Index: stable/10/sys/kern/kern_sig.c =================================================================== --- stable/10/sys/kern/kern_sig.c (revision 315962) +++ stable/10/sys/kern/kern_sig.c (revision 315963) @@ -1,3580 +1,3579 @@ /*- * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_sig.c 8.7 (Berkeley) 4/18/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include "opt_kdtrace.h" #include "opt_ktrace.h" #include "opt_core.h" #include "opt_procdesc.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ONSIG 32 /* NSIG for osig* syscalls. XXX. */ SDT_PROVIDER_DECLARE(proc); SDT_PROBE_DEFINE3(proc, , , signal__send, "struct thread *", "struct proc *", "int"); SDT_PROBE_DEFINE2(proc, , , signal__clear, "int", "ksiginfo_t *"); SDT_PROBE_DEFINE3(proc, , , signal__discard, "struct thread *", "struct proc *", "int"); static int coredump(struct thread *); static int killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi); static int issignal(struct thread *td); static int sigprop(int sig); static void tdsigwakeup(struct thread *, int, sig_t, int); static void sig_suspend_threads(struct thread *, struct proc *, int); static int filt_sigattach(struct knote *kn); static void filt_sigdetach(struct knote *kn); static int filt_signal(struct knote *kn, long hint); static struct thread *sigtd(struct proc *p, int sig, int prop); static void sigqueue_start(void); static uma_zone_t ksiginfo_zone = NULL; struct filterops sig_filtops = { .f_isfd = 0, .f_attach = filt_sigattach, .f_detach = filt_sigdetach, .f_event = filt_signal, }; static int kern_logsigexit = 1; SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW, &kern_logsigexit, 0, "Log processes quitting on abnormal signals to syslog(3)"); static int kern_forcesigexit = 1; SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW, &kern_forcesigexit, 0, "Force trap signal to be handled"); static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0, "POSIX real time signal"); static int max_pending_per_proc = 128; SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW, &max_pending_per_proc, 0, "Max pending signals per proc"); static int preallocate_siginfo = 1024; TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo); SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD, &preallocate_siginfo, 0, "Preallocated signal memory size"); static int signal_overflow = 0; SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD, &signal_overflow, 0, "Number of signals overflew"); static int signal_alloc_fail = 0; SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD, &signal_alloc_fail, 0, "signals failed to be allocated"); SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL); /* * Policy -- Can ucred cr1 send SIGIO to process cr2? * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG * in the right situations. */ #define CANSIGIO(cr1, cr2) \ ((cr1)->cr_uid == 0 || \ (cr1)->cr_ruid == (cr2)->cr_ruid || \ (cr1)->cr_uid == (cr2)->cr_ruid || \ (cr1)->cr_ruid == (cr2)->cr_uid || \ (cr1)->cr_uid == (cr2)->cr_uid) static int sugid_coredump; TUNABLE_INT("kern.sugid_coredump", &sugid_coredump); SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW, &sugid_coredump, 0, "Allow setuid and setgid processes to dump core"); static int capmode_coredump; TUNABLE_INT("kern.capmode_coredump", &capmode_coredump); SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RW, &capmode_coredump, 0, "Allow processes in capability mode to dump core"); static int do_coredump = 1; SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW, &do_coredump, 0, "Enable/Disable coredumps"); static int set_core_nodump_flag = 0; SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag, 0, "Enable setting the NODUMP flag on coredump files"); /* * Signal properties and actions. * The array below categorizes the signals and their default actions * according to the following properties: */ #define SA_KILL 0x01 /* terminates process by default */ #define SA_CORE 0x02 /* ditto and coredumps */ #define SA_STOP 0x04 /* suspend process */ #define SA_TTYSTOP 0x08 /* ditto, from tty */ #define SA_IGNORE 0x10 /* ignore by default */ #define SA_CONT 0x20 /* continue if suspended */ #define SA_CANTMASK 0x40 /* non-maskable, catchable */ static int sigproptbl[NSIG] = { SA_KILL, /* SIGHUP */ SA_KILL, /* SIGINT */ SA_KILL|SA_CORE, /* SIGQUIT */ SA_KILL|SA_CORE, /* SIGILL */ SA_KILL|SA_CORE, /* SIGTRAP */ SA_KILL|SA_CORE, /* SIGABRT */ SA_KILL|SA_CORE, /* SIGEMT */ SA_KILL|SA_CORE, /* SIGFPE */ SA_KILL, /* SIGKILL */ SA_KILL|SA_CORE, /* SIGBUS */ SA_KILL|SA_CORE, /* SIGSEGV */ SA_KILL|SA_CORE, /* SIGSYS */ SA_KILL, /* SIGPIPE */ SA_KILL, /* SIGALRM */ SA_KILL, /* SIGTERM */ SA_IGNORE, /* SIGURG */ SA_STOP, /* SIGSTOP */ SA_STOP|SA_TTYSTOP, /* SIGTSTP */ SA_IGNORE|SA_CONT, /* SIGCONT */ SA_IGNORE, /* SIGCHLD */ SA_STOP|SA_TTYSTOP, /* SIGTTIN */ SA_STOP|SA_TTYSTOP, /* SIGTTOU */ SA_IGNORE, /* SIGIO */ SA_KILL, /* SIGXCPU */ SA_KILL, /* SIGXFSZ */ SA_KILL, /* SIGVTALRM */ SA_KILL, /* SIGPROF */ SA_IGNORE, /* SIGWINCH */ SA_IGNORE, /* SIGINFO */ SA_KILL, /* SIGUSR1 */ SA_KILL, /* SIGUSR2 */ }; static void reschedule_signals(struct proc *p, sigset_t block, int flags); static void sigqueue_start(void) { ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); uma_prealloc(ksiginfo_zone, preallocate_siginfo); p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS); p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1); p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc); } ksiginfo_t * ksiginfo_alloc(int wait) { int flags; flags = M_ZERO; if (! wait) flags |= M_NOWAIT; if (ksiginfo_zone != NULL) return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags)); return (NULL); } void ksiginfo_free(ksiginfo_t *ksi) { uma_zfree(ksiginfo_zone, ksi); } static __inline int ksiginfo_tryfree(ksiginfo_t *ksi) { if (!(ksi->ksi_flags & KSI_EXT)) { uma_zfree(ksiginfo_zone, ksi); return (1); } return (0); } void sigqueue_init(sigqueue_t *list, struct proc *p) { SIGEMPTYSET(list->sq_signals); SIGEMPTYSET(list->sq_kill); SIGEMPTYSET(list->sq_ptrace); TAILQ_INIT(&list->sq_list); list->sq_proc = p; list->sq_flags = SQ_INIT; } /* * Get a signal's ksiginfo. * Return: * 0 - signal not found * others - signal number */ static int sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si) { struct proc *p = sq->sq_proc; struct ksiginfo *ksi, *next; int count = 0; KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited")); if (!SIGISMEMBER(sq->sq_signals, signo)) return (0); if (SIGISMEMBER(sq->sq_ptrace, signo)) { count++; SIGDELSET(sq->sq_ptrace, signo); si->ksi_flags |= KSI_PTRACE; } if (SIGISMEMBER(sq->sq_kill, signo)) { count++; if (count == 1) SIGDELSET(sq->sq_kill, signo); } TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) { if (ksi->ksi_signo == signo) { if (count == 0) { TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link); ksi->ksi_sigq = NULL; ksiginfo_copy(ksi, si); if (ksiginfo_tryfree(ksi) && p != NULL) p->p_pendingcnt--; } if (++count > 1) break; } } if (count <= 1) SIGDELSET(sq->sq_signals, signo); si->ksi_signo = signo; return (signo); } void sigqueue_take(ksiginfo_t *ksi) { struct ksiginfo *kp; struct proc *p; sigqueue_t *sq; if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL) return; p = sq->sq_proc; TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link); ksi->ksi_sigq = NULL; if (!(ksi->ksi_flags & KSI_EXT) && p != NULL) p->p_pendingcnt--; for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL; kp = TAILQ_NEXT(kp, ksi_link)) { if (kp->ksi_signo == ksi->ksi_signo) break; } if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) && !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo)) SIGDELSET(sq->sq_signals, ksi->ksi_signo); } static int sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si) { struct proc *p = sq->sq_proc; struct ksiginfo *ksi; int ret = 0; KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited")); /* * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path * for these signals. */ if (signo == SIGKILL || signo == SIGSTOP || si == NULL) { SIGADDSET(sq->sq_kill, signo); goto out_set_bit; } /* directly insert the ksi, don't copy it */ if (si->ksi_flags & KSI_INS) { if (si->ksi_flags & KSI_HEAD) TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link); else TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link); si->ksi_sigq = sq; goto out_set_bit; } if (__predict_false(ksiginfo_zone == NULL)) { SIGADDSET(sq->sq_kill, signo); goto out_set_bit; } if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) { signal_overflow++; ret = EAGAIN; } else if ((ksi = ksiginfo_alloc(0)) == NULL) { signal_alloc_fail++; ret = EAGAIN; } else { if (p != NULL) p->p_pendingcnt++; ksiginfo_copy(si, ksi); ksi->ksi_signo = signo; if (si->ksi_flags & KSI_HEAD) TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link); else TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link); ksi->ksi_sigq = sq; } if (ret != 0) { if ((si->ksi_flags & KSI_PTRACE) != 0) { SIGADDSET(sq->sq_ptrace, signo); ret = 0; goto out_set_bit; } else if ((si->ksi_flags & KSI_TRAP) != 0 || (si->ksi_flags & KSI_SIGQ) == 0) { SIGADDSET(sq->sq_kill, signo); ret = 0; goto out_set_bit; } return (ret); } out_set_bit: SIGADDSET(sq->sq_signals, signo); return (ret); } void sigqueue_flush(sigqueue_t *sq) { struct proc *p = sq->sq_proc; ksiginfo_t *ksi; KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited")); if (p != NULL) PROC_LOCK_ASSERT(p, MA_OWNED); while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) { TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link); ksi->ksi_sigq = NULL; if (ksiginfo_tryfree(ksi) && p != NULL) p->p_pendingcnt--; } SIGEMPTYSET(sq->sq_signals); SIGEMPTYSET(sq->sq_kill); SIGEMPTYSET(sq->sq_ptrace); } static void sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set) { sigset_t tmp; struct proc *p1, *p2; ksiginfo_t *ksi, *next; KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited")); KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited")); p1 = src->sq_proc; p2 = dst->sq_proc; /* Move siginfo to target list */ TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) { if (SIGISMEMBER(*set, ksi->ksi_signo)) { TAILQ_REMOVE(&src->sq_list, ksi, ksi_link); if (p1 != NULL) p1->p_pendingcnt--; TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link); ksi->ksi_sigq = dst; if (p2 != NULL) p2->p_pendingcnt++; } } /* Move pending bits to target list */ tmp = src->sq_kill; SIGSETAND(tmp, *set); SIGSETOR(dst->sq_kill, tmp); SIGSETNAND(src->sq_kill, tmp); tmp = src->sq_ptrace; SIGSETAND(tmp, *set); SIGSETOR(dst->sq_ptrace, tmp); SIGSETNAND(src->sq_ptrace, tmp); tmp = src->sq_signals; SIGSETAND(tmp, *set); SIGSETOR(dst->sq_signals, tmp); SIGSETNAND(src->sq_signals, tmp); } #if 0 static void sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo) { sigset_t set; SIGEMPTYSET(set); SIGADDSET(set, signo); sigqueue_move_set(src, dst, &set); } #endif static void sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set) { struct proc *p = sq->sq_proc; ksiginfo_t *ksi, *next; KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited")); /* Remove siginfo queue */ TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) { if (SIGISMEMBER(*set, ksi->ksi_signo)) { TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link); ksi->ksi_sigq = NULL; if (ksiginfo_tryfree(ksi) && p != NULL) p->p_pendingcnt--; } } SIGSETNAND(sq->sq_kill, *set); SIGSETNAND(sq->sq_ptrace, *set); SIGSETNAND(sq->sq_signals, *set); } void sigqueue_delete(sigqueue_t *sq, int signo) { sigset_t set; SIGEMPTYSET(set); SIGADDSET(set, signo); sigqueue_delete_set(sq, &set); } /* Remove a set of signals for a process */ static void sigqueue_delete_set_proc(struct proc *p, const sigset_t *set) { sigqueue_t worklist; struct thread *td0; PROC_LOCK_ASSERT(p, MA_OWNED); sigqueue_init(&worklist, NULL); sigqueue_move_set(&p->p_sigqueue, &worklist, set); FOREACH_THREAD_IN_PROC(p, td0) sigqueue_move_set(&td0->td_sigqueue, &worklist, set); sigqueue_flush(&worklist); } void sigqueue_delete_proc(struct proc *p, int signo) { sigset_t set; SIGEMPTYSET(set); SIGADDSET(set, signo); sigqueue_delete_set_proc(p, &set); } static void sigqueue_delete_stopmask_proc(struct proc *p) { sigset_t set; SIGEMPTYSET(set); SIGADDSET(set, SIGSTOP); SIGADDSET(set, SIGTSTP); SIGADDSET(set, SIGTTIN); SIGADDSET(set, SIGTTOU); sigqueue_delete_set_proc(p, &set); } /* * Determine signal that should be delivered to thread td, the current * thread, 0 if none. If there is a pending stop signal with default * action, the process stops in issignal(). */ int cursig(struct thread *td) { PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED); THREAD_LOCK_ASSERT(td, MA_NOTOWNED); return (SIGPENDING(td) ? issignal(td) : 0); } /* * Arrange for ast() to handle unmasked pending signals on return to user * mode. This must be called whenever a signal is added to td_sigqueue or * unmasked in td_sigmask. */ void signotify(struct thread *td) { struct proc *p; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); if (SIGPENDING(td)) { thread_lock(td); td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING; thread_unlock(td); } } int sigonstack(size_t sp) { struct thread *td = curthread; return ((td->td_pflags & TDP_ALTSTACK) ? #if defined(COMPAT_43) ((td->td_sigstk.ss_size == 0) ? (td->td_sigstk.ss_flags & SS_ONSTACK) : ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)) #else ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size) #endif : 0); } static __inline int sigprop(int sig) { if (sig > 0 && sig < NSIG) return (sigproptbl[_SIG_IDX(sig)]); return (0); } int sig_ffs(sigset_t *set) { int i; for (i = 0; i < _SIG_WORDS; i++) if (set->__bits[i]) return (ffs(set->__bits[i]) + (i * 32)); return (0); } static bool sigact_flag_test(struct sigaction *act, int flag) { /* * SA_SIGINFO is reset when signal disposition is set to * ignore or default. Other flags are kept according to user * settings. */ return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO || ((__sighandler_t *)act->sa_sigaction != SIG_IGN && (__sighandler_t *)act->sa_sigaction != SIG_DFL))); } /* * kern_sigaction * sigaction * freebsd4_sigaction * osigaction */ int kern_sigaction(td, sig, act, oact, flags) struct thread *td; register int sig; struct sigaction *act, *oact; int flags; { struct sigacts *ps; struct proc *p = td->td_proc; if (!_SIG_VALID(sig)) return (EINVAL); if (act != NULL && act->sa_handler != SIG_DFL && act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK | SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER | SA_NOCLDWAIT | SA_SIGINFO)) != 0) return (EINVAL); PROC_LOCK(p); ps = p->p_sigacts; mtx_lock(&ps->ps_mtx); if (oact) { oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)]; oact->sa_flags = 0; if (SIGISMEMBER(ps->ps_sigonstack, sig)) oact->sa_flags |= SA_ONSTACK; if (!SIGISMEMBER(ps->ps_sigintr, sig)) oact->sa_flags |= SA_RESTART; if (SIGISMEMBER(ps->ps_sigreset, sig)) oact->sa_flags |= SA_RESETHAND; if (SIGISMEMBER(ps->ps_signodefer, sig)) oact->sa_flags |= SA_NODEFER; if (SIGISMEMBER(ps->ps_siginfo, sig)) { oact->sa_flags |= SA_SIGINFO; oact->sa_sigaction = (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)]; } else oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)]; if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP) oact->sa_flags |= SA_NOCLDSTOP; if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT) oact->sa_flags |= SA_NOCLDWAIT; } if (act) { if ((sig == SIGKILL || sig == SIGSTOP) && act->sa_handler != SIG_DFL) { mtx_unlock(&ps->ps_mtx); PROC_UNLOCK(p); return (EINVAL); } /* * Change setting atomically. */ ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask; SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]); if (sigact_flag_test(act, SA_SIGINFO)) { ps->ps_sigact[_SIG_IDX(sig)] = (__sighandler_t *)act->sa_sigaction; SIGADDSET(ps->ps_siginfo, sig); } else { ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler; SIGDELSET(ps->ps_siginfo, sig); } if (!sigact_flag_test(act, SA_RESTART)) SIGADDSET(ps->ps_sigintr, sig); else SIGDELSET(ps->ps_sigintr, sig); if (sigact_flag_test(act, SA_ONSTACK)) SIGADDSET(ps->ps_sigonstack, sig); else SIGDELSET(ps->ps_sigonstack, sig); if (sigact_flag_test(act, SA_RESETHAND)) SIGADDSET(ps->ps_sigreset, sig); else SIGDELSET(ps->ps_sigreset, sig); if (sigact_flag_test(act, SA_NODEFER)) SIGADDSET(ps->ps_signodefer, sig); else SIGDELSET(ps->ps_signodefer, sig); if (sig == SIGCHLD) { if (act->sa_flags & SA_NOCLDSTOP) ps->ps_flag |= PS_NOCLDSTOP; else ps->ps_flag &= ~PS_NOCLDSTOP; if (act->sa_flags & SA_NOCLDWAIT) { /* * Paranoia: since SA_NOCLDWAIT is implemented * by reparenting the dying child to PID 1 (and * trust it to reap the zombie), PID 1 itself * is forbidden to set SA_NOCLDWAIT. */ if (p->p_pid == 1) ps->ps_flag &= ~PS_NOCLDWAIT; else ps->ps_flag |= PS_NOCLDWAIT; } else ps->ps_flag &= ~PS_NOCLDWAIT; if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN) ps->ps_flag |= PS_CLDSIGIGN; else ps->ps_flag &= ~PS_CLDSIGIGN; } /* * Set bit in ps_sigignore for signals that are set to SIG_IGN, * and for signals set to SIG_DFL where the default is to * ignore. However, don't put SIGCONT in ps_sigignore, as we * have to restart the process. */ if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN || (sigprop(sig) & SA_IGNORE && ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) { /* never to be seen again */ sigqueue_delete_proc(p, sig); if (sig != SIGCONT) /* easier in psignal */ SIGADDSET(ps->ps_sigignore, sig); SIGDELSET(ps->ps_sigcatch, sig); } else { SIGDELSET(ps->ps_sigignore, sig); if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL) SIGDELSET(ps->ps_sigcatch, sig); else SIGADDSET(ps->ps_sigcatch, sig); } #ifdef COMPAT_FREEBSD4 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN || ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL || (flags & KSA_FREEBSD4) == 0) SIGDELSET(ps->ps_freebsd4, sig); else SIGADDSET(ps->ps_freebsd4, sig); #endif #ifdef COMPAT_43 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN || ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL || (flags & KSA_OSIGSET) == 0) SIGDELSET(ps->ps_osigset, sig); else SIGADDSET(ps->ps_osigset, sig); #endif } mtx_unlock(&ps->ps_mtx); PROC_UNLOCK(p); return (0); } #ifndef _SYS_SYSPROTO_H_ struct sigaction_args { int sig; struct sigaction *act; struct sigaction *oact; }; #endif int sys_sigaction(td, uap) struct thread *td; register struct sigaction_args *uap; { struct sigaction act, oact; register struct sigaction *actp, *oactp; int error; actp = (uap->act != NULL) ? &act : NULL; oactp = (uap->oact != NULL) ? &oact : NULL; if (actp) { error = copyin(uap->act, actp, sizeof(act)); if (error) return (error); } error = kern_sigaction(td, uap->sig, actp, oactp, 0); if (oactp && !error) error = copyout(oactp, uap->oact, sizeof(oact)); return (error); } #ifdef COMPAT_FREEBSD4 #ifndef _SYS_SYSPROTO_H_ struct freebsd4_sigaction_args { int sig; struct sigaction *act; struct sigaction *oact; }; #endif int freebsd4_sigaction(td, uap) struct thread *td; register struct freebsd4_sigaction_args *uap; { struct sigaction act, oact; register struct sigaction *actp, *oactp; int error; actp = (uap->act != NULL) ? &act : NULL; oactp = (uap->oact != NULL) ? &oact : NULL; if (actp) { error = copyin(uap->act, actp, sizeof(act)); if (error) return (error); } error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4); if (oactp && !error) error = copyout(oactp, uap->oact, sizeof(oact)); return (error); } #endif /* COMAPT_FREEBSD4 */ #ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */ #ifndef _SYS_SYSPROTO_H_ struct osigaction_args { int signum; struct osigaction *nsa; struct osigaction *osa; }; #endif int osigaction(td, uap) struct thread *td; register struct osigaction_args *uap; { struct osigaction sa; struct sigaction nsa, osa; register struct sigaction *nsap, *osap; int error; if (uap->signum <= 0 || uap->signum >= ONSIG) return (EINVAL); nsap = (uap->nsa != NULL) ? &nsa : NULL; osap = (uap->osa != NULL) ? &osa : NULL; if (nsap) { error = copyin(uap->nsa, &sa, sizeof(sa)); if (error) return (error); nsap->sa_handler = sa.sa_handler; nsap->sa_flags = sa.sa_flags; OSIG2SIG(sa.sa_mask, nsap->sa_mask); } error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET); if (osap && !error) { sa.sa_handler = osap->sa_handler; sa.sa_flags = osap->sa_flags; SIG2OSIG(osap->sa_mask, sa.sa_mask); error = copyout(&sa, uap->osa, sizeof(sa)); } return (error); } #if !defined(__i386__) /* Avoid replicating the same stub everywhere */ int osigreturn(td, uap) struct thread *td; struct osigreturn_args *uap; { return (nosys(td, (struct nosys_args *)uap)); } #endif #endif /* COMPAT_43 */ /* * Initialize signal state for process 0; * set to ignore signals that are ignored by default. */ void siginit(p) struct proc *p; { register int i; struct sigacts *ps; PROC_LOCK(p); ps = p->p_sigacts; mtx_lock(&ps->ps_mtx); for (i = 1; i <= NSIG; i++) { if (sigprop(i) & SA_IGNORE && i != SIGCONT) { SIGADDSET(ps->ps_sigignore, i); } } mtx_unlock(&ps->ps_mtx); PROC_UNLOCK(p); } /* * Reset specified signal to the default disposition. */ static void sigdflt(struct sigacts *ps, int sig) { mtx_assert(&ps->ps_mtx, MA_OWNED); SIGDELSET(ps->ps_sigcatch, sig); if ((sigprop(sig) & SA_IGNORE) != 0 && sig != SIGCONT) SIGADDSET(ps->ps_sigignore, sig); ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL; SIGDELSET(ps->ps_siginfo, sig); } /* * Reset signals for an exec of the specified process. */ void execsigs(struct proc *p) { struct sigacts *ps; int sig; struct thread *td; /* * Reset caught signals. Held signals remain held * through td_sigmask (unless they were caught, * and are now ignored by default). */ PROC_LOCK_ASSERT(p, MA_OWNED); ps = p->p_sigacts; mtx_lock(&ps->ps_mtx); while (SIGNOTEMPTY(ps->ps_sigcatch)) { sig = sig_ffs(&ps->ps_sigcatch); sigdflt(ps, sig); if ((sigprop(sig) & SA_IGNORE) != 0) sigqueue_delete_proc(p, sig); } /* * Reset stack state to the user stack. * Clear set of signals caught on the signal stack. */ td = curthread; MPASS(td->td_proc == p); td->td_sigstk.ss_flags = SS_DISABLE; td->td_sigstk.ss_size = 0; td->td_sigstk.ss_sp = 0; td->td_pflags &= ~TDP_ALTSTACK; /* * Reset no zombies if child dies flag as Solaris does. */ ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN); if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN) ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL; mtx_unlock(&ps->ps_mtx); } /* * kern_sigprocmask() * * Manipulate signal mask. */ int kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset, int flags) { sigset_t new_block, oset1; struct proc *p; int error; p = td->td_proc; if ((flags & SIGPROCMASK_PROC_LOCKED) != 0) PROC_LOCK_ASSERT(p, MA_OWNED); else PROC_LOCK(p); mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ? MA_OWNED : MA_NOTOWNED); if (oset != NULL) *oset = td->td_sigmask; error = 0; if (set != NULL) { switch (how) { case SIG_BLOCK: SIG_CANTMASK(*set); oset1 = td->td_sigmask; SIGSETOR(td->td_sigmask, *set); new_block = td->td_sigmask; SIGSETNAND(new_block, oset1); break; case SIG_UNBLOCK: SIGSETNAND(td->td_sigmask, *set); signotify(td); goto out; case SIG_SETMASK: SIG_CANTMASK(*set); oset1 = td->td_sigmask; if (flags & SIGPROCMASK_OLD) SIGSETLO(td->td_sigmask, *set); else td->td_sigmask = *set; new_block = td->td_sigmask; SIGSETNAND(new_block, oset1); signotify(td); break; default: error = EINVAL; goto out; } /* * The new_block set contains signals that were not previously * blocked, but are blocked now. * * In case we block any signal that was not previously blocked * for td, and process has the signal pending, try to schedule * signal delivery to some thread that does not block the * signal, possibly waking it up. */ if (p->p_numthreads != 1) reschedule_signals(p, new_block, flags); } out: if (!(flags & SIGPROCMASK_PROC_LOCKED)) PROC_UNLOCK(p); return (error); } #ifndef _SYS_SYSPROTO_H_ struct sigprocmask_args { int how; const sigset_t *set; sigset_t *oset; }; #endif int sys_sigprocmask(td, uap) register struct thread *td; struct sigprocmask_args *uap; { sigset_t set, oset; sigset_t *setp, *osetp; int error; setp = (uap->set != NULL) ? &set : NULL; osetp = (uap->oset != NULL) ? &oset : NULL; if (setp) { error = copyin(uap->set, setp, sizeof(set)); if (error) return (error); } error = kern_sigprocmask(td, uap->how, setp, osetp, 0); if (osetp && !error) { error = copyout(osetp, uap->oset, sizeof(oset)); } return (error); } #ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */ #ifndef _SYS_SYSPROTO_H_ struct osigprocmask_args { int how; osigset_t mask; }; #endif int osigprocmask(td, uap) register struct thread *td; struct osigprocmask_args *uap; { sigset_t set, oset; int error; OSIG2SIG(uap->mask, set); error = kern_sigprocmask(td, uap->how, &set, &oset, 1); SIG2OSIG(oset, td->td_retval[0]); return (error); } #endif /* COMPAT_43 */ int sys_sigwait(struct thread *td, struct sigwait_args *uap) { ksiginfo_t ksi; sigset_t set; int error; error = copyin(uap->set, &set, sizeof(set)); if (error) { td->td_retval[0] = error; return (0); } error = kern_sigtimedwait(td, set, &ksi, NULL); if (error) { if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT) error = ERESTART; if (error == ERESTART) return (error); td->td_retval[0] = error; return (0); } error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo)); td->td_retval[0] = error; return (0); } int sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap) { struct timespec ts; struct timespec *timeout; sigset_t set; ksiginfo_t ksi; int error; if (uap->timeout) { error = copyin(uap->timeout, &ts, sizeof(ts)); if (error) return (error); timeout = &ts; } else timeout = NULL; error = copyin(uap->set, &set, sizeof(set)); if (error) return (error); error = kern_sigtimedwait(td, set, &ksi, timeout); if (error) return (error); if (uap->info) error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t)); if (error == 0) td->td_retval[0] = ksi.ksi_signo; return (error); } int sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap) { ksiginfo_t ksi; sigset_t set; int error; error = copyin(uap->set, &set, sizeof(set)); if (error) return (error); error = kern_sigtimedwait(td, set, &ksi, NULL); if (error) return (error); if (uap->info) error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t)); if (error == 0) td->td_retval[0] = ksi.ksi_signo; return (error); } int kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi, struct timespec *timeout) { struct sigacts *ps; sigset_t saved_mask, new_block; struct proc *p; int error, sig, timo, timevalid = 0; struct timespec rts, ets, ts; struct timeval tv; p = td->td_proc; error = 0; ets.tv_sec = 0; ets.tv_nsec = 0; if (timeout != NULL) { if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) { timevalid = 1; getnanouptime(&rts); ets = rts; timespecadd(&ets, timeout); } } ksiginfo_init(ksi); /* Some signals can not be waited for. */ SIG_CANTMASK(waitset); ps = p->p_sigacts; PROC_LOCK(p); saved_mask = td->td_sigmask; SIGSETNAND(td->td_sigmask, waitset); for (;;) { mtx_lock(&ps->ps_mtx); sig = cursig(td); mtx_unlock(&ps->ps_mtx); if (sig != 0 && SIGISMEMBER(waitset, sig)) { if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 || sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) { error = 0; break; } } if (error != 0) break; /* * POSIX says this must be checked after looking for pending * signals. */ if (timeout != NULL) { if (!timevalid) { error = EINVAL; break; } getnanouptime(&rts); if (timespeccmp(&rts, &ets, >=)) { error = EAGAIN; break; } ts = ets; timespecsub(&ts, &rts); TIMESPEC_TO_TIMEVAL(&tv, &ts); timo = tvtohz(&tv); } else { timo = 0; } error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo); if (timeout != NULL) { if (error == ERESTART) { /* Timeout can not be restarted. */ error = EINTR; } else if (error == EAGAIN) { /* We will calculate timeout by ourself. */ error = 0; } } } new_block = saved_mask; SIGSETNAND(new_block, td->td_sigmask); td->td_sigmask = saved_mask; /* * Fewer signals can be delivered to us, reschedule signal * notification. */ if (p->p_numthreads != 1) reschedule_signals(p, new_block, 0); if (error == 0) { SDT_PROBE2(proc, , , signal__clear, sig, ksi); if (ksi->ksi_code == SI_TIMER) itimer_accept(p, ksi->ksi_timerid, ksi); #ifdef KTRACE if (KTRPOINT(td, KTR_PSIG)) { sig_t action; mtx_lock(&ps->ps_mtx); action = ps->ps_sigact[_SIG_IDX(sig)]; mtx_unlock(&ps->ps_mtx); ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code); } #endif if (sig == SIGKILL) sigexit(td, sig); } PROC_UNLOCK(p); return (error); } #ifndef _SYS_SYSPROTO_H_ struct sigpending_args { sigset_t *set; }; #endif int sys_sigpending(td, uap) struct thread *td; struct sigpending_args *uap; { struct proc *p = td->td_proc; sigset_t pending; PROC_LOCK(p); pending = p->p_sigqueue.sq_signals; SIGSETOR(pending, td->td_sigqueue.sq_signals); PROC_UNLOCK(p); return (copyout(&pending, uap->set, sizeof(sigset_t))); } #ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */ #ifndef _SYS_SYSPROTO_H_ struct osigpending_args { int dummy; }; #endif int osigpending(td, uap) struct thread *td; struct osigpending_args *uap; { struct proc *p = td->td_proc; sigset_t pending; PROC_LOCK(p); pending = p->p_sigqueue.sq_signals; SIGSETOR(pending, td->td_sigqueue.sq_signals); PROC_UNLOCK(p); SIG2OSIG(pending, td->td_retval[0]); return (0); } #endif /* COMPAT_43 */ #if defined(COMPAT_43) /* * Generalized interface signal handler, 4.3-compatible. */ #ifndef _SYS_SYSPROTO_H_ struct osigvec_args { int signum; struct sigvec *nsv; struct sigvec *osv; }; #endif /* ARGSUSED */ int osigvec(td, uap) struct thread *td; register struct osigvec_args *uap; { struct sigvec vec; struct sigaction nsa, osa; register struct sigaction *nsap, *osap; int error; if (uap->signum <= 0 || uap->signum >= ONSIG) return (EINVAL); nsap = (uap->nsv != NULL) ? &nsa : NULL; osap = (uap->osv != NULL) ? &osa : NULL; if (nsap) { error = copyin(uap->nsv, &vec, sizeof(vec)); if (error) return (error); nsap->sa_handler = vec.sv_handler; OSIG2SIG(vec.sv_mask, nsap->sa_mask); nsap->sa_flags = vec.sv_flags; nsap->sa_flags ^= SA_RESTART; /* opposite of SV_INTERRUPT */ } error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET); if (osap && !error) { vec.sv_handler = osap->sa_handler; SIG2OSIG(osap->sa_mask, vec.sv_mask); vec.sv_flags = osap->sa_flags; vec.sv_flags &= ~SA_NOCLDWAIT; vec.sv_flags ^= SA_RESTART; error = copyout(&vec, uap->osv, sizeof(vec)); } return (error); } #ifndef _SYS_SYSPROTO_H_ struct osigblock_args { int mask; }; #endif int osigblock(td, uap) register struct thread *td; struct osigblock_args *uap; { sigset_t set, oset; OSIG2SIG(uap->mask, set); kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0); SIG2OSIG(oset, td->td_retval[0]); return (0); } #ifndef _SYS_SYSPROTO_H_ struct osigsetmask_args { int mask; }; #endif int osigsetmask(td, uap) struct thread *td; struct osigsetmask_args *uap; { sigset_t set, oset; OSIG2SIG(uap->mask, set); kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0); SIG2OSIG(oset, td->td_retval[0]); return (0); } #endif /* COMPAT_43 */ /* * Suspend calling thread until signal, providing mask to be set in the * meantime. */ #ifndef _SYS_SYSPROTO_H_ struct sigsuspend_args { const sigset_t *sigmask; }; #endif /* ARGSUSED */ int sys_sigsuspend(td, uap) struct thread *td; struct sigsuspend_args *uap; { sigset_t mask; int error; error = copyin(uap->sigmask, &mask, sizeof(mask)); if (error) return (error); return (kern_sigsuspend(td, mask)); } int kern_sigsuspend(struct thread *td, sigset_t mask) { struct proc *p = td->td_proc; int has_sig, sig; /* * When returning from sigsuspend, we want * the old mask to be restored after the * signal handler has finished. Thus, we * save it here and mark the sigacts structure * to indicate this. */ PROC_LOCK(p); kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask, SIGPROCMASK_PROC_LOCKED); td->td_pflags |= TDP_OLDMASK; /* * Process signals now. Otherwise, we can get spurious wakeup * due to signal entered process queue, but delivered to other * thread. But sigsuspend should return only on signal * delivery. */ (p->p_sysent->sv_set_syscall_retval)(td, EINTR); for (has_sig = 0; !has_sig;) { while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause", 0) == 0) /* void */; thread_suspend_check(0); mtx_lock(&p->p_sigacts->ps_mtx); while ((sig = cursig(td)) != 0) has_sig += postsig(sig); mtx_unlock(&p->p_sigacts->ps_mtx); } PROC_UNLOCK(p); td->td_errno = EINTR; td->td_pflags |= TDP_NERRNO; return (EJUSTRETURN); } #ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */ /* * Compatibility sigsuspend call for old binaries. Note nonstandard calling * convention: libc stub passes mask, not pointer, to save a copyin. */ #ifndef _SYS_SYSPROTO_H_ struct osigsuspend_args { osigset_t mask; }; #endif /* ARGSUSED */ int osigsuspend(td, uap) struct thread *td; struct osigsuspend_args *uap; { sigset_t mask; OSIG2SIG(uap->mask, mask); return (kern_sigsuspend(td, mask)); } #endif /* COMPAT_43 */ #if defined(COMPAT_43) #ifndef _SYS_SYSPROTO_H_ struct osigstack_args { struct sigstack *nss; struct sigstack *oss; }; #endif /* ARGSUSED */ int osigstack(td, uap) struct thread *td; register struct osigstack_args *uap; { struct sigstack nss, oss; int error = 0; if (uap->nss != NULL) { error = copyin(uap->nss, &nss, sizeof(nss)); if (error) return (error); } oss.ss_sp = td->td_sigstk.ss_sp; oss.ss_onstack = sigonstack(cpu_getstack(td)); if (uap->nss != NULL) { td->td_sigstk.ss_sp = nss.ss_sp; td->td_sigstk.ss_size = 0; td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK; td->td_pflags |= TDP_ALTSTACK; } if (uap->oss != NULL) error = copyout(&oss, uap->oss, sizeof(oss)); return (error); } #endif /* COMPAT_43 */ #ifndef _SYS_SYSPROTO_H_ struct sigaltstack_args { stack_t *ss; stack_t *oss; }; #endif /* ARGSUSED */ int sys_sigaltstack(td, uap) struct thread *td; register struct sigaltstack_args *uap; { stack_t ss, oss; int error; if (uap->ss != NULL) { error = copyin(uap->ss, &ss, sizeof(ss)); if (error) return (error); } error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL, (uap->oss != NULL) ? &oss : NULL); if (error) return (error); if (uap->oss != NULL) error = copyout(&oss, uap->oss, sizeof(stack_t)); return (error); } int kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss) { struct proc *p = td->td_proc; int oonstack; oonstack = sigonstack(cpu_getstack(td)); if (oss != NULL) { *oss = td->td_sigstk; oss->ss_flags = (td->td_pflags & TDP_ALTSTACK) ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE; } if (ss != NULL) { if (oonstack) return (EPERM); if ((ss->ss_flags & ~SS_DISABLE) != 0) return (EINVAL); if (!