Index: head/sys/powerpc/booke/booke_machdep.c =================================================================== --- head/sys/powerpc/booke/booke_machdep.c (revision 315463) +++ head/sys/powerpc/booke/booke_machdep.c (revision 315464) @@ -1,427 +1,432 @@ /*- * Copyright (C) 2006-2012 Semihalf * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (C) 2001 Benno Rice * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * $NetBSD: machdep.c,v 1.74.2.1 2000/11/01 16:13:48 tv Exp $ */ /*- * Copyright (C) 1995, 1996 Wolfgang Solfrank. * Copyright (C) 1995, 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include "opt_ddb.h" #include "opt_hwpmc_hooks.h" #include "opt_kstack_pages.h" #include "opt_platform.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif #ifdef DEBUG #define debugf(fmt, args...) printf(fmt, ##args) #else #define debugf(fmt, args...) #endif extern unsigned char _etext[]; extern unsigned char _edata[]; extern unsigned char __bss_start[]; extern unsigned char __sbss_start[]; extern unsigned char __sbss_end[]; extern unsigned char _end[]; extern vm_offset_t __endkernel; /* * Bootinfo is passed to us by legacy loaders. Save the address of the * structure to handle backward compatibility. */ uint32_t *bootinfo; void print_kernel_section_addr(void); void print_kenv(void); uintptr_t booke_init(u_long, u_long); void ivor_setup(void); extern void *interrupt_vector_base; extern void *int_critical_input; extern void *int_machine_check; extern void *int_data_storage; extern void *int_instr_storage; extern void *int_external_input; extern void *int_alignment; extern void *int_fpu; extern void *int_program; extern void *int_syscall; extern void *int_decrementer; extern void *int_fixed_interval_timer; extern void *int_watchdog; extern void *int_data_tlb_error; extern void *int_inst_tlb_error; extern void *int_debug; extern void *int_debug_ed; extern void *int_vec; extern void *int_vecast; #ifdef HWPMC_HOOKS extern void *int_performance_counter; #endif #define SET_TRAP(ivor, handler) \ KASSERT(((uintptr_t)(&handler) & ~0xffffUL) == \ ((uintptr_t)(&interrupt_vector_base) & ~0xffffUL), \ ("Handler " #handler " too far from interrupt vector base")); \ mtspr(ivor, (uintptr_t)(&handler) & 0xffffUL); uintptr_t powerpc_init(vm_offset_t fdt, vm_offset_t, vm_offset_t, void *mdp); void booke_cpu_init(void); void booke_cpu_init(void) { cpu_features |= PPC_FEATURE_BOOKE; pmap_mmu_install(MMU_TYPE_BOOKE, BUS_PROBE_GENERIC); } void ivor_setup(void) { - mtspr(SPR_IVPR, ((uintptr_t)&interrupt_vector_base) & 0xffff0000); + mtspr(SPR_IVPR, ((uintptr_t)&interrupt_vector_base) & ~0xffffUL); SET_TRAP(SPR_IVOR0, int_critical_input); SET_TRAP(SPR_IVOR1, int_machine_check); SET_TRAP(SPR_IVOR2, int_data_storage); SET_TRAP(SPR_IVOR3, int_instr_storage); SET_TRAP(SPR_IVOR4, int_external_input); SET_TRAP(SPR_IVOR5, int_alignment); SET_TRAP(SPR_IVOR6, int_program); SET_TRAP(SPR_IVOR8, int_syscall); SET_TRAP(SPR_IVOR10, int_decrementer); SET_TRAP(SPR_IVOR11, int_fixed_interval_timer); SET_TRAP(SPR_IVOR12, int_watchdog); SET_TRAP(SPR_IVOR13, int_data_tlb_error); SET_TRAP(SPR_IVOR14, int_inst_tlb_error); SET_TRAP(SPR_IVOR15, int_debug); #ifdef HWPMC_HOOKS SET_TRAP(SPR_IVOR35, int_performance_counter); #endif switch ((mfpvr() >> 16) & 0xffff) { case FSL_E6500: SET_TRAP(SPR_IVOR32, int_vec); SET_TRAP(SPR_IVOR33, int_vecast); /* FALLTHROUGH */ case FSL_E500mc: case FSL_E5500: SET_TRAP(SPR_IVOR7, int_fpu); SET_TRAP(SPR_IVOR15, int_debug_ed); break; case FSL_E500v1: case FSL_E500v2: SET_TRAP(SPR_IVOR32, int_vec); break; } + +#ifdef __powerpc64__ + /* Set 64-bit interrupt mode. */ + mtspr(SPR_EPCR, mfspr(SPR_EPCR) | EPCR_ICM); +#endif } static int booke_check_for_fdt(uint32_t arg1, vm_offset_t *dtbp) { void *ptr; int fdt_size; if (arg1 % 8 != 0) return (-1); ptr = (void *)pmap_early_io_map(arg1, PAGE_SIZE); if (fdt_check_header(ptr) != 0) return (-1); /* * Read FDT total size from the header of FDT. * This for sure hits within first page which is * already mapped. */ fdt_size = fdt_totalsize((void *)ptr); /* * Ok, arg1 points to FDT, so we need to map it in. * First, unmap this page and then map FDT again with full size */ pmap_early_io_unmap((vm_offset_t)ptr, PAGE_SIZE); ptr = (void *)pmap_early_io_map(arg1, fdt_size); *dtbp = (vm_offset_t)ptr; return (0); } uintptr_t booke_init(u_long arg1, u_long arg2) { uintptr_t ret; void *mdp; vm_offset_t dtbp, end; end = (uintptr_t)_end; dtbp = (vm_offset_t)NULL; /* Set up TLB initially */ bootinfo = NULL; bzero(__sbss_start, __sbss_end - __sbss_start); bzero(__bss_start, _end - __bss_start); tlb1_init(); /* * Handle the various ways we can get loaded and started: * - FreeBSD's loader passes the pointer to the metadata * in arg1, with arg2 undefined. arg1 has a value that's * relative to the kernel's link address (i.e. larger * than 0xc0000000). * - Juniper's loader passes the metadata pointer in arg2 * and sets arg1 to zero. This is to signal that the * loader maps the kernel and starts it at its link * address (unlike the FreeBSD loader). * - U-Boot passes the standard argc and argv parameters * in arg1 and arg2 (resp). arg1 is between 1 and some * relatively small number, such as 64K. arg2 is the * physical address of the argv vector. * - ePAPR loaders pass an FDT blob in r3 (arg1) and the magic hex * string 0x45504150 ('EPAP') in r6 (which has been lost by now). * r4 (arg2) is supposed to be set to zero, but is not always. */ if (arg1 == 0) /* Juniper loader */ mdp = (void *)arg2; else if (booke_check_for_fdt(arg1, &dtbp) == 0) { /* ePAPR */ end = roundup(end, 8); memmove((void *)end, (void *)dtbp, fdt_totalsize((void *)dtbp)); dtbp = end; end += fdt_totalsize((void *)dtbp); __endkernel = end; mdp = NULL; } else if (arg1 > (uintptr_t)btext) /* FreeBSD loader */ mdp = (void *)arg1; else /* U-Boot */ mdp = NULL; /* Default to 32 byte cache line size. */ switch ((mfpvr()) >> 16) { case FSL_E500mc: case FSL_E5500: case FSL_E6500: cacheline_size = 64; break; } ret = powerpc_init(dtbp, 0, 0, mdp); /* Enable caches */ booke_enable_l1_cache(); booke_enable_l2_cache(); booke_enable_bpred(); return (ret); } #define RES_GRANULE 32 -extern uint32_t tlb0_miss_locks[]; +extern uintptr_t tlb0_miss_locks[]; /* Initialise a struct pcpu. */ void cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t sz) { pcpu->pc_tid_next = TID_MIN; #ifdef SMP - uint32_t *ptr; - int words_per_gran = RES_GRANULE / sizeof(uint32_t); + uintptr_t *ptr; + int words_per_gran = RES_GRANULE / sizeof(uintptr_t); ptr = &tlb0_miss_locks[cpuid * words_per_gran]; pcpu->pc_booke_tlb_lock = ptr; *ptr = TLB_UNLOCKED; *(ptr + 1) = 0; /* recurse counter */ #endif } /* Shutdown the CPU as much as possible. */ void cpu_halt(void) { mtmsr(mfmsr() & ~(PSL_CE | PSL_EE | PSL_ME | PSL_DE)); while (1) ; } int ptrace_single_step(struct thread *td) { struct trapframe *tf; tf = td->td_frame; tf->srr1 |= PSL_DE; tf->cpu.booke.dbcr0 |= (DBCR0_IDM | DBCR0_IC); return (0); } int ptrace_clear_single_step(struct thread *td) { struct trapframe *tf; tf = td->td_frame; tf->srr1 &= ~PSL_DE; tf->cpu.booke.dbcr0 &= ~(DBCR0_IDM | DBCR0_IC); return (0); } void kdb_cpu_clear_singlestep(void) { register_t r; r = mfspr(SPR_DBCR0); mtspr(SPR_DBCR0, r & ~DBCR0_IC); kdb_frame->srr1 &= ~PSL_DE; } void kdb_cpu_set_singlestep(void) { register_t r; r = mfspr(SPR_DBCR0); mtspr(SPR_DBCR0, r | DBCR0_IC | DBCR0_IDM); kdb_frame->srr1 |= PSL_DE; } Index: head/sys/powerpc/booke/locore.S =================================================================== --- head/sys/powerpc/booke/locore.S (revision 315463) +++ head/sys/powerpc/booke/locore.S (revision 315464) @@ -1,882 +1,1002 @@ /*- * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski * Copyright (C) 2006 Semihalf, Marian Balakowicz * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #include "assym.s" #include "opt_hwpmc_hooks.h" #include #include #include #include #include #include #include #include #define TMPSTACKSZ 16384 +#ifdef __powerpc64__ +#define GET_TOCBASE(r) \ + mfspr r, SPR_SPRG8 +#define TOC_RESTORE nop +#define CMPI cmpdi +#define CMPL cmpld +#define LOAD ld +#define LOADX ldarx +#define STORE std +#define STOREX stdcx. +#define STU stdu +#define CALLSIZE 48 +#define REDZONE 288 +#define THREAD_REG %r13 +#define ADDR(x) \ + .llong x +#else +#define GET_TOCBASE(r) +#define TOC_RESTORE +#define CMPI cmpwi +#define CMPL cmplw +#define LOAD lwz +#define LOADX lwarx +#define STOREX stwcx. +#define STORE stw +#define STU stwu +#define CALLSIZE 8 +#define REDZONE 0 +#define THREAD_REG %r2 +#define ADDR(x) \ + .long x +#endif + .text .globl btext btext: /* * This symbol is here for the benefit of kvm_mkdb, and is supposed to * mark the start of kernel text. */ .globl kernel_text kernel_text: /* * Startup entry. Note, this must be the first thing in the text segment! */ .text .globl __start __start: /* * Assumptions on the boot loader: * - System memory starts from physical address 0 * - It's mapped by a single TLB1 entry * - TLB1 mapping is 1:1 pa to va * - Kernel is loaded at 64MB boundary * - All PID registers are set to the same value * - CPU is running in AS=0 * * Registers contents provided by the loader(8): * r1 : stack pointer * r3 : metadata pointer * * We rearrange the TLB1 layout as follows: * - Find TLB1 entry we started in * - Make sure it's protected, invalidate other entries * - Create temp entry in the second AS (make sure it's not TLB[1]) * - Switch to temp mapping * - Map 64MB of RAM in TLB1[1] * - Use AS=1, set EPN to KERNBASE and RPN to kernel load address * - Switch to to TLB1[1] mapping * - Invalidate temp mapping * * locore registers use: * r1 : stack pointer * r2 : trace pointer (AP only, for early diagnostics) * r3-r27 : scratch registers * r28 : temp TLB1 entry * r29 : initial TLB1 entry we started in * r30-r31 : arguments (metadata pointer) */ /* * Keep arguments in r30 & r31 for later use. */ mr %r30, %r3 mr %r31, %r4 /* * Initial cleanup */ li %r3, PSL_DE /* Keep debug exceptions for CodeWarrior. */ +#ifdef __powerpc64__ + oris %r3, %r3, PSL_CM@h +#endif mtmsr %r3 isync /* * Initial HIDs configuration */ 1: mfpvr %r3 rlwinm %r3, %r3, 16, 16, 31 lis %r4, HID0_E500_DEFAULT_SET@h ori %r4, %r4, HID0_E500_DEFAULT_SET@l /* Check for e500mc and e5500 */ cmpli 0, 0, %r3, FSL_E500mc bne 2f lis %r4, HID0_E500MC_DEFAULT_SET@h ori %r4, %r4, HID0_E500MC_DEFAULT_SET@l b 3f 2: cmpli 0, 0, %r3, FSL_E5500 bne 3f lis %r4, HID0_E5500_DEFAULT_SET@h ori %r4, %r4, HID0_E5500_DEFAULT_SET@l 3: mtspr SPR_HID0, %r4 isync /* * E500mc and E5500 do not have HID1 register, so skip HID1 setup on * this core. */ cmpli 0, 0, %r3, FSL_E500mc beq 1f cmpli 0, 0, %r3, FSL_E5500 beq 1f cmpli 0, 0, %r3, FSL_E6500 beq 1f lis %r3, HID1_E500_DEFAULT_SET@h ori %r3, %r3, HID1_E500_DEFAULT_SET@l mtspr SPR_HID1, %r3 isync 1: /* Invalidate all entries in TLB0 */ li %r3, 0 bl tlb_inval_all cmpwi %r30, 0 beq done_mapping /* * Locate the TLB1 entry that maps this code */ bl 1f 1: mflr %r3 bl tlb1_find_current /* the entry found is returned in r29 */ bl tlb1_inval_all_but_current /* * Create temporary mapping in AS=1 and switch to it */ bl tlb1_temp_mapping_as1 mfmsr %r3 ori %r3, %r3, (PSL_IS | PSL_DS) bl 2f 2: mflr %r4 addi %r4, %r4, (3f - 2b) mtspr SPR_SRR0, %r4 mtspr SPR_SRR1, %r3 rfi /* Switch context */ /* * Invalidate initial entry */ 3: mr %r3, %r29 bl tlb1_inval_entry /* * Setup final mapping in TLB1[1] and switch to it */ /* Final kernel mapping, map in 64 MB of RAM */ lis %r3, MAS0_TLBSEL1@h /* Select TLB1 */ li %r4, 0 /* Entry 0 */ rlwimi %r3, %r4, 16, 10, 15 mtspr SPR_MAS0, %r3 isync li %r3, (TLB_SIZE_64M << MAS1_TSIZE_SHIFT)@l oris %r3, %r3, (MAS1_VALID | MAS1_IPROT)@h mtspr SPR_MAS1, %r3 /* note TS was not filled, so it's TS=0 */ isync - lis %r3, KERNBASE@h - ori %r3, %r3, KERNBASE@l /* EPN = KERNBASE */ -#ifdef SMP + LOAD_ADDR(%r3, KERNBASE) ori %r3, %r3, (_TLB_ENTRY_SHARED | MAS2_M)@l /* WIMGE = 0b00100 */ -#endif mtspr SPR_MAS2, %r3 isync /* Discover phys load address */ bl 3f 3: mflr %r4 /* Use current address */ rlwinm %r4, %r4, 0, 0, 5 /* 64MB alignment mask */ ori %r4, %r4, (MAS3_SX | MAS3_SW | MAS3_SR)@l mtspr SPR_MAS3, %r4 /* Set RPN and protection */ isync bl zero_mas7 bl zero_mas8 tlbwe isync msync /* Switch to the above TLB1[1] mapping */ bl 4f 4: mflr %r4 - rlwinm %r4, %r4, 0, 8, 31 /* Current offset from kernel load address */ +#ifdef __powerpc64__ + clrldi %r4, %r4, 38 + clrrdi %r3, %r3, 12 +#else + rlwinm %r4, %r4, 0, 6, 31 /* Current offset from kernel load address */ rlwinm %r3, %r3, 0, 0, 19 +#endif add %r4, %r4, %r3 /* Convert to kernel virtual address */ addi %r4, %r4, (5f - 4b) li %r3, PSL_DE /* Note AS=0 */ +#ifdef __powerpc64__ + oris %r3, %r3, PSL_CM@h +#endif mtspr SPR_SRR0, %r4 mtspr SPR_SRR1, %r3 rfi /* * Invalidate temp mapping */ 5: mr %r3, %r28 bl tlb1_inval_entry done_mapping: +#ifdef __powerpc64__ + /* Set up the TOC pointer */ + b 0f + .align 3 +0: nop + bl 1f + .llong __tocbase + 0x8000 - . +1: mflr %r2 + ld %r1,0(%r2) + add %r2,%r1,%r2 + mtspr SPR_SPRG8, %r2 + + /* Get load offset */ + ld %r31,-0x8000(%r2) /* First TOC entry is TOC base */ + subf %r31,%r31,%r2 /* Subtract from real TOC base to get base */ + + /* Set up the stack pointer */ + ld %r1,TOC_REF(tmpstack)(%r2) + addi %r1,%r1,TMPSTACKSZ-96 + add %r1,%r1,%r31 + bl 1f + .llong _DYNAMIC-. +1: mflr %r3 + ld %r4,0(%r3) + add %r3,%r4,%r3 + mr %r4,%r31 +#else /* * Setup a temporary stack */ bl 1f .long tmpstack-. 1: mflr %r1 lwz %r2,0(%r1) add %r1,%r1,%r2 addi %r1, %r1, (TMPSTACKSZ - 16) /* * Relocate kernel */ bl 1f .long _DYNAMIC-. .long _GLOBAL_OFFSET_TABLE_-. 1: mflr %r5 lwz %r3,0(%r5) /* _DYNAMIC in %r3 */ add %r3,%r3,%r5 lwz %r4,4(%r5) /* GOT pointer */ add %r4,%r4,%r5 lwz %r4,4(%r4) /* got[0] is _DYNAMIC link addr */ subf %r4,%r4,%r3 /* subtract to calculate relocbase */ - bl elf_reloc_self +#endif + bl CNAME(elf_reloc_self) + TOC_RESTORE /* * Initialise exception vector offsets */ - bl ivor_setup + bl CNAME(ivor_setup) + TOC_RESTORE /* * Set up arguments and jump to system initialization code */ mr %r3, %r30 mr %r4, %r31 /* Prepare core */ - bl booke_init + bl CNAME(booke_init) + TOC_RESTORE /* Switch to thread0.td_kstack now */ mr %r1, %r3 li %r3, 0 - stw %r3, 0(%r1) + STORE %r3, 0(%r1) /* Machine independet part, does not return */ - bl mi_startup + bl CNAME(mi_startup) + TOC_RESTORE /* NOT REACHED */ 5: b 5b #ifdef SMP /************************************************************************/ /* AP Boot page */ /************************************************************************/ .text .globl __boot_page .align 12 __boot_page: bl 1f .globl bp_trace bp_trace: .long 0 .globl bp_kernload bp_kernload: .long 0 /* * Initial configuration */ 1: mflr %r31 /* r31 hold the address of bp_trace */ /* Set HIDs */ mfpvr %r3 rlwinm %r3, %r3, 16, 16, 31 /* HID0 for E500 is default */ lis %r4, HID0_E500_DEFAULT_SET@h ori %r4, %r4, HID0_E500_DEFAULT_SET@l cmpli 0, 0, %r3, FSL_E500mc bne 2f lis %r4, HID0_E500MC_DEFAULT_SET@h ori %r4, %r4, HID0_E500MC_DEFAULT_SET@l b 3f 2: cmpli 0, 0, %r3, FSL_E5500 bne 3f lis %r4, HID0_E5500_DEFAULT_SET@h ori %r4, %r4, HID0_E5500_DEFAULT_SET@l 3: mtspr SPR_HID0, %r4 isync /* Enable branch prediction */ li %r3, BUCSR_BPEN mtspr SPR_BUCSR, %r3 isync /* Invalidate all entries in TLB0 */ li %r3, 0 bl tlb_inval_all /* * Find TLB1 entry which is translating us now */ bl 2f 2: mflr %r3 bl tlb1_find_current /* the entry number found is in r29 */ bl tlb1_inval_all_but_current /* * Create temporary translation in AS=1 and switch to it */ bl tlb1_temp_mapping_as1 mfmsr %r3 ori %r3, %r3, (PSL_IS | PSL_DS) +#ifdef __powerpc64__ + oris %r3, %r3, PSL_CM@h +#endif bl 3f 3: mflr %r4 addi %r4, %r4, (4f - 3b) mtspr SPR_SRR0, %r4 mtspr SPR_SRR1, %r3 rfi /* Switch context */ /* * Invalidate initial entry */ 4: mr %r3, %r29 bl tlb1_inval_entry /* * Setup final mapping in TLB1[1] and switch to it */ /* Final kernel mapping, map in 64 MB of RAM */ lis %r3, MAS0_TLBSEL1@h /* Select TLB1 */ li %r4, 0 /* Entry 0 */ rlwimi %r3, %r4, 16, 4, 15 mtspr SPR_MAS0, %r3 isync li %r3, (TLB_SIZE_64M << MAS1_TSIZE_SHIFT)@l oris %r3, %r3, (MAS1_VALID | MAS1_IPROT)@h mtspr SPR_MAS1, %r3 /* note TS was not filled, so it's TS=0 */ isync - lis %r3, KERNBASE@h - ori %r3, %r3, KERNBASE@l /* EPN = KERNBASE */ + LOAD_ADDR(%r3, KERNBASE) ori %r3, %r3, (_TLB_ENTRY_SHARED | MAS2_M)@l /* WIMGE = 0b00100 */ mtspr SPR_MAS2, %r3 isync /* Retrieve kernel load [physical] address from bp_kernload */ - bl 5f - .long bp_kernload - .long __boot_page +#ifdef __powerpc64__ + b 0f + .align 3 +0: + nop +#endif + bl 5f + ADDR(bp_kernload) + ADDR(__boot_page) 5: mflr %r3 +#ifdef __powerpc64__ + ld %r4, 0(%r3) + ld %r5, 8(%r3) + clrrdi %r3, %r3, 12 +#else lwz %r4, 0(%r3) lwz %r5, 4(%r3) rlwinm %r3, %r3, 0, 0, 19 +#endif sub %r4, %r4, %r5 /* offset of bp_kernload within __boot_page */ lwzx %r3, %r4, %r3 /* Set RPN and protection */ ori %r3, %r3, (MAS3_SX | MAS3_SW | MAS3_SR)@l mtspr SPR_MAS3, %r3 isync bl zero_mas7 bl zero_mas8 tlbwe isync msync /* Switch to the final mapping */ bl 6f 6: mflr %r3 rlwinm %r3, %r3, 0, 0xfff /* Offset from boot page start */ add %r3, %r3, %r5 /* Make this virtual address */ addi %r3, %r3, (7f - 6b) +#ifdef __powerpc64__ + lis %r4, PSL_CM@h /* Note AS=0 */ +#else li %r4, 0 /* Note AS=0 */ +#endif mtspr SPR_SRR0, %r3 mtspr SPR_SRR1, %r4 rfi 7: /* * At this point we're running at virtual addresses KERNBASE and beyond so * it's allowed to directly access all locations the kernel was linked * against. */ /* * Invalidate temp mapping */ mr %r3, %r28 bl tlb1_inval_entry +#ifdef __powerpc64__ + /* Set up the TOC pointer */ + b 0f + .align 3 +0: nop + bl 1f + .llong __tocbase + 0x8000 - . +1: mflr %r2 + ld %r1,0(%r2) + add %r2,%r1,%r2 + mtspr SPR_SPRG8, %r2 + + /* Get load offset */ + ld %r31,-0x8000(%r2) /* First TOC entry is TOC base */ + subf %r31,%r31,%r2 /* Subtract from real TOC base to get base */ + + /* Set up the stack pointer */ + ld %r1,TOC_REF(tmpstack)(%r2) + addi %r1,%r1,TMPSTACKSZ-96 + add %r1,%r1,%r31 +#else /* * Setup a temporary stack */ bl 1f .long tmpstack-. 1: mflr %r1 lwz %r2,0(%r1) add %r1,%r1,%r2 stw %r1, 0(%r1) addi %r1, %r1, (TMPSTACKSZ - 16) +#endif /* * Initialise exception vector offsets */ - bl ivor_setup + bl CNAME(ivor_setup) + TOC_RESTORE /* * Assign our pcpu instance */ bl 1f .long ap_pcpu-. 1: mflr %r4 lwz %r3, 0(%r4) add %r3, %r3, %r4 - lwz %r3, 0(%r3) + LOAD %r3, 0(%r3) mtsprg0 %r3 - bl pmap_bootstrap_ap + bl CNAME(pmap_bootstrap_ap) + TOC_RESTORE - bl cpudep_ap_bootstrap + bl CNAME(cpudep_ap_bootstrap) + TOC_RESTORE /* Switch to the idle thread's kstack */ mr %r1, %r3 - bl machdep_ap_bootstrap + bl CNAME(machdep_ap_bootstrap) + TOC_RESTORE /* NOT REACHED */ 6: b 6b #endif /* SMP */ #if defined (BOOKE_E500) /* * Invalidate all entries in the given TLB. * * r3 TLBSEL */ tlb_inval_all: rlwinm %r3, %r3, 3, (1 << 3) /* TLBSEL */ ori %r3, %r3, (1 << 2) /* INVALL */ tlbivax 0, %r3 isync msync tlbsync msync blr /* * expects address to look up in r3, returns entry number in r29 * * FIXME: the hidden assumption is we are now running in AS=0, but we should * retrieve actual AS from MSR[IS|DS] and put it in MAS6[SAS] */ tlb1_find_current: mfspr %r17, SPR_PID0 slwi %r17, %r17, MAS6_SPID0_SHIFT mtspr SPR_MAS6, %r17 isync tlbsx 0, %r3 mfspr %r17, SPR_MAS0 rlwinm %r29, %r17, 16, 26, 31 /* MAS0[ESEL] -> r29 */ /* Make sure we have IPROT set on the entry */ mfspr %r17, SPR_MAS1 oris %r17, %r17, MAS1_IPROT@h mtspr SPR_MAS1, %r17 isync tlbwe isync msync blr /* * Invalidates a single entry in TLB1. * * r3 ESEL * r4-r5 scratched */ tlb1_inval_entry: lis %r4, MAS0_TLBSEL1@h /* Select TLB1 */ rlwimi %r4, %r3, 16, 10, 15 /* Select our entry */ mtspr SPR_MAS0, %r4 isync tlbre li %r5, 0 /* MAS1[V] = 0 */ mtspr SPR_MAS1, %r5 isync tlbwe isync msync blr /* * r29 current entry number * r28 returned temp entry * r3-r5 scratched */ tlb1_temp_mapping_as1: /* Read our current translation */ lis %r3, MAS0_TLBSEL1@h /* Select TLB1 */ rlwimi %r3, %r29, 16, 10, 15 /* Select our current entry */ mtspr SPR_MAS0, %r3 isync tlbre /* * Prepare and write temp entry * * FIXME this is not robust against overflow i.e. when the current * entry is the last in TLB1 */ lis %r3, MAS0_TLBSEL1@h /* Select TLB1 */ addi %r28, %r29, 1 /* Use next entry. */ rlwimi %r3, %r28, 16, 10, 15 /* Select temp entry */ mtspr SPR_MAS0, %r3 isync mfspr %r5, SPR_MAS1 li %r4, 1 /* AS=1 */ rlwimi %r5, %r4, 12, 19, 19 li %r4, 0 /* Global mapping, TID=0 */ rlwimi %r5, %r4, 16, 8, 15 oris %r5, %r5, (MAS1_VALID | MAS1_IPROT)@h mtspr SPR_MAS1, %r5 isync mflr %r3 bl zero_mas7 bl zero_mas8 mtlr %r3 tlbwe isync msync blr /* * Loops over TLB1, invalidates all entries skipping the one which currently * maps this code. * * r29 current entry * r3-r5 scratched */ tlb1_inval_all_but_current: - mr %r6, %r3 mfspr %r3, SPR_TLB1CFG /* Get number of entries */ andi. %r3, %r3, TLBCFG_NENTRY_MASK@l li %r4, 0 /* Start from Entry 0 */ 1: lis %r5, MAS0_TLBSEL1@h rlwimi %r5, %r4, 16, 10, 15 mtspr SPR_MAS0, %r5 isync tlbre mfspr %r5, SPR_MAS1 cmpw %r4, %r29 /* our current entry? */ beq 2f rlwinm %r5, %r5, 0, 2, 31 /* clear VALID and IPROT bits */ mtspr SPR_MAS1, %r5 isync tlbwe isync msync 2: addi %r4, %r4, 1 cmpw %r4, %r3 /* Check if this is the last entry */ bne 1b blr /* * MAS7 and MAS8 conditional zeroing. */ .globl zero_mas7 zero_mas7: mfpvr %r20 rlwinm %r20, %r20, 16, 16, 31 cmpli 0, 0, %r20, FSL_E500v1 beq 1f li %r20, 0 mtspr SPR_MAS7, %r20 isync 1: blr .globl zero_mas8 zero_mas8: mfpvr %r20 rlwinm %r20, %r20, 16, 16, 31 cmpli 0, 0, %r20, FSL_E500mc beq 1f cmpli 0, 0, %r20, FSL_E5500 beq 1f blr 1: li %r20, 0 mtspr SPR_MAS8, %r20 isync blr #endif #ifdef SMP .globl __boot_tlb1 /* * The __boot_tlb1 table is used to hold BSP TLB1 entries * marked with _TLB_ENTRY_SHARED flag during AP bootstrap. * The BSP fills in the table in tlb_ap_prep() function. Next, * AP loads its contents to TLB1 hardware in pmap_bootstrap_ap(). */ __boot_tlb1: .space TLB1_MAX_ENTRIES * TLB_ENTRY_SIZE __boot_page_padding: /* * Boot page needs to be exactly 4K, with the last word of this page * acting as the reset vector, so we need to stuff the remainder. * Upon release from holdoff CPU fetches the last word of the boot * page. */ .space 4092 - (__boot_page_padding - __boot_page) b __boot_page #endif /* SMP */ /************************************************************************/ /* locore subroutines */ /************************************************************************/ /* * Cache disable/enable/inval sequences according * to section 2.16 of E500CORE RM. */ ENTRY(dcache_inval) /* Invalidate d-cache */ mfspr %r3, SPR_L1CSR0 ori %r3, %r3, (L1CSR0_DCFI | L1CSR0_DCLFR)@l msync isync mtspr SPR_L1CSR0, %r3 isync 1: mfspr %r3, SPR_L1CSR0 andi. %r3, %r3, L1CSR0_DCFI bne 1b blr ENTRY(dcache_disable) /* Disable d-cache */ mfspr %r3, SPR_L1CSR0 li %r4, L1CSR0_DCE@l not %r4, %r4 and %r3, %r3, %r4 msync isync mtspr SPR_L1CSR0, %r3 isync blr ENTRY(dcache_enable) /* Enable d-cache */ mfspr %r3, SPR_L1CSR0 oris %r3, %r3, (L1CSR0_DCPE | L1CSR0_DCE)@h ori %r3, %r3, (L1CSR0_DCPE | L1CSR0_DCE)@l msync isync mtspr SPR_L1CSR0, %r3 isync blr ENTRY(icache_inval) /* Invalidate i-cache */ mfspr %r3, SPR_L1CSR1 ori %r3, %r3, (L1CSR1_ICFI | L1CSR1_ICLFR)@l isync mtspr SPR_L1CSR1, %r3 isync 1: mfspr %r3, SPR_L1CSR1 andi. %r3, %r3, L1CSR1_ICFI bne 1b blr ENTRY(icache_disable) /* Disable i-cache */ mfspr %r3, SPR_L1CSR1 li %r4, L1CSR1_ICE@l not %r4, %r4 and %r3, %r3, %r4 isync mtspr SPR_L1CSR1, %r3 isync blr ENTRY(icache_enable) /* Enable i-cache */ mfspr %r3, SPR_L1CSR1 oris %r3, %r3, (L1CSR1_ICPE | L1CSR1_ICE)@h ori %r3, %r3, (L1CSR1_ICPE | L1CSR1_ICE)@l isync mtspr SPR_L1CSR1, %r3 isync blr /* * L2 cache disable/enable/inval sequences for E500mc. */ ENTRY(l2cache_inval) mfspr %r3, SPR_L2CSR0 oris %r3, %r3, (L2CSR0_L2FI | L2CSR0_L2LFC)@h ori %r3, %r3, (L2CSR0_L2FI | L2CSR0_L2LFC)@l isync mtspr SPR_L2CSR0, %r3 isync 1: mfspr %r3, SPR_L2CSR0 andis. %r3, %r3, L2CSR0_L2FI@h bne 1b blr ENTRY(l2cache_enable) mfspr %r3, SPR_L2CSR0 oris %r3, %r3, (L2CSR0_L2E | L2CSR0_L2PE)@h isync mtspr SPR_L2CSR0, %r3 isync blr /* * Branch predictor setup. */ ENTRY(bpred_enable) mfspr %r3, SPR_BUCSR ori %r3, %r3, BUCSR_BBFI isync mtspr SPR_BUCSR, %r3 isync ori %r3, %r3, BUCSR_BPEN isync mtspr SPR_BUCSR, %r3 isync blr ENTRY(dataloss_erratum_access) /* Lock two cache lines into I-Cache */ sync mfspr %r11, SPR_L1CSR1 rlwinm %r11, %r11, 0, ~L1CSR1_ICUL sync isync mtspr SPR_L1CSR1, %r11 isync lis %r8, 2f@h ori %r8, %r8, 2f@l icbtls 0, 0, %r8 addi %r9, %r8, 64 sync mfspr %r11, SPR_L1CSR1 3: andi. %r11, %r11, L1CSR1_ICUL bne 3b icbtls 0, 0, %r9 sync mfspr %r11, SPR_L1CSR1 3: andi. %r11, %r11, L1CSR1_ICUL bne 3b b 2f .align 6 /* Inside a locked cacheline, wait a while, write, then wait a while */ 2: sync mfspr %r5, TBR_TBL 4: addis %r11, %r5, 0x100000@h /* wait around one million timebase ticks */ mfspr %r5, TBR_TBL subf. %r5, %r5, %r11 bgt 4b stw %r4, 0(%r3) mfspr %r5, TBR_TBL 4: addis %r11, %r5, 0x100000@h /* wait around one million timebase ticks */ mfspr %r5, TBR_TBL subf. %r5, %r5, %r11 bgt 4b sync /* * Fill out the rest of this cache line and the next with nops, * to ensure that nothing outside the locked area will be * fetched due to a branch. */ .rept 19 nop .endr icblc 0, 0, %r8 icblc 0, 0, %r9 blr /* * XXX: This should be moved to a shared AIM/booke asm file, if one ever is * created. */ ENTRY(get_spr) mfspr %r3, 0 blr /************************************************************************/ /* Data section */ /************************************************************************/ .data .align 3 GLOBAL(__startkernel) - .long begin + ADDR(begin) GLOBAL(__endkernel) - .long end + ADDR(end) .align 4 tmpstack: .space TMPSTACKSZ tmpstackbound: .space 10240 /* XXX: this really should not be necessary */ +#ifdef __powerpc64__ +TOC_ENTRY(tmpstack) +TOC_ENTRY(bp_kernload) +#endif /* * Compiled KERNBASE locations */ .globl kernbase .set kernbase, KERNBASE #include Index: head/sys/powerpc/booke/mp_cpudep.c =================================================================== --- head/sys/powerpc/booke/mp_cpudep.c (revision 315463) +++ head/sys/powerpc/booke/mp_cpudep.c (revision 315464) @@ -1,90 +1,95 @@ /*- * Copyright (c) 2008-2009 Semihalf, Rafal Jaworowski * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include extern void dcache_enable(void); extern void dcache_inval(void); extern void icache_enable(void); extern void icache_inval(void); volatile void *ap_pcpu; uintptr_t cpudep_ap_bootstrap() { - uint32_t msr, sp, csr; + uint32_t msr, csr; + uintptr_t sp; /* Enable L1 caches */ csr = mfspr(SPR_L1CSR0); if ((csr & L1CSR0_DCE) == 0) { dcache_inval(); dcache_enable(); } csr = mfspr(SPR_L1CSR1); if ((csr & L1CSR1_ICE) == 0) { icache_inval(); icache_enable(); } /* Set MSR */ +#ifdef __powerpc64__ + msr = PSL_CM | PSL_ME; +#else msr = PSL_ME; +#endif mtmsr(msr); /* Assign pcpu fields, return ptr to this AP's idle thread kstack */ pcpup->pc_curthread = pcpup->pc_idlethread; #ifdef __powerpc64__ __asm __volatile("mr 13,%0" :: "r"(pcpup->pc_curthread)); #else __asm __volatile("mr 2,%0" :: "r"(pcpup->pc_curthread)); #endif pcpup->pc_curpcb = pcpup->pc_curthread->td_pcb; sp = pcpup->pc_curpcb->pcb_sp; /* XXX shouldn't the pcb_sp be checked/forced for alignment here?? */ return (sp); } void cpudep_ap_setup() { } Index: head/sys/powerpc/booke/pmap.c =================================================================== --- head/sys/powerpc/booke/pmap.c (revision 315463) +++ head/sys/powerpc/booke/pmap.c (revision 315464) @@ -1,3644 +1,4319 @@ /*- * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski * Copyright (C) 2006 Semihalf, Marian Balakowicz * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Some hw specific parts of this pmap were derived or influenced * by NetBSD's ibm4xx pmap module. More generic code is shared with * a few other pmap modules from the FreeBSD tree. */ /* * VM layout notes: * * Kernel and user threads run within one common virtual address space * defined by AS=0. * + * 32-bit pmap: * Virtual address space layout: * ----------------------------- - * 0x0000_0000 - 0xafff_ffff : user process - * 0xb000_0000 - 0xbfff_ffff : pmap_mapdev()-ed area (PCI/PCIE etc.) + * 0x0000_0000 - 0x7fff_ffff : user process + * 0x8000_0000 - 0xbfff_ffff : pmap_mapdev()-ed area (PCI/PCIE etc.) * 0xc000_0000 - 0xc0ff_ffff : kernel reserved * 0xc000_0000 - data_end : kernel code+data, env, metadata etc. - * 0xc100_0000 - 0xfeef_ffff : KVA + * 0xc100_0000 - 0xffff_ffff : KVA * 0xc100_0000 - 0xc100_3fff : reserved for page zero/copy * 0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs * 0xc200_4000 - 0xc200_8fff : guard page + kstack0 * 0xc200_9000 - 0xfeef_ffff : actual free KVA space - * 0xfef0_0000 - 0xffff_ffff : I/O devices region + * + * 64-bit pmap: + * Virtual address space layout: + * ----------------------------- + * 0x0000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff : user process + * 0x0000_0000_0000_0000 - 0x8fff_ffff_ffff_ffff : text, data, heap, maps, libraries + * 0x9000_0000_0000_0000 - 0xafff_ffff_ffff_ffff : mmio region + * 0xb000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff : stack + * 0xc000_0000_0000_0000 - 0xcfff_ffff_ffff_ffff : kernel reserved + * 0xc000_0000_0000_0000 - endkernel-1 : kernel code & data + * endkernel - msgbufp-1 : flat device tree + * msgbufp - ptbl_bufs-1 : message buffer + * ptbl_bufs - kernel_pdir-1 : kernel page tables + * kernel_pdir - kernel_pp2d-1 : kernel page directory + * kernel_pp2d - . : kernel pointers to page directory + * pmap_zero_copy_min - crashdumpmap-1 : reserved for page zero/copy + * crashdumpmap - ptbl_buf_pool_vabase-1 : reserved for ptbl bufs + * ptbl_buf_pool_vabase - virtual_avail-1 : user page directories and page tables + * virtual_avail - 0xcfff_ffff_ffff_ffff : actual free KVA space + * 0xd000_0000_0000_0000 - 0xdfff_ffff_ffff_ffff : coprocessor region + * 0xe000_0000_0000_0000 - 0xefff_ffff_ffff_ffff : mmio region + * 0xf000_0000_0000_0000 - 0xffff_ffff_ffff_ffff : direct map + * 0xf000_0000_0000_0000 - +Maxmem : physmem map + * - 0xffff_ffff_ffff_ffff : device direct map */ #include __FBSDID("$FreeBSD$"); #include "opt_kstack_pages.