Index: head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/dmu.c =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/dmu.c (revision 316036) +++ head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/dmu.c (revision 316037) @@ -1,2249 +1,2249 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2016 by Delphix. All rights reserved. */ /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */ /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */ /* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #include #include #endif /* * Enable/disable nopwrite feature. */ int zfs_nopwrite_enabled = 1; SYSCTL_DECL(_vfs_zfs); SYSCTL_INT(_vfs_zfs, OID_AUTO, nopwrite_enabled, CTLFLAG_RDTUN, &zfs_nopwrite_enabled, 0, "Enable nopwrite feature"); /* * Tunable to control percentage of dirtied blocks from frees in one TXG. * After this threshold is crossed, additional dirty blocks from frees * wait until the next TXG. * A value of zero will disable this throttle. */ uint32_t zfs_per_txg_dirty_frees_percent = 30; SYSCTL_INT(_vfs_zfs, OID_AUTO, per_txg_dirty_frees_percent, CTLFLAG_RWTUN, &zfs_per_txg_dirty_frees_percent, 0, "Percentage of dirtied blocks from frees in one txg"); const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { { DMU_BSWAP_UINT8, TRUE, "unallocated" }, { DMU_BSWAP_ZAP, TRUE, "object directory" }, { DMU_BSWAP_UINT64, TRUE, "object array" }, { DMU_BSWAP_UINT8, TRUE, "packed nvlist" }, { DMU_BSWAP_UINT64, TRUE, "packed nvlist size" }, { DMU_BSWAP_UINT64, TRUE, "bpobj" }, { DMU_BSWAP_UINT64, TRUE, "bpobj header" }, { DMU_BSWAP_UINT64, TRUE, "SPA space map header" }, { DMU_BSWAP_UINT64, TRUE, "SPA space map" }, { DMU_BSWAP_UINT64, TRUE, "ZIL intent log" }, { DMU_BSWAP_DNODE, TRUE, "DMU dnode" }, { DMU_BSWAP_OBJSET, TRUE, "DMU objset" }, { DMU_BSWAP_UINT64, TRUE, "DSL directory" }, { DMU_BSWAP_ZAP, TRUE, "DSL directory child map"}, { DMU_BSWAP_ZAP, TRUE, "DSL dataset snap map" }, { DMU_BSWAP_ZAP, TRUE, "DSL props" }, { DMU_BSWAP_UINT64, TRUE, "DSL dataset" }, { DMU_BSWAP_ZNODE, TRUE, "ZFS znode" }, { DMU_BSWAP_OLDACL, TRUE, "ZFS V0 ACL" }, { DMU_BSWAP_UINT8, FALSE, "ZFS plain file" }, { DMU_BSWAP_ZAP, TRUE, "ZFS directory" }, { DMU_BSWAP_ZAP, TRUE, "ZFS master node" }, { DMU_BSWAP_ZAP, TRUE, "ZFS delete queue" }, { DMU_BSWAP_UINT8, FALSE, "zvol object" }, { DMU_BSWAP_ZAP, TRUE, "zvol prop" }, { DMU_BSWAP_UINT8, FALSE, "other uint8[]" }, { DMU_BSWAP_UINT64, FALSE, "other uint64[]" }, { DMU_BSWAP_ZAP, TRUE, "other ZAP" }, { DMU_BSWAP_ZAP, TRUE, "persistent error log" }, { DMU_BSWAP_UINT8, TRUE, "SPA history" }, { DMU_BSWAP_UINT64, TRUE, "SPA history offsets" }, { DMU_BSWAP_ZAP, TRUE, "Pool properties" }, { DMU_BSWAP_ZAP, TRUE, "DSL permissions" }, { DMU_BSWAP_ACL, TRUE, "ZFS ACL" }, { DMU_BSWAP_UINT8, TRUE, "ZFS SYSACL" }, { DMU_BSWAP_UINT8, TRUE, "FUID table" }, { DMU_BSWAP_UINT64, TRUE, "FUID table size" }, { DMU_BSWAP_ZAP, TRUE, "DSL dataset next clones"}, { DMU_BSWAP_ZAP, TRUE, "scan work queue" }, { DMU_BSWAP_ZAP, TRUE, "ZFS user/group used" }, { DMU_BSWAP_ZAP, TRUE, "ZFS user/group quota" }, { DMU_BSWAP_ZAP, TRUE, "snapshot refcount tags"}, { DMU_BSWAP_ZAP, TRUE, "DDT ZAP algorithm" }, { DMU_BSWAP_ZAP, TRUE, "DDT statistics" }, { DMU_BSWAP_UINT8, TRUE, "System attributes" }, { DMU_BSWAP_ZAP, TRUE, "SA master node" }, { DMU_BSWAP_ZAP, TRUE, "SA attr registration" }, { DMU_BSWAP_ZAP, TRUE, "SA attr layouts" }, { DMU_BSWAP_ZAP, TRUE, "scan translations" }, { DMU_BSWAP_UINT8, FALSE, "deduplicated block" }, { DMU_BSWAP_ZAP, TRUE, "DSL deadlist map" }, { DMU_BSWAP_UINT64, TRUE, "DSL deadlist map hdr" }, { DMU_BSWAP_ZAP, TRUE, "DSL dir clones" }, { DMU_BSWAP_UINT64, TRUE, "bpobj subobj" } }; const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { { byteswap_uint8_array, "uint8" }, { byteswap_uint16_array, "uint16" }, { byteswap_uint32_array, "uint32" }, { byteswap_uint64_array, "uint64" }, { zap_byteswap, "zap" }, { dnode_buf_byteswap, "dnode" }, { dmu_objset_byteswap, "objset" }, { zfs_znode_byteswap, "znode" }, { zfs_oldacl_byteswap, "oldacl" }, { zfs_acl_byteswap, "acl" } }; int dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, void *tag, dmu_buf_t **dbp) { uint64_t blkid; dmu_buf_impl_t *db; blkid = dbuf_whichblock(dn, 0, offset); rw_enter(&dn->dn_struct_rwlock, RW_READER); db = dbuf_hold(dn, blkid, tag); rw_exit(&dn->dn_struct_rwlock); if (db == NULL) { *dbp = NULL; return (SET_ERROR(EIO)); } *dbp = &db->db; return (0); } int dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, void *tag, dmu_buf_t **dbp) { dnode_t *dn; uint64_t blkid; dmu_buf_impl_t *db; int err; err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); blkid = dbuf_whichblock(dn, 0, offset); rw_enter(&dn->dn_struct_rwlock, RW_READER); db = dbuf_hold(dn, blkid, tag); rw_exit(&dn->dn_struct_rwlock); dnode_rele(dn, FTAG); if (db == NULL) { *dbp = NULL; return (SET_ERROR(EIO)); } *dbp = &db->db; return (err); } int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, void *tag, dmu_buf_t **dbp, int flags) { int err; int db_flags = DB_RF_CANFAIL; if (flags & DMU_READ_NO_PREFETCH) db_flags |= DB_RF_NOPREFETCH; err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp); if (err == 0) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); err = dbuf_read(db, NULL, db_flags); if (err != 0) { dbuf_rele(db, tag); *dbp = NULL; } } return (err); } int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, void *tag, dmu_buf_t **dbp, int flags) { int err; int db_flags = DB_RF_CANFAIL; if (flags & DMU_READ_NO_PREFETCH) db_flags |= DB_RF_NOPREFETCH; err = dmu_buf_hold_noread(os, object, offset, tag, dbp); if (err == 0) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); err = dbuf_read(db, NULL, db_flags); if (err != 0) { dbuf_rele(db, tag); *dbp = NULL; } } return (err); } int dmu_bonus_max(void) { return (DN_MAX_BONUSLEN); } int dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dnode_t *dn; int error; DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (dn->dn_bonus != db) { error = SET_ERROR(EINVAL); } else if (newsize < 0 || newsize > db_fake->db_size) { error = SET_ERROR(EINVAL); } else { dnode_setbonuslen(dn, newsize, tx); error = 0; } DB_DNODE_EXIT(db); return (error); } int dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dnode_t *dn; int error; DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (!DMU_OT_IS_VALID(type)) { error = SET_ERROR(EINVAL); } else if (dn->dn_bonus != db) { error = SET_ERROR(EINVAL); } else { dnode_setbonus_type(dn, type, tx); error = 0; } DB_DNODE_EXIT(db); return (error); } dmu_object_type_t dmu_get_bonustype(dmu_buf_t *db_fake) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dnode_t *dn; dmu_object_type_t type; DB_DNODE_ENTER(db); dn = DB_DNODE(db); type = dn->dn_bonustype; DB_DNODE_EXIT(db); return (type); } int dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) { dnode_t *dn; int error; error = dnode_hold(os, object, FTAG, &dn); dbuf_rm_spill(dn, tx); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); dnode_rm_spill(dn, tx); rw_exit(&dn->dn_struct_rwlock); dnode_rele(dn, FTAG); return (error); } /* * returns ENOENT, EIO, or 0. */ int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) { dnode_t *dn; dmu_buf_impl_t *db; int error; error = dnode_hold(os, object, FTAG, &dn); if (error) return (error); rw_enter(&dn->dn_struct_rwlock, RW_READER); if (dn->dn_bonus == NULL) { rw_exit(&dn->dn_struct_rwlock); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); if (dn->dn_bonus == NULL) dbuf_create_bonus(dn); } db = dn->dn_bonus; /* as long as the bonus buf is held, the dnode will be held */ if (refcount_add(&db->db_holds, tag) == 1) { VERIFY(dnode_add_ref(dn, db)); atomic_inc_32(&dn->dn_dbufs_count); } /* * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's * hold and incrementing the dbuf count to ensure that dnode_move() sees * a dnode hold for every dbuf. */ rw_exit(&dn->dn_struct_rwlock); dnode_rele(dn, FTAG); VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); *dbp = &db->db; return (0); } /* * returns ENOENT, EIO, or 0. * * This interface will allocate a blank spill dbuf when a spill blk * doesn't already exist on the dnode. * * if you only want to find an already existing spill db, then * dmu_spill_hold_existing() should be used. */ int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) { dmu_buf_impl_t *db = NULL; int err; if ((flags & DB_RF_HAVESTRUCT) == 0) rw_enter(&dn->dn_struct_rwlock, RW_READER); db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); if ((flags & DB_RF_HAVESTRUCT) == 0) rw_exit(&dn->dn_struct_rwlock); ASSERT(db != NULL); err = dbuf_read(db, NULL, flags); if (err == 0) *dbp = &db->db; else dbuf_rele(db, tag); return (err); } int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; dnode_t *dn; int err; DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { err = SET_ERROR(EINVAL); } else { rw_enter(&dn->dn_struct_rwlock, RW_READER); if (!dn->dn_have_spill) { err = SET_ERROR(ENOENT); } else { err = dmu_spill_hold_by_dnode(dn, DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); } rw_exit(&dn->dn_struct_rwlock); } DB_DNODE_EXIT(db); return (err); } int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; dnode_t *dn; int err; DB_DNODE_ENTER(db); dn = DB_DNODE(db); err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp); DB_DNODE_EXIT(db); return (err); } /* * Note: longer-term, we should modify all of the dmu_buf_*() interfaces * to take a held dnode rather than -- the lookup is wasteful, * and can induce severe lock contention when writing to several files * whose dnodes are in the same block. */ static int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) { dmu_buf_t **dbp; uint64_t blkid, nblks, i; uint32_t dbuf_flags; int err; zio_t *zio; ASSERT(length <= DMU_MAX_ACCESS); /* * Note: We directly notify the prefetch code of this read, so that * we can tell it about the multi-block read. dbuf_read() only knows * about the one block it is accessing. */ dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH; rw_enter(&dn->dn_struct_rwlock, RW_READER); if (dn->dn_datablkshift) { int blkshift = dn->dn_datablkshift; nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) - P2ALIGN(offset, 1ULL << blkshift)) >> blkshift; } else { if (offset + length > dn->dn_datablksz) { zfs_panic_recover("zfs: accessing past end of object " "%llx/%llx (size=%u access=%llu+%llu)", (longlong_t)dn->dn_objset-> os_dsl_dataset->ds_object, (longlong_t)dn->dn_object, dn->dn_datablksz, (longlong_t)offset, (longlong_t)length); rw_exit(&dn->dn_struct_rwlock); return (SET_ERROR(EIO)); } nblks = 1; } dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); #if defined(_KERNEL) && defined(RACCT) if (racct_enable && !read) { PROC_LOCK(curproc); racct_add_force(curproc, RACCT_WRITEBPS, length); racct_add_force(curproc, RACCT_WRITEIOPS, nblks); PROC_UNLOCK(curproc); } #endif zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); blkid = dbuf_whichblock(dn, 0, offset); for (i = 0; i < nblks; i++) { dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag); if (db == NULL) { rw_exit(&dn->dn_struct_rwlock); dmu_buf_rele_array(dbp, nblks, tag); zio_nowait(zio); return (SET_ERROR(EIO)); } /* initiate async i/o */ if (read) (void) dbuf_read(db, zio, dbuf_flags); #ifdef _KERNEL else curthread->td_ru.ru_oublock++; #endif dbp[i] = &db->db; } if ((flags & DMU_READ_NO_PREFETCH) == 0 && DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) { dmu_zfetch(&dn->dn_zfetch, blkid, nblks, read && DNODE_IS_CACHEABLE(dn)); } rw_exit(&dn->dn_struct_rwlock); /* wait for async i/o */ err = zio_wait(zio); if (err) { dmu_buf_rele_array(dbp, nblks, tag); return (err); } /* wait for other io to complete */ if (read) { for (i = 0; i < nblks; i++) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; mutex_enter(&db->db_mtx); while (db->db_state == DB_READ || db->db_state == DB_FILL) cv_wait(&db->db_changed, &db->db_mtx); if (db->db_state == DB_UNCACHED) err = SET_ERROR(EIO); mutex_exit(&db->db_mtx); if (err) { dmu_buf_rele_array(dbp, nblks, tag); return (err); } } } *numbufsp = nblks; *dbpp = dbp; return (0); } static int dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) { dnode_t *dn; int err; err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, numbufsp, dbpp, DMU_READ_PREFETCH); dnode_rele(dn, FTAG); return (err); } int dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, uint64_t length, boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dnode_t *dn; int err; DB_DNODE_ENTER(db); dn = DB_DNODE(db); err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, numbufsp, dbpp, DMU_READ_PREFETCH); DB_DNODE_EXIT(db); return (err); } void dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) { int i; dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; if (numbufs == 0) return; for (i = 0; i < numbufs; i++) { if (dbp[i]) dbuf_rele(dbp[i], tag); } kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); } /* * Issue prefetch i/os for the given blocks. If level is greater than 0, the * indirect blocks prefeteched will be those that point to the blocks containing * the data starting at offset, and continuing to offset + len. * * Note that if the indirect blocks above the blocks being prefetched are not in * cache, they will be asychronously read in. */ void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, uint64_t len, zio_priority_t pri) { dnode_t *dn; uint64_t blkid; int nblks, err; if (len == 0) { /* they're interested in the bonus buffer */ dn = DMU_META_DNODE(os); if (object == 0 || object >= DN_MAX_OBJECT) return; rw_enter(&dn->dn_struct_rwlock, RW_READER); blkid = dbuf_whichblock(dn, level, object * sizeof (dnode_phys_t)); dbuf_prefetch(dn, level, blkid, pri, 0); rw_exit(&dn->dn_struct_rwlock); return; } /* * XXX - Note, if the dnode for the requested object is not * already cached, we will do a *synchronous* read in the * dnode_hold() call. The same is true for any indirects. */ err = dnode_hold(os, object, FTAG, &dn); if (err != 0) return; rw_enter(&dn->dn_struct_rwlock, RW_READER); /* * offset + len - 1 is the last byte we want to prefetch for, and offset * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the * last block we want to prefetch, and dbuf_whichblock(dn, level, * offset) is the first. Then the number we need to prefetch is the * last - first + 1. */ if (level > 0 || dn->dn_datablkshift != 0) { nblks = dbuf_whichblock(dn, level, offset + len - 1) - dbuf_whichblock(dn, level, offset) + 1; } else { nblks = (offset < dn->dn_datablksz); } if (nblks != 0) { blkid = dbuf_whichblock(dn, level, offset); for (int i = 0; i < nblks; i++) dbuf_prefetch(dn, level, blkid + i, pri, 0); } rw_exit(&dn->dn_struct_rwlock); dnode_rele(dn, FTAG); } /* * Get the next "chunk" of file data to free. We traverse the file from * the end so that the file gets shorter over time (if we crashes in the * middle, this will leave us in a better state). We find allocated file * data by simply searching the allocated level 1 indirects. * * On input, *start should be the first offset that does not need to be * freed (e.g. "offset + length"). On return, *start will be the first * offset that should be freed. */ static int get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum) { uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); /* bytes of data covered by a level-1 indirect block */ uint64_t iblkrange = dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); ASSERT3U(minimum, <=, *start); if (*start - minimum <= iblkrange * maxblks) { *start = minimum; return (0); } ASSERT(ISP2(iblkrange)); for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) { int err; /* * dnode_next_offset(BACKWARDS) will find an allocated L1 * indirect block at or before the input offset. We must * decrement *start so that it is at the end of the region * to search. */ (*start)--; err = dnode_next_offset(dn, DNODE_FIND_BACKWARDS, start, 2, 1, 0); /* if there are no indirect blocks before start, we are done */ if (err == ESRCH) { *start = minimum; break; } else if (err != 0) { return (err); } /* set start to the beginning of this L1 indirect */ *start = P2ALIGN(*start, iblkrange); } if (*start < minimum) *start = minimum; return (0); } static int dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, uint64_t length) { uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; int err; uint64_t dirty_frees_threshold; dsl_pool_t *dp = dmu_objset_pool(os); if (offset >= object_size) return (0); if (zfs_per_txg_dirty_frees_percent <= 100) dirty_frees_threshold = zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100; else dirty_frees_threshold = zfs_dirty_data_max / 4; if (length == DMU_OBJECT_END || offset + length > object_size) length = object_size - offset; while (length != 0) { uint64_t chunk_end, chunk_begin, chunk_len; uint64_t long_free_dirty_all_txgs = 0; dmu_tx_t *tx; chunk_end = chunk_begin = offset + length; /* move chunk_begin backwards to the beginning of this chunk */ err = get_next_chunk(dn, &chunk_begin, offset); if (err) return (err); ASSERT3U(chunk_begin, >=, offset); ASSERT3U(chunk_begin, <=, chunk_end); chunk_len = chunk_end - chunk_begin; mutex_enter(&dp->dp_lock); for (int t = 0; t < TXG_SIZE; t++) { long_free_dirty_all_txgs += dp->dp_long_free_dirty_pertxg[t]; } mutex_exit(&dp->dp_lock); /* * To avoid filling up a TXG with just frees wait for * the next TXG to open before freeing more chunks if * we have reached the threshold of frees */ if (dirty_frees_threshold != 0 && long_free_dirty_all_txgs >= dirty_frees_threshold) { txg_wait_open(dp, 0); continue; } tx = dmu_tx_create(os); dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len); /* * Mark this transaction as typically resulting in a net * reduction in space used. */ dmu_tx_mark_netfree(tx); err = dmu_tx_assign(tx, TXG_WAIT); if (err) { dmu_tx_abort(tx); return (err); } mutex_enter(&dp->dp_lock); dp->dp_long_free_dirty_pertxg[dmu_tx_get_txg(tx) & TXG_MASK] += chunk_len; mutex_exit(&dp->dp_lock); DTRACE_PROBE3(free__long__range, uint64_t, long_free_dirty_all_txgs, uint64_t, chunk_len, uint64_t, dmu_tx_get_txg(tx)); dnode_free_range(dn, chunk_begin, chunk_len, tx); dmu_tx_commit(tx); length -= chunk_len; } return (0); } int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset, uint64_t length) { dnode_t *dn; int err; err = dnode_hold(os, object, FTAG, &dn); if (err != 0) return (err); err = dmu_free_long_range_impl(os, dn, offset, length); /* * It is important to zero out the maxblkid when freeing the entire * file, so that (a) subsequent calls to dmu_free_long_range_impl() * will take the fast path, and (b) dnode_reallocate() can verify * that the entire file has been freed. */ if (err == 0 && offset == 0 && length == DMU_OBJECT_END) dn->dn_maxblkid = 0; dnode_rele(dn, FTAG); return (err); } int dmu_free_long_object(objset_t *os, uint64_t object) { dmu_tx_t *tx; int err; err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); if (err != 0) return (err); tx = dmu_tx_create(os); dmu_tx_hold_bonus(tx, object); dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); dmu_tx_mark_netfree(tx); err = dmu_tx_assign(tx, TXG_WAIT); if (err == 0) { err = dmu_object_free(os, object, tx); dmu_tx_commit(tx); } else { dmu_tx_abort(tx); } return (err); } int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, dmu_tx_t *tx) { dnode_t *dn; int err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); ASSERT(offset < UINT64_MAX); ASSERT(size == -1ULL || size <= UINT64_MAX - offset); dnode_free_range(dn, offset, size, tx); dnode_rele(dn, FTAG); return (0); } int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, void *buf, uint32_t flags) { dnode_t *dn; dmu_buf_t **dbp; int numbufs, err; err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); /* * Deal with odd block sizes, where there can't be data past the first * block. If we ever do the tail block optimization, we will need to * handle that here as well. */ if (dn->dn_maxblkid == 0) { int newsz = offset > dn->dn_datablksz ? 