Index: head/sys/net80211/ieee80211_node.h =================================================================== --- head/sys/net80211/ieee80211_node.h (revision 313461) +++ head/sys/net80211/ieee80211_node.h (revision 313462) @@ -1,489 +1,494 @@ /*- * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _NET80211_IEEE80211_NODE_H_ #define _NET80211_IEEE80211_NODE_H_ #include /* for ieee80211_nodestats */ #include /* for aggregation state */ /* * Each ieee80211com instance has a single timer that fires every * IEEE80211_INACT_WAIT seconds to handle "inactivity processing". * This is used to do node inactivity processing when operating * as an AP, adhoc or mesh mode. For inactivity processing each node * has a timeout set in its ni_inact field that is decremented * on each timeout and the node is reclaimed when the counter goes * to zero. We use different inactivity timeout values depending * on whether the node is associated and authorized (either by * 802.1x or open/shared key authentication) or associated but yet * to be authorized. The latter timeout is shorter to more aggressively * reclaim nodes that leave part way through the 802.1x exchange. */ #define IEEE80211_INACT_WAIT 15 /* inactivity interval (secs) */ #define IEEE80211_INACT_INIT (30/IEEE80211_INACT_WAIT) /* initial */ #define IEEE80211_INACT_AUTH (180/IEEE80211_INACT_WAIT) /* associated but not authorized */ #define IEEE80211_INACT_RUN (300/IEEE80211_INACT_WAIT) /* authorized */ #define IEEE80211_INACT_PROBE (30/IEEE80211_INACT_WAIT) /* probe */ #define IEEE80211_INACT_SCAN (300/IEEE80211_INACT_WAIT) /* scanned */ #define IEEE80211_TRANS_WAIT 2 /* mgt frame tx timer (secs) */ /* threshold for aging overlapping non-ERP bss */ #define IEEE80211_NONERP_PRESENT_AGE msecs_to_ticks(60*1000) #define IEEE80211_NODE_HASHSIZE 32 /* NB: hash size must be pow2 */ /* simple hash is enough for variation of macaddr */ #define IEEE80211_NODE_HASH(ic, addr) \ (((const uint8_t *)(addr))[IEEE80211_ADDR_LEN - 1] % \ IEEE80211_NODE_HASHSIZE) struct ieee80211_node_table; struct ieee80211com; struct ieee80211vap; struct ieee80211_scanparams; /* * Information element ``blob''. We use this structure * to capture management frame payloads that need to be * retained. Information elements within the payload that * we need to consult have references recorded. */ struct ieee80211_ies { /* the following are either NULL or point within data */ uint8_t *wpa_ie; /* captured WPA ie */ uint8_t *rsn_ie; /* captured RSN ie */ uint8_t *wme_ie; /* captured WME ie */ uint8_t *ath_ie; /* captured Atheros ie */ uint8_t *htcap_ie; /* captured HTCAP ie */ uint8_t *htinfo_ie; /* captured HTINFO ie */ uint8_t *tdma_ie; /* captured TDMA ie */ uint8_t *meshid_ie; /* captured MESH ID ie */ uint8_t *vhtcap_ie; /* captured VHTCAP ie */ uint8_t *vhtopmode_ie; /* captured VHTOPMODE ie */ uint8_t *vhtpwrenv_ie; /* captured VHTPWRENV ie */ uint8_t *apchanrep_ie; /* captured APCHANREP ie */ uint8_t *bssload_ie; /* captured BSSLOAD ie */ uint8_t *spare[4]; /* NB: these must be the last members of this structure */ uint8_t *data; /* frame data > 802.11 header */ int len; /* data size in bytes */ }; /* * 802.11s (Mesh) Peer Link FSM state. */ enum ieee80211_mesh_mlstate { IEEE80211_NODE_MESH_IDLE = 0, IEEE80211_NODE_MESH_OPENSNT = 1, /* open frame sent */ IEEE80211_NODE_MESH_OPENRCV = 2, /* open frame received */ IEEE80211_NODE_MESH_CONFIRMRCV = 3, /* confirm frame received */ IEEE80211_NODE_MESH_ESTABLISHED = 4, /* link established */ IEEE80211_NODE_MESH_HOLDING = 5, /* link closing */ }; #define IEEE80211_MESH_MLSTATE_BITS \ "\20\1IDLE\2OPENSNT\2OPENRCV\3CONFIRMRCV\4ESTABLISHED\5HOLDING" /* * Node specific information. Note that drivers are expected * to derive from this structure to add device-specific per-node * state. This is done by overriding the ic_node_* methods in * the ieee80211com structure. */ struct ieee80211_node { struct ieee80211vap *ni_vap; /* associated vap */ struct ieee80211com *ni_ic; /* copy from vap to save deref*/ struct ieee80211_node_table *ni_table; /* NB: may be NULL */ TAILQ_ENTRY(ieee80211_node) ni_list; /* list of all nodes */ LIST_ENTRY(ieee80211_node) ni_hash; /* hash collision list */ u_int ni_refcnt; /* count of held references */ u_int ni_flags; #define IEEE80211_NODE_AUTH 0x000001 /* authorized for data */ #define IEEE80211_NODE_QOS 0x000002 /* QoS enabled */ #define IEEE80211_NODE_ERP 0x000004 /* ERP enabled */ /* NB: this must have the same value as IEEE80211_FC1_PWR_MGT */ #define IEEE80211_NODE_PWR_MGT 0x000010 /* power save mode enabled */ #define IEEE80211_NODE_AREF 0x000020 /* authentication ref held */ #define IEEE80211_NODE_HT 0x000040 /* HT enabled */ #define IEEE80211_NODE_HTCOMPAT 0x000080 /* HT setup w/ vendor OUI's */ #define IEEE80211_NODE_WPS 0x000100 /* WPS association */ #define IEEE80211_NODE_TSN 0x000200 /* TSN association */ #define IEEE80211_NODE_AMPDU_RX 0x000400 /* AMPDU rx enabled */ #define IEEE80211_NODE_AMPDU_TX 0x000800 /* AMPDU tx enabled */ #define IEEE80211_NODE_MIMO_PS 0x001000 /* MIMO power save enabled */ #define IEEE80211_NODE_MIMO_RTS 0x002000 /* send RTS in MIMO PS */ #define IEEE80211_NODE_RIFS 0x004000 /* RIFS enabled */ #define IEEE80211_NODE_SGI20 0x008000 /* Short GI in HT20 enabled */ #define IEEE80211_NODE_SGI40 0x010000 /* Short GI in HT40 enabled */ #define IEEE80211_NODE_ASSOCID 0x020000 /* xmit requires associd */ #define IEEE80211_NODE_AMSDU_RX 0x040000 /* AMSDU rx enabled */ #define IEEE80211_NODE_AMSDU_TX 0x080000 /* AMSDU tx enabled */ #define IEEE80211_NODE_VHT 0x100000 /* VHT enabled */ #define IEEE80211_NODE_LDPC 0x200000 /* LDPC enabled */ uint16_t ni_associd; /* association ID */ uint16_t ni_vlan; /* vlan tag */ uint16_t ni_txpower; /* current transmit power */ uint8_t ni_authmode; /* authentication algorithm */ uint8_t ni_ath_flags; /* Atheros feature flags */ /* NB: These must have the same values as IEEE80211_ATHC_* */ #define IEEE80211_NODE_TURBOP 0x0001 /* Turbo prime enable */ #define IEEE80211_NODE_COMP 0x0002 /* Compresssion enable */ #define IEEE80211_NODE_FF 0x0004 /* Fast Frame capable */ #define IEEE80211_NODE_XR 0x0008 /* Atheros WME enable */ #define IEEE80211_NODE_AR 0x0010 /* AR capable */ #define IEEE80211_NODE_BOOST 0x0080 /* Dynamic Turbo boosted */ uint16_t ni_ath_defkeyix;/* Atheros def key index */ const struct ieee80211_txparam *ni_txparms; uint32_t ni_jointime; /* time of join (secs) */ uint32_t *ni_challenge; /* shared-key challenge */ struct ieee80211_ies ni_ies; /* captured ie's */ /* tx seq per-tid */ ieee80211_seq ni_txseqs[IEEE80211_TID_SIZE]; /* rx seq previous per-tid*/ ieee80211_seq ni_rxseqs[IEEE80211_TID_SIZE]; uint32_t ni_rxfragstamp; /* time stamp of last rx frag */ struct mbuf *ni_rxfrag[3]; /* rx frag reassembly */ struct ieee80211_key ni_ucastkey; /* unicast key */ /* hardware */ uint32_t ni_avgrssi; /* recv ssi state */ int8_t ni_noise; /* noise floor */ /* mimo statistics */ uint32_t ni_mimo_rssi_ctl[IEEE80211_MAX_CHAINS]; uint32_t ni_mimo_rssi_ext[IEEE80211_MAX_CHAINS]; uint8_t ni_mimo_noise_ctl[IEEE80211_MAX_CHAINS]; uint8_t ni_mimo_noise_ext[IEEE80211_MAX_CHAINS]; uint8_t ni_mimo_chains; /* header */ uint8_t ni_macaddr[IEEE80211_ADDR_LEN]; uint8_t ni_bssid[IEEE80211_ADDR_LEN]; /* beacon, probe response */ union { uint8_t data[8]; u_int64_t tsf; } ni_tstamp; /* from last rcv'd beacon */ uint16_t ni_intval; /* beacon interval */ uint16_t ni_capinfo; /* capabilities */ uint8_t ni_esslen; uint8_t ni_essid[IEEE80211_NWID_LEN]; struct ieee80211_rateset ni_rates; /* negotiated rate set */ struct ieee80211_channel *ni_chan; uint16_t ni_fhdwell; /* FH only */ uint8_t ni_fhindex; /* FH only */ uint16_t ni_erp; /* ERP from beacon/probe resp */ uint16_t ni_timoff; /* byte offset to TIM ie */ uint8_t ni_dtim_period; /* DTIM period */ uint8_t ni_dtim_count; /* DTIM count for last bcn */ /* 11s state */ uint8_t ni_meshidlen; uint8_t ni_meshid[IEEE80211_MESHID_LEN]; enum ieee80211_mesh_mlstate ni_mlstate; /* peering management state */ uint16_t ni_mllid; /* link local ID */ uint16_t ni_mlpid; /* link peer ID */ struct callout ni_mltimer; /* link mesh timer */ uint8_t ni_mlrcnt; /* link mesh retry counter */ uint8_t ni_mltval; /* link mesh timer value */ struct callout ni_mlhtimer; /* link mesh backoff timer */ uint8_t ni_mlhcnt; /* link mesh holding counter */ /* 11n state */ uint16_t ni_htcap; /* HT capabilities */ uint8_t ni_htparam; /* HT params */ uint8_t ni_htctlchan; /* HT control channel */ uint8_t ni_ht2ndchan; /* HT 2nd channel */ uint8_t ni_htopmode; /* HT operating mode */ uint8_t ni_htstbc; /* HT */ uint8_t ni_chw; /* negotiated channel width */ struct ieee80211_htrateset ni_htrates; /* negotiated ht rate set */ struct ieee80211_tx_ampdu ni_tx_ampdu[WME_NUM_TID]; struct ieee80211_rx_ampdu ni_rx_ampdu[WME_NUM_TID]; /* VHT state */ uint32_t ni_vhtcap; uint16_t ni_vht_basicmcs; uint16_t ni_vht_pad2; struct ieee80211_vht_mcs_info ni_vht_mcsinfo; uint8_t ni_vht_chan1; /* 20/40/80/160 - VHT chan1 */ uint8_t ni_vht_chan2; /* 80+80 - VHT chan2 */ uint8_t ni_vht_chanwidth; /* IEEE80211_VHT_CHANWIDTH_ */ uint8_t ni_vht_pad1; uint32_t ni_vht_spare[8]; /* fast-frames state */ struct mbuf * ni_tx_superg[WME_NUM_TID]; /* others */ short ni_inact; /* inactivity mark count */ short ni_inact_reload;/* inactivity reload value */ int ni_txrate; /* legacy rate/MCS */ struct ieee80211_psq ni_psq; /* power save queue */ struct ieee80211_nodestats ni_stats; /* per-node statistics */ struct ieee80211vap *ni_wdsvap; /* associated WDS vap */ void *ni_rctls; /* private ratectl state */ + + /* quiet time IE state for the given node */ + uint32_t ni_quiet_ie_set; /* Quiet time IE was seen */ + struct ieee80211_quiet_ie ni_quiet_ie; /* last seen quiet IE */ + uint64_t ni_spare[3]; }; MALLOC_DECLARE(M_80211_NODE); MALLOC_DECLARE(M_80211_NODE_IE); #define IEEE80211_NODE_ATH (IEEE80211_NODE_FF | IEEE80211_NODE_TURBOP) #define IEEE80211_NODE_AMPDU \ (IEEE80211_NODE_AMPDU_RX | IEEE80211_NODE_AMPDU_TX) #define IEEE80211_NODE_AMSDU \ (IEEE80211_NODE_AMSDU_RX | IEEE80211_NODE_AMSDU_TX) #define IEEE80211_NODE_HT_ALL \ (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT | \ IEEE80211_NODE_AMPDU | IEEE80211_NODE_AMSDU | \ IEEE80211_NODE_MIMO_PS | IEEE80211_NODE_MIMO_RTS | \ IEEE80211_NODE_RIFS | IEEE80211_NODE_SGI20 | IEEE80211_NODE_SGI40) #define IEEE80211_NODE_BITS \ "\20\1AUTH\2QOS\3ERP\5PWR_MGT\6AREF\7HT\10HTCOMPAT\11WPS\12TSN" \ "\13AMPDU_RX\14AMPDU_TX\15MIMO_PS\16MIMO_RTS\17RIFS\20SGI20\21SGI40" \ "\22ASSOCID" #define IEEE80211_NODE_AID(ni) IEEE80211_AID(ni->ni_associd) #define IEEE80211_NODE_STAT(ni,stat) (ni->ni_stats.ns_##stat++) #define IEEE80211_NODE_STAT_ADD(ni,stat,v) (ni->ni_stats.ns_##stat += v) #define IEEE80211_NODE_STAT_SET(ni,stat,v) (ni->ni_stats.ns_##stat = v) /* * Filtered rssi calculation support. The receive rssi is maintained * as an average over the last 10 frames received using a low pass filter * (all frames for now, possibly need to be more selective). Calculations * are designed such that a good compiler can optimize them. The avg * rssi state should be initialized to IEEE80211_RSSI_DUMMY_MARKER and * each sample incorporated with IEEE80211_RSSI_LPF. Use IEEE80211_RSSI_GET * to extract the current value. * * Note that we assume rssi data are in the range [-127..127] and we * discard values <-20. This is consistent with assumptions throughout * net80211 that signal strength data are in .5 dBm units relative to * the current noise floor (linear, not log). */ #define IEEE80211_RSSI_LPF_LEN 10 #define IEEE80211_RSSI_DUMMY_MARKER 127 /* NB: pow2 to optimize out * and / */ #define IEEE80211_RSSI_EP_MULTIPLIER (1<<7) #define IEEE80211_RSSI_IN(x) ((x) * IEEE80211_RSSI_EP_MULTIPLIER) #define _IEEE80211_RSSI_LPF(x, y, len) \ (((x) != IEEE80211_RSSI_DUMMY_MARKER) ? (((x) * ((len) - 1) + (y)) / (len)) : (y)) #define IEEE80211_RSSI_LPF(x, y) do { \ if ((y) >= -20) { \ x = _IEEE80211_RSSI_LPF((x), IEEE80211_RSSI_IN((y)), \ IEEE80211_RSSI_LPF_LEN); \ } \ } while (0) #define IEEE80211_RSSI_EP_RND(x, mul) \ ((((x) % (mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) #define IEEE80211_RSSI_GET(x) \ IEEE80211_RSSI_EP_RND(x, IEEE80211_RSSI_EP_MULTIPLIER) static __inline struct ieee80211_node * ieee80211_ref_node(struct ieee80211_node *ni) { ieee80211_node_incref(ni); return ni; } static __inline void ieee80211_unref_node(struct ieee80211_node **ni) { ieee80211_node_decref(*ni); *ni = NULL; /* guard against use */ } void ieee80211_node_attach(struct ieee80211com *); void ieee80211_node_lateattach(struct ieee80211com *); void ieee80211_node_detach(struct ieee80211com *); void ieee80211_node_vattach(struct ieee80211vap *); void ieee80211_node_latevattach(struct ieee80211vap *); void ieee80211_node_vdetach(struct ieee80211vap *); static __inline int ieee80211_node_is_authorized(const struct ieee80211_node *ni) { return (ni->ni_flags & IEEE80211_NODE_AUTH); } void ieee80211_node_authorize(struct ieee80211_node *); void ieee80211_node_unauthorize(struct ieee80211_node *); void ieee80211_node_setuptxparms(struct ieee80211_node *); void ieee80211_node_set_chan(struct ieee80211_node *, struct ieee80211_channel *); void ieee80211_create_ibss(struct ieee80211vap*, struct ieee80211_channel *); void ieee80211_reset_bss(struct ieee80211vap *); void ieee80211_sync_curchan(struct ieee80211com *); void ieee80211_setupcurchan(struct ieee80211com *, struct ieee80211_channel *); void ieee80211_setcurchan(struct ieee80211com *, struct ieee80211_channel *); void ieee80211_update_chw(struct ieee80211com *); int ieee80211_ibss_merge_check(struct ieee80211_node *); int ieee80211_ibss_node_check_new(struct ieee80211_node *ni, const struct ieee80211_scanparams *); int ieee80211_ibss_merge(struct ieee80211_node *); struct ieee80211_scan_entry; int ieee80211_sta_join(struct ieee80211vap *, struct ieee80211_channel *, const struct ieee80211_scan_entry *); void ieee80211_sta_leave(struct ieee80211_node *); void ieee80211_node_deauth(struct ieee80211_node *, int); int ieee80211_ies_init(struct ieee80211_ies *, const uint8_t *, int); void ieee80211_ies_cleanup(struct ieee80211_ies *); void ieee80211_ies_expand(struct ieee80211_ies *); #define ieee80211_ies_setie(_ies, _ie, _off) do { \ (_ies)._ie = (_ies).data + (_off); \ } while (0) /* * Table of ieee80211_node instances. Each ieee80211com * has one that holds association stations (when operating * as an ap) or neighbors (in ibss mode). * * XXX embed this in ieee80211com instead of indirect? */ struct ieee80211_node_table { struct ieee80211com *nt_ic; /* back reference */ ieee80211_node_lock_t nt_nodelock; /* on node table */ TAILQ_HEAD(, ieee80211_node) nt_node; /* information of all nodes */ LIST_HEAD(, ieee80211_node) nt_hash[IEEE80211_NODE_HASHSIZE]; int nt_count; /* number of nodes */ struct ieee80211_node **nt_keyixmap; /* key ix -> node map */ int nt_keyixmax; /* keyixmap size */ const char *nt_name; /* table name for debug msgs */ int nt_inact_init; /* initial node inact setting */ }; struct ieee80211_node *ieee80211_alloc_node(struct ieee80211_node_table *, struct ieee80211vap *, const uint8_t macaddr[IEEE80211_ADDR_LEN]); struct ieee80211_node *ieee80211_tmp_node(struct ieee80211vap *, const uint8_t macaddr[IEEE80211_ADDR_LEN]); struct ieee80211_node *ieee80211_dup_bss(struct ieee80211vap *, const uint8_t macaddr[IEEE80211_ADDR_LEN]); struct ieee80211_node *ieee80211_node_create_wds(struct ieee80211vap *, const uint8_t bssid[IEEE80211_ADDR_LEN], struct ieee80211_channel *); #ifdef IEEE80211_DEBUG_REFCNT void ieee80211_free_node_debug(struct ieee80211_node *, const char *func, int line); struct ieee80211_node *ieee80211_find_node_locked_debug( struct ieee80211_node_table *, const uint8_t macaddr[IEEE80211_ADDR_LEN], const char *func, int line); struct ieee80211_node *ieee80211_find_node_debug(struct ieee80211_node_table *, const uint8_t macaddr[IEEE80211_ADDR_LEN], const char *func, int line); struct ieee80211_node *ieee80211_find_vap_node_locked_debug( struct ieee80211_node_table *, const struct ieee80211vap *vap, const uint8_t macaddr[IEEE80211_ADDR_LEN], const char *func, int line); struct ieee80211_node *ieee80211_find_vap_node_debug( struct ieee80211_node_table *, const struct ieee80211vap *vap, const uint8_t macaddr[IEEE80211_ADDR_LEN], const char *func, int line); struct ieee80211_node * ieee80211_find_rxnode_debug(struct ieee80211com *, const struct ieee80211_frame_min *, const char *func, int line); struct ieee80211_node * ieee80211_find_rxnode_withkey_debug( struct ieee80211com *, const struct ieee80211_frame_min *, uint16_t keyix, const char *func, int line); struct ieee80211_node *ieee80211_find_txnode_debug(struct ieee80211vap *, const uint8_t *, const char *func, int line); #define ieee80211_free_node(ni) \ ieee80211_free_node_debug(ni, __func__, __LINE__) #define ieee80211_find_node_locked(nt, mac) \ ieee80211_find_node_locked_debug(nt, mac, __func__, __LINE__) #define ieee80211_find_node(nt, mac) \ ieee80211_find_node_debug(nt, mac, __func__, __LINE__) #define ieee80211_find_vap_node_locked(nt, vap, mac) \ ieee80211_find_vap_node_locked_debug(nt, vap, mac, __func__, __LINE__) #define ieee80211_find_vap_node(nt, vap, mac) \ ieee80211_find_vap_node_debug(nt, vap, mac, __func__, __LINE__) #define ieee80211_find_rxnode(ic, wh) \ ieee80211_find_rxnode_debug(ic, wh, __func__, __LINE__) #define ieee80211_find_rxnode_withkey(ic, wh, keyix) \ ieee80211_find_rxnode_withkey_debug(ic, wh, keyix, __func__, __LINE__) #define ieee80211_find_txnode(vap, mac) \ ieee80211_find_txnode_debug(vap, mac, __func__, __LINE__) #else void ieee80211_free_node(struct ieee80211_node *); struct ieee80211_node *ieee80211_find_node_locked(struct ieee80211_node_table *, const uint8_t macaddr[IEEE80211_ADDR_LEN]); struct ieee80211_node *ieee80211_find_node(struct ieee80211_node_table *, const uint8_t macaddr[IEEE80211_ADDR_LEN]); struct ieee80211_node *ieee80211_find_vap_node_locked( struct ieee80211_node_table *, const struct ieee80211vap *, const uint8_t macaddr[IEEE80211_ADDR_LEN]); struct ieee80211_node *ieee80211_find_vap_node( struct ieee80211_node_table *, const struct ieee80211vap *, const uint8_t macaddr[IEEE80211_ADDR_LEN]); struct ieee80211_node * ieee80211_find_rxnode(struct ieee80211com *, const struct ieee80211_frame_min *); struct ieee80211_node * ieee80211_find_rxnode_withkey(struct ieee80211com *, const struct ieee80211_frame_min *, uint16_t keyix); struct ieee80211_node *ieee80211_find_txnode(struct ieee80211vap *, const uint8_t macaddr[IEEE80211_ADDR_LEN]); #endif int ieee80211_node_delucastkey(struct ieee80211_node *); void ieee80211_node_timeout(void *arg); typedef void ieee80211_iter_func(void *, struct ieee80211_node *); int ieee80211_iterate_nodes_vap(struct ieee80211_node_table *, struct ieee80211vap *, ieee80211_iter_func *, void *); void ieee80211_iterate_nodes(struct ieee80211_node_table *, ieee80211_iter_func *, void *); void ieee80211_notify_erp(struct ieee80211com *); void ieee80211_dump_node(struct ieee80211_node_table *, struct ieee80211_node *); void ieee80211_dump_nodes(struct ieee80211_node_table *); struct ieee80211_node *ieee80211_fakeup_adhoc_node(struct ieee80211vap *, const uint8_t macaddr[IEEE80211_ADDR_LEN]); struct ieee80211_scanparams; void ieee80211_init_neighbor(struct ieee80211_node *, const struct ieee80211_frame *, const struct ieee80211_scanparams *); struct ieee80211_node *ieee80211_add_neighbor(struct ieee80211vap *, const struct ieee80211_frame *, const struct ieee80211_scanparams *); void ieee80211_node_join(struct ieee80211_node *,int); void ieee80211_node_leave(struct ieee80211_node *); int8_t ieee80211_getrssi(struct ieee80211vap *); void ieee80211_getsignal(struct ieee80211vap *, int8_t *, int8_t *); #endif /* _NET80211_IEEE80211_NODE_H_ */ Index: head/sys/net80211/ieee80211_output.c =================================================================== --- head/sys/net80211/ieee80211_output.c (revision 313461) +++ head/sys/net80211/ieee80211_output.c (revision 313462) @@ -1,3726 +1,3779 @@ /*- * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IEEE80211_SUPPORT_SUPERG #include #endif #ifdef IEEE80211_SUPPORT_TDMA #include #endif #include #include #include #if defined(INET) || defined(INET6) #include #endif #ifdef INET #include #include #include #endif #ifdef INET6 #include #endif #include #define ETHER_HEADER_COPY(dst, src) \ memcpy(dst, src, sizeof(struct ether_header)) static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, u_int hdrsize, u_int ciphdrsize, u_int mtu); static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); #ifdef IEEE80211_DEBUG /* * Decide if an outbound management frame should be * printed when debugging is enabled. This filters some * of the less interesting frames that come frequently * (e.g. beacons). */ static __inline int doprint(struct ieee80211vap *vap, int subtype) { switch (subtype) { case IEEE80211_FC0_SUBTYPE_PROBE_RESP: return (vap->iv_opmode == IEEE80211_M_IBSS); } return 1; } #endif /* * Transmit a frame to the given destination on the given VAP. * * It's up to the caller to figure out the details of who this * is going to and resolving the node. * * This routine takes care of queuing it for power save, * A-MPDU state stuff, fast-frames state stuff, encapsulation * if required, then passing it up to the driver layer. * * This routine (for now) consumes the mbuf and frees the node * reference; it ideally will return a TX status which reflects * whether the mbuf was consumed or not, so the caller can * free the mbuf (if appropriate) and the node reference (again, * if appropriate.) */ int ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, struct ieee80211_node *ni) { struct ieee80211com *ic = vap->iv_ic; struct ifnet *ifp = vap->iv_ifp; int mcast; if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && (m->m_flags & M_PWR_SAV) == 0) { /* * Station in power save mode; pass the frame * to the 802.11 layer and continue. We'll get * the frame back when the time is right. * XXX lose WDS vap linkage? */ if (ieee80211_pwrsave(ni, m) != 0) if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); /* * We queued it fine, so tell the upper layer * that we consumed it. */ return (0); } /* calculate priority so drivers can find the tx queue */ if (ieee80211_classify(ni, m)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, ni->ni_macaddr, NULL, "%s", "classification failure"); vap->iv_stats.is_tx_classify++; if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); m_freem(m); ieee80211_free_node(ni); /* XXX better status? */ return (0); } /* * Stash the node pointer. Note that we do this after * any call to ieee80211_dwds_mcast because that code * uses any existing value for rcvif to identify the * interface it (might have been) received on. */ m->m_pkthdr.rcvif = (void *)ni; mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; BPF_MTAP(ifp, m); /* 802.3 tx */ /* * Check if A-MPDU tx aggregation is setup or if we * should try to enable it. The sta must be associated * with HT and A-MPDU enabled for use. When the policy * routine decides we should enable A-MPDU we issue an * ADDBA request and wait for a reply. The frame being * encapsulated will go out w/o using A-MPDU, or possibly * it might be collected by the driver and held/retransmit. * The default ic_ampdu_enable routine handles staggering * ADDBA requests in case the receiver NAK's us or we are * otherwise unable to establish a BA stream. * * Don't treat group-addressed frames as candidates for aggregation; * net80211 doesn't support 802.11aa-2012 and so group addressed * frames will always have sequence numbers allocated from the NON_QOS * TID. */ if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) { if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) { int tid = WME_AC_TO_TID(M_WME_GETAC(m)); struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; ieee80211_txampdu_count_packet(tap); if (IEEE80211_AMPDU_RUNNING(tap)) { /* * Operational, mark frame for aggregation. * * XXX do tx aggregation here */ m->m_flags |= M_AMPDU_MPDU; } else if (!IEEE80211_AMPDU_REQUESTED(tap) && ic->ic_ampdu_enable(ni, tap)) { /* * Not negotiated yet, request service. */ ieee80211_ampdu_request(ni, tap); /* XXX hold frame for reply? */ } } } #ifdef IEEE80211_SUPPORT_SUPERG /* * Check for AMSDU/FF; queue for aggregation * * Note: we don't bother trying to do fast frames or * A-MSDU encapsulation for 802.3 drivers. Now, we * likely could do it for FF (because it's a magic * atheros tunnel LLC type) but I don't think we're going * to really need to. For A-MSDU we'd have to set the * A-MSDU QoS bit in the wifi header, so we just plain * can't do it. * * Strictly speaking, we could actually /do/ A-MSDU / FF * with A-MPDU together which for certain circumstances * is beneficial (eg A-MSDU of TCK ACKs.) However, * I'll ignore that for now so existing behaviour is maintained. * Later on it would be good to make "amsdu + ampdu" configurable. */ else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) { m = ieee80211_amsdu_check(ni, m); if (m == NULL) { /* NB: any ni ref held on stageq */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: amsdu_check queued frame\n", __func__); return (0); } } else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) { m = ieee80211_ff_check(ni, m); if (m == NULL) { /* NB: any ni ref held on stageq */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: ff_check queued frame\n", __func__); return (0); } } } #endif /* IEEE80211_SUPPORT_SUPERG */ /* * Grab the TX lock - serialise the TX process from this * point (where TX state is being checked/modified) * through to driver queue. */ IEEE80211_TX_LOCK(ic); /* * XXX make the encap and transmit code a separate function * so things like the FF (and later A-MSDU) path can just call * it for flushed frames. */ if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { /* * Encapsulate the packet in prep for transmission. */ m = ieee80211_encap(vap, ni, m); if (m == NULL) { /* NB: stat+msg handled in ieee80211_encap */ IEEE80211_TX_UNLOCK(ic); ieee80211_free_node(ni); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (ENOBUFS); } } (void) ieee80211_parent_xmitpkt(ic, m); /* * Unlock at this point - no need to hold it across * ieee80211_free_node() (ie, the comlock) */ IEEE80211_TX_UNLOCK(ic); ic->ic_lastdata = ticks; return (0); } /* * Send the given mbuf through the given vap. * * This consumes the mbuf regardless of whether the transmit * was successful or not. * * This does none of the initial checks that ieee80211_start() * does (eg CAC timeout, interface wakeup) - the caller must * do this first. */ static int ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) { #define IS_DWDS(vap) \ (vap->iv_opmode == IEEE80211_M_WDS && \ (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) struct ieee80211com *ic = vap->iv_ic; struct ifnet *ifp = vap->iv_ifp; struct ieee80211_node *ni; struct ether_header *eh; /* * Cancel any background scan. */ if (ic->ic_flags & IEEE80211_F_SCAN) ieee80211_cancel_anyscan(vap); /* * Find the node for the destination so we can do * things like power save and fast frames aggregation. * * NB: past this point various code assumes the first * mbuf has the 802.3 header present (and contiguous). */ ni = NULL; if (m->m_len < sizeof(struct ether_header) && (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "discard frame, %s\n", "m_pullup failed"); vap->iv_stats.is_tx_nobuf++; /* XXX */ if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (ENOBUFS); } eh = mtod(m, struct ether_header *); if (ETHER_IS_MULTICAST(eh->ether_dhost)) { if (IS_DWDS(vap)) { /* * Only unicast frames from the above go out * DWDS vaps; multicast frames are handled by * dispatching the frame as it comes through * the AP vap (see below). */ IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, eh->ether_dhost, "mcast", "%s", "on DWDS"); vap->iv_stats.is_dwds_mcast++; m_freem(m); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); /* XXX better status? */ return (ENOBUFS); } if (vap->iv_opmode == IEEE80211_M_HOSTAP) { /* * Spam DWDS vap's w/ multicast traffic. */ /* XXX only if dwds in use? */ ieee80211_dwds_mcast(vap, m); } } #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode != IEEE80211_M_MBSS) { #endif ni = ieee80211_find_txnode(vap, eh->ether_dhost); if (ni == NULL) { /* NB: ieee80211_find_txnode does stat+msg */ if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); m_freem(m); /* XXX