(ss->ss_flags & SS_DISABLE)) { if (ss->ss_size < p->p_sysent->sv_minsigstksz) return (ENOMEM); td->td_sigstk = *ss; td->td_pflags |= TDP_ALTSTACK; } else { td->td_pflags &= ~TDP_ALTSTACK; } } return (0); } /* * Common code for kill process group/broadcast kill. * cp is calling process. */ static int killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi) { struct proc *p; struct pgrp *pgrp; int err; int ret; ret = ESRCH; if (all) { /* * broadcast */ sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { PROC_LOCK(p); if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || p == td->td_proc || p->p_state == PRS_NEW) { PROC_UNLOCK(p); continue; } err = p_cansignal(td, p, sig); if (err == 0) { if (sig) pksignal(p, sig, ksi); ret = err; } else if (ret == ESRCH) ret = err; PROC_UNLOCK(p); } sx_sunlock(&allproc_lock); } else { sx_slock(&proctree_lock); if (pgid == 0) { /* * zero pgid means send to my process group. */ pgrp = td->td_proc->p_pgrp; PGRP_LOCK(pgrp); } else { pgrp = pgfind(pgid); if (pgrp == NULL) { sx_sunlock(&proctree_lock); return (ESRCH); } } sx_sunlock(&proctree_lock); LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { PROC_LOCK(p); if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || p->p_state == PRS_NEW) { PROC_UNLOCK(p); continue; } err = p_cansignal(td, p, sig); if (err == 0) { if (sig) pksignal(p, sig, ksi); ret = err; } else if (ret == ESRCH) ret = err; PROC_UNLOCK(p); } PGRP_UNLOCK(pgrp); } return (ret); } #ifndef _SYS_SYSPROTO_H_ struct kill_args { int pid; int signum; }; #endif /* ARGSUSED */ int sys_kill(struct thread *td, struct kill_args *uap) { ksiginfo_t ksi; struct proc *p; int error; /* * A process in capability mode can send signals only to himself. * The main rationale behind this is that abort(3) is implemented as * kill(getpid(), SIGABRT). */ if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid) return (ECAPMODE); AUDIT_ARG_SIGNUM(uap->signum); AUDIT_ARG_PID(uap->pid); if ((u_int)uap->signum > _SIG_MAXSIG) return (EINVAL); ksiginfo_init(&ksi); ksi.ksi_signo = uap->signum; ksi.ksi_code = SI_USER; ksi.ksi_pid = td->td_proc->p_pid; ksi.ksi_uid = td->td_ucred->cr_ruid; if (uap->pid > 0) { /* kill single process */ if ((p = pfind(uap->pid)) == NULL) { if ((p = zpfind(uap->pid)) == NULL) return (ESRCH); } AUDIT_ARG_PROCESS(p); error = p_cansignal(td, p, uap->signum); if (error == 0 && uap->signum) pksignal(p, uap->signum, &ksi); PROC_UNLOCK(p); return (error); } switch (uap->pid) { case -1: /* broadcast signal */ return (killpg1(td, uap->signum, 0, 1, &ksi)); case 0: /* signal own process group */ return (killpg1(td, uap->signum, 0, 0, &ksi)); default: /* negative explicit process group */ return (killpg1(td, uap->signum, -uap->pid, 0, &ksi)); } /* NOTREACHED */ } int sys_pdkill(td, uap) struct thread *td; struct pdkill_args *uap; { #ifdef PROCDESC struct proc *p; cap_rights_t rights; int error; AUDIT_ARG_SIGNUM(uap->signum); AUDIT_ARG_FD(uap->fd); if ((u_int)uap->signum > _SIG_MAXSIG) return (EINVAL); error = procdesc_find(td, uap->fd, cap_rights_init(&rights, CAP_PDKILL), &p); if (error) return (error); AUDIT_ARG_PROCESS(p); error = p_cansignal(td, p, uap->signum); if (error == 0 && uap->signum) kern_psignal(p, uap->signum); PROC_UNLOCK(p); return (error); #else return (ENOSYS); #endif } #if defined(COMPAT_43) #ifndef _SYS_SYSPROTO_H_ struct okillpg_args { int pgid; int signum; }; #endif /* ARGSUSED */ int okillpg(struct thread *td, struct okillpg_args *uap) { ksiginfo_t ksi; AUDIT_ARG_SIGNUM(uap->signum); AUDIT_ARG_PID(uap->pgid); if ((u_int)uap->signum > _SIG_MAXSIG) return (EINVAL); ksiginfo_init(&ksi); ksi.ksi_signo = uap->signum; ksi.ksi_code = SI_USER; ksi.ksi_pid = td->td_proc->p_pid; ksi.ksi_uid = td->td_ucred->cr_ruid; return (killpg1(td, uap->signum, uap->pgid, 0, &ksi)); } #endif /* COMPAT_43 */ #ifndef _SYS_SYSPROTO_H_ struct sigqueue_args { pid_t pid; int signum; /* union sigval */ void *value; }; #endif int sys_sigqueue(struct thread *td, struct sigqueue_args *uap) { ksiginfo_t ksi; struct proc *p; int error; if ((u_int)uap->signum > _SIG_MAXSIG) return (EINVAL); /* * Specification says sigqueue can only send signal to * single process. */ if (uap->pid <= 0) return (EINVAL); if ((p = pfind(uap->pid)) == NULL) { if ((p = zpfind(uap->pid)) == NULL) return (ESRCH); } error = p_cansignal(td, p, uap->signum); if (error == 0 && uap->signum != 0) { ksiginfo_init(&ksi); ksi.ksi_flags = KSI_SIGQ; ksi.ksi_signo = uap->signum; ksi.ksi_code = SI_QUEUE; ksi.ksi_pid = td->td_proc->p_pid; ksi.ksi_uid = td->td_ucred->cr_ruid; ksi.ksi_value.sival_ptr = uap->value; error = pksignal(p, ksi.ksi_signo, &ksi); } PROC_UNLOCK(p); return (error); } /* * Send a signal to a process group. */ void gsignal(int pgid, int sig, ksiginfo_t *ksi) { struct pgrp *pgrp; if (pgid != 0) { sx_slock(&proctree_lock); pgrp = pgfind(pgid); sx_sunlock(&proctree_lock); if (pgrp != NULL) { pgsignal(pgrp, sig, 0, ksi); PGRP_UNLOCK(pgrp); } } } /* * Send a signal to a process group. If checktty is 1, * limit to members which have a controlling terminal. */ void pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi) { struct proc *p; if (pgrp) { PGRP_LOCK_ASSERT(pgrp, MA_OWNED); LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { PROC_LOCK(p); if (p->p_state == PRS_NORMAL && (checkctty == 0 || p->p_flag & P_CONTROLT)) pksignal(p, sig, ksi); PROC_UNLOCK(p); } } } /* * Recalculate the signal mask and reset the signal disposition after * usermode frame for delivery is formed. Should be called after * mach-specific routine, because sysent->sv_sendsig() needs correct * ps_siginfo and signal mask. */ static void postsig_done(int sig, struct thread *td, struct sigacts *ps) { sigset_t mask; mtx_assert(&ps->ps_mtx, MA_OWNED); td->td_ru.ru_nsignals++; mask = ps->ps_catchmask[_SIG_IDX(sig)]; if (!SIGISMEMBER(ps->ps_signodefer, sig)) SIGADDSET(mask, sig); kern_sigprocmask(td, SIG_BLOCK, &mask, NULL, SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED); if (SIGISMEMBER(ps->ps_sigreset, sig)) sigdflt(ps, sig); } /* * Send a signal caused by a trap to the current thread. If it will be * caught immediately, deliver it with correct code. Otherwise, post it * normally. */ void trapsignal(struct thread *td, ksiginfo_t *ksi) { struct sigacts *ps; struct proc *p; int sig; int code; p = td->td_proc; sig = ksi->ksi_signo; code = ksi->ksi_code; KASSERT(_SIG_VALID(sig), ("invalid signal")); PROC_LOCK(p); ps = p->p_sigacts; mtx_lock(&ps->ps_mtx); if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) && !SIGISMEMBER(td->td_sigmask, sig)) { #ifdef KTRACE if (KTRPOINT(curthread, KTR_PSIG)) ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)], &td->td_sigmask, code); #endif (*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)], ksi, &td->td_sigmask); postsig_done(sig, td, ps); mtx_unlock(&ps->ps_mtx); } else { /* * Avoid a possible infinite loop if the thread * masking the signal or process is ignoring the * signal. */ if (kern_forcesigexit && (SIGISMEMBER(td->td_sigmask, sig) || ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) { SIGDELSET(td->td_sigmask, sig); SIGDELSET(ps->ps_sigcatch, sig); SIGDELSET(ps->ps_sigignore, sig); ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL; } mtx_unlock(&ps->ps_mtx); p->p_code = code; /* XXX for core dump/debugger */ p->p_sig = sig; /* XXX to verify code */ tdsendsignal(p, td, sig, ksi); } PROC_UNLOCK(p); } static struct thread * sigtd(struct proc *p, int sig, int prop) { struct thread *td, *signal_td; PROC_LOCK_ASSERT(p, MA_OWNED); /* * Check if current thread can handle the signal without * switching context to another thread. */ if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig)) return (curthread); signal_td = NULL; FOREACH_THREAD_IN_PROC(p, td) { if (!SIGISMEMBER(td->td_sigmask, sig)) { signal_td = td; break; } } if (signal_td == NULL) signal_td = FIRST_THREAD_IN_PROC(p); return (signal_td); } /* * Send the signal to the process. If the signal has an action, the action * is usually performed by the target process rather than the caller; we add * the signal to the set of pending signals for the process. * * Exceptions: * o When a stop signal is sent to a sleeping process that takes the * default action, the process is stopped without awakening it. * o SIGCONT restarts stopped processes (or puts them back to sleep) * regardless of the signal action (eg, blocked or ignored). * * Other ignored signals are discarded immediately. * * NB: This function may be entered from the debugger via the "kill" DDB * command. There is little that can be done to mitigate the possibly messy * side effects of this unwise possibility. */ void kern_psignal(struct proc *p, int sig) { ksiginfo_t ksi; ksiginfo_init(&ksi); ksi.ksi_signo = sig; ksi.ksi_code = SI_KERNEL; (void) tdsendsignal(p, NULL, sig, &ksi); } int pksignal(struct proc *p, int sig, ksiginfo_t *ksi) { return (tdsendsignal(p, NULL, sig, ksi)); } /* Utility function for finding a thread to send signal event to. */ int sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd) { struct thread *td; if (sigev->sigev_notify == SIGEV_THREAD_ID) { td = tdfind(sigev->sigev_notify_thread_id, p->p_pid); if (td == NULL) return (ESRCH); *ttd = td; } else { *ttd = NULL; PROC_LOCK(p); } return (0); } void tdsignal(struct thread *td, int sig) { ksiginfo_t ksi; ksiginfo_init(&ksi); ksi.ksi_signo = sig; ksi.ksi_code = SI_KERNEL; (void) tdsendsignal(td->td_proc, td, sig, &ksi); } void tdksignal(struct thread *td, int sig, ksiginfo_t *ksi) { (void) tdsendsignal(td->td_proc, td, sig, ksi); } int tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi) { sig_t action; sigqueue_t *sigqueue; int prop; struct sigacts *ps; int intrval; int ret = 0; int wakeup_swapper; MPASS(td == NULL || p == td->td_proc); PROC_LOCK_ASSERT(p, MA_OWNED); if (!_SIG_VALID(sig)) panic("%s(): invalid signal %d", __func__, sig); KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__)); /* * IEEE Std 1003.1-2001: return success when killing a zombie. */ if (p->p_state == PRS_ZOMBIE) { if (ksi && (ksi->ksi_flags & KSI_INS)) ksiginfo_tryfree(ksi); return (ret); } ps = p->p_sigacts; KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig); prop = sigprop(sig); if (td == NULL) { td = sigtd(p, sig, prop); sigqueue = &p->p_sigqueue; } else sigqueue = &td->td_sigqueue; SDT_PROBE3(proc, , , signal__send, td, p, sig); /* * If the signal is being ignored, * then we forget about it immediately. * (Note: we don't set SIGCONT in ps_sigignore, * and if it is set to SIG_IGN, * action will be SIG_DFL here.) */ mtx_lock(&ps->ps_mtx); if (SIGISMEMBER(ps->ps_sigignore, sig)) { SDT_PROBE3(proc, , , signal__discard, td, p, sig); mtx_unlock(&ps->ps_mtx); if (ksi && (ksi->ksi_flags & KSI_INS)) ksiginfo_tryfree(ksi); return (ret); } if (SIGISMEMBER(td->td_sigmask, sig)) action = SIG_HOLD; else if (SIGISMEMBER(ps->ps_sigcatch, sig)) action = SIG_CATCH; else action = SIG_DFL; if (SIGISMEMBER(ps->ps_sigintr, sig)) intrval = EINTR; else intrval = ERESTART; mtx_unlock(&ps->ps_mtx); if (prop & SA_CONT) sigqueue_delete_stopmask_proc(p); else if (prop & SA_STOP) { /* * If sending a tty stop signal to a member of an orphaned * process group, discard the signal here if the action * is default; don't stop the process below if sleeping, * and don't clear any pending SIGCONT. */ if ((prop & SA_TTYSTOP) && (p->p_pgrp->pg_jobc == 0) && (action == SIG_DFL)) { if (ksi && (ksi->ksi_flags & KSI_INS)) ksiginfo_tryfree(ksi); return (ret); } sigqueue_delete_proc(p, SIGCONT); if (p->p_flag & P_CONTINUED) { p->p_flag &= ~P_CONTINUED; PROC_LOCK(p->p_pptr); sigqueue_take(p->p_ksi); PROC_UNLOCK(p->p_pptr); } } ret = sigqueue_add(sigqueue, sig, ksi); if (ret != 0) return (ret); signotify(td); /* * Defer further processing for signals which are held, * except that stopped processes must be continued by SIGCONT. */ if (action == SIG_HOLD && !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG))) return (ret); - /* - * SIGKILL: Remove procfs STOPEVENTs and ptrace events. - */ + + /* SIGKILL: Remove procfs STOPEVENTs. */ if (sig == SIGKILL) { - p->p_ptevents = 0; /* from procfs_ioctl.c: PIOCBIC */ p->p_stops = 0; /* from procfs_ioctl.c: PIOCCONT */ p->p_step = 0; wakeup(&p->p_step); } /* * Some signals have a process-wide effect and a per-thread * component. Most processing occurs when the process next * tries to cross the user boundary, however there are some * times when processing needs to be done immediately, such as * waking up threads so that they can cross the user boundary. * We try to do the per-process part here. */ if (P_SHOULDSTOP(p)) { KASSERT(!(p->p_flag & P_WEXIT), ("signal to stopped but exiting process")); if (sig == SIGKILL) { /* * If traced process is already stopped, * then no further action is necessary. */ if (p->p_flag & P_TRACED) goto out; /* * SIGKILL sets process running. * It will die elsewhere. * All threads must be restarted. */ p->p_flag &= ~P_STOPPED_SIG; goto runfast; } if (prop & SA_CONT) { /* * If traced process is already stopped, * then no further action is necessary. */ if (p->p_flag & P_TRACED) goto out; /* * If SIGCONT is default (or ignored), we continue the * process but don't leave the signal in sigqueue as * it has no further action. If SIGCONT is held, we * continue the process and leave the signal in * sigqueue. If the process catches SIGCONT, let it * handle the signal itself. If it isn't waiting on * an event, it goes back to run state. * Otherwise, process goes back to sleep state. */ p->p_flag &= ~P_STOPPED_SIG; PROC_SLOCK(p); if (p->p_numthreads == p->p_suspcount) { PROC_SUNLOCK(p); p->p_flag |= P_CONTINUED; p->p_xstat = SIGCONT; PROC_LOCK(p->p_pptr); childproc_continued(p); PROC_UNLOCK(p->p_pptr); PROC_SLOCK(p); } if (action == SIG_DFL) { thread_unsuspend(p); PROC_SUNLOCK(p); sigqueue_delete(sigqueue, sig); goto out; } if (action == SIG_CATCH) { /* * The process wants to catch it so it needs * to run at least one thread, but which one? */ PROC_SUNLOCK(p); goto runfast; } /* * The signal is not ignored or caught. */ thread_unsuspend(p); PROC_SUNLOCK(p); goto out; } if (prop & SA_STOP) { /* * If traced process is already stopped, * then no further action is necessary. */ if (p->p_flag & P_TRACED) goto out; /* * Already stopped, don't need to stop again * (If we did the shell could get confused). * Just make sure the signal STOP bit set. */ p->p_flag |= P_STOPPED_SIG; sigqueue_delete(sigqueue, sig); goto out; } /* * All other kinds of signals: * If a thread is sleeping interruptibly, simulate a * wakeup so that when it is continued it will be made * runnable and can look at the signal. However, don't make * the PROCESS runnable, leave it stopped. * It may run a bit until it hits a thread_suspend_check(). */ wakeup_swapper = 0; PROC_SLOCK(p); thread_lock(td); if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR)) wakeup_swapper = sleepq_abort(td, intrval); thread_unlock(td); PROC_SUNLOCK(p); if (wakeup_swapper) kick_proc0(); goto out; /* * Mutexes are short lived. Threads waiting on them will * hit thread_suspend_check() soon. */ } else if (p->p_state == PRS_NORMAL) { if (p->p_flag & P_TRACED || action == SIG_CATCH) { tdsigwakeup(td, sig, action, intrval); goto out; } MPASS(action == SIG_DFL); if (prop & SA_STOP) { if (p->p_flag & (P_PPWAIT|P_WEXIT)) goto out; p->p_flag |= P_STOPPED_SIG; p->p_xstat = sig; PROC_SLOCK(p); sig_suspend_threads(td, p, 1); if (p->p_numthreads == p->p_suspcount) { /* * only thread sending signal to another * process can reach here, if thread is sending * signal to its process, because thread does * not suspend itself here, p_numthreads * should never be equal to p_suspcount. */ thread_stopped(p); PROC_SUNLOCK(p); sigqueue_delete_proc(p, p->p_xstat); } else PROC_SUNLOCK(p); goto out; } } else { /* Not in "NORMAL" state. discard the signal. */ sigqueue_delete(sigqueue, sig); goto out; } /* * The process is not stopped so we need to apply the signal to all the * running threads. */ runfast: tdsigwakeup(td, sig, action, intrval); PROC_SLOCK(p); thread_unsuspend(p); PROC_SUNLOCK(p); out: /* If we jump here, proc slock should not be owned. */ PROC_SLOCK_ASSERT(p, MA_NOTOWNED); return (ret); } /* * The force of a signal has been directed against a single * thread. We need to see what we can do about knocking it * out of any sleep it may be in etc. */ static void tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval) { struct proc *p = td->td_proc; register int prop; int wakeup_swapper; wakeup_swapper = 0; PROC_LOCK_ASSERT(p, MA_OWNED); prop = sigprop(sig); PROC_SLOCK(p); thread_lock(td); /* * Bring the priority of a thread up if we want it to get * killed in this lifetime. Be careful to avoid bumping the * priority of the idle thread, since we still allow to signal * kernel processes. */ if (action == SIG_DFL && (prop & SA_KILL) != 0 && td->td_priority > PUSER && !TD_IS_IDLETHREAD(td)) sched_prio(td, PUSER); if (TD_ON_SLEEPQ(td)) { /* * If thread is sleeping uninterruptibly * we can't interrupt the sleep... the signal will * be noticed when the process returns through * trap() or syscall(). */ if ((td->td_flags & TDF_SINTR) == 0) goto out; /* * If SIGCONT is default (or ignored) and process is * asleep, we are finished; the process should not * be awakened. */ if ((prop & SA_CONT) && action == SIG_DFL) { thread_unlock(td); PROC_SUNLOCK(p); sigqueue_delete(&p->p_sigqueue, sig); /* * It may be on either list in this state. * Remove from both for now. */ sigqueue_delete(&td->td_sigqueue, sig); return; } /* * Don't awaken a sleeping thread for SIGSTOP if the * STOP signal is deferred. */ if ((prop & SA_STOP) && (td->td_flags & TDF_SBDRY)) goto out; /* * Give low priority threads a better chance to run. */ if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td)) sched_prio(td, PUSER); wakeup_swapper = sleepq_abort(td, intrval); } else { /* * Other states do nothing with the signal immediately, * other than kicking ourselves if we are running. * It will either never be noticed, or noticed very soon. */ #ifdef SMP if (TD_IS_RUNNING(td) && td != curthread) forward_signal(td); #endif } out: PROC_SUNLOCK(p); thread_unlock(td); if (wakeup_swapper) kick_proc0(); } static void sig_suspend_threads(struct thread *td, struct proc *p, int sending) { struct thread *td2; PROC_LOCK_ASSERT(p, MA_OWNED); PROC_SLOCK_ASSERT(p, MA_OWNED); FOREACH_THREAD_IN_PROC(p, td2) { thread_lock(td2); td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK; if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) && (td2->td_flags & TDF_SINTR)) { if (td2->td_flags & TDF_SBDRY) { /* * Once a thread is asleep with * TDF_SBDRY set, it should never * become suspended due to this check. */ KASSERT(!TD_IS_SUSPENDED(td2), ("thread with deferred stops suspended")); } else if (!TD_IS_SUSPENDED(td2)) { thread_suspend_one(td2); } } else if (!TD_IS_SUSPENDED(td2)) { if (sending || td != td2) td2->td_flags |= TDF_ASTPENDING; #ifdef SMP if (TD_IS_RUNNING(td2) && td2 != td) forward_signal(td2); #endif } thread_unlock(td2); } } /* * Stop the process for an event deemed interesting to the debugger. If si is * non-NULL, this is a signal exchange; the new signal requested by the * debugger will be returned for handling. If si is NULL, this is some other * type of interesting event. The debugger may request a signal be delivered in * that case as well, however it will be deferred until it can be handled. */ int ptracestop(struct thread *td, int sig, ksiginfo_t *si) { struct proc *p = td->td_proc; struct thread *td2; ksiginfo_t ksi; int prop; PROC_LOCK_ASSERT(p, MA_OWNED); KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process")); WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, &p->p_mtx.lock_object, "Stopping for traced signal"); td->td_xsig = sig; if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) { td->td_dbgflags |= TDB_XSIG; CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d", td->td_tid, p->p_pid, td->td_dbgflags, sig); PROC_SLOCK(p); while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) { if (P_KILLED(p)) { /* * Ensure that, if we've been PT_KILLed, the * exit status reflects that. Another thread * may also be in ptracestop(), having just * received the SIGKILL, but this thread was * unsuspended first. */ td->td_dbgflags &= ~TDB_XSIG; td->td_xsig = SIGKILL; p->p_ptevents = 0; break; } if (p->p_flag & P_SINGLE_EXIT && !(td->td_dbgflags & TDB_EXIT)) { /* * Ignore ptrace stops except for thread exit * events when the process exits. */ td->td_dbgflags &= ~TDB_XSIG; PROC_SUNLOCK(p); return (0); } /* * Make wait(2) work. Ensure that right after the * attach, the thread which was decided to become the * leader of attach gets reported to the waiter. * Otherwise, just avoid overwriting another thread's * assignment to p_xthread. If another thread has * already set p_xthread, the current thread will get * a chance to report itself upon the next iteration. */ if ((td->td_dbgflags & TDB_FSTP) != 0 || ((p->p_flag2 & P2_PTRACE_FSTP) == 0 && p->p_xthread == NULL)) { p->p_xstat = sig; p->p_xthread = td; td->td_dbgflags &= ~TDB_FSTP; p->p_flag2 &= ~P2_PTRACE_FSTP; p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE; sig_suspend_threads(td, p, 0); } if ((td->td_dbgflags & TDB_STOPATFORK) != 0) { td->td_dbgflags &= ~TDB_STOPATFORK; cv_broadcast(&p->p_dbgwait); } stopme: thread_suspend_switch(td, p); if (p->p_xthread == td) p->p_xthread = NULL; if (!(p->p_flag & P_TRACED)) break; if (td->td_dbgflags & TDB_SUSPEND) { if (p->p_flag & P_SINGLE_EXIT) break; goto stopme; } } PROC_SUNLOCK(p); } if (si != NULL && sig == td->td_xsig) { /* Parent wants us to take the original signal unchanged. */ si->ksi_flags |= KSI_HEAD; if (sigqueue_add(&td->td_sigqueue, sig, si) != 0) si->ksi_signo = 0; } else if (td->td_xsig != 0) { /* * If parent wants us to take a new signal, then it will leave * it in td->td_xsig; otherwise we just look for signals again. */ ksiginfo_init(&ksi); ksi.ksi_signo = td->td_xsig; ksi.ksi_flags |= KSI_PTRACE; prop = sigprop(td->td_xsig); td2 = sigtd(p, td->td_xsig, prop); tdsendsignal(p, td2, td->td_xsig, &ksi); if (td != td2) return (0); } return (td->td_xsig); } static void reschedule_signals(struct proc *p, sigset_t block, int flags) { struct sigacts *ps; struct thread *td; int sig; PROC_LOCK_ASSERT(p, MA_OWNED); ps = p->p_sigacts; mtx_assert(&ps->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ? MA_OWNED : MA_NOTOWNED); if (SIGISEMPTY(p->p_siglist)) return; SIGSETAND(block, p->p_siglist); while ((sig = sig_ffs(&block)) != 0) { SIGDELSET(block, sig); td = sigtd(p, sig, 0); signotify(td); if (!(flags & SIGPROCMASK_PS_LOCKED)) mtx_lock(&ps->ps_mtx); if (p->p_flag & P_TRACED || SIGISMEMBER(ps->ps_sigcatch, sig)) tdsigwakeup(td, sig, SIG_CATCH, (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR : ERESTART)); if (!(flags & SIGPROCMASK_PS_LOCKED)) mtx_unlock(&ps->ps_mtx); } } void tdsigcleanup(struct thread *td) { struct proc *p; sigset_t unblocked; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); sigqueue_flush(&td->td_sigqueue); if (p->p_numthreads == 1) return; /* * Since we cannot handle signals, notify signal post code * about this by filling the sigmask. * * Also, if needed, wake up thread(s) that do not block the * same signals as the exiting thread, since the thread might * have been selected for delivery and woken up. */ SIGFILLSET(unblocked); SIGSETNAND(unblocked, td->td_sigmask); SIGFILLSET(td->td_sigmask); reschedule_signals(p, unblocked, 0); } /* * Defer the delivery of SIGSTOP for the current thread. Returns true * if stops were deferred and false if they were already deferred. */ int sigdeferstop(void) { struct thread *td; td = curthread; if (td->td_flags & TDF_SBDRY) return (0); thread_lock(td); td->td_flags |= TDF_SBDRY; thread_unlock(td); return (1); } /* * Permit the delivery of SIGSTOP for the current thread. This does * not immediately suspend if a stop was posted. Instead, the thread * will suspend either via ast() or a subsequent interruptible sleep. */ int sigallowstop(void) { struct thread *td; int prev; td = curthread; thread_lock(td); prev = (td->td_flags & TDF_SBDRY) != 0; td->td_flags &= ~TDF_SBDRY; thread_unlock(td); return (prev); } /* * If the current process has received a signal (should be caught or cause * termination, should interrupt current syscall), return the signal number. * Stop signals with default action are processed immediately, then cleared; * they aren't returned. This is checked after each entry to the system for * a syscall or trap (though this can usually be done without calling issignal * by checking the pending signal masks in cursig.) The normal call * sequence is * * while (sig = cursig(curthread)) * postsig(sig); */ static int issignal(struct thread *td) { struct proc *p; struct sigacts *ps; struct sigqueue *queue; sigset_t sigpending; int sig, prop; p = td->td_proc; ps = p->p_sigacts; mtx_assert(&ps->ps_mtx, MA_OWNED); PROC_LOCK_ASSERT(p, MA_OWNED); for (;;) { int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG); sigpending = td->td_sigqueue.sq_signals; SIGSETOR(sigpending, p->p_sigqueue.sq_signals); SIGSETNAND(sigpending, td->td_sigmask); if (p->p_flag & P_PPWAIT || td->td_flags & TDF_SBDRY) SIG_STOPSIGMASK(sigpending); if (SIGISEMPTY(sigpending)) /* no signal to send */ return (0); if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED && (p->p_flag2 & P2_PTRACE_FSTP) != 0 && SIGISMEMBER(sigpending, SIGSTOP)) { /* * If debugger just attached, always consume * SIGSTOP from ptrace(PT_ATTACH) first, to * execute the debugger attach ritual in * order. */ sig = SIGSTOP; td->td_dbgflags |= TDB_FSTP; } else { sig = sig_ffs(&sigpending); } if (p->p_stops & S_SIG) { mtx_unlock(&ps->ps_mtx); stopevent(p, S_SIG, sig); mtx_lock(&ps->ps_mtx); } /* * We should see pending but ignored signals * only if P_TRACED was on when they were posted. */ if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) { sigqueue_delete(&td->td_sigqueue, sig); sigqueue_delete(&p->p_sigqueue, sig); continue; } if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) { /* * If traced, always stop. * Remove old signal from queue before the stop. * XXX shrug off debugger, it causes siginfo to * be thrown away. */ queue = &td->td_sigqueue; td->td_dbgksi.ksi_signo = 0; if (sigqueue_get(queue, sig, &td->td_dbgksi) == 0) { queue = &p->p_sigqueue; sigqueue_get(queue, sig, &td->td_dbgksi); } mtx_unlock(&ps->ps_mtx); sig = ptracestop(td, sig, &td->td_dbgksi); mtx_lock(&ps->ps_mtx); /* * Keep looking if the debugger discarded the signal * or replaced it with a masked signal. * * If the traced bit got turned off, go back up * to the top to rescan signals. This ensures * that p_sig* and p_sigact are consistent. */ if (sig == 0 || (p->p_flag & P_TRACED) == 0) continue; } prop = sigprop(sig); /* * Decide whether the signal should be returned. * Return the signal's number, or fall through * to clear it from the pending mask. */ switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) { case (intptr_t)SIG_DFL: /* * Don't take default actions on system processes. */ if (p->p_pid <= 1) { #ifdef DIAGNOSTIC /* * Are you sure you want to ignore SIGSEGV * in init? XXX */ printf("Process (pid %lu) got signal %d\n", (u_long)p->p_pid, sig); #endif break; /* == ignore */ } /* - * If there is a pending stop signal to process - * with default action, stop here, - * then clear the signal. However, - * if process is member of an orphaned - * process group, ignore tty stop signals. + * If there is a pending stop signal to process with + * default action, stop here, then clear the signal. + * Traced or exiting processes should ignore stops. + * Additionally, a member of an orphaned process group + * should ignore tty stops. */ if (prop & SA_STOP) { - if (p->p_flag & (P_TRACED|P_WEXIT) || + if (p->p_flag & + (P_TRACED | P_WEXIT | P_SINGLE_EXIT) || (p->p_pgrp->pg_jobc == 0 && prop & SA_TTYSTOP)) break; /* == ignore */ mtx_unlock(&ps->ps_mtx); WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, &p->p_mtx.lock_object, "Catching SIGSTOP"); sigqueue_delete(&td->td_sigqueue, sig); sigqueue_delete(&p->p_sigqueue, sig); p->p_flag |= P_STOPPED_SIG; p->p_xstat = sig; PROC_SLOCK(p); sig_suspend_threads(td, p, 0); thread_suspend_switch(td, p); PROC_SUNLOCK(p); mtx_lock(&ps->ps_mtx); goto next; } else if (prop & SA_IGNORE) { /* * Except for SIGCONT, shouldn't get here. * Default action is to ignore; drop it. */ break; /* == ignore */ } else return (sig); /*NOTREACHED*/ case (intptr_t)SIG_IGN: /* * Masking above should prevent us ever trying * to take action on an ignored signal other * than SIGCONT, unless process is traced. */ if ((prop & SA_CONT) == 0 && (p->p_flag & P_TRACED) == 0) printf("issignal\n"); break; /* == ignore */ default: /* * This signal has an action, let * postsig() process it. */ return (sig); } sigqueue_delete(&td->td_sigqueue, sig); /* take the signal! */ sigqueue_delete(&p->p_sigqueue, sig); next:; } /* NOTREACHED */ } void thread_stopped(struct proc *p) { int n; PROC_LOCK_ASSERT(p, MA_OWNED); PROC_SLOCK_ASSERT(p, MA_OWNED); n = p->p_suspcount; if (p == curproc) n++; if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) { PROC_SUNLOCK(p); p->p_flag &= ~P_WAITED; PROC_LOCK(p->p_pptr); childproc_stopped(p, (p->p_flag & P_TRACED) ? CLD_TRAPPED : CLD_STOPPED); PROC_UNLOCK(p->p_pptr); PROC_SLOCK(p); } } /* * Take the action for the specified signal * from the current set of pending signals. */ int postsig(sig) register int sig; { struct thread *td = curthread; register struct proc *p = td->td_proc; struct sigacts *ps; sig_t action; ksiginfo_t ksi; sigset_t returnmask; KASSERT(sig != 0, ("postsig")); PROC_LOCK_ASSERT(p, MA_OWNED); ps = p->p_sigacts; mtx_assert(&ps->ps_mtx, MA_OWNED); ksiginfo_init(&ksi); if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 && sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0) return (0); ksi.ksi_signo = sig; if (ksi.ksi_code == SI_TIMER) itimer_accept(p, ksi.ksi_timerid, &ksi); action = ps->ps_sigact[_SIG_IDX(sig)]; #ifdef KTRACE if (KTRPOINT(td, KTR_PSIG)) ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ? &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code); #endif if (p->p_stops & S_SIG) { mtx_unlock(&ps->ps_mtx); stopevent(p, S_SIG, sig); mtx_lock(&ps->ps_mtx); } if (action == SIG_DFL) { /* * Default action, where the default is to kill * the process. (Other cases were ignored above.) */ mtx_unlock(&ps->ps_mtx); sigexit(td, sig); /* NOTREACHED */ } else { /* * If we get here, the signal must be caught. */ KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig), ("postsig action")); /* * Set the new mask value and also defer further * occurrences of this signal. * * Special case: user has done a sigsuspend. Here the * current mask is not of interest, but rather the * mask from before the sigsuspend is what we want * restored after the signal processing is completed. */ if (td->td_pflags & TDP_OLDMASK) { returnmask = td->td_oldsigmask; td->td_pflags &= ~TDP_OLDMASK; } else returnmask = td->td_sigmask; if (p->p_sig == sig) { p->p_code = 0; p->p_sig = 0; } (*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask); postsig_done(sig, td, ps); } return (1); } /* * Kill the current process for stated reason. */ void killproc(p, why) struct proc *p; char *why; { PROC_LOCK_ASSERT(p, MA_OWNED); CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid, p->p_comm); log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why); p->p_flag |= P_WKILLED; kern_psignal(p, SIGKILL); } /* * Force the current process to exit with the specified signal, dumping core * if appropriate. We bypass the normal tests for masked and caught signals, * allowing unrecoverable failures to terminate the process without changing * signal state. Mark the accounting record with the signal termination. * If dumping core, save the signal number for the debugger. Calls exit and * does not return. */ void sigexit(td, sig) struct thread *td; int sig; { struct proc *p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); p->p_acflag |= AXSIG; /* * We must be single-threading to generate a core dump. This * ensures that the registers in the core file are up-to-date. * Also, the ELF dump handler assumes that the thread list doesn't * change out from under it. * * XXX If another thread attempts to single-thread before us * (e.g. via fork()), we won't get a dump at all. */ if ((sigprop(sig) & SA_CORE) && thread_single(p, SINGLE_NO_EXIT) == 0) { p->p_sig = sig; /* * Log signals which would cause core dumps * (Log as LOG_INFO to appease those who don't want * these messages.) * XXX : Todo, as well as euid, write out ruid too * Note that coredump() drops proc lock. */ if (coredump(td) == 0) sig |= WCOREFLAG; if (kern_logsigexit) log(LOG_INFO, "pid %d (%s), uid %d: exited on signal %d%s\n", p->p_pid, p->p_comm, td->td_ucred ? td->td_ucred->cr_uid : -1, sig &~ WCOREFLAG, sig & WCOREFLAG ? " (core dumped)" : ""); } else PROC_UNLOCK(p); exit1(td, W_EXITCODE(0, sig)); /* NOTREACHED */ } /* * Send queued SIGCHLD to parent when child process's state * is changed. */ static void sigparent(struct proc *p, int reason, int status) { PROC_LOCK_ASSERT(p, MA_OWNED); PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED); if (p->p_ksi != NULL) { p->p_ksi->ksi_signo = SIGCHLD; p->p_ksi->ksi_code = reason; p->p_ksi->ksi_status = status; p->p_ksi->ksi_pid = p->p_pid; p->p_ksi->ksi_uid = p->p_ucred->cr_ruid; if (KSI_ONQ(p->p_ksi)) return; } pksignal(p->p_pptr, SIGCHLD, p->p_ksi); } static void childproc_jobstate(struct proc *p, int reason, int sig) { struct sigacts *ps; PROC_LOCK_ASSERT(p, MA_OWNED); PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED); /* * Wake up parent sleeping in kern_wait(), also send * SIGCHLD to parent, but SIGCHLD does not guarantee * that parent will awake, because parent may masked * the signal. */ p->p_pptr->p_flag |= P_STATCHILD; wakeup(p->p_pptr); ps = p->p_pptr->p_sigacts; mtx_lock(&ps->ps_mtx); if ((ps->ps_flag & PS_NOCLDSTOP) == 0) { mtx_unlock(&ps->ps_mtx); sigparent(p, reason, sig); } else mtx_unlock(&ps->ps_mtx); } void childproc_stopped(struct proc *p, int reason) { /* p_xstat is a plain signal number, not a full wait() status here. */ childproc_jobstate(p, reason, p->p_xstat); } void childproc_continued(struct proc *p) { childproc_jobstate(p, CLD_CONTINUED, SIGCONT); } void childproc_exited(struct proc *p) { int reason; int xstat = p->p_xstat; /* convert to int */ int status; if (WCOREDUMP(xstat)) reason = CLD_DUMPED, status = WTERMSIG(xstat); else if (WIFSIGNALED(xstat)) reason = CLD_KILLED, status = WTERMSIG(xstat); else reason = CLD_EXITED, status = WEXITSTATUS(xstat); /* * XXX avoid calling wakeup(p->p_pptr), the work is * done in exit1(). */ sigparent(p, reason, status); } /* * We only have 1 character for the core count in the format * string, so the range will be 0-9 */ #define MAX_NUM_CORES 10 static int num_cores = 5; static int sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS) { int error; int new_val; new_val = num_cores; error = sysctl_handle_int(oidp, &new_val, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (new_val > MAX_NUM_CORES) new_val = MAX_NUM_CORES; if (new_val < 0) new_val = 0; num_cores = new_val; return (0); } SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW, 0, sizeof(int), sysctl_debug_num_cores_check, "I", ""); #if defined(COMPRESS_USER_CORES) int compress_user_cores = 1; SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RW, &compress_user_cores, 0, "Compression of user corefiles"); int compress_user_cores_gzlevel = -1; /* default level */ SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RW, &compress_user_cores_gzlevel, -1, "Corefile gzip compression level"); #define GZ_SUFFIX ".gz" #define GZ_SUFFIX_LEN 3 #endif static char corefilename[MAXPATHLEN] = {"%N.core"}; TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename)); SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename, sizeof(corefilename), "Process corefile name format string"); /* * corefile_open(comm, uid, pid, td, compress, vpp, namep) * Expand the name described in corefilename, using name, uid, and pid * and open/create core file. * corefilename is a printf-like string, with three format specifiers: * %N name of process ("name") * %P process id (pid) * %U user id (uid) * For example, "%N.core" is the default; they can be disabled completely * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P". * This is controlled by the sysctl variable kern.corefile (see above). */ static int corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td, int compress, struct vnode **vpp, char **namep) { struct nameidata nd; struct sbuf sb; const char *format; char *hostname, *name; int indexpos, i, error, cmode, flags, oflags; hostname = NULL; format = corefilename; name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO); indexpos = -1; (void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN); for (i = 0; format[i] != '\0'; i++) { switch (format[i]) { case '%': /* Format character */ i++; switch (format[i]) { case '%': sbuf_putc(&sb, '%'); break; case 'H': /* hostname */ if (hostname == NULL) { hostname = malloc(MAXHOSTNAMELEN, M_TEMP, M_WAITOK); } getcredhostname(td->td_ucred, hostname, MAXHOSTNAMELEN); sbuf_printf(&sb, "%s", hostname); break; case 'I': /* autoincrementing index */ sbuf_printf(&sb, "0"); indexpos = sbuf_len(&sb) - 1; break; case 'N': /* process name */ sbuf_printf(&sb, "%s", comm); break; case 'P': /* process id */ sbuf_printf(&sb, "%u", pid); break; case 'U': /* user id */ sbuf_printf(&sb, "%u", uid); break; default: log(LOG_ERR, "Unknown format character %c in " "corename `%s'\n", format[i], format); break; } break; default: sbuf_putc(&sb, format[i]); break; } } free(hostname, M_TEMP); #ifdef COMPRESS_USER_CORES if (compress) sbuf_printf(&sb, GZ_SUFFIX); #endif if (sbuf_error(&sb) != 0) { log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too " "long\n", (long)pid, comm, (u_long)uid); sbuf_delete(&sb); free(name, M_TEMP); return (ENOMEM); } sbuf_finish(&sb); sbuf_delete(&sb); cmode = S_IRUSR | S_IWUSR; oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE | (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0); /* * If the core format has a %I in it, then we need to check * for existing corefiles before returning a name. * To do this we iterate over 0..num_cores to find a * non-existing core file name to use. */ if (indexpos != -1) { for (i = 0; i < num_cores; i++) { flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW; name[indexpos] = '0' + i; NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td); error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred, NULL); if (error) { if (error == EEXIST) continue; log(LOG_ERR, "pid %d (%s), uid (%u): Path `%s' failed " "on initial open test, error = %d\n", pid, comm, uid, name, error); } goto out; } } flags = O_CREAT | FWRITE | O_NOFOLLOW; NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td); error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred, NULL); out: if (error) { #ifdef