Index: stable/11/sys/kern/kern_procctl.c =================================================================== --- stable/11/sys/kern/kern_procctl.c (revision 313301) +++ stable/11/sys/kern/kern_procctl.c (revision 313302) @@ -1,576 +1,576 @@ /*- * Copyright (c) 2014 John Baldwin * Copyright (c) 2014, 2016 The FreeBSD Foundation * * Portions of this software were developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include static int protect_setchild(struct thread *td, struct proc *p, int flags) { PROC_LOCK_ASSERT(p, MA_OWNED); if (p->p_flag & P_SYSTEM || p_cansched(td, p) != 0) return (0); if (flags & PPROT_SET) { p->p_flag |= P_PROTECTED; if (flags & PPROT_INHERIT) p->p_flag2 |= P2_INHERIT_PROTECTED; } else { p->p_flag &= ~P_PROTECTED; p->p_flag2 &= ~P2_INHERIT_PROTECTED; } return (1); } static int protect_setchildren(struct thread *td, struct proc *top, int flags) { struct proc *p; int ret; p = top; ret = 0; sx_assert(&proctree_lock, SX_LOCKED); for (;;) { ret |= protect_setchild(td, p, flags); PROC_UNLOCK(p); /* * If this process has children, descend to them next, * otherwise do any siblings, and if done with this level, * follow back up the tree (but not past top). */ if (!LIST_EMPTY(&p->p_children)) p = LIST_FIRST(&p->p_children); else for (;;) { if (p == top) { PROC_LOCK(p); return (ret); } if (LIST_NEXT(p, p_sibling)) { p = LIST_NEXT(p, p_sibling); break; } p = p->p_pptr; } PROC_LOCK(p); } } static int protect_set(struct thread *td, struct proc *p, int flags) { int error, ret; switch (PPROT_OP(flags)) { case PPROT_SET: case PPROT_CLEAR: break; default: return (EINVAL); } if ((PPROT_FLAGS(flags) & ~(PPROT_DESCEND | PPROT_INHERIT)) != 0) return (EINVAL); error = priv_check(td, PRIV_VM_MADV_PROTECT); if (error) return (error); if (flags & PPROT_DESCEND) ret = protect_setchildren(td, p, flags); else ret = protect_setchild(td, p, flags); if (ret == 0) return (EPERM); return (0); } static int reap_acquire(struct thread *td, struct proc *p) { sx_assert(&proctree_lock, SX_XLOCKED); if (p != curproc) return (EPERM); if ((p->p_treeflag & P_TREE_REAPER) != 0) return (EBUSY); p->p_treeflag |= P_TREE_REAPER; /* * We do not reattach existing children and the whole tree * under them to us, since p->p_reaper already seen them. */ return (0); } static int reap_release(struct thread *td, struct proc *p) { sx_assert(&proctree_lock, SX_XLOCKED); if (p != curproc) return (EPERM); if (p == initproc) return (EINVAL); if ((p->p_treeflag & P_TREE_REAPER) == 0) return (EINVAL); reaper_abandon_children(p, false); return (0); } static int reap_status(struct thread *td, struct proc *p, struct procctl_reaper_status *rs) { struct proc *reap, *p2, *first_p; sx_assert(&proctree_lock, SX_LOCKED); bzero(rs, sizeof(*rs)); if ((p->p_treeflag & P_TREE_REAPER) == 0) { reap = p->p_reaper; } else { reap = p; rs->rs_flags |= REAPER_STATUS_OWNED; } if (reap == initproc) rs->rs_flags |= REAPER_STATUS_REALINIT; rs->rs_reaper = reap->p_pid; rs->rs_descendants = 0; rs->rs_children = 0; if (!LIST_EMPTY(&reap->p_reaplist)) { first_p = LIST_FIRST(&reap->p_children); if (first_p == NULL) first_p = LIST_FIRST(&reap->p_reaplist); rs->rs_pid = first_p->p_pid; LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling) { if (proc_realparent(p2) == reap) rs->rs_children++; rs->rs_descendants++; } } else { rs->rs_pid = -1; } return (0); } static int reap_getpids(struct thread *td, struct proc *p, struct procctl_reaper_pids *rp) { struct proc *reap, *p2; struct procctl_reaper_pidinfo *pi, *pip; u_int i, n; int error; sx_assert(&proctree_lock, SX_LOCKED); PROC_UNLOCK(p); reap = (p->p_treeflag & P_TREE_REAPER) == 0 ? p->p_reaper : p; n = i = 0; error = 0; LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling) n++; sx_unlock(&proctree_lock); if (rp->rp_count < n) n = rp->rp_count; pi = malloc(n * sizeof(*pi), M_TEMP, M_WAITOK); sx_slock(&proctree_lock); LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling) { if (i == n) break; pip = &pi[i]; bzero(pip, sizeof(*pip)); pip->pi_pid = p2->p_pid; pip->pi_subtree = p2->p_reapsubtree; pip->pi_flags = REAPER_PIDINFO_VALID; if (proc_realparent(p2) == reap) pip->pi_flags |= REAPER_PIDINFO_CHILD; i++; } sx_sunlock(&proctree_lock); error = copyout(pi, rp->rp_pids, i * sizeof(*pi)); free(pi, M_TEMP); sx_slock(&proctree_lock); PROC_LOCK(p); return (error); } static int reap_kill(struct thread *td, struct proc *p, struct procctl_reaper_kill *rk) { struct proc *reap, *p2; ksiginfo_t ksi; int error, error1; sx_assert(&proctree_lock, SX_LOCKED); if (IN_CAPABILITY_MODE(td)) return (ECAPMODE); if (rk->rk_sig <= 0 || rk->rk_sig > _SIG_MAXSIG) return (EINVAL); - if ((rk->rk_flags & ~REAPER_KILL_CHILDREN) != 0) + if ((rk->rk_flags & ~(REAPER_KILL_CHILDREN | REAPER_KILL_SUBTREE)) != 0) return (EINVAL); PROC_UNLOCK(p); reap = (p->p_treeflag & P_TREE_REAPER) == 0 ? p->p_reaper : p; ksiginfo_init(&ksi); ksi.ksi_signo = rk->rk_sig; ksi.ksi_code = SI_USER; ksi.ksi_pid = td->td_proc->p_pid; ksi.ksi_uid = td->td_ucred->cr_ruid; error = ESRCH; rk->rk_killed = 0; rk->rk_fpid = -1; for (p2 = (rk->rk_flags & REAPER_KILL_CHILDREN) != 0 ? LIST_FIRST(&reap->p_children) : LIST_FIRST(&reap->p_reaplist); p2 != NULL; p2 = (rk->rk_flags & REAPER_KILL_CHILDREN) != 0 ? LIST_NEXT(p2, p_sibling) : LIST_NEXT(p2, p_reapsibling)) { if ((rk->rk_flags & REAPER_KILL_SUBTREE) != 0 && p2->p_reapsubtree != rk->rk_subtree) continue; PROC_LOCK(p2); error1 = p_cansignal(td, p2, rk->rk_sig); if (error1 == 0) { pksignal(p2, rk->rk_sig, &ksi); rk->rk_killed++; error = error1; } else if (error == ESRCH) { error = error1; rk->rk_fpid = p2->p_pid; } PROC_UNLOCK(p2); /* Do not end the loop on error, signal everything we can. */ } PROC_LOCK(p); return (error); } static int trace_ctl(struct thread *td, struct proc *p, int state) { PROC_LOCK_ASSERT(p, MA_OWNED); /* * Ktrace changes p_traceflag from or to zero under the * process lock, so the test does not need to acquire ktrace * mutex. */ if ((p->p_flag & P_TRACED) != 0 || p->p_traceflag != 0) return (EBUSY); switch (state) { case PROC_TRACE_CTL_ENABLE: if (td->td_proc != p) return (EPERM); p->p_flag2 &= ~(P2_NOTRACE | P2_NOTRACE_EXEC); break; case PROC_TRACE_CTL_DISABLE_EXEC: p->p_flag2 |= P2_NOTRACE_EXEC | P2_NOTRACE; break; case PROC_TRACE_CTL_DISABLE: if ((p->p_flag2 & P2_NOTRACE_EXEC) != 0) { KASSERT((p->p_flag2 & P2_NOTRACE) != 0, ("dandling P2_NOTRACE_EXEC")); if (td->td_proc != p) return (EPERM); p->p_flag2 &= ~P2_NOTRACE_EXEC; } else { p->p_flag2 |= P2_NOTRACE; } break; default: return (EINVAL); } return (0); } static int trace_status(struct thread *td, struct proc *p, int *data) { if ((p->p_flag2 & P2_NOTRACE) != 0) { KASSERT((p->p_flag & P_TRACED) == 0, ("%d traced but tracing disabled", p->p_pid)); *data = -1; } else if ((p->p_flag & P_TRACED) != 0) { *data = p->p_pptr->p_pid; } else { *data = 0; } return (0); } static int trapcap_ctl(struct thread *td, struct proc *p, int state) { PROC_LOCK_ASSERT(p, MA_OWNED); switch (state) { case PROC_TRAPCAP_CTL_ENABLE: p->p_flag2 |= P2_TRAPCAP; break; case PROC_TRAPCAP_CTL_DISABLE: p->p_flag2 &= ~P2_TRAPCAP; break; default: return (EINVAL); } return (0); } static int trapcap_status(struct thread *td, struct proc *p, int *data) { *data = (p->p_flag2 & P2_TRAPCAP) != 0 ? PROC_TRAPCAP_CTL_ENABLE : PROC_TRAPCAP_CTL_DISABLE; return (0); } #ifndef _SYS_SYSPROTO_H_ struct procctl_args { idtype_t idtype; id_t id; int com; void *data; }; #endif /* ARGSUSED */ int sys_procctl(struct thread *td, struct procctl_args *uap) { void *data; union { struct procctl_reaper_status rs; struct procctl_reaper_pids rp; struct procctl_reaper_kill rk; } x; int error, error1, flags; switch (uap->com) { case PROC_SPROTECT: case PROC_TRACE_CTL: case PROC_TRAPCAP_CTL: error = copyin(uap->data, &flags, sizeof(flags)); if (error != 0) return (error); data = &flags; break; case PROC_REAP_ACQUIRE: case PROC_REAP_RELEASE: if (uap->data != NULL) return (EINVAL); data = NULL; break; case PROC_REAP_STATUS: data = &x.rs; break; case PROC_REAP_GETPIDS: error = copyin(uap->data, &x.rp, sizeof(x.rp)); if (error != 0) return (error); data = &x.rp; break; case PROC_REAP_KILL: error = copyin(uap->data, &x.rk, sizeof(x.rk)); if (error != 0) return (error); data = &x.rk; break; case PROC_TRACE_STATUS: case PROC_TRAPCAP_STATUS: data = &flags; break; default: return (EINVAL); } error = kern_procctl(td, uap->idtype, uap->id, uap->com, data); switch (uap->com) { case PROC_REAP_STATUS: if (error == 0) error = copyout(&x.rs, uap->data, sizeof(x.rs)); break; case PROC_REAP_KILL: error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); if (error == 0) error = error1; break; case PROC_TRACE_STATUS: case PROC_TRAPCAP_STATUS: if (error == 0) error = copyout(&flags, uap->data, sizeof(flags)); break; } return (error); } static int kern_procctl_single(struct thread *td, struct proc *p, int com, void *data) { PROC_LOCK_ASSERT(p, MA_OWNED); switch (com) { case PROC_SPROTECT: return (protect_set(td, p, *(int *)data)); case PROC_REAP_ACQUIRE: return (reap_acquire(td, p)); case PROC_REAP_RELEASE: return (reap_release(td, p)); case PROC_REAP_STATUS: return (reap_status(td, p, data)); case PROC_REAP_GETPIDS: return (reap_getpids(td, p, data)); case PROC_REAP_KILL: return (reap_kill(td, p, data)); case PROC_TRACE_CTL: return (trace_ctl(td, p, *(int *)data)); case PROC_TRACE_STATUS: return (trace_status(td, p, data)); case PROC_TRAPCAP_CTL: return (trapcap_ctl(td, p, *(int *)data)); case PROC_TRAPCAP_STATUS: return (trapcap_status(td, p, data)); default: return (EINVAL); } } int kern_procctl(struct thread *td, idtype_t idtype, id_t id, int com, void *data) { struct pgrp *pg; struct proc *p; int error, first_error, ok; bool tree_locked; switch (com) { case PROC_REAP_ACQUIRE: case PROC_REAP_RELEASE: case PROC_REAP_STATUS: case PROC_REAP_GETPIDS: case PROC_REAP_KILL: case PROC_TRACE_STATUS: case PROC_TRAPCAP_STATUS: if (idtype != P_PID) return (EINVAL); } switch (com) { case PROC_SPROTECT: case PROC_REAP_STATUS: case PROC_REAP_GETPIDS: case PROC_REAP_KILL: case PROC_TRACE_CTL: case PROC_TRAPCAP_CTL: sx_slock(&proctree_lock); tree_locked = true; break; case PROC_REAP_ACQUIRE: case PROC_REAP_RELEASE: sx_xlock(&proctree_lock); tree_locked = true; break; case PROC_TRACE_STATUS: case PROC_TRAPCAP_STATUS: tree_locked = false; break; default: return (EINVAL); } switch (idtype) { case P_PID: p = pfind(id); if (p == NULL) { error = ESRCH; break; } error = p_cansee(td, p); if (error == 0) error = kern_procctl_single(td, p, com, data); PROC_UNLOCK(p); break; case P_PGID: /* * Attempt to apply the operation to all members of the * group. Ignore processes in the group that can't be * seen. Ignore errors so long as at least one process is * able to complete the request successfully. */ pg = pgfind(id); if (pg == NULL) { error = ESRCH; break; } PGRP_UNLOCK(pg); ok = 0; first_error = 0; LIST_FOREACH(p, &pg->pg_members, p_pglist) { PROC_LOCK(p); if (p->p_state == PRS_NEW || p_cansee(td, p) != 