better status? */ return (ENOBUFS); } if (ni->ni_associd == 0 && (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, eh->ether_dhost, NULL, "sta not associated (type 0x%04x)", htons(eh->ether_type)); vap->iv_stats.is_tx_notassoc++; if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); m_freem(m); ieee80211_free_node(ni); /* XXX better status? */ return (ENOBUFS); } #ifdef IEEE80211_SUPPORT_MESH } else { if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { /* * Proxy station only if configured. */ if (!ieee80211_mesh_isproxyena(vap)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_MESH, eh->ether_dhost, NULL, "%s", "proxy not enabled"); vap->iv_stats.is_mesh_notproxy++; if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); m_freem(m); /* XXX better status? */ return (ENOBUFS); } IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "forward frame from DS SA(%6D), DA(%6D)\n", eh->ether_shost, ":", eh->ether_dhost, ":"); ieee80211_mesh_proxy_check(vap, eh->ether_shost); } ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); if (ni == NULL) { /* * NB: ieee80211_mesh_discover holds/disposes * frame (e.g. queueing on path discovery). */ if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); /* XXX better status? */ return (ENOBUFS); } } #endif /* * We've resolved the sender, so attempt to transmit it. */ if (vap->iv_state == IEEE80211_S_SLEEP) { /* * In power save; queue frame and then wakeup device * for transmit. */ ic->ic_lastdata = ticks; if (ieee80211_pwrsave(ni, m) != 0) if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); ieee80211_new_state(vap, IEEE80211_S_RUN, 0); return (0); } if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) return (ENOBUFS); return (0); #undef IS_DWDS } /* * Start method for vap's. All packets from the stack come * through here. We handle common processing of the packets * before dispatching them to the underlying device. * * if_transmit() requires that the mbuf be consumed by this call * regardless of the return condition. */ int ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) { struct ieee80211vap *vap = ifp->if_softc; struct ieee80211com *ic = vap->iv_ic; /* * No data frames go out unless we're running. * Note in particular this covers CAC and CSA * states (though maybe we should check muting * for CSA). */ if (vap->iv_state != IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_SLEEP) { IEEE80211_LOCK(ic); /* re-check under the com lock to avoid races */ if (vap->iv_state != IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_SLEEP) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "%s: ignore queue, in %s state\n", __func__, ieee80211_state_name[vap->iv_state]); vap->iv_stats.is_tx_badstate++; IEEE80211_UNLOCK(ic); ifp->if_drv_flags |= IFF_DRV_OACTIVE; m_freem(m); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (ENETDOWN); } IEEE80211_UNLOCK(ic); } /* * Sanitize mbuf flags for net80211 use. We cannot * clear M_PWR_SAV or M_MORE_DATA because these may * be set for frames that are re-submitted from the * power save queue. * * NB: This must be done before ieee80211_classify as * it marks EAPOL in frames with M_EAPOL. */ m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); /* * Bump to the packet transmission path. * The mbuf will be consumed here. */ return (ieee80211_start_pkt(vap, m)); } void ieee80211_vap_qflush(struct ifnet *ifp) { /* Empty for now */ } /* * 802.11 raw output routine. * * XXX TODO: this (and other send routines) should correctly * XXX keep the pwr mgmt bit set if it decides to call into the * XXX driver to send a frame whilst the state is SLEEP. * * Otherwise the peer may decide that we're awake and flood us * with traffic we are still too asleep to receive! */ int ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = vap->iv_ic; int error; /* * Set node - the caller has taken a reference, so ensure * that the mbuf has the same node value that * it would if it were going via the normal path. */ m->m_pkthdr.rcvif = (void *)ni; /* * Attempt to add bpf transmit parameters. * * For now it's ok to fail; the raw_xmit api still takes * them as an option. * * Later on when ic_raw_xmit() has params removed, * they'll have to be added - so fail the transmit if * they can't be. */ if (params) (void) ieee80211_add_xmit_params(m, params); error = ic->ic_raw_xmit(ni, m, params); if (error) { if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); } return (error); } /* * 802.11 output routine. This is (currently) used only to * connect bpf write calls to the 802.11 layer for injecting * raw 802.11 frames. */ int ieee80211_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { #define senderr(e) do { error = (e); goto bad;} while (0) struct ieee80211_node *ni = NULL; struct ieee80211vap *vap; struct ieee80211_frame *wh; struct ieee80211com *ic = NULL; int error; int ret; if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { /* * Short-circuit requests if the vap is marked OACTIVE * as this can happen because a packet came down through * ieee80211_start before the vap entered RUN state in * which case it's ok to just drop the frame. This * should not be necessary but callers of if_output don't * check OACTIVE. */ senderr(ENETDOWN); } vap = ifp->if_softc; ic = vap->iv_ic; /* * Hand to the 802.3 code if not tagged as * a raw 802.11 frame. */ if (dst->sa_family != AF_IEEE80211) return vap->iv_output(ifp, m, dst, ro); #ifdef MAC error = mac_ifnet_check_transmit(ifp, m); if (error) senderr(error); #endif if (ifp->if_flags & IFF_MONITOR) senderr(ENETDOWN); if (!IFNET_IS_UP_RUNNING(ifp)) senderr(ENETDOWN); if (vap->iv_state == IEEE80211_S_CAC) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, "block %s frame in CAC state\n", "raw data"); vap->iv_stats.is_tx_badstate++; senderr(EIO); /* XXX */ } else if (vap->iv_state == IEEE80211_S_SCAN) senderr(EIO); /* XXX bypass bridge, pfil, carp, etc. */ if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) senderr(EIO); /* XXX */ wh = mtod(m, struct ieee80211_frame *); if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != IEEE80211_FC0_VERSION_0) senderr(EIO); /* XXX */ if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh)) senderr(EIO); /* XXX */ /* locate destination node */ switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { case IEEE80211_FC1_DIR_NODS: case IEEE80211_FC1_DIR_FROMDS: ni = ieee80211_find_txnode(vap, wh->i_addr1); break; case IEEE80211_FC1_DIR_TODS: case IEEE80211_FC1_DIR_DSTODS: ni = ieee80211_find_txnode(vap, wh->i_addr3); break; default: senderr(EIO); /* XXX */ } if (ni == NULL) { /* * Permit packets w/ bpf params through regardless * (see below about sa_len). */ if (dst->sa_len == 0) senderr(EHOSTUNREACH); ni = ieee80211_ref_node(vap->iv_bss); } /* * Sanitize mbuf for net80211 flags leaked from above. * * NB: This must be done before ieee80211_classify as * it marks EAPOL in frames with M_EAPOL. */ m->m_flags &= ~M_80211_TX; /* calculate priority so drivers can find the tx queue */ /* XXX assumes an 802.3 frame */ if (ieee80211_classify(ni, m)) senderr(EIO); /* XXX */ IEEE80211_NODE_STAT(ni, tx_data); if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { IEEE80211_NODE_STAT(ni, tx_mcast); m->m_flags |= M_MCAST; } else IEEE80211_NODE_STAT(ni, tx_ucast); /* NB: ieee80211_encap does not include 802.11 header */ IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len); IEEE80211_TX_LOCK(ic); /* * NB: DLT_IEEE802_11_RADIO identifies the parameters are * present by setting the sa_len field of the sockaddr (yes, * this is a hack). * NB: we assume sa_data is suitably aligned to cast. */ ret = ieee80211_raw_output(vap, ni, m, (const struct ieee80211_bpf_params *)(dst->sa_len ? dst->sa_data : NULL)); IEEE80211_TX_UNLOCK(ic); return (ret); bad: if (m != NULL) m_freem(m); if (ni != NULL) ieee80211_free_node(ni); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return error; #undef senderr } /* * Set the direction field and address fields of an outgoing * frame. Note this should be called early on in constructing * a frame as it sets i_fc[1]; other bits can then be or'd in. */ void ieee80211_send_setup( struct ieee80211_node *ni, struct mbuf *m, int type, int tid, const uint8_t sa[IEEE80211_ADDR_LEN], const uint8_t da[IEEE80211_ADDR_LEN], const uint8_t bssid[IEEE80211_ADDR_LEN]) { #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_tx_ampdu *tap; struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); ieee80211_seq seqno; IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { switch (vap->iv_opmode) { case IEEE80211_M_STA: wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; IEEE80211_ADDR_COPY(wh->i_addr1, bssid); IEEE80211_ADDR_COPY(wh->i_addr2, sa); IEEE80211_ADDR_COPY(wh->i_addr3, da); break; case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, sa); IEEE80211_ADDR_COPY(wh->i_addr3, bssid); break; case IEEE80211_M_HOSTAP: wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, bssid); IEEE80211_ADDR_COPY(wh->i_addr3, sa); break; case IEEE80211_M_WDS: wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, da); IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); break; case IEEE80211_M_MBSS: #ifdef IEEE80211_SUPPORT_MESH if (IEEE80211_IS_MULTICAST(da)) { wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; /* XXX next hop */ IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); } else { wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, da); IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); } #endif break; case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ break; } } else { wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, sa); #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) IEEE80211_ADDR_COPY(wh->i_addr3, sa); else #endif IEEE80211_ADDR_COPY(wh->i_addr3, bssid); } *(uint16_t *)&wh->i_dur[0] = 0; /* * XXX TODO: this is what the TX lock is for. * Here we're incrementing sequence numbers, and they * need to be in lock-step with what the driver is doing * both in TX ordering and crypto encap (IV increment.) * * If the driver does seqno itself, then we can skip * assigning sequence numbers here, and we can avoid * requiring the TX lock. */ tap = &ni->ni_tx_ampdu[tid]; if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) { m->m_flags |= M_AMPDU_MPDU; } else { if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, type & IEEE80211_FC0_SUBTYPE_MASK)) /* * 802.11-2012 9.3.2.10 - QoS multicast frames * come out of a different seqno space. */ if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; } else { seqno = ni->ni_txseqs[tid]++; } else seqno = 0; *(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); M_SEQNO_SET(m, seqno); } if (IEEE80211_IS_MULTICAST(wh->i_addr1)) m->m_flags |= M_MCAST; #undef WH4 } /* * Send a management frame to the specified node. The node pointer * must have a reference as the pointer will be passed to the driver * and potentially held for a long time. If the frame is successfully * dispatched to the driver, then it is responsible for freeing the * reference (and potentially free'ing up any associated storage); * otherwise deal with reclaiming any reference (on error). */ int ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, struct ieee80211_bpf_params *params) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_frame *wh; int ret; KASSERT(ni != NULL, ("null node")); if (vap->iv_state == IEEE80211_S_CAC) { IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, ni, "block %s frame in CAC state", ieee80211_mgt_subtype_name(type)); vap->iv_stats.is_tx_badstate++; ieee80211_free_node(ni); m_freem(m); return EIO; /* XXX */ } M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); if (m == NULL) { ieee80211_free_node(ni); return ENOMEM; } IEEE80211_TX_LOCK(ic); wh = mtod(m, struct ieee80211_frame *); ieee80211_send_setup(ni, m, IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, "encrypting frame (%s)", __func__); wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; } m->m_flags |= M_ENCAP; /* mark encapsulated */ KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); M_WME_SETAC(m, params->ibp_pri); #ifdef IEEE80211_DEBUG /* avoid printing too many frames */ if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || ieee80211_msg_dumppkts(vap)) { printf("[%s] send %s on channel %u\n", ether_sprintf(wh->i_addr1), ieee80211_mgt_subtype_name(type), ieee80211_chan2ieee(ic, ic->ic_curchan)); } #endif IEEE80211_NODE_STAT(ni, tx_mgmt); ret = ieee80211_raw_output(vap, ni, m, params); IEEE80211_TX_UNLOCK(ic); return (ret); } static void ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg, int status) { struct ieee80211vap *vap = ni->ni_vap; wakeup(vap); } /* * Send a null data frame to the specified node. If the station * is setup for QoS then a QoS Null Data frame is constructed. * If this is a WDS station then a 4-address frame is constructed. * * NB: the caller is assumed to have setup a node reference * for use; this is necessary to deal with a race condition * when probing for inactive stations. Like ieee80211_mgmt_output * we must cleanup any node reference on error; however we * can safely just unref it as we know it will never be the * last reference to the node. */ int ieee80211_send_nulldata(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct mbuf *m; struct ieee80211_frame *wh; int hdrlen; uint8_t *frm; int ret; if (vap->iv_state == IEEE80211_S_CAC) { IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, ni, "block %s frame in CAC state", "null data"); ieee80211_unref_node(&ni); vap->iv_stats.is_tx_badstate++; return EIO; /* XXX */ } if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) hdrlen = sizeof(struct ieee80211_qosframe); else hdrlen = sizeof(struct ieee80211_frame); /* NB: only WDS vap's get 4-address frames */ if (vap->iv_opmode == IEEE80211_M_WDS) hdrlen += IEEE80211_ADDR_LEN; if (ic->ic_flags & IEEE80211_F_DATAPAD) hdrlen = roundup(hdrlen, sizeof(uint32_t)); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); if (m == NULL) { /* XXX debug msg */ ieee80211_unref_node(&ni); vap->iv_stats.is_tx_nobuf++; return ENOMEM; } KASSERT(M_LEADINGSPACE(m) >= hdrlen, ("leading space %zd", M_LEADINGSPACE(m))); M_PREPEND(m, hdrlen, M_NOWAIT); if (m == NULL) { /* NB: cannot happen */ ieee80211_free_node(ni); return ENOMEM; } IEEE80211_TX_LOCK(ic); wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ if (ni->ni_flags & IEEE80211_NODE_QOS) { const int tid = WME_AC_TO_TID(WME_AC_BE); uint8_t *qos; ieee80211_send_setup(ni, m, IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); if (vap->iv_opmode == IEEE80211_M_WDS) qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; else qos = ((struct ieee80211_qosframe *) wh)->i_qos; qos[0] = tid & IEEE80211_QOS_TID; if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; qos[1] = 0; } else { ieee80211_send_setup(ni, m, IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, IEEE80211_NONQOS_TID, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); } if (vap->iv_opmode != IEEE80211_M_WDS) { /* NB: power management bit is never sent by an AP */ if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && vap->iv_opmode != IEEE80211_M_HOSTAP) wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; } if ((ic->ic_flags & IEEE80211_F_SCAN) && (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { ieee80211_add_callback(m, ieee80211_nulldata_transmitted, NULL); } m->m_len = m->m_pkthdr.len = hdrlen; m->m_flags |= M_ENCAP; /* mark encapsulated */ M_WME_SETAC(m, WME_AC_BE); IEEE80211_NODE_STAT(ni, tx_data); IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, "send %snull data frame on channel %u, pwr mgt %s", ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", ieee80211_chan2ieee(ic, ic->ic_curchan), wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); ret = ieee80211_raw_output(vap, ni, m, NULL); IEEE80211_TX_UNLOCK(ic); return (ret); } /* * Assign priority to a frame based on any vlan tag assigned * to the station and/or any Diffserv setting in an IP header. * Finally, if an ACM policy is setup (in station mode) it's * applied. */ int ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) { const struct ether_header *eh = mtod(m, struct ether_header *); int v_wme_ac, d_wme_ac, ac; /* * Always promote PAE/EAPOL frames to high priority. */ if (eh->ether_type == htons(ETHERTYPE_PAE)) { /* NB: mark so others don't need to check header */ m->m_flags |= M_EAPOL; ac = WME_AC_VO; goto done; } /* * Non-qos traffic goes to BE. */ if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { ac = WME_AC_BE; goto done; } /* * If node has a vlan tag then all traffic * to it must have a matching tag. */ v_wme_ac = 0; if (ni->ni_vlan != 0) { if ((m->m_flags & M_VLANTAG) == 0) { IEEE80211_NODE_STAT(ni, tx_novlantag); return 1; } if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != EVL_VLANOFTAG(ni->ni_vlan)) { IEEE80211_NODE_STAT(ni, tx_vlanmismatch); return 1; } /* map vlan priority to AC */ v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); } /* XXX m_copydata may be too slow for fast path */ #ifdef INET if (eh->ether_type == htons(ETHERTYPE_IP)) { uint8_t tos; /* * IP frame, map the DSCP bits from the TOS field. */ /* NB: ip header may not be in first mbuf */ m_copydata(m, sizeof(struct ether_header) + offsetof(struct ip, ip_tos), sizeof(tos), &tos); tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ d_wme_ac = TID_TO_WME_AC(tos); } else { #endif /* INET */ #ifdef INET6 if (eh->ether_type == htons(ETHERTYPE_IPV6)) { uint32_t flow; uint8_t tos; /* * IPv6 frame, map the DSCP bits from the traffic class field. */ m_copydata(m, sizeof(struct ether_header) + offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), (caddr_t) &flow); tos = (uint8_t)(ntohl(flow) >> 20); tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ d_wme_ac = TID_TO_WME_AC(tos); } else { #endif /* INET6 */ d_wme_ac = WME_AC_BE; #ifdef INET6 } #endif #ifdef INET } #endif /* * Use highest priority AC. */ if (v_wme_ac > d_wme_ac) ac = v_wme_ac; else ac = d_wme_ac; /* * Apply ACM policy. */ if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { static const int acmap[4] = { WME_AC_BK, /* WME_AC_BE */ WME_AC_BK, /* WME_AC_BK */ WME_AC_BE, /* WME_AC_VI */ WME_AC_VI, /* WME_AC_VO */ }; struct ieee80211com *ic = ni->ni_ic; while (ac != WME_AC_BK && ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) ac = acmap[ac]; } done: M_WME_SETAC(m, ac); return 0; } /* * Insure there is sufficient contiguous space to encapsulate the * 802.11 data frame. If room isn't already there, arrange for it. * Drivers and cipher modules assume we have done the necessary work * and fail rudely if they don't find the space they need. */ struct mbuf * ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, struct ieee80211_key *key, struct mbuf *m) { #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) int needed_space = vap->iv_ic->ic_headroom + hdrsize; if (key != NULL) { /* XXX belongs in crypto code? */ needed_space += key->wk_cipher->ic_header; /* XXX frags */ /* * When crypto is being done in the host we must insure * the data are writable for the cipher routines; clone * a writable mbuf chain. * XXX handle SWMIC specially */ if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { m = m_unshare(m, M_NOWAIT); if (m == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "%s: cannot get writable mbuf\n", __func__); vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ return NULL; } } } /* * We know we are called just before stripping an Ethernet * header and prepending an LLC header. This means we know * there will be * sizeof(struct ether_header) - sizeof(struct llc) * bytes recovered to which we need additional space for the * 802.11 header and any crypto header. */ /* XXX check trailing space and copy instead? */ if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); if (n == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "%s: cannot expand storage\n", __func__); vap->iv_stats.is_tx_nobuf++; m_freem(m); return NULL; } KASSERT(needed_space <= MHLEN, ("not enough room, need %u got %d\n", needed_space, MHLEN)); /* * Setup new mbuf to have leading space to prepend the * 802.11 header and any crypto header bits that are * required (the latter are added when the driver calls * back to ieee80211_crypto_encap to do crypto encapsulation). */ /* NB: must be first 'cuz it clobbers m_data */ m_move_pkthdr(n, m); n->m_len = 0; /* NB: m_gethdr does not set */ n->m_data += needed_space; /* * Pull up Ethernet header to create the expected layout. * We could use m_pullup but that's overkill (i.e. we don't * need the actual data) and it cannot fail so do it inline * for speed. */ /* NB: struct ether_header is known to be contiguous */ n->m_len += sizeof(struct ether_header); m->m_len -= sizeof(struct ether_header); m->m_data += sizeof(struct ether_header); /* * Replace the head of the chain. */ n->m_next = m; m = n; } return m; #undef TO_BE_RECLAIMED } /* * Return the transmit key to use in sending a unicast frame. * If a unicast key is set we use that. When no unicast key is set * we fall back to the default transmit key. */ static __inline struct ieee80211_key * ieee80211_crypto_getucastkey(struct ieee80211vap *vap, struct ieee80211_node *ni) { if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) return NULL; return &vap->iv_nw_keys[vap->iv_def_txkey]; } else { return &ni->ni_ucastkey; } } /* * Return the transmit key to use in sending a multicast frame. * Multicast traffic always uses the group key which is installed as * the default tx key. */ static __inline struct ieee80211_key * ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, struct ieee80211_node *ni) { if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) return NULL; return &vap->iv_nw_keys[vap->iv_def_txkey]; } /* * Encapsulate an outbound data frame. The mbuf chain is updated. * If an error is encountered NULL is returned. The caller is required * to provide a node reference and pullup the ethernet header in the * first mbuf. * * NB: Packet is assumed to be processed by ieee80211_classify which * marked EAPOL frames w/ M_EAPOL. */ struct mbuf * ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, struct mbuf *m) { #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) struct ieee80211com *ic = ni->ni_ic; #ifdef IEEE80211_SUPPORT_MESH struct ieee80211_mesh_state *ms = vap->iv_mesh; struct ieee80211_meshcntl_ae10 *mc; struct ieee80211_mesh_route *rt = NULL; int dir = -1; #endif struct ether_header eh; struct ieee80211_frame *wh; struct ieee80211_key *key; struct llc *llc; int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast; ieee80211_seq seqno; int meshhdrsize, meshae; uint8_t *qos; int is_amsdu = 0; IEEE80211_TX_LOCK_ASSERT(ic); is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST)); /* * Copy existing Ethernet header to a safe place. The * rest of the code assumes it's ok to strip it when * reorganizing state for the final encapsulation. */ KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); /* * Insure space for additional headers. First identify * transmit key to use in calculating any buffer adjustments * required. This is also used below to do privacy * encapsulation work. Then calculate the 802.11 header * size and any padding required by the driver. * * Note key may be NULL if we fall back to the default * transmit key and that is not set. In that case the * buffer may not be expanded as needed by the cipher * routines, but they will/should discard it. */ if (vap->iv_flags & IEEE80211_F_PRIVACY) { if (vap->iv_opmode == IEEE80211_M_STA || !IEEE80211_IS_MULTICAST(eh.ether_dhost) || (vap->iv_opmode == IEEE80211_M_WDS && (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) key = ieee80211_crypto_getucastkey(vap, ni); else key = ieee80211_crypto_getmcastkey(vap, ni); if (key == NULL && (m->m_flags & M_EAPOL) == 0) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, eh.ether_dhost, "no default transmit key (%s) deftxkey %u", __func__, vap->iv_def_txkey); vap->iv_stats.is_tx_nodefkey++; goto bad; } } else key = NULL; /* * XXX Some ap's don't handle QoS-encapsulated EAPOL * frames so suppress use. This may be an issue if other * ap's require all data frames to be QoS-encapsulated * once negotiated in which case we'll need to make this * configurable. * * Don't send multicast QoS frames. * Technically multicast frames can be QoS if all stations in the * BSS are also QoS. * * NB: mesh data frames are QoS, including multicast frames. */ addqos = (((is_mcast == 0) && (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) || (vap->iv_opmode == IEEE80211_M_MBSS)) && (m->m_flags & M_EAPOL) == 0; if (addqos) hdrsize = sizeof(struct ieee80211_qosframe); else hdrsize = sizeof(struct ieee80211_frame); #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) { /* * Mesh data frames are encapsulated according to the * rules of Section 11B.8.5 (p.139 of D3.0 spec). * o Group Addressed data (aka multicast) originating * at the local sta are sent w/ 3-address format and * address extension mode 00 * o Individually Addressed data (aka unicast) originating * at the local sta are sent w/ 4-address format and * address extension mode 00 * o Group Addressed data forwarded from a non-mesh sta are * sent w/ 3-address format and address extension mode 01 * o Individually Address data from another sta are sent * w/ 4-address format and address extension mode 10 */ is4addr = 0; /* NB: don't use, disable */ if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); KASSERT(rt != NULL, ("route is NULL")); dir = IEEE80211_FC1_DIR_DSTODS; hdrsize += IEEE80211_ADDR_LEN; if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, vap->iv_myaddr)) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, eh.ether_dhost, "%s", "trying to send to ourself"); goto bad; } meshae = IEEE80211_MESH_AE_10; meshhdrsize = sizeof(struct ieee80211_meshcntl_ae10); } else { meshae = IEEE80211_MESH_AE_00; meshhdrsize = sizeof(struct ieee80211_meshcntl); } } else { dir = IEEE80211_FC1_DIR_FROMDS; if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { /* proxy group */ meshae = IEEE80211_MESH_AE_01; meshhdrsize = sizeof(struct ieee80211_meshcntl_ae01); } else { /* group */ meshae = IEEE80211_MESH_AE_00; meshhdrsize = sizeof(struct ieee80211_meshcntl); } } } else { #endif /* * 4-address frames need to be generated for: * o packets sent through a WDS vap (IEEE80211_M_WDS) * o packets sent through a vap marked for relaying * (e.g. a station operating with dynamic WDS) */ is4addr = vap->iv_opmode == IEEE80211_M_WDS || ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); if (is4addr) hdrsize += IEEE80211_ADDR_LEN; meshhdrsize = meshae = 0; #ifdef IEEE80211_SUPPORT_MESH } #endif /* * Honor driver DATAPAD requirement. */ if (ic->ic_flags & IEEE80211_F_DATAPAD) hdrspace = roundup(hdrsize, sizeof(uint32_t)); else hdrspace = hdrsize; if (__predict_true((m->m_flags & M_FF) == 0)) { /* * Normal frame. */ m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); if (m == NULL) { /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ goto bad; } /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); llc = mtod(m, struct llc *); llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; llc->llc_control = LLC_UI; llc->llc_snap.org_code[0] = 0; llc->llc_snap.org_code[1] = 0; llc->llc_snap.org_code[2] = 0; llc->llc_snap.ether_type = eh.ether_type; } else { #ifdef IEEE80211_SUPPORT_SUPERG /* * Aggregated frame. Check if it's for AMSDU or FF. * * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented * anywhere for some reason. But, since 11n requires * AMSDU RX, we can just assume "11n" == "AMSDU". */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__); if (ieee80211_amsdu_tx_ok(ni)) { m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key); is_amsdu = 1; } else { m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); } if (m == NULL) #endif goto bad; } datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); if (m == NULL) { vap->iv_stats.is_tx_nobuf++; goto bad; } wh = mtod(m, struct ieee80211_frame *); wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; *(uint16_t *)wh->i_dur = 0; qos = NULL; /* NB: quiet compiler */ if (is4addr) { wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); } else switch (vap->iv_opmode) { case IEEE80211_M_STA: wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); break; case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); /* * NB: always use the bssid from iv_bss as the * neighbor's may be stale after an ibss merge */ IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); break; case IEEE80211_M_HOSTAP: wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); break; #ifdef IEEE80211_SUPPORT_MESH case IEEE80211_M_MBSS: /* NB: offset by hdrspace to deal with DATAPAD */ mc = (struct ieee80211_meshcntl_ae10 *) (mtod(m, uint8_t *) + hdrspace); wh->i_fc[1] = dir; switch (meshae) { case IEEE80211_MESH_AE_00: /* no proxy */ mc->mc_flags = 0; if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); qos =((struct ieee80211_qosframe_addr4 *) wh)->i_qos; } else if (dir == IEEE80211_FC1_DIR_FROMDS) { /* mcast */ IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); qos = ((struct ieee80211_qosframe *) wh)->i_qos; } break; case IEEE80211_MESH_AE_01: /* mcast, proxy */ wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); mc->mc_flags = 1; IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, eh.ether_shost); qos = ((struct ieee80211_qosframe *) wh)->i_qos; break; case IEEE80211_MESH_AE_10: /* ucast, proxy */ KASSERT(rt != NULL, ("route is NULL")); IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); mc->mc_flags = IEEE80211_MESH_AE_10; IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; break; default: KASSERT(0, ("meshae %d", meshae)); break; } mc->mc_ttl = ms->ms_ttl; ms->ms_seq++; le32enc(mc->mc_seq, ms->ms_seq); break; #endif case IEEE80211_M_WDS: /* NB: is4addr should always be true */ default: goto bad; } if (m->m_flags & M_MORE_DATA) wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; if (addqos) { int ac, tid; if (is4addr) { qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; /* NB: mesh case handled earlier */ } else if (vap->iv_opmode != IEEE80211_M_MBSS) qos = ((struct ieee80211_qosframe *) wh)->i_qos; ac = M_WME_GETAC(m); /* map from access class/queue to 11e header priorty value */ tid = WME_AC_TO_TID(ac); qos[0] = tid & IEEE80211_QOS_TID; if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) qos[1] = IEEE80211_QOS_MC; else #endif qos[1] = 0; wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; /* * If this is an A-MSDU then ensure we set the * relevant field. */ if (is_amsdu) qos[0] |= IEEE80211_QOS_AMSDU; /* * XXX TODO TX lock is needed for atomic updates of sequence * numbers. If the driver does it, then don't do it here; * and we don't need the TX lock held. */ if ((m->m_flags & M_AMPDU_MPDU) == 0) { /* * 802.11-2012 9.3.2.10 - * * If this is a multicast frame then we need * to ensure that the sequence number comes from * a separate seqno space and not the TID space. * * Otherwise multicast frames may actually cause * holes in the TX blockack window space and * upset various things. */ if (IEEE80211_IS_MULTICAST(wh->i_addr1)) seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; else seqno = ni->ni_txseqs[tid]++; /* * NB: don't assign a sequence # to potential * aggregates; we expect this happens at the * point the frame comes off any aggregation q * as otherwise we may introduce holes in the * BA sequence space and/or make window accouting * more difficult. * * XXX may want to control this with a driver * capability; this may also change when we pull * aggregation up into net80211 */ seqno = ni->ni_txseqs[tid]++; *(uint16_t *)wh->i_seq = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); M_SEQNO_SET(m, seqno); } } else { /* * XXX TODO TX lock is needed for atomic updates of sequence * numbers. If the driver does it, then don't do it here; * and we don't need the TX lock held. */ seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; *(uint16_t *)wh->i_seq = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); M_SEQNO_SET(m, seqno); /* * XXX TODO: we shouldn't allow EAPOL, etc that would * be forced to be non-QoS traffic to be A-MSDU encapsulated. */ if (is_amsdu) printf("%s: XXX ERROR: is_amsdu set; not QoS!