Index: head/sys/dev/sfxge/common/ef10_ev.c =================================================================== --- head/sys/dev/sfxge/common/ef10_ev.c (revision 310712) +++ head/sys/dev/sfxge/common/ef10_ev.c (revision 310713) @@ -1,1218 +1,1254 @@ /*- * Copyright (c) 2012-2016 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efx.h" #include "efx_impl.h" #if EFSYS_OPT_MON_STATS #include "mcdi_mon.h" #endif #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD #if EFSYS_OPT_QSTATS #define EFX_EV_QSTAT_INCR(_eep, _stat) \ do { \ (_eep)->ee_stat[_stat]++; \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #else #define EFX_EV_QSTAT_INCR(_eep, _stat) #endif static __checkReturn boolean_t ef10_ev_rx( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); static __checkReturn boolean_t ef10_ev_tx( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); static __checkReturn boolean_t ef10_ev_driver( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); static __checkReturn boolean_t ef10_ev_drv_gen( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); static __checkReturn boolean_t ef10_ev_mcdi( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); static __checkReturn efx_rc_t efx_mcdi_set_evq_tmr( __in efx_nic_t *enp, __in uint32_t instance, __in uint32_t mode, __in uint32_t timer_ns) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_SET_EVQ_TMR_IN_LEN, MC_CMD_SET_EVQ_TMR_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_SET_EVQ_TMR; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_SET_EVQ_TMR_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_SET_EVQ_TMR_OUT_LEN; MCDI_IN_SET_DWORD(req, SET_EVQ_TMR_IN_INSTANCE, instance); MCDI_IN_SET_DWORD(req, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, timer_ns); MCDI_IN_SET_DWORD(req, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, timer_ns); MCDI_IN_SET_DWORD(req, SET_EVQ_TMR_IN_TMR_MODE, mode); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_SET_EVQ_TMR_OUT_LEN) { rc = EMSGSIZE; goto fail2; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_init_evq( __in efx_nic_t *enp, __in unsigned int instance, __in efsys_mem_t *esmp, __in size_t nevs, __in uint32_t irq, __in uint32_t us, + __in uint32_t flags, __in boolean_t low_latency) { efx_mcdi_req_t req; uint8_t payload[ MAX(MC_CMD_INIT_EVQ_IN_LEN(EFX_EVQ_NBUFS(EFX_EVQ_MAXNEVS)), MC_CMD_INIT_EVQ_OUT_LEN)]; efx_qword_t *dma_addr; uint64_t addr; int npages; int i; int ev_cut_through; efx_rc_t rc; npages = EFX_EVQ_NBUFS(nevs); if (MC_CMD_INIT_EVQ_IN_LEN(npages) > MC_CMD_INIT_EVQ_IN_LENMAX) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_INIT_EVQ; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_INIT_EVQ_IN_LEN(npages); req.emr_out_buf = payload; req.emr_out_length = MC_CMD_INIT_EVQ_OUT_LEN; MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_SIZE, nevs); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_INSTANCE, instance); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_IRQ_NUM, irq); /* * On Huntington RX and TX event batching can only be requested together * (even if the datapath firmware doesn't actually support RX * batching). If event cut through is enabled no RX batching will occur. * * So always enable RX and TX event batching, and enable event cut * through if we want low latency operation. */ - ev_cut_through = low_latency ? 1 : 0; + switch (flags & EFX_EVQ_FLAGS_TYPE_MASK) { + case EFX_EVQ_FLAGS_TYPE_AUTO: + ev_cut_through = low_latency ? 1 : 0; + break; + case EFX_EVQ_FLAGS_TYPE_THROUGHPUT: + ev_cut_through = 0; + break; + case EFX_EVQ_FLAGS_TYPE_LOW_LATENCY: + ev_cut_through = 1; + break; + default: + rc = EINVAL; + goto fail2; + } MCDI_IN_POPULATE_DWORD_6(req, INIT_EVQ_IN_FLAGS, INIT_EVQ_IN_FLAG_INTERRUPTING, 1, INIT_EVQ_IN_FLAG_RPTR_DOS, 0, INIT_EVQ_IN_FLAG_INT_ARMD, 0, INIT_EVQ_IN_FLAG_CUT_THRU, ev_cut_through, INIT_EVQ_IN_FLAG_RX_MERGE, 1, INIT_EVQ_IN_FLAG_TX_MERGE, 1); /* If the value is zero then disable the timer */ if (us == 0) { MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_MODE, MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_LOAD, 0); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_RELOAD, 0); } else { unsigned int ticks; if ((rc = efx_ev_usecs_to_ticks(enp, us, &ticks)) != 0) - goto fail2; + goto fail3; MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_MODE, MC_CMD_INIT_EVQ_IN_TMR_INT_HLDOFF); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_LOAD, ticks); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_RELOAD, ticks); } MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_COUNT_MODE, MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_COUNT_THRSHLD, 0); dma_addr = MCDI_IN2(req, efx_qword_t, INIT_EVQ_IN_DMA_ADDR); addr = EFSYS_MEM_ADDR(esmp); for (i = 0; i < npages; i++) { EFX_POPULATE_QWORD_2(*dma_addr, EFX_DWORD_1, (uint32_t)(addr >> 32), EFX_DWORD_0, (uint32_t)(addr & 0xffffffff)); dma_addr++; addr += EFX_BUF_SIZE; } efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; - goto fail3; + goto fail4; } if (req.emr_out_length_used < MC_CMD_INIT_EVQ_OUT_LEN) { rc = EMSGSIZE; - goto fail4; + goto fail5; } /* NOTE: ignore the returned IRQ param as firmware does not set it. */ return (0); +fail5: + EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_init_evq_v2( __in efx_nic_t *enp, __in unsigned int instance, __in efsys_mem_t *esmp, __in size_t nevs, __in uint32_t irq, - __in uint32_t us) + __in uint32_t us, + __in uint32_t flags) { efx_mcdi_req_t req; uint8_t payload[ MAX(MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_EVQ_NBUFS(EFX_EVQ_MAXNEVS)), MC_CMD_INIT_EVQ_V2_OUT_LEN)]; + unsigned int evq_type; efx_qword_t *dma_addr; uint64_t addr; int npages; int i; efx_rc_t rc; npages = EFX_EVQ_NBUFS(nevs); if (MC_CMD_INIT_EVQ_V2_IN_LEN(npages) > MC_CMD_INIT_EVQ_V2_IN_LENMAX) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_INIT_EVQ; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_INIT_EVQ_V2_IN_LEN(npages); req.emr_out_buf = payload; req.emr_out_length = MC_CMD_INIT_EVQ_V2_OUT_LEN; MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_SIZE, nevs); MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_INSTANCE, instance); MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_IRQ_NUM, irq); + switch (flags & EFX_EVQ_FLAGS_TYPE_MASK) { + case EFX_EVQ_FLAGS_TYPE_AUTO: + evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO; + break; + case EFX_EVQ_FLAGS_TYPE_THROUGHPUT: + evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_THROUGHPUT; + break; + case EFX_EVQ_FLAGS_TYPE_LOW_LATENCY: + evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_LOW_LATENCY; + break; + default: + rc = EINVAL; + goto fail2; + } MCDI_IN_POPULATE_DWORD_4(req, INIT_EVQ_V2_IN_FLAGS, INIT_EVQ_V2_IN_FLAG_INTERRUPTING, 1, INIT_EVQ_V2_IN_FLAG_RPTR_DOS, 0, INIT_EVQ_V2_IN_FLAG_INT_ARMD, 0, - INIT_EVQ_V2_IN_FLAG_TYPE, MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO); + INIT_EVQ_V2_IN_FLAG_TYPE, evq_type); /* If the value is zero then disable the timer */ if (us == 0) { MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_MODE, MC_CMD_INIT_EVQ_V2_IN_TMR_MODE_DIS); MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_LOAD, 0); MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_RELOAD, 0); } else { unsigned int ticks; if ((rc = efx_ev_usecs_to_ticks(enp, us, &ticks)) != 0) - goto fail2; + goto fail3; MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_MODE, MC_CMD_INIT_EVQ_V2_IN_TMR_INT_HLDOFF); MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_LOAD, ticks); MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_RELOAD, ticks); } MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_COUNT_MODE, MC_CMD_INIT_EVQ_V2_IN_COUNT_MODE_DIS); MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_COUNT_THRSHLD, 0); dma_addr = MCDI_IN2(req, efx_qword_t, INIT_EVQ_V2_IN_DMA_ADDR); addr = EFSYS_MEM_ADDR(esmp); for (i = 0; i < npages; i++) { EFX_POPULATE_QWORD_2(*dma_addr, EFX_DWORD_1, (uint32_t)(addr >> 32), EFX_DWORD_0, (uint32_t)(addr & 0xffffffff)); dma_addr++; addr += EFX_BUF_SIZE; } efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; - goto fail3; + goto fail4; } if (req.emr_out_length_used < MC_CMD_INIT_EVQ_V2_OUT_LEN) { rc = EMSGSIZE; - goto fail4; + goto fail5; } /* NOTE: ignore the returned IRQ param as firmware does not set it. */ EFSYS_PROBE1(mcdi_evq_flags, uint32_t, MCDI_OUT_DWORD(req, INIT_EVQ_V2_OUT_FLAGS)); return (0); +fail5: + EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_fini_evq( __in efx_nic_t *enp, __in uint32_t instance) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_FINI_EVQ_IN_LEN, MC_CMD_FINI_EVQ_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_FINI_EVQ; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_FINI_EVQ_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_FINI_EVQ_OUT_LEN; MCDI_IN_SET_DWORD(req, FINI_EVQ_IN_INSTANCE, instance); efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_ev_init( __in efx_nic_t *enp) { _NOTE(ARGUNUSED(enp)) return (0); } void ef10_ev_fini( __in efx_nic_t *enp) { _NOTE(ARGUNUSED(enp)) } __checkReturn efx_rc_t ef10_ev_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in uint32_t us, + __in uint32_t flags, __in efx_evq_t *eep) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint32_t irq; efx_rc_t rc; _NOTE(ARGUNUSED(id)) /* buftbl id managed by MC */ EFX_STATIC_ASSERT(ISP2(EFX_EVQ_MAXNEVS)); EFX_STATIC_ASSERT(ISP2(EFX_EVQ_MINNEVS)); if (!ISP2(n) || (n < EFX_EVQ_MINNEVS) || (n > EFX_EVQ_MAXNEVS)) { rc = EINVAL; goto fail1; } if (index >= encp->enc_evq_limit) { rc = EINVAL; goto fail2; } if (us > encp->enc_evq_timer_max_us) { rc = EINVAL; goto fail3; } /* Set up the handler table */ eep->ee_rx = ef10_ev_rx; eep->ee_tx = ef10_ev_tx; eep->ee_driver = ef10_ev_driver; eep->ee_drv_gen = ef10_ev_drv_gen; eep->ee_mcdi = ef10_ev_mcdi; /* Set up the event queue */ irq = index; /* INIT_EVQ expects function-relative vector number */ /* * Interrupts may be raised for events immediately after the queue is * created. See bug58606. */ if (encp->enc_init_evq_v2_supported) { /* * On Medford the low latency license is required to enable RX - * and event cut through and to disable RX batching. We let the - * firmware decide the settings to use. If the adapter has a low - * latency license, it will choose the best settings for low - * latency, otherwise it choose the best settings for - * throughput. + * and event cut through and to disable RX batching. If event + * queue type in flags is auto, we let the firmware decide the + * settings to use. If the adapter has a low latency license, + * it will choose the best settings for low latency, otherwise + * it will choose the best settings for throughput. */ - rc = efx_mcdi_init_evq_v2(enp, index, esmp, n, irq, us); + rc = efx_mcdi_init_evq_v2(enp, index, esmp, n, irq, us, flags); if (rc != 0) goto fail4; } else { /* - * On Huntington we need to specify the settings to use. We - * favour latency if the adapter is running low-latency firmware - * and throughput otherwise, and assume not support RX batching - * implies the adapter is running low-latency firmware. (This - * is how it's been done since Huntington GA. It doesn't make - * much sense with hindsight as the 'low-latency' firmware - * variant is also best for throughput, and does now support RX - * batching). + * On Huntington we need to specify the settings to use. + * If event queue type in flags is auto, we favour throughput + * if the adapter is running virtualization supporting firmware + * (i.e. the full featured firmware variant) + * and latency otherwise. The Ethernet Virtual Bridging + * capability is used to make this decision. (Note though that + * the low latency firmware variant is also best for + * throughput and corresponding type should be specified + * to choose it.) */ - boolean_t low_latency = encp->enc_rx_batching_enabled ? 0 : 1; - rc = efx_mcdi_init_evq(enp, index, esmp, n, irq, us, - low_latency); + boolean_t low_latency = encp->enc_datapath_cap_evb ? 0 : 1; + rc = efx_mcdi_init_evq(enp, index, esmp, n, irq, us, flags, + low_latency); if (rc != 0) goto fail5; } return (0); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_ev_qdestroy( __in efx_evq_t *eep) { efx_nic_t *enp = eep->ee_enp; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); (void) efx_mcdi_fini_evq(eep->ee_enp, eep->ee_index); } __checkReturn efx_rc_t ef10_ev_qprime( __in efx_evq_t *eep, __in unsigned int count) { efx_nic_t *enp = eep->ee_enp; uint32_t rptr; efx_dword_t dword; rptr = count & eep->ee_mask; if (enp->en_nic_cfg.enc_bug35388_workaround) { EFX_STATIC_ASSERT(EFX_EVQ_MINNEVS > (1 << ERF_DD_EVQ_IND_RPTR_WIDTH)); EFX_STATIC_ASSERT(EFX_EVQ_MAXNEVS < (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH)); EFX_POPULATE_DWORD_2(dword, ERF_DD_EVQ_IND_RPTR_FLAGS, EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH, ERF_DD_EVQ_IND_RPTR, (rptr >> ERF_DD_EVQ_IND_RPTR_WIDTH)); EFX_BAR_TBL_WRITED(enp, ER_DD_EVQ_INDIRECT, eep->ee_index, &dword, B_FALSE); EFX_POPULATE_DWORD_2(dword, ERF_DD_EVQ_IND_RPTR_FLAGS, EFE_DD_EVQ_IND_RPTR_FLAGS_LOW, ERF_DD_EVQ_IND_RPTR, rptr & ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1)); EFX_BAR_TBL_WRITED(enp, ER_DD_EVQ_INDIRECT, eep->ee_index, &dword, B_FALSE); } else { EFX_POPULATE_DWORD_1(dword, ERF_DZ_EVQ_RPTR, rptr); EFX_BAR_TBL_WRITED(enp, ER_DZ_EVQ_RPTR_REG, eep->ee_index, &dword, B_FALSE); } return (0); } static __checkReturn efx_rc_t efx_mcdi_driver_event( __in efx_nic_t *enp, __in uint32_t evq, __in efx_qword_t data) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_DRIVER_EVENT_IN_LEN, MC_CMD_DRIVER_EVENT_OUT_LEN)]; efx_rc_t rc; req.emr_cmd = MC_CMD_DRIVER_EVENT; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_DRIVER_EVENT_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_DRIVER_EVENT_OUT_LEN; MCDI_IN_SET_DWORD(req, DRIVER_EVENT_IN_EVQ, evq); MCDI_IN_SET_DWORD(req, DRIVER_EVENT_IN_DATA_LO, EFX_QWORD_FIELD(data, EFX_DWORD_0)); MCDI_IN_SET_DWORD(req, DRIVER_EVENT_IN_DATA_HI, EFX_QWORD_FIELD(data, EFX_DWORD_1)); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_ev_qpost( __in efx_evq_t *eep, __in uint16_t data) { efx_nic_t *enp = eep->ee_enp; efx_qword_t event; EFX_POPULATE_QWORD_3(event, ESF_DZ_DRV_CODE, ESE_DZ_EV_CODE_DRV_GEN_EV, ESF_DZ_DRV_SUB_CODE, 0, ESF_DZ_DRV_SUB_DATA_DW0, (uint32_t)data); (void) efx_mcdi_driver_event(enp, eep->ee_index, event); } __checkReturn efx_rc_t ef10_ev_qmoderate( __in efx_evq_t *eep, __in unsigned int us) { efx_nic_t *enp = eep->ee_enp; efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_dword_t dword; uint32_t mode; efx_rc_t rc; /* Check that hardware and MCDI use the same timer MODE values */ EFX_STATIC_ASSERT(FFE_CZ_TIMER_MODE_DIS == MC_CMD_SET_EVQ_TMR_IN_TIMER_MODE_DIS); EFX_STATIC_ASSERT(FFE_CZ_TIMER_MODE_IMMED_START == MC_CMD_SET_EVQ_TMR_IN_TIMER_MODE_IMMED_START); EFX_STATIC_ASSERT(FFE_CZ_TIMER_MODE_TRIG_START == MC_CMD_SET_EVQ_TMR_IN_TIMER_MODE_TRIG_START); EFX_STATIC_ASSERT(FFE_CZ_TIMER_MODE_INT_HLDOFF == MC_CMD_SET_EVQ_TMR_IN_TIMER_MODE_INT_HLDOFF); if (us > encp->enc_evq_timer_max_us) { rc = EINVAL; goto fail1; } /* If the value is zero then disable the timer */ if (us == 0) { mode = FFE_CZ_TIMER_MODE_DIS; } else { mode = FFE_CZ_TIMER_MODE_INT_HLDOFF; } if (encp->enc_bug61265_workaround) { uint32_t ns = us * 1000; rc = efx_mcdi_set_evq_tmr(enp, eep->ee_index, mode, ns); if (rc != 0) goto fail2; } else { unsigned int ticks; if ((rc = efx_ev_usecs_to_ticks(enp, us, &ticks)) != 0) goto fail3; if (encp->enc_bug35388_workaround) { EFX_POPULATE_DWORD_3(dword, ERF_DD_EVQ_IND_TIMER_FLAGS, EFE_DD_EVQ_IND_TIMER_FLAGS, ERF_DD_EVQ_IND_TIMER_MODE, mode, ERF_DD_EVQ_IND_TIMER_VAL, ticks); EFX_BAR_TBL_WRITED(enp, ER_DD_EVQ_INDIRECT, eep->ee_index, &dword, 0); } else { EFX_POPULATE_DWORD_2(dword, ERF_DZ_TC_TIMER_MODE, mode, ERF_DZ_TC_TIMER_VAL, ticks); EFX_BAR_TBL_WRITED(enp, ER_DZ_EVQ_TMR_REG, eep->ee_index, &dword, 0); } } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #if EFSYS_OPT_QSTATS void ef10_ev_qstats_update( __in efx_evq_t *eep, __inout_ecount(EV_NQSTATS) efsys_stat_t *stat) { unsigned int id; for (id = 0; id < EV_NQSTATS; id++) { efsys_stat_t *essp = &stat[id]; EFSYS_STAT_INCR(essp, eep->ee_stat[id]); eep->ee_stat[id] = 0; } } #endif /* EFSYS_OPT_QSTATS */ static __checkReturn boolean_t ef10_ev_rx( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { efx_nic_t *enp = eep->ee_enp; uint32_t size; uint32_t label; uint32_t mac_class; uint32_t eth_tag_class; uint32_t l3_class; uint32_t l4_class; uint32_t next_read_lbits; uint16_t flags; boolean_t cont; boolean_t should_abort; efx_evq_rxq_state_t *eersp; unsigned int desc_count; unsigned int last_used_id; EFX_EV_QSTAT_INCR(eep, EV_RX); /* Discard events after RXQ/TXQ errors */ if (enp->en_reset_flags & (EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR)) return (B_FALSE); /* Basic packet information */ size = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_BYTES); next_read_lbits = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_DSC_PTR_LBITS); label = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_QLABEL); eth_tag_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ETH_TAG_CLASS); mac_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_MAC_CLASS); l3_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_L3_CLASS); l4_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_L4_CLASS); cont = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_CONT); if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_DROP_EVENT) != 0) { /* Drop this event */ return (B_FALSE); } flags = 0; if (cont != 0) { /* * This may be part of a scattered frame, or it may be a * truncated frame if scatter is disabled on this RXQ. * Overlength frames can be received if e.g. a VF is configured * for 1500 MTU but connected to a port set to 9000 MTU * (see bug56567). * FIXME: There is not yet any driver that supports scatter on * Huntington. Scatter support is required for OSX. */ flags |= EFX_PKT_CONT; } if (mac_class == ESE_DZ_MAC_CLASS_UCAST) flags |= EFX_PKT_UNICAST; /* Increment the count of descriptors read */ eersp = &eep->ee_rxq_state[label]; desc_count = (next_read_lbits - eersp->eers_rx_read_ptr) & EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS); eersp->eers_rx_read_ptr += desc_count; /* * FIXME: add error checking to make sure this a batched event. * This could also be an aborted scatter, see Bug36629. */ if (desc_count > 1) { EFX_EV_QSTAT_INCR(eep, EV_RX_BATCH); flags |= EFX_PKT_PREFIX_LEN; } /* Calculate the index of the last descriptor consumed */ last_used_id = (eersp->eers_rx_read_ptr - 1) & eersp->eers_rx_mask; /* Check for errors that invalidate checksum and L3/L4 fields */ if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ECC_ERR) != 0) { /* RX frame truncated (error flag is misnamed) */ EFX_EV_QSTAT_INCR(eep, EV_RX_FRM_TRUNC); flags |= EFX_DISCARD; goto deliver; } if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ECRC_ERR) != 0) { /* Bad Ethernet frame CRC */ EFX_EV_QSTAT_INCR(eep, EV_RX_ETH_CRC_ERR); flags |= EFX_DISCARD; goto deliver; } if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_PARSE_INCOMPLETE)) { /* * Hardware parse failed, due to malformed headers * or headers that are too long for the parser. * Headers and checksums must be validated by the host. */ /* TODO: EFX_EV_QSTAT_INCR(eep, EV_RX_PARSE_INCOMPLETE); */ goto deliver; } if ((eth_tag_class == ESE_DZ_ETH_TAG_CLASS_VLAN1) || (eth_tag_class == ESE_DZ_ETH_TAG_CLASS_VLAN2)) { flags |= EFX_PKT_VLAN_TAGGED; } switch (l3_class) { case ESE_DZ_L3_CLASS_IP4: case ESE_DZ_L3_CLASS_IP4_FRAG: flags |= EFX_PKT_IPV4; if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_IPCKSUM_ERR)) { EFX_EV_QSTAT_INCR(eep, EV_RX_IPV4_HDR_CHKSUM_ERR); } else { flags |= EFX_CKSUM_IPV4; } if (l4_class == ESE_DZ_L4_CLASS_TCP) { EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_IPV4); flags |= EFX_PKT_TCP; } else if (l4_class == ESE_DZ_L4_CLASS_UDP) { EFX_EV_QSTAT_INCR(eep, EV_RX_UDP_IPV4); flags |= EFX_PKT_UDP; } else { EFX_EV_QSTAT_INCR(eep, EV_RX_OTHER_IPV4); } break; case ESE_DZ_L3_CLASS_IP6: case ESE_DZ_L3_CLASS_IP6_FRAG: flags |= EFX_PKT_IPV6; if (l4_class == ESE_DZ_L4_CLASS_TCP) { EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_IPV6); flags |= EFX_PKT_TCP; } else if (l4_class == ESE_DZ_L4_CLASS_UDP) { EFX_EV_QSTAT_INCR(eep, EV_RX_UDP_IPV6); flags |= EFX_PKT_UDP; } else { EFX_EV_QSTAT_INCR(eep, EV_RX_OTHER_IPV6); } break; default: EFX_EV_QSTAT_INCR(eep, EV_RX_NON_IP); break; } if (flags & (EFX_PKT_TCP | EFX_PKT_UDP)) { if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) { EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_UDP_CHKSUM_ERR); } else { flags |= EFX_CKSUM_TCPUDP; } } deliver: /* If we're not discarding the packet then it is ok */ if (~flags & EFX_DISCARD) EFX_EV_QSTAT_INCR(eep, EV_RX_OK); EFSYS_ASSERT(eecp->eec_rx != NULL); should_abort = eecp->eec_rx(arg, label, last_used_id, size, flags); return (should_abort); } static __checkReturn boolean_t ef10_ev_tx( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { efx_nic_t *enp = eep->ee_enp; uint32_t id; uint32_t label; boolean_t should_abort; EFX_EV_QSTAT_INCR(eep, EV_TX); /* Discard events after RXQ/TXQ errors */ if (enp->en_reset_flags & (EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR)) return (B_FALSE); if (EFX_QWORD_FIELD(*eqp, ESF_DZ_TX_DROP_EVENT) != 0) { /* Drop this event */ return (B_FALSE); } /* Per-packet TX completion (was per-descriptor for Falcon/Siena) */ id = EFX_QWORD_FIELD(*eqp, ESF_DZ_TX_DESCR_INDX); label = EFX_QWORD_FIELD(*eqp, ESF_DZ_TX_QLABEL); EFSYS_PROBE2(tx_complete, uint32_t, label, uint32_t, id); EFSYS_ASSERT(eecp->eec_tx != NULL); should_abort = eecp->eec_tx(arg, label, id); return (should_abort); } static __checkReturn boolean_t ef10_ev_driver( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { unsigned int code; boolean_t should_abort; EFX_EV_QSTAT_INCR(eep, EV_DRIVER); should_abort = B_FALSE; code = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_SUB_CODE); switch (code) { case ESE_DZ_DRV_TIMER_EV: { uint32_t id; id = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_TMR_ID); EFSYS_ASSERT(eecp->eec_timer != NULL); should_abort = eecp->eec_timer(arg, id); break; } case ESE_DZ_DRV_WAKE_UP_EV: { uint32_t id; id = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_EVQ_ID); EFSYS_ASSERT(eecp->eec_wake_up != NULL); should_abort = eecp->eec_wake_up(arg, id); break; } case ESE_DZ_DRV_START_UP_EV: EFSYS_ASSERT(eecp->eec_initialized != NULL); should_abort = eecp->eec_initialized(arg); break; default: EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index, uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0)); break; } return (should_abort); } static __checkReturn boolean_t ef10_ev_drv_gen( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { uint32_t data; boolean_t should_abort; EFX_EV_QSTAT_INCR(eep, EV_DRV_GEN); should_abort = B_FALSE; data = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_SUB_DATA_DW0); if (data >= ((uint32_t)1 << 16)) { EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index, uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0)); return (B_TRUE); } EFSYS_ASSERT(eecp->eec_software != NULL); should_abort = eecp->eec_software(arg, (uint16_t)data); return (should_abort); } static __checkReturn boolean_t ef10_ev_mcdi( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { efx_nic_t *enp = eep->ee_enp; unsigned int code; boolean_t should_abort = B_FALSE; EFX_EV_QSTAT_INCR(eep, EV_MCDI_RESPONSE); code = EFX_QWORD_FIELD(*eqp, MCDI_EVENT_CODE); switch (code) { case MCDI_EVENT_CODE_BADSSERT: efx_mcdi_ev_death(enp, EINTR); break; case MCDI_EVENT_CODE_CMDDONE: efx_mcdi_ev_cpl(enp, MCDI_EV_FIELD(eqp, CMDDONE_SEQ), MCDI_EV_FIELD(eqp, CMDDONE_DATALEN), MCDI_EV_FIELD(eqp, CMDDONE_ERRNO)); break; #if EFSYS_OPT_MCDI_PROXY_AUTH case MCDI_EVENT_CODE_PROXY_RESPONSE: /* * This event notifies a function that an authorization request * has been processed. If the request was authorized then the * function can now re-send the original MCDI request. * See SF-113652-SW "SR-IOV Proxied Network Access Control". */ efx_mcdi_ev_proxy_response(enp, MCDI_EV_FIELD(eqp, PROXY_RESPONSE_HANDLE), MCDI_EV_FIELD(eqp, PROXY_RESPONSE_RC)); break; #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */ case MCDI_EVENT_CODE_LINKCHANGE: { efx_link_mode_t link_mode; ef10_phy_link_ev(enp, eqp, &link_mode); should_abort = eecp->eec_link_change(arg, link_mode); break; } case MCDI_EVENT_CODE_SENSOREVT: { #if EFSYS_OPT_MON_STATS efx_mon_stat_t id; efx_mon_stat_value_t value; efx_rc_t rc; /* Decode monitor stat for MCDI sensor (if supported) */ if ((rc = mcdi_mon_ev(enp, eqp, &id, &value)) == 0) { /* Report monitor stat change */ should_abort = eecp->eec_monitor(arg, id, value); } else if (rc == ENOTSUP) { should_abort = eecp->eec_exception(arg, EFX_EXCEPTION_UNKNOWN_SENSOREVT, MCDI_EV_FIELD(eqp, DATA)); } else { EFSYS_ASSERT(rc == ENODEV); /* Wrong port */ } #endif break; } case MCDI_EVENT_CODE_SCHEDERR: /* Informational only */ break; case MCDI_EVENT_CODE_REBOOT: /* Falcon/Siena only (should not been seen with Huntington). */ efx_mcdi_ev_death(enp, EIO); break; case MCDI_EVENT_CODE_MC_REBOOT: /* MC_REBOOT event is used for Huntington (EF10) and later. */ efx_mcdi_ev_death(enp, EIO); break; case MCDI_EVENT_CODE_MAC_STATS_DMA: #if EFSYS_OPT_MAC_STATS if (eecp->eec_mac_stats != NULL) { eecp->eec_mac_stats(arg, MCDI_EV_FIELD(eqp, MAC_STATS_DMA_GENERATION)); } #endif break; case MCDI_EVENT_CODE_FWALERT: { uint32_t reason = MCDI_EV_FIELD(eqp, FWALERT_REASON); if (reason == MCDI_EVENT_FWALERT_REASON_SRAM_ACCESS) should_abort = eecp->eec_exception(arg, EFX_EXCEPTION_FWALERT_SRAM, MCDI_EV_FIELD(eqp, FWALERT_DATA)); else should_abort = eecp->eec_exception(arg, EFX_EXCEPTION_UNKNOWN_FWALERT, MCDI_EV_FIELD(eqp, DATA)); break; } case MCDI_EVENT_CODE_TX_ERR: { /* * After a TXQ error is detected, firmware sends a TX_ERR event. * This may be followed by TX completions (which we discard), * and then finally by a TX_FLUSH event. Firmware destroys the * TXQ automatically after sending the TX_FLUSH event. */ enp->en_reset_flags |= EFX_RESET_TXQ_ERR; EFSYS_PROBE2(tx_descq_err, uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0)); /* Inform the driver that a reset is required. */ eecp->eec_exception(arg, EFX_EXCEPTION_TX_ERROR, MCDI_EV_FIELD(eqp, TX_ERR_DATA)); break; } case MCDI_EVENT_CODE_TX_FLUSH: { uint32_t txq_index = MCDI_EV_FIELD(eqp, TX_FLUSH_TXQ); /* * EF10 firmware sends two TX_FLUSH events: one to the txq's * event queue, and one to evq 0 (with TX_FLUSH_TO_DRIVER set). * We want to wait for all completions, so ignore the events * with TX_FLUSH_TO_DRIVER. */ if (MCDI_EV_FIELD(eqp, TX_FLUSH_TO_DRIVER) != 0) { should_abort = B_FALSE; break; } EFX_EV_QSTAT_INCR(eep, EV_DRIVER_TX_DESCQ_FLS_DONE); EFSYS_PROBE1(tx_descq_fls_done, uint32_t, txq_index); EFSYS_ASSERT(eecp->eec_txq_flush_done != NULL); should_abort = eecp->eec_txq_flush_done(arg, txq_index); break; } case MCDI_EVENT_CODE_RX_ERR: { /* * After an RXQ error is detected, firmware sends an RX_ERR * event. This may be followed by RX events (which we discard), * and then finally by an RX_FLUSH event. Firmware destroys the * RXQ automatically after sending the RX_FLUSH event. */ enp->en_reset_flags |= EFX_RESET_RXQ_ERR; EFSYS_PROBE2(rx_descq_err, uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0)); /* Inform the driver that a reset is required. */ eecp->eec_exception(arg, EFX_EXCEPTION_RX_ERROR, MCDI_EV_FIELD(eqp, RX_ERR_DATA)); break; } case MCDI_EVENT_CODE_RX_FLUSH: { uint32_t rxq_index = MCDI_EV_FIELD(eqp, RX_FLUSH_RXQ); /* * EF10 firmware sends two RX_FLUSH events: one to the rxq's * event queue, and one to evq 0 (with RX_FLUSH_TO_DRIVER set). * We want to wait for all completions, so ignore the events * with RX_FLUSH_TO_DRIVER. */ if (MCDI_EV_FIELD(eqp, RX_FLUSH_TO_DRIVER) != 0) { should_abort = B_FALSE; break; } EFX_EV_QSTAT_INCR(eep, EV_DRIVER_RX_DESCQ_FLS_DONE); EFSYS_PROBE1(rx_descq_fls_done, uint32_t, rxq_index); EFSYS_ASSERT(eecp->eec_rxq_flush_done != NULL); should_abort = eecp->eec_rxq_flush_done(arg, rxq_index); break; } default: EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index, uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0)); break; } return (should_abort); } void ef10_ev_rxlabel_init( __in efx_evq_t *eep, __in efx_rxq_t *erp, __in unsigned int label) { efx_evq_rxq_state_t *eersp; EFSYS_ASSERT3U(label, <, EFX_ARRAY_SIZE(eep->ee_rxq_state)); eersp = &eep->ee_rxq_state[label]; EFSYS_ASSERT3U(eersp->eers_rx_mask, ==, 0); eersp->eers_rx_read_ptr = 0; eersp->eers_rx_mask = erp->er_mask; } void ef10_ev_rxlabel_fini( __in efx_evq_t *eep, __in unsigned int label) { efx_evq_rxq_state_t *eersp; EFSYS_ASSERT3U(label, <, EFX_ARRAY_SIZE(eep->ee_rxq_state)); eersp = &eep->ee_rxq_state[label]; EFSYS_ASSERT3U(eersp->eers_rx_mask, !=, 0); eersp->eers_rx_read_ptr = 0; eersp->eers_rx_mask = 0; } #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */ Index: head/sys/dev/sfxge/common/ef10_impl.h =================================================================== --- head/sys/dev/sfxge/common/ef10_impl.h (revision 310712) +++ head/sys/dev/sfxge/common/ef10_impl.h (revision 310713) @@ -1,1096 +1,1097 @@ /*- * Copyright (c) 2015-2016 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. * * $FreeBSD$ */ #ifndef _SYS_EF10_IMPL_H #define _SYS_EF10_IMPL_H #ifdef __cplusplus extern "C" { #endif #if (EFSYS_OPT_HUNTINGTON && EFSYS_OPT_MEDFORD) #define EF10_MAX_PIOBUF_NBUFS MAX(HUNT_PIOBUF_NBUFS, MEDFORD_PIOBUF_NBUFS) #elif EFSYS_OPT_HUNTINGTON #define EF10_MAX_PIOBUF_NBUFS HUNT_PIOBUF_NBUFS #elif EFSYS_OPT_MEDFORD #define EF10_MAX_PIOBUF_NBUFS MEDFORD_PIOBUF_NBUFS #endif /* * FIXME: This is just a power of 2 which fits in an MCDI v1 message, and could * possibly be increased, or the write size reported by newer firmware used * instead. */ #define EF10_NVRAM_CHUNK 0x80 /* Alignment requirement for value written to RX WPTR: * the WPTR must be aligned to an 8 descriptor boundary */ #define EF10_RX_WPTR_ALIGN 8 /* * Max byte offset into the packet the TCP header must start for the hardware * to be able to parse the packet correctly. */ #define EF10_TCP_HEADER_OFFSET_LIMIT 208 /* Invalid RSS context handle */ #define EF10_RSS_CONTEXT_INVALID (0xffffffff) /* EV */ __checkReturn efx_rc_t ef10_ev_init( __in efx_nic_t *enp); void ef10_ev_fini( __in efx_nic_t *enp); __checkReturn efx_rc_t ef10_ev_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in uint32_t us, + __in uint32_t flags, __in efx_evq_t *eep); void ef10_ev_qdestroy( __in efx_evq_t *eep); __checkReturn efx_rc_t ef10_ev_qprime( __in efx_evq_t *eep, __in unsigned int count); void ef10_ev_qpost( __in efx_evq_t *eep, __in uint16_t data); __checkReturn efx_rc_t ef10_ev_qmoderate( __in efx_evq_t *eep, __in unsigned int us); #if EFSYS_OPT_QSTATS void ef10_ev_qstats_update( __in efx_evq_t *eep, __inout_ecount(EV_NQSTATS) efsys_stat_t *stat); #endif /* EFSYS_OPT_QSTATS */ void ef10_ev_rxlabel_init( __in efx_evq_t *eep, __in efx_rxq_t *erp, __in unsigned int label); void ef10_ev_rxlabel_fini( __in efx_evq_t *eep, __in unsigned int label); /* INTR */ __checkReturn efx_rc_t ef10_intr_init( __in efx_nic_t *enp, __in efx_intr_type_t type, __in efsys_mem_t *esmp); void ef10_intr_enable( __in efx_nic_t *enp); void ef10_intr_disable( __in efx_nic_t *enp); void ef10_intr_disable_unlocked( __in efx_nic_t *enp); __checkReturn efx_rc_t ef10_intr_trigger( __in efx_nic_t *enp, __in unsigned int level); void ef10_intr_status_line( __in efx_nic_t *enp, __out boolean_t *fatalp, __out uint32_t *qmaskp); void ef10_intr_status_message( __in efx_nic_t *enp, __in unsigned int message, __out boolean_t *fatalp); void ef10_intr_fatal( __in efx_nic_t *enp); void ef10_intr_fini( __in efx_nic_t *enp); /* NIC */ extern __checkReturn efx_rc_t ef10_nic_probe( __in efx_nic_t *enp); extern __checkReturn efx_rc_t ef10_nic_set_drv_limits( __inout efx_nic_t *enp, __in efx_drv_limits_t *edlp); extern __checkReturn efx_rc_t ef10_nic_get_vi_pool( __in efx_nic_t *enp, __out uint32_t *vi_countp); extern __checkReturn efx_rc_t ef10_nic_get_bar_region( __in efx_nic_t *enp, __in efx_nic_region_t region, __out uint32_t *offsetp, __out size_t *sizep); extern __checkReturn efx_rc_t ef10_nic_reset( __in efx_nic_t *enp); extern __checkReturn efx_rc_t ef10_nic_init( __in efx_nic_t *enp); #if EFSYS_OPT_DIAG extern __checkReturn efx_rc_t ef10_nic_register_test( __in efx_nic_t *enp); #endif /* EFSYS_OPT_DIAG */ extern void ef10_nic_fini( __in efx_nic_t *enp); extern void ef10_nic_unprobe( __in efx_nic_t *enp); /* MAC */ extern __checkReturn efx_rc_t ef10_mac_poll( __in efx_nic_t *enp, __out efx_link_mode_t *link_modep); extern __checkReturn efx_rc_t ef10_mac_up( __in efx_nic_t *enp, __out boolean_t *mac_upp); extern __checkReturn efx_rc_t ef10_mac_addr_set( __in efx_nic_t *enp); extern __checkReturn efx_rc_t ef10_mac_pdu_set( __in efx_nic_t *enp); extern __checkReturn efx_rc_t ef10_mac_pdu_get( __in efx_nic_t *enp, __out size_t *pdu); extern __checkReturn efx_rc_t ef10_mac_reconfigure( __in efx_nic_t *enp); extern __checkReturn efx_rc_t ef10_mac_multicast_list_set( __in efx_nic_t *enp); extern __checkReturn efx_rc_t ef10_mac_filter_default_rxq_set( __in efx_nic_t *enp, __in efx_rxq_t *erp, __in boolean_t using_rss); extern void ef10_mac_filter_default_rxq_clear( __in efx_nic_t *enp); #if EFSYS_OPT_LOOPBACK extern __checkReturn efx_rc_t ef10_mac_loopback_set( __in efx_nic_t *enp, __in efx_link_mode_t link_mode, __in efx_loopback_type_t loopback_type); #endif /* EFSYS_OPT_LOOPBACK */ #if EFSYS_OPT_MAC_STATS extern __checkReturn efx_rc_t ef10_mac_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_MAC_NSTATS) efsys_stat_t *stat, __inout_opt uint32_t *generationp); #endif /* EFSYS_OPT_MAC_STATS */ /* MCDI */ #if EFSYS_OPT_MCDI extern __checkReturn efx_rc_t ef10_mcdi_init( __in efx_nic_t *enp, __in const efx_mcdi_transport_t *mtp); extern void ef10_mcdi_fini( __in efx_nic_t *enp); extern void ef10_mcdi_send_request( __in efx_nic_t *enp, __in_bcount(hdr_len) void *hdrp, __in size_t hdr_len, __in_bcount(sdu_len) void *sdup, __in size_t sdu_len); extern __checkReturn boolean_t ef10_mcdi_poll_response( __in efx_nic_t *enp); extern void ef10_mcdi_read_response( __in efx_nic_t *enp, __out_bcount(length) void *bufferp, __in size_t offset, __in size_t length); extern efx_rc_t ef10_mcdi_poll_reboot( __in efx_nic_t *enp); extern __checkReturn efx_rc_t ef10_mcdi_feature_supported( __in efx_nic_t *enp, __in efx_mcdi_feature_id_t id, __out boolean_t *supportedp); #endif /* EFSYS_OPT_MCDI */ /* NVRAM */ #if EFSYS_OPT_NVRAM || EFSYS_OPT_VPD extern __checkReturn efx_rc_t ef10_nvram_buf_read_tlv( __in efx_nic_t *enp, __in_bcount(max_seg_size) caddr_t seg_data, __in size_t max_seg_size, __in uint32_t tag, __deref_out_bcount_opt(*sizep) caddr_t *datap, __out size_t *sizep); extern __checkReturn efx_rc_t ef10_nvram_buf_write_tlv( __inout_bcount(partn_size) caddr_t partn_data, __in size_t partn_size, __in uint32_t tag, __in_bcount(tag_size) caddr_t tag_data, __in size_t tag_size, __out size_t *total_lengthp); extern __checkReturn efx_rc_t ef10_nvram_partn_read_tlv( __in efx_nic_t *enp, __in uint32_t partn, __in uint32_t tag, __deref_out_bcount_opt(*sizep) caddr_t *datap, __out size_t *sizep); extern __checkReturn efx_rc_t ef10_nvram_partn_write_tlv( __in efx_nic_t *enp, __in uint32_t partn, __in uint32_t tag, __in_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t ef10_nvram_partn_write_segment_tlv( __in efx_nic_t *enp, __in uint32_t partn, __in uint32_t tag, __in_bcount(size) caddr_t data, __in size_t size, __in boolean_t all_segments); extern __checkReturn efx_rc_t ef10_nvram_partn_lock( __in efx_nic_t *enp, __in uint32_t partn); extern void ef10_nvram_partn_unlock( __in efx_nic_t *enp, __in uint32_t partn); #endif /* EFSYS_OPT_NVRAM || EFSYS_OPT_VPD */ #if EFSYS_OPT_NVRAM #if EFSYS_OPT_DIAG extern __checkReturn efx_rc_t ef10_nvram_test( __in efx_nic_t *enp); #endif /* EFSYS_OPT_DIAG */ extern __checkReturn efx_rc_t ef10_nvram_type_to_partn( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out uint32_t *partnp); extern __checkReturn efx_rc_t ef10_nvram_partn_size( __in efx_nic_t *enp, __in uint32_t partn, __out size_t *sizep); extern __checkReturn efx_rc_t ef10_nvram_partn_rw_start( __in efx_nic_t *enp, __in uint32_t partn, __out size_t *chunk_sizep); extern __checkReturn efx_rc_t ef10_nvram_partn_read_mode( __in efx_nic_t *enp, __in uint32_t partn, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size, __in uint32_t mode); extern __checkReturn efx_rc_t ef10_nvram_partn_read( __in efx_nic_t *enp, __in uint32_t partn, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t ef10_nvram_partn_erase( __in efx_nic_t *enp, __in uint32_t partn, __in unsigned int offset, __in size_t size); extern __checkReturn efx_rc_t ef10_nvram_partn_write( __in efx_nic_t *enp, __in uint32_t partn, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size); extern void ef10_nvram_partn_rw_finish( __in efx_nic_t *enp, __in uint32_t partn); extern __checkReturn efx_rc_t ef10_nvram_partn_get_version( __in efx_nic_t *enp, __in uint32_t partn, __out uint32_t *subtypep, __out_ecount(4) uint16_t version[4]); extern __checkReturn efx_rc_t ef10_nvram_partn_set_version( __in efx_nic_t *enp, __in uint32_t partn, __in_ecount(4) uint16_t version[4]); extern __checkReturn efx_rc_t ef10_nvram_buffer_validate( __in efx_nic_t *enp, __in uint32_t partn, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size); extern __checkReturn efx_rc_t ef10_nvram_buffer_create( __in efx_nic_t *enp, __in uint16_t partn_type, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size); extern __checkReturn efx_rc_t ef10_nvram_buffer_find_item_start( __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __out uint32_t *startp ); extern __checkReturn efx_rc_t ef10_nvram_buffer_find_end( __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __in uint32_t offset, __out uint32_t *endp ); extern __checkReturn __success(return != B_FALSE) boolean_t ef10_nvram_buffer_find_item( __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __in uint32_t offset, __out uint32_t *startp, __out uint32_t *lengthp ); extern __checkReturn efx_rc_t ef10_nvram_buffer_get_item( __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __in uint32_t offset, __in uint32_t length, __out_bcount_part(item_max_size, *lengthp) caddr_t itemp, __in size_t item_max_size, __out uint32_t *lengthp ); extern __checkReturn efx_rc_t ef10_nvram_buffer_insert_item( __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __in uint32_t offset, __in_bcount(length) caddr_t keyp, __in uint32_t length, __out uint32_t *lengthp ); extern __checkReturn efx_rc_t ef10_nvram_buffer_delete_item( __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __in uint32_t offset, __in uint32_t length, __in uint32_t end ); extern __checkReturn efx_rc_t ef10_nvram_buffer_finish( __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size ); #endif /* EFSYS_OPT_NVRAM */ /* PHY */ typedef struct ef10_link_state_s { uint32_t els_adv_cap_mask; uint32_t els_lp_cap_mask; unsigned int els_fcntl; efx_link_mode_t els_link_mode; #if EFSYS_OPT_LOOPBACK efx_loopback_type_t els_loopback; #endif boolean_t els_mac_up; } ef10_link_state_t; extern void ef10_phy_link_ev( __in efx_nic_t *enp, __in efx_qword_t *eqp, __out efx_link_mode_t *link_modep); extern __checkReturn efx_rc_t ef10_phy_get_link( __in efx_nic_t *enp, __out ef10_link_state_t *elsp); extern __checkReturn efx_rc_t ef10_phy_power( __in efx_nic_t *enp, __in boolean_t on); extern __checkReturn efx_rc_t ef10_phy_reconfigure( __in efx_nic_t *enp); extern __checkReturn efx_rc_t ef10_phy_verify( __in efx_nic_t *enp); extern __checkReturn efx_rc_t ef10_phy_oui_get( __in efx_nic_t *enp, __out uint32_t *ouip); #if EFSYS_OPT_PHY_STATS extern __checkReturn efx_rc_t ef10_phy_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_PHY_NSTATS) uint32_t *stat); #endif /* EFSYS_OPT_PHY_STATS */ /* TX */ extern __checkReturn efx_rc_t ef10_tx_init( __in efx_nic_t *enp); extern void ef10_tx_fini( __in efx_nic_t *enp); extern __checkReturn efx_rc_t ef10_tx_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in uint16_t flags, __in efx_evq_t *eep, __in efx_txq_t *etp, __out unsigned int *addedp); extern void ef10_tx_qdestroy( __in efx_txq_t *etp); extern __checkReturn efx_rc_t ef10_tx_qpost( __in efx_txq_t *etp, __in_ecount(n) efx_buffer_t *eb, __in unsigned int n, __in unsigned int completed, __inout unsigned int *addedp); extern void ef10_tx_qpush( __in efx_txq_t *etp, __in unsigned int added, __in unsigned int pushed); extern __checkReturn efx_rc_t ef10_tx_qpace( __in efx_txq_t *etp, __in unsigned int ns); extern __checkReturn efx_rc_t ef10_tx_qflush( __in efx_txq_t *etp); extern void ef10_tx_qenable( __in efx_txq_t *etp); extern __checkReturn efx_rc_t ef10_tx_qpio_enable( __in efx_txq_t *etp); extern void ef10_tx_qpio_disable( __in efx_txq_t *etp); extern __checkReturn efx_rc_t ef10_tx_qpio_write( __in efx_txq_t *etp, __in_ecount(buf_length) uint8_t *buffer, __in size_t buf_length, __in size_t pio_buf_offset); extern __checkReturn efx_rc_t ef10_tx_qpio_post( __in efx_txq_t *etp, __in size_t pkt_length, __in unsigned int completed, __inout unsigned int *addedp); extern __checkReturn efx_rc_t ef10_tx_qdesc_post( __in efx_txq_t *etp, __in_ecount(n) efx_desc_t *ed, __in unsigned int n, __in unsigned int completed, __inout unsigned int *addedp); extern void ef10_tx_qdesc_dma_create( __in efx_txq_t *etp, __in efsys_dma_addr_t addr, __in size_t size, __in boolean_t eop, __out efx_desc_t *edp); extern void ef10_tx_qdesc_tso_create( __in efx_txq_t *etp, __in uint16_t ipv4_id, __in uint32_t tcp_seq, __in uint8_t tcp_flags, __out efx_desc_t *edp); extern void ef10_tx_qdesc_tso2_create( __in efx_txq_t *etp, __in uint16_t ipv4_id, __in uint32_t tcp_seq, __in uint16_t tcp_mss, __out_ecount(count) efx_desc_t *edp, __in int count); extern void ef10_tx_qdesc_vlantci_create( __in efx_txq_t *etp, __in uint16_t vlan_tci, __out efx_desc_t *edp); #if EFSYS_OPT_QSTATS extern void ef10_tx_qstats_update( __in efx_txq_t *etp, __inout_ecount(TX_NQSTATS) efsys_stat_t *stat); #endif /* EFSYS_OPT_QSTATS */ typedef uint32_t efx_piobuf_handle_t; #define EFX_PIOBUF_HANDLE_INVALID ((efx_piobuf_handle_t) -1) extern __checkReturn efx_rc_t ef10_nic_pio_alloc( __inout efx_nic_t *enp, __out uint32_t *bufnump, __out efx_piobuf_handle_t *handlep, __out uint32_t *blknump, __out uint32_t *offsetp, __out size_t *sizep); extern __checkReturn efx_rc_t ef10_nic_pio_free( __inout efx_nic_t *enp, __in uint32_t bufnum, __in uint32_t blknum); extern __checkReturn efx_rc_t ef10_nic_pio_link( __inout efx_nic_t *enp, __in uint32_t vi_index, __in efx_piobuf_handle_t handle); extern __checkReturn efx_rc_t ef10_nic_pio_unlink( __inout efx_nic_t *enp, __in uint32_t vi_index); /* VPD */ #if EFSYS_OPT_VPD extern __checkReturn efx_rc_t ef10_vpd_init( __in efx_nic_t *enp); extern __checkReturn efx_rc_t ef10_vpd_size( __in efx_nic_t *enp, __out size_t *sizep); extern __checkReturn efx_rc_t ef10_vpd_read( __in efx_nic_t *enp, __out_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t ef10_vpd_verify( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t ef10_vpd_reinit( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t ef10_vpd_get( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size, __inout efx_vpd_value_t *evvp); extern __checkReturn efx_rc_t ef10_vpd_set( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size, __in efx_vpd_value_t *evvp); extern __checkReturn efx_rc_t ef10_vpd_next( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size, __out efx_vpd_value_t *evvp, __inout unsigned int *contp); extern __checkReturn efx_rc_t ef10_vpd_write( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern void ef10_vpd_fini( __in efx_nic_t *enp); #endif /* EFSYS_OPT_VPD */ /* RX */ extern __checkReturn efx_rc_t ef10_rx_init( __in efx_nic_t *enp); #if EFSYS_OPT_RX_SCATTER extern __checkReturn efx_rc_t ef10_rx_scatter_enable( __in efx_nic_t *enp, __in unsigned int buf_size); #endif /* EFSYS_OPT_RX_SCATTER */ #if EFSYS_OPT_RX_SCALE extern __checkReturn efx_rc_t ef10_rx_scale_mode_set( __in efx_nic_t *enp, __in efx_rx_hash_alg_t alg, __in efx_rx_hash_type_t type, __in boolean_t insert); extern __checkReturn efx_rc_t ef10_rx_scale_key_set( __in efx_nic_t *enp, __in_ecount(n) uint8_t *key, __in size_t n); extern __checkReturn efx_rc_t ef10_rx_scale_tbl_set( __in efx_nic_t *enp, __in_ecount(n) unsigned int *table, __in size_t n); extern __checkReturn uint32_t ef10_rx_prefix_hash( __in efx_nic_t *enp, __in efx_rx_hash_alg_t func, __in uint8_t *buffer); #endif /* EFSYS_OPT_RX_SCALE */ extern __checkReturn efx_rc_t ef10_rx_prefix_pktlen( __in efx_nic_t *enp, __in uint8_t *buffer, __out uint16_t *lengthp); extern void ef10_rx_qpost( __in efx_rxq_t *erp, __in_ecount(n) efsys_dma_addr_t *addrp, __in size_t size, __in unsigned int n, __in unsigned int completed, __in unsigned int added); extern void ef10_rx_qpush( __in efx_rxq_t *erp, __in unsigned int added, __inout unsigned int *pushedp); extern __checkReturn efx_rc_t ef10_rx_qflush( __in efx_rxq_t *erp); extern void ef10_rx_qenable( __in efx_rxq_t *erp); extern __checkReturn efx_rc_t ef10_rx_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in efx_rxq_type_t type, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in efx_evq_t *eep, __in efx_rxq_t *erp); extern void ef10_rx_qdestroy( __in efx_rxq_t *erp); extern void ef10_rx_fini( __in efx_nic_t *enp); #if