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include #include #include #include #include #include #include #include "mmu_if.h" #define SPARSE_MAPDEV #ifdef DEBUG #define debugf(fmt, args...) printf(fmt, ##args) #else #define debugf(fmt, args...) #endif +#ifdef __powerpc64__ +#define PRI0ptrX "016lx" +#else +#define PRI0ptrX "08x" +#endif + #define TODO panic("%s: not implemented", __func__); extern unsigned char _etext[]; extern unsigned char _end[]; extern uint32_t *bootinfo; vm_paddr_t kernload; vm_offset_t kernstart; vm_size_t kernsize; /* Message buffer and tables. */ static vm_offset_t data_start; static vm_size_t data_end; /* Phys/avail memory regions. */ static struct mem_region *availmem_regions; static int availmem_regions_sz; static struct mem_region *physmem_regions; static int physmem_regions_sz; /* Reserved KVA space and mutex for mmu_booke_zero_page. */ static vm_offset_t zero_page_va; static struct mtx zero_page_mutex; static struct mtx tlbivax_mutex; /* Reserved KVA space and mutex for mmu_booke_copy_page. */ static vm_offset_t copy_page_src_va; static vm_offset_t copy_page_dst_va; static struct mtx copy_page_mutex; /**************************************************************************/ /* PMAP */ /**************************************************************************/ static int mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int flags, int8_t psind); unsigned int kptbl_min; /* Index of the first kernel ptbl. */ unsigned int kernel_ptbls; /* Number of KVA ptbls. */ +#ifdef __powerpc64__ +unsigned int kernel_pdirs; +#endif /* * If user pmap is processed with mmu_booke_remove and the resident count * drops to 0, there are no more pages to remove, so we need not continue. */ #define PMAP_REMOVE_DONE(pmap) \ ((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0) +#if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__) extern int elf32_nxstack; +#endif /**************************************************************************/ /* TLB and TID handling */ /**************************************************************************/ /* Translation ID busy table */ static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1]; /* * TLB0 capabilities (entry, way numbers etc.). These can vary between e500 * core revisions and should be read from h/w registers during early config. */ uint32_t tlb0_entries; uint32_t tlb0_ways; uint32_t tlb0_entries_per_way; uint32_t tlb1_entries; #define TLB0_ENTRIES (tlb0_entries) #define TLB0_WAYS (tlb0_ways) #define TLB0_ENTRIES_PER_WAY (tlb0_entries_per_way) #define TLB1_ENTRIES (tlb1_entries) -#define TLB1_MAXENTRIES 64 static vm_offset_t tlb1_map_base = VM_MAXUSER_ADDRESS + PAGE_SIZE; static tlbtid_t tid_alloc(struct pmap *); static void tid_flush(tlbtid_t tid); +#ifdef __powerpc64__ +static void tlb_print_entry(int, uint32_t, uint64_t, uint32_t, uint32_t); +#else static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t); +#endif static void tlb1_read_entry(tlb_entry_t *, unsigned int); static void tlb1_write_entry(tlb_entry_t *, unsigned int); static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *); static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t); static vm_size_t tsize2size(unsigned int); static unsigned int size2tsize(vm_size_t); static unsigned int ilog2(unsigned int); static void set_mas4_defaults(void); static inline void tlb0_flush_entry(vm_offset_t); static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int); /**************************************************************************/ /* Page table management */ /**************************************************************************/ static struct rwlock_padalign pvh_global_lock; /* Data for the pv entry allocation mechanism */ static uma_zone_t pvzone; static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0; #define PV_ENTRY_ZONE_MIN 2048 /* min pv entries in uma zone */ #ifndef PMAP_SHPGPERPROC #define PMAP_SHPGPERPROC 200 #endif static void ptbl_init(void); static struct ptbl_buf *ptbl_buf_alloc(void); static void ptbl_buf_free(struct ptbl_buf *); static void ptbl_free_pmap_ptbl(pmap_t, pte_t *); +#ifdef __powerpc64__ +static pte_t *ptbl_alloc(mmu_t, pmap_t, pte_t **, + unsigned int, boolean_t); +static void ptbl_free(mmu_t, pmap_t, pte_t **, unsigned int); +static void ptbl_hold(mmu_t, pmap_t, pte_t **, unsigned int); +static int ptbl_unhold(mmu_t, pmap_t, vm_offset_t); +#else static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int, boolean_t); static void ptbl_free(mmu_t, pmap_t, unsigned int); static void ptbl_hold(mmu_t, pmap_t, unsigned int); static int ptbl_unhold(mmu_t, pmap_t, unsigned int); +#endif static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t); -static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t); static int pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t); static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t); -static void kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, - vm_offset_t pdir); +static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t); +static void kernel_pte_alloc(vm_offset_t, vm_offset_t, vm_offset_t); static pv_entry_t pv_alloc(void); static void pv_free(pv_entry_t); static void pv_insert(pmap_t, vm_offset_t, vm_page_t); static void pv_remove(pmap_t, vm_offset_t, vm_page_t); static void booke_pmap_init_qpages(void); /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */ +#ifdef __powerpc64__ +#define PTBL_BUFS (16UL * 16 * 16) +#else #define PTBL_BUFS (128 * 16) +#endif struct ptbl_buf { TAILQ_ENTRY(ptbl_buf) link; /* list link */ vm_offset_t kva; /* va of mapping */ }; /* ptbl free list and a lock used for access synchronization. */ static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist; static struct mtx ptbl_buf_freelist_lock; /* Base address of kva space allocated fot ptbl bufs. */ static vm_offset_t ptbl_buf_pool_vabase; /* Pointer to ptbl_buf structures. */ static struct ptbl_buf *ptbl_bufs; #ifdef SMP extern tlb_entry_t __boot_tlb1[]; void pmap_bootstrap_ap(volatile uint32_t *); #endif /* * Kernel MMU interface */ static void mmu_booke_clear_modify(mmu_t, vm_page_t); static void mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t, vm_size_t, vm_offset_t); static void mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t); static void mmu_booke_copy_pages(mmu_t, vm_page_t *, vm_offset_t, vm_page_t *, vm_offset_t, int); static int mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int flags, int8_t psind); static void mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t, vm_prot_t); static void mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t); static vm_paddr_t mmu_booke_extract(mmu_t, pmap_t, vm_offset_t); static vm_page_t mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t); static void mmu_booke_init(mmu_t); static boolean_t mmu_booke_is_modified(mmu_t, vm_page_t); static boolean_t mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t); static boolean_t mmu_booke_is_referenced(mmu_t, vm_page_t); static int mmu_booke_ts_referenced(mmu_t, vm_page_t); static vm_offset_t mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int); static int mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t, vm_paddr_t *); static void mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t, vm_object_t, vm_pindex_t, vm_size_t); static boolean_t mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t); static void mmu_booke_page_init(mmu_t, vm_page_t); static int mmu_booke_page_wired_mappings(mmu_t, vm_page_t); static void mmu_booke_pinit(mmu_t, pmap_t); static void mmu_booke_pinit0(mmu_t, pmap_t); static void mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t); static void mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int); static void mmu_booke_qremove(mmu_t, vm_offset_t, int); static void mmu_booke_release(mmu_t, pmap_t); static void mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t); static void mmu_booke_remove_all(mmu_t, vm_page_t); static void mmu_booke_remove_write(mmu_t, vm_page_t); static void mmu_booke_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t); static void mmu_booke_zero_page(mmu_t, vm_page_t); static void mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int); static void mmu_booke_activate(mmu_t, struct thread *); static void mmu_booke_deactivate(mmu_t, struct thread *); static void mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t); static void *mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t); static void *mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t); static void mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t); static vm_paddr_t mmu_booke_kextract(mmu_t, vm_offset_t); static void mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t); static void mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t); static void mmu_booke_kremove(mmu_t, vm_offset_t); static boolean_t mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t); static void mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t); static void mmu_booke_dumpsys_map(mmu_t, vm_paddr_t pa, size_t, void **); static void mmu_booke_dumpsys_unmap(mmu_t, vm_paddr_t pa, size_t, void *); static void mmu_booke_scan_init(mmu_t); static vm_offset_t mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m); static void mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr); static int mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr, vm_size_t sz, vm_memattr_t mode); static mmu_method_t mmu_booke_methods[] = { /* pmap dispatcher interface */ MMUMETHOD(mmu_clear_modify, mmu_booke_clear_modify), MMUMETHOD(mmu_copy, mmu_booke_copy), MMUMETHOD(mmu_copy_page, mmu_booke_copy_page), MMUMETHOD(mmu_copy_pages, mmu_booke_copy_pages), MMUMETHOD(mmu_enter, mmu_booke_enter), MMUMETHOD(mmu_enter_object, mmu_booke_enter_object), MMUMETHOD(mmu_enter_quick, mmu_booke_enter_quick), MMUMETHOD(mmu_extract, mmu_booke_extract), MMUMETHOD(mmu_extract_and_hold, mmu_booke_extract_and_hold), MMUMETHOD(mmu_init, mmu_booke_init), MMUMETHOD(mmu_is_modified, mmu_booke_is_modified), MMUMETHOD(mmu_is_prefaultable, mmu_booke_is_prefaultable), MMUMETHOD(mmu_is_referenced, mmu_booke_is_referenced), MMUMETHOD(mmu_ts_referenced, mmu_booke_ts_referenced), MMUMETHOD(mmu_map, mmu_booke_map), MMUMETHOD(mmu_mincore, mmu_booke_mincore), MMUMETHOD(mmu_object_init_pt, mmu_booke_object_init_pt), MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick), MMUMETHOD(mmu_page_init, mmu_booke_page_init), MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings), MMUMETHOD(mmu_pinit, mmu_booke_pinit), MMUMETHOD(mmu_pinit0, mmu_booke_pinit0), MMUMETHOD(mmu_protect, mmu_booke_protect), MMUMETHOD(mmu_qenter, mmu_booke_qenter), MMUMETHOD(mmu_qremove, mmu_booke_qremove), MMUMETHOD(mmu_release, mmu_booke_release), MMUMETHOD(mmu_remove, mmu_booke_remove), MMUMETHOD(mmu_remove_all, mmu_booke_remove_all), MMUMETHOD(mmu_remove_write, mmu_booke_remove_write), MMUMETHOD(mmu_sync_icache, mmu_booke_sync_icache), MMUMETHOD(mmu_unwire, mmu_booke_unwire), MMUMETHOD(mmu_zero_page, mmu_booke_zero_page), MMUMETHOD(mmu_zero_page_area, mmu_booke_zero_page_area), MMUMETHOD(mmu_activate, mmu_booke_activate), MMUMETHOD(mmu_deactivate, mmu_booke_deactivate), MMUMETHOD(mmu_quick_enter_page, mmu_booke_quick_enter_page), MMUMETHOD(mmu_quick_remove_page, mmu_booke_quick_remove_page), /* Internal interfaces */ MMUMETHOD(mmu_bootstrap, mmu_booke_bootstrap), MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped), MMUMETHOD(mmu_mapdev, mmu_booke_mapdev), MMUMETHOD(mmu_mapdev_attr, mmu_booke_mapdev_attr), MMUMETHOD(mmu_kenter, mmu_booke_kenter), MMUMETHOD(mmu_kenter_attr, mmu_booke_kenter_attr), MMUMETHOD(mmu_kextract, mmu_booke_kextract), MMUMETHOD(mmu_kremove, mmu_booke_kremove), MMUMETHOD(mmu_unmapdev, mmu_booke_unmapdev), MMUMETHOD(mmu_change_attr, mmu_booke_change_attr), /* dumpsys() support */ MMUMETHOD(mmu_dumpsys_map, mmu_booke_dumpsys_map), MMUMETHOD(mmu_dumpsys_unmap, mmu_booke_dumpsys_unmap), MMUMETHOD(mmu_scan_init, mmu_booke_scan_init), { 0, 0 } }; MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0); static __inline uint32_t tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma) { uint32_t attrib; int i; if (ma != VM_MEMATTR_DEFAULT) { switch (ma) { case VM_MEMATTR_UNCACHEABLE: return (MAS2_I | MAS2_G); case VM_MEMATTR_WRITE_COMBINING: case VM_MEMATTR_WRITE_BACK: case VM_MEMATTR_PREFETCHABLE: return (MAS2_I); case VM_MEMATTR_WRITE_THROUGH: return (MAS2_W | MAS2_M); case VM_MEMATTR_CACHEABLE: return (MAS2_M); } } /* * Assume the page is cache inhibited and access is guarded unless * it's in our available memory array. */ attrib = _TLB_ENTRY_IO; for (i = 0; i < physmem_regions_sz; i++) { if ((pa >= physmem_regions[i].mr_start) && (pa < (physmem_regions[i].mr_start + physmem_regions[i].mr_size))) { attrib = _TLB_ENTRY_MEM; break; } } return (attrib); } static inline void tlb_miss_lock(void) { #ifdef SMP struct pcpu *pc; if (!smp_started) return; STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) { if (pc != pcpup) { CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, " "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock); KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)), ("tlb_miss_lock: tried to lock self")); tlb_lock(pc->pc_booke_tlb_lock); CTR1(KTR_PMAP, "%s: locked", __func__); } } #endif } static inline void tlb_miss_unlock(void) { #ifdef SMP struct pcpu *pc; if (!smp_started) return; STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) { if (pc != pcpup) { CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d", __func__, pc->pc_cpuid); tlb_unlock(pc->pc_booke_tlb_lock); CTR1(KTR_PMAP, "%s: unlocked", __func__); } } #endif } /* Return number of entries in TLB0. */ static __inline void tlb0_get_tlbconf(void) { uint32_t tlb0_cfg; tlb0_cfg = mfspr(SPR_TLB0CFG); tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK; tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT; tlb0_entries_per_way = tlb0_entries / tlb0_ways; } /* Return number of entries in TLB1. */ static __inline void tlb1_get_tlbconf(void) { uint32_t tlb1_cfg; tlb1_cfg = mfspr(SPR_TLB1CFG); tlb1_entries = tlb1_cfg & TLBCFG_NENTRY_MASK; } /**************************************************************************/ /* Page table related */ /**************************************************************************/ +#ifdef __powerpc64__ /* Initialize pool of kva ptbl buffers. */ static void ptbl_init(void) { + int i; + + mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF); + TAILQ_INIT(&ptbl_buf_freelist); + + for (i = 0; i < PTBL_BUFS; i++) { + ptbl_bufs[i].kva = ptbl_buf_pool_vabase + + i * MAX(PTBL_PAGES,PDIR_PAGES) * PAGE_SIZE; + TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link); + } +} + +/* Get an sf_buf from the freelist. */ +static struct ptbl_buf * +ptbl_buf_alloc(void) +{ + struct ptbl_buf *buf; + + mtx_lock(&ptbl_buf_freelist_lock); + buf = TAILQ_FIRST(&ptbl_buf_freelist); + if (buf != NULL) + TAILQ_REMOVE(&ptbl_buf_freelist, buf, link); + mtx_unlock(&ptbl_buf_freelist_lock); + + return (buf); +} + +/* Return ptbl buff to free pool. */ +static void +ptbl_buf_free(struct ptbl_buf *buf) +{ + mtx_lock(&ptbl_buf_freelist_lock); + TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link); + mtx_unlock(&ptbl_buf_freelist_lock); +} + +/* + * Search the list of allocated ptbl bufs and find on list of allocated ptbls + */ +static void +ptbl_free_pmap_ptbl(pmap_t pmap, pte_t * ptbl) +{ + struct ptbl_buf *pbuf; + + TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link) { + if (pbuf->kva == (vm_offset_t) ptbl) { + /* Remove from pmap ptbl buf list. */ + TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link); + + /* Free corresponding ptbl buf. */ + ptbl_buf_free(pbuf); + + break; + } + } +} + +/* Get a pointer to a PTE in a page table. */ +static __inline pte_t * +pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va) +{ + pte_t **pdir; + pte_t *ptbl; + + KASSERT((pmap != NULL), ("pte_find: invalid pmap")); + + pdir = pmap->pm_pp2d[PP2D_IDX(va)]; + if (!pdir) + return NULL; + ptbl = pdir[PDIR_IDX(va)]; + return ((ptbl != NULL) ? &ptbl[PTBL_IDX(va)] : NULL); +} + +/* + * Search the list of allocated pdir bufs and find on list of allocated pdirs + */ +static void +ptbl_free_pmap_pdir(mmu_t mmu, pmap_t pmap, pte_t ** pdir) +{ + struct ptbl_buf *pbuf; + + TAILQ_FOREACH(pbuf, &pmap->pm_pdir_list, link) { + if (pbuf->kva == (vm_offset_t) pdir) { + /* Remove from pmap ptbl buf list. */ + TAILQ_REMOVE(&pmap->pm_pdir_list, pbuf, link); + + /* Free corresponding pdir buf. */ + ptbl_buf_free(pbuf); + + break; + } + } +} +/* Free pdir pages and invalidate pdir entry. */ +static void +pdir_free(mmu_t mmu, pmap_t pmap, unsigned int pp2d_idx) +{ + pte_t **pdir; + vm_paddr_t pa; + vm_offset_t va; + vm_page_t m; + int i; + + pdir = pmap->pm_pp2d[pp2d_idx]; + + KASSERT((pdir != NULL), ("pdir_free: null pdir")); + + pmap->pm_pp2d[pp2d_idx] = NULL; + + for (i = 0; i < PDIR_PAGES; i++) { + va = ((vm_offset_t) pdir + (i * PAGE_SIZE)); + pa = pte_vatopa(mmu, kernel_pmap, va); + m = PHYS_TO_VM_PAGE(pa); + vm_page_free_zero(m); + atomic_subtract_int(&vm_cnt.v_wire_count, 1); + pmap_kremove(va); + } + + ptbl_free_pmap_pdir(mmu, pmap, pdir); +} + +/* + * Decrement pdir pages hold count and attempt to free pdir pages. Called + * when removing directory entry from pdir. + * + * Return 1 if pdir pages were freed. + */ +static int +pdir_unhold(mmu_t mmu, pmap_t pmap, u_int pp2d_idx) +{ + pte_t **pdir; + vm_paddr_t pa; + vm_page_t m; + int i; + + KASSERT((pmap != kernel_pmap), + ("pdir_unhold: unholding kernel pdir!")); + + pdir = pmap->pm_pp2d[pp2d_idx]; + + KASSERT(((vm_offset_t) pdir >= VM_MIN_KERNEL_ADDRESS), + ("pdir_unhold: non kva pdir")); + + /* decrement hold count */ + for (i = 0; i < PDIR_PAGES; i++) { + pa = pte_vatopa(mmu, kernel_pmap, + (vm_offset_t) pdir + (i * PAGE_SIZE)); + m = PHYS_TO_VM_PAGE(pa); + m->wire_count--; + } + + /* + * Free pdir pages if there are no dir entries in this pdir. + * wire_count has the same value for all ptbl pages, so check the + * last page. + */ + if (m->wire_count == 0) { + pdir_free(mmu, pmap, pp2d_idx); + return (1); + } + return (0); +} + +/* + * Increment hold count for pdir pages. This routine is used when new ptlb + * entry is being inserted into pdir. + */ +static void +pdir_hold(mmu_t mmu, pmap_t pmap, pte_t ** pdir) +{ + vm_paddr_t pa; + vm_page_t m; + int i; + + KASSERT((pmap != kernel_pmap), + ("pdir_hold: holding kernel pdir!")); + + KASSERT((pdir != NULL), ("pdir_hold: null pdir")); + + for (i = 0; i < PDIR_PAGES; i++) { + pa = pte_vatopa(mmu, kernel_pmap, + (vm_offset_t) pdir + (i * PAGE_SIZE)); + m = PHYS_TO_VM_PAGE(pa); + m->wire_count++; + } +} + +/* Allocate page table. */ +static pte_t * +ptbl_alloc(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx, + boolean_t nosleep) +{ + vm_page_t mtbl [PTBL_PAGES]; + vm_page_t m; + struct ptbl_buf *pbuf; + unsigned int pidx; + pte_t *ptbl; + int i, j; + int req; + + KASSERT((pdir[pdir_idx] == NULL), + ("%s: valid ptbl entry exists!", __func__)); + + pbuf = ptbl_buf_alloc(); + if (pbuf == NULL) + panic("%s: couldn't alloc kernel virtual memory", __func__); + + ptbl = (pte_t *) pbuf->kva; + + for (i = 0; i < PTBL_PAGES; i++) { + pidx = (PTBL_PAGES * pdir_idx) + i; + req = VM_ALLOC_NOOBJ | VM_ALLOC_WIRED; + while ((m = vm_page_alloc(NULL, pidx, req)) == NULL) { + PMAP_UNLOCK(pmap); + rw_wunlock(&pvh_global_lock); + if (nosleep) { + ptbl_free_pmap_ptbl(pmap, ptbl); + for (j = 0; j < i; j++) + vm_page_free(mtbl[j]); + atomic_subtract_int(&vm_cnt.v_wire_count, i); + return (NULL); + } + VM_WAIT; + rw_wlock(&pvh_global_lock); + PMAP_LOCK(pmap); + } + mtbl[i] = m; + } + + /* Mapin allocated pages into kernel_pmap. */ + mmu_booke_qenter(mmu, (vm_offset_t) ptbl, mtbl, PTBL_PAGES); + /* Zero whole ptbl. */ + bzero((caddr_t) ptbl, PTBL_PAGES * PAGE_SIZE); + + /* Add pbuf to the pmap ptbl bufs list. */ + TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link); + + return (ptbl); +} + +/* Free ptbl pages and invalidate pdir entry. */ +static void +ptbl_free(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx) +{ + pte_t *ptbl; + vm_paddr_t pa; + vm_offset_t va; + vm_page_t m; + int i; + + ptbl = pdir[pdir_idx]; + + KASSERT((ptbl != NULL), ("ptbl_free: null ptbl")); + + pdir[pdir_idx] = NULL; + + for (i = 0; i < PTBL_PAGES; i++) { + va = ((vm_offset_t) ptbl + (i * PAGE_SIZE)); + pa = pte_vatopa(mmu, kernel_pmap, va); + m = PHYS_TO_VM_PAGE(pa); + vm_page_free_zero(m); + atomic_subtract_int(&vm_cnt.v_wire_count, 1); + pmap_kremove(va); + } + + ptbl_free_pmap_ptbl(pmap, ptbl); +} + +/* + * Decrement ptbl pages hold count and attempt to free ptbl pages. Called + * when removing pte entry from ptbl. + * + * Return 1 if ptbl pages were freed. + */ +static int +ptbl_unhold(mmu_t mmu, pmap_t pmap, vm_offset_t va) +{ + pte_t *ptbl; + vm_paddr_t pa; + vm_page_t m; + u_int pp2d_idx; + pte_t **pdir; + u_int pdir_idx; + int i; + + pp2d_idx = PP2D_IDX(va); + pdir_idx = PDIR_IDX(va); + + KASSERT((pmap != kernel_pmap), + ("ptbl_unhold: unholding kernel ptbl!")); + + pdir = pmap->pm_pp2d[pp2d_idx]; + ptbl = pdir[pdir_idx]; + + KASSERT(((vm_offset_t) ptbl >= VM_MIN_KERNEL_ADDRESS), + ("ptbl_unhold: non kva ptbl")); + + /* decrement hold count */ + for (i = 0; i < PTBL_PAGES; i++) { + pa = pte_vatopa(mmu, kernel_pmap, + (vm_offset_t) ptbl + (i * PAGE_SIZE)); + m = PHYS_TO_VM_PAGE(pa); + m->wire_count--; + } + + /* + * Free ptbl pages if there are no pte entries in this ptbl. + * wire_count has the same value for all ptbl pages, so check the + * last page. + */ + if (m->wire_count == 0) { + /* A pair of indirect entries might point to this ptbl page */ +#if 0 + tlb_flush_entry(pmap, va & ~((2UL * PAGE_SIZE_1M) - 1), + TLB_SIZE_1M, MAS6_SIND); + tlb_flush_entry(pmap, (va & ~((2UL * PAGE_SIZE_1M) - 1)) | PAGE_SIZE_1M, + TLB_SIZE_1M, MAS6_SIND); +#endif + ptbl_free(mmu, pmap, pdir, pdir_idx); + pdir_unhold(mmu, pmap, pp2d_idx); + return (1); + } + return (0); +} + +/* + * Increment hold count for ptbl pages. This routine is used when new pte + * entry is being inserted into ptbl. + */ +static void +ptbl_hold(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx) +{ + vm_paddr_t pa; + pte_t *ptbl; + vm_page_t m; + int i; + + KASSERT((pmap != kernel_pmap), + ("ptbl_hold: holding kernel ptbl!")); + + ptbl = pdir[pdir_idx]; + + KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl")); + + for (i = 0; i < PTBL_PAGES; i++) { + pa = pte_vatopa(mmu, kernel_pmap, + (vm_offset_t) ptbl + (i * PAGE_SIZE)); + m = PHYS_TO_VM_PAGE(pa); + m->wire_count++; + } +} +#else + +/* Initialize pool of kva ptbl buffers. */ +static void +ptbl_init(void) +{ int i; CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__, (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS); CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)", __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE); mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF); TAILQ_INIT(&ptbl_buf_freelist); for (i = 0; i < PTBL_BUFS; i++) { - ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE; + ptbl_bufs[i].kva = + ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE; TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link); } } /* Get a ptbl_buf from the freelist. */ static struct ptbl_buf * ptbl_buf_alloc(void) { struct ptbl_buf *buf; mtx_lock(&ptbl_buf_freelist_lock); buf = TAILQ_FIRST(&ptbl_buf_freelist); if (buf != NULL) TAILQ_REMOVE(&ptbl_buf_freelist, buf, link); mtx_unlock(&ptbl_buf_freelist_lock); CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); return (buf); } /* Return ptbl buff to free pool. */ static void ptbl_buf_free(struct ptbl_buf *buf) { CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); mtx_lock(&ptbl_buf_freelist_lock); TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link); mtx_unlock(&ptbl_buf_freelist_lock); } /* * Search the list of allocated ptbl bufs and find on list of allocated ptbls */ static void ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl) { struct ptbl_buf *pbuf; CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); PMAP_LOCK_ASSERT(pmap, MA_OWNED); TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link) if (pbuf->kva == (vm_offset_t)ptbl) { /* Remove from pmap ptbl buf list. */ TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link); /* Free corresponding ptbl buf. */ ptbl_buf_free(pbuf); break; } } /* Allocate page table. */ static pte_t * ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx, boolean_t nosleep) { vm_page_t mtbl[PTBL_PAGES]; vm_page_t m; struct ptbl_buf *pbuf; unsigned int pidx; pte_t *ptbl; int i, j; CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, (pmap == kernel_pmap), pdir_idx); KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), ("ptbl_alloc: invalid pdir_idx")); KASSERT((pmap->pm_pdir[pdir_idx] == NULL), ("pte_alloc: valid ptbl entry exists!")); pbuf = ptbl_buf_alloc(); if (pbuf == NULL) panic("pte_alloc: couldn't alloc kernel virtual memory"); ptbl = (pte_t *)pbuf->kva; CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl); - /* Allocate ptbl pages, this will sleep! */ for (i = 0; i < PTBL_PAGES; i++) { pidx = (PTBL_PAGES * pdir_idx) + i; while ((m = vm_page_alloc(NULL, pidx, VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) { PMAP_UNLOCK(pmap); rw_wunlock(&pvh_global_lock); if (nosleep) { ptbl_free_pmap_ptbl(pmap, ptbl); for (j = 0; j < i; j++) vm_page_free(mtbl[j]); atomic_subtract_int(&vm_cnt.v_wire_count, i); return (NULL); } VM_WAIT; rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); } mtbl[i] = m; } /* Map allocated pages into kernel_pmap. */ mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES); /* Zero whole ptbl. */ bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE); /* Add pbuf to the pmap ptbl bufs list. */ TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link); return (ptbl); } /* Free ptbl pages and invalidate pdir entry. */ static void ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) { pte_t *ptbl; vm_paddr_t pa; vm_offset_t va; vm_page_t m; int i; CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, (pmap == kernel_pmap), pdir_idx); KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), ("ptbl_free: invalid pdir_idx")); ptbl = pmap->pm_pdir[pdir_idx]; CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); KASSERT((ptbl != NULL), ("ptbl_free: null ptbl")); /* * Invalidate the pdir entry as soon as possible, so that other CPUs * don't attempt to look up the page tables we are releasing. */ mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); pmap->pm_pdir[pdir_idx] = NULL; tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); for (i = 0; i < PTBL_PAGES; i++) { va = ((vm_offset_t)ptbl + (i * PAGE_SIZE)); pa = pte_vatopa(mmu, kernel_pmap, va); m = PHYS_TO_VM_PAGE(pa); vm_page_free_zero(m); atomic_subtract_int(&vm_cnt.v_wire_count, 1); mmu_booke_kremove(mmu, va); } ptbl_free_pmap_ptbl(pmap, ptbl); } /* * Decrement ptbl pages hold count and attempt to free ptbl pages. * Called when removing pte entry from ptbl. * * Return 1 if ptbl pages were freed. */ static int ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) { pte_t *ptbl; vm_paddr_t pa; vm_page_t m; int i; CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, (pmap == kernel_pmap), pdir_idx); KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), ("ptbl_unhold: invalid pdir_idx")); KASSERT((pmap != kernel_pmap), ("ptbl_unhold: unholding kernel ptbl!")); ptbl = pmap->pm_pdir[pdir_idx]; //debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl); KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS), ("ptbl_unhold: non kva ptbl")); /* decrement hold count */ for (i = 0; i < PTBL_PAGES; i++) { pa = pte_vatopa(mmu, kernel_pmap, (vm_offset_t)ptbl + (i * PAGE_SIZE)); m = PHYS_TO_VM_PAGE(pa); m->wire_count--; } /* * Free ptbl pages if there are no pte etries in this ptbl. * wire_count has the same value for all ptbl pages, so check the last * page. */ if (m->wire_count == 0) { ptbl_free(mmu, pmap, pdir_idx); //debugf("ptbl_unhold: e (freed ptbl)\n"); return (1); } return (0); } /* * Increment hold count for ptbl pages. This routine is used when a new pte * entry is being inserted into the ptbl. */ static void ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) { vm_paddr_t pa; pte_t *ptbl; vm_page_t m; int i; CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap, pdir_idx); KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), ("ptbl_hold: invalid pdir_idx")); KASSERT((pmap != kernel_pmap), ("ptbl_hold: holding kernel ptbl!")); ptbl = pmap->pm_pdir[pdir_idx]; KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl")); for (i = 0; i < PTBL_PAGES; i++) { pa = pte_vatopa(mmu, kernel_pmap, (vm_offset_t)ptbl + (i * PAGE_SIZE)); m = PHYS_TO_VM_PAGE(pa); m->wire_count++; } } +#endif /* Allocate pv_entry structure. */ pv_entry_t pv_alloc(void) { pv_entry_t pv; pv_entry_count++; if (pv_entry_count > pv_entry_high_water) pagedaemon_wakeup(); pv = uma_zalloc(pvzone, M_NOWAIT); return (pv); } /* Free pv_entry structure. */ static __inline void pv_free(pv_entry_t pve) { pv_entry_count--; uma_zfree(pvzone, pve); } /* Allocate and initialize pv_entry structure. */ static void pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m) { pv_entry_t pve; //int su = (pmap == kernel_pmap); //debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su, // (u_int32_t)pmap, va, (u_int32_t)m); pve = pv_alloc(); if (pve == NULL) panic("pv_insert: no pv entries!"); pve->pv_pmap = pmap; pve->pv_va = va; /* add to pv_list */ PMAP_LOCK_ASSERT(pmap, MA_OWNED); rw_assert(&pvh_global_lock, RA_WLOCKED); TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link); //debugf("pv_insert: e\n"); } /* Destroy pv entry. */ static void pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m) { pv_entry_t pve; //int su = (pmap == kernel_pmap); //debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va); PMAP_LOCK_ASSERT(pmap, MA_OWNED); rw_assert(&pvh_global_lock, RA_WLOCKED); /* find pv entry */ TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) { if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) { /* remove from pv_list */ TAILQ_REMOVE(&m->md.pv_list, pve, pv_link); if (TAILQ_EMPTY(&m->md.pv_list)) vm_page_aflag_clear(m, PGA_WRITEABLE); /* free pv entry struct */ pv_free(pve); break; } } //debugf("pv_remove: e\n"); } +#ifdef __powerpc64__ /* * Clean pte entry, try to free page table page if requested. + * + * Return 1 if ptbl pages were freed, otherwise return 0. + */ +static int +pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, u_int8_t flags) +{ + vm_page_t m; + pte_t *pte; + + pte = pte_find(mmu, pmap, va); + KASSERT(pte != NULL, ("%s: NULL pte", __func__)); + + if (!PTE_ISVALID(pte)) + return (0); + + /* Get vm_page_t for mapped pte. */ + m = PHYS_TO_VM_PAGE(PTE_PA(pte)); + + if (PTE_ISWIRED(pte)) + pmap->pm_stats.wired_count--; + + /* Handle managed entry. */ + if (PTE_ISMANAGED(pte)) { + + /* Handle modified pages. */ + if (PTE_ISMODIFIED(pte)) + vm_page_dirty(m); + + /* Referenced pages. */ + if (PTE_ISREFERENCED(pte)) + vm_page_aflag_set(m, PGA_REFERENCED); + + /* Remove pv_entry from pv_list. */ + pv_remove(pmap, va, m); + } + mtx_lock_spin(&tlbivax_mutex); + tlb_miss_lock(); + + tlb0_flush_entry(va); + *pte = 0; + + tlb_miss_unlock(); + mtx_unlock_spin(&tlbivax_mutex); + + pmap->pm_stats.resident_count--; + + if (flags & PTBL_UNHOLD) { + return (ptbl_unhold(mmu, pmap, va)); + } + return (0); +} + +/* + * allocate a page of pointers to page directories, do not preallocate the + * page tables + */ +static pte_t ** +pdir_alloc(mmu_t mmu, pmap_t pmap, unsigned int pp2d_idx, bool nosleep) +{ + vm_page_t mtbl [PDIR_PAGES]; + vm_page_t m; + struct ptbl_buf *pbuf; + pte_t **pdir; + unsigned int pidx; + int i; + int req; + + pbuf = ptbl_buf_alloc(); + + if (pbuf == NULL) + panic("%s: couldn't alloc kernel virtual memory", __func__); + + /* Allocate pdir pages, this will sleep! */ + for (i = 0; i < PDIR_PAGES; i++) { + pidx = (PDIR_PAGES * pp2d_idx) + i; + req = VM_ALLOC_NOOBJ | VM_ALLOC_WIRED; + while ((m = vm_page_alloc(NULL, pidx, req)) == NULL) { + PMAP_UNLOCK(pmap); + VM_WAIT; + PMAP_LOCK(pmap); + } + mtbl[i] = m; + } + + /* Mapin allocated pages into kernel_pmap. */ + pdir = (pte_t **) pbuf->kva; + pmap_qenter((vm_offset_t) pdir, mtbl, PDIR_PAGES); + + /* Zero whole pdir. */ + bzero((caddr_t) pdir, PDIR_PAGES * PAGE_SIZE); + + /* Add pdir to the pmap pdir bufs list. */ + TAILQ_INSERT_TAIL(&pmap->pm_pdir_list, pbuf, link); + + return pdir; +} + +/* + * Insert PTE for a given page and virtual address. + */ +static int +pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags, + boolean_t nosleep) +{ + unsigned int pp2d_idx = PP2D_IDX(va); + unsigned int pdir_idx = PDIR_IDX(va); + unsigned int ptbl_idx = PTBL_IDX(va); + pte_t *ptbl, *pte; + pte_t **pdir; + + /* Get the page directory pointer. */ + pdir = pmap->pm_pp2d[pp2d_idx]; + if (pdir == NULL) + pdir = pdir_alloc(mmu, pmap, pp2d_idx, nosleep); + + /* Get the page table pointer. */ + ptbl = pdir[pdir_idx]; + + if (ptbl == NULL) { + /* Allocate page table pages. */ + ptbl = ptbl_alloc(mmu, pmap, pdir, pdir_idx, nosleep); + if (ptbl == NULL) { + KASSERT(nosleep, ("nosleep and NULL ptbl")); + return (ENOMEM); + } + } else { + /* + * Check if there is valid mapping for requested va, if there + * is, remove it. + */ + pte = &pdir[pdir_idx][ptbl_idx]; + if (PTE_ISVALID(pte)) { + pte_remove(mmu, pmap, va, PTBL_HOLD); + } else { + /* + * pte is not used, increment hold count for ptbl + * pages. + */ + if (pmap != kernel_pmap) + ptbl_hold(mmu, pmap, pdir, pdir_idx); + } + } + + if (pdir[pdir_idx] == NULL) { + if (pmap != kernel_pmap && pmap->pm_pp2d[pp2d_idx] != NULL) + pdir_hold(mmu, pmap, pdir); + pdir[pdir_idx] = ptbl; + } + if (pmap->pm_pp2d[pp2d_idx] == NULL) + pmap->pm_pp2d[pp2d_idx] = pdir; + + /* + * Insert pv_entry into pv_list for mapped page if part of managed + * memory. + */ + if ((m->oflags & VPO_UNMANAGED) == 0) { + flags |= PTE_MANAGED; + + /* Create and insert pv entry. */ + pv_insert(pmap, va, m); + } + + mtx_lock_spin(&tlbivax_mutex); + tlb_miss_lock(); + + tlb0_flush_entry(va); + pmap->pm_stats.resident_count++; + pte = &pdir[pdir_idx][ptbl_idx]; + *pte = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m)); + *pte |= (PTE_VALID | flags); + + tlb_miss_unlock(); + mtx_unlock_spin(&tlbivax_mutex); + + return (0); +} + +/* Return the pa for the given pmap/va. */ +static vm_paddr_t +pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va) +{ + vm_paddr_t pa = 0; + pte_t *pte; + + pte = pte_find(mmu, pmap, va); + if ((pte != NULL) && PTE_ISVALID(pte)) + pa = (PTE_PA(pte) | (va & PTE_PA_MASK)); + return (pa); +} + + +/* allocate pte entries to manage (addr & mask) to (addr & mask) + size */ +static void +kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, vm_offset_t pdir) +{ + int i, j; + vm_offset_t va; + pte_t *pte; + + va = addr; + /* Initialize kernel pdir */ + for (i = 0; i < kernel_pdirs; i++) { + kernel_pmap->pm_pp2d[i + PP2D_IDX(va)] = + (pte_t **)(pdir + (i * PAGE_SIZE * PDIR_PAGES)); + for (j = PDIR_IDX(va + (i * PAGE_SIZE * PDIR_NENTRIES * PTBL_NENTRIES)); + j < PDIR_NENTRIES; j++) { + kernel_pmap->pm_pp2d[i + PP2D_IDX(va)][j] = + (pte_t *)(pdir + (kernel_pdirs * PAGE_SIZE * PDIR_PAGES) + + (((i * PDIR_NENTRIES) + j) * PAGE_SIZE * PTBL_PAGES)); + } + } + + /* + * Fill in PTEs covering kernel code and data. They are not required + * for address translation, as this area is covered by static TLB1 + * entries, but for pte_vatopa() to work correctly with kernel area + * addresses. + */ + for (va = addr; va < data_end; va += PAGE_SIZE) { + pte = &(kernel_pmap->pm_pp2d[PP2D_IDX(va)][PDIR_IDX(va)][PTBL_IDX(va)]); + *pte = PTE_RPN_FROM_PA(kernload + (va - kernstart)); + *pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | + PTE_VALID | PTE_PS_4KB; + } +} +#else +/* + * Clean pte entry, try to free page table page if requested. * * Return 1 if ptbl pages were freed, otherwise return 0. */ static int pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags) { unsigned int pdir_idx = PDIR_IDX(va); unsigned int ptbl_idx = PTBL_IDX(va); vm_page_t m; pte_t *ptbl; pte_t *pte; //int su = (pmap == kernel_pmap); //debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n", // su, (u_int32_t)pmap, va, flags); ptbl = pmap->pm_pdir[pdir_idx]; KASSERT(ptbl, ("pte_remove: null ptbl")); pte = &ptbl[ptbl_idx]; if (pte == NULL || !PTE_ISVALID(pte)) return (0); if (PTE_ISWIRED(pte)) pmap->pm_stats.wired_count--; /* Get vm_page_t for mapped pte. */ m = PHYS_TO_VM_PAGE(PTE_PA(pte)); /* Handle managed entry. */ if (PTE_ISMANAGED(pte)) { if (PTE_ISMODIFIED(pte)) vm_page_dirty(m); if (PTE_ISREFERENCED(pte)) vm_page_aflag_set(m, PGA_REFERENCED); pv_remove(pmap, va, m); } else if (m->md.pv_tracked) { /* * Always pv_insert()/pv_remove() on MPC85XX, in case DPAA is * used. This is needed by the NCSW support code for fast * VA<->PA translation. */ pv_remove(pmap, va, m); if (TAILQ_EMPTY(&m->md.pv_list)) m->md.pv_tracked = false; } mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); tlb0_flush_entry(va); *pte = 0; tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); pmap->pm_stats.resident_count--; if (flags & PTBL_UNHOLD) { //debugf("pte_remove: e (unhold)\n"); return (ptbl_unhold(mmu, pmap, pdir_idx)); } //debugf("pte_remove: e\n"); return (0); } /* * Insert PTE for a given page and virtual address. */ static int pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags, boolean_t nosleep) { unsigned int pdir_idx = PDIR_IDX(va); unsigned int ptbl_idx = PTBL_IDX(va); pte_t *ptbl, *pte; CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__, pmap == kernel_pmap, pmap, va); /* Get the page table pointer. */ ptbl = pmap->pm_pdir[pdir_idx]; if (ptbl == NULL) { /* Allocate page table pages. */ ptbl = ptbl_alloc(mmu, pmap, pdir_idx, nosleep); if (ptbl == NULL) { KASSERT(nosleep, ("nosleep and NULL ptbl")); return (ENOMEM); } } else { /* * Check if there is valid mapping for requested * va, if there is, remove it. */ pte = &pmap->pm_pdir[pdir_idx][ptbl_idx]; if (PTE_ISVALID(pte)) { pte_remove(mmu, pmap, va, PTBL_HOLD); } else { /* * pte is not used, increment hold count * for ptbl pages. */ if (pmap != kernel_pmap) ptbl_hold(mmu, pmap, pdir_idx); } } /* * Insert pv_entry into pv_list for mapped page if part of managed * memory. */ if ((m->oflags & VPO_UNMANAGED) == 0) { flags |= PTE_MANAGED; /* Create and insert pv entry. */ pv_insert(pmap, va, m); } pmap->pm_stats.resident_count++; mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); tlb0_flush_entry(va); if (pmap->pm_pdir[pdir_idx] == NULL) { /* * If we just allocated a new page table, hook it in * the pdir. */ pmap->pm_pdir[pdir_idx] = ptbl; } pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]); *pte = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m)); *pte |= (PTE_VALID | flags | PTE_PS_4KB); /* 4KB pages only */ tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); return (0); } /* Return the pa for the given pmap/va. */ static vm_paddr_t pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va) { vm_paddr_t pa = 0; pte_t *pte; pte = pte_find(mmu, pmap, va); if ((pte != NULL) && PTE_ISVALID(pte)) pa = (PTE_PA(pte) | (va & PTE_PA_MASK)); return (pa); } /* Get a pointer to a PTE in a page table. */ static pte_t * pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va) { unsigned