Index: stable/10/bin/ps/print.c =================================================================== --- stable/10/bin/ps/print.c (revision 310120) +++ stable/10/bin/ps/print.c (revision 310121) @@ -1,838 +1,842 @@ /*- * Copyright (c) 1990, 1993, 1994 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #if 0 #ifndef lint static char sccsid[] = "@(#)print.c 8.6 (Berkeley) 4/16/94"; #endif /* not lint */ #endif #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ps.h" #define COMMAND_WIDTH 16 #define ARGUMENTS_WIDTH 16 #define ps_pgtok(a) (((a) * getpagesize()) / 1024) void printheader(void) { VAR *v; struct varent *vent; STAILQ_FOREACH(vent, &varlist, next_ve) if (*vent->header != '\0') break; if (!vent) return; STAILQ_FOREACH(vent, &varlist, next_ve) { v = vent->var; if (v->flag & LJUST) { if (STAILQ_NEXT(vent, next_ve) == NULL) /* last one */ (void)printf("%s", vent->header); else (void)printf("%-*s", v->width, vent->header); } else (void)printf("%*s", v->width, vent->header); if (STAILQ_NEXT(vent, next_ve) != NULL) (void)putchar(' '); } (void)putchar('\n'); } char * arguments(KINFO *k, VARENT *ve) { char *vis_args; if ((vis_args = malloc(strlen(k->ki_args) * 4 + 1)) == NULL) errx(1, "malloc failed"); strvis(vis_args, k->ki_args, VIS_TAB | VIS_NL | VIS_NOSLASH); if (STAILQ_NEXT(ve, next_ve) != NULL && strlen(vis_args) > ARGUMENTS_WIDTH) vis_args[ARGUMENTS_WIDTH] = '\0'; return (vis_args); } char * command(KINFO *k, VARENT *ve) { char *vis_args, *vis_env, *str; if (cflag) { /* If it is the last field, then don't pad */ if (STAILQ_NEXT(ve, next_ve) == NULL) { - asprintf(&str, "%s%s%s%s", + asprintf(&str, "%s%s%s%s%s", k->ki_d.prefix ? k->ki_d.prefix : "", k->ki_p->ki_comm, (showthreads && k->ki_p->ki_numthreads > 1) ? "/" : "", - (showthreads && k->ki_p->ki_numthreads > 1) ? k->ki_p->ki_tdname : ""); + (showthreads && k->ki_p->ki_numthreads > 1) ? k->ki_p->ki_tdname : "", + (showthreads && k->ki_p->ki_numthreads > 1) ? k->ki_p->ki_moretdname : ""); } else str = strdup(k->ki_p->ki_comm); return (str); } if ((vis_args = malloc(strlen(k->ki_args) * 4 + 1)) == NULL) errx(1, "malloc failed"); strvis(vis_args, k->ki_args, VIS_TAB | VIS_NL | VIS_NOSLASH); if (STAILQ_NEXT(ve, next_ve) == NULL) { /* last field */ if (k->ki_env) { if ((vis_env = malloc(strlen(k->ki_env) * 4 + 1)) == NULL) errx(1, "malloc failed"); strvis(vis_env, k->ki_env, VIS_TAB | VIS_NL | VIS_NOSLASH); } else vis_env = NULL; asprintf(&str, "%s%s%s%s", k->ki_d.prefix ? k->ki_d.prefix : "", vis_env ? vis_env : "", vis_env ? " " : "", vis_args); if (vis_env != NULL) free(vis_env); free(vis_args); } else { /* ki_d.prefix & ki_env aren't shown for interim fields */ str = vis_args; if (strlen(str) > COMMAND_WIDTH) str[COMMAND_WIDTH] = '\0'; } return (str); } char * ucomm(KINFO *k, VARENT *ve) { char *str; if (STAILQ_NEXT(ve, next_ve) == NULL) { /* last field, don't pad */ - asprintf(&str, "%s%s%s%s", + asprintf(&str, "%s%s%s%s%s", k->ki_d.prefix ? k->ki_d.prefix : "", k->ki_p->ki_comm, (showthreads && k->ki_p->ki_numthreads > 1) ? "/" : "", - (showthreads && k->ki_p->ki_numthreads > 1) ? k->ki_p->ki_tdname : ""); + (showthreads && k->ki_p->ki_numthreads > 1) ? k->ki_p->ki_tdname : "", + (showthreads && k->ki_p->ki_numthreads > 1) ? k->ki_p->ki_moretdname : ""); } else { if (showthreads && k->ki_p->ki_numthreads > 1) - asprintf(&str, "%s/%s", k->ki_p->ki_comm, k->ki_p->ki_tdname); + asprintf(&str, "%s/%s%s", k->ki_p->ki_comm, + k->ki_p->ki_tdname, k->ki_p->ki_moretdname); else str = strdup(k->ki_p->ki_comm); } return (str); } char * tdnam(KINFO *k, VARENT *ve __unused) { char *str; if (showthreads && k->ki_p->ki_numthreads > 1) - str = strdup(k->ki_p->ki_tdname); + asprintf(&str, "%s%s", k->ki_p->ki_tdname, + k->ki_p->ki_moretdname); else str = strdup(" "); return (str); } char * logname(KINFO *k, VARENT *ve __unused) { if (*k->ki_p->ki_login == '\0') return (NULL); return (strdup(k->ki_p->ki_login)); } char * state(KINFO *k, VARENT *ve __unused) { int flag, tdflags; char *cp, *buf; buf = malloc(16); if (buf == NULL) errx(1, "malloc failed"); flag = k->ki_p->ki_flag; tdflags = k->ki_p->ki_tdflags; /* XXXKSE */ cp = buf; switch (k->ki_p->ki_stat) { case SSTOP: *cp = 'T'; break; case SSLEEP: if (tdflags & TDF_SINTR) /* interruptable (long) */ *cp = k->ki_p->ki_slptime >= MAXSLP ? 'I' : 'S'; else *cp = 'D'; break; case SRUN: case SIDL: *cp = 'R'; break; case SWAIT: *cp = 'W'; break; case SLOCK: *cp = 'L'; break; case SZOMB: *cp = 'Z'; break; default: *cp = '?'; } cp++; if (!(flag & P_INMEM)) *cp++ = 'W'; if (k->ki_p->ki_nice < NZERO) *cp++ = '<'; else if (k->ki_p->ki_nice > NZERO) *cp++ = 'N'; if (flag & P_TRACED) *cp++ = 'X'; if (flag & P_WEXIT && k->ki_p->ki_stat != SZOMB) *cp++ = 'E'; if (flag & P_PPWAIT) *cp++ = 'V'; if ((flag & P_SYSTEM) || k->ki_p->ki_lock > 0) *cp++ = 'L'; if (k->ki_p->ki_kiflag & KI_SLEADER) *cp++ = 's'; if ((flag & P_CONTROLT) && k->ki_p->ki_pgid == k->ki_p->ki_tpgid) *cp++ = '+'; if (flag & P_JAILED) *cp++ = 'J'; *cp = '\0'; return (buf); } #define scalepri(x) ((x) - PZERO) char * pri(KINFO *k, VARENT *ve __unused) { char *str; asprintf(&str, "%d", scalepri(k->ki_p->ki_pri.pri_level)); return (str); } char * upr(KINFO *k, VARENT *ve __unused) { char *str; asprintf(&str, "%d", scalepri(k->ki_p->ki_pri.pri_user)); return (str); } #undef scalepri char * uname(KINFO *k, VARENT *ve __unused) { return (strdup(user_from_uid(k->ki_p->ki_uid, 0))); } char * egroupname(KINFO *k, VARENT *ve __unused) { return (strdup(group_from_gid(k->ki_p->ki_groups[0], 0))); } char * rgroupname(KINFO *k, VARENT *ve __unused) { return (strdup(group_from_gid(k->ki_p->ki_rgid, 0))); } char * runame(KINFO *k, VARENT *ve __unused) { return (strdup(user_from_uid(k->ki_p->ki_ruid, 0))); } char * tdev(KINFO *k, VARENT *ve __unused) { dev_t dev; char *str; dev = k->ki_p->ki_tdev; if (dev == NODEV) str = strdup("-"); else asprintf(&str, "%#jx", (uintmax_t)dev); return (str); } char * tname(KINFO *k, VARENT *ve __unused) { dev_t dev; char *ttname, *str; dev = k->ki_p->ki_tdev; if (dev == NODEV || (ttname = devname(dev, S_IFCHR)) == NULL) str = strdup("- "); else { if (strncmp(ttname, "tty", 3) == 0 || strncmp(ttname, "cua", 3) == 0) ttname += 3; if (strncmp(ttname, "pts/", 4) == 0) ttname += 4; asprintf(&str, "%s%c", ttname, k->ki_p->ki_kiflag & KI_CTTY ? ' ' : '-'); } return (str); } char * longtname(KINFO *k, VARENT *ve __unused) { dev_t dev; const char *ttname; dev = k->ki_p->ki_tdev; if (dev == NODEV || (ttname = devname(dev, S_IFCHR)) == NULL) ttname = "-"; return (strdup(ttname)); } char * started(KINFO *k, VARENT *ve __unused) { time_t then; struct tm *tp; static int use_ampm = -1; size_t buflen = 100; char *buf; if (!k->ki_valid) return (NULL); buf = malloc(buflen); if (buf == NULL) errx(1, "malloc failed"); if (use_ampm < 0) use_ampm = (*nl_langinfo(T_FMT_AMPM) != '\0'); then = k->ki_p->ki_start.tv_sec; tp = localtime(&then); if (now - k->ki_p->ki_start.tv_sec < 24 * 3600) { (void)strftime(buf, buflen, use_ampm ? "%l:%M%p" : "%k:%M ", tp); } else if (now - k->ki_p->ki_start.tv_sec < 7 * 86400) { (void)strftime(buf, buflen, use_ampm ? "%a%I%p" : "%a%H ", tp); } else (void)strftime(buf, buflen, "%e%b%y", tp); return (buf); } char * lstarted(KINFO *k, VARENT *ve __unused) { time_t then; char *buf; size_t buflen = 100; if (!k->ki_valid) return (NULL); buf = malloc(buflen); if (buf == NULL) errx(1, "malloc failed"); then = k->ki_p->ki_start.tv_sec; (void)strftime(buf, buflen, "%c", localtime(&then)); return (buf); } char * lockname(KINFO *k, VARENT *ve __unused) { char *str; if (k->ki_p->ki_kiflag & KI_LOCKBLOCK) { if (k->ki_p->ki_lockname[0] != 0) str = strdup(k->ki_p->ki_lockname); else str = strdup("???"); } else str = NULL; return (str); } char * wchan(KINFO *k, VARENT *ve __unused) { char *str; if (k->ki_p->ki_wchan) { if (k->ki_p->ki_wmesg[0] != 0) str = strdup(k->ki_p->ki_wmesg); else asprintf(&str, "%lx", (long)k->ki_p->ki_wchan); } else str = NULL; return (str); } char * nwchan(KINFO *k, VARENT *ve __unused) { char *str; if (k->ki_p->ki_wchan) asprintf(&str, "%0lx", (long)k->ki_p->ki_wchan); else str = NULL; return (str); } char * mwchan(KINFO *k, VARENT *ve __unused) { char *str; if (k->ki_p->ki_wchan) { if (k->ki_p->ki_wmesg[0] != 0) str = strdup(k->ki_p->ki_wmesg); else asprintf(&str, "%lx", (long)k->ki_p->ki_wchan); } else if (k->ki_p->ki_kiflag & KI_LOCKBLOCK) { if (k->ki_p->ki_lockname[0]) { str = strdup(k->ki_p->ki_lockname); } else str = strdup("???"); } else str = NULL; return (str); } char * vsize(KINFO *k, VARENT *ve __unused) { char *str; asprintf(&str, "%lu", (u_long)(k->ki_p->ki_size / 1024)); return (str); } static char * printtime(KINFO *k, VARENT *ve __unused, long secs, long psecs) /* psecs is "parts" of a second. first micro, then centi */ { static char decimal_point; char *str; if (decimal_point == '\0') decimal_point = localeconv()->decimal_point[0]; if (!k->ki_valid) { secs = 0; psecs = 0; } else { /* round and scale to 100's */ psecs = (psecs + 5000) / 10000; secs += psecs / 100; psecs = psecs % 100; } asprintf(&str, "%ld:%02ld%c%02ld", secs / 60, secs % 60, decimal_point, psecs); return (str); } char * cputime(KINFO *k, VARENT *ve) { long secs, psecs; /* * This counts time spent handling interrupts. We could * fix this, but it is not 100% trivial (and interrupt * time fractions only work on the sparc anyway). XXX */ secs = k->ki_p->ki_runtime / 1000000; psecs = k->ki_p->ki_runtime % 1000000; if (sumrusage) { secs += k->ki_p->ki_childtime.tv_sec; psecs += k->ki_p->ki_childtime.tv_usec; } return (printtime(k, ve, secs, psecs)); } char * systime(KINFO *k, VARENT *ve) { long secs, psecs; secs = k->ki_p->ki_rusage.ru_stime.tv_sec; psecs = k->ki_p->ki_rusage.ru_stime.tv_usec; if (sumrusage) { secs += k->ki_p->ki_childstime.tv_sec; psecs += k->ki_p->ki_childstime.tv_usec; } return (printtime(k, ve, secs, psecs)); } char * usertime(KINFO *k, VARENT *ve) { long secs, psecs; secs = k->ki_p->ki_rusage.ru_utime.tv_sec; psecs = k->ki_p->ki_rusage.ru_utime.tv_usec; if (sumrusage) { secs += k->ki_p->ki_childutime.tv_sec; psecs += k->ki_p->ki_childutime.tv_usec; } return (printtime(k, ve, secs, psecs)); } char * elapsed(KINFO *k, VARENT *ve __unused) { time_t val; int days, hours, mins, secs; char *str; if (!k->ki_valid) return (NULL); val = now - k->ki_p->ki_start.tv_sec; days = val / (24 * 60 * 60); val %= 24 * 60 * 60; hours = val / (60 * 60); val %= 60 * 60; mins = val / 60; secs = val % 60; if (days != 0) asprintf(&str, "%3d-%02d:%02d:%02d", days, hours, mins, secs); else if (hours != 0) asprintf(&str, "%02d:%02d:%02d", hours, mins, secs); else asprintf(&str, "%02d:%02d", mins, secs); return (str); } char * elapseds(KINFO *k, VARENT *ve __unused) { time_t val; char *str; if (!k->ki_valid) return (NULL); val = now - k->ki_p->ki_start.tv_sec; asprintf(&str, "%jd", (intmax_t)val); return (str); } double getpcpu(const KINFO *k) { static int failure; if (!nlistread) failure = donlist(); if (failure) return (0.0); #define fxtofl(fixpt) ((double)(fixpt) / fscale) /* XXX - I don't like this */ if (k->ki_p->ki_swtime == 0 || (k->ki_p->ki_flag & P_INMEM) == 0) return (0.0); if (rawcpu) return (100.0 * fxtofl(k->ki_p->ki_pctcpu)); return (100.0 * fxtofl(k->ki_p->ki_pctcpu) / (1.0 - exp(k->ki_p->ki_swtime * log(fxtofl(ccpu))))); } char * pcpu(KINFO *k, VARENT *ve __unused) { char *str; asprintf(&str, "%.1f", getpcpu(k)); return (str); } static double getpmem(KINFO *k) { static int failure; double fracmem; if (!nlistread) failure = donlist(); if (failure) return (0.0); if ((k->ki_p->ki_flag & P_INMEM) == 0) return (0.0); /* XXX want pmap ptpages, segtab, etc. (per architecture) */ /* XXX don't have info about shared */ fracmem = ((float)k->ki_p->ki_rssize) / mempages; return (100.0 * fracmem); } char * pmem(KINFO *k, VARENT *ve __unused) { char *str; asprintf(&str, "%.1f", getpmem(k)); return (str); } char * pagein(KINFO *k, VARENT *ve __unused) { char *str; asprintf(&str, "%ld", k->ki_valid ? k->ki_p->ki_rusage.ru_majflt : 0); return (str); } /* ARGSUSED */ char * maxrss(KINFO *k __unused, VARENT *ve __unused) { /* XXX not yet */ return (NULL); } char * priorityr(KINFO *k, VARENT *ve __unused) { struct priority *lpri; char *str; unsigned class, level; lpri = &k->ki_p->ki_pri; class = lpri->pri_class; level = lpri->pri_level; switch (class) { case PRI_ITHD: asprintf(&str, "intr:%u", level); break; case PRI_REALTIME: asprintf(&str, "real:%u", level); break; case PRI_TIMESHARE: asprintf(&str, "normal"); break; case PRI_IDLE: asprintf(&str, "idle:%u", level); break; default: asprintf(&str, "%u:%u", class, level); break; } return (str); } /* * Generic output routines. Print fields from various prototype * structures. */ static char * printval(void *bp, VAR *v) { static char ofmt[32] = "%"; const char *fcp; char *cp, *str; cp = ofmt + 1; fcp = v->fmt; while ((*cp++ = *fcp++)); #define CHKINF127(n) (((n) > 127) && (v->flag & INF127) ? 127 : (n)) switch (v->type) { case CHAR: (void)asprintf(&str, ofmt, *(char *)bp); break; case UCHAR: (void)asprintf(&str, ofmt, *(u_char *)bp); break; case SHORT: (void)asprintf(&str, ofmt, *(short *)bp); break; case USHORT: (void)asprintf(&str, ofmt, *(u_short *)bp); break; case INT: (void)asprintf(&str, ofmt, *(int *)bp); break; case UINT: (void)asprintf(&str, ofmt, CHKINF127(*(u_int *)bp)); break; case LONG: (void)asprintf(&str, ofmt, *(long *)bp); break; case ULONG: (void)asprintf(&str, ofmt, *(u_long *)bp); break; case KPTR: (void)asprintf(&str, ofmt, *(u_long *)bp); break; case PGTOK: (void)asprintf(&str, ofmt, ps_pgtok(*(u_long *)bp)); break; default: errx(1, "unknown type %d", v->type); } return (str); } char * kvar(KINFO *k, VARENT *ve) { VAR *v; v = ve->var; return (printval((char *)((char *)k->ki_p + v->off), v)); } char * rvar(KINFO *k, VARENT *ve) { VAR *v; v = ve->var; if (!k->ki_valid) return (NULL); return (printval((char *)((char *)(&k->ki_p->ki_rusage) + v->off), v)); } char * emulname(KINFO *k, VARENT *ve __unused) { return (strdup(k->ki_p->ki_emul)); } char * label(KINFO *k, VARENT *ve __unused) { char *string; mac_t proclabel; int error; string = NULL; if (mac_prepare_process_label(&proclabel) == -1) { warn("mac_prepare_process_label"); goto out; } error = mac_get_pid(k->ki_p->ki_pid, proclabel); if (error == 0) { if (mac_to_text(proclabel, &string) == -1) string = NULL; } mac_free(proclabel); out: return (string); } char * loginclass(KINFO *k, VARENT *ve __unused) { /* * Don't display login class for system processes; * login classes are used for resource limits, * and limits don't apply to system processes. */ if (k->ki_p->ki_flag & P_SYSTEM) { return (strdup("-")); } return (strdup(k->ki_p->ki_loginclass)); } Index: stable/10/lib/libkvm/kvm_proc.c =================================================================== --- stable/10/lib/libkvm/kvm_proc.c (revision 310120) +++ stable/10/lib/libkvm/kvm_proc.c (revision 310121) @@ -1,723 +1,721 @@ /*- * Copyright (c) 1989, 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software developed by the Computer Systems * Engineering group at Lawrence Berkeley Laboratory under DARPA contract * BG 91-66 and contributed to Berkeley. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #if 0 #if defined(LIBC_SCCS) && !defined(lint) static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; #endif /* LIBC_SCCS and not lint */ #endif #include __FBSDID("$FreeBSD$"); /* * Proc traversal interface for kvm. ps and w are (probably) the exclusive * users of this code, so we've factored it out into a separate module. * Thus, we keep this grunge out of the other kvm applications (i.e., * most other applications are interested only in open/close/read/nlist). */ #include #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */ #include #include #include #include #include #include #include #include #define _WANT_PRISON /* make jail.h give us 'struct prison' */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kvm_private.h" #define KREAD(kd, addr, obj) \ (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) static int ticks; static int hz; static uint64_t cpu_tick_frequency; /* * From sys/kern/kern_tc.c. Depends on cpu_tick_frequency, which is * read/initialized before this function is ever called. */ static uint64_t cputick2usec(uint64_t tick) { if (cpu_tick_frequency == 0) return (0); if (tick > 18446744073709551) /* floor(2^64 / 1000) */ return (tick / (cpu_tick_frequency / 1000000)); else if (tick > 18446744073709) /* floor(2^64 / 1000000) */ return ((tick * 1000) / (cpu_tick_frequency / 1000)); else return ((tick * 1000000) / cpu_tick_frequency); } /* * Read proc's from memory file into buffer bp, which has space to hold * at most maxcnt procs. */ static int kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p, struct kinfo_proc *bp, int maxcnt) { int cnt = 0; struct kinfo_proc kinfo_proc, *kp; struct pgrp pgrp; struct session sess; struct cdev t_cdev; struct tty tty; struct vmspace vmspace; struct sigacts sigacts; #if 0 struct pstats pstats; #endif struct ucred ucred; struct prison pr; struct thread mtd; struct proc proc; struct proc pproc; struct sysentvec sysent; char svname[KI_EMULNAMELEN]; kp = &kinfo_proc; kp->ki_structsize = sizeof(kinfo_proc); /* * Loop on the processes. this is completely broken because we need to be * able to loop on the threads and merge the ones that are the same process some how. */ for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { memset(kp, 0, sizeof *kp); if (KREAD(kd, (u_long)p, &proc)) { _kvm_err(kd, kd->program, "can't read proc at %p", p); return (-1); } if (proc.p_state == PRS_NEW) continue; if (proc.p_state != PRS_ZOMBIE) { if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads), &mtd)) { _kvm_err(kd, kd->program, "can't read thread at %p", TAILQ_FIRST(&proc.p_threads)); return (-1); } } if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { kp->ki_ruid = ucred.cr_ruid; kp->ki_svuid = ucred.cr_svuid; kp->ki_rgid = ucred.cr_rgid; kp->ki_svgid = ucred.cr_svgid; kp->ki_cr_flags = ucred.cr_flags; if (ucred.cr_ngroups > KI_NGROUPS) { kp->ki_ngroups = KI_NGROUPS; kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; } else kp->ki_ngroups = ucred.cr_ngroups; kvm_read(kd, (u_long)ucred.cr_groups, kp->ki_groups, kp->ki_ngroups * sizeof(gid_t)); kp->ki_uid = ucred.cr_uid; if (ucred.cr_prison != NULL) { if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) { _kvm_err(kd, kd->program, "can't read prison at %p", ucred.cr_prison); return (-1); } kp->ki_jid = pr.pr_id; } } switch(what & ~KERN_PROC_INC_THREAD) { case KERN_PROC_GID: if (kp->ki_groups[0] != (gid_t)arg) continue; break; case KERN_PROC_PID: if (proc.p_pid != (pid_t)arg) continue; break; case KERN_PROC_RGID: if (kp->ki_rgid != (gid_t)arg) continue; break; case KERN_PROC_UID: if (kp->ki_uid != (uid_t)arg) continue; break; case KERN_PROC_RUID: if (kp->ki_ruid != (uid_t)arg) continue; break; } /* * We're going to add another proc to the set. If this * will overflow the buffer, assume the reason is because * nprocs (or the proc list) is corrupt and declare an error. */ if (cnt >= maxcnt) { _kvm_err(kd, kd->program, "nprocs corrupt"); return (-1); } /* * gather kinfo_proc */ kp->ki_paddr = p; kp->ki_addr = 0; /* XXX uarea */ /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ kp->ki_args = proc.p_args; kp->ki_tracep = proc.p_tracevp; kp->ki_textvp = proc.p_textvp; kp->ki_fd = proc.p_fd; kp->ki_vmspace = proc.p_vmspace; if (proc.p_sigacts != NULL) { if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) { _kvm_err(kd, kd->program, "can't read sigacts at %p", proc.p_sigacts); return (-1); } kp->ki_sigignore = sigacts.ps_sigignore; kp->ki_sigcatch = sigacts.ps_sigcatch; } #if 0 if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) { if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { _kvm_err(kd, kd->program, "can't read stats at %x", proc.p_stats); return (-1); } kp->ki_start = pstats.p_start; /* * XXX: The times here are probably zero and need * to be calculated from the raw data in p_rux and * p_crux. */ kp->ki_rusage = pstats.p_ru; kp->ki_childstime = pstats.p_cru.ru_stime; kp->ki_childutime = pstats.p_cru.ru_utime; /* Some callers want child-times in a single value */ timeradd(&kp->ki_childstime, &kp->ki_childutime, &kp->ki_childtime); } #endif if (proc.p_oppid) kp->ki_ppid = proc.p_oppid; else if (proc.p_pptr) { if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { _kvm_err(kd, kd->program, "can't read pproc at %p", proc.p_pptr); return (-1); } kp->ki_ppid = pproc.p_pid; } else kp->ki_ppid = 0; if (proc.p_pgrp == NULL) goto nopgrp; if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { _kvm_err(kd, kd->program, "can't read pgrp at %p", proc.p_pgrp); return (-1); } kp->ki_pgid = pgrp.pg_id; kp->ki_jobc = pgrp.pg_jobc; if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { _kvm_err(kd, kd->program, "can't read session at %p", pgrp.pg_session); return (-1); } kp->ki_sid = sess.s_sid; (void)memcpy(kp->ki_login, sess.s_login, sizeof(kp->ki_login)); kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; if (sess.s_leader == p) kp->ki_kiflag |= KI_SLEADER; if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { _kvm_err(kd, kd->program, "can't read tty at %p", sess.s_ttyp); return (-1); } if (tty.t_dev != NULL) { if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) { _kvm_err(kd, kd->program, "can't read cdev at %p", tty.t_dev); return (-1); } #if 0 kp->ki_tdev = t_cdev.si_udev; #else kp->ki_tdev = NODEV; #endif } if (tty.t_pgrp != NULL) { if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { _kvm_err(kd, kd->program, "can't read tpgrp at %p", tty.t_pgrp); return (-1); } kp->ki_tpgid = pgrp.pg_id; } else kp->ki_tpgid = -1; if (tty.t_session != NULL) { if (KREAD(kd, (u_long)tty.t_session, &sess)) { _kvm_err(kd, kd->program, "can't read session at %p", tty.t_session); return (-1); } kp->ki_tsid = sess.s_sid; } } else { nopgrp: kp->ki_tdev = NODEV; } if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg) (void)kvm_read(kd, (u_long)mtd.td_wmesg, kp->ki_wmesg, WMESGLEN); (void)kvm_read(kd, (u_long)proc.p_vmspace, (char *)&vmspace, sizeof(vmspace)); kp->ki_size = vmspace.vm_map.size; /* * Approximate the kernel's method of calculating * this field. */ #define pmap_resident_count(pm) ((pm)->pm_stats.resident_count) kp->ki_rssize = pmap_resident_count(&vmspace.vm_pmap); kp->ki_swrss = vmspace.vm_swrss; kp->ki_tsize = vmspace.vm_tsize; kp->ki_dsize = vmspace.vm_dsize; kp->ki_ssize = vmspace.vm_ssize; switch (what & ~KERN_PROC_INC_THREAD) { case KERN_PROC_PGRP: if (kp->ki_pgid != (pid_t)arg) continue; break; case KERN_PROC_SESSION: if (kp->ki_sid != (pid_t)arg) continue; break; case KERN_PROC_TTY: if ((proc.p_flag & P_CONTROLT) == 0 || kp->ki_tdev != (dev_t)arg) continue; break; } if (proc.p_comm[0] != 0) strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent, sizeof(sysent)); (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname, sizeof(svname)); if (svname[0] != 0) strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN); if ((proc.p_state != PRS_ZOMBIE) && (mtd.td_blocked != 0)) { kp->ki_kiflag |= KI_LOCKBLOCK; if (mtd.td_lockname) (void)kvm_read(kd, (u_long)mtd.td_lockname, kp->ki_lockname, LOCKNAMELEN); kp->ki_lockname[LOCKNAMELEN] = 0; } kp->ki_runtime = cputick2usec(proc.p_rux.rux_runtime); kp->ki_pid = proc.p_pid; kp->ki_siglist = proc.p_siglist; SIGSETOR(kp->ki_siglist, mtd.td_siglist); kp->ki_sigmask = mtd.td_sigmask; kp->ki_xstat = proc.p_xstat; kp->ki_acflag = proc.p_acflag; kp->ki_lock = proc.p_lock; if (proc.p_state != PRS_ZOMBIE) { kp->ki_swtime = (ticks - proc.p_swtick) / hz; kp->ki_flag = proc.p_flag; kp->ki_sflag = 0; kp->ki_nice = proc.p_nice; kp->ki_traceflag = proc.p_traceflag; if (proc.p_state == PRS_NORMAL) { if (TD_ON_RUNQ(&mtd) || TD_CAN_RUN(&mtd) || TD_IS_RUNNING(&mtd)) { kp->ki_stat = SRUN; } else if (mtd.td_state == TDS_INHIBITED) { if (P_SHOULDSTOP(&proc)) { kp->ki_stat = SSTOP; } else if ( TD_IS_SLEEPING(&mtd)) { kp->ki_stat = SSLEEP; } else if (TD_ON_LOCK(&mtd)) { kp->ki_stat = SLOCK; } else { kp->ki_stat = SWAIT; } } } else { kp->ki_stat = SIDL; } /* Stuff from the thread */ kp->ki_pri.pri_level = mtd.td_priority; kp->ki_pri.pri_native = mtd.td_base_pri; kp->ki_lastcpu = mtd.td_lastcpu; kp->ki_wchan = mtd.td_wchan; - if (mtd.td_name[0] != 0) - strlcpy(kp->ki_tdname, mtd.td_name, MAXCOMLEN); kp->ki_oncpu = mtd.td_oncpu; if (mtd.td_name[0] != '\0') strlcpy(kp->ki_tdname, mtd.td_name, sizeof(kp->ki_tdname)); kp->ki_pctcpu = 0; kp->ki_rqindex = 0; } else { kp->ki_stat = SZOMB; } bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); ++bp; ++cnt; } return (cnt); } /* * Build proc info array by reading in proc list from a crash dump. * Return number of procs read. maxcnt is the max we will read. */ static int kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc, u_long a_zombproc, int maxcnt) { struct kinfo_proc *bp = kd->procbase; int acnt, zcnt; struct proc *p; if (KREAD(kd, a_allproc, &p)) { _kvm_err(kd, kd->program, "cannot read allproc"); return (-1); } acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); if (acnt < 0) return (acnt); if (KREAD(kd, a_zombproc, &p)) { _kvm_err(kd, kd->program, "cannot read zombproc"); return (-1); } zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); if (zcnt < 0) zcnt = 0; return (acnt + zcnt); } struct kinfo_proc * kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt) { int mib[4], st, nprocs; size_t size, osize; int temp_op; if (kd->procbase != 0) { free((void *)kd->procbase); /* * Clear this pointer in case this call fails. Otherwise, * kvm_close() will free it again. */ kd->procbase = 0; } if (ISALIVE(kd)) { size = 0; mib[0] = CTL_KERN; mib[1] = KERN_PROC; mib[2] = op; mib[3] = arg; temp_op = op & ~KERN_PROC_INC_THREAD; st = sysctl(mib, temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ? 3 : 4, NULL, &size, NULL, 0); if (st == -1) { _kvm_syserr(kd, kd->program, "kvm_getprocs"); return (0); } /* * We can't continue with a size of 0 because we pass * it to realloc() (via _kvm_realloc()), and passing 0 * to realloc() results in undefined behavior. */ if (size == 0) { /* * XXX: We should probably return an invalid, * but non-NULL, pointer here so any client * program trying to dereference it will * crash. However, _kvm_freeprocs() calls * free() on kd->procbase if it isn't NULL, * and free()'ing a junk pointer isn't good. * Then again, _kvm_freeprocs() isn't used * anywhere . . . */ kd->procbase = _kvm_malloc(kd, 1); goto liveout; } do { size += size / 10; kd->procbase = (struct kinfo_proc *) _kvm_realloc(kd, kd->procbase, size); if (kd->procbase == 0) return (0); osize = size; st = sysctl(mib, temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ? 3 : 4, kd->procbase, &size, NULL, 0); } while (st == -1 && errno == ENOMEM && size == osize); if (st == -1) { _kvm_syserr(kd, kd->program, "kvm_getprocs"); return (0); } /* * We have to check the size again because sysctl() * may "round up" oldlenp if oldp is NULL; hence it * might've told us that there was data to get when * there really isn't any. */ if (size > 0 && kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { _kvm_err(kd, kd->program, "kinfo_proc size mismatch (expected %zu, got %d)", sizeof(struct kinfo_proc), kd->procbase->ki_structsize); return (0); } liveout: nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; } else { struct nlist nl[7], *p; nl[0].n_name = "_nprocs"; nl[1].n_name = "_allproc"; nl[2].n_name = "_zombproc"; nl[3].n_name = "_ticks"; nl[4].n_name = "_hz"; nl[5].n_name = "_cpu_tick_frequency"; nl[6].n_name = 0; if (kvm_nlist(kd, nl) != 0) { for (p = nl; p->n_type != 0; ++p) ; _kvm_err(kd, kd->program, "%s: no such symbol", p->n_name); return (0); } if (KREAD(kd, nl[0].n_value, &nprocs)) { _kvm_err(kd, kd->program, "can't read nprocs"); return (0); } if (KREAD(kd, nl[3].n_value, &ticks)) { _kvm_err(kd, kd->program, "can't read ticks"); return (0); } if (KREAD(kd, nl[4].n_value, &hz)) { _kvm_err(kd, kd->program, "can't read hz"); return (0); } if (KREAD(kd, nl[5].n_value, &cpu_tick_frequency)) { _kvm_err(kd, kd->program, "can't read cpu_tick_frequency"); return (0); } size = nprocs * sizeof(struct kinfo_proc); kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); if (kd->procbase == 0) return (0); nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, nl[2].n_value, nprocs); if (nprocs <= 0) { _kvm_freeprocs(kd); nprocs = 0; } #ifdef notdef else { size = nprocs * sizeof(struct kinfo_proc); kd->procbase = realloc(kd->procbase, size); } #endif } *cnt = nprocs; return (kd->procbase); } void _kvm_freeprocs(kvm_t *kd) { if (kd->procbase) { free(kd->procbase); kd->procbase = 0; } } void * _kvm_realloc(kvm_t *kd, void *p, size_t n) { void *np = (void *)realloc(p, n); if (np == 0) { free(p); _kvm_err(kd, kd->program, "out of memory"); } return (np); } /* * Get the command args or environment. */ static char ** kvm_argv(kvm_t *kd, const struct kinfo_proc *kp, int env, int nchr) { int oid[4]; int i; size_t bufsz; static int buflen; static char *buf, *p; static char **bufp; static int argc; char **nbufp; if (!ISALIVE(kd)) { _kvm_err(kd, kd->program, "cannot read user space from dead kernel"); return (0); } if (nchr == 0 || nchr > ARG_MAX) nchr = ARG_MAX; if (buflen == 0) { buf = malloc(nchr); if (buf == NULL) { _kvm_err(kd, kd->program, "cannot allocate memory"); return (0); } argc = 32; bufp = malloc(sizeof(char *) * argc); if (bufp == NULL) { free(buf); buf = NULL; _kvm_err(kd, kd->program, "cannot allocate memory"); return (NULL); } buflen = nchr; } else if (nchr > buflen) { p = realloc(buf, nchr); if (p != NULL) { buf = p; buflen = nchr; } } oid[0] = CTL_KERN; oid[1] = KERN_PROC; oid[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS; oid[3] = kp->ki_pid; bufsz = buflen; if (sysctl(oid, 4, buf, &bufsz, 0, 0) == -1) { /* * If the supplied buf is too short to hold the requested * value the sysctl returns with ENOMEM. The buf is filled * with the truncated value and the returned bufsz is equal * to the requested len. */ if (errno != ENOMEM || bufsz != (size_t)buflen) return (0); buf[bufsz - 1] = '\0'; errno = 0; } else if (bufsz == 0) { return (0); } i = 0; p = buf; do { bufp[i++] = p; p += strlen(p) + 1; if (i >= argc) { argc += argc; nbufp = realloc(bufp, sizeof(char *) * argc); if (nbufp == NULL) return (NULL); bufp = nbufp; } } while (p < buf + bufsz); bufp[i++] = 0; return (bufp); } char ** kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) { return (kvm_argv(kd, kp, 0, nchr)); } char ** kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) { return (kvm_argv(kd, kp, 1, nchr)); } Index: stable/10/sys/compat/freebsd32/freebsd32.h =================================================================== --- stable/10/sys/compat/freebsd32/freebsd32.h (revision 310120) +++ stable/10/sys/compat/freebsd32/freebsd32.h (revision 310121) @@ -1,370 +1,371 @@ /*- * Copyright (c) 2001 Doug Rabson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _COMPAT_FREEBSD32_FREEBSD32_H_ #define _COMPAT_FREEBSD32_FREEBSD32_H_ #include #include #include #define PTRIN(v) (void *)(uintptr_t) (v) #define PTROUT(v) (u_int32_t)(uintptr_t) (v) #define CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0) #define PTRIN_CP(src,dst,fld) \ do { (dst).fld = PTRIN((src).fld); } while (0) #define PTROUT_CP(src,dst,fld) \ do { (dst).fld = PTROUT((src).fld); } while (0) /* * Being a newer port, 32-bit FreeBSD/MIPS uses 64-bit time_t. */ #ifdef __mips__ typedef int64_t time32_t; #else typedef int32_t time32_t; #endif struct timeval32 { time32_t tv_sec; int32_t tv_usec; }; #define TV_CP(src,dst,fld) do { \ CP((src).fld,(dst).fld,tv_sec); \ CP((src).fld,(dst).fld,tv_usec); \ } while (0) struct timespec32 { time32_t tv_sec; int32_t tv_nsec; }; #define TS_CP(src,dst,fld) do { \ CP((src).fld,(dst).fld,tv_sec); \ CP((src).fld,(dst).fld,tv_nsec); \ } while (0) struct itimerspec32 { struct timespec32 it_interval; struct timespec32 it_value; }; #define ITS_CP(src, dst) do { \ TS_CP((src), (dst), it_interval); \ TS_CP((src), (dst), it_value); \ } while (0) struct rusage32 { struct timeval32 ru_utime; struct timeval32 ru_stime; int32_t ru_maxrss; int32_t ru_ixrss; int32_t ru_idrss; int32_t ru_isrss; int32_t ru_minflt; int32_t ru_majflt; int32_t ru_nswap; int32_t ru_inblock; int32_t ru_oublock; int32_t ru_msgsnd; int32_t ru_msgrcv; int32_t ru_nsignals; int32_t ru_nvcsw; int32_t ru_nivcsw; }; struct wrusage32 { struct rusage32 wru_self; struct rusage32 wru_children; }; struct itimerval32 { struct timeval32 it_interval; struct timeval32 it_value; }; #define FREEBSD4_MNAMELEN (88 - 2 * sizeof(int32_t)) /* size of on/from name bufs */ /* 4.x version */ struct statfs32 { int32_t f_spare2; int32_t f_bsize; int32_t f_iosize; int32_t f_blocks; int32_t f_bfree; int32_t f_bavail; int32_t f_files; int32_t f_ffree; fsid_t f_fsid; uid_t f_owner; int32_t f_type; int32_t f_flags; int32_t f_syncwrites; int32_t f_asyncwrites; char f_fstypename[MFSNAMELEN]; char f_mntonname[FREEBSD4_MNAMELEN]; int32_t f_syncreads; int32_t f_asyncreads; int16_t f_spares1; char f_mntfromname[FREEBSD4_MNAMELEN]; int16_t f_spares2 __packed; int32_t f_spare[2]; }; struct kevent32 { u_int32_t ident; /* identifier for this event */ short filter; /* filter for event */ u_short flags; u_int fflags; int32_t data; u_int32_t udata; /* opaque user data identifier */ }; struct iovec32 { u_int32_t iov_base; int iov_len; }; struct msghdr32 { u_int32_t msg_name; socklen_t msg_namelen; u_int32_t msg_iov; int msg_iovlen; u_int32_t msg_control; socklen_t msg_controllen; int msg_flags; }; struct stat32 { dev_t st_dev; ino_t st_ino; mode_t st_mode; nlink_t st_nlink; uid_t st_uid; gid_t st_gid; dev_t st_rdev; struct timespec32 st_atim; struct timespec32 st_mtim; struct timespec32 st_ctim; off_t st_size; int64_t st_blocks; u_int32_t st_blksize; u_int32_t st_flags; u_int32_t st_gen; int32_t st_lspare; struct timespec32 st_birthtim; unsigned int :(8 / 2) * (16 - (int)sizeof(struct timespec32)); unsigned int :(8 / 2) * (16 - (int)sizeof(struct timespec32)); }; struct ostat32 { __uint16_t st_dev; ino_t st_ino; mode_t st_mode; nlink_t st_nlink; __uint16_t st_uid; __uint16_t st_gid; __uint16_t st_rdev; __int32_t st_size; struct timespec32 st_atim; struct timespec32 st_mtim; struct timespec32 st_ctim; __int32_t st_blksize; __int32_t st_blocks; u_int32_t st_flags; __uint32_t st_gen; }; struct jail32_v0 { u_int32_t version; uint32_t path; uint32_t hostname; u_int32_t ip_number; }; struct jail32 { uint32_t version; uint32_t path; uint32_t hostname; uint32_t jailname; uint32_t ip4s; uint32_t ip6s; uint32_t ip4; uint32_t ip6; }; struct sigaction32 { u_int32_t sa_u; int sa_flags; sigset_t sa_mask; }; struct thr_param32 { uint32_t start_func; uint32_t arg; uint32_t stack_base; uint32_t stack_size; uint32_t tls_base; uint32_t tls_size; uint32_t child_tid; uint32_t parent_tid; int32_t flags; uint32_t rtp; uint32_t spare[3]; }; struct i386_ldt_args32 { uint32_t start; uint32_t descs; uint32_t num; }; struct mq_attr32 { int mq_flags; int mq_maxmsg; int mq_msgsize; int mq_curmsgs; int __reserved[4]; }; struct kinfo_proc32 { int ki_structsize; int ki_layout; uint32_t ki_args; uint32_t ki_paddr; uint32_t ki_addr; uint32_t ki_tracep; uint32_t ki_textvp; uint32_t ki_fd; uint32_t ki_vmspace; uint32_t ki_wchan; pid_t ki_pid; pid_t ki_ppid; pid_t ki_pgid; pid_t ki_tpgid; pid_t ki_sid; pid_t ki_tsid; short ki_jobc; short ki_spare_short1; dev_t ki_tdev; sigset_t ki_siglist; sigset_t ki_sigmask; sigset_t ki_sigignore; sigset_t ki_sigcatch; uid_t ki_uid; uid_t ki_ruid; uid_t ki_svuid; gid_t ki_rgid; gid_t ki_svgid; short ki_ngroups; short ki_spare_short2; gid_t ki_groups[KI_NGROUPS]; uint32_t ki_size; int32_t ki_rssize; int32_t ki_swrss; int32_t ki_tsize; int32_t ki_dsize; int32_t ki_ssize; u_short ki_xstat; u_short ki_acflag; fixpt_t ki_pctcpu; u_int ki_estcpu; u_int ki_slptime; u_int ki_swtime; u_int ki_cow; u_int64_t ki_runtime; struct timeval32 ki_start; struct timeval32 ki_childtime; int ki_flag; int ki_kiflag; int ki_traceflag; char ki_stat; signed char ki_nice; char ki_lock; char ki_rqindex; u_char ki_oncpu; u_char ki_lastcpu; char ki_tdname[TDNAMLEN+1]; char ki_wmesg[WMESGLEN+1]; char ki_login[LOGNAMELEN+1]; char ki_lockname[LOCKNAMELEN+1]; char ki_comm[COMMLEN+1]; char ki_emul[KI_EMULNAMELEN+1]; char ki_loginclass[LOGINCLASSLEN+1]; - char ki_sparestrings[50]; + char ki_moretdname[MAXCOMLEN-TDNAMLEN+1]; + char ki_sparestrings[46]; int ki_spareints[KI_NSPARE_INT]; int ki_flag2; int ki_fibnum; u_int ki_cr_flags; int ki_jid; int ki_numthreads; lwpid_t ki_tid; struct priority ki_pri; struct rusage32 ki_rusage; struct rusage32 ki_rusage_ch; uint32_t ki_pcb; uint32_t ki_kstack; uint32_t ki_udata; uint32_t ki_tdaddr; uint32_t ki_spareptrs[KI_NSPARE_PTR]; /* spare room for growth */ int ki_sparelongs[KI_NSPARE_LONG]; int ki_sflag; int ki_tdflags; }; struct kinfo_sigtramp32 { uint32_t ksigtramp_start; uint32_t ksigtramp_end; uint32_t ksigtramp_spare[4]; }; struct kld32_file_stat_1 { int version; /* set to sizeof(struct kld_file_stat_1) */ char name[MAXPATHLEN]; int refs; int id; uint32_t address; /* load address */ uint32_t size; /* size in bytes */ }; struct kld32_file_stat { int version; /* set to sizeof(struct kld_file_stat) */ char name[MAXPATHLEN]; int refs; int id; uint32_t address; /* load address */ uint32_t size; /* size in bytes */ char pathname[MAXPATHLEN]; }; struct procctl_reaper_pids32 { u_int rp_count; u_int rp_pad0[15]; uint32_t rp_pids; }; #endif /* !_COMPAT_FREEBSD32_FREEBSD32_H_ */ Index: stable/10/sys/kern/kern_proc.c =================================================================== --- stable/10/sys/kern/kern_proc.c (revision 310120) +++ stable/10/sys/kern/kern_proc.c (revision 310121) @@ -1,3035 +1,3043 @@ /*- * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include "opt_ddb.h" #include "opt_kdtrace.h" #include "opt_ktrace.h" #include "opt_kstack_pages.h" #include "opt_stack.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif #include #include #include #include #include #include #include #include #ifdef COMPAT_FREEBSD32 #include #include #endif SDT_PROVIDER_DEFINE(proc); SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *", "int"); SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *", "int"); SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *", "struct thread *"); SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *"); SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int"); SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int"); MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); MALLOC_DEFINE(M_SESSION, "session", "session header"); static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); static void doenterpgrp(struct proc *, struct pgrp *); static void orphanpg(struct pgrp *pg); static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread); static void pgadjustjobc(struct pgrp *pgrp, int entering); static void pgdelete(struct pgrp *); static int proc_ctor(void *mem, int size, void *arg, int flags); static void proc_dtor(void *mem, int size, void *arg); static int proc_init(void *mem, int size, int flags); static void proc_fini(void *mem, int size); static void pargs_free(struct pargs *pa); static struct proc *zpfind_locked(pid_t pid); /* * Other process lists */ struct pidhashhead *pidhashtbl; u_long pidhash; struct pgrphashhead *pgrphashtbl; u_long pgrphash; struct proclist allproc; struct proclist zombproc; struct sx allproc_lock; struct sx proctree_lock; struct mtx ppeers_lock; uma_zone_t proc_zone; /* * The offset of various fields in struct proc and struct thread. * These are used by kernel debuggers to enumerate kernel threads and * processes. */ const int proc_off_p_pid = offsetof(struct proc, p_pid); const int proc_off_p_comm = offsetof(struct proc, p_comm); const int proc_off_p_list = offsetof(struct proc, p_list); const int proc_off_p_threads = offsetof(struct proc, p_threads); const int thread_off_td_tid = offsetof(struct thread, td_tid); const int thread_off_td_name = offsetof(struct thread, td_name); const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); const int thread_off_td_pcb = offsetof(struct thread, td_pcb); const int thread_off_td_plist = offsetof(struct thread, td_plist); int kstack_pages = KSTACK_PAGES; SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, "Kernel stack size in pages"); static int vmmap_skip_res_cnt = 0; SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, &vmmap_skip_res_cnt, 0, "Skip calculation of the pages resident count in kern.proc.vmmap"); CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); #ifdef COMPAT_FREEBSD32 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); #endif /* * Initialize global process hashing structures. */ void procinit() { sx_init(&allproc_lock, "allproc"); sx_init(&proctree_lock, "proctree"); mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); LIST_INIT(&allproc); LIST_INIT(&zombproc); pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), proc_ctor, proc_dtor, proc_init, proc_fini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); uihashinit(); } /* * Prepare a proc for use. */ static int proc_ctor(void *mem, int size, void *arg, int flags) { struct proc *p; p = (struct proc *)mem; SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags); EVENTHANDLER_INVOKE(process_ctor, p); SDT_PROBE4(proc, , ctor , return, p, size, arg, flags); return (0); } /* * Reclaim a proc after use. */ static void proc_dtor(void *mem, int size, void *arg) { struct proc *p; struct thread *td; /* INVARIANTS checks go here */ p = (struct proc *)mem; td = FIRST_THREAD_IN_PROC(p); SDT_PROBE4(proc, , dtor, entry, p, size, arg, td); if (td != NULL) { #ifdef INVARIANTS KASSERT((p->p_numthreads == 1), ("bad number of threads in exiting process")); KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); #endif /* Free all OSD associated to this thread. */ osd_thread_exit(td); } EVENTHANDLER_INVOKE(process_dtor, p); if (p->p_ksi != NULL) KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); SDT_PROBE3(proc, , dtor, return, p, size, arg); } /* * Initialize type-stable parts of a proc (when newly created). */ static int proc_init(void *mem, int size, int flags) { struct proc *p; p = (struct proc *)mem; SDT_PROBE3(proc, , init, entry, p, size, flags); p->p_sched = (struct p_sched *)&p[1]; bzero(&p->p_mtx, sizeof(struct mtx)); mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); cv_init(&p->p_pwait, "ppwait"); cv_init(&p->p_dbgwait, "dbgwait"); TAILQ_INIT(&p->p_threads); /* all threads in proc */ EVENTHANDLER_INVOKE(process_init, p); p->p_stats = pstats_alloc(); p->p_pgrp = NULL; SDT_PROBE3(proc, , init, return, p, size, flags); return (0); } /* * UMA should ensure that this function is never called. * Freeing a proc structure would violate type stability. */ static void proc_fini(void *mem, int size) { #ifdef notnow struct proc *p; p = (struct proc *)mem; EVENTHANDLER_INVOKE(process_fini, p); pstats_free(p->p_stats); thread_free(FIRST_THREAD_IN_PROC(p)); mtx_destroy(&p->p_mtx); if (p->p_ksi != NULL) ksiginfo_free(p->p_ksi); #else panic("proc reclaimed"); #endif } /* * Is p an inferior of the current process? */ int inferior(struct proc *p) { sx_assert(&proctree_lock, SX_LOCKED); PROC_LOCK_ASSERT(p, MA_OWNED); for (; p != curproc; p = proc_realparent(p)) { if (p->p_pid == 0) return (0); } return (1); } struct proc * pfind_locked(pid_t pid) { struct proc *p; sx_assert(&allproc_lock, SX_LOCKED); LIST_FOREACH(p, PIDHASH(pid), p_hash) { if (p->p_pid == pid) { PROC_LOCK(p); if (p->p_state == PRS_NEW) { PROC_UNLOCK(p); p = NULL; } break; } } return (p); } /* * Locate a process by number; return only "live" processes -- i.e., neither * zombies nor newly born but incompletely initialized processes. By not * returning processes in the PRS_NEW state, we allow callers to avoid * testing for that condition to avoid dereferencing p_ucred, et al. */ struct proc * pfind(pid_t pid) { struct proc *p; sx_slock(&allproc_lock); p = pfind_locked(pid); sx_sunlock(&allproc_lock); return (p); } static struct proc * pfind_tid_locked(pid_t tid) { struct proc *p; struct thread *td; sx_assert(&allproc_lock, SX_LOCKED); FOREACH_PROC_IN_SYSTEM(p) { PROC_LOCK(p); if (p->p_state == PRS_NEW) { PROC_UNLOCK(p); continue; } FOREACH_THREAD_IN_PROC(p, td) { if (td->td_tid == tid) goto found; } PROC_UNLOCK(p); } found: return (p); } /* * Locate a process group by number. * The caller must hold proctree_lock. */ struct pgrp * pgfind(pgid) register pid_t pgid; { register struct pgrp *pgrp; sx_assert(&proctree_lock, SX_LOCKED); LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { if (pgrp->pg_id == pgid) { PGRP_LOCK(pgrp); return (pgrp); } } return (NULL); } /* * Locate process and do additional manipulations, depending on flags. */ int pget(pid_t pid, int flags, struct proc **pp) { struct proc *p; int error; sx_slock(&allproc_lock); if (pid <= PID_MAX) { p = pfind_locked(pid); if (p == NULL && (flags & PGET_NOTWEXIT) == 0) p = zpfind_locked(pid); } else if ((flags & PGET_NOTID) == 0) { p = pfind_tid_locked(pid); } else { p = NULL; } sx_sunlock(&allproc_lock); if (p == NULL) return (ESRCH); if ((flags & PGET_CANSEE) != 0) { error = p_cansee(curthread, p); if (error != 0) goto errout; } if ((flags & PGET_CANDEBUG) != 0) { error = p_candebug(curthread, p); if (error != 0) goto errout; } if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { error = EPERM; goto errout; } if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { error = ESRCH; goto errout; } if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { /* * XXXRW: Not clear ESRCH is the right error during proc * execve(). */ error = ESRCH; goto errout; } if ((flags & PGET_HOLD) != 0) { _PHOLD(p); PROC_UNLOCK(p); } *pp = p; return (0); errout: PROC_UNLOCK(p); return (error); } /* * Create a new process group. * pgid must be equal to the pid of p. * Begin a new session if required. */ int enterpgrp(p, pgid, pgrp, sess) register struct proc *p; pid_t pgid; struct pgrp *pgrp; struct session *sess; { sx_assert(&proctree_lock, SX_XLOCKED); KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); KASSERT(p->p_pid == pgid, ("enterpgrp: new pgrp and pid != pgid")); KASSERT(pgfind(pgid) == NULL, ("enterpgrp: pgrp with pgid exists")); KASSERT(!SESS_LEADER(p), ("enterpgrp: session leader attempted setpgrp")); mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); if (sess != NULL) { /* * new session */ mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); PROC_LOCK(p); p->p_flag &= ~P_CONTROLT; PROC_UNLOCK(p); PGRP_LOCK(pgrp); sess->s_leader = p; sess->s_sid = p->p_pid; refcount_init(&sess->s_count, 1); sess->s_ttyvp = NULL; sess->s_ttydp = NULL; sess->s_ttyp = NULL; bcopy(p->p_session->s_login, sess->s_login, sizeof(sess->s_login)); pgrp->pg_session = sess; KASSERT(p == curproc, ("enterpgrp: mksession and p != curproc")); } else { pgrp->pg_session = p->p_session; sess_hold(pgrp->pg_session); PGRP_LOCK(pgrp); } pgrp->pg_id = pgid; LIST_INIT(&pgrp->pg_members); /* * As we have an exclusive lock of proctree_lock, * this should not deadlock. */ LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); pgrp->pg_jobc = 0; SLIST_INIT(&pgrp->pg_sigiolst); PGRP_UNLOCK(pgrp); doenterpgrp(p, pgrp); return (0); } /* * Move p to an existing process group */ int enterthispgrp(p, pgrp) register struct proc *p; struct pgrp *pgrp; { sx_assert(&proctree_lock, SX_XLOCKED); PROC_LOCK_ASSERT(p, MA_NOTOWNED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); KASSERT(pgrp->pg_session == p->p_session, ("%s: pgrp's session %p, p->p_session %p.\n", __func__, pgrp->pg_session, p->p_session)); KASSERT(pgrp != p->p_pgrp, ("%s: p belongs to pgrp.", __func__)); doenterpgrp(p, pgrp); return (0); } /* * Move p to a process group */ static void doenterpgrp(p, pgrp) struct proc *p; struct pgrp *pgrp; { struct pgrp *savepgrp; sx_assert(&proctree_lock, SX_XLOCKED); PROC_LOCK_ASSERT(p, MA_NOTOWNED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); savepgrp = p->p_pgrp; /* * Adjust eligibility of affected pgrps to participate in job control. * Increment eligibility counts before decrementing, otherwise we * could reach 0 spuriously during the first call. */ fixjobc(p, pgrp, 1); fixjobc(p, p->p_pgrp, 0); PGRP_LOCK(pgrp); PGRP_LOCK(savepgrp); PROC_LOCK(p); LIST_REMOVE(p, p_pglist); p->p_pgrp = pgrp; PROC_UNLOCK(p); LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); PGRP_UNLOCK(savepgrp); PGRP_UNLOCK(pgrp); if (LIST_EMPTY(&savepgrp->pg_members)) pgdelete(savepgrp); } /* * remove process from process group */ int leavepgrp(p) register struct proc *p; { struct pgrp *savepgrp; sx_assert(&proctree_lock, SX_XLOCKED); savepgrp = p->p_pgrp; PGRP_LOCK(savepgrp); PROC_LOCK(p); LIST_REMOVE(p, p_pglist); p->p_pgrp = NULL; PROC_UNLOCK(p); PGRP_UNLOCK(savepgrp); if (LIST_EMPTY(&savepgrp->pg_members)) pgdelete(savepgrp); return (0); } /* * delete a process group */ static void pgdelete(pgrp) register struct pgrp *pgrp; { struct session *savesess; struct tty *tp; sx_assert(&proctree_lock, SX_XLOCKED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); /* * Reset any sigio structures pointing to us as a result of * F_SETOWN with our pgid. */ funsetownlst(&pgrp->pg_sigiolst); PGRP_LOCK(pgrp); tp = pgrp->pg_session->s_ttyp; LIST_REMOVE(pgrp, pg_hash); savesess = pgrp->pg_session; PGRP_UNLOCK(pgrp); /* Remove the reference to the pgrp before deallocating it. */ if (tp != NULL) { tty_lock(tp); tty_rel_pgrp(tp, pgrp); } mtx_destroy(&pgrp->pg_mtx); free(pgrp, M_PGRP); sess_release(savesess); } static void pgadjustjobc(pgrp, entering) struct pgrp *pgrp; int entering; { PGRP_LOCK(pgrp); if (entering) pgrp->pg_jobc++; else { --pgrp->pg_jobc; if (pgrp->pg_jobc == 0) orphanpg(pgrp); } PGRP_UNLOCK(pgrp); } /* * Adjust pgrp jobc counters when specified process changes process group. * We count the number of processes in each process group that "qualify" * the group for terminal job control (those with a parent in a different * process group of the same session). If that count reaches zero, the * process group becomes orphaned. Check both the specified process' * process group and that of its children. * entering == 0 => p is leaving specified group. * entering == 1 => p is entering specified group. */ void fixjobc(p, pgrp, entering) register struct proc *p; register struct pgrp *pgrp; int entering; { register struct pgrp *hispgrp; register struct session *mysession; sx_assert(&proctree_lock, SX_LOCKED); PROC_LOCK_ASSERT(p, MA_NOTOWNED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); /* * Check p's parent to see whether p qualifies its own process * group; if so, adjust count for p's process group. */ mysession = pgrp->pg_session; if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && hispgrp->pg_session == mysession) pgadjustjobc(pgrp, entering); /* * Check this process' children to see whether they qualify * their process groups; if so, adjust counts for children's * process groups. */ LIST_FOREACH(p, &p->p_children, p_sibling) { hispgrp = p->p_pgrp; if (hispgrp == pgrp || hispgrp->pg_session != mysession) continue; PROC_LOCK(p); if (p->p_state == PRS_ZOMBIE) { PROC_UNLOCK(p); continue; } PROC_UNLOCK(p); pgadjustjobc(hispgrp, entering); } } /* * A process group has become orphaned; * if there are any stopped processes in the group, * hang-up all process in that group. */ static void orphanpg(pg) struct pgrp *pg; { register struct proc *p; PGRP_LOCK_ASSERT(pg, MA_OWNED); LIST_FOREACH(p, &pg->pg_members, p_pglist) { PROC_LOCK(p); if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { PROC_UNLOCK(p); LIST_FOREACH(p, &pg->pg_members, p_pglist) { PROC_LOCK(p); kern_psignal(p, SIGHUP); kern_psignal(p, SIGCONT); PROC_UNLOCK(p); } return; } PROC_UNLOCK(p); } } void sess_hold(struct session *s) { refcount_acquire(&s->s_count); } void sess_release(struct session *s) { if (refcount_release(&s->s_count)) { if (s->s_ttyp != NULL) { tty_lock(s->s_ttyp); tty_rel_sess(s->s_ttyp, s); } mtx_destroy(&s->s_mtx); free(s, M_SESSION); } } #ifdef DDB DB_SHOW_COMMAND(pgrpdump, pgrpdump) { register struct pgrp *pgrp; register struct proc *p; register int i; for (i = 0; i <= pgrphash; i++) { if (!LIST_EMPTY(&pgrphashtbl[i])) { printf("\tindx %d\n", i); LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { printf( "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", (void *)pgrp, (long)pgrp->pg_id, (void *)pgrp->pg_session, pgrp->pg_session->s_count, (void *)LIST_FIRST(&pgrp->pg_members)); LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { printf("\t\tpid %ld addr %p pgrp %p\n", (long)p->p_pid, (void *)p, (void *)p->p_pgrp); } } } } } #endif /* DDB */ /* * Calculate the kinfo_proc members which contain process-wide * informations. * Must be called with the target process locked. */ static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) { struct thread *td; PROC_LOCK_ASSERT(p, MA_OWNED); kp->ki_estcpu = 0; kp->ki_pctcpu = 0; FOREACH_THREAD_IN_PROC(p, td) { thread_lock(td); kp->ki_pctcpu += sched_pctcpu(td); kp->ki_estcpu += td->td_estcpu; thread_unlock(td); } } /* * Clear kinfo_proc and fill in any information that is common * to all threads in the process. * Must be called with the target process locked. */ static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) { struct thread *td0; struct tty *tp; struct session *sp; struct ucred *cred; struct sigacts *ps; PROC_LOCK_ASSERT(p, MA_OWNED); bzero(kp, sizeof(*kp)); kp->ki_structsize = sizeof(*kp); kp->ki_paddr = p; kp->ki_addr =/* p->p_addr; */0; /* XXX */ kp->ki_args = p->p_args; kp->ki_textvp = p->p_textvp; #ifdef KTRACE kp->ki_tracep = p->p_tracevp; kp->ki_traceflag = p->p_traceflag; #endif kp->ki_fd = p->p_fd; kp->ki_vmspace = p->p_vmspace; kp->ki_flag = p->p_flag; kp->ki_flag2 = p->p_flag2; cred = p->p_ucred; if (cred) { kp->ki_uid = cred->cr_uid; kp->ki_ruid = cred->cr_ruid; kp->ki_svuid = cred->cr_svuid; kp->ki_cr_flags = 0; if (cred->cr_flags & CRED_FLAG_CAPMODE) kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; /* XXX bde doesn't like KI_NGROUPS */ if (cred->cr_ngroups > KI_NGROUPS) { kp->ki_ngroups = KI_NGROUPS; kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; } else kp->ki_ngroups = cred->cr_ngroups; bcopy(cred->cr_groups, kp->ki_groups, kp->ki_ngroups * sizeof(gid_t)); kp->ki_rgid = cred->cr_rgid; kp->ki_svgid = cred->cr_svgid; /* If jailed(cred), emulate the old P_JAILED flag. */ if (jailed(cred)) { kp->ki_flag |= P_JAILED; /* If inside the jail, use 0 as a jail ID. */ if (cred->cr_prison != curthread->td_ucred->cr_prison) kp->ki_jid = cred->cr_prison->pr_id; } strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, sizeof(kp->ki_loginclass)); } ps = p->p_sigacts; if (ps) { mtx_lock(&ps->ps_mtx); kp->ki_sigignore = ps->ps_sigignore; kp->ki_sigcatch = ps->ps_sigcatch; mtx_unlock(&ps->ps_mtx); } if (p->p_state != PRS_NEW && p->p_state != PRS_ZOMBIE && p->p_vmspace != NULL) { struct vmspace *vm = p->p_vmspace; kp->ki_size = vm->vm_map.size; kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ FOREACH_THREAD_IN_PROC(p, td0) { if (!TD_IS_SWAPPED(td0)) kp->ki_rssize += td0->td_kstack_pages; } kp->ki_swrss = vm->vm_swrss; kp->ki_tsize = vm->vm_tsize; kp->ki_dsize = vm->vm_dsize; kp->ki_ssize = vm->vm_ssize; } else if (p->p_state == PRS_ZOMBIE) kp->ki_stat = SZOMB; if (kp->ki_flag & P_INMEM) kp->ki_sflag = PS_INMEM; else kp->ki_sflag = 0; /* Calculate legacy swtime as seconds since 'swtick'. */ kp->ki_swtime = (ticks - p->p_swtick) / hz; kp->ki_pid = p->p_pid; kp->ki_nice = p->p_nice; kp->ki_fibnum = p->p_fibnum; kp->ki_start = p->p_stats->p_start; timevaladd(&kp->ki_start, &boottime); PROC_STATLOCK(p); rufetch(p, &kp->ki_rusage); kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); PROC_STATUNLOCK(p); calccru(p, &kp->ki_childutime, &kp->ki_childstime); /* Some callers want child times in a single value. */ kp->ki_childtime = kp->ki_childstime; timevaladd(&kp->ki_childtime, &kp->ki_childutime); FOREACH_THREAD_IN_PROC(p, td0) kp->ki_cow += td0->td_cow; tp = NULL; if (p->p_pgrp) { kp->ki_pgid = p->p_pgrp->pg_id; kp->ki_jobc = p->p_pgrp->pg_jobc; sp = p->p_pgrp->pg_session; if (sp != NULL) { kp->ki_sid = sp->s_sid; SESS_LOCK(sp); strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login)); if (sp->s_ttyvp) kp->ki_kiflag |= KI_CTTY; if (SESS_LEADER(p)) kp->ki_kiflag |= KI_SLEADER; /* XXX proctree_lock */ tp = sp->s_ttyp; SESS_UNLOCK(sp); } } if ((p->p_flag & P_CONTROLT) && tp != NULL) { kp->ki_tdev = tty_udev(tp); kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; if (tp->t_session) kp->ki_tsid = tp->t_session->s_sid; } else kp->ki_tdev = NODEV; if (p->p_comm[0] != '\0') strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); if (p->p_sysent && p->p_sysent->sv_name != NULL && p->p_sysent->sv_name[0] != '\0') strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); kp->ki_siglist = p->p_siglist; kp->ki_xstat = p->p_xstat; kp->ki_acflag = p->p_acflag; kp->ki_lock = p->p_lock; if (p->p_pptr) kp->ki_ppid = p->p_pptr->p_pid; } /* * Fill in information that is thread specific. Must be called with * target process locked. If 'preferthread' is set, overwrite certain * process-related fields that are maintained for both threads and * processes. */ static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) { struct proc *p; p = td->td_proc; kp->ki_tdaddr = td; PROC_LOCK_ASSERT(p, MA_OWNED); if (preferthread) PROC_STATLOCK(p); thread_lock(td); if (td->td_wmesg != NULL) strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); else bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); - strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)); + if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= + sizeof(kp->ki_tdname)) { + strlcpy(kp->ki_moretdname, + td->td_name + sizeof(kp->ki_tdname) - 1, + sizeof(kp->ki_moretdname)); + } else { + bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); + } if (TD_ON_LOCK(td)) { kp->ki_kiflag |= KI_LOCKBLOCK; strlcpy(kp->ki_lockname, td->td_lockname, sizeof(kp->ki_lockname)); } else { kp->ki_kiflag &= ~KI_LOCKBLOCK; bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); } if (p->p_state == PRS_NORMAL) { /* approximate. */ if (TD_ON_RUNQ(td) || TD_CAN_RUN(td) || TD_IS_RUNNING(td)) { kp->ki_stat = SRUN; } else if (P_SHOULDSTOP(p)) { kp->ki_stat = SSTOP; } else if (TD_IS_SLEEPING(td)) { kp->ki_stat = SSLEEP; } else if (TD_ON_LOCK(td)) { kp->ki_stat = SLOCK; } else { kp->ki_stat = SWAIT; } } else if (p->p_state == PRS_ZOMBIE) { kp->ki_stat = SZOMB; } else { kp->ki_stat = SIDL; } /* Things in the thread */ kp->ki_wchan = td->td_wchan; kp->ki_pri.pri_level = td->td_priority; kp->ki_pri.pri_native = td->td_base_pri; kp->ki_lastcpu = td->td_lastcpu; kp->ki_oncpu = td->td_oncpu; kp->ki_tdflags = td->td_flags; kp->ki_tid = td->td_tid; kp->ki_numthreads = p->p_numthreads; kp->ki_pcb = td->td_pcb; kp->ki_kstack = (void *)td->td_kstack; kp->ki_slptime = (ticks - td->td_slptick) / hz; kp->ki_pri.pri_class = td->td_pri_class; kp->ki_pri.pri_user = td->td_user_pri; if (preferthread) { rufetchtd(td, &kp->ki_rusage); kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); kp->ki_pctcpu = sched_pctcpu(td); kp->ki_estcpu = td->td_estcpu; kp->ki_cow = td->td_cow; } /* We can't get this anymore but ps etc never used it anyway. */ kp->ki_rqindex = 0; if (preferthread) kp->ki_siglist = td->td_siglist; kp->ki_sigmask = td->td_sigmask; thread_unlock(td); if (preferthread) PROC_STATUNLOCK(p); } /* * Fill in a kinfo_proc structure for the specified process. * Must be called with the target process locked. */ void fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) { MPASS(FIRST_THREAD_IN_PROC(p) != NULL); fill_kinfo_proc_only(p, kp); fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); fill_kinfo_aggregate(p, kp); } struct pstats * pstats_alloc(void) { return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); } /* * Copy parts of p_stats; zero the rest of p_stats (statistics). */ void pstats_fork(struct pstats *src, struct pstats *dst) { bzero(&dst->pstat_startzero, __rangeof(struct pstats, pstat_startzero, pstat_endzero)); bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); } void pstats_free(struct pstats *ps) { free(ps, M_SUBPROC); } static struct proc * zpfind_locked(pid_t pid) { struct proc *p; sx_assert(&allproc_lock, SX_LOCKED); LIST_FOREACH(p, &zombproc, p_list) { if (p->p_pid == pid) { PROC_LOCK(p); break; } } return (p); } /* * Locate a zombie process by number */ struct proc * zpfind(pid_t pid) { struct proc *p; sx_slock(&allproc_lock); p = zpfind_locked(pid); sx_sunlock(&allproc_lock); return (p); } #ifdef COMPAT_FREEBSD32 /* * This function is typically used to copy out the kernel address, so * it can be replaced by assignment of zero. */ static inline uint32_t ptr32_trim(void *ptr) { uintptr_t uptr; uptr = (uintptr_t)ptr; return ((uptr > UINT_MAX) ? 0 : uptr); } #define PTRTRIM_CP(src,dst,fld) \ do { (dst).fld = ptr32_trim((src).fld); } while (0) static void freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) { int i; bzero(ki32, sizeof(struct kinfo_proc32)); ki32->ki_structsize = sizeof(struct kinfo_proc32); CP(*ki, *ki32, ki_layout); PTRTRIM_CP(*ki, *ki32, ki_args); PTRTRIM_CP(*ki, *ki32, ki_paddr); PTRTRIM_CP(*ki, *ki32, ki_addr); PTRTRIM_CP(*ki, *ki32, ki_tracep); PTRTRIM_CP(*ki, *ki32, ki_textvp); PTRTRIM_CP(*ki, *ki32, ki_fd); PTRTRIM_CP(*ki, *ki32, ki_vmspace); PTRTRIM_CP(*ki, *ki32, ki_wchan); CP(*ki, *ki32, ki_pid); CP(*ki, *ki32, ki_ppid); CP(*ki, *ki32, ki_pgid); CP(*ki, *ki32, ki_tpgid); CP(*ki, *ki32, ki_sid); CP(*ki, *ki32, ki_tsid); CP(*ki, *ki32, ki_jobc); CP(*ki, *ki32, ki_tdev); CP(*ki, *ki32, ki_siglist); CP(*ki, *ki32, ki_sigmask); CP(*ki, *ki32, ki_sigignore); CP(*ki, *ki32, ki_sigcatch); CP(*ki, *ki32, ki_uid); CP(*ki, *ki32, ki_ruid); CP(*ki, *ki32, ki_svuid); CP(*ki, *ki32, ki_rgid); CP(*ki, *ki32, ki_svgid); CP(*ki, *ki32, ki_ngroups); for (i = 0; i < KI_NGROUPS; i++) CP(*ki, *ki32, ki_groups[i]); CP(*ki, *ki32, ki_size); CP(*ki, *ki32, ki_rssize); CP(*ki, *ki32, ki_swrss); CP(*ki, *ki32, ki_tsize); CP(*ki, *ki32, ki_dsize); CP(*ki, *ki32, ki_ssize); CP(*ki, *ki32, ki_xstat); CP(*ki, *ki32, ki_acflag); CP(*ki, *ki32, ki_pctcpu); CP(*ki, *ki32, ki_estcpu); CP(*ki, *ki32, ki_slptime); CP(*ki, *ki32, ki_swtime); CP(*ki, *ki32, ki_cow); CP(*ki, *ki32, ki_runtime); TV_CP(*ki, *ki32, ki_start); TV_CP(*ki, *ki32, ki_childtime); CP(*ki, *ki32, ki_flag); CP(*ki, *ki32, ki_kiflag); CP(*ki, *ki32, ki_traceflag); CP(*ki, *ki32, ki_stat); CP(*ki, *ki32, ki_nice); CP(*ki, *ki32, ki_lock); CP(*ki, *ki32, ki_rqindex); CP(*ki, *ki32, ki_oncpu); CP(*ki, *ki32, ki_lastcpu); bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); + bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); CP(*ki, *ki32, ki_flag2); CP(*ki, *ki32, ki_fibnum); CP(*ki, *ki32, ki_cr_flags); CP(*ki, *ki32, ki_jid); CP(*ki, *ki32, ki_numthreads); CP(*ki, *ki32, ki_tid); CP(*ki, *ki32, ki_pri); freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); PTRTRIM_CP(*ki, *ki32, ki_pcb); PTRTRIM_CP(*ki, *ki32, ki_kstack); PTRTRIM_CP(*ki, *ki32, ki_udata); CP(*ki, *ki32, ki_sflag); CP(*ki, *ki32, ki_tdflags); } #endif int kern_proc_out(struct proc *p, struct sbuf *sb, int flags) { struct thread *td; struct kinfo_proc ki; #ifdef COMPAT_FREEBSD32 struct kinfo_proc32 ki32; #endif int error; PROC_LOCK_ASSERT(p, MA_OWNED); MPASS(FIRST_THREAD_IN_PROC(p) != NULL); error = 0; fill_kinfo_proc(p, &ki); if ((flags & KERN_PROC_NOTHREADS) != 0) { #ifdef COMPAT_FREEBSD32 if ((flags & KERN_PROC_MASK32) != 0) { freebsd32_kinfo_proc_out(&ki, &ki32); if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) error = ENOMEM; } else #endif if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) error = ENOMEM; } else { FOREACH_THREAD_IN_PROC(p, td) { fill_kinfo_thread(td, &ki, 1); #ifdef COMPAT_FREEBSD32 if ((flags & KERN_PROC_MASK32) != 0) { freebsd32_kinfo_proc_out(&ki, &ki32); if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) error = ENOMEM; } else #endif if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) error = ENOMEM; if (error != 0) break; } } PROC_UNLOCK(p); return (error); } static int sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags, int doingzomb) { struct sbuf sb; struct kinfo_proc ki; struct proc *np; int error, error2; pid_t pid; pid = p->p_pid; sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); error = kern_proc_out(p, &sb, flags); error2 = sbuf_finish(&sb); sbuf_delete(&sb); if (error != 0) return (error); else if (error2 != 0) return (error2); if (doingzomb) np = zpfind(pid); else { if (pid == 0) return (0); np = pfind(pid); } if (np == NULL) return (ESRCH); if (np != p) { PROC_UNLOCK(np); return (ESRCH); } PROC_UNLOCK(np); return (0); } static int sysctl_kern_proc(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; int flags, doingzomb, oid_number; int error = 0; oid_number = oidp->oid_number; if (oid_number != KERN_PROC_ALL && (oid_number & KERN_PROC_INC_THREAD) == 0) flags = KERN_PROC_NOTHREADS; else { flags = 0; oid_number &= ~KERN_PROC_INC_THREAD; } #ifdef COMPAT_FREEBSD32 if (req->flags & SCTL_MASK32) flags |= KERN_PROC_MASK32; #endif if (oid_number == KERN_PROC_PID) { if (namelen != 1) return (EINVAL); error = sysctl_wire_old_buffer(req, 0); if (error) return (error); error = pget((pid_t)name[0], PGET_CANSEE, &p); if (error != 0) return (error); error = sysctl_out_proc(p, req, flags, 0); return (error); } switch (oid_number) { case KERN_PROC_ALL: if (namelen != 0) return (EINVAL); break; case KERN_PROC_PROC: if (namelen != 0 && namelen != 1) return (EINVAL); break; default: if (namelen != 1) return (EINVAL); break; } if (!req->oldptr) { /* overestimate by 5 procs */ error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); if (error) return (error); } error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); sx_slock(&allproc_lock); for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { if (!doingzomb) p = LIST_FIRST(&allproc); else p = LIST_FIRST(&zombproc); for (; p != 0; p = LIST_NEXT(p, p_list)) { /* * Skip embryonic processes. */ PROC_LOCK(p); if (p->p_state == PRS_NEW) { PROC_UNLOCK(p); continue; } KASSERT(p->p_ucred != NULL, ("process credential is NULL for non-NEW proc")); /* * Show a user only appropriate processes. */ if (p_cansee(curthread, p)) { PROC_UNLOCK(p); continue; } /* * TODO - make more efficient (see notes below). * do by session. */ switch (oid_number) { case KERN_PROC_GID: if (p->p_ucred->cr_gid != (gid_t)name[0]) { PROC_UNLOCK(p); continue; } break; case KERN_PROC_PGRP: /* could do this by traversing pgrp */ if (p->p_pgrp == NULL || p->p_pgrp->pg_id != (pid_t)name[0]) { PROC_UNLOCK(p); continue; } break; case KERN_PROC_RGID: if (p->p_ucred->cr_rgid != (gid_t)name[0]) { PROC_UNLOCK(p); continue; } break; case KERN_PROC_SESSION: if (p->p_session == NULL || p->p_session->s_sid != (pid_t)name[0]) { PROC_UNLOCK(p); continue; } break; case KERN_PROC_TTY: if ((p->p_flag & P_CONTROLT) == 0 || p->p_session == NULL) { PROC_UNLOCK(p); continue; } /* XXX proctree_lock */ SESS_LOCK(p->p_session); if (p->p_session->s_ttyp == NULL || tty_udev(p->p_session->s_ttyp) != (dev_t)name[0]) { SESS_UNLOCK(p->p_session); PROC_UNLOCK(p); continue; } SESS_UNLOCK(p->p_session); break; case KERN_PROC_UID: if (p->p_ucred->cr_uid != (uid_t)name[0]) { PROC_UNLOCK(p); continue; } break; case KERN_PROC_RUID: if (p->p_ucred->cr_ruid != (uid_t)name[0]) { PROC_UNLOCK(p); continue; } break; case KERN_PROC_PROC: break; default: break; } error = sysctl_out_proc(p, req, flags, doingzomb); if (error) { sx_sunlock(&allproc_lock); return (error); } } } sx_sunlock(&allproc_lock); return (0); } struct pargs * pargs_alloc(int len) { struct pargs *pa; pa = malloc(sizeof(struct pargs) + len, M_PARGS, M_WAITOK); refcount_init(&pa->ar_ref, 1); pa->ar_length = len; return (pa); } static void pargs_free(struct pargs *pa) { free(pa, M_PARGS); } void pargs_hold(struct pargs *pa) { if (pa == NULL) return; refcount_acquire(&pa->ar_ref); } void pargs_drop(struct pargs *pa) { if (pa == NULL) return; if (refcount_release(&pa->ar_ref)) pargs_free(pa); } static int proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf, size_t len) { struct iovec iov; struct uio uio; iov.iov_base = (caddr_t)buf; iov.iov_len = len; uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = offset; uio.uio_resid = (ssize_t)len; uio.uio_segflg = UIO_SYSSPACE; uio.uio_rw = UIO_READ; uio.uio_td = td; return (proc_rwmem(p, &uio)); } static int proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, size_t len) { size_t i; int error; error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len); /* * Reading the chunk may validly return EFAULT if the string is shorter * than the chunk and is aligned at the end of the page, assuming the * next page is not mapped. So if EFAULT is returned do a fallback to * one byte read loop. */ if (error == EFAULT) { for (i = 0; i < len; i++, buf++, sptr++) { error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1); if (error != 0) return (error); if (*buf == '\0') break; } error = 0; } return (error); } #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ enum proc_vector_type { PROC_ARG, PROC_ENV, PROC_AUX, }; #ifdef COMPAT_FREEBSD32 static int get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, size_t *vsizep, enum proc_vector_type type) { struct freebsd32_ps_strings pss; Elf32_Auxinfo aux; vm_offset_t vptr, ptr; uint32_t *proc_vector32; char **proc_vector; size_t vsize, size; int i, error; error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), &pss, sizeof(pss)); if (error != 0) return (error); switch (type) { case PROC_ARG: vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); vsize = pss.ps_nargvstr; if (vsize > ARG_MAX) return (ENOEXEC); size = vsize * sizeof(int32_t); break; case PROC_ENV: vptr = (vm_offset_t)PTRIN(pss.ps_envstr); vsize = pss.ps_nenvstr; if (vsize > ARG_MAX) return (ENOEXEC); size = vsize * sizeof(int32_t); break; case PROC_AUX: vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + (pss.ps_nenvstr + 1) * sizeof(int32_t); if (vptr % 4 != 0) return (ENOEXEC); for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); if (error != 0) return (error); if (aux.a_type == AT_NULL) break; ptr += sizeof(aux); } if (aux.a_type != AT_NULL) return (ENOEXEC); vsize = i + 1; size = vsize * sizeof(aux); break; default: KASSERT(0, ("Wrong proc vector type: %d", type)); return (EINVAL); } proc_vector32 = malloc(size, M_TEMP, M_WAITOK); error = proc_read_mem(td, p, vptr, proc_vector32, size); if (error != 0) goto done; if (type == PROC_AUX) { *proc_vectorp = (char **)proc_vector32; *vsizep = vsize; return (0); } proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); for (i = 0; i < (int)vsize; i++) proc_vector[i] = PTRIN(proc_vector32[i]); *proc_vectorp = proc_vector; *vsizep = vsize; done: free(proc_vector32, M_TEMP); return (error); } #endif static int get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, size_t *vsizep, enum proc_vector_type type) { struct ps_strings pss; Elf_Auxinfo aux; vm_offset_t vptr, ptr; char **proc_vector; size_t vsize, size; int error, i; #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(p, SV_ILP32) != 0) return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); #endif error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), &pss, sizeof(pss)); if (error != 0) return (error); switch (type) { case PROC_ARG: vptr = (vm_offset_t)pss.ps_argvstr; vsize = pss.ps_nargvstr; if (vsize > ARG_MAX) return (ENOEXEC); size = vsize * sizeof(char *); break; case PROC_ENV: vptr = (vm_offset_t)pss.ps_envstr; vsize = pss.ps_nenvstr; if (vsize > ARG_MAX) return (ENOEXEC); size = vsize * sizeof(char *); break; case PROC_AUX: /* * The aux array is just above env array on the stack. Check * that the address is naturally aligned. */ vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) * sizeof(char *); #if __ELF_WORD_SIZE == 64 if (vptr % sizeof(uint64_t) != 0) #else if (vptr % sizeof(uint32_t) != 0) #endif return (ENOEXEC); /* * We count the array size reading the aux vectors from the * stack until AT_NULL vector is returned. So (to keep the code * simple) we read the process stack twice: the first time here * to find the size and the second time when copying the vectors * to the allocated proc_vector. */ for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); if (error != 0) return (error); if (aux.a_type == AT_NULL) break; ptr += sizeof(aux); } /* * If the PROC_AUXV_MAX entries are iterated over, and we have * not reached AT_NULL, it is most likely we are reading wrong * data: either the process doesn't have auxv array or data has * been modified. Return the error in this case. */ if (aux.a_type != AT_NULL) return (ENOEXEC); vsize = i + 1; size = vsize * sizeof(aux); break; default: KASSERT(0, ("Wrong proc vector type: %d", type)); return (EINVAL); /* In case we are built without INVARIANTS. */ } proc_vector = malloc(size, M_TEMP, M_WAITOK); if (proc_vector == NULL) return (ENOMEM); error = proc_read_mem(td, p, vptr, proc_vector, size); if (error != 0) { free(proc_vector, M_TEMP); return (error); } *proc_vectorp = proc_vector; *vsizep = vsize; return (0); } #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ static int get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, enum proc_vector_type type) { size_t done, len, nchr, vsize; int error, i; char **proc_vector, *sptr; char pss_string[GET_PS_STRINGS_CHUNK_SZ]; PROC_ASSERT_HELD(p); /* * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. */ nchr = 2 * (PATH_MAX + ARG_MAX); error = get_proc_vector(td, p, &proc_vector, &vsize, type); if (error != 0) return (error); for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { /* * The program may have scribbled into its argv array, e.g. to * remove some arguments. If that has happened, break out * before trying to read from NULL. */ if (proc_vector[i] == NULL) break; for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { error = proc_read_string(td, p, sptr, pss_string, sizeof(pss_string)); if (error != 0) goto done; len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); if (done + len >= nchr) len = nchr - done - 1; sbuf_bcat(sb, pss_string, len); if (len != GET_PS_STRINGS_CHUNK_SZ) break; done += GET_PS_STRINGS_CHUNK_SZ; } sbuf_bcat(sb, "", 1); done += len + 1; } done: free(proc_vector, M_TEMP); return (error); } int proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) { return (get_ps_strings(curthread, p, sb, PROC_ARG)); } int proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) { return (get_ps_strings(curthread, p, sb, PROC_ENV)); } int proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) { size_t vsize, size; char **auxv; int error; error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); if (error == 0) { #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(p, SV_ILP32) != 0) size = vsize * sizeof(Elf32_Auxinfo); else #endif size = vsize * sizeof(Elf_Auxinfo); if (sbuf_bcat(sb, auxv, size) != 0) error = ENOMEM; free(auxv, M_TEMP); } return (error); } /* * This sysctl allows a process to retrieve the argument list or process * title for another process without groping around in the address space * of the other process. It also allow a process to set its own "process * title to a string of its own choice. */ static int sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct pargs *newpa, *pa; struct proc *p; struct sbuf sb; int flags, error = 0, error2; if (namelen != 1) return (EINVAL); flags = PGET_CANSEE; if (req->newptr != NULL) flags |= PGET_ISCURRENT; error = pget((pid_t)name[0], flags, &p); if (error) return (error); pa = p->p_args; if (pa != NULL) { pargs_hold(pa); PROC_UNLOCK(p); error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); pargs_drop(pa); } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { _PHOLD(p); PROC_UNLOCK(p); sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); error = proc_getargv(curthread, p, &sb); error2 = sbuf_finish(&sb); PRELE(p); sbuf_delete(&sb); if (error == 0 && error2 != 0) error = error2; } else { PROC_UNLOCK(p); } if (error != 0 || req->newptr == NULL) return (error); if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) return (ENOMEM); newpa = pargs_alloc(req->newlen); error = SYSCTL_IN(req, newpa->ar_args, req->newlen); if (error != 0) { pargs_free(newpa); return (error); } PROC_LOCK(p); pa = p->p_args; p->p_args = newpa; PROC_UNLOCK(p); pargs_drop(pa); return (0); } /* * This sysctl allows a process to retrieve environment of another process. */ static int sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; struct sbuf sb; int error, error2; if (namelen != 1) return (EINVAL); error = pget((pid_t)name[0], PGET_WANTREAD, &p); if (error != 0) return (error); if ((p->p_flag & P_SYSTEM) != 0) { PRELE(p); return (0); } sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); error = proc_getenvv(curthread, p, &sb); error2 = sbuf_finish(&sb); PRELE(p); sbuf_delete(&sb); return (error != 0 ? error : error2); } /* * This sysctl allows a process to retrieve ELF auxiliary vector of * another process. */ static int sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; struct sbuf sb; int error, error2; if (namelen != 1) return (EINVAL); error = pget((pid_t)name[0], PGET_WANTREAD, &p); if (error != 0) return (error); if ((p->p_flag & P_SYSTEM) != 0) { PRELE(p); return (0); } sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); error = proc_getauxv(curthread, p, &sb); error2 = sbuf_finish(&sb); PRELE(p); sbuf_delete(&sb); return (error != 0 ? error : error2); } /* * This sysctl allows a process to retrieve the path of the executable for * itself or another process. */ static int sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) { pid_t *pidp = (pid_t *)arg1; unsigned int arglen = arg2; struct proc *p; struct vnode *vp; char *retbuf, *freebuf; int error; if (arglen != 1) return (EINVAL); if (*pidp == -1) { /* -1 means this process */ p = req->td->td_proc; } else { error = pget(*pidp, PGET_CANSEE, &p); if (error != 0) return (error); } vp = p->p_textvp; if (vp == NULL) { if (*pidp != -1) PROC_UNLOCK(p); return (0); } vref(vp); if (*pidp != -1) PROC_UNLOCK(p); error = vn_fullpath(req->td, vp, &retbuf, &freebuf); vrele(vp); if (error) return (error); error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); free(freebuf, M_TEMP); return (error); } static int sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) { struct proc *p; char *sv_name; int *name; int namelen; int error; namelen = arg2; if (namelen != 1) return (EINVAL); name = (int *)arg1; error = pget((pid_t)name[0], PGET_CANSEE, &p); if (error != 0) return (error); sv_name = p->p_sysent->sv_name; PROC_UNLOCK(p); return (sysctl_handle_string(oidp, sv_name, 0, req)); } #ifdef KINFO_OVMENTRY_SIZE CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); #endif #ifdef COMPAT_FREEBSD7 static int sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) { vm_map_entry_t entry, tmp_entry; unsigned int last_timestamp; char *fullpath, *freepath; struct kinfo_ovmentry *kve; struct vattr va; struct ucred *cred; int error, *name; struct vnode *vp; struct proc *p; vm_map_t map; struct vmspace *vm; name = (int *)arg1; error = pget((pid_t)name[0], PGET_WANTREAD, &p); if (error != 0) return (error); vm = vmspace_acquire_ref(p); if (vm == NULL) { PRELE(p); return (ESRCH); } kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); map = &vm->vm_map; vm_map_lock_read(map); for (entry = map->header.next; entry != &map->header; entry = entry->next) { vm_object_t obj, tobj, lobj; vm_offset_t addr; if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) continue; bzero(kve, sizeof(*kve)); kve->kve_structsize = sizeof(*kve); kve->kve_private_resident = 0; obj = entry->object.vm_object; if (obj != NULL) { VM_OBJECT_RLOCK(obj); if (obj->shadow_count == 1) kve->kve_private_resident = obj->resident_page_count; } kve->kve_resident = 0; addr = entry->start; while (addr < entry->end) { if (pmap_extract(map->pmap, addr)) kve->kve_resident++; addr += PAGE_SIZE; } for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { if (tobj != obj) VM_OBJECT_RLOCK(tobj); if (lobj != obj) VM_OBJECT_RUNLOCK(lobj); lobj = tobj; } kve->kve_start = (void*)entry->start; kve->kve_end = (void*)entry->end; kve->kve_offset = (off_t)entry->offset; if (entry->protection & VM_PROT_READ) kve->kve_protection |= KVME_PROT_READ; if (entry->protection & VM_PROT_WRITE) kve->kve_protection |= KVME_PROT_WRITE; if (entry->protection & VM_PROT_EXECUTE) kve->kve_protection |= KVME_PROT_EXEC; if (entry->eflags & MAP_ENTRY_COW) kve->kve_flags |= KVME_FLAG_COW; if (entry->eflags & MAP_ENTRY_NEEDS_COPY) kve->kve_flags |= KVME_FLAG_NEEDS_COPY; if (entry->eflags & MAP_ENTRY_NOCOREDUMP) kve->kve_flags |= KVME_FLAG_NOCOREDUMP; last_timestamp = map->timestamp; vm_map_unlock_read(map); kve->kve_fileid = 0; kve->kve_fsid = 0; freepath = NULL; fullpath = ""; if (lobj) { vp = NULL; switch (lobj->type) { case OBJT_DEFAULT: kve->kve_type = KVME_TYPE_DEFAULT; break; case OBJT_VNODE: kve->kve_type = KVME_TYPE_VNODE; vp = lobj->handle; vref(vp); break; case OBJT_SWAP: if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { kve->kve_type = KVME_TYPE_VNODE; if ((lobj->flags & OBJ_TMPFS) != 0) { vp = lobj->un_pager.swp.swp_tmpfs; vref(vp); } } else { kve->kve_type = KVME_TYPE_SWAP; } break; case OBJT_DEVICE: kve->kve_type = KVME_TYPE_DEVICE; break; case OBJT_PHYS: kve->kve_type = KVME_TYPE_PHYS; break; case OBJT_DEAD: kve->kve_type = KVME_TYPE_DEAD; break; case OBJT_SG: kve->kve_type = KVME_TYPE_SG; break; default: kve->kve_type = KVME_TYPE_UNKNOWN; break; } if (lobj != obj) VM_OBJECT_RUNLOCK(lobj); kve->kve_ref_count = obj->ref_count; kve->kve_shadow_count = obj->shadow_count; VM_OBJECT_RUNLOCK(obj); if (vp != NULL) { vn_fullpath(curthread, vp, &fullpath, &freepath); cred = curthread->td_ucred; vn_lock(vp, LK_SHARED | LK_RETRY); if (VOP_GETATTR(vp, &va, cred) == 0) { kve->kve_fileid = va.va_fileid; kve->kve_fsid = va.va_fsid; } vput(vp); } } else { kve->kve_type = KVME_TYPE_NONE; kve->kve_ref_count = 0; kve->kve_shadow_count = 0; } strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); if (freepath != NULL) free(freepath, M_TEMP); error = SYSCTL_OUT(req, kve, sizeof(*kve)); vm_map_lock_read(map); if (error) break; if (last_timestamp != map->timestamp) { vm_map_lookup_entry(map, addr - 1, &tmp_entry); entry = tmp_entry; } } vm_map_unlock_read(map); vmspace_free(vm); PRELE(p); free(kve, M_TEMP); return (error); } #endif /* COMPAT_FREEBSD7 */ #ifdef KINFO_VMENTRY_SIZE CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); #endif static void kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, struct kinfo_vmentry *kve) { vm_object_t obj, tobj; vm_page_t m, m_adv; vm_offset_t addr; vm_paddr_t locked_pa; vm_pindex_t pi, pi_adv, pindex; locked_pa = 0; obj = entry->object.vm_object; addr = entry->start; m_adv = NULL; pi = OFF_TO_IDX(entry->offset); for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { if (m_adv != NULL) { m = m_adv; } else { pi_adv = OFF_TO_IDX(entry->end - addr); pindex = pi; for (tobj = obj;; tobj = tobj->backing_object) { m = vm_page_find_least(tobj, pindex); if (m != NULL) { if (m->pindex == pindex) break; if (pi_adv > m->pindex - pindex) { pi_adv = m->pindex - pindex; m_adv = m; } } if (tobj->backing_object == NULL) goto next; pindex += OFF_TO_IDX(tobj-> backing_object_offset); } } m_adv = NULL; if (m->psind != 0 && addr + pagesizes[1] <= entry->end && (addr & (pagesizes[1] - 1)) == 0 && (pmap_mincore(map->pmap, addr, &locked_pa) & MINCORE_SUPER) != 0) { kve->kve_flags |= KVME_FLAG_SUPER; pi_adv = OFF_TO_IDX(pagesizes[1]); } else { /* * We do not test the found page on validity. * Either the page is busy and being paged in, * or it was invalidated. The first case * should be counted as resident, the second * is not so clear; we do account both. */ pi_adv = 1; } kve->kve_resident += pi_adv; next:; } PA_UNLOCK_COND(locked_pa); } /* * Must be called with the process locked and will return unlocked. */ int kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) { vm_map_entry_t entry, tmp_entry; struct vattr va; vm_map_t map; vm_object_t obj, tobj, lobj; char *fullpath, *freepath; struct kinfo_vmentry *kve; struct ucred *cred; struct vnode *vp; struct vmspace *vm; vm_offset_t addr; unsigned int last_timestamp; int error; PROC_LOCK_ASSERT(p, MA_OWNED); _PHOLD(p); PROC_UNLOCK(p); vm = vmspace_acquire_ref(p); if (vm == NULL) { PRELE(p); return (ESRCH); } kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); error = 0; map = &vm->vm_map; vm_map_lock_read(map); for (entry = map->header.next; entry != &map->header; entry = entry->next) { if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) continue; addr = entry->end; bzero(kve, sizeof(*kve)); obj = entry->object.vm_object; if (obj != NULL) { for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) { VM_OBJECT_RLOCK(tobj); lobj = tobj; } if (obj->backing_object == NULL) kve->kve_private_resident = obj->resident_page_count; if (!vmmap_skip_res_cnt) kern_proc_vmmap_resident(map, entry, kve); for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) { if (tobj != obj && tobj != lobj) VM_OBJECT_RUNLOCK(tobj); } } else { lobj = NULL; } kve->kve_start = entry->start; kve->kve_end = entry->end; kve->kve_offset = entry->offset; if (entry->protection & VM_PROT_READ) kve->kve_protection |= KVME_PROT_READ; if (entry->protection & VM_PROT_WRITE) kve->kve_protection |= KVME_PROT_WRITE; if (entry->protection & VM_PROT_EXECUTE) kve->kve_protection |= KVME_PROT_EXEC; if (entry->eflags & MAP_ENTRY_COW) kve->kve_flags |= KVME_FLAG_COW; if (entry->eflags & MAP_ENTRY_NEEDS_COPY) kve->kve_flags |= KVME_FLAG_NEEDS_COPY; if (entry->eflags & MAP_ENTRY_NOCOREDUMP) kve->kve_flags |= KVME_FLAG_NOCOREDUMP; if (entry->eflags & MAP_ENTRY_GROWS_UP) kve->kve_flags |= KVME_FLAG_GROWS_UP; if (entry->eflags & MAP_ENTRY_GROWS_DOWN) kve->kve_flags |= KVME_FLAG_GROWS_DOWN; last_timestamp = map->timestamp; vm_map_unlock_read(map); freepath = NULL; fullpath = ""; if (lobj != NULL) { vp = NULL; switch (lobj->type) { case OBJT_DEFAULT: kve->kve_type = KVME_TYPE_DEFAULT; break; case OBJT_VNODE: kve->kve_type = KVME_TYPE_VNODE; vp = lobj->handle; vref(vp); break; case OBJT_SWAP: if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { kve->kve_type = KVME_TYPE_VNODE; if ((lobj->flags & OBJ_TMPFS) != 0) { vp = lobj->un_pager.swp.swp_tmpfs; vref(vp); } } else { kve->kve_type = KVME_TYPE_SWAP; } break; case OBJT_DEVICE: kve->kve_type = KVME_TYPE_DEVICE; break; case OBJT_PHYS: kve->kve_type = KVME_TYPE_PHYS; break; case OBJT_DEAD: kve->kve_type = KVME_TYPE_DEAD; break; case OBJT_SG: kve->kve_type = KVME_TYPE_SG; break; case OBJT_MGTDEVICE: kve->kve_type = KVME_TYPE_MGTDEVICE; break; default: kve->kve_type = KVME_TYPE_UNKNOWN; break; } if (lobj != obj) VM_OBJECT_RUNLOCK(lobj); kve->kve_ref_count = obj->ref_count; kve->kve_shadow_count = obj->shadow_count; VM_OBJECT_RUNLOCK(obj); if (vp != NULL) { vn_fullpath(curthread, vp, &fullpath, &freepath); kve->kve_vn_type = vntype_to_kinfo(vp->v_type); cred = curthread->td_ucred; vn_lock(vp, LK_SHARED | LK_RETRY); if (VOP_GETATTR(vp, &va, cred) == 0) { kve->kve_vn_fileid = va.va_fileid; kve->kve_vn_fsid = va.va_fsid; kve->kve_vn_mode = MAKEIMODE(va.va_type, va.va_mode); kve->kve_vn_size = va.va_size; kve->kve_vn_rdev = va.va_rdev; kve->kve_status = KF_ATTR_VALID; } vput(vp); } } else { kve->kve_type = KVME_TYPE_NONE; kve->kve_ref_count = 0; kve->kve_shadow_count = 0; } strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); if (freepath != NULL) free(freepath, M_TEMP); /* Pack record size down */ if ((flags & KERN_VMMAP_PACK_KINFO) != 0) kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + strlen(kve->kve_path) + 1; else kve->kve_structsize = sizeof(*kve); kve->kve_structsize = roundup(kve->kve_structsize, sizeof(uint64_t)); /* Halt filling and truncate rather than exceeding maxlen */ if (maxlen != -1 && maxlen < kve->kve_structsize) { error = 0; vm_map_lock_read(map); break; } else if (maxlen != -1) maxlen -= kve->kve_structsize; if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) error = ENOMEM; vm_map_lock_read(map); if (error != 0) break; if (last_timestamp != map->timestamp) { vm_map_lookup_entry(map, addr - 1, &tmp_entry); entry = tmp_entry; } } vm_map_unlock_read(map); vmspace_free(vm); PRELE(p); free(kve, M_TEMP); return (error); } static int sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) { struct proc *p; struct sbuf sb; int error, error2, *name; name = (int *)arg1; sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); if (error != 0) { sbuf_delete(&sb); return (error); } error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); error2 = sbuf_finish(&sb); sbuf_delete(&sb); return (error != 0 ? error : error2); } #if defined(STACK) || defined(DDB) static int sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) { struct kinfo_kstack *kkstp; int error, i, *name, numthreads; lwpid_t *lwpidarray; struct thread *td; struct stack *st; struct sbuf sb; struct proc *p; name = (int *)arg1; error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); if (error != 0) return (error); kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); st = stack_create(); lwpidarray = NULL; PROC_LOCK(p); do { if (lwpidarray != NULL) { free(lwpidarray, M_TEMP); lwpidarray = NULL; } numthreads = p->p_numthreads; PROC_UNLOCK(p); lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, M_WAITOK | M_ZERO); PROC_LOCK(p); } while (numthreads < p->p_numthreads); /* * XXXRW: During the below loop, execve(2) and countless other sorts * of changes could have taken place. Should we check to see if the * vmspace has been replaced, or the like, in order to prevent * giving a snapshot that spans, say, execve(2), with some threads * before and some after? Among other things, the credentials could * have changed, in which case the right to extract debug info might * no longer be assured. */ i = 0; FOREACH_THREAD_IN_PROC(p, td) { KASSERT(i < numthreads, ("sysctl_kern_proc_kstack: numthreads")); lwpidarray[i] = td->td_tid; i++; } numthreads = i; for (i = 0; i < numthreads; i++) { td = thread_find(p, lwpidarray[i]); if (td == NULL) { continue; } bzero(kkstp, sizeof(*kkstp)); (void)sbuf_new(&sb, kkstp->kkst_trace, sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); thread_lock(td); kkstp->kkst_tid = td->td_tid; if (TD_IS_SWAPPED(td)) kkstp->kkst_state = KKST_STATE_SWAPPED; else if (TD_IS_RUNNING(td)) kkstp->kkst_state = KKST_STATE_RUNNING; else { kkstp->kkst_state = KKST_STATE_STACKOK; stack_save_td(st, td); } thread_unlock(td); PROC_UNLOCK(p); stack_sbuf_print(&sb, st); sbuf_finish(&sb); sbuf_delete(&sb); error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); PROC_LOCK(p); if (error) break; } _PRELE(p); PROC_UNLOCK(p); if (lwpidarray != NULL) free(lwpidarray, M_TEMP); stack_destroy(st); free(kkstp, M_TEMP); return (error); } #endif /* * This sysctl allows a process to retrieve the full list of groups from * itself or another process. */ static int sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) { pid_t *pidp = (pid_t *)arg1; unsigned int arglen = arg2; struct proc *p; struct ucred *cred; int error; if (arglen != 1) return (EINVAL); if (*pidp == -1) { /* -1 means this process */ p = req->td->td_proc; } else { error = pget(*pidp, PGET_CANSEE, &p); if (error != 0) return (error); } cred = crhold(p->p_ucred); if (*pidp != -1) PROC_UNLOCK(p); error = SYSCTL_OUT(req, cred->cr_groups, cred->cr_ngroups * sizeof(gid_t)); crfree(cred); return (error); } /* * This sysctl allows a process to retrieve or/and set the resource limit for * another process. */ static int sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct rlimit rlim; struct proc *p; u_int which; int flags, error; if (namelen != 2) return (EINVAL); which = (u_int)name[1]; if (which >= RLIM_NLIMITS) return (EINVAL); if (req->newptr != NULL && req->newlen != sizeof(rlim)) return (EINVAL); flags = PGET_HOLD | PGET_NOTWEXIT; if (req->newptr != NULL) flags |= PGET_CANDEBUG; else flags |= PGET_CANSEE; error = pget((pid_t)name[0], flags, &p); if (error != 0) return (error); /* * Retrieve limit. */ if (req->oldptr != NULL) { PROC_LOCK(p); lim_rlimit(p, which, &rlim); PROC_UNLOCK(p); } error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); if (error != 0) goto errout; /* * Set limit. */ if (req->newptr != NULL) { error = SYSCTL_IN(req, &rlim, sizeof(rlim)); if (error == 0) error = kern_proc_setrlimit(curthread, p, which, &rlim); } errout: PRELE(p); return (error); } /* * This sysctl allows a process to retrieve ps_strings structure location of * another process. */ static int sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; vm_offset_t ps_strings; int error; #ifdef COMPAT_FREEBSD32 uint32_t ps_strings32; #endif if (namelen != 1) return (EINVAL); error = pget((pid_t)name[0], PGET_CANDEBUG, &p); if (error != 0) return (error); #ifdef COMPAT_FREEBSD32 if ((req->flags & SCTL_MASK32) != 0) { /* * We return 0 if the 32 bit emulation request is for a 64 bit * process. */ ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? PTROUT(p->p_sysent->sv_psstrings) : 0; PROC_UNLOCK(p); error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); return (error); } #endif ps_strings = p->p_sysent->sv_psstrings; PROC_UNLOCK(p); error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); return (error); } /* * This sysctl allows a process to retrieve umask of another process. */ static int sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; int error; u_short fd_cmask; if (namelen != 1) return (EINVAL); error = pget((pid_t)name[0], PGET_WANTREAD, &p); if (error != 0) return (error); FILEDESC_SLOCK(p->p_fd); fd_cmask = p->p_fd->fd_cmask; FILEDESC_SUNLOCK(p->p_fd); PRELE(p); error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); return (error); } /* * This sysctl allows a process to set and retrieve binary osreldate of * another process. */ static int sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; int flags, error, osrel; if (namelen != 1) return (EINVAL); if (req->newptr != NULL && req->newlen != sizeof(osrel)) return (EINVAL); flags = PGET_HOLD | PGET_NOTWEXIT; if (req->newptr != NULL) flags |= PGET_CANDEBUG; else flags |= PGET_CANSEE; error = pget((pid_t)name[0], flags, &p); if (error != 0) return (error); error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); if (error != 0) goto errout; if (req->newptr != NULL) { error = SYSCTL_IN(req, &osrel, sizeof(osrel)); if (error != 0) goto errout; if (osrel < 0) { error = EINVAL; goto errout; } p->p_osrel = osrel; } errout: PRELE(p); return (error); } static int sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; struct kinfo_sigtramp kst; const struct sysentvec *sv; int error; #ifdef COMPAT_FREEBSD32 struct kinfo_sigtramp32 kst32; #endif if (namelen != 1) return (EINVAL); error = pget((pid_t)name[0], PGET_CANDEBUG, &p); if (error != 0) return (error); sv = p->p_sysent; #ifdef COMPAT_FREEBSD32 if ((req->flags & SCTL_MASK32) != 0) { bzero(&kst32, sizeof(kst32)); if (SV_PROC_FLAG(p, SV_ILP32)) { if (sv->sv_sigcode_base != 0) { kst32.ksigtramp_start = sv->sv_sigcode_base; kst32.ksigtramp_end = sv->sv_sigcode_base + *sv->sv_szsigcode; } else { kst32.ksigtramp_start = sv->sv_psstrings - *sv->sv_szsigcode; kst32.ksigtramp_end = sv->sv_psstrings; } } PROC_UNLOCK(p); error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); return (error); } #endif bzero(&kst, sizeof(kst)); if (sv->sv_sigcode_base != 0) { kst.ksigtramp_start = (char *)sv->sv_sigcode_base; kst.ksigtramp_end = (char *)sv->sv_sigcode_base + *sv->sv_szsigcode; } else { kst.ksigtramp_start = (char *)sv->sv_psstrings - *sv->sv_szsigcode; kst.ksigtramp_end = (char *)sv->sv_psstrings; } PROC_UNLOCK(p); error = SYSCTL_OUT(req, &kst, sizeof(kst)); return (error); } SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Return process table, no threads"); static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_args, "Process argument list"); static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_env, "Process environment"); static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Return process table, no threads"); #ifdef COMPAT_FREEBSD7 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); #endif static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); #if defined(STACK) || defined(DDB) static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); #endif static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, "Process resource limits"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, "Process ps_strings location"); static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, "Process binary osreldate"); static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, "Process signal trampoline location"); int allproc_gen; /* * stop_all_proc() purpose is to stop all process which have usermode, * except current process for obvious reasons. This makes it somewhat * unreliable when invoked from multithreaded process. The service * must not be user-callable anyway. */ void stop_all_proc(void) { struct proc *cp, *p; int r, gen; bool restart, seen_stopped, seen_exiting, stopped_some; cp = curproc; allproc_loop: sx_xlock(&allproc_lock); gen = allproc_gen; seen_exiting = seen_stopped = stopped_some = restart = false; LIST_REMOVE(cp, p_list); LIST_INSERT_HEAD(&allproc, cp, p_list); for (;;) { p = LIST_NEXT(cp, p_list); if (p == NULL) break; LIST_REMOVE(cp, p_list); LIST_INSERT_AFTER(p, cp, p_list); PROC_LOCK(p); if ((p->p_flag & (P_KTHREAD | P_SYSTEM | P_TOTAL_STOP)) != 0) { PROC_UNLOCK(p); continue; } if ((p->p_flag & P_WEXIT) != 0) { seen_exiting = true; PROC_UNLOCK(p); continue; } if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { /* * Stopped processes are tolerated when there * are no other processes which might continue * them. P_STOPPED_SINGLE but not * P_TOTAL_STOP process still has at least one * thread running. */ seen_stopped = true; PROC_UNLOCK(p); continue; } _PHOLD(p); sx_xunlock(&allproc_lock); r = thread_single(p, SINGLE_ALLPROC); if (r != 0) restart = true; else stopped_some = true; _PRELE(p); PROC_UNLOCK(p); sx_xlock(&allproc_lock); } /* Catch forked children we did not see in iteration. */ if (gen != allproc_gen) restart = true; sx_xunlock(&allproc_lock); if (restart || stopped_some || seen_exiting || seen_stopped) { kern_yield(PRI_USER); goto allproc_loop; } } void resume_all_proc(void) { struct proc *cp, *p; cp = curproc; sx_xlock(&allproc_lock); LIST_REMOVE(cp, p_list); LIST_INSERT_HEAD(&allproc, cp, p_list); for (;;) { p = LIST_NEXT(cp, p_list); if (p == NULL) break; LIST_REMOVE(cp, p_list); LIST_INSERT_AFTER(p, cp, p_list); PROC_LOCK(p); if ((p->p_flag & P_TOTAL_STOP) != 0) { sx_xunlock(&allproc_lock); _PHOLD(p); thread_single_end(p, SINGLE_ALLPROC); _PRELE(p); PROC_UNLOCK(p); sx_xlock(&allproc_lock); } else { PROC_UNLOCK(p); } } sx_xunlock(&allproc_lock); } /* #define TOTAL_STOP_DEBUG 1 */ #ifdef TOTAL_STOP_DEBUG volatile static int ap_resume; #include static int sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) { int error, val; val = 0; ap_resume = 0; error = sysctl_handle_int(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (val != 0) { stop_all_proc(); syncer_suspend(); while (ap_resume == 0) ; syncer_resume(); resume_all_proc(); } return (0); } SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, sysctl_debug_stop_all_proc, "I", ""); #endif Index: stable/10/sys/sys/param.h =================================================================== --- stable/10/sys/sys/param.h (revision 310120) +++ stable/10/sys/sys/param.h (revision 310121) @@ -1,361 +1,361 @@ /*- * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)param.h 8.3 (Berkeley) 4/4/95 * $FreeBSD$ */ #ifndef _SYS_PARAM_H_ #define _SYS_PARAM_H_ #include #define BSD 199506 /* System version (year & month). */ #define BSD4_3 1 #define BSD4_4 1 /* * __FreeBSD_version numbers are documented in the Porter's Handbook. * If you bump the version for any reason, you should update the documentation * there. * Currently this lives here in the doc/ repository: * * head/en_US.ISO8859-1/books/porters-handbook/book.xml * * scheme is: Rxx * 'R' is in the range 0 to 4 if this is a release branch or * x.0-CURRENT before RELENG_*_0 is created, otherwise 'R' is * in the range 5 to 9. */ #undef __FreeBSD_version -#define __FreeBSD_version 1003510 /* Master, propagated to newvers */ +#define __FreeBSD_version 1003511 /* Master, propagated to newvers */ /* * __FreeBSD_kernel__ indicates that this system uses the kernel of FreeBSD, * which by definition is always true on FreeBSD. This macro is also defined * on other systems that use the kernel of FreeBSD, such as GNU/kFreeBSD. * * It is tempting to use this macro in userland code when we want to enable * kernel-specific routines, and in fact it's fine to do this in code that * is part of FreeBSD itself. However, be aware that as presence of this * macro is still not widespread (e.g. older FreeBSD versions, 3rd party * compilers, etc), it is STRONGLY DISCOURAGED to check for this macro in * external applications without also checking for __FreeBSD__ as an * alternative. */ #undef __FreeBSD_kernel__ #define __FreeBSD_kernel__ #ifdef _KERNEL #define P_OSREL_SIGWAIT 700000 #define P_OSREL_SIGSEGV 700004 #define P_OSREL_MAP_ANON 800104 #define P_OSREL_MAJOR(x) ((x) / 100000) #endif #ifndef LOCORE #include #endif /* * Machine-independent constants (some used in following include files). * Redefined constants are from POSIX 1003.1 limits file. * * MAXCOMLEN should be >= sizeof(ac_comm) (see ) */ #include #define MAXCOMLEN 19 /* max command name remembered */ #define MAXINTERP PATH_MAX /* max interpreter file name length */ #define MAXLOGNAME 33 /* max login name length (incl. NUL) */ #define MAXUPRC CHILD_MAX /* max simultaneous processes */ #define NCARGS ARG_MAX /* max bytes for an exec function */ #define NGROUPS (NGROUPS_MAX+1) /* max number groups */ #define NOFILE OPEN_MAX /* max open files per process */ #define NOGROUP 65535 /* marker for empty group set member */ #define MAXHOSTNAMELEN 256 /* max hostname size */ #define SPECNAMELEN 63 /* max length of devicename */ /* More types and definitions used throughout the kernel. */ #ifdef _KERNEL #include #include #ifndef LOCORE #include #include #endif #ifndef FALSE #define FALSE 0 #endif #ifndef TRUE #define TRUE 1 #endif #endif #ifndef _KERNEL /* Signals. */ #include #endif /* Machine type dependent parameters. */ #include #ifndef _KERNEL #include #endif #ifndef DEV_BSHIFT #define DEV_BSHIFT 9 /* log2(DEV_BSIZE) */ #endif #define DEV_BSIZE (1<>PAGE_SHIFT) #endif /* * btodb() is messy and perhaps slow because `bytes' may be an off_t. We * want to shift an unsigned type to avoid sign extension and we don't * want to widen `bytes' unnecessarily. Assume that the result fits in * a daddr_t. */ #ifndef btodb #define btodb(bytes) /* calculates (bytes / DEV_BSIZE) */ \ (sizeof (bytes) > sizeof(long) \ ? (daddr_t)((unsigned long long)(bytes) >> DEV_BSHIFT) \ : (daddr_t)((unsigned long)(bytes) >> DEV_BSHIFT)) #endif #ifndef dbtob #define dbtob(db) /* calculates (db * DEV_BSIZE) */ \ ((off_t)(db) << DEV_BSHIFT) #endif #define PRIMASK 0x0ff #define PCATCH 0x100 /* OR'd with pri for tsleep to check signals */ #define PDROP 0x200 /* OR'd with pri to stop re-entry of interlock mutex */ #define NZERO 0 /* default "nice" */ #define NBBY 8 /* number of bits in a byte */ #define NBPW sizeof(int) /* number of bytes per word (integer) */ #define CMASK 022 /* default file mask: S_IWGRP|S_IWOTH */ #define NODEV (dev_t)(-1) /* non-existent device */ /* * File system parameters and macros. * * MAXBSIZE - Filesystems are made out of blocks of at most MAXBSIZE bytes * per block. MAXBSIZE may be made larger without effecting * any existing filesystems as long as it does not exceed MAXPHYS, * and may be made smaller at the risk of not being able to use * filesystems which require a block size exceeding MAXBSIZE. * * MAXBCACHEBUF - Maximum size of a buffer in the buffer cache. This must * be >= MAXBSIZE and can be set differently for different * architectures by defining it in . * Making this larger allows NFS to do larger reads/writes. * * BKVASIZE - Nominal buffer space per buffer, in bytes. BKVASIZE is the * minimum KVM memory reservation the kernel is willing to make. * Filesystems can of course request smaller chunks. Actual * backing memory uses a chunk size of a page (PAGE_SIZE). * The default value here can be overridden on a per-architecture * basis by defining it in . This should * probably be done to increase its value, when MAXBCACHEBUF is * defined as a larger value in . * * If you make BKVASIZE too small you risk seriously fragmenting * the buffer KVM map which may slow things down a bit. If you * make it too big the kernel will not be able to optimally use * the KVM memory reserved for the buffer cache and will wind * up with too-few buffers. * * The default is 16384, roughly 2x the block size used by a * normal UFS filesystem. */ #define MAXBSIZE 65536 /* must be power of 2 */ #ifndef MAXBCACHEBUF #define MAXBCACHEBUF MAXBSIZE /* must be a power of 2 >= MAXBSIZE */ #endif #ifndef BKVASIZE #define BKVASIZE 16384 /* must be power of 2 */ #endif #define BKVAMASK (BKVASIZE-1) /* * MAXPATHLEN defines the longest permissible path length after expanding * symbolic links. It is used to allocate a temporary buffer from the buffer * pool in which to do the name expansion, hence should be a power of two, * and must be less than or equal to MAXBSIZE. MAXSYMLINKS defines the * maximum number of symbolic links that may be expanded in a path name. * It should be set high enough to allow all legitimate uses, but halt * infinite loops reasonably quickly. */ #define MAXPATHLEN PATH_MAX #define MAXSYMLINKS 32 /* Bit map related macros. */ #define setbit(a,i) (((unsigned char *)(a))[(i)/NBBY] |= 1<<((i)%NBBY)) #define clrbit(a,i) (((unsigned char *)(a))[(i)/NBBY] &= ~(1<<((i)%NBBY))) #define isset(a,i) \ (((const unsigned char *)(a))[(i)/NBBY] & (1<<((i)%NBBY))) #define isclr(a,i) \ ((((const unsigned char *)(a))[(i)/NBBY] & (1<<((i)%NBBY))) == 0) /* Macros for counting and rounding. */ #ifndef howmany #define howmany(x, y) (((x)+((y)-1))/(y)) #endif #define nitems(x) (sizeof((x)) / sizeof((x)[0])) #define rounddown(x, y) (((x)/(y))*(y)) #define rounddown2(x, y) ((x)&(~((y)-1))) /* if y is power of two */ #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) /* to any y */ #define roundup2(x, y) (((x)+((y)-1))&(~((y)-1))) /* if y is powers of two */ #define powerof2(x) ((((x)-1)&(x))==0) /* Macros for min/max. */ #define MIN(a,b) (((a)<(b))?(a):(b)) #define MAX(a,b) (((a)>(b))?(a):(b)) #ifdef _KERNEL /* * Basic byte order function prototypes for non-inline functions. */ #ifndef LOCORE #ifndef _BYTEORDER_PROTOTYPED #define _BYTEORDER_PROTOTYPED __BEGIN_DECLS __uint32_t htonl(__uint32_t); __uint16_t htons(__uint16_t); __uint32_t ntohl(__uint32_t); __uint16_t ntohs(__uint16_t); __END_DECLS #endif #endif #ifndef lint #ifndef _BYTEORDER_FUNC_DEFINED #define _BYTEORDER_FUNC_DEFINED #define htonl(x) __htonl(x) #define htons(x) __htons(x) #define ntohl(x) __ntohl(x) #define ntohs(x) __ntohs(x) #endif /* !_BYTEORDER_FUNC_DEFINED */ #endif /* lint */ #endif /* _KERNEL */ /* * Scale factor for scaled integers used to count %cpu time and load avgs. * * The number of CPU `tick's that map to a unique `%age' can be expressed * by the formula (1 / (2 ^ (FSHIFT - 11))). The maximum load average that * can be calculated (assuming 32 bits) can be closely approximated using * the formula (2 ^ (2 * (16 - FSHIFT))) for (FSHIFT < 15). * * For the scheduler to maintain a 1:1 mapping of CPU `tick' to `%age', * FSHIFT must be at least 11; this gives us a maximum load avg of ~1024. */ #define FSHIFT 11 /* bits to right of fixed binary point */ #define FSCALE (1<> (PAGE_SHIFT - DEV_BSHIFT)) #define ctodb(db) /* calculates pages to devblks */ \ ((db) << (PAGE_SHIFT - DEV_BSHIFT)) /* * Old spelling of __containerof(). */ #define member2struct(s, m, x) \ ((struct s *)(void *)((char *)(x) - offsetof(struct s, m))) /* * Access a variable length array that has been declared as a fixed * length array. */ #define __PAST_END(array, offset) (((__typeof__(*(array)) *)(array))[offset]) #endif /* _SYS_PARAM_H_ */ Index: stable/10/sys/sys/user.h =================================================================== --- stable/10/sys/sys/user.h (revision 310120) +++ stable/10/sys/sys/user.h (revision 310121) @@ -1,564 +1,565 @@ /*- * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. * Copyright (c) 2007 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)user.h 8.2 (Berkeley) 9/23/93 * $FreeBSD$ */ #ifndef _SYS_USER_H_ #define _SYS_USER_H_ #include #ifndef _KERNEL /* stuff that *used* to be included by user.h, or is now needed */ #include #include #include #include #include #include #include #include #include #include /* XXX */ #include /* XXX */ #include /* XXX */ #include /* XXX */ #endif /* !