Index: head/sys/boot/common/disk.c =================================================================== --- head/sys/boot/common/disk.c (revision 313327) +++ head/sys/boot/common/disk.c (revision 313328) @@ -1,534 +1,563 @@ /*- * Copyright (c) 1998 Michael Smith * Copyright (c) 2012 Andrey V. Elsukov * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include "disk.h" #ifdef DISK_DEBUG # define DEBUG(fmt, args...) printf("%s: " fmt "\n" , __func__ , ## args) #else # define DEBUG(fmt, args...) #endif struct open_disk { struct ptable *table; uint64_t mediasize; + uint64_t entrysize; u_int sectorsize; u_int flags; int rcnt; }; struct print_args { struct disk_devdesc *dev; const char *prefix; int verbose; }; struct dentry { const struct devsw *d_dev; int d_unit; int d_slice; int d_partition; struct open_disk *od; uint64_t d_offset; STAILQ_ENTRY(dentry) entry; #ifdef DISK_DEBUG uint32_t count; #endif }; static STAILQ_HEAD(, dentry) opened_disks = STAILQ_HEAD_INITIALIZER(opened_disks); static int disk_lookup(struct disk_devdesc *dev) { struct dentry *entry; int rc; rc = ENOENT; STAILQ_FOREACH(entry, &opened_disks, entry) { if (entry->d_dev != dev->d_dev || entry->d_unit != dev->d_unit) continue; dev->d_opendata = entry->od; if (entry->d_slice == dev->d_slice && entry->d_partition == dev->d_partition) { dev->d_offset = entry->d_offset; DEBUG("%s offset %lld", disk_fmtdev(dev), (long long)dev->d_offset); #ifdef DISK_DEBUG entry->count++; #endif return (0); } rc = EAGAIN; } return (rc); } static void disk_insert(struct disk_devdesc *dev) { struct dentry *entry; entry = (struct dentry *)malloc(sizeof(struct dentry)); if (entry == NULL) { DEBUG("no memory"); return; } entry->d_dev = dev->d_dev; entry->d_unit = dev->d_unit; entry->d_slice = dev->d_slice; entry->d_partition = dev->d_partition; entry->od = (struct open_disk *)dev->d_opendata; entry->od->rcnt++; entry->d_offset = dev->d_offset; #ifdef DISK_DEBUG entry->count = 1; #endif STAILQ_INSERT_TAIL(&opened_disks, entry, entry); DEBUG("%s cached", disk_fmtdev(dev)); } #ifdef DISK_DEBUG COMMAND_SET(dcachestat, "dcachestat", "get disk cache stats", command_dcachestat); static int command_dcachestat(int argc, char *argv[]) { struct disk_devdesc dev; struct dentry *entry; STAILQ_FOREACH(entry, &opened_disks, entry) { dev.d_dev = (struct devsw *)entry->d_dev; dev.d_unit = entry->d_unit; dev.d_slice = entry->d_slice; dev.d_partition = entry->d_partition; printf("%s %d => %p [%d]\n", disk_fmtdev(&dev), entry->count, entry->od, entry->od->rcnt); } return (CMD_OK); } #endif /* DISK_DEBUG */ /* Convert size to a human-readable number. */ static char * display_size(uint64_t size, u_int sectorsize) { static char buf[80]; char unit; size = size * sectorsize / 1024; unit = 'K'; if (size >= 10485760000LL) { size /= 1073741824; unit = 'T'; } else if (size >= 10240000) { size /= 1048576; unit = 'G'; } else if (size >= 10000) { size /= 1024; unit = 'M'; } sprintf(buf, "%ld%cB", (long)size, unit); return (buf); } int ptblread(void *d, void *buf, size_t blocks, uint64_t offset) { struct disk_devdesc *dev; struct open_disk *od; dev = (struct disk_devdesc *)d; od = (struct open_disk *)dev->d_opendata; return (dev->d_dev->dv_strategy(dev, F_READ, offset, blocks * od->sectorsize, (char *)buf, NULL)); } #define PWIDTH 35 static int ptable_print(void *arg, const char *pname, const struct ptable_entry *part) { struct print_args *pa, bsd; struct open_disk *od; struct ptable *table; char line[80]; int res; pa = (struct print_args *)arg; od = (struct open_disk *)pa->dev->d_opendata; sprintf(line, " %s%s: %s", pa->prefix, pname, parttype2str(part->type)); if (pa->verbose) sprintf(line, "%-*s%s", PWIDTH, line, display_size(part->end - part->start + 1, od->sectorsize)); strcat(line, "\n"); if (pager_output(line)) return 1; res = 0; if (part->type == PART_FREEBSD) { /* Open slice with BSD label */ pa->dev->d_offset = part->start; table = ptable_open(pa->dev, part->end - part->start + 1, od->sectorsize, ptblread); if (table == NULL) return 0; sprintf(line, " %s%s", pa->prefix, pname); bsd.dev = pa->dev; bsd.prefix = line; bsd.verbose = pa->verbose; res = ptable_iterate(table, &bsd, ptable_print); ptable_close(table); } return (res); } #undef PWIDTH int disk_print(struct disk_devdesc *dev, char *prefix, int verbose) { struct open_disk *od; struct print_args pa; /* Disk should be opened */ od = (struct open_disk *)dev->d_opendata; pa.dev = dev; pa.prefix = prefix; pa.verbose = verbose; return (ptable_iterate(od->table, &pa, ptable_print)); } int disk_read(struct disk_devdesc *dev, void *buf, uint64_t offset, u_int blocks) { struct open_disk *od; int ret; od = (struct open_disk *)dev->d_opendata; ret = dev->d_dev->dv_strategy(dev, F_READ, dev->d_offset + offset, blocks * od->sectorsize, buf, NULL); return (ret); } int disk_write(struct disk_devdesc *dev, void *buf, uint64_t offset, u_int blocks) { struct open_disk *od; int ret; od = (struct open_disk *)dev->d_opendata; ret = dev->d_dev->dv_strategy(dev, F_WRITE, dev->d_offset + offset, blocks * od->sectorsize, buf, NULL); return (ret); } int -disk_ioctl(struct disk_devdesc *dev, u_long cmd, void *buf) +disk_ioctl(struct disk_devdesc *dev, u_long cmd, void *data) { + struct open_disk *od = dev->d_opendata; - if (dev->d_dev->dv_ioctl) - return ((*dev->d_dev->dv_ioctl)(dev->d_opendata, cmd, buf)); + if (od == NULL) + return (ENOTTY); - return (ENXIO); + switch (cmd) { + case DIOCGSECTORSIZE: + *(u_int *)data = od->sectorsize; + break; + case DIOCGMEDIASIZE: + if (dev->d_offset == 0) + *(uint64_t *)data = od->mediasize; + else + *(uint64_t *)data = od->entrysize * od->sectorsize; + break; + default: + return (ENOTTY); + } + + return (0); } int disk_open(struct disk_devdesc *dev, uint64_t mediasize, u_int sectorsize, u_int flags) { struct open_disk *od; struct ptable *table; struct ptable_entry part; int rc, slice, partition; rc = 0; if ((flags & DISK_F_NOCACHE) == 0) { rc = disk_lookup(dev); if (rc == 0) return (0); } /* * While we are reading disk metadata, make sure we do it relative * to the start of the disk */ dev->d_offset = 0; table = NULL; slice = dev->d_slice; partition = dev->d_partition; if (rc == EAGAIN) { /* * This entire disk was already opened and there is no * need to allocate new open_disk structure and open the * main partition table. */ od = (struct open_disk *)dev->d_opendata; DEBUG("%s unit %d, slice %d, partition %d => %p (cached)", disk_fmtdev(dev), dev->d_unit, dev->d_slice, dev->d_partition, od); goto opened; } else { od = (struct open_disk *)malloc(sizeof(struct open_disk)); if (od == NULL) { DEBUG("no memory"); return (ENOMEM); } dev->d_opendata = od; od->rcnt = 0; + od->entrysize = 0; } od->mediasize = mediasize; od->sectorsize = sectorsize; od->flags = flags; DEBUG("%s unit %d, slice %d, partition %d => %p", disk_fmtdev(dev), dev->d_unit, dev->d_slice, dev->d_partition, od); /* Determine disk layout. */ od->table = ptable_open(dev, mediasize / sectorsize, sectorsize, ptblread); if (od->table == NULL) { DEBUG("Can't read