0) { PROC_UNLOCK(p); continue; } error = kern_procctl_single(td, p, com, data); PROC_UNLOCK(p); if (error == 0) ok = 1; else if (first_error == 0) first_error = error; } if (ok) error = 0; else if (first_error != 0) error = first_error; else /* * Was not able to see any processes in the * process group. */ error = ESRCH; break; default: error = EINVAL; break; } if (tree_locked) sx_unlock(&proctree_lock); return (error); } Index: stable/11/tests/sys/kern/reaper.c =================================================================== --- stable/11/tests/sys/kern/reaper.c (revision 313301) +++ stable/11/tests/sys/kern/reaper.c (revision 313302) @@ -1,656 +1,758 @@ /*- * Copyright (c) 2016 Jilles Tjoelker * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include static void dummy_sighandler(int sig __unused, siginfo_t *info __unused, void *ctx __unused) { } ATF_TC_WITHOUT_HEAD(reaper_wait_child_first); ATF_TC_BODY(reaper_wait_child_first, tc) { pid_t parent, child, grandchild, pid; int status, r; int pip[2]; /* Be paranoid. */ pid = waitpid(-1, NULL, WNOHANG); ATF_REQUIRE(pid == -1 && errno == ECHILD); parent = getpid(); r = procctl(P_PID, parent, PROC_REAP_ACQUIRE, NULL); ATF_REQUIRE_EQ(0, r); r = pipe(pip); ATF_REQUIRE_EQ(0, r); child = fork(); ATF_REQUIRE(child != -1); if (child == 0) { if (close(pip[1]) != 0) _exit(100); grandchild = fork(); if (grandchild == -1) _exit(101); else if (grandchild == 0) { if (read(pip[0], &(uint8_t){ 0 }, 1) != 0) _exit(102); if (getppid() != parent) _exit(103); _exit(2); } else _exit(3); } pid = waitpid(child, &status, 0); ATF_REQUIRE_EQ(child, pid); r = WIFEXITED(status) ? WEXITSTATUS(status) : -1; ATF_CHECK_EQ(3, r); r = close(pip[1]); ATF_REQUIRE_EQ(0, r); pid = waitpid(-1, &status, 0); ATF_REQUIRE(pid > 0 && pid != child); r = WIFEXITED(status) ? WEXITSTATUS(status) : -1; ATF_CHECK_EQ(2, r); r = close(pip[0]); ATF_REQUIRE_EQ(0, r); } ATF_TC_WITHOUT_HEAD(reaper_wait_grandchild_first); ATF_TC_BODY(reaper_wait_grandchild_first, tc) { pid_t parent, child, grandchild, pid; int status, r; /* Be paranoid. */ pid = waitpid(-1, NULL, WNOHANG); ATF_REQUIRE(pid == -1 && errno == ECHILD); parent = getpid(); r = procctl(P_PID, parent, PROC_REAP_ACQUIRE, NULL); ATF_REQUIRE_EQ(0, r); child = fork(); ATF_REQUIRE(child != -1); if (child == 0) { grandchild = fork(); if (grandchild == -1) _exit(101); else if (grandchild == 0) _exit(2); else { if (waitid(P_PID, grandchild, NULL, WNOWAIT | WEXITED) != 0) _exit(102); _exit(3); } } pid = waitpid(child, &status, 0); ATF_REQUIRE_EQ(child, pid); r = WIFEXITED(status) ? WEXITSTATUS(status) : -1; ATF_CHECK_EQ(3, r); pid = waitpid(-1, &status, 0); ATF_REQUIRE(pid > 0 && pid != child); r = WIFEXITED(status) ? WEXITSTATUS(status) : -1; ATF_CHECK_EQ(2, r); } ATF_TC(reaper_sigchld_child_first); ATF_TC_HEAD(reaper_sigchld_child_first, tc) { atf_tc_set_md_var(tc, "timeout", "2"); } ATF_TC_BODY(reaper_sigchld_child_first, tc) { struct sigaction act; sigset_t mask; siginfo_t info; pid_t parent, child, grandchild, pid; int r; int pip[2]; /* Be paranoid. */ pid = waitpid(-1, NULL, WNOHANG); ATF_REQUIRE(pid == -1 && errno == ECHILD); act.sa_sigaction = dummy_sighandler; act.sa_flags = SA_SIGINFO | SA_RESTART; r = sigemptyset(&act.sa_mask); ATF_REQUIRE_EQ(0, r); r = sigaction(SIGCHLD, &act, NULL); ATF_REQUIRE_EQ(0, r); r = sigemptyset(&mask); ATF_REQUIRE_EQ(0, r); r = sigaddset(&mask, SIGCHLD); ATF_REQUIRE_EQ(0, r); r = sigprocmask(SIG_BLOCK, &mask, NULL); ATF_REQUIRE_EQ(0, r); parent = getpid(); r = procctl(P_PID, parent, PROC_REAP_ACQUIRE, NULL); ATF_REQUIRE_EQ(0, r); r = pipe(pip); ATF_REQUIRE_EQ(0, r); child = fork(); ATF_REQUIRE(child != -1); if (child == 0) { if (close(pip[1]) != 0) _exit(100); grandchild = fork(); if (grandchild == -1) _exit(101); else if (grandchild == 0) { if (read(pip[0], &(uint8_t){ 0 }, 1) != 0) _exit(102); if (getppid() != parent) _exit(103); _exit(2); } else _exit(3); } r = sigwaitinfo(&mask, &info); ATF_REQUIRE_EQ(SIGCHLD, r); ATF_CHECK_EQ(SIGCHLD, info.si_signo); ATF_CHECK_EQ(CLD_EXITED, info.si_code); ATF_CHECK_EQ(3, info.si_status); ATF_CHECK_EQ(child, info.si_pid); pid = waitpid(child, NULL, 0); ATF_REQUIRE_EQ(child, pid); r = close(pip[1]); ATF_REQUIRE_EQ(0, r); r = sigwaitinfo(&mask, &info); ATF_REQUIRE_EQ(SIGCHLD, r); ATF_CHECK_EQ(SIGCHLD, info.si_signo); ATF_CHECK_EQ(CLD_EXITED, info.si_code); ATF_CHECK_EQ(2, info.si_status); grandchild = info.si_pid; ATF_REQUIRE(grandchild > 0); ATF_REQUIRE(grandchild != parent); ATF_REQUIRE(grandchild != child); pid = waitpid(-1, NULL, 0); ATF_REQUIRE_EQ(grandchild, pid); r = close(pip[0]); ATF_REQUIRE_EQ(0, r); } ATF_TC(reaper_sigchld_grandchild_first); ATF_TC_HEAD(reaper_sigchld_grandchild_first, tc) { atf_tc_set_md_var(tc, "timeout", "2"); } ATF_TC_BODY(reaper_sigchld_grandchild_first, tc) { struct sigaction act; sigset_t mask; siginfo_t info; pid_t parent, child, grandchild, pid; int r; /* Be paranoid. */ pid = waitpid(-1, NULL, WNOHANG); ATF_REQUIRE(pid == -1 && errno == ECHILD); act.sa_sigaction = dummy_sighandler; act.sa_flags = SA_SIGINFO | SA_RESTART; r = sigemptyset(&act.sa_mask); ATF_REQUIRE_EQ(0, r); r = sigaction(SIGCHLD, &act, NULL); ATF_REQUIRE_EQ(0, r); r = sigemptyset(&mask); ATF_REQUIRE_EQ(0, r); r = sigaddset(&mask, SIGCHLD); ATF_REQUIRE_EQ(0, r); r = sigprocmask(SIG_BLOCK, &mask, NULL); ATF_REQUIRE_EQ(0, r); parent = getpid(); r = procctl(P_PID, parent, PROC_REAP_ACQUIRE, NULL); ATF_REQUIRE_EQ(0, r); child = fork(); ATF_REQUIRE(child != -1); if (child == 0) { grandchild = fork(); if (grandchild == -1) _exit(101); else if (grandchild == 0) _exit(2); else { if (waitid(P_PID, grandchild, NULL, WNOWAIT | WEXITED) != 0) _exit(102); _exit(3); } } pid = waitpid(child, NULL, 0); ATF_REQUIRE_EQ(child, pid); r = sigwaitinfo(&mask, &info); ATF_REQUIRE_EQ(SIGCHLD, r); ATF_CHECK_EQ(SIGCHLD, info.si_signo); ATF_CHECK_EQ(CLD_EXITED, info.si_code); ATF_CHECK_EQ(2, info.si_status); grandchild = info.si_pid; ATF_REQUIRE(grandchild > 0); ATF_REQUIRE(grandchild != parent); ATF_REQUIRE(grandchild != child); pid = waitpid(-1, NULL, 0); ATF_REQUIRE_EQ(grandchild, pid); } ATF_TC_WITHOUT_HEAD(reaper_status); ATF_TC_BODY(reaper_status, tc) { struct procctl_reaper_status st; ssize_t sr; pid_t parent, child, pid; int r, status; int pip[2]; parent = getpid(); r = procctl(P_PID, parent, PROC_REAP_STATUS, &st); ATF_REQUIRE_EQ(0, r); ATF_CHECK_EQ(0, st.rs_flags & REAPER_STATUS_OWNED); ATF_CHECK(st.rs_children > 0); ATF_CHECK(st.rs_descendants > 0); ATF_CHECK(st.rs_descendants >= st.rs_children); ATF_CHECK(st.rs_reaper != parent); ATF_CHECK(st.rs_reaper > 0); r = procctl(P_PID, parent, PROC_REAP_ACQUIRE, NULL); ATF_REQUIRE_EQ(0, r); r = procctl(P_PID, parent, PROC_REAP_STATUS, &st); ATF_REQUIRE_EQ(0, r); ATF_CHECK_EQ(REAPER_STATUS_OWNED, st.rs_flags & (REAPER_STATUS_OWNED | REAPER_STATUS_REALINIT)); ATF_CHECK_EQ(0, st.rs_children); ATF_CHECK_EQ(0, st.rs_descendants); ATF_CHECK(st.rs_reaper == parent); ATF_CHECK_EQ(-1, st.rs_pid); r = pipe(pip); ATF_REQUIRE_EQ(0, r); child = fork(); ATF_REQUIRE(child != -1); if (child == 0) { if (close(pip[0]) != 0) _exit(100); if (procctl(P_PID, parent, PROC_REAP_STATUS, &st) != 0) _exit(101); if (write(pip[1], &st, sizeof(st)) != (ssize_t)sizeof(st)) _exit(102); if (procctl(P_PID, getpid(), PROC_REAP_STATUS, &st) != 