0 : MIN(size, dn->dn_datablksz - offset); bzero((char *)buf + newsz, size - newsz); size = newsz; } while (size > 0) { uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); int i; /* * NB: we could do this block-at-a-time, but it's nice * to be reading in parallel. */ err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, TRUE, FTAG, &numbufs, &dbp, flags); if (err) break; for (i = 0; i < numbufs; i++) { int tocpy; int bufoff; dmu_buf_t *db = dbp[i]; ASSERT(size > 0); bufoff = offset - db->db_offset; tocpy = (int)MIN(db->db_size - bufoff, size); bcopy((char *)db->db_data + bufoff, buf, tocpy); offset += tocpy; size -= tocpy; buf = (char *)buf + tocpy; } dmu_buf_rele_array(dbp, numbufs, FTAG); } dnode_rele(dn, FTAG); return (err); } void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, const void *buf, dmu_tx_t *tx) { dmu_buf_t **dbp; int numbufs, i; if (size == 0) return; VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG, &numbufs, &dbp)); for (i = 0; i < numbufs; i++) { int tocpy; int bufoff; dmu_buf_t *db = dbp[i]; ASSERT(size > 0); bufoff = offset - db->db_offset; tocpy = (int)MIN(db->db_size - bufoff, size); ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); if (tocpy == db->db_size) dmu_buf_will_fill(db, tx); else dmu_buf_will_dirty(db, tx); bcopy(buf, (char *)db->db_data + bufoff, tocpy); if (tocpy == db->db_size) dmu_buf_fill_done(db, tx); offset += tocpy; size -= tocpy; buf = (char *)buf + tocpy; } dmu_buf_rele_array(dbp, numbufs, FTAG); } void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, dmu_tx_t *tx) { dmu_buf_t **dbp; int numbufs, i; if (size == 0) return; VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG, &numbufs, &dbp)); for (i = 0; i < numbufs; i++) { dmu_buf_t *db = dbp[i]; dmu_buf_will_not_fill(db, tx); } dmu_buf_rele_array(dbp, numbufs, FTAG); } void dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, void *data, uint8_t etype, uint8_t comp, int uncompressed_size, int compressed_size, int byteorder, dmu_tx_t *tx) { dmu_buf_t *db; ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); VERIFY0(dmu_buf_hold_noread(os, object, offset, FTAG, &db)); dmu_buf_write_embedded(db, data, (bp_embedded_type_t)etype, (enum zio_compress)comp, uncompressed_size, compressed_size, byteorder, tx); dmu_buf_rele(db, FTAG); } /* * DMU support for xuio */ kstat_t *xuio_ksp = NULL; int dmu_xuio_init(xuio_t *xuio, int nblk) { dmu_xuio_t *priv; uio_t *uio = &xuio->xu_uio; uio->uio_iovcnt = nblk; uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); priv->cnt = nblk; priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); priv->iovp = uio->uio_iov; XUIO_XUZC_PRIV(xuio) = priv; if (XUIO_XUZC_RW(xuio) == UIO_READ) XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); else XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); return (0); } void dmu_xuio_fini(xuio_t *xuio) { dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); int nblk = priv->cnt; kmem_free(priv->iovp, nblk * sizeof (iovec_t)); kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); kmem_free(priv, sizeof (dmu_xuio_t)); if (XUIO_XUZC_RW(xuio) == UIO_READ) XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); else XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); } /* * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } * and increase priv->next by 1. */ int dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) { struct iovec *iov; uio_t *uio = &xuio->xu_uio; dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); int i = priv->next++; ASSERT(i < priv->cnt); ASSERT(off + n <= arc_buf_size(abuf)); iov = uio->uio_iov + i; iov->iov_base = (char *)abuf->b_data + off; iov->iov_len = n; priv->bufs[i] = abuf; return (0); } int dmu_xuio_cnt(xuio_t *xuio) { dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); return (priv->cnt); } arc_buf_t * dmu_xuio_arcbuf(xuio_t *xuio, int i) { dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); ASSERT(i < priv->cnt); return (priv->bufs[i]); } void dmu_xuio_clear(xuio_t *xuio, int i) { dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); ASSERT(i < priv->cnt); priv->bufs[i] = NULL; } static void xuio_stat_init(void) { xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (xuio_ksp != NULL) { xuio_ksp->ks_data = &xuio_stats; kstat_install(xuio_ksp); } } static void xuio_stat_fini(void) { if (xuio_ksp != NULL) { kstat_delete(xuio_ksp); xuio_ksp = NULL; } } void -xuio_stat_wbuf_copied() +xuio_stat_wbuf_copied(void) { XUIOSTAT_BUMP(xuiostat_wbuf_copied); } void -xuio_stat_wbuf_nocopy() +xuio_stat_wbuf_nocopy(void) { XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); } #ifdef _KERNEL static int dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size) { dmu_buf_t **dbp; int numbufs, i, err; xuio_t *xuio = NULL; /* * NB: we could do this block-at-a-time, but it's nice * to be reading in parallel. */ err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, TRUE, FTAG, &numbufs, &dbp, 0); if (err) return (err); #ifdef UIO_XUIO if (uio->uio_extflg == UIO_XUIO) xuio = (xuio_t *)uio; #endif for (i = 0; i < numbufs; i++) { int tocpy; int bufoff; dmu_buf_t *db = dbp[i]; ASSERT(size > 0); bufoff = uio->uio_loffset - db->db_offset; tocpy = (int)MIN(db->db_size - bufoff, size); if (xuio) { dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; arc_buf_t *dbuf_abuf = dbi->db_buf; arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); if (!err) { uio->uio_resid -= tocpy; uio->uio_loffset += tocpy; } if (abuf == dbuf_abuf) XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); else XUIOSTAT_BUMP(xuiostat_rbuf_copied); } else { #ifdef illumos err = uiomove((char *)db->db_data + bufoff, tocpy, UIO_READ, uio); #else err = vn_io_fault_uiomove((char *)db->db_data + bufoff, tocpy, uio); #endif } if (err) break; size -= tocpy; } dmu_buf_rele_array(dbp, numbufs, FTAG); return (err); } /* * Read 'size' bytes into the uio buffer. * From object zdb->db_object. * Starting at offset uio->uio_loffset. * * If the caller already has a dbuf in the target object * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), * because we don't have to find the dnode_t for the object. */ int dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; dnode_t *dn; int err; if (size == 0) return (0); DB_DNODE_ENTER(db); dn = DB_DNODE(db); err = dmu_read_uio_dnode(dn, uio, size); DB_DNODE_EXIT(db); return (err); } /* * Read 'size' bytes into the uio buffer. * From the specified object * Starting at offset uio->uio_loffset. */ int dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) { dnode_t *dn; int err; if (size == 0) return (0); err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); err = dmu_read_uio_dnode(dn, uio, size); dnode_rele(dn, FTAG); return (err); } static int dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) { dmu_buf_t **dbp; int numbufs; int err = 0; int i; err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); if (err) return (err); for (i = 0; i < numbufs; i++) { int tocpy; int bufoff; dmu_buf_t *db = dbp[i]; ASSERT(size > 0); bufoff = uio->uio_loffset - db->db_offset; tocpy = (int)MIN(db->db_size - bufoff, size); ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); if (tocpy == db->db_size) dmu_buf_will_fill(db, tx); else dmu_buf_will_dirty(db, tx); #ifdef illumos /* * XXX uiomove could block forever (eg. nfs-backed * pages). There needs to be a uiolockdown() function * to lock the pages in memory, so that uiomove won't * block. */ err = uiomove((char *)db->db_data + bufoff, tocpy, UIO_WRITE, uio); #else err = vn_io_fault_uiomove((char *)db->db_data + bufoff, tocpy, uio); #endif if (tocpy == db->db_size) dmu_buf_fill_done(db, tx); if (err) break; size -= tocpy; } dmu_buf_rele_array(dbp, numbufs, FTAG); return (err); } /* * Write 'size' bytes from the uio buffer. * To object zdb->db_object. * Starting at offset uio->uio_loffset. * * If the caller already has a dbuf in the target object * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), * because we don't have to find the dnode_t for the object. */ int dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; dnode_t *dn; int err; if (size == 0) return (0); DB_DNODE_ENTER(db); dn = DB_DNODE(db); err = dmu_write_uio_dnode(dn, uio, size, tx); DB_DNODE_EXIT(db); return (err); } /* * Write 'size' bytes from the uio buffer. * To the specified object. * Starting at offset uio->uio_loffset. */ int dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, dmu_tx_t *tx) { dnode_t *dn; int err; if (size == 0) return (0); err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); err = dmu_write_uio_dnode(dn, uio, size, tx); dnode_rele(dn, FTAG); return (err); } #ifdef illumos int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, page_t *pp, dmu_tx_t *tx) { dmu_buf_t **dbp; int numbufs, i; int err; if (size == 0) return (0); err = dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG, &numbufs, &dbp); if (err) return (err); for (i = 0; i < numbufs; i++) { int tocpy, copied, thiscpy; int bufoff; dmu_buf_t *db = dbp[i]; caddr_t va; ASSERT(size > 0); ASSERT3U(db->db_size, >=, PAGESIZE); bufoff = offset - db->db_offset; tocpy = (int)MIN(db->db_size - bufoff, size); ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); if (tocpy == db->db_size) dmu_buf_will_fill(db, tx); else dmu_buf_will_dirty(db, tx); for (copied = 0; copied < tocpy; copied += PAGESIZE) { ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); thiscpy = MIN(PAGESIZE, tocpy - copied); va = zfs_map_page(pp, S_READ); bcopy(va, (char *)db->db_data + bufoff, thiscpy); zfs_unmap_page(pp, va); pp = pp->p_next; bufoff += PAGESIZE; } if (tocpy == db->db_size) dmu_buf_fill_done(db, tx); offset += tocpy; size -= tocpy; } dmu_buf_rele_array(dbp, numbufs, FTAG); return (err); } #else /* !illumos */ int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, vm_page_t *ma, dmu_tx_t *tx) { dmu_buf_t **dbp; struct sf_buf *sf; int numbufs, i; int err; if (size == 0) return (0); err = dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG, &numbufs, &dbp); if (err) return (err); for (i = 0; i < numbufs; i++) { int tocpy, copied, thiscpy; int bufoff; dmu_buf_t *db = dbp[i]; caddr_t va; ASSERT(size > 0); ASSERT3U(db->db_size, >=, PAGESIZE); bufoff = offset - db->db_offset; tocpy = (int)MIN(db->db_size - bufoff, size); ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); if (tocpy == db->db_size) dmu_buf_will_fill(db, tx); else dmu_buf_will_dirty(db, tx); for (copied = 0; copied < tocpy; copied += PAGESIZE) { ASSERT3U(ptoa((*ma)->pindex), ==, db->db_offset + bufoff); thiscpy = MIN(PAGESIZE, tocpy - copied); va = zfs_map_page(*ma, &sf); bcopy(va, (char *)db->db_data + bufoff, thiscpy); zfs_unmap_page(sf); ma += 1; bufoff += PAGESIZE; } if (tocpy == db->db_size) dmu_buf_fill_done(db, tx); offset += tocpy; size -= tocpy; } dmu_buf_rele_array(dbp, numbufs, FTAG); return (err); } #endif /* illumos */ #endif /* _KERNEL */ /* * Allocate a loaned anonymous arc buffer. */ arc_buf_t * dmu_request_arcbuf(dmu_buf_t *handle, int size) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; return (arc_loan_buf(db->db_objset->os_spa, size)); } /* * Free a loaned arc buffer. */ void dmu_return_arcbuf(arc_buf_t *buf) { arc_return_buf(buf, FTAG); arc_buf_destroy(buf, FTAG); } /* * When possible directly assign passed loaned arc buffer to a dbuf. * If this is not possible copy the contents of passed arc buf via * dmu_write(). */ void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, dmu_tx_t *tx) { dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; dnode_t *dn; dmu_buf_impl_t *db; uint32_t blksz = (uint32_t)arc_buf_size(buf); uint64_t blkid; DB_DNODE_ENTER(dbuf); dn = DB_DNODE(dbuf); rw_enter(&dn->dn_struct_rwlock, RW_READER); blkid = dbuf_whichblock(dn, 0, offset); VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); rw_exit(&dn->dn_struct_rwlock); DB_DNODE_EXIT(dbuf); /* * We can only assign if the offset is aligned, the arc buf is the * same size as the dbuf, and the dbuf is not metadata. It * can't be metadata because the loaned arc buf comes from the * user-data kmem arena. */ if (offset == db->db.db_offset && blksz == db->db.db_size && DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA) { #ifdef _KERNEL curthread->td_ru.ru_oublock++; #ifdef RACCT if (racct_enable) { PROC_LOCK(curproc); racct_add_force(curproc, RACCT_WRITEBPS, blksz); racct_add_force(curproc, RACCT_WRITEIOPS, 1); PROC_UNLOCK(curproc); } #endif /* RACCT */ #endif /* _KERNEL */ dbuf_assign_arcbuf(db, buf, tx); dbuf_rele(db, FTAG); } else { objset_t *os; uint64_t object; DB_DNODE_ENTER(dbuf); dn = DB_DNODE(dbuf); os = dn->dn_objset; object = dn->dn_object; DB_DNODE_EXIT(dbuf); dbuf_rele(db, FTAG); dmu_write(os, object, offset, blksz, buf->b_data, tx); dmu_return_arcbuf(buf); XUIOSTAT_BUMP(xuiostat_wbuf_copied); } } typedef struct { dbuf_dirty_record_t *dsa_dr; dmu_sync_cb_t *dsa_done; zgd_t *dsa_zgd; dmu_tx_t *dsa_tx; } dmu_sync_arg_t; /* ARGSUSED */ static void dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) { dmu_sync_arg_t *dsa = varg; dmu_buf_t *db = dsa->dsa_zgd->zgd_db; blkptr_t *bp = zio->io_bp; if (zio->io_error == 0) { if (BP_IS_HOLE(bp)) { /* * A block of zeros may compress to a hole, but the * block size still needs to be known for replay. */ BP_SET_LSIZE(bp, db->db_size); } else if (!BP_IS_EMBEDDED(bp)) { ASSERT(BP_GET_LEVEL(bp) == 0); bp->blk_fill = 1; } } } static void dmu_sync_late_arrival_ready(zio_t *zio) { dmu_sync_ready(zio, NULL, zio->io_private); } /* ARGSUSED */ static void dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) { dmu_sync_arg_t *dsa = varg; dbuf_dirty_record_t *dr = dsa->dsa_dr; dmu_buf_impl_t *db = dr->dr_dbuf; mutex_enter(&db->db_mtx); ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); if (zio->io_error == 0) { dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); if (dr->dt.dl.dr_nopwrite) { blkptr_t *bp = zio->io_bp; blkptr_t *bp_orig = &zio->io_bp_orig; uint8_t chksum = BP_GET_CHECKSUM(bp_orig); ASSERT(BP_EQUAL(bp, bp_orig)); ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); ASSERT(zio_checksum_table[chksum].ci_flags & ZCHECKSUM_FLAG_NOPWRITE); } dr->dt.dl.dr_overridden_by = *zio->io_bp; dr->dt.dl.dr_override_state = DR_OVERRIDDEN; dr->dt.dl.dr_copies = zio->io_prop.zp_copies; /* * Old style holes are filled with all zeros, whereas * new-style holes maintain their lsize, type, level, * and birth time (see zio_write_compress). While we * need to reset the BP_SET_LSIZE() call that happened * in dmu_sync_ready for old style holes, we do *not* * want to wipe out the information contained in new * style holes. Thus, only zero out the block pointer if * it's an old style hole. */ if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && dr->dt.dl.dr_overridden_by.blk_birth == 0) BP_ZERO(&dr->dt.dl.dr_overridden_by); } else { dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; } cv_broadcast(&db->db_changed); mutex_exit(&db->db_mtx); dsa->dsa_done(dsa->dsa_zgd, zio->io_error); kmem_free(dsa, sizeof (*dsa)); } static void dmu_sync_late_arrival_done(zio_t *zio) { blkptr_t *bp = zio->io_bp; dmu_sync_arg_t *dsa = zio->io_private; blkptr_t *bp_orig = &zio->io_bp_orig; if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { /* * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE) * then there is nothing to do here. Otherwise, free the * newly allocated block in this txg. */ if (zio->io_flags & ZIO_FLAG_NOPWRITE) { ASSERT(BP_EQUAL(bp, bp_orig)); } else { ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); ASSERT(zio->io_bp->blk_birth == zio->io_txg); ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); zio_free(zio->io_spa, zio->io_txg, zio->io_bp); } } dmu_tx_commit(dsa->dsa_tx); dsa->dsa_done(dsa->dsa_zgd, zio->io_error); kmem_free(dsa, sizeof (*dsa)); } static int dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, zio_prop_t *zp, zbookmark_phys_t *zb) { dmu_sync_arg_t *dsa; dmu_tx_t *tx; tx = dmu_tx_create(os); dmu_tx_hold_space(tx, zgd->zgd_db->db_size); if (dmu_tx_assign(tx, TXG_WAIT) != 0) { dmu_tx_abort(tx); /* Make zl_get_data do txg_waited_synced() */ return (SET_ERROR(EIO)); } dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); dsa->dsa_dr = NULL; dsa->dsa_done = done; dsa->dsa_zgd = zgd; dsa->dsa_tx = tx; zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp, dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done, dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); return (0); } /* * Intent log support: sync the block associated with db to disk. * N.B. and XXX: the caller is responsible for making sure that the * data isn't changing while dmu_sync() is writing it. * * Return values: * * EEXIST: this txg has already been synced, so there's nothing to do. * The caller should not log the write. * * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. * The caller should not log the write. * * EALREADY: this block is already in the process of being synced. * The caller should track its progress (somehow). * * EIO: could not do the I/O. * The caller should do a txg_wait_synced(). * * 0: the I/O has been initiated. * The caller should log this blkptr in the done callback. * It is possible that the I/O will fail, in which case * the error will be reported to the done callback and * propagated to pio from zio_done(). */ int dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) { blkptr_t *bp = zgd->zgd_bp; dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; objset_t *os = db->db_objset; dsl_dataset_t *ds = os->os_dsl_dataset; dbuf_dirty_record_t *dr; dmu_sync_arg_t *dsa; zbookmark_phys_t zb; zio_prop_t zp; dnode_t *dn; ASSERT(pio != NULL); ASSERT(txg != 0); SET_BOOKMARK(&zb, ds->ds_object, db->db.db_object, db->db_level, db->db_blkid); DB_DNODE_ENTER(db); dn = DB_DNODE(db); dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); DB_DNODE_EXIT(db); /* * If we're frozen (running ziltest), we always need to generate a bp. */ if (txg > spa_freeze_txg(os->os_spa)) return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); /* * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() * and us. If we determine that this txg is not yet syncing, * but it begins to sync a moment later, that's OK because the * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. */ mutex_enter(&db->db_mtx); if (txg <= spa_last_synced_txg(os->os_spa)) { /* * This txg has already synced. There's nothing to do. */ mutex_exit(&db->db_mtx); return (SET_ERROR(EEXIST)); } if (txg <= spa_syncing_txg(os->os_spa)) { /* * This txg is currently syncing, so we can't mess with * the dirty record anymore; just write a new log block. */ mutex_exit(&db->db_mtx); return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); } dr = db->db_last_dirty; while (dr && dr->dr_txg != txg) dr = dr->dr_next; if (dr == NULL) { /* * There's no dr for this dbuf, so it must have been freed. * There's no need to log writes to freed blocks, so we're done. */ mutex_exit(&db->db_mtx); return (SET_ERROR(ENOENT)); } ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg); /* * Assume the on-disk data is X, the current syncing data (in * txg - 1) is Y, and the current in-memory data is Z (currently * in dmu_sync). * * We usually want to perform a nopwrite if X and Z are the * same. However, if Y is different (i.e. the BP is going to * change before this write takes effect), then a nopwrite will * be incorrect - we would override with X, which could have * been freed when Y was written. * * (Note that this is not a concern when we are nop-writing from * syncing context, because X and Y must be identical, because * all previous txgs have been synced.) * * Therefore, we disable nopwrite if the current BP could change * before this TXG. There are two ways it could change: by * being dirty (dr_next is non-NULL), or by being freed * (dnode_block_freed()). This behavior is verified by * zio_done(), which VERIFYs that the override BP is identical * to the on-disk BP. */ DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) zp.zp_nopwrite = B_FALSE; DB_DNODE_EXIT(db); ASSERT(dr->dr_txg == txg); if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { /* * We have already issued a sync write for this buffer, * or this buffer has already been synced. It could not * have been dirtied since, or we would have cleared the state. */ mutex_exit(&db->db_mtx); return (SET_ERROR(EALREADY)); } ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; mutex_exit(&db->db_mtx); dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); dsa->dsa_dr = dr; dsa->dsa_done = done; dsa->dsa_zgd = zgd; dsa->dsa_tx = NULL; zio_nowait(arc_write(pio, os->os_spa, txg, bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); return (0); } int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, dmu_tx_t *tx) { dnode_t *dn; int err; err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); err = dnode_set_blksz(dn, size, ibs, tx); dnode_rele(dn, FTAG); return (err); } void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, dmu_tx_t *tx) { dnode_t *dn; /* * Send streams include each object's checksum function. This * check ensures that the receiving system can understand the * checksum function transmitted. */ ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); VERIFY0(dnode_hold(os, object, FTAG, &dn)); ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); dn->dn_checksum = checksum; dnode_setdirty(dn, tx); dnode_rele(dn, FTAG); } void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, dmu_tx_t *tx) { dnode_t *dn; /* * Send streams include each object's compression function. This * check ensures that the receiving system can understand the * compression function transmitted. */ ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); VERIFY0(dnode_hold(os, object, FTAG, &dn)); dn->dn_compress = compress; dnode_setdirty(dn, tx); dnode_rele(dn, FTAG); } int zfs_mdcomp_disable = 0; SYSCTL_INT(_vfs_zfs, OID_AUTO, mdcomp_disable, CTLFLAG_RWTUN, &zfs_mdcomp_disable, 0, "Disable metadata compression"); /* * When the "redundant_metadata" property is set to "most", only indirect * blocks of this level and higher will have an additional ditto block. */ int zfs_redundant_metadata_most_ditto_level = 2; void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) { dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)); enum zio_checksum checksum = os->os_checksum; enum zio_compress compress = os->os_compress; enum zio_checksum dedup_checksum = os->os_dedup_checksum; boolean_t dedup = B_FALSE; boolean_t nopwrite = B_FALSE; boolean_t dedup_verify = os->os_dedup_verify; int copies = os->os_copies; /* * We maintain different write policies for each of the following * types of data: * 1. metadata * 2. preallocated blocks (i.e. level-0 blocks of a dump device) * 3. all other level 0 blocks */ if (ismd) { if (zfs_mdcomp_disable) { compress = ZIO_COMPRESS_EMPTY; } else { /* * XXX -- we should design a compression algorithm * that specializes in arrays of bps. */ compress = zio_compress_select(os->os_spa, ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); } /* * Metadata always gets checksummed. If the data * checksum is multi-bit correctable, and it's not a * ZBT-style checksum, then it's suitable for metadata * as well. Otherwise, the metadata checksum defaults * to fletcher4. */ if (!(zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_METADATA) || (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED)) checksum = ZIO_CHECKSUM_FLETCHER_4; if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_MOST && (level >= zfs_redundant_metadata_most_ditto_level || DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) copies++; } else if (wp & WP_NOFILL) { ASSERT(level == 0); /* * If we're writing preallocated blocks, we aren't actually * writing them so don't set any policy properties. These * blocks are currently only used by an external subsystem * outside of zfs (i.e. dump) and not written by the zio * pipeline. */ compress = ZIO_COMPRESS_OFF; checksum = ZIO_CHECKSUM_NOPARITY; } else { compress = zio_compress_select(os->os_spa, dn->dn_compress, compress); checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? zio_checksum_select(dn->dn_checksum, checksum) : dedup_checksum; /* * Determine dedup setting. If we are in dmu_sync(), * we won't actually dedup now because that's all * done in syncing context; but we do want to use the * dedup checkum. If the checksum is not strong * enough to ensure unique signatures, force * dedup_verify. */ if (dedup_checksum != ZIO_CHECKSUM_OFF) { dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; if (!(zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_DEDUP)) dedup_verify = B_TRUE; } /* * Enable nopwrite if we have secure enough checksum * algorithm (see comment in zio_nop_write) and * compression is enabled. We don't enable nopwrite if * dedup is enabled as the two features are mutually * exclusive. */ nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_NOPWRITE) && compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); } zp->zp_checksum = checksum; zp->zp_compress = compress; zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; zp->zp_level = level; zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); zp->zp_dedup = dedup; zp->zp_dedup_verify = dedup && dedup_verify; zp->zp_nopwrite = nopwrite; } int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) { dnode_t *dn; int err; /* * Sync any current changes before * we go trundling through the block pointers. */ err = dmu_object_wait_synced(os, object); if (err) { return (err); } err = dnode_hold(os, object, FTAG, &dn); if (err) { return (err); } err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); dnode_rele(dn, FTAG); return (err); } /* * Given the ZFS object, if it contains any dirty nodes * this function flushes all dirty blocks to disk. This * ensures the DMU object info is updated. A more efficient * future version might just find the TXG with the maximum * ID and wait for that to be synced. */ int dmu_object_wait_synced(objset_t *os, uint64_t object) { dnode_t *dn; int error, i; error = dnode_hold(os, object, FTAG, &dn); if (error) { return (error); } for (i = 0; i < TXG_SIZE; i++) { if (list_link_active(&dn->dn_dirty_link[i])) { break; } } dnode_rele(dn, FTAG); if (i != TXG_SIZE) { txg_wait_synced(dmu_objset_pool(os), 0); } return (0); } void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) { dnode_phys_t *dnp; rw_enter(&dn->dn_struct_rwlock, RW_READER); mutex_enter(&dn->dn_mtx); dnp = dn->dn_phys; doi->doi_data_block_size = dn->dn_datablksz; doi->doi_metadata_block_size = dn->dn_indblkshift ? 1ULL << dn->dn_indblkshift : 0; doi->doi_type = dn->dn_type; doi->doi_bonus_type = dn->dn_bonustype; doi->doi_bonus_size = dn->dn_bonuslen; doi->doi_indirection = dn->dn_nlevels; doi->doi_checksum = dn->dn_checksum; doi->doi_compress = dn->dn_compress; doi->doi_nblkptr = dn->dn_nblkptr; doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; doi->doi_fill_count = 0; for (int i = 0; i < dnp->dn_nblkptr; i++) doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); mutex_exit(&dn->dn_mtx); rw_exit(&dn->dn_struct_rwlock); } /* * Get information on a DMU object. * If doi is NULL, just indicates whether the object exists. */ int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) { dnode_t *dn; int err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); if (doi != NULL) dmu_object_info_from_dnode(dn, doi); dnode_rele(dn, FTAG); return (0); } /* * As above, but faster; can be used when you have a held dbuf in hand. */ void dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; DB_DNODE_ENTER(db); dmu_object_info_from_dnode(DB_DNODE(db), doi); DB_DNODE_EXIT(db); } /* * Faster still when you only care about the size. * This is specifically optimized for zfs_getattr(). */ void dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, u_longlong_t *nblk512) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dnode_t *dn; DB_DNODE_ENTER(db); dn = DB_DNODE(db); *blksize = dn->dn_datablksz; /* add 1 for dnode space */ *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> SPA_MINBLOCKSHIFT) + 1; DB_DNODE_EXIT(db); } void byteswap_uint64_array(void *vbuf, size_t size) { uint64_t *buf = vbuf; size_t count = size >> 3; int i; ASSERT((size & 7) == 0); for (i = 0; i < count; i++) buf[i] = BSWAP_64(buf[i]); } void byteswap_uint32_array(void *vbuf, size_t size) { uint32_t *buf = vbuf; size_t count = size >> 2; int i; ASSERT((size & 3) == 0); for (i = 0; i < count; i++) buf[i] = BSWAP_32(buf[i]); } void byteswap_uint16_array(void *vbuf, size_t size) { uint16_t *buf = vbuf; size_t count = size >> 1; int i; ASSERT((size & 1) == 0); for (i = 0; i < count; i++) buf[i] = BSWAP_16(buf[i]); } /* ARGSUSED */ void byteswap_uint8_array(void *vbuf, size_t size) { } void dmu_init(void) { zfs_dbgmsg_init(); sa_cache_init(); xuio_stat_init(); dmu_objset_init(); dnode_init(); zfetch_init(); zio_compress_init(); l2arc_init(); arc_init(); dbuf_init(); } void dmu_fini(void) { arc_fini(); /* arc depends on l2arc, so arc must go first */ l2arc_fini(); zfetch_fini(); zio_compress_fini(); dbuf_fini(); dnode_fini(); dmu_objset_fini(); xuio_stat_fini(); sa_cache_fini(); zfs_dbgmsg_fini(); } Index: head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/dmu.h =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/dmu.h (revision 316036) +++ head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/dmu.h (revision 316037) @@ -1,971 +1,971 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2016 by Delphix. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2012, Joyent, Inc. All rights reserved. * Copyright 2013 DEY Storage Systems, Inc. * Copyright 2014 HybridCluster. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright 2013 Saso Kiselkov. All rights reserved. * Copyright (c) 2014 Integros [integros.com] */ /* Portions Copyright 2010 Robert Milkowski */ #ifndef _SYS_DMU_H #define _SYS_DMU_H /* * This file describes the interface that the DMU provides for its * consumers. * * The DMU also interacts with the SPA. That interface is described in * dmu_spa.h. */ #include #include #include #include #ifdef __cplusplus extern "C" { #endif struct uio; struct xuio; struct page; struct vnode; struct spa; struct zilog; struct zio; struct blkptr; struct zap_cursor; struct dsl_dataset; struct dsl_pool; struct dnode; struct drr_begin; struct drr_end; struct zbookmark_phys; struct spa; struct nvlist; struct arc_buf; struct zio_prop; struct sa_handle; struct file; typedef struct objset objset_t; typedef struct dmu_tx dmu_tx_t; typedef struct dsl_dir dsl_dir_t; typedef struct dnode dnode_t; typedef enum dmu_object_byteswap { DMU_BSWAP_UINT8, DMU_BSWAP_UINT16, DMU_BSWAP_UINT32, DMU_BSWAP_UINT64, DMU_BSWAP_ZAP, DMU_BSWAP_DNODE, DMU_BSWAP_OBJSET, DMU_BSWAP_ZNODE, DMU_BSWAP_OLDACL, DMU_BSWAP_ACL, /* * Allocating a new byteswap type number makes the on-disk format * incompatible with any other format that uses the same number. * * Data can usually be structured to work with one of the * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types. */ DMU_BSWAP_NUMFUNCS } dmu_object_byteswap_t; #define DMU_OT_NEWTYPE 0x80 #define DMU_OT_METADATA 0x40 #define DMU_OT_BYTESWAP_MASK 0x3f /* * Defines a uint8_t object type. Object types specify if the data * in the object is metadata (boolean) and how to byteswap the data * (dmu_object_byteswap_t). */ #define DMU_OT(byteswap, metadata) \ (DMU_OT_NEWTYPE | \ ((metadata) ? DMU_OT_METADATA : 0) | \ ((byteswap) & DMU_OT_BYTESWAP_MASK)) #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \ ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \ (ot) < DMU_OT_NUMTYPES) #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \ ((ot) & DMU_OT_METADATA) : \ dmu_ot[(ot)].ot_metadata) /* * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill * is repurposed for embedded BPs. */ #define DMU_OT_HAS_FILL(ot) \ ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET) #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \ ((ot) & DMU_OT_BYTESWAP_MASK) : \ dmu_ot[(ot)].ot_byteswap) typedef enum dmu_object_type { DMU_OT_NONE, /* general: */ DMU_OT_OBJECT_DIRECTORY, /* ZAP */ DMU_OT_OBJECT_ARRAY, /* UINT64 */ DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */ DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */ DMU_OT_BPOBJ, /* UINT64 */ DMU_OT_BPOBJ_HDR, /* UINT64 */ /* spa: */ DMU_OT_SPACE_MAP_HEADER, /* UINT64 */ DMU_OT_SPACE_MAP, /* UINT64 */ /* zil: */ DMU_OT_INTENT_LOG, /* UINT64 */ /* dmu: */ DMU_OT_DNODE, /* DNODE */ DMU_OT_OBJSET, /* OBJSET */ /* dsl: */ DMU_OT_DSL_DIR, /* UINT64 */ DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */ DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */ DMU_OT_DSL_PROPS, /* ZAP */ DMU_OT_DSL_DATASET, /* UINT64 */ /* zpl: */ DMU_OT_ZNODE, /* ZNODE */ DMU_OT_OLDACL, /* Old ACL */ DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */ DMU_OT_DIRECTORY_CONTENTS, /* ZAP */ DMU_OT_MASTER_NODE, /* ZAP */ DMU_OT_UNLINKED_SET, /* ZAP */ /* zvol: */ DMU_OT_ZVOL, /* UINT8 */ DMU_OT_ZVOL_PROP, /* ZAP */ /* other; for testing only! */ DMU_OT_PLAIN_OTHER, /* UINT8 */ DMU_OT_UINT64_OTHER, /* UINT64 */ DMU_OT_ZAP_OTHER, /* ZAP */ /* new object types: */ DMU_OT_ERROR_LOG, /* ZAP */ DMU_OT_SPA_HISTORY, /* UINT8 */ DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */ DMU_OT_POOL_PROPS, /* ZAP */ DMU_OT_DSL_PERMS, /* ZAP */ DMU_OT_ACL, /* ACL */ DMU_OT_SYSACL, /* SYSACL */ DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */ DMU_OT_FUID_SIZE, /* FUID table size UINT64 */ DMU_OT_NEXT_CLONES, /* ZAP */ DMU_OT_SCAN_QUEUE, /* ZAP */ DMU_OT_USERGROUP_USED, /* ZAP */ DMU_OT_USERGROUP_QUOTA, /* ZAP */ DMU_OT_USERREFS, /* ZAP */ DMU_OT_DDT_ZAP, /* ZAP */ DMU_OT_DDT_STATS, /* ZAP */ DMU_OT_SA, /* System attr */ DMU_OT_SA_MASTER_NODE, /* ZAP */ DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */ DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */ DMU_OT_SCAN_XLATE, /* ZAP */ DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */ DMU_OT_DEADLIST, /* ZAP */ DMU_OT_DEADLIST_HDR, /* UINT64 */ DMU_OT_DSL_CLONES, /* ZAP */ DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */ /* * Do not allocate new object types here. Doing so makes the on-disk * format incompatible with any other format that uses the same object * type number. * * When creating an object which does not have one of the above types * use the DMU_OTN_* type with the correct byteswap and metadata * values. * * The DMU_OTN_* types do not have entries in the dmu_ot table, * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead * of indexing into dmu_ot directly (this works for both DMU_OT_* types * and DMU_OTN_* types). */ DMU_OT_NUMTYPES, /* * Names for valid types declared with DMU_OT(). */ DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE), DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE), DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE), DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE), DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE), DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE), DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE), DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE), DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE), DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE), } dmu_object_type_t; typedef enum txg_how { TXG_WAIT = 1, TXG_NOWAIT, TXG_WAITED, } txg_how_t; void byteswap_uint64_array(void *buf, size_t size); void byteswap_uint32_array(void *buf, size_t size); void byteswap_uint16_array(void *buf, size_t size); void byteswap_uint8_array(void *buf, size_t size); void zap_byteswap(void *buf, size_t size); void zfs_oldacl_byteswap(void *buf, size_t size); void zfs_acl_byteswap(void *buf, size_t size); void zfs_znode_byteswap(void *buf, size_t size); #define DS_FIND_SNAPSHOTS (1<<0) #define DS_FIND_CHILDREN (1<<1) #define DS_FIND_SERIALIZE (1<<2) /* * The maximum number of bytes that can be accessed as part of one * operation, including metadata. */ #define DMU_MAX_ACCESS (32 * 1024 * 1024) /* 32MB */ #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */ #define DMU_USERUSED_OBJECT (-1ULL) #define DMU_GROUPUSED_OBJECT (-2ULL) /* * artificial blkids for bonus buffer and spill blocks */ #define DMU_BONUS_BLKID (-1ULL) #define DMU_SPILL_BLKID (-2ULL) /* * Public routines to create, destroy, open, and close objsets. */ int dmu_objset_hold(const char *name, void *tag, objset_t **osp); int dmu_objset_own(const char *name, dmu_objset_type_t type, boolean_t readonly, void *tag, objset_t **osp); void dmu_objset_rele(objset_t *os, void *tag); void dmu_objset_disown(objset_t *os, void *tag); int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp); void dmu_objset_evict_dbufs(objset_t *os); int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags, void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg); int dmu_get_recursive_snaps_nvl(char *fsname, const char *snapname, struct nvlist *snaps); int dmu_objset_clone(const char *name, const char *origin); int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer, struct nvlist *errlist); int dmu_objset_snapshot_one(const char *fsname, const char *snapname); int dmu_objset_snapshot_tmp(const char *, const char *, int); int dmu_objset_find(char *name, int func(const char *, void *), void *arg, int flags); void dmu_objset_byteswap(void *buf, size_t size); int dsl_dataset_rename_snapshot(const char *fsname, const char *oldsnapname, const char *newsnapname, boolean_t recursive); typedef struct dmu_buf { uint64_t db_object; /* object that this buffer is part of */ uint64_t db_offset; /* byte offset in this object */ uint64_t db_size; /* size of buffer in bytes */ void *db_data; /* data in buffer */ } dmu_buf_t; /* * The names of zap entries in the DIRECTORY_OBJECT of the MOS. */ #define DMU_POOL_DIRECTORY_OBJECT 1 #define DMU_POOL_CONFIG "config" #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write" #define DMU_POOL_FEATURES_FOR_READ "features_for_read" #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions" #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg" #define DMU_POOL_ROOT_DATASET "root_dataset" #define DMU_POOL_SYNC_BPOBJ "sync_bplist" #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub" #define DMU_POOL_ERRLOG_LAST "errlog_last" #define DMU_POOL_SPARES "spares" #define DMU_POOL_DEFLATE "deflate" #define DMU_POOL_HISTORY "history" #define DMU_POOL_PROPS "pool_props" #define DMU_POOL_L2CACHE "l2cache" #define DMU_POOL_TMP_USERREFS "tmp_userrefs" #define DMU_POOL_DDT "DDT-%s-%s-%s" #define DMU_POOL_DDT_STATS "DDT-statistics" #define DMU_POOL_CREATION_VERSION "creation_version" #define DMU_POOL_SCAN "scan" #define DMU_POOL_FREE_BPOBJ "free_bpobj" #define DMU_POOL_BPTREE_OBJ "bptree_obj" #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj" #define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt" #define DMU_POOL_VDEV_ZAP_MAP "com.delphix:vdev_zap_map" /* * Allocate an object from this objset. The range of object numbers * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode. * * The transaction must be assigned to a txg. The newly allocated * object will be "held" in the transaction (ie. you can modify the * newly allocated object in this transaction). * * dmu_object_alloc() chooses an object and returns it in *objectp. * * dmu_object_claim() allocates a specific object number. If that * number is already allocated, it fails and returns EEXIST. * * Return 0 on success, or ENOSPC or EEXIST as specified above. */ uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot, int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx); int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot, int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx); int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp); /* * Free an object from this objset. * * The object's data will be freed as well (ie. you don't need to call * dmu_free(object, 0, -1, tx)). * * The object need not be held in the transaction. * * If there are any holds on this object's buffers (via dmu_buf_hold()), * or tx holds on the object (via dmu_tx_hold_object()), you can not * free it; it fails and returns EBUSY. * * If the object is not allocated, it fails and returns ENOENT. * * Return 0 on success, or EBUSY or ENOENT as specified above. */ int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx); /* * Find the next allocated or free object. * * The objectp parameter is in-out. It will be updated to be the next * object which is allocated. Ignore objects which have not been * modified since txg. * * XXX Can only be called on a objset with no dirty data. * * Returns 0 on success, or ENOENT if there are no more objects. */ int dmu_object_next(objset_t *os, uint64_t *objectp, boolean_t hole, uint64_t txg); /* * Set the data blocksize for an object. * * The object cannot have any blocks allcated beyond the first. If * the first block is allocated already, the new size must be greater * than the current block size. If these conditions are not met, * ENOTSUP will be returned. * * Returns 0 on success, or EBUSY if there are any holds on the object * contents, or ENOTSUP as described above. */ int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, dmu_tx_t *tx); /* * Set the checksum property on a dnode. The new checksum algorithm will * apply to all newly written blocks; existing blocks will not be affected. */ void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, dmu_tx_t *tx); /* * Set the compress property on a dnode. The new compression algorithm will * apply to all newly written blocks; existing blocks will not be affected. */ void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, dmu_tx_t *tx); void dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, void *data, uint8_t etype, uint8_t comp, int uncompressed_size, int compressed_size, int byteorder, dmu_tx_t *tx); /* * Decide how to write a block: checksum, compression, number of copies, etc. */ #define WP_NOFILL 0x1 #define WP_DMU_SYNC 0x2 #define WP_SPILL 0x4 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, struct zio_prop *zp); /* * The bonus data is accessed more or less like a regular buffer. * You must dmu_bonus_hold() to get the buffer, which will give you a * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus * data. As with any normal buffer, you must call dmu_buf_read() to * read db_data, dmu_buf_will_dirty() before modifying it, and the * object must be held in an assigned transaction before calling * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus * buffer as well. You must release your hold with dmu_buf_rele(). * * Returns ENOENT, EIO, or 0. */ int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **); int dmu_bonus_max(void); int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *); int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *); dmu_object_type_t dmu_get_bonustype(dmu_buf_t *); int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *); /* * Special spill buffer support used by "SA" framework */ int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp); int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp); int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp); /* * Obtain the DMU buffer from the specified object which contains the * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so * that it will remain in memory. You must release the hold with * dmu_buf_rele(). You musn't access the dmu_buf_t after releasing your * hold. You must have a hold on any dmu_buf_t* you pass to the DMU. * * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill * on the returned buffer before reading or writing the buffer's * db_data. The comments for those routines describe what particular * operations are valid after calling them. * * The object number must be a valid, allocated object number. */ int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, void *tag, dmu_buf_t **, int flags); int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, void *tag, dmu_buf_t **dbp, int flags); /* * Add a reference to a dmu buffer that has already been held via * dmu_buf_hold() in the current context. */ void dmu_buf_add_ref(dmu_buf_t *db, void* tag); /* * Attempt to add a reference to a dmu buffer that is in an unknown state, * using a pointer that may have been invalidated by eviction processing. * The request will succeed if the passed in dbuf still represents the * same os/object/blkid, is ineligible for eviction, and has at least * one hold by a user other than the syncer. */ boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object, uint64_t blkid, void *tag); void dmu_buf_rele(dmu_buf_t *db, void *tag); uint64_t dmu_buf_refcount(dmu_buf_t *db); /* * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a * range of an object. A pointer to an array of dmu_buf_t*'s is * returned (in *dbpp). * * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and * frees the array. The hold on the array of buffers MUST be released * with dmu_buf_rele_array. You can NOT release the hold on each buffer * individually with dmu_buf_rele. */ int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset, uint64_t length, boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp); void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag); typedef void dmu_buf_evict_func_t(void *user_ptr); /* * A DMU buffer user object may be associated with a dbuf for the * duration of its lifetime. This allows the user of a dbuf (client) * to attach private data to a dbuf (e.g. in-core only data such as a * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified * when that dbuf has been evicted. Clients typically respond to the * eviction notification by freeing their private data, thus ensuring * the same lifetime for both dbuf and private data. * * The mapping from a dmu_buf_user_t to any client private data is the * client's responsibility. All current consumers of the API with private * data embed a dmu_buf_user_t as the first member of the structure for * their private data. This allows conversions between the two types * with a simple cast. Since the DMU buf user API never needs access * to the private data, other strategies can be employed if necessary * or convenient for the client (e.g. using container_of() to do the * conversion for private data that cannot have the dmu_buf_user_t as * its first member). * * Eviction callbacks are executed without the dbuf mutex held or any * other type of mechanism to guarantee that the dbuf is still available. * For this reason, users must assume the dbuf has already been freed * and not reference the dbuf from the callback context. * * Users requesting "immediate eviction" are notified as soon as the dbuf * is only referenced by dirty records (dirties == holds). Otherwise the * notification occurs after eviction processing for the dbuf begins. */ typedef struct dmu_buf_user { /* * Asynchronous user eviction callback state. */ taskq_ent_t dbu_tqent; /* * This instance's eviction function pointers. * * dbu_evict_func_sync is called synchronously and then * dbu_evict_func_async is executed asynchronously on a taskq. */ dmu_buf_evict_func_t *dbu_evict_func_sync; dmu_buf_evict_func_t *dbu_evict_func_async; #ifdef ZFS_DEBUG /* * Pointer to user's dbuf pointer. NULL for clients that do * not associate a dbuf with their user data. * * The dbuf pointer is cleared upon eviction so as to catch * use-after-evict bugs in clients. */ dmu_buf_t **dbu_clear_on_evict_dbufp; #endif } dmu_buf_user_t; /* * Initialize the given dmu_buf_user_t instance with the eviction function * evict_func, to be called when the user is evicted. * * NOTE: This function should only be called once on a given dmu_buf_user_t. * To allow enforcement of this, dbu must already be zeroed on entry. */ #ifdef __lint /* Very ugly, but it beats issuing suppression directives in many Makefiles. */ extern void dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func, dmu_buf_evict_func_t *evict_func_async, dmu_buf_t **clear_on_evict_dbufp); #else /* __lint */ inline void dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync, dmu_buf_evict_func_t *evict_func_async, dmu_buf_t **clear_on_evict_dbufp) { ASSERT(dbu->dbu_evict_func_sync == NULL); ASSERT(dbu->dbu_evict_func_async == NULL); /* must have at least one evict func */ IMPLY(evict_func_sync == NULL, evict_func_async != NULL); dbu->dbu_evict_func_sync = evict_func_sync; dbu->dbu_evict_func_async = evict_func_async; #ifdef ZFS_DEBUG dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp; #endif } #endif /* __lint */ /* * Attach user data to a dbuf and mark it for normal (when the dbuf's * data is cleared or its reference count goes to zero) eviction processing. * * Returns NULL on success, or the existing user if another user currently * owns the buffer. */ void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user); /* * Attach user data to a dbuf and mark it for immediate (its dirty and * reference counts are equal) eviction processing. * * Returns NULL on success, or the existing user if another user currently * owns the buffer. */ void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user); /* * Replace the current user of a dbuf. * * If given the current user of a dbuf, replaces the dbuf's user with * "new_user" and returns the user data pointer that was replaced. * Otherwise returns the current, and unmodified, dbuf user pointer. */ void *dmu_buf_replace_user(dmu_buf_t *db, dmu_buf_user_t *old_user, dmu_buf_user_t *new_user); /* * Remove the specified user data for a DMU buffer. * * Returns the user that was removed on success, or the current user if * another user currently owns the buffer. */ void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user); /* * Returns the user data (dmu_buf_user_t *) associated with this dbuf. */ void *dmu_buf_get_user(dmu_buf_t *db); objset_t *dmu_buf_get_objset(dmu_buf_t *db); dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db); void dmu_buf_dnode_exit(dmu_buf_t *db); /* Block until any in-progress dmu buf user evictions complete. */ void dmu_buf_user_evict_wait(void); /* * Returns the blkptr associated with this dbuf, or NULL if not set. */ struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db); /* * Indicate that you are going to modify the buffer's data (db_data). * * The transaction (tx) must be assigned to a txg (ie. you've called * dmu_tx_assign()). The buffer's object must be held in the tx * (ie. you've called dmu_tx_hold_object(tx, db->db_object)). */ void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx); /* * Tells if the given dbuf is freeable. */ boolean_t dmu_buf_freeable(dmu_buf_t *); /* * You must create a transaction, then hold the objects which you will * (or might) modify as part of this transaction. Then you must assign * the transaction to a transaction group. Once the transaction has * been assigned, you can modify buffers which belong to held objects as * part of this transaction. You can't modify buffers before the * transaction has been assigned; you can't modify buffers which don't * belong to objects which this transaction holds; you can't hold * objects once the transaction has been assigned. You may hold an * object which you are going to free (with dmu_object_free()), but you * don't have to. * * You can abort the transaction before it has been assigned. * * Note that you may hold buffers (with dmu_buf_hold) at any time, * regardless of transaction state. */ #define DMU_NEW_OBJECT (-1ULL) #define DMU_OBJECT_END (-1ULL) dmu_tx_t *dmu_tx_create(objset_t *os); void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len); void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len); void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name); void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object); void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object); void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow); void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size); void dmu_tx_abort(dmu_tx_t *tx); int dmu_tx_assign(dmu_tx_t *tx, enum txg_how txg_how); void dmu_tx_wait(dmu_tx_t *tx); void dmu_tx_commit(dmu_tx_t *tx); void dmu_tx_mark_netfree(dmu_tx_t *tx); /* * To register a commit callback, dmu_tx_callback_register() must be called. * * dcb_data is a pointer to caller private data that is passed on as a * callback parameter. The caller is responsible for properly allocating and * freeing it. * * When registering a callback, the transaction must be already created, but * it cannot be committed or aborted. It can be assigned to a txg or not. * * The callback will be called after the transaction has been safely written * to stable storage and will also be called if the dmu_tx is aborted. * If there is any error which prevents the transaction from being committed to * disk, the callback will be called with a value of error != 0. */ typedef void dmu_tx_callback_func_t(void *dcb_data, int error); void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func, void *dcb_data); /* * Free up the data blocks for a defined range of a file. If size is * -1, the range from offset to end-of-file is freed. */ int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, dmu_tx_t *tx); int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset, uint64_t size); int dmu_free_long_object(objset_t *os, uint64_t object); /* * Convenience functions. * * Canfail routines will return 0 on success, or an errno if there is a * nonrecoverable I/O error. */ #define DMU_READ_PREFETCH 0 /* prefetch */ #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */ int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, void *buf, uint32_t flags); void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, const void *buf, dmu_tx_t *tx); void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, dmu_tx_t *tx); int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size); int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size); int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size, dmu_tx_t *tx); int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size, dmu_tx_t *tx); #ifdef _KERNEL #ifdef illumos int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, struct page *pp, dmu_tx_t *tx); #else int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, struct vm_page **ppa, dmu_tx_t *tx); #endif #endif struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size); void dmu_return_arcbuf(struct arc_buf *buf); void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf, dmu_tx_t *tx); int dmu_xuio_init(struct xuio *uio, int niov); void dmu_xuio_fini(struct xuio *uio); int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off, size_t n); int dmu_xuio_cnt(struct xuio *uio); struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i); void dmu_xuio_clear(struct xuio *uio, int i); -void xuio_stat_wbuf_copied(); -void xuio_stat_wbuf_nocopy(); +void xuio_stat_wbuf_copied(void); +void xuio_stat_wbuf_nocopy(void); extern boolean_t zfs_prefetch_disable; extern int zfs_max_recordsize; /* * Asynchronously try to read in the data. */ void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, uint64_t len, enum zio_priority pri); typedef struct dmu_object_info { /* All sizes are in bytes unless otherwise indicated. */ uint32_t doi_data_block_size; uint32_t doi_metadata_block_size; dmu_object_type_t doi_type; dmu_object_type_t doi_bonus_type; uint64_t doi_bonus_size; uint8_t doi_indirection; /* 2 = dnode->indirect->data */ uint8_t doi_checksum; uint8_t doi_compress; uint8_t doi_nblkptr; uint8_t doi_pad[4]; uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */ uint64_t doi_max_offset; uint64_t doi_fill_count; /* number of non-empty blocks */ } dmu_object_info_t; typedef void arc_byteswap_func_t(void *buf, size_t size); typedef struct dmu_object_type_info { dmu_object_byteswap_t ot_byteswap; boolean_t ot_metadata; char *ot_name; } dmu_object_type_info_t; typedef struct dmu_object_byteswap_info { arc_byteswap_func_t *ob_func; char *ob_name; } dmu_object_byteswap_info_t; extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES]; extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS]; /* * Get information on a DMU object. * * Return 0 on success or ENOENT if object is not allocated. * * If doi is NULL, just indicates whether the object exists. */ int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi); /* Like dmu_object_info, but faster if you have a held dnode in hand. */ void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi); /* Like dmu_object_info, but faster if you have a held dbuf in hand. */ void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi); /* * Like dmu_object_info_from_db, but faster still when you only care about * the size. This is specifically optimized for zfs_getattr(). */ void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, u_longlong_t *nblk512); typedef struct dmu_objset_stats { uint64_t dds_num_clones; /* number of clones of this */ uint64_t dds_creation_txg; uint64_t dds_guid; dmu_objset_type_t dds_type; uint8_t dds_is_snapshot; uint8_t dds_inconsistent; char dds_origin[ZFS_MAX_DATASET_NAME_LEN]; } dmu_objset_stats_t; /* * Get stats on a dataset. */ void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat); /* * Add entries to the nvlist for all the objset's properties. See * zfs_prop_table[] and zfs(1m) for details on the properties. */ void dmu_objset_stats(objset_t *os, struct nvlist *nv); /* * Get the space usage statistics for statvfs(). * * refdbytes is the amount of space "referenced" by this objset. * availbytes is the amount of space available to this objset, taking * into account quotas & reservations, assuming that no other objsets * use the space first. These values correspond to the 'referenced' and * 'available' properties, described in the zfs(1m) manpage. * * usedobjs and availobjs are the number of objects currently allocated, * and available. */ void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp, uint64_t *usedobjsp, uint64_t *availobjsp); /* * The fsid_guid is a 56-bit ID that can change to avoid collisions. * (Contrast with the ds_guid which is a 64-bit ID that will never * change, so there is a small probability that it will collide.) */ uint64_t dmu_objset_fsid_guid(objset_t *os); /* * Get the [cm]time for an objset's snapshot dir */ timestruc_t dmu_objset_snap_cmtime(objset_t *os); int dmu_objset_is_snapshot(objset_t *os); extern struct spa *dmu_objset_spa(objset_t *os); extern struct zilog *dmu_objset_zil(objset_t *os); extern struct dsl_pool *dmu_objset_pool(objset_t *os); extern struct dsl_dataset *dmu_objset_ds(objset_t *os); extern void dmu_objset_name(objset_t *os, char *buf); extern dmu_objset_type_t dmu_objset_type(objset_t *os); extern uint64_t dmu_objset_id(objset_t *os); extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os); extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os); extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name, uint64_t *id, uint64_t *offp, boolean_t *case_conflict); extern int dmu_snapshot_realname(objset_t *os, char *name, char *real, int maxlen, boolean_t *conflict); extern int dmu_dir_list_next(objset_t *os, int namelen, char *name, uint64_t *idp, uint64_t *offp); typedef int objset_used_cb_t(dmu_object_type_t bonustype, void *bonus, uint64_t *userp, uint64_t *groupp); extern void dmu_objset_register_type(dmu_objset_type_t ost, objset_used_cb_t *cb); extern void dmu_objset_set_user(objset_t *os, void *user_ptr); extern void *dmu_objset_get_user(objset_t *os); /* * Return the txg number for the given assigned transaction. */ uint64_t dmu_tx_get_txg(dmu_tx_t *tx); /* * Synchronous write. * If a parent zio is provided this function initiates a write on the * provided buffer as a child of the parent zio. * In the absence of a parent zio, the write is completed synchronously. * At write completion, blk is filled with the bp of the written block. * Note that while the data covered by this function will be on stable * storage when the write completes this new data does not become a * permanent part of the file until the associated transaction commits. */ /* * {zfs,zvol,ztest}_get_done() args */ typedef struct zgd { struct zilog *zgd_zilog; struct blkptr *zgd_bp; dmu_buf_t *zgd_db; struct rl *zgd_rl; void *zgd_private; } zgd_t; typedef void dmu_sync_cb_t(zgd_t *arg, int error); int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd); /* * Find the next hole or data block in file starting at *off * Return found offset in *off. Return ESRCH for end of file. */ int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off); /* * Check if a DMU object has any dirty blocks. If so, sync out * all pending transaction groups. Otherwise, this function * does not alter DMU state. This could be improved to only sync * out the necessary transaction groups for this particular * object. */ int dmu_object_wait_synced(objset_t *os, uint64_t object); /* * Initial setup and final teardown. */ extern void dmu_init(void); extern void dmu_fini(void); typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp, uint64_t object, uint64_t offset, int len); void dmu_traverse_objset(objset_t *os, uint64_t txg_start, dmu_traverse_cb_t cb, void *arg); int dmu_diff(const char *tosnap_name, const char *fromsnap_name, struct file *fp, offset_t *offp); /* CRC64 table */ #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ extern uint64_t zfs_crc64_table[256]; extern int zfs_mdcomp_disable; #ifdef __cplusplus } #endif #endif /* _SYS_DMU_H */ Index: head/sys/cddl/contrib/opensolaris =================================================================== --- head/sys/cddl/contrib/opensolaris (revision 316036) +++ head/sys/cddl/contrib/opensolaris (revision 316037) Property changes on: head/sys/cddl/contrib/opensolaris ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /vendor-sys/illumos/dist:r315989