dmar_qi_emit(unit, DMAR_IQ_DESCR_IEC_INV, 0); dmar_qi_emit_wait_seq(unit, &gseq); dmar_qi_advance_tail(unit); dmar_qi_wait_for_seq(unit, &gseq, false); } void dmar_qi_invalidate_iec(struct dmar_unit *unit, u_int start, u_int cnt) { struct dmar_qi_genseq gseq; u_int c, l; DMAR_ASSERT_LOCKED(unit); KASSERT(start < unit->irte_cnt && start < start + cnt && start + cnt <= unit->irte_cnt, ("inv iec overflow %d %d %d", unit->irte_cnt, start, cnt)); for (; cnt > 0; cnt -= c, start += c) { l = ffs(start | cnt) - 1; c = 1 << l; dmar_qi_ensure(unit, 1); dmar_qi_emit(unit, DMAR_IQ_DESCR_IEC_INV | DMAR_IQ_DESCR_IEC_IDX | DMAR_IQ_DESCR_IEC_IIDX(start) | DMAR_IQ_DESCR_IEC_IM(l), 0); } dmar_qi_ensure(unit, 1); dmar_qi_emit_wait_seq(unit, &gseq); dmar_qi_advance_tail(unit); /* * The caller of the function, in particular, * dmar_ir_program_irte(), may be called from the context * where the sleeping is forbidden (in fact, the * intr_table_lock mutex may be held, locked from * intr_shuffle_irqs()). Wait for the invalidation completion * using the busy wait. * * The impact on the interrupt input setup code is small, the * expected overhead is comparable with the chipset register * read. It is more harmful for the parallel DMA operations, * since we own the dmar unit lock until whole invalidation * queue is processed, which includes requests possibly issued * before our request. */ dmar_qi_wait_for_seq(unit, &gseq, true); } int dmar_qi_intr(void *arg) { struct dmar_unit *unit; unit = arg; KASSERT(unit->qi_enabled, ("dmar%d: QI is not enabled", unit->unit)); taskqueue_enqueue(unit->qi_taskqueue, &unit->qi_task); return (FILTER_HANDLED); } static void dmar_qi_task(void *arg, int pending __unused) { struct dmar_unit *unit; struct dmar_map_entry *entry; uint32_t ics; unit = arg; DMAR_LOCK(unit); for (;;) { entry = TAILQ_FIRST(&unit->tlb_flush_entries); if (entry == NULL) break; if ((entry->gseq.gen == 0 && entry->gseq.seq == 0) || !dmar_qi_seq_processed(unit, &entry->gseq)) break; TAILQ_REMOVE(&unit->tlb_flush_entries, entry, dmamap_link); DMAR_UNLOCK(unit); dmar_domain_free_entry(entry, (entry->flags & DMAR_MAP_ENTRY_QI_NF) == 0); DMAR_LOCK(unit); } ics = dmar_read4(unit, DMAR_ICS_REG); if ((ics & DMAR_ICS_IWC) != 0) { ics = DMAR_ICS_IWC; dmar_write4(unit, DMAR_ICS_REG, ics); } if (unit->inv_seq_waiters > 0) wakeup(&unit->inv_seq_waiters); DMAR_UNLOCK(unit); } int dmar_init_qi(struct dmar_unit *unit) { uint64_t iqa; uint32_t ics; int qi_sz; if (!DMAR_HAS_QI(unit) || (unit->hw_cap & DMAR_CAP_CM) != 0) return (0); unit->qi_enabled = 1; TUNABLE_INT_FETCH("hw.dmar.qi", &unit->qi_enabled); if (!unit->qi_enabled) return (0); TAILQ_INIT(&unit->tlb_flush_entries); TASK_INIT(&unit->qi_task, 0, dmar_qi_task, unit); unit->qi_taskqueue = taskqueue_create_fast("dmarqf", M_WAITOK, taskqueue_thread_enqueue, &unit->qi_taskqueue); taskqueue_start_threads(&unit->qi_taskqueue, 1, PI_AV, "dmar%d qi taskq", unit->unit); unit->inv_waitd_gen = 0; unit->inv_waitd_seq = 1; qi_sz = DMAR_IQA_QS_DEF; TUNABLE_INT_FETCH("hw.dmar.qi_size", &qi_sz); if (qi_sz > DMAR_IQA_QS_MAX) qi_sz = DMAR_IQA_QS_MAX; unit->inv_queue_size = (1ULL << qi_sz) * PAGE_SIZE; /* Reserve one descriptor to prevent wraparound. */ unit->inv_queue_avail = unit->inv_queue_size - DMAR_IQ_DESCR_SZ; /* The invalidation queue reads by DMARs are always coherent. */ unit->inv_queue = kmem_alloc_contig(kernel_arena, unit->inv_queue_size, M_WAITOK | M_ZERO, 0, dmar_high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT); unit->inv_waitd_seq_hw_phys = pmap_kextract( (vm_offset_t)&unit->inv_waitd_seq_hw); DMAR_LOCK(unit); dmar_write8(unit, DMAR_IQT_REG, 0); iqa = pmap_kextract(unit->inv_queue); iqa |= qi_sz; dmar_write8(unit, DMAR_IQA_REG, iqa); dmar_enable_qi(unit); ics = dmar_read4(unit, DMAR_ICS_REG); if ((ics & DMAR_ICS_IWC) != 0) { ics = DMAR_ICS_IWC; dmar_write4(unit, DMAR_ICS_REG, ics); } dmar_enable_qi_intr(unit); DMAR_UNLOCK(unit); return (0); } void dmar_fini_qi(struct dmar_unit *unit) { struct dmar_qi_genseq gseq; if (unit->qi_enabled) return; taskqueue_drain(unit->qi_taskqueue, &unit->qi_task); taskqueue_free(unit->qi_taskqueue); unit->qi_taskqueue = NULL; DMAR_LOCK(unit); /* quisce */ dmar_qi_ensure(unit, 1); dmar_qi_emit_wait_seq(unit, &gseq); dmar_qi_advance_tail(unit); dmar_qi_wait_for_seq(unit, &gseq, false); /* only after the quisce, disable queue */ dmar_disable_qi_intr(unit); dmar_disable_qi(unit); KASSERT(unit->inv_seq_waiters == 0, ("dmar%d: waiters on disabled queue", unit->unit)); DMAR_UNLOCK(unit); kmem_free(kernel_arena, unit->inv_queue, unit->inv_queue_size); unit->inv_queue = 0; unit->inv_queue_size = 0; unit->qi_enabled = 0; } void dmar_enable_qi_intr(struct dmar_unit *unit) { uint32_t iectl; DMAR_ASSERT_LOCKED(unit); KASSERT(DMAR_HAS_QI(unit), ("dmar%d: QI is not supported", unit->unit)); iectl = dmar_read4(unit, DMAR_IECTL_REG); iectl &= ~DMAR_IECTL_IM; dmar_write4(unit, DMAR_IECTL_REG, iectl); } void dmar_disable_qi_intr(struct dmar_unit *unit) { uint32_t iectl; DMAR_ASSERT_LOCKED(unit); KASSERT(DMAR_HAS_QI(unit), ("dmar%d: QI is not supported", unit->unit)); iectl = dmar_read4(unit, DMAR_IECTL_REG); dmar_write4(unit, DMAR_IECTL_REG, iectl | DMAR_IECTL_IM); } Index: stable/11/sys/x86/iommu/intel_utils.c =================================================================== --- stable/11/sys/x86/iommu/intel_utils.c (revision 316448) +++ stable/11/sys/x86/iommu/intel_utils.c (revision 316449) @@ -1,639 +1,679 @@ /*- * Copyright (c) 2013 The FreeBSD Foundation * All rights reserved. * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include u_int dmar_nd2mask(u_int nd) { static const u_int masks[] = { 0x000f, /* nd == 0 */ 0x002f, /* nd == 1 */ 0x00ff, /* nd == 2 */ 0x02ff, /* nd == 3 */ 0x0fff, /* nd == 4 */ 0x2fff, /* nd == 5 */ 0xffff, /* nd == 6 */ 0x0000, /* nd == 7 reserved */ }; KASSERT(nd <= 6, ("number of domains %d", nd)); return (masks[nd]); } static const struct sagaw_bits_tag { int agaw; int cap; int awlvl; int pglvl; } sagaw_bits[] = { {.agaw = 30, .cap = DMAR_CAP_SAGAW_2LVL, .awlvl = DMAR_CTX2_AW_2LVL, .pglvl = 2}, {.agaw = 39, .cap = DMAR_CAP_SAGAW_3LVL, .awlvl = DMAR_CTX2_AW_3LVL, .pglvl = 3}, {.agaw = 48, .cap = DMAR_CAP_SAGAW_4LVL, .awlvl = DMAR_CTX2_AW_4LVL, .pglvl = 4}, {.agaw = 57, .cap = DMAR_CAP_SAGAW_5LVL, .awlvl = DMAR_CTX2_AW_5LVL, .pglvl = 5}, {.agaw = 64, .cap = DMAR_CAP_SAGAW_6LVL, .awlvl = DMAR_CTX2_AW_6LVL, .pglvl = 6} }; bool dmar_pglvl_supported(struct dmar_unit *unit, int pglvl) { int i; for (i = 0; i < nitems(sagaw_bits); i++) { if (sagaw_bits[i].pglvl != pglvl) continue; if ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0) return (true); } return (false); } int domain_set_agaw(struct dmar_domain *domain, int mgaw) { int sagaw, i; domain->mgaw = mgaw; sagaw = DMAR_CAP_SAGAW(domain->dmar->hw_cap); for (i = 0; i < nitems(sagaw_bits); i++) { if (sagaw_bits[i].agaw >= mgaw) { domain->agaw = sagaw_bits[i].agaw; domain->pglvl = sagaw_bits[i].pglvl; domain->awlvl = sagaw_bits[i].awlvl; return (0); } } device_printf(domain->dmar->dev, "context request mgaw %d: no agaw found, sagaw %x\n", mgaw, sagaw); return (EINVAL); } /* * Find a best fit mgaw for the given maxaddr: * - if allow_less is false, must find sagaw which maps all requested * addresses (used by identity mappings); * - if allow_less is true, and no supported sagaw can map all requested * address space, accept the biggest sagaw, whatever is it. */ int dmar_maxaddr2mgaw(struct dmar_unit *unit, dmar_gaddr_t maxaddr, bool allow_less) { int i; for (i = 0; i < nitems(sagaw_bits); i++) { if ((1ULL << sagaw_bits[i].agaw) >= maxaddr && (DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0) break; } if (allow_less && i == nitems(sagaw_bits)) { do { i--; } while ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) == 0); } if (i < nitems(sagaw_bits)) return (sagaw_bits[i].agaw); KASSERT(0, ("no mgaw for maxaddr %jx allow_less %d", (uintmax_t) maxaddr, allow_less)); return (-1); } /* * Calculate the total amount of page table pages needed to map the * whole bus address space on the context with the selected agaw. */ vm_pindex_t pglvl_max_pages(int pglvl) { vm_pindex_t res; int i; for (res = 0, i = pglvl; i > 0; i--) { res *= DMAR_NPTEPG; res++; } return (res); } /* * Return true if the page table level lvl supports the superpage for * the context ctx. */ int domain_is_sp_lvl(struct dmar_domain *domain, int lvl) { int alvl, cap_sps; static const int sagaw_sp[] = { DMAR_CAP_SPS_2M, DMAR_CAP_SPS_1G, DMAR_CAP_SPS_512G, DMAR_CAP_SPS_1T }; alvl = domain->pglvl - lvl - 1; cap_sps = DMAR_CAP_SPS(domain->dmar->hw_cap); return (alvl < nitems(sagaw_sp) && (sagaw_sp[alvl] & cap_sps) != 0); } dmar_gaddr_t pglvl_page_size(int total_pglvl, int lvl) { int rlvl; static const dmar_gaddr_t pg_sz[] = { (dmar_gaddr_t)DMAR_PAGE_SIZE, (dmar_gaddr_t)DMAR_PAGE_SIZE << DMAR_NPTEPGSHIFT, (dmar_gaddr_t)DMAR_PAGE_SIZE << (2 * DMAR_NPTEPGSHIFT), (dmar_gaddr_t)DMAR_PAGE_SIZE << (3 * DMAR_NPTEPGSHIFT), (dmar_gaddr_t)DMAR_PAGE_SIZE << (4 * DMAR_NPTEPGSHIFT), (dmar_gaddr_t)DMAR_PAGE_SIZE << (5 * DMAR_NPTEPGSHIFT) }; KASSERT(lvl >= 0 && lvl < total_pglvl, ("total %d lvl %d", total_pglvl, lvl)); rlvl = total_pglvl - lvl - 1; KASSERT(rlvl < nitems(pg_sz), ("sizeof pg_sz lvl %d", lvl)); return (pg_sz[rlvl]); } dmar_gaddr_t domain_page_size(struct dmar_domain *domain, int lvl) { return (pglvl_page_size(domain->pglvl, lvl)); } int calc_am(struct dmar_unit *unit, dmar_gaddr_t base, dmar_gaddr_t size, dmar_gaddr_t *isizep) { dmar_gaddr_t isize; int am; for (am = DMAR_CAP_MAMV(unit->hw_cap);; am--) { isize = 1ULL << (am + DMAR_PAGE_SHIFT); if ((base & (isize - 1)) == 0 && size >= isize) break; if (am == 0) break; } *isizep = isize; return (am); } dmar_haddr_t dmar_high; int haw; int dmar_tbl_pagecnt; vm_page_t dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags) { vm_page_t m; int zeroed; zeroed = (flags & DMAR_PGF_ZERO) != 0 ? VM_ALLOC_ZERO : 0; for (;;) { if ((flags & DMAR_PGF_OBJL) == 0) VM_OBJECT_WLOCK(obj); m = vm_page_lookup(obj, idx); if ((flags & DMAR_PGF_NOALLOC) != 0 || m != NULL) { if ((flags & DMAR_PGF_OBJL) == 0) VM_OBJECT_WUNLOCK(obj); break; } m = vm_page_alloc_contig(obj, idx, VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_NODUMP | zeroed, 1, 0, dmar_high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT); if ((flags & DMAR_PGF_OBJL) == 0) VM_OBJECT_WUNLOCK(obj); if (m != NULL) { if (zeroed && (m->flags & PG_ZERO) == 0) pmap_zero_page(m); atomic_add_int(&dmar_tbl_pagecnt, 1); break; } if ((flags & DMAR_PGF_WAITOK) == 0) break; if ((flags & DMAR_PGF_OBJL) != 0) VM_OBJECT_WUNLOCK(obj); VM_WAIT; if ((flags & DMAR_PGF_OBJL) != 0) VM_OBJECT_WLOCK(obj); } return (m); } void dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags) { vm_page_t m; if ((flags & DMAR_PGF_OBJL) == 0) VM_OBJECT_WLOCK(obj); m = vm_page_lookup(obj, idx); if (m != NULL) { vm_page_free(m); atomic_subtract_int(&dmar_tbl_pagecnt, 1); } if ((flags & DMAR_PGF_OBJL) == 0) VM_OBJECT_WUNLOCK(obj); } void * dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags, struct sf_buf **sf) { vm_page_t m; bool allocated; if ((flags & DMAR_PGF_OBJL) == 0) VM_OBJECT_WLOCK(obj); m = vm_page_lookup(obj, idx); if (m == NULL && (flags & DMAR_PGF_ALLOC) != 0) { m = dmar_pgalloc(obj, idx, flags | DMAR_PGF_OBJL); allocated = true; } else allocated = false; if (m == NULL) { if ((flags & DMAR_PGF_OBJL) == 0) VM_OBJECT_WUNLOCK(obj); return (NULL); } /* Sleepable allocations cannot fail. */ if ((flags & DMAR_PGF_WAITOK) != 0) VM_OBJECT_WUNLOCK(obj); sched_pin(); *sf = sf_buf_alloc(m, SFB_CPUPRIVATE | ((flags & DMAR_PGF_WAITOK) == 0 ? SFB_NOWAIT : 0)); if (*sf == NULL) { sched_unpin(); if (allocated) { VM_OBJECT_ASSERT_WLOCKED(obj); dmar_pgfree(obj, m->pindex, flags | DMAR_PGF_OBJL); } if ((flags & DMAR_PGF_OBJL) == 0) VM_OBJECT_WUNLOCK(obj); return (NULL); } if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) == (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) VM_OBJECT_WLOCK(obj); else if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) == 