Index: head/sys/compat/cloudabi/cloudabi_fd.c =================================================================== --- head/sys/compat/cloudabi/cloudabi_fd.c (revision 312987) +++ head/sys/compat/cloudabi/cloudabi_fd.c (revision 312988) @@ -1,543 +1,537 @@ /*- * Copyright (c) 2015 Nuxi, https://nuxi.nl/ * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Translation between CloudABI and Capsicum rights. */ #define RIGHTS_MAPPINGS \ MAPPING(CLOUDABI_RIGHT_FD_DATASYNC, CAP_FSYNC) \ MAPPING(CLOUDABI_RIGHT_FD_READ, CAP_READ) \ MAPPING(CLOUDABI_RIGHT_FD_SEEK, CAP_SEEK) \ MAPPING(CLOUDABI_RIGHT_FD_STAT_PUT_FLAGS, CAP_FCNTL) \ MAPPING(CLOUDABI_RIGHT_FD_SYNC, CAP_FSYNC) \ MAPPING(CLOUDABI_RIGHT_FD_TELL, CAP_SEEK_TELL) \ MAPPING(CLOUDABI_RIGHT_FD_WRITE, CAP_WRITE) \ MAPPING(CLOUDABI_RIGHT_FILE_ADVISE) \ MAPPING(CLOUDABI_RIGHT_FILE_ALLOCATE, CAP_WRITE) \ MAPPING(CLOUDABI_RIGHT_FILE_CREATE_DIRECTORY, CAP_MKDIRAT) \ MAPPING(CLOUDABI_RIGHT_FILE_CREATE_FILE, CAP_CREATE) \ MAPPING(CLOUDABI_RIGHT_FILE_CREATE_FIFO, CAP_MKFIFOAT) \ MAPPING(CLOUDABI_RIGHT_FILE_LINK_SOURCE, CAP_LINKAT_SOURCE) \ MAPPING(CLOUDABI_RIGHT_FILE_LINK_TARGET, CAP_LINKAT_TARGET) \ MAPPING(CLOUDABI_RIGHT_FILE_OPEN, CAP_LOOKUP) \ MAPPING(CLOUDABI_RIGHT_FILE_READDIR, CAP_READ) \ MAPPING(CLOUDABI_RIGHT_FILE_READLINK, CAP_LOOKUP) \ MAPPING(CLOUDABI_RIGHT_FILE_RENAME_SOURCE, CAP_RENAMEAT_SOURCE) \ MAPPING(CLOUDABI_RIGHT_FILE_RENAME_TARGET, CAP_RENAMEAT_TARGET) \ MAPPING(CLOUDABI_RIGHT_FILE_STAT_FGET, CAP_FSTAT) \ MAPPING(CLOUDABI_RIGHT_FILE_STAT_FPUT_SIZE, CAP_FTRUNCATE) \ MAPPING(CLOUDABI_RIGHT_FILE_STAT_FPUT_TIMES, CAP_FUTIMES) \ MAPPING(CLOUDABI_RIGHT_FILE_STAT_GET, CAP_FSTATAT) \ MAPPING(CLOUDABI_RIGHT_FILE_STAT_PUT_TIMES, CAP_FUTIMESAT) \ MAPPING(CLOUDABI_RIGHT_FILE_SYMLINK, CAP_SYMLINKAT) \ MAPPING(CLOUDABI_RIGHT_FILE_UNLINK, CAP_UNLINKAT) \ MAPPING(CLOUDABI_RIGHT_MEM_MAP, CAP_MMAP) \ MAPPING(CLOUDABI_RIGHT_MEM_MAP_EXEC, CAP_MMAP_X) \ MAPPING(CLOUDABI_RIGHT_POLL_FD_READWRITE, CAP_EVENT) \ MAPPING(CLOUDABI_RIGHT_POLL_MODIFY, CAP_KQUEUE_CHANGE) \ MAPPING(CLOUDABI_RIGHT_POLL_PROC_TERMINATE, CAP_EVENT) \ MAPPING(CLOUDABI_RIGHT_POLL_WAIT, CAP_KQUEUE_EVENT) \ MAPPING(CLOUDABI_RIGHT_PROC_EXEC, CAP_FEXECVE) \ MAPPING(CLOUDABI_RIGHT_SOCK_ACCEPT, CAP_ACCEPT) \ MAPPING(CLOUDABI_RIGHT_SOCK_BIND_DIRECTORY, CAP_BINDAT) \ MAPPING(CLOUDABI_RIGHT_SOCK_BIND_SOCKET, CAP_BIND) \ MAPPING(CLOUDABI_RIGHT_SOCK_CONNECT_DIRECTORY, CAP_CONNECTAT) \ MAPPING(CLOUDABI_RIGHT_SOCK_CONNECT_SOCKET, CAP_CONNECT) \ MAPPING(CLOUDABI_RIGHT_SOCK_LISTEN, CAP_LISTEN) \ MAPPING(CLOUDABI_RIGHT_SOCK_SHUTDOWN, CAP_SHUTDOWN) \ MAPPING(CLOUDABI_RIGHT_SOCK_STAT_GET, CAP_GETPEERNAME, \ CAP_GETSOCKNAME, CAP_GETSOCKOPT) int cloudabi_sys_fd_close(struct thread *td, struct cloudabi_sys_fd_close_args *uap) { return (kern_close(td, uap->fd)); } int cloudabi_sys_fd_create1(struct thread *td, struct cloudabi_sys_fd_create1_args *uap) { struct filecaps fcaps = {}; - struct socket_args socket_args = { - .domain = AF_UNIX, - }; switch (uap->type) { case CLOUDABI_FILETYPE_POLL: cap_rights_init(&fcaps.fc_rights, CAP_FSTAT, CAP_KQUEUE); return (kern_kqueue(td, 0, &fcaps)); case CLOUDABI_FILETYPE_SHARED_MEMORY: cap_rights_init(&fcaps.fc_rights, CAP_FSTAT, CAP_FTRUNCATE, CAP_MMAP_RWX); return (kern_shm_open(td, SHM_ANON, O_RDWR, 0, &fcaps)); case CLOUDABI_FILETYPE_SOCKET_DGRAM: - socket_args.type = SOCK_DGRAM; - return (sys_socket(td, &socket_args)); + return (kern_socket(td, AF_UNIX, SOCK_DGRAM, 0)); case CLOUDABI_FILETYPE_SOCKET_SEQPACKET: - socket_args.type = SOCK_SEQPACKET; - return (sys_socket(td, &socket_args)); + return (kern_socket(td, AF_UNIX, SOCK_SEQPACKET, 0)); case CLOUDABI_FILETYPE_SOCKET_STREAM: - socket_args.type = SOCK_STREAM; - return (sys_socket(td, &socket_args)); + return (kern_socket(td, AF_UNIX, SOCK_STREAM, 0)); default: return (EINVAL); } } int cloudabi_sys_fd_create2(struct thread *td, struct cloudabi_sys_fd_create2_args *uap) { struct filecaps fcaps1 = {}, fcaps2 = {}; int fds[2]; int error; switch (uap->type) { case CLOUDABI_FILETYPE_FIFO: /* * CloudABI pipes are unidirectional. Restrict rights on * the pipe to simulate this. */ cap_rights_init(&fcaps1.fc_rights, CAP_EVENT, CAP_FCNTL, CAP_FSTAT, CAP_READ); fcaps1.fc_fcntls = CAP_FCNTL_SETFL; cap_rights_init(&fcaps2.fc_rights, CAP_EVENT, CAP_FCNTL, CAP_FSTAT, CAP_WRITE); fcaps2.fc_fcntls = CAP_FCNTL_SETFL; error = kern_pipe(td, fds, 0, &fcaps1, &fcaps2); break; case CLOUDABI_FILETYPE_SOCKET_DGRAM: error = kern_socketpair(td, AF_UNIX, SOCK_DGRAM, 0, fds); break; case CLOUDABI_FILETYPE_SOCKET_SEQPACKET: error = kern_socketpair(td, AF_UNIX, SOCK_SEQPACKET, 0, fds); break; case CLOUDABI_FILETYPE_SOCKET_STREAM: error = kern_socketpair(td, AF_UNIX, SOCK_STREAM, 0, fds); break; default: return (EINVAL); } if (error == 0) { td->td_retval[0] = fds[0]; td->td_retval[1] = fds[1]; } return (0); } int cloudabi_sys_fd_datasync(struct thread *td, struct cloudabi_sys_fd_datasync_args *uap) { return (kern_fsync(td, uap->fd, false)); } int cloudabi_sys_fd_dup(struct thread *td, struct cloudabi_sys_fd_dup_args *uap) { return (kern_dup(td, FDDUP_NORMAL, 0, uap->from, 0)); } int cloudabi_sys_fd_replace(struct thread *td, struct cloudabi_sys_fd_replace_args *uap) { int error; /* * CloudABI's equivalent to dup2(). CloudABI processes should * not depend on hardcoded file descriptor layouts, but simply * use the file descriptor numbers that are allocated by the * kernel. Duplicating file descriptors to arbitrary numbers * should not be done. * * Invoke kern_dup() with FDDUP_MUSTREPLACE, so that we return * EBADF when duplicating to a nonexistent file descriptor. Also * clear the return value, as this system call yields no return * value. */ error = kern_dup(td, FDDUP_MUSTREPLACE, 0, uap->from, uap->to); td->td_retval[0] = 0; return (error); } int cloudabi_sys_fd_seek(struct thread *td, struct cloudabi_sys_fd_seek_args *uap) { int whence; switch (uap->whence) { case CLOUDABI_WHENCE_CUR: whence = SEEK_CUR; break; case CLOUDABI_WHENCE_END: whence = SEEK_END; break; case CLOUDABI_WHENCE_SET: whence = SEEK_SET; break; default: return (EINVAL); } return (kern_lseek(td, uap->fd, uap->offset, whence)); } /* Converts a file descriptor to a CloudABI file descriptor type. */ cloudabi_filetype_t cloudabi_convert_filetype(const struct file *fp) { struct socket *so; struct vnode *vp; switch (fp->f_type) { case DTYPE_FIFO: return (CLOUDABI_FILETYPE_FIFO); case DTYPE_KQUEUE: return (CLOUDABI_FILETYPE_POLL); case DTYPE_PIPE: return (CLOUDABI_FILETYPE_FIFO); case DTYPE_PROCDESC: return (CLOUDABI_FILETYPE_PROCESS); case DTYPE_SHM: return (CLOUDABI_FILETYPE_SHARED_MEMORY); case DTYPE_SOCKET: so = fp->f_data; switch (so->so_type) { case SOCK_DGRAM: return (CLOUDABI_FILETYPE_SOCKET_DGRAM); case SOCK_SEQPACKET: return (CLOUDABI_FILETYPE_SOCKET_SEQPACKET); case SOCK_STREAM: return (CLOUDABI_FILETYPE_SOCKET_STREAM); default: return (CLOUDABI_FILETYPE_UNKNOWN); } case DTYPE_VNODE: vp = fp->f_vnode; switch (vp->v_type) { case VBLK: return (CLOUDABI_FILETYPE_BLOCK_DEVICE); case VCHR: return (CLOUDABI_FILETYPE_CHARACTER_DEVICE); case VDIR: return (CLOUDABI_FILETYPE_DIRECTORY); case VFIFO: return (CLOUDABI_FILETYPE_FIFO); case VLNK: return (CLOUDABI_FILETYPE_SYMBOLIC_LINK); case VREG: return (CLOUDABI_FILETYPE_REGULAR_FILE); case VSOCK: return (CLOUDABI_FILETYPE_SOCKET_STREAM); default: return (CLOUDABI_FILETYPE_UNKNOWN); } default: return (CLOUDABI_FILETYPE_UNKNOWN); } } /* Removes rights that conflict with the file descriptor type. */ void cloudabi_remove_conflicting_rights(cloudabi_filetype_t filetype, cloudabi_rights_t *base, cloudabi_rights_t *inheriting) { /* * CloudABI has a small number of additional rights bits to * disambiguate between multiple purposes. Remove the bits that * don't apply to the type of the file descriptor. * * As file descriptor access modes (O_ACCMODE) has been fully * replaced by rights bits, CloudABI distinguishes between * rights that apply to the file descriptor itself (base) versus * rights of new file descriptors derived from them * (inheriting). The code below approximates the pair by * decomposing depending on the file descriptor type. * * We need to be somewhat accurate about which actions can * actually be performed on the file descriptor, as functions * like fcntl(fd, F_GETFL) are emulated on top of this. */ switch (filetype) { case CLOUDABI_FILETYPE_DIRECTORY: *base &= CLOUDABI_RIGHT_FD_STAT_PUT_FLAGS | CLOUDABI_RIGHT_FD_SYNC | CLOUDABI_RIGHT_FILE_ADVISE | CLOUDABI_RIGHT_FILE_CREATE_DIRECTORY | CLOUDABI_RIGHT_FILE_CREATE_FILE | CLOUDABI_RIGHT_FILE_CREATE_FIFO | CLOUDABI_RIGHT_FILE_LINK_SOURCE | CLOUDABI_RIGHT_FILE_LINK_TARGET | CLOUDABI_RIGHT_FILE_OPEN | CLOUDABI_RIGHT_FILE_READDIR | CLOUDABI_RIGHT_FILE_READLINK | CLOUDABI_RIGHT_FILE_RENAME_SOURCE | CLOUDABI_RIGHT_FILE_RENAME_TARGET | CLOUDABI_RIGHT_FILE_STAT_FGET | CLOUDABI_RIGHT_FILE_STAT_FPUT_TIMES | CLOUDABI_RIGHT_FILE_STAT_GET | CLOUDABI_RIGHT_FILE_STAT_PUT_TIMES | CLOUDABI_RIGHT_FILE_SYMLINK | CLOUDABI_RIGHT_FILE_UNLINK | CLOUDABI_RIGHT_POLL_FD_READWRITE | CLOUDABI_RIGHT_SOCK_BIND_DIRECTORY | CLOUDABI_RIGHT_SOCK_CONNECT_DIRECTORY; *inheriting &= CLOUDABI_RIGHT_FD_DATASYNC | CLOUDABI_RIGHT_FD_READ | CLOUDABI_RIGHT_FD_SEEK | CLOUDABI_RIGHT_FD_STAT_PUT_FLAGS | CLOUDABI_RIGHT_FD_SYNC | CLOUDABI_RIGHT_FD_TELL | CLOUDABI_RIGHT_FD_WRITE | CLOUDABI_RIGHT_FILE_ADVISE | CLOUDABI_RIGHT_FILE_ALLOCATE | CLOUDABI_RIGHT_FILE_CREATE_DIRECTORY | CLOUDABI_RIGHT_FILE_CREATE_FILE | CLOUDABI_RIGHT_FILE_CREATE_FIFO | CLOUDABI_RIGHT_FILE_LINK_SOURCE | CLOUDABI_RIGHT_FILE_LINK_TARGET | CLOUDABI_RIGHT_FILE_OPEN | CLOUDABI_RIGHT_FILE_READDIR | CLOUDABI_RIGHT_FILE_READLINK | CLOUDABI_RIGHT_FILE_RENAME_SOURCE | CLOUDABI_RIGHT_FILE_RENAME_TARGET | CLOUDABI_RIGHT_FILE_STAT_FGET | CLOUDABI_RIGHT_FILE_STAT_FPUT_SIZE | CLOUDABI_RIGHT_FILE_STAT_FPUT_TIMES | CLOUDABI_RIGHT_FILE_STAT_GET | CLOUDABI_RIGHT_FILE_STAT_PUT_TIMES | CLOUDABI_RIGHT_FILE_SYMLINK | CLOUDABI_RIGHT_FILE_UNLINK | CLOUDABI_RIGHT_MEM_MAP | CLOUDABI_RIGHT_MEM_MAP_EXEC | CLOUDABI_RIGHT_POLL_FD_READWRITE | CLOUDABI_RIGHT_PROC_EXEC | CLOUDABI_RIGHT_SOCK_BIND_DIRECTORY | CLOUDABI_RIGHT_SOCK_CONNECT_DIRECTORY; break; case CLOUDABI_FILETYPE_FIFO: *base &= CLOUDABI_RIGHT_FD_READ | CLOUDABI_RIGHT_FD_STAT_PUT_FLAGS | CLOUDABI_RIGHT_FD_WRITE | CLOUDABI_RIGHT_FILE_STAT_FGET | CLOUDABI_RIGHT_POLL_FD_READWRITE; *inheriting = 0; break; case CLOUDABI_FILETYPE_POLL: *base &= ~CLOUDABI_RIGHT_FILE_ADVISE; *inheriting = 0; break; case CLOUDABI_FILETYPE_PROCESS: *base &= ~(CLOUDABI_RIGHT_FILE_ADVISE | CLOUDABI_RIGHT_POLL_FD_READWRITE); *inheriting = 0; break; case CLOUDABI_FILETYPE_REGULAR_FILE: *base &= CLOUDABI_RIGHT_FD_DATASYNC | CLOUDABI_RIGHT_FD_READ | CLOUDABI_RIGHT_FD_SEEK | CLOUDABI_RIGHT_FD_STAT_PUT_FLAGS | CLOUDABI_RIGHT_FD_SYNC | CLOUDABI_RIGHT_FD_TELL | CLOUDABI_RIGHT_FD_WRITE | CLOUDABI_RIGHT_FILE_ADVISE | CLOUDABI_RIGHT_FILE_ALLOCATE | CLOUDABI_RIGHT_FILE_STAT_FGET | CLOUDABI_RIGHT_FILE_STAT_FPUT_SIZE | CLOUDABI_RIGHT_FILE_STAT_FPUT_TIMES | CLOUDABI_RIGHT_MEM_MAP | CLOUDABI_RIGHT_MEM_MAP_EXEC | CLOUDABI_RIGHT_POLL_FD_READWRITE | CLOUDABI_RIGHT_PROC_EXEC; *inheriting = 0; break; case CLOUDABI_FILETYPE_SHARED_MEMORY: *base &= ~(CLOUDABI_RIGHT_FD_SEEK | CLOUDABI_RIGHT_FD_TELL | CLOUDABI_RIGHT_FILE_ADVISE | CLOUDABI_RIGHT_FILE_ALLOCATE | CLOUDABI_RIGHT_FILE_READDIR); *inheriting = 0; break; case CLOUDABI_FILETYPE_SOCKET_DGRAM: case CLOUDABI_FILETYPE_SOCKET_SEQPACKET: case CLOUDABI_FILETYPE_SOCKET_STREAM: *base &= CLOUDABI_RIGHT_FD_READ | CLOUDABI_RIGHT_FD_STAT_PUT_FLAGS | CLOUDABI_RIGHT_FD_WRITE | CLOUDABI_RIGHT_FILE_STAT_FGET | CLOUDABI_RIGHT_POLL_FD_READWRITE | CLOUDABI_RIGHT_SOCK_ACCEPT | CLOUDABI_RIGHT_SOCK_BIND_SOCKET | CLOUDABI_RIGHT_SOCK_CONNECT_SOCKET | CLOUDABI_RIGHT_SOCK_LISTEN | CLOUDABI_RIGHT_SOCK_SHUTDOWN | CLOUDABI_RIGHT_SOCK_STAT_GET; break; default: *inheriting = 0; break; } } /* Converts FreeBSD's Capsicum rights to CloudABI's set of rights. */ static void convert_capabilities(const cap_rights_t *capabilities, cloudabi_filetype_t filetype, cloudabi_rights_t *base, cloudabi_rights_t *inheriting) { cloudabi_rights_t rights; /* Convert FreeBSD bits to CloudABI bits. */ rights = 0; #define MAPPING(cloudabi, ...) do { \ if (cap_rights_is_set(capabilities, ##__VA_ARGS__)) \ rights |= (cloudabi); \ } while (0); RIGHTS_MAPPINGS #undef MAPPING *base = rights; *inheriting = rights; cloudabi_remove_conflicting_rights(filetype, base, inheriting); } int cloudabi_sys_fd_stat_get(struct thread *td, struct cloudabi_sys_fd_stat_get_args *uap) { cloudabi_fdstat_t fsb = {}; struct file *fp; cap_rights_t rights; struct filecaps fcaps; int error, oflags; /* Obtain file descriptor properties. */ error = fget_cap(td, uap->fd, cap_rights_init(&rights), &fp, &fcaps); if (error != 0) return (error); oflags = OFLAGS(fp->f_flag); fsb.fs_filetype = cloudabi_convert_filetype(fp); fdrop(fp, td); /* Convert file descriptor flags. */ if (oflags & O_APPEND) fsb.fs_flags |= CLOUDABI_FDFLAG_APPEND; if (oflags & O_NONBLOCK) fsb.fs_flags |= CLOUDABI_FDFLAG_NONBLOCK; if (oflags & O_SYNC) fsb.fs_flags |= CLOUDABI_FDFLAG_SYNC; /* Convert capabilities to CloudABI rights. */ convert_capabilities(&fcaps.fc_rights, fsb.fs_filetype, &fsb.fs_rights_base, &fsb.fs_rights_inheriting); filecaps_free(&fcaps); return (copyout(&fsb, (void *)uap->buf, sizeof(fsb))); } /* Converts CloudABI rights to a set of Capsicum capabilities. */ int cloudabi_convert_rights(cloudabi_rights_t in, cap_rights_t *out) { cap_rights_init(out); #define MAPPING(cloudabi, ...) do { \ if (in & (cloudabi)) { \ cap_rights_set(out, ##__VA_ARGS__); \ in &= ~(cloudabi); \ } \ } while (0); RIGHTS_MAPPINGS #undef MAPPING if (in != 0) return (ENOTCAPABLE); return (0); } int cloudabi_sys_fd_stat_put(struct thread *td, struct cloudabi_sys_fd_stat_put_args *uap) { cloudabi_fdstat_t fsb; cap_rights_t rights; int error, oflags; error = copyin(uap->buf, &fsb, sizeof(fsb)); if (error != 0) return (error); if (uap->flags == CLOUDABI_FDSTAT_FLAGS) { /* Convert flags. */ oflags = 0; if (fsb.fs_flags & CLOUDABI_FDFLAG_APPEND) oflags |= O_APPEND; if (fsb.fs_flags & CLOUDABI_FDFLAG_NONBLOCK) oflags |= O_NONBLOCK; if (fsb.fs_flags & (CLOUDABI_FDFLAG_SYNC | CLOUDABI_FDFLAG_DSYNC | CLOUDABI_FDFLAG_RSYNC)) oflags |= O_SYNC; return (kern_fcntl(td, uap->fd, F_SETFL, oflags)); } else if (uap->flags == CLOUDABI_FDSTAT_RIGHTS) { /* Convert rights. */ error = cloudabi_convert_rights( fsb.fs_rights_base | fsb.fs_rights_inheriting, &rights); if (error != 0) return (error); return (kern_cap_rights_limit(td, uap->fd, &rights)); } return (EINVAL); } int cloudabi_sys_fd_sync(struct thread *td, struct cloudabi_sys_fd_sync_args *uap) { return (kern_fsync(td, uap->fd, true)); } Index: head/sys/compat/cloudabi/cloudabi_sock.c =================================================================== --- head/sys/compat/cloudabi/cloudabi_sock.c (revision 312987) +++ head/sys/compat/cloudabi/cloudabi_sock.c (revision 312988) @@ -1,252 +1,245 @@ /*- * Copyright (c) 2015 Nuxi, https://nuxi.nl/ * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include -#include #include #include #include #include #include #include #include /* Converts FreeBSD's struct sockaddr to CloudABI's cloudabi_sockaddr_t. */ void cloudabi_convert_sockaddr(const struct sockaddr *sa, socklen_t sal, cloudabi_sockaddr_t *rsa) { const struct sockaddr_in *sin; const struct sockaddr_in6 *sin6; /* Zero-sized socket address. */ if (sal < offsetof(struct sockaddr, sa_family) + sizeof(sa->sa_family)) return; switch (sa->sa_family) { case AF_INET: if (sal < sizeof(struct sockaddr_in)) return; sin = (const struct sockaddr_in *)sa; rsa->sa_family = CLOUDABI_AF_INET; memcpy(&rsa->sa_inet.addr, &sin->sin_addr, sizeof(rsa->sa_inet.addr)); rsa->sa_inet.port = ntohs(sin->sin_port); return; case AF_INET6: if (sal < sizeof(struct sockaddr_in6)) return; sin6 = (const struct sockaddr_in6 *)sa; rsa->sa_family = CLOUDABI_AF_INET6; memcpy(&rsa->sa_inet6.addr, &sin6->sin6_addr, sizeof(rsa->sa_inet6.addr)); rsa->sa_inet6.port = ntohs(sin6->sin6_port); return; case AF_UNIX: rsa->sa_family = CLOUDABI_AF_UNIX; return; } } /* Copies a pathname into a UNIX socket address structure. */ static int copyin_sockaddr_un(const char *path, size_t pathlen, struct sockaddr_un *sun) { int error; /* Copy in pathname string if there's enough space. */ if (pathlen >= sizeof(sun->sun_path)) return (ENAMETOOLONG); error = copyin(path, &sun->sun_path, pathlen); if (error != 0) return (error); if (memchr(sun->sun_path, '\0', pathlen) != NULL) return (EINVAL); /* Initialize the rest of the socket address. */ sun->sun_path[pathlen] = '\0'; sun->sun_family = AF_UNIX; sun->sun_len = sizeof(*sun); return (0); } int cloudabi_sys_sock_accept(struct thread *td, struct cloudabi_sys_sock_accept_args *uap) { struct sockaddr *sa; cloudabi_sockstat_t ss = {}; socklen_t sal; int error; if (uap->buf == NULL) { /* Only return the new file descriptor number. */ return (kern_accept(td, uap->sock, NULL, NULL, NULL)); } else { /* Also return properties of the new socket descriptor. */ sal = MAX(sizeof(struct sockaddr_in), sizeof(struct sockaddr_in6)); error = kern_accept(td, uap->sock, (void *)&sa, &sal, NULL); if (error != 0) return (error); /* TODO(ed): Fill the other members of cloudabi_sockstat_t. */ cloudabi_convert_sockaddr(sa, sal, &ss.ss_peername); free(sa, M_SONAME); return (copyout(&ss, uap->buf, sizeof(ss))); } } int cloudabi_sys_sock_bind(struct thread *td, struct cloudabi_sys_sock_bind_args *uap) { struct sockaddr_un sun; int error; error = copyin_sockaddr_un(uap->path, uap->path_len, &sun); if (error != 0) return (error); return (kern_bindat(td, uap->fd, uap->sock, (struct sockaddr *)&sun)); } int cloudabi_sys_sock_connect(struct thread *td, struct cloudabi_sys_sock_connect_args *uap) { struct sockaddr_un sun; int error; error = copyin_sockaddr_un(uap->path, uap->path_len, &sun); if (error != 0) return (error); return (kern_connectat(td, uap->fd, uap->sock, (struct sockaddr *)&sun)); } int cloudabi_sys_sock_listen(struct thread *td, struct cloudabi_sys_sock_listen_args *uap) { - struct listen_args listen_args = { - .s = uap->sock, - .backlog = uap->backlog, - }; - return (sys_listen(td, &listen_args)); + return (kern_listen(td, uap->sock, uap->backlog)); } int cloudabi_sys_sock_shutdown(struct thread *td, struct cloudabi_sys_sock_shutdown_args *uap) { - struct shutdown_args shutdown_args = { - .s = uap->sock, - }; + int how; switch (uap->how) { case CLOUDABI_SHUT_RD: - shutdown_args.how = SHUT_RD; + how = SHUT_RD; break; case CLOUDABI_SHUT_WR: - shutdown_args.how = SHUT_WR; + how = SHUT_WR; break; case CLOUDABI_SHUT_RD | CLOUDABI_SHUT_WR: - shutdown_args.how = SHUT_RDWR; + how = SHUT_RDWR; break; default: return (EINVAL); } - return (sys_shutdown(td, &shutdown_args)); + return (kern_shutdown(td, uap->sock, how)); } int cloudabi_sys_sock_stat_get(struct thread *td, struct cloudabi_sys_sock_stat_get_args *uap) { cloudabi_sockstat_t ss = {}; cap_rights_t rights; struct file *fp; struct sockaddr *sa; struct socket *so; int error; error = getsock_cap(td, uap->sock, cap_rights_init(&rights, CAP_GETSOCKOPT, CAP_GETPEERNAME, CAP_GETSOCKNAME), &fp, NULL, NULL); if (error != 0) return (error); so = fp->f_data; CURVNET_SET(so->so_vnet); /* Set ss_sockname. */ error = so->so_proto->pr_usrreqs->pru_sockaddr(so, &sa); if (error == 0) { cloudabi_convert_sockaddr(sa, sa->sa_len, &ss.ss_sockname); free(sa, M_SONAME); } /* Set ss_peername. */ if ((so->so_state & (SS_ISCONNECTED | SS_ISCONFIRMING)) != 0) { error = so->so_proto->pr_usrreqs->pru_peeraddr(so, &sa); if (error == 0) { cloudabi_convert_sockaddr(sa, sa->sa_len, &ss.ss_peername); free(sa, M_SONAME); } } CURVNET_RESTORE(); /* Set ss_error. */ SOCK_LOCK(so); ss.ss_error = cloudabi_convert_errno(so->so_error); if ((uap->flags & CLOUDABI_SOCKSTAT_CLEAR_ERROR) != 0) so->so_error = 0; SOCK_UNLOCK(so); /* Set ss_state. */ if ((so->so_options & SO_ACCEPTCONN) != 0) ss.ss_state |= CLOUDABI_SOCKSTATE_ACCEPTCONN; fdrop(fp, td); return (copyout(&ss, uap->buf, sizeof(ss))); } Index: head/sys/compat/linux/linux_socket.c =================================================================== --- head/sys/compat/linux/linux_socket.c (revision 312987) +++ head/sys/compat/linux/linux_socket.c (revision 312988) @@ -1,1783 +1,1765 @@ /*- * Copyright (c) 1995 Søren Schmidt * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* XXX we use functions that might not exist. */ #include "opt_compat.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #endif #ifdef COMPAT_LINUX32 #include #include #else #include #include #endif #include #include #include #include static int linux_to_bsd_domain(int); static int linux_sendmsg_common(struct thread *, l_int, struct l_msghdr *, l_uint); static int linux_recvmsg_common(struct thread *, l_int, struct l_msghdr *, l_uint, struct msghdr *); static int linux_set_socket_flags(int, int *); /* * Reads a linux sockaddr and does any necessary translation. * Linux sockaddrs don't have a length field, only a family. * Copy the osockaddr structure pointed to by osa to kernel, adjust * family and convert to sockaddr. */ static int linux_getsockaddr(struct sockaddr **sap, const struct osockaddr *osa, int salen) { struct sockaddr *sa; struct osockaddr *kosa; #ifdef INET6 struct sockaddr_in6 *sin6; int oldv6size; #endif char *name; int bdom, error, hdrlen, namelen; if (salen < 2 || salen > UCHAR_MAX || !osa) return (EINVAL); #ifdef INET6 oldv6size = 0; /* * Check for old (pre-RFC2553) sockaddr_in6. We may accept it * if it's a v4-mapped address, so reserve the proper space * for it. */ if (salen == sizeof(struct sockaddr_in6) - sizeof(uint32_t)) { salen += sizeof(uint32_t); oldv6size = 1; } #endif kosa = malloc(salen, M_SONAME, M_WAITOK); if ((error = copyin(osa, kosa, salen))) goto out; bdom = linux_to_bsd_domain(kosa->sa_family); if (bdom == -1) { error = EAFNOSUPPORT; goto out; } #ifdef INET6 /* * Older Linux IPv6 code uses obsolete RFC2133 struct sockaddr_in6, * which lacks the scope id compared with RFC2553 one. If we detect * the situation, reject the address and write a message to system log. * * Still accept addresses for which the scope id is not used. */ if (oldv6size) { if (bdom == AF_INET6) { sin6 = (struct sockaddr_in6 *)kosa; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) || (!IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr) && !IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr) && !IN6_IS_ADDR_V4COMPAT(&sin6->sin6_addr) && !IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr) && !IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))) { sin6->sin6_scope_id = 0; } else { log(LOG_DEBUG, "obsolete pre-RFC2553 sockaddr_in6 rejected\n"); error = EINVAL; goto out; } } else salen -= sizeof(uint32_t); } #endif if (bdom == AF_INET) { if (salen < sizeof(struct sockaddr_in)) { error = EINVAL; goto out; } salen = sizeof(struct sockaddr_in); } if (bdom == AF_LOCAL && salen > sizeof(struct sockaddr_un)) { hdrlen = offsetof(struct sockaddr_un, sun_path); name = ((struct sockaddr_un *)kosa)->sun_path; if (*name == '\0') { /* * Linux abstract namespace starts with a NULL byte. * XXX We do not support abstract namespace yet. */ namelen = strnlen(name + 1, salen - hdrlen - 1) + 1; } else namelen = strnlen(name, salen - hdrlen); salen = hdrlen + namelen; if (salen > sizeof(struct sockaddr_un)) { error = ENAMETOOLONG; goto out; } } sa = (struct sockaddr *)kosa; sa->sa_family = bdom; sa->sa_len = salen; *sap = sa; return (0); out: free(kosa, M_SONAME); return (error); } static int linux_to_bsd_domain(int domain) { switch (domain) { case LINUX_AF_UNSPEC: return (AF_UNSPEC); case LINUX_AF_UNIX: return (AF_LOCAL); case LINUX_AF_INET: return (AF_INET); case LINUX_AF_INET6: return (AF_INET6); case LINUX_AF_AX25: return (AF_CCITT); case LINUX_AF_IPX: return (AF_IPX); case LINUX_AF_APPLETALK: return (AF_APPLETALK); } return (-1); } static int bsd_to_linux_domain(int domain) { switch (domain) { case AF_UNSPEC: return (LINUX_AF_UNSPEC); case AF_LOCAL: return (LINUX_AF_UNIX); case AF_INET: return (LINUX_AF_INET); case AF_INET6: return (LINUX_AF_INET6); case AF_CCITT: return (LINUX_AF_AX25); case AF_IPX: return (LINUX_AF_IPX); case AF_APPLETALK: return (LINUX_AF_APPLETALK); } return (-1); } static int linux_to_bsd_sockopt_level(int level) { switch (level) { case LINUX_SOL_SOCKET: return (SOL_SOCKET); } return (level); } static int bsd_to_linux_sockopt_level(int level) { switch (level) { case SOL_SOCKET: return (LINUX_SOL_SOCKET); } return (level); } static int linux_to_bsd_ip_sockopt(int opt) { switch (opt) { case LINUX_IP_TOS: return (IP_TOS); case LINUX_IP_TTL: return (IP_TTL); case LINUX_IP_OPTIONS: return (IP_OPTIONS); case LINUX_IP_MULTICAST_IF: return (IP_MULTICAST_IF); case LINUX_IP_MULTICAST_TTL: return (IP_MULTICAST_TTL); case LINUX_IP_MULTICAST_LOOP: return (IP_MULTICAST_LOOP); case LINUX_IP_ADD_MEMBERSHIP: return (IP_ADD_MEMBERSHIP); case LINUX_IP_DROP_MEMBERSHIP: return (IP_DROP_MEMBERSHIP); case LINUX_IP_HDRINCL: return (IP_HDRINCL); } return (-1); } static int linux_to_bsd_ip6_sockopt(int opt) { switch (opt) { case LINUX_IPV6_NEXTHOP: return (IPV6_NEXTHOP); case LINUX_IPV6_UNICAST_HOPS: return (IPV6_UNICAST_HOPS); case LINUX_IPV6_MULTICAST_IF: return (IPV6_MULTICAST_IF); case LINUX_IPV6_MULTICAST_HOPS: return (IPV6_MULTICAST_HOPS); case LINUX_IPV6_MULTICAST_LOOP: return (IPV6_MULTICAST_LOOP); case LINUX_IPV6_ADD_MEMBERSHIP: return (IPV6_JOIN_GROUP); case LINUX_IPV6_DROP_MEMBERSHIP: return (IPV6_LEAVE_GROUP); case LINUX_IPV6_V6ONLY: return (IPV6_V6ONLY); case