int pdir_idx = PDIR_IDX(va); unsigned int ptbl_idx = PTBL_IDX(va); KASSERT((pmap != NULL), ("pte_find: invalid pmap")); if (pmap->pm_pdir[pdir_idx]) return (&(pmap->pm_pdir[pdir_idx][ptbl_idx])); return (NULL); } /* Set up kernel page tables. */ static void kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, vm_offset_t pdir) { int i; vm_offset_t va; pte_t *pte; /* Initialize kernel pdir */ for (i = 0; i < kernel_ptbls; i++) kernel_pmap->pm_pdir[kptbl_min + i] = (pte_t *)(pdir + (i * PAGE_SIZE * PTBL_PAGES)); /* * Fill in PTEs covering kernel code and data. They are not required * for address translation, as this area is covered by static TLB1 * entries, but for pte_vatopa() to work correctly with kernel area * addresses. */ for (va = addr; va < data_end; va += PAGE_SIZE) { pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]); *pte = PTE_RPN_FROM_PA(kernload + (va - kernstart)); *pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID | PTE_PS_4KB; } } +#endif /**************************************************************************/ /* PMAP related */ /**************************************************************************/ /* * This is called during booke_init, before the system is really initialized. */ static void mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend) { vm_paddr_t phys_kernelend; struct mem_region *mp, *mp1; int cnt, i, j; vm_paddr_t s, e, sz; vm_paddr_t physsz, hwphyssz; u_int phys_avail_count; vm_size_t kstack0_sz; vm_offset_t kernel_pdir, kstack0; vm_paddr_t kstack0_phys; void *dpcpu; debugf("mmu_booke_bootstrap: entered\n"); /* Set interesting system properties */ hw_direct_map = 0; +#if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__) elf32_nxstack = 1; +#endif /* Initialize invalidation mutex */ mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN); /* Read TLB0 size and associativity. */ tlb0_get_tlbconf(); /* * Align kernel start and end address (kernel image). * Note that kernel end does not necessarily relate to kernsize. * kernsize is the size of the kernel that is actually mapped. */ kernstart = trunc_page(start); data_start = round_page(kernelend); data_end = data_start; /* * Addresses of preloaded modules (like file systems) use * physical addresses. Make sure we relocate those into * virtual addresses. */ preload_addr_relocate = kernstart - kernload; /* Allocate the dynamic per-cpu area. */ dpcpu = (void *)data_end; data_end += DPCPU_SIZE; /* Allocate space for the message buffer. */ msgbufp = (struct msgbuf *)data_end; data_end += msgbufsize; - debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp, - data_end); + debugf(" msgbufp at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n", + (uintptr_t)msgbufp, data_end); data_end = round_page(data_end); /* Allocate space for ptbl_bufs. */ ptbl_bufs = (struct ptbl_buf *)data_end; data_end += sizeof(struct ptbl_buf) * PTBL_BUFS; - debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs, - data_end); + debugf(" ptbl_bufs at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n", + (uintptr_t)ptbl_bufs, data_end); data_end = round_page(data_end); /* Allocate PTE tables for kernel KVA. */ kernel_pdir = data_end; kernel_ptbls = howmany(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS, PDIR_SIZE); +#ifdef __powerpc64__ + kernel_pdirs = howmany(kernel_ptbls, PDIR_NENTRIES); + data_end += kernel_pdirs * PDIR_PAGES * PAGE_SIZE; +#endif data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE; debugf(" kernel ptbls: %d\n", kernel_ptbls); - debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end); + debugf(" kernel pdir at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n", + kernel_pdir, data_end); - debugf(" data_end: 0x%08x\n", data_end); + debugf(" data_end: 0x%"PRI0ptrX"\n", data_end); if (data_end - kernstart > kernsize) { kernsize += tlb1_mapin_region(kernstart + kernsize, kernload + kernsize, (data_end - kernstart) - kernsize); } data_end = kernstart + kernsize; - debugf(" updated data_end: 0x%08x\n", data_end); + debugf(" updated data_end: 0x%"PRI0ptrX"\n", data_end); /* * Clear the structures - note we can only do it safely after the * possible additional TLB1 translations are in place (above) so that * all range up to the currently calculated 'data_end' is covered. */ dpcpu_init(dpcpu, 0); memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE); +#ifdef __powerpc64__ + memset((void *)kernel_pdir, 0, + kernel_pdirs * PDIR_PAGES * PAGE_SIZE + + kernel_ptbls * PTBL_PAGES * PAGE_SIZE); +#else memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE); +#endif /*******************************************************/ /* Set the start and end of kva. */ /*******************************************************/ virtual_avail = round_page(data_end); virtual_end = VM_MAX_KERNEL_ADDRESS; /* Allocate KVA space for page zero/copy operations. */ zero_page_va = virtual_avail; virtual_avail += PAGE_SIZE; copy_page_src_va = virtual_avail; virtual_avail += PAGE_SIZE; copy_page_dst_va = virtual_avail; virtual_avail += PAGE_SIZE; debugf("zero_page_va = 0x%08x\n", zero_page_va); debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va); debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va); /* Initialize page zero/copy mutexes. */ mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF); mtx_init(©_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF); /* Allocate KVA space for ptbl bufs. */ ptbl_buf_pool_vabase = virtual_avail; virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE; debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n", ptbl_buf_pool_vabase, virtual_avail); /* Calculate corresponding physical addresses for the kernel region. */ phys_kernelend = kernload + kernsize; debugf("kernel image and allocated data:\n"); debugf(" kernload = 0x%09llx\n", (uint64_t)kernload); debugf(" kernstart = 0x%08x\n", kernstart); debugf(" kernsize = 0x%08x\n", kernsize); if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz) panic("mmu_booke_bootstrap: phys_avail too small"); /* * Remove kernel physical address range from avail regions list. Page * align all regions. Non-page aligned memory isn't very interesting * to us. Also, sort the entries for ascending addresses. */ /* Retrieve phys/avail mem regions */ mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions, &availmem_regions_sz); sz = 0; cnt = availmem_regions_sz; debugf("processing avail regions:\n"); for (mp = availmem_regions; mp->mr_size; mp++) { s = mp->mr_start; e = mp->mr_start + mp->mr_size; debugf(" %09jx-%09jx -> ", (uintmax_t)s, (uintmax_t)e); /* Check whether this region holds all of the kernel. */ if (s < kernload && e > phys_kernelend) { availmem_regions[cnt].mr_start = phys_kernelend; availmem_regions[cnt++].mr_size = e - phys_kernelend; e = kernload; } /* Look whether this regions starts within the kernel. */ if (s >= kernload && s < phys_kernelend) { if (e <= phys_kernelend) goto empty; s = phys_kernelend; } /* Now look whether this region ends within the kernel. */ if (e > kernload && e <= phys_kernelend) { if (s >= kernload) goto empty; e = kernload; } /* Now page align the start and size of the region. */ s = round_page(s); e = trunc_page(e); if (e < s) e = s; sz = e - s; debugf("%09jx-%09jx = %jx\n", (uintmax_t)s, (uintmax_t)e, (uintmax_t)sz); /* Check whether some memory is left here. */ if (sz == 0) { empty: memmove(mp, mp + 1, (cnt - (mp - availmem_regions)) * sizeof(*mp)); cnt--; mp--; continue; } /* Do an insertion sort. */ for (mp1 = availmem_regions; mp1 < mp; mp1++) if (s < mp1->mr_start) break; if (mp1 < mp) { memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1); mp1->mr_start = s; mp1->mr_size = sz; } else { mp->mr_start = s; mp->mr_size = sz; } } availmem_regions_sz = cnt; /*******************************************************/ /* Steal physical memory for kernel stack from the end */ /* of the first avail region */ /*******************************************************/ kstack0_sz = kstack_pages * PAGE_SIZE; kstack0_phys = availmem_regions[0].mr_start + availmem_regions[0].mr_size; kstack0_phys -= kstack0_sz; availmem_regions[0].mr_size -= kstack0_sz; /*******************************************************/ /* Fill in phys_avail table, based on availmem_regions */ /*******************************************************/ phys_avail_count = 0; physsz = 0; hwphyssz = 0; TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); debugf("fill in phys_avail:\n"); for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) { debugf(" region: 0x%jx - 0x%jx (0x%jx)\n", (uintmax_t)availmem_regions[i].mr_start, (uintmax_t)availmem_regions[i].mr_start + availmem_regions[i].mr_size, (uintmax_t)availmem_regions[i].mr_size); if (hwphyssz != 0 && (physsz + availmem_regions[i].mr_size) >= hwphyssz) { debugf(" hw.physmem adjust\n"); if (physsz < hwphyssz) { phys_avail[j] = availmem_regions[i].mr_start; phys_avail[j + 1] = availmem_regions[i].mr_start + hwphyssz - physsz; physsz = hwphyssz; phys_avail_count++; } break; } phys_avail[j] = availmem_regions[i].mr_start; phys_avail[j + 1] = availmem_regions[i].mr_start + availmem_regions[i].mr_size; phys_avail_count++; physsz += availmem_regions[i].mr_size; } physmem = btoc(physsz); /* Calculate the last available physical address. */ for (i = 0; phys_avail[i + 2] != 0; i += 2) ; Maxmem = powerpc_btop(phys_avail[i + 1]); debugf("Maxmem = 0x%08lx\n", Maxmem); debugf("phys_avail_count = %d\n", phys_avail_count); debugf("physsz = 0x%09jx physmem = %jd (0x%09jx)\n", (uintmax_t)physsz, (uintmax_t)physmem, (uintmax_t)physmem); /*******************************************************/ /* Initialize (statically allocated) kernel pmap. */ /*******************************************************/ PMAP_LOCK_INIT(kernel_pmap); +#ifndef __powerpc64__ kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE; +#endif - debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap); - debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls); - debugf("kernel pdir range: 0x%08x - 0x%08x\n", - kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1); - - kernel_pte_alloc(data_end, kernstart, kernel_pdir); + debugf("kernel_pmap = 0x%"PRI0ptrX"\n", (uintptr_t)kernel_pmap); + kernel_pte_alloc(virtual_avail, kernstart, kernel_pdir); for (i = 0; i < MAXCPU; i++) { kernel_pmap->pm_tid[i] = TID_KERNEL; /* Initialize each CPU's tidbusy entry 0 with kernel_pmap */ tidbusy[i][TID_KERNEL] = kernel_pmap; } /* Mark kernel_pmap active on all CPUs */ CPU_FILL(&kernel_pmap->pm_active); /* * Initialize the global pv list lock. */ rw_init(&pvh_global_lock, "pmap pv global"); /*******************************************************/ /* Final setup */ /*******************************************************/ /* Enter kstack0 into kernel map, provide guard page */ kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; thread0.td_kstack = kstack0; thread0.td_kstack_pages = kstack_pages; debugf("kstack_sz = 0x%08x\n", kstack0_sz); debugf("kstack0_phys at 0x%09llx - 0x%09llx\n", kstack0_phys, kstack0_phys + kstack0_sz); - debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz); + debugf("kstack0 at 0x%"PRI0ptrX" - 0x%"PRI0ptrX"\n", + kstack0, kstack0 + kstack0_sz); virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz; for (i = 0; i < kstack_pages; i++) { mmu_booke_kenter(mmu, kstack0, kstack0_phys); kstack0 += PAGE_SIZE; kstack0_phys += PAGE_SIZE; } pmap_bootstrapped = 1; - debugf("virtual_avail = %08x\n", virtual_avail); - debugf("virtual_end = %08x\n", virtual_end); + debugf("virtual_avail = %"PRI0ptrX"\n", virtual_avail); + debugf("virtual_end = %"PRI0ptrX"\n", virtual_end); debugf("mmu_booke_bootstrap: exit\n"); } #ifdef SMP void tlb1_ap_prep(void) { tlb_entry_t *e, tmp; unsigned int i; /* Prepare TLB1 image for AP processors */ e = __boot_tlb1; for (i = 0; i < TLB1_ENTRIES; i++) { tlb1_read_entry(&tmp, i); if ((tmp.mas1 & MAS1_VALID) && (tmp.mas2 & _TLB_ENTRY_SHARED)) memcpy(e++, &tmp, sizeof(tmp)); } } void pmap_bootstrap_ap(volatile uint32_t *trcp __unused) { int i; /* * Finish TLB1 configuration: the BSP already set up its TLB1 and we * have the snapshot of its contents in the s/w __boot_tlb1[] table * created by tlb1_ap_prep(), so use these values directly to * (re)program AP's TLB1 hardware. * * Start at index 1 because index 0 has the kernel map. */ for (i = 1; i < TLB1_ENTRIES; i++) { if (__boot_tlb1[i].mas1 & MAS1_VALID) tlb1_write_entry(&__boot_tlb1[i], i); } set_mas4_defaults(); } #endif static void booke_pmap_init_qpages(void) { struct pcpu *pc; int i; CPU_FOREACH(i) { pc = pcpu_find(i); pc->pc_qmap_addr = kva_alloc(PAGE_SIZE); if (pc->pc_qmap_addr == 0) panic("pmap_init_qpages: unable to allocate KVA"); } } SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, booke_pmap_init_qpages, NULL); /* * Get the physical page address for the given pmap/virtual address. */ static vm_paddr_t mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va) { vm_paddr_t pa; PMAP_LOCK(pmap); pa = pte_vatopa(mmu, pmap, va); PMAP_UNLOCK(pmap); return (pa); } /* * Extract the physical page address associated with the given * kernel virtual address. */ static vm_paddr_t mmu_booke_kextract(mmu_t mmu, vm_offset_t va) { tlb_entry_t e; int i; /* Check TLB1 mappings */ for (i = 0; i < TLB1_ENTRIES; i++) { tlb1_read_entry(&e, i); if (!(e.mas1 & MAS1_VALID)) continue; if (va >= e.virt && va < e.virt + e.size) return (e.phys + (va - e.virt)); } return (pte_vatopa(mmu, kernel_pmap, va)); } /* * Initialize the pmap module. * Called by vm_init, to initialize any structures that the pmap * system needs to map virtual memory. */ static void mmu_booke_init(mmu_t mmu) { int shpgperproc = PMAP_SHPGPERPROC; /* * Initialize the address space (zone) for the pv entries. Set a * high water mark so that the system can recover from excessive * numbers of pv entries. */ pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc); pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count; TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max); pv_entry_high_water = 9 * (pv_entry_max / 10); uma_zone_reserve_kva(pvzone, pv_entry_max); /* Pre-fill pvzone with initial number of pv entries. */ uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN); /* Initialize ptbl allocation. */ ptbl_init(); } /* * Map a list of wired pages into kernel virtual address space. This is * intended for temporary mappings which do not need page modification or * references recorded. Existing mappings in the region are overwritten. */ static void mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count) { vm_offset_t va; va = sva; while (count-- > 0) { mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m)); va += PAGE_SIZE; m++; } } /* * Remove page mappings from kernel virtual address space. Intended for * temporary mappings entered by mmu_booke_qenter. */ static void mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count) { vm_offset_t va; va = sva; while (count-- > 0) { mmu_booke_kremove(mmu, va); va += PAGE_SIZE; } } /* * Map a wired page into kernel virtual address space. */ static void mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa) { mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT); } static void mmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma) { uint32_t flags; pte_t *pte; KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va")); flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID; flags |= tlb_calc_wimg(pa, ma) << PTE_MAS2_SHIFT; flags |= PTE_PS_4KB; pte = pte_find(mmu, kernel_pmap, va); + KASSERT((pte != NULL), ("mmu_booke_kenter: invalid va. NULL PTE")); mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); if (PTE_ISVALID(pte)) { CTR1(KTR_PMAP, "%s: replacing entry!", __func__); /* Flush entry from TLB0 */ tlb0_flush_entry(va); } *pte = PTE_RPN_FROM_PA(pa) | flags; //debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x " // "pa=0x%08x rpn=0x%08x flags=0x%08x\n", // pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags); /* Flush the real memory from the instruction cache. */ if ((flags & (PTE_I | PTE_G)) == 0) __syncicache((void *)va, PAGE_SIZE); tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); } /* * Remove a page from kernel page table. */ static void mmu_booke_kremove(mmu_t mmu, vm_offset_t va) { pte_t *pte; CTR2(KTR_PMAP,"%s: s (va = 0x%08x)\n", __func__, va); KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kremove: invalid va")); pte = pte_find(mmu, kernel_pmap, va); if (!PTE_ISVALID(pte)) { CTR1(KTR_PMAP, "%s: invalid pte", __func__); return; } mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); /* Invalidate entry in TLB0, update PTE. */ tlb0_flush_entry(va); *pte = 0; tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); } /* * Initialize pmap associated with process 0. */ static void mmu_booke_pinit0(mmu_t mmu, pmap_t pmap) { PMAP_LOCK_INIT(pmap); mmu_booke_pinit(mmu, pmap); PCPU_SET(curpmap, pmap); } /* * Initialize a preallocated and zeroed pmap structure, * such as one in a vmspace structure. */ static void mmu_booke_pinit(mmu_t mmu, pmap_t pmap) { int i; CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap, curthread->td_proc->p_pid, curthread->td_proc->p_comm); KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap")); for (i = 0; i < MAXCPU; i++) pmap->pm_tid[i] = TID_NONE; CPU_ZERO(&kernel_pmap->pm_active); bzero(&pmap->pm_stats, sizeof(pmap->pm_stats)); +#ifdef __powerpc64__ + bzero(&pmap->pm_pp2d, sizeof(pte_t **) * PP2D_NENTRIES); + TAILQ_INIT(&pmap->pm_pdir_list); +#else bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES); +#endif TAILQ_INIT(&pmap->pm_ptbl_list); } /* * Release any resources held by the given physical map. * Called when a pmap initialized by mmu_booke_pinit is being released. * Should only be called if the map contains no valid mappings. */ static void mmu_booke_release(mmu_t mmu, pmap_t pmap) { KASSERT(pmap->pm_stats.resident_count == 0, ("pmap_release: pmap resident count %ld != 0", pmap->pm_stats.resident_count)); } /* * Insert the given physical page at the specified virtual address in the * target physical map with the protection requested. If specified the page * will be wired down. */ static int mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind) { int error; rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); error = mmu_booke_enter_locked(mmu, pmap, va, m, prot, flags, psind); - rw_wunlock(&pvh_global_lock); PMAP_UNLOCK(pmap); + rw_wunlock(&pvh_global_lock); return (error); } static int mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, u_int pmap_flags, int8_t psind __unused) { pte_t *pte; vm_paddr_t pa; uint32_t flags; int error, su, sync; pa = VM_PAGE_TO_PHYS(m); su = (pmap == kernel_pmap); sync = 0; //debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x " // "pa=0x%08x prot=0x%08x flags=%#x)\n", // (u_int32_t)pmap, su, pmap->pm_tid, // (u_int32_t)m, va, pa, prot, flags); if (su) { KASSERT(((va >= virtual_avail) && (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_enter_locked: kernel pmap, non kernel va")); } else { KASSERT((va <= VM_MAXUSER_ADDRESS), ("mmu_booke_enter_locked: user pmap, non user va")); } if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m)) VM_OBJECT_ASSERT_LOCKED(m->object); PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* * If there is an existing mapping, and the physical address has not * changed, must be protection or wiring change. */ if (((pte = pte_find(mmu, pmap, va)) != NULL) && (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) { /* * Before actually updating pte->flags we calculate and * prepare its new value in a helper var. */ flags = *pte; flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED); /* Wiring change, just update stats. */ if ((pmap_flags & PMAP_ENTER_WIRED) != 0) { if (!PTE_ISWIRED(pte)) { flags |= PTE_WIRED; pmap->pm_stats.wired_count++; } } else { if (PTE_ISWIRED(pte)) { flags &= ~PTE_WIRED; pmap->pm_stats.wired_count--; } } if (prot & VM_PROT_WRITE) { /* Add write permissions. */ flags |= PTE_SW; if (!su) flags |= PTE_UW; if ((flags & PTE_MANAGED) != 0) vm_page_aflag_set(m, PGA_WRITEABLE); } else { /* Handle modified pages, sense modify status. */ /* * The PTE_MODIFIED flag could be set by underlying * TLB misses since we last read it (above), possibly * other CPUs could update it so we check in the PTE * directly rather than rely on that saved local flags * copy. */ if (PTE_ISMODIFIED(pte)) vm_page_dirty(m); } if (prot & VM_PROT_EXECUTE) { flags |= PTE_SX; if (!su) flags |= PTE_UX; /* * Check existing flags for execute permissions: if we * are turning execute permissions on, icache should * be flushed. */ if ((*pte & (PTE_UX | PTE_SX)) == 0) sync++; } flags &= ~PTE_REFERENCED; /* * The new flags value is all calculated -- only now actually * update the PTE. */ mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); tlb0_flush_entry(va); *pte &= ~PTE_FLAGS_MASK; *pte |= flags; tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); } else { /* * If there is an existing mapping, but it's for a different * physical address, pte_enter() will delete the old mapping. */ //if ((pte != NULL) && PTE_ISVALID(pte)) // debugf("mmu_booke_enter_locked: replace\n"); //else // debugf("mmu_booke_enter_locked: new\n"); /* Now set up the flags and install the new mapping. */ flags = (PTE_SR | PTE_VALID); flags |= PTE_M; if (!su) flags |= PTE_UR; if (prot & VM_PROT_WRITE) { flags |= PTE_SW; if (!su) flags |= PTE_UW; if ((m->oflags & VPO_UNMANAGED) == 0) vm_page_aflag_set(m, PGA_WRITEABLE); } if (prot & VM_PROT_EXECUTE) { flags |= PTE_SX; if (!su) flags |= PTE_UX; } /* If its wired update stats. */ if ((pmap_flags & PMAP_ENTER_WIRED) != 0) flags |= PTE_WIRED; error = pte_enter(mmu, pmap, m, va, flags, (pmap_flags & PMAP_ENTER_NOSLEEP) != 0); if (error != 0) return (KERN_RESOURCE_SHORTAGE); if ((flags & PMAP_ENTER_WIRED) != 0) pmap->pm_stats.wired_count++; /* Flush the real memory from the instruction cache. */ if (prot & VM_PROT_EXECUTE) sync++; } if (sync && (su || pmap == PCPU_GET(curpmap))) { __syncicache((void *)va, PAGE_SIZE); sync = 0; } return (KERN_SUCCESS); } /* * Maps a sequence of resident pages belonging to the same object. * The sequence begins with the given page m_start. This page is * mapped at the given virtual address start. Each subsequent page is * mapped at a virtual address that is offset from start by the same * amount as the page is offset from m_start within the object. The * last page in the sequence is the page with the largest offset from * m_start that can be mapped at a virtual address less than the given * virtual address end. Not every virtual page between start and end * is mapped; only those for which a resident page exists with the * corresponding offset from m_start are mapped. */ static void mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start, vm_offset_t end, vm_page_t m_start, vm_prot_t prot) { vm_page_t m; vm_pindex_t diff, psize; VM_OBJECT_ASSERT_LOCKED(m_start->object); psize = atop(end - start); m = m_start; rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0); m = TAILQ_NEXT(m, listq); } rw_wunlock(&pvh_global_lock); PMAP_UNLOCK(pmap); } static void mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot) { rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); mmu_booke_enter_locked(mmu, pmap, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0); rw_wunlock(&pvh_global_lock); PMAP_UNLOCK(pmap); } /* * Remove the given range of addresses from the specified map. * * It is assumed that the start and end are properly rounded to the page size. */ static void mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva) { pte_t *pte; uint8_t hold_flag; int su = (pmap == kernel_pmap); //debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n", // su, (u_int32_t)pmap, pmap->pm_tid, va, endva); if (su) { KASSERT(((va >= virtual_avail) && (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_remove: kernel pmap, non kernel va")); } else { KASSERT((va <= VM_MAXUSER_ADDRESS), ("mmu_booke_remove: user pmap, non user va")); } if (PMAP_REMOVE_DONE(pmap)) { //debugf("mmu_booke_remove: e (empty)\n"); return; } hold_flag = PTBL_HOLD_FLAG(pmap); //debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag); rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); for (; va < endva; va += PAGE_SIZE) { pte = pte_find(mmu, pmap, va); if ((pte != NULL) && PTE_ISVALID(pte)) pte_remove(mmu, pmap, va, hold_flag); } PMAP_UNLOCK(pmap); rw_wunlock(&pvh_global_lock); //debugf("mmu_booke_remove: e\n"); } /* * Remove physical page from all pmaps in which it resides. */ static void mmu_booke_remove_all(mmu_t mmu, vm_page_t m) { pv_entry_t pv, pvn; uint8_t hold_flag; rw_wlock(&pvh_global_lock); for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) { pvn = TAILQ_NEXT(pv, pv_link); PMAP_LOCK(pv->pv_pmap); hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap); pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag); PMAP_UNLOCK(pv->pv_pmap); } vm_page_aflag_clear(m, PGA_WRITEABLE); rw_wunlock(&pvh_global_lock); } /* * Map a range of physical addresses into kernel virtual address space. */ static vm_offset_t mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start, vm_paddr_t pa_end, int prot) { vm_offset_t sva = *virt; vm_offset_t va = sva; //debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n", // sva, pa_start, pa_end); while (pa_start < pa_end) { mmu_booke_kenter(mmu, va, pa_start); va += PAGE_SIZE; pa_start += PAGE_SIZE; } *virt = va; //debugf("mmu_booke_map: e (va = 0x%08x)\n", va); return (sva); } /* * The pmap must be activated before it's address space can be accessed in any * way. */ static void mmu_booke_activate(mmu_t mmu, struct thread *td) { pmap_t pmap; u_int cpuid; pmap = &td->td_proc->p_vmspace->vm_pmap; CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)", __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap); KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!")); sched_pin(); cpuid = PCPU_GET(cpuid); CPU_SET_ATOMIC(cpuid, &pmap->pm_active); PCPU_SET(curpmap, pmap); if (pmap->pm_tid[cpuid] == TID_NONE) tid_alloc(pmap); /* Load PID0 register with pmap tid value. */ mtspr(SPR_PID0, pmap->pm_tid[cpuid]); __asm __volatile("isync"); mtspr(SPR_DBCR0, td->td_pcb->pcb_cpu.booke.dbcr0); sched_unpin(); CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__, pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm); } /* * Deactivate the specified process's address space. */ static void mmu_booke_deactivate(mmu_t mmu, struct thread *td) { pmap_t pmap; pmap = &td->td_proc->p_vmspace->vm_pmap; CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x", __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap); td->td_pcb->pcb_cpu.booke.dbcr0 = mfspr(SPR_DBCR0); CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active); PCPU_SET(curpmap, NULL); } /* * Copy the range specified by src_addr/len * from the source map to the range dst_addr/len * in the destination map. * * This routine is only advisory and need not do anything. */ static void mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr) { } /* * Set the physical protection on the specified range of this map as requested. */ static void mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot) { vm_offset_t va; vm_page_t m; pte_t *pte; if ((prot & VM_PROT_READ) == VM_PROT_NONE) { mmu_booke_remove(mmu, pmap, sva, eva); return; } if (prot & VM_PROT_WRITE) return; PMAP_LOCK(pmap); for (va = sva; va < eva; va += PAGE_SIZE) { if ((pte = pte_find(mmu, pmap, va)) != NULL) { if (PTE_ISVALID(pte)) { m = PHYS_TO_VM_PAGE(PTE_PA(pte)); mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); /* Handle modified pages. */ if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte)) vm_page_dirty(m); tlb0_flush_entry(va); *pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED); tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); } } } PMAP_UNLOCK(pmap); } /* * Clear the write and modified bits in each of the given page's mappings. */ static void mmu_booke_remove_write(mmu_t mmu, vm_page_t m) { pv_entry_t pv; pte_t *pte; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("mmu_booke_remove_write: page %p is not managed", m)); /* * If the page is not exclusive busied, then PGA_WRITEABLE cannot be * set by another thread while the object is locked. Thus, * if PGA_WRITEABLE is clear, no page table entries need updating. */ VM_OBJECT_ASSERT_WLOCKED(m->object); if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) return; rw_wlock(&pvh_global_lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { PMAP_LOCK(pv->pv_pmap); if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) { if (PTE_ISVALID(pte)) { m = PHYS_TO_VM_PAGE(PTE_PA(pte)); mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); /* Handle modified pages. */ if (PTE_ISMODIFIED(pte)) vm_page_dirty(m); /* Flush mapping from TLB0. */ *pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED); tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); } } PMAP_UNLOCK(pv->pv_pmap); } vm_page_aflag_clear(m, PGA_WRITEABLE); rw_wunlock(&pvh_global_lock); } static void mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz) { pte_t *pte; pmap_t pmap; vm_page_t m; vm_offset_t addr; vm_paddr_t pa = 0; int active, valid; va = trunc_page(va); sz = round_page(sz); rw_wlock(&pvh_global_lock); pmap = PCPU_GET(curpmap); active = (pm == kernel_pmap || pm == pmap) ? 1 : 0; while (sz > 0) { PMAP_LOCK(pm); pte = pte_find(mmu, pm, va); valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0; if (valid) pa = PTE_PA(pte); PMAP_UNLOCK(pm); if (valid) { if (!active) { /* Create a mapping in the active pmap. */ addr = 0; m = PHYS_TO_VM_PAGE(pa); PMAP_LOCK(pmap); pte_enter(mmu, pmap, m, addr, PTE_SR | PTE_VALID | PTE_UR, FALSE); __syncicache((void *)addr, PAGE_SIZE); pte_remove(mmu, pmap, addr, PTBL_UNHOLD); PMAP_UNLOCK(pmap); } else __syncicache((void *)va, PAGE_SIZE); } va += PAGE_SIZE; sz -= PAGE_SIZE; } rw_wunlock(&pvh_global_lock); } /* * Atomically extract and hold the physical page with the given * pmap and virtual address pair if that mapping permits the given * protection. */ static vm_page_t mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot) { pte_t *pte; vm_page_t m; uint32_t pte_wbit; vm_paddr_t pa; m = NULL; pa = 0; PMAP_LOCK(pmap); retry: pte = pte_find(mmu, pmap, va); if ((pte != NULL) && PTE_ISVALID(pte)) { if (pmap == kernel_pmap) pte_wbit = PTE_SW; else pte_wbit = PTE_UW; if ((*pte & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) { if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa)) goto retry; m = PHYS_TO_VM_PAGE(PTE_PA(pte)); vm_page_hold(m); } } PA_UNLOCK_COND(pa); PMAP_UNLOCK(pmap); return (m); } /* * Initialize a vm_page's machine-dependent fields. */ static void mmu_booke_page_init(mmu_t mmu, vm_page_t m) { TAILQ_INIT(&m->md.pv_list); } /* * mmu_booke_zero_page_area zeros the specified hardware page by * mapping it into virtual memory and using bzero to clear * its contents. * * off and size must reside within a single page. */ static void mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size) { vm_offset_t va; /* XXX KASSERT off and size are within a single page? */ mtx_lock(&zero_page_mutex); va = zero_page_va; mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); bzero((caddr_t)va + off, size); mmu_booke_kremove(mmu, va); mtx_unlock(&zero_page_mutex); } /* * mmu_booke_zero_page zeros the specified hardware page. */ static void mmu_booke_zero_page(mmu_t mmu, vm_page_t m) { vm_offset_t off, va; mtx_lock(&zero_page_mutex); va = zero_page_va; mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); for (off = 0; off < PAGE_SIZE; off += cacheline_size) __asm __volatile("dcbz 0,%0" :: "r"(va + off)); mmu_booke_kremove(mmu, va); mtx_unlock(&zero_page_mutex); } /* * mmu_booke_copy_page copies the specified (machine independent) page by * mapping the page into virtual memory and using memcopy to copy the page, * one machine dependent page at a time. */ static void mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm) { vm_offset_t sva, dva; sva = copy_page_src_va; dva = copy_page_dst_va; mtx_lock(©_page_mutex); mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm)); mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm)); memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE); mmu_booke_kremove(mmu, dva); mmu_booke_kremove(mmu, sva); mtx_unlock(©_page_mutex); } static inline void mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, vm_page_t *mb, vm_offset_t b_offset, int xfersize) { void *a_cp, *b_cp; vm_offset_t a_pg_offset, b_pg_offset; int cnt; mtx_lock(©_page_mutex); while (xfersize > 0) { a_pg_offset = a_offset & PAGE_MASK; cnt = min(xfersize, PAGE_SIZE - a_pg_offset); mmu_booke_kenter(mmu, copy_page_src_va, VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])); a_cp = (char *)copy_page_src_va + a_pg_offset; b_pg_offset = b_offset & PAGE_MASK; cnt = min(cnt, PAGE_SIZE - b_pg_offset); mmu_booke_kenter(mmu, copy_page_dst_va, VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])); b_cp = (char *)copy_page_dst_va + b_pg_offset; bcopy(a_cp, b_cp, cnt); mmu_booke_kremove(mmu, copy_page_dst_va); mmu_booke_kremove(mmu, copy_page_src_va); a_offset += cnt; b_offset += cnt; xfersize -= cnt; } mtx_unlock(©_page_mutex); } static vm_offset_t mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m) { vm_paddr_t paddr; vm_offset_t qaddr; uint32_t flags; pte_t *pte; paddr = VM_PAGE_TO_PHYS(m); flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID; flags |= tlb_calc_wimg(paddr, pmap_page_get_memattr(m)) << PTE_MAS2_SHIFT; flags |= PTE_PS_4KB; critical_enter(); qaddr = PCPU_GET(qmap_addr); pte = pte_find(mmu, kernel_pmap, qaddr); KASSERT(*pte == 0, ("mmu_booke_quick_enter_page: PTE busy")); /* * XXX: tlbivax is broadcast to other cores, but qaddr should * not be present in other TLBs. Is there a better instruction * sequence to use? Or just forget it & use mmu_booke_kenter()... */ __asm __volatile("tlbivax 0, %0" :: "r"(qaddr & MAS2_EPN_MASK)); __asm __volatile("isync; msync"); *pte = PTE_RPN_FROM_PA(paddr) | flags; /* Flush the real memory from the instruction cache. */ if ((flags & (PTE_I | PTE_G)) == 0) __syncicache((void *)qaddr, PAGE_SIZE); return (qaddr); } static void mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr) { pte_t *pte; pte = pte_find(mmu, kernel_pmap, addr); KASSERT(PCPU_GET(qmap_addr) == addr, ("mmu_booke_quick_remove_page: invalid address")); KASSERT(*pte != 0, ("mmu_booke_quick_remove_page: PTE not in use")); *pte = 0; critical_exit(); } /* * Return whether or not the specified physical page was modified * in any of physical maps. */ static boolean_t mmu_booke_is_modified(mmu_t mmu, vm_page_t m) { pte_t *pte; pv_entry_t pv; boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("mmu_booke_is_modified: page %p is not