partition table"); rc = ENXIO; goto out; } + + if (ptable_getsize(od->table, &mediasize) != 0) { + rc = ENXIO; + goto out; + } + if (mediasize > od->mediasize) { + od->mediasize = mediasize; + } opened: rc = 0; if (ptable_gettype(od->table) == PTABLE_BSD && partition >= 0) { /* It doesn't matter what value has d_slice */ rc = ptable_getpart(od->table, &part, partition); - if (rc == 0) + if (rc == 0) { dev->d_offset = part.start; + od->entrysize = part.end - part.start + 1; + } } else if (slice >= 0) { /* Try to get information about partition */ if (slice == 0) rc = ptable_getbestpart(od->table, &part); else rc = ptable_getpart(od->table, &part, slice); if (rc != 0) /* Partition doesn't exist */ goto out; dev->d_offset = part.start; + od->entrysize = part.end - part.start + 1; slice = part.index; if (ptable_gettype(od->table) == PTABLE_GPT) { partition = 255; goto out; /* Nothing more to do */ } else if (partition == 255) { /* * When we try to open GPT partition, but partition * table isn't GPT, reset d_partition value to -1 * and try to autodetect appropriate value. */ partition = -1; } /* * If d_partition < 0 and we are looking at a BSD slice, * then try to read BSD label, otherwise return the * whole MBR slice. */ if (partition == -1 && part.type != PART_FREEBSD) goto out; /* Try to read BSD label */ table = ptable_open(dev, part.end - part.start + 1, od->sectorsize, ptblread); if (table == NULL) { DEBUG("Can't read BSD label"); rc = ENXIO; goto out; } /* * If slice contains BSD label and d_partition < 0, then * assume the 'a' partition. Otherwise just return the * whole MBR slice, because it can contain ZFS. */ if (partition < 0) { if (ptable_gettype(table) != PTABLE_BSD) goto out; partition = 0; } rc = ptable_getpart(table, &part, partition); if (rc != 0) goto out; dev->d_offset += part.start; + od->entrysize = part.end - part.start + 1; } out: if (table != NULL) ptable_close(table); if (rc != 0) { if (od->rcnt < 1) { if (od->table != NULL) ptable_close(od->table); free(od); } DEBUG("%s could not open", disk_fmtdev(dev)); } else { if ((flags & DISK_F_NOCACHE) == 0) disk_insert(dev); /* Save the slice and partition number to the dev */ dev->d_slice = slice; dev->d_partition = partition; DEBUG("%s offset %lld => %p", disk_fmtdev(dev), (long long)dev->d_offset, od); } return (rc); } int disk_close(struct disk_devdesc *dev) { struct open_disk *od; od = (struct open_disk *)dev->d_opendata; DEBUG("%s closed => %p [%d]", disk_fmtdev(dev), od, od->rcnt); if (od->flags & DISK_F_NOCACHE) { ptable_close(od->table); free(od); } return (0); } void disk_cleanup(const struct devsw *d_dev) { #ifdef DISK_DEBUG struct disk_devdesc dev; #endif struct dentry *entry, *tmp; STAILQ_FOREACH_SAFE(entry, &opened_disks, entry, tmp) { if (entry->d_dev != d_dev) continue; entry->od->rcnt--; #ifdef DISK_DEBUG dev.d_dev = (struct devsw *)entry->d_dev; dev.d_unit = entry->d_unit; dev.d_slice = entry->d_slice; dev.d_partition = entry->d_partition; DEBUG("%s was freed => %p [%d]", disk_fmtdev(&dev), entry->od, entry->od->rcnt); #endif STAILQ_REMOVE(&opened_disks, entry, dentry, entry); if (entry->od->rcnt < 1) { if (entry->od->table != NULL) ptable_close(entry->od->table); free(entry->od); } free(entry); } } char* disk_fmtdev(struct disk_devdesc *dev) { static char buf[128]; char *cp; cp = buf + sprintf(buf, "%s%d", dev->d_dev->dv_name, dev->d_unit); if (dev->d_slice >= 0) { #ifdef LOADER_GPT_SUPPORT if (dev->d_partition == 255) { sprintf(cp, "p%d:", dev->d_slice); return (buf); } else #endif #ifdef LOADER_MBR_SUPPORT cp += sprintf(cp, "s%d", dev->d_slice); #endif } if (dev->d_partition >= 0) cp += sprintf(cp, "%c", dev->d_partition + 'a'); strcat(cp, ":"); return (buf); } int disk_parsedev(struct disk_devdesc *dev, const char *devspec, const char **path) { int unit, slice, partition; const char *np; char *cp; np = devspec; unit = slice = partition = -1; if (*np != '\0' && *np != ':') { unit = strtol(np, &cp, 10); if (cp == np) return (EUNIT); #ifdef LOADER_GPT_SUPPORT if (*cp == 'p') { np = cp + 1; slice = strtol(np, &cp, 10); if (np == cp) return (ESLICE); /* we don't support nested partitions on GPT */ if (*cp != '\0' && *cp != ':') return (EINVAL); partition = 255; } else #endif #ifdef LOADER_MBR_SUPPORT if (*cp == 's') { np = cp + 1; slice = strtol(np, &cp, 10); if (np == cp) return (ESLICE); } #endif if (*cp != '\0' && *cp != ':') { partition = *cp - 'a'; if (partition < 0) return (EPART); cp++; } } else return (EINVAL); if (*cp != '\0' && *cp != ':') return (EINVAL); dev->d_unit = unit; dev->d_slice = slice; dev->d_partition = partition; if (path != NULL) *path = (*cp == '\0') ? cp: cp + 1; return (0); } Index: head/sys/boot/common/part.c =================================================================== --- head/sys/boot/common/part.c (revision 313327) +++ head/sys/boot/common/part.c (revision 313328) @@ -1,864 +1,897 @@ /*- * Copyright (c) 2012 Andrey V. Elsukov * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #ifdef PART_DEBUG #define DEBUG(fmt, args...) printf("%s: " fmt "\n" , __func__ , ## args) #else #define DEBUG(fmt, args...) #endif #ifdef LOADER_GPT_SUPPORT #define MAXTBLSZ 64 static const uuid_t gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; static const uuid_t gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; static const uuid_t gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; static const uuid_t gpt_uuid_efi = GPT_ENT_TYPE_EFI; static const uuid_t gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; static const uuid_t gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; static const uuid_t gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; static const uuid_t gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; static const uuid_t gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; static const uuid_t gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; #endif struct pentry { struct ptable_entry part; uint64_t flags; union { uint8_t bsd; uint8_t mbr; uuid_t gpt; uint16_t vtoc8; } type; STAILQ_ENTRY(pentry) entry; }; struct ptable { enum ptable_type type; uint16_t sectorsize; uint64_t sectors; STAILQ_HEAD(, pentry) entries; }; static struct parttypes { enum partition_type type; const char *desc; } ptypes[] = { { PART_UNKNOWN, "Unknown" }, { PART_EFI, "EFI" }, { PART_FREEBSD, "FreeBSD" }, { PART_FREEBSD_BOOT, "FreeBSD boot" }, { PART_FREEBSD_NANDFS, "FreeBSD nandfs" }, { PART_FREEBSD_UFS, "FreeBSD UFS" }, { PART_FREEBSD_ZFS, "FreeBSD ZFS" }, { PART_FREEBSD_SWAP, "FreeBSD swap" }, { PART_FREEBSD_VINUM, "FreeBSD vinum" }, { PART_LINUX, "Linux" }, { PART_LINUX_SWAP, "Linux swap" }, { PART_DOS, "DOS/Windows" }, }; const char * parttype2str(enum partition_type type) { size_t i; for (i = 0; i < nitems(ptypes); i++) if (ptypes[i].type == type) return (ptypes[i].desc); return (ptypes[0].desc); } #ifdef LOADER_GPT_SUPPORT static void uuid_letoh(uuid_t *uuid) { uuid->time_low = le32toh(uuid->time_low); uuid->time_mid = le16toh(uuid->time_mid); uuid->time_hi_and_version = le16toh(uuid->time_hi_and_version); } static enum partition_type gpt_parttype(uuid_t type) { if (uuid_equal(&type, &gpt_uuid_efi, NULL)) return (PART_EFI); else if (uuid_equal(&type, &gpt_uuid_ms_basic_data, NULL)) return (PART_DOS); else if (uuid_equal(&type, &gpt_uuid_freebsd_boot, NULL)) return (PART_FREEBSD_BOOT); else if (uuid_equal(&type, &gpt_uuid_freebsd_ufs, NULL)) return (PART_FREEBSD_UFS); else if (uuid_equal(&type, &gpt_uuid_freebsd_zfs, NULL)) return (PART_FREEBSD_ZFS); else if (uuid_equal(&type, &gpt_uuid_freebsd_swap, NULL)) return (PART_FREEBSD_SWAP); else if (uuid_equal(&type, &gpt_uuid_freebsd_vinum, NULL)) return (PART_FREEBSD_VINUM); else if (uuid_equal(&type, &gpt_uuid_freebsd_nandfs, NULL)) return (PART_FREEBSD_NANDFS); else if (uuid_equal(&type, &gpt_uuid_freebsd, NULL)) return (PART_FREEBSD); return (PART_UNKNOWN); } static struct gpt_hdr* gpt_checkhdr(struct gpt_hdr *hdr, uint64_t lba_self, uint64_t lba_last, uint16_t sectorsize) { uint32_t sz, crc; if (memcmp(hdr->hdr_sig, GPT_HDR_SIG, sizeof(hdr->hdr_sig)) != 0) { DEBUG("no GPT signature"); return (NULL); } sz = le32toh(hdr->hdr_size); if (sz < 92 || sz > sectorsize) { DEBUG("invalid GPT header size: %d", sz); return (NULL); } crc = le32toh(hdr->hdr_crc_self); hdr->hdr_crc_self = 0; if (crc32(hdr, sz) != crc) { DEBUG("GPT header's CRC doesn't match"); return (NULL); } hdr->hdr_crc_self = crc; hdr->hdr_revision = le32toh(hdr->hdr_revision); if (hdr->hdr_revision < GPT_HDR_REVISION) { DEBUG("unsupported GPT revision %d", hdr->hdr_revision); return (NULL); } hdr->hdr_lba_self = le64toh(hdr->hdr_lba_self); if (hdr->hdr_lba_self != lba_self) { DEBUG("self LBA doesn't match"); return (NULL); } hdr->hdr_lba_alt = le64toh(hdr->hdr_lba_alt); if (hdr->hdr_lba_alt == hdr->hdr_lba_self) { DEBUG("invalid alternate LBA"); return (NULL); } hdr->hdr_entries = le32toh(hdr->hdr_entries); hdr->hdr_entsz = le32toh(hdr->hdr_entsz); if (hdr->hdr_entries == 0 || hdr->hdr_entsz < sizeof(struct gpt_ent) || sectorsize % hdr->hdr_entsz != 0) { DEBUG("invalid entry size or number of entries"); return (NULL); } hdr->hdr_lba_start = le64toh(hdr->hdr_lba_start); hdr->hdr_lba_end = le64toh(hdr->hdr_lba_end); hdr->hdr_lba_table = le64toh(hdr->hdr_lba_table); hdr->hdr_crc_table = le32toh(hdr->hdr_crc_table); uuid_letoh(&hdr->hdr_uuid); return (hdr); } static int gpt_checktbl(const struct gpt_hdr *hdr, u_char *tbl, size_t size, uint64_t lba_last) { struct gpt_ent *ent; uint32_t i, cnt; cnt = size / hdr->hdr_entsz; if (hdr->hdr_entries <= cnt) { cnt = hdr->hdr_entries; /* Check CRC only when buffer size is enough for table. */ if (hdr->hdr_crc_table != crc32(tbl, hdr->hdr_entries * hdr->hdr_entsz)) { DEBUG("GPT table's CRC doesn't match"); return (-1); } } for (i = 0; i < cnt; i++) { ent = (struct gpt_ent *)(tbl + i * hdr->hdr_entsz); uuid_letoh(&ent->ent_type); if (uuid_equal(&ent->ent_type, &gpt_uuid_unused, NULL)) continue; ent->ent_lba_start = le64toh(ent->ent_lba_start); ent->ent_lba_end = le64toh(ent->ent_lba_end); } return (0); } static struct ptable* ptable_gptread(struct ptable *table, void *dev, diskread_t dread) { struct pentry *entry; struct gpt_hdr *phdr, hdr; struct gpt_ent *ent; u_char *buf, *tbl; uint64_t offset; int pri, sec; size_t size, i; buf = malloc(table->sectorsize); if (buf == NULL) return (NULL); tbl = malloc(table->sectorsize * MAXTBLSZ); if (tbl == NULL) { free(buf); return (NULL); } /* Read the primary GPT header. */ if (dread(dev, buf, 1, 1) != 0) { ptable_close(table); table = NULL; goto out; } pri = sec = 0; /* Check the primary GPT header. */ phdr = gpt_checkhdr((struct gpt_hdr *)buf, 1, table->sectors - 1, table->sectorsize); if (phdr != NULL) { /* Read the primary GPT table. */ size = MIN(MAXTBLSZ, howmany(phdr->hdr_entries * phdr->hdr_entsz, table->sectorsize)); if (dread(dev, tbl, size, phdr->hdr_lba_table) == 0 && gpt_checktbl(phdr, tbl, size * table->sectorsize, table->sectors - 1) == 0) { memcpy(&hdr, phdr, sizeof(hdr)); pri = 1; } } offset = pri ? hdr.hdr_lba_alt: table->sectors - 1; /* Read the backup GPT header. */ if (dread(dev, buf, 1, offset) != 0) phdr = NULL; else phdr = gpt_checkhdr((struct gpt_hdr *)buf, offset, table->sectors - 1, table->sectorsize); if (phdr != NULL) { /* * Compare primary and backup headers. * If they are equal, then we do not need to read backup * table. If they are different, then prefer backup header * and try to read backup table. */ if (pri == 0 || uuid_equal(&hdr.hdr_uuid, &phdr->hdr_uuid, NULL) == 0 || hdr.hdr_revision != phdr->hdr_revision || hdr.hdr_size != phdr->hdr_size || hdr.hdr_lba_start != phdr->hdr_lba_start || hdr.hdr_lba_end != phdr->hdr_lba_end || hdr.hdr_entries != phdr->hdr_entries || hdr.hdr_entsz != phdr->hdr_entsz || hdr.hdr_crc_table != phdr->hdr_crc_table) { /* Read the backup GPT table. */ size = MIN(MAXTBLSZ, howmany(phdr->hdr_entries * phdr->hdr_entsz, table->sectorsize)); if (dread(dev, tbl, size, phdr->hdr_lba_table) == 0 && gpt_checktbl(phdr, tbl, size * table->sectorsize, table->sectors - 1) == 0) { memcpy(&hdr, phdr, sizeof(hdr)); sec = 1; } } } if (pri == 0 && sec == 0) { /* Both primary and backup tables are invalid. */ table->type = PTABLE_NONE; goto out; } DEBUG("GPT detected"); size = MIN(hdr.hdr_entries * hdr.hdr_entsz, MAXTBLSZ * table->sectorsize); + + /* + * If the disk's sector count is smaller than the sector count recorded + * in the disk's GPT table header, set the table->sectors to the value + * recorded in GPT tables. This is done to work around buggy firmware + * that returns truncated disk sizes. + * + * Note, this is still not a foolproof way to get disk's size. For + * example, an image file can be truncated when copied to smaller media. + */ + if (hdr.hdr_lba_alt + 1 > table->sectors) + table->sectors = hdr.hdr_lba_alt + 1; + for (i = 0; i < size / hdr.hdr_entsz; i++) { ent = (struct gpt_ent *)(tbl + i * hdr.hdr_entsz); if (uuid_equal(&ent->ent_type, &gpt_uuid_unused, NULL)) continue; + + /* Simple sanity checks. */ + if (ent->ent_lba_start < hdr.hdr_lba_start || + ent->ent_lba_end > hdr.hdr_lba_end || + ent->ent_lba_start > ent->ent_lba_end) + continue; + entry = malloc(sizeof(*entry)); if (entry == NULL) break; entry->part.start = ent->ent_lba_start; entry->part.end = ent->ent_lba_end; entry->part.index = i + 1; entry->part.type = gpt_parttype(ent->ent_type); entry->flags = le64toh(ent->ent_attr); memcpy(&entry->type.gpt, &ent->ent_type, sizeof(uuid_t)); STAILQ_INSERT_TAIL(&table->entries, entry, entry); DEBUG("new GPT partition added"); } out: free(buf); free(tbl); return (table); } #endif /* LOADER_GPT_SUPPORT */ #ifdef LOADER_MBR_SUPPORT /* We do not need to support too many EBR partitions in the loader */ #define MAXEBRENTRIES 8 static enum partition_type mbr_parttype(uint8_t type) { switch (type) { case DOSPTYP_386BSD: return (PART_FREEBSD); case DOSPTYP_LINSWP: return (PART_LINUX_SWAP); case DOSPTYP_LINUX: return (PART_LINUX); case 0x01: case 0x04: case 0x06: case 0x07: case 0x0b: case 0x0c: case 0x0e: return (PART_DOS); } return (PART_UNKNOWN); } static struct ptable* ptable_ebrread(struct ptable *table, void *dev, diskread_t dread) { struct dos_partition *dp; struct pentry *e1, *entry; uint32_t start, end, offset; u_char *buf; int i, index; STAILQ_FOREACH(e1, &table->entries, entry) { if (e1->type.mbr == DOSPTYP_EXT || e1->type.mbr == DOSPTYP_EXTLBA) break; } if (e1 == NULL) return (table); index = 5; offset = e1->part.start; buf = malloc(table->sectorsize); if (buf == NULL) return (table); DEBUG("EBR detected"); for (i = 0; i < MAXEBRENTRIES; i++) { #if 0 /* Some BIOSes return an incorrect number of sectors */ if (offset >= table->sectors) break; #endif if (dread(dev, buf, 1, offset) != 0) break; dp = (struct dos_partition *)(buf + DOSPARTOFF); if (dp[0].dp_typ == 0) break; start = le32toh(dp[0].dp_start); if (dp[0].dp_typ == DOSPTYP_EXT && dp[1].dp_typ == 0) { offset = e1->part.start + start; continue; } end = le32toh(dp[0].dp_size); entry = malloc(sizeof(*entry)); if (entry == NULL) break; entry->part.start = offset + start; entry->part.end = entry->part.start + end - 1; entry->part.index = index++; entry->part.type = mbr_parttype(dp[0].dp_typ); entry->flags = dp[0].dp_flag; entry->type.mbr = dp[0].dp_typ; STAILQ_INSERT_TAIL(&table->entries, entry, entry); DEBUG("new EBR partition added"); if (dp[1].dp_typ == 0) break; offset = e1->part.start + le32toh(dp[1].dp_start); } free(buf); return (table); } #endif /* LOADER_MBR_SUPPORT */ static enum partition_type bsd_parttype(uint8_t type) { switch (type) { case FS_NANDFS: return (PART_FREEBSD_NANDFS); case FS_SWAP: return (PART_FREEBSD_SWAP); case FS_BSDFFS: return (PART_FREEBSD_UFS); case FS_VINUM: return (PART_FREEBSD_VINUM); case FS_ZFS: return (PART_FREEBSD_ZFS); } return (PART_UNKNOWN); } static struct ptable* ptable_bsdread(struct ptable *table, void *dev, diskread_t dread) { struct disklabel *dl; struct partition *part; struct pentry *entry; u_char *buf; uint32_t raw_offset; int i; if (table->sectorsize < sizeof(struct disklabel)) { DEBUG("Too small sectorsize"); return (table); } buf = malloc(table->sectorsize); if (buf == NULL) return (table); if (dread(dev, buf, 1, 1) != 0) { DEBUG("read failed"); ptable_close(table); table = NULL; goto out; } dl = (struct disklabel *)buf; if (le32toh(dl->d_magic) != DISKMAGIC && le32toh(dl->d_magic2) != DISKMAGIC) goto out; if (le32toh(dl->d_secsize) != table->sectorsize) { DEBUG("unsupported sector size"); goto out; } dl->d_npartitions = le16toh(dl->d_npartitions); if (dl->d_npartitions > 20 || dl->d_npartitions < 8) { DEBUG("invalid number of partitions"); goto out; } DEBUG("BSD detected"); part = &dl->d_partitions[0]; raw_offset = le32toh(part[RAW_PART].p_offset); for (i = 0; i < dl->d_npartitions; i++, part++) { if (i == RAW_PART) continue; if (part->p_size == 0) continue; entry = malloc(sizeof(*entry)); if (entry == NULL) break; entry->part.start = le32toh(part->p_offset) - raw_offset; entry->part.end = entry->part.start + le32toh(part->p_size) + 1; entry->part.type = bsd_parttype(part->p_fstype); entry->part.index = i; /* starts from zero */ entry->type.bsd = part->p_fstype; STAILQ_INSERT_TAIL(&table->entries, entry, entry); DEBUG("new BSD partition added"); } table->type = PTABLE_BSD; out: free(buf); return (table); } #ifdef LOADER_VTOC8_SUPPORT static enum partition_type vtoc8_parttype(uint16_t type) { switch (type) { case VTOC_TAG_FREEBSD_NANDFS: return (PART_FREEBSD_NANDFS); case VTOC_TAG_FREEBSD_SWAP: return (PART_FREEBSD_SWAP); case VTOC_TAG_FREEBSD_UFS: return (PART_FREEBSD_UFS); case VTOC_TAG_FREEBSD_VINUM: return (PART_FREEBSD_VINUM); case VTOC_TAG_FREEBSD_ZFS: return (PART_FREEBSD_ZFS); } return (PART_UNKNOWN); } static struct ptable* ptable_vtoc8read(struct ptable *table, void *dev, diskread_t dread) { struct pentry *entry; struct vtoc8 *dl; u_char *buf; uint16_t sum, heads, sectors; int i; if (table->sectorsize != sizeof(struct vtoc8)) return (table); buf = malloc(table->sectorsize); if (buf == NULL) return (table); if (dread(dev, buf, 1, 0) != 0) { DEBUG("read failed"); ptable_close(table); table = NULL; goto out; } dl = (struct vtoc8 *)buf; /* Check the sum */ for (i = sum = 0; i < sizeof(struct vtoc8); i += sizeof(sum)) sum ^= be16dec(buf + i); if (sum != 0) { DEBUG("incorrect checksum"); goto out; } if (be16toh(dl->nparts) != VTOC8_NPARTS) { DEBUG("invalid number of entries"); goto out; } sectors = be16toh(dl->nsecs); heads = be16toh(dl->nheads); if (sectors * heads == 0) { DEBUG("invalid geometry"); goto out; } DEBUG("VTOC8 detected"); for (i = 0; i < VTOC8_NPARTS; i++) { dl->part[i].tag = be16toh(dl->part[i].tag); if (i == VTOC_RAW_PART || dl->part[i].tag == VTOC_TAG_UNASSIGNED) continue; entry = malloc(sizeof(*entry)); if (entry == NULL) break; entry->part.start = be32toh(dl->map[i].cyl) * heads * sectors; entry->part.end = be32toh(dl->map[i].nblks) + entry->part.start - 1; entry->part.type = vtoc8_parttype(dl->part[i].tag); entry->part.index = i; /* starts from zero */ entry->type.vtoc8 = dl->part[i].tag; STAILQ_INSERT_TAIL(&table->entries, entry, entry); DEBUG("new VTOC8 partition added"); } table->type = PTABLE_VTOC8; out: free(buf); return (table); } #endif /* LOADER_VTOC8_SUPPORT */ struct ptable* ptable_open(void *dev, uint64_t sectors, uint16_t sectorsize, diskread_t *dread) { struct dos_partition *dp; struct ptable *table; u_char *buf; int i, count; #ifdef LOADER_MBR_SUPPORT struct pentry *entry; uint32_t start, end; int has_ext; #endif table = NULL; buf = malloc(sectorsize); if (buf == NULL) return (NULL); /* First, read the MBR. */ if (dread(dev, buf, 1, DOSBBSECTOR) != 0) { DEBUG("read failed"); goto out; } table = malloc(sizeof(*table)); if (table == NULL) goto out; table->sectors = sectors; table->sectorsize = sectorsize; table->type = PTABLE_NONE; STAILQ_INIT(&table->entries); #ifdef LOADER_VTOC8_SUPPORT if (be16dec(buf + offsetof(struct vtoc8, magic)) == VTOC_MAGIC) { if (ptable_vtoc8read(table, dev, dread) == NULL) { /* Read error. */ table = NULL; goto out; } else if (table->type == PTABLE_VTOC8) goto out; } #endif /* Check the BSD label. */ if (ptable_bsdread(table, dev, dread) == NULL) { /* Read error. */ table = NULL; goto out; } else if (table->type == PTABLE_BSD) goto out; #if defined(LOADER_GPT_SUPPORT) || defined(LOADER_MBR_SUPPORT) /* Check the MBR magic. */ if (buf[DOSMAGICOFFSET] != 0x55 || buf[DOSMAGICOFFSET + 1] != 0xaa) { DEBUG("magic sequence not found"); #if defined(LOADER_GPT_SUPPORT) /* There is no PMBR, check that we have backup GPT */ table->type = PTABLE_GPT; table = ptable_gptread(table, dev, dread); #endif goto out; } /* Check that we have PMBR. Also do some validation. */ dp = (struct dos_partition *)(buf + DOSPARTOFF); for (i = 0, count = 0; i < NDOSPART; i++) { if (dp[i].dp_flag != 0 && dp[i].dp_flag != 0x80) { DEBUG("invalid partition flag %x", dp[i].dp_flag); goto out; } #ifdef LOADER_GPT_SUPPORT if (dp[i].dp_typ == DOSPTYP_PMBR) { table->type = PTABLE_GPT; DEBUG("PMBR detected"); } #endif if (dp[i].dp_typ != 0) count++; } /* Do we have some invalid values? */ if (table->type == PTABLE_GPT && count > 1) { if (dp[1].dp_typ != DOSPTYP_HFS) { table->type = PTABLE_NONE; DEBUG("Incorrect PMBR, ignore it"); } else DEBUG("Bootcamp detected"); } #ifdef LOADER_GPT_SUPPORT if (table->type == PTABLE_GPT) { table = ptable_gptread(table, dev, dread); goto out; } #endif #ifdef LOADER_MBR_SUPPORT /* Read MBR. */ DEBUG("MBR detected"); table->type = PTABLE_MBR; for (i = has_ext = 0; i < NDOSPART; i++) { if (dp[i].dp_typ == 0) continue; start = le32dec(&(dp[i].dp_start)); end = le32dec(&(dp[i].dp_size)); if (start == 0 || end == 0) continue; #if 0 /* Some BIOSes return an incorrect number of sectors */ if (start + end - 1 >= sectors) continue; /* XXX: ignore */ #endif if (dp[i].dp_typ == DOSPTYP_EXT || dp[i].dp_typ == DOSPTYP_EXTLBA) has_ext = 1; entry = malloc(sizeof(*entry)); if (entry == NULL) break; entry->part.start = start; entry->part.end = start + end - 1; entry->part.index = i + 1; entry->part.type = mbr_parttype(dp[i].dp_typ); entry->flags = dp[i].dp_flag; entry->type.mbr = dp[i].dp_typ; STAILQ_INSERT_TAIL(&table->entries, entry, entry); DEBUG("new MBR partition added"); } if (has_ext) { table = ptable_ebrread(table, dev, dread); /* FALLTHROUGH */ } #endif /* LOADER_MBR_SUPPORT */ #endif /* LOADER_MBR_SUPPORT || LOADER_GPT_SUPPORT */ out: free(buf); return (table); } void ptable_close(struct ptable *table) { struct pentry *entry; while (!STAILQ_EMPTY(&table->entries)) { entry = STAILQ_FIRST(&table->entries); STAILQ_REMOVE_HEAD(&table->entries, entry); free(entry); } free(table); } enum ptable_type ptable_gettype(const struct ptable *table) { return (table->type); +} + +int +ptable_getsize(const struct ptable *table, uint64_t *sizep) +{ + uint64_t tmp = table->sectors * table->sectorsize; + + if (tmp < table->sectors) + return (EOVERFLOW); + + if (sizep != NULL) + *sizep = tmp; + return (0); } int ptable_getpart(const struct ptable *table, struct ptable_entry *part, int index) { struct pentry *entry; if (part == NULL || table == NULL) return (EINVAL); STAILQ_FOREACH(entry, &table->entries, entry) { if (entry->part.index != index) continue; memcpy(part, &entry->part, sizeof(*part)); return (0); } return (ENOENT); } /* * Search for a slice with the following preferences: * * 1: Active FreeBSD slice * 2: Non-active FreeBSD slice * 3: Active Linux slice * 4: non-active Linux slice * 5: Active FAT/FAT32 slice * 6: non-active FAT/FAT32 slice */ #define PREF_RAWDISK 0 #define PREF_FBSD_ACT 1 #define PREF_FBSD 2 #define PREF_LINUX_ACT 3 #define PREF_LINUX 4 #define PREF_DOS_ACT 5 #define PREF_DOS 6 #define PREF_NONE 7 int ptable_getbestpart(const struct ptable *table, struct ptable_entry *part) { struct pentry *entry, *best; int pref, preflevel; if (part == NULL || table == NULL) return (EINVAL); best = NULL; preflevel = pref = PREF_NONE; STAILQ_FOREACH(entry, &table->entries, entry) { #ifdef LOADER_MBR_SUPPORT if (table->type == PTABLE_MBR) { switch (entry->type.mbr) { case DOSPTYP_386BSD: pref = entry->flags & 0x80 ? PREF_FBSD_ACT: PREF_FBSD; break; case DOSPTYP_LINUX: pref = entry->flags & 0x80 ? PREF_LINUX_ACT: PREF_LINUX; break; case 0x01: /* DOS/Windows */ case 0x04: case 0x06: case 0x0c: case 0x0e: case DOSPTYP_FAT32: pref = entry->flags & 0x80 ? PREF_DOS_ACT: PREF_DOS; break; default: pref = PREF_NONE; } } #endif /* LOADER_MBR_SUPPORT */ #ifdef LOADER_GPT_SUPPORT if (table->type == PTABLE_GPT) { if (entry->part.type == PART_DOS) pref = PREF_DOS; else if (entry->part.type == PART_FREEBSD_UFS || entry->part.type == PART_FREEBSD_ZFS) pref = PREF_FBSD; else pref = PREF_NONE; } #endif /* LOADER_GPT_SUPPORT */ if (pref < preflevel) { preflevel = pref; best = entry; } } if (best != NULL) { memcpy(part, &best->part, sizeof(*part)); return (0); } return (ENOENT); } int ptable_iterate(const struct ptable *table, void *arg, ptable_iterate_t *iter) { struct pentry *entry; char name[32]; int ret = 0; name[0] = '\0'; STAILQ_FOREACH(entry, &table->entries, entry) { #ifdef LOADER_MBR_SUPPORT if (table->type == PTABLE_MBR) sprintf(name, "s%d", entry->part.index); else #endif #ifdef LOADER_GPT_SUPPORT if (table->type == PTABLE_GPT) sprintf(name, "p%d", entry->part.index); else #endif #ifdef LOADER_VTOC8_SUPPORT if (table->type == PTABLE_VTOC8) sprintf(name, "%c", (u_char) 'a' + entry->part.index); else #endif if (table->type == PTABLE_BSD) sprintf(name, "%c", (u_char) 'a' + entry->part.index); if ((ret = iter(arg, name, &entry->part)) != 0) return (ret); } return (ret); } Index: head/sys/boot/common/part.h =================================================================== --- head/sys/boot/common/part.h (revision 313327) +++ head/sys/boot/common/part.h (revision 313328) @@ -1,82 +1,83 @@ /*- * Copyright (c) 2012 Andrey V. Elsukov * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _PART_H_ #define _PART_H_ struct ptable; enum ptable_type { PTABLE_NONE, PTABLE_BSD, PTABLE_MBR, PTABLE_GPT, PTABLE_VTOC8 }; enum partition_type { PART_UNKNOWN, PART_EFI, PART_FREEBSD, PART_FREEBSD_BOOT, PART_FREEBSD_NANDFS, PART_FREEBSD_UFS, PART_FREEBSD_ZFS, PART_FREEBSD_SWAP, PART_FREEBSD_VINUM, PART_LINUX, PART_LINUX_SWAP, PART_DOS, }; struct ptable_entry { uint64_t start; uint64_t end; int index; enum partition_type type; }; /* The offset and size are in sectors */ typedef int (diskread_t)(void *arg, void *buf, size_t blocks, uint64_t offset); typedef int (ptable_iterate_t)(void *arg, const char *partname, const struct ptable_entry *part); struct ptable *ptable_open(void *dev, uint64_t sectors, uint16_t sectorsize, diskread_t *dread); void ptable_close(struct ptable *table); enum ptable_type ptable_gettype(const struct ptable *table); +int ptable_getsize(const struct ptable *table, uint64_t *sizep); int ptable_getpart(const struct ptable *table, struct ptable_entry *part, int index); int ptable_getbestpart(const struct ptable *table, struct ptable_entry *part); int ptable_iterate(const struct ptable *table, void *arg, ptable_iterate_t *iter); const char *parttype2str(enum partition_type type); #endif /* !_PART_H_ */ Index: head/sys/boot/usb/storage/umass_loader.c =================================================================== --- head/sys/boot/usb/storage/umass_loader.c (revision 313327) +++ head/sys/boot/usb/storage/umass_loader.c (revision 313328) @@ -1,229 +1,239 @@ /* $FreeBSD$ */ /*- * Copyright (c) 2014 Hans Petter Selasky * All rights reserved. * * This software was developed by SRI International and the University of * Cambridge Computer Laboratory under DARPA/AFRL contract (FA8750-10-C-0237) * ("CTSRD"), as part of the DARPA CRASH research programme. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #define HAVE_STANDARD_DEFS #include USB_GLOBAL_INCLUDE_FILE #include "umass_common.h" static int umass_disk_init(void); static int umass_disk_open(struct open_file *,...); static int umass_disk_close(struct open_file *); static void umass_disk_cleanup(void); static int umass_disk_ioctl(struct open_file *, u_long, void *); static int umass_disk_strategy(void *, int, daddr_t, size_t, char *, size_t *); static int umass_disk_print(int); struct devsw umass_disk = { .dv_name = "umass", .dv_type = DEVT_DISK, .dv_init = umass_disk_init, .dv_strategy = umass_disk_strategy, .dv_open = umass_disk_open, .dv_close = umass_disk_close, .dv_ioctl = umass_disk_ioctl, .dv_print = umass_disk_print, .dv_cleanup = umass_disk_cleanup, }; static int umass_disk_init(void) { uint32_t time; usb_init(); usb_needs_explore_all(); /* wait 8 seconds for a USB mass storage device to appear */ for (time = 0; time < (8 * hz); time++) { usb_idle(); delay(1000000 / hz); time++; callout_process(1); if (umass_uaa.device != NULL) return (0); } return (0); } static int umass_disk_strategy(void *devdata, int flag, daddr_t dblk, size_t size, char *buf, size_t *rsizep) { if (umass_uaa.device == NULL) return (ENXIO); if (rsizep != NULL) *rsizep = 0; if (flag == F_WRITE) { if (usb_msc_write_10(umass_uaa.device, 0, dblk, size >> 9, buf) != 0) return (EINVAL); } else if (flag == F_READ) { if (usb_msc_read_10(umass_uaa.device, 0, dblk, size >> 9, buf) != 0) return (EINVAL); } else { return (EROFS); } if (rsizep != NULL) *rsizep = size; return (0); } static int umass_disk_open_sub(struct disk_devdesc *dev) { uint32_t nblock; uint32_t blocksize; if (usb_msc_read_capacity(umass_uaa.device, 0, &nblock, &blocksize) != 0) return (EINVAL); return (disk_open(dev, ((uint64_t)nblock + 1) * (uint64_t)blocksize, blocksize, 0)); } static int umass_disk_open(struct open_file *f,...) { va_list ap; struct disk_devdesc *dev; va_start(ap, f); dev = va_arg(ap, struct disk_devdesc *); va_end(ap); if (umass_uaa.device == NULL) return (ENXIO); if (dev->d_unit != 0) return (EIO); return (umass_disk_open_sub(dev)); } static int -umass_disk_ioctl(struct open_file *f __unused, u_long cmd, void *buf) +umass_disk_ioctl(struct open_file *f, u_long cmd, void *buf) { + struct disk_devdesc *dev; uint32_t nblock; uint32_t blocksize; + int rc; + + dev = (struct disk_devdesc *)(f->f_devdata); + if (dev == NULL) + return (EINVAL); + + rc = disk_ioctl(dev, cmd, buf); + if (rc != ENOTTY) + return (rc); switch (cmd) { case DIOCGSECTORSIZE: case DIOCGMEDIASIZE: if (usb_msc_read_capacity(umass_uaa.device, 0, &nblock, &blocksize) != 0) return (EINVAL); if (cmd == DIOCGMEDIASIZE) *(uint64_t*)buf = nblock; else *(uint32_t*)buf = blocksize; return (0); default: return (ENXIO); } } static int umass_disk_close(struct open_file *f) { struct disk_devdesc *dev; dev = (struct disk_devdesc *)f->f_devdata; return (disk_close(dev)); } static int umass_disk_print(int verbose) { struct disk_devdesc dev; printf("%s devices:", umass_disk.dv_name); if (pager_output("\n") != 0) return (1); memset(&dev, 0, sizeof(dev)); ret = pager_output(" umass0 UMASS device\n"); if (ret != 0) return (ret); dev.d_dev = &umass_disk; dev.d_unit = 0; dev.d_slice = -1; dev.d_partition = -1; if (umass_disk_open_sub(&dev) == 0) { ret = disk_print(&dev, " umass0", verbose); disk_close(&dev); } return (ret); } static void umass_disk_cleanup(void) { disk_cleanup(&umass_disk); usb_uninit(); } /* USB specific functions */ extern void callout_process(int); extern void usb_idle(void); extern void usb_init(void); extern void usb_uninit(void); void DELAY(unsigned int usdelay) { delay(usdelay); } int pause(const char *what, int timeout) { if (timeout == 0) timeout = 1; delay((1000000 / hz) * timeout); return (0); } Index: head/sys/boot/zfs/zfs.c =================================================================== --- head/sys/boot/zfs/zfs.c (revision 313327) +++ head/sys/boot/zfs/zfs.c (revision 313328) @@ -1,907 +1,907 @@ /*- * Copyright (c) 2007 Doug Rabson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include __FBSDID("$FreeBSD$"); /* * Stand-alone file reading package. */ #include #include #include #include #include #include #include #include #include #include #include "libzfs.h" #include "zfsimpl.c" /* Define the range of indexes to be populated with ZFS Boot Environments */ #define ZFS_BE_FIRST 4 #define ZFS_BE_LAST 8 static int zfs_open(const char *path, struct open_file *f); static int zfs_write(struct open_file *f, void *buf, size_t size, size_t *resid); static int zfs_close(struct open_file *f); static int zfs_read(struct open_file *f, void *buf, size_t size, size_t *resid); static off_t zfs_seek(struct open_file *f, off_t offset, int where); static int zfs_stat(struct open_file *f, struct stat *sb); static int zfs_readdir(struct open_file *f, struct dirent *d); struct devsw zfs_dev; struct fs_ops zfs_fsops = { "zfs", zfs_open, zfs_close, zfs_read, zfs_write, zfs_seek, zfs_stat, zfs_readdir }; /* * In-core open file. */ struct file { off_t f_seekp; /* seek pointer */ dnode_phys_t f_dnode; uint64_t f_zap_type; /* zap type for readdir */ uint64_t f_num_leafs; /* number of fzap leaf blocks */ zap_leaf_phys_t *f_zap_leaf; /* zap leaf buffer */ }; static int zfs_env_index; static int zfs_env_count; SLIST_HEAD(zfs_be_list, zfs_be_entry) zfs_be_head = SLIST_HEAD_INITIALIZER(zfs_be_head); struct zfs_be_list *zfs_be_headp; struct zfs_be_entry { const char *name; SLIST_ENTRY(zfs_be_entry) entries; } *zfs_be, *zfs_be_tmp; /* * Open a file. */ static int zfs_open(const char *upath, struct open_file *f) { struct zfsmount *mount = (struct zfsmount *)f->f_devdata; struct file *fp; int rc; if (f->f_dev != &zfs_dev) return (EINVAL); /* allocate file system specific data structure */ fp = malloc(sizeof(struct file)); bzero(fp, sizeof(struct file)); f->f_fsdata = (void *)fp; rc = zfs_lookup(mount, upath, &fp->f_dnode); fp->f_seekp = 0; if (rc) { f->f_fsdata = NULL; free(fp); } return (rc); } static int zfs_close(struct open_file *f) { struct file *fp = (struct file *)f->f_fsdata; dnode_cache_obj = 0; f->f_fsdata = (void *)0; if (fp == (struct file *)0) return (0); free(fp); return (0); } /* * Copy a portion of a file into kernel memory. * Cross block boundaries when necessary. */ static int zfs_read(struct open_file *f, void *start, size_t size, size_t *resid /* out */) { const spa_t *spa = ((struct zfsmount *)f->f_devdata)->spa; struct file *fp = (struct file *)f->f_fsdata; struct stat sb; size_t n; int rc; rc = zfs_stat(f, &sb); if (rc) return (rc); n = size; if (fp->f_seekp + n > sb.st_size) n = sb.st_size - fp->f_seekp; rc = dnode_read(spa, &fp->f_dnode, fp->f_seekp, start, n); if (rc) return (rc); if (0) { int i; for (i = 0; i < n; i++) putchar(((char*) start)[i]); } fp->f_seekp += n; if (resid) *resid = size - n; return (0); } /* * Don't be silly - the bootstrap has no business writing anything. */ static int zfs_write(struct open_file *f, void *start, size_t size, size_t *resid /* out */) { return (EROFS); } static off_t zfs_seek(struct open_file *f, off_t offset, int where) { struct file *fp = (struct file *)f->f_fsdata; switch (where) { case SEEK_SET: fp->f_seekp = offset; break; case SEEK_CUR: fp->f_seekp += offset; break; case SEEK_END: { struct stat sb; int error; error = zfs_stat(f, &sb); if (error != 0) { errno = error; return (-1); } fp->f_seekp = sb.st_size - offset; break; } default: errno = EINVAL; return (-1); } return (fp->f_seekp); } static int zfs_stat(struct open_file *f, struct stat *sb) { const spa_t *spa = ((struct zfsmount *)f->f_devdata)->spa; struct file *fp = (struct file *)f->f_fsdata; return (zfs_dnode_stat(spa, &fp->f_dnode, sb)); } static int zfs_readdir(struct open_file *f, struct dirent *d) { const spa_t *spa = ((struct zfsmount *)f->f_devdata)->spa; struct file *fp = (struct file *)f->f_fsdata; mzap_ent_phys_t mze; struct stat sb; size_t bsize = fp->f_dnode.dn_datablkszsec << SPA_MINBLOCKSHIFT; int rc; rc = zfs_stat(f, &sb); if (rc) return (rc); if (!S_ISDIR(sb.st_mode)) return (ENOTDIR); /* * If this is the first read, get the zap type. */ if (fp->f_seekp == 0) { rc = dnode_read(spa, &fp->f_dnode, 0, &fp->f_zap_type, sizeof(fp->f_zap_type)); if (rc) return (rc); if (fp->f_zap_type == ZBT_MICRO) { fp->f_seekp = offsetof(mzap_phys_t, mz_chunk); } else { rc = dnode_read(spa, &fp->f_dnode, offsetof(zap_phys_t, zap_num_leafs), &fp->f_num_leafs, sizeof(fp->f_num_leafs)); if (rc) return (rc); fp->f_seekp = bsize; fp->f_zap_leaf = (zap_leaf_phys_t *)malloc(bsize); rc = dnode_read(spa, &fp->f_dnode, fp->f_seekp, fp->f_zap_leaf, bsize); if (rc) return (rc); } } if (fp->f_zap_type == ZBT_MICRO) { mzap_next: if (fp->f_seekp >= bsize) return (ENOENT); rc = dnode_read(spa, &fp->f_dnode, fp->f_seekp, &mze, sizeof(mze)); if (rc) return (rc); fp->f_seekp += sizeof(mze); if (!mze.mze_name[0]) goto mzap_next; d->d_fileno = ZFS_DIRENT_OBJ(mze.mze_value); d->d_type = ZFS_DIRENT_TYPE(mze.mze_value); strcpy(d->d_name, mze.mze_name); d->d_namlen = strlen(d->d_name); return (0); } else { zap_leaf_t zl; zap_leaf_chunk_t *zc, *nc; int chunk; size_t namelen; char *p; uint64_t value; /* * Initialise this so we can use the ZAP size * calculating macros. */ zl.l_bs = ilog2(bsize); zl.l_phys = fp->f_zap_leaf; /* * Figure out which chunk we are currently looking at * and consider seeking to the next leaf. We use the * low bits of f_seekp as a simple chunk index. */ fzap_next: chunk = fp->f_seekp & (bsize - 1); if (chunk == ZAP_LEAF_NUMCHUNKS(&zl)) { fp->f_seekp = rounddown2(fp->f_seekp, bsize) + bsize; chunk = 0; /* * Check for EOF and read the new leaf. */ if (fp->f_seekp >= bsize * fp->f_num_leafs) return (ENOENT); rc = dnode_read(spa, &fp->f_dnode, fp->f_seekp, fp->f_zap_leaf, bsize); if (rc) return (rc); } zc = &ZAP_LEAF_CHUNK(&zl, chunk); fp->f_seekp++; if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) goto fzap_next; namelen = zc->l_entry.le_name_numints; if (namelen > sizeof(d->d_name)) namelen = sizeof(d->d_name); /* * Paste the name back together. */ nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk); p = d->d_name; while (namelen > 0) { int len; len = namelen; if (len > ZAP_LEAF_ARRAY_BYTES) len = ZAP_LEAF_ARRAY_BYTES; memcpy(p, nc->l_array.la_array, len); p += len; namelen -= len; nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next); } d->d_name[sizeof(d->d_name) - 1] = 0; /* * Assume the first eight bytes of the value are * a uint64_t. */ value = fzap_leaf_value(&zl, zc); d->d_fileno = ZFS_DIRENT_OBJ(value); d->d_type = ZFS_DIRENT_TYPE(value); d->d_namlen = strlen(d->d_name); return (0); } } static int vdev_read(vdev_t *vdev, void *priv, off_t offset, void *buf, size_t size) { int fd; fd = (uintptr_t) priv; lseek(fd, offset, SEEK_SET); if (read(fd, buf, size) == size) { return 0; } else { return (EIO); } } static int zfs_dev_init(void) { spa_t *spa; spa_t *next; spa_t *prev; zfs_init(); if (archsw.arch_zfs_probe == NULL) return (ENXIO); archsw.arch_zfs_probe(); prev = NULL; spa = STAILQ_FIRST(&zfs_pools); while (spa != NULL) { next = STAILQ_NEXT(spa, spa_link); if (zfs_spa_init(spa)) { if (prev == NULL) STAILQ_REMOVE_HEAD(&zfs_pools, spa_link); else STAILQ_REMOVE_AFTER(&zfs_pools, prev, spa_link); } else prev = spa; spa = next; } return (0); } struct zfs_probe_args { int fd; const char *devname; uint64_t *pool_guid; u_int secsz; }; static int zfs_diskread(void *arg, void *buf, size_t blocks, uint64_t offset) { struct zfs_probe_args *ppa; ppa = (struct zfs_probe_args *)arg; return (vdev_read(NULL, (void *)(uintptr_t)ppa->fd, offset * ppa->secsz, buf, blocks * ppa->secsz)); } static int zfs_probe(int fd, uint64_t *pool_guid) { spa_t *spa; int ret; ret = vdev_probe(vdev_read, (void *)(uintptr_t)fd, &spa); if (ret == 0 && pool_guid != NULL) *pool_guid = spa->spa_guid; return (ret); } static int zfs_probe_partition(void *arg, const char *partname, const struct ptable_entry *part) { struct zfs_probe_args *ppa, pa; struct ptable *table; char devname[32]; int ret; /* Probe only freebsd-zfs and freebsd partitions */ if (part->type != PART_FREEBSD && part->type != PART_FREEBSD_ZFS) return (0); ppa = (struct zfs_probe_args *)arg; strncpy(devname, ppa->devname, strlen(ppa->devname) - 1); devname[strlen(ppa->devname) - 1] = '\0'; sprintf(devname, "%s%s:", devname, partname); pa.fd = open(devname, O_RDONLY); if (pa.fd == -1) return (0); ret = zfs_probe(pa.fd, ppa->pool_guid); if (ret == 0) return (0); /* Do we have BSD label here? */ if (part->type == PART_FREEBSD) { pa.devname = devname; pa.pool_guid = ppa->pool_guid; pa.secsz = ppa->secsz; table = ptable_open(&pa, part->end - part->start + 1, ppa->secsz, zfs_diskread); if (table != NULL) { ptable_iterate(table, &pa, zfs_probe_partition); ptable_close(table); } } close(pa.fd); return (0); } int zfs_probe_dev(const char *devname, uint64_t *pool_guid) { struct ptable *table; struct zfs_probe_args pa; - off_t mediasz; + uint64_t mediasz; int ret; pa.fd = open(devname, O_RDONLY); if (pa.fd == -1) return (ENXIO); /* Probe the whole disk */ ret = zfs_probe(pa.fd, pool_guid); if (ret == 0) return (0); /* Probe each partition */ ret = ioctl(pa.fd, DIOCGMEDIASIZE, &mediasz); if (ret == 0) ret = ioctl(pa.fd, DIOCGSECTORSIZE, &pa.secsz); if (ret == 0) { pa.devname = devname; pa.pool_guid = pool_guid; table = ptable_open(&pa, mediasz / pa.secsz, pa.secsz, zfs_diskread); if (table != NULL) { ptable_iterate(table, &pa, zfs_probe_partition); ptable_close(table); } } close(pa.fd); return (ret); } /* * Print information about ZFS pools */ static int zfs_dev_print(int verbose) { spa_t *spa; char line[80]; int ret = 0; if (STAILQ_EMPTY(&zfs_pools)) return (0); printf("%s devices:", zfs_dev.dv_name); if ((ret = pager_output("\n")) != 0) return (ret); if (verbose) { return (spa_all_status()); } STAILQ_FOREACH(spa, &zfs_pools, spa_link) { snprintf(line, sizeof(line), " zfs:%s\n", spa->spa_name); ret = pager_output(line); if (ret != 0) break; } return (ret); } /* * Attempt to open the pool described by (dev) for use by (f). */ static int zfs_dev_open(struct open_file *f, ...) { va_list args; struct zfs_devdesc *dev; struct zfsmount *mount; spa_t *spa; int rv; va_start(args, f); dev = va_arg(args, struct zfs_devdesc *); va_end(args); if (dev->pool_guid == 0) spa = STAILQ_FIRST(&zfs_pools); else spa = spa_find_by_guid(dev->pool_guid); if (!spa) return (ENXIO); mount = malloc(sizeof(*mount)); rv = zfs_mount(spa, dev->root_guid, mount); if (rv != 0) { free(mount); return (rv); } if (mount->objset.os_type != DMU_OST_ZFS) { printf("Unexpected object set type %ju\n", (uintmax_t)mount->objset.os_type); free(mount); return (EIO); } f->f_devdata = mount; free(dev); return (0); } static int zfs_dev_close(struct open_file *f) { free(f->f_devdata); f->f_devdata = NULL; return (0); } static int zfs_dev_strategy(void *devdata, int rw, daddr_t dblk, size_t size, char *buf, size_t *rsize) { return (ENOSYS); } struct devsw zfs_dev = { .dv_name = "zfs", .dv_type = DEVT_ZFS, .dv_init = zfs_dev_init, .dv_strategy = zfs_dev_strategy, .dv_open = zfs_dev_open, .dv_close = zfs_dev_close, .dv_ioctl = noioctl, .dv_print = zfs_dev_print, .dv_cleanup = NULL }; int zfs_parsedev(struct zfs_devdesc *dev, const char *devspec, const char **path) { static char rootname[ZFS_MAXNAMELEN]; static char poolname[ZFS_MAXNAMELEN]; spa_t *spa; const char *end; const char *np; const char *sep; int rv; np = devspec; if (*np != ':') return (EINVAL); np++; end = strchr(np, ':'); if (end == NULL) return (EINVAL); sep = strchr(np, '/'); if (sep == NULL || sep >= end) sep = end; memcpy(poolname, np, sep - np); poolname[sep - np] = '\0'; if (sep < end) { sep++; memcpy(rootname, sep, end - sep); rootname[end - sep] = '\0'; } else rootname[0] = '\0'; spa = spa_find_by_name(poolname); if (!spa) return (ENXIO); dev->pool_guid = spa->spa_guid; rv = zfs_lookup_dataset(spa, rootname, &dev->root_guid); if (rv != 0) return (rv); if (path != NULL) *path = (*end == '\0') ? end : end + 1; dev->d_dev = &zfs_dev; dev->d_type = zfs_dev.dv_type; return (0); } char * zfs_fmtdev(void *vdev) { static char rootname[ZFS_MAXNAMELEN]; static char buf[2 * ZFS_MAXNAMELEN + 8]; struct zfs_devdesc *dev = (struct zfs_devdesc *)vdev; spa_t *spa; buf[0] = '\0'; if (dev->d_type != DEVT_ZFS) return (buf); if (dev->pool_guid == 0) { spa = STAILQ_FIRST(&zfs_pools); dev->pool_guid = spa->spa_guid; } else spa = spa_find_by_guid(dev->pool_guid); if (spa == NULL) { printf("ZFS: can't find pool by guid\n"); return (buf); } if (dev->root_guid == 0 && zfs_get_root(spa, &dev->root_guid)) { printf("ZFS: can't find root filesystem\n"); return (buf); } if (zfs_rlookup(spa, dev->root_guid, rootname)) { printf("ZFS: can't find filesystem by guid\n"); return (buf); } if (rootname[0] == '\0') sprintf(buf, "%s:%s:", dev->d_dev->dv_name, spa->spa_name); else sprintf(buf, "%s:%s/%s:", dev->d_dev->dv_name, spa->spa_name, rootname); return (buf); } int zfs_list(const char *name) { static char poolname[ZFS_MAXNAMELEN]; uint64_t objid; spa_t *spa; const char *dsname; int len; int rv; len = strlen(name); dsname = strchr(name, '/'); if (dsname != NULL) { len = dsname - name; dsname++; } else dsname = ""; memcpy(poolname, name, len); poolname[len] = '\0'; spa = spa_find_by_name(poolname); if (!spa) return (ENXIO); rv = zfs_lookup_dataset(spa, dsname, &objid); if (rv != 0) return (rv); return (zfs_list_dataset(spa, objid)); } void init_zfs_bootenv(char *currdev) { char *beroot; if (strlen(currdev) == 0) return; if(strncmp(currdev, "zfs:", 4) != 0) return; /* Remove the trailing : */ currdev[strlen(currdev) - 1] = '\0'; setenv("zfs_be_active", currdev, 1); setenv("zfs_be_currpage", "1", 1); /* Forward past zfs: */ currdev = strchr(currdev, ':'); currdev++; /* Remove the last element (current bootenv) */ beroot = strrchr(currdev, '/'); if (beroot != NULL) beroot[0] = '\0'; beroot = currdev; setenv("zfs_be_root", beroot, 1); } int zfs_bootenv(const char *name) { static char poolname[ZFS_MAXNAMELEN], *dsname, *root; char becount[4]; uint64_t objid; spa_t *spa; int len, rv, pages, perpage, currpage; if (name == NULL) return (EINVAL); if ((root = getenv("zfs_be_root")) == NULL) return (EINVAL); if (strcmp(name, root) != 0) { if (setenv("zfs_be_root", name, 1) != 0) return (ENOMEM); } SLIST_INIT(&zfs_be_head); zfs_env_count = 0; len = strlen(name); dsname = strchr(name, '/'); if (dsname != NULL) { len = dsname - name; dsname++; } else dsname = ""; memcpy(poolname, name, len); poolname[len] = '\0'; spa = spa_find_by_name(poolname); if (!spa) return (ENXIO); rv = zfs_lookup_dataset(spa, dsname, &objid); if (rv != 0) return (rv); rv = zfs_callback_dataset(spa, objid, zfs_belist_add); /* Calculate and store the number of pages of BEs */ perpage = (ZFS_BE_LAST - ZFS_BE_FIRST + 1); pages = (zfs_env_count / perpage) + ((zfs_env_count % perpage) > 0 ? 1 : 0); snprintf(becount, 4, "%d", pages); if (setenv("zfs_be_pages", becount, 1) != 0) return (ENOMEM); /* Roll over the page counter if it has exceeded the maximum */ currpage = strtol(getenv("zfs_be_currpage"), NULL, 10); if (currpage > pages) { if (setenv("zfs_be_currpage", "1", 1) != 0) return (ENOMEM); } /* Populate the menu environment variables */ zfs_set_env(); /* Clean up the SLIST of ZFS BEs */ while (!SLIST_EMPTY(&zfs_be_head)) { zfs_be = SLIST_FIRST(&zfs_be_head); SLIST_REMOVE_HEAD(&zfs_be_head, entries); free(zfs_be); } return (rv); } int zfs_belist_add(const char *name, uint64_t value __unused) { /* Skip special datasets that start with a $ character */ if (strncmp(name, "$", 1) == 0) { return (0); } /* Add the boot environment to the head of the SLIST */ zfs_be = malloc(sizeof(struct zfs_be_entry)); if (zfs_be == NULL) { return (ENOMEM); } zfs_be->name = name; SLIST_INSERT_HEAD(&zfs_be_head, zfs_be, entries); zfs_env_count++; return (0); } int zfs_set_env(void) { char envname[32], envval[256]; char *beroot, *pagenum; int rv, page, ctr; beroot = getenv("zfs_be_root"); if (beroot == NULL) { return (1); } pagenum = getenv("zfs_be_currpage"); if (pagenum != NULL) { page = strtol(pagenum, NULL, 10); } else { page = 1; } ctr = 1; rv = 0; zfs_env_index = ZFS_BE_FIRST; SLIST_FOREACH_SAFE(zfs_be, &zfs_be_head, entries, zfs_be_tmp) { /* Skip to the requested page number */ if (ctr <= ((ZFS_BE_LAST - ZFS_BE_FIRST + 1) * (page - 1))) { ctr++; continue; } snprintf(envname, sizeof(envname), "bootenvmenu_caption[%d]", zfs_env_index); snprintf(envval, sizeof(envval), "%s", zfs_be->name); rv = setenv(envname, envval, 1); if (rv != 0) { break; } snprintf(envname, sizeof(envname), "bootenvansi_caption[%d]", zfs_env_index); rv = setenv(envname, envval, 1); if (rv != 0){ break; } snprintf(envname, sizeof(envname), "bootenvmenu_command[%d]", zfs_env_index); rv = setenv(envname, "set_bootenv", 1); if (rv != 0){ break; } snprintf(envname, sizeof(envname), "bootenv_root[%d]", zfs_env_index); snprintf(envval, sizeof(envval), "zfs:%s/%s", beroot, zfs_be->name); rv = setenv(envname, envval, 1); if (rv != 0){ break; } zfs_env_index++; if (zfs_env_index > ZFS_BE_LAST) { break; } } for (; zfs_env_index <= ZFS_BE_LAST; zfs_env_index++) { snprintf(envname, sizeof(envname), "bootenvmenu_caption[%d]", zfs_env_index); (void)unsetenv(envname); snprintf(envname, sizeof(envname), "bootenvansi_caption[%d]", zfs_env_index); (void)unsetenv(envname); snprintf(envname, sizeof(envname), "bootenvmenu_command[%d]", zfs_env_index); (void)unsetenv(envname); snprintf(envname, sizeof(envname), "bootenv_root[%d]", zfs_env_index); (void)unsetenv(envname); } return (rv); }