LINUX_IPV6_DONTFRAG: return (IPV6_DONTFRAG); #if 0 case LINUX_IPV6_CHECKSUM: return (IPV6_CHECKSUM); case LINUX_IPV6_RECVPKTINFO: return (IPV6_RECVPKTINFO); case LINUX_IPV6_PKTINFO: return (IPV6_PKTINFO); case LINUX_IPV6_RECVHOPLIMIT: return (IPV6_RECVHOPLIMIT); case LINUX_IPV6_HOPLIMIT: return (IPV6_HOPLIMIT); case LINUX_IPV6_RECVHOPOPTS: return (IPV6_RECVHOPOPTS); case LINUX_IPV6_HOPOPTS: return (IPV6_HOPOPTS); case LINUX_IPV6_RTHDRDSTOPTS: return (IPV6_RTHDRDSTOPTS); case LINUX_IPV6_RECVRTHDR: return (IPV6_RECVRTHDR); case LINUX_IPV6_RTHDR: return (IPV6_RTHDR); case LINUX_IPV6_RECVDSTOPTS: return (IPV6_RECVDSTOPTS); case LINUX_IPV6_DSTOPTS: return (IPV6_DSTOPTS); case LINUX_IPV6_RECVPATHMTU: return (IPV6_RECVPATHMTU); case LINUX_IPV6_PATHMTU: return (IPV6_PATHMTU); #endif } return (-1); } static int linux_to_bsd_so_sockopt(int opt) { switch (opt) { case LINUX_SO_DEBUG: return (SO_DEBUG); case LINUX_SO_REUSEADDR: return (SO_REUSEADDR); case LINUX_SO_TYPE: return (SO_TYPE); case LINUX_SO_ERROR: return (SO_ERROR); case LINUX_SO_DONTROUTE: return (SO_DONTROUTE); case LINUX_SO_BROADCAST: return (SO_BROADCAST); case LINUX_SO_SNDBUF: return (SO_SNDBUF); case LINUX_SO_RCVBUF: return (SO_RCVBUF); case LINUX_SO_KEEPALIVE: return (SO_KEEPALIVE); case LINUX_SO_OOBINLINE: return (SO_OOBINLINE); case LINUX_SO_LINGER: return (SO_LINGER); case LINUX_SO_PEERCRED: return (LOCAL_PEERCRED); case LINUX_SO_RCVLOWAT: return (SO_RCVLOWAT); case LINUX_SO_SNDLOWAT: return (SO_SNDLOWAT); case LINUX_SO_RCVTIMEO: return (SO_RCVTIMEO); case LINUX_SO_SNDTIMEO: return (SO_SNDTIMEO); case LINUX_SO_TIMESTAMP: return (SO_TIMESTAMP); case LINUX_SO_ACCEPTCONN: return (SO_ACCEPTCONN); } return (-1); } static int linux_to_bsd_tcp_sockopt(int opt) { switch (opt) { case LINUX_TCP_NODELAY: return (TCP_NODELAY); case LINUX_TCP_MAXSEG: return (TCP_MAXSEG); case LINUX_TCP_KEEPIDLE: return (TCP_KEEPIDLE); case LINUX_TCP_KEEPINTVL: return (TCP_KEEPINTVL); case LINUX_TCP_KEEPCNT: return (TCP_KEEPCNT); case LINUX_TCP_MD5SIG: return (TCP_MD5SIG); } return (-1); } static int linux_to_bsd_msg_flags(int flags) { int ret_flags = 0; if (flags & LINUX_MSG_OOB) ret_flags |= MSG_OOB; if (flags & LINUX_MSG_PEEK) ret_flags |= MSG_PEEK; if (flags & LINUX_MSG_DONTROUTE) ret_flags |= MSG_DONTROUTE; if (flags & LINUX_MSG_CTRUNC) ret_flags |= MSG_CTRUNC; if (flags & LINUX_MSG_TRUNC) ret_flags |= MSG_TRUNC; if (flags & LINUX_MSG_DONTWAIT) ret_flags |= MSG_DONTWAIT; if (flags & LINUX_MSG_EOR) ret_flags |= MSG_EOR; if (flags & LINUX_MSG_WAITALL) ret_flags |= MSG_WAITALL; if (flags & LINUX_MSG_NOSIGNAL) ret_flags |= MSG_NOSIGNAL; #if 0 /* not handled */ if (flags & LINUX_MSG_PROXY) ; if (flags & LINUX_MSG_FIN) ; if (flags & LINUX_MSG_SYN) ; if (flags & LINUX_MSG_CONFIRM) ; if (flags & LINUX_MSG_RST) ; if (flags & LINUX_MSG_ERRQUEUE) ; #endif return (ret_flags); } /* * If bsd_to_linux_sockaddr() or linux_to_bsd_sockaddr() faults, then the * native syscall will fault. Thus, we don't really need to check the * return values for these functions. */ static int bsd_to_linux_sockaddr(struct sockaddr *arg) { struct sockaddr sa; size_t sa_len = sizeof(struct sockaddr); int error, bdom; if ((error = copyin(arg, &sa, sa_len))) return (error); bdom = bsd_to_linux_domain(sa.sa_family); if (bdom == -1) return (EAFNOSUPPORT); *(u_short *)&sa = bdom; return (copyout(&sa, arg, sa_len)); } static int linux_to_bsd_sockaddr(struct sockaddr *arg, int len) { struct sockaddr sa; size_t sa_len = sizeof(struct sockaddr); int error, bdom; if ((error = copyin(arg, &sa, sa_len))) return (error); bdom = linux_to_bsd_domain(*(sa_family_t *)&sa); if (bdom == -1) return (EAFNOSUPPORT); sa.sa_family = bdom; sa.sa_len = len; return (copyout(&sa, arg, sa_len)); } static int linux_sa_put(struct osockaddr *osa) { struct osockaddr sa; int error, bdom; /* * Only read/write the osockaddr family part, the rest is * not changed. */ error = copyin(osa, &sa, sizeof(sa.sa_family)); if (error) return (error); bdom = bsd_to_linux_domain(sa.sa_family); if (bdom == -1) return (EINVAL); sa.sa_family = bdom; return (copyout(&sa, osa, sizeof(sa.sa_family))); } static int linux_to_bsd_cmsg_type(int cmsg_type) { switch (cmsg_type) { case LINUX_SCM_RIGHTS: return (SCM_RIGHTS); case LINUX_SCM_CREDENTIALS: return (SCM_CREDS); } return (-1); } static int bsd_to_linux_cmsg_type(int cmsg_type) { switch (cmsg_type) { case SCM_RIGHTS: return (LINUX_SCM_RIGHTS); case SCM_CREDS: return (LINUX_SCM_CREDENTIALS); case SCM_TIMESTAMP: return (LINUX_SCM_TIMESTAMP); } return (-1); } static int linux_to_bsd_msghdr(struct msghdr *bhdr, const struct l_msghdr *lhdr) { if (lhdr->msg_controllen > INT_MAX) return (ENOBUFS); bhdr->msg_name = PTRIN(lhdr->msg_name); bhdr->msg_namelen = lhdr->msg_namelen; bhdr->msg_iov = PTRIN(lhdr->msg_iov); bhdr->msg_iovlen = lhdr->msg_iovlen; bhdr->msg_control = PTRIN(lhdr->msg_control); /* * msg_controllen is skipped since BSD and LINUX control messages * are potentially different sizes (e.g. the cred structure used * by SCM_CREDS is different between the two operating system). * * The caller can set it (if necessary) after converting all the * control messages. */ bhdr->msg_flags = linux_to_bsd_msg_flags(lhdr->msg_flags); return (0); } static int bsd_to_linux_msghdr(const struct msghdr *bhdr, struct l_msghdr *lhdr) { lhdr->msg_name = PTROUT(bhdr->msg_name); lhdr->msg_namelen = bhdr->msg_namelen; lhdr->msg_iov = PTROUT(bhdr->msg_iov); lhdr->msg_iovlen = bhdr->msg_iovlen; lhdr->msg_control = PTROUT(bhdr->msg_control); /* * msg_controllen is skipped since BSD and LINUX control messages * are potentially different sizes (e.g. the cred structure used * by SCM_CREDS is different between the two operating system). * * The caller can set it (if necessary) after converting all the * control messages. */ /* msg_flags skipped */ return (0); } static int linux_set_socket_flags(int lflags, int *flags) { if (lflags & ~(LINUX_SOCK_CLOEXEC | LINUX_SOCK_NONBLOCK)) return (EINVAL); if (lflags & LINUX_SOCK_NONBLOCK) *flags |= SOCK_NONBLOCK; if (lflags & LINUX_SOCK_CLOEXEC) *flags |= SOCK_CLOEXEC; return (0); } static int linux_sendit(struct thread *td, int s, struct msghdr *mp, int flags, struct mbuf *control, enum uio_seg segflg) { struct sockaddr *to; int error; if (mp->msg_name != NULL) { error = linux_getsockaddr(&to, mp->msg_name, mp->msg_namelen); if (error) return (error); mp->msg_name = to; } else to = NULL; error = kern_sendit(td, s, mp, linux_to_bsd_msg_flags(flags), control, segflg); if (to) free(to, M_SONAME); return (error); } /* Return 0 if IP_HDRINCL is set for the given socket. */ static int linux_check_hdrincl(struct thread *td, int s) { int error, optval; socklen_t size_val; size_val = sizeof(optval); error = kern_getsockopt(td, s, IPPROTO_IP, IP_HDRINCL, &optval, UIO_SYSSPACE, &size_val); if (error) return (error); return (optval == 0); } /* * Updated sendto() when IP_HDRINCL is set: * tweak endian-dependent fields in the IP packet. */ static int linux_sendto_hdrincl(struct thread *td, struct linux_sendto_args *linux_args) { /* * linux_ip_copysize defines how many bytes we should copy * from the beginning of the IP packet before we customize it for BSD. * It should include all the fields we modify (ip_len and ip_off). */ #define linux_ip_copysize 8 struct ip *packet; struct msghdr msg; struct iovec aiov[1]; int error; /* Check that the packet isn't too big or too small. */ if (linux_args->len < linux_ip_copysize || linux_args->len > IP_MAXPACKET) return (EINVAL); packet = (struct ip *)malloc(linux_args->len, M_LINUX, M_WAITOK); /* Make kernel copy of the packet to be sent */ if ((error = copyin(PTRIN(linux_args->msg), packet, linux_args->len))) goto goout; /* Convert fields from Linux to BSD raw IP socket format */ packet->ip_len = linux_args->len; packet->ip_off = ntohs(packet->ip_off); /* Prepare the msghdr and iovec structures describing the new packet */ msg.msg_name = PTRIN(linux_args->to); msg.msg_namelen = linux_args->tolen; msg.msg_iov = aiov; msg.msg_iovlen = 1; msg.msg_control = NULL; msg.msg_flags = 0; aiov[0].iov_base = (char *)packet; aiov[0].iov_len = linux_args->len; error = linux_sendit(td, linux_args->s, &msg, linux_args->flags, NULL, UIO_SYSSPACE); goout: free(packet, M_LINUX); return (error); } int linux_socket(struct thread *td, struct linux_socket_args *args) { - struct socket_args /* { - int domain; - int type; - int protocol; - } */ bsd_args; - int retval_socket; + int domain, retval_socket, type; - bsd_args.protocol = args->protocol; - bsd_args.type = args->type & LINUX_SOCK_TYPE_MASK; - if (bsd_args.type < 0 || bsd_args.type > LINUX_SOCK_MAX) + type = args->type & LINUX_SOCK_TYPE_MASK; + if (type < 0 || type > LINUX_SOCK_MAX) return (EINVAL); retval_socket = linux_set_socket_flags(args->type & ~LINUX_SOCK_TYPE_MASK, - &bsd_args.type); + &type); if (retval_socket != 0) return (retval_socket); - bsd_args.domain = linux_to_bsd_domain(args->domain); - if (bsd_args.domain == -1) + domain = linux_to_bsd_domain(args->domain); + if (domain == -1) return (EAFNOSUPPORT); - retval_socket = sys_socket(td, &bsd_args); + retval_socket = kern_socket(td, domain, type, args->protocol); if (retval_socket) return (retval_socket); - if (bsd_args.type == SOCK_RAW - && (bsd_args.protocol == IPPROTO_RAW || bsd_args.protocol == 0) - && bsd_args.domain == PF_INET) { + if (type == SOCK_RAW + && (args->protocol == IPPROTO_RAW || args->protocol == 0) + && domain == PF_INET) { /* It's a raw IP socket: set the IP_HDRINCL option. */ int hdrincl; hdrincl = 1; /* We ignore any error returned by kern_setsockopt() */ kern_setsockopt(td, td->td_retval[0], IPPROTO_IP, IP_HDRINCL, &hdrincl, UIO_SYSSPACE, sizeof(hdrincl)); } #ifdef INET6 /* * Linux AF_INET6 socket has IPV6_V6ONLY setsockopt set to 0 by default * and some apps depend on this. So, set V6ONLY to 0 for Linux apps. * For simplicity we do this unconditionally of the net.inet6.ip6.v6only * sysctl value. */ - if (bsd_args.domain == PF_INET6) { + if (domain == PF_INET6) { int v6only; v6only = 0; /* We ignore any error returned by setsockopt() */ kern_setsockopt(td, td->td_retval[0], IPPROTO_IPV6, IPV6_V6ONLY, &v6only, UIO_SYSSPACE, sizeof(v6only)); } #endif return (retval_socket); } int linux_bind(struct thread *td, struct linux_bind_args *args) { struct sockaddr *sa; int error; error = linux_getsockaddr(&sa, PTRIN(args->name), args->namelen); if (error) return (error); error = kern_bindat(td, AT_FDCWD, args->s, sa); free(sa, M_SONAME); if (error == EADDRNOTAVAIL && args->namelen != sizeof(struct sockaddr_in)) return (EINVAL); return (error); } int linux_connect(struct thread *td, struct linux_connect_args *args) { cap_rights_t rights; struct socket *so; struct sockaddr *sa; struct file *fp; u_int fflag; int error; error = linux_getsockaddr(&sa, (struct osockaddr *)PTRIN(args->name), args->namelen); if (error) return (error); error = kern_connectat(td, AT_FDCWD, args->s, sa); free(sa, M_SONAME); if (error != EISCONN) return (error); /* * Linux doesn't return EISCONN the first time it occurs, * when on a non-blocking socket. Instead it returns the * error getsockopt(SOL_SOCKET, SO_ERROR) would return on BSD. */ error = getsock_cap(td, args->s, cap_rights_init(&rights, CAP_CONNECT), &fp, &fflag, NULL); if (error != 0) return (error); error = EISCONN; so = fp->f_data; if (fflag & FNONBLOCK) { SOCK_LOCK(so); if (so->so_emuldata == 0) error = so->so_error; so->so_emuldata = (void *)1; SOCK_UNLOCK(so); } fdrop(fp, td); return (error); } int linux_listen(struct thread *td, struct linux_listen_args *args) { - struct listen_args /* { - int s; - int backlog; - } */ bsd_args; - bsd_args.s = args->s; - bsd_args.backlog = args->backlog; - return (sys_listen(td, &bsd_args)); + return (kern_listen(td, args->s, args->backlog)); } static int linux_accept_common(struct thread *td, int s, l_uintptr_t addr, l_uintptr_t namelen, int flags) { struct accept4_args /* { int s; struct sockaddr * __restrict name; socklen_t * __restrict anamelen; int flags; } */ bsd_args; cap_rights_t rights; struct socket *so; struct file *fp; int error, error1; bsd_args.s = s; /* XXX: */ bsd_args.name = (struct sockaddr * __restrict)PTRIN(addr); bsd_args.anamelen = PTRIN(namelen);/* XXX */ bsd_args.flags = 0; error = linux_set_socket_flags(flags, &bsd_args.flags); if (error != 0) return (error); error = sys_accept4(td, &bsd_args); bsd_to_linux_sockaddr((struct sockaddr *)bsd_args.name); if (error) { if (error == EFAULT && namelen != sizeof(struct sockaddr_in)) return (EINVAL); if (error == EINVAL) { error1 = getsock_cap(td, s, &rights, &fp, NULL, NULL); if (error1 != 0) return (error1); so = fp->f_data; if (so->so_type == SOCK_DGRAM) { fdrop(fp, td); return (EOPNOTSUPP); } fdrop(fp, td); } return (error); } if (addr) error = linux_sa_put(PTRIN(addr)); if (error) { (void)kern_close(td, td->td_retval[0]); td->td_retval[0] = 0; } return (error); } int linux_accept(struct thread *td, struct linux_accept_args *args) { return (linux_accept_common(td, args->s, args->addr, args->namelen, 0)); } int linux_accept4(struct thread *td, struct linux_accept4_args *args) { return (linux_accept_common(td, args->s, args->addr, args->namelen, args->flags)); } int linux_getsockname(struct thread *td, struct linux_getsockname_args *args) { struct getsockname_args /* { int fdes; struct sockaddr * __restrict asa; socklen_t * __restrict alen; } */ bsd_args; int error; bsd_args.fdes = args->s; /* XXX: */ bsd_args.asa = (struct sockaddr * __restrict)PTRIN(args->addr); bsd_args.alen = PTRIN(args->namelen); /* XXX */ error = sys_getsockname(td, &bsd_args); bsd_to_linux_sockaddr((struct sockaddr *)bsd_args.asa); if (error) return (error); return (linux_sa_put(PTRIN(args->addr))); } int linux_getpeername(struct thread *td, struct linux_getpeername_args *args) { struct getpeername_args /* { int fdes; caddr_t asa; int *alen; } */ bsd_args; int error; bsd_args.fdes = args->s; bsd_args.asa = (struct sockaddr *)PTRIN(args->addr); bsd_args.alen = (socklen_t *)PTRIN(args->namelen); error = sys_getpeername(td, &bsd_args); bsd_to_linux_sockaddr((struct sockaddr *)bsd_args.asa); if (error) return (error); return (linux_sa_put(PTRIN(args->addr))); } int linux_socketpair(struct thread *td, struct linux_socketpair_args *args) { struct socketpair_args /* { int domain; int type; int protocol; int *rsv; } */ bsd_args; int error; bsd_args.domain = linux_to_bsd_domain(args->domain); if (bsd_args.domain != PF_LOCAL) return (EAFNOSUPPORT); bsd_args.type = args->type & LINUX_SOCK_TYPE_MASK; if (bsd_args.type < 0 || bsd_args.type > LINUX_SOCK_MAX) return (EINVAL); error = linux_set_socket_flags(args->type & ~LINUX_SOCK_TYPE_MASK, &bsd_args.type); if (error != 0) return (error); if (args->protocol != 0 && args->protocol != PF_UNIX) /* * Use of PF_UNIX as protocol argument is not right, * but Linux does it. * Do not map PF_UNIX as its Linux value is identical * to FreeBSD one. */ return (EPROTONOSUPPORT); else bsd_args.protocol = 0; bsd_args.rsv = (int *)PTRIN(args->rsv); return (sys_socketpair(td, &bsd_args)); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) struct linux_send_args { int s; l_uintptr_t msg; int len; int flags; }; static int linux_send(struct thread *td, struct linux_send_args *args) { struct sendto_args /* { int s; caddr_t buf; int len; int flags; caddr_t to; int tolen; } */ bsd_args; bsd_args.s = args->s; bsd_args.buf = (caddr_t)PTRIN(args->msg); bsd_args.len = args->len; bsd_args.flags = args->flags; bsd_args.to = NULL; bsd_args.tolen = 0; return (sys_sendto(td, &bsd_args)); } struct linux_recv_args { int s; l_uintptr_t msg; int len; int flags; }; static int linux_recv(struct thread *td, struct linux_recv_args *args) { struct recvfrom_args /* { int s; caddr_t buf; int len; int flags; struct sockaddr *from; socklen_t fromlenaddr; } */ bsd_args; bsd_args.s = args->s; bsd_args.buf = (caddr_t)PTRIN(args->msg); bsd_args.len = args->len; bsd_args.flags = linux_to_bsd_msg_flags(args->flags); bsd_args.from = NULL; bsd_args.fromlenaddr = 0; return (sys_recvfrom(td, &bsd_args)); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ int linux_sendto(struct thread *td, struct linux_sendto_args *args) { struct msghdr msg; struct iovec aiov; if (linux_check_hdrincl(td, args->s) == 0) /* IP_HDRINCL set, tweak the packet before sending */ return (linux_sendto_hdrincl(td, args)); msg.msg_name = PTRIN(args->to); msg.msg_namelen = args->tolen; msg.msg_iov = &aiov; msg.msg_iovlen = 1; msg.msg_control = NULL; msg.msg_flags = 0; aiov.iov_base = PTRIN(args->msg); aiov.iov_len = args->len; return (linux_sendit(td, args->s, &msg, args->flags, NULL, UIO_USERSPACE)); } int linux_recvfrom(struct thread *td, struct linux_recvfrom_args *args) { struct msghdr msg; struct iovec aiov; int error, fromlen; if (PTRIN(args->fromlen) != NULL) { error = copyin(PTRIN(args->fromlen), &fromlen, sizeof(fromlen)); if (error != 0) return (error); if (fromlen < 0) return (EINVAL); msg.msg_namelen = fromlen; } else msg.msg_namelen = 0; msg.msg_name = (struct sockaddr * __restrict)PTRIN(args->from); msg.msg_iov = &aiov; msg.msg_iovlen = 1; aiov.iov_base = PTRIN(args->buf); aiov.iov_len = args->len; msg.msg_control = 0; msg.msg_flags = linux_to_bsd_msg_flags(args->flags); error = kern_recvit(td, args->s, &msg, UIO_USERSPACE, NULL); if (error != 0) return (error); if (PTRIN(args->from) != NULL) { error = bsd_to_linux_sockaddr((struct sockaddr *) PTRIN(args->from)); if (error != 0) return (error); error = linux_sa_put((struct osockaddr *) PTRIN(args->from)); } if (PTRIN(args->fromlen) != NULL) error = copyout(&msg.msg_namelen, PTRIN(args->fromlen), sizeof(msg.msg_namelen)); return (error); } static int linux_sendmsg_common(struct thread *td, l_int s, struct l_msghdr *msghdr, l_uint flags) { struct cmsghdr *cmsg; struct cmsgcred cmcred; struct mbuf *control; struct msghdr msg; struct l_cmsghdr linux_cmsg; struct l_cmsghdr *ptr_cmsg; struct l_msghdr linux_msg; struct iovec *iov; socklen_t datalen; struct sockaddr *sa; sa_family_t sa_family; void *data; int error; error = copyin(msghdr, &linux_msg, sizeof(linux_msg)); if (error != 0) return (error); /* * Some Linux applications (ping) define a non-NULL control data * pointer, but a msg_controllen of 0, which is not allowed in the * FreeBSD system call interface. NULL the msg_control pointer in * order to handle this case. This should be checked, but allows the * Linux ping to work. */ if (PTRIN(linux_msg.msg_control) != NULL && linux_msg.msg_controllen == 0) linux_msg.msg_control = PTROUT(NULL); error = linux_to_bsd_msghdr(&msg, &linux_msg); if (error != 0) return (error); #ifdef COMPAT_LINUX32 error = linux32_copyiniov(PTRIN(msg.msg_iov), msg.msg_iovlen, &iov, EMSGSIZE); #else error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE); #endif if (error != 0) return (error); control = NULL; cmsg = NULL; if ((ptr_cmsg = LINUX_CMSG_FIRSTHDR(&linux_msg)) != NULL) { error = kern_getsockname(td, s, &sa, &datalen); if (error != 0) goto bad; sa_family = sa->sa_family; free(sa, M_SONAME); error = ENOBUFS; cmsg = malloc(CMSG_HDRSZ, M_LINUX, M_WAITOK|M_ZERO); control = m_get(M_WAITOK, MT_CONTROL); do { error = copyin(ptr_cmsg, &linux_cmsg, sizeof(struct l_cmsghdr)); if (error != 0) goto bad; error = EINVAL; if (linux_cmsg.cmsg_len < sizeof(struct l_cmsghdr)) goto bad; /* * Now we support only SCM_RIGHTS and SCM_CRED, * so return EINVAL in any other cmsg_type */ cmsg->cmsg_type = linux_to_bsd_cmsg_type(linux_cmsg.cmsg_type); cmsg->cmsg_level = linux_to_bsd_sockopt_level(linux_cmsg.cmsg_level); if (cmsg->cmsg_type == -1 || cmsg->cmsg_level != SOL_SOCKET) goto bad; /* * Some applications (e.g. pulseaudio) attempt to * send ancillary data even if the underlying protocol * doesn't support it which is not allowed in the * FreeBSD system call interface. */ if (sa_family != AF_UNIX) continue; data = LINUX_CMSG_DATA(ptr_cmsg); datalen = linux_cmsg.cmsg_len - L_CMSG_HDRSZ; switch (cmsg->cmsg_type) { case SCM_RIGHTS: break; case SCM_CREDS: data = &cmcred; datalen = sizeof(cmcred); /* * The lower levels will fill in the structure */ bzero(data, datalen); break; } cmsg->cmsg_len = CMSG_LEN(datalen); error = ENOBUFS; if (!m_append(control, CMSG_HDRSZ, (c_caddr_t)cmsg)) goto bad; if (!m_append(control, datalen, (c_caddr_t)data)) goto bad; } while ((ptr_cmsg = LINUX_CMSG_NXTHDR(&linux_msg, ptr_cmsg))); if (m_length(control, NULL) == 0) { m_freem(control); control = NULL; } } msg.msg_iov = iov; msg.msg_flags = 0; error = linux_sendit(td, s, &msg, flags, control, UIO_USERSPACE); control = NULL; bad: m_freem(control); free(iov, M_IOV); if (cmsg) free(cmsg, M_LINUX); return (error); } int linux_sendmsg(struct thread *td, struct linux_sendmsg_args *args) { return (linux_sendmsg_common(td, args->s, PTRIN(args->msg), args->flags)); } int linux_sendmmsg(struct thread *td, struct linux_sendmmsg_args *args) { struct l_mmsghdr *msg; l_uint retval; int error, datagrams; if (args->vlen > UIO_MAXIOV) args->vlen = UIO_MAXIOV; msg = PTRIN(args->msg); datagrams = 0; while (datagrams < args->vlen) { error = linux_sendmsg_common(td, args->s, &msg->msg_hdr, args->flags); if (error != 0) break; retval = td->td_retval[0]; error = copyout(&retval, &msg->msg_len, sizeof(msg->msg_len)); if (error != 0) break; ++msg; ++datagrams; } if (error == 0) td->td_retval[0] = datagrams; return (error); } static int linux_recvmsg_common(struct thread *td, l_int s, struct l_msghdr *msghdr, l_uint flags, struct msghdr *msg) { struct cmsghdr *cm; struct cmsgcred *cmcred; struct l_cmsghdr *linux_cmsg = NULL; struct l_ucred linux_ucred; socklen_t datalen, outlen; struct l_msghdr linux_msg; struct iovec *iov, *uiov; struct mbuf *control = NULL; struct mbuf **controlp; struct timeval *ftmvl; l_timeval ltmvl; caddr_t outbuf; void *data; int error, i, fd, fds, *fdp; error = copyin(msghdr, &linux_msg, sizeof(linux_msg)); if (error != 0) return (error); error = linux_to_bsd_msghdr(msg, &linux_msg); if (error != 0) return (error); #ifdef COMPAT_LINUX32 error = linux32_copyiniov(PTRIN(msg->msg_iov), msg->msg_iovlen, &iov, EMSGSIZE); #else error = copyiniov(msg->msg_iov, msg->msg_iovlen, &iov, EMSGSIZE); #endif if (error != 0) return (error); if (msg->msg_name) { error = linux_to_bsd_sockaddr((struct sockaddr *)msg->msg_name, msg->msg_namelen); if (error != 0) goto bad; } uiov = msg->msg_iov; msg->msg_iov = iov; controlp = (msg->msg_control != NULL) ? &control : NULL; error = kern_recvit(td, s, msg, UIO_USERSPACE, controlp); msg->msg_iov = uiov; if (error != 0) goto bad; error = bsd_to_linux_msghdr(msg, &linux_msg); if (error != 0) goto bad; if (linux_msg.msg_name) { error = bsd_to_linux_sockaddr((struct sockaddr *) PTRIN(linux_msg.msg_name)); if (error != 0) goto bad; } if (linux_msg.msg_name && linux_msg.msg_namelen > 2) { error = linux_sa_put(PTRIN(linux_msg.msg_name)); if (error != 0) goto bad; } outbuf = PTRIN(linux_msg.msg_control); outlen = 0; if (control) { linux_cmsg = malloc(L_CMSG_HDRSZ, M_LINUX, M_WAITOK | M_ZERO); msg->msg_control = mtod(control, struct cmsghdr *); msg->msg_controllen = control->m_len; cm = CMSG_FIRSTHDR(msg); while (cm != NULL) { linux_cmsg->cmsg_type = bsd_to_linux_cmsg_type(cm->cmsg_type); linux_cmsg->cmsg_level = bsd_to_linux_sockopt_level(cm->cmsg_level); if (linux_cmsg->cmsg_type == -1 || cm->cmsg_level != SOL_SOCKET) { error = EINVAL; goto bad; } data = CMSG_DATA(cm); datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; switch (cm->cmsg_type) { case SCM_RIGHTS: if (flags & LINUX_MSG_CMSG_CLOEXEC) { fds = datalen / sizeof(int); fdp = data; for (i = 0; i < fds; i++) { fd = *fdp++; (void)kern_fcntl(td, fd, F_SETFD, FD_CLOEXEC); } } break; case SCM_CREDS: /* * Currently LOCAL_CREDS is never in * effect for Linux so no need to worry * about sockcred */ if (datalen != sizeof(*cmcred)) { error = EMSGSIZE; goto bad; } cmcred = (struct cmsgcred *)data; bzero(&linux_ucred, sizeof(linux_ucred)); linux_ucred.pid = cmcred->cmcred_pid; linux_ucred.uid = cmcred->cmcred_uid; linux_ucred.gid = cmcred->cmcred_gid; data = &linux_ucred; datalen = sizeof(linux_ucred); break; case SCM_TIMESTAMP: if (datalen != sizeof(struct timeval)) { error = EMSGSIZE; goto bad; } ftmvl = (struct timeval *)data; ltmvl.tv_sec = ftmvl->tv_sec; ltmvl.tv_usec = ftmvl->tv_usec; data = <mvl; datalen = sizeof(ltmvl); break; } if (outlen + LINUX_CMSG_LEN(datalen) > linux_msg.msg_controllen) { if (outlen == 0) { error = EMSGSIZE; goto bad; } else { linux_msg.msg_flags |= LINUX_MSG_CTRUNC; goto out; } } linux_cmsg->cmsg_len = LINUX_CMSG_LEN(datalen); error = copyout(linux_cmsg, outbuf, L_CMSG_HDRSZ); if (error) goto bad; outbuf += L_CMSG_HDRSZ; error = copyout(data, outbuf, datalen); if (error) goto bad; outbuf += LINUX_CMSG_ALIGN(datalen); outlen += LINUX_CMSG_LEN(datalen); cm = CMSG_NXTHDR(msg, cm); } } out: linux_msg.msg_controllen = outlen; error = copyout(&linux_msg, msghdr, sizeof(linux_msg)); bad: free(iov, M_IOV); m_freem(control); free(linux_cmsg, M_LINUX); return (error); } int linux_recvmsg(struct thread *td, struct linux_recvmsg_args *args) { struct msghdr bsd_msg; return (linux_recvmsg_common(td, args->s, PTRIN(args->msg), args->flags, &bsd_msg)); } int linux_recvmmsg(struct thread *td, struct linux_recvmmsg_args *args) { struct l_mmsghdr *msg; struct msghdr bsd_msg; struct l_timespec lts; struct timespec ts, tts; l_uint retval; int error, datagrams; if (args->timeout) { error = copyin(args->timeout, <s, sizeof(struct l_timespec)); if (error != 0) return (error); error = linux_to_native_timespec(&ts, <s); if (error != 0) return (error); getnanotime(&tts); timespecadd(&tts, &ts); } msg = PTRIN(args->msg); datagrams = 0; while (datagrams < args->vlen) { error = linux_recvmsg_common(td, args->s, &msg->msg_hdr, args->flags & ~LINUX_MSG_WAITFORONE, &bsd_msg); if (error != 0) break; retval = td->td_retval[0]; error = copyout(&retval, &msg->msg_len, sizeof(msg->msg_len)); if (error != 0) break; ++msg; ++datagrams; /* * MSG_WAITFORONE turns on MSG_DONTWAIT after one packet. */ if (args->flags & LINUX_MSG_WAITFORONE) args->flags |= LINUX_MSG_DONTWAIT; /* * See BUGS section of recvmmsg(2). */ if (args->timeout) { getnanotime(&ts); timespecsub(&ts, &tts); if (!timespecisset(&ts) || ts.tv_sec > 0) break; } /* Out of band data, return right away. */ if (bsd_msg.msg_flags & MSG_OOB) break; } if (error == 0) td->td_retval[0] = datagrams; return (error); } int linux_shutdown(struct thread *td, struct linux_shutdown_args *args) { - struct shutdown_args /* { - int s; - int how; - } */ bsd_args; - bsd_args.s = args->s; - bsd_args.how = args->how; - return (sys_shutdown(td, &bsd_args)); + return (kern_shutdown(td, args->s, args->how)); } int linux_setsockopt(struct thread *td, struct linux_setsockopt_args *args) { struct setsockopt_args /* { int s; int level; int name; caddr_t val; int valsize; } */ bsd_args; l_timeval linux_tv; struct timeval tv; int error, name; bsd_args.s = args->s; bsd_args.level = linux_to_bsd_sockopt_level(args->level); switch (bsd_args.level) { case SOL_SOCKET: name = linux_to_bsd_so_sockopt(args->optname); switch (name) { case SO_RCVTIMEO: /* FALLTHROUGH */ case SO_SNDTIMEO: error = copyin(PTRIN(args->optval), &linux_tv, sizeof(linux_tv)); if (error) return (error); tv.tv_sec = linux_tv.tv_sec; tv.tv_usec = linux_tv.tv_usec; return (kern_setsockopt(td, args->s, bsd_args.level, name, &tv, UIO_SYSSPACE, sizeof(tv))); /* NOTREACHED */ break; default: break; } break; case IPPROTO_IP: name = linux_to_bsd_ip_sockopt(args->optname); break; case IPPROTO_IPV6: name = linux_to_bsd_ip6_sockopt(args->optname); break; case IPPROTO_TCP: name = linux_to_bsd_tcp_sockopt(args->optname); break; default: name = -1; break; } if (name == -1) return (ENOPROTOOPT); bsd_args.name = name; bsd_args.val = PTRIN(args->optval); bsd_args.valsize = args->optlen; if (name == IPV6_NEXTHOP) { linux_to_bsd_sockaddr((struct sockaddr *)bsd_args.val, bsd_args.valsize); error = sys_setsockopt(td, &bsd_args); bsd_to_linux_sockaddr((struct sockaddr *)bsd_args.val); } else error = sys_setsockopt(td, &bsd_args); return (error); } int linux_getsockopt(struct thread *td, struct linux_getsockopt_args *args) { struct getsockopt_args /* { int s; int level; int name; caddr_t val; int *avalsize; } */ bsd_args; l_timeval linux_tv; struct timeval tv; socklen_t tv_len, xulen, len; struct xucred xu; struct l_ucred lxu; int error, name, newval; bsd_args.s = args->s; bsd_args.level = linux_to_bsd_sockopt_level(args->level); switch (bsd_args.level) { case SOL_SOCKET: name = linux_to_bsd_so_sockopt(args->optname); switch (name) { case SO_RCVTIMEO: /* FALLTHROUGH */ case SO_SNDTIMEO: tv_len = sizeof(tv); error = kern_getsockopt(td, args->s, bsd_args.level, name, &tv, UIO_SYSSPACE, &tv_len); if (error) return (error); linux_tv.tv_sec = tv.tv_sec; linux_tv.tv_usec = tv.tv_usec; return (copyout(&linux_tv, PTRIN(args->optval), sizeof(linux_tv))); /* NOTREACHED */ break; case LOCAL_PEERCRED: if (args->optlen != sizeof(lxu)) return (EINVAL); xulen = sizeof(xu); error = kern_getsockopt(td, args->s, bsd_args.level, name, &xu, UIO_SYSSPACE, &xulen); if (error) return (error); /* * XXX Use 0 for pid as the FreeBSD does not cache peer pid. */ lxu.pid = 0; lxu.uid = xu.cr_uid; lxu.gid = xu.cr_gid; return (copyout(&lxu, PTRIN(args->optval), sizeof(lxu))); /* NOTREACHED */ break; case SO_ERROR: len = sizeof(newval); error = kern_getsockopt(td, args->s, bsd_args.level, name, &newval, UIO_SYSSPACE, &len); if (error) return (error); newval = -SV_ABI_ERRNO(td->td_proc, newval); return (copyout(&newval, PTRIN(args->optval), len)); /* NOTREACHED */ default: break; } break; case IPPROTO_IP: name = linux_to_bsd_ip_sockopt(args->optname); break; case IPPROTO_IPV6: name = linux_to_bsd_ip6_sockopt(args->optname); break; case IPPROTO_TCP: name = linux_to_bsd_tcp_sockopt(args->optname); break; default: name = -1; break; } if (name == -1) return (EINVAL); bsd_args.name = name; bsd_args.val = PTRIN(args->optval); bsd_args.avalsize = PTRIN(args->optlen); if (name == IPV6_NEXTHOP) { error = sys_getsockopt(td, &bsd_args); bsd_to_linux_sockaddr((struct sockaddr *)bsd_args.val); } else error = sys_getsockopt(td, &bsd_args); return (error); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) /* Argument list sizes for linux_socketcall */ #define LINUX_AL(x) ((x) * sizeof(l_ulong)) static const unsigned char lxs_args[] = { LINUX_AL(0) /* unused*/, LINUX_AL(3) /* socket */, LINUX_AL(3) /* bind */, LINUX_AL(3) /* connect */, LINUX_AL(2) /* listen */, LINUX_AL(3) /* accept */, LINUX_AL(3) /* getsockname */, LINUX_AL(3) /* getpeername */, LINUX_AL(4) /* socketpair */, LINUX_AL(4) /* send */, LINUX_AL(4) /* recv */, LINUX_AL(6) /* sendto */, LINUX_AL(6) /* recvfrom */, LINUX_AL(2) /* shutdown */, LINUX_AL(5) /* setsockopt */, LINUX_AL(5) /* getsockopt */, LINUX_AL(3) /* sendmsg */, LINUX_AL(3) /* recvmsg */, LINUX_AL(4) /* accept4 */, LINUX_AL(5) /* recvmmsg */, LINUX_AL(4) /* sendmmsg */ }; #define LINUX_AL_SIZE (nitems(lxs_args) - 1) int linux_socketcall(struct thread *td, struct linux_socketcall_args *args) { l_ulong a[6]; void *arg; int error; if (args->what < LINUX_SOCKET || args->what > LINUX_AL_SIZE) return (EINVAL); error = copyin(PTRIN(args->args), a, lxs_args[args->what]); if (error) return (error); arg = a; switch (args->what) { case LINUX_SOCKET: return (linux_socket(td, arg)); case LINUX_BIND: return (linux_bind(td, arg)); case LINUX_CONNECT: return (linux_connect(td, arg)); case LINUX_LISTEN: return (linux_listen(td, arg)); case LINUX_ACCEPT: return (linux_accept(td, arg)); case LINUX_GETSOCKNAME: return (linux_getsockname(td, arg)); case LINUX_GETPEERNAME: return (linux_getpeername(td, arg)); case LINUX_SOCKETPAIR: return (linux_socketpair(td, arg)); case LINUX_SEND: return (linux_send(td, arg)); case LINUX_RECV: return (linux_recv(td, arg)); case LINUX_SENDTO: return (linux_sendto(td, arg)); case LINUX_RECVFROM: return (linux_recvfrom(td, arg)); case LINUX_SHUTDOWN: return (linux_shutdown(td, arg)); case LINUX_SETSOCKOPT: return (linux_setsockopt(td, arg)); case LINUX_GETSOCKOPT: return (linux_getsockopt(td, arg)); case LINUX_SENDMSG: return (linux_sendmsg(td, arg)); case LINUX_RECVMSG: return (linux_recvmsg(td, arg)); case LINUX_ACCEPT4: return (linux_accept4(td, arg)); case LINUX_RECVMMSG: return (linux_recvmmsg(td, arg)); case LINUX_SENDMMSG: return (linux_sendmmsg(td, arg)); } uprintf("LINUX: 'socket' typ=%d not implemented\n", args->what); return (ENOSYS); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ Index: head/sys/kern/uipc_syscalls.c =================================================================== --- head/sys/kern/uipc_syscalls.c (revision 312987) +++ head/sys/kern/uipc_syscalls.c (revision 312988) @@ -1,1589 +1,1607 @@ /*- * Copyright (c) 1982, 1986, 1989, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)uipc_syscalls.c 8.4 (Berkeley) 2/21/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_capsicum.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_compat.h" #include "opt_ktrace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KTRACE #include #endif #ifdef COMPAT_FREEBSD32 #include #endif #include #include #include /* * Flags for accept1() and kern_accept4(), in addition to SOCK_CLOEXEC * and SOCK_NONBLOCK. */ #define ACCEPT4_INHERIT 0x1 #define ACCEPT4_COMPAT 0x2 static int sendit(struct thread *td, int s, struct msghdr *mp, int flags); static int recvit(struct thread *td, int s, struct msghdr *mp, void *namelenp); static int accept1(struct thread *td, int s, struct sockaddr *uname, socklen_t *anamelen, int flags); static int getsockname1(struct thread *td, struct getsockname_args *uap, int compat); static int getpeername1(struct thread *td, struct getpeername_args *uap, int compat); static int sockargs(struct mbuf **, char *, socklen_t, int); /* * Convert a user file descriptor to a kernel file entry and check if required * capability rights are present. * If required copy of current set of capability rights is returned. * A reference on the file entry is held upon returning. */ int getsock_cap(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp, u_int *fflagp, struct filecaps *havecapsp) { struct file *fp; int error; error = fget_cap(td, fd, rightsp, &fp, havecapsp); if (error != 0) return (error); if (fp->f_type != DTYPE_SOCKET) { fdrop(fp, td); if (havecapsp != NULL) filecaps_free(havecapsp); return (ENOTSOCK); } if (fflagp != NULL) *fflagp = fp->f_flag; *fpp = fp; return (0); } /* * System call interface to the socket abstraction. */ #if defined(COMPAT_43) #define COMPAT_OLDSOCK #endif int sys_socket(struct thread *td, struct socket_args *uap) { + + return (kern_socket(td, uap->domain, uap->type, uap->protocol)); +} + +int +kern_socket(struct thread *td, int domain, int type, int protocol) +{ struct socket *so; struct file *fp; - int fd, error, type, oflag, fflag; + int fd, error, oflag, fflag; - AUDIT_ARG_SOCKET(uap->domain, uap->type, uap->protocol); + AUDIT_ARG_SOCKET(domain, type, protocol); - type = uap->type; oflag = 0; fflag = 0; if ((type & SOCK_CLOEXEC) != 0) { type &= ~SOCK_CLOEXEC; oflag |= O_CLOEXEC; } if ((type & SOCK_NONBLOCK) != 0) { type &= ~SOCK_NONBLOCK; fflag |= FNONBLOCK; } #ifdef MAC - error = mac_socket_check_create(td->td_ucred, uap->domain, type, - uap->protocol); + error = mac_socket_check_create(td->td_ucred, domain, type, protocol); if (error != 0) return (error); #endif error = falloc(td, &fp, &fd, oflag); if (error != 0) return (error); /* An extra reference on `fp' has been held for us by falloc(). */ - error = socreate(uap->domain, &so, type, uap->protocol, - td->td_ucred, td); + error = socreate(domain, &so, type, protocol, td->td_ucred, td); if (error != 0) { fdclose(td, fp, fd); } else { finit(fp, FREAD | FWRITE | fflag, DTYPE_SOCKET, so, &socketops); if ((fflag & FNONBLOCK) != 0) (void) fo_ioctl(fp, FIONBIO, &fflag, td->td_ucred, td); td->td_retval[0] = fd; } fdrop(fp, td); return (error); } int sys_bind(struct thread *td, struct bind_args *uap) { struct sockaddr *sa; int error; error = getsockaddr(&sa, uap->name, uap->namelen); if (error == 0) { error = kern_bindat(td, AT_FDCWD, uap->s, sa); free(sa, M_SONAME); } return (error); } int kern_bindat(struct thread *td, int dirfd, int fd, struct sockaddr *sa) { struct socket *so; struct file *fp; cap_rights_t rights; int error; AUDIT_ARG_FD(fd); AUDIT_ARG_SOCKADDR(td, dirfd, sa); error = getsock_cap(td, fd, cap_rights_init(&rights, CAP_BIND), &fp, NULL, NULL); if (error != 0) return (error); so = fp->f_data; #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(sa); #endif #ifdef MAC error = mac_socket_check_bind(td->td_ucred, so, sa); if (error == 0) { #endif if (dirfd == AT_FDCWD) error = sobind(so, sa, td); else error = sobindat(dirfd, so, sa, td); #ifdef MAC } #endif fdrop(fp, td); return (error); } int sys_bindat(struct thread *td, struct bindat_args *uap) { struct sockaddr *sa; int error; error = getsockaddr(&sa, uap->name, uap->namelen); if (error == 0) { error = kern_bindat(td, uap->fd, uap->s, sa); free(sa, M_SONAME); } return (error); } int sys_listen(struct thread *td, struct listen_args *uap) { + + return (kern_listen(td, uap->s, uap->backlog)); +} + +int +kern_listen(struct thread *td, int s, int backlog) +{ struct socket *so; struct file *fp; cap_rights_t rights; int error; - AUDIT_ARG_FD(uap->s); - error = getsock_cap(td, uap->s, cap_rights_init(&rights, CAP_LISTEN), + AUDIT_ARG_FD(s); + error = getsock_cap(td, s, cap_rights_init(&rights, CAP_LISTEN), &fp, NULL, NULL); if (error == 0) { so = fp->f_data; #ifdef MAC error = mac_socket_check_listen(td->td_ucred, so); if (error == 0) #endif - error = solisten(so, uap->backlog, td); + error = solisten(so, backlog, td); fdrop(fp, td); } - return(error); + return (error); } /* * accept1() */ static int accept1(td, s, uname, anamelen, flags) struct thread *td; int s; struct sockaddr *uname; socklen_t *anamelen; int flags; { struct sockaddr *name; socklen_t namelen; struct file *fp; int error; if (uname == NULL) return (kern_accept4(td, s, NULL, NULL, flags, NULL)); error = copyin(anamelen, &namelen, sizeof (namelen)); if (error != 0) return (error); error = kern_accept4(td, s, &name, &namelen, flags, &fp); if (error != 0) return (error); if (error == 0 && uname != NULL) { #ifdef COMPAT_OLDSOCK if (flags & ACCEPT4_COMPAT) ((struct osockaddr *)name)->sa_family = name->sa_family; #endif error = copyout(name, uname, namelen); } if (error == 0) error = copyout(&namelen, anamelen, sizeof(namelen)); if (error != 0) fdclose(td, fp, td->td_retval[0]); fdrop(fp, td); free(name, M_SONAME); return (error); } int kern_accept(struct thread *td, int s, struct sockaddr **name, socklen_t *namelen, struct file **fp) { return (kern_accept4(td, s, name, namelen, ACCEPT4_INHERIT, fp)); } int kern_accept4(struct thread *td, int s, struct sockaddr **name, socklen_t *namelen, int flags, struct file **fp) { struct file *headfp, *nfp = NULL; struct sockaddr *sa = NULL; struct socket *head, *so; struct filecaps fcaps; cap_rights_t rights; u_int fflag; pid_t pgid; int error, fd, tmp; if (name != NULL) *name = NULL; AUDIT_ARG_FD(s); error = getsock_cap(td, s, cap_rights_init(&rights, CAP_ACCEPT), &headfp, &fflag, &fcaps); if (error != 0) return (error); head = headfp->f_data; if ((head->so_options & SO_ACCEPTCONN) == 0) { error = EINVAL; goto done; } #ifdef MAC error = mac_socket_check_accept(td->td_ucred, head); if (error != 0) goto done; #endif error = falloc_caps(td, &nfp, &fd, (flags & SOCK_CLOEXEC) ? O_CLOEXEC : 0, &fcaps); if (error != 0) goto done; ACCEPT_LOCK(); if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->so_comp)) { ACCEPT_UNLOCK(); error = EWOULDBLOCK; goto noconnection; } while (TAILQ_EMPTY(&head->so_comp) && head->so_error == 0) { if (head->so_rcv.sb_state & SBS_CANTRCVMORE) { head->so_error = ECONNABORTED; break; } error = msleep(&head->so_timeo, &accept_mtx, PSOCK | PCATCH, "accept", 0); if (error != 0) { ACCEPT_UNLOCK(); goto noconnection; } } if (head->so_error) { error = head->so_error; head->so_error = 0; ACCEPT_UNLOCK(); goto noconnection; } so = TAILQ_FIRST(&head->so_comp); KASSERT(!