managed", m)); rv = FALSE; /* * If the page is not exclusive busied, then PGA_WRITEABLE cannot be * concurrently set while the object is locked. Thus, if PGA_WRITEABLE * is clear, no PTEs can be modified. */ VM_OBJECT_ASSERT_WLOCKED(m->object); if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) return (rv); rw_wlock(&pvh_global_lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { PMAP_LOCK(pv->pv_pmap); if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && PTE_ISVALID(pte)) { if (PTE_ISMODIFIED(pte)) rv = TRUE; } PMAP_UNLOCK(pv->pv_pmap); if (rv) break; } rw_wunlock(&pvh_global_lock); return (rv); } /* * Return whether or not the specified virtual address is eligible * for prefault. */ static boolean_t mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr) { return (FALSE); } /* * Return whether or not the specified physical page was referenced * in any physical maps. */ static boolean_t mmu_booke_is_referenced(mmu_t mmu, vm_page_t m) { pte_t *pte; pv_entry_t pv; boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("mmu_booke_is_referenced: page %p is not managed", m)); rv = FALSE; rw_wlock(&pvh_global_lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { PMAP_LOCK(pv->pv_pmap); if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && PTE_ISVALID(pte)) { if (PTE_ISREFERENCED(pte)) rv = TRUE; } PMAP_UNLOCK(pv->pv_pmap); if (rv) break; } rw_wunlock(&pvh_global_lock); return (rv); } /* * Clear the modify bits on the specified physical page. */ static void mmu_booke_clear_modify(mmu_t mmu, vm_page_t m) { pte_t *pte; pv_entry_t pv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("mmu_booke_clear_modify: page %p is not managed", m)); VM_OBJECT_ASSERT_WLOCKED(m->object); KASSERT(!vm_page_xbusied(m), ("mmu_booke_clear_modify: page %p is exclusive busied", m)); /* * If the page is not PG_AWRITEABLE, then no PTEs can be modified. * If the object containing the page is locked and the page is not * exclusive busied, then PG_AWRITEABLE cannot be concurrently set. */ if ((m->aflags & PGA_WRITEABLE) == 0) return; rw_wlock(&pvh_global_lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { PMAP_LOCK(pv->pv_pmap); if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && PTE_ISVALID(pte)) { mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); if (*pte & (PTE_SW | PTE_UW | PTE_MODIFIED)) { tlb0_flush_entry(pv->pv_va); *pte &= ~(PTE_SW | PTE_UW | PTE_MODIFIED | PTE_REFERENCED); } tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); } PMAP_UNLOCK(pv->pv_pmap); } rw_wunlock(&pvh_global_lock); } /* * Return a count of reference bits for a page, clearing those bits. * It is not necessary for every reference bit to be cleared, but it * is necessary that 0 only be returned when there are truly no * reference bits set. * * As an optimization, update the page's dirty field if a modified bit is * found while counting reference bits. This opportunistic update can be * performed at low cost and can eliminate the need for some future calls * to pmap_is_modified(). However, since this function stops after * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some * dirty pages. Those dirty pages will only be detected by a future call * to pmap_is_modified(). */ static int mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m) { pte_t *pte; pv_entry_t pv; int count; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("mmu_booke_ts_referenced: page %p is not managed", m)); count = 0; rw_wlock(&pvh_global_lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { PMAP_LOCK(pv->pv_pmap); if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && PTE_ISVALID(pte)) { if (PTE_ISMODIFIED(pte)) vm_page_dirty(m); if (PTE_ISREFERENCED(pte)) { mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); tlb0_flush_entry(pv->pv_va); *pte &= ~PTE_REFERENCED; tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); if (++count >= PMAP_TS_REFERENCED_MAX) { PMAP_UNLOCK(pv->pv_pmap); break; } } } PMAP_UNLOCK(pv->pv_pmap); } rw_wunlock(&pvh_global_lock); return (count); } /* * Clear the wired attribute from the mappings for the specified range of * addresses in the given pmap. Every valid mapping within that range must * have the wired attribute set. In contrast, invalid mappings cannot have * the wired attribute set, so they are ignored. * * The wired attribute of the page table entry is not a hardware feature, so * there is no need to invalidate any TLB entries. */ static void mmu_booke_unwire(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva) { vm_offset_t va; pte_t *pte; PMAP_LOCK(pmap); for (va = sva; va < eva; va += PAGE_SIZE) { if ((pte = pte_find(mmu, pmap, va)) != NULL && PTE_ISVALID(pte)) { if (!PTE_ISWIRED(pte)) panic("mmu_booke_unwire: pte %p isn't wired", pte); *pte &= ~PTE_WIRED; pmap->pm_stats.wired_count--; } } PMAP_UNLOCK(pmap); } /* * Return true if the pmap's pv is one of the first 16 pvs linked to from this * page. This count may be changed upwards or downwards in the future; it is * only necessary that true be returned for a small subset of pmaps for proper * page aging. */ static boolean_t mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m) { pv_entry_t pv; int loops; boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("mmu_booke_page_exists_quick: page %p is not managed", m)); loops = 0; rv = FALSE; rw_wlock(&pvh_global_lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { if (pv->pv_pmap == pmap) { rv = TRUE; break; } if (++loops >= 16) break; } rw_wunlock(&pvh_global_lock); return (rv); } /* * Return the number of managed mappings to the given physical page that are * wired. */ static int mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m) { pv_entry_t pv; pte_t *pte; int count = 0; if ((m->oflags & VPO_UNMANAGED) != 0) return (count); rw_wlock(&pvh_global_lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { PMAP_LOCK(pv->pv_pmap); if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) if (PTE_ISVALID(pte) && PTE_ISWIRED(pte)) count++; PMAP_UNLOCK(pv->pv_pmap); } rw_wunlock(&pvh_global_lock); return (count); } static int mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size) { int i; vm_offset_t va; /* * This currently does not work for entries that * overlap TLB1 entries. */ for (i = 0; i < TLB1_ENTRIES; i ++) { if (tlb1_iomapped(i, pa, size, &va) == 0) return (0); } return (EFAULT); } void mmu_booke_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va) { vm_paddr_t ppa; vm_offset_t ofs; vm_size_t gran; /* Minidumps are based on virtual memory addresses. */ if (do_minidump) { *va = (void *)(vm_offset_t)pa; return; } /* Raw physical memory dumps don't have a virtual address. */ /* We always map a 256MB page at 256M. */ gran = 256 * 1024 * 1024; ppa = rounddown2(pa, gran); ofs = pa - ppa; *va = (void *)gran; tlb1_set_entry((vm_offset_t)va, ppa, gran, _TLB_ENTRY_IO); if (sz > (gran - ofs)) tlb1_set_entry((vm_offset_t)(va + gran), ppa + gran, gran, _TLB_ENTRY_IO); } void mmu_booke_dumpsys_unmap(mmu_t mmu, vm_paddr_t pa, size_t sz, void *va) { vm_paddr_t ppa; vm_offset_t ofs; vm_size_t gran; tlb_entry_t e; int i; /* Minidumps are based on virtual memory addresses. */ /* Nothing to do... */ if (do_minidump) return; for (i = 0; i < TLB1_ENTRIES; i++) { tlb1_read_entry(&e, i); if (!(e.mas1 & MAS1_VALID)) break; } /* Raw physical memory dumps don't have a virtual address. */ i--; e.mas1 = 0; e.mas2 = 0; e.mas3 = 0; tlb1_write_entry(&e, i); gran = 256 * 1024 * 1024; ppa = rounddown2(pa, gran); ofs = pa - ppa; if (sz > (gran - ofs)) { i--; e.mas1 = 0; e.mas2 = 0; e.mas3 = 0; tlb1_write_entry(&e, i); } } extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1]; void mmu_booke_scan_init(mmu_t mmu) { vm_offset_t va; pte_t *pte; int i; if (!do_minidump) { /* Initialize phys. segments for dumpsys(). */ memset(&dump_map, 0, sizeof(dump_map)); mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions, &availmem_regions_sz); for (i = 0; i < physmem_regions_sz; i++) { dump_map[i].pa_start = physmem_regions[i].mr_start; dump_map[i].pa_size = physmem_regions[i].mr_size; } return; } /* Virtual segments for minidumps: */ memset(&dump_map, 0, sizeof(dump_map)); /* 1st: kernel .data and .bss. */ dump_map[0].pa_start = trunc_page((uintptr_t)_etext); dump_map[0].pa_size = round_page((uintptr_t)_end) - dump_map[0].pa_start; /* 2nd: msgbuf and tables (see pmap_bootstrap()). */ dump_map[1].pa_start = data_start; dump_map[1].pa_size = data_end - data_start; /* 3rd: kernel VM. */ va = dump_map[1].pa_start + dump_map[1].pa_size; /* Find start of next chunk (from va). */ while (va < virtual_end) { /* Don't dump the buffer cache. */ if (va >= kmi.buffer_sva && va < kmi.buffer_eva) { va = kmi.buffer_eva; continue; } pte = pte_find(mmu, kernel_pmap, va); if (pte != NULL && PTE_ISVALID(pte)) break; va += PAGE_SIZE; } if (va < virtual_end) { dump_map[2].pa_start = va; va += PAGE_SIZE; /* Find last page in chunk. */ while (va < virtual_end) { /* Don't run into the buffer cache. */ if (va == kmi.buffer_sva) break; pte = pte_find(mmu, kernel_pmap, va); if (pte == NULL || !PTE_ISVALID(pte)) break; va += PAGE_SIZE; } dump_map[2].pa_size = va - dump_map[2].pa_start; } } /* * Map a set of physical memory pages into the kernel virtual address space. * Return a pointer to where it is mapped. This routine is intended to be used * for mapping device memory, NOT real memory. */ static void * mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size) { return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT)); } static void * mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma) { tlb_entry_t e; void *res; uintptr_t va, tmpva; vm_size_t sz; int i; /* * Check if this is premapped in TLB1. Note: this should probably also * check whether a sequence of TLB1 entries exist that match the * requirement, but now only checks the easy case. */ if (ma == VM_MEMATTR_DEFAULT) { for (i = 0; i < TLB1_ENTRIES; i++) { tlb1_read_entry(&e, i); if (!(e.mas1 & MAS1_VALID)) continue; if (pa >= e.phys && (pa + size) <= (e.phys + e.size)) return (void *)(e.virt + (vm_offset_t)(pa - e.phys)); } } size = roundup(size, PAGE_SIZE); /* * The device mapping area is between VM_MAXUSER_ADDRESS and * VM_MIN_KERNEL_ADDRESS. This gives 1GB of device addressing. */ #ifdef SPARSE_MAPDEV /* * With a sparse mapdev, align to the largest starting region. This * could feasibly be optimized for a 'best-fit' alignment, but that * calculation could be very costly. */ do { tmpva = tlb1_map_base; va = roundup(tlb1_map_base, 1 << flsl(size)); +#ifdef __powerpc64__ + } while (!atomic_cmpset_long(&tlb1_map_base, tmpva, va + size)); +#else } while (!atomic_cmpset_int(&tlb1_map_base, tmpva, va + size)); +#endif #else +#ifdef __powerpc64__ + va = atomic_fetchadd_long(&tlb1_map_base, size); +#else va = atomic_fetchadd_int(&tlb1_map_base, size); #endif +#endif res = (void *)va; do { sz = 1 << (ilog2(size) & ~1); if (va % sz != 0) { do { sz >>= 2; } while (va % sz != 0); } if (bootverbose) - printf("Wiring VA=%x to PA=%jx (size=%x)\n", + printf("Wiring VA=%lx to PA=%jx (size=%lx)\n", va, (uintmax_t)pa, sz); tlb1_set_entry(va, pa, sz, _TLB_ENTRY_SHARED | tlb_calc_wimg(pa, ma)); size -= sz; pa += sz; va += sz; } while (size > 0); return (res); } /* * 'Unmap' a range mapped by mmu_booke_mapdev(). */ static void mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size) { #ifdef SUPPORTS_SHRINKING_TLB1 vm_offset_t base, offset; /* * Unmap only if this is inside kernel virtual space. */ if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) { base = trunc_page(va); offset = va & PAGE_MASK; size = roundup(offset + size, PAGE_SIZE); kva_free(base, size); } #endif } /* * mmu_booke_object_init_pt preloads the ptes for a given object into the * specified pmap. This eliminates the blast of soft faults on process startup * and immediately after an mmap. */ static void mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr, vm_object_t object, vm_pindex_t pindex, vm_size_t size) { VM_OBJECT_ASSERT_WLOCKED(object); KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG, ("mmu_booke_object_init_pt: non-device object")); } /* * Perform the pmap work for mincore. */ static int mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa) { /* XXX: this should be implemented at some point */ return (0); } static int mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr, vm_size_t sz, vm_memattr_t mode) { vm_offset_t va; pte_t *pte; int i, j; tlb_entry_t e; /* Check TLB1 mappings */ for (i = 0; i < TLB1_ENTRIES; i++) { tlb1_read_entry(&e, i); if (!(e.mas1 & MAS1_VALID)) continue; if (addr >= e.virt && addr < e.virt + e.size) break; } if (i < TLB1_ENTRIES) { /* Only allow full mappings to be modified for now. */ /* Validate the range. */ for (j = i, va = addr; va < addr + sz; va += e.size, j++) { tlb1_read_entry(&e, j); if (va != e.virt || (sz - (va - addr) < e.size)) return (EINVAL); } for (va = addr; va < addr + sz; va += e.size, i++) { tlb1_read_entry(&e, i); e.mas2 &= ~MAS2_WIMGE_MASK; e.mas2 |= tlb_calc_wimg(e.phys, mode); /* * Write it out to the TLB. Should really re-sync with other * cores. */ tlb1_write_entry(&e, i); } return (0); } /* Not in TLB1, try through pmap */ /* First validate the range. */ for (va = addr; va < addr + sz; va += PAGE_SIZE) { pte = pte_find(mmu, kernel_pmap, va); if (pte == NULL || !PTE_ISVALID(pte)) return (EINVAL); } mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); for (va = addr; va < addr + sz; va += PAGE_SIZE) { pte = pte_find(mmu, kernel_pmap, va); *pte &= ~(PTE_MAS2_MASK << PTE_MAS2_SHIFT); *pte |= tlb_calc_wimg(PTE_PA(pte), mode) << PTE_MAS2_SHIFT; tlb0_flush_entry(va); } tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); return (0); } /**************************************************************************/ /* TID handling */ /**************************************************************************/ /* * Allocate a TID. If necessary, steal one from someone else. * The new TID is flushed from the TLB before returning. */ static tlbtid_t tid_alloc(pmap_t pmap) { tlbtid_t tid; int thiscpu; KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap")); CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap); thiscpu = PCPU_GET(cpuid); tid = PCPU_GET(tid_next); if (tid > TID_MAX) tid = TID_MIN; PCPU_SET(tid_next, tid + 1); /* If we are stealing TID then clear the relevant pmap's field */ if (tidbusy[thiscpu][tid] != NULL) { CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid); tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE; /* Flush all entries from TLB0 matching this TID. */ tid_flush(tid); } tidbusy[thiscpu][tid] = pmap; pmap->pm_tid[thiscpu] = tid; __asm __volatile("msync; isync"); CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid, PCPU_GET(tid_next)); return (tid); } /**************************************************************************/ /* TLB0 handling */ /**************************************************************************/ static void +#ifdef __powerpc64__ +tlb_print_entry(int i, uint32_t mas1, uint64_t mas2, uint32_t mas3, +#else tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3, +#endif uint32_t mas7) { int as; char desc[3]; tlbtid_t tid; vm_size_t size; unsigned int tsize; desc[2] = '\0'; if (mas1 & MAS1_VALID) desc[0] = 'V'; else desc[0] = ' '; if (mas1 & MAS1_IPROT) desc[1] = 'P'; else desc[1] = ' '; as = (mas1 & MAS1_TS_MASK) ? 1 : 0; tid = MAS1_GETTID(mas1); tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; size = 0; if (tsize) size = tsize2size(tsize); debugf("%3d: (%s) [AS=%d] " "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x " - "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n", + "mas2(va) = 0x%"PRI0ptrX" mas3(pa) = 0x%08x mas7 = 0x%08x\n", i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7); } /* Convert TLB0 va and way number to tlb0[] table index. */ static inline unsigned int tlb0_tableidx(vm_offset_t va, unsigned int way) { unsigned int idx; idx = (way * TLB0_ENTRIES_PER_WAY); idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT; return (idx); } /* * Invalidate TLB0 entry. */ static inline void tlb0_flush_entry(vm_offset_t va) { CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va); mtx_assert(&tlbivax_mutex, MA_OWNED); __asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK)); __asm __volatile("isync; msync"); __asm __volatile("tlbsync; msync"); CTR1(KTR_PMAP, "%s: e", __func__); } /* Print out contents of the MAS registers for each TLB0 entry */ void tlb0_print_tlbentries(void) { - uint32_t mas0, mas1, mas2, mas3, mas7; + uint32_t mas0, mas1, mas3, mas7; +#ifdef __powerpc64__ + uint64_t mas2; +#else + uint32_t mas2; +#endif int entryidx, way, idx; debugf("TLB0 entries:\n"); for (way = 0; way < TLB0_WAYS; way ++) for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) { mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way); mtspr(SPR_MAS0, mas0); __asm __volatile("isync"); mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT; mtspr(SPR_MAS2, mas2); __asm __volatile("isync; tlbre"); mas1 = mfspr(SPR_MAS1); mas2 = mfspr(SPR_MAS2); mas3 = mfspr(SPR_MAS3); mas7 = mfspr(SPR_MAS7); idx = tlb0_tableidx(mas2, way); tlb_print_entry(idx, mas1, mas2, mas3, mas7); } } /**************************************************************************/ /* TLB1 handling */ /**************************************************************************/ /* * TLB1 mapping notes: * * TLB1[0] Kernel text and data. * TLB1[1-15] Additional kernel text and data mappings (if required), PCI * windows, other devices mappings. */ /* * Read an entry from given TLB1 slot. */ void tlb1_read_entry(tlb_entry_t *entry, unsigned int slot) { uint32_t mas0; KASSERT((entry != NULL), ("%s(): Entry is NULL!", __func__)); mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(slot); mtspr(SPR_MAS0, mas0); __asm __volatile("isync; tlbre"); entry->mas1 = mfspr(SPR_MAS1); entry->mas2 = mfspr(SPR_MAS2); entry->mas3 = mfspr(SPR_MAS3); switch ((mfpvr() >> 16) & 0xFFFF) { case FSL_E500v2: case FSL_E500mc: case FSL_E5500: case FSL_E6500: entry->mas7 = mfspr(SPR_MAS7); break; default: entry->mas7 = 0; break; } entry->virt = entry->mas2 & MAS2_EPN_MASK; entry->phys = ((vm_paddr_t)(entry->mas7 & MAS7_RPN) << 32) | (entry->mas3 & MAS3_RPN); entry->size = tsize2size((entry->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT); } /* * Write given entry to TLB1 hardware. * Use 32 bit pa, clear 4 high-order bits of RPN (mas7). */ static void tlb1_write_entry(tlb_entry_t *e, unsigned int idx) { uint32_t mas0; //debugf("tlb1_write_entry: s\n"); /* Select entry */ mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx); //debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0); mtspr(SPR_MAS0, mas0); __asm __volatile("isync"); mtspr(SPR_MAS1, e->mas1); __asm __volatile("isync"); mtspr(SPR_MAS2, e->mas2); __asm __volatile("isync"); mtspr(SPR_MAS3, e->mas3); __asm __volatile("isync"); switch ((mfpvr() >> 16) & 0xFFFF) { case FSL_E500mc: case FSL_E5500: case FSL_E6500: mtspr(SPR_MAS8, 0); __asm __volatile("isync"); /* FALLTHROUGH */ case FSL_E500v2: mtspr(SPR_MAS7, e->mas7); __asm __volatile("isync"); break; default: break; } __asm __volatile("tlbwe; isync; msync"); //debugf("tlb1_write_entry: e\n"); } /* * Return the largest uint value log such that 2^log <= num. */ static unsigned int ilog2(unsigned int num) { int lz; __asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num)); return (31 - lz); } /* * Convert TLB TSIZE value to mapped region size. */ static vm_size_t tsize2size(unsigned int tsize) { /* * size = 4^tsize KB * size = 4^tsize * 2^10 = 2^(2 * tsize - 10) */ return ((1 << (2 * tsize)) * 1024); } /* * Convert region size (must be power of 4) to TLB TSIZE value. */ static unsigned int size2tsize(vm_size_t size) { return (ilog2(size) / 2 - 5); } /* * Register permanent kernel mapping in TLB1. * * Entries are created starting from index 0 (current free entry is * kept in tlb1_idx) and are not supposed to be invalidated. */ int tlb1_set_entry(vm_offset_t va, vm_paddr_t pa, vm_size_t size, uint32_t flags) { tlb_entry_t e; uint32_t ts, tid; int tsize, index; for (index = 0; index < TLB1_ENTRIES; index++) { tlb1_read_entry(&e, index); if ((e.mas1 & MAS1_VALID) == 0) break; /* Check if we're just updating the flags, and update them. */ if (e.phys == pa && e.virt == va && e.size == size) { e.mas2 = (va & MAS2_EPN_MASK) | flags; tlb1_write_entry(&e, index); return (0); } } if (index >= TLB1_ENTRIES) { printf("tlb1_set_entry: TLB1 full!\n"); return (-1); } /* Convert size to TSIZE */ tsize = size2tsize(size); tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK; /* XXX TS is hard coded to 0 for now as we only use single address space */ ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK; e.phys = pa; e.virt = va; e.size = size; e.mas1 = MAS1_VALID | MAS1_IPROT | ts | tid; e.mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK); e.mas2 = (va & MAS2_EPN_MASK) | flags; /* Set supervisor RWX permission bits */ e.mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX; e.mas7 = (pa >> 32) & MAS7_RPN; tlb1_write_entry(&e, index); /* * XXX in general TLB1 updates should be propagated between CPUs, * since current design assumes to have the same TLB1 set-up on all * cores. */ return (0); } /* * Map in contiguous RAM region into the TLB1 using maximum of * KERNEL_REGION_MAX_TLB_ENTRIES entries. * * If necessary round up last entry size and return total size * used by all allocated entries. */ vm_size_t tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size) { vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES]; vm_size_t mapped, pgsz, base, mask; int idx, nents; /* Round up to the next 1M */ size = roundup2(size, 1 << 20); mapped = 0; idx = 0; base = va; pgsz = 64*1024*1024; while (mapped < size) { while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) { while (pgsz > (size - mapped)) pgsz >>= 2; pgs[idx++] = pgsz; mapped += pgsz; } /* We under-map. Correct for this. */ if (mapped < size) { while (pgs[idx - 1] == pgsz) { idx--; mapped -= pgsz; } /* XXX We may increase beyond out starting point. */ pgsz <<= 2; pgs[idx++] = pgsz; mapped += pgsz; } } nents = idx; mask = pgs[0] - 1; /* Align address to the boundary */ if (va & mask) { va = (va + mask) & ~mask; pa = (pa + mask) & ~mask; } for (idx = 0; idx < nents; idx++) { pgsz = pgs[idx]; debugf("%u: %llx -> %x, size=%x\n", idx, pa, va, pgsz); tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_SHARED | _TLB_ENTRY_MEM); pa += pgsz; va += pgsz; } mapped = (va - base); -#ifdef __powerpc64__ - printf("mapped size 0x%016lx (wasted space 0x%16lx)\n", -#else - printf("mapped size 0x%08x (wasted space 0x%08x)\n", -#endif + printf("mapped size 0x%"PRI0ptrX" (wasted space 0x%"PRIxPTR")\n", mapped, mapped - size); return (mapped); } /* * TLB1 initialization routine, to be called after the very first * assembler level setup done in locore.S. */ void tlb1_init() { uint32_t mas0, mas1, mas2, mas3, mas7; uint32_t tsz; tlb1_get_tlbconf(); mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(0); mtspr(SPR_MAS0, mas0); __asm __volatile("isync; tlbre"); mas1 = mfspr(SPR_MAS1); mas2 = mfspr(SPR_MAS2); mas3 = mfspr(SPR_MAS3); mas7 = mfspr(SPR_MAS7); kernload = ((vm_paddr_t)(mas7 & MAS7_RPN) << 32) | (mas3 & MAS3_RPN); tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; kernsize += (tsz > 0) ? tsize2size(tsz) : 0; /* Setup TLB miss defaults */ set_mas4_defaults(); } /* * pmap_early_io_unmap() should be used in short conjunction with * pmap_early_io_map(), as in the following snippet: * * x = pmap_early_io_map(...); * * pmap_early_io_unmap(x, size); * * And avoiding more allocations between. */ void pmap_early_io_unmap(vm_offset_t va, vm_size_t size) { int i; tlb_entry_t e; vm_size_t isize; size = roundup(size, PAGE_SIZE); isize = size; for (i = 0; i < TLB1_ENTRIES && size > 0; i++) { tlb1_read_entry(&e, i); if (!(e.mas1 & MAS1_VALID)) continue; if (va <= e.virt && (va + isize) >= (e.virt + e.size)) { size -= e.size; e.mas1 &= ~MAS1_VALID; tlb1_write_entry(&e, i); } } if (tlb1_map_base == va + isize) tlb1_map_base -= isize; } vm_offset_t pmap_early_io_map(vm_paddr_t pa, vm_size_t size) { vm_paddr_t pa_base; vm_offset_t va, sz; int i; tlb_entry_t e; KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!")); for (i = 0; i < TLB1_ENTRIES; i++) { tlb1_read_entry(&e, i); if (!(e.mas1 & MAS1_VALID)) continue; if (pa >= e.phys && (pa + size) <= (e.phys + e.size)) return (e.virt + (pa - e.phys)); } pa_base = rounddown(pa, PAGE_SIZE); size = roundup(size + (pa - pa_base), PAGE_SIZE); tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1)); va = tlb1_map_base + (pa - pa_base); do { sz = 1 << (ilog2(size) & ~1); tlb1_set_entry(tlb1_map_base, pa_base, sz, _TLB_ENTRY_SHARED | _TLB_ENTRY_IO); size -= sz; pa_base += sz; tlb1_map_base += sz; } while (size > 0); return (va); } void pmap_track_page(pmap_t pmap, vm_offset_t va) { vm_paddr_t pa; vm_page_t page; struct pv_entry *pve; va = trunc_page(va); pa = pmap_kextract(va); rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); page = PHYS_TO_VM_PAGE(pa); TAILQ_FOREACH(pve, &page->md.pv_list, pv_link) { if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) { goto out; } } page->md.pv_tracked = true; pv_insert(pmap, va, page); out: PMAP_UNLOCK(pmap); rw_wunlock(&pvh_global_lock); } /* * Setup MAS4 defaults. * These values are loaded to MAS0-2 on a TLB miss. */ static void set_mas4_defaults(void) { uint32_t mas4; /* Defaults: TLB0, PID0, TSIZED=4K */ mas4 = MAS4_TLBSELD0; mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK; #ifdef SMP mas4 |= MAS4_MD; #endif mtspr(SPR_MAS4, mas4); __asm __volatile("isync"); } /* * Print out contents of the MAS registers for each TLB1 entry */ void tlb1_print_tlbentries(void) { - uint32_t mas0, mas1, mas2, mas3, mas7; + uint32_t mas0, mas1, mas3, mas7; +#ifdef __powerpc64__ + uint64_t mas2; +#else + uint32_t mas2; +#endif int i; debugf("TLB1 entries:\n"); for (i = 0; i < TLB1_ENTRIES; i++) { mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i); mtspr(SPR_MAS0, mas0); __asm __volatile("isync; tlbre"); mas1 = mfspr(SPR_MAS1); mas2 = mfspr(SPR_MAS2); mas3 = mfspr(SPR_MAS3); mas7 = mfspr(SPR_MAS7); tlb_print_entry(i, mas1, mas2, mas3, mas7); } } /* * Return 0 if the physical IO range is encompassed by one of the * the TLB1 entries, otherwise return related error code. */ static int tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va) { uint32_t prot; vm_paddr_t pa_start; vm_paddr_t pa_end; unsigned int entry_tsize; vm_size_t entry_size; tlb_entry_t e; *va = (vm_offset_t)NULL; tlb1_read_entry(&e, i); /* Skip invalid entries */ if (!(e.mas1 & MAS1_VALID)) return (EINVAL); /* * The entry must be cache-inhibited, guarded, and r/w * so it can function as an i/o page */ prot = e.mas2 & (MAS2_I | MAS2_G); if (prot != (MAS2_I | MAS2_G)) return (EPERM); prot = e.mas3 & (MAS3_SR | MAS3_SW); if (prot != (MAS3_SR | MAS3_SW)) return (EPERM); /* The address should be within the entry range. */ entry_tsize = (e.mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize")); entry_size = tsize2size(entry_tsize); pa_start = (((vm_paddr_t)e.mas7 & MAS7_RPN) << 32) | (e.mas3 & MAS3_RPN); pa_end = pa_start + entry_size; if ((pa < pa_start) || ((pa + size) > pa_end)) return (ERANGE); /* Return virtual address of this mapping. */ *va = (e.mas2 & MAS2_EPN_MASK) + (pa - pa_start); return (0); } /* * Invalidate all TLB0 entries which match the given TID. Note this is * dedicated for cases when invalidations should NOT be propagated to other * CPUs. */ static void tid_flush(tlbtid_t tid) { register_t msr; uint32_t mas0, mas1, mas2; int entry, way; /* Don't evict kernel translations */ if (tid == TID_KERNEL) return; msr = mfmsr(); __asm __volatile("wrteei 0"); for (way = 0; way < TLB0_WAYS; way++) for (entry = 0; entry < TLB0_ENTRIES_PER_WAY; entry++) { mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way); mtspr(SPR_MAS0, mas0); __asm __volatile("isync"); mas2 = entry << MAS2_TLB0_ENTRY_IDX_SHIFT; mtspr(SPR_MAS2, mas2); __asm __volatile("isync; tlbre"); mas1 = mfspr(SPR_MAS1); if (!(mas1 & MAS1_VALID)) continue; if (((mas1 & MAS1_TID_MASK) >> MAS1_TID_SHIFT) != tid) continue; mas1 &= ~MAS1_VALID; mtspr(SPR_MAS1, mas1); __asm __volatile("isync; tlbwe; isync; msync"); } mtmsr(msr); } Index: head/sys/powerpc/booke/trap_subr.S =================================================================== --- head/sys/powerpc/booke/trap_subr.S (revision 315463) +++ head/sys/powerpc/booke/trap_subr.S (revision 315464) @@ -1,976 +1,1147 @@ /*- * Copyright (C) 2006-2009 Semihalf, Rafal Jaworowski * Copyright (C) 2006 Semihalf, Marian Balakowicz * Copyright (C) 2006 Juniper Networks, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ /*- * Copyright (C) 1995, 1996 Wolfgang Solfrank. * Copyright (C) 1995, 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * from: $NetBSD: trap_subr.S,v 1.20 2002/04/22 23:20:08 kleink Exp $ */ /* * NOTICE: This is not a standalone file. to use it, #include it in * your port's locore.S, like so: * * #include */ /* * SPRG usage notes * * SPRG0 - pcpu pointer * SPRG1 - all interrupts except TLB miss, critical, machine check * SPRG2 - critical * SPRG3 - machine check * SPRG4-6 - scratch * */ /* Get the per-CPU data structure */ #define GET_CPUINFO(r) mfsprg0 r #define RES_GRANULE 32 #define RES_LOCK 0 /* offset to the 'lock' word */ +#ifdef __powerpc64__ +#define RES_RECURSE 8 /* offset to the 'recurse' word */ +#else #define RES_RECURSE 4 /* offset to the 'recurse' word */ +#endif /* * Standard interrupt prolog * * sprg_sp - SPRG{1-3} reg used to temporarily store the SP * savearea - temp save area (pc_{tempsave, disisave, critsave, mchksave}) * isrr0-1 - save restore registers with CPU state at interrupt time (may be * SRR0-1, CSRR0-1, MCSRR0-1 * * 1. saves in the given savearea: * - R30-31 * - DEAR, ESR * - xSRR0-1 * * 2. saves CR -> R30 * * 3. switches to kstack if needed * * 4. notes: * - R31 can be used as scratch register until a new frame is layed on * the stack with FRAME_SETUP * * - potential TLB miss: NO. Saveareas are always acessible via TLB1 * permanent entries, and within this prolog we do not dereference any * locations potentially not in the TLB */ #define STANDARD_PROLOG(sprg_sp, savearea, isrr0, isrr1) \ mtspr sprg_sp, %r1; /* Save SP */ \ GET_CPUINFO(%r1); /* Per-cpu structure */ \ - stw %r30, (savearea+CPUSAVE_R30)(%r1); \ - stw %r31, (savearea+CPUSAVE_R31)(%r1); \ + STORE %r30, (savearea+CPUSAVE_R30)(%r1); \ + STORE %r31, (savearea+CPUSAVE_R31)(%r1); \ mfdear %r30; \ mfesr %r31; \ - stw %r30, (savearea+CPUSAVE_BOOKE_DEAR)(%r1); \ - stw %r31, (savearea+CPUSAVE_BOOKE_ESR)(%r1); \ + STORE %r30, (savearea+CPUSAVE_BOOKE_DEAR)(%r1); \ + STORE %r31, (savearea+CPUSAVE_BOOKE_ESR)(%r1); \ mfspr %r30, isrr0; \ mfspr %r31, isrr1; /* MSR at interrupt time */ \ - stw %r30, (savearea+CPUSAVE_SRR0)(%r1); \ - stw %r31, (savearea+CPUSAVE_SRR1)(%r1); \ + STORE %r30, (savearea+CPUSAVE_SRR0)(%r1); \ + STORE %r31, (savearea+CPUSAVE_SRR1)(%r1); \ isync; \ mfspr %r1, sprg_sp; /* Restore SP */ \ mfcr %r30; /* Save CR */ \ /* switch to per-thread kstack if intr taken in user mode */ \ mtcr %r31; /* MSR at interrupt time */ \ bf 17, 1f; \ GET_CPUINFO(%r1); /* Per-cpu structure */ \ - lwz %r1, PC_CURPCB(%r1); /* Per-thread kernel stack */ \ + LOAD %r1, PC_CURPCB(%r1); /* Per-thread kernel stack */ \ 1: #define STANDARD_CRIT_PROLOG(sprg_sp, savearea, isrr0, isrr1) \ mtspr sprg_sp, %r1; /* Save SP */ \ GET_CPUINFO(%r1); /* Per-cpu structure */ \ - stw %r30, (savearea+CPUSAVE_R30)(%r1); \ - stw %r31, (savearea+CPUSAVE_R31)(%r1); \ + STORE %r30, (savearea+CPUSAVE_R30)(%r1); \ + STORE %r31, (savearea+CPUSAVE_R31)(%r1); \ mfdear %r30; \ mfesr %r31; \ - stw %r30, (savearea+CPUSAVE_BOOKE_DEAR)(%r1); \ - stw %r31, (savearea+CPUSAVE_BOOKE_ESR)(%r1); \ + STORE %r30, (savearea+CPUSAVE_BOOKE_DEAR)(%r1); \ + STORE %r31, (savearea+CPUSAVE_BOOKE_ESR)(%r1); \ mfspr %r30, isrr0; \ mfspr %r31, isrr1; /* MSR at interrupt time */ \ - stw %r30, (savearea+CPUSAVE_SRR0)(%r1); \ - stw %r31, (savearea+CPUSAVE_SRR1)(%r1); \ + STORE %r30, (savearea+CPUSAVE_SRR0)(%r1); \ + STORE %r31, (savearea+CPUSAVE_SRR1)(%r1); \ mfspr %r30, SPR_SRR0; \ mfspr %r31, SPR_SRR1; /* MSR at interrupt time */ \ - stw %r30, (savearea+CPUSAVE_SRR0+8)(%r1); \ - stw %r31, (savearea+CPUSAVE_SRR1+8)(%r1); \ + STORE %r30, (savearea+BOOKE_CRITSAVE_SRR0)(%r1); \ + STORE %r31, (savearea+BOOKE_CRITSAVE_SRR1)(%r1); \ isync; \ mfspr %r1, sprg_sp; /* Restore SP */ \ mfcr %r30; /* Save CR */ \ /* switch to per-thread kstack if intr taken in user mode */ \ mtcr %r31; /* MSR at interrupt time */ \ bf 17, 1f; \ GET_CPUINFO(%r1); /* Per-cpu structure */ \ - lwz %r1, PC_CURPCB(%r1); /* Per-thread kernel stack */ \ + LOAD %r1, PC_CURPCB(%r1); /* Per-thread kernel stack */ \ 1: /* * FRAME_SETUP assumes: * SPRG{1-3} SP at the time interrupt occured * savearea r30-r31, DEAR, ESR, xSRR0-1 * r30 CR * r31 scratch * r1 kernel stack * * sprg_sp - SPRG reg containing SP at the time interrupt occured * savearea - temp save * exc - exception number (EXC_xxx) * * 1. sets a new frame * 2. saves in the frame: * - R0, R1 (SP at the time of interrupt), R2, LR, CR * - R3-31 (R30-31 first restored from savearea) * - XER, CTR, DEAR, ESR (from savearea), xSRR0-1 * * Notes: * - potential TLB miss: YES, since we make dereferences to kstack, which * can happen not covered (we can have up to two DTLB misses if fortunate * enough i.e. when kstack crosses page boundary and both pages are * untranslated) */ +#ifdef __powerpc64__ +#define SAVE_REGS(r) \ + std %r3, FRAME_3+CALLSIZE(r); \ + std %r4, FRAME_4+CALLSIZE(r); \ + std %r5, FRAME_5+CALLSIZE(r); \ + std %r6, FRAME_6+CALLSIZE(r); \ + std %r7, FRAME_7+CALLSIZE(r); \ + std %r8, FRAME_8+CALLSIZE(r); \ + std %r9, FRAME_9+CALLSIZE(r); \ + std %r10, FRAME_10+CALLSIZE(r); \ + std %r11, FRAME_11+CALLSIZE(r); \ + std %r12, FRAME_12+CALLSIZE(r); \ + std %r13, FRAME_13+CALLSIZE(r); \ + std %r14, FRAME_14+CALLSIZE(r); \ + std %r15, FRAME_15+CALLSIZE(r); \ + std %r16, FRAME_16+CALLSIZE(r); \ + std %r17, FRAME_17+CALLSIZE(r); \ + std %r18, FRAME_18+CALLSIZE(r); \ + std %r19, FRAME_19+CALLSIZE(r); \ + std %r20, FRAME_20+CALLSIZE(r); \ + std %r21, FRAME_21+CALLSIZE(r); \ + std %r22, FRAME_22+CALLSIZE(r); \ + std %r23, FRAME_23+CALLSIZE(r); \ + std %r24, FRAME_24+CALLSIZE(r); \ + std %r25, FRAME_25+CALLSIZE(r); \ + std %r26, FRAME_26+CALLSIZE(r); \ + std %r27, FRAME_27+CALLSIZE(r); \ + std %r28, FRAME_28+CALLSIZE(r); \ + std %r29, FRAME_29+CALLSIZE(r); \ + std %r30, FRAME_30+CALLSIZE(r); \ + std %r31, FRAME_31+CALLSIZE(r) +#define LD_REGS(r) \ + ld %r3, FRAME_3+CALLSIZE(r); \ + ld %r4, FRAME_4+CALLSIZE(r); \ + ld %r5, FRAME_5+CALLSIZE(r); \ + ld %r6, FRAME_6+CALLSIZE(r); \ + ld %r7, FRAME_7+CALLSIZE(r); \ + ld %r8, FRAME_8+CALLSIZE(r); \ + ld %r9, FRAME_9+CALLSIZE(r); \ + ld %r10, FRAME_10+CALLSIZE(r); \ + ld %r11, FRAME_11+CALLSIZE(r); \ + ld %r12, FRAME_12+CALLSIZE(r); \ + ld %r13, FRAME_13+CALLSIZE(r); \ + ld %r14, FRAME_14+CALLSIZE(r); \ + ld %r15, FRAME_15+CALLSIZE(r); \ + ld %r16, FRAME_16+CALLSIZE(r); \ + ld %r17, FRAME_17+CALLSIZE(r); \ + ld %r18, FRAME_18+CALLSIZE(r); \ + ld %r19, FRAME_19+CALLSIZE(r); \ + ld %r20, FRAME_20+CALLSIZE(r); \ + ld %r21, FRAME_21+CALLSIZE(r); \ + ld %r22, FRAME_22+CALLSIZE(r); \ + ld %r23, FRAME_23+CALLSIZE(r); \ + ld %r24, FRAME_24+CALLSIZE(r); \ + ld %r25, FRAME_25+CALLSIZE(r); \ + ld %r26, FRAME_26+CALLSIZE(r); \ + ld %r27, FRAME_27+CALLSIZE(r); \ + ld %r28, FRAME_28+CALLSIZE(r); \ + ld %r29, FRAME_29+CALLSIZE(r); \ + ld %r30, FRAME_30+CALLSIZE(r); \ + ld %r31, FRAME_31+CALLSIZE(r) +#else +#define SAVE_REGS(r) \ + stmw %r3, FRAME_3+CALLSIZE(r) +#define LD_REGS(r) \ + lmw %r3, FRAME_3+CALLSIZE(r) +#endif #define FRAME_SETUP(sprg_sp, savearea, exc) \ mfspr %r31, sprg_sp; /* get saved SP */ \ /* establish a new stack frame and put everything on it */ \ - stwu %r31, -FRAMELEN(%r1); \ - stw %r0, FRAME_0+8(%r1); /* save r0 in the trapframe */ \ - stw %r31, FRAME_1+8(%r1); /* save SP " " */ \ - stw %r2, FRAME_2+8(%r1); /* save r2 " " */ \ + STU %r31, -(FRAMELEN+REDZONE)(%r1); \ + STORE %r0, FRAME_0+CALLSIZE(%r1); /* save r0 in the trapframe */ \ + STORE %r31, FRAME_1+CALLSIZE(%r1); /* save SP " " */ \ + STORE %r2, FRAME_2+CALLSIZE(%r1); /* save r2 " " */ \ mflr %r31; \ - stw %r31, FRAME_LR+8(%r1); /* save LR " " */ \ - stw %r30, FRAME_CR+8(%r1); /* save CR " " */ \ + STORE %r31, FRAME_LR+CALLSIZE(%r1); /* save LR " " */ \ + STORE %r30, FRAME_CR+CALLSIZE(%r1); /* save CR " " */ \ GET_CPUINFO(%r2); \ - lwz %r30, (savearea+CPUSAVE_R30)(%r2); /* get saved r30 */ \ - lwz %r31, (savearea+CPUSAVE_R31)(%r2); /* get saved r31 */ \ + LOAD %r30, (savearea+CPUSAVE_R30)(%r2); /* get saved r30 */ \ + LOAD %r31, (savearea+CPUSAVE_R31)(%r2); /* get saved r31 */ \ /* save R3-31 */ \ - stmw %r3, FRAME_3+8(%r1) ; \ + SAVE_REGS(%r1); \ /* save DEAR, ESR */ \ - lwz %r28, (savearea+CPUSAVE_BOOKE_DEAR)(%r2); \ - lwz %r29, (savearea+CPUSAVE_BOOKE_ESR)(%r2); \ - stw %r28, FRAME_BOOKE_DEAR+8(%r1); \ - stw %r29, FRAME_BOOKE_ESR+8(%r1); \ + LOAD %r28, (savearea+CPUSAVE_BOOKE_DEAR)(%r2); \ + LOAD %r29, (savearea+CPUSAVE_BOOKE_ESR)(%r2); \ + STORE %r28, FRAME_BOOKE_DEAR+CALLSIZE(%r1); \ + STORE %r29, FRAME_BOOKE_ESR+CALLSIZE(%r1); \ /* save XER, CTR, exc number */ \ mfxer %r3; \ mfctr %r4; \ - stw %r3, FRAME_XER+8(%r1); \ - stw %r4, FRAME_CTR+8(%r1); \ + STORE %r3, FRAME_XER+CALLSIZE(%r1); \ + STORE %r4, FRAME_CTR+CALLSIZE(%r1); \ li %r5, exc; \ - stw %r5, FRAME_EXC+8(%r1); \ + STORE %r5, FRAME_EXC+CALLSIZE(%r1); \ /* save DBCR0 */ \ mfspr %r3, SPR_DBCR0; \ - stw %r3, FRAME_BOOKE_DBCR0+8(%r1); \ + STORE %r3, FRAME_BOOKE_DBCR0+CALLSIZE(%r1); \ /* save xSSR0-1 */ \ - lwz %r30, (savearea+CPUSAVE_SRR0)(%r2); \ - lwz %r31, (savearea+CPUSAVE_SRR1)(%r2); \ - stw %r30, FRAME_SRR0+8(%r1); \ - stw %r31, FRAME_SRR1+8(%r1); \ - lwz %r2,PC_CURTHREAD(%r2) /* set curthread pointer */ + LOAD %r30, (savearea+CPUSAVE_SRR0)(%r2); \ + LOAD %r31, (savearea+CPUSAVE_SRR1)(%r2); \ + STORE %r30, FRAME_SRR0+CALLSIZE(%r1); \ + STORE %r31, FRAME_SRR1+CALLSIZE(%r1); \ + LOAD THREAD_REG, PC_CURTHREAD(%r2); \ /* * * isrr0-1 - save restore registers to restore CPU state to (may be * SRR0-1, CSRR0-1, MCSRR0-1 * * Notes: * - potential TLB miss: YES. The deref'd kstack may be not covered */ #define FRAME_LEAVE(isrr0, isrr1) \ + wrteei 0; \ /* restore CTR, XER, LR, CR */ \ - lwz %r4, FRAME_CTR+8(%r1); \ - lwz %r5, FRAME_XER+8(%r1); \ - lwz %r6, FRAME_LR+8(%r1); \ - lwz %r7, FRAME_CR+8(%r1); \ + LOAD %r4, FRAME_CTR+CALLSIZE(%r1); \ + LOAD %r5, FRAME_XER+CALLSIZE(%r1); \ + LOAD %r6, FRAME_LR+CALLSIZE(%r1); \ + LOAD %r7, FRAME_CR+CALLSIZE(%r1); \ mtctr %r4; \ mtxer %r5; \ mtlr %r6; \ mtcr %r7; \ /* restore DBCR0 */ \ - lwz %r4, FRAME_BOOKE_DBCR0+8(%r1); \ + LOAD %r4, FRAME_BOOKE_DBCR0+CALLSIZE(%r1); \ mtspr SPR_DBCR0, %r4; \ /* restore xSRR0-1 */ \ - lwz %r30, FRAME_SRR0+8(%r1); \ - lwz %r31, FRAME_SRR1+8(%r1); \ + LOAD %r30, FRAME_SRR0+CALLSIZE(%r1); \ + LOAD %r31, FRAME_SRR1+CALLSIZE(%r1); \ mtspr isrr0, %r30; \ mtspr isrr1, %r31; \ /* restore R2-31, SP */ \ - lmw %r2, FRAME_2+8(%r1) ; \ - lwz %r0, FRAME_0+8(%r1); \ - lwz %r1, FRAME_1+8(%r1); \ + LD_REGS(%r1); \ + LOAD %r2, FRAME_2+CALLSIZE(%r1); \ + LOAD %r0, FRAME_0+CALLSIZE(%r1); \ + LOAD %r1, FRAME_1+CALLSIZE(%r1); \ isync /* * TLB miss prolog * * saves LR, CR, SRR0-1, R20-31 in the TLBSAVE area * * Notes: * - potential TLB miss: NO. It is crucial that we do not generate a TLB * miss within the TLB prolog itself! * - TLBSAVE is always translated */ +#ifdef __powerpc64__ +#define TLB_SAVE_REGS(br) \ + std %r20, (TLBSAVE_BOOKE_R20)(br); \ + std %r21, (TLBSAVE_BOOKE_R21)(br); \ + std %r22, (TLBSAVE_BOOKE_R22)(br); \ + std %r23, (TLBSAVE_BOOKE_R23)(br); \ + std %r24, (TLBSAVE_BOOKE_R24)(br); \ + std %r25, (TLBSAVE_BOOKE_R25)(br); \ + std %r26, (TLBSAVE_BOOKE_R26)(br); \ + std %r27, (TLBSAVE_BOOKE_R27)(br); \ + std %r28, (TLBSAVE_BOOKE_R28)(br); \ + std %r29, (TLBSAVE_BOOKE_R29)(br); \ + std %r30, (TLBSAVE_BOOKE_R30)(br); \ + std %r31, (TLBSAVE_BOOKE_R31)(br); +#define TLB_RESTORE_REGS(br) \ + ld %r20, (TLBSAVE_BOOKE_R20)(br); \ + ld %r21, (TLBSAVE_BOOKE_R21)(br); \ + ld %r22, (TLBSAVE_BOOKE_R22)(br); \ + ld %r23, (TLBSAVE_BOOKE_R23)(br); \ + ld %r24, (TLBSAVE_BOOKE_R24)(br); \ + ld %r25, (TLBSAVE_BOOKE_R25)(br); \ + ld %r26, (TLBSAVE_BOOKE_R26)(br); \ + ld %r27, (TLBSAVE_BOOKE_R27)(br); \ + ld %r28, (TLBSAVE_BOOKE_R28)(br); \ + ld %r29, (TLBSAVE_BOOKE_R29)(br); \ + ld %r30, (TLBSAVE_BOOKE_R30)(br); \ + ld %r31, (TLBSAVE_BOOKE_R31)(br); +#define TLB_NEST(outr,inr) \ + rlwinm outr, inr, 7, 23, 24; /* 8 x TLBSAVE_LEN */ +#else +#define TLB_SAVE_REGS(br) \ + stmw %r20, TLBSAVE_BOOKE_R20(br) +#define TLB_RESTORE_REGS(br) \ + lmw %r20, TLBSAVE_BOOKE_R20(br) +#define TLB_NEST(outr,inr) \ + rlwinm outr, inr, 6, 23, 25; /* 4 x TLBSAVE_LEN */ +#endif #define TLB_PROLOG \ mtsprg4 %r1; /* Save SP */ \ mtsprg5 %r28; \ mtsprg6 %r29; \ /* calculate TLB nesting level and TLBSAVE instance address */ \ GET_CPUINFO(%r1); /* Per-cpu structure */ \ - lwz %r28, PC_BOOKE_TLB_LEVEL(%r1); \ - rlwinm %r29, %r28, 6, 23, 25; /* 4 x TLBSAVE_LEN */ \ + LOAD %r28, PC_BOOKE_TLB_LEVEL(%r1); \ + TLB_NEST(%r29,%r28); \ addi %r28, %r28, 1; \ - stw %r28, PC_BOOKE_TLB_LEVEL(%r1); \ + STORE %r28, PC_BOOKE_TLB_LEVEL(%r1); \ addi %r29, %r29, PC_BOOKE_TLBSAVE@l; \ add %r1, %r1, %r29; /* current TLBSAVE ptr */ \ \ /* save R20-31 */ \ mfsprg5 %r28; \ mfsprg6 %r29; \ - stmw %r20, (TLBSAVE_BOOKE_R20)(%r1); \ + TLB_SAVE_REGS(%r1); \ /* save LR, CR */ \ mflr %r30; \ mfcr %r31; \ - stw %r30, (TLBSAVE_BOOKE_LR)(%r1); \ - stw %r31, (TLBSAVE_BOOKE_CR)(%r1); \ + STORE %r30, (TLBSAVE_BOOKE_LR)(%r1); \ + STORE %r31, (TLBSAVE_BOOKE_CR)(%r1); \ /* save SRR0-1 */ \ mfsrr0 %r30; /* execution addr at interrupt time */ \ mfsrr1 %r31; /* MSR at interrupt time*/ \ - stw %r30, (TLBSAVE_BOOKE_SRR0)(%r1); /* save SRR0 */ \ - stw %r31, (TLBSAVE_BOOKE_SRR1)(%r1); /* save SRR1 */ \ + STORE %r30, (TLBSAVE_BOOKE_SRR0)(%r1); /* save SRR0 */ \ + STORE %r31, (TLBSAVE_BOOKE_SRR1)(%r1); /* save SRR1 */ \ isync; \ mfsprg4 %r1 /* * restores LR, CR, SRR0-1, R20-31 from the TLBSAVE area * * same notes as for the TLB_PROLOG */ #define TLB_RESTORE \ mtsprg4 %r1; /* Save SP */ \ GET_CPUINFO(%r1); /* Per-cpu structure */ \ /* calculate TLB nesting level and TLBSAVE instance addr */ \ - lwz %r28, PC_BOOKE_TLB_LEVEL(%r1); \ + LOAD %r28, PC_BOOKE_TLB_LEVEL(%r1); \ subi %r28, %r28, 1; \ - stw %r28, PC_BOOKE_TLB_LEVEL(%r1); \ - rlwinm %r29, %r28, 6, 23, 25; /* 4 x TLBSAVE_LEN */ \ + STORE %r28, PC_BOOKE_TLB_LEVEL(%r1); \ + TLB_NEST(%r29,%r28); \ addi %r29, %r29, PC_BOOKE_TLBSAVE@l; \ add %r1, %r1, %r29; \ \ /* restore LR, CR */ \ - lwz %r30, (TLBSAVE_BOOKE_LR)(%r1); \ - lwz %r31, (TLBSAVE_BOOKE_CR)(%r1); \ + LOAD %r30, (TLBSAVE_BOOKE_LR)(%r1); \ + LOAD %r31, (TLBSAVE_BOOKE_CR)(%r1); \ mtlr %r30; \ mtcr %r31; \ /* restore SRR0-1 */ \ - lwz %r30, (TLBSAVE_BOOKE_SRR0)(%r1); \ - lwz %r31, (TLBSAVE_BOOKE_SRR1)(%r1); \ + LOAD %r30, (TLBSAVE_BOOKE_SRR0)(%r1); \ + LOAD %r31, (TLBSAVE_BOOKE_SRR1)(%r1); \ mtsrr0 %r30; \ mtsrr1 %r31; \ /* restore R20-31 */ \ - lmw %r20, (TLBSAVE_BOOKE_R20)(%r1); \ + TLB_RESTORE_REGS(%r1); \ mfsprg4 %r1 #ifdef SMP #define TLB_LOCK \ GET_CPUINFO(%r20); \ - lwz %r21, PC_CURTHREAD(%r20); \ - lwz %r22, PC_BOOKE_TLB_LOCK(%r20); \ + LOAD %r21, PC_CURTHREAD(%r20); \ + LOAD %r22, PC_BOOKE_TLB_LOCK(%r20); \ \ -1: lwarx %r23, 0, %r22; \ - cmpwi %r23, TLB_UNLOCKED; \ +1: LOADX %r23, 0, %r22; \ + CMPI %r23, TLB_UNLOCKED; \ beq 2f; \ \ /* check if this is recursion */ \ - cmplw cr0, %r21, %r23; \ + CMPL cr0, %r21, %r23; \ bne- 1b; \ \ 2: /* try to acquire lock */ \ - stwcx. %r21, 0, %r22; \ + STOREX %r21, 0, %r22; \ bne- 1b; \ \ /* got it, update recursion counter */ \ lwz %r21, RES_RECURSE(%r22); \ addi %r21, %r21, 1; \ stw %r21, RES_RECURSE(%r22); \ isync; \ msync #define TLB_UNLOCK \ GET_CPUINFO(%r20); \ - lwz %r21, PC_CURTHREAD(%r20); \ - lwz %r22, PC_BOOKE_TLB_LOCK(%r20); \ + LOAD %r21, PC_CURTHREAD(%r20); \ + LOAD %r22, PC_BOOKE_TLB_LOCK(%r20); \ \ /* update recursion counter */ \ lwz %r23, RES_RECURSE(%r22); \ subi %r23, %r23, 1; \ stw %r23, RES_RECURSE(%r22); \ \ - cmpwi %r23, 0; \ + cmplwi %r23, 0; \ bne 1f; \ isync; \ msync; \ \ /* release the lock */ \ li %r23, TLB_UNLOCKED; \ - stw %r23, 0(%r22); \ + STORE %r23, 0(%r22); \ 1: isync; \ msync #else #define TLB_LOCK #define TLB_UNLOCK #endif /* SMP */ #define INTERRUPT(label) \ .globl label; \ .align 5; \ CNAME(label): /* * Interrupt handling routines in BookE can be flexibly placed and do not have * to live in pre-defined vectors location. Note they need to be TLB-mapped at * all times in order to be able to handle exceptions. We thus arrange for * them to be part of kernel text which is always TLB-accessible. * * The interrupt handling routines have to be 16 bytes aligned: we align them * to 32 bytes (cache line length) which supposedly performs better. * */ .text .globl CNAME(interrupt_vector_base) .align 5 interrupt_vector_base: /***************************************************************************** * Catch-all handler to handle uninstalled IVORs ****************************************************************************/ INTERRUPT(int_unknown) STANDARD_PROLOG(SPR_SPRG1, PC_TEMPSAVE, SPR_SRR0, SPR_SRR1) FRAME_SETUP(SPR_SPRG1, PC_TEMPSAVE, EXC_RSVD) b trap_common /***************************************************************************** * Critical input interrupt ****************************************************************************/ INTERRUPT(int_critical_input) STANDARD_CRIT_PROLOG(SPR_SPRG2, PC_BOOKE_CRITSAVE, SPR_CSRR0, SPR_CSRR1) FRAME_SETUP(SPR_SPRG2, PC_BOOKE_CRITSAVE, EXC_CRIT) - addi %r3, %r1, 8 + GET_TOCBASE(%r2) + addi %r3, %r1, CALLSIZE bl CNAME(powerpc_interrupt) + TOC_RESTORE FRAME_LEAVE(SPR_CSRR0, SPR_CSRR1) rfci /***************************************************************************** * Machine check interrupt ****************************************************************************/ INTERRUPT(int_machine_check) STANDARD_PROLOG(SPR_SPRG3, PC_BOOKE_MCHKSAVE, SPR_MCSRR0, SPR_MCSRR1) FRAME_SETUP(SPR_SPRG3, PC_BOOKE_MCHKSAVE, EXC_MCHK) - addi %r3, %r1, 8 + GET_TOCBASE(%r2) + addi %r3, %r1, CALLSIZE bl CNAME(powerpc_interrupt) + TOC_RESTORE FRAME_LEAVE(SPR_MCSRR0, SPR_MCSRR1) rfmci /***************************************************************************** * Data storage interrupt ****************************************************************************/ INTERRUPT(int_data_storage) STANDARD_PROLOG(SPR_SPRG1, PC_DISISAVE, SPR_SRR0, SPR_SRR1) FRAME_SETUP(SPR_SPRG1, PC_DISISAVE, EXC_DSI) b trap_common /***************************************************************************** * Instruction storage interrupt ****************************************************************************/ INTERRUPT(int_instr_storage) STANDARD_PROLOG(SPR_SPRG1, PC_TEMPSAVE, SPR_SRR0, SPR_SRR1) FRAME_SETUP(SPR_SPRG1, PC_TEMPSAVE, EXC_ISI) b trap_common /***************************************************************************** * External input interrupt ****************************************************************************/ INTERRUPT(int_external_input) STANDARD_PROLOG(SPR_SPRG1, PC_TEMPSAVE, SPR_SRR0, SPR_SRR1) FRAME_SETUP(SPR_SPRG1, PC_TEMPSAVE, EXC_EXI) - addi %r3, %r1, 8 + GET_TOCBASE(%r2) + addi %r3, %r1, CALLSIZE bl CNAME(powerpc_interrupt) + TOC_RESTORE b clear_we INTERRUPT(int_alignment) STANDARD_PROLOG(SPR_SPRG1, PC_TEMPSAVE, SPR_SRR0, SPR_SRR1) FRAME_SETUP(SPR_SPRG1, PC_TEMPSAVE, EXC_ALI) b trap_common INTERRUPT(int_program) STANDARD_PROLOG(SPR_SPRG1, PC_TEMPSAVE, SPR_SRR0, SPR_SRR1) FRAME_SETUP(SPR_SPRG1, PC_TEMPSAVE, EXC_PGM) b trap_common INTERRUPT(int_fpu) STANDARD_PROLOG(SPR_SPRG1, PC_TEMPSAVE, SPR_SRR0, SPR_SRR1) FRAME_SETUP(SPR_SPRG1, PC_TEMPSAVE, EXC_FPU) b trap_common /***************************************************************************** * System call ****************************************************************************/ INTERRUPT(int_syscall) STANDARD_PROLOG(SPR_SPRG1, PC_TEMPSAVE, SPR_SRR0, SPR_SRR1) FRAME_SETUP(SPR_SPRG1, PC_TEMPSAVE, EXC_SC) b trap_common /***************************************************************************** * Decrementer interrupt ****************************************************************************/ INTERRUPT(int_decrementer) STANDARD_PROLOG(SPR_SPRG1, PC_TEMPSAVE, SPR_SRR0, SPR_SRR1) FRAME_SETUP(SPR_SPRG1, PC_TEMPSAVE, EXC_DECR) - addi %r3, %r1, 8 + GET_TOCBASE(%r2) + addi %r3, %r1, CALLSIZE bl CNAME(powerpc_interrupt) + TOC_RESTORE b clear_we /***************************************************************************** * Fixed interval timer ****************************************************************************/ INTERRUPT(int_fixed_interval_timer) STANDARD_PROLOG(SPR_SPRG1, PC_TEMPSAVE, SPR_SRR0, SPR_SRR1) FRAME_SETUP(SPR_SPRG1, PC_TEMPSAVE, EXC_FIT) b trap_common /***************************************************************************** * Watchdog interrupt ****************************************************************************/ INTERRUPT(int_watchdog) STANDARD_PROLOG(SPR_SPRG1, PC_TEMPSAVE, SPR_SRR0, SPR_SRR1) FRAME_SETUP(SPR_SPRG1, PC_TEMPSAVE, EXC_WDOG) b trap_common /***************************************************************************** * Altivec Unavailable interrupt ****************************************************************************/ INTERRUPT(int_vec) STANDARD_PROLOG(SPR_SPRG1, PC_TEMPSAVE, SPR_SRR0, SPR_SRR1) FRAME_SETUP(SPR_SPRG1, PC_TEMPSAVE, EXC_VEC) b trap_common /***************************************************************************** * Watchdog interrupt ****************************************************************************/ INTERRUPT(int_vecast) STANDARD_PROLOG(SPR_SPRG1, PC_TEMPSAVE, SPR_SRR0, SPR_SRR1) FRAME_SETUP(SPR_SPRG1, PC_TEMPSAVE, EXC_VECAST_E) b trap_common #ifdef HWPMC_HOOKS /***************************************************************************** * PMC Interrupt ****************************************************************************/ INTERRUPT(int_performance_counter) STANDARD_PROLOG(SPR_SPRG3, PC_TEMPSAVE, SPR_SRR0, SPR_SRR1) FRAME_SETUP(SPR_SPRG3, PC_TEMPSAVE, EXC_PERF) - addi %r3, %r1, 8 + GET_TOCBASE(%r2) + addi %r3, %r1, CALLSIZE bl CNAME(powerpc_interrupt) + TOC_RESTORE b trapexit #endif /***************************************************************************** * Data TLB miss interrupt * * There can be nested TLB misses - while handling a TLB miss we reference * data structures that may be not covered by translations. We support up to * TLB_NESTED_MAX-1 nested misses. * * Registers use: * r31 - dear * r30 - unused * r29 - saved mas0 * r28 - saved mas1 * r27 - saved mas2 * r26 - pmap address * r25 - pte address * * r20:r23 - scratch registers ****************************************************************************/ INTERRUPT(int_data_tlb_error) TLB_PROLOG TLB_LOCK mfdear %r31 /* * Save MAS0-MAS2 registers. There might be another tlb miss during * pte lookup overwriting current contents (which was hw filled). */ mfspr %r29, SPR_MAS0 mfspr %r28, SPR_MAS1 mfspr %r27, SPR_MAS2 /* Check faulting address. */ - lis %r21, VM_MAXUSER_ADDRESS@h - ori %r21, %r21, VM_MAXUSER_ADDRESS@l - cmplw cr0, %r31, %r21 + LOAD_ADDR(%r21, VM_MAXUSER_ADDRESS) + CMPL cr0, %r31, %r21 blt search_user_pmap /* If it's kernel address, allow only supervisor mode misses. */ mfsrr1 %r21 mtcr %r21 bt 17, search_failed /* check MSR[PR] */ search_kernel_pmap: /* Load r26 with kernel_pmap address */ bl 1f +#ifdef __powerpc64__ + .llong kernel_pmap_store-. +#else .long kernel_pmap_store-. +#endif 1: mflr %r21 - lwz %r26, 0(%r21) + LOAD %r26, 0(%r21) add %r26, %r21, %r26 /* kernel_pmap_store in r26 */ /* Force kernel tid, set TID to 0 in MAS1. */ li %r21, 0 rlwimi %r28, %r21, 0, 8, 15 /* clear TID bits */ tlb_miss_handle: /* This may result in nested tlb miss. */ bl pte_lookup /* returns PTE address in R25 */ - cmpwi %r25, 0 /* pte found? */ + CMPI %r25, 0 /* pte found? */ beq search_failed /* Finish up, write TLB entry. */ bl tlb_fill_entry tlb_miss_return: TLB_UNLOCK TLB_RESTORE rfi search_user_pmap: /* Load r26 with current user space process pmap */ GET_CPUINFO(%r26) - lwz %r26, PC_CURPMAP(%r26) + LOAD %r26, PC_CURPMAP(%r26) b tlb_miss_handle search_failed: /* * Whenever we don't find a TLB mapping in PT, set a TLB0 entry with * the faulting virtual address anyway, but put a fake RPN and no * access rights. This should cause a following {D,I}SI exception. */ lis %r23, 0xffff0000@h /* revoke all permissions */ /* Load MAS registers. */ mtspr SPR_MAS0, %r29 isync mtspr SPR_MAS1, %r28 isync mtspr SPR_MAS2, %r27 isync mtspr SPR_MAS3, %r23 isync bl zero_mas7 bl zero_mas8 tlbwe msync isync b tlb_miss_return /***************************************************************************** * * Return pte address that corresponds to given pmap/va. If there is no valid * entry return 0. * * input: r26 - pmap * input: r31 - dear * output: r25 - pte address * * scratch regs used: r21 * ****************************************************************************/ pte_lookup: - cmpwi %r26, 0 + CMPI %r26, 0 beq 1f /* fail quickly if pmap is invalid */ +#ifdef __powerpc64__ + rldicl %r21, %r31, (64 - PP2D_L_L), (64 - PP2D_L_NUM) /* pp2d offset */ + rldicl %r25, %r31, (64 - PP2D_H_L), (64 - PP2D_H_NUM) + rldimi %r21, %r25, PP2D_L_NUM, (64 - (PP2D_L_NUM + PP2D_H_NUM)) + slwi %r21, %r21, PP2D_ENTRY_SHIFT /* multiply by pp2d entry size */ + addi %r25, %r26, PM_PP2D /* pmap pm_pp2d[] address */ + add %r25, %r25, %r21 /* offset within pm_pp2d[] table */ + ld %r25, 0(%r25) /* get pdir address, i.e. pmap->pm_pp2d[pp2d_idx] * */ + + cmpdi %r25, 0 + beq 1f + +#if PAGE_SIZE < 65536 + rldicl %r21, %r31, (64 - PDIR_L), (64 - PDIR_NUM) /* pdir offset */ + slwi %r21, %r21, PDIR_ENTRY_SHIFT /* multiply by pdir entry size */ + add %r25, %r25, %r21 /* offset within pdir table */ + ld %r25, 0(%r25) /* get ptbl address, i.e. pmap->pm_pp2d[pp2d_idx][pdir_idx] */ + + cmpdi %r25, 0 + beq 1f +#endif + + rldicl %r21, %r31, (64 - PTBL_L), (64 - PTBL_NUM) /* ptbl offset */ + slwi %r21, %r21, PTBL_ENTRY_SHIFT /* multiply by pte entry size */ + +#else srwi %r21, %r31, PDIR_SHIFT /* pdir offset */ slwi %r21, %r21, PDIR_ENTRY_SHIFT /* multiply by pdir entry size */ addi %r25, %r26, PM_PDIR /* pmap pm_dir[] address */ add %r25, %r25, %r21 /* offset within pm_pdir[] table */ /* * Get ptbl address, i.e. pmap->pm_pdir[pdir_idx] * This load may cause a Data TLB miss for non-kernel pmap! */ - lwz %r25, 0(%r25) - cmpwi %r25, 0 + LOAD %r25, 0(%r25) + CMPI %r25, 0 beq 2f lis %r21, PTBL_MASK@h ori %r21, %r21, PTBL_MASK@l and %r21, %r21, %r31 /* ptbl offset, multiply by ptbl entry size */ srwi %r21, %r21, (PTBL_SHIFT - PTBL_ENTRY_SHIFT) +#endif add %r25, %r25, %r21 /* address of pte entry */ /* * Get pte->flags * This load may cause a Data TLB miss for non-kernel pmap! */ lwz %r21, PTE_FLAGS(%r25) andi. %r21, %r21, PTE_VALID@l bne 2f 1: li %r25, 0 2: blr /***************************************************************************** * * Load MAS1-MAS3 registers with data, write TLB entry * * input: * r29 - mas0 * r28 - mas1 * r27 - mas2 * r25 - pte * * output: none * * scratch regs: r21-r23 * ****************************************************************************/ tlb_fill_entry: /* * Update PTE flags: we have to do it atomically, as pmap_protect() * running on other CPUs could attempt to update the flags at the same * time. */ li %r23, PTE_FLAGS 1: lwarx %r21, %r23, %r25 /* get pte->flags */ oris %r21, %r21, PTE_REFERENCED@h /* set referenced bit */ andi. %r22, %r21, (PTE_SW | PTE_UW)@l /* check if writable */ beq 2f ori %r21, %r21, PTE_MODIFIED@l /* set modified bit */ 2: stwcx. %r21, %r23, %r25 /* write it back */ bne- 1b /* Update MAS2. */ rlwimi %r27, %r21, 13, 27, 30 /* insert WIMG bits from pte */ /* Setup MAS3 value in r23. */ - lwz %r23, PTE_RPN(%r25) /* get pte->rpn */ + LOAD %r23, PTE_RPN(%r25) /* get pte->rpn */ +#ifdef __powerpc64__ + rldicr %r22, %r23, 52, 51 /* extract MAS3 portion of RPN */ + rldicl %r23, %r23, 20, 54 /* extract MAS7 portion of RPN */ + + rlwimi %r22, %r21, 30, 26, 31 /* insert protection bits from pte */ +#else rlwinm %r22, %r23, 20, 0, 11 /* extract MAS3 portion of RPN */ rlwimi %r22, %r21, 30, 26, 31 /* insert protection bits from pte */ rlwimi %r22, %r21, 20, 12, 19 /* insert lower 8 RPN bits to MAS3 */ rlwinm %r23, %r23, 20, 24, 31 /* MAS7 portion of RPN */ +#endif /* Load MAS registers. */ mtspr SPR_MAS0, %r29 isync mtspr SPR_MAS1, %r28 isync mtspr SPR_MAS2, %r27 isync mtspr SPR_MAS3, %r22 isync mtspr SPR_MAS7, %r23 isync mflr %r21 bl zero_mas8 mtlr %r21 tlbwe isync msync blr /***************************************************************************** * Instruction TLB miss interrupt * * Same notes as for the Data TLB miss ****************************************************************************/ INTERRUPT(int_inst_tlb_error) TLB_PROLOG TLB_LOCK mfsrr0 %r31 /* faulting address */ /* * Save MAS0-MAS2 registers. There might be another tlb miss during pte * lookup overwriting current contents (which was hw filled). */ mfspr %r29, SPR_MAS0 mfspr %r28, SPR_MAS1 mfspr %r27, SPR_MAS2 mfsrr1 %r21 mtcr %r21 /* check MSR[PR] */ bt 17, search_user_pmap b search_kernel_pmap .globl interrupt_vector_top interrupt_vector_top: /***************************************************************************** * Debug interrupt ****************************************************************************/ INTERRUPT(int_debug) STANDARD_CRIT_PROLOG(SPR_SPRG2, PC_BOOKE_CRITSAVE, SPR_CSRR0, SPR_CSRR1) FRAME_SETUP(SPR_SPRG2, PC_BOOKE_CRITSAVE, EXC_DEBUG) bl int_debug_int FRAME_LEAVE(SPR_CSRR0, SPR_CSRR1) rfci INTERRUPT(int_debug_ed) STANDARD_CRIT_PROLOG(SPR_SPRG2, PC_BOOKE_CRITSAVE, SPR_DSRR0, SPR_DSRR1) FRAME_SETUP(SPR_SPRG2, PC_BOOKE_CRITSAVE, EXC_DEBUG) bl int_debug_int FRAME_LEAVE(SPR_DSRR0, SPR_DSRR1) rfdi /* .long 0x4c00004e */ /* Internal helper for debug interrupt handling. */ /* Common code between e500v1/v2 and e500mc-based cores. */ int_debug_int: mflr %r14 GET_CPUINFO(%r3) - lwz %r3, (PC_BOOKE_CRITSAVE+CPUSAVE_SRR0)(%r3) + LOAD %r3, (PC_BOOKE_CRITSAVE+CPUSAVE_SRR0)(%r3) bl 0f +#ifdef __powerpc64__ + .llong interrupt_vector_base-. + .llong interrupt_vector_top-. +#else .long interrupt_vector_base-. .long interrupt_vector_top-. +#endif 0: mflr %r5 - lwz %r4,0(%r5) /* interrupt_vector_base in r4 */ + LOAD %r4,0(%r5) /* interrupt_vector_base in r4 */ add %r4,%r4,%r5 - cmplw cr0, %r3, %r4 + CMPL cr0, %r3, %r4 blt 1f - lwz %r4,4(%r5) /* interrupt_vector_top in r4 */ + LOAD %r4,4(%r5) /* interrupt_vector_top in r4 */ add %r4,%r4,%r5 addi %r4,%r4,4 - cmplw cr0, %r3, %r4 + CMPL cr0, %r3, %r4 bge 1f /* Disable single-stepping for the interrupt handlers. */ - lwz %r3, FRAME_SRR1+8(%r1); + LOAD %r3, FRAME_SRR1+CALLSIZE(%r1); rlwinm %r3, %r3, 0, 23, 21 - stw %r3, FRAME_SRR1+8(%r1); + STORE %r3, FRAME_SRR1+CALLSIZE(%r1); /* Restore srr0 and srr1 as they could have been clobbered. */ GET_CPUINFO(%r4) - lwz %r3, (PC_BOOKE_CRITSAVE+CPUSAVE_SRR0+8)(%r4); + LOAD %r3, (PC_BOOKE_CRITSAVE+BOOKE_CRITSAVE_SRR0)(%r4); mtspr SPR_SRR0, %r3 - lwz %r4, (PC_BOOKE_CRITSAVE+CPUSAVE_SRR1+8)(%r4); + LOAD %r4, (PC_BOOKE_CRITSAVE+BOOKE_CRITSAVE_SRR1)(%r4); mtspr SPR_SRR1, %r4 mtlr %r14 blr 1: - addi %r3, %r1, 8 + GET_TOCBASE(%r2) + addi %r3, %r1, CALLSIZE bl CNAME(trap) + TOC_RESTORE /* * Handle ASTs, needed for proper support of single-stepping. * We actually need to return to the process with an rfi. */ b trapexit /***************************************************************************** * Common trap code ****************************************************************************/ trap_common: /* Call C trap dispatcher */ - addi %r3, %r1, 8 + GET_TOCBASE(%r2) + addi %r3, %r1, CALLSIZE bl CNAME(trap) + TOC_RESTORE .globl CNAME(trapexit) /* exported for db_backtrace use */ CNAME(trapexit): /* disable interrupts */ wrteei 0 /* Test AST pending - makes sense for user process only */ - lwz %r5, FRAME_SRR1+8(%r1) + LOAD %r5, FRAME_SRR1+CALLSIZE(%r1) mtcr %r5 bf 17, 1f GET_CPUINFO(%r3) - lwz %r4, PC_CURTHREAD(%r3) + LOAD %r4, PC_CURTHREAD(%r3) lwz %r4, TD_FLAGS(%r4) lis %r5, (TDF_ASTPENDING | TDF_NEEDRESCHED)@h ori %r5, %r5, (TDF_ASTPENDING | TDF_NEEDRESCHED)@l and. %r4, %r4, %r5 beq 1f /* re-enable interrupts before calling ast() */ wrteei 1 - addi %r3, %r1, 8 + addi %r3, %r1, CALLSIZE bl CNAME(ast) + TOC_RESTORE .globl CNAME(asttrapexit) /* db_backtrace code sentinel #2 */ CNAME(asttrapexit): b trapexit /* test ast ret value ? */ 1: FRAME_LEAVE(SPR_SRR0, SPR_SRR1) rfi #if defined(KDB) /* * Deliberate entry to dbtrap */ - .globl CNAME(breakpoint) -CNAME(breakpoint): + /* .globl CNAME(breakpoint)*/ +ASENTRY_NOPROF(breakpoint) mtsprg1 %r1 mfmsr %r3 mtsrr1 %r3 - andi. %r3, %r3, ~(PSL_EE | PSL_ME)@l + li %r4, ~(PSL_EE | PSL_ME)@l + oris %r4, %r4, ~(PSL_EE | PSL_ME)@h + and %r3, %r3, %r4 mtmsr %r3 /* disable interrupts */ isync GET_CPUINFO(%r3) - stw %r30, (PC_DBSAVE+CPUSAVE_R30)(%r3) - stw %r31, (PC_DBSAVE+CPUSAVE_R31)(%r3) + STORE %r30, (PC_DBSAVE+CPUSAVE_R30)(%r3) + STORE %r31, (PC_DBSAVE+CPUSAVE_R31)(%r3) mflr %r31 mtsrr0 %r31 mfdear %r30 mfesr %r31 - stw %r30, (PC_DBSAVE+CPUSAVE_BOOKE_DEAR)(%r3) - stw %r31, (PC_DBSAVE+CPUSAVE_BOOKE_ESR)(%r3) + STORE %r30, (PC_DBSAVE+CPUSAVE_BOOKE_DEAR)(%r3) + STORE %r31, (PC_DBSAVE+CPUSAVE_BOOKE_ESR)(%r3) mfsrr0 %r30 mfsrr1 %r31 - stw %r30, (PC_DBSAVE+CPUSAVE_SRR0)(%r3) - stw %r31, (PC_DBSAVE+CPUSAVE_SRR1)(%r3) + STORE %r30, (PC_DBSAVE+CPUSAVE_SRR0)(%r3) + STORE %r31, (PC_DBSAVE+CPUSAVE_SRR1)(%r3) isync mfcr %r30 /* * Now the kdb trap catching code. */ dbtrap: FRAME_SETUP(SPR_SPRG1, PC_DBSAVE, EXC_DEBUG) /* Call C trap code: */ - addi %r3, %r1, 8 + GET_TOCBASE(%r2) + addi %r3, %r1, CALLSIZE bl CNAME(db_trap_glue) + TOC_RESTORE or. %r3, %r3, %r3 bne dbleave /* This wasn't for KDB, so switch to real trap: */ b trap_common dbleave: FRAME_LEAVE(SPR_SRR0, SPR_SRR1) rfi #endif /* KDB */ clear_we: - lwz %r3, (FRAME_SRR1+8)(%r1) + LOAD %r3, (FRAME_SRR1+CALLSIZE)(%r1) rlwinm %r3, %r3, 0, 14, 12 - stw %r3, (FRAME_SRR1+8)(%r1) + STORE %r3, (FRAME_SRR1+CALLSIZE)(%r1) b trapexit #ifdef SMP ENTRY(tlb_lock) GET_CPUINFO(%r5) - lwz %r5, PC_CURTHREAD(%r5) -1: lwarx %r4, 0, %r3 - cmpwi %r4, TLB_UNLOCKED + LOAD %r5, PC_CURTHREAD(%r5) +1: LOADX %r4, 0, %r3 + CMPI %r4, TLB_UNLOCKED bne 1b - stwcx. %r5, 0, %r3 + STOREX %r5, 0, %r3 bne- 1b isync msync blr ENTRY(tlb_unlock) isync msync li %r4, TLB_UNLOCKED - stw %r4, 0(%r3) + STORE %r4, 0(%r3) isync msync blr /* * TLB miss spin locks. For each CPU we have a reservation granule (32 bytes); * only a single word from this granule will actually be used as a spin lock * for mutual exclusion between TLB miss handler and pmap layer that * manipulates page table contents. */ .data .align 5 GLOBAL(tlb0_miss_locks) .space RES_GRANULE * MAXCPU #endif Index: head/sys/powerpc/conf/QORIQ64 =================================================================== --- head/sys/powerpc/conf/QORIQ64 (nonexistent) +++ head/sys/powerpc/conf/QORIQ64 (revision 315464) @@ -0,0 +1,103 @@ +# +# Custom kernel for Freescale QorIQ (P5xxx, Txxxx) based boards, like +# AmigaOne X5000 +# +# $FreeBSD$ +# + +cpu BOOKE +cpu BOOKE_E500 +ident MPC85XX + +machine powerpc powerpc64 + +makeoptions DEBUG="-Wa,-me500 -g" +makeoptions WERROR="-Werror -Wno-format -Wno-redundant-decls" +makeoptions NO_MODULES=yes + +#options EARLY_PRINTF + +options FPU_EMU + +options BOOTVERBOSE=1 +options _KPOSIX_PRIORITY_SCHEDULING +options ALT_BREAK_TO_DEBUGGER +options BREAK_TO_DEBUGGER +options BOOTP +options BOOTP_NFSROOT +#options BOOTP_NFSV3 +options CD9660 +#options COMPAT_43 +options COMPAT_FREEBSD32 #Compatible with FreeBSD/powerpc binaries +options DDB +#options DEADLKRES +options DEVICE_POLLING +#options DIAGNOSTIC +options FDT +#makeoptions FDT_DTS_FILE=mpc8555cds.dts +options FFS +options GDB +options GEOM_PART_GPT +options INET +options INET6 +options TCP_HHOOK # hhook(9) framework for TCP +options INVARIANTS +options INVARIANT_SUPPORT +options KDB +options KTRACE +options MD_ROOT +options MPC85XX +options MSDOSFS +options NFS_ROOT +options NFSCL +options NFSLOCKD +options PRINTF_BUFR_SIZE=128 # Prevent printf output being interspersed. +options PROCFS +options PSEUDOFS +options SCHED_ULE +options CAPABILITIES +options CAPABILITY_MODE +options SMP +options SYSVMSG +options SYSVSEM +options SYSVSHM +options WITNESS +options WITNESS_SKIPSPIN + +device ata +device bpf +device cfi +device crypto +device cryptodev +device da +device ds1553 +device em +device alc +device ether +device fxp +device gpio +device gpiopower +device iic +device iicbus +#device isa +device loop +device md +device miibus +device mmc +device mmcsd +device pass +device pci +device random +#device rl +device scbus +device scc +device sdhci +device sec +device tun +device uart +options USB_DEBUG # enable debug msgs +#device uhci +device ehci +device umass +device usb +device vlan Property changes on: head/sys/powerpc/conf/QORIQ64 ___________________________________________________________________ Added: svn:keywords ## -0,0 +1 ## +FreeBSD=%H \ No newline at end of property Index: head/sys/powerpc/include/asm.h =================================================================== --- head/sys/powerpc/include/asm.h (revision 315463) +++ head/sys/powerpc/include/asm.h (revision 315464) @@ -1,195 +1,206 @@ /*- * Copyright (C) 1995, 1996 Wolfgang Solfrank. * Copyright (C) 1995, 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $NetBSD: asm.h,v 1.6.18.1 2000/07/25 08:37:14 kleink Exp $ * $FreeBSD$ */ #ifndef _MACHINE_ASM_H_ #define _MACHINE_ASM_H_ #include #if defined(PIC) && !defined(__powerpc64__) #define PIC_PROLOGUE XXX #define PIC_EPILOGUE XXX #define PIC_PLT(x) x@plt #ifdef __STDC__ #define PIC_GOT(x) XXX #else /* not __STDC__ */ #define PIC_GOT(x) XXX #endif /* __STDC__ */ #else #define PIC_PROLOGUE #define PIC_EPILOGUE #define PIC_PLT(x) x #define PIC_GOT(x) x #endif #define CNAME(csym) csym #define ASMNAME(asmsym) asmsym #ifdef __powerpc64__ #define HIDENAME(asmsym) __CONCAT(_,asmsym) #else #define HIDENAME(asmsym) __CONCAT(.,asmsym) #endif #if !defined(_CALL_ELF) || _CALL_ELF == 1 #ifdef _KERNEL /* ELFv1 kernel uses global dot symbols */ #define DOT_LABEL(name) __CONCAT(.,name) #define TYPE_ENTRY(name) .size name,24; \ .type DOT_LABEL(name),@function; \ .globl DOT_LABEL(name); #define END_SIZE(name) .size DOT_LABEL(name),.-DOT_LABEL(name); #else /* !_KERNEL */ /* ELFv1 user code uses local function entry points */ #define DOT_LABEL(name) __CONCAT(.L.,name) #define TYPE_ENTRY(name) .type name,@function; #define END_SIZE(name) .size name,.-DOT_LABEL(name); #endif /* _KERNEL */ #else /* ELFv2 doesn't have any of this complication */ #define DOT_LABEL(name) name #define TYPE_ENTRY(name) .type name,@function; #define END_SIZE(name) .size name,.-DOT_LABEL(name); #endif #define _GLOBAL(name) \ .data; \ .p2align 2; \ .globl name; \ name: #ifdef __powerpc64__ #define TOC_NAME_FOR_REF(name) __CONCAT(.L,name) #define TOC_REF(name) TOC_NAME_FOR_REF(name)@toc #define TOC_ENTRY(name) \ .section ".toc","aw"; \ TOC_NAME_FOR_REF(name): \ .tc name[TC],name #endif #ifdef __powerpc64__ #if !defined(_CALL_ELF) || _CALL_ELF == 1 #define _ENTRY(name) \ .section ".text"; \ .p2align 2; \ .globl name; \ .section ".opd","aw"; \ .p2align 3; \ name: \ .quad DOT_LABEL(name),.TOC.@tocbase,0; \ .previous; \ .p2align 4; \ TYPE_ENTRY(name) \ DOT_LABEL(name): #else #define _ENTRY(name) \ .text; \ .p2align 4; \ .globl name; \ .type name,@function; \ name: \ addis %r2, %r12, (.TOC.-name)@ha; \ addi %r2, %r2, (.TOC.-name)@l; \ .localentry name, .-name; #endif #define _END(name) \ .long 0; \ .byte 0,0,0,0,0,0,0,0; \ END_SIZE(name) + +#define LOAD_ADDR(reg, var) \ + lis reg, var@highest; \ + ori reg, reg, var@higher; \ + rldicr reg, reg, 32, 31; \ + oris reg, reg, var@h; \ + ori reg, reg, var@l; #else /* !__powerpc64__ */ #define _ENTRY(name) \ .text; \ .p2align 4; \ .globl name; \ .type name,@function; \ name: #define _END(name) + +#define LOAD_ADDR(reg, var) \ + lis reg, var@ha; \ + ori reg, reg, var@l; #endif /* __powerpc64__ */ #if defined(PROF) || (defined(_KERNEL) && defined(GPROF)) # ifdef __powerpc64__ # define _PROF_PROLOGUE mflr 0; \ std 3,48(1); \ std 4,56(1); \ std 5,64(1); \ std 0,16(1); \ stdu 1,-112(1); \ bl _mcount; \ nop; \ ld 0,112+16(1); \ ld 3,112+48(1); \ ld 4,112+56(1); \ ld 5,112+64(1); \ mtlr 0; \ addi 1,1,112 # else # define _PROF_PROLOGUE mflr 0; stw 0,4(1); bl _mcount # endif #else # define _PROF_PROLOGUE #endif #define ASENTRY(y) _ENTRY(ASMNAME(y)); _PROF_PROLOGUE #define END(y) _END(CNAME(y)) #define ENTRY(y) _ENTRY(CNAME(y)); _PROF_PROLOGUE #define GLOBAL(y) _GLOBAL(CNAME(y)) #define ASENTRY_NOPROF(y) _ENTRY(ASMNAME(y)) #define ENTRY_NOPROF(y) _ENTRY(CNAME(y)) #define ASMSTR .asciz #define RCSID(x) .text; .asciz x #undef __FBSDID #if !defined(lint) && !defined(STRIP_FBSDID) #define __FBSDID(s) .ident s #else #define __FBSDID(s) /* nothing */ #endif /* not lint and not STRIP_FBSDID */ #define WEAK_REFERENCE(sym, alias) \ .weak alias; \ .equ alias,sym #ifdef __STDC__ #define WARN_REFERENCES(_sym,_msg) \ .section .gnu.warning. ## _sym ; .ascii _msg ; .text #else #define WARN_REFERENCES(_sym,_msg) \ .section .gnu.warning./**/_sym ; .ascii _msg ; .text #endif /* __STDC__ */ #endif /* !