_KERNEL */ #ifndef _SYS_RESOURCEVAR_H_ #include #endif #ifndef _SYS_SIGNALVAR_H_ #include #endif #ifndef _SYS_SOCKET_VAR_H_ #include #endif #include /* * KERN_PROC subtype ops return arrays of selected proc structure entries: * * This struct includes several arrays of spare space, with different arrays * for different standard C-types. When adding new variables to this struct, * the space for byte-aligned data should be taken from the ki_sparestring, * pointers from ki_spareptrs, word-aligned data from ki_spareints, and * doubleword-aligned data from ki_sparelongs. Make sure the space for new * variables come from the array which matches the size and alignment of * those variables on ALL hardware platforms, and then adjust the appropriate * KI_NSPARE_* value(s) to match. * * Always verify that sizeof(struct kinfo_proc) == KINFO_PROC_SIZE on all * platforms after you have added new variables. Note that if you change * the value of KINFO_PROC_SIZE, then many userland programs will stop * working until they are recompiled! * * Once you have added the new field, you will need to add code to initialize * it in two places: function fill_kinfo_proc in sys/kern/kern_proc.c and * function kvm_proclist in lib/libkvm/kvm_proc.c . */ #define KI_NSPARE_INT 7 #define KI_NSPARE_LONG 12 #define KI_NSPARE_PTR 6 #ifndef _KERNEL #ifndef KINFO_PROC_SIZE #error "Unknown architecture" #endif #endif /* !_KERNEL */ #define WMESGLEN 8 /* size of returned wchan message */ #define LOCKNAMELEN 8 /* size of returned lock name */ #define TDNAMLEN 16 /* size of returned thread name */ #define COMMLEN 19 /* size of returned ki_comm name */ #define KI_EMULNAMELEN 16 /* size of returned ki_emul */ #define KI_NGROUPS 16 /* number of groups in ki_groups */ #define LOGNAMELEN 17 /* size of returned ki_login */ #define LOGINCLASSLEN 17 /* size of returned ki_loginclass */ #ifndef BURN_BRIDGES #define OCOMMLEN TDNAMLEN #define ki_ocomm ki_tdname #endif /* Flags for the process credential. */ #define KI_CRF_CAPABILITY_MODE 0x00000001 /* * Steal a bit from ki_cr_flags to indicate that the cred had more than * KI_NGROUPS groups. */ #define KI_CRF_GRP_OVERFLOW 0x80000000 struct kinfo_proc { int ki_structsize; /* size of this structure */ int ki_layout; /* reserved: layout identifier */ struct pargs *ki_args; /* address of command arguments */ struct proc *ki_paddr; /* address of proc */ struct user *ki_addr; /* kernel virtual addr of u-area */ struct vnode *ki_tracep; /* pointer to trace file */ struct vnode *ki_textvp; /* pointer to executable file */ struct filedesc *ki_fd; /* pointer to open file info */ struct vmspace *ki_vmspace; /* pointer to kernel vmspace struct */ void *ki_wchan; /* sleep address */ pid_t ki_pid; /* Process identifier */ pid_t ki_ppid; /* parent process id */ pid_t ki_pgid; /* process group id */ pid_t ki_tpgid; /* tty process group id */ pid_t ki_sid; /* Process session ID */ pid_t ki_tsid; /* Terminal session ID */ short ki_jobc; /* job control counter */ short ki_spare_short1; /* unused (just here for alignment) */ dev_t ki_tdev; /* controlling tty dev */ sigset_t ki_siglist; /* Signals arrived but not delivered */ sigset_t ki_sigmask; /* Current signal mask */ sigset_t ki_sigignore; /* Signals being ignored */ sigset_t ki_sigcatch; /* Signals being caught by user */ uid_t ki_uid; /* effective user id */ uid_t ki_ruid; /* Real user id */ uid_t ki_svuid; /* Saved effective user id */ gid_t ki_rgid; /* Real group id */ gid_t ki_svgid; /* Saved effective group id */ short ki_ngroups; /* number of groups */ short ki_spare_short2; /* unused (just here for alignment) */ gid_t ki_groups[KI_NGROUPS]; /* groups */ vm_size_t ki_size; /* virtual size */ segsz_t ki_rssize; /* current resident set size in pages */ segsz_t ki_swrss; /* resident set size before last swap */ segsz_t ki_tsize; /* text size (pages) XXX */ segsz_t ki_dsize; /* data size (pages) XXX */ segsz_t ki_ssize; /* stack size (pages) */ u_short ki_xstat; /* Exit status for wait & stop signal */ u_short ki_acflag; /* Accounting flags */ fixpt_t ki_pctcpu; /* %cpu for process during ki_swtime */ u_int ki_estcpu; /* Time averaged value of ki_cpticks */ u_int ki_slptime; /* Time since last blocked */ u_int ki_swtime; /* Time swapped in or out */ u_int ki_cow; /* number of copy-on-write faults */ u_int64_t ki_runtime; /* Real time in microsec */ struct timeval ki_start; /* starting time */ struct timeval ki_childtime; /* time used by process children */ long ki_flag; /* P_* flags */ long ki_kiflag; /* KI_* flags (below) */ int ki_traceflag; /* Kernel trace points */ char ki_stat; /* S* process status */ signed char ki_nice; /* Process "nice" value */ char ki_lock; /* Process lock (prevent swap) count */ char ki_rqindex; /* Run queue index */ u_char ki_oncpu; /* Which cpu we are on */ u_char ki_lastcpu; /* Last cpu we were on */ char ki_tdname[TDNAMLEN+1]; /* thread name */ char ki_wmesg[WMESGLEN+1]; /* wchan message */ char ki_login[LOGNAMELEN+1]; /* setlogin name */ char ki_lockname[LOCKNAMELEN+1]; /* lock name */ char ki_comm[COMMLEN+1]; /* command name */ char ki_emul[KI_EMULNAMELEN+1]; /* emulation name */ char ki_loginclass[LOGINCLASSLEN+1]; /* login class */ + char ki_moretdname[MAXCOMLEN-TDNAMLEN+1]; /* more thread name */ /* * When adding new variables, take space for char-strings from the * front of ki_sparestrings, and ints from the end of ki_spareints. * That way the spare room from both arrays will remain contiguous. */ - char ki_sparestrings[50]; /* spare string space */ + char ki_sparestrings[46]; /* spare string space */ int ki_spareints[KI_NSPARE_INT]; /* spare room for growth */ int ki_flag2; /* P2_* flags */ int ki_fibnum; /* Default FIB number */ u_int ki_cr_flags; /* Credential flags */ int ki_jid; /* Process jail ID */ int ki_numthreads; /* XXXKSE number of threads in total */ lwpid_t ki_tid; /* XXXKSE thread id */ struct priority ki_pri; /* process priority */ struct rusage ki_rusage; /* process rusage statistics */ /* XXX - most fields in ki_rusage_ch are not (yet) filled in */ struct rusage ki_rusage_ch; /* rusage of children processes */ struct pcb *ki_pcb; /* kernel virtual addr of pcb */ void *ki_kstack; /* kernel virtual addr of stack */ void *ki_udata; /* User convenience pointer */ struct thread *ki_tdaddr; /* address of thread */ /* * When adding new variables, take space for pointers from the * front of ki_spareptrs, and longs from the end of ki_sparelongs. * That way the spare room from both arrays will remain contiguous. */ void *ki_spareptrs[KI_NSPARE_PTR]; /* spare room for growth */ long ki_sparelongs[KI_NSPARE_LONG]; /* spare room for growth */ long ki_sflag; /* PS_* flags */ long ki_tdflags; /* XXXKSE kthread flag */ }; void fill_kinfo_proc(struct proc *, struct kinfo_proc *); /* XXX - the following two defines are temporary */ #define ki_childstime ki_rusage_ch.ru_stime #define ki_childutime ki_rusage_ch.ru_utime /* * Legacy PS_ flag. This moved to p_flag but is maintained for * compatibility. */ #define PS_INMEM 0x00001 /* Loaded into memory. */ /* ki_sessflag values */ #define KI_CTTY 0x00000001 /* controlling tty vnode active */ #define KI_SLEADER 0x00000002 /* session leader */ #define KI_LOCKBLOCK 0x00000004 /* proc blocked on lock ki_lockname */ /* * This used to be the per-process structure containing data that * isn't needed in core when the process is swapped out, but now it * remains only for the benefit of a.out core dumps. */ struct user { struct pstats u_stats; /* *p_stats */ struct kinfo_proc u_kproc; /* eproc */ }; /* * The KERN_PROC_FILE sysctl allows a process to dump the file descriptor * array of another process. */ #define KF_ATTR_VALID 0x0001 #define KF_TYPE_NONE 0 #define KF_TYPE_VNODE 1 #define KF_TYPE_SOCKET 2 #define KF_TYPE_PIPE 3 #define KF_TYPE_FIFO 4 #define KF_TYPE_KQUEUE 5 #define KF_TYPE_CRYPTO 6 #define KF_TYPE_MQUEUE 7 #define KF_TYPE_SHM 8 #define KF_TYPE_SEM 9 #define KF_TYPE_PTS 10 #define KF_TYPE_PROCDESC 11 #define KF_TYPE_UNKNOWN 255 #define KF_VTYPE_VNON 0 #define KF_VTYPE_VREG 1 #define KF_VTYPE_VDIR 2 #define KF_VTYPE_VBLK 3 #define KF_VTYPE_VCHR 4 #define KF_VTYPE_VLNK 5 #define KF_VTYPE_VSOCK 6 #define KF_VTYPE_VFIFO 7 #define KF_VTYPE_VBAD 8 #define KF_VTYPE_UNKNOWN 255 #define KF_FD_TYPE_CWD -1 /* Current working directory */ #define KF_FD_TYPE_ROOT -2 /* Root directory */ #define KF_FD_TYPE_JAIL -3 /* Jail directory */ #define KF_FD_TYPE_TRACE -4 /* ptrace vnode */ #define KF_FD_TYPE_TEXT -5 /* Text vnode */ #define KF_FD_TYPE_CTTY -6 /* Controlling terminal */ #define KF_FLAG_READ 0x00000001 #define KF_FLAG_WRITE 0x00000002 #define KF_FLAG_APPEND 0x00000004 #define KF_FLAG_ASYNC 0x00000008 #define KF_FLAG_FSYNC 0x00000010 #define KF_FLAG_NONBLOCK 0x00000020 #define KF_FLAG_DIRECT 0x00000040 #define KF_FLAG_HASLOCK 0x00000080 #define KF_FLAG_SHLOCK 0x00000100 #define KF_FLAG_EXLOCK 0x00000200 #define KF_FLAG_NOFOLLOW 0x00000400 #define KF_FLAG_CREAT 0x00000800 #define KF_FLAG_TRUNC 0x00001000 #define KF_FLAG_EXCL 0x00002000 #define KF_FLAG_EXEC 0x00004000 /* * Old format. Has variable hidden padding due to alignment. * This is a compatibility hack for pre-build 7.1 packages. */ #if defined(__amd64__) #define KINFO_OFILE_SIZE 1328 #endif #if defined(__i386__) #define KINFO_OFILE_SIZE 1324 #endif struct kinfo_ofile { int kf_structsize; /* Size of kinfo_file. */ int kf_type; /* Descriptor type. */ int kf_fd; /* Array index. */ int kf_ref_count; /* Reference count. */ int kf_flags; /* Flags. */ /* XXX Hidden alignment padding here on amd64 */ off_t kf_offset; /* Seek location. */ int kf_vnode_type; /* Vnode type. */ int kf_sock_domain; /* Socket domain. */ int kf_sock_type; /* Socket type. */ int kf_sock_protocol; /* Socket protocol. */ char kf_path[PATH_MAX]; /* Path to file, if any. */ struct sockaddr_storage kf_sa_local; /* Socket address. */ struct sockaddr_storage kf_sa_peer; /* Peer address. */ }; #if defined(__amd64__) || defined(__i386__) /* * This size should never be changed. If you really need to, you must provide * backward ABI compatibility by allocating a new sysctl MIB that will return * the new structure. The current structure has to be returned by the current * sysctl MIB. See how it is done for the kinfo_ofile structure. */ #define KINFO_FILE_SIZE 1392 #endif struct kinfo_file { int kf_structsize; /* Variable size of record. */ int kf_type; /* Descriptor type. */ int kf_fd; /* Array index. */ int kf_ref_count; /* Reference count. */ int kf_flags; /* Flags. */ int kf_pad0; /* Round to 64 bit alignment. */ int64_t kf_offset; /* Seek location. */ int kf_vnode_type; /* Vnode type. */ int kf_sock_domain; /* Socket domain. */ int kf_sock_type; /* Socket type. */ int kf_sock_protocol; /* Socket protocol. */ struct sockaddr_storage kf_sa_local; /* Socket address. */ struct sockaddr_storage kf_sa_peer; /* Peer address. */ union { struct { /* Address of so_pcb. */ uint64_t kf_sock_pcb; /* Address of inp_ppcb. */ uint64_t kf_sock_inpcb; /* Address of unp_conn. */ uint64_t kf_sock_unpconn; /* Send buffer state. */ uint16_t kf_sock_snd_sb_state; /* Receive buffer state. */ uint16_t kf_sock_rcv_sb_state; /* Round to 64 bit alignment. */ uint32_t kf_sock_pad0; } kf_sock; struct { /* Global file id. */ uint64_t kf_file_fileid; /* File size. */ uint64_t kf_file_size; /* Vnode filesystem id. */ uint32_t kf_file_fsid; /* File device. */ uint32_t kf_file_rdev; /* File mode. */ uint16_t kf_file_mode; /* Round to 64 bit alignment. */ uint16_t kf_file_pad0; uint32_t kf_file_pad1; } kf_file; struct { uint32_t kf_sem_value; uint16_t kf_sem_mode; } kf_sem; struct { uint64_t kf_pipe_addr; uint64_t kf_pipe_peer; uint32_t kf_pipe_buffer_cnt; /* Round to 64 bit alignment. */ uint32_t kf_pipe_pad0[3]; } kf_pipe; struct { uint32_t kf_pts_dev; /* Round to 64 bit alignment. */ uint32_t kf_pts_pad0[7]; } kf_pts; struct { pid_t kf_pid; } kf_proc; } kf_un; uint16_t kf_status; /* Status flags. */ uint16_t kf_pad1; /* Round to 32 bit alignment. */ int _kf_ispare0; /* Space for more stuff. */ cap_rights_t kf_cap_rights; /* Capability rights. */ uint64_t _kf_cap_spare; /* Space for future cap_rights_t. */ /* Truncated before copyout in sysctl */ char kf_path[PATH_MAX]; /* Path to file, if any. */ }; /* * The KERN_PROC_VMMAP sysctl allows a process to dump the VM layout of * another process as a series of entries. */ #define KVME_TYPE_NONE 0 #define KVME_TYPE_DEFAULT 1 #define KVME_TYPE_VNODE 2 #define KVME_TYPE_SWAP 3 #define KVME_TYPE_DEVICE 4 #define KVME_TYPE_PHYS 5 #define KVME_TYPE_DEAD 6 #define KVME_TYPE_SG 7 #define KVME_TYPE_MGTDEVICE 8 #define KVME_TYPE_UNKNOWN 255 #define KVME_PROT_READ 0x00000001 #define KVME_PROT_WRITE 0x00000002 #define KVME_PROT_EXEC 0x00000004 #define KVME_FLAG_COW 0x00000001 #define KVME_FLAG_NEEDS_COPY 0x00000002 #define KVME_FLAG_NOCOREDUMP 0x00000004 #define KVME_FLAG_SUPER 0x00000008 #define KVME_FLAG_GROWS_UP 0x00000010 #define KVME_FLAG_GROWS_DOWN 0x00000020 #if defined(__amd64__) #define KINFO_OVMENTRY_SIZE 1168 #endif #if defined(__i386__) #define KINFO_OVMENTRY_SIZE 1128 #endif struct kinfo_ovmentry { int kve_structsize; /* Size of kinfo_vmmapentry. */ int kve_type; /* Type of map entry. */ void *kve_start; /* Starting address. */ void *kve_end; /* Finishing address. */ int kve_flags; /* Flags on map entry. */ int kve_resident; /* Number of resident pages. */ int kve_private_resident; /* Number of private pages. */ int kve_protection; /* Protection bitmask. */ int kve_ref_count; /* VM obj ref count. */ int kve_shadow_count; /* VM obj shadow count. */ char kve_path[PATH_MAX]; /* Path to VM obj, if any. */ void *_kve_pspare[8]; /* Space for more stuff. */ off_t kve_offset; /* Mapping offset in object */ uint64_t kve_fileid; /* inode number if vnode */ dev_t kve_fsid; /* dev_t of vnode location */ int _kve_ispare[3]; /* Space for more stuff. */ }; #if defined(__amd64__) || defined(__i386__) #define KINFO_VMENTRY_SIZE 1160 #endif struct kinfo_vmentry { int kve_structsize; /* Variable size of record. */ int kve_type; /* Type of map entry. */ uint64_t kve_start; /* Starting address. */ uint64_t kve_end; /* Finishing address. */ uint64_t kve_offset; /* Mapping offset in object */ uint64_t kve_vn_fileid; /* inode number if vnode */ uint32_t kve_vn_fsid; /* dev_t of vnode location */ int kve_flags; /* Flags on map entry. */ int kve_resident; /* Number of resident pages. */ int kve_private_resident; /* Number of private pages. */ int kve_protection; /* Protection bitmask. */ int kve_ref_count; /* VM obj ref count. */ int kve_shadow_count; /* VM obj shadow count. */ int kve_vn_type; /* Vnode type. */ uint64_t kve_vn_size; /* File size. */ uint32_t kve_vn_rdev; /* Device id if device. */ uint16_t kve_vn_mode; /* File mode. */ uint16_t kve_status; /* Status flags. */ int _kve_ispare[12]; /* Space for more stuff. */ /* Truncated before copyout in sysctl */ char kve_path[PATH_MAX]; /* Path to VM obj, if any. */ }; /* * The "vm.objects" sysctl provides a list of all VM objects in the system * via an array of these entries. */ struct kinfo_vmobject { int kvo_structsize; /* Variable size of record. */ int kvo_type; /* Object type: KVME_TYPE_*. */ uint64_t kvo_size; /* Object size in pages. */ uint64_t kvo_vn_fileid; /* inode number if vnode. */ uint32_t kvo_vn_fsid; /* dev_t of vnode location. */ int kvo_ref_count; /* Reference count. */ int kvo_shadow_count; /* Shadow count. */ int kvo_memattr; /* Memory attribute. */ uint64_t kvo_resident; /* Number of resident pages. */ uint64_t kvo_active; /* Number of active pages. */ uint64_t kvo_inactive; /* Number of inactive pages. */ uint64_t _kvo_qspare[8]; uint32_t _kvo_ispare[8]; char kvo_path[PATH_MAX]; /* Pathname, if any. */ }; /* * The KERN_PROC_KSTACK sysctl allows a process to dump the kernel stacks of * another process as a series of entries. Each stack is represented by a * series of symbol names and offsets as generated by stack_sbuf_print(9). */ #define KKST_MAXLEN 1024 #define KKST_STATE_STACKOK 0 /* Stack is valid. */ #define KKST_STATE_SWAPPED 1 /* Stack swapped out. */ #define KKST_STATE_RUNNING 2 /* Stack ephemeral. */ #if defined(__amd64__) || defined(__i386__) #define KINFO_KSTACK_SIZE 1096 #endif struct kinfo_kstack { lwpid_t kkst_tid; /* ID of thread. */ int kkst_state; /* Validity of stack. */ char kkst_trace[KKST_MAXLEN]; /* String representing stack. */ int _kkst_ispare[16]; /* Space for more stuff. */ }; struct kinfo_sigtramp { void *ksigtramp_start; void *ksigtramp_end; void *ksigtramp_spare[4]; }; #ifdef _KERNEL /* Flags for kern_proc_out function. */ #define KERN_PROC_NOTHREADS 0x1 #define KERN_PROC_MASK32 0x2 /* Flags for kern_proc_filedesc_out. */ #define KERN_FILEDESC_PACK_KINFO 0x00000001U /* Flags for kern_proc_vmmap_out. */ #define KERN_VMMAP_PACK_KINFO 0x00000001U struct sbuf; /* * The kern_proc out functions are helper functions to dump process * miscellaneous kinfo structures to sbuf. The main consumers are KERN_PROC * sysctls but they may also be used by other kernel subsystems. * * The functions manipulate the process locking state and expect the process * to be locked on enter. On return the process is unlocked. */ int kern_proc_filedesc_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags); int kern_proc_out(struct proc *p, struct sbuf *sb, int flags); int kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags); int vntype_to_kinfo(int vtype); #endif /* !_KERNEL */ #endif Index: stable/10/usr.bin/procstat/procstat.c =================================================================== --- stable/10/usr.bin/procstat/procstat.c (revision 310120) +++ stable/10/usr.bin/procstat/procstat.c (revision 310121) @@ -1,308 +1,324 @@ /*- * Copyright (c) 2007, 2011 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include +#include #include #include #include "procstat.h" static int aflag, bflag, cflag, eflag, fflag, iflag, jflag, kflag, lflag, rflag; static int sflag, tflag, vflag, xflag, Sflag; int hflag, nflag, Cflag, Hflag; static void usage(void) { fprintf(stderr, "usage: procstat [-CHhn] [-M core] [-N system] " "[-w interval] \n"); fprintf(stderr, " [-b | -c | -e | -f | -i | -j | -k | " "-l | -r | -s | -S | -t | -v | -x]\n"); fprintf(stderr, " [-a | pid | core ...]\n"); exit(EX_USAGE); } static void procstat(struct procstat *prstat, struct kinfo_proc *kipp) { if (bflag) procstat_bin(prstat, kipp); else if (cflag) procstat_args(prstat, kipp); else if (eflag) procstat_env(prstat, kipp); else if (fflag) procstat_files(prstat, kipp); else if (iflag) procstat_sigs(prstat, kipp); else if (jflag) procstat_threads_sigs(prstat, kipp); else if (kflag) procstat_kstack(prstat, kipp, kflag); else if (lflag) procstat_rlimit(prstat, kipp); else if (rflag) procstat_rusage(prstat, kipp); else if (sflag) procstat_cred(prstat, kipp); else if (tflag) procstat_threads(prstat, kipp); else if (vflag) procstat_vm(prstat, kipp); else if (xflag) procstat_auxv(prstat, kipp); else if (Sflag) procstat_cs(prstat, kipp); else procstat_basic(kipp); } /* * Sort processes first by pid and then tid. */ static int kinfo_proc_compare(const void *a, const void *b) { int i; i = ((const struct kinfo_proc *)a)->ki_pid - ((const struct kinfo_proc *)b)->ki_pid; if (i != 0) return (i); i = ((const struct kinfo_proc *)a)->ki_tid - ((const struct kinfo_proc *)b)->ki_tid; return (i); } void kinfo_proc_sort(struct kinfo_proc *kipp, int count) { qsort(kipp, count, sizeof(*kipp), kinfo_proc_compare); +} + +const char * +kinfo_proc_thread_name(const struct kinfo_proc *kipp) +{ + static char name[MAXCOMLEN+1]; + + strlcpy(name, kipp->ki_tdname, sizeof(name)); + strlcat(name, kipp->ki_moretdname, sizeof(name)); + if (name[0] == '\0' || strcmp(kipp->ki_comm, name) == 0) { + name[0] = '-'; + name[1] = '\0'; + } + + return (name); } int main(int argc, char *argv[]) { int ch, interval, tmp; int i; struct kinfo_proc *p; struct procstat *prstat, *cprstat; long l; pid_t pid; char *dummy; char *nlistf, *memf; int cnt; interval = 0; memf = nlistf = NULL; while ((ch = getopt(argc, argv, "CHN:M:abcefijklhrsStvw:x")) != -1) { switch (ch) { case 'C': Cflag++; break; case 'H': Hflag++; break; case 'M': memf = optarg; break; case 'N': nlistf = optarg; break; case 'S': Sflag++; break; case 'a': aflag++; break; case 'b': bflag++; break; case 'c': cflag++; break; case 'e': eflag++; break; case 'f': fflag++; break; case 'i': iflag++; break; case 'j': jflag++; break; case 'k': kflag++; break; case 'l': lflag++; break; case 'n': nflag++; break; case 'h': hflag++; break; case 'r': rflag++; break; case 's': sflag++; break; case 't': tflag++; break; case 'v': vflag++; break; case 'w': l = strtol(optarg, &dummy, 10); if (*dummy != '\0') usage(); if (l < 1 || l > INT_MAX) usage(); interval = l; break; case 'x': xflag++; break; case '?': default: usage(); } } argc -= optind; argv += optind; /* We require that either 0 or 1 mode flags be set. */ tmp = bflag + cflag + eflag + fflag + iflag + jflag + (kflag ? 1 : 0) + lflag + rflag + sflag + tflag + vflag + xflag + Sflag; if (!(tmp == 0 || tmp == 1)) usage(); /* We allow -k to be specified up to twice, but not more. */ if (kflag > 2) usage(); /* Must specify either the -a flag or a list of pids. */ if (!(aflag == 1 && argc == 0) && !