(so->so_qstate & SQ_INCOMP), ("accept1: so SQ_INCOMP")); KASSERT(so->so_qstate & SQ_COMP, ("accept1: so not SQ_COMP")); /* * Before changing the flags on the socket, we have to bump the * reference count. Otherwise, if the protocol calls sofree(), * the socket will be released due to a zero refcount. */ SOCK_LOCK(so); /* soref() and so_state update */ soref(so); /* file descriptor reference */ TAILQ_REMOVE(&head->so_comp, so, so_list); head->so_qlen--; if (flags & ACCEPT4_INHERIT) so->so_state |= (head->so_state & SS_NBIO); else so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; so->so_qstate &= ~SQ_COMP; so->so_head = NULL; SOCK_UNLOCK(so); ACCEPT_UNLOCK(); /* An extra reference on `nfp' has been held for us by falloc(). */ td->td_retval[0] = fd; /* connection has been removed from the listen queue */ KNOTE_UNLOCKED(&head->so_rcv.sb_sel.si_note, 0); if (flags & ACCEPT4_INHERIT) { pgid = fgetown(&head->so_sigio); if (pgid != 0) fsetown(pgid, &so->so_sigio); } else { fflag &= ~(FNONBLOCK | FASYNC); if (flags & SOCK_NONBLOCK) fflag |= FNONBLOCK; } finit(nfp, fflag, DTYPE_SOCKET, so, &socketops); /* Sync socket nonblocking/async state with file flags */ tmp = fflag & FNONBLOCK; (void) fo_ioctl(nfp, FIONBIO, &tmp, td->td_ucred, td); tmp = fflag & FASYNC; (void) fo_ioctl(nfp, FIOASYNC, &tmp, td->td_ucred, td); sa = NULL; error = soaccept(so, &sa); if (error != 0) goto noconnection; if (sa == NULL) { if (name) *namelen = 0; goto done; } AUDIT_ARG_SOCKADDR(td, AT_FDCWD, sa); if (name) { /* check sa_len before it is destroyed */ if (*namelen > sa->sa_len) *namelen = sa->sa_len; #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(sa); #endif *name = sa; sa = NULL; } noconnection: free(sa, M_SONAME); /* * close the new descriptor, assuming someone hasn't ripped it * out from under us. */ if (error != 0) fdclose(td, nfp, fd); /* * Release explicitly held references before returning. We return * a reference on nfp to the caller on success if they request it. */ done: if (nfp == NULL) filecaps_free(&fcaps); if (fp != NULL) { if (error == 0) { *fp = nfp; nfp = NULL; } else *fp = NULL; } if (nfp != NULL) fdrop(nfp, td); fdrop(headfp, td); return (error); } int sys_accept(td, uap) struct thread *td; struct accept_args *uap; { return (accept1(td, uap->s, uap->name, uap->anamelen, ACCEPT4_INHERIT)); } int sys_accept4(td, uap) struct thread *td; struct accept4_args *uap; { if (uap->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) return (EINVAL); return (accept1(td, uap->s, uap->name, uap->anamelen, uap->flags)); } #ifdef COMPAT_OLDSOCK int oaccept(td, uap) struct thread *td; struct accept_args *uap; { return (accept1(td, uap->s, uap->name, uap->anamelen, ACCEPT4_INHERIT | ACCEPT4_COMPAT)); } #endif /* COMPAT_OLDSOCK */ int sys_connect(struct thread *td, struct connect_args *uap) { struct sockaddr *sa; int error; error = getsockaddr(&sa, uap->name, uap->namelen); if (error == 0) { error = kern_connectat(td, AT_FDCWD, uap->s, sa); free(sa, M_SONAME); } return (error); } int kern_connectat(struct thread *td, int dirfd, int fd, struct sockaddr *sa) { struct socket *so; struct file *fp; cap_rights_t rights; int error, interrupted = 0; AUDIT_ARG_FD(fd); AUDIT_ARG_SOCKADDR(td, dirfd, sa); error = getsock_cap(td, fd, cap_rights_init(&rights, CAP_CONNECT), &fp, NULL, NULL); if (error != 0) return (error); so = fp->f_data; if (so->so_state & SS_ISCONNECTING) { error = EALREADY; goto done1; } #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(sa); #endif #ifdef MAC error = mac_socket_check_connect(td->td_ucred, so, sa); if (error != 0) goto bad; #endif if (dirfd == AT_FDCWD) error = soconnect(so, sa, td); else error = soconnectat(dirfd, so, sa, td); if (error != 0) goto bad; if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING)) { error = EINPROGRESS; goto done1; } SOCK_LOCK(so); while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { error = msleep(&so->so_timeo, SOCK_MTX(so), PSOCK | PCATCH, "connec", 0); if (error != 0) { if (error == EINTR || error == ERESTART) interrupted = 1; break; } } if (error == 0) { error = so->so_error; so->so_error = 0; } SOCK_UNLOCK(so); bad: if (!interrupted) so->so_state &= ~SS_ISCONNECTING; if (error == ERESTART) error = EINTR; done1: fdrop(fp, td); return (error); } int sys_connectat(struct thread *td, struct connectat_args *uap) { struct sockaddr *sa; int error; error = getsockaddr(&sa, uap->name, uap->namelen); if (error == 0) { error = kern_connectat(td, uap->fd, uap->s, sa); free(sa, M_SONAME); } return (error); } int kern_socketpair(struct thread *td, int domain, int type, int protocol, int *rsv) { struct file *fp1, *fp2; struct socket *so1, *so2; int fd, error, oflag, fflag; AUDIT_ARG_SOCKET(domain, type, protocol); oflag = 0; fflag = 0; if ((type & SOCK_CLOEXEC) != 0) { type &= ~SOCK_CLOEXEC; oflag |= O_CLOEXEC; } if ((type & SOCK_NONBLOCK) != 0) { type &= ~SOCK_NONBLOCK; fflag |= FNONBLOCK; } #ifdef MAC /* We might want to have a separate check for socket pairs. */ error = mac_socket_check_create(td->td_ucred, domain, type, protocol); if (error != 0) return (error); #endif error = socreate(domain, &so1, type, protocol, td->td_ucred, td); if (error != 0) return (error); error = socreate(domain, &so2, type, protocol, td->td_ucred, td); if (error != 0) goto free1; /* On success extra reference to `fp1' and 'fp2' is set by falloc. */ error = falloc(td, &fp1, &fd, oflag); if (error != 0) goto free2; rsv[0] = fd; fp1->f_data = so1; /* so1 already has ref count */ error = falloc(td, &fp2, &fd, oflag); if (error != 0) goto free3; fp2->f_data = so2; /* so2 already has ref count */ rsv[1] = fd; error = soconnect2(so1, so2); if (error != 0) goto free4; if (type == SOCK_DGRAM) { /* * Datagram socket connection is asymmetric. */ error = soconnect2(so2, so1); if (error != 0) goto free4; } finit(fp1, FREAD | FWRITE | fflag, DTYPE_SOCKET, fp1->f_data, &socketops); finit(fp2, FREAD | FWRITE | fflag, DTYPE_SOCKET, fp2->f_data, &socketops); if ((fflag & FNONBLOCK) != 0) { (void) fo_ioctl(fp1, FIONBIO, &fflag, td->td_ucred, td); (void) fo_ioctl(fp2, FIONBIO, &fflag, td->td_ucred, td); } fdrop(fp1, td); fdrop(fp2, td); return (0); free4: fdclose(td, fp2, rsv[1]); fdrop(fp2, td); free3: fdclose(td, fp1, rsv[0]); fdrop(fp1, td); free2: if (so2 != NULL) (void)soclose(so2); free1: if (so1 != NULL) (void)soclose(so1); return (error); } int sys_socketpair(struct thread *td, struct socketpair_args *uap) { int error, sv[2]; error = kern_socketpair(td, uap->domain, uap->type, uap->protocol, sv); if (error != 0) return (error); error = copyout(sv, uap->rsv, 2 * sizeof(int)); if (error != 0) { (void)kern_close(td, sv[0]); (void)kern_close(td, sv[1]); } return (error); } static int sendit(struct thread *td, int s, struct msghdr *mp, int flags) { struct mbuf *control; struct sockaddr *to; int error; #ifdef CAPABILITY_MODE if (IN_CAPABILITY_MODE(td) && (mp->msg_name != NULL)) return (ECAPMODE); #endif if (mp->msg_name != NULL) { error = getsockaddr(&to, mp->msg_name, mp->msg_namelen); if (error != 0) { to = NULL; goto bad; } mp->msg_name = to; } else { to = NULL; } if (mp->msg_control) { if (mp->msg_controllen < sizeof(struct cmsghdr) #ifdef COMPAT_OLDSOCK && mp->msg_flags != MSG_COMPAT #endif ) { error = EINVAL; goto bad; } error = sockargs(&control, mp->msg_control, mp->msg_controllen, MT_CONTROL); if (error != 0) goto bad; #ifdef COMPAT_OLDSOCK if (mp->msg_flags == MSG_COMPAT) { struct cmsghdr *cm; M_PREPEND(control, sizeof(*cm), M_WAITOK); cm = mtod(control, struct cmsghdr *); cm->cmsg_len = control->m_len; cm->cmsg_level = SOL_SOCKET; cm->cmsg_type = SCM_RIGHTS; } #endif } else { control = NULL; } error = kern_sendit(td, s, mp, flags, control, UIO_USERSPACE); bad: free(to, M_SONAME); return (error); } int kern_sendit(struct thread *td, int s, struct msghdr *mp, int flags, struct mbuf *control, enum uio_seg segflg) { struct file *fp; struct uio auio; struct iovec *iov; struct socket *so; cap_rights_t rights; #ifdef KTRACE struct uio *ktruio = NULL; #endif ssize_t len; int i, error; AUDIT_ARG_FD(s); cap_rights_init(&rights, CAP_SEND); if (mp->msg_name != NULL) { AUDIT_ARG_SOCKADDR(td, AT_FDCWD, mp->msg_name); cap_rights_set(&rights, CAP_CONNECT); } error = getsock_cap(td, s, &rights, &fp, NULL, NULL); if (error != 0) { m_freem(control); return (error); } so = (struct socket *)fp->f_data; #ifdef KTRACE if (mp->msg_name != NULL && KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(mp->msg_name); #endif #ifdef MAC if (mp->msg_name != NULL) { error = mac_socket_check_connect(td->td_ucred, so, mp->msg_name); if (error != 0) { m_freem(control); goto bad; } } error = mac_socket_check_send(td->td_ucred, so); if (error != 0) { m_freem(control); goto bad; } #endif auio.uio_iov = mp->msg_iov; auio.uio_iovcnt = mp->msg_iovlen; auio.uio_segflg = segflg; auio.uio_rw = UIO_WRITE; auio.uio_td = td; auio.uio_offset = 0; /* XXX */ auio.uio_resid = 0; iov = mp->msg_iov; for (i = 0; i < mp->msg_iovlen; i++, iov++) { if ((auio.uio_resid += iov->iov_len) < 0) { error = EINVAL; m_freem(control); goto bad; } } #ifdef KTRACE if (KTRPOINT(td, KTR_GENIO)) ktruio = cloneuio(&auio); #endif len = auio.uio_resid; error = sosend(so, mp->msg_name, &auio, 0, control, flags, td); if (error != 0) { if (auio.uio_resid != len && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; /* Generation of SIGPIPE can be controlled per socket */ if (error == EPIPE && !(so->so_options & SO_NOSIGPIPE) && !