0) VM_OBJECT_WUNLOCK(obj); return ((void *)sf_buf_kva(*sf)); } void dmar_unmap_pgtbl(struct sf_buf *sf) { sf_buf_free(sf); sched_unpin(); } static void dmar_flush_transl_to_ram(struct dmar_unit *unit, void *dst, size_t sz) { if (DMAR_IS_COHERENT(unit)) return; /* * If DMAR does not snoop paging structures accesses, flush * CPU cache to memory. */ pmap_invalidate_cache_range((uintptr_t)dst, (uintptr_t)dst + sz, TRUE); } void dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst) { dmar_flush_transl_to_ram(unit, dst, sizeof(*dst)); } void dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst) { dmar_flush_transl_to_ram(unit, dst, sizeof(*dst)); } void dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst) { dmar_flush_transl_to_ram(unit, dst, sizeof(*dst)); } /* * Load the root entry pointer into the hardware, busily waiting for * the completion. */ int dmar_load_root_entry_ptr(struct dmar_unit *unit) { vm_page_t root_entry; + int error; /* * Access to the GCMD register must be serialized while the * command is submitted. */ DMAR_ASSERT_LOCKED(unit); VM_OBJECT_RLOCK(unit->ctx_obj); root_entry = vm_page_lookup(unit->ctx_obj, 0); VM_OBJECT_RUNLOCK(unit->ctx_obj); dmar_write8(unit, DMAR_RTADDR_REG, VM_PAGE_TO_PHYS(root_entry)); dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SRTP); - /* XXXKIB should have a timeout */ - while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_RTPS) == 0) - cpu_spinwait(); - return (0); + DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_RTPS) + != 0)); + return (error); } /* * Globally invalidate the context entries cache, busily waiting for * the completion. */ int dmar_inv_ctx_glob(struct dmar_unit *unit) { + int error; /* * Access to the CCMD register must be serialized while the * command is submitted. */ DMAR_ASSERT_LOCKED(unit); KASSERT(!unit->qi_enabled, ("QI enabled")); /* * The DMAR_CCMD_ICC bit in the upper dword should be written * after the low dword write is completed. Amd64 * dmar_write8() does not have this issue, i386 dmar_write8() * writes the upper dword last. */ dmar_write8(unit, DMAR_CCMD_REG, DMAR_CCMD_ICC | DMAR_CCMD_CIRG_GLOB); - /* XXXKIB should have a timeout */ - while ((dmar_read4(unit, DMAR_CCMD_REG + 4) & DMAR_CCMD_ICC32) != 0) - cpu_spinwait(); - return (0); + DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_CCMD_REG + 4) & DMAR_CCMD_ICC32) + == 0)); + return (error); } /* * Globally invalidate the IOTLB, busily waiting for the completion. */ int dmar_inv_iotlb_glob(struct dmar_unit *unit) { - int reg; + int error, reg; DMAR_ASSERT_LOCKED(unit); KASSERT(!unit->qi_enabled, ("QI enabled")); reg = 16 * DMAR_ECAP_IRO(unit->hw_ecap); /* See a comment about DMAR_CCMD_ICC in dmar_inv_ctx_glob. */ dmar_write8(unit, reg + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT | DMAR_IOTLB_IIRG_GLB | DMAR_IOTLB_DR | DMAR_IOTLB_DW); - /* XXXKIB should have a timeout */ - while ((dmar_read4(unit, reg + DMAR_IOTLB_REG_OFF + 4) & - DMAR_IOTLB_IVT32) != 0) - cpu_spinwait(); - return (0); + DMAR_WAIT_UNTIL(((dmar_read4(unit, reg + DMAR_IOTLB_REG_OFF + 4) & + DMAR_IOTLB_IVT32) == 0)); + return (error); } /* * Flush the chipset write buffers. See 11.1 "Write Buffer Flushing" * in the architecture specification. */ int dmar_flush_write_bufs(struct dmar_unit *unit) { + int error; DMAR_ASSERT_LOCKED(unit); /* * DMAR_GCMD_WBF is only valid when CAP_RWBF is reported. */ KASSERT((unit->hw_cap & DMAR_CAP_RWBF) != 0, ("dmar%d: no RWBF", unit->unit)); dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_WBF); - /* XXXKIB should have a timeout */ - while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_WBFS) == 0) - cpu_spinwait(); - return (0); + DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_WBFS) + != 0)); + return (error); } int dmar_enable_translation(struct dmar_unit *unit) { + int error; DMAR_ASSERT_LOCKED(unit); unit->hw_gcmd |= DMAR_GCMD_TE; dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); - /* XXXKIB should have a timeout */ - while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) == 0) - cpu_spinwait(); - return (0); + DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) + != 0)); + return (error); } int dmar_disable_translation(struct dmar_unit *unit) { + int error; DMAR_ASSERT_LOCKED(unit); unit->hw_gcmd &= ~DMAR_GCMD_TE; dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); - /* XXXKIB should have a timeout */ - while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) != 0) - cpu_spinwait(); - return (0); + DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) + == 0)); + return (error); } int dmar_load_irt_ptr(struct dmar_unit *unit) { uint64_t irta, s; + int error; DMAR_ASSERT_LOCKED(unit); irta = unit->irt_phys; if (DMAR_X2APIC(unit)) irta |= DMAR_IRTA_EIME; s = fls(unit->irte_cnt) - 2; KASSERT(unit->irte_cnt >= 2 && s <= DMAR_IRTA_S_MASK && powerof2(unit->irte_cnt), ("IRTA_REG_S overflow %x", unit->irte_cnt)); irta |= s; dmar_write8(unit, DMAR_IRTA_REG, irta); dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SIRTP); - /* XXXKIB should have a timeout */ - while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRTPS) == 0) - cpu_spinwait(); - return (0); + DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRTPS) + != 0)); + return (error); } int dmar_enable_ir(struct dmar_unit *unit) { + int error; DMAR_ASSERT_LOCKED(unit); unit->hw_gcmd |= DMAR_GCMD_IRE; unit->hw_gcmd &= ~DMAR_GCMD_CFI; dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); - /* XXXKIB should have a timeout */ - while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES) == 0) - cpu_spinwait(); - return (0); + DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES) + != 0)); + return (error); } int dmar_disable_ir(struct dmar_unit *unit) { + int error; DMAR_ASSERT_LOCKED(unit); unit->hw_gcmd &= ~DMAR_GCMD_IRE; dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); - /* XXXKIB should have a timeout */ - while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES) != 0) - cpu_spinwait(); - return (0); + DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES) + == 0)); + return (error); } #define BARRIER_F \ u_int f_done, f_inproc, f_wakeup; \ \ f_done = 1 << (barrier_id * 3); \ f_inproc = 1 << (barrier_id * 3 + 1); \ f_wakeup = 1 << (barrier_id * 3 + 2) bool dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id) { BARRIER_F; DMAR_LOCK(dmar); if ((dmar->barrier_flags & f_done) != 0) { DMAR_UNLOCK(dmar); return (false); } if ((dmar->barrier_flags & f_inproc) != 0) { while ((dmar->barrier_flags & f_inproc) != 0) { dmar->barrier_flags |= f_wakeup; msleep(&dmar->barrier_flags, &dmar->lock, 0, "dmarb", 0); } KASSERT((dmar->barrier_flags & f_done) != 0, ("dmar%d barrier %d missing done", dmar->unit, barrier_id)); DMAR_UNLOCK(dmar); return (false); } dmar->barrier_flags |= f_inproc; DMAR_UNLOCK(dmar); return (true); } void dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id) { BARRIER_F; DMAR_ASSERT_LOCKED(dmar); KASSERT((dmar->barrier_flags & (f_done | f_inproc)) == f_inproc, ("dmar%d barrier %d missed entry", dmar->unit, barrier_id)); dmar->barrier_flags |= f_done; if ((dmar->barrier_flags & f_wakeup) != 0) wakeup(&dmar->barrier_flags); dmar->barrier_flags &= ~(f_inproc | f_wakeup); DMAR_UNLOCK(dmar); } int dmar_match_verbose; int dmar_batch_coalesce = 100; +struct timespec dmar_hw_timeout = { + .tv_sec = 0, + .tv_nsec = 1000000 +}; +static const uint64_t d = 1000000000; + +void +dmar_update_timeout(uint64_t newval) +{ + + /* XXXKIB not atomic */ + dmar_hw_timeout.tv_sec = newval / d; + dmar_hw_timeout.tv_nsec = newval % d; +} + +uint64_t +dmar_get_timeout(void) +{ + + return ((uint64_t)dmar_hw_timeout.tv_sec * d + + dmar_hw_timeout.tv_nsec); +} + +static int +dmar_timeout_sysctl(SYSCTL_HANDLER_ARGS) +{ + uint64_t val; + int error; + + val = dmar_get_timeout(); + error = sysctl_handle_long(oidp, &val, 0, req); + if (error != 0 || req->newptr == NULL) + return (error); + dmar_update_timeout(val); + return (error); +} + static SYSCTL_NODE(_hw, OID_AUTO, dmar, CTLFLAG_RD, NULL, ""); SYSCTL_INT(_hw_dmar, OID_AUTO, tbl_pagecnt, CTLFLAG_RD, &dmar_tbl_pagecnt, 0, "Count of pages used for DMAR pagetables"); SYSCTL_INT(_hw_dmar, OID_AUTO, match_verbose, CTLFLAG_RWTUN, &dmar_match_verbose, 0, "Verbose matching of the PCI devices to DMAR paths"); SYSCTL_INT(_hw_dmar, OID_AUTO, batch_coalesce, CTLFLAG_RWTUN, &dmar_batch_coalesce, 0, "Number of qi batches between interrupt"); +SYSCTL_PROC(_hw_dmar, OID_AUTO, timeout, + CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, + dmar_timeout_sysctl, "QU", + "Timeout for command wait, in nanoseconds"); #ifdef INVARIANTS int dmar_check_free; SYSCTL_INT(_hw_dmar, OID_AUTO, check_free, CTLFLAG_RWTUN, &dmar_check_free, 0, "Check the GPA RBtree for free_down and free_after validity"); #endif Index: stable/11 =================================================================== --- stable/11 (revision 316448) +++ stable/11 (revision 316449) Property changes on: stable/11 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r316011