(aflag == 0 && argc > 0)) usage(); /* Only allow -C with -f. */ if (Cflag && !fflag) usage(); if (memf != NULL) prstat = procstat_open_kvm(nlistf, memf); else prstat = procstat_open_sysctl(); if (prstat == NULL) errx(1, "procstat_open()"); do { if (aflag) { p = procstat_getprocs(prstat, KERN_PROC_PROC, 0, &cnt); if (p == NULL) errx(1, "procstat_getprocs()"); kinfo_proc_sort(p, cnt); for (i = 0; i < cnt; i++) { procstat(prstat, &p[i]); /* Suppress header after first process. */ hflag = 1; } procstat_freeprocs(prstat, p); } for (i = 0; i < argc; i++) { l = strtol(argv[i], &dummy, 10); if (*dummy == '\0') { if (l < 0) usage(); pid = l; p = procstat_getprocs(prstat, KERN_PROC_PID, pid, &cnt); if (p == NULL) errx(1, "procstat_getprocs()"); if (cnt != 0) procstat(prstat, p); procstat_freeprocs(prstat, p); } else { cprstat = procstat_open_core(argv[i]); if (cprstat == NULL) { warnx("procstat_open()"); continue; } p = procstat_getprocs(cprstat, KERN_PROC_PID, -1, &cnt); if (p == NULL) errx(1, "procstat_getprocs()"); if (cnt != 0) procstat(cprstat, p); procstat_freeprocs(cprstat, p); procstat_close(cprstat); } /* Suppress header after first process. */ hflag = 1; } if (interval) sleep(interval); } while (interval); procstat_close(prstat); exit(0); } Index: stable/10/usr.bin/procstat/procstat.h =================================================================== --- stable/10/usr.bin/procstat/procstat.h (revision 310120) +++ stable/10/usr.bin/procstat/procstat.h (revision 310121) @@ -1,54 +1,55 @@ /*- * Copyright (c) 2007 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef PROCSTAT_H #define PROCSTAT_H extern int hflag, nflag, Cflag, Hflag; struct kinfo_proc; void kinfo_proc_sort(struct kinfo_proc *kipp, int count); +const char * kinfo_proc_thread_name(const struct kinfo_proc *kipp); void procstat_args(struct procstat *prstat, struct kinfo_proc *kipp); void procstat_auxv(struct procstat *prstat, struct kinfo_proc *kipp); void procstat_basic(struct kinfo_proc *kipp); void procstat_bin(struct procstat *prstat, struct kinfo_proc *kipp); void procstat_cred(struct procstat *prstat, struct kinfo_proc *kipp); void procstat_cs(struct procstat *prstat, struct kinfo_proc *kipp); void procstat_env(struct procstat *prstat, struct kinfo_proc *kipp); void procstat_files(struct procstat *prstat, struct kinfo_proc *kipp); void procstat_kstack(struct procstat *prstat, struct kinfo_proc *kipp, int kflag); void procstat_rlimit(struct procstat *prstat, struct kinfo_proc *kipp); void procstat_rusage(struct procstat *prstat, struct kinfo_proc *kipp); void procstat_sigs(struct procstat *prstat, struct kinfo_proc *kipp); void procstat_threads(struct procstat *prstat, struct kinfo_proc *kipp); void procstat_threads_sigs(struct procstat *prstat, struct kinfo_proc *kipp); void procstat_vm(struct procstat *prstat, struct kinfo_proc *kipp); #endif /* !PROCSTAT_H */ Index: stable/10/usr.bin/procstat/procstat_cs.c =================================================================== --- stable/10/usr.bin/procstat/procstat_cs.c (revision 310120) +++ stable/10/usr.bin/procstat/procstat_cs.c (revision 310121) @@ -1,108 +1,106 @@ /*- * Copyright (c) 2007 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include "procstat.h" void procstat_cs(struct procstat *procstat, struct kinfo_proc *kipp) { cpusetid_t cs; cpuset_t mask; struct kinfo_proc *kip; unsigned int count, i; int once, twice, lastcpu, cpu; if (!hflag) - printf("%5s %6s %-16s %-16s %2s %4s %-7s\n", "PID", + printf("%5s %6s %-19s %-19s %2s %4s %-7s\n", "PID", "TID", "COMM", "TDNAME", "CPU", "CSID", "CPU MASK"); kip = procstat_getprocs(procstat, KERN_PROC_PID | KERN_PROC_INC_THREAD, kipp->ki_pid, &count); if (kip == NULL) return; kinfo_proc_sort(kip, count); for (i = 0; i < count; i++) { kipp = &kip[i]; printf("%5d ", kipp->ki_pid); printf("%6d ", kipp->ki_tid); - printf("%-16s ", strlen(kipp->ki_comm) ? + printf("%-19s ", strlen(kipp->ki_comm) ? kipp->ki_comm : "-"); - printf("%-16s ", (strlen(kipp->ki_tdname) && - (strcmp(kipp->ki_comm, kipp->ki_tdname) != 0)) ? - kipp->ki_tdname : "-"); + printf("%-19s ", kinfo_proc_thread_name(kipp)); if (kipp->ki_oncpu != 255) printf("%3d ", kipp->ki_oncpu); else if (kipp->ki_lastcpu != 255) printf("%3d ", kipp->ki_lastcpu); else printf("%3s ", "-"); if (cpuset_getid(CPU_LEVEL_CPUSET, CPU_WHICH_TID, kipp->ki_tid, &cs) != 0) { cs = CPUSET_INVALID; } printf("%4d ", cs); if ((cs != CPUSET_INVALID) && (cpuset_getaffinity(CPU_LEVEL_WHICH, CPU_WHICH_TID, kipp->ki_tid, sizeof(mask), &mask) == 0)) { lastcpu = -1; once = 0; twice = 0; for (cpu = 0; cpu < CPU_SETSIZE; cpu++) { if (CPU_ISSET(cpu, &mask)) { if (once == 0) { printf("%d", cpu); once = 1; } else if (cpu == lastcpu + 1) { twice = 1; } else if (twice == 1) { printf("-%d,%d", lastcpu, cpu); twice = 0; } else printf(",%d", cpu); lastcpu = cpu; } } if (once && twice) printf("-%d", lastcpu); } printf("\n"); } procstat_freeprocs(procstat, kip); } Index: stable/10/usr.bin/procstat/procstat_kstack.c =================================================================== --- stable/10/usr.bin/procstat/procstat_kstack.c (revision 310120) +++ stable/10/usr.bin/procstat/procstat_kstack.c (revision 310121) @@ -1,206 +1,204 @@ /*- * Copyright (c) 2007 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include "procstat.h" /* * Walk the stack trace provided by the kernel and reduce it to what we * actually want to print. This involves stripping true instruction pointers, * frame numbers, and carriage returns as generated by stack(9). If -kk is * specified, print the function and offset, otherwise just the function. */ enum trace_state { TS_FRAMENUM, TS_PC, TS_AT, TS_FUNC, TS_OFF }; static enum trace_state kstack_nextstate(enum trace_state ts) { switch (ts) { case TS_FRAMENUM: return (TS_PC); case TS_PC: return (TS_AT); case TS_AT: return (TS_FUNC); case TS_FUNC: return (TS_OFF); case TS_OFF: return TS_FRAMENUM; default: errx(-1, "kstack_nextstate"); } } static void kstack_cleanup(const char *old, char *new, int kflag) { enum trace_state old_ts, ts; const char *cp_old; char *cp_new; ts = TS_FRAMENUM; for (cp_old = old, cp_new = new; *cp_old != '\0'; cp_old++) { switch (*cp_old) { case ' ': case '\n': case '+': old_ts = ts; ts = kstack_nextstate(old_ts); if (old_ts == TS_OFF) { *cp_new = ' '; cp_new++; } if (kflag > 1 && old_ts == TS_FUNC) { *cp_new = '+'; cp_new++; } continue; } if (ts == TS_FUNC || (kflag > 1 && ts == TS_OFF)) { *cp_new = *cp_old; cp_new++; } } *cp_new = '\0'; } /* * Sort threads by tid. */ static int kinfo_kstack_compare(const void *a, const void *b) { return ((const struct kinfo_kstack *)a)->kkst_tid - ((const struct kinfo_kstack *)b)->kkst_tid; } static void kinfo_kstack_sort(struct kinfo_kstack *kkstp, int count) { qsort(kkstp, count, sizeof(*kkstp), kinfo_kstack_compare); } void procstat_kstack(struct procstat *procstat, struct kinfo_proc *kipp, int kflag) { struct kinfo_kstack *kkstp, *kkstp_free; struct kinfo_proc *kip, *kip_free; char trace[KKST_MAXLEN]; unsigned int i, j; unsigned int kip_count, kstk_count; if (!hflag) - printf("%5s %6s %-16s %-16s %-29s\n", "PID", "TID", "COMM", + printf("%5s %6s %-19s %-19s %-29s\n", "PID", "TID", "COMM", "TDNAME", "KSTACK"); kkstp = kkstp_free = procstat_getkstack(procstat, kipp, &kstk_count); if (kkstp == NULL) return; /* * We need to re-query for thread information, so don't use *kipp. */ kip = kip_free = procstat_getprocs(procstat, KERN_PROC_PID | KERN_PROC_INC_THREAD, kipp->ki_pid, &kip_count); if (kip == NULL) { procstat_freekstack(procstat, kkstp_free); return; } kinfo_kstack_sort(kkstp, kstk_count); for (i = 0; i < kstk_count; i++) { kkstp = &kkstp_free[i]; /* * Look up the specific thread using its tid so we can * display the per-thread command line. */ kipp = NULL; for (j = 0; j < kip_count; j++) { kipp = &kip_free[j]; if (kkstp->kkst_tid == kipp->ki_tid) break; } if (kipp == NULL) continue; printf("%5d ", kipp->ki_pid); printf("%6d ", kkstp->kkst_tid); - printf("%-16s ", kipp->ki_comm); - printf("%-16s ", (strlen(kipp->ki_tdname) && - (strcmp(kipp->ki_comm, kipp->ki_tdname) != 0)) ? - kipp->ki_tdname : "-"); + printf("%-19s ", kipp->ki_comm); + printf("%-19s ", kinfo_proc_thread_name(kipp)); switch (kkstp->kkst_state) { case KKST_STATE_RUNNING: printf("%-29s\n", ""); continue; case KKST_STATE_SWAPPED: printf("%-29s\n", ""); continue; case KKST_STATE_STACKOK: break; default: printf("%-29s\n", ""); continue; } /* * The kernel generates a trace with carriage returns between * entries, but for a more compact view, we convert carriage * returns to spaces. */ kstack_cleanup(kkstp->kkst_trace, trace, kflag); printf("%-29s\n", trace); } procstat_freekstack(procstat, kkstp_free); procstat_freeprocs(procstat, kip_free); } Index: stable/10/usr.bin/procstat/procstat_threads.c =================================================================== --- stable/10/usr.bin/procstat/procstat_threads.c (revision 310120) +++ stable/10/usr.bin/procstat/procstat_threads.c (revision 310121) @@ -1,118 +1,116 @@ /*- * Copyright (c) 2007 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include "procstat.h" void procstat_threads(struct procstat *procstat, struct kinfo_proc *kipp) { struct kinfo_proc *kip; unsigned int count, i; const char *str; if (!hflag) - printf("%5s %6s %-16s %-16s %2s %4s %-7s %-9s\n", "PID", + printf("%5s %6s %-19s %-19s %2s %4s %-7s %-9s\n", "PID", "TID", "COMM", "TDNAME", "CPU", "PRI", "STATE", "WCHAN"); kip = procstat_getprocs(procstat, KERN_PROC_PID | KERN_PROC_INC_THREAD, kipp->ki_pid, &count); if (kip == NULL) return; kinfo_proc_sort(kip, count); for (i = 0; i < count; i++) { kipp = &kip[i]; printf("%5d ", kipp->ki_pid); printf("%6d ", kipp->ki_tid); - printf("%-16s ", strlen(kipp->ki_comm) ? + printf("%-19s ", strlen(kipp->ki_comm) ? kipp->ki_comm : "-"); - printf("%-16s ", (strlen(kipp->ki_tdname) && - (strcmp(kipp->ki_comm, kipp->ki_tdname) != 0)) ? - kipp->ki_tdname : "-"); + printf("%-19s ", kinfo_proc_thread_name(kipp)); if (kipp->ki_oncpu != 255) printf("%3d ", kipp->ki_oncpu); else if (kipp->ki_lastcpu != 255) printf("%3d ", kipp->ki_lastcpu); else printf("%3s ", "-"); printf("%4d ", kipp->ki_pri.pri_level); switch (kipp->ki_stat) { case SRUN: str = "run"; break; case SSTOP: str = "stop"; break; case SSLEEP: str = "sleep"; break; case SLOCK: str = "lock"; break; case SWAIT: str = "wait"; break; case SZOMB: str = "zomb"; break; case SIDL: str = "idle"; break; default: str = "??"; break; } printf("%-7s ", str); if (kipp->ki_kiflag & KI_LOCKBLOCK) { printf("*%-8s ", strlen(kipp->ki_lockname) ? kipp->ki_lockname : "-"); } else { printf("%-9s ", strlen(kipp->ki_wmesg) ? kipp->ki_wmesg : "-"); } printf("\n"); } procstat_freeprocs(procstat, kip); } Index: stable/10/usr.bin/top/machine.c =================================================================== --- stable/10/usr.bin/top/machine.c (revision 310120) +++ stable/10/usr.bin/top/machine.c (revision 310121) @@ -1,1516 +1,1519 @@ /* * top - a top users display for Unix * * SYNOPSIS: For FreeBSD-2.x and later * * DESCRIPTION: * Originally written for BSD4.4 system by Christos Zoulas. * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider * Order support hacked in from top-3.5beta6/machine/m_aix41.c * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) * * This is the machine-dependent module for FreeBSD 2.2 * Works for: * FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x * * LIBS: -lkvm * * AUTHOR: Christos Zoulas * Steven Wallace * Wolfram Schneider * Thomas Moestl * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "top.h" #include "machine.h" #include "screen.h" #include "utils.h" #include "layout.h" #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) #define SMPUNAMELEN 13 #define UPUNAMELEN 15 extern struct process_select ps; extern char* printable(char *); static int smpmode; enum displaymodes displaymode; #ifdef TOP_USERNAME_LEN static int namelength = TOP_USERNAME_LEN; #else static int namelength = 8; #endif /* TOP_JID_LEN based on max of 999999 */ #define TOP_JID_LEN 7 static int jidlength; static int cmdlengthdelta; /* Prototypes for top internals */ void quit(int); /* get_process_info passes back a handle. This is what it looks like: */ struct handle { struct kinfo_proc **next_proc; /* points to next valid proc pointer */ int remaining; /* number of pointers remaining */ }; /* declarations for load_avg */ #include "loadavg.h" /* define what weighted cpu is. */ #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) /* what we consider to be process size: */ #define PROCSIZE(pp) ((pp)->ki_size / 1024) #define RU(pp) (&(pp)->ki_rusage) #define RUTOT(pp) \ (RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt) /* definitions for indices in the nlist array */ /* * These definitions control the format of the per-process area */ static char io_header[] = " PID%*s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"; #define io_Proc_format \ "%5d%*s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s" static char smp_header_thr[] = " PID%*s %-*.*s THR PRI NICE SIZE RES STATE C TIME %7s COMMAND"; static char smp_header[] = " PID%*s %-*.*s " "PRI NICE SIZE RES STATE C TIME %7s COMMAND"; #define smp_Proc_format \ "%5d%*s %-*.*s %s%3d %4s%7s %6s %-6.6s %2d%7s %6.2f%% %.*s" static char up_header_thr[] = " PID%*s %-*.*s THR PRI NICE SIZE RES STATE TIME %7s COMMAND"; static char up_header[] = " PID%*s %-*.*s " "PRI NICE SIZE RES STATE TIME %7s COMMAND"; #define up_Proc_format \ "%5d%*s %-*.*s %s%3d %4s%7s %6s %-6.6s%.0d%7s %6.2f%% %.*s" /* process state names for the "STATE" column of the display */ /* the extra nulls in the string "run" are for adding a slash and the processor number when needed */ char *state_abbrev[] = { "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" }; static kvm_t *kd; /* values that we stash away in _init and use in later routines */ static double logcpu; /* these are retrieved from the kernel in _init */ static load_avg ccpu; /* these are used in the get_ functions */ static int lastpid; /* these are for calculating cpu state percentages */ static long cp_time[CPUSTATES]; static long cp_old[CPUSTATES]; static long cp_diff[CPUSTATES]; /* these are for detailing the process states */ int process_states[8]; char *procstatenames[] = { "", " starting, ", " running, ", " sleeping, ", " stopped, ", " zombie, ", " waiting, ", " lock, ", NULL }; /* these are for detailing the cpu states */ int cpu_states[CPUSTATES]; char *cpustatenames[] = { "user", "nice", "system", "interrupt", "idle", NULL }; /* these are for detailing the memory statistics */ int memory_stats[7]; char *memorynames[] = { "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free", NULL }; int arc_stats[7]; char *arcnames[] = { "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", NULL }; int swap_stats[7]; char *swapnames[] = { "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", NULL }; /* these are for keeping track of the proc array */ static int nproc; static int onproc = -1; static int pref_len; static struct kinfo_proc *pbase; static struct kinfo_proc **pref; static struct kinfo_proc *previous_procs; static struct kinfo_proc **previous_pref; static int previous_proc_count = 0; static int previous_proc_count_max = 0; static int arc_enabled; /* total number of io operations */ static long total_inblock; static long total_oublock; static long total_majflt; /* these are for getting the memory statistics */ static int pageshift; /* log base 2 of the pagesize */ /* define pagetok in terms of pageshift */ #define pagetok(size) ((size) << pageshift) /* useful externals */ long percentages(); #ifdef ORDER /* * Sorting orders. The first element is the default. */ char *ordernames[] = { "cpu", "size", "res", "time", "pri", "threads", "total", "read", "write", "fault", "vcsw", "ivcsw", "jid", "pid", NULL }; #endif /* Per-cpu time states */ static int maxcpu; static int maxid; static int ncpus; static u_long cpumask; static long *times; static long *pcpu_cp_time; static long *pcpu_cp_old; static long *pcpu_cp_diff; static int *pcpu_cpu_states; static int compare_jid(const void *a, const void *b); static int compare_pid(const void *a, const void *b); static int compare_tid(const void *a, const void *b); static const char *format_nice(const struct kinfo_proc *pp); static void getsysctl(const char *name, void *ptr, size_t len); static int swapmode(int *retavail, int *retfree); static void update_layout(void); void toggle_pcpustats(void) { if (ncpus == 1) return; update_layout(); } /* Adjust display based on ncpus and the ARC state. */ static void update_layout(void) { y_mem = 3; y_arc = 4; y_swap = 4 + arc_enabled; y_idlecursor = 5 + arc_enabled; y_message = 5 + arc_enabled; y_header = 6 + arc_enabled; y_procs = 7 + arc_enabled; Header_lines = 7 + arc_enabled; if (pcpu_stats) { y_mem += ncpus - 1; y_arc += ncpus - 1; y_swap += ncpus - 1; y_idlecursor += ncpus - 1; y_message += ncpus - 1; y_header += ncpus - 1; y_procs += ncpus - 1; Header_lines += ncpus - 1; } } int machine_init(struct statics *statics, char do_unames) { int i, j, empty, pagesize; uint64_t arc_size; size_t size; struct passwd *pw; size = sizeof(smpmode); if ((sysctlbyname("machdep.smp_active", &smpmode, &size, NULL, 0) != 0 && sysctlbyname("kern.smp.active", &smpmode, &size, NULL, 0) != 0) || size != sizeof(smpmode)) smpmode = 0; size = sizeof(arc_size); if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, NULL, 0) == 0 && arc_size != 0) arc_enabled = 1; if (do_unames) { while ((pw = getpwent()) != NULL) { if (strlen(pw->pw_name) > namelength) namelength = strlen(pw->pw_name); } } if (smpmode && namelength > SMPUNAMELEN) namelength = SMPUNAMELEN; else if (namelength > UPUNAMELEN) namelength = UPUNAMELEN; kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); if (kd == NULL) return (-1); GETSYSCTL("kern.ccpu", ccpu); /* this is used in calculating WCPU -- calculate it ahead of time */ logcpu = log(loaddouble(ccpu)); pbase = NULL; pref = NULL; nproc = 0; onproc = -1; /* get the page size and calculate pageshift from it */ pagesize = getpagesize(); pageshift = 0; while (pagesize > 1) { pageshift++; pagesize >>= 1; } /* we only need the amount of log(2)1024 for our conversion */ pageshift -= LOG1024; /* fill in the statics information */ statics->procstate_names = procstatenames; statics->cpustate_names = cpustatenames; statics->memory_names = memorynames; if (arc_enabled) statics->arc_names = arcnames; else statics->arc_names = NULL; statics->swap_names = swapnames; #ifdef ORDER statics->order_names = ordernames; #endif /* Allocate state for per-CPU stats. */ cpumask = 0; ncpus = 0; GETSYSCTL("kern.smp.maxcpus", maxcpu); size = sizeof(long) * maxcpu * CPUSTATES; times = malloc(size); if (times == NULL) err(1, "malloc %zd bytes", size); if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) err(1, "sysctlbyname kern.cp_times"); pcpu_cp_time = calloc(1, size); maxid = (size / CPUSTATES / sizeof(long)) - 1; for (i = 0; i <= maxid; i++) { empty = 1; for (j = 0; empty && j < CPUSTATES; j++) { if (times[i * CPUSTATES + j] != 0) empty = 0; } if (!empty) { cpumask |= (1ul << i); ncpus++; } } size = sizeof(long) * ncpus * CPUSTATES; pcpu_cp_old = calloc(1, size); pcpu_cp_diff = calloc(1, size); pcpu_cpu_states = calloc(1, size); statics->ncpus = ncpus; update_layout(); /* all done! */ return (0); } char * format_header(char *uname_field) { static char Header[128]; const char *prehead; if (ps.jail) jidlength = TOP_JID_LEN + 1; /* +1 for extra left space. */ else jidlength = 0; switch (displaymode) { case DISP_CPU: /* * The logic of picking the right header format seems reverse * here because we only want to display a THR column when * "thread mode" is off (and threads are not listed as * separate lines). */ prehead = smpmode ? (ps.thread ? smp_header : smp_header_thr) : (ps.thread ? up_header : up_header_thr); snprintf(Header, sizeof(Header), prehead, jidlength, ps.jail ? " JID" : "", namelength, namelength, uname_field, ps.wcpu ? "WCPU" : "CPU"); break; case DISP_IO: prehead = io_header; snprintf(Header, sizeof(Header), prehead, jidlength, ps.jail ? " JID" : "", namelength, namelength, uname_field); break; } cmdlengthdelta = strlen(Header) - 7; return (Header); } static int swappgsin = -1; static int swappgsout = -1; extern struct timeval timeout; void get_system_info(struct system_info *si) { long total; struct loadavg sysload; int mib[2]; struct timeval boottime; uint64_t arc_stat, arc_stat2; int i, j; size_t size; /* get the CPU stats */ size = (maxid + 1) * CPUSTATES * sizeof(long); if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) err(1, "sysctlbyname kern.cp_times"); GETSYSCTL("kern.cp_time", cp_time); GETSYSCTL("vm.loadavg", sysload); GETSYSCTL("kern.lastpid", lastpid); /* convert load averages to doubles */ for (i = 0; i < 3; i++) si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; /* convert cp_time counts to percentages */ for (i = j = 0; i <= maxid; i++) { if ((cpumask & (1ul << i)) == 0) continue; percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], &pcpu_cp_time[j * CPUSTATES], &pcpu_cp_old[j * CPUSTATES], &pcpu_cp_diff[j * CPUSTATES]); j++; } percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); /* sum memory & swap statistics */ { static unsigned int swap_delay = 0; static int swapavail = 0; static int swapfree = 0; static long bufspace = 0; static int nspgsin, nspgsout; GETSYSCTL("vfs.bufspace", bufspace); GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]); GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]); GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); /* convert memory stats to Kbytes */ memory_stats[0] = pagetok(memory_stats[0]); memory_stats[1] = pagetok(memory_stats[1]); memory_stats[2] = pagetok(memory_stats[2]); memory_stats[3] = pagetok(memory_stats[3]); memory_stats[4] = bufspace / 