\n", __func__); } /* check if xmit fragmentation is required */ txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && !IEEE80211_IS_MULTICAST(wh->i_addr1) && (vap->iv_caps & IEEE80211_C_TXFRAG) && (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); if (key != NULL) { /* * IEEE 802.1X: send EAPOL frames always in the clear. * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. */ if ((m->m_flags & M_EAPOL) == 0 || ((vap->iv_flags & IEEE80211_F_WPA) && (vap->iv_opmode == IEEE80211_M_STA ? !IEEE80211_KEY_UNDEFINED(key) : !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, eh.ether_dhost, "%s", "enmic failed, discard frame"); vap->iv_stats.is_crypto_enmicfail++; goto bad; } } } if (txfrag && !ieee80211_fragment(vap, m, hdrsize, key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) goto bad; m->m_flags |= M_ENCAP; /* mark encapsulated */ IEEE80211_NODE_STAT(ni, tx_data); if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { IEEE80211_NODE_STAT(ni, tx_mcast); m->m_flags |= M_MCAST; } else IEEE80211_NODE_STAT(ni, tx_ucast); IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); return m; bad: if (m != NULL) m_freem(m); return NULL; #undef WH4 #undef MC01 } void ieee80211_free_mbuf(struct mbuf *m) { struct mbuf *next; if (m == NULL) return; do { next = m->m_nextpkt; m->m_nextpkt = NULL; m_freem(m); } while ((m = next) != NULL); } /* * Fragment the frame according to the specified mtu. * The size of the 802.11 header (w/o padding) is provided * so we don't need to recalculate it. We create a new * mbuf for each fragment and chain it through m_nextpkt; * we might be able to optimize this by reusing the original * packet's mbufs but that is significantly more complicated. */ static int ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, u_int hdrsize, u_int ciphdrsize, u_int mtu) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_frame *wh, *whf; struct mbuf *m, *prev; u_int totalhdrsize, fragno, fragsize, off, remainder, payload; u_int hdrspace; KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); KASSERT(m0->m_pkthdr.len > mtu, ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); /* * Honor driver DATAPAD requirement. */ if (ic->ic_flags & IEEE80211_F_DATAPAD) hdrspace = roundup(hdrsize, sizeof(uint32_t)); else hdrspace = hdrsize; wh = mtod(m0, struct ieee80211_frame *); /* NB: mark the first frag; it will be propagated below */ wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; totalhdrsize = hdrspace + ciphdrsize; fragno = 1; off = mtu - ciphdrsize; remainder = m0->m_pkthdr.len - off; prev = m0; do { fragsize = MIN(totalhdrsize + remainder, mtu); m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) goto bad; /* leave room to prepend any cipher header */ m_align(m, fragsize - ciphdrsize); /* * Form the header in the fragment. Note that since * we mark the first fragment with the MORE_FRAG bit * it automatically is propagated to each fragment; we * need only clear it on the last fragment (done below). * NB: frag 1+ dont have Mesh Control field present. */ whf = mtod(m, struct ieee80211_frame *); memcpy(whf, wh, hdrsize); #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) { if (IEEE80211_IS_DSTODS(wh)) ((struct ieee80211_qosframe_addr4 *) whf)->i_qos[1] &= ~IEEE80211_QOS_MC; else ((struct ieee80211_qosframe *) whf)->i_qos[1] &= ~IEEE80211_QOS_MC; } #endif *(uint16_t *)&whf->i_seq[0] |= htole16( (fragno & IEEE80211_SEQ_FRAG_MASK) << IEEE80211_SEQ_FRAG_SHIFT); fragno++; payload = fragsize - totalhdrsize; /* NB: destination is known to be contiguous */ m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); m->m_len = hdrspace + payload; m->m_pkthdr.len = hdrspace + payload; m->m_flags |= M_FRAG; /* chain up the fragment */ prev->m_nextpkt = m; prev = m; /* deduct fragment just formed */ remainder -= payload; off += payload; } while (remainder != 0); /* set the last fragment */ m->m_flags |= M_LASTFRAG; whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; /* strip first mbuf now that everything has been copied */ m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); m0->m_flags |= M_FIRSTFRAG | M_FRAG; vap->iv_stats.is_tx_fragframes++; vap->iv_stats.is_tx_frags += fragno-1; return 1; bad: /* reclaim fragments but leave original frame for caller to free */ ieee80211_free_mbuf(m0->m_nextpkt); m0->m_nextpkt = NULL; return 0; } /* * Add a supported rates element id to a frame. */ uint8_t * ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) { int nrates; *frm++ = IEEE80211_ELEMID_RATES; nrates = rs->rs_nrates; if (nrates > IEEE80211_RATE_SIZE) nrates = IEEE80211_RATE_SIZE; *frm++ = nrates; memcpy(frm, rs->rs_rates, nrates); return frm + nrates; } /* * Add an extended supported rates element id to a frame. */ uint8_t * ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) { /* * Add an extended supported rates element if operating in 11g mode. */ if (rs->rs_nrates > IEEE80211_RATE_SIZE) { int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; *frm++ = IEEE80211_ELEMID_XRATES; *frm++ = nrates; memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); frm += nrates; } return frm; } /* * Add an ssid element to a frame. */ uint8_t * ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) { *frm++ = IEEE80211_ELEMID_SSID; *frm++ = len; memcpy(frm, ssid, len); return frm + len; } /* * Add an erp element to a frame. */ static uint8_t * ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) { uint8_t erp; *frm++ = IEEE80211_ELEMID_ERP; *frm++ = 1; erp = 0; if (ic->ic_nonerpsta != 0) erp |= IEEE80211_ERP_NON_ERP_PRESENT; if (ic->ic_flags & IEEE80211_F_USEPROT) erp |= IEEE80211_ERP_USE_PROTECTION; if (ic->ic_flags & IEEE80211_F_USEBARKER) erp |= IEEE80211_ERP_LONG_PREAMBLE; *frm++ = erp; return frm; } /* * Add a CFParams element to a frame. */ static uint8_t * ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) { #define ADDSHORT(frm, v) do { \ le16enc(frm, v); \ frm += 2; \ } while (0) *frm++ = IEEE80211_ELEMID_CFPARMS; *frm++ = 6; *frm++ = 0; /* CFP count */ *frm++ = 2; /* CFP period */ ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ return frm; #undef ADDSHORT } static __inline uint8_t * add_appie(uint8_t *frm, const struct ieee80211_appie *ie) { memcpy(frm, ie->ie_data, ie->ie_len); return frm + ie->ie_len; } static __inline uint8_t * add_ie(uint8_t *frm, const uint8_t *ie) { memcpy(frm, ie, 2 + ie[1]); return frm + 2 + ie[1]; } #define WME_OUI_BYTES 0x00, 0x50, 0xf2 /* * Add a WME information element to a frame. */ uint8_t * ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) { static const struct ieee80211_wme_info info = { .wme_id = IEEE80211_ELEMID_VENDOR, .wme_len = sizeof(struct ieee80211_wme_info) - 2, .wme_oui = { WME_OUI_BYTES }, .wme_type = WME_OUI_TYPE, .wme_subtype = WME_INFO_OUI_SUBTYPE, .wme_version = WME_VERSION, .wme_info = 0, }; memcpy(frm, &info, sizeof(info)); return frm + sizeof(info); } /* * Add a WME parameters element to a frame. */ static uint8_t * ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) { #define SM(_v, _f) (((_v) << _f##_S) & _f) #define ADDSHORT(frm, v) do { \ le16enc(frm, v); \ frm += 2; \ } while (0) /* NB: this works 'cuz a param has an info at the front */ static const struct ieee80211_wme_info param = { .wme_id = IEEE80211_ELEMID_VENDOR, .wme_len = sizeof(struct ieee80211_wme_param) - 2, .wme_oui = { WME_OUI_BYTES }, .wme_type = WME_OUI_TYPE, .wme_subtype = WME_PARAM_OUI_SUBTYPE, .wme_version = WME_VERSION, }; int i; memcpy(frm, ¶m, sizeof(param)); frm += __offsetof(struct ieee80211_wme_info, wme_info); *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ *frm++ = 0; /* reserved field */ for (i = 0; i < WME_NUM_AC; i++) { const struct wmeParams *ac = &wme->wme_bssChanParams.cap_wmeParams[i]; *frm++ = SM(i, WME_PARAM_ACI) | SM(ac->wmep_acm, WME_PARAM_ACM) | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) ; *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) ; ADDSHORT(frm, ac->wmep_txopLimit); } return frm; #undef SM #undef ADDSHORT } #undef WME_OUI_BYTES /* * Add an 11h Power Constraint element to a frame. */ static uint8_t * ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) { const struct ieee80211_channel *c = vap->iv_bss->ni_chan; /* XXX per-vap tx power limit? */ int8_t limit = vap->iv_ic->ic_txpowlimit / 2; frm[0] = IEEE80211_ELEMID_PWRCNSTR; frm[1] = 1; frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; return frm + 3; } /* * Add an 11h Power Capability element to a frame. */ static uint8_t * ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) { frm[0] = IEEE80211_ELEMID_PWRCAP; frm[1] = 2; frm[2] = c->ic_minpower; frm[3] = c->ic_maxpower; return frm + 4; } /* * Add an 11h Supported Channels element to a frame. */ static uint8_t * ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) { static const int ielen = 26; frm[0] = IEEE80211_ELEMID_SUPPCHAN; frm[1] = ielen; /* XXX not correct */ memcpy(frm+2, ic->ic_chan_avail, ielen); return frm + 2 + ielen; } /* * Add an 11h Quiet time element to a frame. */ static uint8_t * ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update) { struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; quiet->quiet_ie = IEEE80211_ELEMID_QUIET; quiet->len = 6; /* * Only update every beacon interval - otherwise probe responses * would update the quiet count value. */ if (update) { if (vap->iv_quiet_count_value == 1) vap->iv_quiet_count_value = vap->iv_quiet_count; else if (vap->iv_quiet_count_value > 1) vap->iv_quiet_count_value--; } if (vap->iv_quiet_count_value == 0) { /* value 0 is reserved as per 802.11h standerd */ vap->iv_quiet_count_value = 1; } quiet->tbttcount = vap->iv_quiet_count_value; quiet->period = vap->iv_quiet_period; quiet->duration = htole16(vap->iv_quiet_duration); quiet->offset = htole16(vap->iv_quiet_offset); return frm + sizeof(*quiet); } /* * Add an 11h Channel Switch Announcement element to a frame. * Note that we use the per-vap CSA count to adjust the global * counter so we can use this routine to form probe response * frames and get the current count. */ static uint8_t * ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; csa->csa_ie = IEEE80211_ELEMID_CSA; csa->csa_len = 3; csa->csa_mode = 1; /* XXX force quiet on channel */ csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; return frm + sizeof(*csa); } /* * Add an 11h country information element to a frame. */ static uint8_t * ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) { if (ic->ic_countryie == NULL || ic->ic_countryie_chan != ic->ic_bsschan) { /* * Handle lazy construction of ie. This is done on * first use and after a channel change that requires * re-calculation. */ if (ic->ic_countryie != NULL) IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); ic->ic_countryie = ieee80211_alloc_countryie(ic); if (ic->ic_countryie == NULL) return frm; ic->ic_countryie_chan = ic->ic_bsschan; } return add_appie(frm, ic->ic_countryie); } uint8_t * ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) { if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) return (add_ie(frm, vap->iv_wpa_ie)); else { /* XXX else complain? */ return (frm); } } uint8_t * ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) { if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) return (add_ie(frm, vap->iv_rsn_ie)); else { /* XXX else complain? */ return (frm); } } uint8_t * ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) { if (ni->ni_flags & IEEE80211_NODE_QOS) { *frm++ = IEEE80211_ELEMID_QOS; *frm++ = 1; *frm++ = 0; } return (frm); } /* * Send a probe request frame with the specified ssid * and any optional information element data. */ -/* XXX VHT? */ int ieee80211_send_probereq(struct ieee80211_node *ni, const uint8_t sa[IEEE80211_ADDR_LEN], const uint8_t da[IEEE80211_ADDR_LEN], const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t *ssid, size_t ssidlen) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_node *bss; const struct ieee80211_txparam *tp; struct ieee80211_bpf_params params; const struct ieee80211_rateset *rs; struct mbuf *m; uint8_t *frm; int ret; bss = ieee80211_ref_node(vap->iv_bss); if (vap->iv_state == IEEE80211_S_CAC) { IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, "block %s frame in CAC state", "probe request"); vap->iv_stats.is_tx_badstate++; ieee80211_free_node(bss); return EIO; /* XXX */ } /* * Hold a reference on the node so it doesn't go away until after * the xmit is complete all the way in the driver. On error we * will remove our reference. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); ieee80211_ref_node(ni); /* * prreq frame format * [tlv] ssid * [tlv] supported rates * [tlv] RSN (optional) * [tlv] extended supported rates * [tlv] HT cap (optional) * [tlv] VHT cap (optional) * [tlv] WPA (optional) * [tlv] user-specified ie's */ m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), 2 + IEEE80211_NWID_LEN + 2 + IEEE80211_RATE_SIZE + sizeof(struct ieee80211_ie_htcap) + sizeof(struct ieee80211_ie_vhtcap) + sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */ + sizeof(struct ieee80211_ie_wpa) + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + sizeof(struct ieee80211_ie_wpa) + (vap->iv_appie_probereq != NULL ? vap->iv_appie_probereq->ie_len : 0) ); if (m == NULL) { vap->iv_stats.is_tx_nobuf++; ieee80211_free_node(ni); ieee80211_free_node(bss); return ENOMEM; } frm = ieee80211_add_ssid(frm, ssid, ssidlen); rs = ieee80211_get_suprates(ic, ic->ic_curchan); frm = ieee80211_add_rates(frm, rs); frm = ieee80211_add_rsn(frm, vap); frm = ieee80211_add_xrates(frm, rs); /* * Note: we can't use bss; we don't have one yet. * * So, we should announce our capabilities * in this channel mode (2g/5g), not the * channel details itself. */ if ((vap->iv_opmode == IEEE80211_M_IBSS) && (vap->iv_flags_ht & IEEE80211_FHT_HT)) { struct ieee80211_channel *c; /* * Get the HT channel that we should try upgrading to. * If we can do 40MHz then this'll upgrade it appropriately. */ c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, vap->iv_flags_ht); frm = ieee80211_add_htcap_ch(frm, vap, c); } /* * XXX TODO: need to figure out what/how to update the * VHT channel. */ #if 0 (vap->iv_flags_vht & IEEE80211_FVHT_VHT) { struct ieee80211_channel *c; c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, vap->iv_flags_ht); c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht); frm = ieee80211_add_vhtcap_ch(frm, vap, c); } #endif frm = ieee80211_add_wpa(frm, vap); if (vap->iv_appie_probereq != NULL) frm = add_appie(frm, vap->iv_appie_probereq); m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), ("leading space %zd", M_LEADINGSPACE(m))); M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); if (m == NULL) { /* NB: cannot happen */ ieee80211_free_node(ni); ieee80211_free_node(bss); return ENOMEM; } IEEE80211_TX_LOCK(ic); ieee80211_send_setup(ni, m, IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, IEEE80211_NONQOS_TID, sa, da, bssid); /* XXX power management? */ m->m_flags |= M_ENCAP; /* mark encapsulated */ M_WME_SETAC(m, WME_AC_BE); IEEE80211_NODE_STAT(ni, tx_probereq); IEEE80211_NODE_STAT(ni, tx_mgmt); IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n", ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid), sa, ":", da, ":", ssidlen, ssid); memset(¶ms, 0, sizeof(params)); params.ibp_pri = M_WME_GETAC(m); tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; params.ibp_rate0 = tp->mgmtrate; if (IEEE80211_IS_MULTICAST(da)) { params.ibp_flags |= IEEE80211_BPF_NOACK; params.ibp_try0 = 1; } else params.ibp_try0 = tp->maxretry; params.ibp_power = ni->ni_txpower; ret = ieee80211_raw_output(vap, ni, m, ¶ms); IEEE80211_TX_UNLOCK(ic); ieee80211_free_node(bss); return (ret); } /* * Calculate capability information for mgt frames. */ uint16_t ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) { struct ieee80211com *ic = vap->iv_ic; uint16_t capinfo; KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); if (vap->iv_opmode == IEEE80211_M_HOSTAP) capinfo = IEEE80211_CAPINFO_ESS; else if (vap->iv_opmode == IEEE80211_M_IBSS) capinfo = IEEE80211_CAPINFO_IBSS; else capinfo = 0; if (vap->iv_flags & IEEE80211_F_PRIVACY) capinfo |= IEEE80211_CAPINFO_PRIVACY; if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && IEEE80211_IS_CHAN_2GHZ(chan)) capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; if (ic->ic_flags & IEEE80211_F_SHSLOT) capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; return capinfo; } /* * Send a management frame. The node is for the destination (or ic_bss * when in station mode). Nodes other than ic_bss have their reference * count bumped to reflect our use for an indeterminant time. */ int ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) { #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_node *bss = vap->iv_bss; struct ieee80211_bpf_params params; struct mbuf *m; uint8_t *frm; uint16_t capinfo; int has_challenge, is_shared_key, ret, status; KASSERT(ni != NULL, ("null node")); /* * Hold a reference on the node so it doesn't go away until after * the xmit is complete all the way in the driver. On error we * will remove our reference. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); ieee80211_ref_node(ni); memset(¶ms, 0, sizeof(params)); switch (type) { case IEEE80211_FC0_SUBTYPE_AUTH: status = arg >> 16; arg &= 0xffff; has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || arg == IEEE80211_AUTH_SHARED_RESPONSE) && ni->ni_challenge != NULL); /* * Deduce whether we're doing open authentication or * shared key authentication. We do the latter if * we're in the middle of a shared key authentication * handshake or if we're initiating an authentication * request and configured to use shared key. */ is_shared_key = has_challenge || arg >= IEEE80211_AUTH_SHARED_RESPONSE || (arg == IEEE80211_AUTH_SHARED_REQUEST && bss->ni_authmode == IEEE80211_AUTH_SHARED); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), 3 * sizeof(uint16_t) + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) ); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); ((uint16_t *)frm)[0] = (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) : htole16(IEEE80211_AUTH_ALG_OPEN); ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ ((uint16_t *)frm)[2] = htole16(status);/* status */ if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { ((uint16_t *)frm)[3] = htole16((IEEE80211_CHALLENGE_LEN << 8) | IEEE80211_ELEMID_CHALLENGE); memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, IEEE80211_CHALLENGE_LEN); m->m_pkthdr.len = m->m_len = 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, "request encrypt frame (%s)", __func__); /* mark frame for encryption */ params.ibp_flags |= IEEE80211_BPF_CRYPTO; } } else m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); /* XXX not right for shared key */ if (status == IEEE80211_STATUS_SUCCESS) IEEE80211_NODE_STAT(ni, tx_auth); else IEEE80211_NODE_STAT(ni, tx_auth_fail); if (vap->iv_opmode == IEEE80211_M_STA) ieee80211_add_callback(m, ieee80211_tx_mgt_cb, (void *) vap->iv_state); break; case IEEE80211_FC0_SUBTYPE_DEAUTH: IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, "send station deauthenticate (reason: %d (%s))", arg, ieee80211_reason_to_string(arg)); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t)); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); *(uint16_t *)frm = htole16(arg); /* reason */ m->m_pkthdr.len = m->m_len = sizeof(uint16_t); IEEE80211_NODE_STAT(ni, tx_deauth); IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); ieee80211_node_unauthorize(ni); /* port closed */ break; case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: - /* XXX VHT? */ /* * asreq frame format * [2] capability information * [2] listen interval * [6*] current AP address (reassoc only) * [tlv] ssid * [tlv] supported rates * [tlv] extended supported rates * [4] power capability (optional) * [28] supported channels (optional) * [tlv] HT capabilities * [tlv] VHT capabilities * [tlv] WME (optional) * [tlv] Vendor OUI HT capabilities (optional) * [tlv] Atheros capabilities (if negotiated) * [tlv] AppIE's (optional) */ m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t) + sizeof(uint16_t) + IEEE80211_ADDR_LEN + 2 + IEEE80211_NWID_LEN + 2 + IEEE80211_RATE_SIZE + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + 4 + 2 + 26 + sizeof(struct ieee80211_wme_info) + sizeof(struct ieee80211_ie_htcap) + sizeof(struct ieee80211_ie_vhtcap) + 4 + sizeof(struct ieee80211_ie_htcap) #ifdef IEEE80211_SUPPORT_SUPERG + sizeof(struct ieee80211_ath_ie) #endif + (vap->iv_appie_wpa != NULL ? vap->iv_appie_wpa->ie_len : 0) + (vap->iv_appie_assocreq != NULL ? vap->iv_appie_assocreq->ie_len : 0) ); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); KASSERT(vap->iv_opmode == IEEE80211_M_STA, ("wrong mode %u", vap->iv_opmode)); capinfo = IEEE80211_CAPINFO_ESS; if (vap->iv_flags & IEEE80211_F_PRIVACY) capinfo |= IEEE80211_CAPINFO_PRIVACY; /* * NB: Some 11a AP's reject the request when * short premable is set. */ if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && (ic->ic_caps & IEEE80211_C_SHSLOT)) capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && (vap->iv_flags & IEEE80211_F_DOTH)) capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; *(uint16_t *)frm = htole16(capinfo); frm += 2; KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, bss->ni_intval)); frm += 2; if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { IEEE80211_ADDR_COPY(frm, bss->ni_bssid); frm += IEEE80211_ADDR_LEN; } frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); frm = ieee80211_add_rates(frm, &ni->ni_rates); frm = ieee80211_add_rsn(frm, vap); frm = ieee80211_add_xrates(frm, &ni->ni_rates); if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { frm = ieee80211_add_powercapability(frm, ic->ic_curchan); frm = ieee80211_add_supportedchannels(frm, ic); } /* * Check the channel - we may be using an 11n NIC with an * 11n capable station, but we're configured to be an 11b * channel. */ if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_ies.htcap_ie != NULL && ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { frm = ieee80211_add_htcap(frm, ni); } if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) && IEEE80211_IS_CHAN_VHT(ni->ni_chan) && ni->ni_ies.vhtcap_ie != NULL && ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) { frm = ieee80211_add_vhtcap(frm, ni); } frm = ieee80211_add_wpa(frm, vap); if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) frm = ieee80211_add_wme_info(frm, &ic->ic_wme); /* * Same deal - only send HT info if we're on an 11n * capable channel. */ if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_ies.htcap_ie != NULL && ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { frm = ieee80211_add_htcap_vendor(frm, ni); } #ifdef IEEE80211_SUPPORT_SUPERG if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { frm = ieee80211_add_ath(frm, IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), ((vap->iv_flags & IEEE80211_F_WPA) == 0 && ni->ni_authmode != IEEE80211_AUTH_8021X) ? vap->iv_def_txkey : IEEE80211_KEYIX_NONE); } #endif /* IEEE80211_SUPPORT_SUPERG */ if (vap->iv_appie_assocreq != NULL) frm = add_appie(frm, vap->iv_appie_assocreq); m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); ieee80211_add_callback(m, ieee80211_tx_mgt_cb, (void *) vap->iv_state); break; case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: /* * asresp frame format * [2] capability information * [2] status * [2] association ID * [tlv] supported rates * [tlv] extended supported rates * [tlv] HT capabilities (standard, if STA enabled) * [tlv] HT information (standard, if STA enabled) * [tlv] VHT capabilities (standard, if STA enabled) * [tlv] VHT information (standard, if STA enabled) * [tlv] WME (if configured and STA enabled) * [tlv] HT capabilities (vendor OUI, if STA enabled) * [tlv] HT information (vendor OUI, if STA enabled) * [tlv] Atheros capabilities (if STA enabled) * [tlv] AppIE's (optional) */ m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t) + sizeof(uint16_t) + sizeof(uint16_t) + 2 + IEEE80211_RATE_SIZE + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + sizeof(struct ieee80211_ie_htcap) + 4 + sizeof(struct ieee80211_ie_htinfo) + 4 + sizeof(struct ieee80211_ie_vhtcap) + sizeof(struct ieee80211_ie_vht_operation) + sizeof(struct ieee80211_wme_param) #ifdef IEEE80211_SUPPORT_SUPERG + sizeof(struct ieee80211_ath_ie) #endif + (vap->iv_appie_assocresp != NULL ? vap->iv_appie_assocresp->ie_len : 0) ); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); *(uint16_t *)frm = htole16(capinfo); frm += 2; *(uint16_t *)frm = htole16(arg); /* status */ frm += 2; if (arg == IEEE80211_STATUS_SUCCESS) { *(uint16_t *)frm = htole16(ni->ni_associd); IEEE80211_NODE_STAT(ni, tx_assoc); } else IEEE80211_NODE_STAT(ni, tx_assoc_fail); frm += 2; frm = ieee80211_add_rates(frm, &ni->ni_rates); frm = ieee80211_add_xrates(frm, &ni->ni_rates); /* NB: respond according to what we received */ if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { frm = ieee80211_add_htcap(frm, ni); frm = ieee80211_add_htinfo(frm, ni); } if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) frm = ieee80211_add_wme_param(frm, &ic->ic_wme); if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { frm = ieee80211_add_htcap_vendor(frm, ni); frm = ieee80211_add_htinfo_vendor(frm, ni); } if (ni->ni_flags & IEEE80211_NODE_VHT) { frm = ieee80211_add_vhtcap(frm, ni); frm = ieee80211_add_vhtinfo(frm, ni); } #ifdef IEEE80211_SUPPORT_SUPERG if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) frm = ieee80211_add_ath(frm, IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), ((vap->iv_flags & IEEE80211_F_WPA) == 0 && ni->ni_authmode != IEEE80211_AUTH_8021X) ? vap->iv_def_txkey : IEEE80211_KEYIX_NONE); #endif /* IEEE80211_SUPPORT_SUPERG */ if (vap->iv_appie_assocresp != NULL) frm = add_appie(frm, vap->iv_appie_assocresp); m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); break; case IEEE80211_FC0_SUBTYPE_DISASSOC: IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, "send station disassociate (reason: %d (%s))", arg, ieee80211_reason_to_string(arg)); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t)); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); *(uint16_t *)frm = htole16(arg); /* reason */ m->m_pkthdr.len = m->m_len = sizeof(uint16_t); IEEE80211_NODE_STAT(ni, tx_disassoc); IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); break; default: IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, "invalid mgmt frame type %u", type); senderr(EINVAL, is_tx_unknownmgt); /* NOTREACHED */ } /* NB: force non-ProbeResp frames to the highest queue */ params.ibp_pri = WME_AC_VO; params.ibp_rate0 = bss->ni_txparms->mgmtrate; /* NB: we know all frames are unicast */ params.ibp_try0 = bss->ni_txparms->maxretry; params.ibp_power = bss->ni_txpower; return ieee80211_mgmt_output(ni, m, type, ¶ms); bad: ieee80211_free_node(ni); return ret; #undef senderr #undef HTFLAGS } /* * Return an mbuf with a probe response frame in it. * Space is left to prepend and 802.11 header at the * front but it's left to the caller to fill in. */ -/* XXX VHT? */ struct mbuf * ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) { struct ieee80211vap *vap = bss->ni_vap; struct ieee80211com *ic = bss->ni_ic; const struct ieee80211_rateset *rs; struct mbuf *m; uint16_t capinfo; uint8_t *frm; /* * probe response frame format * [8] time stamp * [2] beacon interval * [2] cabability information * [tlv] ssid * [tlv] supported rates * [tlv] parameter set (FH/DS) * [tlv] parameter set (IBSS) * [tlv] country (optional) * [3] power control (optional) * [5] channel switch announcement (CSA) (optional) * [tlv] extended rate phy (ERP) * [tlv] extended supported rates * [tlv] RSN (optional) * [tlv] HT capabilities * [tlv] HT information * [tlv] WPA (optional) * [tlv] WME (optional) * [tlv] Vendor OUI HT capabilities (optional) * [tlv] Vendor OUI HT information (optional) * [tlv] Atheros capabilities * [tlv] AppIE's (optional) * [tlv] Mesh ID (MBSS) * [tlv] Mesh Conf (MBSS) */ m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), 8 + sizeof(uint16_t) + sizeof(uint16_t) + 2 + IEEE80211_NWID_LEN + 2 + IEEE80211_RATE_SIZE + 7 /* max(7,3) */ + IEEE80211_COUNTRY_MAX_SIZE + 3 + sizeof(struct ieee80211_csa_ie) + sizeof(struct ieee80211_quiet_ie) + 3 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + sizeof(struct ieee80211_ie_wpa) + sizeof(struct ieee80211_ie_htcap) + sizeof(struct ieee80211_ie_htinfo) + sizeof(struct ieee80211_ie_wpa) + sizeof(struct ieee80211_wme_param) + 4 + sizeof(struct ieee80211_ie_htcap) + 4 + sizeof(struct ieee80211_ie_htinfo) #ifdef IEEE80211_SUPPORT_SUPERG + sizeof(struct ieee80211_ath_ie) #endif #ifdef IEEE80211_SUPPORT_MESH + 2 + IEEE80211_MESHID_LEN + sizeof(struct ieee80211_meshconf_ie) #endif + (vap->iv_appie_proberesp != NULL ? vap->iv_appie_proberesp->ie_len : 0) ); if (m == NULL) { vap->iv_stats.is_tx_nobuf++; return NULL; } memset(frm, 0, 8); /* timestamp should be filled later */ frm += 8; *(uint16_t *)frm = htole16(bss->ni_intval); frm += 2; capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); *(uint16_t *)frm = htole16(capinfo); frm += 2; frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); rs = ieee80211_get_suprates(ic, bss->ni_chan); frm = ieee80211_add_rates(frm, rs); if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { *frm++ = IEEE80211_ELEMID_FHPARMS; *frm++ = 5; *frm++ = bss->ni_fhdwell & 0x00ff; *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; *frm++ = IEEE80211_FH_CHANSET( ieee80211_chan2ieee(ic, bss->ni_chan)); *frm++ = IEEE80211_FH_CHANPAT( ieee80211_chan2ieee(ic, bss->ni_chan)); *frm++ = bss->ni_fhindex; } else { *frm++ = IEEE80211_ELEMID_DSPARMS; *frm++ = 1; *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); } if (vap->iv_opmode == IEEE80211_M_IBSS) { *frm++ = IEEE80211_ELEMID_IBSSPARMS; *frm++ = 2; *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ } if ((vap->iv_flags & IEEE80211_F_DOTH) || (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) frm = ieee80211_add_countryie(frm, ic); if (vap->iv_flags & IEEE80211_F_DOTH) { if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) frm = ieee80211_add_powerconstraint(frm, vap); if (ic->ic_flags & IEEE80211_F_CSAPENDING) frm = ieee80211_add_csa(frm, vap); } if (vap->iv_flags & IEEE80211_F_DOTH) { if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { if (vap->iv_quiet) frm = ieee80211_add_quiet(frm, vap, 0); } } if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) frm = ieee80211_add_erp(frm, ic); frm = ieee80211_add_xrates(frm, rs); frm = ieee80211_add_rsn(frm, vap); /* * NB: legacy 11b clients do not get certain ie's. * The caller identifies such clients by passing * a token in legacy to us. Could expand this to be * any legacy client for stuff like HT ie's. */ if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && legacy != IEEE80211_SEND_LEGACY_11B) { frm = ieee80211_add_htcap(frm, bss); frm = ieee80211_add_htinfo(frm, bss); } frm = ieee80211_add_wpa(frm, vap); if (vap->iv_flags & IEEE80211_F_WME) frm = ieee80211_add_wme_param(frm, &ic->ic_wme); if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && legacy != IEEE80211_SEND_LEGACY_11B) { frm = ieee80211_add_htcap_vendor(frm, bss); frm = ieee80211_add_htinfo_vendor(frm, bss); } #ifdef IEEE80211_SUPPORT_SUPERG if ((vap->iv_flags & IEEE80211_F_ATHEROS) && legacy != IEEE80211_SEND_LEGACY_11B) frm = ieee80211_add_athcaps(frm, bss); #endif if (vap->iv_appie_proberesp != NULL) frm = add_appie(frm, vap->iv_appie_proberesp); #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) { frm = ieee80211_add_meshid(frm, vap); frm = ieee80211_add_meshconf(frm, vap); } #endif m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); return m; } /* * Send a probe response frame to the specified mac address. * This does not go through the normal mgt frame api so we * can specify the destination address and re-use the bss node * for the sta reference. */ int ieee80211_send_proberesp(struct ieee80211vap *vap, const uint8_t da[IEEE80211_ADDR_LEN], int legacy) { struct ieee80211_node *bss = vap->iv_bss; struct ieee80211com *ic = vap->iv_ic; struct mbuf *m; int ret; if (vap->iv_state == IEEE80211_S_CAC) { IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, "block %s frame in CAC state", "probe response"); vap->iv_stats.is_tx_badstate++; return EIO; /* XXX */ } /* * Hold a reference on the node so it doesn't go away until after * the xmit is complete all the way in the driver. On error we * will remove our reference. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), ieee80211_node_refcnt(bss)+1); ieee80211_ref_node(bss); m = ieee80211_alloc_proberesp(bss, legacy); if (m == NULL) { ieee80211_free_node(bss); return ENOMEM; } M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); KASSERT(m != NULL, ("no room for header")); IEEE80211_TX_LOCK(ic); ieee80211_send_setup(bss, m, IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); /* XXX power management? */ m->m_flags |= M_ENCAP; /* mark encapsulated */ M_WME_SETAC(m, WME_AC_BE); IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, "send probe resp on channel %u to %s%s\n", ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), legacy ? " " : ""); IEEE80211_NODE_STAT(bss, tx_mgmt); ret = ieee80211_raw_output(vap, bss, m, NULL); IEEE80211_TX_UNLOCK(ic); return (ret); } /* * Allocate and build a RTS (Request To Send) control frame. */ struct mbuf * ieee80211_alloc_rts(struct ieee80211com *ic, const uint8_t ra[IEEE80211_ADDR_LEN], const uint8_t ta[IEEE80211_ADDR_LEN], uint16_t dur) { struct ieee80211_frame_rts *rts; struct mbuf *m; /* XXX honor ic_headroom */ m = m_gethdr(M_NOWAIT, MT_DATA); if (m != NULL) { rts = mtod(m, struct ieee80211_frame_rts *); rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; *(u_int16_t *)rts->i_dur = htole16(dur); IEEE80211_ADDR_COPY(rts->i_ra, ra); IEEE80211_ADDR_COPY(rts->i_ta, ta); m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); } return m; } /* * Allocate and build a CTS (Clear To Send) control frame. */ struct mbuf * ieee80211_alloc_cts(struct ieee80211com *ic, const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) { struct ieee80211_frame_cts *cts; struct mbuf *m; /* XXX honor ic_headroom */ m = m_gethdr(M_NOWAIT, MT_DATA); if (m != NULL) { cts = mtod(m, struct ieee80211_frame_cts *); cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; *(u_int16_t *)cts->i_dur = htole16(dur); IEEE80211_ADDR_COPY(cts->i_ra, ra); m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); } return m; } static void ieee80211_tx_mgt_timeout(void *arg) { struct ieee80211vap *vap = arg; IEEE80211_LOCK(vap->iv_ic); if (vap->iv_state != IEEE80211_S_INIT && (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { /* * NB: it's safe to specify a timeout as the reason here; * it'll only be used in the right state. */ ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, IEEE80211_SCAN_FAIL_TIMEOUT); } IEEE80211_UNLOCK(vap->iv_ic); } /* * This is the callback set on net80211-sourced transmitted * authentication request frames. * * This does a couple of things: * * + If the frame transmitted was a success, it schedules a future * event which will transition the interface to scan. * If a state transition _then_ occurs before that event occurs, * said state transition will cancel this callout. * * + If the frame transmit was a failure, it immediately schedules * the transition back to scan. */ static void ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) { struct ieee80211vap *vap = ni->ni_vap; enum ieee80211_state ostate = (enum ieee80211_state) arg; /* * Frame transmit completed; arrange timer callback. If * transmit was successfully we wait for response. Otherwise * we arrange an immediate callback instead of doing the * callback directly since we don't know what state the driver * is in (e.g. what locks it is holding). This work should * not be too time-critical and not happen too often so the * added overhead is acceptable. * * XXX what happens if !acked but response shows up before callback? */ if (vap->iv_state == ostate) { callout_reset(&vap->iv_mgtsend, status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, ieee80211_tx_mgt_timeout, vap); } } -/* XXX VHT? */ static void ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_rateset *rs = &ni->ni_rates; uint16_t capinfo; /* * beacon frame format * * TODO: update to 802.11-2012; a lot of stuff has changed; * vendor extensions should be at the end, etc. * * [8] time stamp * [2] beacon interval * [2] cabability information * [tlv] ssid * [tlv] supported rates * [3] parameter set (DS) * [8] CF parameter set (optional) * [tlv] parameter set (IBSS/TIM) * [tlv] country (optional) * [3] power control (optional) * [5] channel switch announcement (CSA) (optional) * XXX TODO: Quiet * XXX TODO: IBSS DFS * XXX TODO: TPC report * [tlv] extended rate phy (ERP) * [tlv] extended supported rates * [tlv] RSN parameters * XXX TODO: BSSLOAD * (XXX EDCA parameter set, QoS capability?) * XXX TODO: AP channel report * * [tlv] HT capabilities * [tlv] HT information * XXX TODO: 20/40 BSS coexistence * Mesh: * XXX TODO: Meshid * XXX TODO: mesh config * XXX TODO: mesh awake window * XXX TODO: beacon timing (mesh, etc) * XXX TODO: MCCAOP Advertisement Overview * XXX TODO: MCCAOP Advertisement * XXX TODO: Mesh channel switch parameters * VHT: * XXX TODO: VHT capabilities * XXX TODO: VHT operation * XXX TODO: VHT transmit power envelope * XXX TODO: channel switch wrapper element * XXX TODO: extended BSS load element * * XXX Vendor-specific OIDs (e.g. Atheros) * [tlv] WPA parameters * [tlv] WME parameters * [tlv] Vendor OUI HT capabilities (optional) * [tlv] Vendor OUI HT information (optional) * [tlv] Atheros capabilities (optional) * [tlv] TDMA parameters (optional) * [tlv] Mesh ID (MBSS) * [tlv] Mesh Conf (MBSS) * [tlv] application data (optional) */ memset(bo, 0, sizeof(*bo)); memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ frm += 8; *(uint16_t *)frm = htole16(ni->ni_intval); frm += 2; capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); bo->bo_caps = (uint16_t *)frm; *(uint16_t *)frm = htole16(capinfo); frm += 2; *frm++ = IEEE80211_ELEMID_SSID; if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { *frm++ = ni->ni_esslen; memcpy(frm, ni->ni_essid, ni->ni_esslen); frm += ni->ni_esslen; } else *frm++ = 0; frm = ieee80211_add_rates(frm, rs); if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { *frm++ = IEEE80211_ELEMID_DSPARMS; *frm++ = 1; *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); } if (ic->ic_flags & IEEE80211_F_PCF) { bo->bo_cfp = frm; frm = ieee80211_add_cfparms(frm, ic); } bo->bo_tim = frm; if (vap->iv_opmode == IEEE80211_M_IBSS) { *frm++ = IEEE80211_ELEMID_IBSSPARMS; *frm++ = 2; *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ bo->bo_tim_len = 0; } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_MBSS) { /* TIM IE is the same for Mesh and Hostap */ struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; tie->tim_ie = IEEE80211_ELEMID_TIM; tie->tim_len = 4; /* length */ tie->tim_count = 0; /* DTIM count */ tie->tim_period = vap->iv_dtim_period; /* DTIM period */ tie->tim_bitctl = 0; /* bitmap control */ tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ frm += sizeof(struct ieee80211_tim_ie); bo->bo_tim_len = 1; } bo->bo_tim_trailer = frm; if ((vap->iv_flags & IEEE80211_F_DOTH) || (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) frm = ieee80211_add_countryie(frm, ic); if (vap->iv_flags & IEEE80211_F_DOTH) { if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) frm = ieee80211_add_powerconstraint(frm, vap); bo->bo_csa = frm; if (ic->ic_flags & IEEE80211_F_CSAPENDING) frm = ieee80211_add_csa(frm, vap); } else bo->bo_csa = frm; + bo->bo_quiet = NULL; if (vap->iv_flags & IEEE80211_F_DOTH) { - bo->bo_quiet = frm; if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && - (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { - if (vap->iv_quiet) + (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && + (vap->iv_quiet == 1)) { + /* + * We only insert the quiet IE offset if + * the quiet IE is enabled. Otherwise don't + * put it here or we'll just overwrite + * some other beacon contents. + */ + if (vap->iv_quiet) { + bo->bo_quiet = frm; frm = ieee80211_add_quiet(frm,vap, 0); + } } - } else - bo->bo_quiet = frm; + } if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { bo->bo_erp = frm; frm = ieee80211_add_erp(frm, ic); } frm = ieee80211_add_xrates(frm, rs); frm = ieee80211_add_rsn(frm, vap); if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { frm = ieee80211_add_htcap(frm, ni); bo->bo_htinfo = frm; frm = ieee80211_add_htinfo(frm, ni); } if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) { frm = ieee80211_add_vhtcap(frm, ni); bo->bo_vhtinfo = frm; frm = ieee80211_add_vhtinfo(frm, ni); /* Transmit power envelope */ /* Channel switch wrapper element */ /* Extended bss load element */ } frm = ieee80211_add_wpa(frm, vap); if (vap->iv_flags & IEEE80211_F_WME) { bo->bo_wme = frm; frm = ieee80211_add_wme_param(frm, &ic->ic_wme); } if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { frm = ieee80211_add_htcap_vendor(frm, ni); frm = ieee80211_add_htinfo_vendor(frm, ni); } #ifdef IEEE80211_SUPPORT_SUPERG if (vap->iv_flags & IEEE80211_F_ATHEROS) { bo->bo_ath = frm; frm = ieee80211_add_athcaps(frm, ni); } #endif #ifdef IEEE80211_SUPPORT_TDMA if (vap->iv_caps & IEEE80211_C_TDMA) { bo->bo_tdma = frm; frm = ieee80211_add_tdma(frm, vap); } #endif if (vap->iv_appie_beacon != NULL) { bo->bo_appie = frm; bo->bo_appie_len = vap->iv_appie_beacon->ie_len; frm = add_appie(frm, vap->iv_appie_beacon); } /* XXX TODO: move meshid/meshconf up to before vendor extensions? */ #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) { frm = ieee80211_add_meshid(frm, vap); bo->bo_meshconf = frm; frm = ieee80211_add_meshconf(frm, vap); } #endif bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; bo->bo_csa_trailer_len = frm - bo->bo_csa; m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); } /* * Allocate a beacon frame and fillin the appropriate bits. */ -/* XXX VHT? */ struct mbuf * ieee80211_beacon_alloc(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ifnet *ifp = vap->iv_ifp; struct ieee80211_frame *wh; struct mbuf *m; int pktlen; uint8_t *frm; /* + * Update the "We're putting the quiet IE in the beacon" state. + */ + if (vap->iv_quiet == 1) + vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; + else if (vap->iv_quiet == 0) + vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; + + /* * beacon frame format * * Note: This needs updating for 802.11-2012. * * [8] time stamp * [2] beacon interval * [2] cabability information * [tlv] ssid * [tlv] supported rates * [3] parameter set (DS) * [8] CF parameter set (optional) * [tlv] parameter set (IBSS/TIM) * [tlv] country (optional) * [3] power control (optional) * [5] channel switch announcement (CSA) (optional) * [tlv] extended rate phy (ERP) * [tlv] extended supported rates * [tlv] RSN parameters * [tlv] HT capabilities * [tlv] HT information * [tlv] VHT capabilities * [tlv] VHT operation * [tlv] Vendor OUI HT capabilities (optional) * [tlv] Vendor OUI HT information (optional) * XXX Vendor-specific OIDs (e.g. Atheros) * [tlv] WPA parameters * [tlv] WME parameters * [tlv] TDMA parameters (optional) * [tlv] Mesh ID (MBSS) * [tlv] Mesh Conf (MBSS) * [tlv] application data (optional) * NB: we allocate the max space required for the TIM bitmap. * XXX how big is this? */ - /* XXX VHT? */ pktlen = 8 /* time stamp */ + sizeof(uint16_t) /* beacon interval */ + sizeof(uint16_t) /* capabilities */ + 2 + ni->ni_esslen /* ssid */ + 2 + IEEE80211_RATE_SIZE /* supported rates */ + 2 + 1 /* DS parameters */ + 2 + 6 /* CF parameters */ + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ + IEEE80211_COUNTRY_MAX_SIZE /* country */ + 2 + 1 /* power control */ + sizeof(struct ieee80211_csa_ie) /* CSA */ + sizeof(struct ieee80211_quiet_ie) /* Quiet */ + 2 + 1 /* ERP */ + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 2*sizeof(struct ieee80211_ie_wpa) : 0) /* XXX conditional? */ + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */ + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */ + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ sizeof(struct ieee80211_wme_param) : 0) #ifdef IEEE80211_SUPPORT_SUPERG + sizeof(struct ieee80211_ath_ie) /* ATH */ #endif #ifdef IEEE80211_SUPPORT_TDMA + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ sizeof(struct ieee80211_tdma_param) : 0) #endif #ifdef IEEE80211_SUPPORT_MESH + 2 + ni->ni_meshidlen + sizeof(struct ieee80211_meshconf_ie) #endif + IEEE80211_MAX_APPIE ; m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); if (m == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, "%s: cannot get buf; size %u\n", __func__, pktlen); vap->iv_stats.is_tx_nobuf++; return NULL; } ieee80211_beacon_construct(m, frm, ni); M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); KASSERT(m != NULL, ("no space for 802.11 header?")); wh = mtod(m, struct ieee80211_frame *); wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON; wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; *(uint16_t *)wh->i_dur = 0; IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); *(uint16_t *)wh->i_seq = 0; return m; } /* * Update the dynamic parts of a beacon frame based on the current state. */ int ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; struct ieee80211com *ic = ni->ni_ic; int len_changed = 0; uint16_t capinfo; struct ieee80211_frame *wh; ieee80211_seq seqno; IEEE80211_LOCK(ic); /* * Handle 11h channel change when we've reached the count. * We must recalculate the beacon frame contents to account * for the new channel. Note we do this only for the first * vap that reaches this point; subsequent vaps just update * their beacon state to reflect the recalculated channel. */ if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && vap->iv_csa_count == ic->ic_csa_count) { vap->iv_csa_count = 0; /* * Effect channel change before reconstructing the beacon * frame contents as many places reference ni_chan. */ if (ic->ic_csa_newchan != NULL) ieee80211_csa_completeswitch(ic); /* * NB: ieee80211_beacon_construct clears all pending * updates in bo_flags so we don't need to explicitly * clear IEEE80211_BEACON_CSA. */ ieee80211_beacon_construct(m, mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); /* XXX do WME aggressive mode processing? */ IEEE80211_UNLOCK(ic); return 1; /* just assume length changed */ } + /* + * Handle the quiet time element being added and removed. + * Again, for now we just cheat and reconstruct the whole + * beacon - that way the gap is provided as appropriate. + * + * So, track whether we have already added the IE versus + * whether we want to be adding the IE. + */ + if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) && + (vap->iv_quiet == 0)) { + /* + * Quiet time beacon IE enabled, but it's disabled; + * recalc + */ + vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; + ieee80211_beacon_construct(m, + mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); + /* XXX do WME aggressive mode processing? */ + IEEE80211_UNLOCK(ic); + return 1; /* just assume length changed */ + } + + if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) && + (vap->iv_quiet == 1)) { + /* + * Quiet time beacon IE disabled, but it's now enabled; + * recalc + */ + vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; + ieee80211_beacon_construct(m, + mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); + /* XXX do WME aggressive mode processing? */ + IEEE80211_UNLOCK(ic); + return 1; /* just assume length changed */ + } + wh = mtod(m, struct ieee80211_frame *); /* * XXX TODO Strictly speaking this should be incremented with the TX * lock held so as to serialise access to the non-qos TID sequence * number space. * * If the driver identifies it does its own TX seqno management then * we can skip this (and still not do the TX seqno.) */ seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; *(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); M_SEQNO_SET(m, seqno); /* XXX faster to recalculate entirely or just changes? */ capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); *bo->bo_caps = htole16(capinfo); if (vap->iv_flags & IEEE80211_F_WME) { struct ieee80211_wme_state *wme = &ic->ic_wme; /* * Check for aggressive mode change. When there is * significant high priority traffic in the BSS * throttle back BE traffic by using conservative * parameters. Otherwise BE uses aggressive params * to optimize performance of legacy/non-QoS traffic. */ if (wme->wme_flags & WME_F_AGGRMODE) { if (wme->wme_hipri_traffic > wme->wme_hipri_switch_thresh) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, "%s: traffic %u, disable aggressive mode\n", __func__, wme->wme_hipri_traffic); wme->wme_flags &= ~WME_F_AGGRMODE; ieee80211_wme_updateparams_locked(vap); wme->wme_hipri_traffic = wme->wme_hipri_switch_hysteresis; } else wme->wme_hipri_traffic = 0; } else { if (wme->wme_hipri_traffic <= wme->wme_hipri_switch_thresh) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, "%s: traffic %u, enable aggressive mode\n", __func__, wme->wme_hipri_traffic); wme->wme_flags |= WME_F_AGGRMODE; ieee80211_wme_updateparams_locked(vap); wme->wme_hipri_traffic = 0; } else wme->wme_hipri_traffic = wme->wme_hipri_switch_hysteresis; } if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { (void) ieee80211_add_wme_param(bo->bo_wme, wme); clrbit(bo->bo_flags, IEEE80211_BEACON_WME); } } if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { ieee80211_ht_update_beacon(vap, bo); clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); } #ifdef IEEE80211_SUPPORT_TDMA if (vap->iv_caps & IEEE80211_C_TDMA) { /* * NB: the beacon is potentially updated every TBTT. */ ieee80211_tdma_update_beacon(vap, bo); } #endif #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) ieee80211_mesh_update_beacon(vap, bo); #endif if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) bo->bo_tim; if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { u_int timlen, timoff, i; /* * ATIM/DTIM needs updating. If it fits in the * current space allocated then just copy in the * new bits. Otherwise we need to move any trailing * data to make room. Note that we know there is * contiguous space because ieee80211_beacon_allocate * insures there is space in the mbuf to write a * maximal-size virtual bitmap (based on iv_max_aid). */ /* * Calculate the bitmap size and offset, copy any * trailer out of the way, and then copy in the * new bitmap and update the information element. * Note that the tim bitmap must contain at least * one byte and any offset must be even. */ if (vap->iv_ps_pending != 0) { timoff = 128; /* impossibly large */ for (i = 0; i < vap->iv_tim_len; i++) if (vap->iv_tim_bitmap[i]) { timoff = i &~ 1; break; } KASSERT(timoff != 128, ("tim bitmap empty!")); for (i = vap->iv_tim_len-1; i >= timoff; i--) if (vap->iv_tim_bitmap[i]) break; timlen = 1 + (i - timoff); } else { timoff = 0; timlen = 1; } /* * TODO: validate this! */ if (timlen != bo->bo_tim_len) { /* copy up/down trailer */ int adjust = tie->tim_bitmap+timlen - bo->bo_tim_trailer; ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, bo->bo_tim_trailer_len); bo->bo_tim_trailer += adjust; bo->bo_erp += adjust; bo->bo_htinfo += adjust; bo->bo_vhtinfo += adjust; #ifdef IEEE80211_SUPPORT_SUPERG bo->bo_ath += adjust; #endif #ifdef IEEE80211_SUPPORT_TDMA bo->bo_tdma += adjust; #endif #ifdef IEEE80211_SUPPORT_MESH bo->bo_meshconf += adjust; #endif bo->bo_appie += adjust; bo->bo_wme += adjust; bo->bo_csa += adjust; bo->bo_quiet += adjust; bo->bo_tim_len = timlen; /* update information element */ tie->tim_len = 3 + timlen; tie->tim_bitctl = timoff; len_changed = 1; } memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, bo->bo_tim_len); clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, "%s: TIM updated, pending %u, off %u, len %u\n", __func__, vap->iv_ps_pending, timoff, timlen); } /* count down DTIM period */ if (tie->tim_count == 0) tie->tim_count = tie->tim_period - 1; else tie->tim_count--; /* update state for buffered multicast frames on DTIM */ if (mcast && tie->tim_count == 0) tie->tim_bitctl |= 1; else tie->tim_bitctl &= ~1; if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) bo->bo_csa; /* * Insert or update CSA ie. If we're just starting * to count down to the channel switch then we need * to insert the CSA ie. Otherwise we just need to * drop the count. The actual change happens above * when the vap's count reaches the target count. */ if (vap->iv_csa_count == 0) { memmove(&csa[1], csa, bo->bo_csa_trailer_len); bo->bo_erp += sizeof(*csa); bo->bo_htinfo += sizeof(*csa); bo->bo_vhtinfo += sizeof(*csa); bo->bo_wme += sizeof(*csa); #ifdef IEEE80211_SUPPORT_SUPERG bo->bo_ath += sizeof(*csa); #endif #ifdef IEEE80211_SUPPORT_TDMA bo->bo_tdma += sizeof(*csa); #endif #ifdef IEEE80211_SUPPORT_MESH bo->bo_meshconf += sizeof(*csa); #endif bo->bo_appie += sizeof(*csa); bo->bo_csa_trailer_len += sizeof(*csa); bo->bo_quiet += sizeof(*csa); bo->bo_tim_trailer_len += sizeof(*csa); m->m_len += sizeof(*csa); m->m_pkthdr.len += sizeof(*csa); ieee80211_add_csa(bo->bo_csa, vap); } else csa->csa_count--; vap->iv_csa_count++; /* NB: don't clear IEEE80211_BEACON_CSA */ } + + /* + * Only add the quiet time IE if we've enabled it + * as appropriate. + */ if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && - (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){ - if (vap->iv_quiet) + (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { + if (vap->iv_quiet && + (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) { ieee80211_add_quiet(bo->bo_quiet, vap, 1); + } } if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { /* * ERP element needs updating. */ (void) ieee80211_add_erp(bo->bo_erp, ic); clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); } #ifdef IEEE80211_SUPPORT_SUPERG if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { ieee80211_add_athcaps(bo->bo_ath, ni); clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); } #endif } if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { const struct ieee80211_appie *aie = vap->iv_appie_beacon; int aielen; uint8_t *frm; aielen = 0; if (aie != NULL) aielen += aie->ie_len; if (aielen != bo->bo_appie_len) { /* copy up/down trailer */ int adjust = aielen - bo->bo_appie_len; ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, bo->bo_tim_trailer_len); bo->bo_tim_trailer += adjust; bo->bo_appie += adjust; bo->bo_appie_len = aielen; len_changed = 1; } frm = bo->bo_appie; if (aie != NULL) frm = add_appie(frm, aie); clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); } IEEE80211_UNLOCK(ic); return len_changed; } /* * Do Ethernet-LLC encapsulation for each payload in a fast frame * tunnel encapsulation. The frame is assumed to have an Ethernet * header at the front that must be stripped before prepending the * LLC followed by the Ethernet header passed in (with an Ethernet * type that specifies the payload size). */ struct mbuf * ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, const struct ether_header *eh) { struct llc *llc; uint16_t payload; /* XXX optimize by combining m_adj+M_PREPEND */ m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); llc = mtod(m, struct llc *); llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; llc->llc_control = LLC_UI; llc->llc_snap.org_code[0] = 0; llc->llc_snap.org_code[1] = 0; llc->llc_snap.org_code[2] = 0; llc->llc_snap.ether_type = eh->ether_type; payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); if (m == NULL) { /* XXX cannot happen */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: no space for ether_header\n", __func__); vap->iv_stats.is_tx_nobuf++; return NULL; } ETHER_HEADER_COPY(mtod(m, void *), eh); mtod(m, struct ether_header *)->ether_type = htons(payload); return m; } /* * Complete an mbuf transmission. * * For now, this simply processes a completed frame after the * driver has completed it's transmission and/or retransmission. * It assumes the frame is an 802.11 encapsulated frame. * * Later on it will grow to become the exit path for a given frame * from the driver and, depending upon how it's been encapsulated * and already transmitted, it may end up doing A-MPDU retransmission, * power save requeuing, etc. * * In order for the above to work, the driver entry point to this * must not hold any driver locks. Thus, the driver needs to delay * any actual mbuf completion until it can release said locks. * * This frees the mbuf and if the mbuf has a node reference, * the node reference will be freed. */ void ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) { if (ni != NULL) { struct ifnet *ifp = ni->ni_vap->iv_ifp; if (status == 0) { if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); if (m->m_flags & M_MCAST) if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); } else if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); if (m->m_flags & M_TXCB) ieee80211_process_callback(ni, m, status); ieee80211_free_node(ni); } m_freem(m); } Index: head/sys/net80211/ieee80211_proto.h =================================================================== --- head/sys/net80211/ieee80211_proto.h (revision 313461) +++ head/sys/net80211/ieee80211_proto.h (revision 313462) @@ -1,431 +1,433 @@ /*- * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _NET80211_IEEE80211_PROTO_H_ #define _NET80211_IEEE80211_PROTO_H_ /* * 802.11 protocol implementation definitions. */ enum ieee80211_state { IEEE80211_S_INIT = 0, /* default state */ IEEE80211_S_SCAN = 1, /* scanning */ IEEE80211_S_AUTH = 2, /* try to authenticate */ IEEE80211_S_ASSOC = 3, /* try to assoc */ IEEE80211_S_CAC = 4, /* doing channel availability check */ IEEE80211_S_RUN = 5, /* operational (e.g. associated) */ IEEE80211_S_CSA = 6, /* channel switch announce pending */ IEEE80211_S_SLEEP = 7, /* power save */ }; #define IEEE80211_S_MAX (IEEE80211_S_SLEEP+1) #define IEEE80211_SEND_MGMT(_ni,_type,_arg) \ ((*(_ni)->ni_ic->ic_send_mgmt)(_ni, _type, _arg)) extern const char *mgt_subtype_name[]; extern const char *ctl_subtype_name[]; extern const char *ieee80211_phymode_name[IEEE80211_MODE_MAX]; extern const int ieee80211_opcap[IEEE80211_OPMODE_MAX]; static __inline const char * ieee80211_mgt_subtype_name(uint8_t subtype) { return mgt_subtype_name[(subtype & IEEE80211_FC0_SUBTYPE_MASK) >> IEEE80211_FC0_SUBTYPE_SHIFT]; } static __inline const char * ieee80211_ctl_subtype_name(uint8_t subtype) { return ctl_subtype_name[(subtype & IEEE80211_FC0_SUBTYPE_MASK) >> IEEE80211_FC0_SUBTYPE_SHIFT]; } const char *ieee80211_reason_to_string(uint16_t); void ieee80211_proto_attach(struct ieee80211com *); void ieee80211_proto_detach(struct ieee80211com *); void ieee80211_proto_vattach(struct ieee80211vap *); void ieee80211_proto_vdetach(struct ieee80211vap *); void ieee80211_promisc(struct ieee80211vap *, bool); void ieee80211_allmulti(struct ieee80211vap *, bool); void ieee80211_syncflag(struct ieee80211vap *, int flag); void ieee80211_syncflag_ht(struct ieee80211vap *, int flag); void ieee80211_syncflag_vht(struct ieee80211vap *, int flag); void ieee80211_syncflag_ext(struct ieee80211vap *, int flag); #define ieee80211_input(ni, m, rssi, nf) \ ((ni)->ni_vap->iv_input(ni, m, NULL, rssi, nf)) int ieee80211_input_all(struct ieee80211com *, struct mbuf *, int, int); int ieee80211_input_mimo(struct ieee80211_node *, struct mbuf *); int ieee80211_input_mimo_all(struct ieee80211com *, struct mbuf *); struct ieee80211_bpf_params; int ieee80211_mgmt_output(struct ieee80211_node *, struct mbuf *, int, struct ieee80211_bpf_params *); int ieee80211_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); int ieee80211_output(struct ifnet *, struct mbuf *, const struct sockaddr *, struct route *ro); int ieee80211_vap_pkt_send_dest(struct ieee80211vap *, struct mbuf *, struct ieee80211_node *); int ieee80211_raw_output(struct ieee80211vap *, struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); void ieee80211_send_setup(struct ieee80211_node *, struct mbuf *, int, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); int ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m); void ieee80211_vap_qflush(struct ifnet *ifp); int ieee80211_send_nulldata(struct ieee80211_node *); int ieee80211_classify(struct ieee80211_node *, struct mbuf *m); struct mbuf *ieee80211_mbuf_adjust(struct ieee80211vap *, int, struct ieee80211_key *, struct mbuf *); struct mbuf *ieee80211_encap(struct ieee80211vap *, struct ieee80211_node *, struct mbuf *); void ieee80211_free_mbuf(struct mbuf *); int ieee80211_send_mgmt(struct ieee80211_node *, int, int); struct ieee80211_appie; int ieee80211_send_probereq(struct ieee80211_node *ni, const uint8_t sa[IEEE80211_ADDR_LEN], const uint8_t da[IEEE80211_ADDR_LEN], const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t *ssid, size_t ssidlen); struct mbuf * ieee80211_ff_encap1(struct ieee80211vap *, struct mbuf *, const struct ether_header *); void ieee80211_tx_complete(struct ieee80211_node *, struct mbuf *, int); /* * The formation of ProbeResponse frames requires guidance to * deal with legacy clients. When the client is identified as * "legacy 11b" ieee80211_send_proberesp is passed this token. */ #define IEEE80211_SEND_LEGACY_11B 0x1 /* legacy 11b client */ #define IEEE80211_SEND_LEGACY_11 0x2 /* other legacy client */ #define IEEE80211_SEND_LEGACY 0x3 /* any legacy client */ struct mbuf *ieee80211_alloc_proberesp(struct ieee80211_node *, int); int ieee80211_send_proberesp(struct ieee80211vap *, const uint8_t da[IEEE80211_ADDR_LEN], int); struct mbuf *ieee80211_alloc_rts(struct ieee80211com *ic, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN], uint16_t); struct mbuf *ieee80211_alloc_cts(struct ieee80211com *, const uint8_t [IEEE80211_ADDR_LEN], uint16_t); uint8_t *ieee80211_add_rates(uint8_t *, const struct ieee80211_rateset *); uint8_t *ieee80211_add_xrates(uint8_t *, const struct ieee80211_rateset *); uint8_t *ieee80211_add_ssid(uint8_t *, const uint8_t *, u_int); uint8_t *ieee80211_add_wpa(uint8_t *, const struct ieee80211vap *); uint8_t *ieee80211_add_rsn(uint8_t *, const struct ieee80211vap *); uint8_t *ieee80211_add_qos(uint8_t *, const struct ieee80211_node *); uint16_t ieee80211_getcapinfo(struct ieee80211vap *, struct ieee80211_channel *); struct ieee80211_wme_state; uint8_t * ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme); void ieee80211_reset_erp(struct ieee80211com *); void ieee80211_set_shortslottime(struct ieee80211com *, int onoff); int ieee80211_iserp_rateset(const struct ieee80211_rateset *); void ieee80211_setbasicrates(struct ieee80211_rateset *, enum ieee80211_phymode); void ieee80211_addbasicrates(struct ieee80211_rateset *, enum ieee80211_phymode); /* * Return the size of the 802.11 header for a management or data frame. */ static __inline int ieee80211_hdrsize(const void *data) { const struct ieee80211_frame *wh = data; int size = sizeof(struct ieee80211_frame); /* NB: we don't handle control frames */ KASSERT((wh->i_fc[0]&IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL, ("%s: control frame", __func__)); if (IEEE80211_IS_DSTODS(wh)) size += IEEE80211_ADDR_LEN; if (IEEE80211_QOS_HAS_SEQ(wh)) size += sizeof(uint16_t); return size; } /* * Like ieee80211_hdrsize, but handles any type of frame. */ static __inline int ieee80211_anyhdrsize(const void *data) { const struct ieee80211_frame *wh = data; if ((wh->i_fc[0]&IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) { switch (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) { case IEEE80211_FC0_SUBTYPE_CTS: case IEEE80211_FC0_SUBTYPE_ACK: return sizeof(struct ieee80211_frame_ack); case IEEE80211_FC0_SUBTYPE_BAR: return sizeof(struct ieee80211_frame_bar); } return sizeof(struct ieee80211_frame_min); } else return ieee80211_hdrsize(data); } /* * Template for an in-kernel authenticator. Authenticators * register with the protocol code and are typically loaded * as separate modules as needed. One special authenticator * is xauth; it intercepts requests so that protocols like * WPA can be handled in user space. */ struct ieee80211_authenticator { const char *ia_name; /* printable name */ int (*ia_attach)(struct ieee80211vap *); void (*ia_detach)(struct ieee80211vap *); void (*ia_node_join)(struct ieee80211_node *); void (*ia_node_leave)(struct ieee80211_node *); }; void ieee80211_authenticator_register(int type, const struct ieee80211_authenticator *); void ieee80211_authenticator_unregister(int type); const struct ieee80211_authenticator *ieee80211_authenticator_get(int auth); struct ieee80211req; /* * Template for an MAC ACL policy module. Such modules * register with the protocol code and are passed the sender's * address of each received auth frame for validation. */ struct ieee80211_aclator { const char *iac_name; /* printable name */ int (*iac_attach)(struct ieee80211vap *); void (*iac_detach)(struct ieee80211vap *); int (*iac_check)(struct ieee80211vap *, const struct ieee80211_frame *wh); int (*iac_add)(struct ieee80211vap *, const uint8_t mac[IEEE80211_ADDR_LEN]); int (*iac_remove)(struct ieee80211vap *, const uint8_t mac[IEEE80211_ADDR_LEN]); int (*iac_flush)(struct ieee80211vap *); int (*iac_setpolicy)(struct ieee80211vap *, int); int (*iac_getpolicy)(struct ieee80211vap *); int (*iac_setioctl)(struct ieee80211vap *, struct ieee80211req *); int (*iac_getioctl)(struct ieee80211vap *, struct ieee80211req *); }; void ieee80211_aclator_register(const struct ieee80211_aclator *); void ieee80211_aclator_unregister(const struct ieee80211_aclator *); const struct ieee80211_aclator *ieee80211_aclator_get(const char *name); /* flags for ieee80211_fix_rate() */ #define IEEE80211_F_DOSORT 0x00000001 /* sort rate list */ #define IEEE80211_F_DOFRATE 0x00000002 /* use fixed legacy rate */ #define IEEE80211_F_DONEGO 0x00000004 /* calc negotiated rate */ #define IEEE80211_F_DODEL 0x00000008 /* delete ignore rate */ #define IEEE80211_F_DOBRS 0x00000010 /* check basic rate set */ #define IEEE80211_F_JOIN 0x00000020 /* sta joining our bss */ #define IEEE80211_F_DOFMCS 0x00000040 /* use fixed HT rate */ int ieee80211_fix_rate(struct ieee80211_node *, struct ieee80211_rateset *, int); /* * WME/WMM support. */ struct wmeParams { uint8_t wmep_acm; uint8_t wmep_aifsn; uint8_t wmep_logcwmin; /* log2(cwmin) */ uint8_t wmep_logcwmax; /* log2(cwmax) */ uint8_t wmep_txopLimit; uint8_t wmep_noackPolicy; /* 0 (ack), 1 (no ack) */ }; #define IEEE80211_TXOP_TO_US(_txop) ((_txop)<<5) #define IEEE80211_US_TO_TXOP(_us) ((_us)>>5) struct chanAccParams { uint8_t cap_info; /* version of the current set */ struct wmeParams cap_wmeParams[WME_NUM_AC]; }; struct ieee80211_wme_state { u_int wme_flags; #define WME_F_AGGRMODE 0x00000001 /* STATUS: WME aggressive mode */ u_int wme_hipri_traffic; /* VI/VO frames in beacon interval */ u_int wme_hipri_switch_thresh;/* aggressive mode switch thresh */ u_int wme_hipri_switch_hysteresis;/* aggressive mode switch hysteresis */ struct wmeParams wme_params[4]; /* from assoc resp for each AC*/ struct chanAccParams wme_wmeChanParams; /* WME params applied to self */ struct chanAccParams wme_wmeBssChanParams;/* WME params bcast to stations */ struct chanAccParams wme_chanParams; /* params applied to self */ struct chanAccParams wme_bssChanParams; /* params bcast to stations */ int (*wme_update)(struct ieee80211com *); }; void ieee80211_wme_initparams(struct ieee80211vap *); void ieee80211_wme_updateparams(struct ieee80211vap *); void ieee80211_wme_updateparams_locked(struct ieee80211vap *); /* * Return the WME TID from a QoS frame. If no TID * is present return the index for the "non-QoS" entry. */ static __inline uint8_t ieee80211_gettid(const struct ieee80211_frame *wh) { uint8_t tid; if (IEEE80211_QOS_HAS_SEQ(wh)) { if (IEEE80211_IS_DSTODS(wh)) tid = ((const struct ieee80211_qosframe_addr4 *)wh)-> i_qos[0]; else tid = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; tid &= IEEE80211_QOS_TID; } else tid = IEEE80211_NONQOS_TID; return tid; } void ieee80211_waitfor_parent(struct ieee80211com *); void ieee80211_start_locked(struct ieee80211vap *); void ieee80211_init(void *); void ieee80211_start_all(struct ieee80211com *); void ieee80211_stop_locked(struct ieee80211vap *); void ieee80211_stop(struct ieee80211vap *); void ieee80211_stop_all(struct ieee80211com *); void ieee80211_suspend_all(struct ieee80211com *); void ieee80211_resume_all(struct ieee80211com *); void ieee80211_restart_all(struct ieee80211com *); void ieee80211_dturbo_switch(struct ieee80211vap *, int newflags); void ieee80211_swbmiss(void *arg); void ieee80211_beacon_miss(struct ieee80211com *); int ieee80211_new_state(struct ieee80211vap *, enum ieee80211_state, int); int ieee80211_new_state_locked(struct ieee80211vap *, enum ieee80211_state, int); void ieee80211_print_essid(const uint8_t *, int); void ieee80211_dump_pkt(struct ieee80211com *, const uint8_t *, int, int, int); extern const char *ieee80211_opmode_name[]; extern const char *ieee80211_state_name[IEEE80211_S_MAX]; extern const char *ieee80211_wme_acnames[]; /* * Beacon frames constructed by ieee80211_beacon_alloc * have the following structure filled in so drivers * can update the frame later w/ minimal overhead. */ struct ieee80211_beacon_offsets { uint8_t bo_flags[4]; /* update/state flags */ uint16_t *bo_caps; /* capabilities */ uint8_t *bo_cfp; /* start of CFParms element */ uint8_t *bo_tim; /* start of atim/dtim */ uint8_t *bo_wme; /* start of WME parameters */ uint8_t *bo_tdma; /* start of TDMA parameters */ uint8_t *bo_tim_trailer;/* start of fixed-size trailer */ uint16_t bo_tim_len; /* atim/dtim length in bytes */ uint16_t bo_tim_trailer_len;/* tim trailer length in bytes */ uint8_t *bo_erp; /* start of ERP element */ uint8_t *bo_htinfo; /* start of HT info element */ uint8_t *bo_ath; /* start of ATH parameters */ uint8_t *bo_appie; /* start of AppIE element */ uint16_t bo_appie_len; /* AppIE length in bytes */ uint16_t bo_csa_trailer_len; uint8_t *bo_csa; /* start of CSA element */ uint8_t *bo_quiet; /* start of Quiet element */ uint8_t *bo_meshconf; /* start of MESHCONF element */ uint8_t *bo_vhtinfo; /* start of VHT info element (XXX VHTCAP?) */ uint8_t *bo_spare[2]; }; struct mbuf *ieee80211_beacon_alloc(struct ieee80211_node *); /* * Beacon frame updates are signaled through calls to iv_update_beacon * with one of the IEEE80211_BEACON_* tokens defined below. For devices * that construct beacon frames on the host this can trigger a rebuild * or defer the processing. For devices that offload beacon frame * handling this callback can be used to signal a rebuild. The bo_flags * array in the ieee80211_beacon_offsets structure is intended to record * deferred processing requirements; ieee80211_beacon_update uses the * state to optimize work. Since this structure is owned by the driver * and not visible to the 802.11 layer drivers must supply an iv_update_beacon * callback that marks the flag bits and schedules (as necessary) an update. */ enum { IEEE80211_BEACON_CAPS = 0, /* capabilities */ IEEE80211_BEACON_TIM = 1, /* DTIM/ATIM */ IEEE80211_BEACON_WME = 2, IEEE80211_BEACON_ERP = 3, /* Extended Rate Phy */ IEEE80211_BEACON_HTINFO = 4, /* HT Information */ IEEE80211_BEACON_APPIE = 5, /* Application IE's */ IEEE80211_BEACON_CFP = 6, /* CFParms */ IEEE80211_BEACON_CSA = 7, /* Channel Switch Announcement */ IEEE80211_BEACON_TDMA = 9, /* TDMA Info */ IEEE80211_BEACON_ATH = 10, /* ATH parameters */ IEEE80211_BEACON_MESHCONF = 11, /* Mesh Configuration */ + IEEE80211_BEACON_QUIET = 12, /* Quiet time IE */ + IEEE80211_BEACON_VHTINFO = 13, /* VHT information */ }; int ieee80211_beacon_update(struct ieee80211_node *, struct mbuf *, int mcast); void ieee80211_csa_startswitch(struct ieee80211com *, struct ieee80211_channel *, int mode, int count); void ieee80211_csa_completeswitch(struct ieee80211com *); void ieee80211_csa_cancelswitch(struct ieee80211com *); void ieee80211_cac_completeswitch(struct ieee80211vap *); /* * Notification methods called from the 802.11 state machine. * Note that while these are defined here, their implementation * is OS-specific. */ void ieee80211_notify_node_join(struct ieee80211_node *, int newassoc); void ieee80211_notify_node_leave(struct ieee80211_node *); void ieee80211_notify_scan_done(struct ieee80211vap *); void ieee80211_notify_wds_discover(struct ieee80211_node *); void ieee80211_notify_csa(struct ieee80211com *, const struct ieee80211_channel *, int mode, int count); void ieee80211_notify_radar(struct ieee80211com *, const struct ieee80211_channel *); enum ieee80211_notify_cac_event { IEEE80211_NOTIFY_CAC_START = 0, /* CAC timer started */ IEEE80211_NOTIFY_CAC_STOP = 1, /* CAC intentionally stopped */ IEEE80211_NOTIFY_CAC_RADAR = 2, /* CAC stopped due to radar detectio */ IEEE80211_NOTIFY_CAC_EXPIRE = 3, /* CAC expired w/o radar */ }; void ieee80211_notify_cac(struct ieee80211com *, const struct ieee80211_channel *, enum ieee80211_notify_cac_event); void ieee80211_notify_node_deauth(struct ieee80211_node *); void ieee80211_notify_node_auth(struct ieee80211_node *); void ieee80211_notify_country(struct ieee80211vap *, const uint8_t [], const uint8_t cc[2]); void ieee80211_notify_radio(struct ieee80211com *, int); #endif /* _NET80211_IEEE80211_PROTO_H_ */ Index: head/sys/net80211/ieee80211_sta.c =================================================================== --- head/sys/net80211/ieee80211_sta.c (revision 313461) +++ head/sys/net80211/ieee80211_sta.c (revision 313462) @@ -1,1958 +1,1997 @@ /*- * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #ifdef __FreeBSD__ __FBSDID("$FreeBSD$"); #endif /* * IEEE 802.11 Station mode support. */ #include "opt_inet.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IEEE80211_SUPPORT_SUPERG #include #endif #include #include #include #define IEEE80211_RATE2MBS(r) (((r) & IEEE80211_RATE_VAL) / 2) static void sta_vattach(struct ieee80211vap *); static void sta_beacon_miss(struct ieee80211vap *); static int sta_newstate(struct ieee80211vap *, enum ieee80211_state, int); static int sta_input(struct ieee80211_node *, struct mbuf *, const struct ieee80211_rx_stats *, int, int); static void sta_recv_mgmt(struct ieee80211_node *, struct mbuf *, int subtype, const struct ieee80211_rx_stats *, int rssi, int nf); static void sta_recv_ctl(struct ieee80211_node *, struct mbuf *, int subtype); void ieee80211_sta_attach(struct ieee80211com *ic) { ic->ic_vattach[IEEE80211_M_STA] = sta_vattach; } void ieee80211_sta_detach(struct ieee80211com *ic) { } static void sta_vdetach(struct ieee80211vap *vap) { } static void sta_vattach(struct ieee80211vap *vap) { vap->iv_newstate = sta_newstate; vap->iv_input = sta_input; vap->iv_recv_mgmt = sta_recv_mgmt; vap->iv_recv_ctl = sta_recv_ctl; vap->iv_opdetach = sta_vdetach; vap->iv_bmiss = sta_beacon_miss; } /* * Handle a beacon miss event. The common code filters out * spurious events that can happen when scanning and/or before * reaching RUN state. */ static void sta_beacon_miss(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK_ASSERT(ic); KASSERT((ic->ic_flags & IEEE80211_F_SCAN) == 0, ("scanning")); KASSERT(vap->iv_state >= IEEE80211_S_RUN, ("wrong state %s", ieee80211_state_name[vap->iv_state])); IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "beacon miss, mode %s state %s\n", ieee80211_opmode_name[vap->iv_opmode], ieee80211_state_name[vap->iv_state]); if (vap->iv_state == IEEE80211_S_CSA) { /* * A Channel Switch is pending; assume we missed the * beacon that would've completed the process and just * force the switch. If we made a mistake we'll not * find the AP on the new channel and fall back to a * normal scan. */ ieee80211_csa_completeswitch(ic); return; } if (++vap->iv_bmiss_count < vap->iv_bmiss_max) { /* * Send a directed probe req before falling back to a * scan; if we receive a response ic_bmiss_count will * be reset. Some cards mistakenly report beacon miss * so this avoids the expensive scan if the ap is * still there. */ ieee80211_send_probereq(vap->iv_bss, vap->iv_myaddr, vap->iv_bss->ni_bssid, vap->iv_bss->ni_bssid, vap->iv_bss->ni_essid, vap->iv_bss->ni_esslen); return; } callout_stop(&vap->iv_swbmiss); vap->iv_bmiss_count = 0; vap->iv_stats.is_beacon_miss++; if (vap->iv_roaming == IEEE80211_ROAMING_AUTO) { #ifdef IEEE80211_SUPPORT_SUPERG /* * If we receive a beacon miss interrupt when using * dynamic turbo, attempt to switch modes before * reassociating. */ if (IEEE80211_ATH_CAP(vap, vap->iv_bss, IEEE80211_NODE_TURBOP)) ieee80211_dturbo_switch(vap, ic->ic_bsschan->ic_flags ^ IEEE80211_CHAN_TURBO); #endif /* * Try to reassociate before scanning for a new ap. */ ieee80211_new_state(vap, IEEE80211_S_ASSOC, 1); } else { /* * Somebody else is controlling state changes (e.g. * a user-mode app) don't do anything that would * confuse them; just drop into scan mode so they'll * notified of the state change and given control. */ ieee80211_new_state(vap, IEEE80211_S_SCAN, 0); } } /* * Handle deauth with reason. We retry only for * the cases where we might succeed. Otherwise * we downgrade the ap and scan. */ static void sta_authretry(struct ieee80211vap *vap, struct ieee80211_node *ni, int reason) { switch (reason) { case IEEE80211_STATUS_SUCCESS: /* NB: MLME assoc */ case IEEE80211_STATUS_TIMEOUT: case IEEE80211_REASON_ASSOC_EXPIRE: case IEEE80211_REASON_NOT_AUTHED: case IEEE80211_REASON_NOT_ASSOCED: case IEEE80211_REASON_ASSOC_LEAVE: case IEEE80211_REASON_ASSOC_NOT_AUTHED: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 1); break; default: ieee80211_scan_assoc_fail(vap, vap->iv_bss->ni_macaddr, reason); if (vap->iv_roaming == IEEE80211_ROAMING_AUTO) ieee80211_check_scan_current(vap); break; } } static void sta_swbmiss_start(struct ieee80211vap *vap) { if (vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) { /* * Start s/w beacon miss timer for devices w/o * hardware support. We fudge a bit here since * we're doing this in software. */ vap->iv_swbmiss_period = IEEE80211_TU_TO_TICKS( 2 * vap->iv_bmissthreshold * vap->iv_bss->ni_intval); vap->iv_swbmiss_count = 0; callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, ieee80211_swbmiss, vap); } } /* * IEEE80211_M_STA vap state machine handler. * This routine handles the main states in the 802.11 protocol. */ static int sta_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_node *ni; enum ieee80211_state ostate; IEEE80211_LOCK_ASSERT(ic); ostate = vap->iv_state; IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s -> %s (%d)\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); vap->iv_state = nstate; /* state transition */ callout_stop(&vap->iv_mgtsend); /* XXX callout_drain */ if (ostate != IEEE80211_S_SCAN) ieee80211_cancel_scan(vap); /* background scan */ ni = vap->iv_bss; /* NB: no reference held */ if (vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) callout_stop(&vap->iv_swbmiss); switch (nstate) { case IEEE80211_S_INIT: switch (ostate) { case IEEE80211_S_SLEEP: /* XXX wakeup */ /* XXX driver hook to wakeup the hardware? */ case IEEE80211_S_RUN: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DISASSOC, IEEE80211_REASON_ASSOC_LEAVE); ieee80211_sta_leave(ni); break; case IEEE80211_S_ASSOC: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DEAUTH, IEEE80211_REASON_AUTH_LEAVE); break; case IEEE80211_S_SCAN: ieee80211_cancel_scan(vap); break; default: break; } if (ostate != IEEE80211_S_INIT) { /* NB: optimize INIT -> INIT case */ ieee80211_reset_bss(vap); } if (vap->iv_auth->ia_detach != NULL) vap->iv_auth->ia_detach(vap); break; case IEEE80211_S_SCAN: switch (ostate) { case IEEE80211_S_INIT: /* * Initiate a scan. We can come here as a result * of an IEEE80211_IOC_SCAN_REQ too in which case * the vap will be marked with IEEE80211_FEXT_SCANREQ * and the scan request parameters will be present * in iv_scanreq. Otherwise we do the default. */ if (vap->iv_flags_ext & IEEE80211_FEXT_SCANREQ) { ieee80211_check_scan(vap, vap->iv_scanreq_flags, vap->iv_scanreq_duration, vap->iv_scanreq_mindwell, vap->iv_scanreq_maxdwell, vap->iv_scanreq_nssid, vap->iv_scanreq_ssid); vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANREQ; } else ieee80211_check_scan_current(vap); break; case IEEE80211_S_SCAN: case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: /* * These can happen either because of a timeout * on an assoc/auth response or because of a * change in state that requires a reset. For * the former we're called with a non-zero arg * that is the cause for the failure; pass this * to the scan code so it can update state. * Otherwise trigger a new scan unless we're in * manual roaming mode in which case an application * must issue an explicit scan request. */ if (arg != 0) ieee80211_scan_assoc_fail(vap, vap->iv_bss->ni_macaddr, arg); if (vap->iv_roaming == IEEE80211_ROAMING_AUTO) ieee80211_check_scan_current(vap); break; case IEEE80211_S_SLEEP: /* beacon miss */ /* * XXX if in sleep we need to wakeup the hardware. */ /* FALLTHROUGH */ case IEEE80211_S_RUN: /* beacon miss */ /* * Beacon miss. Notify user space and if not * under control of a user application (roaming * manual) kick off a scan to re-connect. */ ieee80211_sta_leave(ni); if (vap->iv_roaming == IEEE80211_ROAMING_AUTO) ieee80211_check_scan_current(vap); break; default: goto invalid; } break; case IEEE80211_S_AUTH: switch (ostate) { case IEEE80211_S_INIT: case IEEE80211_S_SCAN: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 1); break; case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: switch (arg & 0xff) { case IEEE80211_FC0_SUBTYPE_AUTH: /* ??? */ IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 2); break; case IEEE80211_FC0_SUBTYPE_DEAUTH: sta_authretry(vap, ni, arg>>8); break; } break; case IEEE80211_S_SLEEP: case IEEE80211_S_RUN: switch (arg & 0xff) { case IEEE80211_FC0_SUBTYPE_AUTH: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 2); vap->iv_state = IEEE80211_S_RUN; /* stay RUN */ break; case IEEE80211_FC0_SUBTYPE_DEAUTH: ieee80211_sta_leave(ni); if (vap->iv_roaming == IEEE80211_ROAMING_AUTO) { /* try to reauth */ IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 1); } break; } break; default: goto invalid; } break; case IEEE80211_S_ASSOC: switch (ostate) { case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_ASSOC_REQ, 0); break; case IEEE80211_S_SLEEP: /* cannot happen */ case IEEE80211_S_RUN: ieee80211_sta_leave(ni); if (vap->iv_roaming == IEEE80211_ROAMING_AUTO) { IEEE80211_SEND_MGMT(ni, arg ? IEEE80211_FC0_SUBTYPE_REASSOC_REQ : IEEE80211_FC0_SUBTYPE_ASSOC_REQ, 0); } break; default: goto invalid; } break; case IEEE80211_S_RUN: if (vap->iv_flags & IEEE80211_F_WPA) { /* XXX validate prerequisites */ } switch (ostate) { case IEEE80211_S_RUN: case IEEE80211_S_CSA: break; case IEEE80211_S_AUTH: /* when join is done in fw */ case IEEE80211_S_ASSOC: #ifdef IEEE80211_DEBUG if (ieee80211_msg_debug(vap)) { ieee80211_note(vap, "%s with %s ssid ", (vap->iv_opmode == IEEE80211_M_STA ? "associated" : "synchronized"), ether_sprintf(ni->ni_bssid)); ieee80211_print_essid(vap->iv_bss->ni_essid, ni->ni_esslen); /* XXX MCS/HT */ printf(" channel %d start %uMb\n", ieee80211_chan2ieee(ic, ic->ic_curchan), IEEE80211_RATE2MBS(ni->ni_txrate)); } #endif ieee80211_scan_assoc_success(vap, ni->ni_macaddr); ieee80211_notify_node_join(ni, arg == IEEE80211_FC0_SUBTYPE_ASSOC_RESP); break; case IEEE80211_S_SLEEP: /* Wake up from sleep */ vap->iv_sta_ps(vap, 0); break; default: goto invalid; } ieee80211_sync_curchan(ic); if (ostate != IEEE80211_S_RUN) sta_swbmiss_start(vap); /* * When 802.1x is not in use mark the port authorized * at this point so traffic can flow. */ if (ni->ni_authmode != IEEE80211_AUTH_8021X) ieee80211_node_authorize(ni); /* * Fake association when joining an existing bss. * * Don't do this if we're doing SLEEP->RUN. */ if (ic->ic_newassoc != NULL && ostate != IEEE80211_S_SLEEP) ic->ic_newassoc(vap->iv_bss, (ostate != IEEE80211_S_RUN)); break; case IEEE80211_S_CSA: if (ostate != IEEE80211_S_RUN) goto invalid; break; case IEEE80211_S_SLEEP: sta_swbmiss_start(vap); vap->iv_sta_ps(vap, 1); break; default: invalid: IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: unexpected state transition %s -> %s\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate]); break; } return 0; } /* * Return non-zero if the frame is an echo of a multicast * frame sent by ourself. The dir is known to be DSTODS. */ static __inline int isdstods_mcastecho(struct ieee80211vap *vap, const struct ieee80211_frame *wh) { #define QWH4(wh) ((const struct ieee80211_qosframe_addr4 *)wh) #define WH4(wh) ((const struct ieee80211_frame_addr4 *)wh) const uint8_t *sa; KASSERT(vap->iv_opmode == IEEE80211_M_STA, ("wrong mode")); if (!IEEE80211_IS_MULTICAST(wh->i_addr3)) return 0; sa = IEEE80211_QOS_HAS_SEQ(wh) ? QWH4(wh)->i_addr4 : WH4(wh)->i_addr4; return IEEE80211_ADDR_EQ(sa, vap->iv_myaddr); #undef WH4 #undef QWH4 } /* * Return non-zero if the frame is an echo of a multicast * frame sent by ourself. The dir is known to be FROMDS. */ static __inline int isfromds_mcastecho(struct ieee80211vap *vap, const struct ieee80211_frame *wh) { KASSERT(vap->iv_opmode == IEEE80211_M_STA, ("wrong mode")); if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) return 0; return IEEE80211_ADDR_EQ(wh->i_addr3, vap->iv_myaddr); } /* * Decide if a received management frame should be * printed when debugging is enabled. This filters some * of the less interesting frames that come frequently * (e.g. beacons). */ static __inline int doprint(struct ieee80211vap *vap, int subtype) { switch (subtype) { case IEEE80211_FC0_SUBTYPE_BEACON: return (vap->iv_ic->ic_flags & IEEE80211_F_SCAN); case IEEE80211_FC0_SUBTYPE_PROBE_REQ: return 0; } return 1; } /* * Process a received frame. The node associated with the sender * should be supplied. If nothing was found in the node table then * the caller is assumed to supply a reference to iv_bss instead. * The RSSI and a timestamp are also supplied. The RSSI data is used * during AP scanning to select a AP to associate with; it can have * any units so long as values have consistent units and higher values * mean ``better signal''. The receive timestamp is currently not used * by the 802.11 layer. */ static int sta_input(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_rx_stats *rxs, int rssi, int nf) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ifnet *ifp = vap->iv_ifp; struct ieee80211_frame *wh; struct ieee80211_key *key; struct ether_header *eh; int hdrspace, need_tap = 1; /* mbuf need to be tapped. */ uint8_t dir, type, subtype, qos; uint8_t *bssid; int is_hw_decrypted = 0; int has_decrypted = 0; /* * Some devices do hardware decryption all the way through * to pretending the frame wasn't encrypted in the first place. * So, tag it appropriately so it isn't discarded inappropriately. */ if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_DECRYPTED)) is_hw_decrypted = 1; if (m->m_flags & M_AMPDU_MPDU) { /* * Fastpath for A-MPDU reorder q resubmission. Frames * w/ M_AMPDU_MPDU marked have already passed through * here but were received out of order and been held on * the reorder queue. When resubmitted they are marked * with the M_AMPDU_MPDU flag and we can bypass most of * the normal processing. */ wh = mtod(m, struct ieee80211_frame *); type = IEEE80211_FC0_TYPE_DATA; dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK; subtype = IEEE80211_FC0_SUBTYPE_QOS; hdrspace = ieee80211_hdrspace(ic, wh); /* XXX optimize? */ goto resubmit_ampdu; } KASSERT(ni != NULL, ("null node")); ni->ni_inact = ni->ni_inact_reload; type = -1; /* undefined */ if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_min)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, NULL, "too short (1): len %u", m->m_pkthdr.len); vap->iv_stats.is_rx_tooshort++; goto out; } /* * Bit of a cheat here, we use a pointer for a 3-address * frame format but don't reference fields past outside * ieee80211_frame_min w/o first validating the data is * present. */ wh = mtod(m, struct ieee80211_frame *); if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != IEEE80211_FC0_VERSION_0) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, NULL, "wrong version, fc %02x:%02x", wh->i_fc[0], wh->i_fc[1]); vap->iv_stats.is_rx_badversion++; goto err; } dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK; type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { bssid = wh->i_addr2; if (!IEEE80211_ADDR_EQ(bssid, ni->ni_bssid)) { /* not interested in */ IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT, bssid, NULL, "%s", "not to bss"); vap->iv_stats.is_rx_wrongbss++; goto out; } /* * Some devices may be in a promiscuous mode * where they receive frames for multiple station * addresses. * * If we receive a data frame that isn't * destined to our VAP MAC, drop it. * * XXX TODO: This is only enforced when not scanning; * XXX it assumes a software-driven scan will put the NIC * XXX into a "no data frames" mode before setting this * XXX flag. Otherwise it may be possible that we'll still * XXX process data frames whilst scanning. */ if ((! IEEE80211_IS_MULTICAST(wh->i_addr1)) && (! IEEE80211_ADDR_EQ(wh->i_addr1, IF_LLADDR(ifp)))) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT, bssid, NULL, "not to cur sta: lladdr=%6D, addr1=%6D", IF_LLADDR(ifp), ":", wh->i_addr1, ":"); vap->iv_stats.is_rx_wrongbss++; goto out; } IEEE80211_RSSI_LPF(ni->ni_avgrssi, rssi); ni->ni_noise = nf; if ( IEEE80211_HAS_SEQ(type, subtype) && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { uint8_t tid = ieee80211_gettid(wh); if (IEEE80211_QOS_HAS_SEQ(wh) && TID_TO_WME_AC(tid) >= WME_AC_VI) ic->ic_wme.wme_hipri_traffic++; if (! ieee80211_check_rxseq(ni, wh, bssid)) goto out; } } switch (type) { case IEEE80211_FC0_TYPE_DATA: hdrspace = ieee80211_hdrspace(ic, wh); if (m->m_len < hdrspace && (m = m_pullup(m, hdrspace)) == NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, NULL, "data too short: expecting %u", hdrspace); vap->iv_stats.is_rx_tooshort++; goto out; /* XXX */ } /* * Handle A-MPDU re-ordering. If the frame is to be * processed directly then ieee80211_ampdu_reorder * will return 0; otherwise it has consumed the mbuf * and we should do nothing more with it. */ if ((m->m_flags & M_AMPDU) && (dir == IEEE80211_FC1_DIR_FROMDS || dir == IEEE80211_FC1_DIR_DSTODS) && ieee80211_ampdu_reorder(ni, m) != 0) { m = NULL; goto out; } resubmit_ampdu: if (dir == IEEE80211_FC1_DIR_FROMDS) { if ((ifp->if_flags & IFF_SIMPLEX) && isfromds_mcastecho(vap, wh)) { /* * In IEEE802.11 network, multicast * packets sent from "me" are broadcast * from the AP; silently discard for * SIMPLEX interface. */ IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "data", "%s", "multicast echo"); vap->iv_stats.is_rx_mcastecho++; goto out; } if ((vap->iv_flags & IEEE80211_F_DWDS) && IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* * DWDS sta's must drop 3-address mcast frames * as they will be sent separately as a 4-addr * frame. Accepting the 3-addr frame will * confuse the bridge into thinking the sending * sta is located at the end of WDS link. */ IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "3-address data", "%s", "DWDS enabled"); vap->iv_stats.is_rx_mcastecho++; goto out; } } else if (dir == IEEE80211_FC1_DIR_DSTODS) { if ((vap->iv_flags & IEEE80211_F_DWDS) == 0) { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "4-address data", "%s", "DWDS not enabled"); vap->iv_stats.is_rx_wrongdir++; goto out; } if ((ifp->if_flags & IFF_SIMPLEX) && isdstods_mcastecho(vap, wh)) { /* * In IEEE802.11 network, multicast * packets sent from "me" are broadcast * from the AP; silently discard for * SIMPLEX interface. */ IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "4-address data", "%s", "multicast echo"); vap->iv_stats.is_rx_mcastecho++; goto out; } } else { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "data", "incorrect dir 0x%x", dir); vap->iv_stats.is_rx_wrongdir++; goto out; } /* * Handle privacy requirements for hardware decryption * devices. * * For those devices, a handful of things happen. * * + If IV has been stripped, then we can't run * ieee80211_crypto_decap() - none of the key * + If MIC has been stripped, we can't validate * MIC here. * + If MIC fails, then we need to communicate a * MIC failure up to the stack - but we don't know * which key was used. */ /* * Handle privacy requirements. Note that we * must not be preempted from here until after * we (potentially) call ieee80211_crypto_demic; * otherwise we may violate assumptions in the * crypto cipher modules used to do delayed update * of replay sequence numbers. */ if (is_hw_decrypted || wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { if ((vap->iv_flags & IEEE80211_F_PRIVACY) == 0) { /* * Discard encrypted frames when privacy is off. */ IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "WEP", "%s", "PRIVACY off"); vap->iv_stats.is_rx_noprivacy++; IEEE80211_NODE_STAT(ni, rx_noprivacy); goto out; } if (ieee80211_crypto_decap(ni, m, hdrspace, &key) == 0) { /* NB: stats+msgs handled in crypto_decap */ IEEE80211_NODE_STAT(ni, rx_wepfail); goto out; } wh = mtod(m, struct ieee80211_frame *); wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; has_decrypted = 1; } else { /* XXX M_WEP and IEEE80211_F_PRIVACY */ key = NULL; } /* * Save QoS bits for use below--before we strip the header. */ if (subtype == IEEE80211_FC0_SUBTYPE_QOS) { qos = (dir == IEEE80211_FC1_DIR_DSTODS) ? ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0] : ((struct ieee80211_qosframe *)wh)->i_qos[0]; } else qos = 0; /* * Next up, any fragmentation. */ if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { m = ieee80211_defrag(ni, m, hdrspace); if (m == NULL) { /* Fragment dropped or frame not complete yet */ goto out; } } wh = NULL; /* no longer valid, catch any uses */ /* * Next strip any MSDU crypto bits. * * Note: we can't do MIC stripping/verification if the * upper layer has stripped it. We have to check MIC * ourselves. So, key may be NULL, but we have to check * the RX status. */ if (!ieee80211_crypto_demic(vap, key, m, 0)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT, ni->ni_macaddr, "data", "%s", "demic error"); vap->iv_stats.is_rx_demicfail++; IEEE80211_NODE_STAT(ni, rx_demicfail); goto out; } /* copy to listener after decrypt */ if (ieee80211_radiotap_active_vap(vap)) ieee80211_radiotap_rx(vap, m); need_tap = 0; /* * Finally, strip the 802.11 header. */ m = ieee80211_decap(vap, m, hdrspace); if (m == NULL) { /* XXX mask bit to check for both */ /* don't count Null data frames as errors */ if (subtype == IEEE80211_FC0_SUBTYPE_NODATA || subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) goto out; IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT, ni->ni_macaddr, "data", "%s", "decap error"); vap->iv_stats.is_rx_decap++; IEEE80211_NODE_STAT(ni, rx_decap); goto err; } eh = mtod(m, struct ether_header *); if (!ieee80211_node_is_authorized(ni)) { /* * Deny any non-PAE frames received prior to * authorization. For open/shared-key * authentication the port is mark authorized * after authentication completes. For 802.1x * the port is not marked authorized by the * authenticator until the handshake has completed. */ if (eh->ether_type != htons(ETHERTYPE_PAE)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT, eh->ether_shost, "data", "unauthorized port: ether type 0x%x len %u", eh->ether_type, m->m_pkthdr.len); vap->iv_stats.is_rx_unauth++; IEEE80211_NODE_STAT(ni, rx_unauth); goto err; } } else { /* * When denying unencrypted frames, discard * any non-PAE frames received without encryption. */ if ((vap->iv_flags & IEEE80211_F_DROPUNENC) && ((has_decrypted == 0) && (m->m_flags & M_WEP) == 0) && (is_hw_decrypted == 0) && eh->ether_type != htons(ETHERTYPE_PAE)) { /* * Drop unencrypted frames. */ vap->iv_stats.is_rx_unencrypted++; IEEE80211_NODE_STAT(ni, rx_unencrypted); goto out; } } /* XXX require HT? */ if (qos & IEEE80211_QOS_AMSDU) { m = ieee80211_decap_amsdu(ni, m); if (m == NULL) return IEEE80211_FC0_TYPE_DATA; } else { #ifdef IEEE80211_SUPPORT_SUPERG m = ieee80211_decap_fastframe(vap, ni, m); if (m == NULL) return IEEE80211_FC0_TYPE_DATA; #endif } ieee80211_deliver_data(vap, ni, m); return IEEE80211_FC0_TYPE_DATA; case IEEE80211_FC0_TYPE_MGT: vap->iv_stats.is_rx_mgmt++; IEEE80211_NODE_STAT(ni, rx_mgmt); if (dir != IEEE80211_FC1_DIR_NODS) { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "data", "incorrect dir 0x%x", dir); vap->iv_stats.is_rx_wrongdir++; goto err; } if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, "mgt", "too short: len %u", m->m_pkthdr.len); vap->iv_stats.is_rx_tooshort++; goto out; } #ifdef IEEE80211_DEBUG if ((ieee80211_msg_debug(vap) && doprint(vap, subtype)) || ieee80211_msg_dumppkts(vap)) { if_printf(ifp, "received %s from %s rssi %d\n", ieee80211_mgt_subtype_name(subtype), ether_sprintf(wh->i_addr2), rssi); } #endif /* * Note: See above for hardware offload privacy requirements. * It also applies here. */ /* * Again, having encrypted flag set check would be good, but * then we have to also handle crypto_decap() like above. */ if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { if (subtype != IEEE80211_FC0_SUBTYPE_AUTH) { /* * Only shared key auth frames with a challenge * should be encrypted, discard all others. */ IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, ieee80211_mgt_subtype_name(subtype), "%s", "WEP set but not permitted"); vap->iv_stats.is_rx_mgtdiscard++; /* XXX */ goto out; } if ((vap->iv_flags & IEEE80211_F_PRIVACY) == 0) { /* * Discard encrypted frames when privacy is off. */ IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "mgt", "%s", "WEP set but PRIVACY off"); vap->iv_stats.is_rx_noprivacy++; goto out; } hdrspace = ieee80211_hdrspace(ic, wh); /* * Again, if IV/MIC was stripped, then this whole * setup will fail. That's going to need some poking. */ if (ieee80211_crypto_decap(ni, m, hdrspace, &key) == 0) { /* NB: stats+msgs handled in crypto_decap */ goto out; } has_decrypted = 1; wh = mtod(m, struct ieee80211_frame *); wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; } vap->iv_recv_mgmt(ni, m, subtype, rxs, rssi, nf); goto out; case IEEE80211_FC0_TYPE_CTL: vap->iv_stats.is_rx_ctl++; IEEE80211_NODE_STAT(ni, rx_ctrl); vap->iv_recv_ctl(ni, m, subtype); goto out; default: IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, wh, NULL, "bad frame type 0x%x", type); /* should not come here */ break; } err: if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); out: if (m != NULL) { if (need_tap && ieee80211_radiotap_active_vap(vap)) ieee80211_radiotap_rx(vap, m); m_freem(m); } return type; } static void sta_auth_open(struct ieee80211_node *ni, struct ieee80211_frame *wh, int rssi, int nf, uint16_t seq, uint16_t status) { struct ieee80211vap *vap = ni->ni_vap; if (ni->ni_authmode == IEEE80211_AUTH_SHARED) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH, ni->ni_macaddr, "open auth", "bad sta auth mode %u", ni->ni_authmode); vap->iv_stats.is_rx_bad_auth++; /* XXX */ return; } if (vap->iv_state != IEEE80211_S_AUTH || seq != IEEE80211_AUTH_OPEN_RESPONSE) { vap->iv_stats.is_rx_bad_auth++; return; } if (status != 0) { IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_AUTH, ni, "open auth failed (reason %d)", status); vap->iv_stats.is_rx_auth_fail++; vap->iv_stats.is_rx_authfail_code = status; ieee80211_new_state(vap, IEEE80211_S_SCAN, IEEE80211_SCAN_FAIL_STATUS); } else ieee80211_new_state(vap, IEEE80211_S_ASSOC, 0); } static void sta_auth_shared(struct ieee80211_node *ni, struct ieee80211_frame *wh, uint8_t *frm, uint8_t *efrm, int rssi, int nf, uint16_t seq, uint16_t status) { struct ieee80211vap *vap = ni->ni_vap; uint8_t *challenge; /* * NB: this can happen as we allow pre-shared key * authentication to be enabled w/o wep being turned * on so that configuration of these can be done * in any order. It may be better to enforce the * ordering in which case this check would just be * for sanity/consistency. */ if ((vap->iv_flags & IEEE80211_F_PRIVACY) == 0) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH, ni->ni_macaddr, "shared key auth", "%s", " PRIVACY is disabled"); goto bad; } /* * Pre-shared key authentication is evil; accept * it only if explicitly configured (it is supported * mainly for compatibility with clients like OS X). */ if (ni->ni_authmode != IEEE80211_AUTH_AUTO && ni->ni_authmode != IEEE80211_AUTH_SHARED) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH, ni->ni_macaddr, "shared key auth", "bad sta auth mode %u", ni->ni_authmode); vap->iv_stats.is_rx_bad_auth++; /* XXX maybe a unique error? */ goto bad; } challenge = NULL; if (frm + 1 < efrm) { if ((frm[1] + 2) > (efrm - frm)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH, ni->ni_macaddr, "shared key auth", "ie %d/%d too long", frm[0], (frm[1] + 2) - (efrm - frm)); vap->iv_stats.is_rx_bad_auth++; goto bad; } if (*frm == IEEE80211_ELEMID_CHALLENGE) challenge = frm; frm += frm[1] + 2; } switch (seq) { case IEEE80211_AUTH_SHARED_CHALLENGE: case IEEE80211_AUTH_SHARED_RESPONSE: if (challenge == NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH, ni->ni_macaddr, "shared key auth", "%s", "no challenge"); vap->iv_stats.is_rx_bad_auth++; goto bad; } if (challenge[1] != IEEE80211_CHALLENGE_LEN) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH, ni->ni_macaddr, "shared key auth", "bad challenge len %d", challenge[1]); vap->iv_stats.is_rx_bad_auth++; goto bad; } default: break; } if (vap->iv_state != IEEE80211_S_AUTH) return; switch (seq) { case IEEE80211_AUTH_SHARED_PASS: if (ni->ni_challenge != NULL) { IEEE80211_FREE(ni->ni_challenge, M_80211_NODE); ni->ni_challenge = NULL; } if (status != 0) { IEEE80211_NOTE_FRAME(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_AUTH, wh, "shared key auth failed (reason %d)", status); vap->iv_stats.is_rx_auth_fail++; vap->iv_stats.is_rx_authfail_code = status; return; } ieee80211_new_state(vap, IEEE80211_S_ASSOC, 0); break; case IEEE80211_AUTH_SHARED_CHALLENGE: if (!ieee80211_alloc_challenge(ni)) return; /* XXX could optimize by passing recvd challenge */ memcpy(ni->ni_challenge, &challenge[2], challenge[1]); IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, seq + 1); break; default: IEEE80211_DISCARD(vap, IEEE80211_MSG_AUTH, wh, "shared key auth", "bad seq %d", seq); vap->iv_stats.is_rx_bad_auth++; return; } return; bad: /* * Kick the state machine. This short-circuits * using the mgt frame timeout to trigger the * state transition. */ if (vap->iv_state == IEEE80211_S_AUTH) ieee80211_new_state(vap, IEEE80211_S_SCAN, IEEE80211_SCAN_FAIL_STATUS); } int ieee80211_parse_wmeparams(struct ieee80211vap *vap, uint8_t *frm, const struct ieee80211_frame *wh) { #define MS(_v, _f) (((_v) & _f) >> _f##_S) struct ieee80211_wme_state *wme = &vap->iv_ic->ic_wme; u_int len = frm[1], qosinfo; int i; if (len < sizeof(struct ieee80211_wme_param)-2) { IEEE80211_DISCARD_IE(vap, IEEE80211_MSG_ELEMID | IEEE80211_MSG_WME, wh, "WME", "too short, len %u", len); return -1; } qosinfo = frm[__offsetof(struct ieee80211_wme_param, param_qosInfo)]; qosinfo &= WME_QOSINFO_COUNT; /* XXX do proper check for wraparound */ if (qosinfo == wme->wme_wmeChanParams.cap_info) return 0; frm += __offsetof(struct ieee80211_wme_param, params_acParams); for (i = 0; i < WME_NUM_AC; i++) { struct wmeParams *wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; /* NB: ACI not used */ wmep->wmep_acm = MS(frm[0], WME_PARAM_ACM); wmep->wmep_aifsn = MS(frm[0], WME_PARAM_AIFSN); wmep->wmep_logcwmin = MS(frm[1], WME_PARAM_LOGCWMIN); wmep->wmep_logcwmax = MS(frm[1], WME_PARAM_LOGCWMAX); wmep->wmep_txopLimit = le16dec(frm+2); frm += 4; } wme->wme_wmeChanParams.cap_info = qosinfo; return 1; #undef MS } /* * Process 11h Channel Switch Announcement (CSA) ie. If this * is the first CSA then initiate the switch. Otherwise we * track state and trigger completion and/or cancel of the switch. * XXX should be public for IBSS use */ static void ieee80211_parse_csaparams(struct ieee80211vap *vap, uint8_t *frm, const struct ieee80211_frame *wh) { struct ieee80211com *ic = vap->iv_ic; const struct ieee80211_csa_ie *csa = (const struct ieee80211_csa_ie *) frm; KASSERT(vap->iv_state >= IEEE80211_S_RUN, ("state %s", ieee80211_state_name[vap->iv_state])); if (csa->csa_mode > 1) { IEEE80211_DISCARD_IE(vap, IEEE80211_MSG_ELEMID | IEEE80211_MSG_DOTH, wh, "CSA", "invalid mode %u", csa->csa_mode); return; } IEEE80211_LOCK(ic); if ((ic->ic_flags & IEEE80211_F_CSAPENDING) == 0) { /* * Convert the channel number to a channel reference. We * try first to preserve turbo attribute of the current * channel then fallback. Note this will not work if the * CSA specifies a channel that requires a band switch (e.g. * 11a => 11g). This is intentional as 11h is defined only * for 5GHz/11a and because the switch does not involve a * reassociation, protocol state (capabilities, negotated * rates, etc) may/will be wrong. */ struct ieee80211_channel *c = ieee80211_find_channel_byieee(ic, csa->csa_newchan, (ic->ic_bsschan->ic_flags & IEEE80211_CHAN_ALLTURBO)); if (c == NULL) { c = ieee80211_find_channel_byieee(ic, csa->csa_newchan, (ic->ic_bsschan->ic_flags & IEEE80211_CHAN_ALL)); if (c == NULL) { IEEE80211_DISCARD_IE(vap, IEEE80211_MSG_ELEMID | IEEE80211_MSG_DOTH, wh, "CSA", "invalid channel %u", csa->csa_newchan); goto done; } } #if IEEE80211_CSA_COUNT_MIN > 0 if (csa->csa_count < IEEE80211_CSA_COUNT_MIN) { /* * Require at least IEEE80211_CSA_COUNT_MIN count to * reduce the risk of being redirected by a fabricated * CSA. If a valid CSA is dropped we'll still get a * beacon miss when the AP leaves the channel so we'll * eventually follow to the new channel. * * NOTE: this violates the 11h spec that states that * count may be any value and if 0 then a switch * should happen asap. */ IEEE80211_DISCARD_IE(vap, IEEE80211_MSG_ELEMID | IEEE80211_MSG_DOTH, wh, "CSA", "count %u too small, must be >= %u", csa->csa_count, IEEE80211_CSA_COUNT_MIN); goto done; } #endif ieee80211_csa_startswitch(ic, c, csa->csa_mode, csa->csa_count); } else { /* * Validate this ie against the initial CSA. We require * mode and channel not change and the count must be * monotonically decreasing. This may be pointless and * canceling the switch as a result may be too paranoid but * in the worst case if we drop out of CSA because of this * and the AP does move then we'll just end up taking a * beacon miss and scan to find the AP. * * XXX may want <= on count as we also process ProbeResp * frames and those may come in w/ the same count as the * previous beacon; but doing so leaves us open to a stuck * count until we add a dead-man timer */ if (!(csa->csa_count < ic->ic_csa_count && csa->csa_mode == ic->ic_csa_mode && csa->csa_newchan == ieee80211_chan2ieee(ic, ic->ic_csa_newchan))) { IEEE80211_NOTE_FRAME(vap, IEEE80211_MSG_DOTH, wh, "CSA ie mismatch, initial ie <%d,%d,%d>, " "this ie <%d,%d,%d>", ic->ic_csa_mode, ic->ic_csa_newchan, ic->ic_csa_count, csa->csa_mode, csa->csa_newchan, csa->csa_count); ieee80211_csa_cancelswitch(ic); } else { if (csa->csa_count <= 1) ieee80211_csa_completeswitch(ic); else ic->ic_csa_count = csa->csa_count; } } done: IEEE80211_UNLOCK(ic); } /* * Return non-zero if a background scan may be continued: * o bg scan is active * o no channel switch is pending * o there has not been any traffic recently * o no full-offload scan support (no need for explicitly continuing scan then) * * Note we do not check if there is an administrative enable; * this is only done to start the scan. We assume that any * change in state will be accompanied by a request to cancel * active scans which will otherwise cause this test to fail. */ static __inline int contbgscan(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; return ((ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) && (ic->ic_flags & IEEE80211_F_CSAPENDING) == 0 && !(vap->iv_flags_ext & IEEE80211_FEXT_SCAN_OFFLOAD) && vap->iv_state == IEEE80211_S_RUN && /* XXX? */ ieee80211_time_after(ticks, ic->ic_lastdata + vap->iv_bgscanidle)); } /* * Return non-zero if a backgrond scan may be started: * o bg scanning is administratively enabled * o no channel switch is pending * o we are not boosted on a dynamic turbo channel * o there has not been a scan recently * o there has not been any traffic recently (don't check if full-offload scan) */ static __inline int startbgscan(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; return ((vap->iv_flags & IEEE80211_F_BGSCAN) && (ic->ic_flags & IEEE80211_F_CSAPENDING) == 0 && #ifdef IEEE80211_SUPPORT_SUPERG !IEEE80211_IS_CHAN_DTURBO(ic->ic_curchan) && #endif ieee80211_time_after(ticks, ic->ic_lastscan + vap->iv_bgscanintvl) && ((vap->iv_flags_ext & IEEE80211_FEXT_SCAN_OFFLOAD) || ieee80211_time_after(ticks, ic->ic_lastdata + vap->iv_bgscanidle))); } +#ifdef notyet +/* + * Compare two quiet IEs and return if they are equivalent. + * + * The tbttcount isnt checked - that's not part of the configuration. + */ +static int +compare_quiet_ie(const struct ieee80211_quiet_ie *q1, + const struct ieee80211_quiet_ie *q2) +{ + + if (q1->period != q2->period) + return (0); + if (le16dec(&q1->duration) != le16dec(&q2->duration)) + return (0); + if (le16dec(&q1->offset) != le16dec(&q2->offset)) + return (0); + return (1); +} +#endif + static void sta_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m0, int subtype, const struct ieee80211_rx_stats *rxs, int rssi, int nf) { #define ISREASSOC(_st) ((_st) == IEEE80211_FC0_SUBTYPE_REASSOC_RESP) struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_channel *rxchan = ic->ic_curchan; struct ieee80211_frame *wh; uint8_t *frm, *efrm; uint8_t *rates, *xrates, *wme, *htcap, *htinfo; uint8_t *vhtcap, *vhtopmode; uint8_t rate; int ht_state_change = 0, do_ht = 0; wh = mtod(m0, struct ieee80211_frame *); frm = (uint8_t *)&wh[1]; efrm = mtod(m0, uint8_t *) + m0->m_len; switch (subtype) { case IEEE80211_FC0_SUBTYPE_PROBE_RESP: case IEEE80211_FC0_SUBTYPE_BEACON: { struct ieee80211_scanparams scan; struct ieee80211_channel *c; /* * We process beacon/probe response frames: * o when scanning, or * o station mode when associated (to collect state * updates such as 802.11g slot time) * Frames otherwise received are discarded. */ if (!