AUDIT audit_proc_coredump(td, name, error); #endif free(name, M_TEMP); return (error); } NDFREE(&nd, NDF_ONLY_PNBUF); *vpp = nd.ni_vp; *namep = name; return (0); } /* * Dump a process' core. The main routine does some * policy checking, and creates the name of the coredump; * then it passes on a vnode and a size limit to the process-specific * coredump routine if there is one; if there _is not_ one, it returns * ENOSYS; otherwise it returns the error from the process-specific routine. */ static int coredump(struct thread *td) { struct proc *p = td->td_proc; struct ucred *cred = td->td_ucred; struct vnode *vp; struct flock lf; struct vattr vattr; int error, error1, locked; struct mount *mp; char *name; /* name of corefile */ off_t limit; int compress; #ifdef COMPRESS_USER_CORES compress = compress_user_cores; #else compress = 0; #endif PROC_LOCK_ASSERT(p, MA_OWNED); MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td); _STOPEVENT(p, S_CORE, 0); if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) || (p->p_flag2 & P2_NOTRACE) != 0) { PROC_UNLOCK(p); return (EFAULT); } /* * Note that the bulk of limit checking is done after * the corefile is created. The exception is if the limit * for corefiles is 0, in which case we don't bother * creating the corefile at all. This layout means that * a corefile is truncated instead of not being created, * if it is larger than the limit. */ limit = (off_t)lim_cur(p, RLIMIT_CORE); if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) { PROC_UNLOCK(p); return (EFBIG); } PROC_UNLOCK(p); restart: error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td, compress, &vp, &name); if (error != 0) return (error); /* Don't dump to non-regular files or files with links. */ if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 || vattr.va_nlink != 1) { VOP_UNLOCK(vp, 0); error = EFAULT; goto close; } VOP_UNLOCK(vp, 0); lf.l_whence = SEEK_SET; lf.l_start = 0; lf.l_len = 0; lf.l_type = F_WRLCK; locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0); if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { lf.l_type = F_UNLCK; if (locked) VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK); if ((error = vn_close(vp, FWRITE, cred, td)) != 0) goto out; if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0) goto out; free(name, M_TEMP); goto restart; } VATTR_NULL(&vattr); vattr.va_size = 0; if (set_core_nodump_flag) vattr.va_flags = UF_NODUMP; vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); VOP_SETATTR(vp, &vattr, cred); VOP_UNLOCK(vp, 0); vn_finished_write(mp); PROC_LOCK(p); p->p_acflag |= ACORE; PROC_UNLOCK(p); if (p->p_sysent->sv_coredump != NULL) { error = p->p_sysent->sv_coredump(td, vp, limit, compress ? IMGACT_CORE_COMPRESS : 0); } else { error = ENOSYS; } if (locked) { lf.l_type = F_UNLCK; VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK); } close: error1 = vn_close(vp, FWRITE, cred, td); if (error == 0) error = error1; out: #ifdef AUDIT audit_proc_coredump(td, name, error); #endif free(name, M_TEMP); return (error); } /* * Nonexistent system call-- signal process (may want to handle it). Flag * error in case process won't see signal immediately (blocked or ignored). */ #ifndef _SYS_SYSPROTO_H_ struct nosys_args { int dummy; }; #endif /* ARGSUSED */ int nosys(td, args) struct thread *td; struct nosys_args *args; { struct proc *p = td->td_proc; PROC_LOCK(p); tdsignal(td, SIGSYS); PROC_UNLOCK(p); return (ENOSYS); } /* * Send a SIGIO or SIGURG signal to a process or process group using stored * credentials rather than those of the current process. */ void pgsigio(sigiop, sig, checkctty) struct sigio **sigiop; int sig, checkctty; { ksiginfo_t ksi; struct sigio *sigio; ksiginfo_init(&ksi); ksi.ksi_signo = sig; ksi.ksi_code = SI_KERNEL; SIGIO_LOCK(); sigio = *sigiop; if (sigio == NULL) { SIGIO_UNLOCK(); return; } if (sigio->sio_pgid > 0) { PROC_LOCK(sigio->sio_proc); if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred)) kern_psignal(sigio->sio_proc, sig); PROC_UNLOCK(sigio->sio_proc); } else if (sigio->sio_pgid < 0) { struct proc *p; PGRP_LOCK(sigio->sio_pgrp); LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) { PROC_LOCK(p); if (p->p_state == PRS_NORMAL && CANSIGIO(sigio->sio_ucred, p->p_ucred) && (checkctty == 0 || (p->p_flag & P_CONTROLT))) kern_psignal(p, sig); PROC_UNLOCK(p); } PGRP_UNLOCK(sigio->sio_pgrp); } SIGIO_UNLOCK(); } static int filt_sigattach(struct knote *kn) { struct proc *p = curproc; kn->kn_ptr.p_proc = p; kn->kn_flags |= EV_CLEAR; /* automatically set */ knlist_add(&p->p_klist, kn, 0); return (0); } static void filt_sigdetach(struct knote *kn) { struct proc *p = kn->kn_ptr.p_proc; knlist_remove(&p->p_klist, kn, 0); } /* * signal knotes are shared with proc knotes, so we apply a mask to * the hint in order to differentiate them from process hints. This * could be avoided by using a signal-specific knote list, but probably * isn't worth the trouble. */ static int filt_signal(struct knote *kn, long hint) { if (hint & NOTE_SIGNAL) { hint &= ~NOTE_SIGNAL; if (kn->kn_id == hint) kn->kn_data++; } return (kn->kn_data != 0); } struct sigacts * sigacts_alloc(void) { struct sigacts *ps; ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO); ps->ps_refcnt = 1; mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF); return (ps); } void sigacts_free(struct sigacts *ps) { if (refcount_release(&ps->ps_refcnt) == 0) return; mtx_destroy(&ps->ps_mtx); free(ps, M_SUBPROC); } struct sigacts * sigacts_hold(struct sigacts *ps) { refcount_acquire(&ps->ps_refcnt); return (ps); } void sigacts_copy(struct sigacts *dest, struct sigacts *src) { KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest")); mtx_lock(&src->ps_mtx); bcopy(src, dest, offsetof(struct sigacts, ps_refcnt)); mtx_unlock(&src->ps_mtx); } int sigacts_shared(struct sigacts *ps) { return (ps->ps_refcnt > 1); } Index: stable/10/tests/sys/kern/ptrace_test.c =================================================================== --- stable/10/tests/sys/kern/ptrace_test.c (revision 315962) +++ stable/10/tests/sys/kern/ptrace_test.c (revision 315963) @@ -1,2780 +1,2990 @@ /*- * Copyright (c) 2015 John Baldwin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include +#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * A variant of ATF_REQUIRE that is suitable for use in child * processes. This only works if the parent process is tripped up by * the early exit and fails some requirement itself. */ #define CHILD_REQUIRE(exp) do { \ if (!(exp)) \ child_fail_require(__FILE__, __LINE__, \ #exp " not met"); \ } while (0) static __dead2 void child_fail_require(const char *file, int line, const char *str) { char buf[128]; snprintf(buf, sizeof(buf), "%s:%d: %s\n", file, line, str); write(2, buf, strlen(buf)); _exit(32); } static void trace_me(void) { /* Attach the parent process as a tracer of this process. */ CHILD_REQUIRE(ptrace(PT_TRACE_ME, 0, NULL, 0) != -1); /* Trigger a stop. */ raise(SIGSTOP); } static void attach_child(pid_t pid) { pid_t wpid; int status; ATF_REQUIRE(ptrace(PT_ATTACH, pid, NULL, 0) == 0); wpid = waitpid(pid, &status, 0); ATF_REQUIRE(wpid == pid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); } static void wait_for_zombie(pid_t pid) { /* * Wait for a process to exit. This is kind of gross, but * there is not a better way. */ for (;;) { struct kinfo_proc kp; size_t len; int mib[4]; mib[0] = CTL_KERN; mib[1] = KERN_PROC; mib[2] = KERN_PROC_PID; mib[3] = pid; len = sizeof(kp); if (sysctl(mib, nitems(mib), &kp, &len, NULL, 0) == -1) { /* The KERN_PROC_PID sysctl fails for zombies. */ ATF_REQUIRE(errno == ESRCH); break; } usleep(5000); } } /* * Verify that a parent debugger process "sees" the exit of a debugged * process exactly once when attached via PT_TRACE_ME. */ ATF_TC_WITHOUT_HEAD(ptrace__parent_wait_after_trace_me); ATF_TC_BODY(ptrace__parent_wait_after_trace_me, tc) { pid_t child, wpid; int status; ATF_REQUIRE((child = fork()) != -1); if (child == 0) { /* Child process. */ trace_me(); exit(1); } /* Parent process. */ /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(child, &status, 0); ATF_REQUIRE(wpid == child); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, child, (caddr_t)1, 0) != -1); /* The second wait() should report the exit status. */ wpid = waitpid(child, &status, 0); ATF_REQUIRE(wpid == child); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); /* The child should no longer exist. */ wpid = waitpid(child, &status, 0); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that a parent debugger process "sees" the exit of a debugged * process exactly once when attached via PT_ATTACH. */ ATF_TC_WITHOUT_HEAD(ptrace__parent_wait_after_attach); ATF_TC_BODY(ptrace__parent_wait_after_attach, tc) { pid_t child, wpid; int cpipe[2], status; char c; ATF_REQUIRE(pipe(cpipe) == 0); ATF_REQUIRE((child = fork()) != -1); if (child == 0) { /* Child process. */ close(cpipe[0]); /* Wait for the parent to attach. */ CHILD_REQUIRE(read(cpipe[1], &c, sizeof(c)) == 0); exit(1); } close(cpipe[1]); /* Parent process. */ /* Attach to the child process. */ attach_child(child); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, child, (caddr_t)1, 0) != -1); /* Signal the child to exit. */ close(cpipe[0]); /* The second wait() should report the exit status. */ wpid = waitpid(child, &status, 0); ATF_REQUIRE(wpid == child); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); /* The child should no longer exist. */ wpid = waitpid(child, &status, 0); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that a parent process "sees" the exit of a debugged process only * after the debugger has seen it. */ ATF_TC_WITHOUT_HEAD(ptrace__parent_sees_exit_after_child_debugger); ATF_TC_BODY(ptrace__parent_sees_exit_after_child_debugger, tc) { pid_t child, debugger, wpid; int cpipe[2], dpipe[2], status; char c; ATF_REQUIRE(pipe(cpipe) == 0); ATF_REQUIRE((child = fork()) != -1); if (child == 0) { /* Child process. */ close(cpipe[0]); /* Wait for parent to be ready. */ CHILD_REQUIRE(read(cpipe[1], &c, sizeof(c)) == sizeof(c)); exit(1); } close(cpipe[1]); ATF_REQUIRE(pipe(dpipe) == 0); ATF_REQUIRE((debugger = fork()) != -1); if (debugger == 0) { /* Debugger process. */ close(dpipe[0]); CHILD_REQUIRE(ptrace(PT_ATTACH, child, NULL, 0) != -1); wpid = waitpid(child, &status, 0); CHILD_REQUIRE(wpid == child); CHILD_REQUIRE(WIFSTOPPED(status)); CHILD_REQUIRE(WSTOPSIG(status) == SIGSTOP); CHILD_REQUIRE(ptrace(PT_CONTINUE, child, (caddr_t)1, 0) != -1); /* Signal parent that debugger is attached. */ CHILD_REQUIRE(write(dpipe[1], &c, sizeof(c)) == sizeof(c)); /* Wait for parent's failed wait. */ CHILD_REQUIRE(read(dpipe[1], &c, sizeof(c)) == 0); wpid = waitpid(child, &status, 0); CHILD_REQUIRE(wpid == child); CHILD_REQUIRE(WIFEXITED(status)); CHILD_REQUIRE(WEXITSTATUS(status) == 1); exit(0); } close(dpipe[1]); /* Parent process. */ /* Wait for the debugger to attach to the child. */ ATF_REQUIRE(read(dpipe[0], &c, sizeof(c)) == sizeof(c)); /* Release the child. */ ATF_REQUIRE(write(cpipe[0], &c, sizeof(c)) == sizeof(c)); ATF_REQUIRE(read(cpipe[0], &c, sizeof(c)) == 0); close(cpipe[0]); wait_for_zombie(child); /* * This wait should return a pid of 0 to indicate no status to * report. The parent should see the child as non-exited * until the debugger sees the exit. */ wpid = waitpid(child, &status, WNOHANG); ATF_REQUIRE(wpid == 0); /* Signal the debugger to wait for the child. */ close(dpipe[0]); /* Wait for the debugger. */ wpid = waitpid(debugger, &status, 0); ATF_REQUIRE(wpid == debugger); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 0); /* The child process should now be ready. */ wpid = waitpid(child, &status, WNOHANG); ATF_REQUIRE(wpid == child); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); } /* * Verify that a parent process "sees" the exit of a debugged process * only after a non-direct-child debugger has seen it. In particular, * various wait() calls in the parent must avoid failing with ESRCH by * checking the parent's orphan list for the debugee. */ ATF_TC_WITHOUT_HEAD(ptrace__parent_sees_exit_after_unrelated_debugger); ATF_TC_BODY(ptrace__parent_sees_exit_after_unrelated_debugger, tc) { pid_t child, debugger, fpid, wpid; int cpipe[2], dpipe[2], status; char c; ATF_REQUIRE(pipe(cpipe) == 0); ATF_REQUIRE((child = fork()) != -1); if (child == 0) { /* Child process. */ close(cpipe[0]); /* Wait for parent to be ready. */ CHILD_REQUIRE(read(cpipe[1], &c, sizeof(c)) == sizeof(c)); exit(1); } close(cpipe[1]); ATF_REQUIRE(pipe(dpipe) == 0); ATF_REQUIRE((debugger = fork()) != -1); if (debugger == 0) { /* Debugger parent. */ /* * Fork again and drop the debugger parent so that the * debugger is not a child of the main parent. */ CHILD_REQUIRE((fpid = fork()) != -1); if (fpid != 0) exit(2); /* Debugger process. */ close(dpipe[0]); CHILD_REQUIRE(ptrace(PT_ATTACH, child, NULL, 0) != -1); wpid = waitpid(child, &status, 0); CHILD_REQUIRE(wpid == child); CHILD_REQUIRE(WIFSTOPPED(status)); CHILD_REQUIRE(WSTOPSIG(status) == SIGSTOP); CHILD_REQUIRE(ptrace(PT_CONTINUE, child, (caddr_t)1, 0) != -1); /* Signal parent that debugger is attached. */ CHILD_REQUIRE(write(dpipe[1], &c, sizeof(c)) == sizeof(c)); /* Wait for parent's failed wait. */ CHILD_REQUIRE(read(dpipe[1], &c, sizeof(c)) == sizeof(c)); wpid = waitpid(child, &status, 0); CHILD_REQUIRE(wpid == child); CHILD_REQUIRE(WIFEXITED(status)); CHILD_REQUIRE(WEXITSTATUS(status) == 1); exit(0); } close(dpipe[1]); /* Parent process. */ /* Wait for the debugger parent process to exit. */ wpid = waitpid(debugger, &status, 0); ATF_REQUIRE(wpid == debugger); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); /* A WNOHANG wait here should see the non-exited child. */ wpid = waitpid(child, &status, WNOHANG); ATF_REQUIRE(wpid == 0); /* Wait for the debugger to attach to the child. */ ATF_REQUIRE(read(dpipe[0], &c, sizeof(c)) == sizeof(c)); /* Release the child. */ ATF_REQUIRE(write(cpipe[0], &c, sizeof(c)) == sizeof(c)); ATF_REQUIRE(read(cpipe[0], &c, sizeof(c)) == 0); close(cpipe[0]); wait_for_zombie(child); /* * This wait should return a pid of 0 to indicate no status to * report. The parent should see the child as non-exited * until the debugger sees the exit. */ wpid = waitpid(child, &status, WNOHANG); ATF_REQUIRE(wpid == 0); /* Signal the debugger to wait for the child. */ ATF_REQUIRE(write(dpipe[0], &c, sizeof(c)) == sizeof(c)); /* Wait for the debugger. */ ATF_REQUIRE(read(dpipe[0], &c, sizeof(c)) == 0); close(dpipe[0]); /* The child process should now be ready. */ wpid = waitpid(child, &status, WNOHANG); ATF_REQUIRE(wpid == child); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); } /* * The parent process should always act the same regardless of how the * debugger is attached to it. */ static __dead2 void follow_fork_parent(bool use_vfork) { pid_t fpid, wpid; int status; if (use_vfork) CHILD_REQUIRE((fpid = vfork()) != -1); else CHILD_REQUIRE((fpid = fork()) != -1); if (fpid == 0) /* Child */ exit(2); wpid = waitpid(fpid, &status, 0); CHILD_REQUIRE(wpid == fpid); CHILD_REQUIRE(WIFEXITED(status)); CHILD_REQUIRE(WEXITSTATUS(status) == 2); exit(1); } /* * Helper routine for follow fork tests. This waits for two stops * that report both "sides" of a fork. It returns the pid of the new * child process. */ static pid_t handle_fork_events(pid_t parent, struct ptrace_lwpinfo *ppl) { struct ptrace_lwpinfo pl; bool fork_reported[2]; pid_t child, wpid; int i, status; fork_reported[0] = false; fork_reported[1] = false; child = -1; /* * Each process should report a fork event. The parent should * report a PL_FLAG_FORKED event, and the child should report * a PL_FLAG_CHILD event. */ for (i = 0; i < 2; i++) { wpid = wait(&status); ATF_REQUIRE(wpid > 0); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE((pl.pl_flags & (PL_FLAG_FORKED | PL_FLAG_CHILD)) != 0); ATF_REQUIRE((pl.pl_flags & (PL_FLAG_FORKED | PL_FLAG_CHILD)) != (PL_FLAG_FORKED | PL_FLAG_CHILD)); if (pl.pl_flags & PL_FLAG_CHILD) { ATF_REQUIRE(wpid != parent); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(!fork_reported[1]); if (child == -1) child = wpid; else ATF_REQUIRE(child == wpid); if (ppl != NULL) ppl[1] = pl; fork_reported[1] = true; } else { ATF_REQUIRE(wpid == parent); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(!fork_reported[0]); if (child == -1) child = pl.pl_child_pid; else ATF_REQUIRE(child == pl.pl_child_pid); if (ppl != NULL) ppl[0] = pl; fork_reported[0] = true; } } return (child); } /* * Verify that a new child process is stopped after a followed fork and * that the traced parent sees the exit of the child after the debugger * when both processes remain attached to the debugger. */ ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_both_attached); ATF_TC_BODY(ptrace__follow_fork_both_attached, tc) { pid_t children[0], fpid, wpid; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); follow_fork_parent(false); } /* Parent process. */ children[0] = fpid; /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(children[0], &status, 0); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); children[1] = handle_fork_events(children[0], NULL); ATF_REQUIRE(children[1] > 0); ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1); /* * The child can't exit until the grandchild reports status, so the * grandchild should report its exit first to the debugger. */ wpid = wait(&status); ATF_REQUIRE(wpid == children[1]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); wpid = wait(&status); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that a new child process is stopped after a followed fork * and that the traced parent sees the exit of the child when the new * child process is detached after it reports its fork. */ ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_child_detached); ATF_TC_BODY(ptrace__follow_fork_child_detached, tc) { pid_t children[0], fpid, wpid; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); follow_fork_parent(false); } /* Parent process. */ children[0] = fpid; /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(children[0], &status, 0); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); children[1] = handle_fork_events(children[0], NULL); ATF_REQUIRE(children[1] > 0); ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); ATF_REQUIRE(ptrace(PT_DETACH, children[1], (caddr_t)1, 0) != -1); /* * Should not see any status from the grandchild now, only the * child. */ wpid = wait(&status); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that a new child process is stopped after a followed fork * and that the traced parent sees the exit of the child when the * traced parent is detached after the fork. */ ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_parent_detached); ATF_TC_BODY(ptrace__follow_fork_parent_detached, tc) { pid_t children[0], fpid, wpid; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); follow_fork_parent(false); } /* Parent process. */ children[0] = fpid; /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(children[0], &status, 0); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); children[1] = handle_fork_events(children[0], NULL); ATF_REQUIRE(children[1] > 0); ATF_REQUIRE(ptrace(PT_DETACH, children[0], (caddr_t)1, 0) != -1); ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1); /* * The child can't exit until the grandchild reports status, so the * grandchild should report its exit first to the debugger. * * Even though the child process is detached, it is still a * child of the debugger, so it will still report it's exit * after the grandchild. */ wpid = wait(&status); ATF_REQUIRE(wpid == children[1]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); wpid = wait(&status); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } static void attach_fork_parent(int cpipe[2]) { pid_t fpid; close(cpipe[0]); /* Double-fork to disassociate from the debugger. */ CHILD_REQUIRE((fpid = fork()) != -1); if (fpid != 0) exit(3); /* Send the pid of the disassociated child to the debugger. */ fpid = getpid(); CHILD_REQUIRE(write(cpipe[1], &fpid, sizeof(fpid)) == sizeof(fpid)); /* Wait for the debugger to attach. */ CHILD_REQUIRE(read(cpipe[1], &fpid, sizeof(fpid)) == 0); } /* * Verify that a new child process is stopped after a followed fork and * that the traced parent sees the exit of the child after the debugger * when both processes remain attached to the debugger. In this test * the parent that forks is not a direct child of the debugger. */ ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_both_attached_unrelated_debugger); ATF_TC_BODY(ptrace__follow_fork_both_attached_unrelated_debugger, tc) { pid_t children[0], fpid, wpid; int cpipe[2], status; ATF_REQUIRE(pipe(cpipe) == 0); ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { attach_fork_parent(cpipe); follow_fork_parent(false); } /* Parent process. */ close(cpipe[1]); /* Wait for the direct child to exit. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 3); /* Read the pid of the fork parent. */ ATF_REQUIRE(read(cpipe[0], &children[0], sizeof(children[0])) == sizeof(children[0])); /* Attach to the fork parent. */ attach_child(children[0]); ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1); /* Continue the fork parent ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); /* Signal the fork parent to continue. */ close(cpipe[0]); children[1] = handle_fork_events(children[0], NULL); ATF_REQUIRE(children[1] > 0); ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1); /* * The fork parent can't exit until the child reports status, * so the child should report its exit first to the debugger. */ wpid = wait(&status); ATF_REQUIRE(wpid == children[1]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); wpid = wait(&status); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that a new child process is stopped after a followed fork * and that the traced parent sees the exit of the child when the new * child process is detached after it reports its fork. In this test * the parent that forks is not a direct child of the debugger. */ ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_child_detached_unrelated_debugger); ATF_TC_BODY(ptrace__follow_fork_child_detached_unrelated_debugger, tc) { pid_t children[0], fpid, wpid; int cpipe[2], status; ATF_REQUIRE(pipe(cpipe) == 0); ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { attach_fork_parent(cpipe); follow_fork_parent(false); } /* Parent process. */ close(cpipe[1]); /* Wait for the direct child to exit. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 3); /* Read the pid of the fork parent. */ ATF_REQUIRE(read(cpipe[0], &children[0], sizeof(children[0])) == sizeof(children[0])); /* Attach to the fork parent. */ attach_child(children[0]); ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1); /* Continue the fork parent ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); /* Signal the fork parent to continue. */ close(cpipe[0]); children[1] = handle_fork_events(children[0], NULL); ATF_REQUIRE(children[1] > 0); ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); ATF_REQUIRE(ptrace(PT_DETACH, children[1], (caddr_t)1, 0) != -1); /* * Should not see any status from the child now, only the fork * parent. */ wpid = wait(&status); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that a new child process is stopped after a followed fork * and that the traced parent sees the exit of the child when the * traced parent is detached after the fork. In this test the parent * that forks is not a direct child of the debugger. */ ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_parent_detached_unrelated_debugger); ATF_TC_BODY(ptrace__follow_fork_parent_detached_unrelated_debugger, tc) { pid_t children[0], fpid, wpid; int cpipe[2], status; ATF_REQUIRE(pipe(cpipe) == 0); ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { attach_fork_parent(cpipe); follow_fork_parent(false); } /* Parent process. */ close(cpipe[1]); /* Wait for the direct child to exit. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 3); /* Read the pid of the fork parent. */ ATF_REQUIRE(read(cpipe[0], &children[0], sizeof(children[0])) == sizeof(children[0])); /* Attach to the fork parent. */ attach_child(children[0]); ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1); /* Continue the fork parent ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); /* Signal the fork parent to continue. */ close(cpipe[0]); children[1] = handle_fork_events(children[0], NULL); ATF_REQUIRE(children[1] > 0); ATF_REQUIRE(ptrace(PT_DETACH, children[0], (caddr_t)1, 0) != -1); ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1); /* * Should not see any status from the fork parent now, only * the child. */ wpid = wait(&status); ATF_REQUIRE(wpid == children[1]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that pl_syscall_code in struct ptrace_lwpinfo for a new * child process created via fork() reports the correct value. */ ATF_TC_WITHOUT_HEAD(ptrace__new_child_pl_syscall_code_fork); ATF_TC_BODY(ptrace__new_child_pl_syscall_code_fork, tc) { struct ptrace_lwpinfo pl[2]; pid_t children[2], fpid, wpid; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); follow_fork_parent(false); } /* Parent process. */ children[0] = fpid; /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(children[0], &status, 0); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); /* Wait for both halves of the fork event to get reported. */ children[1] = handle_fork_events(children[0], pl); ATF_REQUIRE(children[1] > 0); ATF_REQUIRE((pl[0].pl_flags & PL_FLAG_SCX) != 0); ATF_REQUIRE((pl[1].pl_flags & PL_FLAG_SCX) != 0); ATF_REQUIRE(pl[0].pl_syscall_code == SYS_fork); ATF_REQUIRE(pl[0].pl_syscall_code == pl[1].pl_syscall_code); ATF_REQUIRE(pl[0].pl_syscall_narg == pl[1].pl_syscall_narg); ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1); /* * The child can't exit until the grandchild reports status, so the * grandchild should report its exit first to the debugger. */ wpid = wait(&status); ATF_REQUIRE(wpid == children[1]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); wpid = wait(&status); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that pl_syscall_code in struct ptrace_lwpinfo for a new * child process created via vfork() reports the correct value. */ ATF_TC_WITHOUT_HEAD(ptrace__new_child_pl_syscall_code_vfork); ATF_TC_BODY(ptrace__new_child_pl_syscall_code_vfork, tc) { struct ptrace_lwpinfo pl[2]; pid_t children[2], fpid, wpid; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); follow_fork_parent(true); } /* Parent process. */ children[0] = fpid; /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(children[0], &status, 0); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); /* Wait for both halves of the fork event to get reported. */ children[1] = handle_fork_events(children[0], pl); ATF_REQUIRE(children[1] > 0); ATF_REQUIRE((pl[0].pl_flags & PL_FLAG_SCX) != 0); ATF_REQUIRE((pl[1].pl_flags & PL_FLAG_SCX) != 0); ATF_REQUIRE(pl[0].pl_syscall_code == SYS_vfork); ATF_REQUIRE(pl[0].pl_syscall_code == pl[1].pl_syscall_code); ATF_REQUIRE(pl[0].pl_syscall_narg == pl[1].pl_syscall_narg); ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1); /* * The child can't exit until the grandchild reports status, so the * grandchild should report its exit first to the debugger. */ wpid = wait(&status); ATF_REQUIRE(wpid == children[1]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); wpid = wait(&status); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } static void * simple_thread(void *arg __unused) { pthread_exit(NULL); } static __dead2 void simple_thread_main(void) { pthread_t thread; CHILD_REQUIRE(pthread_create(&thread, NULL, simple_thread, NULL) == 0); CHILD_REQUIRE(pthread_join(thread, NULL) == 0); exit(1); } /* * Verify that pl_syscall_code in struct ptrace_lwpinfo for a new * thread reports the correct value. */ ATF_TC_WITHOUT_HEAD(ptrace__new_child_pl_syscall_code_thread); ATF_TC_BODY(ptrace__new_child_pl_syscall_code_thread, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; lwpid_t mainlwp; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); simple_thread_main(); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); mainlwp = pl.pl_lwpid; /* * Continue the child ignoring the SIGSTOP and tracing all * system call exits. */ ATF_REQUIRE(ptrace(PT_TO_SCX, fpid, (caddr_t)1, 0) != -1); /* * Wait for the new thread to arrive. pthread_create() might * invoke any number of system calls. For now we just wait * for the new thread to arrive and make sure it reports a * valid system call code. If ptrace grows thread event * reporting then this test can be made more precise. */ for (;;) { wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE((pl.pl_flags & PL_FLAG_SCX) != 0); ATF_REQUIRE(pl.pl_syscall_code != 0); if (pl.pl_lwpid != mainlwp) /* New thread seen. */ break; ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); } /* Wait for the child to exit. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); for (;;) { wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); if (WIFEXITED(status)) break; ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); } ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that the expected LWP events are reported for a child thread. */ ATF_TC_WITHOUT_HEAD(ptrace__lwp_events); ATF_TC_BODY(ptrace__lwp_events, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; lwpid_t lwps[2]; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); simple_thread_main(); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); lwps[0] = pl.pl_lwpid; ATF_REQUIRE(ptrace(PT_LWP_EVENTS, wpid, NULL, 1) == 0); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The first event should be for the child thread's birth. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE((pl.pl_flags & (PL_FLAG_BORN | PL_FLAG_SCX)) == (PL_FLAG_BORN | PL_FLAG_SCX)); ATF_REQUIRE(pl.pl_lwpid != lwps[0]); lwps[1] = pl.pl_lwpid; ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The next event should be for the child thread's death. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE((pl.pl_flags & (PL_FLAG_EXITED | PL_FLAG_SCE)) == (PL_FLAG_EXITED | PL_FLAG_SCE)); ATF_REQUIRE(pl.pl_lwpid == lwps[1]); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The last event should be for the child process's exit. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } static void * exec_thread(void *arg __unused) { execl("/usr/bin/true", "true", NULL); exit(127); } static __dead2 void exec_thread_main(void) { pthread_t thread; CHILD_REQUIRE(pthread_create(&thread, NULL, exec_thread, NULL) == 0); for (;;) sleep(60); exit(1); } /* * Verify that the expected LWP events are reported for a multithreaded * process that calls execve(2). */ ATF_TC_WITHOUT_HEAD(ptrace__lwp_events_exec); ATF_TC_BODY(ptrace__lwp_events_exec, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; lwpid_t lwps[2]; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); exec_thread_main(); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); lwps[0] = pl.pl_lwpid; ATF_REQUIRE(ptrace(PT_LWP_EVENTS, wpid, NULL, 1) == 0); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The first event should be for the child thread's birth. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE((pl.pl_flags & (PL_FLAG_BORN | PL_FLAG_SCX)) == (PL_FLAG_BORN | PL_FLAG_SCX)); ATF_REQUIRE(pl.pl_lwpid != lwps[0]); lwps[1] = pl.pl_lwpid; ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* * The next event should be for the main thread's death due to * single threading from execve(). */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE((pl.pl_flags & (PL_FLAG_EXITED | PL_FLAG_SCE)) == (PL_FLAG_EXITED)); ATF_REQUIRE(pl.pl_lwpid == lwps[0]); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The next event should be for the child process's exec. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE((pl.pl_flags & (PL_FLAG_EXEC | PL_FLAG_SCX)) == (PL_FLAG_EXEC | PL_FLAG_SCX)); ATF_REQUIRE(pl.pl_lwpid == lwps[1]); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The last event should be for the child process's exit. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 0); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } static void handler(int sig __unused) { } static void signal_main(void) { signal(SIGINFO, handler); raise(SIGINFO); exit(0); } /* * Verify that the expected ptrace event is reported for a signal. */ ATF_TC_WITHOUT_HEAD(ptrace__siginfo); ATF_TC_BODY(ptrace__siginfo, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); signal_main(); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The next event should be for the SIGINFO. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGINFO); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_event == PL_EVENT_SIGNAL); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SI); ATF_REQUIRE(pl.pl_siginfo.si_code == SI_LWP); ATF_REQUIRE(pl.pl_siginfo.si_pid == wpid); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The last event should be for the child process's exit. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 0); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that the expected ptrace events are reported for PTRACE_EXEC. */ ATF_TC_WITHOUT_HEAD(ptrace__ptrace_exec_disable); ATF_TC_BODY(ptrace__ptrace_exec_disable, tc) { pid_t fpid, wpid; int events, status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); exec_thread(NULL); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); events = 0; ATF_REQUIRE(ptrace(PT_SET_EVENT_MASK, fpid, (caddr_t)&events, sizeof(events)) == 0); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* Should get one event at exit. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 0); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } ATF_TC_WITHOUT_HEAD(ptrace__ptrace_exec_enable); ATF_TC_BODY(ptrace__ptrace_exec_enable, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; int events, status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); exec_thread(NULL); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); events = PTRACE_EXEC; ATF_REQUIRE(ptrace(PT_SET_EVENT_MASK, fpid, (caddr_t)&events, sizeof(events)) == 0); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The next event should be for the child process's exec. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE((pl.pl_flags & (PL_FLAG_EXEC | PL_FLAG_SCX)) == (PL_FLAG_EXEC | PL_FLAG_SCX)); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The last event should be for the child process's exit. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 0); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } ATF_TC_WITHOUT_HEAD(ptrace__event_mask); ATF_TC_BODY(ptrace__event_mask, tc) { pid_t fpid, wpid; int events, status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); exit(0); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* PT_FOLLOW_FORK should toggle the state of PTRACE_FORK. */ ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, fpid, NULL, 1) != -1); ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, fpid, (caddr_t)&events, sizeof(events)) == 0); ATF_REQUIRE(events & PTRACE_FORK); ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, fpid, NULL, 0) != -1); ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, fpid, (caddr_t)&events, sizeof(events)) == 0); ATF_REQUIRE(!(events & PTRACE_FORK)); /* PT_LWP_EVENTS should toggle the state of PTRACE_LWP. */ ATF_REQUIRE(ptrace(PT_LWP_EVENTS, fpid, NULL, 1) != -1); ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, fpid, (caddr_t)&events, sizeof(events)) == 0); ATF_REQUIRE(events & PTRACE_LWP); ATF_REQUIRE(ptrace(PT_LWP_EVENTS, fpid, NULL, 0) != -1); ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, fpid, (caddr_t)&events, sizeof(events)) == 0); ATF_REQUIRE(!(events & PTRACE_LWP)); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* Should get one event at exit. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 0); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that the expected ptrace events are reported for PTRACE_VFORK. */ ATF_TC_WITHOUT_HEAD(ptrace__ptrace_vfork); ATF_TC_BODY(ptrace__ptrace_vfork, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; int events, status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); follow_fork_parent(true); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, fpid, (caddr_t)&events, sizeof(events)) == 0); events |= PTRACE_VFORK; ATF_REQUIRE(ptrace(PT_SET_EVENT_MASK, fpid, (caddr_t)&events, sizeof(events)) == 0); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) != -1); /* The next event should report the end of the vfork. */ wpid = wait(&status); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE((pl.pl_flags & PL_FLAG_VFORK_DONE) != 0); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) != -1); wpid = wait(&status); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } ATF_TC_WITHOUT_HEAD(ptrace__ptrace_vfork_follow); ATF_TC_BODY(ptrace__ptrace_vfork_follow, tc) { struct ptrace_lwpinfo pl[2]; pid_t children[2], fpid, wpid; int events, status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); follow_fork_parent(true); } /* Parent process. */ children[0] = fpid; /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(children[0], &status, 0); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, children[0], (caddr_t)&events, sizeof(events)) == 0); events |= PTRACE_FORK | PTRACE_VFORK; ATF_REQUIRE(ptrace(PT_SET_EVENT_MASK, children[0], (caddr_t)&events, sizeof(events)) == 0); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); /* Wait for both halves of the fork event to get reported. */ children[1] = handle_fork_events(children[0], pl); ATF_REQUIRE(children[1] > 0); ATF_REQUIRE((pl[0].pl_flags & PL_FLAG_VFORKED) != 0); ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1); /* * The child can't exit until the grandchild reports status, so the * grandchild should report its exit first to the debugger. */ wpid = waitpid(children[1], &status, 0); ATF_REQUIRE(wpid == children[1]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); /* * The child should report it's vfork() completion before it * exits. */ wpid = wait(&status); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl[0], sizeof(pl[0])) != -1); ATF_REQUIRE((pl[0].pl_flags & PL_FLAG_VFORK_DONE) != 0); ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); wpid = wait(&status); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * XXX: There's nothing inherently platform specific about this test, however a * userspace visible breakpoint() is a prerequisite. */ #if defined(__amd64__) || defined(__i386__) || defined(__sparc64__) /* * Verify that no more events are reported after PT_KILL except for the * process exit when stopped due to a breakpoint trap. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_KILL_breakpoint); ATF_TC_BODY(ptrace__PT_KILL_breakpoint, tc) { pid_t fpid, wpid; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); breakpoint(); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The second wait() should report hitting the breakpoint. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); /* Kill the child process. */ ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0); /* The last wait() should report the SIGKILL. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSIGNALED(status)); ATF_REQUIRE(WTERMSIG(status) == SIGKILL); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } #endif /* defined(__amd64__) || defined(__i386__) || defined(__sparc64__) */ /* * Verify that no more events are reported after PT_KILL except for the * process exit when stopped inside of a system call. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_KILL_system_call); ATF_TC_BODY(ptrace__PT_KILL_system_call, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); getpid(); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* Continue the child ignoring the SIGSTOP and tracing system calls. */ ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0); /* The second wait() should report a system call entry for getpid(). */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE); /* Kill the child process. */ ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0); /* The last wait() should report the SIGKILL. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSIGNALED(status)); ATF_REQUIRE(WTERMSIG(status) == SIGKILL); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that no more events are reported after PT_KILL except for the * process exit when killing a multithreaded process. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_KILL_threads); ATF_TC_BODY(ptrace__PT_KILL_threads, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; lwpid_t main_lwp; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); simple_thread_main(); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); main_lwp = pl.pl_lwpid; ATF_REQUIRE(ptrace(PT_LWP_EVENTS, wpid, NULL, 1) == 0); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The first event should be for the child thread's birth. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE((pl.pl_flags & (PL_FLAG_BORN | PL_FLAG_SCX)) == (PL_FLAG_BORN | PL_FLAG_SCX)); ATF_REQUIRE(pl.pl_lwpid != main_lwp); /* Kill the child process. */ ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0); /* The last wait() should report the SIGKILL. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSIGNALED(status)); ATF_REQUIRE(WTERMSIG(status) == SIGKILL); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } static void * mask_usr1_thread(void *arg) { pthread_barrier_t *pbarrier; sigset_t sigmask; pbarrier = (pthread_barrier_t*)arg; sigemptyset(&sigmask); sigaddset(&sigmask, SIGUSR1); CHILD_REQUIRE(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) == 0); /* Sync up with other thread after sigmask updated. */ pthread_barrier_wait(pbarrier); for (;;) sleep(60); return (NULL); } /* * Verify that the SIGKILL from PT_KILL takes priority over other signals * and prevents spurious stops due to those other signals. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_KILL_competing_signal); ATF_TC_BODY(ptrace__PT_KILL_competing_signal, tc) { pid_t fpid, wpid; int status; cpuset_t setmask; pthread_t t; pthread_barrier_t barrier; struct sched_param sched_param; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { /* Bind to one CPU so only one thread at a time will run. */ CPU_ZERO(&setmask); CPU_SET(0, &setmask); cpusetid_t setid; CHILD_REQUIRE(cpuset(&setid) == 0); CHILD_REQUIRE(cpuset_setaffinity(CPU_LEVEL_CPUSET, CPU_WHICH_CPUSET, setid, sizeof(setmask), &setmask) == 0); CHILD_REQUIRE(pthread_barrier_init(&barrier, NULL, 2) == 0); CHILD_REQUIRE(pthread_create(&t, NULL, mask_usr1_thread, (void*)&barrier) == 0); /* * Give the main thread higher priority. The test always * assumes that, if both threads are able to run, the main * thread runs first. */ sched_param.sched_priority = (sched_get_priority_max(SCHED_FIFO) + sched_get_priority_min(SCHED_FIFO)) / 2; CHILD_REQUIRE(pthread_setschedparam(pthread_self(), SCHED_FIFO, &sched_param) == 0); sched_param.sched_priority -= RQ_PPQ; CHILD_REQUIRE(pthread_setschedparam(t, SCHED_FIFO, &sched_param) == 0); sigset_t sigmask; sigemptyset(&sigmask); sigaddset(&sigmask, SIGUSR2); CHILD_REQUIRE(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) == 0); /* Sync up with other thread after sigmask updated. */ pthread_barrier_wait(&barrier); trace_me(); for (;;) sleep(60); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* Send a signal that only the second thread can handle. */ ATF_REQUIRE(kill(fpid, SIGUSR2) == 0); /* The second wait() should report the SIGUSR2. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGUSR2); /* Send a signal that only the first thread can handle. */ ATF_REQUIRE(kill(fpid, SIGUSR1) == 0); /* Replace the SIGUSR2 with a kill. */ ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0); /* The last wait() should report the SIGKILL (not the SIGUSR signal). */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSIGNALED(status)); ATF_REQUIRE(WTERMSIG(status) == SIGKILL); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that the SIGKILL from PT_KILL takes priority over other stop events * and prevents spurious stops caused by those events. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_KILL_competing_stop); ATF_TC_BODY(ptrace__PT_KILL_competing_stop, tc) { pid_t fpid, wpid; int status; cpuset_t setmask; pthread_t t; pthread_barrier_t barrier; lwpid_t main_lwp; struct ptrace_lwpinfo pl; struct sched_param sched_param; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); /* Bind to one CPU so only one thread at a time will run. */ CPU_ZERO(&setmask); CPU_SET(0, &setmask); cpusetid_t setid; CHILD_REQUIRE(cpuset(&setid) == 0); CHILD_REQUIRE(cpuset_setaffinity(CPU_LEVEL_CPUSET, CPU_WHICH_CPUSET, setid, sizeof(setmask), &setmask) == 0); CHILD_REQUIRE(pthread_barrier_init(&barrier, NULL, 2) == 0); CHILD_REQUIRE(pthread_create(&t, NULL, mask_usr1_thread, (void*)&barrier) == 0); /* * Give the main thread higher priority. The test always * assumes that, if both threads are able to run, the main * thread runs first. */ sched_param.sched_priority = (sched_get_priority_max(SCHED_FIFO) + sched_get_priority_min(SCHED_FIFO)) / 2; CHILD_REQUIRE(pthread_setschedparam(pthread_self(), SCHED_FIFO, &sched_param) == 0); sched_param.sched_priority -= RQ_PPQ; CHILD_REQUIRE(pthread_setschedparam(t, SCHED_FIFO, &sched_param) == 0); sigset_t sigmask; sigemptyset(&sigmask); sigaddset(&sigmask, SIGUSR2); CHILD_REQUIRE(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) == 0); /* Sync up with other thread after sigmask updated. */ pthread_barrier_wait(&barrier); /* Sync up with the test before doing the getpid(). */ raise(SIGSTOP); getpid(); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); main_lwp = pl.pl_lwpid; /* Continue the child ignoring the SIGSTOP and tracing system calls. */ ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0); /* * Continue until child is done with setup, which is indicated with * SIGSTOP. Ignore system calls in the meantime. */ for (;;) { wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); if (WSTOPSIG(status) == SIGTRAP) { ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX)); } else { ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); break; } ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0); } /* Proceed, allowing main thread to hit syscall entry for getpid(). */ ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0); wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_lwpid == main_lwp); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE); /* Prevent the main thread from hitting its syscall exit for now. */ ATF_REQUIRE(ptrace(PT_SUSPEND, main_lwp, 0, 0) == 0); /* * Proceed, allowing second thread to hit syscall exit for * pthread_barrier_wait(). */ ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0); wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_lwpid != main_lwp); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCX); /* Send a signal that only the second thread can handle. */ ATF_REQUIRE(kill(fpid, SIGUSR2) == 0); ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0); /* The next wait() should report the SIGUSR2. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGUSR2); /* Allow the main thread to try to finish its system call. */ ATF_REQUIRE(ptrace(PT_RESUME, main_lwp, 0, 0) == 0); /* * At this point, the main thread is in the middle of a system call and * has been resumed. The second thread has taken a SIGUSR2 which will * be replaced with a SIGKILL below. The main thread will get to run * first. It should notice the kill request (even though the signal * replacement occurred in the other thread) and exit accordingly. It * should not stop for the system call exit event. */ /* Replace the SIGUSR2 with a kill. */ ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0); /* The last wait() should report the SIGKILL (not a syscall exit). */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSIGNALED(status)); ATF_REQUIRE(WTERMSIG(status) == SIGKILL); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } static void sigusr1_handler(int sig) { CHILD_REQUIRE(sig == SIGUSR1); _exit(2); } /* * Verify that even if the signal queue is full for a child process, * a PT_KILL will kill the process. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_KILL_with_signal_full_sigqueue); ATF_TC_BODY(ptrace__PT_KILL_with_signal_full_sigqueue, tc) { pid_t fpid, wpid; int status; int max_pending_per_proc; size_t len; int i; ATF_REQUIRE(signal(SIGUSR1, sigusr1_handler) != SIG_ERR); ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); len = sizeof(max_pending_per_proc); ATF_REQUIRE(sysctlbyname("kern.sigqueue.max_pending_per_proc", &max_pending_per_proc, &len, NULL, 0) == 0); /* Fill the signal queue. */ for (i = 0; i < max_pending_per_proc; ++i) ATF_REQUIRE(kill(fpid, SIGUSR1) == 0); /* Kill the child process. */ ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0); /* The last wait() should report the SIGKILL. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSIGNALED(status)); ATF_REQUIRE(WTERMSIG(status) == SIGKILL); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that when stopped at a system call entry, a signal can be * requested with PT_CONTINUE which will be delivered once the system * call is complete. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_system_call_entry); ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_system_call_entry, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; int status; ATF_REQUIRE(signal(SIGUSR1, sigusr1_handler) != SIG_ERR); ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); getpid(); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* Continue the child ignoring the SIGSTOP and tracing system calls. */ ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0); /* The second wait() should report a system call entry for getpid(). */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE); /* Continue the child process with a signal. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0); for (;;) { /* * The last wait() should report exit 2, i.e., a normal _exit * from the signal handler. In the meantime, catch and proceed * past any syscall stops. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP) { ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX)); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); } else { ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); break; } } wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } static void sigusr1_counting_handler(int sig) { static int counter = 0; CHILD_REQUIRE(sig == SIGUSR1); counter++; if (counter == 2) _exit(2); } /* * Verify that, when continuing from a stop at system call entry and exit, * a signal can be requested from both stops, and both will be delivered when * the system call is complete. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_system_call_entry_and_exit); ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_system_call_entry_and_exit, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; int status; ATF_REQUIRE(signal(SIGUSR1, sigusr1_counting_handler) != SIG_ERR); ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); getpid(); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* Continue the child ignoring the SIGSTOP and tracing system calls. */ ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0); /* The second wait() should report a system call entry for getpid(). */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE); /* Continue the child process with a signal. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0); /* The third wait() should report a system call exit for getpid(). */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCX); /* Continue the child process with a signal. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0); for (;;) { /* * The last wait() should report exit 2, i.e., a normal _exit * from the signal handler. In the meantime, catch and proceed * past any syscall stops. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP) { ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX)); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); } else { ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); break; } } wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that even if the signal queue is full for a child process, * a PT_CONTINUE with a signal will not result in loss of that signal. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_full_sigqueue); ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_full_sigqueue, tc) { pid_t fpid, wpid; int status; int max_pending_per_proc; size_t len; int i; ATF_REQUIRE(signal(SIGUSR2, handler) != SIG_ERR); ATF_REQUIRE(signal(SIGUSR1, sigusr1_handler) != SIG_ERR); ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); len = sizeof(max_pending_per_proc); ATF_REQUIRE(sysctlbyname("kern.sigqueue.max_pending_per_proc", &max_pending_per_proc, &len, NULL, 0) == 0); /* Fill the signal queue. */ for (i = 0; i < max_pending_per_proc; ++i) ATF_REQUIRE(kill(fpid, SIGUSR2) == 0); /* Continue with signal. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0); for (;;) { wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); if (WIFSTOPPED(status)) { ATF_REQUIRE(WSTOPSIG(status) == SIGUSR2); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); } else { /* * The last wait() should report normal _exit from the * SIGUSR1 handler. */ ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); break; } } wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that, after stopping due to a signal, that signal can be * replaced with another signal. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_change_sig); ATF_TC_BODY(ptrace__PT_CONTINUE_change_sig, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); sleep(20); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* Send a signal without ptrace. */ ATF_REQUIRE(kill(fpid, SIGINT) == 0); /* The second wait() should report a SIGINT was received. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGINT); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SI); ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGINT); /* Continue the child process with a different signal. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGTERM) == 0); /* * The last wait() should report having died due to the new * signal, SIGTERM. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSIGNALED(status)); ATF_REQUIRE(WTERMSIG(status) == SIGTERM); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that a signal can be passed through to the child even when there * was no true signal originally. Such cases arise when a SIGTRAP is * invented for e.g, system call stops. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_sigtrap_system_call_entry); ATF_TC_BODY(ptrace__PT_CONTINUE_with_sigtrap_system_call_entry, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); getpid(); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* Continue the child ignoring the SIGSTOP and tracing system calls. */ ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0); /* The second wait() should report a system call entry for getpid(). */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE); /* Continue the child process with a SIGTRAP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGTRAP) == 0); for (;;) { /* * The last wait() should report exit due to SIGTRAP. In the * meantime, catch and proceed past any syscall stops. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP) { ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX)); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); } else { ATF_REQUIRE(WIFSIGNALED(status)); ATF_REQUIRE(WTERMSIG(status) == SIGTRAP); break; } } wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * A mixed bag PT_CONTINUE with signal test. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_mix); ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_mix, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; int status; ATF_REQUIRE(signal(SIGUSR1, sigusr1_counting_handler) != SIG_ERR); ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); getpid(); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* Continue the child ignoring the SIGSTOP and tracing system calls. */ ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0); /* The second wait() should report a system call entry for getpid(). */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE); /* Continue with the first SIGUSR1. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0); /* The next wait() should report a system call exit for getpid(). */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCX); /* Send an ABRT without ptrace. */ ATF_REQUIRE(kill(fpid, SIGABRT) == 0); /* Continue normally. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The next wait() should report the SIGABRT. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGABRT); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SI); ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGABRT); /* Continue, replacing the SIGABRT with another SIGUSR1. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0); for (;;) { /* * The last wait() should report exit 2, i.e., a normal _exit * from the signal handler. In the meantime, catch and proceed * past any syscall stops. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP) { ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX)); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); } else { ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); break; } } wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify a signal delivered by ptrace is noticed by kevent(2). */ ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_kqueue); ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_kqueue, tc) { pid_t fpid, wpid; int status, kq, nevents; struct kevent kev; ATF_REQUIRE(signal(SIGUSR1, SIG_IGN) != SIG_ERR); ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { CHILD_REQUIRE((kq = kqueue()) > 0); EV_SET(&kev, SIGUSR1, EVFILT_SIGNAL, EV_ADD, 0, 0, 0); CHILD_REQUIRE(kevent(kq, &kev, 1, NULL, 0, NULL) == 0); trace_me(); for (;;) { nevents = kevent(kq, NULL, 0, &kev, 1, NULL); if (nevents == -1 && errno == EINTR) continue; CHILD_REQUIRE(nevents > 0); CHILD_REQUIRE(kev.filter == EVFILT_SIGNAL); CHILD_REQUIRE(kev.ident == SIGUSR1); break; } exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* Continue with the SIGUSR1. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0); /* * The last wait() should report normal exit with code 1. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } static sem_t sigusr1_sem; static void sigusr1_sempost_handler(int sig __unused) { CHILD_REQUIRE(sem_post(&sigusr1_sem) == 0); } static void * signal_thread(void *arg) { int err; sigset_t sigmask; pthread_barrier_t *pbarrier = (pthread_barrier_t*)arg; /* Wait for this thread to receive a SIGUSR1. */ do { err = sem_wait(&sigusr1_sem); CHILD_REQUIRE(err == 0 || errno == EINTR); } while (err != 0 && errno == EINTR); /* Free our companion thread from the barrier. */ pthread_barrier_wait(pbarrier); /* * Swap ignore duties; the next SIGUSR1 should go to the * other thread. */ CHILD_REQUIRE(sigemptyset(&sigmask) == 0); CHILD_REQUIRE(sigaddset(&sigmask, SIGUSR1) == 0); CHILD_REQUIRE(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) == 0); /* Sync up threads after swapping signal masks. */ pthread_barrier_wait(pbarrier); /* Wait until our companion has received its SIGUSR1. */ pthread_barrier_wait(pbarrier); return (NULL); } /* * Verify that if ptrace stops due to a signal but continues with * a different signal that the new signal is routed to a thread * that can accept it, and that that thread is awakened by the signal * in a timely manner. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_thread_sigmask); ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_thread_sigmask, tc) { pid_t fpid, wpid; int status, err; pthread_t t; sigset_t sigmask; pthread_barrier_t barrier; ATF_REQUIRE(pthread_barrier_init(&barrier, NULL, 2) == 0); ATF_REQUIRE(sem_init(&sigusr1_sem, 0, 0) == 0); ATF_REQUIRE(signal(SIGUSR1, sigusr1_sempost_handler) != SIG_ERR); ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { CHILD_REQUIRE(pthread_create(&t, NULL, signal_thread, (void*)&barrier) == 0); /* The other thread should receive the first SIGUSR1. */ CHILD_REQUIRE(sigemptyset(&sigmask) == 0); CHILD_REQUIRE(sigaddset(&sigmask, SIGUSR1) == 0); CHILD_REQUIRE(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) == 0); trace_me(); /* Wait until other thread has received its SIGUSR1. */ pthread_barrier_wait(&barrier); /* * Swap ignore duties; the next SIGUSR1 should go to this * thread. */ CHILD_REQUIRE(pthread_sigmask(SIG_UNBLOCK, &sigmask, NULL) == 0); /* Sync up threads after swapping signal masks. */ pthread_barrier_wait(&barrier); /* * Sync up with test code; we're ready for the next SIGUSR1 * now. */ raise(SIGSTOP); /* Wait for this thread to receive a SIGUSR1. */ do { err = sem_wait(&sigusr1_sem); CHILD_REQUIRE(err == 0 || errno == EINTR); } while (err != 0 && errno == EINTR); /* Free the other thread from the barrier. */ pthread_barrier_wait(&barrier); CHILD_REQUIRE(pthread_join(t, NULL) == 0); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* * Send a signal without ptrace that either thread will accept (USR2, * in this case). */ ATF_REQUIRE(kill(fpid, SIGUSR2) == 0); /* The second wait() should report a SIGUSR2 was received. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGUSR2); /* Continue the child, changing the signal to USR1. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0); /* The next wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); ATF_REQUIRE(kill(fpid, SIGUSR2) == 0); /* The next wait() should report a SIGUSR2 was received. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGUSR2); /* Continue the child, changing the signal to USR1. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0); /* The last wait() should report normal exit with code 1. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } +static void * +raise_sigstop_thread(void *arg __unused) +{ + + raise(SIGSTOP); + return NULL; +} + +static void * +sleep_thread(void *arg __unused) +{ + + sleep(60); + return NULL; +} + +static void +terminate_with_pending_sigstop(bool sigstop_from_main_thread) +{ + pid_t fpid, wpid; + int status, i; + cpuset_t setmask; + cpusetid_t setid; + pthread_t t; + + /* + * Become the reaper for this process tree. We need to be able to check + * that both child and grandchild have died. + */ + ATF_REQUIRE(procctl(P_PID, getpid(), PROC_REAP_ACQUIRE, NULL) == 0); + + fpid = fork(); + ATF_REQUIRE(fpid >= 0); + if (fpid == 0) { + fpid = fork(); + CHILD_REQUIRE(fpid >= 0); + if (fpid == 0) { + trace_me(); + + /* Pin to CPU 0 to serialize thread execution. */ + CPU_ZERO(&setmask); + CPU_SET(0, &setmask); + CHILD_REQUIRE(cpuset(&setid) == 0); + CHILD_REQUIRE(cpuset_setaffinity(CPU_LEVEL_CPUSET, + CPU_WHICH_CPUSET, setid, + sizeof(setmask), &setmask) == 0); + + if (sigstop_from_main_thread) { + /* + * We expect the SIGKILL sent when our parent + * dies to be delivered to the new thread. + * Raise the SIGSTOP in this thread so the + * threads compete. + */ + CHILD_REQUIRE(pthread_create(&t, NULL, + sleep_thread, NULL) == 0); + raise(SIGSTOP); + } else { + /* + * We expect the SIGKILL to be delivered to + * this thread. After creating the new thread, + * just get off the CPU so the other thread can + * raise the SIGSTOP. + */ + CHILD_REQUIRE(pthread_create(&t, NULL, + raise_sigstop_thread, NULL) == 0); + sleep(60); + } + + exit(0); + } + /* First stop is trace_me() immediately after fork. */ + wpid = waitpid(fpid, &status, 0); + CHILD_REQUIRE(wpid == fpid); + CHILD_REQUIRE(WIFSTOPPED(status)); + CHILD_REQUIRE(WSTOPSIG(status) == SIGSTOP); + + CHILD_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); + + /* Second stop is from the raise(SIGSTOP). */ + wpid = waitpid(fpid, &status, 0); + CHILD_REQUIRE(wpid == fpid); + CHILD_REQUIRE(WIFSTOPPED(status)); + CHILD_REQUIRE(WSTOPSIG(status) == SIGSTOP); + + /* + * Terminate tracing process without detaching. Our child + * should be killed. + */ + exit(0); + } + + /* + * We should get a normal exit from our immediate child and a SIGKILL + * exit from our grandchild. The latter case is the interesting one. + * Our grandchild should not have stopped due to the SIGSTOP that was + * left dangling when its parent died. + */ + for (i = 0; i < 2; ++i) { + wpid = wait(&status); + if (wpid == fpid) + ATF_REQUIRE(WIFEXITED(status) && + WEXITSTATUS(status) == 0); + else + ATF_REQUIRE(WIFSIGNALED(status) && + WTERMSIG(status) == SIGKILL); + } +} + +/* + * These two tests ensure that if the tracing process exits without detaching + * just after the child received a SIGSTOP, the child is cleanly killed and + * doesn't go to sleep due to the SIGSTOP. The parent's death will send a + * SIGKILL to the child. If the SIGKILL and the SIGSTOP are handled by + * different threads, the SIGKILL must win. There are two variants of this + * test, designed to catch the case where the SIGKILL is delivered to the + * younger thread (the first test) and the case where the SIGKILL is delivered + * to the older thread (the second test). This behavior has changed in the + * past, so make no assumption. + */ +ATF_TC_WITHOUT_HEAD(ptrace__parent_terminate_with_pending_sigstop1); +ATF_TC_BODY(ptrace__parent_terminate_with_pending_sigstop1, tc) +{ + + terminate_with_pending_sigstop(true); +} +ATF_TC_WITHOUT_HEAD(ptrace__parent_terminate_with_pending_sigstop2); +ATF_TC_BODY(ptrace__parent_terminate_with_pending_sigstop2, tc) +{ + + terminate_with_pending_sigstop(false); +} + +/* + * Verify that after ptrace() discards a SIGKILL signal, the event mask + * is not modified. + */ +ATF_TC_WITHOUT_HEAD(ptrace__event_mask_sigkill_discard); +ATF_TC_BODY(ptrace__event_mask_sigkill_discard, tc) +{ + struct ptrace_lwpinfo pl; + pid_t fpid, wpid; + int status, event_mask, new_event_mask; + + ATF_REQUIRE((fpid = fork()) != -1); + if (fpid == 0) { + trace_me(); + raise(SIGSTOP); + exit(0); + } + + /* The first wait() should report the stop from trace_me(). */ + wpid = waitpid(fpid, &status, 0); + ATF_REQUIRE(wpid == fpid); + ATF_REQUIRE(WIFSTOPPED(status)); + ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); + + /* Set several unobtrusive event bits. */ + event_mask = PTRACE_EXEC | PTRACE_FORK | PTRACE_LWP; + ATF_REQUIRE(ptrace(PT_SET_EVENT_MASK, wpid, (caddr_t)&event_mask, + sizeof(event_mask)) == 0); + + /* Send a SIGKILL without using ptrace. */ + ATF_REQUIRE(kill(fpid, SIGKILL) == 0); + + /* Continue the child ignoring the SIGSTOP. */ + ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); + + /* The next stop should be due to the SIGKILL. */ + wpid = waitpid(fpid, &status, 0); + ATF_REQUIRE(wpid == fpid); + ATF_REQUIRE(WIFSTOPPED(status)); + ATF_REQUIRE(WSTOPSIG(status) == SIGKILL); + + ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); + ATF_REQUIRE(pl.pl_flags & PL_FLAG_SI); + ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGKILL); + + /* Continue the child ignoring the SIGKILL. */ + ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); + + /* The next wait() should report the stop from SIGSTOP. */ + wpid = waitpid(fpid, &status, 0); + ATF_REQUIRE(wpid == fpid); + ATF_REQUIRE(WIFSTOPPED(status)); + ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); + + /* Check the current event mask. It should not have changed. */ + new_event_mask = 0; + ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, wpid, (caddr_t)&new_event_mask, + sizeof(new_event_mask)) == 0); + ATF_REQUIRE(event_mask == new_event_mask); + + /* Continue the child to let it exit. */ + ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); + + /* The last event should be for the child process's exit. */ + wpid = waitpid(fpid, &status, 0); + ATF_REQUIRE(WIFEXITED(status)); + ATF_REQUIRE(WEXITSTATUS(status) == 0); + + wpid = wait(&status); + ATF_REQUIRE(wpid == -1); + ATF_REQUIRE(errno == ECHILD); +} + ATF_TP_ADD_TCS(tp) { ATF_TP_ADD_TC(tp, ptrace__parent_wait_after_trace_me); ATF_TP_ADD_TC(tp, ptrace__parent_wait_after_attach); ATF_TP_ADD_TC(tp, ptrace__parent_sees_exit_after_child_debugger); ATF_TP_ADD_TC(tp, ptrace__parent_sees_exit_after_unrelated_debugger); ATF_TP_ADD_TC(tp, ptrace__follow_fork_both_attached); ATF_TP_ADD_TC(tp, ptrace__follow_fork_child_detached); ATF_TP_ADD_TC(tp, ptrace__follow_fork_parent_detached); ATF_TP_ADD_TC(tp, ptrace__follow_fork_both_attached_unrelated_debugger); ATF_TP_ADD_TC(tp, ptrace__follow_fork_child_detached_unrelated_debugger); ATF_TP_ADD_TC(tp, ptrace__follow_fork_parent_detached_unrelated_debugger); ATF_TP_ADD_TC(tp, ptrace__new_child_pl_syscall_code_fork); ATF_TP_ADD_TC(tp, ptrace__new_child_pl_syscall_code_vfork); ATF_TP_ADD_TC(tp, ptrace__new_child_pl_syscall_code_thread); ATF_TP_ADD_TC(tp, ptrace__lwp_events); ATF_TP_ADD_TC(tp, ptrace__lwp_events_exec); ATF_TP_ADD_TC(tp, ptrace__siginfo); ATF_TP_ADD_TC(tp, ptrace__ptrace_exec_disable); ATF_TP_ADD_TC(tp, ptrace__ptrace_exec_enable); ATF_TP_ADD_TC(tp, ptrace__event_mask); ATF_TP_ADD_TC(tp, ptrace__ptrace_vfork); ATF_TP_ADD_TC(tp, ptrace__ptrace_vfork_follow); #if defined(__amd64__) || defined(__i386__) || defined(__sparc64__) ATF_TP_ADD_TC(tp, ptrace__PT_KILL_breakpoint); #endif ATF_TP_ADD_TC(tp, ptrace__PT_KILL_system_call); ATF_TP_ADD_TC(tp, ptrace__PT_KILL_threads); ATF_TP_ADD_TC(tp, ptrace__PT_KILL_competing_signal); ATF_TP_ADD_TC(tp, ptrace__PT_KILL_competing_stop); ATF_TP_ADD_TC(tp, ptrace__PT_KILL_with_signal_full_sigqueue); ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_system_call_entry); ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_system_call_entry_and_exit); ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_full_sigqueue); ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_change_sig); ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_sigtrap_system_call_entry); ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_mix); ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_kqueue); ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_thread_sigmask); + ATF_TP_ADD_TC(tp, ptrace__parent_terminate_with_pending_sigstop1); + ATF_TP_ADD_TC(tp, ptrace__parent_terminate_with_pending_sigstop2); + ATF_TP_ADD_TC(tp, ptrace__event_mask_sigkill_discard); return (atf_no_error()); } Index: stable/10 =================================================================== --- stable/10 (revision 315962) +++ stable/10 (revision 315963) Property changes on: stable/10 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r314852,315412 Index: stable/11/sys/kern/kern_sig.c =================================================================== --- stable/11/sys/kern/kern_sig.c (revision 315962) +++ stable/11/sys/kern/kern_sig.c (revision 315963) @@ -1,3712 +1,3711 @@ /*- * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_sig.c 8.7 (Berkeley) 4/18/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include "opt_gzio.h" #include "opt_ktrace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ONSIG 32 /* NSIG for osig* syscalls. XXX. */ SDT_PROVIDER_DECLARE(proc); SDT_PROBE_DEFINE3(proc, , , signal__send, "struct thread *", "struct proc *", "int"); SDT_PROBE_DEFINE2(proc, , , signal__clear, "int", "ksiginfo_t *"); SDT_PROBE_DEFINE3(proc, , , signal__discard, "struct thread *", "struct proc *", "int"); static int coredump(struct thread *); static int killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi); static int issignal(struct thread *td); static int sigprop(int sig); static void tdsigwakeup(struct thread *, int, sig_t, int); static int sig_suspend_threads(struct thread *, struct proc *, int); static int filt_sigattach(struct knote *kn); static void filt_sigdetach(struct knote *kn); static int filt_signal(struct knote *kn, long hint); static struct thread *sigtd(struct proc *p, int sig, int prop); static void sigqueue_start(void); static uma_zone_t ksiginfo_zone = NULL; struct filterops sig_filtops = { .f_isfd = 0, .f_attach = filt_sigattach, .f_detach = filt_sigdetach, .f_event = filt_signal, }; static int kern_logsigexit = 1; SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW, &kern_logsigexit, 0, "Log processes quitting on abnormal signals to syslog(3)"); static int kern_forcesigexit = 1; SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW, &kern_forcesigexit, 0, "Force trap signal to be handled"); static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0, "POSIX real time signal"); static int max_pending_per_proc = 128; SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW, &max_pending_per_proc, 0, "Max pending signals per proc"); static int preallocate_siginfo = 1024; SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN, &preallocate_siginfo, 0, "Preallocated signal memory size"); static int signal_overflow = 0; SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD, &signal_overflow, 0, "Number of signals overflew"); static int signal_alloc_fail = 0; SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD, &signal_alloc_fail, 0, "signals failed to be allocated"); SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL); /* * Policy -- Can ucred cr1 send SIGIO to process cr2? * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG * in the right situations. */ #define CANSIGIO(cr1, cr2) \ ((cr1)->cr_uid == 0 || \ (cr1)->cr_ruid == (cr2)->cr_ruid || \ (cr1)->cr_uid == (cr2)->cr_ruid || \ (cr1)->cr_ruid == (cr2)->cr_uid || \ (cr1)->cr_uid == (cr2)->cr_uid) static int sugid_coredump; SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN, &sugid_coredump, 0, "Allow setuid and setgid processes to dump core"); static int capmode_coredump; SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN, &capmode_coredump, 0, "Allow processes in capability mode to dump core"); static int do_coredump = 1; SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW, &do_coredump, 0, "Enable/Disable coredumps"); static int set_core_nodump_flag = 0; SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag, 0, "Enable setting the NODUMP flag on coredump files"); static int coredump_devctl = 0; SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl, 0, "Generate a devctl notification when processes coredump"); /* * Signal properties and actions. * The array below categorizes the signals and their default actions * according to the following properties: */ #define SA_KILL 0x01 /* terminates process by default */ #define SA_CORE 0x02 /* ditto and coredumps */ #define SA_STOP 0x04 /* suspend process */ #define SA_TTYSTOP 0x08 /* ditto, from tty */ #define SA_IGNORE 0x10 /* ignore by default */ #define SA_CONT 0x20 /* continue if suspended */ #define SA_CANTMASK 0x40 /* non-maskable, catchable */ static int sigproptbl[NSIG] = { SA_KILL, /* SIGHUP */ SA_KILL, /* SIGINT */ SA_KILL|SA_CORE, /* SIGQUIT */ SA_KILL|SA_CORE, /* SIGILL */ SA_KILL|SA_CORE, /* SIGTRAP */ SA_KILL|SA_CORE, /* SIGABRT */ SA_KILL|SA_CORE, /* SIGEMT */ SA_KILL|SA_CORE, /* SIGFPE */ SA_KILL, /* SIGKILL */ SA_KILL|SA_CORE, /* SIGBUS */ SA_KILL|SA_CORE, /* SIGSEGV */ SA_KILL|SA_CORE, /* SIGSYS */ SA_KILL, /* SIGPIPE */ SA_KILL, /* SIGALRM */ SA_KILL, /* SIGTERM */ SA_IGNORE, /* SIGURG */ SA_STOP, /* SIGSTOP */ SA_STOP|SA_TTYSTOP, /* SIGTSTP */ SA_IGNORE|SA_CONT, /* SIGCONT */ SA_IGNORE, /* SIGCHLD */ SA_STOP|SA_TTYSTOP, /* SIGTTIN */ SA_STOP|SA_TTYSTOP, /* SIGTTOU */ SA_IGNORE, /* SIGIO */ SA_KILL, /* SIGXCPU */ SA_KILL, /* SIGXFSZ */ SA_KILL, /* SIGVTALRM */ SA_KILL, /* SIGPROF */ SA_IGNORE, /* SIGWINCH */ SA_IGNORE, /* SIGINFO */ SA_KILL, /* SIGUSR1 */ SA_KILL, /* SIGUSR2 */ }; static void reschedule_signals(struct proc *p, sigset_t block, int flags); static void sigqueue_start(void) { ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); uma_prealloc(ksiginfo_zone, preallocate_siginfo); p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS); p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1); p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc); } ksiginfo_t * ksiginfo_alloc(int wait) { int flags; flags = M_ZERO; if (! wait) flags |= M_NOWAIT; if (ksiginfo_zone != NULL) return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags)); return (NULL); } void ksiginfo_free(ksiginfo_t *ksi) { uma_zfree(ksiginfo_zone, ksi); } static __inline int ksiginfo_tryfree(ksiginfo_t *ksi) { if (!