0) _exit(103); if (write(pip[1], &st, sizeof(st)) != (ssize_t)sizeof(st)) _exit(104); _exit(0); } r = close(pip[1]); ATF_REQUIRE_EQ(0, r); sr = read(pip[0], &st, sizeof(st)); ATF_REQUIRE_EQ((ssize_t)sizeof(st), sr); ATF_CHECK_EQ(REAPER_STATUS_OWNED, st.rs_flags & (REAPER_STATUS_OWNED | REAPER_STATUS_REALINIT)); ATF_CHECK_EQ(1, st.rs_children); ATF_CHECK_EQ(1, st.rs_descendants); ATF_CHECK(st.rs_reaper == parent); ATF_CHECK_EQ(child, st.rs_pid); sr = read(pip[0], &st, sizeof(st)); ATF_REQUIRE_EQ((ssize_t)sizeof(st), sr); ATF_CHECK_EQ(0, st.rs_flags & (REAPER_STATUS_OWNED | REAPER_STATUS_REALINIT)); ATF_CHECK_EQ(1, st.rs_children); ATF_CHECK_EQ(1, st.rs_descendants); ATF_CHECK(st.rs_reaper == parent); ATF_CHECK_EQ(child, st.rs_pid); r = close(pip[0]); ATF_REQUIRE_EQ(0, r); pid = waitpid(child, &status, 0); ATF_REQUIRE_EQ(child, pid); ATF_CHECK_EQ(0, status); r = procctl(P_PID, parent, PROC_REAP_STATUS, &st); ATF_REQUIRE_EQ(0, r); ATF_CHECK_EQ(REAPER_STATUS_OWNED, st.rs_flags & (REAPER_STATUS_OWNED | REAPER_STATUS_REALINIT)); ATF_CHECK_EQ(0, st.rs_children); ATF_CHECK_EQ(0, st.rs_descendants); ATF_CHECK(st.rs_reaper == parent); ATF_CHECK_EQ(-1, st.rs_pid); } ATF_TC_WITHOUT_HEAD(reaper_getpids); ATF_TC_BODY(reaper_getpids, tc) { struct procctl_reaper_pidinfo info[10]; ssize_t sr; pid_t parent, child, grandchild, pid; int r, status, childidx; int pipa[2], pipb[2]; parent = getpid(); r = procctl(P_PID, parent, PROC_REAP_ACQUIRE, NULL); ATF_REQUIRE_EQ(0, r); memset(info, '\0', sizeof(info)); r = procctl(P_PID, parent, PROC_REAP_GETPIDS, &(struct procctl_reaper_pids){ .rp_count = sizeof(info) / sizeof(info[0]), .rp_pids = info }); ATF_CHECK_EQ(0, r); ATF_CHECK_EQ(0, info[0].pi_flags & REAPER_PIDINFO_VALID); r = pipe(pipa); ATF_REQUIRE_EQ(0, r); r = pipe(pipb); ATF_REQUIRE_EQ(0, r); child = fork(); ATF_REQUIRE(child != -1); if (child == 0) { if (close(pipa[1]) != 0) _exit(100); if (close(pipb[0]) != 0) _exit(100); if (read(pipa[0], &(uint8_t){ 0 }, 1) != 1) _exit(101); grandchild = fork(); if (grandchild == -1) _exit(102); if (grandchild == 0) { if (write(pipb[1], &(uint8_t){ 0 }, 1) != 1) _exit(103); if (read(pipa[0], &(uint8_t){ 0 }, 1) != 1) _exit(104); _exit(0); } for (;;) pause(); } r = close(pipa[0]); ATF_REQUIRE_EQ(0, r); r = close(pipb[1]); ATF_REQUIRE_EQ(0, r); memset(info, '\0', sizeof(info)); r = procctl(P_PID, parent, PROC_REAP_GETPIDS, &(struct procctl_reaper_pids){ .rp_count = sizeof(info) / sizeof(info[0]), .rp_pids = info }); ATF_CHECK_EQ(0, r); ATF_CHECK_EQ(REAPER_PIDINFO_VALID | REAPER_PIDINFO_CHILD, info[0].pi_flags & (REAPER_PIDINFO_VALID | REAPER_PIDINFO_CHILD)); ATF_CHECK_EQ(child, info[0].pi_pid); ATF_CHECK_EQ(child, info[0].pi_subtree); ATF_CHECK_EQ(0, info[1].pi_flags & REAPER_PIDINFO_VALID); sr = write(pipa[1], &(uint8_t){ 0 }, 1); ATF_REQUIRE_EQ(1, sr); sr = read(pipb[0], &(uint8_t){ 0 }, 1); ATF_REQUIRE_EQ(1, sr); memset(info, '\0', sizeof(info)); r = procctl(P_PID, parent, PROC_REAP_GETPIDS, &(struct procctl_reaper_pids){ .rp_count = sizeof(info) / sizeof(info[0]), .rp_pids = info }); ATF_CHECK_EQ(0, r); ATF_CHECK_EQ(REAPER_PIDINFO_VALID, info[0].pi_flags & REAPER_PIDINFO_VALID); ATF_CHECK_EQ(REAPER_PIDINFO_VALID, info[1].pi_flags & REAPER_PIDINFO_VALID); ATF_CHECK_EQ(0, info[2].pi_flags & REAPER_PIDINFO_VALID); ATF_CHECK_EQ(child, info[0].pi_subtree); ATF_CHECK_EQ(child, info[1].pi_subtree); childidx = info[1].pi_pid == child ? 