EFSYS_OPT_FILTER typedef struct ef10_filter_handle_s { uint32_t efh_lo; uint32_t efh_hi; } ef10_filter_handle_t; typedef struct ef10_filter_entry_s { uintptr_t efe_spec; /* pointer to filter spec plus busy bit */ ef10_filter_handle_t efe_handle; } ef10_filter_entry_t; /* * BUSY flag indicates that an update is in progress. * AUTO_OLD flag is used to mark and sweep MAC packet filters. */ #define EFX_EF10_FILTER_FLAG_BUSY 1U #define EFX_EF10_FILTER_FLAG_AUTO_OLD 2U #define EFX_EF10_FILTER_FLAGS 3U /* * Size of the hash table used by the driver. Doesn't need to be the * same size as the hardware's table. */ #define EFX_EF10_FILTER_TBL_ROWS 8192 /* Only need to allow for one directed and one unknown unicast filter */ #define EFX_EF10_FILTER_UNICAST_FILTERS_MAX 2 /* Allow for the broadcast address to be added to the multicast list */ #define EFX_EF10_FILTER_MULTICAST_FILTERS_MAX (EFX_MAC_MULTICAST_LIST_MAX + 1) typedef struct ef10_filter_table_s { ef10_filter_entry_t eft_entry[EFX_EF10_FILTER_TBL_ROWS]; efx_rxq_t *eft_default_rxq; boolean_t eft_using_rss; uint32_t eft_unicst_filter_indexes[ EFX_EF10_FILTER_UNICAST_FILTERS_MAX]; uint32_t eft_unicst_filter_count; uint32_t eft_mulcst_filter_indexes[ EFX_EF10_FILTER_MULTICAST_FILTERS_MAX]; uint32_t eft_mulcst_filter_count; boolean_t eft_using_all_mulcst; } ef10_filter_table_t; __checkReturn efx_rc_t ef10_filter_init( __in efx_nic_t *enp); void ef10_filter_fini( __in efx_nic_t *enp); __checkReturn efx_rc_t ef10_filter_restore( __in efx_nic_t *enp); __checkReturn efx_rc_t ef10_filter_add( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec, __in boolean_t may_replace); __checkReturn efx_rc_t ef10_filter_delete( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec); extern __checkReturn efx_rc_t ef10_filter_supported_filters( __in efx_nic_t *enp, __out uint32_t *list, __out size_t *length); extern __checkReturn efx_rc_t ef10_filter_reconfigure( __in efx_nic_t *enp, __in_ecount(6) uint8_t const *mac_addr, __in boolean_t all_unicst, __in boolean_t mulcst, __in boolean_t all_mulcst, __in boolean_t brdcst, __in_ecount(6*count) uint8_t const *addrs, __in uint32_t count); extern void ef10_filter_get_default_rxq( __in efx_nic_t *enp, __out efx_rxq_t **erpp, __out boolean_t *using_rss); extern void ef10_filter_default_rxq_set( __in efx_nic_t *enp, __in efx_rxq_t *erp, __in boolean_t using_rss); extern void ef10_filter_default_rxq_clear( __in efx_nic_t *enp); #endif /* EFSYS_OPT_FILTER */ extern __checkReturn efx_rc_t efx_mcdi_get_function_info( __in efx_nic_t *enp, __out uint32_t *pfp, __out_opt uint32_t *vfp); extern __checkReturn efx_rc_t efx_mcdi_privilege_mask( __in efx_nic_t *enp, __in uint32_t pf, __in uint32_t vf, __out uint32_t *maskp); extern __checkReturn efx_rc_t efx_mcdi_get_port_assignment( __in efx_nic_t *enp, __out uint32_t *portp); extern __checkReturn efx_rc_t efx_mcdi_get_port_modes( __in efx_nic_t *enp, __out uint32_t *modesp, __out_opt uint32_t *current_modep); extern __checkReturn efx_rc_t ef10_nic_get_port_mode_bandwidth( __in uint32_t port_mode, __out uint32_t *bandwidth_mbpsp); extern __checkReturn efx_rc_t efx_mcdi_get_mac_address_pf( __in efx_nic_t *enp, __out_ecount_opt(6) uint8_t mac_addrp[6]); extern __checkReturn efx_rc_t efx_mcdi_get_mac_address_vf( __in efx_nic_t *enp, __out_ecount_opt(6) uint8_t mac_addrp[6]); extern __checkReturn efx_rc_t efx_mcdi_get_clock( __in efx_nic_t *enp, __out uint32_t *sys_freqp, __out uint32_t *dpcpu_freqp); extern __checkReturn efx_rc_t efx_mcdi_get_vector_cfg( __in efx_nic_t *enp, __out_opt uint32_t *vec_basep, __out_opt uint32_t *pf_nvecp, __out_opt uint32_t *vf_nvecp); extern __checkReturn efx_rc_t ef10_get_datapath_caps( __in efx_nic_t *enp); extern __checkReturn efx_rc_t ef10_get_privilege_mask( __in efx_nic_t *enp, __out uint32_t *maskp); extern __checkReturn efx_rc_t ef10_external_port_mapping( __in efx_nic_t *enp, __in uint32_t port, __out uint8_t *external_portp); #ifdef __cplusplus } #endif #endif /* _SYS_EF10_IMPL_H */ Index: head/sys/dev/sfxge/common/efx.h =================================================================== --- head/sys/dev/sfxge/common/efx.h (revision 310712) +++ head/sys/dev/sfxge/common/efx.h (revision 310713) @@ -1,2463 +1,2469 @@ /*- * Copyright (c) 2006-2016 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. * * $FreeBSD$ */ #ifndef _SYS_EFX_H #define _SYS_EFX_H #include "efsys.h" #include "efx_check.h" #include "efx_phy_ids.h" #ifdef __cplusplus extern "C" { #endif #define EFX_STATIC_ASSERT(_cond) \ ((void)sizeof(char[(_cond) ? 1 : -1])) #define EFX_ARRAY_SIZE(_array) \ (sizeof(_array) / sizeof((_array)[0])) #define EFX_FIELD_OFFSET(_type, _field) \ ((size_t) &(((_type *)0)->_field)) /* Return codes */ typedef __success(return == 0) int efx_rc_t; /* Chip families */ typedef enum efx_family_e { EFX_FAMILY_INVALID, EFX_FAMILY_FALCON, /* Obsolete and not supported */ EFX_FAMILY_SIENA, EFX_FAMILY_HUNTINGTON, EFX_FAMILY_MEDFORD, EFX_FAMILY_NTYPES } efx_family_t; extern __checkReturn efx_rc_t efx_family( __in uint16_t venid, __in uint16_t devid, __out efx_family_t *efp); #define EFX_PCI_VENID_SFC 0x1924 #define EFX_PCI_DEVID_FALCON 0x0710 /* SFC4000 */ #define EFX_PCI_DEVID_BETHPAGE 0x0803 /* SFC9020 */ #define EFX_PCI_DEVID_SIENA 0x0813 /* SFL9021 */ #define EFX_PCI_DEVID_SIENA_F1_UNINIT 0x0810 #define EFX_PCI_DEVID_HUNTINGTON_PF_UNINIT 0x0901 #define EFX_PCI_DEVID_FARMINGDALE 0x0903 /* SFC9120 PF */ #define EFX_PCI_DEVID_GREENPORT 0x0923 /* SFC9140 PF */ #define EFX_PCI_DEVID_FARMINGDALE_VF 0x1903 /* SFC9120 VF */ #define EFX_PCI_DEVID_GREENPORT_VF 0x1923 /* SFC9140 VF */ #define EFX_PCI_DEVID_MEDFORD_PF_UNINIT 0x0913 #define EFX_PCI_DEVID_MEDFORD 0x0A03 /* SFC9240 PF */ #define EFX_PCI_DEVID_MEDFORD_VF 0x1A03 /* SFC9240 VF */ #define EFX_MEM_BAR 2 /* Error codes */ enum { EFX_ERR_INVALID, EFX_ERR_SRAM_OOB, EFX_ERR_BUFID_DC_OOB, EFX_ERR_MEM_PERR, EFX_ERR_RBUF_OWN, EFX_ERR_TBUF_OWN, EFX_ERR_RDESQ_OWN, EFX_ERR_TDESQ_OWN, EFX_ERR_EVQ_OWN, EFX_ERR_EVFF_OFLO, EFX_ERR_ILL_ADDR, EFX_ERR_SRAM_PERR, EFX_ERR_NCODES }; /* Calculate the IEEE 802.3 CRC32 of a MAC addr */ extern __checkReturn uint32_t efx_crc32_calculate( __in uint32_t crc_init, __in_ecount(length) uint8_t const *input, __in int length); /* Type prototypes */ typedef struct efx_rxq_s efx_rxq_t; /* NIC */ typedef struct efx_nic_s efx_nic_t; #define EFX_NIC_FUNC_PRIMARY 0x00000001 #define EFX_NIC_FUNC_LINKCTRL 0x00000002 #define EFX_NIC_FUNC_TRUSTED 0x00000004 extern __checkReturn efx_rc_t efx_nic_create( __in efx_family_t family, __in efsys_identifier_t *esip, __in efsys_bar_t *esbp, __in efsys_lock_t *eslp, __deref_out efx_nic_t **enpp); extern __checkReturn efx_rc_t efx_nic_probe( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_nic_init( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_nic_reset( __in efx_nic_t *enp); #if EFSYS_OPT_DIAG extern __checkReturn efx_rc_t efx_nic_register_test( __in efx_nic_t *enp); #endif /* EFSYS_OPT_DIAG */ extern void efx_nic_fini( __in efx_nic_t *enp); extern void efx_nic_unprobe( __in efx_nic_t *enp); extern void efx_nic_destroy( __in efx_nic_t *enp); #define EFX_PCIE_LINK_SPEED_GEN1 1 #define EFX_PCIE_LINK_SPEED_GEN2 2 #define EFX_PCIE_LINK_SPEED_GEN3 3 typedef enum efx_pcie_link_performance_e { EFX_PCIE_LINK_PERFORMANCE_UNKNOWN_BANDWIDTH, EFX_PCIE_LINK_PERFORMANCE_SUBOPTIMAL_BANDWIDTH, EFX_PCIE_LINK_PERFORMANCE_SUBOPTIMAL_LATENCY, EFX_PCIE_LINK_PERFORMANCE_OPTIMAL } efx_pcie_link_performance_t; extern __checkReturn efx_rc_t efx_nic_calculate_pcie_link_bandwidth( __in uint32_t pcie_link_width, __in uint32_t pcie_link_gen, __out uint32_t *bandwidth_mbpsp); extern __checkReturn efx_rc_t efx_nic_check_pcie_link_speed( __in efx_nic_t *enp, __in uint32_t pcie_link_width, __in uint32_t pcie_link_gen, __out efx_pcie_link_performance_t *resultp); #if EFSYS_OPT_MCDI #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD /* Huntington and Medford require MCDIv2 commands */ #define WITH_MCDI_V2 1 #endif typedef struct efx_mcdi_req_s efx_mcdi_req_t; typedef enum efx_mcdi_exception_e { EFX_MCDI_EXCEPTION_MC_REBOOT, EFX_MCDI_EXCEPTION_MC_BADASSERT, } efx_mcdi_exception_t; #if EFSYS_OPT_MCDI_LOGGING typedef enum efx_log_msg_e { EFX_LOG_INVALID, EFX_LOG_MCDI_REQUEST, EFX_LOG_MCDI_RESPONSE, } efx_log_msg_t; #endif /* EFSYS_OPT_MCDI_LOGGING */ typedef struct efx_mcdi_transport_s { void *emt_context; efsys_mem_t *emt_dma_mem; void (*emt_execute)(void *, efx_mcdi_req_t *); void (*emt_ev_cpl)(void *); void (*emt_exception)(void *, efx_mcdi_exception_t); #if EFSYS_OPT_MCDI_LOGGING void (*emt_logger)(void *, efx_log_msg_t, void *, size_t, void *, size_t); #endif /* EFSYS_OPT_MCDI_LOGGING */ #if EFSYS_OPT_MCDI_PROXY_AUTH void (*emt_ev_proxy_response)(void *, uint32_t, efx_rc_t); #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */ } efx_mcdi_transport_t; extern __checkReturn efx_rc_t efx_mcdi_init( __in efx_nic_t *enp, __in const efx_mcdi_transport_t *mtp); extern __checkReturn efx_rc_t efx_mcdi_reboot( __in efx_nic_t *enp); void efx_mcdi_new_epoch( __in efx_nic_t *enp); extern void efx_mcdi_request_start( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __in boolean_t ev_cpl); extern __checkReturn boolean_t efx_mcdi_request_poll( __in efx_nic_t *enp); extern __checkReturn boolean_t efx_mcdi_request_abort( __in efx_nic_t *enp); extern void efx_mcdi_fini( __in efx_nic_t *enp); #endif /* EFSYS_OPT_MCDI */ /* INTR */ #define EFX_NINTR_SIENA 1024 typedef enum efx_intr_type_e { EFX_INTR_INVALID = 0, EFX_INTR_LINE, EFX_INTR_MESSAGE, EFX_INTR_NTYPES } efx_intr_type_t; #define EFX_INTR_SIZE (sizeof (efx_oword_t)) extern __checkReturn efx_rc_t efx_intr_init( __in efx_nic_t *enp, __in efx_intr_type_t type, __in efsys_mem_t *esmp); extern void efx_intr_enable( __in efx_nic_t *enp); extern void efx_intr_disable( __in efx_nic_t *enp); extern void efx_intr_disable_unlocked( __in efx_nic_t *enp); #define EFX_INTR_NEVQS 32 extern __checkReturn efx_rc_t efx_intr_trigger( __in efx_nic_t *enp, __in unsigned int level); extern void efx_intr_status_line( __in efx_nic_t *enp, __out boolean_t *fatalp, __out uint32_t *maskp); extern void efx_intr_status_message( __in efx_nic_t *enp, __in unsigned int message, __out boolean_t *fatalp); extern void efx_intr_fatal( __in efx_nic_t *enp); extern void efx_intr_fini( __in efx_nic_t *enp); /* MAC */ #if EFSYS_OPT_MAC_STATS /* START MKCONFIG GENERATED EfxHeaderMacBlock e323546097fd7c65 */ typedef enum efx_mac_stat_e { EFX_MAC_RX_OCTETS, EFX_MAC_RX_PKTS, EFX_MAC_RX_UNICST_PKTS, EFX_MAC_RX_MULTICST_PKTS, EFX_MAC_RX_BRDCST_PKTS, EFX_MAC_RX_PAUSE_PKTS, EFX_MAC_RX_LE_64_PKTS, EFX_MAC_RX_65_TO_127_PKTS, EFX_MAC_RX_128_TO_255_PKTS, EFX_MAC_RX_256_TO_511_PKTS, EFX_MAC_RX_512_TO_1023_PKTS, EFX_MAC_RX_1024_TO_15XX_PKTS, EFX_MAC_RX_GE_15XX_PKTS, EFX_MAC_RX_ERRORS, EFX_MAC_RX_FCS_ERRORS, EFX_MAC_RX_DROP_EVENTS, EFX_MAC_RX_FALSE_CARRIER_ERRORS, EFX_MAC_RX_SYMBOL_ERRORS, EFX_MAC_RX_ALIGN_ERRORS, EFX_MAC_RX_INTERNAL_ERRORS, EFX_MAC_RX_JABBER_PKTS, EFX_MAC_RX_LANE0_CHAR_ERR, EFX_MAC_RX_LANE1_CHAR_ERR, EFX_MAC_RX_LANE2_CHAR_ERR, EFX_MAC_RX_LANE3_CHAR_ERR, EFX_MAC_RX_LANE0_DISP_ERR, EFX_MAC_RX_LANE1_DISP_ERR, EFX_MAC_RX_LANE2_DISP_ERR, EFX_MAC_RX_LANE3_DISP_ERR, EFX_MAC_RX_MATCH_FAULT, EFX_MAC_RX_NODESC_DROP_CNT, EFX_MAC_TX_OCTETS, EFX_MAC_TX_PKTS, EFX_MAC_TX_UNICST_PKTS, EFX_MAC_TX_MULTICST_PKTS, EFX_MAC_TX_BRDCST_PKTS, EFX_MAC_TX_PAUSE_PKTS, EFX_MAC_TX_LE_64_PKTS, EFX_MAC_TX_65_TO_127_PKTS, EFX_MAC_TX_128_TO_255_PKTS, EFX_MAC_TX_256_TO_511_PKTS, EFX_MAC_TX_512_TO_1023_PKTS, EFX_MAC_TX_1024_TO_15XX_PKTS, EFX_MAC_TX_GE_15XX_PKTS, EFX_MAC_TX_ERRORS, EFX_MAC_TX_SGL_COL_PKTS, EFX_MAC_TX_MULT_COL_PKTS, EFX_MAC_TX_EX_COL_PKTS, EFX_MAC_TX_LATE_COL_PKTS, EFX_MAC_TX_DEF_PKTS, EFX_MAC_TX_EX_DEF_PKTS, EFX_MAC_PM_TRUNC_BB_OVERFLOW, EFX_MAC_PM_DISCARD_BB_OVERFLOW, EFX_MAC_PM_TRUNC_VFIFO_FULL, EFX_MAC_PM_DISCARD_VFIFO_FULL, EFX_MAC_PM_TRUNC_QBB, EFX_MAC_PM_DISCARD_QBB, EFX_MAC_PM_DISCARD_MAPPING, EFX_MAC_RXDP_Q_DISABLED_PKTS, EFX_MAC_RXDP_DI_DROPPED_PKTS, EFX_MAC_RXDP_STREAMING_PKTS, EFX_MAC_RXDP_HLB_FETCH, EFX_MAC_RXDP_HLB_WAIT, EFX_MAC_VADAPTER_RX_UNICAST_PACKETS, EFX_MAC_VADAPTER_RX_UNICAST_BYTES, EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS, EFX_MAC_VADAPTER_RX_MULTICAST_BYTES, EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS, EFX_MAC_VADAPTER_RX_BROADCAST_BYTES, EFX_MAC_VADAPTER_RX_BAD_PACKETS, EFX_MAC_VADAPTER_RX_BAD_BYTES, EFX_MAC_VADAPTER_RX_OVERFLOW, EFX_MAC_VADAPTER_TX_UNICAST_PACKETS, EFX_MAC_VADAPTER_TX_UNICAST_BYTES, EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS, EFX_MAC_VADAPTER_TX_MULTICAST_BYTES, EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS, EFX_MAC_VADAPTER_TX_BROADCAST_BYTES, EFX_MAC_VADAPTER_TX_BAD_PACKETS, EFX_MAC_VADAPTER_TX_BAD_BYTES, EFX_MAC_VADAPTER_TX_OVERFLOW, EFX_MAC_NSTATS } efx_mac_stat_t; /* END MKCONFIG GENERATED EfxHeaderMacBlock */ #endif /* EFSYS_OPT_MAC_STATS */ typedef enum efx_link_mode_e { EFX_LINK_UNKNOWN = 0, EFX_LINK_DOWN, EFX_LINK_10HDX, EFX_LINK_10FDX, EFX_LINK_100HDX, EFX_LINK_100FDX, EFX_LINK_1000HDX, EFX_LINK_1000FDX, EFX_LINK_10000FDX, EFX_LINK_40000FDX, EFX_LINK_NMODES } efx_link_mode_t; #define EFX_MAC_ADDR_LEN 6 #define EFX_MAC_ADDR_IS_MULTICAST(_address) (((uint8_t *)_address)[0] & 0x01) #define EFX_MAC_MULTICAST_LIST_MAX 256 #define EFX_MAC_SDU_MAX 9202 #define EFX_MAC_PDU_ADJUSTMENT \ (/* EtherII */ 14 \ + /* VLAN */ 4 \ + /* CRC */ 4 \ + /* bug16011 */ 16) \ #define EFX_MAC_PDU(_sdu) \ P2ROUNDUP((_sdu) + EFX_MAC_PDU_ADJUSTMENT, 8) /* * Due to the P2ROUNDUP in EFX_MAC_PDU(), EFX_MAC_SDU_FROM_PDU() may give * the SDU rounded up slightly. */ #define EFX_MAC_SDU_FROM_PDU(_pdu) ((_pdu) - EFX_MAC_PDU_ADJUSTMENT) #define EFX_MAC_PDU_MIN 60 #define EFX_MAC_PDU_MAX EFX_MAC_PDU(EFX_MAC_SDU_MAX) extern __checkReturn efx_rc_t efx_mac_pdu_get( __in efx_nic_t *enp, __out size_t *pdu); extern __checkReturn efx_rc_t efx_mac_pdu_set( __in efx_nic_t *enp, __in size_t pdu); extern __checkReturn efx_rc_t efx_mac_addr_set( __in efx_nic_t *enp, __in uint8_t *addr); extern __checkReturn efx_rc_t efx_mac_filter_set( __in efx_nic_t *enp, __in boolean_t all_unicst, __in boolean_t mulcst, __in boolean_t all_mulcst, __in boolean_t brdcst); extern __checkReturn efx_rc_t efx_mac_multicast_list_set( __in efx_nic_t *enp, __in_ecount(6*count) uint8_t const *addrs, __in int count); extern __checkReturn efx_rc_t efx_mac_filter_default_rxq_set( __in efx_nic_t *enp, __in efx_rxq_t *erp, __in boolean_t using_rss); extern void efx_mac_filter_default_rxq_clear( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_mac_drain( __in efx_nic_t *enp, __in boolean_t enabled); extern __checkReturn efx_rc_t efx_mac_up( __in efx_nic_t *enp, __out boolean_t *mac_upp); #define EFX_FCNTL_RESPOND 0x00000001 #define EFX_FCNTL_GENERATE 0x00000002 extern __checkReturn efx_rc_t efx_mac_fcntl_set( __in efx_nic_t *enp, __in unsigned int fcntl, __in boolean_t autoneg); extern void efx_mac_fcntl_get( __in efx_nic_t *enp, __out unsigned int *fcntl_wantedp, __out unsigned int *fcntl_linkp); #if EFSYS_OPT_MAC_STATS #if EFSYS_OPT_NAMES extern __checkReturn const char * efx_mac_stat_name( __in efx_nic_t *enp, __in unsigned int id); #endif /* EFSYS_OPT_NAMES */ #define EFX_MAC_STATS_SIZE 0x400 /* * Upload mac statistics supported by the hardware into the given buffer. * * The reference buffer must be at least %EFX_MAC_STATS_SIZE bytes, * and page aligned. * * The hardware will only DMA statistics that it understands (of course). * Drivers should not make any assumptions about which statistics are * supported, especially when the statistics are generated by firmware. * * Thus, drivers should zero this buffer before use, so that not-understood * statistics read back as zero. */ extern __checkReturn efx_rc_t efx_mac_stats_upload( __in efx_nic_t *enp, __in efsys_mem_t *esmp); extern __checkReturn efx_rc_t efx_mac_stats_periodic( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __in uint16_t period_ms, __in boolean_t events); extern __checkReturn efx_rc_t efx_mac_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_MAC_NSTATS) efsys_stat_t *stat, __inout_opt uint32_t *generationp); #endif /* EFSYS_OPT_MAC_STATS */ /* MON */ typedef enum efx_mon_type_e { EFX_MON_INVALID = 0, EFX_MON_SFC90X0, EFX_MON_SFC91X0, EFX_MON_SFC92X0, EFX_MON_NTYPES } efx_mon_type_t; #if EFSYS_OPT_NAMES extern const char * efx_mon_name( __in efx_nic_t *enp); #endif /* EFSYS_OPT_NAMES */ extern __checkReturn efx_rc_t efx_mon_init( __in efx_nic_t *enp); #if EFSYS_OPT_MON_STATS #define EFX_MON_STATS_PAGE_SIZE 0x100 #define EFX_MON_MASK_ELEMENT_SIZE 32 /* START MKCONFIG GENERATED MonitorHeaderStatsBlock 5d4ee5185e419abe */ typedef enum efx_mon_stat_e { EFX_MON_STAT_2_5V, EFX_MON_STAT_VCCP1, EFX_MON_STAT_VCC, EFX_MON_STAT_5V, EFX_MON_STAT_12V, EFX_MON_STAT_VCCP2, EFX_MON_STAT_EXT_TEMP, EFX_MON_STAT_INT_TEMP, EFX_MON_STAT_AIN1, EFX_MON_STAT_AIN2, EFX_MON_STAT_INT_COOLING, EFX_MON_STAT_EXT_COOLING, EFX_MON_STAT_1V, EFX_MON_STAT_1_2V, EFX_MON_STAT_1_8V, EFX_MON_STAT_3_3V, EFX_MON_STAT_1_2VA, EFX_MON_STAT_VREF, EFX_MON_STAT_VAOE, EFX_MON_STAT_AOE_TEMP, EFX_MON_STAT_PSU_AOE_TEMP, EFX_MON_STAT_PSU_TEMP, EFX_MON_STAT_FAN0, EFX_MON_STAT_FAN1, EFX_MON_STAT_FAN2, EFX_MON_STAT_FAN3, EFX_MON_STAT_FAN4, EFX_MON_STAT_VAOE_IN, EFX_MON_STAT_IAOE, EFX_MON_STAT_IAOE_IN, EFX_MON_STAT_NIC_POWER, EFX_MON_STAT_0_9V, EFX_MON_STAT_I0_9V, EFX_MON_STAT_I1_2V, EFX_MON_STAT_0_9V_ADC, EFX_MON_STAT_INT_TEMP2, EFX_MON_STAT_VREG_TEMP, EFX_MON_STAT_VREG_0_9V_TEMP, EFX_MON_STAT_VREG_1_2V_TEMP, EFX_MON_STAT_INT_VPTAT, EFX_MON_STAT_INT_ADC_TEMP, EFX_MON_STAT_EXT_VPTAT, EFX_MON_STAT_EXT_ADC_TEMP, EFX_MON_STAT_AMBIENT_TEMP, EFX_MON_STAT_AIRFLOW, EFX_MON_STAT_VDD08D_VSS08D_CSR, EFX_MON_STAT_VDD08D_VSS08D_CSR_EXTADC, EFX_MON_STAT_HOTPOINT_TEMP, EFX_MON_STAT_PHY_POWER_SWITCH_PORT0, EFX_MON_STAT_PHY_POWER_SWITCH_PORT1, EFX_MON_STAT_MUM_VCC, EFX_MON_STAT_0V9_A, EFX_MON_STAT_I0V9_A, EFX_MON_STAT_0V9_A_TEMP, EFX_MON_STAT_0V9_B, EFX_MON_STAT_I0V9_B, EFX_MON_STAT_0V9_B_TEMP, EFX_MON_STAT_CCOM_AVREG_1V2_SUPPLY, EFX_MON_STAT_CCOM_AVREG_1V2_SUPPLY_EXT_ADC, EFX_MON_STAT_CCOM_AVREG_1V8_SUPPLY, EFX_MON_STAT_CCOM_AVREG_1V8_SUPPLY_EXT_ADC, EFX_MON_STAT_CONTROLLER_MASTER_VPTAT, EFX_MON_STAT_CONTROLLER_MASTER_INTERNAL_TEMP, EFX_MON_STAT_CONTROLLER_MASTER_VPTAT_EXT_ADC, EFX_MON_STAT_CONTROLLER_MASTER_INTERNAL_TEMP_EXT_ADC, EFX_MON_STAT_CONTROLLER_SLAVE_VPTAT, EFX_MON_STAT_CONTROLLER_SLAVE_INTERNAL_TEMP, EFX_MON_STAT_CONTROLLER_SLAVE_VPTAT_EXT_ADC, EFX_MON_STAT_CONTROLLER_SLAVE_INTERNAL_TEMP_EXT_ADC, EFX_MON_STAT_SODIMM_VOUT, EFX_MON_STAT_SODIMM_0_TEMP, EFX_MON_STAT_SODIMM_1_TEMP, EFX_MON_STAT_PHY0_VCC, EFX_MON_STAT_PHY1_VCC, EFX_MON_STAT_CONTROLLER_TDIODE_TEMP, EFX_MON_STAT_BOARD_FRONT_TEMP, EFX_MON_STAT_BOARD_BACK_TEMP, EFX_MON_NSTATS } efx_mon_stat_t; /* END MKCONFIG GENERATED MonitorHeaderStatsBlock */ typedef enum efx_mon_stat_state_e { EFX_MON_STAT_STATE_OK = 0, EFX_MON_STAT_STATE_WARNING = 1, EFX_MON_STAT_STATE_FATAL = 2, EFX_MON_STAT_STATE_BROKEN = 3, EFX_MON_STAT_STATE_NO_READING = 4, } efx_mon_stat_state_t; typedef struct efx_mon_stat_value_s { uint16_t emsv_value; uint16_t emsv_state; } efx_mon_stat_value_t; #if EFSYS_OPT_NAMES extern const char * efx_mon_stat_name( __in efx_nic_t *enp, __in efx_mon_stat_t id); #endif /* EFSYS_OPT_NAMES */ extern __checkReturn efx_rc_t efx_mon_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_MON_NSTATS) efx_mon_stat_value_t *values); #endif /* EFSYS_OPT_MON_STATS */ extern void efx_mon_fini( __in efx_nic_t *enp); /* PHY */ extern __checkReturn efx_rc_t efx_phy_verify( __in efx_nic_t *enp); #if EFSYS_OPT_PHY_LED_CONTROL typedef enum efx_phy_led_mode_e { EFX_PHY_LED_DEFAULT = 0, EFX_PHY_LED_OFF, EFX_PHY_LED_ON, EFX_PHY_LED_FLASH, EFX_PHY_LED_NMODES } efx_phy_led_mode_t; extern __checkReturn efx_rc_t efx_phy_led_set( __in efx_nic_t *enp, __in efx_phy_led_mode_t mode); #endif /* EFSYS_OPT_PHY_LED_CONTROL */ extern __checkReturn efx_rc_t efx_port_init( __in efx_nic_t *enp); #if EFSYS_OPT_LOOPBACK typedef enum efx_loopback_type_e { EFX_LOOPBACK_OFF = 0, EFX_LOOPBACK_DATA = 1, EFX_LOOPBACK_GMAC = 2, EFX_LOOPBACK_XGMII = 3, EFX_LOOPBACK_XGXS = 4, EFX_LOOPBACK_XAUI = 5, EFX_LOOPBACK_GMII = 6, EFX_LOOPBACK_SGMII = 7, EFX_LOOPBACK_XGBR = 8, EFX_LOOPBACK_XFI = 9, EFX_LOOPBACK_XAUI_FAR = 10, EFX_LOOPBACK_GMII_FAR = 11, EFX_LOOPBACK_SGMII_FAR = 12, EFX_LOOPBACK_XFI_FAR = 13, EFX_LOOPBACK_GPHY = 14, EFX_LOOPBACK_PHY_XS = 15, EFX_LOOPBACK_PCS = 16, EFX_LOOPBACK_PMA_PMD = 17, EFX_LOOPBACK_XPORT = 18, EFX_LOOPBACK_XGMII_WS = 19, EFX_LOOPBACK_XAUI_WS = 20, EFX_LOOPBACK_XAUI_WS_FAR = 21, EFX_LOOPBACK_XAUI_WS_NEAR = 22, EFX_LOOPBACK_GMII_WS = 23, EFX_LOOPBACK_XFI_WS = 24, EFX_LOOPBACK_XFI_WS_FAR = 25, EFX_LOOPBACK_PHYXS_WS = 26, EFX_LOOPBACK_PMA_INT = 27, EFX_LOOPBACK_SD_NEAR = 28, EFX_LOOPBACK_SD_FAR = 29, EFX_LOOPBACK_PMA_INT_WS = 30, EFX_LOOPBACK_SD_FEP2_WS = 31, EFX_LOOPBACK_SD_FEP1_5_WS = 32, EFX_LOOPBACK_SD_FEP_WS = 33, EFX_LOOPBACK_SD_FES_WS = 34, EFX_LOOPBACK_NTYPES } efx_loopback_type_t; typedef enum efx_loopback_kind_e { EFX_LOOPBACK_KIND_OFF = 0, EFX_LOOPBACK_KIND_ALL, EFX_LOOPBACK_KIND_MAC, EFX_LOOPBACK_KIND_PHY, EFX_LOOPBACK_NKINDS } efx_loopback_kind_t; extern void efx_loopback_mask( __in efx_loopback_kind_t loopback_kind, __out efx_qword_t *maskp); extern __checkReturn efx_rc_t efx_port_loopback_set( __in efx_nic_t *enp, __in efx_link_mode_t link_mode, __in efx_loopback_type_t type); #if EFSYS_OPT_NAMES extern __checkReturn const char * efx_loopback_type_name( __in efx_nic_t *enp, __in efx_loopback_type_t type); #endif /* EFSYS_OPT_NAMES */ #endif /* EFSYS_OPT_LOOPBACK */ extern __checkReturn efx_rc_t efx_port_poll( __in efx_nic_t *enp, __out_opt efx_link_mode_t *link_modep); extern void efx_port_fini( __in efx_nic_t *enp); typedef enum efx_phy_cap_type_e { EFX_PHY_CAP_INVALID = 0, EFX_PHY_CAP_10HDX, EFX_PHY_CAP_10FDX, EFX_PHY_CAP_100HDX, EFX_PHY_CAP_100FDX, EFX_PHY_CAP_1000HDX, EFX_PHY_CAP_1000FDX, EFX_PHY_CAP_10000FDX, EFX_PHY_CAP_PAUSE, EFX_PHY_CAP_ASYM, EFX_PHY_CAP_AN, EFX_PHY_CAP_40000FDX, EFX_PHY_CAP_NTYPES } efx_phy_cap_type_t; #define EFX_PHY_CAP_CURRENT 0x00000000 #define EFX_PHY_CAP_DEFAULT 0x00000001 #define EFX_PHY_CAP_PERM 0x00000002 extern void efx_phy_adv_cap_get( __in efx_nic_t *enp, __in uint32_t flag, __out uint32_t *maskp); extern __checkReturn efx_rc_t efx_phy_adv_cap_set( __in efx_nic_t *enp, __in uint32_t mask); extern void efx_phy_lp_cap_get( __in efx_nic_t *enp, __out uint32_t *maskp); extern __checkReturn efx_rc_t efx_phy_oui_get( __in efx_nic_t *enp, __out uint32_t *ouip); typedef enum efx_phy_media_type_e { EFX_PHY_MEDIA_INVALID = 0, EFX_PHY_MEDIA_XAUI, EFX_PHY_MEDIA_CX4, EFX_PHY_MEDIA_KX4, EFX_PHY_MEDIA_XFP, EFX_PHY_MEDIA_SFP_PLUS, EFX_PHY_MEDIA_BASE_T, EFX_PHY_MEDIA_QSFP_PLUS, EFX_PHY_MEDIA_NTYPES } efx_phy_media_type_t; /* Get the type