_MACHINE_ASM_H_ */ Index: head/sys/powerpc/include/pcpu.h =================================================================== --- head/sys/powerpc/include/pcpu.h (revision 315463) +++ head/sys/powerpc/include/pcpu.h (revision 315464) @@ -1,173 +1,180 @@ /*- * Copyright (c) 1999 Luoqi Chen * Copyright (c) Peter Wemm * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _MACHINE_PCPU_H_ #define _MACHINE_PCPU_H_ #include #include #include struct pmap; struct pvo_entry; #define CPUSAVE_LEN 9 #define PCPU_MD_COMMON_FIELDS \ int pc_inside_intr; \ struct pmap *pc_curpmap; /* current pmap */ \ struct thread *pc_fputhread; /* current fpu user */ \ struct thread *pc_vecthread; /* current vec user */ \ uintptr_t pc_hwref; \ uint32_t pc_pir; \ int pc_bsp; \ volatile int pc_awake; \ uint32_t pc_ipimask; \ register_t pc_tempsave[CPUSAVE_LEN]; \ register_t pc_disisave[CPUSAVE_LEN]; \ register_t pc_dbsave[CPUSAVE_LEN]; \ void *pc_restore; #define PCPU_MD_AIM32_FIELDS \ vm_offset_t pc_qmap_addr; \ struct pvo_entry *pc_qmap_pvo; \ struct mtx pc_qmap_lock; \ /* char __pad[0] */ #define PCPU_MD_AIM64_FIELDS \ struct slb pc_slb[64]; \ struct slb **pc_userslb; \ register_t pc_slbsave[18]; \ uint8_t pc_slbstack[1024]; \ vm_offset_t pc_qmap_addr; \ struct pvo_entry *pc_qmap_pvo; \ struct mtx pc_qmap_lock; \ char __pad[1121 - sizeof(struct mtx)] #ifdef __powerpc64__ #define PCPU_MD_AIM_FIELDS PCPU_MD_AIM64_FIELDS #else #define PCPU_MD_AIM_FIELDS PCPU_MD_AIM32_FIELDS #endif #define BOOKE_CRITSAVE_LEN (CPUSAVE_LEN + 2) #define BOOKE_TLB_MAXNEST 3 #define BOOKE_TLB_SAVELEN 16 #define BOOKE_TLBSAVE_LEN (BOOKE_TLB_SAVELEN * BOOKE_TLB_MAXNEST) +#ifdef __powerpc64__ +#define BOOKE_PCPU_PAD 773 +#else +#define BOOKE_PCPU_PAD 173 +#endif #define PCPU_MD_BOOKE_FIELDS \ register_t pc_booke_critsave[BOOKE_CRITSAVE_LEN]; \ register_t pc_booke_mchksave[CPUSAVE_LEN]; \ register_t pc_booke_tlbsave[BOOKE_TLBSAVE_LEN]; \ register_t pc_booke_tlb_level; \ vm_offset_t pc_qmap_addr; \ - uint32_t *pc_booke_tlb_lock; \ + uintptr_t *pc_booke_tlb_lock; \ int pc_tid_next; \ - char __pad[173] + char __pad[BOOKE_PCPU_PAD] /* Definitions for register offsets within the exception tmp save areas */ #define CPUSAVE_R27 0 /* where r27 gets saved */ #define CPUSAVE_R28 1 /* where r28 gets saved */ #define CPUSAVE_R29 2 /* where r29 gets saved */ #define CPUSAVE_R30 3 /* where r30 gets saved */ #define CPUSAVE_R31 4 /* where r31 gets saved */ #define CPUSAVE_AIM_DAR 5 /* where SPR_DAR gets saved */ #define CPUSAVE_AIM_DSISR 6 /* where SPR_DSISR gets saved */ #define CPUSAVE_BOOKE_DEAR 5 /* where SPR_DEAR gets saved */ #define CPUSAVE_BOOKE_ESR 6 /* where SPR_ESR gets saved */ #define CPUSAVE_SRR0 7 /* where SRR0 gets saved */ #define CPUSAVE_SRR1 8 /* where SRR1 gets saved */ +#define BOOKE_CRITSAVE_SRR0 9 /* where real SRR0 gets saved (critical) */ +#define BOOKE_CRITSAVE_SRR1 10 /* where real SRR0 gets saved (critical) */ /* Book-E TLBSAVE is more elaborate */ #define TLBSAVE_BOOKE_LR 0 #define TLBSAVE_BOOKE_CR 1 #define TLBSAVE_BOOKE_SRR0 2 #define TLBSAVE_BOOKE_SRR1 3 #define TLBSAVE_BOOKE_R20 4 #define TLBSAVE_BOOKE_R21 5 #define TLBSAVE_BOOKE_R22 6 #define TLBSAVE_BOOKE_R23 7 #define TLBSAVE_BOOKE_R24 8 #define TLBSAVE_BOOKE_R25 9 #define TLBSAVE_BOOKE_R26 10 #define TLBSAVE_BOOKE_R27 11 #define TLBSAVE_BOOKE_R28 12 #define TLBSAVE_BOOKE_R29 13 #define TLBSAVE_BOOKE_R30 14 #define TLBSAVE_BOOKE_R31 15 #ifdef AIM #define PCPU_MD_FIELDS \ PCPU_MD_COMMON_FIELDS \ PCPU_MD_AIM_FIELDS #endif #if defined(BOOKE) #define PCPU_MD_FIELDS \ PCPU_MD_COMMON_FIELDS \ PCPU_MD_BOOKE_FIELDS #endif /* * Catch-all for ports (e.g. lsof, used by gtop) */ #ifndef PCPU_MD_FIELDS #define PCPU_MD_FIELDS \ int pc_md_placeholder[32] #endif #ifdef _KERNEL #define pcpup (get_pcpu()) static __inline __pure2 struct thread * __curthread(void) { struct thread *td; #ifdef __powerpc64__ __asm __volatile("mr %0,13" : "=r"(td)); #else __asm __volatile("mr %0,2" : "=r"(td)); #endif return (td); } #define curthread (__curthread()) #define PCPU_GET(member) (pcpup->pc_ ## member) /* * XXX The implementation of this operation should be made atomic * with respect to preemption. */ #define PCPU_ADD(member, value) (pcpup->pc_ ## member += (value)) #define PCPU_INC(member) PCPU_ADD(member, 1) #define PCPU_PTR(member) (&pcpup->pc_ ## member) #define PCPU_SET(member,value) (pcpup->pc_ ## member = (value)) #endif /* _KERNEL */ #endif /* !_MACHINE_PCPU_H_ */ Index: head/sys/powerpc/include/pmap.h =================================================================== --- head/sys/powerpc/include/pmap.h (revision 315463) +++ head/sys/powerpc/include/pmap.h (revision 315464) @@ -1,279 +1,287 @@ /*- * Copyright (C) 2006 Semihalf, Marian Balakowicz * All rights reserved. * * Adapted for Freescale's e500 core CPUs. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ /*- * Copyright (C) 1995, 1996 Wolfgang Solfrank. * Copyright (C) 1995, 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * from: $NetBSD: pmap.h,v 1.17 2000/03/30 16:18:24 jdolecek Exp $ */ #ifndef _MACHINE_PMAP_H_ #define _MACHINE_PMAP_H_ #include #include #include #include #include #include #include #include #include struct pmap; typedef struct pmap *pmap_t; #if defined(AIM) #if !defined(NPMAPS) #define NPMAPS 32768 #endif /* !defined(NPMAPS) */ struct slbtnode; struct pvo_entry { LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */ #ifndef __powerpc64__ LIST_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */ #endif RB_ENTRY(pvo_entry) pvo_plink; /* Link to pmap entries */ struct { #ifndef __powerpc64__ /* 32-bit fields */ struct pte pte; #endif /* 64-bit fields */ uintptr_t slot; vm_paddr_t pa; vm_prot_t prot; } pvo_pte; pmap_t pvo_pmap; /* Owning pmap */ vm_offset_t pvo_vaddr; /* VA of entry */ uint64_t pvo_vpn; /* Virtual page number */ }; LIST_HEAD(pvo_head, pvo_entry); RB_HEAD(pvo_tree, pvo_entry); int pvo_vaddr_compare(struct pvo_entry *, struct pvo_entry *); RB_PROTOTYPE(pvo_tree, pvo_entry, pvo_plink, pvo_vaddr_compare); /* Used by 32-bit PMAP */ #define PVO_PTEGIDX_MASK 0x007UL /* which PTEG slot */ #define PVO_PTEGIDX_VALID 0x008UL /* slot is valid */ /* Used by 64-bit PMAP */ #define PVO_HID 0x008UL /* PVO entry in alternate hash*/ /* Used by both */ #define PVO_WIRED 0x010UL /* PVO entry is wired */ #define PVO_MANAGED 0x020UL /* PVO entry is managed */ #define PVO_BOOTSTRAP 0x080UL /* PVO entry allocated during bootstrap */ #define PVO_DEAD 0x100UL /* waiting to be deleted */ #define PVO_LARGE 0x200UL /* large page */ #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF) #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK) #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID) #define PVO_PTEGIDX_CLR(pvo) \ ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK))) #define PVO_PTEGIDX_SET(pvo, i) \ ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID)) #define PVO_VSID(pvo) ((pvo)->pvo_vpn >> 16) struct pmap { struct pmap_statistics pm_stats; struct mtx pm_mtx; #ifdef __powerpc64__ struct slbtnode *pm_slb_tree_root; struct slb **pm_slb; int pm_slb_len; #else register_t pm_sr[16]; #endif cpuset_t pm_active; struct pmap *pmap_phys; struct pvo_tree pmap_pvo; }; struct md_page { volatile int32_t mdpg_attrs; vm_memattr_t mdpg_cache_attrs; struct pvo_head mdpg_pvoh; }; #define pmap_page_get_memattr(m) ((m)->md.mdpg_cache_attrs) #define pmap_page_is_mapped(m) (!LIST_EMPTY(&(m)->md.mdpg_pvoh)) /* * Return the VSID corresponding to a given virtual address. * If no VSID is currently defined, it will allocate one, and add * it to a free slot if available. * * NB: The PMAP MUST be locked already. */ uint64_t va_to_vsid(pmap_t pm, vm_offset_t va); /* Lock-free, non-allocating lookup routines */ uint64_t kernel_va_to_slbv(vm_offset_t va); struct slb *user_va_to_slb_entry(pmap_t pm, vm_offset_t va); uint64_t allocate_user_vsid(pmap_t pm, uint64_t esid, int large); void free_vsid(pmap_t pm, uint64_t esid, int large); void slb_insert_user(pmap_t pm, struct slb *slb); void slb_insert_kernel(uint64_t slbe, uint64_t slbv); struct slbtnode *slb_alloc_tree(void); void slb_free_tree(pmap_t pm); struct slb **slb_alloc_user_cache(void); void slb_free_user_cache(struct slb **); #elif defined(BOOKE) struct pmap { struct pmap_statistics pm_stats; /* pmap statistics */ struct mtx pm_mtx; /* pmap mutex */ tlbtid_t pm_tid[MAXCPU]; /* TID to identify this pmap entries in TLB */ cpuset_t pm_active; /* active on cpus */ +#ifdef __powerpc64__ + /* Page table directory, array of pointers to page directories. */ + pte_t **pm_pp2d[PP2D_NENTRIES]; + + /* List of allocated pdir bufs (pdir kva regions). */ + TAILQ_HEAD(, ptbl_buf) pm_pdir_list; +#else /* Page table directory, array of pointers to page tables. */ pte_t *pm_pdir[PDIR_NENTRIES]; +#endif /* List of allocated ptbl bufs (ptbl kva regions). */ TAILQ_HEAD(, ptbl_buf) pm_ptbl_list; }; struct pv_entry { pmap_t pv_pmap; vm_offset_t pv_va; TAILQ_ENTRY(pv_entry) pv_link; }; typedef struct pv_entry *pv_entry_t; struct md_page { TAILQ_HEAD(, pv_entry) pv_list; int pv_tracked; }; #define pmap_page_get_memattr(m) VM_MEMATTR_DEFAULT #define pmap_page_is_mapped(m) (!TAILQ_EMPTY(&(m)->md.pv_list)) #else /* * Common pmap members between AIM and BOOKE. * libkvm needs pm_stats at the same location between both, as it doesn't define * AIM nor BOOKE, and is expected to work across all. */ struct pmap { struct pmap_statistics pm_stats; /* pmap statistics */ struct mtx pm_mtx; /* pmap mutex */ }; #endif /* AIM */ extern struct pmap kernel_pmap_store; #define kernel_pmap (&kernel_pmap_store) #ifdef _KERNEL #define PMAP_LOCK(pmap) mtx_lock(&(pmap)->pm_mtx) #define PMAP_LOCK_ASSERT(pmap, type) \ mtx_assert(&(pmap)->pm_mtx, (type)) #define PMAP_LOCK_DESTROY(pmap) mtx_destroy(&(pmap)->pm_mtx) #define PMAP_LOCK_INIT(pmap) mtx_init(&(pmap)->pm_mtx, \ (pmap == kernel_pmap) ? "kernelpmap" : \ "pmap", NULL, MTX_DEF) #define PMAP_LOCKED(pmap) mtx_owned(&(pmap)->pm_mtx) #define PMAP_MTX(pmap) (&(pmap)->pm_mtx) #define PMAP_TRYLOCK(pmap) mtx_trylock(&(pmap)->pm_mtx) #define PMAP_UNLOCK(pmap) mtx_unlock(&(pmap)->pm_mtx) #define pmap_page_is_write_mapped(m) (((m)->aflags & PGA_WRITEABLE) != 0) void pmap_bootstrap(vm_offset_t, vm_offset_t); void pmap_kenter(vm_offset_t va, vm_paddr_t pa); void pmap_kenter_attr(vm_offset_t va, vm_offset_t pa, vm_memattr_t); void pmap_kremove(vm_offset_t); void *pmap_mapdev(vm_paddr_t, vm_size_t); void *pmap_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t); void pmap_unmapdev(vm_offset_t, vm_size_t); void pmap_page_set_memattr(vm_page_t, vm_memattr_t); int pmap_change_attr(vm_offset_t, vm_size_t, vm_memattr_t); void pmap_deactivate(struct thread *); vm_paddr_t pmap_kextract(vm_offset_t); int pmap_dev_direct_mapped(vm_paddr_t, vm_size_t); boolean_t pmap_mmu_install(char *name, int prio); #define vtophys(va) pmap_kextract((vm_offset_t)(va)) #define PHYS_AVAIL_SZ 256 /* Allows up to 16GB Ram on pSeries with * logical memory block size of 64MB. * For more Ram increase the lmb or this value. */ extern vm_paddr_t phys_avail[PHYS_AVAIL_SZ]; extern vm_offset_t virtual_avail; extern vm_offset_t virtual_end; extern vm_offset_t msgbuf_phys; extern int pmap_bootstrapped; vm_offset_t pmap_early_io_map(vm_paddr_t pa, vm_size_t size); void pmap_early_io_unmap(vm_offset_t va, vm_size_t size); void pmap_track_page(pmap_t pmap, vm_offset_t va); #endif #endif /* !_MACHINE_PMAP_H_ */ Index: head/sys/powerpc/include/psl.h =================================================================== --- head/sys/powerpc/include/psl.h (revision 315463) +++ head/sys/powerpc/include/psl.h (revision 315464) @@ -1,106 +1,114 @@ /*- * Copyright (C) 1995, 1996 Wolfgang Solfrank. * Copyright (C) 1995, 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $NetBSD: psl.h,v 1.5 2000/11/19 19:52:37 matt Exp $ * $FreeBSD$ */ #ifndef _MACHINE_PSL_H_ #define _MACHINE_PSL_H_ /* * Machine State Register (MSR) - All cores */ #define PSL_VEC 0x02000000UL /* AltiVec/SPE vector unit available */ #define PSL_VSX 0x00800000UL /* Vector-Scalar unit available */ #define PSL_EE 0x00008000UL /* external interrupt enable */ #define PSL_PR 0x00004000UL /* privilege mode (1 == user) */ #define PSL_FP 0x00002000UL /* floating point enable */ #define PSL_ME 0x00001000UL /* machine check enable */ #define PSL_FE0 0x00000800UL /* floating point interrupt mode 0 */ #define PSL_BE 0x00000200UL /* branch trace enable */ #define PSL_FE1 0x00000100UL /* floating point interrupt mode 1 */ #define PSL_PMM 0x00000004UL /* performance monitor mark */ /* Machine State Register - Book-E cores */ +#ifdef __powerpc64__ +#define PSL_CM 0x80000000UL /* Computation Mode (64-bit) */ +#endif + #define PSL_UCLE 0x04000000UL /* User mode cache lock enable */ #define PSL_WE 0x00040000UL /* Wait state enable */ #define PSL_CE 0x00020000UL /* Critical interrupt enable */ #define PSL_UBLE 0x00000400UL /* BTB lock enable - e500 only */ #define PSL_DWE 0x00000400UL /* Debug Wait Enable - 440 only*/ #define PSL_DE 0x00000200UL /* Debug interrupt enable */ #define PSL_IS 0x00000020UL /* Instruction address space */ #define PSL_DS 0x00000010UL /* Data address space */ /* Machine State Register (MSR) - AIM cores */ #ifdef __powerpc64__ #define PSL_SF 0x8000000000000000UL /* 64-bit addressing */ #define PSL_HV 0x1000000000000000UL /* hyper-privileged mode */ #endif #define PSL_POW 0x00040000UL /* power management */ #define PSL_ILE 0x00010000UL /* interrupt endian mode (1 == le) */ #define PSL_SE 0x00000400UL /* single-step trace enable */ #define PSL_IP 0x00000040UL /* interrupt prefix - 601 only */ #define PSL_IR 0x00000020UL /* instruction address relocation */ #define PSL_DR 0x00000010UL /* data address relocation */ #define PSL_RI 0x00000002UL /* recoverable interrupt */ #define PSL_LE 0x00000001UL /* endian mode (1 == le) */ /* * Floating-point exception modes: */ #define PSL_FE_DIS 0 /* none */ #define PSL_FE_NONREC PSL_FE1 /* imprecise non-recoverable */ #define PSL_FE_REC PSL_FE0 /* imprecise recoverable */ #define PSL_FE_PREC (PSL_FE0 | PSL_FE1) /* precise */ #define PSL_FE_DFLT PSL_FE_DIS /* default == none */ #if defined(BOOKE_E500) /* Initial kernel MSR, use IS=1 ad DS=1. */ #define PSL_KERNSET_INIT (PSL_IS | PSL_DS) +#ifdef __powerpc64__ +#define PSL_KERNSET (PSL_CM | PSL_CE | PSL_ME | PSL_EE) +#else #define PSL_KERNSET (PSL_CE | PSL_ME | PSL_EE) +#endif #define PSL_SRR1_MASK 0x00000000UL /* No mask on Book-E */ #elif defined(BOOKE_PPC4XX) #define PSL_KERNSET (PSL_CE | PSL_ME | PSL_EE | PSL_FP) #define PSL_SRR1_MASK 0x00000000UL /* No mask on Book-E */ #elif defined(AIM) #ifdef __powerpc64__ #define PSL_KERNSET (PSL_SF | PSL_EE | PSL_ME | PSL_IR | PSL_DR | PSL_RI) #else #define PSL_KERNSET (PSL_EE | PSL_ME | PSL_IR | PSL_DR | PSL_RI) #endif #define PSL_SRR1_MASK 0x783f0000UL /* Bits 1-4, 10-15 (ppc32), 33-36, 42-47 (ppc64) */ #endif #define PSL_USERSET (PSL_KERNSET | PSL_PR) #define PSL_USERSTATIC (~(PSL_VEC | PSL_FP | PSL_FE0 | PSL_FE1) & ~PSL_SRR1_MASK) #endif /* _MACHINE_PSL_H_ */ Index: head/sys/powerpc/include/pte.h =================================================================== --- head/sys/powerpc/include/pte.h (revision 315463) +++ head/sys/powerpc/include/pte.h (revision 315464) @@ -1,283 +1,385 @@ /*- * Copyright (C) 1995, 1996 Wolfgang Solfrank. * Copyright (C) 1995, 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $NetBSD: pte.h,v 1.2 1998/08/31 14:43:40 tsubai Exp $ * $FreeBSD$ */ #ifndef _MACHINE_PTE_H_ #define _MACHINE_PTE_H_ #if defined(AIM) /* * Page Table Entries */ #ifndef LOCORE /* 32-bit PTE */ struct pte { u_int32_t pte_hi; u_int32_t pte_lo; }; struct pteg { struct pte pt[8]; }; /* 64-bit (long) PTE */ struct lpte { u_int64_t pte_hi; u_int64_t pte_lo; }; struct lpteg { struct lpte pt[8]; }; #endif /* LOCORE */ /* 32-bit PTE definitions */ /* High word: */ #define PTE_VALID 0x80000000 #define PTE_VSID_SHFT 7 #define PTE_HID 0x00000040 #define PTE_API 0x0000003f /* Low word: */ #define PTE_RPGN 0xfffff000 #define PTE_REF 0x00000100 #define PTE_CHG 0x00000080 #define PTE_WIMG 0x00000078 #define PTE_W 0x00000040 #define PTE_I 0x00000020 #define PTE_M 0x00000010 #define PTE_G 0x00000008 #define PTE_PP 0x00000003 #define PTE_SO 0x00000000 /* Super. Only (U: XX, S: RW) */ #define PTE_SW 0x00000001 /* Super. Write-Only (U: RO, S: RW) */ #define PTE_BW 0x00000002 /* Supervisor (U: RW, S: RW) */ #define PTE_BR 0x00000003 /* Both Read Only (U: RO, S: RO) */ #define PTE_RW PTE_BW #define PTE_RO PTE_BR #define PTE_EXEC 0x00000200 /* pseudo bit in attrs; page is exec */ /* 64-bit PTE definitions */ /* High quadword: */ #define LPTE_VSID_SHIFT 12 #define LPTE_AVPN_MASK 0xFFFFFFFFFFFFFF80ULL #define LPTE_API 0x0000000000000F80ULL #define LPTE_SWBITS 0x0000000000000078ULL #define LPTE_WIRED 0x0000000000000010ULL #define LPTE_LOCKED 0x0000000000000008ULL #define LPTE_BIG 0x0000000000000004ULL /* 4kb/16Mb page */ #define LPTE_HID 0x0000000000000002ULL #define LPTE_VALID 0x0000000000000001ULL /* Low quadword: */ #define EXTEND_PTE(x) UINT64_C(x) /* make constants 64-bit */ #define LPTE_RPGN 0xfffffffffffff000ULL #define LPTE_REF EXTEND_PTE( PTE_REF ) #define LPTE_CHG EXTEND_PTE( PTE_CHG ) #define LPTE_WIMG EXTEND_PTE( PTE_WIMG ) #define LPTE_W EXTEND_PTE( PTE_W ) #define LPTE_I EXTEND_PTE( PTE_I ) #define LPTE_M EXTEND_PTE( PTE_M ) #define LPTE_G EXTEND_PTE( PTE_G ) #define LPTE_NOEXEC 0x0000000000000004ULL #define LPTE_PP EXTEND_PTE( PTE_PP ) #define LPTE_SO EXTEND_PTE( PTE_SO ) /* Super. Only */ #define LPTE_SW EXTEND_PTE( PTE_SW ) /* Super. Write-Only */ #define LPTE_BW EXTEND_PTE( PTE_BW ) /* Supervisor */ #define LPTE_BR EXTEND_PTE( PTE_BR ) /* Both Read Only */ #define LPTE_RW LPTE_BW #define LPTE_RO LPTE_BR #ifndef LOCORE typedef struct pte pte_t; typedef struct lpte lpte_t; #endif /* LOCORE */ /* * Extract bits from address */ #define ADDR_SR_SHFT 28 #define ADDR_PIDX 0x0ffff000UL #define ADDR_PIDX_SHFT 12 #define ADDR_API_SHFT 22 #define ADDR_API_SHFT64 16 #define ADDR_POFF 0x00000fffUL /* * Bits in DSISR: */ #define DSISR_DIRECT 0x80000000 #define DSISR_NOTFOUND 0x40000000 #define DSISR_PROTECT 0x08000000 #define DSISR_INVRX 0x04000000 #define DSISR_STORE 0x02000000 #define DSISR_DABR 0x00400000 #define DSISR_SEGMENT 0x00200000 #define DSISR_EAR 0x00100000 /* * Bits in SRR1 on ISI: */ #define ISSRR1_NOTFOUND 0x40000000 #define ISSRR1_DIRECT 0x10000000 #define ISSRR1_PROTECT 0x08000000 #define ISSRR1_SEGMENT 0x00200000 #else /* BOOKE */ #include +#ifdef __powerpc64__ + +#include + /* + * The virtual address is: + * + * 4K page size + * +-----+-----+-----+-------+-------------+-------------+----------------+ + * | - |p2d#h| - | p2d#l | dir# | pte# | off in 4K page | + * +-----+-----+-----+-------+-------------+-------------+----------------+ + * 63 62 61 60 59 40 39 30 29 ^ 21 20 ^ 12 11 0 + * | | + * index in 1 page of pointers + * + * 1st level - pointers to page table directory (pp2d) + * + * pp2d consists of PP2D_NENTRIES entries, each being a pointer to + * second level entity, i.e. the page table directory (pdir). + */ +#define HARDWARE_WALKER +#define PP2D_H_H 61 +#define PP2D_H_L 60 +#define PP2D_L_H 39 +#define PP2D_L_L 30 /* >30 would work with no page table pool */ +#ifndef LOCORE +#define PP2D_SIZE (1UL << PP2D_L_L) /* va range mapped by pp2d */ +#else +#define PP2D_SIZE (1 << PP2D_L_L) /* va range mapped by pp2d */ +#endif +#define PP2D_L_SHIFT PP2D_L_L +#define PP2D_L_NUM (PP2D_L_H-PP2D_L_L+1) +#define PP2D_L_MASK ((1<> PP2D_H_SHIFT) & PP2D_H_MASK) | ((va >> PP2D_L_SHIFT) & PP2D_L_MASK)) +#define PP2D_NENTRIES (1<<(PP2D_L_NUM+PP2D_H_NUM)) +#define PP2D_ENTRY_SHIFT 3 /* log2 (sizeof(struct pte_entry **)) */ + +/* + * 2nd level - page table directory (pdir) + * + * pdir consists of PDIR_NENTRIES entries, each being a pointer to + * second level entity, i.e. the actual page table (ptbl). + */ +#define PDIR_H (PP2D_L_L-1) +#define PDIR_L 21 +#define PDIR_NUM (PDIR_H-PDIR_L+1) +#define PDIR_SIZE (1 << PDIR_L) /* va range mapped by pdir */ +#define PDIR_MASK ((1<> PDIR_SHIFT) & PDIR_MASK) +#define PDIR_ENTRY_SHIFT 3 /* log2 (sizeof(struct pte_entry *)) */ +#define PDIR_PAGES ((PDIR_NENTRIES * (1<> PTBL_SHIFT) & PTBL_MASK) +#define PTBL_ENTRY_SHIFT 3 /* log2 (sizeof (struct pte_entry)) */ +#define PTBL_PAGES ((PTBL_NENTRIES * (1<> PDIR_SHIFT) #define PDIR_ENTRY_SHIFT 2 /* entry size is 2^2 = 4 bytes */ /* * 2nd level - page table (ptbl) * * Page table covers 1024 page table entries. Page * table entry (pte) is 32 bit wide and defines mapping * for a single page. */ #define PTBL_SHIFT PAGE_SHIFT #define PTBL_SIZE PAGE_SIZE /* va range mapped by ptbl entry */ #define PTBL_MASK ((PDIR_SIZE - 1) & ~((1 << PAGE_SHIFT) - 1)) #define PTBL_NENTRIES 1024 /* number of pages mapped by ptbl */ /* Returns ptbl entry number for given va */ #define PTBL_IDX(va) (((va) & PTBL_MASK) >> PTBL_SHIFT) /* Size of ptbl in pages, 1024 entries, each sizeof(struct pte_entry). */ #define PTBL_PAGES 2 #define PTBL_ENTRY_SHIFT 3 /* entry size is 2^3 = 8 bytes */ +#endif + /* * Flags for pte_remove() routine. */ #define PTBL_HOLD 0x00000001 /* do not unhold ptbl pages */ #define PTBL_UNHOLD 0x00000002 /* unhold and attempt to free ptbl pages */ #define PTBL_HOLD_FLAG(pmap) (((pmap) == kernel_pmap) ? PTBL_HOLD : PTBL_UNHOLD) /* * Page Table Entry definitions and macros. * * RPN need only be 32-bit because Book-E has 36-bit addresses, and the smallest * page size is 4k (12-bit mask), so RPN can really fit into 24 bits. */ #ifndef LOCORE typedef uint64_t pte_t; #endif /* RPN mask, TLB0 4K pages */ #define PTE_PA_MASK PAGE_MASK #if defined(BOOKE_E500) /* PTE bits assigned to MAS2, MAS3 flags */ #define PTE_MAS2_SHIFT 19 #define PTE_W (MAS2_W << PTE_MAS2_SHIFT) #define PTE_I (MAS2_I << PTE_MAS2_SHIFT) #define PTE_M (MAS2_M << PTE_MAS2_SHIFT) #define PTE_G (MAS2_G << PTE_MAS2_SHIFT) #define PTE_MAS2_MASK (MAS2_G | MAS2_M | MAS2_I | MAS2_W) #define PTE_MAS3_SHIFT 2 #define PTE_UX (MAS3_UX << PTE_MAS3_SHIFT) #define PTE_SX (MAS3_SX << PTE_MAS3_SHIFT) #define PTE_UW (MAS3_UW << PTE_MAS3_SHIFT) #define PTE_SW (MAS3_SW << PTE_MAS3_SHIFT) #define PTE_UR (MAS3_UR << PTE_MAS3_SHIFT) #define PTE_SR (MAS3_SR << PTE_MAS3_SHIFT) #define PTE_MAS3_MASK ((MAS3_UX | MAS3_SX | MAS3_UW \ | MAS3_SW | MAS3_UR | MAS3_SR) << PTE_MAS3_SHIFT) #define PTE_PS_SHIFT 8 #define PTE_PS_4KB (2 << PTE_PS_SHIFT) #elif defined(BOOKE_PPC4XX) #define PTE_WL1 TLB_WL1 #define PTE_IL2I TLB_IL2I #define PTE_IL2D TLB_IL2D #define PTE_W TLB_W #define PTE_I TLB_I #define PTE_M TLB_M #define PTE_G TLB_G #define PTE_UX TLB_UX #define PTE_SX TLB_SX #define PTE_UW TLB_UW #define PTE_SW TLB_SW #define PTE_UR TLB_UR #define PTE_SR TLB_SR #endif /* Other PTE flags */ #define PTE_VALID 0x00000001 /* Valid */ #define PTE_MODIFIED 0x00001000 /* Modified */ #define PTE_WIRED 0x00002000 /* Wired */ #define PTE_MANAGED 0x00000002 /* Managed */ #define PTE_REFERENCED 0x00040000 /* Referenced */ + +/* + * Page Table Entry definitions and macros. + * + * We use the hardware page table entry format: + * + * 63 24 23 19 18 17 14 13 12 11 8 7 6 5 4 3 2 1 0 + * --------------------------------------------------------------- + * ARPN(12:51) WIMGE R U0:U3 SW0 C PSIZE UX SX UW SW UR SR SW1 V + * --------------------------------------------------------------- + */ + +/* PTE fields. */ +#define PTE_TSIZE_SHIFT (63-54) +#define PTE_TSIZE_MASK 0x7 +#define PTE_TSIZE_SHIFT_DIRECT (63-55) +#define PTE_TSIZE_MASK_DIRECT 0xf +#define PTE_PS_DIRECT(ps) (ps<> PTE_TSIZE_SHIFT) & PTE_TSIZE_MASK) +#define PTE_TSIZE_DIRECT(pte) (int)((*pte >> PTE_TSIZE_SHIFT_DIRECT) & PTE_TSIZE_MASK_DIRECT) /* Macro argument must of pte_t type. */ #define PTE_ARPN_SHIFT 12 #define PTE_FLAGS_MASK 0x00ffffff #define PTE_RPN_FROM_PA(pa) (((pa) & ~PAGE_MASK) << PTE_ARPN_SHIFT) #define PTE_PA(pte) ((vm_paddr_t)(*pte >> PTE_ARPN_SHIFT) & ~PAGE_MASK) #define PTE_ISVALID(pte) ((*pte) & PTE_VALID) #define PTE_ISWIRED(pte) ((*pte) & PTE_WIRED) #define PTE_ISMANAGED(pte) ((*pte) & PTE_MANAGED) #define PTE_ISMODIFIED(pte) ((*pte) & PTE_MODIFIED) #define PTE_ISREFERENCED(pte) ((*pte) & PTE_REFERENCED) #endif /* BOOKE */ #endif /* _MACHINE_PTE_H_ */ Index: head/sys/powerpc/include/spr.h =================================================================== --- head/sys/powerpc/include/spr.h (revision 315463) +++ head/sys/powerpc/include/spr.h (revision 315464) @@ -1,801 +1,814 @@ /*- * Copyright (c) 2001 The NetBSD Foundation, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $NetBSD: spr.h,v 1.25 2002/08/14 15:38:40 matt Exp $ * $FreeBSD$ */ #ifndef _POWERPC_SPR_H_ #define _POWERPC_SPR_H_ #ifndef _LOCORE #define mtspr(reg, val) \ __asm __volatile("mtspr %0,%1" : : "K"(reg), "r"(val)) #define mfspr(reg) \ ( { register_t val; \ __asm __volatile("mfspr %0,%1" : "=r"(val) : "K"(reg)); \ val; } ) #ifndef __powerpc64__ /* The following routines allow manipulation of the full 64-bit width * of SPRs on 64 bit CPUs in bridge mode */ #define mtspr64(reg,valhi,vallo,scratch) \ __asm __volatile(" \ mfmsr %0; \ insrdi %0,%5,1,0; \ mtmsrd %0; \ isync; \ \ sld %1,%1,%4; \ or %1,%1,%2; \ mtspr %3,%1; \ srd %1,%1,%4; \ \ clrldi %0,%0,1; \ mtmsrd %0; \ isync;" \ : "=r"(scratch), "=r"(valhi) : "r"(vallo), "K"(reg), "r"(32), "r"(1)) #define mfspr64upper(reg,scratch) \ ( { register_t val; \ __asm __volatile(" \ mfmsr %0; \ insrdi %0,%4,1,0; \ mtmsrd %0; \ isync; \ \ mfspr %1,%2; \ srd %1,%1,%3; \ \ clrldi %0,%0,1; \ mtmsrd %0; \ isync;" \ : "=r"(scratch), "=r"(val) : "K"(reg), "r"(32), "r"(1)); \ val; } ) #endif #endif /* _LOCORE */ /* * Special Purpose Register declarations. * * The first column in the comments indicates which PowerPC * architectures the SPR is valid on - 4 for 4xx series, * 6 for 6xx/7xx series and 8 for 8xx and 8xxx series. */ #define SPR_MQ 0x000 /* .6. 601 MQ register */ #define SPR_XER 0x001 /* 468 Fixed Point Exception Register */ #define SPR_RTCU_R 0x004 /* .6. 601 RTC Upper - Read */ #define SPR_RTCL_R 0x005 /* .6. 601 RTC Lower - Read */ #define SPR_LR 0x008 /* 468 Link Register */ #define SPR_CTR 0x009 /* 468 Count Register */ #define SPR_DSISR 0x012 /* .68 DSI exception source */ #define DSISR_DIRECT 0x80000000 /* Direct-store error exception */ #define DSISR_NOTFOUND 0x40000000 /* Translation not found */ #define DSISR_PROTECT 0x08000000 /* Memory access not permitted */ #define DSISR_INVRX 0x04000000 /* Reserve-indexed insn direct-store access */ #define DSISR_STORE 0x02000000 /* Store operation */ #define DSISR_DABR 0x00400000 /* DABR match */ #define DSISR_SEGMENT 0x00200000 /* XXX; not in 6xx PEM */ #define DSISR_EAR 0x00100000 /* eciwx/ecowx && EAR[E] == 0 */ #define SPR_DAR 0x013 /* .68 Data Address Register */ #define SPR_RTCU_W 0x014 /* .6. 601 RTC Upper - Write */ #define SPR_RTCL_W 0x015 /* .6. 601 RTC Lower - Write */ #define SPR_DEC 0x016 /* .68 DECrementer register */ #define SPR_SDR1 0x019 /* .68 Page table base address register */ #define SPR_SRR0 0x01a /* 468 Save/Restore Register 0 */ #define SPR_SRR1 0x01b /* 468 Save/Restore Register 1 */ #define SRR1_ISI_PFAULT 0x40000000 /* ISI page not found */ #define SRR1_ISI_NOEXECUTE 0x10000000 /* Memory marked no-execute */ #define SRR1_ISI_PP 0x08000000 /* PP bits forbid access */ #define SPR_DECAR 0x036 /* ..8 Decrementer auto reload */ #define SPR_EIE 0x050 /* ..8 Exception Interrupt ??? */ #define SPR_EID 0x051 /* ..8 Exception Interrupt ??? */ #define SPR_NRI 0x052 /* ..8 Exception Interrupt ??? */ #define SPR_USPRG0 0x100 /* 4.. User SPR General 0 */ #define SPR_VRSAVE 0x100 /* .6. AltiVec VRSAVE */ #define SPR_SPRG0 0x110 /* 468 SPR General 0 */ #define SPR_SPRG1 0x111 /* 468 SPR General 1 */ #define SPR_SPRG2 0x112 /* 468 SPR General 2 */ #define SPR_SPRG3 0x113 /* 468 SPR General 3 */ #define SPR_SPRG4 0x114 /* 4.. SPR General 4 */ #define SPR_SPRG5 0x115 /* 4.. SPR General 5 */ #define SPR_SPRG6 0x116 /* 4.. SPR General 6 */ #define SPR_SPRG7 0x117 /* 4.. SPR General 7 */ #define SPR_SCOMC 0x114 /* ... SCOM Address Register (970) */ #define SPR_SCOMD 0x115 /* ... SCOM Data Register (970) */ #define SPR_ASR 0x118 /* ... Address Space Register (PPC64) */ #define SPR_EAR 0x11a /* .68 External Access Register */ #define SPR_PVR 0x11f /* 468 Processor Version Register */ #define MPC601 0x0001 #define MPC603 0x0003 #define MPC604 0x0004 #define MPC602 0x0005 #define MPC603e 0x0006 #define MPC603ev 0x0007 #define MPC750 0x0008 #define MPC750CL 0x7000 /* Nintendo Wii's Broadway */ #define MPC604ev 0x0009 #define MPC7400 0x000c #define MPC620 0x0014 #define IBM403 0x0020 #define IBM401A1 0x0021 #define IBM401B2 0x0022 #define IBM401C2 0x0023 #define IBM401D2 0x0024 #define IBM401E2 0x0025 #define IBM401F2 0x0026 #define IBM401G2 0x0027 #define IBMRS64II 0x0033 #define IBMRS64III 0x0034 #define IBMPOWER4 0x0035 #define IBMRS64III_2 0x0036 #define IBMRS64IV 0x0037 #define IBMPOWER4PLUS 0x0038 #define IBM970 0x0039 #define IBMPOWER5 0x003a #define IBMPOWER5PLUS 0x003b #define IBM970FX 0x003c #define IBMPOWER6 0x003e #define IBMPOWER7 0x003f #define IBMPOWER3 0x0040 #define IBMPOWER3PLUS 0x0041 #define IBM970MP 0x0044 #define IBM970GX 0x0045 #define IBMPOWER7PLUS 0x004a #define IBMPOWER8E 0x004b #define IBMPOWER8 0x004d #define MPC860 0x0050 #define IBMCELLBE 0x0070 #define MPC8240 0x0081 #define PA6T 0x0090 #define IBM405GP 0x4011 #define IBM405L 0x4161 #define IBM750FX 0x7000 #define MPC745X_P(v) ((v & 0xFFF8) == 0x8000) #define MPC7450 0x8000 #define MPC7455 0x8001 #define MPC7457 0x8002 #define MPC7447A 0x8003 #define MPC7448 0x8004 #define MPC7410 0x800c #define MPC8245 0x8081 #define FSL_E500v1 0x8020 #define FSL_E500v2 0x8021 #define FSL_E500mc 0x8023 #define FSL_E5500 0x8024 #define FSL_E6500 0x8040 +#define SPR_EPCR 0x133 +#define EPCR_EXTGS 0x80000000 +#define EPCR_DTLBGS 0x40000000 +#define EPCR_ITLBGS 0x20000000 +#define EPCR_DSIGS 0x10000000 +#define EPCR_ISIGS 0x08000000 +#define EPCR_DUVGS 0x04000000 +#define EPCR_ICM 0x02000000 +#define EPCR_GICMGS 0x01000000 +#define EPCR_DGTMI 0x00800000 +#define EPCR_DMIUH 0x00400000 +#define EPCR_PMGS 0x00200000 #define SPR_SPEFSCR 0x200 /* ..8 Signal Processing Engine FSCR. */ #define SPR_IBAT0U 0x210 /* .68 Instruction BAT Reg 0 Upper */ #define SPR_IBAT0U 0x210 /* .6. Instruction BAT Reg 0 Upper */ #define SPR_IBAT0L 0x211 /* .6. Instruction BAT Reg 0 Lower */ #define SPR_IBAT1U 0x212 /* .6. Instruction BAT Reg 1 Upper */ #define SPR_IBAT1L 0x213 /* .6. Instruction BAT Reg 1 Lower */ #define SPR_IBAT2U 0x214 /* .6. Instruction BAT Reg 2 Upper */ #define SPR_IBAT2L 0x215 /* .6. Instruction BAT Reg 2 Lower */ #define SPR_IBAT3U 0x216 /* .6. Instruction BAT Reg 3 Upper */ #define SPR_IBAT3L 0x217 /* .6. Instruction BAT Reg 3 Lower */ #define SPR_DBAT0U 0x218 /* .6. Data BAT Reg 0 Upper */ #define SPR_DBAT0L 0x219 /* .6. Data BAT Reg 0 Lower */ #define SPR_DBAT1U 0x21a /* .6. Data BAT Reg 1 Upper */ #define SPR_DBAT1L 0x21b /* .6. Data BAT Reg 1 Lower */ #define SPR_DBAT2U 0x21c /* .6. Data BAT Reg 2 Upper */ #define SPR_DBAT2L 0x21d /* .6. Data BAT Reg 2 Lower */ #define SPR_DBAT3U 0x21e /* .6. Data BAT Reg 3 Upper */ #define SPR_DBAT3L 0x21f /* .6. Data BAT Reg 3 Lower */ #define SPR_IC_CST 0x230 /* ..8 Instruction Cache CSR */ #define IC_CST_IEN 0x80000000 /* I cache is ENabled (RO) */ #define IC_CST_CMD_INVALL 0x0c000000 /* I cache invalidate all */ #define IC_CST_CMD_UNLOCKALL 0x0a000000 /* I cache unlock all */ #define IC_CST_CMD_UNLOCK 0x08000000 /* I cache unlock block */ #define IC_CST_CMD_LOADLOCK 0x06000000 /* I cache load & lock block */ #define IC_CST_CMD_DISABLE 0x04000000 /* I cache disable */ #define IC_CST_CMD_ENABLE 0x02000000 /* I cache enable */ #define IC_CST_CCER1 0x00200000 /* I cache error type 1 (RO) */ #define IC_CST_CCER2 0x00100000 /* I cache error type 2 (RO) */ #define IC_CST_CCER3 0x00080000 /* I cache error type 3 (RO) */ #define SPR_IBAT4U 0x230 /* .6. Instruction BAT Reg 4 Upper */ #define SPR_IC_ADR 0x231 /* ..8 Instruction Cache Address */ #define SPR_IBAT4L 0x231 /* .6. Instruction BAT Reg 4 Lower */ #define SPR_IC_DAT 0x232 /* ..8 Instruction Cache Data */ #define SPR_IBAT5U 0x232 /* .6. Instruction BAT Reg 5 Upper */ #define SPR_IBAT5L 0x233 /* .6. Instruction BAT Reg 5 Lower */ #define SPR_IBAT6U 0x234 /* .6. Instruction BAT Reg 6 Upper */ #define SPR_IBAT6L 0x235 /* .6. Instruction BAT Reg 6 Lower */ #define SPR_IBAT7U 0x236 /* .6. Instruction BAT Reg 7 Upper */ #define SPR_IBAT7L 0x237 /* .6. Instruction BAT Reg 7 Lower */ #define SPR_DC_CST 0x230 /* ..8 Data Cache CSR */ #define DC_CST_DEN 0x80000000 /* D cache ENabled (RO) */ #define DC_CST_DFWT 0x40000000 /* D cache Force Write-Thru (RO) */ #define DC_CST_LES 0x20000000 /* D cache Little Endian Swap (RO) */ #define DC_CST_CMD_FLUSH 0x0e000000 /* D cache invalidate all */ #define DC_CST_CMD_INVALL 0x0c000000 /* D cache invalidate all */ #define DC_CST_CMD_UNLOCKALL 0x0a000000 /* D cache unlock all */ #define DC_CST_CMD_UNLOCK 0x08000000 /* D cache unlock block */ #define DC_CST_CMD_CLRLESWAP 0x07000000 /* D cache clr little-endian swap */ #define DC_CST_CMD_LOADLOCK 0x06000000 /* D cache load & lock block */ #define DC_CST_CMD_SETLESWAP 0x05000000 /* D cache set little-endian swap */ #define DC_CST_CMD_DISABLE 0x04000000 /* D cache disable */ #define DC_CST_CMD_CLRFWT 0x03000000 /* D cache clear forced write-thru */ #define DC_CST_CMD_ENABLE 0x02000000 /* D cache enable */ #define DC_CST_CMD_SETFWT 0x01000000 /* D cache set forced write-thru */ #define DC_CST_CCER1 0x00200000 /* D cache error type 1 (RO) */ #define DC_CST_CCER2 0x00100000 /* D cache error type 2 (RO) */ #define DC_CST_CCER3 0x00080000 /* D cache error type 3 (RO) */ #define SPR_DBAT4U 0x238 /* .6. Data BAT Reg 4 Upper */ #define SPR_DC_ADR 0x231 /* ..8 Data Cache Address */ #define SPR_DBAT4L 0x239 /* .6. Data BAT Reg 4 Lower */ #define SPR_DC_DAT 0x232 /* ..8 Data Cache Data */ #define SPR_DBAT5U 0x23a /* .6. Data BAT Reg 5 Upper */ #define SPR_DBAT5L 0x23b /* .6. Data BAT Reg 5 Lower */ #define SPR_DBAT6U 0x23c /* .6. Data BAT Reg 6 Upper */ #define SPR_DBAT6L 0x23d /* .6. Data BAT Reg 6 Lower */ #define SPR_DBAT7U 0x23e /* .6. Data BAT Reg 7 Upper */ #define SPR_DBAT7L 0x23f /* .6. Data BAT Reg 7 Lower */ +#define SPR_SPRG8 0x25c /* ..8 SPR General 8 */ #define SPR_MI_CTR 0x310 /* ..8 IMMU control */ #define Mx_CTR_GPM 0x80000000 /* Group Protection Mode */ #define Mx_CTR_PPM 0x40000000 /* Page Protection Mode */ #define Mx_CTR_CIDEF 0x20000000 /* Cache-Inhibit DEFault */ #define MD_CTR_WTDEF 0x20000000 /* Write-Through DEFault */ #define Mx_CTR_RSV4 0x08000000 /* Reserve 4 TLB entries */ #define MD_CTR_TWAM 0x04000000 /* TableWalk Assist Mode */ #define Mx_CTR_PPCS 0x02000000 /* Priv/user state compare mode */ #define Mx_CTR_TLB_INDX 0x000001f0 /* TLB index mask */ #define Mx_CTR_TLB_INDX_BITPOS 8 /* TLB index shift */ #define SPR_MI_AP 0x312 /* ..8 IMMU access protection */ #define Mx_GP_SUPER(n) (0 << (2*(15-(n)))) /* access is supervisor */ #define Mx_GP_PAGE (1 << (2*(15-(n)))) /* access is page protect */ #define Mx_GP_SWAPPED (2 << (2*(15-(n)))) /* access is swapped */ #define Mx_GP_USER (3 << (2*(15-(n)))) /* access is user */ #define SPR_MI_EPN 0x313 /* ..8 IMMU effective number */ #define