1024; memory_stats[5] = pagetok(memory_stats[5]); memory_stats[6] = -1; /* first interval */ if (swappgsin < 0) { swap_stats[4] = 0; swap_stats[5] = 0; } /* compute differences between old and new swap statistic */ else { swap_stats[4] = pagetok(((nspgsin - swappgsin))); swap_stats[5] = pagetok(((nspgsout - swappgsout))); } swappgsin = nspgsin; swappgsout = nspgsout; /* call CPU heavy swapmode() only for changes */ if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { swap_stats[3] = swapmode(&swapavail, &swapfree); swap_stats[0] = swapavail; swap_stats[1] = swapavail - swapfree; swap_stats[2] = swapfree; } swap_delay = 1; swap_stats[6] = -1; } if (arc_enabled) { GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); arc_stats[0] = arc_stat >> 10; GETSYSCTL("vfs.zfs.mfu_size", arc_stat); arc_stats[1] = arc_stat >> 10; GETSYSCTL("vfs.zfs.mru_size", arc_stat); arc_stats[2] = arc_stat >> 10; GETSYSCTL("vfs.zfs.anon_size", arc_stat); arc_stats[3] = arc_stat >> 10; GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); arc_stats[4] = arc_stat + arc_stat2 >> 10; GETSYSCTL("kstat.zfs.misc.arcstats.other_size", arc_stat); arc_stats[5] = arc_stat >> 10; si->arc = arc_stats; } /* set arrays and strings */ if (pcpu_stats) { si->cpustates = pcpu_cpu_states; si->ncpus = ncpus; } else { si->cpustates = cpu_states; si->ncpus = 1; } si->memory = memory_stats; si->swap = swap_stats; if (lastpid > 0) { si->last_pid = lastpid; } else { si->last_pid = -1; } /* * Print how long system has been up. * (Found by looking getting "boottime" from the kernel) */ mib[0] = CTL_KERN; mib[1] = KERN_BOOTTIME; size = sizeof(boottime); if (sysctl(mib, 2, &boottime, &size, NULL, 0) != -1 && boottime.tv_sec != 0) { si->boottime = boottime; } else { si->boottime.tv_sec = -1; } } #define NOPROC ((void *)-1) /* * We need to compare data from the old process entry with the new * process entry. * To facilitate doing this quickly we stash a pointer in the kinfo_proc * structure to cache the mapping. We also use a negative cache pointer * of NOPROC to avoid duplicate lookups. * XXX: this could be done when the actual processes are fetched, we do * it here out of laziness. */ const struct kinfo_proc * get_old_proc(struct kinfo_proc *pp) { struct kinfo_proc **oldpp, *oldp; /* * If this is the first fetch of the kinfo_procs then we don't have * any previous entries. */ if (previous_proc_count == 0) return (NULL); /* negative cache? */ if (pp->ki_udata == NOPROC) return (NULL); /* cached? */ if (pp->ki_udata != NULL) return (pp->ki_udata); /* * Not cached, * 1) look up based on pid. * 2) compare process start. * If we fail here, then setup a negative cache entry, otherwise * cache it. */ oldpp = bsearch(&pp, previous_pref, previous_proc_count, sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); if (oldpp == NULL) { pp->ki_udata = NOPROC; return (NULL); } oldp = *oldpp; if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { pp->ki_udata = NOPROC; return (NULL); } pp->ki_udata = oldp; return (oldp); } /* * Return the total amount of IO done in blocks in/out and faults. * store the values individually in the pointers passed in. */ long get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp, long *vcsw, long *ivcsw) { const struct kinfo_proc *oldp; static struct kinfo_proc dummy; long ret; oldp = get_old_proc(pp); if (oldp == NULL) { bzero(&dummy, sizeof(dummy)); oldp = &dummy; } *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; ret = (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); return (ret); } /* * Return the total number of block in/out and faults by a process. */ long get_io_total(struct kinfo_proc *pp) { long dummy; return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); } static struct handle handle; caddr_t get_process_info(struct system_info *si, struct process_select *sel, int (*compare)(const void *, const void *)) { int i; int total_procs; long p_io; long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; int active_procs; struct kinfo_proc **prefp; struct kinfo_proc *pp; /* these are copied out of sel for speed */ int show_idle; int show_jid; int show_self; int show_system; int show_uid; int show_command; int show_kidle; /* * Save the previous process info. */ if (previous_proc_count_max < nproc) { free(previous_procs); previous_procs = malloc(nproc * sizeof(*previous_procs)); free(previous_pref); previous_pref = malloc(nproc * sizeof(*previous_pref)); if (previous_procs == NULL || previous_pref == NULL) { (void) fprintf(stderr, "top: Out of memory.\n"); quit(23); } previous_proc_count_max = nproc; } if (nproc) { for (i = 0; i < nproc; i++) previous_pref[i] = &previous_procs[i]; bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs)); qsort(previous_pref, nproc, sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); } previous_proc_count = nproc; pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 0, &nproc); if (nproc > onproc) pref = realloc(pref, sizeof(*pref) * (onproc = nproc)); if (pref == NULL || pbase == NULL) { (void) fprintf(stderr, "top: Out of memory.\n"); quit(23); } /* get a pointer to the states summary array */ si->procstates = process_states; /* set up flags which define what we are going to select */ show_idle = sel->idle; show_jid = sel->jid != -1; show_self = sel->self == -1; show_system = sel->system; show_uid = sel->uid != -1; show_command = sel->command != NULL; show_kidle = sel->kidle; /* count up process states and get pointers to interesting procs */ total_procs = 0; active_procs = 0; total_inblock = 0; total_oublock = 0; total_majflt = 0; memset((char *)process_states, 0, sizeof(process_states)); prefp = pref; for (pp = pbase, i = 0; i < nproc; pp++, i++) { if (pp->ki_stat == 0) /* not in use */ continue; if (!show_self && pp->ki_pid == sel->self) /* skip self */ continue; if (!show_system && (pp->ki_flag & P_SYSTEM)) /* skip system process */ continue; p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, &p_vcsw, &p_ivcsw); total_inblock += p_inblock; total_oublock += p_oublock; total_majflt += p_majflt; total_procs++; process_states[pp->ki_stat]++; if (pp->ki_stat == SZOMB) /* skip zombies */ continue; if (!show_kidle && pp->ki_tdflags & TDF_IDLETD) /* skip kernel idle process */ continue; if (displaymode == DISP_CPU && !show_idle && (pp->ki_pctcpu == 0 || pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) /* skip idle or non-running processes */ continue; if (displaymode == DISP_IO && !show_idle && p_io == 0) /* skip processes that aren't doing I/O */ continue; if (show_jid && pp->ki_jid != sel->jid) /* skip proc. that don't belong to the selected JID */ continue; if (show_uid && pp->ki_ruid != (uid_t)sel->uid) /* skip proc. that don't belong to the selected UID */ continue; *prefp++ = pp; active_procs++; } /* if requested, sort the "interesting" processes */ if (compare != NULL) qsort(pref, active_procs, sizeof(*pref), compare); /* remember active and total counts */ si->p_total = total_procs; si->p_active = pref_len = active_procs; /* pass back a handle */ handle.next_proc = pref; handle.remaining = active_procs; return ((caddr_t)&handle); } static char fmt[512]; /* static area where result is built */ char * format_next_process(caddr_t handle, char *(*get_userid)(int), int flags) { struct kinfo_proc *pp; const struct kinfo_proc *oldp; long cputime; double pct; struct handle *hp; char status[16]; int cpu, state; struct rusage ru, *rup; long p_tot, s_tot; char *proc_fmt, thr_buf[6], jid_buf[TOP_JID_LEN + 1]; char *cmdbuf = NULL; char **args; const int cmdlen = 128; /* find and remember the next proc structure */ hp = (struct handle *)handle; pp = *(hp->next_proc++); hp->remaining--; /* get the process's command name */ if ((pp->ki_flag & P_INMEM) == 0) { /* * Print swapped processes as */ size_t len; len = strlen(pp->ki_comm); if (len > sizeof(pp->ki_comm) - 3) len = sizeof(pp->ki_comm) - 3; memmove(pp->ki_comm + 1, pp->ki_comm, len); pp->ki_comm[0] = '<'; pp->ki_comm[len + 1] = '>'; pp->ki_comm[len + 2] = '\0'; } /* * Convert the process's runtime from microseconds to seconds. This * time includes the interrupt time although that is not wanted here. * ps(1) is similarly sloppy. */ cputime = (pp->ki_runtime + 500000) / 1000000; /* calculate the base for cpu percentages */ pct = pctdouble(pp->ki_pctcpu); /* generate "STATE" field */ switch (state = pp->ki_stat) { case SRUN: if (smpmode && pp->ki_oncpu != 0xff) sprintf(status, "CPU%d", pp->ki_oncpu); else strcpy(status, "RUN"); break; case SLOCK: if (pp->ki_kiflag & KI_LOCKBLOCK) { sprintf(status, "*%.6s", pp->ki_lockname); break; } /* fall through */ case SSLEEP: if (pp->ki_wmesg != NULL) { sprintf(status, "%.6s", pp->ki_wmesg); break; } /* FALLTHROUGH */ default: if (state >= 0 && state < sizeof(state_abbrev) / sizeof(*state_abbrev)) sprintf(status, "%.6s", state_abbrev[state]); else sprintf(status, "?%5d", state); break; } cmdbuf = (char *)malloc(cmdlen + 1); if (cmdbuf == NULL) { warn("malloc(%d)", cmdlen + 1); return NULL; } if (!(flags & FMT_SHOWARGS)) { if (ps.thread && pp->ki_flag & P_HADTHREADS && pp->ki_tdname[0]) { - snprintf(cmdbuf, cmdlen, "%s{%s}", pp->ki_comm, - pp->ki_tdname); + snprintf(cmdbuf, cmdlen, "%s{%s%s}", pp->ki_comm, + pp->ki_tdname, pp->ki_moretdname); } else { snprintf(cmdbuf, cmdlen, "%s", pp->ki_comm); } } else { if (pp->ki_flag & P_SYSTEM || pp->ki_args == NULL || (args = kvm_getargv(kd, pp, cmdlen)) == NULL || !(*args)) { if (ps.thread && pp->ki_flag & P_HADTHREADS && pp->ki_tdname[0]) { snprintf(cmdbuf, cmdlen, - "[%s{%s}]", pp->ki_comm, pp->ki_tdname); + "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname, + pp->ki_moretdname); } else { snprintf(cmdbuf, cmdlen, "[%s]", pp->ki_comm); } } else { char *src, *dst, *argbuf; char *cmd; size_t argbuflen; size_t len; argbuflen = cmdlen * 4; argbuf = (char *)malloc(argbuflen + 1); if (argbuf == NULL) { warn("malloc(%d)", argbuflen + 1); free(cmdbuf); return NULL; } dst = argbuf; /* Extract cmd name from argv */ cmd = strrchr(*args, '/'); if (cmd == NULL) cmd = *args; else cmd++; for (; (src = *args++) != NULL; ) { if (*src == '\0') continue; len = (argbuflen - (dst - argbuf) - 1) / 4; strvisx(dst, src, strlen(src) < len ? strlen(src) : len, VIS_NL | VIS_CSTYLE); while (*dst != '\0') dst++; if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) *dst++ = ' '; /* add delimiting space */ } if (dst != argbuf && dst[-1] == ' ') dst--; *dst = '\0'; if (strcmp(cmd, pp->ki_comm) != 0) { if (ps.thread && pp->ki_flag & P_HADTHREADS && pp->ki_tdname[0]) snprintf(cmdbuf, cmdlen, - "%s (%s){%s}", argbuf, pp->ki_comm, - pp->ki_tdname); + "%s (%s){%s%s}", argbuf, + pp->ki_comm, pp->ki_tdname, + pp->ki_moretdname); else snprintf(cmdbuf, cmdlen, "%s (%s)", argbuf, pp->ki_comm); } else { if (ps.thread && pp->ki_flag & P_HADTHREADS && pp->ki_tdname[0]) snprintf(cmdbuf, cmdlen, - "%s{%s}", argbuf, pp->ki_tdname); + "%s{%s%s}", argbuf, pp->ki_tdname, + pp->ki_moretdname); else strlcpy(cmdbuf, argbuf, cmdlen); } free(argbuf); } } if (ps.jail == 0) jid_buf[0] = '\0'; else snprintf(jid_buf, sizeof(jid_buf), "%*d", jidlength - 1, pp->ki_jid); if (displaymode == DISP_IO) { oldp = get_old_proc(pp); if (oldp != NULL) { ru.ru_inblock = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; ru.ru_oublock = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; rup = &ru; } else { rup = RU(pp); } p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; s_tot = total_inblock + total_oublock + total_majflt; snprintf(fmt, sizeof(fmt), io_Proc_format, pp->ki_pid, jidlength, jid_buf, namelength, namelength, (*get_userid)(pp->ki_ruid), rup->ru_nvcsw, rup->ru_nivcsw, rup->ru_inblock, rup->ru_oublock, rup->ru_majflt, p_tot, s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot), screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0, printable(cmdbuf)); free(cmdbuf); return (fmt); } /* format this entry */ if (smpmode) { if (state == SRUN && pp->ki_oncpu != 0xff) cpu = pp->ki_oncpu; else cpu = pp->ki_lastcpu; } else cpu = 0; proc_fmt = smpmode ? smp_Proc_format : up_Proc_format; if (ps.thread != 0) thr_buf[0] = '\0'; else snprintf(thr_buf, sizeof(thr_buf), "%*d ", sizeof(thr_buf) - 2, pp->ki_numthreads); snprintf(fmt, sizeof(fmt), proc_fmt, pp->ki_pid, jidlength, jid_buf, namelength, namelength, (*get_userid)(pp->ki_ruid), thr_buf, pp->ki_pri.pri_level - PZERO, format_nice(pp), format_k2(PROCSIZE(pp)), format_k2(pagetok(pp->ki_rssize)), status, cpu, format_time(cputime), ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct, screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0, printable(cmdbuf)); free(cmdbuf); /* return the result */ return (fmt); } static void getsysctl(const char *name, void *ptr, size_t len) { size_t nlen = len; if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, strerror(errno)); quit(23); } if (nlen != len) { fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", name, (unsigned long)len, (unsigned long)nlen); quit(23); } } static const char * format_nice(const struct kinfo_proc *pp) { const char *fifo, *kthread; int rtpri; static char nicebuf[4 + 1]; fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; kthread = (pp->ki_flag & P_KTHREAD) ? "k" : ""; switch (PRI_BASE(pp->ki_pri.pri_class)) { case PRI_ITHD: return ("-"); case PRI_REALTIME: /* * XXX: the kernel doesn't tell us the original rtprio and * doesn't really know what it was, so to recover it we * must be more chummy with the implementation than the * implementation is with itself. pri_user gives a * constant "base" priority, but is only initialized * properly for user threads. pri_native gives what the * kernel calls the "base" priority, but it isn't constant * since it is changed by priority propagation. pri_native * also isn't properly initialized for all threads, but it * is properly initialized for kernel realtime and idletime * threads. Thus we use pri_user for the base priority of * user threads (it is always correct) and pri_native for * the base priority of kernel realtime and idletime threads * (there is nothing better, and it is usually correct). * * The field width and thus the buffer are too small for * values like "kr31F", but such values shouldn't occur, * and if they do then the tailing "F" is not displayed. */ rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native : pp->ki_pri.pri_user) - PRI_MIN_REALTIME; snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", kthread, rtpri, fifo); break; case PRI_TIMESHARE: if (pp->ki_flag & P_KTHREAD) return ("-"); snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); break; case PRI_IDLE: /* XXX: as above. */ rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native : pp->ki_pri.pri_user) - PRI_MIN_IDLE; snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", kthread, rtpri, fifo); break; default: return ("?"); } return (nicebuf); } /* comparison routines for qsort */ static int compare_pid(const void *p1, const void *p2) { const struct kinfo_proc * const *pp1 = p1; const struct kinfo_proc * const *pp2 = p2; if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0) abort(); return ((*pp1)->ki_pid - (*pp2)->ki_pid); } static int compare_tid(const void *p1, const void *p2) { const struct kinfo_proc * const *pp1 = p1; const struct kinfo_proc * const *pp2 = p2; if ((*pp2)->ki_tid < 0 || (*pp1)->ki_tid < 0) abort(); return ((*pp1)->ki_tid - (*pp2)->ki_tid); } /* * proc_compare - comparison function for "qsort" * Compares the resource consumption of two processes using five * distinct keys. The keys (in descending order of importance) are: * percent cpu, cpu ticks, state, resident set size, total virtual * memory usage. The process states are ordered as follows (from least * to most important): WAIT, zombie, sleep, stop, start, run. The * array declaration below maps a process state index into a number * that reflects this ordering. */ static int sorted_state[] = { 0, /* not used */ 3, /* sleep */ 1, /* ABANDONED (WAIT) */ 6, /* run */ 5, /* start */ 2, /* zombie */ 4 /* stop */ }; #define ORDERKEY_PCTCPU(a, b) do { \ long diff; \ if (ps.wcpu) \ diff = floor(1.0E6 * weighted_cpu(pctdouble((b)->ki_pctcpu), \ (b))) - \ floor(1.0E6 * weighted_cpu(pctdouble((a)->ki_pctcpu), \ (a))); \ else \ diff = (long)(b)->ki_pctcpu - (long)(a)->ki_pctcpu; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_CPTICKS(a, b) do { \ int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_STATE(a, b) do { \ int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_PRIO(a, b) do { \ int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_THREADS(a, b) do { \ int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_RSSIZE(a, b) do { \ long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_MEM(a, b) do { \ long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_JID(a, b) do { \ int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) /* compare_cpu - the comparison function for sorting by cpu percentage */ int #ifdef ORDER compare_cpu(void *arg1, void *arg2) #else proc_compare(void *arg1, void *arg2) #endif { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; ORDERKEY_PCTCPU(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); return (0); } #ifdef ORDER /* "cpu" compare routines */ int compare_size(), compare_res(), compare_time(), compare_prio(), compare_threads(); /* * "io" compare routines. Context switches aren't i/o, but are displayed * on the "io" display. */ int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(), compare_vcsw(), compare_ivcsw(); int (*compares[])() = { compare_cpu, compare_size, compare_res, compare_time, compare_prio, compare_threads, compare_iototal, compare_ioread, compare_iowrite, compare_iofault, compare_vcsw, compare_ivcsw, compare_jid, NULL }; /* compare_size - the comparison function for sorting by total memory usage */ int compare_size(void *arg1, void *arg2) { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; ORDERKEY_MEM(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); return (0); } /* compare_res - the comparison function for sorting by resident set size */ int compare_res(void *arg1, void *arg2) { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); return (0); } /* compare_time - the comparison function for sorting by total cpu time */ int compare_time(void *arg1, void *arg2) { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; ORDERKEY_CPTICKS(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); return (0); } /* compare_prio - the comparison function for sorting by priority */ int compare_prio(void *arg1, void *arg2) { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; ORDERKEY_PRIO(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); return (0); } /* compare_threads - the comparison function for sorting by threads */ int compare_threads(void *arg1, void *arg2) { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; ORDERKEY_THREADS(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); return (0); } /* compare_jid - the comparison function for sorting by jid */ static int compare_jid(const void *arg1, const void *arg2) { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; ORDERKEY_JID(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); return (0); } #endif /* ORDER */ /* assorted comparison functions for sorting by i/o */ int #ifdef ORDER compare_iototal(void *arg1, void *arg2) #else io_compare(void *arg1, void *arg2) #endif { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; return (get_io_total(p2) - get_io_total(p1)); } #ifdef ORDER int compare_ioread(void *arg1, void *arg2) { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; long dummy, inp1, inp2; (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); return (inp2 - inp1); } int compare_iowrite(void *arg1, void *arg2) { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; long dummy, oup1, oup2; (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); return (oup2 - oup1); } int compare_iofault(void *arg1, void *arg2) { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; long dummy, flp1, flp2; (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); return (flp2 - flp1); } int compare_vcsw(void *arg1, void *arg2) { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; long dummy, flp1, flp2; (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); return (flp2 - flp1); } int compare_ivcsw(void *arg1, void *arg2) { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; long dummy, flp1, flp2; (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); return (flp2 - flp1); } #endif /* ORDER */ /* * proc_owner(pid) - returns the uid that owns process "pid", or -1 if * the process does not exist. * It is EXTREMELY IMPORTANT that this function work correctly. * If top runs setuid root (as in SVR4), then this function * is the only thing that stands in the way of a serious * security problem. It validates requests for the "kill" * and "renice" commands. */ int proc_owner(int pid) { int cnt; struct kinfo_proc **prefp; struct kinfo_proc *pp; prefp = pref; cnt = pref_len; while (--cnt >= 0) { pp = *prefp++; if (pp->ki_pid == (pid_t)pid) return ((int)pp->ki_ruid); } return (-1); } static int swapmode(int *retavail, int *retfree) { int n; int pagesize = getpagesize(); struct kvm_swap swapary[1]; *retavail = 0; *retfree = 0; #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) n = kvm_getswapinfo(kd, swapary, 1, 0); if (n < 0 || swapary[0].ksw_total == 0) return (0); *retavail = CONVERT(swapary[0].ksw_total); *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); return (n); } Index: stable/10 =================================================================== --- stable/10 (revision 310120) +++ stable/10 (revision 310121) Property changes on: stable/10 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r309676