(ksi->ksi_flags & KSI_EXT)) { uma_zfree(ksiginfo_zone, ksi); return (1); } return (0); } void sigqueue_init(sigqueue_t *list, struct proc *p) { SIGEMPTYSET(list->sq_signals); SIGEMPTYSET(list->sq_kill); SIGEMPTYSET(list->sq_ptrace); TAILQ_INIT(&list->sq_list); list->sq_proc = p; list->sq_flags = SQ_INIT; } /* * Get a signal's ksiginfo. * Return: * 0 - signal not found * others - signal number */ static int sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si) { struct proc *p = sq->sq_proc; struct ksiginfo *ksi, *next; int count = 0; KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited")); if (!SIGISMEMBER(sq->sq_signals, signo)) return (0); if (SIGISMEMBER(sq->sq_ptrace, signo)) { count++; SIGDELSET(sq->sq_ptrace, signo); si->ksi_flags |= KSI_PTRACE; } if (SIGISMEMBER(sq->sq_kill, signo)) { count++; if (count == 1) SIGDELSET(sq->sq_kill, signo); } TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) { if (ksi->ksi_signo == signo) { if (count == 0) { TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link); ksi->ksi_sigq = NULL; ksiginfo_copy(ksi, si); if (ksiginfo_tryfree(ksi) && p != NULL) p->p_pendingcnt--; } if (++count > 1) break; } } if (count <= 1) SIGDELSET(sq->sq_signals, signo); si->ksi_signo = signo; return (signo); } void sigqueue_take(ksiginfo_t *ksi) { struct ksiginfo *kp; struct proc *p; sigqueue_t *sq; if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL) return; p = sq->sq_proc; TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link); ksi->ksi_sigq = NULL; if (!(ksi->ksi_flags & KSI_EXT) && p != NULL) p->p_pendingcnt--; for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL; kp = TAILQ_NEXT(kp, ksi_link)) { if (kp->ksi_signo == ksi->ksi_signo) break; } if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) && !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo)) SIGDELSET(sq->sq_signals, ksi->ksi_signo); } static int sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si) { struct proc *p = sq->sq_proc; struct ksiginfo *ksi; int ret = 0; KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited")); /* * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path * for these signals. */ if (signo == SIGKILL || signo == SIGSTOP || si == NULL) { SIGADDSET(sq->sq_kill, signo); goto out_set_bit; } /* directly insert the ksi, don't copy it */ if (si->ksi_flags & KSI_INS) { if (si->ksi_flags & KSI_HEAD) TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link); else TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link); si->ksi_sigq = sq; goto out_set_bit; } if (__predict_false(ksiginfo_zone == NULL)) { SIGADDSET(sq->sq_kill, signo); goto out_set_bit; } if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) { signal_overflow++; ret = EAGAIN; } else if ((ksi = ksiginfo_alloc(0)) == NULL) { signal_alloc_fail++; ret = EAGAIN; } else { if (p != NULL) p->p_pendingcnt++; ksiginfo_copy(si, ksi); ksi->ksi_signo = signo; if (si->ksi_flags & KSI_HEAD) TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link); else TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link); ksi->ksi_sigq = sq; } if (ret != 0) { if ((si->ksi_flags & KSI_PTRACE) != 0) { SIGADDSET(sq->sq_ptrace, signo); ret = 0; goto out_set_bit; } else if ((si->ksi_flags & KSI_TRAP) != 0 || (si->ksi_flags & KSI_SIGQ) == 0) { SIGADDSET(sq->sq_kill, signo); ret = 0; goto out_set_bit; } return (ret); } out_set_bit: SIGADDSET(sq->sq_signals, signo); return (ret); } void sigqueue_flush(sigqueue_t *sq) { struct proc *p = sq->sq_proc; ksiginfo_t *ksi; KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited")); if (p != NULL) PROC_LOCK_ASSERT(p, MA_OWNED); while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) { TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link); ksi->ksi_sigq = NULL; if (ksiginfo_tryfree(ksi) && p != NULL) p->p_pendingcnt--; } SIGEMPTYSET(sq->sq_signals); SIGEMPTYSET(sq->sq_kill); SIGEMPTYSET(sq->sq_ptrace); } static void sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set) { sigset_t tmp; struct proc *p1, *p2; ksiginfo_t *ksi, *next; KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited")); KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited")); p1 = src->sq_proc; p2 = dst->sq_proc; /* Move siginfo to target list */ TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) { if (SIGISMEMBER(*set, ksi->ksi_signo)) { TAILQ_REMOVE(&src->sq_list, ksi, ksi_link); if (p1 != NULL) p1->p_pendingcnt--; TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link); ksi->ksi_sigq = dst; if (p2 != NULL) p2->p_pendingcnt++; } } /* Move pending bits to target list */ tmp = src->sq_kill; SIGSETAND(tmp, *set); SIGSETOR(dst->sq_kill, tmp); SIGSETNAND(src->sq_kill, tmp); tmp = src->sq_ptrace; SIGSETAND(tmp, *set); SIGSETOR(dst->sq_ptrace, tmp); SIGSETNAND(src->sq_ptrace, tmp); tmp = src->sq_signals; SIGSETAND(tmp, *set); SIGSETOR(dst->sq_signals, tmp); SIGSETNAND(src->sq_signals, tmp); } #if 0 static void sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo) { sigset_t set; SIGEMPTYSET(set); SIGADDSET(set, signo); sigqueue_move_set(src, dst, &set); } #endif static void sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set) { struct proc *p = sq->sq_proc; ksiginfo_t *ksi, *next; KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited")); /* Remove siginfo queue */ TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) { if (SIGISMEMBER(*set, ksi->ksi_signo)) { TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link); ksi->ksi_sigq = NULL; if (ksiginfo_tryfree(ksi) && p != NULL) p->p_pendingcnt--; } } SIGSETNAND(sq->sq_kill, *set); SIGSETNAND(sq->sq_ptrace, *set); SIGSETNAND(sq->sq_signals, *set); } void sigqueue_delete(sigqueue_t *sq, int signo) { sigset_t set; SIGEMPTYSET(set); SIGADDSET(set, signo); sigqueue_delete_set(sq, &set); } /* Remove a set of signals for a process */ static void sigqueue_delete_set_proc(struct proc *p, const sigset_t *set) { sigqueue_t worklist; struct thread *td0; PROC_LOCK_ASSERT(p, MA_OWNED); sigqueue_init(&worklist, NULL); sigqueue_move_set(&p->p_sigqueue, &worklist, set); FOREACH_THREAD_IN_PROC(p, td0) sigqueue_move_set(&td0->td_sigqueue, &worklist, set); sigqueue_flush(&worklist); } void sigqueue_delete_proc(struct proc *p, int signo) { sigset_t set; SIGEMPTYSET(set); SIGADDSET(set, signo); sigqueue_delete_set_proc(p, &set); } static void sigqueue_delete_stopmask_proc(struct proc *p) { sigset_t set; SIGEMPTYSET(set); SIGADDSET(set, SIGSTOP); SIGADDSET(set, SIGTSTP); SIGADDSET(set, SIGTTIN); SIGADDSET(set, SIGTTOU); sigqueue_delete_set_proc(p, &set); } /* * Determine signal that should be delivered to thread td, the current * thread, 0 if none. If there is a pending stop signal with default * action, the process stops in issignal(). */ int cursig(struct thread *td) { PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED); THREAD_LOCK_ASSERT(td, MA_NOTOWNED); return (SIGPENDING(td) ? issignal(td) : 0); } /* * Arrange for ast() to handle unmasked pending signals on return to user * mode. This must be called whenever a signal is added to td_sigqueue or * unmasked in td_sigmask. */ void signotify(struct thread *td) { struct proc *p; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); if (SIGPENDING(td)) { thread_lock(td); td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING; thread_unlock(td); } } int sigonstack(size_t sp) { struct thread *td = curthread; return ((td->td_pflags & TDP_ALTSTACK) ? #if defined(COMPAT_43) ((td->td_sigstk.ss_size == 0) ? (td->td_sigstk.ss_flags & SS_ONSTACK) : ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)) #else ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size) #endif : 0); } static __inline int sigprop(int sig) { if (sig > 0 && sig < NSIG) return (sigproptbl[_SIG_IDX(sig)]); return (0); } int sig_ffs(sigset_t *set) { int i; for (i = 0; i < _SIG_WORDS; i++) if (set->__bits[i]) return (ffs(set->__bits[i]) + (i * 32)); return (0); } static bool sigact_flag_test(const struct sigaction *act, int flag) { /* * SA_SIGINFO is reset when signal disposition is set to * ignore or default. Other flags are kept according to user * settings. */ return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO || ((__sighandler_t *)act->sa_sigaction != SIG_IGN && (__sighandler_t *)act->sa_sigaction != SIG_DFL))); } /* * kern_sigaction * sigaction * freebsd4_sigaction * osigaction */ int kern_sigaction(struct thread *td, int sig, const struct sigaction *act, struct sigaction *oact, int flags) { struct sigacts *ps; struct proc *p = td->td_proc; if (!_SIG_VALID(sig)) return (EINVAL); if (act != NULL && act->sa_handler != SIG_DFL && act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK | SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER | SA_NOCLDWAIT | SA_SIGINFO)) != 0) return (EINVAL); PROC_LOCK(p); ps = p->p_sigacts; mtx_lock(&ps->ps_mtx); if (oact) { oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)]; oact->sa_flags = 0; if (SIGISMEMBER(ps->ps_sigonstack, sig)) oact->sa_flags |= SA_ONSTACK; if (!SIGISMEMBER(ps->ps_sigintr, sig)) oact->sa_flags |= SA_RESTART; if (SIGISMEMBER(ps->ps_sigreset, sig)) oact->sa_flags |= SA_RESETHAND; if (SIGISMEMBER(ps->ps_signodefer, sig)) oact->sa_flags |= SA_NODEFER; if (SIGISMEMBER(ps->ps_siginfo, sig)) { oact->sa_flags |= SA_SIGINFO; oact->sa_sigaction = (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)]; } else oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)]; if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP) oact->sa_flags |= SA_NOCLDSTOP; if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT) oact->sa_flags |= SA_NOCLDWAIT; } if (act) { if ((sig == SIGKILL || sig == SIGSTOP) && act->sa_handler != SIG_DFL) { mtx_unlock(&ps->ps_mtx); PROC_UNLOCK(p); return (EINVAL); } /* * Change setting atomically. */ ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask; SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]); if (sigact_flag_test(act, SA_SIGINFO)) { ps->ps_sigact[_SIG_IDX(sig)] = (__sighandler_t *)act->sa_sigaction; SIGADDSET(ps->ps_siginfo, sig); } else { ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler; SIGDELSET(ps->ps_siginfo, sig); } if (!sigact_flag_test(act, SA_RESTART)) SIGADDSET(ps->ps_sigintr, sig); else SIGDELSET(ps->ps_sigintr, sig); if (sigact_flag_test(act, SA_ONSTACK)) SIGADDSET(ps->ps_sigonstack, sig); else SIGDELSET(ps->ps_sigonstack, sig); if (sigact_flag_test(act, SA_RESETHAND)) SIGADDSET(ps->ps_sigreset, sig); else SIGDELSET(ps->ps_sigreset, sig); if (sigact_flag_test(act, SA_NODEFER)) SIGADDSET(ps->ps_signodefer, sig); else SIGDELSET(ps->ps_signodefer, sig); if (sig == SIGCHLD) { if (act->sa_flags & SA_NOCLDSTOP) ps->ps_flag |= PS_NOCLDSTOP; else ps->ps_flag &= ~PS_NOCLDSTOP; if (act->sa_flags & SA_NOCLDWAIT) { /* * Paranoia: since SA_NOCLDWAIT is implemented * by reparenting the dying child to PID 1 (and * trust it to reap the zombie), PID 1 itself * is forbidden to set SA_NOCLDWAIT. */ if (p->p_pid == 1) ps->ps_flag &= ~PS_NOCLDWAIT; else ps->ps_flag |= PS_NOCLDWAIT; } else ps->ps_flag &= ~PS_NOCLDWAIT; if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN) ps->ps_flag |= PS_CLDSIGIGN; else ps->ps_flag &= ~PS_CLDSIGIGN; } /* * Set bit in ps_sigignore for signals that are set to SIG_IGN, * and for signals set to SIG_DFL where the default is to * ignore. However, don't put SIGCONT in ps_sigignore, as we * have to restart the process. */ if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN || (sigprop(sig) & SA_IGNORE && ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) { /* never to be seen again */ sigqueue_delete_proc(p, sig); if (sig != SIGCONT) /* easier in psignal */ SIGADDSET(ps->ps_sigignore, sig); SIGDELSET(ps->ps_sigcatch, sig); } else { SIGDELSET(ps->ps_sigignore, sig); if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL) SIGDELSET(ps->ps_sigcatch, sig); else SIGADDSET(ps->ps_sigcatch, sig); } #ifdef COMPAT_FREEBSD4 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN || ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL || (flags & KSA_FREEBSD4) == 0) SIGDELSET(ps->ps_freebsd4, sig); else SIGADDSET(ps->ps_freebsd4, sig); #endif #ifdef COMPAT_43 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN || ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL || (flags & KSA_OSIGSET) == 0) SIGDELSET(ps->ps_osigset, sig); else SIGADDSET(ps->ps_osigset, sig); #endif } mtx_unlock(&ps->ps_mtx); PROC_UNLOCK(p); return (0); } #ifndef _SYS_SYSPROTO_H_ struct sigaction_args { int sig; struct sigaction *act; struct sigaction *oact; }; #endif int sys_sigaction(td, uap) struct thread *td; register struct sigaction_args *uap; { struct sigaction act, oact; register struct sigaction *actp, *oactp; int error; actp = (uap->act != NULL) ? &act : NULL; oactp = (uap->oact != NULL) ? &oact : NULL; if (actp) { error = copyin(uap->act, actp, sizeof(act)); if (error) return (error); } error = kern_sigaction(td, uap->sig, actp, oactp, 0); if (oactp && !error) error = copyout(oactp, uap->oact, sizeof(oact)); return (error); } #ifdef COMPAT_FREEBSD4 #ifndef _SYS_SYSPROTO_H_ struct freebsd4_sigaction_args { int sig; struct sigaction *act; struct sigaction *oact; }; #endif int freebsd4_sigaction(td, uap) struct thread *td; register struct freebsd4_sigaction_args *uap; { struct sigaction act, oact; register struct sigaction *actp, *oactp; int error; actp = (uap->act != NULL) ? &act : NULL; oactp = (uap->oact != NULL) ? &oact : NULL; if (actp) { error = copyin(uap->act, actp, sizeof(act)); if (error) return (error); } error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4); if (oactp && !error) error = copyout(oactp, uap->oact, sizeof(oact)); return (error); } #endif /* COMAPT_FREEBSD4 */ #ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */ #ifndef _SYS_SYSPROTO_H_ struct osigaction_args { int signum; struct osigaction *nsa; struct osigaction *osa; }; #endif int osigaction(td, uap) struct thread *td; register struct osigaction_args *uap; { struct osigaction sa; struct sigaction nsa, osa; register struct sigaction *nsap, *osap; int error; if (uap->signum <= 0 || uap->signum >= ONSIG) return (EINVAL); nsap = (uap->nsa != NULL) ? &nsa : NULL; osap = (uap->osa != NULL) ? &osa : NULL; if (nsap) { error = copyin(uap->nsa, &sa, sizeof(sa)); if (error) return (error); nsap->sa_handler = sa.sa_handler; nsap->sa_flags = sa.sa_flags; OSIG2SIG(sa.sa_mask, nsap->sa_mask); } error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET); if (osap && !error) { sa.sa_handler = osap->sa_handler; sa.sa_flags = osap->sa_flags; SIG2OSIG(osap->sa_mask, sa.sa_mask); error = copyout(&sa, uap->osa, sizeof(sa)); } return (error); } #if !defined(__i386__) /* Avoid replicating the same stub everywhere */ int osigreturn(td, uap) struct thread *td; struct osigreturn_args *uap; { return (nosys(td, (struct nosys_args *)uap)); } #endif #endif /* COMPAT_43 */ /* * Initialize signal state for process 0; * set to ignore signals that are ignored by default. */ void siginit(p) struct proc *p; { register int i; struct sigacts *ps; PROC_LOCK(p); ps = p->p_sigacts; mtx_lock(&ps->ps_mtx); for (i = 1; i <= NSIG; i++) { if (sigprop(i) & SA_IGNORE && i != SIGCONT) { SIGADDSET(ps->ps_sigignore, i); } } mtx_unlock(&ps->ps_mtx); PROC_UNLOCK(p); } /* * Reset specified signal to the default disposition. */ static void sigdflt(struct sigacts *ps, int sig) { mtx_assert(&ps->ps_mtx, MA_OWNED); SIGDELSET(ps->ps_sigcatch, sig); if ((sigprop(sig) & SA_IGNORE) != 0 && sig != SIGCONT) SIGADDSET(ps->ps_sigignore, sig); ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL; SIGDELSET(ps->ps_siginfo, sig); } /* * Reset signals for an exec of the specified process. */ void execsigs(struct proc *p) { sigset_t osigignore; struct sigacts *ps; int sig; struct thread *td; /* * Reset caught signals. Held signals remain held * through td_sigmask (unless they were caught, * and are now ignored by default). */ PROC_LOCK_ASSERT(p, MA_OWNED); ps = p->p_sigacts; mtx_lock(&ps->ps_mtx); while (SIGNOTEMPTY(ps->ps_sigcatch)) { sig = sig_ffs(&ps->ps_sigcatch); sigdflt(ps, sig); if ((sigprop(sig) & SA_IGNORE) != 0) sigqueue_delete_proc(p, sig); } /* * As CloudABI processes cannot modify signal handlers, fully * reset all signals to their default behavior. Do ignore * SIGPIPE, as it would otherwise be impossible to recover from * writes to broken pipes and sockets. */ if (SV_PROC_ABI(p) == SV_ABI_CLOUDABI) { osigignore = ps->ps_sigignore; while (SIGNOTEMPTY(osigignore)) { sig = sig_ffs(&osigignore); SIGDELSET(osigignore, sig); if (sig != SIGPIPE) sigdflt(ps, sig); } SIGADDSET(ps->ps_sigignore, SIGPIPE); } /* * Reset stack state to the user stack. * Clear set of signals caught on the signal stack. */ td = curthread; MPASS(td->td_proc == p); td->td_sigstk.ss_flags = SS_DISABLE; td->td_sigstk.ss_size = 0; td->td_sigstk.ss_sp = 0; td->td_pflags &= ~TDP_ALTSTACK; /* * Reset no zombies if child dies flag as Solaris does. */ ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN); if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN) ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL; mtx_unlock(&ps->ps_mtx); } /* * kern_sigprocmask() * * Manipulate signal mask. */ int kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset, int flags) { sigset_t new_block, oset1; struct proc *p; int error; p = td->td_proc; if ((flags & SIGPROCMASK_PROC_LOCKED) != 0) PROC_LOCK_ASSERT(p, MA_OWNED); else PROC_LOCK(p); mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ? MA_OWNED : MA_NOTOWNED); if (oset != NULL) *oset = td->td_sigmask; error = 0; if (set != NULL) { switch (how) { case SIG_BLOCK: SIG_CANTMASK(*set); oset1 = td->td_sigmask; SIGSETOR(td->td_sigmask, *set); new_block = td->td_sigmask; SIGSETNAND(new_block, oset1); break; case SIG_UNBLOCK: SIGSETNAND(td->td_sigmask, *set); signotify(td); goto out; case SIG_SETMASK: SIG_CANTMASK(*set); oset1 = td->td_sigmask; if (flags & SIGPROCMASK_OLD) SIGSETLO(td->td_sigmask, *set); else td->td_sigmask = *set; new_block = td->td_sigmask; SIGSETNAND(new_block, oset1); signotify(td); break; default: error = EINVAL; goto out; } /* * The new_block set contains signals that were not previously * blocked, but are blocked now. * * In case we block any signal that was not previously blocked * for td, and process has the signal pending, try to schedule * signal delivery to some thread that does not block the * signal, possibly waking it up. */ if (p->p_numthreads != 1) reschedule_signals(p, new_block, flags); } out: if (!(flags & SIGPROCMASK_PROC_LOCKED)) PROC_UNLOCK(p); return (error); } #ifndef _SYS_SYSPROTO_H_ struct sigprocmask_args { int how; const sigset_t *set; sigset_t *oset; }; #endif int sys_sigprocmask(td, uap) register struct thread *td; struct sigprocmask_args *uap; { sigset_t set, oset; sigset_t *setp, *osetp; int error; setp = (uap->set != NULL) ? &set : NULL; osetp = (uap->oset != NULL) ? &oset : NULL; if (setp) { error = copyin(uap->set, setp, sizeof(set)); if (error) return (error); } error = kern_sigprocmask(td, uap->how, setp, osetp, 0); if (osetp && !error) { error = copyout(osetp, uap->oset, sizeof(oset)); } return (error); } #ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */ #ifndef _SYS_SYSPROTO_H_ struct osigprocmask_args { int how; osigset_t mask; }; #endif int osigprocmask(td, uap) register struct thread *td; struct osigprocmask_args *uap; { sigset_t set, oset; int error; OSIG2SIG(uap->mask, set); error = kern_sigprocmask(td, uap->how, &set, &oset, 1); SIG2OSIG(oset, td->td_retval[0]); return (error); } #endif /* COMPAT_43 */ int sys_sigwait(struct thread *td, struct sigwait_args *uap) { ksiginfo_t ksi; sigset_t set; int error; error = copyin(uap->set, &set, sizeof(set)); if (error) { td->td_retval[0] = error; return (0); } error = kern_sigtimedwait(td, set, &ksi, NULL); if (error) { if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT) error = ERESTART; if (error == ERESTART) return (error); td->td_retval[0] = error; return (0); } error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo)); td->td_retval[0] = error; return (0); } int sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap) { struct timespec ts; struct timespec *timeout; sigset_t set; ksiginfo_t ksi; int error; if (uap->timeout) { error = copyin(uap->timeout, &ts, sizeof(ts)); if (error) return (error); timeout = &ts; } else timeout = NULL; error = copyin(uap->set, &set, sizeof(set)); if (error) return (error); error = kern_sigtimedwait(td, set, &ksi, timeout); if (error) return (error); if (uap->info) error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t)); if (error == 0) td->td_retval[0] = ksi.ksi_signo; return (error); } int sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap) { ksiginfo_t ksi; sigset_t set; int error; error = copyin(uap->set, &set, sizeof(set)); if (error) return (error); error = kern_sigtimedwait(td, set, &ksi, NULL); if (error) return (error); if (uap->info) error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t)); if (error == 0) td->td_retval[0] = ksi.ksi_signo; return (error); } int kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi, struct timespec *timeout) { struct sigacts *ps; sigset_t saved_mask, new_block; struct proc *p; int error, sig, timo, timevalid = 0; struct timespec rts, ets, ts; struct timeval tv; p = td->td_proc; error = 0; ets.tv_sec = 0; ets.tv_nsec = 0; if (timeout != NULL) { if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) { timevalid = 1; getnanouptime(&rts); ets = rts; timespecadd(&ets, timeout); } } ksiginfo_init(ksi); /* Some signals can not be waited for. */ SIG_CANTMASK(waitset); ps = p->p_sigacts; PROC_LOCK(p); saved_mask = td->td_sigmask; SIGSETNAND(td->td_sigmask, waitset); for (;;) { mtx_lock(&ps->ps_mtx); sig = cursig(td); mtx_unlock(&ps->ps_mtx); KASSERT(sig >= 0, ("sig %d", sig)); if (sig != 0 && SIGISMEMBER(waitset, sig)) { if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 || sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) { error = 0; break; } } if (error != 0) break; /* * POSIX says this must be checked after looking for pending * signals. */ if (timeout != NULL) { if (!timevalid) { error = EINVAL; break; } getnanouptime(&rts); if (timespeccmp(&rts, &ets, >=)) { error = EAGAIN; break; } ts = ets; timespecsub(&ts, &rts); TIMESPEC_TO_TIMEVAL(&tv, &ts); timo = tvtohz(&tv); } else { timo = 0; } error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo); if (timeout != NULL) { if (error == ERESTART) { /* Timeout can not be restarted. */ error = EINTR; } else if (error == EAGAIN) { /* We will calculate timeout by ourself. */ error = 0; } } } new_block = saved_mask; SIGSETNAND(new_block, td->td_sigmask); td->td_sigmask = saved_mask; /* * Fewer signals can be delivered to us, reschedule signal * notification. */ if (p->p_numthreads != 1) reschedule_signals(p, new_block, 0); if (error == 0) { SDT_PROBE2(proc, , , signal__clear, sig, ksi); if (ksi->ksi_code == SI_TIMER) itimer_accept(p, ksi->ksi_timerid, ksi); #ifdef KTRACE if (KTRPOINT(td, KTR_PSIG)) { sig_t action; mtx_lock(&ps->ps_mtx); action = ps->ps_sigact[_SIG_IDX(sig)]; mtx_unlock(&ps->ps_mtx); ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code); } #endif if (sig == SIGKILL) sigexit(td, sig); } PROC_UNLOCK(p); return (error); } #ifndef _SYS_SYSPROTO_H_ struct sigpending_args { sigset_t *set; }; #endif int sys_sigpending(td, uap) struct thread *td; struct sigpending_args *uap; { struct proc *p = td->td_proc; sigset_t pending; PROC_LOCK(p); pending = p->p_sigqueue.sq_signals; SIGSETOR(pending, td->td_sigqueue.sq_signals); PROC_UNLOCK(p); return (copyout(&pending, uap->set, sizeof(sigset_t))); } #ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */ #ifndef _SYS_SYSPROTO_H_ struct osigpending_args { int dummy; }; #endif int osigpending(td, uap) struct thread *td; struct osigpending_args *uap; { struct proc *p = td->td_proc; sigset_t pending; PROC_LOCK(p); pending = p->p_sigqueue.sq_signals; SIGSETOR(pending, td->td_sigqueue.sq_signals); PROC_UNLOCK(p); SIG2OSIG(pending, td->td_retval[0]); return (0); } #endif /* COMPAT_43 */ #if defined(COMPAT_43) /* * Generalized interface signal handler, 4.3-compatible. */ #ifndef _SYS_SYSPROTO_H_ struct osigvec_args { int signum; struct sigvec *nsv; struct sigvec *osv; }; #endif /* ARGSUSED */ int osigvec(td, uap) struct thread *td; register struct osigvec_args *uap; { struct sigvec vec; struct sigaction nsa, osa; register struct sigaction *nsap, *osap; int error; if (uap->signum <= 0 || uap->signum >= ONSIG) return (EINVAL); nsap = (uap->nsv != NULL) ? &nsa : NULL; osap = (uap->osv != NULL) ? &osa : NULL; if (nsap) { error = copyin(uap->nsv, &vec, sizeof(vec)); if (error) return (error); nsap->sa_handler = vec.sv_handler; OSIG2SIG(vec.sv_mask, nsap->sa_mask); nsap->sa_flags = vec.sv_flags; nsap->sa_flags ^= SA_RESTART; /* opposite of SV_INTERRUPT */ } error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET); if (osap && !error) { vec.sv_handler = osap->sa_handler; SIG2OSIG(osap->sa_mask, vec.sv_mask); vec.sv_flags = osap->sa_flags; vec.sv_flags &= ~SA_NOCLDWAIT; vec.sv_flags ^= SA_RESTART; error = copyout(&vec, uap->osv, sizeof(vec)); } return (error); } #ifndef _SYS_SYSPROTO_H_ struct osigblock_args { int mask; }; #endif int osigblock(td, uap) register struct thread *td; struct osigblock_args *uap; { sigset_t set, oset; OSIG2SIG(uap->mask, set); kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0); SIG2OSIG(oset, td->td_retval[0]); return (0); } #ifndef _SYS_SYSPROTO_H_ struct osigsetmask_args { int mask; }; #endif int osigsetmask(td, uap) struct thread *td; struct osigsetmask_args *uap; { sigset_t set, oset; OSIG2SIG(uap->mask, set); kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0); SIG2OSIG(oset, td->td_retval[0]); return (0); } #endif /* COMPAT_43 */ /* * Suspend calling thread until signal, providing mask to be set in the * meantime. */ #ifndef _SYS_SYSPROTO_H_ struct sigsuspend_args { const sigset_t *sigmask; }; #endif /* ARGSUSED */ int sys_sigsuspend(td, uap) struct thread *td; struct sigsuspend_args *uap; { sigset_t mask; int error; error = copyin(uap->sigmask, &mask, sizeof(mask)); if (error) return (error); return (kern_sigsuspend(td, mask)); } int kern_sigsuspend(struct thread *td, sigset_t mask) { struct proc *p = td->td_proc; int has_sig, sig; /* * When returning from sigsuspend, we want * the old mask to be restored after the * signal handler has finished. Thus, we * save it here and mark the sigacts structure * to indicate this. */ PROC_LOCK(p); kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask, SIGPROCMASK_PROC_LOCKED); td->td_pflags |= TDP_OLDMASK; /* * Process signals now. Otherwise, we can get spurious wakeup * due to signal entered process queue, but delivered to other * thread. But sigsuspend should return only on signal * delivery. */ (p->p_sysent->sv_set_syscall_retval)(td, EINTR); for (has_sig = 0; !has_sig;) { while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause", 0) == 0) /* void */; thread_suspend_check(0); mtx_lock(&p->p_sigacts->ps_mtx); while ((sig = cursig(td)) != 0) { KASSERT(sig >= 0, ("sig %d", sig)); has_sig += postsig(sig); } mtx_unlock(&p->p_sigacts->ps_mtx); } PROC_UNLOCK(p); td->td_errno = EINTR; td->td_pflags |= TDP_NERRNO; return (EJUSTRETURN); } #ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */ /* * Compatibility sigsuspend call for old binaries. Note nonstandard calling * convention: libc stub passes mask, not pointer, to save a copyin. */ #ifndef _SYS_SYSPROTO_H_ struct osigsuspend_args { osigset_t mask; }; #endif /* ARGSUSED */ int osigsuspend(td, uap) struct thread *td; struct osigsuspend_args *uap; { sigset_t mask; OSIG2SIG(uap->mask, mask); return (kern_sigsuspend(td, mask)); } #endif /* COMPAT_43 */ #if defined(COMPAT_43) #ifndef _SYS_SYSPROTO_H_ struct osigstack_args { struct sigstack *nss; struct sigstack *oss; }; #endif /* ARGSUSED */ int osigstack(td, uap) struct thread *td; register struct osigstack_args *uap; { struct sigstack nss, oss; int error = 0; if (uap->nss != NULL) { error = copyin(uap->nss, &nss, sizeof(nss)); if (error) return (error); } oss.ss_sp = td->td_sigstk.ss_sp; oss.ss_onstack = sigonstack(cpu_getstack(td)); if (uap->nss != NULL) { td->td_sigstk.ss_sp = nss.ss_sp; td->td_sigstk.ss_size = 0; td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK; td->td_pflags |= TDP_ALTSTACK; } if (uap->oss != NULL) error = copyout(&oss, uap->oss, sizeof(oss)); return (error); } #endif /* COMPAT_43 */ #ifndef _SYS_SYSPROTO_H_ struct sigaltstack_args { stack_t *ss; stack_t *oss; }; #endif /* ARGSUSED */ int sys_sigaltstack(td, uap) struct thread *td; register struct sigaltstack_args *uap; { stack_t ss, oss; int error; if (uap->ss != NULL) { error = copyin(uap->ss, &ss, sizeof(ss)); if (error) return (error); } error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL, (uap->oss != NULL) ? &oss : NULL); if (error) return (error); if (uap->oss != NULL) error = copyout(&oss, uap->oss, sizeof(stack_t)); return (error); } int kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss) { struct proc *p = td->td_proc; int oonstack; oonstack = sigonstack(cpu_getstack(td)); if (oss != NULL) { *oss = td->td_sigstk; oss->ss_flags = (td->td_pflags & TDP_ALTSTACK) ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE; } if (ss != NULL) { if (oonstack) return (EPERM); if ((ss->ss_flags & ~SS_DISABLE) != 0) return (EINVAL); if (!