1 : 0; ATF_CHECK_EQ(REAPER_PIDINFO_CHILD, info[childidx].pi_flags & REAPER_PIDINFO_CHILD); ATF_CHECK_EQ(0, info[childidx ^ 1].pi_flags & REAPER_PIDINFO_CHILD); ATF_CHECK(info[childidx].pi_pid == child); grandchild = info[childidx ^ 1].pi_pid; ATF_CHECK(grandchild > 0); ATF_CHECK(grandchild != child); ATF_CHECK(grandchild != parent); r = kill(child, SIGTERM); ATF_REQUIRE_EQ(0, r); pid = waitpid(child, &status, 0); ATF_REQUIRE_EQ(child, pid); ATF_CHECK(WIFSIGNALED(status) && WTERMSIG(status) == SIGTERM); memset(info, '\0', sizeof(info)); r = procctl(P_PID, parent, PROC_REAP_GETPIDS, &(struct procctl_reaper_pids){ .rp_count = sizeof(info) / sizeof(info[0]), .rp_pids = info }); ATF_CHECK_EQ(0, r); ATF_CHECK_EQ(REAPER_PIDINFO_VALID, info[0].pi_flags & REAPER_PIDINFO_VALID); ATF_CHECK_EQ(0, info[1].pi_flags & REAPER_PIDINFO_VALID); ATF_CHECK_EQ(child, info[0].pi_subtree); ATF_CHECK_EQ(REAPER_PIDINFO_CHILD, info[0].pi_flags & REAPER_PIDINFO_CHILD); ATF_CHECK_EQ(grandchild, info[0].pi_pid); sr = write(pipa[1], &(uint8_t){ 0 }, 1); ATF_REQUIRE_EQ(1, sr); memset(info, '\0', sizeof(info)); r = procctl(P_PID, parent, PROC_REAP_GETPIDS, &(struct procctl_reaper_pids){ .rp_count = sizeof(info) / sizeof(info[0]), .rp_pids = info }); ATF_CHECK_EQ(0, r); ATF_CHECK_EQ(REAPER_PIDINFO_VALID, info[0].pi_flags & REAPER_PIDINFO_VALID); ATF_CHECK_EQ(0, info[1].pi_flags & REAPER_PIDINFO_VALID); ATF_CHECK_EQ(child, info[0].pi_subtree); ATF_CHECK_EQ(REAPER_PIDINFO_CHILD, info[0].pi_flags & REAPER_PIDINFO_CHILD); ATF_CHECK_EQ(grandchild, info[0].pi_pid); pid = waitpid(grandchild, &status, 0); ATF_REQUIRE_EQ(grandchild, pid); ATF_CHECK_EQ(0, status); memset(info, '\0', sizeof(info)); r = procctl(P_PID, parent, PROC_REAP_GETPIDS, &(struct procctl_reaper_pids){ .rp_count = sizeof(info) / sizeof(info[0]), .rp_pids = info }); ATF_CHECK_EQ(0, r); ATF_CHECK_EQ(0, info[0].pi_flags & REAPER_PIDINFO_VALID); r = close(pipa[1]); ATF_REQUIRE_EQ(0, r); r = close(pipb[0]); ATF_REQUIRE_EQ(0, r); } ATF_TC_WITHOUT_HEAD(reaper_kill_badsig); ATF_TC_BODY(reaper_kill_badsig, tc) { struct procctl_reaper_kill params; pid_t parent; int r; parent = getpid(); r = procctl(P_PID, parent, PROC_REAP_ACQUIRE, NULL); ATF_REQUIRE_EQ(0, r); params.rk_sig = -1; params.rk_flags = 0; r = procctl(P_PID, parent, PROC_REAP_KILL, ¶ms); ATF_CHECK(r == -1 && errno == EINVAL); } ATF_TC_WITHOUT_HEAD(reaper_kill_sigzero); ATF_TC_BODY(reaper_kill_sigzero, tc) { struct procctl_reaper_kill params; pid_t parent; int r; parent = getpid(); r = procctl(P_PID, parent, PROC_REAP_ACQUIRE, NULL); ATF_REQUIRE_EQ(0, r); params.rk_sig = 0; params.rk_flags = 0; r = procctl(P_PID, parent, PROC_REAP_KILL, ¶ms); ATF_CHECK(r == -1 && errno == EINVAL); } ATF_TC_WITHOUT_HEAD(reaper_kill_empty); ATF_TC_BODY(reaper_kill_empty, tc) { struct procctl_reaper_kill params; pid_t parent; int r; parent = getpid(); r = procctl(P_PID, parent, PROC_REAP_ACQUIRE, NULL); ATF_REQUIRE_EQ(0, r); params.rk_sig = SIGTERM; params.rk_flags = 0; params.rk_killed = 77; r = procctl(P_PID, parent, PROC_REAP_KILL, ¶ms); ATF_CHECK(r == -1 && errno == ESRCH); ATF_CHECK_EQ(0, params.rk_killed); } ATF_TC_WITHOUT_HEAD(reaper_kill_normal); ATF_TC_BODY(reaper_kill_normal, tc) { struct procctl_reaper_kill params; ssize_t sr; pid_t parent, child, grandchild, pid; int r, status; int pip[2]; parent = getpid(); r = procctl(P_PID, parent, PROC_REAP_ACQUIRE, NULL); ATF_REQUIRE_EQ(0, r); r = pipe(pip); ATF_REQUIRE_EQ(0, r); child = fork(); ATF_REQUIRE(child != -1); if (child == 0) { if (close(pip[0]) != 0) _exit(100); grandchild = fork(); if (grandchild == -1) _exit(101); if (grandchild == 0) { if (write(pip[1], &(uint8_t){ 0 }, 1) != 1) _exit(102); for (;;) pause(); } for (;;) pause(); } r = close(pip[1]); ATF_REQUIRE_EQ(0, r); sr = read(pip[0], &(uint8_t){ 0 }, 1); ATF_REQUIRE_EQ(1, sr); params.rk_sig = SIGTERM; params.rk_flags = 0; params.rk_killed = 