((ic->ic_flags & IEEE80211_F_SCAN) || ni->ni_associd)) { vap->iv_stats.is_rx_mgtdiscard++; return; } /* Override RX channel as appropriate */ if (rxs != NULL) { c = ieee80211_lookup_channel_rxstatus(vap, rxs); if (c != NULL) rxchan = c; } /* XXX probe response in sta mode when !scanning? */ if (ieee80211_parse_beacon(ni, m0, rxchan, &scan) != 0) { if (! (ic->ic_flags & IEEE80211_F_SCAN)) vap->iv_stats.is_beacon_bad++; return; } /* * Count frame now that we know it's to be processed. */ if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) { vap->iv_stats.is_rx_beacon++; /* XXX remove */ IEEE80211_NODE_STAT(ni, rx_beacons); } else IEEE80211_NODE_STAT(ni, rx_proberesp); /* * When operating in station mode, check for state updates. * Be careful to ignore beacons received while doing a * background scan. We consider only 11g/WMM stuff right now. */ if (ni->ni_associd != 0 && ((ic->ic_flags & IEEE80211_F_SCAN) == 0 || IEEE80211_ADDR_EQ(wh->i_addr2, ni->ni_bssid))) { /* record tsf of last beacon */ memcpy(ni->ni_tstamp.data, scan.tstamp, sizeof(ni->ni_tstamp)); /* count beacon frame for s/w bmiss handling */ vap->iv_swbmiss_count++; vap->iv_bmiss_count = 0; if (ni->ni_erp != scan.erp) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC, wh->i_addr2, "erp change: was 0x%x, now 0x%x", ni->ni_erp, scan.erp); if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && (ni->ni_erp & IEEE80211_ERP_USE_PROTECTION)) ic->ic_flags |= IEEE80211_F_USEPROT; else ic->ic_flags &= ~IEEE80211_F_USEPROT; ni->ni_erp = scan.erp; /* XXX statistic */ /* XXX driver notification */ } if ((ni->ni_capinfo ^ scan.capinfo) & IEEE80211_CAPINFO_SHORT_SLOTTIME) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC, wh->i_addr2, "capabilities change: was 0x%x, now 0x%x", ni->ni_capinfo, scan.capinfo); /* * NB: we assume short preamble doesn't * change dynamically */ ieee80211_set_shortslottime(ic, IEEE80211_IS_CHAN_A(ic->ic_bsschan) || (scan.capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)); ni->ni_capinfo = (ni->ni_capinfo &~ IEEE80211_CAPINFO_SHORT_SLOTTIME) | (scan.capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME); /* XXX statistic */ } if (scan.wme != NULL && (ni->ni_flags & IEEE80211_NODE_QOS) && ieee80211_parse_wmeparams(vap, scan.wme, wh) > 0) ieee80211_wme_updateparams(vap); #ifdef IEEE80211_SUPPORT_SUPERG if (scan.ath != NULL) ieee80211_parse_athparams(ni, scan.ath, wh); #endif if (scan.htcap != NULL && scan.htinfo != NULL && (vap->iv_flags_ht & IEEE80211_FHT_HT)) { /* XXX state changes? */ ieee80211_ht_updateparams(ni, scan.htcap, scan.htinfo); do_ht = 1; } if (scan.vhtcap != NULL && scan.vhtopmode != NULL && (vap->iv_flags_vht & IEEE80211_FVHT_VHT)) { /* XXX state changes? */ ieee80211_vht_updateparams(ni, scan.vhtcap, scan.vhtopmode); do_ht = 1; } if (do_ht) { if (ieee80211_ht_updateparams_final(ni, scan.htcap, scan.htinfo)) ht_state_change = 1; } - if (scan.quiet) + /* + * If we have a quiet time IE then report it up to + * the driver. + * + * Otherwise, inform the driver that the quiet time + * IE has disappeared - only do that once rather than + * spamming it each time. + */ + if (scan.quiet) { ic->ic_set_quiet(ni, scan.quiet); + ni->ni_quiet_ie_set = 1; + memcpy(&ni->ni_quiet_ie, scan.quiet, + sizeof(struct ieee80211_quiet_ie)); + } else { + if (ni->ni_quiet_ie_set == 1) + ic->ic_set_quiet(ni, NULL); + ni->ni_quiet_ie_set = 0; + bzero(&ni->ni_quiet_ie, + sizeof(struct ieee80211_quiet_ie)); + } if (scan.tim != NULL) { struct ieee80211_tim_ie *tim = (struct ieee80211_tim_ie *) scan.tim; /* * XXX Check/debug this code; see if it's about * the right time to force the VAP awake if we * receive a frame destined for us? */ int aid = IEEE80211_AID(ni->ni_associd); int ix = aid / NBBY; int min = tim->tim_bitctl &~ 1; int max = tim->tim_len + min - 4; int tim_ucast = 0, tim_mcast = 0; /* * Only do this for unicast traffic in the TIM * The multicast traffic notification for * the scan notification stuff should occur * differently. */ if (min <= ix && ix <= max && isset(tim->tim_bitmap - min, aid)) { tim_ucast = 1; } /* * Do a separate notification * for the multicast bit being set. */ if (tim->tim_bitctl & 1) { tim_mcast = 1; } /* * If the TIM indicates there's traffic for * us then get us out of STA mode powersave. */ if (tim_ucast == 1) { /* * Wake us out of SLEEP state if we're * in it; and if we're doing bgscan * then wake us out of STA powersave. */ ieee80211_sta_tim_notify(vap, 1); /* * This is preventing us from * continuing a bgscan; because it * tricks the contbgscan() * routine to think there's always * traffic for us. * * I think we need both an RX and * TX ic_lastdata field. */ ic->ic_lastdata = ticks; } ni->ni_dtim_count = tim->tim_count; ni->ni_dtim_period = tim->tim_period; } if (scan.csa != NULL && (vap->iv_flags & IEEE80211_F_DOTH)) ieee80211_parse_csaparams(vap, scan.csa, wh); else if (ic->ic_flags & IEEE80211_F_CSAPENDING) { /* * No CSA ie or 11h disabled, but a channel * switch is pending; drop out so we aren't * stuck in CSA state. If the AP really is * moving we'll get a beacon miss and scan. */ IEEE80211_LOCK(ic); ieee80211_csa_cancelswitch(ic); IEEE80211_UNLOCK(ic); } /* * If scanning, pass the info to the scan module. * Otherwise, check if it's the right time to do * a background scan. Background scanning must * be enabled and we must not be operating in the * turbo phase of dynamic turbo mode. Then, * it's been a while since the last background * scan and if no data frames have come through * recently, kick off a scan. Note that this * is the mechanism by which a background scan * is started _and_ continued each time we * return on-channel to receive a beacon from * our ap. */ if (ic->ic_flags & IEEE80211_F_SCAN) { ieee80211_add_scan(vap, rxchan, &scan, wh, subtype, rssi, nf); } else if (contbgscan(vap)) { ieee80211_bg_scan(vap, 0); } else if (startbgscan(vap)) { vap->iv_stats.is_scan_bg++; #if 0 /* wakeup if we are sleeing */ ieee80211_set_pwrsave(vap, 0); #endif ieee80211_bg_scan(vap, 0); } /* * Put the station to sleep if we haven't seen * traffic in a while. */ IEEE80211_LOCK(ic); ieee80211_sta_ps_timer_check(vap); IEEE80211_UNLOCK(ic); /* * If we've had a channel width change (eg HT20<->HT40) * then schedule a delayed driver notification. */ if (ht_state_change) ieee80211_update_chw(ic); return; } /* * If scanning, just pass information to the scan module. */ if (ic->ic_flags & IEEE80211_F_SCAN) { if (ic->ic_flags_ext & IEEE80211_FEXT_PROBECHAN) { /* * Actively scanning a channel marked passive; * send a probe request now that we know there * is 802.11 traffic present. * * XXX check if the beacon we recv'd gives * us what we need and suppress the probe req */ ieee80211_probe_curchan(vap, 1); ic->ic_flags_ext &= ~IEEE80211_FEXT_PROBECHAN; } ieee80211_add_scan(vap, rxchan, &scan, wh, subtype, rssi, nf); return; } break; } case IEEE80211_FC0_SUBTYPE_AUTH: { uint16_t algo, seq, status; /* * auth frame format * [2] algorithm * [2] sequence * [2] status * [tlv*] challenge */ IEEE80211_VERIFY_LENGTH(efrm - frm, 6, return); algo = le16toh(*(uint16_t *)frm); seq = le16toh(*(uint16_t *)(frm + 2)); status = le16toh(*(uint16_t *)(frm + 4)); IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr2, "recv auth frame with algorithm %d seq %d", algo, seq); if (vap->iv_flags & IEEE80211_F_COUNTERM) { IEEE80211_DISCARD(vap, IEEE80211_MSG_AUTH | IEEE80211_MSG_CRYPTO, wh, "auth", "%s", "TKIP countermeasures enabled"); vap->iv_stats.is_rx_auth_countermeasures++; if (vap->iv_opmode == IEEE80211_M_HOSTAP) { ieee80211_send_error(ni, wh->i_addr2, IEEE80211_FC0_SUBTYPE_AUTH, IEEE80211_REASON_MIC_FAILURE); } return; } if (algo == IEEE80211_AUTH_ALG_SHARED) sta_auth_shared(ni, wh, frm + 6, efrm, rssi, nf, seq, status); else if (algo == IEEE80211_AUTH_ALG_OPEN) sta_auth_open(ni, wh, rssi, nf, seq, status); else { IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, wh, "auth", "unsupported alg %d", algo); vap->iv_stats.is_rx_auth_unsupported++; return; } break; } case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: { uint16_t capinfo, associd; uint16_t status; if (vap->iv_state != IEEE80211_S_ASSOC) { vap->iv_stats.is_rx_mgtdiscard++; return; } /* * asresp frame format * [2] capability information * [2] status * [2] association ID * [tlv] supported rates * [tlv] extended supported rates * [tlv] WME * [tlv] HT capabilities * [tlv] HT info */ IEEE80211_VERIFY_LENGTH(efrm - frm, 6, return); ni = vap->iv_bss; capinfo = le16toh(*(uint16_t *)frm); frm += 2; status = le16toh(*(uint16_t *)frm); frm += 2; if (status != 0) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC, wh->i_addr2, "%sassoc failed (reason %d)", ISREASSOC(subtype) ? "re" : "", status); vap->iv_stats.is_rx_auth_fail++; /* XXX */ return; } associd = le16toh(*(uint16_t *)frm); frm += 2; rates = xrates = wme = htcap = htinfo = NULL; vhtcap = vhtopmode = NULL; while (efrm - frm > 1) { IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return); switch (*frm) { case IEEE80211_ELEMID_RATES: rates = frm; break; case IEEE80211_ELEMID_XRATES: xrates = frm; break; case IEEE80211_ELEMID_HTCAP: htcap = frm; break; case IEEE80211_ELEMID_HTINFO: htinfo = frm; break; case IEEE80211_ELEMID_VENDOR: if (iswmeoui(frm)) wme = frm; else if (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) { /* * Accept pre-draft HT ie's if the * standard ones have not been seen. */ if (ishtcapoui(frm)) { if (htcap == NULL) htcap = frm; } else if (ishtinfooui(frm)) { if (htinfo == NULL) htinfo = frm; } } /* XXX Atheros OUI support */ break; case IEEE80211_ELEMID_VHT_CAP: vhtcap = frm; break; case IEEE80211_ELEMID_VHT_OPMODE: vhtopmode = frm; break; } frm += frm[1] + 2; } IEEE80211_VERIFY_ELEMENT(rates, IEEE80211_RATE_MAXSIZE, return); if (xrates != NULL) IEEE80211_VERIFY_ELEMENT(xrates, IEEE80211_RATE_MAXSIZE - rates[1], return); rate = ieee80211_setup_rates(ni, rates, xrates, IEEE80211_F_JOIN | IEEE80211_F_DOSORT | IEEE80211_F_DOFRATE | IEEE80211_F_DONEGO | IEEE80211_F_DODEL); if (rate & IEEE80211_RATE_BASIC) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC, wh->i_addr2, "%sassoc failed (rate set mismatch)", ISREASSOC(subtype) ? "re" : ""); vap->iv_stats.is_rx_assoc_norate++; ieee80211_new_state(vap, IEEE80211_S_SCAN, IEEE80211_SCAN_FAIL_STATUS); return; } ni->ni_capinfo = capinfo; ni->ni_associd = associd; if (ni->ni_jointime == 0) ni->ni_jointime = time_uptime; if (wme != NULL && ieee80211_parse_wmeparams(vap, wme, wh) >= 0) { ni->ni_flags |= IEEE80211_NODE_QOS; ieee80211_wme_updateparams(vap); } else ni->ni_flags &= ~IEEE80211_NODE_QOS; /* * Setup HT state according to the negotiation. * * NB: shouldn't need to check if HT use is enabled but some * ap's send back HT ie's even when we don't indicate we * are HT capable in our AssocReq. */ if (htcap != NULL && htinfo != NULL && (vap->iv_flags_ht & IEEE80211_FHT_HT)) { ieee80211_ht_node_init(ni); ieee80211_ht_updateparams(ni, htcap, htinfo); if ((vhtcap != NULL) && (vhtopmode != NULL) & (vap->iv_flags_vht & IEEE80211_FVHT_VHT)) { /* * Log if we get a VHT assoc/reassoc response. * We aren't ready for 2GHz VHT support. */ if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { printf("%s: peer %6D: VHT on 2GHz, ignoring\n", __func__, ni->ni_macaddr, ":"); } else { ieee80211_vht_node_init(ni); ieee80211_vht_updateparams(ni, vhtcap, vhtopmode); ieee80211_setup_vht_rates(ni, vhtcap, vhtopmode); } } ieee80211_ht_updateparams_final(ni, htcap, htinfo); ieee80211_setup_htrates(ni, htcap, IEEE80211_F_JOIN | IEEE80211_F_DOBRS); ieee80211_setup_basic_htrates(ni, htinfo); ieee80211_node_setuptxparms(ni); ieee80211_ratectl_node_init(ni); } /* * Always initialise FF/superg state; we can use this * for doing A-MSDU encapsulation as well. */ #ifdef IEEE80211_SUPPORT_SUPERG ieee80211_ff_node_init(ni); #endif /* * Configure state now that we are associated. * * XXX may need different/additional driver callbacks? */ if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { ic->ic_flags |= IEEE80211_F_SHPREAMBLE; ic->ic_flags &= ~IEEE80211_F_USEBARKER; } else { ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; ic->ic_flags |= IEEE80211_F_USEBARKER; } ieee80211_set_shortslottime(ic, IEEE80211_IS_CHAN_A(ic->ic_curchan) || (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)); /* * Honor ERP protection. * * NB: ni_erp should zero for non-11g operation. */ if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && (ni->ni_erp & IEEE80211_ERP_USE_PROTECTION)) ic->ic_flags |= IEEE80211_F_USEPROT; else ic->ic_flags &= ~IEEE80211_F_USEPROT; IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_DEBUG, wh->i_addr2, "%sassoc success at aid %d: %s preamble, %s slot time%s%s%s%s%s%s%s%s", ISREASSOC(subtype) ? "re" : "", IEEE80211_NODE_AID(ni), ic->ic_flags&IEEE80211_F_SHPREAMBLE ? "short" : "long", ic->ic_flags&IEEE80211_F_SHSLOT ? "short" : "long", ic->ic_flags&IEEE80211_F_USEPROT ? ", protection" : "", ni->ni_flags & IEEE80211_NODE_QOS ? ", QoS" : "", ni->ni_flags & IEEE80211_NODE_HT ? (ni->ni_chw == 40 ? ", HT40" : ", HT20") : "", ni->ni_flags & IEEE80211_NODE_AMPDU ? " (+AMPDU)" : "", ni->ni_flags & IEEE80211_NODE_MIMO_RTS ? " (+SMPS-DYN)" : ni->ni_flags & IEEE80211_NODE_MIMO_PS ? " (+SMPS)" : "", ni->ni_flags & IEEE80211_NODE_RIFS ? " (+RIFS)" : "", IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF) ? ", fast-frames" : "", IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_TURBOP) ? ", turbo" : "" ); ieee80211_new_state(vap, IEEE80211_S_RUN, subtype); break; } case IEEE80211_FC0_SUBTYPE_DEAUTH: { uint16_t reason; if (vap->iv_state == IEEE80211_S_SCAN) { vap->iv_stats.is_rx_mgtdiscard++; return; } if (!IEEE80211_ADDR_EQ(wh->i_addr1, vap->iv_myaddr)) { /* NB: can happen when in promiscuous mode */ vap->iv_stats.is_rx_mgtdiscard++; break; } /* * deauth frame format * [2] reason */ IEEE80211_VERIFY_LENGTH(efrm - frm, 2, return); reason = le16toh(*(uint16_t *)frm); vap->iv_stats.is_rx_deauth++; vap->iv_stats.is_rx_deauth_code = reason; IEEE80211_NODE_STAT(ni, rx_deauth); IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, "recv deauthenticate (reason: %d (%s))", reason, ieee80211_reason_to_string(reason)); ieee80211_new_state(vap, IEEE80211_S_AUTH, (reason << 8) | IEEE80211_FC0_SUBTYPE_DEAUTH); break; } case IEEE80211_FC0_SUBTYPE_DISASSOC: { uint16_t reason; if (vap->iv_state != IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_ASSOC && vap->iv_state != IEEE80211_S_AUTH) { vap->iv_stats.is_rx_mgtdiscard++; return; } if (!IEEE80211_ADDR_EQ(wh->i_addr1, vap->iv_myaddr)) { /* NB: can happen when in promiscuous mode */ vap->iv_stats.is_rx_mgtdiscard++; break; } /* * disassoc frame format * [2] reason */ IEEE80211_VERIFY_LENGTH(efrm - frm, 2, return); reason = le16toh(*(uint16_t *)frm); vap->iv_stats.is_rx_disassoc++; vap->iv_stats.is_rx_disassoc_code = reason; IEEE80211_NODE_STAT(ni, rx_disassoc); IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, "recv disassociate (reason: %d (%s))", reason, ieee80211_reason_to_string(reason)); ieee80211_new_state(vap, IEEE80211_S_ASSOC, 0); break; } case IEEE80211_FC0_SUBTYPE_ACTION: case IEEE80211_FC0_SUBTYPE_ACTION_NOACK: if (!IEEE80211_ADDR_EQ(vap->iv_myaddr, wh->i_addr1) && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, NULL, "%s", "not for us"); vap->iv_stats.is_rx_mgtdiscard++; } else if (vap->iv_state != IEEE80211_S_RUN) { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, NULL, "wrong state %s", ieee80211_state_name[vap->iv_state]); vap->iv_stats.is_rx_mgtdiscard++; } else { if (ieee80211_parse_action(ni, m0) == 0) (void)ic->ic_recv_action(ni, wh, frm, efrm); } break; case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: case IEEE80211_FC0_SUBTYPE_PROBE_REQ: case IEEE80211_FC0_SUBTYPE_TIMING_ADV: case IEEE80211_FC0_SUBTYPE_ATIM: IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, NULL, "%s", "not handled"); vap->iv_stats.is_rx_mgtdiscard++; break; default: IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, wh, "mgt", "subtype 0x%x not handled", subtype); vap->iv_stats.is_rx_badsubtype++; break; } #undef ISREASSOC } static void sta_recv_ctl(struct ieee80211_node *ni, struct mbuf *m, int subtype) { switch (subtype) { case IEEE80211_FC0_SUBTYPE_BAR: ieee80211_recv_bar(ni, m); break; } } Index: head/sys/net80211/ieee80211_var.h =================================================================== --- head/sys/net80211/ieee80211_var.h (revision 313461) +++ head/sys/net80211/ieee80211_var.h (revision 313462) @@ -1,1026 +1,1027 @@ /*- * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _NET80211_IEEE80211_VAR_H_ #define _NET80211_IEEE80211_VAR_H_ /* * Definitions for IEEE 802.11 drivers. */ /* NB: portability glue must go first */ #if defined(__NetBSD__) #include #elif defined(__FreeBSD__) #include #elif defined(__linux__) #include #else #error "No support for your operating system!" #endif #include #include #include #include #include #include /* for ieee80211_stats */ #include #include #include #include #include #include #define IEEE80211_TXPOWER_MAX 100 /* .5 dBm (XXX units?) */ #define IEEE80211_TXPOWER_MIN 0 /* kill radio */ #define IEEE80211_DTIM_DEFAULT 1 /* default DTIM period */ #define IEEE80211_BINTVAL_DEFAULT 100 /* default beacon interval (TU's) */ #define IEEE80211_BMISS_MAX 2 /* maximum consecutive bmiss allowed */ #define IEEE80211_HWBMISS_DEFAULT 7 /* h/w bmiss threshold (beacons) */ #define IEEE80211_BGSCAN_INTVAL_MIN 15 /* min bg scan intvl (secs) */ #define IEEE80211_BGSCAN_INTVAL_DEFAULT (5*60) /* default bg scan intvl */ #define IEEE80211_BGSCAN_IDLE_MIN 100 /* min idle time (ms) */ #define IEEE80211_BGSCAN_IDLE_DEFAULT 250 /* default idle time (ms) */ #define IEEE80211_SCAN_VALID_MIN 10 /* min scan valid time (secs) */ #define IEEE80211_SCAN_VALID_DEFAULT 60 /* default scan valid time */ #define IEEE80211_PS_SLEEP 0x1 /* STA is in power saving mode */ #define IEEE80211_PS_MAX_QUEUE 50 /* maximum saved packets */ #define IEEE80211_FIXED_RATE_NONE 0xff #define IEEE80211_TXMAX_DEFAULT 6 /* default ucast max retries */ #define IEEE80211_RTS_DEFAULT IEEE80211_RTS_MAX #define IEEE80211_FRAG_DEFAULT IEEE80211_FRAG_MAX #define IEEE80211_MS_TO_TU(x) (((x) * 1000) / 1024) #define IEEE80211_TU_TO_MS(x) (((x) * 1024) / 1000) /* XXX TODO: cap this at 1, in case hz is not 1000 */ #define IEEE80211_TU_TO_TICKS(x)(((uint64_t)(x) * 1024 * hz) / (1000 * 1000)) /* * Technically, vhtflags may be 0 /and/ 11ac is enabled. * At some point ic should just grow a flag somewhere that * says that VHT is supported - and then this macro can be * changed. */ #define IEEE80211_CONF_VHT(ic) \ ((ic)->ic_flags_ext & IEEE80211_FEXT_VHT) #define IEEE80211_CONF_SEQNO_OFFLOAD(ic) \ ((ic)->ic_flags_ext & IEEE80211_FEXT_SEQNO_OFFLOAD) #define IEEE80211_CONF_FRAG_OFFLOAD(ic) \ ((ic)->ic_flags_ext & IEEE80211_FEXT_FRAG_OFFLOAD) /* * 802.11 control state is split into a common portion that maps * 1-1 to a physical device and one or more "Virtual AP's" (VAP) * that are bound to an ieee80211com instance and share a single * underlying device. Each VAP has a corresponding OS device * entity through which traffic flows and that applications use * for issuing ioctls, etc. */ /* * Data common to one or more virtual AP's. State shared by * the underlying device and the net80211 layer is exposed here; * e.g. device-specific callbacks. */ struct ieee80211vap; typedef void (*ieee80211vap_attach)(struct ieee80211vap *); struct ieee80211_appie { uint16_t ie_len; /* size of ie_data */ uint8_t ie_data[]; /* user-specified IE's */ }; struct ieee80211_tdma_param; struct ieee80211_rate_table; struct ieee80211_tx_ampdu; struct ieee80211_rx_ampdu; struct ieee80211_superg; struct ieee80211_frame; struct ieee80211com { void *ic_softc; /* driver softc */ const char *ic_name; /* usually device name */ ieee80211_com_lock_t ic_comlock; /* state update lock */ ieee80211_tx_lock_t ic_txlock; /* ic/vap TX lock */ ieee80211_ff_lock_t ic_fflock; /* stageq/ni_tx_superg lock */ LIST_ENTRY(ieee80211com) ic_next; /* on global list */ TAILQ_HEAD(, ieee80211vap) ic_vaps; /* list of vap instances */ int ic_headroom; /* driver tx headroom needs */ enum ieee80211_phytype ic_phytype; /* XXX wrong for multi-mode */ enum ieee80211_opmode ic_opmode; /* operation mode */ struct callout ic_inact; /* inactivity processing */ struct taskqueue *ic_tq; /* deferred state thread */ struct task ic_parent_task; /* deferred parent processing */ struct task ic_promisc_task;/* deferred promisc update */ struct task ic_mcast_task; /* deferred mcast update */ struct task ic_chan_task; /* deferred channel change */ struct task ic_bmiss_task; /* deferred beacon miss hndlr */ struct task ic_chw_task; /* deferred HT CHW update */ struct task ic_wme_task; /* deferred WME update */ struct task ic_restart_task; /* deferred device restart */ counter_u64_t ic_ierrors; /* input errors */ counter_u64_t ic_oerrors; /* output errors */ uint32_t ic_flags; /* state flags */ uint32_t ic_flags_ext; /* extended state flags */ uint32_t ic_flags_ht; /* HT state flags */ uint32_t ic_flags_ven; /* vendor state flags */ uint32_t ic_caps; /* capabilities */ uint32_t ic_htcaps; /* HT capabilities */ uint32_t ic_htextcaps; /* HT extended capabilities */ uint32_t ic_cryptocaps; /* crypto capabilities */ /* set of mode capabilities */ uint8_t ic_modecaps[IEEE80211_MODE_BYTES]; uint8_t ic_promisc; /* vap's needing promisc mode */ uint8_t ic_allmulti; /* vap's needing all multicast*/ uint8_t ic_nrunning; /* vap's marked running */ uint8_t ic_curmode; /* current mode */ uint8_t ic_macaddr[IEEE80211_ADDR_LEN]; uint16_t ic_bintval; /* beacon interval */ uint16_t ic_lintval; /* listen interval */ uint16_t ic_holdover; /* PM hold over duration */ uint16_t ic_txpowlimit; /* global tx power limit */ struct ieee80211_rateset ic_sup_rates[IEEE80211_MODE_MAX]; /* * Channel state: * * ic_channels is the set of available channels for the device; * it is setup by the driver * ic_nchans is the number of valid entries in ic_channels * ic_chan_avail is a bit vector of these channels used to check * whether a channel is available w/o searching the channel table. * ic_chan_active is a (potentially) constrained subset of * ic_chan_avail that reflects any mode setting or user-specified * limit on the set of channels to use/scan * ic_curchan is the current channel the device is set to; it may * be different from ic_bsschan when we are off-channel scanning * or otherwise doing background work * ic_bsschan is the channel selected for operation; it may * be undefined (IEEE80211_CHAN_ANYC) * ic_prevchan is a cached ``previous channel'' used to optimize * lookups when switching back+forth between two channels * (e.g. for dynamic turbo) */ int ic_nchans; /* # entries in ic_channels */ struct ieee80211_channel ic_channels[IEEE80211_CHAN_MAX]; uint8_t ic_chan_avail[IEEE80211_CHAN_BYTES]; uint8_t ic_chan_active[IEEE80211_CHAN_BYTES]; uint8_t ic_chan_scan[IEEE80211_CHAN_BYTES]; struct ieee80211_channel *ic_curchan; /* current channel */ const struct ieee80211_rate_table *ic_rt; /* table for ic_curchan */ struct ieee80211_channel *ic_bsschan; /* bss channel */ struct ieee80211_channel *ic_prevchan; /* previous channel */ struct ieee80211_regdomain ic_regdomain;/* regulatory data */ struct ieee80211_appie *ic_countryie; /* calculated country ie */ struct ieee80211_channel *ic_countryie_chan; /* 802.11h/DFS state */ struct ieee80211_channel *ic_csa_newchan;/* channel for doing CSA */ short ic_csa_mode; /* mode for doing CSA */ short ic_csa_count; /* count for doing CSA */ struct ieee80211_dfs_state ic_dfs; /* DFS state */ struct ieee80211_scan_state *ic_scan; /* scan state */ struct ieee80211_scan_methods *ic_scan_methods; /* scan methods */ int ic_lastdata; /* time of last data frame */ int ic_lastscan; /* time last scan completed */ /* NB: this is the union of all vap stations/neighbors */ int ic_max_keyix; /* max h/w key index */ struct ieee80211_node_table ic_sta; /* stations/neighbors */ struct ieee80211_ageq ic_stageq; /* frame staging queue */ uint32_t ic_hash_key; /* random key for mac hash */ /* XXX multi-bss: split out common/vap parts */ struct ieee80211_wme_state ic_wme; /* WME/WMM state */ /* XXX multi-bss: can per-vap be done/make sense? */ enum ieee80211_protmode ic_protmode; /* 802.11g protection mode */ uint16_t ic_nonerpsta; /* # non-ERP stations */ uint16_t ic_longslotsta; /* # long slot time stations */ uint16_t ic_sta_assoc; /* stations associated */ uint16_t ic_ht_sta_assoc;/* HT stations associated */ uint16_t ic_ht40_sta_assoc;/* HT40 stations associated */ uint8_t ic_curhtprotmode;/* HTINFO bss state */ enum ieee80211_protmode ic_htprotmode; /* HT protection mode */ int ic_lastnonerp; /* last time non-ERP sta noted*/ int ic_lastnonht; /* last time non-HT sta noted */ uint8_t ic_rxstream; /* # RX streams */ uint8_t ic_txstream; /* # TX streams */ /* VHT information */ uint32_t ic_vhtcaps; /* VHT capabilities */ uint32_t ic_vhtextcaps; /* VHT extended capabilities (TODO) */ struct ieee80211_vht_mcs_info ic_vht_mcsinfo; /* Support TX/RX VHT MCS */ uint32_t ic_flags_vht; /* VHT state flags */ uint32_t ic_vht_spare[3]; /* optional state for Atheros SuperG protocol extensions */ struct ieee80211_superg *ic_superg; /* radiotap handling */ struct ieee80211_radiotap_header *ic_th;/* tx radiotap headers */ void *ic_txchan; /* channel state in ic_th */ struct ieee80211_radiotap_header *ic_rh;/* rx radiotap headers */ void *ic_rxchan; /* channel state in ic_rh */ int ic_montaps; /* active monitor mode taps */ /* virtual ap create/delete */ struct ieee80211vap* (*ic_vap_create)(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); void (*ic_vap_delete)(struct ieee80211vap *); /* device specific ioctls */ int (*ic_ioctl)(struct ieee80211com *, u_long, void *); /* start/stop device */ void (*ic_parent)(struct ieee80211com *); /* operating mode attachment */ ieee80211vap_attach ic_vattach[IEEE80211_OPMODE_MAX]; /* return hardware/radio capabilities */ void (*ic_getradiocaps)(struct ieee80211com *, int, int *, struct ieee80211_channel []); /* check and/or prepare regdomain state change */ int (*ic_setregdomain)(struct ieee80211com *, struct ieee80211_regdomain *, int, struct ieee80211_channel []); int (*ic_set_quiet)(struct ieee80211_node *, u_int8_t *quiet_elm); /* regular transmit */ int (*ic_transmit)(struct ieee80211com *, struct mbuf *); /* send/recv 802.11 management frame */ int (*ic_send_mgmt)(struct ieee80211_node *, int, int); /* send raw 802.11 frame */ int (*ic_raw_xmit)(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); /* update device state for 802.11 slot time change */ void (*ic_updateslot)(struct ieee80211com *); /* handle multicast state changes */ void (*ic_update_mcast)(struct ieee80211com *); /* handle promiscuous mode changes */ void (*ic_update_promisc)(struct ieee80211com *); /* new station association callback/notification */ void (*ic_newassoc)(struct ieee80211_node *, int); /* TDMA update notification */ void (*ic_tdma_update)(struct ieee80211_node *, const struct ieee80211_tdma_param *, int); /* node state management */ struct ieee80211_node* (*ic_node_alloc)(struct ieee80211vap *, const uint8_t [IEEE80211_ADDR_LEN]); void (*ic_node_free)(struct ieee80211_node *); void (*ic_node_cleanup)(struct ieee80211_node *); void (*ic_node_age)(struct ieee80211_node *); void (*ic_node_drain)(struct ieee80211_node *); int8_t (*ic_node_getrssi)(const struct ieee80211_node*); void (*ic_node_getsignal)(const struct ieee80211_node*, int8_t *, int8_t *); void (*ic_node_getmimoinfo)( const struct ieee80211_node*, struct ieee80211_mimo_info *); /* scanning support */ void (*ic_scan_start)(struct ieee80211com *); void (*ic_scan_end)(struct ieee80211com *); void (*ic_set_channel)(struct ieee80211com *); void (*ic_scan_curchan)(struct ieee80211_scan_state *, unsigned long); void (*ic_scan_mindwell)(struct ieee80211_scan_state *); /* * 802.11n ADDBA support. A simple/generic implementation * of A-MPDU tx aggregation is provided; the driver may * override these methods to provide their own support. * A-MPDU rx re-ordering happens automatically if the * driver passes out-of-order frames to ieee80211_input * from an assocated HT station. */ int (*ic_recv_action)(struct ieee80211_node *, const struct ieee80211_frame *, const uint8_t *frm, const uint8_t *efrm); int (*ic_send_action)(struct ieee80211_node *, int category, int action, void *); /* check if A-MPDU should be enabled this station+ac */ int (*ic_ampdu_enable)(struct ieee80211_node *, struct ieee80211_tx_ampdu *); /* start/stop doing A-MPDU tx aggregation for a station */ int (*ic_addba_request)(struct ieee80211_node *, struct ieee80211_tx_ampdu *, int dialogtoken, int baparamset, int batimeout); int (*ic_addba_response)(struct ieee80211_node *, struct ieee80211_tx_ampdu *, int status, int baparamset, int batimeout); void (*ic_addba_stop)(struct ieee80211_node *, struct ieee80211_tx_ampdu *); void (*ic_addba_response_timeout)(struct ieee80211_node *, struct ieee80211_tx_ampdu *); /* BAR response received */ void (*ic_bar_response)(struct ieee80211_node *, struct ieee80211_tx_ampdu *, int status); /* start/stop doing A-MPDU rx processing for a station */ int (*ic_ampdu_rx_start)(struct ieee80211_node *, struct ieee80211_rx_ampdu *, int baparamset, int batimeout, int baseqctl); void (*ic_ampdu_rx_stop)(struct ieee80211_node *, struct ieee80211_rx_ampdu *); /* The channel width has changed (20<->2040) */ void (*ic_update_chw)(struct ieee80211com *); uint64_t ic_spare[7]; }; struct ieee80211_aclator; struct ieee80211_tdma_state; struct ieee80211_mesh_state; struct ieee80211_hwmp_state; struct ieee80211vap { struct ifmedia iv_media; /* interface media config */ struct ifnet *iv_ifp; /* associated device */ struct bpf_if *iv_rawbpf; /* packet filter structure */ struct sysctl_ctx_list *iv_sysctl; /* dynamic sysctl context */ struct sysctl_oid *iv_oid; /* net.wlan.X sysctl oid */ TAILQ_ENTRY(ieee80211vap) iv_next; /* list of vap instances */ struct ieee80211com *iv_ic; /* back ptr to common state */ /* MAC address: ifp or ic */ uint8_t iv_myaddr[IEEE80211_ADDR_LEN]; uint32_t iv_debug; /* debug msg flags */ struct ieee80211_stats iv_stats; /* statistics */ uint32_t iv_flags; /* state flags */ uint32_t iv_flags_ext; /* extended state flags */ uint32_t iv_flags_ht; /* HT state flags */ uint32_t iv_flags_ven; /* vendor state flags */ uint32_t iv_ifflags; /* ifnet flags */ uint32_t iv_caps; /* capabilities */ uint32_t iv_htcaps; /* HT capabilities */ uint32_t iv_htextcaps; /* HT extended capabilities */ enum ieee80211_opmode iv_opmode; /* operation mode */ enum ieee80211_state iv_state; /* state machine state */ enum ieee80211_state iv_nstate; /* pending state */ int iv_nstate_arg; /* pending state arg */ struct task iv_nstate_task; /* deferred state processing */ struct task iv_swbmiss_task;/* deferred iv_bmiss call */ struct callout iv_mgtsend; /* mgmt frame response timer */ /* inactivity timer settings */ int iv_inact_init; /* setting for new station */ int iv_inact_auth; /* auth but not assoc setting */ int iv_inact_run; /* authorized setting */ int iv_inact_probe; /* inactive probe time */ /* VHT flags */ uint32_t iv_flags_vht; /* VHT state flags */ uint32_t iv_vhtcaps; /* VHT capabilities */ uint32_t iv_vhtextcaps; /* VHT extended capabilities (TODO) */ struct ieee80211_vht_mcs_info iv_vht_mcsinfo; uint32_t iv_vht_spare[4]; int iv_des_nssid; /* # desired ssids */ struct ieee80211_scan_ssid iv_des_ssid[1];/* desired ssid table */ uint8_t iv_des_bssid[IEEE80211_ADDR_LEN]; struct ieee80211_channel *iv_des_chan; /* desired channel */ uint16_t iv_des_mode; /* desired mode */ int iv_nicknamelen; /* XXX junk */ uint8_t iv_nickname[IEEE80211_NWID_LEN]; u_int iv_bgscanidle; /* bg scan idle threshold */ u_int iv_bgscanintvl; /* bg scan min interval */ u_int iv_scanvalid; /* scan cache valid threshold */ u_int iv_scanreq_duration; u_int iv_scanreq_mindwell; u_int iv_scanreq_maxdwell; uint16_t iv_scanreq_flags;/* held scan request params */ uint8_t iv_scanreq_nssid; struct ieee80211_scan_ssid iv_scanreq_ssid[IEEE80211_SCAN_MAX_SSID]; /* sta-mode roaming state */ enum ieee80211_roamingmode iv_roaming; /* roaming mode */ struct ieee80211_roamparam iv_roamparms[IEEE80211_MODE_MAX]; uint8_t iv_bmissthreshold; uint8_t iv_bmiss_count; /* current beacon miss count */ int iv_bmiss_max; /* max bmiss before scan */ uint16_t iv_swbmiss_count;/* beacons in last period */ uint16_t iv_swbmiss_period;/* s/w bmiss period */ struct callout iv_swbmiss; /* s/w beacon miss timer */ int iv_ampdu_rxmax; /* A-MPDU rx limit (bytes) */ int iv_ampdu_density;/* A-MPDU density */ int iv_ampdu_limit; /* A-MPDU tx limit (bytes) */ int iv_amsdu_limit; /* A-MSDU tx limit (bytes) */ u_int iv_ampdu_mintraffic[WME_NUM_AC]; struct ieee80211_beacon_offsets iv_bcn_off; uint32_t *iv_aid_bitmap; /* association id map */ uint16_t iv_max_aid; uint16_t iv_sta_assoc; /* stations associated */ uint16_t iv_ps_sta; /* stations in power save */ uint16_t iv_ps_pending; /* ps sta's w/ pending frames */ uint16_t iv_txseq; /* mcast xmit seq# space */ uint16_t iv_tim_len; /* ic_tim_bitmap size (bytes) */ uint8_t *iv_tim_bitmap; /* power-save stations w/ data*/ uint8_t iv_dtim_period; /* DTIM period */ uint8_t iv_dtim_count; /* DTIM count from last bcn */ /* set/unset aid pwrsav state */ uint8_t iv_quiet; /* Quiet Element */ uint8_t iv_quiet_count; /* constant count for Quiet Element */ uint8_t iv_quiet_count_value; /* variable count for Quiet Element */ uint8_t iv_quiet_period; /* period for Quiet Element */ uint16_t iv_quiet_duration; /* duration for Quiet Element */ uint16_t iv_quiet_offset; /* offset for Quiet Element */ int iv_csa_count; /* count for doing CSA */ struct ieee80211_node *iv_bss; /* information for this node */ struct ieee80211_txparam iv_txparms[IEEE80211_MODE_MAX]; uint16_t iv_rtsthreshold; uint16_t iv_fragthreshold; int iv_inact_timer; /* inactivity timer wait */ /* application-specified IE's to attach to mgt frames */ struct ieee80211_appie *iv_appie_beacon; struct ieee80211_appie *iv_appie_probereq; struct ieee80211_appie *iv_appie_proberesp; struct ieee80211_appie *iv_appie_assocreq; struct ieee80211_appie *iv_appie_assocresp; struct ieee80211_appie *iv_appie_wpa; uint8_t *iv_wpa_ie; uint8_t *iv_rsn_ie; /* Key management */ uint16_t iv_max_keyix; /* max h/w key index */ ieee80211_keyix iv_def_txkey; /* default/group tx key index */ struct ieee80211_key iv_nw_keys[IEEE80211_WEP_NKID]; int (*iv_key_alloc)(struct ieee80211vap *, struct ieee80211_key *, ieee80211_keyix *, ieee80211_keyix *); int (*iv_key_delete)(struct ieee80211vap *, const struct ieee80211_key *); int (*iv_key_set)(struct ieee80211vap *, const struct ieee80211_key *); void (*iv_key_update_begin)(struct ieee80211vap *); void (*iv_key_update_end)(struct ieee80211vap *); void (*iv_update_deftxkey)(struct ieee80211vap *, ieee80211_keyix deftxkey); const struct ieee80211_authenticator *iv_auth; /* authenticator glue */ void *iv_ec; /* private auth state */ const struct ieee80211_aclator *iv_acl; /* acl glue */ void *iv_as; /* private aclator state */ const struct ieee80211_ratectl *iv_rate; void *iv_rs; /* private ratectl state */ struct ieee80211_tdma_state *iv_tdma; /* tdma state */ struct ieee80211_mesh_state *iv_mesh; /* MBSS state */ struct ieee80211_hwmp_state *iv_hwmp; /* HWMP state */ /* operate-mode detach hook */ void (*iv_opdetach)(struct ieee80211vap *); /* receive processing */ int (*iv_input)(struct ieee80211_node *, struct mbuf *, const struct ieee80211_rx_stats *, int, int); void (*iv_recv_mgmt)(struct ieee80211_node *, struct mbuf *, int, const struct ieee80211_rx_stats *, int, int); void (*iv_recv_ctl)(struct ieee80211_node *, struct mbuf *, int); void (*iv_deliver_data)(struct ieee80211vap *, struct ieee80211_node *, struct mbuf *); #if 0 /* send processing */ int (*iv_send_mgmt)(struct ieee80211_node *, int, int); #endif /* beacon miss processing */ void (*iv_bmiss)(struct ieee80211vap *); /* reset device state after 802.11 parameter/state change */ int (*iv_reset)(struct ieee80211vap *, u_long); /* [schedule] beacon frame update */ void (*iv_update_beacon)(struct ieee80211vap *, int); /* power save handling */ void (*iv_update_ps)(struct ieee80211vap *, int); int (*iv_set_tim)(struct ieee80211_node *, int); void (*iv_node_ps)(struct ieee80211_node *, int); void (*iv_sta_ps)(struct ieee80211vap *, int); void (*iv_recv_pspoll)(struct ieee80211_node *, struct mbuf *); /* state machine processing */ int (*iv_newstate)(struct ieee80211vap *, enum ieee80211_state, int); /* 802.3 output method for raw frame xmit */ int (*iv_output)(struct ifnet *, struct mbuf *, const struct sockaddr *, struct route *); uint64_t iv_spare[6]; }; MALLOC_DECLARE(M_80211_VAP); #define IEEE80211_ADDR_EQ(a1,a2) (memcmp(a1,a2,IEEE80211_ADDR_LEN) == 0) #define IEEE80211_ADDR_COPY(dst,src) memcpy(dst,src,IEEE80211_ADDR_LEN) /* ic_flags/iv_flags */ #define IEEE80211_F_TURBOP 0x00000001 /* CONF: ATH Turbo enabled*/ #define IEEE80211_F_COMP 0x00000002 /* CONF: ATH comp enabled */ #define IEEE80211_F_FF 0x00000004 /* CONF: ATH FF enabled */ #define IEEE80211_F_BURST 0x00000008 /* CONF: bursting enabled */ /* NB: this is intentionally setup to be IEEE80211_CAPINFO_PRIVACY */ #define IEEE80211_F_PRIVACY 0x00000010 /* CONF: privacy enabled */ #define IEEE80211_F_PUREG 0x00000020 /* CONF: 11g w/o 11b sta's */ #define IEEE80211_F_SCAN 0x00000080 /* STATUS: scanning */ /* 0x00000300 reserved */ /* NB: this is intentionally setup to be IEEE80211_CAPINFO_SHORT_SLOTTIME */ #define IEEE80211_F_SHSLOT 0x00000400 /* STATUS: use short slot time*/ #define IEEE80211_F_PMGTON 0x00000800 /* CONF: Power mgmt enable */ #define IEEE80211_F_DESBSSID 0x00001000 /* CONF: des_bssid is set */ #define IEEE80211_F_WME 0x00002000 /* CONF: enable WME use */ #define IEEE80211_F_BGSCAN 0x00004000 /* CONF: bg scan enabled (???)*/ #define IEEE80211_F_SWRETRY 0x00008000 /* CONF: sw tx retry enabled */ /* 0x00030000 reserved */ #define IEEE80211_F_SHPREAMBLE 0x00040000 /* STATUS: use short preamble */ #define IEEE80211_F_DATAPAD 0x00080000 /* CONF: do alignment pad */ #define IEEE80211_F_USEPROT 0x00100000 /* STATUS: protection enabled */ #define IEEE80211_F_USEBARKER 0x00200000 /* STATUS: use barker preamble*/ #define IEEE80211_F_CSAPENDING 0x00400000 /* STATUS: chan switch pending*/ #define IEEE80211_F_WPA1 0x00800000 /* CONF: WPA enabled */ #define IEEE80211_F_WPA2 0x01000000 /* CONF: WPA2 enabled */ #define IEEE80211_F_WPA 0x01800000 /* CONF: WPA/WPA2 enabled */ #define IEEE80211_F_DROPUNENC 0x02000000 /* CONF: drop unencrypted */ #define IEEE80211_F_COUNTERM 0x04000000 /* CONF: TKIP countermeasures */ #define IEEE80211_F_HIDESSID 0x08000000 /* CONF: hide SSID in beacon */ #define IEEE80211_F_NOBRIDGE 0x10000000 /* CONF: dis. internal bridge */ #define IEEE80211_F_PCF 0x20000000 /* CONF: PCF enabled */ #define IEEE80211_F_DOTH 0x40000000 /* CONF: 11h enabled */ #define IEEE80211_F_DWDS 0x80000000 /* CONF: Dynamic WDS enabled */ #define IEEE80211_F_BITS \ "\20\1TURBOP\2COMP\3FF\4BURST\5PRIVACY\6PUREG\10SCAN" \ "\13SHSLOT\14PMGTON\15DESBSSID\16WME\17BGSCAN\20SWRETRY" \ "\23SHPREAMBLE\24DATAPAD\25USEPROT\26USERBARKER\27CSAPENDING" \ "\30WPA1\31WPA2\32DROPUNENC\33COUNTERM\34HIDESSID\35NOBRIDG\36PCF" \ "\37DOTH\40DWDS" /* Atheros protocol-specific flags */ #define IEEE80211_F_ATHEROS \ (IEEE80211_F_FF | IEEE80211_F_COMP | IEEE80211_F_TURBOP) /* Check if an Atheros capability was negotiated for use */ #define IEEE80211_ATH_CAP(vap, ni, bit) \ ((vap)->iv_flags & (ni)->ni_ath_flags & (bit)) /* ic_flags_ext/iv_flags_ext */ #define IEEE80211_FEXT_INACT 0x00000002 /* CONF: sta inact handling */ #define IEEE80211_FEXT_SCANWAIT 0x00000004 /* STATUS: awaiting scan */ /* 0x00000006 reserved */ #define IEEE80211_FEXT_BGSCAN 0x00000008 /* STATUS: complete bgscan */ #define IEEE80211_FEXT_WPS 0x00000010 /* CONF: WPS enabled */ #define IEEE80211_FEXT_TSN 0x00000020 /* CONF: TSN enabled */ #define IEEE80211_FEXT_SCANREQ 0x00000040 /* STATUS: scan req params */ #define IEEE80211_FEXT_RESUME 0x00000080 /* STATUS: start on resume */ #define IEEE80211_FEXT_4ADDR 0x00000100 /* CONF: apply 4-addr encap */ #define IEEE80211_FEXT_NONERP_PR 0x00000200 /* STATUS: non-ERP sta present*/ #define IEEE80211_FEXT_SWBMISS 0x00000400 /* CONF: do bmiss in s/w */ #define IEEE80211_FEXT_DFS 0x00000800 /* CONF: DFS enabled */ #define IEEE80211_FEXT_DOTD 0x00001000 /* CONF: 11d enabled */ #define IEEE80211_FEXT_STATEWAIT 0x00002000 /* STATUS: awaiting state chg */ #define IEEE80211_FEXT_REINIT 0x00004000 /* STATUS: INIT state first */ #define IEEE80211_FEXT_BPF 0x00008000 /* STATUS: BPF tap present */ /* NB: immutable: should be set only when creating a vap */ #define IEEE80211_FEXT_WDSLEGACY 0x00010000 /* CONF: legacy WDS operation */ #define IEEE80211_FEXT_PROBECHAN 0x00020000 /* CONF: probe passive channel*/ #define IEEE80211_FEXT_UNIQMAC 0x00040000 /* CONF: user or computed mac */ #define IEEE80211_FEXT_SCAN_OFFLOAD 0x00080000 /* CONF: scan is fully offloaded */ #define IEEE80211_FEXT_SEQNO_OFFLOAD 0x00100000 /* CONF: driver does seqno insertion/allocation */ #define IEEE80211_FEXT_FRAG_OFFLOAD 0x00200000 /* CONF: hardware does 802.11 fragmentation + assignment */ #define IEEE80211_FEXT_VHT 0x00400000 /* CONF: VHT support */ +#define IEEE80211_FEXT_QUIET_IE 0x00800000 /* STATUS: quiet IE in a beacon has been added */ #define IEEE80211_FEXT_BITS \ "\20\2INACT\3SCANWAIT\4BGSCAN\5WPS\6TSN\7SCANREQ\10RESUME" \ "\0114ADDR\12NONEPR_PR\13SWBMISS\14DFS\15DOTD\16STATEWAIT\17REINIT" \ "\20BPF\21WDSLEGACY\22PROBECHAN\23UNIQMAC\24SCAN_OFFLOAD\25SEQNO_OFFLOAD" \ - "\26VHT" + "\26VHT\27QUIET_IE" /* ic_flags_ht/iv_flags_ht */ #define IEEE80211_FHT_NONHT_PR 0x00000001 /* STATUS: non-HT sta present */ #define IEEE80211_FHT_LDPC_TX 0x00010000 /* CONF: LDPC tx enabled */ #define IEEE80211_FHT_LDPC_RX 0x00020000 /* CONF: LDPC rx enabled */ #define IEEE80211_FHT_GF 0x00040000 /* CONF: Greenfield enabled */ #define IEEE80211_FHT_HT 0x00080000 /* CONF: HT supported */ #define IEEE80211_FHT_AMPDU_TX 0x00100000 /* CONF: A-MPDU tx supported */ #define IEEE80211_FHT_AMPDU_RX 0x00200000 /* CONF: A-MPDU rx supported */ #define IEEE80211_FHT_AMSDU_TX 0x00400000 /* CONF: A-MSDU tx supported */ #define IEEE80211_FHT_AMSDU_RX 0x00800000 /* CONF: A-MSDU rx supported */ #define IEEE80211_FHT_USEHT40 0x01000000 /* CONF: 20/40 use enabled */ #define IEEE80211_FHT_PUREN 0x02000000 /* CONF: 11n w/o legacy sta's */ #define IEEE80211_FHT_SHORTGI20 0x04000000 /* CONF: short GI in HT20 */ #define IEEE80211_FHT_SHORTGI40 0x08000000 /* CONF: short GI in HT40 */ #define IEEE80211_FHT_HTCOMPAT 0x10000000 /* CONF: HT vendor OUI's */ #define IEEE80211_FHT_RIFS 0x20000000 /* CONF: RIFS enabled */ #define IEEE80211_FHT_STBC_TX 0x40000000 /* CONF: STBC tx enabled */ #define IEEE80211_FHT_STBC_RX 0x80000000 /* CONF: STBC rx enabled */ #define IEEE80211_FHT_BITS \ "\20\1NONHT_PR" \ "\23GF\24HT\25AMPDU_TX\26AMPDU_TX" \ "\27AMSDU_TX\30AMSDU_RX\31USEHT40\32PUREN\33SHORTGI20\34SHORTGI40" \ "\35HTCOMPAT\36RIFS\37STBC_TX\40STBC_RX" #define IEEE80211_FVEN_BITS "\20" #define IEEE80211_FVHT_VHT 0x000000001 /* CONF: VHT supported */ #define IEEE80211_FVHT_USEVHT40 0x000000002 /* CONF: Use VHT40 */ #define IEEE80211_FVHT_USEVHT80 0x000000004 /* CONF: Use VHT80 */ #define IEEE80211_FVHT_USEVHT80P80 0x000000008 /* CONF: Use VHT 80+80 */ #define IEEE80211_FVHT_USEVHT160 0x000000010 /* CONF: Use VHT160 */ #define IEEE80211_VFHT_BITS \ "\20\1VHT\2VHT40\3VHT80\4VHT80P80\5VHT160" int ic_printf(struct ieee80211com *, const char *, ...) __printflike(2, 3); void ieee80211_ifattach(struct ieee80211com *); void ieee80211_ifdetach(struct ieee80211com *); int ieee80211_vap_setup(struct ieee80211com *, struct ieee80211vap *, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]); int ieee80211_vap_attach(struct ieee80211vap *, ifm_change_cb_t, ifm_stat_cb_t, const uint8_t macaddr[IEEE80211_ADDR_LEN]); void ieee80211_vap_detach(struct ieee80211vap *); const struct ieee80211_rateset *ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *); void ieee80211_announce(struct ieee80211com *); void ieee80211_announce_channels(struct ieee80211com *); void ieee80211_drain(struct ieee80211com *); void ieee80211_chan_init(struct ieee80211com *); struct ieee80211com *ieee80211_find_vap(const uint8_t mac[IEEE80211_ADDR_LEN]); struct ieee80211com *ieee80211_find_com(const char *name); typedef void ieee80211_com_iter_func(void *, struct ieee80211com *); void ieee80211_iterate_coms(ieee80211_com_iter_func *, void *); int ieee80211_media_change(struct ifnet *); void ieee80211_media_status(struct ifnet *, struct ifmediareq *); int ieee80211_ioctl(struct ifnet *, u_long, caddr_t); int ieee80211_rate2media(struct ieee80211com *, int, enum ieee80211_phymode); int ieee80211_media2rate(int); int ieee80211_mhz2ieee(u_int, u_int); int ieee80211_chan2ieee(struct ieee80211com *, const struct ieee80211_channel *); u_int ieee80211_ieee2mhz(u_int, u_int); int ieee80211_add_channel(struct ieee80211_channel[], int, int *, uint8_t, uint16_t, int8_t, uint32_t, const uint8_t[]); int ieee80211_add_channel_ht40(struct ieee80211_channel[], int, int *, uint8_t, int8_t, uint32_t); uint32_t ieee80211_get_channel_center_freq(const struct ieee80211_channel *); uint32_t ieee80211_get_channel_center_freq1(const struct ieee80211_channel *); uint32_t ieee80211_get_channel_center_freq2(const struct ieee80211_channel *); int ieee80211_add_channel_list_2ghz(struct ieee80211_channel[], int, int *, const uint8_t[], int, const uint8_t[], int); int ieee80211_add_channel_list_5ghz(struct ieee80211_channel[], int, int *, const uint8_t[], int, const uint8_t[], int); struct ieee80211_channel *ieee80211_find_channel(struct ieee80211com *, int freq, int flags); struct ieee80211_channel *ieee80211_find_channel_byieee(struct ieee80211com *, int ieee, int flags); struct ieee80211_channel *ieee80211_lookup_channel_rxstatus(struct ieee80211vap *, const struct ieee80211_rx_stats *); int ieee80211_setmode(struct ieee80211com *, enum ieee80211_phymode); enum ieee80211_phymode ieee80211_chan2mode(const struct ieee80211_channel *); uint32_t ieee80211_mac_hash(const struct ieee80211com *, const uint8_t addr[IEEE80211_ADDR_LEN]); char ieee80211_channel_type_char(const struct ieee80211_channel *c); #define ieee80211_get_current_channel(_ic) ((_ic)->ic_curchan) #define ieee80211_get_home_channel(_ic) ((_ic)->ic_bsschan) #define ieee80211_get_vap_desired_channel(_iv) ((_iv)->iv_des_chan) void ieee80211_radiotap_attach(struct ieee80211com *, struct ieee80211_radiotap_header *th, int tlen, uint32_t tx_radiotap, struct ieee80211_radiotap_header *rh, int rlen, uint32_t rx_radiotap); void ieee80211_radiotap_attachv(struct ieee80211com *, struct ieee80211_radiotap_header *th, int tlen, int n_tx_v, uint32_t tx_radiotap, struct ieee80211_radiotap_header *rh, int rlen, int n_rx_v, uint32_t rx_radiotap); void ieee80211_radiotap_detach(struct ieee80211com *); void ieee80211_radiotap_vattach(struct ieee80211vap *); void ieee80211_radiotap_vdetach(struct ieee80211vap *); void ieee80211_radiotap_chan_change(struct ieee80211com *); void ieee80211_radiotap_tx(struct ieee80211vap *, struct mbuf *); void ieee80211_radiotap_rx(struct ieee80211vap *, struct mbuf *); void ieee80211_radiotap_rx_all(struct ieee80211com *, struct mbuf *); static __inline int ieee80211_radiotap_active(const struct ieee80211com *ic) { return (ic->ic_flags_ext & IEEE80211_FEXT_BPF) != 0; } static __inline int ieee80211_radiotap_active_vap(const struct ieee80211vap *vap) { return (vap->iv_flags_ext & IEEE80211_FEXT_BPF) || vap->iv_ic->ic_montaps != 0; } /* * Enqueue a task on the state thread. */ static __inline void ieee80211_runtask(struct ieee80211com *ic, struct task *task) { taskqueue_enqueue(ic->ic_tq, task); } /* * Wait for a queued task to complete. */ static __inline void ieee80211_draintask(struct ieee80211com *ic, struct task *task) { taskqueue_drain(ic->ic_tq, task); } /* * Key update synchronization methods. XXX should not be visible. */ static __inline void ieee80211_key_update_begin(struct ieee80211vap *vap) { vap->iv_key_update_begin(vap); } static __inline void ieee80211_key_update_end(struct ieee80211vap *vap) { vap->iv_key_update_end(vap); } /* * XXX these need to be here for IEEE80211_F_DATAPAD */ /* * Return the space occupied by the 802.11 header and any * padding required by the driver. This works for a * management or data frame. */ static __inline int ieee80211_hdrspace(struct ieee80211com *ic, const void *data) { int size = ieee80211_hdrsize(data); if (ic->ic_flags & IEEE80211_F_DATAPAD) size = roundup(size, sizeof(uint32_t)); return size; } /* * Like ieee80211_hdrspace, but handles any type of frame. */ static __inline int ieee80211_anyhdrspace(struct ieee80211com *ic, const void *data) { int size = ieee80211_anyhdrsize(data); if (ic->ic_flags & IEEE80211_F_DATAPAD) size = roundup(size, sizeof(uint32_t)); return size; } /* * Notify a vap that beacon state has been updated. */ static __inline void ieee80211_beacon_notify(struct ieee80211vap *vap, int what) { if (vap->iv_state == IEEE80211_S_RUN) vap->iv_update_beacon(vap, what); } /* * Calculate HT channel promotion flags for a channel. * XXX belongs in ieee80211_ht.h but needs IEEE80211_FHT_* */ static __inline int ieee80211_htchanflags(const struct ieee80211_channel *c) { return IEEE80211_IS_CHAN_HT40(c) ? IEEE80211_FHT_HT | IEEE80211_FHT_USEHT40 : IEEE80211_IS_CHAN_HT(c) ? IEEE80211_FHT_HT : 0; } /* * Calculate VHT channel promotion flags for a channel. * XXX belongs in ieee80211_vht.h but needs IEEE80211_FVHT_* */ static __inline int ieee80211_vhtchanflags(const struct ieee80211_channel *c) { if (IEEE80211_IS_CHAN_VHT160(c)) return IEEE80211_FVHT_USEVHT160; if (IEEE80211_IS_CHAN_VHT80_80(c)) return IEEE80211_FVHT_USEVHT80P80; if (IEEE80211_IS_CHAN_VHT80(c)) return IEEE80211_FVHT_USEVHT80; if (IEEE80211_IS_CHAN_VHT40(c)) return IEEE80211_FVHT_USEVHT40; if (IEEE80211_IS_CHAN_VHT(c)) return IEEE80211_FVHT_VHT; return (0); } /* * Fetch the current TX power (cap) for the given node. * * This includes the node and ic/vap TX power limit as needed, * but it doesn't take into account any per-rate limit. */ static __inline uint16_t ieee80211_get_node_txpower(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; uint16_t txpower; txpower = ni->ni_txpower; txpower = MIN(txpower, ic->ic_txpowlimit); if (ic->ic_curchan != NULL) { txpower = MIN(txpower, 2 * ic->ic_curchan->ic_maxregpower); txpower = MIN(txpower, ic->ic_curchan->ic_maxpower); } return (txpower); } /* * Debugging facilities compiled in when IEEE80211_DEBUG is defined. * * The intent is that any problem in the net80211 layer can be * diagnosed by inspecting the statistics (dumped by the wlanstats * program) and/or the msgs generated by net80211. Messages are * broken into functional classes and can be controlled with the * wlandebug program. Certain of these msg groups are for facilities * that are no longer part of net80211 (e.g. IEEE80211_MSG_DOT1XSM). */ #define IEEE80211_MSG_11N 0x80000000 /* 11n mode debug */ #define IEEE80211_MSG_DEBUG 0x40000000 /* IFF_DEBUG equivalent */ #define IEEE80211_MSG_DUMPPKTS 0x20000000 /* IFF_LINK2 equivalant */ #define IEEE80211_MSG_CRYPTO 0x10000000 /* crypto work */ #define IEEE80211_MSG_INPUT 0x08000000 /* input handling */ #define IEEE80211_MSG_XRATE 0x04000000 /* rate set handling */ #define IEEE80211_MSG_ELEMID 0x02000000 /* element id parsing */ #define IEEE80211_MSG_NODE 0x01000000 /* node handling */ #define IEEE80211_MSG_ASSOC 0x00800000 /* association handling */ #define IEEE80211_MSG_AUTH 0x00400000 /* authentication handling */ #define IEEE80211_MSG_SCAN 0x00200000 /* scanning */ #define IEEE80211_MSG_OUTPUT 0x00100000 /* output handling */ #define IEEE80211_MSG_STATE 0x00080000 /* state machine */ #define IEEE80211_MSG_POWER 0x00040000 /* power save handling */ #define IEEE80211_MSG_HWMP 0x00020000 /* hybrid mesh protocol */ #define IEEE80211_MSG_DOT1XSM 0x00010000 /* 802.1x state machine */ #define IEEE80211_MSG_RADIUS 0x00008000 /* 802.1x radius client */ #define IEEE80211_MSG_RADDUMP 0x00004000 /* dump 802.1x radius packets */ #define IEEE80211_MSG_MESH 0x00002000 /* mesh networking */ #define IEEE80211_MSG_WPA 0x00001000 /* WPA/RSN protocol */ #define IEEE80211_MSG_ACL 0x00000800 /* ACL handling */ #define IEEE80211_MSG_WME 0x00000400 /* WME protocol */ #define IEEE80211_MSG_SUPERG 0x00000200 /* Atheros SuperG protocol */ #define IEEE80211_MSG_DOTH 0x00000100 /* 802.11h support */ #define IEEE80211_MSG_INACT 0x00000080 /* inactivity handling */ #define IEEE80211_MSG_ROAM 0x00000040 /* sta-mode roaming */ #define IEEE80211_MSG_RATECTL 0x00000020 /* tx rate control */ #define IEEE80211_MSG_ACTION 0x00000010 /* action frame handling */ #define IEEE80211_MSG_WDS 0x00000008 /* WDS handling */ #define IEEE80211_MSG_IOCTL 0x00000004 /* ioctl handling */ #define IEEE80211_MSG_TDMA 0x00000002 /* TDMA handling */ #define IEEE80211_MSG_ANY 0xffffffff /* anything */ #define IEEE80211_MSG_BITS \ "\20\2TDMA\3IOCTL\4WDS\5ACTION\6RATECTL\7ROAM\10INACT\11DOTH\12SUPERG" \ "\13WME\14ACL\15WPA\16RADKEYS\17RADDUMP\20RADIUS\21DOT1XSM\22HWMP" \ "\23POWER\24STATE\25OUTPUT\26SCAN\27AUTH\30ASSOC\31NODE\32ELEMID" \ "\33XRATE\34INPUT\35CRYPTO\36DUPMPKTS\37DEBUG\04011N" #ifdef IEEE80211_DEBUG #define ieee80211_msg(_vap, _m) ((_vap)->iv_debug & (_m)) #define IEEE80211_DPRINTF(_vap, _m, _fmt, ...) do { \ if (ieee80211_msg(_vap, _m)) \ ieee80211_note(_vap, _fmt, __VA_ARGS__); \ } while (0) #define IEEE80211_NOTE(_vap, _m, _ni, _fmt, ...) do { \ if (ieee80211_msg(_vap, _m)) \ ieee80211_note_mac(_vap, (_ni)->ni_macaddr, _fmt, __VA_ARGS__);\ } while (0) #define IEEE80211_NOTE_MAC(_vap, _m, _mac, _fmt, ...) do { \ if (ieee80211_msg(_vap, _m)) \ ieee80211_note_mac(_vap, _mac, _fmt, __VA_ARGS__); \ } while (0) #define IEEE80211_NOTE_FRAME(_vap, _m, _wh, _fmt, ...) do { \ if (ieee80211_msg(_vap, _m)) \ ieee80211_note_frame(_vap, _wh, _fmt, __VA_ARGS__); \ } while (0) void ieee80211_note(const struct ieee80211vap *, const char *, ...); void ieee80211_note_mac(const struct ieee80211vap *, const uint8_t mac[IEEE80211_ADDR_LEN], const char *, ...); void ieee80211_note_frame(const struct ieee80211vap *, const struct ieee80211_frame *, const char *, ...); #define ieee80211_msg_debug(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_DEBUG) #define ieee80211_msg_dumppkts(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_DUMPPKTS) #define ieee80211_msg_input(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_INPUT) #define ieee80211_msg_radius(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_RADIUS) #define ieee80211_msg_dumpradius(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_RADDUMP) #define ieee80211_msg_dumpradkeys(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_RADKEYS) #define ieee80211_msg_scan(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_SCAN) #define ieee80211_msg_assoc(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_ASSOC) /* * Emit a debug message about discarding a frame or information * element. One format is for extracting the mac address from * the frame header; the other is for when a header is not * available or otherwise appropriate. */ #define IEEE80211_DISCARD(_vap, _m, _wh, _type, _fmt, ...) do { \ if ((_vap)->iv_debug & (_m)) \ ieee80211_discard_frame(_vap, _wh, _type, _fmt, __VA_ARGS__);\ } while (0) #define IEEE80211_DISCARD_IE(_vap, _m, _wh, _type, _fmt, ...) do { \ if ((_vap)->iv_debug & (_m)) \ ieee80211_discard_ie(_vap, _wh, _type, _fmt, __VA_ARGS__);\ } while (0) #define IEEE80211_DISCARD_MAC(_vap, _m, _mac, _type, _fmt, ...) do { \ if ((_vap)->iv_debug & (_m)) \ ieee80211_discard_mac(_vap, _mac, _type, _fmt, __VA_ARGS__);\ } while (0) void ieee80211_discard_frame(const struct ieee80211vap *, const struct ieee80211_frame *, const char *type, const char *fmt, ...); void ieee80211_discard_ie(const struct ieee80211vap *, const struct ieee80211_frame *, const char *type, const char *fmt, ...); void ieee80211_discard_mac(const struct ieee80211vap *, const uint8_t mac[IEEE80211_ADDR_LEN], const char *type, const char *fmt, ...); #else #define IEEE80211_DPRINTF(_vap, _m, _fmt, ...) #define IEEE80211_NOTE(_vap, _m, _ni, _fmt, ...) #define IEEE80211_NOTE_FRAME(_vap, _m, _wh, _fmt, ...) #define IEEE80211_NOTE_MAC(_vap, _m, _mac, _fmt, ...) #define ieee80211_msg_dumppkts(_vap) 0 #define ieee80211_msg(_vap, _m) 0 #define IEEE80211_DISCARD(_vap, _m, _wh, _type, _fmt, ...) #define IEEE80211_DISCARD_IE(_vap, _m, _wh, _type, _fmt, ...) #define IEEE80211_DISCARD_MAC(_vap, _m, _mac, _type, _fmt, ...) #endif #endif /* _NET80211_IEEE80211_VAR_H_ */