(ss->ss_flags & SS_DISABLE)) { if (ss->ss_size < p->p_sysent->sv_minsigstksz) return (ENOMEM); td->td_sigstk = *ss; td->td_pflags |= TDP_ALTSTACK; } else { td->td_pflags &= ~TDP_ALTSTACK; } } return (0); } /* * Common code for kill process group/broadcast kill. * cp is calling process. */ static int killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi) { struct proc *p; struct pgrp *pgrp; int err; int ret; ret = ESRCH; if (all) { /* * broadcast */ sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { PROC_LOCK(p); if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || p == td->td_proc || p->p_state == PRS_NEW) { PROC_UNLOCK(p); continue; } err = p_cansignal(td, p, sig); if (err == 0) { if (sig) pksignal(p, sig, ksi); ret = err; } else if (ret == ESRCH) ret = err; PROC_UNLOCK(p); } sx_sunlock(&allproc_lock); } else { sx_slock(&proctree_lock); if (pgid == 0) { /* * zero pgid means send to my process group. */ pgrp = td->td_proc->p_pgrp; PGRP_LOCK(pgrp); } else { pgrp = pgfind(pgid); if (pgrp == NULL) { sx_sunlock(&proctree_lock); return (ESRCH); } } sx_sunlock(&proctree_lock); LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { PROC_LOCK(p); if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || p->p_state == PRS_NEW) { PROC_UNLOCK(p); continue; } err = p_cansignal(td, p, sig); if (err == 0) { if (sig) pksignal(p, sig, ksi); ret = err; } else if (ret == ESRCH) ret = err; PROC_UNLOCK(p); } PGRP_UNLOCK(pgrp); } return (ret); } #ifndef _SYS_SYSPROTO_H_ struct kill_args { int pid; int signum; }; #endif /* ARGSUSED */ int sys_kill(struct thread *td, struct kill_args *uap) { ksiginfo_t ksi; struct proc *p; int error; /* * A process in capability mode can send signals only to himself. * The main rationale behind this is that abort(3) is implemented as * kill(getpid(), SIGABRT). */ if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid) return (ECAPMODE); AUDIT_ARG_SIGNUM(uap->signum); AUDIT_ARG_PID(uap->pid); if ((u_int)uap->signum > _SIG_MAXSIG) return (EINVAL); ksiginfo_init(&ksi); ksi.ksi_signo = uap->signum; ksi.ksi_code = SI_USER; ksi.ksi_pid = td->td_proc->p_pid; ksi.ksi_uid = td->td_ucred->cr_ruid; if (uap->pid > 0) { /* kill single process */ if ((p = pfind(uap->pid)) == NULL) { if ((p = zpfind(uap->pid)) == NULL) return (ESRCH); } AUDIT_ARG_PROCESS(p); error = p_cansignal(td, p, uap->signum); if (error == 0 && uap->signum) pksignal(p, uap->signum, &ksi); PROC_UNLOCK(p); return (error); } switch (uap->pid) { case -1: /* broadcast signal */ return (killpg1(td, uap->signum, 0, 1, &ksi)); case 0: /* signal own process group */ return (killpg1(td, uap->signum, 0, 0, &ksi)); default: /* negative explicit process group */ return (killpg1(td, uap->signum, -uap->pid, 0, &ksi)); } /* NOTREACHED */ } int sys_pdkill(td, uap) struct thread *td; struct pdkill_args *uap; { struct proc *p; cap_rights_t rights; int error; AUDIT_ARG_SIGNUM(uap->signum); AUDIT_ARG_FD(uap->fd); if ((u_int)uap->signum > _SIG_MAXSIG) return (EINVAL); error = procdesc_find(td, uap->fd, cap_rights_init(&rights, CAP_PDKILL), &p); if (error) return (error); AUDIT_ARG_PROCESS(p); error = p_cansignal(td, p, uap->signum); if (error == 0 && uap->signum) kern_psignal(p, uap->signum); PROC_UNLOCK(p); return (error); } #if defined(COMPAT_43) #ifndef _SYS_SYSPROTO_H_ struct okillpg_args { int pgid; int signum; }; #endif /* ARGSUSED */ int okillpg(struct thread *td, struct okillpg_args *uap) { ksiginfo_t ksi; AUDIT_ARG_SIGNUM(uap->signum); AUDIT_ARG_PID(uap->pgid); if ((u_int)uap->signum > _SIG_MAXSIG) return (EINVAL); ksiginfo_init(&ksi); ksi.ksi_signo = uap->signum; ksi.ksi_code = SI_USER; ksi.ksi_pid = td->td_proc->p_pid; ksi.ksi_uid = td->td_ucred->cr_ruid; return (killpg1(td, uap->signum, uap->pgid, 0, &ksi)); } #endif /* COMPAT_43 */ #ifndef _SYS_SYSPROTO_H_ struct sigqueue_args { pid_t pid; int signum; /* union sigval */ void *value; }; #endif int sys_sigqueue(struct thread *td, struct sigqueue_args *uap) { ksiginfo_t ksi; struct proc *p; int error; if ((u_int)uap->signum > _SIG_MAXSIG) return (EINVAL); /* * Specification says sigqueue can only send signal to * single process. */ if (uap->pid <= 0) return (EINVAL); if ((p = pfind(uap->pid)) == NULL) { if ((p = zpfind(uap->pid)) == NULL) return (ESRCH); } error = p_cansignal(td, p, uap->signum); if (error == 0 && uap->signum != 0) { ksiginfo_init(&ksi); ksi.ksi_flags = KSI_SIGQ; ksi.ksi_signo = uap->signum; ksi.ksi_code = SI_QUEUE; ksi.ksi_pid = td->td_proc->p_pid; ksi.ksi_uid = td->td_ucred->cr_ruid; ksi.ksi_value.sival_ptr = uap->value; error = pksignal(p, ksi.ksi_signo, &ksi); } PROC_UNLOCK(p); return (error); } /* * Send a signal to a process group. */ void gsignal(int pgid, int sig, ksiginfo_t *ksi) { struct pgrp *pgrp; if (pgid != 0) { sx_slock(&proctree_lock); pgrp = pgfind(pgid); sx_sunlock(&proctree_lock); if (pgrp != NULL) { pgsignal(pgrp, sig, 0, ksi); PGRP_UNLOCK(pgrp); } } } /* * Send a signal to a process group. If checktty is 1, * limit to members which have a controlling terminal. */ void pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi) { struct proc *p; if (pgrp) { PGRP_LOCK_ASSERT(pgrp, MA_OWNED); LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { PROC_LOCK(p); if (p->p_state == PRS_NORMAL && (checkctty == 0 || p->p_flag & P_CONTROLT)) pksignal(p, sig, ksi); PROC_UNLOCK(p); } } } /* * Recalculate the signal mask and reset the signal disposition after * usermode frame for delivery is formed. Should be called after * mach-specific routine, because sysent->sv_sendsig() needs correct * ps_siginfo and signal mask. */ static void postsig_done(int sig, struct thread *td, struct sigacts *ps) { sigset_t mask; mtx_assert(&ps->ps_mtx, MA_OWNED); td->td_ru.ru_nsignals++; mask = ps->ps_catchmask[_SIG_IDX(sig)]; if (!SIGISMEMBER(ps->ps_signodefer, sig)) SIGADDSET(mask, sig); kern_sigprocmask(td, SIG_BLOCK, &mask, NULL, SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED); if (SIGISMEMBER(ps->ps_sigreset, sig)) sigdflt(ps, sig); } /* * Send a signal caused by a trap to the current thread. If it will be * caught immediately, deliver it with correct code. Otherwise, post it * normally. */ void trapsignal(struct thread *td, ksiginfo_t *ksi) { struct sigacts *ps; struct proc *p; int sig; int code; p = td->td_proc; sig = ksi->ksi_signo; code = ksi->ksi_code; KASSERT(_SIG_VALID(sig), ("invalid signal")); PROC_LOCK(p); ps = p->p_sigacts; mtx_lock(&ps->ps_mtx); if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) && !SIGISMEMBER(td->td_sigmask, sig)) { #ifdef KTRACE if (KTRPOINT(curthread, KTR_PSIG)) ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)], &td->td_sigmask, code); #endif (*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)], ksi, &td->td_sigmask); postsig_done(sig, td, ps); mtx_unlock(&ps->ps_mtx); } else { /* * Avoid a possible infinite loop if the thread * masking the signal or process is ignoring the * signal. */ if (kern_forcesigexit && (SIGISMEMBER(td->td_sigmask, sig) || ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) { SIGDELSET(td->td_sigmask, sig); SIGDELSET(ps->ps_sigcatch, sig); SIGDELSET(ps->ps_sigignore, sig); ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL; } mtx_unlock(&ps->ps_mtx); p->p_code = code; /* XXX for core dump/debugger */ p->p_sig = sig; /* XXX to verify code */ tdsendsignal(p, td, sig, ksi); } PROC_UNLOCK(p); } static struct thread * sigtd(struct proc *p, int sig, int prop) { struct thread *td, *signal_td; PROC_LOCK_ASSERT(p, MA_OWNED); /* * Check if current thread can handle the signal without * switching context to another thread. */ if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig)) return (curthread); signal_td = NULL; FOREACH_THREAD_IN_PROC(p, td) { if (!SIGISMEMBER(td->td_sigmask, sig)) { signal_td = td; break; } } if (signal_td == NULL) signal_td = FIRST_THREAD_IN_PROC(p); return (signal_td); } /* * Send the signal to the process. If the signal has an action, the action * is usually performed by the target process rather than the caller; we add * the signal to the set of pending signals for the process. * * Exceptions: * o When a stop signal is sent to a sleeping process that takes the * default action, the process is stopped without awakening it. * o SIGCONT restarts stopped processes (or puts them back to sleep) * regardless of the signal action (eg, blocked or ignored). * * Other ignored signals are discarded immediately. * * NB: This function may be entered from the debugger via the "kill" DDB * command. There is little that can be done to mitigate the possibly messy * side effects of this unwise possibility. */ void kern_psignal(struct proc *p, int sig) { ksiginfo_t ksi; ksiginfo_init(&ksi); ksi.ksi_signo = sig; ksi.ksi_code = SI_KERNEL; (void) tdsendsignal(p, NULL, sig, &ksi); } int pksignal(struct proc *p, int sig, ksiginfo_t *ksi) { return (tdsendsignal(p, NULL, sig, ksi)); } /* Utility function for finding a thread to send signal event to. */ int sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd) { struct thread *td; if (sigev->sigev_notify == SIGEV_THREAD_ID) { td = tdfind(sigev->sigev_notify_thread_id, p->p_pid); if (td == NULL) return (ESRCH); *ttd = td; } else { *ttd = NULL; PROC_LOCK(p); } return (0); } void tdsignal(struct thread *td, int sig) { ksiginfo_t ksi; ksiginfo_init(&ksi); ksi.ksi_signo = sig; ksi.ksi_code = SI_KERNEL; (void) tdsendsignal(td->td_proc, td, sig, &ksi); } void tdksignal(struct thread *td, int sig, ksiginfo_t *ksi) { (void) tdsendsignal(td->td_proc, td, sig, ksi); } int tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi) { sig_t action; sigqueue_t *sigqueue; int prop; struct sigacts *ps; int intrval; int ret = 0; int wakeup_swapper; MPASS(td == NULL || p == td->td_proc); PROC_LOCK_ASSERT(p, MA_OWNED); if (!_SIG_VALID(sig)) panic("%s(): invalid signal %d", __func__, sig); KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__)); /* * IEEE Std 1003.1-2001: return success when killing a zombie. */ if (p->p_state == PRS_ZOMBIE) { if (ksi && (ksi->ksi_flags & KSI_INS)) ksiginfo_tryfree(ksi); return (ret); } ps = p->p_sigacts; KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig); prop = sigprop(sig); if (td == NULL) { td = sigtd(p, sig, prop); sigqueue = &p->p_sigqueue; } else sigqueue = &td->td_sigqueue; SDT_PROBE3(proc, , , signal__send, td, p, sig); /* * If the signal is being ignored, * then we forget about it immediately. * (Note: we don't set SIGCONT in ps_sigignore, * and if it is set to SIG_IGN, * action will be SIG_DFL here.) */ mtx_lock(&ps->ps_mtx); if (SIGISMEMBER(ps->ps_sigignore, sig)) { SDT_PROBE3(proc, , , signal__discard, td, p, sig); mtx_unlock(&ps->ps_mtx); if (ksi && (ksi->ksi_flags & KSI_INS)) ksiginfo_tryfree(ksi); return (ret); } if (SIGISMEMBER(td->td_sigmask, sig)) action = SIG_HOLD; else if (SIGISMEMBER(ps->ps_sigcatch, sig)) action = SIG_CATCH; else action = SIG_DFL; if (SIGISMEMBER(ps->ps_sigintr, sig)) intrval = EINTR; else intrval = ERESTART; mtx_unlock(&ps->ps_mtx); if (prop & SA_CONT) sigqueue_delete_stopmask_proc(p); else if (prop & SA_STOP) { /* * If sending a tty stop signal to a member of an orphaned * process group, discard the signal here if the action * is default; don't stop the process below if sleeping, * and don't clear any pending SIGCONT. */ if ((prop & SA_TTYSTOP) && (p->p_pgrp->pg_jobc == 0) && (action == SIG_DFL)) { if (ksi && (ksi->ksi_flags & KSI_INS)) ksiginfo_tryfree(ksi); return (ret); } sigqueue_delete_proc(p, SIGCONT); if (p->p_flag & P_CONTINUED) { p->p_flag &= ~P_CONTINUED; PROC_LOCK(p->p_pptr); sigqueue_take(p->p_ksi); PROC_UNLOCK(p->p_pptr); } } ret = sigqueue_add(sigqueue, sig, ksi); if (ret != 0) return (ret); signotify(td); /* * Defer further processing for signals which are held, * except that stopped processes must be continued by SIGCONT. */ if (action == SIG_HOLD && !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG))) return (ret); - /* - * SIGKILL: Remove procfs STOPEVENTs and ptrace events. - */ + + /* SIGKILL: Remove procfs STOPEVENTs. */ if (sig == SIGKILL) { - p->p_ptevents = 0; /* from procfs_ioctl.c: PIOCBIC */ p->p_stops = 0; /* from procfs_ioctl.c: PIOCCONT */ p->p_step = 0; wakeup(&p->p_step); } /* * Some signals have a process-wide effect and a per-thread * component. Most processing occurs when the process next * tries to cross the user boundary, however there are some * times when processing needs to be done immediately, such as * waking up threads so that they can cross the user boundary. * We try to do the per-process part here. */ if (P_SHOULDSTOP(p)) { KASSERT(!(p->p_flag & P_WEXIT), ("signal to stopped but exiting process")); if (sig == SIGKILL) { /* * If traced process is already stopped, * then no further action is necessary. */ if (p->p_flag & P_TRACED) goto out; /* * SIGKILL sets process running. * It will die elsewhere. * All threads must be restarted. */ p->p_flag &= ~P_STOPPED_SIG; goto runfast; } if (prop & SA_CONT) { /* * If traced process is already stopped, * then no further action is necessary. */ if (p->p_flag & P_TRACED) goto out; /* * If SIGCONT is default (or ignored), we continue the * process but don't leave the signal in sigqueue as * it has no further action. If SIGCONT is held, we * continue the process and leave the signal in * sigqueue. If the process catches SIGCONT, let it * handle the signal itself. If it isn't waiting on * an event, it goes back to run state. * Otherwise, process goes back to sleep state. */ p->p_flag &= ~P_STOPPED_SIG; PROC_SLOCK(p); if (p->p_numthreads == p->p_suspcount) { PROC_SUNLOCK(p); p->p_flag |= P_CONTINUED; p->p_xsig = SIGCONT; PROC_LOCK(p->p_pptr); childproc_continued(p); PROC_UNLOCK(p->p_pptr); PROC_SLOCK(p); } if (action == SIG_DFL) { thread_unsuspend(p); PROC_SUNLOCK(p); sigqueue_delete(sigqueue, sig); goto out; } if (action == SIG_CATCH) { /* * The process wants to catch it so it needs * to run at least one thread, but which one? */ PROC_SUNLOCK(p); goto runfast; } /* * The signal is not ignored or caught. */ thread_unsuspend(p); PROC_SUNLOCK(p); goto out; } if (prop & SA_STOP) { /* * If traced process is already stopped, * then no further action is necessary. */ if (p->p_flag & P_TRACED) goto out; /* * Already stopped, don't need to stop again * (If we did the shell could get confused). * Just make sure the signal STOP bit set. */ p->p_flag |= P_STOPPED_SIG; sigqueue_delete(sigqueue, sig); goto out; } /* * All other kinds of signals: * If a thread is sleeping interruptibly, simulate a * wakeup so that when it is continued it will be made * runnable and can look at the signal. However, don't make * the PROCESS runnable, leave it stopped. * It may run a bit until it hits a thread_suspend_check(). */ wakeup_swapper = 0; PROC_SLOCK(p); thread_lock(td); if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR)) wakeup_swapper = sleepq_abort(td, intrval); thread_unlock(td); PROC_SUNLOCK(p); if (wakeup_swapper) kick_proc0(); goto out; /* * Mutexes are short lived. Threads waiting on them will * hit thread_suspend_check() soon. */ } else if (p->p_state == PRS_NORMAL) { if (p->p_flag & P_TRACED || action == SIG_CATCH) { tdsigwakeup(td, sig, action, intrval); goto out; } MPASS(action == SIG_DFL); if (prop & SA_STOP) { if (p->p_flag & (P_PPWAIT|P_WEXIT)) goto out; p->p_flag |= P_STOPPED_SIG; p->p_xsig = sig; PROC_SLOCK(p); wakeup_swapper = sig_suspend_threads(td, p, 1); if (p->p_numthreads == p->p_suspcount) { /* * only thread sending signal to another * process can reach here, if thread is sending * signal to its process, because thread does * not suspend itself here, p_numthreads * should never be equal to p_suspcount. */ thread_stopped(p); PROC_SUNLOCK(p); sigqueue_delete_proc(p, p->p_xsig); } else PROC_SUNLOCK(p); if (wakeup_swapper) kick_proc0(); goto out; } } else { /* Not in "NORMAL" state. discard the signal. */ sigqueue_delete(sigqueue, sig); goto out; } /* * The process is not stopped so we need to apply the signal to all the * running threads. */ runfast: tdsigwakeup(td, sig, action, intrval); PROC_SLOCK(p); thread_unsuspend(p); PROC_SUNLOCK(p); out: /* If we jump here, proc slock should not be owned. */ PROC_SLOCK_ASSERT(p, MA_NOTOWNED); return (ret); } /* * The force of a signal has been directed against a single * thread. We need to see what we can do about knocking it * out of any sleep it may be in etc. */ static void tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval) { struct proc *p = td->td_proc; register int prop; int wakeup_swapper; wakeup_swapper = 0; PROC_LOCK_ASSERT(p, MA_OWNED); prop = sigprop(sig); PROC_SLOCK(p); thread_lock(td); /* * Bring the priority of a thread up if we want it to get * killed in this lifetime. Be careful to avoid bumping the * priority of the idle thread, since we still allow to signal * kernel processes. */ if (action == SIG_DFL && (prop & SA_KILL) != 0 && td->td_priority > PUSER && !TD_IS_IDLETHREAD(td)) sched_prio(td, PUSER); if (TD_ON_SLEEPQ(td)) { /* * If thread is sleeping uninterruptibly * we can't interrupt the sleep... the signal will * be noticed when the process returns through * trap() or syscall(). */ if ((td->td_flags & TDF_SINTR) == 0) goto out; /* * If SIGCONT is default (or ignored) and process is * asleep, we are finished; the process should not * be awakened. */ if ((prop & SA_CONT) && action == SIG_DFL) { thread_unlock(td); PROC_SUNLOCK(p); sigqueue_delete(&p->p_sigqueue, sig); /* * It may be on either list in this state. * Remove from both for now. */ sigqueue_delete(&td->td_sigqueue, sig); return; } /* * Don't awaken a sleeping thread for SIGSTOP if the * STOP signal is deferred. */ if ((prop & SA_STOP) != 0 && (td->td_flags & (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY) goto out; /* * Give low priority threads a better chance to run. */ if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td)) sched_prio(td, PUSER); wakeup_swapper = sleepq_abort(td, intrval); } else { /* * Other states do nothing with the signal immediately, * other than kicking ourselves if we are running. * It will either never be noticed, or noticed very soon. */ #ifdef SMP if (TD_IS_RUNNING(td) && td != curthread) forward_signal(td); #endif } out: PROC_SUNLOCK(p); thread_unlock(td); if (wakeup_swapper) kick_proc0(); } static int sig_suspend_threads(struct thread *td, struct proc *p, int sending) { struct thread *td2; int wakeup_swapper; PROC_LOCK_ASSERT(p, MA_OWNED); PROC_SLOCK_ASSERT(p, MA_OWNED); wakeup_swapper = 0; FOREACH_THREAD_IN_PROC(p, td2) { thread_lock(td2); td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK; if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) && (td2->td_flags & TDF_SINTR)) { if (td2->td_flags & TDF_SBDRY) { /* * Once a thread is asleep with * TDF_SBDRY and without TDF_SERESTART * or TDF_SEINTR set, it should never * become suspended due to this check. */ KASSERT(!TD_IS_SUSPENDED(td2), ("thread with deferred stops suspended")); if (TD_SBDRY_INTR(td2) && sending) { wakeup_swapper |= sleepq_abort(td2, TD_SBDRY_ERRNO(td2)); } } else if (!TD_IS_SUSPENDED(td2)) { thread_suspend_one(td2); } } else if (!TD_IS_SUSPENDED(td2)) { if (sending || td != td2) td2->td_flags |= TDF_ASTPENDING; #ifdef SMP if (TD_IS_RUNNING(td2) && td2 != td) forward_signal(td2); #endif } thread_unlock(td2); } return (wakeup_swapper); } /* * Stop the process for an event deemed interesting to the debugger. If si is * non-NULL, this is a signal exchange; the new signal requested by the * debugger will be returned for handling. If si is NULL, this is some other * type of interesting event. The debugger may request a signal be delivered in * that case as well, however it will be deferred until it can be handled. */ int ptracestop(struct thread *td, int sig, ksiginfo_t *si) { struct proc *p = td->td_proc; struct thread *td2; ksiginfo_t ksi; int prop; PROC_LOCK_ASSERT(p, MA_OWNED); KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process")); WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, &p->p_mtx.lock_object, "Stopping for traced signal"); td->td_xsig = sig; if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) { td->td_dbgflags |= TDB_XSIG; CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d", td->td_tid, p->p_pid, td->td_dbgflags, sig); PROC_SLOCK(p); while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) { if (P_KILLED(p)) { /* * Ensure that, if we've been PT_KILLed, the * exit status reflects that. Another thread * may also be in ptracestop(), having just * received the SIGKILL, but this thread was * unsuspended first. */ td->td_dbgflags &= ~TDB_XSIG; td->td_xsig = SIGKILL; p->p_ptevents = 0; break; } if (p->p_flag & P_SINGLE_EXIT && !(td->td_dbgflags & TDB_EXIT)) { /* * Ignore ptrace stops except for thread exit * events when the process exits. */ td->td_dbgflags &= ~TDB_XSIG; PROC_SUNLOCK(p); return (0); } /* * Make wait(2) work. Ensure that right after the * attach, the thread which was decided to become the * leader of attach gets reported to the waiter. * Otherwise, just avoid overwriting another thread's * assignment to p_xthread. If another thread has * already set p_xthread, the current thread will get * a chance to report itself upon the next iteration. */ if ((td->td_dbgflags & TDB_FSTP) != 0 || ((p->p_flag2 & P2_PTRACE_FSTP) == 0 && p->p_xthread == NULL)) { p->p_xsig = sig; p->p_xthread = td; td->td_dbgflags &= ~TDB_FSTP; p->p_flag2 &= ~P2_PTRACE_FSTP; p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE; sig_suspend_threads(td, p, 0); } if ((td->td_dbgflags & TDB_STOPATFORK) != 0) { td->td_dbgflags &= ~TDB_STOPATFORK; cv_broadcast(&p->p_dbgwait); } stopme: thread_suspend_switch(td, p); if (p->p_xthread == td) p->p_xthread = NULL; if (!(p->p_flag & P_TRACED)) break; if (td->td_dbgflags & TDB_SUSPEND) { if (p->p_flag & P_SINGLE_EXIT) break; goto stopme; } } PROC_SUNLOCK(p); } if (si != NULL && sig == td->td_xsig) { /* Parent wants us to take the original signal unchanged. */ si->ksi_flags |= KSI_HEAD; if (sigqueue_add(&td->td_sigqueue, sig, si) != 0) si->ksi_signo = 0; } else if (td->td_xsig != 0) { /* * If parent wants us to take a new signal, then it will leave * it in td->td_xsig; otherwise we just look for signals again. */ ksiginfo_init(&ksi); ksi.ksi_signo = td->td_xsig; ksi.ksi_flags |= KSI_PTRACE; prop = sigprop(td->td_xsig); td2 = sigtd(p, td->td_xsig, prop); tdsendsignal(p, td2, td->td_xsig, &ksi); if (td != td2) return (0); } return (td->td_xsig); } static void reschedule_signals(struct proc *p, sigset_t block, int flags) { struct sigacts *ps; struct thread *td; int sig; PROC_LOCK_ASSERT(p, MA_OWNED); ps = p->p_sigacts; mtx_assert(&ps->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ? MA_OWNED : MA_NOTOWNED); if (SIGISEMPTY(p->p_siglist)) return; SIGSETAND(block, p->p_siglist); while ((sig = sig_ffs(&block)) != 0) { SIGDELSET(block, sig); td = sigtd(p, sig, 0); signotify(td); if (!(flags & SIGPROCMASK_PS_LOCKED)) mtx_lock(&ps->ps_mtx); if (p->p_flag & P_TRACED || SIGISMEMBER(ps->ps_sigcatch, sig)) tdsigwakeup(td, sig, SIG_CATCH, (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR : ERESTART)); if (!(flags & SIGPROCMASK_PS_LOCKED)) mtx_unlock(&ps->ps_mtx); } } void tdsigcleanup(struct thread *td) { struct proc *p; sigset_t unblocked; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); sigqueue_flush(&td->td_sigqueue); if (p->p_numthreads == 1) return; /* * Since we cannot handle signals, notify signal post code * about this by filling the sigmask. * * Also, if needed, wake up thread(s) that do not block the * same signals as the exiting thread, since the thread might * have been selected for delivery and woken up. */ SIGFILLSET(unblocked); SIGSETNAND(unblocked, td->td_sigmask); SIGFILLSET(td->td_sigmask); reschedule_signals(p, unblocked, 0); } static int sigdeferstop_curr_flags(int cflags) { MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 || (cflags & TDF_SBDRY) != 0); return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)); } /* * Defer the delivery of SIGSTOP for the current thread, according to * the requested mode. Returns previous flags, which must be restored * by sigallowstop(). * * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and * cleared by the current thread, which allow the lock-less read-only * accesses below. */ int sigdeferstop_impl(int mode) { struct thread *td; int cflags, nflags; td = curthread; cflags = sigdeferstop_curr_flags(td->td_flags); switch (mode) { case SIGDEFERSTOP_NOP: nflags = cflags; break; case SIGDEFERSTOP_OFF: nflags = 0; break; case SIGDEFERSTOP_SILENT: nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART); break; case SIGDEFERSTOP_EINTR: nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART; break; case SIGDEFERSTOP_ERESTART: nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR; break; default: panic("sigdeferstop: invalid mode %x", mode); break; } if (cflags == nflags) return (SIGDEFERSTOP_VAL_NCHG); thread_lock(td); td->td_flags = (td->td_flags & ~cflags) | nflags; thread_unlock(td); return (cflags); } /* * Restores the STOP handling mode, typically permitting the delivery * of SIGSTOP for the current thread. This does not immediately * suspend if a stop was posted. Instead, the thread will suspend * either via ast() or a subsequent interruptible sleep. */ void sigallowstop_impl(int prev) { struct thread *td; int cflags; KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop")); KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0, ("sigallowstop: incorrect previous mode %x", prev)); td = curthread; cflags = sigdeferstop_curr_flags(td->td_flags); if (cflags != prev) { thread_lock(td); td->td_flags = (td->td_flags & ~cflags) | prev; thread_unlock(td); } } /* * If the current process has received a signal (should be caught or cause * termination, should interrupt current syscall), return the signal number. * Stop signals with default action are processed immediately, then cleared; * they aren't returned. This is checked after each entry to the system for * a syscall or trap (though this can usually be done without calling issignal * by checking the pending signal masks in cursig.) The normal call * sequence is * * while (sig = cursig(curthread)) * postsig(sig); */ static int issignal(struct thread *td) { struct proc *p; struct sigacts *ps; struct sigqueue *queue; sigset_t sigpending; int sig, prop; p = td->td_proc; ps = p->p_sigacts; mtx_assert(&ps->ps_mtx, MA_OWNED); PROC_LOCK_ASSERT(p, MA_OWNED); for (;;) { int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG); sigpending = td->td_sigqueue.sq_signals; SIGSETOR(sigpending, p->p_sigqueue.sq_signals); SIGSETNAND(sigpending, td->td_sigmask); if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags & (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY) SIG_STOPSIGMASK(sigpending); if (SIGISEMPTY(sigpending)) /* no signal to send */ return (0); if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED && (p->p_flag2 & P2_PTRACE_FSTP) != 0 && SIGISMEMBER(sigpending, SIGSTOP)) { /* * If debugger just attached, always consume * SIGSTOP from ptrace(PT_ATTACH) first, to * execute the debugger attach ritual in * order. */ sig = SIGSTOP; td->td_dbgflags |= TDB_FSTP; } else { sig = sig_ffs(&sigpending); } if (p->p_stops & S_SIG) { mtx_unlock(&ps->ps_mtx); stopevent(p, S_SIG, sig); mtx_lock(&ps->ps_mtx); } /* * We should see pending but ignored signals * only if P_TRACED was on when they were posted. */ if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) { sigqueue_delete(&td->td_sigqueue, sig); sigqueue_delete(&p->p_sigqueue, sig); continue; } if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) { /* * If traced, always stop. * Remove old signal from queue before the stop. * XXX shrug off debugger, it causes siginfo to * be thrown away. */ queue = &td->td_sigqueue; td->td_dbgksi.ksi_signo = 0; if (sigqueue_get(queue, sig, &td->td_dbgksi) == 0) { queue = &p->p_sigqueue; sigqueue_get(queue, sig, &td->td_dbgksi); } mtx_unlock(&ps->ps_mtx); sig = ptracestop(td, sig, &td->td_dbgksi); mtx_lock(&ps->ps_mtx); /* * Keep looking if the debugger discarded the signal * or replaced it with a masked signal. * * If the traced bit got turned off, go back up * to the top to rescan signals. This ensures * that p_sig* and p_sigact are consistent. */ if (sig == 0 || (p->p_flag & P_TRACED) == 0) continue; } prop = sigprop(sig); /* * Decide whether the signal should be returned. * Return the signal's number, or fall through * to clear it from the pending mask. */ switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) { case (intptr_t)SIG_DFL: /* * Don't take default actions on system processes. */ if (p->p_pid <= 1) { #ifdef DIAGNOSTIC /* * Are you sure you want to ignore SIGSEGV * in init? XXX */ printf("Process (pid %lu) got signal %d\n", (u_long)p->p_pid, sig); #endif break; /* == ignore */ } /* - * If there is a pending stop signal to process - * with default action, stop here, - * then clear the signal. However, - * if process is member of an orphaned - * process group, ignore tty stop signals. + * If there is a pending stop signal to process with + * default action, stop here, then clear the signal. + * Traced or exiting processes should ignore stops. + * Additionally, a member of an orphaned process group + * should ignore tty stops. */ if (prop & SA_STOP) { - if (p->p_flag & (P_TRACED|P_WEXIT) || + if (p->p_flag & + (P_TRACED | P_WEXIT | P_SINGLE_EXIT) || (p->p_pgrp->pg_jobc == 0 && prop & SA_TTYSTOP)) break; /* == ignore */ if (TD_SBDRY_INTR(td)) { KASSERT((td->td_flags & TDF_SBDRY) != 0, ("lost TDF_SBDRY")); return (-1); } mtx_unlock(&ps->ps_mtx); WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, &p->p_mtx.lock_object, "Catching SIGSTOP"); sigqueue_delete(&td->td_sigqueue, sig); sigqueue_delete(&p->p_sigqueue, sig); p->p_flag |= P_STOPPED_SIG; p->p_xsig = sig; PROC_SLOCK(p); sig_suspend_threads(td, p, 0); thread_suspend_switch(td, p); PROC_SUNLOCK(p); mtx_lock(&ps->ps_mtx); goto next; } else if (prop & SA_IGNORE) { /* * Except for SIGCONT, shouldn't get here. * Default action is to ignore; drop it. */ break; /* == ignore */ } else return (sig); /*NOTREACHED*/ case (intptr_t)SIG_IGN: /* * Masking above should prevent us ever trying * to take action on an ignored signal other * than SIGCONT, unless process is traced. */ if ((prop & SA_CONT) == 0 && (p->p_flag & P_TRACED) == 0) printf("issignal\n"); break; /* == ignore */ default: /* * This signal has an action, let * postsig() process it. */ return (sig); } sigqueue_delete(&td->td_sigqueue, sig); /* take the signal! */ sigqueue_delete(&p->p_sigqueue, sig); next:; } /* NOTREACHED */ } void thread_stopped(struct proc *p) { int n; PROC_LOCK_ASSERT(p, MA_OWNED); PROC_SLOCK_ASSERT(p, MA_OWNED); n = p->p_suspcount; if (p == curproc) n++; if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) { PROC_SUNLOCK(p); p->p_flag &= ~P_WAITED; PROC_LOCK(p->p_pptr); childproc_stopped(p, (p->p_flag & P_TRACED) ? CLD_TRAPPED : CLD_STOPPED); PROC_UNLOCK(p->p_pptr); PROC_SLOCK(p); } } /* * Take the action for the specified signal * from the current set of pending signals. */ int postsig(sig) register int sig; { struct thread *td = curthread; register struct proc *p = td->td_proc; struct sigacts *ps; sig_t action; ksiginfo_t ksi; sigset_t returnmask; KASSERT(sig != 0, ("postsig")); PROC_LOCK_ASSERT(p, MA_OWNED); ps = p->p_sigacts; mtx_assert(&ps->ps_mtx, MA_OWNED); ksiginfo_init(&ksi); if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 && sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0) return (0); ksi.ksi_signo = sig; if (ksi.ksi_code == SI_TIMER) itimer_accept(p, ksi.ksi_timerid, &ksi); action = ps->ps_sigact[_SIG_IDX(sig)]; #ifdef KTRACE if (KTRPOINT(td, KTR_PSIG)) ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ? &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code); #endif if (p->p_stops & S_SIG) { mtx_unlock(&ps->ps_mtx); stopevent(p, S_SIG, sig); mtx_lock(&ps->ps_mtx); } if (action == SIG_DFL) { /* * Default action, where the default is to kill * the process. (Other cases were ignored above.) */ mtx_unlock(&ps->ps_mtx); sigexit(td, sig); /* NOTREACHED */ } else { /* * If we get here, the signal must be caught. */ KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig), ("postsig action")); /* * Set the new mask value and also defer further * occurrences of this signal. * * Special case: user has done a sigsuspend. Here the * current mask is not of interest, but rather the * mask from before the sigsuspend is what we want * restored after the signal processing is completed. */ if (td->td_pflags & TDP_OLDMASK) { returnmask = td->td_oldsigmask; td->td_pflags &= ~TDP_OLDMASK; } else returnmask = td->td_sigmask; if (p->p_sig == sig) { p->p_code = 0; p->p_sig = 0; } (*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask); postsig_done(sig, td, ps); } return (1); } /* * Kill the current process for stated reason. */ void killproc(p, why) struct proc *p; char *why; { PROC_LOCK_ASSERT(p, MA_OWNED); CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid, p->p_comm); log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why); p->p_flag |= P_WKILLED; kern_psignal(p, SIGKILL); } /* * Force the current process to exit with the specified signal, dumping core * if appropriate. We bypass the normal tests for masked and caught signals, * allowing unrecoverable failures to terminate the process without changing * signal state. Mark the accounting record with the signal termination. * If dumping core, save the signal number for the debugger. Calls exit and * does not return. */ void sigexit(td, sig) struct thread *td; int sig; { struct proc *p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); p->p_acflag |= AXSIG; /* * We must be single-threading to generate a core dump. This * ensures that the registers in the core file are up-to-date. * Also, the ELF dump handler assumes that the thread list doesn't * change out from under it. * * XXX If another thread attempts to single-thread before us * (e.g. via fork()), we won't get a dump at all. */ if ((sigprop(sig) & SA_CORE) && thread_single(p, SINGLE_NO_EXIT) == 0) { p->p_sig = sig; /* * Log signals which would cause core dumps * (Log as LOG_INFO to appease those who don't want * these messages.) * XXX : Todo, as well as euid, write out ruid too * Note that coredump() drops proc lock. */ if (coredump(td) == 0) sig |= WCOREFLAG; if (kern_logsigexit) log(LOG_INFO, "pid %d (%s), uid %d: exited on signal %d%s\n", p->p_pid, p->p_comm, td->td_ucred ? td->td_ucred->cr_uid : -1, sig &~ WCOREFLAG, sig & WCOREFLAG ? " (core dumped)" : ""); } else PROC_UNLOCK(p); exit1(td, 0, sig); /* NOTREACHED */ } /* * Send queued SIGCHLD to parent when child process's state * is changed. */ static void sigparent(struct proc *p, int reason, int status) { PROC_LOCK_ASSERT(p, MA_OWNED); PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED); if (p->p_ksi != NULL) { p->p_ksi->ksi_signo = SIGCHLD; p->p_ksi->ksi_code = reason; p->p_ksi->ksi_status = status; p->p_ksi->ksi_pid = p->p_pid; p->p_ksi->ksi_uid = p->p_ucred->cr_ruid; if (KSI_ONQ(p->p_ksi)) return; } pksignal(p->p_pptr, SIGCHLD, p->p_ksi); } static void childproc_jobstate(struct proc *p, int reason, int sig) { struct sigacts *ps; PROC_LOCK_ASSERT(p, MA_OWNED); PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED); /* * Wake up parent sleeping in kern_wait(), also send * SIGCHLD to parent, but SIGCHLD does not guarantee * that parent will awake, because parent may masked * the signal. */ p->p_pptr->p_flag |= P_STATCHILD; wakeup(p->p_pptr); ps = p->p_pptr->p_sigacts; mtx_lock(&ps->ps_mtx); if ((ps->ps_flag & PS_NOCLDSTOP) == 0) { mtx_unlock(&ps->ps_mtx); sigparent(p, reason, sig); } else mtx_unlock(&ps->ps_mtx); } void childproc_stopped(struct proc *p, int reason) { childproc_jobstate(p, reason, p->p_xsig); } void childproc_continued(struct proc *p) { childproc_jobstate(p, CLD_CONTINUED, SIGCONT); } void childproc_exited(struct proc *p) { int reason, status; if (WCOREDUMP(p->p_xsig)) { reason = CLD_DUMPED; status = WTERMSIG(p->p_xsig); } else if (WIFSIGNALED(p->p_xsig)) { reason = CLD_KILLED; status = WTERMSIG(p->p_xsig); } else { reason = CLD_EXITED; status = p->p_xexit; } /* * XXX avoid calling wakeup(p->p_pptr), the work is * done in exit1(). */ sigparent(p, reason, status); } /* * We only have 1 character for the core count in the format * string, so the range will be 0-9 */ #define MAX_NUM_CORES 10 static int num_cores = 5; static int sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS) { int error; int new_val; new_val = num_cores; error = sysctl_handle_int(oidp, &new_val, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (new_val > MAX_NUM_CORES) new_val = MAX_NUM_CORES; if (new_val < 0) new_val = 0; num_cores = new_val; return (0); } SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW, 0, sizeof(int), sysctl_debug_num_cores_check, "I", ""); #define GZ_SUFFIX ".gz" #ifdef GZIO static int compress_user_cores = 1; SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RWTUN, &compress_user_cores, 0, "Compression of user corefiles"); int compress_user_cores_gzlevel = 6; SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RWTUN, &compress_user_cores_gzlevel, 0, "Corefile gzip compression level"); #else static int compress_user_cores = 0; #endif /* * Protect the access to corefilename[] by allproc_lock. */ #define corefilename_lock allproc_lock static char corefilename[MAXPATHLEN] = {"%N.core"}; TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename)); static int sysctl_kern_corefile(SYSCTL_HANDLER_ARGS) { int error; sx_xlock(&corefilename_lock); error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename), req); sx_xunlock(&corefilename_lock); return (error); } SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A", "Process corefile name format string"); /* * corefile_open(comm, uid, pid, td, compress, vpp, namep) * Expand the name described in corefilename, using name, uid, and pid * and open/create core file. * corefilename is a printf-like string, with three format specifiers: * %N name of process ("name") * %P process id (pid) * %U user id (uid) * For example, "%N.core" is the default; they can be disabled completely * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P". * This is controlled by the sysctl variable kern.corefile (see above). */ static int corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td, int compress, struct vnode **vpp, char **namep) { struct nameidata nd; struct sbuf sb; const char *format; char *hostname, *name; int indexpos, i, error, cmode, flags, oflags; hostname = NULL; format = corefilename; name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO); indexpos = -1; (void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN); sx_slock(&corefilename_lock); for (i = 0; format[i] != '\0'; i++) { switch (format[i]) { case '%': /* Format character */ i++; switch (format[i]) { case '%': sbuf_putc(&sb, '%'); break; case 'H': /* hostname */ if (hostname == NULL) { hostname = malloc(MAXHOSTNAMELEN, M_TEMP, M_WAITOK); } getcredhostname(td->td_ucred, hostname, MAXHOSTNAMELEN); sbuf_printf(&sb, "%s", hostname); break; case 'I': /* autoincrementing index */ sbuf_printf(&sb, "0"); indexpos = sbuf_len(&sb) - 1; break; case 'N': /* process name */ sbuf_printf(&sb, "%s", comm); break; case 'P': /* process id */ sbuf_printf(&sb, "%u", pid); break; case 'U': /* user id */ sbuf_printf(&sb, "%u", uid); break; default: log(LOG_ERR, "Unknown format character %c in " "corename `%s'\n", format[i], format); break; } break; default: sbuf_putc(&sb, format[i]); break; } } sx_sunlock(&corefilename_lock); free(hostname, M_TEMP); if (compress) sbuf_printf(&sb, GZ_SUFFIX); if (sbuf_error(&sb) != 0) { log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too " "long\n", (long)pid, comm, (u_long)uid); sbuf_delete(&sb); free(name, M_TEMP); return (ENOMEM); } sbuf_finish(&sb); sbuf_delete(&sb); cmode = S_IRUSR | S_IWUSR; oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE | (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0); /* * If the core format has a %I in it, then we need to check * for existing corefiles before returning a name. * To do this we iterate over 0..num_cores to find a * non-existing core file name to use. */ if (indexpos != -1) { for (i = 0; i < num_cores; i++) { flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW; name[indexpos] = '0' + i; NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td); error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred, NULL); if (error) { if (error == EEXIST) continue; log(LOG_ERR, "pid %d (%s), uid (%u): Path `%s' failed " "on initial open test, error = %d\n", pid, comm, uid, name, error); } goto out; } } flags = O_CREAT | FWRITE | O_NOFOLLOW; NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td); error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred, NULL); out: if (error) { #ifdef AUDIT audit_proc_coredump(td, name, error); #endif free(name, M_TEMP); return (error); } NDFREE(&nd, NDF_ONLY_PNBUF); *vpp = nd.ni_vp; *namep = name; return (0); } static int coredump_sanitise_path(const char *path) { size_t i; /* * Only send a subset of ASCII to devd(8) because it * might pass these strings to sh -c. */ for (i = 0; path[i]; i++) if (!