(flags & MSG_NOSIGNAL)) { PROC_LOCK(td->td_proc); tdsignal(td, SIGPIPE); PROC_UNLOCK(td->td_proc); } } if (error == 0) td->td_retval[0] = len - auio.uio_resid; #ifdef KTRACE if (ktruio != NULL) { ktruio->uio_resid = td->td_retval[0]; ktrgenio(s, UIO_WRITE, ktruio, error); } #endif bad: fdrop(fp, td); return (error); } int sys_sendto(struct thread *td, struct sendto_args *uap) { struct msghdr msg; struct iovec aiov; msg.msg_name = uap->to; msg.msg_namelen = uap->tolen; msg.msg_iov = &aiov; msg.msg_iovlen = 1; msg.msg_control = 0; #ifdef COMPAT_OLDSOCK msg.msg_flags = 0; #endif aiov.iov_base = uap->buf; aiov.iov_len = uap->len; return (sendit(td, uap->s, &msg, uap->flags)); } #ifdef COMPAT_OLDSOCK int osend(struct thread *td, struct osend_args *uap) { struct msghdr msg; struct iovec aiov; msg.msg_name = 0; msg.msg_namelen = 0; msg.msg_iov = &aiov; msg.msg_iovlen = 1; aiov.iov_base = uap->buf; aiov.iov_len = uap->len; msg.msg_control = 0; msg.msg_flags = 0; return (sendit(td, uap->s, &msg, uap->flags)); } int osendmsg(struct thread *td, struct osendmsg_args *uap) { struct msghdr msg; struct iovec *iov; int error; error = copyin(uap->msg, &msg, sizeof (struct omsghdr)); if (error != 0) return (error); error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE); if (error != 0) return (error); msg.msg_iov = iov; msg.msg_flags = MSG_COMPAT; error = sendit(td, uap->s, &msg, uap->flags); free(iov, M_IOV); return (error); } #endif int sys_sendmsg(struct thread *td, struct sendmsg_args *uap) { struct msghdr msg; struct iovec *iov; int error; error = copyin(uap->msg, &msg, sizeof (msg)); if (error != 0) return (error); error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE); if (error != 0) return (error); msg.msg_iov = iov; #ifdef COMPAT_OLDSOCK msg.msg_flags = 0; #endif error = sendit(td, uap->s, &msg, uap->flags); free(iov, M_IOV); return (error); } int kern_recvit(struct thread *td, int s, struct msghdr *mp, enum uio_seg fromseg, struct mbuf **controlp) { struct uio auio; struct iovec *iov; struct mbuf *m, *control = NULL; caddr_t ctlbuf; struct file *fp; struct socket *so; struct sockaddr *fromsa = NULL; cap_rights_t rights; #ifdef KTRACE struct uio *ktruio = NULL; #endif ssize_t len; int error, i; if (controlp != NULL) *controlp = NULL; AUDIT_ARG_FD(s); error = getsock_cap(td, s, cap_rights_init(&rights, CAP_RECV), &fp, NULL, NULL); if (error != 0) return (error); so = fp->f_data; #ifdef MAC error = mac_socket_check_receive(td->td_ucred, so); if (error != 0) { fdrop(fp, td); return (error); } #endif auio.uio_iov = mp->msg_iov; auio.uio_iovcnt = mp->msg_iovlen; auio.uio_segflg = UIO_USERSPACE; auio.uio_rw = UIO_READ; auio.uio_td = td; auio.uio_offset = 0; /* XXX */ auio.uio_resid = 0; iov = mp->msg_iov; for (i = 0; i < mp->msg_iovlen; i++, iov++) { if ((auio.uio_resid += iov->iov_len) < 0) { fdrop(fp, td); return (EINVAL); } } #ifdef KTRACE if (KTRPOINT(td, KTR_GENIO)) ktruio = cloneuio(&auio); #endif len = auio.uio_resid; error = soreceive(so, &fromsa, &auio, NULL, (mp->msg_control || controlp) ? &control : NULL, &mp->msg_flags); if (error != 0) { if (auio.uio_resid != len && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; } if (fromsa != NULL) AUDIT_ARG_SOCKADDR(td, AT_FDCWD, fromsa); #ifdef KTRACE if (ktruio != NULL) { ktruio->uio_resid = len - auio.uio_resid; ktrgenio(s, UIO_READ, ktruio, error); } #endif if (error != 0) goto out; td->td_retval[0] = len - auio.uio_resid; if (mp->msg_name) { len = mp->msg_namelen; if (len <= 0 || fromsa == NULL) len = 0; else { /* save sa_len before it is destroyed by MSG_COMPAT */ len = MIN(len, fromsa->sa_len); #ifdef COMPAT_OLDSOCK if (mp->msg_flags & MSG_COMPAT) ((struct osockaddr *)fromsa)->sa_family = fromsa->sa_family; #endif if (fromseg == UIO_USERSPACE) { error = copyout(fromsa, mp->msg_name, (unsigned)len); if (error != 0) goto out; } else bcopy(fromsa, mp->msg_name, len); } mp->msg_namelen = len; } if (mp->msg_control && controlp == NULL) { #ifdef COMPAT_OLDSOCK /* * We assume that old recvmsg calls won't receive access * rights and other control info, esp. as control info * is always optional and those options didn't exist in 4.3. * If we receive rights, trim the cmsghdr; anything else * is tossed. */ if (control && mp->msg_flags & MSG_COMPAT) { if (mtod(control, struct cmsghdr *)->cmsg_level != SOL_SOCKET || mtod(control, struct cmsghdr *)->cmsg_type != SCM_RIGHTS) { mp->msg_controllen = 0; goto out; } control->m_len -= sizeof (struct cmsghdr); control->m_data += sizeof (struct cmsghdr); } #endif len = mp->msg_controllen; m = control; mp->msg_controllen = 0; ctlbuf = mp->msg_control; while (m && len > 0) { unsigned int tocopy; if (len >= m->m_len) tocopy = m->m_len; else { mp->msg_flags |= MSG_CTRUNC; tocopy = len; } if ((error = copyout(mtod(m, caddr_t), ctlbuf, tocopy)) != 0) goto out; ctlbuf += tocopy; len -= tocopy; m = m->m_next; } mp->msg_controllen = ctlbuf - (caddr_t)mp->msg_control; } out: fdrop(fp, td); #ifdef KTRACE if (fromsa && KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(fromsa); #endif free(fromsa, M_SONAME); if (error == 0 && controlp != NULL) *controlp = control; else if (control) m_freem(control); return (error); } static int recvit(struct thread *td, int s, struct msghdr *mp, void *namelenp) { int error; error = kern_recvit(td, s, mp, UIO_USERSPACE, NULL); if (error != 0) return (error); if (namelenp != NULL) { error = copyout(&mp->msg_namelen, namelenp, sizeof (socklen_t)); #ifdef COMPAT_OLDSOCK if (mp->msg_flags & MSG_COMPAT) error = 0; /* old recvfrom didn't check */ #endif } return (error); } int sys_recvfrom(struct thread *td, struct recvfrom_args *uap) { struct msghdr msg; struct iovec aiov; int error; if (uap->fromlenaddr) { error = copyin(uap->fromlenaddr, &msg.msg_namelen, sizeof (msg.msg_namelen)); if (error != 0) goto done2; } else { msg.msg_namelen = 0; } msg.msg_name = uap->from; msg.msg_iov = &aiov; msg.msg_iovlen = 1; aiov.iov_base = uap->buf; aiov.iov_len = uap->len; msg.msg_control = 0; msg.msg_flags = uap->flags; error = recvit(td, uap->s, &msg, uap->fromlenaddr); done2: return (error); } #ifdef COMPAT_OLDSOCK int orecvfrom(struct thread *td, struct recvfrom_args *uap) { uap->flags |= MSG_COMPAT; return (sys_recvfrom(td, uap)); } #endif #ifdef COMPAT_OLDSOCK int orecv(struct thread *td, struct orecv_args *uap) { struct msghdr msg; struct iovec aiov; msg.msg_name = 0; msg.msg_namelen = 0; msg.msg_iov = &aiov; msg.msg_iovlen = 1; aiov.iov_base = uap->buf; aiov.iov_len = uap->len; msg.msg_control = 0; msg.msg_flags = uap->flags; return (recvit(td, uap->s, &msg, NULL)); } /* * Old recvmsg. This code takes advantage of the fact that the old msghdr * overlays the new one, missing only the flags, and with the (old) access * rights where the control fields are now. */ int orecvmsg(struct thread *td, struct orecvmsg_args *uap) { struct msghdr msg; struct iovec *iov; int error; error = copyin(uap->msg, &msg, sizeof (struct omsghdr)); if (error != 0) return (error); error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE); if (error != 0) return (error); msg.msg_flags = uap->flags | MSG_COMPAT; msg.msg_iov = iov; error = recvit(td, uap->s, &msg, &uap->msg->msg_namelen); if (msg.msg_controllen && error == 0) error = copyout(&msg.msg_controllen, &uap->msg->msg_accrightslen, sizeof (int)); free(iov, M_IOV); return (error); } #endif int sys_recvmsg(struct thread *td, struct recvmsg_args *uap) { struct msghdr msg; struct iovec *uiov, *iov; int error; error = copyin(uap->msg, &msg, sizeof (msg)); if (error != 0) return (error); error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE); if (error != 0) return (error); msg.msg_flags = uap->flags; #ifdef COMPAT_OLDSOCK msg.msg_flags &= ~MSG_COMPAT; #endif uiov = msg.msg_iov; msg.msg_iov = iov; error = recvit(td, uap->s, &msg, NULL); if (error == 0) { msg.msg_iov = uiov; error = copyout(&msg, uap->msg, sizeof(msg)); } free(iov, M_IOV); return (error); } int sys_shutdown(struct thread *td, struct shutdown_args *uap) { + + return (kern_shutdown(td, uap->s, uap->how)); +} + +int +kern_shutdown(struct thread *td, int s, int how) +{ struct socket *so; struct file *fp; cap_rights_t rights; int error; - AUDIT_ARG_FD(uap->s); - error = getsock_cap(td, uap->s, cap_rights_init(&rights, CAP_SHUTDOWN), + AUDIT_ARG_FD(s); + error = getsock_cap(td, s, cap_rights_init(&rights, CAP_SHUTDOWN), &fp, NULL, NULL); if (error == 0) { so = fp->f_data; - error = soshutdown(so, uap->how); + error = soshutdown(so, how); /* * Previous versions did not return ENOTCONN, but 0 in * case the socket was not connected. Some important * programs like syslogd up to r279016, 2015-02-19, * still depend on this behavior. */ if (error == ENOTCONN && td->td_proc->p_osrel < P_OSREL_SHUTDOWN_ENOTCONN) error = 0; fdrop(fp, td); } return (error); } int sys_setsockopt(struct thread *td, struct setsockopt_args *uap) { return (kern_setsockopt(td, uap->s, uap->level, uap->name, uap->val, UIO_USERSPACE, uap->valsize)); } int kern_setsockopt(struct thread *td, int s, int level, int name, void *val, enum uio_seg valseg, socklen_t valsize) { struct socket *so; struct file *fp; struct sockopt sopt; cap_rights_t rights; int error; if (val == NULL && valsize != 0) return (EFAULT); if ((int)valsize < 0) return (EINVAL); sopt.sopt_dir = SOPT_SET; sopt.sopt_level = level; sopt.sopt_name = name; sopt.sopt_val = val; sopt.sopt_valsize = valsize; switch (valseg) { case UIO_USERSPACE: sopt.sopt_td = td; break; case UIO_SYSSPACE: sopt.sopt_td = NULL; break; default: panic("kern_setsockopt called with bad valseg"); } AUDIT_ARG_FD(s); error = getsock_cap(td, s, cap_rights_init(&rights, CAP_SETSOCKOPT), &fp, NULL, NULL); if (error == 0) { so = fp->f_data; error = sosetopt(so, &sopt); fdrop(fp, td); } return(error); } int sys_getsockopt(struct thread *td, struct getsockopt_args *uap) { socklen_t valsize; int error; if (uap->val) { error = copyin(uap->avalsize, &valsize, sizeof (valsize)); if (error != 0) return (error); } error = kern_getsockopt(td, uap->s, uap->level, uap->name, uap->val, UIO_USERSPACE, &valsize); if (error == 0) error = copyout(&valsize, uap->avalsize, sizeof (valsize)); return (error); } /* * Kernel version of getsockopt. * optval can be a userland or userspace. optlen is always a kernel pointer. */ int kern_getsockopt(struct thread *td, int s, int level, int name, void *val, enum uio_seg valseg, socklen_t *valsize) { struct socket *so; struct file *fp; struct sockopt sopt; cap_rights_t rights; int error; if (val == NULL) *valsize = 0; if ((int)*valsize < 0) return (EINVAL); sopt.sopt_dir = SOPT_GET; sopt.sopt_level = level; sopt.sopt_name = name; sopt.sopt_val = val; sopt.sopt_valsize = (size_t)*valsize; /* checked non-negative above */ switch (valseg) { case UIO_USERSPACE: sopt.sopt_td = td; break; case UIO_SYSSPACE: sopt.sopt_td = NULL; break; default: panic("kern_getsockopt called with bad valseg"); } AUDIT_ARG_FD(s); error = getsock_cap(td, s, cap_rights_init(&rights, CAP_GETSOCKOPT), &fp, NULL, NULL); if (error == 0) { so = fp->f_data; error = sogetopt(so, &sopt); *valsize = sopt.sopt_valsize; fdrop(fp, td); } return (error); } /* * getsockname1() - Get socket name. */ static int getsockname1(struct thread *td, struct getsockname_args *uap, int compat) { struct sockaddr *sa; socklen_t len; int error; error = copyin(uap->alen, &len, sizeof(len)); if (error != 0) return (error); error = kern_getsockname(td, uap->fdes, &sa, &len); if (error != 0) return (error); if (len != 0) { #ifdef COMPAT_OLDSOCK if (compat) ((struct osockaddr *)sa)->sa_family = sa->sa_family; #endif error = copyout(sa, uap->asa, (u_int)len); } free(sa, M_SONAME); if (error == 0) error = copyout(&len, uap->alen, sizeof(len)); return (error); } int kern_getsockname(struct thread *td, int fd, struct sockaddr **sa, socklen_t *alen) { struct socket *so; struct file *fp; cap_rights_t rights; socklen_t len; int error; AUDIT_ARG_FD(fd); error = getsock_cap(td, fd, cap_rights_init(&rights, CAP_GETSOCKNAME), &fp, NULL, NULL); if (error != 0) return (error); so = fp->f_data; *sa = NULL; CURVNET_SET(so->so_vnet); error = (*so->so_proto->pr_usrreqs->pru_sockaddr)(so, sa); CURVNET_RESTORE(); if (error != 0) goto bad; if (*sa == NULL) len = 0; else len = MIN(*alen, (*sa)->sa_len); *alen = len; #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(*sa); #endif bad: fdrop(fp, td); if (error != 0 && *sa != NULL) { free(*sa, M_SONAME); *sa = NULL; } return (error); } int sys_getsockname(struct thread *td, struct getsockname_args *uap) { return (getsockname1(td, uap, 0)); } #ifdef COMPAT_OLDSOCK int ogetsockname(struct thread *td, struct getsockname_args *uap) { return (getsockname1(td, uap, 1)); } #endif /* COMPAT_OLDSOCK */ /* * getpeername1() - Get name of peer for connected socket. */ static int getpeername1(struct thread *td, struct getpeername_args *uap, int compat) { struct sockaddr *sa; socklen_t len; int error; error = copyin(uap->alen, &len, sizeof (len)); if (error != 0) return (error); error = kern_getpeername(td, uap->fdes, &sa, &len); if (error != 0) return (error); if (len != 0) { #ifdef COMPAT_OLDSOCK if (compat) ((struct osockaddr *)sa)->sa_family = sa->sa_family; #endif error = copyout(sa, uap->asa, (u_int)len); } free(sa, M_SONAME); if (error == 0) error = copyout(&len, uap->alen, sizeof(len)); return (error); } int kern_getpeername(struct thread *td, int fd, struct sockaddr **sa, socklen_t *alen) { struct socket *so; struct file *fp; cap_rights_t rights; socklen_t len; int error; AUDIT_ARG_FD(fd); error = getsock_cap(td, fd, cap_rights_init(&rights, CAP_GETPEERNAME), &fp, NULL, NULL); if (error != 0) return (error); so = fp->f_data; if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) { error = ENOTCONN; goto done; } *sa = NULL; CURVNET_SET(so->so_vnet); error = (*so->so_proto->pr_usrreqs->pru_peeraddr)(so, sa); CURVNET_RESTORE(); if (error != 0) goto bad; if (*sa == NULL) len = 0; else len = MIN(*alen, (*sa)->sa_len); *alen = len; #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(*sa); #endif bad: if (error != 0 && *sa != NULL) { free(*sa, M_SONAME); *sa = NULL; } done: fdrop(fp, td); return (error); } int sys_getpeername(struct thread *td, struct getpeername_args *uap) { return (getpeername1(td, uap, 0)); } #ifdef COMPAT_OLDSOCK int ogetpeername(struct thread *td, struct ogetpeername_args *uap) { /* XXX uap should have type `getpeername_args *' to begin with. */ return (getpeername1(td, (struct getpeername_args *)uap, 1)); } #endif /* COMPAT_OLDSOCK */ static int sockargs(struct mbuf **mp, char *buf, socklen_t buflen, int type) { struct sockaddr *sa; struct mbuf *m; int error; if (buflen > MLEN) { #ifdef COMPAT_OLDSOCK if (type == MT_SONAME && buflen <= 112) buflen = MLEN; /* unix domain compat. hack */ else #endif if (buflen > MCLBYTES) return (EINVAL); } m = m_get2(buflen, M_WAITOK, type, 0); m->m_len = buflen; error = copyin(buf, mtod(m, void *), buflen); if (error != 0) (void) m_free(m); else { *mp = m; if (type == MT_SONAME) { sa = mtod(m, struct sockaddr *); #if defined(COMPAT_OLDSOCK) && BYTE_ORDER != BIG_ENDIAN if (sa->sa_family == 0 && sa->sa_len < AF_MAX) sa->sa_family = sa->sa_len; #endif sa->sa_len = buflen; } } return (error); } int getsockaddr(struct sockaddr **namp, caddr_t uaddr, size_t len) { struct sockaddr *sa; int error; if (len > SOCK_MAXADDRLEN) return (ENAMETOOLONG); if (len < offsetof(struct sockaddr, sa_data[0])) return (EINVAL); sa = malloc(len, M_SONAME, M_WAITOK); error = copyin(uaddr, sa, len); if (error != 0) { free(sa, M_SONAME); } else { #if defined(COMPAT_OLDSOCK) && BYTE_ORDER != BIG_ENDIAN if (sa->sa_family == 0 && sa->sa_len < AF_MAX) sa->sa_family = sa->sa_len; #endif sa->sa_len = len; *namp = sa; } return (error); } Index: head/sys/sys/syscallsubr.h =================================================================== --- head/sys/sys/syscallsubr.h (revision 312987) +++ head/sys/sys/syscallsubr.h (revision 312988) @@ -1,264 +1,267 @@ /*- * Copyright (c) 2002 Ian Dowse. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _SYS_SYSCALLSUBR_H_ #define _SYS_SYSCALLSUBR_H_ #include #include #include #include #include struct file; struct filecaps; enum idtype; struct itimerval; struct image_args; struct jail; struct kevent; struct kevent_copyops; struct kld_file_stat; struct ksiginfo; struct mbuf; struct msghdr; struct msqid_ds; struct pollfd; struct ogetdirentries_args; struct rlimit; struct rusage; union semun; struct sockaddr; struct stat; struct thr_param; struct sched_param; struct __wrusage; int kern___getcwd(struct thread *td, char *buf, enum uio_seg bufseg, u_int buflen, u_int path_max); int kern_accept(struct thread *td, int s, struct sockaddr **name, socklen_t *namelen, struct file **fp); int kern_accept4(struct thread *td, int s, struct sockaddr **name, socklen_t *namelen, int flags, struct file **fp); int kern_accessat(struct thread *td, int fd, char *path, enum uio_seg pathseg, int flags, int mode); int kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta); int kern_alternate_path(struct thread *td, const char *prefix, const char *path, enum uio_seg pathseg, char **pathbuf, int create, int dirfd); int kern_bindat(struct thread *td, int dirfd, int fd, struct sockaddr *sa); int kern_cap_ioctls_limit(struct thread *td, int fd, u_long *cmds, size_t ncmds); int kern_cap_rights_limit(struct thread *td, int fd, cap_rights_t *rights); int kern_chdir(struct thread *td, char *path, enum uio_seg pathseg); int kern_clock_getcpuclockid2(struct thread *td, id_t id, int which, clockid_t *clk_id); int kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts); int kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats); int kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats); int kern_close(struct thread *td, int fd); int kern_connectat(struct thread *td, int dirfd, int fd, struct sockaddr *sa); int kern_dup(struct thread *td, u_int mode, int flags, int old, int new); int kern_execve(struct thread *td, struct image_args *args, struct mac *mac_p); int kern_fchmodat(struct thread *td, int fd, char *path, enum uio_seg pathseg, mode_t mode, int flag); int kern_fchownat(struct thread *td, int fd, char *path, enum uio_seg pathseg, int uid, int gid, int flag); int kern_fcntl(struct thread *td, int fd, int cmd, intptr_t arg); int kern_fcntl_freebsd(struct thread *td, int fd, int cmd, long arg); int kern_fhstat(struct thread *td, fhandle_t fh, struct stat *buf); int kern_fhstatfs(struct thread *td, fhandle_t fh, struct statfs *buf); int kern_fstat(struct thread *td, int fd, struct stat *sbp); int kern_fstatfs(struct thread *td, int fd, struct statfs *buf); int kern_fsync(struct thread *td, int fd, bool fullsync); int kern_ftruncate(struct thread *td, int fd, off_t length); int kern_futimes(struct thread *td, int fd, struct timeval *tptr, enum uio_seg tptrseg); int kern_futimens(struct thread *td, int fd, struct timespec *tptr, enum uio_seg tptrseg); int kern_getdirentries(struct thread *td, int fd, char *buf, u_int count, long *basep, ssize_t *residp, enum uio_seg bufseg); int kern_getfsstat(struct thread *td, struct statfs **buf, size_t bufsize, size_t *countp, enum uio_seg bufseg, int mode); int kern_getitimer(struct thread *, u_int, struct itimerval *); int kern_getppid(struct thread *); int kern_getpeername(struct thread *td, int fd, struct sockaddr **sa, socklen_t *alen); int kern_getrusage(struct thread *td, int who, struct rusage *rup); int kern_getsockname(struct thread *td, int fd, struct sockaddr **sa, socklen_t *alen); int kern_getsockopt(struct thread *td, int s, int level, int name, void *optval, enum uio_seg valseg, socklen_t *valsize); int kern_ioctl(struct thread *td, int fd, u_long com, caddr_t data); int kern_jail(struct thread *td, struct jail *j); int kern_jail_get(struct thread *td, struct uio *options, int flags); int kern_jail_set(struct thread *td, struct uio *options, int flags); int kern_kevent(struct thread *td, int fd, int nchanges, int nevents, struct kevent_copyops *k_ops, const struct timespec *timeout); int kern_kevent_anonymous(struct thread *td, int nevents, struct kevent_copyops *k_ops); int kern_kevent_fp(struct thread *td, struct file *fp, int nchanges, int nevents, struct kevent_copyops *k_ops, const struct timespec *timeout); int kern_kqueue(struct thread *td, int flags, struct filecaps *fcaps); int kern_kldload(struct thread *td, const char *file, int *fileid); int kern_kldstat(struct thread *td, int fileid, struct kld_file_stat *stat); int kern_kldunload(struct thread *td, int fileid, int flags); int kern_linkat(struct thread *td, int fd1, int fd2, char *path1, char *path2, enum uio_seg segflg, int follow); +int kern_listen(struct thread *td, int s, int backlog); int kern_lseek(struct thread *td, int fd, off_t offset, int whence); int kern_lutimes(struct thread *td, char *path, enum uio_seg pathseg, struct timeval *tptr, enum uio_seg tptrseg); int kern_mkdirat(struct thread *td, int fd, char *path, enum uio_seg segflg, int mode); int kern_mkfifoat(struct thread *td, int fd, char *path, enum uio_seg pathseg, int mode); int kern_mknodat(struct thread *td, int fd, char *path, enum uio_seg pathseg, int mode, int dev); int kern_msgctl(struct thread *, int, int, struct msqid_ds *); int kern_msgsnd(struct thread *, int, const void *, size_t, int, long); int kern_msgrcv(struct thread *, int, void *, size_t, long, int, long *); int kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt); int kern_ogetdirentries(struct thread *td, struct ogetdirentries_args *uap, long *ploff); int kern_openat(struct thread *td, int fd, char *path, enum uio_seg pathseg, int flags, int mode); int kern_pathconf(struct thread *td, char *path, enum uio_seg pathseg, int name, u_long flags); int kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1, struct filecaps *fcaps2); int kern_poll(struct thread *td, struct pollfd *fds, u_int nfds, struct timespec *tsp, sigset_t *uset); int kern_posix_error(struct thread *td, int error); int kern_posix_fadvise(struct thread *td, int fd, off_t offset, off_t len, int advice); int kern_posix_fallocate(struct thread *td, int fd, off_t offset, off_t len); int kern_procctl(struct thread *td, enum idtype idtype, id_t id, int com, void *data); int kern_preadv(struct thread *td, int fd, struct uio *auio, off_t offset); int kern_pselect(struct thread *td, int nd, fd_set *in, fd_set *ou, fd_set *ex, struct timeval *tvp, sigset_t *uset, int abi_nfdbits); int kern_ptrace(struct thread *td, int req, pid_t pid, void *addr, int data); int kern_pwritev(struct thread *td, int fd, struct uio *auio, off_t offset); int kern_readlinkat(struct thread *td, int fd, char *path, enum uio_seg pathseg, char *buf, enum uio_seg bufseg, size_t count); int kern_readv(struct thread *td, int fd, struct uio *auio); int kern_recvit(struct thread *td, int s, struct msghdr *mp, enum uio_seg fromseg, struct mbuf **controlp); int kern_renameat(struct thread *td, int oldfd, char *old, int newfd, char *new, enum uio_seg pathseg); int kern_rmdirat(struct thread *td, int fd, char *path, enum uio_seg pathseg); int kern_sched_getparam(struct thread *td, struct thread *targettd, struct sched_param *param); int kern_sched_getscheduler(struct thread *td, struct thread *targettd, int *policy); int kern_sched_setparam(struct thread *td, struct thread *targettd, struct sched_param *param); int kern_sched_setscheduler(struct thread *td, struct thread *targettd, int policy, struct sched_param *param); int kern_sched_rr_get_interval(struct thread *td, pid_t pid, struct timespec *ts); int kern_sched_rr_get_interval_td(struct thread *td, struct thread *targettd, struct timespec *ts); int kern_semctl(struct thread *td, int semid, int semnum, int cmd, union semun *arg, register_t *rval); int kern_select(struct thread *td, int nd, fd_set *fd_in, fd_set *fd_ou, fd_set *fd_ex, struct timeval *tvp, int abi_nfdbits); int kern_sendit(struct thread *td, int s, struct msghdr *mp, int flags, struct mbuf *control, enum uio_seg segflg); int kern_setgroups(struct thread *td, u_int ngrp, gid_t *groups); int kern_setitimer(struct thread *, u_int, struct itimerval *, struct itimerval *); int kern_setrlimit(struct thread *, u_int, struct rlimit *); int kern_setsockopt(struct thread *td, int s, int level, int name, void *optval, enum uio_seg valseg, socklen_t valsize); int kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp); int kern_shm_open(struct thread *td, const char *userpath, int flags, mode_t mode, struct filecaps *fcaps); int kern_shmat(struct thread *td, int shmid, const void *shmaddr, int shmflg); int kern_shmctl(struct thread *td, int shmid, int cmd, void *buf, size_t *bufsz); +int kern_shutdown(struct thread *td, int s, int how); int kern_sigaction(struct thread *td, int sig, const struct sigaction *act, struct sigaction *oact, int flags); int kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss); int kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset, int flags); int kern_sigsuspend(struct thread *td, sigset_t mask); int kern_sigtimedwait(struct thread *td, sigset_t waitset, struct ksiginfo *ksi, struct timespec *timeout); +int kern_socket(struct thread *td, int domain, int type, int protocol); int kern_statat(struct thread *td, int flag, int fd, char *path, enum uio_seg pathseg, struct stat *sbp, void (*hook)(struct vnode *vp, struct stat *sbp)); int kern_statfs(struct thread *td, char *path, enum uio_seg pathseg, struct statfs *buf); int kern_symlinkat(struct thread *td, char *path1, int fd, char *path2, enum uio_seg segflg); int kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp, int *timerid, int preset_id); int kern_ktimer_delete(struct thread *, int); int kern_ktimer_settime(struct thread *td, int timer_id, int flags, struct itimerspec *val, struct itimerspec *oval); int kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val); int kern_ktimer_getoverrun(struct thread *td, int timer_id); int kern_thr_alloc(struct proc *, int pages, struct thread **); int kern_thr_exit(struct thread *td); int kern_thr_new(struct thread *td, struct thr_param *param); int kern_thr_suspend(struct thread *td, struct timespec *tsp); int kern_truncate(struct thread *td, char *path, enum uio_seg pathseg, off_t length); int kern_unlinkat(struct thread *td, int fd, char *path, enum uio_seg pathseg, ino_t oldinum); int kern_utimesat(struct thread *td, int fd, char *path, enum uio_seg pathseg, struct timeval *tptr, enum uio_seg tptrseg); int kern_utimensat(struct thread *td, int fd, char *path, enum uio_seg pathseg, struct timespec *tptr, enum uio_seg tptrseg, int follow); int kern_wait(struct thread *td, pid_t pid, int *status, int options, struct rusage *rup); int kern_wait6(struct thread *td, enum idtype idtype, id_t id, int *status, int options, struct __wrusage *wrup, siginfo_t *sip); int kern_writev(struct thread *td, int fd, struct uio *auio); int kern_socketpair(struct thread *td, int domain, int type, int protocol, int *rsv); /* flags for kern_sigaction */ #define KSA_OSIGSET 0x0001 /* uses osigact_t */ #define KSA_FREEBSD4 0x0002 /* uses ucontext4 */ #endif /* !_SYS_SYSCALLSUBR_H_ */