Mx_EPN_EPN 0xfffff000 /* Effective Page Number mask */ #define Mx_EPN_EV 0x00000020 /* Entry Valid */ #define Mx_EPN_ASID 0x0000000f /* Address Space ID */ #define SPR_MI_TWC 0x315 /* ..8 IMMU tablewalk control */ #define MD_TWC_L2TB 0xfffff000 /* Level-2 Tablewalk Base */ #define Mx_TWC_APG 0x000001e0 /* Access Protection Group */ #define Mx_TWC_G 0x00000010 /* Guarded memory */ #define Mx_TWC_PS 0x0000000c /* Page Size (L1) */ #define MD_TWC_WT 0x00000002 /* Write-Through */ #define Mx_TWC_V 0x00000001 /* Entry Valid */ #define SPR_MI_RPN 0x316 /* ..8 IMMU real (phys) page number */ #define Mx_RPN_RPN 0xfffff000 /* Real Page Number */ #define Mx_RPN_PP 0x00000ff0 /* Page Protection */ #define Mx_RPN_SPS 0x00000008 /* Small Page Size */ #define Mx_RPN_SH 0x00000004 /* SHared page */ #define Mx_RPN_CI 0x00000002 /* Cache Inhibit */ #define Mx_RPN_V 0x00000001 /* Valid */ #define SPR_MD_CTR 0x318 /* ..8 DMMU control */ #define SPR_M_CASID 0x319 /* ..8 CASID */ #define M_CASID 0x0000000f /* Current AS Id */ #define SPR_MD_AP 0x31a /* ..8 DMMU access protection */ #define SPR_MD_EPN 0x31b /* ..8 DMMU effective number */ #define SPR_970MMCR0 0x31b /* ... Monitor Mode Control Register 0 (PPC 970) */ #define SPR_970MMCR0_PMC1SEL(x) ((x) << 8) /* PMC1 selector (970) */ #define SPR_970MMCR0_PMC2SEL(x) ((x) << 1) /* PMC2 selector (970) */ #define SPR_970MMCR1 0x31e /* ... Monitor Mode Control Register 1 (PPC 970) */ #define SPR_970MMCR1_PMC3SEL(x) (((x) & 0x1f) << 27) /* PMC 3 selector */ #define SPR_970MMCR1_PMC4SEL(x) (((x) & 0x1f) << 22) /* PMC 4 selector */ #define SPR_970MMCR1_PMC5SEL(x) (((x) & 0x1f) << 17) /* PMC 5 selector */ #define SPR_970MMCR1_PMC6SEL(x) (((x) & 0x1f) << 12) /* PMC 6 selector */ #define SPR_970MMCR1_PMC7SEL(x) (((x) & 0x1f) << 7) /* PMC 7 selector */ #define SPR_970MMCR1_PMC8SEL(x) (((x) & 0x1f) << 2) /* PMC 8 selector */ #define SPR_970MMCRA 0x312 /* ... Monitor Mode Control Register 2 (PPC 970) */ #define SPR_970PMC1 0x313 /* ... PMC 1 */ #define SPR_970PMC2 0x314 /* ... PMC 2 */ #define SPR_970PMC3 0x315 /* ... PMC 3 */ #define SPR_970PMC4 0x316 /* ... PMC 4 */ #define SPR_970PMC5 0x317 /* ... PMC 5 */ #define SPR_970PMC6 0x318 /* ... PMC 6 */ #define SPR_970PMC7 0x319 /* ... PMC 7 */ #define SPR_970PMC8 0x31a /* ... PMC 8 */ #define SPR_M_TWB 0x31c /* ..8 MMU tablewalk base */ #define M_TWB_L1TB 0xfffff000 /* level-1 translation base */ #define M_TWB_L1INDX 0x00000ffc /* level-1 index */ #define SPR_MD_TWC 0x31d /* ..8 DMMU tablewalk control */ #define SPR_MD_RPN 0x31e /* ..8 DMMU real (phys) page number */ #define SPR_MD_TW 0x31f /* ..8 MMU tablewalk scratch */ #define SPR_MI_CAM 0x330 /* ..8 IMMU CAM entry read */ #define SPR_MI_RAM0 0x331 /* ..8 IMMU RAM entry read reg 0 */ #define SPR_MI_RAM1 0x332 /* ..8 IMMU RAM entry read reg 1 */ #define SPR_MD_CAM 0x338 /* ..8 IMMU CAM entry read */ #define SPR_MD_RAM0 0x339 /* ..8 IMMU RAM entry read reg 0 */ #define SPR_MD_RAM1 0x33a /* ..8 IMMU RAM entry read reg 1 */ #define SPR_UMMCR2 0x3a0 /* .6. User Monitor Mode Control Register 2 */ #define SPR_UMMCR0 0x3a8 /* .6. User Monitor Mode Control Register 0 */ #define SPR_USIA 0x3ab /* .6. User Sampled Instruction Address */ #define SPR_UMMCR1 0x3ac /* .6. User Monitor Mode Control Register 1 */ #define SPR_ZPR 0x3b0 /* 4.. Zone Protection Register */ #define SPR_MMCR2 0x3b0 /* .6. Monitor Mode Control Register 2 */ #define SPR_MMCR2_THRESHMULT_32 0x80000000 /* Multiply MMCR0 threshold by 32 */ #define SPR_MMCR2_THRESHMULT_2 0x00000000 /* Multiply MMCR0 threshold by 2 */ #define SPR_PID 0x3b1 /* 4.. Process ID */ #define SPR_PMC5 0x3b1 /* .6. Performance Counter Register 5 */ #define SPR_PMC6 0x3b2 /* .6. Performance Counter Register 6 */ #define SPR_CCR0 0x3b3 /* 4.. Core Configuration Register 0 */ #define SPR_IAC3 0x3b4 /* 4.. Instruction Address Compare 3 */ #define SPR_IAC4 0x3b5 /* 4.. Instruction Address Compare 4 */ #define SPR_DVC1 0x3b6 /* 4.. Data Value Compare 1 */ #define SPR_DVC2 0x3b7 /* 4.. Data Value Compare 2 */ #define SPR_MMCR0 0x3b8 /* .6. Monitor Mode Control Register 0 */ #define SPR_MMCR0_FC 0x80000000 /* Freeze counters */ #define SPR_MMCR0_FCS 0x40000000 /* Freeze counters in supervisor mode */ #define SPR_MMCR0_FCP 0x20000000 /* Freeze counters in user mode */ #define SPR_MMCR0_FCM1 0x10000000 /* Freeze counters when mark=1 */ #define SPR_MMCR0_FCM0 0x08000000 /* Freeze counters when mark=0 */ #define SPR_MMCR0_PMXE 0x04000000 /* Enable PM interrupt */ #define SPR_MMCR0_FCECE 0x02000000 /* Freeze counters after event */ #define SPR_MMCR0_TBSEL_15 0x01800000 /* Count bit 15 of TBL */ #define SPR_MMCR0_TBSEL_19 0x01000000 /* Count bit 19 of TBL */ #define SPR_MMCR0_TBSEL_23 0x00800000 /* Count bit 23 of TBL */ #define SPR_MMCR0_TBSEL_31 0x00000000 /* Count bit 31 of TBL */ #define SPR_MMCR0_TBEE 0x00400000 /* Time-base event enable */ #define SPR_MMCRO_THRESHOLD(x) ((x) << 16) /* Threshold value */ #define SPR_MMCR0_PMC1CE 0x00008000 /* PMC1 condition enable */ #define SPR_MMCR0_PMCNCE 0x00004000 /* PMCn condition enable */ #define SPR_MMCR0_TRIGGER 0x00002000 /* Trigger */ #define SPR_MMCR0_PMC1SEL(x) (((x) & 0x3f) << 6) /* PMC1 selector */ #define SPR_MMCR0_PMC2SEL(x) (((x) & 0x3f) << 0) /* PMC2 selector */ #define SPR_SGR 0x3b9 /* 4.. Storage Guarded Register */ #define SPR_PMC1 0x3b9 /* .6. Performance Counter Register 1 */ #define SPR_DCWR 0x3ba /* 4.. Data Cache Write-through Register */ #define SPR_PMC2 0x3ba /* .6. Performance Counter Register 2 */ #define SPR_SLER 0x3bb /* 4.. Storage Little Endian Register */ #define SPR_SIA 0x3bb /* .6. Sampled Instruction Address */ #define SPR_MMCR1 0x3bc /* .6. Monitor Mode Control Register 2 */ #define SPR_MMCR1_PMC3SEL(x) (((x) & 0x1f) << 27) /* PMC 3 selector */ #define SPR_MMCR1_PMC4SEL(x) (((x) & 0x1f) << 22) /* PMC 4 selector */ #define SPR_MMCR1_PMC5SEL(x) (((x) & 0x1f) << 17) /* PMC 5 selector */ #define SPR_MMCR1_PMC6SEL(x) (((x) & 0x3f) << 11) /* PMC 6 selector */ #define SPR_SU0R 0x3bc /* 4.. Storage User-defined 0 Register */ #define SPR_PMC3 0x3bd /* .6. Performance Counter Register 3 */ #define SPR_PMC4 0x3be /* .6. Performance Counter Register 4 */ #define SPR_DMISS 0x3d0 /* .68 Data TLB Miss Address Register */ #define SPR_DCMP 0x3d1 /* .68 Data TLB Compare Register */ #define SPR_HASH1 0x3d2 /* .68 Primary Hash Address Register */ #define SPR_ICDBDR 0x3d3 /* 4.. Instruction Cache Debug Data Register */ #define SPR_HASH2 0x3d3 /* .68 Secondary Hash Address Register */ #define SPR_IMISS 0x3d4 /* .68 Instruction TLB Miss Address Register */ #define SPR_TLBMISS 0x3d4 /* .6. TLB Miss Address Register */ #define SPR_DEAR 0x3d5 /* 4.. Data Error Address Register */ #define SPR_ICMP 0x3d5 /* .68 Instruction TLB Compare Register */ #define SPR_PTEHI 0x3d5 /* .6. Instruction TLB Compare Register */ #define SPR_EVPR 0x3d6 /* 4.. Exception Vector Prefix Register */ #define SPR_RPA 0x3d6 /* .68 Required Physical Address Register */ #define SPR_PTELO 0x3d6 /* .6. Required Physical Address Register */ #define SPR_TSR 0x150 /* ..8 Timer Status Register */ #define SPR_TCR 0x154 /* ..8 Timer Control Register */ #define TSR_ENW 0x80000000 /* Enable Next Watchdog */ #define TSR_WIS 0x40000000 /* Watchdog Interrupt Status */ #define TSR_WRS_MASK 0x30000000 /* Watchdog Reset Status */ #define TSR_WRS_NONE 0x00000000 /* No watchdog reset has occurred */ #define TSR_WRS_CORE 0x10000000 /* Core reset was forced by the watchdog */ #define TSR_WRS_CHIP 0x20000000 /* Chip reset was forced by the watchdog */ #define TSR_WRS_SYSTEM 0x30000000 /* System reset was forced by the watchdog */ #define TSR_PIS 0x08000000 /* PIT Interrupt Status */ #define TSR_DIS 0x08000000 /* Decrementer Interrupt Status */ #define TSR_FIS 0x04000000 /* FIT Interrupt Status */ #define TCR_WP_MASK 0xc0000000 /* Watchdog Period mask */ #define TCR_WP_2_17 0x00000000 /* 2**17 clocks */ #define TCR_WP_2_21 0x40000000 /* 2**21 clocks */ #define TCR_WP_2_25 0x80000000 /* 2**25 clocks */ #define TCR_WP_2_29 0xc0000000 /* 2**29 clocks */ #define TCR_WRC_MASK 0x30000000 /* Watchdog Reset Control mask */ #define TCR_WRC_NONE 0x00000000 /* No watchdog reset */ #define TCR_WRC_CORE 0x10000000 /* Core reset */ #define TCR_WRC_CHIP 0x20000000 /* Chip reset */ #define TCR_WRC_SYSTEM 0x30000000 /* System reset */ #define TCR_WIE 0x08000000 /* Watchdog Interrupt Enable */ #define TCR_PIE 0x04000000 /* PIT Interrupt Enable */ #define TCR_DIE 0x04000000 /* Pecrementer Interrupt Enable */ #define TCR_FP_MASK 0x03000000 /* FIT Period */ #define TCR_FP_2_9 0x00000000 /* 2**9 clocks */ #define TCR_FP_2_13 0x01000000 /* 2**13 clocks */ #define TCR_FP_2_17 0x02000000 /* 2**17 clocks */ #define TCR_FP_2_21 0x03000000 /* 2**21 clocks */ #define TCR_FIE 0x00800000 /* FIT Interrupt Enable */ #define TCR_ARE 0x00400000 /* Auto Reload Enable */ #define SPR_PIT 0x3db /* 4.. Programmable Interval Timer */ #define SPR_SRR2 0x3de /* 4.. Save/Restore Register 2 */ #define SPR_SRR3 0x3df /* 4.. Save/Restore Register 3 */ #define SPR_HID0 0x3f0 /* ..8 Hardware Implementation Register 0 */ #define SPR_HID1 0x3f1 /* ..8 Hardware Implementation Register 1 */ #define SPR_HID2 0x3f3 /* ..8 Hardware Implementation Register 2 */ #define SPR_HID4 0x3f4 /* ..8 Hardware Implementation Register 4 */ #define SPR_HID5 0x3f6 /* ..8 Hardware Implementation Register 5 */ #define SPR_HID6 0x3f9 /* ..8 Hardware Implementation Register 6 */ #define SPR_CELL_TSRL 0x380 /* ... Cell BE Thread Status Register */ #define SPR_CELL_TSCR 0x399 /* ... Cell BE Thread Switch Register */ #if defined(AIM) #define SPR_DBSR 0x3f0 /* 4.. Debug Status Register */ #define DBSR_IC 0x80000000 /* Instruction completion debug event */ #define DBSR_BT 0x40000000 /* Branch Taken debug event */ #define DBSR_EDE 0x20000000 /* Exception debug event */ #define DBSR_TIE 0x10000000 /* Trap Instruction debug event */ #define DBSR_UDE 0x08000000 /* Unconditional debug event */ #define DBSR_IA1 0x04000000 /* IAC1 debug event */ #define DBSR_IA2 0x02000000 /* IAC2 debug event */ #define DBSR_DR1 0x01000000 /* DAC1 Read debug event */ #define DBSR_DW1 0x00800000 /* DAC1 Write debug event */ #define DBSR_DR2 0x00400000 /* DAC2 Read debug event */ #define DBSR_DW2 0x00200000 /* DAC2 Write debug event */ #define DBSR_IDE 0x00100000 /* Imprecise debug event */ #define DBSR_IA3 0x00080000 /* IAC3 debug event */ #define DBSR_IA4 0x00040000 /* IAC4 debug event */ #define DBSR_MRR 0x00000300 /* Most recent reset */ #define SPR_DBCR0 0x3f2 /* 4.. Debug Control Register 0 */ #define SPR_DBCR1 0x3bd /* 4.. Debug Control Register 1 */ #define SPR_IAC1 0x3f4 /* 4.. Instruction Address Compare 1 */ #define SPR_IAC2 0x3f5 /* 4.. Instruction Address Compare 2 */ #define SPR_DAC1 0x3f6 /* 4.. Data Address Compare 1 */ #define SPR_DAC2 0x3f7 /* 4.. Data Address Compare 2 */ #define SPR_PIR 0x3ff /* .6. Processor Identification Register */ #elif defined(BOOKE) #define SPR_PIR 0x11e /* ..8 Processor Identification Register */ #define SPR_DBSR 0x130 /* ..8 Debug Status Register */ #define DBSR_IDE 0x80000000 /* Imprecise debug event. */ #define DBSR_UDE 0x40000000 /* Unconditional debug event. */ #define DBSR_MRR 0x30000000 /* Most recent Reset (mask). */ #define DBSR_ICMP 0x08000000 /* Instr. complete debug event. */ #define DBSR_BRT 0x04000000 /* Branch taken debug event. */ #define DBSR_IRPT 0x02000000 /* Interrupt taken debug event. */ #define DBSR_TRAP 0x01000000 /* Trap instr. debug event. */ #define DBSR_IAC1 0x00800000 /* Instr. address compare #1. */ #define DBSR_IAC2 0x00400000 /* Instr. address compare #2. */ #define DBSR_IAC3 0x00200000 /* Instr. address compare #3. */ #define DBSR_IAC4 0x00100000 /* Instr. address compare #4. */ #define DBSR_DAC1R 0x00080000 /* Data addr. read compare #1. */ #define DBSR_DAC1W 0x00040000 /* Data addr. write compare #1. */ #define DBSR_DAC2R 0x00020000 /* Data addr. read compare #2. */ #define DBSR_DAC2W 0x00010000 /* Data addr. write compare #2. */ #define DBSR_RET 0x00008000 /* Return debug event. */ #define SPR_DBCR0 0x134 /* ..8 Debug Control Register 0 */ #define SPR_DBCR1 0x135 /* ..8 Debug Control Register 1 */ #define SPR_IAC1 0x138 /* ..8 Instruction Address Compare 1 */ #define SPR_IAC2 0x139 /* ..8 Instruction Address Compare 2 */ #define SPR_DAC1 0x13c /* ..8 Data Address Compare 1 */ #define SPR_DAC2 0x13d /* ..8 Data Address Compare 2 */ #endif #define DBCR0_EDM 0x80000000 /* External Debug Mode */ #define DBCR0_IDM 0x40000000 /* Internal Debug Mode */ #define DBCR0_RST_MASK 0x30000000 /* ReSeT */ #define DBCR0_RST_NONE 0x00000000 /* No action */ #define DBCR0_RST_CORE 0x10000000 /* Core reset */ #define DBCR0_RST_CHIP 0x20000000 /* Chip reset */ #define DBCR0_RST_SYSTEM 0x30000000 /* System reset */ #define DBCR0_IC 0x08000000 /* Instruction Completion debug event */ #define DBCR0_BT 0x04000000 /* Branch Taken debug event */ #define DBCR0_EDE 0x02000000 /* Exception Debug Event */ #define DBCR0_TDE 0x01000000 /* Trap Debug Event */ #define DBCR0_IA1 0x00800000 /* IAC (Instruction Address Compare) 1 debug event */ #define DBCR0_IA2 0x00400000 /* IAC 2 debug event */ #define DBCR0_IA12 0x00200000 /* Instruction Address Range Compare 1-2 */ #define DBCR0_IA12X 0x00100000 /* IA12 eXclusive */ #define DBCR0_IA3 0x00080000 /* IAC 3 debug event */ #define DBCR0_IA4 0x00040000 /* IAC 4 debug event */ #define DBCR0_IA34 0x00020000 /* Instruction Address Range Compare 3-4 */ #define DBCR0_IA34X 0x00010000 /* IA34 eXclusive */ #define DBCR0_IA12T 0x00008000 /* Instruction Address Range Compare 1-2 range Toggle */ #define DBCR0_IA34T 0x00004000 /* Instruction Address Range Compare 3-4 range Toggle */ #define DBCR0_FT 0x00000001 /* Freeze Timers on debug event */ #define SPR_IABR 0x3f2 /* ..8 Instruction Address Breakpoint Register 0 */ #define SPR_DABR 0x3f5 /* .6. Data Address Breakpoint Register */ #define SPR_MSSCR0 0x3f6 /* .6. Memory SubSystem Control Register */ #define MSSCR0_SHDEN 0x80000000 /* 0: Shared-state enable */ #define MSSCR0_SHDPEN3 0x40000000 /* 1: ~SHD[01] signal enable in MEI mode */ #define MSSCR0_L1INTVEN 0x38000000 /* 2-4: L1 data cache ~HIT intervention enable */ #define MSSCR0_L2INTVEN 0x07000000 /* 5-7: L2 data cache ~HIT intervention enable*/ #define MSSCR0_DL1HWF 0x00800000 /* 8: L1 data cache hardware flush */ #define MSSCR0_MBO 0x00400000 /* 9: must be one */ #define MSSCR0_EMODE 0x00200000 /* 10: MPX bus mode (read-only) */ #define MSSCR0_ABD 0x00100000 /* 11: address bus driven (read-only) */ #define MSSCR0_MBZ 0x000fffff /* 12-31: must be zero */ #define MSSCR0_L2PFE 0x00000003 /* 30-31: L2 prefetch enable */ #define SPR_MSSSR0 0x3f7 /* .6. Memory Subsystem Status Register (MPC745x) */ #define MSSSR0_L2TAG 0x00040000 /* 13: L2 tag parity error */ #define MSSSR0_L2DAT 0x00020000 /* 14: L2 data parity error */ #define MSSSR0_L3TAG 0x00010000 /* 15: L3 tag parity error */ #define MSSSR0_L3DAT 0x00008000 /* 16: L3 data parity error */ #define MSSSR0_APE 0x00004000 /* 17: Address parity error */ #define MSSSR0_DPE 0x00002000 /* 18: Data parity error */ #define MSSSR0_TEA 0x00001000 /* 19: Bus transfer error acknowledge */ #define SPR_LDSTCR 0x3f8 /* .6. Load/Store Control Register */ #define SPR_L2PM 0x3f8 /* .6. L2 Private Memory Control Register */ #define SPR_L2CR 0x3f9 /* .6. L2 Control Register */ #define L2CR_L2E 0x80000000 /* 0: L2 enable */ #define L2CR_L2PE 0x40000000 /* 1: L2 data parity enable */ #define L2CR_L2SIZ 0x30000000 /* 2-3: L2 size */ #define L2SIZ_2M 0x00000000 #define L2SIZ_256K 0x10000000 #define L2SIZ_512K 0x20000000 #define L2SIZ_1M 0x30000000 #define L2CR_L2CLK 0x0e000000 /* 4-6: L2 clock ratio */ #define L2CLK_DIS 0x00000000 /* disable L2 clock */ #define L2CLK_10 0x02000000 /* core clock / 1 */ #define L2CLK_15 0x04000000 /* / 1.5 */ #define L2CLK_20 0x08000000 /* / 2 */ #define L2CLK_25 0x0a000000 /* / 2.5 */ #define L2CLK_30 0x0c000000 /* / 3 */ #define L2CR_L2RAM 0x01800000 /* 7-8: L2 RAM type */ #define L2RAM_FLOWTHRU_BURST 0x00000000 #define L2RAM_PIPELINE_BURST 0x01000000 #define L2RAM_PIPELINE_LATE 0x01800000 #define L2CR_L2DO 0x00400000 /* 9: L2 data-only. Setting this bit disables instruction caching. */ #define L2CR_L2I 0x00200000 /* 10: L2 global invalidate. */ #define L2CR_L2IO_7450 0x00010000 /* 11: L2 instruction-only (MPC745x). */ #define L2CR_L2CTL 0x00100000 /* 11: L2 RAM control (ZZ enable). Enables automatic operation of the L2ZZ (low-power mode) signal. */ #define L2CR_L2WT 0x00080000 /* 12: L2 write-through. */ #define L2CR_L2TS 0x00040000 /* 13: L2 test support. */ #define L2CR_L2OH 0x00030000 /* 14-15: L2 output hold. */ #define L2CR_L2DO_7450 0x00010000 /* 15: L2 data-only (MPC745x). */ #define L2CR_L2SL 0x00008000 /* 16: L2 DLL slow. */ #define L2CR_L2DF 0x00004000 /* 17: L2 differential clock. */ #define L2CR_L2BYP 0x00002000 /* 18: L2 DLL bypass. */ #define L2CR_L2FA 0x00001000 /* 19: L2 flush assist (for software flush). */ #define L2CR_L2HWF 0x00000800 /* 20: L2 hardware flush. */ #define L2CR_L2IO 0x00000400 /* 21: L2 instruction-only. */ #define L2CR_L2CLKSTP 0x00000200 /* 22: L2 clock stop. */ #define L2CR_L2DRO 0x00000100 /* 23: L2DLL rollover checkstop enable. */ #define L2CR_L2IP 0x00000001 /* 31: L2 global invalidate in */ /* progress (read only). */ #define SPR_L3CR 0x3fa /* .6. L3 Control Register */ #define L3CR_L3E 0x80000000 /* 0: L3 enable */ #define L3CR_L3PE 0x40000000 /* 1: L3 data parity enable */ #define L3CR_L3APE 0x20000000 #define L3CR_L3SIZ 0x10000000 /* 3: L3 size (0=1MB, 1=2MB) */ #define L3CR_L3CLKEN 0x08000000 /* 4: Enables L3_CLK[0:1] */ #define L3CR_L3CLK 0x03800000 #define L3CR_L3IO 0x00400000 #define L3CR_L3CLKEXT 0x00200000 #define L3CR_L3CKSPEXT 0x00100000 #define L3CR_L3OH1 0x00080000 #define L3CR_L3SPO 0x00040000 #define L3CR_L3CKSP 0x00030000 #define L3CR_L3PSP 0x0000e000 #define L3CR_L3REP 0x00001000 #define L3CR_L3HWF 0x00000800 #define L3CR_L3I 0x00000400 /* 21: L3 global invalidate */ #define L3CR_L3RT 0x00000300 #define L3CR_L3NIRCA 0x00000080 #define L3CR_L3DO 0x00000040 #define L3CR_PMEN 0x00000004 #define L3CR_PMSIZ 0x00000003 #define SPR_DCCR 0x3fa /* 4.. Data Cache Cachability Register */ #define SPR_ICCR 0x3fb /* 4.. Instruction Cache Cachability Register */ #define SPR_THRM1 0x3fc /* .6. Thermal Management Register */ #define SPR_THRM2 0x3fd /* .6. Thermal Management Register */ #define SPR_THRM_TIN 0x80000000 /* Thermal interrupt bit (RO) */ #define SPR_THRM_TIV 0x40000000 /* Thermal interrupt valid (RO) */ #define SPR_THRM_THRESHOLD(x) ((x) << 23) /* Thermal sensor threshold */ #define SPR_THRM_TID 0x00000004 /* Thermal interrupt direction */ #define SPR_THRM_TIE 0x00000002 /* Thermal interrupt enable */ #define SPR_THRM_VALID 0x00000001 /* Valid bit */ #define SPR_THRM3 0x3fe /* .6. Thermal Management Register */ #define SPR_THRM_TIMER(x) ((x) << 1) /* Sampling interval timer */ #define SPR_THRM_ENABLE 0x00000001 /* TAU Enable */ #define SPR_FPECR 0x3fe /* .6. Floating-Point Exception Cause Register */ /* Time Base Register declarations */ #define TBR_TBL 0x10c /* 468 Time Base Lower - read */ #define TBR_TBU 0x10d /* 468 Time Base Upper - read */ #define TBR_TBWL 0x11c /* 468 Time Base Lower - supervisor, write */ #define TBR_TBWU 0x11d /* 468 Time Base Upper - supervisor, write */ /* Performance counter declarations */ #define PMC_OVERFLOW 0x80000000 /* Counter has overflowed */ /* The first five countable [non-]events are common to many PMC's */ #define PMCN_NONE 0 /* Count nothing */ #define PMCN_CYCLES 1 /* Processor cycles */ #define PMCN_ICOMP 2 /* Instructions completed */ #define PMCN_TBLTRANS 3 /* TBL bit transitions */ #define PCMN_IDISPATCH 4 /* Instructions dispatched */ /* Similar things for the 970 PMC direct counters */ #define PMC970N_NONE 0x8 /* Count nothing */ #define PMC970N_CYCLES 0xf /* Processor cycles */ #define PMC970N_ICOMP 0x9 /* Instructions completed */ #if defined(AIM) #define SPR_ESR 0x3d4 /* 4.. Exception Syndrome Register */ #define ESR_MCI 0x80000000 /* Machine check - instruction */ #define ESR_PIL 0x08000000 /* Program interrupt - illegal */ #define ESR_PPR 0x04000000 /* Program interrupt - privileged */ #define ESR_PTR 0x02000000 /* Program interrupt - trap */ #define ESR_ST 0x01000000 /* Store operation */ #define ESR_DST 0x00800000 /* Data storage interrupt - store fault */ #define ESR_DIZ 0x00800000 /* Data/instruction storage interrupt - zone fault */ #define ESR_U0F 0x00008000 /* Data storage interrupt - U0 fault */ #elif defined(BOOKE) #define SPR_MCARU 0x239 /* ..8 Machine Check Address register upper bits */ #define SPR_MCSR 0x23c /* ..8 Machine Check Syndrome register */ #define SPR_MCAR 0x23d /* ..8 Machine Check Address register */ #define SPR_ESR 0x003e /* ..8 Exception Syndrome Register */ #define ESR_PIL 0x08000000 /* Program interrupt - illegal */ #define ESR_PPR 0x04000000 /* Program interrupt - privileged */ #define ESR_PTR 0x02000000 /* Program interrupt - trap */ #define ESR_ST 0x00800000 /* Store operation */ #define ESR_DLK 0x00200000 /* Data storage, D cache locking */ #define ESR_ILK 0x00100000 /* Data storage, I cache locking */ #define ESR_BO 0x00020000 /* Data/instruction storage, byte ordering */ #define ESR_SPE 0x00000080 /* SPE exception bit */ #define SPR_CSRR0 0x03a /* ..8 58 Critical SRR0 */ #define SPR_CSRR1 0x03b /* ..8 59 Critical SRR1 */ #define SPR_MCSRR0 0x23a /* ..8 570 Machine check SRR0 */ #define SPR_MCSRR1 0x23b /* ..8 571 Machine check SRR1 */ #define SPR_DSRR0 0x23e /* ..8 574 Debug SRR0 */ #define SPR_DSRR1 0x23f /* ..8 575 Debug SRR1 */ #define SPR_MMUCR 0x3b2 /* 4.. MMU Control Register */ #define MMUCR_SWOA (0x80000000 >> 7) #define MMUCR_U1TE (0x80000000 >> 9) #define MMUCR_U2SWOAE (0x80000000 >> 10) #define MMUCR_DULXE (0x80000000 >> 12) #define MMUCR_IULXE (0x80000000 >> 13) #define MMUCR_STS (0x80000000 >> 15) #define MMUCR_STID_MASK (0xFF000000 >> 24) #define SPR_MMUCSR0 0x3f4 /* ..8 1012 MMU Control and Status Register 0 */ #define MMUCSR0_L2TLB0_FI 0x04 /* TLB0 flash invalidate */ #define MMUCSR0_L2TLB1_FI 0x02 /* TLB1 flash invalidate */ #define SPR_SVR 0x3ff /* ..8 1023 System Version Register */ #define SVR_MPC8533 0x8034 #define SVR_MPC8533E 0x803c #define SVR_MPC8541 0x8072 #define SVR_MPC8541E 0x807a #define SVR_MPC8548 0x8031 #define SVR_MPC8548E 0x8039 #define SVR_MPC8555 0x8071 #define SVR_MPC8555E 0x8079 #define SVR_MPC8572 0x80e0 #define SVR_MPC8572E 0x80e8 #define SVR_P1011 0x80e5 #define SVR_P1011E 0x80ed #define SVR_P1013 0x80e7 #define SVR_P1013E 0x80ef #define SVR_P1020 0x80e4 #define SVR_P1020E 0x80ec #define SVR_P1022 0x80e6 #define SVR_P1022E 0x80ee #define SVR_P2010 0x80e3 #define SVR_P2010E 0x80eb #define SVR_P2020 0x80e2 #define SVR_P2020E 0x80ea #define SVR_P2041 0x8210 #define SVR_P2041E 0x8218 #define SVR_P3041 0x8211 #define SVR_P3041E 0x8219 #define SVR_P4040 0x8200 #define SVR_P4040E 0x8208 #define SVR_P4080 0x8201 #define SVR_P4080E 0x8209 #define SVR_P5020 0x8220 #define SVR_P5020E 0x8228 #define SVR_VER(svr) (((svr) >> 16) & 0xffff) #define SPR_PID0 0x030 /* ..8 Process ID Register 0 */ #define SPR_PID1 0x279 /* ..8 Process ID Register 1 */ #define SPR_PID2 0x27a /* ..8 Process ID Register 2 */ #define SPR_TLB0CFG 0x2B0 /* ..8 TLB 0 Config Register */ #define SPR_TLB1CFG 0x2B1 /* ..8 TLB 1 Config Register */ #define TLBCFG_ASSOC_MASK 0xff000000 /* Associativity of TLB */ #define TLBCFG_ASSOC_SHIFT 24 #define TLBCFG_NENTRY_MASK 0x00000fff /* Number of entries in TLB */ #define SPR_IVPR 0x03f /* ..8 Interrupt Vector Prefix Register */ #define SPR_IVOR0 0x190 /* ..8 Critical input */ #define SPR_IVOR1 0x191 /* ..8 Machine check */ #define SPR_IVOR2 0x192 #define SPR_IVOR3 0x193 #define SPR_IVOR4 0x194 #define SPR_IVOR5 0x195 #define SPR_IVOR6 0x196 #define SPR_IVOR7 0x197 #define SPR_IVOR8 0x198 #define SPR_IVOR9 0x199 #define SPR_IVOR10 0x19a #define SPR_IVOR11 0x19b #define SPR_IVOR12 0x19c #define SPR_IVOR13 0x19d #define SPR_IVOR14 0x19e #define SPR_IVOR15 0x19f #define SPR_IVOR32 0x210 #define SPR_IVOR33 0x211 #define SPR_IVOR34 0x212 #define SPR_IVOR35 0x213 #define SPR_MAS0 0x270 /* ..8 MMU Assist Register 0 Book-E/e500 */ #define SPR_MAS1 0x271 /* ..8 MMU Assist Register 1 Book-E/e500 */ #define SPR_MAS2 0x272 /* ..8 MMU Assist Register 2 Book-E/e500 */ #define SPR_MAS3 0x273 /* ..8 MMU Assist Register 3 Book-E/e500 */ #define SPR_MAS4 0x274 /* ..8 MMU Assist Register 4 Book-E/e500 */ #define SPR_MAS5 0x275 /* ..8 MMU Assist Register 5 Book-E */ #define SPR_MAS6 0x276 /* ..8 MMU Assist Register 6 Book-E/e500 */ #define SPR_MAS7 0x3B0 /* ..8 MMU Assist Register 7 Book-E/e500 */ #define SPR_MAS8 0x155 /* ..8 MMU Assist Register 8 Book-E/e500 */ #define SPR_L1CFG0 0x203 /* ..8 L1 cache configuration register 0 */ #define SPR_L1CFG1 0x204 /* ..8 L1 cache configuration register 1 */ #define SPR_CCR1 0x378 #define CCR1_L2COBE 0x00000040 #define DCR_L2DCDCRAI 0x0000 /* L2 D-Cache DCR Address Pointer */ #define DCR_L2DCDCRDI 0x0001 /* L2 D-Cache DCR Data Indirect */ #define DCR_L2CR0 0x00 /* L2 Cache Configuration Register 0 */ #define L2CR0_AS 0x30000000 #define SPR_L1CSR0 0x3F2 /* ..8 L1 Cache Control and Status Register 0 */ #define L1CSR0_DCPE 0x00010000 /* Data Cache Parity Enable */ #define L1CSR0_DCLFR 0x00000100 /* Data Cache Lock Bits Flash Reset */ #define L1CSR0_DCFI 0x00000002 /* Data Cache Flash Invalidate */ #define L1CSR0_DCE 0x00000001 /* Data Cache Enable */ #define SPR_L1CSR1 0x3F3 /* ..8 L1 Cache Control and Status Register 1 */ #define L1CSR1_ICPE 0x00010000 /* Instruction Cache Parity Enable */ #define L1CSR1_ICUL 0x00000400 /* Instr Cache Unable to Lock */ #define L1CSR1_ICLFR 0x00000100 /* Instruction Cache Lock Bits Flash Reset */ #define L1CSR1_ICFI 0x00000002 /* Instruction Cache Flash Invalidate */ #define L1CSR1_ICE 0x00000001 /* Instruction Cache Enable */ #define SPR_L2CSR0 0x3F9 /* ..8 L2 Cache Control and Status Register 0 */ #define L2CSR0_L2E 0x80000000 /* L2 Cache Enable */ #define L2CSR0_L2PE 0x40000000 /* L2 Cache Parity Enable */ #define L2CSR0_L2FI 0x00200000 /* L2 Cache Flash Invalidate */ #define L2CSR0_L2LFC 0x00000400 /* L2 Cache Lock Flags Clear */ #define SPR_BUCSR 0x3F5 /* ..8 Branch Unit Control and Status Register */ #define BUCSR_BPEN 0x00000001 /* Branch Prediction Enable */ #define BUCSR_BBFI 0x00000200 /* Branch Buffer Flash Invalidate */ #endif /* BOOKE */ #endif /* !_POWERPC_SPR_H_ */ Index: head/sys/powerpc/include/tlb.h =================================================================== --- head/sys/powerpc/include/tlb.h (revision 315463) +++ head/sys/powerpc/include/tlb.h (revision 315464) @@ -1,227 +1,235 @@ /*- * Copyright (C) 2006-2012 Semihalf. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _MACHINE_TLB_H_ #define _MACHINE_TLB_H_ #if defined(BOOKE_E500) /* PowerPC E500 MAS registers */ #define MAS0_TLBSEL(x) ((x << 28) & 0x10000000) #define MAS0_ESEL(x) ((x << 16) & 0x003F0000) #define MAS0_TLBSEL1 0x10000000 #define MAS0_TLBSEL0 0x00000000 #define MAS0_ESEL_TLB1MASK 0x000F0000 #define MAS0_ESEL_TLB0MASK 0x00030000 #define MAS0_ESEL_SHIFT 16 #define MAS0_NV_MASK 0x00000003 #define MAS0_NV_SHIFT 0 #define MAS1_VALID 0x80000000 #define MAS1_IPROT 0x40000000 #define MAS1_TID_MASK 0x00FF0000 #define MAS1_TID_SHIFT 16 #define MAS1_TS_MASK 0x00001000 #define MAS1_TS_SHIFT 12 #define MAS1_TSIZE_MASK 0x00000F00 #define MAS1_TSIZE_SHIFT 8 #define TLB_SIZE_4K 1 #define TLB_SIZE_16K 2 #define TLB_SIZE_64K 3 #define TLB_SIZE_256K 4 #define TLB_SIZE_1M 5 #define TLB_SIZE_4M 6 #define TLB_SIZE_16M 7 #define TLB_SIZE_64M 8 #define TLB_SIZE_256M 9 #define TLB_SIZE_1G 10 #define TLB_SIZE_4G 11 +#ifdef __powerpc64__ +#define MAS2_EPN_MASK 0xFFFFFFFFFFFFF000UL +#else #define MAS2_EPN_MASK 0xFFFFF000 +#endif #define MAS2_EPN_SHIFT 12 #define MAS2_X0 0x00000040 #define MAS2_X1 0x00000020 #define MAS2_W 0x00000010 #define MAS2_I 0x00000008 #define MAS2_M 0x00000004 #define MAS2_G 0x00000002 #define MAS2_E 0x00000001 #define MAS2_WIMGE_MASK 0x0000007F #define MAS3_RPN 0xFFFFF000 #define MAS3_RPN_SHIFT 12 #define MAS3_U0 0x00000200 #define MAS3_U1 0x00000100 #define MAS3_U2 0x00000080 #define MAS3_U3 0x00000040 #define MAS3_UX 0x00000020 #define MAS3_SX 0x00000010 #define MAS3_UW 0x00000008 #define MAS3_SW 0x00000004 #define MAS3_UR 0x00000002 #define MAS3_SR 0x00000001 #define MAS4_TLBSELD1 0x10000000 #define MAS4_TLBSELD0 0x00000000 #define MAS4_TIDSELD_MASK 0x00030000 #define MAS4_TIDSELD_SHIFT 16 #define MAS4_TSIZED_MASK 0x00000F00 #define MAS4_TSIZED_SHIFT 8 #define MAS4_X0D 0x00000040 #define MAS4_X1D 0x00000020 #define MAS4_WD 0x00000010 #define MAS4_ID 0x00000008 #define MAS4_MD 0x00000004 #define MAS4_GD 0x00000002 #define MAS4_ED 0x00000001 #define MAS6_SPID0_MASK 0x00FF0000 #define MAS6_SPID0_SHIFT 16 #define MAS6_SAS 0x00000001 #define MAS7_RPN 0x0000000F #define MAS1_GETTID(mas1) (((mas1) & MAS1_TID_MASK) >> MAS1_TID_SHIFT) #define MAS2_TLB0_ENTRY_IDX_MASK 0x0007f000 #define MAS2_TLB0_ENTRY_IDX_SHIFT 12 /* * Maximum number of TLB1 entries used for a permanent mapping of kernel * region (kernel image plus statically allocated data). */ #define KERNEL_REGION_MAX_TLB_ENTRIES 4 /* * Use MAS2_X0 to mark entries which will be copied * to AP CPUs during SMP bootstrap. As result entries * marked with _TLB_ENTRY_SHARED will be shared by all CPUs. */ #define _TLB_ENTRY_SHARED (MAS2_X0) /* XXX under SMP? */ #define _TLB_ENTRY_IO (MAS2_I | MAS2_G) #define _TLB_ENTRY_MEM (MAS2_M) #define TLB1_MAX_ENTRIES 64 #if !defined(LOCORE) typedef struct tlb_entry { vm_paddr_t phys; vm_offset_t virt; vm_size_t size; uint32_t mas1; +#ifdef __powerpc64__ + uint64_t mas2; +#else uint32_t mas2; +#endif uint32_t mas3; uint32_t mas7; } tlb_entry_t; void tlb0_print_tlbentries(void); void tlb1_inval_entry(unsigned int); void tlb1_init(void); void tlb1_print_entries(void); void tlb1_print_tlbentries(void); #endif /* !LOCORE */ #elif defined(BOOKE_PPC4XX) /* TLB Words */ #define TLB_PAGEID 0 #define TLB_XLAT 1 #define TLB_ATTRIB 2 /* Page identification fields */ #define TLB_EPN_MASK (0xFFFFFC00 >> 0) #define TLB_VALID (0x80000000 >> 22) #define TLB_TS (0x80000000 >> 23) #define TLB_SIZE_1K (0x00000000 >> 24) #define TLB_SIZE_MASK (0xF0000000 >> 24) /* Translation fields */ #define TLB_RPN_MASK (0xFFFFFC00 >> 0) #define TLB_ERPN_MASK (0xF0000000 >> 28) /* Storage attribute and access control fields */ #define TLB_WL1 (0x80000000 >> 11) #define TLB_IL1I (0x80000000 >> 12) #define TLB_IL1D (0x80000000 >> 13) #define TLB_IL2I (0x80000000 >> 14) #define TLB_IL2D (0x80000000 >> 15) #define TLB_U0 (0x80000000 >> 16) #define TLB_U1 (0x80000000 >> 17) #define TLB_U2 (0x80000000 >> 18) #define TLB_U3 (0x80000000 >> 19) #define TLB_W (0x80000000 >> 20) #define TLB_I (0x80000000 >> 21) #define TLB_M (0x80000000 >> 22) #define TLB_G (0x80000000 >> 23) #define TLB_E (0x80000000 >> 24) #define TLB_UX (0x80000000 >> 26) #define TLB_UW (0x80000000 >> 27) #define TLB_UR (0x80000000 >> 28) #define TLB_SX (0x80000000 >> 29) #define TLB_SW (0x80000000 >> 30) #define TLB_SR (0x80000000 >> 31) #define TLB_SIZE 64 #define TLB_SIZE_4K (0x10000000 >> 24) #define TLB_SIZE_16K (0x20000000 >> 24) #define TLB_SIZE_64K (0x30000000 >> 24) #define TLB_SIZE_256K (0x40000000 >> 24) #define TLB_SIZE_1M (0x50000000 >> 24) #define TLB_SIZE_16M (0x70000000 >> 24) #define TLB_SIZE_256M (0x90000000 >> 24) #define TLB_SIZE_1G (0xA0000000 >> 24) #endif /* BOOKE_E500 */ #define TID_KERNEL 0 /* TLB TID to use for kernel (shared) translations */ #define TID_KRESERVED 1 /* Number of TIDs reserved for kernel */ #define TID_URESERVED 0 /* Number of TIDs reserved for user */ #define TID_MIN (TID_KRESERVED + TID_URESERVED) #define TID_MAX 255 #define TID_NONE -1 #define TLB_UNLOCKED 0 #if !defined(LOCORE) typedef int tlbtid_t; struct pmap; -void tlb_lock(uint32_t *); -void tlb_unlock(uint32_t *); +void tlb_lock(uintptr_t *); +void tlb_unlock(uintptr_t *); void tlb1_ap_prep(void); int tlb1_set_entry(vm_offset_t, vm_paddr_t, vm_size_t, uint32_t); #endif /* !LOCORE */ #endif /* _MACHINE_TLB_H_ */ Index: head/sys/powerpc/include/vmparam.h =================================================================== --- head/sys/powerpc/include/vmparam.h (revision 315463) +++ head/sys/powerpc/include/vmparam.h (revision 315464) @@ -1,214 +1,232 @@ /*- * Copyright (C) 1995, 1996 Wolfgang Solfrank. * Copyright (C) 1995, 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $NetBSD: vmparam.h,v 1.11 2000/02/11 19:25:16 thorpej Exp $ * $FreeBSD$ */ #ifndef _MACHINE_VMPARAM_H_ #define _MACHINE_VMPARAM_H_ #define USRSTACK SHAREDPAGE #ifndef MAXTSIZ #define MAXTSIZ (1*1024*1024*1024) /* max text size */ #endif #ifndef DFLDSIZ #define DFLDSIZ (128*1024*1024) /* default data size */ #endif #ifndef MAXDSIZ #define MAXDSIZ (1*1024*1024*1024) /* max data size */ #endif #ifndef DFLSSIZ #define DFLSSIZ (8*1024*1024) /* default stack size */ #endif #ifndef MAXSSIZ #define MAXSSIZ (64*1024*1024) /* max stack size */ #endif #ifdef AIM #define VM_MAXUSER_ADDRESS32 ((vm_offset_t)0xfffff000) #else #define VM_MAXUSER_ADDRESS32 ((vm_offset_t)0x7ffff000) #endif /* * Would like to have MAX addresses = 0, but this doesn't (currently) work */ #if !defined(LOCORE) #ifdef __powerpc64__ #define VM_MIN_ADDRESS (0x0000000000000000UL) +#ifdef AIM #define VM_MAXUSER_ADDRESS (0xfffffffffffff000UL) +#else +#define VM_MAXUSER_ADDRESS (0x7ffffffffffff000UL) +#endif #define VM_MAX_ADDRESS (0xffffffffffffffffUL) #else #define VM_MIN_ADDRESS ((vm_offset_t)0) #define VM_MAXUSER_ADDRESS VM_MAXUSER_ADDRESS32 #define VM_MAX_ADDRESS ((vm_offset_t)0xffffffff) #endif #define SHAREDPAGE (VM_MAXUSER_ADDRESS - PAGE_SIZE) #else /* LOCORE */ -#if !defined(__powerpc64__) && defined(BOOKE) +#ifdef BOOKE #define VM_MIN_ADDRESS 0 +#ifdef __powerpc64__ +#define VM_MAXUSER_ADDRESS 0x7ffffffffffff000 +#else #define VM_MAXUSER_ADDRESS 0x7ffff000 #endif +#endif #endif /* LOCORE */ #define FREEBSD32_SHAREDPAGE (VM_MAXUSER_ADDRESS32 - PAGE_SIZE) #define FREEBSD32_USRSTACK FREEBSD32_SHAREDPAGE -#ifdef AIM -#define KERNBASE 0x00100000UL /* start of kernel virtual */ - #ifdef __powerpc64__ #define VM_MIN_KERNEL_ADDRESS 0xc000000000000000UL #define VM_MAX_KERNEL_ADDRESS 0xc0000001c7ffffffUL #define VM_MAX_SAFE_KERNEL_ADDRESS VM_MAX_KERNEL_ADDRESS -#else +#endif + +#ifdef AIM +#define KERNBASE 0x00100000UL /* start of kernel virtual */ + +#ifndef __powerpc64__ #define VM_MIN_KERNEL_ADDRESS ((vm_offset_t)KERNEL_SR << ADDR_SR_SHFT) #define VM_MAX_SAFE_KERNEL_ADDRESS (VM_MIN_KERNEL_ADDRESS + 2*SEGMENT_LENGTH -1) #define VM_MAX_KERNEL_ADDRESS (VM_MIN_KERNEL_ADDRESS + 3*SEGMENT_LENGTH - 1) #endif /* * Use the direct-mapped BAT registers for UMA small allocs. This * takes pressure off the small amount of available KVA. */ #define UMA_MD_SMALL_ALLOC #else /* Book-E */ +#ifdef __powerpc64__ +#ifndef LOCORE +#define KERNBASE 0xc000000000000000UL /* start of kernel virtual */ +#else +#define KERNBASE 0xc000000000000000 /* start of kernel virtual */ +#endif +#else #define KERNBASE 0xc0000000 /* start of kernel virtual */ #define VM_MIN_KERNEL_ADDRESS KERNBASE #define VM_MAX_KERNEL_ADDRESS 0xffffefff #define VM_MAX_SAFE_KERNEL_ADDRESS VM_MAX_KERNEL_ADDRESS +#endif #endif /* AIM/E500 */ #if !defined(LOCORE) struct pmap_physseg { struct pv_entry *pvent; char *attrs; }; #endif #define VM_PHYSSEG_MAX 16 /* 1? */ /* * The physical address space is densely populated on 32-bit systems, * but may not be on 64-bit ones. */ #ifdef __powerpc64__ #define VM_PHYSSEG_SPARSE #else #define VM_PHYSSEG_DENSE #endif /* * Create two free page pools: VM_FREEPOOL_DEFAULT is the default pool * from which physical pages are allocated and VM_FREEPOOL_DIRECT is * the pool from which physical pages for small UMA objects are * allocated. */ #define VM_NFREEPOOL 2 #define VM_FREEPOOL_DEFAULT 0 #define VM_FREEPOOL_DIRECT 1 /* * Create one free page list. */ #define VM_NFREELIST 1 #define VM_FREELIST_DEFAULT 0 /* * The largest allocation size is 4MB. */ #define VM_NFREEORDER 11 /* * Disable superpage reservations. */ #ifndef VM_NRESERVLEVEL #define VM_NRESERVLEVEL 0 #endif #ifndef VM_INITIAL_PAGEIN #define VM_INITIAL_PAGEIN 16 #endif #ifndef SGROWSIZ #define SGROWSIZ (128UL*1024) /* amount to grow stack */ #endif /* * How many physical pages per kmem arena virtual page. */ #ifndef VM_KMEM_SIZE_SCALE #define VM_KMEM_SIZE_SCALE (3) #endif /* * Optional floor (in bytes) on the size of the kmem arena. */ #ifndef VM_KMEM_SIZE_MIN #define VM_KMEM_SIZE_MIN (12 * 1024 * 1024) #endif /* * Optional ceiling (in bytes) on the size of the kmem arena: 40% of the * usable KVA space. */ #ifndef VM_KMEM_SIZE_MAX #define VM_KMEM_SIZE_MAX ((VM_MAX_SAFE_KERNEL_ADDRESS - \ VM_MIN_KERNEL_ADDRESS + 1) * 2 / 5) #endif #define ZERO_REGION_SIZE (64 * 1024) /* 64KB */ /* * On 32-bit OEA, the only purpose for which sf_buf is used is to implement * an opaque pointer required by the machine-independent parts of the kernel. * That pointer references the vm_page that is "mapped" by the sf_buf. The * actual mapping is provided by the direct virtual-to-physical mapping. * * On OEA64 and Book-E, we need to do something a little more complicated. Use * the runtime-detected hw_direct_map to pick between the two cases. Our * friends in vm_machdep.c will do the same to ensure nothing gets confused. */ #define SFBUF #define SFBUF_NOMD #define SFBUF_OPTIONAL_DIRECT_MAP hw_direct_map #define SFBUF_PHYS_DMAP(x) (x) #endif /* _MACHINE_VMPARAM_H_ */ Index: head/sys/powerpc/powerpc/db_interface.c =================================================================== --- head/sys/powerpc/powerpc/db_interface.c (revision 315463) +++ head/sys/powerpc/powerpc/db_interface.c (revision 315464) @@ -1,91 +1,95 @@ /* $FreeBSD$ */ /* $NetBSD: db_interface.c,v 1.20 2002/05/13 20:30:09 matt Exp $ */ /* $OpenBSD: db_interface.c,v 1.2 1996/12/28 06:21:50 rahnds Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int db_read_bytes(vm_offset_t addr, size_t size, char *data) { jmp_buf jb; void *prev_jb; char *src; int ret; prev_jb = kdb_jmpbuf(jb); ret = setjmp(jb); if (ret == 0) { src = (char *)addr; + if (size == 8) + *((uint64_t*)data) = *((uint64_t*)src); if (size == 4) *((int *)data) = *((int *)src); else if (size == 2) *((short *)data) = *((short *)src); else while (size-- > 0) *data++ = *src++; } (void)kdb_jmpbuf(prev_jb); return (ret); } int db_write_bytes(vm_offset_t addr, size_t size, char *data) { jmp_buf jb; void *prev_jb; char *dst; size_t cnt; int ret; prev_jb = kdb_jmpbuf(jb); ret = setjmp(jb); if (ret == 0) { dst = (char *)addr; cnt = size; - if (size == 4 && (addr & 3) == 0 && ((uintptr_t)data & 3) == 0) + if (size == 8) + *((uint64_t*)dst) = *((uint64_t*)data); + if (size == 4) *((int*)dst) = *((int*)data); else - if (size == 2 && (addr & 1) == 0 && ((uintptr_t)data & 1) == 0) + if (size == 2) *((short*)dst) = *((short*)data); else while (cnt-- > 0) *dst++ = *data++; kdb_cpu_sync_icache((void *)addr, size); } (void)kdb_jmpbuf(prev_jb); return (ret); } void db_show_mdpcpu(struct pcpu *pc) { db_printf("PPC: hwref = %#zx\n", pc->pc_hwref); db_printf("PPC: ipimask = %#x\n", pc->pc_ipimask); db_printf("PPC: pir = %#x\n", pc->pc_pir); } Index: head/sys/powerpc/powerpc/exec_machdep.c =================================================================== --- head/sys/powerpc/powerpc/exec_machdep.c (revision 315463) +++ head/sys/powerpc/powerpc/exec_machdep.c (revision 315464) @@ -1,1077 +1,1085 @@ /*- * Copyright (C) 1995, 1996 Wolfgang Solfrank. * Copyright (C) 1995, 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (C) 2001 Benno Rice * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * $NetBSD: machdep.c,v 1.74.2.1 2000/11/01 16:13:48 tv Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include "opt_fpu_emu.