77; r = procctl(P_PID, parent, PROC_REAP_KILL, ¶ms); ATF_CHECK_EQ(0, r); ATF_CHECK_EQ(2, params.rk_killed); pid = waitpid(child, &status, 0); ATF_REQUIRE_EQ(child, pid); ATF_CHECK(WIFSIGNALED(status) && WTERMSIG(status) == SIGTERM); pid = waitpid(-1, &status, 0); ATF_REQUIRE(pid > 0); ATF_CHECK(pid != parent); ATF_CHECK(pid != child); ATF_CHECK(WIFSIGNALED(status) && WTERMSIG(status) == SIGTERM); r = close(pip[0]); ATF_REQUIRE_EQ(0, r); } +ATF_TC_WITHOUT_HEAD(reaper_kill_subtree); +ATF_TC_BODY(reaper_kill_subtree, tc) +{ + struct procctl_reaper_kill params; + ssize_t sr; + pid_t parent, child1, child2, grandchild1, grandchild2, pid; + int r, status; + int pip[2]; + + parent = getpid(); + r = procctl(P_PID, parent, PROC_REAP_ACQUIRE, NULL); + ATF_REQUIRE_EQ(0, r); + + r = pipe(pip); + ATF_REQUIRE_EQ(0, r); + child1 = fork(); + ATF_REQUIRE(child1 != -1); + if (child1 == 0) { + if (close(pip[0]) != 0) + _exit(100); + grandchild1 = fork(); + if (grandchild1 == -1) + _exit(101); + if (grandchild1 == 0) { + if (write(pip[1], &(uint8_t){ 0 }, 1) != 1) + _exit(102); + for (;;) + pause(); + } + for (;;) + pause(); + } + child2 = fork(); + ATF_REQUIRE(child2 != -1); + if (child2 == 0) { + if (close(pip[0]) != 0) + _exit(100); + grandchild2 = fork(); + if (grandchild2 == -1) + _exit(101); + if (grandchild2 == 0) { + if (write(pip[1], &(uint8_t){ 0 }, 1) != 1) + _exit(102); + for (;;) + pause(); + } + for (;;) + pause(); + } + r = close(pip[1]); + ATF_REQUIRE_EQ(0, r); + + sr = read(pip[0], &(uint8_t){ 0 }, 1); + ATF_REQUIRE_EQ(1, sr); + sr = read(pip[0], &(uint8_t){ 0 }, 1); + ATF_REQUIRE_EQ(1, sr); + + params.rk_sig = SIGUSR1; + params.rk_flags = REAPER_KILL_SUBTREE; + params.rk_subtree = child1; + params.rk_killed = 77; + r = procctl(P_PID, parent, PROC_REAP_KILL, ¶ms); + ATF_REQUIRE_EQ(0, r); + ATF_REQUIRE_EQ(2, params.rk_killed); + ATF_CHECK_EQ(-1, params.rk_fpid); + + pid = waitpid(child1, &status, 0); + ATF_REQUIRE_EQ(child1, pid); + ATF_CHECK(WIFSIGNALED(status) && WTERMSIG(status) == SIGUSR1); + + pid = waitpid(-1, &status, 0); + ATF_REQUIRE(pid > 0); + ATF_CHECK(pid != parent); + ATF_CHECK(pid != child1); + ATF_CHECK(pid != child2); + ATF_CHECK(WIFSIGNALED(status) && WTERMSIG(status) == SIGUSR1); + + params.rk_sig = SIGUSR2; + params.rk_flags = REAPER_KILL_SUBTREE; + params.rk_subtree = child2; + params.rk_killed = 77; + r = procctl(P_PID, parent, PROC_REAP_KILL, ¶ms); + ATF_REQUIRE_EQ(0, r); + ATF_REQUIRE_EQ(2, params.rk_killed); + ATF_CHECK_EQ(-1, params.rk_fpid); + + pid = waitpid(child2, &status, 0); + ATF_REQUIRE_EQ(child2, pid); + ATF_CHECK(WIFSIGNALED(status) && WTERMSIG(status) == SIGUSR2); + + pid = waitpid(-1, &status, 0); + ATF_REQUIRE(pid > 0); + ATF_CHECK(pid != parent); + ATF_CHECK(pid != child1); + ATF_CHECK(pid != child2); + ATF_CHECK(WIFSIGNALED(status) && WTERMSIG(status) == SIGUSR2); + + r = close(pip[0]); + ATF_REQUIRE_EQ(0, r); +} + ATF_TP_ADD_TCS(tp) { ATF_TP_ADD_TC(tp, reaper_wait_child_first); ATF_TP_ADD_TC(tp, reaper_wait_grandchild_first); ATF_TP_ADD_TC(tp, reaper_sigchld_child_first); ATF_TP_ADD_TC(tp, reaper_sigchld_grandchild_first); ATF_TP_ADD_TC(tp, reaper_status); ATF_TP_ADD_TC(tp, reaper_getpids); ATF_TP_ADD_TC(tp, reaper_kill_badsig); ATF_TP_ADD_TC(tp, reaper_kill_sigzero); ATF_TP_ADD_TC(tp, reaper_kill_empty); ATF_TP_ADD_TC(tp, reaper_kill_normal); + ATF_TP_ADD_TC(tp, reaper_kill_subtree); return (atf_no_error()); } Index: stable/11 =================================================================== --- stable/11 (revision 313301) +++ stable/11 (revision 313302) Property changes on: stable/11 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r310096