(isalpha(path[i]) || isdigit(path[i])) && path[i] != '/' && path[i] != '.' && path[i] != '-') return (0); return (1); } /* * Dump a process' core. The main routine does some * policy checking, and creates the name of the coredump; * then it passes on a vnode and a size limit to the process-specific * coredump routine if there is one; if there _is not_ one, it returns * ENOSYS; otherwise it returns the error from the process-specific routine. */ static int coredump(struct thread *td) { struct proc *p = td->td_proc; struct ucred *cred = td->td_ucred; struct vnode *vp; struct flock lf; struct vattr vattr; int error, error1, locked; char *name; /* name of corefile */ void *rl_cookie; off_t limit; char *data = NULL; char *fullpath, *freepath = NULL; size_t len; static const char comm_name[] = "comm="; static const char core_name[] = "core="; PROC_LOCK_ASSERT(p, MA_OWNED); MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td); _STOPEVENT(p, S_CORE, 0); if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) || (p->p_flag2 & P2_NOTRACE) != 0) { PROC_UNLOCK(p); return (EFAULT); } /* * Note that the bulk of limit checking is done after * the corefile is created. The exception is if the limit * for corefiles is 0, in which case we don't bother * creating the corefile at all. This layout means that * a corefile is truncated instead of not being created, * if it is larger than the limit. */ limit = (off_t)lim_cur(td, RLIMIT_CORE); if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) { PROC_UNLOCK(p); return (EFBIG); } PROC_UNLOCK(p); error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td, compress_user_cores, &vp, &name); if (error != 0) return (error); /* * Don't dump to non-regular files or files with links. * Do not dump into system files. */ if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 || vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0) { VOP_UNLOCK(vp, 0); error = EFAULT; goto out; } VOP_UNLOCK(vp, 0); /* Postpone other writers, including core dumps of other processes. */ rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); lf.l_whence = SEEK_SET; lf.l_start = 0; lf.l_len = 0; lf.l_type = F_WRLCK; locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0); VATTR_NULL(&vattr); vattr.va_size = 0; if (set_core_nodump_flag) vattr.va_flags = UF_NODUMP; vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); VOP_SETATTR(vp, &vattr, cred); VOP_UNLOCK(vp, 0); PROC_LOCK(p); p->p_acflag |= ACORE; PROC_UNLOCK(p); if (p->p_sysent->sv_coredump != NULL) { error = p->p_sysent->sv_coredump(td, vp, limit, compress_user_cores ? IMGACT_CORE_COMPRESS : 0); } else { error = ENOSYS; } if (locked) { lf.l_type = F_UNLCK; VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK); } vn_rangelock_unlock(vp, rl_cookie); /* * Notify the userland helper that a process triggered a core dump. * This allows the helper to run an automated debugging session. */ if (error != 0 || coredump_devctl == 0) goto out; len = MAXPATHLEN * 2 + sizeof(comm_name) - 1 + sizeof(' ') + sizeof(core_name) - 1; data = malloc(len, M_TEMP, M_WAITOK); if (vn_fullpath_global(td, p->p_textvp, &fullpath, &freepath) != 0) goto out; if (!coredump_sanitise_path(fullpath)) goto out; snprintf(data, len, "%s%s ", comm_name, fullpath); free(freepath, M_TEMP); freepath = NULL; if (vn_fullpath_global(td, vp, &fullpath, &freepath) != 0) goto out; if (!coredump_sanitise_path(fullpath)) goto out; strlcat(data, core_name, len); strlcat(data, fullpath, len); devctl_notify("kernel", "signal", "coredump", data); out: error1 = vn_close(vp, FWRITE, cred, td); if (error == 0) error = error1; #ifdef AUDIT audit_proc_coredump(td, name, error); #endif free(freepath, M_TEMP); free(data, M_TEMP); free(name, M_TEMP); return (error); } /* * Nonexistent system call-- signal process (may want to handle it). Flag * error in case process won't see signal immediately (blocked or ignored). */ #ifndef _SYS_SYSPROTO_H_ struct nosys_args { int dummy; }; #endif /* ARGSUSED */ int nosys(td, args) struct thread *td; struct nosys_args *args; { struct proc *p = td->td_proc; PROC_LOCK(p); tdsignal(td, SIGSYS); PROC_UNLOCK(p); return (ENOSYS); } /* * Send a SIGIO or SIGURG signal to a process or process group using stored * credentials rather than those of the current process. */ void pgsigio(sigiop, sig, checkctty) struct sigio **sigiop; int sig, checkctty; { ksiginfo_t ksi; struct sigio *sigio; ksiginfo_init(&ksi); ksi.ksi_signo = sig; ksi.ksi_code = SI_KERNEL; SIGIO_LOCK(); sigio = *sigiop; if (sigio == NULL) { SIGIO_UNLOCK(); return; } if (sigio->sio_pgid > 0) { PROC_LOCK(sigio->sio_proc); if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred)) kern_psignal(sigio->sio_proc, sig); PROC_UNLOCK(sigio->sio_proc); } else if (sigio->sio_pgid < 0) { struct proc *p; PGRP_LOCK(sigio->sio_pgrp); LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) { PROC_LOCK(p); if (p->p_state == PRS_NORMAL && CANSIGIO(sigio->sio_ucred, p->p_ucred) && (checkctty == 0 || (p->p_flag & P_CONTROLT))) kern_psignal(p, sig); PROC_UNLOCK(p); } PGRP_UNLOCK(sigio->sio_pgrp); } SIGIO_UNLOCK(); } static int filt_sigattach(struct knote *kn) { struct proc *p = curproc; kn->kn_ptr.p_proc = p; kn->kn_flags |= EV_CLEAR; /* automatically set */ knlist_add(p->p_klist, kn, 0); return (0); } static void filt_sigdetach(struct knote *kn) { struct proc *p = kn->kn_ptr.p_proc; knlist_remove(p->p_klist, kn, 0); } /* * signal knotes are shared with proc knotes, so we apply a mask to * the hint in order to differentiate them from process hints. This * could be avoided by using a signal-specific knote list, but probably * isn't worth the trouble. */ static int filt_signal(struct knote *kn, long hint) { if (hint & NOTE_SIGNAL) { hint &= ~NOTE_SIGNAL; if (kn->kn_id == hint) kn->kn_data++; } return (kn->kn_data != 0); } struct sigacts * sigacts_alloc(void) { struct sigacts *ps; ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO); refcount_init(&ps->ps_refcnt, 1); mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF); return (ps); } void sigacts_free(struct sigacts *ps) { if (refcount_release(&ps->ps_refcnt) == 0) return; mtx_destroy(&ps->ps_mtx); free(ps, M_SUBPROC); } struct sigacts * sigacts_hold(struct sigacts *ps) { refcount_acquire(&ps->ps_refcnt); return (ps); } void sigacts_copy(struct sigacts *dest, struct sigacts *src) { KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest")); mtx_lock(&src->ps_mtx); bcopy(src, dest, offsetof(struct sigacts, ps_refcnt)); mtx_unlock(&src->ps_mtx); } int sigacts_shared(struct sigacts *ps) { return (ps->ps_refcnt > 1); } Index: stable/11/tests/sys/kern/ptrace_test.c =================================================================== --- stable/11/tests/sys/kern/ptrace_test.c (revision 315962) +++ stable/11/tests/sys/kern/ptrace_test.c (revision 315963) @@ -1,2867 +1,3077 @@ /*- * Copyright (c) 2015 John Baldwin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include +#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * A variant of ATF_REQUIRE that is suitable for use in child * processes. This only works if the parent process is tripped up by * the early exit and fails some requirement itself. */ #define CHILD_REQUIRE(exp) do { \ if (!(exp)) \ child_fail_require(__FILE__, __LINE__, \ #exp " not met"); \ } while (0) static __dead2 void child_fail_require(const char *file, int line, const char *str) { char buf[128]; snprintf(buf, sizeof(buf), "%s:%d: %s\n", file, line, str); write(2, buf, strlen(buf)); _exit(32); } static void trace_me(void) { /* Attach the parent process as a tracer of this process. */ CHILD_REQUIRE(ptrace(PT_TRACE_ME, 0, NULL, 0) != -1); /* Trigger a stop. */ raise(SIGSTOP); } static void attach_child(pid_t pid) { pid_t wpid; int status; ATF_REQUIRE(ptrace(PT_ATTACH, pid, NULL, 0) == 0); wpid = waitpid(pid, &status, 0); ATF_REQUIRE(wpid == pid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); } static void wait_for_zombie(pid_t pid) { /* * Wait for a process to exit. This is kind of gross, but * there is not a better way. */ for (;;) { struct kinfo_proc kp; size_t len; int mib[4]; mib[0] = CTL_KERN; mib[1] = KERN_PROC; mib[2] = KERN_PROC_PID; mib[3] = pid; len = sizeof(kp); if (sysctl(mib, nitems(mib), &kp, &len, NULL, 0) == -1) { /* The KERN_PROC_PID sysctl fails for zombies. */ ATF_REQUIRE(errno == ESRCH); break; } usleep(5000); } } /* * Verify that a parent debugger process "sees" the exit of a debugged * process exactly once when attached via PT_TRACE_ME. */ ATF_TC_WITHOUT_HEAD(ptrace__parent_wait_after_trace_me); ATF_TC_BODY(ptrace__parent_wait_after_trace_me, tc) { pid_t child, wpid; int status; ATF_REQUIRE((child = fork()) != -1); if (child == 0) { /* Child process. */ trace_me(); _exit(1); } /* Parent process. */ /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(child, &status, 0); ATF_REQUIRE(wpid == child); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, child, (caddr_t)1, 0) != -1); /* The second wait() should report the exit status. */ wpid = waitpid(child, &status, 0); ATF_REQUIRE(wpid == child); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); /* The child should no longer exist. */ wpid = waitpid(child, &status, 0); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that a parent debugger process "sees" the exit of a debugged * process exactly once when attached via PT_ATTACH. */ ATF_TC_WITHOUT_HEAD(ptrace__parent_wait_after_attach); ATF_TC_BODY(ptrace__parent_wait_after_attach, tc) { pid_t child, wpid; int cpipe[2], status; char c; ATF_REQUIRE(pipe(cpipe) == 0); ATF_REQUIRE((child = fork()) != -1); if (child == 0) { /* Child process. */ close(cpipe[0]); /* Wait for the parent to attach. */ CHILD_REQUIRE(read(cpipe[1], &c, sizeof(c)) == 0); _exit(1); } close(cpipe[1]); /* Parent process. */ /* Attach to the child process. */ attach_child(child); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, child, (caddr_t)1, 0) != -1); /* Signal the child to exit. */ close(cpipe[0]); /* The second wait() should report the exit status. */ wpid = waitpid(child, &status, 0); ATF_REQUIRE(wpid == child); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); /* The child should no longer exist. */ wpid = waitpid(child, &status, 0); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that a parent process "sees" the exit of a debugged process only * after the debugger has seen it. */ ATF_TC_WITHOUT_HEAD(ptrace__parent_sees_exit_after_child_debugger); ATF_TC_BODY(ptrace__parent_sees_exit_after_child_debugger, tc) { pid_t child, debugger, wpid; int cpipe[2], dpipe[2], status; char c; ATF_REQUIRE(pipe(cpipe) == 0); ATF_REQUIRE((child = fork()) != -1); if (child == 0) { /* Child process. */ close(cpipe[0]); /* Wait for parent to be ready. */ CHILD_REQUIRE(read(cpipe[1], &c, sizeof(c)) == sizeof(c)); _exit(1); } close(cpipe[1]); ATF_REQUIRE(pipe(dpipe) == 0); ATF_REQUIRE((debugger = fork()) != -1); if (debugger == 0) { /* Debugger process. */ close(dpipe[0]); CHILD_REQUIRE(ptrace(PT_ATTACH, child, NULL, 0) != -1); wpid = waitpid(child, &status, 0); CHILD_REQUIRE(wpid == child); CHILD_REQUIRE(WIFSTOPPED(status)); CHILD_REQUIRE(WSTOPSIG(status) == SIGSTOP); CHILD_REQUIRE(ptrace(PT_CONTINUE, child, (caddr_t)1, 0) != -1); /* Signal parent that debugger is attached. */ CHILD_REQUIRE(write(dpipe[1], &c, sizeof(c)) == sizeof(c)); /* Wait for parent's failed wait. */ CHILD_REQUIRE(read(dpipe[1], &c, sizeof(c)) == 0); wpid = waitpid(child, &status, 0); CHILD_REQUIRE(wpid == child); CHILD_REQUIRE(WIFEXITED(status)); CHILD_REQUIRE(WEXITSTATUS(status) == 1); _exit(0); } close(dpipe[1]); /* Parent process. */ /* Wait for the debugger to attach to the child. */ ATF_REQUIRE(read(dpipe[0], &c, sizeof(c)) == sizeof(c)); /* Release the child. */ ATF_REQUIRE(write(cpipe[0], &c, sizeof(c)) == sizeof(c)); ATF_REQUIRE(read(cpipe[0], &c, sizeof(c)) == 0); close(cpipe[0]); wait_for_zombie(child); /* * This wait should return a pid of 0 to indicate no status to * report. The parent should see the child as non-exited * until the debugger sees the exit. */ wpid = waitpid(child, &status, WNOHANG); ATF_REQUIRE(wpid == 0); /* Signal the debugger to wait for the child. */ close(dpipe[0]); /* Wait for the debugger. */ wpid = waitpid(debugger, &status, 0); ATF_REQUIRE(wpid == debugger); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 0); /* The child process should now be ready. */ wpid = waitpid(child, &status, WNOHANG); ATF_REQUIRE(wpid == child); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); } /* * Verify that a parent process "sees" the exit of a debugged process * only after a non-direct-child debugger has seen it. In particular, * various wait() calls in the parent must avoid failing with ESRCH by * checking the parent's orphan list for the debugee. */ ATF_TC_WITHOUT_HEAD(ptrace__parent_sees_exit_after_unrelated_debugger); ATF_TC_BODY(ptrace__parent_sees_exit_after_unrelated_debugger, tc) { pid_t child, debugger, fpid, wpid; int cpipe[2], dpipe[2], status; char c; ATF_REQUIRE(pipe(cpipe) == 0); ATF_REQUIRE((child = fork()) != -1); if (child == 0) { /* Child process. */ close(cpipe[0]); /* Wait for parent to be ready. */ CHILD_REQUIRE(read(cpipe[1], &c, sizeof(c)) == sizeof(c)); _exit(1); } close(cpipe[1]); ATF_REQUIRE(pipe(dpipe) == 0); ATF_REQUIRE((debugger = fork()) != -1); if (debugger == 0) { /* Debugger parent. */ /* * Fork again and drop the debugger parent so that the * debugger is not a child of the main parent. */ CHILD_REQUIRE((fpid = fork()) != -1); if (fpid != 0) _exit(2); /* Debugger process. */ close(dpipe[0]); CHILD_REQUIRE(ptrace(PT_ATTACH, child, NULL, 0) != -1); wpid = waitpid(child, &status, 0); CHILD_REQUIRE(wpid == child); CHILD_REQUIRE(WIFSTOPPED(status)); CHILD_REQUIRE(WSTOPSIG(status) == SIGSTOP); CHILD_REQUIRE(ptrace(PT_CONTINUE, child, (caddr_t)1, 0) != -1); /* Signal parent that debugger is attached. */ CHILD_REQUIRE(write(dpipe[1], &c, sizeof(c)) == sizeof(c)); /* Wait for parent's failed wait. */ CHILD_REQUIRE(read(dpipe[1], &c, sizeof(c)) == sizeof(c)); wpid = waitpid(child, &status, 0); CHILD_REQUIRE(wpid == child); CHILD_REQUIRE(WIFEXITED(status)); CHILD_REQUIRE(WEXITSTATUS(status) == 1); _exit(0); } close(dpipe[1]); /* Parent process. */ /* Wait for the debugger parent process to exit. */ wpid = waitpid(debugger, &status, 0); ATF_REQUIRE(wpid == debugger); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); /* A WNOHANG wait here should see the non-exited child. */ wpid = waitpid(child, &status, WNOHANG); ATF_REQUIRE(wpid == 0); /* Wait for the debugger to attach to the child. */ ATF_REQUIRE(read(dpipe[0], &c, sizeof(c)) == sizeof(c)); /* Release the child. */ ATF_REQUIRE(write(cpipe[0], &c, sizeof(c)) == sizeof(c)); ATF_REQUIRE(read(cpipe[0], &c, sizeof(c)) == 0); close(cpipe[0]); wait_for_zombie(child); /* * This wait should return a pid of 0 to indicate no status to * report. The parent should see the child as non-exited * until the debugger sees the exit. */ wpid = waitpid(child, &status, WNOHANG); ATF_REQUIRE(wpid == 0); /* Signal the debugger to wait for the child. */ ATF_REQUIRE(write(dpipe[0], &c, sizeof(c)) == sizeof(c)); /* Wait for the debugger. */ ATF_REQUIRE(read(dpipe[0], &c, sizeof(c)) == 0); close(dpipe[0]); /* The child process should now be ready. */ wpid = waitpid(child, &status, WNOHANG); ATF_REQUIRE(wpid == child); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); } /* * The parent process should always act the same regardless of how the * debugger is attached to it. */ static __dead2 void follow_fork_parent(bool use_vfork) { pid_t fpid, wpid; int status; if (use_vfork) CHILD_REQUIRE((fpid = vfork()) != -1); else CHILD_REQUIRE((fpid = fork()) != -1); if (fpid == 0) /* Child */ _exit(2); wpid = waitpid(fpid, &status, 0); CHILD_REQUIRE(wpid == fpid); CHILD_REQUIRE(WIFEXITED(status)); CHILD_REQUIRE(WEXITSTATUS(status) == 2); _exit(1); } /* * Helper routine for follow fork tests. This waits for two stops * that report both "sides" of a fork. It returns the pid of the new * child process. */ static pid_t handle_fork_events(pid_t parent, struct ptrace_lwpinfo *ppl) { struct ptrace_lwpinfo pl; bool fork_reported[2]; pid_t child, wpid; int i, status; fork_reported[0] = false; fork_reported[1] = false; child = -1; /* * Each process should report a fork event. The parent should * report a PL_FLAG_FORKED event, and the child should report * a PL_FLAG_CHILD event. */ for (i = 0; i < 2; i++) { wpid = wait(&status); ATF_REQUIRE(wpid > 0); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE((pl.pl_flags & (PL_FLAG_FORKED | PL_FLAG_CHILD)) != 0); ATF_REQUIRE((pl.pl_flags & (PL_FLAG_FORKED | PL_FLAG_CHILD)) != (PL_FLAG_FORKED | PL_FLAG_CHILD)); if (pl.pl_flags & PL_FLAG_CHILD) { ATF_REQUIRE(wpid != parent); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(!fork_reported[1]); if (child == -1) child = wpid; else ATF_REQUIRE(child == wpid); if (ppl != NULL) ppl[1] = pl; fork_reported[1] = true; } else { ATF_REQUIRE(wpid == parent); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(!fork_reported[0]); if (child == -1) child = pl.pl_child_pid; else ATF_REQUIRE(child == pl.pl_child_pid); if (ppl != NULL) ppl[0] = pl; fork_reported[0] = true; } } return (child); } /* * Verify that a new child process is stopped after a followed fork and * that the traced parent sees the exit of the child after the debugger * when both processes remain attached to the debugger. */ ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_both_attached); ATF_TC_BODY(ptrace__follow_fork_both_attached, tc) { pid_t children[2], fpid, wpid; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); follow_fork_parent(false); } /* Parent process. */ children[0] = fpid; /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(children[0], &status, 0); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); children[1] = handle_fork_events(children[0], NULL); ATF_REQUIRE(children[1] > 0); ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1); /* * The child can't exit until the grandchild reports status, so the * grandchild should report its exit first to the debugger. */ wpid = wait(&status); ATF_REQUIRE(wpid == children[1]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); wpid = wait(&status); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that a new child process is stopped after a followed fork * and that the traced parent sees the exit of the child when the new * child process is detached after it reports its fork. */ ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_child_detached); ATF_TC_BODY(ptrace__follow_fork_child_detached, tc) { pid_t children[2], fpid, wpid; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); follow_fork_parent(false); } /* Parent process. */ children[0] = fpid; /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(children[0], &status, 0); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); children[1] = handle_fork_events(children[0], NULL); ATF_REQUIRE(children[1] > 0); ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); ATF_REQUIRE(ptrace(PT_DETACH, children[1], (caddr_t)1, 0) != -1); /* * Should not see any status from the grandchild now, only the * child. */ wpid = wait(&status); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that a new child process is stopped after a followed fork * and that the traced parent sees the exit of the child when the * traced parent is detached after the fork. */ ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_parent_detached); ATF_TC_BODY(ptrace__follow_fork_parent_detached, tc) { pid_t children[2], fpid, wpid; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); follow_fork_parent(false); } /* Parent process. */ children[0] = fpid; /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(children[0], &status, 0); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); children[1] = handle_fork_events(children[0], NULL); ATF_REQUIRE(children[1] > 0); ATF_REQUIRE(ptrace(PT_DETACH, children[0], (caddr_t)1, 0) != -1); ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1); /* * The child can't exit until the grandchild reports status, so the * grandchild should report its exit first to the debugger. * * Even though the child process is detached, it is still a * child of the debugger, so it will still report it's exit * after the grandchild. */ wpid = wait(&status); ATF_REQUIRE(wpid == children[1]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); wpid = wait(&status); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } static void attach_fork_parent(int cpipe[2]) { pid_t fpid; close(cpipe[0]); /* Double-fork to disassociate from the debugger. */ CHILD_REQUIRE((fpid = fork()) != -1); if (fpid != 0) _exit(3); /* Send the pid of the disassociated child to the debugger. */ fpid = getpid(); CHILD_REQUIRE(write(cpipe[1], &fpid, sizeof(fpid)) == sizeof(fpid)); /* Wait for the debugger to attach. */ CHILD_REQUIRE(read(cpipe[1], &fpid, sizeof(fpid)) == 0); } /* * Verify that a new child process is stopped after a followed fork and * that the traced parent sees the exit of the child after the debugger * when both processes remain attached to the debugger. In this test * the parent that forks is not a direct child of the debugger. */ ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_both_attached_unrelated_debugger); ATF_TC_BODY(ptrace__follow_fork_both_attached_unrelated_debugger, tc) { pid_t children[2], fpid, wpid; int cpipe[2], status; ATF_REQUIRE(pipe(cpipe) == 0); ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { attach_fork_parent(cpipe); follow_fork_parent(false); } /* Parent process. */ close(cpipe[1]); /* Wait for the direct child to exit. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 3); /* Read the pid of the fork parent. */ ATF_REQUIRE(read(cpipe[0], &children[0], sizeof(children[0])) == sizeof(children[0])); /* Attach to the fork parent. */ attach_child(children[0]); ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1); /* Continue the fork parent ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); /* Signal the fork parent to continue. */ close(cpipe[0]); children[1] = handle_fork_events(children[0], NULL); ATF_REQUIRE(children[1] > 0); ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1); /* * The fork parent can't exit until the child reports status, * so the child should report its exit first to the debugger. */ wpid = wait(&status); ATF_REQUIRE(wpid == children[1]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); wpid = wait(&status); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that a new child process is stopped after a followed fork * and that the traced parent sees the exit of the child when the new * child process is detached after it reports its fork. In this test * the parent that forks is not a direct child of the debugger. */ ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_child_detached_unrelated_debugger); ATF_TC_BODY(ptrace__follow_fork_child_detached_unrelated_debugger, tc) { pid_t children[2], fpid, wpid; int cpipe[2], status; ATF_REQUIRE(pipe(cpipe) == 0); ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { attach_fork_parent(cpipe); follow_fork_parent(false); } /* Parent process. */ close(cpipe[1]); /* Wait for the direct child to exit. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 3); /* Read the pid of the fork parent. */ ATF_REQUIRE(read(cpipe[0], &children[0], sizeof(children[0])) == sizeof(children[0])); /* Attach to the fork parent. */ attach_child(children[0]); ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1); /* Continue the fork parent ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); /* Signal the fork parent to continue. */ close(cpipe[0]); children[1] = handle_fork_events(children[0], NULL); ATF_REQUIRE(children[1] > 0); ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); ATF_REQUIRE(ptrace(PT_DETACH, children[1], (caddr_t)1, 0) != -1); /* * Should not see any status from the child now, only the fork * parent. */ wpid = wait(&status); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that a new child process is stopped after a followed fork * and that the traced parent sees the exit of the child when the * traced parent is detached after the fork. In this test the parent * that forks is not a direct child of the debugger. */ ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_parent_detached_unrelated_debugger); ATF_TC_BODY(ptrace__follow_fork_parent_detached_unrelated_debugger, tc) { pid_t children[2], fpid, wpid; int cpipe[2], status; ATF_REQUIRE(pipe(cpipe) == 0); ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { attach_fork_parent(cpipe); follow_fork_parent(false); } /* Parent process. */ close(cpipe[1]); /* Wait for the direct child to exit. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 3); /* Read the pid of the fork parent. */ ATF_REQUIRE(read(cpipe[0], &children[0], sizeof(children[0])) == sizeof(children[0])); /* Attach to the fork parent. */ attach_child(children[0]); ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1); /* Continue the fork parent ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); /* Signal the fork parent to continue. */ close(cpipe[0]); children[1] = handle_fork_events(children[0], NULL); ATF_REQUIRE(children[1] > 0); ATF_REQUIRE(ptrace(PT_DETACH, children[0], (caddr_t)1, 0) != -1); ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1); /* * Should not see any status from the fork parent now, only * the child. */ wpid = wait(&status); ATF_REQUIRE(wpid == children[1]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that a child process does not see an unrelated debugger as its * parent but sees its original parent process. */ ATF_TC_WITHOUT_HEAD(ptrace__getppid); ATF_TC_BODY(ptrace__getppid, tc) { pid_t child, debugger, ppid, wpid; int cpipe[2], dpipe[2], status; char c; ATF_REQUIRE(pipe(cpipe) == 0); ATF_REQUIRE((child = fork()) != -1); if (child == 0) { /* Child process. */ close(cpipe[0]); /* Wait for parent to be ready. */ CHILD_REQUIRE(read(cpipe[1], &c, sizeof(c)) == sizeof(c)); /* Report the parent PID to the parent. */ ppid = getppid(); CHILD_REQUIRE(write(cpipe[1], &ppid, sizeof(ppid)) == sizeof(ppid)); _exit(1); } close(cpipe[1]); ATF_REQUIRE(pipe(dpipe) == 0); ATF_REQUIRE((debugger = fork()) != -1); if (debugger == 0) { /* Debugger process. */ close(dpipe[0]); CHILD_REQUIRE(ptrace(PT_ATTACH, child, NULL, 0) != -1); wpid = waitpid(child, &status, 0); CHILD_REQUIRE(wpid == child); CHILD_REQUIRE(WIFSTOPPED(status)); CHILD_REQUIRE(WSTOPSIG(status) == SIGSTOP); CHILD_REQUIRE(ptrace(PT_CONTINUE, child, (caddr_t)1, 0) != -1); /* Signal parent that debugger is attached. */ CHILD_REQUIRE(write(dpipe[1], &c, sizeof(c)) == sizeof(c)); /* Wait for traced child to exit. */ wpid = waitpid(child, &status, 0); CHILD_REQUIRE(wpid == child); CHILD_REQUIRE(WIFEXITED(status)); CHILD_REQUIRE(WEXITSTATUS(status) == 1); _exit(0); } close(dpipe[1]); /* Parent process. */ /* Wait for the debugger to attach to the child. */ ATF_REQUIRE(read(dpipe[0], &c, sizeof(c)) == sizeof(c)); /* Release the child. */ ATF_REQUIRE(write(cpipe[0], &c, sizeof(c)) == sizeof(c)); /* Read the parent PID from the child. */ ATF_REQUIRE(read(cpipe[0], &ppid, sizeof(ppid)) == sizeof(ppid)); close(cpipe[0]); ATF_REQUIRE(ppid == getpid()); /* Wait for the debugger. */ wpid = waitpid(debugger, &status, 0); ATF_REQUIRE(wpid == debugger); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 0); /* The child process should now be ready. */ wpid = waitpid(child, &status, WNOHANG); ATF_REQUIRE(wpid == child); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); } /* * Verify that pl_syscall_code in struct ptrace_lwpinfo for a new * child process created via fork() reports the correct value. */ ATF_TC_WITHOUT_HEAD(ptrace__new_child_pl_syscall_code_fork); ATF_TC_BODY(ptrace__new_child_pl_syscall_code_fork, tc) { struct ptrace_lwpinfo pl[2]; pid_t children[2], fpid, wpid; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); follow_fork_parent(false); } /* Parent process. */ children[0] = fpid; /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(children[0], &status, 0); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); /* Wait for both halves of the fork event to get reported. */ children[1] = handle_fork_events(children[0], pl); ATF_REQUIRE(children[1] > 0); ATF_REQUIRE((pl[0].pl_flags & PL_FLAG_SCX) != 0); ATF_REQUIRE((pl[1].pl_flags & PL_FLAG_SCX) != 0); ATF_REQUIRE(pl[0].pl_syscall_code == SYS_fork); ATF_REQUIRE(pl[0].pl_syscall_code == pl[1].pl_syscall_code); ATF_REQUIRE(pl[0].pl_syscall_narg == pl[1].pl_syscall_narg); ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1); /* * The child can't exit until the grandchild reports status, so the * grandchild should report its exit first to the debugger. */ wpid = wait(&status); ATF_REQUIRE(wpid == children[1]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); wpid = wait(&status); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that pl_syscall_code in struct ptrace_lwpinfo for a new * child process created via vfork() reports the correct value. */ ATF_TC_WITHOUT_HEAD(ptrace__new_child_pl_syscall_code_vfork); ATF_TC_BODY(ptrace__new_child_pl_syscall_code_vfork, tc) { struct ptrace_lwpinfo pl[2]; pid_t children[2], fpid, wpid; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); follow_fork_parent(true); } /* Parent process. */ children[0] = fpid; /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(children[0], &status, 0); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); /* Wait for both halves of the fork event to get reported. */ children[1] = handle_fork_events(children[0], pl); ATF_REQUIRE(children[1] > 0); ATF_REQUIRE((pl[0].pl_flags & PL_FLAG_SCX) != 0); ATF_REQUIRE((pl[1].pl_flags & PL_FLAG_SCX) != 0); ATF_REQUIRE(pl[0].pl_syscall_code == SYS_vfork); ATF_REQUIRE(pl[0].pl_syscall_code == pl[1].pl_syscall_code); ATF_REQUIRE(pl[0].pl_syscall_narg == pl[1].pl_syscall_narg); ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1); /* * The child can't exit until the grandchild reports status, so the * grandchild should report its exit first to the debugger. */ wpid = wait(&status); ATF_REQUIRE(wpid == children[1]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); wpid = wait(&status); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } static void * simple_thread(void *arg __unused) { pthread_exit(NULL); } static __dead2 void simple_thread_main(void) { pthread_t thread; CHILD_REQUIRE(pthread_create(&thread, NULL, simple_thread, NULL) == 0); CHILD_REQUIRE(pthread_join(thread, NULL) == 0); exit(1); } /* * Verify that pl_syscall_code in struct ptrace_lwpinfo for a new * thread reports the correct value. */ ATF_TC_WITHOUT_HEAD(ptrace__new_child_pl_syscall_code_thread); ATF_TC_BODY(ptrace__new_child_pl_syscall_code_thread, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; lwpid_t mainlwp; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); simple_thread_main(); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); mainlwp = pl.pl_lwpid; /* * Continue the child ignoring the SIGSTOP and tracing all * system call exits. */ ATF_REQUIRE(ptrace(PT_TO_SCX, fpid, (caddr_t)1, 0) != -1); /* * Wait for the new thread to arrive. pthread_create() might * invoke any number of system calls. For now we just wait * for the new thread to arrive and make sure it reports a * valid system call code. If ptrace grows thread event * reporting then this test can be made more precise. */ for (;;) { wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE((pl.pl_flags & PL_FLAG_SCX) != 0); ATF_REQUIRE(pl.pl_syscall_code != 0); if (pl.pl_lwpid != mainlwp) /* New thread seen. */ break; ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); } /* Wait for the child to exit. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); for (;;) { wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); if (WIFEXITED(status)) break; ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); } ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that the expected LWP events are reported for a child thread. */ ATF_TC_WITHOUT_HEAD(ptrace__lwp_events); ATF_TC_BODY(ptrace__lwp_events, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; lwpid_t lwps[2]; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); simple_thread_main(); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); lwps[0] = pl.pl_lwpid; ATF_REQUIRE(ptrace(PT_LWP_EVENTS, wpid, NULL, 1) == 0); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The first event should be for the child thread's birth. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE((pl.pl_flags & (PL_FLAG_BORN | PL_FLAG_SCX)) == (PL_FLAG_BORN | PL_FLAG_SCX)); ATF_REQUIRE(pl.pl_lwpid != lwps[0]); lwps[1] = pl.pl_lwpid; ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The next event should be for the child thread's death. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE((pl.pl_flags & (PL_FLAG_EXITED | PL_FLAG_SCE)) == (PL_FLAG_EXITED | PL_FLAG_SCE)); ATF_REQUIRE(pl.pl_lwpid == lwps[1]); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The last event should be for the child process's exit. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } static void * exec_thread(void *arg __unused) { execl("/usr/bin/true", "true", NULL); exit(127); } static __dead2 void exec_thread_main(void) { pthread_t thread; CHILD_REQUIRE(pthread_create(&thread, NULL, exec_thread, NULL) == 0); for (;;) sleep(60); exit(1); } /* * Verify that the expected LWP events are reported for a multithreaded * process that calls execve(2). */ ATF_TC_WITHOUT_HEAD(ptrace__lwp_events_exec); ATF_TC_BODY(ptrace__lwp_events_exec, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; lwpid_t lwps[2]; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); exec_thread_main(); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); lwps[0] = pl.pl_lwpid; ATF_REQUIRE(ptrace(PT_LWP_EVENTS, wpid, NULL, 1) == 0); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The first event should be for the child thread's birth. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE((pl.pl_flags & (PL_FLAG_BORN | PL_FLAG_SCX)) == (PL_FLAG_BORN | PL_FLAG_SCX)); ATF_REQUIRE(pl.pl_lwpid != lwps[0]); lwps[1] = pl.pl_lwpid; ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* * The next event should be for the main thread's death due to * single threading from execve(). */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE((pl.pl_flags & (PL_FLAG_EXITED | PL_FLAG_SCE)) == (PL_FLAG_EXITED)); ATF_REQUIRE(pl.pl_lwpid == lwps[0]); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The next event should be for the child process's exec. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE((pl.pl_flags & (PL_FLAG_EXEC | PL_FLAG_SCX)) == (PL_FLAG_EXEC | PL_FLAG_SCX)); ATF_REQUIRE(pl.pl_lwpid == lwps[1]); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The last event should be for the child process's exit. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 0); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } static void handler(int sig __unused) { } static void signal_main(void) { signal(SIGINFO, handler); raise(SIGINFO); exit(0); } /* * Verify that the expected ptrace event is reported for a signal. */ ATF_TC_WITHOUT_HEAD(ptrace__siginfo); ATF_TC_BODY(ptrace__siginfo, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); signal_main(); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The next event should be for the SIGINFO. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGINFO); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_event == PL_EVENT_SIGNAL); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SI); ATF_REQUIRE(pl.pl_siginfo.si_code == SI_LWP); ATF_REQUIRE(pl.pl_siginfo.si_pid == wpid); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The last event should be for the child process's exit. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 0); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that the expected ptrace events are reported for PTRACE_EXEC. */ ATF_TC_WITHOUT_HEAD(ptrace__ptrace_exec_disable); ATF_TC_BODY(ptrace__ptrace_exec_disable, tc) { pid_t fpid, wpid; int events, status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); exec_thread(NULL); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); events = 0; ATF_REQUIRE(ptrace(PT_SET_EVENT_MASK, fpid, (caddr_t)&events, sizeof(events)) == 0); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* Should get one event at exit. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 0); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } ATF_TC_WITHOUT_HEAD(ptrace__ptrace_exec_enable); ATF_TC_BODY(ptrace__ptrace_exec_enable, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; int events, status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); exec_thread(NULL); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); events = PTRACE_EXEC; ATF_REQUIRE(ptrace(PT_SET_EVENT_MASK, fpid, (caddr_t)&events, sizeof(events)) == 0); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The next event should be for the child process's exec. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE((pl.pl_flags & (PL_FLAG_EXEC | PL_FLAG_SCX)) == (PL_FLAG_EXEC | PL_FLAG_SCX)); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The last event should be for the child process's exit. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 0); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } ATF_TC_WITHOUT_HEAD(ptrace__event_mask); ATF_TC_BODY(ptrace__event_mask, tc) { pid_t fpid, wpid; int events, status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); exit(0); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* PT_FOLLOW_FORK should toggle the state of PTRACE_FORK. */ ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, fpid, NULL, 1) != -1); ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, fpid, (caddr_t)&events, sizeof(events)) == 0); ATF_REQUIRE(events & PTRACE_FORK); ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, fpid, NULL, 0) != -1); ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, fpid, (caddr_t)&events, sizeof(events)) == 0); ATF_REQUIRE(!(events & PTRACE_FORK)); /* PT_LWP_EVENTS should toggle the state of PTRACE_LWP. */ ATF_REQUIRE(ptrace(PT_LWP_EVENTS, fpid, NULL, 1) != -1); ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, fpid, (caddr_t)&events, sizeof(events)) == 0); ATF_REQUIRE(events & PTRACE_LWP); ATF_REQUIRE(ptrace(PT_LWP_EVENTS, fpid, NULL, 0) != -1); ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, fpid, (caddr_t)&events, sizeof(events)) == 0); ATF_REQUIRE(!(events & PTRACE_LWP)); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* Should get one event at exit. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 0); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that the expected ptrace events are reported for PTRACE_VFORK. */ ATF_TC_WITHOUT_HEAD(ptrace__ptrace_vfork); ATF_TC_BODY(ptrace__ptrace_vfork, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; int events, status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); follow_fork_parent(true); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, fpid, (caddr_t)&events, sizeof(events)) == 0); events |= PTRACE_VFORK; ATF_REQUIRE(ptrace(PT_SET_EVENT_MASK, fpid, (caddr_t)&events, sizeof(events)) == 0); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) != -1); /* The next event should report the end of the vfork. */ wpid = wait(&status); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE((pl.pl_flags & PL_FLAG_VFORK_DONE) != 0); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) != -1); wpid = wait(&status); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } ATF_TC_WITHOUT_HEAD(ptrace__ptrace_vfork_follow); ATF_TC_BODY(ptrace__ptrace_vfork_follow, tc) { struct ptrace_lwpinfo pl[2]; pid_t children[2], fpid, wpid; int events, status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); follow_fork_parent(true); } /* Parent process. */ children[0] = fpid; /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(children[0], &status, 0); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, children[0], (caddr_t)&events, sizeof(events)) == 0); events |= PTRACE_FORK | PTRACE_VFORK; ATF_REQUIRE(ptrace(PT_SET_EVENT_MASK, children[0], (caddr_t)&events, sizeof(events)) == 0); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); /* Wait for both halves of the fork event to get reported. */ children[1] = handle_fork_events(children[0], pl); ATF_REQUIRE(children[1] > 0); ATF_REQUIRE((pl[0].pl_flags & PL_FLAG_VFORKED) != 0); ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1); /* * The child can't exit until the grandchild reports status, so the * grandchild should report its exit first to the debugger. */ wpid = waitpid(children[1], &status, 0); ATF_REQUIRE(wpid == children[1]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); /* * The child should report it's vfork() completion before it * exits. */ wpid = wait(&status); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl[0], sizeof(pl[0])) != -1); ATF_REQUIRE((pl[0].pl_flags & PL_FLAG_VFORK_DONE) != 0); ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); wpid = wait(&status); ATF_REQUIRE(wpid == children[0]); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * XXX: There's nothing inherently platform specific about this test, however a * userspace visible breakpoint() is a prerequisite. */ #if defined(__amd64__) || defined(__i386__) || defined(__sparc64__) /* * Verify that no more events are reported after PT_KILL except for the * process exit when stopped due to a breakpoint trap. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_KILL_breakpoint); ATF_TC_BODY(ptrace__PT_KILL_breakpoint, tc) { pid_t fpid, wpid; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); breakpoint(); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The second wait() should report hitting the breakpoint. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); /* Kill the child process. */ ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0); /* The last wait() should report the SIGKILL. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSIGNALED(status)); ATF_REQUIRE(WTERMSIG(status) == SIGKILL); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } #endif /* defined(__amd64__) || defined(__i386__) || defined(__sparc64__) */ /* * Verify that no more events are reported after PT_KILL except for the * process exit when stopped inside of a system call. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_KILL_system_call); ATF_TC_BODY(ptrace__PT_KILL_system_call, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); getpid(); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* Continue the child ignoring the SIGSTOP and tracing system calls. */ ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0); /* The second wait() should report a system call entry for getpid(). */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE); /* Kill the child process. */ ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0); /* The last wait() should report the SIGKILL. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSIGNALED(status)); ATF_REQUIRE(WTERMSIG(status) == SIGKILL); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that no more events are reported after PT_KILL except for the * process exit when killing a multithreaded process. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_KILL_threads); ATF_TC_BODY(ptrace__PT_KILL_threads, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; lwpid_t main_lwp; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); simple_thread_main(); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); main_lwp = pl.pl_lwpid; ATF_REQUIRE(ptrace(PT_LWP_EVENTS, wpid, NULL, 1) == 0); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The first event should be for the child thread's birth. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE((pl.pl_flags & (PL_FLAG_BORN | PL_FLAG_SCX)) == (PL_FLAG_BORN | PL_FLAG_SCX)); ATF_REQUIRE(pl.pl_lwpid != main_lwp); /* Kill the child process. */ ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0); /* The last wait() should report the SIGKILL. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSIGNALED(status)); ATF_REQUIRE(WTERMSIG(status) == SIGKILL); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } static void * mask_usr1_thread(void *arg) { pthread_barrier_t *pbarrier; sigset_t sigmask; pbarrier = (pthread_barrier_t*)arg; sigemptyset(&sigmask); sigaddset(&sigmask, SIGUSR1); CHILD_REQUIRE(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) == 0); /* Sync up with other thread after sigmask updated. */ pthread_barrier_wait(pbarrier); for (;;) sleep(60); return (NULL); } /* * Verify that the SIGKILL from PT_KILL takes priority over other signals * and prevents spurious stops due to those other signals. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_KILL_competing_signal); ATF_TC_BODY(ptrace__PT_KILL_competing_signal, tc) { pid_t fpid, wpid; int status; cpuset_t setmask; pthread_t t; pthread_barrier_t barrier; struct sched_param sched_param; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { /* Bind to one CPU so only one thread at a time will run. */ CPU_ZERO(&setmask); CPU_SET(0, &setmask); cpusetid_t setid; CHILD_REQUIRE(cpuset(&setid) == 0); CHILD_REQUIRE(cpuset_setaffinity(CPU_LEVEL_CPUSET, CPU_WHICH_CPUSET, setid, sizeof(setmask), &setmask) == 0); CHILD_REQUIRE(pthread_barrier_init(&barrier, NULL, 2) == 0); CHILD_REQUIRE(pthread_create(&t, NULL, mask_usr1_thread, (void*)&barrier) == 0); /* * Give the main thread higher priority. The test always * assumes that, if both threads are able to run, the main * thread runs first. */ sched_param.sched_priority = (sched_get_priority_max(SCHED_FIFO) + sched_get_priority_min(SCHED_FIFO)) / 2; CHILD_REQUIRE(pthread_setschedparam(pthread_self(), SCHED_FIFO, &sched_param) == 0); sched_param.sched_priority -= RQ_PPQ; CHILD_REQUIRE(pthread_setschedparam(t, SCHED_FIFO, &sched_param) == 0); sigset_t sigmask; sigemptyset(&sigmask); sigaddset(&sigmask, SIGUSR2); CHILD_REQUIRE(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) == 0); /* Sync up with other thread after sigmask updated. */ pthread_barrier_wait(&barrier); trace_me(); for (;;) sleep(60); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* Send a signal that only the second thread can handle. */ ATF_REQUIRE(kill(fpid, SIGUSR2) == 0); /* The second wait() should report the SIGUSR2. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGUSR2); /* Send a signal that only the first thread can handle. */ ATF_REQUIRE(kill(fpid, SIGUSR1) == 0); /* Replace the SIGUSR2 with a kill. */ ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0); /* The last wait() should report the SIGKILL (not the SIGUSR signal). */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSIGNALED(status)); ATF_REQUIRE(WTERMSIG(status) == SIGKILL); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that the SIGKILL from PT_KILL takes priority over other stop events * and prevents spurious stops caused by those events. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_KILL_competing_stop); ATF_TC_BODY(ptrace__PT_KILL_competing_stop, tc) { pid_t fpid, wpid; int status; cpuset_t setmask; pthread_t t; pthread_barrier_t barrier; lwpid_t main_lwp; struct ptrace_lwpinfo pl; struct sched_param sched_param; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); /* Bind to one CPU so only one thread at a time will run. */ CPU_ZERO(&setmask); CPU_SET(0, &setmask); cpusetid_t setid; CHILD_REQUIRE(cpuset(&setid) == 0); CHILD_REQUIRE(cpuset_setaffinity(CPU_LEVEL_CPUSET, CPU_WHICH_CPUSET, setid, sizeof(setmask), &setmask) == 0); CHILD_REQUIRE(pthread_barrier_init(&barrier, NULL, 2) == 0); CHILD_REQUIRE(pthread_create(&t, NULL, mask_usr1_thread, (void*)&barrier) == 0); /* * Give the main thread higher priority. The test always * assumes that, if both threads are able to run, the main * thread runs first. */ sched_param.sched_priority = (sched_get_priority_max(SCHED_FIFO) + sched_get_priority_min(SCHED_FIFO)) / 2; CHILD_REQUIRE(pthread_setschedparam(pthread_self(), SCHED_FIFO, &sched_param) == 0); sched_param.sched_priority -= RQ_PPQ; CHILD_REQUIRE(pthread_setschedparam(t, SCHED_FIFO, &sched_param) == 0); sigset_t sigmask; sigemptyset(&sigmask); sigaddset(&sigmask, SIGUSR2); CHILD_REQUIRE(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) == 0); /* Sync up with other thread after sigmask updated. */ pthread_barrier_wait(&barrier); /* Sync up with the test before doing the getpid(). */ raise(SIGSTOP); getpid(); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); main_lwp = pl.pl_lwpid; /* Continue the child ignoring the SIGSTOP and tracing system calls. */ ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0); /* * Continue until child is done with setup, which is indicated with * SIGSTOP. Ignore system calls in the meantime. */ for (;;) { wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); if (WSTOPSIG(status) == SIGTRAP) { ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX)); } else { ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); break; } ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0); } /* Proceed, allowing main thread to hit syscall entry for getpid(). */ ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0); wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_lwpid == main_lwp); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE); /* Prevent the main thread from hitting its syscall exit for now. */ ATF_REQUIRE(ptrace(PT_SUSPEND, main_lwp, 0, 0) == 0); /* * Proceed, allowing second thread to hit syscall exit for * pthread_barrier_wait(). */ ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0); wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_lwpid != main_lwp); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCX); /* Send a signal that only the second thread can handle. */ ATF_REQUIRE(kill(fpid, SIGUSR2) == 0); ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0); /* The next wait() should report the SIGUSR2. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGUSR2); /* Allow the main thread to try to finish its system call. */ ATF_REQUIRE(ptrace(PT_RESUME, main_lwp, 0, 0) == 0); /* * At this point, the main thread is in the middle of a system call and * has been resumed. The second thread has taken a SIGUSR2 which will * be replaced with a SIGKILL below. The main thread will get to run * first. It should notice the kill request (even though the signal * replacement occurred in the other thread) and exit accordingly. It * should not stop for the system call exit event. */ /* Replace the SIGUSR2 with a kill. */ ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0); /* The last wait() should report the SIGKILL (not a syscall exit). */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSIGNALED(status)); ATF_REQUIRE(WTERMSIG(status) == SIGKILL); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } static void sigusr1_handler(int sig) { CHILD_REQUIRE(sig == SIGUSR1); _exit(2); } /* * Verify that even if the signal queue is full for a child process, * a PT_KILL will kill the process. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_KILL_with_signal_full_sigqueue); ATF_TC_BODY(ptrace__PT_KILL_with_signal_full_sigqueue, tc) { pid_t fpid, wpid; int status; int max_pending_per_proc; size_t len; int i; ATF_REQUIRE(signal(SIGUSR1, sigusr1_handler) != SIG_ERR); ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); len = sizeof(max_pending_per_proc); ATF_REQUIRE(sysctlbyname("kern.sigqueue.max_pending_per_proc", &max_pending_per_proc, &len, NULL, 0) == 0); /* Fill the signal queue. */ for (i = 0; i < max_pending_per_proc; ++i) ATF_REQUIRE(kill(fpid, SIGUSR1) == 0); /* Kill the child process. */ ATF_REQUIRE(ptrace(PT_KILL, fpid, 0, 0) == 0); /* The last wait() should report the SIGKILL. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSIGNALED(status)); ATF_REQUIRE(WTERMSIG(status) == SIGKILL); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that when stopped at a system call entry, a signal can be * requested with PT_CONTINUE which will be delivered once the system * call is complete. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_system_call_entry); ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_system_call_entry, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; int status; ATF_REQUIRE(signal(SIGUSR1, sigusr1_handler) != SIG_ERR); ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); getpid(); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* Continue the child ignoring the SIGSTOP and tracing system calls. */ ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0); /* The second wait() should report a system call entry for getpid(). */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE); /* Continue the child process with a signal. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0); for (;;) { /* * The last wait() should report exit 2, i.e., a normal _exit * from the signal handler. In the meantime, catch and proceed * past any syscall stops. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP) { ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX)); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); } else { ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); break; } } wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } static void sigusr1_counting_handler(int sig) { static int counter = 0; CHILD_REQUIRE(sig == SIGUSR1); counter++; if (counter == 2) _exit(2); } /* * Verify that, when continuing from a stop at system call entry and exit, * a signal can be requested from both stops, and both will be delivered when * the system call is complete. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_system_call_entry_and_exit); ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_system_call_entry_and_exit, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; int status; ATF_REQUIRE(signal(SIGUSR1, sigusr1_counting_handler) != SIG_ERR); ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); getpid(); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* Continue the child ignoring the SIGSTOP and tracing system calls. */ ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0); /* The second wait() should report a system call entry for getpid(). */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE); /* Continue the child process with a signal. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0); /* The third wait() should report a system call exit for getpid(). */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCX); /* Continue the child process with a signal. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0); for (;;) { /* * The last wait() should report exit 2, i.e., a normal _exit * from the signal handler. In the meantime, catch and proceed * past any syscall stops. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP) { ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX)); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); } else { ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); break; } } wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that even if the signal queue is full for a child process, * a PT_CONTINUE with a signal will not result in loss of that signal. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_full_sigqueue); ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_full_sigqueue, tc) { pid_t fpid, wpid; int status; int max_pending_per_proc; size_t len; int i; ATF_REQUIRE(signal(SIGUSR2, handler) != SIG_ERR); ATF_REQUIRE(signal(SIGUSR1, sigusr1_handler) != SIG_ERR); ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); len = sizeof(max_pending_per_proc); ATF_REQUIRE(sysctlbyname("kern.sigqueue.max_pending_per_proc", &max_pending_per_proc, &len, NULL, 0) == 0); /* Fill the signal queue. */ for (i = 0; i < max_pending_per_proc; ++i) ATF_REQUIRE(kill(fpid, SIGUSR2) == 0); /* Continue with signal. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0); for (;;) { wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); if (WIFSTOPPED(status)) { ATF_REQUIRE(WSTOPSIG(status) == SIGUSR2); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); } else { /* * The last wait() should report normal _exit from the * SIGUSR1 handler. */ ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); break; } } wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that, after stopping due to a signal, that signal can be * replaced with another signal. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_change_sig); ATF_TC_BODY(ptrace__PT_CONTINUE_change_sig, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); sleep(20); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* Send a signal without ptrace. */ ATF_REQUIRE(kill(fpid, SIGINT) == 0); /* The second wait() should report a SIGINT was received. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGINT); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SI); ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGINT); /* Continue the child process with a different signal. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGTERM) == 0); /* * The last wait() should report having died due to the new * signal, SIGTERM. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSIGNALED(status)); ATF_REQUIRE(WTERMSIG(status) == SIGTERM); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that a signal can be passed through to the child even when there * was no true signal originally. Such cases arise when a SIGTRAP is * invented for e.g, system call stops. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_sigtrap_system_call_entry); ATF_TC_BODY(ptrace__PT_CONTINUE_with_sigtrap_system_call_entry, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; int status; ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); getpid(); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* Continue the child ignoring the SIGSTOP and tracing system calls. */ ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0); /* The second wait() should report a system call entry for getpid(). */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE); /* Continue the child process with a SIGTRAP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGTRAP) == 0); for (;;) { /* * The last wait() should report exit due to SIGTRAP. In the * meantime, catch and proceed past any syscall stops. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP) { ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX)); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); } else { ATF_REQUIRE(WIFSIGNALED(status)); ATF_REQUIRE(WTERMSIG(status) == SIGTRAP); break; } } wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * A mixed bag PT_CONTINUE with signal test. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_mix); ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_mix, tc) { struct ptrace_lwpinfo pl; pid_t fpid, wpid; int status; ATF_REQUIRE(signal(SIGUSR1, sigusr1_counting_handler) != SIG_ERR); ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { trace_me(); getpid(); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* Continue the child ignoring the SIGSTOP and tracing system calls. */ ATF_REQUIRE(ptrace(PT_SYSCALL, fpid, (caddr_t)1, 0) == 0); /* The second wait() should report a system call entry for getpid(). */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCE); /* Continue with the first SIGUSR1. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0); /* The next wait() should report a system call exit for getpid(). */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SCX); /* Send an ABRT without ptrace. */ ATF_REQUIRE(kill(fpid, SIGABRT) == 0); /* Continue normally. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* The next wait() should report the SIGABRT. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGABRT); ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & PL_FLAG_SI); ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGABRT); /* Continue, replacing the SIGABRT with another SIGUSR1. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0); for (;;) { /* * The last wait() should report exit 2, i.e., a normal _exit * from the signal handler. In the meantime, catch and proceed * past any syscall stops. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP) { ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); ATF_REQUIRE(pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX)); ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); } else { ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); break; } } wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify a signal delivered by ptrace is noticed by kevent(2). */ ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_kqueue); ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_kqueue, tc) { pid_t fpid, wpid; int status, kq, nevents; struct kevent kev; ATF_REQUIRE(signal(SIGUSR1, SIG_IGN) != SIG_ERR); ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { CHILD_REQUIRE((kq = kqueue()) > 0); EV_SET(&kev, SIGUSR1, EVFILT_SIGNAL, EV_ADD, 0, 0, 0); CHILD_REQUIRE(kevent(kq, &kev, 1, NULL, 0, NULL) == 0); trace_me(); for (;;) { nevents = kevent(kq, NULL, 0, &kev, 1, NULL); if (nevents == -1 && errno == EINTR) continue; CHILD_REQUIRE(nevents > 0); CHILD_REQUIRE(kev.filter == EVFILT_SIGNAL); CHILD_REQUIRE(kev.ident == SIGUSR1); break; } exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* Continue with the SIGUSR1. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0); /* * The last wait() should report normal exit with code 1. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } static sem_t sigusr1_sem; static void sigusr1_sempost_handler(int sig __unused) { CHILD_REQUIRE(sem_post(&sigusr1_sem) == 0); } static void * signal_thread(void *arg) { int err; sigset_t sigmask; pthread_barrier_t *pbarrier = (pthread_barrier_t*)arg; /* Wait for this thread to receive a SIGUSR1. */ do { err = sem_wait(&sigusr1_sem); CHILD_REQUIRE(err == 0 || errno == EINTR); } while (err != 0 && errno == EINTR); /* Free our companion thread from the barrier. */ pthread_barrier_wait(pbarrier); /* * Swap ignore duties; the next SIGUSR1 should go to the * other thread. */ CHILD_REQUIRE(sigemptyset(&sigmask) == 0); CHILD_REQUIRE(sigaddset(&sigmask, SIGUSR1) == 0); CHILD_REQUIRE(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) == 0); /* Sync up threads after swapping signal masks. */ pthread_barrier_wait(pbarrier); /* Wait until our companion has received its SIGUSR1. */ pthread_barrier_wait(pbarrier); return (NULL); } /* * Verify that if ptrace stops due to a signal but continues with * a different signal that the new signal is routed to a thread * that can accept it, and that that thread is awakened by the signal * in a timely manner. */ ATF_TC_WITHOUT_HEAD(ptrace__PT_CONTINUE_with_signal_thread_sigmask); ATF_TC_BODY(ptrace__PT_CONTINUE_with_signal_thread_sigmask, tc) { pid_t fpid, wpid; int status, err; pthread_t t; sigset_t sigmask; pthread_barrier_t barrier; ATF_REQUIRE(pthread_barrier_init(&barrier, NULL, 2) == 0); ATF_REQUIRE(sem_init(&sigusr1_sem, 0, 0) == 0); ATF_REQUIRE(signal(SIGUSR1, sigusr1_sempost_handler) != SIG_ERR); ATF_REQUIRE((fpid = fork()) != -1); if (fpid == 0) { CHILD_REQUIRE(pthread_create(&t, NULL, signal_thread, (void*)&barrier) == 0); /* The other thread should receive the first SIGUSR1. */ CHILD_REQUIRE(sigemptyset(&sigmask) == 0); CHILD_REQUIRE(sigaddset(&sigmask, SIGUSR1) == 0); CHILD_REQUIRE(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) == 0); trace_me(); /* Wait until other thread has received its SIGUSR1. */ pthread_barrier_wait(&barrier); /* * Swap ignore duties; the next SIGUSR1 should go to this * thread. */ CHILD_REQUIRE(pthread_sigmask(SIG_UNBLOCK, &sigmask, NULL) == 0); /* Sync up threads after swapping signal masks. */ pthread_barrier_wait(&barrier); /* * Sync up with test code; we're ready for the next SIGUSR1 * now. */ raise(SIGSTOP); /* Wait for this thread to receive a SIGUSR1. */ do { err = sem_wait(&sigusr1_sem); CHILD_REQUIRE(err == 0 || errno == EINTR); } while (err != 0 && errno == EINTR); /* Free the other thread from the barrier. */ pthread_barrier_wait(&barrier); CHILD_REQUIRE(pthread_join(t, NULL) == 0); exit(1); } /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); /* * Send a signal without ptrace that either thread will accept (USR2, * in this case). */ ATF_REQUIRE(kill(fpid, SIGUSR2) == 0); /* The second wait() should report a SIGUSR2 was received. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGUSR2); /* Continue the child, changing the signal to USR1. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0); /* The next wait() should report the stop from SIGSTOP. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); ATF_REQUIRE(kill(fpid, SIGUSR2) == 0); /* The next wait() should report a SIGUSR2 was received. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGUSR2); /* Continue the child, changing the signal to USR1. */ ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, SIGUSR1) == 0); /* The last wait() should report normal exit with code 1. */ wpid = waitpid(fpid, &status, 0); ATF_REQUIRE(wpid == fpid); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); wpid = wait(&status); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } +static void * +raise_sigstop_thread(void *arg __unused) +{ + + raise(SIGSTOP); + return NULL; +} + +static void * +sleep_thread(void *arg __unused) +{ + + sleep(60); + return NULL; +} + +static void +terminate_with_pending_sigstop(bool sigstop_from_main_thread) +{ + pid_t fpid, wpid; + int status, i; + cpuset_t setmask; + cpusetid_t setid; + pthread_t t; + + /* + * Become the reaper for this process tree. We need to be able to check + * that both child and grandchild have died. + */ + ATF_REQUIRE(procctl(P_PID, getpid(), PROC_REAP_ACQUIRE, NULL) == 0); + + fpid = fork(); + ATF_REQUIRE(fpid >= 0); + if (fpid == 0) { + fpid = fork(); + CHILD_REQUIRE(fpid >= 0); + if (fpid == 0) { + trace_me(); + + /* Pin to CPU 0 to serialize thread execution. */ + CPU_ZERO(&setmask); + CPU_SET(0, &setmask); + CHILD_REQUIRE(cpuset(&setid) == 0); + CHILD_REQUIRE(cpuset_setaffinity(CPU_LEVEL_CPUSET, + CPU_WHICH_CPUSET, setid, + sizeof(setmask), &setmask) == 0); + + if (sigstop_from_main_thread) { + /* + * We expect the SIGKILL sent when our parent + * dies to be delivered to the new thread. + * Raise the SIGSTOP in this thread so the + * threads compete. + */ + CHILD_REQUIRE(pthread_create(&t, NULL, + sleep_thread, NULL) == 0); + raise(SIGSTOP); + } else { + /* + * We expect the SIGKILL to be delivered to + * this thread. After creating the new thread, + * just get off the CPU so the other thread can + * raise the SIGSTOP. + */ + CHILD_REQUIRE(pthread_create(&t, NULL, + raise_sigstop_thread, NULL) == 0); + sleep(60); + } + + exit(0); + } + /* First stop is trace_me() immediately after fork. */ + wpid = waitpid(fpid, &status, 0); + CHILD_REQUIRE(wpid == fpid); + CHILD_REQUIRE(WIFSTOPPED(status)); + CHILD_REQUIRE(WSTOPSIG(status) == SIGSTOP); + + CHILD_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); + + /* Second stop is from the raise(SIGSTOP). */ + wpid = waitpid(fpid, &status, 0); + CHILD_REQUIRE(wpid == fpid); + CHILD_REQUIRE(WIFSTOPPED(status)); + CHILD_REQUIRE(WSTOPSIG(status) == SIGSTOP); + + /* + * Terminate tracing process without detaching. Our child + * should be killed. + */ + exit(0); + } + + /* + * We should get a normal exit from our immediate child and a SIGKILL + * exit from our grandchild. The latter case is the interesting one. + * Our grandchild should not have stopped due to the SIGSTOP that was + * left dangling when its parent died. + */ + for (i = 0; i < 2; ++i) { + wpid = wait(&status); + if (wpid == fpid) + ATF_REQUIRE(WIFEXITED(status) && + WEXITSTATUS(status) == 0); + else + ATF_REQUIRE(WIFSIGNALED(status) && + WTERMSIG(status) == SIGKILL); + } +} + +/* + * These two tests ensure that if the tracing process exits without detaching + * just after the child received a SIGSTOP, the child is cleanly killed and + * doesn't go to sleep due to the SIGSTOP. The parent's death will send a + * SIGKILL to the child. If the SIGKILL and the SIGSTOP are handled by + * different threads, the SIGKILL must win. There are two variants of this + * test, designed to catch the case where the SIGKILL is delivered to the + * younger thread (the first test) and the case where the SIGKILL is delivered + * to the older thread (the second test). This behavior has changed in the + * past, so make no assumption. + */ +ATF_TC_WITHOUT_HEAD(ptrace__parent_terminate_with_pending_sigstop1); +ATF_TC_BODY(ptrace__parent_terminate_with_pending_sigstop1, tc) +{ + + terminate_with_pending_sigstop(true); +} +ATF_TC_WITHOUT_HEAD(ptrace__parent_terminate_with_pending_sigstop2); +ATF_TC_BODY(ptrace__parent_terminate_with_pending_sigstop2, tc) +{ + + terminate_with_pending_sigstop(false); +} + +/* + * Verify that after ptrace() discards a SIGKILL signal, the event mask + * is not modified. + */ +ATF_TC_WITHOUT_HEAD(ptrace__event_mask_sigkill_discard); +ATF_TC_BODY(ptrace__event_mask_sigkill_discard, tc) +{ + struct ptrace_lwpinfo pl; + pid_t fpid, wpid; + int status, event_mask, new_event_mask; + + ATF_REQUIRE((fpid = fork()) != -1); + if (fpid == 0) { + trace_me(); + raise(SIGSTOP); + exit(0); + } + + /* The first wait() should report the stop from trace_me(). */ + wpid = waitpid(fpid, &status, 0); + ATF_REQUIRE(wpid == fpid); + ATF_REQUIRE(WIFSTOPPED(status)); + ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); + + /* Set several unobtrusive event bits. */ + event_mask = PTRACE_EXEC | PTRACE_FORK | PTRACE_LWP; + ATF_REQUIRE(ptrace(PT_SET_EVENT_MASK, wpid, (caddr_t)&event_mask, + sizeof(event_mask)) == 0); + + /* Send a SIGKILL without using ptrace. */ + ATF_REQUIRE(kill(fpid, SIGKILL) == 0); + + /* Continue the child ignoring the SIGSTOP. */ + ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); + + /* The next stop should be due to the SIGKILL. */ + wpid = waitpid(fpid, &status, 0); + ATF_REQUIRE(wpid == fpid); + ATF_REQUIRE(WIFSTOPPED(status)); + ATF_REQUIRE(WSTOPSIG(status) == SIGKILL); + + ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, sizeof(pl)) != -1); + ATF_REQUIRE(pl.pl_flags & PL_FLAG_SI); + ATF_REQUIRE(pl.pl_siginfo.si_signo == SIGKILL); + + /* Continue the child ignoring the SIGKILL. */ + ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); + + /* The next wait() should report the stop from SIGSTOP. */ + wpid = waitpid(fpid, &status, 0); + ATF_REQUIRE(wpid == fpid); + ATF_REQUIRE(WIFSTOPPED(status)); + ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); + + /* Check the current event mask. It should not have changed. */ + new_event_mask = 0; + ATF_REQUIRE(ptrace(PT_GET_EVENT_MASK, wpid, (caddr_t)&new_event_mask, + sizeof(new_event_mask)) == 0); + ATF_REQUIRE(event_mask == new_event_mask); + + /* Continue the child to let it exit. */ + ATF_REQUIRE(ptrace(PT_CONTINUE, fpid, (caddr_t)1, 0) == 0); + + /* The last event should be for the child process's exit. */ + wpid = waitpid(fpid, &status, 0); + ATF_REQUIRE(WIFEXITED(status)); + ATF_REQUIRE(WEXITSTATUS(status) == 0); + + wpid = wait(&status); + ATF_REQUIRE(wpid == -1); + ATF_REQUIRE(errno == ECHILD); +} + ATF_TP_ADD_TCS(tp) { ATF_TP_ADD_TC(tp, ptrace__parent_wait_after_trace_me); ATF_TP_ADD_TC(tp, ptrace__parent_wait_after_attach); ATF_TP_ADD_TC(tp, ptrace__parent_sees_exit_after_child_debugger); ATF_TP_ADD_TC(tp, ptrace__parent_sees_exit_after_unrelated_debugger); ATF_TP_ADD_TC(tp, ptrace__follow_fork_both_attached); ATF_TP_ADD_TC(tp, ptrace__follow_fork_child_detached); ATF_TP_ADD_TC(tp, ptrace__follow_fork_parent_detached); ATF_TP_ADD_TC(tp, ptrace__follow_fork_both_attached_unrelated_debugger); ATF_TP_ADD_TC(tp, ptrace__follow_fork_child_detached_unrelated_debugger); ATF_TP_ADD_TC(tp, ptrace__follow_fork_parent_detached_unrelated_debugger); ATF_TP_ADD_TC(tp, ptrace__getppid); ATF_TP_ADD_TC(tp, ptrace__new_child_pl_syscall_code_fork); ATF_TP_ADD_TC(tp, ptrace__new_child_pl_syscall_code_vfork); ATF_TP_ADD_TC(tp, ptrace__new_child_pl_syscall_code_thread); ATF_TP_ADD_TC(tp, ptrace__lwp_events); ATF_TP_ADD_TC(tp, ptrace__lwp_events_exec); ATF_TP_ADD_TC(tp, ptrace__siginfo); ATF_TP_ADD_TC(tp, ptrace__ptrace_exec_disable); ATF_TP_ADD_TC(tp, ptrace__ptrace_exec_enable); ATF_TP_ADD_TC(tp, ptrace__event_mask); ATF_TP_ADD_TC(tp, ptrace__ptrace_vfork); ATF_TP_ADD_TC(tp, ptrace__ptrace_vfork_follow); #if defined(__amd64__) || defined(__i386__) || defined(__sparc64__) ATF_TP_ADD_TC(tp, ptrace__PT_KILL_breakpoint); #endif ATF_TP_ADD_TC(tp, ptrace__PT_KILL_system_call); ATF_TP_ADD_TC(tp, ptrace__PT_KILL_threads); ATF_TP_ADD_TC(tp, ptrace__PT_KILL_competing_signal); ATF_TP_ADD_TC(tp, ptrace__PT_KILL_competing_stop); ATF_TP_ADD_TC(tp, ptrace__PT_KILL_with_signal_full_sigqueue); ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_system_call_entry); ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_system_call_entry_and_exit); ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_full_sigqueue); ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_change_sig); ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_sigtrap_system_call_entry); ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_mix); ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_kqueue); ATF_TP_ADD_TC(tp, ptrace__PT_CONTINUE_with_signal_thread_sigmask); + ATF_TP_ADD_TC(tp, ptrace__parent_terminate_with_pending_sigstop1); + ATF_TP_ADD_TC(tp, ptrace__parent_terminate_with_pending_sigstop2); + ATF_TP_ADD_TC(tp, ptrace__event_mask_sigkill_discard); return (atf_no_error()); } Index: stable/11 =================================================================== --- stable/11 (revision 315962) +++ stable/11 (revision 315963) Property changes on: stable/11 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r314852,315412