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef FPU_EMU #include #endif #ifdef COMPAT_FREEBSD32 #include #include #include typedef struct __ucontext32 { sigset_t uc_sigmask; mcontext32_t uc_mcontext; uint32_t uc_link; struct sigaltstack32 uc_stack; uint32_t uc_flags; uint32_t __spare__[4]; } ucontext32_t; struct sigframe32 { ucontext32_t sf_uc; struct siginfo32 sf_si; }; static int grab_mcontext32(struct thread *td, mcontext32_t *, int flags); #endif static int grab_mcontext(struct thread *, mcontext_t *, int); void sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask) { struct trapframe *tf; struct sigacts *psp; struct sigframe sf; struct thread *td; struct proc *p; #ifdef COMPAT_FREEBSD32 struct siginfo32 siginfo32; struct sigframe32 sf32; #endif size_t sfpsize; caddr_t sfp, usfp; int oonstack, rndfsize; int sig; int code; td = curthread; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); psp = p->p_sigacts; mtx_assert(&psp->ps_mtx, MA_OWNED); tf = td->td_frame; oonstack = sigonstack(tf->fixreg[1]); /* * Fill siginfo structure. */ ksi->ksi_info.si_signo = ksi->ksi_signo; ksi->ksi_info.si_addr = (void *)((tf->exc == EXC_DSI) ? tf->dar : tf->srr0); #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(p, SV_ILP32)) { siginfo_to_siginfo32(&ksi->ksi_info, &siginfo32); sig = siginfo32.si_signo; code = siginfo32.si_code; sfp = (caddr_t)&sf32; sfpsize = sizeof(sf32); rndfsize = roundup(sizeof(sf32), 16); /* * Save user context */ memset(&sf32, 0, sizeof(sf32)); grab_mcontext32(td, &sf32.sf_uc.uc_mcontext, 0); sf32.sf_uc.uc_sigmask = *mask; sf32.sf_uc.uc_stack.ss_sp = (uintptr_t)td->td_sigstk.ss_sp; sf32.sf_uc.uc_stack.ss_size = (uint32_t)td->td_sigstk.ss_size; sf32.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE; sf32.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0; } else { #endif sig = ksi->ksi_signo; code = ksi->ksi_code; sfp = (caddr_t)&sf; sfpsize = sizeof(sf); #ifdef __powerpc64__ /* * 64-bit PPC defines a 288 byte scratch region * below the stack. */ rndfsize = 288 + roundup(sizeof(sf), 48); #else rndfsize = roundup(sizeof(sf), 16); #endif /* * Save user context */ memset(&sf, 0, sizeof(sf)); grab_mcontext(td, &sf.sf_uc.uc_mcontext, 0); sf.sf_uc.uc_sigmask = *mask; sf.sf_uc.uc_stack = td->td_sigstk; sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE; sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0; #ifdef COMPAT_FREEBSD32 } #endif CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm, catcher, sig); /* * Allocate and validate space for the signal handler context. */ if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack && SIGISMEMBER(psp->ps_sigonstack, sig)) { usfp = (void *)(((uintptr_t)td->td_sigstk.ss_sp + td->td_sigstk.ss_size - rndfsize) & ~0xFul); } else { usfp = (void *)((tf->fixreg[1] - rndfsize) & ~0xFul); } /* * Save the floating-point state, if necessary, then copy it. */ /* XXX */ /* * Set up the registers to return to sigcode. * * r1/sp - sigframe ptr * lr - sig function, dispatched to by blrl in trampoline * r3 - sig number * r4 - SIGINFO ? &siginfo : exception code * r5 - user context * srr0 - trampoline function addr */ tf->lr = (register_t)catcher; tf->fixreg[1] = (register_t)usfp; tf->fixreg[FIRSTARG] = sig; #ifdef COMPAT_FREEBSD32 tf->fixreg[FIRSTARG+2] = (register_t)usfp + ((SV_PROC_FLAG(p, SV_ILP32)) ? offsetof(struct sigframe32, sf_uc) : offsetof(struct sigframe, sf_uc)); #else tf->fixreg[FIRSTARG+2] = (register_t)usfp + offsetof(struct sigframe, sf_uc); #endif if (SIGISMEMBER(psp->ps_siginfo, sig)) { /* * Signal handler installed with SA_SIGINFO. */ #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(p, SV_ILP32)) { sf32.sf_si = siginfo32; tf->fixreg[FIRSTARG+1] = (register_t)usfp + offsetof(struct sigframe32, sf_si); sf32.sf_si = siginfo32; } else { #endif tf->fixreg[FIRSTARG+1] = (register_t)usfp + offsetof(struct sigframe, sf_si); sf.sf_si = ksi->ksi_info; #ifdef COMPAT_FREEBSD32 } #endif } else { /* Old FreeBSD-style arguments. */ tf->fixreg[FIRSTARG+1] = code; tf->fixreg[FIRSTARG+3] = (tf->exc == EXC_DSI) ? tf->dar : tf->srr0; } mtx_unlock(&psp->ps_mtx); PROC_UNLOCK(p); tf->srr0 = (register_t)p->p_sysent->sv_sigcode_base; /* * copy the frame out to userland. */ if (copyout(sfp, usfp, sfpsize) != 0) { /* * Process has trashed its stack. Kill it. */ CTR2(KTR_SIG, "sendsig: sigexit td=%p sfp=%p", td, sfp); PROC_LOCK(p); sigexit(td, SIGILL); } CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->srr0, tf->fixreg[1]); PROC_LOCK(p); mtx_lock(&psp->ps_mtx); } int sys_sigreturn(struct thread *td, struct sigreturn_args *uap) { ucontext_t uc; int error; CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp); if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) { CTR1(KTR_SIG, "sigreturn: efault td=%p", td); return (EFAULT); } error = set_mcontext(td, &uc.uc_mcontext); if (error != 0) return (error); kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0); CTR3(KTR_SIG, "sigreturn: return td=%p pc=%#x sp=%#x", td, uc.uc_mcontext.mc_srr0, uc.uc_mcontext.mc_gpr[1]); return (EJUSTRETURN); } #ifdef COMPAT_FREEBSD4 int freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap) { return sys_sigreturn(td, (struct sigreturn_args *)uap); } #endif /* * Construct a PCB from a trapframe. This is called from kdb_trap() where * we want to start a backtrace from the function that caused us to enter * the debugger. We have the context in the trapframe, but base the trace * on the PCB. The PCB doesn't have to be perfect, as long as it contains * enough for a backtrace. */ void makectx(struct trapframe *tf, struct pcb *pcb) { pcb->pcb_lr = tf->srr0; pcb->pcb_sp = tf->fixreg[1]; } /* * get_mcontext/sendsig helper routine that doesn't touch the * proc lock */ static int grab_mcontext(struct thread *td, mcontext_t *mcp, int flags) { struct pcb *pcb; int i; pcb = td->td_pcb; memset(mcp, 0, sizeof(mcontext_t)); mcp->mc_vers = _MC_VERSION; mcp->mc_flags = 0; memcpy(&mcp->mc_frame, td->td_frame, sizeof(struct trapframe)); if (flags & GET_MC_CLEAR_RET) { mcp->mc_gpr[3] = 0; mcp->mc_gpr[4] = 0; } /* * This assumes that floating-point context is *not* lazy, * so if the thread has used FP there would have been a * FP-unavailable exception that would have set things up * correctly. */ if (pcb->pcb_flags & PCB_FPREGS) { if (pcb->pcb_flags & PCB_FPU) { KASSERT(td == curthread, ("get_mcontext: fp save not curthread")); critical_enter(); save_fpu(td); critical_exit(); } mcp->mc_flags |= _MC_FP_VALID; memcpy(&mcp->mc_fpscr, &pcb->pcb_fpu.fpscr, sizeof(double)); for (i = 0; i < 32; i++) memcpy(&mcp->mc_fpreg[i], &pcb->pcb_fpu.fpr[i].fpr, sizeof(double)); } if (pcb->pcb_flags & PCB_VSX) { for (i = 0; i < 32; i++) memcpy(&mcp->mc_vsxfpreg[i], &pcb->pcb_fpu.fpr[i].vsr[2], sizeof(double)); } /* * Repeat for Altivec context */ if (pcb->pcb_flags & PCB_VEC) { KASSERT(td == curthread, ("get_mcontext: fp save not curthread")); critical_enter(); save_vec(td); critical_exit(); mcp->mc_flags |= _MC_AV_VALID; mcp->mc_vscr = pcb->pcb_vec.vscr; mcp->mc_vrsave = pcb->pcb_vec.vrsave; memcpy(mcp->mc_avec, pcb->pcb_vec.vr, sizeof(mcp->mc_avec)); } mcp->mc_len = sizeof(*mcp); return (0); } int get_mcontext(struct thread *td, mcontext_t *mcp, int flags) { int error; error = grab_mcontext(td, mcp, flags); if (error == 0) { PROC_LOCK(curthread->td_proc); mcp->mc_onstack = sigonstack(td->td_frame->fixreg[1]); PROC_UNLOCK(curthread->td_proc); } return (error); } int set_mcontext(struct thread *td, mcontext_t *mcp) { struct pcb *pcb; struct trapframe *tf; register_t tls; int i; pcb = td->td_pcb; tf = td->td_frame; if (mcp->mc_vers != _MC_VERSION || mcp->mc_len != sizeof(*mcp)) return (EINVAL); /* * Don't let the user set privileged MSR bits */ if ((mcp->mc_srr1 & PSL_USERSTATIC) != (tf->srr1 & PSL_USERSTATIC)) { return (EINVAL); } /* Copy trapframe, preserving TLS pointer across context change */ if (SV_PROC_FLAG(td->td_proc, SV_LP64)) tls = tf->fixreg[13]; else tls = tf->fixreg[2]; memcpy(tf, mcp->mc_frame, sizeof(mcp->mc_frame)); if (SV_PROC_FLAG(td->td_proc, SV_LP64)) tf->fixreg[13] = tls; else tf->fixreg[2] = tls; if (mcp->mc_flags & _MC_FP_VALID) { /* enable_fpu() will happen lazily on a fault */ pcb->pcb_flags |= PCB_FPREGS; memcpy(&pcb->pcb_fpu.fpscr, &mcp->mc_fpscr, sizeof(double)); bzero(pcb->pcb_fpu.fpr, sizeof(pcb->pcb_fpu.fpr)); for (i = 0; i < 32; i++) { memcpy(&pcb->pcb_fpu.fpr[i].fpr, &mcp->mc_fpreg[i], sizeof(double)); memcpy(&pcb->pcb_fpu.fpr[i].vsr[2], &mcp->mc_vsxfpreg[i], sizeof(double)); } } if (mcp->mc_flags & _MC_AV_VALID) { if ((pcb->pcb_flags & PCB_VEC) != PCB_VEC) { critical_enter(); enable_vec(td); critical_exit(); } pcb->pcb_vec.vscr = mcp->mc_vscr; pcb->pcb_vec.vrsave = mcp->mc_vrsave; memcpy(pcb->pcb_vec.vr, mcp->mc_avec, sizeof(mcp->mc_avec)); } return (0); } /* * Set set up registers on exec. */ void exec_setregs(struct thread *td, struct image_params *imgp, u_long stack) { struct trapframe *tf; register_t argc; tf = trapframe(td); bzero(tf, sizeof *tf); #ifdef __powerpc64__ tf->fixreg[1] = -roundup(-stack + 48, 16); #else tf->fixreg[1] = -roundup(-stack + 8, 16); #endif /* * Set up arguments for _start(): * _start(argc, argv, envp, obj, cleanup, ps_strings); * * Notes: * - obj and cleanup are the auxilliary and termination * vectors. They are fixed up by ld.elf_so. * - ps_strings is a NetBSD extention, and will be * ignored by executables which are strictly * compliant with the SVR4 ABI. * * XXX We have to set both regs and retval here due to different * XXX calling convention in trap.c and init_main.c. */ /* Collect argc from the user stack */ argc = fuword((void *)stack); /* * XXX PG: these get overwritten in the syscall return code. * execve() should return EJUSTRETURN, like it does on NetBSD. * Emulate by setting the syscall return value cells. The * registers still have to be set for init's fork trampoline. */ td->td_retval[0] = argc; td->td_retval[1] = stack + sizeof(register_t); tf->fixreg[3] = argc; tf->fixreg[4] = stack + sizeof(register_t); tf->fixreg[5] = stack + (2 + argc)*sizeof(register_t); tf->fixreg[6] = 0; /* auxillary vector */ tf->fixreg[7] = 0; /* termination vector */ tf->fixreg[8] = (register_t)imgp->ps_strings; /* NetBSD extension */ tf->srr0 = imgp->entry_addr; #ifdef __powerpc64__ tf->fixreg[12] = imgp->entry_addr; + #ifdef AIM tf->srr1 = PSL_SF | PSL_USERSET | PSL_FE_DFLT; if (mfmsr() & PSL_HV) tf->srr1 |= PSL_HV; + #elif defined(BOOKE) + tf->srr1 = PSL_CM | PSL_USERSET | PSL_FE_DFLT; + #endif #else tf->srr1 = PSL_USERSET | PSL_FE_DFLT; #endif td->td_pcb->pcb_flags = 0; } #ifdef COMPAT_FREEBSD32 void ppc32_setregs(struct thread *td, struct image_params *imgp, u_long stack) { struct trapframe *tf; uint32_t argc; tf = trapframe(td); bzero(tf, sizeof *tf); tf->fixreg[1] = -roundup(-stack + 8, 16); argc = fuword32((void *)stack); td->td_retval[0] = argc; td->td_retval[1] = stack + sizeof(uint32_t); tf->fixreg[3] = argc; tf->fixreg[4] = stack + sizeof(uint32_t); tf->fixreg[5] = stack + (2 + argc)*sizeof(uint32_t); tf->fixreg[6] = 0; /* auxillary vector */ tf->fixreg[7] = 0; /* termination vector */ tf->fixreg[8] = (register_t)imgp->ps_strings; /* NetBSD extension */ tf->srr0 = imgp->entry_addr; tf->srr1 = PSL_USERSET | PSL_FE_DFLT; +#ifdef AIM tf->srr1 &= ~PSL_SF; if (mfmsr() & PSL_HV) tf->srr1 |= PSL_HV; +#elif defined(BOOKE) + tf->srr1 &= ~PSL_CM; +#endif td->td_pcb->pcb_flags = 0; } #endif int fill_regs(struct thread *td, struct reg *regs) { struct trapframe *tf; tf = td->td_frame; memcpy(regs, tf, sizeof(struct reg)); return (0); } int fill_dbregs(struct thread *td, struct dbreg *dbregs) { /* No debug registers on PowerPC */ return (ENOSYS); } int fill_fpregs(struct thread *td, struct fpreg *fpregs) { struct pcb *pcb; int i; pcb = td->td_pcb; if ((pcb->pcb_flags & PCB_FPREGS) == 0) memset(fpregs, 0, sizeof(struct fpreg)); else { memcpy(&fpregs->fpscr, &pcb->pcb_fpu.fpscr, sizeof(double)); for (i = 0; i < 32; i++) memcpy(&fpregs->fpreg[i], &pcb->pcb_fpu.fpr[i].fpr, sizeof(double)); } return (0); } int set_regs(struct thread *td, struct reg *regs) { struct trapframe *tf; tf = td->td_frame; memcpy(tf, regs, sizeof(struct reg)); return (0); } int set_dbregs(struct thread *td, struct dbreg *dbregs) { /* No debug registers on PowerPC */ return (ENOSYS); } int set_fpregs(struct thread *td, struct fpreg *fpregs) { struct pcb *pcb; int i; pcb = td->td_pcb; pcb->pcb_flags |= PCB_FPREGS; memcpy(&pcb->pcb_fpu.fpscr, &fpregs->fpscr, sizeof(double)); for (i = 0; i < 32; i++) { memcpy(&pcb->pcb_fpu.fpr[i].fpr, &fpregs->fpreg[i], sizeof(double)); } return (0); } #ifdef COMPAT_FREEBSD32 int set_regs32(struct thread *td, struct reg32 *regs) { struct trapframe *tf; int i; tf = td->td_frame; for (i = 0; i < 32; i++) tf->fixreg[i] = regs->fixreg[i]; tf->lr = regs->lr; tf->cr = regs->cr; tf->xer = regs->xer; tf->ctr = regs->ctr; tf->srr0 = regs->pc; return (0); } int fill_regs32(struct thread *td, struct reg32 *regs) { struct trapframe *tf; int i; tf = td->td_frame; for (i = 0; i < 32; i++) regs->fixreg[i] = tf->fixreg[i]; regs->lr = tf->lr; regs->cr = tf->cr; regs->xer = tf->xer; regs->ctr = tf->ctr; regs->pc = tf->srr0; return (0); } static int grab_mcontext32(struct thread *td, mcontext32_t *mcp, int flags) { mcontext_t mcp64; int i, error; error = grab_mcontext(td, &mcp64, flags); if (error != 0) return (error); mcp->mc_vers = mcp64.mc_vers; mcp->mc_flags = mcp64.mc_flags; mcp->mc_onstack = mcp64.mc_onstack; mcp->mc_len = mcp64.mc_len; memcpy(mcp->mc_avec,mcp64.mc_avec,sizeof(mcp64.mc_avec)); memcpy(mcp->mc_av,mcp64.mc_av,sizeof(mcp64.mc_av)); for (i = 0; i < 42; i++) mcp->mc_frame[i] = mcp64.mc_frame[i]; memcpy(mcp->mc_fpreg,mcp64.mc_fpreg,sizeof(mcp64.mc_fpreg)); memcpy(mcp->mc_vsxfpreg,mcp64.mc_vsxfpreg,sizeof(mcp64.mc_vsxfpreg)); return (0); } static int get_mcontext32(struct thread *td, mcontext32_t *mcp, int flags) { int error; error = grab_mcontext32(td, mcp, flags); if (error == 0) { PROC_LOCK(curthread->td_proc); mcp->mc_onstack = sigonstack(td->td_frame->fixreg[1]); PROC_UNLOCK(curthread->td_proc); } return (error); } static int set_mcontext32(struct thread *td, mcontext32_t *mcp) { mcontext_t mcp64; int i, error; mcp64.mc_vers = mcp->mc_vers; mcp64.mc_flags = mcp->mc_flags; mcp64.mc_onstack = mcp->mc_onstack; mcp64.mc_len = mcp->mc_len; memcpy(mcp64.mc_avec,mcp->mc_avec,sizeof(mcp64.mc_avec)); memcpy(mcp64.mc_av,mcp->mc_av,sizeof(mcp64.mc_av)); for (i = 0; i < 42; i++) mcp64.mc_frame[i] = mcp->mc_frame[i]; mcp64.mc_srr1 |= (td->td_frame->srr1 & 0xFFFFFFFF00000000ULL); memcpy(mcp64.mc_fpreg,mcp->mc_fpreg,sizeof(mcp64.mc_fpreg)); memcpy(mcp64.mc_vsxfpreg,mcp->mc_vsxfpreg,sizeof(mcp64.mc_vsxfpreg)); error = set_mcontext(td, &mcp64); return (error); } #endif #ifdef COMPAT_FREEBSD32 int freebsd32_sigreturn(struct thread *td, struct freebsd32_sigreturn_args *uap) { ucontext32_t uc; int error; CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp); if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) { CTR1(KTR_SIG, "sigreturn: efault td=%p", td); return (EFAULT); } error = set_mcontext32(td, &uc.uc_mcontext); if (error != 0) return (error); kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0); CTR3(KTR_SIG, "sigreturn: return td=%p pc=%#x sp=%#x", td, uc.uc_mcontext.mc_srr0, uc.uc_mcontext.mc_gpr[1]); return (EJUSTRETURN); } /* * The first two fields of a ucontext_t are the signal mask and the machine * context. The next field is uc_link; we want to avoid destroying the link * when copying out contexts. */ #define UC32_COPY_SIZE offsetof(ucontext32_t, uc_link) int freebsd32_getcontext(struct thread *td, struct freebsd32_getcontext_args *uap) { ucontext32_t uc; int ret; if (uap->ucp == NULL) ret = EINVAL; else { get_mcontext32(td, &uc.uc_mcontext, GET_MC_CLEAR_RET); PROC_LOCK(td->td_proc); uc.uc_sigmask = td->td_sigmask; PROC_UNLOCK(td->td_proc); ret = copyout(&uc, uap->ucp, UC32_COPY_SIZE); } return (ret); } int freebsd32_setcontext(struct thread *td, struct freebsd32_setcontext_args *uap) { ucontext32_t uc; int ret; if (uap->ucp == NULL) ret = EINVAL; else { ret = copyin(uap->ucp, &uc, UC32_COPY_SIZE); if (ret == 0) { ret = set_mcontext32(td, &uc.uc_mcontext); if (ret == 0) { kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0); } } } return (ret == 0 ? EJUSTRETURN : ret); } int freebsd32_swapcontext(struct thread *td, struct freebsd32_swapcontext_args *uap) { ucontext32_t uc; int ret; if (uap->oucp == NULL || uap->ucp == NULL) ret = EINVAL; else { get_mcontext32(td, &uc.uc_mcontext, GET_MC_CLEAR_RET); PROC_LOCK(td->td_proc); uc.uc_sigmask = td->td_sigmask; PROC_UNLOCK(td->td_proc); ret = copyout(&uc, uap->oucp, UC32_COPY_SIZE); if (ret == 0) { ret = copyin(uap->ucp, &uc, UC32_COPY_SIZE); if (ret == 0) { ret = set_mcontext32(td, &uc.uc_mcontext); if (ret == 0) { kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0); } } } } return (ret == 0 ? EJUSTRETURN : ret); } #endif void cpu_set_syscall_retval(struct thread *td, int error) { struct proc *p; struct trapframe *tf; int fixup; if (error == EJUSTRETURN) return; p = td->td_proc; tf = td->td_frame; if (tf->fixreg[0] == SYS___syscall && (SV_PROC_FLAG(p, SV_ILP32))) { int code = tf->fixreg[FIRSTARG + 1]; if (p->p_sysent->sv_mask) code &= p->p_sysent->sv_mask; fixup = ( #if defined(COMPAT_FREEBSD6) && defined(SYS_freebsd6_lseek) code != SYS_freebsd6_lseek && #endif code != SYS_lseek) ? 1 : 0; } else fixup = 0; switch (error) { case 0: if (fixup) { /* * 64-bit return, 32-bit syscall. Fixup byte order */ tf->fixreg[FIRSTARG] = 0; tf->fixreg[FIRSTARG + 1] = td->td_retval[0]; } else { tf->fixreg[FIRSTARG] = td->td_retval[0]; tf->fixreg[FIRSTARG + 1] = td->td_retval[1]; } tf->cr &= ~0x10000000; /* Unset summary overflow */ break; case ERESTART: /* * Set user's pc back to redo the system call. */ tf->srr0 -= 4; break; default: tf->fixreg[FIRSTARG] = SV_ABI_ERRNO(p, error); tf->cr |= 0x10000000; /* Set summary overflow */ break; } } /* * Threading functions */ void cpu_thread_exit(struct thread *td) { } void cpu_thread_clean(struct thread *td) { } void cpu_thread_alloc(struct thread *td) { struct pcb *pcb; pcb = (struct pcb *)((td->td_kstack + td->td_kstack_pages * PAGE_SIZE - sizeof(struct pcb)) & ~0x2fUL); td->td_pcb = pcb; td->td_frame = (struct trapframe *)pcb - 1; } void cpu_thread_free(struct thread *td) { } int cpu_set_user_tls(struct thread *td, void *tls_base) { if (SV_PROC_FLAG(td->td_proc, SV_LP64)) td->td_frame->fixreg[13] = (register_t)tls_base + 0x7010; else td->td_frame->fixreg[2] = (register_t)tls_base + 0x7008; return (0); } void cpu_copy_thread(struct thread *td, struct thread *td0) { struct pcb *pcb2; struct trapframe *tf; struct callframe *cf; pcb2 = td->td_pcb; /* Copy the upcall pcb */ bcopy(td0->td_pcb, pcb2, sizeof(*pcb2)); /* Create a stack for the new thread */ tf = td->td_frame; bcopy(td0->td_frame, tf, sizeof(struct trapframe)); tf->fixreg[FIRSTARG] = 0; tf->fixreg[FIRSTARG + 1] = 0; tf->cr &= ~0x10000000; /* Set registers for trampoline to user mode. */ cf = (struct callframe *)tf - 1; memset(cf, 0, sizeof(struct callframe)); cf->cf_func = (register_t)fork_return; cf->cf_arg0 = (register_t)td; cf->cf_arg1 = (register_t)tf; pcb2->pcb_sp = (register_t)cf; #if defined(__powerpc64__) && (!defined(_CALL_ELF) || _CALL_ELF == 1) pcb2->pcb_lr = ((register_t *)fork_trampoline)[0]; pcb2->pcb_toc = ((register_t *)fork_trampoline)[1]; #else pcb2->pcb_lr = (register_t)fork_trampoline; pcb2->pcb_context[0] = pcb2->pcb_lr; #endif pcb2->pcb_cpu.aim.usr_vsid = 0; /* Setup to release spin count in fork_exit(). */ td->td_md.md_spinlock_count = 1; td->td_md.md_saved_msr = PSL_KERNSET; } void cpu_set_upcall(struct thread *td, void (*entry)(void *), void *arg, stack_t *stack) { struct trapframe *tf; uintptr_t sp; tf = td->td_frame; /* align stack and alloc space for frame ptr and saved LR */ #ifdef __powerpc64__ sp = ((uintptr_t)stack->ss_sp + stack->ss_size - 48) & ~0x1f; #else sp = ((uintptr_t)stack->ss_sp + stack->ss_size - 8) & ~0x1f; #endif bzero(tf, sizeof(struct trapframe)); tf->fixreg[1] = (register_t)sp; tf->fixreg[3] = (register_t)arg; if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { tf->srr0 = (register_t)entry; tf->srr1 = PSL_USERSET | PSL_FE_DFLT; #ifdef __powerpc64__ tf->srr1 &= ~PSL_SF; #endif } else { #ifdef __powerpc64__ register_t entry_desc[3]; (void)copyin((void *)entry, entry_desc, sizeof(entry_desc)); tf->srr0 = entry_desc[0]; tf->fixreg[2] = entry_desc[1]; tf->fixreg[11] = entry_desc[2]; tf->srr1 = PSL_SF | PSL_USERSET | PSL_FE_DFLT; #endif } #ifdef __powerpc64__ if (mfmsr() & PSL_HV) tf->srr1 |= PSL_HV; #endif td->td_pcb->pcb_flags = 0; td->td_retval[0] = (register_t)entry; td->td_retval[1] = 0; } int ppc_instr_emulate(struct trapframe *frame, struct pcb *pcb) { uint32_t instr; int reg, sig; instr = fuword32((void *)frame->srr0); sig = SIGILL; if ((instr & 0xfc1fffff) == 0x7c1f42a6) { /* mfpvr */ reg = (instr & ~0xfc1fffff) >> 21; frame->fixreg[reg] = mfpvr(); frame->srr0 += 4; return (0); } if ((instr & 0xfc000ffe) == 0x7c0004ac) { /* various sync */ powerpc_sync(); /* Do a heavy-weight sync */ frame->srr0 += 4; return (0); } #ifdef FPU_EMU if (!(pcb->pcb_flags & PCB_FPREGS)) { bzero(&pcb->pcb_fpu, sizeof(pcb->pcb_fpu)); pcb->pcb_flags |= PCB_FPREGS; } sig = fpu_emulate(frame, &pcb->pcb_fpu); #endif return (sig); } Index: head/sys/powerpc/powerpc/genassym.c =================================================================== --- head/sys/powerpc/powerpc/genassym.c (revision 315463) +++ head/sys/powerpc/powerpc/genassym.c (revision 315464) @@ -1,262 +1,271 @@ /*- * Copyright (c) 1982, 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)genassym.c 5.11 (Berkeley) 5/10/91 * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include ASSYM(PC_CURTHREAD, offsetof(struct pcpu, pc_curthread)); ASSYM(PC_CURPCB, offsetof(struct pcpu, pc_curpcb)); ASSYM(PC_CURPMAP, offsetof(struct pcpu, pc_curpmap)); ASSYM(PC_TEMPSAVE, offsetof(struct pcpu, pc_tempsave)); ASSYM(PC_DISISAVE, offsetof(struct pcpu, pc_disisave)); ASSYM(PC_DBSAVE, offsetof(struct pcpu, pc_dbsave)); ASSYM(PC_RESTORE, offsetof(struct pcpu, pc_restore)); #if defined(BOOKE) ASSYM(PC_BOOKE_CRITSAVE, offsetof(struct pcpu, pc_booke_critsave)); ASSYM(PC_BOOKE_MCHKSAVE, offsetof(struct pcpu, pc_booke_mchksave)); ASSYM(PC_BOOKE_TLBSAVE, offsetof(struct pcpu, pc_booke_tlbsave)); ASSYM(PC_BOOKE_TLB_LEVEL, offsetof(struct pcpu, pc_booke_tlb_level)); ASSYM(PC_BOOKE_TLB_LOCK, offsetof(struct pcpu, pc_booke_tlb_lock)); #endif ASSYM(CPUSAVE_R27, CPUSAVE_R27*sizeof(register_t)); ASSYM(CPUSAVE_R28, CPUSAVE_R28*sizeof(register_t)); ASSYM(CPUSAVE_R29, CPUSAVE_R29*sizeof(register_t)); ASSYM(CPUSAVE_R30, CPUSAVE_R30*sizeof(register_t)); ASSYM(CPUSAVE_R31, CPUSAVE_R31*sizeof(register_t)); ASSYM(CPUSAVE_SRR0, CPUSAVE_SRR0*sizeof(register_t)); ASSYM(CPUSAVE_SRR1, CPUSAVE_SRR1*sizeof(register_t)); ASSYM(CPUSAVE_AIM_DAR, CPUSAVE_AIM_DAR*sizeof(register_t)); ASSYM(CPUSAVE_AIM_DSISR, CPUSAVE_AIM_DSISR*sizeof(register_t)); ASSYM(CPUSAVE_BOOKE_DEAR, CPUSAVE_BOOKE_DEAR*sizeof(register_t)); ASSYM(CPUSAVE_BOOKE_ESR, CPUSAVE_BOOKE_ESR*sizeof(register_t)); +ASSYM(BOOKE_CRITSAVE_SRR0, BOOKE_CRITSAVE_SRR0*sizeof(register_t)); +ASSYM(BOOKE_CRITSAVE_SRR1, BOOKE_CRITSAVE_SRR1*sizeof(register_t)); ASSYM(TLBSAVE_BOOKE_LR, TLBSAVE_BOOKE_LR*sizeof(register_t)); ASSYM(TLBSAVE_BOOKE_CR, TLBSAVE_BOOKE_CR*sizeof(register_t)); ASSYM(TLBSAVE_BOOKE_SRR0, TLBSAVE_BOOKE_SRR0*sizeof(register_t)); ASSYM(TLBSAVE_BOOKE_SRR1, TLBSAVE_BOOKE_SRR1*sizeof(register_t)); ASSYM(TLBSAVE_BOOKE_R20, TLBSAVE_BOOKE_R20*sizeof(register_t)); ASSYM(TLBSAVE_BOOKE_R21, TLBSAVE_BOOKE_R21*sizeof(register_t)); ASSYM(TLBSAVE_BOOKE_R22, TLBSAVE_BOOKE_R22*sizeof(register_t)); ASSYM(TLBSAVE_BOOKE_R23, TLBSAVE_BOOKE_R23*sizeof(register_t)); ASSYM(TLBSAVE_BOOKE_R24, TLBSAVE_BOOKE_R24*sizeof(register_t)); ASSYM(TLBSAVE_BOOKE_R25, TLBSAVE_BOOKE_R25*sizeof(register_t)); ASSYM(TLBSAVE_BOOKE_R26, TLBSAVE_BOOKE_R26*sizeof(register_t)); ASSYM(TLBSAVE_BOOKE_R27, TLBSAVE_BOOKE_R27*sizeof(register_t)); ASSYM(TLBSAVE_BOOKE_R28, TLBSAVE_BOOKE_R28*sizeof(register_t)); ASSYM(TLBSAVE_BOOKE_R29, TLBSAVE_BOOKE_R29*sizeof(register_t)); ASSYM(TLBSAVE_BOOKE_R30, TLBSAVE_BOOKE_R30*sizeof(register_t)); ASSYM(TLBSAVE_BOOKE_R31, TLBSAVE_BOOKE_R31*sizeof(register_t)); ASSYM(MTX_LOCK, offsetof(struct mtx, mtx_lock)); #if defined(AIM) ASSYM(USER_ADDR, USER_ADDR); #ifdef __powerpc64__ ASSYM(PC_KERNSLB, offsetof(struct pcpu, pc_slb)); ASSYM(PC_USERSLB, offsetof(struct pcpu, pc_userslb)); ASSYM(PC_SLBSAVE, offsetof(struct pcpu, pc_slbsave)); ASSYM(PC_SLBSTACK, offsetof(struct pcpu, pc_slbstack)); ASSYM(USER_SLB_SLOT, USER_SLB_SLOT); ASSYM(USER_SLB_SLBE, USER_SLB_SLBE); ASSYM(SEGMENT_MASK, SEGMENT_MASK); #else ASSYM(PM_SR, offsetof(struct pmap, pm_sr)); ASSYM(USER_SR, USER_SR); #endif #elif defined(BOOKE) +#ifdef __powerpc64__ +ASSYM(PM_PP2D, offsetof(struct pmap, pm_pp2d)); +#else ASSYM(PM_PDIR, offsetof(struct pmap, pm_pdir)); +#endif /* * With pte_t being a bitfield struct, these fields cannot be addressed via * offsetof(). */ ASSYM(PTE_RPN, 0); ASSYM(PTE_FLAGS, sizeof(uint32_t)); #if defined(BOOKE_E500) ASSYM(TLB_ENTRY_SIZE, sizeof(struct tlb_entry)); #endif #endif #ifdef __powerpc64__ ASSYM(FSP, 48); #else ASSYM(FSP, 8); #endif ASSYM(FRAMELEN, FRAMELEN); ASSYM(FRAME_0, offsetof(struct trapframe, fixreg[0])); ASSYM(FRAME_1, offsetof(struct trapframe, fixreg[1])); ASSYM(FRAME_2, offsetof(struct trapframe, fixreg[2])); ASSYM(FRAME_3, offsetof(struct trapframe, fixreg[3])); ASSYM(FRAME_4, offsetof(struct trapframe, fixreg[4])); ASSYM(FRAME_5, offsetof(struct trapframe, fixreg[5])); ASSYM(FRAME_6, offsetof(struct trapframe, fixreg[6])); ASSYM(FRAME_7, offsetof(struct trapframe, fixreg[7])); ASSYM(FRAME_8, offsetof(struct trapframe, fixreg[8])); ASSYM(FRAME_9, offsetof(struct trapframe, fixreg[9])); ASSYM(FRAME_10, offsetof(struct trapframe, fixreg[10])); ASSYM(FRAME_11, offsetof(struct trapframe, fixreg[11])); ASSYM(FRAME_12, offsetof(struct trapframe, fixreg[12])); ASSYM(FRAME_13, offsetof(struct trapframe, fixreg[13])); ASSYM(FRAME_14, offsetof(struct trapframe, fixreg[14])); ASSYM(FRAME_15, offsetof(struct trapframe, fixreg[15])); ASSYM(FRAME_16, offsetof(struct trapframe, fixreg[16])); ASSYM(FRAME_17, offsetof(struct trapframe, fixreg[17])); ASSYM(FRAME_18, offsetof(struct trapframe, fixreg[18])); ASSYM(FRAME_19, offsetof(struct trapframe, fixreg[19])); ASSYM(FRAME_20, offsetof(struct trapframe, fixreg[20])); ASSYM(FRAME_21, offsetof(struct trapframe, fixreg[21])); ASSYM(FRAME_22, offsetof(struct trapframe, fixreg[22])); ASSYM(FRAME_23, offsetof(struct trapframe, fixreg[23])); ASSYM(FRAME_24, offsetof(struct trapframe, fixreg[24])); ASSYM(FRAME_25, offsetof(struct trapframe, fixreg[25])); ASSYM(FRAME_26, offsetof(struct trapframe, fixreg[26])); ASSYM(FRAME_27, offsetof(struct trapframe, fixreg[27])); ASSYM(FRAME_28, offsetof(struct trapframe, fixreg[28])); ASSYM(FRAME_29, offsetof(struct trapframe, fixreg[29])); ASSYM(FRAME_30, offsetof(struct trapframe, fixreg[30])); ASSYM(FRAME_31, offsetof(struct trapframe, fixreg[31])); ASSYM(FRAME_LR, offsetof(struct trapframe, lr)); ASSYM(FRAME_CR, offsetof(struct trapframe, cr)); ASSYM(FRAME_CTR, offsetof(struct trapframe, ctr)); ASSYM(FRAME_XER, offsetof(struct trapframe, xer)); ASSYM(FRAME_SRR0, offsetof(struct trapframe, srr0)); ASSYM(FRAME_SRR1, offsetof(struct trapframe, srr1)); ASSYM(FRAME_EXC, offsetof(struct trapframe, exc)); ASSYM(FRAME_AIM_DAR, offsetof(struct trapframe, dar)); ASSYM(FRAME_AIM_DSISR, offsetof(struct trapframe, cpu.aim.dsisr)); ASSYM(FRAME_BOOKE_DEAR, offsetof(struct trapframe, dar)); ASSYM(FRAME_BOOKE_ESR, offsetof(struct trapframe, cpu.booke.esr)); ASSYM(FRAME_BOOKE_DBCR0, offsetof(struct trapframe, cpu.booke.dbcr0)); ASSYM(CF_FUNC, offsetof(struct callframe, cf_func)); ASSYM(CF_ARG0, offsetof(struct callframe, cf_arg0)); ASSYM(CF_ARG1, offsetof(struct callframe, cf_arg1)); ASSYM(CF_SIZE, sizeof(struct callframe)); ASSYM(PCB_CONTEXT, offsetof(struct pcb, pcb_context)); ASSYM(PCB_CR, offsetof(struct pcb, pcb_cr)); ASSYM(PCB_SP, offsetof(struct pcb, pcb_sp)); ASSYM(PCB_TOC, offsetof(struct pcb, pcb_toc)); ASSYM(PCB_LR, offsetof(struct pcb, pcb_lr)); ASSYM(PCB_ONFAULT, offsetof(struct pcb, pcb_onfault)); ASSYM(PCB_FLAGS, offsetof(struct pcb, pcb_flags)); ASSYM(PCB_FPU, PCB_FPU); ASSYM(PCB_VEC, PCB_VEC); ASSYM(PCB_AIM_USR_VSID, offsetof(struct pcb, pcb_cpu.aim.usr_vsid)); ASSYM(PCB_BOOKE_DBCR0, offsetof(struct pcb, pcb_cpu.booke.dbcr0)); ASSYM(TD_LOCK, offsetof(struct thread, td_lock)); ASSYM(TD_PROC, offsetof(struct thread, td_proc)); ASSYM(TD_PCB, offsetof(struct thread, td_pcb)); ASSYM(P_VMSPACE, offsetof(struct proc, p_vmspace)); ASSYM(VM_PMAP, offsetof(struct vmspace, vm_pmap)); ASSYM(TD_FLAGS, offsetof(struct thread, td_flags)); ASSYM(TDF_ASTPENDING, TDF_ASTPENDING); ASSYM(TDF_NEEDRESCHED, TDF_NEEDRESCHED); ASSYM(SF_UC, offsetof(struct sigframe, sf_uc)); ASSYM(KERNBASE, KERNBASE); ASSYM(MAXCOMLEN, MAXCOMLEN); +#ifdef __powerpc64__ +ASSYM(PSL_CM, PSL_CM); +#endif ASSYM(PSL_DE, PSL_DE); ASSYM(PSL_DS, PSL_DS); ASSYM(PSL_IS, PSL_IS); ASSYM(PSL_CE, PSL_CE); ASSYM(PSL_UCLE, PSL_UCLE); ASSYM(PSL_WE, PSL_WE); ASSYM(PSL_UBLE, PSL_UBLE); #if defined(BOOKE_E500) ASSYM(PSL_KERNSET_INIT, PSL_KERNSET_INIT); #endif #if defined(AIM) && defined(__powerpc64__) ASSYM(PSL_SF, PSL_SF); ASSYM(PSL_HV, PSL_HV); #endif ASSYM(PSL_POW, PSL_POW); ASSYM(PSL_ILE, PSL_ILE); ASSYM(PSL_LE, PSL_LE); ASSYM(PSL_SE, PSL_SE); ASSYM(PSL_RI, PSL_RI); ASSYM(PSL_DR, PSL_DR); ASSYM(PSL_IP, PSL_IP); ASSYM(PSL_IR, PSL_IR); ASSYM(PSL_FE_DIS, PSL_FE_DIS); ASSYM(PSL_FE_NONREC, PSL_FE_NONREC); ASSYM(PSL_FE_PREC, PSL_FE_PREC); ASSYM(PSL_FE_REC, PSL_FE_REC); ASSYM(PSL_VEC, PSL_VEC); ASSYM(PSL_BE, PSL_BE); ASSYM(PSL_EE, PSL_EE); ASSYM(PSL_FE0, PSL_FE0); ASSYM(PSL_FE1, PSL_FE1); ASSYM(PSL_FP, PSL_FP); ASSYM(PSL_ME, PSL_ME); ASSYM(PSL_PR, PSL_PR); ASSYM(PSL_PMM, PSL_PMM); ASSYM(PSL_KERNSET, PSL_KERNSET); ASSYM(PSL_USERSET, PSL_USERSET); ASSYM(PSL_USERSTATIC, PSL_USERSTATIC);