of medium currently used. If the board has ports for * modules, a module is present, and we recognise the media type of * the module, then this will be the media type of the module. * Otherwise it will be the media type of the port. */ extern void efx_phy_media_type_get( __in efx_nic_t *enp, __out efx_phy_media_type_t *typep); extern efx_rc_t efx_phy_module_get_info( __in efx_nic_t *enp, __in uint8_t dev_addr, __in uint8_t offset, __in uint8_t len, __out_bcount(len) uint8_t *data); #if EFSYS_OPT_PHY_STATS /* START MKCONFIG GENERATED PhyHeaderStatsBlock 30ed56ad501f8e36 */ typedef enum efx_phy_stat_e { EFX_PHY_STAT_OUI, EFX_PHY_STAT_PMA_PMD_LINK_UP, EFX_PHY_STAT_PMA_PMD_RX_FAULT, EFX_PHY_STAT_PMA_PMD_TX_FAULT, EFX_PHY_STAT_PMA_PMD_REV_A, EFX_PHY_STAT_PMA_PMD_REV_B, EFX_PHY_STAT_PMA_PMD_REV_C, EFX_PHY_STAT_PMA_PMD_REV_D, EFX_PHY_STAT_PCS_LINK_UP, EFX_PHY_STAT_PCS_RX_FAULT, EFX_PHY_STAT_PCS_TX_FAULT, EFX_PHY_STAT_PCS_BER, EFX_PHY_STAT_PCS_BLOCK_ERRORS, EFX_PHY_STAT_PHY_XS_LINK_UP, EFX_PHY_STAT_PHY_XS_RX_FAULT, EFX_PHY_STAT_PHY_XS_TX_FAULT, EFX_PHY_STAT_PHY_XS_ALIGN, EFX_PHY_STAT_PHY_XS_SYNC_A, EFX_PHY_STAT_PHY_XS_SYNC_B, EFX_PHY_STAT_PHY_XS_SYNC_C, EFX_PHY_STAT_PHY_XS_SYNC_D, EFX_PHY_STAT_AN_LINK_UP, EFX_PHY_STAT_AN_MASTER, EFX_PHY_STAT_AN_LOCAL_RX_OK, EFX_PHY_STAT_AN_REMOTE_RX_OK, EFX_PHY_STAT_CL22EXT_LINK_UP, EFX_PHY_STAT_SNR_A, EFX_PHY_STAT_SNR_B, EFX_PHY_STAT_SNR_C, EFX_PHY_STAT_SNR_D, EFX_PHY_STAT_PMA_PMD_SIGNAL_A, EFX_PHY_STAT_PMA_PMD_SIGNAL_B, EFX_PHY_STAT_PMA_PMD_SIGNAL_C, EFX_PHY_STAT_PMA_PMD_SIGNAL_D, EFX_PHY_STAT_AN_COMPLETE, EFX_PHY_STAT_PMA_PMD_REV_MAJOR, EFX_PHY_STAT_PMA_PMD_REV_MINOR, EFX_PHY_STAT_PMA_PMD_REV_MICRO, EFX_PHY_STAT_PCS_FW_VERSION_0, EFX_PHY_STAT_PCS_FW_VERSION_1, EFX_PHY_STAT_PCS_FW_VERSION_2, EFX_PHY_STAT_PCS_FW_VERSION_3, EFX_PHY_STAT_PCS_FW_BUILD_YY, EFX_PHY_STAT_PCS_FW_BUILD_MM, EFX_PHY_STAT_PCS_FW_BUILD_DD, EFX_PHY_STAT_PCS_OP_MODE, EFX_PHY_NSTATS } efx_phy_stat_t; /* END MKCONFIG GENERATED PhyHeaderStatsBlock */ #if EFSYS_OPT_NAMES extern const char * efx_phy_stat_name( __in efx_nic_t *enp, __in efx_phy_stat_t stat); #endif /* EFSYS_OPT_NAMES */ #define EFX_PHY_STATS_SIZE 0x100 extern __checkReturn efx_rc_t efx_phy_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_PHY_NSTATS) uint32_t *stat); #endif /* EFSYS_OPT_PHY_STATS */ #if EFSYS_OPT_BIST typedef enum efx_bist_type_e { EFX_BIST_TYPE_UNKNOWN, EFX_BIST_TYPE_PHY_NORMAL, EFX_BIST_TYPE_PHY_CABLE_SHORT, EFX_BIST_TYPE_PHY_CABLE_LONG, EFX_BIST_TYPE_MC_MEM, /* Test the MC DMEM and IMEM */ EFX_BIST_TYPE_SAT_MEM, /* Test the DMEM and IMEM of satellite cpus*/ EFX_BIST_TYPE_REG, /* Test the register memories */ EFX_BIST_TYPE_NTYPES, } efx_bist_type_t; typedef enum efx_bist_result_e { EFX_BIST_RESULT_UNKNOWN, EFX_BIST_RESULT_RUNNING, EFX_BIST_RESULT_PASSED, EFX_BIST_RESULT_FAILED, } efx_bist_result_t; typedef enum efx_phy_cable_status_e { EFX_PHY_CABLE_STATUS_OK, EFX_PHY_CABLE_STATUS_INVALID, EFX_PHY_CABLE_STATUS_OPEN, EFX_PHY_CABLE_STATUS_INTRAPAIRSHORT, EFX_PHY_CABLE_STATUS_INTERPAIRSHORT, EFX_PHY_CABLE_STATUS_BUSY, } efx_phy_cable_status_t; typedef enum efx_bist_value_e { EFX_BIST_PHY_CABLE_LENGTH_A, EFX_BIST_PHY_CABLE_LENGTH_B, EFX_BIST_PHY_CABLE_LENGTH_C, EFX_BIST_PHY_CABLE_LENGTH_D, EFX_BIST_PHY_CABLE_STATUS_A, EFX_BIST_PHY_CABLE_STATUS_B, EFX_BIST_PHY_CABLE_STATUS_C, EFX_BIST_PHY_CABLE_STATUS_D, EFX_BIST_FAULT_CODE, /* Memory BIST specific values. These match to the MC_CMD_BIST_POLL * response. */ EFX_BIST_MEM_TEST, EFX_BIST_MEM_ADDR, EFX_BIST_MEM_BUS, EFX_BIST_MEM_EXPECT, EFX_BIST_MEM_ACTUAL, EFX_BIST_MEM_ECC, EFX_BIST_MEM_ECC_PARITY, EFX_BIST_MEM_ECC_FATAL, EFX_BIST_NVALUES, } efx_bist_value_t; extern __checkReturn efx_rc_t efx_bist_enable_offline( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_bist_start( __in efx_nic_t *enp, __in efx_bist_type_t type); extern __checkReturn efx_rc_t efx_bist_poll( __in efx_nic_t *enp, __in efx_bist_type_t type, __out efx_bist_result_t *resultp, __out_opt uint32_t *value_maskp, __out_ecount_opt(count) unsigned long *valuesp, __in size_t count); extern void efx_bist_stop( __in efx_nic_t *enp, __in efx_bist_type_t type); #endif /* EFSYS_OPT_BIST */ #define EFX_FEATURE_IPV6 0x00000001 #define EFX_FEATURE_LFSR_HASH_INSERT 0x00000002 #define EFX_FEATURE_LINK_EVENTS 0x00000004 #define EFX_FEATURE_PERIODIC_MAC_STATS 0x00000008 #define EFX_FEATURE_WOL 0x00000010 #define EFX_FEATURE_MCDI 0x00000020 #define EFX_FEATURE_LOOKAHEAD_SPLIT 0x00000040 #define EFX_FEATURE_MAC_HEADER_FILTERS 0x00000080 #define EFX_FEATURE_TURBO 0x00000100 #define EFX_FEATURE_MCDI_DMA 0x00000200 #define EFX_FEATURE_TX_SRC_FILTERS 0x00000400 #define EFX_FEATURE_PIO_BUFFERS 0x00000800 #define EFX_FEATURE_FW_ASSISTED_TSO 0x00001000 #define EFX_FEATURE_FW_ASSISTED_TSO_V2 0x00002000 typedef struct efx_nic_cfg_s { uint32_t enc_board_type; uint32_t enc_phy_type; #if EFSYS_OPT_NAMES char enc_phy_name[21]; #endif char enc_phy_revision[21]; efx_mon_type_t enc_mon_type; #if EFSYS_OPT_MON_STATS uint32_t enc_mon_stat_dma_buf_size; uint32_t enc_mon_stat_mask[(EFX_MON_NSTATS + 31) / 32]; #endif unsigned int enc_features; uint8_t enc_mac_addr[6]; uint8_t enc_port; /* PHY port number */ uint32_t enc_func_flags; uint32_t enc_intr_vec_base; uint32_t enc_intr_limit; uint32_t enc_evq_limit; uint32_t enc_txq_limit; uint32_t enc_rxq_limit; uint32_t enc_buftbl_limit; uint32_t enc_piobuf_limit; uint32_t enc_piobuf_size; uint32_t enc_piobuf_min_alloc_size; uint32_t enc_evq_timer_quantum_ns; uint32_t enc_evq_timer_max_us; uint32_t enc_clk_mult; uint32_t enc_rx_prefix_size; uint32_t enc_rx_buf_align_start; uint32_t enc_rx_buf_align_end; #if EFSYS_OPT_LOOPBACK efx_qword_t enc_loopback_types[EFX_LINK_NMODES]; #endif /* EFSYS_OPT_LOOPBACK */ #if EFSYS_OPT_PHY_FLAGS uint32_t enc_phy_flags_mask; #endif /* EFSYS_OPT_PHY_FLAGS */ #if EFSYS_OPT_PHY_LED_CONTROL uint32_t enc_led_mask; #endif /* EFSYS_OPT_PHY_LED_CONTROL */ #if EFSYS_OPT_PHY_STATS uint64_t enc_phy_stat_mask; #endif /* EFSYS_OPT_PHY_STATS */ #if EFSYS_OPT_SIENA uint8_t enc_mcdi_mdio_channel; #if EFSYS_OPT_PHY_STATS uint32_t enc_mcdi_phy_stat_mask; #endif /* EFSYS_OPT_PHY_STATS */ #endif /* EFSYS_OPT_SIENA */ #if (EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) #if EFSYS_OPT_MON_STATS uint32_t *enc_mcdi_sensor_maskp; uint32_t enc_mcdi_sensor_mask_size; #endif /* EFSYS_OPT_MON_STATS */ #endif /* (EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) */ #if EFSYS_OPT_BIST uint32_t enc_bist_mask; #endif /* EFSYS_OPT_BIST */ #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD uint32_t enc_pf; uint32_t enc_vf; uint32_t enc_privilege_mask; #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */ boolean_t enc_bug26807_workaround; boolean_t enc_bug35388_workaround; boolean_t enc_bug41750_workaround; boolean_t enc_bug61265_workaround; boolean_t enc_rx_batching_enabled; /* Maximum number of descriptors completed in an rx event. */ uint32_t enc_rx_batch_max; /* Number of rx descriptors the hardware requires for a push. */ uint32_t enc_rx_push_align; /* * Maximum number of bytes into the packet the TCP header can start for * the hardware to apply TSO packet edits. */ uint32_t enc_tx_tso_tcp_header_offset_limit; boolean_t enc_fw_assisted_tso_enabled; boolean_t enc_fw_assisted_tso_v2_enabled; boolean_t enc_hw_tx_insert_vlan_enabled; /* Datapath firmware vadapter/vport/vswitch support */ boolean_t enc_datapath_cap_evb; boolean_t enc_rx_disable_scatter_supported; boolean_t enc_allow_set_mac_with_installed_filters; boolean_t enc_enhanced_set_mac_supported; boolean_t enc_init_evq_v2_supported; /* External port identifier */ uint8_t enc_external_port; uint32_t enc_mcdi_max_payload_length; /* VPD may be per-PF or global */ boolean_t enc_vpd_is_global; /* Minimum unidirectional bandwidth in Mb/s to max out all ports */ uint32_t enc_required_pcie_bandwidth_mbps; uint32_t enc_max_pcie_link_gen; } efx_nic_cfg_t; #define EFX_PCI_FUNCTION_IS_PF(_encp) ((_encp)->enc_vf == 0xffff) #define EFX_PCI_FUNCTION_IS_VF(_encp) ((_encp)->enc_vf != 0xffff) #define EFX_PCI_FUNCTION(_encp) \ (EFX_PCI_FUNCTION_IS_PF(_encp) ? (_encp)->enc_pf : (_encp)->enc_vf) #define EFX_PCI_VF_PARENT(_encp) ((_encp)->enc_pf) extern const efx_nic_cfg_t * efx_nic_cfg_get( __in efx_nic_t *enp); /* Driver resource limits (minimum required/maximum usable). */ typedef struct efx_drv_limits_s { uint32_t edl_min_evq_count; uint32_t edl_max_evq_count; uint32_t edl_min_rxq_count; uint32_t edl_max_rxq_count; uint32_t edl_min_txq_count; uint32_t edl_max_txq_count; /* PIO blocks (sub-allocated from piobuf) */ uint32_t edl_min_pio_alloc_size; uint32_t edl_max_pio_alloc_count; } efx_drv_limits_t; extern __checkReturn efx_rc_t efx_nic_set_drv_limits( __inout efx_nic_t *enp, __in efx_drv_limits_t *edlp); typedef enum efx_nic_region_e { EFX_REGION_VI, /* Memory BAR UC mapping */ EFX_REGION_PIO_WRITE_VI, /* Memory BAR WC mapping */ } efx_nic_region_t; extern __checkReturn efx_rc_t efx_nic_get_bar_region( __in efx_nic_t *enp, __in efx_nic_region_t region, __out uint32_t *offsetp, __out size_t *sizep); extern __checkReturn efx_rc_t efx_nic_get_vi_pool( __in efx_nic_t *enp, __out uint32_t *evq_countp, __out uint32_t *rxq_countp, __out uint32_t *txq_countp); #if EFSYS_OPT_VPD typedef enum efx_vpd_tag_e { EFX_VPD_ID = 0x02, EFX_VPD_END = 0x0f, EFX_VPD_RO = 0x10, EFX_VPD_RW = 0x11, } efx_vpd_tag_t; typedef uint16_t efx_vpd_keyword_t; typedef struct efx_vpd_value_s { efx_vpd_tag_t evv_tag; efx_vpd_keyword_t evv_keyword; uint8_t evv_length; uint8_t evv_value[0x100]; } efx_vpd_value_t; #define EFX_VPD_KEYWORD(x, y) ((x) | ((y) << 8)) extern __checkReturn efx_rc_t efx_vpd_init( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_vpd_size( __in efx_nic_t *enp, __out size_t *sizep); extern __checkReturn efx_rc_t efx_vpd_read( __in efx_nic_t *enp, __out_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t efx_vpd_verify( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t efx_vpd_reinit( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t efx_vpd_get( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size, __inout efx_vpd_value_t *evvp); extern __checkReturn efx_rc_t efx_vpd_set( __in efx_nic_t *enp, __inout_bcount(size) caddr_t data, __in size_t size, __in efx_vpd_value_t *evvp); extern __checkReturn efx_rc_t efx_vpd_next( __in efx_nic_t *enp, __inout_bcount(size) caddr_t data, __in size_t size, __out efx_vpd_value_t *evvp, __inout unsigned int *contp); extern __checkReturn efx_rc_t efx_vpd_write( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern void efx_vpd_fini( __in efx_nic_t *enp); #endif /* EFSYS_OPT_VPD */ /* NVRAM */ #if EFSYS_OPT_NVRAM typedef enum efx_nvram_type_e { EFX_NVRAM_INVALID = 0, EFX_NVRAM_BOOTROM, EFX_NVRAM_BOOTROM_CFG, EFX_NVRAM_MC_FIRMWARE, EFX_NVRAM_MC_GOLDEN, EFX_NVRAM_PHY, EFX_NVRAM_NULLPHY, EFX_NVRAM_FPGA, EFX_NVRAM_FCFW, EFX_NVRAM_CPLD, EFX_NVRAM_FPGA_BACKUP, EFX_NVRAM_DYNAMIC_CFG, EFX_NVRAM_LICENSE, EFX_NVRAM_NTYPES, } efx_nvram_type_t; extern __checkReturn efx_rc_t efx_nvram_init( __in efx_nic_t *enp); #if EFSYS_OPT_DIAG extern __checkReturn efx_rc_t efx_nvram_test( __in efx_nic_t *enp); #endif /* EFSYS_OPT_DIAG */ extern __checkReturn efx_rc_t efx_nvram_size( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out size_t *sizep); extern __checkReturn efx_rc_t efx_nvram_rw_start( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out_opt size_t *pref_chunkp); extern void efx_nvram_rw_finish( __in efx_nic_t *enp, __in efx_nvram_type_t type); extern __checkReturn efx_rc_t efx_nvram_get_version( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out uint32_t *subtypep, __out_ecount(4) uint16_t version[4]); extern __checkReturn efx_rc_t efx_nvram_read_chunk( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t efx_nvram_set_version( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in_ecount(4) uint16_t version[4]); extern __checkReturn efx_rc_t efx_nvram_validate( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in_bcount(partn_size) caddr_t partn_data, __in size_t partn_size); extern __checkReturn efx_rc_t efx_nvram_erase( __in efx_nic_t *enp, __in efx_nvram_type_t type); extern __checkReturn efx_rc_t efx_nvram_write_chunk( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in unsigned int offset, __in_bcount(size) caddr_t data, __in size_t size); extern void efx_nvram_fini( __in efx_nic_t *enp); #endif /* EFSYS_OPT_NVRAM */ #if EFSYS_OPT_BOOTCFG extern efx_rc_t efx_bootcfg_read( __in efx_nic_t *enp, __out_bcount(size) caddr_t data, __in size_t size); extern efx_rc_t efx_bootcfg_write( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); #endif /* EFSYS_OPT_BOOTCFG */ #if EFSYS_OPT_WOL typedef enum efx_wol_type_e { EFX_WOL_TYPE_INVALID, EFX_WOL_TYPE_MAGIC, EFX_WOL_TYPE_BITMAP, EFX_WOL_TYPE_LINK, EFX_WOL_NTYPES, } efx_wol_type_t; typedef enum efx_lightsout_offload_type_e { EFX_LIGHTSOUT_OFFLOAD_TYPE_INVALID, EFX_LIGHTSOUT_OFFLOAD_TYPE_ARP, EFX_LIGHTSOUT_OFFLOAD_TYPE_NS, } efx_lightsout_offload_type_t; #define EFX_WOL_BITMAP_MASK_SIZE (48) #define EFX_WOL_BITMAP_VALUE_SIZE (128) typedef union efx_wol_param_u { struct { uint8_t mac_addr[6]; } ewp_magic; struct { uint8_t mask[EFX_WOL_BITMAP_MASK_SIZE]; /* 1 bit per byte */ uint8_t value[EFX_WOL_BITMAP_VALUE_SIZE]; /* value to match */ uint8_t value_len; } ewp_bitmap; } efx_wol_param_t; typedef union efx_lightsout_offload_param_u { struct { uint8_t mac_addr[6]; uint32_t ip; } elop_arp; struct { uint8_t mac_addr[6]; uint32_t solicited_node[4]; uint32_t ip[4]; } elop_ns; } efx_lightsout_offload_param_t; extern __checkReturn efx_rc_t efx_wol_init( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_wol_filter_clear( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_wol_filter_add( __in efx_nic_t *enp, __in efx_wol_type_t type, __in efx_wol_param_t *paramp, __out uint32_t *filter_idp); extern __checkReturn efx_rc_t efx_wol_filter_remove( __in efx_nic_t *enp, __in uint32_t filter_id); extern __checkReturn efx_rc_t efx_lightsout_offload_add( __in efx_nic_t *enp, __in efx_lightsout_offload_type_t type, __in efx_lightsout_offload_param_t *paramp, __out uint32_t *filter_idp); extern __checkReturn efx_rc_t efx_lightsout_offload_remove( __in efx_nic_t *enp, __in efx_lightsout_offload_type_t type, __in uint32_t filter_id); extern void efx_wol_fini( __in efx_nic_t *enp); #endif /* EFSYS_OPT_WOL */ #if EFSYS_OPT_DIAG typedef enum efx_pattern_type_t { EFX_PATTERN_BYTE_INCREMENT = 0, EFX_PATTERN_ALL_THE_SAME, EFX_PATTERN_BIT_ALTERNATE, EFX_PATTERN_BYTE_ALTERNATE, EFX_PATTERN_BYTE_CHANGING, EFX_PATTERN_BIT_SWEEP, EFX_PATTERN_NTYPES } efx_pattern_type_t; typedef void (*efx_sram_pattern_fn_t)( __in size_t row, __in boolean_t negate, __out efx_qword_t *eqp); extern __checkReturn efx_rc_t efx_sram_test( __in efx_nic_t *enp, __in efx_pattern_type_t type); #endif /* EFSYS_OPT_DIAG */ extern __checkReturn efx_rc_t efx_sram_buf_tbl_set( __in efx_nic_t *enp, __in uint32_t id, __in efsys_mem_t *esmp, __in size_t n); extern void efx_sram_buf_tbl_clear( __in efx_nic_t *enp, __in uint32_t id, __in size_t n); #define EFX_BUF_TBL_SIZE 0x20000 #define EFX_BUF_SIZE 4096 /* EV */ typedef struct efx_evq_s efx_evq_t; #if EFSYS_OPT_QSTATS /* START MKCONFIG GENERATED EfxHeaderEventQueueBlock 6f3843f5fe7cc843 */ typedef enum efx_ev_qstat_e { EV_ALL, EV_RX, EV_RX_OK, EV_RX_FRM_TRUNC, EV_RX_TOBE_DISC, EV_RX_PAUSE_FRM_ERR, EV_RX_BUF_OWNER_ID_ERR, EV_RX_IPV4_HDR_CHKSUM_ERR, EV_RX_TCP_UDP_CHKSUM_ERR, EV_RX_ETH_CRC_ERR, EV_RX_IP_FRAG_ERR, EV_RX_MCAST_PKT, EV_RX_MCAST_HASH_MATCH, EV_RX_TCP_IPV4, EV_RX_TCP_IPV6, EV_RX_UDP_IPV4, EV_RX_UDP_IPV6, EV_RX_OTHER_IPV4, EV_RX_OTHER_IPV6, EV_RX_NON_IP, EV_RX_BATCH, EV_TX, EV_TX_WQ_FF_FULL, EV_TX_PKT_ERR, EV_TX_PKT_TOO_BIG, EV_TX_UNEXPECTED, EV_GLOBAL, EV_GLOBAL_MNT, EV_DRIVER, EV_DRIVER_SRM_UPD_DONE, EV_DRIVER_TX_DESCQ_FLS_DONE, EV_DRIVER_RX_DESCQ_FLS_DONE, EV_DRIVER_RX_DESCQ_FLS_FAILED, EV_DRIVER_RX_DSC_ERROR, EV_DRIVER_TX_DSC_ERROR, EV_DRV_GEN, EV_MCDI_RESPONSE, EV_NQSTATS } efx_ev_qstat_t; /* END MKCONFIG GENERATED EfxHeaderEventQueueBlock */ #endif /* EFSYS_OPT_QSTATS */ extern __checkReturn efx_rc_t efx_ev_init( __in efx_nic_t *enp); extern void efx_ev_fini( __in efx_nic_t *enp); #define EFX_EVQ_MAXNEVS 32768 #define EFX_EVQ_MINNEVS 512 #define EFX_EVQ_SIZE(_nevs) ((_nevs) * sizeof (efx_qword_t)) #define EFX_EVQ_NBUFS(_nevs) (EFX_EVQ_SIZE(_nevs) / EFX_BUF_SIZE) +#define EFX_EVQ_FLAGS_TYPE_MASK (0x3) +#define EFX_EVQ_FLAGS_TYPE_AUTO (0x0) +#define EFX_EVQ_FLAGS_TYPE_THROUGHPUT (0x1) +#define EFX_EVQ_FLAGS_TYPE_LOW_LATENCY (0x2) + extern __checkReturn efx_rc_t efx_ev_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in uint32_t us, + __in uint32_t flags, __deref_out efx_evq_t **eepp); extern void efx_ev_qpost( __in efx_evq_t *eep, __in uint16_t data); typedef __checkReturn boolean_t (*efx_initialized_ev_t)( __in_opt void *arg); #define EFX_PKT_UNICAST 0x0004 #define EFX_PKT_START 0x0008 #define EFX_PKT_VLAN_TAGGED 0x0010 #define EFX_CKSUM_TCPUDP 0x0020 #define EFX_CKSUM_IPV4 0x0040 #define EFX_PKT_CONT 0x0080 #define EFX_CHECK_VLAN 0x0100 #define EFX_PKT_TCP 0x0200 #define EFX_PKT_UDP 0x0400 #define EFX_PKT_IPV4 0x0800 #define EFX_PKT_IPV6 0x1000 #define EFX_PKT_PREFIX_LEN 0x2000 #define EFX_ADDR_MISMATCH 0x4000 #define EFX_DISCARD 0x8000 #define EFX_EV_RX_NLABELS 32 #define EFX_EV_TX_NLABELS 32 typedef __checkReturn boolean_t (*efx_rx_ev_t)( __in_opt void *arg, __in uint32_t label, __in uint32_t id, __in uint32_t size, __in uint16_t flags); typedef __checkReturn boolean_t (*efx_tx_ev_t)( __in_opt void *arg, __in uint32_t label, __in uint32_t id); #define EFX_EXCEPTION_RX_RECOVERY 0x00000001 #define EFX_EXCEPTION_RX_DSC_ERROR 0x00000002 #define EFX_EXCEPTION_TX_DSC_ERROR 0x00000003 #define EFX_EXCEPTION_UNKNOWN_SENSOREVT 0x00000004 #define EFX_EXCEPTION_FWALERT_SRAM 0x00000005 #define EFX_EXCEPTION_UNKNOWN_FWALERT 0x00000006 #define EFX_EXCEPTION_RX_ERROR 0x00000007 #define EFX_EXCEPTION_TX_ERROR 0x00000008 #define EFX_EXCEPTION_EV_ERROR 0x00000009 typedef __checkReturn boolean_t (*efx_exception_ev_t)( __in_opt void *arg, __in uint32_t label, __in uint32_t data); typedef __checkReturn boolean_t (*efx_rxq_flush_done_ev_t)( __in_opt void *arg, __in uint32_t rxq_index); typedef __checkReturn boolean_t (*efx_rxq_flush_failed_ev_t)( __in_opt void *arg, __in uint32_t rxq_index); typedef __checkReturn boolean_t (*efx_txq_flush_done_ev_t)( __in_opt void *arg, __in uint32_t txq_index); typedef __checkReturn boolean_t (*efx_software_ev_t)( __in_opt void *arg, __in uint16_t magic); typedef __checkReturn boolean_t (*efx_sram_ev_t)( __in_opt void *arg, __in uint32_t code); #define EFX_SRAM_CLEAR 0 #define EFX_SRAM_UPDATE 1 #define EFX_SRAM_ILLEGAL_CLEAR 2 typedef __checkReturn boolean_t (*efx_wake_up_ev_t)( __in_opt void *arg, __in uint32_t label); typedef __checkReturn boolean_t (*efx_timer_ev_t)( __in_opt void *arg, __in uint32_t label); typedef __checkReturn boolean_t (*efx_link_change_ev_t)( __in_opt void *arg, __in efx_link_mode_t link_mode); #if EFSYS_OPT_MON_STATS typedef __checkReturn boolean_t (*efx_monitor_ev_t)( __in_opt void *arg, __in efx_mon_stat_t id, __in efx_mon_stat_value_t value); #endif /* EFSYS_OPT_MON_STATS */ #if EFSYS_OPT_MAC_STATS typedef __checkReturn boolean_t (*efx_mac_stats_ev_t)( __in_opt void *arg, __in uint32_t generation ); #endif /* EFSYS_OPT_MAC_STATS */ typedef struct efx_ev_callbacks_s { efx_initialized_ev_t eec_initialized; efx_rx_ev_t eec_rx; efx_tx_ev_t eec_tx; efx_exception_ev_t eec_exception; efx_rxq_flush_done_ev_t eec_rxq_flush_done; efx_rxq_flush_failed_ev_t eec_rxq_flush_failed; efx_txq_flush_done_ev_t eec_txq_flush_done; efx_software_ev_t eec_software; efx_sram_ev_t eec_sram; efx_wake_up_ev_t eec_wake_up; efx_timer_ev_t eec_timer; efx_link_change_ev_t eec_link_change; #if EFSYS_OPT_MON_STATS efx_monitor_ev_t eec_monitor; #endif /* EFSYS_OPT_MON_STATS */ #if EFSYS_OPT_MAC_STATS efx_mac_stats_ev_t eec_mac_stats; #endif /* EFSYS_OPT_MAC_STATS */ } efx_ev_callbacks_t; extern __checkReturn boolean_t efx_ev_qpending( __in efx_evq_t *eep, __in unsigned int count); #if EFSYS_OPT_EV_PREFETCH extern void efx_ev_qprefetch( __in efx_evq_t *eep, __in unsigned int count); #endif /* EFSYS_OPT_EV_PREFETCH */ extern void efx_ev_qpoll( __in efx_evq_t *eep, __inout unsigned int *countp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); extern __checkReturn efx_rc_t efx_ev_usecs_to_ticks( __in efx_nic_t *enp, __in unsigned int usecs, __out unsigned int *ticksp); extern __checkReturn efx_rc_t efx_ev_qmoderate( __in efx_evq_t *eep, __in unsigned int us); extern __checkReturn efx_rc_t efx_ev_qprime( __in efx_evq_t *eep, __in unsigned int count); #if EFSYS_OPT_QSTATS #if EFSYS_OPT_NAMES extern const char * efx_ev_qstat_name( __in efx_nic_t *enp, __in unsigned int id); #endif /* EFSYS_OPT_NAMES */ extern void efx_ev_qstats_update( __in efx_evq_t *eep, __inout_ecount(EV_NQSTATS) efsys_stat_t *stat); #endif /* EFSYS_OPT_QSTATS */ extern void efx_ev_qdestroy( __in efx_evq_t *eep); /* RX */ extern __checkReturn efx_rc_t efx_rx_init( __inout efx_nic_t *enp); extern void efx_rx_fini( __in efx_nic_t *enp); #if EFSYS_OPT_RX_SCATTER __checkReturn efx_rc_t efx_rx_scatter_enable( __in efx_nic_t *enp, __in unsigned int buf_size); #endif /* EFSYS_OPT_RX_SCATTER */ #if EFSYS_OPT_RX_SCALE typedef enum efx_rx_hash_alg_e { EFX_RX_HASHALG_LFSR = 0, EFX_RX_HASHALG_TOEPLITZ } efx_rx_hash_alg_t; typedef enum efx_rx_hash_type_e { EFX_RX_HASH_IPV4 = 0, EFX_RX_HASH_TCPIPV4, EFX_RX_HASH_IPV6, EFX_RX_HASH_TCPIPV6, } efx_rx_hash_type_t; typedef enum efx_rx_hash_support_e { EFX_RX_HASH_UNAVAILABLE = 0, /* Hardware hash not inserted */ EFX_RX_HASH_AVAILABLE /* Insert hash with/without RSS */ } efx_rx_hash_support_t; #define EFX_RSS_TBL_SIZE 128 /* Rows in RX indirection table */ #define EFX_MAXRSS 64 /* RX indirection entry range */ #define EFX_MAXRSS_LEGACY 16 /* See bug16611 and bug17213 */ typedef enum efx_rx_scale_support_e { EFX_RX_SCALE_UNAVAILABLE = 0, /* Not supported */ EFX_RX_SCALE_EXCLUSIVE, /* Writable key/indirection table */ EFX_RX_SCALE_SHARED /* Read-only key/indirection table */ } efx_rx_scale_support_t; extern __checkReturn efx_rc_t efx_rx_hash_support_get( __in efx_nic_t *enp, __out efx_rx_hash_support_t *supportp); extern __checkReturn efx_rc_t efx_rx_scale_support_get( __in efx_nic_t *enp, __out efx_rx_scale_support_t *supportp); extern __checkReturn efx_rc_t efx_rx_scale_mode_set( __in efx_nic_t *enp, __in efx_rx_hash_alg_t alg, __in efx_rx_hash_type_t type, __in boolean_t insert); extern __checkReturn efx_rc_t efx_rx_scale_tbl_set( __in efx_nic_t *enp, __in_ecount(n) unsigned int *table, __in size_t n); extern __checkReturn efx_rc_t efx_rx_scale_key_set( __in efx_nic_t *enp, __in_ecount(n) uint8_t *key, __in size_t n); extern __checkReturn uint32_t efx_psuedo_hdr_hash_get( __in efx_nic_t *enp, __in efx_rx_hash_alg_t func, __in uint8_t *buffer); #endif /* EFSYS_OPT_RX_SCALE */ extern __checkReturn efx_rc_t efx_psuedo_hdr_pkt_length_get( __in efx_nic_t *enp, __in uint8_t *buffer, __out uint16_t *pkt_lengthp); #define EFX_RXQ_MAXNDESCS 4096 #define EFX_RXQ_MINNDESCS 512 #define EFX_RXQ_SIZE(_ndescs) ((_ndescs) * sizeof (efx_qword_t)) #define EFX_RXQ_NBUFS(_ndescs) (EFX_RXQ_SIZE(_ndescs) / EFX_BUF_SIZE) #define EFX_RXQ_LIMIT(_ndescs) ((_ndescs) - 16) #define EFX_RXQ_DC_NDESCS(_dcsize) (8 << _dcsize) typedef enum efx_rxq_type_e { EFX_RXQ_TYPE_DEFAULT, EFX_RXQ_TYPE_SCATTER, EFX_RXQ_NTYPES } efx_rxq_type_t; extern __checkReturn efx_rc_t efx_rx_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in efx_rxq_type_t type, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in efx_evq_t *eep, __deref_out efx_rxq_t **erpp); typedef struct efx_buffer_s { efsys_dma_addr_t eb_addr; size_t eb_size; boolean_t eb_eop; } efx_buffer_t; typedef struct efx_desc_s { efx_qword_t ed_eq; } efx_desc_t; extern void efx_rx_qpost( __in efx_rxq_t *erp, __in_ecount(n) efsys_dma_addr_t *addrp, __in size_t size, __in unsigned int n, __in unsigned int completed, __in unsigned int added); extern void efx_rx_qpush( __in efx_rxq_t *erp, __in unsigned int added, __inout unsigned int *pushedp); extern __checkReturn efx_rc_t efx_rx_qflush( __in efx_rxq_t *erp); extern void efx_rx_qenable( __in efx_rxq_t *erp); extern void efx_rx_qdestroy( __in efx_rxq_t *erp); /* TX */ typedef struct efx_txq_s efx_txq_t; #if EFSYS_OPT_QSTATS /* START MKCONFIG GENERATED EfxHeaderTransmitQueueBlock 12dff8778598b2db */ typedef enum efx_tx_qstat_e { TX_POST, TX_POST_PIO, TX_NQSTATS } efx_tx_qstat_t; /* END MKCONFIG GENERATED EfxHeaderTransmitQueueBlock */ #endif /* EFSYS_OPT_QSTATS */ extern __checkReturn efx_rc_t efx_tx_init( __in efx_nic_t *enp); extern void efx_tx_fini( __in efx_nic_t *enp); #define EFX_BUG35388_WORKAROUND(_encp) \ (((_encp) == NULL) ? 1 : ((_encp)->enc_bug35388_workaround != 0)) #define EFX_TXQ_MAXNDESCS(_encp) \ ((EFX_BUG35388_WORKAROUND(_encp)) ? 2048 : 4096) #define EFX_TXQ_MINNDESCS 512 #define EFX_TXQ_SIZE(_ndescs) ((_ndescs) * sizeof (efx_qword_t)) #define EFX_TXQ_NBUFS(_ndescs) (EFX_TXQ_SIZE(_ndescs) / EFX_BUF_SIZE) #define EFX_TXQ_LIMIT(_ndescs) ((_ndescs) - 16) #define EFX_TXQ_DC_NDESCS(_dcsize) (8 << _dcsize) #define EFX_TXQ_MAX_BUFS 8 /* Maximum independent of EFX_BUG35388_WORKAROUND. */ #define EFX_TXQ_CKSUM_IPV4 0x0001 #define EFX_TXQ_CKSUM_TCPUDP 0x0002 #define EFX_TXQ_FATSOV2 0x0004 extern __checkReturn efx_rc_t efx_tx_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in uint16_t flags, __in efx_evq_t *eep, __deref_out efx_txq_t **etpp, __out unsigned int *addedp); extern __checkReturn efx_rc_t efx_tx_qpost( __in efx_txq_t *etp, __in_ecount(n) efx_buffer_t *eb, __in unsigned int n, __in unsigned int completed, __inout unsigned int *addedp); extern __checkReturn efx_rc_t efx_tx_qpace( __in efx_txq_t *etp, __in unsigned int ns); extern void efx_tx_qpush( __in efx_txq_t *etp, __in unsigned int added, __in unsigned int pushed); extern __checkReturn efx_rc_t efx_tx_qflush( __in efx_txq_t *etp); extern void efx_tx_qenable( __in efx_txq_t *etp); extern __checkReturn efx_rc_t efx_tx_qpio_enable( __in efx_txq_t *etp); extern void efx_tx_qpio_disable( __in efx_txq_t *etp); extern __checkReturn efx_rc_t efx_tx_qpio_write( __in efx_txq_t *etp, __in_ecount(buf_length) uint8_t *buffer, __in size_t buf_length, __in size_t pio_buf_offset); extern __checkReturn efx_rc_t efx_tx_qpio_post( __in efx_txq_t *etp, __in size_t pkt_length, __in unsigned int completed, __inout unsigned int *addedp); extern __checkReturn efx_rc_t efx_tx_qdesc_post( __in efx_txq_t *etp, __in_ecount(n) efx_desc_t *ed, __in unsigned int n, __in unsigned int completed, __inout unsigned int *addedp); extern void efx_tx_qdesc_dma_create( __in efx_txq_t *etp, __in efsys_dma_addr_t addr, __in size_t size, __in boolean_t eop, __out efx_desc_t *edp); extern void efx_tx_qdesc_tso_create( __in efx_txq_t *etp, __in uint16_t ipv4_id, __in uint32_t tcp_seq, __in uint8_t tcp_flags, __out efx_desc_t *edp); /* Number of FATSOv2 option descriptors */ #define EFX_TX_FATSOV2_OPT_NDESCS 2 /* Maximum number of DMA segments per TSO packet (not superframe) */ #define EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX 24 extern void efx_tx_qdesc_tso2_create( __in efx_txq_t *etp, __in uint16_t ipv4_id, __in uint32_t tcp_seq, __in uint16_t tcp_mss, __out_ecount(count) efx_desc_t *edp, __in int count); extern void efx_tx_qdesc_vlantci_create( __in efx_txq_t *etp, __in uint16_t tci, __out efx_desc_t *edp); #if EFSYS_OPT_QSTATS #if EFSYS_OPT_NAMES extern const char * efx_tx_qstat_name( __in efx_nic_t *etp, __in unsigned int id); #endif /* EFSYS_OPT_NAMES */ extern void efx_tx_qstats_update( __in efx_txq_t *etp, __inout_ecount(TX_NQSTATS) efsys_stat_t *stat); #endif /* EFSYS_OPT_QSTATS */ extern void efx_tx_qdestroy( __in efx_txq_t *etp); /* FILTER */ #if EFSYS_OPT_FILTER #define EFX_ETHER_TYPE_IPV4 0x0800 #define EFX_ETHER_TYPE_IPV6 0x86DD #define EFX_IPPROTO_TCP 6 #define EFX_IPPROTO_UDP 17 typedef enum efx_filter_flag_e { EFX_FILTER_FLAG_RX_RSS = 0x01, /* use RSS to spread across * multiple queues */ EFX_FILTER_FLAG_RX_SCATTER = 0x02, /* enable RX scatter */ EFX_FILTER_FLAG_RX_OVER_AUTO = 0x04, /* Override an automatic filter * (priority EFX_FILTER_PRI_AUTO). * May only be set by the filter * implementation for each type. * A removal request will * restore the automatic filter * in its place. */ EFX_FILTER_FLAG_RX = 0x08, /* Filter is for RX */ EFX_FILTER_FLAG_TX = 0x10, /* Filter is for TX */ } efx_filter_flag_t; typedef enum efx_filter_match_flags_e { EFX_FILTER_MATCH_REM_HOST = 0x0001, /* Match by remote IP host * address */ EFX_FILTER_MATCH_LOC_HOST = 0x0002, /* Match by local IP host * address */ EFX_FILTER_MATCH_REM_MAC = 0x0004, /* Match by remote MAC address */ EFX_FILTER_MATCH_REM_PORT = 0x0008, /* Match by remote TCP/UDP port */ EFX_FILTER_MATCH_LOC_MAC = 0x0010, /* Match by remote TCP/UDP port */ EFX_FILTER_MATCH_LOC_PORT = 0x0020, /* Match by local TCP/UDP port */ EFX_FILTER_MATCH_ETHER_TYPE = 0x0040, /* Match by Ether-type */ EFX_FILTER_MATCH_INNER_VID = 0x0080, /* Match by inner VLAN ID */ EFX_FILTER_MATCH_OUTER_VID = 0x0100, /* Match by outer VLAN ID */ EFX_FILTER_MATCH_IP_PROTO = 0x0200, /* Match by IP transport * protocol */ EFX_FILTER_MATCH_LOC_MAC_IG = 0x0400, /* Match by local MAC address * I/G bit. Used for RX default * unicast and multicast/ * broadcast filters. */ } efx_filter_match_flags_t; typedef enum efx_filter_priority_s { EFX_FILTER_PRI_HINT = 0, /* Performance hint */ EFX_FILTER_PRI_AUTO, /* Automatic filter based on device * address list or hardware * requirements. This may only be used * by the filter implementation for * each NIC type. */ EFX_FILTER_PRI_MANUAL, /* Manually configured filter */ EFX_FILTER_PRI_REQUIRED, /* Required for correct behaviour of the * client (e.g. SR-IOV, HyperV VMQ etc.) */ } efx_filter_priority_t; /* * FIXME: All these fields are assumed to be in little-endian byte order. * It may be better for some to be big-endian. See bug42804. */ typedef struct efx_filter_spec_s { uint32_t efs_match_flags:12; uint32_t efs_priority:2; uint32_t efs_flags:6; uint32_t efs_dmaq_id:12; uint32_t efs_rss_context; uint16_t efs_outer_vid; uint16_t efs_inner_vid; uint8_t efs_loc_mac[EFX_MAC_ADDR_LEN]; uint8_t efs_rem_mac[EFX_MAC_ADDR_LEN]; uint16_t efs_ether_type; uint8_t efs_ip_proto; uint16_t efs_loc_port; uint16_t efs_rem_port; efx_oword_t efs_rem_host; efx_oword_t efs_loc_host; } efx_filter_spec_t; /* Default values for use in filter specifications */ #define EFX_FILTER_SPEC_RSS_CONTEXT_DEFAULT 0xffffffff #define EFX_FILTER_SPEC_RX_DMAQ_ID_DROP 0xfff #define EFX_FILTER_SPEC_VID_UNSPEC 0xffff extern __checkReturn efx_rc_t efx_filter_init( __in efx_nic_t *enp); extern void efx_filter_fini( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_filter_insert( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec); extern __checkReturn efx_rc_t efx_filter_remove( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec); extern __checkReturn efx_rc_t efx_filter_restore( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_filter_supported_filters( __in efx_nic_t *enp, __out uint32_t *list, __out size_t *length); extern void efx_filter_spec_init_rx( __out efx_filter_spec_t *spec, __in efx_filter_priority_t priority, __in efx_filter_flag_t flags, __in efx_rxq_t *erp); extern void efx_filter_spec_init_tx( __out efx_filter_spec_t *spec, __in efx_txq_t *etp); extern __checkReturn efx_rc_t efx_filter_spec_set_ipv4_local( __inout efx_filter_spec_t *spec, __in uint8_t proto, __in uint32_t host, __in uint16_t port); extern __checkReturn efx_rc_t efx_filter_spec_set_ipv4_full( __inout efx_filter_spec_t *spec, __in uint8_t proto, __in uint32_t lhost, __in uint16_t lport, __in uint32_t rhost, __in uint16_t rport); extern __checkReturn efx_rc_t efx_filter_spec_set_eth_local( __inout efx_filter_spec_t *spec, __in uint16_t vid, __in const uint8_t *addr); extern __checkReturn efx_rc_t efx_filter_spec_set_uc_def( __inout efx_filter_spec_t *spec); extern __checkReturn efx_rc_t efx_filter_spec_set_mc_def( __inout efx_filter_spec_t *spec); #endif /* EFSYS_OPT_FILTER */ /* HASH */ extern __checkReturn uint32_t efx_hash_dwords( __in_ecount(count) uint32_t const *input, __in size_t count, __in uint32_t init); extern __checkReturn uint32_t efx_hash_bytes( __in_ecount(length) uint8_t const *input, __in size_t length, __in uint32_t init); #if EFSYS_OPT_LICENSING /* LICENSING */ typedef struct efx_key_stats_s { uint32_t eks_valid; uint32_t eks_invalid; uint32_t eks_blacklisted; uint32_t eks_unverifiable; uint32_t eks_wrong_node; uint32_t eks_licensed_apps_lo; uint32_t eks_licensed_apps_hi; uint32_t eks_licensed_features_lo; uint32_t eks_licensed_features_hi; } efx_key_stats_t; extern __checkReturn efx_rc_t efx_lic_init( __in efx_nic_t *enp); extern void efx_lic_fini( __in efx_nic_t *enp); extern __checkReturn boolean_t efx_lic_check_support( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_lic_update_licenses( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_lic_get_key_stats( __in efx_nic_t *enp, __out efx_key_stats_t *ksp); extern __checkReturn efx_rc_t efx_lic_app_state( __in efx_nic_t *enp, __in uint64_t app_id, __out boolean_t *licensedp); extern __checkReturn efx_rc_t efx_lic_get_id( __in efx_nic_t *enp, __in size_t buffer_size, __out uint32_t *typep, __out size_t *lengthp, __out_opt uint8_t *bufferp); extern __checkReturn efx_rc_t efx_lic_find_start( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __out uint32_t *startp ); extern __checkReturn efx_rc_t efx_lic_find_end( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __in uint32_t offset, __out uint32_t *endp ); extern __checkReturn __success(return != B_FALSE) boolean_t efx_lic_find_key( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __in uint32_t offset, __out uint32_t *startp, __out uint32_t *lengthp ); extern __checkReturn __success(return != B_FALSE) boolean_t efx_lic_validate_key( __in efx_nic_t *enp, __in_bcount(length) caddr_t keyp, __in uint32_t length ); extern __checkReturn efx_rc_t efx_lic_read_key( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __in uint32_t offset, __in uint32_t length, __out_bcount_part(key_max_size, *lengthp) caddr_t keyp, __in size_t key_max_size, __out uint32_t *lengthp ); extern __checkReturn efx_rc_t efx_lic_write_key( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __in uint32_t offset, __in_bcount(length) caddr_t keyp, __in uint32_t length, __out uint32_t *lengthp ); __checkReturn efx_rc_t efx_lic_delete_key( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size, __in uint32_t offset, __in uint32_t length, __in uint32_t end, __out uint32_t *deltap ); extern __checkReturn efx_rc_t efx_lic_create_partition( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size ); extern __checkReturn efx_rc_t efx_lic_finish_partition( __in efx_nic_t *enp, __in_bcount(buffer_size) caddr_t bufferp, __in size_t buffer_size ); #endif /* EFSYS_OPT_LICENSING */ #ifdef __cplusplus } #endif #endif /* _SYS_EFX_H */ Index: head/sys/dev/sfxge/common/efx_ev.c =================================================================== --- head/sys/dev/sfxge/common/efx_ev.c (revision 310712) +++ head/sys/dev/sfxge/common/efx_ev.c (revision 310713) @@ -1,1458 +1,1462 @@ /*- * Copyright (c) 2007-2016 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efx.h" #include "efx_impl.h" #if EFSYS_OPT_MON_MCDI #include "mcdi_mon.h" #endif #if EFSYS_OPT_QSTATS #define EFX_EV_QSTAT_INCR(_eep, _stat) \ do { \ (_eep)->ee_stat[_stat]++; \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #else #define EFX_EV_QSTAT_INCR(_eep, _stat) #endif #define EFX_EV_PRESENT(_qword) \ (EFX_QWORD_FIELD((_qword), EFX_DWORD_0) != 0xffffffff && \ EFX_QWORD_FIELD((_qword), EFX_DWORD_1) != 0xffffffff) #if EFSYS_OPT_SIENA static __checkReturn efx_rc_t siena_ev_init( __in efx_nic_t *enp); static void siena_ev_fini( __in efx_nic_t *enp); static __checkReturn efx_rc_t siena_ev_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in uint32_t us, + __in uint32_t flags, __in efx_evq_t *eep); static void siena_ev_qdestroy( __in efx_evq_t *eep); static __checkReturn efx_rc_t siena_ev_qprime( __in efx_evq_t *eep, __in unsigned int count); static void siena_ev_qpoll( __in efx_evq_t *eep, __inout unsigned int *countp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); static void siena_ev_qpost( __in efx_evq_t *eep, __in uint16_t data); static __checkReturn efx_rc_t siena_ev_qmoderate( __in efx_evq_t *eep, __in unsigned int us); #if EFSYS_OPT_QSTATS static void siena_ev_qstats_update( __in efx_evq_t *eep, __inout_ecount(EV_NQSTATS) efsys_stat_t *stat); #endif #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_SIENA static const efx_ev_ops_t __efx_ev_siena_ops = { siena_ev_init, /* eevo_init */ siena_ev_fini, /* eevo_fini */ siena_ev_qcreate, /* eevo_qcreate */ siena_ev_qdestroy, /* eevo_qdestroy */ siena_ev_qprime, /* eevo_qprime */ siena_ev_qpost, /* eevo_qpost */ siena_ev_qmoderate, /* eevo_qmoderate */ #if EFSYS_OPT_QSTATS siena_ev_qstats_update, /* eevo_qstats_update */ #endif }; #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD static const efx_ev_ops_t __efx_ev_ef10_ops = { ef10_ev_init, /* eevo_init */ ef10_ev_fini, /* eevo_fini */ ef10_ev_qcreate, /* eevo_qcreate */ ef10_ev_qdestroy, /* eevo_qdestroy */ ef10_ev_qprime, /* eevo_qprime */ ef10_ev_qpost, /* eevo_qpost */ ef10_ev_qmoderate, /* eevo_qmoderate */ #if EFSYS_OPT_QSTATS ef10_ev_qstats_update, /* eevo_qstats_update */ #endif }; #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */ __checkReturn efx_rc_t efx_ev_init( __in efx_nic_t *enp) { const efx_ev_ops_t *eevop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_INTR); if (enp->en_mod_flags & EFX_MOD_EV) { rc = EINVAL; goto fail1; } switch (enp->en_family) { #if EFSYS_OPT_SIENA case EFX_FAMILY_SIENA: eevop = &__efx_ev_siena_ops; break; #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON case EFX_FAMILY_HUNTINGTON: eevop = &__efx_ev_ef10_ops; break; #endif /* EFSYS_OPT_HUNTINGTON */ #if EFSYS_OPT_MEDFORD case EFX_FAMILY_MEDFORD: eevop = &__efx_ev_ef10_ops; break; #endif /* EFSYS_OPT_MEDFORD */ default: EFSYS_ASSERT(0); rc = ENOTSUP; goto fail1; } EFSYS_ASSERT3U(enp->en_ev_qcount, ==, 0); if ((rc = eevop->eevo_init(enp)) != 0) goto fail2; enp->en_eevop = eevop; enp->en_mod_flags |= EFX_MOD_EV; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); enp->en_eevop = NULL; enp->en_mod_flags &= ~EFX_MOD_EV; return (rc); } void efx_ev_fini( __in efx_nic_t *enp) { const efx_ev_ops_t *eevop = enp->en_eevop; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_INTR); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_EV); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_RX)); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_TX)); EFSYS_ASSERT3U(enp->en_ev_qcount, ==, 0); eevop->eevo_fini(enp); enp->en_eevop = NULL; enp->en_mod_flags &= ~EFX_MOD_EV; } __checkReturn efx_rc_t efx_ev_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in uint32_t us, + __in uint32_t flags, __deref_out efx_evq_t **eepp) { const efx_ev_ops_t *eevop = enp->en_eevop; efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_evq_t *eep; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_EV); EFSYS_ASSERT3U(enp->en_ev_qcount + 1, <, encp->enc_evq_limit); /* Allocate an EVQ object */ EFSYS_KMEM_ALLOC(enp->en_esip, sizeof (efx_evq_t), eep); if (eep == NULL) { rc = ENOMEM; goto fail1; } eep->ee_magic = EFX_EVQ_MAGIC; eep->ee_enp = enp; eep->ee_index = index; eep->ee_mask = n - 1; eep->ee_esmp = esmp; /* * Set outputs before the queue is created because interrupts may be * raised for events immediately after the queue is created, before the * function call below returns. See bug58606. * * The eepp pointer passed in by the client must therefore point to data * shared with the client's event processing context. */ enp->en_ev_qcount++; *eepp = eep; - if ((rc = eevop->eevo_qcreate(enp, index, esmp, n, id, us, eep)) != 0) + if ((rc = eevop->eevo_qcreate(enp, index, esmp, n, id, us, flags, + eep)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); *eepp = NULL; enp->en_ev_qcount--; EFSYS_KMEM_FREE(enp->en_esip, sizeof (efx_evq_t), eep); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void efx_ev_qdestroy( __in efx_evq_t *eep) { efx_nic_t *enp = eep->ee_enp; const efx_ev_ops_t *eevop = enp->en_eevop; EFSYS_ASSERT3U(eep->ee_magic, ==, EFX_EVQ_MAGIC); EFSYS_ASSERT(enp->en_ev_qcount != 0); --enp->en_ev_qcount; eevop->eevo_qdestroy(eep); /* Free the EVQ object */ EFSYS_KMEM_FREE(enp->en_esip, sizeof (efx_evq_t), eep); } __checkReturn efx_rc_t efx_ev_qprime( __in efx_evq_t *eep, __in unsigned int count) { efx_nic_t *enp = eep->ee_enp; const efx_ev_ops_t *eevop = enp->en_eevop; efx_rc_t rc; EFSYS_ASSERT3U(eep->ee_magic, ==, EFX_EVQ_MAGIC); if (!(enp->en_mod_flags & EFX_MOD_INTR)) { rc = EINVAL; goto fail1; } if ((rc = eevop->eevo_qprime(eep, count)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn boolean_t efx_ev_qpending( __in efx_evq_t *eep, __in unsigned int count) { size_t offset; efx_qword_t qword; EFSYS_ASSERT3U(eep->ee_magic, ==, EFX_EVQ_MAGIC); offset = (count & eep->ee_mask) * sizeof (efx_qword_t); EFSYS_MEM_READQ(eep->ee_esmp, offset, &qword); return (EFX_EV_PRESENT(qword)); } #if EFSYS_OPT_EV_PREFETCH void efx_ev_qprefetch( __in efx_evq_t *eep, __in unsigned int count) { unsigned int offset; EFSYS_ASSERT3U(eep->ee_magic, ==, EFX_EVQ_MAGIC); offset = (count & eep->ee_mask) * sizeof (efx_qword_t); EFSYS_MEM_PREFETCH(eep->ee_esmp, offset); } #endif /* EFSYS_OPT_EV_PREFETCH */ void efx_ev_qpoll( __in efx_evq_t *eep, __inout unsigned int *countp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { EFSYS_ASSERT3U(eep->ee_magic, ==, EFX_EVQ_MAGIC); /* * FIXME: Huntington will require support for hardware event batching * and merging, which will need a different ev_qpoll implementation. * * Without those features the Falcon/Siena code can be used unchanged. */ EFX_STATIC_ASSERT(ESF_DZ_EV_CODE_LBN == FSF_AZ_EV_CODE_LBN); EFX_STATIC_ASSERT(ESF_DZ_EV_CODE_WIDTH == FSF_AZ_EV_CODE_WIDTH); EFX_STATIC_ASSERT(ESE_DZ_EV_CODE_RX_EV == FSE_AZ_EV_CODE_RX_EV); EFX_STATIC_ASSERT(ESE_DZ_EV_CODE_TX_EV == FSE_AZ_EV_CODE_TX_EV); EFX_STATIC_ASSERT(ESE_DZ_EV_CODE_DRIVER_EV == FSE_AZ_EV_CODE_DRIVER_EV); EFX_STATIC_ASSERT(ESE_DZ_EV_CODE_DRV_GEN_EV == FSE_AZ_EV_CODE_DRV_GEN_EV); #if EFSYS_OPT_MCDI EFX_STATIC_ASSERT(ESE_DZ_EV_CODE_MCDI_EV == FSE_AZ_EV_CODE_MCDI_EVRESPONSE); #endif siena_ev_qpoll(eep, countp, eecp, arg); } void efx_ev_qpost( __in efx_evq_t *eep, __in uint16_t data) { efx_nic_t *enp = eep->ee_enp; const efx_ev_ops_t *eevop = enp->en_eevop; EFSYS_ASSERT3U(eep->ee_magic, ==, EFX_EVQ_MAGIC); EFSYS_ASSERT(eevop != NULL && eevop->eevo_qpost != NULL); eevop->eevo_qpost(eep, data); } __checkReturn efx_rc_t efx_ev_usecs_to_ticks( __in efx_nic_t *enp, __in unsigned int us, __out unsigned int *ticksp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); unsigned int ticks; /* Convert microseconds to a timer tick count */ if (us == 0) ticks = 0; else if (us * 1000 < encp->enc_evq_timer_quantum_ns) ticks = 1; /* Never round down to zero */ else ticks = us * 1000 / encp->enc_evq_timer_quantum_ns; *ticksp = ticks; return (0); } __checkReturn efx_rc_t efx_ev_qmoderate( __in efx_evq_t *eep, __in unsigned int us) { efx_nic_t *enp = eep->ee_enp; const efx_ev_ops_t *eevop = enp->en_eevop; efx_rc_t rc; EFSYS_ASSERT3U(eep->ee_magic, ==, EFX_EVQ_MAGIC); if ((rc = eevop->eevo_qmoderate(eep, us)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #if EFSYS_OPT_QSTATS void efx_ev_qstats_update( __in efx_evq_t *eep, __inout_ecount(EV_NQSTATS) efsys_stat_t *stat) { efx_nic_t *enp = eep->ee_enp; const efx_ev_ops_t *eevop = enp->en_eevop; EFSYS_ASSERT3U(eep->ee_magic, ==, EFX_EVQ_MAGIC); eevop->eevo_qstats_update(eep, stat); } #endif /* EFSYS_OPT_QSTATS */ #if EFSYS_OPT_SIENA static __checkReturn efx_rc_t siena_ev_init( __in efx_nic_t *enp) { efx_oword_t oword; /* * Program the event queue for receive and transmit queue * flush events. */ EFX_BAR_READO(enp, FR_AZ_DP_CTRL_REG, &oword); EFX_SET_OWORD_FIELD(oword, FRF_AZ_FLS_EVQ_ID, 0); EFX_BAR_WRITEO(enp, FR_AZ_DP_CTRL_REG, &oword); return (0); } static __checkReturn boolean_t siena_ev_rx_not_ok( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in uint32_t label, __in uint32_t id, __inout uint16_t *flagsp) { boolean_t ignore = B_FALSE; if (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_TOBE_DISC) != 0) { EFX_EV_QSTAT_INCR(eep, EV_RX_TOBE_DISC); EFSYS_PROBE(tobe_disc); /* * Assume this is a unicast address mismatch, unless below * we find either FSF_AZ_RX_EV_ETH_CRC_ERR or * EV_RX_PAUSE_FRM_ERR is set. */ (*flagsp) |= EFX_ADDR_MISMATCH; } if (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_FRM_TRUNC) != 0) { EFSYS_PROBE2(frm_trunc, uint32_t, label, uint32_t, id); EFX_EV_QSTAT_INCR(eep, EV_RX_FRM_TRUNC); (*flagsp) |= EFX_DISCARD; #if EFSYS_OPT_RX_SCATTER /* * Lookout for payload queue ran dry errors and ignore them. * * Sadly for the header/data split cases, the descriptor * pointer in this event refers to the header queue and * therefore cannot be easily detected as duplicate. * So we drop these and rely on the receive processing seeing * a subsequent packet with FSF_AZ_RX_EV_SOP set to discard * the partially received packet. */ if ((EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_SOP) == 0) && (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_JUMBO_CONT) == 0) && (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_BYTE_CNT) == 0)) ignore = B_TRUE; #endif /* EFSYS_OPT_RX_SCATTER */ } if (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_ETH_CRC_ERR) != 0) { EFX_EV_QSTAT_INCR(eep, EV_RX_ETH_CRC_ERR); EFSYS_PROBE(crc_err); (*flagsp) &= ~EFX_ADDR_MISMATCH; (*flagsp) |= EFX_DISCARD; } if (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_PAUSE_FRM_ERR) != 0) { EFX_EV_QSTAT_INCR(eep, EV_RX_PAUSE_FRM_ERR); EFSYS_PROBE(pause_frm_err); (*flagsp) &= ~EFX_ADDR_MISMATCH; (*flagsp) |= EFX_DISCARD; } if (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_BUF_OWNER_ID_ERR) != 0) { EFX_EV_QSTAT_INCR(eep, EV_RX_BUF_OWNER_ID_ERR); EFSYS_PROBE(owner_id_err); (*flagsp) |= EFX_DISCARD; } if (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR) != 0) { EFX_EV_QSTAT_INCR(eep, EV_RX_IPV4_HDR_CHKSUM_ERR); EFSYS_PROBE(ipv4_err); (*flagsp) &= ~EFX_CKSUM_IPV4; } if (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR) != 0) { EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_UDP_CHKSUM_ERR); EFSYS_PROBE(udp_chk_err); (*flagsp) &= ~EFX_CKSUM_TCPUDP; } if (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_IP_FRAG_ERR) != 0) { EFX_EV_QSTAT_INCR(eep, EV_RX_IP_FRAG_ERR); /* * If IP is fragmented FSF_AZ_RX_EV_IP_FRAG_ERR is set. This * causes FSF_AZ_RX_EV_PKT_OK to be clear. This is not an error * condition. */ (*flagsp) &= ~(EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP); } return (ignore); } static __checkReturn boolean_t siena_ev_rx( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { uint32_t id; uint32_t size; uint32_t label; boolean_t ok; #if EFSYS_OPT_RX_SCATTER boolean_t sop; boolean_t jumbo_cont; #endif /* EFSYS_OPT_RX_SCATTER */ uint32_t hdr_type; boolean_t is_v6; uint16_t flags; boolean_t ignore; boolean_t should_abort; EFX_EV_QSTAT_INCR(eep, EV_RX); /* Basic packet information */ id = EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_DESC_PTR); size = EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_BYTE_CNT); label = EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_Q_LABEL); ok = (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_PKT_OK) != 0); #if EFSYS_OPT_RX_SCATTER sop = (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_SOP) != 0); jumbo_cont = (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_JUMBO_CONT) != 0); #endif /* EFSYS_OPT_RX_SCATTER */ hdr_type = EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_HDR_TYPE); is_v6 = (EFX_QWORD_FIELD(*eqp, FSF_CZ_RX_EV_IPV6_PKT) != 0); /* * If packet is marked as OK and packet type is TCP/IP or * UDP/IP or other IP, then we can rely on the hardware checksums. */ switch (hdr_type) { case FSE_AZ_RX_EV_HDR_TYPE_IPV4V6_TCP: flags = EFX_PKT_TCP | EFX_CKSUM_TCPUDP; if (is_v6) { EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_IPV6); flags |= EFX_PKT_IPV6; } else { EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_IPV4); flags |= EFX_PKT_IPV4 | EFX_CKSUM_IPV4; } break; case FSE_AZ_RX_EV_HDR_TYPE_IPV4V6_UDP: flags = EFX_PKT_UDP | EFX_CKSUM_TCPUDP; if (is_v6) { EFX_EV_QSTAT_INCR(eep, EV_RX_UDP_IPV6); flags |= EFX_PKT_IPV6; } else { EFX_EV_QSTAT_INCR(eep, EV_RX_UDP_IPV4); flags |= EFX_PKT_IPV4 | EFX_CKSUM_IPV4; } break; case FSE_AZ_RX_EV_HDR_TYPE_IPV4V6_OTHER: if (is_v6) { EFX_EV_QSTAT_INCR(eep, EV_RX_OTHER_IPV6); flags = EFX_PKT_IPV6; } else { EFX_EV_QSTAT_INCR(eep, EV_RX_OTHER_IPV4); flags = EFX_PKT_IPV4 | EFX_CKSUM_IPV4; } break; case FSE_AZ_RX_EV_HDR_TYPE_OTHER: EFX_EV_QSTAT_INCR(eep, EV_RX_NON_IP); flags = 0; break; default: EFSYS_ASSERT(B_FALSE); flags = 0; break; } #if EFSYS_OPT_RX_SCATTER /* Report scatter and header/lookahead split buffer flags */ if (sop) flags |= EFX_PKT_START; if (jumbo_cont) flags |= EFX_PKT_CONT; #endif /* EFSYS_OPT_RX_SCATTER */ /* Detect errors included in the FSF_AZ_RX_EV_PKT_OK indication */ if (!ok) { ignore = siena_ev_rx_not_ok(eep, eqp, label, id, &flags); if (ignore) { EFSYS_PROBE4(rx_complete, uint32_t, label, uint32_t, id, uint32_t, size, uint16_t, flags); return (B_FALSE); } } /* If we're not discarding the packet then it is ok */ if (~flags & EFX_DISCARD) EFX_EV_QSTAT_INCR(eep, EV_RX_OK); /* Detect multicast packets that didn't match the filter */ if (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_MCAST_PKT) != 0) { EFX_EV_QSTAT_INCR(eep, EV_RX_MCAST_PKT); if (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_MCAST_HASH_MATCH) != 0) { EFX_EV_QSTAT_INCR(eep, EV_RX_MCAST_HASH_MATCH); } else { EFSYS_PROBE(mcast_mismatch); flags |= EFX_ADDR_MISMATCH; } } else { flags |= EFX_PKT_UNICAST; } /* * The packet parser in Siena can abort parsing packets under * certain error conditions, setting the PKT_NOT_PARSED bit * (which clears PKT_OK). If this is set, then don't trust * the PKT_TYPE field. */ if (!ok) { uint32_t parse_err; parse_err = EFX_QWORD_FIELD(*eqp, FSF_CZ_RX_EV_PKT_NOT_PARSED); if (parse_err != 0) flags |= EFX_CHECK_VLAN; } if (~flags & EFX_CHECK_VLAN) { uint32_t pkt_type; pkt_type = EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_PKT_TYPE); if (pkt_type >= FSE_AZ_RX_EV_PKT_TYPE_VLAN) flags |= EFX_PKT_VLAN_TAGGED; } EFSYS_PROBE4(rx_complete, uint32_t, label, uint32_t, id, uint32_t, size, uint16_t, flags); EFSYS_ASSERT(eecp->eec_rx != NULL); should_abort = eecp->eec_rx(arg, label, id, size, flags); return (should_abort); } static __checkReturn boolean_t siena_ev_tx( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { uint32_t id; uint32_t label; boolean_t should_abort; EFX_EV_QSTAT_INCR(eep, EV_TX); if (EFX_QWORD_FIELD(*eqp, FSF_AZ_TX_EV_COMP) != 0 && EFX_QWORD_FIELD(*eqp, FSF_AZ_TX_EV_PKT_ERR) == 0 && EFX_QWORD_FIELD(*eqp, FSF_AZ_TX_EV_PKT_TOO_BIG) == 0 && EFX_QWORD_FIELD(*eqp, FSF_AZ_TX_EV_WQ_FF_FULL) == 0) { id = EFX_QWORD_FIELD(*eqp, FSF_AZ_TX_EV_DESC_PTR); label = EFX_QWORD_FIELD(*eqp, FSF_AZ_TX_EV_Q_LABEL); EFSYS_PROBE2(tx_complete, uint32_t, label, uint32_t, id); EFSYS_ASSERT(eecp->eec_tx != NULL); should_abort = eecp->eec_tx(arg, label, id); return (should_abort); } if (EFX_QWORD_FIELD(*eqp, FSF_AZ_TX_EV_COMP) != 0) EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index, uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0)); if (EFX_QWORD_FIELD(*eqp, FSF_AZ_TX_EV_PKT_ERR) != 0) EFX_EV_QSTAT_INCR(eep, EV_TX_PKT_ERR); if (EFX_QWORD_FIELD(*eqp, FSF_AZ_TX_EV_PKT_TOO_BIG) != 0) EFX_EV_QSTAT_INCR(eep, EV_TX_PKT_TOO_BIG); if (EFX_QWORD_FIELD(*eqp, FSF_AZ_TX_EV_WQ_FF_FULL) != 0) EFX_EV_QSTAT_INCR(eep, EV_TX_WQ_FF_FULL); EFX_EV_QSTAT_INCR(eep, EV_TX_UNEXPECTED); return (B_FALSE); } static __checkReturn boolean_t siena_ev_global( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { _NOTE(ARGUNUSED(eqp, eecp, arg)) EFX_EV_QSTAT_INCR(eep, EV_GLOBAL); return (B_FALSE); } static __checkReturn boolean_t siena_ev_driver( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { boolean_t should_abort; EFX_EV_QSTAT_INCR(eep, EV_DRIVER); should_abort = B_FALSE; switch (EFX_QWORD_FIELD(*eqp, FSF_AZ_DRIVER_EV_SUBCODE)) { case FSE_AZ_TX_DESCQ_FLS_DONE_EV: { uint32_t txq_index; EFX_EV_QSTAT_INCR(eep, EV_DRIVER_TX_DESCQ_FLS_DONE); txq_index = EFX_QWORD_FIELD(*eqp, FSF_AZ_DRIVER_EV_SUBDATA); EFSYS_PROBE1(tx_descq_fls_done, uint32_t, txq_index); EFSYS_ASSERT(eecp->eec_txq_flush_done != NULL); should_abort = eecp->eec_txq_flush_done(arg, txq_index); break; } case FSE_AZ_RX_DESCQ_FLS_DONE_EV: { uint32_t rxq_index; uint32_t failed; rxq_index = EFX_QWORD_FIELD(*eqp, FSF_AZ_DRIVER_EV_RX_DESCQ_ID); failed = EFX_QWORD_FIELD(*eqp, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL); EFSYS_ASSERT(eecp->eec_rxq_flush_done != NULL); EFSYS_ASSERT(eecp->eec_rxq_flush_failed != NULL); if (failed) { EFX_EV_QSTAT_INCR(eep, EV_DRIVER_RX_DESCQ_FLS_FAILED); EFSYS_PROBE1(rx_descq_fls_failed, uint32_t, rxq_index); should_abort = eecp->eec_rxq_flush_failed(arg, rxq_index); } else { EFX_EV_QSTAT_INCR(eep, EV_DRIVER_RX_DESCQ_FLS_DONE); EFSYS_PROBE1(rx_descq_fls_done, uint32_t, rxq_index); should_abort = eecp->eec_rxq_flush_done(arg, rxq_index); } break; } case FSE_AZ_EVQ_INIT_DONE_EV: EFSYS_ASSERT(eecp->eec_initialized != NULL); should_abort = eecp->eec_initialized(arg); break; case FSE_AZ_EVQ_NOT_EN_EV: EFSYS_PROBE(evq_not_en); break; case FSE_AZ_SRM_UPD_DONE_EV: { uint32_t code; EFX_EV_QSTAT_INCR(eep, EV_DRIVER_SRM_UPD_DONE); code = EFX_QWORD_FIELD(*eqp, FSF_AZ_DRIVER_EV_SUBDATA); EFSYS_ASSERT(eecp->eec_sram != NULL); should_abort = eecp->eec_sram(arg, code); break; } case FSE_AZ_WAKE_UP_EV: { uint32_t id; id = EFX_QWORD_FIELD(*eqp, FSF_AZ_DRIVER_EV_SUBDATA); EFSYS_ASSERT(eecp->eec_wake_up != NULL); should_abort = eecp->eec_wake_up(arg, id); break; } case FSE_AZ_TX_PKT_NON_TCP_UDP: EFSYS_PROBE(tx_pkt_non_tcp_udp); break; case FSE_AZ_TIMER_EV: { uint32_t id; id = EFX_QWORD_FIELD(*eqp, FSF_AZ_DRIVER_EV_SUBDATA); EFSYS_ASSERT(eecp->eec_timer != NULL); should_abort = eecp->eec_timer(arg, id); break; } case FSE_AZ_RX_DSC_ERROR_EV: EFX_EV_QSTAT_INCR(eep, EV_DRIVER_RX_DSC_ERROR); EFSYS_PROBE(rx_dsc_error); EFSYS_ASSERT(eecp->eec_exception != NULL); should_abort = eecp->eec_exception(arg, EFX_EXCEPTION_RX_DSC_ERROR, 0); break; case FSE_AZ_TX_DSC_ERROR_EV: EFX_EV_QSTAT_INCR(eep, EV_DRIVER_TX_DSC_ERROR); EFSYS_PROBE(tx_dsc_error); EFSYS_ASSERT(eecp->eec_exception != NULL); should_abort = eecp->eec_exception(arg, EFX_EXCEPTION_TX_DSC_ERROR, 0); break; default: break; } return (should_abort); } static __checkReturn boolean_t siena_ev_drv_gen( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { uint32_t data; boolean_t should_abort; EFX_EV_QSTAT_INCR(eep, EV_DRV_GEN); data = EFX_QWORD_FIELD(*eqp, FSF_AZ_EV_DATA_DW0); if (data >= ((uint32_t)1 << 16)) { EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index, uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0)); return (B_TRUE); } EFSYS_ASSERT(eecp->eec_software != NULL); should_abort = eecp->eec_software(arg, (uint16_t)data); return (should_abort); } #if EFSYS_OPT_MCDI static __checkReturn boolean_t siena_ev_mcdi( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { efx_nic_t *enp = eep->ee_enp; unsigned int code; boolean_t should_abort = B_FALSE; EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_SIENA); if (enp->en_family != EFX_FAMILY_SIENA) goto out; EFSYS_ASSERT(eecp->eec_link_change != NULL); EFSYS_ASSERT(eecp->eec_exception != NULL); #if EFSYS_OPT_MON_STATS EFSYS_ASSERT(eecp->eec_monitor != NULL); #endif EFX_EV_QSTAT_INCR(eep, EV_MCDI_RESPONSE); code = EFX_QWORD_FIELD(*eqp, MCDI_EVENT_CODE); switch (code) { case MCDI_EVENT_CODE_BADSSERT: efx_mcdi_ev_death(enp, EINTR); break; case MCDI_EVENT_CODE_CMDDONE: efx_mcdi_ev_cpl(enp, MCDI_EV_FIELD(eqp, CMDDONE_SEQ), MCDI_EV_FIELD(eqp, CMDDONE_DATALEN), MCDI_EV_FIELD(eqp, CMDDONE_ERRNO)); break; case MCDI_EVENT_CODE_LINKCHANGE: { efx_link_mode_t link_mode; siena_phy_link_ev(enp, eqp, &link_mode); should_abort = eecp->eec_link_change(arg, link_mode); break; } case MCDI_EVENT_CODE_SENSOREVT: { #if EFSYS_OPT_MON_STATS efx_mon_stat_t id; efx_mon_stat_value_t value; efx_rc_t rc; if ((rc = mcdi_mon_ev(enp, eqp, &id, &value)) == 0) should_abort = eecp->eec_monitor(arg, id, value); else if (rc == ENOTSUP) { should_abort = eecp->eec_exception(arg, EFX_EXCEPTION_UNKNOWN_SENSOREVT, MCDI_EV_FIELD(eqp, DATA)); } else EFSYS_ASSERT(rc == ENODEV); /* Wrong port */ #else should_abort = B_FALSE; #endif break; } case MCDI_EVENT_CODE_SCHEDERR: /* Informational only */ break; case MCDI_EVENT_CODE_REBOOT: efx_mcdi_ev_death(enp, EIO); break; case MCDI_EVENT_CODE_MAC_STATS_DMA: #if EFSYS_OPT_MAC_STATS if (eecp->eec_mac_stats != NULL) { eecp->eec_mac_stats(arg, MCDI_EV_FIELD(eqp, MAC_STATS_DMA_GENERATION)); } #endif break; case MCDI_EVENT_CODE_FWALERT: { uint32_t reason = MCDI_EV_FIELD(eqp, FWALERT_REASON); if (reason == MCDI_EVENT_FWALERT_REASON_SRAM_ACCESS) should_abort = eecp->eec_exception(arg, EFX_EXCEPTION_FWALERT_SRAM, MCDI_EV_FIELD(eqp, FWALERT_DATA)); else should_abort = eecp->eec_exception(arg, EFX_EXCEPTION_UNKNOWN_FWALERT, MCDI_EV_FIELD(eqp, DATA)); break; } default: EFSYS_PROBE1(mc_pcol_error, int, code); break; } out: return (should_abort); } #endif /* EFSYS_OPT_MCDI */ static __checkReturn efx_rc_t siena_ev_qprime( __in efx_evq_t *eep, __in unsigned int count) { efx_nic_t *enp = eep->ee_enp; uint32_t rptr; efx_dword_t dword; rptr = count & eep->ee_mask; EFX_POPULATE_DWORD_1(dword, FRF_AZ_EVQ_RPTR, rptr); EFX_BAR_TBL_WRITED(enp, FR_AZ_EVQ_RPTR_REG, eep->ee_index, &dword, B_FALSE); return (0); } #define EFX_EV_BATCH 8 static void siena_ev_qpoll( __in efx_evq_t *eep, __inout unsigned int *countp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { efx_qword_t ev[EFX_EV_BATCH]; unsigned int batch; unsigned int total; unsigned int count; unsigned int index; size_t offset; EFSYS_ASSERT(countp != NULL); EFSYS_ASSERT(eecp != NULL); count = *countp; do { /* Read up until the end of the batch period */ batch = EFX_EV_BATCH - (count & (EFX_EV_BATCH - 1)); offset = (count & eep->ee_mask) * sizeof (efx_qword_t); for (total = 0; total < batch; ++total) { EFSYS_MEM_READQ(eep->ee_esmp, offset, &(ev[total])); if (!EFX_EV_PRESENT(ev[total])) break; EFSYS_PROBE3(event, unsigned int, eep->ee_index, uint32_t, EFX_QWORD_FIELD(ev[total], EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(ev[total], EFX_DWORD_0)); offset += sizeof (efx_qword_t); } #if EFSYS_OPT_EV_PREFETCH && (EFSYS_OPT_EV_PREFETCH_PERIOD > 1) /* * Prefetch the next batch when we get within PREFETCH_PERIOD * of a completed batch. If the batch is smaller, then prefetch * immediately. */ if (total == batch && total < EFSYS_OPT_EV_PREFETCH_PERIOD) EFSYS_MEM_PREFETCH(eep->ee_esmp, offset); #endif /* EFSYS_OPT_EV_PREFETCH */ /* Process the batch of events */ for (index = 0; index < total; ++index) { boolean_t should_abort; uint32_t code; #if EFSYS_OPT_EV_PREFETCH /* Prefetch if we've now reached the batch period */ if (total == batch && index + EFSYS_OPT_EV_PREFETCH_PERIOD == total) { offset = (count + batch) & eep->ee_mask; offset *= sizeof (efx_qword_t); EFSYS_MEM_PREFETCH(eep->ee_esmp, offset); } #endif /* EFSYS_OPT_EV_PREFETCH */ EFX_EV_QSTAT_INCR(eep, EV_ALL); code = EFX_QWORD_FIELD(ev[index], FSF_AZ_EV_CODE); switch (code) { case FSE_AZ_EV_CODE_RX_EV: should_abort = eep->ee_rx(eep, &(ev[index]), eecp, arg); break; case FSE_AZ_EV_CODE_TX_EV: should_abort = eep->ee_tx(eep, &(ev[index]), eecp, arg); break; case FSE_AZ_EV_CODE_DRIVER_EV: should_abort = eep->ee_driver(eep, &(ev[index]), eecp, arg); break; case FSE_AZ_EV_CODE_DRV_GEN_EV: should_abort = eep->ee_drv_gen(eep, &(ev[index]), eecp, arg); break; #if EFSYS_OPT_MCDI case FSE_AZ_EV_CODE_MCDI_EVRESPONSE: should_abort = eep->ee_mcdi(eep, &(ev[index]), eecp, arg); break; #endif case FSE_AZ_EV_CODE_GLOBAL_EV: if (eep->ee_global) { should_abort = eep->ee_global(eep, &(ev[index]), eecp, arg); break; } /* else fallthrough */ default: EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index, uint32_t, EFX_QWORD_FIELD(ev[index], EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(ev[index], EFX_DWORD_0)); EFSYS_ASSERT(eecp->eec_exception != NULL); (void) eecp->eec_exception(arg, EFX_EXCEPTION_EV_ERROR, code); should_abort = B_TRUE; } if (should_abort) { /* Ignore subsequent events */ total = index + 1; break; } } /* * Now that the hardware has most likely moved onto dma'ing * into the next cache line, clear the processed events. Take * care to only clear out events that we've processed */ EFX_SET_QWORD(ev[0]); offset = (count & eep->ee_mask) * sizeof (efx_qword_t); for (index = 0; index < total; ++index) { EFSYS_MEM_WRITEQ(eep->ee_esmp, offset, &(ev[0])); offset += sizeof (efx_qword_t); } count += total; } while (total == batch); *countp = count; } static void siena_ev_qpost( __in efx_evq_t *eep, __in uint16_t data) { efx_nic_t *enp = eep->ee_enp; efx_qword_t ev; efx_oword_t oword; EFX_POPULATE_QWORD_2(ev, FSF_AZ_EV_CODE, FSE_AZ_EV_CODE_DRV_GEN_EV, FSF_AZ_EV_DATA_DW0, (uint32_t)data); EFX_POPULATE_OWORD_3(oword, FRF_AZ_DRV_EV_QID, eep->ee_index, EFX_DWORD_0, EFX_QWORD_FIELD(ev, EFX_DWORD_0), EFX_DWORD_1, EFX_QWORD_FIELD(ev, EFX_DWORD_1)); EFX_BAR_WRITEO(enp, FR_AZ_DRV_EV_REG, &oword); } static __checkReturn efx_rc_t siena_ev_qmoderate( __in efx_evq_t *eep, __in unsigned int us) { efx_nic_t *enp = eep->ee_enp; efx_nic_cfg_t *encp = &(enp->en_nic_cfg); unsigned int locked; efx_dword_t dword; efx_rc_t rc; if (us > encp->enc_evq_timer_max_us) { rc = EINVAL; goto fail1; } /* If the value is zero then disable the timer */ if (us == 0) { EFX_POPULATE_DWORD_2(dword, FRF_CZ_TC_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS, FRF_CZ_TC_TIMER_VAL, 0); } else { unsigned int ticks; if ((rc = efx_ev_usecs_to_ticks(enp, us, &ticks)) != 0) goto fail2; EFSYS_ASSERT(ticks > 0); EFX_POPULATE_DWORD_2(dword, FRF_CZ_TC_TIMER_MODE, FFE_CZ_TIMER_MODE_INT_HLDOFF, FRF_CZ_TC_TIMER_VAL, ticks - 1); } locked = (eep->ee_index == 0) ? 1 : 0; EFX_BAR_TBL_WRITED(enp, FR_BZ_TIMER_COMMAND_REGP0, eep->ee_index, &dword, locked); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t siena_ev_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in uint32_t us, + __in uint32_t flags, __in efx_evq_t *eep) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint32_t size; efx_oword_t oword; efx_rc_t rc; _NOTE(ARGUNUSED(esmp)) EFX_STATIC_ASSERT(ISP2(EFX_EVQ_MAXNEVS)); EFX_STATIC_ASSERT(ISP2(EFX_EVQ_MINNEVS)); if (!ISP2(n) || (n < EFX_EVQ_MINNEVS) || (n > EFX_EVQ_MAXNEVS)) { rc = EINVAL; goto fail1; } if (index >= encp->enc_evq_limit) { rc = EINVAL; goto fail2; } #if EFSYS_OPT_RX_SCALE if (enp->en_intr.ei_type == EFX_INTR_LINE && index >= EFX_MAXRSS_LEGACY) { rc = EINVAL; goto fail3; } #endif for (size = 0; (1 << size) <= (EFX_EVQ_MAXNEVS / EFX_EVQ_MINNEVS); size++) if ((1 << size) == (int)(n / EFX_EVQ_MINNEVS)) break; if (id + (1 << size) >= encp->enc_buftbl_limit) { rc = EINVAL; goto fail4; } /* Set up the handler table */ eep->ee_rx = siena_ev_rx; eep->ee_tx = siena_ev_tx; eep->ee_driver = siena_ev_driver; eep->ee_global = siena_ev_global; eep->ee_drv_gen = siena_ev_drv_gen; #if EFSYS_OPT_MCDI eep->ee_mcdi = siena_ev_mcdi; #endif /* EFSYS_OPT_MCDI */ /* Set up the new event queue */ EFX_POPULATE_OWORD_1(oword, FRF_CZ_TIMER_Q_EN, 1); EFX_BAR_TBL_WRITEO(enp, FR_AZ_TIMER_TBL, index, &oword, B_TRUE); EFX_POPULATE_OWORD_3(oword, FRF_AZ_EVQ_EN, 1, FRF_AZ_EVQ_SIZE, size, FRF_AZ_EVQ_BUF_BASE_ID, id); EFX_BAR_TBL_WRITEO(enp, FR_AZ_EVQ_PTR_TBL, index, &oword, B_TRUE); /* Set initial interrupt moderation */ siena_ev_qmoderate(eep, us); return (0); fail4: EFSYS_PROBE(fail4); #if EFSYS_OPT_RX_SCALE fail3: EFSYS_PROBE(fail3); #endif fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_QSTATS #if EFSYS_OPT_NAMES /* START MKCONFIG GENERATED EfxEventQueueStatNamesBlock c0f3bc5083b40532 */ static const char * const __efx_ev_qstat_name[] = { "all", "rx", "rx_ok", "rx_frm_trunc", "rx_tobe_disc", "rx_pause_frm_err", "rx_buf_owner_id_err", "rx_ipv4_hdr_chksum_err", "rx_tcp_udp_chksum_err", "rx_eth_crc_err", "rx_ip_frag_err", "rx_mcast_pkt", "rx_mcast_hash_match", "rx_tcp_ipv4", "rx_tcp_ipv6", "rx_udp_ipv4", "rx_udp_ipv6", "rx_other_ipv4", "rx_other_ipv6", "rx_non_ip", "rx_batch", "tx", "tx_wq_ff_full", "tx_pkt_err", "tx_pkt_too_big", "tx_unexpected", "global", "global_mnt", "driver", "driver_srm_upd_done", "driver_tx_descq_fls_done", "driver_rx_descq_fls_done", "driver_rx_descq_fls_failed", "driver_rx_dsc_error", "driver_tx_dsc_error", "drv_gen", "mcdi_response", }; /* END MKCONFIG GENERATED EfxEventQueueStatNamesBlock */ const char * efx_ev_qstat_name( __in efx_nic_t *enp, __in unsigned int id) { EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(id, <, EV_NQSTATS); return (__efx_ev_qstat_name[id]); } #endif /* EFSYS_OPT_NAMES */ #endif /* EFSYS_OPT_QSTATS */ #if EFSYS_OPT_SIENA #if EFSYS_OPT_QSTATS static void siena_ev_qstats_update( __in efx_evq_t *eep, __inout_ecount(EV_NQSTATS) efsys_stat_t *stat) { unsigned int id; for (id = 0; id < EV_NQSTATS; id++) { efsys_stat_t *essp = &stat[id]; EFSYS_STAT_INCR(essp, eep->ee_stat[id]); eep->ee_stat[id] = 0; } } #endif /* EFSYS_OPT_QSTATS */ static void siena_ev_qdestroy( __in efx_evq_t *eep) { efx_nic_t *enp = eep->ee_enp; efx_oword_t oword; /* Purge event queue */ EFX_ZERO_OWORD(oword); EFX_BAR_TBL_WRITEO(enp, FR_AZ_EVQ_PTR_TBL, eep->ee_index, &oword, B_TRUE); EFX_ZERO_OWORD(oword); EFX_BAR_TBL_WRITEO(enp, FR_AZ_TIMER_TBL, eep->ee_index, &oword, B_TRUE); } static void siena_ev_fini( __in efx_nic_t *enp) { _NOTE(ARGUNUSED(enp)) } #endif /* EFSYS_OPT_SIENA */ Index: head/sys/dev/sfxge/common/efx_impl.h =================================================================== --- head/sys/dev/sfxge/common/efx_impl.h (revision 310712) +++ head/sys/dev/sfxge/common/efx_impl.h (revision 310713) @@ -1,1162 +1,1162 @@ /*- * Copyright (c) 2007-2016 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. * * $FreeBSD$ */ #ifndef _SYS_EFX_IMPL_H #define _SYS_EFX_IMPL_H #include "efx.h" #include "efx_regs.h" #include "efx_regs_ef10.h" /* FIXME: Add definition for driver generated software events */ #ifndef ESE_DZ_EV_CODE_DRV_GEN_EV #define ESE_DZ_EV_CODE_DRV_GEN_EV FSE_AZ_EV_CODE_DRV_GEN_EV #endif #if EFSYS_OPT_SIENA #include "siena_impl.h" #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON #include "hunt_impl.h" #endif /* EFSYS_OPT_HUNTINGTON */ #if EFSYS_OPT_MEDFORD #include "medford_impl.h" #endif /* EFSYS_OPT_MEDFORD */ #if (EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) #include "ef10_impl.h" #endif /* (EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) */ #ifdef __cplusplus extern "C" { #endif #define EFX_MOD_MCDI 0x00000001 #define EFX_MOD_PROBE 0x00000002 #define EFX_MOD_NVRAM 0x00000004 #define EFX_MOD_VPD 0x00000008 #define EFX_MOD_NIC 0x00000010 #define EFX_MOD_INTR 0x00000020 #define EFX_MOD_EV 0x00000040 #define EFX_MOD_RX 0x00000080 #define EFX_MOD_TX 0x00000100 #define EFX_MOD_PORT 0x00000200 #define EFX_MOD_MON 0x00000400 #define EFX_MOD_WOL 0x00000800 #define EFX_MOD_FILTER 0x00001000 #define EFX_MOD_LIC 0x00002000 #define EFX_RESET_PHY 0x00000001 #define EFX_RESET_RXQ_ERR 0x00000002 #define EFX_RESET_TXQ_ERR 0x00000004 typedef enum efx_mac_type_e { EFX_MAC_INVALID = 0, EFX_MAC_SIENA, EFX_MAC_HUNTINGTON, EFX_MAC_MEDFORD, EFX_MAC_NTYPES } efx_mac_type_t; typedef struct efx_ev_ops_s { efx_rc_t (*eevo_init)(efx_nic_t *); void (*eevo_fini)(efx_nic_t *); efx_rc_t (*eevo_qcreate)(efx_nic_t *, unsigned int, efsys_mem_t *, size_t, uint32_t, - uint32_t, efx_evq_t *); + uint32_t, uint32_t, efx_evq_t *); void (*eevo_qdestroy)(efx_evq_t *); efx_rc_t (*eevo_qprime)(efx_evq_t *, unsigned int); void (*eevo_qpost)(efx_evq_t *, uint16_t); efx_rc_t (*eevo_qmoderate)(efx_evq_t *, unsigned int); #if EFSYS_OPT_QSTATS void (*eevo_qstats_update)(efx_evq_t *, efsys_stat_t *); #endif } efx_ev_ops_t; typedef struct efx_tx_ops_s { efx_rc_t (*etxo_init)(efx_nic_t *); void (*etxo_fini)(efx_nic_t *); efx_rc_t (*etxo_qcreate)(efx_nic_t *, unsigned int, unsigned int, efsys_mem_t *, size_t, uint32_t, uint16_t, efx_evq_t *, efx_txq_t *, unsigned int *); void (*etxo_qdestroy)(efx_txq_t *); efx_rc_t (*etxo_qpost)(efx_txq_t *, efx_buffer_t *, unsigned int, unsigned int, unsigned int *); void (*etxo_qpush)(efx_txq_t *, unsigned int, unsigned int); efx_rc_t (*etxo_qpace)(efx_txq_t *, unsigned int); efx_rc_t (*etxo_qflush)(efx_txq_t *); void (*etxo_qenable)(efx_txq_t *); efx_rc_t (*etxo_qpio_enable)(efx_txq_t *); void (*etxo_qpio_disable)(efx_txq_t *); efx_rc_t (*etxo_qpio_write)(efx_txq_t *, uint8_t *, size_t, size_t); efx_rc_t (*etxo_qpio_post)(efx_txq_t *, size_t, unsigned int, unsigned int *); efx_rc_t (*etxo_qdesc_post)(efx_txq_t *, efx_desc_t *, unsigned int, unsigned int, unsigned int *); void (*etxo_qdesc_dma_create)(efx_txq_t *, efsys_dma_addr_t, size_t, boolean_t, efx_desc_t *); void (*etxo_qdesc_tso_create)(efx_txq_t *, uint16_t, uint32_t, uint8_t, efx_desc_t *); void (*etxo_qdesc_tso2_create)(efx_txq_t *, uint16_t, uint32_t, uint16_t, efx_desc_t *, int); void (*etxo_qdesc_vlantci_create)(efx_txq_t *, uint16_t, efx_desc_t *); #if EFSYS_OPT_QSTATS void (*etxo_qstats_update)(efx_txq_t *, efsys_stat_t *); #endif } efx_tx_ops_t; typedef struct efx_rx_ops_s { efx_rc_t (*erxo_init)(efx_nic_t *); void (*erxo_fini)(efx_nic_t *); #if EFSYS_OPT_RX_SCATTER efx_rc_t (*erxo_scatter_enable)(efx_nic_t *, unsigned int); #endif #if EFSYS_OPT_RX_SCALE efx_rc_t (*erxo_scale_mode_set)(efx_nic_t *, efx_rx_hash_alg_t, efx_rx_hash_type_t, boolean_t); efx_rc_t (*erxo_scale_key_set)(efx_nic_t *, uint8_t *, size_t); efx_rc_t (*erxo_scale_tbl_set)(efx_nic_t *, unsigned int *, size_t); uint32_t (*erxo_prefix_hash)(efx_nic_t *, efx_rx_hash_alg_t, uint8_t *); #endif /* EFSYS_OPT_RX_SCALE */ efx_rc_t (*erxo_prefix_pktlen)(efx_nic_t *, uint8_t *, uint16_t *); void (*erxo_qpost)(efx_rxq_t *, efsys_dma_addr_t *, size_t, unsigned int, unsigned int, unsigned int); void (*erxo_qpush)(efx_rxq_t *, unsigned int, unsigned int *); efx_rc_t (*erxo_qflush)(efx_rxq_t *); void (*erxo_qenable)(efx_rxq_t *); efx_rc_t (*erxo_qcreate)(efx_nic_t *enp, unsigned int, unsigned int, efx_rxq_type_t, efsys_mem_t *, size_t, uint32_t, efx_evq_t *, efx_rxq_t *); void (*erxo_qdestroy)(efx_rxq_t *); } efx_rx_ops_t; typedef struct efx_mac_ops_s { efx_rc_t (*emo_poll)(efx_nic_t *, efx_link_mode_t *); efx_rc_t (*emo_up)(efx_nic_t *, boolean_t *); efx_rc_t (*emo_addr_set)(efx_nic_t *); efx_rc_t (*emo_pdu_set)(efx_nic_t *); efx_rc_t (*emo_pdu_get)(efx_nic_t *, size_t *); efx_rc_t (*emo_reconfigure)(efx_nic_t *); efx_rc_t (*emo_multicast_list_set)(efx_nic_t *); efx_rc_t (*emo_filter_default_rxq_set)(efx_nic_t *, efx_rxq_t *, boolean_t); void (*emo_filter_default_rxq_clear)(efx_nic_t *); #if EFSYS_OPT_LOOPBACK efx_rc_t (*emo_loopback_set)(efx_nic_t *, efx_link_mode_t, efx_loopback_type_t); #endif /* EFSYS_OPT_LOOPBACK */ #if EFSYS_OPT_MAC_STATS efx_rc_t (*emo_stats_upload)(efx_nic_t *, efsys_mem_t *); efx_rc_t (*emo_stats_periodic)(efx_nic_t *, efsys_mem_t *, uint16_t, boolean_t); efx_rc_t (*emo_stats_update)(efx_nic_t *, efsys_mem_t *, efsys_stat_t *, uint32_t *); #endif /* EFSYS_OPT_MAC_STATS */ } efx_mac_ops_t; typedef struct efx_phy_ops_s { efx_rc_t (*epo_power)(efx_nic_t *, boolean_t); /* optional */ efx_rc_t (*epo_reset)(efx_nic_t *); efx_rc_t (*epo_reconfigure)(efx_nic_t *); efx_rc_t (*epo_verify)(efx_nic_t *); efx_rc_t (*epo_oui_get)(efx_nic_t *, uint32_t *); #if EFSYS_OPT_PHY_STATS efx_rc_t (*epo_stats_update)(efx_nic_t *, efsys_mem_t *, uint32_t *); #endif /* EFSYS_OPT_PHY_STATS */ #if EFSYS_OPT_BIST efx_rc_t (*epo_bist_enable_offline)(efx_nic_t *); efx_rc_t (*epo_bist_start)(efx_nic_t *, efx_bist_type_t); efx_rc_t (*epo_bist_poll)(efx_nic_t *, efx_bist_type_t, efx_bist_result_t *, uint32_t *, unsigned long *, size_t); void (*epo_bist_stop)(efx_nic_t *, efx_bist_type_t); #endif /* EFSYS_OPT_BIST */ } efx_phy_ops_t; #if EFSYS_OPT_FILTER typedef struct efx_filter_ops_s { efx_rc_t (*efo_init)(efx_nic_t *); void (*efo_fini)(efx_nic_t *); efx_rc_t (*efo_restore)(efx_nic_t *); efx_rc_t (*efo_add)(efx_nic_t *, efx_filter_spec_t *, boolean_t may_replace); efx_rc_t (*efo_delete)(efx_nic_t *, efx_filter_spec_t *); efx_rc_t (*efo_supported_filters)(efx_nic_t *, uint32_t *, size_t *); efx_rc_t (*efo_reconfigure)(efx_nic_t *, uint8_t const *, boolean_t, boolean_t, boolean_t, boolean_t, uint8_t const *, uint32_t); } efx_filter_ops_t; extern __checkReturn efx_rc_t efx_filter_reconfigure( __in efx_nic_t *enp, __in_ecount(6) uint8_t const *mac_addr, __in boolean_t all_unicst, __in boolean_t mulcst, __in boolean_t all_mulcst, __in boolean_t brdcst, __in_ecount(6*count) uint8_t const *addrs, __in uint32_t count); #endif /* EFSYS_OPT_FILTER */ typedef struct efx_port_s { efx_mac_type_t ep_mac_type; uint32_t ep_phy_type; uint8_t ep_port; uint32_t ep_mac_pdu; uint8_t ep_mac_addr[6]; efx_link_mode_t ep_link_mode; boolean_t ep_all_unicst; boolean_t ep_mulcst; boolean_t ep_all_mulcst; boolean_t ep_brdcst; unsigned int ep_fcntl; boolean_t ep_fcntl_autoneg; efx_oword_t ep_multicst_hash[2]; uint8_t ep_mulcst_addr_list[EFX_MAC_ADDR_LEN * EFX_MAC_MULTICAST_LIST_MAX]; uint32_t ep_mulcst_addr_count; #if EFSYS_OPT_LOOPBACK efx_loopback_type_t ep_loopback_type; efx_link_mode_t ep_loopback_link_mode; #endif /* EFSYS_OPT_LOOPBACK */ #if EFSYS_OPT_PHY_FLAGS uint32_t ep_phy_flags; #endif /* EFSYS_OPT_PHY_FLAGS */ #if EFSYS_OPT_PHY_LED_CONTROL efx_phy_led_mode_t ep_phy_led_mode; #endif /* EFSYS_OPT_PHY_LED_CONTROL */ efx_phy_media_type_t ep_fixed_port_type; efx_phy_media_type_t ep_module_type; uint32_t ep_adv_cap_mask; uint32_t ep_lp_cap_mask; uint32_t ep_default_adv_cap_mask; uint32_t ep_phy_cap_mask; boolean_t ep_mac_drain; boolean_t ep_mac_stats_pending; #if EFSYS_OPT_BIST efx_bist_type_t ep_current_bist; #endif const efx_mac_ops_t *ep_emop; const efx_phy_ops_t *ep_epop; } efx_port_t; typedef struct efx_mon_ops_s { #if EFSYS_OPT_MON_STATS efx_rc_t (*emo_stats_update)(efx_nic_t *, efsys_mem_t *, efx_mon_stat_value_t *); #endif /* EFSYS_OPT_MON_STATS */ } efx_mon_ops_t; typedef struct efx_mon_s { efx_mon_type_t em_type; const efx_mon_ops_t *em_emop; } efx_mon_t; typedef struct efx_intr_ops_s { efx_rc_t (*eio_init)(efx_nic_t *, efx_intr_type_t, efsys_mem_t *); void (*eio_enable)(efx_nic_t *); void (*eio_disable)(efx_nic_t *); void (*eio_disable_unlocked)(efx_nic_t *); efx_rc_t (*eio_trigger)(efx_nic_t *, unsigned int); void (*eio_status_line)(efx_nic_t *, boolean_t *, uint32_t *); void (*eio_status_message)(efx_nic_t *, unsigned int, boolean_t *); void (*eio_fatal)(efx_nic_t *); void (*eio_fini)(efx_nic_t *); } efx_intr_ops_t; typedef struct efx_intr_s { const efx_intr_ops_t *ei_eiop; efsys_mem_t *ei_esmp; efx_intr_type_t ei_type; unsigned int ei_level; } efx_intr_t; typedef struct efx_nic_ops_s { efx_rc_t (*eno_probe)(efx_nic_t *); efx_rc_t (*eno_board_cfg)(efx_nic_t *); efx_rc_t (*eno_set_drv_limits)(efx_nic_t *, efx_drv_limits_t*); efx_rc_t (*eno_reset)(efx_nic_t *); efx_rc_t (*eno_init)(efx_nic_t *); efx_rc_t (*eno_get_vi_pool)(efx_nic_t *, uint32_t *); efx_rc_t (*eno_get_bar_region)(efx_nic_t *, efx_nic_region_t, uint32_t *, size_t *); #if EFSYS_OPT_DIAG efx_rc_t (*eno_register_test)(efx_nic_t *); #endif /* EFSYS_OPT_DIAG */ void (*eno_fini)(efx_nic_t *); void (*eno_unprobe)(efx_nic_t *); } efx_nic_ops_t; #ifndef EFX_TXQ_LIMIT_TARGET #define EFX_TXQ_LIMIT_TARGET 259 #endif #ifndef EFX_RXQ_LIMIT_TARGET #define EFX_RXQ_LIMIT_TARGET 512 #endif #ifndef EFX_TXQ_DC_SIZE #define EFX_TXQ_DC_SIZE 1 /* 16 descriptors */ #endif #ifndef EFX_RXQ_DC_SIZE #define EFX_RXQ_DC_SIZE 3 /* 64 descriptors */ #endif #if EFSYS_OPT_FILTER typedef struct siena_filter_spec_s { uint8_t sfs_type; uint32_t sfs_flags; uint32_t sfs_dmaq_id; uint32_t sfs_dword[3]; } siena_filter_spec_t; typedef enum siena_filter_type_e { EFX_SIENA_FILTER_RX_TCP_FULL, /* TCP/IPv4 {dIP,dTCP,sIP,sTCP} */ EFX_SIENA_FILTER_RX_TCP_WILD, /* TCP/IPv4 {dIP,dTCP, -, -} */ EFX_SIENA_FILTER_RX_UDP_FULL, /* UDP/IPv4 {dIP,dUDP,sIP,sUDP} */ EFX_SIENA_FILTER_RX_UDP_WILD, /* UDP/IPv4 {dIP,dUDP, -, -} */ EFX_SIENA_FILTER_RX_MAC_FULL, /* Ethernet {dMAC,VLAN} */ EFX_SIENA_FILTER_RX_MAC_WILD, /* Ethernet {dMAC, -} */ EFX_SIENA_FILTER_TX_TCP_FULL, /* TCP/IPv4 {dIP,dTCP,sIP,sTCP} */ EFX_SIENA_FILTER_TX_TCP_WILD, /* TCP/IPv4 { -, -,sIP,sTCP} */ EFX_SIENA_FILTER_TX_UDP_FULL, /* UDP/IPv4 {dIP,dTCP,sIP,sTCP} */ EFX_SIENA_FILTER_TX_UDP_WILD, /* UDP/IPv4 { -, -,sIP,sUDP} */ EFX_SIENA_FILTER_TX_MAC_FULL, /* Ethernet {sMAC,VLAN} */ EFX_SIENA_FILTER_TX_MAC_WILD, /* Ethernet {sMAC, -} */ EFX_SIENA_FILTER_NTYPES } siena_filter_type_t; typedef enum siena_filter_tbl_id_e { EFX_SIENA_FILTER_TBL_RX_IP = 0, EFX_SIENA_FILTER_TBL_RX_MAC, EFX_SIENA_FILTER_TBL_TX_IP, EFX_SIENA_FILTER_TBL_TX_MAC, EFX_SIENA_FILTER_NTBLS } siena_filter_tbl_id_t; typedef struct siena_filter_tbl_s { int sft_size; /* number of entries */ int sft_used; /* active count */ uint32_t *sft_bitmap; /* active bitmap */ siena_filter_spec_t *sft_spec; /* array of saved specs */ } siena_filter_tbl_t; typedef struct siena_filter_s { siena_filter_tbl_t sf_tbl[EFX_SIENA_FILTER_NTBLS]; unsigned int sf_depth[EFX_SIENA_FILTER_NTYPES]; } siena_filter_t; typedef struct efx_filter_s { #if EFSYS_OPT_SIENA siena_filter_t *ef_siena_filter; #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD ef10_filter_table_t *ef_ef10_filter_table; #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */ } efx_filter_t; extern void siena_filter_tbl_clear( __in efx_nic_t *enp, __in siena_filter_tbl_id_t tbl); #endif /* EFSYS_OPT_FILTER */ #if EFSYS_OPT_MCDI typedef struct efx_mcdi_ops_s { efx_rc_t (*emco_init)(efx_nic_t *, const efx_mcdi_transport_t *); void (*emco_send_request)(efx_nic_t *, void *, size_t, void *, size_t); efx_rc_t (*emco_poll_reboot)(efx_nic_t *); boolean_t (*emco_poll_response)(efx_nic_t *); void (*emco_read_response)(efx_nic_t *, void *, size_t, size_t); void (*emco_fini)(efx_nic_t *); efx_rc_t (*emco_feature_supported)(efx_nic_t *, efx_mcdi_feature_id_t, boolean_t *); } efx_mcdi_ops_t; typedef struct efx_mcdi_s { const efx_mcdi_ops_t *em_emcop; const efx_mcdi_transport_t *em_emtp; efx_mcdi_iface_t em_emip; } efx_mcdi_t; #endif /* EFSYS_OPT_MCDI */ #if EFSYS_OPT_NVRAM typedef struct efx_nvram_ops_s { #if EFSYS_OPT_DIAG efx_rc_t (*envo_test)(efx_nic_t *); #endif /* EFSYS_OPT_DIAG */ efx_rc_t (*envo_type_to_partn)(efx_nic_t *, efx_nvram_type_t, uint32_t *); efx_rc_t (*envo_partn_size)(efx_nic_t *, uint32_t, size_t *); efx_rc_t (*envo_partn_rw_start)(efx_nic_t *, uint32_t, size_t *); efx_rc_t (*envo_partn_read)(efx_nic_t *, uint32_t, unsigned int, caddr_t, size_t); efx_rc_t (*envo_partn_erase)(efx_nic_t *, uint32_t, unsigned int, size_t); efx_rc_t (*envo_partn_write)(efx_nic_t *, uint32_t, unsigned int, caddr_t, size_t); void (*envo_partn_rw_finish)(efx_nic_t *, uint32_t); efx_rc_t (*envo_partn_get_version)(efx_nic_t *, uint32_t, uint32_t *, uint16_t *); efx_rc_t (*envo_partn_set_version)(efx_nic_t *, uint32_t, uint16_t *); efx_rc_t (*envo_buffer_validate)(efx_nic_t *, uint32_t, caddr_t, size_t); } efx_nvram_ops_t; #endif /* EFSYS_OPT_NVRAM */ #if EFSYS_OPT_VPD typedef struct efx_vpd_ops_s { efx_rc_t (*evpdo_init)(efx_nic_t *); efx_rc_t (*evpdo_size)(efx_nic_t *, size_t *); efx_rc_t (*evpdo_read)(efx_nic_t *, caddr_t, size_t); efx_rc_t (*evpdo_verify)(efx_nic_t *, caddr_t, size_t); efx_rc_t (*evpdo_reinit)(efx_nic_t *, caddr_t, size_t); efx_rc_t (*evpdo_get)(efx_nic_t *, caddr_t, size_t, efx_vpd_value_t *); efx_rc_t (*evpdo_set)(efx_nic_t *, caddr_t, size_t, efx_vpd_value_t *); efx_rc_t (*evpdo_next)(efx_nic_t *, caddr_t, size_t, efx_vpd_value_t *, unsigned int *); efx_rc_t (*evpdo_write)(efx_nic_t *, caddr_t, size_t); void (*evpdo_fini)(efx_nic_t *); } efx_vpd_ops_t; #endif /* EFSYS_OPT_VPD */ #if EFSYS_OPT_VPD || EFSYS_OPT_NVRAM __checkReturn efx_rc_t efx_mcdi_nvram_partitions( __in efx_nic_t *enp, __out_bcount(size) caddr_t data, __in size_t size, __out unsigned int *npartnp); __checkReturn efx_rc_t efx_mcdi_nvram_metadata( __in efx_nic_t *enp, __in uint32_t partn, __out uint32_t *subtypep, __out_ecount(4) uint16_t version[4], __out_bcount_opt(size) char *descp, __in size_t size); __checkReturn efx_rc_t efx_mcdi_nvram_info( __in efx_nic_t *enp, __in uint32_t partn, __out_opt size_t *sizep, __out_opt uint32_t *addressp, __out_opt uint32_t *erase_sizep, __out_opt uint32_t *write_sizep); __checkReturn efx_rc_t efx_mcdi_nvram_update_start( __in efx_nic_t *enp, __in uint32_t partn); __checkReturn efx_rc_t efx_mcdi_nvram_read( __in efx_nic_t *enp, __in uint32_t partn, __in uint32_t offset, __out_bcount(size) caddr_t data, __in size_t size, __in uint32_t mode); __checkReturn efx_rc_t efx_mcdi_nvram_erase( __in efx_nic_t *enp, __in uint32_t partn, __in uint32_t offset, __in size_t size); __checkReturn efx_rc_t efx_mcdi_nvram_write( __in efx_nic_t *enp, __in uint32_t partn, __in uint32_t offset, __out_bcount(size) caddr_t data, __in size_t size); __checkReturn efx_rc_t efx_mcdi_nvram_update_finish( __in efx_nic_t *enp, __in uint32_t partn, __in boolean_t reboot); #if EFSYS_OPT_DIAG __checkReturn efx_rc_t efx_mcdi_nvram_test( __in efx_nic_t *enp, __in uint32_t partn); #endif /* EFSYS_OPT_DIAG */ #endif /* EFSYS_OPT_VPD || EFSYS_OPT_NVRAM */ #if EFSYS_OPT_LICENSING typedef struct efx_lic_ops_s { efx_rc_t (*elo_update_licenses)(efx_nic_t *); efx_rc_t (*elo_get_key_stats)(efx_nic_t *, efx_key_stats_t *); efx_rc_t (*elo_app_state)(efx_nic_t *, uint64_t, boolean_t *); efx_rc_t (*elo_get_id)(efx_nic_t *, size_t, uint32_t *, size_t *, uint8_t *); efx_rc_t (*elo_find_start) (efx_nic_t *, caddr_t, size_t, uint32_t *); efx_rc_t (*elo_find_end)(efx_nic_t *, caddr_t, size_t, uint32_t, uint32_t *); boolean_t (*elo_find_key)(efx_nic_t *, caddr_t, size_t, uint32_t, uint32_t *, uint32_t *); boolean_t (*elo_validate_key)(efx_nic_t *, caddr_t, uint32_t); efx_rc_t (*elo_read_key)(efx_nic_t *, caddr_t, size_t, uint32_t, uint32_t, caddr_t, size_t, uint32_t *); efx_rc_t (*elo_write_key)(efx_nic_t *, caddr_t, size_t, uint32_t, caddr_t, uint32_t, uint32_t *); efx_rc_t (*elo_delete_key)(efx_nic_t *, caddr_t, size_t, uint32_t, uint32_t, uint32_t, uint32_t *); efx_rc_t (*elo_create_partition)(efx_nic_t *, caddr_t, size_t); efx_rc_t (*elo_finish_partition)(efx_nic_t *, caddr_t, size_t); } efx_lic_ops_t; #endif typedef struct efx_drv_cfg_s { uint32_t edc_min_vi_count; uint32_t edc_max_vi_count; uint32_t edc_max_piobuf_count; uint32_t edc_pio_alloc_size; } efx_drv_cfg_t; struct efx_nic_s { uint32_t en_magic; efx_family_t en_family; uint32_t en_features; efsys_identifier_t *en_esip; efsys_lock_t *en_eslp; efsys_bar_t *en_esbp; unsigned int en_mod_flags; unsigned int en_reset_flags; efx_nic_cfg_t en_nic_cfg; efx_drv_cfg_t en_drv_cfg; efx_port_t en_port; efx_mon_t en_mon; efx_intr_t en_intr; uint32_t en_ev_qcount; uint32_t en_rx_qcount; uint32_t en_tx_qcount; const efx_nic_ops_t *en_enop; const efx_ev_ops_t *en_eevop; const efx_tx_ops_t *en_etxop; const efx_rx_ops_t *en_erxop; #if EFSYS_OPT_FILTER efx_filter_t en_filter; const efx_filter_ops_t *en_efop; #endif /* EFSYS_OPT_FILTER */ #if EFSYS_OPT_MCDI efx_mcdi_t en_mcdi; #endif /* EFSYS_OPT_MCDI */ #if EFSYS_OPT_NVRAM efx_nvram_type_t en_nvram_locked; const efx_nvram_ops_t *en_envop; #endif /* EFSYS_OPT_NVRAM */ #if EFSYS_OPT_VPD const efx_vpd_ops_t *en_evpdop; #endif /* EFSYS_OPT_VPD */ #if EFSYS_OPT_RX_SCALE efx_rx_hash_support_t en_hash_support; efx_rx_scale_support_t en_rss_support; uint32_t en_rss_context; #endif /* EFSYS_OPT_RX_SCALE */ uint32_t en_vport_id; #if EFSYS_OPT_LICENSING const efx_lic_ops_t *en_elop; boolean_t en_licensing_supported; #endif union { #if EFSYS_OPT_SIENA struct { #if EFSYS_OPT_NVRAM || EFSYS_OPT_VPD unsigned int enu_partn_mask; #endif /* EFSYS_OPT_NVRAM || EFSYS_OPT_VPD */ #if EFSYS_OPT_VPD caddr_t enu_svpd; size_t enu_svpd_length; #endif /* EFSYS_OPT_VPD */ int enu_unused; } siena; #endif /* EFSYS_OPT_SIENA */ int enu_unused; } en_u; #if (EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) union en_arch { struct { int ena_vi_base; int ena_vi_count; int ena_vi_shift; #if EFSYS_OPT_VPD caddr_t ena_svpd; size_t ena_svpd_length; #endif /* EFSYS_OPT_VPD */ efx_piobuf_handle_t ena_piobuf_handle[EF10_MAX_PIOBUF_NBUFS]; uint32_t ena_piobuf_count; uint32_t ena_pio_alloc_map[EF10_MAX_PIOBUF_NBUFS]; uint32_t ena_pio_write_vi_base; /* Memory BAR mapping regions */ uint32_t ena_uc_mem_map_offset; size_t ena_uc_mem_map_size; uint32_t ena_wc_mem_map_offset; size_t ena_wc_mem_map_size; } ef10; } en_arch; #endif /* (EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) */ }; #define EFX_NIC_MAGIC 0x02121996 typedef boolean_t (*efx_ev_handler_t)(efx_evq_t *, efx_qword_t *, const efx_ev_callbacks_t *, void *); typedef struct efx_evq_rxq_state_s { unsigned int eers_rx_read_ptr; unsigned int eers_rx_mask; } efx_evq_rxq_state_t; struct efx_evq_s { uint32_t ee_magic; efx_nic_t *ee_enp; unsigned int ee_index; unsigned int ee_mask; efsys_mem_t *ee_esmp; #if EFSYS_OPT_QSTATS uint32_t ee_stat[EV_NQSTATS]; #endif /* EFSYS_OPT_QSTATS */ efx_ev_handler_t ee_rx; efx_ev_handler_t ee_tx; efx_ev_handler_t ee_driver; efx_ev_handler_t ee_global; efx_ev_handler_t ee_drv_gen; #if EFSYS_OPT_MCDI efx_ev_handler_t ee_mcdi; #endif /* EFSYS_OPT_MCDI */ efx_evq_rxq_state_t ee_rxq_state[EFX_EV_RX_NLABELS]; }; #define EFX_EVQ_MAGIC 0x08081997 #define EFX_EVQ_SIENA_TIMER_QUANTUM_NS 6144 /* 768 cycles */ struct efx_rxq_s { uint32_t er_magic; efx_nic_t *er_enp; efx_evq_t *er_eep; unsigned int er_index; unsigned int er_label; unsigned int er_mask; efsys_mem_t *er_esmp; }; #define EFX_RXQ_MAGIC 0x15022005 struct efx_txq_s { uint32_t et_magic; efx_nic_t *et_enp; unsigned int et_index; unsigned int et_mask; efsys_mem_t *et_esmp; #if EFSYS_OPT_HUNTINGTON uint32_t et_pio_bufnum; uint32_t et_pio_blknum; uint32_t et_pio_write_offset; uint32_t et_pio_offset; size_t et_pio_size; #endif #if EFSYS_OPT_QSTATS uint32_t et_stat[TX_NQSTATS]; #endif /* EFSYS_OPT_QSTATS */ }; #define EFX_TXQ_MAGIC 0x05092005 #define EFX_MAC_ADDR_COPY(_dst, _src) \ do { \ (_dst)[0] = (_src)[0]; \ (_dst)[1] = (_src)[1]; \ (_dst)[2] = (_src)[2]; \ (_dst)[3] = (_src)[3]; \ (_dst)[4] = (_src)[4]; \ (_dst)[5] = (_src)[5]; \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_MAC_BROADCAST_ADDR_SET(_dst) \ do { \ uint16_t *_d = (uint16_t *)(_dst); \ _d[0] = 0xffff; \ _d[1] = 0xffff; \ _d[2] = 0xffff; \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #if EFSYS_OPT_CHECK_REG #define EFX_CHECK_REG(_enp, _reg) \ do { \ const char *name = #_reg; \ char min = name[4]; \ char max = name[5]; \ char rev; \ \ switch ((_enp)->en_family) { \ case EFX_FAMILY_SIENA: \ rev = 'C'; \ break; \ \ case EFX_FAMILY_HUNTINGTON: \ rev = 'D'; \ break; \ \ case EFX_FAMILY_MEDFORD: \ rev = 'E'; \ break; \ \ default: \ rev = '?'; \ break; \ } \ \ EFSYS_ASSERT3S(rev, >=, min); \ EFSYS_ASSERT3S(rev, <=, max); \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #else #define EFX_CHECK_REG(_enp, _reg) do { \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #endif #define EFX_BAR_READD(_enp, _reg, _edp, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_BAR_READD((_enp)->en_esbp, _reg ## _OFST, \ (_edp), (_lock)); \ EFSYS_PROBE3(efx_bar_readd, const char *, #_reg, \ uint32_t, _reg ## _OFST, \ uint32_t, (_edp)->ed_u32[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_WRITED(_enp, _reg, _edp, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE3(efx_bar_writed, const char *, #_reg, \ uint32_t, _reg ## _OFST, \ uint32_t, (_edp)->ed_u32[0]); \ EFSYS_BAR_WRITED((_enp)->en_esbp, _reg ## _OFST, \ (_edp), (_lock)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_READQ(_enp, _reg, _eqp) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_BAR_READQ((_enp)->en_esbp, _reg ## _OFST, \ (_eqp)); \ EFSYS_PROBE4(efx_bar_readq, const char *, #_reg, \ uint32_t, _reg ## _OFST, \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_WRITEQ(_enp, _reg, _eqp) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE4(efx_bar_writeq, const char *, #_reg, \ uint32_t, _reg ## _OFST, \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ EFSYS_BAR_WRITEQ((_enp)->en_esbp, _reg ## _OFST, \ (_eqp)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_READO(_enp, _reg, _eop) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_BAR_READO((_enp)->en_esbp, _reg ## _OFST, \ (_eop), B_TRUE); \ EFSYS_PROBE6(efx_bar_reado, const char *, #_reg, \ uint32_t, _reg ## _OFST, \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_WRITEO(_enp, _reg, _eop) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE6(efx_bar_writeo, const char *, #_reg, \ uint32_t, _reg ## _OFST, \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ EFSYS_BAR_WRITEO((_enp)->en_esbp, _reg ## _OFST, \ (_eop), B_TRUE); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_READD(_enp, _reg, _index, _edp, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_BAR_READD((_enp)->en_esbp, \ (_reg ## _OFST + ((_index) * _reg ## _STEP)), \ (_edp), (_lock)); \ EFSYS_PROBE4(efx_bar_tbl_readd, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_edp)->ed_u32[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_WRITED(_enp, _reg, _index, _edp, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE4(efx_bar_tbl_writed, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_edp)->ed_u32[0]); \ EFSYS_BAR_WRITED((_enp)->en_esbp, \ (_reg ## _OFST + ((_index) * _reg ## _STEP)), \ (_edp), (_lock)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_WRITED2(_enp, _reg, _index, _edp, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE4(efx_bar_tbl_writed, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_edp)->ed_u32[0]); \ EFSYS_BAR_WRITED((_enp)->en_esbp, \ (_reg ## _OFST + \ (2 * sizeof (efx_dword_t)) + \ ((_index) * _reg ## _STEP)), \ (_edp), (_lock)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_WRITED3(_enp, _reg, _index, _edp, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE4(efx_bar_tbl_writed, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_edp)->ed_u32[0]); \ EFSYS_BAR_WRITED((_enp)->en_esbp, \ (_reg ## _OFST + \ (3 * sizeof (efx_dword_t)) + \ ((_index) * _reg ## _STEP)), \ (_edp), (_lock)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_READQ(_enp, _reg, _index, _eqp) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_BAR_READQ((_enp)->en_esbp, \ (_reg ## _OFST + ((_index) * _reg ## _STEP)), \ (_eqp)); \ EFSYS_PROBE5(efx_bar_tbl_readq, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_WRITEQ(_enp, _reg, _index, _eqp) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE5(efx_bar_tbl_writeq, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ EFSYS_BAR_WRITEQ((_enp)->en_esbp, \ (_reg ## _OFST + ((_index) * _reg ## _STEP)), \ (_eqp)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_READO(_enp, _reg, _index, _eop, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_BAR_READO((_enp)->en_esbp, \ (_reg ## _OFST + ((_index) * _reg ## _STEP)), \ (_eop), (_lock)); \ EFSYS_PROBE7(efx_bar_tbl_reado, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_WRITEO(_enp, _reg, _index, _eop, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE7(efx_bar_tbl_writeo, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ EFSYS_BAR_WRITEO((_enp)->en_esbp, \ (_reg ## _OFST + ((_index) * _reg ## _STEP)), \ (_eop), (_lock)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) /* * Allow drivers to perform optimised 128-bit doorbell writes. * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are * special-cased in the BIU on the Falcon/Siena and EF10 architectures to avoid * the need for locking in the host, and are the only ones known to be safe to * use 128-bites write with. */ #define EFX_BAR_TBL_DOORBELL_WRITEO(_enp, _reg, _index, _eop) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE7(efx_bar_tbl_doorbell_writeo, \ const char *, \ #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ EFSYS_BAR_DOORBELL_WRITEO((_enp)->en_esbp, \ (_reg ## _OFST + ((_index) * _reg ## _STEP)), \ (_eop)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_DMA_SYNC_QUEUE_FOR_DEVICE(_esmp, _entries, _wptr, _owptr) \ do { \ unsigned int _new = (_wptr); \ unsigned int _old = (_owptr); \ \ if ((_new) >= (_old)) \ EFSYS_DMA_SYNC_FOR_DEVICE((_esmp), \ (_old) * sizeof (efx_desc_t), \ ((_new) - (_old)) * sizeof (efx_desc_t)); \ else \ /* \ * It is cheaper to sync entire map than sync \ * two parts especially when offset/size are \ * ignored and entire map is synced in any case.\ */ \ EFSYS_DMA_SYNC_FOR_DEVICE((_esmp), \ 0, \ (_entries) * sizeof (efx_desc_t)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) extern __checkReturn efx_rc_t efx_nic_biu_test( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_mac_select( __in efx_nic_t *enp); extern void efx_mac_multicast_hash_compute( __in_ecount(6*count) uint8_t const *addrs, __in int count, __out efx_oword_t *hash_low, __out efx_oword_t *hash_high); extern __checkReturn efx_rc_t efx_phy_probe( __in efx_nic_t *enp); extern void efx_phy_unprobe( __in efx_nic_t *enp); #if EFSYS_OPT_VPD /* VPD utility functions */ extern __checkReturn efx_rc_t efx_vpd_hunk_length( __in_bcount(size) caddr_t data, __in size_t size, __out size_t *lengthp); extern __checkReturn efx_rc_t efx_vpd_hunk_verify( __in_bcount(size) caddr_t data, __in size_t size, __out_opt boolean_t *cksummedp); extern __checkReturn efx_rc_t efx_vpd_hunk_reinit( __in_bcount(size) caddr_t data, __in size_t size, __in boolean_t wantpid); extern __checkReturn efx_rc_t efx_vpd_hunk_get( __in_bcount(size) caddr_t data, __in size_t size, __in efx_vpd_tag_t tag, __in efx_vpd_keyword_t keyword, __out unsigned int *payloadp, __out uint8_t *paylenp); extern __checkReturn efx_rc_t efx_vpd_hunk_next( __in_bcount(size) caddr_t data, __in size_t size, __out efx_vpd_tag_t *tagp, __out efx_vpd_keyword_t *keyword, __out_opt unsigned int *payloadp, __out_opt uint8_t *paylenp, __inout unsigned int *contp); extern __checkReturn efx_rc_t efx_vpd_hunk_set( __in_bcount(size) caddr_t data, __in size_t size, __in efx_vpd_value_t *evvp); #endif /* EFSYS_OPT_VPD */ #if EFSYS_OPT_DIAG extern efx_sram_pattern_fn_t __efx_sram_pattern_fns[]; typedef struct efx_register_set_s { unsigned int address; unsigned int step; unsigned int rows; efx_oword_t mask; } efx_register_set_t; extern __checkReturn efx_rc_t efx_nic_test_registers( __in efx_nic_t *enp, __in efx_register_set_t *rsp, __in size_t count); extern __checkReturn efx_rc_t efx_nic_test_tables( __in efx_nic_t *enp, __in efx_register_set_t *rsp, __in efx_pattern_type_t pattern, __in size_t count); #endif /* EFSYS_OPT_DIAG */ #if EFSYS_OPT_MCDI extern __checkReturn efx_rc_t efx_mcdi_set_workaround( __in efx_nic_t *enp, __in uint32_t type, __in boolean_t enabled, __out_opt uint32_t *flagsp); extern __checkReturn efx_rc_t efx_mcdi_get_workarounds( __in efx_nic_t *enp, __out_opt uint32_t *implementedp, __out_opt uint32_t *enabledp); #endif /* EFSYS_OPT_MCDI */ #ifdef __cplusplus } #endif #endif /* _SYS_EFX_IMPL_H */ Index: head/sys/dev/sfxge/sfxge_ev.c =================================================================== --- head/sys/dev/sfxge/sfxge_ev.c (revision 310712) +++ head/sys/dev/sfxge/sfxge_ev.c (revision 310713) @@ -1,942 +1,943 @@ /*- * Copyright (c) 2010-2016 Solarflare Communications Inc. * All rights reserved. * * This software was developed in part by Philip Paeps under contract for * Solarflare Communications, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include "common/efx.h" #include "sfxge.h" static void sfxge_ev_qcomplete(struct sfxge_evq *evq, boolean_t eop) { struct sfxge_softc *sc; unsigned int index; struct sfxge_rxq *rxq; struct sfxge_txq *txq; SFXGE_EVQ_LOCK_ASSERT_OWNED(evq); sc = evq->sc; index = evq->index; rxq = sc->rxq[index]; if ((txq = evq->txq) != NULL) { evq->txq = NULL; evq->txqs = &(evq->txq); do { struct sfxge_txq *next; next = txq->next; txq->next = NULL; KASSERT(txq->evq_index == index, ("txq->evq_index != index")); if (txq->pending != txq->completed) sfxge_tx_qcomplete(txq, evq); txq = next; } while (txq != NULL); } if (rxq->pending != rxq->completed) sfxge_rx_qcomplete(rxq, eop); } static struct sfxge_rxq * sfxge_get_rxq_by_label(struct sfxge_evq *evq, uint32_t label) { struct sfxge_rxq *rxq; KASSERT(label == 0, ("unexpected rxq label != 0")); rxq = evq->sc->rxq[evq->index]; KASSERT(rxq != NULL, ("rxq == NULL")); KASSERT(evq->index == rxq->index, ("evq->index != rxq->index")); return (rxq); } static boolean_t sfxge_ev_rx(void *arg, uint32_t label, uint32_t id, uint32_t size, uint16_t flags) { struct sfxge_evq *evq; struct sfxge_softc *sc; struct sfxge_rxq *rxq; unsigned int stop; unsigned int delta; struct sfxge_rx_sw_desc *rx_desc; evq = arg; SFXGE_EVQ_LOCK_ASSERT_OWNED(evq); sc = evq->sc; if (evq->exception) goto done; rxq = sfxge_get_rxq_by_label(evq, label); if (__predict_false(rxq->init_state != SFXGE_RXQ_STARTED)) goto done; stop = (id + 1) & rxq->ptr_mask; id = rxq->pending & rxq->ptr_mask; delta = (stop >= id) ? (stop - id) : (rxq->entries - id + stop); rxq->pending += delta; if (delta != 1) { if ((delta <= 0) || (delta > efx_nic_cfg_get(sc->enp)->enc_rx_batch_max)) { evq->exception = B_TRUE; device_printf(sc->dev, "RX completion out of order" " (id=%#x delta=%u flags=%#x); resetting\n", id, delta, flags); sfxge_schedule_reset(sc); goto done; } } rx_desc = &rxq->queue[id]; prefetch_read_many(rx_desc->mbuf); for (; id != stop; id = (id + 1) & rxq->ptr_mask) { rx_desc = &rxq->queue[id]; KASSERT(rx_desc->flags == EFX_DISCARD, ("rx_desc->flags != EFX_DISCARD")); rx_desc->flags = flags; KASSERT(size < (1 << 16), ("size > (1 << 16)")); rx_desc->size = (uint16_t)size; } evq->rx_done++; if (rxq->pending - rxq->completed >= SFXGE_RX_BATCH) sfxge_ev_qcomplete(evq, B_FALSE); done: return (evq->rx_done >= SFXGE_EV_BATCH); } static boolean_t sfxge_ev_exception(void *arg, uint32_t code, uint32_t data) { struct sfxge_evq *evq; struct sfxge_softc *sc; evq = (struct sfxge_evq *)arg; SFXGE_EVQ_LOCK_ASSERT_OWNED(evq); sc = evq->sc; DBGPRINT(sc->dev, "[%d] %s", evq->index, (code == EFX_EXCEPTION_RX_RECOVERY) ? "RX_RECOVERY" : (code == EFX_EXCEPTION_RX_DSC_ERROR) ? "RX_DSC_ERROR" : (code == EFX_EXCEPTION_TX_DSC_ERROR) ? "TX_DSC_ERROR" : (code == EFX_EXCEPTION_UNKNOWN_SENSOREVT) ? "UNKNOWN_SENSOREVT" : (code == EFX_EXCEPTION_FWALERT_SRAM) ? "FWALERT_SRAM" : (code == EFX_EXCEPTION_UNKNOWN_FWALERT) ? "UNKNOWN_FWALERT" : (code == EFX_EXCEPTION_RX_ERROR) ? "RX_ERROR" : (code == EFX_EXCEPTION_TX_ERROR) ? "TX_ERROR" : (code == EFX_EXCEPTION_EV_ERROR) ? "EV_ERROR" : "UNKNOWN"); evq->exception = B_TRUE; if (code != EFX_EXCEPTION_UNKNOWN_SENSOREVT) { device_printf(sc->dev, "hardware exception (code=%u); resetting\n", code); sfxge_schedule_reset(sc); } return (B_FALSE); } static boolean_t sfxge_ev_rxq_flush_done(void *arg, uint32_t rxq_index) { struct sfxge_evq *evq; struct sfxge_softc *sc; struct sfxge_rxq *rxq; unsigned int index; uint16_t magic; evq = (struct sfxge_evq *)arg; SFXGE_EVQ_LOCK_ASSERT_OWNED(evq); sc = evq->sc; rxq = sc->rxq[rxq_index]; KASSERT(rxq != NULL, ("rxq == NULL")); /* Resend a software event on the correct queue */ index = rxq->index; if (index == evq->index) { sfxge_rx_qflush_done(rxq); return (B_FALSE); } evq = sc->evq[index]; magic = sfxge_sw_ev_rxq_magic(SFXGE_SW_EV_RX_QFLUSH_DONE, rxq); KASSERT(evq->init_state == SFXGE_EVQ_STARTED, ("evq not started")); efx_ev_qpost(evq->common, magic); return (B_FALSE); } static boolean_t sfxge_ev_rxq_flush_failed(void *arg, uint32_t rxq_index) { struct sfxge_evq *evq; struct sfxge_softc *sc; struct sfxge_rxq *rxq; unsigned int index; uint16_t magic; evq = (struct sfxge_evq *)arg; SFXGE_EVQ_LOCK_ASSERT_OWNED(evq); sc = evq->sc; rxq = sc->rxq[rxq_index]; KASSERT(rxq != NULL, ("rxq == NULL")); /* Resend a software event on the correct queue */ index = rxq->index; evq = sc->evq[index]; magic = sfxge_sw_ev_rxq_magic(SFXGE_SW_EV_RX_QFLUSH_FAILED, rxq); KASSERT(evq->init_state == SFXGE_EVQ_STARTED, ("evq not started")); efx_ev_qpost(evq->common, magic); return (B_FALSE); } static struct sfxge_txq * sfxge_get_txq_by_label(struct sfxge_evq *evq, enum sfxge_txq_type label) { unsigned int index; KASSERT((evq->index == 0 && label < SFXGE_TXQ_NTYPES) || (label == SFXGE_TXQ_IP_TCP_UDP_CKSUM), ("unexpected txq label")); index = (evq->index == 0) ? label : (evq->index - 1 + SFXGE_TXQ_NTYPES); return (evq->sc->txq[index]); } static boolean_t sfxge_ev_tx(void *arg, uint32_t label, uint32_t id) { struct sfxge_evq *evq; struct sfxge_txq *txq; unsigned int stop; unsigned int delta; evq = (struct sfxge_evq *)arg; SFXGE_EVQ_LOCK_ASSERT_OWNED(evq); txq = sfxge_get_txq_by_label(evq, label); KASSERT(txq != NULL, ("txq == NULL")); KASSERT(evq->index == txq->evq_index, ("evq->index != txq->evq_index")); if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED)) goto done; stop = (id + 1) & txq->ptr_mask; id = txq->pending & txq->ptr_mask; delta = (stop >= id) ? (stop - id) : (txq->entries - id + stop); txq->pending += delta; evq->tx_done++; if (txq->next == NULL && evq->txqs != &(txq->next)) { *(evq->txqs) = txq; evq->txqs = &(txq->next); } if (txq->pending - txq->completed >= SFXGE_TX_BATCH) sfxge_tx_qcomplete(txq, evq); done: return (evq->tx_done >= SFXGE_EV_BATCH); } static boolean_t sfxge_ev_txq_flush_done(void *arg, uint32_t txq_index) { struct sfxge_evq *evq; struct sfxge_softc *sc; struct sfxge_txq *txq; uint16_t magic; evq = (struct sfxge_evq *)arg; SFXGE_EVQ_LOCK_ASSERT_OWNED(evq); sc = evq->sc; txq = sc->txq[txq_index]; KASSERT(txq != NULL, ("txq == NULL")); KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED, ("txq not initialized")); if (txq->evq_index == evq->index) { sfxge_tx_qflush_done(txq); return (B_FALSE); } /* Resend a software event on the correct queue */ evq = sc->evq[txq->evq_index]; magic = sfxge_sw_ev_txq_magic(SFXGE_SW_EV_TX_QFLUSH_DONE, txq); KASSERT(evq->init_state == SFXGE_EVQ_STARTED, ("evq not started")); efx_ev_qpost(evq->common, magic); return (B_FALSE); } static boolean_t sfxge_ev_software(void *arg, uint16_t magic) { struct sfxge_evq *evq; struct sfxge_softc *sc; unsigned int label; evq = (struct sfxge_evq *)arg; SFXGE_EVQ_LOCK_ASSERT_OWNED(evq); sc = evq->sc; label = magic & SFXGE_MAGIC_DMAQ_LABEL_MASK; magic &= ~SFXGE_MAGIC_DMAQ_LABEL_MASK; switch (magic) { case SFXGE_SW_EV_MAGIC(SFXGE_SW_EV_RX_QFLUSH_DONE): sfxge_rx_qflush_done(sfxge_get_rxq_by_label(evq, label)); break; case SFXGE_SW_EV_MAGIC(SFXGE_SW_EV_RX_QFLUSH_FAILED): sfxge_rx_qflush_failed(sfxge_get_rxq_by_label(evq, label)); break; case SFXGE_SW_EV_MAGIC(SFXGE_SW_EV_RX_QREFILL): sfxge_rx_qrefill(sfxge_get_rxq_by_label(evq, label)); break; case SFXGE_SW_EV_MAGIC(SFXGE_SW_EV_TX_QFLUSH_DONE): { struct sfxge_txq *txq = sfxge_get_txq_by_label(evq, label); KASSERT(txq != NULL, ("txq == NULL")); KASSERT(evq->index == txq->evq_index, ("evq->index != txq->evq_index")); sfxge_tx_qflush_done(txq); break; } default: break; } return (B_FALSE); } static boolean_t sfxge_ev_sram(void *arg, uint32_t code) { (void)arg; (void)code; switch (code) { case EFX_SRAM_UPDATE: EFSYS_PROBE(sram_update); break; case EFX_SRAM_CLEAR: EFSYS_PROBE(sram_clear); break; case EFX_SRAM_ILLEGAL_CLEAR: EFSYS_PROBE(sram_illegal_clear); break; default: KASSERT(B_FALSE, ("Impossible SRAM event")); break; } return (B_FALSE); } static boolean_t sfxge_ev_timer(void *arg, uint32_t index) { (void)arg; (void)index; return (B_FALSE); } static boolean_t sfxge_ev_wake_up(void *arg, uint32_t index) { (void)arg; (void)index; return (B_FALSE); } #if EFSYS_OPT_QSTATS static void sfxge_ev_stat_update(struct sfxge_softc *sc) { struct sfxge_evq *evq; unsigned int index; clock_t now; SFXGE_ADAPTER_LOCK(sc); if (__predict_false(sc->evq[0]->init_state != SFXGE_EVQ_STARTED)) goto out; now = ticks; if ((unsigned int)(now - sc->ev_stats_update_time) < (unsigned int)hz) goto out; sc->ev_stats_update_time = now; /* Add event counts from each event queue in turn */ for (index = 0; index < sc->evq_count; index++) { evq = sc->evq[index]; SFXGE_EVQ_LOCK(evq); efx_ev_qstats_update(evq->common, sc->ev_stats); SFXGE_EVQ_UNLOCK(evq); } out: SFXGE_ADAPTER_UNLOCK(sc); } static int sfxge_ev_stat_handler(SYSCTL_HANDLER_ARGS) { struct sfxge_softc *sc = arg1; unsigned int id = arg2; sfxge_ev_stat_update(sc); return (SYSCTL_OUT(req, &sc->ev_stats[id], sizeof(sc->ev_stats[id]))); } static void sfxge_ev_stat_init(struct sfxge_softc *sc) { struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev); struct sysctl_oid_list *stat_list; unsigned int id; char name[40]; stat_list = SYSCTL_CHILDREN(sc->stats_node); for (id = 0; id < EV_NQSTATS; id++) { snprintf(name, sizeof(name), "ev_%s", efx_ev_qstat_name(sc->enp, id)); SYSCTL_ADD_PROC( ctx, stat_list, OID_AUTO, name, CTLTYPE_U64|CTLFLAG_RD, sc, id, sfxge_ev_stat_handler, "Q", ""); } } #endif /* EFSYS_OPT_QSTATS */ static void sfxge_ev_qmoderate(struct sfxge_softc *sc, unsigned int idx, unsigned int us) { struct sfxge_evq *evq; efx_evq_t *eep; evq = sc->evq[idx]; eep = evq->common; KASSERT(evq->init_state == SFXGE_EVQ_STARTED, ("evq->init_state != SFXGE_EVQ_STARTED")); (void)efx_ev_qmoderate(eep, us); } static int sfxge_int_mod_handler(SYSCTL_HANDLER_ARGS) { struct sfxge_softc *sc = arg1; struct sfxge_intr *intr = &sc->intr; unsigned int moderation; int error; unsigned int index; SFXGE_ADAPTER_LOCK(sc); if (req->newptr != NULL) { if ((error = SYSCTL_IN(req, &moderation, sizeof(moderation))) != 0) goto out; /* We may not be calling efx_ev_qmoderate() now, * so we have to range-check the value ourselves. */ if (moderation > efx_nic_cfg_get(sc->enp)->enc_evq_timer_max_us) { error = EINVAL; goto out; } sc->ev_moderation = moderation; if (intr->state == SFXGE_INTR_STARTED) { for (index = 0; index < sc->evq_count; index++) sfxge_ev_qmoderate(sc, index, moderation); } } else { error = SYSCTL_OUT(req, &sc->ev_moderation, sizeof(sc->ev_moderation)); } out: SFXGE_ADAPTER_UNLOCK(sc); return (error); } static boolean_t sfxge_ev_initialized(void *arg) { struct sfxge_evq *evq; evq = (struct sfxge_evq *)arg; SFXGE_EVQ_LOCK_ASSERT_OWNED(evq); /* Init done events may be duplicated on 7xxx */ KASSERT(evq->init_state == SFXGE_EVQ_STARTING || evq->init_state == SFXGE_EVQ_STARTED, ("evq not starting")); evq->init_state = SFXGE_EVQ_STARTED; return (0); } static boolean_t sfxge_ev_link_change(void *arg, efx_link_mode_t link_mode) { struct sfxge_evq *evq; struct sfxge_softc *sc; evq = (struct sfxge_evq *)arg; SFXGE_EVQ_LOCK_ASSERT_OWNED(evq); sc = evq->sc; sfxge_mac_link_update(sc, link_mode); return (0); } static const efx_ev_callbacks_t sfxge_ev_callbacks = { .eec_initialized = sfxge_ev_initialized, .eec_rx = sfxge_ev_rx, .eec_tx = sfxge_ev_tx, .eec_exception = sfxge_ev_exception, .eec_rxq_flush_done = sfxge_ev_rxq_flush_done, .eec_rxq_flush_failed = sfxge_ev_rxq_flush_failed, .eec_txq_flush_done = sfxge_ev_txq_flush_done, .eec_software = sfxge_ev_software, .eec_sram = sfxge_ev_sram, .eec_wake_up = sfxge_ev_wake_up, .eec_timer = sfxge_ev_timer, .eec_link_change = sfxge_ev_link_change, }; int sfxge_ev_qpoll(struct sfxge_evq *evq) { int rc; SFXGE_EVQ_LOCK(evq); if (__predict_false(evq->init_state != SFXGE_EVQ_STARTING && evq->init_state != SFXGE_EVQ_STARTED)) { rc = EINVAL; goto fail; } /* Synchronize the DMA memory for reading */ bus_dmamap_sync(evq->mem.esm_tag, evq->mem.esm_map, BUS_DMASYNC_POSTREAD); KASSERT(evq->rx_done == 0, ("evq->rx_done != 0")); KASSERT(evq->tx_done == 0, ("evq->tx_done != 0")); KASSERT(evq->txq == NULL, ("evq->txq != NULL")); KASSERT(evq->txqs == &evq->txq, ("evq->txqs != &evq->txq")); /* Poll the queue */ efx_ev_qpoll(evq->common, &evq->read_ptr, &sfxge_ev_callbacks, evq); evq->rx_done = 0; evq->tx_done = 0; /* Perform any pending completion processing */ sfxge_ev_qcomplete(evq, B_TRUE); /* Re-prime the event queue for interrupts */ if ((rc = efx_ev_qprime(evq->common, evq->read_ptr)) != 0) goto fail; SFXGE_EVQ_UNLOCK(evq); return (0); fail: SFXGE_EVQ_UNLOCK(evq); return (rc); } static void sfxge_ev_qstop(struct sfxge_softc *sc, unsigned int index) { struct sfxge_evq *evq; evq = sc->evq[index]; KASSERT(evq->init_state == SFXGE_EVQ_STARTED, ("evq->init_state != SFXGE_EVQ_STARTED")); SFXGE_EVQ_LOCK(evq); evq->init_state = SFXGE_EVQ_INITIALIZED; evq->read_ptr = 0; evq->exception = B_FALSE; #if EFSYS_OPT_QSTATS /* Add event counts before discarding the common evq state */ efx_ev_qstats_update(evq->common, sc->ev_stats); #endif efx_ev_qdestroy(evq->common); efx_sram_buf_tbl_clear(sc->enp, evq->buf_base_id, EFX_EVQ_NBUFS(evq->entries)); SFXGE_EVQ_UNLOCK(evq); } static int sfxge_ev_qstart(struct sfxge_softc *sc, unsigned int index) { struct sfxge_evq *evq; efsys_mem_t *esmp; int count; int rc; evq = sc->evq[index]; esmp = &evq->mem; KASSERT(evq->init_state == SFXGE_EVQ_INITIALIZED, ("evq->init_state != SFXGE_EVQ_INITIALIZED")); /* Clear all events. */ (void)memset(esmp->esm_base, 0xff, EFX_EVQ_SIZE(evq->entries)); /* Program the buffer table. */ if ((rc = efx_sram_buf_tbl_set(sc->enp, evq->buf_base_id, esmp, EFX_EVQ_NBUFS(evq->entries))) != 0) return (rc); /* Create the common code event queue. */ if ((rc = efx_ev_qcreate(sc->enp, index, esmp, evq->entries, - evq->buf_base_id, sc->ev_moderation, &evq->common)) != 0) + evq->buf_base_id, sc->ev_moderation, EFX_EVQ_FLAGS_TYPE_AUTO, + &evq->common)) != 0) goto fail; SFXGE_EVQ_LOCK(evq); /* Prime the event queue for interrupts */ if ((rc = efx_ev_qprime(evq->common, evq->read_ptr)) != 0) goto fail2; evq->init_state = SFXGE_EVQ_STARTING; SFXGE_EVQ_UNLOCK(evq); /* Wait for the initialization event */ count = 0; do { /* Pause for 100 ms */ pause("sfxge evq init", hz / 10); /* Check to see if the test event has been processed */ if (evq->init_state == SFXGE_EVQ_STARTED) goto done; } while (++count < 20); rc = ETIMEDOUT; goto fail3; done: return (0); fail3: SFXGE_EVQ_LOCK(evq); evq->init_state = SFXGE_EVQ_INITIALIZED; fail2: SFXGE_EVQ_UNLOCK(evq); efx_ev_qdestroy(evq->common); fail: efx_sram_buf_tbl_clear(sc->enp, evq->buf_base_id, EFX_EVQ_NBUFS(evq->entries)); return (rc); } void sfxge_ev_stop(struct sfxge_softc *sc) { struct sfxge_intr *intr; efx_nic_t *enp; int index; intr = &sc->intr; enp = sc->enp; KASSERT(intr->state == SFXGE_INTR_STARTED, ("Interrupts not started")); /* Stop the event queue(s) */ index = sc->evq_count; while (--index >= 0) sfxge_ev_qstop(sc, index); /* Tear down the event module */ efx_ev_fini(enp); } int sfxge_ev_start(struct sfxge_softc *sc) { struct sfxge_intr *intr; int index; int rc; intr = &sc->intr; KASSERT(intr->state == SFXGE_INTR_STARTED, ("intr->state != SFXGE_INTR_STARTED")); /* Initialize the event module */ if ((rc = efx_ev_init(sc->enp)) != 0) return (rc); /* Start the event queues */ for (index = 0; index < sc->evq_count; index++) { if ((rc = sfxge_ev_qstart(sc, index)) != 0) goto fail; } return (0); fail: /* Stop the event queue(s) */ while (--index >= 0) sfxge_ev_qstop(sc, index); /* Tear down the event module */ efx_ev_fini(sc->enp); return (rc); } static void sfxge_ev_qfini(struct sfxge_softc *sc, unsigned int index) { struct sfxge_evq *evq; evq = sc->evq[index]; KASSERT(evq->init_state == SFXGE_EVQ_INITIALIZED, ("evq->init_state != SFXGE_EVQ_INITIALIZED")); KASSERT(evq->txqs == &evq->txq, ("evq->txqs != &evq->txq")); sfxge_dma_free(&evq->mem); sc->evq[index] = NULL; SFXGE_EVQ_LOCK_DESTROY(evq); free(evq, M_SFXGE); } static int sfxge_ev_qinit(struct sfxge_softc *sc, unsigned int index) { struct sfxge_evq *evq; efsys_mem_t *esmp; int rc; KASSERT(index < SFXGE_RX_SCALE_MAX, ("index >= SFXGE_RX_SCALE_MAX")); evq = malloc(sizeof(struct sfxge_evq), M_SFXGE, M_ZERO | M_WAITOK); evq->sc = sc; evq->index = index; sc->evq[index] = evq; esmp = &evq->mem; /* Build an event queue with room for one event per tx and rx buffer, * plus some extra for link state events and MCDI completions. * There are three tx queues in the first event queue and one in * other. */ if (index == 0) evq->entries = ROUNDUP_POW_OF_TWO(sc->rxq_entries + 3 * sc->txq_entries + 128); else evq->entries = ROUNDUP_POW_OF_TWO(sc->rxq_entries + sc->txq_entries + 128); /* Initialise TX completion list */ evq->txqs = &evq->txq; /* Allocate DMA space. */ if ((rc = sfxge_dma_alloc(sc, EFX_EVQ_SIZE(evq->entries), esmp)) != 0) return (rc); /* Allocate buffer table entries. */ sfxge_sram_buf_tbl_alloc(sc, EFX_EVQ_NBUFS(evq->entries), &evq->buf_base_id); SFXGE_EVQ_LOCK_INIT(evq, device_get_nameunit(sc->dev), index); evq->init_state = SFXGE_EVQ_INITIALIZED; return (0); } void sfxge_ev_fini(struct sfxge_softc *sc) { struct sfxge_intr *intr; int index; intr = &sc->intr; KASSERT(intr->state == SFXGE_INTR_INITIALIZED, ("intr->state != SFXGE_INTR_INITIALIZED")); sc->ev_moderation = 0; /* Tear down the event queue(s). */ index = sc->evq_count; while (--index >= 0) sfxge_ev_qfini(sc, index); sc->evq_count = 0; } int sfxge_ev_init(struct sfxge_softc *sc) { struct sysctl_ctx_list *sysctl_ctx = device_get_sysctl_ctx(sc->dev); struct sysctl_oid *sysctl_tree = device_get_sysctl_tree(sc->dev); struct sfxge_intr *intr; int index; int rc; intr = &sc->intr; sc->evq_count = intr->n_alloc; KASSERT(intr->state == SFXGE_INTR_INITIALIZED, ("intr->state != SFXGE_INTR_INITIALIZED")); /* Set default interrupt moderation; add a sysctl to * read and change it. */ sc->ev_moderation = SFXGE_MODERATION; SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "int_mod", CTLTYPE_UINT|CTLFLAG_RW, sc, 0, sfxge_int_mod_handler, "IU", "sfxge interrupt moderation (us)"); /* * Initialize the event queue(s) - one per interrupt. */ for (index = 0; index < sc->evq_count; index++) { if ((rc = sfxge_ev_qinit(sc, index)) != 0) goto fail; } #if EFSYS_OPT_QSTATS sfxge_ev_stat_init(sc); #endif return (0); fail: while (--index >= 0) sfxge_ev_qfini(sc, index); sc->evq_count = 0; return (rc); }